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Getting Started

• “Statistics and Machine Learning Toolbox Product Description” on page 1-2
• “Supported Data Types” on page 1-3
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Statistics and Machine Learning Toolbox Product Description
Analyze and model data using statistics and machine learning

Statistics and Machine Learning Toolbox provides functions and apps to describe, analyze, and model
data. You can use descriptive statistics, visualizations, and clustering for exploratory data analysis, fit
probability distributions to data, generate random numbers for Monte Carlo simulations, and perform
hypothesis tests. Regression and classification algorithms let you draw inferences from data and build
predictive models either interactively, using the Classification and Regression Learner apps, or
programmatically, using AutoML.

For multidimensional data analysis and feature extraction, the toolbox provides principal component
analysis (PCA), regularization, dimensionality reduction, and feature selection methods that let you
identify variables with the best predictive power.

The toolbox provides supervised, semi-supervised and unsupervised machine learning algorithms,
including support vector machines (SVMs), boosted decision trees, k-means, and other clustering
methods. You can apply interpretability techniques such as partial dependence plots and LIME, and
automatically generate C/C++ code for embedded deployment. Many toolbox algorithms can be used
on data sets that are too big to be stored in memory.

1 Getting Started
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Supported Data Types
Statistics and Machine Learning Toolbox supports the following data types for input arguments:

• Numeric scalars, vectors, matrices, or arrays having single- or double-precision entries. These
data forms have data type single or double. Examples include response variables, predictor
variables, and numeric values.

• Cell arrays of character vectors; character, string, logical, or categorical arrays; or numeric
vectors for categorical variables representing grouping data. These data forms have data types
cell (specifically cellstr), char, string, logical, categorical, and single or double,
respectively. An example is an array of class labels in machine learning.

• You can also use nominal or ordinal arrays for categorical data. However, the nominal and
ordinal data types are not recommended. To work with nominal or ordinal categorical data,
use the categorical data type instead.

• You can use signed or unsigned integers, e.g., int8 or uint8. However:

• Estimation functions might not support signed or unsigned integer data types for
nongrouping data.

• If you recast a single or double numeric vector containing NaN values to a signed or
unsigned integer, then the software converts the NaN elements to 0.

• Some functions support tabular arrays for heterogeneous data (for details, see “Tables”). The
table data type contains variables of any of the data types previously listed. An example is mixed
categorical and numerical predictor data for regression analysis.

• For some functions, you can also use dataset arrays for heterogeneous data. However, the
dataset data type is not recommended. To work with heterogeneous data, use the table data
type if the estimation function supports it.

• Functions that do not support the table data type support sample data of type single or
double, e.g., matrices.

• Some functions accept gpuArray input arguments so that they execute on the GPU. For the full
list of Statistics and Machine Learning Toolbox functions that accept GPU arrays, see Function
List (GPU Arrays).

• Some functions accept tall array input arguments to work with large data sets. For the full list of
Statistics and Machine Learning Toolbox functions that accept tall arrays, see Function List (Tall
Arrays).

• Some functions accept sparse matrices, i.e., matrix A such that issparse(A) returns 1. For
functions that do not accept sparse matrices, recast the data to a full matrix by using full.

Statistics and Machine Learning Toolbox does not support the following data types:

• Complex numbers.
• Custom numeric data types, e.g., a variable that is double precision and an object.
• Signed or unsigned numeric integers for nongrouping data, e.g., unint8 and int16.

Note If you specify data of an unsupported type, then the software might return an error or
unexpected results.

 Supported Data Types
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Organizing Data

• “Other MATLAB Functions Supporting Nominal and Ordinal Arrays” on page 2-2
• “Create Nominal and Ordinal Arrays” on page 2-3
• “Change Category Labels” on page 2-7
• “Reorder Category Levels” on page 2-9
• “Categorize Numeric Data” on page 2-13
• “Merge Category Levels” on page 2-16
• “Add and Drop Category Levels” on page 2-18
• “Plot Data Grouped by Category” on page 2-21
• “Test Differences Between Category Means” on page 2-25
• “Summary Statistics Grouped by Category” on page 2-33
• “Sort Ordinal Arrays” on page 2-35
• “Nominal and Ordinal Arrays” on page 2-37
• “Advantages of Using Nominal and Ordinal Arrays” on page 2-39
• “Index and Search Using Nominal and Ordinal Arrays” on page 2-42
• “Grouping Variables” on page 2-46
• “Dummy Variables” on page 2-49
• “Linear Regression with Categorical Covariates” on page 2-53
• “Create a Dataset Array from Workspace Variables” on page 2-58
• “Create a Dataset Array from a File” on page 2-63
• “Add and Delete Observations” on page 2-69
• “Add and Delete Variables” on page 2-72
• “Access Data in Dataset Array Variables” on page 2-75
• “Select Subsets of Observations” on page 2-80
• “Sort Observations in Dataset Arrays” on page 2-83
• “Merge Dataset Arrays” on page 2-86
• “Stack or Unstack Dataset Arrays” on page 2-89
• “Calculations on Dataset Arrays” on page 2-93
• “Export Dataset Arrays” on page 2-96
• “Clean Messy and Missing Data” on page 2-98
• “Dataset Arrays in the Variables Editor” on page 2-102
• “Dataset Arrays” on page 2-113
• “Index and Search Dataset Arrays” on page 2-115
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Other MATLAB Functions Supporting Nominal and Ordinal
Arrays

Note The nominal and ordinal array data types are not recommended. To represent ordered and
unordered discrete, nonnumeric data, use the “Categorical Arrays” data type instead.

Notable functions that operate on nominal and ordinal arrays are listed in nominal and ordinal. In
addition to these, many other functions in MATLAB operate on nominal and ordinal arrays in much
the same way that they operate on other arrays. A few functions might exhibit special behavior when
operating on nominal and ordinal arrays:

• If multiple input arguments are nominal or ordinal arrays, the function often requires that they
have the same set of categories, including order if ordinal.

• Relational functions, such as max and gt, require that the input arrays be ordinal.

The following table lists MATLAB functions that operate on nominal and ordinal arrays in addition to
other arrays.

size
length
ndims
numel

isrow
iscolumn

cat
horzcat
vertcat

isequal
isequaln

eq
ne
lt
le
ge
gt

min
max
median
mode

intersect
ismember
setdiff
setxor
unique
union

histogram
pietimes

sort
sortrows
issorted

permute
reshape
transpose
ctranspose

double
single
int8
int16
int32
int64
uint8
uint16
uint32
uint64
char
cellstr

See Also
nominal | ordinal

2 Organizing Data
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Create Nominal and Ordinal Arrays

Note The nominal and ordinal array data types are not recommended. To represent ordered and
unordered discrete, nonnumeric data, use the “Categorical Arrays” data type instead.

In this section...
“Create Nominal Arrays” on page 2-3
“Create Ordinal Arrays” on page 2-4

Create Nominal Arrays

This example shows how to create nominal arrays using nominal.

Load sample data.

The variable species is a 150-by-1 cell array of character vectors containing the species name for
each observation. The unique species types are setosa, versicolor, and virginica.

load fisheriris
unique(species)

ans = 3x1 cell
    {'setosa'    }
    {'versicolor'}
    {'virginica' }

Create a nominal array.

Convert species to a nominal array using the categories occurring in the data.

speciesNom = nominal(species);
class(speciesNom)

ans = 
'nominal'

Explore category levels.

The nominal array, speciesNom, has three levels corresponding to the three unique species. The
levels of a nominal array are the set of possible values that its elements can take.

getlevels(speciesNom)

ans = 1x3 nominal
     setosa      versicolor      virginica 

A nominal array can have more levels than actually appear in the data. For example, a nominal array
named AllSizes might have levels small, medium, and large, but you might only have
observations that are medium and large in your data. To see which levels of a nominal array are
actually present in the data, use unique, for instance, unique(AllSizes).
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Explore category labels.

Each level has a label. By default, nominal labels the category levels with the values occurring in the
data. For speciesNom, these labels are the species types.

getlabels(speciesNom)

ans = 1x3 cell
    {'setosa'}    {'versicolor'}    {'virginica'}

Specify your own category labels.

You can specify your own labels for each category level. You can specify labels when you create the
nominal array.

speciesNom2 = nominal(species,{'seto','vers','virg'});
getlabels(speciesNom2)

ans = 1x3 cell
    {'seto'}    {'vers'}    {'virg'}

You can also change category labels on an existing nominal array using setlabels

Verify new category labels.

Verify that the new labels correspond to the original labels in speciesNom.

isequal(speciesNom=='setosa',speciesNom2=='seto')

ans = logical
   1

The logical value 1 indicates that the two labels, 'setosa' and 'seto', correspond to the same
observations.

Create Ordinal Arrays

This example shows how to create ordinal arrays using ordinal.

Load sample data.

AllSizes = {'medium','large','small','small','medium',...
            'large','medium','small'};

The created variable, AllSizes, is a cell array of character vectors containing size measurements on
eight objects.

Create an ordinal array.

Create an ordinal array with category levels and labels corresponding to the values in the cell array
(the default levels and labels).

sizeOrd = ordinal(AllSizes);
getlevels(sizeOrd)
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ans = 1x3 ordinal
     large      medium      small 

Explore category labels.

By default, ordinal uses the original character vectors as category labels. The default order of the
categories is ascending alphabetical order.

getlabels(sizeOrd)

ans = 1x3 cell
    {'large'}    {'medium'}    {'small'}

Add additional categories.

Suppose that you want to include additional levels for the ordinal array, xsmall and xlarge, even
though they do not occur in the original data. To specify additional levels, use the third input
argument to ordinal.

sizeOrd2 = ordinal(AllSizes,{},...
                  {'xsmall','small','medium','large','xlarge'});
getlevels(sizeOrd2)

ans = 1x5 ordinal
     xsmall      small      medium      large      xlarge 

Explore category labels.

To see which levels are actually present in the data, use unique.

unique(sizeOrd2)

ans = 1x3 ordinal
     small      medium      large 

Specify the category order.

Convert AllSizes to an ordinal array with categories small < medium < large. Generally, an
ordinal array is distinct from a nominal array because there is a natural ordering for levels of an
ordinal array. You can use the third input argument to ordinal to specify the ascending order of the
levels. Here, the order of the levels is smallest to largest.

sizeOrd = ordinal(AllSizes,{},{'small','medium','large'});
getlevels(sizeOrd)

ans = 1x3 ordinal
     small      medium      large 

The second input argument for ordinal is a list of labels for the category levels. When you use
braces {} for the level labels, ordinal uses the labels specified in the third input argument (the
labels come from the levels present in the data if only one input argument is used).
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Compare elements.

Verify that the first object (with size medium) is smaller than the second object (with size large).

sizeOrd(1) < sizeOrd(2)

ans = logical
   1

The logical value 1 indicates that the inequality holds.

See Also
nominal | ordinal | getlabels | getlevels

Related Examples
• “Change Category Labels” on page 2-7
• “Reorder Category Levels” on page 2-9
• “Merge Category Levels” on page 2-16
• “Index and Search Using Nominal and Ordinal Arrays” on page 2-42

More About
• “Nominal and Ordinal Arrays” on page 2-37
• “Advantages of Using Nominal and Ordinal Arrays” on page 2-39
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Change Category Labels

Note The nominal and ordinal array data types are not recommended. To represent ordered and
unordered discrete, nonnumeric data, use the “Categorical Arrays” data type instead.

Change Category Labels

This example shows how to change the labels for category levels in categorical arrays using
setlabels. You also have the option to specify labels when creating a categorical array.

Load sample data.

The variable Cylinders contains the number of cylinders in 100 sample cars.

load carsmall
unique(Cylinders)

ans = 3×1

     4
     6
     8

The sample has 4-, 6-, and 8-cylinder cars.

Create an ordinal array.

Convert Cylinders to a nominal array with the default category labels (taken from the values in the
data).

cyl  = ordinal(Cylinders);
getlabels(cyl)

ans = 1x3 cell
    {'4'}    {'6'}    {'8'}

ordinal created labels using the integer values in Cylinders, but you should provide labels for
numeric data.

Change category labels.

Relabel the categories in cyl to Four, Six, and Eight.

cyl = setlabels(cyl ,{'Four','Six','Eight'});
getlabels(cyl)

ans = 1x3 cell
    {'Four'}    {'Six'}    {'Eight'}
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Alternatively, you can specify category labels when you create a nominal or ordinal array using the
second input argument, for example by specifying ordinal(Cylinders,
{'Four','Six','Eight'}).

See Also
nominal | ordinal | getlabels | setlabels

Related Examples
• “Reorder Category Levels” on page 2-9
• “Add and Drop Category Levels” on page 2-18
• “Index and Search Using Nominal and Ordinal Arrays” on page 2-42

More About
• “Nominal and Ordinal Arrays” on page 2-37
• “Advantages of Using Nominal and Ordinal Arrays” on page 2-39
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Reorder Category Levels

Note The nominal and ordinal array data types are not recommended. To represent ordered and
unordered discrete, nonnumeric data, use the “Categorical Arrays” data type instead.

In this section...
“Reorder Category Levels in Ordinal Arrays” on page 2-9
“Reorder Category Levels in Nominal Arrays” on page 2-10

Reorder Category Levels in Ordinal Arrays

This example shows how to reorder the category levels in an ordinal array using reorderlevels.

Load sample data.

AllSizes = {'medium','large','small','small','medium',...
            'large','medium','small'};

The created variable, AllSizes, is a cell array of character vectors containing size measurements on
eight objects.

Create an ordinal array.

Convert AllSizes to an ordinal array without specifying the order of the category levels.

size = ordinal(AllSizes);
getlevels(size)

ans = 1x3 ordinal
     large      medium      small 

By default, the categories are ordered by their labels in ascending alphabetical order, large <
medium < small.

Compare elements.

Check whether or not the first object (which has size medium) is smaller than the second object
(which has size large).

size(1) < size(2)

ans = logical
   0

The logical value 0 indicates that the medium object is not smaller than the large object.

Reorder category levels.

Reorder the category levels so that small < medium < large.
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size = reorderlevels(size,{'small','medium','large'});
getlevels(size)

ans = 1x3 ordinal
     small      medium      large 

Compare elements.

Verify that the first object is now smaller than the second object.

size(1) < size(2)

ans = logical
   1

The logical value 1 indicates that the expected inequality now holds.

Reorder Category Levels in Nominal Arrays

This example shows how to reorder the category levels in nominal arrays using reorderlevels. By
definition, nominal array categories have no natural ordering. However, you might want to change
the order of levels for display or analysis purposes. For example, when fitting a regression model with
categorical covariates, fitlm uses the first level of a nominal independent variable as the reference
category.

Load sample data.

The dataset array, hospital, contains variables measured on 100 sample patients. The variable
Weight contains the weight of each patient. The variable Sex is a nominal variable containing the
gender, Male or Female, for each patient.

load hospital
getlevels(hospital.Sex)

ans = 1x2 nominal
     Female      Male 

By default, the order of the nominal categories is in ascending alphabetical order of the labels.

Plot data grouped by category level.

Draw box plots of weight, grouped by gender.

figure
boxplot(hospital.Weight,hospital.Sex)
title('Weight by Gender')
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The box plots appear in the same alphabetical order returned by getlevels.

Change the category order.

Change the order of the category levels.

hospital.Sex = reorderlevels(hospital.Sex,{'Male','Female'});
getlevels(hospital.Sex)

ans = 1x2 nominal
     Male      Female 

The levels are in the newly specified order.

Plot data in new order.

Draw box plots of weight by gender.

figure
boxplot(hospital.Weight,hospital.Sex)
title('Weight by Gender')
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The order of the box plots corresponds to the new level order.

See Also
nominal | ordinal | getlevels | fitlm | reorderlevels

Related Examples
• “Change Category Labels” on page 2-7
• “Merge Category Levels” on page 2-16
• “Add and Drop Category Levels” on page 2-18
• “Index and Search Using Nominal and Ordinal Arrays” on page 2-42

More About
• “Nominal and Ordinal Arrays” on page 2-37
• “Advantages of Using Nominal and Ordinal Arrays” on page 2-39
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Categorize Numeric Data

Note The nominal and ordinal array data types are not recommended. To represent ordered and
unordered discrete, nonnumeric data, use the “Categorical Arrays” data type instead.

Categorize Numeric Data

This example shows how to categorize numeric data into a categorical ordinal array using ordinal.
This is useful for discretizing continuous data.

Load sample data.

The dataset array, hospital, contains variables measured on a sample of patients. Compute the
minimum, median, and maximum of the variable Age.

load hospital
quantile(hospital.Age,[0,.5,1])

ans = 1×3

    25    39    50

The patient ages range from 25 to 50.

Convert a numeric array to an ordinal array.

Group patients into the age categories Under 30, 30-39, Over 40.

hospital.AgeCat = ordinal(hospital.Age,{'Under 30','30-39','Over 40'},...
                       [],[25,30,40,50]);
getlevels(hospital.AgeCat)

ans = 1x3 ordinal
     Under 30      30-39      Over 40 

The last input argument to ordinal has the endpoints for the categories. The first category begins at
age 25, the second at age 30, and so on. The last category contains ages 40 and above, so begins at
40 and ends at 50 (the maximum age in the data set). To specify three categories, you must specify
four endpoints (the last endpoint is the upper bound of the last category).

Explore categories.

Display the age and age category for the second patient.

dataset({hospital.Age(2),'Age'},...
        {hospital.AgeCat(2),'AgeCategory'})

ans = 
    Age    AgeCategory
    43     Over 40    
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When you discretize a numeric array into categories, the categorical array loses all information about
the actual numeric values. In this example, AgeCat is not numeric, and you cannot recover the raw
data values from it.

Categorize a numeric array into quartiles.

The variable Weight has weight measurements for the sample patients. Categorize the patient
weights into four categories, by quartile.

p = 0:.25:1;
breaks = quantile(hospital.Weight,p);
hospital.WeightQ = ordinal(hospital.Weight,{'Q1','Q2','Q3','Q4'},...
                   [],breaks);
getlevels(hospital.WeightQ)

ans = 1x4 ordinal
     Q1      Q2      Q3      Q4 

Explore categories.

Display the weight and weight quartile for the second patient.

dataset({hospital.Weight(2),'Weight'},...
        {hospital.WeightQ(2),'WeightQuartile'})

ans = 
    Weight    WeightQuartile
    163       Q3            

Summary statistics grouped by category levels.

Compute the mean systolic and diastolic blood pressure for each age and weight category.

grpstats(hospital,{'AgeCat','WeightQ'},'mean','DataVars','BloodPressure')

ans = 
                   AgeCat      WeightQ    GroupCount    mean_BloodPressure
    Under 30_Q1    Under 30    Q1          6            123.17      79.667
    Under 30_Q2    Under 30    Q2          3            120.33      79.667
    Under 30_Q3    Under 30    Q3          2             127.5        86.5
    Under 30_Q4    Under 30    Q4          4               122          78
    30-39_Q1       30-39       Q1         12            121.75       81.75
    30-39_Q2       30-39       Q2          9            119.56      82.556
    30-39_Q3       30-39       Q3          9               121      83.222
    30-39_Q4       30-39       Q4         11            125.55      87.273
    Over 40_Q1     Over 40     Q1          7            122.14      84.714
    Over 40_Q2     Over 40     Q2         13            123.38      79.385
    Over 40_Q3     Over 40     Q3         14            123.07      84.643
    Over 40_Q4     Over 40     Q4         10             124.6        85.1

The variable BloodPressure is a matrix with two columns. The first column is systolic blood
pressure, and the second column is diastolic blood pressure. The group in the sample with the
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highest mean diastolic blood pressure, 87.273, is aged 30–39 and in the highest weight quartile,
30-39_Q4.

See Also
ordinal | grpstats

Related Examples
• “Create Nominal and Ordinal Arrays” on page 2-3
• “Merge Category Levels” on page 2-16
• “Plot Data Grouped by Category” on page 2-21
• “Index and Search Using Nominal and Ordinal Arrays” on page 2-42

More About
• “Nominal and Ordinal Arrays” on page 2-37
• “Advantages of Using Nominal and Ordinal Arrays” on page 2-39
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Merge Category Levels

Note The nominal and ordinal array data types are not recommended. To represent ordered and
unordered discrete, nonnumeric data, use the “Categorical Arrays” data type instead.

Merge Category Levels

This example shows how to merge categories in a nominal or ordinal array using mergelevels. This
is useful for collapsing categories with few observations.

Load sample data.

load carsmall

Create a nominal array.

The variable Origin is a character array containing the country of origin for 100 sample cars.
Convert Origin to a nominal array.

Origin = nominal(Origin);
getlevels(Origin)

ans = 1x6 nominal
     France      Germany      Italy      Japan      Sweden      USA 

There are six unique countries of origin in the data.

Tabulate category counts.

Explore the elements of the nominal array.

tabulate(Origin)

    Value    Count   Percent
   France        4      4.00%
  Germany        9      9.00%
    Italy        1      1.00%
    Japan       15     15.00%
   Sweden        2      2.00%
      USA       69     69.00%

There are relatively few observations in each European country.

Merge categories.

Merge the categories France, Germany, Italy, and Sweden into one category called Europe.

Origin = mergelevels(Origin,{'France','Germany','Italy','Sweden'},...
                     'Europe');
getlevels(Origin)

ans = 1x3 nominal
     Europe      Japan      USA 
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The variable Origin now has only three category levels.

Tabulate category counts.

Explore the elements of the merged categories.

tabulate(Origin)

   Value    Count   Percent
  Europe       16     16.00%
   Japan       15     15.00%
     USA       69     69.00%

The category Europe has the 16% of observations that were previously distributed across four
countries.

See Also
nominal | mergelevels

Related Examples
• “Create Nominal and Ordinal Arrays” on page 2-3
• “Add and Drop Category Levels” on page 2-18
• “Index and Search Using Nominal and Ordinal Arrays” on page 2-42

More About
• “Nominal and Ordinal Arrays” on page 2-37
• “Advantages of Using Nominal and Ordinal Arrays” on page 2-39
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Add and Drop Category Levels
This example shows how to add and drop levels from a nominal or ordinal array.

Note The nominal and ordinal array data types are not recommended. To represent ordered and
unordered discrete, nonnumeric data, use the “Categorical Arrays” data type instead.

Load sample data.

load('examgrades')

The array grades contains exam scores from 0 to 100 on five exams for a sample of 120 students.

Create an ordinal array.

Assign letter grades to each student for each test using these categories.

Grade Range Letter Grade
100 A+
90–99 A
80–89 B
70–79 C
60–69 D

letter = ordinal(grades,{'D','C','B','A','A+'},[],...
                 [60,70,80,90,100,100]);
getlevels(letter)

ans = 

     D      C      B      A      A+ 

There are five grade categories, in the specified order D < C < B < A < A+.

Check for undefined categories.

Check whether or not there are any exam scores that do not fall into the five letter categories.

any(isundefined(letter))

ans =

     1     0     1     1     0

Recall that there are five exam scores for each student. The previous command returns a logical
value for each of the five exams, indicating whether there are any scores that are <undefined>.
There are scores for the first, third, and fourth exams that are <undefined>, that is, missing a
category level.

Identify elements in undefined categories.

You can find the exam scores that do not have a letter grade using the isundefined logical
condition.
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grades(isundefined(letter))

ans =

    55
    59
    58
    59
    54
    57
    56
    59
    59
    50
    59
    52

The exam scores that are in the 50s do not have a letter grade.

Add a new category.

Put all scores that are <undefined> into a new category labeled D-.

letter = addlevels(letter,'D-');
letter(isundefined(letter)) = 'D-';
getlevels(letter)

ans = 

     D      C      B      A      A+      D- 

The ordinal variable, letter, has a new category added to the end.

Reorder category levels.

Reorder the categories so that D- < D.

letter = reorderlevels(letter,{'D-','D','C','B','A','A+'});
getlevels(letter)

ans = 

     D-      D      C      B      A      A+ 

Compare elements.

Now that all exam scores have a letter grade, count how many students received a higher letter
grade on the second test than on the first test.

sum(letter(:,2) > letter(:,1))

ans =

    32

Thirty-two students improved their letter grade between the first two exams.

Explore categories.

Count the number of A+ scores in each of the five exams.
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sum(letter=='A+')

ans =

     0     0     0     0     0

There are no A+ scores on any of the five exams.

Drop a category.

Drop the category A+ from the ordinal variable, letter.

letter = droplevels(letter,'A+');
getlevels(letter)

ans = 

     D-      D      C      B      A 

Category A+ is no longer in the ordinal variable, letter.

See Also
ordinal | reorderlevels | droplevels

Related Examples
• “Create Nominal and Ordinal Arrays” on page 2-3
• “Reorder Category Levels” on page 2-9
• “Merge Category Levels” on page 2-16
• “Index and Search Using Nominal and Ordinal Arrays” on page 2-42

More About
• “Nominal and Ordinal Arrays” on page 2-37
• “Advantages of Using Nominal and Ordinal Arrays” on page 2-39
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Plot Data Grouped by Category

Note The nominal and ordinal array data types are not recommended. To represent ordered and
unordered discrete, nonnumeric data, use the “Categorical Arrays” data type instead.

Plot Data Grouped by Category

This example shows how to plot data grouped by the levels of a categorical variable.

Load sample data.

load carsmall

The variable Acceleration contains acceleration measurements on 100 sample cars. The variable
Origin is a character array containing the country of origin for each car.

Create a nominal array.

Convert Origin to a nominal array.

Origin = nominal(Origin);
getlevels(Origin)

ans = 1x6 nominal
     France      Germany      Italy      Japan      Sweden      USA 

There are six unique countries of origin in the sample. By default, nominal orders the countries in
ascending alphabetical order.

Plot data grouped by category.

Draw box plots for Acceleration, grouped by Origin.

figure
boxplot(Acceleration,Origin)
title('Acceleration, Grouped by Country of Origin')
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The box plots appear in the same order as the categorical levels (use reorderlevels to change the
order of the categories).

Few observations have Italy as the country of origin.

Tabulate category counts.

Tabulate the number of sample cars from each country.

tabulate(Origin)

    Value    Count   Percent
   France        4      4.00%
  Germany        9      9.00%
    Italy        1      1.00%
    Japan       15     15.00%
   Sweden        2      2.00%
      USA       69     69.00%

Only one car is made in Italy.

Drop a category.

Delete the Italian car from the sample.

Acceleration2 = Acceleration(Origin~='Italy');
Origin2 = Origin(Origin~='Italy');
getlevels(Origin2)
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ans = 1x6 nominal
     France      Germany      Italy      Japan      Sweden      USA 

Even though the car from Italy is no longer in the sample, the nominal variable, Origin2, still has
the category Italy. Note that this is intentional—the levels of a categorical array do not necessarily
coincide with the values.

Drop a category level.

Use droplevels to remove the Italy category.

Origin2 = droplevels(Origin2,'Italy');
tabulate(Origin2)

    Value    Count   Percent
   France        4      4.04%
  Germany        9      9.09%
    Japan       15     15.15%
   Sweden        2      2.02%
      USA       69     69.70%

The Italy category is no longer in the nominal array, Origin2.

Plot data grouped by category.

Draw box plots of Acceleration2, grouped by Origin2.

figure
boxplot(Acceleration2,Origin2)
title('Acceleration, Grouped by Country of Origin')
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The plot no longer includes the car from Italy.

See Also
droplevels | nominal | reorderlevels | boxplot

Related Examples
• “Test Differences Between Category Means” on page 2-25
• “Summary Statistics Grouped by Category” on page 2-33
• “Linear Regression with Categorical Covariates” on page 2-53

More About
• “Nominal and Ordinal Arrays” on page 2-37
• “Advantages of Using Nominal and Ordinal Arrays” on page 2-39
• “Grouping Variables” on page 2-46
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Test Differences Between Category Means

This example shows how to test for significant differences between category (group) means using a t-
test, two-way ANOVA (analysis of variance), and ANOCOVA (analysis of covariance) analysis.

Determine if the expected miles per gallon for a car depends on the decade in which it was
manufactured or the location where it was manufactured.

Load Sample Data

load carsmall
unique(Model_Year)

ans = 3×1

    70
    76
    82

The variable MPG has miles per gallon measurements on a sample of 100 cars. The variables
Model_Year and Origin contain the model year and country of origin for each car.

The first factor of interest is the decade of manufacture. There are three manufacturing years in the
data.

Create Factor for Decade of Manufacture

Create a categorical array named Decade by merging the observations from years 70 and 76 into a
category labeled 1970s, and putting the observations from 82 into a category labeled 1980s.

Decade = discretize(Model_Year,[70 77 82], ...
    "categorical",["1970s","1980s"]);
categories(Decade)

ans = 2x1 cell
    {'1970s'}
    {'1980s'}

Plot Data Grouped by Category

Draw a box plot of miles per gallon, grouped by the decade of manufacture.

boxplot(MPG,Decade)
title("Miles per Gallon, Grouped by Decade of Manufacture")
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The box plot suggests that miles per gallon is higher in cars manufactured during the 1980s
compared to the 1970s.

Compute Summary Statistics

Compute the mean and variance of miles per gallon for each decade.

[xbar,s2,grp] = grpstats(MPG,Decade,["mean","var","gname"])

xbar = 2×1

   19.7857
   31.7097

s2 = 2×1

   35.1429
   29.0796

grp = 2x1 cell
    {'1970s'}
    {'1980s'}

This output shows that the mean miles per gallon in the 1980s was approximately 31.71, compared
to 19.79 in the 1970s. The variances in the two groups are similar.
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Conduct Two-Sample t-Test for Equal Group Means

Conduct a two-sample t-test, assuming equal variances, to test for a significant difference between
the group means. The hypothesis is

H0:μ70 = μ80
HA:μ70 ≠ μ80 .

MPG70 = MPG(Decade=="1970s");
MPG80 = MPG(Decade=="1980s");
[h,p] = ttest2(MPG70,MPG80)

h = 1

p = 3.4809e-15

The logical value 1 indicates the null hypothesis is rejected at the default 0.05 significance level. The
p-value for the test is very small. There is sufficient evidence that the mean miles per gallon in the
1980s differs from the mean miles per gallon in the 1970s.

Create Factor for Location of Manufacture

The second factor of interest is the location of manufacture. First, convert Origin to a categorical
array.

Location = categorical(cellstr(Origin));
tabulate(Location)

    Value    Count   Percent
   France        4      4.00%
  Germany        9      9.00%
    Italy        1      1.00%
    Japan       15     15.00%
   Sweden        2      2.00%
      USA       69     69.00%

There are six different countries of manufacture. The European countries have relatively few
observations.

Merge Categories

Combine the categories France, Germany, Italy, and Sweden into a new category named Europe.

Location = mergecats(Location, ...
    ["France","Germany","Italy","Sweden"],"Europe");
tabulate(Location)

   Value    Count   Percent
  Europe       16     16.00%
   Japan       15     15.00%
     USA       69     69.00%

Compute Summary Statistics

Compute the mean miles per gallon, grouped by the location of manufacture.

[meanMPG,locationGroup] = grpstats(MPG,Location,["mean","gname"])
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meanMPG = 3×1

   26.6667
   31.8000
   21.1328

locationGroup = 3x1 cell
    {'Europe'}
    {'Japan' }
    {'USA'   }

This result shows that average miles per gallon is lowest for the sample of cars manufactured in the
U.S.

Conduct Two-Way ANOVA

Conduct a two-way ANOVA to test for differences in expected miles per gallon between factor levels
for Decade and Location.

The statistical model is

MPGi j = μ + αi + β j + ϵi j, i = 1, 2; j = 1, 2, 3,

where MPGi j is the response, miles per gallon, for cars made in decade i at location j. The treatment
effects for the first factor, decade of manufacture, are the αi terms (constrained to sum to zero). The
treatment effects for the second factor, location of manufacture, are the β j terms (constrained to sum
to zero). The ϵi j are uncorrelated, normally distributed noise terms.

The hypotheses to test are equality of decade effects,

H0:α1 = α2 = 0
HA:at least one αi ≠ 0,

and equality of location effects,

H0: β1 = β2 = β3 = 0
HA:at least one β j ≠ 0 .

You can conduct a multiple-factor ANOVA using anovan.

anovan(MPG,{Decade,Location}, ...
    "Varnames",["Decade","Location"]);
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This output shows the results of the two-way ANOVA. The p-value for testing the equality of decade
effects is 2.88503e-18, so the null hypothesis is rejected at the 0.05 significance level. The p-value
for testing the equality of location effects is 7.40416e-10, so this null hypothesis is also rejected.

Conduct ANOCOVA Analysis

A potential confounder in this analysis is car weight. Cars with greater weight are expected to have
lower gas mileage. Include the variable Weight as a continuous covariate in the ANOVA; that is,
conduct an ANOCOVA analysis.

Assuming parallel lines, the statistical model is

MPGi jk = μ + αi + β j + γWeighti jk + ϵi jk, i = 1, 2; j = 1, 2, 3; k = 1, . . . , 100 .

The difference between this model and the two-way ANOVA model is the inclusion of the continuous
predictor Weighti jk, the weight for the kth car, which was made in the ith decade and in the jth
location. The slope parameter is γ.

Add the continuous covariate as a third group in the second anovan input argument. Use the
Continuous name-value argument to specify that Weight (the third group) is continuous.

anovan(MPG,{Decade,Location,Weight},"Continuous",3, ...
    "Varnames",["Decade","Location","Weight"]);

This output shows that when car weight is considered, there is insufficient evidence of a
manufacturing location effect (p-value = 0.1044).

Use Interactive Tool

You can use the interactive aoctool to explore this result. This command opens three dialog boxes.

aoctool(Weight,MPG,Location);
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In the ANOCOVA Prediction Plot dialog box, select the Separate Means model.

This output shows that when you do not include Weight in the model, there are fairly large
differences in the expected miles per gallon among the three manufacturing locations. Note that here
the model does not adjust for the decade of manufacturing.

Now, select the Parallel Lines model.
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When you include Weight in the model, the difference in expected miles per gallon among the three
manufacturing locations is much smaller.

See Also
categorical | boxplot | grpstats | ttest2 | anovan | aoctool

Related Examples
• “Plot Data Grouped by Category” on page 2-21
• “Summary Statistics Grouped by Category” on page 2-33
• “Linear Regression with Categorical Covariates” on page 2-53
• “Grouping Variables” on page 2-46
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Summary Statistics Grouped by Category

Note The nominal and ordinal array data types are not recommended. To represent ordered and
unordered discrete, nonnumeric data, use the “Categorical Arrays” data type instead.

Summary Statistics Grouped by Category

This example shows how to compute summary statistics grouped by levels of a categorical variable.
You can compute group summary statistics for a numeric array or a dataset array using grpstats.

Load sample data.

load hospital

The dataset array, hospital, has 7 variables (columns) and 100 observations (rows).

Compute summary statistics by category.

The variable Sex is a nominal array with two levels, Male and Female. Compute the minimum and
maximum weights for each gender.

stats = grpstats(hospital,'Sex',{'min','max'},'DataVars','Weight')

stats = 
              Sex       GroupCount    min_Weight    max_Weight
    Female    Female    53            111           147       
    Male      Male      47            158           202       

The dataset array, stats, has observations corresponding to the levels of the variable Sex. The
variable min_Weight contains the minimum weight for each group, and the variable max_Weight
contains the maximum weight for each group.

Compute summary statistics by multiple categories.

The variable Smoker is a logical array with value 1 for smokers and value 0 for nonsmokers. Compute
the minimum and maximum weights for each gender and smoking combination.

stats = grpstats(hospital,{'Sex','Smoker'},{'min','max'},...
                 'DataVars','Weight')

stats = 
                Sex       Smoker    GroupCount    min_Weight    max_Weight
    Female_0    Female    false     40            111           147       
    Female_1    Female    true      13            115           146       
    Male_0      Male      false     26            158           194       
    Male_1      Male      true      21            164           202       
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The dataset array, stats, has an observation row for each combination of levels of Sex and Smoker
in the original data.

See Also
dataset | nominal | grpstats

Related Examples
• “Plot Data Grouped by Category” on page 2-21
• “Test Differences Between Category Means” on page 2-25
• “Calculations on Dataset Arrays” on page 2-93

More About
• “Grouping Variables” on page 2-46
• “Nominal and Ordinal Arrays” on page 2-37
• “Dataset Arrays” on page 2-113
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Sort Ordinal Arrays

Note The nominal and ordinal array data types are not recommended. To represent ordered and
unordered discrete, nonnumeric data, use the “Categorical Arrays” data type instead.

Sort Ordinal Arrays

This example shows how to determine sorting order for ordinal arrays.

Load sample data.

AllSizes = {'medium','large','small','small','medium',...
            'large','medium','small'};

The created variable, AllSizes, is a cell array of character vectors containing size measurements on
eight objects.

Create an ordinal array.

Convert AllSizes to an ordinal array with levels small < medium < large.

AllSizes = ordinal(AllSizes,{},{'small','medium','large'});
getlevels(AllSizes)

ans = 1x3 ordinal
     small      medium      large 

Sort the ordinal array.

When you sort ordinal arrays, the sorted observations are in the same order as the category levels.

sizeSort = sort(AllSizes);
sizeSort(:)

ans = 8x1 ordinal
     small 
     small 
     small 
     medium 
     medium 
     medium 
     large 
     large 

The sorted ordinal array, sizeSort, contains the observations ordered from small to large.

See Also
ordinal
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Related Examples
• “Reorder Category Levels” on page 2-9
• “Add and Drop Category Levels” on page 2-18

More About
• “Nominal and Ordinal Arrays” on page 2-37
• “Advantages of Using Nominal and Ordinal Arrays” on page 2-39
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Nominal and Ordinal Arrays

Note The nominal and ordinal array data types are not recommended. To represent ordered and
unordered discrete, nonnumeric data, use the “Categorical Arrays” data type instead.

In this section...
“What Are Nominal and Ordinal Arrays?” on page 2-37
“Nominal and Ordinal Array Conversion” on page 2-37

What Are Nominal and Ordinal Arrays?
Nominal and ordinal arrays are Statistics and Machine Learning Toolbox data types for storing
categorical values. Nominal and ordinal arrays store data that have a finite set of discrete levels,
which might or might not have a natural order.

• ordinal arrays store categorical values with ordered levels. For example, an ordinal variable
might have levels {small, medium, large}.

• nominal arrays store categorical values with unordered levels. For example, a nominal variable
might have levels {red, blue, green}.

In experimental design, these variables are often called factors, with ordered or unordered factor
levels.

Nominal and ordinal arrays are convenient and memory efficient containers for storing categorical
variables. In addition to storing information about which category each observation belongs to,
nominal and ordinal arrays store descriptive metadata including category labels and order.

Nominal and ordinal arrays have associated methods that streamline common tasks such as merging
categories, adding or dropping levels, and changing level labels.

Nominal and Ordinal Array Conversion
You can easily convert to and from nominal or ordinal arrays. To create a nominal or ordinal array,
use nominal or ordinal, respectively. You can convert these data types to nominal or ordinal
arrays:

• Numeric arrays
• Logical arrays
• Character arrays
• String arrays
• Cell arrays of character vectors

See Also
nominal | ordinal
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Related Examples
• “Create Nominal and Ordinal Arrays” on page 2-3
• “Summary Statistics Grouped by Category” on page 2-33
• “Plot Data Grouped by Category” on page 2-21
• “Index and Search Using Nominal and Ordinal Arrays” on page 2-42

More About
• “Advantages of Using Nominal and Ordinal Arrays” on page 2-39
• “Grouping Variables” on page 2-46
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Advantages of Using Nominal and Ordinal Arrays

Note The nominal and ordinal array data types are not recommended. To represent ordered and
unordered discrete, nonnumeric data, use the “Categorical Arrays” data type instead.

In this section...
“Manipulate Category Levels” on page 2-39
“Analysis Using Nominal and Ordinal Arrays” on page 2-39
“Reduce Memory Requirements” on page 2-40

Manipulate Category Levels
When working with categorical variables and their levels, you’ll encounter some typical challenges.
This table summarizes the functions you can use with nominal or ordinal arrays to manipulate
category levels. For additional functions, type methods nominal or methods ordinal at the
command line, or see the nominal and ordinal reference pages.

Task Function
Add new category levels addlevels
Drop category levels droplevels
Combine category levels mergelevels
Reorder category levels reorderlevels
Count the number of observations in each category levelcounts
Change the label or name of category levels setlabels
Create an interaction factor times
Find observations that are not in a defined category isundefined

Analysis Using Nominal and Ordinal Arrays
You can use nominal and ordinal arrays in a variety of statistical analyses. For example, you might
want to compute descriptive statistics for data grouped by the category levels, conduct statistical
tests on differences between category means, or perform regression analysis using categorical
predictors.

Statistics and Machine Learning Toolbox functions that accept a grouping variable as an input
argument accept nominal and ordinal arrays. This includes descriptive functions such as:

• grpstats
• gscatter
• boxplot
• gplotmatrix

You can also use nominal and ordinal arrays as input arguments to analysis functions and methods
based on models, such as:
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• anovan
• fitlm
• fitglm

When you use a nominal or ordinal array as a predictor in these functions, the fitting function
automatically recognizes the categorical predictor, and constructs appropriate dummy indicator
variables for analysis. Alternatively, you can construct your own dummy indicator variables using
dummyvar.

Reduce Memory Requirements
The levels of categorical variables are often defined as text, which can be costly to store and
manipulate in a cell array of character vectors or char array. Nominal and ordinal arrays separately
store category membership and category labels, greatly reducing the amount of memory required to
store the variable.

For example, load some sample data:

load('fisheriris')

The variable species is a cell array of character vectors requiring 19,300 bytes of memory.

Convert species to a nominal array:

species = nominal(species);

There is a 95% reduction in memory required to store the variable.

See Also
nominal | ordinal

Related Examples
• “Create Nominal and Ordinal Arrays” on page 2-3
• “Test Differences Between Category Means” on page 2-25
• “Linear Regression with Categorical Covariates” on page 2-53
• “Index and Search Using Nominal and Ordinal Arrays” on page 2-42
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More About
• “Nominal and Ordinal Arrays” on page 2-37
• “Grouping Variables” on page 2-46
• “Dummy Variables” on page 2-49
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Index and Search Using Nominal and Ordinal Arrays

Note The nominal and ordinal array data types are not recommended. To represent ordered and
unordered discrete, nonnumeric data, use the “Categorical Arrays” data type instead.

Index By Category
It is often useful to index and search data by its category, or group. If you store categories as labels
inside a cell array of character vectors or char array, it can be difficult to index and search the
categories. When using nominal or ordinal arrays, you can easily:

• Index elements from particular categories. For both nominal and ordinal arrays, you can use
the logical operators == and ~= to index the observations that are in, or not in, a particular
category. For ordinal arrays, which have an encoded order, you can also use inequalities, >, >=, <,
and <=, to find observations in categories above or below a particular category.

• Search for members of a category. In addition to the logical operator ==, you can use
ismember to find observations in a particular group.

• Find elements that are not in a defined category. Nominal and ordinal arrays indicate which
elements do not belong to a defined category by <undefined>. You can use isundefined to find
observations missing a category.

• Delete observations that are in a particular category. You can use logical operators to include
or exclude observations from particular categories. Even if you remove all observations from a
category, the category level remains defined unless you remove it using droplevels.

Common Indexing and Searching Methods

This example shows several common indexing and searching methods.

Load the sample data.

load carsmall;

Convert the char array, Origin, to a nominal array. This variable contains the country of origin, or
manufacture, for each sample car.

Origin = nominal(Origin);

Search for observations in a category. Determine if there are any cars in the sample that were
manufactured in Canada.

any(Origin=='Canada')

ans = logical
   0

There are no sample cars manufactured in Canada.

List the countries that are levels of Origin.

getlevels(Origin)
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ans = 1x6 nominal
     France      Germany      Italy      Japan      Sweden      USA 

Index elements that are in a particular category. Plot a histogram of the acceleration measurements
for cars made in the U.S.

figure();
histogram(Acceleration(Origin=='USA'))
title('Acceleration of Cars Made in the USA')

Delete observations that are in a particular category. Delete all cars made in Sweden from Origin.

Origin = Origin(Origin~='Sweden');
any(ismember(Origin,'Sweden'))

ans = logical
   0

The cars made in Sweden are deleted from Origin, but Sweden is still a level of Origin.

getlevels(Origin)

ans = 1x6 nominal
     France      Germany      Italy      Japan      Sweden      USA 

Remove Sweden from the levels of Origin.
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Origin = droplevels(Origin,'Sweden');
getlevels(Origin)

ans = 1x5 nominal
     France      Germany      Italy      Japan      USA 

Check for observations not in a defined category. Get the indices for the cars made in France.

ix = find(Origin=='France')

ix = 4×1

    11
    27
    39
    61

There are four cars from France. Remove France from the levels of Origin.

Origin = droplevels(Origin,'France');

This returns a warning indicating that you are dropping a category level that has elements in it.
These observations are no longer in a defined category, indicated by undefined.

Origin(ix)

ans = 4x1 nominal
     <undefined> 
     <undefined> 
     <undefined> 
     <undefined> 

You can use isundefined to search for observations with an undefined category.

find(isundefined(Origin))

ans = 4×1

    11
    27
    39
    61

These indices correspond to the observations that were in category France, before that category was
dropped from Origin.

See Also
nominal | ordinal | droplevels

Related Examples
• “Create Nominal and Ordinal Arrays” on page 2-3
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• “Reorder Category Levels” on page 2-9
• “Merge Category Levels” on page 2-16
• “Add and Drop Category Levels” on page 2-18

More About
• “Nominal and Ordinal Arrays” on page 2-37
• “Advantages of Using Nominal and Ordinal Arrays” on page 2-39
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Grouping Variables
In this section...
“What Are Grouping Variables?” on page 2-46
“Group Definition” on page 2-46
“Analysis Using Grouping Variables” on page 2-47
“Missing Group Values” on page 2-47

What Are Grouping Variables?
Grouping variables are utility variables used to group, or categorize, observations. Grouping
variables are useful for summarizing or visualizing data by group. A grouping variable can be any of
these data types:

• Numeric vector
• Logical vector
• Character array
• String array
• Cell array of character vectors
• Categorical vector

A grouping variable must have the same number of observations (rows) as the table, dataset array, or
numeric array you are grouping. Observations that have the same grouping variable value belong to
the same group.

For example, the following variables comprise the same groups. Each grouping variable divides five
observations into two groups. The first group contains the first and fourth observations. The other
three observations are in the second group.

Data Type Grouping Variable
Numeric vector [1 2 2 1 2]
Logical vector [0 1 1 0 1]
String array ["Male","Female","Female","Male","Female"]
Cell array of character vectors {'Male','Female','Female','Male','Female'}
Categorical vector Male Female Female Male Female

Use grouping variables with labels to give each group a meaningful name. A categorical vector is an
efficient and flexible choice of grouping variable.

Group Definition
Typically, there are as many groups as unique values in the grouping variable. However, categorical
vectors can have levels that are not represented in the data. The groups and the order of the groups
depend on the data type of the grouping variable. Suppose G is a grouping variable.

• If G is a numeric or logical vector, then the groups correspond to the distinct values in G, in the
sorted order of the unique values.
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• If G is a character array, string array, or cell array of character vectors, then the groups
correspond to the distinct elements in G, in the order of their first appearance.

• If G is a categorical vector, then the groups correspond to the unique category levels in G, in the
order returned by categories.

Some functions, such as grpstats, accept multiple grouping variables specified as a cell array of
grouping variables, for example, {G1,G2,G3}. In this case, the groups are defined by the unique
combinations of values in the grouping variables. The order is decided first by the order of the first
grouping variable, then by the order of the second grouping variable, and so on.

Analysis Using Grouping Variables
This table lists common tasks you might want to perform using grouping variables.

Grouping Task Function Accepting Grouping Variable
Draw side-by-side box plots for data in different
groups.

boxplot

Draw a scatter plot with markers colored by
group.

gscatter

Draw a scatter plot matrix with markers colored
by group.

gplotmatrix

Compute summary statistics by group. grpstats
Test for differences between group means. anovan
Create an index vector from a grouping variable. grp2idx

Missing Group Values
Grouping variables can have missing values provided you include a valid indicator.

Grouping Variable Data Type Missing Value Indicator
Numeric vector NaN
Logical vector (Cannot be missing)
Character array Row of spaces
String array <missing> or ""
Cell array of character vectors ''
Categorical vector <undefined>

See Also
categorical

Related Examples
• “Plot Data Grouped by Category” on page 2-21
• “Summary Statistics Grouped by Category” on page 2-33
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More About
• “Nominal and Ordinal Arrays” on page 2-37
• “Advantages of Using Nominal and Ordinal Arrays” on page 2-39
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Dummy Variables
In this section...
“What Are Dummy Variables?” on page 2-49
“Creating Dummy Variables” on page 2-50

This topic provides an introduction to dummy variables, describes how the software creates them for
classification and regression problems, and shows how you can create dummy variables by using the
dummyvar function.

What Are Dummy Variables?
When you perform classification and regression analysis, you often need to include both continuous
(quantitative) and categorical (qualitative) predictor variables. A categorical variable must not be
included as a numeric array. Numeric arrays have both order and magnitude. A categorical variable
can have order (for example, an ordinal variable), but it does not have magnitude. Using a numeric
array implies a known “distance” between the categories. The appropriate way to include categorical
predictors is as dummy variables. To define dummy variables, use indicator variables that have the
values 0 and 1.

The software chooses one of four schemes to define dummy variables based on the type of analysis,
as described in the next sections. For example, suppose you have a categorical variable with three
categories: Cool, Cooler, and Coolest.

Full Dummy Variables

Represent the categorical variable with three categories using three dummy variables, one variable
for each category.

X0 is a dummy variable that has the value 1 for Cool, and 0 otherwise. X1 is a dummy variable that
has the value 1 for Cooler, and 0 otherwise. X2 is a dummy variable that has the value 1 for
Coolest, and 0 otherwise.

Dummy Variables with Reference Group

Represent the categorical variable with three categories using two dummy variables with a reference
group.
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You can distinguish Cool, Cooler, and Coolest using only X1 and X2, without X0. Observations for
Cool have 0s for both dummy variables. The category represented by all 0s is the reference group.

Dummy Variables for Ordered Categorical Variable

Assume the mathematical ordering of the categories is Cool < Cooler < Coolest. This coding
scheme uses 1 and –1 values, and uses more 1s for higher categories, to indicate the ordering.

X1 is a dummy variable that has the value 1 for Cooler and Coolest, and –1 for Cool. X2 is a dummy
variable that has the value 1 for Coolest, and –1 otherwise.

You can indicate that a categorical variable has mathematical ordering by using the 'Ordinal'
name-value pair argument of the categorical function.

Dummy Variables Created with Effects Coding

Effects coding uses 1, 0, and –1 to create dummy variables. Instead of using 0 values to represent a
reference group, as in “Dummy Variables with Reference Group” on page 2-49, effects coding uses –1
to represent the last category.

Creating Dummy Variables
Automatic Creation of Dummy Variables

Statistics and Machine Learning Toolbox offers several classification and regression fitting functions
that accept categorical predictors. Some fitting functions create dummy variables to handle
categorical predictors.

The following is the default behavior of the fitting functions in identifying categorical predictors.

• If the predictor data is in a table, the functions assume that a variable is categorical if it is a
logical vector, categorical vector, character array, string array, or cell array of character vectors.
The fitting functions that use decision trees assume ordered categorical vectors to be continuous
variables.

• If the predictor data is a matrix, the functions assume all predictors are continuous.

To identify any other predictors as categorical predictors, specify them by using the
'CategoricalPredictors' or 'CategoricalVars' name-value pair argument.

The fitting functions handle the identified categorical predictors as follows:
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• fitckernel, fitclinear, fitcnet, fitcsvm, fitrgp, fitrkernel, fitrlinear, fitrnet,
and fitrsvm use two different schemes to create dummy variables, depending on whether a
categorical variable is unordered or ordered.

• For an unordered categorical variable, the functions use “Full Dummy Variables” on page 2-49.
• For an ordered categorical variable, the functions use “Dummy Variables for Ordered

Categorical Variable” on page 2-50.
• Parametric regression fitting functions such as fitlm, fitglm, and fitcox use “Dummy

Variables with Reference Group” on page 2-49. When the functions include the dummy variables,
the estimated coefficients of the dummy variables are relative to the reference group. For an
example, see “Linear Regression with Categorical Predictor” on page 35-2330.

• fitlme, fitlmematrix and fitglme allow you to specify the scheme for creating dummy
variables by using the 'DummyVarCoding' name-value pair argument. The functions support
three schemes: “Full Dummy Variables” on page 2-49 ('DummyVarCoding','full'), “Dummy
Variables with Reference Group” on page 2-49 ('DummyVarCoding','reference'), and
“Dummy Variables Created with Effects Coding” on page 2-50 ('DummyVarCoding','effects').
Note that these functions do not offer a name-value pair argument for specifying categorical
variables.

• fitrm uses “Dummy Variables Created with Effects Coding” on page 2-50.
• Other fitting functions that accept categorical predictors use algorithms that can handle

categorical predictors without creating dummy variables.

Manual Creation of Dummy Variables

This example shows how to create your own dummy variable design matrix by using the dummyvar
function. This function accepts grouping variables and returns a matrix containing zeros and ones,
whose columns are dummy variables for the grouping variables.

Create a column vector of categorical data specifying gender.

gender = categorical({'Male';'Female';'Female';'Male';'Female'});

Create dummy variables for gender.

dv = dummyvar(gender)

dv = 5×2

     0     1
     1     0
     1     0
     0     1
     1     0

dv has five rows corresponding to the number of rows in gender and two columns for the unique
groups, Female and Male. Column order corresponds to the order of the levels in gender. For
categorical arrays, the default order is ascending alphabetical. You can check the order by using the
categories function.

categories(gender)

ans = 2x1 cell
    {'Female'}
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    {'Male'  }

To use the dummy variables in a regression model, you must either delete a column (to create a
reference group) or fit a regression model with no intercept term. For the gender example, you need
only one dummy variable to represent two genders. Notice what happens if you add an intercept term
to the complete design matrix dv.

X = [ones(5,1) dv]

X = 5×3

     1     0     1
     1     1     0
     1     1     0
     1     0     1
     1     1     0

rank(X)

ans = 2

The design matrix with an intercept term is not of full rank and is not invertible. Because of this
linear dependence, use only c – 1 indicator variables to represent a categorical variable with c
categories in a regression model with an intercept term.

See Also
dummyvar | categorical

Related Examples
• “Linear Regression with Categorical Covariates” on page 2-53
• “Test Differences Between Category Means” on page 2-25
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Linear Regression with Categorical Covariates
This example shows how to perform a regression with categorical covariates using categorical arrays
and fitlm.

Load sample data.

load carsmall

The variable MPG contains measurements on the miles per gallon of 100 sample cars. The model year
of each car is in the variable Model_Year, and Weight contains the weight of each car.

Plot grouped data.

Draw a scatter plot of MPG against Weight, grouped by model year.

figure()
gscatter(Weight,MPG,Model_Year,'bgr','x.o')
title('MPG vs. Weight, Grouped by Model Year')

The grouping variable, Model_Year, has three unique values, 70, 76, and 82, corresponding to
model years 1970, 1976, and 1982.

Create table and categorical array.

Create a table that contains the variables MPG, Weight, and Model_Year. Convert the variable
Model_Year to a categorical array.

cars = table(MPG,Weight,Model_Year);
cars.Model_Year = categorical(cars.Model_Year);
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Fit a regression model.

Fit a regression model using fitlm with MPG as the dependent variable, and Weight and
Model_Year as the independent variables. Because Model_Year is a categorical covariate with
three levels, it should enter the model as two indicator variables.

The scatter plot suggests that the slope of MPG against Weight might differ for each model year. To
assess this, include weight-year interaction terms.

The proposed model is

E(MPG) = β0 + β1Weight + β2I[1976] + β3I[1982] + β4Weight × I[1976] + β5Weight × I[1982],

where I[1976] and I[1982] are dummy variables indicating the model years 1976 and 1982,
respectively. I[1976] takes the value 1 if model year is 1976 and takes the value 0 if it is not. I[1982]
takes the value 1 if model year is 1982 and takes the value 0 if it is not. In this model, 1970 is the
reference year.

fit = fitlm(cars,'MPG~Weight*Model_Year')

fit = 

Linear regression model:
    MPG ~ 1 + Weight*Model_Year

Estimated Coefficients:
                             Estimate          SE    
                            ___________    __________

    (Intercept)                  37.399        2.1466
    Weight                   -0.0058437    0.00061765
    Model_Year_76                4.6903        2.8538
    Model_Year_82                21.051         4.157
    Weight:Model_Year_76    -0.00082009    0.00085468
    Weight:Model_Year_82     -0.0050551     0.0015636

                             tStat        pValue  
                            ________    __________

    (Intercept)               17.423    2.8607e-30
    Weight                   -9.4612    4.6077e-15
    Model_Year_76             1.6435       0.10384
    Model_Year_82             5.0641    2.2364e-06
    Weight:Model_Year_76    -0.95953       0.33992
    Weight:Model_Year_82     -3.2329     0.0017256

Number of observations: 94, Error degrees of freedom: 88
Root Mean Squared Error: 2.79
R-squared: 0.886,  Adjusted R-Squared: 0.88
F-statistic vs. constant model: 137, p-value = 5.79e-40

The regression output shows:
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• fitlm recognizes Model_Year as a categorical variable, and constructs the required indicator
(dummy) variables. By default, the first level, 70, is the reference group (use reordercats to
change the reference group).

• The model specification, MPG~Weight*Model_Year, specifies the first-order terms for Weight
and Model_Year, and all interactions.

• The model R2 = 0.886, meaning the variation in miles per gallon is reduced by 88.6% when you
consider weight, model year, and their interactions.

• The fitted model is

MP G = 37.4− 0.006Weight + 4.7I[1976] + 21.1I[1982]− 0.0008Weight × I[1976]
− 0.005Weight × I[1982] .

Thus, the estimated regression equations for the model years are as follows.

Model Year Predicted MPG Against Weight
1970 MP G = 37.4− 0.006Weight
1976 MP G = (37.4 + 4.7)− (0.006 + 0.0008)Weight
1982 MP G = (37.4 + 21.1)− (0.006 + 0.005)Weight

The relationship between MPG and Weight has an increasingly negative slope as the model year
increases.

Plot fitted regression lines.

Plot the data and fitted regression lines.

w = linspace(min(Weight),max(Weight));

figure()
gscatter(Weight,MPG,Model_Year,'bgr','x.o')
line(w,feval(fit,w,'70'),'Color','b','LineWidth',2)
line(w,feval(fit,w,'76'),'Color','g','LineWidth',2)
line(w,feval(fit,w,'82'),'Color','r','LineWidth',2)
title('Fitted Regression Lines by Model Year')
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Test for different slopes.

Test for significant differences between the slopes. This is equivalent to testing the hypothesis

H0: β4 = β5 = 0
HA: βi ≠ 0 for at least one i .

anova(fit)

ans = 

                         SumSq     DF    MeanSq    F         pValue    
    Weight               2050.2     1    2050.2    263.87    3.2055e-28
    Model_Year           807.69     2    403.84    51.976    1.2494e-15
    Weight:Model_Year    81.219     2    40.609    5.2266     0.0071637
    Error                683.74    88    7.7698                        

This output shows that the p-value for the test is 0.0072 (from the interaction row,
Weight:Model_Year), so the null hypothesis is rejected at the 0.05 significance level. The value of
the test statistic is 5.2266. The numerator degrees of freedom for the test is 2, which is the number
of coefficients in the null hypothesis.

There is sufficient evidence that the slopes are not equal for all three model years.

See Also
fitlm | categorical | reordercats | anova

Related Examples
• “Test Differences Between Category Means” on page 2-25
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• “Linear Regression” on page 11-9
• “Linear Regression Workflow” on page 11-35
• “Interpret Linear Regression Results” on page 11-52

More About
• “Grouping Variables” on page 2-46
• “Dummy Variables” on page 2-49
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Create a Dataset Array from Workspace Variables

Note The dataset data type is not recommended. To work with heterogeneous data, use the
MATLAB table data type instead. See MATLAB table documentation for more information.

In this section...
“Create a Dataset Array from a Numeric Array” on page 2-58
“Create Dataset Array from Heterogeneous Workspace Variables” on page 2-60

Create a Dataset Array from a Numeric Array

This example shows how to create a dataset array from a numeric array existing in the MATLAB®
workspace.

Load sample data.

load fisheriris

Two variables load into the workspace: meas, a 150-by-4 numeric array, and species, a 150-by-1 cell
array of species labels.

Create a dataset array.

Use mat2dataset to convert the numeric array, meas, into a dataset array.

ds = mat2dataset(meas);
ds(1:10,:)

ans = 
    meas1    meas2    meas3    meas4
    5.1      3.5      1.4      0.2  
    4.9        3      1.4      0.2  
    4.7      3.2      1.3      0.2  
    4.6      3.1      1.5      0.2  
      5      3.6      1.4      0.2  
    5.4      3.9      1.7      0.4  
    4.6      3.4      1.4      0.3  
      5      3.4      1.5      0.2  
    4.4      2.9      1.4      0.2  
    4.9      3.1      1.5      0.1  

The array, meas, has four columns, so the dataset array, ds, has four variables. The default variable
names are the array name, meas, with column numbers appended.

You can specify your own variable or observation names using the name-value pair arguments
VarNames and ObsNames, respectively.

If you use dataset to convert a numeric array to a dataset array, by default, the resulting dataset
array has one variable that is an array instead of separate variables for each column.
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Examine the dataset array.

Return the size of the dataset array, ds.

size(ds)

ans = 1×2

   150     4

The dataset array, ds, is the same size as the numeric array, meas. Variable names and observation
names do not factor into the size of a dataset array.

Explore dataset array metadata.

Return the metadata properties of the dataset array, ds.

ds.Properties

ans = struct with fields:
       Description: ''
    VarDescription: {}
             Units: {}
          DimNames: {'Observations'  'Variables'}
          UserData: []
          ObsNames: {}
          VarNames: {'meas1'  'meas2'  'meas3'  'meas4'}

You can also access the properties individually. For example, you can retrieve the variable names
using ds.Properties.VarNames.

Access data in a dataset array variable.

You can use variable names with dot indexing to access the data in a dataset array. For example, find
the minimum value in the first variable, meas1.

min(ds.meas1)

ans = 4.3000

Change variable names.

The four variables in ds are actually measurements of sepal length, sepal width, petal length, and
petal width. Modify the variable names to be more descriptive.

ds.Properties.VarNames = {'SLength','SWidth','PLength','PWidth'};

Add description.

you can add a description for the dataset array.

ds.Properties.Description = 'Fisher iris data';
ds.Properties

ans = struct with fields:
       Description: 'Fisher iris data'
    VarDescription: {}
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             Units: {}
          DimNames: {'Observations'  'Variables'}
          UserData: []
          ObsNames: {}
          VarNames: {'SLength'  'SWidth'  'PLength'  'PWidth'}

The dataset array properties are updated with the new variable names and description.

Add a variable to the dataset array.

The variable species is a cell array of species labels. Add species to the dataset array, ds, as a
nominal array named Species. Display the first five observations in the dataset array.

ds.Species = nominal(species);
ds(1:5,:)

ans = 
    SLength    SWidth    PLength    PWidth    Species
    5.1        3.5       1.4        0.2       setosa 
    4.9          3       1.4        0.2       setosa 
    4.7        3.2       1.3        0.2       setosa 
    4.6        3.1       1.5        0.2       setosa 
      5        3.6       1.4        0.2       setosa 

The dataset array, ds, now has the fifth variable, Species.

Create Dataset Array from Heterogeneous Workspace Variables

This example shows how to create a dataset array from heterogeneous variables existing in the
MATLAB® workspace.

Load sample data.

load carsmall

Create a dataset array.

Create a dataset array from a subset of the workspace variables.

ds = dataset(Origin,Acceleration,Cylinders,MPG);
ds.Properties.VarNames(:)

ans = 4x1 cell
    {'Origin'      }
    {'Acceleration'}
    {'Cylinders'   }
    {'MPG'         }

When creating the dataset array, you do not need to enter variable names. dataset automatically
uses the name of each workspace variable.

Notice that the dataset array, ds, contains a collection of variables with heterogeneous data types.
Origin is a character array, and the other variables are numeric.
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Examine a dataset array.

Display the first five observations in the dataset array.

ds(1:5,:)

ans = 
    Origin     Acceleration    Cylinders    MPG
    USA          12            8            18 
    USA        11.5            8            15 
    USA          11            8            18 
    USA          12            8            16 
    USA        10.5            8            17 

Apply a function to a dataset array.

Use datasetfun to return the data type of each variable in ds.

varclass = datasetfun(@class,ds,'UniformOutput',false);
varclass(:)

ans = 4x1 cell
    {'char'  }
    {'double'}
    {'double'}
    {'double'}

You can get additional information about the variables using summary(ds).

Modify a dataset array.

Cylinders is a numeric variable that has values 4, 6, and 8 for the number of cylinders. Convert
Cylinders to a nominal array with levels four, six, and eight.

Display the country of origin and number of cylinders for the first 15 cars.

ds.Cylinders = nominal(ds.Cylinders,{'four','six','eight'});
ds(1:15,{'Origin','Cylinders'})

ans = 
    Origin     Cylinders
    USA        eight    
    USA        eight    
    USA        eight    
    USA        eight    
    USA        eight    
    USA        eight    
    USA        eight    
    USA        eight    
    USA        eight    
    USA        eight    
    France     four     
    USA        eight    
    USA        eight    
    USA        eight    
    USA        eight    
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The variable Cylinders has a new data type.

See Also
dataset | datasetfun | mat2dataset | nominal

Related Examples
• “Create a Dataset Array from a File” on page 2-63
• “Export Dataset Arrays” on page 2-96
• “Dataset Arrays in the Variables Editor” on page 2-102
• “Index and Search Dataset Arrays” on page 2-115

More About
• “Dataset Arrays” on page 2-113
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Create a Dataset Array from a File

Note The dataset data type is not recommended. To work with heterogeneous data, use the
MATLAB table data type instead. See MATLAB table documentation for more information.

In this section...
“Create a Dataset Array from a Tab-Delimited Text File” on page 2-63
“Create a Dataset Array from a Comma-Separated Text File” on page 2-65
“Create a Dataset Array from an Excel File” on page 2-67

Create a Dataset Array from a Tab-Delimited Text File
This example shows how to create a dataset array from the contents of a tab-delimited text file.

Create a dataset array using default settings.

Import the text file hospitalSmall.txt as a dataset array using the default settings.

ds = dataset('File',fullfile(matlabroot,'help/toolbox/stats/examples','hospitalSmall.txt'))

ds = 

    name              sex        age    wgt    smoke
    'SMITH'           'm'        38     176    1    
    'JOHNSON'         'm'        43     163    0    
    'WILLIAMS'        'f'        38     131    0    
    'JONES'           'f'        40     133    0    
    'BROWN'           'f'        49     119    0    
    'DAVIS'           'f'        46     142    0    
    'MILLER'          'f'        33     142    1    
    'WILSON'          'm'        40     180    0    
    'MOORE'           'm'        28     183    0    
    'TAYLOR'          'f'        31     132    0    
    'ANDERSON'        'f'        45     128    0    
    'THOMAS'          'f'        42     137    0    
    'JACKSON'         'm'        25     174    0    
    'WHITE'           'm'        39     202    1    

By default, dataset uses the first row of the text file for variable names. If the first row does not
contain variable names, you can specify the optional name-value pair argument
'ReadVarNames',false to change the default behavior.

The dataset array contains heterogeneous variables. The variables id, name, and sex are cell arrays
of character vectors, and the other variables are numeric.

Summarize the dataset array.

You can see the data type and other descriptive statistics for each variable by using summary to
summarize the dataset array.

summary(ds)
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name: [14x1 cell array of character vectors]

sex: [14x1 cell array of character vectors]

age: [14x1 double]

    min    1st quartile    median    3rd quartile    max
    25     33              39.5      43              49 

wgt: [14x1 double]

    min    1st quartile    median    3rd quartile    max
    119    132             142       176             202

smoke: [14x1 double]

    min    1st quartile    median    3rd quartile    max
    0      0               0         0               1  

Import observation names.

Import the text file again, this time specifying that the first column contains observation names.

ds = dataset('File',fullfile(matlabroot,'help/toolbox/stats/examples','hospitalSmall.txt'),'ReadObsNames',true)

ds = 

                sex        age    wgt    smoke
    SMITH       'm'        38     176    1    
    JOHNSON     'm'        43     163    0    
    WILLIAMS    'f'        38     131    0    
    JONES       'f'        40     133    0    
    BROWN       'f'        49     119    0    
    DAVIS       'f'        46     142    0    
    MILLER      'f'        33     142    1    
    WILSON      'm'        40     180    0    
    MOORE       'm'        28     183    0    
    TAYLOR      'f'        31     132    0    
    ANDERSON    'f'        45     128    0    
    THOMAS      'f'        42     137    0    
    JACKSON     'm'        25     174    0    
    WHITE       'm'        39     202    1    

The elements of the first column in the text file, last names, are now observation names. Observation
names and row names are dataset array properties. You can always add or change the observation
names of an existing dataset array by modifying the property ObsNames.

Change dataset array properties.

By default, the DimNames property of the dataset array has name as the descriptor of the observation
(row) dimension. dataset got this name from the first row of the first column in the text file.

Change the first element of DimNames to LastName.

ds.Properties.DimNames{1} = 'LastName';
ds.Properties

ans = 
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       Description: ''
    VarDescription: {}
             Units: {}
          DimNames: {'LastName'  'Variables'}
          UserData: []
          ObsNames: {14x1 cell}
          VarNames: {'sex'  'age'  'wgt'  'smoke'}

Index into dataset array.

You can use observation names to index into a dataset array. For example, return the data for the
patient with last name BROWN.

ds('BROWN',:)

ans = 

             sex        age    wgt    smoke
    BROWN    'f'        49     119    0    

Note that observation names must be unique.

Create a Dataset Array from a Comma-Separated Text File
This example shows how to create a dataset array from the contents of a comma-separated text file.

Create a dataset array.

Import the file hospitalSmall.csv as a dataset array, specifying the comma-delimited format.

ds = dataset('File',fullfile(matlabroot,'help/toolbox/stats/examples','hospitalSmall.csv'),'Delimiter',',')

ds = 

    id               name              sex        age    wgt    smoke
    'YPL-320'        'SMITH'           'm'        38     176    1    
    'GLI-532'        'JOHNSON'         'm'        43     163    0    
    'PNI-258'        'WILLIAMS'        'f'        38     131    0    
    'MIJ-579'        'JONES'           'f'        40     133    0    
    'XLK-030'        'BROWN'           'f'        49     119    0    
    'TFP-518'        'DAVIS'           'f'        46     142    0    
    'LPD-746'        'MILLER'          'f'        33     142    1    
    'ATA-945'        'WILSON'          'm'        40     180    0    
    'VNL-702'        'MOORE'           'm'        28     183    0    
    'LQW-768'        'TAYLOR'          'f'        31     132    0    
    'QFY-472'        'ANDERSON'        'f'        45     128    0    
    'UJG-627'        'THOMAS'          'f'        42     137    0    
    'XUE-826'        'JACKSON'         'm'        25     174    0    
    'TRW-072'        'WHITE'           'm'        39     202    1    

By default, dataset uses the first row in the text file as variable names.

Add observation names.

Use the unique identifiers in the variable id as observation names. Then, delete the variable id from
the dataset array.

 Create a Dataset Array from a File

2-65



ds.Properties.ObsNames = ds.id;
ds.id = []

ds = 

               name              sex        age    wgt    smoke
    YPL-320    'SMITH'           'm'        38     176    1    
    GLI-532    'JOHNSON'         'm'        43     163    0    
    PNI-258    'WILLIAMS'        'f'        38     131    0    
    MIJ-579    'JONES'           'f'        40     133    0    
    XLK-030    'BROWN'           'f'        49     119    0    
    TFP-518    'DAVIS'           'f'        46     142    0    
    LPD-746    'MILLER'          'f'        33     142    1    
    ATA-945    'WILSON'          'm'        40     180    0    
    VNL-702    'MOORE'           'm'        28     183    0    
    LQW-768    'TAYLOR'          'f'        31     132    0    
    QFY-472    'ANDERSON'        'f'        45     128    0    
    UJG-627    'THOMAS'          'f'        42     137    0    
    XUE-826    'JACKSON'         'm'        25     174    0    
    TRW-072    'WHITE'           'm'        39     202    1  

Delete observations.

Delete any patients with the last name BROWN. You can use strcmp to match 'BROWN' with the
elements of the variable containing last names, name.

toDelete = strcmp(ds.name,'BROWN');
ds(toDelete,:) = []

ds = 

               name              sex        age    wgt    smoke
    YPL-320    'SMITH'           'm'        38     176    1    
    GLI-532    'JOHNSON'         'm'        43     163    0    
    PNI-258    'WILLIAMS'        'f'        38     131    0    
    MIJ-579    'JONES'           'f'        40     133    0    
    TFP-518    'DAVIS'           'f'        46     142    0    
    LPD-746    'MILLER'          'f'        33     142    1    
    ATA-945    'WILSON'          'm'        40     180    0    
    VNL-702    'MOORE'           'm'        28     183    0    
    LQW-768    'TAYLOR'          'f'        31     132    0    
    QFY-472    'ANDERSON'        'f'        45     128    0    
    UJG-627    'THOMAS'          'f'        42     137    0    
    XUE-826    'JACKSON'         'm'        25     174    0    
    TRW-072    'WHITE'           'm'        39     202    1    

One patient having last name BROWN is deleted from the dataset array.

Return size of dataset array.

The array now has 13 observations.

size(ds)

ans =

    13     5
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Note that the row and column corresponding to variable and observation names, respectively, are not
included in the size of a dataset array.

Create a Dataset Array from an Excel File
This example shows how to create a dataset array from the contents of an Excel® spreadsheet file.

Create a dataset array.

Import the data from the first worksheet in the file hospitalSmall.xlsx, specifying that the data
file is an Excel spreadsheet.

ds = dataset('XLSFile',fullfile(matlabroot,'help/toolbox/stats/examples','hospitalSmall.xlsx'))

ds = 

    id               name              sex        age    wgt    smoke
    'YPL-320'        'SMITH'           'm'        38     176    1    
    'GLI-532'        'JOHNSON'         'm'        43     163    0    
    'PNI-258'        'WILLIAMS'        'f'        38     131    0    
    'MIJ-579'        'JONES'           'f'        40     133    0    
    'XLK-030'        'BROWN'           'f'        49     119    0    
    'TFP-518'        'DAVIS'           'f'        46     142    0    
    'LPD-746'        'MILLER'          'f'        33     142    1    
    'ATA-945'        'WILSON'          'm'        40     180    0    
    'VNL-702'        'MOORE'           'm'        28     183    0    
    'LQW-768'        'TAYLOR'          'f'        31     132    0    
    'QFY-472'        'ANDERSON'        'f'        45     128    0    
    'UJG-627'        'THOMAS'          'f'        42     137    0    
    'XUE-826'        'JACKSON'         'm'        25     174    0    
    'TRW-072'        'WHITE'           'm'        39     202    1    

By default, dataset creates variable names using the contents of the first row in the spreadsheet.

Specify which worksheet to import.

Import the data from the second worksheet into a new dataset array.

ds2 = dataset('XLSFile',fullfile(matlabroot,'help/toolbox/stats/examples','hospitalSmall.xlsx'),'Sheet',2)

ds2 = 

    id               name              sex        age    wgt    smoke
    'TRW-072'        'WHITE'           'm'        39     202    1    
    'ELG-976'        'HARRIS'          'f'        36     129    0    
    'KOQ-996'        'MARTIN'          'm'        48     181    1    
    'YUZ-646'        'THOMPSON'        'm'        32     191    1    
    'XBR-291'        'GARCIA'          'f'        27     131    1    
    'KPW-846'        'MARTINEZ'        'm'        37     179    0    
    'XBA-581'        'ROBINSON'        'm'        50     172    0    
    'BKD-785'        'CLARK'           'f'        48     133    0  

See Also
dataset | summary
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Related Examples
• “Create a Dataset Array from Workspace Variables” on page 2-58
• “Clean Messy and Missing Data” on page 2-98
• “Export Dataset Arrays” on page 2-96
• “Dataset Arrays in the Variables Editor” on page 2-102
• “Index and Search Dataset Arrays” on page 2-115

More About
• “Dataset Arrays” on page 2-113
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Add and Delete Observations
This example shows how to add and delete observations in a dataset array. You can also edit dataset
arrays using the Variables editor.

Load sample data.

Import the data from the first worksheet in hospitalSmall.xlsx into a dataset array.

ds = dataset('XLSFile',fullfile(matlabroot,'help/toolbox/stats/examples','hospitalSmall.xlsx'));
size(ds)

ans =

    14     6

The dataset array, ds, has 14 observations (rows) and 6 variables (columns).

Add observations by concatenation.

The second worksheet in hospitalSmall.xlsx has additional patient data. Append the
observations in this spreadsheet to the end of ds.

ds2 = dataset('XLSFile',fullfile(matlabroot,'help/toolbox/stats/examples','hospitalSmall.xlsx'),'Sheet',2);
dsNew = [ds;ds2];
size(dsNew)

ans =

    22     6

The dataset array dsNew has 22 observations. In order to vertically concatenate two dataset arrays,
both arrays must have the same number of variables, with the same variable names.

Add observations from a cell array.

If you want to append new observations stored in a cell array, first convert the cell array to a dataset
array, and then concatenate the dataset arrays.

cellObs = {'id','name','sex','age','wgt','smoke';
               'YQR-965','BAKER','M',36,160,0;
               'LFG-497','WALL' ,'F',28,125,1;
               'KSD-003','REED' ,'M',32,187,0};
dsNew = [dsNew;cell2dataset(cellObs)];
size(dsNew)

ans =

    25     6

Add observations from a structure.

You can also append new observations stored in a structure. Convert the structure to a dataset array,
and then concatenate the dataset arrays.

structObs(1,1).id = 'GHK-842';
structObs(1,1).name = 'GEORGE';
structObs(1,1).sex = 'M';
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structObs(1,1).age = 45;
structObs(1,1).wgt = 182;
structObs(1,1).smoke = 1;

structObs(2,1).id = 'QRH-308';
structObs(2,1).name = 'BAILEY';
structObs(2,1).sex = 'F';
structObs(2,1).age = 29;
structObs(2,1).wgt = 120;
structObs(2,1).smoke = 0;

dsNew = [dsNew;struct2dataset(structObs)];
size(dsNew)

ans =

    27     6

Delete duplicate observations.

Use unique to delete any observations in a dataset array that are duplicated.

dsNew = unique(dsNew);
size(dsNew)

ans =

    21     6

One duplicated observation is deleted.

Delete observations by observation number.

Delete observations 18, 20, and 21 from the dataset array.

dsNew([18,20,21],:) = [];
size(dsNew)

ans =

    18     6

The dataset array has only 18 observations now.

Delete observations by observation name.

First, specify the variable of identifiers, id, as observation names. Then, delete the variable id from
dsNew. You can use the observation name to index observations.

dsNew.Properties.ObsNames = dsNew.id;
dsNew.id = [];
dsNew('KOQ-996',:) = [];
size(dsNew)

ans =

    17     5

The dataset array now has one less observation and one less variable.
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Search for observations to delete.

You can also search for observations in the dataset array. For example, delete observations for any
patients with the last name WILLIAMS.

toDelete = strcmp(dsNew.name,'WILLIAMS');
dsNew(toDelete,:) = [];
size(dsNew)

ans =

    16     5

The dataset array now has one less observation.

See Also
dataset | cell2dataset | struct2dataset

Related Examples
• “Add and Delete Variables” on page 2-72
• “Select Subsets of Observations” on page 2-80
• “Dataset Arrays in the Variables Editor” on page 2-102
• “Index and Search Dataset Arrays” on page 2-115

More About
• “Dataset Arrays” on page 2-113
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Add and Delete Variables
This example shows how to add and delete variables in a dataset array. You can also edit dataset
arrays using the Variables editor.

Load sample data.

Import the data from the first worksheet in hospitalSmall.xlsx into a dataset array.

ds = dataset('XLSFile',fullfile(matlabroot,'help/toolbox/stats/examples','hospitalSmall.xlsx'));
size(ds)

ans =

    14     6

The dataset array, ds, has 14 observations (rows) and 6 variables (columns).

Add variables by concatenating dataset arrays.

The worksheet Heights in hospitalSmall.xlsx has heights for the patients on the first
worksheet. Concatenate the data in this spreadsheet with ds.

ds2 = dataset('XLSFile',fullfile(matlabroot,'help/toolbox/stats/examples','hospitalSmall.xlsx'),'Sheet','Heights');
ds = [ds ds2];
size(ds)

ans =

    14     7

The dataset array now has seven variables. You can only horizontally concatenate dataset arrays with
observations in the same position, or with the same observation names.

ds.Properties.VarNames{end}

ans =

hgt

The name of the last variable in ds is hgt, which dataset read from the first row of the imported
spreadsheet.

Delete variables by variable name.

First, specify the unique identifiers in the variable id as observation names. Then, delete the variable
id from the dataset array.

ds.Properties.ObsNames = ds.id;
ds.id = [];
size(ds)

ans =

    14     6

The dataset array now has six variables. List the variable names.
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ds.Properties.VarNames(:)

ans = 

    'name'
    'sex'
    'age'
    'wgt'
    'smoke'
    'hgt'

There is no longer a variable called id.

Add a new variable by name.

Add a new variable, bmi—which contains the body mass index (BMI) for each patient—to the dataset
array. BMI is a function of height and weight. Display the last name, gender, and BMI for each
patient.

ds.bmi = ds.wgt*703./ds.hgt.^2;
ds(:,{'name','sex','bmi'})

ans = 

               name              sex        bmi   
    YPL-320    'SMITH'           'm'        24.544
    GLI-532    'JOHNSON'         'm'        24.068
    PNI-258    'WILLIAMS'        'f'        23.958
    MIJ-579    'JONES'           'f'        25.127
    XLK-030    'BROWN'           'f'        21.078
    TFP-518    'DAVIS'           'f'        27.729
    LPD-746    'MILLER'          'f'        26.828
    ATA-945    'WILSON'          'm'         24.41
    VNL-702    'MOORE'           'm'        27.822
    LQW-768    'TAYLOR'          'f'        22.655
    QFY-472    'ANDERSON'        'f'        23.409
    UJG-627    'THOMAS'          'f'        25.883
    XUE-826    'JACKSON'         'm'        24.265
    TRW-072    'WHITE'           'm'        29.827

The operators ./ and .^ in the calculation of BMI indicate element-wise division and exponentiation,
respectively.

Delete variables by variable number.

Delete the variable wgt, the fourth variable in the dataset array.

ds(:,4) = [];
ds.Properties.VarNames(:)

ans = 

    'name'
    'sex'
    'age'
    'smoke'
    'hgt'
    'bmi'
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The variable wgt is deleted from the dataset array.

See Also
dataset

Related Examples
• “Add and Delete Observations” on page 2-69
• “Merge Dataset Arrays” on page 2-86
• “Calculations on Dataset Arrays” on page 2-93
• “Dataset Arrays in the Variables Editor” on page 2-102
• “Index and Search Dataset Arrays” on page 2-115

More About
• “Dataset Arrays” on page 2-113
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Access Data in Dataset Array Variables

This example shows how to work with dataset array variables and their data.

Access variables by name.

You can access variable data, or select a subset of variables, by using variable (column) names and
dot indexing. Load a sample dataset array. Display the names of the variables in hospital.

load hospital 
hospital.Properties.VarNames(:)

ans = 7x1 cell
    {'LastName'     }
    {'Sex'          }
    {'Age'          }
    {'Weight'       }
    {'Smoker'       }
    {'BloodPressure'}
    {'Trials'       }

The dataset array has 7 variables (columns) and 100 observations (rows). You can double-click
hospital in the Workspace window to view the dataset array in the Variables editor.

Plot histogram.

Plot a histogram of the data in the variable Weight.

figure
histogram(hospital.Weight)
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The histogram shows that the weight distribution is bimodal.

Plot data grouped by category.

Draw box plots of Weight grouped by the values in Sex (Male and Female). That is, use the variable
Sex as a grouping variable.

figure
boxplot(hospital.Weight,hospital.Sex)
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The box plot suggests that gender accounts for the bimodality in weight.

Select a subset of variables.

Create a new dataset array with only the variables LastName, Sex, and Weight. You can access the
variables by name or column number.

ds1 = hospital(:,{'LastName','Sex','Weight'});
ds2 = hospital(:,[1,2,4]);

The dataset arrays ds1 and ds2 are equivalent. Use parentheses ( ) when indexing dataset arrays
to preserve the data type; that is, to create a dataset array from a subset of a dataset array. You can
also use the Variables editor to create a new dataset array from a subset of variables and
observations.

Convert the variable data type.

Convert the data type of the variable Smoker from logical to nominal with labels No and Yes.

hospital.Smoker = nominal(hospital.Smoker,{'No','Yes'});
class(hospital.Smoker)

ans = 
'nominal'

Explore data.

Display the first 10 elements of Smoker.
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hospital.Smoker(1:10)

ans = 10x1 nominal
     Yes 
     No 
     No 
     No 
     No 
     No 
     Yes 
     No 
     No 
     No 

If you want to change the level labels in a nominal array, use setlabels.

Add variables.

The variable BloodPressure is a 100-by-2 array. The first column corresponds to systolic blood
pressure, and the second column to diastolic blood pressure. Separate this array into two new
variables, SysPressure and DiaPressure.

hospital.SysPressure = hospital.BloodPressure(:,1);
hospital.DiaPressure = hospital.BloodPressure(:,2);
hospital.Properties.VarNames(:)

ans = 9x1 cell
    {'LastName'     }
    {'Sex'          }
    {'Age'          }
    {'Weight'       }
    {'Smoker'       }
    {'BloodPressure'}
    {'Trials'       }
    {'SysPressure'  }
    {'DiaPressure'  }

The dataset array, hospital, has two new variables.

Search for variables by name.

Use regexp to find variables in hospital with 'Pressure' in their name. Create a new dataset
array containing only these variables.

bp = regexp(hospital.Properties.VarNames,'Pressure');
bpIdx = cellfun(@isempty,bp);
bpData = hospital(:,~bpIdx);
bpData.Properties.VarNames(:)

ans = 3x1 cell
    {'BloodPressure'}
    {'SysPressure'  }
    {'DiaPressure'  }

The new dataset array, bpData, contains only the blood pressure variables.
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Delete variables.

Delete the variable BloodPressure from the dataset array, hospital.

hospital.BloodPressure = [];
hospital.Properties.VarNames(:)

ans = 8x1 cell
    {'LastName'   }
    {'Sex'        }
    {'Age'        }
    {'Weight'     }
    {'Smoker'     }
    {'Trials'     }
    {'SysPressure'}
    {'DiaPressure'}

The variable BloodPressure is no longer in the dataset array.

See Also
dataset

Related Examples
• “Add and Delete Variables” on page 2-72
• “Calculations on Dataset Arrays” on page 2-93
• “Dataset Arrays in the Variables Editor” on page 2-102
• “Index and Search Dataset Arrays” on page 2-115

More About
• “Dataset Arrays” on page 2-113
• “Grouping Variables” on page 2-46
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Select Subsets of Observations

This example shows how to select an observation or subset of observations from a dataset array.

Load sample data.

Load the sample dataset array, hospital. Dataset arrays can have observation (row) names. This
array has observation names corresponding to unique patient identifiers.

load hospital
hospital.Properties.ObsNames(1:10)

ans = 10x1 cell
    {'YPL-320'}
    {'GLI-532'}
    {'PNI-258'}
    {'MIJ-579'}
    {'XLK-030'}
    {'TFP-518'}
    {'LPD-746'}
    {'ATA-945'}
    {'VNL-702'}
    {'LQW-768'}

These are the first 10 observation names.

Index an observation by name.

You can use the observation names to index into the dataset array. For example, extract the last
name, sex, and age for the patient with identifier XLK-030.

hospital('XLK-030',{'LastName','Sex','Age'})

ans = 
               LastName         Sex       Age
    XLK-030    {'BROWN'}        Female    49 

Index a subset of observations by number.

Create a new dataset array containing the first 50 patients.

ds50 = hospital(1:50,:);
size(ds50)

ans = 1×2

    50     7

Search observations using a logical condition.

Create a new dataset array containing only male patients. To find the male patients, use a logical
condition to search the variable containing gender information.
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dsMale = hospital(hospital.Sex=='Male',:);
dsMale(1:10,{'LastName','Sex'})

ans = 
               LastName            Sex 
    YPL-320    {'SMITH'   }        Male
    GLI-532    {'JOHNSON' }        Male
    ATA-945    {'WILSON'  }        Male
    VNL-702    {'MOORE'   }        Male
    XUE-826    {'JACKSON' }        Male
    TRW-072    {'WHITE'   }        Male
    KOQ-996    {'MARTIN'  }        Male
    YUZ-646    {'THOMPSON'}        Male
    KPW-846    {'MARTINEZ'}        Male
    XBA-581    {'ROBINSON'}        Male

Search observations using multiple conditions.

You can use multiple conditions to search the dataset array. For example, create a new dataset array
containing only female patients older than 40.

dsFemale = hospital(hospital.Sex=='Female' & hospital.Age > 40,:);
dsFemale(1:10,{'LastName','Sex','Age'})

ans = 
               LastName            Sex       Age
    XLK-030    {'BROWN'   }        Female    49 
    TFP-518    {'DAVIS'   }        Female    46 
    QFY-472    {'ANDERSON'}        Female    45 
    UJG-627    {'THOMAS'  }        Female    42 
    BKD-785    {'CLARK'   }        Female    48 
    VWL-936    {'LEWIS'   }        Female    41 
    AAX-056    {'LEE'     }        Female    44 
    AFK-336    {'WRIGHT'  }        Female    45 
    KKL-155    {'ADAMS'   }        Female    48 
    RBA-579    {'SANCHEZ' }        Female    44 

Select a random subset of observations.

Create a new dataset array containing a random subset of 20 patients from the dataset array
hospital.

rng('default') % For reproducibility
dsRandom = hospital(randsample(length(hospital),20),:);
dsRandom.Properties.ObsNames

ans = 20x1 cell
    {'DAU-529'}
    {'AGR-528'}
    {'RBO-332'}
    {'QOO-305'}
    {'RVS-253'}
    {'QEQ-082'}
    {'EHE-616'}
    {'HVR-372'}
    {'KOQ-996'}
    {'REV-997'}
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    {'PUE-347'}
    {'LQW-768'}
    {'YLN-495'}
    {'HJQ-495'}
    {'ELG-976'}
    {'XUE-826'}
    {'MEZ-469'}
    {'UDS-151'}
    {'MIJ-579'}
    {'DGC-290'}

Delete observations by name.

Delete the data for the patient with observation name HVR-372.

hospital('HVR-372',:) = [];
size(hospital)

ans = 1×2

    99     7

The dataset array has one less observation.

See Also
dataset

Related Examples
• “Add and Delete Observations” on page 2-69
• “Clean Messy and Missing Data” on page 2-98
• “Dataset Arrays in the Variables Editor” on page 2-102
• “Sort Observations in Dataset Arrays” on page 2-83
• “Index and Search Dataset Arrays” on page 2-115

More About
• “Dataset Arrays” on page 2-113
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Sort Observations in Dataset Arrays

This example shows how to sort observations (rows) in a dataset array using the command line. You
can also sort rows using the Variables editor.

Sort observations in ascending order.

Load the sample dataset array, hospital. Sort the observations by the values in Age, in ascending
order.

load hospital
dsAgeUp = sortrows(hospital,'Age');
dsAgeUp(1:10,{'LastName','Age'})

ans = 
               LastName             Age
    XUE-826    {'JACKSON'  }        25 
    FZR-250    {'HALL'     }        25 
    PUE-347    {'YOUNG'    }        25 
    LIM-480    {'HILL'     }        25 
    SCQ-914    {'JAMES'    }        25 
    REV-997    {'ALEXANDER'}        25 
    XBR-291    {'GARCIA'   }        27 
    VNL-702    {'MOORE'    }        28 
    DTT-578    {'WALKER'   }        28 
    XAX-646    {'COOPER'   }        28 

The youngest patients are age 25.

Sort observations in descending order.

Sort the observations by Age in descending order.

dsAgeDown = sortrows(hospital,'Age','descend');
dsAgeDown(1:10,{'LastName','Age'})

ans = 
               LastName            Age
    XBA-581    {'ROBINSON'}        50 
    DAU-529    {'REED'    }        50 
    XLK-030    {'BROWN'   }        49 
    FLJ-908    {'STEWART' }        49 
    GGU-691    {'HUGHES'  }        49 
    MEZ-469    {'GRIFFIN' }        49 
    KOQ-996    {'MARTIN'  }        48 
    BKD-785    {'CLARK'   }        48 
    KKL-155    {'ADAMS'   }        48 
    NSK-403    {'RAMIREZ' }        48 

The oldest patients are age 50.

Sort observations by the values of two variables.

Sort the observations in hospital by Age, and then by LastName.
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dsName = sortrows(hospital,{'Age','LastName'});
dsName(1:10,{'LastName','Age'})

ans = 
               LastName             Age
    REV-997    {'ALEXANDER'}        25 
    FZR-250    {'HALL'     }        25 
    LIM-480    {'HILL'     }        25 
    XUE-826    {'JACKSON'  }        25 
    SCQ-914    {'JAMES'    }        25 
    PUE-347    {'YOUNG'    }        25 
    XBR-291    {'GARCIA'   }        27 
    XAX-646    {'COOPER'   }        28 
    QEQ-082    {'COX'      }        28 
    NSU-424    {'JENKINS'  }        28 

Now the names are sorted alphabetically within increasing age groups.

Sort observations in mixed order.

Sort the observations in hospital by Age in an increasing order, and then by Weight in a
decreasing order.

dsWeight = sortrows(hospital,{'Age','Weight'},{'ascend','descend'});
dsWeight(1:10,{'LastName','Age','Weight'})

ans = 
               LastName             Age    Weight
    FZR-250    {'HALL'     }        25     189   
    SCQ-914    {'JAMES'    }        25     186   
    XUE-826    {'JACKSON'  }        25     174   
    REV-997    {'ALEXANDER'}        25     171   
    LIM-480    {'HILL'     }        25     138   
    PUE-347    {'YOUNG'    }        25     114   
    XBR-291    {'GARCIA'   }        27     131   
    NSU-424    {'JENKINS'  }        28     189   
    VNL-702    {'MOORE'    }        28     183   
    XAX-646    {'COOPER'   }        28     127   

This shows that the maximum weight among patients that are age 25 is 189 lbs.

Sort observations by observation name.

Sort the observations in hospital by the observation names.

dsObs = sortrows(hospital,'obsnames');
dsObs(1:10,{'LastName','Age'})

ans = 
               LastName           Age
    AAX-056    {'LEE'    }        44 
    AFB-271    {'PEREZ'  }        44 
    AFK-336    {'WRIGHT' }        45 
    AGR-528    {'SIMMONS'}        45 
    ATA-945    {'WILSON' }        40 
    BEZ-311    {'DIAZ'   }        45 
    BKD-785    {'CLARK'  }        48 
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    DAU-529    {'REED'   }        50 
    DGC-290    {'BUTLER' }        38 
    DTT-578    {'WALKER' }        28 

The observations are sorted by observation name in ascending alphabetical order.

See Also
dataset | sortrows

Related Examples
• “Select Subsets of Observations” on page 2-80
• “Stack or Unstack Dataset Arrays” on page 2-89
• “Dataset Arrays in the Variables Editor” on page 2-102
• “Index and Search Dataset Arrays” on page 2-115

More About
• “Dataset Arrays” on page 2-113
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Merge Dataset Arrays
This example shows how to merge dataset arrays using join.

Load sample data.

Import the data from the first worksheet in hospitalSmall.xlsx into a dataset array, then keep
only a few of the variables.

ds1 = dataset('XLSFile',fullfile(matlabroot,'help/toolbox/stats/examples','hospitalSmall.xlsx'));
ds1 = ds1(:,{'id','name','sex','age'})

ds1 = 

    id               name              sex        age
    'YPL-320'        'SMITH'           'm'        38 
    'GLI-532'        'JOHNSON'         'm'        43 
    'PNI-258'        'WILLIAMS'        'f'        38 
    'MIJ-579'        'JONES'           'f'        40 
    'XLK-030'        'BROWN'           'f'        49 
    'TFP-518'        'DAVIS'           'f'        46 
    'LPD-746'        'MILLER'          'f'        33 
    'ATA-945'        'WILSON'          'm'        40 
    'VNL-702'        'MOORE'           'm'        28 
    'LQW-768'        'TAYLOR'          'f'        31 
    'QFY-472'        'ANDERSON'        'f'        45 
    'UJG-627'        'THOMAS'          'f'        42 
    'XUE-826'        'JACKSON'         'm'        25 
    'TRW-072'        'WHITE'           'm'        39 

The dataset array, ds1, has 14 observations (rows) and 4 variables (columns).

Import the data from the worksheet Heights2 in hospitalSmall.xlsx.

ds2 = dataset('XLSFile',fullfile(matlabroot,'help/toolbox/stats/examples','hospitalSmall.xlsx'),'Sheet','Heights2')

ds2 = 

    id               hgt
    'LPD-746'        61 
    'PNI-258'        62 
    'XUE-826'        71 
    'ATA-945'        72 
    'XLK-030'        63 

ds2 has height measurements for a subset of five individuals from the first dataset array, ds1.

Merge only the matching subset of observations.

Use join to merge the two dataset arrays, ds1 and ds2, keeping only the subset of observations that
are in ds2.

JoinSmall = join(ds2,ds1)

JoinSmall = 

    id               hgt    name              sex        age
    'LPD-746'        61     'MILLER'          'f'        33 
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    'PNI-258'        62     'WILLIAMS'        'f'        38 
    'XUE-826'        71     'JACKSON'         'm'        25 
    'ATA-945'        72     'WILSON'          'm'        40 
    'XLK-030'        63     'BROWN'           'f'        49 

In JoinSmall, the variable id only appears once. This is because it is the key variable—the variable
that links observations between the two dataset arrays—and has the same variable name in both ds1
and ds2.

Include incomplete observations in the merge.

Merge ds1 and ds2 keeping all observations in the larger ds1.

joinAll = join(ds2,ds1,'type','rightouter','mergekeys',true)

joinAll = 

    id               hgt    name              sex        age
    'ATA-945'         72    'WILSON'          'm'        40 
    'GLI-532'        NaN    'JOHNSON'         'm'        43 
    'LPD-746'         61    'MILLER'          'f'        33 
    'LQW-768'        NaN    'TAYLOR'          'f'        31 
    'MIJ-579'        NaN    'JONES'           'f'        40 
    'PNI-258'         62    'WILLIAMS'        'f'        38 
    'QFY-472'        NaN    'ANDERSON'        'f'        45 
    'TFP-518'        NaN    'DAVIS'           'f'        46 
    'TRW-072'        NaN    'WHITE'           'm'        39 
    'UJG-627'        NaN    'THOMAS'          'f'        42 
    'VNL-702'        NaN    'MOORE'           'm'        28 
    'XLK-030'         63    'BROWN'           'f'        49 
    'XUE-826'         71    'JACKSON'         'm'        25 
    'YPL-320'        NaN    'SMITH'           'm'        38 

Each observation in ds1 without corresponding height measurements in ds2 has height value NaN.
Also, because there is no id value in ds2 for each observation in ds1, you need to merge the keys
using the option 'MergeKeys',true. This merges the key variable, id.

Merge dataset arrays with different key variable names.

When using join, it is not necessary for the key variable to have the same name in the dataset arrays
to be merged. Import the data from the worksheet named Heights3 in hospitalSmall.xlsx.

ds3 = dataset('XLSFile',fullfile(matlabroot,'help/toolbox/stats/examples','hospitalSmall.xlsx'),'Sheet','Heights3')

ds3 = 

    identifier       hgt
    'GLI-532'        69 
    'QFY-472'        62 
    'MIJ-579'        61 
    'VNL-702'        68 
    'XLK-030'        63 
    'LPD-746'        61 
    'TFP-518'        60 
    'YPL-320'        71 
    'ATA-945'        72 
    'LQW-768'        64 
    'PNI-258'        62 
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    'UJG-627'        61 
    'XUE-826'        71 
    'TRW-072'        69 

ds3 has height measurements for each observation in ds1. This dataset array has the same patient
identifiers as ds1, but they are under the variable name identifier, instead of id (and in a
different order).

Specify key variable.

You can easily change the variable name of the key variable in ds3 by setting
d3.Properties.VarNames or using the Variables editor, but it is not required to perform a merge.
Instead, you can specify the name of the key variable in each dataset array using LeftKeys and
RightKeys.

joinDiff = join(ds3,ds1,'LeftKeys','identifier','RightKeys','id')

joinDiff = 

    identifier       hgt    name              sex        age
    'GLI-532'        69     'JOHNSON'         'm'        43 
    'QFY-472'        62     'ANDERSON'        'f'        45 
    'MIJ-579'        61     'JONES'           'f'        40 
    'VNL-702'        68     'MOORE'           'm'        28 
    'XLK-030'        63     'BROWN'           'f'        49 
    'LPD-746'        61     'MILLER'          'f'        33 
    'TFP-518'        60     'DAVIS'           'f'        46 
    'YPL-320'        71     'SMITH'           'm'        38 
    'ATA-945'        72     'WILSON'          'm'        40 
    'LQW-768'        64     'TAYLOR'          'f'        31 
    'PNI-258'        62     'WILLIAMS'        'f'        38 
    'UJG-627'        61     'THOMAS'          'f'        42 
    'XUE-826'        71     'JACKSON'         'm'        25 
    'TRW-072'        69     'WHITE'           'm'        39 

The merged dataset array, joinDiff, has the same key variable order and name as the first dataset
array input to join, ds3.

See Also
dataset | join

Related Examples
• “Add and Delete Variables” on page 2-72
• “Stack or Unstack Dataset Arrays” on page 2-89
• “Dataset Arrays in the Variables Editor” on page 2-102
• “Index and Search Dataset Arrays” on page 2-115

More About
• “Dataset Arrays” on page 2-113
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Stack or Unstack Dataset Arrays
This example shows how to reformat dataset arrays using stack and unstack.

Load sample data.

Import the data from the comma-separated text file testScores.csv.

ds = dataset('File','testScores.csv','Delimiter',',')

ds = 

    LastName            School                Test1    Test2    Test3
    {'Jeong'   }        {'XYZ School'}        90       87       93   
    {'Collins' }        {'XYZ School'}        87       85       83   
    {'Torres'  }        {'XYZ School'}        86       85       88   
    {'Phillips'}        {'ABC School'}        75       80       72   
    {'Ling'    }        {'ABC School'}        89       86       87   
    {'Ramirez' }        {'ABC School'}        96       92       98   
    {'Lee'     }        {'XYZ School'}        78       75       77   
    {'Walker'  }        {'ABC School'}        91       94       92   
    {'Garcia'  }        {'ABC School'}        86       83       85   
    {'Chang'   }        {'XYZ School'}        79       76       82    

Each of the 10 students has 3 test scores.

Perform calculations on dataset array.

With the data in this format, you can, for example, calculate the average test score for each student.
The test scores are in columns 3 to 5.

ds.TestAve = mean(double(ds(:,3:5)),2);
ds(:,{'LastName','School','TestAve'})

ans = 

    LastName            School                TestAve
    {'Jeong'   }        {'XYZ School'}            90 
    {'Collins' }        {'XYZ School'}            85 
    {'Torres'  }        {'XYZ School'}        86.333 
    {'Phillips'}        {'ABC School'}        75.667 
    {'Ling'    }        {'ABC School'}        87.333 
    {'Ramirez' }        {'ABC School'}        95.333 
    {'Lee'     }        {'XYZ School'}        76.667 
    {'Walker'  }        {'ABC School'}        92.333 
    {'Garcia'  }        {'ABC School'}        84.667 
    {'Chang'   }        {'XYZ School'}            79   

A new variable with average test scores is added to the dataset array, ds.

Reformat the dataset array.

Stack the test score variables into a new variable, Scores.

 dsNew = stack(ds,{'Test1','Test2','Test3'},...
            'newDataVarName','Scores')

dsNew = 
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    LastName            School                TestAve    Scores_Indicator    Scores
    {'Jeong'   }        {'XYZ School'}            90     Test1               90    
    {'Jeong'   }        {'XYZ School'}            90     Test2               87    
    {'Jeong'   }        {'XYZ School'}            90     Test3               93    
    {'Collins' }        {'XYZ School'}            85     Test1               87    
    {'Collins' }        {'XYZ School'}            85     Test2               85    
    {'Collins' }        {'XYZ School'}            85     Test3               83    
    {'Torres'  }        {'XYZ School'}        86.333     Test1               86    
    {'Torres'  }        {'XYZ School'}        86.333     Test2               85    
    {'Torres'  }        {'XYZ School'}        86.333     Test3               88    
    {'Phillips'}        {'ABC School'}        75.667     Test1               75    
    {'Phillips'}        {'ABC School'}        75.667     Test2               80    
    {'Phillips'}        {'ABC School'}        75.667     Test3               72    
    {'Ling'    }        {'ABC School'}        87.333     Test1               89    
    {'Ling'    }        {'ABC School'}        87.333     Test2               86    
    {'Ling'    }        {'ABC School'}        87.333     Test3               87    
    {'Ramirez' }        {'ABC School'}        95.333     Test1               96    
    {'Ramirez' }        {'ABC School'}        95.333     Test2               92    
    {'Ramirez' }        {'ABC School'}        95.333     Test3               98    
    {'Lee'     }        {'XYZ School'}        76.667     Test1               78    
    {'Lee'     }        {'XYZ School'}        76.667     Test2               75    
    {'Lee'     }        {'XYZ School'}        76.667     Test3               77    
    {'Walker'  }        {'ABC School'}        92.333     Test1               91    
    {'Walker'  }        {'ABC School'}        92.333     Test2               94    
    {'Walker'  }        {'ABC School'}        92.333     Test3               92    
    {'Garcia'  }        {'ABC School'}        84.667     Test1               86    
    {'Garcia'  }        {'ABC School'}        84.667     Test2               83    
    {'Garcia'  }        {'ABC School'}        84.667     Test3               85    
    {'Chang'   }        {'XYZ School'}            79     Test1               79    
    {'Chang'   }        {'XYZ School'}            79     Test2               76    
    {'Chang'   }        {'XYZ School'}            79     Test3               82       

The original test variable names, Test1, Test2, and Test3, appear as levels in the combined test
scores indicator variable, Scores_Indicator.

Plot data grouped by category.

With the data in this format, you can use Scores_Indicator as a grouping variable, and draw box
plots of test scores grouped by test.

figure()
boxplot(dsNew.Scores,dsNew.Scores_Indicator)
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Revert the dataset array to the original format.

Reformat dsNew back into its original format.

dsOrig = unstack(dsNew,'Scores','Scores_Indicator');
dsOrig(:,{'LastName','Test1','Test2','Test3'})

ans = 

    LastName            Test1    Test2    Test3
    {'Jeong'   }        90       87       93   
    {'Collins' }        87       85       83   
    {'Torres'  }        86       85       88   
    {'Phillips'}        75       80       72   
    {'Ling'    }        89       86       87   
    {'Ramirez' }        96       92       98   
    {'Lee'     }        78       75       77   
    {'Walker'  }        91       94       92   
    {'Garcia'  }        86       83       85   
    {'Chang'   }        79       76       82    

The dataset array is back in wide format. unstack reassigns the levels of the indicator variable,
Scores_Indicator, as variable names in the unstacked dataset array.

See Also
dataset | double | stack | unstack

Related Examples
• “Access Data in Dataset Array Variables” on page 2-75
• “Calculations on Dataset Arrays” on page 2-93
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• “Index and Search Dataset Arrays” on page 2-115

More About
• “Dataset Arrays” on page 2-113
• “Grouping Variables” on page 2-46
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Calculations on Dataset Arrays
This example shows how to perform calculations on dataset arrays.

Load sample data.

Import the data from the comma-separated text file testScores.csv.

ds = dataset('File','testScores.csv','Delimiter',',')

ds = 

    LastName            School                Test1    Test2    Test3
    {'Jeong'   }        {'XYZ School'}        90       87       93   
    {'Collins' }        {'XYZ School'}        87       85       83   
    {'Torres'  }        {'XYZ School'}        86       85       88   
    {'Phillips'}        {'ABC School'}        75       80       72   
    {'Ling'    }        {'ABC School'}        89       86       87   
    {'Ramirez' }        {'ABC School'}        96       92       98   
    {'Lee'     }        {'XYZ School'}        78       75       77   
    {'Walker'  }        {'ABC School'}        91       94       92   
    {'Garcia'  }        {'ABC School'}        86       83       85   
    {'Chang'   }        {'XYZ School'}        79       76       82    

There are 3 test scores for each of 10 students, in wide format.

Average dataset array variables.

Compute the average (mean) test score for each student in the dataset array, and store it in a new
variable, TestAvg. Test scores are in columns 3 to 5.

Use double to convert the specified dataset array variables into a numeric array. Then, calculate the
mean across the second dimension (across columns) to get the test average for each student.

ds.TestAvg = mean(double(ds(:,3:5)),2);
ds(:,{'LastName','TestAvg'})

ans = 

    LastName            TestAvg
    {'Jeong'   }            90 
    {'Collins' }            85 
    {'Torres'  }        86.333 
    {'Phillips'}        75.667 
    {'Ling'    }        87.333 
    {'Ramirez' }        95.333 
    {'Lee'     }        76.667 
    {'Walker'  }        92.333 
    {'Garcia'  }        84.667 
    {'Chang'   }            79   

Summarize the dataset array using a grouping variable.

Compute the mean and maximum average test scores for each school.

stats = grpstats(ds,'School',{'mean','max'},'DataVars','TestAvg')

stats = 
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                  School                GroupCount    mean_TestAvg    max_TestAvg
    XYZ School    {'XYZ School'}        5               83.4              90     
    ABC School    {'ABC School'}        5             87.067          95.333     

This returns a new dataset array containing the specified summary statistics for each level of the
grouping variable, School.

Replace data values.

The denominator for each test score is 100. Convert the test score denominator to 25.

scores = double(ds(:,3:));
newScores = scores*25/100;
ds = replacedata(ds,newScores,3:5)

ds = 

    LastName            School                Test1    Test2    Test3    TestAvg
    {'Jeong'   }        {'XYZ School'}         22.5    21.75    23.25        90 
    {'Collins' }        {'XYZ School'}        21.75    21.25    20.75        85 
    {'Torres'  }        {'XYZ School'}         21.5    21.25       22    86.333 
    {'Phillips'}        {'ABC School'}        18.75       20       18    75.667 
    {'Ling'    }        {'ABC School'}        22.25     21.5    21.75    87.333 
    {'Ramirez' }        {'ABC School'}           24       23     24.5    95.333 
    {'Lee'     }        {'XYZ School'}         19.5    18.75    19.25    76.667 
    {'Walker'  }        {'ABC School'}        22.75     23.5       23    92.333 
    {'Garcia'  }        {'ABC School'}         21.5    20.75    21.25    84.667 
    {'Chang'   }        {'XYZ School'}        19.75       19     20.5        79   

The first two lines of code extract the test data and perform the desired calculation. Then,
replacedata inserts the new test scores back into the dataset array.

The variable of test score averages, TestAvg, is now the final score for each student.

Change variable name.

Change the variable name to Final.

ds.Properties.VarNames{end} = 'Final';
ds

ds = 

    LastName            School                Test1    Test2    Test3    Final 
    {'Jeong'   }        {'XYZ School'}         22.5    21.75    23.25        90
    {'Collins' }        {'XYZ School'}        21.75    21.25    20.75        85
    {'Torres'  }        {'XYZ School'}         21.5    21.25       22    86.333
    {'Phillips'}        {'ABC School'}        18.75       20       18    75.667
    {'Ling'    }        {'ABC School'}        22.25     21.5    21.75    87.333
    {'Ramirez' }        {'ABC School'}           24       23     24.5    95.333
    {'Lee'     }        {'XYZ School'}         19.5    18.75    19.25    76.667
    {'Walker'  }        {'ABC School'}        22.75     23.5       23    92.333
    {'Garcia'  }        {'ABC School'}         21.5    20.75    21.25    84.667
    {'Chang'   }        {'XYZ School'}        19.75       19     20.5        79

See Also
dataset | double | replacedata | grpstats
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Related Examples
• “Stack or Unstack Dataset Arrays” on page 2-89
• “Access Data in Dataset Array Variables” on page 2-75
• “Select Subsets of Observations” on page 2-80
• “Index and Search Dataset Arrays” on page 2-115

More About
• “Dataset Arrays” on page 2-113
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Export Dataset Arrays
This example shows how to export a dataset array from the MATLAB workspace to a text or
spreadsheet file.

Load sample data.

load('hospital')

The dataset array has 100 observations and 7 variables.

Export to a text file.

Export the dataset array, hospital, to a text file named hospital.txt. By default, export writes
to a tab-delimited text file with the same name as the dataset array, appended by .txt.

export(hospital)

This creates the file hospital.txt in the current working folder, if it does not previously exist. If the
file already exists in the current working folder, export overwrites the existing file.

By default, variable names are in the first line of the text file. Observation names, if present, are in
the first column.

Export without variable names.

Export hospital with variable names suppressed to a text file named NoLabels.txt.

export(hospital,'File','NoLabels.txt','WriteVarNames',false)

There are no variable names in the first line of the created text file, NoLabels.txt.

Export to a comma-delimited format.

Export hospital to a comma-delimited text file, hospital.csv.

export(hospital,'File','hospital.csv','Delimiter',',')

Export to an Excel spreadsheet.

Export hospital to an Excel spreadsheet named hospital.xlsx.

export(hospital,'XLSFile','hospital.xlsx')

By default, the first row of hospital.xlsx has variable names, and the first column has observation
names.

See Also
dataset | export

Related Examples
• “Create a Dataset Array from Workspace Variables” on page 2-58
• “Create a Dataset Array from a File” on page 2-63
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More About
• “Dataset Arrays” on page 2-113

 Export Dataset Arrays

2-97



Clean Messy and Missing Data
This example shows how to find, clean, and delete observations with missing data in a dataset array.

Load sample data.

Import the data from the spreadsheet messy.xlsx.

messyData = dataset('XLSFile',fullfile(matlabroot,'help/toolbox/stats/examples','messy.xlsx'))

messyData = 

    var1          var2          var3         var4          var5
    'afe1'        '3'           'yes'        '3'              3
    'egh3'        '.'           'no'         '7'              7
    'wth4'        '3'           'yes'        '3'              3
    'atn2'        '23'          'no'         '23'            23
    'arg1'        '5'           'yes'        '5'              5
    'jre3'        '34.6'        'yes'        '34.6'        34.6
    'wen9'        '234'         'yes'        '234'          234
    'ple2'        '2'           'no'         '2'              2
    'dbo8'        '5'           'no'         '5'              5
    'oii4'        '5'           'yes'        '5'              5
    'wnk3'        '245'         'yes'        '245'          245
    'abk6'        '563'         ''           '563'          563
    'pnj5'        '463'         'no'         '463'          463
    'wnn3'        '6'           'no'         '6'              6
    'oks9'        '23'          'yes'        '23'            23
    'wba3'        ''            'yes'        'NaN'           14
    'pkn4'        '2'           'no'         '2'              2
    'adw3'        '22'          'no'         '22'            22
    'poj2'        '-99'         'yes'        '-99'          -99
    'bas8'        '23'          'no'         '23'            23
    'gry5'        'NA'          'yes'        'NaN'           21

When you import data from a spreadsheet, dataset reads any variables with nonnumeric elements
as a cell array of character vectors. This is why the variable var2 is a cell array of character vectors.
When importing data from a text file, you have more flexibility to specify which nonnumeric
expressions to treat as missing using the option TreatAsEmpty.

There are many different missing data indicators in messy.xlsx, such as:

• Empty cells
• A period (.)
• NA
• NaN
• -99

Find observations with missing values.

Display the subset of observations that have at least one missing value using ismissing.

ix = ismissing(messyData,'NumericTreatAsMissing',-99,...
                 'StringTreatAsMissing',{'NaN','.','NA'});
messyData(any(ix,2),:)
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ans = 

    var1          var2         var3         var4         var5
    'egh3'        '.'          'no'         '7'            7 
    'abk6'        '563'        ''           '563'        563 
    'wba3'        ''           'yes'        'NaN'         14 
    'poj2'        '-99'        'yes'        '-99'        -99 
    'gry5'        'NA'         'yes'        'NaN'         21 

By default, ismissing recognizes the following missing value indicators:

• NaN for numeric arrays
• '' for character arrays
• <undefined> for categorical arrays

Use the NumericTreatAsMissing and StringTreatAsMissing options to specify other values to
treat as missing.

Convert character arrays to double arrays.

You can convert the char variables that should be numeric using str2double.

messyData.var2 = str2double(messyData.var2);
messyData.var4 = str2double(messyData.var4)

messyData = 

    var1          var2    var3         var4    var5
    'afe1'           3    'yes'           3       3
    'egh3'         NaN    'no'            7       7
    'wth4'           3    'yes'           3       3
    'atn2'          23    'no'           23      23
    'arg1'           5    'yes'           5       5
    'jre3'        34.6    'yes'        34.6    34.6
    'wen9'         234    'yes'         234     234
    'ple2'           2    'no'            2       2
    'dbo8'           5    'no'            5       5
    'oii4'           5    'yes'           5       5
    'wnk3'         245    'yes'         245     245
    'abk6'         563    ''            563     563
    'pnj5'         463    'no'          463     463
    'wnn3'           6    'no'            6       6
    'oks9'          23    'yes'          23      23
    'wba3'         NaN    'yes'         NaN      14
    'pkn4'           2    'no'            2       2
    'adw3'          22    'no'           22      22
    'poj2'         -99    'yes'         -99     -99
    'bas8'          23    'no'           23      23
    'gry5'         NaN    'yes'         NaN      21

Now, var2 and var4 are numeric arrays. During the conversion, str2double replaces the
nonnumeric elements of the variables var2 and var4 with the value NaN. However, there are no
changes to the numeric missing value indicator, -99.

When applying the same function to many dataset array variables, it can sometimes be more
convenient to use datasetfun. For example, to convert both var2 and var4 to numeric arrays
simultaneously, you can use:
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messyData(:,[2,4]) = datasetfun(@str2double,messyData, ...
    'DataVars',[2,4],'DatasetOutput',true);

Replace missing value indicators.

Clean the data so that the missing values indicated by the code -99 have the standard MATLAB
numeric missing value indicator, NaN.

messyData = replaceWithMissing(messyData,'NumericValues',-99)

messyData = 

    var1          var2    var3         var4    var5
    'afe1'           3    'yes'           3       3
    'egh3'         NaN    'no'            7       7
    'wth4'           3    'yes'           3       3
    'atn2'          23    'no'           23      23
    'arg1'           5    'yes'           5       5
    'jre3'        34.6    'yes'        34.6    34.6
    'wen9'         234    'yes'         234     234
    'ple2'           2    'no'            2       2
    'dbo8'           5    'no'            5       5
    'oii4'           5    'yes'           5       5
    'wnk3'         245    'yes'         245     245
    'abk6'         563    ''            563     563
    'pnj5'         463    'no'          463     463
    'wnn3'           6    'no'            6       6
    'oks9'          23    'yes'          23      23
    'wba3'         NaN    'yes'         NaN      14
    'pkn4'           2    'no'            2       2
    'adw3'          22    'no'           22      22
    'poj2'         NaN    'yes'         NaN     NaN
    'bas8'          23    'no'           23      23
    'gry5'         NaN    'yes'         NaN      21

Create a dataset array with complete observations.

Create a new dataset array that contains only the complete observations—those without missing data.

ix = ismissing(messyData);
completeData = messyData(~any(ix,2),:)

completeData = 

    var1          var2    var3         var4    var5
    'afe1'           3    'yes'           3       3
    'wth4'           3    'yes'           3       3
    'atn2'          23    'no'           23      23
    'arg1'           5    'yes'           5       5
    'jre3'        34.6    'yes'        34.6    34.6
    'wen9'         234    'yes'         234     234
    'ple2'           2    'no'            2       2
    'dbo8'           5    'no'            5       5
    'oii4'           5    'yes'           5       5
    'wnk3'         245    'yes'         245     245
    'pnj5'         463    'no'          463     463
    'wnn3'           6    'no'            6       6
    'oks9'          23    'yes'          23      23
    'pkn4'           2    'no'            2       2
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    'adw3'          22    'no'           22      22
    'bas8'          23    'no'           23      23

See Also
dataset | ismissing | replaceWithMissing

Related Examples
• “Select Subsets of Observations” on page 2-80
• “Calculations on Dataset Arrays” on page 2-93
• “Index and Search Dataset Arrays” on page 2-115

More About
• “Dataset Arrays” on page 2-113
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Dataset Arrays in the Variables Editor

Note The dataset data type is not recommended. To work with heterogeneous data, use the
MATLAB table data type instead. See MATLAB table documentation for more information.

In this section...
“Open Dataset Arrays in the Variables Editor” on page 2-102
“Modify Variable and Observation Names” on page 2-103
“Reorder or Delete Variables” on page 2-104
“Add New Data” on page 2-106
“Sort Observations” on page 2-107
“Select a Subset of Data” on page 2-108
“Create Plots” on page 2-110

Open Dataset Arrays in the Variables Editor
The MATLAB Variables editor provides a convenient interface for viewing, modifying, and plotting
dataset arrays.

First, load the sample data set, hospital.

load hospital

The dataset array, hospital, is created in the MATLAB workspace.

The dataset array has 100 observations and 7 variables.

To open hospital in the Variables editor, click Open Variable, and select hospital.

The Variables editor opens, displaying the contents of the dataset array (only the first 10 observations
are shown here).
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In the Variables editor, you can see the names of the seven variables along the top row, and the
observations names down the first column.

Modify Variable and Observation Names
You can modify variable and observation names by double-clicking a name, and then typing new text.

All changes made in the Variables editor are also sent to the command line.
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The sixth variable in the data set, BloodPressure, is a numeric array with two columns. The first
column shows systolic blood pressure, and the second column shows diastolic blood pressure. Click
the arrow that appears on the right side of the variable name cell to see the units and description of
the variable. You can type directly in the units and description fields to modify the text. The variable
data type and size are shown under the variable description.

Reorder or Delete Variables
You can reorder variables in a dataset array using the Variables editor. Hover over the left side of a
variable name cell until a four-headed arrow appears.

After the arrow appears, click and drag the variable column to a new location.
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The command for the variable reordering appears in the command line.

You can delete a variable in the Variables editor by selecting the variable column, right-clicking, and
selecting Delete Column Variable(s).
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The command for the variable deletion appears in the command line.

Add New Data
You can enter new data values directly into the Variables editor. For example, you can add a new
patient observation to the hospital data set. To enter a new last name, add a character vector to
the end of the variable LastName.

The variable Gender is a nominal array. The levels of the categorical variable appear in a drop-down
list when you double-click a cell in the Gender column. You can choose one of the levels previously
used, or create a new level by selecting New Item.

You can continue to add data for the remaining variables.

To change the observation name, click the observation name and type the new name.
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The commands for entering the new data appear at the command line.

Notice the warning that appears after the first assignment. When you enter the first piece of data in
the new observation row—here, the last name—default values are assigned to all other variables.
Default assignments are:

• 0 for numeric variables
• <undefined> for categorical variables
• [] for cell arrays

You can also copy and paste data from one dataset array to another using the Variables editor.

Sort Observations
You can use the Variables editor to sort dataset array observations by the values of one or more
variables. To sort by gender, for example, select the variable Gender. Then click Sort, and choose to
sort rows by ascending or descending values of the selected variable.
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When sorting by variables that are cell arrays of character vectors or of nominal data type,
observations are sorted alphabetically. For ordinal variables, rows are sorted by the ordering of the
levels. For example, when the observations of hospital are sorted by the values in Gender, the
females are grouped together, followed by the males.

To sort by the values of multiple variables, press Ctrl while you select multiple variables.

When you use the Variables editor to sort rows, it is the same as calling sortrows. You can see this
at the command line after executing the sorting.

Select a Subset of Data
You can select a subset of data from a dataset array in the Variables editor, and create a new dataset
array from the selection. For example, to create a dataset array containing only the variables
LastName and Age:

1 Hold Ctrl while you click the variables LastName and Age.
2 Right-click, and select New Workspace Variable from Selection > New Dataset Array.
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The new dataset array appears in the Workspace window with the name hospital1. The Command
Window shows the commands that execute the selection.

You can use the same steps to select any subset of data. To select observations according to some
logical condition, you can use a combination of sorting and selecting. For example, to create a new
dataset array containing only males aged 45 and older:

1 Sort the observations of hospital by the values in Gender and Age, descending.
2 Select the male observations with age 45 and older.
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3 Right-click, and select New Workspace Variables from Selection > New Dataset Array. The
new dataset array, hospital2, is created in the Workspace window.

4 You can rename the dataset array in the Workspace window.

Create Plots
You can plot data from a dataset array using plotting options in the Variables editor. Available plot
choices depend on the data types of variables to be plotted.

For example, if you select the variable Age, you can see in the Plots tab some plotting options that
are appropriate for a univariate, numeric variable.
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Sometimes, there are plot options for multiple variables, depending on their data types. For example,
if you select both Age and Gender, you can draw box plots of age, grouped by gender.

See Also
dataset | sortrows
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Related Examples
• “Add and Delete Observations” on page 2-69
• “Add and Delete Variables” on page 2-72
• “Access Data in Dataset Array Variables” on page 2-75
• “Select Subsets of Observations” on page 2-80
• “Sort Observations in Dataset Arrays” on page 2-83

More About
• “Dataset Arrays” on page 2-113
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Dataset Arrays

Note The dataset data type is not recommended. To work with heterogeneous data, use the
MATLAB table data type instead. See MATLAB table documentation for more information.

In this section...
“What Are Dataset Arrays?” on page 2-113
“Dataset Array Conversion” on page 2-113
“Dataset Array Properties” on page 2-114

What Are Dataset Arrays?
Statistics and Machine Learning Toolbox has dataset arrays for storing variables with heterogeneous
data types. For example, you can combine numeric data, logical data, cell arrays of character vectors,
and categorical arrays in one dataset array variable.

Within a dataset array, each variable (column) must be one homogeneous data type, but the different
variables can be of heterogeneous data types. A dataset array is usually interpreted as a set of
variables measured on many units of observation. That is, each row in a dataset array corresponds to
an observation, and each column to a variable. In this sense, a dataset array organizes data like a
typical spreadsheet.

Dataset arrays are a unique data type, with a corresponding set of valid operations. Even if a dataset
array contains only numeric variables, you cannot operate on the dataset array like a numeric
variable. The valid operations for dataset arrays are the methods of the dataset class.

Dataset Array Conversion
You can create a dataset array by combining variables that exist in the MATLAB workspace, or
directly importing data from a file, such as a text file or spreadsheet. This table summarizes the
functions you can use to create dataset arrays.

Data Source Conversion to Dataset Array
Data from a file dataset
Heterogeneous collection of workspace variables dataset
Numeric array mat2dataset
Cell array cell2dataset
Structure array struct2dataset
Table table2dataset

You can export dataset arrays to text or spreadsheet files using export. To convert a dataset array to
a cell array or structure array, use dataset2cell or dataset2struct. To convert a dataset array
to a table, use dataset2table.
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Dataset Array Properties
In addition to storing data in a dataset array, you can store metadata such as:

• Variable and observation names
• Data descriptions
• Units of measurement
• Variable descriptions

This information is stored as dataset array properties. For a dataset array named ds, you can view
the dataset array metadata by entering ds.Properties at the command line. You can access a
specific property, such as variable names—property VarNames—using ds.Properties.VarNames.
You can both retrieve and modify property values using this syntax.

Variable and observation names are included in the display of a dataset array. Variable names display
across the top row, and observation names, if present, appear in the first column. Note that variable
and observation names do not affect the size of a dataset array.

See Also
dataset | export | dataset2cell | dataset2struct | dataset2table | mat2dataset |
cell2dataset | struct2dataset | table2dataset

Related Examples
• “Create a Dataset Array from Workspace Variables” on page 2-58
• “Create a Dataset Array from a File” on page 2-63
• “Export Dataset Arrays” on page 2-96
• “Dataset Arrays in the Variables Editor” on page 2-102
• “Index and Search Dataset Arrays” on page 2-115
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Index and Search Dataset Arrays

Note The dataset data type is not recommended. To work with heterogeneous data, use the
MATLAB table data type instead. See MATLAB table documentation for more information.

Ways To Index and Search
There are many ways to index into dataset arrays. For example, for a dataset array, ds, you can:

• Use () to create a new dataset array from a subset of ds. For example, ds1 = ds(1:5,:)
creates a new dataset array, ds1, consisting of the first five rows of ds. Metadata, including
variable and observation names, transfers to the new dataset array.

• Use variable names with dot notation to index individual variables in a dataset array. For example,
ds.Height indexes the variable named Height.

• Use observation names to index individual observations in a dataset array. For example,
ds('Obs1',:) gives data for the observation named Obs1.

• Use observation or variable numbers. For example, ds(:,[1,3,5]) gives the data in the first,
third, and fifth variables (columns) of ds.

• Use logical indexing to search for observations in ds that satisfy a logical condition. For example,
ds(ds.Gender=='Male',:) gives the observations in ds where the variable named Gender, a
nominal array, has the value Male.

• Use ismissing to find missing data in the dataset array.

Examples
Common Indexing and Searching Methods

This example shows several indexing and searching methods for categorical arrays.

Load the sample data.

load hospital;
size(hospital)

ans = 1×2

   100     7

The dataset array has 100 observations and 7 variables.

Index a variable by name. Return the minimum age in the dataset array.

min(hospital.Age)

ans = 25

Delete the variable Trials.

hospital.Trials = [];
size(hospital)
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ans = 1×2

   100     6

Index an observation by name. Display measurements on the first five variables for the observation
named PUE-347.

hospital('PUE-347',1:5)

ans = 
               LastName         Sex       Age    Weight    Smoker
    PUE-347    {'YOUNG'}        Female    25     114       false 

Index variables by number. Create a new dataset array containing the first four variables of
hospital.

dsNew = hospital(:,1:4);
dsNew.Properties.VarNames(:)

ans = 4x1 cell
    {'LastName'}
    {'Sex'     }
    {'Age'     }
    {'Weight'  }

Index observations by number. Delete the last 10 observations.

hospital(end-9:end,:) = [];
size(hospital)

ans = 1×2

    90     6

Search for observations by logical condition. Create a new dataset array containing only females who
smoke.

dsFS = hospital(hospital.Sex=='Female' & hospital.Smoker==true,:);
dsFS(:,{'LastName','Sex','Smoker'})

ans = 
               LastName             Sex       Smoker
    LPD-746    {'MILLER'   }        Female    true  
    XBR-291    {'GARCIA'   }        Female    true  
    AAX-056    {'LEE'      }        Female    true  
    DTT-578    {'WALKER'   }        Female    true  
    AFK-336    {'WRIGHT'   }        Female    true  
    RBA-579    {'SANCHEZ'  }        Female    true  
    HAK-381    {'MORRIS'   }        Female    true  
    NSK-403    {'RAMIREZ'  }        Female    true  
    ILS-109    {'WATSON'   }        Female    true  
    JDR-456    {'SANDERS'  }        Female    true  
    HWZ-321    {'PATTERSON'}        Female    true  
    GGU-691    {'HUGHES'   }        Female    true  
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    WUS-105    {'FLORES'   }        Female    true  

See Also
dataset

Related Examples
• “Access Data in Dataset Array Variables” on page 2-75
• “Select Subsets of Observations” on page 2-80

More About
• “Dataset Arrays” on page 2-113
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Descriptive Statistics

• “Measures of Central Tendency” on page 3-2
• “Measures of Dispersion” on page 3-4
• “Exploratory Analysis of Data” on page 3-6
• “Resampling Statistics” on page 3-10
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Measures of Central Tendency
Measures of central tendency locate a distribution of data along an appropriate scale.

The following table lists the functions that calculate the measures of central tendency.

Function Name Description
geomean Geometric mean
harmmean Harmonic mean
mean Arithmetic average
median 50th percentile
mode Most frequent value
trimmean Trimmed mean

The average is a simple and popular estimate of location. If the data sample comes from a normal
distribution, then the sample mean is also optimal (minimum variance unbiased estimator (MVUE) of
µ).

Unfortunately, outliers, data entry errors, or glitches exist in almost all real data. The sample mean is
sensitive to these problems. One bad data value can move the average away from the center of the
rest of the data by an arbitrarily large distance.

The median and trimmed mean are two measures that are resistant (robust) to outliers. The median is
the 50th percentile of the sample, which will only change slightly if you add a large perturbation to
any value. The idea behind the trimmed mean is to ignore a small percentage of the highest and
lowest values of a sample when determining the center of the sample.

The geometric mean and harmonic mean, like the average, are not robust to outliers. They are useful
when the sample is distributed lognormal or heavily skewed.

Measures of Central Tendency

This example shows how to compute and compare measures of location for sample data that contains
one outlier.

Generate sample data that contains one outlier.

x = [ones(1,6),100]

x = 1×7

     1     1     1     1     1     1   100

Compute the geometric mean, harmonic mean, mean, median, and trimmed mean for the sample
data.

locate = [geomean(x) harmmean(x) mean(x) median(x)... 
          trimmean(x,25)]

locate = 1×5
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    1.9307    1.1647   15.1429    1.0000    1.0000

The mean (mean) is far from any data value because of the influence of the outlier. The geometric
mean (geomean) and the harmonic mean (harmmean) are influenced by the outlier, but not as
significantly. The median (median) and trimmed mean (trimmean) ignore the outlier value and
describe the location of the rest of the data values.

See Also

Related Examples
• “Exploratory Analysis of Data” on page 3-6
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Measures of Dispersion
The purpose of measures of dispersion is to find out how spread out the data values are on the
number line. Another term for these statistics is measures of spread.

The table gives the function names and descriptions.

Function Name Description
iqr Interquartile range
mad Mean absolute deviation
moment Central moment of all orders
range Range
std Standard deviation
var Variance

The range (the difference between the maximum and minimum values) is the simplest measure of
spread. But if there is an outlier in the data, it will be the minimum or maximum value. Thus, the
range is not robust to outliers.

The standard deviation and the variance are popular measures of spread that are optimal for
normally distributed samples. The sample variance is the minimum variance unbiased estimator
(MVUE) of the normal parameter σ2. The standard deviation is the square root of the variance and
has the desirable property of being in the same units as the data. That is, if the data is in meters, the
standard deviation is in meters as well. The variance is in meters2, which is more difficult to interpret.

Neither the standard deviation nor the variance is robust to outliers. A data value that is separate
from the body of the data can increase the value of the statistics by an arbitrarily large amount.

The mean absolute deviation (MAD) is also sensitive to outliers. But the MAD does not move quite as
much as the standard deviation or variance in response to bad data.

The interquartile range (IQR) is the difference between the 75th and 25th percentile of the data.
Since only the middle 50% of the data affects this measure, it is robust to outliers.

Compare Measures of Dispersion

This example shows how to compute and compare measures of dispersion for sample data that
contains one outlier.

Generate sample data that contains one outlier value.

x = [ones(1,6),100]

x = 1×7

     1     1     1     1     1     1   100

Compute the interquartile range, mean absolute deviation, range, and standard deviation of the
sample data.
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stats = [iqr(x),mad(x),range(x),std(x)]

stats = 1×4

         0   24.2449   99.0000   37.4185

The interquartile range (iqr) is the difference between the 75th and 25th percentile of the sample
data, and is robust to outliers. The range (range) is the difference between the maximum and
minimum values in the data, and is strongly influenced by the presence of an outlier.

Both the mean absolute deviation (mad) and the standard deviation (std) are sensitive to outliers.
However, the mean absolute deviation is less sensitive than the standard deviation.

See Also

Related Examples
• “Exploratory Analysis of Data” on page 3-6
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Exploratory Analysis of Data

This example shows how to explore the distribution of data using descriptive statistics.

Generate sample data

Generate a vector containing randomly-generated sample data.

rng default  % For reproducibility
x = [normrnd(4,1,1,100),normrnd(6,0.5,1,200)];

Plot a histogram

Plot a histogram of the sample data with a normal density fit. This provides a visual comparison of the
sample data and a normal distribution fitted to the data.

histfit(x)

The distribution of the data appears to be left skewed. A normal distribution does not look like a good
fit for this sample data.

Obtain a normal probability plot

Obtain a normal probability plot. This plot provides another way to visually compare the sample data
to a normal distribution fitted to the data.
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probplot('normal',x)

The probability plot also shows the deviation of data from normality.

Create a box plot

Create a box plot to visualize the statistics.

boxplot(x)
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The box plot shows the 0.25, 0.5, and 0.75 quantiles. The long lower tail and plus signs show the lack
of symmetry in the sample data values.

Compute descriptive statistics

Compute the mean and median of the data.

y = [mean(x),median(x)]

y = 1×2

    5.3438    5.6872

The mean and median values seem close to each other, but a mean smaller than the median usually
indicates that the data is left skewed.

Compute the skewness and kurtosis of the data.

y = [skewness(x),kurtosis(x)]

y = 1×2

   -1.0417    3.5895

A negative skewness value means the data is left skewed. The data has a larger peakedness than a
normal distribution because the kurtosis value is greater than 3.
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Compute z-scores

Identify possible outliers by computing the z-scores and finding the values that are greater than 3 or
less than -3.

Z = zscore(x);
find(abs(Z)>3);

Based on the z-scores, the 3rd and 35th observations might be outliers.

See Also
boxplot | histfit | kurtosis | mean | median | prctile | quantile | skewness

More About
• “Compare Grouped Data Using Box Plots” on page 4-4
• “Measures of Central Tendency” on page 3-2
• “Measures of Dispersion” on page 3-4
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Resampling Statistics
In this section...
“Bootstrap Resampling” on page 3-10
“Jackknife Resampling” on page 3-12
“Parallel Computing Support for Resampling Methods” on page 3-13

Bootstrap Resampling

The bootstrap procedure involves choosing random samples with replacement from a data set and
analyzing each sample the same way. Sampling with replacement means that each observation is
selected separately at random from the original dataset. So a particular data point from the original
data set could appear multiple times in a given bootstrap sample. The number of elements in each
bootstrap sample equals the number of elements in the original data set. The range of sample
estimates you obtain enables you to establish the uncertainty of the quantity you are estimating.

This example from Efron and Tibshirani compares Law School Admission Test (LSAT) scores and
subsequent law school grade point average (GPA) for a sample of 15 law schools.

load lawdata
plot(lsat,gpa,'+')
lsline
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The least-squares fit line indicates that higher LSAT scores go with higher law school GPAs. But how
certain is this conclusion? The plot provides some intuition, but nothing quantitative.

You can calculate the correlation coefficient of the variables using the |corr|function.

rhohat = corr(lsat,gpa)

rhohat = 0.7764

Now you have a number describing the positive connection between LSAT and GPA; though it may
seem large, you still do not know if it is statistically significant.

Using the bootstrp function you can resample the lsat and gpa vectors as many times as you like
and consider the variation in the resulting correlation coefficients.

rng default  % For reproducibility
rhos1000 = bootstrp(1000,'corr',lsat,gpa);

This resamples the lsat and gpa vectors 1000 times and computes the corr function on each
sample. You can then plot the result in a histogram.

histogram(rhos1000,30,'FaceColor',[.8 .8 1])

Nearly all the estimates lie on the interval [0.4 1.0].

It is often desirable to construct a confidence interval for a parameter estimate in statistical
inferences. Using the bootci function, you can use bootstrapping to obtain a confidence interval for
the lsat and gpa data.
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ci = bootci(5000,@corr,lsat,gpa)

ci = 2×1

    0.3319
    0.9427

Therefore, a 95% confidence interval for the correlation coefficient between LSAT and GPA is [0.33
0.94]. This is strong quantitative evidence that LSAT and subsequent GPA are positively correlated.
Moreover, this evidence does not require any strong assumptions about the probability distribution of
the correlation coefficient.

Although the bootci function computes the Bias Corrected and accelerated (BCa) interval as the
default type, it is also able to compute various other types of bootstrap confidence intervals, such as
the studentized bootstrap confidence interval.

Jackknife Resampling

Similar to the bootstrap is the jackknife, which uses resampling to estimate the bias of a sample
statistic. Sometimes it is also used to estimate standard error of the sample statistic. The jackknife is
implemented by the Statistics and Machine Learning Toolbox™ function jackknife.

The jackknife resamples systematically, rather than at random as the bootstrap does. For a sample
with n points, the jackknife computes sample statistics on n separate samples of size n-1. Each
sample is the original data with a single observation omitted.

In the bootstrap example, you measured the uncertainty in estimating the correlation coefficient. You
can use the jackknife to estimate the bias, which is the tendency of the sample correlation to over-
estimate or under-estimate the true, unknown correlation. First compute the sample correlation on
the data.

load lawdata
rhohat = corr(lsat,gpa)

rhohat = 0.7764

Next compute the correlations for jackknife samples, and compute their mean.

rng default;  % For reproducibility
jackrho = jackknife(@corr,lsat,gpa);
meanrho = mean(jackrho)

meanrho = 0.7759

Now compute an estimate of the bias.

n = length(lsat);
biasrho = (n-1) * (meanrho-rhohat)

biasrho = -0.0065

The sample correlation probably underestimates the true correlation by about this amount.
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Parallel Computing Support for Resampling Methods
For information on computing resampling statistics in parallel, see Parallel Computing Toolbox™.
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Statistical Visualization

• “Create Scatter Plots Using Grouped Data” on page 4-2
• “Compare Grouped Data Using Box Plots” on page 4-4
• “Distribution Plots” on page 4-7
• “Visualizing Multivariate Data” on page 4-17
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Create Scatter Plots Using Grouped Data

This example shows how to create scatter plots using grouped sample data.

A scatter plot is a simple plot of one variable against another. The MATLAB® functions plot and
scatter produce scatter plots. The MATLAB function plotmatrix can produce a matrix of such
plots showing the relationship between several pairs of variables.

Statistics and Machine Learning Toolbox™ functions gscatter and gplotmatrix produce grouped
versions of these plots. These functions are useful for determining whether the values of two
variables or the relationship between those variables is the same in each group. These functions use
different plotting symbols to indicate group membership. You can use gname to label points on the
plots with a text label or an observation number.

Suppose you want to examine the weight and mileage of cars from three different model years.

load carsmall
gscatter(Weight,MPG,Model_Year,'bgr','xos')

This shows that not only is there a strong relationship between the weight of a car and its mileage,
but also that newer cars tend to be lighter and have better gas mileage than older cars.

The default arguments for gscatter produce a scatter plot with the different groups shown with the
same symbol but different colors. The last two arguments above request that all groups be shown in
default colors and with different symbols.

The carsmall data set contains other variables that describe different aspects of cars. You can
examine several of them in a single display by creating a grouped plot matrix.

xvars = [Weight Displacement Horsepower];
yvars = [MPG Acceleration];
gplotmatrix(xvars,yvars,Model_Year,'bgr','xos')
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The upper right subplot displays MPG against Horsepower, and shows that over the years the
horsepower of the cars has decreased but the gas mileage has improved.

The gplotmatrix function can also graph all pairs from a single list of variables, along with
histograms for each variable. See “MANOVA” on page 9-49.

See Also
gscatter | gplotmatrix | gname

More About
• “Grouping Variables” on page 2-46
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Compare Grouped Data Using Box Plots

This example shows how to compare two groups of data by creating a notched box plot. Notches
display the variability of the median between samples. The width of a notch is computed so that boxes
whose notches do not overlap have different medians at the 5% significance level. The significance
level is based on a normal distribution assumption, but comparisons of medians are reasonably robust
for other distributions. Comparing box plot medians is like a visual hypothesis test, analogous to the t
test used for means. For more information on the different features of a box plot, see “Box Plot” on
page 35-284.

Load the fisheriris data set. The data set contains length and width measurements from the
sepals and petals of three species of iris flowers. Store the sepal width data for the setosa irises as
s1, and the sepal width data for the versicolor irises as s2.

load fisheriris
s1 = meas(1:50,2);
s2 = meas(51:100,2);

Create a notched box plot using the sample data, and label each box with the name of the iris species
it represents.

boxplot([s1 s2],'Notch','on', ...
        'Labels',{'setosa','versicolor'})
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The notches of the two boxes do not overlap, which indicates that the median sepal widths of the
setosa and versicolor irises are significantly different at the 5% significance level. Neither the red
median line in the setosa box nor the red median line in the versicolor box appears to be centered
inside its box, which indicates that each sample is slightly skewed. Additionally, the setosa data
contains one outlier value, while the versicolor data does not contain any outliers.

Instead of using the boxplot function, you can use the boxchart MATLAB® function to create box
plots. Recreate the previous plot by using the boxchart function rather than boxplot.

speciesName = categorical(species(1:100));
sepalWidth = meas(1:100,2);
b = boxchart(speciesName,sepalWidth,'Notch','on');

Each notch created by boxchart is a tapered, shaded region around the median line. The shading
helps to better identify the notches.

One advantage of using boxchart is that the function creates a BoxChart object, whose properties
you can change easily by using dot notation. For example, you can alter the style of the whiskers by
specifying the WhiskerLineStyle property of the object b.

b.WhiskerLineStyle = '--';
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For more information on the advantages of using boxchart, see “Alternative Functionality” on page
35-286.

See Also
boxplot | iqr | median | boxchart

More About
• “Exploratory Analysis of Data” on page 3-6
• “Measures of Central Tendency” on page 3-2
• “Measures of Dispersion” on page 3-4
• “Distribution Plots” on page 4-7

4 Statistical Visualization

4-6



Distribution Plots
In this section...
“Normal Probability Plots” on page 4-7
“Probability Plots” on page 4-9
“Quantile-Quantile Plots” on page 4-11
“Cumulative Distribution Plots” on page 4-13

Distribution plots visually assess the distribution of sample data by comparing the empirical
distribution of the data with the theoretical values expected from a specified distribution. Use
distribution plots in addition to more formal hypothesis tests to determine whether the sample data
comes from a specified distribution. To learn about hypothesis tests, see “Hypothesis Testing” on
page 8-5.

Statistics and Machine Learning Toolbox offers several distribution plot options:

• “Normal Probability Plots” on page 4-7 — Use normplot to assess whether sample data comes
from a normal distribution. Use probplot to create “Probability Plots” on page 4-9 for
distributions other than normal, or to explore the distribution of censored data. Use plot to plot a
probability plot for a probability distribution object.

• “Quantile-Quantile Plots” on page 4-11 — Use qqplot to assess whether two sets of sample data
come from the same distribution family. This plot is robust with respect to differences in location
and scale.

• “Cumulative Distribution Plots” on page 4-13 — Use cdfplot or ecdf to display the empirical
cumulative distribution function (cdf) of the sample data for visual comparison to the theoretical
cdf of a specified distribution. Use plot to plot a cumulative distribution function for a probability
distribution object.

Normal Probability Plots

Use normal probability plots to assess whether data comes from a normal distribution. Many
statistical procedures make the assumption that an underlying distribution is normal. Normal
probability plots can provide some assurance to justify this assumption or provide a warning of
problems with the assumption. An analysis of normality typically combines normal probability plots
with hypothesis tests for normality.

This example generates a data sample of 25 random numbers from a normal distribution with mean
10 and standard deviation 1, and creates a normal probability plot of the data.

rng('default');  % For reproducibility
x = normrnd(10,1,[25,1]);
normplot(x)
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The plus signs plot the empirical probability versus the data value for each point in the data. A solid
line connects the 25th and 75th percentiles in the data, and a dashed line extends it to the ends of the
data. The y-axis values are probabilities from zero to one, but the scale is not linear. The distance
between tick marks on the y-axis matches the distance between the quantiles of a normal
distribution. The quantiles are close together near the median (50th percentile) and stretch out
symmetrically as you move away from the median.

In a normal probability plot, if all the data points fall near the line, an assumption of normality is
reasonable. Otherwise, an assumption of normality is not justified. For example, the following
generates a data sample of 100 random numbers from an exponential distribution with mean 10, and
creates a normal probability plot of the data.

x = exprnd(10,100,1);
normplot(x)
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The plot is strong evidence that the underlying distribution is not normal.

Probability Plots
A probability plot, like the normal probability plot, is just an empirical cdf plot scaled to a particular
distribution. The y-axis values are probabilities from zero to one, but the scale is not linear. The
distance between tick marks is the distance between quantiles of the distribution. In the plot, a line is
drawn between the first and third quartiles in the data. If the data falls near the line, it is reasonable
to choose the distribution as a model for the data. A distribution analysis typically combines
probability plots with hypothesis tests for a particular distribution.

Create Weibull Probability Plot

Generate sample data and create a probability plot.

Generate sample data. The sample x1 contains 500 random numbers from a Weibull distribution with
scale parameter A = 3 and shape parameter B = 3. The sample x2 contains 500 random numbers
from a Rayleigh distribution with scale parameter B = 3.

rng('default');  % For reproducibility
x1 = wblrnd(3,3,[500,1]);
x2 = raylrnd(3,[500,1]);

Create a probability plot to assess whether the data in x1 and x2 comes from a Weibull distribution.
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figure
probplot('weibull',[x1 x2])
legend('Weibull Sample','Rayleigh Sample','Location','best')

The probability plot shows that the data in x1 comes from a Weibull distribution, while the data in x2
does not.

Alternatively, you can use wblplot to create a Weibull probability plot.

Create Gamma Probability Plot

Generate random data from a gamma distribution with shape parameter 9 and scale parameter 2.

rng("default") %set the random seed for reproducibility
gammadata = gamrnd(9,2,100,1);

Fit gamma and logistic distributions to the data and store the results in GammaDistribution and
LogisticDistribution objects.

gammapd = fitdist(gammadata,"Gamma");
logisticpd = fitdist(gammadata,"Logistic");

Compare the distributions fit to the data with probability plots.

tiledlayout(1,2)
nexttile
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plot(logisticpd,'PlotType',"probability")
title("Logistic Distribution")
nexttile
plot(gammapd,'PlotType',"probability")
title("Gamma Distribution")

The probability plots show that the gamma distribution is the better fit to the data.

Quantile-Quantile Plots

Use quantile-quantile (q-q) plots to determine whether two samples come from the same distribution
family. Q-Q plots are scatter plots of quantiles computed from each sample, with a line drawn
between the first and third quartiles. If the data falls near the line, it is reasonable to assume that the
two samples come from the same distribution. The method is robust with respect to changes in the
location and scale of either distribution.

Create a quantile-quantile plot by using the qqplot function.

The following example generates two data samples containing random numbers from Poisson
distributions with different parameter values, and creates a quantile-quantile plot. The data in x is
from a Poisson distribution with mean 10, and the data in y is from a Poisson distribution with mean
5.
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x = poissrnd(10,[50,1]);
y = poissrnd(5,[100,1]);
qqplot(x,y)

Even though the parameters and sample sizes are different, the approximate linear relationship
suggests that the two samples may come from the same distribution family. As with normal
probability plots, hypothesis tests can provide additional justification for such an assumption. For
statistical procedures that depend on the two samples coming from the same distribution, however, a
linear quantile-quantile plot is often sufficient.

The following example shows what happens when the underlying distributions are not the same.
Here, x contains 100 random numbers generated from a normal distribution with mean 5 and
standard deviation 1, while y contains 100 random numbers generated from a Weibull distribution
with a scale parameter of 2 and a shape parameter of 0.5.

x = normrnd(5,1,[100,1]);
y = wblrnd(2,0.5,[100,1]);
qqplot(x,y)
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The plots indicate that these samples clearly are not from the same distribution family.

Cumulative Distribution Plots
An empirical cumulative distribution function (cdf) plot shows the proportion of data less than or
equal to each x value, as a function of x. The scale on the y-axis is linear; in particular, it is not scaled
to any particular distribution. Empirical cdf plots are used to compare data cdfs to cdfs for particular
distributions.

To create an empirical cdf plot, use the cdfplot function or the ecdf function.

Compare Empirical cdf to Theoretical cdf

Plot the empirical cdf of a sample data set and compare it to the theoretical cdf of the underlying
distribution of the sample data set. In practice, a theoretical cdf can be unknown.

Generate a random sample data set from the extreme value distribution with a location parameter of
0 and a scale parameter of 3.

rng('default')  % For reproducibility
y = evrnd(0,3,100,1);

Plot the empirical cdf of the sample data set and the theoretical cdf on the same figure.

 Distribution Plots

4-13



cdfplot(y)
hold on
x = linspace(min(y),max(y));
plot(x,evcdf(x,0,3))
legend('Empirical CDF','Theoretical CDF','Location','best')
hold off

The plot shows the similarity between the empirical cdf and the theoretical cdf.

Alternatively, you can use the ecdf function. The ecdf function also plots the 95% confidence
intervals estimated by using Greenwood's Formula. For details, see “Algorithms” on page 35-1512.

ecdf(y,'Bounds','on')
hold on
plot(x,evcdf(x,0,3))
grid on
title('Empirical CDF')
legend('Empirical CDF','Lower Confidence Bound','Upper Confidence Bound','Theoretical CDF','Location','best')
hold off
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Plot Binomial Distribution cdf

Create a binomial distribution with 10 trials and a 0.5 probability of success for each trial.

binomialpd = makedist("Binomial",10,0.5)

binomialpd = 
  BinomialDistribution

  Binomial distribution
    N =  10
    p = 0.5

Plot a cdf for the binomial distribution

plot(binomialpd,'PlotType',"cdf")
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See Also
normplot | qqplot | cdfplot | ecdf | probplot | wblplot

More About
• “Compare Grouped Data Using Box Plots” on page 4-4
• “Hypothesis Testing” on page 8-5
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Visualizing Multivariate Data

This example shows how to visualize multivariate data using various statistical plots. Many statistical
analyses involve only two variables: a predictor variable and a response variable. Such data are easy
to visualize using 2D scatter plots, bivariate histograms, boxplots, etc. It's also possible to visualize
trivariate data with 3D scatter plots, or 2D scatter plots with a third variable encoded with, for
example color. However, many datasets involve a larger number of variables, making direct
visualization more difficult. This example explores some of the ways to visualize high-dimensional
data in MATLAB®, using Statistics and Machine Learning Toolbox™.

In this example, we'll use the carbig dataset, a dataset that contains various measured variables for
about 400 automobiles from the 1970's and 1980's. We'll illustrate multivariate visualization using the
values for fuel efficiency (in miles per gallon, MPG), acceleration (time from 0-60MPH in sec), engine
displacement (in cubic inches), weight, and horsepower. We'll use the number of cylinders to group
observations.

load carbig
X = [MPG,Acceleration,Displacement,Weight,Horsepower];
varNames = {'MPG'; 'Acceleration'; 'Displacement'; 'Weight'; 'Horsepower'};

Scatter Plot Matrices

Viewing slices through lower dimensional subspaces is one way to partially work around the
limitation of two or three dimensions. For example, we can use the gplotmatrix function to display
an array of all the bivariate scatter plots between our five variables, along with a univariate
histogram for each variable.

figure
gplotmatrix(X,[],Cylinders,['c' 'b' 'm' 'g' 'r'],[],[],false);
text([.08 .24 .43 .66 .83], repmat(-.1,1,5), varNames, 'FontSize',8);
text(repmat(-.12,1,5), [.86 .62 .41 .25 .02], varNames, 'FontSize',8, 'Rotation',90);
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The points in each scatter plot are color-coded by the number of cylinders: blue for 4 cylinders, green
for 6, and red for 8. There is also a handful of 5 cylinder cars, and rotary-engined cars are listed as
having 3 cylinders. This array of plots makes it easy to pick out patterns in the relationships between
pairs of variables. However, there may be important patterns in higher dimensions, and those are not
easy to recognize in this plot.

Parallel Coordinates Plots

The scatter plot matrix only displays bivariate relationships. However, there are other alternatives
that display all the variables together, allowing you to investigate higher-dimensional relationships
among variables. The most straight-forward multivariate plot is the parallel coordinates plot. In this
plot, the coordinate axes are all laid out horizontally, instead of using orthogonal axes as in the usual
Cartesian graph. Each observation is represented in the plot as a series of connected line segments.
For example, we can make a plot of all the cars with 4, 6, or 8 cylinders, and color observations by
group.

Cyl468 = ismember(Cylinders,[4 6 8]);
parallelcoords(X(Cyl468,:), 'group',Cylinders(Cyl468), ...
               'standardize','on', 'labels',varNames)
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The horizontal direction in this plot represents the coordinate axes, and the vertical direction
represents the data. Each observation consists of measurements on five variables, and each
measurement is represented as the height at which the corresponding line crosses each coordinate
axis. Because the five variables have widely different ranges, this plot was made with standardized
values, where each variable has been standardized to have zero mean and unit variance. With the
color coding, the graph shows, for example, that 8 cylinder cars typically have low values for MPG
and acceleration, and high values for displacement, weight, and horsepower.

Even with color coding by group, a parallel coordinates plot with a large number of observations can
be difficult to read. We can also make a parallel coordinates plot where only the median and quartiles
(25% and 75% points) for each group are shown. This makes the typical differences and similarities
among groups easier to distinguish. On the other hand, it may be the outliers for each group that are
most interesting, and this plot does not show them at all.

parallelcoords(X(Cyl468,:), 'group',Cylinders(Cyl468), ...
               'standardize','on', 'labels',varNames, 'quantile',.25)
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Andrews Plots

Another similar type of multivariate visualization is the Andrews plot. This plot represents each
observation as a smooth function over the interval [0,1].

andrewsplot(X(Cyl468,:), 'group',Cylinders(Cyl468), 'standardize','on')
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Each function is a Fourier series, with coefficients equal to the corresponding observation's values. In
this example, the series has five terms: a constant, two sine terms with periods 1 and 1/2, and two
similar cosine terms. Effects on the functions' shapes due to the three leading terms are the most
apparent in an Andrews plot, so patterns in the first three variables tend to be the ones most easily
recognized.

There's a distinct difference between groups at t = 0, indicating that the first variable, MPG, is one of
the distinguishing features between 4, 6, and 8 cylinder cars. More interesting is the difference
between the three groups at around t = 1/3. Plugging this value into the formula for the Andrews plot
functions, we get a set of coefficients that define a linear combination of the variables that
distinguishes between groups.

t1 = 1/3;
[1/sqrt(2) sin(2*pi*t1) cos(2*pi*t1) sin(4*pi*t1) cos(4*pi*t1)]

ans =

    0.7071    0.8660   -0.5000   -0.8660   -0.5000

From these coefficients, we can see that one way to distinguish 4 cylinder cars from 8 cylinder cars is
that the former have higher values of MPG and acceleration, and lower values of displacement,
horsepower, and particularly weight, while the latter have the opposite. That's the same conclusion
we drew from the parallel coordinates plot.
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Glyph Plots

Another way to visualize multivariate data is to use "glyphs" to represent the dimensions. The
function glyphplot supports two types of glyphs: stars, and Chernoff faces. For example, here is a
star plot of the first 9 models in the car data. Each spoke in a star represents one variable, and the
spoke length is proportional to the value of that variable for that observation.

h = glyphplot(X(1:9,:), 'glyph','star', 'varLabels',varNames, 'obslabels',Model(1:9,:));
set(h(:,3),'FontSize',8);

In a live MATLAB figure window, this plot would allow interactive exploration of the data values,
using data cursors. For example, clicking on the right-hand point of the star for the Ford Torino would
show that it has an MPG value of 17.

Glyph Plots and Multidimensional Scaling

Plotting stars on a grid, with no particular order, can lead to a figure that is confusing, because
adjacent stars can end up quite different-looking. Thus, there may be no smooth pattern for the eye to
catch. It's often useful to combine multidimensional scaling (MDS) with a glyph plot. To illustrate,
we'll first select all cars from 1977, and use the zscore function to standardize each of the five
variables to have zero mean and unit variance. Then we'll compute the Euclidean distances among
those standardized observations as a measure of dissimilarity. This choice might be too simplistic in a
real application, but serves here for purposes of illustration.

models77 = find((Model_Year==77));
dissimilarity = pdist(zscore(X(models77,:)));
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Finally, we use mdscale to create a set of locations in two dimensions whose interpoint distances
approximate the dissimilarities among the original high-dimensional data, and plot the glyphs using
those locations. The distances in this 2D plot may only roughly reproduce the data, but for this type of
plot, that's good enough.

Y = mdscale(dissimilarity,2);
glyphplot(X(models77,:), 'glyph','star', 'centers',Y, ...
          'varLabels',varNames, 'obslabels',Model(models77,:), 'radius',.5);
title('1977 Model Year');

In this plot, we've used MDS as dimension reduction method, to create a 2D plot. Normally that
would mean a loss of information, but by plotting the glyphs, we have incorporated all of the high-
dimensional information in the data. The purpose of using MDS is to impose some regularity to the
variation in the data, so that patterns among the glyphs are easier to see.

Just as with the previous plot, interactive exploration would be possible in a live figure window.

Another type of glyph is the Chernoff face. This glyph encodes the data values for each observation
into facial features, such as the size of the face, the shape of the face, position of the eyes, etc.

glyphplot(X(models77,:), 'glyph','face', 'centers',Y, ...
          'varLabels',varNames, 'obslabels',Model(models77,:));
title('1977 Model Year');
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Here, the two most apparent features, face size and relative forehead/jaw size, encode MPG and
acceleration, while the forehead and jaw shape encode displacement and weight. Width between eyes
encodes horsepower. It's notable that there are few faces with wide foreheads and narrow jaws, or
vice-versa, indicating positive linear correlation between the variables displacement and weight.
That's also what we saw in the scatter plot matrix.

The correspondence of features to variables determines what relationships are easiest to see, and
glyphplot allows the choice to be changed easily.

close
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Probability Distributions

• “Working with Probability Distributions” on page 5-3
• “Supported Distributions” on page 5-16
• “Maximum Likelihood Estimation” on page 5-23
• “Negative Loglikelihood Functions” on page 5-25
• “Random Number Generation” on page 5-28
• “Nonparametric and Empirical Probability Distributions” on page 5-31
• “Fit Kernel Distribution Object to Data” on page 5-37
• “Fit Kernel Distribution Using ksdensity” on page 5-40
• “Fit Distributions to Grouped Data Using ksdensity” on page 5-42
• “Fit a Nonparametric Distribution with Pareto Tails” on page 5-44
• “Generate Random Numbers Using the Triangular Distribution” on page 5-48
• “Model Data Using the Distribution Fitter App” on page 5-52
• “Fit a Distribution Using the Distribution Fitter App” on page 5-72
• “Define Custom Distributions Using the Distribution Fitter App” on page 5-82
• “Explore the Random Number Generation UI” on page 5-86
• “Compare Multiple Distribution Fits” on page 5-88
• “Fit Probability Distribution Objects to Grouped Data” on page 5-93
• “Three-Parameter Weibull Distribution” on page 5-96
• “Multinomial Probability Distribution Objects” on page 5-103
• “Multinomial Probability Distribution Functions” on page 5-106
• “Generate Random Numbers Using Uniform Distribution Inversion” on page 5-109
• “Represent Cauchy Distribution Using t Location-Scale” on page 5-112
• “Generate Cauchy Random Numbers Using Student's t” on page 5-115
• “Generate Correlated Data Using Rank Correlation” on page 5-116
• “Create Gaussian Mixture Model” on page 5-120
• “Fit Gaussian Mixture Model to Data” on page 5-123
• “Simulate Data from Gaussian Mixture Model” on page 5-127
• “Copulas: Generate Correlated Samples” on page 5-129
• “Simulating Dependent Random Variables Using Copulas” on page 5-155
• “Fit Custom Distributions” on page 5-173
• “Avoid Numerical Issues When Fitting Custom Distributions” on page 5-186
• “Nonparametric Estimates of Cumulative Distribution Functions and Their Inverses”

on page 5-192
• “Modelling Tail Data with the Generalized Pareto Distribution” on page 5-207
• “Modelling Data with the Generalized Extreme Value Distribution” on page 5-215
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• “Curve Fitting and Distribution Fitting” on page 5-226
• “Fitting a Univariate Distribution Using Cumulative Probabilities” on page 5-234

5 Probability Distributions

5-2



Working with Probability Distributions
In this section...
“Probability Distribution Objects” on page 5-3
“Apps and Interactive User Interfaces” on page 5-6
“Distribution-Specific Functions and Generic Distribution Functions” on page 5-10

Probability distributions are theoretical distributions based on assumptions about a source
population. The distributions assign probability to the event that a random variable has a specific,
discrete value, or falls within a specified range of continuous values.

Statistics and Machine Learning Toolbox offers several ways to work with probability distributions.

• “Probability Distribution Objects” on page 5-3 — Create a probability distribution object by
fitting a probability distribution to sample data or by specifying parameter values. Then, use
object functions to evaluate the distribution, generate random numbers, and so on.

• “Apps and Interactive User Interfaces” on page 5-6 — Interactively fit and explore probability
distributions by using the Distribution Fitter app, Probability Distribution Function user
interface, and random number generation tool (randtool)

• “Distribution-Specific Functions and Generic Distribution Functions” on page 5-10 — These
functions are useful for generating random numbers, computing summary statistics inside a loop
or script, and passing a cdf or pdf as a function handle to another function. You can also use these
functions to perform computations on arrays of parameter values rather than a single set of
parameters.

• Use distribution-specific functions, such as normpdf and normcdf, with specified distribution
parameters.

• Use generic distribution functions (cdf, icdf, pdf, and random) with a specified distribution
name and parameters.

For a list of distributions supported by Statistics and Machine Learning Toolbox, see “Supported
Distributions” on page 5-16.

Probability Distribution Objects
Probability distribution objects allow you to fit a probability distribution to sample data, or define a
distribution by specifying parameter values. You can then perform a variety of analyses on the
distribution object.

Create Probability Distribution Objects

Estimate probability distribution parameters from sample data by fitting a probability distribution
object to the data using fitdist. You can fit a single specified parametric or nonparametric
distribution to the sample data. You can also fit multiple distributions of the same type to the sample
data based on grouping variables. For most distributions, fitdist uses maximum likelihood
estimation (MLE) to estimate the distribution parameters from the sample data. For more information
and additional syntax options, see fitdist.

Alternatively, you can create a probability distribution object with specified parameter values using
makedist.
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Work with Probability Distribution Objects

Once you create a probability distribution object, you can use object functions to:

• Compute confidence intervals for the distribution parameters (paramci).
• Compute summary statistics, including mean (mean), median (median), interquartile range (iqr),

variance (var), and standard deviation (std).
• Evaluate the probability density function (pdf).
• Evaluate the cumulative distribution function (cdf) or the inverse cumulative distribution function

(icdf).
• Compute the negative loglikelihood (negloglik) and profile likelihood function (proflik) for the

distribution.
• Generate random numbers from the distribution (random).
• Truncate the distribution to specified lower and upper limits (truncate).
• Plot the probability density function, cumulative distribution, or probability plot (plot)

Save a Probability Distribution Object

To save your probability distribution object to a .MAT file:

• In the toolbar, click Save Workspace. This option saves all of the variables in your workspace,
including any probability distribution objects.

• In the workspace browser, right-click the probability distribution object and select Save as. This
option saves only the selected probability distribution object, not the other variables in your
workspace.

Alternatively, you can save a probability distribution object directly from the command line by using
the save function. save enables you to choose a file name and specify the probability distribution
object you want to save. If you do not specify an object (or other variable), MATLAB saves all of the
variables in your workspace, including any probability distribution objects, to the specified file name.
For more information and additional syntax options, see save.

Analyze Distribution Using Probability Distribution Objects

This example shows how to use probability distribution objects to perform a multistep analysis on a
fitted distribution.

The analysis illustrates how to:

• Fit a probability distribution to sample data that contains exam grades of 120 students by using
fitdist.

• Compute the mean of the exam grades by using mean.
• Plot a histogram of the exam grade data, overlaid with a plot of the pdf of the fitted distribution,

by using plot and pdf.
• Compute the boundary for the top 10 percent of student grades by using icdf.
• Save the fitted probability distribution object by using save.

Load the sample data.

load examgrades
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The sample data contains a 120-by-5 matrix of exam grades. The exams are scored on a scale of 0 to
100.

Create a vector containing the first column of exam grade data.

x = grades(:,1);

Fit a normal distribution to the sample data by using fitdist to create a probability distribution
object.

pd = fitdist(x,'Normal')

pd = 
  NormalDistribution

  Normal distribution
       mu = 75.0083   [73.4321, 76.5846]
    sigma =  8.7202   [7.7391, 9.98843]

fitdist returns a probability distribution object, pd, of the type NormalDistribution. This object
contains the estimated parameter values, mu and sigma, for the fitted normal distribution. The
intervals next to the parameter estimates are the 95% confidence intervals for the distribution
parameters.

Compute the mean of the students' exam grades using the fitted distribution object, pd.

m = mean(pd)

m = 75.0083

The mean of the exam grades is equal to the mu parameter estimated by fitdist.

Plot a histogram of the exam grades. Overlay a plot of the fitted pdf to visually compare the fitted
normal distribution with the actual exam grades.

x_pdf = [1:0.1:100];
y = pdf(pd,x_pdf);
 
figure
histogram(x,'Normalization','pdf')
line(x_pdf,y)
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The pdf of the fitted distribution follows the same shape as the histogram of the exam grades.

Determine the boundary for the upper 10 percent of student exam grades by using the inverse
cumulative distribution function (icdf). This boundary is equivalent to the value at which the cdf of
the probability distribution is equal to 0.9. In other words, 90 percent of the exam grades are less
than or equal to the boundary value.

A = icdf(pd,0.9)

A = 86.1837

Based on the fitted distribution, 10 percent of students received an exam grade greater than 86.1837.
Equivalently, 90 percent of students received an exam grade less than or equal to 86.1837.

Save the fitted probability distribution, pd, as a file named myobject.mat.

save('myobject.mat','pd')

Apps and Interactive User Interfaces
Apps and user interfaces provide an interactive approach to working with parametric and
nonparametric probability distributions.

• Use the Distribution Fitter app to interactively fit a distribution to sample data, and export a
probability distribution object to the workspace.
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• Use the Probability Distribution Function user interface to visually explore the effect on the
pdf and cdf of changing the distribution parameter values.

• Use the Random Number Generation user interface (randtool) to interactively generate random
numbers from a probability distribution with specified parameter values and export them to the
workspace.

Distribution Fitter App

The Distribution Fitter app allows you to interactively fit a probability distribution to your data. You
can display different types of plots, compute confidence bounds, and evaluate the fit of the data. You
can also exclude data from the fit. You can save the data, and export the fit to your workspace as a
probability distribution object to perform further analysis.

Load the Distribution Fitter app from the Apps tab, or by entering distributionFitter in the
command window. For more information, see “Model Data Using the Distribution Fitter App” on page
5-52.
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Probability Distribution Function Tool

The Probability Distribution Function user interface visually explores probability distributions.
You can load the Probability Distribution Function user interface by entering disttool in the
command window.
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Random Number Generation Tool

The Random Number Generation user interface generates random data from a specified distribution
and exports the results to your workspace. You can use this tool to explore the effects of changing
parameters and sample size on the distributions.

The Random Number Generation user interface allows you to set parameter values for the
distribution and change their lower and upper bounds; draw another sample from the same
distribution, using the same size and parameters; and export the current random sample to your
workspace for use in further analysis. A dialog box enables you to provide a name for the sample.
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Distribution-Specific Functions and Generic Distribution Functions
Using distribution-specific functions and generic distribution functions is useful for generating
random numbers, computing summary statistics inside a loop or script, and passing a cdf or pdf as a
function handle to another function. You can also use these functions to perform computations on
arrays of parameter values rather than a single set of parameters.
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• Distribution-specific functions — Some of the supported distributions have distribution-specific
functions. These functions use the following abbreviations, as in normpdf, normcdf, norminv,
normstat, normfit, normlike, and normrnd:

• pdf — Probability density functions
• cdf — Cumulative distribution functions
• inv — Inverse cumulative distribution functions
• stat — Distribution statistics functions
• fit — Distribution Fitter functions
• like — Negative loglikelihood functions
• rnd — Random number generators

• Generic distribution functions — Use cdf, icdf, mle, pdf, and random with a specified
distribution name and parameters.

• cdf — Cumulative distribution function
• icdf — Inverse cumulative distribution function
• mle — Distribution fitting function
• pdf — Probability density function
• random — Random number generating function

Analyze Distribution Using Distribution-Specific Functions

This example shows how to use distribution-specific functions to perform a multistep analysis on a
fitted distribution.

The analysis illustrates how to:

• Fit a probability distribution to sample data that contains exam grades of 120 students by using
normfit.

• Plot a histogram of the exam grade data, overlaid with a plot of the pdf of the fitted distribution,
by using plot and normpdf.

• Compute the boundary for the top 10 percent of student grades by using norminv.
• Save the estimated distribution parameters by using save.

You can perform the same analysis using a probability distribution object. See “Analyze Distribution
Using Probability Distribution Objects” on page 5-4.

Load the sample data.

load examgrades

The sample data contains a 120-by-5 matrix of exam grades. The exams are scored on a scale of 0 to
100.

Create a vector containing the first column of exam grade data.

x = grades(:,1);

Fit a normal distribution to the sample data by using normfit.
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[mu,sigma,muCI,sigmaCI] = normfit(x)

mu = 75.0083

sigma = 8.7202

muCI = 2×1

   73.4321
   76.5846

sigmaCI = 2×1

    7.7391
    9.9884

The normfit function returns the estimates of normal distribution parameters and the 95%
confidence intervals for the parameter estimates.

Plot a histogram of the exam grades. Overlay a plot of the fitted pdf to visually compare the fitted
normal distribution with the actual exam grades.

x_pdf = [1:0.1:100];
y = normpdf(x_pdf,mu,sigma);
 
figure
histogram(x,'Normalization','pdf')
line(x_pdf,y)
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The pdf of the fitted distribution follows the same shape as the histogram of the exam grades.

Determine the boundary for the upper 10 percent of student exam grades by using the normal inverse
cumulative distribution function. This boundary is equivalent to the value at which the cdf of the
probability distribution is equal to 0.9. In other words, 90 percent of the exam grades are less than or
equal to the boundary value.

A = norminv(0.9,mu,sigma)

A = 86.1837

Based on the fitted distribution, 10 percent of students received an exam grade greater than 86.1837.
Equivalently, 90 percent of students received an exam grade less than or equal to 86.1837.

Save the estimated distribution parameters as a file named myparameter.mat.

save('myparameter.mat','mu','sigma')

Use Probability Distribution Functions as Function Handle

This example shows how to use the probability distribution function normcdf as a function handle in
the chi-square goodness of fit test (chi2gof).

This example tests the null hypothesis that the sample data contained in the input vector, x, comes
from a normal distribution with parameters µ and σ equal to the mean (mean) and standard deviation
(std) of the sample data, respectively.
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rng('default') % For reproducibility
x = normrnd(50,5,100,1);
h = chi2gof(x,'cdf',{@normcdf,mean(x),std(x)})

h = 0

The returned result h = 0 indicates that chi2gof does not reject the null hypothesis at the default
5% significance level.

This next example illustrates how to use probability distribution functions as a function handle in the
slice sampler (slicesample). The example uses normpdf to generate a random sample of 2,000
values from a standard normal distribution, and plots a histogram of the resulting values.

rng('default') % For reproducibility
x = slicesample(1,2000,'pdf',@normpdf,'thin',5,'burnin',1000);
histogram(x)

The histogram shows that, when using normpdf, the resulting random sample has a standard normal
distribution.

If you pass the probability distribution function for the exponential distribution pdf (exppdf) as a
function handle instead of normpdf, then slicesample generates the 2,000 random samples from
an exponential distribution with a default parameter value of µ equal to 1.

rng('default') % For reproducibility
x = slicesample(1,2000,'pdf',@exppdf,'thin',5,'burnin',1000);
histogram(x)
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The histogram shows that the resulting random sample when using exppdf has an exponential
distribution.

See Also
fitdist | makedist | randtool | Distribution Fitter | Probability Distribution Function

More About
• “Multinomial Probability Distribution Objects” on page 5-103
• “Multinomial Probability Distribution Functions” on page 5-106
• “Fit Kernel Distribution Object to Data” on page 5-37
• “Generate Random Numbers Using the Triangular Distribution” on page 5-48
• “Supported Distributions” on page 5-16
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Supported Distributions
In this section...
“Continuous Distributions (Data)” on page 5-16
“Continuous Distributions (Statistics)” on page 5-19
“Discrete Distributions” on page 5-20
“Multivariate Distributions” on page 5-21
“Nonparametric Distributions” on page 5-22
“Flexible Distribution Families” on page 5-22

Statistics and Machine Learning Toolbox supports various probability distributions, including
parametric, nonparametric, continuous, and discrete distributions. The following tables list the
supported probability distributions and supported ways to work with each distribution. For more
information, see “Working with Probability Distributions” on page 5-3.

For a custom probability distribution, use a custom distribution template to create a probability
object and then use the Distribution Fitter app or probability object functions. For details, see “Define
Custom Distributions Using the Distribution Fitter App” on page 5-82. You can also define a custom
distribution using a function handle and use the mle function to find maximum likelihood estimates.
For an example, see “Fit Custom Distributions” on page 5-173.

Continuous Distributions (Data)
Distribution Distribution

Object
Apps and
Interactive UIs

Distribution-
Specific
Functions

Generic
Functions

Beta on page B-
6

BetaDistributi
on

Distribution
Fitter
Probability
Distribution
Function
randtool

betapdf
betacdf
betainv
betastat
betafit
betalike
betarnd

pdf
cdf
icdf
random
mle

Birnbaum-
Saunders on page
B-18

BirnbaumSaunde
rsDistribution

Distribution
Fitter

— pdf
cdf
icdf
random
mle

Burr Type XII on
page B-19

BurrDistributi
on

Distribution
Fitter
Probability
Distribution
Function
randtool

— pdf
cdf
icdf
random
mle
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Distribution Distribution
Object

Apps and
Interactive UIs

Distribution-
Specific
Functions

Generic
Functions

Exponential on
page B-34

ExponentialDis
tribution

Distribution
Fitter
Probability
Distribution
Function
randtool

exppdf
expcdf
expinv
expstat
expfit
explike
exprnd

pdf
cdf
icdf
random
mle

Extreme value on
page B-41

ExtremeValueDi
stribution

Distribution
Fitter
Probability
Distribution
Function
randtool

evpdf
evcdf
evinv
evstat
evfit
evlike
evrnd

pdf
cdf
icdf
random
mle

Gamma on page B-
48

GammaDistribut
ion

Distribution
Fitter
Probability
Distribution
Function
randtool

gampdf
gamcdf
gaminv
gamstat
gamfit
gamlike
gamrnd
randg

pdf
cdf
icdf
random
mle

Generalized
extreme value on
page B-56

GeneralizedExt
remeValueDistr
ibution

Distribution
Fitter
Probability
Distribution
Function
randtool

gevpdf
gevcdf
gevinv
gevstat
gevfit
gevlike
gevrnd

pdf
cdf
icdf
random
mle

Generalized Pareto
on page B-60

GeneralizedPar
etoDistributio
n

Distribution
Fitter
Probability
Distribution
Function
randtool

gppdf
gpcdf
gpinv
gpstat
gpfit
gplike
gprnd

pdf
cdf
icdf
random
mle

Half-Normal on
page B-69

HalfNormalDist
ribution

Distribution
Fitter
Probability
Distribution
Function
randtool

— pdf
cdf
icdf
random
mle
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Distribution Distribution
Object

Apps and
Interactive UIs

Distribution-
Specific
Functions

Generic
Functions

Inverse Gaussian
on page B-76

InverseGaussia
nDistribution

Distribution
Fitter

— pdf
cdf
icdf
random
mle

Logistic on page B-
86

LogisticDistri
bution

Distribution
Fitter

— pdf
cdf
icdf
random
mle

Loglogistic on
page B-87

LoglogisticDis
tribution

Distribution
Fitter

— pdf
cdf
icdf
random
mle

Lognormal on page
B-89

LognormalDistr
ibution

Distribution
Fitter
Probability
Distribution
Function
randtool

lognpdf
logncdf
logninv
lognstat
lognfit
lognlike
lognrnd

pdf
cdf
icdf
random
mle

Loguniform on
page B-97

LoguniformDist
ribution

— — pdf
cdf
icdf
random

Nakagami on page
B-114

NakagamiDistri
bution

Distribution
Fitter

— pdf
cdf
icdf
random
mle

Normal (Gaussian)
on page B-125

NormalDistribu
tion

Distribution
Fitter
Probability
Distribution
Function
randtool

normpdf
normcdf
norminv
normstat
normfit
normlike
normrnd

pdf
cdf
icdf
random
mle

Piecewise linear on
page B-136

PiecewiseLinea
rDistribution

— — —
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Distribution Distribution
Object

Apps and
Interactive UIs

Distribution-
Specific
Functions

Generic
Functions

Rayleigh on page
B-143

RayleighDistri
bution

Distribution
Fitter
Probability
Distribution
Function
randtool

raylpdf
raylcdf
raylinv
raylstat
raylfit
raylrnd

pdf
cdf
icdf
random
mle

Rician on page B-
145

RicianDistribu
tion

Distribution
Fitter

— pdf
cdf
icdf
random
mle

Stable on page B-
147

StableDistribu
tion

Distribution
Fitter

— pdf
cdf
icdf
random
mle

Triangular on page
B-165

TriangularDist
ribution

— — —

Uniform
(continuous) on
page B-170

UniformDistrib
ution

Probability
Distribution
Function
randtool

unifpdf
unifcdf
unifinv
unifstat
unifit
unifrnd

pdf
cdf
icdf
random
mle

Weibull on page B-
177

WeibullDistrib
ution

Distribution
Fitter
Probability
Distribution
Function
randtool

wblpdf
wblcdf
wblinv
wblstat
wblfit
wbllike
wblrnd

pdf
cdf
icdf
random
mle

Continuous Distributions (Statistics)
Distribution Distribution Object Apps and

Interactive UIs
Distribution-
Specific Functions

Generic Functions

Chi-square on page
B-29

— Probability
Distribution
Function
randtool

chi2pdf
chi2cdf
chi2inv
chi2stat
chi2rnd

pdf
cdf
icdf
random
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Distribution Distribution Object Apps and
Interactive UIs

Distribution-
Specific Functions

Generic Functions

F on page B-46 — Probability
Distribution
Function
randtool

fpdf
fcdf
finv
fstat
frnd

pdf
cdf
icdf
random

Noncentral chi-
square on page B-
119

— Probability
Distribution
Function
randtool

ncx2pdf
ncx2cdf
ncx2inv
ncx2stat
ncx2rnd

pdf
cdf
icdf
random

Noncentral F on
page B-121

— Probability
Distribution
Function
randtool

ncfpdf
ncfcdf
ncfinv
ncfstat
ncfrnd

pdf
cdf
icdf
random

Noncentral t on page
B-123

— Probability
Distribution
Function
randtool

nctpdf
nctcdf
nctinv
nctstat
nctrnd

pdf
cdf
icdf
random

Student's t on page
B-156

— Probability
Distribution
Function
randtool

tpdf
tcdf
tinv
tstat
trnd

pdf
cdf
icdf
random

t location-scale on
page B-163

tLocationScaleDi
stribution

Distribution Fitter — pdf
cdf
icdf
random
mle

Discrete Distributions
Distribution Distribution

Objects
Apps and
Interactive UIs

Distribution-
Specific Functions

Generic Functions

Binomial on page B-
10

BinomialDistribu
tion

Distribution Fitter
Probability
Distribution
Function
randtool

binopdf
binocdf
binoinv
binostat
binofit
binornd

pdf
cdf
icdf
random
mle

Bernoulli on page B-
2

— — — mle
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Distribution Distribution
Objects

Apps and
Interactive UIs

Distribution-
Specific Functions

Generic Functions

Geometric on page
B-64

— Probability
Distribution
Function
randtool

geopdf
geocdf
geoinv
geostat
mle
geornd

pdf
cdf
icdf
random
mle

Hypergeometric on
page B-74

— Probability
Distribution
Function
randtool

hygepdf
hygecdf
hygeinv
hygestat
hygernd

pdf
cdf
icdf
random
mle

Multinomial on page
B-102

MultinomialDistr
ibution

— mnpdf
mnrnd

—

Negative binomial on
page B-115

NegativeBinomial
Distribution

Distribution Fitter
Probability
Distribution
Function
randtool

nbinpdf
nbincdf
nbininv
nbinstat
nbinfit
nbinrnd

pdf
cdf
icdf
random
mle

Poisson on page B-
137

PoissonDistribut
ion

Distribution Fitter
Probability
Distribution
Function
randtool

poisspdf
poisscdf
poissinv
poisstat
poissfit
poissrnd

pdf
cdf
icdf
random
mle

Uniform (discrete) on
page B-175

— Probability
Distribution
Function
randtool

unidpdf
unidcdf
unidinv
unidstat
unidrnd

pdf
cdf
icdf
random
mle

Multivariate Distributions
Distribution Distribution Object Distribution-Specific Functions
Copula on page 5-129 (Gaussian
copula, t copula, Clayton copula,
Frank copula, Gumbel copula)

— copulapdf
copulacdf
copulaparam
copulastat
copulafit
copularnd

Gaussian Mixture gmdistribution fitgmdist
pdf
cdf
random

Inverse Wishart on page B-77 — iwishrnd
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Distribution Distribution Object Distribution-Specific Functions
Multivariate normal on page B-104 — mvnpdf

mvncdf
mvnrnd

Multivariate t on page B-110 — mvtpdf
mvtcdf
mvtrnd

Wishart on page B-184 — wishrnd

Nonparametric Distributions
Distribution Distribution Objects Apps and Interactive

UIs
Distribution-Specific
Functions

Kernel on page B-79 KernelDistribution Distribution Fitter ksdensity
Pareto tails paretotails — —

Flexible Distribution Families
Distribution Distribution-Specific Functions
Pearson system on page 7-20 pearsrnd
Johnson system on page 7-20 johnsrnd

See Also

More About
• “Working with Probability Distributions” on page 5-3
• “Nonparametric and Empirical Probability Distributions” on page 5-31
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Maximum Likelihood Estimation

The mle function computes maximum likelihood estimates (MLEs) for a distribution specified by its
name and for a custom distribution specified by its probability density function (pdf), log pdf, or
negative log likelihood function.

For some distributions, MLEs can be given in closed form and computed directly. For other
distributions, a search for the maximum likelihood must be employed. The search can be controlled
with an options input argument, created using the statset function. For efficient searches, it is
important to choose a reasonable distribution model and set appropriate convergence tolerances.

MLEs can be biased, especially for small samples. As sample size increases, however, MLEs become
unbiased minimum variance estimators with approximate normal distributions. This is used to
compute confidence bounds for the estimates.

For example, consider the following distribution of means from repeated random samples of an
exponential distribution:

mu = 1; % Population parameter
n = 1e3; % Sample size
ns = 1e4; % Number of samples

rng('default')  % For reproducibility
samples = exprnd(mu,n,ns); % Population samples
means = mean(samples); % Sample means

The Central Limit Theorem says that the means will be approximately normally distributed,
regardless of the distribution of the data in the samples. The mle function can be used to find the
normal distribution that best fits the means:

[phat,pci] = mle(means)

phat = 1×2

    1.0000    0.0315

pci = 2×2

    0.9994    0.0311
    1.0006    0.0319

phat(1) and phat(2) are the MLEs for the mean and standard deviation. pci(:,1) and pci(:,1)
are the corresponding 95% confidence intervals.

Visualize the distribution of sample means together with the fitted normal distribution.

numbins = 50;
histogram(means,numbins,'Normalization','pdf')
hold on
x = min(means):0.001:max(means);
y = normpdf(x,phat(1),phat(2));
plot(x,y,'r','LineWidth',2)

 Maximum Likelihood Estimation

5-23



See Also
mle | histogram

Related Examples
• “Fit Custom Distributions” on page 5-173
• “Avoid Numerical Issues When Fitting Custom Distributions” on page 5-186

More About
• “Working with Probability Distributions” on page 5-3
• “Supported Distributions” on page 5-16
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Negative Loglikelihood Functions
Negative loglikelihood functions for supported Statistics and Machine Learning Toolbox distributions
all end with like, as in explike. Each function represents a parametric family of distributions.
Input arguments are lists of parameter values specifying a particular member of the distribution
family followed by an array of data. Functions return the negative loglikelihood of the parameters,
given the data.

To find maximum likelihood estimates (MLEs), you can use a negative loglikelihood function as an
objective function of the optimization problem and solve it by using the MATLAB function
fminsearch or functions in Optimization Toolbox™ and Global Optimization Toolbox. These functions
allow you to choose a search algorithm and exercise low-level control over algorithm execution. By
contrast, the mle function and the distribution fitting functions that end with fit, such as normfit
and gamfit, use preset algorithms with options limited to those set by the statset function.

You can specify a parametric family of distributions by using the probability density function (pdf) f(x|
θ), where x represents an outcome of a random variable and θ represents the distribution
parameters. When you view f(x|θ) as a function of θ for a fixed x, the function f(x|θ) is the likelihood of
parameters θ for a single outcome x. The likelihood of parameters θ for an independent and
identically distributed random sample data set X is:

L(θ) = ∏
x ∈ X

f (x θ) .

Given X, MLEs maximize L(θ) over all possible θ. Numerical algorithms find MLEs that (equivalently)
maximize the loglikelihood function, log(L(θ)). The logarithm transforms the product of potentially
small likelihoods into a sum of logs, which is easier to distinguish from 0 in computation. For
convenience, Statistics and Machine Learning Toolbox negative loglikelihood functions return the
negative of this sum because optimization algorithms typically search for minima rather than maxima.

Find MLEs Using Negative Loglikelihood Function

This example shows how to find MLEs by using the gamlike and fminsearch functions.

Use the gamrnd function to generate a random sample from a specific “Gamma Distribution” on page
B-48.

rng default;  % For reproducibility
a = [1,2];
X = gamrnd(a(1),a(2),1e3,1);

Visualize the likelihood surface in the neighborhood of a given X by using the gamlike function.

mesh = 50;
delta = 0.5;
a1 = linspace(a(1)-delta,a(1)+delta,mesh);
a2 = linspace(a(2)-delta,a(2)+delta,mesh);
logL = zeros(mesh); % Preallocate memory
for i = 1:mesh
    for j = 1:mesh
        logL(i,j) = gamlike([a1(i),a2(j)],X);
    end
end
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[A1,A2] = meshgrid(a1,a2);
surfc(A1,A2,logL)

Search for the minimum of the likelihood surface by using the fminsearch function.

LL = @(u)gamlike([u(1),u(2)],X); % Likelihood given X
MLES = fminsearch(LL,[1,2])

MLES = 1×2

    0.9980    2.0172

Compare MLES to the estimates returned by the gamfit function.

ahat = gamfit(X)

ahat = 1×2

    0.9980    2.0172

The difference of each parameter between MLES and ahat is less than 1e-4.

Add the MLEs to the surface plot.
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hold on
plot3(MLES(1),MLES(2),LL(MLES),'ro','MarkerSize',5,'MarkerFaceColor','r')
view([-60 40]) % Rotate to show the minimum

See Also
negloglik | statset | fminsearch | surfc

More About
• “Working with Probability Distributions” on page 5-3
• “Supported Distributions” on page 5-16
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Random Number Generation
Statistics and Machine Learning Toolbox supports the generation of random numbers from various
distributions. Each random number generator (RNG) represents a parametric family of distributions.
RNGs return random numbers from the specified distribution in an array of the specified dimensions.

Other random number generation functions which do not support specific distributions include:

• cvpartition
• datasample
• hmmgenerate
• lhsdesign
• lhsnorm
• mhsample
• random
• randsample
• slicesample

RNGs in Statistics and Machine Learning Toolbox software depend on the default random number
stream of MATLAB via the rand and randn functions. Each RNG uses one of the techniques
discussed in “Common Pseudorandom Number Generation Methods” on page 7-2 to generate
random numbers from a given distribution.

By controlling the default random number stream and its state, you can control how the RNGs in
Statistics and Machine Learning Toolbox software generate random values. For example, to
reproduce the same sequence of values from an RNG, you can save and restore the default stream's
state, or reset the default stream. For details on managing the default random number stream, see
“Managing the Global Stream Using RandStream”.

MATLAB initializes the default random number stream to the same state each time it starts up. Thus,
RNGs in Statistics and Machine Learning Toolbox software will generate the same sequence of values
for each MATLAB session unless you modify that state at startup. One simple way to do that is to add
commands to startup.m such as

rng shuffle

that initialize the default random number stream to a different state for each session.

The following table lists the supported distributions and their respective random number generation
functions.

Distribution Random Number Generation Function
Beta on page B-6 betarnd, random, randtool
Binomial on page B-10 binornd, random, randtool
Birnbaum-Saunders on page B-18 random
Burr Type XII on page B-19 random, randtool
Chi-square on page B-29 chi2rnd, random, randtool
Clayton copula on page 5-129 copularnd
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Distribution Random Number Generation Function
Exponential on page B-34 exprnd, random, randtool
Extreme value on page B-41 evrnd, random, randtool
F on page B-46 frnd, random, randtool
Frank copula on page 5-129 copularnd
Gamma on page B-48 gamrnd, randg, random, randtool
Gaussian copula on page 5-129 copularnd
Gaussian Mixture random
Generalized extreme value on page B-56 gevrnd, random, randtool
Generalized Pareto on page B-60 gprnd, random, randtool
Geometric on page B-64 geornd, random, randtool
Gumbel copula on page 5-129 copularnd
Half-Normal on page B-69 random, randtool
Hypergeometric on page B-74 hygernd, random, randtool
Inverse Gaussian on page B-76 random
Inverse Wishart on page B-77 iwishrnd
Johnson system on page 7-20 johnsrnd
Kernel on page B-79 random
Logistic on page B-86 random
Loglogistic on page B-87 random
Lognormal on page B-89 lognrnd, random, randtool
Multinomial on page B-102 mnrnd
Multivariate normal on page B-104 mvnrnd
Multivariate t on page B-110 mvtrnd
Nakagami on page B-114 random
Negative binomial on page B-115 nbinrnd, random, randtool
Noncentral chi-square on page B-119 ncx2rnd, random, randtool
Noncentral F on page B-121 ncfrnd, random, randtool
Noncentral t on page B-123 nctrnd, random, randtool
Normal (Gaussian) on page B-125 normrnd, randn, random, randtool
Pareto random
Pearson system on page 7-20 pearsrnd
Piecewise on page B-136 random
Poisson on page B-137 poissrnd, random, randtool
Rayleigh on page B-143 raylrnd, random, randtool
Rician on page B-145 random
Stable on page B-147 random
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Distribution Random Number Generation Function
Student's t on page B-156 trnd, random, randtool
t copula on page 5-129 copularnd
t location- scale on page B-163 random
Triangular on page B-165 random
Uniform (continuous) on page B-170 unifrnd, rand, random
Uniform (discrete) on page B-175 unidrnd, random, randtool
Weibull on page B-177 wblrnd, random
Wishart on page B-184 wishrnd

See Also

More About
• “Generate Random Numbers Using the Triangular Distribution” on page 5-48
• “Generate Random Numbers Using Uniform Distribution Inversion” on page 5-109
• “Generating Pseudorandom Numbers” on page 7-2
• “Generating Quasi-Random Numbers” on page 7-12
• “Working with Probability Distributions” on page 5-3
• “Supported Distributions” on page 5-16
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Nonparametric and Empirical Probability Distributions
In this section...
“Overview” on page 5-31
“Kernel Distribution” on page 5-31
“Empirical Cumulative Distribution Function” on page 5-32
“Piecewise Linear Distribution” on page 5-33
“Pareto Tails” on page 5-34
“Triangular Distribution” on page 5-35

Overview
In some situations, you cannot accurately describe a data sample using a parametric distribution.
Instead, the probability density function (pdf) or cumulative distribution function (cdf) must be
estimated from the data. Statistics and Machine Learning Toolbox provides several options for
estimating the pdf or cdf from sample data.

Kernel Distribution
A kernel distribution on page B-79 produces a nonparametric probability density estimate that
adapts itself to the data, rather than selecting a density with a particular parametric form and
estimating the parameters. This distribution is defined by a kernel density estimator, a smoothing
function that determines the shape of the curve used to generate the pdf, and a bandwidth value that
controls the smoothness of the resulting density curve.

Similar to a histogram, the kernel distribution builds a function to represent the probability
distribution using the sample data. But unlike a histogram, which places the values into discrete bins,
a kernel distribution sums the component smoothing functions for each data value to produce a
smooth, continuous probability curve. The following plot shows a visual comparison of a histogram
and a kernel distribution generated from the same sample data.

 Nonparametric and Empirical Probability Distributions

5-31



A histogram represents the probability distribution by establishing bins and placing each data value
in the appropriate bin. Because of this bin count approach, the histogram produces a discrete
probability density function. This might be unsuitable for certain applications, such as generating
random numbers from a fitted distribution.

Alternatively, the kernel distribution builds the probability density function (pdf) by creating an
individual probability density curve for each data value, then summing the smooth curves. This
approach creates one smooth, continuous probability density function for the data set.

For more general information about kernel distributions, see “Kernel Distribution” on page B-79. For
information on how to work with a kernel distribution, see Using KernelDistribution Objects
and ksdensity.

Empirical Cumulative Distribution Function
An empirical cumulative distribution function (ecdf) estimates the cdf of a random variable by
assigning equal probability to each observation in a sample. Because of this approach, the ecdf is a
discrete cumulative distribution function that creates an exact match between the ecdf and the
distribution of the sample data.

The following plot shows a visual comparison of the ecdf of 20 random numbers generated from a
standard normal distribution, and the theoretical cdf of a standard normal distribution. The circles
indicate the value of the ecdf calculated at each sample data point. The dashed line that passes
through each circle visually represents the ecdf, although the ecdf is not a continuous function. The
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solid line shows the theoretical cdf of the standard normal distribution from which the random
numbers in the sample data were drawn.

The ecdf is similar in shape to the theoretical cdf, although it is not an exact match. Instead, the ecdf
is an exact match to the sample data. The ecdf is a discrete function, and is not smooth, especially in
the tails where data might be sparse. You can smooth the distribution with Pareto tails on page 5-34,
using the paretotails function.

For more information and additional syntax options, see ecdf. To construct a continuous function
based on cdf values computed from sample data, see “Piecewise Linear Distribution” on page 5-33.

Piecewise Linear Distribution
A piecewise linear distribution on page B-136 estimates an overall cdf for the sample data by
computing the cdf value at each individual point, and then linearly connecting these values to form a
continuous curve.

The following plot shows the cdf for a piecewise linear distribution based on a sample of hospital
patients’ weight measurements. The circles represent each individual data point (weight
measurement). The black line that passes through each data point represents the piecewise linear
distribution cdf for the sample data.
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A piecewise linear distribution linearly connects the cdf values calculated at each sample data point
to form a continuous curve. By contrast, an empirical cumulative distribution function on page 5-32
constructed using the ecdf function produces a discrete cdf. For example, random numbers
generated from the ecdf can only include x values contained in the original sample data. Random
numbers generated from a piecewise linear distribution can include any x value between the lower
and upper boundaries of the sample data.

Because the piecewise linear distribution cdf is constructed from the values contained in the sample
data, the resulting curve is often not smooth, especially in the tails where data might be sparse. You
can smooth the distribution with Pareto tails on page 5-34, using the paretotails function.

For information on how to work with a piecewise linear distribution, see Using
PiecewiseLinearDistribution Objects.

Pareto Tails
Pareto tails use a piecewise approach to improve the fit of a nonparametric cdf by smoothing the tails
of the distribution. You can fit a kernel distribution on page 5-31, empirical cdf on page 5-32, or a
user-defined estimator to the middle data values, then fit generalized Pareto distribution on page B-
60 curves to the tails. This technique is especially useful when the sample data is sparse in the tails.

The following plot shows the empirical cdf (ecdf) of a data sample containing 20 random numbers.
The solid line represents the ecdf, and the dashed line represents the empirical cdf with Pareto tails
fit to the lower and upper 10 percent of the data. The circles denote the boundaries for the lower and
upper 10 percent of the data.
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Fitting Pareto tails to the lower and upper 10 percent of the sample data makes the cdf smoother in
the tails, where the data is sparse. For more information on working with Pareto tails, see
paretotails.

Triangular Distribution
A “Triangular Distribution” on page B-165 provides a simplistic representation of the probability
distribution when limited sample data is available. This continuous distribution is parameterized by a
lower limit, peak location, and upper limit. These points are linearly connected to estimate the pdf of
the sample data. You can use the mean, median, or mode of the data as the peak location.

The following plot shows the triangular distribution pdf of a random sample of 10 integers from 0 to
5. The lower limit is the smallest integer in the sample data, and the upper limit is the largest integer.
The peak for this plot is at the mode, or most frequently-occurring value, in the sample data.
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Business applications such as simulation and project management sometimes use a triangular
distribution to create models when limited sample data exists. For more information, see “Triangular
Distribution” on page B-165.

See Also
ecdf | ksdensity | paretotails

More About
• “Kernel Distribution” on page B-79
• “Piecewise Linear Distribution” on page B-136
• “Triangular Distribution” on page B-165
• “Generalized Pareto Distribution” on page B-60
• “Fit a Nonparametric Distribution with Pareto Tails” on page 5-44
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Fit Kernel Distribution Object to Data

This example shows how to fit a kernel probability distribution object to sample data.

Step 1. Load sample data.

Load the sample data.

load carsmall;

This data contains miles per gallon (MPG) measurements for different makes and models of cars,
grouped by country of origin (Origin), model year (Year), and other vehicle characteristics.

Step 2. Fit a kernel distribution object.

Use fitdist to fit a kernel probability distribution object to the miles per gallon (MPG) data for all
makes of cars.

pd = fitdist(MPG,'Kernel')

pd = 
  KernelDistribution

    Kernel = normal
    Bandwidth = 4.11428
    Support = unbounded

This creates a prob.KernelDistribution object. By default, fitdist uses a normal kernel
smoothing function and chooses an optimal bandwidth for estimating normal densities, unless you
specify otherwise. You can access information about the fit and perform further calculations using the
related object functions.

Step 3. Compute descriptive statistics.

Compute the mean, median, and standard deviation of the fitted kernel distribution.

m = mean(pd)

m = 23.7181

med = median(pd)

med = 23.4841

s = std(pd)

s = 8.9896

Step 4. Compute and plot the pdf.

Compute and plot the pdf of the fitted kernel distribution.

figure
x = 0:1:60;
y = pdf(pd,x);
plot(x,y,'LineWidth',2)
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title('Miles per Gallon')
xlabel('MPG')

The plot shows the pdf of the kernel distribution fit to the MPG data across all makes of cars. The
distribution is smooth and fairly symmetrical, although it is slightly skewed with a heavier right tail.

Step 5. Generate random numbers.

Generate a vector of random numbers from the fitted kernel distribution.

rng('default')  % For reproducibility
r = random(pd,1000,1);
figure
hist(r);
set(get(gca,'Children'),'FaceColor',[.8 .8 1]);
hold on
y = y*5000;  % Scale pdf to overlay on histogram
plot(x,y,'LineWidth',2)
title('Random Numbers Generated From Distribution')
hold off
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The histogram has a similar shape to the pdf plot because the random numbers generate from the
nonparametric kernel distribution fit to the sample data.

See Also
fitdist | ksdensity | KernelDistribution

More About
• “Kernel Distribution” on page B-79
• “Fit Kernel Distribution Using ksdensity” on page 5-40
• “Working with Probability Distributions” on page 5-3
• “Supported Distributions” on page 5-16
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Fit Kernel Distribution Using ksdensity

This example shows how to generate a kernel probability density estimate from sample data using the
ksdensity function.

Step 1. Load sample data.

Load the sample data.

load carsmall;

This data contains miles per gallon (MPG) measurements for different makes and models of cars,
grouped by country of origin (Origin), model year (Year), and other vehicle characteristics.

Step 2. Generate a kernel probability density estimate.

Use ksdensity to generate a kernel probability density estimate for the miles per gallon (MPG) data.

[f,xi] = ksdensity(MPG);

By default, ksdensity uses a normal kernel smoothing function and chooses an optimal bandwidth
for estimating normal densities, unless you specify otherwise.

Step 3. Plot the kernel probability density estimate.

Plot the kernel probability density estimate to visualize the MPG distribution.

plot(xi,f,'LineWidth',2)
title('Miles per Gallon')
xlabel('MPG')
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The plot shows the pdf of the kernel distribution fit to the MPG data across all makes of cars. The
distribution is smooth and fairly symmetrical, although it is slightly skewed with a heavier right tail.

See Also
ksdensity | fitdist | KernelDistribution

More About
• “Kernel Distribution” on page B-79
• “Fit Kernel Distribution Object to Data” on page 5-37
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Fit Distributions to Grouped Data Using ksdensity

This example shows how to fit kernel distributions to grouped sample data using the ksdensity
function.

Step 1. Load sample data.

Load the sample data.

load carsmall

The data contains miles per gallon (MPG) measurements for different makes and models of cars,
grouped by country of origin (Origin), model year (Model_Year), and other vehicle characteristics.

Step 2. Group sample data by origin.

Group the MPG data by origin (Origin) for cars made in the USA, Japan, and Germany.

Origin = categorical(cellstr(Origin));
MPG_USA = MPG(Origin=='USA');
MPG_Japan = MPG(Origin=='Japan');
MPG_Germany = MPG(Origin=='Germany');

Step 3. Compute and plot the pdf.

Compute and plot the pdf for each group.

[fi,xi] = ksdensity(MPG_USA);
plot(xi,fi,'r-')
hold on

[fj,xj] = ksdensity(MPG_Japan);
plot(xj,fj,'b-.')

[fk,xk] = ksdensity(MPG_Germany);
plot(xk,fk,'k:')

legend('USA','Japan','Germany')
title('MPG by Origin')
xlabel('MPG')
hold off
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The plot shows how miles per gallon (MPG) performance differs by country of origin (Origin). Using
this data, the USA has the widest distribution, and its peak is at the lowest MPG value of the three
origins. Japan has the most regular distribution with a slightly heavier left tail, and its peak is at the
highest MPG value of the three origins. The peak for Germany is between the USA and Japan, and the
second bump near 44 miles per gallon suggests that there might be multiple modes in the data.

See Also
ksdensity | fitdist | KernelDistribution

More About
• “Kernel Distribution” on page B-79
• “Grouping Variables” on page 2-46
• “Fit Kernel Distribution Using ksdensity” on page 5-40
• “Fit Probability Distribution Objects to Grouped Data” on page 5-93
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Fit a Nonparametric Distribution with Pareto Tails

This example shows how to fit a nonparametric probability distribution to sample data using Pareto
tails to smooth the distribution in the tails.

Step 1. Generate sample data.

Generate sample data that contains more outliers than expected from a standard normal distribution.

rng('default')  % For reproducibility
left_tail = -exprnd(1,10,1);
right_tail = exprnd(5,10,1);
center = randn(80,1);
data = [left_tail;center;right_tail];

The data contains 80% values from a standard normal distribution, 10% from an exponential
distribution with a mean of 5, and 10% from an exponential distribution with mean of -1. Compared to
a standard normal distribution, the exponential values are more likely to be outliers, especially in the
upper tail.

Step 2. Fit probability distributions to the data.

Fit a normal distribution and a t location-scale distribution to the data, and plot for a visual
comparison.

probplot(data);
hold on
p = fitdist(data,'tlocationscale');
h = plot(gca,p,'PlotType',"probability"); 
set(h,'color','r','linestyle','-');
title('Probability Plot')
legend('Normal','Data','t location-scale','Location','SE')
hold off
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Both distributions appear to fit reasonably well in the center, but neither the normal distribution nor
the t location-scale distribution fit the tails very well.

Step 3. Generate an empirical distribution.

To obtain a better fit, use ecdf to generate an empirical cdf based on the sample data.

figure
ecdf(data)
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The empirical distribution provides a perfect fit, but the outliers make the tails very discrete. Random
samples generated from this distribution using the inversion method might include, for example,
values near 4.33 and 9.25, but no values in between.

Step 4. Fit a distribution using Pareto tails.

Use paretotails to generate an empirical cdf for the middle 80% of the data and fit generalized
Pareto distributions to the lower and upper 10%.

pfit = paretotails(data,0.1,0.9)

pfit = 
Piecewise distribution with 3 segments
      -Inf < x < -1.24623    (0 < p < 0.1): lower tail, GPD(-0.334156,0.798745)
   -1.24623 < x < 1.48551  (0.1 < p < 0.9): interpolated empirical cdf
        1.48551 < x < Inf    (0.9 < p < 1): upper tail, GPD(1.23681,0.581868)

To obtain a better fit, paretotails fits a distribution by piecing together an ecdf or kernel
distribution in the center of the sample, and smooth generalized Pareto distributions (GPDs) in the
tails. Use paretotails to create paretotails probability distribution object. You can access
information about the fit and perform further calculations on the object using the object functions of
the paretotails object. For example, you can evaluate the cdf or generate random numbers from
the distribution.
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Step 5. Compute and plot the cdf.

Compute and plot the cdf of the fitted paretotails distribution.

x = -4:0.01:10;
plot(x,cdf(pfit,x))

The paretotails cdf closely fits the data but is smoother in the tails than the ecdf generated in
Step 3.

See Also
fitdist | paretotails | ecdf

More About
• “Nonparametric and Empirical Probability Distributions” on page 5-31

 Fit a Nonparametric Distribution with Pareto Tails

5-47



Generate Random Numbers Using the Triangular Distribution

This example shows how to create a triangular probability distribution object based on sample data,
and generate random numbers for use in a simulation.

Step 1. Input sample data.

Input the data vector time, which contains the observed length of time (in seconds) that 10 different
cars stopped at a highway tollbooth.

time = [6 14 8 7 16 8 23 6 7 15];

The data shows that, while most cars stopped for 6 to 16 seconds, one outlier stopped for 23 seconds.

Step 2. Estimate distribution parameters.

Estimate the triangular distribution parameters from the sample data.

lower = min(time);
peak = median(time);
upper = max(time);

A triangular distribution provides a simplistic representation of the probability distribution when
sample data is limited. Estimate the lower and upper boundaries of the distribution by finding the
minimum and maximum values of the sample data. For the peak parameter, the median might provide
a better estimate of the mode than the mean, since the data includes an outlier.

Step 3. Create a probability distribution object.

Create a triangular probability distribution object using the estimated parameter values.

pd = makedist('Triangular','A',lower,'B',peak,'C',upper)

pd = 
  TriangularDistribution

A = 6, B = 8, C = 23

Compute and plot the pdf of the triangular distribution.

x = 0:.1:230;
y = pdf(pd,x);
plot(x,y)
title('Time Spent at Tollbooth')
xlabel('Time (seconds)')
xlim([0 30])
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The plot shows that this triangular distribution is skewed to the right. However, since the estimated
peak value is the sample median, the distribution should be symmetrical about the peak. Because of
its skew, this model might, for example, generate random numbers that seem unusually high when
compared to the initial sample data.

Step 4. Generate random numbers.

Generate random numbers from this distribution to simulate future traffic flow through the tollbooth.

rng('default');  % For reproducibility
r = random(pd,10,1)

r = 10×1

   16.1265
   18.0987
    8.0796
   18.3001
   13.3176
    7.8211
    9.4360
   12.2508
   19.7082
   20.0078

The returned values in r are the time in seconds that the next 10 simulated cars spend at the
tollbooth. These values seem high compared to the values in the original data vector time because
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the outlier skewed the distribution to the right. Using the second-highest value as the upper limit
parameter might mitigate the effects of the outlier and generate a set of random numbers more
similar to the initial sample data.

Step 5. Revise estimated parameters.

Estimate the upper boundary of the distribution using the second largest value in the sample data.

sort_time = sort(time,'descend');
secondLargest = sort_time(2);

Step 6. Create a new distribution object and plot the pdf.

Create a new triangular probability distribution object using the revised estimated parameters, and
plot its pdf.

figure
pd2 = makedist('Triangular','A',lower,'B',peak,'C',secondLargest);
y2 = pdf(pd2,x);
plot(x,y2,'LineWidth',2)
title('Time Spent at Tollbooth')
xlabel('Time (seconds)') 
xlim([0 30])

The plot shows that this triangular distribution is still slightly skewed to the right. However, it is
much more symmetrical about the peak than the distribution that used the maximum sample data
value to estimate the upper limit.

5 Probability Distributions

5-50



Step 7. Generate new random numbers.

Generate new random numbers from the revised distribution.

rng('default'); % For reproducibility
r2 = random(pd2,10,1)

r2 = 10×1

   12.1501
   13.2547
    7.5937
   13.3675
   10.5768
    7.3967
    8.4026
    9.9792
   14.1562
   14.3240

These new values more closely resemble those in the original data vector time. They are also closer
to the sample median than the random numbers generated by the distribution that used the outlier to
estimate its upper limit. This example does not remove the outlier from the sample data when
computing the median. Other options for parameter estimation include removing outliers from the
sample data altogether, or using the mean or mode of the sample data as the peak value.

See Also
pdf | random | makedist

More About
• “Triangular Distribution” on page B-165
• “Random Number Generation” on page 5-28
• “Generate Random Numbers Using Uniform Distribution Inversion” on page 5-109
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Model Data Using the Distribution Fitter App

In this section...
“Explore Probability Distributions Interactively” on page 5-52
“Create and Manage Data Sets” on page 5-53
“Create a New Fit” on page 5-56
“Display Results” on page 5-60
“Manage Fits” on page 5-61
“Evaluate Fits” on page 5-63
“Exclude Data” on page 5-65
“Save and Load Sessions” on page 5-69
“Generate a File to Fit and Plot Distributions” on page 5-69

The Distribution Fitter app provides a visual, interactive approach to fitting univariate distributions to
data.

Explore Probability Distributions Interactively
You can use the Distribution Fitter app to interactively fit probability distributions to data imported
from the MATLAB workspace. You can choose from 22 built-in probability distributions, or create your
own custom distribution. The app displays the fitted distribution over plots of the empirical
distributions, including pdf, cdf, probability plots, and survivor functions. You can export the fit data,
including fitted parameter values, to the workspace for further analysis.

Distribution Fitter App Workflow

To fit a probability distribution to your sample data:

1 On the MATLAB Toolstrip, click the Apps tab. In the Math, Statistics and Optimization group,
open the Distribution Fitter app. Alternatively, at the command prompt, enter
distributionFitter.

2 Import your sample data, or create a data vector directly in the app. You can also manage your
data sets and choose which one to fit. See “Create and Manage Data Sets” on page 5-53.

3 Create a new fit for your data. See “Create a New Fit” on page 5-56.
4 Display the results of the fit. You can choose to display the density (pdf), cumulative probability

(cdf), quantile (inverse cdf), probability plot (choose one of several distributions), survivor
function, and cumulative hazard. See “Display Results” on page 5-60.

5 You can create additional fits, and manage multiple fits from within the app. See “Manage Fits”
on page 5-61.

6 Evaluate probability functions for the fit. You can choose to evaluate the density (pdf), cumulative
probability (cdf), quantile (inverse cdf), survivor function, and cumulative hazard. See “Evaluate
Fits” on page 5-63.

7 Improve the fit by excluding certain data. You can specify bounds for the data to exclude, or you
can exclude data graphically using a plot of the values in the sample data. See “Exclude Data” on
page 5-65.
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8 Save your current Distribution Fitter app session so you can open it later. See “Save and Load
Sessions” on page 5-69.

Create and Manage Data Sets

To open the Data dialog box, click the Data button in the Distribution Fitter app.

Import Data

Create a data set by importing a vector from the MATLAB workspace using the Import workspace
vectors options.

• Data — In the Data field, the drop-down list contains the names of all matrices and vectors, other
than 1-by-1 matrices (scalars) in the MATLAB workspace. Select the array containing the data that
you want to fit. The actual data you import must be a vector. If you select a matrix in the Data
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field, the first column of the matrix is imported by default. To select a different column or row of
the matrix, click Select Column or Row. The matrix appears in the Select Column or Row dialog
box. You can select a row or column by highlighting it.

Alternatively, you can enter any valid MATLAB expression in the Data field.

When you select a vector in the Data field, a histogram of the data appears in the Data preview
pane.

• Censoring — If some of the points in the data set are censored, enter a Boolean vector of the
same size as the data vector, specifying the censored entries of the data. A 1 in the censoring
vector specifies that the corresponding entry of the data vector is censored. A 0 specifies that the
entry is not censored. If you enter a matrix, you can select a column or row by clicking Select
Column or Row. If you do not have censored data, leave the Censoring field blank.

• Frequency — Enter a vector of positive integers of the same size as the data vector to specify the
frequency of the corresponding entries of the data vector. For example, a value of 7 in the 15th
entry of frequency vector specifies that there are 7 data points corresponding to the value in the
15th entry of the data vector. If all entries of the data vector have frequency 1, leave the
Frequency field blank.

• Data set name — Enter a name for the data set that you import from the workspace, such as My
data.

After you have entered the information in the preceding fields, click Create Data Set to create the
data set My data.

Manage Data Sets

View and manage the data sets that you create using the Manage data sets pane. When you create a
data set, its name appears in the Data set list. The following figure shows the Manage data sets
pane after creating the data set My data.

For each data set in the Data set list, you can:

• Select the Plot check box to display a plot of the data in the main Distribution Fitter app window.
When you create a new data set, Plot is selected by default. Clearing the Plot check box removes
the data from the plot in the main window. You can specify the type of plot displayed in the
Display type field in the main window.

• If Plot is selected, you can also select Conf bounds to display confidence interval bounds for the
plot in the main window. These bounds are pointwise confidence bounds around the empirical
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estimates of these functions. The bounds are displayed only when you set Display Type in the
main window to one of the following:

• Cumulative probability (CDF)
• Survivor function
• Cumulative hazard

The Distribution Fitter app cannot display confidence bounds on density (PDF), quantile (inverse
CDF), or probability plots. Clearing the Conf bounds check box removes the confidence bounds from
the plot in the main window.

When you select a data set from the list, you can access the following buttons:

• View — Display the data in a table in a new window.
• Set Bin Rules — Defines the histogram bins used in a density (PDF) plot.
• Rename — Rename the data set.
• Delete — Delete the data set.

Set Bin Rules

To set bin rules for the histogram of a data set, click Set Bin Rules to open the Set Bin Rules dialog
box.

You can select from the following rules:
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• Freedman-Diaconis rule — Algorithm that chooses bin widths and locations automatically, based
on the sample size and the spread of the data. This rule, which is the default, is suitable for many
kinds of data.

• Scott rule — Algorithm intended for data that are approximately normal. The algorithm chooses
bin widths and locations automatically.

• Number of bins — Enter the number of bins. All bins have equal widths.
• Bins centered on integers — Specifies bins centered on integers.
• Bin width — Enter the width of each bin. If you select this option, you can also select:

• Automatic bin placement — Place the edges of the bins at integer multiples of the Bin
width.

• Bin boundary at — Enter a scalar to specify the boundaries of the bins. The boundary of each
bin is equal to this scalar plus an integer multiple of the Bin width.

You can also:

• Apply to all existing data sets — Apply the rule to all data sets. Otherwise, the rule is applied
only to the data set currently selected in the Data dialog box.

• Save as default — Apply the current rule to any new data sets that you create. You can set
default bin width rules by selecting Set Default Bin Rules from the Tools menu in the main
window.

Create a New Fit

Click the New Fit button at the top of the main window to open the New Fit dialog box. If you
created the data set My data, it appears in the Data field.
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Field Name Description
Fit Name Enter a name for the fit.

 Model Data Using the Distribution Fitter App

5-57



Field Name Description
Data Select the data set to which you want to fit a distribution from the drop-down

list.
Distribution Select the type of distribution to fit from the Distribution drop-down list.

Only the distributions that apply to the values of the selected data set appear in
the Distribution field. For example, when the data include values that are zero
or negative, positive distributions are not displayed.

You can specify either a parametric or a nonparametric distribution. When you
select a parametric distribution from the drop-down list, a description of its
parameters appears. Distribution Fitter estimates these parameters to fit the
distribution to the data set. If you select the binomial distribution or the
generalized extreme value distribution, you must specify a fixed value for one of
the parameters. The pane contains a text field into which you can specify that
parameter.

When you select Nonparametric fit, options for the fit appear in the pane,
as described in “Further Options for Nonparametric Fits” on page 5-59.

Exclusion rule Specify a rule to exclude some data. Create an exclusion rule by clicking
Exclude in the Distribution Fitter app. For more information, see “Exclude
Data” on page 5-65.

Apply the New Fit

Click Apply to fit the distribution. For a parametric fit, the Results pane displays the values of the
estimated parameters. For a nonparametric fit, the Results pane displays information about the fit.

When you click Apply, the Distribution Fitter app displays a plot of the distribution and the
corresponding data.

Note When you click Apply, the title of the dialog box changes to Edit Fit. You can now make
changes to the fit you just created and click Apply again to save them. After closing the Edit Fit
dialog box, you can reopen it from the Fit Manager dialog box at any time to edit the fit.

After applying the fit, you can save the information to the workspace using probability distribution
objects by clicking Save to workspace.

Available Distributions

All of the distributions available in the Distribution Fitter app are supported elsewhere in Statistics
and Machine Learning Toolbox software. You can use the fitdist function to fit any of the
distributions supported by the app. Many distributions also have dedicated fitting functions. These
functions compute the majority of the fits in the Distribution Fitter app, and are referenced in the
following list. Other fits are computed using functions internal to the Distribution Fitter app.

Not all of the distributions listed are available for all data sets. The Distribution Fitter app determines
the extent of the data (nonnegative, unit interval, and so on) and displays appropriate distributions in
the Distribution drop-down list. Distribution data ranges are given parenthetically in the following
list.
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• Beta on page B-6 (unit interval values) distribution, fit using the function betafit.
• Binomial on page B-10 (nonnegative integer values) distribution, fit using the function binopdf.
• Birnbaum-Saunders on page B-18 (positive values) distribution.
• Burr Type XII on page B-19 (positive values) distribution.
• Exponential on page B-34 (nonnegative values) distribution, fit using the function expfit.
• Extreme value on page B-41 (all values) distribution, fit using the function evfit.
• Gamma on page B-48 (positive values) distribution, fit using the function gamfit.
• Generalized extreme value on page B-56 (all values) distribution, fit using the function gevfit.
• Generalized Pareto on page B-60 (all values) distribution, fit using the function gpfit.
• Inverse Gaussian on page B-76 (positive values) distribution.
• Logistic on page B-86 (all values) distribution.
• Loglogistic on page B-87 (positive values) distribution.
• Lognormal on page B-89 (positive values) distribution, fit using the function lognfit.
• Nakagami on page B-114 (positive values) distribution.
• Negative binomial on page B-115 (nonnegative integer values) distribution, fit using the function

nbinpdf.
• Nonparametric on page B-79 (all values) distribution, fit using the function ksdensity.
• Normal on page B-125 (all values) distribution, fit using the function normfit.
• Poisson on page B-137 (nonnegative integer values) distribution, fit using the function poisspdf.
• Rayleigh on page B-143 (positive values) distribution using the function raylfit.
• Rician on page B-145 (positive values) distribution.
• t location-scale on page B-163 (all values) distribution.
• Weibull on page B-177 (positive values) distribution using the function wblfit.

Further Options for Nonparametric Fits

When you select Non-parametric in the Distribution field, a set of options appears in the Non-
parametric pane, as shown in the following figure.

The options for nonparametric distributions are:

• Kernel — Type of kernel function to use.
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• Normal
• Box
• Triangle
• Epanechnikov

• Bandwidth — The bandwidth of the kernel smoothing window. Select Auto for a default value
that is optimal for estimating normal densities. After you click Apply, this value appears in the
Results pane. Select Specify and enter a smaller value to reveal features such as multiple modes
or a larger value to make the fit smoother.

• Domain — The allowed x-values for the density.

• Unbounded — The density extends over the whole real line.
• Positive — The density is restricted to positive values.
• Specify — Enter lower and upper bounds for the domain of the density.

When you select Positive or Specify, the nonparametric fit has zero probability outside the
specified domain.

Display Results
The Distribution Fitter app window displays plots of:

• The data sets for which you select Plot in the Data dialog box.
• The fits for which you select Plot in the Fit Manager dialog box.
• Confidence bounds for:

• The data sets for which you select Conf bounds in the Data dialog box.
• The fits for which you select Conf bounds in the Fit Manager dialog box.

The following fields are available.

Display Type

Specify the type of plot to display using the Display Type field in the main app window. Each type
corresponds to a probability function, for example, a probability density function. You can choose
from the following display types:

• Density (PDF) — Display a probability density function (PDF) plot for the fitted distribution.
The main window displays data sets using a probability histogram, in which the height of each
rectangle is the fraction of data points that lie in the bin divided by the width of the bin. This
makes the sum of the areas of the rectangles equal to 1.

• Cumulative probability (CDF) — Display a cumulative probability plot of the data. The main
window displays data sets using a cumulative probability step function. The height of each step is
the cumulative sum of the heights of the rectangles in the probability histogram.

• Quantile (inverse CDF) — Display a quantile (inverse CDF) plot.
• Probability plot — Display a probability plot of the data. Specify the type of distribution used

to construct the probability plot in the Distribution field. This field is only available when you
select Probability plot. The choices for the distribution are:

• Exponential
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• Extreme Value
• Half Normal
• Log-Logistic
• Logistic
• Lognormal
• Normal
• Rayleigh
• Weibull

You can also create a probability plot against a parametric fit that you create in the New Fit
dialog box. When you create these fits, they are added at the bottom of the Distribution drop-
down list.

• Survivor function — Display survivor function plot of the data.
• Cumulative hazard — Display cumulative hazard plot of the data.

Note If the plotted data includes 0 or negative values, some distributions are unavailable.

Confidence Bounds

You can display confidence bounds for data sets and fits when you set Display Type to Cumulative
probability (CDF), Survivor function, Cumulative hazard, or, for fits only, Quantile
(inverse CDF).

• To display bounds for a data set, select Conf bounds next to the data set in the Manage data
sets pane of the Data dialog box.

• To display bounds for a fit, select Conf bounds next to the fit in the Fit Manager dialog box.
Confidence bounds are not available for all fit types.

To set the confidence level for the bounds, select Confidence Level from the View menu in the
main window and choose from the options.

Manage Fits

Click the Manage Fits button to open the Fit Manager dialog box.
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The Table of fits displays a list of the fits that you create, with the following options:

• Plot — Displays a plot of the fit in the main window of the Distribution Fitter app. When you
create a new fit, Plot is selected by default. Clearing the Plot check box removes the fit from the
plot in the main window.

• Conf bounds — If you select Plot, you can also select Conf bounds to display confidence bounds
in the plot. The bounds are displayed when you set Display type in the main window to one of the
following:

• Cumulative probability (CDF)
• Quantile (inverse CDF)
• Survivor function
• Cumulative hazard

The Distribution Fitter app cannot display confidence bounds on density (PDF) or probability plots.
Bounds are not supported for nonparametric fits and some parametric fits.

Clearing the Conf bounds check box removes the confidence intervals from the plot in the main
window.

When you select a fit in the Table of fits, the following buttons are enabled below the table:

• New Fit — Open a New Fit window.
• Copy — Create a copy of the selected fit.
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• Edit — Open an Edit Fit dialog box, to edit the fit.

Note You can edit only the currently selected fit in the Edit Fit dialog box. To edit a different
fit, select it in the Table of fits and click Edit to open another Edit Fit dialog box.

• Save to workspace — Save the selected fit as a distribution object.
• Delete — Delete the selected fit.

Evaluate Fits

Use the Evaluate dialog box to evaluate your fitted distribution at any data points you choose. To
open the dialog box, click the Evaluate button.

In the Evaluate dialog box, choose from the following items:

• Fit pane — Display the names of existing fits. Select one or more fits that you want to evaluate.
Using your platform specific functionality, you can select multiple fits.

• Function — Select the type of probability function that you want to evaluate for the fit. The
available functions are:

• Density (PDF) — Computes a probability density function.
• Cumulative probability (CDF) — Computes a cumulative probability function.
• Quantile (inverse CDF) — Computes a quantile (inverse CDF) function.
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• Survivor function — Computes a survivor function.
• Cumulative hazard — Computes a cumulative hazard function.
• Hazard rate — Computes the hazard rate.

• At x = — Enter a vector of points or the name of a workspace variable containing a vector of
points at which you want to evaluate the distribution function. If you change Function to
Quantile (inverse CDF), the field name changes to At p =, and you enter a vector of
probability values.

• Compute confidence bounds — Select this box to compute confidence bounds for the selected
fits. The check box is enabled only if you set Function to one of the following:

• Cumulative probability (CDF)
• Quantile (inverse CDF)
• Survivor function
• Cumulative hazard

The Distribution Fitter app cannot compute confidence bounds for nonparametric fits and for
some parametric fits. In these cases, it returns NaN for the bounds.

• Level — Set the level for the confidence bounds.
• Plot function — Select this box to display a plot of the distribution function, evaluated at the

points you enter in the At x = field, in a new window.

Note The settings for Compute confidence bounds, Level, and Plot function do not affect the
plots that are displayed in the main window of the Distribution Fitter app. The settings apply only
to plots you create by clicking Plot function in the Evaluate window.

To apply these evaluation settings to the selected fit, click Apply. The following figure shows the
results of evaluating the cumulative density function for the fit My fit, at the points in the vector
5:4:45.
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The columns of the table to the right of the Fit pane display the following values:

• X — The entries of the vector that you enter in At x = field.
• F(X) — The corresponding values of the CDF at the entries of X.
• LB — The lower bounds for the confidence interval, if you select Compute confidence bounds.
• UB — The upper bounds for the confidence interval, if you select Compute confidence bounds.

To save the data displayed in the table to a matrix in the MATLAB workspace, click Export to
Workspace.

Exclude Data

To exclude values from fit, open the Exclude window by clicking the Exclude button. In the Exclude
window, you can create rules for excluding specified data values. When you create a new fit in the
New Fit window, you can use these rules to exclude data from the fit.
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To create an exclusion rule:

1 Exclusion Rule Name — Enter a name for the exclusion rule.
2 Exclude Sections — Specify bounds for the excluded data:

• In the Lower limit: exclude data drop-down list, select <= or < and enter a scalar value in
the field to the right. Depending on which operator you select, the app excludes from the fit
any data values that are less than or equal to the scalar value, or less than the scalar value,
respectively.

• In the Upper limit: exclude data drop-down list, select >= or > and enter a scalar value in
the field to the right. Depending on which operator you select, the app excludes from the fit
any data values that are greater than or equal to the scalar value, or greater than the scalar
value, respectively.

OR

Click the Exclude Graphically button to define the exclusion rule by displaying a plot of the
values in a data set and selecting the bounds for the excluded data. For example, if you created
the data set My data as described in Create and Manage Data Sets, select it from the Select
data drop-down list, and then click the Exclude Graphically button. The app displays the values
in My data in a new window.
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To set a lower limit for the boundary of the excluded region, click Add Lower Limit. The app
displays a vertical line on the left side of the plot window. Move the line to the point you where
you want the lower limit, as shown in the following figure.
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Move the vertical line to change the value displayed in the Lower limit: exclude data field in
the Exclude window.

The value displayed corresponds to the x-coordinate of the vertical line.

Similarly, you can set the upper limit for the boundary of the excluded region by clicking Add
Upper Limit, and then moving the vertical line that appears at the right side of the plot window.
After setting the lower and upper limits, click Close and return to the Exclude window.

3 Create Exclusion Rule — Once you have set the lower and upper limits for the boundary of the
excluded data, click Create Exclusion Rule to create the new rule. The name of the new rule
appears in the Existing exclusion rules pane.

Selecting an exclusion rule in the Existing exclusion rules pane enables the following buttons:

• Copy — Creates a copy of the rule, which you can then modify. To save the modified rule
under a different name, click Create Exclusion Rule.

• View — Opens a new window in which you can see the data points excluded by the rule. The
following figure shows a typical example.
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The shaded areas in the plot graphically display which data points are excluded. The table to
the right lists all data points. The shaded rows indicate excluded points.

• Rename — Rename the rule.
• Delete — Delete the rule.

After you define an exclusion rule, you can use it when you fit a distribution to your data. The
rule does not exclude points from the display of the data set.

Save and Load Sessions
Save your work in the current session, and then load it in a subsequent session, so that you can
continue working where you left off.

Save a Session

To save the current session, from the File menu in the main window, select Save Session. A dialog
box opens and prompts you to enter a file name, for example my_session.dfit. Click Save to save
the following items created in the current session:

• Data sets
• Fits
• Exclusion rules
• Plot settings
• Bin width rules

Load a Session

To load a previously saved session, from the File menu in the main window, select Load Session.
Enter the name of a previously saved session. Click Open to restore the information from the saved
session to the current session.

Generate a File to Fit and Plot Distributions
Use the Generate Code option in the File menu to create a file that:

• Fits the distributions in the current session to any data vector in the MATLAB workspace.
• Plots the data and the fits.

After you end the current session, you can use the file to create plots in a standard MATLAB figure
window, without reopening the Distribution Fitter app.

As an example, if you created the fit described in “Create a New Fit” on page 5-56, do the following
steps:

1 From the File menu, select Generate Code.
2 In the MATLAB Editor window, choose File > Save as. Save the file as normal_fit.m in a

folder on the MATLAB path.

You can then apply the function normal_fit to any vector of data in the MATLAB workspace. For
example, the following commands:
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new_data = normrnd(4.1, 12.5, 100, 1);
newfit = normal_fit(new_data)
legend('New Data', 'My fit')

generate newfit, a fitted normal distribution of the data. The commands also generate a plot of the
data and the fit.

newfit = 

  NormalDistribution

  Normal distribution
       mu = 5.63857   [2.7555, 8.52163]
    sigma =   14.53   [12.7574, 16.8791]

Note By default, the file labels the data in the legend using the same name as the data set in the
Distribution Fitter app. You can change the label using the legend command, as illustrated by the
preceding example.

See Also
Distribution Fitter
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More About
• “Fit a Distribution Using the Distribution Fitter App” on page 5-72
• “Define Custom Distributions Using the Distribution Fitter App” on page 5-82
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Fit a Distribution Using the Distribution Fitter App
In this section...
“Step 1: Load Sample Data” on page 5-72
“Step 2: Import Data” on page 5-72
“Step 3: Create a New Fit” on page 5-74
“Step 4: Create and Manage Additional Fits” on page 5-77

This example shows how you can use the Distribution Fitter app to interactively fit a probability
distribution to data.

Step 1: Load Sample Data
Load the sample data.

load carsmall

Step 2: Import Data
Open the Distribution Fitter tool.

distributionFitter

To import the vector MPG into the Distribution Fitter app, click the Data button. The Data dialog box
opens.
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The Data field displays all numeric arrays in the MATLAB workspace. From the drop-down list, select
MPG. A histogram of the selected data appears in the Data preview pane.

In the Data set name field, type a name for the data set, such as MPG data, and click Create Data
Set. The main window of the Distribution Fitter app now displays a larger version of the histogram in
the Data preview pane.
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Step 3: Create a New Fit
To fit a distribution to the data, in the main window of the Distribution Fitter app, click New Fit.

To fit a normal distribution to MPG data:

1 In the Fit name field, enter a name for the fit, such as My fit.
2 From the drop-down list in the Data field, select MPG data.
3 Confirm that Normal is selected from the drop-down menu in the Distribution field.
4 Click Apply.
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The Results pane displays the mean and standard deviation of the normal distribution that best fits
MPG data.
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The Distribution Fitter app main window displays a plot of the normal distribution with this mean and
standard deviation.

Based on the plot, a normal distribution does not appear to provide a good fit for the MPG data. To
obtain a better evaluation, select Probability plot from the Display type drop-down list. Confirm
that the Distribution drop-down list is set to Normal. The main window displays the following
figure.
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The normal probability plot shows that the data deviates from normal, especially in the tails.

Step 4: Create and Manage Additional Fits
The MPG data pdf indicates that the data has two peaks. Try fitting a nonparametric kernel
distribution to obtain a better fit for this data.

1 Click Manage Fits. In the dialog box, click New Fit.
2 In the Fit name field, enter a name for the fit, such as Kernel fit.
3 From the drop-down list in the Data field, select MPG data.
4 From the drop-down list in the Distribution field, select Non-parametric. This enables several

options in the Non-parametric pane, including Kernel, Bandwidth, and Domain. For now,
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accept the default value to apply a normal kernel shape and automatically determine the kernel
bandwidth (using Auto). For more information about nonparametric kernel distributions, see
“Kernel Distribution” on page B-79.

5 Click Apply.

The Results pane displays the kernel type, bandwidth, and domain of the nonparametric distribution
fit to MPG data.
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The main window displays plots of the original MPG data with the normal distribution and
nonparametric kernel distribution overlaid. To visually compare these two fits, select Density
(PDF) from the Display type drop-down list.
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To include only the nonparametric kernel fit line (Kernel fit) on the plot, click Manage Fits. In the
Table of fits pane, locate the row for the normal distribution fit (My fit) and clear the box in the
Plot column.
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See Also
Distribution Fitter

More About
• “Model Data Using the Distribution Fitter App” on page 5-52
• “Define Custom Distributions Using the Distribution Fitter App” on page 5-82
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Define Custom Distributions Using the Distribution Fitter App
You can define a probability object for a custom distribution and use the Distribution Fitter app or
fitdist to fit distributions not supported by Statistics and Machine Learning Toolbox. You can also
use a custom probability object as an input argument of probability object functions, such as pdf,
cdf, icdf, and random, to evaluate the distribution, generate random numbers, and so on.

Open the Distribution Fitter App
• MATLAB Toolstrip: On the Apps tab, under Math, Statistics and Optimization, click the app

icon.
• MATLAB command prompt: Enter distributionFitter.

distributionFitter
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Define Custom Distribution
To define a custom distribution using the app, select File > Define Custom Distributions. A file
template opens in the MATLAB Editor. You then edit this file so that it creates a probability object for
the distribution you want.

The template includes sample code that defines a probability object for the Laplace distribution.
Follow the instructions in the template to define your own custom distribution.

To save your custom probability object, create a directory named +prob on your path. Save the file in
this directory using a name that matches your distribution name. For example, save the template as
LaplaceDistribution.m, and then import the custom distribution as described in the next section.
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Import Custom Distribution
To import a custom distribution using the app, select File > Import Custom Distributions. The
Imported Distributions dialog box opens, in which you can select the file that defines the distribution.
For example, if you create the file LaplaceDistribution.m, as described in the preceding section,
the list in the dialog box includes Laplace followed by an asterisk, indicating the file is new or
modified and available for fitting.

Alternatively, you can use the makedist function to reset the list of distributions so that you do not
need to select File > Import Custom Distributions in the app.

makedist -reset

This command resets the list of distributions by searching the path for files contained in a package
named prob and implementing classes derived from ProbabilityDistribution. If you open the
app after resetting the list, the distribution list in the app includes the custom distribution that you
defined.

Once you import a custom distribution using the Distribution Fitter app or reset the list by using
makedist, you can use the custom distribution in the app and in the Command Window. The
Distribution field of the New Fit dialog box, available from the Distribution Fitter app, contains the
new custom distribution. In the Command Window, you can create the custom probability distribution
object by using makedist and fit a data set to the custom distribution by using fitdist. Then, you
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can use probability object functions, such as pdf, cdf, icdf, and random, to evaluate the
distribution, generate random numbers, and so on.

See Also
Distribution Fitter | makedist

More About
• “Model Data Using the Distribution Fitter App” on page 5-52
• “Fit a Distribution Using the Distribution Fitter App” on page 5-72
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Explore the Random Number Generation UI
The Random Number Generation user interface (UI) generates random samples from specified
probability distributions, and displays the samples as histograms. Use the interface to explore the
effects of changing parameters and sample size on the distributions.

Run the user interface by typing randtool at the command line.

Start by selecting a distribution, then enter the desired sample size.

You can also

• Use the controls at the bottom of the window to set parameter values for the distribution and to
change their upper and lower bounds.
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• Draw another sample from the same distribution, with the same size and parameters.
• Export the current sample to your workspace. A dialog box enables you to provide a name for the

sample.
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Compare Multiple Distribution Fits

This example shows how to fit multiple probability distribution objects to the same set of sample data,
and obtain a visual comparison of how well each distribution fits the data.

Step 1. Load sample data.

Load the sample data.

load carsmall

This data contains miles per gallon (MPG) measurements for different makes and models of cars,
grouped by country of origin (Origin), model year (Model_Year), and other vehicle characteristics.

Step 2. Create a categorical array.

Transform Origin into a categorical array and remove the Italian car from the sample data. Since
there is only one Italian car, fitdist cannot fit a distribution to that group using other than a kernel
distribution.

Origin = categorical(cellstr(Origin));
MPG2 = MPG(Origin~='Italy');
Origin2 = Origin(Origin~='Italy');
Origin2 = removecats(Origin2,'Italy');

Step 3. Fit multiple distributions by group.

Use fitdist to fit Weibull, normal, logistic, and kernel distributions to each country of origin group
in the MPG data.

[WeiByOrig,Country] = fitdist(MPG2,'weibull','by',Origin2);
[NormByOrig,Country] = fitdist(MPG2,'normal','by',Origin2);
[LogByOrig,Country] = fitdist(MPG2,'logistic','by',Origin2);
[KerByOrig,Country] = fitdist(MPG2,'kernel','by',Origin2);

WeiByOrig

WeiByOrig=1×5 cell array
  Columns 1 through 2

    {1x1 prob.WeibullDistribution}    {1x1 prob.WeibullDistribution}

  Columns 3 through 4

    {1x1 prob.WeibullDistribution}    {1x1 prob.WeibullDistribution}

  Column 5

    {1x1 prob.WeibullDistribution}

Country

Country = 5x1 cell
    {'France' }
    {'Germany'}
    {'Japan'  }
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    {'Sweden' }
    {'USA'    }

Each country group now has four distribution objects associated with it. For example, the cell array
WeiByOrig contains five Weibull distribution objects, one for each country represented in the sample
data. Likewise, the cell array NormByOrig contains five normal distribution objects, and so on. Each
object contains properties that hold information about the data, distribution, and parameters. The
array Country lists the country of origin for each group in the same order as the distribution objects
are stored in the cell arrays.

Step 4. Compute the pdf for each distribution.

Extract the four probability distribution objects for USA and compute the pdf for each distribution. As
shown in Step 3, USA is in position 5 in each cell array.

WeiUSA = WeiByOrig{5};
NormUSA = NormByOrig{5};
LogUSA = LogByOrig{5};
KerUSA = KerByOrig{5};

x = 0:1:50;
pdf_Wei = pdf(WeiUSA,x);
pdf_Norm = pdf(NormUSA,x);
pdf_Log = pdf(LogUSA,x);
pdf_Ker = pdf(KerUSA,x); 

Step 5. Plot pdf the for each distribution.

Plot the pdf for each distribution fit to the USA data, superimposed on a histogram of the sample
data. Normalize the histogram for easier display.

Create a histogram of the USA sample data.

data = MPG(Origin2=='USA');
figure
histogram(data,10,'Normalization','pdf','FaceColor',[1,0.8,0]);

Plot the pdf of each fitted distribution.

line(x,pdf_Wei,'LineStyle','-','Color','r')
line(x,pdf_Norm,'LineStyle','-.','Color','b')
line(x,pdf_Log,'LineStyle','--','Color','g')
line(x,pdf_Ker,'LineStyle',':','Color','k')
legend('Data','Weibull','Normal','Logistic','Kernel','Location','Best')
title('MPG for Cars from USA')
xlabel('MPG')
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Superimposing the pdf plots over a histogram of the sample data provides a visual comparison of how
well each type of distribution fits the data. Only the nonparametric kernel distribution KerUSA comes
close to revealing the two modes in the original data.

Step 6. Further group USA data by year.

To investigate the two modes revealed in Step 5, group the MPG data by both country of origin
(Origin) and model year (Model_Year), and use fitdist to fit kernel distributions to each group.

[KerByYearOrig,Names] = fitdist(MPG,'Kernel','By',{Origin Model_Year});

Each unique combination of origin and model year now has a kernel distribution object associated
with it.

Names

Names = 14x1 cell
    {'France...' }
    {'France...' }
    {'Germany...'}
    {'Germany...'}
    {'Germany...'}
    {'Italy...'  }
    {'Japan...'  }
    {'Japan...'  }
    {'Japan...'  }
    {'Sweden...' }
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    {'Sweden...' }
    {'USA...'    }
    {'USA...'    }
    {'USA...'    }

Plot the three probability distributions for each USA model year, which are in positions 12, 13, and 14
in the cell array KerByYearOrig.

figure
hold on
for i = 12 : 14
    plot(x,pdf(KerByYearOrig{i},x))
end
legend('1970','1976','1982')
title('MPG in USA Cars by Model Year')
xlabel('MPG')
hold off

When further grouped by model year, the pdf plots reveal two distinct peaks in the MPG data for cars
made in the USA — one for the model year 1970 and one for the model year 1982. This explains why
the histogram for the combined USA miles per gallon data shows two peaks instead of one.

See Also
fitdist | pdf | histogram
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More About
• “Grouping Variables” on page 2-46
• “Fit Probability Distribution Objects to Grouped Data” on page 5-93
• “Working with Probability Distributions” on page 5-3
• “Supported Distributions” on page 5-16
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Fit Probability Distribution Objects to Grouped Data

This example shows how to fit probability distribution objects to grouped sample data, and create a
plot to visually compare the pdf of each group.

Step 1. Load sample data.

Load the sample data.

load carsmall;

The data contains miles per gallon (MPG) measurements for different makes and models of cars,
grouped by country of origin (Origin), model year (Model_Year), and other vehicle characteristics.

Step 2. Create a categorical array.

Transform Origin into a categorical array.

Origin = categorical(cellstr(Origin));

Step 3. Fit kernel distributions to each group.

Use fitdist to fit kernel distributions to each country of origin group in the MPG data.

[KerByOrig,Country] = fitdist(MPG,'Kernel','by',Origin)

KerByOrig=1×6 cell array
  Columns 1 through 2

    {1x1 prob.KernelDistribution}    {1x1 prob.KernelDistribution}

  Columns 3 through 4

    {1x1 prob.KernelDistribution}    {1x1 prob.KernelDistribution}

  Columns 5 through 6

    {1x1 prob.KernelDistribution}    {1x1 prob.KernelDistribution}

Country = 6x1 cell
    {'France' }
    {'Germany'}
    {'Italy'  }
    {'Japan'  }
    {'Sweden' }
    {'USA'    }

The cell array KerByOrig contains six kernel distribution objects, one for each country represented
in the sample data. Each object contains properties that hold information about the data, the
distribution, and the parameters. The array Country lists the country of origin for each group in the
same order as the distribution objects are stored in KerByOrig.

 Fit Probability Distribution Objects to Grouped Data

5-93



Step 4. Compute the pdf for each group.

Extract the probability distribution objects for Germany, Japan, and USA. Use the positions of each
country in KerByOrig shown in Step 3, which indicates that Germany is the second country, Japan is
the fourth country, and USA is the sixth country. Compute the pdf for each group.

Germany = KerByOrig{2};
Japan = KerByOrig{4};
USA = KerByOrig{6};

x = 0:1:50;

USA_pdf = pdf(USA,x);
Japan_pdf = pdf(Japan,x);
Germany_pdf = pdf(Germany,x);

Step 5. Plot the pdf for each group.

Plot the pdf for each group on the same figure.

plot(x,USA_pdf,'r-')
hold on
plot(x,Japan_pdf,'b-.')
plot(x,Germany_pdf,'k:')
legend({'USA','Japan','Germany'},'Location','NW')
title('MPG by Country of Origin')
xlabel('MPG')
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The resulting plot shows how miles per gallon (MPG) performance differs by country of origin
(Origin). Using this data, the USA has the widest distribution, and its peak is at the lowest MPG
value of the three origins. Japan has the most regular distribution with a slightly heavier left tail, and
its peak is at the highest MPG value of the three origins. The peak for Germany is between the USA
and Japan, and the second bump near 44 miles per gallon suggests that there might be multiple
modes in the data.

See Also
pdf | fitdist

More About
• “Kernel Distribution” on page B-79
• “Grouping Variables” on page 2-46
• “Fit Distributions to Grouped Data Using ksdensity” on page 5-42
• “Working with Probability Distributions” on page 5-3
• “Supported Distributions” on page 5-16

 Fit Probability Distribution Objects to Grouped Data

5-95



Three-Parameter Weibull Distribution

Statistics and Machine Learning Toolbox™ uses a two-parameter “Weibull Distribution” on page B-
177 with a scale parameter a and a shape parameter b in the probability distribution object
WeibullDistribution and distribution-specific functions such as wblpdf and wblcdf. The Weibull
distribution can take a third parameter. The three-parameter Weibull distribution adds a location
parameter that is zero in the two-parameter case. If X has a two-parameter Weibull distribution, then
Y = X + c has a three-parameter Weibull distribution with the added location parameter c.

The probability density function (pdf) of the three-parameter Weibull distribution becomes

f (x |a, b, c) =
b
a

x− c
a

b− 1
exp − x− c

a
b

if x > c,

0 if x ≤ c,

where a and b are positive values, and c is a real value.

If the scale parameter b is less than 1, the probability density of the Weibull distribution approaches
infinity as x approaches c. The maximum of the likelihood function is infinite. The software might find
satisfactory estimates in some cases, but the global maximum is degenerate when b < 1.

This example shows how to find the maximum likelihood estimates (MLEs) for the three-parameter
Weibull distribution by using a custom defined pdf and the mle function. Also, the example explains
how to avoid the problem of a pdf approaching infinity when b < 1.

Load Data

Load the carsmall data set, which contains measurements of cars made in the 1970s and early
1980s.

load carsmall

This example uses car weight measurements in the Weight variable.

Fit Two-Parameter Weibull Distribution

First, fit a two-parameter Weibull distribution to Weight.

pd = fitdist(Weight,'Weibull')

pd = 
  WeibullDistribution

  Weibull distribution
    A = 3321.64   [3157.65, 3494.15]
    B = 4.10083   [3.52497, 4.77076]

Plot the fit with a histogram.

figure
histogram(Weight,8,'Normalization','pdf')
hold on
x = linspace(0,6000);
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plot(x,pdf(pd,x),'LineWidth',2)
hold off

The fitted distribution plot does not match the histogram well. The histogram shows no samples in
the region where Weight < 1500. Fit a Weibull distribution again after subtracting 1500 from
Weight.

pd = fitdist(Weight-1500,'Weibull')

pd = 
  WeibullDistribution

  Weibull distribution
    A = 1711.75   [1543.58, 1898.23]
    B = 1.99963   [1.70954, 2.33895]

figure
histogram(Weight-1500,8,'Normalization','pdf')
hold on
plot(x,pdf(pd,x),'LineWidth',2)
hold off
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The fitted distribution plot matches the histogram better.

Instead of specifying an arbitrary value for the distribution limit, you can define a custom function for
a three-parameter Weibull distribution and estimate the limit (location parameter c).

Define Custom pdf for Three-Parameter Weibull Distribution

Define a probability density function for a three-parameter Weibull distribution.

f_def = @(x,a,b,c) (x>c).*(b/a).*(((x-c)/a).^(b-1)).*exp(-((x-c)/a).^b);

Alternatively, you can use the wblpdf function to define the three-parameter Weibull distribution.

f = @(x,a,b,c) wblpdf(x-c,a,b);

Fit Three-Parameter Weibull Distribution

Find the MLEs for the three parameters by using the mle function. You must also specify the initial
parameter values (Start name-value argument) for the custom distribution.

try
    mle(Weight,'pdf',f,'Start',[1700 2 1500])
catch ME
    disp(ME)
end

  MException with properties:
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    identifier: 'stats:mle:NonpositivePdfVal'
       message: 'Custom probability function returned negative or zero values.'
         cause: {}
         stack: [12x1 struct]
    Correction: []

mle returns an error because the custom function returns nonpositive values. This error is a typical
problem when you fit a lower limit of a distribution, or fit a distribution with a region that has zero
probability density. mle tries some parameter values that have zero density, and then fails to estimate
parameters. In the previous function call, mle tries values of c that are higher than the minimum
value of Weight, which leads to a zero density for some points, and returns the error.

To avoid this problem, you can turn off the option that checks for invalid function values and specify
the parameter bounds when you call the mle function.

Display the default options for the iterative estimation process of the mle function.

statset('mlecustom')

ans = struct with fields:
          Display: 'off'
      MaxFunEvals: 400
          MaxIter: 200
           TolBnd: 1.0000e-06
           TolFun: 1.0000e-06
       TolTypeFun: []
             TolX: 1.0000e-06
         TolTypeX: []
          GradObj: 'off'
         Jacobian: []
        DerivStep: 6.0555e-06
      FunValCheck: 'on'
           Robust: []
     RobustWgtFun: []
           WgtFun: []
             Tune: []
      UseParallel: []
    UseSubstreams: []
          Streams: {}
        OutputFcn: []

Override that default, using an options structure created with the statset function. Specify the
FunValCheck field value as 'off' to turn off the validity check for the custom function values.

opt = statset('FunValCheck','off');

Find the MLEs of the three parameters again. Specify the iterative process option (Options name-
value argument) and parameter bounds (LowerBound and UpperBound name-value arguments). The
scale and shape parameters must be positive, and the location parameter must be smaller than the
minimum of the sample data.

params = mle(Weight,'pdf',f,'Start',[1700 2 1500],'Options',opt, ...
    'LowerBound',[0 0 -Inf],'UpperBound',[Inf Inf min(Weight)])

params = 1×3
103 ×
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    1.3874    0.0015    1.7581

Plot the fit with a histogram.

figure
histogram(Weight,8,'Normalization','pdf')
hold on
plot(x,f(x,params(1),params(2),params(3)),'LineWidth',2)
hold off

The fitted distribution plot matches the histogram well.

Fit Three-Parameter Weibull Distribution for b < 1

If the scale parameter b is less than 1, the pdf of the Weibull distribution approaches infinity near the
lower limit c (location parameter). You can avoid this problem by specifying interval-censored data, if
appropriate.

Load the cities data set. The data includes ratings for nine different indicators of the quality of life
in 329 US cities: climate, housing, health, crime, transportation, education, arts, recreation, and
economics. For each indicator, a higher rating is better.

load cities

Find the MLEs for the seventh indicator (arts).
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Y = ratings(:,7);
params1 = mle(Y,'pdf',f,'Start',[median(Y) 1 0],'Options',opt)

Warning: Maximum likelihood estimation did not converge.  Iteration limit exceeded.

params1 = 1×3
103 ×

    2.7584    0.0008    0.0520

The warning message indicates that the estimation does not converge. Modify the estimation options,
and find the MLEs again. Increase the maximum number of iterations (MaxIter) and the maximum
number of objective function evaluations (MaxFunEvals).

opt.MaxIter = 1e3;
opt.MaxFunEvals = 1e3;
params2 = mle(Y,'pdf',f,'Start',params1,'Options',opt)

Warning: Maximum likelihood estimation did not converge.  Function evaluation limit exceeded.

params2 = 1×3
103 ×

    2.7407    0.0008    0.0520

The iteration still does not converge because the pdf approaches infinity near the lower limit.

Assume that the indicators in Y are the values rounded to the nearest integer. Then, you can treat
values in Y as interval-censored observations. An observation y in Y indicates that the actual rating is
between y–0.5 and y+0.5. Create a matrix in which each row represents the interval surrounding
each integer in Y.

intervalY = [Y-0.5, Y+0.5];

Find the MLEs again using intervalY. To fit a custom distribution to a censored data set, you must
pass both the pdf and cdf to the mle function.

F = @(x,a,b,c) wblcdf(x-c,a,b);
params = mle(intervalY,'pdf',f,'cdf',F,'Start',params2,'Options',opt)

params = 1×3
103 ×

    2.7949    0.0008    0.0515

The function finds the MLEs without any convergence issues. This fit is based on fitting probabilities
to intervals, so it does not encounter the problem of a density approaching infinity at a single point.
You can use this approach only when converting data to an interval-censored version is appropriate.

Plot the results.

figure
histogram(Y,'Normalization','pdf')
hold on
x = linspace(0,max(Y));
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plot(x,f(x,params(1),params(2),params(3)),'LineWidth',2)
hold off

The fitted distribution plot matches the histogram well.

See Also
WeibullDistribution | mle | wblcdf | wblpdf

Related Examples
• “Weibull Distribution” on page B-177
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Multinomial Probability Distribution Objects

This example shows how to generate random numbers, compute and plot the pdf, and compute
descriptive statistics of a multinomial distribution using probability distribution objects.

Step 1. Define the distribution parameters.

Create a vector p containing the probability of each outcome. Outcome 1 has a probability of 1/2,
outcome 2 has a probability of 1/3, and outcome 3 has a probability of 1/6. The number of trials n in
each experiment is 5, and the number of repetitions reps of the experiment is 8.

p = [1/2 1/3 1/6];
n = 5;
reps = 8;

Step 2. Create a multinomial probability distribution object.

Create a multinomial probability distribution object using the specified value p for the
Probabilities parameter.

pd = makedist('Multinomial','Probabilities',p)

pd = 
  MultinomialDistribution

  Probabilities:
    0.5000    0.3333    0.1667

Step 3. Generate one random number.

Generate one random number from the multinomial distribution, which is the outcome of a single
trial.

rng('default')  % For reproducibility
r = random(pd)

r = 2

This trial resulted in outcome 2.

Step 4. Generate a matrix of random numbers.

You can also generate a matrix of random numbers from the multinomial distribution, which reports
the results of multiple experiments that each contain multiple trials. Generate a matrix that contains
the outcomes of an experiment with n = 5 trials and reps = 8 repetitions.

r = random(pd,reps,n)

r = 8×5

     3     3     3     2     1
     1     1     2     2     1
     3     3     3     1     2
     2     3     2     2     2
     1     1     1     1     1
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     1     2     3     2     3
     2     1     3     1     1
     3     1     2     1     1

Each element in the resulting matrix is the outcome of one trial. The columns correspond to the five
trials in each experiment, and the rows correspond to the eight experiments. For example, in the first
experiment (corresponding to the first row), one of the five trials resulted in outcome 1, one of the
five trials resulted in outcome 2, and three of the five trials resulted in outcome 3.

Step 5. Compute and plot the pdf.

Compute the pdf of the distribution.

x = 1:3;
y = pdf(pd,x);
bar(x,y)
xlabel('Outcome')
ylabel('Probability Mass')
title('Trinomial Distribution')

The plot shows the probability mass for each k possible outcome. For this distribution, the pdf value
for any x other than 1, 2, or 3 is 0.

Step 6. Compute descriptive statistics.

Compute the mean, median, and standard deviation of the distribution.
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m = mean(pd)

m = 1.6667

med = median(pd)

med = 1

s = std(pd)

s = 0.7454

See Also

More About
• “Multinomial Probability Distribution Functions” on page 5-106
• “Working with Probability Distributions” on page 5-3
• “Supported Distributions” on page 5-16
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Multinomial Probability Distribution Functions

This example shows how to generate random numbers and compute and plot the pdf of a multinomial
distribution using probability distribution functions.

Step 1. Define the distribution parameters.

Create a vector p containing the probability of each outcome. Outcome 1 has a probability of 1/2,
outcome 2 has a probability of 1/3, and outcome 3 has a probability of 1/6. The number of trials in
each experiment n is 5, and the number of repetitions of the experiment reps is 8.

p = [1/2 1/3 1/6];
n = 5;
reps = 8;

Step 2. Generate one random number.

Generate one random number from the multinomial distribution, which is the outcome of a single
trial.

rng('default')  % For reproducibility
r = mnrnd(1,p,1)

r = 1×3

     0     1     0

The returned vector r contains three elements, which show the counts for each possible outcome.
This single trial resulted in outcome 2.

Step 3. Generate a matrix of random numbers.

You can also generate a matrix of random numbers from the multinomial distribution, which reports
the results of multiple experiments that each contain multiple trials. Generate a matrix that contains
the outcomes of an experiment with n = 5 trials and reps = 8 repetitions.

r = mnrnd(n,p,reps)

r = 8×3

     1     1     3
     3     2     0
     1     1     3
     0     4     1
     5     0     0
     1     2     2
     3     1     1
     3     1     1

Each row in the resulting matrix contains counts for each of the k multinomial bins. For example, in
the first experiment (corresponding to the first row), one of the five trials resulted in outcome 1, one
of the five trials resulted in outcome 2, and three of the five trials resulted in outcome 3.
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Step 4. Compute the pdf.

Since multinomial functions work with bin counts, create a multidimensional array of all possible
outcome combinations, and compute the pdf using mnpdf.

count1 = 1:n;
count2 = 1:n;
[x1,x2] = meshgrid(count1,count2);
x3 = n-(x1+x2);
y = mnpdf([x1(:),x2(:),x3(:)],repmat(p,(n)^2,1));

Step 5. Plot the pdf.

Create a 3-D bar graph to visualize the pdf for each combination of outcome frequencies.

y = reshape(y,n,n);
bar3(y)
set(gca,'XTickLabel',1:n);
set(gca,'YTickLabel',1:n);
xlabel('x_1 Frequency')
ylabel('x_2 Frequency')
zlabel('Probability Mass')
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The plot shows the probability mass for each possible combination of outcomes. It does not show x3 ,
which is determined by the constraint x1 + x2 + x3 = n .

See Also

More About
• “Multinomial Probability Distribution Objects” on page 5-103
• “Working with Probability Distributions” on page 5-3
• “Supported Distributions” on page 5-16

5 Probability Distributions

5-108



Generate Random Numbers Using Uniform Distribution
Inversion

This example shows how to generate random numbers using the uniform distribution inversion
method. This is useful for distributions when it is possible to compute the inverse cumulative
distribution function, but there is no support for sampling from the distribution directly.

Step 1. Generate random numbers from the standard uniform distribution.

Use rand to generate 1000 random numbers from the uniform distribution on the interval (0,1).

rng('default')  % For reproducibility
u = rand(1000,1);

The inversion method relies on the principle that continuous cumulative distribution functions (cdfs)
range uniformly over the open interval (0,1). If u is a uniform random number on (0,1), then
x = F−1(u) generates a random number x from any continuous distribution with the specified cdf F.

Step 2. Generate random numbers from the Weibull distribution.

Use the inverse cumulative distribution function to generate the random numbers from a Weibull
distribution with parameters A = 1 and B = 1 that correspond to the probabilities in u. Plot the
results.

x = wblinv(u,1,1);
histogram(x,20);
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The histogram shows that the random numbers generated using the Weibull inverse cdf function
wblinv have a Weibull distribution.

Step 3. Generate random numbers from the standard normal distribution.

The same values in u can generate random numbers from any distribution, for example the standard
normal, by following the same procedure using the inverse cdf of the desired distribution.

figure
x_norm = norminv(u,1,1);
histogram(x_norm,20)
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The histogram shows that, by using the standard normal inverse cdf norminv, the random numbers
generated from u now have a standard normal distribution.

See Also
wblinv | norminv | rand | hist

More About
• “Uniform Distribution (Continuous)” on page B-170
• “Weibull Distribution” on page B-177
• “Normal Distribution” on page B-125
• “Random Number Generation” on page 5-28
• “Generate Random Numbers Using the Triangular Distribution” on page 5-48
• “Generating Pseudorandom Numbers” on page 7-2
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Represent Cauchy Distribution Using t Location-Scale

This example shows how to use the t location-scale probability distribution object to work with a
Cauchy distribution with nonstandard parameter values.

Step 1. Create a probability distribution object.

Create a t location-scale probability distribution object with degrees of freedom nu = 1. Specify mu
= 3 to set the location parameter equal to 3, and sigma = 1 to set the scale parameter equal to 1.

pd = makedist('tLocationScale','mu',3,'sigma',1,'nu',1)

pd = 
  tLocationScaleDistribution

  t Location-Scale distribution
       mu = 3
    sigma = 1
       nu = 1

Step 2. Compute descriptive statistics.

Use object functions to compute descriptive statistics for the Cauchy distribution.

med = median(pd)

med = 3

r = iqr(pd)

r = 2

m = mean(pd)

m = NaN

s = std(pd)

s = Inf

The median of the Cauchy distribution is equal to its location parameter, and the interquartile range
is equal to two times its scale parameter. Its mean and standard deviation are undefined.

Step 3. Compute and plot the pdf.

Compute and plot the pdf of the Cauchy distribution.

x = -20:1:20;
y = pdf(pd,x);
plot(x,y,'LineWidth',2)
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The peak of the pdf is centered at the location parameter mu = 3.

Step 4. Generate a vector of Cauchy random numbers.

Generate a column vector containing 10 random numbers from the Cauchy distribution using the
random function for the t location-scale probability distribution object.

rng('default');  % For reproducibility
r = random(pd,10,1)

r = 10×1

    3.2678
    4.6547
    2.0604
    4.7322
    3.1810
    1.6649
    1.8471
    4.2466
    5.4647
    8.8874

Step 5. Generate a matrix of Cauchy random numbers.

Generate a 5-by-5 matrix of Cauchy random numbers.
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r = random(pd,5,5)

r = 5×5

    2.2867    2.9692   -1.7003    5.5949    1.9806
    2.7421    2.7180    3.2210    2.4233    3.1394
    3.5966    3.9806    1.0182    6.4180    5.1367
    5.4791   15.6472    0.7558    2.8908    5.9031
    1.6863    4.0985    2.9934   13.9506    4.8792

See Also
makedist

More About
• “t Location-Scale Distribution” on page B-163
• “Generate Cauchy Random Numbers Using Student's t” on page 5-115
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Generate Cauchy Random Numbers Using Student's t

This example shows how to use the Student's t distribution to generate random numbers from a
standard Cauchy distribution.

Step 1. Generate a vector of random numbers.

Generate a column vector containing 10 random numbers from a standard Cauchy distribution, which
has a location parameter mu = 0 and scale parameter sigma = 1. Use trnd with degrees of
freedom V = 1.

rng('default');  % For reproducibility
r = trnd(1,10,1)

r = 10×1

    0.2678
    1.6547
   -0.9396
    1.7322
    0.1810
   -1.3351
   -1.1529
    1.2466
    2.4647
    5.8874

Step 2. Generate a matrix of random numbers.

Generate a 5-by-5 matrix of random numbers from a standard Cauchy distribution.

r = trnd(1,5,5)

r = 5×5

   -0.7133   -0.0308   -4.7003    2.5949   -1.0194
   -0.2579   -0.2820    0.2210   -0.5767    0.1394
    0.5966    0.9806   -1.9818    3.4180    2.1367
    2.4791   12.6472   -2.2442   -0.1092    2.9031
   -1.3137    1.0985   -0.0066   10.9506    1.8792

See Also
trnd

More About
• “Student's t Distribution” on page B-156
• “Represent Cauchy Distribution Using t Location-Scale” on page 5-112
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Generate Correlated Data Using Rank Correlation

This example shows how to use a copula and rank correlation to generate correlated data from
probability distributions that do not have an inverse cdf function available, such as the Pearson
flexible distribution family.

Step 1. Generate Pearson random numbers.

Generate 1000 random numbers from two different Pearson distributions, using the pearsrnd
function. The first distribution has the parameter values mu equal to 0, sigma equal to 1, skew equal
to 1, and kurtosis equal to 4. The second distribution has the parameter values mu equal to 0, sigma
equal to 1, skew equal to 0.75, and kurtosis equal to 3.

rng default  % For reproducibility
p1 = pearsrnd(0,1,-1,4,1000,1);
p2 = pearsrnd(0,1,0.75,3,1000,1);

At this stage, p1 and p2 are independent samples from their respective Pearson distributions, and are
uncorrelated.

Step 2. Plot the Pearson random numbers.

Create a scatterhist plot to visualize the Pearson random numbers.

figure
scatterhist(p1,p2)
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The histograms show the marginal distributions for p1 and p2. The scatterplot shows the joint
distribution for p1 and p2. The lack of pattern to the scatterplot shows that p1 and p2 are
independent.

Step 3. Generate random numbers using a Gaussian copula.

Use copularnd to generate 1000 correlated random numbers with a correlation coefficient equal to
–0.8, using a Gaussian copula. Create a scatterhist plot to visualize the random numbers
generated from the copula.

u = copularnd('Gaussian',-0.8,1000);
figure
scatterhist(u(:,1),u(:,2))

The histograms show that the data in each column of the copula have a marginal uniform distribution.
The scatterplot shows that the data in the two columns are negatively correlated.

Step 4. Sort the copula random numbers.

Using Spearman's rank correlation, transform the two independent Pearson samples into correlated
data.

Use the sort function to sort the copula random numbers from smallest to largest, and to return a
vector of indices describing the rearranged order of the numbers.

[s1,i1] = sort(u(:,1));
[s2,i2] = sort(u(:,2));
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s1 and s2 contain the numbers from the first and second columns of the copula, u, sorted in order
from smallest to largest. i1 and i2 are index vectors that describe the rearranged order of the
elements into s1 and s2. For example, if the first value in the sorted vector s1 is the third value in
the original unsorted vector, then the first value in the index vector i1 is 3.

Step 5. Transform the Pearson samples using Spearman's rank correlation.

Create two vectors of zeros, x1 and x2, that are the same size as the sorted copula vectors, s1 and
s2. Sort the values in p1 and p2 from smallest to largest. Place the values into x1 and x2, in the
same order as the indices i1 and i2 generated by sorting the copula random numbers.

x1 = zeros(size(s1));
x2 = zeros(size(s2));

x1(i1) = sort(p1);
x2(i2) = sort(p2);

Step 6. Plot the correlated Pearson random numbers.

Create a scatterhist plot to visualize the correlated Pearson data.

figure
scatterhist(x1,x2)

The histograms show the marginal Pearson distributions for each column of data. The scatterplot
shows the joint distribution of p1 and p2, and indicates that the data are now negatively correlated.
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Step 7. Confirm Spearman rank correlation coefficient values.

Confirm that the Spearman rank correlation coefficient is the same for the copula random numbers
and the correlated Pearson random numbers.

copula_corr = corr(u,'Type','spearman')

copula_corr = 2×2

    1.0000   -0.7858
   -0.7858    1.0000

pearson_corr = corr([x1,x2],'Type','spearman')

pearson_corr = 2×2

    1.0000   -0.7858
   -0.7858    1.0000

The Spearman rank correlation is the same for the copula and the Pearson random numbers.

See Also
copularnd | corr | sort

More About
• “Copulas: Generate Correlated Samples” on page 5-129

 Generate Correlated Data Using Rank Correlation

5-119



Create Gaussian Mixture Model

This example shows how to create a known, or fully specified, Gaussian mixture model (GMM) object
using gmdistribution and by specifying component means, covariances, and mixture proportions.
To create a GMM object by fitting data to a GMM, see “Fit Gaussian Mixture Model to Data” on page
5-123.

Specify the component means, covariances, and mixing proportions for a two-component mixture of
bivariate Gaussian distributions.

mu = [1 2;-3 -5];                    % Means
sigma = cat(3,[2 0;0 .5],[1 0;0 1]); % Covariances
p = ones(1,2)/2;                     % Mixing proportions

The rows of mu correspond to the component mean vectors, and the pages of sigma, sigma(:,;,J),
correspond to the component covariance matrices.

Create a GMM object using gmdistribution.

gm = gmdistribution(mu,sigma,p);

Display the properties of the GMM.

properties(gm)

Properties for class gmdistribution:

    NumVariables
    DistributionName
    NumComponents
    ComponentProportion
    SharedCovariance
    NumIterations
    RegularizationValue
    NegativeLogLikelihood
    CovarianceType
    mu
    Sigma
    AIC
    BIC
    Converged
    ProbabilityTolerance

For a description of the properties, see gmdistribution. To access the value of a property, use dot
notation. For example, access the number of variables of each GMM component.

dimension = gm.NumVariables

dimension = 2

Visualize the probability density function (pdf) of the GMM using pdf and the MATLAB® function
fsurf.

gmPDF = @(x,y) arrayfun(@(x0,y0) pdf(gm,[x0 y0]),x,y);
fsurf(gmPDF,[-10 10])
title('Probability Density Function of GMM');
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Visualize the cumulative distribution function (cdf) of the GMM using cdf and fsurf.

gmCDF = @(x,y) arrayfun(@(x0,y0) cdf(gm,[x0 y0]),x,y);
fsurf(gmCDF,[-10 10])
title('Cumulative Distribution Function of GMM');
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See Also
fitgmdist | gmdistribution

More About
• “Fit Gaussian Mixture Model to Data” on page 5-123
• “Simulate Data from Gaussian Mixture Model” on page 5-127
• “Cluster Using Gaussian Mixture Model” on page 17-39
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Fit Gaussian Mixture Model to Data

This example shows how to simulate data from a multivariate normal distribution, and then fit a
Gaussian mixture model (GMM) to the data using fitgmdist. To create a known, or fully specified,
GMM object, see “Create Gaussian Mixture Model” on page 5-120.

fitgmdist requires a matrix of data and the number of components in the GMM. To create a useful
GMM, you must choose k carefully. Too few components fails to model the data accurately (i.e.,
underfitting to the data). Too many components leads to an over-fit model with singular covariance
matrices.

Simulate data from a mixture of two bivariate Gaussian distributions using mvnrnd.

mu1 = [1 2];
sigma1 = [2 0; 0 .5];
mu2 = [-3 -5];
sigma2 = [1 0; 0 1];
rng(1); % For reproducibility
X = [mvnrnd(mu1,sigma1,1000);
     mvnrnd(mu2,sigma2,1000)];

Plot the simulated data.

scatter(X(:,1),X(:,2),10,'.') % Scatter plot with points of size 10
title('Simulated Data')

 Fit Gaussian Mixture Model to Data

5-123



Fit a two-component GMM. Use the 'Options' name-value pair argument to display the final output
of the fitting algorithm.

options = statset('Display','final');
gm = fitgmdist(X,2,'Options',options)

5 iterations, log-likelihood = -7105.71

gm = 

Gaussian mixture distribution with 2 components in 2 dimensions
Component 1:
Mixing proportion: 0.500000
Mean:   -3.0377   -4.9859

Component 2:
Mixing proportion: 0.500000
Mean:    0.9812    2.0563

Plot the pdf of the fitted GMM.

gmPDF = @(x,y) arrayfun(@(x0,y0) pdf(gm,[x0 y0]),x,y);
hold on
h = fcontour(gmPDF,[-8 6]);
title('Simulated Data and Contour lines of pdf');

Display the estimates for means, covariances, and mixture proportions
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ComponentMeans = gm.mu

ComponentMeans = 2×2

   -3.0377   -4.9859
    0.9812    2.0563

ComponentCovariances = gm.Sigma

ComponentCovariances = 
ComponentCovariances(:,:,1) =

    1.0132    0.0482
    0.0482    0.9796

ComponentCovariances(:,:,2) =

    1.9919    0.0127
    0.0127    0.5533

MixtureProportions = gm.ComponentProportion 

MixtureProportions = 1×2

    0.5000    0.5000

Fit four models to the data, each with an increasing number of components, and compare the Akaike
Information Criterion (AIC) values.

AIC = zeros(1,4);
gm = cell(1,4);
for k = 1:4
    gm{k} = fitgmdist(X,k);
    AIC(k)= gm{k}.AIC;
end

Display the number of components that minimizes the AIC value.

[minAIC,numComponents] = min(AIC);
numComponents

numComponents = 2

The two-component model has the smallest AIC value.

Display the two-component GMM.

gm2 = gm{numComponents}

gm2 = 

Gaussian mixture distribution with 2 components in 2 dimensions
Component 1:
Mixing proportion: 0.500000
Mean:   -3.0377   -4.9859
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Component 2:
Mixing proportion: 0.500000
Mean:    0.9812    2.0563

Both the AIC and Bayesian information criteria (BIC) are likelihood-based measures of model fit that
include a penalty for complexity (specifically, the number of parameters). You can use them to
determine an appropriate number of components for a model when the number of components is
unspecified.

See Also
fitgmdist | gmdistribution | mvnrnd | random

More About
• “Create Gaussian Mixture Model” on page 5-120
• “Simulate Data from Gaussian Mixture Model” on page 5-127
• “Cluster Using Gaussian Mixture Model” on page 17-39
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Simulate Data from Gaussian Mixture Model

This example shows how to simulate data from a Gaussian mixture model (GMM) using a fully
specified gmdistribution object and the random function.

Create a known, two-component GMM object.

mu = [1 2;-3 -5];
sigma = cat(3,[2 0;0 .5],[1 0;0 1]);
p = ones(1,2)/2;
gm = gmdistribution(mu,sigma,p);

Plot the contour of the pdf of the GMM.

gmPDF = @(x,y) arrayfun(@(x0,y0) pdf(gm,[x0 y0]),x,y);
fcontour(gmPDF,[-10 10]);
title('Contour lines of pdf');

Generate 1000 random variates from the GMM.

rng('default') % For reproducibility
X = random(gm,1000);

Plot the variates with the pdf contours.
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hold on
scatter(X(:,1),X(:,2),10,'.') % Scatter plot with points of size 10
title('Contour lines of pdf and Simulated Data')

See Also
fitgmdist | gmdistribution | mvnrnd | random

More About
• “Create Gaussian Mixture Model” on page 5-120
• “Fit Gaussian Mixture Model to Data” on page 5-123
• “Cluster Using Gaussian Mixture Model” on page 17-39
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Copulas: Generate Correlated Samples
In this section...
“Determining Dependence Between Simulation Inputs” on page 5-129
“Constructing Dependent Bivariate Distributions” on page 5-132
“Using Rank Correlation Coefficients” on page 5-136
“Using Bivariate Copulas” on page 5-138
“Higher Dimension Copulas” on page 5-145
“Archimedean Copulas” on page 5-146
“Simulating Dependent Multivariate Data Using Copulas” on page 5-147
“Fitting Copulas to Data” on page 5-151

Copulas are functions that describe dependencies among variables, and provide a way to create
distributions that model correlated multivariate data. Using a copula, you can construct a
multivariate distribution by specifying marginal univariate distributions, and then choose a copula to
provide a correlation structure between variables. Bivariate distributions, as well as distributions in
higher dimensions, are possible.

Determining Dependence Between Simulation Inputs
One of the design decisions for a Monte Carlo simulation is a choice of probability distributions for
the random inputs. Selecting a distribution for each individual variable is often straightforward, but
deciding what dependencies should exist between the inputs may not be. Ideally, input data to a
simulation should reflect what you know about dependence among the real quantities you are
modeling. However, there may be little or no information on which to base any dependence in the
simulation. In such cases, it is useful to experiment with different possibilities in order to determine
the model's sensitivity.

It can be difficult to generate random inputs with dependence when they have distributions that are
not from a standard multivariate distribution. Further, some of the standard multivariate distributions
can model only limited types of dependence. It is always possible to make the inputs independent,
and while that is a simple choice, it is not always sensible and can lead to the wrong conclusions.

For example, a Monte-Carlo simulation of financial risk could have two random inputs that represent
different sources of insurance losses. You could model these inputs as lognormal random variables. A
reasonable question to ask is how dependence between these two inputs affects the results of the
simulation. Indeed, you might know from real data that the same random conditions affect both
sources; ignoring that in the simulation could lead to the wrong conclusions.

Generate and Exponentiate Normal Random Variables

The lognrnd function simulates independent lognormal random variables. In the following example,
the mvnrnd function generates n pairs of independent normal random variables, and then
exponentiates them. Notice that the covariance matrix used here is diagonal.

n = 1000;

sigma = .5;
SigmaInd = sigma.^2 .* [1 0; 0 1]
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SigmaInd = 2×2

    0.2500         0
         0    0.2500

rng('default');  % For reproducibility
ZInd = mvnrnd([0 0],SigmaInd,n);
XInd = exp(ZInd);

plot(XInd(:,1),XInd(:,2),'.')
axis([0 5 0 5])
axis equal
xlabel('X1')
ylabel('X2')

Dependent bivariate lognormal random variables are also easy to generate using a covariance matrix
with nonzero off-diagonal terms.

rho = .7;
 
SigmaDep = sigma.^2 .* [1 rho; rho 1]  

SigmaDep = 2×2

    0.2500    0.1750
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    0.1750    0.2500

ZDep = mvnrnd([0 0],SigmaDep,n);
XDep = exp(ZDep);

A second scatter plot demonstrates the difference between these two bivariate distributions.

plot(XDep(:,1),XDep(:,2),'.')
axis([0 5 0 5])
axis equal
xlabel('X1')
ylabel('X2')

It is clear that there is a tendency in the second data set for large values of X1 to be associated with
large values of X2, and similarly for small values. The correlation parameter ρ of the underlying
bivariate normal determines this dependence. The conclusions drawn from the simulation could well
depend on whether you generate X1 and X2 with dependence. The bivariate lognormal distribution is
a simple solution in this case; it easily generalizes to higher dimensions in cases where the marginal
distributions are different lognormals.

Other multivariate distributions also exist. For example, the multivariate t and the Dirichlet
distributions simulate dependent t and beta random variables, respectively. But the list of simple
multivariate distributions is not long, and they only apply in cases where the marginals are all in the
same family (or even the exact same distributions). This can be a serious limitation in many
situations.
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Constructing Dependent Bivariate Distributions

Although the construction discussed in the previous section creates a bivariate lognormal that is
simple, it serves to illustrate a method that is more generally applicable.

1 Generate pairs of values from a bivariate normal distribution. There is statistical dependence
between these two variables, and each has a normal marginal distribution.

2 Apply a transformation (the exponential function) separately to each variable, changing the
marginal distributions into lognormals. The transformed variables still have a statistical
dependence.

If a suitable transformation can be found, this method can be generalized to create dependent
bivariate random vectors with other marginal distributions. In fact, a general method of constructing
such a transformation does exist, although it is not as simple as exponentiation alone.

By definition, applying the normal cumulative distribution function (cdf), denoted here by Φ, to a
standard normal random variable results in a random variable that is uniform on the interval [0,1]. To
see this, if Z has a standard normal distribution, then the cdf of U = Φ(Z) is

Pr U ≤ u = Pr Φ Z ≤ u = Pr Z ≤ Φ−1 u = u

and that is the cdf of a Unif(0,1) random variable. Histograms of some simulated normal and
transformed values demonstrate that fact:

n = 1000; 
rng default % for reproducibility
z = normrnd(0,1,n,1); % generate standard normal data

histogram(z,-3.75:.5:3.75,'FaceColor',[.8 .8 1]) % plot the histogram of data
xlim([-4 4])
title('1000 Simulated N(0,1) Random Values')
xlabel('Z')
ylabel('Frequency')
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u = normcdf(z);  % compute the cdf values of the sample data

figure
histogram(u,.05:.1:.95,'FaceColor',[.8 .8 1]) % plot the histogram of the cdf values
title('1000 Simulated N(0,1) Values Transformed to Unif(0,1)')
xlabel('U')
ylabel('Frequency')
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Borrowing from the theory of univariate random number generation, applying the inverse cdf of any
distribution, F, to a Unif(0,1) random variable results in a random variable whose distribution is
exactly F (see “Inversion Methods” on page 7-3). The proof is essentially the opposite of the
preceding proof for the forward case. Another histogram illustrates the transformation to a gamma
distribution:

x = gaminv(u,2,1); % transform to gamma values

figure
histogram(x,.25:.5:9.75,'FaceColor',[.8 .8 1]) % plot the histogram of gamma values
title('1000 Simulated N(0,1) Values Transformed to Gamma(2,1)')
xlabel('X')
ylabel('Frequency')
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You can apply this two-step transformation to each variable of a standard bivariate normal, creating
dependent random variables with arbitrary marginal distributions. Because the transformation works
on each component separately, the two resulting random variables need not even have the same
marginal distributions. The transformation is defined as:

Z = Z1, Z2 ∼ N 0, 0 ,
1 ρ
ρ 1

U = Φ Z1 , Φ Z2
X = G1 U1 , G2 U2

where G1 and G2 are inverse cdfs of two possibly different distributions. For example, the following
generates random vectors from a bivariate distribution with t5 and Gamma(2,1) marginals:

n = 1000; rho = .7;
Z = mvnrnd([0 0],[1 rho; rho 1],n);
U = normcdf(Z);
X = [gaminv(U(:,1),2,1) tinv(U(:,2),5)];

% draw the scatter plot of data with histograms 
figure
scatterhist(X(:,1),X(:,2),'Direction','out')
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This plot has histograms alongside a scatter plot to show both the marginal distributions, and the
dependence.

Using Rank Correlation Coefficients

The correlation parameter, ρ, of the underlying bivariate normal determines the dependence between
X1 and X2 in this construction. However, the linear correlation of X1 and X2 is not ρ. For example, in
the original lognormal case, a closed form for that correlation is:

cor X1, X2 = eρσ2− 1
eσ2− 1

which is strictly less than ρ, unless ρ is exactly 1. In more general cases such as the Gamma/t
construction, the linear correlation between X1 and X2 is difficult or impossible to express in terms of
ρ, but simulations show that the same effect happens.

That is because the linear correlation coefficient expresses the linear dependence between random
variables, and when nonlinear transformations are applied to those random variables, linear
correlation is not preserved. Instead, a rank correlation coefficient, such as Kendall's τ or Spearman's
ρ, is more appropriate.

Roughly speaking, these rank correlations measure the degree to which large or small values of one
random variable associate with large or small values of another. However, unlike the linear
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correlation coefficient, they measure the association only in terms of ranks. As a consequence, the
rank correlation is preserved under any monotonic transformation. In particular, the transformation
method just described preserves the rank correlation. Therefore, knowing the rank correlation of the
bivariate normal Z exactly determines the rank correlation of the final transformed random variables,
X. While the linear correlation coefficient, ρ, is still needed to parameterize the underlying bivariate
normal, Kendall's τ or Spearman's ρ are more useful in describing the dependence between random
variables, because they are invariant to the choice of marginal distribution.

For the bivariate normal, there is a simple one-to-one mapping between Kendall's τ or Spearman's ρ,
and the linear correlation coefficient ρ:

τ = 2
πarcsin ρ or ρ = sin τπ

2

ρs = 6
πarcsin ρ

2 or ρ = 2sin ρs
π
6

The following plot shows the relationship.

rho = -1:.01:1;
tau = 2.*asin(rho)./pi;
rho_s = 6.*asin(rho./2)./pi;

plot(rho,tau,'b-','LineWidth',2)
hold on
plot(rho,rho_s,'g-','LineWidth',2)
plot([-1 1],[-1 1],'k:','LineWidth',2)
axis([-1 1 -1 1])
xlabel('rho')
ylabel('Rank correlation coefficient')
legend('Kendall''s {\it\tau}', ...
       'Spearman''s {\it\rho_s}', ... 
       'location','NW')
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Thus, it is easy to create the desired rank correlation between X1 and X2, regardless of their
marginal distributions, by choosing the correct ρ parameter value for the linear correlation between
Z1 and Z2.

For the multivariate normal distribution, Spearman's rank correlation is almost identical to the linear
correlation. However, this is not true once you transform to the final random variables.

Using Bivariate Copulas

The first step of the construction described in the previous section defines what is known as a
bivariate Gaussian copula. A copula is a multivariate probability distribution, where each random
variable has a uniform marginal distribution on the unit interval [0,1]. These variables may be
completely independent, deterministically related (e.g., U2 = U1), or anything in between. Because
of the possibility for dependence among variables, you can use a copula to construct a new
multivariate distribution for dependent variables. By transforming each of the variables in the copula
separately using the inversion method, possibly using different cdfs, the resulting distribution can
have arbitrary marginal distributions. Such multivariate distributions are often useful in simulations,
when you know that the different random inputs are not independent of each other.

Statistics and Machine Learning Toolbox functions compute:

• Probability density functions (copulapdf) and the cumulative distribution functions (copulacdf)
for Gaussian copulas
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• Rank correlations from linear correlations (copulastat) and vice versa (copulaparam)
• Random vectors (copularnd)
• Parameters for copulas fit to data (copulafit)

For example, use the copularnd function to create scatter plots of random values from a bivariate
Gaussian copula for various levels of ρ, to illustrate the range of different dependence structures. The
family of bivariate Gaussian copulas is parameterized by the linear correlation matrix:

P =
1 ρ
ρ 1

U1 and U2 approach linear dependence as ρ approaches ±1, and approach complete independence as
ρ approaches zero:

n = 500;

rng('default') % for reproducibility
U = copularnd('Gaussian',[1 .8; .8 1],n);
subplot(2,2,1)
plot(U(:,1),U(:,2),'.')
title('{\it\rho} = 0.8')
xlabel('U1')
ylabel('U2')

U = copularnd('Gaussian',[1 .1; .1 1],n);
subplot(2,2,2)
plot(U(:,1),U(:,2),'.')
title('{\it\rho} = 0.1')
xlabel('U1')
ylabel('U2')

U = copularnd('Gaussian',[1 -.1; -.1 1],n);
subplot(2,2,3)
plot(U(:,1),U(:,2),'.')
title('{\it\rho} = -0.1')
xlabel('U1')
ylabel('U2')

U = copularnd('Gaussian',[1 -.8; -.8 1],n);
subplot(2,2,4)
plot(U(:,1),U(:,2),'.')
title('{\it\rho} = -0.8')
xlabel('U1')
ylabel('U2')
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The dependence between U1 and U2 is completely separate from the marginal distributions of X1 =
G(U1) and X2 = G(U2). X1 and X2 can be given any marginal distributions, and still have the same
rank correlation. This is one of the main appeals of copulas—they allow this separate specification of
dependence and marginal distribution. You can also compute the pdf (copulapdf) and the cdf
(copulacdf) for a copula. For example, these plots show the pdf and cdf for ρ = .8:

u1 = linspace(1e-3,1-1e-3,50);
u2 = linspace(1e-3,1-1e-3,50);
[U1,U2] = meshgrid(u1,u2);
Rho = [1 .8; .8 1];
f = copulapdf('t',[U1(:) U2(:)],Rho,5);
f = reshape(f,size(U1));

figure
surf(u1,u2,log(f),'FaceColor','interp','EdgeColor','none')
view([-15,20])
xlabel('U1')
ylabel('U2')
zlabel('Probability Density')
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u1 = linspace(1e-3,1-1e-3,50);
u2 = linspace(1e-3,1-1e-3,50);
[U1,U2] = meshgrid(u1,u2);
F = copulacdf('t',[U1(:) U2(:)],Rho,5);
F = reshape(F,size(U1));

figure()
surf(u1,u2,F,'FaceColor','interp','EdgeColor','none')
view([-15,20])
xlabel('U1')
ylabel('U2')
zlabel('Cumulative Probability')
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A different family of copulas can be constructed by starting from a bivariate t distribution and
transforming using the corresponding t cdf. The bivariate t distribution is parameterized with P, the
linear correlation matrix, and ν, the degrees of freedom. Thus, for example, you can speak of a t1 or a
t5 copula, based on the multivariate t with one and five degrees of freedom, respectively.

Just as for Gaussian copulas, Statistics and Machine Learning Toolbox functions for t copulas
compute:

• Probability density functions (copulapdf) and the cumulative distribution functions (copulacdf)
for t copulas

• Rank correlations from linear correlations (copulastat) and vice versa (copulaparam)
• Random vectors (copularnd)
• Parameters for copulas fit to data (copulafit)

For example, use the copularnd function to create scatter plots of random values from a bivariate t1
copula for various levels of ρ, to illustrate the range of different dependence structures:

n = 500;
nu = 1;

rng('default') % for reproducibility
U = copularnd('t',[1 .8; .8 1],nu,n);
subplot(2,2,1)
plot(U(:,1),U(:,2),'.')
title('{\it\rho} = 0.8')
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xlabel('U1')
ylabel('U2')

U = copularnd('t',[1 .1; .1 1],nu,n);
subplot(2,2,2)
plot(U(:,1),U(:,2),'.')
title('{\it\rho} = 0.1')
xlabel('U1')
ylabel('U2')

U = copularnd('t',[1 -.1; -.1 1],nu,n);
subplot(2,2,3)
plot(U(:,1),U(:,2),'.')
title('{\it\rho} = -0.1')
xlabel('U1')
ylabel('U2')

U = copularnd('t',[1 -.8; -.8 1],nu, n);
subplot(2,2,4)
plot(U(:,1),U(:,2),'.')
title('{\it\rho} = -0.8')
xlabel('U1')
ylabel('U2')

A t copula has uniform marginal distributions for U1 and U2, just as a Gaussian copula does. The rank
correlation τ or ρs between components in a t copula is also the same function of ρ as for a Gaussian.
However, as these plots demonstrate, a t1 copula differs quite a bit from a Gaussian copula, even
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when their components have the same rank correlation. The difference is in their dependence
structure. Not surprisingly, as the degrees of freedom parameter ν is made larger, a tν copula
approaches the corresponding Gaussian copula.

As with a Gaussian copula, any marginal distributions can be imposed over a t copula. For example,
using a t copula with 1 degree of freedom, you can again generate random vectors from a bivariate
distribution with Gamma(2,1) and t5 marginals using copularnd:

n = 1000;
rho = .7;
nu = 1;

rng('default') % for reproducibility
U = copularnd('t',[1 rho; rho 1],nu,n);
X = [gaminv(U(:,1),2,1) tinv(U(:,2),5)];

figure
scatterhist(X(:,1),X(:,2),'Direction','out')

Compared to the bivariate Gamma/t distribution constructed earlier, which was based on a Gaussian
copula, the distribution constructed here, based on a t1 copula, has the same marginal distributions
and the same rank correlation between variables but a very different dependence structure. This
illustrates the fact that multivariate distributions are not uniquely defined by their marginal
distributions, or by their correlations. The choice of a particular copula in an application may be
based on actual observed data, or different copulas may be used as a way of determining the
sensitivity of simulation results to the input distribution.
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Higher Dimension Copulas

The Gaussian and t copulas are known as elliptical copulas. It is easy to generalize elliptical copulas
to a higher number of dimensions. For example, simulate data from a trivariate distribution with
Gamma(2,1), Beta(2,2), and t5 marginals using a Gaussian copula and copularnd, as follows:

n = 1000;
Rho = [1 .4 .2; .4 1 -.8; .2 -.8 1];
rng('default') % for reproducibility
U = copularnd('Gaussian',Rho,n);
X = [gaminv(U(:,1),2,1) betainv(U(:,2),2,2) tinv(U(:,3),5)];

Plot the data.

subplot(1,1,1)
plot3(X(:,1),X(:,2),X(:,3),'.')
grid on
view([-55, 15])
xlabel('X1')
ylabel('X2')
zlabel('X3')

Notice that the relationship between the linear correlation parameter ρ and, for example, Kendall's τ,
holds for each entry in the correlation matrix P used here. You can verify that the sample rank
correlations of the data are approximately equal to the theoretical values:
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tauTheoretical = 2.*asin(Rho)./pi

tauTheoretical = 3×3

    1.0000    0.2620    0.1282
    0.2620    1.0000   -0.5903
    0.1282   -0.5903    1.0000

tauSample = corr(X,'type','Kendall')

tauSample = 3×3

    1.0000    0.2581    0.1414
    0.2581    1.0000   -0.5790
    0.1414   -0.5790    1.0000

Archimedean Copulas

Statistics and Machine Learning Toolbox functions are available for three bivariate Archimedean
copula families:

• Clayton copulas
• Frank copulas
• Gumbel copulas

These are one-parameter families that are defined directly in terms of their cdfs, rather than being
defined constructively using a standard multivariate distribution.

To compare these three Archimedean copulas to the Gaussian and t bivariate copulas, first use the
copulastat function to find the rank correlation for a Gaussian or t copula with linear correlation
parameter of 0.8, and then use the copulaparam function to find the Clayton copula parameter that
corresponds to that rank correlation:

tau = copulastat('Gaussian',.8 ,'type','kendall')

tau = 0.5903

alpha = copulaparam('Clayton',tau,'type','kendall')

alpha = 2.8820

Finally, plot a random sample from the Clayton copula with copularnd. Repeat the same procedure
for the Frank and Gumbel copulas:

n = 500;

U = copularnd('Clayton',alpha,n);
subplot(3,1,1)
plot(U(:,1),U(:,2),'.');
title(['Clayton Copula, {\it\alpha} = ',sprintf('%0.2f',alpha)])
xlabel('U1')
ylabel('U2')
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alpha = copulaparam('Frank',tau,'type','kendall');
U = copularnd('Frank',alpha,n);
subplot(3,1,2)
plot(U(:,1),U(:,2),'.')
title(['Frank Copula, {\it\alpha} = ',sprintf('%0.2f',alpha)])
xlabel('U1')
ylabel('U2')

alpha = copulaparam('Gumbel',tau,'type','kendall');
U = copularnd('Gumbel',alpha,n);
subplot(3,1,3)
plot(U(:,1),U(:,2),'.')
title(['Gumbel Copula, {\it\alpha} = ',sprintf('%0.2f',alpha)])
xlabel('U1')
ylabel('U2')

Simulating Dependent Multivariate Data Using Copulas

To simulate dependent multivariate data using a copula, you must specify each of the following:

• The copula family (and any shape parameters)
• The rank correlations among variables
• Marginal distributions for each variable
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Suppose you have return data for two stocks and want to run a Monte Carlo simulation with inputs
that follow the same distributions as the data:

load stockreturns
nobs = size(stocks,1);

subplot(2,1,1)
histogram(stocks(:,1),10,'FaceColor',[.8 .8 1])
xlim([-3.5 3.5])
xlabel('X1')
ylabel('Frequency')

subplot(2,1,2)
histogram(stocks(:,2),10,'FaceColor',[.8 .8 1])
xlim([-3.5 3.5])
xlabel('X2')
ylabel('Frequency')

You could fit a parametric model separately to each dataset, and use those estimates as the marginal
distributions. However, a parametric model may not be sufficiently flexible. Instead, you can use a
nonparametric model to transform to the marginal distributions. All that is needed is a way to
compute the inverse cdf for the nonparametric model.

The simplest nonparametric model is the empirical cdf, as computed by the ecdf function. For a
discrete marginal distribution, this is appropriate. However, for a continuous distribution, use a
model that is smoother than the step function computed by ecdf. One way to do that is to estimate
the empirical cdf and interpolate between the midpoints of the steps with a piecewise linear function.
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Another way is to use kernel smoothing with ksdensity. For example, compare the empirical cdf to
a kernel smoothed cdf estimate for the first variable:

[Fi,xi] = ecdf(stocks(:,1));

figure()
stairs(xi,Fi,'b','LineWidth',2)
hold on

Fi_sm = ksdensity(stocks(:,1),xi,'function','cdf','width',.15);

plot(xi,Fi_sm,'r-','LineWidth',1.5)
xlabel('X1')
ylabel('Cumulative Probability')
legend('Empirical','Smoothed','Location','NW')
grid on

For the simulation, experiment with different copulas and correlations. Here, you will use a bivariate t
copula with a fairly small degrees of freedom parameter. For the correlation parameter, you can
compute the rank correlation of the data.

nu = 5;
tau = corr(stocks(:,1),stocks(:,2),'type','kendall')

tau = 0.5180

Find the corresponding linear correlation parameter for the t copula using copulaparam.
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rho = copulaparam('t', tau, nu, 'type','kendall')

rho = 0.7268

Next, use copularnd to generate random values from the t copula and transform using the
nonparametric inverse cdfs. The ksdensity function allows you to make a kernel estimate of
distribution and evaluate the inverse cdf at the copula points all in one step:

n = 1000;
U = copularnd('t',[1 rho; rho 1],nu,n);
X1 = ksdensity(stocks(:,1),U(:,1),...
               'function','icdf','width',.15);
X2 = ksdensity(stocks(:,2),U(:,2),...
               'function','icdf','width',.15);

Alternatively, when you have a large amount of data or need to simulate more than one set of values,
it may be more efficient to compute the inverse cdf over a grid of values in the interval (0,1) and
use interpolation to evaluate it at the copula points:

p = linspace(0.00001,0.99999,1000);
G1 = ksdensity(stocks(:,1),p,'function','icdf','width',0.15);
X1 = interp1(p,G1,U(:,1),'spline');
G2 = ksdensity(stocks(:,2),p,'function','icdf','width',0.15);
X2 = interp1(p,G2,U(:,2),'spline');

scatterhist(X1,X2,'Direction','out')
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The marginal histograms of the simulated data are a smoothed version of the histograms for the
original data. The amount of smoothing is controlled by the bandwidth input to ksdensity.

Fitting Copulas to Data

This example shows how to use copulafit to calibrate copulas with data. To generate data Xsim
with a distribution "just like" (in terms of marginal distributions and correlations) the distribution of
data in the matrix X, you need to fit marginal distributions to the columns of X, use appropriate cdf
functions to transform X to U, so that U has values between 0 and 1, use copulafit to fit a copula to
U, generate new data Usim from the copula, and use appropriate inverse cdf functions to transform
Usim to Xsim .

Load and plot the simulated stock return data.

load stockreturns
x = stocks(:,1);
y = stocks(:,2);

scatterhist(x,y,'Direction','out')

Transform the data to the copula scale (unit square) using a kernel estimator of the cumulative
distribution function.

u = ksdensity(x,x,'function','cdf');
v = ksdensity(y,y,'function','cdf');
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scatterhist(u,v,'Direction','out')
xlabel('u')
ylabel('v')

Fit a t copula.

[Rho,nu] = copulafit('t',[u v],'Method','ApproximateML')

Rho = 2×2

    1.0000    0.7220
    0.7220    1.0000

nu = 3.4516e+06

Generate a random sample from the t copula.

r = copularnd('t',Rho,nu,1000);
u1 = r(:,1);
v1 = r(:,2);

scatterhist(u1,v1,'Direction','out')
xlabel('u')
ylabel('v')
set(get(gca,'children'),'marker','.')
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Transform the random sample back to the original scale of the data.

x1 = ksdensity(x,u1,'function','icdf'); 
y1 = ksdensity(y,v1,'function','icdf');

scatterhist(x1,y1,'Direction','out')
set(get(gca,'children'),'marker','.')
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As the example illustrates, copulas integrate naturally with other distribution fitting functions.

See Also
copulacdf | copulafit | copulaparam | copulapdf | copulastat | copularnd

Related Examples
• “Generate Correlated Data Using Rank Correlation” on page 5-116
• “Simulating Dependent Random Variables Using Copulas” on page 5-155
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Simulating Dependent Random Variables Using Copulas

This example shows how to use copulas to generate data from multivariate distributions when there
are complicated relationships among the variables, or when the individual variables are from
different distributions.

MATLAB® is an ideal tool for running simulations that incorporate random inputs or noise. Statistics
and Machine Learning Toolbox™ provides functions to create sequences of random data according to
many common univariate distributions. The Toolbox also includes a few functions to generate random
data from multivariate distributions, such as the multivariate normal and multivariate t. However,
there is no built-in way to generate multivariate distributions for all marginal distributions, or in
cases where the individual variables are from different distributions.

Recently, copulas have become popular in simulation models. Copulas are functions that describe
dependencies among variables, and provide a way to create distributions to model correlated
multivariate data. Using a copula, a data analyst can construct a multivariate distribution by
specifying marginal univariate distributions, and choosing a particular copula to provide a correlation
structure between variables. Bivariate distributions, as well as distributions in higher dimensions, are
possible. In this example, we discuss how to use copulas to generate dependent multivariate random
data in MATLAB, using Statistics and Machine Learning Toolbox.

Dependence Between Simulation Inputs

One of the design decisions for a Monte-Carlo simulation is a choice of probability distributions for
the random inputs. Selecting a distribution for each individual variable is often straightforward, but
deciding what dependencies should exist between the inputs may not be. Ideally, input data to a
simulation should reflect what is known about dependence among the real quantities being modelled.
However, there may be little or no information on which to base any dependence in the simulation,
and in such cases, it is a good idea to experiment with different possibilities, in order to determine
the model's sensitivity.

However, it can be difficult to actually generate random inputs with dependence when they have
distributions that are not from a standard multivariate distribution. Further, some of the standard
multivariate distributions can model only very limited types of dependence. It's always possible to
make the inputs independent, and while that is a simple choice, it's not always sensible and can lead
to the wrong conclusions.

For example, a Monte-Carlo simulation of financial risk might have random inputs that represent
different sources of insurance losses. These inputs might be modeled as lognormal random variables.
A reasonable question to ask is how dependence between these two inputs affects the results of the
simulation. Indeed, it might be known from real data that the same random conditions affect both
sources, and ignoring that in the simulation could lead to the wrong conclusions.

Simulation of independent lognormal random variables is trivial. The simplest way would be to use
the lognrnd function. Here, we'll use the mvnrnd function to generate n pairs of independent
normal random variables, and then exponentiate them. Notice that the covariance matrix used here is
diagonal, i.e., independence between the columns of Z.

n = 1000;
sigma = .5;
SigmaInd = sigma.^2 .* [1 0; 0 1]

SigmaInd =
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    0.2500         0
         0    0.2500

ZInd = mvnrnd([0 0], SigmaInd, n);
XInd = exp(ZInd);
plot(XInd(:,1),XInd(:,2),'.');
axis equal;
axis([0 5 0 5]);
xlabel('X1');
ylabel('X2');

Dependent bivariate lognormal r.v.'s are also easy to generate, using a covariance matrix with non-
zero off-diagonal terms.

rho = .7;
SigmaDep = sigma.^2 .* [1 rho; rho 1]

SigmaDep =

    0.2500    0.1750
    0.1750    0.2500

ZDep = mvnrnd([0 0], SigmaDep, n);
XDep = exp(ZDep);
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A second scatter plot illustrates the difference between these two bivariate distributions.

plot(XDep(:,1),XDep(:,2),'.');
axis equal;
axis([0 5 0 5]);
xlabel('X1');
ylabel('X2');

It's clear that there is more of a tendency in the second dataset for large values of X1 to be associated
with large values of X2, and similarly for small values. This dependence is determined by the
correlation parameter, rho, of the underlying bivariate normal. The conclusions drawn from the
simulation could well depend on whether or not X1 and X2 were generated with dependence or not.

The bivariate lognormal distribution is a simple solution in this case, and of course easily generalizes
to higher dimensions and cases where the marginal distributions are different lognormals. Other
multivariate distributions also exist, for example, the multivariate t and the Dirichlet distributions are
used to simulate dependent t and beta random variables, respectively. But the list of simple
multivariate distributions is not long, and they only apply in cases where the marginals are all in the
same family (or even the exact same distributions). This can be a real limitation in many situations.

A More General Method for Constructing Dependent Bivariate Distributions

Although the above construction that creates a bivariate lognormal is simple, it serves to illustrate a
method which is more generally applicable. First, we generate pairs of values from a bivariate normal
distribution. There is statistical dependence between these two variables, and each has a normal
marginal distribution. Next, a transformation (the exponential function) is applied separately to each
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variable, changing the marginal distributions into lognormals. The transformed variables still have a
statistical dependence.

If a suitable transformation could be found, this method could be generalized to create dependent
bivariate random vectors with other marginal distributions. In fact, a general method of constructing
such a transformation does exist, although not as simple as just exponentiation.

By definition, applying the normal CDF (denoted here by PHI) to a standard normal random variable
results in a r.v. that is uniform on the interval [0, 1]. To see this, if Z has a standard normal
distribution, then the CDF of U = PHI(Z) is

  Pr{U <= u0} = Pr{PHI(Z) <= u0} = Pr{Z <= PHI^(-1)(u0)} = u0,

and that is the CDF of a U(0,1) r.v. Histograms of some simulated normal and transformed values
demonstrate that fact.

n = 1000;
z = normrnd(0,1,n,1);
hist(z,-3.75:.5:3.75);
xlim([-4 4]);
title('1000 Simulated N(0,1) Random Values');
xlabel('Z');
ylabel('Frequency');

u = normcdf(z);
hist(u,.05:.1:.95);
title('1000 Simulated N(0,1) Values Transformed to U(0,1)');
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xlabel('U');
ylabel('Frequency');

Now, borrowing from the theory of univariate random number generation, applying the inverse CDF
of any distribution F to a U(0,1) random variable results in a r.v. whose distribution is exactly F. This
is known as the Inversion Method. The proof is essentially the opposite of the above proof for the
forward case. Another histogram illustrates the transformation to a gamma distribution.

x = gaminv(u,2,1);
hist(x,.25:.5:9.75);
title('1000 Simulated N(0,1) Values Transformed to Gamma(2,1)');
xlabel('X');
ylabel('Frequency');
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This two-step transformation can be applied to each variable of a standard bivariate normal, creating
dependent r.v.'s with arbitrary marginal distributions. Because the transformation works on each
component separately, the two resulting r.v.'s need not even have the same marginal distributions.
The transformation is defined as

  Z = [Z1 Z2] ~ N([0 0],[1 rho; rho 1])
  U = [PHI(Z1) PHI(Z2)]
  X = [G1(U1) G2(U2)]

where G1 and G2 are inverse CDFs of two possibly different distributions. For example, we can
generate random vectors from a bivariate distribution with t(5) and Gamma(2,1) marginals.

n = 1000;
rho = .7;
Z = mvnrnd([0 0], [1 rho; rho 1], n);
U = normcdf(Z);
X = [gaminv(U(:,1),2,1) tinv(U(:,2),5)];

This plot has histograms alongside a scatter plot to show both the marginal distributions, and the
dependence.

[n1,ctr1] = hist(X(:,1),20);
[n2,ctr2] = hist(X(:,2),20);
subplot(2,2,2);
plot(X(:,1),X(:,2),'.');
axis([0 12 -8 8]);
h1 = gca;
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title('1000 Simulated Dependent t and Gamma Values');
xlabel('X1 ~ Gamma(2,1)');
ylabel('X2 ~ t(5)');
subplot(2,2,4);
bar(ctr1,-n1,1);
axis([0 12 -max(n1)*1.1 0]);
axis('off');
h2 = gca;
subplot(2,2,1);
barh(ctr2,-n2,1);
axis([-max(n2)*1.1 0 -8 8]);
axis('off');
h3 = gca;
h1.Position = [0.35 0.35 0.55 0.55];
h2.Position = [.35 .1 .55 .15];
h3.Position = [.1 .35 .15 .55];
colormap([.8 .8 1]);

Rank Correlation Coefficients

Dependence between X1 and X2 in this construction is determined by the correlation parameter, rho,
of the underlying bivariate normal. However, it is not true that the linear correlation of X1 and X2 is
rho. For example, in the original lognormal case, there is a closed form for that correlation:

  cor(X1,X2) = (exp(rho.*sigma.^2) - 1) ./ (exp(sigma.^2) - 1)
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which is strictly less than rho unless rho is exactly one. In more general cases, though, such as the
Gamma/t construction above, the linear correlation between X1 and X2 is difficult or impossible to
express in terms of rho, but simulations can be used to show that the same effect happens.

That's because the linear correlation coefficient expresses the linear dependence between r.v.'s, and
when nonlinear transformations are applied to those r.v.'s, linear correlation is not preserved.
Instead, a rank correlation coefficient, such as Kendall's tau or Spearman's rho, is more appropriate.

Roughly speaking, these rank correlations measure the degree to which large or small values of one
r.v. associate with large or small values of another. However, unlike the linear correlation coefficient,
they measure the association only in terms of ranks. As a consequence, the rank correlation is
preserved under any monotonic transformation. In particular, the transformation method just
described preserves the rank correlation. Therefore, knowing the rank correlation of the bivariate
normal Z exactly determines the rank correlation of the final transformed r.v.'s X. While rho is still
needed to parameterize the underlying bivariate normal, Kendall's tau or Spearman's rho are more
useful in describing the dependence between r.v.'s, because they are invariant to the choice of
marginal distribution.

It turns out that for the bivariate normal, there is a simple 1-1 mapping between Kendall's tau or
Spearman's rho, and the linear correlation coefficient rho:

  tau   = (2/pi)*arcsin(rho)     or   rho = sin(tau*pi/2)
  rho_s = (6/pi)*arcsin(rho/2)   or   rho = 2*sin(rho_s*pi/6)

subplot(1,1,1);
rho = -1:.01:1;
tau = 2.*asin(rho)./pi;
rho_s = 6.*asin(rho./2)./pi;
plot(rho,tau,'-', rho,rho_s,'-', [-1 1],[-1 1],'k:');
axis([-1 1 -1 1]);
xlabel('rho');
ylabel('Rank correlation coefficient');
legend('Kendall''s tau', 'Spearman''s rho_s', 'location','northwest');
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Thus, it's easy to create the desired rank correlation between X1 and X2, regardless of their marginal
distributions, by choosing the correct rho parameter value for the linear correlation between Z1 and
Z2.

Notice that for the multivariate normal distribution, Spearman's rank correlation is almost identical
to the linear correlation. However, this is not true once we transform to the final random variables.

Copulas

The first step of the construction described above defines what is known as a copula, specifically, a
Gaussian copula. A bivariate copula is simply a probability distribution on two random variables, each
of whose marginal distributions is uniform. These two variables may be completely independent,
deterministically related (e.g., U2 = U1), or anything in between. The family of bivariate Gaussian
copulas is parameterized by Rho = [1 rho; rho 1], the linear correlation matrix. U1 and U2 approach
linear dependence as rho approaches +/- 1, and approach complete independence as rho approaches
zero.

Scatter plots of some simulated random values for various levels of rho illustrate the range of
different possibilities for Gaussian copulas:

n = 500;
Z = mvnrnd([0 0], [1 .8; .8 1], n);
U = normcdf(Z,0,1);
subplot(2,2,1);
plot(U(:,1),U(:,2),'.');
title('rho = 0.8');
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xlabel('U1');
ylabel('U2');
Z = mvnrnd([0 0], [1 .1; .1 1], n);
U = normcdf(Z,0,1);
subplot(2,2,2);
plot(U(:,1),U(:,2),'.');
title('rho = 0.1');
xlabel('U1');
ylabel('U2');
Z = mvnrnd([0 0], [1 -.1; -.1 1], n);
U = normcdf(Z,0,1);
subplot(2,2,3);
plot(U(:,1),U(:,2),'.');
title('rho = -0.1');
xlabel('U1');
ylabel('U2');
Z = mvnrnd([0 0], [1 -.8; -.8 1], n);
U = normcdf(Z,0,1);
subplot(2,2,4);
plot(U(:,1),U(:,2),'.');
title('rho = -0.8');
xlabel('U1');
ylabel('U2');

The dependence between U1 and U2 is completely separate from the marginal distributions of X1 =
G(U1) and X2 = G(U2). X1 and X2 can be given any marginal distributions, and still have the same

5 Probability Distributions

5-164



rank correlation. This is one of the main appeals of copulas -- they allow this separate specification of
dependence and marginal distribution.

t Copulas

A different family of copulas can be constructed by starting from a bivariate t distribution, and
transforming using the corresponding t CDF. The bivariate t distribution is parameterized with Rho,
the linear correlation matrix, and nu, the degrees of freedom. Thus, for example, we can speak of a
t(1) or a t(5) copula, based on the multivariate t with one and five degrees of freedom, respectively.

Scatter plots of some simulated random values for various levels of rho illustrate the range of
different possibilities for t(1) copulas:

n = 500;
nu = 1;
T = mvtrnd([1 .8; .8 1], nu, n);
U = tcdf(T,nu);
subplot(2,2,1);
plot(U(:,1),U(:,2),'.');
title('rho = 0.8');
xlabel('U1');
ylabel('U2');
T = mvtrnd([1 .1; .1 1], nu, n);
U = tcdf(T,nu);
subplot(2,2,2);
plot(U(:,1),U(:,2),'.');
title('rho = 0.1');
xlabel('U1');
ylabel('U2');
T = mvtrnd([1 -.1; -.1 1], nu, n);
U = tcdf(T,nu);
subplot(2,2,3);
plot(U(:,1),U(:,2),'.');
title('rho = -0.1');
xlabel('U1');
ylabel('U2');
T = mvtrnd([1 -.8; -.8 1], nu, n);
U = tcdf(T,nu);
subplot(2,2,4);
plot(U(:,1),U(:,2),'.');
title('rho = -0.8');
xlabel('U1');
ylabel('U2');
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A t copula has uniform marginal distributions for U1 and U2, just as a Gaussian copula does. The rank
correlation tau or rho_s between components in a t copula is also the same function of rho as for a
Gaussian. However, as these plots demonstrate, a t(1) copula differs quite a bit from a Gaussian
copula, even when their components have the same rank correlation. The difference is in their
dependence structure. Not surprisingly, as the degrees of freedom parameter nu is made larger, a
t(nu) copula approaches the corresponding Gaussian copula.

As with a Gaussian copula, any marginal distributions can be imposed over a t copula. For example,
using a t copula with 1 degree of freedom, we can again generate random vectors from a bivariate
distribution with Gamma(2,1) and t(5) marginals:

subplot(1,1,1);
n = 1000;
rho = .7;
nu = 1;
T = mvtrnd([1 rho; rho 1], nu, n);
U = tcdf(T,nu);
X = [gaminv(U(:,1),2,1) tinv(U(:,2),5)];

[n1,ctr1] = hist(X(:,1),20);
[n2,ctr2] = hist(X(:,2),20);
subplot(2,2,2);
plot(X(:,1),X(:,2),'.');
axis([0 15 -10 10]);
h1 = gca;
title('1000 Simulated Dependent t and Gamma Values');
xlabel('X1 ~ Gamma(2,1)');
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ylabel('X2 ~ t(5)');
subplot(2,2,4);
bar(ctr1,-n1,1);
axis([0 15 -max(n1)*1.1 0]);
axis('off');
h2 = gca;
subplot(2,2,1);
barh(ctr2,-n2,1);
axis([-max(n2)*1.1 0 -10 10]);
axis('off');
h3 = gca;
h1.Position = [0.35 0.35 0.55 0.55];
h2.Position = [.35 .1 .55 .15];
h3.Position = [.1 .35 .15 .55];
colormap([.8 .8 1]);

Compared to the bivariate Gamma/t distribution constructed earlier, which was based on a Gaussian
copula, the distribution constructed here, based on a t(1) copula, has the same marginal distributions
and the same rank correlation between variables, but a very different dependence structure. This
illustrates the fact that multivariate distributions are not uniquely defined by their marginal
distributions, or by their correlations. The choice of a particular copula in an application may be
based on actual observed data, or different copulas may be used as a way of determining the
sensitivity of simulation results to the input distribution.
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Higher-Order Copulas

The Gaussian and t copulas are known as elliptical copulas. It's easy to generalize elliptical copulas to
a higher number of dimensions. For example, we can simulate data from a trivariate distribution with
Gamma(2,1), Beta(2,2), and t(5) marginals using a Gaussian copula as follows.

subplot(1,1,1);
n = 1000;
Rho = [1 .4 .2; .4 1 -.8; .2 -.8 1];
Z = mvnrnd([0 0 0], Rho, n);
U = normcdf(Z,0,1);
X = [gaminv(U(:,1),2,1) betainv(U(:,2),2,2) tinv(U(:,3),5)];
plot3(X(:,1),X(:,2),X(:,3),'.');
grid on;
view([-55, 15]);
xlabel('U1');
ylabel('U2');
zlabel('U3');

Notice that the relationship between the linear correlation parameter rho and, for example, Kendall's
tau, holds for each entry in the correlation matrix Rho used here. We can verify that the sample rank
correlations of the data are approximately equal to the theoretical values.

tauTheoretical = 2.*asin(Rho)./pi

tauTheoretical =
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    1.0000    0.2620    0.1282
    0.2620    1.0000   -0.5903
    0.1282   -0.5903    1.0000

tauSample = corr(X, 'type','Kendall')

tauSample =

    1.0000    0.2655    0.1060
    0.2655    1.0000   -0.6076
    0.1060   -0.6076    1.0000

Copulas and Empirical Marginal Distributions

To simulate dependent multivariate data using a copula, we have seen that we need to specify

  1) the copula family (and any shape parameters),
  2) the rank correlations among variables, and
  3) the marginal distributions for each variable

Suppose we have two sets of stock return data, and we would like to run a Monte Carlo simulation
with inputs that follow the same distributions as our data.

load stockreturns
nobs = size(stocks,1);
subplot(2,1,1);
hist(stocks(:,1),10);
xlabel('X1');
ylabel('Frequency');
subplot(2,1,2);
hist(stocks(:,2),10);
xlabel('X2');
ylabel('Frequency');
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(These two data vectors have the same length, but that is not crucial.)

We could fit a parametric model separately to each dataset, and use those estimates as our marginal
distributions. However, a parametric model may not be sufficiently flexible. Instead, we can use an
empirical model for the marginal distributions. We only need a way to compute the inverse CDF.

The empirical inverse CDF for these datasets is just a stair function, with steps at the values 1/nobs,
2/nobs, ... 1. The step heights are simply the sorted data.

invCDF1 = sort(stocks(:,1));
n1 = length(stocks(:,1));
invCDF2 = sort(stocks(:,2));
n2 = length(stocks(:,2));
subplot(1,1,1);
stairs((1:nobs)/nobs, invCDF1,'b');
hold on;
stairs((1:nobs)/nobs, invCDF2,'r');
hold off;
legend('X1','X2');
xlabel('Cumulative Probability');
ylabel('X');
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For the simulation, we might want to experiment with different copulas and correlations. Here, we'll
use a bivariate t(5) copula with a fairly large negative correlation parameter.

n = 1000;
rho = -.8;
nu = 5;
T = mvtrnd([1 rho; rho 1], nu, n);
U = tcdf(T,nu);
X = [invCDF1(ceil(n1*U(:,1))) invCDF2(ceil(n2*U(:,2)))];

[n1,ctr1] = hist(X(:,1),10);
[n2,ctr2] = hist(X(:,2),10);
subplot(2,2,2);
plot(X(:,1),X(:,2),'.');
axis([-3.5 3.5 -3.5 3.5]);
h1 = gca;
title('1000 Simulated Dependent Values');
xlabel('X1');
ylabel('X2');
subplot(2,2,4);
bar(ctr1,-n1,1);
axis([-3.5 3.5 -max(n1)*1.1 0]);
axis('off');
h2 = gca;
subplot(2,2,1);
barh(ctr2,-n2,1);
axis([-max(n2)*1.1 0 -3.5 3.5]);
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axis('off');
h3 = gca;
h1.Position = [0.35 0.35 0.55 0.55];
h2.Position = [.35 .1 .55 .15];
h3.Position = [.1 .35 .15 .55];
colormap([.8 .8 1]);

The marginal histograms of the simulated data closely match those of the original data, and would
become identical as we simulate more pairs of values. Notice that the values are drawn from the
original data, and because there are only 100 observations in each dataset, the simulated data are
somewhat "discrete". One way to overcome this would be to add a small amount of random variation,
possibly normally distributed, to the final simulated values. This is equivalent to using a smoothed
version of the empirical inverse CDF.
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Fit Custom Distributions

This example shows how to fit a custom distribution to univariate data by using the mle function.

You can use the mle function to compute maximum likelihood parameter estimates and to estimate
their precision for built-in distributions and custom distributions. To fit a custom distribution, you
need to define a function for the custom distribution in a file or by using an anonymous function. In
the simplest cases, you can write code to compute the probability density function (pdf) or logarithm
of pdf for the distribution that you want to fit, and then call mle to fit the distribution. This example
covers the following cases using the pdf or logarithm of pdf:

• Fitting a distribution for truncated data
• Fitting a mixture of two distributions
• Fitting a weighted distribution
• Finding accurate confidence intervals of parameter estimates for small-sized samples using

parameter transformation

Note that you can use the “TruncationBounds” on page 35-0  name-value argument of mle for
truncated data instead of defining a custom function. Also, for a mixture of two normal distributions,
you can use the fitgmdist function. This example uses the mle function and a custom function for
these cases.

Fit Zero-Truncated Poisson Distribution

Count data is often modeled using a Poisson distribution, and you can use the poissfit or fitdist
function to fit a Poisson distribution. However, in some situations, counts that are zero are not
recorded in the data, so fitting a Poisson distribution is not straightforward because of the missing
zeros. In this case, fit a Poisson distribution to zero-truncated data by using the mle function and a
custom distribution function.

First, generate some random Poisson data.

rng(18,'twister') % For reproducibility
lambda = 1.75;
n = 75;
x1 = poissrnd(lambda,n,1);

Next, remove all the zeros from the data to simulate the truncation.

x1 = x1(x1 > 0);

Check the number of samples in x1 after truncation.

length(x1)

ans = 65

Plot a histogram of the simulated data.

histogram(x1,0:1:max(x1)+1)
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The data looks like a Poisson distribution except it contains no zeros. You can use a custom
distribution that is identical to a Poisson distribution on the positive integers, but has no probability
at zero. By using a custom distribution, you can estimate the Poisson parameter lambda while
accounting for the missing zeros.

You need to define the zero-truncated Poisson distribution by its probability mass function (pmf).
Create an anonymous function to compute the probability for each point in x1, given a value for the
Poisson distribution's mean parameter lambda. The pmf for a zero-truncated Poisson distribution is
the Poisson pmf normalized so that it sums to one. With zero truncation, the normalization is 1–
Probability(x1<0).

pf_truncpoiss = @(x1,lambda) poisspdf(x1,lambda)./(1-poisscdf(0,lambda));

For simplicity, assume that all the x1 values given to this function are positive integers, with no
checks. For error checking or a more complicated distribution that takes more than a single line of
code, you must define the function in a separate file.

Find a reasonable rough first guess for the parameter lambda. In this case, use the sample mean.

start = mean(x1)

start = 2.2154

Provide mle with the data, custom pmf function, initial parameter value, and lower bound of the
parameter. Because the mean parameter of the Poisson distribution must be positive, you also need to
specify a lower bound for lambda. The mle function returns the maximum likelihood estimate of
lambda, and optionally, the approximate 95% confidence intervals for the parameters.
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[lambdaHat,lambdaCI] = mle(x1,'pdf',pf_truncpoiss,'Start',start, ...
    'LowerBound',0)

lambdaHat = 1.8760

lambdaCI = 2×1

    1.4990
    2.2530

The parameter estimate is smaller than the sample mean. The maximum likelihood estimate accounts
for the zeros not present in the data.

Alternatively, you can specify the truncation bounds by using the “TruncationBounds” on page 35-0
name-value argument.

[lambdaHat2,lambdaCI2] = mle(x1,'Distribution','Poisson', ...
    'TruncationBounds',[0 Inf])

lambdaHat2 = 1.8760

lambdaCI2 = 2×1

    1.4990
    2.2530

You can also compute a standard error estimate for lambda by using the large-sample variance
approximation returned by mlecov.

avar = mlecov(lambdaHat,x1,'pdf',pf_truncpoiss);
stderr = sqrt(avar)

stderr = 0.1923

To visual check the fit, plot the fitted pmf against a normalized histogram of the raw data

histogram(x1,'Normalization','pdf')
xgrid = min(x1):max(x1);
pmfgrid = pf_truncpoiss(xgrid,lambdaHat);
hold on
plot(xgrid,pmfgrid,'-')
xlabel('x1')
ylabel('Probability')
legend('Sample Data','Fitted pmf','Location','best')
hold off
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Fit Upper-Truncated Normal Distribution

Continuous data can sometimes be truncated. For example, observations larger than some fixed value
might not be recorded because of limitations in data collection.

In this case, simulate data from a truncated normal distribution. First, generate some random normal
data.

n = 500;
mu = 1;
sigma = 3;
rng('default') % For reproducibility
x2 = normrnd(mu,sigma,n,1);

Next, remove any observations that fall beyond the truncation point xTrunc. Assume that xTrunc is
a known value that you do not need to estimate.

xTrunc = 4;
x2 = x2(x2 < xTrunc);

Check the number of samples in x2 after truncation.

length(x2)

ans = 430

Create a histogram of the simulated data.
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histogram(x2)

Fit the simulated data with a custom distribution that is identical to a normal distribution for x2 <
xTrunc, but has zero probability above xTrunc. By using a custom distribution, you can estimate the
normal parameters mu and sigma while accounting for the missing tail.

Define the truncated normal distribution by its pdf. Create an anonymous function to compute the
probability density value for each point in x, given values for the parameters mu and sigma. With the
truncation point fixed and known, the pdf for a truncated normal distribution is the pdf truncated and
then normalized so that it integrates to one. The normalization is the cdf evaluated at xTrunc. For
simplicity, assume that all x2 values are less than xTrunc, without checking.

pdf_truncnorm = @(x2,mu,sigma) ...
    normpdf(x2,mu,sigma)./normcdf(xTrunc,mu,sigma);

Because you do not need to estimate the truncation point xTrunc, it is not included with the input
distribution parameters of the custom pdf function. xTrunc is also not part of the data vector input
argument. An anonymous function can access variables in the workspace, so you do not have to pass
xTrunc to the anonymous function as an additional argument.

Provide a rough starting guess for the parameter estimates. In this case, because the truncation is
not extreme, use the sample mean and standard deviation.

start = [mean(x2),std(x2)]

start = 1×2
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    0.1585    2.4125

Provide mle with the data, custom pdf function, initial parameter values, and lower bounds of the
parameters. Because sigma must be positive, you also need to specify lower parameter bounds. mle
returns the maximum likelihood estimates of mu and sigma as a single vector, as well as a matrix of
approximate 95% confidence intervals for the two parameters.

[paramEsts,paramCIs] = mle(x2,'pdf',pdf_truncnorm,'Start',start, ...
    'LowerBound',[-Inf 0])

paramEsts = 1×2

    1.1298    3.0884

paramCIs = 2×2

    0.5713    2.7160
    1.6882    3.4607

The estimates of mu and sigma are larger than the sample mean and standard deviation. The model
fit accounts for the missing upper tail of the distribution.

Alternatively, you can specify the truncation bounds by using the “TruncationBounds” on page 35-0
name-value argument.

[paramEsts2,paramCIs2] = mle(x2,'Distribution','Normal', ...
    'TruncationBounds',[-Inf xTrunc])

paramEsts2 = 1×2

    1.1297    3.0884

paramCIs2 = 2×2

    0.5713    2.7160
    1.6882    3.4607

You can compute an approximate covariance matrix for the parameter estimates using mlecov. The
approximation typically works well for large samples, and you can approximate the standard errors
by the square roots of the diagonal elements.

acov = mlecov(paramEsts,x2,'pdf',pdf_truncnorm)

acov = 2×2

    0.0812    0.0402
    0.0402    0.0361

stderr = sqrt(diag(acov))

stderr = 2×1

    0.2849
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    0.1900

To visually check the fit, plot the fitted pdf against a normalized histogram of the raw data.

histogram(x2,'Normalization','pdf')
xgrid = linspace(min(x2),max(x2));
pdfgrid = pdf_truncnorm(xgrid,paramEsts(1),paramEsts(2));
hold on
plot(xgrid,pdfgrid,'-')
xlabel('x2')
ylabel('Probability Density')
legend('Sample Data','Fitted pdf','Location','best')
hold off

Fit Mixture of Two Normal Distributions

Some data sets exhibit bimodality, or even multimodality, and fitting a standard distribution to such
data is usually not appropriate. However, a mixture of simple unimodal distributions can often model
such data very well.

In this case, fit a mixture of two normal distributions to simulated data. Consider simulated data with
the following constructive definition:

• First, flip a biased coin.
• If the coin lands on heads, pick a value at random from a normal distribution with mean μ1 and

standard deviation σ1.
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• If the coin lands on tails, pick a value at random from a normal distribution with mean μ2 and
standard deviation σ2.

Generate a data set from a mixture of Student's t distributions instead of using the same model that
you are fitting. By using different distributions, similar to a technique used in a Monte-Carlo
simulation, you can test how robust a fitting method is to departures from the assumptions of the
model being fit.

rng(10) % For reproducibility
x3 = [trnd(20,1,50) trnd(4,1,100)+3];
histogram(x3)

Define the model to fit by creating an anonymous function that computes the probability density. The
pdf for a mixture of two normal distributions is a weighted sum of the pdfs of the two normal
components, weighted by the mixture probability. The anonymous function takes six inputs: a vector
of data at which to evaluate the pdf and five distribution parameters. Each component has
parameters for its mean and standard deviation.

pdf_normmixture = @(x3,p,mu1,mu2,sigma1,sigma2) ...
    p*normpdf(x3,mu1,sigma1) + (1-p)*normpdf(x3,mu2,sigma2);

You also need an initial guess for the parameters. Defining a starting point becomes more important
as the number of model parameters increases. Here, start with an equal mixture (p = 0.5) of normal
distributions, centered at the two quartiles of the data, with equal standard deviations. The starting
value for the standard deviation comes from the formula for the variance of a mixture in terms of the
mean and variance of each component.
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pStart = .5;
muStart = quantile(x3,[.25 .75])

muStart = 1×2

    0.3351    3.3046

sigmaStart = sqrt(var(x3) - .25*diff(muStart).^2)

sigmaStart = 1.1602

start = [pStart muStart sigmaStart sigmaStart];

Specify bounds of zero and one for the mixing probability, and lower bounds of zero for the standard
deviations. Set the remaining elements of the bounds vectors to +Inf or –Inf, to indicate no
restrictions.

lb = [0 -Inf -Inf 0 0];
ub = [1 Inf Inf Inf Inf];
paramEsts = mle(x3,'pdf',pdf_normmixture,'Start',start, ...
    'LowerBound',lb,'UpperBound',ub)

Warning: Maximum likelihood estimation did not converge.  Iteration limit exceeded.

paramEsts = 1×5

    0.3273   -0.2263    2.9914    0.9067    1.2059

The warning message indicates that the function does not converge with the default iteration
settings. Display the default options.

statset('mlecustom')

ans = struct with fields:
          Display: 'off'
      MaxFunEvals: 400
          MaxIter: 200
           TolBnd: 1.0000e-06
           TolFun: 1.0000e-06
       TolTypeFun: []
             TolX: 1.0000e-06
         TolTypeX: []
          GradObj: 'off'
         Jacobian: []
        DerivStep: 6.0555e-06
      FunValCheck: 'on'
           Robust: []
     RobustWgtFun: []
           WgtFun: []
             Tune: []
      UseParallel: []
    UseSubstreams: []
          Streams: {}
        OutputFcn: []
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The default maximum number of iterations for custom distributions is 200. Override the default to
increase the number of iterations, using an options structure created with the statset function.
Also, increase the maximum function evaluations.

options = statset('MaxIter',300,'MaxFunEvals',600);
paramEsts = mle(x3,'pdf',pdf_normmixture,'Start',start, ...
    'LowerBound',lb,'UpperBound',ub,'Options',options)

paramEsts = 1×5

    0.3273   -0.2263    2.9914    0.9067    1.2059

The final iterations to convergence are significant only in the last few digits of the result. However, a
best practice is to always make sure that convergence is reached.

To visually check the fit, plot the fitted density against a probability histogram of the raw data.

histogram(x3,'Normalization','pdf')
hold on
xgrid = linspace(1.1*min(x3),1.1*max(x3),200);
pdfgrid = pdf_normmixture(xgrid, ...
    paramEsts(1),paramEsts(2),paramEsts(3),paramEsts(4),paramEsts(5));
plot(xgrid,pdfgrid,'-')
hold off
xlabel('x3')
ylabel('Probability Density')
legend('Sample Data','Fitted pdf','Location','best')
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Alternatively, for a mixture of normal distributions, you can use the fitgmdist function. The
estimates can be different due to initial estimates and settings of the iterative algorithm.

Mdl = fitgmdist(x3',2)

Mdl = 

Gaussian mixture distribution with 2 components in 1 dimensions
Component 1:
Mixing proportion: 0.329180
Mean:   -0.2200

Component 2:
Mixing proportion: 0.670820
Mean:    2.9975

Mdl.Sigma

ans = 
ans(:,:,1) =

    0.8274

ans(:,:,2) =

    1.4437

Fit Weighted Normal Distribution to Data with Unequal Precisions

Assume that you have 10 data points, where each point is actually the average of anywhere from one
to eight observations. The original observations are not available, but the number of observations for
each data point is known. The precision of each point depends on its corresponding number of
observations. You need to estimate the mean and standard deviation of the raw data.

x4 = [0.25 -1.24 1.38 1.39 -1.43 2.79 3.52 0.92 1.44 1.26]';
m = [8 2 1 3 8 4 2 5 2 4]';

The variance of each data point is inversely proportional to its corresponding number of observations,
so use 1/m to weight the variance of each data point in a maximum likelihood fit.

w = 1./m;

In this model, you can define the distribution by its pdf. However, using a logarithm of pdf is more
suitable, because the normal pdf has the form

  c .* exp(-0.5 .* z.^2),

and mle takes the log of the pdf to compute the loglikelihood. So, instead, create a function that
computes the logarithm of pdf directly.

The logarithm of pdf function must compute the logarithm of the probability density for each point in
x, given normal distribution parameters mu and sigma. It also needs to account for the different
variance weights. Define a function named helper_logpdf_wn1 in a separate file
helper_logpdf_wn1.m.

function logy = helper_logpdf_wn1(x,m,mu,sigma)
%HELPER_LOGPDF_WN1 Logarithm of pdf for a weight normal distribution
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% This function supports only the example Fit Custom Distributions 
% (customdist1demo.mlx) and might change in a future release.
v = sigma.^2 ./ m;
logy = -(x-mu).^2 ./ (2.*v) - .5.*log(2.*pi.*v);
end

Provide a rough first guess for the parameter estimates. In this case, use the unweighted sample
mean and standard deviation.

start = [mean(x4),std(x4)]

start = 1×2

    1.0280    1.5490

Because sigma must be positive, you need to specify lower parameter bounds.

[paramEsts1,paramCIs1] = mle(x4,'logpdf', ...
    @(x,mu,sigma)helper_logpdf_wn1(x,m,mu,sigma), ...
    'Start',start,'LowerBound',[-Inf,0])

paramEsts1 = 1×2

    0.6244    2.8823

paramCIs1 = 2×2

   -0.2802    1.6191
    1.5290    4.1456

The estimate of mu is less than two-thirds of the estimate of the sample mean. The estimate is
influenced by the most reliable data points, that is, the points based on the largest number of raw
observations. In this data set, those points tend to pull the estimate down from the unweighted
sample mean.

Fit Normal Distribution Using Parameter Transformation

The mle function computes confidence intervals for the parameters using a large-sample normal
approximation for the distribution of the estimators if an exact method is not available. For small
sample sizes, you can improve the normal approximation by transforming one or more parameters. In
this case, transform the scale parameter of a normal distribution to its logarithm.

First, define a new log pdf function named helper_logpdf_wn2 that uses a transformed parameter
for sigma.

function logy = helper_logpdf_wn2(x,m,mu,logsigma)
%HELPER_LOGPDF_WN2 Logarithm of pdf for a weight normal distribution with 
% log(sigma) parameterization
% This function supports only the example Fit Custom Distributions 
% (customdist1demo.mlx) and might change in a future release.
v = exp(logsigma).^2 ./ m;
logy = -(x-mu).^2 ./ (2.*v) - .5.*log(2.*pi.*v);
end
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Use the same starting point transformed to the new parameterization for sigma, that is, the log of
the sample standard deviation.

start = [mean(x4),log(std(x4))]

start = 1×2

    1.0280    0.4376

Because sigma can be any positive value, log(sigma) is unbounded, and you do not need to specify
lower or upper bounds.

[paramEsts2,paramCIs2] = mle(x4,'logpdf', ...
    @(x,mu,sigma)helper_logpdf_wn2(x,m,mu,sigma), ...
    'Start',start)

paramEsts2 = 1×2

    0.6244    1.0586

paramCIs2 = 2×2

   -0.2802    0.6203
    1.5290    1.4969

Because the parameterization uses log(sigma), you have to transform back to the original scale to
get an estimate and confidence interval for sigma.

sigmaHat = exp(paramEsts2(2))

sigmaHat = 2.8823

sigmaCI = exp(paramCIs2(:,2))

sigmaCI = 2×1

    1.8596
    4.4677

The estimates for both mu and sigma are the same as in the first fit, because maximum likelihood
estimates are invariant to parameterization. The confidence interval for sigma is slightly different
from paramCIs1(:,2).

See Also
mle | mlecov

Related Examples
• “Maximum Likelihood Estimation” on page 5-23
• “Avoid Numerical Issues When Fitting Custom Distributions” on page 5-186
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Avoid Numerical Issues When Fitting Custom Distributions

This example shows how to use advanced techniques with the mle function to avoid numerical issues
when fitting a custom distribution. Specifically, you learn how to:

• Specify adequate initial parameter values.
• Specify logpdf (logarithm of probability density function) and logsf (logarithm of survival

function).
• Specify nloglf (negative loglikelihood function) and supply the gradient vector of the negative

loglikelihood to the optimization function fmincon (requires Optimization Toolbox™).

In this example, you fit an extreme value distribution to right-censored data. An extreme value
distribution is often used to model failure times of mechanical parts. These types of experiments
typically run for a fixed length of time only. If not all of the experimental units fail within that time,
then the data values are right-censored, meaning some failure time values are not known exactly, but
are known to be larger than a certain value.

Both the evfit function and mle function fit an extreme value distribution to data, including data
with censoring. However, for the purposes of this example, use mle and custom distributions to fit a
model to censored data, using the extreme value distribution.

Specify Adequate Initial Parameter Values

Because the values for the censored data are not known exactly, maximum likelihood estimation
requires more information. In particular, the probability density function (pdf), the cumulative
distribution function (cdf), and adequate initial parameter values are necessary to compute the
loglikelihood. You can use the evpdf and evcdf functions to specify the pdf and cdf.

First, generate some uncensored extreme value data.

rng(0,'twister');
n = 50;
mu = 5;
sigma = 2.5;
x = evrnd(mu,sigma,n,1);

Next, censor any values that are larger than a predetermined cutoff by replacing those values with
the cutoff value. This type of censoring is known as Type II censoring.

c = (x > 7);
x(c) = 7;

Check the percentage of censored observations.

sum(c)/length(c)

ans = 0.1200

Twelve percent of the original data is right-censored with the cutoff at 7.

Plot a histogram of the data, including a stacked bar to represent the censored observations.

[uncensCnts,Edges] = histcounts(x(~c),10);
censCnts = histcounts(x(c),Edges);
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bar(Edges(1:end-1)+diff(Edges)/2,[uncensCnts' censCnts'],'stacked')
legend('Fully observed data','Censored data','Location','northwest')

Although the data includes censored observations, the fraction of censored observations is relatively
small. Therefore, the method of moments can provide reasonable starting points for the parameter
estimates. Compute the initial parameter values of mu and sigma that correspond to the observed
mean and standard deviation of the uncensored data.

sigma0 = sqrt(6)*std(x(~c))./pi

sigma0 = 2.3495

mu0 = mean(x(~c))-psi(1).*sigma0

mu0 = 3.5629

Find the maximum likelihood estimates of the two extreme value distribution parameters, as well as
the approximate 95% confidence intervals. Specify the censoring vector, pdf, cdf, and initial
parameter values. Because sigma (scale parameter) must be positive, you also need to specify lower
parameter bounds.

[paramEsts,paramCIs] = mle(x,'Censoring',c, ...
    'pdf',@evpdf,'cdf',@evcdf, ...
    'Start',[mu0 sigma0],'LowerBound',[-Inf,0])

paramEsts = 1×2
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    4.5530    3.0215

paramCIs = 2×2

    3.6455    2.2937
    5.4605    3.7494

Specify logpdf and logsf

Fitting a custom distribution requires an initial guess for the parameters, and determining how good
or bad a starting point is a priori can be difficult. If you specify a starting point that is farther away
from the maximum likelihood estimates, some observations can be located far out in the tails of the
extreme value distribution corresponding to the starting point. In a such case, one of these conditions
can occur:

• One of the pdf values becomes so small that it underflows to zero in double precision arithmetic.
• One of the cdf values becomes so close to 1 that it rounds up in double precision.

A cdf value might also become so small as that it underflows, but this condition does not pose a
problem.

Either condition can cause problems when mle computes the loglikelihood, because each leads to
loglikelihood values of —Inf, which the optimization algorithm in mle cannot handle.

Examine what happens with a different starting point.

start = [1 1];
try
    [paramEsts,paramCIs] = mle(x,'Censoring',c, ...
        'pdf',@evpdf,'cdf',@evcdf, ...
        'Start',start,'LowerBound',[-Inf,0])
catch ME
    disp(ME.message)
end

Custom cumulative distribution function returned values greater than or equal to 1.

In this case, the second problem condition occurs. Some of the cdf values at the initial parameter
guess are exactly 1, so the loglikelihood is infinite. You can try setting the FunValCheck control
parameter to off by using the “Options” on page 35-0  name-value argument. The off option
disables checking for nonfinite likelihood values. However, the best way to solve this numerical
problem is at its root.

The extreme value cdf has the form

  p = 1 - exp(-exp((x-mu)./sigma))

The contribution of the censored observations to the loglikelihood is the log of their survival function
(SF) values, or log(1-cdf). For the extreme value distribution, the log of the SF is -exp((x-mu)./
sigma). If you compute the loglikelihood using the log SF directly, instead of computing log(1-(1-
exp(logSF))), you can avoid the rounding issues with the cdf. Observations whose cdf values are
not distinguishable from 1 in double precision have log SF values that are easily representable as
nonzero values. For example, a cdf value of (1-1e-20) rounds to 1 in double precision, because
double precision eps is about 2e-16.
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SFval = 1e-20;
cdfval = 1 - SFval

cdfval = 1

The software can easily represent the log of the corresponding SF value.

log(SFval)

ans = -46.0517

The same situation is true for the log pdf; the contribution of uncensored observations to the
loglikelihood is the log of their pdf values. You can use the log pdf directly, instead of computing
log(exp(logpdf)), to avoid underflow problems where the pdf is not distinguishable from zero in
double precision. The software can easily represent the log pdf as a finite negative number. For
example, a pdf value of 1e-400 underflows in double precision, because double precision realmin is
about 2e-308.

logpdfval = -921;
pdfval = exp(logpdfval)

pdfval = 0

Using the mle function, you can specify a custom distribution with the log pdf and the log SF (rather
than the pdf and cdf) by setting the logpdf and logsf name-value arguments. Unlike the pdf and
cdf functions, log pdf and log SF do not have built-in functions. Therefore, you need to create
anonymous functions that compute these values.

evlogpdf = @(x,mu,sigma) ((x-mu)./sigma - exp((x-mu)./sigma)) - log(sigma);
evlogsf = @(x,mu,sigma) -exp((x-mu)./sigma);

Using the same starting point, the alternate log pdf and log SF specification of the extreme value
distribution makes the problem solvable.

start = [1 1];
[paramEsts,paramCIs] = mle(x,'Censoring',c, ...
    'logpdf',evlogpdf,'logsf',evlogsf, ...
    'Start',start,'LowerBound',[-Inf,0])

paramEsts = 1×2

    4.5530    3.0215

paramCIs = 2×2

    3.6455    2.2937
    5.4605    3.7494

This process does not always fix the problem of a poor starting point, so choosing the starting point
carefully is recommended.

Supply Gradient to Optimization Function fmincon

By default, mle uses the function fminsearch to find parameter values that maximize the
loglikelihood for a custom distribution. fminsearch uses an optimization algorithm that is derivative
free, making it a good choice for this type of problem. However, for some problems, choosing an

 Avoid Numerical Issues When Fitting Custom Distributions

5-189



optimization algorithm that uses the derivatives of the loglikelihood function can make the difference
between converging to the maximum likelihood estimates or not, especially when the starting point is
far away from the final answer. Providing the derivatives can also speed up the convergence.

You can specify the OptimFun name-value argument in mle as fmincon to use the fmincon function
(requires Optimization Toolbox). The fmincon function includes optimization algorithms that can use
derivative information. To take advantage of the algorithms in fmincon, specify a custom distribution
using a loglikelihood function, written to return not only the loglikelihood, but its gradient as well.
The gradient of the loglikelihood function is the vector of its partial derivatives with respect to its
parameters.

This strategy requires extra preparation to write code that computes both the loglikelihood and its
gradient. Define a function named helper_evnegloglike in a separate file.

function [nll,ngrad] = helper_evnegloglike(params,x,cens,freq)
%HELPER_EVNEGLOGLIKE Negative log-likelihood for the extreme value
% distribution.
% This function supports only the example Avoid Numerical Issues When
% Fitting Custom Distributions (customdist2demo.mlx) and might change in 
% a future release.

if numel(params)~=2
    error(message('stats:probdists:WrongParameterLength',2));
end
mu = params(1);
sigma = params(2);
nunc = sum(1-cens);
z = (x - mu) ./ sigma;
expz = exp(z);
nll = sum(expz) - sum(z(~cens)) + nunc.*log(sigma);
if nargout > 1
    ngrad = [-sum(expz)./sigma + nunc./sigma, ...
        -sum(z.*expz)./sigma + sum(z(~cens))./sigma + nunc./sigma];
end

The function helper_evnegloglike returns the negative of both the loglikelihood values and the
gradient values because mle minimizes the negative loglikelihood.

To compute the maximum likelihood estimates using a gradient-based optimization algorithm, specify
the nloglf, OptimFun, and Options name-value arguments. nloglf specifies the custom function
that computes the negative loglikelihood, OptimFun specifies fmincon as the optimization function,
and Options specifies that fmincon uses the second output of the custom function for the gradient.

start = [1 1];
[paramEsts,paramCIs] = mle(x,'Censoring',c,'nloglf',@helper_evnegloglike, ...
    'Start',start,'LowerBound',[-Inf,0], ...
    'OptimFun','fmincon','Options',statset('GradObj','on'))

paramEsts = 1×2

    4.5530    3.0215

paramCIs = 2×2

    3.6455    2.2937
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    5.4605    3.7493

See Also
mle | mlecov

Related Examples
• “Maximum Likelihood Estimation” on page 5-23
• “Fit Custom Distributions” on page 5-173
• “What Is Survival Analysis?” on page 15-2
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Nonparametric Estimates of Cumulative Distribution Functions
and Their Inverses

This example shows how to estimate the cumulative distribution function (CDF) from data in a
nonparametric or semiparametric way. It also illustrates the inversion method for generating random
numbers from the estimated CDF. The Statistics and Machine Learning Toolbox™ includes more than
two dozen random number generator functions for parametric univariate probability distributions.
These functions allow you to generate random inputs for a wide variety of simulations, however, there
are situations where it is necessary to generate random values to simulate data that are not
described by a simple parametric family.

The toolbox also includes the functions pearsrnd and johnsrnd, for generating random values
without having to specify a parametric distribution from which to draw--those functions allow you to
specify a distribution in terms of its moments or quantiles, respectively.

However, there are still situations where even more flexibility is needed, to generate random values
that "imitate" data that you have collected even more closely. In this case, you might use a
nonparametric estimate of the CDF of those data, and use the inversion method to generate random
values. The inversion method involves generating uniform random values on the unit interval, and
transforming them to a desired distribution using the inverse CDF for that distribution.

From the opposite perspective, it is sometimes desirable to use a nonparametric estimate of the CDF
to transform observed data onto the unit interval, giving them an approximate uniform distribution.

The ecdf function computes one type of nonparametric CDF estimate, the empirical CDF, which is a
stairstep function. This example illustrates some smoother alternatives, which may be more suitable
for simulating or transforming data from a continuous distribution.

For the purpose of illustration, here are some simple simulated data. There are only 25 observations,
a small number chosen to make the plots in the example easier to read. The data are also sorted to
simplify plotting.

rng(19,'twister');
n = 25;
x = evrnd(3,1,n,1); x = sort(x);
hist(x,-2:.5:4.5);
xlabel('x'); ylabel('Frequency');
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A Piecewise Linear Nonparametric CDF Estimate

The ecdf function provides a simple way to compute and plot a "stairstep" empirical CDF for data. In
the simplest cases, this estimate makes discrete jumps of 1/n at each data point.

[Fi,xi] = ecdf(x);
stairs(xi,Fi,'r');
xlim([-2.5 5]); xlabel('x'); ylabel('F(x)');
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This estimate is useful for many purposes, including investigating the goodness of fit of a parametric
model to data. Its discreteness, however, may make it unsuitable for use in empirically transforming
continuous data to or from the unit interval.

It is simple to modify the empirical CDF to address that problems. Instead of taking discrete jumps of
1/n at each data point, define a function that is piecewise linear, with breakpoints at the midpoints of
those jumps. The height at each of the data points is then [1/2n, 3/2n, ..., (n-1/2)/n], instead of [(1/n),
(2/n), ..., 1]. Use the output of ecdf to compute those breakpoints, and then "connect the dots" to
define the piecewise linear function.

xj = xi(2:end);
Fj = (Fi(1:end-1)+Fi(2:end))/2;
hold on
plot(xj,Fj,'b.', xj,Fj,'b-');
hold off
legend({'ECDF' 'Breakpoints' 'Piecewise Linear Estimate'},'location','NW');
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Because ecdf deals appropriately with repeated values and censoring, this calculation works even in
cases with more complicated data than in this example.

Since the smallest data point corresponds to a height of 1/2n, and the largest to 1-1/2n, the first and
last linear segments must be extended beyond the data, to make the function reach 0 and 1.

xj = [xj(1)-Fj(1)*(xj(2)-xj(1))/((Fj(2)-Fj(1)));
      xj;
      xj(n)+(1-Fj(n))*((xj(n)-xj(n-1))/(Fj(n)-Fj(n-1)))];
Fj = [0; Fj; 1];
hold on
plot(xj,Fj,'b-','HandleVisibility','off');
hold off
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This piecewise linear function provides a nonparametric estimate of the CDF that is continuous and
symmetric. Evaluating it at points other than the original data is just a matter of linear interpolation,
and it can be convenient to define an anonymous function to do that.

F = @(y) interp1(xj,Fj,y,'linear','extrap');
y = linspace(-1,3.75,10);
plot(xj,Fj,'b-',y,F(y),'ko');
xlim([-2.5 5]); xlabel('x'); ylabel('F(x)');
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A Piecewise Linear Nonparametric Inverse CDF Estimate

You can use the same calculations to compute a nonparametric estimate of the inverse CDF. In fact,
the inverse CDF estimate is just the CDF estimate with the axes swapped.

stairs(Fi,[xi(2:end); xi(end)],'r');
hold on
plot(Fj,xj,'b-');
hold off
ylim([-2.5 5]); ylabel('x'); xlabel('F(x)');
legend({'ECDF' 'Piecewise Linear Estimate'},'location','NW');
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Evaluating this nonparametric inverse CDF at points other than the original breakpoints is again just
a matter of linear interpolation. For example, generate uniform random values and use the CDF
estimate to transform them back to the scale of your original observed data. This is the inversion
method.

Finv = @(u) interp1(Fj,xj,u,'linear','extrap');
u = rand(10000,1);
hist(Finv(u),-2:.25:4.5);
xlabel('x'); ylabel('Frequency');

5 Probability Distributions

5-198



Notice that this histogram of simulated data is more spread out than the histogram of the original
data. This is due, in part, to the much larger sample size--the original data consist of only 25 values.
But it is also because the piecewise linear CDF estimate, in effect, "spreads out" each of the original
observations over an interval, and more so in regions where the individual observations are well-
separated.

For example, the two individual observations to the left of zero correspond to a wide, flat region of
low density in the simulated data. In contrast, in regions where the data are closely spaced, towards
the right tail, for example, the piecewise linear CDF estimate "spreads out" the observations to a
lesser extent. In that sense, the method performs a simple version of what is known as variable
bandwidth smoothing. However, despite the smoothing, the simulated data retain most of the
idiosyncrasies of the original data, i.e., the regions of high and low density.

Kernel Estimators for the CDF and Inverse CDF

Instead of estimating the CDF using a piecewise linear function, you can perform kernel estimation
using the ksdensity function to make a smooth nonparametric estimate. Though it is often used to
make a nonparametric density estimate, ksdensity can also estimate other functions. For example,
to transform your original data to the unit interval, use it to estimate the CDF.

F = ksdensity(x, x, 'function','cdf', 'width',.35);
stairs(xi,Fi,'r');
hold on
plot(x,F,'b.');
hold off
xlim([-2.5 5]); xlabel('x'); ylabel('F(x)');
legend({'ECDF' 'Kernel Estimates'},'location','NW');
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ksdensity also provides a convenient way to evaluate the kernel CDF estimate at points other than
the original data. For example, plot the estimate as a smooth curve.

y = linspace(-2.5,5,1000);
Fy = ksdensity(x, y, 'function','cdf', 'width',.35);
stairs(xi,Fi,'r');
hold on
plot(y,Fy,'b-');
hold off
legend({'ECDF' 'Kernel Estimate'},'location','NW');
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ksdensity uses a bandwidth parameter to control the amount of smoothing in the estimates it
computes, and it is possible to let ksdensity choose a default value. The examples here use a fairly
small bandwidth to limit the amount of smoothing. Even so, the kernel estimate does not follow the
ECDF as closely as the piecewise linear estimate does.

One way to estimate the inverse CDF using kernel estimation is to compute the kernel CDF estimate
on a grid of points spanning the range of the original data, and then use the same procedure as for
the piecewise linear estimate. For example, to plot the inverse CDF kernel estimate as a smooth
curve, simply swap the axes.

stairs(Fi,[xi(2:end); xi(end)],'r');
hold on
plot(Fy,y,'b-');
hold off
ylim([-2.5 5]); ylabel('x'); xlabel('F(x)');
legend({'ECDF' 'Kernel Estimate'},'location','NW');
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To transform uniform random values back to the scale of the original data, interpolate using the grid
of CDF estimates.

Finv = @(u) interp1(Fy,y,u,'linear','extrap');
hist(Finv(u),-2.5:.25:5);
xlabel('x'); ylabel('Frequency');

5 Probability Distributions

5-202



Notice that the simulated data using the kernel CDF estimate has not completely "smoothed over" the
two individual observations to the left of zero present in the original data. The kernel estimate uses a
fixed bandwidth. With the particular bandwidth value used in this example, those two observations
contribute to two localized areas of density, rather than a wide flat region as was the case with the
piecewise linear estimate. In contrast, the kernel estimate has smoothed the data more in the right
tail than the piecewise linear estimate.

Another way to generate simulated data using kernel estimation is to use ksdensity to compute an
estimate of the inverse CDF directly, again using the 'function' parameter. For example, transform
those same uniform values.

r = ksdensity(x, u, 'function','icdf', 'width',.35);

However, using the latter method can be time-consuming for large amounts of data. A simpler, but
equivalent, method is to resample with replacement from the original data and add some appropriate
random noise.

r = datasample(x,100000,'replace',true) + normrnd(0,.35,100000,1);

If you generate enough random values, a histogram of the result follows the kernel density estimate
of the original data very closely.

binwidth = .25;
edges = -2.5:binwidth:6;
ctrs = edges(1:end-1) + binwidth./2;
counts = histc(r,edges); counts = counts(1:end-1);
bar(ctrs,counts./(sum(counts).*binwidth),1,'FaceColor',[.9 .9 .9]);
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hold on
xgrid = edges(1):.1:edges(end);
fgrid = ksdensity(x, xgrid, 'function','pdf', 'width',.3);
plot(xgrid,fgrid,'k-');
hold off
xlabel('x'); ylabel('f(x)');

A Semiparametric CDF Estimate

A nonparametric CDF estimate requires a good deal of data to achieve reasonable precision. In
addition, data only affect the estimate "locally." That is, in regions where there is a high density of
data, the estimate is based on more observations than in regions where there is a low density of data.
In particular, nonparametric estimates do not perform well in the tails of a distribution, where data
are sparse by definition.

Fitting a semiparametric model to your data using the paretotails function allows the best of both
the nonparametric and parametric worlds. In the "center" of the distribution, the model uses the
piecewise linear nonparametric estimate for the CDF. In each tail, it uses a generalized Pareto
distribution. The generalized Pareto is often used as a model for the tail(s) of a dataset, and while it is
flexible enough to fit a wide variety of distribution tails, it is sufficiently constrained so that it
requires few data to provide a plausible and smooth fit to tail data.

For example, you might define the "center" of the data as the middle 50%, and specify that the
transitions between the nonparametric estimate and the Pareto fits take place at the .25 and .75
quantiles of your data. To evaluate the CDF of the semiparametric model fit, use the fit's cdf method.

semipFit = paretotails(x,.25,.75);
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Warning: Problem fitting generalized Pareto distribution to upper tail. Maximum
likelihood has converged to a boundary point of the parameter space. 

The warning is due to using so few data -- 6 points in each tail in this case -- and indicates that the
fitted generalized Pareto distribution in the upper tail extends exactly to the smallest observation,
and no further. You can see that in the histogram shown below. In a real application, you would
usually have more data, and the warning would typically not occur.

[p,q] = boundary(semipFit);
y = linspace(-4,6,1000);
Fy = cdf(semipFit,y);
plot(y,Fy,'b-', q,p,'k+');
xlim([-6.5 5]); xlabel('x'); ylabel('F(x)');
legend({'Semi-parametric Estimate' 'Segment Boundaries'},'location','NW');

To transform uniform random values back to the scale of your original data, use the fit's icdf
method.

r = icdf(semipFit,u);
hist(r,-6.5:.25:5);
xlabel('x'); ylabel('Frequency');

 Nonparametric Estimates of Cumulative Distribution Functions and Their Inverses

5-205



This semiparametric estimate has smoothed the tails of the data more than the center, because of the
parametric model used in the tails. In that sense, the estimate is more similar to the piecewise linear
estimate than to the kernel estimate. However, it is also possible to use paretotails to create a
semiparametric fit that uses kernel estimation in the center of the data.

Conclusions

This example illustrates three methods for computing a nonparametric or semiparametric CDF or
inverse CDF estimate from data. The three methods impose different amounts and types of smoothing
on the data. Which method you choose depends on how each method captures or fails to capture
what you consider the important features of your data.
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Modelling Tail Data with the Generalized Pareto Distribution

This example shows how to fit tail data to the Generalized Pareto distribution by maximum likelihood
estimation.

Fitting a parametric distribution to data sometimes results in a model that agrees well with the data
in high density regions, but poorly in areas of low density. For unimodal distributions, such as the
normal or Student's t, these low density regions are known as the "tails" of the distribution. One
reason why a model might fit poorly in the tails is that by definition, there are fewer data in the tails
on which to base a choice of model, and so models are often chosen based on their ability to fit data
near the mode. Another reason might be that the distribution of real data is often more complicated
than the usual parametric models.

However, in many applications, fitting the data in the tail is the main concern. The Generalized Pareto
distribution (GP) was developed as a distribution that can model tails of a wide variety of
distributions, based on theoretical arguments. One approach to distribution fitting that involves the
GP is to use a non-parametric fit (the empirical cumulative distribution function, for example) in
regions where there are many observations, and to fit the GP to the tail(s) of the data.

The Generalized Pareto Distribution

The Generalized Pareto (GP) is a right-skewed distribution, parameterized with a shape parameter, k,
and a scale parameter, sigma. k is also known as the "tail index" parameter, and can be positive, zero,
or negative.

x = linspace(0,10,1000);
plot(x,gppdf(x,-.4,1),'-', x,gppdf(x,0,1),'-', x,gppdf(x,2,1),'-');
xlabel('x / sigma');
ylabel('Probability density');
legend({'k < 0' 'k = 0' 'k > 0'});
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Notice that for k < 0, the GP has zero probability above an upper limit of -(1/k). For k >= 0, the GP
has no upper limit. Also, the GP is often used in conjunction with a third, threshold parameter that
shifts the lower limit away from zero. We will not need that generality here.

The GP distribution is a generalization of both the exponential distribution (k = 0) and the Pareto
distribution (k > 0). The GP includes those two distributions in a larger family so that a continuous
range of shapes is possible.

Simulating Exceedance Data

The GP distribution can be defined constructively in terms of exceedances. Starting with a probability
distribution whose right tail drops off to zero, such as the normal, we can sample random values
independently from that distribution. If we fix a threshold value, throw out all the values that are
below the threshold, and subtract the threshold off of the values that are not thrown out, the result is
known as exceedances. The distribution of the exceedances is approximately a GP. Similarly, we can
set a threshold in the left tail of a distribution, and ignore all values above that threshold. The
threshold must be far enough out in the tail of the original distribution for the approximation to be
reasonable.

The original distribution determines the shape parameter, k, of the resulting GP distribution.
Distributions whose tails fall off as a polynomial, such as Student's t, lead to a positive shape
parameter. Distributions whose tails decrease exponentially, such as the normal, correspond to a zero
shape parameter. Distributions with finite tails, such as the beta, correspond to a negative shape
parameter.
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Real-world applications for the GP distribution include modelling extremes of stock market returns,
and modelling extreme floods. For this example, we'll use simulated data, generated from a Student's
t distribution with 5 degrees of freedom. We'll take the largest 5% of 2000 observations from the t
distribution, and then subtract off the 95% quantile to get exceedances.

rng(3,'twister');
x = trnd(5,2000,1);
q = quantile(x,.95);
y = x(x>q) - q;
n = numel(y)

n =

   100

Fitting the Distribution Using Maximum Likelihood

The GP distribution is defined for 0 < sigma, and -Inf < k < Inf. However, interpretation of the results
of maximum likelihood estimation is problematic when k < -1/2. Fortunately, those cases correspond
to fitting tails from distributions like the beta or triangular, and so will not present a problem here.

paramEsts = gpfit(y);
kHat      = paramEsts(1)   % Tail index parameter
sigmaHat  = paramEsts(2)   % Scale parameter

kHat =

    0.0987

sigmaHat =

    0.7156

As might be expected, since the simulated data were generated using a t distribution, the estimate of
k is positive.

Checking the Fit Visually

To visually assess how good the fit is, we'll plot a scaled histogram of the tail data, overlaid with the
density function of the GP that we've estimated. The histogram is scaled so that the bar heights times
their width sum to 1.

bins = 0:.25:7;
h = bar(bins,histc(y,bins)/(length(y)*.25),'histc');
h.FaceColor = [.9 .9 .9];
ygrid = linspace(0,1.1*max(y),100);
line(ygrid,gppdf(ygrid,kHat,sigmaHat));
xlim([0,6]);
xlabel('Exceedance');
ylabel('Probability Density');
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We've used a fairly small bin width, so there is a good deal of noise in the histogram. Even so, the
fitted density follows the shape of the data, and so the GP model seems to be a good choice.

We can also compare the empirical CDF to the fitted CDF.

[F,yi] = ecdf(y);
plot(yi,gpcdf(yi,kHat,sigmaHat),'-');
hold on;
stairs(yi,F,'r');
hold off;
legend('Fitted Generalized Pareto CDF','Empirical CDF','location','southeast');
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Computing Standard Errors for the Parameter Estimates

To quantify the precision of the estimates, we'll use standard errors computed from the asymptotic
covariance matrix of the maximum likelihood estimators. The function gplike computes, as its
second output, a numerical approximation to that covariance matrix. Alternatively, we could have
called gpfit with two output arguments, and it would have returned confidence intervals for the
parameters.

[nll,acov] = gplike(paramEsts, y);
stdErr = sqrt(diag(acov))

stdErr =

    0.1158
    0.1093

These standard errors indicate that the relative precision of the estimate for k is quite a bit lower
than that for sigma -- its standard error is on the order of the estimate itself. Shape parameters are
often difficult to estimate. It's important to keep in mind that computation of these standard errors
assumed that the GP model is correct, and that we have enough data for the asymptotic
approximation to the covariance matrix to hold.
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Checking the Asymptotic Normality Assumption

Interpretation of the standard errors usually involves assuming that, if the same fit could be repeated
many times on data that came from the same source, the maximum likelihood estimates of the
parameters would approximately follow a normal distribution. For example, confidence intervals are
often based this assumption.

However, that normal approximation may or may not be a good one. To assess how good it is in this
example, we can use a bootstrap simulation. We will generate 1000 replicate datasets by resampling
from the data, fit a GP distribution to each one, and save all the replicate estimates.

replEsts = bootstrp(1000,@gpfit,y);

As a rough check on the sampling distribution of the parameter estimators, we can look at histograms
of the bootstrap replicates.

subplot(2,1,1);
hist(replEsts(:,1));
title('Bootstrap estimates of k');
subplot(2,1,2);
hist(replEsts(:,2));
title('Bootstrap estimates of sigma');

Using a Parameter Transformation

The histogram of the bootstrap estimates for k appears to be only a little asymmetric, while that for
the estimates of sigma definitely appears skewed to the right. A common remedy for that skewness is
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to estimate the parameter and its standard error on the log scale, where a normal approximation may
be more reasonable. A Q-Q plot is a better way to assess normality than a histogram, because non-
normality shows up as points that do not approximately follow a straight line. Let's check that to see
if the log transform for sigma is appropriate.

subplot(1,2,1);
qqplot(replEsts(:,1));
title('Bootstrap estimates of k');
subplot(1,2,2);
qqplot(log(replEsts(:,2)));
title('Bootstrap estimates of log(sigma)');

The bootstrap estimates for k and log(sigma) appear acceptably close to normality. A Q-Q plot for the
estimates of sigma, on the unlogged scale, would confirm the skewness that we've already seen in the
histogram. Thus, it would be more reasonable to construct a confidence interval for sigma by first
computing one for log(sigma) under the assumption of normality, and then exponentiating to
transform that interval back to the original scale for sigma.

In fact, that's exactly what the function gpfit does behind the scenes.

[paramEsts,paramCI] = gpfit(y);

kHat
kCI  = paramCI(:,1)

kHat =
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    0.0987

kCI =

   -0.1283
    0.3258

sigmaHat
sigmaCI  = paramCI(:,2)

sigmaHat =

    0.7156

sigmaCI =

    0.5305
    0.9654

Notice that while the 95% confidence interval for k is symmetric about the maximum likelihood
estimate, the confidence interval for sigma is not. That's because it was created by transforming a
symmetric CI for log(sigma).
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Modelling Data with the Generalized Extreme Value
Distribution

This example shows how to fit the generalized extreme value distribution using maximum likelihood
estimation. The extreme value distribution is used to model the largest or smallest value from a group
or block of data.

Three types of extreme value distributions are common, each as the limiting case for different types
of underlying distributions. For example, the type I extreme value is the limit distribution of the
maximum (or minimum) of a block of normally distributed data, as the block size becomes large. In
this example, we will illustrate how to fit such data using a single distribution that includes all three
types of extreme value distributions as special case, and investigate likelihood-based confidence
intervals for quantiles of the fitted distribution.

The Generalized Extreme Value Distribution

The Generalized Extreme Value (GEV) distribution unites the type I, type II, and type III extreme
value distributions into a single family, to allow a continuous range of possible shapes. It is
parameterized with location and scale parameters, mu and sigma, and a shape parameter, k. When k
< 0, the GEV is equivalent to the type III extreme value. When k > 0, the GEV is equivalent to the
type II. In the limit as k approaches 0, the GEV becomes the type I.

x = linspace(-3,6,1000);
plot(x,gevpdf(x,-.5,1,0),'-', x,gevpdf(x,0,1,0),'-', x,gevpdf(x,.5,1,0),'-');
xlabel('(x-mu) / sigma');
ylabel('Probability Density');
legend({'k < 0, Type III' 'k = 0, Type I' 'k > 0, Type II'});
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Notice that for k < 0 or k > 0, the density has zero probability above or below, respectively, the upper
or lower bound -(1/k). In the limit as k approaches 0, the GEV is unbounded. This can be summarized
as the constraint that 1+k*(y-mu)/sigma must be positive.

Simulating Block Maximum Data

The GEV can be defined constructively as the limiting distribution of block maxima (or minima). That
is, if you generate a large number of independent random values from a single probability
distribution, and take their maximum value, the distribution of that maximum is approximately a GEV.

The original distribution determines the shape parameter, k, of the resulting GEV distribution.
Distributions whose tails fall off as a polynomial, such as Student's t, lead to a positive shape
parameter. Distributions whose tails decrease exponentially, such as the normal, correspond to a zero
shape parameter. Distributions with finite tails, such as the beta, correspond to a negative shape
parameter.

Real applications for the GEV might include modelling the largest return for a stock during each
month. Here, we will simulate data by taking the maximum of 25 values from a Student's t
distribution with two degrees of freedom. The simulated data will include 75 random block maximum
values.

rng(0,'twister');
y = max(trnd(2,25,75),[],1);
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Fitting the Distribution by Maximum Likelihood

The function gevfit returns both maximum likelihood parameter estimates, and (by default) 95%
confidence intervals.

[paramEsts,paramCIs] = gevfit(y);

kMLE = paramEsts(1)        % Shape parameter
sigmaMLE = paramEsts(2)    % Scale parameter
muMLE = paramEsts(3)       % Location parameter

kMLE =

    0.4901

sigmaMLE =

    1.4856

muMLE =

    2.9710

kCI = paramCIs(:,1)
sigmaCI = paramCIs(:,2)
muCI = paramCIs(:,3)

kCI =

    0.2020
    0.7782

sigmaCI =

    1.1431
    1.9307

muCI =

    2.5599
    3.3821

Notice that the 95% confidence interval for k does not include the value zero. The type I extreme
value distribution is apparently not a good model for these data. That makes sense, because the
underlying distribution for the simulation had much heavier tails than a normal, and the type II
extreme value distribution is theoretically the correct one as the block size becomes large.

As an alternative to confidence intervals, we can also compute an approximation to the asymptotic
covariance matrix of the parameter estimates, and from that extract the parameter standard errors.
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[nll,acov] = gevlike(paramEsts,y);
paramSEs = sqrt(diag(acov))

paramSEs =

    0.1470
    0.1986
    0.2097

Checking the Fit Visually

To visually assess how good the fit is, we'll look at plots of the fitted probability density function
(PDF) and cumulative distribution function (CDF).

The support of the GEV depends on the parameter values. In this case, the estimate for k is positive,
so the fitted distribution has zero probability below a lower bound.

lowerBnd = muMLE-sigmaMLE./kMLE;

First, we'll plot a scaled histogram of the data, overlaid with the PDF for the fitted GEV model. This
histogram is scaled so that the bar heights times their width sum to 1, to make it comparable to the
PDF.

ymax = 1.1*max(y);
bins = floor(lowerBnd):ceil(ymax);
h = bar(bins,histc(y,bins)/length(y),'histc');
h.FaceColor = [.9 .9 .9];
ygrid = linspace(lowerBnd,ymax,100);
line(ygrid,gevpdf(ygrid,kMLE,sigmaMLE,muMLE));
xlabel('Block Maximum');
ylabel('Probability Density');
xlim([lowerBnd ymax]);
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We can also compare the fit to the data in terms of cumulative probability, by overlaying the empirical
CDF and the fitted CDF.

[F,yi] = ecdf(y);
plot(ygrid,gevcdf(ygrid,kMLE,sigmaMLE,muMLE),'-');
hold on;
stairs(yi,F,'r');
hold off;
xlabel('Block Maximum');
ylabel('Cumulative Probability');
legend('Fitted Generalized Extreme Value CDF','Empirical CDF','location','southeast');
xlim([lowerBnd ymax]);
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Estimating Quantiles of the Model

While the parameter estimates may be important by themselves, a quantile of the fitted GEV model is
often the quantity of interest in analyzing block maxima data.

For example, the return level Rm is defined as the block maximum value expected to be exceeded
only once in m blocks. That is just the (1-1/m)'th quantile. We can plug the maximum likelihood
parameter estimates into the inverse CDF to estimate Rm for m=10.

R10MLE = gevinv(1-1./10,kMLE,sigmaMLE,muMLE)

R10MLE =

    9.0724

We could compute confidence limits for R10 using asymptotic approximations, but those may not be
valid. Instead, we will use a likelihood-based method to compute confidence limits. This method often
produces more accurate results than one based on the estimated covariance matrix of the parameter
estimates.

Given any set of values for the parameters mu, sigma, and k, we can compute a log-likelihood -- for
example, the MLEs are the parameter values that maximize the GEV log-likelihood. As the parameter
values move away from the MLEs, their log-likelihood typically becomes significantly less than the
maximum. If we look at the set of parameter values that produce a log-likelihood larger than a
specified critical value, this is a complicated region in the parameter space. However, for a suitable

5 Probability Distributions

5-220



critical value, it is a confidence region for the model parameters. The region contains parameter
values that are "compatible with the data". The critical value that determines the region is based on a
chi-square approximation, and we'll use 95% as our confidence level. (Note that we will actually work
with the negative of the log-likelihood.)

nllCritVal = gevlike([kMLE,sigmaMLE,muMLE],y) + .5*chi2inv(.95,1)

nllCritVal =

  170.3044

For any set of parameter values mu, sigma, and k, we can compute R10. Therefore, we can find the
smallest R10 value achieved within the critical region of the parameter space where the negative log-
likelihood is larger than the critical value. That smallest value is the lower likelihood-based
confidence limit for R10.

This is difficult to visualize in all three parameter dimensions, but as a thought experiment, we can fix
the shape parameter, k, we can see how the procedure would work over the two remaining
parameters, sigma and mu.

sigmaGrid = linspace(.8, 2.25, 110);
muGrid = linspace(2.4, 3.6);
nllGrid = zeros(length(sigmaGrid),length(muGrid));
R10Grid = zeros(length(sigmaGrid),length(muGrid));
for i = 1:size(nllGrid,1)
    for j = 1:size(nllGrid,2)
        nllGrid(i,j) = gevlike([kMLE,sigmaGrid(i),muGrid(j)],y);
        R10Grid(i,j) = gevinv(1-1./10,kMLE,sigmaGrid(i),muGrid(j));
    end
end
nllGrid(nllGrid>gevlike([kMLE,sigmaMLE,muMLE],y)+6) = NaN;
contour(muGrid,sigmaGrid,R10Grid,6.14:.64:12.14,'LineColor','r');
hold on
contour(muGrid,sigmaGrid,R10Grid,[7.42 11.26],'LineWidth',2,'LineColor','r');
contour(muGrid,sigmaGrid,nllGrid,[168.7 169.1 169.6 170.3:1:173.3],'LineColor','b');
contour(muGrid,sigmaGrid,nllGrid,[nllCritVal nllCritVal],'LineWidth',2,'LineColor','b');
hold off
axis([2.4 3.6 .8 2.25]);
xlabel('mu');
ylabel('sigma');
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The blue contours represent the log-likelihood surface, and the bold blue contour is the boundary of
the critical region. The red contours represent the surface for R10 -- larger values are to the top
right, lower to the bottom left. The contours are straight lines because for fixed k, Rm is a linear
function of sigma and mu. The bold red contours are the lowest and highest values of R10 that fall
within the critical region. In the full three dimensional parameter space, the log-likelihood contours
would be ellipsoidal, and the R10 contours would be surfaces.

Finding the lower confidence limit for R10 is an optimization problem with nonlinear inequality
constraints, and so we will use the function fmincon from the Optimization Toolbox™. We need to
find the smallest R10 value, and therefore the objective to be minimized is R10 itself, equal to the
inverse CDF evaluated for p=1-1/m. We'll create a wrapper function that computes Rm specifically for
m=10.

CIobjfun = @(params) gevinv(1-1./10,params(1),params(2),params(3));

To perform the constrained optimization, we'll also need a function that defines the constraint, that is,
that the negative log-likelihood be less than the critical value. The constraint function should return
positive values when the constraint is violated. We'll create an anonymous function, using the
simulated data and the critical log-likelihood value. It also returns an empty value because we're not
using any equality constraints here.

CIconfun = @(params) deal(gevlike(params,y) - nllCritVal, []);

Finally, we call fmincon, using the active-set algorithm to perform the constrained optimization.

opts = optimset('Algorithm','active-set', 'Display','notify', 'MaxFunEvals',500, ...
                'RelLineSrchBnd',.1, 'RelLineSrchBndDuration',Inf);
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[params,R10Lower,flag,output] = ...
    fmincon(CIobjfun,paramEsts,[],[],[],[],[],[],CIconfun,opts);

Feasible point with lower objective function value found.

To find the upper likelihood confidence limit for R10, we simply reverse the sign on the objective
function to find the largest R10 value in the critical region, and call fmincon a second time.

CIobjfun = @(params) -gevinv(1-1./10,params(1),params(2),params(3));
[params,R10Upper,flag,output] = ...
    fmincon(CIobjfun,paramEsts,[],[],[],[],[],[],CIconfun,opts);
R10Upper = -R10Upper;

R10CI = [R10Lower, R10Upper]

R10CI =

    7.0841   13.4452

plot(ygrid,gevcdf(ygrid,kMLE,sigmaMLE,muMLE),'-');
hold on;
stairs(yi,F,'r');
plot(R10CI([1 1 1 1 2 2 2 2]), [.88 .92 NaN .9 .9 NaN .88 .92],'k-')
hold off;
xlabel('Block Maximum');
ylabel('Cumulative Probability');
legend('Fitted Generalized Extreme Value CDF','Empirical CDF', ...
       'R_{10} 95% CI','location','southeast');
xlim([lowerBnd ymax]);
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Likelihood Profile for a Quantile

Sometimes just an interval does not give enough information about the quantity being estimated, and
a profile likelihood is needed instead. To find the log-likelihood profile for R10, we will fix a possible
value for R10, and then maximize the GEV log-likelihood, with the parameters constrained so that
they are consistent with that current value of R10. This is a nonlinear equality constraint. If we do
that over a range of R10 values, we get a likelihood profile.

As with the likelihood-based confidence interval, we can think about what this procedure would be if
we fixed k and worked over the two remaining parameters, sigma and mu. Each red contour line in
the contour plot shown earlier represents a fixed value of R10; the profile likelihood optimization
consists of stepping along a single R10 contour line to find the highest log-likelihood (blue) contour.

For this example, we'll compute a profile likelihood for R10 over the values that were included in the
likelihood confidence interval.

R10grid = linspace(R10CI(1)-.05*diff(R10CI), R10CI(2)+.05*diff(R10CI), 51);

The objective function for the profile likelihood optimization is simply the log-likelihood, using the
simulated data.

PLobjfun = @(params) gevlike(params,y);

To use fmincon, we'll need a function that returns non-zero values when the constraint is violated,
that is, when the parameters are not consistent with the current value of R10. For each value of R10,
we'll create an anonymous function for the particular value of R10 under consideration. It also
returns an empty value because we're not using any inequality constraints here.
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Finally, we'll call fmincon at each value of R10, to find the corresponding constrained maximum of
the log-likelihood. We'll start near the maximum likelihood estimate of R10, and work out in both
directions.

Lprof = nan(size(R10grid));
params = paramEsts;
[dum,peak] = min(abs(R10grid-R10MLE));
for i = peak:1:length(R10grid)
    PLconfun = ...
        @(params) deal([], gevinv(1-1./10,params(1),params(2),params(3)) - R10grid(i));
    [params,Lprof(i),flag,output] = ...
        fmincon(PLobjfun,params,[],[],[],[],[],[],PLconfun,opts);
end
params = paramEsts;
for i = peak-1:-1:1
    PLconfun = ...
        @(params) deal([], gevinv(1-1./10,params(1),params(2),params(3)) - R10grid(i));
    [params,Lprof(i),flag,output] = ...
        fmincon(PLobjfun,params,[],[],[],[],[],[],PLconfun,opts);
end

plot(R10grid,-Lprof,'-', R10MLE,-gevlike(paramEsts,y),'ro', ...
     [R10grid(1), R10grid(end)],[-nllCritVal,-nllCritVal],'k--');
xlabel('R_{10}');
ylabel('Log-Likelihood');
legend('Profile likelihood','MLE','95% Conf. Limit');
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Curve Fitting and Distribution Fitting

This example shows how to perform curve fitting and distribution fitting, and discusses when each
method is appropriate.

Choose Between Curve Fitting and Distribution Fitting

Curve fitting and distribution fitting are different types of data analysis.

• Use curve fitting when you want to model a response variable as a function of a predictor variable.
• Use distribution fitting when you want to model the probability distribution of a single variable.

Curve Fitting

In the following experimental data, the predictor variable is time, the time after the ingestion of a
drug. The response variable is conc, the concentration of the drug in the bloodstream. Assume that
only the response data conc is affected by experimental error.

time = [ 0.1   0.1   0.3   0.3   1.3   1.7   2.1   2.6   3.9   3.9 ...
         5.1   5.6   6.2   6.4   7.7   8.1   8.2   8.9   9.0   9.5 ...
         9.6  10.2  10.3  10.8  11.2  11.2  11.2  11.7  12.1  12.3 ...
        12.3  13.1  13.2  13.4  13.7  14.0  14.3  15.4  16.1  16.1 ...
        16.4  16.4  16.7  16.7  17.5  17.6  18.1  18.5  19.3  19.7]';
conc = [0.01  0.08  0.13  0.16  0.55  0.90  1.11  1.62  1.79  1.59 ...
        1.83  1.68  2.09  2.17  2.66  2.08  2.26  1.65  1.70  2.39 ...
        2.08  2.02  1.65  1.96  1.91  1.30  1.62  1.57  1.32  1.56 ...
        1.36  1.05  1.29  1.32  1.20  1.10  0.88  0.63  0.69  0.69 ...
        0.49  0.53  0.42  0.48  0.41  0.27  0.36  0.33  0.17  0.20]';

Suppose you want to model blood concentration as a function of time. Plot conc against time.

plot(time,conc,'o');
xlabel('Time');
ylabel('Blood Concentration');
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Assume that conc follows a two-parameter Weibull curve as a function of time. A Weibull curve has
the form and parameters

y = c(x/a)(b− 1)e−(x/a)b,

where a is a horizontal scaling, b is a shape parameter, and c is a vertical scaling.

Fit the Weibull model using nonlinear least squares.

modelFun =  @(p,x) p(3) .* (x./p(1)).^(p(2)-1) .* exp(-(x./p(1)).^p(2));
startingVals = [10 2 5];
nlModel = fitnlm(time,conc,modelFun,startingVals);

Plot the Weibull curve onto the data.

xgrid = linspace(0,20,100)';
line(xgrid,predict(nlModel,xgrid),'Color','r');
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The fitted Weibull model is problematic. fitnlm assumes the experimental errors are additive and
come from a symmetric distribution with constant variance. However, the scatter plot shows that the
error variance is proportional to the height of the curve. Furthermore, the additive, symmetric errors
imply that a negative blood concentration measurement is possible.

A more realistic assumption is that multiplicative errors are symmetric on the log scale. Under that
assumption, fit a Weibull curve to the data by taking the log of both sides. Use nonlinear least squares
to fit the curve:

log(y) = log(c) + (b− 1)log(x/a)− (x/a)b .

nlModel2 = fitnlm(time,log(conc),@(p,x) log(modelFun(p,x)),startingVals);

Add the new curve to the existing plot.

line(xgrid,exp(predict(nlModel2,xgrid)),'Color',[0 .5 0],'LineStyle','--');
legend({'Raw Data','Additive Errors Model','Multiplicative Errors Model'});

5 Probability Distributions

5-228



The model object nlModel2 contains estimates of precision. A best practice is to check the model's
goodness of fit. For example, make residual plots on the log scale to check the assumption of constant
variance for the multiplicative errors.

In this example, using the multiplicative errors model has little effect on the model predictions. For
an example where the type of model has more of an impact, see “Pitfalls in Fitting Nonlinear Models
by Transforming to Linearity” on page 13-53.

Functions for Curve Fitting

• Statistics and Machine Learning Toolbox™ includes these functions for fitting models: fitnlm for
nonlinear least-squares models, fitglm for generalized linear models, fitrgp for Gaussian
process regression models, and fitrsvm for support vector machine regression models.

• Curve Fitting Toolbox™ provides command line and graphical tools that simplify tasks in curve
fitting. For example, the toolbox provides automatic choice of starting coefficient values for
various models, as well as robust and nonparametric fitting methods.

• Optimization Toolbox™ has functions for performing complicated types of curve fitting analyses,
such as analyzing models with constraints on the coefficients.

• The MATLAB® function polyfit fits polynomial models, and the MATLAB function fminsearch
is useful in other kinds of curve fitting.

Distribution Fitting

Suppose you want to model the distribution of electrical component lifetimes. The variable life
measures the time to failure for 50 identical electrical components.
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life = [ 6.2 16.1 16.3 19.0 12.2  8.1  8.8  5.9  7.3  8.2 ...
        16.1 12.8  9.8 11.3  5.1 10.8  6.7  1.2  8.3  2.3 ...
         4.3  2.9 14.8  4.6  3.1 13.6 14.5  5.2  5.7  6.5 ...
         5.3  6.4  3.5 11.4  9.3 12.4 18.3 15.9  4.0 10.4 ...
         8.7  3.0 12.1  3.9  6.5  3.4  8.5  0.9  9.9  7.9]';

Visualize the data with a histogram.

binWidth = 2;
lastVal = ceil(max(life));
binEdges = 0:binWidth:lastVal+1;
h = histogram(life,binEdges);
xlabel('Time to Failure');
ylabel('Frequency');
ylim([0 10]);

Because lifetime data often follows a Weibull distribution, one approach might be to use the Weibull
curve from the previous curve fitting example to fit the histogram. To try this approach, convert the
histogram to a set of points (x,y), where x is a bin center and y is a bin height, and then fit a curve to
those points.

counts = histcounts(life,binEdges);
binCtrs = binEdges(1:end-1) + binWidth/2;
h.FaceColor = [.9 .9 .9];
hold on
plot(binCtrs,counts,'o');
hold off
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Fitting a curve to a histogram, however, is problematic and usually not recommended.

1 The process violates basic assumptions of least-squares fitting. The bin counts are nonnegative,
implying that measurement errors cannot be symmetric. Also, the bin counts have different
variability in the tails than in the center of the distribution. Finally, the bin counts have a fixed
sum, implying that they are not independent measurements.

2 If you fit a Weibull curve to the bar heights, you have to constrain the curve because the
histogram is a scaled version of an empirical probability density function (pdf).

3 For continuous data, fitting a curve to a histogram rather than data discards information.
4 The bar heights in the histogram are dependent on the choice of bin edges and bin widths.

For many parametric distributions, maximum likelihood is a better way to estimate parameters
because it avoids these problems. The Weibull pdf has almost the same form as the Weibull curve:

y = (b/a)(x/a)(b− 1)e−(x/a)b .

However, b/a replaces the scale parameter c because the function must integrate to 1. To fit a Weibull
distribution to the data using maximum likelihood, use fitdist and specify 'Weibull' as the
distribution name. Unlike least squares, maximum likelihood finds a Weibull pdf that best matches the
scaled histogram without minimizing the sum of the squared differences between the pdf and the bar
heights.

pd = fitdist(life,'Weibull');

Plot a scaled histogram of the data and superimpose the fitted pdf.
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h = histogram(life,binEdges,'Normalization','pdf','FaceColor',[.9 .9 .9]);
xlabel('Time to Failure');
ylabel('Probability Density');
ylim([0 0.1]);
xgrid = linspace(0,20,100)';
pdfEst = pdf(pd,xgrid);
line(xgrid,pdfEst)

A best practice is to check the model's goodness of fit.

Although fitting a curve to a histogram is usually not recommended, the process is appropriate in
some cases. For an example, see “Fit Custom Distributions” on page 5-173.

Functions for Distribution Fitting

• Statistics and Machine Learning Toolbox™ includes the function fitdist for fitting probability
distribution objects to data. It also includes dedicated fitting functions (such as wblfit) for fitting
parametric distributions using maximum likelihood, the function mle for fitting custom
distributions without dedicated fitting functions, and the function ksdensity for fitting
nonparametric distribution models to data.

• Statistics and Machine Learning Toolbox additionally provides the Distribution Fitter app, which
simplifies many tasks in distribution fitting, such as generating visualizations and diagnostic plots.

• Functions in Optimization Toolbox™ enable you to fit complicated distributions, including those
with constraints on the parameters.
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• The MATLAB® function fminsearch provides maximum likelihood distribution fitting.

See Also
fitnlm | fitglm | fitrgp | fitrsvm | polyfit | fminsearch | fitdist | mle | ksdensity |
Distribution Fitter

More About
• “Supported Distributions” on page 5-16
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Fitting a Univariate Distribution Using Cumulative Probabilities

This example shows how to fit univariate distributions using least squares estimates of the cumulative
distribution functions. This is a generally-applicable method that can be useful in cases when
maximum likelihood fails, for instance some models that include a threshold parameter.

The most common method for fitting a univariate distribution to data is maximum likelihood. But
maximum likelihood does not work in all cases, and other estimation methods, such as the Method of
Moments, are sometimes needed. When applicable, maximum likelihood is probably the better choice
of methods, because it is often more efficient. But the method described here provides another tool
that can be used when needed.

Fitting an Exponential Distribution Using Least Squares

The term "least squares" is most commonly used in the context of fitting a regression line or surface
to model a response variable as a function of one or more predictor variables. The method described
here is a very different application of least squares: univariate distribution fitting, with only a single
variable.

To begin, first simulate some sample data. We'll use an exponential distribution to generate the data.
For the purposes of this example, as in practice, we'll assume that the data are not known to have
come from a particular model.

rng(37,'twister');
n = 100;
x = exprnd(2,n,1);

Next, compute the empirical cumulative distribution function (ECDF) of the data. This is simply a step
function with a jump in cumulative probability, p, of 1/n at each data point, x.

x = sort(x);
p = ((1:n)-0.5)' ./ n;
stairs(x,p,'k-');
xlabel('x');
ylabel('Cumulative probability (p)');
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We'll fit an exponential distribution to these data. One way to do that is to find the exponential
distribution whose cumulative distribution function (CDF) best approximates (in a sense to be
explained below) the ECDF of the data. The exponential CDF is p = Pr{X <= x} = 1 - exp(-x/mu).
Transforming that to -log(1-p)*mu = x gives a linear relationship between -log(1-p) and x. If the data
do come from an exponential, we ought to see, at least approximately, a linear relationship if we plug
the computed x and p values from the ECDF into that equation. If we use least squares to fit a
straight line through the origin to x vs. -log(1-p), then that fitted line represents the exponential
distribution that is "closest" to the data. The slope of the line is an estimate of the parameter mu.

Equivalently, we can think of y = -log(1-p) as an "idealized sample" from a standard (mean 1)
exponential distribution. These idealized values are exactly equally spaced on the probability scale. A
Q-Q plot of x and y ought to be approximately linear if the data come from an exponential
distribution, and we'll fit the least squares line through the origin to x vs. y.

y = -log(1 - p);
muHat = y \ x

muHat =

    1.8627

Plot the data and the fitted line.
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plot(x,y,'+', y*muHat,y,'r--');
xlabel('x');
ylabel('y = -log(1-p)');

Notice that the linear fit we've made minimizes the sum of squared errors in the horizontal, or "x",
direction. That's because the values for y = -log(1-p) are deterministic, and it's the x values that are
random. It's also possible to regress y vs. x, or to use other types of linear fits, for example, weighted
regression, orthogonal regression, or even robust regression. We will not explore those possibilities
here.

For comparison, fit the data by maximum likelihood.

muMLE = expfit(x)

muMLE =

    1.7894

Now plot the two estimated distributions on the untransformed cumulative probability scale.

stairs(x,p,'k-');
hold on
xgrid = linspace(0,1.1*max(x),100)';
plot(xgrid,expcdf(xgrid,muHat),'r--', xgrid,expcdf(xgrid,muMLE),'b--');
hold off
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xlabel('x'); ylabel('Cumulative Probability (p)');
legend({'Data','LS Fit','ML Fit'},'location','southeast');

The two methods give very similar fitted distributions, although the LS fit has been influenced more
by observations in the tail of the distribution.

Fitting a Weibull Distribution

For a slightly more complex example, simulate some sample data from a Weibull distribution, and
compute the ECDF of x.

n = 100;
x = wblrnd(2,1,n,1);
x = sort(x);
p = ((1:n)-0.5)' ./ n;

To fit a Weibull distribution to these data, notice that the CDF for the Weibull is p = Pr{X <= x} = 1 -
exp(-(x/a)^b). Transforming that to log(a) + log(-log(1-p))*(1/b) = log(x) again gives a linear
relationship, this time between log(-log(1-p)) and log(x). We can use least squares to fit a straight line
on the transformed scale using p and x from the ECDF, and the slope and intercept of that line lead to
estimates of a and b.

logx = log(x);
logy = log(-log(1 - p));
poly = polyfit(logy,logx,1);
paramHat = [exp(poly(2)) 1/poly(1)]
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paramHat =

    2.1420    1.0843

Plot the data and the fitted line on the transformed scale.

plot(logx,logy,'+', log(paramHat(1)) + logy/paramHat(2),logy,'r--');
xlabel('log(x)');
ylabel('log(-log(1-p))');

For comparison, fit the data by maximum likelihood, and plot the two estimated distributions on the
untransformed scale.

paramMLE = wblfit(x)
stairs(x,p,'k');
hold on
xgrid = linspace(0,1.1*max(x),100)';
plot(xgrid,wblcdf(xgrid,paramHat(1),paramHat(2)),'r--', ...
     xgrid,wblcdf(xgrid,paramMLE(1),paramMLE(2)),'b--');
hold off
xlabel('x'); ylabel('Cumulative Probability (p)');
legend({'Data','LS Fit','ML Fit'},'location','southeast');

paramMLE =

5 Probability Distributions

5-238



    2.1685    1.0372

A Threshold Parameter Example

It's sometimes necessary to fit positive distributions like the Weibull or lognormal with a threshold
parameter. For example, a Weibull random variable takes values over (0,Inf), and a threshold
parameter, c, shifts that range to (c,Inf). If the threshold parameter is known, then there is no
difficulty. But if the threshold parameter is not known, it must instead be estimated. These models are
difficult to fit with maximum likelihood -- the likelihood can have multiple modes, or even become
infinite for parameter values that are not reasonable for the data, and so maximum likelihood is often
not a good method. But with a small addition to the least squares procedure, we can get stable
estimates.

To illustrate, we'll simulate some data from a three-parameter Weibull distribution, with a threshold
value. As above, we'll assume for the purposes of the example that the data are not known to have
come from a particular model, and that the threshold is not known.

n = 100;
x = wblrnd(4,2,n,1) + 4;
hist(x,20); xlim([0 16]);
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How can we fit a three-parameter Weibull distribution to these data? If we knew what the threshold
value was, 1 for example, we could subtract that value from the data and then use the least squares
procedure to estimate the Weibull shape and scale parameters.

x = sort(x);
p = ((1:n)-0.5)' ./ n;
logy = log(-log(1-p));
logxm1 = log(x-1);
poly1 = polyfit(log(-log(1-p)),log(x-1),1);
paramHat1 = [exp(poly1(2)) 1/poly1(1)]
plot(logxm1,logy,'b+', log(paramHat1(1)) + logy/paramHat1(2),logy,'r--');
xlabel('log(x-1)');
ylabel('log(-log(1-p))');

paramHat1 =

    7.4305    4.5574
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That's not a very good fit -- log(x-1) and log(-log(1-p)) do not have a linear relationship. Of course,
that's because we don't know the correct threshold value. If we try subtracting different threshold
values, we get different plots and different parameter estimates.

logxm2 = log(x-2);
poly2 = polyfit(log(-log(1-p)),log(x-2),1);
paramHat2 = [exp(poly2(2)) 1/poly2(1)]

paramHat2 =

    6.4046    3.7690

logxm4 = log(x-4);
poly4 = polyfit(log(-log(1-p)),log(x-4),1);
paramHat4 = [exp(poly4(2)) 1/poly4(1)]

paramHat4 =

    4.3530    1.9130

plot(logxm1,logy,'b+', logxm2,logy,'r+', logxm4,logy,'g+', ...
     log(paramHat1(1)) + logy/paramHat1(2),logy,'b--', ...
     log(paramHat2(1)) + logy/paramHat2(2),logy,'r--', ...
     log(paramHat4(1)) + logy/paramHat4(2),logy,'g--');
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xlabel('log(x - c)');
ylabel('log(-log(1 - p))');
legend({'Threshold = 1' 'Threshold = 2' 'Threshold = 4'}, 'location','northwest');

The relationship between log(x-4) and log(-log(1-p)) appears approximately linear. Since we'd expect
to see an approximately linear plot if we subtracted the true threshold parameter, this is evidence
that 4 might be a reasonable value for the threshold. On the other hand, the plots for 2 and 3 differ
more systematically from linear, which is evidence that those values are not consistent with the data.

This argument can be formalized. For each provisional value of the threshold parameter, the
corresponding provisional Weibull fit can be characterized as the parameter values that maximize the
R^2 value of a linear regression on the transformed variables log(x-c) and log(-log(1-p)). To estimate
the threshold parameter, we can carry that one step further, and maximize the R^2 value over all
possible threshold values.

r2 = @(x,y) 1 - norm(y - polyval(polyfit(x,y,1),x)).^2 / norm(y - mean(y)).^2;
threshObj = @(c) -r2(log(-log(1-p)),log(x-c));
cHat = fminbnd(threshObj,.75*min(x), .9999*min(x));
poly = polyfit(log(-log(1-p)),log(x-cHat),1);
paramHat = [exp(poly(2)) 1/poly(1) cHat]
logx = log(x-cHat);
logy = log(-log(1-p));
plot(logx,logy,'b+', log(paramHat(1)) + logy/paramHat(2),logy,'r--');
xlabel('log(x - cHat)');
ylabel('log(-log(1 - p))');
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paramHat =

    4.7448    2.3839    3.6029

Non-Location-Scale Families

The exponential distribution is a scale family, and on the log scale, the Weibull distribution is a
location-scale family, so this least squares method was straightforward in those two cases. The
general procedure to fit a location-scale distribution is

• Compute the ECDF of the observed data.
• Transform the distribution's CDF to get a linear relationship between some function of the data

and some function of the cumulative probability. These two functions do not involve the
distribution parameters, but the slope and intercept of the line do.

• Plug the values of x and p from the ECDF into that transformed CDF, and fit a straight line using
least squares.

• Solve for the distribution parameters in terms of the slope and intercept of the line.

We also saw that fitting a distribution that is a location-scale family with an additional a threshold
parameter is only slightly more difficult.

But other distributions that are not location-scale families, like the gamma, are a bit trickier. There's
no transformation of the CDF that will give a relationship that is linear. However, we can use a similar
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idea, only this time working on the untransformed cumulative probability scale. A P-P plot is the
appropriate way to visualize that fitting procedure.

If the empirical probabilities from the ECDF are plotted against fitted probabilities from a parametric
model, a tight scatter along the 1:1 line from zero to one indicates that the parameter values define a
distribution that explains the observed data well, because the fitted CDF approximates the empirical
CDF well. The idea is to find parameter values that make the probability plot as close to the 1:1 line
as possible. That may not even be possible, if the distribution is not a good model for the data. If the
P-P plot shows a systematic departure from the 1:1 line, then the model may be questionable.
However, it's important to remember that since the points in these plots are not independent,
interpretation is not exactly the same as a regression residual plot.

For example, we'll simulate some data and fit a gamma distribution.

n = 100;
x = gamrnd(2,1,n,1);

Compute the ECDF of x.

x = sort(x);
pEmp = ((1:n)-0.5)' ./ n;

We can make a probability plot using any initial guess for the gamma distribution's parameters, a=1
and b=1, say. That guess is not very good -- the probabilities from the parametric CDF are not close
to the probabilities from the ECDF. If we tried a different a and b, we'd get a different scatter on the
P-P plot, with a different discrepancy from the 1:1 line. Since we know the true a and b in this
example, we'll try those values.

a0 = 1; b0 = 1;
p0Fit = gamcdf(x,a0,b0);
a1 = 2; b1 = 1;
p1Fit = gamcdf(x,a1,b1);
plot([0 1],[0 1],'k--', pEmp,p0Fit,'b+', pEmp,p1Fit,'r+');
xlabel('Empirical Probabilities');
ylabel('(Provisionally) Fitted Gamma Probabilities');
legend({'1:1 Line','a=1, b=1', 'a=2, b=1'}, 'location','southeast');
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The second set of values for a and b make for a much better plot, and thus are more compatible with
the data, if you are measuring "compatible" by how straight you can make the P-P plot.

To make the scatter match the 1:1 line as closely possible, we can find the values of a and b that
minimize a weighted sum of the squared distances to the 1:1 line. The weights are defined in terms of
the empirical probabilities, and are lowest in the center of the plot and highest at the extremes.
These weights compensate for the variance of the fitted probabilities, which is highest near the
median and lowest in the tails. This weighted least squares procedure defines the estimator for a and
b.

wgt = 1 ./ sqrt(pEmp.*(1-pEmp));
gammaObj = @(params) sum(wgt.*(gamcdf(x,exp(params(1)),exp(params(2)))-pEmp).^2);
paramHat = fminsearch(gammaObj,[log(a1),log(b1)]);
paramHat = exp(paramHat)

paramHat =

    2.2759    0.9059

pFit = gamcdf(x,paramHat(1),paramHat(2));
plot([0 1],[0 1],'k--', pEmp,pFit,'b+');
xlabel('Empirical Probabilities');
ylabel('Fitted Gamma Probabilities');
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Notice that in the location-scale cases considered earlier, we could fit the distribution with a single
straight line fit. Here, as with the threshold parameter example, we had to iteratively find the best-fit
parameter values.

Model Misspecification

The P-P plot can also be useful for comparing fits from different distribution families. What happens if
we try to fit a lognormal distribution to these data?

wgt = 1 ./ sqrt(pEmp.*(1-pEmp));
LNobj = @(params) sum(wgt.*(logncdf(x,params(1),exp(params(2)))-pEmp).^2);
mu0 = mean(log(x)); sigma0 = std(log(x));
paramHatLN = fminsearch(LNobj,[mu0,log(sigma0)]);
paramHatLN(2) = exp(paramHatLN(2))

paramHatLN =

    0.5331    0.7038

pFitLN = logncdf(x,paramHatLN(1),paramHatLN(2));
hold on
plot(pEmp,pFitLN,'rx');
hold off
ylabel('Fitted Probabilities');
legend({'1:1 Line', 'Fitted Gamma', 'Fitted Lognormal'},'location','southeast');
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Notice how the lognormal fit differs systematically from the gamma fit in the tails. It grows more
slowly in the left tail, and dies more slowly in the right tail. The gamma seems to be a slightly better
fit to the data.

A Lognormal Threshold Parameter Example

The lognormal distribution is simple to fit by maximum likelihood, because once the log
transformation is applied to the data, maximum likelihood is identical to fitting a normal. But it is
sometimes necessary to estimate a threshold parameter in a lognormal model. The likelihood for such
a model is unbounded, and so maximum likelihood does not work. However, the least squares method
provides a way to make estimates. Since the two-parameter lognormal distribution can be log-
transformed to a location-scale family, we could follow the same steps as in the earlier example that
showed fitting a Weibull distribution with threshold parameter. Here, however, we'll do the estimation
on the cumulative probability scale, as in the previous example showing a fit with the gamma
distribution.

To illustrate, we'll simulate some data from a three-parameter lognormal distribution, with a
threshold.

n = 200;
x = lognrnd(0,.5,n,1) + 10;
hist(x,20); xlim([8 15]);
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Compute the ECDF of x, and find the parameters for the best-fit three-parameter lognormal
distribution.

x = sort(x);
pEmp = ((1:n)-0.5)' ./ n;
wgt = 1 ./ sqrt(pEmp.*(1-pEmp));
LN3obj = @(params) sum(wgt.*(logncdf(x-params(3),params(1),exp(params(2)))-pEmp).^2);
c0 = .99*min(x);
mu0 = mean(log(x-c0)); sigma0 = std(log(x-c0));
paramHat = fminsearch(LN3obj,[mu0,log(sigma0),c0]);
paramHat(2) = exp(paramHat(2))

paramHat =

   -0.0698    0.5930   10.1045

pFit = logncdf(x-paramHat(3),paramHat(1),paramHat(2));
plot(pEmp,pFit,'b+', [0 1],[0 1],'k--');
xlabel('Empirical Probabilities');
ylabel('Fitted 3-param Lognormal Probabilities');
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Measures of Precision

Parameter estimates are only part of the story -- a model fit also needs some measure of how precise
the estimates are, typically standard errors. With maximum likelihood, the usual method is to use the
information matrix and a large-sample asymptotic argument to approximate the covariance matrix of
the estimator over repeated sampling. No such theory exists for these least squares estimators.

However, Monte-Carlo simulation provides another way to estimate standard errors. If we use the
fitted model to generate a large number of datasets, we can approximate the standard error of the
estimators with the Monte-Carlo standard deviation. For simplicity, we've defined a fitting function in
a separate file, logn3fit.m.

estsSim = zeros(1000,3);
for i = 1:size(estsSim,1)
    xSim = lognrnd(paramHat(1),paramHat(2),n,1) + paramHat(3);
    estsSim(i,:) = logn3fit(xSim);
end
std(estsSim)

ans =

    0.1542    0.0908    0.1303

It might also be useful to look at the distribution of the estimates, to check if the assumption of
approximate normality is reasonable for this sample size, or to check for bias.
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subplot(3,1,1), hist(estsSim(:,1),20);
title('Log-Location Parameter Bootstrap Estimates');
subplot(3,1,2), hist(estsSim(:,2),20);
title('Log-Scale Parameter Bootstrap Estimates');
subplot(3,1,3), hist(estsSim(:,3),20);
title('Threshold Parameter Bootstrap Estimates');

Clearly, the estimator for the threshold parameter is skewed. This is to be expected, since it is
bounded above by the minimum data value. The other two histograms indicate that approximate
normality might be a questionable assumption for the log-location parameter (the first histogram) as
well. The standard errors computed above must be interpreted with that in mind, and the usual
construction for confidence intervals might not be appropriate for the log-location and threshold
parameters.

The means of the simulated estimates are close to the parameter values used to generate simulated
data, indicating that the procedure is approximately unbiased at this sample size, at least for
parameter values near the estimates.

[paramHat; mean(estsSim)]

ans =

   -0.0698    0.5930   10.1045
   -0.0690    0.5926   10.0905
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Finally, we could also have used the function bootstrp to compute bootstrap standard error
estimates. These do not make any parametric assumptions about the data.

estsBoot = bootstrp(1000,@logn3fit,x);
std(estsBoot)

ans =

    0.1490    0.0785    0.1180

The bootstrap standard errors are not far off from the Monte-Carlo calculations. That's not surprising,
since the fitted model is the same one from which the example data were generated.

Summary

The fitting method described here is an alternative to maximum likelihood that can be used to fit
univariate distributions when maximum likelihood fails to provide useful parameter estimates. One
important application is in fitting distributions involving a threshold parameter, such as the three-
parameter lognormal. Standard errors are more difficult to compute than for maximum likelihood
estimates, because analytic approximations do not exist, but simulation provides a feasible
alternative.

The P-P plots used here to illustrate the fitting method are useful in their own right, as a visual
indication of lack of fit when fitting a univariate distribution.
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Gaussian Processes

• “Gaussian Process Regression Models” on page 6-2
• “Kernel (Covariance) Function Options” on page 6-6
• “Exact GPR Method” on page 6-10
• “Subset of Data Approximation for GPR Models” on page 6-14
• “Subset of Regressors Approximation for GPR Models” on page 6-15
• “Fully Independent Conditional Approximation for GPR Models” on page 6-19
• “Block Coordinate Descent Approximation for GPR Models” on page 6-22
• “Predict Battery State of Charge Using Machine Learning” on page 6-27
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Gaussian Process Regression Models
Gaussian process regression (GPR) models are nonparametric kernel-based probabilistic models. You
can train a GPR model using the fitrgp function.

Consider the training set (xi, yi); i = 1, 2, ..., n , where xi ∈ ℝd and yi ∈ ℝ, drawn from an unknown
distribution. A GPR model addresses the question of predicting the value of a response variable ynew,
given the new input vector xnew, and the training data. A linear regression model is of the form

y = xTβ + ε,

where ε ∼ N(0, σ2). The error variance σ2 and the coefficients β are estimated from the data. A GPR
model explains the response by introducing latent variables, f xi , i = 1, 2, ..., n, from a Gaussian
process (GP), and explicit basis functions, h. The covariance function of the latent variables captures
the smoothness of the response and basis functions project the inputs x into a p-dimensional feature
space.

A GP is a set of random variables, such that any finite number of them have a joint Gaussian
distribution. If f x , x ∈ ℝd  is a GP, then given n observations x1, x2, ..., xn, the joint distribution of
the random variables f (x1), f (x2), ..., f (xn) is Gaussian. A GP is defined by its mean function m x  and
covariance function, k x, x′ . That is, if f x , x ∈ ℝd  is a Gaussian process, then E f x = m x  and
Cov f x , f x′ = E f x −m x f x′ −m x′ = k x, x′ .

Now consider the following model.

h(x)Tβ + f (x),

where f x GP 0, k x, x′ , that is f(x) are from a zero mean GP with covariance function, k x, x′ . h(x)
are a set of basis functions that transform the original feature vector x in Rd into a new feature vector
h(x) in Rp. β is a p-by-1 vector of basis function coefficients. This model represents a GPR model. An
instance of response y can be modeled as

P yi f xi , xi   N yi h xi
Tβ + f xi , σ2

Hence, a GPR model is a probabilistic model. There is a latent variable f(xi) introduced for each
observation xi, which makes the GPR model nonparametric. In vector form, this model is equivalent to

P(y f , X) N(y Hβ + f , σ2I),

where

X =

x1
T

x2
T

⋮
xn

T

, y =

y1
y2

⋮
yn

, H =

h x1
T

h x2
T

⋮
h xn

T

, f =

f x1
f x2

⋮
f xn

.

The joint distribution of latent variables f x1 , f x2 , ..., f xn  in the GPR model is as follows:

P(f X) N f 0, K X, X ,
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close to a linear regression model, where K X, X  looks as follows:

K X, X =

k x1, x1 k x1, x2 ⋯ k x1, xn

k x2, x1 k x2, x2 ⋯ k x2, xn

⋮ ⋮ ⋮ ⋮
k xn, x1 k xn, x2 ⋯ k xn, xn

.

The covariance function k x, x′  is usually parameterized by a set of kernel parameters or
hyperparameters, θ. Often k x, x′  is written as k x, x′ θ  to explicitly indicate the dependence on θ.

fitrgp estimates the basis function coefficients, β, the noise variance, σ2, and the hyperparameters,
θ, of the kernel function from the data while training the GPR model. You can specify the basis
function, the kernel (covariance) function, and the initial values for the parameters.

Because a GPR model is probabilistic, it is possible to compute the prediction intervals using the
trained model (see predict and resubPredict).

You can also compute the regression error using the trained GPR model (see loss and resubLoss).

Compare Prediction Intervals of GPR Models

This example fits GPR models to a noise-free data set and a noisy data set. The example compares the
predicted responses and prediction intervals of the two fitted GPR models.

Generate two observation data sets from the function g x = x ⋅ sin x .

rng('default') % For reproducibility
x_observed = linspace(0,10,21)';
y_observed1 = x_observed.*sin(x_observed);
y_observed2 = y_observed1 + 0.5*randn(size(x_observed));

The values in y_observed1 are noise free, and the values in y_observed2 include some random
noise.

Fit GPR models to the observed data sets.

gprMdl1 = fitrgp(x_observed,y_observed1);
gprMdl2 = fitrgp(x_observed,y_observed2);

Compute the predicted responses and 95% prediction intervals using the fitted models.

x = linspace(0,10)';
[ypred1,~,yint1] = predict(gprMdl1,x);
[ypred2,~,yint2] = predict(gprMdl2,x);

Resize a figure to display two plots in one figure.

fig = figure;
fig.Position(3) = fig.Position(3)*2;

Create a 1-by-2 tiled chart layout.

tiledlayout(1,2,'TileSpacing','compact')
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For each tile, draw a scatter plot of observed data points and a function plot of x ⋅ sin x . Then add a
plot of GP predicted responses and a patch of prediction intervals.

nexttile
hold on
scatter(x_observed,y_observed1,'r') % Observed data points
fplot(@(x) x.*sin(x),[0,10],'--r')  % Function plot of x*sin(x)
plot(x,ypred1,'g')                  % GPR predictions
patch([x;flipud(x)],[yint1(:,1);flipud(yint1(:,2))],'k','FaceAlpha',0.1); % Prediction intervals
hold off
title('GPR Fit of Noise-Free Observations')
legend({'Noise-free observations','g(x) = x*sin(x)','GPR predictions','95% prediction intervals'},'Location','best')

nexttile
hold on
scatter(x_observed,y_observed2,'xr') % Observed data points
fplot(@(x) x.*sin(x),[0,10],'--r')   % Function plot of x*sin(x)
plot(x,ypred2,'g')                   % GPR predictions
patch([x;flipud(x)],[yint2(:,1);flipud(yint2(:,2))],'k','FaceAlpha',0.1); % Prediction intervals
hold off
title('GPR Fit of Noisy Observations')
legend({'Noisy observations','g(x) = x*sin(x)','GPR predictions','95% prediction intervals'},'Location','best')

When the observations are noise free, the predicted responses of the GPR fit cross the observations.
The standard deviation of the predicted response is almost zero. Therefore, the prediction intervals
are very narrow. When observations include noise, the predicted responses do not cross the
observations, and the prediction intervals become wide.

References
[1] Rasmussen, C. E. and C. K. I. Williams. Gaussian Processes for Machine Learning. MIT Press.

Cambridge, Massachusetts, 2006.

See Also
fitrgp | RegressionGP | predict
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More About
• “Exact GPR Method” on page 6-10
• “Subset of Data Approximation for GPR Models” on page 6-14
• “Subset of Regressors Approximation for GPR Models” on page 6-15
• “Fully Independent Conditional Approximation for GPR Models” on page 6-19
• “Block Coordinate Descent Approximation for GPR Models” on page 6-22
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Kernel (Covariance) Function Options
In supervised learning, it is expected that the points with similar predictor values xi, naturally have
close response (target) values yi. In Gaussian processes, the covariance function expresses this
similarity [1]. It specifies the covariance between the two latent variables f xi  and f x j , where both
xi and x j are d-by-1 vectors. In other words, it determines how the response at one point xi is affected
by responses at other points x j, i ≠ j, i = 1, 2, ..., n. The covariance function k xi, x j  can be defined by
various kernel functions. It can be parameterized in terms of the kernel parameters in vector θ.
Hence, it is possible to express the covariance function as k xi, x j θ .

For many standard kernel functions, the kernel parameters are based on the signal standard
deviation σf  and the characteristic length scale σl. The characteristic length scales briefly define how
far apart the input values xi can be for the response values to become uncorrelated. Both σl and σf
need to be greater than 0, and this can be enforced by the unconstrained parametrization vector θ,
such that

θ1 = logσl, θ2 = logσf .

The built-in kernel (covariance) functions with same length scale for each predictor are:

• Squared Exponential Kernel

This is one of the most commonly used covariance functions and is the default option for fitrgp.
The squared exponential kernel function is defined as

k xi, x j θ = σf
2exp −1

2
(xi−  x j)T(xi−  x j)

σl
2 .

where σl is the characteristic length scale, and σf  is the signal standard deviation.
• Exponential Kernel

You can specify the exponential kernel function using the 'KernelFunction','exponential'
name-value pair argument. This covariance function is defined by

k(xi, x j θ) = σf
2exp − r

σl
,

where σl is the characteristic length scale and

r = (xi−  x j)T(xi−  x j)

is the Euclidean distance between xi and x j.
• Matern 3/2

You can specify the Matern 3/2 kernel function using the 'KernelFunction','matern32'
name-value pair argument. This covariance function is defined by

k(xi, x j θ) = σf
2 1 + 3r

σl
exp − 3r

σl
,

where
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r = (xi−  x j)T(xi−  x j)

is the Euclidean distance between xi and x j.
• Matern 5/2

You can specify the Matern 5/2 kernel function using the 'KernelFunction','matern52'
name-value pair argument. The Matern 5/2 covariance function is defined as

k(xi, x j) = σf
2 1 + 5r

σl
+ 5r2

3σl
2 exp − 5r

σl
,

where

r = (xi−  x j)T(xi−  x j)

is the Euclidean distance between xi and x j.
• Rational Quadratic Kernel

You can specify the rational quadratic kernel function using the
'KernelFunction','rationalquadratic' name-value pair argument. This covariance
function is defined by

k(xi, x j θ) = σf
2 1 + r2

2ασl
2

−α
,

where σl is the characteristic length scale, α is a positive-valued scale-mixture parameter, and

r = (xi−  x j)T(xi−  x j)

is the Euclidean distance between xi and x j.

It is possible to use a separate length scale σm for each predictor m, m = 1, 2, ...,d. The built-in kernel
(covariance) functions with a separate length scale for each predictor implement automatic relevance
determination (ARD) [2]. The unconstrained parametrization θ in this case is

θm = logσm, for m = 1, 2, ..., d
θd + 1 = logσf .

The built-in kernel (covariance) functions with separate length scale for each predictor are:

• ARD Squared Exponential Kernel

You can specify this kernel function using the 'KernelFunction','ardsquaredexponential'
name-value pair argument. This covariance function is the squared exponential kernel function,
with a separate length scale for each predictor. It is defined as

k(xi, x j θ) = σf
2exp −1

2 ∑m = 1

d (xim− x jm)2

σm
2 .

• ARD Exponential Kernel
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You can specify this kernel function using the 'KernelFunction','ardexponential' name-
value pair argument. This covariance function is the exponential kernel function, with a separate
length scale for each predictor. It is defined as

k(xi, x j θ) = σf
2exp −r ,

where

r = ∑
m = 1

d (xim− x jm)2

σm
2 .

• ARD Matern 3/2

You can specify this kernel function using the 'KernelFunction','ardmatern32' name-value
pair argument. This covariance function is the Matern 3/2 kernel function, with a different length
scale for each predictor. It is defined as

k(xi, x j θ) = σf
2 1 + 3 r exp − 3 r ,

where

r = ∑
m = 1

d (xim− x jm)2

σm
2 .

• ARD Matern 5/2

You can specify this kernel function using the 'KernelFunction','ardmatern52' name-value
pair argument. This covariance function is the Matern 5/2 kernel function, with a different length
scale for each predictor. It is defined as

k(xi, x j θ) = σf
2 1 + 5 r + 5

3 r2 exp − 5 r ,

where

r = ∑
m = 1

d (xim− x jm)2

σm
2 .

• ARD Rational Quadratic Kernel

You can specify this kernel function using the 'KernelFunction','ardrationalquadratic'
name-value pair argument. This covariance function is the rational quadratic kernel function, with
a separate length scale for each predictor. It is defined as

k(xi, x j θ) = σf
2 1 + 1

2α ∑
m = 1

d (xim− x jm)2

σm
2

−α
.

You can specify the kernel function using the KernelFunction name-value pair argument in a call to
fitrgp. You can either specify one of the built-in kernel parameter options, or specify a custom
function. When providing the initial kernel parameter values for a built-in kernel function, input the
initial values for signal standard deviation and the characteristic length scale(s) as a numeric vector.
When providing the initial kernel parameter values for a custom kernel function, input the initial
values the unconstrained parametrization vector θ. fitrgp uses analytical derivatives to estimate

6 Gaussian Processes

6-8



parameters when using a built-in kernel function, whereas when using a custom kernel function it
uses numerical derivatives.

References
[1] Rasmussen, C. E. and C. K. I. Williams. Gaussian Processes for Machine Learning. MIT Press.

Cambridge, Massachusetts, 2006.

[2] Neal, R. M. Bayesian Learning for Neural Networks. Springer, New York. Lecture Notes in
Statistics, 118, 1996.

See Also
fitrgp | RegressionGP

Related Examples
• “Use Separate Length Scales for Predictors” on page 35-2500
• “Fit GPR Model Using Custom Kernel Function” on page 35-2509
• “Impact of Specifying Initial Kernel Parameter Values” on page 35-2498
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Exact GPR Method
In this section...
“Parameter Estimation” on page 6-10
“Prediction” on page 6-11
“Computational Complexity of Exact Parameter Estimation and Prediction” on page 6-13

An instance of response y from a Gaussian process regression (GPR) model on page 6-2 can be
modeled as

P yi f xi , xi   N yi h xi
Tβ + f xi , σ2

Hence, making predictions for new data from a GPR model requires:

• Knowledge of the coefficient vector, β, of fixed basis functions
• Ability to evaluate the covariance function k x, x′ θ  for arbitrary x and x′, given the kernel

parameters or hyperparameters, θ.
• Knowledge of the noise variance σ2 that appears in the density P yi f xi , xi

That is, one needs first to estimate β, θ, and σ2 from the data X, y .

Parameter Estimation
One approach for estimating the parameters β, θ, and σ2 of a GPR model is by maximizing the
likelihood P y X  as a function of β, θ, and σ2[1]. That is, if β , θ , and σ 2 are the estimates of β, θ, and
σ2, respectively, then:

β , θ , σ 2 = arg max
β, θ, σ2

logP y X, β, θ, σ2 .

Because

P y X = P y X, β, θ, σ2 = N y Hβ, K X, X θ + σ2In ,

the marginal log likelihood function is as follows:

logP y X, β, θ, σ2 = −1
2 y − Hβ T K X, X θ + σ2In

−1 y − Hβ

−n
2log2π − 1

2log K X, X θ + σ2In .

where H is the vector of explicit basis functions, and K X, X θ  is the covariance function matrix (for
more information, see “Gaussian Process Regression Models” on page 6-2).

To estimate the parameters, the software first computes β θ, σ2 , which maximizes the log likelihood
function with respect to β for given θ and σ2. It then uses this estimate to compute the β-profiled
likelihood:

log P y X, β θ, σ2 , θ, σ2 .
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The estimate of β for given θ, and σ2 is

β θ, σ2 =  HT K X, X θ + σ2In
−1 H

−1
HT K X, X θ + σ2In

−1 y .

Then, the β-profiled log likelihood is given by

logP y X, β (θ, σ2), θ, σ2 = −1
2 y − Hβ θ, σ2 T K X, X θ + σ2In

−1 y − Hβ θ, σ2

−n
2log2π − 1

2log K X, X θ + σ2In

The software then maximizes the β-profiled log-likelihood over θ, and σ2 to find their estimates.

Prediction
Making probabilistic predictions from a GPR model with known parameters requires the density
P ynew y, X, xnew . Using the definition of conditional probabilities, one can write:

P ynew y, X, xnew =
P ynew, y X, xnew

P y X, xnew
.

To find the joint density in the numerator, it is necessary to introduce the latent variables fnew and f
corresponding to ynew, and y, respectively. Then, it is possible to use the joint distribution for ynew, y,
fnew, and f  to compute P ynew, y X, xnew :

P ynew, y X, xnew =∫∫P ynew, y, fnew, f X, xnew dfdfnew

=∫∫P ynew, y fnew, f , X, xnew P fnew, f X, xnew dfdfnew .

Gaussian process models assume that each response yi only depends on the corresponding latent
variable f i and the feature vector xi. Writing P ynew, y fnew, f , X, xnew  as a product of conditional
densities and based on this assumption produces:

P ynew, y fnew, f , X, xnew = P ynew fnew, xnew ∏
i = 1

n
P yi f xi , xi .

After integrating with respect to ynew, the result only depends on f  and X:

P y f , X = ∏
i = 1

n
P yi f i, xi = ∏

i = 1

n
N yi h xi

Tβ + f i, σ2 .

Hence,

P ynew,  y fnew,  f ,  X,  xnew = P ynew fnew,  xnew P y f , X .

Again using the definition of conditional probabilities,

P fnew, f X, xnew = P fnew f , X, xnew * P f X, xnew ,
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it is possible to write P ynew, y X, xnew  as follows:

P ynew, y X, xnew =∫∫P ynew fnew,  xnew P y f , X P fnew f , X, xnew P f X, xnew dfdfnew .

Using the facts that

P f X, xnew = P f X

and

P y f , X P f X = P y, f X = P f y, X P y X ,

one can rewrite P ynew, y X, xnew  as follows:

P ynew, y X, xnew = P y X ∫∫P ynew fnew,  xnew P f y, X P fnew f , X, xnew dfdfnew .

It is also possible to show that

P y X, xnew = P y X .

Hence, the required density P ynew y, X, xnew  is:

P ynew y, X, xnew =
P ynew, y X, xnew

P y X, xnew
=

P ynew, y X, xnew
P y X

=∫∫P ynew fnew,  xnew⚬
1

P f y, X⚬
2

P fnew f , X, xnew⚬
3

dfdfnew .

It can be shown that

1 P ynew fnew, xnew = N ynew h(xnew)Tβ + fnew, σnew
2

2 P f y, X = N f 1
σ2

In
σ2 + K X, X −1 −1

y − Hβ ,
In
σ2 + K(X, X)−1 −1

3 P fnew f , X, xnew = N fnew K xnew
T , X K X, X −1f , Δ ,

where Δ = k xnew, xnew − K xnew
T , X  K X, X −1K X, xnew

T .

After the integration and required algebra, the density of the new response ynew at a new point xnew,
given y, X is found as

P ynew y, X, xnew = N ynew h(xnew)Tβ + μ, σnew
2 + Σ ,

where

μ = K xnew
T , X K(X, X) + σ2In

−1 y − Hβ⚬
α

and

Σ = k xnew, xnew − K xnew
T , X K X, X + σ2In

−1K X, xnew
T .
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The expected value of prediction ynew at a new point xnew given y, X, and parameters β, θ, and σ2 is

E ynew y,  X, xnew, β, θ, σ2 =  h xnew
Tβ +  K xnew

T , X θ α

=  h xnew
Tβ + ∑

i = 1

n
αik xnew, xi θ ,

where

α = K X, X θ + σ2In
−1 y − Hβ .

Computational Complexity of Exact Parameter Estimation and
Prediction
Training a GPR model with the exact method (when FitMethod is 'Exact') requires the inversion of
an n-by-n kernel matrix K X, X . The memory requirement for this step scales as O(n2) since K X, X
must be stored in memory. One evaluation of logP y X  scales as O(n3). Therefore, the computational
complexity is O(kn3), where k is the number of function evaluations needed for maximization and n is
the number of observations.

Making predictions on new data involves the computation of α . If prediction intervals are desired,
this step could also involve the computation and storage of the Cholesky factor of K X, X + σ2In  for
later use. The computational complexity of this step using the direct computation of α  is O(n3) and
the memory requirement is O(n2).

Hence, for large n, estimation of parameters or computing predictions can be very expensive. The
approximation methods usually involve rearranging the computation so as to avoid the inversion of an
n-by-n matrix. For the available approximation methods, please see the related links at the bottom of
the page.

References
[1] Rasmussen, C. E. and C. K. I. Williams. Gaussian Processes for Machine Learning. MIT Press.

Cambridge, Massachusetts, 2006.

See Also
fitrgp | predict

More About
• “Gaussian Process Regression Models” on page 6-2
• “Subset of Data Approximation for GPR Models” on page 6-14
• “Subset of Regressors Approximation for GPR Models” on page 6-15
• “Fully Independent Conditional Approximation for GPR Models” on page 6-19
• “Block Coordinate Descent Approximation for GPR Models” on page 6-22
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Subset of Data Approximation for GPR Models
Training a GPR model with the exact method (when FitMethod is 'Exact') requires the inversion of
an n-by-n matrix. Therefore, the computational complexity is O(kn3), where k is the number of
function evaluations required for estimating β, θ, and σ2, and n is the number of observations. For
large n, estimation of parameters or computing predictions can be very expensive.

One simple way to solve the computational complexity problem with large data sets is to select m < n
observations out of n and then apply exact GPR model on page 6-10 to these m points to estimate β,
θ, and σ2 while ignoring the other (n – m) points. This smaller subset is known as the active set or
inducing input set. And this approximation method is called the Subset of Data (SD) method.

The computational complexity when using SD method is O(km3), where k is the number of function
evaluations and m is the active set size. The storage requirements are O(m2) since only a part of the
full kernel matrix K X, X θ  needs to be stored in memory.

You can specify the SD method for parameter estimation by using the 'FitMethod','sd' name-
value pair argument in the call to fitrgp. To specify the SD method for prediction, use the
'PredictMethod','sd' name-value pair argument.

For estimating parameters using the exact GPR model, see parameter estimation using the exact GPR
method on page 6-10. For making predictions using the exact GPR model, see prediction using the
exact GPR method on page 6-11.

See Also
fitrgp | predict

More About
• “Gaussian Process Regression Models” on page 6-2
• “Exact GPR Method” on page 6-10
• “Subset of Regressors Approximation for GPR Models” on page 6-15
• “Fully Independent Conditional Approximation for GPR Models” on page 6-19
• “Block Coordinate Descent Approximation for GPR Models” on page 6-22
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Subset of Regressors Approximation for GPR Models
In this section...
“Approximating the Kernel Function” on page 6-15
“Parameter Estimation” on page 6-16
“Prediction” on page 6-16
“Predictive Variance Problem” on page 6-17

The subset of regressors (SR) approximation method consists of replacing the kernel function
k x, xr θ  in the exact GPR method on page 6-10 by its approximation k SR x, xr θ, A , given the active
set A ⊂ N = 1, 2, ..., n . You can specify the SR method for parameter estimation by using the
'FitMethod','sr' name-value pair argument in the call to fitrgp. For prediction using SR, you
can use the 'PredictMethod','sr' name-value pair argument in the call to fitrgp.

Approximating the Kernel Function
For the exact GPR model on page 6-11, the expected prediction in GPR depends on the set of N
functions SN = k x, xi θ , i = 1, 2, …, n , where N = 1, 2, ..., n  is the set of indices of all
observations, and n is the total number of observations. The idea is to approximate the span of these
functions by a smaller set of functions, SA, where A ⊂ N = 1, 2, ..., n  is the subset of indices of
points selected to be in the active set. Consider SA = k x, x j θ , j ∈ A . The aim is to approximate the
elements of SN as linear combinations of the elements of SA.

Suppose the approximation to k x, xr θ  using the functions in SA is as follows:

k x, xr θ = ∑
j ∈ A

c jrk x, x j θ ,

where c jr ∈ ℝ are the coefficients of the linear combination for approximating k x, xr θ . Suppose C is
the matrix that contains all the coefficients c jr. Then, C, is a A × n matrix such that C( j, r) = c jr. The
software finds the best approximation to the elements of SN using the active set A ⊂ N = 1, 2, ..., n
by minimizing the error function

E A, C = ∑
r = 1

n
k x, xr θ − k x, xr θ ℋ

2 ,

where ℋ  is the Reproducing Kernel Hilbert Spaces (RKHS) associated with the kernel function k [1],
[2].

The coefficient matrix that minimizes E A, C  is

C A =  K XA, XA θ −1K XA, X θ ,

and an approximation to the kernel function using the elements in the active set A ⊂ N = 1, 2, ..., n
is

k x, xr θ = ∑
j ∈ A

c jrk x, x j θ =  K xT, XA θ C : , r .
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The SR approximation to the kernel function using the active set A ⊂ N = 1, 2, ..., n  is defined as:

k SR x, xr θ, A =  K xT, XA θ C A(: , r) = K xT, XA θ K XA, XA θ −1K XA, xr
T θ

and the SR approximation to K X, X θ  is:

K SR X, X θ, A =   K X, XA θ  K XA, XA θ −1 K XA, X θ .

Parameter Estimation
Replacing K X, X θ  by K SR X, X θ, A  in the marginal log likelihood function produces its SR
approximation:

logPSR y X, β, θ, σ2, A = −1
2 y − Hβ T K SR X, X θ, A + σ2In

−1 y − Hβ

−N
2 log2π − 1

2log K SR X, X θ, A + σ2In

As in the exact method on page 6-10, the software estimates the parameters by first computing
β θ, σ2 , the optimal estimate of β, given θ and σ2. Then it estimates θ, and σ2 using the β-profiled
marginal log likelihood. The SR estimate to β for given θ, and σ2 is:

β SR θ, σ2, A = HT K SR X, X θ, A + σ2In
−1H⚬

*

−1
HT K SR X, X θ, A + σ2In

−1y⚬
* *

,

where

K SR X, X θ, A + σ2In
−1 =

IN
σ2 −

K X, XA θ
σ2 AA

−1K XA, X θ
σ2 ,

AA = K XA, XA θ +
K XA, X θ K X, XA θ

σ2 ,

* = HTH
σ2 −

HTK X, XA θ
σ2 AA

−1K XA, X θ H
σ2 ,

* * = HTy
σ2 −

HTK X, XA θ
σ2 AA

−1K XA, X θ y
σ2 .

And the SR approximation to the β-profiled marginal log likelihood is:

logPSR y X, β SR θ, σ2, A , θ, σ2, A =

−1
2 y − Hβ SR θ, σ2, A T K SR X, X θ, A + σ2In

−1 y − Hβ SR θ, σ2, A

−N
2 log2π − 1

2log K SR X, X θ, A + σ2In .

Prediction
The SR approximation to the distribution of ynew given y, X, xnew is
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P ynew y, X, xnew = N ynew h xnew
Tβ + μSR, σnew

2 + ΣSR ,

where μSR and ΣSR are the SR approximations to μ and Σ shown in prediction using the exact GPR
method on page 6-11.

μSR and ΣSR are obtained by replacing k x, xr θ  by its SR approximation k SR x, xr θ, A  in μ and Σ,
respectively.

That is,

μSR = K SR xnew
T , X θ, A⚬

1
K SR X, X θ, A + σ2 IN

−1
⚬

2
y − Hβ .

Since

1 = K xnew
T , XA θ  K XA, XA θ −1K XA, X θ ,

2 =
IN
σ2 −

K X, XA θ
σ2  K XA, XA θ +

K XA, X θ  K X, XA θ
σ2

−1K XA, X θ
σ2 ,  

and from the fact that IN −  B  A +  B −1 =  A  A +  B −1, μSR can be written as

μSR =  K xnew
T , XA θ K XA, XA θ +

K XA, X θ K X, XA θ
σ2

−1K XA, X θ
σ2 y − Hβ .

Similarly, ΣSR is derived as follows:

ΣSR = k SR xnew, xnew θ, A⚬
*

− K SR xnew
T , X θ, A⚬

* *
K SR X, X θ, A + σ2IN

−1
⚬

* * *
K SR X, xnew

T θ, A⚬
* * * *

.

Because

*  = K xnew
T , XA θ K XA, XA θ −1K XA,  xnew

T θ ,

* * = K xnew
T , XA θ K XA, XA θ −1K XA, X θ ,

* * * = 2  in the equation of μSR,

* * * *   =  K X, XA θ K XA, XA θ −1K XA,  xnew
T θ ,

ΣSR is found as follows:

∑SR = K xnew
T , XA θ  K XA, XA θ +

K XA, X θ  K X, XA θ )
σ2

−1
K XA,  xnew

T θ .

Predictive Variance Problem
One of the disadvantages of the SR method is that it can give unreasonably small predictive variances
when making predictions in a region far away from the chosen active set A ⊂ N = 1, 2, ..., n .
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Consider making a prediction at a new point xnew that is far away from the training set X. In other
words, assume that K xnew

T , X θ ≈ 0.

For exact GPR, the posterior distribution of fnew given y, X and xnew would be Normal with mean
μ = 0 and variance Σ = k xnew, xnew θ . This value is correct in the sense that, if xnew is far from X,
then the data X, y  does not supply any new information about fnew and so the posterior distribution
of fnew given y, X, and xnew should reduce to the prior distribution fnew given xnew, which is a Normal
distribution with mean 0 and variance k xnew, xnew θ .

For the SR approximation, if xnew is far away from X (and hence also far away from XA), then μSR = 0
and ΣSR = 0. Thus in this extreme case, μSR agrees with μ from exact GPR, but ΣSR is unreasonably
small compared to Σ from exact GPR.

The fully independent conditional approximation method on page 6-19 can help avoid this problem.
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Fully Independent Conditional Approximation for GPR Models

In this section...
“Approximating the Kernel Function” on page 6-19
“Parameter Estimation” on page 6-19
“Prediction” on page 6-20

The fully independent conditional (FIC) approximation[1] is a way of systematically approximating the
true GPR kernel function in a way that avoids the predictive variance problem of the SR
approximation on page 6-17 while still maintaining a valid Gaussian process. You can specify the FIC
method for parameter estimation by using the 'FitMethod','fic' name-value pair argument in
the call to fitrgp. For prediction using FIC, you can use the 'PredictMethod','fic' name-value
pair argument in the call to fitrgp.

Approximating the Kernel Function

The FIC approximation to k xi, x j θ  for active set A ⊂ N = 1, 2, ..., n  is given by:

k FIC xi, x j θ, A = k SR xi, x j θ, A + δi j k xi, x j θ − k SR xi, x j θ, A ,

δi j =
1, if i = j,
0 if i ≠ j .

That is, the FIC approximation is equal to the SR approximation if i ≠ j. For i = j, the software uses
the exact kernel value rather than an approximation. Define an n-by-n diagonal matrix Ω X θ, A  as
follows:

Ω X θ, A i j = δi j k xi, x j θ − k SR xi, x j θ, A

= k xi, x j θ − k SR xi, x j θ, A if i = j,
0 if i ≠ j .

The FIC approximation to K X, X θ  is then given by:

K FIC X, X θ, A = K SR X, X θ, A +  Ω X θ, A

=  K X, XA θ K XA, XA θ −1K XA, X θ + Ω X θ, A .

Parameter Estimation

Replacing K X, X θ  by K FIC X, X θ, A  in the marginal log likelihood function produces its FIC
approximation:

logPFIC y X, β, θ, σ2, A = −1
2 y − Hβ T K FIC X, X θ, A + σ2In

−1 y − Hβ

−N
2 log2π − 1

2log K FIC X, X θ, A + σ2In .
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As in the exact method on page 6-10, the software estimates the parameters by first computing
β θ, σ2 , the optimal estimate of β, given θ and σ2. Then it estimates θ, and σ2 using the β-profiled
marginal log likelihood. The FIC estimate to β for given θ, and σ2 is

β FIC θ, σ2, A = HT K FIC X, X θ, A + σ2 IN
−1H⚬

*

−1
HT K FIC X, X θ, A + σ2 IN

−1y⚬
* *

,

* = HTΛ θ, σ2, A −1H − HTΛ θ, σ2, A −1K X, XA θ BA
−1K XA, X θ Λ θ, σ2, A −1H,

* * = HTΛ θ, σ2, A −1y − HTΛ θ, σ2, A −1K X, XA θ BA
−1K XA, X θ Λ θ, σ2, A −1y,

BA = K XA, XA θ + K XA, X θ Λ θ, σ2, A −1K X, XA θ ,

Λ θ, σ2, A = Ω X θ, A + σ2In .

Using β FIC θ, σ2, A , the β-profiled marginal log likelihood for FIC approximation is:

logPFIC y X, β FIC θ, σ2, A , θ, σ2, A =

−1
2 y − Hβ FIC θ, σ2, A T K FIC X, X θ, A + σ2IN

−1 y − Hβ FIC θ, σ2, A

−N
2 log2π − 1

2log K FIC X, X θ, A + σ2IN ,

where

K FIC X, X θ, A + σ2IN
−1

= Λ θ, σ2, A −1− Λ θ, σ2, A −1K X, XA θ BA
−1K XA, X θ Λ θ, σ2, A −1,

log K FIC X, X θ, A + σ2IN = log Λ θ, σ2, A + log BA − log K XA, XA θ .

Prediction
The FIC approximation to the distribution of ynew given y, X, xnew is

P ynew y, X, xnew = N ynew h xnew
Tβ + μFIC, σnew

2 + ΣFIC ,

where μFIC and ΣFIC are the FIC approximations to μ and Σ given in prediction using exact GPR
method on page 6-11. As in the SR case, μFIC and ΣFIC are obtained by replacing all occurrences of
the true kernel with its FIC approximation. The final forms of μFIC and ΣFIC are as follows:

μFIC =  K xnew
T , XA θ  BA

−1 K XA, X θ  Λ θ, σ2, A −1 y − Hβ ,

ΣFIC = k xnew, xnew θ − K xnew
T , XA θ K XA, XA θ −1K XA, xnew

T θ

+K xnew
T , XA θ BA

−1K XA, xnew
T θ ,

where
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BA = K XA, XA θ + K XA, X θ Λ θ, σ2, A −1K X, XA θ ,

Λ θ, σ2, A = Ω X θ, A + σ2In .
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Block Coordinate Descent Approximation for GPR Models
For a large number of observations, using the exact method for parameter estimation and making
predictions on new data can be expensive (see “Exact GPR Method” on page 6-10). One of the
approximation methods that help deal with this issue for prediction is the Block Coordinate Descent
(BCD) method. You can make predictions using the BCD method by first specifying the predict
method using the 'PredictMethod','bcd' name-value pair argument in the call to fitrgp, and
then using the predict function.

The idea of the BCD method is to compute

α = K(X, X) + σ2IN
−1 y − Hβ

in a different way than the exact method. BCD estimates α by solving the following optimization
problem:

α = arg minαf (α)

where

f (α) = 1
2αT K(X, X) + σ2IN α− αT y − Hβ .

fitrgp uses block coordinate descent (BCD) to solve the above optimization problem. For users
familiar with support vector machines (SVMs), sequential minimal optimization (SMO) and ISDA
(iterative single data algorithm) used to fit SVMs are special cases of BCD. fitrgp performs two
steps for each BCD update - block selection and block update. In the block selection phase, fitrgp
uses a combination of random and greedy strategies for selecting the set of α coefficients to optimize
next. In the block update phase, the selected α coefficients are optimized while keeping the other α
coefficients fixed to their previous values. These two steps are repeated until convergence. BCD does
not store the n * n matrix K X, X  in memory but it just computes chunks of the K X, X  matrix as
needed. As a result BCD is more memory efficient compared to 'PredictMethod','exact'.

Practical experience indicates that it is not necessary to solve the optimization problem for
computing α to very high precision. For example, it is reasonable to stop the iterations when
∇ f (α)  drops below η ∇ f (α0) , where α0 is the initial value of α and η is a small constant (say

η = 10−3). The results from 'PredictMethod','exact' and 'PredictMethod','bcd' are
equivalent except BCD computes α in a different way. Hence, 'PredictMethod','bcd' can be
thought of as a memory efficient way of doing 'PredictMethod','exact'. BCD is often faster than
'PredictMethod','exact' for large n. However, you cannot compute the prediction intervals
using the 'PredictMethod','bcd' option. This is because computing prediction intervals requires
solving a problem like the one solved for computing α for every test point, which again is expensive.

Fit GPR Models Using BCD Approximation

This example shows fitting a Gaussian Process Regression (GPR) model to data with a large number
of observations, using the Block Coordinate Descent (BCD) Approximation.

Small n - PredictMethod 'exact' and 'bcd' Produce the Same Results

Generate a small sample dataset.
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    rng(0,'twister');
    n = 1000;
    X = linspace(0,1,n)';
    X = [X,X.^2];
    y = 1 + X*[1;2] + sin(20*X*[1;-2])./(X(:,1)+1) + 0.2*randn(n,1);

Create a GPR model using 'FitMethod','exact' and 'PredictMethod','exact'.

    gpr = fitrgp(X,y,'KernelFunction','squaredexponential',...
        'FitMethod','exact','PredictMethod','exact');

Create another GPR model using 'FitMethod','exact' and 'PredictMethod','bcd'.

    gprbcd = fitrgp(X,y,'KernelFunction','squaredexponential',...
        'FitMethod','exact','PredictMethod','bcd','BlockSize',200);

'PredictMethod','exact' and 'PredictMethod','bcd' should be equivalent. They compute
the same  but just in different ways. You can also see the iterations by using the 'Verbose',1
name-value pair argument in the call to fitrgp .

Compute the fitted values using the two methods and compare them:

    ypred    = resubPredict(gpr);
    ypredbcd = resubPredict(gprbcd);

    max(abs(ypred-ypredbcd))

ans =

   5.8853e-04

The fitted values are close to each other.

Now, plot the data along with fitted values for 'PredictMethod','exact' and
'PredictMethod','bcd'.

    figure;
    plot(y,'k.');
    hold on;
    plot(ypred,'b-','LineWidth',2);
    plot(ypredbcd,'m--','LineWidth',2);
    legend('Data','PredictMethod Exact','PredictMethod BCD','Location','Best');
    xlabel('Observation index');
    ylabel('Response value');
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It can be seen that 'PredictMethod','exact' and 'PredictMethod','bcd' produce nearly
identical fits.

Large n - Use 'FitMethod','sd' and 'PredictMethod','bcd'

Generate a bigger dataset similar to the previous one.

    rng(0,'twister');
    n = 50000;
    X = linspace(0,1,n)';
    X = [X,X.^2];
    y = 1 + X*[1;2] + sin(20*X*[1;-2])./(X(:,1)+1) + 0.2*randn(n,1);

For n = 50000, the matrix K(X, X) would be 50000-by-50000. Storing K(X, X) in memory would
require around 20 GB of RAM. To fit a GPR model to this dataset, use 'FitMethod','sd' with a
random subset of m = 2000 points. The 'ActiveSetSize' name-value pair argument in the call to
fitrgp specifies the active set size m. For computing  use 'PredictMethod','bcd' with a
'BlockSize' of 5000. The 'BlockSize' name-value pair argument in fitrgp specifies the
number of elements of the  vector that the software optimizes at each iteration. A 'BlockSize' of
5000 assumes that the computer you use can store a 5000-by-5000 matrix in memory.

   gprbcd = fitrgp(X,y,'KernelFunction','squaredexponential',...,
        'FitMethod','sd','ActiveSetSize',2000,'PredictMethod','bcd','BlockSize',5000);

Plot the data and the fitted values.

    figure;
    plot(y,'k.');
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    hold on;
    plot(resubPredict(gprbcd),'m-','LineWidth',2);
    legend('Data','PredictMethod BCD','Location','Best');
    xlabel('Observation index');
    ylabel('Response value');

The plot is similar to the one for smaller n .
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Predict Battery State of Charge Using Machine Learning

This example shows how to train a Gaussian process regression (GPR) model to predict the state of
charge of a battery in automotive engineering.

Battery state of charge (SOC) is the level of charge of an electric battery relative to its capacity
measured as a percentage. SOC is critical information for a vehicle energy management system, and
must be accurately estimated to ensure reliable and affordable electrified vehicles (xEV). However,
due to the nonlinear temperature, health, and SOC-dependent behavior of Li-ion batteries, SOC
estimation is a significant automotive engineering challenge. Traditional approaches to this problem,
such as electrochemical models, usually require precise parameters and knowledge of the battery
composition, as well as its physical response. In contrast, using a machine learning model is a data-
driven approach that requires minimal knowledge of the battery or its nonlinear behavior [1].

This example trains a Gaussian process regression model to predict the state of charge of a vehicle's
Li-ion battery, given time series data that represents various features of the battery such as voltage,
current, temperature, and average voltage and current (over the last 500 seconds).

After training a regression model, you can use it to create a Simulink® model, and then generate
HDL code from the Simulink model for deployment. For details, see “Deploy Neural Network
Regression Model to FPGA/ASIC Platform” on page 34-40.

Load Data

Load the batterySOC data set, which is a subset of the preprocessed data set
LG_HG2_Prepared_Dataset_McMasterUniversity_Jan_2020 from [1]. The optional section
Download and Prepare Data on page 6-35 shows how to download and prepare the data set to create
the subset stored in the batterySOC.mat file.

load("batterySOC.mat")

The data set contains one table of training data (trainData) and four tables of test data
(testDataN10deg, testData0deg, testData10deg, and testData25deg). The training data is a
single sequence of experimental data collected while the battery powered an electric vehicle during
driving cycles at four different ambient temperatures, –10, 0, 10, and 25 degrees Celsius. The test
data consists of four sequences of experimental data, each collected at one of the same four
temperatures. Create a cell array that contains the test data sets.

testData = cell(4,1);
testData{1} = testDataN10deg;
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testData{2} = testData0deg;
testData{3} = testData10deg;
testData{4} = testData25deg;
testDataName = ["-10^{\circ}C","0^{\circ}C", ...
    "10^{\circ}C","25^{\circ}C"];

Each training and test table is a subset of the preprocessed data
LG_HG2_Prepared_Dataset_McMasterUniversity_Jan_2020, sampled to have a data point
every 100 seconds. Preview the first few rows of the training data set.

head(trainData)

    Voltage    Current    Temperature    AverageVoltage    AverageCurrent      SOC  
    _______    _______    ___________    ______________    ______________    _______

    0.38515    0.75102       0.3031         0.38515           0.75102        0.20642
    0.38546    0.75102      0.45607          0.3853           0.75102        0.20642
     0.3855    0.75102      0.62209         0.38537           0.75102        0.20642
    0.38565    0.75102      0.77026         0.38544           0.75102        0.20642
    0.38643    0.75102      0.84667         0.38564           0.75102        0.20642
    0.38778    0.75102      0.85707         0.38599           0.75102        0.20642
    0.38915    0.75102      0.85474         0.38666           0.75102        0.20642
    0.39024    0.75102      0.87646         0.38746           0.75102        0.20642

Each training and test table contains six variables: Voltage, Current, Temperature,
AverageVoltage, AverageTemperature, and SOC. Plot the variable values of the training and test
data. Select a variable to plot.

variableToPlot = ;
figure
t = tiledlayout(3,2);
nexttile(1,[1,2])
trainDataT = (0:(size(trainData,1)-1))'*100;
plot(trainDataT,trainData.(variableToPlot))
title("Training Data")
for i = 1 : 4
    nexttile
    currentTestData = testData{i};
    currentTestDataT = (0:(size(currentTestData,1)-1))'*100;
    plot(currentTestDataT,currentTestData.(variableToPlot))
    title(join(["Test Data at",testDataName(i)]))
end
linkaxes(t.Children,"y")
xlabel(t,"Time (seconds)")
ylabel(t,variableToPlot)
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All six variables are in the range [0,1]. The SOC value for a fully charged battery is 1, and the SOC
value for a fully discharged battery is 0. Therefore, the SOC value must be in the range [0,1].

Train Gaussian Process Regression Model

Train a GPR model by using the fitrgp function. Specify the OptimizeHyperparameters name-
value argument as ["BasisFunction","KernelFunction","Standardize"]. The function fits a
model after finding optimal values for the specified hyperparameters. For reproducibility, set the
random seed and use the expected-improvement-plus acquisition function. Also, specify
UseParallel=true to run Bayesian optimization in parallel. This option requires Parallel
Computing Toolbox™.

rng("default")
Mdl = fitrgp(trainData,"SOC", ...
    OptimizeHyperparameters=["BasisFunction","KernelFunction","Standardize"], ...
    HyperparameterOptimizationOptions= ...
    struct(AcquisitionFunctionName="expected-improvement-plus",UseParallel=true))

Starting parallel pool (parpool) using the 'Processes' profile ...
Connected to the parallel pool (number of workers: 6).
Copying objective function to workers...
Done copying objective function to workers.
|==============================================================================================================================|
| Iter | Active  | Eval   | Objective:  | Objective   | BestSoFar   | BestSoFar   | BasisFunction| KernelFuncti-|  Standardize |
|      | workers | result | log(1+loss) | runtime     | (observed)  | (estim.)    |              | on           |              |
|==============================================================================================================================|
|    1 |       6 | Best   |  0.00051935 |      98.995 |  0.00051935 |  0.00051935 |     constant |     matern52 |        false |
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|    2 |       6 | Accept |  0.00054243 |      112.15 |  0.00051935 |  0.00052044 | pureQuadrati |     matern52 |        false |
|    3 |       6 | Accept |  0.00052242 |      98.911 |  0.00051935 |  0.00052111 |     constant |     matern52 |        false |
|    4 |       6 | Accept |  0.00052343 |      127.13 |  0.00051935 |   0.0005211 | pureQuadrati |  exponential |         true |
|    5 |       6 | Accept |  0.00058425 |      249.88 |  0.00051935 |  0.00052097 |         none | rationalquad |         true |
|    6 |       6 | Best   |  0.00050934 |      105.61 |  0.00050934 |  0.00050952 |     constant |     matern32 |        false |
|    7 |       6 | Accept |  0.00052931 |      339.37 |  0.00050934 |  0.00050954 |     constant |  ardmatern32 |         true |
|    8 |       6 | Accept |  0.00053765 |      94.526 |  0.00050934 |  0.00050958 |         none |     matern52 |        false |
|    9 |       6 | Accept |  0.00061936 |      355.38 |  0.00050934 |  0.00050948 |     constant | ardsquaredex |         true |
|   10 |       6 | Accept |  0.00057228 |      382.03 |  0.00050934 |   0.0005095 |         none |  ardmatern32 |        false |
|   11 |       6 | Accept |  0.00053971 |      99.533 |  0.00050934 |  0.00050951 |     constant |     matern32 |         true |
|   12 |       6 | Accept |  0.00051496 |      91.813 |  0.00050934 |   0.0005095 |         none |     matern32 |        false |
|   13 |       6 | Accept |  0.00057599 |      97.529 |  0.00050934 |  0.00050951 |     constant |     matern52 |         true |
|   14 |       6 | Best   |  0.00040178 |      109.22 |  0.00040178 |  0.00040204 |     constant |  exponential |        false |
|   15 |       6 | Accept |  0.00051895 |      226.34 |  0.00040178 |  0.00040206 |     constant | rationalquad |        false |
|   16 |       6 | Accept |  0.00054575 |      105.36 |  0.00040178 |  0.00040208 | pureQuadrati |     matern32 |         true |
|   17 |       6 | Accept |  0.00053792 |      88.646 |  0.00040178 |   0.0004021 |         none |     matern32 |         true |
|   18 |       6 | Accept |  0.00041535 |      115.14 |  0.00040178 |    0.000402 | pureQuadrati |  exponential |        false |
|   19 |       6 | Best   |  0.00039856 |      94.383 |  0.00039856 |  0.00039873 |         none |  exponential |        false |
|   20 |       6 | Accept |  0.00040507 |      106.15 |  0.00039856 |  0.00039874 |     constant |  exponential |        false |
|==============================================================================================================================|
| Iter | Active  | Eval   | Objective:  | Objective   | BestSoFar   | BestSoFar   | BasisFunction| KernelFuncti-|  Standardize |
|      | workers | result | log(1+loss) | runtime     | (observed)  | (estim.)    |              | on           |              |
|==============================================================================================================================|
|   21 |       6 | Accept |  0.00040581 |      102.97 |  0.00039856 |  0.00039873 |     constant |  exponential |        false |
|   22 |       6 | Accept |  0.00040278 |      108.56 |  0.00039856 |   0.0003987 |     constant |  exponential |        false |
|   23 |       6 | Accept |  0.00040521 |      93.324 |  0.00039856 |  0.00040202 |         none |  exponential |        false |
|   24 |       6 | Accept |  0.00040458 |      88.379 |  0.00039856 |  0.00040287 |         none |  exponential |        false |
|   25 |       6 | Accept |  0.00040195 |      88.728 |  0.00039856 |  0.00040263 |         none |  exponential |        false |
|   26 |       6 | Accept |  0.00041476 |      99.863 |  0.00039856 |  0.00040262 |       linear |  exponential |        false |
|   27 |       6 | Accept |  0.00042907 |      96.641 |  0.00039856 |  0.00040262 |         none |  exponential |         true |
|   28 |       6 | Accept |  0.00052144 |      100.62 |  0.00039856 |  0.00040262 | pureQuadrati |     matern32 |        false |
|   29 |       6 | Accept |  0.00062455 |      293.96 |  0.00039856 |  0.00040262 |     constant | ardsquaredex |        false |
|   30 |       6 | Accept |  0.00044598 |       98.27 |  0.00039856 |  0.00040262 |       linear |  exponential |         true |
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__________________________________________________________
Optimization completed.
MaxObjectiveEvaluations of 30 reached.
Total function evaluations: 30
Total elapsed time: 848.1224 seconds
Total objective function evaluation time: 4269.4267

Best observed feasible point:
    BasisFunction    KernelFunction    Standardize
    _____________    ______________    ___________

        none          exponential         false   

Observed objective function value = 0.00039856
Estimated objective function value = 0.00040262
Function evaluation time = 94.3834

Best estimated feasible point (according to models):
    BasisFunction    KernelFunction    Standardize
    _____________    ______________    ___________

        none          exponential         false   

Estimated objective function value = 0.00040262
Estimated function evaluation time = 91.1934

Mdl = 
  RegressionGP

 Predict Battery State of Charge Using Machine Learning

6-31



                       PredictorNames: {'Voltage'  'Current'  'Temperature'  'AverageVoltage'  'AverageCurrent'}
                         ResponseName: 'SOC'
                CategoricalPredictors: []
                    ResponseTransform: 'none'
                      NumObservations: 6702
    HyperparameterOptimizationResults: [1×1 BayesianOptimization]
                       KernelFunction: 'Exponential'
                    KernelInformation: [1×1 struct]
                        BasisFunction: 'None'
                                 Beta: [0×1 double]
                                Sigma: 0.0176
                    PredictorLocation: []
                       PredictorScale: []
                                Alpha: [6702×1 double]
                     ActiveSetVectors: [6702×5 double]
                        PredictMethod: 'Exact'
                        ActiveSetSize: 2000
                            FitMethod: 'SD'
                      ActiveSetMethod: 'Random'
                    IsActiveSetVector: [6702×1 logical]
                        LogLikelihood: 4.5248e+03
                     ActiveSetHistory: [1×1 struct]
                       BCDInformation: []

  Properties, Methods

Mdl is a RegressionGP model object. You can use the predict and loss functions of
RegressionGP to compute the predicted SOC values and mean squared error (MSE), respectively.
Recall that the battery SOC values must be in the range [0,1]; however, the predict function of a
GPR model can return values slightly outside of this range. To ensure that values stay in this range,
you can apply the min and max functions to the predicted values. Also, the loss function of a GPR
model computes the mean squared error (MSE) using the predictions returned by the predict
function. Instead, you can define a custom loss function to compute an error using the trimmed
predicted values in the range [0,1].

If you use a different type of regression model that supports ResponseTransform, you can specify
the ResponseTransform property of the model as @(y) min(max(y,0),1), and use the predict
and loss functions. RegressionGP does not support ResponseTransform.

Alternatively, you can transform the SOC values to an unbounded range by using the logit
transformation. Then, you can train a regression model using transformed data, and transform the
predicted value back to the bounded range by using the inverse logit transformation.

Test Regression Model

Plot the predicted and true SOC values for the training and test data sets. Use the min and max
functions to keep the predicted values in the range [0,1].

figure
t = tiledlayout(3,2);
nexttile(1,[1,2])
plot(trainDataT,trainData.SOC)
hold on
plot(trainDataT,min(max(resubPredict(Mdl),0),1))
hold off
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ylim([0,1])
legend(["True SOC","Predicted SOC"], ...
    Location="northoutside",Orientation="horizontal")
title("Training Data")

predictedSOC = cell(4,1);
for i = 1 : 4
    nexttile
    currentTestData = testData{i};
    currentTestDataT = (0:(size(currentTestData,1)-1))'*100;
    predictedSOC{i} = min(max(predict(Mdl,currentTestData),0),1);
    plot(currentTestDataT,currentTestData.SOC)
    hold on
    plot(currentTestDataT,predictedSOC{i})
    hold off
    ylim([0,1])
    title(join(["Test Data at",testDataName(i)]))
end

xlabel(t,"Time (seconds)")
ylabel(t,"Battery SOC")

Calculate the root mean squared error (RMSE) and maximum absolute error between the predicted
SOC and the target SOC for each ambient temperature. Specify custom loss functions to compute the
loss values based on the trimmed predicted values.
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testRMSE = NaN(4,1);
testMaxAbsError = NaN(4,1);
lossFun_RMSE = @(y,ypred,w) sqrt(mean((y-min(max(ypred,0),1)).^2));
lossFun_MaxAbsError = @(y,ypred,w) max(abs(y-min(max(ypred,0),1)));
for i = 1: 4
    testRMSE(i) = loss(Mdl,testData{i},LossFun=lossFun_RMSE);
    testMaxAbsError(i) = loss(Mdl,testData{i},LossFun=lossFun_MaxAbsError);
end

Plot the RMSE and maximum absolute error values.

figure
tiledlayout(2,1)
nexttile
bar(testRMSE)
xticklabels(testDataName)
xlabel("Ambient Temperature")
ylabel("RMSE")
nexttile
bar(testMaxAbsError)
xticklabels(testDataName)
xlabel("Ambient Temperature")
ylabel("Maximum Absolute Error")

Lower values in the RMSE and maximum absolute error plots indicate more accurate predictions for
the corresponding temperatures. Larger values in the same plots indicate less accurate predictions
for the corresponding temperatures.
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Download and Prepare Data (Optional)

As noted earlier, this example uses a subset of the preprocessed data set
LG_HG2_Prepared_Dataset_McMasterUniversity_Jan_2020 from [1]. You can load the subset
from the provided file batterySOC.mat, or download the data set and preprocess it as described in
this section.

Each file in the data set LG_HG2_Prepared_Dataset_McMasterUniversity_Jan_2020 contains a
time series X of five predictors (voltage, current, temperature, average voltage, and average current)
and a time series Y of one target (SOC). Each file represents data collected at a different ambient
temperature.

Specify the URL from which to download the data set. Alternatively, you can download this data set
manually from https://data.mendeley.com/datasets/cp3473x7xv/3.

url = "https://data.mendeley.com/public-files/datasets/cp3473x7xv/files/ad7ac5c9-2b9e-458a-a91f-6f3da449bdfb/file_downloaded";

Set downloadFolder to where you want to download the ZIP file, and set outputFolder to where
you want to extract the ZIP file.

downloadFolder = tempdir;
outputFolder = fullfile(downloadFolder,"LGHG2@n10C_to_25degC");

Download and extract the data set
LG_HG2_Prepared_Dataset_McMasterUniversity_Jan_2020.

if ~exist(outputFolder,"dir")
    fprintf("Downloading LGHG2@n10C_to_25degC.zip (56 MB) ... ")
    filename = fullfile(downloadFolder,"LGHG2@n10C_to_25degC.zip");
    websave(filename,url);
    unzip(filename,outputFolder)
end

Create a file datastore for both the training data and the test data, and specify the read function as
the load function. The load function loads the data from the MAT file into the datastore.

folderTrain = fullfile(outputFolder,"Train");
folderTest = fullfile(outputFolder,"Test");
fdsTrain = fileDatastore(folderTrain,ReadFcn=@load);
fdsTest = fileDatastore(folderTest,ReadFcn=@load);

Read all data in the datastores.

trainDataFull = read(fdsTrain);
testDataFull = readall(fdsTest);
testDataFullN10deg = testDataFull{1};
testDataFull0deg   = testDataFull{2};
testDataFull10deg  = testDataFull{3};
testDataFull25deg  = testDataFull{4};

Resample the data sets to have one data point every 100 seconds, and compute moving averages by
using the helper function helperMovingAverage. The code for this function appears at the end of
this example.

idx0 = 1:184257;
idx10 = 184258:337973;
idx25 = 337974:510530;
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idxN10 = 510531:669956;
trainData0deg   = helperMovingAverage(array2table([trainDataFull.X(:,idx0);   trainDataFull.Y(idx0)]'));
trainData10deg  = helperMovingAverage(array2table([trainDataFull.X(:,idx10);  trainDataFull.Y(idx10)]'));
trainData25deg  = helperMovingAverage(array2table([trainDataFull.X(:,idx25);  trainDataFull.Y(idx25)]'));
trainDataN10deg = helperMovingAverage(array2table([trainDataFull.X(:,idxN10); trainDataFull.Y(idxN10)]'));
trainData = [trainData0deg; trainData10deg; trainData25deg; trainDataN10deg];

testDataN10deg = helperMovingAverage(array2table([testDataFullN10deg.X; testDataFullN10deg.Y]'));
testData0deg   = helperMovingAverage(array2table([testDataFull0deg.X;   testDataFull0deg.Y]'));
testData10deg  = helperMovingAverage(array2table([testDataFull10deg.X;  testDataFull10deg.Y]'));
testData25deg  = helperMovingAverage(array2table([testDataFull25deg.X;  testDataFull25deg.Y]'));

The batterySOC.mat file contains the variables trainData, testDataN10deg, testData0deg,
testData10deg, and testData25deg.

Helper Function

This code creates the helperMovingAverage helper function.

function newTbl = helperMovingAverage(tbl)

newTbl = tbl(1:100:end,[1:3,end]);
variableNames = ["Voltage","Current","Temperature","SOC"];
newTbl.Properties.VariableNames = variableNames;

n = size(newTbl,1);
newTbl.AverageVoltage = NaN(n,1);
newTbl.AverageCurrent = NaN(n,1);

for i = 1 : n
    newTbl.AverageVoltage(i) = mean(newTbl.Voltage(max(1,i-5):i));
    newTbl.AverageCurrent(i) = mean(newTbl.Current(max(1,i-5):i));
end

newTbl = movevars(newTbl,"SOC",After="AverageCurrent");
end

References

[1] Kollmeyer, Phillip; Vidal, Carlos; Naguib, Mina; Skells, Michael (2020), “LG 18650HG2 Li-ion
Battery Data and Example Deep Neural Network xEV SOC Estimator Script”, Mendeley, Data, V3,
https://doi.org/10.17632/CP3473X7XV.3.

See Also
fitrgp | predict

Related Examples
• “Predict Battery State of Charge Using Deep Learning” (Deep Learning Toolbox)
• “Deploy Neural Network Regression Model to FPGA/ASIC Platform” on page 34-40
• “Gaussian Process Regression Models” on page 6-2
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Random Number Generation

• “Generating Pseudorandom Numbers” on page 7-2
• “Representing Sampling Distributions Using Markov Chain Samplers” on page 7-9
• “Generating Quasi-Random Numbers” on page 7-12
• “Generating Data Using Flexible Families of Distributions” on page 7-20
• “Bayesian Linear Regression Using Hamiltonian Monte Carlo” on page 7-26
• “Bayesian Analysis for a Logistic Regression Model” on page 7-35
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Generating Pseudorandom Numbers
Pseudorandom numbers are generated by deterministic algorithms. They are "random" in the sense
that, on average, they pass statistical tests regarding their distribution and correlation. They differ
from true random numbers in that they are generated by an algorithm, rather than a truly random
process.

Random number generators (RNGs) like those in MATLAB are algorithms for generating
pseudorandom numbers with a specified distribution.

For more information on the GUI for generating random numbers from supported distributions, see
“Explore the Random Number Generation UI” on page 5-86.

Common Pseudorandom Number Generation Methods
• “Direct Methods” on page 7-2
• “Inversion Methods” on page 7-3
• “Acceptance-Rejection Methods” on page 7-5

Methods for generating pseudorandom numbers usually start with uniform random numbers, like the
MATLAB rand function produces. The methods described in this section detail how to produce
random numbers from other distributions.

Direct Methods

Direct methods directly use the definition of the distribution.

For example, consider binomial random numbers. A binomial random number is the number of heads
in N tosses of a coin with probability p of a heads on any single toss. If you generate N uniform
random numbers on the interval (0,1) and count the number less than p, then the count is a
binomial random number with parameters N and p.

This function is a simple implementation of a binomial RNG using the direct approach:

function X = directbinornd(N,p,m,n)
    X = zeros(m,n); % Preallocate memory
    for i = 1:m*n
        u = rand(N,1);
        X(i) = sum(u < p);
    end
end

For example:

rng('default') % For reproducibility
X = directbinornd(100,0.3,1e4,1);
histogram(X,101)

7 Random Number Generation

7-2



The binornd function uses a modified direct method, based on the definition of a binomial random
variable as the sum of Bernoulli random variables.

You can easily convert the previous method to a random number generator for the Poisson
distribution with parameter λ. The “Poisson Distribution” on page B-137 is the limiting case of the
binomial distribution as N approaches infinity, p approaches zero, and Np is held fixed at λ. To
generate Poisson random numbers, create a version of the previous generator that inputs λ rather
than N and p, and internally sets N to some large number and p to λ/N.

The poissrnd function actually uses two direct methods:

• A waiting time method for small values of λ
• A method due to Ahrens and Dieter for larger values of λ

Inversion Methods

Inversion methods are based on the observation that continuous cumulative distribution functions
(cdfs) range uniformly over the interval (0,1). If u is a uniform random number on (0,1), then
using X = F−1(U) generates a random number X from a continuous distribution with specified cdf F.

For example, the following code generates random numbers from a specific “Exponential
Distribution” on page B-34 using the inverse cdf and the MATLAB® uniform random number
generator rand:
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rng('default') % For reproducibility
mu = 1;
X = expinv(rand(1e4,1),mu);

Compare the distribution of the generated random numbers to the pdf of the specified exponential.

numbins = 50;
h = histogram(X,numbins,'Normalization','pdf');
hold on
x = linspace(h.BinEdges(1),h.BinEdges(end));
y = exppdf(x,mu);
plot(x,y,'LineWidth',2)
hold off

Inversion methods also work for discrete distributions. To generate a random number X from a
discrete distribution with probability mass vector P(X = xi) = pi where x0 < x1 < x2 < . . ., generate a
uniform random number u on (0,1) and then set X = xi if F(xi− 1) < u < F(xi).

For example, the following function implements an inversion method for a discrete distribution with
probability mass vector p:

function X = discreteinvrnd(p,m,n)
    X = zeros(m,n); % Preallocate memory
    for i = 1:m*n
        u = rand;
        I = find(u < cumsum(p));
        X(i) = min(I);
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    end
end

Use the function to generate random numbers from any discrete distribution.

p = [0.1 0.2 0.3 0.2 0.1 0.1]; % Probability mass function (pmf) values
X = discreteinvrnd(p,1e4,1);

Alternatively, you can use the discretize function to generate discrete random numbers.

X = discretize(rand(1e4,1),[0 cusmsum(p)]);

Plot the histogram of the generated random numbers, and confirm then the distribution follows the
specified pmf values.

histogram(categorical(X),'Normalization','probability')

Acceptance-Rejection Methods

The functional form of some distributions makes it difficult or time-consuming to generate random
numbers using direct or inversion methods. Acceptance-rejection methods provide an alternative in
these cases.

Acceptance-rejection methods begin with uniform random numbers, but require an additional random
number generator. If your goal is to generate a random number from a continuous distribution with
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pdf f , acceptance-rejection methods first generate a random number from a continuous distribution
with pdf g satisfying f (x) ≤ cg(x) for some c and all x.

A continuous acceptance-rejection RNG proceeds as follows:

1 Chooses a density g.
2 Finds a constant c such that f (x)/g(x) ≤ c for all x.
3 Generates a uniform random number u.
4 Generates a random number v from g.
5 If cu ≤ f (v)/g(v), accepts and returns v. Otherwise, rejects v and goes to step 3.

For efficiency, a "cheap" method is necessary for generating random numbers from g, and the scalar c
should be small. The expected number of iterations to produce a single random number is c.

The following function implements an acceptance-rejection method for generating random numbers
from pdf f  given f , g, the RNG grnd for g, and the constant c:

function X = accrejrnd(f,g,grnd,c,m,n)
    X = zeros(m,n); % Preallocate memory
    for i = 1:m*n
        accept = false;
        while accept == false
            u = rand();
            v = grnd();
            if c*u <= f(v)/g(v)
               X(i) = v;
               accept = true;
            end
        end
    end
end

For example, the function f (x) = xe−x2/2 satisfies the conditions for a pdf on [0, ∞ ) (nonnegative and
integrates to 1). The exponential pdf with mean 1, f (x) = e−x, dominates g for c greater than about
2.2. Thus, you can use rand and exprnd to generate random numbers from f :
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f = @(x)x.*exp(-(x.^2)/2);
g = @(x)exp(-x);
grnd = @()exprnd(1);
rng('default') % For reproducibility
X = accrejrnd(f,g,grnd,2.2,1e4,1);

The pdf f  is actually a “Rayleigh Distribution” on page B-143 with shape parameter 1. This example
compares the distribution of random numbers generated by the acceptance-rejection method with
those generated by raylrnd:

Y = raylrnd(1,1e4,1); 
histogram(X)
hold on
histogram(Y)
legend('A-R RNG','Rayleigh RNG')

The raylrnd function uses a transformation method, expressing a Rayleigh random variable in terms
of a chi-square random variable, which you compute using randn.

Acceptance-rejection methods also work for discrete distributions. In this case, the goal is to
generate random numbers from a distribution with probability mass Pp(X = i) = pi, assuming that you
have a method for generating random numbers from a distribution with probability mass
Pq(X = i) = qi. The RNG proceeds as follows:

1 Chooses a density Pq.
2 Finds a constant c such that pi/qi ≤ c for all i.
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3 Generates a uniform random number u.
4 Generates a random number v from Pq.
5 If cu ≤ pv/qv, accepts and returns v. Otherwise, rejects v and goes to step 3.

See Also

More About
• “Random Number Generation” on page 5-28
• “Generating Quasi-Random Numbers” on page 7-12
• “Generate Random Numbers Using Uniform Distribution Inversion” on page 5-109
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Representing Sampling Distributions Using Markov Chain
Samplers

In this section...
“Using the Metropolis-Hastings Algorithm” on page 7-9
“Using Slice Sampling” on page 7-9
“Using Hamiltonian Monte Carlo” on page 7-10

For more complex probability distributions, you might need more advanced methods for generating
samples than the methods described in “Common Pseudorandom Number Generation Methods” on
page 7-2. Such distributions arise, for example, in Bayesian data analysis and in the large
combinatorial problems of Markov chain Monte Carlo (MCMC) simulations. An alternative is to
construct a Markov chain with a stationary distribution equal to the target sampling distribution,
using the states of the chain to generate random numbers after an initial burn-in period in which the
state distribution converges to the target.

Using the Metropolis-Hastings Algorithm
The Metropolis-Hastings algorithm draws samples from a distribution that is only known up to a
constant. Random numbers are generated from a distribution with a probability density function that
is equal to or proportional to a proposal function.

To generate random numbers:

1 Assume an initial value x(t).
2 Draw a sample, y(t), from a proposal distribution q(y|x(t)).
3 Accept y(t) as the next sample x(t + 1) with probability r(x(t),y(t)), and keep x(t) as the next

sample x(t + 1) with probability 1 – r(x(t),y(t)), where:

r(x, y) = min f (y)
f (x)

q(x y)
q(y x) , 1

4 Increment t → t + 1, and repeat steps 2 and 3 until you get the desired number of samples.

Generate random numbers using the Metropolis-Hastings method with the mhsample function. To
produce quality samples efficiently with the Metropolis-Hastings algorithm, it is crucial to select a
good proposal distribution. If it is difficult to find an efficient proposal distribution, use slice sampling
(slicesample) or Hamiltonian Monte Carlo (hmcSampler) instead.

Using Slice Sampling
In instances where it is difficult to find an efficient Metropolis-Hastings proposal distribution, the
slice sampling algorithm does not require an explicit specification. The slice sampling algorithm
draws samples from the region under the density function using a sequence of vertical and horizontal
steps. First, it selects a height at random from 0 to the density function f (x). Then, it selects a new x
value at random by sampling from the horizontal “slice” of the density above the selected height. A
similar slice sampling algorithm is used for a multivariate distribution.

If a function f(x) proportional to the density function is given, then do the following to generate
random numbers:
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1 Assume an initial value x(t) within the domain of f(x).
2 Draw a real value y uniformly from (0, f(x(t))), thereby defining a horizontal “slice” as S = {x: y <

f(x)}.
3 Find an interval I = (L, R) around x(t) that contains all, or much of the “slice” S.
4 Draw the new point x(t + 1) within this interval.
5 Increment t → t + 1 and repeat steps 2 through 4 until you get the desired number of samples.

Slice sampling can generate random numbers from a distribution with an arbitrary form of the
density function, provided that an efficient numerical procedure is available to find the interval I =
(L,R), which is the “slice” of the density.

Generate random numbers using the slice sampling method with the slicesample function.

Using Hamiltonian Monte Carlo
Metropolis-Hastings and slice sampling can produce MCMC chains that mix slowly and take a long
time to converge to the stationary distribution, especially in medium-dimensional and high-
dimensional problems. Use the gradient-based Hamiltonian Monte Carlo (HMC) sampler to speed up
sampling in these situations.

To use HMC sampling, you must specify log f(x) (up to an additive constant) and its gradient. You can
use a numerical gradient, but this leads to slower sampling. All sampling variables must be
unconstrained, meaning that log f(x) and its gradient are well-defined for all real x. To sample
constrained variables, transform these variables into unconstrained ones before using the HMC
sampler.

The HMC sampling algorithm introduces a random “momentum vector” z and defines a joint density
of z and the “position vector” x as P(x,z) = f(x)g(z). The goal is to sample from this joint distribution
and then to ignore the values of z — the marginal distribution of x has the desired density f(x).

The HMC algorithm assigns a Gaussian density with covariance matrix M (the “mass matrix”) to z:

g(z) ∝ exp −1
2zTM−1z

Then, it defines an “energy function” as

E(x, z) = − logf (x) + 1
2zTM−1z = U(x) + K(z)

with U(x) = – log f(x) the “potential energy” and K(z) = zTM-1z/2 the “kinetic energy”. The joint
density is given by P(x,z) ∝ exp{-E(x,z)}.

To generate random samples, the HMC algorithm:

1 Assumes an initial value x of the position vector.
2 Generates a sample of the momentum vector: z ∼ g(z).
3 Evolves the state (x, z) for some amount of fictitious time τ to a new state (x’,z’) using the

“equations of motion”:

dz
dτ = − ∂U∂x
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dx
dτ = ∂K

∂z

If the equations of motion could be solved exactly, the energy (and hence the density) would
remain constant: E(x,z) = E(x’,z’). In practice, the equations of motions must be solved
numerically (usually using so-called leapfrog integration) and the energy is not conserved.

4 Accepts x’ as the next sample with probability pacc = min(1, exp{E(x,z) – E(x’,z’)}), and keeps x as
the next sample with probability 1 – pacc.

5 Repeats steps 2 through 4 until it has generated the desired number of samples.

To use HMC sampling, create a sampler using the hmcSampler function. After creating a sampler,
you can compute MAP (maximum-a-posteriori) point estimates, tune the sampler, draw samples, and
check convergence diagnostics. For an example of this workflow, see “Bayesian Linear Regression
Using Hamiltonian Monte Carlo” on page 7-26.

See Also
Functions
mhsample | slicesample | hmcSampler
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Generating Quasi-Random Numbers

In this section...
“Quasi-Random Sequences” on page 7-12
“Quasi-Random Point Sets” on page 7-13
“Quasi-Random Streams” on page 7-18

Quasi-Random Sequences
Quasi-random number generators (QRNGs) produce highly uniform samples of the unit hypercube.
QRNGs minimize the discrepancy between the distribution of generated points and a distribution with
equal proportions of points in each sub-cube of a uniform partition of the hypercube. As a result,
QRNGs systematically fill the “holes” in any initial segment of the generated quasi-random sequence.

Unlike the pseudorandom sequences described in “Common Pseudorandom Number Generation
Methods” on page 7-2, quasi-random sequences fail many statistical tests for randomness.
Approximating true randomness, however, is not their goal. Quasi-random sequences seek to fill
space uniformly, and to do so in such a way that initial segments approximate this behavior up to a
specified density.

QRNG applications include:

• Quasi-Monte Carlo (QMC) integration. Monte Carlo techniques are often used to evaluate
difficult, multi-dimensional integrals without a closed-form solution. QMC uses quasi-random
sequences to improve the convergence properties of these techniques.

• Space-filling experimental designs. In many experimental settings, taking measurements at
every factor setting is expensive or infeasible. Quasi-random sequences provide efficient, uniform
sampling of the design space.

• Global optimization. Optimization algorithms typically find a local optimum in the neighborhood
of an initial value. By using a quasi-random sequence of initial values, searches for global optima
uniformly sample the basins of attraction of all local minima.

Example: Using Scramble, Leap, and Skip

Imagine a simple 1-D sequence that produces the integers from 1 to 10. This is the basic sequence
and the first three points are [1,2,3]:

Now look at how Scramble, Skip, and Leap work together:

• Scramble — Scrambling shuffles the points in one of several different ways. In this example,
assume a scramble turns the sequence into 1,3,5,7,9,2,4,6,8,10. The first three points are
now [1,3,5]:
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• Skip — A Skip value specifies the number of initial points to ignore. In this example, set the
Skip value to 2. The sequence is now 5,7,9,2,4,6,8,10 and the first three points are
[5,7,9]:

• Leap — A Leap value specifies the number of points to ignore for each one you take. Continuing
the example with the Skip set to 2, if you set the Leap to 1, the sequence uses every other point.
In this example, the sequence is now 5,9,4,8 and the first three points are [5,9,4]:

Quasi-Random Point Sets
Statistics and Machine Learning Toolbox functions support these quasi-random sequences:

• Halton sequences. Produced by the haltonset function. These sequences use different prime
bases to form successively finer uniform partitions of the unit interval in each dimension.

• Sobol sequences. Produced by the sobolset function. These sequences use a base of 2 to form
successively finer uniform partitions of the unit interval, and then reorder the coordinates in each
dimension.

• Latin hypercube sequences. Produced by the lhsdesign function. Though not quasi-random in
the sense of minimizing discrepancy, these sequences nevertheless produce sparse uniform
samples useful in experimental designs.

Quasi-random sequences are functions from the positive integers to the unit hypercube. To be useful
in application, an initial point set of a sequence must be generated. Point sets are matrices of size n-
by-d, where n is the number of points and d is the dimension of the hypercube being sampled. The
functions haltonset and sobolset construct point sets with properties of a specified quasi-random
sequence. Initial segments of the point sets are generated by the net method of the haltonset and
sobolset classes, but points can be generated and accessed more generally using parenthesis
indexing.

Because of the way in which quasi-random sequences are generated, they may contain undesirable
correlations, especially in their initial segments, and especially in higher dimensions. To address this
issue, quasi-random point sets often skip, leap over, or scramble values in a sequence. The
haltonset and sobolset functions allow you to specify both a Skip and a Leap property of a
quasi-random sequence, and the scramble method of the haltonset and sobolset classes allows
you apply a variety of scrambling techniques. Scrambling reduces correlations while also improving
uniformity.

Generate a Quasi-Random Point Set

This example shows how to use haltonset to construct a 2-D Halton quasi-random point set.

Create a haltonset object p, that skips the first 1000 values of the sequence and then retains every
101st point.

 Generating Quasi-Random Numbers

7-13



rng default  % For reproducibility
p = haltonset(2,'Skip',1e3,'Leap',1e2)

p = 
Halton point set in 2 dimensions (89180190640991 points)

Properties:
              Skip : 1000
              Leap : 100
    ScrambleMethod : none

The object p encapsulates properties of the specified quasi-random sequence. The point set is finite,
with a length determined by the Skip and Leap properties and by limits on the size of point set
indices.

Use scramble to apply reverse-radix scrambling.

p = scramble(p,'RR2')

p = 
Halton point set in 2 dimensions (89180190640991 points)

Properties:
              Skip : 1000
              Leap : 100
    ScrambleMethod : RR2

Use net to generate the first 500 points.

X0 = net(p,500);

This is equivalent to

X0 = p(1:500,:);

Values of the point set X0 are not generated and stored in memory until you access p using net or
parenthesis indexing.

To appreciate the nature of quasi-random numbers, create a scatter plot of the two dimensions in X0.

scatter(X0(:,1),X0(:,2),5,'r')
axis square
title('{\bf Quasi-Random Scatter}')
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Compare this to a scatter of uniform pseudorandom numbers generated by the rand function.

X = rand(500,2);
scatter(X(:,1),X(:,2),5,'b')
axis square
title('{\bf Uniform Random Scatter}')
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The quasi-random scatter appears more uniform, avoiding the clumping in the pseudorandom scatter.

In a statistical sense, quasi-random numbers are too uniform to pass traditional tests of randomness.
For example, a Kolmogorov-Smirnov test, performed by kstest, is used to assess whether or not a
point set has a uniform random distribution. When performed repeatedly on uniform pseudorandom
samples, such as those generated by rand, the test produces a uniform distribution of p-values.

nTests = 1e5;
sampSize = 50;
PVALS = zeros(nTests,1);
for test = 1:nTests
    x = rand(sampSize,1);
    [h,pval] = kstest(x,[x,x]);
    PVALS(test) = pval;
end

histogram(PVALS,100)
h = findobj(gca,'Type','patch');
xlabel('{\it p}-values')
ylabel('Number of Tests')
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The results are quite different when the test is performed repeatedly on uniform quasi-random
samples.

p = haltonset(1,'Skip',1e3,'Leap',1e2);
p = scramble(p,'RR2');

nTests = 1e5;
sampSize = 50;
PVALS = zeros(nTests,1);
for test = 1:nTests
    x = p(test:test+(sampSize-1),:);
    [h,pval] = kstest(x,[x,x]);
    PVALS(test) = pval;
end

histogram(PVALS,100)
xlabel('{\it p}-values')
ylabel('Number of Tests')
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Small p-values call into question the null hypothesis that the data are uniformly distributed. If the
hypothesis is true, about 5% of the p-values are expected to fall below 0.05. The results are
remarkably consistent in their failure to challenge the hypothesis.

Quasi-Random Streams
Quasi-random streams, produced by the qrandstream function, are used to generate sequential
quasi-random outputs, rather than point sets of a specific size. Streams are used like pseudoRNGS,
such as rand, when client applications require a source of quasi-random numbers of indefinite size
that can be accessed intermittently. Properties of a quasi-random stream, such as its type (Halton or
Sobol), dimension, skip, leap, and scramble, are set when the stream is constructed.

In implementation, quasi-random streams are essentially very large quasi-random point sets, though
they are accessed differently. The state of a quasi-random stream is the scalar index of the next point
to be taken from the stream. Use the qrand method of the qrandstream on page 35-6075 class to
generate points from the stream, starting from the current state. Use the reset method to reset the
state to 1. Unlike point sets, streams do not support parenthesis indexing.

Generate a Quasi-Random Stream

This example shows how to generate samples from a quasi-random point set.

Use haltonset to create a quasi-random point set p, then repeatedly increment the index into the
point set test to generate different samples.
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p = haltonset(1,'Skip',1e3,'Leap',1e2);
p = scramble(p,'RR2');

nTests = 1e5;
sampSize = 50;
PVALS = zeros(nTests,1);
for test = 1:nTests
    x = p(test:test+(sampSize-1),:);
    [h,pval] = kstest(x,[x,x]);
    PVALS(test) = pval;
end

The same results are obtained by using qrandstream to construct a quasi-random stream q based on
the point set p and letting the stream take care of increments to the index.

p = haltonset(1,'Skip',1e3,'Leap',1e2);
p = scramble(p,'RR2');
q = qrandstream(p);

nTests = 1e5;
sampSize = 50;
PVALS = zeros(nTests,1);
for test = 1:nTests
    X = qrand(q,sampSize);
    [h,pval] = kstest(X,[X,X]);
    PVALS(test) = pval;
end

See Also

More About
• “Random Number Generation” on page 5-28
• “Generating Pseudorandom Numbers” on page 7-2
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Generating Data Using Flexible Families of Distributions

This example shows how to generate data using the Pearson and Johnson systems of distributions.

Pearson and Johnson Systems

As described in “Working with Probability Distributions” on page 5-3, choosing an appropriate
parametric family of distributions to model your data can be based on a priori or a posteriori
knowledge of the data-producing process, but the choice is often difficult. The Pearson and Johnson
systems can make such a choice unnecessary. Each system is a flexible parametric family of
distributions that includes a wide range of distribution shapes, and it is often possible to find a
distribution within one of these two systems that provides a good match to your data.

Data Input

The following parameters define each member of the Pearson and Johnson systems.

• Mean — Estimated by mean
• Standard deviation — Estimated by std
• Skewness — Estimated by skewness
• Kurtosis — Estimated by kurtosis

These statistics can also be computed with the moment function. The Johnson system, while based on
these four parameters, is more naturally described using quantiles, estimated by the quantile
function.

The pearsrnd and johnsrnd functions take input arguments defining a distribution (parameters or
quantiles, respectively) and return the type and the coefficients of the distribution in the
corresponding system. Both functions also generate random numbers from the specified distribution.

As an example, load the data in carbig.mat, which includes a variable MPG containing
measurements of the gas mileage for each car.

load carbig
MPG = MPG(~isnan(MPG));
histogram(MPG,15)
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The following two sections model the distribution with members of the Pearson and Johnson systems,
respectively.

Generating Data Using the Pearson System

The statistician Karl Pearson devised a system, or family, of distributions that includes a unique
distribution corresponding to every valid combination of mean, standard deviation, skewness, and
kurtosis. If you compute sample values for each of these moments from data, it is easy to find the
distribution in the Pearson system that matches these four moments and to generate a random
sample.

The Pearson system embeds seven basic types of distribution together in a single parametric
framework. It includes common distributions such as the normal and t distributions, simple
transformations of standard distributions such as a shifted and scaled beta distribution and the
inverse gamma distribution, and one distribution—the Type IV—that is not a simple transformation of
any standard distribution.

For a given set of moments, there are distributions that are not in the system that also have those
same first four moments, and the distribution in the Pearson system may not be a good match to your
data, particularly if the data are multimodal. But the system does cover a wide range of distribution
shapes, including both symmetric and skewed distributions.

To generate a sample from the Pearson distribution that closely matches the MPG data, simply
compute the four sample moments and treat those as distribution parameters.
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moments = {mean(MPG),std(MPG),skewness(MPG),kurtosis(MPG)};
rng('default')  % For reproducibility
[r,type] = pearsrnd(moments{:},10000,1);

The optional second output from pearsrnd indicates which type of distribution within the Pearson
system matches the combination of moments.

type

type = 1

In this case, pearsrnd has determined that the data are best described with a Type I Pearson
distribution, which is a shifted, scaled beta distribution.

Verify that the sample resembles the original data by overlaying the empirical cumulative distribution
functions.

ecdf(MPG);
[Fi,xi] = ecdf(r);
hold on;
stairs(xi,Fi,'r');
hold off

Generating Data Using the Johnson System

Statistician Norman Johnson devised a different system of distributions that also includes a unique
distribution for every valid combination of mean, standard deviation, skewness, and kurtosis.
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However, since it is more natural to describe distributions in the Johnson system using quantiles,
working with this system is different than working with the Pearson system.

The Johnson system is based on three possible transformations of a normal random variable, plus the
identity transformation. The three nontrivial cases are known as SL , SU , and SB , corresponding to
exponential, logistic, and hyperbolic sine transformations. All three can be written as

X = γ + δ ⋅ Γ Z − ξ
λ

where Z is a standard normal random variable, Γ is the transformation, and γ, δ, ξ, and λ are scale
and location parameters. The fourth case, SN , is the identity transformation.

To generate a sample from the Johnson distribution that matches the MPG data, first define the four
quantiles to which the four evenly spaced standard normal quantiles of -1.5, -0.5, 0.5, and 1.5 should
be transformed. That is, you compute the sample quantiles of the data for the cumulative
probabilities of 0.067, 0.309, 0.691, and 0.933.

probs = normcdf([-1.5 -0.5 0.5 1.5])

probs = 1×4

    0.0668    0.3085    0.6915    0.9332

quantiles = quantile(MPG,probs)

quantiles = 1×4

   13.0000   18.0000   27.2000   36.0000

Then treat those quantiles as distribution parameters.

[r1,type] = johnsrnd(quantiles,10000,1);

The optional second output from johnsrnd indicates which type of distribution within the Johnson
system matches the quantiles.

type

type = 
'SB'

You can verify that the sample resembles the original data by overlaying the empirical cumulative
distribution functions.

ecdf(MPG);
[Fi,xi] = ecdf(r1);
hold on;
stairs(xi,Fi,'r');
hold off
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In some applications, it may be important to match the quantiles better in some regions of the data
than in others. To do that, specify four evenly spaced standard normal quantiles at which you want to
match the data, instead of the default -1.5, -0.5, 0.5, and 1.5. For example, you might care more about
matching the data in the right tail than in the left, and so you specify standard normal quantiles that
emphasizes the right tail.

qnorm = [-.5 .25 1 1.75];
probs = normcdf(qnorm);
qemp = quantile(MPG,probs);
r2 = johnsrnd([qnorm; qemp],10000,1);

However, while the new sample matches the original data better in the right tail, it matches much
worse in the left tail.

[Fj,xj] = ecdf(r2);
hold on;
stairs(xj,Fj,'g');
hold off

7 Random Number Generation

7-24



See Also
pearsrnd | johnsrnd | ecdf
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Bayesian Linear Regression Using Hamiltonian Monte Carlo

This example shows how to perform Bayesian inference on a linear regression model using a
Hamiltonian Monte Carlo (HMC) sampler.

In Bayesian parameter inference, the goal is to analyze statistical models with the incorporation of
prior knowledge of model parameters. The posterior distribution of the free parameters  combines
the likelihood function  with the prior distribution , using Bayes' theorem:

Usually, the best way to summarize the posterior distribution is to obtain samples from that
distribution using Monte Carlo methods. Using these samples, you can estimate marginal posterior
distributions and derived statistics such as the posterior mean, median, and standard deviation. HMC
is a gradient-based Markov Chain Monte Carlo sampler that can be more efficient than standard
samplers, especially for medium-dimensional and high-dimensional problems.

Linear Regression Model

Analyze a linear regression model with the intercept , the linear coefficients  (a column vector),
and the noise variance  of the data distribution as free parameters. Assume that each data point
has an independent Gaussian distribution:

Model the mean  of the Gaussian distribution as a function of the predictors  and model
parameters as

In a Bayesian analysis, you also must assign prior distributions to all free parameters. Assign
independent Gaussian priors on the intercept and linear coefficients:

,

.

To use HMC, all sampling variables must be unconstrained, meaning that the posterior density and its
gradient must be well-defined for all real parameter values. If you have a parameter that is
constrained to an interval, then you must transform this parameter into an unbounded one. To
conserve probability, you must multiply the prior distribution by the corresponding Jacobian factor.
Also, take this factor into account when calculating the gradient of the posterior.

The noise variance is a (squared) scale parameter that can only be positive. It then can be easier and
more natural to consider its logarithm as the free parameter, which is unbounded. Assign a normal
prior to the logarithm of the noise variance:

.
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Write the logarithm of the posterior density of the free parameters  as

Ignore the constant term and call the sum of the last two terms . To use HMC, create a function
handle that evaluates  and its gradient  for any value of . The functions used to calculate

 are located at the end of the script.

Create Data Set

Define true parameter values for the intercept, the linear coefficients Beta, and the noise standard
deviation. Knowing the true parameter values makes it possible to compare with the output of the
HMC sampler. Only the first predictor affects the response.

NumPredictors = 2;

trueIntercept = 2;
trueBeta = [3;0];
trueNoiseSigma = 1;

Use these parameter values to create a normally distributed sample data set at random values of the
two predictors.

NumData = 100;
rng('default') %For reproducibility
X = rand(NumData,NumPredictors);
mu = X*trueBeta + trueIntercept;
y = normrnd(mu,trueNoiseSigma);

Define Posterior Probability Density

Choose the means and standard deviations of the Gaussian priors.

InterceptPriorMean = 0;
InterceptPriorSigma = 10;
BetaPriorMean = 0;
BetaPriorSigma = 10;
LogNoiseVarianceMean = 0;
LogNoiseVarianceSigma = 2;

Save a function logPosterior on the MATLAB® path that returns the logarithm of the product of
the prior and likelihood, and the gradient of this logarithm. The logPosterior function is defined at
the end of this example. Then, call the function with arguments to define the logpdf input argument
to the hmcSampler function.

logpdf = @(Parameters)logPosterior(Parameters,X,y, ...
    InterceptPriorMean,InterceptPriorSigma, ...
    BetaPriorMean,BetaPriorSigma, ...
    LogNoiseVarianceMean,LogNoiseVarianceSigma);

Create HMC Sampler

Define the initial point to start sampling from, and then call the hmcSampler function to create the
Hamiltonian sampler as a HamiltonianSampler object. Display the sampler properties.

Intercept = randn;
Beta = randn(NumPredictors,1);
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LogNoiseVariance = randn;
startpoint = [Intercept;Beta;LogNoiseVariance];
smp = hmcSampler(logpdf,startpoint,'NumSteps',50);

smp

smp = 

  HamiltonianSampler with properties:

                  StepSize: 0.1000
                  NumSteps: 50
                MassVector: [4x1 double]
              JitterMethod: 'jitter-both'
      StepSizeTuningMethod: 'dual-averaging'
    MassVectorTuningMethod: 'iterative-sampling'
                    LogPDF: [function_handle]
             VariableNames: {4x1 cell}
                StartPoint: [4x1 double]

Estimate MAP Point

Estimate the MAP (maximum-a-posteriori) point of the posterior density. You can start sampling from
any point, but it is often more efficient to estimate the MAP point, and then use it as a starting point
for tuning the sampler and drawing samples. Estimate and display the MAP point. You can show more
information during optimization by setting the 'VerbosityLevel' value to 1.

[MAPpars,fitInfo] = estimateMAP(smp,'VerbosityLevel',0);
MAPIntercept = MAPpars(1)
MAPBeta = MAPpars(2:end-1)
MAPLogNoiseVariance = MAPpars(end)

MAPIntercept =

    2.3857

MAPBeta =

    2.5495
   -0.4508

MAPLogNoiseVariance =

   -0.1007

To check that the optimization has converged to a local optimum, plot the fitInfo.Objective field.
This field contains the values of the negative log density at each iteration of the function optimization.
The final values are all similar, so the optimization has converged.

plot(fitInfo.Iteration,fitInfo.Objective,'ro-');
xlabel('Iteration');
ylabel('Negative log density');
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Tune Sampler

It is important to select good values for the sampler parameters to get efficient sampling. The best
way to find good values is to automatically tune the MassVector, StepSize, and NumSteps
parameters using the tuneSampler method. Use the method to:

1. Tune the MassVector of the sampler.

2. Tune StepSize and NumSteps for a fixed simulation length to achieve a certain acceptance ratio.
The default target acceptance ratio of 0.65 is good in most cases.

Start tuning at the estimated MAP point for more efficient tuning.

[smp,tuneinfo] = tuneSampler(smp,'Start',MAPpars);

Plot the evolution of the step size during tuning to ensure that the step size tuning has converged.
Display the achieved acceptance ratio.

figure;
plot(tuneinfo.StepSizeTuningInfo.StepSizeProfile);
xlabel('Iteration');
ylabel('Step size');

accratio = tuneinfo.StepSizeTuningInfo.AcceptanceRatio

accratio =
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    0.6400

Draw Samples

Draw samples from the posterior density, using a few independent chains. Choose different initial
points for the chains, randomly distributed around the estimated MAP point. Specify the number of
burn-in samples to discard from the beginning of the Markov chain and the number of samples to
generate after the burn-in.

Set the 'VerbosityLevel' value to print details during sampling for the first chain.

NumChains = 4;
chains = cell(NumChains,1);
Burnin = 500;
NumSamples = 1000;
for c = 1:NumChains
    if (c == 1)
        level = 1;
    else
        level = 0;
    end
    chains{c} = drawSamples(smp,'Start',MAPpars + randn(size(MAPpars)), ...
        'Burnin',Burnin,'NumSamples',NumSamples, ...
        'VerbosityLevel',level,'NumPrint',300);
end
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|==================================================================================|
|   ITER   |    LOG PDF    |  STEP SIZE  |  NUM STEPS  |  ACC RATIO  |  DIVERGENT  |
|==================================================================================|
|      300 | -1.484164e+02 |   2.532e-01 |          12 |   9.500e-01 |           0 |
|      600 | -1.492436e+02 |   2.128e-02 |           4 |   9.450e-01 |           0 |
|      900 | -1.509753e+02 |   2.171e-01 |           5 |   9.444e-01 |           0 |
|     1200 | -1.493455e+02 |   1.128e-01 |          16 |   9.358e-01 |           0 |
|     1500 | -1.489602e+02 |   2.532e-01 |          12 |   9.373e-01 |           0 |

Examine Convergence Diagnostics

Use the diagnostics method to compute standard MCMC diagnostics. For each sampling
parameter, the method uses all the chains to compute these statistics:

• Posterior mean estimate (Mean)
• Estimate of the Monte Carlo standard error (MCSE), which is the standard deviation of the

posterior mean estimate
• Estimate of the posterior standard deviation (SD)
• Estimates of the 5th and 95th quantiles of the marginal posterior distribution (Q5 and Q95)
• Effective sample size for the posterior mean estimate (ESS)
• Gelman-Rubin convergence statistic (RHat). As a rule of thumb, values of RHat less than 1.1 are

interpreted as a sign that the chain has converged to the desired distribution. If RHat for any
variable is larger than 1.1, then try drawing more samples using the drawSamples method.

Display the diagnostics table and the true values of the sampling parameters defined in the beginning
of the example. Since the prior distribution is noninformative for this data set, the true values are
between (or near) the 5th and 95th quantiles.

diags = diagnostics(smp,chains)
truePars = [trueIntercept;trueBeta;log(trueNoiseSigma^2)]

diags =

  4x8 table

     Name       Mean         MCSE         SD          Q5         Q95       ESS       RHat 
    ______    _________    _________    _______    ________    _______    ______    ______

    {'x1'}       2.3805    0.0053354    0.28028      1.8966     2.8335    2759.7    1.0005
    {'x2'}       2.5544    0.0062264    0.33478      1.9989     3.1026    2890.9    1.0004
    {'x3'}     -0.44516    0.0064468     0.3415     -1.0247    0.10198      2806         1
    {'x4'}    -0.062826    0.0028183    0.14112    -0.28345    0.17997    2507.5    1.0004

truePars =

     2
     3
     0
     0
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Visualize Samples

Investigate issues such as convergence and mixing to determine whether the drawn samples
represent a reasonable set of random realizations from the target distribution. To examine the output,
plot the trace plots of the samples using the first chain.

The drawSamples method discards burn-in samples from the beginning of the Markov chain to
reduce the effect of the sampling starting point. Furthermore, the trace plots look like high-frequency
noise, without any visible long-range correlation between the samples. This behavior indicates that
the chain is mixed well.

figure;
subplot(2,2,1);
plot(chains{1}(:,1));
title(sprintf('Intercept, Chain 1'));
for p = 2:1+NumPredictors
    subplot(2,2,p);
    plot(chains{1}(:,p));
    title(sprintf('Beta(%d), Chain 1',p-1));
end
subplot(2,2,4);
plot(chains{1}(:,end));
title(sprintf('LogNoiseVariance, Chain 1'));

Combine the chains into one matrix and create scatter plots and histograms to visualize the 1-D and
2-D marginal posterior distributions.
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concatenatedSamples = vertcat(chains{:});
figure;
plotmatrix(concatenatedSamples);
title('All Chains Combined');

Functions for Computing Posterior Distribution

The logPosterior function returns the logarithm of the product of a normal likelihood and a normal
prior for the linear model. The input argument Parameter has the format
[Intercept;Beta;LogNoiseVariance]. X and Y contain the values of the predictors and
response, respectively.

The normalPrior function returns the logarithm of the multivariate normal probability density with
means Mu and standard deviations Sigma, specified as scalars or columns vectors the same length as
P. The second output argument is the corresponding gradient.

function [logpdf, gradlogpdf] = logPosterior(Parameters,X,Y, ...
    InterceptPriorMean,InterceptPriorSigma, ...
    BetaPriorMean,BetaPriorSigma, ...
    LogNoiseVarianceMean,LogNoiseVarianceSigma)

% Unpack the parameter vector
Intercept        = Parameters(1);
Beta             = Parameters(2:end-1);
LogNoiseVariance = Parameters(end);
% Compute the log likelihood and its gradient
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Sigma                   = sqrt(exp(LogNoiseVariance));
Mu                      = X*Beta + Intercept;
Z                       = (Y - Mu)/Sigma;
loglik                  = sum(-log(Sigma) - .5*log(2*pi) - .5*Z.^2);
gradIntercept1          = sum(Z/Sigma);
gradBeta1               = X'*Z/Sigma;
gradLogNoiseVariance1    = sum(-.5 + .5*(Z.^2));
% Compute log priors and gradients
[LPIntercept, gradIntercept2]           = normalPrior(Intercept,InterceptPriorMean,InterceptPriorSigma);
[LPBeta, gradBeta2]                     = normalPrior(Beta,BetaPriorMean,BetaPriorSigma);
[LPLogNoiseVar, gradLogNoiseVariance2]  = normalPrior(LogNoiseVariance,LogNoiseVarianceMean,LogNoiseVarianceSigma);
logprior                                = LPIntercept + LPBeta + LPLogNoiseVar;
% Return the log posterior and its gradient
logpdf               = loglik + logprior;
gradIntercept        = gradIntercept1 + gradIntercept2;
gradBeta             = gradBeta1 + gradBeta2;
gradLogNoiseVariance = gradLogNoiseVariance1 + gradLogNoiseVariance2;
gradlogpdf           = [gradIntercept;gradBeta;gradLogNoiseVariance];
end

function [logpdf,gradlogpdf] = normalPrior(P,Mu,Sigma)
Z          = (P - Mu)./Sigma;
logpdf     = sum(-log(Sigma) - .5*log(2*pi) - .5*(Z.^2));
gradlogpdf = -Z./Sigma;
end

See Also
Functions
hmcSampler

Classes
HamiltonianSampler
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Bayesian Analysis for a Logistic Regression Model

This example shows how to make Bayesian inferences for a logistic regression model using
slicesample.

Statistical inferences are usually based on maximum likelihood estimation (MLE). MLE chooses the
parameters that maximize the likelihood of the data, and is intuitively appealing. In MLE, parameters
are assumed to be unknown but fixed, and are estimated with some confidence. In Bayesian statistics,
the uncertainty about the unknown parameters is quantified using probability so that the unknown
parameters are regarded as random variables.

Bayesian Inference

Bayesian inference is the process of analyzing statistical models with the incorporation of prior
knowledge about the model or model parameters. The root of such inference is Bayes' theorem:

For example, suppose we have normal observations

where sigma is known and the prior distribution for theta is

In this formula mu and tau, sometimes known as hyperparameters, are also known. If we observe n
samples of X, we can obtain the posterior distribution for theta as

The following graph shows the prior, likelihood, and posterior for theta.

rng(0,'twister');

n = 20;
sigma = 50;
x = normrnd(10,sigma,n,1);
mu = 30;
tau = 20;
theta = linspace(-40, 100, 500);
y1 = normpdf(mean(x),theta,sigma/sqrt(n));
y2 = normpdf(theta,mu,tau);
postMean = tau^2*mean(x)/(tau^2+sigma^2/n) + sigma^2*mu/n/(tau^2+sigma^2/n);
postSD = sqrt(tau^2*sigma^2/n/(tau^2+sigma^2/n));
y3 = normpdf(theta, postMean,postSD);
plot(theta,y1,'-', theta,y2,'--', theta,y3,'-.')
legend('Likelihood','Prior','Posterior')
xlabel('\theta')
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Car Experiment Data

In some simple problems such as the previous normal mean inference example, it is easy to figure out
the posterior distribution in a closed form. But in general problems that involve non-conjugate priors,
the posterior distributions are difficult or impossible to compute analytically. We will consider logistic
regression as an example. This example involves an experiment to help model the proportion of cars
of various weights that fail a mileage test. The data include observations of weight, number of cars
tested, and number failed. We will work with a transformed version of the weights to reduce the
correlation in our estimates of the regression parameters.

% A set of car weights
weight = [2100 2300 2500 2700 2900 3100 3300 3500 3700 3900 4100 4300]';
weight = (weight-2800)/1000;     % recenter and rescale
% The number of cars tested at each weight
total = [48 42 31 34 31 21 23 23 21 16 17 21]';
% The number of cars that have poor mpg performances at each weight
poor = [1 2 0 3 8 8 14 17 19 15 17 21]';

Logistic Regression Model

Logistic regression, a special case of a generalized linear model, is appropriate for these data since
the response variable is binomial. The logistic regression model can be written as:
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where X is the design matrix and b is the vector containing the model parameters. In MATLAB®, we
can write this equation as:

logitp = @(b,x) exp(b(1)+b(2).*x)./(1+exp(b(1)+b(2).*x));

If you have some prior knowledge or some non-informative priors are available, you could specify the
prior probability distributions for the model parameters. For instance, in this example, we use normal
priors for the intercept b1 and slope b2, i.e.

prior1 = @(b1) normpdf(b1,0,20);    % prior for intercept
prior2 = @(b2) normpdf(b2,0,20);    % prior for slope

By Bayes' theorem, the joint posterior distribution of the model parameters is proportional to the
product of the likelihood and priors.

post = @(b) prod(binopdf(poor,total,logitp(b,weight))) ...  % likelihood
            * prior1(b(1)) * prior2(b(2));                  % priors

Note that the normalizing constant for the posterior in this model is analytically intractable. However,
even without knowing the normalizing constant, you can visualize the posterior distribution, if you
know the approximate range of the model parameters.

b1 = linspace(-2.5, -1, 50);
b2 = linspace(3, 5.5, 50);
simpost = zeros(50,50);
for i = 1:length(b1)
    for j = 1:length(b2)
        simpost(i,j) = post([b1(i), b2(j)]);
    end;
end;
mesh(b2,b1,simpost)
xlabel('Slope')
ylabel('Intercept')
zlabel('Posterior density')
view(-110,30)
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This posterior is elongated along a diagonal in the parameter space, indicating that, after we look at
the data, we believe that the parameters are correlated. This is interesting, since before we collected
any data we assumed they were independent. The correlation comes from combining our prior
distribution with the likelihood function.

Slice Sampling

Monte Carlo methods are often used in Bayesian data analysis to summarize the posterior
distribution. The idea is that, even if you cannot compute the posterior distribution analytically, you
can generate a random sample from the distribution and use these random values to estimate the
posterior distribution or derived statistics such as the posterior mean, median, standard deviation,
etc. Slice sampling is an algorithm designed to sample from a distribution with an arbitrary density
function, known only up to a constant of proportionality -- exactly what is needed for sampling from a
complicated posterior distribution whose normalization constant is unknown. The algorithm does not
generate independent samples, but rather a Markovian sequence whose stationary distribution is the
target distribution. Thus, the slice sampler is a Markov Chain Monte Carlo (MCMC) algorithm.
However, it differs from other well-known MCMC algorithms because only the scaled posterior need
be specified -- no proposal or marginal distributions are needed.

This example shows how to use the slice sampler as part of a Bayesian analysis of the mileage test
logistic regression model, including generating a random sample from the posterior distribution for
the model parameters, analyzing the output of the sampler, and making inferences about the model
parameters. The first step is to generate a random sample.
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initial = [1 1];
nsamples = 1000;
trace = slicesample(initial,nsamples,'pdf',post,'width',[20 2]);

Analysis of Sampler Output

After obtaining a random sample from the slice sampler, it is important to investigate issues such as
convergence and mixing, to determine whether the sample can reasonably be treated as a set of
random realizations from the target posterior distribution. Looking at marginal trace plots is the
simplest way to examine the output.

subplot(2,1,1)
plot(trace(:,1))
ylabel('Intercept');
subplot(2,1,2)
plot(trace(:,2))
ylabel('Slope');
xlabel('Sample Number');

It is apparent from these plots is that the effects of the parameter starting values take a while to
disappear (perhaps fifty or so samples) before the process begins to look stationary.

It is also be helpful in checking for convergence to use a moving window to compute statistics such as
the sample mean, median, or standard deviation for the sample. This produces a smoother plot than
the raw sample traces, and can make it easier to identify and understand any non-stationarity.

movavg = filter( (1/50)*ones(50,1), 1, trace);
subplot(2,1,1)
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plot(movavg(:,1))
xlabel('Number of samples')
ylabel('Means of the intercept');
subplot(2,1,2)
plot(movavg(:,2))
xlabel('Number of samples')
ylabel('Means of the slope');

Because these are moving averages over a window of 50 iterations, the first 50 values are not
comparable to the rest of the plot. However, the remainder of each plot seems to confirm that the
parameter posterior means have converged to stationarity after 100 or so iterations. It is also
apparent that the two parameters are correlated with each other, in agreement with the earlier plot
of the posterior density.

Since the settling-in period represents samples that cannot reasonably be treated as random
realizations from the target distribution, it's probably advisable not to use the first 50 or so values at
the beginning of the slice sampler's output. You could just delete those rows of the output, however,
it's also possible to specify a "burn-in" period. This is convenient when a suitable burn-in length is
already known, perhaps from previous runs.

trace = slicesample(initial,nsamples,'pdf',post, ...
                                     'width',[20 2],'burnin',50);
subplot(2,1,1)
plot(trace(:,1))
ylabel('Intercept');
subplot(2,1,2)
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plot(trace(:,2))
ylabel('Slope');

These trace plots do not seem to show any non-stationarity, indicating that the burn-in period has
done its job.

However, there is a second aspect of the trace plots that should also be explored. While the trace for
the intercept looks like high frequency noise, the trace for the slope appears to have a lower
frequency component, indicating there autocorrelation between values at adjacent iterations. We
could still compute the mean from this autocorrelated sample, but it is often convenient to reduce the
storage requirements by removing redundancy in the sample. If this eliminated the autocorrelation, it
would also allow us to treat this as a sample of independent values. For example, you can thin out the
sample by keeping only every 10th value.

trace = slicesample(initial,nsamples,'pdf',post,'width',[20 2], ...
                                                'burnin',50,'thin',10);

To check the effect of this thinning, it is useful to estimate the sample autocorrelation functions from
the traces and use them to check if the samples mix rapidly.

F    =  fft(detrend(trace,'constant'));
F    =  F .* conj(F);
ACF  =  ifft(F);
ACF  =  ACF(1:21,:);                          % Retain lags up to 20.
ACF  =  real([ACF(1:21,1) ./ ACF(1,1) ...
             ACF(1:21,2) ./ ACF(1,2)]);       % Normalize.
bounds  =  sqrt(1/nsamples) * [2 ; -2];       % 95% CI for iid normal
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labs = {'Sample ACF for intercept','Sample ACF for slope' };
for i = 1:2
    subplot(2,1,i)
    lineHandles  =  stem(0:20, ACF(:,i) , 'filled' , 'r-o');
    lineHandles.MarkerSize = 4;
    grid('on')
    xlabel('Lag')
    ylabel(labs{i})
    hold on
    plot([0.5 0.5 ; 20 20] , [bounds([1 1]) bounds([2 2])] , '-b');
    plot([0 20] , [0 0] , '-k');
    hold off
    a  =  axis;
    axis([a(1:3) 1]);
end

The autocorrelation values at the first lag are significant for the intercept parameter, and even more
so for the slope parameter. We could repeat the sampling using a larger thinning parameter in order
to reduce the correlation further. For the purposes of this example, however, we'll continue to use the
current sample.

Inference for the Model Parameters

As expected, a histogram of the sample mimics the plot of the posterior density.

subplot(1,1,1)
hist3(trace,[25,25]);
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xlabel('Intercept')
ylabel('Slope')
zlabel('Posterior density')
view(-110,30)

You can use a histogram or a kernel smoothing density estimate to summarize the marginal
distribution properties of the posterior samples.

subplot(2,1,1)
hist(trace(:,1))
xlabel('Intercept');
subplot(2,1,2)
ksdensity(trace(:,2))
xlabel('Slope');
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You could also compute descriptive statistics such as the posterior mean or percentiles from the
random samples. To determine if the sample size is large enough to achieve a desired precision, it is
helpful to monitor the desired statistic of the traces as a function of the number of samples.

csum = cumsum(trace);
subplot(2,1,1)
plot(csum(:,1)'./(1:nsamples))
xlabel('Number of samples')
ylabel('Means of the intercept');
subplot(2,1,2)
plot(csum(:,2)'./(1:nsamples))
xlabel('Number of samples')
ylabel('Means of the slope');
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In this case, it appears that the sample size of 1000 is more than sufficient to give good precision for
the posterior mean estimate.

bHat = mean(trace)

bHat =

   -1.6931    4.2569

Summary

The Statistics and Machine Learning Toolbox™ offers a variety of functions that allow you to specify
likelihoods and priors easily. They can be combined to derive a posterior distribution. The
slicesample function enables you to carry out Bayesian analysis in MATLAB using Markov Chain
Monte Carlo simulation. It can be used even in problems with posterior distributions that are difficult
to sample from using standard random number generators.
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Hypothesis Test Terminology
All hypothesis tests share the same basic terminology and structure.

• A null hypothesis is an assertion about a population that you would like to test. It is “null” in the
sense that it often represents a status quo belief, such as the absence of a characteristic or the
lack of an effect. It may be formalized by asserting that a population parameter, or a combination
of population parameters, has a certain value. In the example given in the “Hypothesis Testing” on
page 8-5, the null hypothesis would be that the average price of gas across the state was $1.15.
This is written H0: µ = 1.15.

• An alternative hypothesis is a contrasting assertion about the population that can be tested
against the null hypothesis. In the example given in the “Hypothesis Testing” on page 8-5,
possible alternative hypotheses are:

H1: µ ≠ 1.15 — State average was different from $1.15 (two-tailed test)

H1: µ > 1.15 — State average was greater than $1.15 (right-tail test)

H1: µ < 1.15 — State average was less than $1.15 (left-tail test)
• To conduct a hypothesis test, a random sample from the population is collected and a relevant test

statistic is computed to summarize the sample. This statistic varies with the type of test, but its
distribution under the null hypothesis must be known (or assumed).

• The p value of a test is the probability, under the null hypothesis, of obtaining a value of the test
statistic as extreme or more extreme than the value computed from the sample.

• The significance level of a test is a threshold of probability α agreed to before the test is
conducted. A typical value of α is 0.05. If the p value of a test is less than α, the test rejects the
null hypothesis. If the p value is greater than α, there is insufficient evidence to reject the null
hypothesis. Note that lack of evidence for rejecting the null hypothesis is not evidence for
accepting the null hypothesis. Also note that substantive “significance” of an alternative cannot be
inferred from the statistical significance of a test.

• The significance level α can be interpreted as the probability of rejecting the null hypothesis when
it is actually true—a type I error. The distribution of the test statistic under the null hypothesis
determines the probability α of a type I error. Even if the null hypothesis is not rejected, it may
still be false—a type II error. The distribution of the test statistic under the alternative hypothesis
determines the probability β of a type II error. Type II errors are often due to small sample sizes.
The power of a test, 1 – β, is the probability of correctly rejecting a false null hypothesis.

• Results of hypothesis tests are often communicated with a confidence interval. A confidence
interval is an estimated range of values with a specified probability of containing the true
population value of a parameter. Upper and lower bounds for confidence intervals are computed
from the sample estimate of the parameter and the known (or assumed) sampling distribution of
the estimator. A typical assumption is that estimates will be normally distributed with repeated
sampling (as dictated by the Central Limit Theorem). Wider confidence intervals correspond to
poor estimates (smaller samples); narrow intervals correspond to better estimates (larger
samples). If the null hypothesis asserts the value of a population parameter, the test rejects the
null hypothesis when the hypothesized value lies outside the computed confidence interval for the
parameter.
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See Also

More About
• “Hypothesis Testing” on page 8-5
• “Hypothesis Test Assumptions” on page 8-4
• “Available Hypothesis Tests” on page 8-10
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Hypothesis Test Assumptions
Different hypothesis tests make different assumptions about the distribution of the random variable
being sampled in the data. These assumptions must be considered when choosing a test and when
interpreting the results.

For example, the z-test (ztest) and the t-test (ttest) both assume that the data are independently
sampled from a normal distribution. Statistics and Machine Learning Toolbox functions are available
for testing this assumption, such as chi2gof, jbtest, lillietest, and normplot.

Both the z-test and the t-test are relatively robust with respect to departures from this assumption, so
long as the sample size n is large enough. Both tests compute a sample mean x, which, by the Central
Limit Theorem, has an approximately normal sampling distribution with mean equal to the population
mean μ, regardless of the population distribution being sampled.

The difference between the z-test and the t-test is in the assumption of the standard deviation σ of the
underlying normal distribution. A z-test assumes that σ is known; a t-test does not. As a result, a t-test
must compute an estimate s of the standard deviation from the sample.

Test statistics for the z-test and the t-test are, respectively,

z = x − μ
σ/ n

t = x − μ
s/ n

Under the null hypothesis that the population is distributed with mean μ, the z-statistic has a
standard normal distribution, N(0,1). Under the same null hypothesis, the t-statistic has Student's t
distribution with n – 1 degrees of freedom. For small sample sizes, Student's t distribution is flatter
and wider than N(0,1), compensating for the decreased confidence in the estimate s. As sample size
increases, however, Student's t distribution approaches the standard normal distribution, and the two
tests become essentially equivalent.

Knowing the distribution of the test statistic under the null hypothesis allows for accurate calculation
of p-values. Interpreting p-values in the context of the test assumptions allows for critical analysis of
test results.

Assumptions underlying Statistics and Machine Learning Toolbox hypothesis tests are given in the
reference pages for implementing functions.

See Also

More About
• “Hypothesis Testing” on page 8-5
• “Hypothesis Test Terminology” on page 8-2
• “Available Hypothesis Tests” on page 8-10
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Hypothesis Testing

Hypothesis testing is a common method of drawing inferences about a population based on statistical
evidence from a sample.

As an example, suppose someone says that at a certain time in the state of Massachusetts the
average price of a gallon of regular unleaded gas was $1.15. How could you determine the truth of
the statement? You could try to find prices at every gas station in the state at the time. That approach
would be definitive, but it could be time-consuming, costly, or even impossible.

A simpler approach would be to find prices at a small number of randomly selected gas stations
around the state, and then compute the sample average.

Sample averages differ from one another due to chance variability in the selection process. Suppose
your sample average comes out to be $1.18. Is the $0.03 difference an artifact of random sampling or
significant evidence that the average price of a gallon of gas was in fact greater than $1.15?
Hypothesis testing is a statistical method for making such decisions.

This example shows how to use hypothesis testing to analyze gas prices measured across the state of
Massachusetts during two separate months.

This example uses the gas price data in the file gas.mat. The file contains two random samples of
prices for a gallon of gas around the state of Massachusetts in 1993. The first sample, price1,
contains 20 random observations around the state on a single day in January. The second sample,
price2, contains 20 random observations around the state one month later.

load gas
prices = [price1 price2];

As a first step, you might want to test the assumption that the samples come from normal
distributions. A normal probability plot gives a quick idea.

normplot(prices)
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Both scatters approximately follow straight lines through the first and third quartiles of the samples,
indicating approximate normal distributions. The February sample (the right-hand line) shows a slight
departure from normality in the lower tail. A shift in the mean from January to February is evident. A
hypothesis test is used to quantify the test of normality. Since each sample is relatively small, a
Lilliefors test is recommended.

lillietest(price1)

ans = 0

lillietest(price2)

ans = 0

The default significance level of lillietest is 5%. The logical 0 returned by each test indicates a
failure to reject the null hypothesis that the samples are normally distributed. This failure may reflect
normality in the population or it may reflect a lack of strong evidence against the null hypothesis due
to the small sample size.

Now compute the sample means.

sample_means = mean(prices)

sample_means = 1×2

  115.1500  118.5000
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You might want to test the null hypothesis that the mean price across the state on the day of the
January sample was $1.15. If you know that the standard deviation in prices across the state has
historically, and consistently, been $0.04, then a z-test is appropriate.

[h,pvalue,ci] = ztest(price1/100,1.15,0.04)

h = 0

pvalue = 0.8668

ci = 2×1

    1.1340
    1.1690

The logical output h = 0 indicates a failure to reject the null hypothesis at the default significance
level of 5%. This is a consequence of the high probability under the null hypothesis, indicated by the
p value, of observing a value as extreme or more extreme of the z-statistic computed from the sample.
The 95% confidence interval on the mean [1.1340 1.1690] includes the hypothesized population mean
of $1.15.

Does the later sample offer stronger evidence for rejecting a null hypothesis of a state-wide average
price of $1.15 in February? The shift shown in the probability plot and the difference in the computed
sample means suggest this. The shift might indicate a significant fluctuation in the market, raising
questions about the validity of using the historical standard deviation. If a known standard deviation
cannot be assumed, a t-test is more appropriate.

[h,pvalue,ci] = ttest(price2/100,1.15)

h = 1

pvalue = 4.9517e-04

ci = 2×1

    1.1675
    1.2025

The logical output h = 1 indicates a rejection of the null hypothesis at the default significance level of
5%. In this case, the 95% confidence interval on the mean does not include the hypothesized
population mean of $1.15.

You might want to investigate the shift in prices a little more closely. The function ttest2 tests if two
independent samples come from normal distributions with equal but unknown standard deviations
and the same mean, against the alternative that the means are unequal.

[h,sig,ci] = ttest2(price1,price2)

h = 1

sig = 0.0083

ci = 2×1

   -5.7845
   -0.9155
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The null hypothesis is rejected at the default 5% significance level, and the confidence interval on the
difference of means does not include the hypothesized value of 0. A notched box plot is another way
to visualize the shift.

boxplot(prices,1)
h = gca;
h.XTick = [1 2];
h.XTickLabel = {'January','February'};
xlabel('Month')
ylabel('Prices ($0.01)')

The plot displays the distribution of the samples around their medians. The heights of the notches in
each box are computed so that the side-by-side boxes have nonoverlapping notches when their
medians are different at a default 5% significance level. The computation is based on an assumption
of normality in the data, but the comparison is reasonably robust for other distributions. The side-by-
side plots provide a kind of visual hypothesis test, comparing medians rather than means. The plot
above appears to barely reject the null hypothesis of equal medians.

The nonparametric Wilcoxon rank sum test, implemented by the function ranksum, can be used to
quantify the test of equal medians. It tests if two independent samples come from identical
continuous (not necessarily normal) distributions with equal medians, against the alternative that
they do not have equal medians.

[p,h] = ranksum(price1,price2)

p = 0.0095
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h = logical
   1

The test rejects the null hypothesis of equal medians at the default 5% significance level.

See Also
lillietest | ttest | ttest2 | ztest | boxplot | normplot

More About
• “Hypothesis Test Terminology” on page 8-2
• “Hypothesis Test Assumptions” on page 8-4
• “Available Hypothesis Tests” on page 8-10
• “Distribution Plots” on page 4-7
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Available Hypothesis Tests
Function Description
ansaribradley Ansari-Bradley test. Tests if two independent samples come from the same

distribution, against the alternative that they come from distributions that
have the same median and shape but different variances.

barttest Bartlett’s test. Tests if the variances of the data values along each principal
component are equal, against the alternative that the variances are not all
equal.

chi2gof Chi-square goodness-of-fit test. Tests if a sample comes from a specified
distribution, against the alternative that it does not come from that
distribution.

dwtest Durbin-Watson test. Tests if the residuals from a linear regression are
uncorrelated, against the alternative that there is autocorrelation among
them.

friedman Friedman’s test. Tests if the column effects in a two-way layout are all the
same, against the alternative that the column effects are not all the same.

jbtest Jarque-Bera test. Tests if a sample comes from a normal distribution with
unknown mean and variance, against the alternative that it does not come
from a normal distribution.

kruskalwallis Kruskal-Wallis test. Tests if multiple samples are all drawn from the same
populations (or equivalently, from different populations with the same
distribution), against the alternative that they are not all drawn from the
same population.

kstest One-sample Kolmogorov-Smirnov test. Tests if a sample comes from a
continuous distribution with specified parameters, against the alternative
that it does not come from that distribution.

kstest2 Two-sample Kolmogorov-Smirnov test. Tests if two samples come from the
same continuous distribution, against the alternative that they do not come
from the same distribution.

lillietest Lilliefors test. Tests if a sample comes from a distribution in the normal
family, against the alternative that it does not come from a normal
distribution.

linhyptest Linear hypothesis test. Tests if H*b = c for parameter estimates b with
estimated covariance H and specified c, against the alternative that H*b ≠
c.

ranksum Wilcoxon rank sum test. Tests if two independent samples come from
identical continuous distributions with equal medians, against the
alternative that they do not have equal medians.

runstest Runs test. Tests if a sequence of values comes in random order, against the
alternative that the ordering is not random.

signrank One-sample or paired-sample Wilcoxon signed rank test. Tests if a sample
comes from a continuous distribution symmetric about a specified median,
against the alternative that it does not have that median.
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Function Description
signtest One-sample or paired-sample sign test. Tests if a sample comes from an

arbitrary continuous distribution with a specified median, against the
alternative that it does not have that median.

ttest One-sample or paired-sample t-test. Tests if a sample comes from a normal
distribution with unknown variance and a specified mean, against the
alternative that it does not have that mean.

ttest2 Two-sample t-test. Tests if two independent samples come from normal
distributions with unknown but equal (or, optionally, unequal) variances
and the same mean, against the alternative that the means are unequal.

vartest One-sample chi-square variance test. Tests if a sample comes from a
normal distribution with specified variance, against the alternative that it
comes from a normal distribution with a different variance.

vartest2 Two-sample F-test for equal variances. Tests if two independent samples
come from normal distributions with the same variance, against the
alternative that they come from normal distributions with different
variances.

vartestn Bartlett multiple-sample test for equal variances. Tests if multiple samples
come from normal distributions with the same variance, against the
alternative that they come from normal distributions with different
variances.

ztest One-sample z-test. Tests if a sample comes from a normal distribution with
known variance and specified mean, against the alternative that it does not
have that mean.

Note In addition to the previous functions, Statistics and Machine Learning Toolbox functions are
available for analysis of variance (ANOVA), which perform hypothesis tests in the context of linear
modeling.

See Also

More About
• “Hypothesis Testing” on page 8-5
• “Hypothesis Test Terminology” on page 8-2
• “Hypothesis Test Assumptions” on page 8-4
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Selecting a Sample Size

This example shows how to determine the number of samples or observations needed to carry out a
statistical test. It illustrates sample size calculations for a simple problem, then shows how to use the
sampsizepwr function to compute power and sample size for two more realistic problems. Finally, it
illustrates the use of Statistics and Machine Learning Toolbox™ functions to compute the required
sample size for a test that the sampsizepwr function does not support.

Testing a Normal Mean with Known Standard Deviation, One-Sided

Just to introduce some concepts, let's consider an unrealistically simple example where we want to
test a mean and we know the standard deviation. Our data are continuous, and can be modeled with
the normal distribution. We need to determine a sample size N so that we can distinguish between a
mean of 100 and a mean of 110. We know the standard deviation is 20.

When we carry out a statistical test, we generally test a null hypothesis against an alternative
hypothesis. We find a test statistic T, and look at its distribution under the null hypothesis. If we
observe an unusual value, say one that has less than 5% chance of happening if the null hypothesis is
true, then we reject the null hypothesis in favor of the alternative. (The 5% probability is known as
the significance level of the test.) If the value is not unusual, we do not reject the null hypothesis.

In this case the test statistic T is the sample mean. Under the null hypothesis it has a mean of 100
and a standard deviation of 20/sqrt(N). First let's look at a fixed sample size, say N=16. We will reject
the null hypothesis if T is in the shaded region, which is the upper tail of its distribution. That makes
this a one-sided test, since we will not reject if T is in the lower tail. The cutoff for this shaded region
is 1.6 standard deviations above the mean.

rng(0,'twister');
mu0 = 100;
sig = 20;
N = 16;
alpha = 0.05;
conf = 1-alpha;
cutoff = norminv(conf, mu0, sig/sqrt(N));
x = [linspace(90,cutoff), linspace(cutoff,127)];
y = normpdf(x,mu0,sig/sqrt(N));
h1 = plot(x,y);
xhi = [cutoff, x(x>=cutoff)];
yhi = [0, y(x>=cutoff)];
patch(xhi,yhi,'b');
title('Distribution of sample mean, N=16');
xlabel('Sample mean');
ylabel('Density');
text(96,.01,sprintf('Reject if mean>%.4g\nProb = 0.05',cutoff),'Color','b');
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This is how T behaves under the null hypothesis, but what about under an alternative? Our
alternative distribution has a mean of 110, as represented by the red curve.

mu1 = 110;
y2 = normpdf(x,mu1,sig/sqrt(N));
h2 = line(x,y2,'Color','r');
yhi = [0, y2(x>=cutoff)];
patch(xhi,yhi,'r','FaceAlpha',0.25);
P = 1 - normcdf(cutoff,mu1,sig/sqrt(N));
text(115,.06,sprintf('Reject if T>%.4g\nProb = %.2g',cutoff,P),'Color',[1 0 0]);
legend([h1 h2],'Null hypothesis','Alternative hypothesis');
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There is a larger chance of rejecting the null hypothesis if the alternative is true. This is just what we
want. It's easier to visualize if we look at the cumulative distribution function (cdf) instead of the
density (pdf). We can read probabilities directly from this graph, instead of having to compute areas.

ynull = normcdf(x,mu0,sig/sqrt(N));
yalt = normcdf(x,mu1,sig/sqrt(N));
h12 = plot(x,ynull,'b-',x,yalt,'r-');
zval = norminv(conf);
cutoff = mu0 + zval * sig / sqrt(N);
line([90,cutoff,cutoff],[conf, conf, 0],'LineStyle',':');
msg = sprintf(' Cutoff = 100 + %.2g \\times 20 / \\surd{n}',zval);
text(cutoff,.15,msg,'Color','b');
text(min(x),conf,sprintf('   %g%% test',100*alpha),'Color','b',...
                         'verticalalignment','top')
palt = normcdf(cutoff,mu1,sig/sqrt(N));
line([90,cutoff],[palt,palt],'Color','r','LineStyle',':');
text(91,palt+.02,sprintf(' Power is 1-%.2g = %.2g',palt,1-palt),'Color',[1 0 0]);
legend(h12,'Null hypothesis','Alternative hypothesis');
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This graph shows the probability of getting a significant statistic (rejecting the null hypothesis) for
two different mu values when N=16.

The power function is defined as the probability of rejecting the null hypothesis when the
alternative is true. It depends on the value of the alternative and on the sample size. We'll graph the
power (which is one minus the cdf) as a function of N, fixing the alternative at 110. We'll select N to
achieve a power of 80%. The graph shows that we need about N=25.

DesiredPower = 0.80;
Nvec = 1:30;
cutoff = mu0 + norminv(conf)*sig./sqrt(Nvec);
power = 1 - normcdf(cutoff, mu1, sig./sqrt(Nvec));
plot(Nvec,power,'bo-',[0 30],[DesiredPower DesiredPower],'k:');
xlabel('N = sample size')
ylabel('Power')
title('Power function for the alternative: \mu = 110')
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In this overly simple example there is a formula to compute the required value directly to get a power
of 80%:

mudiff = (mu1 - mu0) / sig;
N80 = ceil(((norminv(1-DesiredPower)-norminv(conf)) / mudiff)^2)

N80 =

    25

To verify that this works, let's do a Monte Carlo simulation and generate 400 samples of size 25 both
under the null hypothesis with mean 100, and under the alternative hypothesis with mean 110. If we
test each sample to see if its mean is 100, we should expect about 5% of the first group and 80% of
the second group to be significant.

nsamples = 400;
samplenum = 1:nsamples;
N = 25;
h0 = zeros(1,nsamples);
h1 = h0;
for j = 1:nsamples
    Z0 = normrnd(mu0,sig,N,1);
    h0(j) = ztest(Z0,mu0,sig,alpha,'right');
    Z1 = normrnd(mu1,sig,N,1);
    h1(j) = ztest(Z1,mu0,sig,alpha,'right');
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end
p0 = cumsum(h0) ./ samplenum;
p1 = cumsum(h1) ./ samplenum;
plot(samplenum,p0,'b-',samplenum,p1,'r-')
xlabel('Sample number')
ylabel('Proportion significant')
title('Verification of power computation')
legend('Null hypothesis','Alternative hypothesis','Location','East')

Testing a Normal Mean with Unknown Standard Deviation, Two-Sided

Now let's suppose we don't know the standard deviation, and we want to perform a two-sided test,
that is, one that rejects the null hypothesis whether the sample mean is too high or too low.

The test statistic is a t statistic, which is the difference between the sample mean and the mean being
tested, divided by the standard error of the mean. Under the null hypothesis, this has Student's t
distribution with N-1 degrees of freedom. Under the alternative hypothesis, the distribution is a
noncentral t distribution with a noncentrality parameter equal to the normalized difference between
the true mean and the mean being tested.

For this two-sided test we have to allocate the 5% chance of an error under the null hypothesis
equally to both tails, and reject if the test statistic is too extreme in either direction. We also have to
consider both tails under any alternative.

N = 16;
df = N-1;
alpha = 0.05;
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conf = 1-alpha;
cutoff1 = tinv(alpha/2,df);
cutoff2 = tinv(1-alpha/2,df);
x = [linspace(-5,cutoff1), linspace(cutoff1,cutoff2),linspace(cutoff2,5)];
y = tpdf(x,df);
h1 = plot(x,y);
xlo = [x(x<=cutoff1),cutoff1];
ylo = [y(x<=cutoff1),0];
xhi = [cutoff2,x(x>=cutoff2)];
yhi = [0, y(x>=cutoff2)];
patch(xlo,ylo,'b');
patch(xhi,yhi,'b');
title('Distribution of t statistic, N=16');
xlabel('t');
ylabel('Density');
text(2.5,.05,sprintf('Reject if t>%.4g\nProb = 0.025',cutoff2),'Color','b');
text(-4.5,.05,sprintf('Reject if t<%.4g\nProb = 0.025',cutoff1),'Color','b');

Instead of examining the power function just under the null hypothesis and a single alternative value
of mu, we can look at it as a function of mu. The power increases as mu moves away from the null
hypothesis value in either direction. We can use the sampsizepwr function to compute the power.
For a power calculation we need to specify a value for the standard deviation, which we suspect will
be roughly 20. Here's a picture of the power function for a sample size N=16.

N = 16;
x = linspace(90,127);
power = sampsizepwr('t',[100 20],x,[],N);
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plot(x,power);
xlabel('True mean')
ylabel('Power')
title('Power function for N=16')

We want a power of 80% when the mean is 110. According to this graph, our power is less than 50%
with a sample size of N=16. What sample size will give the power we want?

N = sampsizepwr('t',[100 20],110,0.8)

N =

    34

We need a sample size of about 34. Compared with the previous example, we need to take nine
additional observations to allow a two-sided test and to make up for not knowing the true standard
deviation.

We can make a plot of the power function for various values of N.

Nvec = 2:40;
power = sampsizepwr('t',[100 20],110,[],Nvec);
plot(Nvec,power,'bo-',[0 40],[DesiredPower DesiredPower],'k:');
xlabel('N = sample size')
ylabel('Power')
title('Power function for the alternative: \mu = 110')
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And we can do a simulation similar to the earlier one to verify that we get the power we need.

nsamples = 400;
samplenum = 1:nsamples;
N = 34;
h0 = zeros(1,nsamples);
h1 = h0;
for j = 1:nsamples
    Z0 = normrnd(mu0,sig,N,1);
    h0(j) = ttest(Z0,mu0,alpha);
    Z1 = normrnd(mu1,sig,N,1);
    h1(j) = ttest(Z1,mu0,alpha);
end
p0 = cumsum(h0) ./ samplenum;
p1 = cumsum(h1) ./ samplenum;
plot(samplenum,p0,'b-',samplenum,p1,'r-')
xlabel('Sample number')
ylabel('Proportion significant')
title('Verification of power computation')
legend('Null hypothesis','Alternative hypothesis','Location','East')
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Suppose we could afford to take a sample size of 50. Presumably our power for detecting the
alternative value mu=110 would be larger than 80%. If we maintain the power at 80%, what
alternative could we detect?

mu1 = sampsizepwr('t',[100 20],[],.8,50)

mu1 =

  108.0837

Testing a Proportion

Now let's turn to the problem of determining the sample size needed to distinguish between two
proportions. Suppose that we are sampling a population in which about 30% favor some candidate,
and we want to sample enough people so we can distinguish this value from 33%.

The idea here is the same as before. Here we can use the sample count as our test statistic. This
count has a binomial distribution. For any sample size N we can compute the cutoff for rejecting the
null hypothesis P=0.30. For N=100, for instance, we would reject the null hypothesis if the sample
count is larger than a cutoff value computed as follows:

N = 100;
alpha = 0.05;
p0 = 0.30;
p1 = 0.33;
cutoff = binoinv(1-alpha, N, p0)
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cutoff =

    38

A complication with the binomial distribution comes because it is discrete. The probability of
exceeding the cutoff value is not exactly 5%:

1 - binocdf(cutoff, N, p0)

ans =

    0.0340

Once again, let's compute the power against the alternative P=0.33 for a range of sample sizes. We'll
use a one-sided (right-tailed) test because we're interested only in alternative values greater than
30%.

Nvec = 50:50:2000;
power = sampsizepwr('p',p0,p1,[],Nvec,'tail','right');
plot(Nvec,power,'bo-',[0 2000],[DesiredPower DesiredPower],'k:');
xlabel('N = sample size')
ylabel('Power')
title('Power function for the alternative: p = 0.33')
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We can use the sampsizepwr function to request the sample size required for a power of 80%.

approxN = sampsizepwr('p',p0,p1,0.80,[],'tail','right')

Warning: Values N>200 are approximate.  Plotting the power as a function
of N may reveal lower N values that have the required power. 

approxN =

        1500

A warning message informs us that the answer is just approximate. If we look at the power function
for different sample sizes, we can see that the function is generally increasing, but irregular because
the binomial distribution is discrete. Let's look at the probability of rejecting the null hypothesis for
both p=0.30 and p=0.33 in the range of samples sizes from 1470 to 1480.

subplot(3,1,1);
Nvec = 1470:1480;
power = sampsizepwr('p',p0,p1,[],Nvec,'tail','right');
plot(Nvec,power,'ro-',[min(Nvec),max(Nvec)],[DesiredPower DesiredPower],'k:');
ylabel(sprintf('Prob[T>cutoff]\nif p=0.33'))
h_gca = gca;
h_gca.XTickLabel = '';
ylim([.78, .82]);

subplot(3,1,2);
alf = sampsizepwr('p',p0,p0,[],Nvec,'tail','right');
plot(Nvec,alf,'bo-',[min(Nvec),max(Nvec)],[alpha alpha],'k:');
ylabel(sprintf('Prob[T>cutoff]\nif p=0.30'))
h_gca = gca;
h_gca.XTickLabel = '';
ylim([.04, .06]);

subplot(3,1,3);
cutoff = binoinv(1-alpha, Nvec, p0);
plot(Nvec,cutoff,'go-');
xlabel('N = sample size')
ylabel('Cutoff')

 Selecting a Sample Size

8-23



This plot reveals that the power function curve (top plot) is not only irregular, but also decreases at
some sample sizes. These are the sample sizes for which it is necessary to increase the cutoff value
(bottom plot) in order to keep the significance level (middle plot) no larger than 5%. We can find a
smaller sample size within this range that gives the desired power of 80%:

min(Nvec(power>=0.80))

ans =

        1478

Testing a Correlation

In the examples we've considered so far, we were able to figure out the cutoff for a test statistic to
achieve a certain significance level, and to calculate the probability of exceeding that cutoff under an
alternative hypothesis. For our final example, let's consider a problem where that is not so easy.

Imagine we can take samples from two variables X and Y, and we want to know what sample size we
would need to test whether they are uncorrelated versus the alternative that their correlation is as
high as 0.4. Although it is possible to work out the distribution of the sample correlation by
transforming it to a t distribution, let's use a method that we can use even in problems where we
can't work out the distribution of the test statistic.
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For a given sample size, we can use Monte Carlo simulation to determine an approximate cutoff value
for a test of the correlation. Let's do a large simulation run so we can get this value accurately. We'll
start with a sample size of 25.

nsamples = 10000;
N = 25;
alpha = 0.05;
conf = 1-alpha;
r = zeros(1,nsamples);
for j = 1:nsamples
    xy = normrnd(0,1,N,2);
    r(j) = corr(xy(:,1),xy(:,2));
end
cutoff = quantile(r,conf)

cutoff =

    0.3372

Then we can generate samples under the alternative hypothesis, and estimate the power of the test.

nsamples = 1000;
mu = [0; 0];
sig = [1 0.4; 0.4 1];
r = zeros(1,nsamples);
for j = 1:nsamples
    xy = mvnrnd(mu,sig,N);
    r(j) = corr(xy(:,1),xy(:,2));
end
[power,powerci] = binofit(sum(r>cutoff),nsamples)

power =

    0.6470

powerci =

    0.6165    0.6767

We estimate the power to be 65%, and we have 95% confidence that the true value is between 62%
and 68%. To get a power of 80%, we need a larger sample size. We might try increasing N to 50,
estimating the cutoff value for this sample size, and repeating the power simulation.

nsamples = 10000;
N = 50;
alpha = 0.05;
conf = 1-alpha;
r = zeros(1,nsamples);
for j = 1:nsamples
    xy = normrnd(0,1,N,2);
    r(j) = corr(xy(:,1),xy(:,2));
end
cutoff = quantile(r,conf)
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nsamples = 1000;
mu = [0; 0];
sig = [1 0.4; 0.4 1];
r = zeros(1,nsamples);
for j = 1:nsamples
    xy = mvnrnd(mu,sig,N);
    r(j) = corr(xy(:,1),xy(:,2));
end
[power,powerci] = binofit(sum(r>cutoff),nsamples)

cutoff =

    0.2315

power =

    0.8990

powerci =

    0.8786    0.9170

This sample size gives a power better than our target of 80%. We could continue experimenting this
way, trying to find a sample size less than 50 that would meet our requirements.

Conclusion

The probability functions in the Statistics and Machine Learning Toolbox can be used to determine
the sample size required to achieve a desired level of power in a hypothesis test. In some problems
the sample size can be compute directly; in others it is necessary to search over a range of sample
sizes until the right value is found. Random number generators can help verify that the desired power
is met, and can also be used to study the power of a specific test under alternative conditions.
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Analysis of Variance
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One-Way ANOVA

In this section...
“Introduction to One-Way ANOVA” on page 9-2
“Prepare Data for One-Way ANOVA” on page 9-3
“Perform One-Way ANOVA” on page 9-4
“Mathematical Details” on page 9-8

Introduction to One-Way ANOVA
You can use the function anova1 to perform one-way analysis of variance (ANOVA). The purpose of
one-way ANOVA is to determine whether data from several groups (levels) of a factor have a common
mean. That is, one-way ANOVA enables you to find out whether different groups of an independent
variable have different effects on the response variable y. Suppose, a hospital wants to determine if
the two new proposed scheduling methods reduce patient wait times more than the old way of
scheduling appointments. In this case, the independent variable is the scheduling method, and the
response variable is the waiting time of the patients.

One-way ANOVA is a simple special case of the linear model on page 11-6. The one-way ANOVA
form of the model is

yi j = α j + εi j

with the following assumptions:

• yij is an observation, in which i represents the observation number, and j represents a different
group (level) of the variable y. All yij are independent.

• αj represents the population mean for the jth group (level or treatment).
• εij is the random error, independent and normally distributed, with zero mean and constant

variance, i.e., εij ~ N(0,σ2).

This model is also called the means model. The model assumes that the columns of y are the constant
αj plus the error component εij. ANOVA helps determine if the constants are all the same.

ANOVA tests the hypothesis that all group means are equal (H0:α1 = α2 = ... = αk) against the
alternative hypothesis that at least one group is different from the others (H1:αi ≠ α j for at least one i
and j). anova1(y) tests the equality of column means for the data in matrix y, where each column is
a different group and has the same number of observations (i.e., a balanced design).
anova1(y,group) tests the equality of group means, specified in group, for the data in vector or
matrix y. In this case, each group or column can have a different number of observations (i.e., an
unbalanced design).

ANOVA is based on the assumption that all sample populations are normally distributed. It is known
to be robust to modest violations of this assumption. You can check the normality assumption visually
by using a normality plot (normplot). Alternatively, you can use one of the Statistics and Machine
Learning Toolbox functions that checks for normality: the Anderson-Darling test (adtest), the chi-
squared goodness of fit test (chi2gof), the Jarque-Bera test (jbtest), or the Lilliefors test
(lillietest).
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Prepare Data for One-Way ANOVA
You can provide sample data as a vector or a matrix.

• If the sample data is in a vector, y, then you must provide grouping information using the group
input variable: anova1(y,group).

group must be a numeric vector, logical vector, categorical vector, character array, string array, or
cell array of character vectors, with one name for each element of y. The anova1 function treats
the y values corresponding to the same value of group as part of the same group. For example,

Use this design when groups have different numbers of elements (unbalanced ANOVA).
• If the sample data is in a matrix, y, providing the group information is optional.

• If you do not specify the input variable group, then anova1 treats each column of y as a
separate group, and evaluates whether the population means of the columns are equal. For
example,

Use this form of design when each group has the same number of elements (balanced ANOVA).
• If you specify the input variable group, then each element in group represents a group name

for the corresponding column in y. The anova1 function treats the columns with the same
group name as part of the same group. For example,
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anova1 ignores any NaN values in y. Also, if group contains empty or NaN values, anova1 ignores
the corresponding observations in y. The anova1 function performs balanced ANOVA if each group
has the same number of observations after the function disregards empty or NaN values. Otherwise,
anova1 performs unbalanced ANOVA.

Perform One-Way ANOVA

This example shows how to perform one-way ANOVA to determine whether data from several groups
have a common mean.

Load and display the sample data.

load hogg
hogg

hogg = 6×5

    24    14    11     7    19
    15     7     9     7    24
    21    12     7     4    19
    27    17    13     7    15
    33    14    12    12    10
    23    16    18    18    20

The data comes from a Hogg and Ledolter (1987) study on bacteria counts in shipments of milk. The
columns of the matrix hogg represent different shipments. The rows are bacteria counts from cartons
of milk chosen randomly from each shipment.

Test if some shipments have higher counts than others. By default, anova1 returns two figures. One
is the standard ANOVA table, and the other one is the box plots of data by group.

[p,tbl,stats] = anova1(hogg);
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p

p = 1.1971e-04

The small p-value of about 0.0001 indicates that the bacteria counts from the different shipments are
not the same.

You can get some graphical assurance that the means are different by looking at the box plots. The
notches, however, compare the medians, not the means. For more information on this display, see
boxplot.

View the standard ANOVA table. anova1 saves the standard ANOVA table as a cell array in the
output argument tbl.

tbl

tbl=4×6 cell array
  Columns 1 through 5
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    {'Source' }    {'SS'        }    {'df'}    {'MS'      }    {'F'       }
    {'Columns'}    {[  803.0000]}    {[ 4]}    {[200.7500]}    {[  9.0076]}
    {'Error'  }    {[  557.1667]}    {[25]}    {[ 22.2867]}    {0x0 double}
    {'Total'  }    {[1.3602e+03]}    {[29]}    {0x0 double}    {0x0 double}

  Column 6

    {'Prob>F'    }
    {[1.1971e-04]}
    {0x0 double  }
    {0x0 double  }

Save the F-statistic value in the variable Fstat.

Fstat = tbl{2,5}

Fstat = 9.0076

View the statistics necessary to make a multiple pairwise comparison of group means. anova1 saves
these statistics in the structure stats.

stats

stats = struct with fields:
    gnames: [5x1 char]
         n: [6 6 6 6 6]
    source: 'anova1'
     means: [23.8333 13.3333 11.6667 9.1667 17.8333]
        df: 25
         s: 4.7209

ANOVA rejects the null hypothesis that all group means are equal, so you can use the multiple
comparisons to determine which group means are different from others. To conduct multiple
comparison tests, use the function multcompare, which accepts stats as an input argument. In this
example, anova1 rejects the null hypothesis that the mean bacteria counts from all four shipments
are equal to each other, i.e., H0:μ1 = μ2 = μ3 = μ4.

Perform a multiple comparison test to determine which shipments are different than the others in
terms of mean bacteria counts.

results = multcompare(stats);
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The figure also illustrates the same result. The blue bar shows the comparison interval for the first
group mean, which does not overlap with the comparison intervals for the second, third, and fourth
group means, shown in red. The comparison interval for the mean of fifth group, shown in gray,
overlaps with the comparison interval for the first group mean. Hence, the group means for the first
and fifth groups are not significantly different from each other.

Display the multiple comparison results in a table.

tbl = array2table(results,"VariableNames", ...
    ["Group A","Group B","Lower Limit","A-B","Upper Limit","P-value"])

tbl=10×6 table
    Group A    Group B    Lower Limit      A-B      Upper Limit     P-value 
    _______    _______    ___________    _______    ___________    _________

       1          2          2.4953         10.5       18.505      0.0059332
       1          3          4.1619       12.167       20.171      0.0012925
       1          4          6.6619       14.667       22.671      0.0001262
       1          5         -2.0047            6       14.005        0.21195
       2          3         -6.3381       1.6667       9.6714        0.97193
       2          4         -3.8381       4.1667       12.171        0.55436
       2          5         -12.505         -4.5       3.5047        0.48062
       3          4         -5.5047          2.5       10.505        0.88757
       3          5         -14.171      -6.1667       1.8381        0.19049
       4          5         -16.671      -8.6667     -0.66193       0.029175
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The first two columns show which group means are compared with each other. For example, the first
row compares the means for groups 1 and 2. The last column shows the p-values for the tests. The p-
values 0.0059, 0.0013, and 0.0001 indicate that the mean bacteria counts in the milk from the first
shipment is different from the ones from the second, third, and fourth shipments. The p-value of
0.0292 indicates that the mean bacteria counts in the milk from the fourth shipment is different from
the ones from the fifth. The procedure fails to reject the hypotheses that the other group means are
different from each other.

Mathematical Details
ANOVA tests for the difference in the group means by partitioning the total variation in the data into
two components:

• Variation of group means from the overall mean, i.e., y . j− y.. (variation between groups), where
y . j is the sample mean of group j, and y.. is the overall sample mean.

• Variation of observations in each group from their group mean estimates, yi j− y . j (variation
within group).

In other words, ANOVA partitions the total sum of squares (SST) into sum of squares due to between-
groups effect (SSR) and sum of squared errors(SSE).

∑
i
∑
j

yi j− y..
2

⚬
SST

= ∑
j

n j y . j− y..
2

⚬
SSR

+ ∑
i
∑
j

yi j− y . j
2

⚬
SSE

,

where nj is the sample size for the jth group, j = 1, 2, ..., k.

Then ANOVA compares the variation between groups to the variation within groups. If the ratio of
between-group variation to within-group variation is significantly high, then you can conclude that
the group means are significantly different from each other. You can measure this using a test
statistic that has an F-distribution with (k – 1, N – k) degrees of freedom:

F =
SSR k− 1
SSE N − k

= MSR
MSE Fk− 1, N − k,

where MSR is the mean squared treatment, MSE is the mean squared error, k is the number of
groups, and N is the total number of observations. If the p-value for the F-statistic is smaller than the
significance level, then the test rejects the null hypothesis that all group means are equal and
concludes that at least one of the group means is different from the others. The most common
significance levels are 0.05 and 0.01.

ANOVA Table

The ANOVA table captures the variability in the model by source, the F-statistic for testing the
significance of this variability, and the p-value for deciding on the significance of this variability. The
p-value returned by anova1 depends on assumptions about the random disturbances εij in the model
equation. For the p-value to be correct, these disturbances need to be independent, normally
distributed, and have constant variance. The standard ANOVA table has this form:
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anova1 returns the standard ANOVA table as a cell array with six columns.

Column Definition
Source Source of the variability.
SS Sum of squares due to each source.
df Degrees of freedom associated with each source.

Suppose N is the total number of observations
and k is the number of groups. Then, N – k is the
within-groups degrees of freedom (Error), k – 1
is the between-groups degrees of freedom
(Columns), and N – 1 is the total degrees of
freedom: N – 1 = (N – k) + (k – 1).

MS Mean squares for each source, which is the ratio
SS/df.

F F-statistic, which is the ratio of the mean squares.
Prob>F p-value, which is the probability that the F-

statistic can take a value larger than the
computed test-statistic value. anova1 derives
this probability from the cdf of the F-distribution.

The rows of the ANOVA table show the variability in the data, divided by the source.

Row (Source) Definition
Groups or Columns Variability due to the differences among the

group means (variability between groups)
Error Variability due to the differences between the

data in each group and the group mean
(variability within groups)

Total Total variability

References
[1] Wu, C. F. J., and M. Hamada. Experiments: Planning, Analysis, and Parameter Design

Optimization, 2000.

[2] Neter, J., M. H. Kutner, C. J. Nachtsheim, and W. Wasserman. 4th ed. Applied Linear Statistical
Models. Irwin Press, 1996.

See Also
anova1 | multcompare | kruskalwallis
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More About
• “Two-Way ANOVA” on page 9-11
• “N-Way ANOVA” on page 9-26
• “Multiple Comparisons” on page 9-18
• “Nonparametric Methods” on page 9-47
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Two-Way ANOVA
In this section...
“Introduction to Two-Way ANOVA” on page 9-11
“Prepare Data for Balanced Two-Way ANOVA” on page 9-12
“Perform Two-Way ANOVA” on page 9-13
“Mathematical Details” on page 9-15

Introduction to Two-Way ANOVA
You can use the function anova2 to perform a balanced two-way analysis of variance (ANOVA). To
perform two-way ANOVA for an unbalanced design, use anovan. For an example, see “Two-Way
ANOVA for Unbalanced Design” on page 35-108.

As in one-way ANOVA, the data for a two-way ANOVA study can be experimental or observational.
The difference between one-way and two-way ANOVA is that in two-way ANOVA, the effects of two
factors on a response variable are of interest. These two factors can be independent, and have no
interaction effect, or the impact of one factor on the response variable can depend on the group
(level) of the other factor. If the two factors have no interactions, the model is called an additive
model.

Suppose an automobile company has two factories, and each factory makes the same three car
models. The gas mileage in the cars can vary from factory to factory and from model to model. These
two factors, factory and model, explain the differences in mileage, that is, the response. One measure
of interest is the difference in mileage due to the production methods between factories. Another
measure of interest is the difference in the mileage of the models (irrespective of the factory) due to
different design specifications. The effects of these measures of interest are additive. In addition,
suppose only one model has different gas mileage between factories, while the mileage of the other
two models is the same between factories. This is called an interaction effect. To measure an
interaction effect, there must be multiple observations for some combination of factory and car
model. These multiple observations are called replications.

Two-way ANOVA is a special case of the linear model on page 11-6. The two-way ANOVA form of
the model is

yi jr = μ + αi + β j + αβ i j + εi jr

where,

• yijr is an observation of the response variable.

• i represents group i of row factor A, i = 1, 2, ..., I.
• j represents group j of column factor B, j = 1, 2, ..., J.
• r represents the replication number, r = 1, 2, ..., R.

There are a total of N = I*J*R observations.
• μ is the overall mean.
• αi are the deviations of groups defined by row factor A from the overall mean μ. The values of αi

sum to 0.
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∑i = 1
I αi = 0.

• βj are the deviations of groups defined by column factor B from the overall mean μ. The values of
βj sum to 0.

∑ j = 1
J β j = 0.

• αβij are the interactions. The values in each row and in each column of αβij sum to 0.

∑i = 1
I αβ i j = ∑ j = 1

J αβ i j = 0.

• εijr are the random disturbances. They are assumed to be independent, normally distributed, and
have constant variance.

In the mileage example:

• yijr are the gas mileage observations, μ is the overall mean gas mileage.
• αi are the deviations of each car's gas mileage from the mean gas mileage μ due to the car's

model.
• βj are the deviations of each car's gas mileage from the mean gas mileage μ due to the car's

factory.

anova2 requires that data be balanced, so each combination of model and factory must have the
same number of cars.

Two-way ANOVA tests hypotheses about the effects of factors A and B, and their interaction on the
response variable y. The hypotheses about the equality of the mean response for groups of row factor
A are

H0:α1 = α2⋯ = αI
H1:  at least one αi is different,  i = 1,  2,  ...,  I .

The hypotheses about the equality of the mean response for groups of column factor B are

H0: β1 = β2 = ⋯ = βJ
H1:  at least one β j is different,   j = 1,  2,  ...,   J .

The hypotheses about the interaction of the column and row factors are

H0: αβ i j = 0
H1:at least one  αβ i j ≠ 0

Prepare Data for Balanced Two-Way ANOVA
To perform balanced two-way ANOVA using anova2, you must arrange data in a specific matrix form.
The columns of the matrix must correspond to groups of the column factor, B. The rows must
correspond to the groups of the row factor, A, with the same number of replications for each
combination of the groups of factors A and B.

Suppose that row factor A has three groups, and column factor B has two groups (levels). Also
suppose that each combination of factors A and B has two measurements or observations (reps =
2). Then, each group of factor A has six observations and each group of factor B four observations.
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B = 1 B = 2
y111 y121
y112 y122
y211 y221
y212 y222
y311 y321
y312 y322

A = 1
A = 2
A = 3

The subscripts indicate row, column, and replication, respectively. For example, y221 corresponds to
the measurement for the second group of factor A, the second group of factor B, and the first
replication for this combination.

Perform Two-Way ANOVA

This example shows how to perform two-way ANOVA to determine the effect of car model and factory
on the mileage rating of cars.

Load and display the sample data.

load mileage
mileage

mileage = 6×3

   33.3000   34.5000   37.4000
   33.4000   34.8000   36.8000
   32.9000   33.8000   37.6000
   32.6000   33.4000   36.6000
   32.5000   33.7000   37.0000
   33.0000   33.9000   36.7000

There are three car models (columns) and two factories (rows). The data has six mileage rows
because each factory provided three cars of each model for the study (i.e., the replication number is
three). The data from the first factory is in the first three rows, and the data from the second factory
is in the last three rows.

Perform two-way ANOVA. Return the structure of statistics, stats, to use in multiple comparisons.

nmbcars = 3; % Number of cars from each model, i.e., number of replications
[~,~,stats] = anova2(mileage,nmbcars);
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You can use the F-statistics to do hypotheses tests to find out if the mileage is the same across
models, factories, and model - factory pairs. Before performing these tests, you must adjust for the
additive effects. anova2 returns the p-value from these tests.

The p-value for the model effect (Columns) is zero to four decimal places. This result is a strong
indication that the mileage varies from one model to another.

The p-value for the factory effect (Rows) is 0.0039, which is also highly significant. This value
indicates that one factory is out-performing the other in the gas mileage of the cars it produces. The
observed p-value indicates that an F-statistic as extreme as the observed F occurs by chance about
four out of 1000 times, if the gas mileage were truly equal from factory to factory.

The factories and models appear to have no interaction. The p-value, 0.8411, means that the observed
result is likely (84 out of 100 times), given that there is no interaction.

Perform “Multiple Comparisons” on page 9-18 to find out which pair of the three car models is
significantly different.

c = multcompare(stats);

Note: Your model includes an interaction term.  A test of main effects can be 
difficult to interpret when the model includes interactions.

In the figure, the blue bar is the comparison interval for the mean mileage of the first car model. The
red bars are the comparison intervals for the mean mileage of the second and third car models. None
of the second and third comparison intervals overlap with the first comparison interval, indicating
that the mean mileage of the first car model is different from the mean mileage of the second and the
third car models. If you click on one of the other bars, you can test for the other car models. None of
the comparison intervals overlap, indicating that the mean mileage of each car model is significantly
different from the other two.

Display the multiple comparison results in a table.

tbl = array2table(c,"VariableNames", ...
    ["Group A","Group B","Lower Limit","A-B","Upper Limit","P-value"])

tbl=3×6 table
    Group A    Group B    Lower Limit      A-B      Upper Limit     P-value  
    _______    _______    ___________    _______    ___________    __________

       1          2         -1.5865      -1.0667     -0.54686      0.00038574
       1          3         -4.5865      -4.0667      -3.5469      1.7898e-10
       2          3         -3.5198           -3      -2.4802      7.8407e-09
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In the matrix c, the first two columns show the pairs of car models that are compared. The last
column shows the p-values for the test. All p-values are small, which indicates that the mean mileage
of all car models are significantly different from each other.

Mathematical Details
The two-factor ANOVA partitions the total variation into the following components:

• Variation of row factor group means from the overall mean, yi..− y...

• Variation of column factor group means from the overall mean, y . j . − y...

• Variation of overall mean plus the replication mean from the column factor group mean plus row
factor group mean, yi j . − yi..− y . j . + y...

• Variation of observations from the replication means, yi jr − yi j .

ANOVA partitions the total sum of squares (SST) into the sum of squares due to row factor A (SSA),
the sum of squares due to column factor B (SSB), the sum of squares due to interaction between A
and B (SSAB), and the sum of squares error (SSE).

∑
i = 1

m
∑

j = 1

k
∑

r = 1

R
yi jr − y...

2

⚬
SST

= kR ∑
i = 1

m
yi..− y...

2

⚬
SSB

+ mR ∑
j = 1

k
y . j . − y...

2

⚬
SSA

+R ∑
i = 1

m
∑

j = 1

k
yi j . − yi..− y . j . + y...

2

⚬
SSAB

+ ∑
i = 1

m
∑

j = 1

k
∑

r = 1

R
yi jr − yi j .

2

⚬
SSE

ANOVA takes the variation due to the factor or interaction and compares it to the variation due to
error. If the ratio of the two variations is high, then the effect of the factor or the interaction effect is
statistically significant. You can measure the statistical significance using a test statistic that has an
F-distribution.

For the null hypothesis that the mean response for groups of the row factor A are equal, the test
statistic is

F =
SSB m− 1

SSE mk R− 1
∼ Fm− 1, mk R− 1 .

For the null hypothesis that the mean response for groups of the column factor B are equal, the test
statistic is

F =
SSA k− 1

SSE mk R− 1
∼ Fk− 1, mk R− 1 .

For the null hypothesis that the interaction of the column and row factors are equal to zero, the test
statistic is

F =
SSAB m− 1 k− 1

SSE mk R− 1
∼ F m− 1 k− 1 , mk R− 1 .
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If the p-value for the F-statistic is smaller than the significance level, then ANOVA rejects the null
hypothesis. The most common significance levels are 0.01 and 0.05.

ANOVA Table

The ANOVA table captures the variability in the model by the source, the F-statistic for testing the
significance of this variability, and the p-value for deciding on the significance of this variability. The
p-value returned by anova2 depends on assumptions about the random disturbances, εij, in the model
equation. For the p-value to be correct, these disturbances need to be independent, normally
distributed, and have constant variance. The standard ANOVA table has this form:

anova2 returns the standard ANOVA table as a cell array with six columns.

Column Definition
Source The source of the variability.
SS The sum of squares due to each source.
df The degrees of freedom associated with each

source. Suppose J is the number of groups in the
column factor, I is the number of groups in the
row factor, and R is the number of replications.
Then, the total number of observations is IJR and
the total degrees of freedom is IJR – 1. I – 1 is the
degrees of freedom for the row factor,J – 1 is the
degrees of freedom for the column factor, (I – 1)(J
– 1) is the interaction degrees of freedom, and
IJ(R – 1) is the error degrees of freedom.

MS The mean squares for each source, which is the
ratio SS/df.

F F-statistic, which is the ratio of the mean squares.
Prob>F The p-value, which is the probability that the F-

statistic can take a value larger than the
computed test-statistic value. anova2 derives
this probability from the cdf of the F-distribution.

The rows of the ANOVA table show the variability in the data that is divided by the source.

Row (Source) Definition
Columns Variability due to the column factor
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Row (Source) Definition
Rows Variability due to the row factor
Interaction Variability due to the interaction of the row and

column factors
Error Variability due to the differences between the

data in each group and the group mean
(variability within groups)

Total Total variability
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Related Examples
• “Two-Way ANOVA for Unbalanced Design” on page 35-108

More About
• “One-Way ANOVA” on page 9-2
• “N-Way ANOVA” on page 9-26
• “Multiple Comparisons” on page 9-18
• “Nonparametric Methods” on page 9-47
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Multiple Comparisons
Analysis of variance (ANOVA) techniques test whether a set of group means (treatment effects) are
equal or not. Rejection of the null hypothesis leads to the conclusion that not all group means are the
same. This result, however, does not provide further information on which group means are different.

Performing a series of t-tests to determine which pairs of means are significantly different is not
recommended. When you perform multiple t-tests, the probability that the means appear significant,
and significant difference results might be due to large number of tests. These t-tests use the data
from the same sample, hence they are not independent. This fact makes it more difficult to quantify
the level of significance for multiple tests.

Suppose that in a single t-test, the probability that the null hypothesis (H0) is rejected when it is
actually true is a small value, say 0.05. Suppose also that you conduct six independent t-tests. If the
significance level for each test is 0.05, then the probability that the tests correctly fail to reject H0,
when H0 is true for each case, is (0.95)6 = 0.735. And the probability that one of the tests incorrectly
rejects the null hypothesis is 1 – 0.735 = 0.265, which is much higher than 0.05.

To compensate for multiple tests, you can use multiple comparison procedures. The multcompare
function performs multiple pairwise comparisons of the group means, or treatment effects. The
options are Tukey’s honestly significant difference criterion (default option), the Bonferroni method,
Scheffe’s procedure, Fisher’s least significant differences (LSD) method, and Dunn & Sidák’s
approach to t-test. The function also supports Dunnett's test, which performs multiple comparisons
against a control group.

To perform multiple comparisons of group means, provide the structure stats as an input for
multcompare. You can obtain stats from one of the following functions:

• anova1 — One-way ANOVA on page 9-2
• anova2 — Two-way ANOVA on page 9-11
• anovan — N-way ANOVA on page 9-26
• aoctool — Interactive ANCOVA on page 9-39
• kruskalwallis — Nonparametric method on page 9-47 for one-way layout
• friedman — Nonparametric method on page 9-47 for two-way layout

For multiple comparison procedure options for repeated measures, see multcompare
(RepeatedMeasuresModel).

Multiple Comparisons Using One-Way ANOVA

Load the sample data.

load carsmall

MPG represents the miles per gallon for each car, and Cylinders represents the number of cylinders
in each car, either 4, 6, or 8 cylinders.

Test if the mean miles per gallon (mpg) is different across cars that have different numbers of
cylinders. Also compute the statistics needed for multiple comparison tests.
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[p,~,stats] = anova1(MPG,Cylinders,"off");
p

p = 4.4902e-24

The small p-value of about 0 is a strong indication that mean miles per gallon is significantly different
across cars with different numbers of cylinders.

Perform a multiple comparison test, using the Bonferroni method, to determine which numbers of
cylinders make a difference in the performance of the cars.

[results,means,~,gnames] = multcompare(stats,"CriticalValueType","bonferroni");

In the figure the blue bar represents the group of cars with 4 cylinders. The red bars represent the
other groups. None of the red comparison intervals for the mean mpg of cars overlap, which means
that the mean mpg is significantly different for cars having 4, 6, or 8 cylinders.

Display the multiple comparison results and the corresponding group names in a table.

tbl = array2table([results,means],"VariableNames", ...
    ["Group A","Group B","Lower Limit","A-B","Upper Limit","P-value","Mean","Standard Error"]);
tbl.("Group A")=gnames(tbl.("Group A"));
tbl.("Group B")=gnames(tbl.("Group B"))

tbl=3×8 table
    Group A    Group B    Lower Limit     A-B      Upper Limit     P-value       Mean     Standard Error
    _______    _______    ___________    ______    ___________    __________    ______    ______________
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     {'4'}      {'6'}       4.8605       7.9418      11.023       3.3159e-08     29.53       0.63634    
     {'4'}      {'8'}       12.613       15.234      17.855       2.7661e-24    21.588        1.0913    
     {'6'}      {'8'}        3.894       7.2919       10.69        3.172e-06    14.296       0.86596    

The first two columns of the results matrix show which groups are compared. For example, the first
row compares the cars with 4 and 6 cylinders. The fourth column shows the mean mpg difference for
the compared groups. The third and fifth columns show the lower and upper limits for a 95%
confidence interval for the difference in the group means. The last column shows the p-values for the
tests. All p-values are nearly zero, which indicates that the mean mpg for all groups differ across all
groups.

The first column of the means matrix has the mean mpg estimates for each group of cars. The second
column contains the standard errors of the estimates.

Multiple Comparisons for Three-Way ANOVA

Load the sample data.

y = [52.7 57.5 45.9 44.5 53.0 57.0 45.9 44.0]';
g1 = [1 2 1 2 1 2 1 2];
g2 = ["hi" "hi" "lo" "lo" "hi" "hi" "lo" "lo"];
g3 = ["may" "may" "may" "may" "june" "june" "june" "june"];

y is the response vector and g1, g2, and g3 are the grouping variables (factors). Each factor has two
levels, and every observation in y is identified by a combination of factor levels. For example,
observation y(1) is associated with level 1 of factor g1, level hi of factor g2, and level may of factor
g3. Similarly, observation y(6) is associated with level 2 of factor g1, level hi of factor g2, and level
june of factor g3.

Test if the response is the same for all factor levels. Also compute the statistics required for multiple
comparison tests.

[~,~,stats] = anovan(y,{g1 g2 g3},"Model","interaction", ...
    "Varnames",["g1","g2","g3"]);

The p-value of 0.2578 indicates that the mean responses for levels may and june of factor g3 are not
significantly different. The p-value of 0.0347 indicates that the mean responses for levels 1 and 2 of
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factor g1 are significantly different. Similarly, the p-value of 0.0048 indicates that the mean responses
for levels hi and lo of factor g2 are significantly different.

Perform a multiple comparison test to find out which groups of factors g1 and g2 are significantly
different.

[results,~,~,gnames] = multcompare(stats,"Dimension",[1 2]);

You can test the other groups by clicking on the corresponding comparison interval for the group. The
bar you click on turns to blue. The bars for the groups that are significantly different are red. The
bars for the groups that are not significantly different are gray. For example, if you click on the
comparison interval for the combination of level 1 of g1 and level lo of g2, the comparison interval
for the combination of level 2 of g1 and level lo of g2 overlaps, and is therefore gray. Conversely, the
other comparison intervals are red, indicating significant difference.

Display the multiple comparison results and the corresponding group names in a table.

tbl = array2table(results,"VariableNames", ...
    ["Group A","Group B","Lower Limit","A-B","Upper Limit","P-value"]);
tbl.("Group A")=gnames(tbl.("Group A"));
tbl.("Group B")=gnames(tbl.("Group B"))

tbl=6×6 table
       Group A           Group B        Lower Limit     A-B     Upper Limit     P-value 
    ______________    ______________    ___________    _____    ___________    _________

    {'g1=1,g2=hi'}    {'g1=2,g2=hi'}      -6.8604       -4.4      -1.9396       0.027249
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    {'g1=1,g2=hi'}    {'g1=1,g2=lo'}       4.4896       6.95       9.4104       0.016983
    {'g1=1,g2=hi'}    {'g1=2,g2=lo'}       6.1396        8.6        11.06       0.013586
    {'g1=2,g2=hi'}    {'g1=1,g2=lo'}       8.8896      11.35        13.81       0.010114
    {'g1=2,g2=hi'}    {'g1=2,g2=lo'}        10.54         13        15.46      0.0087375
    {'g1=1,g2=lo'}    {'g1=2,g2=lo'}      -0.8104       1.65       4.1104        0.07375

The multcompare function compares the combinations of groups (levels) of the two grouping
variables, g1 and g2. For example, the first row of the matrix shows that the combination of level 1 of
g1 and level hi of g2 has the same mean response values as the combination of level 2 of g1 and
level hi of g2. The p-value corresponding to this test is 0.0272, which indicates that the mean
responses are significantly different. You can also see this result in the figure. The blue bar shows the
comparison interval for the mean response for the combination of level 1 of g1 and level hi of g2.
The red bars are the comparison intervals for the mean response for other group combinations. None
of the red bars overlap with the blue bar, which means the mean response for the combination of
level 1 of g1 and level hi of g2 is significantly different from the mean response for other group
combinations.

Multiple Comparison Procedures
Specify the multiple comparison procedure by setting the CriticalValueType name-value
argument to one of the values in this table.

Value Description
"lsd" Fisher's least significant difference procedure
"dunnett" Dunnett's test
"tukey-kramer" or "hsd" (default) Tukey’s honestly significant difference procedure
"dunn-sidak" Dunn & Sidák’s approach
"bonferroni" Bonferroni method
"scheffe" Scheffe’s procedure

The table lists the critical value types in order of conservativeness, from least to most conservative.
Each test provides a different level of protection against the multiple comparison problem.

• "lsd" does not provide any protection.
• "dunnett" provides protection for comparisons against a control group.
• "tukey-kramer", "dunn-sidak", and "bonferroni" provide protection for pairwise

comparisons.
• "scheffe" provides protection for pairwise comparisons and comparisons of all linear

combinations of the estimates.

The multcompare function examines different sets of null hypotheses (H0) and alternative
hypotheses (H1) depending on the type of critical value specified by the CriticalValueType name-
value argument.

• Dunnett's test (CriticalValueType is "dunnett") performs multiple comparisons against a
control group. Therefore, the null and alternative hypotheses for a comparison against the control
group are
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H0:  mi = m0,
H1:  mi ≠ m0,

where mi and m0 are estimates for group i and the control group, respectively. The function
examines H0 and H1 multiple times for all noncontrol groups.

• For the other tests, multcompare performs multiple pairwise comparisons for all distinct pairs of
groups. The null and alternative hypotheses of a pairwise comparison between group i and j are

H0:  mi = m j,
H1:  mi ≠ m j .

Fisher's Least Significant Difference Procedure

Specify CriticalValueType as "lsd" to use the least significance difference procedure. This test
uses the test statistic

t =
yi− y j

MSE 1
ni

+ 1
nj

.

It rejects H0:mi = mj if

yi− y j > tα 2, N − k MSE 1
ni

+ 1
n j⚬

LSD

.

Fisher suggests a protection against multiple comparisons by performing LSD only when the null
hypothesis H0: m1 = m2 = ... = mk is rejected by ANOVA F-test. Even in this case, LSD might not
reject any of the individual hypotheses. It is also possible that ANOVA does not reject H0, even when
there are differences between some group means. This behavior occurs because the equality of the
remaining group means can cause the F-test statistic to be nonsignificant. Without any condition, LSD
does not provide any protection against the multiple comparison problem.

Dunnett's Test

Specify CriticalValueType as "dunnett" to use Dunnett's test. This test is for multiple
comparisons against a control group. You can specify the control group by using the ControlGroup
name-value argument. The test statistic for Dunnett's test depends on the source of the group means.
If you examine the group means from a one-way ANOVA, the test statistic is

ti =
yi− y0

MSE 1
ni

+ 1
n0

.

The test rejects H0 : mi = m0 if |ti| < d. The multcompare function finds d by solving the equation

F(d, …, d C, ν) = P t1 < d, …, tp < d = 1− α,

where p is the number of noncontrol groups, and F(⋯|C,ν) is the cumulative distribution function
(cdf) of a multivariate t distribution with the correlation matrix C and degrees of freedom ν.

Finding d can be slow for multiway (n-way) ANOVA if n is large. To speed up the computation, you
can use an approximation method ([5]) by specifying the Approximate name-value argument as
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true (default for multiway ANOVA). The approximate method involves randomness. If you want to
reproduce the results, set the random seed by using the rng function before calling multcompare.

Tukey’s Honestly Significant Difference Procedure

Specify CriticalValueType as "Tukey-Kramer" or "hsd" to use Tukey’s honestly significant
difference procedure. The test is based on studentized range distribution. Reject H0:mi = mj if

t =
yi− y j

MSE 1
ni

+ 1
nj

> 1
2qα, k, N − k,

where qα, k, N − k is the upper 100*(1 – α)th percentile of the studentized range distribution with
parameter k and N – k degrees of freedom. k is the number of groups (treatments or marginal means)
and N is the total number of observations.

Tukey’s honestly significant difference procedure is optimal for balanced one-way ANOVA and similar
procedures with equal sample sizes. It has been proven to be conservative for one-way ANOVA with
different sample sizes. According to the unproven Tukey-Kramer conjecture, it is also accurate for
problems where the quantities being compared are correlated, as in analysis of covariance with
unbalanced covariate values.

Dunn & Sidák’s Approach

Specify CriticalValueType as "dunn-sidak" to use Dunn & Sidák’s approach. It uses critical
values from the t-distribution, after an adjustment for multiple comparisons that was proposed by
Dunn and proved accurate by Sidák. This test rejects H0:mi = mj if

t =
yi− y j

MSE 1
ni

+ 1
nj

> t1− η/2, v,

where

η = 1− 1− α
1

k
2

and k is the number of groups. This procedure is similar to, but less conservative than, the Bonferroni
procedure.

Bonferroni Method

Specify CriticalValueType as "bonferroni" to use the Bonferroni method. This method uses
critical values from Student’s t-distribution after an adjustment to compensate for multiple

comparisons. The test rejects H0:mi = mj at the α/2
k
2

 significance level, where k is the number of

groups if

t =
yi− y j

MSE 1
ni

+ 1
nj

> t
α

2
k
2

, N − k,

where N is the total number of observations and k is the number of groups (marginal means). This
procedure is conservative, but usually less so than the Scheffé procedure.
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Scheffe’s Procedure

Specify CriticalValueType as "scheffe" to use Scheffe’s procedure. The critical values are
derived from the F distribution. The test rejects H0:mi = mj if

yi− y j

MSE 1
ni

+ 1
nj

> k− 1 Fk− 1, N − k, α

This procedure provides a simultaneous confidence level for comparisons of all linear combinations of
the means. It is conservative for comparisons of simple differences of pairs.
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Related Examples
• “Perform One-Way ANOVA” on page 9-4
• “Perform Two-Way ANOVA” on page 9-13
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N-Way ANOVA
In this section...
“Introduction to N-Way ANOVA” on page 9-26
“Prepare Data for N-Way ANOVA” on page 9-28
“Perform N-Way ANOVA” on page 9-28

Introduction to N-Way ANOVA
You can use the function anovan to perform N-way ANOVA. Use N-way ANOVA to determine if the
means in a set of data differ with respect to groups (levels) of multiple factors. By default, anovan
treats all grouping variables as fixed effects. For an example of ANOVA with random effects, see
“ANOVA with Random Effects” on page 9-33. For repeated measures, see fitrm and ranova.

N-way ANOVA is a generalization of two-way ANOVA. For three factors, for example, the model can
be written as

yi jkr = μ + αi + β j + γk + (αβ)i j + (αγ)ik + (βγ) jk + (αβγ)i jk + εi jkr,

where

• yijkr is an observation of the response variable. i represents group i of factor A, i = 1, 2, ..., I, j
represents group j of factor B, j = 1, 2, ..., J, k represents group k of factor C, and r represents the
replication number, r = 1, 2, ..., R. For constant R, there are a total of N = I*J*K*R observations,
but the number of observations does not have to be the same for each combination of groups of
factors.

• μ is the overall mean.
• αi are the deviations of groups of factor A from the overall mean μ due to factor A. The values of αi

sum to 0.

∑i = 1
I αi = 0.

• βj are the deviations of groups in factor B from the overall mean μ due to factor B. The values of βj
sum to 0.

∑ j = 1
J β j = 0.

• γk are the deviations of groups in factor C from the overall mean μ due to factor C. The values of
γk sum to 0.

∑k = 1
K γk = 0.

• (αβ)ij is the interaction term between factors A and B. (αβ)ij sum to 0 over either index.

∑i = 1
I αβ i j = ∑ j = 1

J αβ i j = 0.

• (αγ)ik is the interaction term between factors A and C. The values of (αγ)ik sum to 0 over either
index.

∑i = 1
I αγ ik = ∑k = 1

K αγ ik = 0.
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• (βγ)jk is the interaction term between factors B and C. The values of (βγ)jk sum to 0 over either
index.

∑ j = 1
J βγ jk = ∑k = 1

K βγ jk = 0.

• (αβγ)ijk is the three-way interaction term between factors A, B, and C. The values of (αβγ)ijk sum to
0 over any index.

∑i = 1
I αβγ i jk = ∑ j = 1

J αβγ i jk = ∑k = 1
K αβγ i jk = 0.

• εijkr are the random disturbances. They are assumed to be independent, normally distributed, and
have constant variance.

Three-way ANOVA tests hypotheses about the effects of factors A, B, C, and their interactions on the
response variable y. The hypotheses about the equality of the mean responses for groups of factor A
are

H0:α1 = α2⋯ = αI
H1:  at least one αi is different,  i = 1,  2,  ...,  I .

The hypotheses about the equality of the mean response for groups of factor B are

H0: β1 = β2 = ⋯ = βJ
H1:  at least one β j is different,   j = 1,  2,  ...,   J .

The hypotheses about the equality of the mean response for groups of factor C are

H0:γ1 = γ2 = ⋯ = γK
H1:  at least one γk is different,  k = 1,  2,  ...,  K .

The hypotheses about the interaction of the factors are

H0: αβ i j = 0
H1:at least one  αβ i j ≠ 0

H0: αγ ik = 0
H1:at least one  αγ ik ≠ 0

H0: βγ jk = 0
H1:at least one  βγ jk ≠ 0

H0: αβγ i jk = 0
H1:at least one  αβγ i jk ≠ 0

In this notation parameters with two subscripts, such as (αβ)ij, represent the interaction effect of two
factors. The parameter (αβγ)ijk represents the three-way interaction. An ANOVA model can have the
full set of parameters or any subset, but conventionally it does not include complex interaction terms
unless it also includes all simpler terms for those factors. For example, one would generally not
include the three-way interaction without also including all two-way interactions.
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Prepare Data for N-Way ANOVA
Unlike anova1 and anova2, anovan does not expect data in a tabular form. Instead, it expects a
vector of response measurements and a separate vector (or text array) containing the values
corresponding to each factor. This input data format is more convenient than matrices when there are
more than two factors or when the number of measurements per factor combination is not constant.

y = [ y1, y2, y3, y4, y5, ⋯, yN ]′

g1 = ′A′, ′A′, ′C′, ′B′, ′B′, ⋯, ′D′
g2 = [ 1 2 1 3 1 ⋯, 2 ]
g3 = ′hi′, ′mid′, ′low′, ′mid′, ′hi′, ⋯, ′low′

Perform N-Way ANOVA

This example shows how to perform N-way ANOVA on car data with mileage and other information on
406 cars made between 1970 and 1982.

Load the sample data.

load carbig

The example focusses on four variables. MPG is the number of miles per gallon for each of 406 cars
(though some have missing values coded as NaN). The other three variables are factors: cyl4 (four-
cylinder car or not), org (car originated in Europe, Japan, or the USA), and when (car was built early
in the period, in the middle of the period, or late in the period).

Fit the full model, requesting up to three-way interactions and Type 3 sums-of-squares.

varnames = {'Origin';'4Cyl';'MfgDate'};
anovan(MPG,{org cyl4 when},3,3,varnames);

Note that many terms are marked by a # symbol as not having full rank, and one of them has zero
degrees of freedom and is missing a p-value. This can happen when there are missing factor
combinations and the model has higher-order terms. In this case, the cross-tabulation below shows
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that there are no cars made in Europe during the early part of the period with other than four
cylinders, as indicated by the 0 in tbl(2,1,1).

[tbl,chi2,p,factorvals] = crosstab(org,when,cyl4)

tbl = 
tbl(:,:,1) =

    82    75    25
     0     4     3
     3     3     4

tbl(:,:,2) =

    12    22    38
    23    26    17
    12    25    32

chi2 = 207.7689

p = 8.0973e-38

factorvals=3×3 cell array
    {'USA'   }    {'Early'}    {'Other'   }
    {'Europe'}    {'Mid'  }    {'Four'    }
    {'Japan' }    {'Late' }    {0x0 double}

Consequently it is impossible to estimate the three-way interaction effects, and including the three-
way interaction term in the model makes the fit singular.

Using even the limited information available in the ANOVA table, you can see that the three-way
interaction has a p-value of 0.699, so it is not significant.

Examine only two-way interactions.

[p,tbl2,stats,terms] = anovan(MPG,{org cyl4 when},2,3,varnames);

terms
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terms = 6×3

     1     0     0
     0     1     0
     0     0     1
     1     1     0
     1     0     1
     0     1     1

Now all terms are estimable. The p-values for interaction term 4 (Origin*4Cyl) and interaction
term 6 (4Cyl*MfgDate) are much larger than a typical cutoff value of 0.05, indicating these terms
are not significant. You could choose to omit these terms and pool their effects into the error term.
The output terms variable returns a matrix of codes, each of which is a bit pattern representing a
term.

Omit terms from the model by deleting their entries from terms.

terms([4 6],:) = []

terms = 4×3

     1     0     0
     0     1     0
     0     0     1
     1     0     1

Run anovan again, this time supplying the resulting vector as the model argument. Also return the
statistics required for multiple comparisons of factors.

[~,~,stats] = anovan(MPG,{org cyl4 when},terms,3,varnames)

stats = struct with fields:
         source: 'anovan'
          resid: [3.1235 0.1235 3.1235 1.1235 2.1235 0.1235 -0.8765 ... ]
         coeffs: [18x1 double]
            Rtr: [10x10 double]
       rowbasis: [10x18 double]
            dfe: 388
            mse: 14.1056
    nullproject: [18x10 double]
          terms: [4x3 double]
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        nlevels: [3x1 double]
     continuous: [0 0 0]
         vmeans: [3x1 double]
       termcols: [5x1 double]
     coeffnames: {18x1 cell}
           vars: [18x3 double]
       varnames: {3x1 cell}
       grpnames: {3x1 cell}
        vnested: []
            ems: [5x5 double]
          denom: []
        dfdenom: []
        msdenom: []
         varest: []
          varci: []
       txtdenom: []
         txtems: []
        rtnames: []

Now you have a more parsimonious model indicating that the mileage of these cars seems to be
related to all three factors, and that the effect of the manufacturing date depends on where the car
was made.

Perform multiple comparisons for Origin and Cylinder.

[results,~,~,gnames] = multcompare(stats,'Dimension',[1,2]);
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Display the multiple comparison results and the corresponding group names in a table.

tbl = array2table(results,"VariableNames", ...
    ["Group A","Group B","Lower Limit","A-B","Upper Limit","P-value"]);
tbl.("Group A") = gnames(tbl.("Group A"));
tbl.("Group B") = gnames(tbl.("Group B"))

tbl=15×6 table
              Group A                         Group B               Lower Limit      A-B      Upper Limit     P-value  
    ____________________________    ____________________________    ___________    _______    ___________    __________

    {'Origin=USA,4Cyl=Other'   }    {'Origin=Japan,4Cyl=Other' }      -5.4891      -3.8412      -2.1932      4.2334e-10
    {'Origin=USA,4Cyl=Other'   }    {'Origin=Europe,4Cyl=Other'}      -4.4146      -2.7251      -1.0356      6.2974e-05
    {'Origin=USA,4Cyl=Other'   }    {'Origin=USA,4Cyl=Four'    }      -9.9992      -8.5828      -7.1664               0
    {'Origin=USA,4Cyl=Other'   }    {'Origin=Japan,4Cyl=Four'  }      -14.024      -12.424      -10.824               0
    {'Origin=USA,4Cyl=Other'   }    {'Origin=Europe,4Cyl=Four' }      -12.898      -11.308       -9.718               0
    {'Origin=Japan,4Cyl=Other' }    {'Origin=Europe,4Cyl=Other'}     -0.71714        1.116       2.9492          0.5085
    {'Origin=Japan,4Cyl=Other' }    {'Origin=USA,4Cyl=Four'    }      -7.3655      -4.7417      -2.1179      3.8678e-06
    {'Origin=Japan,4Cyl=Other' }    {'Origin=Japan,4Cyl=Four'  }      -9.9992      -8.5828      -7.1664               0
    {'Origin=Japan,4Cyl=Other' }    {'Origin=Europe,4Cyl=Four' }      -9.7464      -7.4668      -5.1872      1.4557e-20
    {'Origin=Europe,4Cyl=Other'}    {'Origin=USA,4Cyl=Four'    }      -8.5396      -5.8577      -3.1757      6.9888e-09
    {'Origin=Europe,4Cyl=Other'}    {'Origin=Japan,4Cyl=Four'  }      -12.052      -9.6988      -7.3459               0
    {'Origin=Europe,4Cyl=Other'}    {'Origin=Europe,4Cyl=Four' }      -9.9992      -8.5828      -7.1664               0
    {'Origin=USA,4Cyl=Four'    }    {'Origin=Japan,4Cyl=Four'  }      -5.4891      -3.8412      -2.1932      4.2334e-10
    {'Origin=USA,4Cyl=Four'    }    {'Origin=Europe,4Cyl=Four' }      -4.4146      -2.7251      -1.0356      6.2974e-05
    {'Origin=Japan,4Cyl=Four'  }    {'Origin=Europe,4Cyl=Four' }     -0.71714        1.116       2.9492          0.5085

See Also
anova1 | anovan | multcompare | kruskalwallis

Related Examples
• “ANOVA with Random Effects” on page 9-33

More About
• “One-Way ANOVA” on page 9-2
• “Two-Way ANOVA” on page 9-11
• “Multiple Comparisons” on page 9-18
• “Nonparametric Methods” on page 9-47
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ANOVA with Random Effects

This example shows how to use anovan to fit models where a factor's levels represent a random
selection from a larger (infinite) set of possible levels.

In an ordinary ANOVA model, each grouping variable represents a fixed factor. The levels of that
factor are a fixed set of values. The goal is to determine whether different factor levels lead to
different response values.

Set Up the Model

Load the sample data.

load mileage

The anova2 function works only with balanced data, and it infers the values of the grouping variables
from the row and column numbers of the input matrix. The anovan function, on the other hand,
requires you to explicitly create vectors of grouping variable values. Create these vectors in the
following way.

Create an array indicating the factory for each value in mileage. This array is 1 for the first column, 2
for the second, and 3 for the third.

factory  = repmat(1:3,6,1);

Create an array indicating the car model for each mileage value. This array is 1 for the first three
rows of mileage, and 2 for the remaining three rows.

carmod = [ones(3,3); 2*ones(3,3)];

Turn these matrices into vectors and display them.

mileage = mileage(:);
factory = factory(:);
carmod = carmod(:);
[mileage factory carmod]

ans = 18×3

   33.3000    1.0000    1.0000
   33.4000    1.0000    1.0000
   32.9000    1.0000    1.0000
   32.6000    1.0000    2.0000
   32.5000    1.0000    2.0000
   33.0000    1.0000    2.0000
   34.5000    2.0000    1.0000
   34.8000    2.0000    1.0000
   33.8000    2.0000    1.0000
   33.4000    2.0000    2.0000
      ⋮

Fit a Random Effects Model

Suppose you are studying a few factories but you want information about what would happen if you
build these same car models in a different factory, either one that you already have or another that
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you might construct. To get this information, fit the analysis of variance model, specifying a model
that includes an interaction term and that the factory factor is random.

[pvals,tbl,stats] = anovan(mileage, {factory carmod}, ... 
'model',2, 'random',1,'varnames',{'Factory' 'Car Model'});

In the fixed effects version of this fit, which you get by omitting the inputs 'random',1 in the
preceding code, the effect of car model is significant, with a p-value of 0.0039. But in this example,
which takes into account the random variation of the effect of the variable 'Car Model' from one
factory to another, the effect is still significant, but with a higher p-value of 0.0136.

F-Statistics for Models with Random Effects

The F-statistic in a model having random effects is defined differently than in a model having all fixed
effects. In the fixed effects model, you compute the F-statistic for any term by taking the ratio of the
mean square for that term with the mean square for error. In a random effects model, however, some
F-statistics use a different mean square in the denominator.

In the example described in Set Up the Model, the effect of the variable 'Factory' could vary
across car models. In this case, the interaction mean square takes the place of the error mean square
in the F-statistic.

Find the F-statistic.

F = 26.6756 / 0.02

F = 1.3338e+03

The degrees of freedom for the statistic are the degrees of freedom for the numerator (2) and
denominator (2) mean squares.

Find the p-value.

pval = 1 - fcdf(F,2,2)

pval = 7.4919e-04

With random effects, the expected value of each mean square depends not only on the variance of the
error term, but also on the variances contributed by the random effects. You can see these
dependencies by writing the expected values as linear combinations of contributions from the various
model terms.

Find the coefficients of these linear combinations.
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stats.ems

ans = 4×4

    6.0000    0.0000    3.0000    1.0000
    0.0000    9.0000    3.0000    1.0000
    0.0000    0.0000    3.0000    1.0000
         0         0         0    1.0000

This returns the ems field of the stats structure.

Display text representations of the linear combinations.

stats.txtems

ans = 4x1 cell
    {'6*V(Factory)+3*V(Factory:Car Model)+V(Error)'  }
    {'9*Q(Car Model)+3*V(Factory:Car Model)+V(Error)'}
    {'3*V(Factory:Car Model)+V(Error)'               }
    {'V(Error)'                                      }

The expected value for the mean square due to car model (second term) includes contributions from a
quadratic function of the car model effects, plus three times the variance of the interaction term's
effect, plus the variance of the error term. Notice that if the car model effects were all zero, the
expression would reduce to the expected mean square for the third term (the interaction term). That
is why the F-statistic for the car model effect uses the interaction mean square in the denominator.

In some cases there is no single term whose expected value matches the one required for the
denominator of the F-statistic. In that case, the denominator is a linear combination of mean squares.
The stats structure contains fields giving the definitions of the denominators for each F-statistic. The
txtdenom field, stats.txtdenom, contains a text representation, and the denom field contains a
matrix that defines a linear combination of the variances of terms in the model. For balanced models
like this one, the denom matrix, stats.denom, contains zeros and ones, because the denominator is
just a single term's mean square.

Display the txtdenom field.

stats.txtdenom

ans = 3x1 cell
    {'MS(Factory:Car Model)'}
    {'MS(Factory:Car Model)'}
    {'MS(Error)'            }

Display the denom field.

stats.denom

ans = 3×3

    0.0000    1.0000         0
    0.0000    1.0000   -0.0000
   -0.0000    0.0000    1.0000
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Variance Components

For the model described in Set Up the Model, consider the mileage for a particular car of a
particular model made at a random factory. The variance of that car is the sum of components, or
contributions, one from each of the random terms.

Display the names of the random terms.

stats.rtnames

ans = 3x1 cell
    {'Factory'          }
    {'Factory:Car Model'}
    {'Error'            }

You do not know the variances, but you can estimate them from the data. Recall that the ems field of
the stats structure expresses the expected value of each term's mean square as a linear
combination of unknown variances for random terms, and unknown quadratic forms for fixed terms.
If you take the expected mean square expressions for the random terms, and equate those expected
values to the computed mean squares, you get a system of equations that you can solve for the
unknown variances. These solutions are the variance component estimates.

Display the variance component estimate for each term.

stats.varest

ans = 3×1

    4.4426
   -0.0313
    0.1139

Under some conditions, the variability attributed to a term is unusually low, and that term's variance
component estimate is negative. In those cases it is common to set the estimate to zero, which you
might do, for example, to create a bar graph of the components.

Create a bar graph of the components.

bar(max(0,stats.varest))
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gca.xtick = 1:3;
gca.xticklabel = stats.rtnames;

You can also compute confidence bounds for the variance estimate. The anovan function does this by
computing confidence bounds for the variance expected mean squares, and finding lower and upper
limits on each variance component containing all of these bounds. This procedure leads to a set of
bounds that is conservative for balanced data. (That is, 95% confidence bounds will have a probability
of at least 95% of containing the true variances if the number of observations for each combination of
grouping variables is the same.) For unbalanced data, these are approximations that are not
guaranteed to be conservative.

Display the variance estimates and the confidence limits for the variance estimates of each
component.

[{'Term' 'Estimate' 'Lower' 'Upper'};
 stats.rtnames, num2cell([stats.varest stats.varci])]

ans=4×4 cell array
    {'Term'             }    {'Estimate'}    {'Lower' }    {'Upper'   }
    {'Factory'          }    {[  4.4426]}    {[1.0736]}    {[175.6038]}
    {'Factory:Car Model'}    {[ -0.0313]}    {[   NaN]}    {[     NaN]}
    {'Error'            }    {[  0.1139]}    {[0.0586]}    {[  0.3103]}
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Other ANOVA Models
The anovan function also has arguments that enable you to specify two other types of model terms:

• 'nested' argument specifies a matrix that indicates which factors are nested within other
factors. A nested factor is one that takes different values within each level its nested factor.

Suppose an automobile company has three factories, and each factory makes two car models. The
gas mileage in the cars can vary from factory to factory and from model to model. These two
factors, factory and model, explain the differences in mileage, that is, the response. One measure
of interest is the difference in mileage due to the production methods between factories. Another
measure of interest is the difference in the mileage of the models (irrespective of the factory) due
to different design specifications. Suppose also that, each factory produces distinct car models for
a total of six car models. Then, the car model is nested in factory.

Factory Car Model
1 1
1 2
2 3
2 4
3 5
3 6

It is also common with nested models to number the nested factor the same way in each nested
factor.

• 'continuous' argument specifies that some factors are to be treated as continuous variables.
The remaining factors are categorical variables. Although the anovan function can fit models with
multiple continuous and categorical predictors, the simplest model that combines one predictor of
each type is known as an analysis of covariance model. “Analysis of Covariance” on page 9-39
describes a specialized tool for fitting this model.

See Also
anova1 | anova2 | anovan | multcompare | kruskalwallis

Related Examples
• “ANOVA with Random Effects” on page 9-33

More About
• “One-Way ANOVA” on page 9-2
• “Two-Way ANOVA” on page 9-11
• “Multiple Comparisons” on page 9-18
• “N-Way ANOVA” on page 9-26
• “Nonparametric Methods” on page 9-47
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Analysis of Covariance
In this section...
“Introduction to Analysis of Covariance” on page 9-39
“Analysis of Covariance Tool” on page 9-39
“Confidence Bounds” on page 9-43
“Multiple Comparisons” on page 9-45

Introduction to Analysis of Covariance
Analysis of covariance is a technique for analyzing grouped data having a response (y, the variable to
be predicted) and a predictor (x, the variable used to do the prediction). Using analysis of covariance,
you can model y as a linear function of x, with the coefficients of the line possibly varying from group
to group.

Analysis of Covariance Tool
The aoctool function opens an interactive graphical environment for fitting and prediction with
analysis of covariance (ANOCOVA) models. It fits the following models for the ith group:

Same mean y = α + ε
Separate means y = (α + αi) + ε
Same line y = α + βx + ε
Parallel lines y = (α + αi) + βx + ε
Separate lines y = (α + αi) + (β + βi)x + ε

For example, in the parallel lines model the intercept varies from one group to the next, but the slope
is the same for each group. In the same mean model, there is a common intercept and no slope. In
order to make the group coefficients well determined, the tool imposes the constraints

∑α j = ∑β j = 0

The following steps describe the use of aoctool.

1 Load the data. The Statistics and Machine Learning Toolbox data set carsmall.mat contains
information on cars from the years 1970, 1976, and 1982. This example studies the relationship
between the weight of a car and its mileage, and whether this relationship has changed over the
years. To start the demonstration, load the data set.

load carsmall

The Workspace Browser shows the variables in the data set.
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You can also use aoctool with your own data.
2 Start the tool. The following command calls aoctool to fit a separate line to the column

vectors Weight and MPG for each of the three model group defined in Model_Year. The initial fit
models the y variable, MPG, as a linear function of the x variable, Weight.

[h,atab,ctab,stats] = aoctool(Weight,MPG,Model_Year);

See the aoctool function reference page for detailed information about calling aoctool.
3 Examine the output. The graphical output consists of a main window with a plot, a table of

coefficient estimates, and an analysis of variance table. In the plot, each Model_Year group has
a separate line. The data points for each group are coded with the same color and symbol, and
the fit for each group has the same color as the data points.
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The coefficients of the three lines appear in the figure titled ANOCOVA Coefficients. You can see
that the slopes are roughly –0.0078, with a small deviation for each group:

• Model year 1970: y = (45.9798 – 8.5805) + (–0.0078 + 0.002)x + ε
• Model year 1976: y = (45.9798 – 3.8902) + (–0.0078 + 0.0011)x + ε
• Model year 1982: y = (45.9798 + 12.4707) + (–0.0078 – 0.0031)x + ε
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Because the three fitted lines have slopes that are roughly similar, you may wonder if they really
are the same. The Model_Year*Weight interaction expresses the difference in slopes, and the
ANOVA table shows a test for the significance of this term. With an F statistic of 5.23 and a p
value of 0.0072, the slopes are significantly different.

4 Constrain the slopes to be the same. To examine the fits when the slopes are constrained to
be the same, return to the ANOCOVA Prediction Plot window and use the Model pop-up menu to
select a Parallel Lines model. The window updates to show the following graph.
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Though this fit looks reasonable, it is significantly worse than the Separate Lines model. Use
the Model pop-up menu again to return to the original model.

Confidence Bounds
The example in “Analysis of Covariance Tool” on page 9-39 provides estimates of the relationship
between MPG and Weight for each Model_Year, but how accurate are these estimates? To find out,
you can superimpose confidence bounds on the fits by examining them one group at a time.

1 In the Model_Year menu at the lower right of the figure, change the setting from All Groups
to 82. The data and fits for the other groups are dimmed, and confidence bounds appear around
the 82 fit.
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The dashed lines form an envelope around the fitted line for model year 82. Under the
assumption that the true relationship is linear, these bounds provide a 95% confidence region for
the true line. Note that the fits for the other model years are well outside these confidence
bounds for Weight values between 2000 and 3000.

2 Sometimes it is more valuable to be able to predict the response value for a new observation, not
just estimate the average response value. Use the aoctool function Bounds menu to change
the definition of the confidence bounds from Line to Observation. The resulting wider
intervals reflect the uncertainty in the parameter estimates as well as the randomness of a new
observation.
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Like the polytool function, the aoctool function has cross hairs that you can use to
manipulate the Weight and watch the estimate and confidence bounds along the y-axis update.
These values appear only when a single group is selected, not when All Groups is selected.

Multiple Comparisons
You can perform a multiple comparison test by using the stats output structure from aoctool as
input to the multcompare function. The multcompare function can test either slopes, intercepts, or
population marginal means (the predicted MPG of the mean weight for each group). The example in
“Analysis of Covariance Tool” on page 9-39 shows that the slopes are not all the same, but could it be
that two are the same and only the other one is different? You can test that hypothesis.

multcompare(stats,0.05,'on','','s')

ans =
    1.0000    2.0000   -0.0012    0.0008    0.0029
    1.0000    3.0000    0.0013    0.0051    0.0088
    2.0000    3.0000    0.0005    0.0042    0.0079

This matrix shows that the estimated difference between the intercepts of groups 1 and 2 (1970 and
1976) is 0.0008, and a confidence interval for the difference is [–0.0012, 0.0029]. There is no
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significant difference between the two. There are significant differences, however, between the
intercept for 1982 and each of the other two. The graph shows the same information.

Note that the stats structure was created in the initial call to the aoctool function, so it is based
on the initial model fit (typically a separate-lines model). If you change the model interactively and
want to base your multiple comparisons on the new model, you need to run aoctool again to get
another stats structure, this time specifying your new model as the initial model.
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Nonparametric Methods
In this section...
“Introduction to Nonparametric Methods” on page 9-47
“Kruskal-Wallis Test” on page 9-47
“Friedman's Test” on page 9-47

Introduction to Nonparametric Methods
Statistics and Machine Learning Toolbox functions include nonparametric versions of one-way and
two-way analysis of variance. Unlike classical tests, nonparametric tests make only mild assumptions
about the data, and are appropriate when the distribution of the data is non-normal. On the other
hand, they are less powerful than classical methods for normally distributed data.

Both of the nonparametric functions described here will return a stats structure that can be used as
an input to the multcompare function for multiple comparisons.

Kruskal-Wallis Test
The example “Perform One-Way ANOVA” on page 9-4 uses one-way analysis of variance to determine
if the bacteria counts of milk varied from shipment to shipment. The one-way analysis rests on the
assumption that the measurements are independent, and that each has a normal distribution with a
common variance and with a mean that was constant in each column. You can conclude that the
column means were not all the same. The following example repeats that analysis using a
nonparametric procedure.

The Kruskal-Wallis test is a nonparametric version of one-way analysis of variance. The assumption
behind this test is that the measurements come from a continuous distribution, but not necessarily a
normal distribution. The test is based on an analysis of variance using the ranks of the data values,
not the data values themselves. Output includes a table similar to an ANOVA table, and a box plot.

You can run this test as follows:

load hogg

p = kruskalwallis(hogg)
p =
    0.0020

The low p value means the Kruskal-Wallis test results agree with the one-way analysis of variance
results.

Friedman's Test
“Perform Two-Way ANOVA” on page 9-13 uses two-way analysis of variance to study the effect of car
model and factory on car mileage. The example tests whether either of these factors has a significant
effect on mileage, and whether there is an interaction between these factors. The conclusion of the
example is there is no interaction, but that each individual factor has a significant effect. The next
example examines whether a nonparametric analysis leads to the same conclusion.
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Friedman's test is a nonparametric test for data having a two-way layout (data grouped by two
categorical factors). Unlike two-way analysis of variance, Friedman's test does not treat the two
factors symmetrically and it does not test for an interaction between them. Instead, it is a test for
whether the columns are different after adjusting for possible row differences. The test is based on an
analysis of variance using the ranks of the data across categories of the row factor. Output includes a
table similar to an ANOVA table.

You can run Friedman's test as follows.

load mileage
p = friedman(mileage,3)
p =
  7.4659e-004

Recall the classical analysis of variance gave a p value to test column effects, row effects, and
interaction effects. This p value is for column effects. Using either this p value or the p value from
ANOVA (p < 0.0001), you conclude that there are significant column effects.

In order to test for row effects, you need to rearrange the data to swap the roles of the rows in
columns. For a data matrix x with no replications, you could simply transpose the data and type

p = friedman(x')

With replicated data it is slightly more complicated. A simple way is to transform the matrix into a
three-dimensional array with the first dimension representing the replicates, swapping the other two
dimensions, and restoring the two-dimensional shape.

x = reshape(mileage, [3 2 3]);
x = permute(x,[1 3 2]);
x = reshape(x,[9 2])
x =
   33.3000   32.6000
   33.4000   32.5000
   32.9000   33.0000
   34.5000   33.4000
   34.8000   33.7000
   33.8000   33.9000
   37.4000   36.6000
   36.8000   37.0000
   37.6000   36.7000

friedman(x,3)
ans =
    0.0082

Again, the conclusion is similar to that of the classical analysis of variance. Both this p value and the
one from ANOVA (p = 0.0039) lead you to conclude that there are significant row effects.

You cannot use Friedman's test to test for interactions between the row and column factors.
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MANOVA
In this section...
“Introduction to MANOVA” on page 9-49
“ANOVA with Multiple Responses” on page 9-49

Introduction to MANOVA
The analysis of variance technique in “Perform One-Way ANOVA” on page 9-4 takes a set of grouped
data and determine whether the mean of a variable differs significantly among groups. Often there
are multiple response variables, and you are interested in determining whether the entire set of
means is different from one group to the next. There is a multivariate version of analysis of variance
that can address the problem.

ANOVA with Multiple Responses

The carsmall data set has measurements on a variety of car models from the years 1970, 1976, and
1982. Suppose you are interested in whether the characteristics of the cars have changed over time.

load carsmall
whos

  Name                Size            Bytes  Class     Attributes

  Acceleration      100x1               800  double              
  Cylinders         100x1               800  double              
  Displacement      100x1               800  double              
  Horsepower        100x1               800  double              
  MPG               100x1               800  double              
  Mfg               100x13             2600  char                
  Model             100x33             6600  char                
  Model_Year        100x1               800  double              
  Origin            100x7              1400  char                
  Weight            100x1               800  double              

Four of these variables (Acceleration, Displacement, Horsepower, and MPG) are continuous
measurements on individual car models. The variable Model_Year indicates the year in which the
car was made. You can create a grouped plot matrix of these variables using the gplotmatrix
function.

Create a grouped plot matrix of these variables using the gplotmatrix function.

x = [MPG Horsepower Displacement Weight];
gplotmatrix(x,[],Model_Year,[],'+xo')
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(When the second argument of gplotmatrix is empty, the function graphs the columns of the
x argument against each other, and places histograms along the diagonals. The empty fourth
argument produces a graph with the default colors. The fifth argument controls the symbols used to
distinguish between groups.)

It appears the cars do differ from year to year. The upper right plot, for example, is a graph of MPG
versus Weight. The 1982 cars appear to have higher mileage than the older cars, and they appear to
weigh less on average. But as a group, are the three years significantly different from one another?
The manova1 function can answer that question.

[d,p,stats] = manova1(x,Model_Year)

d = 2

p = 2×1
10-6 ×

    0.0000
    0.1141

stats = struct with fields:
           W: [4x4 double]
           B: [4x4 double]
           T: [4x4 double]
         dfW: 90
         dfB: 2
         dfT: 92
      lambda: [2x1 double]
       chisq: [2x1 double]
     chisqdf: [2x1 double]
    eigenval: [4x1 double]
    eigenvec: [4x4 double]
       canon: [100x4 double]
       mdist: [2.8187 0.7899 0.6187 0.4050 0.8538 4.2337 6.0117 4.9600 ... ]
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      gmdist: [3x3 double]
      gnames: {3x1 cell}

The manova1 function produces three outputs:

• The first output d is an estimate of the dimension of the group means. If the means were all the
same, the dimension would be 0, indicating that the means are at the same point. If the means
differed but fell along a line, the dimension would be 1. In the example the dimension is 2,
indicating that the group means fall in a plane but not along a line. This is the largest possible
dimension for the means of three groups.

• The second output p is a vector of p-values for a sequence of tests. The first p-value tests whether
the dimension is 0, the next whether the dimension is 1, and so on. In this case both p-values are
small. That's why the estimated dimension is 2.

• The third output stats is a structure containing several fields, described in the following section.

Fields of the stats Structure

The W, B, and T fields are matrix analogs to the within, between, and total sums of squares in ordinary
one-way analysis of variance. The next three fields are the degrees of freedom for these matrices.
Fields lambda, chisq, and chisqdf are the ingredients of the test for the dimensionality of the
group means. (The p-values for these tests are the first output argument of manova1.)

The next three fields are used to do a canonical analysis. Recall that in “Principal Component Analysis
(PCA)” on page 16-66 you look for the combination of the original variables that has the largest
possible variation. In multivariate analysis of variance, you instead look for the linear combination of
the original variables that has the largest separation between groups. It is the single variable that
would give the most significant result in a univariate one-way analysis of variance. Having found that
combination, you next look for the combination with the second highest separation, and so on.

The eigenvec field is a matrix that defines the coefficients of the linear combinations of the original
variables. The eigenval field is a vector measuring the ratio of the between-group variance to the
within-group variance for the corresponding linear combination. The canon field is a matrix of the
canonical variable values. Each column is a linear combination of the mean-centered original
variables, using coefficients from the eigenvec matrix.

c1 = stats.canon(:,1);
c2 = stats.canon(:,2);

Plot the grouped scatter plot of the first two canonical variables.

figure
gscatter(c2,c1,Model_Year,[],'oxs')
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A grouped scatter plot of the first two canonical variables shows more separation between groups
then a grouped scatter plot of any pair of original variables. In this example, it shows three clouds of
points, overlapping but with distinct centers. One point in the bottom right sits apart from the others.
You can mark this point on the plot using the gname function.

Roughly speaking, the first canonical variable, c1, separates the 1982 cars (which have high values of
c1) from the older cars. The second canonical variable, c2, reveals some separation between the
1970 and 1976 cars.

The final two fields of the stats structure are Mahalanobis distances. The mdist field measures the
distance from each point to its group mean. Points with large values may be outliers. In this data set,
the largest outlier is the one in the scatter plot, the Buick Estate station wagon. (Note that you could
have supplied the model name to the gname function above if you wanted to label the point with its
model name rather than its row number.)

Find the largest distance from the group mean.

max(stats.mdist)

ans = 31.5273

Find the point that has the largest distance from the group mean.

find(stats.mdist == ans)

ans = 20

Find the car model that corresponds to the largest distance from the group mean.

Model(20,:)

ans = 
'buick estate wagon (sw)          '

The gmdist field measures the distances between each pair of group means. Examine the group
means using grpstats.
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grpstats(x, Model_Year)

ans = 3×4
103 ×

    0.0177    0.1489    0.2869    3.4413
    0.0216    0.1011    0.1978    3.0787
    0.0317    0.0815    0.1289    2.4535

Find the distances between the each pair of group means.

stats.gmdist

ans = 3×3

         0    3.8277   11.1106
    3.8277         0    6.1374
   11.1106    6.1374         0

As might be expected, the multivariate distance between the extreme years 1970 and 1982 (11.1) is
larger than the difference between more closely spaced years (3.8 and 6.1). This is consistent with
the scatter plots, where the points seem to follow a progression as the year changes from 1970
through 1976 to 1982. If you had more groups, you might find it instructive to use the
manovacluster function to draw a diagram that presents clusters of the groups, formed using the
distances between their means.

See Also
gplotmatrix | manova1 | gname | manovacluster
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Model Specification for Repeated Measures Models
Model specification for a repeated measures model is a character vector or string scalar representing
a formula in the form

'y1-yk ~ terms',

where the responses and terms are in Wilkinson notation.

For example, if you have five repeated measures y1, y2, y3, y4, and y5, and you include the terms X1,
X2, X3, X4, and X3:X4 in your linear model, then you can specify modelspec as follows:

'y1-y5 ~ X1 + X2 + X3*X4'.

Wilkinson Notation
Wilkinson notation describes the factors present in models. It does not describe the multipliers
(coefficients) of those factors.

Use these rules to specify the responses in modelspec.

Wilkinson Notation Description
Y1,Y2,Y3 Specific list of variables
Y1-Y5 All table variables from Y1 through Y5

The following rules are for specifying terms in modelspec.

Wilkinson Notation Factors in Standard Notation
1 Constant (intercept) term
X^k, where k is a positive integer X, X2, ..., Xk

X1 + X2 X1, X2
X1*X2 X1, X2, X1*X2
X1:X2 X1*X2 only
-X2 Do not include X2
X1*X2 + X3 X1, X2, X3, X1*X2
X1 + X2 + X3 + X1:X2 X1, X2, X3, X1*X2
X1*X2*X3 - X1:X2:X3 X1, X2, X3, X1*X2, X1*X3, X2*X3
X1*(X2 + X3) X1, X2, X3, X1*X2, X1*X3

Statistics and Machine Learning Toolbox notation always includes a constant term unless you
explicitly remove the term using -1.

See Also
fitrm
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Compound Symmetry Assumption and Epsilon Corrections
The regular p-value calculations in the repeated measures anova (ranova) are accurate if the
theoretical distribution of the response variables has compound symmetry. This means that all
response variables have the same variance, and each pair of response variables share a common
correlation. That is,

Σ = σ2

1 ρ ⋯ ρ
ρ 1 ⋯ ρ
⋮ ⋮ ⋱ ⋮
ρ ρ ⋯ 1

.

Under the compound symmetry assumption, the F-statistics in the repeated measures anova table
have an F-distribution with degrees of freedom (v1, v2). Here, v1 is the rank of the contrast being
tested, and v2 is the degrees of freedom for error. If the compound symmetry assumption is not true,
the F-statistic has an approximate F-distribution with degrees of freedom (εv1, εv2), where ε is the
correction factor. Then, the p-value must be computed using the adjusted values. The three different
correction factor computations are as follows:

• Greenhouse-Geisser approximation

εGG =
∑

i = 1

p
λi

2

d ∑
i = 1

p
λi

2
,

where λi i = 1, 2, .., p are the eigenvalues of the covariance matrix. p is the number of variables,
and d is equal to p-1.

• Huynh-Feldt approximation

εHF = min 1,
ndεGG− 2

d n− rx − d2εGG
,

where n is the number of rows in the design matrix and r is the rank of the design matrix.
• Lower bound on the true p-value

εLB = 1
d .
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Sample Data in Randomized Block and Split-Plot Designs.” Journal of Educational Statistics.
Vol. 1, 1976, pp. 69–82.

[2] Greenhouse, S. W., and S. Geisser. “An Extension of Box’s Result on the Use of F-Distribution in
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See Also
ranova | epsilon | mauchly
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More About
• “Mauchly’s Test of Sphericity” on page 9-57
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Mauchly’s Test of Sphericity
The regular p-value calculations in the repeated measures anova (ranova) are accurate if the
theoretical distribution of the response variables have compound symmetry. This means that all
response variables have the same variance, and each pair of response variables share a common
correlation. That is,

Σ = σ2

1 ρ ⋯ ρ
ρ 1 ⋯ ρ
⋮ ⋮ ⋱ ⋮
ρ ρ ⋯ 1

.

If the compound symmetry assumption is false, then the degrees of freedom for the repeated
measures anova test must be adjusted by a factor ε, and the p-value must be computed using the
adjusted values.

Compound symmetry implies sphericity.

For a repeated measures model with responses y1, y2, ..., sphericity means that all pair-wise
differences y1 – y2, y1 – y3, ... have the same theoretical variance. Mauchly’s test is the most
accepted test for sphericity.

Mauchly’s W statistic is

W = T
trace T /p d ,

where

T = M′∑M .

M is a p-by-d orthogonal contrast matrix, Σ is the covariance matrix, p is the number of variables, and
d = p – 1.

A chi-square test statistic assesses the significance of W. If n is the number of rows in the design
matrix, and r is the rank of the design matrix, then the chi-square statistic is

C = − n− r log W D,

where

D = 1− 2d2 + d + 2
6d n− r .

The C test statistic has a chi-square distribution with (p(p – 1)/2) – 1 degrees of freedom. A small p-
value for the Mauchly’s test indicates that the sphericity assumption does not hold.

The rmanova method computes the p-values for the repeated measures anova based on the results of
the Mauchly’s test and each epsilon value.
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Multivariate Analysis of Variance for Repeated Measures
Multivariate analysis of variance analysis is a test of the form A*B*C = D, where B is the p-by-r
matrix of coefficients. p is the number of terms, such as the constant, linear predictors, dummy
variables for categorical predictors, and products and powers, r is the number of repeated measures,
and n is the number of subjects. A is an a-by-p matrix, with rank a ≤ p, defining hypotheses based on
the between-subjects model. C is an r-by-c matrix, with rank c ≤ r ≤ n – p, defining hypotheses based
on the within-subjects model, and D is an a-by-c matrix, containing the hypothesized value.

manova tests if the model terms are significant in their effect on the response by measuring how they
contribute to the overall covariance. It includes all terms in the between-subjects model. manova
always takes D as zero. The multivariate response for each observation (subject) is the vector of
repeated measures.

manova uses four different methods to measure these contributions: Wilks’ lambda, Pillai’s trace,
Hotelling-Lawley trace, Roy’s maximum root statistic. Define

T = AB C− D,

Z = A X′X −1A′ .

Then, the hypotheses sum of squares and products matrix is

Qh = T′Z−1T,

and the residuals sum of squares and products matrix is

Qe = C′ R′R C,

where

R = Y − XB .

The matrix Qh is analogous to the numerator of a univariate F-test, and Qe is analogous to the error
sum of squares. Hence, the four statistics manova uses are:

• Wilks’ lambda

Λ =
Qe

Qh + Qe
= ∏ 1

1 + λi
,

where λi are the solutions of the characteristic equation |Qh – λQe| = 0.
• Pillai’s trace

V = trace Qh Qh + Qe
−1 = ∑θi,

where θi values are the solutions of the characteristic equation Qh – θ(Qh + Qe) = 0.
• Hotelling-Lawley trace

U = trace QhQe
−1 = ∑λi .

• Roy’s maximum root statistic

Θ = max eig QhQe
−1 .
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Bayesian Optimization

• “Bayesian Optimization Algorithm” on page 10-2
• “Parallel Bayesian Optimization” on page 10-7
• “Bayesian Optimization Plot Functions” on page 10-11
• “Bayesian Optimization Output Functions” on page 10-19
• “Bayesian Optimization Workflow” on page 10-25
• “Variables for a Bayesian Optimization” on page 10-34
• “Bayesian Optimization Objective Functions” on page 10-37
• “Constraints in Bayesian Optimization” on page 10-39
• “Optimize Cross-Validated Classifier Using bayesopt” on page 10-46
• “Optimize Classifier Fit Using Bayesian Optimization” on page 10-56
• “Optimize a Boosted Regression Ensemble” on page 10-67
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Bayesian Optimization Algorithm
In this section...
“Algorithm Outline” on page 10-2
“Gaussian Process Regression for Fitting the Model” on page 10-3
“Acquisition Function Types” on page 10-3
“Acquisition Function Maximization” on page 10-5

Algorithm Outline
The Bayesian optimization algorithm attempts to minimize a scalar objective function f(x) for x in a
bounded domain. The function can be deterministic or stochastic, meaning it can return different
results when evaluated at the same point x. The components of x can be continuous reals, integers, or
categorical, meaning a discrete set of names.

Note Throughout this discussion, D represents the number of components of x.

The key elements in the minimization are:

• A Gaussian process model of f(x).
• A Bayesian update procedure for modifying the Gaussian process model at each new evaluation of

f(x).
• An acquisition function a(x) (based on the Gaussian process model of f) that you maximize to

determine the next point x for evaluation. For details, see “Acquisition Function Types” on page
10-3 and “Acquisition Function Maximization” on page 10-5.

Algorithm outline:

• Evaluate yi = f(xi) for NumSeedPoints points xi, taken at random within the variable bounds.
NumSeedPoints is a bayesopt setting. If there are evaluation errors, take more random points
until there are NumSeedPoints successful evaluations. The probability distribution of each
component is either uniform or log-scaled, depending on the Transform value in
optimizableVariable.

Then repeat the following steps:

1 Update the Gaussian process model of f(x) to obtain a posterior distribution over functions Q(f|xi,
yi for i = 1,...,t). (Internally, bayesopt uses fitrgp to fit a Gaussian process model to the data.)

2 Find the new point x that maximizes the acquisition function a(x).

The algorithm stops after reaching any of the following:

• A fixed number of iterations (default 30).
• A fixed time (default is no time limit).
• A stopping criterion that you supply in “Bayesian Optimization Output Functions” on page 10-19

or “Bayesian Optimization Plot Functions” on page 10-11.

For the algorithmic differences in parallel, see “Parallel Bayesian Algorithm” on page 10-7.
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Gaussian Process Regression for Fitting the Model
The underlying probabilistic model for the objective function f is a Gaussian process prior with added
Gaussian noise in the observations. So the prior distribution on f(x) is a Gaussian process with mean
μ(x;θ) and covariance kernel function k(x,x′;θ). Here, θ is a vector of kernel parameters. For the
particular kernel function bayesopt uses, see “Kernel Function” on page 10-3.

In a bit more detail, denote a set of points X = xi with associated objective function values F = fi. The
prior’s joint distribution of the function values F is multivariate normal, with mean μ(X) and
covariance matrix K(X,X), where Kij = k(xi,xj).

Without loss of generality, the prior mean is given as 0.

Also, the observations are assumed to have added Gaussian noise with variance σ2. So the prior
distribution has covariance K(X,X;θ) + σ2I.

Fitting a Gaussian process regression model to observations consists of finding values for the noise
variance σ2 and kernel parameters θ. This fitting is a computationally intensive process performed by
fitrgp.

For details on fitting a Gaussian process to observations, see “Gaussian Process Regression”.

Kernel Function

The kernel function k(x,x′;θ) can significantly affect the quality of a Gaussian process regression.
bayesopt uses the ARD Matérn 5/2 kernel defined in “Kernel (Covariance) Function Options” on
page 6-6.

See Snoek, Larochelle, and Adams [3].

Acquisition Function Types
Six choices of acquisition functions are available for bayesopt. There are three basic types, with
expected-improvement also modified by per-second or plus:

• 'expected-improvement-per-second-plus' (default)
• 'expected-improvement'
• 'expected-improvement-plus'
• 'expected-improvement-per-second'
• 'lower-confidence-bound'
• 'probability-of-improvement'

The acquisition functions evaluate the “goodness” of a point x based on the posterior distribution
function Q. When there are coupled constraints, including the Error constraint (see “Objective
Function Errors” on page 10-37), all acquisition functions modify their estimate of “goodness”
following a suggestion of Gelbart, Snoek, and Adams [2]. Multiply the “goodness” by an estimate of
the probability that the constraints are satisfied, to arrive at the acquisition function.

• “Expected Improvement” on page 10-4
• “Probability of Improvement” on page 10-4
• “Lower Confidence Bound” on page 10-4
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• “Per Second” on page 10-4
• “Plus” on page 10-5

Expected Improvement

The 'expected-improvement' family of acquisition functions evaluates the expected amount of
improvement in the objective function, ignoring values that cause an increase in the objective. In
other words, define

• xbest as the location of the lowest posterior mean.
• μQ(xbest) as the lowest value of the posterior mean.

Then the expected improvement

EI x, Q = EQ max 0, μQ xbest − f x .

Probability of Improvement

The 'probability-of-improvement' acquisition function makes a similar, but simpler,
calculation as 'expected-improvement'. In both cases, bayesopt first calculates xbest and
μQ(xbest). Then for 'probability-of-improvement', bayesopt calculates the probability PI that a
new point x leads to a better objective function value, modified by a “margin” parameter m:

PI x, Q = PQ f x < μQ xbest −m .

bayesopt takes m as the estimated noise standard deviation. bayesopt evaluates this probability as

PI = Φ νQ x ,

where

νQ x =
μQ xbest −m− μQ x

σQ x .

Here Φ(·) is the unit normal CDF, and σQ is the posterior standard deviation of the Gaussian process
at x.

Lower Confidence Bound

The 'lower-confidence-bound' acquisition function looks at the curve G two standard deviations
below the posterior mean at each point:

G x = μQ x − 2σQ x .

G(x) is the 2σQ lower confidence envelope of the objective function model. bayesopt then maximizes
the negative of G:

LCB = 2σQ x − μQ x .

Per Second

Sometimes, the time to evaluate the objective function can depend on the region. For example, many
Support Vector Machine calculations vary in timing a good deal over certain ranges of points. If so,
bayesopt can obtain better improvement per second by using time-weighting in its acquisition
function. The cost-weighted acquisition functions have the phrase per-second in their names.
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These acquisition functions work as follows. During the objective function evaluations, bayesopt
maintains another Bayesian model of objective function evaluation time as a function of position x.
The expected improvement per second that the acquisition function uses is

EIpS x =
EIQ x
μS x ,

where μS(x) is the posterior mean of the timing Gaussian process model.

Plus

To escape a local objective function minimum, the acquisition functions with plus in their names
modify their behavior when they estimate that they are overexploiting an area. To understand
overexploiting, let σF(x) be the standard deviation of the posterior objective function at x. Let σ be the
posterior standard deviation of the additive noise, so that

σQ
2(x) = σF

2(x) + σ2.

Define tσ to be the value of the ExplorationRatio option, a positive number. The bayesopt plus
acquisition functions, after each iteration, evaluate whether the next point x satisfies

σF(x) < tσσ.

If so, the algorithm declares that x is overexploiting. Then the acquisition function modifies its
“Kernel Function” on page 10-3 by multiplying θ by the number of iterations, as suggested by Bull [1].
This modification raises the variance σQ for points in between observations. It then generates a new
point based on the new fitted kernel function. If the new point x is again overexploiting, the
acquisition function multiplies θ by an additional factor of 10 and tries again. It continues in this way
up to five times, trying to generate a point x that is not overexploiting. The algorithm accepts the new
x as the next point.

ExplorationRatio therefore controls a tradeoff between exploring new points for a better global
solution, versus concentrating near points that have already been examined.

Acquisition Function Maximization
Internally, bayesopt maximizes an acquisition function using the following general steps:

1 For algorithms starting with 'expected-improvement' and for 'probability-of-
improvement', bayesopt estimates the smallest feasible mean of the posterior distribution
μQ(xbest) by sampling several thousand points within the variable bounds, taking several of the
best (low mean value) feasible points, and improving them using local search, to find the
ostensible best feasible point. Feasible means that the point satisfies constraints (see
“Constraints in Bayesian Optimization” on page 10-39).

2 For all algorithms, bayesopt samples several thousand points within the variable bounds, takes
several of the best (high acquisition function) feasible points, and improves them using local
search, to find the ostensible best feasible point. The acquisition function value depends on the
modeled posterior distribution, not a sample of the objective function, and so it can be calculated
quickly.
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Parallel Bayesian Optimization
In this section...
“Optimize in Parallel” on page 10-7
“Parallel Bayesian Algorithm” on page 10-7
“Settings for Best Parallel Performance” on page 10-8
“Differences in Parallel Bayesian Optimization Output” on page 10-9

Optimize in Parallel
Running Bayesian optimization in parallel can save time. Running in parallel requires Parallel
Computing Toolbox. bayesopt performs parallel objective function evaluations concurrently on
parallel workers.

To optimize in parallel:

• bayesopt — Set the UseParallel name-value argument to true. For example,

results = bayesopt(fun,vars,'UseParallel',true);

• Fit functions — Set the UseParallel field of the HyperparameterOptimizationOptions
structure to true. For example,

Mdl = fitcsvm(X,Y,'OptimizeHyperparameters','auto',...
    'HyperparameterOptimizationOptions',struct('UseParallel',true))

Parallel Bayesian Algorithm
The parallel Bayesian optimization algorithm is similar to the serial algorithm, which is described in
“Bayesian Optimization Algorithm” on page 10-2. The differences are:

• bayesopt assigns points to evaluate to the parallel workers, generally one point at a time.
bayesopt calculates on the client to determine which point to assign.

• After bayesopt evaluates the initial random points, it chooses points to evaluate by fitting a
Gaussian process (GP) model. To fit a GP model while some workers are still evaluating points,
bayesopt imputes a value to each point that is still on a worker. The imputed value is the mean of
the GP model value at the points it is evaluating, or some other value as specified by the
bayesopt 'ParallelMethod' name-value argument. For parallel optimization of fit functions,
bayesopt uses the default ParallelMethod imputed value.

• After bayesopt assigns a point to evaluate, and before it computes a new point to assign, it
checks whether too many workers are idle. The threshold for active workers is determined by the
MinWorkerUtilization name-value argument. If too many workers are idle, then bayesopt
assigns random points, chosen uniformly within bounds, to all idle workers. This step causes the
workers to be active more quickly, but the workers have random points rather than fitted points. If
the number of idle workers does not exceed the threshold, then bayesopt chooses a point to
evaluate as usual, by fitting a GP model and maximizing the acquisition function.

Note Due to the nonreproducibility of parallel timing, parallel Bayesian optimization does not
necessarily yield reproducible results.
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Settings for Best Parallel Performance
Fit functions have no special settings for better parallel performance. In contrast, several bayesopt
settings can help to speed an optimization.

Solver Options

Setting the GPActiveSetSize option to a smaller value than the default (300) can speed the
solution. The cost is potential inaccuracy in the points that bayesopt chooses to evaluate, because
the GP model of the objective function can be less accurate than with a larger value. Setting the
option to a larger value can result in a more accurate GP model, but requires more time to create the
model.

Setting the ParallelMethod option to 'max-observed' can lead bayesopt to search more widely
for a global optimum. This choice can lead to a better solution in less time. However, the default value
of 'clipped-model-prediction' is often best.

Setting the MinWorkerUtilization option to a large value can result in higher parallel utilization.
However, this setting causes more completely random points to be evaluated, which can lead to less
accurate solutions. A large value, in this context, depends on how many workers you have. The
default is floor(0.8*N), where N is the number of parallel workers. Setting the option to a lower
value can give lower parallel utilization, but with the benefit of higher quality points.

Placing the Objective Function on Workers

You can place an objective function on the parallel workers in one of three ways. Some have better
performance, but require a more complex setup.

1. Automatic If you give a function handle as the objective function, bayesopt sends the handle to
all the parallel workers at the beginning of its run. For example,

load ionosphere
splits = optimizableVariable('splits',[1,100],'Type','integer');
minleaf = optimizableVariable('minleaf',[1,100],'Type','integer');
fun = @(params)kfoldLoss(fitctree(X,Y,'Kfold',5,...
    'MaxNumSplits',params.splits,'MinLeaf',params.minleaf));

results = bayesopt(fun,[splits,minleaf],'UseParallel',true);

This method is effective if the handle is small, or if you run the optimization only once. However, if
you plan to run the optimization several times, you can save time by using one of the other two
techniques.

2. Parallel constant If you plan to run an optimization several times, save time by transferring the
objective function to the workers only once. This technique is especially effective when the function
handle incorporates a large amount of data. Transfer the objective once by setting the function
handle to a parallel.pool.Constant construct, as in this example.

load ionosphere
splits = optimizableVariable('splits',[1,100],'Type','integer');
minleaf = optimizableVariable('minleaf',[1,100],'Type','integer');
fun = @(params)kfoldLoss(fitctree(X,Y,'Kfold',5,...
    'MaxNumSplits',params.splits,'MinLeaf',params.minleaf));

C = copyFunctionHandleToWorkers(fun);

10 Bayesian Optimization

10-8



results1 = bayesopt(C,[splits,minleaf],'UseParallel',true);
results2 = bayesopt(C,[splits,minleaf],'UseParallel',true,...
    'MaxObjectiveEvaluations',50);
results3 = bayesopt(C,[splits,minleaf],'UseParallel',true,...
    'AcquisitionFunction','expected-improvement');

In this example, copyFunctionHandleToWorkers sends the function handle to the workers only
once.

3. Create objective function on workers If you have a great deal of data to send to the workers,
you can avoid loading the data in the client by using spmd to load the data on the workers. Use a
Composite with parallel.pool.Constant to access the distributed objective functions.

% makeFun is at the end of this script
spmd
    fun = makeFun();
end

% ObjectiveFunction is now a Composite. Get a parallel.pool.Constant
% that refers to it, without copying it to the client:
C = parallel.pool.Constant(fun);

% You could also use the line
% C = parallel.pool.Constant(@MakeFun);
% In this case, you do not use spmd

% Call bayesopt, passing the Constant
splits = optimizableVariable('splits', [1 100]);
minleaf = optimizableVariable('minleaf', [1 100]);
bo = bayesopt(C,[splits minleaf],'UseParallel',true);

function f = makeFun()
load('ionosphere','X','Y');
f = @fun;
    function L = fun(Params)
        L = kfoldLoss(fitctree(X,Y, ...
            'KFold', 5,...
            'MaxNumSplits',Params.splits, ...
            'MinLeaf', Params.minleaf));
    end
end

In this example, the function handle exists only on the workers. The handle never appears on the
client.

Differences in Parallel Bayesian Optimization Output
When bayesopt runs in parallel, the Bayesian optimization output includes these differences.

• Iterative Display — Iterative display includes a column showing the number of active workers.
This is the number after bayesopt assigns a job to the next worker.

• Plot Functions

• Objective Function Model plot (@plotObjectiveModel) shows the pending points (those
points executing on parallel workers). The height of the points depends on the
ParallelMethod name-value argument.
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• Elapsed Time plot (@plotElapsedTime) shows the total elapsed time with the label Real
time and the total objective function evaluation time, summed over all workers, with the label
Objective evaluation time (all workers). Objective evaluation time includes the time to start
a worker on a job.

See Also
parallel.pool.Constant | spmd

More About
• “Bayesian Optimization Algorithm” on page 10-2
• “Feature Extraction Workflow” on page 16-132
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Bayesian Optimization Plot Functions

In this section...
“Built-In Plot Functions” on page 10-11
“Custom Plot Function Syntax” on page 10-12
“Create a Custom Plot Function” on page 10-12

Built-In Plot Functions
There are two sets of built-in plot functions.

Model Plots — Apply When D ≤ 2 Description
@plotAcquisitionFunction Plot the acquisition function surface.
@plotConstraintModels Plot each constraint model surface. Negative values indicate

feasible points.

Also plot a P(feasible) surface.

Also plot the error model, if it exists, which ranges from –1 to 1.
Negative values mean that the model probably does not error,
positive values mean that it probably does error. The model is:

Plotted error = 2*Probability(error) – 1.
@plotObjectiveEvaluationTime
Model

Plot the objective function evaluation time model surface.

@plotObjectiveModel Plot the fun model surface, the estimated location of the
minimum, and the location of the next proposed point to
evaluate. For one-dimensional problems, plot envelopes one
credible interval above and below the mean function, and
envelopes one noise standard deviation above and below the
mean.

Trace Plots — Apply to All D Description
@plotObjective Plot each observed function value versus the number of

function evaluations.
@plotObjectiveEvaluationTime Plot each observed function evaluation run time versus the

number of function evaluations.
@plotMinObjective Plot the minimum observed and estimated function values

versus the number of function evaluations.
@plotElapsedTime Plot three curves: the total elapsed time of the optimization, the

total function evaluation time, and the total modeling and point
selection time, all versus the number of function evaluations.

Note When there are coupled constraints, iterative display and plot functions can give
counterintuitive results such as:
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• A minimum objective plot can increase.
• The optimization can declare a problem infeasible even when it showed an earlier feasible point.

The reason for this behavior is that the decision about whether a point is feasible can change as the
optimization progresses. bayesopt determines feasibility with respect to its constraint model, and
this model changes as bayesopt evaluates points. So a “minimum objective” plot can increase when
the minimal point is later deemed infeasible, and the iterative display can show a feasible point that is
later deemed infeasible.

Custom Plot Function Syntax
A custom plot function has the same syntax as a custom output function (see “Bayesian Optimization
Output Functions” on page 10-19):

stop = plotfun(results,state)

bayesopt passes the results and state variables to your function. Your function returns stop,
which you set to true to halt the iterations, or to false to continue the iterations.

results is an object of class BayesianOptimization that contains the available information on
the computations.

state has these possible values:

• 'initial' — bayesopt is about to start iterating. Use this state to set up a plot or to perform
other initializations.

• 'iteration' — bayesopt just finished an iteration. Generally, you perform most of the plotting
or other calculations in this state.

• 'done' — bayesopt just finished its final iteration. Clean up plots or otherwise prepare for the
plot function to shut down.

Create a Custom Plot Function

This example shows how to create a custom plot function for bayesopt. It further shows how to use
information in the UserData property of a BayesianOptimization object.

Problem Statement

The problem is to find parameters of a Support Vector Machine (SVM) classification to minimize the
cross-validated loss. The specific model is the same as in “Optimize Cross-Validated Classifier Using
bayesopt” on page 10-46. Therefore, the objective function is essentially the same, except it also
computes UserData, in this case the number of support vectors in an SVM model fitted to the
current parameters.

Create a custom plot function that plots the number of support vectors in the SVM model as the
optimization progresses. To give the plot function access to the number of support vectors, create a
third output, UserData, to return the number of support vectors.

Objective Function

Create an objective function that computes the cross-validation loss for a fixed cross-validation
partition, and that returns the number of support vectors in the resulting model.
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function [f,viol,nsupp] = mysvmminfn(x,cdata,grp,c)
SVMModel = fitcsvm(cdata,grp,'KernelFunction','rbf',...
    'KernelScale',x.sigma,'BoxConstraint',x.box);
f = kfoldLoss(crossval(SVMModel,'CVPartition',c));
viol = [];
nsupp = sum(SVMModel.IsSupportVector);
end

Custom Plot Function

Create a custom plot function that uses the information computed in UserData. Have the function
plot both the current number of constraints and the number of constraints for the model with the best
objective function found.

function stop = svmsuppvec(results,state)
persistent hs nbest besthist nsupptrace
stop = false;
switch state
    case 'initial'
        hs = figure;
        besthist = [];
        nbest = 0;
        nsupptrace = [];
    case 'iteration'
        figure(hs)
        nsupp = results.UserDataTrace{end};   % get nsupp from UserDataTrace property.
        nsupptrace(end+1) = nsupp; % accumulate nsupp values in a vector.
        if (results.ObjectiveTrace(end) == min(results.ObjectiveTrace)) || (length(results.ObjectiveTrace) == 1) % current is best
            nbest = nsupp;
        end
        besthist = [besthist,nbest];
        plot(1:length(nsupptrace),nsupptrace,'b',1:length(besthist),besthist,'r--')
        xlabel 'Iteration number'
        ylabel 'Number of support vectors'
        title 'Number of support vectors at each iteration'
        legend('Current iteration','Best objective','Location','best')
        drawnow
end

Set Up the Model

Generate ten base points for each class.

rng default
grnpop = mvnrnd([1,0],eye(2),10);
redpop = mvnrnd([0,1],eye(2),10);

Generate 100 data points of each class.

redpts = zeros(100,2);grnpts = redpts;
for i = 1:100
    grnpts(i,:) = mvnrnd(grnpop(randi(10),:),eye(2)*0.02);
    redpts(i,:) = mvnrnd(redpop(randi(10),:),eye(2)*0.02);
end

 Bayesian Optimization Plot Functions

10-13



Put the data into one matrix, and make a vector grp that labels the class of each point.

cdata = [grnpts;redpts];
grp = ones(200,1);
% Green label 1, red label -1
grp(101:200) = -1;

Check the basic classification of all the data using the default SVM parameters.

SVMModel = fitcsvm(cdata,grp,'KernelFunction','rbf','ClassNames',[-1 1]);

Set up a partition to fix the cross validation. Without this step, the cross validation is random, so the
objective function is not deterministic.

c = cvpartition(200,'KFold',10);

Check the cross-validation accuracy of the original fitted model.

loss = kfoldLoss(fitcsvm(cdata,grp,'CVPartition',c,...
    'KernelFunction','rbf','BoxConstraint',SVMModel.BoxConstraints(1),...
    'KernelScale',SVMModel.KernelParameters.Scale))

loss =

    0.1350

Prepare Variables for Optimization

The objective function takes an input z = [rbf_sigma,boxconstraint] and returns the cross-
validation loss value of z. Take the components of z as positive, log-transformed variables between
1e-5 and 1e5. Choose a wide range because you do not know which values are likely to be good.

sigma = optimizableVariable('sigma',[1e-5,1e5],'Transform','log');
box = optimizableVariable('box',[1e-5,1e5],'Transform','log');

Set Plot Function and Call the Optimizer

Search for the best parameters [sigma,box] using bayesopt. For reproducibility, choose the
'expected-improvement-plus' acquisition function. The default acquisition function depends on
run time, so it can give varying results.

Plot the number of support vectors as a function of the iteration number, and plot the number of
support vectors for the best parameters found.

obj = @(x)mysvmminfn(x,cdata,grp,c);
results = bayesopt(obj,[sigma,box],...
    'IsObjectiveDeterministic',true,'Verbose',0,...
    'AcquisitionFunctionName','expected-improvement-plus',...
    'PlotFcn',{@svmsuppvec,@plotObjectiveModel,@plotMinObjective})

results = 

  BayesianOptimization with properties:

                      ObjectiveFcn: @(x)mysvmminfn(x,cdata,grp,c)
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              VariableDescriptions: [1x2 optimizableVariable]
                           Options: [1x1 struct]
                      MinObjective: 0.0750
                   XAtMinObjective: [1x2 table]
             MinEstimatedObjective: 0.0750
          XAtMinEstimatedObjective: [1x2 table]
           NumObjectiveEvaluations: 30
                  TotalElapsedTime: 74.1602
                         NextPoint: [1x2 table]
                            XTrace: [30x2 table]
                    ObjectiveTrace: [30x1 double]
                  ConstraintsTrace: []
                     UserDataTrace: {30x1 cell}
      ObjectiveEvaluationTimeTrace: [30x1 double]
                IterationTimeTrace: [30x1 double]
                        ErrorTrace: [30x1 double]
                  FeasibilityTrace: [30x1 logical]
       FeasibilityProbabilityTrace: [30x1 double]
               IndexOfMinimumTrace: [30x1 double]
             ObjectiveMinimumTrace: [30x1 double]
    EstimatedObjectiveMinimumTrace: [30x1 double]
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See Also

Related Examples
• “Bayesian Optimization Output Functions” on page 10-19
• “Constraints in Bayesian Optimization” on page 10-39
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Bayesian Optimization Output Functions
In this section...
“What Is a Bayesian Optimization Output Function?” on page 10-19
“Built-In Output Functions” on page 10-19
“Custom Output Functions” on page 10-19
“Bayesian Optimization Output Function” on page 10-20

What Is a Bayesian Optimization Output Function?
An output function is a function that is called at the end of every iteration of bayesopt. An output
function can halt iterations. It can also create plots, save information to your workspace or to a file,
or perform any other calculation you like.

Other than halting the iterations, output functions cannot change the course of a Bayesian
optimization. They simply monitor the progress of the optimization.

Built-In Output Functions
These built-in output functions save your optimization results to a file or to the workspace.

• @assignInBase — Saves your results after each iteration to a variable named
'BayesoptResults' in your workspace. To choose a different name, pass the
SaveVariableName name-value argument.

• @saveToFile — Saves your results after each iteration to a file named
'BayesoptResults.mat' in your current folder. To choose a different name or folder, pass the
SaveFileName name-value argument.

For example, to save the results after each iteration to a workspace variable named
'BayesIterations',

results = bayesopt(fun,vars,'OutputFcn',@assignInBase, ...
    'SaveVariableName','BayesIterations')

Custom Output Functions
Write a custom output function with signature

stop = outputfun(results,state)

bayesopt passes the results and state variables to your function. Your function returns stop,
which you set to true to halt the iterations, or to false to allow the iterations to continue.

results is an object of class BayesianOptimization. results contains the available information
on the computations so far.

state has possible values:

• 'initial' — bayesopt is about to start iterating.
• 'iteration' — bayesopt just finished an iteration.
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• 'done' — bayesopt just finished its final iteration.

For an example, see “Bayesian Optimization Output Function” on page 10-20.

Bayesian Optimization Output Function

This example shows how to use a custom output function with Bayesian optimization. The output
function halts the optimization when the objective function, which is the cross-validation error rate,
drops below 13%. The output function also plots the time for each iteration.

function stop = outputfun(results,state)
persistent h
stop = false;
switch state
    case 'initial'
        h = figure;
    case 'iteration'
        if results.MinObjective < 0.13
            stop = true;
        end
        figure(h)
        tms = results.IterationTimeTrace;
        plot(1:numel(tms),tms')
        xlabel('Iteration Number')
        ylabel('Time for Iteration')
        title('Time for Each Iteration')
        drawnow
end
end

The objective function is the cross validation loss of the KNN classification of the ionosphere data.
Load the data and, for reproducibility, set the default random stream.

load ionosphere
rng default

Optimize over neighborhood size from 1 through 30, and for three distance metrics.

num = optimizableVariable('n',[1,30],'Type','integer');
dst = optimizableVariable('dst',{'chebychev','euclidean','minkowski'},'Type','categorical');
vars = [num,dst];

Set the cross-validation partition and objective function. For reproducibility, set the
AcquisitionFunctionName to 'expected-improvement-plus'. Run the optimization.

c = cvpartition(351,'Kfold',5);
fun = @(x)kfoldLoss(fitcknn(X,Y,'CVPartition',c,'NumNeighbors',x.n,...
    'Distance',char(x.dst),'NSMethod','exhaustive'));
results = bayesopt(fun,vars,'OutputFcn',@outputfun,...
    'AcquisitionFunctionName','expected-improvement-plus');

|=====================================================================================================|
| Iter | Eval   | Objective   | Objective   | BestSoFar   | BestSoFar   |            n |          dst |
|      | result |             | runtime     | (observed)  | (estim.)    |              |              |
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|=====================================================================================================|
|    1 | Best   |     0.19943 |     0.53734 |     0.19943 |     0.19943 |           24 |    chebychev |
|    2 | Best   |     0.16809 |     0.34669 |     0.16809 |      0.1747 |            9 |    euclidean |
|    3 | Best   |     0.12536 |     0.21602 |     0.12536 |     0.12861 |            3 |    chebychev |

__________________________________________________________
Optimization completed.
Total function evaluations: 3
Total elapsed time: 9.6962 seconds
Total objective function evaluation time: 1.1

Best observed feasible point:
    n       dst   
    _    _________

    3    chebychev

Observed objective function value = 0.12536
Estimated objective function value = 0.12861
Function evaluation time = 0.21602

Best estimated feasible point (according to models):
    n       dst   
    _    _________

    3    chebychev

Estimated objective function value = 0.12861
Estimated function evaluation time = 0.3424
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See Also

Related Examples
• “Bayesian Optimization Plot Functions” on page 10-11
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Bayesian Optimization Workflow
In this section...
“What Is Bayesian Optimization?” on page 10-25
“Ways to Perform Bayesian Optimization” on page 10-25
“Bayesian Optimization Using a Fit Function” on page 10-26
“Bayesian Optimization Using bayesopt” on page 10-26
“Bayesian Optimization Characteristics” on page 10-27
“Parameters Available for Fit Functions” on page 10-28
“Hyperparameter Optimization Options for Fit Functions” on page 10-30

What Is Bayesian Optimization?
Optimization, in its most general form, is the process of locating a point that minimizes a real-valued
function called the objective function. Bayesian optimization is the name of one such process.
Bayesian optimization internally maintains a Gaussian process model of the objective function, and
uses objective function evaluations to train the model. One innovation in Bayesian optimization is the
use of an acquisition function, which the algorithm uses to determine the next point to evaluate. The
acquisition function can balance sampling at points that have low modeled objective functions, and
exploring areas that have not yet been modeled well. For details, see “Bayesian Optimization
Algorithm” on page 10-2.

Bayesian optimization is part of Statistics and Machine Learning Toolbox because it is well-suited to
optimizing hyperparameters of classification and regression algorithms. A hyperparameter is an
internal parameter of a classifier or regression function, such as the box constraint of a support
vector machine, or the learning rate of a robust classification ensemble. These parameters can
strongly affect the performance of a classifier or regressor, and yet it is typically difficult or time-
consuming to optimize them. See “Bayesian Optimization Characteristics” on page 10-27.

Typically, optimizing the hyperparameters means that you try to minimize the cross-validation loss of
a classifier or regression.

Ways to Perform Bayesian Optimization
You can perform a Bayesian optimization in several ways:

• fitcauto and fitrauto — Pass predictor and response data to the fitcauto or fitrauto
function to optimize across a selection of model types and hyperparameter values. Unlike other
approaches, using fitcauto or fitrauto does not require you to specify a single model before
the optimization; model selection is part of the optimization process. The optimization minimizes
cross-validation loss, which is modeled using a multi-TreeBagger model in fitcauto and a
multi-RegressionGP model in fitrauto, rather than a single Gaussian process regression model
as used in other approaches. See “Bayesian Optimization” on page 35-1882 for fitcauto and
“Bayesian Optimization” on page 35-2460 for fitrauto.

• Classification Learner and Regression Learner apps — Choose Optimizable models in the
machine learning apps and automatically tune their hyperparameter values by using Bayesian
optimization. The optimization minimizes the model loss based on the selected validation options.
This approach has fewer tuning options than using a fit function, but allows you to perform
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Bayesian optimization directly in the apps. See “Hyperparameter Optimization in Classification
Learner App” on page 23-54 and “Hyperparameter Optimization in Regression Learner App” on
page 24-35.

• Fit function — Include the OptimizeHyperparameters name-value argument in many fitting
functions to apply Bayesian optimization automatically. The optimization minimizes cross-
validation loss. This approach gives you fewer tuning options than using bayesopt, but enables
you to perform Bayesian optimization more easily. See “Bayesian Optimization Using a Fit
Function” on page 10-26.

• bayesopt — Exert the most control over your optimization by calling bayesopt directly. This
approach requires you to write an objective function, which does not have to represent cross-
validation loss. See “Bayesian Optimization Using bayesopt” on page 10-26.

Bayesian Optimization Using a Fit Function
To minimize the error in a cross-validated response via Bayesian optimization, follow these steps.

1 Choose your classification or regression solver among the fit functions that accept the
OptimizeHyperparameters name-value argument.

• Classification fit functions: fitcdiscr, fitcecoc, fitcensemble, fitcgam, fitckernel,
fitcknn, fitclinear, fitcnb, fitcnet, fitcsvm, fitctree

• Regression fit functions: fitrensemble, fitrgam, fitrgp, fitrkernel, fitrlinear,
fitrnet, fitrsvm, fitrtree

2 Decide on the hyperparameters to optimize, and pass them in the OptimizeHyperparameters
name-value argument. For each fit function, you can choose from a set of hyperparameters. See
Eligible Hyperparameters for Fit Functions, or use the hyperparameters function, or consult
the fit function reference page.

You can pass a cell array of parameter names. You can also set 'auto' as the
OptimizeHyperparameters value, which chooses a typical set of hyperparameters to optimize,
or 'all' to optimize all available parameters.

3 For ensemble fit functions fitcecoc, fitcensemble, and fitrensemble, also include
parameters of the weak learners in the OptimizeHyperparameters cell array.

4 Optionally, create an options structure for the HyperparameterOptimizationOptions name-
value argument. See “Hyperparameter Optimization Options for Fit Functions” on page 10-30.

5 Call the fit function with the appropriate name-value arguments.

For examples, see “Optimize Classifier Fit Using Bayesian Optimization” on page 10-56 and
“Optimize a Boosted Regression Ensemble” on page 10-67. Also, every fit function reference page
contains a Bayesian optimization example.

Bayesian Optimization Using bayesopt
To perform a Bayesian optimization using bayesopt, follow these steps.

1 Prepare your variables. See “Variables for a Bayesian Optimization” on page 10-34.
2 Create your objective function. See “Bayesian Optimization Objective Functions” on page 10-37.

If necessary, create constraints, too. See “Constraints in Bayesian Optimization” on page 10-39.
To include extra parameters in an objective function, see “Parameterizing Functions”.
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3 Decide on options, meaning the bayseopt Name,Value on page 35-165 pairs. You are not
required to pass any options to bayesopt but you typically do, especially when trying to improve
a solution.

4 Call bayesopt.
5 Examine the solution. You can decide to resume the optimization by using resume, or restart the

optimization, usually with modified options.

For an example, see “Optimize Cross-Validated Classifier Using bayesopt” on page 10-46.

Bayesian Optimization Characteristics
Bayesian optimization algorithms are best suited to these problem types.

Characteristic Details
Low dimension Bayesian optimization works best in a low number of dimensions,

typically 10 or fewer. While Bayesian optimization can solve some
problems with a few dozen variables, it is not recommended for
dimensions higher than about 50.

Expensive objective Bayesian optimization is designed for objective functions that are slow
to evaluate. It has considerable overhead, typically several seconds for
each iteration.

Low accuracy Bayesian optimization does not necessarily give very accurate results.
If you have a deterministic objective function, you can sometimes
improve the accuracy by starting a standard optimization algorithm
from the bayesopt solution.

Global solution Bayesian optimization is a global technique. Unlike many other
algorithms, to search for a global solution you do not have to start the
algorithm from various initial points.

Hyperparameters Bayesian optimization is well-suited to optimizing hyperparameters of
another function. A hyperparameter is a parameter that controls the
behavior of a function. For example, the fitcsvm function fits an SVM
model to data. It has hyperparameters BoxConstraint and
KernelScale for its 'rbf' KernelFunction. For an example of
Bayesian optimization applied to hyperparameters, see “Optimize
Cross-Validated Classifier Using bayesopt” on page 10-46.
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Parameters Available for Fit Functions
Eligible Hyperparameters for Fit Functions

Function Name Eligible Parameters
fitcdiscr Delta

Gamma
DiscrimType

fitcecoc Coding
eligible fitcdiscr parameters for
'Learners','discriminant'
eligible fitckernel parameters for 'Learners','kernel'
eligible fitcknn parameters for 'Learners','knn'
eligible fitclinear parameters for 'Learners','linear'
eligible fitcsvm parameters for 'Learners','svm'
eligible fitctree parameters for 'Learners','tree'

fitcensemble Method
NumLearningCycles
LearnRate
eligible fitcdiscr parameters for
'Learners','discriminant'
eligible fitcknn parameters for 'Learners','knn'
eligible fitctree parameters for 'Learners','tree'

fitcgam InitialLearnRateForInteractions
InitialLearnRateForPredictors
Interactions
MaxNumSplitsPerInteraction
MaxNumSplitsPerPredictor
NumTreesPerInteraction
NumTreesPerPredictor

fitckernel Learner
KernelScale
Lambda
NumExpansionDimensions

fitcknn NumNeighbors
Distance
DistanceWeight
Exponent
Standardize

fitclinear Lambda
Learner
Regularization

fitcnb DistributionNames
Width
Kernel
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Function Name Eligible Parameters
fitcnet Activations

Lambda
LayerBiasesInitializer
LayerWeightsInitializer
LayerSizes
Standardize

fitcsvm BoxConstraint
KernelScale
KernelFunction
PolynomialOrder
Standardize

fitctree MinLeafSize
MaxNumSplits
SplitCriterion
NumVariablesToSample

fitrensemble Method
NumLearningCycles
LearnRate
eligible fitrtree parameters for 'Learners','tree':
MinLeafSize
MaxNumSplits
NumVariablesToSample

fitrgam InitialLearnRateForInteractions
InitialLearnRateForPredictors
Interactions
MaxNumSplitsPerInteraction
MaxNumSplitsPerPredictor
NumTreesPerInteraction
NumTreesPerPredictor

fitrgp Sigma
BasisFunction
KernelFunction
KernelScale
Standardize

fitrkernel Learner
KernelScale
Lambda
NumExpansionDimensions
Epsilon

fitrlinear Lambda
Learner
Regularization
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Function Name Eligible Parameters
fitrnet Activations

Lambda
LayerBiasesInitializer
LayerWeightsInitializer
LayerSizes
Standardize

fitrsvm BoxConstraint
KernelScale
Epsilon
KernelFunction
PolynomialOrder
Standardize

fitrtree MinLeafSize
MaxNumSplits
NumVariablesToSample

Hyperparameter Optimization Options for Fit Functions
When optimizing using a fit function, you have these options available in the
HyperparameterOptimizationOptions name-value argument. Give the value as a structure. All
fields in the structure are optional.

Field Name Values Default
Optimizer • 'bayesopt' — Use Bayesian optimization.

Internally, this setting calls bayesopt.
• 'gridsearch' — Use grid search with

NumGridDivisions values per dimension.
• 'randomsearch' — Search at random among

MaxObjectiveEvaluations points.

'gridsearch' searches in a random order, using
uniform sampling without replacement from the
grid. After optimization, you can get a table in grid
order by using the command
sortrows(Mdl.HyperparameterOptimizatio
nResults).

'bayesopt'
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Field Name Values Default
AcquisitionFunct
ionName

• 'expected-improvement-per-second-
plus'

• 'expected-improvement'
• 'expected-improvement-plus'
• 'expected-improvement-per-second'
• 'lower-confidence-bound'
• 'probability-of-improvement'

Acquisition functions whose names include per-
second do not yield reproducible results because
the optimization depends on the runtime of the
objective function. Acquisition functions whose
names include plus modify their behavior when
they are overexploiting an area. For more details,
see “Acquisition Function Types” on page 10-3.

'expected-
improvement-per-
second-plus'

MaxObjectiveEval
uations

Maximum number of objective function
evaluations.

30 for 'bayesopt' and
'randomsearch', and
the entire grid for
'gridsearch'

MaxTime Time limit, specified as a positive real scalar. The
time limit is in seconds, as measured by tic and
toc. The run time can exceed MaxTime because
MaxTime does not interrupt function evaluations.

Inf

NumGridDivisions For 'gridsearch', the number of values in each
dimension. The value can be a vector of positive
integers giving the number of values for each
dimension, or a scalar that applies to all
dimensions. This field is ignored for categorical
variables.

10

ShowPlots Logical value indicating whether to show plots. If
true, this field plots the best observed objective
function value against the iteration number. If you
use Bayesian optimization (Optimizer is
'bayesopt'), then this field also plots the best
estimated objective function value. The best
observed objective function values and best
estimated objective function values correspond to
the values in the BestSoFar (observed) and
BestSoFar (estim.) columns of the iterative
display, respectively. You can find these values in
the properties ObjectiveMinimumTrace and
EstimatedObjectiveMinimumTrace of
Mdl.HyperparameterOptimizationResults.
If the problem includes one or two optimization
parameters for Bayesian optimization, then
ShowPlots also plots a model of the objective
function against the parameters.

true
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Field Name Values Default
SaveIntermediate
Results

Logical value indicating whether to save results
when Optimizer is 'bayesopt'. If true, this
field overwrites a workspace variable named
'BayesoptResults' at each iteration. The
variable is a BayesianOptimization object.

false

Verbose Display at the command line:

• 0 — No iterative display
• 1 — Iterative display
• 2 — Iterative display with extra information

For details, see the bayesopt Verbose name-
value argument and the example “Optimize
Classifier Fit Using Bayesian Optimization” on
page 10-56.

1

UseParallel Logical value indicating whether to run Bayesian
optimization in parallel, which requires Parallel
Computing Toolbox. Due to the nonreproducibility
of parallel timing, parallel Bayesian optimization
does not necessarily yield reproducible results. For
details, see “Parallel Bayesian Optimization” on
page 10-7.

false

Repartition Logical value indicating whether to repartition the
cross-validation at every iteration. If this field is
false, the optimizer uses a single partition for
the optimization.

The setting true usually gives the most robust
results because it takes partitioning noise into
account. However, for good results, true requires
at least twice as many function evaluations.

false

Use no more than one of the following three options.
CVPartition A cvpartition object, as created by

cvpartition
'Kfold',5 if you do not
specify a cross-validation
fieldHoldout A scalar in the range (0,1) representing the

holdout fraction
Kfold An integer greater than 1

See Also
bayesopt | BayesianOptimization

More About
• “Bayesian Optimization Algorithm” on page 10-2
• “Optimize Cross-Validated Classifier Using bayesopt” on page 10-46
• “Optimize Classifier Fit Using Bayesian Optimization” on page 10-56
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• “Optimize a Boosted Regression Ensemble” on page 10-67
• “Bayesian Optimization Output Function” on page 10-20
• “Bayesian Optimization with Coupled Constraints” on page 10-42
• “Bayesian Optimization with Tall Arrays” on page 32-9
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Variables for a Bayesian Optimization
In this section...
“Syntax for Creating Optimization Variables” on page 10-34
“Variables for Optimization Examples” on page 10-35

Syntax for Creating Optimization Variables
For each variable in your objective function, create a variable description object using
optimizableVariable. Each variable has a unique name and a range of values. The minimal syntax
for variable creation is

variable = optimizableVariable(Name,Range)

This function creates a real variable that ranges from the lower bound Range(1) to the upper bound
Range(2).

You can specify three types of variables in the Type name-value argument:

• 'real' — Continuous real values between finite bounds. Give Range as the two-element vector
[lower upper], which represent the lower and upper bounds.

• 'integer' — Integer values between finite bounds, similar to 'real'.
• 'categorical' — Cell array of names of possible values, such as {'red','green','blue'},

that you specify in the Range argument.

For 'real' or 'integer' variables, you can specify that bayesopt searches in a log-scaled space
by setting the Transform name-value argument to 'log'. For this transformation, ensure that the
lower bound in the Range is strictly positive for 'real' and nonnegative for 'integer'.

Include variables for bayesopt as a vector in the second argument.

results = bayesopt(fun,[xvar,ivar,rvar])

To exclude a variable from an optimization, set Optimize to false, either in the name-value
argument of optimizableVariable, or by dot notation:

xvar.Optimize = false;

Tip

• There are two names associated with an optimizableVariable:

• The MATLAB workspace variable name
• The name of the variable in the optimization

For example,

xvar = optimizableVariable('spacevar',[1,100]);

xvar is the MATLAB workspace variable, and 'spacevar' is the variable in the optimization.

Use these names as follows:
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• Use xvar as an element in the vector of variables you pass to bayesopt. For example,

results = bayesopt(fun,[xvar,tvar])
• Use 'spacevar' as the name of the variable in the optimization. For example, in an objective

function,

function objective = mysvmfun(x,cdata,grp)
SVMModel = fitcsvm(cdata,grp,'KernelFunction','rbf',...
    'BoxConstraint',x.spacevar,...
    'KernelScale',x.tvar);
objective = kfoldLoss(crossval(SVMModel));

Variables for Optimization Examples

Real variable from 0 to 1:

var1 = optimizableVariable('xvar',[0 1])

var1 = 
  optimizableVariable with properties:

         Name: 'xvar'
        Range: [0 1]
         Type: 'real'
    Transform: 'none'
     Optimize: 1

Integer variable from 0 to 1000 on a log scale:

var2 = optimizableVariable('ivar',[0 1000],'Type','integer','Transform','log')

var2 = 
  optimizableVariable with properties:

         Name: 'ivar'
        Range: [0 1000]
         Type: 'integer'
    Transform: 'log'
     Optimize: 1

Categorical variable of rainbow colors:

var3 = optimizableVariable('rvar',{'r' 'o' 'y' 'g' 'b' 'i' 'v'},'Type','categorical')

var3 = 
  optimizableVariable with properties:

         Name: 'rvar'
        Range: {'r'  'o'  'y'  'g'  'b'  'i'  'v'}
         Type: 'categorical'
    Transform: 'none'
     Optimize: 1
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See Also

Related Examples
• “Bayesian Optimization Workflow” on page 10-25
• “Bayesian Optimization Objective Functions” on page 10-37
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Bayesian Optimization Objective Functions
In this section...
“Objective Function Syntax” on page 10-37
“Objective Function Example” on page 10-37
“Objective Function Errors” on page 10-37

Objective Function Syntax
bayesopt attempts to minimize an objective function. If, instead, you want to maximize a function,
set the objective function to the negative of the function you want to maximize. See “Maximizing
Functions”. To include extra parameters in an objective function, see “Parameterizing Functions”.

bayesopt passes a table of variables to the objective function. The variables have the names and
types that you declare; see “Variables for a Bayesian Optimization” on page 10-34.

The objective function has the following signature:

[objective,coupledconstraints,userdata] = fun(x)

1 objective — The objective function value at x, a numeric scalar. bayesopt returns an error if
the objective function returns a nonnumeric value or a matrix with more than one entry.

2 coupledconstraints — Value of coupled constraints, if any (optional output), a vector of real
values. A negative value indicates that a constraint is satisfied, a positive value indicates that it is
not satisfied. For details, see “Coupled Constraints” on page 10-41.

3 userdata — Optional data that your function can return for further uses, such as plotting or
logging (optional output). For an example, see “Bayesian Optimization Plot Functions” on page
10-11.

Objective Function Example
This objective function returns the loss in a cross-validated fit of an SVM model with parameters box
and sigma. The objective also returns a coupled constraint function that is positive (infeasible) when
the number of support vectors exceeds 100 (100 is feasible, 101 is not).

function [objective,constraint] = mysvmfun(x,cdata,grp)
SVMModel = fitcsvm(cdata,grp,'KernelFunction','rbf',...
    'BoxConstraint',x.box,...
    'KernelScale',x.sigma);
objective = kfoldLoss(crossval(SVMModel));
constraint = sum(SVMModel.SupportVectors) - 100.5;

To use the objective function, assuming that cdata and grp exist in the workspace, create an
anonymous function that incorporates the data, as described in “Parameterizing Functions”.

fun = @(x)mysvmfun(x,cdata,grp);
results = bayesopt(fun,vars) % Assumes vars exists

Objective Function Errors
bayesopt deems your objective function to return an error when the objective function returns
anything other than a finite real scalar. For example, if your objective function returns a complex
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value, NaN, or Inf, then bayesopt deems that your objective function errors. If bayesopt
encounters an error, it continues to optimize, and automatically updates a Bayesian model of points
that lead to errors. This Bayesian model is the Error model. bayesopt incorporates the Error model
as a coupled constraint. See “Coupled Constraints” on page 10-41.

When errors exist, you can plot the Error model by setting the bayesopt PlotFcn name-value
argument @plotConstraintModels. Or you can retrospectively call plot on the results of a
Bayesian optimization, and include @plotConstraintModels.

See Also

Related Examples
• “Bayesian Optimization Workflow” on page 10-25
• “Variables for a Bayesian Optimization” on page 10-34
• “Constraints in Bayesian Optimization” on page 10-39
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Constraints in Bayesian Optimization
In this section...
“Bounds” on page 10-39
“Deterministic Constraints — XConstraintFcn” on page 10-39
“Conditional Constraints — ConditionalVariableFcn” on page 10-40
“Coupled Constraints” on page 10-41
“Bayesian Optimization with Coupled Constraints” on page 10-42

Bounds
bayesopt requires finite bounds on all variables. (categorical variables are, by nature, bounded
in their possible values.) Pass the lower and upper bounds for real and integer-valued variables in
optimizableVariable.

bayesopt uses these bounds to sample points, either uniformly or log-scaled. You set the scaling for
sampling in optimizableVariable.

For example, to constrain a variable X1 to values between 1e-6 and 1e3, scaled logarithmically,

xvar = optimizableVariable('X1',[1e-6,1e3],'Transform','log')

bayesopt includes the endpoints in its range. Therefore, you cannot use 0 as a lower bound for a
real log-transformed variable.

Tip To use a zero lower bound in a real log-transformed variable, set the lower bound to 1, then
inside the objective function use x-1.

For an integer-valued log-transformed variable, you can use 0 as a lower bound. If a lower bound is 0
for an integer-valued variable, then the software creates the log-scaled space by using the log1p
function instead of the log function to include 0 in the variable sampling range. log1p is a function
that returns log(1+x) for an input x.

Deterministic Constraints — XConstraintFcn
Sometimes your problem is valid or well-defined only for points in a certain region, called the feasible
region. A deterministic constraint is a deterministic function that returns true when a point is
feasible, and false when a point is infeasible. So deterministic constraints are not stochastic, and
they are not functions of a group of points, but of individual points.

Tip It is more efficient to use optimizableVariable bounds, instead of deterministic constraints,
to confine the optimization to a rectangular region.

Write a deterministic constraint function using the signature

tf = xconstraint(X)
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• X is a width-D table of arbitrary height.
• tf is a logical column vector, where tf(i) = true exactly when X(i,:) is feasible.

Pass the deterministic constraint function in the bayesopt XConstraintFcn name-value argument.
For example,

results = bayesopt(fun,vars,'XConstraintFcn',@xconstraint)

bayesopt evaluates deterministic constraints on thousands of points, and so runs faster when your
constraint function is vectorized. See “Vectorization”.

For example, suppose that the variables named 'x1' and 'x2' are feasible when the norm of the
vector [x1 x2] is less than 6, and when x1 <= x2. The following constraint function evaluates
these constraints.

function tf = xconstraint(X)
tf1 = sqrt(X.x1.^2 + X.x2.^2) < 6;
tf2 = X.x1 <= X.x2;
tf = tf1 & tf2;

Conditional Constraints — ConditionalVariableFcn
Conditional constraints are functions that enforce one of the following two conditions:

• When some variables have certain values, other variables are set to given values.
• When some variables have certain values, other variables have NaN or, for categorical variables,

<undefined> values.

Specify a conditional constraint by setting the bayesopt ConditionalVariableFcn name-value
argument to a function handle, say @condvariablefcn. The @condvariablefcn function must
have the signature

Xnew = condvariablefcn(X)

• X is a width-D table of arbitrary height.
• Xnew is a table the same type and size as X.

condvariablefcn sets Xnew to be equal to X, except it also sets the relevant variables in each row
of Xnew to the correct values for the constraint.

Note If you have both conditional constraints and deterministic constraints, bayesopt applies the
conditional constraints first. Therefore, if your conditional constraint function can set variables to
NaN or <undefined>, ensure that your deterministic constraint function can process these values
correctly.

Conditional constraints ensure that variable values are sensible. Therefore, bayesopt applies
conditional constraints first so that all passed values are sensible.

Conditional Constraint That Sets a Variable Value

Suppose that you are optimizing a classification using fitcdiscr, and you optimize over both the
'DiscrimType' and 'Gamma' name-value arguments. When 'DiscrimType' is one of the
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quadratic types, 'Gamma' must be 0 or the solver errors. In that case, use this conditional constraint
function:

function XTable = fitcdiscrCVF(XTable)
% Gamma must be 0 if discrim type is a quadratic
XTable.Gamma(ismember(XTable.DiscrimType, {'quadratic',...
        'diagQuadratic','pseudoQuadratic'})) = 0;
end

Conditional Constraint That Sets a Variable to NaN

Suppose that you are optimizing a classification using fitcsvm, and you optimize over both the
'KernelFunction' and 'PolynomialOrder' name-value arguments. When 'KernelFunction'
is not 'polynomial', the 'PolynomialOrder' setting does not apply. The following function
enforces this conditional constraint.

function Xnew = condvariablefcn(X)
Xnew = X;
Xnew.PolynomialOrder(Xnew.KernelFunction ~= 'polynomial') = NaN;

You can save a line of code as follows:

function X = condvariablefcn(X)
X.PolynomialOrder(Xnew.KernelFunction ~= 'polynomial') = NaN;

In addition, define an objective function that does not pass the 'PolynomialOrder' name-value
argument to fitcsvm when the value of 'PolynomialOrder' is NaN.

fun = @(X)mysvmfun(X,predictors,responce,c)

function objective = mysvmfun(X,predictors,response,c)
    args = {predictors,response, ...
        'CVPartition',c, ...
        'KernelFunction',X.KernelFunction};
    if ~isnan(X.PolynomialOrder)
        args = [args,{'PolynomialOrder',X.PolynomialOrder}];
    end
    objective = kfoldLoss(fitcsvm(args{:}));
end

Coupled Constraints
Coupled constraints are constraints that you can evaluate only by calling the objective function.
These constraints can be stochastic or deterministic. Return these constraint values from your
objective function in the second argument. See “Bayesian Optimization Objective Functions” on page
10-37.

The objective function returns a numeric vector for the coupled constraints, one entry for each
coupled constraint. For each entry, a negative value indicates that the constraint is satisfied (also
called feasible). A positive value indicates that the constraint is not satisfied (infeasible).

bayesopt automatically creates a coupled constraint, called the Error constraint, for every run. This
constraint enables bayesopt to model points that cause errors in objective function evaluation. For
details, see “Objective Function Errors” on page 10-37 and predictError.

If you have coupled constraints in addition to the Error constraint:
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• Include the NumCoupledConstraints name-value argument in your bayesopt call (required).
Do not include the Error constraint in this number.

• If any of your coupled constraints are stochastic, include the
AreCoupledConstraintsDeterministic name-value argument and pass false for any
stochastic constraint.

Observe the coupled constraint values in each iteration by setting the bayesopt Verbose name-
value argument to 1 or 2.

Note When there are coupled constraints, iterative display and plot functions can give
counterintuitive results such as:

• A minimum objective plot can increase.
• The optimization can declare a problem infeasible even when it showed an earlier feasible point.

The reason for this behavior is that the decision about whether a point is feasible can change as the
optimization progresses. bayesopt determines feasibility with respect to its constraint model, and
this model changes as bayesopt evaluates points. So a “minimum objective” plot can increase when
the minimal point is later deemed infeasible, and the iterative display can show a feasible point that is
later deemed infeasible.

For an example, see “Bayesian Optimization with Coupled Constraints” on page 10-42.

Bayesian Optimization with Coupled Constraints

A coupled constraint is one that can be evaluated only by evaluating the objective function. In this
case, the objective function is the cross-validated loss of an SVM model. The coupled constraint is
that the number of support vectors is no more than 100. The model details are in “Optimize Cross-
Validated Classifier Using bayesopt” on page 10-46.

Create the data for classification.

rng default
grnpop = mvnrnd([1,0],eye(2),10);
redpop = mvnrnd([0,1],eye(2),10);
redpts = zeros(100,2);
grnpts = redpts;
for i = 1:100
    grnpts(i,:) = mvnrnd(grnpop(randi(10),:),eye(2)*0.02);
    redpts(i,:) = mvnrnd(redpop(randi(10),:),eye(2)*0.02);
end
cdata = [grnpts;redpts];
grp = ones(200,1);
grp(101:200) = -1;
c = cvpartition(200,'KFold',10);
sigma = optimizableVariable('sigma',[1e-5,1e5],'Transform','log');
box = optimizableVariable('box',[1e-5,1e5],'Transform','log');

The objective function is the cross-validation loss of the SVM model for partition c. The coupled
constraint is the number of support vectors minus 100.5. This ensures that 100 support vectors give a
negative constraint value, but 101 support vectors give a positive value. The model has 200 data

10 Bayesian Optimization

10-42



points, so the coupled constraint values range from -99.5 (there is always at least one support vector)
to 99.5. Positive values mean the constraint is not satisfied.

function [objective,constraint] = mysvmfun(x,cdata,grp,c)
SVMModel = fitcsvm(cdata,grp,'KernelFunction','rbf',...
    'BoxConstraint',x.box,...
    'KernelScale',x.sigma);
cvModel = crossval(SVMModel,'CVPartition',c);
objective = kfoldLoss(cvModel);
constraint = sum(SVMModel.IsSupportVector)-100.5;

Pass the partition c and fitting data cdata and grp to the objective function fun by creating fun as
an anonymous function that incorporates this data. See “Parameterizing Functions”.

fun = @(x)mysvmfun(x,cdata,grp,c);

Set the NumCoupledConstraints to 1 so the optimizer knows that there is a coupled constraint. Set
options to plot the constraint model.

results = bayesopt(fun,[sigma,box],'IsObjectiveDeterministic',true,...
    'NumCoupledConstraints',1,'PlotFcn',...
    {@plotMinObjective,@plotConstraintModels},...
    'AcquisitionFunctionName','expected-improvement-plus','Verbose',0);
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Most points lead to an infeasible number of support vectors.

See Also
bayesopt | optimizableVariable

Related Examples
• “Bayesian Optimization Workflow” on page 10-25
• “Variables for a Bayesian Optimization” on page 10-34
• “Bayesian Optimization Objective Functions” on page 10-37
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Optimize Cross-Validated Classifier Using bayesopt

This example shows how to optimize an SVM classification using the bayesopt function.

Alternatively, you can optimize a classifier by using the OptimizeHyperparameters name-value
argument. For an example, see “Optimize Classifier Fit Using Bayesian Optimization” on page 10-56.

Generate Data

The classification works on locations of points from a Gaussian mixture model. In The Elements of
Statistical Learning, Hastie, Tibshirani, and Friedman (2009), page 17 describes the model. The
model begins with generating 10 base points for a "green" class, distributed as 2-D independent
normals with mean (1,0) and unit variance. It also generates 10 base points for a "red" class,
distributed as 2-D independent normals with mean (0,1) and unit variance. For each class (green and
red), generate 100 random points as follows:

1 Choose a base point m of the appropriate color uniformly at random.
2 Generate an independent random point with 2-D normal distribution with mean m and variance

I/5, where I is the 2-by-2 identity matrix. In this example, use a variance I/50 to show the
advantage of optimization more clearly.

Generate the 10 base points for each class.

rng('default') % For reproducibility
grnpop = mvnrnd([1,0],eye(2),10);
redpop = mvnrnd([0,1],eye(2),10);

View the base points.

plot(grnpop(:,1),grnpop(:,2),'go')
hold on
plot(redpop(:,1),redpop(:,2),'ro')
hold off
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Since some red base points are close to green base points, it can be difficult to classify the data
points based on location alone.

Generate the 100 data points of each class.

redpts = zeros(100,2);grnpts = redpts;
for i = 1:100
    grnpts(i,:) = mvnrnd(grnpop(randi(10),:),eye(2)*0.02);
    redpts(i,:) = mvnrnd(redpop(randi(10),:),eye(2)*0.02);
end

View the data points.

figure
plot(grnpts(:,1),grnpts(:,2),'go')
hold on
plot(redpts(:,1),redpts(:,2),'ro')
hold off
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Prepare Data For Classification

Put the data into one matrix, and make a vector grp that labels the class of each point. 1 indicates
the green class, and -1 indicates the red class.

cdata = [grnpts;redpts];
grp = ones(200,1);
grp(101:200) = -1;

Prepare Cross-Validation

Set up a partition for cross-validation. This step fixes the train and test sets that the optimization uses
at each step.

c = cvpartition(200,'KFold',10);

Prepare Variables for Bayesian Optimization

Set up a function that takes an input z = [rbf_sigma,boxconstraint] and returns the cross-
validation loss value of z. Take the components of z as positive, log-transformed variables between
1e-5 and 1e5. Choose a wide range, because you don't know which values are likely to be good.

sigma = optimizableVariable('sigma',[1e-5,1e5],'Transform','log');
box = optimizableVariable('box',[1e-5,1e5],'Transform','log');
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Objective Function

This function handle computes the cross-validation loss at parameters [sigma,box]. For details, see
kfoldLoss.

bayesopt passes the variable z to the objective function as a one-row table.

minfn = @(z)kfoldLoss(fitcsvm(cdata,grp,'CVPartition',c,...
    'KernelFunction','rbf','BoxConstraint',z.box,...
    'KernelScale',z.sigma));

Optimize Classifier

Search for the best parameters [sigma,box] using bayesopt. For reproducibility, choose the
'expected-improvement-plus' acquisition function. The default acquisition function depends on
run time, and so can give varying results.

results = bayesopt(minfn,[sigma,box],'IsObjectiveDeterministic',true,...
    'AcquisitionFunctionName','expected-improvement-plus')

|=====================================================================================================|
| Iter | Eval   | Objective   | Objective   | BestSoFar   | BestSoFar   |        sigma |          box |
|      | result |             | runtime     | (observed)  | (estim.)    |              |              |
|=====================================================================================================|
|    1 | Best   |        0.61 |     0.40565 |        0.61 |        0.61 |   0.00013375 |        13929 |
|    2 | Best   |       0.345 |     0.29626 |       0.345 |       0.345 |        24526 |        1.936 |
|    3 | Accept |        0.61 |     0.31897 |       0.345 |       0.345 |    0.0026459 |   0.00084929 |
|    4 | Accept |       0.345 |     0.31722 |       0.345 |       0.345 |       3506.3 |   6.7427e-05 |
|    5 | Accept |       0.345 |     0.33104 |       0.345 |       0.345 |       9135.2 |       571.87 |
|    6 | Accept |       0.345 |     0.30854 |       0.345 |       0.345 |        99701 |        10223 |
|    7 | Best   |       0.295 |     0.29894 |       0.295 |       0.295 |       455.88 |       9957.4 |
|    8 | Best   |        0.24 |      2.4229 |        0.24 |        0.24 |        31.56 |        99389 |
|    9 | Accept |        0.24 |      3.2602 |        0.24 |        0.24 |       10.451 |        64429 |
|   10 | Accept |        0.35 |     0.41737 |        0.24 |        0.24 |       17.331 |   1.0264e-05 |
|   11 | Best   |        0.23 |      2.1217 |        0.23 |        0.23 |       16.005 |        90155 |
|   12 | Best   |         0.1 |     0.57219 |         0.1 |         0.1 |      0.36562 |        80878 |
|   13 | Accept |       0.115 |     0.33192 |         0.1 |         0.1 |       0.1793 |        68459 |
|   14 | Accept |       0.105 |     0.35248 |         0.1 |         0.1 |       0.2267 |        95421 |
|   15 | Best   |       0.095 |     0.44002 |       0.095 |       0.095 |      0.28999 |    0.0058227 |
|   16 | Best   |       0.075 |     0.26786 |       0.075 |       0.075 |      0.30554 |       8.9017 |
|   17 | Accept |       0.085 |     0.31765 |       0.075 |       0.075 |      0.41122 |       4.4476 |
|   18 | Accept |       0.085 |     0.32035 |       0.075 |       0.075 |      0.25565 |       7.8038 |
|   19 | Accept |       0.075 |     0.26066 |       0.075 |       0.075 |      0.32869 |       18.076 |
|   20 | Accept |       0.085 |     0.33293 |       0.075 |       0.075 |      0.32442 |       5.2118 |
|=====================================================================================================|
| Iter | Eval   | Objective   | Objective   | BestSoFar   | BestSoFar   |        sigma |          box |
|      | result |             | runtime     | (observed)  | (estim.)    |              |              |
|=====================================================================================================|
|   21 | Accept |         0.3 |     0.28491 |       0.075 |       0.075 |       1.3592 |    0.0098067 |
|   22 | Accept |        0.12 |     0.29493 |       0.075 |       0.075 |      0.17515 |   0.00070913 |
|   23 | Accept |       0.175 |     0.35029 |       0.075 |       0.075 |       0.1252 |     0.010749 |
|   24 | Accept |       0.105 |      0.3235 |       0.075 |       0.075 |       1.1664 |        31.13 |
|   25 | Accept |         0.1 |     0.38706 |       0.075 |       0.075 |      0.57465 |       2013.8 |
|   26 | Accept |        0.12 |     0.29141 |       0.075 |       0.075 |      0.42922 |   1.1602e-05 |
|   27 | Accept |        0.12 |      0.3151 |       0.075 |       0.075 |      0.42956 |   0.00027218 |
|   28 | Accept |       0.095 |      0.2999 |       0.075 |       0.075 |       0.4806 |       13.452 |
|   29 | Accept |       0.105 |     0.32554 |       0.075 |       0.075 |      0.19755 |       943.87 |
|   30 | Accept |       0.205 |     0.40658 |       0.075 |       0.075 |       3.5051 |       93.492 |
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__________________________________________________________
Optimization completed.
MaxObjectiveEvaluations of 30 reached.
Total function evaluations: 30
Total elapsed time: 62.4327 seconds
Total objective function evaluation time: 16.974

Best observed feasible point:
     sigma      box  
    _______    ______

    0.30554    8.9017

Observed objective function value = 0.075
Estimated objective function value = 0.075
Function evaluation time = 0.26786

Best estimated feasible point (according to models):
     sigma      box  
    _______    ______

    0.32869    18.076

Estimated objective function value = 0.075
Estimated function evaluation time = 0.29036

results = 
  BayesianOptimization with properties:
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                      ObjectiveFcn: [function_handle]
              VariableDescriptions: [1x2 optimizableVariable]
                           Options: [1x1 struct]
                      MinObjective: 0.0750
                   XAtMinObjective: [1x2 table]
             MinEstimatedObjective: 0.0750
          XAtMinEstimatedObjective: [1x2 table]
           NumObjectiveEvaluations: 30
                  TotalElapsedTime: 62.4327
                         NextPoint: [1x2 table]
                            XTrace: [30x2 table]
                    ObjectiveTrace: [30x1 double]
                  ConstraintsTrace: []
                     UserDataTrace: {30x1 cell}
      ObjectiveEvaluationTimeTrace: [30x1 double]
                IterationTimeTrace: [30x1 double]
                        ErrorTrace: [30x1 double]
                  FeasibilityTrace: [30x1 logical]
       FeasibilityProbabilityTrace: [30x1 double]
               IndexOfMinimumTrace: [30x1 double]
             ObjectiveMinimumTrace: [30x1 double]
    EstimatedObjectiveMinimumTrace: [30x1 double]

Obtain the best estimated feasible point from the XAtMinEstimatedObjective property or by
using the bestPoint function. By default, the bestPoint function uses the 'min-visited-
upper-confidence-interval' criterion. For details, see the “Criterion” on page 35-0  name-
value argument of bestPoint.

results.XAtMinEstimatedObjective

ans=1×2 table
     sigma      box  
    _______    ______

    0.32869    18.076

z = bestPoint(results)

z=1×2 table
     sigma      box  
    _______    ______

    0.32869    18.076

Use the best point to train a new, optimized SVM classifier.

SVMModel = fitcsvm(cdata,grp,'KernelFunction','rbf', ...
    'KernelScale',z.sigma,'BoxConstraint',z.box);

To visualize the support vector classifier, predict scores over a grid.

d = 0.02;
[x1Grid,x2Grid] = meshgrid(min(cdata(:,1)):d:max(cdata(:,1)), ...
    min(cdata(:,2)):d:max(cdata(:,2)));
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xGrid = [x1Grid(:),x2Grid(:)];
[~,scores] = predict(SVMModel,xGrid);

Plot the classification boundaries.

figure
h(1:2) = gscatter(cdata(:,1),cdata(:,2),grp,'rg','+*');
hold on
h(3) = plot(cdata(SVMModel.IsSupportVector,1) ,...
    cdata(SVMModel.IsSupportVector,2),'ko');
contour(x1Grid,x2Grid,reshape(scores(:,2),size(x1Grid)),[0 0],'k');
legend(h,{'-1','+1','Support Vectors'},'Location','Southeast');

Evaluate Accuracy on New Data

Generate and classify new test data points.

grnobj = gmdistribution(grnpop,.2*eye(2));
redobj = gmdistribution(redpop,.2*eye(2));

newData = random(grnobj,10);
newData = [newData;random(redobj,10)];
grpData = ones(20,1);  % green = 1
grpData(11:20) = -1; % red = -1

v = predict(SVMModel,newData);

Compute the misclassification rates on the test data set.

 Optimize Cross-Validated Classifier Using bayesopt

10-53



L = loss(SVMModel,newData,grpData)

L = 0.3500

See which new data points are correctly classified. Circle the correctly classified points in red, and
the incorrectly classified points in black.

h(4:5) = gscatter(newData(:,1),newData(:,2),v,'mc','**');

mydiff = (v == grpData); % Classified correctly

for ii = mydiff % Plot red squares around correct pts
    h(6) = plot(newData(ii,1),newData(ii,2),'rs','MarkerSize',12);
end

for ii = not(mydiff) % Plot black squares around incorrect pts
    h(7) = plot(newData(ii,1),newData(ii,2),'ks','MarkerSize',12);
end
legend(h,{'-1 (training)','+1 (training)','Support Vectors', ...
    '-1 (classified)','+1 (classified)', ...
    'Correctly Classified','Misclassified'}, ...
    'Location','Southeast');
hold off

See Also
bayesopt | optimizableVariable
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Related Examples
• “Optimize Classifier Fit Using Bayesian Optimization” on page 10-56
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Optimize Classifier Fit Using Bayesian Optimization

This example shows how to optimize an SVM classification using the fitcsvm function and the
OptimizeHyperparameters name-value argument.

Generate Data

The classification works on locations of points from a Gaussian mixture model. In The Elements of
Statistical Learning, Hastie, Tibshirani, and Friedman (2009), page 17 describes the model. The
model begins with generating 10 base points for a "green" class, distributed as 2-D independent
normals with mean (1,0) and unit variance. It also generates 10 base points for a "red" class,
distributed as 2-D independent normals with mean (0,1) and unit variance. For each class (green and
red), generate 100 random points as follows:

1 Choose a base point m of the appropriate color uniformly at random.
2 Generate an independent random point with 2-D normal distribution with mean m and variance

I/5, where I is the 2-by-2 identity matrix. In this example, use a variance I/50 to show the
advantage of optimization more clearly.

Generate the 10 base points for each class.

rng('default') % For reproducibility
grnpop = mvnrnd([1,0],eye(2),10);
redpop = mvnrnd([0,1],eye(2),10);

View the base points.

plot(grnpop(:,1),grnpop(:,2),'go')
hold on
plot(redpop(:,1),redpop(:,2),'ro')
hold off
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Since some red base points are close to green base points, it can be difficult to classify the data
points based on location alone.

Generate the 100 data points of each class.

redpts = zeros(100,2);
grnpts = redpts;
for i = 1:100
    grnpts(i,:) = mvnrnd(grnpop(randi(10),:),eye(2)*0.02);
    redpts(i,:) = mvnrnd(redpop(randi(10),:),eye(2)*0.02);
end

View the data points.

figure
plot(grnpts(:,1),grnpts(:,2),'go')
hold on
plot(redpts(:,1),redpts(:,2),'ro')
hold off
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Prepare Data for Classification

Put the data into one matrix, and make a vector grp that labels the class of each point. 1 indicates
the green class, and –1 indicates the red class.

cdata = [grnpts;redpts];
grp = ones(200,1);
grp(101:200) = -1;

Prepare Cross-Validation

Set up a partition for cross-validation.

c = cvpartition(200,'KFold',10);

This step is optional. If you specify a partition for the optimization, then you can compute an actual
cross-validation loss for the returned model.

Optimize Fit

To find a good fit, meaning one with optimal hyperparameters that minimize the cross-validation loss,
use Bayesian optimization. Specify a list of hyperparameters to optimize by using the
OptimizeHyperparameters name-value argument, and specify optimization options by using the
HyperparameterOptimizationOptions name-value argument.

Specify 'OptimizeHyperparameters' as 'auto'. The 'auto' option includes a typical set of
hyperparameters to optimize. fitcsvm finds optimal values of BoxConstraint and KernelScale.
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Set the hyperparameter optimization options to use the cross-validation partition c and to choose the
'expected-improvement-plus' acquisition function for reproducibility. The default acquisition
function depends on run time and, therefore, can give varying results.

opts = struct('CVPartition',c,'AcquisitionFunctionName','expected-improvement-plus');
Mdl = fitcsvm(cdata,grp,'KernelFunction','rbf', ...
    'OptimizeHyperparameters','auto','HyperparameterOptimizationOptions',opts)

|=====================================================================================================|
| Iter | Eval   | Objective   | Objective   | BestSoFar   | BestSoFar   | BoxConstraint|  KernelScale |
|      | result |             | runtime     | (observed)  | (estim.)    |              |              |
|=====================================================================================================|
|    1 | Best   |       0.345 |     0.76327 |       0.345 |       0.345 |      0.00474 |       306.44 |
|    2 | Best   |       0.115 |     0.42645 |       0.115 |     0.12678 |       430.31 |       1.4864 |
|    3 | Accept |        0.52 |     0.32806 |       0.115 |      0.1152 |     0.028415 |     0.014369 |
|    4 | Accept |        0.61 |     0.37875 |       0.115 |     0.11504 |       133.94 |    0.0031427 |
|    5 | Accept |        0.34 |     0.33024 |       0.115 |     0.11504 |     0.010993 |       5.7742 |
|    6 | Best   |       0.085 |     0.35843 |       0.085 |    0.085039 |       885.63 |      0.68403 |
|    7 | Accept |       0.105 |     0.33501 |       0.085 |    0.085428 |       0.3057 |      0.58118 |
|    8 | Accept |        0.21 |     0.37447 |       0.085 |     0.09566 |      0.16044 |      0.91824 |
|    9 | Accept |       0.085 |     0.37825 |       0.085 |     0.08725 |       972.19 |      0.46259 |
|   10 | Accept |         0.1 |     0.46175 |       0.085 |    0.090952 |       990.29 |        0.491 |
|   11 | Best   |        0.08 |     0.34912 |        0.08 |    0.079362 |       2.5195 |        0.291 |
|   12 | Accept |        0.09 |     0.31453 |        0.08 |     0.08402 |       14.338 |      0.44386 |
|   13 | Accept |         0.1 |     0.33135 |        0.08 |     0.08508 |    0.0022577 |      0.23803 |
|   14 | Accept |        0.11 |      0.3311 |        0.08 |    0.087378 |       0.2115 |      0.32109 |
|   15 | Best   |        0.07 |     0.33437 |        0.07 |    0.081507 |        910.2 |      0.25218 |
|   16 | Best   |       0.065 |     0.35245 |       0.065 |    0.072457 |       953.22 |      0.26253 |
|   17 | Accept |       0.075 |     0.33658 |       0.065 |    0.072554 |       998.74 |      0.23087 |
|   18 | Accept |       0.295 |     0.57731 |       0.065 |    0.072647 |       996.18 |       44.626 |
|   19 | Accept |        0.07 |     0.36027 |       0.065 |     0.06946 |       985.37 |      0.27389 |
|   20 | Accept |       0.165 |     0.34144 |       0.065 |    0.071622 |     0.065103 |      0.13679 |
|=====================================================================================================|
| Iter | Eval   | Objective   | Objective   | BestSoFar   | BestSoFar   | BoxConstraint|  KernelScale |
|      | result |             | runtime     | (observed)  | (estim.)    |              |              |
|=====================================================================================================|
|   21 | Accept |       0.345 |     0.30097 |       0.065 |    0.071764 |        971.7 |       999.01 |
|   22 | Accept |        0.61 |     0.36624 |       0.065 |    0.071967 |    0.0010168 |    0.0010005 |
|   23 | Accept |       0.345 |       0.365 |       0.065 |    0.071959 |    0.0011459 |       995.89 |
|   24 | Accept |        0.35 |     0.30814 |       0.065 |    0.071863 |    0.0010003 |       40.628 |
|   25 | Accept |        0.24 |      0.4192 |       0.065 |    0.072124 |       996.55 |       10.423 |
|   26 | Accept |        0.61 |     0.42319 |       0.065 |    0.072067 |       994.71 |    0.0010063 |
|   27 | Accept |        0.47 |     0.37079 |       0.065 |     0.07218 |       993.69 |     0.029723 |
|   28 | Accept |         0.3 |     0.34093 |       0.065 |    0.072291 |       993.15 |       170.01 |
|   29 | Accept |        0.16 |      0.5717 |       0.065 |    0.072103 |       992.81 |       3.8594 |
|   30 | Accept |       0.365 |     0.35355 |       0.065 |    0.072112 |    0.0010017 |     0.044287 |
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__________________________________________________________
Optimization completed.
MaxObjectiveEvaluations of 30 reached.
Total function evaluations: 30
Total elapsed time: 67.9383 seconds
Total objective function evaluation time: 11.5829

Best observed feasible point:
    BoxConstraint    KernelScale
    _____________    ___________

       953.22          0.26253  

Observed objective function value = 0.065
Estimated objective function value = 0.073726
Function evaluation time = 0.35245

Best estimated feasible point (according to models):
    BoxConstraint    KernelScale
    _____________    ___________
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       985.37          0.27389  

Estimated objective function value = 0.072112
Estimated function evaluation time = 0.35386

Mdl = 
  ClassificationSVM
                         ResponseName: 'Y'
                CategoricalPredictors: []
                           ClassNames: [-1 1]
                       ScoreTransform: 'none'
                      NumObservations: 200
    HyperparameterOptimizationResults: [1x1 BayesianOptimization]
                                Alpha: [77x1 double]
                                 Bias: -0.2352
                     KernelParameters: [1x1 struct]
                       BoxConstraints: [200x1 double]
                      ConvergenceInfo: [1x1 struct]
                      IsSupportVector: [200x1 logical]
                               Solver: 'SMO'

  Properties, Methods

fitcsvm returns a ClassificationSVM model object that uses the best estimated feasible point.
The best estimated feasible point is the set of hyperparameters that minimizes the upper confidence
bound of the cross-validation loss based on the underlying Gaussian process model of the Bayesian
optimization process.

The Bayesian optimization process internally maintains a Gaussian process model of the objective
function. The objective function is the cross-validated misclassification rate for classification. For
each iteration, the optimization process updates the Gaussian process model and uses the model to
find a new set of hyperparameters. Each line of the iterative display shows the new set of
hyperparameters and these column values:

• Objective — Objective function value computed at the new set of hyperparameters.
• Objective runtime — Objective function evaluation time.
• Eval result — Result report, specified as Accept, Best, or Error. Accept indicates that the

objective function returns a finite value, and Error indicates that the objective function returns a
value that is not a finite real scalar. Best indicates that the objective function returns a finite
value that is lower than previously computed objective function values.

• BestSoFar(observed) — The minimum objective function value computed so far. This value is
either the objective function value of the current iteration (if the Eval result value for the
current iteration is Best) or the value of the previous Best iteration.

• BestSoFar(estim.) — At each iteration, the software estimates the upper confidence bounds of
the objective function values, using the updated Gaussian process model, at all the sets of
hyperparameters tried so far. Then the software chooses the point with the minimum upper
confidence bound. The BestSoFar(estim.) value is the objective function value returned by the
predictObjective function at the minimum point.

The plot below the iterative display shows the BestSoFar(observed) and BestSoFar(estim.)
values in blue and green, respectively.
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The returned object Mdl uses the best estimated feasible point, that is, the set of hyperparameters
that produces the BestSoFar(estim.) value in the final iteration based on the final Gaussian
process model.

You can obtain the best point from the HyperparameterOptimizationResults property or by
using the bestPoint function.

Mdl.HyperparameterOptimizationResults.XAtMinEstimatedObjective

ans=1×2 table
    BoxConstraint    KernelScale
    _____________    ___________

       985.37          0.27389  

[x,CriterionValue,iteration] = bestPoint(Mdl.HyperparameterOptimizationResults)

x=1×2 table
    BoxConstraint    KernelScale
    _____________    ___________

       985.37          0.27389  

CriterionValue = 0.0888

iteration = 19

By default, the bestPoint function uses the 'min-visited-upper-confidence-interval'
criterion. This criterion chooses the hyperparameters obtained from the 19th iteration as the best
point. CriterionValue is the upper bound of the cross-validated loss computed by the final
Gaussian process model. Compute the actual cross-validated loss by using the partition c.

L_MinEstimated = kfoldLoss(fitcsvm(cdata,grp,'CVPartition',c,'KernelFunction','rbf', ...
    'BoxConstraint',x.BoxConstraint,'KernelScale',x.KernelScale))

L_MinEstimated = 0.0700

The actual cross-validated loss is close to the estimated value. The Estimated objective
function value is displayed below the plots of the optimization results.

You can also extract the best observed feasible point (that is, the last Best point in the iterative
display) from the HyperparameterOptimizationResults property or by specifying Criterion as
'min-observed'.

Mdl.HyperparameterOptimizationResults.XAtMinObjective

ans=1×2 table
    BoxConstraint    KernelScale
    _____________    ___________

       953.22          0.26253  

[x_observed,CriterionValue_observed,iteration_observed] = bestPoint(Mdl.HyperparameterOptimizationResults,'Criterion','min-observed')

x_observed=1×2 table
    BoxConstraint    KernelScale
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    _____________    ___________

       953.22          0.26253  

CriterionValue_observed = 0.0650

iteration_observed = 16

The 'min-observed' criterion chooses the hyperparameters obtained from the 16th iteration as the
best point. CriterionValue_observed is the actual cross-validated loss computed using the
selected hyperparameters. For more information, see the “Criterion” on page 35-0  name-value
argument of bestPoint.

Visualize the optimized classifier.

d = 0.02;
[x1Grid,x2Grid] = meshgrid(min(cdata(:,1)):d:max(cdata(:,1)), ...
    min(cdata(:,2)):d:max(cdata(:,2)));
xGrid = [x1Grid(:),x2Grid(:)];
[~,scores] = predict(Mdl,xGrid);

figure
h(1:2) = gscatter(cdata(:,1),cdata(:,2),grp,'rg','+*');
hold on
h(3) = plot(cdata(Mdl.IsSupportVector,1), ...
    cdata(Mdl.IsSupportVector,2),'ko');
contour(x1Grid,x2Grid,reshape(scores(:,2),size(x1Grid)),[0 0],'k');
legend(h,{'-1','+1','Support Vectors'},'Location','Southeast');
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Evaluate Accuracy on New Data

Generate and classify new test data points.

grnobj = gmdistribution(grnpop,.2*eye(2));
redobj = gmdistribution(redpop,.2*eye(2));

newData = random(grnobj,10);
newData = [newData;random(redobj,10)];
grpData = ones(20,1); % green = 1
grpData(11:20) = -1; % red = -1

v = predict(Mdl,newData);

Compute the misclassification rates on the test data set.

L_Test = loss(Mdl,newData,grpData)

L_Test = 0.3500

Determine which new data points are classified correctly. Format the correctly classified points in red
squares and the incorrectly classified points in black squares.

h(4:5) = gscatter(newData(:,1),newData(:,2),v,'mc','**');

mydiff = (v == grpData); % Classified correctly

for ii = mydiff % Plot red squares around correct pts
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    h(6) = plot(newData(ii,1),newData(ii,2),'rs','MarkerSize',12);
end

for ii = not(mydiff) % Plot black squares around incorrect pts
    h(7) = plot(newData(ii,1),newData(ii,2),'ks','MarkerSize',12);
end
legend(h,{'-1 (training)','+1 (training)','Support Vectors', ...
    '-1 (classified)','+1 (classified)', ...
    'Correctly Classified','Misclassified'}, ...
    'Location','Southeast');
hold off

See Also
bayesopt | fitcsvm

Related Examples
• “Optimize Cross-Validated Classifier Using bayesopt” on page 10-46
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Optimize a Boosted Regression Ensemble

This example shows how to optimize hyperparameters of a boosted regression ensemble. The
optimization minimizes the cross-validation loss of the model.

The problem is to model the efficiency in miles per gallon of an automobile, based on its acceleration,
engine displacement, horsepower, and weight. Load the carsmall data, which contains these and
other predictors.

load carsmall
X = [Acceleration Displacement Horsepower Weight];
Y = MPG;

Fit a regression ensemble to the data using the LSBoost algorithm, and using surrogate splits.
Optimize the resulting model by varying the number of learning cycles, the maximum number of
surrogate splits, and the learn rate. Furthermore, allow the optimization to repartition the cross-
validation between every iteration.

For reproducibility, set the random seed and use the 'expected-improvement-plus' acquisition
function.

rng('default')
Mdl = fitrensemble(X,Y, ...
    'Method','LSBoost', ...
    'Learner',templateTree('Surrogate','on'), ...
    'OptimizeHyperparameters',{'NumLearningCycles','MaxNumSplits','LearnRate'}, ...
    'HyperparameterOptimizationOptions',struct('Repartition',true, ...
    'AcquisitionFunctionName','expected-improvement-plus'))

|====================================================================================================================|
| Iter | Eval   | Objective:  | Objective   | BestSoFar   | BestSoFar   | NumLearningC-|    LearnRate | MaxNumSplits |
|      | result | log(1+loss) | runtime     | (observed)  | (estim.)    | ycles        |              |              |
|====================================================================================================================|
|    1 | Best   |      3.5219 |      33.457 |      3.5219 |      3.5219 |          383 |      0.51519 |            4 |
|    2 | Best   |      3.4752 |      1.8649 |      3.4752 |      3.4777 |           16 |      0.66503 |            7 |
|    3 | Best   |      3.1575 |      2.9859 |      3.1575 |      3.1575 |           33 |       0.2556 |           92 |
|    4 | Accept |      6.3076 |       1.189 |      3.1575 |      3.1579 |           13 |    0.0053227 |            5 |
|    5 | Accept |      3.4449 |      21.943 |      3.1575 |      3.1579 |          277 |      0.45891 |           99 |
|    6 | Accept |      3.9806 |      1.0094 |      3.1575 |      3.1584 |           10 |      0.13017 |           33 |
|    7 | Best   |       3.059 |      1.1085 |       3.059 |        3.06 |           10 |      0.30126 |            3 |
|    8 | Accept |      3.1707 |      1.1421 |       3.059 |      3.1144 |           10 |      0.28991 |           15 |
|    9 | Accept |      3.0937 |      1.0588 |       3.059 |      3.1046 |           10 |      0.31488 |           13 |
|   10 | Accept |       3.196 |      1.0187 |       3.059 |      3.1233 |           10 |      0.32005 |           11 |
|   11 | Best   |      3.0495 |     0.94434 |      3.0495 |      3.1083 |           10 |      0.27882 |           85 |
|   12 | Best   |       2.946 |      1.2653 |       2.946 |      3.0774 |           10 |      0.27157 |            7 |
|   13 | Accept |      3.2026 |      1.2263 |       2.946 |      3.0995 |           10 |      0.25734 |           20 |
|   14 | Accept |      5.7151 |       29.31 |       2.946 |      3.0996 |          376 |     0.001001 |           43 |
|   15 | Accept |       3.207 |      38.848 |       2.946 |      3.0937 |          499 |     0.027394 |           18 |
|   16 | Accept |      3.8606 |      3.0656 |       2.946 |      3.0937 |           36 |     0.041427 |           12 |
|   17 | Accept |      3.2026 |      35.451 |       2.946 |       3.095 |          443 |     0.019836 |           76 |
|   18 | Accept |      3.4832 |      15.362 |       2.946 |      3.0956 |          205 |      0.99989 |            8 |
|   19 | Accept |      5.6285 |       14.69 |       2.946 |      3.0942 |          192 |    0.0022197 |            2 |
|   20 | Accept |      3.0896 |      15.276 |       2.946 |      3.0938 |          188 |     0.023227 |           93 |
|====================================================================================================================|
| Iter | Eval   | Objective:  | Objective   | BestSoFar   | BestSoFar   | NumLearningC-|    LearnRate | MaxNumSplits |
|      | result | log(1+loss) | runtime     | (observed)  | (estim.)    | ycles        |              |              |
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|====================================================================================================================|
|   21 | Accept |      3.1408 |      11.961 |       2.946 |      3.0935 |          156 |      0.02324 |            5 |
|   22 | Accept |       4.691 |      1.1616 |       2.946 |      3.0941 |           12 |     0.076435 |            2 |
|   23 | Accept |      5.4686 |      4.4531 |       2.946 |      3.0935 |           50 |       0.0101 |           58 |
|   24 | Accept |      6.3759 |        2.09 |       2.946 |      3.0893 |           23 |    0.0014716 |           22 |
|   25 | Accept |      6.1278 |      4.1215 |       2.946 |       3.094 |           47 |    0.0034406 |            2 |
|   26 | Accept |      5.9134 |      1.2347 |       2.946 |      3.0969 |           11 |     0.024712 |           12 |
|   27 | Accept |       3.401 |      12.128 |       2.946 |      3.0995 |          151 |     0.067779 |            7 |
|   28 | Accept |      3.2757 |      15.839 |       2.946 |      3.1009 |          198 |     0.032311 |            8 |
|   29 | Accept |      3.2296 |      1.6262 |       2.946 |      3.1023 |           17 |      0.30283 |           19 |
|   30 | Accept |      3.2385 |       7.199 |       2.946 |      3.1027 |           83 |      0.21601 |           76 |

__________________________________________________________
Optimization completed.
MaxObjectiveEvaluations of 30 reached.
Total function evaluations: 30
Total elapsed time: 324.3681 seconds
Total objective function evaluation time: 284.0286

Best observed feasible point:
    NumLearningCycles    LearnRate    MaxNumSplits
    _________________    _________    ____________

           10             0.27157          7      

Observed objective function value = 2.946
Estimated objective function value = 3.1219
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Function evaluation time = 1.2653

Best estimated feasible point (according to models):
    NumLearningCycles    LearnRate    MaxNumSplits
    _________________    _________    ____________

           10             0.30126          3      

Estimated objective function value = 3.1027
Estimated function evaluation time = 1.0894

Mdl = 
  RegressionEnsemble
                         ResponseName: 'Y'
                CategoricalPredictors: []
                    ResponseTransform: 'none'
                      NumObservations: 94
    HyperparameterOptimizationResults: [1x1 BayesianOptimization]
                           NumTrained: 10
                               Method: 'LSBoost'
                         LearnerNames: {'Tree'}
                 ReasonForTermination: 'Terminated normally after completing the requested number of training cycles.'
                              FitInfo: [10x1 double]
                   FitInfoDescription: {2x1 cell}
                       Regularization: []

  Properties, Methods

Compare the loss to that of a boosted, unoptimized model, and to that of the default ensemble.

loss = kfoldLoss(crossval(Mdl,'kfold',10))

loss = 19.2667

Mdl2 = fitrensemble(X,Y, ...
    'Method','LSBoost', ...
    'Learner',templateTree('Surrogate','on'));
loss2 = kfoldLoss(crossval(Mdl2,'kfold',10))

loss2 = 30.4083

Mdl3 = fitrensemble(X,Y);
loss3 = kfoldLoss(crossval(Mdl3,'kfold',10))

loss3 = 29.0495

For a different way of optimizing this ensemble, see “Optimize Regression Ensemble Using Cross-
Validation” on page 35-2696.
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Parametric Regression Analysis

• “Choose a Regression Function” on page 11-2
• “What Is a Linear Regression Model?” on page 11-6
• “Linear Regression” on page 11-9
• “Linear Regression Workflow” on page 11-35
• “Regression Using Dataset Arrays” on page 11-40
• “Linear Regression Using Tables” on page 11-43
• “Linear Regression with Interaction Effects” on page 11-46
• “Interpret Linear Regression Results” on page 11-52
• “Cook’s Distance” on page 11-57
• “Coefficient Standard Errors and Confidence Intervals” on page 11-60
• “Coefficient of Determination (R-Squared)” on page 11-63
• “Delete-1 Statistics” on page 11-65
• “Durbin-Watson Test” on page 11-72
• “F-statistic and t-statistic” on page 11-74
• “Hat Matrix and Leverage” on page 11-79
• “Residuals” on page 11-82
• “Summary of Output and Diagnostic Statistics” on page 11-91
• “Wilkinson Notation” on page 11-93
• “Stepwise Regression” on page 11-101
• “Reduce Outlier Effects Using Robust Regression” on page 11-106
• “Ridge Regression” on page 11-111
• “Lasso and Elastic Net” on page 11-114
• “Wide Data via Lasso and Parallel Computing” on page 11-117
• “Lasso Regularization” on page 11-122
• “Lasso and Elastic Net with Cross Validation” on page 11-125
• “Partial Least Squares” on page 11-128
• “Linear Mixed-Effects Models” on page 11-133
• “Prepare Data for Linear Mixed-Effects Models” on page 11-136
• “Relationship Between Formula and Design Matrices” on page 11-140
• “Estimating Parameters in Linear Mixed-Effects Models” on page 11-145
• “Linear Mixed-Effects Model Workflow” on page 11-148
• “Fit Mixed-Effects Spline Regression” on page 11-160
• “Train Linear Regression Model” on page 11-163
• “Analyze Time Series Data” on page 11-181
• “Partial Least Squares Regression and Principal Components Regression” on page 11-190
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Choose a Regression Function
Regression is the process of fitting models to data. The models must have numerical responses. For
models with categorical responses, see “Parametric Classification” on page 18-2 or “Supervised
Learning Workflow and Algorithms” on page 19-2. The regression process depends on the model. If
a model is parametric, regression estimates the parameters from the data. If a model is linear in the
parameters, estimation is based on methods from linear algebra that minimize the norm of a residual
vector. If a model is nonlinear in the parameters, estimation is based on search methods from
optimization that minimize the norm of a residual vector.

This table describes which function to use depending on the type of regression problem.

Model Components Result of Regression Function to Use
Continuous or categorical
predictors, continuous response,
linear model

Fitted model coefficients fitlm. See “Linear Regression” on
page 11-9.

Continuous or categorical
predictors, continuous response,
linear model of unknown complexity

Fitted model and fitted coefficients stepwiselm. See “Stepwise
Regression” on page 11-101.

Continuous or categorical
predictors, response possibly with
restrictions such as nonnegative or
integer-valued, generalized linear
model

Fitted generalized linear model
coefficients

fitglm or stepwiseglm. See
“Generalized Linear Models” on
page 12-9.

Continuous predictors with a
continuous nonlinear response,
parametrized nonlinear model

Fitted nonlinear model coefficients fitnlm. See “Nonlinear
Regression” on page 13-2.

Continuous predictors, continuous
response, linear model

Set of models from ridge, lasso, or
elastic net regression

lasso or ridge. See “Lasso and
Elastic Net” on page 11-114 or
“Ridge Regression” on page 11-111.

Correlated continuous predictors,
continuous response, linear model

Fitted model and fitted coefficients plsregress. See “Partial Least
Squares” on page 11-128.

Continuous or categorical
predictors, continuous response,
unknown model

Nonparametric model fitrtree or fitrensemble.

Categorical predictors only ANOVA anova, anova1, anova2, anovan.
Continuous predictors,
multivariable response, linear
model

Fitted multivariate regression
model coefficients

mvregress

Continuous predictors, continuous
response, mixed-effects model

Fitted mixed-effects model
coefficients

nlmefit or nlmefitsa. See
“Mixed-Effects Models” on page 13-
18.

Update Legacy Code with New Fitting Methods
There are several Statistics and Machine Learning Toolbox functions for performing regression. The
following sections describe how to replace calls to older functions to new versions:
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regress into fitlm

Previous Syntax:

[b,bint,r,rint,stats] = regress(y,X)

where X contains a column of ones.

Current Syntax:

mdl = fitlm(X,y)

where you do not add a column of ones to X.

Equivalent values of the previous outputs:

• b — mdl.Coefficients.Estimate
• bint — coefCI(mdl)
• r — mdl.Residuals.Raw
• rint — There is no exact equivalent. Try examining mdl.Residuals.Studentized to find

outliers.
• stats — mdl contains various properties that replace components of stats.

regstats into fitlm

Previous Syntax:

stats = regstats(y,X,model,whichstats)

Current Syntax:

mdl = fitlm(X,y,model)

Obtain statistics from the properties and methods of the LinearModel object (mdl). For example,
see the mdl.Diagnostics and mdl.Residuals properties.

robustfit into fitlm

Previous Syntax:

[b,stats] = robustfit(X,y,wfun,tune,const)

Current Syntax:

mdl = fitlm(X,y,'robust','on') % bisquare

Or to use the wfun weight and the tune tuning parameter:

opt.RobustWgtFun = 'wfun';
opt.Tune = tune; % optional
mdl = fitlm(X,y,'robust',opt)

Obtain statistics from the properties and methods of the LinearModel object (mdl). For example,
see the mdl.Diagnostics and mdl.Residuals properties.
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stepwisefit into stepwiselm

Previous Syntax:

[b,se,pval,inmodel,stats,nextstep,history] = stepwisefit(X,y,Name,Value)

Current Syntax:

mdl = stepwiselm(ds,modelspec,Name,Value)

or

mdl = stepwiselm(X,y,modelspec,Name,Value)

Obtain statistics from the properties and methods of the LinearModel object (mdl). For example,
see the mdl.Diagnostics and mdl.Residuals properties.

glmfit into fitglm

Previous Syntax:

[b,dev,stats] = glmfit(X,y,distr,param1,val1,...)

Current Syntax:

mdl = fitglm(X,y,distr,...)

Obtain statistics from the properties and methods of the GeneralizedLinearModel object (mdl).
For example, the deviance is mdl.Deviance, and to compare mdl against a constant model, use
devianceTest(mdl).

nlinfit into fitnlm

Previous Syntax:

[beta,r,J,COVB,mse] = nlinfit(X,y,fun,beta0,options)

Current Syntax:

mdl = fitnlm(X,y,fun,beta0,'Options',options)

Equivalent values of the previous outputs:

• beta — mdl.Coefficients.Estimate
• r — mdl.Residuals.Raw
• covb — mdl.CoefficientCovariance
• mse — mdl.mse

mdl does not provide the Jacobian (J) output. The primary purpose of J was to pass it into nlparci
or nlpredci to obtain confidence intervals for the estimated coefficients (parameters) or predictions.
Obtain those confidence intervals as:

parci = coefCI(mdl)
[pred,predci] = predict(mdl)
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See Also
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What Is a Linear Regression Model?
A linear regression model describes the relationship between a dependent variable, y, and one or
more independent variables, X. The dependent variable is also called the response variable.
Independent variables are also called explanatory or predictor variables. Continuous predictor
variables are also called covariates, and categorical predictor variables are also called factors. The
matrix X of observations on predictor variables is usually called the design matrix.

A multiple linear regression model is

yi = β0 + β1Xi1 + β2Xi2 +⋯+ βpXip + εi, i = 1,⋯, n,

where

• yi is the ith response.
• βk is the kth coefficient, where β0 is the constant term in the model. Sometimes, design matrices

might include information about the constant term. However, fitlm or stepwiselm by default
includes a constant term in the model, so you must not enter a column of 1s into your design
matrix X.

• Xij is the ith observation on the jth predictor variable, j = 1, ..., p.
• εi is the ith noise term, that is, random error.

If a model includes only one predictor variable (p = 1), then the model is called a simple linear
regression model.

In general, a linear regression model can be a model of the form

yi = β0 + ∑
k = 1

K
βkfk Xi1, Xi2,⋯, Xip + εi, i = 1,⋯, n,

where f (.) is a scalar-valued function of the independent variables, Xijs. The functions, f (X), might be
in any form including nonlinear functions or polynomials. The linearity, in the linear regression
models, refers to the linearity of the coefficients βk. That is, the response variable, y, is a linear
function of the coefficients, βk.

Some examples of linear models are:

yi = β0 + β1X1i + β2X2i + β3X3i + εi

yi = β0 + β1X1i + β2X2i + β3X1i
3 + β4X2i

2 + εi

yi = β0 + β1X1i + β2X2i + β3X1iX2i + β4logX3i + εi

The following, however, are not linear models since they are not linear in the unknown coefficients,
βk.

logyi = β0 + β1X1i + β2X2i + εi

yi = β0 + β1X1i + 1
β2X2i

+ eβ3X1iX2i + εi

The usual assumptions for linear regression models are:

• The noise terms, εi, are uncorrelated.
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• The noise terms, εi, have independent and identical normal distributions with mean zero and
constant variance, σ2. Thus,

E yi = E ∑
k = 0

K
βkfk Xi1, Xi2,⋯, Xip + εi

= ∑
k = 0

K
βkfk Xi1, Xi2,⋯, Xip + E εi

= ∑
k = 0

K
βkfk Xi1, Xi2,⋯, Xip

and

V yi = V ∑
k = 0

K
βkfk Xi1, Xi2,⋯, Xip + εi = V εi = σ2

So the variance of yi is the same for all levels of Xij.
• The responses yi are uncorrelated.

The fitted linear function is

y i = ∑
k = 0

K
bkfk Xi1, Xi2,⋯, Xip , i = 1,⋯, n,

where y i is the estimated response and bks are the fitted coefficients. The coefficients are estimated
so as to minimize the mean squared difference between the prediction vector y  and the true response
vector y, that is y − y. This method is called the method of least squares. Under the assumptions on
the noise terms, these coefficients also maximize the likelihood of the prediction vector.

In a linear regression model of the form y = β1X1 + β2X2 + ... + βpXp, the coefficient βk expresses the
impact of a one-unit change in predictor variable, Xj, on the mean of the response E(y), provided that
all other variables are held constant. The sign of the coefficient gives the direction of the effect. For
example, if the linear model is E(y) = 1.8 – 2.35X1 + X2, then –2.35 indicates a 2.35 unit decrease in
the mean response with a one-unit increase in X1, given X2 is held constant. If the model is E(y) = 1.1
+ 1.5X1

2 + X2, the coefficient of X1
2 indicates a 1.5 unit increase in the mean of Y with a one-unit

increase in X1
2 given all else held constant. However, in the case of E(y) = 1.1 + 2.1X1 + 1.5X1

2, it is
difficult to interpret the coefficients similarly, since it is not possible to hold X1 constant when X1

2

changes or vice versa.

References
[1] Neter, J., M. H. Kutner, C. J. Nachtsheim, and W. Wasserman. Applied Linear Statistical Models.

IRWIN, The McGraw-Hill Companies, Inc., 1996.

[2] Seber, G. A. F. Linear Regression Analysis. Wiley Series in Probability and Mathematical Statistics.
John Wiley and Sons, Inc., 1977.

See Also
LinearModel | fitlm | stepwiselm
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Related Examples
• “Linear Regression” on page 11-9
• “Linear Regression Workflow” on page 11-35
• “Interpret Linear Regression Results” on page 11-52
• “Stepwise Regression” on page 11-101
• “Reduce Outlier Effects Using Robust Regression” on page 11-106
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Linear Regression
In this section...
“Prepare Data” on page 11-9
“Choose a Fitting Method” on page 11-10
“Choose a Model or Range of Models” on page 11-11
“Fit Model to Data” on page 11-13
“Examine Quality and Adjust Fitted Model” on page 11-14
“Predict or Simulate Responses to New Data” on page 11-31
“Share Fitted Models” on page 11-33

Prepare Data
To begin fitting a regression, put your data into a form that fitting functions expect. All regression
techniques begin with input data in an array X and response data in a separate vector y, or input data
in a table or dataset array tbl and response data as a column in tbl. Each row of the input data
represents one observation. Each column represents one predictor (variable).

For a table or dataset array tbl, indicate the response variable with the 'ResponseVar' name-value
pair:

mdl = fitlm(tbl,'ResponseVar','BloodPressure');

The response variable is the last column by default.

You can use numeric categorical predictors. A categorical predictor is one that takes values from a
fixed set of possibilities.

• For a numeric array X, indicate the categorical predictors using the 'Categorical' name-value
pair. For example, to indicate that predictors 2 and 3 out of six are categorical:

mdl = fitlm(X,y,'Categorical',[2,3]);
% or equivalently
mdl = fitlm(X,y,'Categorical',logical([0 1 1 0 0 0]));

• For a table or dataset array tbl, fitting functions assume that these data types are categorical:

• Logical vector
• Categorical vector
• Character array
• String array

If you want to indicate that a numeric predictor is categorical, use the 'Categorical' name-
value pair.

Represent missing numeric data as NaN. To represent missing data for other data types, see “Missing
Group Values” on page 2-47.

Dataset Array for Input and Response Data

To create a dataset array from an Excel spreadsheet:

 Linear Regression
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ds = dataset('XLSFile','hospital.xls', ...
    'ReadObsNames',true);

To create a dataset array from workspace variables:

load carsmall
ds = dataset(MPG,Weight);
ds.Year = categorical(Model_Year);

Table for Input and Response Data

To create a table from an Excel spreadsheet:

tbl = readtable('hospital.xls', ...
    'ReadRowNames',true);

To create a table from workspace variables:

load carsmall
tbl = table(MPG,Weight);
tbl.Year = categorical(Model_Year);

Numeric Matrix for Input Data, Numeric Vector for Response

For example, to create numeric arrays from workspace variables:

load carsmall
X = [Weight Horsepower Cylinders Model_Year];
y = MPG;

To create numeric arrays from an Excel spreadsheet:

[X, Xnames] = xlsread('hospital.xls');
y = X(:,4); % response y is systolic pressure
X(:,4) = []; % remove y from the X matrix

Notice that the nonnumeric entries, such as sex, do not appear in X.

Choose a Fitting Method
There are three ways to fit a model to data:

• “Least-Squares Fit” on page 11-10
• “Robust Fit” on page 11-10
• “Stepwise Fit” on page 11-11

Least-Squares Fit

Use fitlm to construct a least-squares fit of a model to the data. This method is best when you are
reasonably certain of the model’s form, and mainly need to find its parameters. This method is also
useful when you want to explore a few models. The method requires you to examine the data
manually to discard outliers, though there are techniques to help (see “Examine Quality and Adjust
Fitted Model” on page 11-14).

Robust Fit

Use fitlm with the RobustOpts name-value pair to create a model that is little affected by outliers.
Robust fitting saves you the trouble of manually discarding outliers. However, step does not work
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with robust fitting. This means that when you use robust fitting, you cannot search stepwise for a
good model.

Stepwise Fit

Use stepwiselm to find a model, and fit parameters to the model. stepwiselm starts from one
model, such as a constant, and adds or subtracts terms one at a time, choosing an optimal term each
time in a greedy fashion, until it cannot improve further. Use stepwise fitting to find a good model,
which is one that has only relevant terms.

The result depends on the starting model. Usually, starting with a constant model leads to a small
model. Starting with more terms can lead to a more complex model, but one that has lower mean
squared error. See “Compare large and small stepwise models” on page 11-101.

You cannot use robust options along with stepwise fitting. So after a stepwise fit, examine your model
for outliers (see “Examine Quality and Adjust Fitted Model” on page 11-14).

Choose a Model or Range of Models

There are several ways of specifying a model for linear regression. Use whichever you find most
convenient.

• “Brief Name” on page 11-11
• “Terms Matrix” on page 11-12
• “Formula” on page 11-12

For fitlm, the model specification you give is the model that is fit. If you do not give a model
specification, the default is 'linear'.

For stepwiselm, the model specification you give is the starting model, which the stepwise
procedure tries to improve. If you do not give a model specification, the default starting model is
'constant', and the default upper bounding model is 'interactions'. Change the upper
bounding model using the Upper name-value pair.

Note There are other ways of selecting models, such as using lasso, lassoglm, sequentialfs, or
plsregress.

Brief Name

Name Model Type
'constant' Model contains only a constant (intercept) term.
'linear' Model contains an intercept and linear terms for each predictor.
'interactions' Model contains an intercept, linear terms, and all products of

pairs of distinct predictors (no squared terms).
'purequadratic' Model contains an intercept, linear terms, and squared terms.
'quadratic' Model contains an intercept, linear terms, interactions, and

squared terms.
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Name Model Type
'polyijk' Model is a polynomial with all terms up to degree i in the first

predictor, degree j in the second predictor, etc. Use numerals 0
through 9. For example, 'poly2111' has a constant plus all
linear and product terms, and also contains terms with predictor
1 squared.

For example, to specify an interaction model using fitlm with matrix predictors:

mdl = fitlm(X,y,'interactions');

To specify a model using stepwiselm and a table or dataset array tbl of predictors, suppose you
want to start from a constant and have a linear model upper bound. Assume the response variable in
tbl is in the third column.

mdl2 = stepwiselm(tbl,'constant', ...
    'Upper','linear','ResponseVar',3);

Terms Matrix

A terms matrix T is a t-by-(p + 1) matrix specifying terms in a model, where t is the number of terms,
p is the number of predictor variables, and +1 accounts for the response variable. The value of
T(i,j) is the exponent of variable j in term i.

For example, suppose that an input includes three predictor variables x1, x2, and x3 and the
response variable y in the order x1, x2, x3, and y. Each row of T represents one term:

• [0 0 0 0] — Constant term or intercept
• [0 1 0 0] — x2; equivalently, x1^0 * x2^1 * x3^0
• [1 0 1 0] — x1*x3
• [2 0 0 0] — x1^2
• [0 1 2 0] — x2*(x3^2)

The 0 at the end of each term represents the response variable. In general, a column vector of zeros
in a terms matrix represents the position of the response variable. If you have the predictor and
response variables in a matrix and column vector, then you must include 0 for the response variable
in the last column of each row.

Formula

A formula for a model specification is a character vector or string scalar of the form

'y ~ terms',

• y is the response name.
• terms contains

• Variable names
• + to include the next variable
• - to exclude the next variable
• : to define an interaction, a product of terms

11 Parametric Regression Analysis

11-12



• * to define an interaction and all lower-order terms
• ^ to raise the predictor to a power, exactly as in * repeated, so ^ includes lower order terms as

well
• () to group terms

Tip Formulas include a constant (intercept) term by default. To exclude a constant term from the
model, include -1 in the formula.

Examples:

'y ~ x1 + x2 + x3' is a three-variable linear model with intercept.
'y ~ x1 + x2 + x3 - 1' is a three-variable linear model without intercept.
'y ~ x1 + x2 + x3 + x2^2' is a three-variable model with intercept and a x2^2 term.
'y ~ x1 + x2^2 + x3' is the same as the previous example, since x2^2 includes a x2 term.
'y ~ x1 + x2 + x3 + x1:x2' includes an x1*x2 term.
'y ~ x1*x2 + x3' is the same as the previous example, since x1*x2 = x1 + x2 + x1:x2.
'y ~ x1*x2*x3 - x1:x2:x3' has all interactions among x1, x2, and x3, except the three-way
interaction.
'y ~ x1*(x2 + x3 + x4)' has all linear terms, plus products of x1 with each of the other
variables.

For example, to specify an interaction model using fitlm with matrix predictors:

mdl = fitlm(X,y,'y ~ x1*x2*x3 - x1:x2:x3');

To specify a model using stepwiselm and a table or dataset array tbl of predictors, suppose you
want to start from a constant and have a linear model upper bound. Assume the response variable in
tbl is named 'y', and the predictor variables are named 'x1', 'x2', and 'x3'.

mdl2 = stepwiselm(tbl,'y ~ 1','Upper','y ~ x1 + x2 + x3');

Fit Model to Data
The most common optional arguments for fitting:

• For robust regression in fitlm, set the 'RobustOpts' name-value pair to 'on'.
• Specify an appropriate upper bound model in stepwiselm, such as set 'Upper' to 'linear'.
• Indicate which variables are categorical using the 'CategoricalVars' name-value pair. Provide

a vector with column numbers, such as [1 6] to specify that predictors 1 and 6 are categorical.
Alternatively, give a logical vector the same length as the data columns, with a 1 entry indicating
that variable is categorical. If there are seven predictors, and predictors 1 and 6 are categorical,
specify logical([1,0,0,0,0,1,0]).

• For a table or dataset array, specify the response variable using the 'ResponseVar' name-value
pair. The default is the last column in the array.

For example,

mdl = fitlm(X,y,'linear', ...
    'RobustOpts','on','CategoricalVars',3);
mdl2 = stepwiselm(tbl,'constant', ...
    'ResponseVar','MPG','Upper','quadratic');
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Examine Quality and Adjust Fitted Model

After fitting a model, examine the result and make adjustments.

Model Display

A linear regression model shows several diagnostics when you enter its name or enter disp(mdl).
This display gives some of the basic information to check whether the fitted model represents the
data adequately.

For example, fit a linear model to data constructed with two out of five predictors not present and
with no intercept term:

X = randn(100,5);
y = X*[1;0;3;0;-1] + randn(100,1);
mdl = fitlm(X,y)

mdl = 
Linear regression model:
    y ~ 1 + x1 + x2 + x3 + x4 + x5

Estimated Coefficients:
                   Estimate        SE        tStat        pValue  
                   _________    ________    ________    __________

    (Intercept)     0.038164    0.099458     0.38372       0.70205
    x1               0.92794    0.087307      10.628    8.5494e-18
    x2             -0.075593     0.10044    -0.75264       0.45355
    x3                2.8965    0.099879          29    1.1117e-48
    x4              0.045311     0.10832     0.41831       0.67667
    x5              -0.99708     0.11799     -8.4504     3.593e-13

Number of observations: 100, Error degrees of freedom: 94
Root Mean Squared Error: 0.972
R-squared: 0.93,  Adjusted R-Squared: 0.926
F-statistic vs. constant model: 248, p-value = 1.5e-52

Notice that:

• The display contains the estimated values of each coefficient in the Estimate column. These
values are reasonably near the true values [0;1;0;3;0;-1].

• There is a standard error column for the coefficient estimates.
• The reported pValue (which are derived from the t statistics (tStat) under the assumption of

normal errors) for predictors 1, 3, and 5 are extremely small. These are the three predictors that
were used to create the response data y.

• The pValue for (Intercept), x2 and x4 are much larger than 0.01. These three predictors were
not used to create the response data y.

• The display contains R2, adjusted R2, and F statistics.

ANOVA

To examine the quality of the fitted model, consult an ANOVA table. For example, use anova on a
linear model with five predictors:

11 Parametric Regression Analysis
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tbl = anova(mdl)

tbl=6×5 table
              SumSq     DF    MeanSq        F         pValue  
             _______    __    _______    _______    __________

    x1        106.62     1     106.62     112.96    8.5494e-18
    x2       0.53464     1    0.53464    0.56646       0.45355
    x3        793.74     1     793.74     840.98    1.1117e-48
    x4       0.16515     1    0.16515    0.17498       0.67667
    x5        67.398     1     67.398      71.41     3.593e-13
    Error     88.719    94    0.94382                         

This table gives somewhat different results than the model display. The table clearly shows that the
effects of x2 and x4 are not significant. Depending on your goals, consider removing x2 and x4 from
the model.

Diagnostic Plots

Diagnostic plots help you identify outliers, and see other problems in your model or fit. For example,
load the carsmall data, and make a model of MPG as a function of Cylinders (categorical) and
Weight:

load carsmall
tbl = table(Weight,MPG,Cylinders);
tbl.Cylinders = categorical(tbl.Cylinders);
mdl = fitlm(tbl,'MPG ~ Cylinders*Weight + Weight^2');

Make a leverage plot of the data and model.

plotDiagnostics(mdl)
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There are a few points with high leverage. But this plot does not reveal whether the high-leverage
points are outliers.

Look for points with large Cook’s distance.

plotDiagnostics(mdl,'cookd')
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There is one point with large Cook’s distance. Identify it and remove it from the model. You can use
the Data Cursor to click the outlier and identify it, or identify it programmatically:

[~,larg] = max(mdl.Diagnostics.CooksDistance);
mdl2 = fitlm(tbl,'MPG ~ Cylinders*Weight + Weight^2','Exclude',larg);

Residuals — Model Quality for Training Data

There are several residual plots to help you discover errors, outliers, or correlations in the model or
data. The simplest residual plots are the default histogram plot, which shows the range of the
residuals and their frequencies, and the probability plot, which shows how the distribution of the
residuals compares to a normal distribution with matched variance.

Examine the residuals:

plotResiduals(mdl)
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The observations above 12 are potential outliers.

plotResiduals(mdl,'probability')
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The two potential outliers appear on this plot as well. Otherwise, the probability plot seems
reasonably straight, meaning a reasonable fit to normally distributed residuals.

You can identify the two outliers and remove them from the data:

outl = find(mdl.Residuals.Raw > 12)

outl = 2×1

    90
    97

To remove the outliers, use the Exclude name-value pair:

mdl3 = fitlm(tbl,'MPG ~ Cylinders*Weight + Weight^2','Exclude',outl);

Examine a residuals plot of mdl2:

plotResiduals(mdl3)
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The new residuals plot looks fairly symmetric, without obvious problems. However, there might be
some serial correlation among the residuals. Create a new plot to see if such an effect exists.

plotResiduals(mdl3,'lagged')
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The scatter plot shows many more crosses in the upper-right and lower-left quadrants than in the
other two quadrants, indicating positive serial correlation among the residuals.

Another potential issue is when residuals are large for large observations. See if the current model
has this issue.

plotResiduals(mdl3,'fitted')
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There is some tendency for larger fitted values to have larger residuals. Perhaps the model errors are
proportional to the measured values.

Plots to Understand Predictor Effects

This example shows how to understand the effect each predictor has on a regression model using a
variety of available plots.

Examine a slice plot of the responses. This displays the effect of each predictor separately.

plotSlice(mdl)
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You can drag the individual predictor values, which are represented by dashed blue vertical lines. You
can also choose between simultaneous and non-simultaneous confidence bounds, which are
represented by dashed red curves.

Use an effects plot to show another view of the effect of predictors on the response.

plotEffects(mdl)
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This plot shows that changing Weight from about 2500 to 4732 lowers MPG by about 30 (the location
of the upper blue circle). It also shows that changing the number of cylinders from 8 to 4 raises MPG
by about 10 (the lower blue circle). The horizontal blue lines represent confidence intervals for these
predictions. The predictions come from averaging over one predictor as the other is changed. In
cases such as this, where the two predictors are correlated, be careful when interpreting the results.

Instead of viewing the effect of averaging over a predictor as the other is changed, examine the joint
interaction in an interaction plot.

plotInteraction(mdl,'Weight','Cylinders')
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The interaction plot shows the effect of changing one predictor with the other held fixed. In this case,
the plot is much more informative. It shows, for example, that lowering the number of cylinders in a
relatively light car (Weight = 1795) leads to an increase in mileage, but lowering the number of
cylinders in a relatively heavy car (Weight = 4732) leads to a decrease in mileage.

For an even more detailed look at the interactions, look at an interaction plot with predictions. This
plot holds one predictor fixed while varying the other, and plots the effect as a curve. Look at the
interactions for various fixed numbers of cylinders.

plotInteraction(mdl,'Cylinders','Weight','predictions')
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Now look at the interactions with various fixed levels of weight.

plotInteraction(mdl,'Weight','Cylinders','predictions')
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Plots to Understand Terms Effects

This example shows how to understand the effect of each term in a regression model using a variety
of available plots.

Create an added variable plot with Weight^2 as the added variable.

plotAdded(mdl,'Weight^2')
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This plot shows the results of fitting both Weight^2 and MPG to the terms other than Weight^2. The
reason to use plotAdded is to understand what additional improvement in the model you get by
adding Weight^2. The coefficient of a line fit to these points is the coefficient of Weight^2 in the full
model. The Weight^2 predictor is just over the edge of significance (pValue < 0.05) as you can see
in the coefficients table display. You can see that in the plot as well. The confidence bounds look like
they could not contain a horizontal line (constant y), so a zero-slope model is not consistent with the
data.

Create an added variable plot for the model as a whole.

plotAdded(mdl)
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The model as a whole is very significant, so the bounds don't come close to containing a horizontal
line. The slope of the line is the slope of a fit to the predictors projected onto their best-fitting
direction, or in other words, the norm of the coefficient vector.

Change Models

There are two ways to change a model:

• step — Add or subtract terms one at a time, where step chooses the most important term to add
or remove.

• addTerms and removeTerms — Add or remove specified terms. Give the terms in any of the
forms described in “Choose a Model or Range of Models” on page 11-11.

If you created a model using stepwiselm, then step can have an effect only if you give different
upper or lower models. step does not work when you fit a model using RobustOpts.

For example, start with a linear model of mileage from the carbig data:

load carbig
tbl = table(Acceleration,Displacement,Horsepower,Weight,MPG);
mdl = fitlm(tbl,'linear','ResponseVar','MPG')

mdl = 
Linear regression model:
    MPG ~ 1 + Acceleration + Displacement + Horsepower + Weight

Estimated Coefficients:
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                     Estimate         SE         tStat        pValue  
                    __________    __________    ________    __________

    (Intercept)         45.251         2.456      18.424    7.0721e-55
    Acceleration     -0.023148        0.1256     -0.1843       0.85388
    Displacement    -0.0060009     0.0067093    -0.89441       0.37166
    Horsepower       -0.043608      0.016573     -2.6312      0.008849
    Weight          -0.0052805    0.00081085     -6.5123    2.3025e-10

Number of observations: 392, Error degrees of freedom: 387
Root Mean Squared Error: 4.25
R-squared: 0.707,  Adjusted R-Squared: 0.704
F-statistic vs. constant model: 233, p-value = 9.63e-102

Try to improve the model using step for up to 10 steps:

mdl1 = step(mdl,'NSteps',10)

1. Adding Displacement:Horsepower, FStat = 87.4802, pValue = 7.05273e-19

mdl1 = 
Linear regression model:
    MPG ~ 1 + Acceleration + Weight + Displacement*Horsepower

Estimated Coefficients:
                                Estimate         SE         tStat       pValue  
                               __________    __________    _______    __________

    (Intercept)                    61.285        2.8052     21.847    1.8593e-69
    Acceleration                 -0.34401       0.11862       -2.9     0.0039445
    Displacement                -0.081198      0.010071    -8.0623    9.5014e-15
    Horsepower                   -0.24313      0.026068    -9.3265    8.6556e-19
    Weight                     -0.0014367    0.00084041    -1.7095      0.088166
    Displacement:Horsepower    0.00054236    5.7987e-05     9.3531    7.0527e-19

Number of observations: 392, Error degrees of freedom: 386
Root Mean Squared Error: 3.84
R-squared: 0.761,  Adjusted R-Squared: 0.758
F-statistic vs. constant model: 246, p-value = 1.32e-117

step stopped after just one change.

To try to simplify the model, remove the Acceleration and Weight terms from mdl1:

mdl2 = removeTerms(mdl1,'Acceleration + Weight')

mdl2 = 
Linear regression model:
    MPG ~ 1 + Displacement*Horsepower

Estimated Coefficients:
                                Estimate        SE         tStat       pValue   
                               __________    _________    _______    ___________

    (Intercept)                    53.051        1.526     34.765    3.0201e-121
    Displacement                -0.098046    0.0066817    -14.674     4.3203e-39
    Horsepower                   -0.23434     0.019593     -11.96     2.8024e-28
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    Displacement:Horsepower    0.00058278    5.193e-05     11.222     1.6816e-25

Number of observations: 392, Error degrees of freedom: 388
Root Mean Squared Error: 3.94
R-squared: 0.747,  Adjusted R-Squared: 0.745
F-statistic vs. constant model: 381, p-value = 3e-115

mdl2 uses just Displacement and Horsepower, and has nearly as good a fit to the data as mdl1 in
the Adjusted R-Squared metric.

Predict or Simulate Responses to New Data

A LinearModel object offers three functions to predict or simulate the response to new data:
predict, feval, and random.

predict

Use the predict function to predict and obtain confidence intervals on the predictions.

Load the carbig data and create a default linear model of the response MPG to the Acceleration,
Displacement, Horsepower, and Weight predictors.

load carbig
X = [Acceleration,Displacement,Horsepower,Weight];
mdl = fitlm(X,MPG);

Create a three-row array of predictors from the minimal, mean, and maximal values. X contains some
NaN values, so specify the 'omitnan' option for the mean function. The min and max functions omit
NaN values in the calculation by default.

Xnew = [min(X);mean(X,'omitnan');max(X)];

Find the predicted model responses and confidence intervals on the predictions.

[NewMPG, NewMPGCI] = predict(mdl,Xnew)

NewMPG = 3×1

   34.1345
   23.4078
    4.7751

NewMPGCI = 3×2

   31.6115   36.6575
   22.9859   23.8298
    0.6134    8.9367

The confidence bound on the mean response is narrower than those for the minimum or maximum
responses.
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feval

Use the feval function to predict responses. When you create a model from a table or dataset array,
feval is often more convenient than predict for predicting responses. When you have new
predictor data, you can pass it to feval without creating a table or matrix. However, feval does not
provide confidence bounds.

Load the carbig data set and create a default linear model of the response MPG to the predictors
Acceleration, Displacement, Horsepower, and Weight.

load carbig
tbl = table(Acceleration,Displacement,Horsepower,Weight,MPG);
mdl = fitlm(tbl,'linear','ResponseVar','MPG');

Predict the model response for the mean values of the predictors.

NewMPG = feval(mdl,mean(Acceleration,'omitnan'),mean(Displacement,'omitnan'),mean(Horsepower,'omitnan'),mean(Weight,'omitnan'))

NewMPG = 23.4078

random

Use the random function to simulate responses. The random function simulates new random
response values, equal to the mean prediction plus a random disturbance with the same variance as
the training data.

Load the carbig data and create a default linear model of the response MPG to the Acceleration,
Displacement, Horsepower, and Weight predictors.

load carbig
X = [Acceleration,Displacement,Horsepower,Weight];
mdl = fitlm(X,MPG);

Create a three-row array of predictors from the minimal, mean, and maximal values.

Xnew = [min(X);mean(X,'omitnan');max(X)];

Generate new predicted model responses including some randomness.

rng('default') % for reproducibility
NewMPG = random(mdl,Xnew)

NewMPG = 3×1

   36.4178
   31.1958
   -4.8176

Because a negative value of MPG does not seem sensible, try predicting two more times.

NewMPG = random(mdl,Xnew)

NewMPG = 3×1

   37.7959
   24.7615
   -0.7783
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NewMPG = random(mdl,Xnew)

NewMPG = 3×1

   32.2931
   24.8628
   19.9715

Clearly, the predictions for the third (maximal) row of Xnew are not reliable.

Share Fitted Models

Suppose you have a linear regression model, such as mdl from the following commands.

load carbig
tbl = table(Acceleration,Displacement,Horsepower,Weight,MPG);
mdl = fitlm(tbl,'linear','ResponseVar','MPG');

To share the model with other people, you can:

• Provide the model display.

mdl

mdl = 
Linear regression model:
    MPG ~ 1 + Acceleration + Displacement + Horsepower + Weight

Estimated Coefficients:
                     Estimate         SE         tStat        pValue  
                    __________    __________    ________    __________

    (Intercept)         45.251         2.456      18.424    7.0721e-55
    Acceleration     -0.023148        0.1256     -0.1843       0.85388
    Displacement    -0.0060009     0.0067093    -0.89441       0.37166
    Horsepower       -0.043608      0.016573     -2.6312      0.008849
    Weight          -0.0052805    0.00081085     -6.5123    2.3025e-10

Number of observations: 392, Error degrees of freedom: 387
Root Mean Squared Error: 4.25
R-squared: 0.707,  Adjusted R-Squared: 0.704
F-statistic vs. constant model: 233, p-value = 9.63e-102

• Provide the model definition and coefficients.

mdl.Formula

ans = 
MPG ~ 1 + Acceleration + Displacement + Horsepower + Weight

mdl.CoefficientNames

ans = 1x5 cell
  Columns 1 through 4
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    {'(Intercept)'}    {'Acceleration'}    {'Displacement'}    {'Horsepower'}

  Column 5

    {'Weight'}

mdl.Coefficients.Estimate

ans = 5×1

   45.2511
   -0.0231
   -0.0060
   -0.0436
   -0.0053

See Also
fitlm | anova | stepwiselm | predict | LinearModel | plotResiduals | lasso |
sequentialfs

More About
• “What Is a Linear Regression Model?” on page 11-6
• “Linear Regression Workflow” on page 11-35
• “Train Linear Regression Model” on page 11-163
• “Interpret Linear Regression Results” on page 11-52
• “Linear Regression with Interaction Effects” on page 11-46
• “Linear Regression with Categorical Covariates” on page 2-53
• “Reduce Outlier Effects Using Robust Regression” on page 11-106
• “Stepwise Regression” on page 11-101
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Linear Regression Workflow

This example shows how to fit a linear regression model. A typical workflow involves the following:
import data, fit a regression, test its quality, modify it to improve the quality, and share it.

Step 1. Import the data into a table.

hospital.xls is an Excel® spreadsheet containing patient names, sex, age, weight, blood pressure,
and dates of treatment in an experimental protocol. First read the data into a table.

patients = readtable('hospital.xls','ReadRowNames',true);

Examine the five rows of data.

patients(1:5,:)

ans=5×11 table
                   name         sex     age    wgt    smoke    sys    dia    trial1    trial2    trial3    trial4
               ____________    _____    ___    ___    _____    ___    ___    ______    ______    ______    ______

    YPL-320    {'SMITH'   }    {'m'}    38     176      1      124    93       18       -99       -99       -99  
    GLI-532    {'JOHNSON' }    {'m'}    43     163      0      109    77       11        13        22       -99  
    PNI-258    {'WILLIAMS'}    {'f'}    38     131      0      125    83      -99       -99       -99       -99  
    MIJ-579    {'JONES'   }    {'f'}    40     133      0      117    75        6        12       -99       -99  
    XLK-030    {'BROWN'   }    {'f'}    49     119      0      122    80       14        23       -99       -99  

The sex and smoke fields seem to have two choices each. So change these fields to categorical.

patients.smoke = categorical(patients.smoke,0:1,{'No','Yes'});
patients.sex = categorical(patients.sex);

Step 2. Create a fitted model.

Your goal is to model the systolic pressure as a function of a patient's age, weight, sex, and smoking
status. Create a linear formula for 'sys' as a function of 'age', 'wgt', 'sex', and 'smoke' .

modelspec = 'sys ~ age + wgt + sex + smoke';
mdl = fitlm(patients,modelspec)

mdl = 
Linear regression model:
    sys ~ 1 + sex + age + wgt + smoke

Estimated Coefficients:
                   Estimate        SE        tStat        pValue  
                   _________    ________    ________    __________

    (Intercept)       118.28      7.6291      15.504    9.1557e-28
    sex_m            0.88162      2.9473     0.29913       0.76549
    age              0.08602     0.06731       1.278       0.20438
    wgt            -0.016685    0.055714    -0.29947       0.76524
    smoke_Yes          9.884      1.0406       9.498    1.9546e-15

Number of observations: 100, Error degrees of freedom: 95
Root Mean Squared Error: 4.81
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R-squared: 0.508,  Adjusted R-Squared: 0.487
F-statistic vs. constant model: 24.5, p-value = 5.99e-14

The sex, age, and weight predictors have rather high p-values, indicating that some of these
predictors might be unnecessary.

Step 3. Locate and remove outliers.

See if there are outliers in the data that should be excluded from the fit. Plot the residuals.

plotResiduals(mdl)

There is one possible outlier, with a value greater than 12. This is probably not truly an outlier. For
demonstration, here is how to find and remove it.

Find the outlier.

outlier = mdl.Residuals.Raw > 12;
find(outlier)

ans = 84

Remove the outlier.

mdl = fitlm(patients,modelspec,...
    'Exclude',84);

mdl.ObservationInfo(84,:)
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ans=1×4 table
               Weights    Excluded    Missing    Subset
               _______    ________    _______    ______

    WXM-486       1        true        false     false 

Observation 84 is no longer in the model.

Step 4. Simplify the model.

Try to obtain a simpler model, one with fewer predictors but the same predictive accuracy. step
looks for a better model by adding or removing one term at a time. Allow step take up to 10 steps.

mdl1 = step(mdl,'NSteps',10)

1. Removing wgt, FStat = 4.6001e-05, pValue = 0.9946
2. Removing sex, FStat = 0.063241, pValue = 0.80199

mdl1 = 
Linear regression model:
    sys ~ 1 + age + smoke

Estimated Coefficients:
                   Estimate       SE       tStat       pValue  
                   ________    ________    ______    __________

    (Intercept)     115.11       2.5364    45.383    1.1407e-66
    age            0.10782     0.064844    1.6628       0.09962
    smoke_Yes       10.054      0.97696    10.291    3.5276e-17

Number of observations: 99, Error degrees of freedom: 96
Root Mean Squared Error: 4.61
R-squared: 0.536,  Adjusted R-Squared: 0.526
F-statistic vs. constant model: 55.4, p-value = 1.02e-16

step took two steps. This means it could not improve the model further by adding or subtracting a
single term.

Plot the effectiveness of the simpler model on the training data.

plotResiduals(mdl1)
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The residuals look about as small as those of the original model.

Step 5. Predict responses to new data.

Suppose you have four new people, aged 25, 30, 40, and 65, and the first and third smoke. Predict
their systolic pressure using mdl1.

ages = [25;30;40;65];
smoker = {'Yes';'No';'Yes';'No'};
systolicnew = feval(mdl1,ages,smoker)

systolicnew = 4×1

  127.8561
  118.3412
  129.4734
  122.1149

To make predictions, you need only the variables that mdl1 uses.

Step 6. Share the model.

You might want others to be able to use your model for prediction. Access the terms in the linear
model.

coefnames = mdl1.CoefficientNames
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coefnames = 1x3 cell
    {'(Intercept)'}    {'age'}    {'smoke_Yes'}

View the model formula.

mdl1.Formula

ans = 
sys ~ 1 + age + smoke

Access the coefficients of the terms.

coefvals = mdl1.Coefficients(:,1).Estimate

coefvals = 3×1

  115.1066
    0.1078
   10.0540

The model is sys = 115.1066 + 0.1078*age + 10.0540*smoke, where smoke is 1 for a
smoker, and 0 otherwise.

See Also
fitlm | LinearModel | feval | step | plotResiduals

More About
• “What Is a Linear Regression Model?” on page 11-6
• “Linear Regression” on page 11-9
• “Interpret Linear Regression Results” on page 11-52
• “Linear Regression with Interaction Effects” on page 11-46
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Regression Using Dataset Arrays

This example shows how to perform linear and stepwise regression analyses using dataset arrays.

Load sample data.

load imports-85

Store predictor and response variables in dataset array.

ds = dataset(X(:,7),X(:,8),X(:,9),X(:,15),'Varnames',...
{'curb_weight','engine_size','bore','price'});

Fit linear regression model.

Fit a linear regression model that explains the price of a car in terms of its curb weight, engine size,
and bore.

fitlm(ds,'price~curb_weight+engine_size+bore')

ans = 
Linear regression model:
    price ~ 1 + curb_weight + engine_size + bore

Estimated Coefficients:
                    Estimate        SE         tStat       pValue  
                   __________    _________    _______    __________

    (Intercept)        64.095        3.703     17.309    2.0481e-41
    curb_weight    -0.0086681    0.0011025    -7.8623      2.42e-13
    engine_size     -0.015806     0.013255    -1.1925       0.23452
    bore              -2.6998       1.3489    -2.0015      0.046711

Number of observations: 201, Error degrees of freedom: 197
Root Mean Squared Error: 3.95
R-squared: 0.674,  Adjusted R-Squared: 0.669
F-statistic vs. constant model: 136, p-value = 1.14e-47

The command fitlm(ds) also returns the same result because fitlm, by default, assumes the
predictor variable is in the last column of the dataset array ds.

Recreate dataset array and repeat analysis.

This time, put the response variable in the first column of the dataset array.

 ds = dataset(X(:,15),X(:,7),X(:,8),X(:,9),'Varnames',...
{'price','curb_weight','engine_size','bore'});

When the response variable is in the first column of ds, define its location. For example, fitlm, by
default, assumes that bore is the response variable. You can define the response variable in the
model using either:

fitlm(ds,'ResponseVar','price');

or
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fitlm(ds,'ResponseVar',logical([1 0 0 0]));

Perform stepwise regression.

stepwiselm(ds,'quadratic','lower','price~1',...
'ResponseVar','price')

1. Removing bore^2, FStat = 0.01282, pValue = 0.90997
2. Removing engine_size^2, FStat = 0.078043, pValue = 0.78027
3. Removing curb_weight:bore, FStat = 0.70558, pValue = 0.40195

ans = 
Linear regression model:
    price ~ 1 + curb_weight*engine_size + engine_size*bore + curb_weight^2

Estimated Coefficients:
                                Estimate          SE         tStat       pValue  
                               ___________    __________    _______    __________

    (Intercept)                     131.13        14.273     9.1873    6.2319e-17
    curb_weight                  -0.043315     0.0085114    -5.0891    8.4682e-07
    engine_size                   -0.17102       0.13844    -1.2354       0.21819
    bore                           -12.244         4.999    -2.4493      0.015202
    curb_weight:engine_size    -6.3411e-05    2.6577e-05     -2.386      0.017996
    engine_size:bore              0.092554      0.037263     2.4838      0.013847
    curb_weight^2               8.0836e-06    1.9983e-06     4.0451    7.5432e-05

Number of observations: 201, Error degrees of freedom: 194
Root Mean Squared Error: 3.59
R-squared: 0.735,  Adjusted R-Squared: 0.726
F-statistic vs. constant model: 89.5, p-value = 3.58e-53

The initial model is a quadratic formula, and the lowest model considered is the constant. Here,
stepwiselm performs a backward elimination technique to determine the terms in the model. The
final model is price ~ 1 + curb_weight*engine_size + engine_size*bore +
curb_weight^2, which corresponds to

P = β0 + βCC + βEE + βBB + βCECE + βEBEB + βC2C2 + ϵ

where P is price, C is curb weight, E is engine size, B is bore, βi is the coefficient for the
corresponding term in the model, and ϵ is the error term. The final model includes all three main
effects, the interaction effects for curb weight and engine size and engine size and bore, and the
second-order term for curb weight.

See Also
LinearModel | fitlm | stepwiselm

Related Examples
• “Linear Regression” on page 11-9
• “Stepwise Regression” on page 11-101
• “Linear Regression Workflow” on page 11-35
• “Train Linear Regression Model” on page 11-163
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• “Interpret Linear Regression Results” on page 11-52
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Linear Regression Using Tables

This example shows how to perform linear and stepwise regression analyses using tables.

Load sample data.

load imports-85

Store predictor and response variables in a table.

tbl = table(X(:,7),X(:,8),X(:,9),X(:,15),'VariableNames',...
{'curb_weight','engine_size','bore','price'});

Fit linear regression model.

Fit a linear regression model that explains the price of a car in terms of its curb weight, engine size,
and bore.

fitlm(tbl,'price~curb_weight+engine_size+bore')

ans = 
Linear regression model:
    price ~ 1 + curb_weight + engine_size + bore

Estimated Coefficients:
                    Estimate        SE         tStat       pValue  
                   __________    _________    _______    __________

    (Intercept)        64.095        3.703     17.309    2.0481e-41
    curb_weight    -0.0086681    0.0011025    -7.8623      2.42e-13
    engine_size     -0.015806     0.013255    -1.1925       0.23452
    bore              -2.6998       1.3489    -2.0015      0.046711

Number of observations: 201, Error degrees of freedom: 197
Root Mean Squared Error: 3.95
R-squared: 0.674,  Adjusted R-Squared: 0.669
F-statistic vs. constant model: 136, p-value = 1.14e-47

The command fitlm(tbl) also returns the same result because fitlm, by default, assumes the
response variable is in the last column of the table tbl.

Recreate table and repeat analysis.

This time, put the response variable in the first column of the table.

 tbl = table(X(:,15),X(:,7),X(:,8),X(:,9),'VariableNames',...
{'price','curb_weight','engine_size','bore'});

When the response variable is in the first column of tbl, define its location. For example, fitlm, by
default, assumes that bore is the response variable. You can define the response variable in the
model using either:

fitlm(tbl,'ResponseVar','price');

or
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fitlm(tbl,'ResponseVar',logical([1 0 0 0]));

Perform stepwise regression.

stepwiselm(tbl,'quadratic','lower','price~1',...
'ResponseVar','price')

1. Removing bore^2, FStat = 0.01282, pValue = 0.90997
2. Removing engine_size^2, FStat = 0.078043, pValue = 0.78027
3. Removing curb_weight:bore, FStat = 0.70558, pValue = 0.40195

ans = 
Linear regression model:
    price ~ 1 + curb_weight*engine_size + engine_size*bore + curb_weight^2

Estimated Coefficients:
                                Estimate          SE         tStat       pValue  
                               ___________    __________    _______    __________

    (Intercept)                     131.13        14.273     9.1873    6.2319e-17
    curb_weight                  -0.043315     0.0085114    -5.0891    8.4682e-07
    engine_size                   -0.17102       0.13844    -1.2354       0.21819
    bore                           -12.244         4.999    -2.4493      0.015202
    curb_weight:engine_size    -6.3411e-05    2.6577e-05     -2.386      0.017996
    engine_size:bore              0.092554      0.037263     2.4838      0.013847
    curb_weight^2               8.0836e-06    1.9983e-06     4.0451    7.5432e-05

Number of observations: 201, Error degrees of freedom: 194
Root Mean Squared Error: 3.59
R-squared: 0.735,  Adjusted R-Squared: 0.726
F-statistic vs. constant model: 89.5, p-value = 3.58e-53

The initial model is a quadratic formula, and the lowest model considered is the constant. Here,
stepwiselm performs a backward elimination technique to determine the terms in the model. The
final model is price ~ 1 + curb_weight*engine_size + engine_size*bore +
curb_weight^2, which corresponds to

P = β0 + βCC + βEE + βBB + βCECE + βEBEB + βC2C2 + ϵ

where P is price, C is curb weight, E is engine size, B is bore, βi is the coefficient for the
corresponding term in the model, and ϵ is the error term. The final model includes all three main
effects, the interaction effects for curb weight and engine size and engine size and bore, and the
second-order term for curb weight.

See Also
LinearModel | fitlm | stepwiselm

Related Examples
• “Linear Regression” on page 11-9
• “Stepwise Regression” on page 11-101
• “Linear Regression Workflow” on page 11-35
• “Train Linear Regression Model” on page 11-163
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• “Interpret Linear Regression Results” on page 11-52
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Linear Regression with Interaction Effects

Construct and analyze a linear regression model with interaction effects and interpret the results.

Load sample data.

load hospital

To retain only the first column of blood pressure, store data in a table.

tbl = table(hospital.Sex,hospital.Age,hospital.Weight,hospital.Smoker,hospital.BloodPressure(:,1), ...
    'VariableNames',{'Sex','Age','Weight','Smoker','BloodPressure'});

Perform stepwise linear regression.

For the initial model, use the full model with all terms and their pairwise interactions.

mdl = stepwiselm(tbl,'interactions')

1. Removing Sex:Smoker, FStat = 0.050738, pValue = 0.8223
2. Removing Weight:Smoker, FStat = 0.07758, pValue = 0.78124
3. Removing Age:Weight, FStat = 1.9717, pValue = 0.16367
4. Removing Sex:Age, FStat = 0.32389, pValue = 0.57067
5. Removing Age:Smoker, FStat = 2.4939, pValue = 0.11768

mdl = 
Linear regression model:
    BloodPressure ~ 1 + Age + Smoker + Sex*Weight

Estimated Coefficients:
                       Estimate       SE        tStat       pValue  
                       ________    ________    _______    __________

    (Intercept)         133.17       10.337     12.883      1.76e-22
    Sex_Male           -35.269       17.524    -2.0126      0.047015
    Age                0.11584     0.067664      1.712      0.090198
    Weight             -0.1393     0.080211    -1.7367      0.085722
    Smoker_1            9.8307       1.0229     9.6102    1.2391e-15
    Sex_Male:Weight     0.2341      0.11192     2.0917      0.039162

Number of observations: 100, Error degrees of freedom: 94
Root Mean Squared Error: 4.72
R-squared: 0.53,  Adjusted R-Squared: 0.505
F-statistic vs. constant model: 21.2, p-value = 4e-14

The final model in formula form is BloodPressure ~ 1 + Age + Smoker + Sex*Weight. This
model includes all four main effects (Age, Smoker, Sex, Weight) and the two-way interaction between
Sex and Weight. This model corresponds to

BP = β0 + βAXA + βSmISm + βSIS + βWXW + βSWXWIS + ϵ,

where

• BP is the blood pressure
• βi are the coefficients
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• ISm is the indicator variable for smoking; ISm = 1 indicates a smoking patient whereas ISm = 0
indicates a nonsmoking patient

• IS is the indicator variable for sex; IS = 1 indicates a male patient whereas IS = 0 indicates a
female patient

• XA is the Age variable
• XW is the Weight variable
• ϵ is the error term

The following table shows the fitted linear model for each gender and smoking combination.

ISm IS Linear Model

1(Smoker) 1(Male)
BP = β0 + βSm + βS + βAXA + βW + βSW XW

BP = 107 . 5617 + 0 . 11584XA + 0 . 11826XW

1(Smoker) 0(Female)
BP = β0 + βSm + βAXA + βWXW

BP = 143 . 0007 + 0 . 11584XA− 0 . 1393XW

0(Nonsmoker) 1(Male)
BP = β0 + βS + βAXA + βW + βSW XW

BP = 97 . 901 + 0 . 11584XA + 0 . 11826XW

0(Nonsmoker) 0(Female)
BP = β0 + βAXA + βWXW

BP = 133 . 17 + 0 . 11584XA− 0 . 1393XW

As seen from these models, βSm and βS show how much the intercept of the response function
changes when the indicator variable takes the value 1 compared to when it takes the value 0. βSW,
however, shows the effect of the Weight variable on the response variable when the indicator variable
for sex takes the value 1 compared to when it takes the value 0. You can explore the main and
interaction effects in the final model using the methods of the LinearModel class as follows.

Plot prediction slice plots.

figure
plotSlice(mdl)
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This plot shows the main effects for all predictor variables. The green line in each panel shows the
change in the response variable as a function of the predictor variable when all other predictor
variables are held constant. For example, for a smoking male patient aged 37.5, the expected blood
pressure increases as the weight of the patient increases, given all else the same.

The dashed red curves in each panel show the 95% confidence bounds for the predicted response
values.

The horizontal dashed line in each panel shows the predicted response for the specific value of the
predictor variable corresponding to the vertical dashed line. You can drag these lines to get the
predicted response values at other predictor values, as shown next.
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For example, the predicted value of the response variable is 118.3497 when a patient is female,
nonsmoking, age 40.3788, and weighs 139.9545 pounds. The values in the square brackets, [114.621,
122.079], show the lower and upper limits of a 95% confidence interval for the estimated response.
Note that, for a nonsmoking female patient, the expected blood pressure decreases as the weight
increases, given all else is held constant.

Plot main effects.

plotEffects(mdl)

This plot displays the main effects. The circles show the magnitude of the effect and the blue lines
show the upper and lower confidence limits for the main effect. For example, being a smoker
increases the expected blood pressure by 10 units, compared to being a nonsmoker, given all else is
held constant. Expected blood pressure increases about two units for males compared to females,
again, given other predictors held constant. An increase in age from 25 to 50 causes an expected
increase of 4 units, whereas a change in weight from 111 to 202 causes about a 4-unit decrease in the
expected blood pressure, given all else held constant.

Plot interaction effects.

figure
plotInteraction(mdl,'Sex','Weight')

 Linear Regression with Interaction Effects

11-49



This plot displays the impact of a change in one factor given the other factor is fixed at a value.

Be cautious while interpreting the interaction effects. When there is not enough data on all factor
combinations or the data is highly correlated, it might be difficult to determine the interaction effect
of changing one factor while keeping the other fixed. In such cases, the estimated interaction effect is
an extrapolation from the data.

The blue circles show the main effect of a specific term, as in the main effects plot. The red circles
show the impact of a change in one term for fixed values of the other term. For example, in the
bottom half of this plot, the red circles show the impact of a weight change in female and male
patients, separately. You can see that an increase in a female’s weight from 111 to 202 pounds causes
about a 14-unit decrease in the expected blood pressure, while an increase of the same amount in the
weight of a male patient causes about a 5-unit increase in the expected blood pressure, again given
other predictors are held constant.

Plot prediction effects.

figure
plotInteraction(mdl,'Sex','Weight','predictions')
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This plot shows the effect of changing one variable as the other predictor variable is held constant. In
this example, the last figure shows the response variable, blood pressure, as a function of weight,
when the variable sex is fixed at males and females. The lines for males and females are crossing
which indicates a strong interaction between weight and sex. You can see that the expected blood
pressure increases as the weight of a male patient increases, but decreases as the weight of a female
patient increases.

See Also
LinearModel | fitlm | stepwiselm | plotSlice | plotEffects | plotInteraction

Related Examples
• “Linear Regression” on page 11-9
• “Stepwise Regression” on page 11-101
• “Linear Regression Workflow” on page 11-35
• “Train Linear Regression Model” on page 11-163
• “Interpret Linear Regression Results” on page 11-52
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Interpret Linear Regression Results

This example shows how to display and interpret linear regression output statistics.

Fit Linear Regression Model

Load the carsmall data set, a matrix input data set.

load carsmall
X = [Weight,Horsepower,Acceleration];

Fit a linear regression model by using fitlm.

lm = fitlm(X,MPG)

lm = 
Linear regression model:
    y ~ 1 + x1 + x2 + x3

Estimated Coefficients:
                    Estimate        SE          tStat        pValue  
                   __________    _________    _________    __________

    (Intercept)        47.977       3.8785        12.37    4.8957e-21
    x1             -0.0065416    0.0011274      -5.8023    9.8742e-08
    x2              -0.042943     0.024313      -1.7663       0.08078
    x3              -0.011583      0.19333    -0.059913       0.95236

Number of observations: 93, Error degrees of freedom: 89
Root Mean Squared Error: 4.09
R-squared: 0.752,  Adjusted R-Squared: 0.744
F-statistic vs. constant model: 90, p-value = 7.38e-27

The model display includes the model formula, estimated coefficients, and model summary statistics.

The model formula in the display, y ~ 1 + x1 + x2 + x3, corresponds to
y = β0 + β1X1 + β2X2 + β3X3 + ϵ.

The model display shows the estimated coefficient information, which is stored in the Coefficients
property. Display the Coefficients property.

lm.Coefficients

ans=4×4 table
                    Estimate        SE          tStat        pValue  
                   __________    _________    _________    __________

    (Intercept)        47.977       3.8785        12.37    4.8957e-21
    x1             -0.0065416    0.0011274      -5.8023    9.8742e-08
    x2              -0.042943     0.024313      -1.7663       0.08078
    x3              -0.011583      0.19333    -0.059913       0.95236

The Coefficient property includes these columns:
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• Estimate — Coefficient estimates for each corresponding term in the model. For example, the
estimate for the constant term (intercept) is 47.977.

• SE — Standard error of the coefficients.
• tStat — t-statistic for each coefficient to test the null hypothesis that the corresponding
coefficient is zero against the alternative that it is different from zero, given the other predictors
in the model. Note that tStat = Estimate/SE. For example, the t-statistic for the intercept is
47.977/3.8785 = 12.37.

• pValue — p-value for the t-statistic of the two-sided hypothesis test. For example, the p-value of
the t-statistic for x2 is greater than 0.05, so this term is not significant at the 5% significance level
given the other terms in the model.

The summary statistics of the model are:

• Number of observations — Number of rows without any NaN values. For example, Number of
observations is 93 because the MPG data vector has six NaN values and the Horsepower data
vector has one NaN value for a different observation, where the number of rows in X and MPG is
100.

• Error degrees of freedom — n – p, where n is the number of observations, and p is the
number of coefficients in the model, including the intercept. For example, the model has four
predictors, so the Error degrees of freedom is 93 – 4 = 89.

• Root mean squared error — Square root of the mean squared error, which estimates the
standard deviation of the error distribution.

• R-squared and Adjusted R-squared — Coefficient of determination and adjusted coefficient of
determination, respectively. For example, the R-squared value suggests that the model explains
approximately 75% of the variability in the response variable MPG.

• F-statistic vs. constant model — Test statistic for the F-test on the regression model,
which tests whether the model fits significantly better than a degenerate model consisting of only
a constant term.

• p-value — p-value for the F-test on the model. For example, the model is significant with a p-
value of 7.3816e-27.

ANOVA

Perform analysis of variance (ANOVA) for the model.

anova(lm,'summary')

ans=3×5 table
                SumSq     DF    MeanSq      F         pValue  
                ______    __    ______    ______    __________

    Total       6004.8    92    65.269                        
    Model         4516     3    1505.3    89.987    7.3816e-27
    Residual    1488.8    89    16.728                        

This anova display shows the following.

• SumSq — Sum of squares for the regression model, Model, the error term, Residual, and the
total, Total.

• DF — Degrees of freedom for each term. Degrees of freedom is n− 1 for the total, p− 1 for the
model, and n− p for the error term, where n is the number of observations, and p is the number of
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coefficients in the model, including the intercept. For example, MPG data vector has six NaN values
and one of the data vectors, Horsepower, has one NaN value for a different observation, so the
total degrees of freedom is 93 – 1 = 92. There are four coefficients in the model, so the model DF
is 4 – 1 = 3, and the DF for error term is 93 – 4 = 89.

• MeanSq — Mean squared error for each term. Note that MeanSq = SumSq/DF. For example, the
mean squared error for the error term is 1488.8/89 = 16.728. The square root of this value is the
root mean squared error in the linear regression display, or 4.09.

• F — F-statistic value, which is the same as F-statistic vs. constant model in the linear
regression display. In this example, it is 89.987, and in the linear regression display this F-statistic
value is rounded up to 90.

• pValue — p-value for the F-test on the model. In this example, it is 7.3816e-27.

If there are higher-order terms in the regression model, anova partitions the model SumSq into the
part explained by the higher-order terms and the rest. The corresponding F-statistics are for testing
the significance of the linear terms and higher-order terms as separate groups.

If the data includes replicates, or multiple measurements at the same predictor values, then the
anova partitions the error SumSq into the part for the replicates and the rest. The corresponding F-
statistic is for testing the lack-of-fit by comparing the model residuals with the model-free variance
estimate computed on the replicates.

Decompose ANOVA table for model terms.

anova(lm)

ans=4×5 table
              SumSq      DF     MeanSq         F          pValue  
             ________    __    ________    _________    __________

    x1         563.18     1      563.18       33.667    9.8742e-08
    x2         52.187     1      52.187       3.1197       0.08078
    x3       0.060046     1    0.060046    0.0035895       0.95236
    Error      1488.8    89      16.728                           

This anova display shows the following:

• First column — Terms included in the model.
• SumSq — Sum of squared error for each term except for the constant.
• DF — Degrees of freedom. In this example, DF is 1 for each term in the model and n− p for the

error term, where n is the number of observations, and p is the number of coefficients in the
model, including the intercept. For example, the DF for the error term in this model is 93 – 4 = 89.
If any of the variables in the model is a categorical variable, the DF for that variable is the number
of indicator variables created for its categories (number of categories – 1).

• MeanSq — Mean squared error for each term. Note that MeanSq = SumSq/DF. For example, the
mean squared error for the error term is 1488.8/89 = 16.728.

• F — F-values for each coefficient. The F-value is the ratio of the mean squared of each term and
mean squared error, that is, F = MeanSq(xi)/MeanSq(Error). Each F-statistic has an F
distribution, with the numerator degrees of freedom, DF value for the corresponding term, and the
denominator degrees of freedom, n− p. n is the number of observations, and p is the number of
coefficients in the model. In this example, each F-statistic has an F(1, 89) distribution.
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• pValue — p-value for each hypothesis test on the coefficient of the corresponding term in the
linear model. For example, the p-value for the F-statistic coefficient of x2 is 0.08078, and is not
significant at the 5% significance level given the other terms in the model.

Coefficient Confidence Intervals

Display coefficient confidence intervals.

coefCI(lm)

ans = 4×2

   40.2702   55.6833
   -0.0088   -0.0043
   -0.0913    0.0054
   -0.3957    0.3726

The values in each row are the lower and upper confidence limits, respectively, for the default 95%
confidence intervals for the coefficients. For example, the first row shows the lower and upper limits,
40.2702 and 55.6833, for the intercept, β0. Likewise, the second row shows the limits for β1 and so
on. Confidence intervals provide a measure of precision for linear regression coefficient estimates. A
100(1− α) % confidence interval gives the range the corresponding regression coefficient will be in
with 100(1− α) % confidence.

You can also change the confidence level. Find the 99% confidence intervals for the coefficients.

coefCI(lm,0.01)

ans = 4×2

   37.7677   58.1858
   -0.0095   -0.0036
   -0.1069    0.0211
   -0.5205    0.4973

Hypothesis Test on Coefficients

Test the null hypothesis that all predictor variable coefficients are equal to zero versus the alternate
hypothesis that at least one of them is different from zero.

[p,F,d] = coefTest(lm)

p = 7.3816e-27

F = 89.9874

d = 3

Here, coefTest performs an F-test for the hypothesis that all regression coefficients (except for the
intercept) are zero versus at least one differs from zero, which essentially is the hypothesis on the
model. It returns p, the p-value, F, the F-statistic, and d, the numerator degrees of freedom. The F-
statistic and p-value are the same as the ones in the linear regression display and anova for the
model. The degrees of freedom is 4 – 1 = 3 because there are four predictors (including the intercept)
in the model.

Now, perform a hypothesis test on the coefficients of the first and second predictor variables.
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H = [0 1 0 0; 0 0 1 0];
[p,F,d] = coefTest(lm,H)

p = 5.1702e-23

F = 96.4873

d = 2

The numerator degrees of freedom is the number of coefficients tested, which is 2 in this example.
The results indicate that at least one of β2 and β3 differs from zero.

See Also
LinearModel | fitlm | stepwiselm | anova

Related Examples
• “Examine Quality and Adjust Fitted Model” on page 11-14
• “Linear Regression” on page 11-9
• “Stepwise Regression” on page 11-101
• “Linear Regression Workflow” on page 11-35
• “Train Linear Regression Model” on page 11-163
• “What Is a Linear Regression Model?” on page 11-6

More About
• “Coefficient Standard Errors and Confidence Intervals” on page 11-60
• “Coefficient of Determination (R-Squared)” on page 11-63
• “F-statistic and t-statistic” on page 11-74
• “Summary of Output and Diagnostic Statistics” on page 11-91
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Cook’s Distance
Purpose
Cook’s distance is the scaled change in fitted values, which is useful for identifying outliers in the X
values (observations for predictor variables). Cook’s distance shows the influence of each observation
on the fitted response values. An observation with Cook’s distance larger than three times the mean
Cook’s distance might be an outlier.

Definition
Each element in the Cook's distance D is the normalized change in the fitted response values due to
the deletion of an observation. The Cook’s distance of observation i is

Di =
∑

j = 1

n
y j− y j(i)

2

p MSE ,

where

• y j is the jth fitted response value.
• y j(i) is the jth fitted response value, where the fit does not include observation i.
• MSE is the mean squared error.
• p is the number of coefficients in the regression model.

Cook’s distance is algebraically equivalent to the following expression:

Di =
ri

2

p MSE
hii

1− hii
2 ,

where ri is the ith residual, and hii is the ith leverage value.

How To
After fitting the model mdl, for example, you can use fitlm or stepwiselm to:

• Display the Cook’s distance values by indexing into the property using dot notation.

mdl.Diagnostics.CooksDistance

CooksDistance is an n-by-1 column vector in the Diagnostics table of the LinearModel
object.

• Plot the Cook’s distance values.

plotDiagnostics(mdl,'cookd')

For details, see the plotDiagnostics function of the LinearModel object.

Determine Outliers Using Cook's Distance
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This example shows how to use Cook's Distance to determine the outliers in the data.

Load the sample data and define the independent and response variables.

load hospital
X = double(hospital(:,2:5));
y = hospital.BloodPressure(:,1);

Fit the linear regression model.

mdl = fitlm(X,y);

Plot the Cook's distance values.

plotDiagnostics(mdl,'cookd')

The dashed line in the figure corresponds to the recommended threshold value,
3*mean(mdl.Diagnostics.CooksDistance). The plot has some observations with Cook's
distance values greater than the threshold value, which for this example is 3*(0.0108) = 0.0324. In
particular, there are two Cook's distance values that are relatively higher than the others, which
exceed the threshold value. You might want to find and omit these from your data and rebuild your
model.

Find the observations with Cook's distance values that exceed the threshold value.

find((mdl.Diagnostics.CooksDistance)>3*mean(mdl.Diagnostics.CooksDistance))

ans = 10×1
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     2
    13
    28
    44
    58
    70
    71
    84
    93
    95

Find the observations with Cook's distance values that are relatively larger than the other
observations with Cook's distances exceeding the threshold value.

find((mdl.Diagnostics.CooksDistance)>5*mean(mdl.Diagnostics.CooksDistance))

ans = 2×1

     2
    84

References
[1] Neter, J., M. H. Kutner, C. J. Nachtsheim, and W. Wasserman. Applied Linear Statistical Models. 4th

ed. Chicago: Irwin, 1996.

See Also
LinearModel | fitlm | stepwiselm | plotDiagnostics

Related Examples
• “Examine Quality and Adjust Fitted Model” on page 11-14
• “Interpret Linear Regression Results” on page 11-52
• “Summary of Output and Diagnostic Statistics” on page 11-91
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Coefficient Standard Errors and Confidence Intervals
In this section...
“Coefficient Covariance and Standard Errors” on page 11-60
“Coefficient Confidence Intervals” on page 11-61

Coefficient Covariance and Standard Errors
Purpose

Estimated coefficient variances and covariances capture the precision of regression coefficient
estimates. The coefficient variances and their square root, the standard errors, are useful in testing
hypotheses for coefficients.

Definition

The estimated covariance matrix is

∑ = MSE X′X −1,

where MSE is the mean squared error, and X is the matrix of observations on the predictor variables.
CoefficientCovariance, a property of the fitted model, is a p-by-p covariance matrix of regression
coefficient estimates. p is the number of coefficients in the regression model. The diagonal elements
are the variances of the individual coefficients.

How To

After obtaining a fitted model, say, mdl, using fitlm or stepwiselm, you can display the coefficient
covariances using

mdl.CoefficientCovariance

Compute Coefficient Covariance and Standard Errors

This example shows how to compute the covariance matrix and standard errors of the coefficients.

Load the sample data and define the predictor and response variables.

load hospital
y = hospital.BloodPressure(:,1);
X = double(hospital(:,2:5));

Fit a linear regression model.

mdl = fitlm(X,y);

Display the coefficient covariance matrix.

CM = mdl.CoefficientCovariance

CM = 5×5

   27.5113   11.0027   -0.1542   -0.2444    0.2702
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   11.0027    8.6864    0.0021   -0.1547   -0.0838
   -0.1542    0.0021    0.0045   -0.0001   -0.0029
   -0.2444   -0.1547   -0.0001    0.0031   -0.0026
    0.2702   -0.0838   -0.0029   -0.0026    1.0829

Compute the coefficient standard errors.

SE = diag(sqrt(CM))

SE = 5×1

    5.2451
    2.9473
    0.0673
    0.0557
    1.0406

Coefficient Confidence Intervals
Purpose

The coefficient confidence intervals provide a measure of precision for linear regression coefficient
estimates. A 100(1–α)% confidence interval gives the range that the corresponding regression
coefficient will be in with 100(1–α)% confidence.

Definition

The software finds confidence intervals using the Wald method. The 100*(1 – α)% confidence intervals
for regression coefficients are

bi ± t 1− α/2, n− p SE bi ,

where bi is the coefficient estimate, SE(bi) is the standard error of the coefficient estimate, and t(1–α/
2,n–p) is the 100(1 – α/2) percentile of t-distribution with n – p degrees of freedom. n is the number of
observations and p is the number of regression coefficients.

How To

After obtaining a fitted model, say, mdl, using fitlm or stepwiselm, you can obtain the default 95%
confidence intervals for coefficients using

coefCI(mdl)

You can also change the confidence level using

coefCI(mdl,alpha)

For details, see the coefCI function of LinearModel object.

Compute Coefficient Confidence Intervals

This example shows how to compute coefficient confidence intervals.
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Load the sample data and fit a linear regression model.

load hald
mdl = fitlm(ingredients,heat);

Display the 95% coefficient confidence intervals.

coefCI(mdl)

ans = 5×2

  -99.1786  223.9893
   -0.1663    3.2685
   -1.1589    2.1792
   -1.6385    1.8423
   -1.7791    1.4910

The values in each row are the lower and upper confidence limits, respectively, for the default 95%
confidence intervals for the coefficients. For example, the first row shows the lower and upper limits,
-99.1786 and 223.9893, for the intercept, β0 . Likewise, the second row shows the limits for β1 and so
on.

Display the 90% confidence intervals for the coefficients (α = 0.1).

coefCI(mdl,0.1)

ans = 5×2

  -67.8949  192.7057
    0.1662    2.9360
   -0.8358    1.8561
   -1.3015    1.5053
   -1.4626    1.1745

The confidence interval limits become narrower as the confidence level decreases.

See Also
LinearModel | fitlm | stepwiselm | plotDiagnostics | anova | coefCI | coefTest

Related Examples
• “Examine Quality and Adjust Fitted Model” on page 11-14
• “Interpret Linear Regression Results” on page 11-52
• “F-statistic and t-statistic” on page 11-74
• “Summary of Output and Diagnostic Statistics” on page 11-91
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Coefficient of Determination (R-Squared)

Purpose
Coefficient of determination (R-squared) indicates the proportionate amount of variation in the
response variable y explained by the independent variables X in the linear regression model. The
larger the R-squared is, the more variability is explained by the linear regression model.

Definition
R-squared is the proportion of the total sum of squares explained by the model. Rsquared, a property
of the fitted model, is a structure with two fields:

• Ordinary — Ordinary (unadjusted) R-squared

R2 = SSR
SST = 1− SSE

SST .

• Adjusted — R-squared adjusted for the number of coefficients

Rad j
2 = 1− n− 1

n− p
SSE
SST .

SSE is the sum of squared error, SSR is the sum of squared regression, SST is the sum of squared
total, n is the number of observations, and p is the number of regression coefficients. Note that p
includes the intercept, so for example, p is 2 for a linear fit. Because R-squared increases with
added predictor variables in the regression model, the adjusted R-squared adjusts for the number
of predictor variables in the model. This makes it more useful for comparing models with a
different number of predictors.

How To
After obtaining a fitted model, say, mdl, using fitlm or stepwiselm, you can obtain either R-
squared value as a scalar by indexing into the property using dot notation, for example,

mdl.Rsquared.Ordinary
mdl.Rsquared.Adjusted

You can also obtain the SSE, SSR, and SST using the properties with the same name.

mdl.SSE
mdl.SSR
mdl.SST

Display Coefficient of Determination

This example shows how to display R-squared (coefficient of determination) and adjusted R-squared.
Load the sample data and define the response and independent variables.

load hospital
y = hospital.BloodPressure(:,1);
X = double(hospital(:,2:5));
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Fit a linear regression model.

mdl = fitlm(X,y)

mdl = 
Linear regression model:
    y ~ 1 + x1 + x2 + x3 + x4

Estimated Coefficients:
                   Estimate        SE        tStat        pValue  
                   _________    ________    ________    __________

    (Intercept)        117.4      5.2451      22.383    1.1667e-39
    x1               0.88162      2.9473     0.29913       0.76549
    x2               0.08602     0.06731       1.278       0.20438
    x3             -0.016685    0.055714    -0.29947       0.76524
    x4                 9.884      1.0406       9.498    1.9546e-15

Number of observations: 100, Error degrees of freedom: 95
Root Mean Squared Error: 4.81
R-squared: 0.508,  Adjusted R-Squared: 0.487
F-statistic vs. constant model: 24.5, p-value = 5.99e-14

The R-squared and adjusted R-squared values are 0.508 and 0.487, respectively. Model explains about
50% of the variability in the response variable.

Access the R-squared and adjusted R-squared values using the property of the fitted LinearModel
object.

mdl.Rsquared.Ordinary

ans = 0.5078

mdl.Rsquared.Adjusted

ans = 0.4871

The adjusted R-squared value is smaller than the ordinary R-squared value.

See Also
LinearModel | fitlm | stepwiselm | anova

Related Examples
• “Examine Quality and Adjust Fitted Model” on page 11-14
• “Interpret Linear Regression Results” on page 11-52
• “Summary of Output and Diagnostic Statistics” on page 11-91

11 Parametric Regression Analysis

11-64



Delete-1 Statistics
In this section...
“Delete-1 Change in Covariance (CovRatio)” on page 11-65
“Delete-1 Scaled Difference in Coefficient Estimates (Dfbetas)” on page 11-67
“Delete-1 Scaled Change in Fitted Values (Dffits)” on page 11-68
“Delete-1 Variance (S2_i)” on page 11-70

Delete-1 Change in Covariance (CovRatio)
Purpose

Delete-1 change in covariance (CovRatio) identifies the observations that are influential in the
regression fit. An influential observation is one where its exclusion from the model might significantly
alter the regression function. Values of CovRatio larger than 1 + 3*p/n or smaller than 1 – 3*p/n
indicate influential points, where p is the number of regression coefficients, and n is the number of
observations.

Definition

The CovRatio statistic is the ratio of the determinant of the coefficient covariance matrix with
observation i deleted to the determinant of the covariance matrix for the full model:

CovRatio =
det MSE i X′ i X i −1

det MSE X′X −1 .

CovRatio is an n-by-1 vector in the Diagnostics table of the fitted LinearModel object. Each
element is the ratio of the generalized variance of the estimated coefficients when the corresponding
element is deleted to the generalized variance of the coefficients using all the data.

How To

After obtaining a fitted model, say, mdl, using fitlm or stepwiselm, you can:

• Display the CovRatio by indexing into the property using dot notation

mdl.Diagnostics.CovRatio
• Plot the delete-1 change in covariance using

plotDiagnostics(mdl,'CovRatio')

For details, see the plotDiagnostics method of the LinearModel class.

Determine Influential Observations Using CovRatio

This example shows how to use the CovRatio statistics to determine the influential points in data.
Load the sample data and define the response and predictor variables.

load hospital
y = hospital.BloodPressure(:,1);
X = double(hospital(:,2:5));
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Fit a linear regression model.

mdl = fitlm(X,y);

Plot the CovRatio statistics.

plotDiagnostics(mdl,'CovRatio')

For this example, the threshold limits are 1 + 3*5/100 = 1.15 and 1 - 3*5/100 = 0.85. There are a few
points beyond the limits, which might be influential points.

Find the observations that are beyond the limits.

find((mdl.Diagnostics.CovRatio)>1.15|(mdl.Diagnostics.CovRatio)<0.85)

ans = 5×1

     2
    14
    84
    93
    96
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Delete-1 Scaled Difference in Coefficient Estimates (Dfbetas)
Purpose

The sign of a delete-1 scaled difference in coefficient estimate (Dfbetas) for coefficient j and
observation i indicates whether that observation causes an increase or decrease in the estimate of the
regression coefficient. The absolute value of a Dfbetas indicates the magnitude of the difference
relative to the estimated standard deviation of the regression coefficient. A Dfbetas value larger
than 3/sqrt(n) in absolute value indicates that the observation has a large influence on the
corresponding coefficient.

Definition

Dfbetas for coefficient j and observation i is the ratio of the difference in the estimate of coefficient j
using all observations and the one obtained by removing observation i, and the standard error of the
coefficient estimate obtained by removing observation i. The Dfbetas for coefficient j and
observation i is

Dfbetasi j =
b j− b j i

MSE i 1− hii
,

where bj is the estimate for coefficient j, bj(i) is the estimate for coefficient j by removing observation i,
MSE(i) is the mean squared error of the regression fit by removing observation i, and hii is the
leverage value for observation i. Dfbetas is an n-by-p matrix in the Diagnostics table of the fitted
LinearModel object. Each cell of Dfbetas corresponds to the Dfbetas value for the corresponding
coefficient obtained by removing the corresponding observation.

How To

After obtaining a fitted model, say, mdl, using fitlm or stepwiselm, you can obtain the Dfbetas
values as an n-by-p matrix by indexing into the property using dot notation,

mdl.Diagnostics.Dfbetas

Determine Observations Influential on Coefficients Using Dfbetas

This example shows how to determine the observations that have large influence on coefficients using
Dfbetas. Load the sample data and define the response and independent variables.

load hospital
y = hospital.BloodPressure(:,1);
X = double(hospital(:,2:5));

Fit a linear regression model.

mdl = fitlm(X,y);

Find the Dfbetas values that are high in absolute value.

[row,col] = find(abs(mdl.Diagnostics.Dfbetas)>3/sqrt(100));
disp([row col])

     2     1
    28     1
    84     1
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    93     1
     2     2
    13     3
    84     3
     2     4
    84     4

Delete-1 Scaled Change in Fitted Values (Dffits)
Purpose

The delete-1 scaled change in fitted values (Dffits) show the influence of each observation on the
fitted response values. Dffits values with an absolute value larger than 2*sqrt(p/n) might be
influential.

Definition

Dffits for observation i is

Dffitsi = sri
hii

1− hii
,

where sri is the studentized residual, and hii is the leverage value of the fitted LinearModel object.
Dffits is an n-by-1 column vector in the Diagnostics table of the fitted LinearModel object.
Each element in Dffits is the change in the fitted value caused by deleting the corresponding
observation and scaling by the standard error.

How To

After obtaining a fitted model, say, mdl, using fitlm or stepwiselm, you can:

• Display the Dffits values by indexing into the property using dot notation

mdl.Diagnostics.Dffits

• Plot the delete-1 scaled change in fitted values using

plotDiagnostics(mdl,'Dffits')

For details, see the plotDiagnostics method of the LinearModel class for details.

Determine Observations Influential on Fitted Response Using Dffits

This example shows how to determine the observations that are influential on the fitted response
values using Dffits values. Load the sample data and define the response and independent
variables.

load hospital
y = hospital.BloodPressure(:,1);
X = double(hospital(:,2:5));

Fit a linear regression model.

mdl = fitlm(X,y);
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Plot the Dffits values.

plotDiagnostics(mdl,'Dffits')

The influential threshold limit for the absolute value of Dffits in this example is 2*sqrt(5/100) =
0.45. Again, there are some observations with Dffits values beyond the recommended limits.

Find the Dffits values that are large in absolute value.

find(abs(mdl.Diagnostics.Dffits)>2*sqrt(4/100))

ans = 10×1

     2
    13
    28
    44
    58
    70
    71
    84
    93
    95
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Delete-1 Variance (S2_i)
Purpose

The delete-1 variance (S2_i) shows how the mean squared error changes when an observation is
removed from the data set. You can compare the S2_i values with the value of the mean squared
error.

Definition

S2_i is a set of residual variance estimates obtained by deleting each observation in turn. The S2_i
value for observation i is

S2_i = MSE i =
∑

j ≠ i

n
y j− y j i

2

n− p− 1 ,

where yj is the jth observed response value. S2_i is an n-by-1 vector in the Diagnostics table of the
fitted LinearModel object. Each element in S2_i is the mean squared error of the regression
obtained by deleting that observation.

How To

After obtaining a fitted model, say, mdl, using fitlm or stepwiselm, you can:

• Display the S2_i vector by indexing into the property using dot notation

mdl.Diagnostics.S2_i
• Plot the delete-1 variance values using

plotDiagnostics(mdl,'S2_i')

For details, see the plotDiagnostics method of the LinearModel class.

Compute and Examine Delete-1 Variance Values

This example shows how to compute and plot S2_i values to examine the change in the mean squared
error when an observation is removed from the data. Load the sample data and define the response
and independent variables.

load hospital
y = hospital.BloodPressure(:,1);
X = double(hospital(:,2:5));

Fit a linear regression model.

mdl = fitlm(X,y);

Display the MSE value for the model.

mdl.MSE

ans = 23.1140

Plot the S2_i values.
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plotDiagnostics(mdl,'S2_i')

This plot makes it easy to compare the S2_i values to the MSE value of 23.114, indicated by the
horizontal dashed lines. You can see how deleting one observation changes the error variance.

See Also
LinearModel | fitlm | stepwiselm | plotDiagnostics | plotResiduals

Related Examples
• “Examine Quality and Adjust Fitted Model” on page 11-14
• “Interpret Linear Regression Results” on page 11-52
• “Summary of Output and Diagnostic Statistics” on page 11-91
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Durbin-Watson Test

Purpose
The Durbin-Watson test assesses whether or not there is autocorrelation among the residuals of time
series data.

Definition
The Durbin-Watson test statistic, DW, is

DW =
∑

i = 1

n− 1
ri + 1− ri

2

∑
i = 1

n
ri

2
,

where ri is the ith raw residual, and n is the number of observations.

How To
After obtaining a fitted model, say, mdl, using fitlm or stepwiselm, you can perform the Durbin-
Watson test using

dwtest(mdl)

For details, see the dwtest method of the LinearModel class.

Test for Autocorrelation Among Residuals

This example shows how to test for autocorrelation among the residuals of a linear regression model.

Load the sample data and fit a linear regression model.

load hald
mdl = fitlm(ingredients,heat);

Perform a two-sided Durbin-Watson test to determine if there is any autocorrelation among the
residuals of the linear model, mdl.

[p,DW] = dwtest(mdl,'exact','both')

p = 0.8421

DW = 2.0526

The value of the Durbin-Watson test statistic is 2.0526. The p-value of 0.8421 suggests that the
residuals are not autocorrelated.

See Also
LinearModel | fitlm | stepwiselm | plotResiduals | dwtest
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Related Examples
• “Examine Quality and Adjust Fitted Model” on page 11-14
• “Interpret Linear Regression Results” on page 11-52
• “Summary of Output and Diagnostic Statistics” on page 11-91
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F-statistic and t-statistic
In this section...
“F-statistic” on page 11-74
“Assess Fit of Model Using F-statistic” on page 11-74
“t-statistic” on page 11-76
“Assess Significance of Regression Coefficients Using t-statistic” on page 11-77

F-statistic
Purpose

In linear regression, the F-statistic is the test statistic for the analysis of variance (ANOVA) approach
to test the significance of the model or the components in the model.

Definition

The F-statistic in the linear model output display is the statistic for testing the statistical significance
of the model. The model property ModelFitVsNullModel contains the same statistic.

The F-statistic values in the anova display allow you to assess the significance of the terms or
components in the model.

How To

Fit a regression model (mdl) by using fitlm or stepwiselm. Then, you can:

• Find the F-statistic vs. constant model in the output display or by using

disp(mdl)
• Display the F-statistic of the model by entering

mdl.ModelFitVsNullModel
• Display the ANOVA for the model using

anova(mdl,'summary')
• Obtain the F-statistic values for the components, except for the constant term using

anova(mdl)

For details, see the anova method of the LinearModel class.

Assess Fit of Model Using F-statistic

This example shows how to assess the fit of the model and the significance of the regression
coefficients using the F-statistic.

Load the sample data.

load hospital
tbl = table(hospital.Age,hospital.Weight,hospital.Smoker,hospital.BloodPressure(:,1), ...
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      'VariableNames',{'Age','Weight','Smoker','BloodPressure'});
tbl.Smoker = categorical(tbl.Smoker);

Fit a linear regression model.

mdl = fitlm(tbl,'BloodPressure ~ Age*Weight + Smoker + Weight^2')

mdl = 
Linear regression model:
    BloodPressure ~ 1 + Smoker + Age*Weight + Weight^2

Estimated Coefficients:
                    Estimate        SE         tStat        pValue  
                   __________    _________    ________    __________

    (Intercept)        168.02       27.694       6.067    2.7149e-08
    Age              0.079569      0.39861     0.19962       0.84221
    Weight           -0.69041       0.3435     -2.0099      0.047305
    Smoker_true        9.8027       1.0256      9.5584    1.5969e-15
    Age:Weight     0.00021796    0.0025258    0.086294       0.93142
    Weight^2        0.0021877    0.0011037      1.9822      0.050375

Number of observations: 100, Error degrees of freedom: 94
Root Mean Squared Error: 4.73
R-squared: 0.528,  Adjusted R-Squared: 0.503
F-statistic vs. constant model: 21, p-value = 4.81e-14

The F-statistic of the linear fit versus the constant model is 21, with a p-value of 4.81e-14. The model
is significant at the 5% significance level. The R-squared value of 0.528 means the model explains
about 53% of the variability in the response. There might be other predictor (explanatory) variables
that are not included in the current model.

You can also programmatically access the F-statistic of the model.

mdl.ModelFitVsNullModel

ans = struct with fields:
        Fstat: 21.0120
       Pvalue: 4.8099e-14
    NullModel: 'constant'

Display the ANOVA table for the fitted model.

anova(mdl,'summary')

ans=5×5 table
                   SumSq     DF    MeanSq      F         pValue  
                   ______    __    ______    ______    __________

    Total          4461.2    99    45.062                        
    Model          2354.5     5     470.9    21.012    4.8099e-14
    . Linear       2263.3     3    754.42    33.663    7.2417e-15
    . Nonlinear    91.248     2    45.624    2.0358        0.1363
    Residual       2106.6    94    22.411                        

This display separates the variability in the model into linear and nonlinear terms. Since there are
two non-linear terms (Weight^2 and the interaction between Weight and Age), the nonlinear
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degrees of freedom in the DF column is 2. There are three linear terms in the model (one Smoker
indicator variable, Weight, and Age). The corresponding F-statistics in the F column are for testing
the significance of the linear and nonlinear terms as separate groups.

When there are replicated observations, the residual term is also separated into two parts; first is the
error due to the lack of fit, and second is the pure error independent from the model, obtained from
the replicated observations. In that case, the F-statistic is for testing the lack of fit, that is, whether
the fit is adequate or not. But, in this example, there are no replicated observations.

Display the ANOVA table for the model terms.

anova(mdl)

ans=6×5 table
                   SumSq      DF     MeanSq         F          pValue  
                  ________    __    ________    _________    __________

    Age             62.991     1      62.991       2.8107      0.096959
    Weight        0.064104     1    0.064104    0.0028604       0.95746
    Smoker          2047.5     1      2047.5       91.363    1.5969e-15
    Age:Weight     0.16689     1     0.16689    0.0074466       0.93142
    Weight^2        88.057     1      88.057       3.9292      0.050375
    Error           2106.6    94      22.411                           

This display decomposes the ANOVA table into the model terms. The corresponding F-statistics in the
F column assess the statistical significance of each term. For example, the F-test for Smoker tests
whether the coefficient of the indicator variable for Smoker is different from zero. That is, the F-test
determines whether being a smoker has a significant effect on BloodPressure. The degrees of
freedom for each model term is the numerator degrees of freedom for the corresponding F-test. All
the terms have one degree of freedom. In the case of a categorical variable, the degrees of freedom is
the number of indicator variables. Smoker has only one indicator variable, so it also has one degree
of freedom.

t-statistic
Purpose

In linear regression, the t-statistic is useful for making inferences about the regression coefficients.
The hypothesis test on coefficient i tests the null hypothesis that it is equal to zero – meaning the
corresponding term is not significant – versus the alternate hypothesis that the coefficient is different
from zero.

Definition

For a hypotheses test on coefficient i, with

H0 : βi = 0

H1 : βi ≠ 0,

the t-statistic is:

t =
bi

SE(bi)
,
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where SE(bi) is the standard error of the estimated coefficient bi.

How To

After obtaining a fitted model, say, mdl, using fitlm or stepwiselm, you can:

• Find the coefficient estimates, the standard errors of the estimates (SE), and the t-statistic values
of hypothesis tests for the corresponding coefficients (tStat) in the output display.

• Call for the display using

display(mdl)

Assess Significance of Regression Coefficients Using t-statistic

This example shows how to test for the significance of the regression coefficients using t-statistic.

Load the sample data and fit the linear regression model.

load hald
mdl = fitlm(ingredients,heat)

mdl = 
Linear regression model:
    y ~ 1 + x1 + x2 + x3 + x4

Estimated Coefficients:
                   Estimate      SE        tStat       pValue 
                   ________    _______    ________    ________

    (Intercept)      62.405     70.071      0.8906     0.39913
    x1               1.5511    0.74477      2.0827    0.070822
    x2              0.51017    0.72379     0.70486      0.5009
    x3              0.10191    0.75471     0.13503     0.89592
    x4             -0.14406    0.70905    -0.20317     0.84407

Number of observations: 13, Error degrees of freedom: 8
Root Mean Squared Error: 2.45
R-squared: 0.982,  Adjusted R-Squared: 0.974
F-statistic vs. constant model: 111, p-value = 4.76e-07

You can see that for each coefficient, tStat = Estimate/SE. The p-values for the hypotheses tests
are in the pValue column. Each t-statistic tests for the significance of each term given other terms in
the model. According to these results, none of the coefficients seem significant at the 5% significance
level, although the R-squared value for the model is really high at 0.97. This often indicates possible
multicollinearity among the predictor variables.

Use stepwise regression to decide which variables to include in the model.

load hald
mdl = stepwiselm(ingredients,heat)

1. Adding x4, FStat = 22.7985, pValue = 0.000576232
2. Adding x1, FStat = 108.2239, pValue = 1.105281e-06

mdl = 
Linear regression model:
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    y ~ 1 + x1 + x4

Estimated Coefficients:
                   Estimate       SE        tStat       pValue  
                   ________    ________    _______    __________

    (Intercept)       103.1       2.124      48.54    3.3243e-13
    x1                 1.44     0.13842     10.403    1.1053e-06
    x4             -0.61395    0.048645    -12.621    1.8149e-07

Number of observations: 13, Error degrees of freedom: 10
Root Mean Squared Error: 2.73
R-squared: 0.972,  Adjusted R-Squared: 0.967
F-statistic vs. constant model: 177, p-value = 1.58e-08

In this example, stepwiselm starts with the constant model (default) and uses forward selection to
incrementally add x4 and x1. Each predictor variable in the final model is significant given the other
one is in the model. The algorithm stops when adding none of the other predictor variables
significantly improves in the model. For details on stepwise regression, see stepwiselm.

See Also
LinearModel | fitlm | stepwiselm | anova | coefCI | coefTest

Related Examples
• “Examine Quality and Adjust Fitted Model” on page 11-14
• “Interpret Linear Regression Results” on page 11-52
• “Coefficient Standard Errors and Confidence Intervals” on page 11-60
• “Summary of Output and Diagnostic Statistics” on page 11-91
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Hat Matrix and Leverage

In this section...
“Hat Matrix” on page 11-79
“Leverage” on page 11-80
“Determine High Leverage Observations” on page 11-80

Hat Matrix
Purpose

The hat matrix provides a measure of leverage. It is useful for investigating whether one or more
observations are outlying with regard to their X values, and therefore might be excessively
influencing the regression results.

Definition

The hat matrix is also known as the projection matrix because it projects the vector of observations, y,
onto the vector of predictions, y , thus putting the "hat" on y. The hat matrix H is defined in terms of
the data matrix X:

H = X(XTX)–1XT

and determines the fitted or predicted values since

y = Hy = Xb .

The diagonal elements of H, hii, are called leverages and satisfy

0 ≤ hii ≤ 1

∑
i = 1

n
hii = p,

where p is the number of coefficients, and n is the number of observations (rows of X) in the
regression model. HatMatrix is an n-by-n matrix in the Diagnostics table.

How To

After obtaining a fitted model, say, mdl, using fitlm or stepwiselm, you can:

• Display the HatMatrix by indexing into the property using dot notation

mdl.Diagnostics.HatMatrix

When n is large, HatMatrix might be computationally expensive. In those cases, you can obtain
the diagonal values directly, using

mdl.Diagnostics.Leverage
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Leverage
Purpose

Leverage is a measure of the effect of a particular observation on the regression predictions due to
the position of that observation in the space of the inputs. In general, the farther a point is from the
center of the input space, the more leverage it has. Because the sum of the leverage values is p, an
observation i can be considered as an outlier if its leverage substantially exceeds the mean leverage
value, p/n, for example, a value larger than 2*p/n.

Definition

The leverage of observation i is the value of the ith diagonal term, hii, of the hat matrix, H, where

H = X(XTX)–1XT.

The diagonal terms satisfy

0 ≤ hii ≤ 1

∑
i = 1

n
hii = p,

where p is the number of coefficients in the regression model, and n is the number of observations.
The minimum value of hii is 1/n for a model with a constant term. If the fitted model goes through the
origin, then the minimum leverage value is 0 for an observation at x = 0.

It is possible to express the fitted values, y , by the observed values, y, since

y = Hy = Xb .

Hence, hii expresses how much the observation yi has impact on y i. A large value of hii indicates that
the ith case is distant from the center of all X values for all n cases and has more leverage. Leverage
is an n-by-1 column vector in the Diagnostics table.

How To

After obtaining a fitted model, say, mdl, using fitlm or stepwiselm, you can:

• Display the Leverage vector by indexing into the property using dot notation

mdl.Diagnostics.Leverage

• Plot the leverage for the values fitted by your model using

plotDiagnostics(mdl)

See the plotDiagnostics method of the LinearModel class for details.

Determine High Leverage Observations

This example shows how to compute Leverage values and assess high leverage observations. Load
the sample data and define the response and independent variables.
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load hospital
y = hospital.BloodPressure(:,1);
X = double(hospital(:,2:5));

Fit a linear regression model.

mdl = fitlm(X,y);

Plot the leverage values.

plotDiagnostics(mdl)

For this example, the recommended threshold value is 2*5/100 = 0.1. There is no indication of high
leverage observations.

See Also
LinearModel | fitlm | stepwiselm | plotDiagnostics

Related Examples
• “Examine Quality and Adjust Fitted Model” on page 11-14
• “Interpret Linear Regression Results” on page 11-52
• “Summary of Output and Diagnostic Statistics” on page 11-91
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Residuals

Purpose
Residuals are useful for detecting outlying y values and checking the linear regression assumptions
with respect to the error term in the regression model. High-leverage observations have smaller
residuals because they often shift the regression line or surface closer to them. You can also use
residuals to detect some forms of heteroscedasticity and autocorrelation.

Definition
The Residuals matrix is an n-by-4 table containing four types of residuals, with one row for each
observation.

Raw Residuals

Observed minus fitted values, that is,

ri = yi− y .i

Pearson Residuals

Raw residuals divided by the root mean squared error, that is,

pri =
ri

MSE ,

where ri is the raw residual and MSE is the mean squared error.

Standardized Residuals

Standardized residuals are raw residuals divided by their estimated standard deviation. The
standardized residual for observation i is

sti =
ri

MSE 1− hii
,

where MSE is the mean squared error and hii is the leverage value for observation i.

Studentized Residuals

Studentized residuals are the raw residuals divided by an independent estimate of the residual
standard deviation. The residual for observation i is divided by an estimate of the error standard
deviation based on all observations except for observation i.

sri =
ri

MSE i 1− hii
,

where MSE(i) is the mean squared error of the regression fit calculated by removing observation i,
and hii is the leverage value for observation i. The studentized residual sri has a t-distribution with n –
p – 1 degrees of freedom.
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How To
After obtaining a fitted model, say, mdl, using fitlm or stepwiselm, you can:

• Find the Residuals table under mdl object.
• Obtain any of these columns as a vector by indexing into the property using dot notation, for

example,

mdl.Residuals.Raw

• Plot any of the residuals for the values fitted by your model using

plotResiduals(mdl)

For details, see the plotResiduals method of the LinearModel class.

Assess Model Assumptions Using Residuals

This example shows how to assess the model assumptions by examining the residuals of a fitted linear
regression model.

Load the sample data and store the independent and response variables in a table.

 load imports-85
 tbl = table(X(:,7),X(:,8),X(:,9),X(:,15),'VariableNames',...
{'curb_weight','engine_size','bore','price'});

Fit a linear regression model.

mdl = fitlm(tbl)

mdl = 
Linear regression model:
    price ~ 1 + curb_weight + engine_size + bore

Estimated Coefficients:
                    Estimate        SE         tStat       pValue  
                   __________    _________    _______    __________

    (Intercept)        64.095        3.703     17.309    2.0481e-41
    curb_weight    -0.0086681    0.0011025    -7.8623      2.42e-13
    engine_size     -0.015806     0.013255    -1.1925       0.23452
    bore              -2.6998       1.3489    -2.0015      0.046711

Number of observations: 201, Error degrees of freedom: 197
Root Mean Squared Error: 3.95
R-squared: 0.674,  Adjusted R-Squared: 0.669
F-statistic vs. constant model: 136, p-value = 1.14e-47

Plot the histogram of raw residuals.

plotResiduals(mdl)
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The histogram shows that the residuals are slightly right skewed.

Plot the box plot of all four types of residuals.

 Res = table2array(mdl.Residuals);
 boxplot(Res)
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You can see the right-skewed structure of the residuals in the box plot as well.

Plot the normal probability plot of the raw residuals.

plotResiduals(mdl,'probability')

 Residuals
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This normal probability plot also shows the deviation from normality and the skewness on the right
tail of the distribution of residuals.

Plot the residuals versus lagged residuals.

plotResiduals(mdl,'lagged')
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This graph shows a trend, which indicates a possible correlation among the residuals. You can further
check this using dwtest(mdl). Serial correlation among residuals usually means that the model can
be improved.

Plot the symmetry plot of residuals.

plotResiduals(mdl,'symmetry')

 Residuals
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This plot also suggests that the residuals are not distributed equally around their median, as would
be expected for normal distribution.

Plot the residuals versus the fitted values.

plotResiduals(mdl,'fitted')
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The increase in the variance as the fitted values increase suggests possible heteroscedasticity.

References
[1] Atkinson, A. T. Plots, Transformations, and Regression. An Introduction to Graphical Methods of

Diagnostic Regression Analysis. New York: Oxford Statistical Science Series, Oxford
University Press, 1987.

[2] Neter, J., M. H. Kutner, C. J. Nachtsheim, and W. Wasserman. Applied Linear Statistical Models.
IRWIN, The McGraw-Hill Companies, Inc., 1996.

[3] Belsley, D. A., E. Kuh, and R. E. Welsch. Regression Diagnostics, Identifying Influential Data and
Sources of Collinearity. Wiley Series in Probability and Mathematical Statistics, John Wiley
and Sons, Inc., 1980.

See Also
LinearModel | fitlm | stepwiselm | plotDiagnostics | plotResiduals | dwtest

Related Examples
• “Examine Quality and Adjust Fitted Model” on page 11-14
• “Interpret Linear Regression Results” on page 11-52
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• “Summary of Output and Diagnostic Statistics” on page 11-91
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Summary of Output and Diagnostic Statistics
Diagnostic Statistics LinearModel Properties and

Functions
Field Names of regstats
output

“Cook’s Distance” on page 11-57 • See the CooksDistance
field of the Diagnostics
property.

• Use the plotDiagnostics
function with the 'cookd'
plot type.

cookd

“Coefficient Covariance and Standard
Errors” on page 11-60

See the
CoefficientCovariance
property.

covb

“Coefficient Confidence Intervals” on
page 11-61

Use the coefCI function. N/A

“Coefficient of Determination (R-
Squared)” on page 11-63

See the Ordinary and
Adjusted fields of the
Rsquared property.

rsquare, adjrsquare

“Delete-1 Change in Covariance
(CovRatio)” on page 11-65

• See the CovRatio field of
the Diagnostics property.

• Use the plotDiagnostics
function with the
'covratio' plot type.

covratio

“Delete-1 Scaled Difference in
Coefficient Estimates (Dfbetas)” on
page 11-67

See the Dfbetas field of the
Diagnostics property.

dfbetas

“Delete-1 Scaled Change in Fitted
Values (Dffits)” on page 11-68

• See the Dffits field of the
Diagnostics property.

• Use the plotDiagnostics
function with the 'dffits'
plot type.

dffits

“Delete-1 Variance (S2_i)” on page
11-70

• See the S2_i field of the
Diagnostics property.

• Use the plotDiagnostics
with the 's2_i' plot type.

s2_i

“Durbin-Watson Test” on page 11-72 Use the dwtest function. dwstat
“F-statistic” on page 11-74 • Find the value of F-

statistic vs.
constant model in the
fitted model display at
command line.

• Use the anova function.

fstat

“Hat Matrix” on page 11-79 See the HatMatrix field of the
Diagnostics property.

hatmat
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Diagnostic Statistics LinearModel Properties and
Functions

Field Names of regstats
output

“Leverage” on page 11-80 • See the Leverage field of
the Diagnostics property.

• Use the plotDiagnostics
function with the
'leverage' plot type.

leverage

“Residuals” on page 11-82 • See the Raw, Pearson,
Standardized, and
Studentized fields of the
Residuals property.

• Use the plotResiduals
function.

r, studres, standres

“t-statistic” on page 11-76 See the tStat column of the
Coefficients property.

tstat

See Also
LinearModel | fitlm | stepwiselm

Related Examples
• “Examine Quality and Adjust Fitted Model” on page 11-14
• “Interpret Linear Regression Results” on page 11-52

11 Parametric Regression Analysis

11-92



Wilkinson Notation

In this section...
“Overview” on page 11-93
“Formula Specification” on page 11-93
“Linear Model Examples” on page 11-96
“Linear Mixed-Effects Model Examples” on page 11-97
“Generalized Linear Model Examples” on page 11-98
“Generalized Linear Mixed-Effects Model Examples” on page 11-99
“Repeated Measures Model Examples” on page 11-100

Overview
Wilkinson notation provides a way to describe regression and repeated measures models without
specifying coefficient values. This specialized notation identifies the response variable and which
predictor variables to include or exclude from the model. You can also include squared and higher-
order terms, interaction terms, and grouping variables in the model formula.

Specifying a model using Wilkinson notation provides several advantages:

• You can include or exclude individual predictors and interaction terms from the model. For
example, using the 'Interactions' name-value pair available in each model fitting functions
includes interaction terms for all pairs of variables. Using Wilkinson notation instead allows you to
include only the interaction terms of interest.

• You can change the model formula without changing the design matrix, if your input data uses the
table data type. For example, if you fit an initial model using all the available predictor variables,
but decide to remove a variable that is not statistically significant, then you can re-write the model
formula to include only the variables of interest. You do not need to make any changes to the input
data itself.

Statistics and Machine Learning Toolbox offers several model fitting functions that use Wilkinson
notation, including:

• Linear models (using fitlm and stepwiselm)
• Generalized linear models (using fitglm)
• Linear mixed-effects models (using fitlme and fitlmematrix)
• Generalized linear mixed-effects models (using fitglme)
• Repeated measures models (using fitrm)
• Cox proportional hazards model (using fitcox)

Formula Specification
A formula for model specification is a character vector or string scalar of the form y ~ terms, where
y is the name of the response variable, and terms defines the model using the predictor variable
names and the following operators.
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Predictor Variables

Predictor Terms in Model Wilkinson Notation
intercept 1
no intercept –1
x1 x1
x1, x2 x1 + x2
x1, x2, x1x2 x1*x2 or x1 + x2 + x1:x2
x1x2 x1:x2
x1, x1

2 x1^2
x1

2 x1^2 – x1

Wilkinson notation includes an intercept term in the model by default, even if you do not add 1 to the
model formula. To exclude the intercept from the model, use -1 in the formula.

The * operator (for interactions) and the ^ operator (for power and exponents) automatically include
all lower-order terms. For example, if you specify x^3, the model will automatically include x3, x2, and
x. If you want to exclude certain variables from the model, use the – operator to remove the
unwanted terms.

Random-Effects and Mixed-Effects Models

For random-effects and mixed-effects models, the formula specification includes the names of the
predictor variables and the grouping variables. For example, if the predictor variable x1 is a random
effect grouped by the variable g, then represent this in Wilkinson notation as follows:

(x1 | g)

Repeated Measures Models

For repeated measures models, the formula specification includes all of the repeated measures as
responses, and the factors as predictor variables. Specify the response variables for repeated
measures models as described in the following table.

Response Terms in Model Wilkinson Notation
y1 y1
y1, y2, y3 y1,y2,y3
y1, y2, y3, y4, y5 y1–y5

For example, if you have three repeated measures as responses and the factors x1, x2, and x3 as the
predictor variables, then you can define the repeated measures model using Wilkinson notation as
follows:

y1,y2,y3 ~ x1 + x2 + x3

or

y1-y3 ~ x1 + x2 + x3
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Variable Names

If the input data (response and predictor variables) is stored in a table or dataset array, you can
specify the formula using the variable names. For example, load the carsmall sample data. Create a
table containing Weight, Acceleration, and MPG. Name each variable using the
'VariableNames' name-value pair argument of the fitting function fitlm. Then fit the following
model to the data:

MPG = β0 + β1Weight + β2Acceleration

load carsmall
tbl = table(Weight,Acceleration,MPG, ...
    'VariableNames',{'Weight','Acceleration','MPG'});
mdl = fitlm(tbl,'MPG ~ Weight + Acceleration')

mdl = 

Linear regression model:
    MPG ~ 1 + Weight + Acceleration

Estimated Coefficients:
                     Estimate         SE         tStat       pValue  
                    __________    __________    _______    __________

    (Intercept)         45.155        3.4659     13.028    1.6266e-22
    Weight          -0.0082475    0.00059836    -13.783    5.3165e-24
    Acceleration       0.19694       0.14743     1.3359       0.18493

Number of observations: 94, Error degrees of freedom: 91
Root Mean Squared Error: 4.12
R-squared: 0.743,  Adjusted R-Squared: 0.738
F-statistic vs. constant model: 132, p-value = 1.38e-27

The model object display uses the variable names provided in the input table.

If the input data is stored as a matrix, you can specify the formula using default variable names such
as y, x1, and x2. For example, load the carsmall sample data. Create a matrix containing the
predictor variables Weight and Acceleration. Then fit the following model to the data:

MPG = β0 + β1Weight + β2Acceleration

load carsmall
X = [Weight,Acceleration];
y = MPG;
mdl = fitlm(X,y,'y ~ x1 + x2')

mdl = 

Linear regression model:
    y ~ 1 + x1 + x2

Estimated Coefficients:
                    Estimate         SE         tStat       pValue  
                   __________    __________    _______    __________
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    (Intercept)        45.155        3.4659     13.028    1.6266e-22
    x1             -0.0082475    0.00059836    -13.783    5.3165e-24
    x2                0.19694       0.14743     1.3359       0.18493

Number of observations: 94, Error degrees of freedom: 91
Root Mean Squared Error: 4.12
R-squared: 0.743,  Adjusted R-Squared: 0.738
F-statistic vs. constant model: 132, p-value = 1.38e-27

The term x1 in the model specification formula corresponds to the first column of the predictor
variable matrix X. The term x2 corresponds to the second column of the input matrix. The term y
corresponds to the response variable.

Linear Model Examples
Use fitlm and stepwiselm to fit linear models.

Intercept and Two Predictors

For a linear regression model with an intercept and two fixed-effects predictors, such as

yi = β0 + β1xi1 + β2xi2 + εi,

specify the model formula using Wilkinson notation as follows:

'y ~ x1 + x2'

No Intercept and Two Predictors

For a linear regression model with no intercept and two fixed-effects predictors, such as

yi = β1xi1 + β2xi2 + εi ,

specify the model formula using Wilkinson notation as follows:

'y ~ -1 + x1 + x2'

Intercept, Two Predictors, and an Interaction Term

For a linear regression model with an intercept, two fixed-effects predictors, and an interaction term,
such as

yi = β0 + β1xi1 + β2xi2 + β3xi1xi2 + εi ,

specify the model formula using Wilkinson notation as follows:

'y ~ x1*x2'

or

'y ~ x1 + x2 + x1:x2'

Intercept, Three Predictors, and All Interaction Effects

For a linear regression model with an intercept, three fixed-effects predictors, and interaction effects
between all three predictors plus all lower-order terms, such as
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yi = β0 + β1xi1 + β2xi2 + β3xi3 + β4x1xi2 + β5x1xi3 + β6x2xi3 + β7xi1xi2xi3 + εi ,

specify the model formula using Wilkinson notation as follows:

'y ~ x1*x2*x3'

Intercept, Three Predictors, and Selected Interaction Effects

For a linear regression model with an intercept, three fixed-effects predictors, and interaction effects
between two of the predictors, such as

yi = β0 + β1xi1 + β2xi2 + β3xi3 + β4x1xi2 + εi ,

specify the model formula using Wilkinson notation as follows:

'y ~ x1*x2 + x3'

or

'y ~ x1 + x2 + x3 + x1:x2'

Intercept, Three Predictors, and Lower-Order Interaction Effects Only

For a linear regression model with an intercept, three fixed-effects predictors, and pairwise
interaction effects between all three predictors, but excluding an interaction effect between all three
predictors simultaneously, such as

yi = β0 + β1xi1 + β2xi2 + β3xi3 + β4x1xi2 + β5xi1xi3 + β6xi2xi3 + εi ,

specify the model formula using Wilkinson notation as follows:

'y ~ x1*x2*x3 - x1:x2:x3'

Linear Mixed-Effects Model Examples
Use fitlme and fitlmematrix to fit linear mixed-effects models.

Random Effect Intercept, No Predictors

For a linear mixed-effects model that contains a random intercept but no predictor terms, such as

yim = β0m ,

where

β0m = β00 + b0m , b0m ∼ N 0, σ0
2

and g is the grouping variable with m levels, specify the model formula using Wilkinson notation as
follows:

'y ~ (1 | g)'

Random Intercept and Fixed Slope for One Predictor

For a linear mixed-effects model that contains a fixed intercept, random intercept, and fixed slope for
the continuous predictor variable, such as
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yim = β0m + β1xim ,

where

β0m = β00 + b0m , b0m ∼ N 0, σ0
2

and g is the grouping variable with m levels, specify the model formula using Wilkinson notation as
follows:

'y ~ x1 + (1 | g)'

Random Intercept and Random Slope for One Predictor

For a linear mixed-effects model that contains a fixed intercept, plus a random intercept and a
random slope that have a possible correlation between them, such as

yim = β0m + β1mxim ,

where

β0m = β00 + b0m

β1m = β10 + b1m

b0m
b1m

∼ N 0, σ2D θ

and D is a 2-by-2 symmetric and positive semidefinite covariance matrix, parameterized by a variance
component vector θ, specify the model formula using Wilkinson notation as follows:

'y ~ x1 + (x1 | g)'

The pattern of the random effects covariance matrix is determined by the model fitting function. To
specify the covariance matrix pattern, use the name-value pairs available through fitlme when
fitting the model. For example, you can specify the assumption that the random intercept and random
slope are independent of one another using the 'CovariancePattern' name-value pair argument
in fitlme.

Generalized Linear Model Examples
Use fitglm and stepwiseglm to fit generalized linear models.

In a generalized linear model, the y response variable has a distribution other than normal, but you
can represent the model as an equation that is linear in the regression coefficients. Specifying a
generalized linear model requires three parts:

• Distribution of the response variable
• Link function
• Linear predictor

The distribution of the response variable and the link function are specified using name-value pair
arguments in the fit function fitglm or stepwiseglm.
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The linear predictor portion of the equation, which appears on the right side of the ~ symbol in the
model specification formula, uses Wilkinson notation in the same way as for the linear model
examples.

A generalized linear model models the link function, rather than the actual response, as y. This is
reflected in the output display for the model object.

Intercept and Two Predictors

For a generalized linear regression model with an intercept and two predictors, such as

log(yi) = β0 + β1xi1 + β2xi2,

specify the model formula using Wilkinson notation as follows:

'y ~ x1 + x2'

Generalized Linear Mixed-Effects Model Examples
Use fitglme to fit generalized linear mixed-effects models.

In a generalized linear mixed-effects model, the y response variable has a distribution other than
normal, but you can represent the model as an equation that is linear in the regression coefficients.
Specifying a generalized linear model requires three parts:

• Distribution of the response variable
• Link function
• Linear predictor

The distribution of the response variable and the link function are specified using name-value pair
arguments in the fit function fitglme.

The linear predictor portion of the equation, which appears on the right side of the ~ symbol in the
model specification formula, uses Wilkinson notation in the same way as for the linear mixed-effects
model examples.

A generalized linear model models the link function as y, not the response itself. This is reflected in
the output display for the model object.

The pattern of the random effects covariance matrix is determined by the model fitting function. To
specify the covariance matrix pattern, use the name-value pairs available through fitglme when
fitting the model. For example, you can specify the assumption that the random intercept and random
slope are independent of one another using the 'CovariancePattern' name-value pair argument
in fitglme.

Random Intercept and Fixed Slope for One Predictor

For a generalized linear mixed-effects model that contains a fixed intercept, random intercept, and
fixed slope for the continuous predictor variable, where the response can be modeled using a Poisson
distribution, such as

log(yim) = β0 + β1xim + bi ,

where
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bi ∼ N 0, σb
2

and g is the grouping variable with m levels, specify the model formula using Wilkinson notation as
follows:

'y ~ x1 + (1 | g)'

Repeated Measures Model Examples
Use fitrm to fit repeated measures models.

One Predictor

For a repeated measures model with five response measurements and one predictor variable, specify
the model formula using Wilkinson notation as follows:

'y1-y5 ~ x1'

Three Predictors and an Interaction Term

For a repeated measures model with five response measurements and three predictor variables, plus
an interaction between two of the predictor variables, specify the model formula using Wilkinson
notation as follows:

'y1-y5 ~ x1*x2 + x3'

References
[1] Wilkinson, G. N., and C. E. Rogers. "Symbolic description of factorial models for analysis of

variance." J. Royal Statistics Society 22, pp. 392–399, 1973.
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Stepwise Regression
In this section...
“Stepwise Regression to Select Appropriate Models” on page 11-101
“Compare large and small stepwise models” on page 11-101

Stepwise Regression to Select Appropriate Models
stepwiselm creates a linear model and automatically adds to or trims the model. To create a small
model, start from a constant model. To create a large model, start with a model containing many
terms. A large model usually has lower error as measured by the fit to the original data, but might not
have any advantage in predicting new data.

stepwiselm can use all the name-value options from fitlm, with additional options relating to the
starting and bounding models. In particular:

• For a small model, start with the default lower bounding model: 'constant' (a model that has no
predictor terms).

• The default upper bounding model has linear terms and interaction terms (products of pairs of
predictors). For an upper bounding model that also includes squared terms, set the Upper name-
value pair to 'quadratic'.

Compare large and small stepwise models

This example shows how to compare models that stepwiselm returns starting from a constant
model and starting from a full interaction model.

Load the carbig data and create a table from some of the data.

load carbig
tbl = table(Acceleration,Displacement,Horsepower,Weight,MPG);

Create a mileage model stepwise starting from the constant model.

mdl1 = stepwiselm(tbl,'constant','ResponseVar','MPG')

1. Adding Weight, FStat = 888.8507, pValue = 2.9728e-103
2. Adding Horsepower, FStat = 3.8217, pValue = 0.00049608
3. Adding Horsepower:Weight, FStat = 64.8709, pValue = 9.93362e-15

mdl1 = 
Linear regression model:
    MPG ~ 1 + Horsepower*Weight

Estimated Coefficients:
                          Estimate         SE         tStat       pValue  
                         __________    __________    _______    __________

    (Intercept)              63.558        2.3429     27.127    1.2343e-91
    Horsepower             -0.25084      0.027279    -9.1952    2.3226e-18
    Weight                -0.010772    0.00077381    -13.921    5.1372e-36
    Horsepower:Weight    5.3554e-05    6.6491e-06     8.0542    9.9336e-15
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Number of observations: 392, Error degrees of freedom: 388
Root Mean Squared Error: 3.93
R-squared: 0.748,  Adjusted R-Squared: 0.746
F-statistic vs. constant model: 385, p-value = 7.26e-116

Create a mileage model stepwise starting from the full interaction model.

mdl2 = stepwiselm(tbl,'interactions','ResponseVar','MPG')

1. Removing Acceleration:Displacement, FStat = 0.024186, pValue = 0.8765
2. Removing Displacement:Weight, FStat = 0.33103, pValue = 0.56539
3. Removing Acceleration:Horsepower, FStat = 1.7334, pValue = 0.18876
4. Removing Acceleration:Weight, FStat = 0.93269, pValue = 0.33477
5. Removing Horsepower:Weight, FStat = 0.64486, pValue = 0.42245

mdl2 = 
Linear regression model:
    MPG ~ 1 + Acceleration + Weight + Displacement*Horsepower

Estimated Coefficients:
                                Estimate         SE         tStat       pValue  
                               __________    __________    _______    __________

    (Intercept)                    61.285        2.8052     21.847    1.8593e-69
    Acceleration                 -0.34401       0.11862       -2.9     0.0039445
    Displacement                -0.081198      0.010071    -8.0623    9.5014e-15
    Horsepower                   -0.24313      0.026068    -9.3265    8.6556e-19
    Weight                     -0.0014367    0.00084041    -1.7095      0.088166
    Displacement:Horsepower    0.00054236    5.7987e-05     9.3531    7.0527e-19

Number of observations: 392, Error degrees of freedom: 386
Root Mean Squared Error: 3.84
R-squared: 0.761,  Adjusted R-Squared: 0.758
F-statistic vs. constant model: 246, p-value = 1.32e-117

Notice that:

• mdl1 has four coefficients (the Estimate column), and mdl2 has six coefficients.
• The adjusted R-squared of mdl1 is 0.746, which is slightly less (worse) than that of mdl2, 0.758.

Create a mileage model stepwise with a full quadratic model as the upper bound, starting from the
full quadratic model:

mdl3 = stepwiselm(tbl,'quadratic','ResponseVar','MPG','Upper','quadratic');

1. Removing Acceleration:Horsepower, FStat = 0.075209, pValue = 0.78405
2. Removing Acceleration:Weight, FStat = 0.072756, pValue = 0.78751
3. Removing Horsepower:Weight, FStat = 0.12569, pValue = 0.72314
4. Removing Weight^2, FStat = 1.194, pValue = 0.27521
5. Removing Displacement:Weight, FStat = 1.2839, pValue = 0.25789
6. Removing Displacement^2, FStat = 2.069, pValue = 0.15114
7. Removing Horsepower^2, FStat = 0.74063, pValue = 0.39

Compare the three model complexities by examining their formulas.

mdl1.Formula
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ans = 
MPG ~ 1 + Horsepower*Weight

mdl2.Formula

ans = 
MPG ~ 1 + Acceleration + Weight + Displacement*Horsepower

mdl3.Formula

ans = 
MPG ~ 1 + Weight + Acceleration*Displacement + Displacement*Horsepower
         + Acceleration^2

The adjusted R2 values improve slightly as the models become more complex:

RSquared = [mdl1.Rsquared.Adjusted, ...
    mdl2.Rsquared.Adjusted, mdl3.Rsquared.Adjusted]

RSquared = 1×3

    0.7465    0.7580    0.7599

Compare residual plots of the three models.

subplot(3,1,1)
plotResiduals(mdl1)
subplot(3,1,2)
plotResiduals(mdl2)
subplot(3,1,3)
plotResiduals(mdl3)
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The models have similar residuals. It is not clear which fits the data better.

Interestingly, the more complex models have larger maximum deviations of the residuals:

Rrange1 = [min(mdl1.Residuals.Raw),max(mdl1.Residuals.Raw)];
Rrange2 = [min(mdl2.Residuals.Raw),max(mdl2.Residuals.Raw)];
Rrange3 = [min(mdl3.Residuals.Raw),max(mdl3.Residuals.Raw)];
Rranges = [Rrange1;Rrange2;Rrange3]

Rranges = 3×2

  -10.7725   14.7314
  -11.4407   16.7562
  -12.2723   16.7927

See Also
fitlm | plotResiduals | stepwiselm | LinearModel

More About
• “Linear Regression” on page 11-9
• “Linear Regression Workflow” on page 11-35
• “Train Linear Regression Model” on page 11-163
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• “Interpret Linear Regression Results” on page 11-52
• “Introduction to Feature Selection” on page 16-47
• “Sequential Feature Selection” on page 16-59
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Reduce Outlier Effects Using Robust Regression

In this section...
“Why Use Robust Regression?” on page 11-106
“Iteratively Reweighted Least Squares” on page 11-106
“Compare Results of Standard and Robust Least-Squares Fit” on page 11-107
“Steps for Iteratively Reweighted Least Squares” on page 11-109

You can reduce outlier effects in linear regression models by using robust linear regression. This
topic defines robust regression, shows how to use it to fit a linear model, and compares the results to
a standard fit. You can use fitlm with the 'RobustOpts' name-value pair argument to fit a robust
regression model. Or you can use robustfit to simply compute the robust regression coefficient
parameters.

Why Use Robust Regression?
Robust linear regression is less sensitive to outliers than standard linear regression. Standard linear
regression uses ordinary least-squares fitting to compute the model parameters that relate the
response data to the predictor data with one or more coefficients. (See “Estimation of Multivariate
Regression Models” on page 16-5 for more details.) As a result, outliers have a large influence on
the fit, because squaring the residuals magnifies the effects of these extreme data points. Models that
use standard linear regression, described in “What Is a Linear Regression Model?” on page 11-6, are
based on certain assumptions, such as a normal distribution of errors in the observed responses. If
the distribution of errors is asymmetric or prone to outliers, model assumptions are invalidated, and
parameter estimates, confidence intervals, and other computed statistics become unreliable.

Robust regression uses a method called iteratively reweighted least squares to assign a weight to
each data point. This method is less sensitive to large changes in small parts of the data. As a result,
robust linear regression is less sensitive to outliers than standard linear regression.

Iteratively Reweighted Least Squares
In weighted least squares, the fitting process includes the weight as an additional scale factor, which
improves the fit. The weights determine how much each response value influences the final
parameter estimates. A low-quality data point (for example, an outlier) should have less influence on
the fit. To compute the weights wi, you can use predefined weight functions, such as Tukey's bisquare
function (see the name-value pair argument 'RobustOpts' in fitlm for more options).

The iteratively reweighted least-squares algorithm automatically and iteratively calculates the
weights. At initialization, the algorithm assigns equal weight to each data point, and estimates the
model coefficients using ordinary least squares. At each iteration, the algorithm computes the
weights wi, giving lower weight to points farther from model predictions in the previous iteration. The
algorithm then computes model coefficients b using weighted least squares. Iteration stops when the
values of the coefficient estimates converge within a specified tolerance. This algorithm
simultaneously seeks to find the curve that fits the bulk of the data using the least-squares approach,
and to minimize the effects of outliers.

For more details, see “Steps for Iteratively Reweighted Least Squares” on page 11-109.
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Compare Results of Standard and Robust Least-Squares Fit

This example shows how to use robust regression with the fitlm function, and compares the results
of a robust fit to a standard least-squares fit.

Load the moore data. The predictor data is in the first five columns, and the response data is in the
sixth.

load moore
X = moore(:,1:5);
y = moore(:,6);

Fit the least-squares linear model to the data.

mdl = fitlm(X,y)

mdl = 
Linear regression model:
    y ~ 1 + x1 + x2 + x3 + x4 + x5

Estimated Coefficients:
                    Estimate          SE          tStat       pValue 
                   ___________    __________    _________    ________

    (Intercept)        -2.1561       0.91349      -2.3603      0.0333
    x1             -9.0116e-06    0.00051835    -0.017385     0.98637
    x2               0.0013159     0.0012635       1.0415     0.31531
    x3               0.0001278    7.6902e-05       1.6618     0.11876
    x4               0.0078989         0.014      0.56421     0.58154
    x5              0.00014165    7.3749e-05       1.9208    0.075365

Number of observations: 20, Error degrees of freedom: 14
Root Mean Squared Error: 0.262
R-squared: 0.811,  Adjusted R-Squared: 0.743
F-statistic vs. constant model: 12, p-value = 0.000118

Fit the robust linear model to the data by using the 'RobustOps' name-value pair argument.

mdlr = fitlm(X,y,'RobustOpts','on')

mdlr = 
Linear regression model (robust fit):
    y ~ 1 + x1 + x2 + x3 + x4 + x5

Estimated Coefficients:
                    Estimate         SE         tStat       pValue 
                   __________    __________    ________    ________

    (Intercept)       -1.7516       0.86953     -2.0144    0.063595
    x1             1.7006e-05    0.00049341    0.034467     0.97299
    x2             0.00088843     0.0012027      0.7387     0.47229
    x3             0.00015729    7.3202e-05      2.1487    0.049639
    x4              0.0060468      0.013326     0.45375     0.65696
    x5             6.8807e-05    7.0201e-05     0.98015     0.34365
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Number of observations: 20, Error degrees of freedom: 14
Root Mean Squared Error: 0.249
R-squared: 0.775,  Adjusted R-Squared: 0.694
F-statistic vs. constant model: 9.64, p-value = 0.000376

Visually examine the residuals of the two models.

tiledlayout(1,2)
nexttile
plotResiduals(mdl,'probability')
title('Linear Fit')
nexttile
plotResiduals(mdlr,'probability')
title('Robust Fit')

The residuals from the robust fit (right half of the plot) are closer to the straight line, except for the
one obvious outlier.

Find the index of the outlier.

outlier = find(isoutlier(mdlr.Residuals.Raw))

outlier = 1

Plot the weights of the observations in the robust fit.

figure
b = bar(mdlr.Robust.Weights);
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b.FaceColor = 'flat';
b.CData(outlier,:) = [.5 0 .5];
xticks(1:length(mdlr.Residuals.Raw))
xlabel('Observations')
ylabel('Weights')
title('Robust Fit Weights')

The weight of the outlier in the robust fit (purple bar) is much less than the weights of the other
observations.

Steps for Iteratively Reweighted Least Squares
The iteratively reweighted least-squares algorithm follows this procedure:

1 Start with an initial estimate of the weights and fit the model by weighted least squares.
2 Compute the adjusted residuals. The adjusted residuals are given by

radj =
ri

1− hi

where ri are the ordinary least-squares residuals, and hi are the least-squares fit leverage values.
Leverages adjust the residuals by reducing the weight of high-leverage data points, which have a
large effect on the least-squares fit (see “Hat Matrix and Leverage” on page 11-79).

3 Standardize the residuals. The standardized adjusted residuals are given by
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u =
radj
Ks =

ri
Ks 1− hi

where K is a tuning constant, and s is an estimate of the standard deviation of the error term
given by s = MAD/0.6745.

MAD is the median absolute deviation of the residuals from their median. The constant 0.6745
makes the estimate unbiased for the normal distribution. If the predictor data matrix X has p
columns, the software excludes the smallest p absolute deviations when computing the median.

4 Compute the robust weights wi as a function of u. For example, the bisquare weights are given by

wi =
(1− ui2)2 , ui < 1
0 , ui ≥ 1

5 Estimate the robust regression coefficients b. The weights modify the expression for the
parameter estimates b as follows

b = β = (XTWT)−1XTWy

where W is the diagonal weight matrix, X is the predictor data matrix, and y is the response
vector.

6 Estimate the weighted least-squares error

e = ∑
1

n
wi(yi− y i)

2 = ∑
1

n
wiri

2

where wi are the weights, yi are the observed responses, ŷi are the fitted responses, and ri are the
residuals.

7 Iteration stops if the fit converges or the maximum number of iterations is reached. Otherwise,
perform the next iteration of the least-squares fitting by returning to the second step.

See Also
fitlm | robustfit | LinearModel | plotResiduals

More About
• “Linear Regression” on page 11-9
• “Linear Regression Workflow” on page 11-35
• “Train Linear Regression Model” on page 11-163
• “Interpret Linear Regression Results” on page 11-52
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Ridge Regression
In this section...
“Introduction to Ridge Regression” on page 11-111
“Ridge Regression” on page 11-111

Introduction to Ridge Regression
Coefficient estimates for the models described in “Linear Regression” on page 11-9 rely on the
independence of the model terms. When terms are correlated and the columns of the design matrix X
have an approximate linear dependence, the matrix (XTX)–1 becomes close to singular. As a result, the
least-squares estimate

β = (XTX)−1XTy

becomes highly sensitive to random errors in the observed response y, producing a large variance.
This situation of multicollinearity can arise, for example, when data are collected without an
experimental design.

Ridge regression addresses the problem by estimating regression coefficients using

β = (XTX + kI)−1XTy

where k is the ridge parameter and I is the identity matrix. Small positive values of k improve the
conditioning of the problem and reduce the variance of the estimates. While biased, the reduced
variance of ridge estimates often result in a smaller mean square error when compared to least-
squares estimates.

The Statistics and Machine Learning Toolbox function ridge carries out ridge regression.

Ridge Regression

This example shows how to perform ridge regression.

Load the data in acetylene.mat, with observations of the predictor variables x1, x2, x3, and the
response variable y.

load acetylene

Plot the predictor variables against each other.

subplot(1,3,1)
plot(x1,x2,'.')
xlabel('x1')
ylabel('x2')
grid on
axis square

subplot(1,3,2)
plot(x1,x3,'.')
xlabel('x1')
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ylabel('x3')
grid on
axis square

subplot(1,3,3)
plot(x2,x3,'.')
xlabel('x2')
ylabel('x3')
grid on
axis square

Note the correlation between x1 and the other two predictor variables.

Use ridge and x2fx to compute coefficient estimates for a multilinear model with interaction terms,
for a range of ridge parameters.

X = [x1 x2 x3];
D = x2fx(X,'interaction');
D(:,1) = []; % No constant term
k = 0:1e-5:5e-3;
betahat = ridge(y,D,k);

Plot the ridge trace.

figure
plot(k,betahat,'LineWidth',2)
ylim([-100 100])
grid on 
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xlabel('Ridge Parameter') 
ylabel('Standardized Coefficient') 
title('{\bf Ridge Trace}') 
legend('x1','x2','x3','x1x2','x1x3','x2x3')

The estimates stabilize to the right of the plot. Note that the coefficient of the x2x3 interaction term
changes sign at a value of the ridge parameter ≈ 5 × 10−4.

See Also
lasso | lassoglm | fitrlinear | lassoPlot | ridge

More About
• “Lasso Regularization” on page 11-122
• “Lasso and Elastic Net with Cross Validation” on page 11-125
• “Wide Data via Lasso and Parallel Computing” on page 11-117
• “Lasso and Elastic Net” on page 11-114
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Lasso and Elastic Net
In this section...
“What Are Lasso and Elastic Net?” on page 11-114
“Lasso and Elastic Net Details” on page 11-114
“References” on page 11-115

What Are Lasso and Elastic Net?
Lasso is a regularization technique. Use lasso to:

• Reduce the number of predictors in a regression model.
• Identify important predictors.
• Select among redundant predictors.
• Produce shrinkage estimates with potentially lower predictive errors than ordinary least squares.

Elastic net is a related technique. Use elastic net when you have several highly correlated variables.
lasso provides elastic net regularization when you set the Alpha name-value pair to a number
strictly between 0 and 1.

See “Lasso and Elastic Net Details” on page 11-114.

For lasso regularization of regression ensembles, see regularize.

Lasso and Elastic Net Details
Overview of Lasso and Elastic Net

Lasso is a regularization technique for performing linear regression. Lasso includes a penalty term
that constrains the size of the estimated coefficients. Therefore, it resembles ridge regression on
page 11-111. Lasso is a shrinkage estimator: it generates coefficient estimates that are biased to be
small. Nevertheless, a lasso estimator can have smaller mean squared error than an ordinary least-
squares estimator when you apply it to new data.

Unlike ridge regression, as the penalty term increases, lasso sets more coefficients to zero. This
means that the lasso estimator is a smaller model, with fewer predictors. As such, lasso is an
alternative to stepwise regression on page 11-101 and other model selection and dimensionality
reduction techniques.

Elastic net is a related technique. Elastic net is a hybrid of ridge regression and lasso regularization.
Like lasso, elastic net can generate reduced models by generating zero-valued coefficients. Empirical
studies have suggested that the elastic net technique can outperform lasso on data with highly
correlated predictors.

Definition of Lasso

The lasso technique solves this regularization problem. For a given value of λ, a nonnegative
parameter, lasso solves the problem

min
β0, β

1
2N ∑i = 1

N
yi− β0− xi

Tβ 2 + λ ∑
j = 1

p
β j .

11 Parametric Regression Analysis

11-114



• N is the number of observations.
• yi is the response at observation i.
• xi is data, a vector of p values at observation i.
• λ is a positive regularization parameter corresponding to one value of Lambda.
• The parameters β0 and β are scalar and p-vector respectively.

As λ increases, the number of nonzero components of β decreases.

The lasso problem involves the L1 norm of β, as contrasted with the elastic net algorithm.

Definition of Elastic Net

The elastic net technique solves this regularization problem. For an α strictly between 0 and 1, and a
nonnegative λ, elastic net solves the problem

min
β0, β

1
2N ∑i = 1

N
yi− β0− xi

Tβ 2 + λPα β ,

where

Pα β = (1− α)
2 β 2

2 + α β 1 = ∑
j = 1

p (1− α)
2 β j

2 + α β j .

Elastic net is the same as lasso when α = 1. As α shrinks toward 0, elastic net approaches ridge
regression. For other values of α, the penalty term Pα(β) interpolates between the L1 norm of β and
the squared L2 norm of β.
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See Also
lasso | lassoglm | fitrlinear | lassoPlot | ridge

More About
• “Lasso Regularization” on page 11-122
• “Lasso and Elastic Net with Cross Validation” on page 11-125
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• “Wide Data via Lasso and Parallel Computing” on page 11-117
• “Ridge Regression” on page 11-111
• “Introduction to Feature Selection” on page 16-47
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Wide Data via Lasso and Parallel Computing

This example shows how to use lasso along with cross validation to identify important predictors.

Load the sample data and display the description.

load spectra
Description

Description =

  11×72 char array

    '== Spectral and octane data of gasoline ==                              '
    '                                                                        '
    'NIR spectra and octane numbers of 60 gasoline samples                   '
    '                                                                        '
    'NIR:     NIR spectra, measured in 2 nm intervals from 900 nm to 1700 nm '
    'octane:  octane numbers                                                 '
    'spectra: a dataset array containing variables for NIR and octane        '
    '                                                                        '
    'Reference:                                                              '
    'Kalivas, John H., "Two Data Sets of Near Infrared Spectra," Chemometrics'
    'and Intelligent Laboratory Systems, v.37 (1997) pp.255-259              '

Lasso and elastic net are especially well suited for wide data, that is, data with more predictors than
observations with lasso and elastic net. There are redundant predictors in this type of data. You can
use lasso along with cross validation to identify important predictors.

Compute the default lasso fit.

[b fitinfo] = lasso(NIR,octane);

Plot the number of predictors in the fitted lasso regularization as a function of Lambda , using a
logarithmic x -axis.

lassoPlot(b,fitinfo,'PlotType','Lambda','XScale','log');
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It is difficult to tell which value of Lambda is appropriate. To determine a good value, try fitting with
cross validation.

tic
[b fitinfo] = lasso(NIR,octane,'CV',10);
toc

Elapsed time is 7.353767 seconds.

Plot the result.

lassoPlot(b,fitinfo,'PlotType','Lambda','XScale','log');
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Display the suggested value of Lambda .

fitinfo.Lambda1SE

ans =

    0.0302

Display the Lambda with minimal MSE.

fitinfo.LambdaMinMSE

ans =

    0.0144

Examine the quality of the fit for the suggested value of Lambda .

lambdaindex = fitinfo.Index1SE;
mse = fitinfo.MSE(lambdaindex)
df = fitinfo.DF(lambdaindex)

mse =
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    0.0528

df =

    11

The fit uses just 11 of the 401 predictors and achieves a small cross-validated MSE.

Examine the plot of cross-validated MSE.

lassoPlot(b,fitinfo,'PlotType','CV');
% Use a log scale for MSE to see small MSE values better
set(gca,'YScale','log');

As Lambda increases (toward the left), MSE increases rapidly. The coefficients are reduced too much
and they do not adequately fit the responses. As Lambda decreases, the models are larger (have more
nonzero coefficients). The increasing MSE suggests that the models are overfitted.

The default set of Lambda values does not include values small enough to include all predictors. In
this case, there does not appear to be a reason to look at smaller values. However, if you want smaller
values than the default, use the LambdaRatio parameter, or supply a sequence of Lambda values
using the Lambda parameter. For details, see the lasso reference page.

Cross validation can be slow. If you have a Parallel Computing Toolbox license, speed the computation
of cross-validated lasso estimate using parallel computing. Start a parallel pool.
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mypool = parpool()

Starting parallel pool (parpool) using the 'local' profile ...
connected to 6 workers.

mypool = 

 Pool with properties: 

            Connected: true
           NumWorkers: 6
              Cluster: local
        AttachedFiles: {}
    AutoAddClientPath: true
          IdleTimeout: 30 minutes (30 minutes remaining)
          SpmdEnabled: true

Set the parallel computing option and compute the lasso estimate.

opts = statset('UseParallel',true);
tic;
[b fitinfo] = lasso(NIR,octane,'CV',10,'Options',opts);
toc

Elapsed time is 3.799009 seconds.

Computing in parallel using two workers is faster on this problem.

Stop parallel pool.

delete(mypool)

Parallel pool using the 'local' profile is shutting down.

See Also
lasso | lassoglm | fitrlinear | lassoPlot | ridge

More About
• “Lasso Regularization” on page 11-122
• “Lasso and Elastic Net with Cross Validation” on page 11-125
• “Lasso and Elastic Net” on page 11-114
• “Ridge Regression” on page 11-111
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Lasso Regularization

This example shows how lasso identifies and discards unnecessary predictors.

Generate 200 samples of five-dimensional artificial data X from exponential distributions with various
means.

rng(3,'twister') % For reproducibility
X = zeros(200,5);
for ii = 1:5
    X(:,ii) = exprnd(ii,200,1);
end

Generate response data Y = X * r + eps , where r has just two nonzero components, and the noise
eps is normal with standard deviation 0.1.

r = [0;2;0;-3;0];
Y = X*r + randn(200,1)*.1;

Fit a cross-validated sequence of models with lasso , and plot the result.

[b,fitinfo] = lasso(X,Y,'CV',10);
lassoPlot(b,fitinfo,'PlotType','Lambda','XScale','log');
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The plot shows the nonzero coefficients in the regression for various values of the Lambda
regularization parameter. Larger values of Lambda appear on the left side of the graph, meaning
more regularization, resulting in fewer nonzero regression coefficients.

The dashed vertical lines represent the Lambda value with minimal mean squared error (on the
right), and the Lambda value with minimal mean squared error plus one standard deviation. This
latter value is a recommended setting for Lambda . These lines appear only when you perform cross
validation. Cross validate by setting the 'CV' name-value pair argument. This example uses 10-fold
cross validation.

The upper part of the plot shows the degrees of freedom (df), meaning the number of nonzero
coefficients in the regression, as a function of Lambda. On the left, the large value of Lambda causes
all but one coefficient to be 0. On the right all five coefficients are nonzero, though the plot shows
only two clearly. The other three coefficients are so small that you cannot visually distinguish them
from 0.

For small values of Lambda (toward the right in the plot), the coefficient values are close to the least-
squares estimate.

Find the Lambda value of the minimal cross-validated mean squared error plus one standard
deviation. Examine the MSE and coefficients of the fit at that Lambda .

lam = fitinfo.Index1SE;
fitinfo.MSE(lam)

ans = 0.1398

b(:,lam)

ans = 5×1

         0
    1.8855
         0
   -2.9367
         0

lasso did a good job finding the coefficient vector r .

For comparison, find the least-squares estimate of r .

rhat = X\Y

rhat = 5×1

   -0.0038
    1.9952
    0.0014
   -2.9993
    0.0031

The estimate b(:,lam) has slightly more mean squared error than the mean squared error of rhat .

res = X*rhat - Y;     % Calculate residuals
MSEmin = res'*res/200 % b(:,lam) value is 0.1398
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MSEmin = 0.0088

But b(:,lam) has only two nonzero components, and therefore can provide better predictive
estimates on new data.

See Also
lasso | lassoglm | fitrlinear | lassoPlot | ridge

More About
• “Lasso and Elastic Net with Cross Validation” on page 11-125
• “Wide Data via Lasso and Parallel Computing” on page 11-117
• “Lasso and Elastic Net” on page 11-114
• “Ridge Regression” on page 11-111
• “Introduction to Feature Selection” on page 16-47
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Lasso and Elastic Net with Cross Validation

This example shows how to predict the mileage (MPG) of a car based on its weight, displacement,
horsepower, and acceleration, using the lasso and elastic net methods.

Load the carbig data set.

load carbig

Extract the continuous (noncategorical) predictors (lasso does not handle categorical predictors).

X = [Acceleration Displacement Horsepower Weight];

Perform a lasso fit with 10-fold cross validation.

[b,fitinfo] = lasso(X,MPG,'CV',10);

Plot the result.

lassoPlot(b,fitinfo,'PlotType','Lambda','XScale','log');

Calculate the correlation of the predictors. Eliminate NaNs first.

nonan = ~any(isnan([X MPG]),2);
Xnonan = X(nonan,:);
MPGnonan = MPG(nonan,:);
corr(Xnonan)
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ans = 4×4

    1.0000   -0.5438   -0.6892   -0.4168
   -0.5438    1.0000    0.8973    0.9330
   -0.6892    0.8973    1.0000    0.8645
   -0.4168    0.9330    0.8645    1.0000

Because some predictors are highly correlated, perform elastic net fitting. Use Alpha = 0.5.

[ba,fitinfoa] = lasso(X,MPG,'CV',10,'Alpha',.5);

Plot the result. Name each predictor so you can tell which curve is which.

pnames = {'Acceleration','Displacement','Horsepower','Weight'};
lassoPlot(ba,fitinfoa,'PlotType','Lambda','XScale','log',...
    'PredictorNames',pnames);

When you activate the data cursor and click the plot, you see the name of the predictor, the
coefficient, the value of Lambda, and the index of that point, meaning the column in b associated with
that fit.

Here, the elastic net and lasso results are not very similar. Also, the elastic net plot reflects a notable
qualitative property of the elastic net technique. The elastic net retains three nonzero coefficients as
Lambda increases (toward the left of the plot), and these three coefficients reach 0 at about the same
Lambda value. In contrast, the lasso plot shows two of the three coefficients becoming 0 at the same
value of Lambda, while another coefficient remains nonzero for higher values of Lambda.
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This behavior exemplifies a general pattern. In general, elastic net tends to retain or drop groups of
highly correlated predictors as Lambda increases. In contrast, lasso tends to drop smaller groups, or
even individual predictors.

See Also
lasso | lassoglm | fitrlinear | lassoPlot | ridge

More About
• “Lasso Regularization” on page 11-122
• “Wide Data via Lasso and Parallel Computing” on page 11-117
• “Lasso and Elastic Net” on page 11-114
• “Ridge Regression” on page 11-111
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Partial Least Squares
In this section...
“Introduction to Partial Least Squares” on page 11-128
“Perform Partial Least-Squares Regression” on page 11-128

Introduction to Partial Least Squares
Partial least-squares (PLS) regression is a technique used with data that contain correlated predictor
variables. This technique constructs new predictor variables, known as components, as linear
combinations of the original predictor variables. PLS constructs these components while considering
the observed response values, leading to a parsimonious model with reliable predictive power.

The technique is something of a cross between multiple linear regression on page 11-9 and principal
component analysis on page 16-66:

• Multiple linear regression finds a combination of the predictors that best fit a response.
• Principal component analysis finds combinations of the predictors with large variance, reducing

correlations. The technique makes no use of response values.
• PLS finds combinations of the predictors that have a large covariance with the response values.

PLS therefore combines information about the variances of both the predictors and the responses,
while also considering the correlations among them.

PLS shares characteristics with other regression and feature transformation techniques. It is similar
to ridge regression on page 11-111 in that it is used in situations with correlated predictors. It is
similar to stepwise regression on page 11-101 (or more general feature selection on page 16-47
techniques) in that it can be used to select a smaller set of model terms. PLS differs from these
methods, however, by transforming the original predictor space into the new component space.

The function plsregress carries out PLS regression.

Perform Partial Least-Squares Regression

This example demonstrates how to perform PLS regression and how to choose the number of
components in a PLS model.

Consider the data on biochemical oxygen demand in moore.mat, padded with noisy versions of the
predictors to introduce correlations.

load moore
y = moore(:,6);              % Response
X0 = moore(:,1:5);           % Original predictors
X1 = X0+10*randn(size(X0));  % Correlated predictors
X = [X0,X1];

Use plsregress to perform PLS regression with the same number of components as predictors,
then plot the percentage variance explained in the response as a function of the number of
components.
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[XL,yl,XS,YS,beta,PCTVAR] = plsregress(X,y,10);
plot(1:10,cumsum(100*PCTVAR(2,:)),'-o')
xlabel('Number of PLS components')
ylabel('Percent Variance Explained in y')

Choosing the number of components in a PLS model is a critical step. The plot gives a rough
indication, showing nearly 80% of the variance in y explained by the first component, with as many as
five additional components making significant contributions.

The following computes the six-component model.

[XL,yl,XS,YS,beta,PCTVAR,MSE,stats] = plsregress(X,y,6);
yfit = [ones(size(X,1),1) X]*beta;
plot(y,yfit,'o')
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The scatter shows a reasonable correlation between fitted and observed responses, and this is
confirmed by the R2 statistic.

TSS = sum((y-mean(y)).^2);
RSS = sum((y-yfit).^2);
Rsquared = 1 - RSS/TSS

Rsquared = 0.8240

A plot of the weights of the ten predictors in each of the six components shows that two of the
components (the last two computed) explain the majority of the variance in X.

figure
plot(1:10,stats.W,'o-')
legend({'c1','c2','c3','c4','c5','c6'},'Location','best')
xlabel('Predictor')
ylabel('Weight')
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A plot of the mean-squared errors suggests that as few as two components may provide an adequate
model.

figure
yyaxis left
plot(0:6,MSE(1,:),'-o')
yyaxis right
plot(0:6,MSE(2,:),'-o')
legend('MSE Predictors','MSE Response')
xlabel('Number of Components')
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The calculation of mean-squared errors by plsregress is controlled by optional name-value
arguments specifying cross-validation type and the number of Monte Carlo repetitions.

See Also
plsregress

Related Examples
• “Partial Least Squares Regression and Principal Components Regression” on page 11-190
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Linear Mixed-Effects Models
Linear mixed-effects models are extensions of linear regression models for data that are collected and
summarized in groups. These models describe the relationship between a response variable and
independent variables, with coefficients that can vary with respect to one or more grouping variables.
A mixed-effects model consists of two parts, fixed effects and random effects. Fixed-effects terms are
usually the conventional linear regression part, and the random effects are associated with individual
experimental units drawn at random from a population. The random effects have prior distributions
whereas fixed effects do not. Mixed-effects models can represent the covariance structure related to
the grouping of data by associating the common random effects to observations that have the same
level of a grouping variable. The standard form of a linear mixed-effects model is

y = Xβ⚬
f ixed

+ Zb⚬
random

+ ε⚬
error

,

where

• y is the n-by-1 response vector, and n is the number of observations.
• X is an n-by-p fixed-effects design matrix.
• β is a p-by-1 fixed-effects vector.
• Z is an n-by-q random-effects design matrix.
• b is a q-by-1 random-effects vector.
• ε is the n-by-1 observation error vector.

The assumptions for the linear mixed-effects model are:

• Random-effects vector, b, and the error vector, ε, have the following prior distributions:

b N 0, σ2D θ ,

ε N 0, σ I2 ,

where D is a symmetric and positive semidefinite matrix, parameterized by a variance component
vector θ, I is an n-by-n identity matrix, and σ2 is the error variance.

• Random-effects vector, b, and the error vector, ε, are independent from each other.

Mixed-effects models are also called multilevel models or hierarchical models depending on the
context. Mixed-effects models is a more general term than the latter two. Mixed-effects models might
include factors that are not necessarily multilevel or hierarchical, for example crossed factors. That is
why mixed-effects is the terminology preferred here. Sometimes mixed-effects models are expressed
as multilevel regression models (first level and grouping level models) that are fit simultaneously. For
example, a varying or random intercept model, with one continuous predictor variable x and one
grouping variable with M levels, can be expressed as

yim = β0m + β1xim + εim, i = 1, 2, .., n, m = 1, 2, ..., M, εim N 0, σ2 ,

β0m = β00 + b0m, b0m N 0, σ0
2 ,

where yim corresponds to data for observation i and group m, n is the total number of observations,
and b0m and εim are independent of each other. After substituting the group-level parameters in the
first-level model, the model for the response vector becomes

 Linear Mixed-Effects Models

11-133



yim = β00 + β1xim⚬
f ixed ef fects

+ b0m⚬
random ef fects

+ εim .

A random intercept and slope model with one continuous predictor variable x, where both the
intercept and slope vary independently by a grouping variable with M levels is

yim = β0m + β1mxim + εim, i = 1, 2, ..., n, m = 1, 2, ..., M, εim N 0, σ2 ,

β0m = β00 + b0m, b0m N 0, σ0
2 ,

β1m = β10 + b1m, b1m N 0, σ1
2 ,

or

bm =
b0m
b1m

N 0,
σ0

2 0

0 σ1
2

.

You might also have correlated random effects. In general, for a model with a random intercept and
slope, the distribution of the random effects is

bm =
b0m
b1m

N 0, σ D2 θ ,

where D is a 2-by-2 symmetric and positive semidefinite matrix, parameterized by a variance
component vector θ.

After substituting the group-level parameters in the first-level model, the model for the response
vector is

yim = β00 + β10xim⚬
f ixed ef fects

+ b0m + b1mxim⚬
random ef fects

+ εim, i = 1, 2, ..., n, m = 1, 2, ..., M .

If you express the group-level variable, xim, in the random-effects term by zim, this model is

yim = β00 + β10xim⚬
f ixed ef fects

+ b0m + b1mzim⚬
random ef fects

+ εim, i = 1, 2, ..., n, m = 1, 2, ..., M .

In this case, the same terms appear in both the fixed-effects design matrix and random-effects design
matrix. Each zim and xim correspond to the level m of the grouping variable.

It is also possible to explain more of the group-level variations by adding more group-level predictor
variables. A random-intercept and random-slope model with one continuous predictor variable x,
where both the intercept and slope vary independently by a grouping variable with M levels, and one
group-level predictor variable vm is

yim = β0im + β1imxim + εim, i = 1, 2, ..., n, m = 1, 2, ..., M, εim N 0, σ2 ,

β0im = β00 + β01vim + b0m, b0m N 0, σ0
2 ,

β1im = β10 + β11vim + b1m, b1m N 0, σ1
2 .

This model results in main effects of the group-level predictor and an interaction term between the
first-level and group-level predictor variables in the model for the response variable as
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yim = β00 + β01vim + b0m + β10 + β11vim + b1m xim + εim, i = 1, 2, ..., n, m = 1, 2, ..., M,
= β00 + β10xim + β01vim + β11vimxim⚬

f ixed ef fects
+ b0m + b1mxim⚬

random ef fects
+ εim .

The term β11vmxim is often called a cross-level interaction in many textbooks on multilevel models. The
model for the response variable y can be expressed as

yim = 1 x1im vim vimx1im

β00
β10
β01
β11

+ 1 x1im
b0m
b1m

+ εim, i = 1, 2, ..., n, m = 1, 2, ..., M,

which corresponds to the standard form given earlier,

y = Xβ + Zb + ε .

In general, if there are R grouping variables, and m(r,i) shows the level of grouping variable r, for
observation i, then the model for the response variable for observation i is

yi = xi
Tβ + ∑

r = 1

R
zirbm(r, i)

(r) + εi, i = 1, 2, ..., n,

where β is a p-by-1 fixed-effects vector, b(r)
m(r,i) is a q(r)-by-1 random-effects vector for the rth

grouping variable and level m(r,i), and εi is a 1-by-1 error term for observation i.
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See Also
LinearMixedModel | fitlme | fitlmematrix

More About
• “Prepare Data for Linear Mixed-Effects Models” on page 11-136
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Prepare Data for Linear Mixed-Effects Models
In this section...
“Tables and Dataset Arrays” on page 11-136
“Design Matrices” on page 11-137
“Relation of Matrix Form to Tables and Dataset Arrays” on page 11-139

Tables and Dataset Arrays
To fit a linear-mixed effects model, you must store your data in a table or dataset array. In your table
or dataset array, you must have a column for each variable including the response variable. More
specifically, the table or dataset array, say tbl, must contain the following:

• A response variable y
• Predictive variables Xjwhich can be continuous or grouping variables
• Grouping variables g1, g2, ..., gR,

where the grouping variables in Xj and gr can be categorical, logical, a character array, a string
array, or a cell array of character vectors, r = 1, 2, ..., R.

You must organize your data so that each row represents an observation. And each row should
contain the value of variables and the levels of grouping variables corresponding to that observation.
For example, if you have data from an experiment with four treatment options, on five different types
of individuals chosen randomly from a population of individuals (blocks), the table or dataset array
must look like this.

Block Treatment Response
1 1 y11
1 2 y12
1 3 y13
1 4 y14
... ... ...
5 1 y51
5 2 y52
5 3 y53
5 4 y54

Now, consider a split-plot experiment, where the effect of four different types of fertilizers on the
yield of tomato plants is studied. The soil where the tomato plants are planted is divided into three
blocks based on the soil type: sandy, silty, and loamy. Each block is divided into five plots, where five
types of tomato plants, (cherry, heirloom, grape, vine, and plum) are randomly assigned to these
plots. Then, the tomato plants in the plots are divided into subplots, where each subplot is treated by
one of the four fertilizers. The data from this experiment looks like:

Soil Tomato Fertilizer Yield
'Sandy' 'Plum' 1 104
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Soil Tomato Fertilizer Yield
'Sandy' 'Plum' 2 136
'Sandy' 'Plum' 3 158
'Sandy' 'Plum' 4 174
'Sandy' 'Cherry' 1 57
'Sandy' 'Cherry' 2 86
... ... ... ...
'Sandy' 'Vine' 3 99
'Sandy' 'Vine' 4 117
'Silty' 'Plum' 1 120
'Silty' 'Plum' 2 115
... ... ... ...
'Loamy' 'Vine' 3 111
'Loamy' 'Vine' 4 105

You must specify the model you want to fit using the formula input argument to fitlme.

In general, a formula for model specification is a character vector or string scalar of the form 'y ~
terms'. For linear mixed-effects models, this formula is in the form 'y ~ fixed + (random1|
grouping1) + ... + (randomR|groupingR)', where fixed contains the fixed-effects terms
and random1, ..., randomR contain the random-effects terms. For example, for the previous
fertilizer experiment, consider the following mixed-effects model

yim jk = β0 + ∑
m = 2

4
β1mI F im + ∑

j = 2

5
β2 jI T i j + b0kSk + b0 jk(S * T) jk + εim jk,

where i = 1, 2, ..., 60, the index m corresponds to the fertilizer types, j corresponds to the tomato
types, and k = 1, 2, 3 corresponds to the blocks (soil). Sk represents the kth soil type, and I[F]im is the
dummy variable representing level m of the fertilizer. Similarly, I[T]ij is the dummy variable
representing the level j of the tomato type.

You can fit this model using the formula 'Yield ~ 1 + Fertilizer + Tomato + (1|Soil)+(1|
Soil:Tomato)'.

For detailed information on how to specify your model using formula, see “Relationship Between
Formula and Design Matrices” on page 11-140.

Design Matrices
If you cannot easily describe your model using a formula, you can create design matrices to define
the fixed and random effects, and fit the model using fitlmematrix(X,y,Z,G). You must create
your design matrices as follows.

Fixed-effects and random-effects design matrices X and Z:

• Enter a column of 1s for the intercept using ones(n,1), where n is the total number of
observations.
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• If X1 is a continuous variable, then enter X1 as it is in a separate column.
• If X1 is a categorical variable with m levels, then there must be m – 1 dummy variables for m – 1

levels of X1 in X.

For example, consider an experiment where you want to study the impact of quality of raw
materials from four different providers on the productivity of a production line. If you fit a linear
mixed-effects model with intercept and provider as the fixed-effects terms, intercept is the
random-effects term, and you use reference contrasts coding, then you must construct your fixed-
and random-effects design matrices as follows.

D = dummyvar(provider); % Create dummy variables
X = [ones(n,1) D(:,2) D(:,3) D(:,4)];
Z = [ones(n,1)];

Because reference contrast coding uses the first provider as the reference, and the model has an
intercept, you must use the dummy variables for only the last three providers.

• If there is an interaction term of predictor variables X1 and X2, then you must enter a column that
you form by elementwise product of the vectors X1 and X2.

For example, if you want to fit a model, where there is an intercept, a continuous treatment factor,
a continuous time factor, and their interaction as the fixed-effects in a longitudinal study, and time
is the random-effects term, then your fixed- and random-effects design matrices should look like

X = [ones(n,1),treatment,time,treatment.*time];
y = response;
Z = [time];

Grouping variables G:

There is one column for each grouping variable and a column of elementwise product of the grouping
variables in case of a nesting.

For example, if you want to group plots (plot) within blocks (block), then you must add a column of
elementwise product of plot by block. More specifically, if you want to fit a model where there is
intercept and a continuous treatment factor as the fixed-effects in a split-block experiment, and the
intercept and treatment are grouped by the plots nested within blocks, then the design matrices
should look like this.

X = [ones(n,1),treatment];
y = response;
Z = [ones(n,1),treatment];
G = [block.*plot];

Suppose in the earlier quality of raw materials example, the raw materials arrive in bulks, and the
bulks are nested within providers. If you want to fit a linear mixed-effects model, where intercept is
grouped by the bulks within providers, then your design matrices should look like this.

D = dummyvar(provider);
X = [ones(n,1) D(:,2) D(:,3) D(:,4)];
y = response;
Z = ones(n,1);
G = [provider.*bulks];

In the earlier longitudinal study example, if you want to add random effects for intercept and time
grouped by subjects that participated in the study, then your design matrices should look like
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X = [ones(n,1),treatment,time, treatment.*time];
y = response;
Z = [ones(n,1),time];
G = subject;

Relation of Matrix Form to Tables and Dataset Arrays
fitlme(tbl,formula) and fitlmematrix(X,y,Z,G) are equivalent in functionality, such that

• y is the n-by-1 response vector.
• X is an n-by-p fixed-effects design matrix. fitlme constructs this from the expression fixed in

formula.
• Z is an R-by-1 cell array with Z{r} being an n-by-q(r) random-effects design matrix constructed

from the rth expression in random in formula, r = 1, 2, ..., R.
• G is an R-by-1 cell array with G{r} being an n-by-1 grouping variable, gr, in formula with M(r)

levels or groups.

For example, if tbl is a table or dataset array containing the response variable y, the continuous
variables X1 and X2, and the grouping variable g, then to fit a linear mixed-effects model that
corresponds to the formula expression 'y ~ X1+ X2+ (X1*X2|g)' using
fitlmematrix(X,y,Z,G) the input arguments must correspond to the following:

y = tbl.y
X = [ones(n,1), tbl.X1, tbl.X2]
Z = [ones(n,1), tbl.X1, tbl.X2, tbl.X1.*tbl.X2]
G = tbl.g

See Also
LinearMixedModel | fitlme | fitlmematrix

More About
• “Linear Mixed-Effects Models” on page 11-133
• “Relationship Between Formula and Design Matrices” on page 11-140
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Relationship Between Formula and Design Matrices

In this section...
“Formula” on page 11-140
“Design Matrices for Fixed and Random Effects” on page 11-141
“Grouping Variables” on page 11-143

Formula
In general, a formula for model specification is a character vector or string scalar of the form 'y ~
terms'. For the linear mixed-effects models, this formula is in the form 'y ~ fixed + (random1|
grouping1) + ... + (randomR|groupingR)', where fixed and random contain the fixed-
effects and the random-effects terms.

Suppose a table tbl contains the following:

• A response variable, y
• Predictor variables, Xj, which can be continuous or grouping variables
• Grouping variables, g1, g2, ..., gR,

where the grouping variables in Xj and gr can be categorical, logical, character arrays, string arrays,
or cell arrays of character vectors.

Then, in a formula of the form, 'y ~ fixed + (random1|g1) + ... + (randomR|gR)', the term
fixed corresponds to a specification of the fixed-effects design matrix X, random1 is a specification
of the random-effects design matrix Z1 corresponding to grouping variable g1, and similarly randomR
is a specification of the random-effects design matrix ZR corresponding to grouping variable gR. You
can express the fixed and random terms using Wilkinson notation.

Wilkinson notation describes the factors present in models. The notation relates to factors present in
models, not to the multipliers (coefficients) of those factors.

Wilkinson Notation Factors in Standard Notation
1 Constant (intercept) term
X^k, where k is a positive integer X, X2, ..., Xk

X1 + X2 X1, X2
X1*X2 X1, X2, X1.*X2 (elementwise

multiplication of X1 and X2)
X1:X2 X1.*X2 only
- X2 Do not include X2
X1*X2 + X3 X1, X2, X3, X1*X2
X1 + X2 + X3 + X1:X2 X1, X2, X3, X1*X2
X1*X2*X3 - X1:X2:X3 X1, X2, X3, X1*X2, X1*X3, X2*X3
X1*(X2 + X3) X1, X2, X3, X1*X2, X1*X3
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Statistics and Machine Learning Toolbox notation always includes a constant term unless you
explicitly remove the term using -1. Here are some examples for linear mixed-effects model
specification.

Examples:

Formula Description
'y ~ X1 + X2' Fixed effects for the intercept, X1 and X2. This is

equivalent to 'y ~ 1 + X1 + X2'.
'y ~ -1 + X1 + X2' No intercept and fixed effects for X1 and X2. The

implicit intercept term is suppressed by including
-1.

'y ~ 1 + (1 | g1)' Fixed effects for the intercept plus random effect
for the intercept for each level of the grouping
variable g1.

'y ~ X1 + (1 | g1)' Random intercept model with a fixed slope.
'y ~ X1 + (X1 | g1)' Random intercept and slope, with possible

correlation between them. This is equivalent to
'y ~ 1 + X1 + (1 + X1|g1)'.

'y ~ X1 + (1 | g1) + (-1 + X1 | g1)' Independent random effects terms for intercept
and slope.

'y ~ 1 + (1 | g1) + (1 | g2) + (1 |
g1:g2)'

Random intercept model with independent main
effects for g1 and g2, plus an independent
interaction effect.

Design Matrices for Fixed and Random Effects
fitlme converts the expressions in the fixed and random parts (not grouping variables) of a
formula into design matrices as follows:

• Each term in a formula adds one or more columns to the corresponding design matrix.
• A term containing a single continuous variable adds one column to the design matrix.
• A fixed term containing a categorical variable X with k levels adds (k – 1) dummy variables to the

design matrix.

For example, if the variable Supplier represents three different suppliers a manufacturer
receives parts from, i.e. a categorical variable with three levels, and out of six batches of parts,
the first two batches come from supplier 1 (level 1), the second two batches come from supplier 2
(level 2), and the last two batches come from supplier 3 (level 3), such as

Supplier =

     1
     1
     2
     2
     3
     3 
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Then, adding Supplier to the formula as a fixed-effects or random-effects term adds the
following two dummy variables to the corresponding design matrix, using the 'reference'
contrast:

 0     0
 0     0
 1     0
 1     0
 0     1
 0     1

For more details on dummy variables, see “Dummy Variables” on page 2-49. For other contrast
options, see the 'DummyVarCoding' name-value pair argument of fitlme.

• If X1 and X2 are continuous variables, the product term X1:X2 adds one column obtained by
elementwise multiplication of X1 and X2 to the design matrix.

• If X1 is continuous and X2 is categorical with k levels, the product term X1:X2 multiplies
elementwise X1 with the (k – 1) dummy variables representing X2, and adds these (k – 1) columns
to the design matrix.

For example, if Drug is the amount of a drug given to patients, a continuous treatment, and Time
is three distinct points in time when the health measures are taken, a categorical variable with
three levels, and out of nine observations, the first three are observed at time point 1, the second
three are observed at time point 2, and the last three are observed at time point 3 so that

[Drug Time] =

    0.1000    1.0000
    0.2000    1.0000
    0.5000    2.0000
    0.6000    2.0000
    0.3000    3.0000
    0.8000    3.0000

Then, the product term Drug:Time adds the following two variables to the design matrix:

     0         0
     0         0
0.5000         0
0.6000         0
     0    0.3000
     0    0.8000

• If X1 and X2 are categorical variables with k and m levels respectively, the product term X1:X2
adds (k – 1)*(m – 1) dummy variables to the design matrix formed by taking the elementwise
product of each dummy variable representing X1 with each dummy variable representing X2.

For example, in an experiment to determine the impact of the type of corn and the popping
method on the yield, suppose there are three types of Corn and two types of Method as follows:

    1    oil
    1    oil
    1    air
    1    air
    2    oil
    2    oil
    2    air
    2    air
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    3    oil
    3    oil
    3    air
    3    air

Then, the interaction term Corn:Method adds the following to the design matrix:

     0     0
     0     0
     0     0
     0     0
     1     0
     1     0
     0     0
     0     0
     0     1
     0     1
     0     0
     0     0

• The term X1*X2 adds the necessary number of columns for X1, X2, and X1:X2 to the design
matrix.

• The term X1^2 adds the necessary number of columns for X1 and X1:X1 to the design matrix.
• The symbol 1 (one) in the formula stands for a column of all 1s. By default a column of 1s is

included in the design matrix. To exclude a column of ones from the design matrix, you must
explicitly specify –1 as a term in the expression.

Grouping Variables
fitlme handles the grouping variables in the (.|group) part of a formula as follows:

• If a grouping variable has k levels, then k dummy variables represent this grouping.

For example, suppose District is a categorical grouping variable with three levels, showing the
three types of districts, and out of six schools, the first two are in district 1, the second two are in
district 2, and the last two are in district 3, so that

District =

     1
     1
     2
     2
     3
     3

Then, the dummy variables that represent this grouping are:

  1     0     0
  1     0     0
  0     1     0
  0     1     0
  0     0     1
  0     0     1

• If X1 is a continuous random-effects variable and X2 is a grouping variable with k levels, then the
random term (X1 – 1|X2) multiplies elementwise X1 with the k dummy variables representing
X2 and adds these k columns to the random-effects design matrix.
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For example, suppose Score is a continuous variable showing the scores of students from a math
exam in a school, and Class is a categorical variable with three levels, showing the three
different classes in a school. Also, suppose out of nine observations first three correspond to the
scores of students in the first class, the second three correspond to scores of students in the
second class, and the last three correspond to the scores of students in the third class, such as

[Score Class] =

    78.0000    1.0000
    68.0000    1.0000
    81.0000    2.0000
    53.0000    2.0000
    85.0000    3.0000
    72.0000    3.0000

Then, the random term (Score – 1|Class) adds the following three columns to the random-
effects design matrix:

 78.0000          0          0
 68.0000          0          0
       0    81.0000          0
       0    53.0000          0
       0          0    85.0000
       0          0    72.0000    

• If X1 is a continuous predictor variable and X2 and X3 are grouping variables with k and m levels
respectively, the term (X1|X2:X3) represents this grouping of X1 with k*m dummy variables
formed by taking the elementwise product of each dummy variable representing X2 with each
dummy variable representing X3.

For example, suppose Treatment is a continuous predictor variable, and there are three levels of
Block and two levels of Plot nested within the block as follows:

   0.1000    1    a
   0.2000    1    b 
   0.5000    2    a  
   0.6000    2    b 
   0.3000    3    a 
   0.8000    3    b  

Then, the random term (Treatment – 1|Block:Plot) adds the following to the random-
effects design matrix:

 0.1000         0         0         0         0         0
      0    0.2000         0         0         0         0
      0         0    0.5000         0         0         0
      0         0         0    0.6000         0         0
      0         0         0         0    0.3000         0
      0         0         0         0         0    0.8000

See Also
LinearMixedModel | fitlme | fitlmematrix

More About
• “Prepare Data for Linear Mixed-Effects Models” on page 11-136
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Estimating Parameters in Linear Mixed-Effects Models
In this section...
“Maximum Likelihood (ML)” on page 11-145
“Restricted Maximum Likelihood (REML)” on page 11-146

A linear mixed-effects model is of the form

y = Xβ⚬
f ixed

+ Zb⚬
random

+ ε⚬
error

,

where

• y is the n-by-1 response vector, and n is the number of observations.
• X is an n-by-p fixed-effects design matrix.
• β is a p-by-1 fixed-effects vector.
• Z is an n-by-q random-effects design matrix.
• b is a q-by-1 random-effects vector.
• ε is the n-by-1 observation error vector.

The random-effects vector, b, and the error vector, ε, are assumed to have the following independent
prior distributions:

b N 0, σ2D θ ,

ε N 0, σ I2 ,

where D is a symmetric and positive semidefinite matrix, parameterized by a variance component
vector θ, I is an n-by-n identity matrix, and σ2 is the error variance.

In this model, the parameters to estimate are the fixed-effects coefficients β, and the variance
components θ and σ2. The two most commonly used approaches to parameter estimation in linear
mixed-effects models are maximum likelihood and restricted maximum likelihood methods.

Maximum Likelihood (ML)
The maximum likelihood estimation includes both regression coefficients and the variance
components, that is, both fixed-effects and random-effects terms in the likelihood function.

For a linear mixed-effects model defined above, the conditional response of the response variable y
given β, b, θ, and σ2 is

y b, β, θ, σ2 N Xβ + Zb, σ2In .

The likelihood of y given β, θ, and σ2 is

P y β, θ, σ2 =∫P y b, β, θ, σ2 P b θ, σ2 db,

where
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P b θ, σ2 = 1

2πσ2 q 2
1

D θ 1 2
exp − 1

2σ2bTD−1b and

P y b, β, θ, σ2 = 1

2πσ2 n 2
exp − 1

2σ2 y − Xβ− Zb T y − Xβ− Zb .

Suppose Λ(θ) is the lower triangular Cholesky factor of D(θ) and Δ(θ) is the inverse of Λ(θ). Then,

D θ −1 = Δ θ TΔ θ .

Define

r2 β, b, θ = bTΔ θ TΔ θ b + y − Xβ− Zb T y − Xβ− Zb ,

and suppose b* is the value of b that satisfies

∂r2 β, b, θ
∂b b*

= 0

for given β and θ. Then, the likelihood function is

P y β, θ, σ2 = 2πσ2 −n 2 D θ −1 2exp − 1
2σ2r2 β, b* β , θ 1

ΔTΔ + ZTZ
1 2

.

P(y|β,θ,σ2) is first maximized with respect to β and σ2 for a given θ. Thus the optimized solutions β θ
and σ 2 θ are obtained as functions of θ. Substituting these solutions into the likelihood function
produces P y β θ ,θ,σ 2 θ . This expression is called a profiled likelihood where β and σ2 have been

profiled out. P y β θ ,θ,σ 2 θ  is a function of θ, and the algorithm then optimizes it with respect to θ.

Once it finds the optimal estimate of θ, the estimates of β and σ2 are given by β θ  and σ 2 θ .

The ML method treats β as fixed but unknown quantities when the variance components are
estimated, but does not take into account the degrees of freedom lost by estimating the fixed effects.
This causes ML estimates to be biased with smaller variances. However, one advantage of ML over
REML is that it is possible to compare two models in terms of their fixed- and random-effects terms.
On the other hand, if you use REML to estimate the parameters, you can only compare two models,
that are nested in their random-effects terms, with the same fixed-effects design.

Restricted Maximum Likelihood (REML)
Restricted maximum likelihood estimation includes only the variance components, that is, the
parameters that parameterize the random-effects terms in the linear mixed-effects model. β is
estimated in a second step. Assuming a uniform improper prior distribution for β and integrating the
likelihood P(y|β,θ,σ2) with respect to β results in the restricted likelihood P(y|θ,σ2). That is,

P y θ, σ2 =∫P y β, θ, σ2 P β dβ =∫P y β, θ, σ2 dβ .
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The algorithm first profiles out σ R
2  and maximizes remaining objective function with respect to θ to

find θ R. The restricted likelihood is then maximized with respect to σ2 to find σ R
2 . Then, it estimates β

by finding its expected value with respect to the posterior distribution

P β y, θ R, σ R
2 .

REML accounts for the degrees of freedom lost by estimating the fixed effects, and makes a less
biased estimation of random effects variances. The estimates of θ and σ2 are invariant to the value of
β and less sensitive to outliers in the data compared to ML estimates. However, if you use REML to
estimate the parameters, you can only compare two models that have the identical fixed-effects
design matrices and are nested in their random-effects terms.
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See Also
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More About
• “Linear Mixed-Effects Models” on page 11-133

 Estimating Parameters in Linear Mixed-Effects Models

11-147



Linear Mixed-Effects Model Workflow

This example shows how to fit and analyze a linear mixed-effects model (LME).

Load the sample data.

load flu

The flu dataset array has a Date variable, and 10 variables containing estimated influenza rates (in
9 different regions, estimated from Google® searches, plus a nationwide estimate from the CDC).

Reorganize and plot the data.

To fit a linear-mixed effects model, your data must be in a properly formatted dataset array. To fit a
linear mixed-effects model with the influenza rates as the responses, combine the nine columns
corresponding to the regions into an array. The new dataset array, flu2, must have the response
variable FluRate, the nominal variable Region that shows which region each estimate is from, the
nationwide estimate WtdILI, and the grouping variable Date.

flu2 = stack(flu,2:10,'NewDataVarName','FluRate',...
    'IndVarName','Region');
flu2.Date = nominal(flu2.Date);

Define flu2 as a table.

flu2 = dataset2table(flu2);

Plot flu rates versus the nationwide estimate.

plot(flu2.WtdILI,flu2.FluRate,'ro')
xlabel('WtdILI')
ylabel('Flu Rate')
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You can see that the flu rates in regions have a direct relationship with the nationwide estimate.

Fit an LME model and interpret the results.

Fit a linear mixed-effects model with the nationwide estimate as the predictor variable and a random
intercept that varies by Date.

lme = fitlme(flu2,'FluRate ~ 1 + WtdILI + (1|Date)')

lme = 

Linear mixed-effects model fit by ML

Model information:
    Number of observations             468
    Fixed effects coefficients           2
    Random effects coefficients         52
    Covariance parameters                2

Formula:
    FluRate ~ 1 + WtdILI + (1 | Date)

Model fit statistics:
    AIC       BIC       LogLikelihood    Deviance
    286.24    302.83    -139.12          278.24  
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Fixed effects coefficients (95% CIs):
    Name                   Estimate    SE          tStat     DF     pValue    
    {'(Intercept)'}        0.16385     0.057525    2.8484    466     0.0045885
    {'WtdILI'     }         0.7236     0.032219    22.459    466    3.0502e-76

    Lower       Upper  
    0.050813    0.27689
     0.66028    0.78691

Random effects covariance parameters (95% CIs):
Group: Date (52 Levels)
    Name1                  Name2                  Type           Estimate
    {'(Intercept)'}        {'(Intercept)'}        {'std'}        0.17146 

    Lower      Upper  
    0.13227    0.22226

Group: Error
    Name               Estimate    Lower      Upper  
    {'Res Std'}        0.30201     0.28217    0.32324

The small -values of 0.0045885 and 3.0502e-76 indicate that both the intercept and nationwide
estimate are significant. Also, the confidence limits for the standard deviation of the random-effects
term, , do not include 0 (0.13227, 0.22226), which indicates that the random-effects term is
significant.

Plot the raw residuals versus the fitted values.

figure();
plotResiduals(lme,'fitted')
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The variance of residuals increases with increasing fitted response values, which is known as
heteroscedasticity.

Find the two observations on the top right that appear like outliers.

find(residuals(lme) > 1.5)

ans =

    98
   107

Refit the model by removing these observations.

lme = fitlme(flu2,'FluRate ~ 1 + WtdILI + (1|Date)','Exclude',[98,107]);

Improve the model.

Determine if including an independent random term for the nationwide estimate grouped by Date
improves the model.

altlme = fitlme(flu2,'FluRate ~ 1 + WtdILI + (1|Date) + (WtdILI-1|Date)',...
'Exclude',[98,107])

altlme = 
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Linear mixed-effects model fit by ML

Model information:
    Number of observations             466
    Fixed effects coefficients           2
    Random effects coefficients        104
    Covariance parameters                3

Formula:
    FluRate ~ 1 + WtdILI + (1 | Date) + (WtdILI | Date)

Model fit statistics:
    AIC       BIC       LogLikelihood    Deviance
    179.39    200.11    -84.694          169.39  

Fixed effects coefficients (95% CIs):
    Name                   Estimate    SE          tStat     DF     pValue   
    {'(Intercept)'}        0.17837     0.054585    3.2676    464     0.001165
    {'WtdILI'     }        0.70836     0.030594    23.153    464    2.123e-79

    Lower      Upper  
     0.0711    0.28563
    0.64824    0.76849

Random effects covariance parameters (95% CIs):
Group: Date (52 Levels)
    Name1                  Name2                  Type           Estimate
    {'(Intercept)'}        {'(Intercept)'}        {'std'}        0.16631 

    Lower      Upper  
    0.12977    0.21313

Group: Date (52 Levels)
    Name1             Name2             Type           Estimate      Lower
    {'WtdILI'}        {'WtdILI'}        {'std'}        4.6939e-08    NaN  

    Upper
    NaN  

Group: Error
    Name               Estimate    Lower      Upper  
    {'Res Std'}        0.26691     0.24934    0.28572

The estimated standard deviation of WtdILI term is nearly 0 and its confidence interval cannot be
computed. This is an indication that the model is overparameterized and the (WtdILI-1|Date) term
is not significant. You can formally test this using the compare method as follows:
compare(lme,altlme,'CheckNesting',true).

Add a random effects-term for intercept grouped by Region to the initial model lme.

lme2 = fitlme(flu2,'FluRate ~ 1 + WtdILI + (1|Date) + (1|Region)',...
'Exclude',[98,107]);
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Compare the models lme and lme2.

compare(lme,lme2,'CheckNesting',true)

ans = 

    THEORETICAL LIKELIHOOD RATIO TEST

    Model    DF    AIC       BIC       LogLik     LRStat    deltaDF    pValue
    lme      4     177.39    193.97    -84.694                               
    lme2     5     62.265    82.986    -26.133    117.12    1          0     

The -value of 0 indicates that lme2 is a better fit than lme.

Now, check if adding a potentially correlated random-effects term for the intercept and national
average improves the model lme2.

lme3 = fitlme(flu2,'FluRate ~ 1 + WtdILI + (1|Date) + (1 + WtdILI|Region)',...
'Exclude',[98,107])

lme3 = 

Linear mixed-effects model fit by ML

Model information:
    Number of observations             466
    Fixed effects coefficients           2
    Random effects coefficients         70
    Covariance parameters                5

Formula:
    FluRate ~ 1 + WtdILI + (1 | Date) + (1 + WtdILI | Region)

Model fit statistics:
    AIC       BIC       LogLikelihood    Deviance
    13.338    42.348    0.33076          -0.66153

Fixed effects coefficients (95% CIs):
    Name                   Estimate    SE          tStat     DF     pValue    
    {'(Intercept)'}         0.1795     0.054953    3.2665    464     0.0011697
    {'WtdILI'     }        0.70719      0.04252    16.632    464    4.6451e-49

    Lower       Upper  
    0.071514    0.28749
     0.62363    0.79074

Random effects covariance parameters (95% CIs):
Group: Date (52 Levels)
    Name1                  Name2                  Type           Estimate
    {'(Intercept)'}        {'(Intercept)'}        {'std'}        0.17634 
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    Lower      Upper  
    0.14093    0.22064

Group: Region (9 Levels)
    Name1                  Name2                  Type            Estimate 
    {'(Intercept)'}        {'(Intercept)'}        {'std' }        0.0077038
    {'WtdILI'     }        {'(Intercept)'}        {'corr'}        -0.059604
    {'WtdILI'     }        {'WtdILI'     }        {'std' }         0.088069

    Lower         Upper     
    3.2083e-16    1.8499e+11
      -0.99996       0.99995
      0.051694       0.15004

Group: Error
    Name               Estimate    Lower      Upper  
    {'Res Std'}        0.20976     0.19568    0.22486

The estimate for the standard deviation of the random-effects term for intercept grouped by Region is
0.0077037, its confidence interval is very large and includes zero. This indicates that the random-
effects for intercept grouped by Region is insignificant. The correlation between the random-effects
for intercept and WtdILI is -0.059604. Its confidence interval is also very large and includes zero.
This is an indication that the correlation is not significant.

Refit the model by eliminating the intercept from the (1 + WtdILI | Region) random-effects
term.

lme3 = fitlme(flu2,'FluRate ~ 1 + WtdILI + (1|Date) + (WtdILI - 1|Region)',...
'Exclude',[98,107])

lme3 = 

Linear mixed-effects model fit by ML

Model information:
    Number of observations             466
    Fixed effects coefficients           2
    Random effects coefficients         61
    Covariance parameters                3

Formula:
    FluRate ~ 1 + WtdILI + (1 | Date) + (WtdILI | Region)

Model fit statistics:
    AIC       BIC      LogLikelihood    Deviance
    9.3395    30.06    0.33023          -0.66046

Fixed effects coefficients (95% CIs):
    Name                   Estimate    SE          tStat     DF     pValue    
    {'(Intercept)'}         0.1795     0.054892    3.2702    464     0.0011549
    {'WtdILI'     }        0.70718     0.042486    16.645    464    4.0496e-49

    Lower       Upper  
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    0.071637    0.28737
     0.62369    0.79067

Random effects covariance parameters (95% CIs):
Group: Date (52 Levels)
    Name1                  Name2                  Type           Estimate
    {'(Intercept)'}        {'(Intercept)'}        {'std'}        0.17633 

    Lower      Upper  
    0.14092    0.22062

Group: Region (9 Levels)
    Name1             Name2             Type           Estimate    Lower   
    {'WtdILI'}        {'WtdILI'}        {'std'}        0.087925    0.054474

    Upper  
    0.14192

Group: Error
    Name               Estimate    Lower      Upper  
    {'Res Std'}        0.20979     0.19585    0.22473

All terms in the new model lme3 are significant.

Compare lme2 and lme3.

compare(lme2,lme3,'CheckNesting',true,'NSim',100)

ans = 

    SIMULATED LIKELIHOOD RATIO TEST: NSIM = 100, ALPHA = 0.05

    Model    DF    AIC       BIC       LogLik     LRStat    pValue  
    lme2     5     62.265    82.986    -26.133                      
    lme3     5     9.3395     30.06    0.33023    52.926    0.009901

    Lower         Upper   
                          
    0.00025064    0.053932

The -value of 0.009901 indicates that lme3 is a better fit than lme2.

Add a quadratic fixed-effects term to the model lme3.

lme4 = fitlme(flu2,'FluRate ~ 1 + WtdILI^2 + (1|Date) + (WtdILI - 1|Region)',...
'Exclude',[98,107])

lme4 = 

Linear mixed-effects model fit by ML
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Model information:
    Number of observations             466
    Fixed effects coefficients           3
    Random effects coefficients         61
    Covariance parameters                3

Formula:
    FluRate ~ 1 + WtdILI + WtdILI^2 + (1 | Date) + (WtdILI | Region)

Model fit statistics:
    AIC       BIC       LogLikelihood    Deviance
    6.7234    31.588    2.6383           -5.2766 

Fixed effects coefficients (95% CIs):
    Name                   Estimate     SE         tStat       DF     pValue    
    {'(Intercept)'}        -0.063406    0.12236    -0.51821    463       0.60456
    {'WtdILI'     }           1.0594    0.16554      6.3996    463    3.8232e-10
    {'WtdILI^2'   }        -0.096919     0.0441     -2.1977    463      0.028463

    Lower       Upper    
    -0.30385      0.17704
     0.73406       1.3847
    -0.18358    -0.010259

Random effects covariance parameters (95% CIs):
Group: Date (52 Levels)
    Name1                  Name2                  Type           Estimate
    {'(Intercept)'}        {'(Intercept)'}        {'std'}        0.16732 

    Lower      Upper  
    0.13326    0.21009

Group: Region (9 Levels)
    Name1             Name2             Type           Estimate    Lower   
    {'WtdILI'}        {'WtdILI'}        {'std'}        0.087865    0.054443

    Upper 
    0.1418

Group: Error
    Name               Estimate    Lower      Upper  
    {'Res Std'}        0.20979     0.19585    0.22473

The -value of 0.028463 indicates that the coefficient of the quadratic term WtdILI^2 is significant.

Plot the fitted response versus the observed response and residuals.

F = fitted(lme4);
R = response(lme4);
figure();
plot(R,F,'rx')
xlabel('Response')
ylabel('Fitted')
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The fitted versus observed response values form almost 45-degree angle indicating a good fit.

Plot the residuals versus the fitted values.

figure();
plotResiduals(lme4,'fitted')
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Although it has improved, you can still see some heteroscedasticity in the model. This might be due to
another predictor that does not exist in the data set, hence not in the model.

Find the fitted flu rate value for region ENCentral, date 11/6/2005.

F(flu2.Region == 'ENCentral' & flu2.Date == '11/6/2005')

ans =

    1.4860

Randomly generate response values.

Randomly generate response values for a national estimate of 1.625, region MidAtl, and date
4/23/2006. First, define the new table. Because Date and Region are nominal in the original table, you
must define them similarly in the new table.

tblnew.Date = nominal('4/23/2006');
tblnew.WtdILI = 1.625;
tblnew.Region = nominal('MidAtl');
tblnew = struct2table(tblnew);

Now, generate the response value.

random(lme4,tblnew)
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ans =

    1.2679

 Linear Mixed-Effects Model Workflow

11-159



Fit Mixed-Effects Spline Regression

This example shows how to fit a mixed-effects linear spline model.

Load the sample data.

load('mespline.mat');

This is simulated data.

Plot y versus sorted x.

[x_sorted,I] = sort(x,'ascend');
plot(x_sorted,y(I),'o')

Fit the following mixed-effects linear spline regression model

yi = β1 + β2xi + ∑
j = 1

K
b j xi− k j + + ϵi

where k j is the j th knot, and K is the total number of knots. Assume that b j ∼ N(0, σb
2) and

ϵ ∼ N(0, σ2).

Define the knots.
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k = linspace(0.05,0.95,100);

Define the design matrices.

X = [ones(1000,1),x];
Z = zeros(length(x),length(k));
for j = 1:length(k)
      Z(:,j) = max(X(:,2) - k(j),0);
end

Fit the model with an isotropic covariance structure for the random effects.

lme = fitlmematrix(X,y,Z,[],'CovariancePattern','Isotropic');

Fit a fixed-effects only model.

X = [X Z];
lme_fixed = fitlmematrix(X,y,[],[]);

Compare lme_fixed and lme via a simulated likelihood ratio test.

compare(lme,lme_fixed,'NSim',500,'CheckNesting',true)

ans = 
    Simulated Likelihood Ratio Test: Nsim = 500, Alpha = 0.05

    Model        DF     AIC       BIC       LogLik     LRStat    pValue 
    lme            4    170.62    190.25    -81.309                     
    lme_fixed    103    113.38    618.88     46.309    255.24    0.68064

    Lower      Upper  
                      
    0.63784    0.72129

The p-value indicates that the fixed-effects only model is not a better fit than the mixed-effects spline
regression model.

Plot the fitted values from both models on top of the original response data.

R = response(lme);
figure();
plot(x_sorted,R(I),'o', 'MarkerFaceColor',[0.8,0.8,0.8],...
    'MarkerEdgeColor',[0.8,0.8,0.8],'MarkerSize',4);
hold on
F = fitted(lme);
F_fixed = fitted(lme_fixed);
plot(x_sorted,F(I),'b');
plot(x_sorted,F_fixed(I),'r');
legend('data','mixed effects','fixed effects','Location','NorthWest')
xlabel('sorted x values');
ylabel('y');
hold off
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You can also see from the figure that the mixed-effects model provides a better fit to data than the
fixed-effects only model.
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Train Linear Regression Model

Statistics and Machine Learning Toolbox™ provides several features for training a linear regression
model.

• For greater accuracy on low-dimensional through medium-dimensional data sets, use fitlm. After
fitting the model, you can use the object functions to improve, evaluate, and visualize the fitted
model. To regularize a regression, use lasso or ridge.

• For reduced computation time on high-dimensional data sets, use fitrlinear. This function
offers useful options for cross-validation, regularization, and hyperparameter optimization.

This example shows the typical workflow for linear regression analysis using fitlm. The workflow
includes preparing a data set, fitting a linear regression model, evaluating and improving the fitted
model, and predicting response values for new predictor data. The example also describes how to fit
and evaluate a linear regression model for tall arrays.

Prepare Data

Load the sample data set NYCHousing2015.

load NYCHousing2015

The data set includes 10 variables with information on the sales of properties in New York City in
2015. This example uses some of these variables to analyze the sale prices.

Instead of loading the sample data set NYCHousing2015, you can download the data from the NYC
Open Data website and import the data as follows.

folder = 'Annualized_Rolling_Sales_Update';
ds = spreadsheetDatastore(folder,"TextType","string","NumHeaderLines",4);
ds.Files = ds.Files(contains(ds.Files,"2015"));
ds.SelectedVariableNames = ["BOROUGH","NEIGHBORHOOD","BUILDINGCLASSCATEGORY","RESIDENTIALUNITS", ...
    "COMMERCIALUNITS","LANDSQUAREFEET","GROSSSQUAREFEET","YEARBUILT","SALEPRICE","SALEDATE"];
NYCHousing2015 = readall(ds);

Preprocess the data set to choose the predictor variables of interest. First, change the variable names
to lowercase for readability.

NYCHousing2015.Properties.VariableNames = lower(NYCHousing2015.Properties.VariableNames);

Next, convert the saledate variable, specified as a datetime array, into two numeric columns MM
(month) and DD (day), and remove the saledate variable. Ignore the year values because all samples
are for the year 2015.

[~,NYCHousing2015.MM,NYCHousing2015.DD] = ymd(NYCHousing2015.saledate);
NYCHousing2015.saledate = [];

The numeric values in the borough variable indicate the names of the boroughs. Change the variable
to a categorical variable using the names.

NYCHousing2015.borough = categorical(NYCHousing2015.borough,1:5, ...
    ["Manhattan","Bronx","Brooklyn","Queens","Staten Island"]);

The neighborhood variable has 254 categories. Remove this variable for simplicity.
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NYCHousing2015.neighborhood = [];

Convert the buildingclasscategory variable to a categorical variable, and explore the variable by
using the wordcloud function.

NYCHousing2015.buildingclasscategory = categorical(NYCHousing2015.buildingclasscategory);
wordcloud(NYCHousing2015.buildingclasscategory);

Assume that you are interested only in one-, two-, and three-family dwellings. Find the sample indices
for these dwellings and delete the other samples. Then, change the data type of the
buildingclasscategory variable to double.

idx = ismember(string(NYCHousing2015.buildingclasscategory), ...
    ["01  ONE FAMILY DWELLINGS","02  TWO FAMILY DWELLINGS","03  THREE FAMILY DWELLINGS"]);
NYCHousing2015 = NYCHousing2015(idx,:);
NYCHousing2015.buildingclasscategory = renamecats(NYCHousing2015.buildingclasscategory, ...
    ["01  ONE FAMILY DWELLINGS","02  TWO FAMILY DWELLINGS","03  THREE FAMILY DWELLINGS"], ...
    ["1","2","3"]);
NYCHousing2015.buildingclasscategory = double(NYCHousing2015.buildingclasscategory);

The buildingclasscategory variable now indicates the number of families in one dwelling.

Explore the response variable saleprice using the summary function.

s = summary(NYCHousing2015);
s.saleprice

ans = struct with fields:
           Size: [37881 1]

11 Parametric Regression Analysis

11-164



           Type: 'double'
    Description: ''
          Units: ''
     Continuity: []
            Min: 0
         Median: 352000
            Max: 37000000
     NumMissing: 0

Assume that a saleprice less than or equal to $1000 indicates ownership transfer without a cash
consideration. Remove the samples that have this saleprice.

idx0 = NYCHousing2015.saleprice <= 1000;
NYCHousing2015(idx0,:) = [];

Create a histogram of the saleprice variable.

histogram(NYCHousing2015.saleprice)

The maximum value of saleprice is 3 . 7 × 107, but most values are smaller than 0 . 5 × 107. You can
identify the outliers of saleprice by using the isoutlier function.

idx = isoutlier(NYCHousing2015.saleprice);

Remove the identified outliers and create the histogram again.
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NYCHousing2015(idx,:) = [];
histogram(NYCHousing2015.saleprice)

Partition the data set into a training set and test set by using cvpartition.

rng('default') % For reproducibility
c = cvpartition(height(NYCHousing2015),"holdout",0.3);
trainData = NYCHousing2015(training(c),:);
testData = NYCHousing2015(test(c),:);

Train Model

Fit a linear regression model by using the fitlm function.

mdl = fitlm(trainData,"PredictorVars",["borough","grosssquarefeet", ...
    "landsquarefeet","buildingclasscategory","yearbuilt","MM","DD"], ...
    "ResponseVar","saleprice")

mdl = 
Linear regression model:
    saleprice ~ 1 + borough + buildingclasscategory + landsquarefeet + grosssquarefeet + yearbuilt + MM + DD

Estimated Coefficients:
                              Estimate          SE         tStat        pValue   
                             ___________    __________    ________    ___________

    (Intercept)               2.0345e+05    1.0308e+05      1.9736       0.048441
    borough_Bronx            -3.0165e+05         56676     -5.3224     1.0378e-07
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    borough_Brooklyn              -41160         56490    -0.72862        0.46624
    borough_Queens                -91136         56537      -1.612        0.10699
    borough_Staten Island    -2.2199e+05         56726     -3.9134     9.1385e-05
    buildingclasscategory         3165.7        3510.3     0.90185        0.36715
    landsquarefeet                13.149       0.84534      15.555      3.714e-54
    grosssquarefeet               112.34        2.9494       38.09    8.0393e-304
    yearbuilt                     100.07        45.464       2.201        0.02775
    MM                            3850.5        543.79      7.0808     1.4936e-12
    DD                           -367.19        207.56     -1.7691       0.076896

Number of observations: 15848, Error degrees of freedom: 15837
Root Mean Squared Error: 2.32e+05
R-squared: 0.235,  Adjusted R-Squared: 0.235
F-statistic vs. constant model: 487, p-value = 0

mdl is a LinearModel object. The model display includes the model formula, estimated coefficients,
and summary statistics.

borough is a categorical variable that has five categories: Manhattan, Bronx, Brooklyn, Queens,
and Staten Island. The fitted model mdl has four indicator variables. The fitlm function uses the
first category Manhattan as a reference level, so the model does not include the indicator variable
for the reference level. fitlm fixes the coefficient of the indicator variable for the reference level as
zero. The coefficient values of the four indicator variables are relative to Manhattan. For more
details on how the function treats a categorical predictor, see “Algorithms” on page 35-2343 of fitlm.

To learn how to interpret the values in the model display, see “Interpret Linear Regression Results”
on page 11-52.

You can use the properties of a LinearModel object to investigate a fitted linear regression model.
The object properties include information about coefficient estimates, summary statistics, fitting
method, and input data. For example, you can find the R-squared and adjusted R-squared values in
the Rsquared property. You can access the property values through the Workspace browser or using
dot notation.

mdl.Rsquared

ans = struct with fields:
    Ordinary: 0.2352
    Adjusted: 0.2348

The model display also shows these values. The R-squared value indicates that the model explains
approximately 24% of the variability in the response variable. See “Properties” on page 35-4202 of a
LinearModel object for details about other properties.

Evaluate Model

The model display shows the p-value of each coefficient. The p-values indicate which variables are
significant to the model. For the categorical predictor borough, the model uses four indicator
variables and displays four p-values. To examine the categorical variable as a group of indicator
variables, use the object function anova. This function returns analysis of variance (ANOVA) statistics
of the model.

anova(mdl)

ans=8×5 table
                               SumSq        DF        MeanSq         F         pValue   
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                             __________    _____    __________    _______    ___________

    borough                   1.123e+14        4    2.8076e+13     520.96              0
    buildingclasscategory    4.3833e+10        1    4.3833e+10    0.81334        0.36715
    landsquarefeet           1.3039e+13        1    1.3039e+13     241.95      3.714e-54
    grosssquarefeet          7.8189e+13        1    7.8189e+13     1450.8    8.0393e-304
    yearbuilt                2.6108e+11        1    2.6108e+11     4.8444        0.02775
    MM                       2.7021e+12        1    2.7021e+12     50.138     1.4936e-12
    DD                       1.6867e+11        1    1.6867e+11     3.1297       0.076896
    Error                     8.535e+14    15837    5.3893e+10                          

The p-values for the indicator variables borough_Brooklyn and borough_Queens are large, but
the p-value of the borough variable as a group of four indicator variables is almost zero, which
indicates that the borough variable is statistically significant.

The p-values of buildingclasscategory and DD are larger than 0.05, which indicates that these
variables are not significant at the 5% significance level. Therefore, you can consider removing these
variables.

You can also use coeffCI, coeefTest, and dwTest to further evaluate the fitted model.

• coefCI returns confidence intervals of the coefficient estimates.
• coefTest performs a linear hypothesis test on the model coefficients.
• dwtest performs the Durbin-Watson test. (This test is used for time series data, so dwtest is not

appropriate for the housing data in this example.)

Visualize Model and Summary Statistics

A LinearModel object provides multiple plotting functions.

• When creating a model, use plotAdded to understand the effect of adding or removing a
predictor variable.

• When verifying a model, use plotDiagnostics to find questionable data and to understand the
effect of each observation. Also, use plotResiduals to analyze the residuals of the model.

• After fitting a model, use plotAdjustedResponse, plotPartialDependence, and
plotEffects to understand the effect of a particular predictor. Use plotInteraction to
examine the interaction effect between two predictors. Also, use plotSlice to plot slices through
the prediction surface.

In addition, plot creates an added variable plot for the whole model, except the intercept term, if
mdl includes multiple predictor variables.

plot(mdl)
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This plot is equivalent to plotAdded(mdl). The fitted line represents how the model, as a group of
variables, can explain the response variable. The slope of the fitted line is not close to zero, and the
confidence bound does not include a horizontal line, indicating that the model fits better than a
degenerate model consisting of only a constant term. The test statistic value shown in the model
display (F-statistic vs. constant model) also indicates that the model fits better than the
degenerate model.

Create an added variable plot for the insignificant variables buildingclasscategory and DD. The
p-values of these variables are larger than 0.05. First, find the indices of these coefficients in
mdl.CoefficientNames.

mdl.CoefficientNames

ans = 1×11 cell
    {'(Intercept)'}    {'borough_Bronx'}    {'borough_Brooklyn'}    {'borough_Queens'}    {'borough_Staten Island'}    {'buildingclasscategory'}    {'landsquarefeet'}    {'grosssquarefeet'}    {'yearbuilt'}    {'MM'}    {'DD'}

buildingclasscategory and DD are the 6th and 11th coefficients, respectively. Create an added
plot for these two variables.

plotAdded(mdl,[6,11])
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The slope of the fitted line is close to zero, indicating that the information from the two variables does
not explain the part of the response values not explained by the other predictors. For more details
about an added variable plot, see “Added Variable Plot” on page 35-5514.

Create a histogram of the model residuals. plotResiduals plots a histogram of the raw residuals
using probability density function scaling.

plotResiduals(mdl)
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The histogram shows that a few residuals are smaller than −1 × 106. Identify these outliers.

find(mdl.Residuals.Raw < -1*10^6)

ans = 4×1

        1327
        4136
        4997
       13894

Alternatively, you can find the outliers by using isoutlier. Specify the 'grubbs' option to apply
Grubb's test. This option is suitable for a normally distributed data set.

find(isoutlier(mdl.Residuals.Raw,'grubbs'))

ans = 3×1

        1327
        4136
        4997

The isoutlier function does not identify residual 13894 as an outlier. This residual is close to –1×
106. Display the residual value.

mdl.Residuals.Raw(13894)
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ans = -1.0720e+06

You can exclude outliers when fitting a linear regression model by using the “Exclude” on page 35-
0  name-value pair argument. In this case, the example adjusts the fitted model and checks whether
the improved model can also explain the outliers.

Adjust Model

Remove the DD and buildingclasscategory variables using removeTerms.

newMdl1 = removeTerms(mdl,"DD + buildingclasscategory")

newMdl1 = 
Linear regression model:
    saleprice ~ 1 + borough + landsquarefeet + grosssquarefeet + yearbuilt + MM

Estimated Coefficients:
                              Estimate          SE         tStat        pValue  
                             ___________    __________    ________    __________

    (Intercept)               2.0529e+05    1.0274e+05      1.9981      0.045726
    borough_Bronx            -3.0038e+05         56675        -5.3    1.1739e-07
    borough_Brooklyn              -39704         56488    -0.70286       0.48215
    borough_Queens                -90231         56537      -1.596       0.11052
    borough_Staten Island    -2.2149e+05         56720     -3.9049    9.4652e-05
    landsquarefeet                 13.04       0.83912       15.54    4.6278e-54
    grosssquarefeet               113.85        2.5078      45.396             0
    yearbuilt                     96.649        45.395      2.1291      0.033265
    MM                            3875.6        543.49       7.131    1.0396e-12

Number of observations: 15848, Error degrees of freedom: 15839
Root Mean Squared Error: 2.32e+05
R-squared: 0.235,  Adjusted R-Squared: 0.235
F-statistic vs. constant model: 608, p-value = 0

Because the two variables are not significant in explaining the response variable, the R-squared and
adjusted R-squared values of newMdl1 are close to the values of mdl.

Improve the model by adding or removing variables using step. The default upper bound of the
model is a model containing an intercept term, the linear term for each predictor, and all products of
pairs of distinct predictors (no squared terms), and the default lower bound is a model containing an
intercept term. Specify the maximum number of steps to take as 30. The function stops when no
single step improves the model.

newMdl2 = step(newMdl1,'NSteps',30)

1. Adding borough:grosssquarefeet, FStat = 58.7413, pValue = 2.63078e-49
2. Adding borough:yearbuilt, FStat = 31.5067, pValue = 3.50645e-26
3. Adding borough:landsquarefeet, FStat = 29.5473, pValue = 1.60885e-24
4. Adding grosssquarefeet:yearbuilt, FStat = 69.312, pValue = 9.08599e-17
5. Adding landsquarefeet:grosssquarefeet, FStat = 33.2929, pValue = 8.07535e-09
6. Adding landsquarefeet:yearbuilt, FStat = 45.2756, pValue = 1.7704e-11
7. Adding yearbuilt:MM, FStat = 18.0785, pValue = 2.13196e-05
8. Adding residentialunits, FStat = 16.0491, pValue = 6.20026e-05
9. Adding residentialunits:landsquarefeet, FStat = 160.2601, pValue = 1.49309e-36
10. Adding residentialunits:grosssquarefeet, FStat = 27.351, pValue = 1.71835e-07
11. Adding commercialunits, FStat = 14.1503, pValue = 0.000169381
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12. Adding commercialunits:grosssquarefeet, FStat = 25.6942, pValue = 4.04549e-07
13. Adding borough:commercialunits, FStat = 6.1327, pValue = 6.3015e-05
14. Adding buildingclasscategory, FStat = 11.1412, pValue = 0.00084624
15. Adding buildingclasscategory:landsquarefeet, FStat = 66.9205, pValue = 3.04003e-16
16. Adding buildingclasscategory:yearbuilt, FStat = 15.0776, pValue = 0.0001036
17. Adding buildingclasscategory:grosssquarefeet, FStat = 18.3304, pValue = 1.86812e-05
18. Adding residentialunits:yearbuilt, FStat = 15.0732, pValue = 0.00010384
19. Adding buildingclasscategory:residentialunits, FStat = 13.5644, pValue = 0.00023129
20. Adding borough:buildingclasscategory, FStat = 2.8214, pValue = 0.023567
21. Adding landsquarefeet:MM, FStat = 4.9185, pValue = 0.026585
22. Removing grosssquarefeet:yearbuilt, FStat = 1.6052, pValue = 0.20519

newMdl2 = 
Linear regression model:
    saleprice ~ 1 + borough*buildingclasscategory + borough*commercialunits + borough*landsquarefeet + borough*grosssquarefeet + borough*yearbuilt + buildingclasscategory*residentialunits + buildingclasscategory*landsquarefeet + buildingclasscategory*grosssquarefeet + buildingclasscategory*yearbuilt + residentialunits*landsquarefeet + residentialunits*grosssquarefeet + residentialunits*yearbuilt + commercialunits*grosssquarefeet + landsquarefeet*grosssquarefeet + landsquarefeet*yearbuilt + landsquarefeet*MM + yearbuilt*MM

Estimated Coefficients:
                                                    Estimate          SE         tStat        pValue  
                                                   ___________    __________    ________    __________

    (Intercept)                                     2.2152e+07     1.318e+07      1.6808      0.092825
    borough_Bronx                                  -2.3263e+07    1.3176e+07     -1.7656      0.077486
    borough_Brooklyn                               -1.8935e+07    1.3174e+07     -1.4373       0.15064
    borough_Queens                                 -2.1757e+07    1.3173e+07     -1.6516      0.098636
    borough_Staten Island                          -2.3471e+07    1.3177e+07     -1.7813      0.074891
    buildingclasscategory                          -7.2403e+05    1.9374e+05      -3.737    0.00018685
    residentialunits                                6.1912e+05    1.2399e+05      4.9932     6.003e-07
    commercialunits                                 4.2016e+05    1.2815e+05      3.2786     0.0010456
    landsquarefeet                                     -390.54        96.349     -4.0535    5.0709e-05
    grosssquarefeet                                     189.33        83.723      2.2614      0.023748
    yearbuilt                                           -11556        6958.7     -1.6606      0.096805
    MM                                                   95189         31787      2.9946     0.0027521
    borough_Bronx:buildingclasscategory            -1.1972e+05    1.0481e+05     -1.1422       0.25338
    borough_Brooklyn:buildingclasscategory         -1.4154e+05    1.0448e+05     -1.3548       0.17551
    borough_Queens:buildingclasscategory           -1.1597e+05    1.0454e+05     -1.1093        0.2673
    borough_Staten Island:buildingclasscategory    -1.1851e+05    1.0513e+05     -1.1273       0.25964
    borough_Bronx:commercialunits                  -2.7488e+05    1.3267e+05     -2.0719      0.038293
    borough_Brooklyn:commercialunits               -3.8228e+05    1.2835e+05     -2.9784     0.0029015
    borough_Queens:commercialunits                 -3.9818e+05    1.2884e+05     -3.0906     0.0020008
    borough_Staten Island:commercialunits          -4.9381e+05     1.353e+05     -3.6496    0.00026348
    borough_Bronx:landsquarefeet                        121.81        77.442       1.573       0.11574
    borough_Brooklyn:landsquarefeet                     113.09        77.413      1.4609       0.14405
    borough_Queens:landsquarefeet                       99.894        77.374      1.2911        0.1967
    borough_Staten Island:landsquarefeet                84.508        77.376      1.0922       0.27477
    borough_Bronx:grosssquarefeet                      -55.417        83.412    -0.66437       0.50646
    borough_Brooklyn:grosssquarefeet                    6.4033        83.031    0.077119       0.93853
    borough_Queens:grosssquarefeet                       38.28        83.144     0.46041       0.64523
    borough_Staten Island:grosssquarefeet               12.539        83.459     0.15024       0.88058
    borough_Bronx:yearbuilt                              12121        6956.8      1.7422      0.081485
    borough_Brooklyn:yearbuilt                          9986.5        6955.8      1.4357        0.1511
    borough_Queens:yearbuilt                             11382        6955.3      1.6364       0.10177
    borough_Staten Island:yearbuilt                      12237        6957.1      1.7589      0.078613
    buildingclasscategory:residentialunits               21392          5465      3.9143    9.1041e-05
    buildingclasscategory:landsquarefeet               -13.099        2.0014      -6.545    6.1342e-11
    buildingclasscategory:grosssquarefeet              -30.087        5.2786     -5.6998    1.2209e-08
    buildingclasscategory:yearbuilt                     462.31        85.912      5.3813    7.5021e-08
    residentialunits:landsquarefeet                    -1.0826       0.13896     -7.7911    7.0554e-15
    residentialunits:grosssquarefeet                   -5.1192        1.7923     -2.8563     0.0042917
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    residentialunits:yearbuilt                         -326.69        63.556     -5.1403    2.7762e-07
    commercialunits:grosssquarefeet                    -29.839        5.0231     -5.9403    2.9045e-09
    landsquarefeet:grosssquarefeet                  -0.0055199     0.0010364     -5.3262    1.0165e-07
    landsquarefeet:yearbuilt                            0.1766      0.030902      5.7151    1.1164e-08
    landsquarefeet:MM                                   0.6595       0.30229      2.1817      0.029145
    yearbuilt:MM                                       -47.944        16.392     -2.9248     0.0034512

Number of observations: 15848, Error degrees of freedom: 15804
Root Mean Squared Error: 2.25e+05
R-squared: 0.285,  Adjusted R-Squared: 0.283
F-statistic vs. constant model: 146, p-value = 0

The R-squared and adjusted R-squared values of newMdl2 are larger than the values of newMdl1.

Create a histogram of the model residuals by using plotResiduals.

plotResiduals(newMdl2)

The residual histogram of newMdl2 is symmetric, without outliers.

You can also use addTerms to add specific terms. Alternatively, you can use stepwiselm to specify
terms in a starting model and continue improving the model by using stepwise regression.

Predict Responses to New Data

Predict responses to the test data set testData by using the fitted model newMdl2 and the object
function predict to

11 Parametric Regression Analysis

11-174



ypred = predict(newMdl2,testData);

Plot the residual histogram of the test data set.

errs = ypred - testData.saleprice;
histogram(errs)
title("Histogram of residuals - test data")

The residual values have a few outliers.

errs(isoutlier(errs,'grubbs'))

ans = 6×1
107 ×

    0.1788
   -0.4688
   -1.2981
    0.1019
    0.1122
    0.1331

Analyze Using Tall Arrays

The fitlm function supports tall arrays for out-of-memory data, with some limitations. For tall data,
fitlm returns a CompactLinearModel object that contains most of the same properties as a
LinearModel object. The main difference is that the compact object is sensitive to memory
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requirements. The compact object does not have properties that include the data, or that include an
array of the same size as the data. Therefore, some LinearModel object functions that require data
do not work with a compact model. See “Object Functions” on page 35-938 for the list of supported
object functions. Also, see “Tall Arrays” on page 35-2344 for the usage notes and limitations of fitlm
for tall arrays.

When you perform calculations on tall arrays, MATLAB® uses either a parallel pool (default if you
have Parallel Computing Toolbox™) or the local MATLAB session. If you want to run the example
using the local MATLAB session when you have Parallel Computing Toolbox, you can change the
global execution environment by using the mapreducer function.

Assume that all the data in the datastore ds does not fit in memory. You can use tall instead of
readall to read ds.

NYCHousing2015 = tall(ds);

For this example, convert the in-memory table NYCHousing2015 to a tall table by using the tall
function.

NYCHousing2015_t = tall(NYCHousing2015);

Starting parallel pool (parpool) using the 'local' profile ...
Connected to the parallel pool (number of workers: 6).

Partition the data set into a training set and test set. When you use cvpartition with tall arrays,
the function partitions the data set based on the variable supplied as the first input argument. For
classification problems, you typically use the response variable (a grouping variable) and create a
random stratified partition to get even distribution between training and test sets for all groups. For
regression problems, this stratification is not adequate, and you can use the 'Stratify' name-value
pair argument to turn off the option.

In this example, specify the predictor variable NYCHousing2015_t.borough as the first input
argument to make the distribution of boroughs roughly the same across the training and tests sets.
For reproducibility, set the seed of the random number generator using tallrng. The results can
vary depending on the number of workers and the execution environment for the tall arrays. For
details, see “Control Where Your Code Runs”.

tallrng('default') % For reproducibility
c = cvpartition(NYCHousing2015_t.borough,"holdout",0.3);
trainData_t = NYCHousing2015_t(training(c),:);
testData_t = NYCHousing2015_t(test(c),:);

Because fitlm returns a compact model object for tall arrays, you cannot improve the model using
the step function. Instead, you can explore the model parameters by using the object functions and
then adjust the model as needed. You can also gather a subset of the data into the workspace, use
stepwiselm to iteratively develop the model in memory, and then scale up to use tall arrays. For
details, see Model Development of “Statistics and Machine Learning with Big Data Using Tall Arrays”
on page 32-24.

In this example, fit a linear regression model using the model formula of newMdl2.

mdl_t = fitlm(trainData_t,newMdl2.Formula)

Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 1: Completed in 7.4 sec
Evaluation completed in 9.2 sec
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mdl_t = 
Compact linear regression model:
    saleprice ~ 1 + borough*buildingclasscategory + borough*commercialunits + borough*landsquarefeet + borough*grosssquarefeet + borough*yearbuilt + buildingclasscategory*residentialunits + buildingclasscategory*landsquarefeet + buildingclasscategory*grosssquarefeet + buildingclasscategory*yearbuilt + residentialunits*landsquarefeet + residentialunits*grosssquarefeet + residentialunits*yearbuilt + commercialunits*grosssquarefeet + landsquarefeet*grosssquarefeet + landsquarefeet*yearbuilt + landsquarefeet*MM + yearbuilt*MM

Estimated Coefficients:
                                                    Estimate          SE         tStat        pValue  
                                                   ___________    __________    ________    __________

    (Intercept)                                    -1.3301e+06    5.1815e+05      -2.567      0.010268
    borough_Brooklyn                                4.2583e+06    4.1808e+05      10.185    2.7392e-24
    borough_Manhattan                               2.2758e+07    1.3448e+07      1.6923      0.090614
    borough_Queens                                  1.1395e+06    4.1868e+05      2.7216     0.0065035
    borough_Staten Island                          -1.1196e+05    4.6677e+05    -0.23986       0.81044
    buildingclasscategory                            -8.08e+05    1.6219e+05     -4.9817    6.3705e-07
    residentialunits                                6.0588e+05    1.2669e+05      4.7822    1.7497e-06
    commercialunits                                      80197         53311      1.5043       0.13252
    landsquarefeet                                     -279.94        53.913     -5.1925    2.1009e-07
    grosssquarefeet                                     170.02        13.996      12.147    8.3837e-34
    yearbuilt                                           683.49        268.34      2.5471      0.010872
    MM                                                   86488         32725      2.6428     0.0082293
    borough_Brooklyn:buildingclasscategory             -9852.4         12048    -0.81773       0.41352
    borough_Manhattan:buildingclasscategory         1.3318e+05    1.3592e+05     0.97988       0.32716
    borough_Queens:buildingclasscategory                 15621         11671      1.3385       0.18076
    borough_Staten Island:buildingclasscategory          15132         14893       1.016       0.30964
    borough_Brooklyn:commercialunits                    -22060         43012    -0.51289       0.60804
    borough_Manhattan:commercialunits               4.8349e+05    2.1757e+05      2.2222      0.026282
    borough_Queens:commercialunits                      -42023         44736    -0.93936       0.34756
    borough_Staten Island:commercialunits          -1.3382e+05         56976     -2.3487      0.018853
    borough_Brooklyn:landsquarefeet                     9.8263        5.2513      1.8712      0.061335
    borough_Manhattan:landsquarefeet                   -78.962        78.445     -1.0066       0.31415
    borough_Queens:landsquarefeet                      -3.0855        3.9087    -0.78939        0.4299
    borough_Staten Island:landsquarefeet               -17.325        3.5831     -4.8351    1.3433e-06
    borough_Brooklyn:grosssquarefeet                    37.689        10.573      3.5646    0.00036548
    borough_Manhattan:grosssquarefeet                   16.107        82.074     0.19625       0.84442
    borough_Queens:grosssquarefeet                      70.381         10.69      6.5837    4.7343e-11
    borough_Staten Island:grosssquarefeet               36.396         12.08      3.0129     0.0025914
    borough_Brooklyn:yearbuilt                         -2110.1        216.32     -9.7546    2.0388e-22
    borough_Manhattan:yearbuilt                         -11884        7023.9      -1.692      0.090667
    borough_Queens:yearbuilt                           -566.44        216.89     -2.6116     0.0090204
    borough_Staten Island:yearbuilt                     53.714        239.89     0.22391       0.82283
    buildingclasscategory:residentialunits               24088          5574      4.3215    1.5595e-05
    buildingclasscategory:landsquarefeet                5.7964        5.8438      0.9919       0.32126
    buildingclasscategory:grosssquarefeet              -47.079        5.2884     -8.9023    6.0556e-19
    buildingclasscategory:yearbuilt                     430.97        83.593      5.1555      2.56e-07
    residentialunits:landsquarefeet                    -21.756        5.6485     -3.8517    0.00011778
    residentialunits:grosssquarefeet                     4.584        1.4586      3.1427     0.0016769
    residentialunits:yearbuilt                         -310.09        65.429     -4.7393    2.1632e-06
    commercialunits:grosssquarefeet                    -27.839        11.463     -2.4286      0.015166
    landsquarefeet:grosssquarefeet                  -0.0068613    0.00094607     -7.2524    4.2832e-13
    landsquarefeet:yearbuilt                           0.17489      0.028195      6.2028    5.6861e-10
    landsquarefeet:MM                                  0.70295        0.2848      2.4682      0.013589
    yearbuilt:MM                                       -43.405        16.871     -2.5728      0.010098

Number of observations: 15849, Error degrees of freedom: 15805
Root Mean Squared Error: 2.26e+05
R-squared: 0.277,  Adjusted R-Squared: 0.275
F-statistic vs. constant model: 141, p-value = 0
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mdl_t is a CompactLinearModel object. mdl_t is not exactly the same as newMdl2 because the
partitioned training data set obtained from the tall table is not the same as the one from the in-
memory data set.

You cannot use the plotResiduals function to create a histogram of the model residuals because
mdl_t is a compact object. Instead, compute the residuals directly from the compact object and
create the histogram using histogram.

mdl_t_Residual = trainData_t.saleprice - predict(mdl_t,trainData_t);
histogram(mdl_t_Residual)

Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 2: Completed in 2.5 sec
- Pass 2 of 2: Completed in 0.63 sec
Evaluation completed in 3.8 sec

title("Histogram of residuals - train data")

Predict responses to the test data set testData_t by using predict.

ypred_t = predict(mdl_t,testData_t);

Plot the residual histogram of the test data set.

errs_t = ypred_t - testData_t.saleprice;
histogram(errs_t)

Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 2: 0% complete
Evaluation 0% complete

- Pass 1 of 2: 6% complete
Evaluation 3% complete
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- Pass 1 of 2: Completed in 0.79 sec
- Pass 2 of 2: Completed in 0.55 sec
Evaluation completed in 2 sec

title("Histogram of residuals - test data")
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You can further assess the fitted model using the CompactLinearModel object functions. For an
example, see Assess and Adjust Model of “Statistics and Machine Learning with Big Data Using Tall
Arrays” on page 32-24.

See Also
isoutlier | fitlm | LinearModel | CompactLinearModel

More About
• “Linear Regression” on page 11-9
• “Linear Regression Workflow” on page 11-35
• “Interpret Linear Regression Results” on page 11-52
• “Linear Regression with Interaction Effects” on page 11-46
• “Linear Regression with Categorical Covariates” on page 2-53
• “Examine Quality and Adjust Fitted Model” on page 11-14
• “Summary of Output and Diagnostic Statistics” on page 11-91
• “Statistics and Machine Learning with Big Data Using Tall Arrays” on page 32-24
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Analyze Time Series Data

This example shows how to visualize and analyze time series data using a timeseries object and the
regress function.

Air Passenger Data

First we create an array of monthly counts of airline passengers, measured in thousands, for the
period January 1949 through December 1960.

%   1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960
y = [112  115  145  171  196  204  242  284  315  340  360  417    % Jan
     118  126  150  180  196  188  233  277  301  318  342  391    % Feb
     132  141  178  193  236  235  267  317  356  362  406  419    % Mar
     129  135  163  181  235  227  269  313  348  348  396  461    % Apr
     121  125  172  183  229  234  270  318  355  363  420  472    % May
     135  149  178  218  243  264  315  374  422  435  472  535    % Jun
     148  170  199  230  264  302  364  413  465  491  548  622    % Jul
     148  170  199  242  272  293  347  405  467  505  559  606    % Aug
     136  158  184  209  237  259  312  355  404  404  463  508    % Sep
     119  133  162  191  211  229  274  306  347  359  407  461    % Oct
     104  114  146  172  180  203  237  271  305  310  362  390    % Nov
     118  140  166  194  201  229  278  306  336  337  405  432 ]; % Dec
% Source:
% Hyndman, R.J., Time Series Data Library,
% http://www-personal.buseco.monash.edu.au/~hyndman/TSDL/.
% Copied in October, 2005.

Create Time Series Object

When we create a time series object, we can keep the time information along with the data values.
We have monthly data, so we create an array of dates and use it along with the Y data to create the
time series object.

yr = repmat((1949:1960),12,1);
mo = repmat((1:12)',1,12);
time = datestr(datenum(yr(:),mo(:),1));
ts = timeseries(y(:),time,'name','AirlinePassengers');
ts.TimeInfo.Format = 'dd-mmm-yyyy';
tscol = tscollection(ts);
plot(ts)
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Examine Trend and Seasonality

This series seems to have a strong seasonal component, with a trend that may be linear or quadratic.
Furthermore, the magnitude of the seasonal variation increases as the general level increases.
Perhaps a log transformation would make the seasonal variation be more constant. First we'll change
the axis scale.

h_gca = gca;
h_gca.YScale = 'log';
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It appears that it would be easier to model the seasonal component on the log scale. We'll create a
new time series with a log transformation.

tscol = addts(tscol,log(ts.data),'logAirlinePassengers');
logts = tscol.logAirlinePassengers;

Now let's plot the yearly averages, with monthly deviations superimposed. We want to see if the
month-to-month variation within years appears constant. For these manipulations treating the data as
a matrix in a month-by-year format, it's more convenient to operate on the original data matrix.

t = reshape(datenum(time),12,12);
logy = log(y);
ymean = repmat(mean(logy),12,1);
ydiff = logy - ymean;
x = yr + (mo-1)/12;
plot(x,ymean,'b-',x,ymean+ydiff,'r-')
title('Monthly variation within year')
xlabel('Year')
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Now let's reverse the years and months, and try to see if the year-to-year trend is constant for each
month.

h_gca = gca;
h_gca.Position = [0.13 0.58 0.78 0.34];
subplot(2,1,2);
t = reshape(datenum(time),12,12);
mmean = repmat(mean(logy,2),1,12);
mdiff = logy - mmean;
x = mo + (yr-min(yr(:)))/12;
plot(x',mmean','b-',x',(mmean+mdiff)','r-')
title('Yearly trend within month')
xlabel('Month')
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Model Trend and Seasonality

Let's attempt to model this series as a linear trend plus a seasonal component.

subplot(1,1,1);
X = [dummyvar(mo(:)) logts.time];
[b,bint,resid] = regress(logts.data,X);
tscol = addts(tscol,X*b,'Fit1')

Time Series Collection Object: unnamed

Time vector characteristics

      Start date            01-Jan-1949
      End date              01-Dec-1960

Member Time Series Objects:

      AirlinePassengers
      logAirlinePassengers
      Fit1

plot(logts)
hold on
plot(tscol.Fit1,'Color','r')
hold off
legend('Data','Fit','location','NW')
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Based on this graph, the fit appears to be good. The differences between the actual data and the
fitted values may well be small enough for our purposes.

But let's try to investigate this some more. We would like the residuals to look independent. If there is
autocorrelation (correlation between adjacent residuals), then there may be an opportunity to model
that and make our fit better. Let's create a time series from the residuals and plot it.

tscol = addts(tscol,resid,'Resid1');
plot(tscol.Resid1)

11 Parametric Regression Analysis

11-186



The residuals do not look independent. In fact, the correlation between adjacent residuals looks quite
strong. We can test this formally using a Durbin-Watson test.

[p,dw] = dwtest(tscol.Resid1.data,X)

p = 7.7787e-30

dw = 0.4256

A low p-value for the Durbin-Watson statistic is an indication that the residuals are correlated across
time. A typical cutoff for hypothesis tests is to decide that p<0.05 is significant. Here the very small
p-value gives strong evidence that the residuals are correlated.

We can attempt to change the model to remove the autocorrelation. The general shape of the curve is
high in the middle and low at the ends. This suggests that we should allow for a quadratic trend term.
However, it also appears that autocorrelation will remain after we add this term. Let's try it.

X = [dummyvar(mo(:)) logts.time logts.time.^2];
[b2,bint,resid2] = regress(logts.data,X);
tscol = addts(tscol,resid2,'Resid2');
plot(tscol.Resid2)
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[p,dw] = dwtest(tscol.Resid2.data,X)

p = 8.7866e-20

dw = 0.6487

Adding the squared term did remove the pronounced curvature in the original residual plot, but both
the plot and the new Durbin-Watson test show that there is still significant correlation in the
residuals.

Autocorrelation like this could be the result of other causes that are not captured in our X variable.
Perhaps we could collect other data that would help us improve our model and reduce the
correlation. In the absence of other data, we might simply add another parameter to the model to
represent the autocorrelation. Let's do that, removing the squared term, and using an autoregressive
model for the error.

In an autoregressive process, we have two stages:

   Y(t) = X(t,:)*b + r(t)       % regression model for original data
   r(t) = rho * r(t-1) + u(t)   % autoregressive model for residuals

Unlike in the usual regression model when we would like the residual series r(t) to be a set of
independent values, this model allows the residuals to follow an autoregressive model with its own
error term u(t) that consists of independent values.

To create this model, we want to write an anonymous function f to compute fitted values Yfit, so
that Y-Yfit gives the u values:
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   Yfit(t) = rho*Y(t-1) + (X(t,:) - rho*X(t-1,:))*b

In this anonymous function we combine [rho; b] into a single parameter vector c. The resulting
residuals look much closer to an uncorrelated series.

r = corr(resid(1:end-1),resid(2:end));  % initial guess for rho
X = [dummyvar(mo(:)) logts.time];
Y = logts.data;
f = @(c,x) [Y(1); c(1)*Y(1:end-1) + (x(2:end,:)- c(1)*x(1:end-1,:))*c(2:end)];
c = nlinfit(X,Y,f,[r; b]);

u = Y - f(c,X);
tscol = addts(tscol,u,'ResidU');
plot(tscol.ResidU);

Summary

This example provides an illustration of how to use the MATLAB® time series object along with
features from the Statistics and Machine Learning Toolbox. It is simple to use the ts.data notation
to extract the data and supply it as input to any function. The controlchart function also accepts
time series objects directly.

More elaborate analyses are possible by using features specifically designed for time series, such as
those in Econometrics Toolbox™ and System Identification Toolbox™.
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Partial Least Squares Regression and Principal Components
Regression

This example shows how to apply partial least squares regression (PLSR) and principal components
regression (PCR), and explores the effectiveness of the two methods. PLSR and PCR are both
methods to model a response variable when there are a large number of predictor variables, and
those predictors are highly correlated or even collinear. Both methods construct new predictor
variables, known as components, as linear combinations of the original predictor variables, but they
construct those components in different ways. PCR creates components to explain the observed
variability in the predictor variables, without considering the response variable at all. On the other
hand, PLSR does take the response variable into account, and therefore often leads to models that
are able to fit the response variable with fewer components. Whether or not that ultimately translates
into a more parsimonious model, in terms of its practical use, depends on the context.

Loading the Data

Load a data set comprising spectral intensities of 60 samples of gasoline at 401 wavelengths, and
their octane ratings. These data are described in Kalivas, John H., "Two Data Sets of Near Infrared
Spectra," Chemometrics and Intelligent Laboratory Systems, v.37 (1997) pp.255-259.

load spectra
whos NIR octane

  Name         Size              Bytes  Class     Attributes

  NIR         60x401            192480  double              
  octane      60x1                 480  double              

[dummy,h] = sort(octane);
oldorder = get(gcf,'DefaultAxesColorOrder');
set(gcf,'DefaultAxesColorOrder',jet(60));
plot3(repmat(1:401,60,1)',repmat(octane(h),1,401)',NIR(h,:)');
set(gcf,'DefaultAxesColorOrder',oldorder);
xlabel('Wavelength Index'); ylabel('Octane'); axis('tight');
grid on

11 Parametric Regression Analysis

11-190



Fitting the Data with Two Components

Use the plsregress function to fit a PLSR model with ten PLS components and one response.

X = NIR;
y = octane;
[n,p] = size(X);
[Xloadings,Yloadings,Xscores,Yscores,betaPLS10,PLSPctVar] = plsregress(...
    X,y,10);

Ten components may be more than will be needed to adequately fit the data, but diagnostics from this
fit can be used to make a choice of a simpler model with fewer components. For example, one quick
way to choose the number of components is to plot the percent of variance explained in the response
variable as a function of the number of components.

plot(1:10,cumsum(100*PLSPctVar(2,:)),'-bo');
xlabel('Number of PLS components');
ylabel('Percent Variance Explained in Y');
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In practice, more care would probably be advisable in choosing the number of components. Cross-
validation, for instance, is a widely-used method that will be illustrated later in this example. For now,
the above plot suggests that PLSR with two components explains most of the variance in the observed
y. Compute the fitted response values for the two-component model.

[Xloadings,Yloadings,Xscores,Yscores,betaPLS] = plsregress(X,y,2);
yfitPLS = [ones(n,1) X]*betaPLS;

Next, fit a PCR model with two principal components. The first step is to perform Principal
Components Analysis on X, using the pca function, and retaining two principal components. PCR is
then just a linear regression of the response variable on those two components. It often makes sense
to normalize each variable first by its standard deviation when the variables have very different
amounts of variability, however, that is not done here.

[PCALoadings,PCAScores,PCAVar] = pca(X,'Economy',false);
betaPCR = regress(y-mean(y), PCAScores(:,1:2));

To make the PCR results easier to interpret in terms of the original spectral data, transform to
regression coefficients for the original, uncentered variables.

betaPCR = PCALoadings(:,1:2)*betaPCR;
betaPCR = [mean(y) - mean(X)*betaPCR; betaPCR];
yfitPCR = [ones(n,1) X]*betaPCR;

Plot fitted vs. observed response for the PLSR and PCR fits.

plot(y,yfitPLS,'bo',y,yfitPCR,'r^');
xlabel('Observed Response');
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ylabel('Fitted Response');
legend({'PLSR with 2 Components' 'PCR with 2 Components'},  ...
    'location','NW');

In a sense, the comparison in the plot above is not a fair one -- the number of components (two) was
chosen by looking at how well a two-component PLSR model predicted the response, and there's no
reason why the PCR model should be restricted to that same number of components. With the same
number of components, however, PLSR does a much better job at fitting y. In fact, looking at the
horizontal scatter of fitted values in the plot above, PCR with two components is hardly better than
using a constant model. The r-squared values from the two regressions confirm that.

TSS = sum((y-mean(y)).^2);
RSS_PLS = sum((y-yfitPLS).^2);
rsquaredPLS = 1 - RSS_PLS/TSS

rsquaredPLS = 0.9466

RSS_PCR = sum((y-yfitPCR).^2);
rsquaredPCR = 1 - RSS_PCR/TSS

rsquaredPCR = 0.1962

Another way to compare the predictive power of the two models is to plot the response variable
against the two predictors in both cases.

plot3(Xscores(:,1),Xscores(:,2),y-mean(y),'bo');
legend('PLSR');
grid on; view(-30,30);
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It's a little hard to see without being able to interactively rotate the figure, but the PLSR plot above
shows points closely scattered about a plane. On the other hand, the PCR plot below shows a cloud of
points with little indication of a linear relationship.

plot3(PCAScores(:,1),PCAScores(:,2),y-mean(y),'r^');
legend('PCR');
grid on; view(-30,30);
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Notice that while the two PLS components are much better predictors of the observed y, the
following figure shows that they explain somewhat less variance in the observed X than the first two
principal components used in the PCR.

plot(1:10,100*cumsum(PLSPctVar(1,:)),'b-o',1:10,  ...
    100*cumsum(PCAVar(1:10))/sum(PCAVar(1:10)),'r-^');
xlabel('Number of Principal Components');
ylabel('Percent Variance Explained in X');
legend({'PLSR' 'PCR'},'location','SE');
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The fact that the PCR curve is uniformly higher suggests why PCR with two components does such a
poor job, relative to PLSR, in fitting y. PCR constructs components to best explain X, and as a result,
those first two components ignore the information in the data that is important in fitting the observed
y.

Fitting with More Components

As more components are added in PCR, it will necessarily do a better job of fitting the original data y,
simply because at some point most of the important predictive information in X will be present in the
principal components. For example, the following figure shows that the difference in residuals for the
two methods is much less dramatic when using ten components than it was for two components.

yfitPLS10 = [ones(n,1) X]*betaPLS10;
betaPCR10 = regress(y-mean(y), PCAScores(:,1:10));
betaPCR10 = PCALoadings(:,1:10)*betaPCR10;
betaPCR10 = [mean(y) - mean(X)*betaPCR10; betaPCR10];
yfitPCR10 = [ones(n,1) X]*betaPCR10;
plot(y,yfitPLS10,'bo',y,yfitPCR10,'r^');
xlabel('Observed Response');
ylabel('Fitted Response');
legend({'PLSR with 10 components' 'PCR with 10 Components'},  ...
    'location','NW');
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Both models fit y fairly accurately, although PLSR still makes a slightly more accurate fit. However,
ten components is still an arbitrarily-chosen number for either model.

Choosing the Number of Components with Cross-Validation

It's often useful to choose the number of components to minimize the expected error when predicting
the response from future observations on the predictor variables. Simply using a large number of
components will do a good job in fitting the current observed data, but is a strategy that leads to
overfitting. Fitting the current data too well results in a model that does not generalize well to other
data, and gives an overly-optimistic estimate of the expected error.

Cross-validation is a more statistically sound method for choosing the number of components in
either PLSR or PCR. It avoids overfitting data by not reusing the same data to both fit a model and to
estimate prediction error. Thus, the estimate of prediction error is not optimistically biased
downwards.

plsregress has an option to estimate the mean squared prediction error (MSEP) by cross-
validation, in this case using 10-fold C-V.

[Xl,Yl,Xs,Ys,beta,pctVar,PLSmsep] = plsregress(X,y,10,'CV',10);

For PCR, crossval combined with a simple function to compute the sum of squared errors for PCR,
can estimate the MSEP, again using 10-fold cross-validation.

PCRmsep = sum(crossval(@pcrsse,X,y,'KFold',10),1) / n;
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The MSEP curve for PLSR indicates that two or three components does about as good a job as
possible. On the other hand, PCR needs four components to get the same prediction accuracy.

plot(0:10,PLSmsep(2,:),'b-o',0:10,PCRmsep,'r-^');
xlabel('Number of components');
ylabel('Estimated Mean Squared Prediction Error');
legend({'PLSR' 'PCR'},'location','NE');

In fact, the second component in PCR increases the prediction error of the model, suggesting that the
combination of predictor variables contained in that component is not strongly correlated with y.
Again, that's because PCR constructs components to explain variation in X, not y.

Model Parsimony

So if PCR requires four components to get the same prediction accuracy as PLSR with three
components, is the PLSR model more parsimonious? That depends on what aspect of the model you
consider.

The PLS weights are the linear combinations of the original variables that define the PLS
components, i.e., they describe how strongly each component in the PLSR depends on the original
variables, and in what direction.

[Xl,Yl,Xs,Ys,beta,pctVar,mse,stats] = plsregress(X,y,3);
plot(1:401,stats.W,'-');
xlabel('Variable');
ylabel('PLS Weight');
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legend({'1st Component' '2nd Component' '3rd Component'},  ...
    'location','NW');

Similarly, the PCA loadings describe how strongly each component in the PCR depends on the
original variables.

plot(1:401,PCALoadings(:,1:4),'-');
xlabel('Variable');
ylabel('PCA Loading');
legend({'1st Component' '2nd Component' '3rd Component'  ...
    '4th Component'},'location','NW');
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For either PLSR or PCR, it may be that each component can be given a physically meaningful
interpretation by inspecting which variables it weights most heavily. For instance, with these spectral
data it may be possible to interpret intensity peaks in terms of compounds present in the gasoline,
and then to observe that weights for a particular component pick out a small number of those
compounds. From that perspective, fewer components are simpler to interpret, and because PLSR
often requires fewer components to predict the response adequately, it leads to more parsimonious
models.

On the other hand, both PLSR and PCR result in one regression coefficient for each of the original
predictor variables, plus an intercept. In that sense, neither is more parsimonious, because
regardless of how many components are used, both models depend on all predictors. More concretely,
for these data, both models need 401 spectral intensity values in order to make a prediction.

However, the ultimate goal may to reduce the original set of variables to a smaller subset still able to
predict the response accurately. For example, it may be possible to use the PLS weights or the PCA
loadings to select only those variables that contribute most to each component. As shown earlier,
some components from a PCR model fit may serve primarily to describe the variation in the predictor
variables, and may include large weights for variables that are not strongly correlated with the
response. Thus, PCR can lead to retaining variables that are unnecessary for prediction.
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For the data used in this example, the difference in the number of components needed by PLSR and
PCR for accurate prediction is not great, and the PLS weights and PCA loadings seem to pick out the
same variables. That may not be true for other data.

See Also
pca | plsregress

Related Examples
• “Partial Least Squares” on page 11-128
• “Principal Component Analysis (PCA)” on page 16-66
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Generalized Linear Models

• “Multinomial Models for Nominal Responses” on page 12-2
• “Multinomial Models for Ordinal Responses” on page 12-4
• “Hierarchical Multinomial Models” on page 12-7
• “Generalized Linear Models” on page 12-9
• “Generalized Linear Model Workflow” on page 12-28
• “Lasso Regularization of Generalized Linear Models” on page 12-32
• “Regularize Poisson Regression” on page 12-34
• “Regularize Logistic Regression” on page 12-36
• “Regularize Wide Data in Parallel” on page 12-43
• “Generalized Linear Mixed-Effects Models” on page 12-48
• “Fit a Generalized Linear Mixed-Effects Model” on page 12-57
• “Fitting Data with Generalized Linear Models” on page 12-65
• “Train Generalized Additive Model for Binary Classification” on page 12-77
• “Train Generalized Additive Model for Regression” on page 12-86
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Multinomial Models for Nominal Responses
The outcome of a response variable might be one of a restricted set of possible values. If there are
only two possible outcomes, such as a yes or no answer to a question, these responses are called
binary responses. If there are multiple outcomes, then they are called polytomous responses. Some
examples include the degree of a disease (mild, medium, severe), preferred districts to live in a city,
and so on. When the response variable is nominal, there is no natural order among the response
variable categories. Nominal response models explain and predict the probability that an observation
is in each category of a categorical response variable.

A nominal response model is one of several natural extensions of the binary logit model and is also
called a multinomial logit model. The multinomial logit model explains the relative risk of being in
one category versus being in the reference category, k, using a linear combination of predictor
variables. Consequently, the probability of each outcome is expressed as a nonlinear function of p
predictor variables. The 'interactions','on' name-value pair argument in mnrfit corresponds
to this multinomial model with separate intercept and slopes among categories. mnrfit uses the
default logit link function for multinomial models. You cannot specify a different link function for
multinomial responses.

The multinomial logit model is

ln
π1
πk

= α1 + β11X1 + β12X2 +⋯+ β1pXp,

ln
π2
πk

= α2 + β21X1 + β22X2 +⋯+ β2pXp,

⋮

ln
πk− 1

πk
= α(k− 1) + β(k− 1)1X1 + β(k− 1)2X2 +⋯+ β(k− 1)pXp,

where πj = P(y = j) is the probability of an outcome being in category j, k is the number of response
categories, and p is the number of predictor variables. Theoretically, any category can be the
reference category, but mnrfit chooses the last one, k, as the reference category. Thus, mnrfit
assumes the coefficients of the kth category are zero. The total of j – 1 equations are solved
simultaneously to estimate the coefficients. mnrfit uses the iteratively weighted least squares
algorithm to find the maximum likelihood estimates.

The coefficients in the model express the effects of the predictor variables on the relative risk or the
log odds of being in category j versus the reference category, here k. For example, the coefficient β23
indicates that the probability of the response variable being in category 2 compared to the probability
of being in category k increases exp(β23) times for each unit increase in X3, given all else is held
constant. Or it indicates that the relative log odds of the response variable being category 2 versus in
category k increases β23 times with a one-unit increase in X3, given all else equal.

Based on the nominal response model, and the assumption that the coefficients for the last category
are zero, the probability of being in each category is

π j = P y = j = eαj + ∑
l = 1

p
βjlxl

1 + ∑
j = 1

k− 1
eαj + ∑

l = 1

p
βjlxl

, j = 1,⋯, k− 1.

The probability of the kth category becomes
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πk = P y = k = 1

1 + ∑
j = 1

k− 1
eαj + ∑

l = 1

p
βjlxl

,

which is simply equal to 1 – π1 – π2 – ... – πk–1.

After estimating the model coefficients using mnrfit, you can estimate the category probabilities or
the number in each category using mnrval (the default name-value pair is 'type','category').
This function accepts the coefficient estimates and the model statistics mnrfit returns and estimates
the categorical probabilities or the number in each category and their confidence bounds. You can
also specify the cumulative or conditional probabilities or numbers to estimate using the 'type'
name-value pair argument in mnrval.

References
[1] McCullagh, P., and J. A. Nelder. Generalized Linear Models. New York: Chapman & Hall, 1990.

[2] Long, J. S. Regression Models for Categorical and Limited Dependent Variables. Sage
Publications, 1997.

[3] Dobson, A. J., and A. G. Barnett. An Introduction to Generalized Linear Models. Chapman and
Hall/CRC. Taylor & Francis Group, 2008.

See Also
fitglm | mnrfit | mnrval | glmfit | glmval

More About
• “Multinomial Models for Ordinal Responses” on page 12-4
• “Hierarchical Multinomial Models” on page 12-7
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Multinomial Models for Ordinal Responses
The outcome of a response variable might be one of a restricted set of possible values. If there are
only two possible outcomes, such as male and female for gender, these responses are called binary
responses. If there are multiple outcomes, then they are called polytomous responses. Some
examples of polytomous responses include levels of a disease (mild, medium, severe), preferred
districts to live in a city, the species for a certain flower type, and so on. Sometimes there might be a
natural order among the response categories. These responses are called ordinal responses.

The ordering might be inherent in the category choices, such as an individual being not satisfied,
satisfied, or very satisfied with an online customer service. The ordering might also be introduced by
categorization of a latent (continuous) variable, such as in the case of an individual being in the low
risk, medium risk, or high risk group for developing a certain disease, based on a quantitative
medical measure such as blood pressure.

You can specify a multinomial regression model that uses the natural ordering among the response
categories. This ordinal model describes the relationship between the cumulative probabilities of the
categories and predictor variables.

Different link functions can describe this relationship with logit and probit being the most used.

• Logit: The default link function mnrfit uses for ordinal categories is the logit link function. This
models the log cumulative odds. The 'link','logit' name-value pair specifies this in mnrfit.
Log cumulative odds is the logarithm of the ratio of the probability that a response belongs to a
category with a value less than or equal to category j, P(y ≤ cj), and the probability that a response
belongs to a category with a value greater than category j, P(y >cj).

Ordinal models are usually based on the assumption that the effects of predictor variables are the
same for all categories on the logarithmic scale. That is, the model has different intercepts but
common slopes (coefficients) among categories. This model is called parallel regression or the
proportional odds model. It is the default for ordinal responses, and the 'interactions','off'
name-value pair specifies this model in mnrfit.

The proportional odds model is

ln
P(y ≤ c1)
P(y > c1) = ln

π1
π2 +⋯+ πk

= α1 + β1X1 + β2X2 +⋯+ βpXp,

ln
P(y ≤ c2)
P(y > c2) = ln

π1 + π2
π3 +⋯+ πk

= α2 + β1X1 + β2X2 +⋯+ βpXp,

⋮

ln
P(y ≤ ck− 1)
P(y > ck− 1) = ln

π1 + π2 +⋯+ πk− 1
πk

= αk− 1 + β1X1 + β2X2 +⋯+ βpXp,

where πj, j = 1, 2, ..., k, are the category probabilities.

For example, for a response variable with three categories, there are 3 – 1 = 2 equations as
follows:

ln
π1

π +2 π3
= α1 + β1X1 + β2X2 +⋯+ βpXp,

ln
π +1 π2

π3
= α2 + β1X1 + β2X2 +⋯+ βpXp .
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Under the proportional odds assumption, the partial effect of a predictor variable X is invariant to
the choice of the response variable category, j. For example, if there are three categories, then the
coefficients express the impact of a predictor variable on the relative risk or log odds of the
response value being in category 1 versus categories 2 or 3, or in category 1 or 2 versus category
3.

Thus, a unit change in variable X2 would mean a change in the cumulative odds of the response
value being in category 1 versus categories 2 or 3, or category 1 or 2 versus category 3 by a factor
of exp(β2), given all else equal.

You can alternatively fit a model with different intercept and slopes among the categories by using
the 'interactions','on' name-value pair argument. However, using this option for ordinal
models when the equal slopes model is true causes a loss of efficiency (you lose the advantage of
estimating fewer parameters).

• Probit: The 'link','probit' name-value pair argument uses the probit link function which is
based on a normally distributed latent variable assumption. For ordinal response variables this is
also called an ordered probit model. Consider the regression model that describes the relationship
of a latent variable y* of an ordinal process and a vector of predictor variables, X,

y* = βX + ε,

where the error term ε has a standard normal distribution. Suppose there is the following
relationship between the latent variable y* and the observed variable y:

y = c1 if α0 < y* ≤ α1,
y = c2 if α1 < y* ≤ α2,
⋮ ⋮

y = ck if αk− 1 < y* ≤ αk,

where α0 = – ∞ and αk = ∞. Then, the cumulative probability of y being in category j or one of
earlier categories, P(y ≤ cj), is equal to

P y ≤ c j = P y* < α j = P βX + ε < α j = P ε < α j− βX = Φ α j− βX ,

where Φ is standard normal cumulative distribution function. Thus,

Φ−1 P y ≤ c j = α j− βX,

where αj corresponds to the cut points of the latent variable and the intercept in the regression
model. This only holds under the assumptions of a normal latent variable and parallel regression.
More generally, for a response variable with k categories and multiple predictors, the ordered
probit model is

Φ−1 P y ≤ c1 = α1 + β1X1 +⋯+ βpXp,

Φ−1 P y ≤ c2 = α2 + β1X1 +⋯+ βpXp,
⋮ ⋮

Φ−1 P y ≤ ck− 1 = αk− 1 + β1X1 +⋯+ βpXp,

where P(y ≤ cj) = π1 + π2 + ... + πj.

The coefficients indicate the impact of a unit change in the predictor variable on the likelihood of
a state. A positive coefficient, β1, for example, indicates an increase in the underlying latent
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variable with an increase in the corresponding predictor variable, X1. Hence, it causes a decrease
in P(y ≤ c1) and an increase in P(y ≤ ck).

After estimating the model coefficients using mnrfit, you can estimate the cumulative probabilities
or the cumulative number in each category using mnrval with the 'type','cumulative' name-
value pair option. mnrval accepts the coefficient estimates and the model statistics mnrfit returns,
and estimates the categorical probabilities or the number in each category and their confidence
intervals. You can specify which category or conditional probabilities or numbers to estimate by
changing the value of the 'type' name-value pair argument.

References
[1] McCullagh, P., and J. A. Nelder. Generalized Linear Models. New York: Chapman & Hall, 1990.

[2] Long, J. S. Regression Models for Categorical and Limited Dependent Variables. Sage
Publications, 1997.

[3] Dobson, A. J., and A. G. Barnett. An Introduction to Generalized Linear Models. Chapman and
Hall/CRC. Taylor & Francis Group, 2008.

See Also
fitglm | mnrfit | mnrval | glmfit | glmval

More About
• “Multinomial Models for Nominal Responses” on page 12-2
• “Hierarchical Multinomial Models” on page 12-7

12 Generalized Linear Models

12-6



Hierarchical Multinomial Models
The outcome of a response variable might sometimes be one of a restricted set of possible values. If
there are only two possible outcomes, such as male and female for gender, these responses are called
binary responses. If there are multiple outcomes, then they are called polytomous responses. These
responses are usually qualitative rather than quantitative, such as preferred districts to live in a city,
the severity level of a disease, the species for a certain flower type, and so on. Polytomous responses
might also have categories which are not independent of each other. Instead the response happens in
a sequential manner, or one category is nested in the previous one. These types of responses are
called hierarchical, or sequential, or nested multinomial responses.

For example, if the response is the number of cigarettes a person smokes in a given day, the first level
is whether the person is a smoker or not. Given that he or she is a smoker, the number of cigarettes
he or she smokes can be from one to five or more than five a day. Given that it is more than 5, this
person might be smoking from 6 to 10 or more than 10 cigarettes a day, and so on. The risk group at
each level changes accordingly. At level one, the risk group is all of the individuals of interest (smoker
or not), say m. If out of m individuals, y1 of them are not smokers, then at level two, the risk group is
the number of all smoking individuals, m – y1. If y2 of these m – y1 individuals smoke from one to five
cigarettes a day, then at level three, the risk group is m – y1 – y2. So, at each level, the number of
people in that category becomes a conditional binomial observation.

The hierarchical multinomial regression models are extensions of binary regression models based on
conditional binary observations. The default is a model with different intercept and slopes
(coefficients) among categories, in which case mnrfit fits a sequence of conditional binomial models.
The 'interactions','on' name-value pair specifies this in mnrfit. The default link function is
logit and the 'link','logit' name-value pair specifies this model in mnrfit.

Suppose the probability that an individual is in category j given that he or she is not in the previous
categories is πj, and the cumulative probability that a response belongs to a category j or a previous
category is P(y ≤ cj). Then the hierarchical model with a logit link function and different slopes
assumption is

ln
π1

1− P y ≤ c1
= ln

π1
1− π1

= α1 + β11X1 + β12X2 +⋯+ β1pXp,

ln
π2

1− P y ≤ c2
= ln

π2
1− π1 + π2

= α2 + β21X2 + β22X2 +⋯+ β2pXp,

⋮

ln
πk− 1

1− P y ≤ ck− 1
= ln

πk− 1
1− π1 +⋯+ πk− 1

= αk− 1 + β(k− 1)1X1 + β(k− 1)2X2 +⋯+ β(k− 1)pXp .

For example, for a response variable with four sequential categories, there are 4 – 1 = 3 equations as
follows:

ln
π1

π +2 π +3 π4
= α1 + β11X1 + β12X2 +⋯+ β1pXp,

ln
π2

π +3 π4
= α2 + β21X1 + β22X2 +⋯+ β2pXp,

ln
π3
π4

= α3 + β31X1 + β32X2 +⋯+ β3pXp .
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The coefficients βij are interpreted within each level. For example, for the previous smoking example,
β12 shows the impact of X2 on the log odds of a person being a smoker versus a nonsmoker, provided
that everything else is held constant. Alternatively, β22 shows the impact of X2 on the log odds of a
person smoking one to five cigarettes versus more than five cigarettes a day, given that he or she is a
smoker, provided that everything else is held constant. Similarly, β23, shows the effect of X2 on the log
odds of a person smoking 6 to 10 cigarettes versus more than 10 cigarettes a day, given that he or
she smokes more than 5 cigarettes a day, provided that everything else is held constant.

You can specify other link functions for hierarchical models. The 'link','probit' name-value pair
argument uses the probit link function. With the separate slopes assumption, the model becomes

Φ−1 π1 = α1 + β11X1 +⋯+ β1pXp,

Φ−1 π2 = α2 + β21X1 +⋯+ β2pXp,
⋮ ⋮

Φ−1 πk = αk + βk1X1 +⋯+ βkpXp,

where πj is the conditional probability of being in category j, given that it is not in categories previous
to category j. And Φ-1(.) is the inverse of the standard normal cumulative distribution function.

After estimating the model coefficients using mnrfit, you can estimate the cumulative probabilities
or the cumulative number in each category using mnrval with the 'type','conditional' name-
value pair argument. The function mnrval accepts the coefficient estimates and the model statistics
mnrfit returns, and estimates the categorical probabilities or the number in each category and their
confidence bounds. You can specify which category or cumulative probabilities or numbers to
estimate by changing the value of the 'type' name-value pair argument in mnrval.

References
[1] McCullagh, P., and J. A. Nelder. Generalized Linear Models. New York: Chapman & Hall, 1990.

[2] Liao, T. F. Interpreting Probability Models: Logit, Probit, and Other Generalized Linear Models
Series: Quantitative Applications in the Social Sciences. Sage Publications, 1994.

See Also
fitglm | mnrfit | mnrval | glmfit | glmval

More About
• “Multinomial Models for Nominal Responses” on page 12-2
• “Multinomial Models for Ordinal Responses” on page 12-4
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Generalized Linear Models
In this section...
“What Are Generalized Linear Models?” on page 12-9
“Prepare Data” on page 12-9
“Choose Generalized Linear Model and Link Function” on page 12-11
“Choose Fitting Method and Model” on page 12-13
“Fit Model to Data” on page 12-15
“Examine Quality and Adjust the Fitted Model” on page 12-16
“Predict or Simulate Responses to New Data” on page 12-23
“Share Fitted Models” on page 12-26

What Are Generalized Linear Models?
Linear regression models describe a linear relationship between a response and one or more
predictive terms. Many times, however, a nonlinear relationship exists. “Nonlinear Regression” on
page 13-2 describes general nonlinear models. A special class of nonlinear models, called
generalized linear models, uses linear methods.

Recall that linear models have these characteristics:

• At each set of values for the predictors, the response has a normal distribution with mean μ.
• A coefficient vector b defines a linear combination Xb of the predictors X.
• The model is μ = Xb.

In generalized linear models, these characteristics are generalized as follows:

• At each set of values for the predictors, the response has a distribution that can be normal on
page B-125, binomial on page B-10, Poisson on page B-137, gamma on page B-48, or inverse
Gaussian on page B-76, with parameters including a mean μ.

• A coefficient vector b defines a linear combination Xb of the predictors X.
• A link function f defines the model as f(μ) = Xb.

Prepare Data
To begin fitting a regression, put your data into a form that fitting functions expect. All regression
techniques begin with input data in an array X and response data in a separate vector y, or input data
in a table or dataset array tbl and response data as a column in tbl. Each row of the input data
represents one observation. Each column represents one predictor (variable).

For a table or dataset array tbl, indicate the response variable with the 'ResponseVar' name-value
pair:

mdl = fitglm(tbl,'ResponseVar','BloodPressure');

The response variable is the last column by default.

You can use numeric categorical predictors. A categorical predictor is one that takes values from a
fixed set of possibilities.

 Generalized Linear Models
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• For a numeric array X, indicate the categorical predictors using the 'Categorical' name-value
pair. For example, to indicate that predictors 2 and 3 out of six are categorical:

mdl = fitglm(X,y,'Categorical',[2,3]);
% or equivalently
mdl = fitglm(X,y,'Categorical',logical([0 1 1 0 0 0]));

• For a table or dataset array tbl, fitting functions assume that these data types are categorical:

• Logical vector
• Categorical vector
• Character array
• String array

If you want to indicate that a numeric predictor is categorical, use the 'Categorical' name-
value pair.

Represent missing numeric data as NaN. To represent missing data for other data types, see “Missing
Group Values” on page 2-47.

• For a 'binomial' model with data matrix X, the response y can be:

• Binary column vector — Each entry represents success (1) or failure (0).
• Two-column matrix of integers — The first column is the number of successes in each

observation, the second column is the number of trials in that observation.
• For a 'binomial' model with table or dataset tbl:

• Use the ResponseVar name-value pair to specify the column of tbl that gives the number of
successes in each observation.

• Use the BinomialSize name-value pair to specify the column of tbl that gives the number of
trials in each observation.

Dataset Array for Input and Response Data

For example, to create a dataset array from an Excel spreadsheet:

ds = dataset('XLSFile','hospital.xls',...
    'ReadObsNames',true);

To create a dataset array from workspace variables:

load carsmall
ds = dataset(MPG,Weight);
ds.Year = ordinal(Model_Year);

Table for Input and Response Data

To create a table from workspace variables:

load carsmall
tbl = table(MPG,Weight);
tbl.Year = ordinal(Model_Year);

Numeric Matrix for Input Data, Numeric Vector for Response

For example, to create numeric arrays from workspace variables:
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load carsmall
X = [Weight Horsepower Cylinders Model_Year];
y = MPG;

To create numeric arrays from an Excel spreadsheet:

[X, Xnames] = xlsread('hospital.xls');
y = X(:,4); % response y is systolic pressure
X(:,4) = []; % remove y from the X matrix

Notice that the nonnumeric entries, such as sex, do not appear in X.

Choose Generalized Linear Model and Link Function
Often, your data suggests the distribution type of the generalized linear model.

Response Data Type Suggested Model Distribution Type
Any real number 'normal'
Any positive number 'gamma' or 'inverse gaussian'
Any nonnegative integer 'poisson'
Integer from 0 to n, where n is a fixed positive
value

'binomial'

Set the model distribution type with the Distribution name-value pair. After selecting your model
type, choose a link function to map between the mean µ and the linear predictor Xb.

Value Description
'comploglog' log(–log((1 – µ))) = Xb
'identity', default for the distribution
'normal'

µ = Xb

'log', default for the distribution
'poisson'

log(µ) = Xb

'logit', default for the distribution
'binomial'

log(µ/(1 – µ)) = Xb

'loglog' log(–log(µ)) = Xb
'probit' Φ–1(µ) = Xb, where Φ is the normal (Gaussian)

cumulative distribution function
'reciprocal', default for the
distribution 'gamma'

µ–1 = Xb

p (a number), default for the distribution
'inverse gaussian' (with p = –2)

µp = Xb
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Value Description
A cell array of the form {FL FD FI},
containing three function handles created
using @, which define the link (FL), the
derivative of the link (FD), and the inverse
link (FI). Or, a structure of function
handles with the field Link containing FL,
the field Derivative containing FD, and
the field Inverse containing FI.

User-specified link function (see “Custom Link Function”
on page 12-12)

The nondefault link functions are mainly useful for binomial models. These nondefault link functions
are 'comploglog', 'loglog', and 'probit'.

Custom Link Function

The link function defines the relationship f(µ) = Xb between the mean response µ and the linear
combination Xb = X*b of the predictors. You can choose one of the built-in link functions or define
your own by specifying the link function FL, its derivative FD, and its inverse FI:

• The link function FL calculates f(µ).
• The derivative of the link function FD calculates df(µ)/dµ.
• The inverse function FI calculates g(Xb) = µ.

You can specify a custom link function in either of two equivalent ways. Each way contains function
handles that accept a single array of values representing µ or Xb, and returns an array the same size.
The function handles are either in a cell array or a structure:

• Cell array of the form {FL FD FI}, containing three function handles, created using @, that
define the link (FL), the derivative of the link (FD), and the inverse link (FI).

• Structure s with three fields, each containing a function handle created using @:

• s.Link — Link function
• s.Derivative — Derivative of the link function
• s.Inverse — Inverse of the link function

For example, to fit a model using the 'probit' link function:

x = [2100 2300 2500 2700 2900 ...
     3100 3300 3500 3700 3900 4100 4300]';
n = [48 42 31 34 31 21 23 23 21 16 17 21]';
y = [1 2 0 3 8 8 14 17 19 15 17 21]';
g = fitglm(x,[y n],...
    'linear','distr','binomial','link','probit')

g = 

Generalized Linear regression model:
    probit(y) ~ 1 + x1
    Distribution = Binomial

Estimated Coefficients:
                   Estimate     SE            tStat     pValue    
    (Intercept)      -7.3628       0.66815    -11.02    3.0701e-28
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    x1             0.0023039    0.00021352     10.79    3.8274e-27

12 observations, 10 error degrees of freedom
Dispersion: 1
Chi^2-statistic vs. constant model: 241, p-value = 2.25e-54

You can perform the same fit using a custom link function that performs identically to the 'probit'
link function:

s = {@norminv,@(x)1./normpdf(norminv(x)),@normcdf};
g = fitglm(x,[y n],...
    'linear','distr','binomial','link',s)

g = 

Generalized Linear regression model:
    link(y) ~ 1 + x1
    Distribution = Binomial

Estimated Coefficients:
                   Estimate     SE            tStat     pValue    
    (Intercept)      -7.3628       0.66815    -11.02    3.0701e-28
    x1             0.0023039    0.00021352     10.79    3.8274e-27

12 observations, 10 error degrees of freedom
Dispersion: 1
Chi^2-statistic vs. constant model: 241, p-value = 2.25e-54

The two models are the same.

Equivalently, you can write s as a structure instead of a cell array of function handles:

s.Link = @norminv;
s.Derivative = @(x) 1./normpdf(norminv(x));
s.Inverse = @normcdf;
g = fitglm(x,[y n],...
    'linear','distr','binomial','link',s)

g = 

Generalized Linear regression model:
    link(y) ~ 1 + x1
    Distribution = Binomial

Estimated Coefficients:
                   Estimate     SE            tStat     pValue    
    (Intercept)      -7.3628       0.66815    -11.02    3.0701e-28
    x1             0.0023039    0.00021352     10.79    3.8274e-27

12 observations, 10 error degrees of freedom
Dispersion: 1
Chi^2-statistic vs. constant model: 241, p-value = 2.25e-54

Choose Fitting Method and Model
There are two ways to create a fitted model.
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• Use fitglm when you have a good idea of your generalized linear model, or when you want to
adjust your model later to include or exclude certain terms.

• Use stepwiseglm when you want to fit your model using stepwise regression. stepwiseglm
starts from one model, such as a constant, and adds or subtracts terms one at a time, choosing an
optimal term each time in a greedy fashion, until it cannot improve further. Use stepwise fitting to
find a good model, one that has only relevant terms.

The result depends on the starting model. Usually, starting with a constant model leads to a small
model. Starting with more terms can lead to a more complex model, but one that has lower mean
squared error.

In either case, provide a model to the fitting function (which is the starting model for stepwiseglm).

Specify a model using one of these methods.

• “Brief Model Name” on page 12-14
• “Terms Matrix” on page 12-14
• “Formula” on page 12-15

Brief Model Name

Name Model Type
'constant' Model contains only a constant (intercept) term.
'linear' Model contains an intercept and linear terms for each predictor.
'interactions' Model contains an intercept, linear terms, and all products of

pairs of distinct predictors (no squared terms).
'purequadratic' Model contains an intercept, linear terms, and squared terms.
'quadratic' Model contains an intercept, linear terms, interactions, and

squared terms.
'polyijk' Model is a polynomial with all terms up to degree i in the first

predictor, degree j in the second predictor, etc. Use numerals 0
through 9. For example, 'poly2111' has a constant plus all
linear and product terms, and also contains terms with predictor
1 squared.

Terms Matrix

A terms matrix T is a t-by-(p + 1) matrix specifying terms in a model, where t is the number of terms,
p is the number of predictor variables, and +1 accounts for the response variable. The value of
T(i,j) is the exponent of variable j in term i.

For example, suppose that an input includes three predictor variables x1, x2, and x3 and the
response variable y in the order x1, x2, x3, and y. Each row of T represents one term:

• [0 0 0 0] — Constant term or intercept
• [0 1 0 0] — x2; equivalently, x1^0 * x2^1 * x3^0
• [1 0 1 0] — x1*x3
• [2 0 0 0] — x1^2
• [0 1 2 0] — x2*(x3^2)
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The 0 at the end of each term represents the response variable. In general, a column vector of zeros
in a terms matrix represents the position of the response variable. If you have the predictor and
response variables in a matrix and column vector, then you must include 0 for the response variable
in the last column of each row.

Formula

A formula for a model specification is a character vector or string scalar of the form

'y ~ terms',

• y is the response name.
• terms contains

• Variable names
• + to include the next variable
• - to exclude the next variable
• : to define an interaction, a product of terms
• * to define an interaction and all lower-order terms
• ^ to raise the predictor to a power, exactly as in * repeated, so ^ includes lower order terms as

well
• () to group terms

Tip Formulas include a constant (intercept) term by default. To exclude a constant term from the
model, include -1 in the formula.

Examples:

'y ~ x1 + x2 + x3' is a three-variable linear model with intercept.
'y ~ x1 + x2 + x3 - 1' is a three-variable linear model without intercept.
'y ~ x1 + x2 + x3 + x2^2' is a three-variable model with intercept and a x2^2 term.
'y ~ x1 + x2^2 + x3' is the same as the previous example, since x2^2 includes a x2 term.
'y ~ x1 + x2 + x3 + x1:x2' includes an x1*x2 term.
'y ~ x1*x2 + x3' is the same as the previous example, since x1*x2 = x1 + x2 + x1:x2.
'y ~ x1*x2*x3 - x1:x2:x3' has all interactions among x1, x2, and x3, except the three-way
interaction.
'y ~ x1*(x2 + x3 + x4)' has all linear terms, plus products of x1 with each of the other
variables.

Fit Model to Data
Create a fitted model using fitglm or stepwiseglm. Choose between them as in “Choose Fitting
Method and Model” on page 12-13. For generalized linear models other than those with a normal
distribution, give a Distribution name-value pair as in “Choose Generalized Linear Model and Link
Function” on page 12-11. For example,

mdl = fitglm(X,y,'linear','Distribution','poisson')
% or
mdl = fitglm(X,y,'quadratic',...
         'Distribution','binomial')
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Examine Quality and Adjust the Fitted Model
After fitting a model, examine the result.

• “Model Display” on page 12-16
• “Diagnostic Plots” on page 12-17
• “Residuals — Model Quality for Training Data” on page 12-19
• “Plots to Understand Predictor Effects and How to Modify a Model” on page 12-21

Model Display

A linear regression model shows several diagnostics when you enter its name or enter disp(mdl).
This display gives some of the basic information to check whether the fitted model represents the
data adequately.

For example, fit a Poisson model to data constructed with two out of five predictors not affecting the
response, and with no intercept term:

rng('default') % for reproducibility
X = randn(100,5);
mu = exp(X(:,[1 4 5])*[.4;.2;.3]);
y = poissrnd(mu);
mdl = fitglm(X,y,...
    'linear','Distribution','poisson')

mdl = 

Generalized Linear regression model:
    log(y) ~ 1 + x1 + x2 + x3 + x4 + x5
    Distribution = Poisson

Estimated Coefficients:
                   Estimate     SE          tStat       pValue    
    (Intercept)     0.039829     0.10793     0.36901       0.71212
    x1               0.38551    0.076116      5.0647    4.0895e-07
    x2             -0.034905    0.086685    -0.40266        0.6872
    x3              -0.17826    0.093552     -1.9054      0.056722
    x4               0.21929     0.09357      2.3436      0.019097
    x5               0.28918      0.1094      2.6432     0.0082126

100 observations, 94 error degrees of freedom
Dispersion: 1
Chi^2-statistic vs. constant model: 44.9, p-value = 1.55e-08

Notice that:

• The display contains the estimated values of each coefficient in the Estimate column. These
values are reasonably near the true values [0;.4;0;0;.2;.3], except possibly the coefficient of
x3 is not terribly near 0.

• There is a standard error column for the coefficient estimates.
• The reported pValue (which are derived from the t statistics under the assumption of normal

errors) for predictors 1, 4, and 5 are small. These are the three predictors that were used to
create the response data y.
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• The pValue for (Intercept), x2 and x3 are larger than 0.01. These three predictors were not
used to create the response data y. The pValue for x3 is just over .05, so might be regarded as
possibly significant.

• The display contains the Chi-square statistic.

Diagnostic Plots

Diagnostic plots help you identify outliers, and see other problems in your model or fit. To illustrate
these plots, consider binomial regression with a logistic link function.

The logistic model is useful for proportion data. It defines the relationship between the proportion p
and the weight w by:

log[p/(1 – p)] = b1 + b2w

This example fits a binomial model to data. The data are derived from carbig.mat, which contains
measurements of large cars of various weights. Each weight in w has a corresponding number of cars
in total and a corresponding number of poor-mileage cars in poor.

It is reasonable to assume that the values of poor follow binomial on page B-10 distributions, with
the number of trials given by total and the percentage of successes depending on w. This
distribution can be accounted for in the context of a logistic model by using a generalized linear
model with link function log(µ/(1 – µ)) = Xb. This link function is called 'logit'.

w = [2100 2300 2500 2700 2900 3100 ...
     3300 3500 3700 3900 4100 4300]';
total = [48 42 31 34 31 21 23 23 21 16 17 21]';
poor = [1 2 0 3 8 8 14 17 19 15 17 21]';
mdl = fitglm(w,[poor total],...
    'linear','Distribution','binomial','link','logit')

mdl = 

Generalized Linear regression model:
    logit(y) ~ 1 + x1
    Distribution = Binomial

Estimated Coefficients:
                   Estimate     SE            tStat      pValue    
    (Intercept)       -13.38         1.394    -9.5986    8.1019e-22
    x1             0.0041812    0.00044258     9.4474    3.4739e-21

12 observations, 10 error degrees of freedom
Dispersion: 1
Chi^2-statistic vs. constant model: 242, p-value = 1.3e-54

See how well the model fits the data.

plotSlice(mdl)
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The fit looks reasonably good, with fairly wide confidence bounds.

To examine further details, create a leverage plot.

plotDiagnostics(mdl)

This is typical of a regression with points ordered by the predictor variable. The leverage of each
point on the fit is higher for points with relatively extreme predictor values (in either direction) and
low for points with average predictor values. In examples with multiple predictors and with points not
ordered by predictor value, this plot can help you identify which observations have high leverage
because they are outliers as measured by their predictor values.
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Residuals — Model Quality for Training Data

There are several residual plots to help you discover errors, outliers, or correlations in the model or
data. The simplest residual plots are the default histogram plot, which shows the range of the
residuals and their frequencies, and the probability plot, which shows how the distribution of the
residuals compares to a normal distribution with matched variance.

This example shows residual plots for a fitted Poisson model. The data construction has two out of
five predictors not affecting the response, and no intercept term:

rng('default') % for reproducibility
X = randn(100,5);
mu = exp(X(:,[1 4 5])*[2;1;.5]);
y = poissrnd(mu);
mdl = fitglm(X,y,...
    'linear','Distribution','poisson');

Examine the residuals:

plotResiduals(mdl)

While most residuals cluster near 0, there are several near ±18. So examine a different residuals plot.

plotResiduals(mdl,'fitted')
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The large residuals don’t seem to have much to do with the sizes of the fitted values.

Perhaps a probability plot is more informative.

plotResiduals(mdl,'probability')

Now it is clear. The residuals do not follow a normal distribution. Instead, they have fatter tails, much
as an underlying Poisson distribution.
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Plots to Understand Predictor Effects and How to Modify a Model

This example shows how to understand the effect each predictor has on a regression model, and how
to modify the model to remove unnecessary terms.

1 Create a model from some predictors in artificial data. The data do not use the second and third
columns in X. So you expect the model not to show much dependence on those predictors.

rng('default') % for reproducibility
X = randn(100,5);
mu = exp(X(:,[1 4 5])*[2;1;.5]);
y = poissrnd(mu);
mdl = fitglm(X,y,...
    'linear','Distribution','poisson');

2 Examine a slice plot of the responses. This displays the effect of each predictor separately.

plotSlice(mdl)

The scale of the first predictor is overwhelming the plot. Disable it using the Predictors menu.

 Generalized Linear Models

12-21



Now it is clear that predictors 2 and 3 have little to no effect.

You can drag the individual predictor values, which are represented by dashed blue vertical lines.
You can also choose between simultaneous and non-simultaneous confidence bounds, which are
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represented by dashed red curves. Dragging the predictor lines confirms that predictors 2 and 3
have little to no effect.

3 Remove the unnecessary predictors using either removeTerms or step. Using step can be
safer, in case there is an unexpected importance to a term that becomes apparent after removing
another term. However, sometimes removeTerms can be effective when step does not proceed.
In this case, the two give identical results.

mdl1 = removeTerms(mdl,'x2 + x3')

mdl1 = 

Generalized Linear regression model:
    log(y) ~ 1 + x1 + x4 + x5
    Distribution = Poisson

Estimated Coefficients:
                   Estimate    SE          tStat     pValue     
    (Intercept)    0.17604     0.062215    2.8295       0.004662
    x1              1.9122     0.024638    77.614              0
    x4             0.98521     0.026393    37.328    5.6696e-305
    x5             0.61321     0.038435    15.955     2.6473e-57

100 observations, 96 error degrees of freedom
Dispersion: 1
Chi^2-statistic vs. constant model: 4.97e+04, p-value = 0

mdl1 = step(mdl,'NSteps',5,'Upper','linear')

1. Removing x3, Deviance = 93.856, Chi2Stat = 0.00075551, PValue = 0.97807
2. Removing x2, Deviance = 96.333, Chi2Stat = 2.4769, PValue = 0.11553

mdl1 = 

Generalized Linear regression model:
    log(y) ~ 1 + x1 + x4 + x5
    Distribution = Poisson

Estimated Coefficients:
                   Estimate    SE          tStat     pValue     
    (Intercept)    0.17604     0.062215    2.8295       0.004662
    x1              1.9122     0.024638    77.614              0
    x4             0.98521     0.026393    37.328    5.6696e-305
    x5             0.61321     0.038435    15.955     2.6473e-57

100 observations, 96 error degrees of freedom
Dispersion: 1
Chi^2-statistic vs. constant model: 4.97e+04, p-value = 0

Predict or Simulate Responses to New Data
There are three ways to use a linear model to predict the response to new data:

• “predict” on page 12-24
• “feval” on page 12-24
• “random” on page 12-25
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predict

The predict method gives a prediction of the mean responses and, if requested, confidence bounds.

This example shows how to predict and obtain confidence intervals on the predictions using the
predict method.

1 Create a model from some predictors in artificial data. The data do not use the second and third
columns in X. So you expect the model not to show much dependence on these predictors.
Construct the model stepwise to include the relevant predictors automatically.

rng('default') % for reproducibility
X = randn(100,5);
mu = exp(X(:,[1 4 5])*[2;1;.5]);
y = poissrnd(mu);
mdl = stepwiseglm(X,y,...
    'constant','upper','linear','Distribution','poisson');

1. Adding x1, Deviance = 2515.02869, Chi2Stat = 47242.9622, PValue = 0
2. Adding x4, Deviance = 328.39679, Chi2Stat = 2186.6319, PValue = 0
3. Adding x5, Deviance = 96.3326, Chi2Stat = 232.0642, PValue = 2.114384e-52

2 Generate some new data, and evaluate the predictions from the data.

Xnew = randn(3,5) + repmat([1 2 3 4 5],[3,1]); % new data
[ynew,ynewci] = predict(mdl,Xnew)

ynew =

   1.0e+04 *

    0.1130
    1.7375
    3.7471

ynewci =

   1.0e+04 *

    0.0821    0.1555
    1.2167    2.4811
    2.8419    4.9407

feval

When you construct a model from a table or dataset array, feval is often more convenient for
predicting mean responses than predict. However, feval does not provide confidence bounds.

This example shows how to predict mean responses using the feval method.

1 Create a model from some predictors in artificial data. The data do not use the second and third
columns in X. So you expect the model not to show much dependence on these predictors.
Construct the model stepwise to include the relevant predictors automatically.

rng('default') % for reproducibility
X = randn(100,5);
mu = exp(X(:,[1 4 5])*[2;1;.5]);
y = poissrnd(mu);
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X = array2table(X); % create data table
y = array2table(y);
tbl = [X y];

mdl = stepwiseglm(tbl,...
    'constant','upper','linear','Distribution','poisson');

1. Adding x1, Deviance = 2515.02869, Chi2Stat = 47242.9622, PValue = 0
2. Adding x4, Deviance = 328.39679, Chi2Stat = 2186.6319, PValue = 0
3. Adding x5, Deviance = 96.3326, Chi2Stat = 232.0642, PValue = 2.114384e-52

2 Generate some new data, and evaluate the predictions from the data.

Xnew = randn(3,5) + repmat([1 2 3 4 5],[3,1]); % new data
ynew = feval(mdl,Xnew(:,1),Xnew(:,4),Xnew(:,5)) % only need predictors 1,4,5

ynew =

   1.0e+04 *

    0.1130
    1.7375
    3.7471

Equivalently,

ynew = feval(mdl,Xnew(:,[1 4 5])) % only need predictors 1,4,5

ynew =

   1.0e+04 *

    0.1130
    1.7375
    3.7471

random

The random method generates new random response values for specified predictor values. The
distribution of the response values is the distribution used in the model. random calculates the mean
of the distribution from the predictors, estimated coefficients, and link function. For distributions
such as normal, the model also provides an estimate of the variance of the response. For the binomial
and Poisson distributions, the variance of the response is determined by the mean; random does not
use a separate “dispersion” estimate.

This example shows how to simulate responses using the random method.

1 Create a model from some predictors in artificial data. The data do not use the second and third
columns in X. So you expect the model not to show much dependence on these predictors.
Construct the model stepwise to include the relevant predictors automatically.

rng('default') % for reproducibility
X = randn(100,5);
mu = exp(X(:,[1 4 5])*[2;1;.5]);
y = poissrnd(mu);
mdl = stepwiseglm(X,y,...
    'constant','upper','linear','Distribution','poisson');
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1. Adding x1, Deviance = 2515.02869, Chi2Stat = 47242.9622, PValue = 0
2. Adding x4, Deviance = 328.39679, Chi2Stat = 2186.6319, PValue = 0
3. Adding x5, Deviance = 96.3326, Chi2Stat = 232.0642, PValue = 2.114384e-52

2 Generate some new data, and evaluate the predictions from the data.

Xnew = randn(3,5) + repmat([1 2 3 4 5],[3,1]); % new data
ysim = random(mdl,Xnew)

ysim =

        1111
       17121
       37457

The predictions from random are Poisson samples, so are integers.
3 Evaluate the random method again, the result changes.

ysim = random(mdl,Xnew)

ysim =

        1175
       17320
       37126

Share Fitted Models
The model display contains enough information to enable someone else to recreate the model in a
theoretical sense. For example,

rng('default') % for reproducibility
X = randn(100,5);
mu = exp(X(:,[1 4 5])*[2;1;.5]);
y = poissrnd(mu);
mdl = stepwiseglm(X,y,...
    'constant','upper','linear','Distribution','poisson')

1. Adding x1, Deviance = 2515.02869, Chi2Stat = 47242.9622, PValue = 0
2. Adding x4, Deviance = 328.39679, Chi2Stat = 2186.6319, PValue = 0
3. Adding x5, Deviance = 96.3326, Chi2Stat = 232.0642, PValue = 2.114384e-52

mdl = 

Generalized Linear regression model:
    log(y) ~ 1 + x1 + x4 + x5
    Distribution = Poisson

Estimated Coefficients:
                   Estimate    SE          tStat     pValue     
    (Intercept)    0.17604     0.062215    2.8295       0.004662
    x1              1.9122     0.024638    77.614              0
    x4             0.98521     0.026393    37.328    5.6696e-305
    x5             0.61321     0.038435    15.955     2.6473e-57

100 observations, 96 error degrees of freedom
Dispersion: 1
Chi^2-statistic vs. constant model: 4.97e+04, p-value = 0

You can access the model description programmatically, too. For example,

mdl.Coefficients.Estimate
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ans =

    0.1760
    1.9122
    0.9852
    0.6132

mdl.Formula

ans = 

log(y) ~ 1 + x1 + x4 + x5
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Generalized Linear Model Workflow

This example shows how to fit a generalized linear model and analyze the results. A typical workflow
involves these steps: import data, fit a generalized linear model, test its quality, modify the model to
improve its quality, and make predictions based on the model. In this example, you use the Fisher iris
data to compute the probability that a flower is in one of two classes.

Load Data

Load the Fisher iris data.

load fisheriris

Extract rows 51 to 150, which have the classification versicolor or virginica.

X = meas(51:end,:);

Create logical response variables that are true for versicolor and false for virginica.

y = strcmp('versicolor',species(51:end));

Fit Generalized Linear Model

Fit a binomial generalized linear model to the data.

mdl = fitglm(X,y,'linear','Distribution','binomial')

mdl = 
Generalized linear regression model:
    logit(y) ~ 1 + x1 + x2 + x3 + x4
    Distribution = Binomial

Estimated Coefficients:
                   Estimate      SE       tStat      pValue 
                   ________    ______    _______    ________

    (Intercept)     42.638     25.708     1.6586    0.097204
    x1              2.4652     2.3943     1.0296     0.30319
    x2              6.6809     4.4796     1.4914     0.13585
    x3             -9.4294     4.7372    -1.9905    0.046537
    x4             -18.286     9.7426    -1.8769    0.060529

100 observations, 95 error degrees of freedom
Dispersion: 1
Chi^2-statistic vs. constant model: 127, p-value = 1.95e-26

According to the model display, some p-values in the pValue column are not small, which implies that
you can simplify the model.

Examine and Improve Model

Determine if 95% confidence intervals for the coefficients include 0. If so, you can remove the model
terms with those intervals.

confint = coefCI(mdl)
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confint = 5×2

   -8.3984   93.6740
   -2.2881    7.2185
   -2.2122   15.5739
  -18.8339   -0.0248
  -37.6277    1.0554

Only the fourth predictor x3 has a coefficient whose confidence interval does not include 0.

The coefficients of x1 and x2 have large p-values and their 95% confidence intervals include 0. Test
whether both coefficients can be zero. Specify a hypothesis matrix to select the coefficients of x1 and
x2.

M = [0 1 0 0 0     
     0 0 1 0 0];   
p = coefTest(mdl,M)

p = 0.1442

The p-value is approximately 0.14, which is not small. Remove x1 and x2 from the model.

mdl1 = removeTerms(mdl,'x1 + x2')

mdl1 = 
Generalized linear regression model:
    logit(y) ~ 1 + x3 + x4
    Distribution = Binomial

Estimated Coefficients:
                   Estimate      SE       tStat       pValue  
                   ________    ______    _______    __________

    (Intercept)     45.272     13.612      3.326    0.00088103
    x3             -5.7545     2.3059    -2.4956      0.012576
    x4             -10.447     3.7557    -2.7816     0.0054092

100 observations, 97 error degrees of freedom
Dispersion: 1
Chi^2-statistic vs. constant model: 118, p-value = 2.3e-26

Alternatively, you can identify important predictors using stepwiseglm.

mdl2 = stepwiseglm(X,y,'constant','Distribution','binomial','Upper','linear')

1. Adding x4, Deviance = 33.4208, Chi2Stat = 105.2086, PValue = 1.099298e-24
2. Adding x3, Deviance = 20.5635, Chi2Stat = 12.8573, PValue = 0.000336166
3. Adding x2, Deviance = 13.2658, Chi2Stat = 7.29767, PValue = 0.00690441

mdl2 = 
Generalized linear regression model:
    logit(y) ~ 1 + x2 + x3 + x4
    Distribution = Binomial

Estimated Coefficients:
                   Estimate      SE       tStat      pValue 
                   ________    ______    _______    ________
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    (Intercept)     50.527     23.995     2.1057    0.035227
    x2              8.3761     4.7612     1.7592    0.078536
    x3             -7.8745     3.8407    -2.0503    0.040334
    x4              -21.43     10.707    -2.0014     0.04535

100 observations, 96 error degrees of freedom
Dispersion: 1
Chi^2-statistic vs. constant model: 125, p-value = 5.4e-27

The p-value (pValue) for x2 in the coefficient table is greater than 0.05, but stepwiseglm includes
x2 in the model because the p-value (PValue) for adding x2 is smaller than 0.05. The stepwiseglm
function computes PValue using the fits with and without x2, whereas the function computes
pValue based on an approximate standard error computed only from the final model. Therefore,
PValue is more reliable than pValue.

Identify Outliers

Examine a leverage plot to look for influential outliers.

plotDiagnostics(mdl2,'leverage')

An observation can be considered an outlier if its leverage substantially exceeds p/n, where p is the
number of coefficients and n is the number of observations. The dotted reference line is a
recommended threshold, computed by 2*p/n, which corresponds to 0.08 in this plot. Some
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observations have leverage values larger than 10*p/n (that is, 0.40). Identify these observation
points.

idxOutliers = find(mdl2.Diagnostics.Leverage > 10*mdl2.NumCoefficients/mdl2.NumObservations)

idxOutliers = 4×1

    19
    21
    57
    85

See if the model coefficients change when you fit a model excluding these points.

oldCoeffs = mdl2.Coefficients.Estimate;
mdl3 = fitglm(X,y,'linear','Distribution','binomial', ...
    'PredictorVars',2:4,'Exclude',idxOutliers);
newCoeffs = mdl3.Coefficients.Estimate;
disp([oldCoeffs newCoeffs])

   50.5268   44.0085
    8.3761    5.6361
   -7.8745   -6.1145
  -21.4296  -18.1236

The model coefficients in mdl3 are different from those in mdl2. This result implies that the
responses at the high-leverage points are not consistent with the predicted values from the reduced
model.

Predict Probability of Being Versicolor

Use mdl3 to predict the probability that a flower with average measurements is versicolor. Generate
confidence intervals for the prediction.

[newf,newc] = predict(mdl3,mean(X))

newf = 0.4558

newc = 1×2

    0.1234    0.8329

The model gives almost a 46% probability that the average flower is versicolor, with a wide
confidence interval.

See Also
fitglm | stepwiseglm | GeneralizedLinearModel | predict | removeTerms | coefCI |
plotDiagnostics

More About
• “Generalized Linear Models” on page 12-9
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Lasso Regularization of Generalized Linear Models
In this section...
“What is Generalized Linear Model Lasso Regularization?” on page 12-32
“Generalized Linear Model Lasso and Elastic Net” on page 12-32
“References” on page 12-33

What is Generalized Linear Model Lasso Regularization?
Lasso is a regularization technique. Use lassoglm to:

• Reduce the number of predictors in a generalized linear model.
• Identify important predictors.
• Select among redundant predictors.
• Produce shrinkage estimates with potentially lower predictive errors than ordinary least squares.

Elastic net is a related technique. Use it when you have several highly correlated variables.
lassoglm provides elastic net regularization when you set the Alpha name-value pair to a number
strictly between 0 and 1.

For details about lasso and elastic net computations and algorithms, see “Generalized Linear Model
Lasso and Elastic Net” on page 12-32. For a discussion of generalized linear models, see “What Are
Generalized Linear Models?” on page 12-9.

Generalized Linear Model Lasso and Elastic Net
Overview of Lasso and Elastic Net

Lasso is a regularization technique for estimating generalized linear models. Lasso includes a penalty
term that constrains the size of the estimated coefficients. Therefore, it resembles “Ridge
Regression” on page 11-111. Lasso is a shrinkage estimator: it generates coefficient estimates that
are biased to be small. Nevertheless, a lasso estimator can have smaller error than an ordinary
maximum likelihood estimator when you apply it to new data.

Unlike ridge regression, as the penalty term increases, the lasso technique sets more coefficients to
zero. This means that the lasso estimator is a smaller model, with fewer predictors. As such, lasso is
an alternative to stepwise regression on page 11-101 and other model selection and dimensionality
reduction techniques.

Elastic net is a related technique. Elastic net is akin to a hybrid of ridge regression and lasso
regularization. Like lasso, elastic net can generate reduced models by generating zero-valued
coefficients. Empirical studies suggest that the elastic net technique can outperform lasso on data
with highly correlated predictors.

Definition of Lasso for Generalized Linear Models

For a nonnegative value of λ, lassoglm solves the problem

min
β0, β

1
NDeviance β0, β + λ ∑

j = 1

p
β j .
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• The function Deviance in this equation is the deviance of the model fit to the responses using the
intercept β0 and the predictor coefficients β. The formula for Deviance depends on the distr
parameter you supply to lassoglm. Minimizing the λ-penalized deviance is equivalent to
maximizing the λ-penalized loglikelihood.

• N is the number of observations.
• λ is a nonnegative regularization parameter corresponding to one value of Lambda.
• The parameters β0 and β are a scalar and a vector of length p, respectively.

As λ increases, the number of nonzero components of β decreases.

The lasso problem involves the L1 norm of β, as contrasted with the elastic net algorithm.

Definition of Elastic Net for Generalized Linear Models

For α strictly between 0 and 1, and nonnegative λ, elastic net solves the problem

min
β0, β

1
NDeviance β0, β + λPα β ,

where

Pα β = (1− α)
2 β 2

2 + α β 1 = ∑
j = 1

p (1− α)
2 β j

2 + α β j .

Elastic net is the same as lasso when α = 1. For other values of α, the penalty term Pα(β) interpolates
between the L1 norm of β and the squared L2 norm of β. As α shrinks toward 0, elastic net approaches
ridge regression.
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Regularize Poisson Regression

This example shows how to identify and remove redundant predictors from a generalized linear
model.

Create data with 20 predictors, and Poisson responses using just three of the predictors, plus a
constant.

rng('default') % for reproducibility
X = randn(100,20);
mu = exp(X(:,[5 10 15])*[.4;.2;.3] + 1);
y = poissrnd(mu);

Construct a cross-validated lasso regularization of a Poisson regression model of the data.

[B,FitInfo] = lassoglm(X,y,'poisson','CV',10);

Examine the cross-validation plot to see the effect of the Lambda regularization parameter.

lassoPlot(B,FitInfo,'plottype','CV');    
legend('show') % show legend

The green circle and dashed line locate the Lambda with minimal cross-validation error. The blue
circle and dashed line locate the point with minimal cross-validation error plus one standard
deviation.
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Find the nonzero model coefficients corresponding to the two identified points.

minpts = find(B(:,FitInfo.IndexMinDeviance))

minpts = 7×1

     3
     5
     6
    10
    11
    15
    16

min1pts = find(B(:,FitInfo.Index1SE))

min1pts = 3×1

     5
    10
    15

The coefficients from the minimal plus one standard error point are exactly those coefficients used to
create the data.

Find the values of the model coefficients at the minimal plus one standard error point.

B(min1pts,FitInfo.Index1SE)

ans = 3×1

    0.2903
    0.0789
    0.2081

The values of the coefficients are, as expected, smaller than the original [0.4,0.2,0.3]. Lasso
works by "shrinkage," which biases predictor coefficients toward zero.

The constant term is in the FitInfo.Intercept vector.

FitInfo.Intercept(FitInfo.Index1SE)

ans = 1.0879

The constant term is near 1, which is the value used to generate the data.
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Regularize Logistic Regression

This example shows how to regularize binomial regression. The default (canonical) link function for
binomial regression is the logistic function.

Step 1. Prepare the data.

Load the ionosphere data. The response Y is a cell array of 'g' or 'b' characters. Convert the cells
to logical values, with true representing 'g'. Remove the first two columns of X because they have
some awkward statistical properties, which are beyond the scope of this discussion.

load ionosphere
Ybool = strcmp(Y,'g');
X = X(:,3:end);

Step 2. Create a cross-validated fit.

Construct a regularized binomial regression using 25 Lambda values and 10-fold cross validation.
This process can take a few minutes.

rng('default') % for reproducibility
[B,FitInfo] = lassoglm(X,Ybool,'binomial',...
    'NumLambda',25,'CV',10);

Step 3. Examine plots to find appropriate regularization.

lassoPlot can give both a standard trace plot and a cross-validated deviance plot. Examine both
plots.

lassoPlot(B,FitInfo,'PlotType','CV');
legend('show','Location','best') % show legend
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The plot identifies the minimum-deviance point with a green circle and dashed line as a function of
the regularization parameter Lambda. The blue circled point has minimum deviance plus no more
than one standard deviation.

lassoPlot(B,FitInfo,'PlotType','Lambda','XScale','log');
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The trace plot shows nonzero model coefficients as a function of the regularization parameter
Lambda. Because there are 32 predictors and a linear model, there are 32 curves. As Lambda
increases to the left, lassoglm sets various coefficients to zero, removing them from the model.

The trace plot is somewhat compressed. Zoom in to see more detail.

xlim([.01 .1])
ylim([-3 3])
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As Lambda increases toward the left side of the plot, fewer nonzero coefficients remain.

Find the number of nonzero model coefficients at the Lambda value with minimum deviance plus one
standard deviation point. The regularized model coefficients are in column FitInfo.Index1SE of
the B matrix.

indx = FitInfo.Index1SE;
B0 = B(:,indx);
nonzeros = sum(B0 ~= 0)

nonzeros =

    14

When you set Lambda to FitInfo.Index1SE, lassoglm removes over half of the 32 original
predictors.

Step 4. Create a regularized model.

The constant term is in the FitInfo.Index1SE entry of the FitInfo.Intercept vector. Call that
value cnst.

The model is logit(mu) = log(mu/(1 - mu)) = X*B0 + cnst . Therefore, for predictions, mu =
exp(X*B0 + cnst)/(1+exp(x*B0 + cnst)).
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The glmval function evaluates model predictions. It assumes that the first model coefficient relates
to the constant term. Therefore, create a coefficient vector with the constant term first.

cnst = FitInfo.Intercept(indx);
B1 = [cnst;B0];

Step 5. Examine residuals.

Plot the training data against the model predictions for the regularized lassoglm model.

preds = glmval(B1,X,'logit');
histogram(Ybool - preds) % plot residuals
title('Residuals from lassoglm model')

Step 6. Alternative: Use identified predictors in a least-squares generalized linear model.

Instead of using the biased predictions from the model, you can make an unbiased model using just
the identified predictors.

predictors = find(B0); % indices of nonzero predictors
mdl = fitglm(X,Ybool,'linear',...
    'Distribution','binomial','PredictorVars',predictors)

mdl = 

Generalized linear regression model:
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    y ~ [Linear formula with 15 terms in 14 predictors]
    Distribution = Binomial

Estimated Coefficients:
                   Estimate       SE        tStat        pValue  
                   _________    _______    ________    __________

    (Intercept)      -2.9367    0.50926     -5.7666    8.0893e-09
    x1                 2.492    0.60795       4.099    4.1502e-05
    x3                2.5501    0.63304      4.0284     5.616e-05
    x4               0.48816    0.50336      0.9698       0.33215
    x5                0.6158    0.62192     0.99015        0.3221
    x6                 2.294     0.5421      4.2317    2.3198e-05
    x7               0.77842    0.57765      1.3476        0.1778
    x12               1.7808    0.54316      3.2786     0.0010432
    x16            -0.070993    0.50515    -0.14054       0.88823
    x20              -2.7767    0.55131     -5.0365    4.7402e-07
    x24               2.0212    0.57639      3.5067    0.00045372
    x25              -2.3796    0.58274     -4.0835    4.4363e-05
    x27              0.79564    0.55904      1.4232       0.15467
    x29               1.2689    0.55468      2.2876      0.022162
    x32              -1.5681    0.54336     -2.8859     0.0039035

351 observations, 336 error degrees of freedom
Dispersion: 1
Chi^2-statistic vs. constant model: 262, p-value = 1e-47

Plot the residuals of the model.

plotResiduals(mdl)
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As expected, residuals from the least-squares model are slightly smaller than those of the regularized
model. However, this does not mean that mdl is a better predictor for new data.
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Regularize Wide Data in Parallel

This example shows how to regularize a model with many more predictors than observations. Wide
data is data with more predictors than observations. Typically, with wide data you want to identify
important predictors. Use lassoglm as an exploratory or screening tool to select a smaller set of
variables to prioritize your modeling and research. Use parallel computing to speed up cross
validation.

Load the ovariancancer data. This data has 216 observations and 4000 predictors in the obs
workspace variable. The responses are binary, either 'Cancer' or 'Normal', in the grp workspace
variable. Convert the responses to binary for use in lassoglm.

load ovariancancer
y = strcmp(grp,'Cancer');

Set options to use parallel computing. Prepare to compute in parallel using parpool.

opt = statset('UseParallel',true);
parpool()

Starting parallel pool (parpool) using the 'local' profile ...
Connected to the parallel pool (number of workers: 6).

ans = 

 ProcessPool with properties: 

            Connected: true
           NumWorkers: 6
              Cluster: local
        AttachedFiles: {}
    AutoAddClientPath: true
          IdleTimeout: 30 minutes (30 minutes remaining)
          SpmdEnabled: true

Fit a cross-validated set of regularized models. Use the Alpha parameter to favor retaining groups of
highly correlated predictors, as opposed to eliminating all but one member of the group. Commonly,
you use a relatively large value of Alpha.

rng('default') % For reproducibility
tic
[B,S] = lassoglm(obs,y,'binomial','NumLambda',100, ...
  'Alpha',0.9,'LambdaRatio',1e-4,'CV',10,'Options',opt);
toc

Elapsed time is 90.892114 seconds.

Examine cross-validation plot.

lassoPlot(B,S,'PlotType','CV');     
legend('show') % Show legend
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Examine trace plot.

lassoPlot(B,S,'PlotType','Lambda','XScale','log')
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The right (green) vertical dashed line represents the Lambda providing the smallest cross-validated
deviance. The left (blue) dashed line has the minimal deviance plus no more than one standard
deviation. This blue line has many fewer predictors:

[S.DF(S.Index1SE) S.DF(S.IndexMinDeviance)]

ans = 1×2

    50    89

You asked lassoglm to fit using 100 different Lambda values. How many did it use?

size(B)

ans = 1×2

        4000          84

lassoglm stopped after 84 values because the deviance was too small for small Lambda values. To
avoid overfitting, lassoglm halts when the deviance of the fitted model is too small compared to the
deviance in the binary responses, ignoring the predictor variables.

You can force lassoglm to include more terms by using the 'Lambda' name-value pair argument.
For example, define a set of Lambda values that additionally includes three values smaller than the
values in S.Lambda.
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minLambda = min(S.Lambda);
explicitLambda = [minLambda*[.1 .01 .001] S.Lambda];

Specify 'Lambda',explicitLambda when you call the lassoglm function. lassoglm halts when
the deviance of the fitted model is too small, even though you explicitly provide a set of Lambda
values.

To save time, you can use:

• Fewer Lambda, meaning fewer fits
• Fewer cross-validation folds
• A larger value for LambdaRatio

Use serial computation and all three of these time-saving methods:

tic
[Bquick,Squick] = lassoglm(obs,y,'binomial','NumLambda',25,...
    'LambdaRatio',1e-2,'CV',5);
toc

Elapsed time is 16.517331 seconds.

Graphically compare the new results to the first results.

lassoPlot(Bquick,Squick,'PlotType','CV');     
legend('show') % Show legend
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lassoPlot(Bquick,Squick,'PlotType','Lambda','XScale','log')

The number of nonzero coefficients in the lowest plus one standard deviation model is around 50,
similar to the first computation.
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Generalized Linear Mixed-Effects Models

In this section...
“What Are Generalized Linear Mixed-Effects Models?” on page 12-48
“GLME Model Equations” on page 12-48
“Prepare Data for Model Fitting” on page 12-49
“Choose a Distribution Type for the Model” on page 12-50
“Choose a Link Function for the Model” on page 12-50
“Specify the Model Formula” on page 12-51
“Display the Model” on page 12-53
“Work with the Model” on page 12-55

What Are Generalized Linear Mixed-Effects Models?
Generalized linear mixed-effects (GLME) models describe the relationship between a response
variable and independent variables using coefficients that can vary with respect to one or more
grouping variables, for data with a response variable distribution other than normal. You can think of
GLME models as extensions of generalized linear models on page 12-9 (GLM) for data that are
collected and summarized in groups. Alternatively, you can think of GLME models as a generalization
of linear mixed-effects models on page 11-133 (LME) for data where the response variable is not
normally distributed.

A mixed-effects model consists of fixed-effects and random-effects terms. Fixed-effects terms are
usually the conventional linear regression part of the model. Random-effects terms are associated
with individual experimental units drawn at random from a population, and account for variations
between groups that might affect the response. The random effects have prior distributions, whereas
the fixed effects do not.

GLME Model Equations
The standard form of a generalized linear mixed-effects model is

yi b ∼ Distr μi,
σ2

wi

g μ = Xβ + Zb + δ ,

where

• y is an n-by-1 response vector, and yi is its ith element.
• b is the random-effects vector.
• Distr is a specified conditional distribution of y given b.
• μ is the conditional mean of y given b, and μi is its ith element.
• σ2 is the dispersion parameter.
• w is the effective observation weight vector, and wi is the weight for observation i.
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• For a binomial distribution, the effective observation weight is equal to the prior weight
specified using the 'Weights' name-value pair argument in fitglme, multiplied by the
binomial size specified using the 'BinomialSize' name-value pair argument.

• For all other distributions, the effective observation weight is equal to the prior weight
specified using the 'Weights' name-value pair argument in fitglme.

• g(μ) is a link function that defines the relationship between the mean response μ and the linear
combination of the predictors.

• X is an n-by-p fixed-effects design matrix.
• β is a p-by-1 fixed-effects vector.
• Z is an n-by-q random-effects design matrix.
• b is a q-by-1 random-effects vector.
• δ is a model offset vector.

The model for the mean response μ is

μ = g−1 η ,

where g-1 is inverse of the link function g(μ), and η ME is the linear predictor of the fixed and random
effects of the generalized linear mixed-effects model

η = Xβ + Zb + δ .

A GLME model is parameterized by β, θ, and σ2.

The assumptions for generalized linear mixed-effects models are:

• The random effects vector b has the prior distribution:

b σ2, θ ∼ N 0, σ2D θ ,

where σ2 is the dispersion parameter, and D is a symmetric and positive semidefinite matrix
parameterized by an unconstrained parameter vector θ.

• The observations yi are conditionally independent given b.

Prepare Data for Model Fitting
To fit a GLME model to your data, use fitglme. Format your input data using the table data type.
Each row of the table represents one observation, and each column represents one predictor
variable. For more information on creating and using table, see “Create Tables and Assign Data to
Them”.

Input data can include continuous and grouping variables. fitglme assumes that predictors using
the following data types are categorical:

• Logical
• Categorical
• Character vector or character array
• String array
• Cell array of character vectors
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If the input data table contains any NaN values, then fitglme excludes that entire row of data from
the fit. To exclude additional rows of data, you can use the 'Exclude' name-value pair argument of
fitglme when fitting the model.

Choose a Distribution Type for the Model
GLME models are used when the response data does not follow a normal distribution. Therefore,
when fitting a model using fitglme, you must specify the response distribution type using the
'Distribution' name-value pair argument. Often, the type of response data suggests the
appropriate distribution type for the model.

Type of Response Data Suggested Response Distribution Type
Any real number 'Normal'
Any positive number 'Gamma' or 'InverseGaussian'
Any nonnegative integer 'Poisson'
Integer from 0 to n, where n is a fixed positive
value

'Binomial'

Choose a Link Function for the Model
GLME models use a link function, g, to map the relationship between the mean response and the
linear combination of the predictors. By default, fitglme uses a predefined, commonly accepted link
function based on the specified distribution of the response data, as shown in the following table.
However, you can specify a different link function from the list of predefined functions, or define your
own, using the 'Link' name-value pair argument of fitglme.

Value Description
'comploglog' g(mu) = log(-log(1-mu))
'identity' g(mu) = mu

Canonical link for the normal distribution.
'log' g(mu) = log(mu)

Canonical link for the Poisson distribution.
'logit' g(mu) = log(mu/(1-mu))

Canonical link for the binomial distribution.
'loglog' g(mu) = log(-log(mu))
'probit' g(mu) = norminv(mu)
'reciprocal' g(mu) = mu.^(-1)
Scalar value P g(mu) = mu.^P
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Value Description
Structure S A structure containing four fields whose values

are function handles:

• S.Link — Link function
• S.Derivative — Derivative
• S.SecondDerivative — Second derivative
• S.Inverse — Inverse of link

If 'FitMethod' is 'MPL' or 'REMPL', or if S
represents a canonical link for the specified
distribution, you can omit the specification of
S.SecondDerivative.

When fitting a model to data, fitglme uses the canonical link function by default.

Distribution Default Link Function
'Normal' 'identity'
'Binomial' 'logit'
'Poisson' 'log'
'Gamma' -1
'InverseGaussian' -2

The link functions 'comploglog', 'loglog', and 'probit' are mainly useful for binomial models.

Specify the Model Formula
Model specification for fitglme uses Wilkinson notation, which is a character vector or string scalar
of the form 'y ~ terms', where y is the response variable name, and terms is written in the
following notation.

Wilkinson Notation Factors in Standard Notation
1 Constant (intercept) term
X^k, where k is a positive integer X, X2, ..., Xk

X1 + X2 X1, X2
X1*X2 X1, X2, X1.*X2 (element-wise

multiplication of X1 and X2)
X1:X2 X1.*X2 only
- X2 Do not include X2
X1*X2 + X3 X1, X2, X3, X1*X2
X1 + X2 + X3 + X1:X2 X1, X2, X3, X1*X2
X1*X2*X3 - X1:X2:X3 X1, X2, X3, X1*X2, X1*X3, X2*X3
X1*(X2 + X3) X1, X2, X3, X1*X2, X1*X3

Formulas include a constant (intercept) term by default. To exclude a constant term from the model,
include –1 in the formula.
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For generalized linear mixed-effects models, the formula specification is of the form 'y ~ fixed +
(random1|grouping1) + ... + (randomR|groupingR)', where fixed and random contain
the fixed-effects and the random-effects terms, respectively.

Suppose the input data table contains the following:

• A response variable, y
• Predictor variables, X1, X2, ..., XJ, where J is the total number of predictor variables (including

continuous and grouping variables).
• Grouping variables, g1, g2, ..., gR, where R is the number of grouping variables.

The grouping variables in XJ and gR can be categorical, logical, character arrays, string arrays, or
cell arrays of character vectors.

Then, in a formula of the form 'y ~ fixed + (random1|g1) + ... + (randomR|gR)', the
term fixed corresponds to a specification of the fixed-effects design matrix X, random1 is a
specification of the random-effects design matrix Z1 corresponding to grouping variable g1, and
similarly randomR is a specification of the random-effects design matrix ZR corresponding to
grouping variable gR. You can express the fixed and random terms using Wilkinson notation as
follows.

Formula Description
'y ~ X1 + X2' Fixed effects for the intercept, X1, and X2. This

formula is equivalent to 'y ~ 1 + X1 + X2'.
'y ~ -1 + X1 + X2' No intercept, with fixed effects for X1 and X2.

The implicit intercept term is suppressed by
including -1.

'y ~ 1 + (1 | g1)' A fixed effect for the intercept, plus a random
effect for the intercept for each level of the
grouping variable g1.

'y ~ X1 + (1 | g1)' Random intercept model with a fixed slope.
'y ~ X1 + (X1 | g1)' Random intercept and slope, with possible

correlation between them. This formula is
equivalent to 'y ~ 1 + X1 + (1 + X1|g1)'.

'y ~ X1 + (1 | g1) + (-1 + X1 | g1)' Independent random-effects terms for intercept
and slope.

'y ~ 1 + (1 | g1) + (1 | g2) + (1 |
g1:g2)'

Random intercept model with independent main
effects for g1 and g2, plus an independent
interaction effect.

For example, the sample data mfr contains simulated data from a manufacturing company that
operates 50 factories across the world. Each factory runs a batch process to create a finished
product. The company wants to decrease the number of defects in each batch, so it developed a new
manufacturing process. To test the effectiveness of the new process, the company selected 20 of its
factories at random to participate in an experiment: Ten factories implemented the new process,
while the other ten continued to run the old process. In each of the 20 factories, the company ran five
batches (for a total of 100 batches), and recorded data on processing time (time_dev), temperature
(temp_dev), number of defects (defects), and a categorical variable indicating the raw materials
supplier (supplier) for each batch.
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To determine whether the new process (represented by the predictor variable newprocess)
significantly reduces the number of defects, fit a GLME model using newprocess, time_dev,
temp_dev, and supplier as fixed-effects predictors. Include a random-effects intercept grouped by
factory, to account for quality differences that might exist due to factory-specific variations. The
response variable defects has a Poisson distribution.

The number of defects can be modeled using a Poisson distribution

defectsi j Poisson μi j

This corresponds to the generalized linear mixed-effects model

log μi j = β0 + β1newprocessi j + β2time_devi j
+β3temp_devi j + β4supplier_Ci j + β5supplier_Bi j + bi ,

where

• defectsij is the number of defects observed in the batch produced by factory i (where i = 1, 2, ...,
20) during batch j (where j = 1, 2, ..., 5).

• μij is the mean number of defects corresponding to factory i during batch j.
• supplier_Cij and supplier_Bij are dummy variables that indicate whether company C or B,

respectively, supplied the process chemicals for the batch produced by factory i during batch j.
• bi ~ N(0,σb

2) is a random-effects intercept for each factory i that accounts for factory-specific
variation in quality.

Using Wilkinson notation, specify this model as:

'defects ~ 1 + newprocess + time_dev + temp_dev + supplier + (1|factory)'

To account for the Poisson distribution of the response variable, when fitting the model using
fitglme, specify the 'Distribution' name-value pair argument as 'Poisson'. By default,
fitglme uses a log link function for response variables with a Poisson distribution.

Display the Model
The output of the fitting function fitglme provides information about generalized linear mixed-
effects model.

Using the mfr manufacturing experiment data, fit a model using newprocess, time_dev,
temp_dev, and supplier as fixed-effects predictors. Specify the response distribution as Poisson,
the link function as log, and the fit method as Laplace.

load mfr

glme = fitglme(mfr,...
        'defects ~ 1 + newprocess + time_dev + temp_dev + supplier + (1|factory)',...
        'Distribution','Poisson','Link','log','FitMethod','Laplace',...
        'DummyVarCoding','effects')

glme = 

Generalized linear mixed-effects model fit by ML

Model information:
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    Number of observations             100
    Fixed effects coefficients           6
    Random effects coefficients         20
    Covariance parameters                1
    Distribution                    Poisson
    Link                            Log   
    FitMethod                       Laplace

Formula:
    defects ~ 1 + newprocess + time_dev + temp_dev + supplier + (1 | factory)

Model fit statistics:
    AIC       BIC       LogLikelihood    Deviance
    416.35    434.58    -201.17          402.35  

Fixed effects coefficients (95% CIs):
    Name                 Estimate     SE          tStat       DF    pValue    
    '(Intercept)'           1.4689     0.15988      9.1875    94    9.8194e-15
    'newprocess'          -0.36766     0.17755     -2.0708    94      0.041122
    'time_dev'           -0.094521     0.82849    -0.11409    94       0.90941
    'temp_dev'            -0.28317      0.9617    -0.29444    94       0.76907
    'supplier_C'         -0.071868    0.078024     -0.9211    94       0.35936
    'supplier_B'          0.071072     0.07739     0.91836    94       0.36078

    Lower        Upper    
       1.1515       1.7864
     -0.72019    -0.015134
      -1.7395       1.5505
      -2.1926       1.6263
     -0.22679     0.083051
    -0.082588      0.22473

Random effects covariance parameters:
Group: factory (20 Levels)
    Name1                Name2                Type         Estimate
    '(Intercept)'        '(Intercept)'        'std'        0.31381 

Group: Error
    Name                      Estimate
    'sqrt(Dispersion)'        1       

The Model information table displays the total number of observations in the sample data (100),
the number of fixed- and random-effects coefficients (6 and 20, respectively), and the number of
covariance parameters (1). It also indicates that the response variable has a Poisson distribution,
the link function is Log, and the fit method is Laplace.

Formula indicates the model specification using Wilkinson’s notation.

The Model fit statistics table displays statistics used to assess the goodness of fit of the model.
This includes the Akaike information criterion (AIC), Bayesian information criterion (BIC) values, log
likelihood (LogLikelihood), and deviance (Deviance) values.

The Fixed effects coefficients table indicates that fitglme returned 95% confidence
intervals. It contains one row for each fixed-effects predictor, and each column contains statistics
corresponding to that predictor. Column 1 (Name) contains the name of each fixed-effects coefficient,
column 2 (Estimate) contains its estimated value, and column 3 (SE) contains the standard error of
the coefficient. Column 4 (tStat) contains the t-statistic for a hypothesis test that the coefficient is
equal to 0. Column 5 (DF) and column 6 (pValue) contain the degrees of freedom and p-value that
correspond to the t-statistic, respectively. The last two columns (Lower and Upper) display the lower
and upper limits, respectively, of the 95% confidence interval for each fixed-effects coefficient.

Random effects covariance parameters displays a table for each grouping variable (here, only
factory), including its total number of levels (20), and the type and estimate of the covariance
parameter. Here, std indicates that fitglme returns the standard deviation of the random effect
associated with the factory predictor, which has an estimated value of 0.31381. It also displays a table
containing the error parameter type (here, the square root of the dispersion parameter), and its
estimated value of 1.

12 Generalized Linear Models

12-54



The standard display generated by fitglme does not provide confidence intervals for the random-
effects parameters. To compute and display these values, use covarianceParameters.

Work with the Model
After you create a GLME model using fitglme, you can use additional functions to work with the
model.

Inspect and Test Coefficients and Confidence Intervals

To extract estimates of the fixed- and random-effects coefficients, covariance parameters, design
matrices, and related statistics:

• fixedEffects extracts estimated fixed-effects coefficients and related statistics from a fitted
model. Related statistics include the standard error; the t-statistic, degrees of freedom, and p-
value for a hypothesis test of whether each parameter is equal to 0; and the confidence intervals.

• randomEffects extracts estimated random-effects coefficients and related statistics from a fitted
GLME model. Related statistics include the estimated empirical Bayes predictor (EBP) of each
random effect, the square root of the conditional mean squared error of prediction (CMSEP) given
the covariance parameters and the response; the t-statistic, estimated degrees of freedom, and p-
value for a hypothesis test of whether each random effect is equal to 0; and the confidence
intervals.

• covarianceParameters extracts estimated covariance parameters and related statistics from a
fitted GLME model. Related statistics include estimate of the covariance parameter, and the
confidence intervals.

• designMatrix extracts the fixed- and random-effects design matrices, or a specified subset
thereof, from the fitted GLME model.

To conduct customized hypothesis tests for the significance of fixed- and random-effects coefficients,
and to compute custom confidence intervals:

• anova performs a marginal F-test (hypothesis test) on fixed-effects terms, to determine if all
coefficients representing the fixed-effects terms are equal to 0. You can use anova to test the
combined significance of the coefficients of categorical predictors.

• coefCI computes confidence intervals for fixed- and random-effects parameters from a fitted
GLME model. By default, fitglme computes 95% confidence intervals. Use coefCI to compute
the boundaries at a different confidence level.

• coefTest performs custom hypothesis tests on fixed-effects or random-effects vectors of a fitted
generalized linear mixed-effects model. For example, you can specify contrast matrices.

Generate New Response Values and Refit Model

To generate new response values, including fitted, predicted, and random responses, based on the
fitted GLME model:

• fitted computes fitted response values using the original predictor values, and the estimated
coefficient and parameter values from the fitted model.

• predict computes the predicted conditional or marginal mean of the response using either the
original predictor values or new predictor values, and the estimated coefficient and parameter
values from the fitted model.

• random generates random responses from a fitted model.
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• refit creates a new fitted GLME model, based on the original model and a new response vector.

Inspect and Visualize Residuals

To extract and visualize residuals from the fitted GLME model:

• residuals extracts the raw or Pearson residuals from the fitted model. You can also specify
whether to compute the conditional or marginal residuals.

• plotResiduals creates plots using the raw or Pearson residuals from the fitted model, including:

• A histogram of the residuals
• A scatterplot of the residuals versus fitted values
• A scatterplot of residuals versus lagged residuals

See Also
fitglme | GeneralizedLinearMixedModel

Related Examples
• “Fit a Generalized Linear Mixed-Effects Model” on page 12-57
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Fit a Generalized Linear Mixed-Effects Model
This example shows how to fit a generalized linear mixed-effects model (GLME) to sample data.

Load the sample data.

Load the sample data.

load mfr

A manufacturing company operates 50 factories across the world, and each runs a batch process to
create a finished product. The company wants to decrease the number of defects in each batch, so it
developed a new manufacturing process. However, the company wants to test the new process in
select factories to ensure that it is effective before rolling it out to all 50 locations.

To test whether the new process significantly reduces the number of defects in each batch, the
company selected 20 of its factories at random to participate in an experiment. Ten factories
implemented the new process, while the other ten used the old process.

In each of the 20 factories (i = 1, 2, ..., 20), the company ran five batches (j = 1, 2, ..., 5) and recorded
the following data in the table mfr:

• Flag to indicate use of the new process:

• If the batch used the new process, then newprocess = 1
• If the batch used the old process, then newprocess = 0

• Processing time for the batch, in hours (time)
• Temperature of the batch, in degrees Celsius (temp)
• Supplier of the chemical used in the batch (supplier)

• supplier is a categorical variable with levels A, B, and C, where each level represents one of
the three suppliers

• Number of defects in the batch (defects)

The data also includes time_dev and temp_dev, which represent the absolute deviation of time and
temperature, respectively, from the process standard of 3 hours and 20 degrees Celsius. The
response variable defects has a Poisson distribution. This is simulated data.

The company wants to determine whether the new process significantly reduces the number of
defects in each batch, while accounting for quality differences that might exist due to factory-specific
variations in time, temperature, and supplier. The number of defects per batch can be modeled using
a Poison distribution:

defectsi j Poisson μi j

Use a generalized linear mixed-effects model to model the number of defects per batch:

log μi j = β0 + β1newprocessi j + β2time_devi j
+β3temp_devi j + β4supplier_Ci j + β5supplier_Bi j + bi ,
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where

• defectsij is the number of defects observed in the batch produced by factory i during batch j.
• μij is the mean number of defects corresponding to factory i (where i = 1, 2, ..., 20) during batch j

(where j = 1, 2, ..., 5).
• newprocessij, time_devij, and temp_devij are the measurements for each variable that correspond

to factory i during batch j. For example, newprocessij indicates whether the batch produced by
factory i during batch j used the new process.

• supplier_Cij and supplier_Bij are dummy variables that use effects (sum-to-zero) coding to indicate
whether company C or B, respectively, supplied the process chemicals for the batch produced by
factory i during batch j.

• bi ~ N(0,σb
2) is a random-effects intercept for each factory i that accounts for factory-specific

variation in quality.

Fit a GLME model and interpret the results.

Fit a generalized linear mixed-effects model using newprocess, time_dev, temp_dev, and
supplier as fixed-effects predictors. Include a random-effects term for intercept grouped by
factory, to account for quality differences that might exist due to factory-specific variations. The
response variable defects has a Poisson distribution, and the appropriate link function for this
model is log. Use the Laplace fit method to estimate the coefficients. Specify the dummy variable
encoding as 'effects', so the dummy variable coefficients sum to 0.

glme = fitglme(mfr,...
'defects ~ 1 + newprocess + time_dev + temp_dev + supplier + (1|factory)',...
'Distribution','Poisson','Link','log','FitMethod','Laplace',...
'DummyVarCoding','effects')

glme = 

Generalized linear mixed-effects model fit by ML

Model information:
    Number of observations             100
    Fixed effects coefficients           6
    Random effects coefficients         20
    Covariance parameters                1
    Distribution                    Poisson
    Link                            Log   
    FitMethod                       Laplace

Formula:
    defects ~ 1 + newprocess + time_dev + temp_dev + supplier + (1 | factory)

Model fit statistics:
    AIC       BIC       LogLikelihood    Deviance
    416.35    434.58    -201.17          402.35  

Fixed effects coefficients (95% CIs):
    Name                 Estimate     SE          tStat       DF    pValue    
    '(Intercept)'           1.4689     0.15988      9.1875    94    9.8194e-15
    'newprocess'          -0.36766     0.17755     -2.0708    94      0.041122
    'time_dev'           -0.094521     0.82849    -0.11409    94       0.90941
    'temp_dev'            -0.28317      0.9617    -0.29444    94       0.76907
    'supplier_C'         -0.071868    0.078024     -0.9211    94       0.35936
    'supplier_B'          0.071072     0.07739     0.91836    94       0.36078

    Lower        Upper    
       1.1515       1.7864
     -0.72019    -0.015134
      -1.7395       1.5505
      -2.1926       1.6263
     -0.22679     0.083051
    -0.082588      0.22473
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Random effects covariance parameters:
Group: factory (20 Levels)
    Name1                Name2                Type         Estimate
    '(Intercept)'        '(Intercept)'        'std'        0.31381 

Group: Error
    Name                      Estimate
    'sqrt(Dispersion)'        1       

The Model information table displays the total number of observations in the sample data (100),
the number of fixed- and random-effects coefficients (6 and 20, respectively), and the number of
covariance parameters (1). It also indicates that the response variable has a Poisson distribution,
the link function is Log, and the fit method is Laplace.

Formula indicates the model specification using Wilkinson’s notation.

The Model fit statistics table displays statistics used to assess the goodness of fit of the model.
This includes the Akaike information criterion (AIC), Bayesian information criterion (BIC) values, log
likelihood (LogLikelihood), and deviance (Deviance) values.

The Fixed effects coefficients table indicates that fitglme returned 95% confidence
intervals. It contains one row for each fixed-effects predictor, and each column contains statistics
corresponding to that predictor. Column 1 (Name) contains the name of each fixed-effects coefficient,
column 2 (Estimate) contains its estimated value, and column 3 (SE) contains the standard error of
the coefficient. Column 4 (tStat) contains the t-statistic for a hypothesis test that the coefficient is
equal to 0. Column 5 (DF) and column 6 (pValue) contain the degrees of freedom and p-value that
correspond to the t-statistic, respectively. The last two columns (Lower and Upper) display the lower
and upper limits, respectively, of the 95% confidence interval for each fixed-effects coefficient.

Random effects covariance parameters displays a table for each grouping variable (here, only
factory), including its total number of levels (20), and the type and estimate of the covariance
parameter. Here, std indicates that fitglme returns the standard deviation of the random effect
associated with the factory predictor, which has an estimated value of 0.31381. It also displays a table
containing the error parameter type (here, the square root of the dispersion parameter), and its
estimated value of 1.

The standard display generated by fitglme does not provide confidence intervals for the random-
effects parameters. To compute and display these values, use covarianceParameters.

Check significance of random effect.

To determine whether the random-effects intercept grouped by factory is statistically significant,
compute the confidence intervals for the estimated covariance parameter.

[psi,dispersion,stats] = covarianceParameters(glme);

covarianceParameters returns the estimated covariance parameter in psi, the estimated
dispersion parameter dispersion, and a cell array of related statistics stats. The first cell of
stats contains statistics for factory, while the second cell contains statistics for the dispersion
parameter.

Display the first cell of stats to see the confidence intervals for the estimated covariance parameter
for factory.

stats{1}

ans = 
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    Covariance Type: Isotropic

    Group      Name1                Name2                Type     
    factory    '(Intercept)'        '(Intercept)'        'std'    

    Estimate    Lower      Upper  
    0.31381     0.19253    0.51148

The columns Lower and Upper display the default 95% confidence interval for the estimated
covariance parameter for factory. Because the interval [0.19253,0.51148] does not contain 0, the
random-effects intercept is significant at the 5% significance level. Therefore, the random effect due
to factory-specific variation must be considered before drawing any conclusions about the
effectiveness of the new manufacturing process.

Compare two models.

Compare the mixed-effects model that includes a random-effects intercept grouped by factory with
a model that does not include the random effect, to determine which model is a better fit for the data.
Fit the first model, FEglme, using only the fixed-effects predictors newprocess, time_dev,
temp_dev, and supplier. Fit the second model, glme, using these same fixed-effects predictors, but
also including a random-effects intercept grouped by factory.

FEglme = fitglme(mfr,...
'defects ~ 1 + newprocess + time_dev + temp_dev + supplier',...
'Distribution','Poisson','Link','log','FitMethod','Laplace');

glme = fitglme(mfr,...
'defects ~ 1 + newprocess + time_dev + temp_dev + supplier + (1|factory)',...
'Distribution','Poisson','Link','log','FitMethod','Laplace');

Compare the two models using a likelihood ratio test. Specify 'CheckNesting' as true, so
compare returns a warning if the nesting requirements are not satisfied.

results = compare(FEglme,glme,'CheckNesting',true)

results = 

    Theoretical Likelihood Ratio Test

    Model     DF    AIC       BIC       LogLik     LRStat    deltaDF
    FEglme    6     431.02    446.65    -209.51                     
    glme      7     416.35    434.58    -201.17    16.672    1      

    pValue    
              
    4.4435e-05

compare returns the degrees of freedom (DF), the Akaike information criterion (AIC), Bayesian
information criterion (BIC), and log likelihood values for each model. glme has smaller AIC, BIC, and
log likelihood values than FEglme, which indicates that glme (the model containing the random-
effects term for intercept grouped by factory) is the better-fitting model for this data. Additionally, the
small p-value indicates that compare rejects the null hypothesis that the response vector was
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generated by the fixed-effects-only model FEglme, in favor of the alternative that the response vector
was generated by the mixed-effects model glme.

Plot the results.

Generate the fitted conditional mean values for the model.

mufit = fitted(glme);

Plot the observed response values versus the fitted response values.

figure
scatter(mfr.defects,mufit)
title('Observed Values versus Fitted Values')
xlabel('Fitted Values')
ylabel('Observed Values')

Create diagnostic plots using conditional Pearson residuals to test model assumptions. Since raw
residuals for generalized linear mixed-effects models do not have a constant variance across
observations, use the conditional Pearson residuals instead.

Plot a histogram to visually confirm that the mean of the Pearson residuals is equal to 0. If the model
is correct, we expect the Pearson residuals to be centered at 0.

plotResiduals(glme,'histogram','ResidualType','Pearson')
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The histogram shows that the Pearson residuals are centered at 0.

Plot the Pearson residuals versus the fitted values, to check for signs of nonconstant variance among
the residuals (heteroscedasticity). We expect the conditional Pearson residuals to have a constant
variance. Therefore, a plot of conditional Pearson residuals versus conditional fitted values should not
reveal any systematic dependence on the conditional fitted values.

plotResiduals(glme,'fitted','ResidualType','Pearson')
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The plot does not show a systematic dependence on the fitted values, so there are no signs of
nonconstant variance among the residuals.

Plot the Pearson residuals versus lagged residuals, to check for correlation among the residuals. The
conditional independence assumption in GLME implies that the conditional Pearson residuals are
approximately uncorrelated.
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There is no pattern to the plot, so there are no signs of correlation among the residuals.

See Also
fitglme | GeneralizedLinearMixedModel

More About
• “Generalized Linear Models” on page 12-9
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Fitting Data with Generalized Linear Models

This example shows how to fit and evaluate generalized linear models using glmfit and glmval.
Ordinary linear regression can be used to fit a straight line, or any function that is linear in its
parameters, to data with normally distributed errors. This is the most commonly used regression
model; however, it is not always a realistic one. Generalized linear models extend the linear model in
two ways. First, assumption of linearity in the parameters is relaxed, by introducing the link function.
Second, error distributions other than the normal can be modeled

Generalized Linear Models

A regression model defines the distribution of a response variable (often generically denoted as y) in
terms of one or more predictor variables (often denoted x1, x2, etc.). The most commonly used
regression model, the ordinary linear regression, models y as a normal random variable, whose mean
is linear function of the predictors, b0 + b1*x1 + ... , and whose variance is constant. In the simplest
case of a single predictor x, the model can be represented as a straight line with Gaussian
distributions about each point.

mu = @(x) -1.9+.23*x;
x = 5:.1:15;
yhat = mu(x);
dy = -3.5:.1:3.5; sz = size(dy); k = (length(dy)+1)/2;
x1 =  7*ones(sz); y1 = mu(x1)+dy; z1 = normpdf(y1,mu(x1),1);
x2 = 10*ones(sz); y2 = mu(x2)+dy; z2 = normpdf(y2,mu(x2),1);
x3 = 13*ones(sz); y3 = mu(x3)+dy; z3 = normpdf(y3,mu(x3),1);
plot3(x,yhat,zeros(size(x)),'b-', ...
      x1,y1,z1,'r-', x1([k k]),y1([k k]),[0 z1(k)],'r:', ...
      x2,y2,z2,'r-', x2([k k]),y2([k k]),[0 z2(k)],'r:', ...
      x3,y3,z3,'r-', x3([k k]),y3([k k]),[0 z3(k)],'r:');
zlim([0 1]);
xlabel('X'); ylabel('Y'); zlabel('Probability density');
grid on; view([-45 45]);
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In a generalized linear model, the mean of the response is modeled as a monotonic nonlinear
transformation of a linear function of the predictors, g(b0 + b1*x1 + ...) . The inverse of the
transformation g is known as the "link" function. Examples include the logit (sigmoid) link and the log
link. Also, y may have a non-normal distribution, such as the binomial or Poisson. For example, a
Poisson regression with log link and a single predictor x can be represented as an exponential curve
with Poisson distributions about each point.

mu = @(x) exp(-1.9+.23*x);
x = 5:.1:15;
yhat = mu(x);
x1 =  7*ones(1,5);  y1 = 0:4; z1 = poisspdf(y1,mu(x1));
x2 = 10*ones(1,7); y2 = 0:6; z2 = poisspdf(y2,mu(x2));
x3 = 13*ones(1,9); y3 = 0:8; z3 = poisspdf(y3,mu(x3));
plot3(x,yhat,zeros(size(x)),'b-', ...
      [x1; x1],[y1; y1],[z1; zeros(size(y1))],'r-', x1,y1,z1,'r.', ...
      [x2; x2],[y2; y2],[z2; zeros(size(y2))],'r-', x2,y2,z2,'r.', ...
      [x3; x3],[y3; y3],[z3; zeros(size(y3))],'r-', x3,y3,z3,'r.');
zlim([0 1]);
xlabel('X'); ylabel('Y'); zlabel('Probability');
grid on; view([-45 45]);
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Fitting a Logistic Regression

This example involves an experiment to help model the proportion of cars of various weights that fail
a mileage test. The data include observations of weight, number of cars tested, and number failed.

% A set of car weights
weight = [2100 2300 2500 2700 2900 3100 3300 3500 3700 3900 4100 4300]';
% The number of cars tested at each weight
tested = [48 42 31 34 31 21 23 23 21 16 17 21]';
% The number of cars failing the test at each weight
failed = [1 2 0 3 8 8 14 17 19 15 17 21]';
% The proportion of cars failing for each weight
proportion = failed ./ tested;

plot(weight,proportion,'s')
xlabel('Weight'); ylabel('Proportion');
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This graph is a plot of the proportion of cars failing, as a function of weight. It's reasonable to assume
that the failure counts came from a binomial distribution, with a probability parameter P that
increases with weight. But how exactly should P depend on weight?

We can try fitting a straight line to these data.

linearCoef = polyfit(weight,proportion,1);
linearFit = polyval(linearCoef,weight);
plot(weight,proportion,'s', weight,linearFit,'r-', [2000 4500],[0 0],'k:', [2000 4500],[1 1],'k:')
xlabel('Weight'); ylabel('Proportion');
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There are two problems with this linear fit:

1) The line predicts proportions less than 0 and greater than 1.

2) The proportions are not normally distributed, since they are necessarily bounded. This violates one
of the assumptions required for fitting a simple linear regression model.

Using a higher-order polynomial may appear to help.

[cubicCoef,stats,ctr] = polyfit(weight,proportion,3);
cubicFit = polyval(cubicCoef,weight,[],ctr);
plot(weight,proportion,'s', weight,cubicFit,'r-', [2000 4500],[0 0],'k:', [2000 4500],[1 1],'k:')
xlabel('Weight'); ylabel('Proportion');
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However, this fit still has similar problems. The graph shows that the fitted proportion starts to
decrease as weight goes above 4000; in fact it will become negative for larger weight values. And of
course, the assumption of a normal distribution is still violated.

Instead, a better approach is to use glmfit to fit a logistic regression model. Logistic regression is a
special case of a generalized linear model, and is more appropriate than a linear regression for these
data, for two reasons. First, it uses a fitting method that is appropriate for the binomial distribution.
Second, the logistic link limits the predicted proportions to the range [0,1].

For logistic regression, we specify the predictor matrix, and a matrix with one column containing the
failure counts, and one column containing the number tested. We also specify the binomial
distribution and the logit link.

[logitCoef,dev] = glmfit(weight,[failed tested],'binomial','logit');
logitFit = glmval(logitCoef,weight,'logit');
plot(weight,proportion,'bs', weight,logitFit,'r-');
xlabel('Weight'); ylabel('Proportion');

12 Generalized Linear Models

12-70



As this plot indicates, the fitted proportions asymptote to zero and one as weight becomes small or
large.

Model Diagnostics

The glmfit function provides a number of outputs for examining the fit and testing the model. For
example, we can compare the deviance values for two models to determine if a squared term would
improve the fit significantly.

[logitCoef2,dev2] = glmfit([weight weight.^2],[failed tested],'binomial','logit');
pval = 1 - chi2cdf(dev-dev2,1)

pval =

    0.4019

The large p-value indicates that, for these data, a quadratic term does not improve the fit
significantly. A plot of the two fits shows there is little difference in the fits.

logitFit2 = glmval(logitCoef2,[weight weight.^2],'logit');
plot(weight,proportion,'bs', weight,logitFit,'r-', weight,logitFit2,'g-');
legend('Data','Linear Terms','Linear and Quadratic Terms','Location','northwest');
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To check the goodness of fit, we can also look at a probability plot of the Pearson residuals. These are
normalized so that when the model is a reasonable fit to the data, they have roughly a standard
normal distribution. (Without this standardization, the residuals would have different variances.)

[logitCoef,dev,stats] = glmfit(weight,[failed tested],'binomial','logit');
normplot(stats.residp);
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The residual plot shows a nice agreement with the normal distribution.

Evaluating the Model Predictions

Once we are satisfied with the model, we can use it to make predictions, including computing
confidence bounds. Here we predict the expected number of cars, out of 100 tested, that would fail
the mileage test at each of four weights.

weightPred = 2500:500:4000;
[failedPred,dlo,dhi] = glmval(logitCoef,weightPred,'logit',stats,.95,100);
errorbar(weightPred,failedPred,dlo,dhi,':');
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Link Functions for Binomial Models

For each of the five distributions that glmfit supports, there is a canonical (default) link function.
For the binomial distribution, the canonical link is the logit. However, there are also three other links
that are sensible for binomial models. All four maintain the mean response in the interval [0, 1].

eta = -5:.1:5;
plot(eta,1 ./ (1 + exp(-eta)),'-', eta,normcdf(eta), '-', ...
     eta,1 - exp(-exp(eta)),'-', eta,exp(-exp(eta)),'-');
xlabel('Linear function of predictors'); ylabel('Predicted mean response');
legend('logit','probit','complementary log-log','log-log','location','east');
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For example, we can compare a fit with the probit link to one with the logit link.

probitCoef = glmfit(weight,[failed tested],'binomial','probit');
probitFit = glmval(probitCoef,weight,'probit');
plot(weight,proportion,'bs', weight,logitFit,'r-', weight,probitFit,'g-');
legend('Data','Logit model','Probit model','Location','northwest');
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It's often difficult for the data to distinguish between these four link functions, and a choice is often
made on theoretical grounds.
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Train Generalized Additive Model for Binary Classification

This example shows how to train a “Generalized Additive Model (GAM) for Binary Classification” on
page 35-2031 with optimal parameters and how to assess the predictive performance of the trained
model. The example first finds the optimal parameter values for a univariate GAM (parameters for
linear terms) and then finds the values for a bivariate GAM (parameters for interaction terms). Also,
the example explains how to interpret the trained model by examining local effects of terms on a
specific prediction and by computing the partial dependence of the predictions on predictors.

Load Sample Data

Load the 1994 census data stored in census1994.mat. The data set consists of demographic data
from the US Census Bureau to predict whether an individual makes over $50,000 per year. The
classification task is to fit a model that predicts the salary category of people given their age, working
class, education level, marital status, race, and so on.

load census1994

census1994 contains the training data set adultdata and the test data set adulttest. To reduce
the running time for this example, subsample 500 training observations and 500 test observations by
using the datasample function.

rng(1) % For reproducibility
NumSamples = 5e2;
adultdata = datasample(adultdata,NumSamples,'Replace',false);
adulttest = datasample(adulttest,NumSamples,'Replace',false);

Train GAM with Optimal Hyperparameters

Train a GAM with hyperparameters that minimize the cross-validation loss by using the
“OptimizeHyperparameters” on page 35-0  name-value argument.

You can specify OptimizeHyperparameters as 'auto' or 'all' to find optimal hyperparameter
values for both univariate and bivariate parameters. Alternatively, you can find optimal values for
univariate parameters using the 'auto-univariate' or 'all-univariate' option, and then find
optimal values for bivariate parameters using the 'auto-bivariate' or 'all-bivariate' option.
This example uses 'auto-univariate' and 'auto-bivariate'.

Train a univariate GAM. Specify OptimizeHyperparameters as 'auto-univariate' so that
fitcgam finds optimal values of the InitialLearnRateForPredictors and
NumTreesPerPredictor name-value arguments. For reproducibility, use the 'expected-
improvement-plus' acquisition function. Specify ShowPlots as false and Verbose as 0 to
disable plot and message displays, respectively.

Mdl_univariate = fitcgam(adultdata,'salary','Weights','fnlwgt', ...
    'OptimizeHyperparameters','auto-univariate', ...
    'HyperparameterOptimizationOptions',struct('AcquisitionFunctionName','expected-improvement-plus', ...
    'ShowPlots',false,'Verbose',0))

Mdl_univariate = 
  ClassificationGAM
                       PredictorNames: {'age'  'workClass'  'education'  'education_num'  'marital_status'  'occupation'  'relationship'  'race'  'sex'  'capital_gain'  'capital_loss'  'hours_per_week'  'native_country'}
                         ResponseName: 'salary'
                CategoricalPredictors: [2 3 5 6 7 8 9 13]
                           ClassNames: [<=50K    >50K]
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                       ScoreTransform: 'logit'
                            Intercept: -1.3118
                      NumObservations: 500
    HyperparameterOptimizationResults: [1×1 BayesianOptimization]

  Properties, Methods

fitcgam returns a ClassificationGAM model object that uses the best estimated feasible point.
The best estimated feasible point indicates the set of hyperparameters that minimizes the upper
confidence bound of the objective function value based on the underlying objective function model of
the Bayesian optimization process. You can obtain the best point from the
HyperparameterOptimizationResults property or by using the bestPoint function.

x = Mdl_univariate.HyperparameterOptimizationResults.XAtMinEstimatedObjective

x=1×2 table
    InitialLearnRateForPredictors    NumTreesPerPredictor
    _____________________________    ____________________

               0.02257                       118         

bestPoint(Mdl_univariate.HyperparameterOptimizationResults)

ans=1×2 table
    InitialLearnRateForPredictors    NumTreesPerPredictor
    _____________________________    ____________________

               0.02257                       118         

For more details on the optimization process, see “Optimize GAM Using OptimizeHyperparameters”
on page 35-2007.

Train a bivariate GAM. Specify OptimizeHyperparameters as 'auto-bivariate' so that
fitcgam finds optimal values of the Interactions, InitialLearnRateForInteractions, and
NumTreesPerInteraction name-value arguments. Use the univariate parameter values in x so that
the software finds optimal parameter values for interaction terms based on the x values.

Mdl = fitcgam(adultdata,'salary','Weights','fnlwgt', ...
    'InitialLearnRateForPredictors',x.InitialLearnRateForPredictors, ...
    'NumTreesPerPredictor',x.NumTreesPerPredictor, ...
    'OptimizeHyperparameters','auto-bivariate', ...
    'HyperparameterOptimizationOptions',struct('AcquisitionFunctionName','expected-improvement-plus', ...
    'ShowPlots',false,'Verbose',0))

Mdl = 
  ClassificationGAM
                       PredictorNames: {'age'  'workClass'  'education'  'education_num'  'marital_status'  'occupation'  'relationship'  'race'  'sex'  'capital_gain'  'capital_loss'  'hours_per_week'  'native_country'}
                         ResponseName: 'salary'
                CategoricalPredictors: [2 3 5 6 7 8 9 13]
                           ClassNames: [<=50K    >50K]
                       ScoreTransform: 'logit'
                            Intercept: -1.4587
                         Interactions: [6×2 double]
                      NumObservations: 500
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    HyperparameterOptimizationResults: [1×1 BayesianOptimization]

  Properties, Methods

Display the optimal bivariate hyperparameters.

Mdl.HyperparameterOptimizationResults.XAtMinEstimatedObjective

ans=1×3 table
    Interactions    InitialLearnRateForInteractions    NumTreesPerInteraction
    ____________    _______________________________    ______________________

         6                     0.0061954                        422          

The model display of Mdl shows a partial list of the model properties. To view the full list of the model
properties, double-click the variable name Mdl in the Workspace. The Variables editor opens for Mdl.
Alternatively, you can display the properties in the Command Window by using dot notation. For
example, display the ReasonForTermination property.

Mdl.ReasonForTermination

ans = struct with fields:
      PredictorTrees: 'Terminated after training the requested number of trees.'
    InteractionTrees: 'Terminated after training the requested number of trees.'

You can use the ReasonForTermination property to determine whether the trained model contains
the specified number of trees for each linear term and each interaction term.

Display the interaction terms in Mdl.

Mdl.Interactions

ans = 6×2

     5    12
     1     6
     6    12
     1    12
     7     9
     2     6

Each row of Interactions represents one interaction term and contains the column indexes of the
predictor variables for the interaction term. You can use the Interactions property to check the
interaction terms in the model and the order in which fitcgam adds them to the model.

Display the interaction terms in Mdl using the predictor names.

Mdl.PredictorNames(Mdl.Interactions)

ans = 6×2 cell
    {'marital_status'}    {'hours_per_week'}
    {'age'           }    {'occupation'    }
    {'occupation'    }    {'hours_per_week'}
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    {'age'           }    {'hours_per_week'}
    {'relationship'  }    {'sex'           }
    {'workClass'     }    {'occupation'    }

Assess Predictive Performance on New Observations

Assess the performance of the trained model by using the test sample adulttest and the object
functions predict, loss, edge, and margin. You can use a full or compact model with these
functions.

• predict — Classify observations
• loss — Compute classification loss (misclassification rate in decimal, by default)
• margin — Compute classification margins
• edge — Compute classification edge (average of classification margins)

If you want to assess the performance of the training data set, use the resubstitution object functions:
resubPredict, resubLoss, resubMargin, and resubEdge. To use these functions, you must use
the full model that contains the training data.

Create a compact model to reduce the size of the trained model.

CMdl = compact(Mdl);
whos('Mdl','CMdl')

  Name      Size              Bytes  Class                                                 Attributes

  CMdl      1x1             5126918  classreg.learning.classif.CompactClassificationGAM              
  Mdl       1x1             5272831  ClassificationGAM                                               

Predict labels and scores for the test data set (adulttest), and compute model statistics (loss,
margin, and edge) using the test data set.

[labels,scores] = predict(CMdl,adulttest);
L = loss(CMdl,adulttest,'Weights',adulttest.fnlwgt);
M = margin(CMdl,adulttest);
E = edge(CMdl,adulttest,'Weights',adulttest.fnlwgt);

Predict labels and scores and compute the statistics without including interaction terms in the
trained model.

[labels_nointeraction,scores_nointeraction] = predict(CMdl,adulttest,'IncludeInteractions',false);
L_nointeractions = loss(CMdl,adulttest,'Weights',adulttest.fnlwgt,'IncludeInteractions',false);
M_nointeractions = margin(CMdl,adulttest,'IncludeInteractions',false);
E_nointeractions = edge(CMdl,adulttest,'Weights',adulttest.fnlwgt,'IncludeInteractions',false);

Compare the results obtained by including both linear and interaction terms to the results obtained
by including only linear terms.

Create a confusion chart from the true labels adulttest.salary and the predicted labels.

tiledlayout(1,2);
nexttile
confusionchart(adulttest.salary,labels)
title('Linear and Interaction Terms')
nexttile
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confusionchart(adulttest.salary,labels_nointeraction)
title('Linear Terms Only')

Display the computed loss and edge values.

table([L; E], [L_nointeractions; E_nointeractions], ...
    'VariableNames',{'Linear and Interaction Terms','Only Linear Terms'}, ...
    'RowNames',{'Loss','Edge'})

ans=2×2 table
            Linear and Interaction Terms    Only Linear Terms
            ____________________________    _________________

    Loss               0.1748                    0.17872     
    Edge              0.57902                    0.54756     

The model achieves a smaller loss value and a higher edge value when both linear and interaction
terms are included.

Display the distributions of the margins using box plots.

figure
boxplot([M M_nointeractions],'Labels',{'Linear and Interaction Terms','Linear Terms Only'})
title('Box Plots of Test Sample Margins')
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Interpret Prediction

Interpret the prediction for the first test observation by using the plotLocalEffects function. Also,
create partial dependence plots for some important terms in the model by using the
plotPartialDependence function.

Classify the first observation of the test data, and plot the local effects of the terms in CMdl on the
prediction. To display an existing underscore in any predictor name, change the
TickLabelInterpreter value of the axes to 'none'.

[label,score] = predict(CMdl,adulttest(1,:))

label = categorical
     <=50K 

score = 1×2

    0.9895    0.0105

f1 = figure;
plotLocalEffects(CMdl,adulttest(1,:))
f1.CurrentAxes.TickLabelInterpreter = 'none';
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The predict function classifies the first observation adulttest(1,:) as '<=50K'. The
plotLocalEffects function creates a horizontal bar graph that shows the local effects of the 10
most important terms on the prediction. Each local effect value shows the contribution of each term
to the classification score for '<=50K', which is the logit of the posterior probability that the
classification is '<=50K' for the observation.

Create a partial dependence plot for the term age. Specify both the training and test data sets to
compute the partial dependence values using both sets.

figure
plotPartialDependence(CMdl,'age',label,[adultdata; adulttest])

 Train Generalized Additive Model for Binary Classification

12-83



The plotted line represents the averaged partial relationships between the predictor age and the
score of the class <=50K in the trained model. The x-axis minor ticks represent the unique values in
the predictor age.

Create partial dependence plots for the terms education_num and relationship.

f2 = figure;
plotPartialDependence(CMdl,["education_num","relationship"],label,[adultdata; adulttest])
f2.CurrentAxes.TickLabelInterpreter = 'none';
view([55 40])
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The plot shows the partial dependence of the score value for the class <=50 on education_num and
relationship.

See Also
fitcgam | ClassificationGAM | CompactClassificationGAM | plotLocalEffects |
plotPartialDependence | bayesopt | optimizableVariable

Related Examples
• “Train Generalized Additive Model for Regression” on page 12-86
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Train Generalized Additive Model for Regression

This example shows how to train a “Generalized Additive Model (GAM) for Regression” on page 35-
2492 with optimal parameters and how to assess the predictive performance of the trained model. The
example first finds the optimal parameter values for a univariate GAM (parameters for linear terms)
and then finds the values for a bivariate GAM (parameters for interaction terms). Also, the example
explains how to interpret the trained model by examining local effects of terms on a specific
prediction and by computing the partial dependence of the predictions on predictors.

Load Sample Data

Load the sample data set NYCHousing2015.

load NYCHousing2015

The data set includes 10 variables with information on the sales of properties in New York City in
2015. This example uses these variables to analyze the sale prices (SALEPRICE).

Preprocess the data set. Assume that a SALEPRICE less than or equal to $1000 indicates ownership
transfer without a cash consideration. Remove the samples that have this SALEPRICE. Also, remove
the outliers identified by the isoutlier function. Then, convert the datetime array (SALEDATE) to
the month numbers and move the response variable (SALEPRICE) to the last column. Change zeros in
LANDSQUAREFEET, GROSSSQUAREFEET, and YEARBUILT to NaNs.

idx1 = NYCHousing2015.SALEPRICE <= 1000;
idx2 = isoutlier(NYCHousing2015.SALEPRICE);
NYCHousing2015(idx1|idx2,:) = [];
NYCHousing2015.SALEDATE = month(NYCHousing2015.SALEDATE);
NYCHousing2015 = movevars(NYCHousing2015,'SALEPRICE','After','SALEDATE');
NYCHousing2015.LANDSQUAREFEET(NYCHousing2015.LANDSQUAREFEET == 0) = NaN; 
NYCHousing2015.GROSSSQUAREFEET(NYCHousing2015.GROSSSQUAREFEET == 0) = NaN; 
NYCHousing2015.YEARBUILT(NYCHousing2015.YEARBUILT == 0) = NaN; 

Display the first three rows of the table.

head(NYCHousing2015,3)

    BOROUGH    NEIGHBORHOOD       BUILDINGCLASSCATEGORY        RESIDENTIALUNITS    COMMERCIALUNITS    LANDSQUAREFEET    GROSSSQUAREFEET    YEARBUILT    SALEDATE    SALEPRICE
    _______    ____________    ____________________________    ________________    _______________    ______________    _______________    _________    ________    _________

       2       {'BATHGATE'}    {'01  ONE FAMILY DWELLINGS'}           1                   0                1103              1290            1910          2           3e+05 
       2       {'BATHGATE'}    {'01  ONE FAMILY DWELLINGS'}           1                   1                2500              2452            1910          7           4e+05 
       2       {'BATHGATE'}    {'01  ONE FAMILY DWELLINGS'}           1                   2                1911              4080            1931          1         5.1e+05 

Randomly select 1000 samples by using the datasample function, and partition observations into a
training set and a test set by using the cvpartition function. Specify a 10% holdout sample for
testing.

rng('default') % For reproducibility
NumSamples = 1e3;
NYCHousing2015 = datasample(NYCHousing2015,NumSamples,'Replace',false);
cv = cvpartition(size(NYCHousing2015,1),'HoldOut',0.10);

Extract the training and test indices, and create tables for training and test data sets.
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tbl_training = NYCHousing2015(training(cv),:);
tbl_test = NYCHousing2015(test(cv),:);

Train GAM with Optimal Hyperparameters

Train a GAM with hyperparameters that minimize the cross-validation loss by using the
“OptimizeHyperparameters” on page 35-0  name-value argument.

You can specify OptimizeHyperparameters as 'auto' or 'all' to find optimal hyperparameter
values for both univariate and bivariate parameters. Alternatively, you can find optimal values for
univariate parameters using the 'auto-univariate' or 'all-univariate' option, and then find
optimal values for bivariate parameters using the 'auto-bivariate' or 'all-bivariate' option.
This example uses 'all-univariate' and 'all-bivariate'.

Train a univariate GAM. Specify FitStandardDeviation as true to fit a model for the standard
deviation of the response variable as well. A recommended practice is to use optimal
hyperparameters when you fit the standard deviation model for the accuracy of the standard
deviation estimates. Specify OptimizeHyperparameters as 'all-univariate' so that fitrgam
finds optimal values of the InitialLearnRateForPredictors, MaxNumSplitsPerPredictor,
and NumTreesPerPredictor name-value arguments. For reproducibility, use the 'expected-
improvement-plus' acquisition function. Specify ShowPlots as false and Verbose as 0 to
disable plot and message displays, respectively.

Mdl_univariate = fitrgam(tbl_training,'SALEPRICE','FitStandardDeviation',true, ...
    'OptimizeHyperparameters','all-univariate', ...
    'HyperparameterOptimizationOptions',struct('AcquisitionFunctionName','expected-improvement-plus', ...
    'ShowPlots',false,'Verbose',0))

Mdl_univariate = 
  RegressionGAM
                       PredictorNames: {'BOROUGH'  'NEIGHBORHOOD'  'BUILDINGCLASSCATEGORY'  'RESIDENTIALUNITS'  'COMMERCIALUNITS'  'LANDSQUAREFEET'  'GROSSSQUAREFEET'  'YEARBUILT'  'SALEDATE'}
                         ResponseName: 'SALEPRICE'
                CategoricalPredictors: [2 3]
                    ResponseTransform: 'none'
                            Intercept: 5.1868e+05
               IsStandardDeviationFit: 1
                      NumObservations: 900
    HyperparameterOptimizationResults: [1×1 BayesianOptimization]

  Properties, Methods

fitrgam returns a RegressionGAM model object that uses the best estimated feasible point. The
best estimated feasible point indicates the set of hyperparameters that minimizes the upper
confidence bound of the objective function value based on the underlying objective function model of
the Bayesian optimization process. You can obtain the best point from the
HyperparameterOptimizationResults property or by using the bestPoint function.

x = Mdl_univariate.HyperparameterOptimizationResults.XAtMinEstimatedObjective

x=1×3 table
    InitialLearnRateForPredictors    MaxNumSplitsPerPredictor    NumTreesPerPredictor
    _____________________________    ________________________    ____________________

              0.063687                          1                         61         
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bestPoint(Mdl_univariate.HyperparameterOptimizationResults)

ans=1×3 table
    InitialLearnRateForPredictors    MaxNumSplitsPerPredictor    NumTreesPerPredictor
    _____________________________    ________________________    ____________________

              0.063687                          1                         61         

For more details on the optimization process, see “Optimize GAM Using OptimizeHyperparameters”
on page 35-2469.

Train a bivariate GAM. Specify OptimizeHyperparameters as 'all-bivariate' so that fitrgam
finds optimal values of the Interactions, InitialLearnRateForInteractions,
MaxNumSplitsPerInteraction, and NumTreesPerInteraction name-value arguments. Use the
univariate parameter values in x so that the software finds optimal parameter values for interaction
terms based on the x values.

Mdl = fitrgam(tbl_training,'SALEPRICE','FitStandardDeviation',true, ...
    'InitialLearnRateForPredictors',x.InitialLearnRateForPredictors, ...
    'MaxNumSplitsPerPredictor',x.MaxNumSplitsPerPredictor, ...
    'NumTreesPerPredictor',x.NumTreesPerPredictor, ...
    'OptimizeHyperparameters','all-bivariate', ...
    'HyperparameterOptimizationOptions',struct('AcquisitionFunctionName','expected-improvement-plus', ...
    'ShowPlots',false,'Verbose',0))

Mdl = 
  RegressionGAM
                       PredictorNames: {'BOROUGH'  'NEIGHBORHOOD'  'BUILDINGCLASSCATEGORY'  'RESIDENTIALUNITS'  'COMMERCIALUNITS'  'LANDSQUAREFEET'  'GROSSSQUAREFEET'  'YEARBUILT'  'SALEDATE'}
                         ResponseName: 'SALEPRICE'
                CategoricalPredictors: [2 3]
                    ResponseTransform: 'none'
                            Intercept: 5.1679e+05
                         Interactions: [3×2 double]
               IsStandardDeviationFit: 1
                      NumObservations: 900
    HyperparameterOptimizationResults: [1×1 BayesianOptimization]

  Properties, Methods

Display the optimal bivariate hyperparameters.

Mdl.HyperparameterOptimizationResults.XAtMinEstimatedObjective

ans=1×4 table
    Interactions    InitialLearnRateForInteractions    MaxNumSplitsPerInteraction    NumTreesPerInteraction
    ____________    _______________________________    __________________________    ______________________

         3                     0.0010182                           21                         302          

The model display of Mdl shows a partial list of the model properties. To view the full list of the model
properties, double-click the variable name Mdl in the Workspace. The Variables editor opens for Mdl.
Alternatively, you can display the properties in the Command Window by using dot notation. For
example, display the ReasonForTermination property.
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Mdl.ReasonForTermination

ans = struct with fields:
      PredictorTrees: 'Terminated after training the requested number of trees.'
    InteractionTrees: 'Terminated after training the requested number of trees.'

You can use the ReasonForTermination property to determine whether the trained model contains
the specified number of trees for each linear term and each interaction term.

Display the interaction terms in Mdl.

Mdl.Interactions

ans = 3×2

     3     6
     4     6
     5     8

Each row of Interactions represents one interaction term and contains the column indexes of the
predictor variables for the interaction term. You can use the Interactions property to check the
interaction terms in the model and the order in which fitrgam adds them to the model.

Display the interaction terms in Mdl using the predictor names.

Mdl.PredictorNames(Mdl.Interactions)

ans = 3×2 cell
    {'BUILDINGCLASSCATEGORY'}    {'LANDSQUAREFEET'}
    {'RESIDENTIALUNITS'     }    {'LANDSQUAREFEET'}
    {'COMMERCIALUNITS'      }    {'YEARBUILT'     }

Assess Predictive Performance on New Observations

Assess the performance of the trained model by using the test sample tbl_test and the object
functions predict and loss. You can use a full or compact model with these functions.

• predict — Predict responses
• loss — Compute regression loss (mean squared error, by default)

If you want to assess the performance of the training data set, use the resubstitution object functions:
resubPredict and resubLoss. To use these functions, you must use the full model that contains
the training data.

Create a compact model to reduce the size of the trained model.

CMdl = compact(Mdl);
whos('Mdl','CMdl')

  Name      Size               Bytes  Class                                          Attributes

  CMdl      1x1             11975596  classreg.learning.regr.CompactRegressionGAM              
  Mdl       1x1             12170960  RegressionGAM                                            
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Compare the results obtained by including both linear to interaction terms and the results obtained
by including only linear terms.

Predict responses and compute mean squared errors for the test data set tbl_test.

[yFit,ySD,yInt] = predict(CMdl,tbl_test);
L = loss(CMdl,tbl_test)

L = 1.2746e+11

Find predicted responses and errors without including interaction terms in the trained model.

[yFit_nointeraction,ySD_nointeraction,yInt__nointeraction] = predict(CMdl,tbl_test,'IncludeInteractions',false);
L_nointeractions = loss(CMdl,tbl_test,'IncludeInteractions',false)

L_nointeractions = 1.2531e+11

The model achieves a smaller error for the test data set when interaction terms are not included.

Plot the sorted true responses together with the predicted responses and prediction intervals.

yTrue = tbl_test.SALEPRICE;
[sortedYTrue,I] = sort(yTrue);

figure
ax = nexttile;
plot(sortedYTrue,'o')
hold on
plot(yFit(I))
plot(yInt(I,1),'k:')
plot(yInt(I,2),'k:')
legend('True responses','Predicted responses', ...
    '95% Prediction interval limits','Location','best')
title('Linear and interaction terms')
hold off

nexttile
plot(sortedYTrue,'o')
hold on
plot(yFit_nointeraction(I))
plot(yInt__nointeraction(I,1),'k:')
plot(yInt__nointeraction(I,2),'k:')
ylim(ax.YLim)
title('Linear terms only')
hold off
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The prediction intervals in the two plots have similar widths.

Interpret Prediction

Interpret the prediction for the first test observation by using the plotLocalEffects function. Also,
create partial dependence plots for some important terms in the model by using the
plotPartialDependence function.

Predict a response value for the first observation of the test data, and plot the local effects of the
terms in CMdl on the prediction. Specify 'IncludeIntercept',true to include the intercept term
in the plot.

yFit = predict(CMdl,tbl_test(1,:))

yFit = 5.3526e+05

figure
plotLocalEffects(CMdl,tbl_test(1,:),'IncludeIntercept',true)
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The predict function returns the sale price for the first observation tbl_test(1,:). The
plotLocalEffects function creates a horizontal bar graph that shows the local effects of the terms
in CMdl on the prediction. Each local effect value shows the contribution of each term to the
predicted sale price for tbl_test(1,:).

Compute the partial dependence values for BUILDINGCLASSCATEGORY and plot the sorted values.
Specify both the training and test data sets to compute the partial dependence values using both sets.

[pd,x] = partialDependence(CMdl,'BUILDINGCLASSCATEGORY',[tbl_training; tbl_test]);
[pd_sorted,I] = sort(pd);
x_sorted = x(I);
x_sorted = reordercats(x_sorted,I);
figure
plot(x_sorted,pd_sorted,'o:')
xlabel('BUILDINGCLASSCATEGORY')
ylabel('SALEPRICE')
title('Patial Dependence Plot')
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The plotted line represents the averaged partial relationships between the predictor
BUILDINGCLASSCATEGORY and the response SALEPRICE in the trained model.

Create a partial dependence plot for the terms RESIDENTIALUNITS and LANDSQUAREFEET using the
test data set.

figure
plotPartialDependence(CMdl,["RESIDENTIALUNITS","LANDSQUAREFEET"],tbl_test)
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The minor ticks in the x-axis (RESIDENTIALUNITS) and y-axis (LANDSQUAREFEET) represent the
unique values of the predictors in the specified data. The predictor values include a few outliers, and
most of the RESIDENTIALUNITS and LANDSQUAREFEET values are less than 5 and 5000, respectively.
The plot shows that the SALEPRICE values do not vary significantly when the RESIDENTIALUNITS
value is greater than 5.

See Also
fitrgam | RegressionGAM | CompactRegressionGAM | plotLocalEffects |
plotPartialDependence | bayesopt | optimizableVariable

Related Examples
• “Train Generalized Additive Model for Binary Classification” on page 12-77
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Nonlinear Regression

• “Nonlinear Regression” on page 13-2
• “Nonlinear Regression Workflow” on page 13-13
• “Mixed-Effects Models” on page 13-18
• “Examining Residuals for Model Verification” on page 13-28
• “Mixed-Effects Models Using nlmefit and nlmefitsa” on page 13-33
• “Weighted Nonlinear Regression” on page 13-45
• “Pitfalls in Fitting Nonlinear Models by Transforming to Linearity” on page 13-53
• “Nonlinear Logistic Regression” on page 13-59
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Nonlinear Regression
In this section...
“What Are Parametric Nonlinear Regression Models?” on page 13-2
“Prepare Data” on page 13-2
“Represent the Nonlinear Model” on page 13-3
“Choose Initial Vector beta0” on page 13-5
“Fit Nonlinear Model to Data” on page 13-6
“Examine Quality and Adjust the Fitted Nonlinear Model” on page 13-6
“Predict or Simulate Responses Using a Nonlinear Model” on page 13-9

What Are Parametric Nonlinear Regression Models?
Parametric nonlinear models represent the relationship between a continuous response variable and
one or more continuous predictor variables in the form

y = f(X,β) + ε,

where

• y is an n-by-1 vector of observations of the response variable.
• f is any function of X and β that evaluates each row of X along with the vector β to compute the

prediction for the corresponding row of y.
• X is an n-by-p matrix of predictors, with one row for each observation, and one column for each

predictor.
• β is a p-by-1 vector of unknown parameters to be estimated.
• ε is an n-by-1 vector of independent, identically distributed random disturbances.

In contrast, nonparametric models do not attempt to characterize the relationship between predictors
and response with model parameters. Descriptions are often graphical, as in the case of “Decision
Trees” on page 20-2.

fitnlm attempts to find values of the parameters β that minimize the mean squared differences
between the observed responses y and the predictions of the model f(X,β). To do so, it needs a
starting value beta0 before iteratively modifying the vector β to a vector with minimal mean squared
error.

Prepare Data
To begin fitting a regression, put your data into a form that fitting functions expect. All regression
techniques begin with input data in an array X and response data in a separate vector y, or input data
in a table or dataset array tbl and response data as a column in tbl. Each row of the input data
represents one observation. Each column represents one predictor (variable).

For a table or dataset array tbl, indicate the response variable with the 'ResponseVar' name-value
pair:

mdl = fitlm(tbl,'ResponseVar','BloodPressure');
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The response variable is the last column by default.

You cannot use categorical predictors for nonlinear regression. A categorical predictor is one that
takes values from a fixed set of possibilities.

Represent missing data as NaN for both input data and response data.

Dataset Array for Input and Response Data

For example, to create a dataset array from an Excel spreadsheet:

ds = dataset('XLSFile','hospital.xls',...
    'ReadObsNames',true);

To create a dataset array from workspace variables:

load carsmall
ds = dataset(Weight,Model_Year,MPG);

Table for Input and Response Data

To create a table from an Excel spreadsheet:

tbl = readtable('hospital.xls',...
    'ReadRowNames',true);

To create a table from workspace variables:

load carsmall
tbl = table(Weight,Model_Year,MPG);

Numeric Matrix for Input Data and Numeric Vector for Response

For example, to create numeric arrays from workspace variables:

load carsmall
X = [Weight Horsepower Cylinders Model_Year];
y = MPG;

To create numeric arrays from an Excel spreadsheet:

[X, Xnames] = xlsread('hospital.xls');
y = X(:,4); % response y is systolic pressure
X(:,4) = []; % remove y from the X matrix

Notice that the nonnumeric entries, such as sex, do not appear in X.

Represent the Nonlinear Model
There are several ways to represent a nonlinear model. Use whichever is most convenient.

The nonlinear model is a required input to fitnlm, in the modelfun input.

fitnlm assumes that the response function f(X,β) is smooth in the parameters β. If your function is
not smooth, fitnlm can fail to provide optimal parameter estimates.

• “Function Handle to Anonymous Function or Function File” on page 13-4
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• “Text Representation of Formula” on page 13-4

Function Handle to Anonymous Function or Function File

The function handle @modelfun(b,x) accepts a vector b and matrix, table, or dataset array x. The
function handle should return a vector f with the same number of rows as x. For example, the
function file hougen.m computes

hougen(b, x) = b(1)x(2)− x(3)/b(5)
1 + b(2)x(1) + b(3)x(2) + b(4)x(3) .

Examine the function by entering type hougen at the MATLAB command line.

function yhat = hougen(beta,x)
%HOUGEN Hougen-Watson model for reaction kinetics.
%   YHAT = HOUGEN(BETA,X) gives the predicted values of the
%   reaction rate, YHAT, as a function of the vector of 
%   parameters, BETA, and the matrix of data, X.
%   BETA must have 5 elements and X must have three
%   columns.
%
%   The model form is:
%   y = (b1*x2 - x3/b5)./(1+b2*x1+b3*x2+b4*x3)
%
%   Reference:
%      [1]  Bates, Douglas, and Watts, Donald, "Nonlinear
%      Regression Analysis and Its Applications", Wiley
%      1988 p. 271-272.

%   Copyright 1993-2004 The MathWorks, Inc. 
%   B.A. Jones 1-06-95.

b1 = beta(1);
b2 = beta(2);
b3 = beta(3);
b4 = beta(4);
b5 = beta(5);

x1 = x(:,1);
x2 = x(:,2);
x3 = x(:,3);

yhat = (b1*x2 - x3/b5)./(1+b2*x1+b3*x2+b4*x3);

You can write an anonymous function that performs the same calculation as hougen.m.

modelfun = @(b,x)(b(1)*x(:,2) - x(:,3)/b(5))./...
(1 + b(2)*x(:,1) + b(3)*x(:,2) + b(4)*x(:,3));

Text Representation of Formula

For data in a matrix X and response in a vector y:

• Represent the formula using 'x1' as the first predictor (column) in X, 'x2' as the second
predictor, etc.

• Represent the vector of parameters to optimize as 'b1', 'b2', etc.
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• Write the formula as 'y ~ (mathematical expressions)'.

For example, to represent the response to the reaction data:

modelfun = 'y ~ (b1*x2 - x3/b5)/(1 + b2*x1 + b3*x2 + b4*x3)';

For data in a table or dataset array, you can use formulas represented as the variable names from the
table or dataset array. Put the response variable name at the left of the formula, followed by a ~,
followed by a character vector representing the response formula.

This example shows how to create a character vector to represent the response to the reaction data
that is in a dataset array.

1 Load the reaction data.

load reaction

2 Put the data into a dataset array, where each variable has a name given in xn or yn.

ds = dataset({reactants,xn(1,:),xn(2,:),xn(3,:)},...
    {rate,yn});

3 Examine the first row of the dataset array.

ds(1,:)

ans = 

    Hydrogen    n_Pentane    Isopentane    ReactionRate
    470         300          10            8.55 

4 Write the hougen formula using names in the dataset array.

modelfun = ['ReactionRate ~ (b1*n_Pentane - Isopentane/b5) /'...
' (1 + Hydrogen*b2 + n_Pentane*b3 + Isopentane*b4)']

modelfun =
ReactionRate ~ (b1*n_Pentane - Isopentane/b5) / ...
     (1 + Hydrogen*b2 + n_Pentane*b3 + Isopentane*b4)

Choose Initial Vector beta0
The initial vector for the fitting iterations, beta0, can greatly influence the quality of the resulting
fitted model. beta0 gives the dimensionality of the problem, meaning it needs the correct length. A
good choice of beta0 leads to a quick, reliable model, while a poor choice can lead to a long
computation, or to an inadequate model.

It is difficult to give advice on choosing a good beta0. If you believe certain components of the vector
should be positive or negative, set your beta0 to have those characteristics. If you know the
approximate value of other components, include them in beta0. However, if you don’t know good
values, try a random vector, such as

beta0 = randn(nVars,1);
% or
beta0 = 10*rand(nVars,1);
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Fit Nonlinear Model to Data
The syntax for fitting a nonlinear regression model using a table or dataset array tbl is

mdl = fitnlm(tbl,modelfun,beta0)

The syntax for fitting a nonlinear regression model using a numeric array X and numeric response
vector y is

mdl = fitnlm(X,y,modelfun,beta0)

For information on representing the input parameters, see “Prepare Data” on page 13-2, “Represent
the Nonlinear Model” on page 13-3, and “Choose Initial Vector beta0” on page 13-5.

fitnlm assumes that the response variable in a table or dataset array tbl is the last column. To
change this, use the ResponseVar name-value pair to name the response column.

Examine Quality and Adjust the Fitted Nonlinear Model

There are diagnostic plots to help you examine the quality of a model. plotDiagnostics(mdl)
gives a variety of plots, including leverage and Cook's distance plots. plotResiduals(mdl) gives
the difference between the fitted model and the data.

There are also properties of mdl that relate to the model quality. mdl.RMSE gives the root mean
square error between the data and the fitted model. mdl.Residuals.Raw gives the raw residuals.
mdl.Diagnostics contains several fields, such as Leverage and CooksDistance, that can help
you identify particularly interesting observations.

This example shows how to examine a fitted nonlinear model using diagnostic, residual, and slice
plots.

Load the sample data.

load reaction

Create a nonlinear model of rate as a function of reactants using the hougen.m function.

beta0 = ones(5,1);
mdl = fitnlm(reactants,...
    rate,@hougen,beta0);

Make a leverage plot of the data and model.

plotDiagnostics(mdl)
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There is one point that has high leverage. Locate the point.

[~,maxl] = max(mdl.Diagnostics.Leverage)

maxl = 6

Examine a residuals plot.

plotResiduals(mdl,'fitted')
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Nothing stands out as an outlier.

Use a slice plot to show the effect of each predictor on the model.

plotSlice(mdl)
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You can drag the vertical dashed blue lines to see the effect of a change in one predictor on the
response. For example, drag the X2 line to the right, and notice that the slope of the X3 line changes.

Predict or Simulate Responses Using a Nonlinear Model

This example shows how to use the methods predict, feval, and random to predict and simulate
responses to new data.

Randomly generate a sample from a Cauchy distribution.

rng('default')
X = rand(100,1);
X = tan(pi*X - pi/2);

Generate the response according to the model y = b1*(pi /2 + atan((x - b2) / b3)) and
add noise to the response.

modelfun = @(b,x) b(1) * ...
    (pi/2 + atan((x - b(2))/b(3)));
y = modelfun([12 5 10],X) + randn(100,1);

Fit a model starting from the arbitrary parameters b = [1,1,1].

beta0 = [1 1 1]; % An arbitrary guess
mdl = fitnlm(X,y,modelfun,beta0)

mdl = 
Nonlinear regression model:
    y ~ b1*(pi/2 + atan((x - b2)/b3))
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Estimated Coefficients:
          Estimate      SE       tStat       pValue  
          ________    _______    ______    __________

    b1     12.082     0.80028    15.097    3.3151e-27
    b2     5.0603      1.0825    4.6747    9.5063e-06
    b3       9.64     0.46499    20.732    2.0382e-37

Number of observations: 100, Error degrees of freedom: 97
Root Mean Squared Error: 1.02
R-Squared: 0.92,  Adjusted R-Squared 0.918
F-statistic vs. zero model: 6.45e+03, p-value = 1.72e-111

The fitted values are within a few percent of the parameters [12,5,10].

Examine the fit.

plotSlice(mdl)

predict

The predict method predicts the mean responses and, if requested, gives confidence bounds. Find
the predicted response values and predicted confidence intervals about the response at X values
[-15;5;12].

Xnew = [-15;5;12];
[ynew,ynewci] = predict(mdl,Xnew)

ynew = 3×1

    5.4122
   18.9022
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   26.5161

ynewci = 3×2

    4.8233    6.0010
   18.4555   19.3490
   25.0170   28.0151

The confidence intervals are reflected in the slice plot.

feval

The feval method predicts the mean responses. feval is often more convenient to use than predict
when you construct a model from a dataset array.

Create the nonlinear model from a dataset array.

ds = dataset({X,'X'},{y,'y'});
mdl2 = fitnlm(ds,modelfun,beta0);

Find the predicted model responses (CDF) at X values [-15;5;12].

Xnew = [-15;5;12];
ynew = feval(mdl2,Xnew)

ynew = 3×1

    5.4122
   18.9022
   26.5161

random

The random method simulates new random response values, equal to the mean prediction plus a
random disturbance with the same variance as the training data.

Xnew = [-15;5;12];
ysim = random(mdl,Xnew)

ysim = 3×1

    6.0505
   19.0893
   25.4647

Rerun the random method. The results change.

ysim = random(mdl,Xnew)

ysim = 3×1

    6.3813
   19.2157
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   26.6541
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Nonlinear Regression Workflow

This example shows how to do a typical nonlinear regression workflow: import data, fit a nonlinear
regression, test its quality, modify it to improve the quality, and make predictions based on the model.

Step 1. Prepare the data.

Load the reaction data.

load reaction

Examine the data in the workspace. reactants is a matrix with 13 rows and 3 columns. Each row
corresponds to one observation, and each column corresponds to one variable. The variable names
are in xn:

xn

xn = 3x10 char array
    'Hydrogen  '
    'n-Pentane '
    'Isopentane'

Similarly, rate is a vector of 13 responses, with the variable name in yn:

yn

yn = 
'Reaction Rate'

The hougen.m file contains a nonlinear model of reaction rate as a function of the three predictor
variables. For a 5-D vector b and 3-D vector x,

hougen(b, x) = b(1)x(2)− x(3)/b(5)
1 + b(2)x(1) + b(3)x(2) + b(4)x(3)

As a start point for the solution, take b as a vector of ones.

beta0 = ones(5,1);

Step 2. Fit a nonlinear model to the data.

mdl = fitnlm(reactants,...
    rate,@hougen,beta0)

mdl = 
Nonlinear regression model:
    y ~ hougen(b,X)

Estimated Coefficients:
          Estimate       SE       tStat     pValue 
          ________    ________    ______    _______

    b1      1.2526     0.86702    1.4447    0.18654
    b2    0.062776    0.043562    1.4411    0.18753
    b3    0.040048    0.030885    1.2967    0.23089
    b4     0.11242    0.075158    1.4957    0.17309
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    b5      1.1914     0.83671    1.4239     0.1923

Number of observations: 13, Error degrees of freedom: 8
Root Mean Squared Error: 0.193
R-Squared: 0.999,  Adjusted R-Squared 0.998
F-statistic vs. zero model: 3.91e+03, p-value = 2.54e-13

Step 3. Examine the quality of the model.

The root mean squared error is fairly low compared to the range of observed values.

[mdl.RMSE min(rate) max(rate)]

ans = 1×3

    0.1933    0.0200   14.3900

Examine a residuals plot.

plotResiduals(mdl)

The model seems adequate for the data.

Examine a diagnostic plot to look for outliers.

plotDiagnostics(mdl,'cookd')
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Observation 6 seems out of line.

Step 4. Remove the outlier.

Remove the outlier from the fit using the Exclude name-value pair.

mdl1 = fitnlm(reactants,...
    rate,@hougen,ones(5,1),'Exclude',6)

mdl1 = 
Nonlinear regression model:
    y ~ hougen(b,X)

Estimated Coefficients:
          Estimate       SE       tStat     pValue 
          ________    ________    ______    _______

    b1       0.619      0.4552    1.3598    0.21605
    b2    0.030377    0.023061    1.3172    0.22924
    b3    0.018927     0.01574    1.2024    0.26828
    b4    0.053411    0.041084       1.3    0.23476
    b5      2.4125      1.7903    1.3475     0.2198

Number of observations: 12, Error degrees of freedom: 7
Root Mean Squared Error: 0.198
R-Squared: 0.999,  Adjusted R-Squared 0.998
F-statistic vs. zero model: 2.67e+03, p-value = 2.54e-11
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The model coefficients changed quite a bit from those in mdl.

Step 5. Examine slice plots of both models.

To see the effect of each predictor on the response, make a slice plot using plotSlice(mdl).

plotSlice(mdl)  

plotSlice(mdl1)  

13 Nonlinear Regression

13-16



The plots look very similar, with slightly wider confidence bounds for mdl1. This difference is
understandable, since there is one less data point in the fit, representing over 7% fewer observations.

Step 6. Predict for new data.

Create some new data and predict the response from both models.

Xnew =  [200,200,200;100,200,100;500,50,5];
[ypred yci] = predict(mdl,Xnew)

ypred = 3×1

    1.8762
    6.2793
    1.6718

yci = 3×2

    1.6283    2.1242
    5.9789    6.5797
    1.5589    1.7846

[ypred1 yci1] = predict(mdl1,Xnew)

ypred1 = 3×1

    1.8984
    6.2555
    1.6594

yci1 = 3×2

    1.6260    2.1708
    5.9323    6.5787
    1.5345    1.7843

Even though the model coefficients are dissimilar, the predictions are nearly identical.
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Mixed-Effects Models
In this section...
“Introduction to Mixed-Effects Models” on page 13-18
“Mixed-Effects Model Hierarchy” on page 13-18
“Specifying Mixed-Effects Models” on page 13-19
“Specifying Covariate Models” on page 13-21
“Choosing nlmefit or nlmefitsa” on page 13-22
“Using Output Functions with Mixed-Effects Models” on page 13-24

Introduction to Mixed-Effects Models
In statistics, an effect is anything that influences the value of a response variable at a particular
setting of the predictor variables. Effects are translated into model parameters. In linear models,
effects become coefficients, representing the proportional contributions of model terms. In nonlinear
models, effects often have specific physical interpretations, and appear in more general nonlinear
combinations.

Fixed effects represent population parameters, assumed to be the same each time data is collected.
Estimating fixed effects is the traditional domain of regression modeling. Random effects, by
comparison, are sample-dependent random variables. In modeling, random effects act like additional
error terms, and their distributions and covariances must be specified.

For example, consider a model of the elimination of a drug from the bloodstream. The model uses
time t as a predictor and the concentration of the drug C as the response. The nonlinear model term
C0e–rt combines parameters C0 and r, representing, respectively, an initial concentration and an
elimination rate. If data is collected across multiple individuals, it is reasonable to assume that the
elimination rate is a random variable ri depending on individual i, varying around a population mean
r . The term C0e–rt becomes

C0e−[r + (ri− r )]t = C0e−(β + bi)t,

where β = r  is a fixed effect and bi = ri− r  is a random effect.

Random effects are useful when data falls into natural groups. In the drug elimination model, the
groups are simply the individuals under study. More sophisticated models might group data by an
individual's age, weight, diet, etc. Although the groups are not the focus of the study, adding random
effects to a model extends the reliability of inferences beyond the specific sample of individuals.

Mixed-effects models account for both fixed and random effects. As with all regression models, their
purpose is to describe a response variable as a function of the predictor variables. Mixed-effects
models, however, recognize correlations within sample subgroups. In this way, they provide a
compromise between ignoring data groups entirely and fitting each group with a separate model.

Mixed-Effects Model Hierarchy
Suppose data for a nonlinear regression model falls into one of m distinct groups i = 1, ..., m. To
account for the groups in a model, write response j in group i as:
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yi j = f (φ, xi j) + εi j

yij is the response, xij is a vector of predictors, φ is a vector of model parameters, and εij is the
measurement or process error. The index j ranges from 1 to ni, where ni is the number of observations
in group i. The function f specifies the form of the model. Often, xij is simply an observation time tij.
The errors are usually assumed to be independent and identically, normally distributed, with constant
variance.

Estimates of the parameters in φ describe the population, assuming those estimates are the same for
all groups. If, however, the estimates vary by group, the model becomes

yi j = f (φi, xi j) + εi j

In a mixed-effects model, φi may be a combination of a fixed and a random effect:

φi = β + bi

The random effects bi are usually described as multivariate normally distributed, with mean zero and
covariance Ψ. Estimating the fixed effects β and the covariance of the random effects Ψ provides a
description of the population that does not assume the parameters φi are the same across groups.
Estimating the random effects bi also gives a description of specific groups within the data.

Model parameters do not have to be identified with individual effects. In general, design matrices A
and B are used to identify parameters with linear combinations of fixed and random effects:

φi = Aβ + Bbi

If the design matrices differ among groups, the model becomes

φi = Aiβ + Bibi

If the design matrices also differ among observations, the model becomes

φi j = Ai jβ + Bi jbi
yi j = f (φi j, xi j) + εi j

Some of the group-specific predictors in xij may not change with observation j. Calling those vi, the
model becomes

yi j = f (φi j, xi j, vi) + εi j

Specifying Mixed-Effects Models
Suppose data for a nonlinear regression model falls into one of m distinct groups i = 1, ..., m.
(Specifically, suppose that the groups are not nested.) To specify a general nonlinear mixed-effects
model for this data:

1 Define group-specific model parameters φi as linear combinations of fixed effects β and random
effects bi.

2 Define response values yi as a nonlinear function f of the parameters and group-specific predictor
variables Xi.

The model is:
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φi = Aiβ + Bibi
yi = f (φi, Xi) + εi

bi ∼ N(0, Ψ)

εi ∼ N(0, σ2)

This formulation of the nonlinear mixed-effects model uses the following notation:

φi A vector of group-specific model parameters
β A vector of fixed effects, modeling population parameters
bi A vector of multivariate normally distributed group-specific random effects
Ai A group-specific design matrix for combining fixed effects
Bi A group-specific design matrix for combining random effects
Xi A data matrix of group-specific predictor values
yi A data vector of group-specific response values
f A general, real-valued function of φi and Xi

εi A vector of group-specific errors, assumed to be independent, identically, normally
distributed, and independent of bi

Ψ A covariance matrix for the random effects
σ2 The error variance, assumed to be constant across observations

For example, consider a model of the elimination of a drug from the bloodstream. The model
incorporates two overlapping phases:

• An initial phase p during which drug concentrations reach equilibrium with surrounding tissues
• A second phase q during which the drug is eliminated from the bloodstream

For data on multiple individuals i, the model is

yi j = Cpie
−rpiti j + Cqie

−rqiti j + εi j,

where yij is the observed concentration in individual i at time tij. The model allows for different
sampling times and different numbers of observations for different individuals.

The elimination rates rpi and rqi must be positive to be physically meaningful. Enforce this by
introducing the log rates Rpi = log(rpi) and Rqi = log(rqi) and reparameterizing the model:

yi j = Cpie
−exp(Rpi)ti j + Cqie

−exp(Rqi)ti j + εi j

Choosing which parameters to model with random effects is an important consideration when
building a mixed-effects model. One technique is to add random effects to all parameters, and use
estimates of their variances to determine their significance in the model. An alternative is to fit the
model separately to each group, without random effects, and look at the variation of the parameter
estimates. If an estimate varies widely across groups, or if confidence intervals for each group have
minimal overlap, the parameter is a good candidate for a random effect.

To introduce fixed effects β and random effects bi for all model parameters, reexpress the model as
follows:
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yi j = [Cp + (Cpi− Cp)]e−exp[Rp + (Rpi− Rp)]ti j +

[Cq + (Cqi− Cq)]e−exp[Rq + (Rqi− Rq)]ti j + εi j

= (β1 + b1i)e
−exp(β2 + b2i)ti j +

(β3 + b3i)e
−exp(β4 + b4i)ti j + εi j

In the notation of the general model:

β =
β1

⋮
β4

, bi =
bi1

⋮
bi4

, yi =
yi1

⋮
yini

, Xi =
ti1
⋮
tini

,

where ni is the number of observations of individual i. In this case, the design matrices Ai and Bi are,
at least initially, 4-by-4 identity matrices. Design matrices may be altered, as necessary, to introduce
weighting of individual effects, or time dependency.

Fitting the model and estimating the covariance matrix Ψ often leads to further refinements. A
relatively small estimate for the variance of a random effect suggests that it can be removed from the
model. Likewise, relatively small estimates for covariances among certain random effects suggests
that a full covariance matrix is unnecessary. Since random effects are unobserved, Ψ must be
estimated indirectly. Specifying a diagonal or block-diagonal covariance pattern for Ψ can improve
convergence and efficiency of the fitting algorithm.

Statistics and Machine Learning Toolbox functions nlmefit and nlmefitsa fit the general nonlinear
mixed-effects model to data, estimating the fixed and random effects. The functions also estimate the
covariance matrix Ψ for the random effects. Additional diagnostic outputs allow you to assess
tradeoffs between the number of model parameters and the goodness of fit.

Specifying Covariate Models
If the model in “Specifying Mixed-Effects Models” on page 13-19 assumes a group-dependent
covariate such as weight (w) the model becomes:

φ1
φ2
φ3

=
1 0 0 wi
0 1 0 0
0 0 1 0

β1
β2
β3
β4

+
1 0 0
0 1 0
0 0 1

b1
b2
b3

Thus, the parameter φi for any individual in the ith group is:

φ1i
φ2i
φ3i

=
β1 + β4wi

β2
β3

+

b1i
b2i
b3i

To specify a covariate model, use the 'FEGroupDesign' name-value argument of nlmefit or
nlmefitsa.

'FEGroupDesign' is a p-by-q-by-m array specifying a different p-by-q fixed-effects design matrix
for each of the m groups. Using the previous example, the array resembles the following:
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% Number of parameters in the model (Phi)
num_params = 3;
% Number of covariates
num_cov = 1;
% Assuming number of groups in the data set is 7
num_groups = 7;
% Array of covariate values
covariates = [75; 52; 66; 55; 70; 58; 62 ];
A = repmat(eye(num_params, num_params+num_cov),...
[1,1,num_groups]);
A(1,num_params+1,1:num_groups) = covariates(:,1)

Specify 'FEGroupDesign',A to use the design matrix A.

Choosing nlmefit or nlmefitsa
Statistics and Machine Learning Toolbox provides two functions, nlmefit and nlmefitsa for fitting
nonlinear mixed-effects models. Each function provides different capabilities, which may help you
decide which to use.

Approximation Methods

nlmefit provides the following four approximation methods for fitting nonlinear mixed-effects
models:

• 'LME' — Use the likelihood for the linear mixed-effects model at the current conditional estimates
of beta and B. This is the default.

• 'RELME' — Use the restricted likelihood for the linear mixed-effects model at the current
conditional estimates of beta and B.

• 'FO' — First-order Laplacian approximation without random effects.
• 'FOCE' — First-order Laplacian approximation at the conditional estimates of B.

nlmefitsa provides an additional approximation method, Stochastic Approximation Expectation-
Maximization (SAEM) [25] with three steps :

1 Simulation: Generate simulated values of the random effects b from the posterior density p(b|Σ)
given the current parameter estimates.

2 Stochastic approximation: Update the expected value of the log likelihood function by taking its
value from the previous step, and moving part way toward the average value of the log likelihood
calculated from the simulated random effects.
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3 Maximization step: Choose new parameter estimates to maximize the log likelihood function
given the simulated values of the random effects.

Both nlmefit and nlmefitsa attempt to find parameter estimates to maximize a likelihood
function, which is difficult to compute. nlmefit deals with the problem by approximating the
likelihood function in various ways, and maximizing the approximate function. It uses traditional
optimization techniques that depend on things like convergence criteria and iteration limits.

nlmefitsa, on the other hand, simulates random values of the parameters in such a way that in the
long run they converge to the values that maximize the exact likelihood function. The results are
random, and traditional convergence tests don't apply. Therefore nlmefitsa provides options to plot
the results as the simulation progresses, and to restart the simulation multiple times. You can use
these features to judge whether the results have converged to the accuracy you desire.

Parameters Specific to nlmefitsa

The following parameters are specific to nlmefitsa. Most control the stochastic algorithm.

• Cov0 — Initial value for the covariance matrix PSI. Must be an r-by-r positive definite matrix. If
empty, the default value depends on the values of BETA0.

• ComputeStdErrors — true to compute standard errors for the coefficient estimates and store
them in the output STATS structure, or false (default) to omit this computation.

• LogLikMethod — Specifies the method for approximating the log likelihood.
• NBurnIn — Number of initial burn-in iterations during which the parameter estimates are not

recomputed. Default is 5.
• NIterations — Controls how many iterations are performed for each of three phases of the

algorithm.
• NMCMCIterations — Number of Markov Chain Monte Carlo (MCMC) iterations.

Model and Data Requirements

There are some differences in the capabilities of nlmefit and nlmefitsa. Therefore some data and
models are usable with either function, but some may require you to choose just one of them.

• Error models — nlmefitsa supports a variety of error models. For example, the standard
deviation of the response can be constant, proportional to the function value, or a combination of
the two. nlmefit fits models under the assumption that the standard deviation of the response is
constant. One of the error models, 'exponential', specifies that the log of the response has a
constant standard deviation. You can fit such models using nlmefit by providing the log response
as input, and by rewriting the model function to produce the log of the nonlinear function value.

• Random effects — Both functions fit data to a nonlinear function with parameters, and the
parameters may be simple scalar values or linear functions of covariates. nlmefit allows any
coefficients of the linear functions to have both fixed and random effects. nlmefitsa supports
random effects only for the constant (intercept) coefficient of the linear functions, but not for
slope coefficients. So in the example in “Specifying Covariate Models” on page 13-21, nlmefitsa
can treat only the first three beta values as random effects.

• Model form — nlmefit supports a very general model specification, with few restrictions on the
design matrices that relate the fixed coefficients and the random effects to the model parameters.
nlmefitsa is more restrictive:

• The fixed effect design must be constant in every group (for every individual), so an
observation-dependent design is not supported.
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• The random effect design must be constant for the entire data set, so neither an observation-
dependent design nor a group-dependent design is supported.

• As mentioned under Random Effects, the random effect design must not specify random
effects for slope coefficients. This implies that the design must consist of zeros and ones.

• The random effect design must not use the same random effect for multiple coefficients, and
cannot use more than one random effect for any single coefficient.

• The fixed effect design must not use the same coefficient for multiple parameters. This implies
that it can have at most one nonzero value in each column.

If you want to use nlmefitsa for data in which the covariate effects are random, include the
covariates directly in the nonlinear model expression. Don't include the covariates in the fixed or
random effect design matrices.

• Convergence — As described in the Model form, nlmefit and nlmefitsa have different
approaches to measuring convergence. nlmefit uses traditional optimization measures, and
nlmefitsa provides diagnostics to help you judge the convergence of a random simulation.

In practice, nlmefitsa tends to be more robust, and less likely to fail on difficult problems. However,
nlmefit may converge faster on problems where it converges at all. Some problems may benefit
from a combined strategy, for example by running nlmefitsa for a while to get reasonable
parameter estimates, and using those as a starting point for additional iterations using nlmefit.

Using Output Functions with Mixed-Effects Models
The Outputfcn field of the options structure specifies one or more functions that the solver calls
after each iteration. Typically, you might use an output function to plot points at each iteration or to
display optimization quantities from the algorithm. To set up an output function:

1 Write the output function as a MATLAB file function or local function.
2 Use statset to set the value of Outputfcn to be a function handle, that is, the name of the

function preceded by the @ sign. For example, if the output function is outfun.m, the command

 options = statset('OutputFcn', @outfun);

specifies OutputFcn to be the handle to outfun. To specify multiple output functions, use the
syntax:

 options = statset('OutputFcn',{@outfun, @outfun2});
3 Call the optimization function with options as an input argument.

For an example of an output function, see “Sample Output Function” on page 13-27.

Structure of the Output Function

The function definition line of the output function has the following form:

stop = outfun(beta,status,state)

where

• beta is the current fixed effects.
• status is a structure containing data from the current iteration. “Fields in status” on page 13-25

describes the structure in detail.
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• state is the current state of the algorithm. “States of the Algorithm” on page 13-25 lists the
possible values.

• stop is a flag that is true or false depending on whether the optimization routine should quit or
continue. See “Stop Flag” on page 13-26 for more information.

The solver passes the values of the input arguments to outfun at each iteration.

Fields in status

The following table lists the fields of the status structure:

Field Description
procedure • 'ALT' — alternating algorithm for the optimization of the linear mixed effects

or restricted linear mixed effects approximations
• 'LAP' — optimization of the Laplacian approximation for first order or first

order conditional estimation
iteration An integer starting from 0.
inner A structure describing the status of the inner iterations within the ALT and LAP

procedures, with the fields:

• procedure — When procedure is 'ALT':

• 'PNLS' (penalized nonlinear least squares)
• 'LME' (linear mixed-effects estimation)
• 'none'

When procedure is 'LAP',

• 'PNLS' (penalized nonlinear least squares)
• 'PLM' (profiled likelihood maximization)
• 'none'

• state — one of the following:

• 'init'
• 'iter'
• 'done'
• 'none'

• iteration — an integer starting from 0, or NaN. For nlmefitsa with burn-
in iterations, the output function is called after each of those iterations with a
negative value for STATUS.iteration.

fval The current log likelihood
Psi The current random-effects covariance matrix
theta The current parameterization of Psi
mse The current error variance

States of the Algorithm

The following table lists the possible values for state:
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state Description
'init' The algorithm is in the initial state before the first iteration.
'iter' The algorithm is at the end of an iteration.
'done' The algorithm is in the final state after the last iteration.

The following code illustrates how the output function might use the value of state to decide which
tasks to perform at the current iteration:

switch state
    case 'iter'
          % Make updates to plot or guis as needed
    case 'init'
          % Setup for plots or guis
    case 'done'
          % Cleanup of plots, guis, or final plot
otherwise
end

Stop Flag

The output argument stop is a flag that is true or false. The flag tells the solver whether it should
quit or continue. The following examples show typical ways to use the stop flag.

Stopping an Optimization Based on Intermediate Results

The output function can stop the estimation at any iteration based on the values of arguments passed
into it. For example, the following code sets stop to true based on the value of the log likelihood
stored in the 'fval'field of the status structure:

stop = outfun(beta,status,state)
stop = false;
% Check if loglikelihood is more than 132.
if status.fval > -132
    stop = true;
end

Stopping an Iteration Based on GUI Input

If you design a GUI to perform nlmefit iterations, you can make the output function stop when a
user clicks a Stop button on the GUI. For example, the following code implements a dialog to cancel
calculations:

function retval = stop_outfcn(beta,str,status)
persistent h stop;
if isequal(str.inner.state,'none')
    switch(status)
        case 'init'
            % Initialize dialog
            stop = false;
            h = msgbox('Press STOP to cancel calculations.',...
                'NLMEFIT: Iteration 0 ');
            button = findobj(h,'type','uicontrol');
            set(button,'String','STOP','Callback',@stopper)
            pos = get(h,'Position');
            pos(3) = 1.1 * pos(3);
            set(h,'Position',pos)
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            drawnow
        case 'iter'
            % Display iteration number in the dialog title
            set(h,'Name',sprintf('NLMEFIT: Iteration %d',...
                str.iteration))
            drawnow;
        case 'done'
            % Delete dialog
            delete(h);
    end
end
if stop
    % Stop if the dialog button has been pressed
    delete(h)
end
retval = stop;
 
    function stopper(varargin)
        % Set flag to stop when button is pressed
        stop = true;
        disp('Calculation stopped.')
    end
end

Sample Output Function

nmlefitoutputfcn is the sample Statistics and Machine Learning Toolbox output function for
nlmefit and nlmefitsa. It initializes or updates a plot with the fixed-effects (BETA) and variance of
the random effects (diag(STATUS.Psi)). For nlmefit, the plot also includes the log-likelihood
(STATUS.fval).

nlmefitoutputfcn is the default output function for nlmefitsa. To use it with nlmefit, specify a
function handle for it in the options structure:

opt = statset('OutputFcn', @nlmefitoutputfcn, …)
beta = nlmefit(…, 'Options', opt, …)

To prevent nlmefitsa from using of this function, specify an empty value for the output function:

opt = statset('OutputFcn', [], …)
beta = nlmefitsa(…, 'Options', opt, …)

nlmefitoutputfcn stops nlmefit or nlmefitsa if you close the figure that it produces.

See Also
nlmefit | nlmefitsa

Related Examples
• “Mixed-Effects Models Using nlmefit and nlmefitsa” on page 13-33
• “Examining Residuals for Model Verification” on page 13-28
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Examining Residuals for Model Verification
You can examine the stats structure, which is returned by both nlmefit and nlmefitsa, to
determine the quality of your model. The stats structure contains fields with conditional weighted
residuals (cwres field) and individual weighted residuals (iwres field). Since the model assumes that
residuals are normally distributed, you can examine the residuals to see how well this assumption
holds.

This example generates synthetic data using normal distributions. It shows how the fit statistics look:

• Good when testing against the same type of model as generates the data
• Poor when tested against incorrect data models

1 Initialize a 2-D model with 100 individuals:

nGroups = 100; % 100 Individuals
nlmefun = @(PHI,t)(PHI(:,1)*5 + PHI(:,2)^2.*t); % Regression fcn
REParamsSelect = [1  2]; % Both Parameters have random effect
errorParam = .03; 
beta0 = [ 1.5  5]; % Parameter means
psi = [ 0.35  0; ...  % Covariance Matrix
       0   0.51 ];
time =[0.25;0.5;0.75;1;1.25;2;3;4;5;6];
nParameters = 2;
rng(0,'twister') % for reproducibility

2 Generate the data for fitting with a proportional error model:

b_i = mvnrnd(zeros(1, numel(REParamsSelect)), psi, nGroups);
individualParameters = zeros(nGroups,nParameters);
individualParameters(:, REParamsSelect) = ...
     bsxfun(@plus,beta0(REParamsSelect), b_i);

groups = repmat(1:nGroups,numel(time),1);
groups = vertcat(groups(:));

y = zeros(numel(time)*nGroups,1);
x = zeros(numel(time)*nGroups,1);
for i = 1:nGroups
    idx = groups == i;
    f = nlmefun(individualParameters(i,:), time);
    % Make a proportional error model for y:
    y(idx) = f + errorParam*f.*randn(numel(f),1);
    x(idx) = time;
end

P = [ 1 0 ; 0 1 ];
3 Fit the data using the same regression function and error model as the model generator:

[~,~,stats] = nlmefit(x,y,groups, ...
    [],nlmefun,[1 1],'REParamsSelect',REParamsSelect,...
    'ErrorModel','Proportional','CovPattern',P);

4 Create a plotting routine by copying the following function definition, and creating a file
plotResiduals.m on your MATLAB path:

function plotResiduals(stats)
pwres = stats.pwres;
iwres = stats.iwres;
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cwres = stats.cwres;
figure
subplot(2,3,1);
normplot(pwres); title('PWRES')
subplot(2,3,4);
createhistplot(pwres);

subplot(2,3,2);
normplot(cwres); title('CWRES')
subplot(2,3,5);
createhistplot(cwres);

subplot(2,3,3);
normplot(iwres); title('IWRES')
subplot(2,3,6);
createhistplot(iwres); title('IWRES')

function createhistplot(pwres)
h = histogram(pwres);

% x is the probability/height for each bin
x = h.Values/sum(h.Values*h.BinWidth)

% n is the center of each bin
n = h.BinEdges + (0.5*h.BinWidth)
n(end) = [];

bar(n,x);
ylim([0 max(x)*1.05]);
hold on;
x2 = -4:0.1:4;
f2 = normpdf(x2,0,1);
plot(x2,f2,'r');
end

end
5 Plot the residuals using the plotResiduals function:

plotResiduals(stats);
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The upper probability plots look straight, meaning the residuals are normally distributed. The
bottom histogram plots match the superimposed normal density plot. So you can conclude that
the error model matches the data.

6 For comparison, fit the data using a constant error model, instead of the proportional model that
created the data:

[~,~,stats] = nlmefit(x,y,groups, ...
    [],nlmefun,[0 0],'REParamsSelect',REParamsSelect,...
    'ErrorModel','Constant','CovPattern',P);
plotResiduals(stats);
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The upper probability plots are not straight, indicating the residuals are not normally distributed.
The bottom histogram plots are fairly close to the superimposed normal density plots.

7 For another comparison, fit the data to a different structural model than the one that created the
data:

nlmefun2 = @(PHI,t)(PHI(:,1)*5 + PHI(:,2).*t.^4);
[~,~,stats] = nlmefit(x,y,groups, ...
    [],nlmefun2,[0 0],'REParamsSelect',REParamsSelect,...
    'ErrorModel','constant', 'CovPattern',P);
plotResiduals(stats);
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The upper probability plots are not straight. Also, the histogram plots are quite skewed
compared to the superimposed normal density plots. These residuals are not normally
distributed, and do not match the model.

See Also
nlmefit | nlmefitsa

Related Examples
• “Mixed-Effects Models” on page 13-18
• “Mixed-Effects Models Using nlmefit and nlmefitsa” on page 13-33
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Mixed-Effects Models Using nlmefit and nlmefitsa

This example fits mixed-effects models, plots predictions and residuals, and interprets the results.

Load the sample data.

load indomethacin

The data in indomethacin.mat records concentrations of the drug indomethacin in the bloodstream
of six subjects over eight hours.

Plot the scatter plot of indomethacin in the bloodstream grouped by subject.

colors = 'rygcbm';
gscatter(time,concentration,subject,colors)
xlabel('Time (hours)')
ylabel('Concentration (mcg/ml)')
title('{\bf Indomethacin Elimination}')
hold on

Including random effects in a model is effective when data falls into natural groups. In this data, the
groups are simply the individuals under study. For details on mixed-effects models, which account for
fixed effects and random effects, see “Mixed-Effects Models” on page 13-18.

Construct the model via an anonymous function.
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model = @(phi,t)(phi(1)*exp(-exp(phi(2))*t) + ...
                 phi(3)*exp(-exp(phi(4))*t));

Use the nlinfit function to fit the model to all of the data, ignoring subject-specific effects.

phi0 = [1 2 1 1];
[phi,res] = nlinfit(time,concentration,model,phi0);

Compute the mean squared error.

numObs = length(time);
numParams = 4;
df = numObs-numParams;
mse = (res'*res)/df

mse = 0.0304

Superimpose the model on the scatter plot of data.

tplot = 0:0.01:8;
plot(tplot,model(phi,tplot),'k','LineWidth',2)
hold off

Draw the box plot of residuals by subject.

h = boxplot(res,subject,'colors',colors,'symbol','o');
set(h(~isnan(h)),'LineWidth',2)
hold on

13 Nonlinear Regression

13-34



boxplot(res,subject,'colors','k','symbol','ko')
grid on
xlabel('Subject')
ylabel('Residual')
hold off

The box plot of residuals by subject shows that the boxes are mostly above or below zero, indicating
that the model has failed to account for subject-specific effects.

To account for subject-specific effects, fit the model separately to the data for each subject.

phi0 = [1 2 1 1];
PHI = zeros(4,6);
RES = zeros(11,6);
for I = 1:6
    tI = time(subject == I);
    cI = concentration(subject == I);
    [PHI(:,I),RES(:,I)] = nlinfit(tI,cI,model,phi0);
end
PHI

PHI = 4×6

    2.0293    2.8277    5.4683    2.1981    3.5661    3.0023
    0.5794    0.8013    1.7498    0.2423    1.0408    1.0882
    0.1915    0.4989    1.6757    0.2545    0.2915    0.9685
   -1.7878   -1.6354   -0.4122   -1.6026   -1.5069   -0.8731
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Compute the mean squared error.

numParams = 24;
df = numObs-numParams;
mse = (RES(:)'*RES(:))/df

mse = 0.0057

Plot the scatter plot of the data and superimpose the model for each subject.

gscatter(time,concentration,subject,colors)
xlabel('Time (hours)')
ylabel('Concentration (mcg/ml)')
title('{\bf Indomethacin Elimination}')
hold on
for I = 1:6
    plot(tplot,model(PHI(:,I),tplot),'Color',colors(I))
end
axis([0 8 0 3.5])
hold off

PHI gives estimates of the four model parameters for each of the six subjects. The estimates vary
considerably, but taken as a 24-parameter model of the data, the mean-squared error of 0.0057 is a
significant reduction from 0.0304 in the original four-parameter model.

Draw the box plot of residuals by subject.

h = boxplot(RES,'colors',colors,'symbol','o');
set(h(~isnan(h)),'LineWidth',2)
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hold on
boxplot(RES,'colors','k','symbol','ko')
grid on
xlabel('Subject')
ylabel('Residual')
hold off

Now the box plot shows that the larger model accounts for most of the subject-specific effects. The
spread of the residuals (the vertical scale of the box plot) is much smaller than in the previous box
plot, and the boxes are now mostly centered on zero.

While the 24-parameter model successfully accounts for variations due to the specific subjects in the
study, it does not consider the subjects as representatives of a larger population. The sampling
distribution from which the subjects are drawn is likely more interesting than the sample itself. The
purpose of mixed-effects models is to account for subject-specific variations more broadly, as random
effects varying around population means.

Use the nlmefit function to fit a mixed-effects model to the data. You can also use nlmefitsa in
place of nlmefit .

The following anonymous function, nlme_model , adapts the four-parameter model used by nlinfit
to the calling syntax of nlmefit by allowing separate parameters for each individual. By default,
nlmefit assigns random effects to all the model parameters. Also by default, nlmefit assumes a
diagonal covariance matrix (no covariance among the random effects) to avoid overparameterization
and related convergence issues.
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nlme_model = @(PHI,t)(PHI(:,1).*exp(-exp(PHI(:,2)).*t) + ...
                      PHI(:,3).*exp(-exp(PHI(:,4)).*t));
phi0 = [1 2 1 1];
[phi,PSI,stats] = nlmefit(time,concentration,subject, ...
                          [],nlme_model,phi0)

phi = 4×1

    2.8277
    0.7729
    0.4606
   -1.3459

PSI = 4×4

    0.3264         0         0         0
         0    0.0250         0         0
         0         0    0.0124         0
         0         0         0    0.0000

stats = struct with fields:
           dfe: 57
          logl: 54.5882
           mse: 0.0066
          rmse: 0.0787
    errorparam: 0.0815
           aic: -91.1765
           bic: -93.0506
          covb: [4x4 double]
        sebeta: [0.2558 0.1066 0.1092 0.2244]
          ires: [66x1 double]
          pres: [66x1 double]
         iwres: [66x1 double]
         pwres: [66x1 double]
         cwres: [66x1 double]

The mean-squared error of 0.0066 is comparable to the 0.0057 of the 24-parameter model without
random effects, and significantly better than the 0.0304 of the four-parameter model without random
effects.

The estimated covariance matrix PSI shows that the variance of the fourth random effect is
essentially zero, suggesting that you can remove it to simplify the model. To do this, use the
'REParamsSelect' name-value pair to specify the indices of the parameters to be modeled with
random effects in nlmefit .

[phi,PSI,stats] = nlmefit(time,concentration,subject, ...
                          [],nlme_model,phi0, ...
                          'REParamsSelect',[1 2 3])

phi = 4×1

    2.8277
    0.7728
    0.4605
   -1.3460
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PSI = 3×3

    0.3270         0         0
         0    0.0250         0
         0         0    0.0124

stats = struct with fields:
           dfe: 58
          logl: 54.5875
           mse: 0.0066
          rmse: 0.0780
    errorparam: 0.0815
           aic: -93.1750
           bic: -94.8410
          covb: [4x4 double]
        sebeta: [0.2560 0.1066 0.1092 0.2244]
          ires: [66x1 double]
          pres: [66x1 double]
         iwres: [66x1 double]
         pwres: [66x1 double]
         cwres: [66x1 double]

The log-likelihood logl is almost identical to what it was with random effects for all of the
parameters, the Akaike information criterion aic is reduced from -91.1765 to -93.1750, and the
Bayesian information criterion bic is reduced from -93.0506 to -94.8410. These measures support
the decision to drop the fourth random effect.

Refitting the simplified model with a full covariance matrix allows for identification of correlations
among the random effects. To do this, use the CovPattern parameter to specify the pattern of
nonzero elements in the covariance matrix.

[phi,PSI,stats] = nlmefit(time,concentration,subject, ...
                          [],nlme_model,phi0, ...
                          'REParamsSelect',[1 2 3], ...
                          'CovPattern',ones(3))

phi = 4×1

    2.8150
    0.8289
    0.5608
   -1.1415

PSI = 3×3

    0.4764    0.1152    0.0499
    0.1152    0.0321    0.0032
    0.0499    0.0032    0.0235

stats = struct with fields:
           dfe: 55
          logl: 58.4694
           mse: 0.0061
          rmse: 0.0782
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    errorparam: 0.0781
           aic: -94.9387
           bic: -97.2294
          covb: [4x4 double]
        sebeta: [0.3027 0.1104 0.1178 0.1663]
          ires: [66x1 double]
          pres: [66x1 double]
         iwres: [66x1 double]
         pwres: [66x1 double]
         cwres: [66x1 double]

The estimated covariance matrix PSI shows that the random effects on the first two parameters have
a relatively strong correlation, and both have a relatively weak correlation with the last random
effect. This structure in the covariance matrix is more apparent if you convert PSI to a correlation
matrix using corrcov .

RHO = corrcov(PSI)

RHO = 3×3

    1.0000    0.9311    0.4716
    0.9311    1.0000    0.1173
    0.4716    0.1173    1.0000

clf; 
imagesc(RHO)
set(gca,'XTick',[1 2 3],'YTick',[1 2 3])
title('{\bf Random Effect Correlation}')
h = colorbar;
set(get(h,'YLabel'),'String','Correlation');
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Incorporate this structure into the model by changing the specification of the covariance pattern to
block-diagonal.

P = [1 1 0;1 1 0;0 0 1] % Covariance pattern

P = 3×3

     1     1     0
     1     1     0
     0     0     1

[phi,PSI,stats,b] = nlmefit(time,concentration,subject, ...
                            [],nlme_model,phi0, ...
                            'REParamsSelect',[1 2 3], ...
                            'CovPattern',P)

phi = 4×1

    2.7830
    0.8981
    0.6581
   -1.0000

PSI = 3×3

    0.5180    0.1069         0

 Mixed-Effects Models Using nlmefit and nlmefitsa

13-41



    0.1069    0.0221         0
         0         0    0.0454

stats = struct with fields:
           dfe: 57
          logl: 58.0804
           mse: 0.0061
          rmse: 0.0768
    errorparam: 0.0782
           aic: -98.1608
           bic: -100.0350
          covb: [4x4 double]
        sebeta: [0.3171 0.1073 0.1384 0.1453]
          ires: [66x1 double]
          pres: [66x1 double]
         iwres: [66x1 double]
         pwres: [66x1 double]
         cwres: [66x1 double]

b = 3×6

   -0.8507   -0.1563    1.0427   -0.7559    0.5652    0.1550
   -0.1756   -0.0323    0.2152   -0.1560    0.1167    0.0320
   -0.2756    0.0519    0.2620    0.1064   -0.2835    0.1389

The block-diagonal covariance structure reduces aic from -94.9462 to -98.1608 and bic from
-97.2368 to -100.0350 without significantly affecting the log-likelihood. These measures support the
covariance structure used in the final model. The output b gives predictions of the three random
effects for each of the six subjects. These are combined with the estimates of the fixed effects in phi
to produce the mixed-effects model.

Plot the mixed-effects model for each of the six subjects. For comparison, the model without random
effects is also shown.

PHI = repmat(phi,1,6) + ...                 % Fixed effects
      [b(1,:);b(2,:);b(3,:);zeros(1,6)];    % Random effects
RES = zeros(11,6); % Residuals
colors = 'rygcbm';
for I = 1:6
    fitted_model = @(t)(PHI(1,I)*exp(-exp(PHI(2,I))*t) + ...
                        PHI(3,I)*exp(-exp(PHI(4,I))*t));
    tI = time(subject == I);
    cI = concentration(subject == I);
    RES(:,I) = cI - fitted_model(tI);
    
    subplot(2,3,I)
    scatter(tI,cI,20,colors(I),'filled')
    hold on
    plot(tplot,fitted_model(tplot),'Color',colors(I))
    plot(tplot,model(phi,tplot),'k')
    axis([0 8 0 3.5])
    xlabel('Time (hours)')
    ylabel('Concentration (mcg/ml)')
    legend(num2str(I),'Subject','Fixed')
end
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If obvious outliers in the data (visible in previous box plots) are ignored, a normal probability plot of
the residuals shows reasonable agreement with model assumptions on the errors.

figure
normplot(RES(:))
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See Also
nlmefit | nlmefitsa

Related Examples
• “Mixed-Effects Models” on page 13-18
• “Examining Residuals for Model Verification” on page 13-28
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Weighted Nonlinear Regression

This example shows how to fit a nonlinear regression model for data with nonconstant error variance.

Regular nonlinear least squares algorithms are appropriate when measurement errors all have the
same variance. When that assumption is not true, it is appropriate to used a weighted fit. This
example shows how to use weights with the fitnlm function.

Data and Model for the Fit

We'll use data collected to study water pollution caused by industrial and domestic waste. These data
are described in detail in Box, G.P., W.G. Hunter, and J.S. Hunter, Statistics for Experimenters (Wiley,
1978, pp. 483-487). The response variable is biochemical oxygen demand in mg/l, and the predictor
variable is incubation time in days.

x = [1 2 3 5 7 10]';
y = [109 149 149 191 213 224]';

plot(x,y,'ko')
xlabel('Incubation (days), x') 
ylabel('Biochemical oxygen demand (mg/l), y')

We'll assume that it is known that the first two observations were made with less precision than the
remaining observations. They might, for example, have been made with a different instrument.
Another common reason to weight data is that each recorded observation is actually the mean of

 Weighted Nonlinear Regression

13-45



several measurements taken at the same value of x. In the data here, suppose the first two values
represent a single raw measurement, while the remaining four are each the mean of 5 raw
measurements. Then it would be appropriate to weight by the number of measurements that went
into each observation.

w = [1 1 5 5 5 5]';

Fit the Model without Weights

The model we'll fit to these data is a scaled exponential curve that becomes level as x becomes large.

modelFun = @(b,x) b(1).*(1-exp(-b(2).*x));

Just based on a rough visual fit, it appears that a curve drawn through the points might level out at a
value of around 240 somewhere in the neighborhood of x = 15. So we'll use 240 as the starting value
for b1, and since e^(-.5*15) is small compared to 1, we'll use .5 as the starting value for b2.

start = [240; .5];

The danger in ignoring measurement error is that the fit may be overly influenced by imprecise
measurements, and may therefore not provide a good fit to measurements that are known precisely.
Let's fit the data without weights and compare it to the points.

nlm = fitnlm(x,y,modelFun,start);
xx = linspace(0,12)';
line(xx,predict(nlm,xx),'linestyle','--','color','k')
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Notice that the fitted curve is pulled toward the first two points, but seems to miss the trend of the
other points.

Fit the Model with Weights

Let's try repeating the fit using weights.

wnlm = fitnlm(x,y,modelFun,start,'Weight',w)

wnlm = 
Nonlinear regression model:
    y ~ b1*(1 - exp( - b2*x))

Estimated Coefficients:
          Estimate       SE       tStat       pValue  
          ________    ________    ______    __________

    b1     225.17         10.7    21.045    3.0134e-05
    b2    0.40078     0.064296    6.2333     0.0033745

Number of observations: 6, Error degrees of freedom: 4
Root Mean Squared Error: 24
R-Squared: 0.908,  Adjusted R-Squared 0.885
F-statistic vs. zero model: 696, p-value = 8.2e-06

line(xx,predict(wnlm,xx),'color','b')
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The estimated population standard deviation in this case describes the average variation for a
"standard" observation with a weight, or measurement precision, of 1.

wnlm.RMSE

ans = 24.0096

An important part of any analysis is an estimate of the precision of the model fit. The coefficient
display shows standard errors for the parameters, but we can also compute confidence intervals for
them.

coefCI(wnlm)

ans = 2×2

  195.4650  254.8788
    0.2223    0.5793

Estimate the Response Curve

Next, we'll compute the fitted response values and confidence intervals for them. By default, those
widths are for pointwise confidence bounds for the predicted value, but we will request simultaneous
intervals for the entire curve.

[ypred,ypredci] = predict(wnlm,xx,'Simultaneous',true);
plot(x,y,'ko',xx,ypred,'b-',xx,ypredci,'r:')
xlabel('x') 
ylabel('y')
ylim([-150 350])
legend({'Data','Weighted fit','95% Confidence Limits'}, ...
    'location','SouthEast')
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Notice that the two downweighted points are not fit as well by the curve as the remaining points.
That's as you would expect for a weighted fit.

It's also possible to estimate prediction intervals for future observations at specified values of x.
Those intervals will in effect assume a weight, or measurement precision, of 1.

[ypred,ypredci] = predict(wnlm,xx,'Simultaneous',true, ...
    'Prediction','observation');
plot(x,y,'ko',xx,ypred,'b-',xx,ypredci,'r:')
xlabel('x') 
ylabel('y')
ylim([-150 350])
legend({'Data','Weighted fit','95% Prediction Limits'}, ...
    'location','SouthEast')
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The absolute scale of the weights actually doesn't affect the parameter estimates. Rescaling the
weights by any constant would have given us the same estimates. But they do affect the confidence
bounds, since the bounds represent an observation with weight 1. Here you can see that the points
with higher weight seem too close to the fitted line, compared with the confidence limits.

Suppose we are interested in a new observation that is based on the average of five measurements,
just like the last four points in this plot. Specify observation weights by using the Weights name-
value argument of the predict function.

[new_ypred,new_ypredci] = predict(wnlm,xx,'Simultaneous',true, ...
    'Prediction','observation','Weights',5*ones(size(xx)));
plot(x,y,'ko',xx,new_ypred,'b-',xx,new_ypredci,'r:')
xlabel('x') 
ylabel('y')
ylim([-150 350])
legend({'Data','Weighted fit','95% Prediction Limits'}, ...
    'location','SouthEast')
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The predict function estimates the error variance at observation i by MSE*(1/W(i)), where MSE is
the mean squared error. Therefore, the confidence intervals become narrow.

Residual Analysis

In addition to plotting the data and the fit, plot the residuals from a fit against the predictors, to
diagnose any problems with the model. The residuals should appear independent and identically
distributed (i.i.d.) but with a variance proportional to the inverse of the weights. Plot standardized
residuals to confirm that the values are i.i.d. with the same variance. Standardized residuals are raw
residuals divided by their estimated standard deviations.

r = wnlm.Residuals.Standardized;
plot(x,r,'b^')
xlabel('x')
ylabel('Standardized Residuals')

 Weighted Nonlinear Regression

13-51



There is some evidence of systematic patterns in this residual plot. Notice how the last four residuals
have a linear trend, suggesting that the model might not increase fast enough as x increases. Also,
the magnitude of the residuals tends to decrease as x increases, suggesting that measurement error
may depend on x. These deserve investigation, however, there are so few data points, that it's hard to
attach significance to these apparent patterns.

See Also
NonLinearModel | fitnlm | predict | coefCI
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Pitfalls in Fitting Nonlinear Models by Transforming to
Linearity

This example shows pitfalls that can occur when fitting a nonlinear model by transforming to
linearity. Imagine that we have collected measurements on two variables, x and y, and we want to
model y as a function of x. Assume that x is measured exactly, while measurements of y are affected
by additive, symmetric, zero-mean errors.

x = [5.72 4.22 5.72 3.59 5.04 2.66 5.02 3.11 0.13 2.26 ...
     5.39 2.57 1.20 1.82 3.23 5.46 3.15 1.84 0.21 4.29 ...
     4.61 0.36 3.76 1.59 1.87 3.14 2.45 5.36 3.44 3.41]';
y = [2.66 2.91 0.94 4.28 1.76 4.08 1.11 4.33 8.94 5.25 ...
     0.02 3.88 6.43 4.08 4.90 1.33 3.63 5.49 7.23 0.88 ...
     3.08 8.12 1.22 4.24 6.21 5.48 4.89 2.30 4.13 2.17]';

Let's also assume that theory tells us that these data should follow a model of exponential decay, y =
p1*exp(p2*x), where p1 is positive and p2 is negative. To fit this model, we could use nonlinear least
squares.

modelFun = @(p,x) p(1)*exp(p(2)*x);

But the nonlinear model can also be transformed to a linear one by taking the log on both sides, to
get log(y) = log(p1) + p2*x. That's tempting, because we can fit that linear model by ordinary linear
least squares. The coefficients we'd get from a linear least squares would be log(p1) and p2.

paramEstsLin = [ones(size(x)), x] \ log(y);
paramEstsLin(1) = exp(paramEstsLin(1))

paramEstsLin =

   11.9312
   -0.4462

How did we do? We can superimpose the fit on the data to find out.

xx = linspace(min(x), max(x));
yyLin = modelFun(paramEstsLin, xx);
plot(x,y,'o', xx,yyLin,'-');
xlabel('x'); ylabel('y');
legend({'Raw data','Linear fit on the log scale'},'location','NE');
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Something seems to have gone wrong, because the fit doesn't really follow the trend that we can see
in the raw data. What kind of fit would we get if we used nlinfit to do nonlinear least squares
instead? We'll use the previous fit as a rough starting point, even though it's not a great fit.

paramEsts = nlinfit(x, y, modelFun, paramEstsLin)

paramEsts =

    8.8145
   -0.2885

yy = modelFun(paramEsts,xx);
plot(x,y,'o', xx,yyLin,'-', xx,yy,'-');
xlabel('x'); ylabel('y');
legend({'Raw data','Linear fit on the log scale',  ...
    'Nonlinear fit on the original scale'},'location','NE');
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The fit using nlinfit more or less passes through the center of the data point scatter. A residual
plot shows something approximately like an even scatter about zero.

r = y-modelFun(paramEsts,x);
plot(x,r,'+', [min(x) max(x)],[0 0],'k:');
xlabel('x'); ylabel('residuals');

 Pitfalls in Fitting Nonlinear Models by Transforming to Linearity

13-55



So what went wrong with the linear fit? The problem is in log transform. If we plot the data and the
two fits on the log scale, we can see that there's an extreme outlier.

plot(x,log(y),'o', xx,log(yyLin),'-', xx,log(yy),'-');
xlabel('x'); ylabel('log(y)');
ylim([-5,3]);
legend({'Raw data', 'Linear fit on the log scale',  ...
    'Nonlinear fit on the original scale'},'location','SW');
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That observation is not an outlier in the original data, so what happened to make it one on the log
scale? The log transform is exactly the right thing to straighten out the trend line. But the log is a
very nonlinear transform, and so symmetric measurement errors on the original scale have become
asymmetric on the log scale. Notice that the outlier had the smallest y value on the original scale --
close to zero. The log transform has "stretched out" that smallest y value more than its neighbors. We
made the linear fit on the log scale, and so it is very much affected by that outlier.

Had the measurement at that one point been slightly different, the two fits might have been much
more similar. For example,

y(11) = 1;
paramEsts = nlinfit(x, y, modelFun, [10;-.3])

paramEsts =

    8.7618
   -0.2833

paramEstsLin = [ones(size(x)), x] \ log(y);
paramEstsLin(1) = exp(paramEstsLin(1))

paramEstsLin =

    9.6357
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   -0.3394

yy = modelFun(paramEsts,xx);
yyLin = modelFun(paramEstsLin, xx);
plot(x,y,'o', xx,yyLin,'-', xx,yy,'-');
xlabel('x'); ylabel('y');
legend({'Raw data', 'Linear fit on the log scale',  ...
    'Nonlinear fit on the original scale'},'location','NE');

Still, the two fits are different. Which one is "right"? To answer that, suppose that instead of additive
measurement errors, measurements of y were affected by multiplicative errors. These errors would
not be symmetric, and least squares on the original scale would not be appropriate. On the other
hand, the log transform would make the errors symmetric on the log scale, and the linear least
squares fit on that scale is appropriate.

So, which method is "right" depends on what assumptions you are willing to make about your data. In
practice, when the noise term is small relative to the trend, the log transform is "locally linear" in the
sense that y values near the same x value will not be stretched out too asymmetrically. In that case,
the two methods lead to essentially the same fit. But when the noise term is not small, you should
consider what assumptions are realistic, and choose an appropriate fitting method.
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Nonlinear Logistic Regression

This example shows two ways of fitting a nonlinear logistic regression model. The first method uses
maximum likelihood (ML) and the second method uses generalized least squares (GLS) via the
function fitnlm from Statistics and Machine Learning Toolbox™.

Problem Description

Logistic regression is a special type of regression in which the goal is to model the probability of
something as a function of other variables. Consider a set of predictor vectors x1, …, xN where N is
the number of observations and xi is a column vector containing the values of the d predictors for the
i th observation. The response variable for xi is Zi where Zi represents a Binomial random variable
with parameters n, the number of trials, and μi, the probability of success for trial i. The normalized
response variable is Yi = Zi/n - the proportion of successes in n trials for observation i. Assume that
responses Yi are independent for i = 1, …, N. For each i:

E(Yi) = μi

Var(Yi) =
μi(1− μi)

n .

Consider modeling μi as a function of predictor variables xi.

In linear logistic regression, you can use the function fitglm to model μi as a function of xi as
follows:

log
μi

1− μi
= xi

Tβ

with β representing a set of coefficients multiplying the predictors in xi. However, suppose you need a
nonlinear function on the right-hand-side:

log
μi

1− μi
= f (xi, β) .

There are functions in Statistics and Machine Learning Toolbox™ for fitting nonlinear regression
models, but not for fitting nonlinear logistic regression models. This example shows how you can use
toolbox functions to fit those models.

Direct Maximum Likelihood (ML)

The ML approach maximizes the log likelihood of the observed data. The likelihood is easily computed
using the Binomial probability (or density) function as computed by the binopdf function.

Generalized Least Squares (GLS)

You can estimate a nonlinear logistic regression model using the function fitnlm. This might seem
surprising at first since fitnlm does not accommodate Binomial distribution or any link functions.
However, fitnlm can use Generalized Least Squares (GLS) for model estimation if you specify the
mean and variance of the response. If GLS converges, then it solves the same set of nonlinear
equations for estimating β as solved by ML. You can also use GLS for quasi-likelihood estimation of
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generalized linear models. In other words, we should get the same or equivalent solutions from GLS
and ML. To implement GLS estimation, provide the nonlinear function to fit, and the variance function
for the Binomial distribution.

Mean or model function

The model function describes how μi changes with β. For fitnlm, the model function is:

μi = 1
1 + exp − f (xi, β)

Weight function

fitnlm accepts observation weights as a function handle using the 'Weights' name-value pair
argument. When using this option, fitnlm assumes the following model:

E(Yi) = μi

Var(Yi) = σ2

w(μi)

where responses Yi are assumed to be independent, and w is a custom function handle that accepts μi
and returns an observation weight. In other words, the weights are inversely proportional to the
response variance. For the Binomial distribution used in the logistic regression model, create the
weight function as follows:

w(μi) = 1
Var(yi)

= n
μi(1− μi)

fitnlm models the variance of the response Yi as σ2/w(μi) where σ2 is an extra parameter that is
present in GLS estimation, but absent in the logistic regression model. However, this typically does
not affect the estimation of β, and it provides a "dispersion parameter" to check on the assumption
that the Zi values have a Binomial distribution.

An advantage of using fitnlm over direct ML is that you can perform hypothesis tests and compute
confidence intervals on the model coefficients.

Generate Example Data

To illustrate the differences between ML and GLS fitting, generate some example data. Assume that xi
is one dimensional and suppose the true function f  in the nonlinear logistic regression model is the
Michaelis-Menten model parameterized by a 2 × 1 vector β:

f (xi, β) =
β1xi

β2 + xi
.

myf = @(beta,x) beta(1)*x./(beta(2) + x);

Create a model function that specifies the relationship between μi and β.

mymodelfun = @(beta,x) 1./(1 + exp(-myf(beta,x)));

Create a vector of one dimensional predictors and the true coefficient vector β.
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rng(300,'twister');
x    = linspace(-1,1,200)';
beta = [10;2];

Compute a vector of μi values for each predictor.

mu = mymodelfun(beta,x);

Generate responses zi from a Binomial distribution with success probabilities μi and number of trials
n.

n = 50;
z = binornd(n,mu);

Normalize the responses.

y = z./n;

ML Approach

The ML approach defines the negative log likelihood as a function of the β vector, and then minimizes
it with an optimization function such as fminsearch. Specify beta0 as the starting value for β.

mynegloglik = @(beta) -sum(log(binopdf(z,n,mymodelfun(beta,x))));
beta0 = [3;3];
opts = optimset('fminsearch');
opts.MaxFunEvals = Inf;
opts.MaxIter = 10000;
betaHatML = fminsearch(mynegloglik,beta0,opts)

betaHatML = 2×1

    9.9259
    1.9720

The estimated coefficients in betaHatML are close to the true values of [10;2].

GLS Approach

The GLS approach creates a weight function for fitnlm previously described.

wfun = @(xx) n./(xx.*(1-xx));

Call fitnlm with custom mean and weight functions. Specify beta0 as the starting value for β.

nlm = fitnlm(x,y,mymodelfun,beta0,'Weights',wfun)

nlm = 
Nonlinear regression model:
    y ~ F(beta,x)

Estimated Coefficients:
          Estimate      SE       tStat       pValue  
          ________    _______    ______    __________

    b1     9.926      0.83135     11.94     4.193e-25
    b2     1.972      0.16438    11.996    2.8182e-25
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Number of observations: 200, Error degrees of freedom: 198
Root Mean Squared Error: 1.16
R-Squared: 0.995,  Adjusted R-Squared 0.995
F-statistic vs. zero model: 1.88e+04, p-value = 2.04e-226

Get an estimate of β from the fitted NonLinearModel object nlm.

betaHatGLS = nlm.Coefficients.Estimate

betaHatGLS = 2×1

    9.9260
    1.9720

As in the ML method, the estimated coefficients in betaHatGLS are close to the true values of
[10;2]. The small p-values for both β1 and β2 indicate that both coefficients are significantly
different from 0.

Compare ML and GLS Approaches

Compare estimates of β.

max(abs(betaHatML - betaHatGLS))

ans = 1.1460e-05

Compare fitted values using ML and GLS

yHatML  = mymodelfun(betaHatML ,x);
yHatGLS = mymodelfun(betaHatGLS,x);
max(abs(yHatML - yHatGLS))

ans = 1.2746e-07

ML and GLS approaches produce similar solutions.

Plot fitted values using ML and GLS

figure
plot(x,y,'g','LineWidth',1)
hold on
plot(x,yHatML ,'b'  ,'LineWidth',1)
plot(x,yHatGLS,'m--','LineWidth',1)
legend('Data','ML','GLS','Location','Best')
xlabel('x')
ylabel('y and fitted values')
title('Data y along with ML and GLS fits.')
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ML and GLS produce similar fitted values.

Plot estimated nonlinear function using ML and GLS

Plot true model for f (xi, β). Add plot for the initial estimate of f (xi, β) using β = β0 and plots for ML
and GLS based estimates of f (xi, β).

figure
plot(x,myf(beta,x),'r','LineWidth',1)
hold on
plot(x,myf(beta0,x),'k','LineWidth',1)
plot(x,myf(betaHatML,x),'c--','LineWidth',1)
plot(x,myf(betaHatGLS,x),'b-.','LineWidth',1)
legend('True f','Initial f','Estimated f with ML', ...
    'Estimated f with GLS','Location','Best')
xlabel('x')
ylabel('True and estimated f')
title('Comparison of true f with estimated f using ML and GLS.')
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The estimated nonlinear function f  using both ML and GLS methods is close to the true nonlinear
function f . You can use a similar technique to fit other nonlinear generalized linear models like
nonlinear Poisson regression.
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Time Series Forecasting Using Ensemble of Boosted
Regression Trees

Perform single-step and multiple-step time series forecasting with an ensemble of boosted regression
trees. Use different validation schemes, such as holdout, expanding window, and sliding window, to
estimate the performance of the forecasting models.

At time t, you can train a direct forecasting model (predMdl) that predicts the value of a data point at
a future time step t + h (yt + h) by using the latest observations (yt, yt − 1, . . . , yt −maxLag) and other
observed variables at the current time (Xt). That is,

yt + h = predMdl(yt, yt − 1, . . . , yt −maxLag, Xt).

h is the look-ahead horizon used to train the model, and maxLag is the number of past observations
used for forecasting. To forecast a data point at time t + h + 1, train another model that uses h + 1 as
the look-ahead horizon.

This example shows how to:

• Create a single model that forecasts a fixed number of steps (24 hours) into the horizon. Use
holdout validation and expanding window cross-validation to assess the performance of the model.

• Create multiple models for different look-ahead horizons (1-24 hours) as described in [2 on page
14-15]. Each of the 24 models forecasts a different hour into the horizon. Use holdout validation
and sliding window cross-validation to assess the performance of the models.

• Create multiple models to forecast into the next 24 hours beyond the available data.

Load and Visualize Data

In this example, use electricity consumption data to create forecasting models. Load the data in
electricityclient.mat, which is a subset of the ElectricityLoadDiagrams20112014 data set
available in the UCI Machine Learning Repository [1 on page 14-14]. The original data set contains
the electricity consumption (in kWh) of 321 clients, logged every 15 minutes from 2012 to 2014, as
described in [3 on page 14-15]. The smaller usagedata timetable contains the hourly electricity
consumption of the sixth client only.

load electricityclient.mat

Plot the electricity consumption of the sixth client during the first 200 hours. Overall, the electricity
consumption of this client shows a periodicity of 24 hours.

hrs = 1:200;
plot(usagedata.Time(hrs),usagedata.Electricity(hrs))
xlabel("Time")
ylabel("Electricity Consumption [kWh]")
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Confirm that the values in usagedata are regular with respect to time by using the isregular
function. For you to use past values of the data as features or predictors, your data must be regularly
sampled.

isregular(usagedata)

ans = logical
   1

Confirm that no values are missing in the time series by using the ismissing function.

sum(ismissing(usagedata))

ans = 0

If your data is not regularly sampled or contains missing values, you can use the retime function or
fill the missing values. For more information, see “Clean Timetable with Missing, Duplicate, or
Nonuniform Times”.

Prepare Data for Forecasting

Before forecasting, reorganize the data. In particular, create separate time-related variables, lag
features, and a response variable for each look-ahead horizon.

Use the date and time information in the usagedata timetable to create separate variables.
Specifically, create Month, Day, Hour, WeekDay, DayOfYear, and WeekOfYear variables, and add
them to the usagedata timetable. Let numVar indicate the number of variables in usagedata.
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usagedata.Month = month(usagedata.Time);
usagedata.Day = day(usagedata.Time);
usagedata.Hour = hour(usagedata.Time);
usagedata.WeekDay = weekday(usagedata.Time);
usagedata.DayOfYear = day(usagedata.Time,"dayofyear");
usagedata.WeekOfYear = week(usagedata.Time,"weekofyear");
numVar = size(usagedata,2);

Normalize the time variables that contain more than 30 categories, so that their values are in the
range –0.5 to 0.5. Specify the remaining time variables as categorical predictors.

usagedata(:,["Day","DayOfYear","WeekOfYear"]) = normalize( ...
    usagedata(:,["Day","DayOfYear","WeekOfYear"]),range=[-0.5 0.5]);
catPredictors = ["Month","Hour","WeekDay"];

Create lag features to use as predictors by using the lag function. That is, create 23 new variables,
ElectricityLag1 through ElectricityLag23, where the lag number indicates the number of
steps the Electricity data is shifted backward in time. Use the synchronize function to append
the new variables to the usagedata timetable and create the dataWithLags timetable.

dataWithLags = usagedata;
maxLag = 23;
for i = 1:maxLag
    negLag = lag(usagedata(:,"Electricity"),i);
    negLag.Properties.VariableNames = negLag.Properties.VariableNames + ...
        "Lag" + i;
    dataWithLags = synchronize(dataWithLags,negLag,"first");
end

View the first few rows of the first three lag features in dataWithLags. Include the Electricity
column for reference.

head(dataWithLags(:,["Electricity","ElectricityLag1","ElectricityLag2", ...
    "ElectricityLag3"]))

            Time            Electricity    ElectricityLag1    ElectricityLag2    ElectricityLag3
    ____________________    ___________    _______________    _______________    _______________

    01-Jan-2012 00:00:00       1056              NaN                NaN                NaN      
    01-Jan-2012 01:00:00       1363             1056                NaN                NaN      
    01-Jan-2012 02:00:00       1240             1363               1056                NaN      
    01-Jan-2012 03:00:00        845             1240               1363               1056      
    01-Jan-2012 04:00:00        647              845               1240               1363      
    01-Jan-2012 05:00:00        641              647                845               1240      
    01-Jan-2012 06:00:00        719              641                647                845      
    01-Jan-2012 07:00:00        662              719                641                647      

Prepare the response variables for the look-ahead horizons 1 through 24. That is, create 24 new
variables, HorizonStep1 through HorizonStep24, where the horizon step number indicates the
number of steps the Electricity data is shifted forward in time. Append the new variables to the
dataWithLags timetable and create the fullData timetable.

fullData = dataWithLags;
maxHorizon = 24;
for i = 1:maxHorizon
    posLag = lag(usagedata(:,"Electricity"),-i);
    posLag.Properties.VariableNames = posLag.Properties.VariableNames + ...
        "HorizonStep" + i;
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    fullData = synchronize(fullData,posLag,"first");
end

View the first few rows of the first two response variables in fullData. Include the Electricity
column for reference.

head(fullData(:,["Electricity","ElectricityHorizonStep1", ...
    "ElectricityHorizonStep2"]))

            Time            Electricity    ElectricityHorizonStep1    ElectricityHorizonStep2
    ____________________    ___________    _______________________    _______________________

    01-Jan-2012 00:00:00       1056                 1363                       1240          
    01-Jan-2012 01:00:00       1363                 1240                        845          
    01-Jan-2012 02:00:00       1240                  845                        647          
    01-Jan-2012 03:00:00        845                  647                        641          
    01-Jan-2012 04:00:00        647                  641                        719          
    01-Jan-2012 05:00:00        641                  719                        662          
    01-Jan-2012 06:00:00        719                  662                        552          
    01-Jan-2012 07:00:00        662                  552                        698          

Remove the observations that contain NaN values after the preparation of the lag features and
response variables. Note that the number of rows to remove depends on the maxLag and
maxHorizon values.

startIdx = maxLag + 1;
endIdx = size(fullData,1) - maxHorizon;
fullDataNoNaN = fullData(startIdx:endIdx,:);

To be able to train ensemble models on the data, convert the predictor data to a table rather than a
timetable. Keep the response variables in a separate timetable so that the Time information is
available for each observation.

numPredictors = numVar + maxLag

numPredictors = 30

X = timetable2table(fullDataNoNaN(:,1:numPredictors), ...
    ConvertRowTimes=false);
Y = fullDataNoNaN(:,numPredictors+1:end);

Perform Single-Step Forecasting

Use holdout validation and expanding window cross-validation to assess the performance of a model
that forecasts a fixed number of steps into the horizon.

Specify the look-ahead horizon as 24 hours, and use ElectricityHorizonStep24 as the response
variable.

h = 24;
y = Y(:,h);

Holdout Validation

Create a time series partition object using the tspartition function. Reserve 20% of the
observations for testing and use the remaining observations for training. When you use holdout
validation for time series data, the latest observations are in the test set and the oldest observations
are in the training set.
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holdoutPartition = tspartition(size(y,1),"Holdout",0.2)

holdoutPartition = 
  tspartition

               Type: 'holdout'
    NumObservations: 26257
        NumTestSets: 1
          TrainSize: 21006
           TestSize: 5251

  Properties, Methods

trainIdx = holdoutPartition.training;
testIdx = holdoutPartition.test;

trainIdx and testIdx contain the indices for the observations in the training and test sets,
respectively.

Create a boosted ensemble of regression trees by using the fitrensemble function. Train the
ensemble using least-squares boosting with a learning rate of 0.2 for shrinkage, and use 150 trees in
the ensemble. Specify the maximal number of decision splits (or branch nodes) per tree and the
minimum number of observations per leaf by using the templateTree function. Specify the
previously identified categorical predictors.

rng("default") % For reproducibility
tree = templateTree(MaxNumSplits=255,MinLeafSize=1);
singleHoldoutModel = fitrensemble(X(trainIdx,:),y{trainIdx,:}, ...
    Method="LSBoost",LearnRate=0.2,NumLearningCycles=150, ...
    Learners=tree,CategoricalPredictors=catPredictors);

Use the trained model singleHoldoutModel to predict response values for the observations in the
test data set.

predHoldoutTest = predict(singleHoldoutModel,X(testIdx,:));
trueHoldoutTest = y(testIdx,:);

Compare the true electricity consumption to the predicted electricity consumption for the first 200
observations in the test set. Plot the values using the time information in the trueHoldoutTest
variable, shifted ahead by 24 hours.

hrs = 1:200;
plot(trueHoldoutTest.Time(hrs) + hours(24), ...
    trueHoldoutTest.ElectricityHorizonStep24(hrs))
hold on
plot(trueHoldoutTest.Time(hrs) + hours(24), ...
    predHoldoutTest(hrs),"--")
hold off
legend("True","Predicted")
xlabel("Time")
ylabel("Electricity Consumption [kWh]")
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Use the helper function computeRRSE (shown at the end of this example on page 14-14) to compute
the root relative squared error (RRSE) on the test data. The RRSE indicates how well a model
performs relative to the simple model, which always predicts the average of the true values. In
particular, when the RRSE is lower than one, the model performs better than the simple model. For
more information, see Compute Root Relative Squared Error (RRSE) on page 14-14.

singleHoldoutRRSE = computeRRSE(trueHoldoutTest{:,:},predHoldoutTest)

singleHoldoutRRSE = 0.3243

The singleHoldoutRRSE value indicates that the singleHoldoutModel performs well on the test
data.

Expanding Window Cross-Validation

Create an object that partitions the time series observations using expanding windows. Split the data
set into 5 windows with expanding training sets and fixed-size test sets by using tspartition. For
each window, use at least one year of observations for training. By default, tspartition ensures
that the latest observations are included in the last (fifth) window.

expandingWindowCV = tspartition(size(y,1),"ExpandingWindow",5, ...
    MinTrainSize=366*24)

expandingWindowCV = 
  tspartition

               Type: 'expanding-window'
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    NumObservations: 26257
        NumTestSets: 5
          TrainSize: [8787 12281 15775 19269 22763]
           TestSize: [3494 3494 3494 3494 3494]
           StepSize: 3494

  Properties, Methods

The training observations in the first window are included in the second window, the training
observations in the second window are included in the third window, and so on. For each window, the
test observations follow the training observations in time.

For each window, use the training observations to fit a boosted ensemble of regression trees. Specify
the same model parameters used to create the model singleHoldoutModel. After training the
ensemble, predict response values for the test observations, and compute the RRSE value on the test
data.

singleCVModels = cell(expandingWindowCV.NumTestSets,1);
expandingWindowRRSE = NaN(expandingWindowCV.NumTestSets,1);

rng("default") % For reproducibility
for i = 1:expandingWindowCV.NumTestSets
    % Get indices
    trainIdx = expandingWindowCV.training(i);
    testIdx = expandingWindowCV.test(i);
    % Train
    singleCVModels{i} = fitrensemble(X(trainIdx,:),y{trainIdx,:}, ...
        Method="LSBoost",LearnRate=0.2,NumLearningCycles=150, ...
        Learners=tree,CategoricalPredictors=catPredictors);
    % Predict
    predTest = predict(singleCVModels{i},X(testIdx,:));
    trueTest = y{testIdx,:};
    expandingWindowRRSE(i) = computeRRSE(trueTest,predTest);
end

Display the test RRSE value for each window. Average the RRSE values across all the windows.

expandingWindowRRSE

expandingWindowRRSE = 5×1

    0.3407
    0.3733
    0.3518
    0.3814
    0.3069

singleCVRRSE = mean(expandingWindowRRSE)

singleCVRRSE = 0.3508

The average RRSE value returned by expanding window cross-validation (singleCVRRSE) is
relatively low and is similar to the RRSE value returned by holdout validation
(singleHoldoutRRSE). These results indicate that the ensemble model generally performs well.
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Perform Multiple-Step Forecasting

Use holdout validation and sliding window cross-validation to assess the performance of multiple
models that forecast different times into the horizon.

Recall that the maximum horizon is 24 hours. For each validation scheme, create models that forecast
1 through 24 hours ahead.

maxHorizon

maxHorizon = 24

Holdout Validation

Reuse the time series partition object holdoutPartition for holdout validation. Recall that the
object reserves 20% of the observations for testing and uses the remaining observations for training.

holdoutPartition

holdoutPartition = 
  tspartition

               Type: 'holdout'
    NumObservations: 26257
        NumTestSets: 1
          TrainSize: 21006
           TestSize: 5251

  Properties, Methods

trainIdx = holdoutPartition.training;
testIdx = holdoutPartition.test;

For each look-ahead horizon, use the training observations to fit a boosted ensemble of regression
trees. Specify the same model parameters used to create the model singleHoldoutModel.
However, to speed up training, use fewer (50) trees in the ensemble, and bin the numeric predictors
into at most 256 equiprobable bins. After training the ensemble, predict response values for the test
observations, and compute the RRSE value on the test data.

Notice that the predictor data is the same for all models. However, each model uses a different
response variable, corresponding to the specified horizon.

multiHoldoutRRSE = NaN(1,maxHorizon);

rng("default") % For reproducibility
for h = 1:maxHorizon
    % Train
    multiHoldoutModel = fitrensemble(X(trainIdx,:),Y{trainIdx,h}, ...
        Method="LSBoost",LearnRate=0.2,NumLearningCycles=50, ...
        Learners=tree,NumBins=256,CategoricalPredictors=catPredictors); 
    % Predict
    predTest = predict(multiHoldoutModel,X(testIdx,:));
    trueTest = Y{testIdx,h};
    multiHoldoutRRSE(h) = computeRRSE(trueTest,predTest);
end
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Plot the test RRSE values with respect to the horizon.

plot(1:maxHorizon,multiHoldoutRRSE,"o-")
xlabel("Horizon [hr]")
ylabel("RRSE")
title("RRSE Using Holdout Validation")

As the horizon increases, the RRSE values stabilize to a relatively low value. This result indicates that
an ensemble model predicts well for any time horizon between 1 and 24 hours.

Sliding Window Cross-Validation

Create an object that partitions the time series observations using sliding windows. Split the data set
into 5 windows with fixed-size training and test sets by using tspartition. For each window, use at
least one year of observations for training. By default, tspartition ensures that the latest
observations are included in the last (fifth) window. Therefore, some older observations might be
omitted from the cross-validation.

slidingWindowCV = tspartition(size(Y,1),"SlidingWindow",5, ...
    TrainSize=366*24)

slidingWindowCV = 
  tspartition

               Type: 'sliding-window'
    NumObservations: 26257
        NumTestSets: 5
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          TrainSize: [8784 8784 8784 8784 8784]
           TestSize: [3494 3494 3494 3494 3494]
           StepSize: 3494

  Properties, Methods

For each window, the test observations follow the training observations in time.

For each window and look-ahead horizon, use the training observations to fit a boosted ensemble of
regression trees. Specify the same model parameters used to create the model
singleHoldoutModel. However, to speed up training, use fewer (50) trees in the ensemble, and bin
the numeric predictors. After training the ensemble, predict values for the test observations, and
compute the RRSE value on the test data.

To further speed up the training and prediction process, use parfor (Parallel Computing Toolbox) to
run computations in parallel. Using the parfor function requires Parallel Computing Toolbox™. If
you do not have Parallel Computing Toolbox, you can use the for command instead.

slidingWindowRRSE = NaN(slidingWindowCV.NumTestSets, ...
    maxHorizon);

rng("default") % For reproducibility
for i = 1:slidingWindowCV.NumTestSets
    % Split the data
    trainIdx = training(slidingWindowCV,i);
    testIdx = test(slidingWindowCV,i);
    Xtrain = X(trainIdx,:);
    Xtest = X(testIdx,:);
    Ytest = Y{testIdx,:};
    Ytrain = Y{trainIdx,:};
    parfor h = 1:maxHorizon
        % Train
        multiCVModel = fitrensemble(Xtrain,Ytrain(:,h), ...
            Method="LSBoost",LearnRate=0.2,NumLearningCycles=50, ...
            Learners=tree,NumBins=256,CategoricalPredictors=catPredictors); 
        % Predict
        predTest = predict(multiCVModel,Xtest);
        trueTest = Ytest(:,h);
        slidingWindowRRSE(i,h) = computeRRSE(trueTest,predTest);
    end
end

Starting parallel pool (parpool) using the 'Processes' profile ...
Connected to the parallel pool (number of workers: 6).

Plot the average test RRSE values with respect to the horizon.

multiCVRRSE = mean(slidingWindowRRSE);

plot(1:maxHorizon,multiCVRRSE,"o-")
xlabel("Horizon [hr]")
ylabel("RRSE")
title("Average RRSE Using Sliding Window Partition")
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As the horizon increases, the RRSE values stabilize to a relatively low value. The multiCVRRSE
values are slightly higher than the multiHoldoutRRSE values; this discrepancy might be due to the
difference in the number of training observations used in the sliding window and holdout validation
schemes.

slidingWindowCV.TrainSize

ans = 1×5

        8784        8784        8784        8784        8784

holdoutPartition.TrainSize

ans = 21006

For each horizon, the models in the sliding window cross-validation scheme use significantly fewer
training observations than the corresponding model in the holdout validation scheme.

Forecast Beyond Available Data

Create multiple models to predict electricity consumption for the next 24 hours beyond the available
data.

For each model, forecast by using the predictor data for the latest observation in fullData. Recall
that fullData includes some later observations not included in X.
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forecastX = timetable2table(fullData(end,1:numPredictors), ...
    "ConvertRowTimes",false)

forecastX=1×30 table
    Electricity    Month    Day    Hour    WeekDay    DayOfYear    WeekOfYear    ElectricityLag1    ElectricityLag2    ElectricityLag3    ElectricityLag4    ElectricityLag5    ElectricityLag6    ElectricityLag7    ElectricityLag8    ElectricityLag9    ElectricityLag10    ElectricityLag11    ElectricityLag12    ElectricityLag13    ElectricityLag14    ElectricityLag15    ElectricityLag16    ElectricityLag17    ElectricityLag18    ElectricityLag19    ElectricityLag20    ElectricityLag21    ElectricityLag22    ElectricityLag23


       1234         12      0.5     23        4        0.49726        0.5             1261               1282               1366               1590               1499               1085               1001               1058               1183                967                 1060                893                 812                 800                 662                 656                 638                 560                 626                 677                 788                 863                 993       

Create a datetime array of the 24 hours after the occurrence of the latest observation forecastX.

lastT = fullData.Time(end);
maxHorizon

maxHorizon = 24

forecastT = lastT + hours(1):hours(1):lastT + hours(maxHorizon);

For each look-ahead horizon, use the observations in X to train a boosted ensemble of regression
trees. Specify the same model parameters used to create the model singleHoldoutModel.
However, to speed up training, use fewer (50) trees in the ensemble, and bin the numeric predictors.
After training the ensemble, predict the electricity consumption by using the latest observation
forecastX.

To further speed up the training and prediction process, use parfor to run computations in parallel.

multiModels = cell(1,maxHorizon);
forecastY = NaN(1,maxHorizon);

rng("default") % For reproducibility
parfor h = 1:maxHorizon
    % Train
    multiModels{h} = fitrensemble(X,Y{:,h},Method="LSBoost", ...
        LearnRate=0.2,NumLearningCycles=50,Learners=tree, ...
        NumBins=256,CategoricalPredictors=catPredictors); 
    % Predict
    forecastY(h) = predict(multiModels{h},forecastX);
end

Plot the observed electricity consumption for the last four days before lastT and the predicted
electricity consumption for one day after lastT.

numPastDays = 4;
plot(usagedata.Time(end-(numPastDays*24):end), ...
    usagedata.Electricity(end-(numPastDays*24):end));
hold on
plot([usagedata.Time(end),forecastT], ...
    [usagedata.Electricity(end),forecastY],"--")
hold off
legend("Historical Data","Forecasted Data")
xlabel("Time")
ylabel("Electricity Consumption [kWh]")
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Compute Root Relative Squared Error (RRSE)

The root relative squared error (RRSE) is defined as the ratio

RRSE =
∑i = 1

m yi− yi
2

∑i = 1
m yi− y‾ 2 ,

where yi is the true response for observation i, yi is the predicted value for observation i, y‾ is the
mean of the true responses, and m is the number of observations.

Helper Function

The helper function computeRRSE computes the RRSE given the true response variable trueY and
the predicted values predY. This code creates the computeRRSE helper function.

function rrse = computeRRSE(trueY,predY)
    error = trueY(:) - predY(:);
    meanY = mean(trueY(:),"omitnan");
    rrse = sqrt(sum(error.^2,"omitnan")/sum((trueY(:) - meanY).^2,"omitnan"));
end

References
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See Also
tspartition | timetable | lag | synchronize | datetime | fitrensemble | parfor

Related Examples
• “Clean Timetable with Missing, Duplicate, or Nonuniform Times”
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What Is Survival Analysis?
In this section...
“Introduction” on page 15-2
“Censoring” on page 15-2
“Data” on page 15-2
“Survivor Function” on page 15-4
“Hazard Function” on page 15-6

Introduction
Survival analysis is time-to-event analysis, that is, when the outcome of interest is the time until an
event occurs. Examples of time-to-events are the time until infection, reoccurrence of a disease, or
recovery in health sciences, duration of unemployment in economics, time until the failure of a
machine part or lifetime of light bulbs in engineering, and so on. Survival analysis is a part of
reliability studies in engineering. In this case, it is usually used to study the lifetime of industrial
components. In reliability analyses, survival times are usually called failure times as the variable of
interest is how much time a component functions properly before it fails.

Survival analysis consists of parametric, semiparametric, and nonparametric methods. You can use
these to estimate the most commonly used measures in survival studies, survivor and hazard
functions, compare them for different groups, and assess the relationship of predictor variables to
survival time. Some statistical probability distributions describe survival times well. Commonly used
distributions are exponential, Weibull, lognormal, Burr, and Birnbaum-Saunders distributions.
Statistics and Machine Learning Toolbox functions ecdf and ksdensity compute the empirical and
kernel density estimates of the cdf, cumulative hazard, and survivor functions. coxphfit fits the Cox
proportional hazards model to the data. fitcox is a more modern fitting function for Cox
proportional hazards models.

Censoring
One important concept in survival analysis is censoring. The survival times of some individuals might
not be fully observed due to different reasons. In life sciences, this might happen when the survival
study (e.g., the clinical trial) stops before the full survival times of all individuals can be observed, or
a person drops out of a study, or for long-term studies, when the patient is lost to follow up. In the
industrial context, not all components might have failed before the end of the reliability study. In such
cases, the individual survives beyond the time of the study, and the exact survival time is unknown.
This is called right censoring.

During a survival study either the individual is observed to fail at time T, or the observation on that
individual ceases at time c. Then the observation is min(T,c) and an indicator variable Ic shows if the
individual is censored or not. The calculations for hazard and survivor functions must be adjusted to
account for censoring. Statistics and Machine Learning Toolbox functions such as ecdf, ksdensity,
coxphfit, and mle account for censoring.

Data
Survival data usually consists of the time until an event of interest occurs and the censoring
information for each individual or component. The following table shows the fictitious unemployment
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time of individuals in a 6-month study. Two individuals are right censored (indicated by a censoring
value of 1). One individual was still unemployed after the 24th week, when the study ended. Contact
with the other censored individual was lost at the end of the 21st week.

Unemployment Time (Weeks) Censoring
14 0
23 0
7 0

21 1
19 0
16 0
24 1
8 0

Survival data might also include the number of failures at a certain time (the number of times a
particular survival or failure time was observed). The following table shows the simulated time until a
light-emitting diodes drops to 70% of its full light output level, in hours, in an accelerated life test.

Failure Time (hrs) Frequency
8600 6
15300 19
22000 11
28600 20
35300 17
42000 14
48700 8
55400 2
62100 0
68800 2

Data might also have information on the predictor variables, to use in semi-parametric regression-like
methods such as Cox proportional hazards regression.

Time Until
Recovery
(weeks)

Censoring Gender Systolic Blood
Pressure

Diastolic Blood
Pressure

12 1 Male 124 93
20 0 Female 109 77
7 0 Female 125 83
13 0 Male 117 75
9 1 Male 122 80
15 0 Female 121 70
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Time Until
Recovery
(weeks)

Censoring Gender Systolic Blood
Pressure

Diastolic Blood
Pressure

17 1 Male 130 88
8 0 Female 115 82
14 0 Male 118 86

Survivor Function
The survivor function is the probability of survival as a function of time. It is also called the survival
function. It gives the probability that the survival time of an individual exceeds a certain value. Since
the cumulative distribution function, F(t), is the probability that the survival time is less than or equal
to a given point in time, the survival function for a continuous distribution, S(t), is the complement of
the cumulative distribution function:

S(t) = 1 – F(t).

The survivor function is also related to the hazard function on page 15-6. If the data has the hazard
function, h(t), then the survivor function is

S(t) = exp −∫
0

t
h u du ,

which corresponds to

S(t) = exp −H t ,

where H(t) is the cumulative hazard function.

Burr Distribution Survivor Function

Calculate and plot the survivor function of a Burr distribution with parameters 50, 3, and 1.

x = 0:0.1:200;
figure()
plot(x,1-cdf('Burr',x,50,3,1))
xlabel('Failure time');
ylabel('Survival probability');
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Survivor Function from Data

This example shows how to estimate the survivor function from data.

Load the sample data.

load readmissiontimes

The column vector ReadmissionTime shows the readmission times for 100 patients. The column
vector Censored has the censorship information for each patient, where 1 indicates censored data,
and 0 that indicates the exact readmission times are observed. This data is simulated.

[ReadmissionTime Censored]

ans = 100×2

     5     1
     3     1
    19     0
    17     0
     9     0
    16     0
     4     0
     2     0
     3     0
    15     0
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      ⋮

The first two readmission times, 5 and 3, are both censored.

Display the empirical survivor function with censoring using ecdf with the name-value pair
arguments 'function','survivor' and 'censoring',Censored.

ecdf(ReadmissionTime,'censoring',Censored,'function','survivor')

Hazard Function
The hazard function gives the instantaneous failure rate of an individual conditioned on the fact that
the individual survived until a given time. That is,

h(t) = lim
Δt 0

P t ≤ T < t + Δt T ≥ t
Δt ,

where Δt is a very small time interval. The hazard rate, therefore, is sometimes called the conditional
failure rate. The hazard function always takes a positive value. However, these values do not
correspond to probabilities and might be greater than 1.

The hazard function is related to the probability density function, f(t), cumulative distribution
function, F(t), and survivor function, S(t), as follows:
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h(t) = f (t)
S(t) = f (t)

1− F(t) ,

which is also equivalent to

h(t) = − d
dt lnS(t) .

So, if you know the shape of the survival function, you can also derive the corresponding hazard
function.

Burr Distribution Hazard Function

Calculate and plot the hazard function of a Burr distribution with parameters 50, 3, and 1.

x = 0:1:200;
Burrhazard = pdf('Burr',x,50,3,1)./(1-cdf('Burr',x,50,3,1));
figure()
plot(x,Burrhazard)
xlabel('Failure time');
ylabel('Hazard rate');

Weibull Hazard Functions
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There are different types of hazard functions. The previous figure shows a situation when the hazard
rate increases for the early time periods and then gradually decreases. The hazard rate might also be
monotonically decreasing, increasing, or constant over time. The following figure shows examples of
different types of hazard functions for data coming from different Weibull distributions.

figure
ax1 = subplot(3,1,1);
x1 = 0:0.05:10;
hazard1 = pdf('wbl',x1,3,0.6)./(1-cdf('wbl',x1,3,0.6));
plot(x1,hazard1,'color','b')
set(ax1,'Ylim',[0 0.6]);
legend(ax1,'a=3, b=0.6');

ax2 = subplot(3,1,2);
x2 = 0:0.05:10;
hazard2 = pdf('wbl',x2,9,4)./(1-cdf('wbl',x2,9,4));
plot(x2,hazard2,'color','r')
set(ax2,'Ylim',[0 0.6]);
legend(ax2,'a=9, b=4','location','southeast');

ax3 = subplot(3,1,3);
x3 = 0:0.05:10;
hazard3 = pdf('wbl',x3,2.5,1)./(1-cdf('wbl',x3,2.5,1));
plot(x3,hazard3,'color','g')
set(ax3,'Ylim',[0 0.6]);
legend(ax3,'a=2.5, b=1');
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In the third case, the Weibull distribution has a shape parameter value of 1, which corresponds to the
exponential distribution. The exponential distribution always has a constant hazard rate over time.

References
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See Also
ecdf | fitcox | coxphfit | ksdensity

Related Examples
• “Hazard and Survivor Functions for Different Groups” on page 15-16
• “Survivor Functions for Two Groups” on page 15-22
• “Cox Proportional Hazards Model for Censored Data” on page 15-31
• “Cox Proportional Hazards Model with Time-Dependent Covariates” on page 15-35
• “Cox Proportional Hazards Model Object” on page 15-39

More About
• “Kaplan-Meier Method” on page 15-10
• “Cox Proportional Hazards Model” on page 15-26
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Kaplan-Meier Method
The Statistics and Machine Learning Toolbox function ecdf produces the empirical cumulative
hazard, survivor, and cumulative distribution functions by using the Kaplan-Meier nonparametric
method. The Kaplan-Meier estimator for the survivor function is also called the product-limit
estimator.

The Kaplan-Meier method uses survival data summarized in life tables. Life tables order data
according to ascending failure times, but you don’t have to enter the failure/survival times in an
ordered manner to use ecdf.

A life table usually consists of:

• Failure times
• Number of items failed at a time/time period
• Number of items censored at a time/time period
• Number of items at risk at the beginning of a time/time period

The number at risk is the total number of survivors at the beginning of each period. The number at
risk at the beginning of the first period is all individuals in the lifetime study. At the beginning of each
remaining period, the number at risk is reduced by the number of failures plus individuals censored
at the end of the previous period.

This life table shows fictitious survival data. At the beginning of the first failure time, there are seven
items at risk. At time 4, three fail. So at the beginning of time 7, there are four items at risk. Only one
fails at time 7, so the number at risk at the beginning of time 11 is three. Two fail at time 11, so at the
beginning of time 12, the number at risk is one. The remaining item fails at time 12.

Failure Time (t) Number Failed Number at Risk
4 3 7
7 1 4
11 2 3
12 1 1

You can estimate the hazard, cumulative hazard, survival, and cumulative distribution functions using
the life tables as described next.

Cumulative Hazard Rate (Failure Rate)

The hazard rate at each period is the number of failures in the given period divided by the number of
surviving individuals at the beginning of the period (number at risk).

Failure Time (t) Hazard Rate (h(t)) Cumulative Hazard Rate
0 0 0
t1 d1/r1 d1/r1

t2 d2/r2 h(t1) + d2/r2

... ... ...
tn dn/rn h(tn – 1) + dn/rn
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Survival Probability

For each period, the survival probability is the product of the complement of hazard rates. The initial
survival probability at the beginning of the first time period is 1. If the hazard rate for the each period
is h(ti), then the survivor probability is as shown.

Time (t) Survival Probability (S(t))
0 1
t1 1*(1 – h(t1))
t2 S(t1)*(1 – h(t2))
... ...
tn S(tn – 1)*(1 – h(tn))

Cumulative Distribution Function

Because the cumulative distribution function (cdf) and the survivor function are complements of each
other, you can find the cdf from the life tables using F(t) = 1 – S(t).

You can compute the cumulative hazard rate, survival rate, and cumulative distribution function for
the simulated data in the first table on this page as follows.

t Number Failed
(d)

Number at
Risk (r)

Hazard Rate Survival
Probability

Cumulative
Distribution

Function
4 3 7 3/7 1 – 3/7 = 4/7 =

0.5714
0.4286

7 1 4 1/4 4/7*(1 – 1/4) =
3/7 = .4286

0.5714

11 2 3 2/3 3/7*(1 – 2/3) =
1/7 = 0.1429

0.8571

12 1 1 1/1 1/7*(1 – 1) = 0 1

This rates in this example are based on the discrete failure times, and hence the calculations do not
necessarily follow the derivative-based definition in “What Is Survival Analysis?” on page 15-2

Here is how you can enter the data and calculate these measures using ecdf. The data does not
necessarily have to be in ascending order. Suppose the failure times are stored in an array y.

y = [4 7 11 12];
freq = [3 1 2 1];
[f,x] = ecdf(y,'frequency',freq)

f =

         0
    0.4286
    0.5714
    0.8571
    1.0000
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x =

     4
     4
     7
    11
    12

When you have censored data, the life table might look like the following:

Time (t) Number
failed (d)

Censoring Number at
Risk (r)

Hazard
Rate

Survival
Probability

Cumulative
Distribution

Function
4 2 1 7 2/7 1 – 2/7 =

0.7143
0.2857

7 1 0 4 1/4 0.7143*(1 –
1/4) =
0.5357

0.4643

11 1 1 3 1/3 0.5357*(1 –
1/3) =
0.3571

0.6429

12 1 0 1 1/1 0.3571*(1 –
1) = 0

1.0000

At any given time, the censored items are also considered in the total of number at risk, and the
hazard rate formula is based on the number failed and the total number at risk. While updating the
number at risk at the beginning of each period, the total number failed and censored in the previous
period is reduced from the number at risk at the beginning of that period.

While using ecdf, you must also enter the censoring information using an array of binary variables.
Enter 1 for censored data, and enter 0 for exact failure time.

y = [4 4 4 7 11 11 12];
cens = [0 1 0 0 1 0 0];
[f,x] = ecdf(y,'censoring',cens)

f =

         0
    0.2857
    0.4643
    0.6429
    1.0000

x =

     4
     4
     7
    11
    12

ecdf, by default, produces the cumulative distribution function values. You have to specify the
survivor function or the hazard function using optional name-value pair arguments. You can also plot
the results as follows.
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figure()
ecdf(y,'censoring',cens,'function','survivor');

figure()
ecdf(y,'censoring',cens,'function','cumulative hazard');
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Hazard and Survivor Functions for Different Groups

This example shows how to estimate and plot the cumulative hazard and survivor functions for
different groups.

Step 1. Load and organize sample data.

Load the sample data.

load('readmissiontimes.mat')

The data has readmission times of patients with information on their gender, age, weight, smoking
status, and censorship. This is simulated data.

Create a matrix of readmission times and censoring for each gender.

female = [ReadmissionTime(Sex==1),Censored(Sex==1)];
male = [ReadmissionTime(Sex==0),Censored(Sex==0)];

Step 2. Estimate and plot cumulative distribution function for each gender.

Plot the Kaplan-Meier estimate of the cumulative distribution function for female and male patients.

figure()
ecdf(gca,female(:,1),'Censoring',female(:,2));
hold on
[f,x] = ecdf(male(:,1),'Censoring',male(:,2));
stairs(x,f,'--r')
hold off
legend('female','male','Location','SouthEast')
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Step 3. Plot survivor functions.

Compare the survivor functions for female and male patients.

figure()
ax1 = gca;
ecdf(ax1,female(:,1),'Censoring',female(:,2),'function','survivor');
hold on
[f,x] = ecdf(male(:,1),'Censoring',male(:,2),'function','survivor');
stairs(x,f,'--r')
legend('female','male')
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This figure shows that readmission times are shorter for male patients than female patients.

Step 4. Fit Weibull survivor functions.

Fit Weibull distributions to readmission times of female and male patients.

pd = fitdist(female(:,1),'wbl','Censoring',female(:,2))

pd = 

  WeibullDistribution

  Weibull distribution
    A = 12.5593   [10.749, 14.6745]
    B = 1.99834   [1.56489, 2.55185]

pd2 = fitdist(male(:,1),'wbl','Censoring',male(:,2))

pd2 = 

  WeibullDistribution

  Weibull distribution
    A = 4.63991   [3.91039, 5.50551]
    B = 1.94422   [1.48496, 2.54552]
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pd2 = fitdist(male(:,1),'wbl','Censoring',male(:,2))

pd2 = 

  WeibullDistribution

  Weibull distribution
    A = 4.63991   [3.91039, 5.50551]
    B = 1.94422   [1.48496, 2.54552]

Plot the Weibull survivor functions for female and male patients on estimated survivor functions.

plot(0:1:25,1-cdf('wbl',0:1:25,12.5593,1.99834),'-.')
plot(0:1:25,1-cdf('wbl',0:1:25,4.63991,1.94422),':r')
hold off
legend('Festimated','Mestimated','FWeibull','MWeibull')

Weibull distribution provides a good fit for the data.

Step 5. Estimate cumulative hazard and fit Weibull cumulative hazard functions.

Estimate the cumulative hazard function for the genders and fit Weibull cumulative hazard functions.

figure()
[f,x] = ecdf(female(:,1),'Censoring',female(:,2),...
'function','cumhazard');
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plot(x,f)
hold on
plot(x,cumsum(pdf(pd,x)./(1-cdf(pd,x))),'-.')
[f,x] = ecdf(male(:,1),'Censoring',male(:,2),...
'function','cumhazard');
plot(x,f,'--r')
plot(x,cumsum(pdf(pd2,x)./(1-cdf(pd2,x))),':r')
legend('Festimated','FWeibull','Mestimated','MWeibull',...
'Location','North')

See Also
ecdf | coxphfit | ksdensity

Related Examples
• “Survivor Functions for Two Groups” on page 15-22
• “Cox Proportional Hazards Model for Censored Data” on page 15-31
• “Cox Proportional Hazards Model with Time-Dependent Covariates” on page 15-35

More About
• “What Is Survival Analysis?” on page 15-2
• “Kaplan-Meier Method” on page 15-10

15 Survival Analysis

15-20
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Survivor Functions for Two Groups

This example shows how to find the empirical survivor functions and the parametric survivor
functions using the Burr type XII distribution fit to data for two groups.

Step 1. Load and prepare sample data.

Load the sample data.

load('lightbulb.mat')

The first column of the data has the lifetime (in hours) of two types of light bulbs. The second column
has information about the type of light bulb. 0 indicates fluorescent bulbs whereas 1 indicates the
incandescent bulb. The third column has censoring information. 1 indicates censored data, and 0
indicates the exact failure time. This is simulated data.

Create a variable for each light bulb type and also include the censorship information.

fluo = [lightbulb(lightbulb(:,2)==0,1),...
            lightbulb(lightbulb(:,2)==0,3)];
insc = [lightbulb(lightbulb(:,2)==1,1),...
            lightbulb(lightbulb(:,2)==1,3)];

Step 2. Plot estimated survivor functions.

Plot the estimated survivor functions for the two different types of light bulbs.

figure()
[f,x,flow,fup] = ecdf(fluo(:,1),'censoring',fluo(:,2),...
                'function','survivor');
ax1 = stairs(x,f);
hold on
stairs(x,flow,':')
stairs(x,fup,':')
[f,x,flow,fup] = ecdf(insc(:,1),'censoring',insc(:,2),...
                'function','survivor');
ax2 = stairs(x,f,'color','r');
stairs(x,flow,':r')
stairs(x,fup,':r')
legend([ax1,ax2],{'Fluorescent','Incandescent'})
xlabel('Lifetime (hours)')
ylabel('Survival probability')
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You can see that the survival probability of incandescent light bulbs is much smaller than that of
fluorescent light bulbs.

Step 3. Fit Burr Type XII distribution.

Fit Burr distribution to the lifetime data of fluorescent and incandescent type bulbs.

pd = fitdist(fluo(:,1),'burr','Censoring',fluo(:,2))

pd = 
  BurrDistribution

  Burr distribution
    alpha = 29143.4   [0.903922, 9.39617e+08]
        c = 3.44582   [2.13013, 5.57417]
        k = 33.7039   [8.10737e-14, 1.40114e+16]

pd2 = fitdist(insc(:,1),'burr','Censoring',insc(:,2))

pd2 = 
  BurrDistribution

  Burr distribution
    alpha = 2650.76   [430.773, 16311.4]
        c = 3.41898   [2.16794, 5.39197]
        k =  4.5891   [0.0307809, 684.185]
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Superimpose Burr type XII survivor functions.

ax3 = plot(0:500:15000,1-cdf('burr',0:500:15000,29143.5,...
            3.44582,33.704),'m');
ax4 = plot(0:500:5000,1-cdf('burr',0:500:5000,2650.76,...
            3.41898,4.5891),'g');
legend([ax1;ax2;ax3;ax4],'Festimate','Iestimate','FBurr','IBurr')

Burr distribution provides a good fit for the lifetime of light bulbs in this example.

Step 4. Fit a Cox proportional hazards model.

Fit a Cox proportional hazards regression where the type of the bulb is the explanatory variable.

[b,logl,H,stats] = coxphfit(lightbulb(:,2),lightbulb(:,1),...
'Censoring',lightbulb(:,3));
stats

stats = struct with fields:
                    covb: 1.0757
                    beta: 4.7262
                      se: 1.0372
                       z: 4.5568
                       p: 5.1936e-06
                   csres: [100x1 double]
                  devres: [100x1 double]
                 martres: [100x1 double]
                  schres: [100x1 double]
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                 sschres: [100x1 double]
                  scores: [100x1 double]
                 sscores: [100x1 double]
    LikelihoodRatioTestP: 0

The p-value, p, indicates that the type of light bulb is statistically significant. The estimate of the
hazard ratio is exp(b) = 112.8646. This means that the hazard for the incandescent bulbs is 112.86
times the hazard for the fluorescent bulbs.

See Also
ecdf | coxphfit | ksdensity

Related Examples
• “Hazard and Survivor Functions for Different Groups” on page 15-16
• “Cox Proportional Hazards Model for Censored Data” on page 15-31
• “Cox Proportional Hazards Model with Time-Dependent Covariates” on page 15-35
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Cox Proportional Hazards Model

In this section...
“Introduction” on page 15-26
“Hazard Ratio” on page 15-26
“Extension of Cox Proportional Hazards Model” on page 15-27
“Partial Likelihood Function” on page 15-27
“Partial Likelihood Function for Tied Events” on page 15-28
“Frequency or Weights of Observations” on page 15-29

Introduction
Cox proportional hazards regression is a semiparametric method for adjusting survival rate estimates
to quantify the effect of predictor variables. The method represents the effects of explanatory
variables as a multiplier of a common baseline hazard function, h0(t). The hazard function is the
nonparametric part of the Cox proportional hazards regression function, whereas the impact of the
predictor variables is a loglinear regression. For a baseline relative to 0, this model corresponds to

h Xi, t = h0(t)exp ∑
j = 1

p
xi jb j ,

where Xi = (xi1, xi2,⋯, xip) is the predictor variable for the ith subject, h(Xi,t) is the hazard rate at time
t for Xi, and h0(t) is the baseline hazard rate function.

To fit a Cox proportional hazards model to data, use either the coxphfit function or the fitcox
function. The fitcox function is more modern, and returns a CoxModel object containing detailed
information about the model. For an example using fitcox, see “Cox Proportional Hazards Model
Object” on page 15-39.

Hazard Ratio
The Cox proportional hazards model relates the hazard rate for individuals or items at the value Xi, to
the hazard rate for individuals or items at the baseline value. It produces an estimate for the hazard
ratio:

HR(Xi) =
h Xi, t
h0 t = exp ∑

j = 1

p
xi jb j .

The model is based on the assumption that the baseline hazard function depends on time, t, but the
predictor variables do not. This assumption is also called the proportional hazards assumption, which
states that the hazard ratio does not change over time for any individual.

The hazard ratio represents the relative risk of instant failure for individuals or items having the
predictive variable value Xi compared to the ones having the baseline values. For example, if the
predictive variable is smoking status, where nonsmoking is the baseline category, the hazard ratio
shows the relative instant failure rate of smokers compared to the baseline category, that is,
nonsmokers. For a baseline relative to X* and the predictor variable value Xi, the hazard ratio is
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HR(Xi) =
h Xi, t
h X*, t = exp ∑

j = 1

p
xi j− x j* b j .

For example, if the baseline is the mean values of the predictor variables (mean(X)), then the hazard
ratio becomes

HR(Xi) =
h Xi, t
h X, t

= exp ∑
j = 1

p
xi j− x j b j .

Hazard rates are related to survival rates, such that the survival rate at time t for an individual with
the explanatory variable value Xi is

SXi t = S0 t HR(Xi),

where S0(t) is the survivor function with the baseline hazard rate function h0(t), and HR(Xi) is the
hazard ratio of the predictor variable value Xi relative to the baseline value.

Extension of Cox Proportional Hazards Model
When you have variables that do not satisfy the proportional hazards (PH) assumption, you can
consider using two extensions of Cox proportional hazards model: the stratified Cox model and the
Cox model with time-dependent variables.

If the variables that do not satisfy the PH assumption are categorizable, use the stratified Cox model:

hs Xi, t = h0s(t)exp ∑
j = 1

p
xi jb j ,

where the subscript s indicates the sth stratum. The stratified Cox model has a different baseline
hazard rate function for each stratum but shares coefficients. Therefore, it has the same hazard ratio
across all strata if the predictor variable values are the same. You can include stratification variables
in coxphfit by using the name-value pair 'Strata'. For an example using a stratified Cox model
with a Cox model object, see “Cox Proportional Hazards Model Object” on page 15-39.

If the variables that do not satisfy the PH assumption are time-dependent variables, use the Cox
model with time-dependent variables:

h Xi, t = h0(t)exp ∑
j = 1

p1
xi jb j + ∑

k = 1

p2
xik(t)ck ,

where xij is an element of a time-independent predictor and xik(t) is an element of a time-dependent
predictor. For an example of how to include time-dependent variables in coxphfit, see “Cox
Proportional Hazards Model with Time-Dependent Covariates” on page 15-35.

Partial Likelihood Function
A point estimate of the effect of each explanatory variable, that is, the estimated hazard ratio for the
effect of each explanatory variable is exp(b), given all other variables are held constant, where b is
the coefficient estimate for that variable. The coefficient estimates are found by maximizing the
partial likelihood function of the model. The partial likelihood function for the proportional hazards
regression model is based on the observed order of events. It is the product of partial likelihoods of
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failures estimated for each failure time. If there are n failures at n distinct failure times,
t1 < t2 < ⋯ < tn, then the partial likelihood is

L =
HR X1

∑ j = 1
n HR X j

×
HR X2

∑ j = 2
n HR X j

× ⋅ ⋅ ⋅ ×
HR Xn
HR Xn

= ∏
i = 1

n HR Xi

∑ j = i
n HR X j

.

You can rewrite the partial likelihood by using a risk set Ri:

L = ∏
i = 1

n HR(Xi)
∑

j ∈ Ri
HR(X j)

,

where Ri represents the index set of subjects who are under study but do not experience the event
until the ith failure time.

You can use a likelihood ratio test to assess the significance of adding a term or terms in a model.
Consider the two models where the first model has p predictive variables and the second model has p
+ r predictive variables. Then, comparing the two models, –2*(L1/L2) has a chi-square distribution
with r degrees of freedom (the number of terms being tested).

Partial Likelihood Function for Tied Events
When you have tied events, coxphfit approximates the partial likelihood of the model by either
Breslow’s method (default) or Efron’s method, instead of computing the exact partial likelihood.
Computing the exact partial likelihood requires a large amount of computation, which involves an
entire permutation of the risk sets for the tied event times.

The simplest approximation method is Breslow’s method. This method uses the same denominator for
each tied set.

L = ∏
i = 1

d
∏

j ∈ Di

HR(X j)
∑

k ∈ Ri
HR(Xk)

,

where d is the number of distinct event times, and Di is the index set of all subjects whose event time
is equal to the ith event time.

Efron’s method is more accurate than Breslow’s method, yet simple. This method adjusts the
denominator of the tied events as follows:

L = ∏
i = 1

d
∏

j ∈ Di

HR(X j)

∑
k ∈ Ri

HR(Xk)− j− 1
di

∑
k ∈ Di

HR(Xk)
,

where di is the number of indexes in Di.

For an example, assume that the first two events are tied, that is, t1 = t2 and t2 < t3 < ⋯ < tn. In
Breslow’s method, the denominators of the first two terms are the same:

L =
HR X1

∑ j = 1
n HR X j

×
HR X2

∑ j = 1
n HR X j

×
HR X3

∑ j = 3
n HR X j

×
HR X4

∑ j = 4
n HR X j

× ⋅ ⋅ ⋅ ×
HR Xn
HR Xn

.
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Efron’s method adjusts the denominator of the second term:

L =
HR X1

∑ j = 1
n HR X j

×
HR X2

0.5HR X1 + 0.5HR X2 + ∑ j = 3
n HR X j

×
HR X3

∑ j = 3
n HR X j

×
HR X4

∑ j = 4
n HR X j

×

⋅ ⋅ ⋅ ×
HR Xn, tn
HR Xn, tn

.

You can specify an approximation method by using the name-value pair 'Ties' in coxphfit.

Frequency or Weights of Observations
The Cox proportional hazards model can incorporate with the frequency or weights of observations.
Let wi be the weight of the ith observation. Then, the partial likelihoods of the Cox model with
weights become as follows:

• Partial likelihood with weights

L = ∏
i = 1

n HRw(Xi)
∑

j ∈ Ri
w jHR(X j)

,

where

HRw Xi = exp ∑
j = 1

p
w jxi jb j .

• Partial likelihood with weights and Breslow’s method

L = ∏
i = 1

d
∏

j ∈ Di

HRw(X j)

∑
k ∈ Ri

wkHR(Xk)

1
di
∑

j ∈ Di
wj

• Partial likelihood with weights and Efron’s method

L = ∏
i = 1

d
∏

j ∈ Di

HRw(X j)

∑
k ∈ Ri

wkHR(Xk)− j− 1
di

∑
k ∈ Di

wkHR(Xk)

1
di
∑

j ∈ Di
wj

You can specify the frequency or weights of observations by using the name-value pair 'Frequency'
in coxphfit.
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Cox Proportional Hazards Model for Censored Data

This example shows how to construct a Cox proportional hazards model, and assess the significance
of the predictor variables.

Step 1. Load sample data.

Load the sample data.

load readmissiontimes

The response variable is ReadmissionTime, which shows the readmission times for 100 patients.
The predictor variables are Age, Sex, Weight, and the smoking status of each patient, Smoker. 1
indicates the patient is a smoker, and 0 indicates that the patient does not smoke. The column vector
Censored has the censorship information for each patient, where 1 indicates censored data, and 0
indicates the exact readmission times are observed. This is simulated data.

Step 2. Fit Cox proportional hazards function.

Fit a Cox proportional hazard function with the variable Sex as the predictor variable, taking the
censoring into account.

X = Sex;
[b,logl,H,stats] = coxphfit(X,ReadmissionTime,'censoring',Censored);

Assess the statistical significance of the term Sex.

stats

stats = struct with fields:
                    covb: 0.1016
                    beta: -1.7642
                      se: 0.3188
                       z: -5.5335
                       p: 3.1392e-08
                   csres: [100x1 double]
                  devres: [100x1 double]
                 martres: [100x1 double]
                  schres: [100x1 double]
                 sschres: [100x1 double]
                  scores: [100x1 double]
                 sscores: [100x1 double]
    LikelihoodRatioTestP: 5.9825e-09

The p-value, p, indicates that the term Sex is statistically significant.

Save the loglikelihood value with a different name. You will use this to assess the significance of the
extended models.

loglSex = logl

loglSex = -262.1365

Step 3. Add Age and Weight to the model.

Fit a Cox proportional hazards model with the variables Sex, Age, and Weight.
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X = [Sex Age Weight];
[b,logl,H,stats] = coxphfit(X,ReadmissionTime,'censoring',Censored);

Assess the significance of the terms.

stats.beta

ans = 3×1

   -0.5441
    0.0143
    0.0250

stats.p

ans = 3×1

    0.4953
    0.3842
    0.0960

None of the terms, adjusted for others, is statistically significant.

Assess the significance of the terms using the log likelihood ratio. You can assess the significance of
the new model using the likelihood ratio statistic. First find the difference between the log-likelihood
statistic of the model without the terms Age and Weight and the log-likelihood of the model with Sex,
Age, and Weight.

-2*[loglSex - logl]

ans = 3.6705

Now, compute the p-value for the likelihood ratio statistic. The likelihood ratio statistic has a Chi-
square distribution with a degrees of freedom equal to the number of predictor variables being
assessed. In this case, the degrees of freedom is 2.

p = 1 - cdf('chi2',3.6705,2)

p = 0.1596

The p-value of 0.1596 indicates that the terms Age and Weight are not statistically significant, given
the term Sex in the model.

Step 4. Add Smoker to the model.

Fit a Cox proportional hazards model with the variables Sex and Smoker.

X = [Sex Smoker];
[b,logl,H,stats] = coxphfit(X,ReadmissionTime,...
'censoring',Censored);

Assess the significance of the terms in the model.

stats.p

ans = 2×1

15 Survival Analysis

15-32



    0.0000
    0.0148

Compare this model to the first model where Sex is the only term.

 -2*[loglSex - logl]

ans = 5.5789

Compute the p-value for the likelihood ratio statistic. The likelihood ratio statistic has a Chi-square
distribution with a degree of freedom of 1.

p = 1 - cdf('chi2',5.5789,1)

p = 0.0182

The p-value of 0.0182 indicates that Sex and Smoker are statistically significant given the other is in
the model. The model with Sex and Smoker is a better fit compared to the model with only Sex.

Request the coefficient estimates.

 stats.beta

ans = 2×1

   -1.7165
    0.6338

The default baseline is the mean of X, so the final model for the hazard ratio is

HR =
hX(t)
hX‾ (t) = exp βs Xs− X‾ s + βα Xα− X‾ α .

Fit a Cox proportional hazards model with a baseline of 0.

X = [Sex Smoker];
[b,logl,H,stats] = coxphfit(X,ReadmissionTime,...
'censoring',Censored,'baseline',0);

The model for the hazard ratio is

HR =
hX(t)
h0(t) = exp βsXs + βαXα .

Request the coefficient estimates.

 stats.beta

ans = 2×1

   -1.7165
    0.6338
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The coefficients are not affected, but the hazard rate differs from when the baseline is the mean of X.

See Also
ecdf | coxphfit | ksdensity

Related Examples
• “Hazard and Survivor Functions for Different Groups” on page 15-16
• “Survivor Functions for Two Groups” on page 15-22
• “Cox Proportional Hazards Model with Time-Dependent Covariates” on page 15-35

More About
• “What Is Survival Analysis?” on page 15-2
• “Kaplan-Meier Method” on page 15-10
• “Cox Proportional Hazards Model” on page 15-26
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Cox Proportional Hazards Model with Time-Dependent
Covariates

This example shows how to convert survival data to counting process form and then construct a Cox
proportional hazards model with time-dependent covariates.

Step 1. Compare standard layout and counting process form.

A Cox model with time-dependent covariates requires survival data to be in counting process form
and not in standard layout. To see the difference between survival data in standard layout and in
counting process form, load the following sample data.

load simplesurvivaldata

This sample data contains two tables: relapseS and relapseCP. These two tables represent the
same simple survival data in standard layout and in counting process form, respectively.

Display the data in standard layout.

relapseS

relapseS=2×5 table
    ID    Time    Censoring    Age    StopTreatment
    __    ____    _________    ___    _____________

    1       5         0        20          NaN     
    2      20         1        30           12     

This data represents two patients whose treatment status changes over time. Patient 1 was not taking
treatment for the interval from week 0 to 5 and relapsed at the end of the interval. Patient 2 was
taking treatment for the interval from week 0 to 12, but not for the interval from week 12 to 20.
Patient 2 did not relapse and left the study after week 20.

Now display the same data in counting process form.

relapseCP

relapseCP=3×6 table
    ID    tStart    tStop    Censoring    Age    TreatmentStatus
    __    ______    _____    _________    ___    _______________

    1        0        5          0        20            0       
    2        0       12          1        30            1       
    2       12       20          1        30            0       

In counting process form, each row represents the risk interval (tStart,tStop] instead of a single
value of an event time. Censoring is 0 if the event is observed at the end of the risk interval, and 1 if
it is not. TreatmentStatus corresponds to a time-dependent covariate, which represents the same
information with StopTreatment in standard layout. Note that a Cox model assumes time-dependent
covariates to be constant in each risk interval.
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Step 2. Load sample data.

Next, load sample data to convert.

load survivaldatacp

This sample data contains a table labS, which is simulated survival data including repeated
measurement for each patient in standard layout.

Display the simulated survival data in standard layout.

labS

labS=6×7 table
    ID    Time    Censoring    Sex    Lab_0    Lab_50    Lab_100
    __    ____    _________    ___    _____    ______    _______

    1      46         0         1      0.3       NaN       NaN  
    2     138         1         0      0.2      0.23      0.39  
    3      94         0         1     0.18      0.22       NaN  
    4      50         0         0     0.21       0.2       NaN  
    5     106         0         0     0.25      0.21      0.42  
    6      98         0         0     0.21      0.22       NaN  

In standard layout, each row of the table shows information for one patient.

• ID indicates the ID of a patient. You do not include ID as an input of a Cox model. Include ID in a
data set to confirm that the data set is correctly converted to counting process form.

• Time represents time to event in days, which corresponds to a response variable.
• Censoring has the censorship information for each patient, where 1 indicates censored data and

0 indicates that the exact time to event is observed at the end of the observation period.
• Sex is a time-independent predictor where 1 indicates female, and 0 indicates male.
• Lab_0, Lab_50, and Lab_100 represent three consecutive laboratory results measured at day 0,

50, and 100, which correspond to a time-dependent predictor.

Step 3. Convert survival data to counting process form.

To convert the survival data labS to counting process form, execute the code below. This code
converts Time to a risk interval (tStart,tStop] and combines three vectors of the time-dependent
predictor, Lab_0, Lab_50, and Lab_100, into one vector, Lab.

mTime = [0 50 100]; % Measurement time
threeLabs = [labS.Lab_0 labS.Lab_50 labS.Lab_100]; 
nLabMeasure = sum(sum(~isnan(threeLabs))); % Number of lab measurements
data = zeros(nLabMeasure,6); % One row for each observation
oID = 0; % Observation ID 
for i = 1 : size(labS,1)
    idx = find(mTime <= labS.Time(i));
    for j = 1 : length(idx)-1
        oID = oID + 1;
        data(oID,:) = [labS.ID(i) mTime(j:j+1) 1 labS.Sex(i) threeLabs(i,j)];
    end
    oID = oID + 1;
    data(oID,:) = [labS.ID(i) mTime(length(idx)) labS.Time(i) ... 
            labS.Censoring(i) labS.Sex(i) threeLabs(i,length(idx))];
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end
labCP = table(data(:,1),data(:,2),data(:,3),data(:,4),data(:,5),data(:,6), ...
    'VariableNames', {'ID','tStart','tStop','Censoring','Sex','Lab'});

Display the survival data in counting process form.

labCP

labCP=13×6 table
    ID    tStart    tStop    Censoring    Sex    Lab 
    __    ______    _____    _________    ___    ____

    1        0        46         0         1      0.3
    2        0        50         1         0      0.2
    2       50       100         1         0     0.23
    2      100       138         1         0     0.39
    3        0        50         1         1     0.18
    3       50        94         0         1     0.22
    4        0        50         1         0     0.21
    4       50        50         0         0      0.2
    5        0        50         1         0     0.25
    5       50       100         1         0     0.21
    5      100       106         0         0     0.42
    6        0        50         1         0     0.21
    6       50        98         0         0     0.22

In counting process form, each row of table labCP shows information of one observation
corresponding to one risk interval. Note that a Cox model assumes Lab to be constant in the risk
interval (tStart,tStop]. The value in Censoring is 0 if an event is observed at the end of the risk
interval, and 1 if an event is not observed.

For example, patient 3 has two laboratory measurements at day 0 and 50, so there are two rows of
data for patient 3 in counting process form. A Cox model assumes the lab results 0.18 and 0.22 to be
constant in the interval (0,50] and (50,94], respectively. Censoring is 1 in (0,50] and 0 in (50,94]
because the exact event time of patient 3 is observed at day 94.

Step 4. Adjust zero-length risk interval.

Find a patient who has a zero-length risk interval.

idxInvalid = labCP.ID(find(labCP.tStart == labCP.tStop))

idxInvalid = 4

Review the data for patient 4.

labCP(find(labCP.ID==idxInvalid),:)

ans=2×6 table
    ID    tStart    tStop    Censoring    Sex    Lab 
    __    ______    _____    _________    ___    ____

    4        0       50          1         0     0.21
    4       50       50          0         0      0.2

The time to event of patient 4 coincides with the measurement day 50. However, (50,50] is an invalid
risk interval for a Cox model because the model does not accept a zero length interval. Adjust the risk

 Cox Proportional Hazards Model with Time-Dependent Covariates

15-37



interval to be valid. You can choose any value less than the time unit as an adjustment amount. The
choice of an adjustment amount is arbitrary, and it does not change the result.

idxAdjust = find(labCP.ID==idxInvalid);
labCP.tStop(idxAdjust(1)) = labCP.tStop(idxAdjust(1))-0.5;
labCP.tStart(idxAdjust(2)) = labCP.tStart(idxAdjust(2))-0.5;
labCP(idxAdjust,:)

ans=2×6 table
    ID    tStart    tStop    Censoring    Sex    Lab 
    __    ______    _____    _________    ___    ____

    4         0     49.5         1         0     0.21
    4      49.5       50         0         0      0.2

Step 5. Construct a Cox proportional hazards model.

Fit a Cox proportional hazards model with the time-independent variable Sex and time-dependent
variable Lab.

X = [labCP.Sex labCP.Lab];
T = [labCP.tStart labCP.tStop];
b = coxphfit(X,T,'Censoring',labCP.Censoring,'Baseline',0)

b = 2×1

    2.0054
   29.7530

For details on how to assess a Cox proportional hazards model, see “Cox Proportional Hazards Model
for Censored Data” on page 15-31.

See Also
coxphfit

Related Examples
• “Hazard and Survivor Functions for Different Groups” on page 15-16
• “Survivor Functions for Two Groups” on page 15-22
• “Cox Proportional Hazards Model for Censored Data” on page 15-31

More About
• “What Is Survival Analysis?” on page 15-2
• “Kaplan-Meier Method” on page 15-10
• “Cox Proportional Hazards Model” on page 15-26
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Cox Proportional Hazards Model Object

This example shows how to fit and analyze a Cox proportional hazards model using a CoxModel
object. Cox proportional hazards models relate to lifetime or failure time data. For background, see
“What Is Survival Analysis?” on page 15-2 and “Cox Proportional Hazards Model” on page 15-26.

Predictors and Stratification Levels

The main assumption in a Cox proportional hazards model is that the hazard rate, meaning the
instantaneous failure rate or event rate, is proportional to a base rate h0(t) at all times t. The constant
of proportionality depends on the values of predictors, which are called covariates in some literature.
The hazard rate for predictors X = [x1, x2, . . . , x j] with associated coefficients b j is

h(X, t) = h0(t)exp(X ⋅ b).

This example uses an extension of the Cox proportional hazards model to three stratification levels;
see “Extension of Cox Proportional Hazards Model” on page 15-27. A stratified Cox model has a fixed
number of base rates h1(t), h2(t), …, hn(t), and the model uses the same predictors and coefficients
for all stratification levels.

The proportional hazards assumption implies that a predictor does not depend on time. You might
have some time-dependent data to include in the model. To do so in a way that maintains the
proportional hazards assumption, create a stratified model. If your data are categorizable, create one
stratification per level of your data, and within each stratification, the model uses a different base
rate. The base rates can vary in time, so the proportional hazards assumption is maintained. When
given values of your time-dependent data as stratification values, the trained model outputs different
hazard rates.

Create Data for Fitting

Generate the data for three lifetime models with the following types of hazard rates. These models
correspond to three stratification levels.

• Bathtub, h1(t), whose failure rate is high at the beginning, decreases to a low level, then climbs
toward a constant level

• Logarithmically increasing: h2(t) = log(x)/10
• Constant h3(t) = 1/4

The three models share a predictor with three multipliers for the base hazard rates:

• 1
• 1/20
• 1/100

In total, the data has nine types of population members, one from each stratification level and one
from each predictor level. The functions for creating the bathtub and logarithmic hazard rates are in
the Helper Functions on page 15-46 section at the end of this example.

Plot the three hazard rates when the predictor value is 1.

t = linspace(1,40);
plot(t,hazard(t),t,log(t)/10,t,1/4*ones(size(t)))
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legend('Hazard 1','Hazard 2','Hazard 3','Location','northeast')
ylim([0 1])
xlabel("Time")
ylabel("Hazard Rate")

Create pseudorandom data for the lifetimes associated with the nine models. Create 9000 samples
chosen randomly (about 1000 of each type) by inverting the cumulative distributions. (For details, see
Inverse transform sampling).

N = 9000;
rng default % For reproducibility
mults = [1;1/20;1/100]; % Three predictors
strata = randi(3,N,1); % Three strata
t1 = zeros(N,1);
a0 = randi(3,N,1); % Predictor
a1 = mults(a0);
v1 = rand(N,1);
for i = 1:N
    switch strata(i)
        case 1 % Bathtub
            t1(i) = zeropt(a1(i),v1(i));
        case 2 % Logarithmic
            t1(i) = zeroptold(a1(i),v1(i));
        case 3 % Constant
            t1(i) = 1 + exprnd(4/a1(i));
    end
end

15 Survival Analysis

15-40

https://en.wikipedia.org/wiki/Inverse_transform_sampling


Place data into a table.

a3 = categorical(a1);
tbldata = table(t1,a3,strata,'VariableNames',["Lifetime" "Predictors" "Strata"]);

Fit Cox Model

Fit a stratified Cox proportional hazards model to the table data.

coxMdl = fitcox(tbldata,'Lifetime ~ Predictors',"Stratification",'Strata');

Plot Survival

Plot the probability of survival as a function of time for a predictor value pred = 1 (or specify any
value when you run this example) and the three stratification levels.

pred = ;
cpred = categorical(pred);
plotSurvival(coxMdl,[cpred;cpred;cpred],[1;2;3])
xlim([1,10/pred + 20])

Even though the hazard rates are proportional for the different predictors, the three survival plots
are not proportional because the underlying hazard functions differ.

Analyze Fit

Examine the coefficients of the fitted model.
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disp(coxMdl.Coefficients)

                        Beta        SE       zStat     pValue
                       ______    ________    ______    ______

    Predictors_0.05    1.5301    0.031783    48.143      0   
    Predictors_1       4.5593    0.052149    87.427      0   

Notice that the pValue entries are 0, which means that the listed predictor Beta values are not zero.

View the confidence intervals for the model coefficients at the 0.01 level of significance.

coefci(coxMdl,0.01)

ans = 2×2

    1.4483    1.6120
    4.4249    4.6936

To infer the hazard for the 0.01 level predictor, recall the definition of the Cox model:

h(Xi, t) = h0(t)exp ∑ xi jb j .

The fitcox function uses dummy variables with a reference group to handle categorical data. In this
case, the function treats the 0.01 level predictor as the reference group, and encodes the predictor as
all 0s when fitting the model. If you enter all 0s into the hazard function, you get

h([0, 0], t) = h0(t)exp 0 * b1 + 0 * b2 = h0(t)exp(0) = h0(t) .

h0(t) is the baseline hazard, which is stored in coxMdl.Hazard. Therefore, to get the hazard for the
0.01 level predictor, you can examine coxMdl.Hazard. Plot the baseline cumulative hazard for the
three stratification levels.

figure
hold on
for i = 1:3
    pred3 = find(coxMdl.Hazard(:,3) == i); % Find indices of stratification i
    plot(coxMdl.Hazard(pred3,1),coxMdl.Hazard(pred3,2))
end
xlabel('Time')
ylabel('Cumulative Hazard')
xlim([1 300])
legend('X = 0.01, Stratification 1',...
    'X = 0.01, Stratification 2',...
    'X = 0.01, Stratification 3','Location','northwest')
hold off
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The cumulative hazard for the other predictor values is exp(Beta) times the baseline cumulative
hazard, where Beta is the inferred coefficient.

disp(exp(coxMdl.Coefficients.Beta))

    4.6188
   95.5127

These relative hazard values are close to the theoretical values for the data, which were generated
with multipliers 1, 1/20, and 1/100. The baseline value corresponds to the 1/100 multiplier, so the
theoretical multipliers are 5 and 100.

View the linhyptest table.

linhyptest(coxMdl)

ans=2×2 table
         Predictor         pValue
    ___________________    ______

    {'Empty Model'    }      0   
    {'Predictors_0.05'}      0   

Again, the model requires the 1/20 value predictor and the 1 value predictor.

Check whether the data supports the hypothesis that the data is from a Cox proportional hazards
model.
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supports = coxMdl.ProportionalHazardsPValueGlobal

supports = 0.9730

The null hypothesis for this test is that the data is from a Cox proportional hazards model. To reject
this hypothesis, supports must be less than 0.05 or some other small significance level. The statistic
indicates support for the hypothesis that the data is consistent with a Cox model.

Examine Hazard Ratios

Calculate the hazard ratio for the predictor values 1, 1/20, and 1/100 compared to a baseline of 0
for the three stratification levels.

hazards = hazardratio(coxMdl,...
    categorical([1;1;1;1/20;1/20;1/20;1/100;1/100;1/100]),...
    [1;2;3;1;2;3;1;2;3],'Baseline',0)

hazards = 9×1

   95.5127
   95.5127
   95.5127
    4.6188
    4.6188
    4.6188
    1.0000
    1.0000
    1.0000

The hazard ratios are near their theoretical values of 100, 5, and 1, as explained in the previous
section. The hazard ratios do not depend on the stratification level.

How Well Does the Constant Hazard Stratification Level Match Theory?

Stratification level 3 has a constant hazard rate of 1/4. Theoretically, a constant hazard rate means an
exponential survival function, whose logarithm is a straight line. Plot the survival of level 3
stratification using the predictor value 1/20, which leads to an exponential rate of 1/80.

tt = categorical(1/20);
h = figure;
axes1 = axes('Parent',h);
plotSurvival(coxMdl,axes1,tt,3);
xlim([1 400]);
axes1.YScale = 'log';
hold on
tms = linspace(1,400);
semilogy(tms,exp(-tms/80),'r--')
hold off
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The data matches the theoretical line for probabilities well above 1/100.

Reduce Memory Usage by Discarding Residuals

Examine the memory used by the model.

M1 = whos("coxMdl");
disp(M1.bytes)

     1231133

Remove the residuals from the model.

coxMdl = discardResiduals(coxMdl);

Examine how the removal affects the memory used by the model.

M2 = whos("coxMdl");
disp(M2.bytes)

      437757

disp(M1.bytes/M2.bytes)

    2.8124

Removing the residuals decreases the memory usage by nearly a factor of 3.
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Helper Functions

This function creates the bathtub hazard rate.

function h = hazard(x)
h = exp(-2*(x - 1)) + (1 + tanh(x/10 - 3));
end

This function creates the integral of the bathtub hazard rate from 1 to x.

function eh = exphazard(x)
eh = 1/2 - exp(-2*(x-1))/2;
eh2 = (10*log(cosh(x/10 - 3)) - 10*log(cosh(1/10 - 3)) + x - 1);
eh = eh + eh2;
end

This function solves for the root of the cumulative hazard rate with multiplier a to level v.

function zz = zeropt(a,v)
zz = fzero(@(x)(1 - exp(-a*exphazard(x)) - v),[1 100*max(1,1/a)]);
end

This function creates the integral of the logarithmic hazard rate with multiplier 1/10 from 1 to x.

function cr = cumrisk(x)
cr = 1/10*(x.*(log(x) - 1) + 1);
end

This function solves for the root of the cumulative hazard rate with multiplier a to level v.

function zz = zeroptold(a,v)
zz = fzero(@(x)(1 - exp(-a*cumrisk(x)) - v),[1 50*max(1,1/a)]);
end

See Also
fitcox | CoxModel

Related Examples
• “Analysis of Lifetime Data”

15 Survival Analysis

15-46



Analyzing Survival or Reliability Data

This example shows how to analyze lifetime data with censoring. In biological or medical
applications, this is known as survival analysis, and the times may represent the survival time of an
organism or the time until a disease is cured. In engineering applications, this is known as reliability
analysis, and the times may represent the time to failure of a piece of equipment.

Our example models the time to failure of a throttle from an automobile fuel injection system.

Special Properties of Lifetime Data

Some features of lifetime data distinguish them other types of data. First, the lifetimes are always
positive values, usually representing time. Second, some lifetimes may not be observed exactly, so
that they are known only to be larger than some value. Third, the distributions and analysis
techniques that are commonly used are fairly specific to lifetime data

Let's simulate the results of testing 100 throttles until failure. We'll generate data that might be
observed if most throttles had a fairly long lifetime, but a small percentage tended to fail very early.

rng(2,'twister');
lifetime = [wblrnd(15000,3,90,1); wblrnd(1500,3,10,1)];

In this example, assume that we are testing the throttles under stressful conditions, so that each hour
of testing is equivalent to 100 hours of actual use in the field. For pragmatic reasons, it's often the
case that reliability tests are stopped after a fixed amount of time. For this example, we will use 140
hours, equivalent to a total of 14,000 hours of real service. Some items fail during the test, while
others survive the entire 140 hours. In a real test, the times for the latter would be recorded as
14,000, and we mimic this in the simulated data. It is also common practice to sort the failure times.

T = 14000;
obstime = sort(min(T, lifetime));

We know that any throttles that survive the test will fail eventually, but the test is not long enough to
observe their actual time to failure. Their lifetimes are only known to be greater than 14,000 hours.
These values are said to be censored. This plot shows that about 40% of our data are censored at
14,000.

failed = obstime(obstime<T); nfailed = length(failed);
survived = obstime(obstime==T); nsurvived = length(survived);
censored = (obstime >= T);
plot([zeros(size(obstime)),obstime]', repmat(1:length(obstime),2,1), ...
     'Color','b','LineStyle','-')
line([T;3e4], repmat(nfailed+(1:nsurvived), 2, 1), 'Color','b','LineStyle',':');
line([T;T], [0;nfailed+nsurvived],'Color','k','LineStyle','-')
text(T,30,'<--Unknown survival time past here')
xlabel('Survival time'); ylabel('Observation number')
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Ways of Looking at Distributions

Before we examine the distribution of the data, let's consider different ways of looking at a
probability distribution.

• A probability density function (PDF) indicates the relative probability of failure at different times.
• A survivor function gives the probability of survival as a function of time, and is simply one minus

the cumulative distribution function (1-CDF).
• The hazard rate gives the instantaneous probability of failure given survival to a given time. It is

the PDF divided by the survivor function. In this example the hazard rates turn out to be
increasing, meaning the items are more susceptible to failure as time passes (aging).

• A probability plot is a re-scaled CDF, and is used to compare data to a fitted distribution.

Here are examples of those four plot types, using the Weibull distribution to illustrate. The Weibull is
a common distribution for modeling lifetime data.

x = linspace(1,30000);
subplot(2,2,1);
plot(x,wblpdf(x,14000,2),x,wblpdf(x,18000,2),x,wblpdf(x,14000,1.1))
title('Prob. Density Fcn')
subplot(2,2,2);
plot(x,1-wblcdf(x,14000,2),x,1-wblcdf(x,18000,2),x,1-wblcdf(x,14000,1.1))
title('Survivor Fcn')
subplot(2,2,3);
wblhaz = @(x,a,b) (wblpdf(x,a,b) ./ (1-wblcdf(x,a,b)));
plot(x,wblhaz(x,14000,2),x,wblhaz(x,18000,2),x,wblhaz(x,14000,1.1))
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title('Hazard Rate Fcn')
subplot(2,2,4);
probplot('weibull',wblrnd(14000,2,40,1))
title('Probability Plot')

Fitting a Weibull Distribution

The Weibull distribution is a generalization of the exponential distribution. If lifetimes follow an
exponential distribution, then they have a constant hazard rate. This means that they do not age, in
the sense that the probability of observing a failure in an interval, given survival to the start of that
interval, doesn't depend on where the interval starts. A Weibull distribution has a hazard rate that
may increase or decrease.

Other distributions used for modeling lifetime data include the lognormal, gamma, and Birnbaum-
Saunders distributions.

We will plot the empirical cumulative distribution function of our data, showing the proportion failing
up to each possible survival time. The dotted curves give 95% confidence intervals for these
probabilities.

subplot(1,1,1);
[empF,x,empFlo,empFup] = ecdf(obstime,'censoring',censored);
stairs(x,empF);
hold on;
stairs(x,empFlo,':'); stairs(x,empFup,':');
hold off
xlabel('Time'); ylabel('Proportion failed'); title('Empirical CDF')
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This plot shows, for instance, that the proportion failing by time 4,000 is about 12%, and a 95%
confidence bound for the probability of failure by this time is from 6% to 18%. Notice that because
our test only ran 14,000 hours, the empirical CDF only allows us to compute failure probabilities out
to that limit. Almost half of the data were censored at 14,000, and so the empirical CDF only rises to
about 0.53, instead of 1.0.

The Weibull distribution is often a good model for equipment failure. The function wblfit fits the
Weibull distribution to data, including data with censoring. After computing parameter estimates,
we'll evaluate the CDF for the fitted Weibull model, using those estimates. Because the CDF values
are based on estimated parameters, we'll compute confidence bounds for them.

paramEsts = wblfit(obstime,'censoring',censored);
[nlogl,paramCov] = wbllike(paramEsts,obstime,censored);
xx = linspace(1,2*T,500);
[wblF,wblFlo,wblFup] = wblcdf(xx,paramEsts(1),paramEsts(2),paramCov);

We can superimpose plots of the empirical CDF and the fitted CDF, to judge how well the Weibull
distribution models the throttle reliability data.

stairs(x,empF);
hold on
handles = plot(xx,wblF,'r-',xx,wblFlo,'r:',xx,wblFup,'r:');
hold off
xlabel('Time'); ylabel('Fitted failure probability'); title('Weibull Model vs. Empirical')
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Notice that the Weibull model allows us to project out and compute failure probabilities for times
beyond the end of the test. However, it appears the fitted curve does not match our data well. We
have too many early failures before time 2,000 compared with what the Weibull model would predict,
and as a result, too few for times between about 7,000 and about 13,000. This is not surprising --
recall that we generated data with just this sort of behavior.

Adding a Smooth Nonparametric Estimate

The pre-defined functions provided with the Statistics and Machine Learning Toolbox™ don't include
any distributions that have an excess of early failures like this. Instead, we might want to draw a
smooth, nonparametric curve through the empirical CDF, using the function ksdensity. We'll
remove the confidence bands for the Weibull CDF, and add two curves, one with the default
smoothing parameter, and one with a smoothing parameter 1/3 the default value. The smaller
smoothing parameter makes the curve follow the data more closely.

delete(handles(2:end))
[npF,ignore,u] = ksdensity(obstime,xx,'cens',censored,'function','cdf');
line(xx,npF,'Color','g');
npF3 = ksdensity(obstime,xx,'cens',censored,'function','cdf','width',u/3);
line(xx,npF3,'Color','m');
xlim([0 1.3*T])
title('Weibull and Nonparametric Models vs. Empirical')
legend('Empirical','Fitted Weibull','Nonparametric, default','Nonparametric, 1/3 default', ...
       'location','northwest');
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The nonparametric estimate with the smaller smoothing parameter matches the data well. However,
just as for the empirical CDF, it is not possible to extrapolate the nonparametric model beyond the
end of the test -- the estimated CDF levels off above the last observation.

Let's compute the hazard rate for this nonparametric fit and plot it over the range of the data.

hazrate = ksdensity(obstime,xx,'cens',censored,'width',u/3) ./ (1-npF3);
plot(xx,hazrate)
title('Hazard Rate for Nonparametric Model')
xlim([0 T])
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This curve has a bit of a "bathtub" shape, with a hazard rate that is high near 2,000, drops to lower
values, then rises again. This is typical of the hazard rate for a component that is more susceptible to
failure early in its life (infant mortality), and again later in its life (aging).

Also notice that the hazard rate cannot be estimated above the largest uncensored observation for
the nonparametric model, and the graph drops to zero.

Alternative Models

For the simulated data we've used for this example, we found that a Weibull distribution was not a
suitable fit. We were able to fit the data well with a nonparametric fit, but that model was only useful
within the range of the data.

One alternative would be to use a different parametric distribution. The Statistics and Machine
Learning Toolbox includes functions for other common lifetime distributions such as the lognormal,
gamma, and Birnbaum-Saunders, as well as many other distributions that are not commonly used in
lifetime models. You can also define and fit custom parametric models to lifetime data, as described in
the “Avoid Numerical Issues When Fitting Custom Distributions” on page 5-186 example.

Another alternative would be to use a mixture of two parametric distributions -- one representing
early failure and the other representing the rest of the distribution. Fitting mixtures of distributions is
described in the “Fit Custom Distributions” on page 5-173 example.
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Multivariate Methods

• “Multivariate Linear Regression” on page 16-2
• “Estimation of Multivariate Regression Models” on page 16-5
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Multivariate Linear Regression
In this section...
“Introduction to Multivariate Methods” on page 16-2
“Multivariate Linear Regression Model” on page 16-2
“Solving Multivariate Regression Problems” on page 16-3

Introduction to Multivariate Methods
Large, high-dimensional data sets are common in the modern era of computer-based instrumentation
and electronic data storage. High-dimensional data present many challenges for statistical
visualization, analysis, and modeling.

Data visualization, of course, is impossible beyond a few dimensions. As a result, pattern recognition,
data preprocessing, and model selection must rely heavily on numerical methods.

A fundamental challenge in high-dimensional data analysis is the so-called curse of dimensionality.
Observations in a high-dimensional space are necessarily sparser and less representative than those
in a low-dimensional space. In higher dimensions, data over-represent the edges of a sampling
distribution, because regions of higher-dimensional space contain the majority of their volume near
the surface. (A d-dimensional spherical shell has a volume, relative to the total volume of the sphere,
that approaches 1 as d approaches infinity.) In high dimensions, typical data points at the interior of a
distribution are sampled less frequently.

Often, many of the dimensions in a data set—the measured features—are not useful in producing a
model. Features may be irrelevant or redundant. Regression and classification algorithms may
require large amounts of storage and computation time to process raw data, and even if the
algorithms are successful the resulting models may contain an incomprehensible number of terms.

Because of these challenges, multivariate statistical methods often begin with some type of dimension
reduction, in which data are approximated by points in a lower-dimensional space. Dimension
reduction is the goal of the methods presented in this chapter. Dimension reduction often leads to
simpler models and fewer measured variables, with consequent benefits when measurements are
expensive and visualization is important.

Multivariate Linear Regression Model
The multivariate linear regression model expresses a d-dimensional continuous response vector as a
linear combination of predictor terms plus a vector of error terms with a multivariate normal
distribution. Let yi = yi1, …, yid ′ denote the response vector for observation i, i = 1,...,n. In the most
general case, given the d-by-K design matrix Xi and the K-by-1 vector of coefficientsβ, the
multivariate linear regression model is

yi = Xiβ + εi,

where the d-dimensional vector of error terms follows a multivariate normal distribution,

εi ∼ MVNd 0, Σ .

The model assumes independence between observations, meaning the error variance-covariance
matrix for the n stacked d-dimensional response vectors is

16 Multivariate Methods

16-2



In⊗ Σ =
Σ 0
⋱

0 Σ
.

If y denotes the nd-by-1 vector of stacked d-dimensional responses, and X denotes the nd-by-K matrix
of stacked design matrices, then the distribution of the response vector is

y ∼ MVNnd(Xβ, In⊗ Σ) .

Solving Multivariate Regression Problems
To fit multivariate linear regression models of the form

yi = Xiβ + εi, εi ∼ MVNd(0, Σ)

in Statistics and Machine Learning Toolbox, use mvregress. This function fits multivariate
regression models with a diagonal (heteroscedastic) or unstructured (heteroscedastic and correlated)
error variance-covariance matrix, Σ, using least squares or maximum likelihood estimation.

Many variations of multivariate regression might not initially appear to be of the form supported by
mvregress, such as:

• Multivariate general linear model
• Multivariate analysis of variance (MANOVA)
• Longitudinal analysis
• Panel data analysis
• Seemingly unrelated regression (SUR)
• Vector autoregressive (VAR) model

In many cases, you can frame these problems in the form used by mvregress (but mvregress does
not support parameterized error variance-covariance matrices). For the special case of one-way
MANOVA, you can alternatively use manova1. Econometrics Toolbox™ has functions for VAR
estimation.

Note The multivariate linear regression model is distinct from the multiple linear regression model,
which models a univariate continuous response as a linear combination of exogenous terms plus an
independent and identically distributed error term. To fit a multiple linear regression model, use
fitlm.

See Also
manova1 | mvregress | mvregresslike | fitlm

Related Examples
• “Set Up Multivariate Regression Problems” on page 16-11
• “Multivariate General Linear Model” on page 16-20
• “Fixed Effects Panel Model with Concurrent Correlation” on page 16-24
• “Longitudinal Analysis” on page 16-30
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More About
• “Estimation of Multivariate Regression Models” on page 16-5
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Estimation of Multivariate Regression Models
In this section...
“Least Squares Estimation” on page 16-5
“Maximum Likelihood Estimation” on page 16-7
“Missing Response Data” on page 16-9

Least Squares Estimation
• “Ordinary Least Squares” on page 16-5
• “Covariance-Weighted Least Squares” on page 16-6
• “Error Covariance Estimation” on page 16-6
• “Feasible Generalized Least Squares” on page 16-7
• “Panel Corrected Standard Errors” on page 16-7

Ordinary Least Squares

When you fit multivariate linear regression models using mvregress, you can use the optional name-
value pair 'algorithm','cwls' to choose least squares estimation. In this case, by default,
mvregress returns ordinary least squares (OLS) estimates using Σ = Id. Alternatively, if you specify
a covariance matrix for weighting, you can return covariance-weighted least squares (CWLS)
estimates. If you combine OLS and CWLS, you can get feasible generalized least squares (FGLS)
estimates.

The OLS estimate for the coefficient vector is the vector b that minimizes

∑
i = 1

n
yi− Xib ′ yi− Xib .

Let y denote the nd-by-1 vector of stacked d-dimensional responses, and X denote the nd-by-K matrix
of stacked design matrices. The K-by-1 vector of OLS regression coefficient estimates is

bOLS = X′ X −1X′ y .

This is the first mvregress output.

Given Σ = Id (the mvregress OLS default), the variance-covariance matrix of the OLS estimates is

V(bOLS) = (X′ X)−1 .

This is the fourth mvregress output. The standard errors of the OLS regression coefficients are the
square root of the diagonal of this variance-covariance matrix.

If your data is not scaled such that Σ = σ2Id, then you can multiply the mvregress variance-
covariance matrix by the mean squared error (MSE), an unbiased estimate of σ2. To compute the
MSE, return the n-by-d matrix of residuals, E (the third mvregress output). Then,

MSE =
∑

i = 1

n
eiei′

n− K ,
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where ei = (yi− Xiβ)′ is the ith row of E.

Covariance-Weighted Least Squares

For most multivariate problems, an identity error covariance matrix is insufficient, and leads to
inefficient or biased standard error estimates. You can specify a matrix for CWLS estimation using the
optional name-value pair argument covar0, for example, an invertible d-by-d matrix named C0.
Usually, C0 is a diagonal matrix such that the inverse matrix C0

−1 contains weights for each dimension
to model heteroscedasticity. However, C0 can also be a nondiagonal matrix that models correlation.

Given C0, the CWLS solution is the vector b that minimizes

∑
i = 1

n
yi− Xib ′C0 yi− Xib .

In this case, the K-by-1 vector of CWLS regression coefficient estimates is

bCWLS = X′ In⊗ C0
−1X −1X′ In⊗ C0

−1y .

This is the first mvregress output.

If Σ = C0, this is the generalized least squares (GLS) solution. The corresponding variance-covariance
matrix of the CWLS estimates is

V(bCWLS) = X′ In⊗ C0
−1X −1 .

This is the fourth mvregress output. The standard errors of the CWLS regression coefficients are the
square root of the diagonal of this variance-covariance matrix.

If you only know the error covariance matrix up to a proportion, that is, Σ = σ2C0, you can multiply
the mvregress variance-covariance matrix by the MSE, as described in “Ordinary Least Squares” on
page 16-5.

Error Covariance Estimation

Regardless of which least squares method you use, the estimate for the error variance-covariance
matrix is

Σ =

σ 1
2 σ 12 ⋯ σ 1d

σ 12 σ 2
2 ⋯ σ 2d

⋮ ⋮ ⋱ ⋮
σ 1d σ 2d ⋯ σ d

2

= E′E
n ,

where E is the n-by-d matrix of residuals. The ith row of E is ei = yi− Xib ′ .

The error covariance estimate, Σ , is the second mvregress output, and the matrix of residuals, E, is
the third output. If you specify the optional name-value pair 'covtype','diagonal', then
mvregress returns Σ  with zeros in the off-diagonal entries,
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Σ =
σ 1

2 0
⋱

0 σ d
2

.

Feasible Generalized Least Squares

The generalized least squares estimate is the CWLS estimate with a known covariance matrix. That
is, given Σ is known, the GLS solution is

bGLS = X′(In⊗ Σ)−1X −1X′(In⊗ Σ)−1y,

with variance-covariance matrix

V(bGLS) = X′(In⊗ Σ)−1X −1 .

In most cases, the error covariance is unknown. The feasible generalized least squares (FGLS)
estimate uses Σ  in place of Σ. You can obtain two-step FGLS estimates as follows:

1 Perform OLS regression, and return an estimate Σ .
2 Perform CWLS regression, using C0 = Σ .

You can also iterate between these two steps until convergence is reached.

For some data, the OLS estimate Σ  is positive semidefinite, and has no unique inverse. In this case,
you cannot get the FGLS estimate using mvregress. As an alternative, you can use lscov, which
uses a generalized inverse to return weighted least squares solutions for positive semidefinite
covariance matrices.

Panel Corrected Standard Errors

An alternative to FGLS is to use OLS coefficient estimates (which are consistent) and make a
standard error correction to improve efficiency. One such standard error adjustment—which does not
require inversion of the covariance matrix—is panel corrected standard errors (PCSE) [1]. The panel
corrected variance-covariance matrix for OLS estimates is

Vpcse(bOLS) = (X′ X)−1X′(In⊗ Σ)X(X′ X)−1 .

The PCSE are the square root of the diagonal of this variance-covariance matrix. “Fixed Effects Panel
Model with Concurrent Correlation” on page 16-24 illustrates PCSE computation.

Maximum Likelihood Estimation
• “Maximum Likelihood Estimates” on page 16-7
• “Standard Errors” on page 16-8

Maximum Likelihood Estimates

The default estimation algorithm used by mvregress is maximum likelihood estimation (MLE). The
loglikelihood function for the multivariate linear regression model is
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logL(β, Σ y, X) = 1
2ndlog(2π) + 1

2nlog(det(Σ))

+ 1
2 ∑i = 1

n
yi− Xiβ ′Σ−1 yi− Xiβ .

The MLEs for β and Σ are the values that maximize the loglikelihood objective function.

mvregress finds the MLEs using an iterative two-stage algorithm. At iteration m + 1, the estimates
are

bMLE
(m + 1) = X′ In⊗ Σ(m) −1X

−1
X′ In⊗ Σ(m) −1y

and

Σ (m + 1) = 1
n ∑i = 1

n
yi− XibMLE

(m + 1) yi− XibMLE
(m + 1) ′ .

The algorithm terminates when the changes in the coefficient estimates and loglikelihood objective
function are less than a specified tolerance, or when the specified maximum number of iterations is
reached. The optional name-value pair arguments for changing these convergence criteria are
tolbeta, tolobj, and maxiter, respectively.

Standard Errors

The variance-covariance matrix of the MLEs is an optional mvregress output. By default,
mvregress returns the variance-covariance matrix for only the regression coefficients, but you can
also get the variance-covariance matrix of Σ  using the optional name-value pair 'vartype','full'.
In this case, mvregress returns the variance-covariance matrix for all K regression coefficients, and
d or d(d + 1)/2 covariance terms (depending on whether the error covariance is diagonal or full).

By default, the variance-covariance matrix is the inverse of the observed Fisher information matrix
(the 'hessian' option). You can request the expected Fisher information matrix using the optional
name-value pair 'vartype','fisher'. Provided there is no missing response data, the observed
and expected Fisher information matrices are the same. If response data is missing, the observed
Fisher information accounts for the added uncertainty due to the missing values, whereas the
expected Fisher information matrix does not.

The variance-covariance matrix for the regression coefficient MLEs is

V(bMLE) = X′ (In⊗ Σ )−1X
−1

,

evaluated at the MLE of the error covariance matrix. This is the fourth mvregress output. The
standard errors of the MLEs are the square root of the diagonal of this variance-covariance matrix.

For Σ , let θ denote the vector of parameters in the estimated error variance-covariance matrix. For
example, if d = 2, then:

• If the estimated covariance matrix is diagonal, then θ = (σ 1
2, σ 2

2).
• If the estimated covariance matrix is full, then θ = (σ 1

2, σ 12, σ 2
2).
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The Fisher information matrix for θ, I(θ), has elements

I(θ)u, v = 1
2 tr Σ−1 ∂Σ

∂θu
Σ−1 ∂Σ

∂θv
, u, v = 1, …, nθ,

where nθ is the length of θ (either d or d(d + 1)/2). The resulting variance-covariance matrix is

V(θ) = I(θ)−1 .

When you request the full variance-covariance matrix, mvregress returns (as the fourth output) the
block diagonal matrix

V(bMLE) 0
0 V(θ)

.

Missing Response Data
• “Expectation/Conditional Maximization” on page 16-9
• “Observed Information Matrix” on page 16-10

Expectation/Conditional Maximization

If any response values are missing, indicated by NaN, mvregress uses an expectation/conditional
maximization (ECM) algorithm for estimation (if enough data is available). In this case, the algorithm
is iterative for both least squares and maximum likelihood estimation. During each iteration,
mvregress imputes missing response values using their conditional expectation.

Consider organizing the data so that the joint distribution of the missing and observed responses,
denoted y and y respectively, can be written as

y
y
∼ MVN Xβ

Xβ
,

Σy Σyy
Σyy Σy

.

Using properties of the multivariate normal distribution, the conditional expectation of the missing
responses given the observed responses is

E y y = Xβ + ΣyyΣy
−1(y − Xβ) .

Also, the variance-covariance matrix of the conditional distribution is

COV(y y) = Σy − ΣyyΣy
−1Σyy .

At each iteration of the ECM algorithm, mvregress uses the parameter values from the previous
iteration to:

• Update the regression coefficients using the combined vector of observed responses and
conditional expectations of missing responses.

• Update the variance-covariance matrix, adjusting for missing responses using the variance-
covariance matrix of the conditional distribution.

Finally, the residuals that mvregress returns for missing responses are the difference between the
conditional expectation and the fitted value, both evaluated at the final parameter estimates.
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If you prefer to ignore any observations that have missing response values, use the name-value pair
'algorithm','mvn'. Note that mvregress always ignores observations that have missing
predictor values.

Observed Information Matrix

By default, mvregress uses the observed Fisher information matrix (the 'hessian' option) to
compute the variance-covariance matrix of the regression parameters. This accounts for the
additional uncertainty due to missing response values.

The observed information matrix includes contributions from only the observed responses. That is,
the observed Fisher information matrix for the parameters in the error variance-covariance matrix
has elements

I(θ)u, v = 1
2 ∑i = 1

n
tr Σ i

−1∂Σ i
∂θu

Σ i
−1∂Σ i
∂θv

, u, v = 1, …, nθ,

where Σ i is the subset of Σ  corresponding to the observed responses in yi .

For example, if d = 3, but yi2 is missing, then

Σ i =
σ 1

2 σ 13

σ 13 σ 3
2

.

The observed Fisher information for the regression coefficients has similar contributions from the
design and covariance matrices.

References
[1] Beck, N. and J. N. Katz. "What to Do (and Not to Do) with Time-Series-Cross-Section Data in

Comparative Politics." American Political Science Review, Vol. 89, No. 3, pp. 634–647, 1995.

See Also
mvregress | mvregresslike

Related Examples
• “Set Up Multivariate Regression Problems” on page 16-11
• “Multivariate General Linear Model” on page 16-20
• “Fixed Effects Panel Model with Concurrent Correlation” on page 16-24
• “Longitudinal Analysis” on page 16-30

More About
• “Multivariate Linear Regression” on page 16-2
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Set Up Multivariate Regression Problems
In this section...
“Response Matrix” on page 16-11
“Design Matrices” on page 16-14
“Common Multivariate Regression Problems” on page 16-14

Response Matrix
To fit a multivariate linear regression model using mvregress, you must set up your response matrix
and design matrices in a particular way. Given properly formatted inputs, mvregress can handle a
variety of multivariate regression problems.

mvregress expects the n observations of potentially correlated d-dimensional responses to be in an
n-by-d matrix, named Y, for example. That is, set up your responses so that the dependency structure
is between observations in the same row. If you specify Y as a vector of length n (either a row or
column vector), then mvregress assumes that d = 1, and treats the elements as n independent
observations. It does not model the vector as one realization of a correlated series (such as a time
series).

To illustrate how to set up a response matrix, suppose that your multivariate responses are repeated
measurements made on subjects at multiple time points, as in the following figure.

Suppose that observations within a subject are correlated.
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In this case, set up the response matrix Y such that each row corresponds to a subject, and each
column corresponds to a time point.
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Then again, suppose that observations made on subjects at the same time are correlated (concurrent
correlation).

In this case, set up the response matrix Y such that each row corresponds to a time point, and each
column corresponds to a subject.
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Design Matrices
In the multivariate linear regression model, each d-dimensional response has a corresponding design
matrix. Depending on the model, the design matrix might be comprised of exogenous predictor
variables, dummy variables, lagged responses, or a combination of these and other covariate terms.

• If d > 1 and all d dimensions have the same design matrix, then specify one n-by-p design matrix,
where p is the number of predictor variables. To determine an intercept for each dimension, add a
column of ones to the design matrix. In this case, mvregress applies the design matrix to all d
dimensions.

• If d > 1 and all d dimensions do not have the same design matrix, then specify the design matrices
using a length-n cell array of d-by-K arrays, named X, for example. K is the total number of
regression coefficients in the model. Note that the rows of the arrays in X correspond to the
columns of the response matrix, Y.

If all n observations have the same design matrix, you can specify a cell array containing one d-by-
K design matrix. In this case, mvregress applies the design matrix to all n observations. For
example, this situation might arise if the predictors are functions of time, and all observations
were measured at the same time points.

• In the special case that d = 1, you can specify one n-by-K design matrix (not in a cell array).
However, you should consider using fitlm to fit regression models to univariate, continuous
responses.

The following sections illustrate how to set up the some common multivariate regression problems for
estimation using mvregress.

Common Multivariate Regression Problems
• “Multivariate General Linear Model” on page 16-14
• “Longitudinal Analysis” on page 16-16
• “Panel Analysis” on page 16-17
• “Seemingly Unrelated Regression” on page 16-17
• “Vector Autoregressive Model” on page 16-18

Multivariate General Linear Model

The multivariate general linear model is of the form

Yn × d = Xn × (p + 1)B(p + 1) × d + En × d .

In expanded form,
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y11 y12 ⋯ y1d

y21 y22 ⋯ y2d

⋮ ⋮ ⋱ ⋮
yn1 yn2 ⋯ ynd

=

1 x11 x12 ⋯ x1p

1 x21 x22 ⋯ x2p

⋮ ⋮ ⋮ ⋱ ⋮
1 xn1 xn2 ⋯ xnp

β01 β02 ⋯ β0d

β11 β12 ⋯ β1d

⋮ ⋮ ⋱ ⋮
βp1 βp2 ⋯ βpd

+

ε11 ε12 ⋯ ε1d

ε21 ε22 ⋯ ε2d

⋮ ⋮ ⋱ ⋮
εn1 εn2 ⋯ εnd

.

That is, each d-dimensional response has an intercept and p predictor variables, and each dimension
has its own set of regression coefficients. In this form, the least squares solution is B = X\Y. To
estimate this model using mvregress, use the n-by-d matrix of responses, as above.

If all d dimensions have the same design matrix, use the n-by-(p+1) design matrix, as above. Adding a
column of ones to the p predictor variables computes the intercept for each dimension.

If all d dimensions do not have the same design matrix, reformat the n-by-(p + 1) design matrix into a
length-n cell array of d-by-K matrices. Here, K = (p + 1)d for an intercept and slopes for each
dimension.

For example, suppose n = 4, d = 3, and p = 2 (two predictor terms in addition to an intercept). This
figure shows how to format the ith element in the cell array.
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If you prefer, you can reshape the K-by-1 vector of coefficients back into a (p + 1)-by-d matrix after
estimation.

To put constraints on the model parameters, adjust the design matrix accordingly. For example,
suppose that the three dimensions in the previous example have a common slope. That is,
β11 = β12 = β13 = β1 and β21 = β22 = β23 = β2 . In this case, each design matrix is 3-by-5, as shown in
the following figure.

Longitudinal Analysis

In a longitudinal analysis, you might measure responses on n subjects at d time points, with
correlation between observations made on the same subject. For example, suppose that you measure
responses yij at times tij, i = 1,...,n and j = 1,...,d. In addition, suppose that each subject is in one of
two groups (such as male or female), specified by the indicator variable Gi. You could model yij as a
function of Gi and tij, with group-specific intercepts and slopes, as follows:

yi j = β0 + β1Gi + β2ti j + β3Gi × ti j + εi j, i = 1, …, n; j = 1, …, d,

where

εi = (εi1, …, εid)′ ∼ MVN(0, Σ) .

Most longitudinal models include time as an explicit predictor.

To fit this model using mvregress, arrange the responses in an n-by-d matrix, where n is the number
of subjects and d is the number of time points. Specify the design matrices in an n-length cell array of
d-by-K matrices, where here K = 4 for the four regression coefficients.

For example, suppose d = 5 (five observations per subject). The ith design matrix and corresponding
parameter vector for the specified model are shown in the following figure.
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Panel Analysis

In a panel analysis, you might measure responses and covariates on d subjects (such as individuals or
countries) at n time points. For example, suppose you measure responses ytj and covariates xtj on
subjects j = 1,...,d at times t = 1,...,n. A fixed effects panel model, with subject-specific fixed effects,
and concurrent correlation might look like:

yt j = α j + βxt j + εt j,

where

εt = (εt1, ..., εtd)′ ∼ MVN(0, Σ) .

In contrast to longitudinal models, the panel analysis model typically includes covariates measured at
each time point, instead of using time as an explicit predictor.

To fit this model using mvregress, arrange the responses in an n-by-d matrix, such that each column
corresponds to a subject. Specify the design matrices in an n-length cell array of d-by-K matrices,
where here K = d + 1 for the d intercepts and a slope term.

For example, suppose d = 4 (four subjects). The tth design matrix and corresponding parameter
vector are shown in the following figure.

Seemingly Unrelated Regression

In a seemingly unrelated regression (SUR), you model d separate regressions, each with its own
intercept and slope, but a common error variance-covariance matrix. For example, suppose you
measure responses yij and covariates xij for regression models j = 1,...,d, with i = 1,...,n observations
to fit each regression. The SUR model might look like:

yi j = β0 j + β jxi j + εi j,

where

εi = (εi1, …, εid)′ ∼ MVN(0, Σ) .

This model is very similar to the multivariate general linear model, except that it has different
covariates for each dimension.

To fit this model using mvregress, arrange the responses in an n-by-d matrix, such that each column
has the data for the jth regression model. Specify the design matrices in an n-length cell array of d-
by-K matrices, where here K = 2d for d intercepts and d slopes.

For example, suppose d = 3 (three regressions). The ith design matrix and corresponding parameter
vector are shown in the following figure.
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Vector Autoregressive Model

The VAR(p) vector autoregressive model expresses d-dimensional time series responses as a linear
function of p lagged d-dimensional responses from previous times. For example, suppose you measure
responses ytj for time series j = 1,...,d at times t = 1,...,n. The VAR(p) model might look like:

yt1
yt2

⋮
ytd

=

c1
c2

⋮
cd

+
φ11

(1) φ12
(1) ⋯ φ1d

(1)

⋮ ⋮ ⋱ ⋮
φd1

(1) φd2
(1) ⋯ φdd

(1)

yt − 1, 1
yt − 1, 2

⋮
yt − 1, d

+⋯+
φ11

(p) φ12
(p) ⋯ φ1d

(p)

⋮ ⋮ ⋱ ⋮
φd1

(p) φd2
(p) ⋯ φdd

(p)

yt − p, 1
yt − p, 2

⋮
yt − p, d

+

εt1
εt2

⋮
εtd

,

where

εt = (εt1, ..., εtd)′ ∼ MVN(0, Σ) .

When estimating vector autoregressive models, you typically need to use the first p observations to
initiate the model, or provide some other presample response values.

To fit this model using mvregress, arrange the responses in an n-by-d matrix, such that each column
corresponds to a time series. Specify the design matrices in an n-length cell array of d-by-K matrices,
where here K = d + pd2.

For example, suppose d = 2 (two time series) and p = 1 (one lag). The tth design matrix and
corresponding parameter vector are shown in the following figure.

Alternatively, Econometrics Toolbox has functions for fitting and forecasting VAR(p) models, including
the option to specify exogenous predictor variables.

See Also
mvregress | mvregresslike
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Related Examples
• “Multivariate General Linear Model” on page 16-20
• “Fixed Effects Panel Model with Concurrent Correlation” on page 16-24
• “Longitudinal Analysis” on page 16-30

More About
• “Multivariate Linear Regression” on page 16-2
• “Estimation of Multivariate Regression Models” on page 16-5
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Multivariate General Linear Model

This example shows how to set up a multivariate general linear model for estimation using
mvregress.

Load sample data.

This data contains measurements on a sample of 205 auto imports from 1985.

Here, model the bivariate response of city and highway MPG (columns 14 and 15).

For predictors, use wheel base (column 3), curb weight (column 7), and fuel type (column 18). The
first two predictors are continuous, and for this example are centered and scaled. Fuel type is a
categorical variable with two categories (11 and 20), so a dummy indicator variable is needed for the
regression.

load('imports-85')
Y = X(:,14:15);
[n,d] = size(Y);

X1 = zscore(X(:,3));
X2 = zscore(X(:,7));
X3 = X(:,18)==20;

Xmat = [ones(n,1) X1 X2 X3];

The variable X3 is coded to have value 1 for the fuel type 20, and value 0 otherwise.

For convenience, the three predictors (wheel base, curb weight, and fuel type indicator) are
combined into one design matrix, with an added intercept term.

Set up design matrices.

Given these predictors, the multivariate general linear model for the bivariate MPG response is

y11 y12
y21 y22

⋮ ⋮
yn1 yn2

=

1 x11 x12 x13
1 x21 x22 x23

⋮ ⋮ ⋮ ⋮
1 xn1 xn2 xn3

β01 β02
β11 β12
β21 β22
β31 β32

+

ϵ11 ϵ12
ϵ21 ϵ22

⋮ ⋮
ϵn1 ϵn2

,

where ϵi = ϵi1, ϵi2 ′−MVN(0, Σ). There are K = 8 regression coefficients in total.

Create a length n = 205 cell array of 2-by-8 (d-by-K) matrices for use with mvregress. The ith matrix
in the cell array is

X(i) =
1 0 xi1 0 xi2 0 xi3 0
0 1 0 xi1 0 xi2 0 xi3

.

Xcell = cell(1,n);
for i = 1:n
    Xcell{i} = [kron([Xmat(i,:)],eye(d))];
end
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Given this specification of the design matrices, the corresponding parameter vector is

β =

β01
β02
β11
β12
β21
β22
β31
β32

.

Estimate regression coefficients.

Fit the model using maximum likelihood estimation.

[beta,sigma,E,V] = mvregress(Xcell,Y);
beta

beta = 8×1

   33.5476
   38.5720
    0.9723
    0.3950
   -6.3064
   -6.3584
   -9.2284
   -8.6663

These coefficient estimates show:

• The expected city and highway MPG for cars of average wheel base, curb weight, and fuel type 11
are 33.5 and 38.6, respectively. For fuel type 20, the expected city and highway MPG are
33.5476 - 9.2284 = 24.3192 and 38.5720 - 8.6663 = 29.9057.

• An increase of one standard deviation in curb weight has almost the same effect on expected city
and highway MPG. Given all else is equal, the expected MPG decreases by about 6.3 with each
one standard deviation increase in curb weight, for both city and highway MPG.

• For each one standard deviation increase in wheel base, the expected city MPG increases 0.972,
while the expected highway MPG increases by only 0.395, given all else is equal.

Compute standard errors.

The standard errors for the regression coefficients are the square root of the diagonal of the variance-
covariance matrix, V.

se = sqrt(diag(V))

se = 8×1

    0.7365
    0.7599
    0.3589
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    0.3702
    0.3497
    0.3608
    0.7790
    0.8037

Reshape coefficient matrix.

You can easily reshape the regression coefficients into the original 4-by-2 matrix.

B = reshape(beta,2,4)'

B = 4×2

   33.5476   38.5720
    0.9723    0.3950
   -6.3064   -6.3584
   -9.2284   -8.6663

Check model assumptions.

Under the model assumptions, z = EΣ−1/2 should be independent, with a bivariate standard normal
distribution. In this 2-D case, you can assess the validity of this assumption using a scatter plot.

z = E/chol(sigma);
figure()
plot(z(:,1),z(:,2),'.')
title('Standardized Residuals')
hold on

% Overlay standard normal contours
z1 = linspace(-5,5);
z2 = linspace(-5,5);
[zx,zy] = meshgrid(z1,z2);
zgrid = [reshape(zx,100^2,1),reshape(zy,100^2,1)];
zn = reshape(mvnpdf(zgrid),100,100);
[c,h] = contour(zx,zy,zn);
clabel(c,h)
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Several residuals are larger than expected, but overall, there is little evidence against the
multivariate normality assumption.

See Also
mvregress | mvregresslike

Related Examples
• “Set Up Multivariate Regression Problems” on page 16-11
• “Fixed Effects Panel Model with Concurrent Correlation” on page 16-24
• “Longitudinal Analysis” on page 16-30

More About
• “Multivariate Linear Regression” on page 16-2
• “Estimation of Multivariate Regression Models” on page 16-5
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Fixed Effects Panel Model with Concurrent Correlation
This example shows how to perform panel data analysis using mvregress. First, a fixed effects model
with concurrent correlation is fit by ordinary least squares (OLS) to some panel data. Then, the
estimated error covariance matrix is used to get panel corrected standard errors for the regression
coefficients.

Load sample data.

Load the sample panel data.

load panelData

The dataset array, panelData, contains yearly observations on eight cities for 6 years. This is
simulated data.

Define variables.

The first variable, Growth, measures economic growth (the response variable). The second and third
variables are city and year indicators, respectively. The last variable, Employ, measures employment
(the predictor variable).

y = panelData.Growth;
city = panelData.City;
year = panelData.Year;
x = panelData.Employ;

Plot data grouped by category.

To look for potential city-specific fixed effects, create a box plot of the response grouped by city.

figure()
boxplot(y,city)
xlabel('City')
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There does not appear to be any systematic differences in the mean response among cities.

Plot data grouped by a different category.

To look for potential year-specific fixed effects, create a box plot of the response grouped by year.

figure()
boxplot(y,year)
xlabel('Year')

Some evidence of systematic differences in the mean response between years seems to exist.

Format response data.

Let yij denote the response for city j = 1,...,d, in year i = 1,...,n. Similarly, xij is the corresponding
value of the predictor variable. In this example, n = 6 and d = 8.

Consider fitting a year-specific fixed effects model with a constant slope and concurrent correlation
among cities in the same year,

yi j = αi + β1xi j + εi j, i = 1, …, n, j = 1, …, d,

where εi = (εi1, …, εid)′ ∼ MVN(0, Σ). The concurrent correlation accounts for any unmeasured, time-
static factors that might impact growth similarly for some cities. For example, cities with close spatial
proximity might be more likely to have similar economic growth.

To fit this model using mvregress, reshape the response data into an n-by-d matrix.

n = 6; d = 8;
Y = reshape(y,n,d);
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Format design matrices.

Create a length-n cell array of d-by-K design matrices. For this model, there are K = 7 parameters (d
= 6 intercept terms and a slope).

Suppose the vector of parameters is arranged as

β =

α1
α2

⋮
α6
β1

.

In this case, the first design matrix for year 1 looks like

X 1 =

1 0 ⋯ 0 x11

1 0 ⋯ 0 x12

⋮ ⋮ ⋯ 0 ⋮
1 0 ⋯ 0 x18

,

and the second design matrix for year 2 looks like

X 2 =

0 1 0 ⋯ 0 x21

0 1 0 ⋯ 0 x22

⋮ ⋮ 0 ⋯ 0 ⋮
0 1 0 ⋯ 0 x28

.

The design matrices for the remaining 4 years are similar.

K = 7; N = n*d;
X = cell(n,1);
for i = 1:n
    x0 = zeros(d,K-1);
    x0(:,i) = 1;
    X{i} = [x0,x(i:n:N)];
end

Fit the model.

Fit the model using ordinary least squares (OLS).

[b,sig,E,V] = mvregress(X,Y,'algorithm','cwls');
b

b =

   41.6878
   26.1864
  -64.5107
   11.0924
  -59.1872
   71.3313
    4.9525
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Plot fitted model.

xx = linspace(min(x),max(x));
axx = repmat(b(1:K-1),1,length(xx));
bxx = repmat(b(K)*xx,n,1);
yhat =  axx + bxx;

figure()
hPoints = gscatter(x,y,year);
hold on
hLines = plot(xx,yhat);
for i=1:n  
   set(hLines(i),'color',get(hPoints(i),'color'));
end
hold off

The model with year-specific intercepts and common slope appears to fit the data quite well.

Residual correlation.

Plot the residuals, grouped by year.

figure()
gscatter(year,E(:),city)
ylabel('Residuals')
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The residual plot suggests concurrent correlation is present. For examples, cities 1, 2, 3, and 4 are
consistently above or below average as a group in any given year. The same is true for the collection
of cities 5, 6, 7, and 8. As seen in the exploratory plots, there are no systematic city-specific effects.

Panel corrected standard errors.

Use the estimated error variance-covariance matrix to compute panel corrected standard errors for
the regression coefficients.

XX = cell2mat(X);
S = kron(eye(n),sig);
Vpcse = inv(XX'*XX)*XX'*S*XX*inv(XX'*XX);
se = sqrt(diag(Vpcse))

se =

    9.3750
    8.6698
    9.3406
    9.4286
    9.5729
    8.8207
    0.1527

See Also
mvregress | mvregresslike

Related Examples
• “Set Up Multivariate Regression Problems” on page 16-11
• “Multivariate General Linear Model” on page 16-20
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• “Longitudinal Analysis” on page 16-30

More About
• “Multivariate Linear Regression” on page 16-2
• “Estimation of Multivariate Regression Models” on page 16-5
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Longitudinal Analysis
This example shows how to perform longitudinal analysis using mvregress.

Load sample data.

Load the sample longitudinal data.

load longitudinalData

The matrix Y contains response data for 16 individuals. The response is the blood level of a drug
measured at five time points (t = 0, 2, 4, 6, and 8). Each row of Y corresponds to an individual, and
each column corresponds to a time point. The first eight subjects are female, and the second eight
subjects are male. This is simulated data.

Plot data.

Plot the data for all 16 subjects.

figure()
t = [0,2,4,6,8];
plot(t,Y)
hold on

hf = plot(t,Y(1:8,:),'^');
hm = plot(t,Y(9:16,:),'o');
legend([hf(1),hm(1)],'Female','Male','Location','NorthEast')

title('Longitudinal Response')
ylabel('Blood Drug Level')
xlabel('Time')
hold off
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Define design matrices.

Let yij denote the response for individual i = 1,...,n measured at times tij, j = 1,...,d. In this example, n
= 16 and d = 5. Let Gi denote the gender of individual i, where Gi = 1 for males and 0 for females.

Consider fitting a quadratic longitudinal model, with a separate slope and intercept for each gender,

yi j = β0 + β1Gi + β2ti j + β3ti j
2 + β4Gi × ti j + β5Gi × ti j

2 + εi j,

where εi = (εi1, …, εid)′ ∼ MVN(0, Σ). The error correlation accounts for clustering within an
individual.

To fit this model using mvregress, the response data should be in an n-by-d matrix. Y is already in
the proper format.

Next, create a length-n cell array of d-by-K design matrices. For this model, there are K = 6
parameters.

For individual i, the 5-by-6 design matrix is

X i =

1 Gi ti1 ti12 Gi × ti1 Gi × ti12

1 Gi ti2 ti22 Gi × ti2 Gi × ti22

⋮ ⋮ ⋮ ⋮ ⋮ ⋮
1 Gi ti5 ti52 Gi × ti5 Gi × ti52

,

corresponding to the parameter vector

β =

β0
β1

⋮
β5

.

The matrix X1 has the design matrix for a female, and X2 has the design matrix for a male.

Create a cell array of design matrices. The first eight individuals are females, and the second eight
are males.

X = cell(8,1);
X(1:8) = {X1};
X(9:16) = {X2};

Fit the model.

Fit the model using maximum likelihood estimation. Display the estimated coefficients and standard
errors.

[b,sig,E,V,loglikF] = mvregress(X,Y);
[b sqrt(diag(V))]

ans =

   18.8619    0.7432
   13.0942    1.0511
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    2.5968    0.2845
   -0.3771    0.0398
   -0.5929    0.4023
    0.0290    0.0563

The coefficients on the interaction terms (in the last two rows of b) do not appear significant. You can
use the value of the loglikelihood objective function for this fit, loglikF, to compare this model to
one without the interaction terms using a likelihood ratio test.

Plot fitted model.

Plot the fitted lines for females and males.

Yhatf = X1*b;
Yhatm = X2*b;

figure()
plot(t,Y)
hold on

plot(t,Y(1:8,:),'^',t,Y(9:16,:),'o')

hf = plot(t,Yhatf,'k--','LineWidth',3);
hm = plot(t,Yhatm,'k','LineWidth',3);
legend([hf,hm],'Females','Males','Location','NorthEast')

title('Longitudinal Response')
ylabel('Blood Drug Level')
xlabel('Time')
hold off

Define a reduced model.

Fit the model without interaction terms,
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yi j = β0 + β1Gi + β2ti j + β3ti j
2 + εi j,

where εi = (εi1, …, εid)′ ∼ MVN(0, Σ).

This model has four coefficients, which correspond to the first four columns of the design matrices X1
and X2 (for females and males, respectively).

X1R = X1(:,1:4);
X2R = X2(:,1:4);

XR = cell(8,1);
XR(1:8) = {X1R};
XR(9:16) = {X2R};

Fit the reduced model.

Fit this model using maximum likelihood estimation. Display the estimated coefficients and their
standard errors.

[bR,sigR,ER,VR,loglikR] = mvregress(XR,Y);
[bR,sqrt(diag(VR))]

ans =

   19.3765    0.6898
   12.0936    0.8591
    2.2919    0.2139
   -0.3623    0.0283

Conduct a likelihood ratio test.

Compare the two models using a likelihood ratio test. The null hypothesis is that the reduced model is
sufficient. The alternative is that the reduced model is inadequate (compared to the full model with
the interaction terms).

The likelihood ratio test statistic is compared to a chi-squared distribution with two degrees of
freedom (for the two coefficients being dropped).

LR = 2*(loglikF-loglikR);
pval = 1 - chi2cdf(LR,2)

pval =

    0.0803

The p-value 0.0803 indicates that the null hypothesis is not rejected at the 5% significance level.
Therefore, there is insufficient evidence that the extra terms improve the fit.

See Also
mvregress | mvregresslike

Related Examples
• “Set Up Multivariate Regression Problems” on page 16-11
• “Multivariate General Linear Model” on page 16-20
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• “Fixed Effects Panel Model with Concurrent Correlation” on page 16-24

More About
• “Multivariate Linear Regression” on page 16-2
• “Estimation of Multivariate Regression Models” on page 16-5
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Multidimensional Scaling
One of the most important goals in visualizing data is to get a sense of how near or far points are
from each other. Often, you can do this with a scatter plot. However, for some analyses, the data that
you have might not be in the form of points at all, but rather in the form of pairwise similarities or
dissimilarities between cases, observations, or subjects. There are no points to plot.

Even if your data are in the form of points rather than pairwise distances, a scatter plot of those data
might not be useful. For some kinds of data, the relevant way to measure how near two points are
might not be their Euclidean distance. While scatter plots of the raw data make it easy to compare
Euclidean distances, they are not always useful when comparing other kinds of inter-point distances,
city block distance for example, or even more general dissimilarities. Also, with a large number of
variables, it is very difficult to visualize distances unless the data can be represented in a small
number of dimensions. Some sort of dimension reduction is usually necessary.

Multidimensional scaling (MDS) is a set of methods that address all these problems. MDS allows you
to visualize how near points are to each other for many kinds of distance or dissimilarity metrics and
can produce a representation of your data in a small number of dimensions. MDS does not require
raw data, but only a matrix of pairwise distances or dissimilarities.

See Also
mdscale | cmdscale

Related Examples
• “Nonclassical and Nonmetric Multidimensional Scaling” on page 16-36
• “Classical Multidimensional Scaling” on page 16-40

 Multidimensional Scaling

16-35



Nonclassical and Nonmetric Multidimensional Scaling
In this section...
“Nonclassical Multidimensional Scaling” on page 16-36
“Nonmetric Multidimensional Scaling” on page 16-37

Perform nonclassical multidimensional scaling using mdscale.

Nonclassical Multidimensional Scaling
The function mdscale performs nonclassical multidimensional scaling. As with cmdscale, you use
mdscale either to visualize dissimilarity data for which no “locations” exist, or to visualize high-
dimensional data by reducing its dimensionality. Both functions take a matrix of dissimilarities as an
input and produce a configuration of points. However, mdscale offers a choice of different criteria to
construct the configuration, and allows missing data and weights.

For example, the cereal data include measurements on 10 variables describing breakfast cereals. You
can use mdscale to visualize these data in two dimensions. First, load the data. For clarity, this
example code selects a subset of 22 of the observations.

load cereal.mat
X = [Calories Protein Fat Sodium Fiber ... 
    Carbo Sugars Shelf Potass Vitamins];
% Take a subset from a single manufacturer
mfg1 = strcmp('G',cellstr(Mfg));
X = X(mfg1,:);
size(X)
ans =
    22 10

Then use pdist to transform the 10-dimensional data into dissimilarities. The output from pdist is a
symmetric dissimilarity matrix, stored as a vector containing only the (23*22/2) elements in its upper
triangle.

dissimilarities = pdist(zscore(X),'cityblock');
size(dissimilarities)
ans =
     1   231

This example code first standardizes the cereal data, and then uses city block distance as a
dissimilarity. The choice of transformation to dissimilarities is application-dependent, and the choice
here is only for simplicity. In some applications, the original data are already in the form of
dissimilarities.

Next, use mdscale to perform metric MDS. Unlike cmdscale, you must specify the desired number
of dimensions, and the method to use to construct the output configuration. For this example, use two
dimensions. The metric STRESS criterion is a common method for computing the output; for other
choices, see the mdscale reference page in the online documentation. The second output from
mdscale is the value of that criterion evaluated for the output configuration. It measures the how
well the inter-point distances of the output configuration approximate the original input
dissimilarities:

[Y,stress] =... 
mdscale(dissimilarities,2,'criterion','metricstress');
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stress
stress =
    0.1856

A scatterplot of the output from mdscale represents the original 10-dimensional data in two
dimensions, and you can use the gname function to label selected points:

plot(Y(:,1),Y(:,2),'o','LineWidth',2);
gname(Name(mfg1))

Nonmetric Multidimensional Scaling
Metric multidimensional scaling creates a configuration of points whose inter-point distances
approximate the given dissimilarities. This is sometimes too strict a requirement, and non-metric
scaling is designed to relax it a bit. Instead of trying to approximate the dissimilarities themselves,
non-metric scaling approximates a nonlinear, but monotonic, transformation of them. Because of the
monotonicity, larger or smaller distances on a plot of the output will correspond to larger or smaller
dissimilarities, respectively. However, the nonlinearity implies that mdscale only attempts to
preserve the ordering of dissimilarities. Thus, there may be contractions or expansions of distances at
different scales.

You use mdscale to perform nonmetric MDS in much the same way as for metric scaling. The
nonmetric STRESS criterion is a common method for computing the output; for more choices, see the
mdscale reference page in the online documentation. As with metric scaling, the second output from
mdscale is the value of that criterion evaluated for the output configuration. For nonmetric scaling,
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however, it measures the how well the inter-point distances of the output configuration approximate
the disparities. The disparities are returned in the third output. They are the transformed values of
the original dissimilarities:

[Y,stress,disparities] = ... 
mdscale(dissimilarities,2,'criterion','stress');
stress
stress =
    0.1562

To check the fit of the output configuration to the dissimilarities, and to understand the disparities, it
helps to make a Shepard plot:

distances = pdist(Y);
[dum,ord] = sortrows([disparities(:) dissimilarities(:)]);
plot(dissimilarities,distances,'bo', ...
     dissimilarities(ord),disparities(ord),'r.-', ...
     [0 25],[0 25],'k-')
xlabel('Dissimilarities')
ylabel('Distances/Disparities')
legend({'Distances' 'Disparities' '1:1 Line'},...
       'Location','NorthWest');

This plot shows that mdscale has found a configuration of points in two dimensions whose inter-point
distances approximates the disparities, which in turn are a nonlinear transformation of the original
dissimilarities. The concave shape of the disparities as a function of the dissimilarities indicates that
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fit tends to contract small distances relative to the corresponding dissimilarities. This may be
perfectly acceptable in practice.

mdscale uses an iterative algorithm to find the output configuration, and the results can often
depend on the starting point. By default, mdscale uses cmdscale to construct an initial
configuration, and this choice often leads to a globally best solution. However, it is possible for
mdscale to stop at a configuration that is a local minimum of the criterion. Such cases can be
diagnosed and often overcome by running mdscale multiple times with different starting points. You
can do this using the 'start' and 'replicates' name-value pair arguments. The following code
runs five replicates of MDS, each starting at a different randomly-chosen initial configuration. The
criterion value is printed out for each replication; mdscale returns the configuration with the best fit.

opts = statset('Display','final');
[Y,stress] =... 
mdscale(dissimilarities,2,'criterion','stress',... 
'start','random','replicates',5,'Options',opts);

35 iterations, Final stress criterion = 0.156209
31 iterations, Final stress criterion = 0.156209
48 iterations, Final stress criterion = 0.171209
33 iterations, Final stress criterion = 0.175341
32 iterations, Final stress criterion = 0.185881

Notice that mdscale finds several different local solutions, some of which do not have as low a stress
value as the solution found with the cmdscale starting point.
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Classical Multidimensional Scaling

This example shows how to use cmdscale to perform classical (metric) multidimensional scaling,
also known as principal coordinates analysis.

cmdscale takes as an input a matrix of inter-point distances and creates a configuration of points.
Ideally, those points are in two or three dimensions, and the Euclidean distances between them
reproduce the original distance matrix. Thus, a scatter plot of the points created by cmdscale
provides a visual representation of the original distances.

As a very simple example, you can reconstruct a set of points from only their inter-point distances.
First, create some four dimensional points with a small component in their fourth coordinate, and
reduce them to distances.

rng default;  % For reproducibility
X = [normrnd(0,1,10,3),normrnd(0,.1,10,1)];
D = pdist(X,'euclidean');

Next, use cmdscale to find a configuration with those inter-point distances. cmdscale accepts
distances as either a square matrix, or, as in this example, in the vector upper-triangular form
produced by pdist.

[Y,eigvals] = cmdscale(D);

cmdscale produces two outputs. The first output, Y, is a matrix containing the reconstructed points.
The second output, eigvals, is a vector containing the sorted eigenvalues of what is often referred
to as the "scalar product matrix," which, in the simplest case, is equal to Y*Y'. The relative
magnitudes of those eigenvalues indicate the relative contribution of the corresponding columns of Y
in reproducing the original distance matrix D with the reconstructed points.

format short g
[eigvals eigvals/max(abs(eigvals))]

ans = 10×2

        35.41            1
       11.158      0.31511
       1.6894      0.04771
       0.1436    0.0040553
   5.4637e-15    1.543e-16
   3.2157e-15   9.0813e-17
   2.2212e-15   6.2727e-17
   1.3179e-15   3.7219e-17
  -2.3377e-15  -6.6019e-17
    -3.47e-15  -9.7995e-17

If eigvals contains only positive and zero (within round-off error) eigenvalues, the columns of Y
corresponding to the positive eigenvalues provide an exact reconstruction of D, in the sense that their
inter-point Euclidean distances, computed using pdist, for example, are identical (within round-off)
to the values in D.

maxerr4 = max(abs(D - pdist(Y)))   % Exact reconstruction
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maxerr4 = 
   1.7764e-15

If two or three of the eigenvalues in eigvals are much larger than the rest, then the distance matrix
based on the corresponding columns of Y nearly reproduces the original distance matrix D. In this
sense, those columns form a lower-dimensional representation that adequately describes the data.
However it is not always possible to find a good low-dimensional reconstruction.

maxerr3 = max(abs(D - pdist(Y(:,1:3))))  % Good reconstruction in 3D

maxerr3 = 
     0.043142

maxerr2 = max(abs(D - pdist(Y(:,1:2))))  % Poor reconstruction in 2D

maxerr2 = 
      0.98315

The reconstruction in three dimensions reproduces D very well, but the reconstruction in two
dimensions has errors that are of the same order of magnitude as the largest values in D.

max(max(D))

ans = 
       5.8974

Often, eigvals contains some negative eigenvalues, indicating that the distances in D cannot be
reproduced exactly. That is, there might not be any configuration of points whose inter-point
Euclidean distances are given by D. If the largest negative eigenvalue is small in magnitude relative
to the largest positive eigenvalues, then the configuration returned by cmdscale might still
reproduce D well.

 Classical Multidimensional Scaling

16-41



Compare Handwritten Shapes Using Procrustes Analysis

This example shows how to use Procrustes analysis to compare two handwritten number threes.
Visually and analytically explore the effects of forcing size and reflection changes.

Load and Display the Original Data

Input landmark data for two handwritten number threes.

A = [11 39;17 42;25 42;25 40;23 36;19 35;30 34;35 29;...
30 20;18 19];
B = [15 31;20 37;30 40;29 35;25 29;29 31;31 31;35 20;...
29 10;25 18];

Create X and Y from A and B , moving B to the side to make each shape more visible.

X = A;
Y = B + repmat([25 0], 10,1);

Plot the shapes, using letters to designate the landmark points. Lines in the figure join the points to
indicate the drawing path of each shape.

plot(X(:,1), X(:,2),'r-', Y(:,1), Y(:,2),'b-');
text(X(:,1), X(:,2),('abcdefghij')')
text(Y(:,1), Y(:,2),('abcdefghij')')
legend('X = Target','Y = Comparison','location','SE')
xlim([0 65]);
ylim([0 55]);
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Calculate the Best Transformation

Use Procrustes analysis to find the transformation that minimizes distances between landmark data
points.

[d,Z,tr] = procrustes(X,Y);

The outputs of the function are d (a standardized dissimilarity measure), Z (a matrix of the
transformed landmarks), and tr (a structure array of the computed transformation with fields T , b ,
and c which correspond to the transformation equation).

Visualize the transformed shape, Z , using a dashed blue line.

plot(X(:,1), X(:,2),'r-', Y(:,1), Y(:,2),'b-',...
Z(:,1),Z(:,2),'b:');
text(X(:,1), X(:,2),('abcdefghij')')
text(Y(:,1), Y(:,2),('abcdefghij')')
text(Z(:,1), Z(:,2),('abcdefghij')')
legend('X = Target','Y = Comparison',...
'Z = Transformed','location','SW')
xlim([0 65]);
ylim([0 55]);
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Examine the Similarity of the Two Shapes

Use two different numerical values, the dissimilarity measure d and the scaling measure b , to assess
the similarity of the target shape and the transformed shape.

The dissimilarity measure d gives a number between 0 and 1 describing the difference between the
target shape and the transformed shape. Values near 0 imply more similar shapes, while values near
1 imply dissimilarity.

d

d = 0.1502

The small value of d in this case shows that the two shapes are similar. procrustes calculates d by
comparing the sum of squared deviations between the set of points with the sum of squared
deviations of the original points from their column means.

numerator = sum(sum((X-Z).^2))

numerator = 166.5321

denominator = sum(sum(bsxfun(@minus,X,mean(X)).^2))

denominator = 1.1085e+03

ratio = numerator/denominator

ratio = 0.1502
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The resulting measure d is independent of the scale of the size of the shapes and takes into account
only the similarity of landmark data.

Examine the size similarity of the shapes.

tr.b

ans = 0.9291

The sizes of the target and comparison shapes in the previous figure appear similar. This visual
impression is reinforced by the value of b = % 0.93, which implies that the best transformation
results in shrinking the comparison shape by a factor .93 (only 7%).

Restrict the Form of the Transformations

Explore the effects of manually adjusting the scaling and reflection coefficients.

Force b to equal 1 (set 'Scaling' to false) to examine the amount of dissimilarity in size of the
target and transformed figures.

ds = procrustes(X,Y,'Scaling',false)

ds = 0.1552

In this case, setting 'Scaling ' to false increases the calculated value of d only 0.0049, which
further supports the similarity in the size of the two number threes. A larger increase in d would have
indicated a greater size discrepancy.

This example requires only a rotation, not a reflection, to align the shapes. You can show this by
observing that the determinant of the matrix T is 1 in this analysis.

det(tr.T)

ans = 1.0000

If you need a reflection in the transformation, the determinant of T is -1. You can force a reflection
into the transformation as follows.

[dr,Zr,trr] = procrustes(X,Y,'Reflection',true);
dr

dr = 0.8130

The d value increases dramatically, indicating that a forced reflection leads to a poor transformation
of the landmark points. A plot of the transformed shape shows a similar result.

plot(X(:,1), X(:,2),'r-', Y(:,1), Y(:,2),'b-',...
Zr(:,1),Zr(:,2),'b:');
text(X(:,1), X(:,2),('abcdefghij')')
text(Y(:,1), Y(:,2),('abcdefghij')')
text(Zr(:,1), Zr(:,2),('abcdefghij')')
legend('X = Target','Y = Comparison',...
'Z = Transformed','Location','SW')
xlim([0 65]);
ylim([0 55]);
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The landmark data points are now further away from their target counterparts. The transformed
three is now an undesirable mirror image of the target three.

It appears that the shapes might be better matched if you flipped the transformed shape upside
down. Flipping the shapes would make the transformation even worse, however, because the
landmark data points would be further away from their target counterparts. From this example, it is
clear that manually adjusting the scaling and reflection parameters is generally not optimal.

See Also
procrustes
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Introduction to Feature Selection
This topic provides an introduction to feature selection algorithms and describes the feature selection
functions available in Statistics and Machine Learning Toolbox.

Feature Selection Algorithms
Feature selection reduces the dimensionality of data by selecting only a subset of measured features
(predictor variables) to create a model. Feature selection algorithms search for a subset of predictors
that optimally models measured responses, subject to constraints such as required or excluded
features and the size of the subset. The main benefits of feature selection are to improve prediction
performance, provide faster and more cost-effective predictors, and provide a better understanding of
the data generation process [1]. Using too many features can degrade prediction performance even
when all features are relevant and contain information about the response variable.

You can categorize feature selection algorithms into three types:

• “Filter Type Feature Selection” on page 16-48 — The filter type feature selection algorithm
measures feature importance based on the characteristics of the features, such as feature
variance and feature relevance to the response. You select important features as part of a data
preprocessing step and then train a model using the selected features. Therefore, filter type
feature selection is uncorrelated to the training algorithm.

• “Wrapper Type Feature Selection” on page 16-51 — The wrapper type feature selection
algorithm starts training using a subset of features and then adds or removes a feature using a
selection criterion. The selection criterion directly measures the change in model performance
that results from adding or removing a feature. The algorithm repeats training and improving a
model until its stopping criteria are satisfied.

• “Embedded Type Feature Selection” on page 16-52 — The embedded type feature selection
algorithm learns feature importance as part of the model learning process. Once you train a
model, you obtain the importance of the features in the trained model. This type of algorithm
selects features that work well with a particular learning process.

In addition, you can categorize feature selection algorithms according to whether or not an algorithm
ranks features sequentially. The minimum redundancy maximum relevance (MRMR) algorithm and
stepwise regression are two examples of the sequential feature selection algorithm. For details, see
“Sequential Feature Selection” on page 16-59.

You can compare the importance of predictor variables visually by creating partial dependence plots
(PDP) and individual conditional expectation (ICE) plots. For details, see plotPartialDependence.

For classification problems, after selecting features, you can train two models (for example, a full
model and a model trained with a subset of predictors) and compare the accuracies of the models by
using the compareHoldout, testcholdout, or testckfold functions.

Feature selection is preferable to feature transformation when the original features and their units
are important and the modeling goal is to identify an influential subset. When categorical features are
present, and numerical transformations are inappropriate, feature selection becomes the primary
means of dimension reduction.
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Feature Selection Functions
Statistics and Machine Learning Toolbox offers several functions for feature selection. Choose the
appropriate feature selection function based on your problem and the data types of the features.

Filter Type Feature Selection

Function Supported
Problem

Supported Data
Type

Description

fscchi2 Classification Categorical and
continuous
features

Examine whether each predictor
variable is independent of a response
variable by using individual chi-square
tests, and then rank features using the
p-values of the chi-square test
statistics.

For examples, see the function
reference page fscchi2.

fscmrmr Classification Categorical and
continuous
features

Rank features sequentially using the
“Minimum Redundancy Maximum
Relevance (MRMR) Algorithm” on page
35-2865.

For examples, see the function
reference page fscmrmr.

fscnca* Classification Continuous
features

Determine the feature weights by using
a diagonal adaptation of neighborhood
component analysis (NCA). This
algorithm works best for estimating
feature importance for distance-based
supervised models that use pairwise
distances between observations to
predict the response.

For details, see the function reference
page fscnca and these topics:

• “Neighborhood Component Analysis
(NCA) Feature Selection” on page
16-97

• “Tune Regularization Parameter to
Detect Features Using NCA for
Classification” on page 16-207
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Function Supported
Problem

Supported Data
Type

Description

fsrftest Regression Categorical and
continuous
features

Examine the importance of each
predictor individually using an F-test,
and then rank features using the p-
values of the F-test statistics. Each F-
test tests the hypothesis that the
response values grouped by predictor
variable values are drawn from
populations with the same mean
against the alternative hypothesis that
the population means are not all the
same.

For examples, see the function
reference page fsrftest.

fsrmrmr Regression Categorical and
continuous
features

Rank features sequentially using the
“Minimum Redundancy Maximum
Relevance (MRMR) Algorithm” on page
35-2923.

For examples, see the function
reference page fsrmrmr.

fsrnca* Regression Continuous
features

Determine the feature weights by using
a diagonal adaptation of neighborhood
component analysis (NCA). This
algorithm works best for estimating
feature importance for distance-based
supervised models that use pairwise
distances between observations to
predict the response.

For details, see the function reference
page fsrnca and these topics:

• “Neighborhood Component Analysis
(NCA) Feature Selection” on page
16-97

• “Robust Feature Selection Using
NCA for Regression” on page 16-
83

fsulaplacian Unsupervised
learning

Continuous
features

Rank features using the “Laplacian
Score” on page 35-2934.

For examples, see the function
reference page fsulaplacian.
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Function Supported
Problem

Supported Data
Type

Description

relieff Classification and
regression

Either all
categorical or all
continuous
features

Rank features using the “ReliefF” on
page 35-6496 algorithm for classification
and the “RReliefF” on page 35-6497
algorithm for regression. This
algorithm works best for estimating
feature importance for distance-based
supervised models that use pairwise
distances between observations to
predict the response.

For examples, see the function
reference page relieff.

sequentialfs Classification and
regression

Either all
categorical or all
continuous
features

Select features sequentially using a
custom criterion. Define a function that
measures the characteristics of data to
select features, and pass the function
handle to the sequentialfs function.
You can specify sequential forward
selection or sequential backward
selection by using the 'Direction'
name-value pair argument.
sequentialfs evaluates the criterion
using cross-validation.

*You can also consider fscnca and fsrnca as embedded type feature selection functions because
they return a trained model object and you can use the object functions predict and loss. However,
you typically use these object functions to tune the regularization parameter of the algorithm. After
selecting features using the fscnca or fsrnca function as part of a data preprocessing step, you can
apply another classification or regression algorithm for your problem.
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Wrapper Type Feature Selection

Function Supported
Problem

Supported Data
Type

Description

sequentialfs Classification and
regression

Either all
categorical or all
continuous
features

Select features sequentially using a
custom criterion. Define a function that
implements a supervised learning
algorithm or a function that measures
performance of a learning algorithm,
and pass the function handle to the
sequentialfs function. You can
specify sequential forward selection or
sequential backward selection by using
the 'Direction' name-value pair
argument. sequentialfs evaluates
the criterion using cross-validation.

For examples, see the function
reference page sequentialfs and
these topics:

• “Select Subset of Features with
Comparative Predictive Power” on
page 16-59

• “Select Features for Classifying
High-Dimensional Data” on page 16-
168

 Introduction to Feature Selection

16-51



Embedded Type Feature Selection

Function Supported
Problem

Supported Data
Type

Description

DeltaPredictor
property of a
Classification
Discriminant
model object

Linear
discriminant
analysis
classification

Continuous
features

Create a linear discriminant analysis
classifier by using fitcdiscr. A
trained classifier, returned as
ClassificationDiscriminant,
stores the coefficient magnitude in the
DeltaPredictor property. You can
use the values in DeltaPredictor as
measures of the predictor importance.
This classifier uses the two
regularization parameters “Gamma and
Delta” on page 35-1239 to identify and
remove redundant predictors. You can
obtain appropriate values for these
parameters by using the cvshrink
function or the
'OptimizeHyperparameters' name-
value pair argument.

For examples, see these topics:

• “Regularize Discriminant Analysis
Classifier” on page 21-21

• “Optimize Discriminant Analysis
Model” on page 35-1887

fitcecoc with
templateLinear

Linear
classification for
multiclass learning
with high-
dimensional data

Continuous
features

Train a linear classification model by
using fitcecoc and linear binary
learners defined by templateLinear.
Specify 'Regularization' of
templatelinear as 'lasso' to use
lasso regularization.

For an example, see “Find Good Lasso
Penalty Using Cross-Validation” on
page 35-604. This example determines
a good lasso-penalty strength by
evaluating models with different
strength values using kfoldLoss. You
can also evaluate models using
kfoldEdge, kfoldMargin, edge,
loss, or margin.
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Function Supported
Problem

Supported Data
Type

Description

fitclinear Linear
classification for
binary learning
with high-
dimensional data

Continuous
features

Train a linear classification model by
using fitclinear. Specify
'Regularization' of fitclinear
as 'lasso' to use lasso regularization.

For an example, see “Find Good Lasso
Penalty Using Cross-Validated AUC” on
page 35-3972. This example determines
a good lasso-penalty strength by
evaluating models with different
strength values using the AUC values.
Compute the cross-validated posterior
class probabilities by using
kfoldPredict, and compute the AUC
values by using rocmetrics. You can
also evaluate models using
kfoldEdge, kfoldLoss,
kfoldMargin, edge, loss, margin,
or predict.

fitrgp Regression Categorical and
continuous
features

Train a Gaussian process regression
(GPR) model by using fitrgp. Set the
'KernelFunction' name-value pair
argument to use automatic relevance
determination (ARD). Available options
are 'ardsquaredexponential',
'ardexponential',
'ardmatern32', 'ardmatern52',
and 'ardrationalquadratic'. Find
the predictor weights by taking the
exponential of the negative learned
length scales, stored in the
KernelInformation property.

For examples, see these topics:

• “Specify Initial Step Size for LBFGS
Optimization” on page 35-2510

• “Compare NCA and ARD Feature
Selection” on page 35-2890
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Function Supported
Problem

Supported Data
Type

Description

fitrlinear Linear regression
with high-
dimensional data

Continuous
features

Train a linear regression model by
using fitrlinear. Specify
'Regularization' of fitrlinear
as 'lasso' to use lasso regularization.

For examples, see these topics:

• “Find Good Lasso Penalty Using
Regression Loss” on page 35-6922

• “Find Good Lasso Penalty Using
Cross-Validation” on page 35-2537

lasso Linear regression Continuous
features

Train a linear regression model with
“Lasso” on page 35-4122 regularization
by using lasso. You can specify the
weight of lasso versus ridge
optimization by using the 'Alpha'
name-value pair argument.

For examples, see the function
reference page lasso and these topics:

• “Lasso Regularization” on page 11-
122

• “Lasso and Elastic Net with Cross
Validation” on page 11-125

• “Wide Data via Lasso and Parallel
Computing” on page 11-117

lassoglm Generalized linear
regression

Continuous
features

Train a generalized linear regression
model with “Lasso” on page 35-4138
regularization by using lassoglm. You
can specify the weight of lasso versus
ridge optimization by using the
'Alpha' name-value pair argument.

For details, see the function reference
page lassoglm and these topics:

• “Lasso Regularization of
Generalized Linear Models” on page
12-32

• “Regularize Poisson Regression” on
page 12-34

• “Regularize Logistic Regression” on
page 12-36

• “Regularize Wide Data in Parallel”
on page 12-43
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Function Supported
Problem

Supported Data
Type

Description

oobPermutedPre
dictorImportan
ce** of
Classification
BaggedEnsemble

Classification with
an ensemble of
bagged decision
trees (for example,
random forest)

Categorical and
continuous
features

Train a bagged classification ensemble
with tree learners by using
fitcensemble and specifying
'Method' as 'bag'. Then, use
oobPermutedPredictorImportance
to compute “Out-of-Bag, Predictor
Importance Estimates by Permutation”
on page 35-5214. The function measures
how influential the predictor variables
in the model are at predicting the
response.

For examples, see the function
reference page and the topic
oobPermutedPredictorImportance
.

oobPermutedPre
dictorImportan
ce** of
RegressionBagg
edEnsemble

Regression with an
ensemble of
bagged decision
trees (for example,
random forest)

Categorical and
continuous
features

Train a bagged regression ensemble
with tree learners by using
fitrensemble and specifying
'Method' as 'bag'. Then, use
oobPermutedPredictorImportance
to compute “Out-of-Bag, Predictor
Importance Estimates by Permutation”
on page 35-5221. The function measures
how influential the predictor variables
in the model are at predicting the
response.

For examples, see the function
reference page
oobPermutedPredictorImportance
and “Select Predictors for Random
Forests” on page 19-62.

predictorImpor
tance** of
Classification
Ensemble

Classification with
an ensemble of
decision trees

Categorical and
continuous
features

Train a classification ensemble with
tree learners by using fitcensemble.
Then, use predictorImportance to
compute estimates of “Predictor
Importance” on page 35-6014 for the
ensemble by summing changes in the
risk due to splits on every predictor
and dividing the sum by the number of
branch nodes.

For examples, see the function
reference page
predictorImportance.
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Function Supported
Problem

Supported Data
Type

Description

predictorImpor
tance** of
Classification
Tree

Classification with
a decision tree

Categorical and
continuous
features

Train a classification tree by using
fitctree. Then, use
predictorImportance to compute
estimates of “Predictor Importance” on
page 35-6021 for the tree by summing
changes in the risk due to splits on
every predictor and dividing the sum
by the number of branch nodes.

For examples, see the function
reference page
predictorImportance.

predictorImpor
tance** of
RegressionEnse
mble

Regression with an
ensemble of
decision trees

Categorical and
continuous
features

Train a regression ensemble with tree
learners by using fitrensemble.
Then, use predictorImportance to
compute estimates of “Predictor
Importance” on page 35-6026 for the
ensemble by summing changes in the
risk due to splits on every predictor
and dividing the sum by the number of
branch nodes.

For examples, see the function
reference page
predictorImportance.

predictorImpor
tance** of
RegressionTree

Regression with a
decision tree

Categorical and
continuous
features

Train a regression tree by using
fitrtree. Then, use
predictorImportance to compute
estimates of “Predictor Importance” on
page 35-6031 for the tree by summing
changes in the mean squared error
(MSE) due to splits on every predictor
and dividing the sum by the number of
branch nodes.

For examples, see the function
reference page
predictorImportance.
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Function Supported
Problem

Supported Data
Type

Description

stepwiseglm*** Generalized linear
regression

Categorical and
continuous
features

Fit a generalized linear regression
model using stepwise regression by
using stepwiseglm. Alternatively, you
can fit a linear regression model by
using fitglm and then adjust the
model by using step. Stepwise
regression is a systematic method for
adding and removing terms from the
model based on their statistical
significance in explaining the response
variable.

For details, see the function reference
page stepwiseglm and these topics:

• “Generalized Linear Model Using
Stepwise Algorithm” on page 35-
7112

• “Generalized Linear Models” on
page 12-9

• “Generalized Linear Model
Workflow” on page 12-28

stepwiselm*** Linear regression Categorical and
continuous
features

Fit a linear regression model using
stepwise regression by using
stepwiselm. Alternatively, you can fit
a linear regression model by using
fitlm and then adjust the model by
using step. Stepwise regression is a
systematic method for adding and
removing terms from the model based
on their statistical significance in
explaining the response variable.

For details, see the function reference
page stepwiselm and these topics:

• “Stepwise Regression” on page 11-
101

• “Linear Regression with Interaction
Effects” on page 11-46

• “Assess Significance of Regression
Coefficients Using t-statistic” on
page 11-77

**For a tree-based algorithm, specify 'PredictorSelection' as 'interaction-curvature' to
use the interaction test for selecting the best split predictor. The interaction test is useful in
identifying important variables in the presence of many irrelevant variables. Also, if the training data
includes many predictors, then specify 'NumVariablesToSample' as 'all' for training.
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Otherwise, the software might not select some predictors, underestimating their importance. For
details, see fitctree, fitrtree, and templateTree.

***stepwiseglm and stepwiselm are not wrapper type functions because you cannot use them as a
wrapper for another training function. However, these two functions use the wrapper type algorithm
to find important features.

References
[1] Guyon, Isabelle, and A. Elisseeff. "An introduction to variable and feature selection." Journal of

Machine Learning Research. Vol. 3, 2003, pp. 1157–1182.

See Also
rankfeatures

More About
• “Sequential Feature Selection” on page 16-59
• “Interpret Machine Learning Models” on page 27-2
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Sequential Feature Selection
This topic introduces sequential feature selection and provides an example that selects features
sequentially using a custom criterion and the sequentialfs function.

Introduction to Sequential Feature Selection
A common method of Feature Selection on page 16-47 is sequential feature selection. This method
has two components:

• An objective function, called the criterion, which the method seeks to minimize over all feasible
feature subsets. Common criteria are mean squared error (for regression models) and
misclassification rate (for classification models).

• A sequential search algorithm, which adds or removes features from a candidate subset while
evaluating the criterion. Since an exhaustive comparison of the criterion value at all 2n subsets of
an n-feature data set is typically infeasible (depending on the size of n and the cost of objective
calls), sequential searches move in only one direction, always growing or always shrinking the
candidate set.

The method has two variants:

• Sequential forward selection (SFS), in which features are sequentially added to an empty
candidate set until the addition of further features does not decrease the criterion.

• Sequential backward selection (SBS), in which features are sequentially removed from a full
candidate set until the removal of further features increase the criterion.

Statistics and Machine Learning Toolbox offers several sequential feature selection functions:

• Stepwise regression is a sequential feature selection technique designed specifically for least-
squares fitting. The functions stepwiselm and stepwiseglm use optimizations that are possible
only with least-squares criteria. Unlike other sequential feature selection algorithms, stepwise
regression can remove features that have been added or add features that have been removed,
based on the criterion specified by the 'Criterion' name-value pair argument.

• sequentialfs performs sequential feature selection using a custom criterion. Input arguments
include predictor data, response data, and a function handle to a file implementing the criterion
function. You can define a criterion function that measures the characteristics of data or the
performance of a learning algorithm. Optional inputs allow you to specify SFS or SBS, required or
excluded features, and the size of the feature subset. The function calls cvpartition and
crossval to evaluate the criterion at different candidate sets.

• fscmrmr and fsrmrmr rank features using the minimum redundancy maximum relevance
(MRMR) algorithm for classification and regression problems, respectively.

Select Subset of Features with Comparative Predictive Power

This example selects a subset of features using a custom criterion that measures predictive power for
a generalized linear regression problem.

Consider a data set with 100 observations of 10 predictors. Generate the random data from a logistic
model, with a binomial distribution of responses at each set of values for the predictors. Some
coefficients are set to zero so that not all of the predictors affect the response.
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rng(456) % Set the seed for reproducibility
n = 100;
m = 10;
X = rand(n,m);
b = [1 0 0 2 .5 0 0 0.1 0 1];
Xb = X*b';
p = 1./(1+exp(-Xb));
N = 50;
y = binornd(N,p);

Fit a logistic model to the data using fitglm.

Y = [y N*ones(size(y))];
model0 = fitglm(X,Y,'Distribution','binomial')

model0 = 
Generalized linear regression model:
    logit(y) ~ 1 + x1 + x2 + x3 + x4 + x5 + x6 + x7 + x8 + x9 + x10
    Distribution = Binomial

Estimated Coefficients:
                   Estimate       SE        tStat        pValue  
                   _________    _______    ________    __________

    (Intercept)      0.22474    0.30043     0.74806       0.45443
    x1               0.68782    0.17207      3.9973     6.408e-05
    x2                0.2003    0.18087      1.1074       0.26811
    x3             -0.055328    0.18871    -0.29319       0.76937
    x4                2.2576     0.1813      12.452    1.3566e-35
    x5               0.54603    0.16836      3.2432     0.0011821
    x6              0.069701    0.17738     0.39294       0.69437
    x7              -0.22562    0.16957     -1.3306       0.18334
    x8              -0.19712    0.17317     -1.1383       0.25498
    x9              -0.20373    0.16796      -1.213       0.22514
    x10              0.99741    0.17247      5.7832    7.3296e-09

100 observations, 89 error degrees of freedom
Dispersion: 1
Chi^2-statistic vs. constant model: 222, p-value = 4.92e-42

Display the deviance of the fit.

dev0 = model0.Deviance

dev0 = 101.5648

This model is the full model, with all of the features and an initial constant term. Sequential feature
selection searches for a subset of the features in the full model with comparative predictive power.

Before performing feature selection, you must specify a criterion for selecting the features. In this
case, the criterion is the deviance of the fit (a generalization of the residual sum of squares). The
critfun function (shown at the end of this example) calls fitglm and returns the deviance of the fit.

If you use the live script file for this example, the critfun function is already included at the end of
the file. Otherwise, you need to create this function at the end of your .m file or add it as a file on the
MATLAB path.
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Perform feature selection. sequentialfs calls the criterion function via a function handle.

maxdev = chi2inv(.95,1);     
opt = statset('display','iter',...
              'TolFun',maxdev,...
              'TolTypeFun','abs');

inmodel = sequentialfs(@critfun,X,Y,...
                       'cv','none',...
                       'nullmodel',true,...
                       'options',opt,...
                       'direction','forward');

Start forward sequential feature selection:
Initial columns included:  none
Columns that can not be included:  none
Step 1, used initial columns, criterion value 323.173
Step 2, added column 4, criterion value 184.794
Step 3, added column 10, criterion value 139.176
Step 4, added column 1, criterion value 119.222
Step 5, added column 5, criterion value 107.281
Final columns included:  1 4 5 10 

The iterative display shows a decrease in the criterion value as each new feature is added to the
model. The final result is a reduced model with only four of the original ten features: columns 1, 4, 5,
and 10 of X, as indicated in the logical vector inmodel returned by sequentialfs.

The deviance of the reduced model is higher than the deviance of the full model. However, the
addition of any other single feature would not decrease the criterion value by more than the absolute
tolerance, maxdev, set in the options structure. Adding a feature with no effect reduces the deviance
by an amount that has a chi-square distribution with one degree of freedom. Adding a significant
feature results in a larger change in the deviance. By setting maxdev to chi2inv(.95,1), you
instruct sequentialfs to continue adding features provided that the change in deviance is more
than the change expected by random chance.

Create the reduced model with an initial constant term.

model = fitglm(X(:,inmodel),Y,'Distribution','binomial')

model = 
Generalized linear regression model:
    logit(y) ~ 1 + x1 + x2 + x3 + x4
    Distribution = Binomial

Estimated Coefficients:
                    Estimate       SE         tStat        pValue  
                   __________    _______    _________    __________

    (Intercept)    -0.0052025    0.16772    -0.031018       0.97525
    x1                0.73814    0.16316       4.5241    6.0666e-06
    x2                 2.2139    0.17402       12.722    4.4369e-37
    x3                0.54073     0.1568       3.4485    0.00056361
    x4                 1.0694    0.15916       6.7191    1.8288e-11

100 observations, 95 error degrees of freedom
Dispersion: 1
Chi^2-statistic vs. constant model: 216, p-value = 1.44e-45
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This code creates the function critfun.

function dev = critfun(X,Y)
model = fitglm(X,Y,'Distribution','binomial');
dev = model.Deviance;
end

See Also
sequentialfs | stepwiselm | stepwiseglm

More About
• “Introduction to Feature Selection” on page 16-47
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Nonnegative Matrix Factorization
Nonnegative matrix factorization (NMF) is a dimension-reduction technique based on a low-rank
approximation of the feature space. Besides providing a reduction in the number of features, NMF
guarantees that the features are nonnegative, producing additive models that respect, for example,
the nonnegativity of physical quantities.

Given a nonnegative m-by-n matrix X and a positive integer k < min(m,n), NMF finds nonnegative m-
by-k and k-by-n matrices W and H, respectively, that minimize the norm of the difference X – WH. W
and H are thus approximate nonnegative factors of X.

The k columns of W represent transformations of the variables in X; the k rows of H represent the
coefficients of the linear combinations of the original n variables in X that produce the transformed
variables in W. Since k is generally smaller than the rank of X, the product WH provides a
compressed approximation of the data in X. A range of possible values for k is often suggested by the
modeling context.

The function nnmf carries out nonnegative matrix factorization. nnmf uses one of two iterative
algorithms that begin with random initial values for W and H. Because the norm of the residual X –
WH may have local minima, repeated calls to nnmf may yield different factorizations. Sometimes the
algorithm converges to a solution of lower rank than k, which may indicate that the result is not
optimal.

See Also
nnmf

Related Examples
• “Perform Nonnegative Matrix Factorization” on page 16-64
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Perform Nonnegative Matrix Factorization

This example shows how to perform nonnegative matrix factorization.

Load the sample data.

load moore
X = moore(:,1:5);
rng('default'); % For reproducibility

Compute a rank-two approximation of X using a multiplicative update algorithm that begins from five
random initial values for W and H.

opt = statset('MaxIter',10,'Display','final');
[W0,H0] = nnmf(X,2,'replicates',5,'options',opt,'algorithm','mult');

    rep       iteration       rms resid      |delta x|
      1          10         358.296      0.00190554
      2          10         78.3556     0.000351747
      3          10         230.962       0.0172839
      4          10         326.347      0.00739552
      5          10         361.547      0.00705539
Final root mean square residual = 78.3556

The 'mult' algorithm is sensitive to initial values, which makes it a good choice when using
'replicates' to find W and H from multiple random starting values.

Now perform the factorization using alternating least-squares algorithm, which converges faster and
more consistently. Run 100 times more iterations, beginning from the initial W0 and H0 identified
above.

opt = statset('Maxiter',1000,'Display','final');
[W,H] = nnmf(X,2,'w0',W0,'h0',H0,'options',opt,'algorithm','als');

    rep       iteration       rms resid      |delta x|
      1           2         77.5315     0.000830334
Final root mean square residual = 77.5315

The two columns of W are the transformed predictors. The two rows of H give the relative
contributions of each of the five predictors in X to the predictors in W. Display H.

H

H = 2×5

    0.0835    0.0190    0.1782    0.0072    0.9802
    0.0559    0.0250    0.9969    0.0085    0.0497

The fifth predictor in X (weight 0.9802) strongly influences the first predictor in W. The third predictor
in X (weight 0.9969) strongly influences the second predictor in W.

Visualize the relative contributions of the predictors in X with biplot, showing the data and original
variables in the column space of W.

biplot(H','scores',W,'varlabels',{'','','v3','','v5'});
axis([0 1.1 0 1.1])
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xlabel('Column 1')
ylabel('Column 2')

See Also
nnmf

More About
• “Nonnegative Matrix Factorization” on page 16-63
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Principal Component Analysis (PCA)
One of the difficulties inherent in multivariate statistics is the problem of visualizing data that has
many variables. The function plot displays a graph of the relationship between two variables. The
plot3 and surf commands display different three-dimensional views. But when there are more than
three variables, it is more difficult to visualize their relationships.

Fortunately, in data sets with many variables, groups of variables often move together. One reason for
this is that more than one variable might be measuring the same driving principle governing the
behavior of the system. In many systems there are only a few such driving forces. But an abundance
of instrumentation enables you to measure dozens of system variables. When this happens, you can
take advantage of this redundancy of information. You can simplify the problem by replacing a group
of variables with a single new variable.

Principal component analysis is a quantitatively rigorous method for achieving this simplification. The
method generates a new set of variables, called principal components. Each principal component is a
linear combination of the original variables. All the principal components are orthogonal to each
other, so there is no redundant information. The principal components as a whole form an orthogonal
basis for the space of the data.

There are an infinite number of ways to construct an orthogonal basis for several columns of data.
What is so special about the principal component basis?

The first principal component is a single axis in space. When you project each observation on that
axis, the resulting values form a new variable. And the variance of this variable is the maximum
among all possible choices of the first axis.

The second principal component is another axis in space, perpendicular to the first. Projecting the
observations on this axis generates another new variable. The variance of this variable is the
maximum among all possible choices of this second axis.

The full set of principal components is as large as the original set of variables. But it is commonplace
for the sum of the variances of the first few principal components to exceed 80% of the total variance
of the original data. By examining plots of these few new variables, researchers often develop a
deeper understanding of the driving forces that generated the original data.

You can use the function pca to find the principal components. To use pca, you need to have the
actual measured data you want to analyze. However, if you lack the actual data, but have the sample
covariance or correlation matrix for the data, you can still use the function pcacov to perform a
principal components analysis. See the reference page for pcacov for a description of its inputs and
outputs.

See Also
pca | pcacov | pcares | ppca

Related Examples
• “Analyze Quality of Life in U.S. Cities Using PCA” on page 16-67
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Analyze Quality of Life in U.S. Cities Using PCA

This example shows how to perform a weighted principal components analysis and interpret the
results.

Load Sample Data

Load the sample data. The data includes ratings for 9 different indicators of the quality of life in 329
U.S. cities. These are climate, housing, health, crime, transportation, education, arts, recreation, and
economics. For each category, a higher rating is better. For example, a higher rating for crime means
a lower crime rate.

Display the categories variable.

load cities
categories

categories = 9x14 char array
    'climate       '
    'housing       '
    'health        '
    'crime         '
    'transportation'
    'education     '
    'arts          '
    'recreation    '
    'economics     '

In total, the cities data set contains three variables:

• categories, a character matrix containing the names of the indices
• names, a character matrix containing the 329 city names
• ratings, the data matrix with 329 rows and 9 columns

Plot Data

Make a box plot to look at the distribution of the ratings data.

figure()
boxplot(ratings,'Orientation','horizontal','Labels',categories)
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There is more variability in the ratings of the arts and housing than in the ratings of crime and
climate.

Check Pairwise Correlation

Check the pairwise correlation between the variables.

C = corr(ratings,ratings);

The correlation among some variables is as high as 0.85. Principal components analysis constructs
independent new variables which are linear combinations of the original variables.

Compute Principal Components

When all variables are in the same unit, it is appropriate to compute principal components for raw
data. When the variables are in different units or the difference in the variance of different columns is
substantial (as in this case), scaling of the data or use of weights is often preferable.

Perform the principal component analysis by using the inverse variances of the ratings as weights.

w = 1./var(ratings);
[wcoeff,score,latent,tsquared,explained] = pca(ratings, ...
    'VariableWeights',w);

Or equivalently:

[wcoeff,score,latent,tsquared,explained] = pca(ratings, ...
    'VariableWeights','variance');
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The following sections explain the five outputs of pca.

Component Coefficients

The first output wcoeff contains the coefficients of the principal components.

The first three principal component coefficient vectors are:

c3 = wcoeff(:,1:3)

c3 = 9×3
103 ×

    0.0249   -0.0263   -0.0834
    0.8504   -0.5978   -0.4965
    0.4616    0.3004   -0.0073
    0.1005   -0.1269    0.0661
    0.5096    0.2606    0.2124
    0.0883    0.1551    0.0737
    2.1496    0.9043   -0.1229
    0.2649   -0.3106   -0.0411
    0.1469   -0.5111    0.6586

These coefficients are weighted, hence the coefficient matrix is not orthonormal.

Transform Coefficients

Transform the coefficients so that they are orthonormal.

coefforth = diag(std(ratings))\wcoeff;

Note that if you use a weights vector, w, while conducting the pca, then

coefforth = diag(sqrt(w))*wcoeff;

Check Coefficients

The transformed coefficients are now orthonormal.

I = coefforth'*coefforth;
I(1:3,1:3)

ans = 3×3

    1.0000   -0.0000    0.0000
   -0.0000    1.0000    0.0000
    0.0000    0.0000    1.0000

Component Scores

The second output score contains the coordinates of the original data in the new coordinate system
defined by the principal components. The score matrix is the same size as the input data matrix. You
can also obtain the component scores using the orthonormal coefficients and the standardized ratings
as follows.

cscores = zscore(ratings)*coefforth;
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cscores and score are identical matrices.

Plot Component Scores

Create a plot of the first two columns of score.

figure
plot(score(:,1),score(:,2),'+')
xlabel('1st Principal Component')
ylabel('2nd Principal Component')

This plot shows the centered and scaled ratings data projected onto the first two principal
components. pca computes the scores to have mean zero.

Explore Plot Interactively

Note the outlying points in the right half of the plot. You can graphically identify these points as
follows.

gname

Move your cursor over the plot and click once near the rightmost seven points. This labels the points
by their row numbers as in the following figure.
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After labeling points, press Return.

Extract Observation Names

Create an index variable containing the row numbers of all the cities you chose and get the names of
the cities.

metro = [43 65 179 213 234 270 314];
names(metro,:)

ans = 7x43 char array
    'Boston, MA                                 '
    'Chicago, IL                                '
    'Los Angeles, Long Beach, CA                '
    'New York, NY                               '
    'Philadelphia, PA-NJ                        '
    'San Francisco, CA                          '
    'Washington, DC-MD-VA                       '

These labeled cities are some of the biggest population centers in the United States and they appear
more extreme than the remainder of the data.

Component Variances

The third output latent is a vector containing the variance explained by the corresponding principal
component. Each column of score has a sample variance equal to the corresponding row of latent.
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latent

latent = 9×1

    3.4083
    1.2140
    1.1415
    0.9209
    0.7533
    0.6306
    0.4930
    0.3180
    0.1204

Percent Variance Explained

The fifth output explained is a vector containing the percent variance explained by the
corresponding principal component.

explained

explained = 9×1

   37.8699
   13.4886
   12.6831
   10.2324
    8.3698
    7.0062
    5.4783
    3.5338
    1.3378

Create Scree Plot

Make a scree plot of the percent variability explained by each principal component.

figure
pareto(explained)
xlabel('Principal Component')
ylabel('Variance Explained (%)')
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This scree plot only shows the first seven (instead of the total nine) components that explain 95% of
the total variance. The only clear break in the amount of variance accounted for by each component
is between the first and second components. However, the first component by itself explains less than
40% of the variance, so more components might be needed. You can see that the first three principal
components explain roughly two-thirds of the total variability in the standardized ratings, so that
might be a reasonable way to reduce the dimensions.

Hotelling's T-squared Statistic

The last output from pca is tsquared, which is Hotelling's T2, a statistical measure of the
multivariate distance of each observation from the center of the data set. This is an analytical way to
find the most extreme points in the data.

[st2,index] = sort(tsquared,'descend'); % sort in descending order
extreme = index(1);
names(extreme,:)

ans = 
'New York, NY                               '

The ratings for New York are the furthest from the average U.S. city.

Visualize Results

Visualize both the orthonormal principal component coefficients for each variable and the principal
component scores for each observation in a single plot.
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figure
biplot(coefforth(:,1:2),'Scores',score(:,1:2),'Varlabels',categories)
axis([-.26 0.6 -.51 .51]);

All nine variables are represented in this biplot by a vector, and the direction and length of the vector
indicate how each variable contributes to the two principal components in the plot. For example, the
first principal component, on the horizontal axis, has positive coefficients for all nine variables. That
is why the nine vectors are directed into the right half of the plot. The largest coefficients in the first
principal component are the third and seventh elements, corresponding to the variables health and
arts.

The second principal component, on the vertical axis, has positive coefficients for the variables
education, health, arts, and transportation, and negative coefficients for the remaining five
variables. This indicates that the second component distinguishes among cities that have high values
for the first set of variables and low for the second, and cities that have the opposite.

The variable labels in this figure are somewhat crowded. You can either exclude the VarLabels
name-value argument when making the plot, or select and drag some of the labels to better positions
using the Edit Plot tool from the figure window toolbar.

This 2-D biplot also includes a point for each of the 329 observations, with coordinates indicating the
score of each observation for the two principal components in the plot. For example, points near the
left edge of this plot have the lowest scores for the first principal component. The points are scaled
with respect to the maximum score value and maximum coefficient length, so only their relative
locations can be determined from the plot.
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You can identify items in the plot by selecting Tools>Data Tips in the figure window. By clicking a
variable (vector), you can read the variable label and coefficients for each principal component. By
clicking an observation (point), you can read the observation name and scores for each principal
component. You can specify 'ObsLabels',names to show the observation names instead of the
observation numbers in the data cursor display.

Create Three-Dimensional Biplot.

You can also make a biplot in three dimensions.

figure
biplot(coefforth(:,1:3),'Scores',score(:,1:3),'ObsLabels',names)
axis([-.26 0.8 -.51 .51 -.61 .81])
view([30 40])

This graph is useful if the first two principal coordinates do not explain enough of the variance in
your data. You can also rotate the figure to see it from different angles by selecting the Tools>Rotate
3D.

See Also
pca | pcacov | pcares | ppca | boxplot | biplot

More About
• “Principal Component Analysis (PCA)” on page 16-66
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Factor Analysis
Multivariate data often includes a large number of measured variables, and sometimes those
variables overlap, in the sense that groups of them might be dependent. For example, in a decathlon,
each athlete competes in 10 events, but several of them can be thought of as speed events, while
others can be thought of as strength events, etc. Thus, you can think of a competitor's 10 event
scores as largely dependent on a smaller set of three or four types of athletic ability.

Factor analysis is a way to fit a model to multivariate data to estimate just this sort of
interdependence. In a factor analysis model, the measured variables depend on a smaller number of
unobserved (latent) factors. Because each factor might affect several variables in common, they are
known as common factors. Each variable is assumed to be dependent on a linear combination of the
common factors, and the coefficients are known as loadings. Each measured variable also includes a
component due to independent random variability, known as specific variance because it is specific to
one variable.

Specifically, factor analysis assumes that the covariance matrix of your data is of the form

∑x = ΛΛΤ + Ψ

where Λ is the matrix of loadings, and the elements of the diagonal matrix Ψ are the specific
variances. The function factoran fits the Factor Analysis model using maximum likelihood.

See Also
factoran

Related Examples
• “Analyze Stock Prices Using Factor Analysis” on page 16-77
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Analyze Stock Prices Using Factor Analysis

This example shows how to analyze if companies within the same sector experience similar week-to-
week changes in stock price.

Factor Loadings

Load the sample data.

load stockreturns

Suppose that over the course of 100 weeks, the percent change in stock prices for ten companies has
been recorded. Of the ten companies, the first four can be classified as primarily technology, the next
three as financial, and the last three as retail. It seems reasonable that the stock prices for companies
that are in the same sector might vary together as economic conditions change. Factor analysis can
provide quantitative evidence.

First specify a model fit with three common factors. By default, factoran computes rotated
estimates of the loadings to try and make their interpretation simpler. But in this example, specify an
unrotated solution.

[Loadings,specificVar,T,stats] = factoran(stocks,3,'rotate','none');

The first two factoran output arguments are the estimated loadings and the estimated specific
variances. Each row of the loadings matrix represents one of the ten stocks, and each column
corresponds to a common factor. With unrotated estimates, interpretation of the factors in this fit is
difficult because most of the stocks contain fairly large coefficients for two or more factors.

Loadings

Loadings = 10×3

    0.8885    0.2367   -0.2354
    0.7126    0.3862    0.0034
    0.3351    0.2784   -0.0211
    0.3088    0.1113   -0.1905
    0.6277   -0.6643    0.1478
    0.4726   -0.6383    0.0133
    0.1133   -0.5416    0.0322
    0.6403    0.1669    0.4960
    0.2363    0.5293    0.5770
    0.1105    0.1680    0.5524

Factor rotation helps to simplify the structure in the Loadings matrix, to make it easier to assign
meaningful interpretations to the factors.

From the estimated specific variances, you can see that the model indicates that a particular stock
price varies quite a lot beyond the variation due to the common factors. Display estimated specific
variances.

specificVar

specificVar = 10×1
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    0.0991
    0.3431
    0.8097
    0.8559
    0.1429
    0.3691
    0.6928
    0.3162
    0.3311
    0.6544

A specific variance of 1 would indicate that there is no common factor component in that variable,
while a specific variance of 0 would indicate that the variable is entirely determined by common
factors. These data seem to fall somewhere in between.

Display the p-value.

stats.p

ans = 0.8144

The p-value returned in the stats structure fails to reject the null hypothesis of three common
factors, suggesting that this model provides a satisfactory explanation of the covariation in these
data.

Fit a model with two common factors to determine whether fewer than three factors can provide an
acceptable fit.

[Loadings2,specificVar2,T2,stats2] = factoran(stocks, 2,'rotate','none');

Display the p-value.

stats2.p

ans = 3.5610e-06

The p-value for this second fit is highly significant, and rejects the hypothesis of two factors,
indicating that the simpler model is not sufficient to explain the pattern in these data.

Factor Rotation

As the results illustrate, the estimated loadings from an unrotated factor analysis fit can have a
complicated structure. The goal of factor rotation is to find a parameterization in which each variable
has only a small number of large loadings. That is, each variable is affected by a small number of
factors, preferably only one. This can often make it easier to interpret what the factors represent.

If you think of each row of the loadings matrix as coordinates of a point in M-dimensional space, then
each factor corresponds to a coordinate axis. Factor rotation is equivalent to rotating those axes and
computing new loadings in the rotated coordinate system. There are various ways to do this. Some
methods leave the axes orthogonal, while others are oblique methods that change the angles between
them. For this example, you can rotate the estimated loadings by using the promax criterion, a
common oblique method.

[LoadingsPM,specVarPM] = factoran(stocks,3,'rotate','promax');
LoadingsPM
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LoadingsPM = 10×3

    0.9452    0.1214   -0.0617
    0.7064   -0.0178    0.2058
    0.3885   -0.0994    0.0975
    0.4162   -0.0148   -0.1298
    0.1021    0.9019    0.0768
    0.0873    0.7709   -0.0821
   -0.1616    0.5320   -0.0888
    0.2169    0.2844    0.6635
    0.0016   -0.1881    0.7849
   -0.2289    0.0636    0.6475

Promax rotation creates a simpler structure in the loadings, one in which most of the stocks have a
large loading on only one factor. To see this structure more clearly, you can use the biplot function to
plot each stock using its factor loadings as coordinates.

biplot(LoadingsPM,'varlabels',num2str((1:10)'));
axis square
view(155,27);

This plot shows that promax has rotated the factor loadings to a simpler structure. Each stock
depends primarily on only one factor, and it is possible to describe each factor in terms of the stocks
that it affects. Based on which companies are near which axes, you could reasonably conclude that
the first factor axis represents the financial sector, the second retail, and the third technology. The
original conjecture, that stocks vary primarily within sector, is apparently supported by the data.
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Factor Scores

Sometimes, it is useful to be able to classify an observation based on its factor scores. For example, if
you accepted the three-factor model and the interpretation of the rotated factors, you might want to
categorize each week in terms of how favorable it was for each of the three stock sectors, based on
the data from the 10 observed stocks. Because the data in this example are the raw stock price
changes, and not just their correlation matrix, you can have factoran return estimates of the value
of each of the three rotated common factors for each week. You can then plot the estimated scores to
see how the different stock sectors were affected during each week.

[LoadingsPM,specVarPM,TPM,stats,F] = factoran(stocks, 3,'rotate','promax');

plot3(F(:,1),F(:,2),F(:,3),'b.')
line([-4 4 NaN 0 0 NaN 0 0], [0 0 NaN -4 4 NaN 0 0],[0 0 NaN 0 0 NaN -4 4], 'Color','black')
xlabel('Financial Sector')
ylabel('Retail Sector')
zlabel('Technology Sector')
grid on
axis square
view(-22.5, 8)

Oblique rotation often creates factors that are correlated. This plot shows some evidence of
correlation between the first and third factors, and you can investigate further by computing the
estimated factor correlation matrix.

inv(TPM'*TPM);
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Visualize the Results

You can use the biplot function to help visualize both the factor loadings for each variable and the
factor scores for each observation in a single plot. For example, the following command plots the
results from the factor analysis on the stock data and labels each of the 10 stocks.

biplot(LoadingsPM,'scores',F,'varlabels',num2str((1:10)'))
xlabel('Financial Sector')
ylabel('Retail Sector')
zlabel('Technology Sector')
axis square
view(155,27)

In this case, the factor analysis includes three factors, and so the biplot is three-dimensional. Each of
the 10 stocks is represented in this plot by a vector, and the direction and length of the vector
indicates how each stock depends on the underlying factors. For example, you have seen that after
promax rotation, the first four stocks have positive loadings on the first factor, and unimportant
loadings on the other two factors. That first factor, interpreted as a financial sector effect, is
represented in this biplot as one of the horizontal axes. The dependence of those four stocks on that
factor corresponds to the four vectors directed approximately along that axis. Similarly, the
dependence of stocks 5, 6, and 7 primarily on the second factor, interpreted as a retail sector effect,
is represented by vectors directed approximately along that axis.

Each of the 100 observations is represented in this plot by a point, and their locations indicate the
score of each observation for the three factors. For example, points near the top of this plot have the
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highest scores for the technology sector factor. The points are scaled to fit within the unit square, so
only their relative locations can be determined from the plot.

You can use the Data Cursor tool from the Tools menu in the figure window to identify the items in
this plot. By clicking a stock (vector), you can read off that stock's loadings for each factor. By
clicking an observation (point), you can read off that observation's scores for each factor.
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Robust Feature Selection Using NCA for Regression

Perform feature selection that is robust to outliers using a custom robust loss function in NCA.

Generate data with outliers

Generate sample data for regression where the response depends on three of the predictors, namely
predictors 4, 7, and 13.

rng(123,'twister') % For reproducibility
n = 200;
X = randn(n,20);
y = cos(X(:,7)) + sin(X(:,4).*X(:,13)) + 0.1*randn(n,1);

Add outliers to data.

numoutliers = 25;
outlieridx = floor(linspace(10,90,numoutliers));
y(outlieridx) = 5*randn(numoutliers,1);

Plot the data.

figure
plot(y)
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Use non-robust loss function

The performance of the feature selection algorithm highly depends on the value of the regularization
parameter. A good practice is to tune the regularization parameter for the best value to use in feature
selection. Tune the regularization parameter using five-fold cross validation. Use the mean squared
error (MSE):

MSE = 1
n ∑i = 1

n
yi− y j

2

First, partition the data into five folds. In each fold, the software uses 4/5th of the data for training
and 1/5th of the data for validation (testing).

cvp = cvpartition(length(y),'kfold',5);
numtestsets = cvp.NumTestSets;

Compute the lambda values to test for and create an array to store the loss values.

lambdavals = linspace(0,3,50)*std(y)/length(y);
lossvals = zeros(length(lambdavals),numtestsets);

Perform NCA and compute the loss for each λ value and each fold.

for i = 1:length(lambdavals)
    for k = 1:numtestsets        
        Xtrain = X(cvp.training(k),:);
        ytrain = y(cvp.training(k),:);
        Xtest = X(cvp.test(k),:);
        ytest = y(cvp.test(k),:);
        
        nca = fsrnca(Xtrain,ytrain,'FitMethod','exact', ...
            'Solver','lbfgs','Verbose',0,'Lambda',lambdavals(i), ...
            'LossFunction','mse');
        
        lossvals(i,k) = loss(nca,Xtest,ytest,'LossFunction','mse');
    end
end

Plot the mean loss corresponding to each lambda value.

figure
meanloss = mean(lossvals,2);
plot(lambdavals,meanloss,'ro-')
xlabel('Lambda')
ylabel('Loss (MSE)')
grid on
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Find the λ value that produces the minimum average loss.

[~,idx] = min(mean(lossvals,2));
bestlambda = lambdavals(idx)

bestlambda = 0.0231

Perform feature selection using the best λ value and MSE.

nca = fsrnca(X,y,'FitMethod','exact','Solver','lbfgs', ...
    'Verbose',1,'Lambda',bestlambda,'LossFunction','mse');

 o Solver = LBFGS, HessianHistorySize = 15, LineSearchMethod = weakwolfe

|====================================================================================================|
|   ITER   |   FUN VALUE   |  NORM GRAD  |  NORM STEP  |  CURV  |    GAMMA    |    ALPHA    | ACCEPT |
|====================================================================================================|
|        0 |  6.414642e+00 |   8.430e-01 |   0.000e+00 |        |   7.117e-01 |   0.000e+00 |   YES  |
|        1 |  6.066100e+00 |   9.952e-01 |   1.264e+00 |    OK  |   3.741e-01 |   1.000e+00 |   YES  |
|        2 |  5.498221e+00 |   4.267e-01 |   4.250e-01 |    OK  |   4.016e-01 |   1.000e+00 |   YES  |
|        3 |  5.108548e+00 |   3.933e-01 |   8.564e-01 |    OK  |   3.599e-01 |   1.000e+00 |   YES  |
|        4 |  4.808456e+00 |   2.505e-01 |   9.352e-01 |    OK  |   8.798e-01 |   1.000e+00 |   YES  |
|        5 |  4.677382e+00 |   2.085e-01 |   6.014e-01 |    OK  |   1.052e+00 |   1.000e+00 |   YES  |
|        6 |  4.487789e+00 |   4.726e-01 |   7.374e-01 |    OK  |   5.593e-01 |   1.000e+00 |   YES  |
|        7 |  4.310099e+00 |   2.484e-01 |   4.253e-01 |    OK  |   3.367e-01 |   1.000e+00 |   YES  |
|        8 |  4.258539e+00 |   3.629e-01 |   4.521e-01 |    OK  |   4.705e-01 |   5.000e-01 |   YES  |
|        9 |  4.175345e+00 |   1.972e-01 |   2.608e-01 |    OK  |   4.018e-01 |   1.000e+00 |   YES  |
|       10 |  4.122340e+00 |   9.169e-02 |   2.947e-01 |    OK  |   3.487e-01 |   1.000e+00 |   YES  |
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|       11 |  4.095525e+00 |   9.798e-02 |   2.529e-01 |    OK  |   1.188e+00 |   1.000e+00 |   YES  |
|       12 |  4.059690e+00 |   1.584e-01 |   5.213e-01 |    OK  |   9.930e-01 |   1.000e+00 |   YES  |
|       13 |  4.029208e+00 |   7.411e-02 |   2.076e-01 |    OK  |   4.886e-01 |   1.000e+00 |   YES  |
|       14 |  4.016358e+00 |   1.068e-01 |   2.696e-01 |    OK  |   6.919e-01 |   1.000e+00 |   YES  |
|       15 |  4.004521e+00 |   5.434e-02 |   1.136e-01 |    OK  |   5.647e-01 |   1.000e+00 |   YES  |
|       16 |  3.986929e+00 |   6.158e-02 |   2.993e-01 |    OK  |   1.353e+00 |   1.000e+00 |   YES  |
|       17 |  3.976342e+00 |   4.966e-02 |   2.213e-01 |    OK  |   7.668e-01 |   1.000e+00 |   YES  |
|       18 |  3.966646e+00 |   5.458e-02 |   2.529e-01 |    OK  |   1.988e+00 |   1.000e+00 |   YES  |
|       19 |  3.959586e+00 |   1.046e-01 |   4.169e-01 |    OK  |   1.858e+00 |   1.000e+00 |   YES  |

|====================================================================================================|
|   ITER   |   FUN VALUE   |  NORM GRAD  |  NORM STEP  |  CURV  |    GAMMA    |    ALPHA    | ACCEPT |
|====================================================================================================|
|       20 |  3.953759e+00 |   8.248e-02 |   2.892e-01 |    OK  |   1.040e+00 |   1.000e+00 |   YES  |
|       21 |  3.945475e+00 |   3.119e-02 |   1.698e-01 |    OK  |   1.095e+00 |   1.000e+00 |   YES  |
|       22 |  3.941567e+00 |   2.350e-02 |   1.293e-01 |    OK  |   1.117e+00 |   1.000e+00 |   YES  |
|       23 |  3.939468e+00 |   1.296e-02 |   1.805e-01 |    OK  |   2.287e+00 |   1.000e+00 |   YES  |
|       24 |  3.938662e+00 |   8.591e-03 |   5.955e-02 |    OK  |   1.553e+00 |   1.000e+00 |   YES  |
|       25 |  3.938239e+00 |   6.421e-03 |   5.334e-02 |    OK  |   1.102e+00 |   1.000e+00 |   YES  |
|       26 |  3.938013e+00 |   5.449e-03 |   6.773e-02 |    OK  |   2.085e+00 |   1.000e+00 |   YES  |
|       27 |  3.937896e+00 |   6.226e-03 |   3.368e-02 |    OK  |   7.541e-01 |   1.000e+00 |   YES  |
|       28 |  3.937820e+00 |   2.497e-03 |   2.397e-02 |    OK  |   7.940e-01 |   1.000e+00 |   YES  |
|       29 |  3.937791e+00 |   2.004e-03 |   1.339e-02 |    OK  |   1.863e+00 |   1.000e+00 |   YES  |
|       30 |  3.937784e+00 |   2.448e-03 |   1.265e-02 |    OK  |   9.667e-01 |   1.000e+00 |   YES  |
|       31 |  3.937778e+00 |   6.973e-04 |   2.906e-03 |    OK  |   4.672e-01 |   1.000e+00 |   YES  |
|       32 |  3.937778e+00 |   3.038e-04 |   9.502e-04 |    OK  |   1.060e+00 |   1.000e+00 |   YES  |
|       33 |  3.937777e+00 |   2.327e-04 |   1.069e-03 |    OK  |   1.597e+00 |   1.000e+00 |   YES  |
|       34 |  3.937777e+00 |   1.959e-04 |   1.537e-03 |    OK  |   4.026e+00 |   1.000e+00 |   YES  |
|       35 |  3.937777e+00 |   1.162e-04 |   1.464e-03 |    OK  |   3.418e+00 |   1.000e+00 |   YES  |
|       36 |  3.937777e+00 |   8.353e-05 |   3.660e-04 |    OK  |   7.304e-01 |   5.000e-01 |   YES  |
|       37 |  3.937777e+00 |   1.412e-05 |   1.412e-04 |    OK  |   7.842e-01 |   1.000e+00 |   YES  |
|       38 |  3.937777e+00 |   1.277e-05 |   3.808e-05 |    OK  |   1.021e+00 |   1.000e+00 |   YES  |
|       39 |  3.937777e+00 |   8.614e-06 |   3.698e-05 |    OK  |   2.561e+00 |   1.000e+00 |   YES  |

|====================================================================================================|
|   ITER   |   FUN VALUE   |  NORM GRAD  |  NORM STEP  |  CURV  |    GAMMA    |    ALPHA    | ACCEPT |
|====================================================================================================|
|       40 |  3.937777e+00 |   3.159e-06 |   5.299e-05 |    OK  |   4.331e+00 |   1.000e+00 |   YES  |
|       41 |  3.937777e+00 |   2.657e-06 |   1.080e-05 |    OK  |   7.038e-01 |   5.000e-01 |   YES  |
|       42 |  3.937777e+00 |   7.054e-07 |   7.036e-06 |    OK  |   9.519e-01 |   1.000e+00 |   YES  |

         Infinity norm of the final gradient = 7.054e-07
              Two norm of the final step     = 7.036e-06, TolX   = 1.000e-06
Relative infinity norm of the final gradient = 7.054e-07, TolFun = 1.000e-06
EXIT: Local minimum found.

Plot selected features.

figure
plot(nca.FeatureWeights,'ro')
grid on
xlabel('Feature index')
ylabel('Feature weight')

16 Multivariate Methods

16-86



Predict the response values using the nca model and plot the fitted (predicted) response values and
the actual response values.

figure
fitted = predict(nca,X);
plot(y,'r.')
hold on
plot(fitted,'b-')
xlabel('index')
ylabel('Fitted values')
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fsrnca tries to fit every point in data including the outliers. As a result it assigns nonzero weights to
many features besides predictors 4, 7, and 13.

Use built-in robust loss function

Repeat the same process of tuning the regularization parameter, this time using the built-in ϵ-
insensitive loss function:

l yi, y j = max 0, yi− y j − ϵ

ϵ-insensitive loss function is more robust to outliers than mean squared error.

lambdavals = linspace(0,3,50)*std(y)/length(y);
cvp = cvpartition(length(y),'kfold',5);
numtestsets = cvp.NumTestSets;
lossvals = zeros(length(lambdavals),numtestsets);

for i = 1:length(lambdavals)
    for k = 1:numtestsets     
        Xtrain = X(cvp.training(k),:);
        ytrain = y(cvp.training(k),:);
        Xtest = X(cvp.test(k),:);
        ytest = y(cvp.test(k),:);
        
        nca = fsrnca(Xtrain,ytrain,'FitMethod','exact', ...
            'Solver','sgd','Verbose',0,'Lambda',lambdavals(i), ...
            'LossFunction','epsiloninsensitive','Epsilon',0.8);
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        lossvals(i,k) = loss(nca,Xtest,ytest,'LossFunction','mse');
    end
end

The ϵ value to use depends on the data and the best value can be determined using cross-validation
as well. But choosing the ϵ value is out of scope of this example. The choice of ϵ in this example is
mainly for illustrating the robustness of the method.

Plot the mean loss corresponding to each lambda value.

figure
meanloss = mean(lossvals,2);
plot(lambdavals,meanloss,'ro-')
xlabel('Lambda')
ylabel('Loss (MSE)')
grid on

Find the lambda value that produces the minimum average loss.

[~,idx] = min(mean(lossvals,2));
bestlambda = lambdavals(idx)

bestlambda = 0.0187

Fit neighborhood component analysis model using ϵ-insensitive loss function and best lambda value.
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nca = fsrnca(X,y,'FitMethod','exact','Solver','sgd', ...
    'Lambda',bestlambda,'LossFunction','epsiloninsensitive','Epsilon',0.8);

Plot selected features.

figure
plot(nca.FeatureWeights,'ro')
grid on
xlabel('Feature index')
ylabel('Feature weight')

Plot fitted values.

figure
fitted = predict(nca,X);
plot(y,'r.')
hold on
plot(fitted,'b-')
xlabel('index')
ylabel('Fitted values')
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ϵ-insensitive loss seems more robust to outliers. It identified fewer features than MSE as relevant.
The fit shows that it is still impacted by some of the outliers.

Use custom robust loss function

Define a custom robust loss function that is robust to outliers to use in feature selection for
regression:

f (yi, y j) = 1− exp(− | yi− y j | )

customlossFcn = @(yi,yj) 1 - exp(-abs(yi-yj'));

Tune the regularization parameter using the custom-defined robust loss function.

lambdavals = linspace(0,3,50)*std(y)/length(y);
cvp = cvpartition(length(y),'kfold',5);
numtestsets = cvp.NumTestSets;
lossvals = zeros(length(lambdavals),numtestsets);

for i = 1:length(lambdavals)
    for k = 1:numtestsets
        Xtrain = X(cvp.training(k),:);
        ytrain = y(cvp.training(k),:);
        Xtest = X(cvp.test(k),:);
        ytest = y(cvp.test(k),:);
        
        nca = fsrnca(Xtrain,ytrain,'FitMethod','exact', ...
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            'Solver','lbfgs','Verbose',0,'Lambda',lambdavals(i), ...
            'LossFunction',customlossFcn);
        
        lossvals(i,k) = loss(nca,Xtest,ytest,'LossFunction','mse');
    end
end

Plot the mean loss corresponding to each lambda value.

figure
meanloss = mean(lossvals,2);
plot(lambdavals,meanloss,'ro-')
xlabel('Lambda')
ylabel('Loss (MSE)')
grid on

Find the λ value that produces the minimum average loss.

[~,idx] = min(mean(lossvals,2));
bestlambda = lambdavals(idx)

bestlambda = 0.0165

Perform feature selection using the custom robust loss function and best λ value.

nca = fsrnca(X,y,'FitMethod','exact','Solver','lbfgs', ...
    'Verbose',1,'Lambda',bestlambda,'LossFunction',customlossFcn);
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 o Solver = LBFGS, HessianHistorySize = 15, LineSearchMethod = weakwolfe

|====================================================================================================|
|   ITER   |   FUN VALUE   |  NORM GRAD  |  NORM STEP  |  CURV  |    GAMMA    |    ALPHA    | ACCEPT |
|====================================================================================================|
|        0 |  8.610073e-01 |   4.921e-02 |   0.000e+00 |        |   1.219e+01 |   0.000e+00 |   YES  |
|        1 |  6.582278e-01 |   2.328e-02 |   1.820e+00 |    OK  |   2.177e+01 |   1.000e+00 |   YES  |
|        2 |  5.706490e-01 |   2.241e-02 |   2.360e+00 |    OK  |   2.541e+01 |   1.000e+00 |   YES  |
|        3 |  5.677090e-01 |   2.666e-02 |   7.583e-01 |    OK  |   1.092e+01 |   1.000e+00 |   YES  |
|        4 |  5.620806e-01 |   5.524e-03 |   3.335e-01 |    OK  |   9.973e+00 |   1.000e+00 |   YES  |
|        5 |  5.616054e-01 |   1.428e-03 |   1.025e-01 |    OK  |   1.736e+01 |   1.000e+00 |   YES  |
|        6 |  5.614779e-01 |   4.446e-04 |   8.350e-02 |    OK  |   2.507e+01 |   1.000e+00 |   YES  |
|        7 |  5.614653e-01 |   4.118e-04 |   2.466e-02 |    OK  |   2.105e+01 |   1.000e+00 |   YES  |
|        8 |  5.614620e-01 |   1.307e-04 |   1.373e-02 |    OK  |   2.002e+01 |   1.000e+00 |   YES  |
|        9 |  5.614615e-01 |   9.318e-05 |   4.128e-03 |    OK  |   3.683e+01 |   1.000e+00 |   YES  |
|       10 |  5.614611e-01 |   4.579e-05 |   8.785e-03 |    OK  |   6.170e+01 |   1.000e+00 |   YES  |
|       11 |  5.614610e-01 |   1.232e-05 |   1.582e-03 |    OK  |   2.000e+01 |   5.000e-01 |   YES  |
|       12 |  5.614610e-01 |   3.174e-06 |   4.742e-04 |    OK  |   2.510e+01 |   1.000e+00 |   YES  |
|       13 |  5.614610e-01 |   7.896e-07 |   1.683e-04 |    OK  |   2.959e+01 |   1.000e+00 |   YES  |

         Infinity norm of the final gradient = 7.896e-07
              Two norm of the final step     = 1.683e-04, TolX   = 1.000e-06
Relative infinity norm of the final gradient = 7.896e-07, TolFun = 1.000e-06
EXIT: Local minimum found.

Plot selected features.

figure
plot(nca.FeatureWeights,'ro')
grid on
xlabel('Feature index')
ylabel('Feature weight')
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Plot fitted values.

figure
fitted = predict(nca,X);
plot(y,'r.')
hold on
plot(fitted,'b-')
xlabel('index')
ylabel('Fitted values')
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In this case, the loss is not affected by the outliers and results are based on most of the observation
values. fsrnca detects the predictors 4, 7, and 13 as relevant features and does not select any other
features.

Why does the loss function choice affect the results?

First, compute the loss functions for a series of values for the difference between two observations.

deltay = linspace(-10,10,1000)';

Compute custom loss function values.

customlossvals = customlossFcn(deltay,0); 

Compute epsilon insensitive loss function and values.

epsinsensitive = @(yi,yj,E) max(0,abs(yi-yj')-E); 
epsinsenvals = epsinsensitive(deltay,0,0.5);

Compute MSE loss function and values.

mse = @(yi,yj) (yi-yj').^2;
msevals = mse(deltay,0);

Now, plot the loss functions to see their difference and why they affect the results in the way they do.

figure
plot(deltay,customlossvals,'g-',deltay,epsinsenvals,'b-',deltay,msevals,'r-')
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xlabel('(yi - yj)')
ylabel('loss(yi,yj)')
legend('customloss','epsiloninsensitive','mse')
ylim([0 20])

As the difference between two response values increases, MSE increases quadratically, which makes
it very sensitive to outliers. As fsrnca tries to minimize this loss, it ends up identifying more features
as relevant. The epsilon insensitive loss is more resistant to outliers than MSE, but eventually it does
start to increase linearly as the difference between two observations increase. As the difference
between two observations increase, the robust loss function does approach 1 and stays at that value
even though the difference between the observations keeps increasing. Out of three, it is the most
robust to outliers.

See Also
fsrnca | FeatureSelectionNCARegression | refit | predict | loss

More About
• “Neighborhood Component Analysis (NCA) Feature Selection” on page 16-97
• “Introduction to Feature Selection” on page 16-47
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Neighborhood Component Analysis (NCA) Feature Selection

In this section...
“NCA Feature Selection for Classification” on page 16-97
“NCA Feature Selection for Regression” on page 16-99
“Impact of Standardization” on page 16-100
“Choosing the Regularization Parameter Value” on page 16-100

Neighborhood component analysis (NCA) is a non-parametric method for selecting features with the
goal of maximizing prediction accuracy of regression and classification algorithms. The Statistics and
Machine Learning Toolbox functions fscnca and fsrnca perform NCA feature selection with
regularization to learn feature weights for minimization of an objective function that measures the
average leave-one-out classification or regression loss over the training data.

NCA Feature Selection for Classification
Consider a multi-class classification problem with a training set containing n observations:

S = xi, yi , i = 1, 2, …, n ,

where xi ∈ ℝp are the feature vectors, yi ∈ 1, 2, …, c  are the class labels, and c is the number of
classes. The aim is to learn a classifier f :ℝp 1, 2, …, c  that accepts a feature vector and makes a
prediction f x  for the true label y of x.

Consider a randomized classifier that:

• Randomly picks a point, Ref x , from S as the ‘reference point’ for x
• Labels x using the label of the reference point Ref x .

This scheme is similar to that of a 1-NN classifier where the reference point is chosen to be the
nearest neighbor of the new point x. In NCA, the reference point is chosen randomly and all points in
S have some probability of being selected as the reference point. The probability P Ref x =  x j S
that point x j is picked from S as the reference point for x is higher if x j is closer to x as measured by
the distance function dw, where

dw(xi, x j) = ∑
r = 1

p
wr

2 xir − x jr ,

and wr are the feature weights. Assume that

P Ref x =  x j S ∝ k dw x, x j ,

where k is some kernel or a similarity function that assumes large values when dw x, x j  is small.
Suppose it is

k z = exp − z
σ ,
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as suggested in [1]. The reference point for x is chosen from S, so sum of P Ref x =  x j S  for all j
must be equal to 1. Therefore, it is possible to write

P Ref x =  x j S =
k dw x, x j

∑
j = 1

n
k dw x, x j

.

Now consider the leave-one-out application of this randomized classifier, that is, predicting the label
of xi using the data in S−i, the training set S excluding the point xi, yi . The probability that point x j is
picked as the reference point for xi is

pi j = P Ref xi =  x j S−i =
k dw xi, x j

∑
j = 1, j ≠ i

n
k dw xi, x j

.

The average leave-one-out probability of correct classification is the probability pi that the
randomized classifier correctly classifies observation i using S−i.

pi = ∑
j = 1, j ≠ i

n
P Ref xi = x j S−i I yi = y j = ∑

j = 1, j ≠ i

n
pi jyi j,

where

yi j = I yi = y j =
1 if yi = y j,

0 otherwise.

The average leave-one-out probability of correct classification using the randomized classifier can be
written as

F w = 1
n ∑i = 1

n
pi .

The right hand side of F w  depends on the weight vector w. The goal of neighborhood component
analysis is to maximize F w  with respect to w. fscnca uses the regularized objective function as
introduced in [1].

F w = 1
n ∑i = 1

n
pi− λ ∑

r = 1

p
wr

2

= 1
n ∑i = 1

n
∑

j = 1, j ≠ i

n
pi jyi j− λ ∑

r = 1

p
wr

2

⚬
Fi w

= 1
n ∑i = 1

n
Fi w

,

where λ is the regularization parameter. The regularization term drives many of the weights in w to
0.

After choosing the kernel parameter σ in pi j as 1, finding the weight vector w can be expressed as the
following minimization problem for given λ.
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w = argmin
w

f w = argmin
w

1
n ∑i = 1

n
f i w ,

where f(w) = -F(w) and fi(w) = -Fi(w).

Note that

1
n ∑i = 1

n
∑

j = 1, j ≠ i

n
pi j = 1,

and the argument of the minimum does not change if you add a constant to an objective function.
Therefore, you can rewrite the objective function by adding the constant 1.

w = argmin
w

1 + f (w)

= argmin
w

1
n ∑i = 1

n
∑

j = 1, j ≠ i

n
pi j−

1
n ∑i = 1

n
∑

j = 1, j ≠ i

n
pi jyi j + λ ∑

r = 1

p
wr

2

= argmin
w

1
n ∑i = 1

n
∑

j = 1, j ≠ i

n
pi j 1− yi j + λ ∑

r = 1

p
wr

2

= argmin
w

1
n ∑i = 1

n
∑

j = 1, j ≠ i

n
pi jl(yi, y j) + λ ∑

r = 1

p
wr

2 ,

where the loss function is defined as

l yi, y j =
1 if yi ≠ y j,

0 otherwise.

The argument of the minimum is the weight vector that minimizes the classification error. You can
specify a custom loss function using the LossFunction name-value pair argument in the call to
fscnca.

NCA Feature Selection for Regression
The fsrnca function performs NCA feature selection modified for regression. Given n observations

S = xi, yi , i = 1, 2, …, n ,

the only difference from the classification problem is that the response values yi ∈ ℝ are continuous.
In this case, the aim is to predict the response y given the training set S.

Consider a randomized regression model that:

• Randomly picks a point (Ref x ) from Sas the ‘reference point’ for x
• Sets the response value at x equal to the response value of the reference point Ref x .

Again, the probability P Ref x =  x j S  that point x j is picked from S as the reference point for x is

P Ref x =  x j S =
k dw x, x j

∑
j = 1

n
k dw x, x j

.
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Now consider the leave-one-out application of this randomized regression model, that is, predicting
the response for xi using the data in S−i, the training set S excluding the point xi, yi . The probability
that point x j is picked as the reference point for xi is

pi j = P Ref xi =  x j S−i =
k dw xi, x j

∑
j = 1, j ≠ i

n
k dw xi, x j

.

Let y i be the response value the randomized regression model predicts and yi be the actual response
for xi. And let l:ℝ2 ℝ be a loss function that measures the disagreement between y i and yi. Then,
the average value of l yi, y i  is

li = E l yi, y i S−i = ∑
j = 1, j ≠ i

n
pi jl yi, y j .

After adding the regularization term, the objective function for minimization is:

f w = 1
n ∑i = 1

n
li + λ ∑

r = 1

p
wr

2 .

The default loss function l yi, y j  for NCA for regression is mean absolute deviation, but you can
specify other loss functions, including a custom one, using the LossFunction name-value pair
argument in the call to fsrnca.

Impact of Standardization
The regularization term drives the weights of irrelevant predictors to zero. In the objective functions
for NCA for classification or regression, there is only one regularization parameter λ for all weights.
This fact requires the magnitudes of the weights to be comparable to each other. When the feature
vectors xi in S are in different scales, this might result in weights that are in different scales and not
meaningful. To avoid this situation, standardize the predictors to have zero mean and unit standard
deviation before applying NCA. You can standardize the predictors using the 'Standardize',true
name-value pair argument in the call to fscnca or fsrnca.

Choosing the Regularization Parameter Value
It is usually necessary to select a value of the regularization parameter by calculating the accuracy of
the randomized NCA classifier or regression model on an independent test set. If you use cross-
validation instead of a single test set, select the λ value that minimizes the average loss across the
cross-validation folds. For examples, see “Tune Regularization Parameter to Detect Features Using
NCA for Classification” on page 16-207 and “Tune Regularization Parameter in NCA for Regression”
on page 35-2886.

References
[1] Yang, W., K. Wang, W. Zuo. "Neighborhood Component Feature Selection for High-Dimensional

Data." Journal of Computers. Vol. 7, Number 1, January, 2012.
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See Also
fscnca | fsrnca | FeatureSelectionNCAClassification |
FeatureSelectionNCARegression

More About
• “Robust Feature Selection Using NCA for Regression” on page 16-83
• “Tune Regularization Parameter to Detect Features Using NCA for Classification” on page 16-

207
• “Introduction to Feature Selection” on page 16-47
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t-SNE

In this section...
“What Is t-SNE?” on page 16-102
“t-SNE Algorithm” on page 16-102
“Barnes-Hut Variation of t-SNE” on page 16-105
“Characteristics of t-SNE” on page 16-105

What Is t-SNE?
t-SNE (tsne) is an algorithm for dimensionality reduction that is well-suited to visualizing high-
dimensional data. The name stands for t-distributed Stochastic Neighbor Embedding. The idea is to
embed high-dimensional points in low dimensions in a way that respects similarities between points.
Nearby points in the high-dimensional space correspond to nearby embedded low-dimensional points,
and distant points in high-dimensional space correspond to distant embedded low-dimensional points.
(Generally, it is impossible to match distances exactly between high-dimensional and low-dimensional
spaces.)

The tsne function creates a set of low-dimensional points from high-dimensional data. Typically, you
visualize the low-dimensional points to see natural clusters in the original high-dimensional data.

The algorithm takes the following general steps to embed the data in low dimensions.

1 Calculate the pairwise distances between the high-dimensional points.
2 Create a standard deviation σi for each high-dimensional point i so that the perplexity of each

point is at a predetermined level. For the definition of perplexity, see “Compute Distances,
Gaussian Variances, and Similarities” on page 16-103.

3 Calculate the similarity matrix. This is the joint probability distribution of X, defined by
“Equation 16-1”.

4 Create an initial set of low-dimensional points.
5 Iteratively update the low-dimensional points to minimize the Kullback-Leibler divergence

between a Gaussian distribution in the high-dimensional space and a t distribution in the low-
dimensional space. This optimization procedure is the most time-consuming part of the
algorithm.

See van der Maaten and Hinton [1].

t-SNE Algorithm
The basic t-SNE algorithm performs the following steps.

• “Prepare Data” on page 16-103
• “Compute Distances, Gaussian Variances, and Similarities” on page 16-103
• “Initialize the Embedding and Divergence” on page 16-104
• “Gradient Descent of Kullback-Leibler Divergence” on page 16-104
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Prepare Data

tsne first removes each row of the input data X that contains any NaN values. Then, if the
Standardize name-value pair is true, tsne centers X by subtracting the mean of each column, and
scales X by dividing its columns by their standard deviations.

The original authors van der Maaten and Hinton [1] recommend reducing the original data X to a
lower-dimensional version using “Principal Component Analysis (PCA)” on page 16-66. You can set
the tsne NumPCAComponents name-value pair to the number of dimensions you like, perhaps 50. To
exercise more control over this step, preprocess the data using the pca function.

Compute Distances, Gaussian Variances, and Similarities

After the preprocessing, tsne calculates the distance d(xi,xj) between each pair of points xi and xj in
X. You can choose various distance metrics using the Distance name-value pair. By default, tsne
uses the standard Euclidean metric. tsne uses the square of the distance metric in its subsequent
calculations.

Then for each row i of X, tsne calculates a standard deviation σi so that the perplexity of row i is
equal to the Perplexity name-value pair. The perplexity is defined in terms of a model Gaussian
distribution as follows. As van der Maaten and Hinton [1] describe, “The similarity of data point xj to
data point xi is the conditional probability, p j i, that xi would pick xj as its neighbor if neighbors were
picked in proportion to their probability density under a Gaussian centered at xi. For nearby data
points, p j i is relatively high, whereas for widely separated data points, p j i will be almost
infinitesimal (for reasonable values of the variance of the Gaussian, σi).”

Define the conditional probability of j given i as

p j i =
exp −d xi, x j

2/ 2σi
2

∑
k ≠ i

exp −d xi, xk
2/ 2σi

2

pi i = 0.

Then define the joint probability pij by symmetrizing the conditional probabilities:

pi j =
p j i + pi j

2N ,  (16-1)

where N is the number of rows of X.

The distributions still do not have their standard deviations σi defined in terms of the Perplexity
name-value pair. Let Pi represents the conditional probability distribution over all other data points
given data point xi. The perplexity of the distribution is

perplexity Pi = 2H Pi ,

where H(Pi) is the Shannon entropy of Pi:

H Pi = − ∑
j

p j ilog2 p j i .

The perplexity measures the effective number of neighbors of point i. tsne performs a binary search
over the σi to achieve a fixed perplexity for each point i.
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Initialize the Embedding and Divergence

To embed the points in X into a low-dimensional space, tsne performs an optimization. tsne
attempts to minimize the Kullback-Leibler divergence between the model Gaussian distribution of the
points in X and a Student t distribution of points Y in the low-dimensional space.

The minimization procedure begins with an initial set of points Y. tsne create the points by default as
random Gaussian-distributed points. You can also create these points yourself and include them in the
'InitialY' name-value pair for tsne. tsne then calculates the similarities between each pair of
points in Y.

The probability model qij of the distribution of the distances between points yi and yj is

qi j =
1 + yi− y j

2 −1

∑
k
∑

l ≠ k
1 + yk− yl

2 −1

qii = 0.

Using this definition and the model of distances in X given by “Equation 16-1”, the Kullback-Leibler
divergence between the joint distribution P and Q is

KL(P Q) = ∑
j
∑

i ≠ j
pi jlog

pi j
qi j

.

For consequences of this definition, see “Helpful Nonlinear Distortion” on page 16-105.

Gradient Descent of Kullback-Leibler Divergence

To minimize the Kullback-Leibler divergence, the 'exact' algorithm uses a modified gradient
descent procedure. The gradient with respect to the points in Y of the divergence is

∂KL(P Q)
∂yi

= 4 ∑
j ≠ i

Z pi j− qi j qi j yi− y j ,

where the normalization term

Z = ∑
k
∑

l ≠ k
1 + yk− yl

2 −1 .

The modified gradient descent algorithm uses a few tuning parameters to attempt to reach a good
local minimum.

• 'Exaggeration' — During the first 99 gradient descent steps, tsne multiplies the probabilities
pij from “Equation 16-1” by the exaggeration value. This step tends to create more space between
clusters in the output Y.

• 'LearnRate' — tsne uses adaptive learning to improve the convergence of the gradient descent
iterations. The descent algorithm has iterative steps that are a linear combination of the previous
step in the descent and the current gradient. 'LearnRate' is a multiplier of the current gradient
for the linear combination. For details, see Jacobs [3].
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Barnes-Hut Variation of t-SNE
To speed the t-SNE algorithm and to cut down on its memory usage, tsne offers an approximate
optimization scheme. The Barnes-Hut algorithm groups nearby points together to lower the
complexity and memory usage of the t-SNE optimization step. The Barnes-Hut algorithm is an
approximate optimizer, not an exact optimizer. There is a nonnegative tuning parameter Theta that
effects a tradeoff between speed and accuracy. Larger values of 'Theta' give faster but less
accurate optimization results. The algorithm is relatively insensitive to 'Theta' values in the range
(0.2,0.8).

The Barnes-Hut algorithm groups nearby points in the low-dimensional space, and performs an
approximate gradient descent based on these groups. The idea, originally used in astrophysics, is that
the gradient is similar for nearby points, so the computations can be simplified.

See van der Maaten [2].

Characteristics of t-SNE
• “Cannot Use Embedding to Classify New Data” on page 16-105
• “Performance Depends on Data Sizes and Algorithm” on page 16-105
• “Helpful Nonlinear Distortion” on page 16-105

Cannot Use Embedding to Classify New Data

Because t-SNE often separates data clusters well, it can seem that t-SNE can classify new data
points. However, t-SNE cannot classify new points. The t-SNE embedding is a nonlinear map that is
data-dependent. To embed a new point in the low-dimensional space, you cannot use the previous
embedding as a map. Instead, run the entire algorithm again.

Performance Depends on Data Sizes and Algorithm

t-SNE can take a good deal of time to process data. If you have N data points in D dimensions that
you want to map to Y dimensions, then

• Exact t-SNE takes of order D*N2 operations.
• Barnes-Hut t-SNE takes of order D*Nlog(N)*exp(dimension(Y)) operations.

So for large data sets, where N is greater than 1000 or so, and where the embedding dimension Y is 2
or 3, the Barnes-Hut algorithm can be faster than the exact algorithm.

Helpful Nonlinear Distortion

T-SNE maps high-dimensional distances to distorted low-dimensional analogues. Because of the fatter
tail of the Student t distribution in the low-dimensional space, tsne often moves close points closer
together, and moves far points farther apart than in the high-dimensional space, as illustrated in the
following figure. The figure shows both Gaussian and Student t distributions at the points where the
densities are at 0.25 and 0.025. The Gaussian density relates to high-dimensional distances, and the t
density relates to low-dimensional distances. The t density corresponds to close points being closer,
and far points being farther, compared to the Gaussian density.

t = linspace(0,5);
y1 = normpdf(t,0,1);
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y2 = tpdf(t,1);
plot(t,y1,'k',t,y2,'r')
hold on
x1 = fzero(@(x)normpdf(x,0,1)-0.25,[0,2]);
x2 = fzero(@(x)tpdf(x,1)-0.25,[0,2]);
z1 = fzero(@(x)normpdf(x,0,1)-0.025,[0,5]);
z2 = fzero(@(x)tpdf(x,1)-0.025,[0,5]);
plot([0,x1],[0.25,0.25],'k-.')
plot([0,z2],[0.025,0.025],'k-.')
plot([x1,x1],[0,0.25],'g-',[x2,x2],[0,0.25],'g-')
plot([z1,z1],[0,0.025],'g-',[z2,z2],[0,0.025],'g-')
text(1.1,.25,'Close points are closer in low-D')
text(2.4,.05,'Far points are farther in low-D')
legend('Gaussian(0,1)','Student t (df = 1)')
xlabel('x')
ylabel('Density')
title('Density of Gaussian(0,1) and Student t (df = 1)')
hold off

This distortion is helpful when it applies. It does not apply in cases such as when the Gaussian
variance is high, which lowers the Gaussian peak and flattens the distribution. In such a case, tsne
can move close points farther apart than in the original space. To achieve a helpful distortion,

• Set the 'Verbose' name-value pair to 2.
• Adjust the 'Perplexity' name-value pair so the reported range of variances is not too far from

1, and the mean variance is near 1.
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If you can achieve this range of variances, then the diagram applies, and the tsne distortion is
helpful.

For effective ways to tune tsne, see Wattenberg, Viégas and Johnson [4].

References
[1] van der Maaten, Laurens, and Geoffrey Hinton. "Visualizing Data using t-SNE." J. Machine

Learning Research 9, 2008, pp. 2579–2605.

[2] van der Maaten, Laurens. Barnes-Hut-SNE. arXiv:1301.3342 [cs.LG], 2013.
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2016. Available at How to Use t-SNE Effectively.

See Also

Related Examples
• “Visualize High-Dimensional Data Using t-SNE” on page 16-111
• “t-SNE Output Function” on page 16-108
• “tsne Settings” on page 16-115

More About
• “Principal Component Analysis (PCA)” on page 16-66
• “Classical Multidimensional Scaling” on page 16-40
• “Factor Analysis” on page 16-76
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t-SNE Output Function
In this section...
“t-SNE Output Function Description” on page 16-108
“tsne optimValues Structure” on page 16-108
“t-SNE Custom Output Function” on page 16-109

t-SNE Output Function Description
A tsne output function is a function that runs after every NumPrint optimization iterations of the t-
SNE algorithm. An output function can create plots, or log data to a file or to a workspace variable.
The function cannot change the progress of the algorithm, but can halt the iterations.

Set output functions using the Options name-value pair argument to the tsne function. Set
Options to a structure created using statset or struct. Set the 'OutputFcn' field of the
Options structure to a function handle or cell array of function handles.

For example, to set an output function named outfun.m, use the following commands.

opts = statset('OutputFcn',@outfun);
Y = tsne(X,'Options',opts);

Write an output function using the following syntax.

function stop = outfun(optimValues,state)

stop = false; % do not stop by default
switch state
    case 'init'
        % Set up plots or open files
    case 'iter'
        % Draw plots or update variables
    case 'done'
        % Clean up plots or files
end

tsne passes the state and optimValues variables to your function. state takes on the values
'init', 'iter', or 'done' as shown in the code snippet.

tsne optimValues Structure
optimValues Field Description
'iteration' Iteration number
'fval' Kullback-Leibler divergence, modified by exaggeration during the

first 99 iterations
'grad' Gradient of the Kullback-Leibler divergence, modified by

exaggeration during the first 99 iterations
'Exaggeration' Value of the exaggeration parameter in use in the current iteration
'Y' Current embedding
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t-SNE Custom Output Function

This example shows how to use an output function in tsne.

Custom Output Function

The following code is an output function that performs these tasks:

• Keep a history of the Kullback-Leibler divergence and the norm of its gradient in a workspace
variable.

• Plot the solution and the history as the iterations proceed.
• Display a Stop button on the plot to stop the iterations early without losing any information.

The output function has an extra input variable, species, that enables its plots to show the correct
classification of the data. For information on including extra parameters such as species in a
function, see “Parameterizing Functions”.

function stop = KLLogging(optimValues,state,species)
persistent h kllog iters stopnow
switch state
    case 'init'
        stopnow = false;
        kllog = [];
        iters = [];
        h = figure;
        c = uicontrol('Style','pushbutton','String','Stop','Position', ...
            [10 10 50 20],'Callback',@stopme);
    case 'iter'
        kllog = [kllog; optimValues.fval,log(norm(optimValues.grad))];
        assignin('base','history',kllog)
        iters = [iters; optimValues.iteration];
        if length(iters) > 1
            figure(h)
            subplot(2,1,2)
            plot(iters,kllog);
            xlabel('Iterations')
            ylabel('Loss and Gradient')
            legend('Divergence','log(norm(gradient))')
            title('Divergence and log(norm(gradient))')
            subplot(2,1,1)
            gscatter(optimValues.Y(:,1),optimValues.Y(:,2),species)
            title('Embedding')
            drawnow
        end
    case 'done'
        % Nothing here
end
stop = stopnow;

function stopme(~,~)
stopnow = true;
end
end
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Use the Custom Output Function

Plot the Fisher iris data, a 4-D data set, in two dimensions using tsne. There is a drop in the
Divergence value at iteration 100 because the divergence is scaled by the exaggeration value for
earlier iterations. The embedding remains largely unchanged for the last several hundred iterations,
so you can save time by clicking the Stop button during the iterations.

load fisheriris
rng default % for reproducibility
opts = statset('OutputFcn',@(optimValues,state) KLLogging(optimValues,state,species));
Y = tsne(meas,'Options',opts,'Algorithm','exact');

See Also

Related Examples
• “Visualize High-Dimensional Data Using t-SNE” on page 16-111
• “tsne Settings” on page 16-115
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Visualize High-Dimensional Data Using t-SNE

This example shows how to visualize the MNIST data [1], which consists of images of handwritten
digits, using the tsne function. The images are 28-by-28 pixels in grayscale. Each image has an
associated label from 0 through 9, which is the digit that the image represents. tsne reduces the
dimension of the data from 784 original dimensions to 50 using PCA, and then to two or three using
the t-SNE Barnes-Hut algorithm.

Obtain Data

Begin by obtaining image and label data from

http://yann.lecun.com/exdb/mnist/

Unzip the files. For this example, use the t10k-images data.

imageFileName = 't10k-images.idx3-ubyte';
labelFileName = 't10k-labels.idx1-ubyte';

Process the files to load them in the workspace. The code for this processing function appears at the
end of this example.

[X,L] = processMNISTdata(imageFileName,labelFileName);

Read MNIST image data...
Number of images in the dataset:  10000 ...
Each image is of 28 by 28 pixels...
The image data is read to a matrix of dimensions:  10000 by  784...
End of reading image data.

Read MNIST label data...
Number of labels in the dataset:  10000 ...
The label data is read to a matrix of dimensions:  10000 by  1...
End of reading label data.

Reduce Dimension of Data to Two

Obtain two-dimensional analogues of the data clusters using t-SNE. Use PCA to reduce the initial
dimensionality to 50. Use the Barnes-Hut variant of the t-SNE algorithm to save time on this
relatively large data set.

rng default % for reproducibility
Y = tsne(X,'Algorithm','barneshut','NumPCAComponents',50);

Display the result, colored with the correct labels.

figure
numGroups = length(unique(L));
clr = hsv(numGroups);
gscatter(Y(:,1),Y(:,2),L,clr)
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t-SNE creates clusters of points based solely on their relative similarities that correspond closely to
the true labels.

Reduce Dimension of Data to Three

t-SNE can also reduce the data to three dimensions. Set the tsne 'NumDimensions' name-value
pair to 3.

rng default % for fair comparison
Y3 = tsne(X,'Algorithm','barneshut','NumPCAComponents',50,'NumDimensions',3);
figure
scatter3(Y3(:,1),Y3(:,2),Y3(:,3),15,clr(L+1,:),'filled');
view(-93,14)
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Here is the code of the function that reads the data into the workspace.

function [X,L] = processMNISTdata(imageFileName,labelFileName)

[fileID,errmsg] = fopen(imageFileName,'r','b');
if fileID < 0
    error(errmsg);
end
%%
% First read the magic number. This number is 2051 for image data, and
% 2049 for label data
magicNum = fread(fileID,1,'int32',0,'b');
if magicNum == 2051
    fprintf('\nRead MNIST image data...\n')
end
%%
% Then read the number of images, number of rows, and number of columns
numImages = fread(fileID,1,'int32',0,'b');
fprintf('Number of images in the dataset: %6d ...\n',numImages);
numRows = fread(fileID,1,'int32',0,'b');
numCols = fread(fileID,1,'int32',0,'b');
fprintf('Each image is of %2d by %2d pixels...\n',numRows,numCols);
%%
% Read the image data
X = fread(fileID,inf,'unsigned char');
%%
% Reshape the data to array X
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X = reshape(X,numCols,numRows,numImages);
X = permute(X,[2 1 3]);
%%
% Then flatten each image data into a 1 by (numRows*numCols) vector, and 
% store all the image data into a numImages by (numRows*numCols) array.
X = reshape(X,numRows*numCols,numImages)';
fprintf(['The image data is read to a matrix of dimensions: %6d by %4d...\n',...
    'End of reading image data.\n'],size(X,1),size(X,2));
%%
% Close the file
fclose(fileID);
%%
% Similarly, read the label data.
[fileID,errmsg] = fopen(labelFileName,'r','b');
if fileID < 0
    error(errmsg);
end
magicNum = fread(fileID,1,'int32',0,'b');
if magicNum == 2049
    fprintf('\nRead MNIST label data...\n')
end
numItems = fread(fileID,1,'int32',0,'b');
fprintf('Number of labels in the dataset: %6d ...\n',numItems);

L = fread(fileID,inf,'unsigned char');
fprintf(['The label data is read to a matrix of dimensions: %6d by %2d...\n',...
    'End of reading label data.\n'],size(L,1),size(L,2));
fclose(fileID);

References
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is made available under the terms of the Creative Commons Attribution-Share Alike 3.0 license,
https://creativecommons.org/licenses/by-sa/3.0/
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Related Examples
• “tsne Settings” on page 16-115

More About
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tsne Settings

This example shows the effects of various tsne settings.

Obtain Data

Begin by obtaining the MNIST [1] image and label data from

http://yann.lecun.com/exdb/mnist/

Unzip the files. For this example, use the t10k-images data.

imageFileName = 't10k-images.idx3-ubyte';
labelFileName = 't10k-labels.idx1-ubyte';

Process the files to load them in the workspace. The code for this processing function appears at the
end of this example.

[X,L] = processMNISTdata(imageFileName,labelFileName);

Read MNIST image data...
Number of images in the dataset:  10000 ...
Each image is of 28 by 28 pixels...
The image data is read to a matrix of dimensions:  10000 by  784...
End of reading image data.

Read MNIST label data...
Number of labels in the dataset:  10000 ...
The label data is read to a matrix of dimensions:  10000 by  1...
End of reading label data.

Process Data Using t-SNE

Obtain two-dimensional analogs of the data clusters using t-SNE. Use the Barnes-Hut algorithm for
better performance on this large data set. Use PCA to reduce the initial dimensions from 784 to 50.

rng default % for reproducibility
Y = tsne(X,'Algorithm','barneshut','NumPCAComponents',50);
figure
numGroups = length(unique(L));
clr = hsv(numGroups);
gscatter(Y(:,1),Y(:,2),L,clr)
title('Default Figure')
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t-SNE creates a figure with well separated clusters and relatively few data points that seem
misplaced.

Perplexity

Try altering the perplexity setting to see the effect on the figure.

rng default % for fair comparison
Y100 = tsne(X,'Algorithm','barneshut','NumPCAComponents',50,'Perplexity',100);
figure
gscatter(Y100(:,1),Y100(:,2),L,clr)
title('Perplexity 100')
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rng default % for fair comparison
Y4 = tsne(X,'Algorithm','barneshut','NumPCAComponents',50,'Perplexity',4);
figure
gscatter(Y4(:,1),Y4(:,2),L,clr)
title('Perplexity 4')
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Setting the perplexity to 100 yields a figure that is largely similar to the default figure. The clusters
are tighter than with the default setting. However, setting the perplexity to 4 gives a figure without
well separated clusters. The clusters are looser than with the default setting.

Exaggeration

Try altering the exaggeration setting to see the effect on the figure.

rng default % for fair comparison
YEX0 = tsne(X,'Algorithm','barneshut','NumPCAComponents',50,'Exaggeration',20);
figure
gscatter(YEX0(:,1),YEX0(:,2),L,clr)
title('Exaggeration 20')
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rng default % for fair comparison
YEx15 = tsne(X,'Algorithm','barneshut','NumPCAComponents',50,'Exaggeration',1.5);
figure
gscatter(YEx15(:,1),YEx15(:,2),L,clr)
title('Exaggeration 1.5')
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While the exaggeration setting has an effect on the figure, it is not clear whether any nondefault
setting gives a better picture than the default setting. The figure with an exaggeration of 20 is similar
to the default figure. In general, a larger exaggeration creates more empty space between embedded
clusters. An exaggeration of 1.5 causes the groups labeled 1 and 6 to split into two groups each, an
undesirable outcome. Exaggerating the values in the joint distribution of X makes the values in the
joint distribution of Y smaller. This makes it much easier for the embedded points to move relative to
one another. The splitting of clusters 1 and 6 reflects this effect.

Learning Rate

Try altering the learning rate setting to see the effect on the figure.

rng default % for fair comparison
YL5 = tsne(X,'Algorithm','barneshut','NumPCAComponents',50,'LearnRate',5);
figure
gscatter(YL5(:,1),YL5(:,2),L,clr)
title('Learning Rate 5')
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rng default % for fair comparison
YL2000 = tsne(X,'Algorithm','barneshut','NumPCAComponents',50,'LearnRate',2000);
figure
gscatter(YL2000(:,1),YL2000(:,2),L,clr)
title('Learning Rate 2000')
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The figure with a learning rate of 5 has several clusters that split into two or more pieces. This shows
that if the learning rate is too small, the minimization process can get stuck in a bad local minimum.
A learning rate of 2000 gives a figure similar to the default figure.

Initial Behavior with Various Settings

Large learning rates or large exaggeration values can lead to undesirable initial behavior. To see this,
set large values of these parameters and set NumPrint and Verbose to 1 to show all the iterations.
Stop the iterations after 10, as the goal of this experiment is simply to look at the initial behavior.

Begin by setting the exaggeration to 200.

rng default % for fair comparison
opts = statset('MaxIter',10);
YEX200 = tsne(X,'Algorithm','barneshut','NumPCAComponents',50,'Exaggeration',200,...
    'NumPrint',1,'Verbose',1,'Options',opts);

|==============================================|
|   ITER   | KL DIVERGENCE   | NORM GRAD USING |
|          | FUN VALUE USING | EXAGGERATED DIST|
|          | EXAGGERATED DIST| OF X            |
|          | OF X            |                 |
|==============================================|
|        1 |    2.190347e+03 |    6.078667e-05 |
|        2 |    2.190352e+03 |    4.769050e-03 |
|        3 |    2.204061e+03 |    9.423678e-02 |
|        4 |    2.464585e+03 |    2.113271e-02 |
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|        5 |    2.501222e+03 |    2.616407e-02 |
|        6 |    2.529362e+03 |    3.022570e-02 |
|        7 |    2.553233e+03 |    3.108418e-02 |
|        8 |    2.562822e+03 |    3.278873e-02 |
|        9 |    2.538056e+03 |    3.222265e-02 |
|       10 |    2.504932e+03 |    3.671708e-02 |

The Kullback-Leibler divergence increases during the first few iterations, and the norm of the
gradient increases as well.

To see the final result of the embedding, allow the algorithm to run to completion using the default
stopping criteria.

rng default % for fair comparison
YEX200 = tsne(X,'Algorithm','barneshut','NumPCAComponents',50,'Exaggeration',200);
figure
gscatter(YEX200(:,1),YEX200(:,2),L,clr)
title('Exaggeration 200')

This exaggeration value does not give a clean separation into clusters.

Show the initial behavior when the learning rate is 100,000.

rng default % for fair comparison
YL100k = tsne(X,'Algorithm','barneshut','NumPCAComponents',50,'LearnRate',1e5,...
    'NumPrint',1,'Verbose',1,'Options',opts);

|==============================================|
|   ITER   | KL DIVERGENCE   | NORM GRAD USING |
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|          | FUN VALUE USING | EXAGGERATED DIST|
|          | EXAGGERATED DIST| OF X            |
|          | OF X            |                 |
|==============================================|
|        1 |    2.815885e+01 |    1.024049e-06 |
|        2 |    2.816002e+01 |    2.902059e-04 |
|        3 |    3.195873e+01 |    7.355889e-04 |
|        4 |    3.348151e+01 |    3.958901e-04 |
|        5 |    3.365935e+01 |    2.876905e-04 |
|        6 |    3.342462e+01 |    3.906245e-04 |
|        7 |    3.303205e+01 |    4.037983e-04 |
|        8 |    3.263320e+01 |    5.665630e-04 |
|        9 |    3.235384e+01 |    4.319099e-04 |
|       10 |    3.211238e+01 |    4.803526e-04 |

Again, the Kullback-Leibler divergence increases during the first few iterations, and the norm of the
gradient increases as well.

To see the final result of the embedding, allow the algorithm to run to completion using the default
stopping criteria.

rng default % for fair comparison
YL100k = tsne(X,'Algorithm','barneshut','NumPCAComponents',50,'LearnRate',1e5);
figure
gscatter(YL100k(:,1),YL100k(:,2),L,clr)
title('Learning Rate 100,000')

The learning rate is far too large, and gives no useful embedding.
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Conclusion

tsne with default settings does a good job of embedding the high-dimensional initial data into two-
dimensional points that have well defined clusters. The effects of algorithm settings are difficult to
predict. Sometimes they can improve the clustering, but for the most part the default settings seem
good. While speed is not part of this investigation, settings can affect the speed of the algorithm. In
particular, the Barnes-Hut algorithm is notably faster on this data.

Code to Process MNIST Data

Here is the code of the function that reads the data into the workspace.

function [X,L] = processMNISTdata(imageFileName,labelFileName)

[fileID,errmsg] = fopen(imageFileName,'r','b');
if fileID < 0
    error(errmsg);
end
%%
% First read the magic number. This number is 2051 for image data, and
% 2049 for label data
magicNum = fread(fileID,1,'int32',0,'b');
if magicNum == 2051
    fprintf('\nRead MNIST image data...\n')
end
%%
% Then read the number of images, number of rows, and number of columns
numImages = fread(fileID,1,'int32',0,'b');
fprintf('Number of images in the dataset: %6d ...\n',numImages);
numRows = fread(fileID,1,'int32',0,'b');
numCols = fread(fileID,1,'int32',0,'b');
fprintf('Each image is of %2d by %2d pixels...\n',numRows,numCols);
%%
% Read the image data
X = fread(fileID,inf,'unsigned char');
%%
% Reshape the data to array X
X = reshape(X,numCols,numRows,numImages);
X = permute(X,[2 1 3]);
%%
% Then flatten each image data into a 1 by (numRows*numCols) vector, and 
% store all the image data into a numImages by (numRows*numCols) array.
X = reshape(X,numRows*numCols,numImages)';
fprintf(['The image data is read to a matrix of dimensions: %6d by %4d...\n',...
    'End of reading image data.\n'],size(X,1),size(X,2));
%%
% Close the file
fclose(fileID);
%%
% Similarly, read the label data.
[fileID,errmsg] = fopen(labelFileName,'r','b');
if fileID < 0
    error(errmsg);
end
magicNum = fread(fileID,1,'int32',0,'b');
if magicNum == 2049
    fprintf('\nRead MNIST label data...\n')
end

 tsne Settings

16-125



numItems = fread(fileID,1,'int32',0,'b');
fprintf('Number of labels in the dataset: %6d ...\n',numItems);

L = fread(fileID,inf,'unsigned char');
fprintf(['The label data is read to a matrix of dimensions: %6d by %2d...\n',...
    'End of reading label data.\n'],size(L,1),size(L,2));
fclose(fileID);

References

[1] Yann LeCun (Courant Institute, NYU) and Corinna Cortes (Google Labs, New York) hold the
copyright of MNIST dataset, which is a derivative work from original NIST datasets. MNIST dataset
is made available under the terms of the Creative Commons Attribution-Share Alike 3.0 license,
https://creativecommons.org/licenses/by-sa/3.0/
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Feature Extraction
In this section...
“What Is Feature Extraction?” on page 16-127
“Sparse Filtering Algorithm” on page 16-127
“Reconstruction ICA Algorithm” on page 16-129

What Is Feature Extraction?
Feature extraction is a set of methods that map input features to new output features. Many feature
extraction methods use unsupervised learning to extract features. Unlike some feature extraction
methods such as PCA and NNMF, the methods described in this section can increase dimensionality
(and decrease dimensionality). Internally, the methods involve optimizing nonlinear objective
functions. For details, see “Sparse Filtering Algorithm” on page 16-127 or “Reconstruction ICA
Algorithm” on page 16-129.

One typical use of feature extraction is finding features in images. Using these features can lead to
improved classification accuracy. For an example, see “Feature Extraction Workflow” on page 16-132.
Another typical use is extracting individual signals from superpositions, which is often termed blind
source separation. For an example, see “Extract Mixed Signals” on page 16-161.

There are two feature extraction functions: rica and sparsefilt. Associated with these functions
are the objects that they create: ReconstructionICA and SparseFiltering.

Sparse Filtering Algorithm
The sparse filtering algorithm begins with a data matrix X that has n rows and p columns. Each row
represents one observation and each column represents one measurement. The columns are also
called the features or predictors. The algorithm then takes either an initial random p-by-q weight
matrix W or uses the weight matrix passed in the InitialTransformWeights name-value pair. q is
the requested number of features that sparsefilt computes.

The algorithm attempts to minimize the “Sparse Filtering Objective Function” on page 16-128 by
using a standard limited memory Broyden-Fletcher-Goldfarb-Shanno (LBFGS) quasi-Newton
optimizer. See Nocedal and Wright [2]. This optimizer takes up to IterationLimit iterations. It
stops iterating earlier when it takes a step whose norm is less than StepTolerance, or when it
computes that the norm of the gradient at the current point is less than GradientTolerance times
a scalar τ, where

τ = max 1, min f , g0 ∞ .

|f| is the norm of the objective function, and g0 ∞ is the infinity norm of the initial gradient.

The objective function attempts to simultaneously obtain few nonzero features for each data point,
and for each resulting feature to have nearly equal weight. To understand how the objective function
attempts to achieve these goals, see Ngiam, Koh, Chen, Bhaskar, and Ng [1].

Frequently, you obtain good features by setting a relatively small value of IterationLimit, from as
low as 5 to a few hundred. Allowing the optimizer to continue can result in overtraining, where the
extracted features do not generalize well to new data.
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After constructing a SparseFiltering object, use the transform method to map input data to the
new output features.

Sparse Filtering Objective Function

To compute an objective function, the sparse filtering algorithm uses the following steps. The
objective function depends on the n-by-p data matrix X and a weight matrix W that the optimizer
varies. The weight matrix W has dimensions p-by-q, where p is the number of original features and q
is the number of requested features.

1 Compute the n-by-q matrix X*W. Apply the approximate absolute value function
ϕ u = u2 + 10−8 to each element of X*W to obtain the matrix F. ϕ is a smooth nonnegative
symmetric function that closely approximates the absolute value function.

2 Normalize the columns of F by the approximate L2 norm. In other words, define the normalized
matrix F(i, j) by

F( j) = ∑
i = 1

n
F(i, j) 2 + 10−8

F(i, j) = F(i, j)/ F( j) .
3 Normalize the rows of F(i, j) by the approximate L2 norm. In other words, define the normalized

matrix F (i, j) by

F(i) = ∑
j = 1

q
F(i, j) 2 + 10−8

F (i, j) = F(i, j)/ F(i) .

The matrix F  is the matrix of converted features in X. Once sparsefilt finds the weights W that
minimize the objective function h (see below), which the function stores in the output object Mdl
in the Mdl.TransformWeights property, the transform function can follow the same
transformation steps to convert new data to output features.

4 Compute the objective function h(W) as the 1–norm of the matrix F (i, j), meaning the sum of all
the elements in the matrix (which are nonnegative by construction):

h W = ∑
j = 1

q
∑

i = 1

n
F (i, j) .

5 If you set the Lambda name-value pair to a strictly positive value, sparsefilt uses the following
modified objective function:

h W = ∑
j = 1

q
∑

i = 1

n
F (i, j) + λ ∑

j = 1

q
w j

Tw j .

Here, wj is the jth column of the matrix W and λ is the value of Lambda. The effect of this term is
to shrink the weights W. If you plot the columns of W as images, with positive Lambda these
images appear smooth compared to the same images with zero Lambda.
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Reconstruction ICA Algorithm
The Reconstruction Independent Component Analysis (RICA) algorithm is based on minimizing an
objective function. The algorithm maps input data to output features.

The ICA source model is the following. Each observation x is generated by a random vector s
according to

x = μ + As .

• x is a column vector of length p.
• μ is a column vector of length p representing a constant term.
• s is a column vector of length q whose elements are zero mean, unit variance random variables

that are statistically independent of each other.
• A is a mixing matrix of size p-by-q.

You can use this model in rica to estimate A from observations of x. See “Extract Mixed Signals” on
page 16-161.

The RICA algorithm begins with a data matrix X that has n rows and p columns consisting of the
observations xi:

X =

x1
T

x2
T

⋮
xn

T

.

Each row represents one observation and each column represents one measurement. The columns
are also called the features or predictors. The algorithm then takes either an initial random p-by-q
weight matrix W or uses the weight matrix passed in the InitialTransformWeights name-value
pair. q is the requested number of features that rica computes. The weight matrix W is composed of
columns wi of size p-by-1:

W = w1 w2 … wq .

The algorithm attempts to minimize the “Reconstruction ICA Objective Function” on page 16-130 by
using a standard limited memory Broyden-Fletcher-Goldfarb-Shanno (LBFGS) quasi-Newton
optimizer. See Nocedal and Wright [2]. This optimizer takes up to IterationLimit iterations. It
stops iterating when it takes a step whose norm is less than StepTolerance, or when it computes
that the norm of the gradient at the current point is less than GradientTolerance times a scalar τ,
where

τ = max 1, min f , g0 ∞ .

|f| is the norm of the objective function, and g0 ∞ is the infinity norm of the initial gradient.

The objective function attempts to obtain a nearly orthonormal weight matrix that minimizes the sum
of elements of g(XW), where g is a function (described below) that is applied elementwise to XW. To
understand how the objective function attempts to achieve these goals, see Le, Karpenko, Ngiam, and
Ng [3].
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After constructing a ReconstructionICA object, use the transform method to map input data to
the new output features.

Reconstruction ICA Objective Function

The objective function uses a contrast function, which you specify by using the ContrastFcn name-
value pair. The contrast function is a smooth convex function that is similar to an absolute value. By
default, the contrast function is g = 1

2log cosh 2x . For other available contrast functions, see
ContrastFcn.

For an n-by-p data matrix X and q output features, with a regularization parameter λ as the value of
the Lambda name-value pair, the objective function in terms of the p-by-q matrix W is

h = λ
n ∑i = 1

n
WWTxi− xi 2

2 + 1
n ∑i = 1

n
∑

j = 1

q
σ jg w j

Txi

The σj are known constants that are ±1. When σj = +1, minimizing the objective function h
encourages the histogram of w j

Txi to be sharply peaked at 0 (super Gaussian). When σj = –1,
minimizing the objective function h encourages the histogram of w j

Txi to be flatter near 0 (sub
Gaussian). Specify the σj values using the rica NonGaussianityIndicator name-value pair.

The objective function h can have a spurious minimum of zero when λ is zero. Therefore, rica
minimizes h over W that are normalized to 1. In other words, each column wj of W is defined in terms
of a column vector vj by

w j =
v j

v j
Tv j + 10−8 .

rica minimizes over the vj. The resulting minimal matrix W provides the transformation from input
data X to output features XW.
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[1] Ngiam, Jiquan, Zhenghao Chen, Sonia A. Bhaskar, Pang W. Koh, and Andrew Y. Ng. “Sparse

Filtering.” Advances in Neural Information Processing Systems. Vol. 24, 2011, pp. 1125–1133.
https://papers.nips.cc/paper/4334-sparse-filtering.pdf.

[2] Nocedal, J. and S. J. Wright. Numerical Optimization, Second Edition. Springer Series in
Operations Research, Springer Verlag, 2006.

[3] Le, Quoc V., Alexandre Karpenko, Jiquan Ngiam, and Andrew Y. Ng. “ICA with Reconstruction Cost
for Efficient Overcomplete Feature Learning.” Advances in Neural Information Processing
Systems. Vol. 24, 2011, pp. 1017–1025. https://papers.nips.cc/paper/4467-ica-
with-reconstruction-cost-for-efficient-overcomplete-feature-
learning.pdf.
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Related Examples
• “Feature Extraction Workflow” on page 16-132
• “Extract Mixed Signals” on page 16-161
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Feature Extraction Workflow

This example shows a complete workflow for feature extraction from image data.

Obtain Data

This example uses the MNIST image data [1], which consists of images of handwritten digits. The
images are 28-by-28 pixels in gray scale. Each image has an associated label from 0 through 9, which
is the digit that the image represents.

Begin by obtaining image and label data from

http://yann.lecun.com/exdb/mnist/

Unzip the files. For better performance on this long example, use the test data as training data and
the training data as test data.

imageFileName = 't10k-images.idx3-ubyte';
labelFileName = 't10k-labels.idx1-ubyte';

Process the files to load them in the workspace. The code for this processing function appears at the
end of this example.

[Xtrain,LabelTrain] = processMNISTdata(imageFileName,labelFileName);

Read MNIST image data...
Number of images in the dataset:  10000 ...
Each image is of 28 by 28 pixels...
The image data is read to a matrix of dimensions:  10000 by  784...
End of reading image data.

Read MNIST label data...
Number of labels in the dataset:  10000 ...
The label data is read to a matrix of dimensions:  10000 by  1...
End of reading label data.

View a few of the images.

rng('default') % For reproducibility
numrows = size(Xtrain,1);
ims = randi(numrows,4,1);
imgs = Xtrain(ims,:);
for i = 1:4
    pp{i} = reshape(imgs(i,:),28,28);
end
ppf = [pp{1},pp{2};pp{3},pp{4}];
imshow(ppf);
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Choose New Feature Dimensions

There are several considerations in choosing the number of features to extract:

• More features use more memory and computational time.
• Fewer features can produce a poor classifier.

For this example, choose 100 features.

q = 100;

Extract Features

There are two feature extraction functions, sparsefilt and rica. Begin with the sparsefilt
function. Set the number of iterations to 10 so that the extraction does not take too long.

Typically, you get good results by running the sparsefilt algorithm for a few iterations to a few
hundred iterations. Running the algorithm for too many iterations can lead to decreased classification
accuracy, a type of overfitting problem.

Use sparsefilt to obtain the sparse filtering model while using 10 iterations.

Mdl = sparsefilt(Xtrain,q,'IterationLimit',10);

Warning: Solver LBFGS was not able to converge to a solution. 

sparsefilt warns that the internal LBFGS optimizer did not converge. The optimizer did not
converge because you set the iteration limit to 10. Nevertheless, you can use the result to train a
classifier.

Create Classifier

Transform the original data into the new feature representation.

NewX = transform(Mdl,Xtrain);

Train a linear classifier based on the transformed data and the correct classification labels in
LabelTrain. The accuracy of the learned model is sensitive to the fitcecoc regularization
parameter Lambda. Try to find the best value for Lambda by using the OptimizeHyperparameters
name-value pair. Be aware that this optimization takes time. If you have a Parallel Computing
Toolbox™ license, use parallel computing for faster execution. If you don't have a parallel license,
remove the UseParallel calls before running this script.

t = templateLinear('Solver','lbfgs');
options = struct('UseParallel',true);
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Cmdl = fitcecoc(NewX,LabelTrain,'Learners',t, ...
    'OptimizeHyperparameters',{'Lambda'}, ...
    'HyperparameterOptimizationOptions',options);

Copying objective function to workers...
Done copying objective function to workers.
|================================================================================================|
| Iter | Active  | Eval   | Objective   | Objective   | BestSoFar   | BestSoFar   |       Lambda |
|      | workers | result |             | runtime     | (observed)  | (estim.)    |              |
|================================================================================================|
|    1 |       6 | Best   |      0.5777 |      8.5334 |      0.5777 |      0.5777 |      0.20606 |
|    2 |       5 | Accept |      0.8865 |      8.9062 |      0.2041 |     0.27206 |       8.8234 |
|    3 |       5 | Best   |      0.2041 |      9.7024 |      0.2041 |     0.27206 |     0.026804 |
|    4 |       6 | Best   |      0.1077 |      14.629 |      0.1077 |     0.10773 |   1.7309e-09 |
|    5 |       6 | Best   |      0.0962 |      15.767 |      0.0962 |    0.096203 |    0.0002442 |
|    6 |       6 | Accept |      0.1999 |      6.4363 |      0.0962 |     0.09622 |     0.024862 |
|    7 |       6 | Accept |      0.2074 |      6.4171 |      0.0962 |    0.096222 |     0.029034 |
|    8 |       6 | Accept |      0.1065 |      12.974 |      0.0962 |    0.096222 |    2.037e-08 |
|    9 |       6 | Accept |      0.0977 |      22.976 |      0.0962 |    0.096216 |   8.0495e-06 |
|   10 |       6 | Accept |      0.1237 |      8.5033 |      0.0962 |    0.096199 |    0.0029745 |
|   11 |       6 | Accept |      0.1076 |      10.653 |      0.0962 |    0.096208 |   0.00080903 |
|   12 |       6 | Accept |      0.1034 |      16.761 |      0.0962 |      0.0962 |   3.2145e-07 |
|   13 |       6 | Best   |      0.0933 |      16.715 |      0.0933 |    0.093293 |   6.3327e-05 |
|   14 |       6 | Accept |       0.109 |      12.946 |      0.0933 |     0.09328 |   5.7887e-09 |
|   15 |       6 | Accept |      0.0994 |      18.805 |      0.0933 |    0.093312 |   1.8981e-06 |
|   16 |       6 | Accept |       0.106 |      15.088 |      0.0933 |    0.093306 |   7.4684e-08 |
|   17 |       6 | Accept |      0.0952 |      20.372 |      0.0933 |    0.093285 |   2.2831e-05 |
|   18 |       6 | Accept |      0.0933 |      14.528 |      0.0933 |    0.093459 |   0.00013097 |
|   19 |       6 | Accept |      0.1082 |      12.764 |      0.0933 |    0.093458 |   1.0001e-09 |
|   20 |       6 | Best   |      0.0915 |      16.157 |      0.0915 |    0.092391 |   8.3234e-05 |
|================================================================================================|
| Iter | Active  | Eval   | Objective   | Objective   | BestSoFar   | BestSoFar   |       Lambda |
|      | workers | result |             | runtime     | (observed)  | (estim.)    |              |
|================================================================================================|
|   21 |       6 | Accept |      0.8865 |      6.6373 |      0.0915 |    0.092387 |       1.6749 |
|   22 |       6 | Accept |      0.0929 |      17.306 |      0.0915 |    0.092457 |   0.00010668 |
|   23 |       6 | Accept |      0.0937 |      19.046 |      0.0915 |    0.092535 |   5.0962e-05 |
|   24 |       6 | Accept |      0.0916 |      17.932 |      0.0915 |    0.092306 |    9.023e-05 |
|   25 |       6 | Accept |      0.0935 |       17.53 |      0.0915 |    0.092431 |   0.00011726 |
|   26 |       6 | Accept |      0.1474 |      8.3795 |      0.0915 |    0.092397 |     0.006997 |
|   27 |       6 | Accept |      0.0939 |      19.188 |      0.0915 |    0.092427 |   5.2557e-05 |
|   28 |       6 | Accept |      0.1147 |      10.686 |      0.0915 |    0.092432 |    0.0015036 |
|   29 |       6 | Accept |      0.1049 |      16.609 |      0.0915 |    0.092434 |   1.4871e-07 |
|   30 |       6 | Accept |      0.1069 |      13.929 |      0.0915 |    0.092435 |   1.0899e-08 |

__________________________________________________________
Optimization completed.
MaxObjectiveEvaluations of 30 reached.
Total function evaluations: 30
Total elapsed time: 83.1976 seconds.
Total objective function evaluation time: 416.8767

Best observed feasible point:
      Lambda  
    __________

    8.3234e-05
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Observed objective function value = 0.0915
Estimated objective function value = 0.09245
Function evaluation time = 16.1569

Best estimated feasible point (according to models):
     Lambda  
    _________

    9.023e-05

Estimated objective function value = 0.092435
Estimated function evaluation time = 17.0972
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Evaluate Classifier

Check the error of the classifier when applied to test data. First, load the test data.

imageFileName = 'train-images.idx3-ubyte';
labelFileName = 'train-labels.idx1-ubyte';
[Xtest,LabelTest] = processMNISTdata(imageFileName,labelFileName);

Read MNIST image data...
Number of images in the dataset:  60000 ...
Each image is of 28 by 28 pixels...
The image data is read to a matrix of dimensions:  60000 by  784...
End of reading image data.
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Read MNIST label data...
Number of labels in the dataset:  60000 ...
The label data is read to a matrix of dimensions:  60000 by  1...
End of reading label data.

Calculate the classification loss when applying the classifier to the test data.

TestX = transform(Mdl,Xtest);
Loss = loss(Cmdl,TestX,LabelTest)

Loss =

    0.1009

Did this transformation result in a better classifier than one trained on the original data? Create a
classifier based on the original training data and evaluate its loss.

Omdl = fitcecoc(Xtrain,LabelTrain,'Learners',t, ...
    'OptimizeHyperparameters',{'Lambda'}, ...
    'HyperparameterOptimizationOptions',options);
Losso = loss(Omdl,Xtest,LabelTest)

Copying objective function to workers...
Done copying objective function to workers.
|================================================================================================|
| Iter | Active  | Eval   | Objective   | Objective   | BestSoFar   | BestSoFar   |       Lambda |
|      | workers | result |             | runtime     | (observed)  | (estim.)    |              |
|================================================================================================|
|    1 |       5 | Best   |      0.0779 |      46.965 |      0.0779 |      0.0779 |   5.7933e-08 |
|    2 |       5 | Accept |      0.0779 |      47.003 |      0.0779 |      0.0779 |   3.8643e-09 |
|    3 |       5 | Accept |      0.0779 |      47.068 |      0.0779 |      0.0779 |   1.3269e-06 |
|    4 |       6 | Accept |       0.078 |      60.714 |      0.0779 |    0.077925 |   3.0332e-05 |
|    5 |       6 | Accept |      0.0787 |      133.21 |      0.0779 |      0.0779 |     0.011605 |
|    6 |       6 | Best   |      0.0775 |      135.97 |      0.0775 |    0.077983 |   0.00020291 |
|    7 |       6 | Accept |      0.0779 |      44.642 |      0.0775 |    0.077971 |    5.735e-08 |
|    8 |       6 | Accept |      0.0785 |      123.19 |      0.0775 |      0.0775 |     0.024589 |
|    9 |       6 | Accept |      0.0779 |      43.574 |      0.0775 |      0.0775 |   1.0042e-09 |
|   10 |       6 | Accept |      0.0779 |      43.038 |      0.0775 |      0.0775 |   4.7227e-06 |
|   11 |       6 | Best   |      0.0774 |      137.51 |      0.0774 |    0.077451 |   0.00021639 |
|   12 |       6 | Accept |      0.0779 |       44.07 |      0.0774 |    0.077452 |   6.7132e-09 |
|   13 |       6 | Accept |      0.0779 |      44.822 |      0.0774 |    0.077453 |    2.873e-07 |
|   14 |       6 | Best   |      0.0744 |      233.12 |      0.0744 |    0.074402 |        6.805 |
|   15 |       6 | Accept |      0.0778 |      140.49 |      0.0744 |    0.074406 |      0.66889 |
|   16 |       6 | Accept |      0.0774 |      149.32 |      0.0744 |    0.074405 |    0.0002769 |
|   17 |       6 | Accept |      0.0774 |         155 |      0.0744 |    0.074404 |   0.00046083 |
|   18 |       6 | Accept |      0.0765 |      152.63 |      0.0744 |    0.074687 |   0.00027101 |
|   19 |       6 | Accept |      0.0768 |      156.32 |      0.0744 |    0.077558 |   0.00026573 |
|   20 |       6 | Best   |      0.0725 |      255.51 |      0.0725 |    0.073249 |       9.9961 |
|================================================================================================|
| Iter | Active  | Eval   | Objective   | Objective   | BestSoFar   | BestSoFar   |       Lambda |
|      | workers | result |             | runtime     | (observed)  | (estim.)    |              |
|================================================================================================|
|   21 |       6 | Best   |      0.0723 |       221.5 |      0.0723 |    0.073161 |        4.212 |
|   22 |       6 | Accept |      0.0732 |      259.51 |      0.0723 |    0.073166 |       9.9916 |
|   23 |       6 | Best   |       0.072 |      261.94 |       0.072 |    0.072848 |       9.9883 |
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|   24 |       6 | Accept |      0.0778 |      122.56 |       0.072 |    0.072854 |      0.13413 |
|   25 |       6 | Accept |      0.0733 |      258.54 |       0.072 |    0.072946 |       9.9904 |
|   26 |       6 | Accept |      0.0746 |      244.53 |       0.072 |    0.073144 |       7.0911 |
|   27 |       6 | Accept |      0.0779 |      44.573 |       0.072 |    0.073134 |   2.1183e-08 |
|   28 |       6 | Accept |       0.078 |      45.478 |       0.072 |    0.073126 |   1.1663e-05 |
|   29 |       6 | Accept |      0.0779 |      43.954 |       0.072 |    0.073118 |    1.336e-07 |
|   30 |       6 | Accept |      0.0779 |      44.574 |       0.072 |    0.073112 |   1.7282e-09 |

__________________________________________________________
Optimization completed.
MaxObjectiveEvaluations of 30 reached.
Total function evaluations: 30
Total elapsed time: 690.8688 seconds.
Total objective function evaluation time: 3741.3176

Best observed feasible point:
    Lambda
    ______

    9.9883

Observed objective function value = 0.072
Estimated objective function value = 0.073112
Function evaluation time = 261.9357

Best estimated feasible point (according to models):
    Lambda
    ______

    9.9961

Estimated objective function value = 0.073112
Estimated function evaluation time = 257.9556

Losso =

    0.0865
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The classifier based on sparse filtering has a somewhat higher loss than the classifier based on the
original data. However, the classifier uses only 100 features rather than the 784 features in the
original data, and is much faster to create. Try to make a better sparse filtering classifier by
increasing q from 100 to 200, which is still far less than 784.

q = 200;
Mdl2 = sparsefilt(Xtrain,q,'IterationLimit',10);
NewX = transform(Mdl2,Xtrain);
TestX = transform(Mdl2,Xtest);
Cmdl = fitcecoc(NewX,LabelTrain,'Learners',t, ...
    'OptimizeHyperparameters',{'Lambda'}, ...
    'HyperparameterOptimizationOptions',options);
Loss2 = loss(Cmdl,TestX,LabelTest)
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Warning: Solver LBFGS was not able to converge to a solution. 
Copying objective function to workers...
Done copying objective function to workers.
|================================================================================================|
| Iter | Active  | Eval   | Objective   | Objective   | BestSoFar   | BestSoFar   |       Lambda |
|      | workers | result |             | runtime     | (observed)  | (estim.)    |              |
|================================================================================================|
|    1 |       5 | Best   |      0.8865 |      7.3578 |      0.8865 |      0.8865 |         1.93 |
|    2 |       5 | Accept |      0.8865 |      7.3408 |      0.8865 |      0.8865 |       2.5549 |
|    3 |       6 | Best   |      0.0693 |      9.0077 |      0.0693 |    0.069376 |   9.9515e-09 |
|    4 |       5 | Accept |      0.0705 |      9.1067 |      0.0693 |    0.069374 |   1.2123e-08 |
|    5 |       5 | Accept |      0.1489 |      9.5685 |      0.0693 |    0.069374 |     0.015542 |
|    6 |       6 | Accept |      0.8865 |      7.5032 |      0.0693 |     0.06943 |       4.7067 |
|    7 |       6 | Accept |       0.071 |      8.8044 |      0.0693 |    0.069591 |   5.0861e-09 |
|    8 |       6 | Accept |      0.0715 |      8.9517 |      0.0693 |    0.070048 |    1.001e-09 |
|    9 |       6 | Accept |      0.0833 |      14.393 |      0.0693 |    0.069861 |    0.0014191 |
|   10 |       6 | Best   |      0.0594 |      25.565 |      0.0594 |    0.059458 |    6.767e-05 |
|   11 |       6 | Accept |      0.0651 |      20.074 |      0.0594 |    0.059463 |    8.078e-07 |
|   12 |       6 | Accept |      0.0695 |      14.495 |      0.0594 |    0.059473 |   1.0381e-07 |
|   13 |       6 | Accept |      0.1042 |      12.085 |      0.0594 |    0.059386 |    0.0039745 |
|   14 |       6 | Accept |       0.065 |      20.235 |      0.0594 |    0.059416 |   0.00031759 |
|   15 |       6 | Accept |      0.0705 |      10.929 |      0.0594 |    0.059416 |   3.6503e-08 |
|   16 |       6 | Accept |      0.0637 |      30.593 |      0.0594 |    0.059449 |   8.8718e-06 |
|   17 |       6 | Accept |       0.064 |      25.084 |      0.0594 |    0.059464 |   2.6286e-06 |
|   18 |       6 | Accept |      0.0605 |      31.964 |      0.0594 |    0.059387 |    2.459e-05 |
|   19 |       6 | Accept |      0.0606 |      23.149 |      0.0594 |    0.059312 |    0.0001464 |
|   20 |       6 | Accept |      0.0602 |      32.178 |      0.0594 |    0.059874 |   4.1437e-05 |
|================================================================================================|
| Iter | Active  | Eval   | Objective   | Objective   | BestSoFar   | BestSoFar   |       Lambda |
|      | workers | result |             | runtime     | (observed)  | (estim.)    |              |
|================================================================================================|
|   21 |       6 | Accept |      0.0594 |      27.686 |      0.0594 |    0.059453 |   8.0717e-05 |
|   22 |       6 | Accept |      0.0612 |      33.427 |      0.0594 |    0.059476 |   1.6878e-05 |
|   23 |       6 | Accept |      0.0673 |      17.444 |      0.0594 |    0.059475 |   3.1788e-07 |
|   24 |       6 | Best   |      0.0593 |      26.262 |      0.0593 |     0.05944 |   7.8179e-05 |
|   25 |       6 | Accept |       0.248 |      7.6345 |      0.0593 |    0.059409 |     0.095654 |
|   26 |       6 | Accept |      0.0598 |      28.536 |      0.0593 |    0.059465 |   5.0819e-05 |
|   27 |       6 | Accept |      0.0701 |      9.0545 |      0.0593 |    0.059466 |   1.8937e-09 |
|   28 |       5 | Accept |      0.7081 |      7.1176 |      0.0593 |    0.059372 |      0.30394 |
|   29 |       5 | Accept |      0.0676 |      11.782 |      0.0593 |    0.059372 |   6.1136e-08 |
|   30 |       3 | Accept |        0.06 |      23.556 |      0.0593 |    0.059422 |   0.00010144 |
|   31 |       3 | Accept |      0.0725 |      16.069 |      0.0593 |    0.059422 |   0.00069403 |
|   32 |       3 | Accept |      0.1928 |      8.3732 |      0.0593 |    0.059422 |     0.040402 |

__________________________________________________________
Optimization completed.
MaxObjectiveEvaluations of 30 reached.
Total function evaluations: 32
Total elapsed time: 97.7946 seconds.
Total objective function evaluation time: 545.3255

Best observed feasible point:
      Lambda  
    __________

    7.8179e-05

Observed objective function value = 0.0593
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Estimated objective function value = 0.059422
Function evaluation time = 26.2624

Best estimated feasible point (according to models):
      Lambda  
    __________

    7.8179e-05

Estimated objective function value = 0.059422
Estimated function evaluation time = 26.508

Loss2 =

    0.0682
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This time the classification loss is lower than that of the original data classifier.

Try RICA

Try the other feature extraction function, rica. Extract 200 features, create a classifier, and examine
its loss on the test data. Use more iterations for the rica function, because rica can perform better
with more iterations than sparsefilt uses.

Often prior to feature extraction, you "prewhiten" the input data as a data preprocessing step. The
prewhitening step includes two transforms, decorrelation and standardization, which make the
predictors have zero mean and identity covariance. rica supports only the standardization
transform. You use the Standardize name-value pair argument to make the predictors have zero
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mean and unit variance. Alternatively, you can transform images for contrast normalization
individually by applying the zscore transformation before calling sparsefilt or rica.

Mdl3 = rica(Xtrain,q,'IterationLimit',400,'Standardize',true);
NewX = transform(Mdl3,Xtrain);
TestX = transform(Mdl3,Xtest);
Cmdl = fitcecoc(NewX,LabelTrain,'Learners',t, ...
    'OptimizeHyperparameters',{'Lambda'}, ...
    'HyperparameterOptimizationOptions',options);
Loss3 = loss(Cmdl,TestX,LabelTest)

Warning: Solver LBFGS was not able to converge to a solution. 
Copying objective function to workers...
Done copying objective function to workers.
|================================================================================================|
| Iter | Active  | Eval   | Objective   | Objective   | BestSoFar   | BestSoFar   |       Lambda |
|      | workers | result |             | runtime     | (observed)  | (estim.)    |              |
|================================================================================================|
|    1 |       6 | Best   |      0.1179 |      12.012 |      0.1179 |      0.1179 |       8.4727 |
|    2 |       6 | Best   |       0.082 |      13.384 |       0.082 |    0.083897 |   4.3291e-09 |
|    3 |       6 | Best   |      0.0809 |      18.917 |      0.0809 |    0.080902 |    1.738e-05 |
|    4 |       6 | Accept |      0.0821 |      19.172 |      0.0809 |     0.08091 |   3.8101e-06 |
|    5 |       6 | Accept |      0.0921 |      14.445 |      0.0809 |    0.086349 |       2.3753 |
|    6 |       6 | Accept |      0.0809 |      13.393 |      0.0809 |    0.083836 |   1.3757e-08 |
|    7 |       6 | Best   |       0.076 |      28.075 |       0.076 |    0.081808 |   0.00027773 |
|    8 |       6 | Best   |      0.0758 |      29.686 |      0.0758 |    0.078829 |   0.00068195 |
|    9 |       6 | Accept |      0.0829 |      13.373 |      0.0758 |    0.078733 |   1.7543e-07 |
|   10 |       6 | Accept |      0.0826 |      14.031 |      0.0758 |    0.078512 |   1.0045e-09 |
|   11 |       6 | Accept |      0.0817 |      13.662 |      0.0758 |    0.078077 |   2.4568e-08 |
|   12 |       6 | Accept |      0.0799 |      19.311 |      0.0758 |    0.077658 |   1.4061e-05 |
|   13 |       6 | Best   |       0.065 |      25.148 |       0.065 |    0.064974 |     0.060326 |
|   14 |       6 | Accept |      0.0787 |      23.434 |       0.065 |    0.064947 |   0.00012407 |
|   15 |       6 | Accept |       0.072 |      19.167 |       0.065 |    0.064997 |      0.43899 |
|   16 |       6 | Accept |       0.073 |       28.39 |       0.065 |    0.065053 |    0.0023721 |
|   17 |       6 | Accept |      0.0787 |      29.887 |       0.065 |    0.064928 |   0.00042914 |
|   18 |       6 | Accept |      0.0662 |      26.374 |       0.065 |    0.064295 |    0.0077638 |
|   19 |       6 | Accept |      0.0652 |      24.937 |       0.065 |    0.064502 |     0.087389 |
|   20 |       6 | Accept |      0.0655 |      25.416 |       0.065 |    0.064762 |     0.072931 |
|================================================================================================|
| Iter | Active  | Eval   | Objective   | Objective   | BestSoFar   | BestSoFar   |       Lambda |
|      | workers | result |             | runtime     | (observed)  | (estim.)    |              |
|================================================================================================|
|   21 |       6 | Best   |      0.0645 |      25.529 |      0.0645 |    0.064691 |     0.059245 |
|   22 |       6 | Accept |       0.065 |      23.832 |      0.0645 |     0.06474 |     0.025521 |
|   23 |       6 | Accept |      0.0819 |      20.343 |      0.0645 |    0.064732 |   7.2593e-07 |
|   24 |       6 | Accept |      0.0664 |      23.732 |      0.0645 |    0.064718 |       0.1534 |
|   25 |       6 | Accept |      0.0651 |      24.796 |      0.0645 |    0.064693 |     0.038371 |
|   26 |       6 | Accept |      0.0651 |      25.449 |      0.0645 |    0.064613 |     0.014318 |
|   27 |       6 | Accept |      0.0652 |      25.092 |      0.0645 |    0.064713 |     0.037107 |
|   28 |       6 | Accept |      0.0645 |      24.404 |      0.0645 |      0.0647 |     0.042959 |
|   29 |       6 | Accept |      0.0649 |      24.704 |      0.0645 |    0.064729 |     0.042776 |
|   30 |       6 | Accept |      0.0652 |      24.341 |      0.0645 |    0.064786 |     0.035788 |

__________________________________________________________
Optimization completed.
MaxObjectiveEvaluations of 30 reached.
Total function evaluations: 30
Total elapsed time: 124.9755 seconds.
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Total objective function evaluation time: 654.4364

Best observed feasible point:
     Lambda 
    ________

    0.059245

Observed objective function value = 0.0645
Estimated objective function value = 0.064932
Function evaluation time = 25.5294

Best estimated feasible point (according to models):
     Lambda 
    ________

    0.042776

Estimated objective function value = 0.064786
Estimated function evaluation time = 24.7849

Loss3 =

    0.0749
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The rica-based classifier has somewhat higher test loss compared to the sparse filtering classifier.

Try More Features

The feature extraction functions have few tuning parameters. One parameter that can affect results is
the number of requested features. See how well classifiers work when based on 1000 features, rather
than the 200 features previously tried, or the 784 features in the original data. Using more features
than appear in the original data is called "overcomplete" learning. Conversely, using fewer features is
called "undercomplete" learning. Overcomplete learning can lead to increased classification accuracy,
while undercomplete learning can save memory and time.

q = 1000;
Mdl4 = sparsefilt(Xtrain,q,'IterationLimit',10);
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NewX = transform(Mdl4,Xtrain);
TestX = transform(Mdl4,Xtest);
Cmdl = fitcecoc(NewX,LabelTrain,'Learners',t, ...
    'OptimizeHyperparameters',{'Lambda'}, ...
    'HyperparameterOptimizationOptions',options);
Loss4 = loss(Cmdl,TestX,LabelTest)

Warning: Solver LBFGS was not able to converge to a solution. 
Copying objective function to workers...
Done copying objective function to workers.
|================================================================================================|
| Iter | Active  | Eval   | Objective   | Objective   | BestSoFar   | BestSoFar   |       Lambda |
|      | workers | result |             | runtime     | (observed)  | (estim.)    |              |
|================================================================================================|
|    1 |       6 | Best   |      0.5293 |      39.885 |      0.5293 |      0.5293 |      0.20333 |
|    2 |       6 | Accept |      0.8022 |      43.475 |      0.5293 |     0.66575 |      0.77337 |
|    3 |       6 | Best   |      0.0406 |      52.594 |      0.0406 |     0.11113 |   9.1082e-09 |
|    4 |       6 | Best   |      0.0403 |       54.73 |      0.0403 |    0.060037 |   2.3947e-09 |
|    5 |       6 | Accept |      0.0695 |      124.96 |      0.0403 |    0.040319 |     0.001361 |
|    6 |       6 | Accept |      0.0406 |      53.691 |      0.0403 |    0.040207 |   1.0005e-09 |
|    7 |       6 | Best   |      0.0388 |      178.69 |      0.0388 |    0.038811 |   1.4358e-06 |
|    8 |       6 | Accept |      0.0615 |      138.53 |      0.0388 |    0.038817 |   0.00088731 |
|    9 |       6 | Best   |      0.0385 |       61.81 |      0.0385 |    0.038557 |   7.4709e-08 |
|   10 |       6 | Accept |      0.0399 |      54.198 |      0.0385 |    0.038555 |   2.1909e-08 |
|   11 |       6 | Accept |      0.0402 |      234.55 |      0.0385 |    0.038639 |     0.000101 |
|   12 |       6 | Accept |      0.0431 |      198.09 |      0.0385 |    0.038636 |   0.00018896 |
|   13 |       6 | Accept |      0.0393 |      75.811 |      0.0385 |    0.039016 |   1.1597e-07 |
|   14 |       6 | Accept |      0.0387 |      61.281 |      0.0385 |    0.038908 |   7.0518e-08 |
|   15 |       6 | Accept |      0.0393 |      125.73 |      0.0385 |    0.038931 |   2.8429e-07 |
|   16 |       6 | Accept |      0.0397 |      89.804 |      0.0385 |    0.039106 |   1.4603e-07 |
|   17 |       6 | Accept |      0.0391 |      126.88 |      0.0385 |    0.039081 |   3.0065e-07 |
|   18 |       6 | Accept |      0.0398 |      56.157 |      0.0385 |    0.039123 |   4.1563e-08 |
|   19 |       6 | Accept |      0.0406 |       55.25 |      0.0385 |    0.039122 |   1.0014e-09 |
|   20 |       6 | Accept |      0.0385 |      272.92 |      0.0385 |    0.039127 |    9.568e-06 |
|================================================================================================|
| Iter | Active  | Eval   | Objective   | Objective   | BestSoFar   | BestSoFar   |       Lambda |
|      | workers | result |             | runtime     | (observed)  | (estim.)    |              |
|================================================================================================|
|   21 |       6 | Accept |      0.0412 |      55.191 |      0.0385 |    0.039124 |   3.3737e-09 |
|   22 |       6 | Accept |      0.0394 |      229.72 |      0.0385 |    0.039117 |   3.2757e-06 |
|   23 |       6 | Best   |      0.0379 |      295.55 |      0.0379 |    0.039116 |   2.8439e-05 |
|   24 |       6 | Accept |      0.0394 |      168.74 |      0.0379 |    0.039111 |    9.778e-07 |
|   25 |       6 | Accept |       0.039 |      281.91 |      0.0379 |    0.039112 |   8.0694e-06 |
|   26 |       6 | Accept |      0.8865 |      54.865 |      0.0379 |    0.038932 |       9.9885 |
|   27 |       6 | Accept |      0.0381 |       300.7 |      0.0379 |    0.037996 |   2.6027e-05 |
|   28 |       6 | Accept |      0.0406 |      54.611 |      0.0379 |    0.037996 |   1.6057e-09 |
|   29 |       6 | Accept |      0.1272 |      76.648 |      0.0379 |    0.037997 |     0.012507 |
|   30 |       6 | Accept |      0.0403 |      57.931 |      0.0379 |    0.037997 |   4.9907e-08 |

__________________________________________________________
Optimization completed.
MaxObjectiveEvaluations of 30 reached.
Total function evaluations: 30
Total elapsed time: 724.6036 seconds.
Total objective function evaluation time: 3674.8899

Best observed feasible point:
      Lambda  
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    __________

    2.8439e-05

Observed objective function value = 0.0379
Estimated objective function value = 0.03801
Function evaluation time = 295.5515

Best estimated feasible point (according to models):
      Lambda  
    __________

    2.6027e-05

Estimated objective function value = 0.037997
Estimated function evaluation time = 297.6756

Loss4 =

    0.0440
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The classifier based on overcomplete sparse filtering with 1000 extracted features has the lowest test
loss of any classifier yet tested.

Mdl5 = rica(Xtrain,q,'IterationLimit',400,'Standardize',true);
NewX = transform(Mdl5,Xtrain);
TestX = transform(Mdl5,Xtest);
Cmdl = fitcecoc(NewX,LabelTrain,'Learners',t, ...
    'OptimizeHyperparameters',{'Lambda'}, ...
    'HyperparameterOptimizationOptions',options);
Loss5 = loss(Cmdl,TestX,LabelTest)

Warning: Solver LBFGS was not able to converge to a solution. 
Copying objective function to workers...
Done copying objective function to workers.
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|================================================================================================|
| Iter | Active  | Eval   | Objective   | Objective   | BestSoFar   | BestSoFar   |       Lambda |
|      | workers | result |             | runtime     | (observed)  | (estim.)    |              |
|================================================================================================|
|    1 |       6 | Best   |      0.0764 |      46.206 |      0.0764 |      0.0764 |   8.4258e-09 |
|    2 |       6 | Accept |       0.077 |      141.95 |      0.0764 |      0.0767 |   6.9536e-06 |
|    3 |       6 | Accept |      0.0771 |      146.87 |      0.0764 |    0.076414 |   7.3378e-06 |
|    4 |       6 | Best   |      0.0709 |      182.51 |      0.0709 |      0.0709 |      0.48851 |
|    5 |       6 | Accept |      0.0764 |      46.923 |      0.0709 |    0.070903 |   5.0695e-09 |
|    6 |       6 | Best   |       0.068 |      294.89 |       0.068 |    0.068004 |    0.0029652 |
|    7 |       6 | Accept |       0.125 |      99.095 |       0.068 |    0.068001 |       9.9814 |
|    8 |       6 | Accept |      0.0693 |      321.66 |       0.068 |    0.067999 |    0.0015167 |
|    9 |       6 | Accept |      0.0882 |      138.03 |       0.068 |       0.068 |       1.8203 |
|   10 |       6 | Accept |      0.0753 |      285.07 |       0.068 |    0.067991 |   0.00042423 |
|   11 |       6 | Accept |      0.0764 |      47.704 |       0.068 |    0.067984 |   1.6326e-07 |
|   12 |       6 | Accept |      0.0763 |      46.514 |       0.068 |     0.06798 |   1.0048e-09 |
|   13 |       6 | Best   |      0.0643 |       252.2 |      0.0643 |      0.0643 |     0.095965 |
|   14 |       6 | Accept |      0.0766 |      168.37 |      0.0643 |      0.0643 |   9.1336e-07 |
|   15 |       6 | Accept |      0.0753 |      153.29 |      0.0643 |    0.064301 |   4.8641e-05 |
|   16 |       6 | Accept |      0.0662 |      256.65 |      0.0643 |    0.064298 |    0.0093576 |
|   17 |       6 | Best   |      0.0632 |       224.2 |      0.0632 |    0.063226 |     0.031314 |
|   18 |       6 | Accept |      0.0673 |      219.59 |      0.0632 |    0.063201 |      0.20528 |
|   19 |       6 | Accept |      0.0637 |      244.17 |      0.0632 |    0.063208 |     0.075001 |
|   20 |       6 | Accept |       0.064 |      234.85 |      0.0632 |     0.06321 |     0.081232 |
|================================================================================================|
| Iter | Active  | Eval   | Objective   | Objective   | BestSoFar   | BestSoFar   |       Lambda |
|      | workers | result |             | runtime     | (observed)  | (estim.)    |              |
|================================================================================================|
|   21 |       6 | Accept |      0.0646 |       242.2 |      0.0632 |    0.063315 |     0.078081 |
|   22 |       6 | Accept |      0.0633 |      217.97 |      0.0632 |    0.063233 |     0.039495 |
|   23 |       6 | Accept |      0.0643 |      224.22 |      0.0632 |    0.063496 |     0.052107 |
|   24 |       6 | Accept |      0.0761 |      45.102 |      0.0632 |    0.063509 |   4.3946e-08 |
|   25 |       6 | Accept |      0.0645 |      221.24 |      0.0632 |    0.063778 |     0.044455 |
|   26 |       6 | Accept |      0.0763 |      44.572 |      0.0632 |    0.063778 |   1.9139e-09 |
|   27 |       6 | Accept |      0.0639 |       216.9 |      0.0632 |    0.063791 |     0.041759 |
|   28 |       6 | Accept |      0.0766 |      45.609 |      0.0632 |     0.06379 |   2.0642e-08 |
|   29 |       6 | Accept |      0.0765 |      121.35 |      0.0632 |    0.063789 |   3.5882e-07 |
|   30 |       6 | Accept |      0.0636 |      215.47 |      0.0632 |    0.063755 |     0.038062 |

__________________________________________________________
Optimization completed.
MaxObjectiveEvaluations of 30 reached.
Total function evaluations: 30
Total elapsed time: 952.7987 seconds.
Total objective function evaluation time: 5145.3787

Best observed feasible point:
     Lambda 
    ________

    0.031314

Observed objective function value = 0.0632
Estimated objective function value = 0.063828
Function evaluation time = 224.2018

Best estimated feasible point (according to models):
     Lambda 
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    ________

    0.044455

Estimated objective function value = 0.063755
Estimated function evaluation time = 219.4845

Loss5 =

    0.0748
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The classifier based on RICA with 1000 extracted features has a similar test loss to the RICA
classifier based on 200 extracted features.

Optimize Hyperparameters by Using bayesopt

Feature extraction functions have these tuning parameters:

• Iteration limit
• Function, either rica or sparsefilt
• Parameter Lambda
• Number of learned features q
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The fitcecoc regularization parameter also affects the accuracy of the learned classifier. Include
that parameter in the list of hyperparameters as well.

To search among the available parameters effectively, try bayesopt. Use the following objective
function, which includes parameters passed from the workspace.

function objective = filterica(x,Xtrain,Xtest,LabelTrain,LabelTest,winit)

initW = winit(1:size(Xtrain,2),1:x.q);
if char(x.solver) == 'r'
    Mdl = rica(Xtrain,x.q,'Lambda',x.lambda,'IterationLimit',x.iterlim, ...
        'InitialTransformWeights',initW,'Standardize',true);
else
    Mdl = sparsefilt(Xtrain,x.q,'Lambda',x.lambda,'IterationLimit',x.iterlim, ...
        'InitialTransformWeights',initW);
end

NewX = transform(Mdl,Xtrain);
TestX = transform(Mdl,Xtest);
t = templateLinear('Lambda',x.lambdareg,'Solver','lbfgs');
Cmdl = fitcecoc(NewX,LabelTrain,'Learners',t);
objective = loss(Cmdl,TestX,LabelTest);

To remove sources of variation, fix an initial transform weight matrix.

W = randn(1e4,1e3);

Create hyperparameters for the objective function.

iterlim = optimizableVariable('iterlim',[5,500],'Type','integer');
lambda = optimizableVariable('lambda',[0,10]);
solver = optimizableVariable('solver',{'r','s'},'Type','categorical');
qvar = optimizableVariable('q',[10,1000],'Type','integer');
lambdareg = optimizableVariable('lambdareg',[1e-6,1],'Transform','log');
vars = [iterlim,lambda,solver,qvar,lambdareg];

Run the optimization without the warnings that occur when the internal optimizations do not run to
completion. Run for 60 iterations instead of the default 30 to give the optimization a better chance of
locating a good value.

warning('off','stats:classreg:learning:fsutils:Solver:LBFGSUnableToConverge');
results = bayesopt(@(x) filterica(x,Xtrain,Xtest,LabelTrain,LabelTest,W),vars, ...
    'UseParallel',true,'MaxObjectiveEvaluations',60);
warning('on','stats:classreg:learning:fsutils:Solver:LBFGSUnableToConverge');

Copying objective function to workers...
Done copying objective function to workers.
|============================================================================================================================================================|
| Iter | Active  | Eval   | Objective   | Objective   | BestSoFar   | BestSoFar   |      iterlim |       lambda |       solver |            q |    lambdareg |
|      | workers | result |             | runtime     | (observed)  | (estim.)    |              |              |              |              |              |
|============================================================================================================================================================|
|    1 |       6 | Best   |     0.16408 |      33.743 |     0.16408 |     0.16408 |          140 |       9.4661 |            s |           98 |    0.0007106 |
|    2 |       6 | Best   |    0.079213 |      51.975 |    0.079213 |     0.09064 |           10 |        9.466 |            r |          685 |     0.010462 |
|    3 |       6 | Best   |    0.074897 |      82.031 |    0.074897 |    0.074983 |           32 |       3.7554 |            r |          689 |      0.13737 |
|    4 |       6 | Accept |     0.07546 |      93.221 |    0.074897 |    0.075073 |          178 |       3.9741 |            r |          196 |       0.1829 |
|    5 |       6 | Accept |     0.13924 |      30.444 |    0.074897 |    0.074933 |          282 |      0.36123 |            r |           33 |      0.99029 |

 Feature Extraction Workflow

16-153



|    6 |       6 | Accept |    0.083964 |         133 |    0.074897 |    0.074933 |           58 |       9.7653 |            r |          685 |    0.0014623 |
|    7 |       6 | Accept |     0.08128 |      33.609 |    0.074897 |    0.074957 |            8 |       5.6351 |            r |          519 |    0.0065822 |
|    8 |       6 | Accept |    0.090751 |      203.96 |    0.074897 |    0.074913 |          131 |      0.73308 |            r |          577 |   2.1172e-05 |
|    9 |       6 | Accept |    0.090001 |      172.38 |    0.074897 |    0.074904 |          146 |       8.1899 |            r |          454 |   1.4417e-05 |
|   10 |       6 | Accept |    0.080191 |       316.8 |    0.074897 |    0.074897 |          164 |      0.48783 |            r |          727 |     0.004936 |
|   11 |       6 | Best   |    0.060472 |      40.777 |    0.060472 |    0.060731 |            5 |       2.3201 |            s |          530 |   1.1957e-06 |
|   12 |       6 | Accept |    0.079027 |      45.841 |    0.060472 |    0.060632 |            8 |      0.55541 |            r |          696 |     0.030914 |
|   13 |       6 | Accept |    0.074823 |      237.43 |    0.060472 |     0.06067 |          109 |       4.5352 |            r |          781 |      0.12274 |
|   14 |       6 | Accept |     0.84009 |      85.121 |    0.060472 |    0.060468 |          306 |      0.59533 |            s |          148 |      0.89675 |
|   15 |       6 | Accept |     0.15637 |      200.13 |    0.060472 |    0.060451 |           90 |       3.0192 |            s |          999 |    0.0043768 |
|   16 |       6 | Accept |     0.69006 |      14.273 |    0.060472 |     0.06047 |            6 |       9.4568 |            s |          407 |      0.13833 |
|   17 |       6 | Accept |    0.093035 |      205.83 |    0.060472 |    0.060469 |          263 |       2.3083 |            r |          308 |   1.0016e-06 |
|   18 |       6 | Accept |     0.18753 |      6.0238 |    0.060472 |    0.060527 |           36 |        9.806 |            s |           24 |   8.3653e-06 |
|   19 |       6 | Accept |       0.119 |      749.98 |    0.060472 |    0.060751 |          482 |      0.51927 |            s |          818 |   1.5416e-06 |
|   20 |       6 | Accept |    0.076414 |      751.21 |    0.060472 |    0.060754 |          387 |       9.9936 |            r |          784 |      0.26786 |
|============================================================================================================================================================|
| Iter | Active  | Eval   | Objective   | Objective   | BestSoFar   | BestSoFar   |      iterlim |       lambda |       solver |            q |    lambdareg |
|      | workers | result |             | runtime     | (observed)  | (estim.)    |              |              |              |              |              |
|============================================================================================================================================================|
|   21 |       6 | Accept |    0.099332 |      7.2298 |    0.060472 |    0.060828 |           20 |      0.78894 |            s |           49 |   1.0335e-06 |
|   22 |       6 | Accept |    0.090139 |      7.9815 |    0.060472 |    0.060858 |           11 |       3.2973 |            r |           88 |   2.7437e-06 |
|   23 |       6 | Accept |    0.076696 |      323.64 |    0.060472 |    0.060872 |          120 |       1.9199 |            r |          999 |       0.2537 |
|   24 |       6 | Accept |    0.098003 |      50.544 |    0.060472 |    0.060876 |          492 |       1.7197 |            r |           27 |   0.00020896 |
|   25 |       6 | Accept |     0.10383 |      56.568 |    0.060472 |     0.06101 |           11 |        5.256 |            s |          971 |   0.00054471 |
|   26 |       6 | Accept |     0.14405 |      30.426 |    0.060472 |    0.060797 |          477 |       5.5475 |            r |           12 |     0.022342 |
|   27 |       6 | Accept |     0.09046 |      53.398 |    0.060472 |    0.060815 |           13 |       2.1216 |            r |          986 |   1.1811e-06 |
|   28 |       6 | Best   |    0.051641 |      99.452 |    0.051641 |    0.051368 |           23 |       2.6976 |            s |          985 |   1.0558e-06 |
|   29 |       6 | Accept |     0.10016 |      6.4162 |    0.051641 |    0.051365 |            6 |       3.7223 |            r |           69 |   9.2926e-05 |
|   30 |       6 | Accept |     0.10943 |      40.676 |    0.051641 |    0.051391 |          488 |       5.2092 |            r |           19 |   2.4162e-05 |
|   31 |       6 | Accept |    0.086761 |      7.8419 |    0.051641 |    0.051393 |           24 |       6.5535 |            r |           42 |    0.0013244 |
|   32 |       6 | Best   |      0.0504 |      96.816 |      0.0504 |    0.050526 |           14 |        9.929 |            s |         1000 |   2.8809e-06 |
|   33 |       6 | Accept |    0.088789 |      81.158 |      0.0504 |    0.050525 |           14 |       1.0441 |            r |          927 |   0.00021061 |
|   34 |       6 | Accept |    0.083083 |      887.17 |      0.0504 |     0.05052 |          351 |       6.8834 |            r |          978 |    0.0026404 |
|   35 |       6 | Best   |    0.050023 |      99.493 |    0.050023 |    0.050372 |           19 |       9.9813 |            s |          899 |   1.0257e-06 |
|   36 |       6 | Accept |    0.053338 |      113.36 |    0.050023 |    0.050499 |            7 |       4.7855 |            s |          984 |   1.8611e-06 |
|   37 |       6 | Accept |    0.089024 |      70.047 |    0.050023 |      0.0505 |           15 |       8.8301 |            r |          984 |   6.0636e-06 |
|   38 |       6 | Accept |    0.052029 |      95.822 |    0.050023 |    0.050551 |            7 |        9.759 |            s |          996 |   3.7871e-06 |
|   39 |       6 | Accept |    0.085992 |      73.422 |    0.050023 |    0.050528 |            5 |       2.7837 |            r |          968 |     0.004483 |
|   40 |       6 | Accept |    0.091159 |      5.8348 |    0.050023 |     0.05052 |           15 |       8.7732 |            r |           37 |     0.084632 |
|============================================================================================================================================================|
| Iter | Active  | Eval   | Objective   | Objective   | BestSoFar   | BestSoFar   |      iterlim |       lambda |       solver |            q |    lambdareg |
|      | workers | result |             | runtime     | (observed)  | (estim.)    |              |              |              |              |              |
|============================================================================================================================================================|
|   41 |       6 | Best   |    0.046444 |      152.93 |    0.046444 |    0.047062 |           30 |       4.0843 |            s |          997 |    7.279e-06 |
|   42 |       6 | Accept |    0.052712 |      58.107 |    0.046444 |     0.04698 |           12 |      0.99592 |            s |          652 |   1.0258e-06 |
|   43 |       6 | Accept |    0.058005 |      91.928 |    0.046444 |    0.047263 |           10 |        5.511 |            s |         1000 |   2.4589e-05 |
|   44 |       6 | Accept |    0.055413 |      103.25 |    0.046444 |    0.047306 |            7 |       5.6791 |            s |          953 |   1.4656e-06 |
|   45 |       6 | Accept |    0.052517 |      96.201 |    0.046444 |    0.049604 |           10 |       5.9403 |            s |          996 |   1.0525e-05 |
|   46 |       6 | Accept |    0.089527 |      76.617 |    0.046444 |    0.046888 |           20 |       1.0744 |            r |          965 |      0.96766 |
|   47 |       6 | Accept |    0.050062 |      99.709 |    0.046444 |    0.046735 |           12 |       9.9236 |            s |          975 |   4.5916e-06 |
|   48 |       6 | Accept |     0.21166 |      90.117 |    0.046444 |    0.049716 |          495 |       1.1996 |            s |           86 |   0.00022338 |
|   49 |       6 | Accept |    0.054535 |        79.1 |    0.046444 |    0.046679 |            6 |      0.22929 |            s |          967 |   7.6974e-06 |
|   50 |       6 | Accept |     0.12385 |      964.74 |    0.046444 |    0.049963 |          474 |       4.7085 |            s |          991 |   8.6984e-05 |
|   51 |       6 | Accept |    0.052016 |      76.098 |    0.046444 |    0.049914 |           10 |       1.0798 |            s |          922 |    1.133e-06 |
|   52 |       6 | Accept |    0.048984 |      95.054 |    0.046444 |    0.049891 |           12 |         4.69 |            s |          976 |   1.0189e-06 |
|   53 |       6 | Accept |      0.1948 |      889.11 |    0.046444 |    0.047903 |          466 |       7.9582 |            s |          986 |    0.0012319 |
|   54 |       6 | Accept |     0.10652 |       5.076 |    0.046444 |    0.047961 |           10 |       5.9107 |            r |           40 |      0.52677 |
|   55 |       6 | Accept |    0.074194 |      319.41 |    0.046444 |     0.04981 |          130 |       2.6437 |            s |          997 |   7.8756e-06 |
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|   56 |       6 | Accept |      0.1014 |      45.184 |    0.046444 |    0.049828 |          480 |       6.1835 |            r |           24 |   2.0019e-06 |
|   57 |       6 | Accept |     0.33214 |      3.1996 |    0.046444 |    0.049785 |           12 |       7.4538 |            s |           13 |     0.016248 |
|   58 |       6 | Accept |    0.054348 |      96.616 |    0.046444 |    0.050832 |           12 |       2.8605 |            s |          987 |   4.7951e-06 |
|   59 |       6 | Accept |     0.71471 |      3.0555 |    0.046444 |    0.050852 |           10 |       9.8909 |            s |           24 |      0.21362 |
|   60 |       6 | Accept |    0.074353 |      67.118 |    0.046444 |     0.05084 |            8 |       5.5275 |            s |          986 |   8.9716e-05 |

__________________________________________________________
Optimization completed.
MaxObjectiveEvaluations of 60 reached.
Total function evaluations: 60
Total elapsed time: 1921.1117 seconds.
Total objective function evaluation time: 9107.7006

Best observed feasible point:
    iterlim    lambda    solver     q     lambdareg
    _______    ______    ______    ___    _________

      30       4.0843      s       997    7.279e-06

Observed objective function value = 0.046444
Estimated objective function value = 0.053743
Function evaluation time = 152.932

Best estimated feasible point (according to models):
    iterlim    lambda    solver     q     lambdareg
    _______    ______    ______    ___    _________

      10       1.0798      s       922    1.133e-06

Estimated objective function value = 0.05084
Estimated function evaluation time = 90.9315
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The resulting classifier does not have better (lower) loss than the classifier using sparsefilt for
1000 features, trained for 10 iterations.

View the filter coefficients for the best hyperparameters that bayesopt found. The resulting images
show the shapes of the extracted features. These shapes are recognizable as portions of handwritten
digits.

Xtbl = results.XAtMinObjective;
Q = Xtbl.q;
initW = W(1:size(Xtrain,2),1:Q);
if char(Xtbl.solver) == 'r'
    Mdl = rica(Xtrain,Q,'Lambda',Xtbl.lambda,'IterationLimit',Xtbl.iterlim, ...
        'InitialTransformWeights',initW,'Standardize',true);
else
    Mdl = sparsefilt(Xtrain,Q,'Lambda',Xtbl.lambda,'IterationLimit',Xtbl.iterlim, ...
        'InitialTransformWeights',initW);
end
Wts = Mdl.TransformWeights;
Wts = reshape(Wts,[28,28,Q]);
[dx,dy,~,~] = size(Wts);
for f = 1:Q
    Wvec = Wts(:,:,f);
    Wvec = Wvec(:);
    Wvec =(Wvec - min(Wvec))/(max(Wvec) - min(Wvec));
    Wts(:,:,f) = reshape(Wvec,dx,dy);
end
m   = ceil(sqrt(Q));

16 Multivariate Methods

16-156



n   = m;
img = zeros(m*dx,n*dy);
f   = 1;
for i = 1:m
    for j = 1:n
        if (f <= Q)
            img((i-1)*dx+1:i*dx,(j-1)*dy+1:j*dy,:) = Wts(:,:,f);
            f = f+1;
        end
    end
end
imshow(img);

Warning: Solver LBFGS was not able to converge to a solution. 
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Code for Reading MNIST Data

The code of the function that reads the data into the workspace is:

function [X,L] = processMNISTdata(imageFileName,labelFileName)

[fileID,errmsg] = fopen(imageFileName,'r','b');
if fileID < 0
    error(errmsg);
end
%%
% First read the magic number. This number is 2051 for image data, and
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% 2049 for label data
magicNum = fread(fileID,1,'int32',0,'b');
if magicNum == 2051
    fprintf('\nRead MNIST image data...\n')
end
%%
% Then read the number of images, number of rows, and number of columns
numImages = fread(fileID,1,'int32',0,'b');
fprintf('Number of images in the dataset: %6d ...\n',numImages);
numRows = fread(fileID,1,'int32',0,'b');
numCols = fread(fileID,1,'int32',0,'b');
fprintf('Each image is of %2d by %2d pixels...\n',numRows,numCols);
%%
% Read the image data
X = fread(fileID,inf,'unsigned char');
%%
% Reshape the data to array X
X = reshape(X,numCols,numRows,numImages);
X = permute(X,[2 1 3]);
%%
% Then flatten each image data into a 1 by (numRows*numCols) vector, and 
% store all the image data into a numImages by (numRows*numCols) array.
X = reshape(X,numRows*numCols,numImages)';
fprintf(['The image data is read to a matrix of dimensions: %6d by %4d...\n',...
    'End of reading image data.\n'],size(X,1),size(X,2));
%%
% Close the file
fclose(fileID);
%%
% Similarly, read the label data.
[fileID,errmsg] = fopen(labelFileName,'r','b');
if fileID < 0
    error(errmsg);
end
magicNum = fread(fileID,1,'int32',0,'b');
if magicNum == 2049
    fprintf('\nRead MNIST label data...\n')
end
numItems = fread(fileID,1,'int32',0,'b');
fprintf('Number of labels in the dataset: %6d ...\n',numItems);

L = fread(fileID,inf,'unsigned char');
fprintf(['The label data is read to a matrix of dimensions: %6d by %2d...\n',...
    'End of reading label data.\n'],size(L,1),size(L,2));
fclose(fileID);

References

[1] Yann LeCun (Courant Institute, NYU) and Corinna Cortes (Google Labs, New York) hold the
copyright of MNIST dataset, which is a derivative work from original NIST datasets. MNIST dataset
is made available under the terms of the Creative Commons Attribution-Share Alike 3.0 license,
https://creativecommons.org/licenses/by-sa/3.0/

See Also
rica | sparsefilt | ReconstructionICA | SparseFiltering
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Related Examples
• “Extract Mixed Signals” on page 16-161

More About
• “Feature Extraction” on page 16-127
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Extract Mixed Signals

This example shows how to use rica to disentangle mixed audio signals. You can use rica to
perform independent component analysis (ICA) when prewhitening is included as a preprocessing
step. The ICA model is

Here,  is a -by-1 vector of mixed signals,  is a -by-1 vector of offset values,  is a -by-  mixing
matrix, and  is a -by-1 vector of original signals. Suppose first that  is a square matrix. If you know

 and , you can recover an original signal  from the data :

Using the rica function, you can perform this recovery even without knowing the mixing matrix  or
the mean . Given a set of several observations , , ..., rica extracts the original signals ,

, ....

Load Data

Load a set of six audio files, which ship with MATLAB®. Trim each file to 10,000 samples.

files = {'chirp.mat'
        'gong.mat'
        'handel.mat'
        'laughter.mat'
        'splat.mat'
        'train.mat'};

S = zeros(10000,6);
for i = 1:6
    test     = load(files{i});
    y        = test.y(1:10000,1);
    S(:,i)   = y;
end

Mix Signals

Mix the signals together by using a random mixing matrix and add a random offset.

rng default % For reproducibility
mixdata = S*randn(6) + randn(1,6);

To listen to the original sounds, execute this code:

   for i = 1:6
       disp(i);
       sound(S(:,i));
       pause;
   end

To listen to the mixed sounds, execute this code:

   for i = 1:6
       disp(i);
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       sound(mixdata(:,i));
       pause;
   end

Plot the signals.

figure
for i = 1:6
    subplot(2,6,i)
    plot(S(:,i))
    title(['Sound ',num2str(i)])
    subplot(2,6,i+6)
    plot(mixdata(:,i))
    title(['Mix ',num2str(i)])
end

The original signals have clear structure. The mixed signals have much less structure.

Prewhiten Mixed Signals

To separate the signals effectively, "prewhiten" the signals by using the prewhiten function that
appears at the end of this example. This function transforms mixdata so that it has zero mean and
identity covariance.

The idea is the following. If  is a zero-mean source with statistically independent components, then
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Then the mean and covariance of  are

Suppose that you know  and . In practice, you would estimate these quantities from the sample
mean and covariance of the columns of . You can solve for  in terms of  by

The latter equation holds even when  is not a square invertible matrix.

Suppose that  is a -by-  matrix of left eigenvectors of the positive semidefinite matrix , and  is
the -by-  matrix of eigenvalues. Then

Then

There are many mixing matrices  that satisfy this last equation. If  is a -by-  orthonormal matrix,
then

Substituting into the equation for ,

 is the prewhitened data. rica computes the unknown matrix  under the assumption that the
components of  are as independent as possible.

mixdata = prewhiten(mixdata);

Separate All Signals

A super-Gaussian source has a sharp peak near zero, such as a histogram of sound 1 shows.

figure
histogram(S(:,1))
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Perform Reconstruction ICA while asking for six features. Indicate that each source is super-
Gaussian.

q = 6;
Mdl = rica(mixdata,q,'NonGaussianityIndicator',ones(6,1));

Extract the features. If the unmixing procedure is successful, the features are proportional to the
original signals.

unmixed = transform(Mdl,mixdata);

Compare Unmixed Signals To Original Signals

Plot the original and unmixed signals.

figure
for i = 1:6
    subplot(2,6,i)
    plot(S(:,i))
    title(['Sound ',num2str(i)])
    subplot(2,6,i+6)
    plot(unmixed(:,i))
    title(['Unmix ',num2str(i)])
end
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The order of the unmixed signals is different than the original order. Reorder the columns so that the
unmixed signals match the corresponding original signals. Scale the unmixed signals to have the
same norms as the corresponding original signals. (rica cannot identify the scale of the original
signals because any scale can lead to the same signal mixture.)

unmixed = unmixed(:,[2,5,4,6,3,1]);
for i = 1:6
    unmixed(:,i) = unmixed(:,i)/norm(unmixed(:,i))*norm(S(:,i));
end

Plot the original and unmixed signals.

figure
for i = 1:6
    subplot(2,6,i)
    plot(S(:,i))
    ylim([-1,1])
    title(['Sound ',num2str(i)])
    subplot(2,6,i+6)
    plot(unmixed(:,i))
    ylim([-1,1])
    title(['Unmix ',num2str(i)])
end
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The unmixed signals look similar to the original signals. To listen to the unmixed sounds, execute this
code.

   for i = 1:6
       disp(i);
       sound(unmixed(:,i));
       pause;
   end

Here is the code for the prewhiten function.

function Z = prewhiten(X)
% X = N-by-P matrix for N observations and P predictors
% Z = N-by-P prewhitened matrix

    % 1. Size of X.
    [N,P] = size(X);
    assert(N >= P);

    % 2. SVD of covariance of X. We could also use svd(X) to proceed but N
    % can be large and so we sacrifice some accuracy for speed.
    [U,Sig] = svd(cov(X));
    Sig     = diag(Sig);
    Sig     = Sig(:)';

    % 3. Figure out which values of Sig are non-zero.
    tol = eps(class(X));
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    idx = (Sig > max(Sig)*tol);
    assert(~all(idx == 0));

    % 4. Get the non-zero elements of Sig and corresponding columns of U.
    Sig = Sig(idx);
    U   = U(:,idx);

    % 5. Compute prewhitened data.
    mu = mean(X,1);
    Z = bsxfun(@minus,X,mu);
    Z = bsxfun(@times,Z*U,1./sqrt(Sig));
end

See Also
rica | sparsefilt | ReconstructionICA | SparseFiltering

Related Examples
• “Feature Extraction Workflow” on page 16-132

More About
• “Feature Extraction” on page 16-127
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Select Features for Classifying High-Dimensional Data

This example shows how to select features for classifying high-dimensional data. More specifically, it
shows how to perform sequential feature selection, which is one of the most popular feature selection
algorithms. It also shows how to use holdout and cross-validation to evaluate the performance of the
selected features.

Reducing the number of features (dimensionality) is important in statistical learning. For many data
sets with a large number of features and a limited number of observations, such as bioinformatics
data, usually many features are not useful for producing a desired learning result and the limited
observations may lead the learning algorithm to overfit to the noise. Reducing features can also save
storage and computation time and increase comprehensibility.

There are two main approaches to reducing features: feature selection and feature transformation.
Feature selection algorithms select a subset of features from the original feature set; feature
transformation methods transform data from the original high-dimensional feature space to a new
space with reduced dimensionality.

Loading the Data

Serum proteomic pattern diagnostics can be used to differentiate observations from patients with and
without disease. Profile patterns are generated using surface-enhanced laser desorption and
ionization (SELDI) protein mass spectrometry. These features are ion intensity levels at specific mass/
charge values.

This example uses the high-resolution ovarian cancer data set that was generated using the WCX2
protein array. After some pre-processing steps, similar to those shown in the Bioinformatics Toolbox™
example “Preprocessing Raw Mass Spectrometry Data” (Bioinformatics Toolbox), the data set has two
variables obs and grp. The obs variable consists 216 observations with 4000 features. Each element
in grp defines the group to which the corresponding row of obs belongs.

load ovariancancer; 
whos

  Name        Size                Bytes  Class     Attributes

  grp       216x1                 25056  cell                
  obs       216x4000            3456000  single              

Dividing Data Into a Training Set and a Test Set

Some of the functions used in this example call MATLAB® built-in random number generation
functions. To duplicate the exact results shown in this example, execute the command below to set
the random number generator to a known state. Otherwise, your results may differ.

rng(8000,'twister');

The performance on the training data (resubstitution performance) is not a good estimate for a
model's performance on an independent test set. Resubstitution performance will usually be over-
optimistic. To predict the performance of a selected model, you need to assess its performance on
another data set that was not used to build the model. Here, we use cvpartition to divide data into
a training set of size 160 and a test set of size 56. Both the training set and the test set have roughly
the same group proportions as in grp. We select features using the training data and judge the
performance of the selected features on the test data. This is often called holdout validation. Another
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simple and widely-used method for evaluating and selecting a model is cross-validation, which will be
illustrated later in this example.

holdoutCVP = cvpartition(grp,'holdout',56)

holdoutCVP = 
Hold-out cross validation partition
   NumObservations: 216
       NumTestSets: 1
         TrainSize: 160
          TestSize: 56

dataTrain = obs(holdoutCVP.training,:);
grpTrain = grp(holdoutCVP.training);

The Problem of Classifying Data Using All the Features

Without first reducing the number of features, some classification algorithms would fail on the data
set used in this example, since the number of features is much larger than the number of
observations. In this example, we use Quadratic Discriminant Analysis (QDA) as the classification
algorithm. If we apply QDA on the data using all the features, as shown in the following, we will get
an error because there are not enough samples in each group to estimate a covariance matrix.

try
   yhat = classify(obs(test(holdoutCVP),:), dataTrain, grpTrain,'quadratic');
catch ME
   display(ME.message);
end

The covariance matrix of each group in TRAINING must be positive definite.

Selecting Features Using a Simple Filter Approach

Our goal is to reduce the dimension of the data by finding a small set of important features which can
give good classification performance. Feature selection algorithms can be roughly grouped into two
categories: filter methods and wrapper methods. Filter methods rely on general characteristics of the
data to evaluate and to select the feature subsets without involving the chosen learning algorithm
(QDA in this example). Wrapper methods use the performance of the chosen learning algorithm to
evaluate each candidate feature subset. Wrapper methods search for features better fit for the chosen
learning algorithm, but they can be significantly slower than filter methods if the learning algorithm
takes a long time to run. The concepts of "filters" and "wrappers" are described in John G. Kohavi R.
(1997) "Wrappers for feature subset selection", Artificial Intelligence, Vol.97, No.1-2, pp.272-324.
This example shows one instance of a filter method and one instance of a wrapper method.

Filters are usually used as a pre-processing step since they are simple and fast. A widely-used filter
method for bioinformatics data is to apply a univariate criterion separately on each feature, assuming
that there is no interaction between features.

For example, we might apply the t-test on each feature and compare p-value (or the absolute values
of t-statistics) for each feature as a measure of how effective it is at separating groups.

dataTrainG1 = dataTrain(grp2idx(grpTrain)==1,:);
dataTrainG2 = dataTrain(grp2idx(grpTrain)==2,:);
[h,p,ci,stat] = ttest2(dataTrainG1,dataTrainG2,'Vartype','unequal');

In order to get a general idea of how well-separated the two groups are by each feature, we plot the
empirical cumulative distribution function (CDF) of the p-values:
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ecdf(p);
xlabel('P value'); 
ylabel('CDF value')

There are about 35% of features having p-values close to zero and over 50% of features having p-
values smaller than 0.05, meaning there are more than 2500 features among the original 5000
features that have strong discrimination power. One can sort these features according to their p-
values (or the absolute values of the t-statistic) and select some features from the sorted list.
However, it is usually difficult to decide how many features are needed unless one has some domain
knowledge or the maximum number of features that can be considered has been dictated in advance
based on outside constraints.

One quick way to decide the number of needed features is to plot the MCE (misclassification error,
i.e., the number of misclassified observations divided by the number of observations) on the test set
as a function of the number of features. Since there are only 160 observations in the training set, the
largest number of features for applying QDA is limited, otherwise, there may not be enough samples
in each group to estimate a covariance matrix. Actually, for the data used in this example, the holdout
partition and the sizes of two groups dictate that the largest allowable number of features for
applying QDA is about 70. Now we compute MCE for various numbers of features between 5 and 70
and show the plot of MCE as a function of the number of features. In order to reasonably estimate the
performance of the selected model, it is important to use the 160 training samples to fit the QDA
model and compute the MCE on the 56 test observations (blue circular marks in the following plot).
To illustrate why resubstitution error is not a good error estimate of the test error, we also show the
resubstitution MCE using red triangular marks.
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[~,featureIdxSortbyP] = sort(p,2); % sort the features
testMCE = zeros(1,14);
resubMCE = zeros(1,14);
nfs = 5:5:70;
classf = @(xtrain,ytrain,xtest,ytest) ...
             sum(~strcmp(ytest,classify(xtest,xtrain,ytrain,'quadratic')));
resubCVP = cvpartition(length(grp),'resubstitution')         

resubCVP = 
Resubstitution (no partition of data)
   NumObservations: 216
       NumTestSets: 1
         TrainSize: 216
          TestSize: 216

for i = 1:14
   fs = featureIdxSortbyP(1:nfs(i));
   testMCE(i) = crossval(classf,obs(:,fs),grp,'partition',holdoutCVP)...
       /holdoutCVP.TestSize;
   resubMCE(i) = crossval(classf,obs(:,fs),grp,'partition',resubCVP)/...
       resubCVP.TestSize;
end
 plot(nfs, testMCE,'o',nfs,resubMCE,'r^');
 xlabel('Number of Features');
 ylabel('MCE');
 legend({'MCE on the test set' 'Resubstitution MCE'},'location','NW');
 title('Simple Filter Feature Selection Method');
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For convenience, classf is defined as an anonymous function. It fits QDA on the given training set
and returns the number of misclassified samples for the given test set. If you were developing your
own classification algorithm, you might want to put it in a separate file, as follows:

%  function err = classf(xtrain,ytrain,xtest,ytest)
%       yfit = classify(xtest,xtrain,ytrain,'quadratic');
%        err = sum(~strcmp(ytest,yfit));

The resubstitution MCE is over-optimistic. It consistently decreases when more features are used and
drops to zero when more than 60 features are used. However, if the test error increases while the
resubstitution error still decreases, then overfitting may have occurred. This simple filter feature
selection method gets the smallest MCE on the test set when 15 features are used. The plot shows
overfitting begins to occur when 20 or more features are used. The smallest MCE on the test set is
12.5%:

testMCE(3)

ans = 0.1250

These are the first 15 features that achieve the minimum MCE:

featureIdxSortbyP(1:15)

ans = 1×15

        2814        2813        2721        2720        2452        2645        2644        2642        2650        2643        2731        2638        2730        2637        2398

Applying Sequential Feature Selection

The above feature selection algorithm does not consider interaction between features; besides,
features selected from the list based on their individual ranking may also contain redundant
information, so that not all the features are needed. For example, the linear correlation coefficient
between the first selected feature (column 2814) and the second selected feature (column 2813) is
almost 0.95.

corr(dataTrain(:,featureIdxSortbyP(1)),dataTrain(:,featureIdxSortbyP(2)))

ans = single
    0.9447

This kind of simple feature selection procedure is usually used as a pre-processing step since it is
fast. More advanced feature selection algorithms improve the performance. Sequential feature
selection is one of the most widely used techniques. It selects a subset of features by sequentially
adding (forward search) or removing (backward search) until certain stopping conditions are
satisfied.

In this example, we use forward sequential feature selection in a wrapper fashion to find important
features. More specifically, since the typical goal of classification is to minimize the MCE, the feature
selection procedure performs a sequential search using the MCE of the learning algorithm QDA on
each candidate feature subset as the performance indicator for that subset. The training set is used
to select the features and to fit the QDA model, and the test set is used to evaluate the performance
of the finally selected feature. During the feature selection procedure, to evaluate and to compare the
performance of the each candidate feature subset, we apply stratified 10-fold cross-validation to the
training set. We will illustrate later why applying cross-validation to the training set is important.

First we generate a stratified 10-fold partition for the training set:
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tenfoldCVP = cvpartition(grpTrain,'kfold',10)

tenfoldCVP = 
K-fold cross validation partition
   NumObservations: 160
       NumTestSets: 10
         TrainSize: 144  144  144  144  144  144  144  144  144  144
          TestSize: 16  16  16  16  16  16  16  16  16  16

Then we use the filter results from the previous section as a pre-processing step to select features.
For instance, we select 150 features here:

fs1 = featureIdxSortbyP(1:150);

We apply forward sequential feature selection on these 150 features. The function sequentialfs
provides a simple way (the default option) to decide how many features are needed. It stops when the
first local minimum of the cross-validation MCE is found.

 fsLocal = sequentialfs(classf,dataTrain(:,fs1),grpTrain,'cv',tenfoldCVP);

The selected features are the following:

fs1(fsLocal)

ans = 1×3

        2337         864        3288

To evaluate the performance of the selected model with these three features, we compute the MCE
on the 56 test samples.

testMCELocal = crossval(classf,obs(:,fs1(fsLocal)),grp,'partition',...
    holdoutCVP)/holdoutCVP.TestSize

testMCELocal = 0.0714

With only three features being selected, the MCE is only a little over half of the smallest MCE using
the simple filter feature selection method.

The algorithm may have stopped prematurely. Sometimes a smaller MCE is achievable by looking for
the minimum of the cross-validation MCE over a reasonable range of number of features. For
instance, we draw the plot of the cross-validation MCE as a function of the number of features for up
to 50 features.

[fsCVfor50,historyCV] = sequentialfs(classf,dataTrain(:,fs1),grpTrain,...
    'cv',tenfoldCVP,'Nf',50);
plot(historyCV.Crit,'o');
xlabel('Number of Features');
ylabel('CV MCE');
title('Forward Sequential Feature Selection with cross-validation');
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The cross-validation MCE reaches the minimum value when 10 features are used and this curve stays
flat over the range from 10 features to 35 features. Also, the curve goes up when more than 35
features are used, which means overfitting occurs there.

It is usually preferable to have fewer features, so here we pick 10 features:

fsCVfor10 = fs1(historyCV.In(10,:))

fsCVfor10 = 1×10

        2814        2721        2720        2452        2650        2731        2337        2658         864        3288

To show these 10 features in the order in which they are selected in the sequential forward
procedure, we find the row in which they first become true in the historyCV output:

[orderlist,ignore] = find( [historyCV.In(1,:); diff(historyCV.In(1:10,:) )]' );
fs1(orderlist)

ans = 1×10

        2337         864        3288        2721        2814        2658        2452        2731        2650        2720

To evaluate these 10 features, we compute their MCE for QDA on the test set. We get the smallest
MCE value so far:
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testMCECVfor10 = crossval(classf,obs(:,fsCVfor10),grp,'partition',...
    holdoutCVP)/holdoutCVP.TestSize

testMCECVfor10 = 0.0357

It is interesting to look at the plot of resubstitution MCE values on the training set (i.e., without
performing cross-validation during the feature selection procedure) as a function of the number of
features:

[fsResubfor50,historyResub] = sequentialfs(classf,dataTrain(:,fs1),...
     grpTrain,'cv','resubstitution','Nf',50);
plot(1:50, historyCV.Crit,'bo',1:50, historyResub.Crit,'r^');
xlabel('Number of Features');
ylabel('MCE');
legend({'10-fold CV MCE' 'Resubstitution MCE'},'location','NE');

Again, the resubstitution MCE values are overly optimistic here. Most are smaller than the cross-
validation MCE values, and the resubstitution MCE goes to zero when 16 features are used. We can
compute the MCE value of these 16 features on the test set to see their real performance:

fsResubfor16 = fs1(historyResub.In(16,:));
testMCEResubfor16 = crossval(classf,obs(:,fsResubfor16),grp,'partition',...
    holdoutCVP)/holdoutCVP.TestSize

testMCEResubfor16 = 0.0714

testMCEResubfor16, the performance of these 16 features (chosen by resubstitution during the
feature selection procedure) on the test set, is about double that for testMCECVfor10, the
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performance of the 10 features (chosen by 10-fold cross-validation during the feature selection
procedure) on the test set. It again indicates that the resubstitution error generally is not a good
performance estimate for evaluating and selecting features. We may want to avoid using
resubstitution error, not only during the final evaluation step, but also during the feature selection
procedure.

See Also
sequentialfs

More About
• “Introduction to Feature Selection” on page 16-47
• “Sequential Feature Selection” on page 16-59
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Perform Factor Analysis on Exam Grades

This example shows how to perform factor analysis using Statistics and Machine Learning Toolbox™.

Multivariate data often include a large number of measured variables, and sometimes those variables
"overlap" in the sense that groups of them may be dependent. For example, in a decathlon, each
athlete competes in 10 events, but several of them can be thought of as "speed" events, while others
can be thought of as "strength" events, etc. Thus, a competitor's 10 event scores might be thought of
as largely dependent on a smaller set of 3 or 4 types of athletic ability.

Factor analysis is a way to fit a model to multivariate data to estimate just this sort of
interdependence.

The Factor Analysis Model

In the factor analysis model, the measured variables depend on a smaller number of unobserved
(latent) factors. Because each factor may affect several variables in common, they are known as
"common factors". Each variable is assumed to depend on a linear combination of the common
factors, and the coefficients are known as loadings. Each measured variable also includes a
component due to independent random variability, known as "specific variance" because it is specific
to one variable.

Specifically, factor analysis assumes that the covariance matrix of your data is of the form

  SigmaX = Lambda*Lambda' + Psi

where Lambda is the matrix of loadings, and the elements of the diagonal matrix Psi are the specific
variances. The function factoran fits the factor analysis model using maximum likelihood.

Example: Finding Common Factors Affecting Exam Grades

120 students have each taken five exams, the first two covering mathematics, the next two on
literature, and a comprehensive fifth exam. It seems reasonable that the five grades for a given
student ought to be related. Some students are good at both subjects, some are good at only one, etc.
The goal of this analysis is to determine if there is quantitative evidence that the students' grades on
the five different exams are largely determined by only two types of ability.

First load the data, then call factoran and request a model fit with a single common factor.

load examgrades
[Loadings1,specVar1,T,stats] = factoran(grades,1);

factoran's first two return arguments are the estimated loadings and the estimated specific
variances. From the estimated loadings, you can see that the one common factor in this model puts
large positive weight on all five variables, but most weight on the fifth, comprehensive exam.

Loadings1

Loadings1 =

    0.6021
    0.6686
    0.7704
    0.7204
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    0.9153

One interpretation of this fit is that a student might be thought of in terms of their "overall ability",
for which the comprehensive exam would be the best available measurement. A student's grade on a
more subject-specific test would depend on their overall ability, but also on whether or not the
student was strong in that area. This would explain the lower loadings for the first four exams.

From the estimated specific variances, you can see that the model indicates that a particular
student's grade on a particular test varies quite a lot beyond the variation due to the common factor.

specVar1

specVar1 =

    0.6375
    0.5530
    0.4065
    0.4810
    0.1623

A specific variance of 1 would indicate that there is no common factor component in that variable,
while a specific variance of 0 would indicate that the variable is entirely determined by common
factors. These exam grades seem to fall somewhere in between, although there is the least amount of
specific variation for the comprehensive exam. This is consistent with the interpretation given above
of the single common factor in this model.

The p-value returned in the stats structure rejects the null hypothesis of a single common factor, so
we refit the model.

stats.p

ans =

    0.0332

Next, use two common factors to try and better explain the exam scores. With more than one factor,
you could rotate the estimated loadings to try and make their interpretation simpler, but for the
moment, ask for an unrotated solution.

[Loadings2,specVar2,T,stats] = factoran(grades,2,'rotate','none');

From the estimated loadings, you can see that the first unrotated factor puts approximately equal
weight on all five variables, while the second factor contrasts the first two variables with the second
two.

Loadings2

Loadings2 =

    0.6289    0.3485
    0.6992    0.3287
    0.7785   -0.2069
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    0.7246   -0.2070
    0.8963   -0.0473

You might interpret these factors as "overall ability" and "quantitative vs. qualitative ability",
extending the interpretation of the one-factor fit made earlier.

A plot of the variables, where each loading is a coordinate along the corresponding factor's axis,
illustrates this interpretation graphically. The first two exams have a positive loading on the second
factor, suggesting that they depend on "quantitative" ability, while the second two exams apparently
depend on the opposite. The fifth exam has only a small loading on this second factor.

biplot(Loadings2, 'varlabels',num2str((1:5)'));
title('Unrotated Solution');
xlabel('Latent Factor 1'); ylabel('Latent Factor 2');

From the estimated specific variances, you can see that this two-factor model indicates somewhat
less variation beyond that due to the common factors than the one-factor model did. Again, the least
amount of specific variance occurs for the fifth exam.

specVar2

specVar2 =

    0.4829
    0.4031
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    0.3512
    0.4321
    0.1944

The stats structure shows that there is only a single degree of freedom in this two-factor model.

stats.dfe

ans =

     1

With only five measured variables, you cannot fit a model with more than two factors.

Factor Analysis from a Covariance/Correlation Matrix

You made the fits above using the raw test scores, but sometimes you might only have a sample
covariance matrix that summarizes your data. factoran accepts either a covariance or correlation
matrix, using the 'Xtype' parameter, and gives an identical result to that from the raw data.

Sigma = cov(grades);
[LoadingsCov,specVarCov] = ...
        factoran(Sigma,2,'Xtype','cov','rotate','none');
LoadingsCov

LoadingsCov =

    0.6289    0.3485
    0.6992    0.3287
    0.7785   -0.2069
    0.7246   -0.2070
    0.8963   -0.0473

Factor Rotation

Sometimes, the estimated loadings from a factor analysis model can give a large weight on several
factors for some of the measured variables, making it difficult to interpret what those factors
represent. The goal of factor rotation is to find a solution for which each variable has only a small
number of large loadings, i.e., is affected by a small number of factors, preferably only one.

If you think of each row of the loadings matrix as coordinates of a point in M-dimensional space, then
each factor corresponds to a coordinate axis. Factor rotation is equivalent to rotating those axes, and
computing new loadings in the rotated coordinate system. There are various ways to do this. Some
methods leave the axes orthogonal, while others are oblique methods that change the angles between
them.

Varimax is one common criterion for orthogonal rotation. factoran performs varimax rotation by
default, so you do not need to ask for it explicitly.

[LoadingsVM,specVarVM,rotationVM] = factoran(grades,2);

A quick check of the varimax rotation matrix returned by factoran confirms that it is orthogonal.
Varimax, in effect, rotates the factor axes in the figure above, but keeps them at right angles.
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rotationVM'*rotationVM

ans =

    1.0000    0.0000
    0.0000    1.0000

A biplot of the five variables on the rotated factors shows the effect of varimax rotation.

biplot(LoadingsVM, 'varlabels',num2str((1:5)'));
title('Varimax Solution');
xlabel('Latent Factor 1'); ylabel('Latent Factor 2');

Varimax has rigidly rotated the axes in an attempt to make all of the loadings close to zero or one.
The first two exams are closest to the second factor axis, while the third and fourth are closest to the
first axis and the fifth exam is at an intermediate position. These two rotated factors can probably be
best interpreted as "quantitative ability" and "qualitative ability". However, because none of the
variables are near a factor axis, the biplot shows that orthogonal rotation has not succeeded in
providing a simple set of factors.

Because the orthogonal rotation was not entirely satisfactory, you can try using promax, a common
oblique rotation criterion.

[LoadingsPM,specVarPM,rotationPM] = ...
                factoran(grades,2,'rotate','promax');
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A check on the promax rotation matrix returned by factoran shows that it is not orthogonal.
Promax, in effect, rotates the factor axes in the first figure separately, allowing them to have an
oblique angle between them.

rotationPM'*rotationPM

ans =

    1.9405   -1.3509
   -1.3509    1.9405

A biplot of the variables on the new rotated factors shows the effect of promax rotation.

biplot(LoadingsPM, 'varlabels',num2str((1:5)'));
title('Promax Solution');
xlabel('Latent Factor 1'); ylabel('Latent Factor 2');

Promax has performed a non-rigid rotation of the axes, and has done a much better job than varimax
at creating a "simple structure". The first two exams are close to the second factor axis, while the
third and fourth are close to the first axis, and the fifth exam is in an intermediate position. This
makes an interpretation of these rotated factors as "quantitative ability" and "qualitative ability" more
precise.

Instead of plotting the variables on the different sets of rotated axes, it's possible to overlay the
rotated axes on an unrotated biplot to get a better idea of how the rotated and unrotated solutions
are related.
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h1 = biplot(Loadings2, 'varlabels',num2str((1:5)'));
xlabel('Latent Factor 1'); ylabel('Latent Factor 2');
hold on
invRotVM = inv(rotationVM);
h2 = line([-invRotVM(1,1) invRotVM(1,1) NaN -invRotVM(2,1) invRotVM(2,1)], ...
          [-invRotVM(1,2) invRotVM(1,2) NaN -invRotVM(2,2) invRotVM(2,2)],'Color',[1 0 0]);
invRotPM = inv(rotationPM);
h3 = line([-invRotPM(1,1) invRotPM(1,1) NaN -invRotPM(2,1) invRotPM(2,1)], ...
          [-invRotPM(1,2) invRotPM(1,2) NaN -invRotPM(2,2) invRotPM(2,2)],'Color',[0 1 0]);
hold off
axis square
lgndHandles = [h1(1) h1(end) h2 h3];
lgndLabels = {'Variables','Unrotated Axes','Varimax Rotated Axes','Promax Rotated Axes'};
legend(lgndHandles, lgndLabels, 'location','northeast', 'fontname','arial narrow');

Predicting Factor Scores

Sometimes, it is useful to be able to classify an observation based on its factor scores. For example, if
you accepted the two-factor model and the interpretation of the promax rotated factors, you might
want to predict how well a student would do on a mathematics exam in the future.

Since the data are the raw exam grades, and not just their covariance matrix, we can have factoran
return predictions of the value of each of the two rotated common factors for each student.

[Loadings,specVar,rotation,stats,preds] = ...
              factoran(grades,2,'rotate','promax','maxit',200);
biplot(Loadings, 'varlabels',num2str((1:5)'), 'Scores',preds);
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title('Predicted Factor Scores for Promax Solution');
xlabel('Ability In Literature'); ylabel('Ability In Mathematics');

This plot shows the model fit in terms of both the original variables (vectors) and the predicted scores
for each observation (points). The fit suggests that, while some students do well in one subject but
not the other (second and fourth quadrants), most students do either well or poorly in both
mathematics and literature (first and third quadrants). You can confirm this by looking at the
estimated correlation matrix of the two factors.

inv(rotation'*rotation)

ans =

    1.0000    0.6962
    0.6962    1.0000

A Comparison of Factor Analysis and Principal Components Analysis

There is a good deal of overlap in terminology and goals between Principal Components Analysis
(PCA) and Factor Analysis (FA). Much of the literature on the two methods does not distinguish
between them, and some algorithms for fitting the FA model involve PCA. Both are dimension-
reduction techniques, in the sense that they can be used to replace a large set of observed variables
with a smaller set of new variables. They also often give similar results. However, the two methods
are different in their goals and in their underlying models. Roughly speaking, you should use PCA
when you simply need to summarize or approximate your data using fewer dimensions (to visualize it,
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for example), and you should use FA when you need an explanatory model for the correlations among
your data.
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Classical Multidimensional Scaling Applied to Nonspatial
Distances

This example shows how to perform classical multidimensional scaling using the cmdscale function
in Statistics and Machine Learning Toolbox™. Classical multidimensional scaling, also known as
Principal Coordinates Analysis, takes a matrix of interpoint distances, and creates a configuration of
points. Ideally, those points can be constructed in two or three dimensions, and the Euclidean
distances between them approximately reproduce the original distance matrix. Thus, a scatter plot of
the points provides a visual representation of the original distances.

This example illustrates applications of multidimensional scaling to dissimilarity measures other than
spatial distance, and shows how to construct a configuration of points to visualize those
dissimilarities.

This example describes classical multidimensional scaling. The mdscale function performs
nonclassical MDS, which is sometimes more flexible than the classical method. Nonclassical MDS is
described in the “Nonclassical Multidimensional Scaling” on page 16-194 example.

Reconstructing Spatial Locations from Nonspatial Distances

Suppose you have measured the genetic "distance", or dissimilarity, between a number of local
subpopulations of a single species of animal. You also know their geographic locations, and would like
to know how closely their genetic and spatial distances correspond. If they do, that is evidence that
interbreeding between the subpopulations is affected by their geographic locations.

Below are the spatial locations of the subpopulations, and the upper-triangle of the matrix of genetic
distances, in the same vector format produced by pdist.

X = [39.1     18.7;
     40.7     21.2;
     41.5     21.5;
     39.2     21.8;
     38.7     20.6;
     41.7     20.1;
     40.1     22.1;
     39.2     21.6];

D = [4.69 6.79 3.50 3.11 4.46 5.57 3.00 ...
          2.10 2.27 2.65 2.36 1.99 1.74 ...
               3.78 4.53 2.83 2.44 3.79 ...
                    1.98 4.35 2.07 0.53 ...
                         3.80 3.31 1.47 ...
                              4.35 3.82 ...
                                   2.57];

Although this vector format for D is space-efficient, it's often easier to see the distance relationships if
you reformat the distances to a square matrix.

squareform(D)

ans = 8×8

         0    4.6900    6.7900    3.5000    3.1100    4.4600    5.5700    3.0000
    4.6900         0    2.1000    2.2700    2.6500    2.3600    1.9900    1.7400
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    6.7900    2.1000         0    3.7800    4.5300    2.8300    2.4400    3.7900
    3.5000    2.2700    3.7800         0    1.9800    4.3500    2.0700    0.5300
    3.1100    2.6500    4.5300    1.9800         0    3.8000    3.3100    1.4700
    4.4600    2.3600    2.8300    4.3500    3.8000         0    4.3500    3.8200
    5.5700    1.9900    2.4400    2.0700    3.3100    4.3500         0    2.5700
    3.0000    1.7400    3.7900    0.5300    1.4700    3.8200    2.5700         0

cmdscale recognizes either of the two formats.

[Y,eigvals] = cmdscale(D);

cmdscale's first output, Y, is a matrix of points created to have interpoint distances that reproduce
the distances in D. With eight species, the points (rows of Y) could have as many as eight dimensions
(columns of Y). Visualization of the genetic distances depends on using points in only two or three
dimensions. Fortunately, cmdscale's second output, eigvals, is a set of sorted eigenvalues whose
relative magnitudes indicate how many dimensions you can safely use. If only the first two or three
eigenvalues are large, then only those coordinates of the points in Y are needed to accurately
reproduce D. If more than three eigenvalues are large, then it is not possible to find a good low-
dimensional configuration of points, and it will not be easy to visualize the distances.

[eigvals eigvals/max(abs(eigvals))]

ans = 8×2

   29.0371    1.0000
   13.5746    0.4675
    2.0987    0.0723
    0.7418    0.0255
    0.3403    0.0117
    0.0000    0.0000
   -0.4542   -0.0156
   -3.1755   -0.1094

Notice that there are only two large positive eigenvalues, so the configuration of points created by
cmdscale can be plotted in two dimensions. The two negative eigenvalues indicate that the genetic
distances are not Euclidean, that is, no configuration of points can reproduce D exactly. Fortunately,
the negative eigenvalues are small relative to the largest positive ones, and the reduction to the first
two columns of Y should be fairly accurate. You can check this by looking at the error in the distances
between the two-dimensional configuration and the original distances.

maxrelerr = max(abs(D - pdist(Y(:,1:2)))) / max(D)

maxrelerr = 0.1335

Now you can compare the "genetic locations" created by cmdscale to the actual geographic
locations. Because the configuration returned by cmdscale is unique only up to translation, rotation,
and reflection, the genetic locations probably won't match the geographic locations. They will also
have the wrong scale. But you can use the procrustes command to match up the two sets of points
best in the least squares sense.

[D,Z] = procrustes(X,Y(:,1:2));
plot(X(:,1),X(:,2),'bo',Z(:,1),Z(:,2),'rd');
labels = num2str((1:8)');
text(X(:,1)+.05,X(:,2),labels,'Color','b');
text(Z(:,1)+.05,Z(:,2),labels,'Color','r');
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xlabel('Distance East of Reference Point (Km)');
ylabel('Distance North of Reference Point (Km)');
legend({'Spatial Locations','Constructed Genetic Locations'},'Location','SE');

This plot shows the best match of the reconstructed points in the same coordinates as the actual
spatial locations. Apparently, the genetic distances do have a close link to the spatial distances
between the subpopulations.

Visualizing a Correlation Matrix Using Multidimensional Scaling

Suppose you have computed the following correlation matrix for a set of 10 variables. It's obvious
that these variables are all positively correlated, and that there are some very strong pairwise
correlations. But with this many variables, it's not easy to get a good feel for the relationships among
all 10.

Rho = ...
  [1       0.3906  0.3746  0.3318  0.4141  0.4279  0.4216  0.4703  0.4362  0.2066;
   0.3906  1       0.3200  0.3629  0.2211  0.9520  0.9811  0.9052  0.4567  0     ;
   0.3746  0.3200  1       0.8993  0.7999  0.3589  0.3460  0.3333  0.8639  0.6527;
   0.3318  0.3629  0.8993  1       0.7125  0.3959  0.3663  0.3394  0.8719  0.5726;
   0.4141  0.2211  0.7999  0.7125  1       0.2374  0.2079  0.2335  0.7050  0.7469;
   0.4279  0.9520  0.3589  0.3959  0.2374  1       0.9657  0.9363  0.4791  0.0254;
   0.4216  0.9811  0.3460  0.3663  0.2079  0.9657  1       0.9123  0.4554  0.0011;
   0.4703  0.9052  0.3333  0.3394  0.2335  0.9363  0.9123  1       0.4418  0.0099;
   0.4362  0.4567  0.8639  0.8719  0.7050  0.4791  0.4554  0.4418  1       0.5272;
   0.2066  0       0.6527  0.5726  0.7469  0.0254  0.0011  0.0099  0.5272  1     ];
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Multidimensional scaling is often thought of as a way to (re)construct points using only pairwise
distances. But it can also be used with dissimilarity measures that are more general than distance, to
spatially visualize things that are not "points in space" in the usual sense. The variables described by
Rho are an example, and you can use cmdscale to plot a visual representation of their
interdependencies.

Correlation actually measures similarity, but it is easy to transform it to a measure of dissimilarity.
Because all the correlations here are positive, you can simply use

D = 1 - Rho;

although other choices might also make sense. If Rho contained negative correlations, you would
have to decide whether, for example, a correlation of -1 indicated more or less of a dissimilarity than
a correlation of 0, and choose a transformation accordingly.

It's important to decide whether visualization of the information in the correlation matrix is even
possible, that is, whether the number of dimensions can be reduced from ten down to two or three.
The eigenvalues returned by cmdscale give you a way to decide. In this case, a scree plot of those
eigenvalues indicates that two dimensions are enough to represent the variables. (Notice that some
of the eigenvalues in the plot below are negative, but small relative to the first two.)

[Y,eigvals] = cmdscale(D);
plot(1:length(eigvals),eigvals,'bo-');
line([1,length(eigvals)],[0 0],'LineStyle',':','XLimInclude','off',...
     'Color',[.7 .7 .7])
axis([1,length(eigvals),min(eigvals),max(eigvals)*1.1]);
xlabel('Eigenvalue number');
ylabel('Eigenvalue');
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In a more independent set of variables, more dimensions might be needed. If more than three
variables are needed, the visualization isn't all that useful.

A 2-D plot of the configuration returned by cmdscale indicates that there are two subsets of
variables that are most closely correlated among themselves, plus a single variable that is more or
less on its own. One of the clusters is tight, while the other is relatively loose.

labels = {' 1',' 2',' 3',' 4',' 5',' 6',' 7',' 8',' 9',' 10'};
plot(Y(:,1),Y(:,2),'bx');
axis(max(max(abs(Y))) * [-1.1,1.1,-1.1,1.1]); axis('square');
text(Y(:,1),Y(:,2),labels,'HorizontalAlignment','left');
line([-1,1],[0 0],'XLimInclude','off','Color',[.7 .7 .7])
line([0 0],[-1,1],'YLimInclude','off','Color',[.7 .7 .7])

16 Multivariate Methods

16-190



On the other hand, the results from cmdscale for the following correlation matrix indicates a much
different structure: there are no real groups among the variables. Rather, there is a kind of "circular"
dependency, where each variable has a pair of "closest neighbors" but is less well correlated with the
remaining variables.

Rho = ...
  [1       0.7946  0.1760  0.2560  0.7818  0.4496  0.2732  0.3995  0.5305  0.2827;
   0.7946  1       0.1626  0.4227  0.5674  0.6183  0.4004  0.2283  0.3495  0.2777;
   0.1760  0.1626  1       0.2644  0.1864  0.1859  0.4330  0.4656  0.3947  0.8057;
   0.2560  0.4227  0.2644  1       0.1017  0.7426  0.8340  0       0.0499  0.4853;
   0.7818  0.5674  0.1864  0.1017  1       0.2733  0.1484  0.4890  0.6138  0.2025;
   0.4496  0.6183  0.1859  0.7426  0.2733  1       0.6303  0.0648  0.1035  0.3242;
   0.2732  0.4004  0.4330  0.8340  0.1484  0.6303  1       0.1444  0.1357  0.6291;
   0.3995  0.2283  0.4656  0       0.4890  0.0648  0.1444  1       0.8599  0.3948;
   0.5305  0.3495  0.3947  0.0499  0.6138  0.1035  0.1357  0.8599  1       0.3100;
   0.2827  0.2777  0.8057  0.4853  0.2025  0.3242  0.6291  0.3948  0.3100  1     ];

[Y,eigvals] = cmdscale(1-Rho);
[eigvals eigvals./max(abs(eigvals))]

ans = 10×2

    1.1416    1.0000
    0.7742    0.6782
    0.0335    0.0294
    0.0280    0.0245
    0.0239    0.0210
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    0.0075    0.0066
    0.0046    0.0040
   -0.0000   -0.0000
   -0.0151   -0.0132
   -0.0472   -0.0413

plot(Y(:,1),Y(:,2),'bx');
axis(max(max(abs(Y))) * [-1.1,1.1,-1.1,1.1]); axis('square');
text(Y(:,1),Y(:,2),labels,'HorizontalAlignment','left');
line([0 0],[-1,1],'XLimInclude','off','Color',[.7 .7 .7])
line([-1,1],[0 0],'YLimInclude','off','Color',[.7 .7 .7])

A Comparison of Principal Components Analysis and Classical Multidimensional Scaling

Multidimensional scaling is most often used to visualize data when only their distances or
dissimilarities are available. However, when the original data are available, multidimensional scaling
can also be used as a dimension reduction method, by reducing the data to a distance matrix,
creating a new configuration of points using cmdscale, and retaining only the first few dimensions of
those points. This application of multidimensional scaling is much like Principal Components Analysis,
and in fact, when you call cmdscale using the Euclidean distances between the points, the results
are identical to PCA, up to a change in sign.

n = 10; m = 5;
X = randn(n,m);
D = pdist(X,'Euclidean');
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[Y,eigvals] = cmdscale(D);
[PC,Score,latent] = pca(X);

Y

Y = 10×5

   -1.4505    1.6602    0.8106    0.5834    0.5952
    2.6140   -1.0513   -1.1962    0.7221   -0.2299
   -2.2399   -1.6699   -0.7881   -0.6659    0.0398
   -0.4956    0.2265    1.2682   -0.5123   -0.5702
    0.1004   -2.3659    1.2672    0.4837   -0.2888
   -2.5996    1.0635   -0.8532    0.1392   -0.1216
   -1.5565    0.4215   -0.0931    0.2863    0.0299
    0.4656   -0.6250   -0.7608   -0.3233    0.2786
    2.3961    2.6933   -0.2020   -0.2572   -0.4374
    2.7660   -0.3529    0.5474   -0.4560    0.7044

Score

Score = 10×5

   -1.4505    1.6602   -0.8106   -0.5834   -0.5952
    2.6140   -1.0513    1.1962   -0.7221    0.2299
   -2.2399   -1.6699    0.7881    0.6659   -0.0398
   -0.4956    0.2265   -1.2682    0.5123    0.5702
    0.1004   -2.3659   -1.2672   -0.4837    0.2888
   -2.5996    1.0635    0.8532   -0.1392    0.1216
   -1.5565    0.4215    0.0931   -0.2863   -0.0299
    0.4656   -0.6250    0.7608    0.3233   -0.2786
    2.3961    2.6933    0.2020    0.2572    0.4374
    2.7660   -0.3529   -0.5474    0.4560   -0.7044

Even the nonzero eigenvalues are identical up to a scale factor.

[eigvals(1:m) (n-1)*latent]

ans = 5×2

   36.9993   36.9993
   21.3766   21.3766
    7.5792    7.5792
    2.2815    2.2815
    1.5981    1.5981
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Nonclassical Multidimensional Scaling

This example shows how to visualize dissimilarity data using nonclassical forms of multidimensional
scaling (MDS).

Dissimilarity data arises when we have some set of objects, and instead of measuring the
characteristics of each object, we can only measure how similar or dissimilar each pair of objects is.
For example, instead of knowing the latitude and longitude of a set of cities, we may only know their
inter-city distances. However, MDS also works with dissimilarities that are more abstract than
physical distance. For example, we may have asked consumers to rate how similar they find several
brands of peanut butter.

The typical goal of MDS is to create a configuration of points in one, two, or three dimensions, whose
inter-point distances are "close" to the original dissimilarities. The different forms of MDS use
different criteria to define "close". These points represent the set of objects, and so a plot of the
points can be used as a visual representation of their dissimilarities.

Some applications of "classical" MDS are described in the “Classical Multidimensional Scaling
Applied to Nonspatial Distances” on page 16-186 example.

Rothkopf's Morse Code Dataset

To demonstrate MDS, we'll use data collected in an experiment to investigate perception of Morse
code (Rothkopf, E.Z., J.Exper.Psych., 53(2):94-101). Subjects in the study listened to two Morse code
signals (audible sequences of one or more "dots" and "dashes", representing the 36 alphanumeric
characters) played in succession, and were asked whether the signals were the same or different. The
subjects did not know Morse code. The dissimilarity between two different characters is the
frequency with which those characters were correctly distinguished.

The 36x36 matrix of dissimilarities is stored as a 630-element vector containing the subdiagonal
elements of the matrix. You can use the function squareform to transform between the vector
format and the full matrix form. Here are the first 5 letters and their dissimilarities, reconstructed in
matrix form.

load morse
morseChars(1:5,:)

ans = 5x2 cell
    {'A'}    {'.-'  }
    {'B'}    {'-...'}
    {'C'}    {'-.-.'}
    {'D'}    {'-..' }
    {'E'}    {'.'   }

dissMatrix = squareform(dissimilarities);
dissMatrix(1:5,1:5)

ans = 5×5

     0   167   169   159   180
   167     0    96    79   163
   169    96     0   141   166
   159    79   141     0   172
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   180   163   166   172     0

In these data, larger values indicate that more experimental subjects were able to distinguish the two
signals, and so the signals were more dissimilar.

Metric Scaling

Metric MDS creates a configuration of points such that their interpoint distances approximate the
original dissimilarities. One measure of the goodness of fit of that approximation is known as the
"stress", and that's what we'll use initially. To compute the configuration, we provide the mdscale
function with the dissimilarity data, the number of dimensions in which we want to create the points
(two), and the name of the goodness-of-fit criterion we are using.

Y1 = mdscale(dissimilarities, 2, 'criterion','metricstress');
size(Y1)

ans = 1×2

    36     2

mdscale returns a set of points in, for this example, two dimensions. We could plot them, but before
using this solution (i.e. the configuration) to visualize the data, we'll make some plots to help check
whether the interpoint distances from this solution recreate the original dissimilarities.

The Shepard Plot

The Shepard plot is a scatterplot of the interpoint distances (there are n(n-1)/2 of them) vs. the
original dissimilarities. This can help determine goodness of fit of the MDS solution. If the fit is poor,
then visualization could be misleading, because large (small) distances between points might not
correspond to large (small) dissimilarities in the data. In the Shepard plot, a narrow scatter around a
1:1 line indicates a good fit of the distances to the dissimilarities, while a large scatter or a nonlinear
pattern indicates a lack of fit.

distances1 = pdist(Y1);
plot(dissimilarities,distances1,'bo', [0 200],[0 200],'k--');
xlabel('Dissimilarities')
ylabel('Distances')
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This plot indicates that this metric solution in two dimensions is probably not appropriate, because it
shows both a nonlinear pattern and a large scatter. The former implies that many of the largest
dissimilarities would tend to be somewhat exaggerated in the visualization, while moderate and small
dissimilarities would tend to be understated. The latter implies that distance in the visualization
would generally be a poor reflection of dissimilarity. In particular, a good fraction of the large
dissimilarities would be badly understated.

Comparing Metric Criteria

We could try using a third dimension to improve the fidelity of the visualization, because with more
degrees of freedom, the fit should improve. We can also try a different criterion. Two other popular
metric criteria are known as Sammon Mapping and squared stress ("sstress"). Each leads to a
different solution, and one or the other might be more useful in visualizing the original dissimilarities.

Y2 = mdscale(dissimilarities,2, 'criterion','sammon');
distances2 = pdist(Y2);
Y3 = mdscale(dissimilarities,2, 'criterion','metricsstress');
distances3 = pdist(Y3);

A Shepard plot shows the differences in the three solutions so far.

plot(dissimilarities,distances1,'bo', ...
     dissimilarities,distances2,'r+', ...
     dissimilarities,distances3,'g^', ...
     [0 200],[0 200],'k--');
xlabel('Dissimilarities')
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ylabel('Distances')
legend({'Stress', 'Sammon Mapping', 'Squared Stress'}, 'Location','NorthWest');

Notice that at the largest dissimilarity values, the scatter for the squared stress criterion tends to be
closer to the 1:1 line than for the other two criteria. Thus, for these data, squared stress is somewhat
better at preserving the largest dissimilarities, although it badly understates some of those. At
smaller dissimilarity values, the scatter for the Sammon Mapping criterion tends to be somewhat
closer to the 1:1 line than for the other two criteria. Thus, Sammon Mapping is a little better at
preserving small dissimilarities. Stress is somewhere in between. All three criteria show a certain
amount of nonlinearity, indicating that metric scaling may not be suitable. However, the choice of
criterion depends on the goal of the visualization.

Nonmetric Scaling

Nonmetric scaling is a second form of MDS that has a slightly less ambitious goal than metric scaling.
Instead of attempting to create a configuration of points for which the pairwise distances
approximate the original dissimilarities, nonmetric MDS attempts only to approximate the ranks of
the dissimilarities. Another way of saying this is that nonmetric MDS creates a configuration of points
whose interpoint distances approximate a monotonic transformation of the original dissimilarities.

The practical use of such a construction is that large interpoint distances correspond to large
dissimilarities, and small interpoint distances to small dissimilarities. This is often sufficient to convey
the relationships among the items or categories being studied.

First, we'll create a configuration of points in 2D. Nonmetric scaling with Kruskal's nonmetric stress
criterion is the default for mdscale.
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[Y,stress,disparities] = mdscale(dissimilarities,2);
stress

stress = 0.1800

The second output of mdscale is the value of the criterion being used, as a measure of how well the
solution recreates the dissimilarities. Smaller values indicate a better fit. The stress for this
configuration, about 18%, is considered poor to fair for the nonmetric stress criterion. The ranges of
acceptable criterion values differ for the different criteria.

The third output of mdscale is a vector of what are known as disparities. These are simply the
monotonic transformation of the dissimilarities. They will be used in a nonmetric scaling Shepard plot
below.

Visualizing the Dissimilarity Data

Although this fit is not as good as we would like, the 2D representation is easiest to visualize. We can
plot each signal's dots and dashes to help see why the subjects perceive differences among the
characters. The orientation and scale of this configuration is completely arbitrary, so no axis labels or
values have been shown.

plot(Y(:,1),Y(:,2),'.', 'Marker','none');
text(Y(:,1),Y(:,2),char(morseChars(:,2)), 'Color','b', ...
    'FontSize',12,'FontWeight','bold', 'HorizontalAlignment','center');
h_gca = gca;
h_gca.XTickLabel = [];
h_gca.YTickLabel = [];
title('Nonmetric MDS solution for Rothkopf''s Morse code data');
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This reconstruction indicates that the characters can be described in terms of two axes: roughly
speaking, the northwest/southeast direction discriminates signal length, while the southwest/
northeast direction discriminates dots from dashes. The two characters with the shortest signals, 'E'
and 'T', are somewhat out of position in that interpretation.

The Nonmetric Shepard Plot

In nonmetric scaling, it is customary to show the disparities as well as the distances in a Shepard
plot. This provides a check on how well the distances recreate the disparities, as well as how
nonlinear the monotonic transformation from dissimilarities to disparities is.

distances = pdist(Y);
[dum,ord] = sortrows([disparities(:) dissimilarities(:)]);
plot(dissimilarities,distances,'bo', ...
     dissimilarities(ord),disparities(ord),'r.-');
xlabel('Dissimilarities')
ylabel('Distances/Disparities')
legend({'Distances' 'Disparities'}, 'Location','NorthWest');

This plot shows how the distances in nonmetric scaling approximate the disparities (the scatter of
blue circles about the red line), and the disparities reflect the ranks of the dissimilarities (the red line
is nonlinear but increasing). Comparing this plot to the Shepard plot from metric scaling shows the
difference in the two methods. Nonmetric scaling attempts to recreate not the original dissimilarities,
but rather a nonlinear transformation of them (the disparities).

In doing that, nonmetric scaling has made a trade-off: the nonmetric distances recreate the
disparities better than the metric distances recreated the dissimilarities -- the scatter in this plot is
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smaller that in the metric plot. However, the disparities are quite nonlinear as a function of the
dissimilarities. Thus, while we can be more certain that with the nonmetric solution, small distances
in the visualization correspond to small dissimilarities in the data, it's important to remember that
absolute distances between points in that visualization should not be taken too literally -- only relative
distances.

Nonmetric Scaling in 3D

Because the stress in the 2D construction was somewhat high, we can try a 3D configuration.

[Y,stress,disparities] = mdscale(dissimilarities,3);
stress

stress = 0.1189

This stress value is quite a bit lower, indicating a better fit. We can plot the configuration in 3
dimensions. A live MATLAB® figure can be rotated interactively; here we will settle for looking from
two different angles.

plot3(Y(:,1),Y(:,2),Y(:,3),'.', 'Marker','none');
text(Y(:,1),Y(:,2),Y(:,3),char(morseChars(:,2)), 'Color','b', ...
    'FontSize',12,'FontWeight','bold', 'HorizontalAlignment','center');
set(gca,'XTickLabel',[], 'YTickLabel',[], 'ZTickLabel',[]);
title('Nonmetric MDS solution for Rothkopf''s Morse code data');
view(59,18);
grid on
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From this angle, we can see that the characters with one- and two-symbol signals are well-separated
from the characters with longer signals, and from each other, because they are the easiest to
distinguish. If we rotate the view to a different perspective, we can see that the longer characters
can, as in the 2D configuration, roughly be described in terms of the number of symbols and the
number of dots or dashes. (From this second angle, some of the shorter characters spuriously appear
to be interspersed with the longer ones.)

view(-9,8);

This 3D configuration reconstructs the distances more accurately than the 2D configuration, however,
the message is essentially the same: the subjects perceive the signals primarily in terms of how many
symbols they contain, and how many dots vs. dashes. In practice, the 2D configuration might be
perfectly acceptable.
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Fitting an Orthogonal Regression Using Principal Components
Analysis

This example shows how to use Principal Components Analysis (PCA) to fit a linear regression. PCA
minimizes the perpendicular distances from the data to the fitted model. This is the linear case of
what is known as Orthogonal Regression or Total Least Squares, and is appropriate when there is no
natural distinction between predictor and response variables, or when all variables are measured
with error. This is in contrast to the usual regression assumption that predictor variables are
measured exactly, and only the response variable has an error component.

For example, given two data vectors x and y, you can fit a line that minimizes the perpendicular
distances from each of the points (x(i), y(i)) to the line. More generally, with p observed variables, you
can fit an r-dimensional hyperplane in p-dimensional space (r < p). The choice of r is equivalent to
choosing the number of components to retain in PCA. It may be based on prediction error, or it may
simply be a pragmatic choice to reduce data to a manageable number of dimensions.

In this example, we fit a plane and a line through some data on three observed variables. It's easy to
do the same thing for any number of variables, and for any dimension of model, although visualizing a
fit in higher dimensions would obviously not be straightforward.

Fitting a Plane to 3-D Data

First, we generate some trivariate normal data for the example. Two of the variables are fairly
strongly correlated.

rng(5,'twister');
X = mvnrnd([0 0 0], [1 .2 .7; .2 1 0; .7 0 1],50);
plot3(X(:,1),X(:,2),X(:,3),'bo');
grid on;
maxlim = max(abs(X(:)))*1.1;
axis([-maxlim maxlim -maxlim maxlim -maxlim maxlim]);
axis square
view(-9,12);
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Next, we fit a plane to the data using PCA. The coefficients for the first two principal components
define vectors that form a basis for the plane. The third PC is orthogonal to the first two, and its
coefficients define the normal vector of the plane.

[coeff,score,roots] = pca(X);
basis = coeff(:,1:2)

basis = 3×2

    0.6774   -0.0790
    0.2193    0.9707
    0.7022   -0.2269

normal = coeff(:,3)

normal = 3×1

    0.7314
   -0.0982
   -0.6749

That's all there is to the fit. But let's look closer at the results, and plot the fit along with the data.

Because the first two components explain as much of the variance in the data as is possible with two
dimensions, the plane is the best 2-D linear approximation to the data. Equivalently, the third
component explains the least amount of variation in the data, and it is the error term in the
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regression. The latent roots (or eigenvalues) from the PCA define the amount of explained variance
for each component.

pctExplained = roots' ./ sum(roots)

pctExplained = 1×3

    0.6226    0.2976    0.0798

The first two coordinates of the principal component scores give the projection of each point onto the
plane, in the coordinate system of the plane. To get the coordinates of the fitted points in terms of the
original coordinate system, we multiply each PC coefficient vector by the corresponding score, and
add back in the mean of the data. The residuals are simply the original data minus the fitted points.

[n,p] = size(X);
meanX = mean(X,1);
Xfit = repmat(meanX,n,1) + score(:,1:2)*coeff(:,1:2)';
residuals = X - Xfit;

The equation of the fitted plane, satisfied by each of the fitted points in Xfit, is ([x1 x2 x3] -
meanX)*normal = 0. The plane passes through the point meanX, and its perpendicular distance to
the origin is meanX*normal. The perpendicular distance from each point in X to the plane, i.e., the
norm of the residuals, is the dot product of each centered point with the normal to the plane. The
fitted plane minimizes the sum of the squared errors.

error = abs((X - repmat(meanX,n,1))*normal);
sse = sum(error.^2)

sse = 15.5142

To visualize the fit, we can plot the plane, the original data, and their projection to the plane.

[xgrid,ygrid] = meshgrid(linspace(min(X(:,1)),max(X(:,1)),5), ...
                         linspace(min(X(:,2)),max(X(:,2)),5));
zgrid = (1/normal(3)) .* (meanX*normal - (xgrid.*normal(1) + ygrid.*normal(2)));
h = mesh(xgrid,ygrid,zgrid,'EdgeColor',[0 0 0],'FaceAlpha',0);

hold on
above = (X-repmat(meanX,n,1))*normal < 0;
below = ~above;
nabove = sum(above);
X1 = [X(above,1) Xfit(above,1) nan*ones(nabove,1)];
X2 = [X(above,2) Xfit(above,2) nan*ones(nabove,1)];
X3 = [X(above,3) Xfit(above,3) nan*ones(nabove,1)];
plot3(X1',X2',X3','-', X(above,1),X(above,2),X(above,3),'o', 'Color',[0 .7 0]);
nbelow = sum(below);
X1 = [X(below,1) Xfit(below,1) nan*ones(nbelow,1)];
X2 = [X(below,2) Xfit(below,2) nan*ones(nbelow,1)];
X3 = [X(below,3) Xfit(below,3) nan*ones(nbelow,1)];
plot3(X1',X2',X3','-', X(below,1),X(below,2),X(below,3),'o', 'Color',[1 0 0]);

hold off
maxlim = max(abs(X(:)))*1.1;
axis([-maxlim maxlim -maxlim maxlim -maxlim maxlim]);
axis square
view(-9,12);
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Green points are above the plane, red points are below.

Fitting a Line to 3-D Data

Fitting a straight line to the data is even simpler, and because of the nesting property of PCA, we can
use the components that have already been computed. The direction vector that defines the line is
given by the coefficients for the first principal component. The second and third PCs are orthogonal
to the first, and their coefficients define directions that are perpendicular to the line. The simplest
equation to describe the line is meanX + t*dirVect, where t parameterizes the position along the
line.

dirVect = coeff(:,1)

dirVect = 3×1

    0.6774
    0.2193
    0.7022

The first coordinate of the principal component scores gives the projection of each point onto the line.
As with the 2-D fit, the PC coefficient vectors multiplied by the scores the gives the fitted points in the
original coordinate system.

Xfit1 = repmat(meanX,n,1) + score(:,1)*coeff(:,1)';

Plot the line, the original data, and their projection to the line.
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t = [min(score(:,1))-.2, max(score(:,1))+.2];
endpts = [meanX + t(1)*dirVect'; meanX + t(2)*dirVect'];
plot3(endpts(:,1),endpts(:,2),endpts(:,3),'k-');

X1 = [X(:,1) Xfit1(:,1) nan*ones(n,1)];
X2 = [X(:,2) Xfit1(:,2) nan*ones(n,1)];
X3 = [X(:,3) Xfit1(:,3) nan*ones(n,1)];
hold on
plot3(X1',X2',X3','b-', X(:,1),X(:,2),X(:,3),'bo');
hold off
maxlim = max(abs(X(:)))*1.1;
axis([-maxlim maxlim -maxlim maxlim -maxlim maxlim]);
axis square
view(-9,12);
grid on

While it appears that many of the projections in this plot are not perpendicular to the line, that's just
because we're plotting 3-D data in two dimensions. In a live MATLAB® figure window, you could
interactively rotate the plot to different perspectives to verify that the projections are indeed
perpendicular, and to get a better feel for how the line fits the data.
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Tune Regularization Parameter to Detect Features Using NCA
for Classification

This example shows how to tune the regularization parameter in fscnca using cross-validation.
Tuning the regularization parameter helps to correctly detect the relevant features in the data.

Load the sample data.

load('twodimclassdata.mat')

This dataset is simulated using the scheme described in [1]. This is a two-class classification problem
in two dimensions. Data from the first class are drawn from two bivariate normal distributions
N(μ1, Σ) or N(μ2, Σ) with equal probability, where μ1 = [− 0 . 75, − 1 . 5], μ2 = [0 . 75, 1 . 5] and Σ = I2.
Similarly, data from the second class are drawn from two bivariate normal distributions N(μ3, Σ) or
N(μ4, Σ) with equal probability, where μ3 = [1 . 5, − 1 . 5], μ4 = [− 1 . 5, 1 . 5] and Σ = I2. The normal
distribution parameters used to create this data set results in tighter clusters in data than the data
used in [1].

Create a scatter plot of the data grouped by the class.

figure
gscatter(X(:,1),X(:,2),y)
xlabel('x1')
ylabel('x2')
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Add 100 irrelevant features to X. First generate data from a Normal distribution with a mean of 0 and
a variance of 20.

n = size(X,1);
rng('default')
XwithBadFeatures = [X,randn(n,100)*sqrt(20)];

Normalize the data so that all points are between 0 and 1.

XwithBadFeatures = (XwithBadFeatures-min(XwithBadFeatures,[],1))./range(XwithBadFeatures,1);
X = XwithBadFeatures;

Fit an nca model to the data using the default Lambda (regularization parameter, λ) value. Use the
LBFGS solver and display the convergence information.

ncaMdl = fscnca(X,y,'FitMethod','exact','Verbose',1, ...
    'Solver','lbfgs');

 o Solver = LBFGS, HessianHistorySize = 15, LineSearchMethod = weakwolfe

|====================================================================================================|
|   ITER   |   FUN VALUE   |  NORM GRAD  |  NORM STEP  |  CURV  |    GAMMA    |    ALPHA    | ACCEPT |
|====================================================================================================|
|        0 |  9.519258e-03 |   1.494e-02 |   0.000e+00 |        |   4.015e+01 |   0.000e+00 |   YES  |
|        1 | -3.093574e-01 |   7.186e-03 |   4.018e+00 |    OK  |   8.956e+01 |   1.000e+00 |   YES  |
|        2 | -4.809455e-01 |   4.444e-03 |   7.123e+00 |    OK  |   9.943e+01 |   1.000e+00 |   YES  |
|        3 | -4.938877e-01 |   3.544e-03 |   1.464e+00 |    OK  |   9.366e+01 |   1.000e+00 |   YES  |
|        4 | -4.964759e-01 |   2.901e-03 |   6.084e-01 |    OK  |   1.554e+02 |   1.000e+00 |   YES  |
|        5 | -4.972077e-01 |   1.323e-03 |   6.129e-01 |    OK  |   1.195e+02 |   5.000e-01 |   YES  |
|        6 | -4.974743e-01 |   1.569e-04 |   2.155e-01 |    OK  |   1.003e+02 |   1.000e+00 |   YES  |
|        7 | -4.974868e-01 |   3.844e-05 |   4.161e-02 |    OK  |   9.835e+01 |   1.000e+00 |   YES  |
|        8 | -4.974874e-01 |   1.417e-05 |   1.073e-02 |    OK  |   1.043e+02 |   1.000e+00 |   YES  |
|        9 | -4.974874e-01 |   4.893e-06 |   1.781e-03 |    OK  |   1.530e+02 |   1.000e+00 |   YES  |
|       10 | -4.974874e-01 |   9.404e-08 |   8.947e-04 |    OK  |   1.670e+02 |   1.000e+00 |   YES  |

         Infinity norm of the final gradient = 9.404e-08
              Two norm of the final step     = 8.947e-04, TolX   = 1.000e-06
Relative infinity norm of the final gradient = 9.404e-08, TolFun = 1.000e-06
EXIT: Local minimum found.

Plot the feature weights. The weights of the irrelevant features should be very close to zero.

figure
semilogx(ncaMdl.FeatureWeights,'ro')
xlabel('Feature index')
ylabel('Feature weight')   
grid on
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All weights are very close to zero. This indicates that the value of λ used in training the model is too
large. When λ → ∞, all features weights approach to zero. Hence, it is important to tune the
regularization parameter in most cases to detect the relevant features.

Use five-fold cross-validation to tune λ for feature selection using fscnca. Tuning λ means finding
the λ value that will produce the minimum classification loss. Here are the steps for tuning λ using
cross-validation:

1. First partition the data into five folds. For each fold, cvpartition assigns 4/5th of the data as a
training set, and 1/5th of the data as a test set.

cvp           = cvpartition(y,'kfold',5);
numtestsets   = cvp.NumTestSets;
lambdavalues  = linspace(0,2,20)/length(y); 
lossvalues    = zeros(length(lambdavalues),numtestsets);

2. Train the neighborhood component analysis (nca) model for each λ value using the training set in
each fold.

3. Compute the classification loss for the corresponding test set in the fold using the nca model.
Record the loss value.

4. Repeat this for all folds and all λ values.

for i = 1:length(lambdavalues)                
    for k = 1:numtestsets
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        % Extract the training set from the partition object
        Xtrain = X(cvp.training(k),:);
        ytrain = y(cvp.training(k),:);
        
        % Extract the test set from the partition object
        Xtest = X(cvp.test(k),:);
        ytest = y(cvp.test(k),:);
        
        % Train an nca model for classification using the training set
        ncaMdl = fscnca(Xtrain,ytrain,'FitMethod','exact', ...
            'Solver','lbfgs','Lambda',lambdavalues(i));
        
        % Compute the classification loss for the test set using the nca
        % model
        lossvalues(i,k) = loss(ncaMdl,Xtest,ytest, ...
            'LossFunction','quadratic');   
   
    end                          
end

Plot the average loss values of the folds versus the λ values.

figure
plot(lambdavalues,mean(lossvalues,2),'ro-')
xlabel('Lambda values')
ylabel('Loss values')
grid on

16 Multivariate Methods

16-210



Find the λ value that corresponds to the minimum average loss.

[~,idx] = min(mean(lossvalues,2)); % Find the index
bestlambda = lambdavalues(idx) % Find the best lambda value

bestlambda = 0.0037

Fit the nca model to all of the data using the best λ value. Use the LBFGS solver and display the
convergence information.

ncaMdl = fscnca(X,y,'FitMethod','exact','Verbose',1, ...
     'Solver','lbfgs','Lambda',bestlambda);

 o Solver = LBFGS, HessianHistorySize = 15, LineSearchMethod = weakwolfe

|====================================================================================================|
|   ITER   |   FUN VALUE   |  NORM GRAD  |  NORM STEP  |  CURV  |    GAMMA    |    ALPHA    | ACCEPT |
|====================================================================================================|
|        0 | -1.246913e-01 |   1.231e-02 |   0.000e+00 |        |   4.873e+01 |   0.000e+00 |   YES  |
|        1 | -3.411330e-01 |   5.717e-03 |   3.618e+00 |    OK  |   1.068e+02 |   1.000e+00 |   YES  |
|        2 | -5.226111e-01 |   3.763e-02 |   8.252e+00 |    OK  |   7.825e+01 |   1.000e+00 |   YES  |
|        3 | -5.817731e-01 |   8.496e-03 |   2.340e+00 |    OK  |   5.591e+01 |   5.000e-01 |   YES  |
|        4 | -6.132632e-01 |   6.863e-03 |   2.526e+00 |    OK  |   8.228e+01 |   1.000e+00 |   YES  |
|        5 | -6.135264e-01 |   9.373e-03 |   7.341e-01 |    OK  |   3.244e+01 |   1.000e+00 |   YES  |
|        6 | -6.147894e-01 |   1.182e-03 |   2.933e-01 |    OK  |   2.447e+01 |   1.000e+00 |   YES  |
|        7 | -6.148714e-01 |   6.392e-04 |   6.688e-02 |    OK  |   3.195e+01 |   1.000e+00 |   YES  |
|        8 | -6.149524e-01 |   6.521e-04 |   9.934e-02 |    OK  |   1.236e+02 |   1.000e+00 |   YES  |
|        9 | -6.149972e-01 |   1.154e-04 |   1.191e-01 |    OK  |   1.171e+02 |   1.000e+00 |   YES  |
|       10 | -6.149990e-01 |   2.922e-05 |   1.983e-02 |    OK  |   7.365e+01 |   1.000e+00 |   YES  |
|       11 | -6.149993e-01 |   1.556e-05 |   8.354e-03 |    OK  |   1.288e+02 |   1.000e+00 |   YES  |
|       12 | -6.149994e-01 |   1.147e-05 |   7.256e-03 |    OK  |   2.332e+02 |   1.000e+00 |   YES  |
|       13 | -6.149995e-01 |   1.040e-05 |   6.781e-03 |    OK  |   2.287e+02 |   1.000e+00 |   YES  |
|       14 | -6.149996e-01 |   9.015e-06 |   6.265e-03 |    OK  |   9.974e+01 |   1.000e+00 |   YES  |
|       15 | -6.149996e-01 |   7.763e-06 |   5.206e-03 |    OK  |   2.919e+02 |   1.000e+00 |   YES  |
|       16 | -6.149997e-01 |   8.374e-06 |   1.679e-02 |    OK  |   6.878e+02 |   1.000e+00 |   YES  |
|       17 | -6.149997e-01 |   9.387e-06 |   9.542e-03 |    OK  |   1.284e+02 |   5.000e-01 |   YES  |
|       18 | -6.149997e-01 |   3.250e-06 |   5.114e-03 |    OK  |   1.225e+02 |   1.000e+00 |   YES  |
|       19 | -6.149997e-01 |   1.574e-06 |   1.275e-03 |    OK  |   1.808e+02 |   1.000e+00 |   YES  |

|====================================================================================================|
|   ITER   |   FUN VALUE   |  NORM GRAD  |  NORM STEP  |  CURV  |    GAMMA    |    ALPHA    | ACCEPT |
|====================================================================================================|
|       20 | -6.149997e-01 |   5.764e-07 |   6.765e-04 |    OK  |   2.905e+02 |   1.000e+00 |   YES  |

         Infinity norm of the final gradient = 5.764e-07
              Two norm of the final step     = 6.765e-04, TolX   = 1.000e-06
Relative infinity norm of the final gradient = 5.764e-07, TolFun = 1.000e-06
EXIT: Local minimum found.

Plot the feature weights.

figure
semilogx(ncaMdl.FeatureWeights,'ro')
xlabel('Feature index')
ylabel('Feature weight')    
grid on
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fscnca correctly figures out that the first two features are relevant and the rest are not. Note that
the first two features are not individually informative but when taken together result in an accurate
classification model.
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See Also
FeatureSelectionNCAClassification | fscnca | refit | predict | loss

More About
• “Neighborhood Component Analysis (NCA) Feature Selection” on page 16-97
• “Introduction to Feature Selection” on page 16-47
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Cluster Analysis

• “Choose Cluster Analysis Method” on page 17-2
• “Hierarchical Clustering” on page 17-6
• “DBSCAN” on page 17-19
• “Partition Data Using Spectral Clustering” on page 17-26
• “k-Means Clustering” on page 17-33
• “Cluster Using Gaussian Mixture Model” on page 17-39
• “Cluster Gaussian Mixture Data Using Hard Clustering” on page 17-46
• “Cluster Gaussian Mixture Data Using Soft Clustering” on page 17-52
• “Tune Gaussian Mixture Models” on page 17-57
• “Cluster Evaluation” on page 17-63
• “Cluster Analysis” on page 17-66
• “Anomaly Detection with Isolation Forest” on page 17-81
• “Unsupervised Anomaly Detection” on page 17-91
• “Model-Specific Anomaly Detection” on page 17-107
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Choose Cluster Analysis Method
This topic provides a brief overview of the available clustering methods in Statistics and Machine
Learning Toolbox.

Clustering Methods
Cluster analysis, also called segmentation analysis or taxonomy analysis, is a common unsupervised
learning method. Unsupervised learning is used to draw inferences from data sets consisting of input
data without labeled responses. For example, you can use cluster analysis for exploratory data
analysis to find hidden patterns or groupings in unlabeled data.

Cluster analysis creates groups, or clusters, of data. Objects that belong to the same cluster are
similar to one another and distinct from objects that belong to different clusters. To quantify "similar"
and "distinct," you can use a dissimilarity measure (or distance metric on page 19-14) that is specific
to the domain of your application and your data set. Also, depending on your application, you might
consider scaling (or standardizing) the variables in your data to give them equal importance during
clustering.

Statistics and Machine Learning Toolbox provides functionality for these clustering methods:

• “Hierarchical Clustering” on page 17-2
• “k-Means and k-Medoids Clustering” on page 17-2
• “Density-Based Spatial Clustering of Applications with Noise (DBSCAN)” on page 17-3
• “Gaussian Mixture Model” on page 17-3
• “k-Nearest Neighbor Search and Radius Search” on page 17-3
• “Spectral Clustering” on page 17-3

Hierarchical Clustering

Hierarchical clustering groups data over a variety of scales by creating a cluster tree, or dendrogram.
The tree is not a single set of clusters, but rather a multilevel hierarchy, where clusters at one level
combine to form clusters at the next level. This multilevel hierarchy allows you to choose the level, or
scale, of clustering that is most appropriate for your application. Hierarchical clustering assigns
every point in your data to a cluster.

Use clusterdata to perform hierarchical clustering on input data. clusterdata incorporates the
pdist, linkage, and cluster functions, which you can use separately for more detailed analysis.
The dendrogram function plots the cluster tree. For more information, see “Introduction to
Hierarchical Clustering” on page 17-6.

k-Means and k-Medoids Clustering

k-means clustering and k-medoids clustering partition data into k mutually exclusive clusters. These
clustering methods require that you specify the number of clusters k. Both k-means and k-medoids
clustering assign every point in your data to a cluster; however, unlike hierarchical clustering, these
methods operate on actual observations (rather than dissimilarity measures), and create a single level
of clusters. Therefore, k-means or k-medoids clustering is often more suitable than hierarchical
clustering for large amounts of data.
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Use kmeans and kmedoids to implement k-means clustering and k-medoids clustering, respectively.
For more information, see Introduction to k-Means Clustering on page 17-33 and k-Medoids
Clustering on page 35-4034.

Density-Based Spatial Clustering of Applications with Noise (DBSCAN)

DBSCAN is a density-based algorithm that identifies arbitrarily shaped clusters and outliers (noise) in
data. During clustering, DBSCAN identifies points that do not belong to any cluster, which makes this
method useful for density-based outlier detection. Unlike k-means and k-medoids clustering, DBSCAN
does not require prior knowledge of the number of clusters.

Use dbscan to perform clustering on an input data matrix or on pairwise distances between
observations. For more information, see “Introduction to DBSCAN” on page 17-19.

Gaussian Mixture Model

A Gaussian mixture model (GMM) forms clusters as a mixture of multivariate normal density
components. For a given observation, the GMM assigns posterior probabilities to each component
density (or cluster). The posterior probabilities indicate that the observation has some probability of
belonging to each cluster. A GMM can perform hard clustering by selecting the component that
maximizes the posterior probability as the assigned cluster for the observation. You can also use a
GMM to perform soft, or fuzzy, clustering by assigning the observation to multiple clusters based on
the scores or posterior probabilities of the observation for the clusters. A GMM can be a more
appropriate method than k-means clustering when clusters have different sizes and different
correlation structures within them.

Use fitgmdist to fit a gmdistribution object to your data. You can also use gmdistribution to
create a GMM object by specifying the distribution parameters. When you have a fitted GMM, you
can cluster query data by using the cluster function. For more information, see “Cluster Using
Gaussian Mixture Model” on page 17-39.

k-Nearest Neighbor Search and Radius Search

k-nearest neighbor search finds the k closest points in your data to a query point or set of query
points. In contrast, radius search finds all points in your data that are within a specified distance from
a query point or set of query points. The results of these methods depend on the distance metric on
page 19-14 that you specify.

Use the knnsearch function to find k-nearest neighbors or the rangesearch function to find all
neighbors within a specified distance of your input data. You can also create a searcher object using a
training data set, and pass the object and query data sets to the object functions (knnsearch and
rangesearch). For more information, see “Classification Using Nearest Neighbors” on page 19-14.

Spectral Clustering

Spectral clustering is a graph-based algorithm for finding k arbitrarily shaped clusters in data. The
technique involves representing the data in a low dimension. In the low dimension, clusters in the
data are more widely separated, enabling you to use algorithms such as k-means or k-medoids
clustering. This low dimension is based on eigenvectors of a Laplacian matrix. A Laplacian matrix is
one way of representing a similarity graph that models the local neighborhood relationships between
data points as an undirected graph.

Use spectralcluster to perform spectral clustering on an input data matrix or on a similarity
matrix of a similarity graph. spectralcluster requires that you specify the number of clusters.
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However, the algorithm for spectral clustering also provides a way to estimate the number of clusters
in your data. For more information, see “Partition Data Using Spectral Clustering” on page 17-26.

Comparison of Clustering Methods
This table compares the features of available clustering methods in Statistics and Machine Learning
Toolbox.

Method Basis of
Algorithm

Input to
Algorithm

Requires
Specified
Number of
Clusters

Cluster
Shapes
Identified

Useful for
Outlier
Detection

“Hierarchical
Clustering” on
page 17-6

Distance
between objects

Pairwise
distances
between
observations

No Arbitrarily
shaped clusters,
depending on
the specified
'Linkage'
algorithm

No

“k-Means
Clustering” on
page 17-33
and k-Medoids
Clustering on
page 35-4034

Distance
between objects
and centroids

Actual
observations

Yes Spheroidal
clusters with
equal diagonal
covariance

No

Density-Based
Spatial
Clustering of
Applications
with Noise
(“DBSCAN” on
page 17-19)

Density of
regions in the
data

Actual
observations or
pairwise
distances
between
observations

No Arbitrarily
shaped clusters

Yes

“Gaussian
Mixture
Models”

Mixture of
Gaussian
distributions

Actual
observations

Yes Spheroidal
clusters with
different
covariance
structures

Yes

Nearest
Neighbors

Distance
between objects

Actual
observations

No Arbitrarily
shaped clusters

Yes, depending
on the specified
number of
neighbors

Spectral
Clustering
(“Partition Data
Using Spectral
Clustering” on
page 17-26)

Graph
representing
connections
between data
points

Actual
observations or
similarity
matrix

Yes, but the
algorithm also
provides a way
to estimate the
number of
clusters

Arbitrarily
shaped clusters

No
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See Also

More About
• “Hierarchical Clustering” on page 17-6
• “k-Means Clustering” on page 17-33
• “DBSCAN” on page 17-19
• “Cluster Using Gaussian Mixture Model” on page 17-39
• “Partition Data Using Spectral Clustering” on page 17-26
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Hierarchical Clustering

In this section...
“Introduction to Hierarchical Clustering” on page 17-6
“Algorithm Description” on page 17-6
“Similarity Measures” on page 17-7
“Linkages” on page 17-8
“Dendrograms” on page 17-9
“Verify the Cluster Tree” on page 17-10
“Create Clusters” on page 17-15

Introduction to Hierarchical Clustering
Hierarchical clustering groups data over a variety of scales by creating a cluster tree or dendrogram.
The tree is not a single set of clusters, but rather a multilevel hierarchy, where clusters at one level
are joined as clusters at the next level. This allows you to decide the level or scale of clustering that is
most appropriate for your application. The function clusterdata supports agglomerative clustering
and performs all of the necessary steps for you. It incorporates the pdist, linkage, and cluster
functions, which you can use separately for more detailed analysis. The dendrogram function plots
the cluster tree.

Algorithm Description
To perform agglomerative hierarchical cluster analysis on a data set using Statistics and Machine
Learning Toolbox functions, follow this procedure:

1 Find the similarity or dissimilarity between every pair of objects in the data set. In this
step, you calculate the distance between objects using the pdist function. The pdist function
supports many different ways to compute this measurement. See “Similarity Measures” on page
17-7 for more information.

2 Group the objects into a binary, hierarchical cluster tree. In this step, you link pairs of
objects that are in close proximity using the linkage function. The linkage function uses the
distance information generated in step 1 to determine the proximity of objects to each other. As
objects are paired into binary clusters, the newly formed clusters are grouped into larger
clusters until a hierarchical tree is formed. See “Linkages” on page 17-8 for more information.

3 Determine where to cut the hierarchical tree into clusters. In this step, you use the
cluster function to prune branches off the bottom of the hierarchical tree, and assign all the
objects below each cut to a single cluster. This creates a partition of the data. The cluster
function can create these clusters by detecting natural groupings in the hierarchical tree or by
cutting off the hierarchical tree at an arbitrary point.

The following sections provide more information about each of these steps.

Note The function clusterdata performs all of the necessary steps for you. You do not need to
execute the pdist, linkage, or cluster functions separately.
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Similarity Measures
You use the pdist function to calculate the distance between every pair of objects in a data set. For a
data set made up of m objects, there are m*(m – 1)/2 pairs in the data set. The result of this
computation is commonly known as a distance or dissimilarity matrix.

There are many ways to calculate this distance information. By default, the pdist function calculates
the Euclidean distance between objects; however, you can specify one of several other options. See
pdist for more information.

Note You can optionally normalize the values in the data set before calculating the distance
information. In a real world data set, variables can be measured against different scales. For example,
one variable can measure Intelligence Quotient (IQ) test scores and another variable can measure
head circumference. These discrepancies can distort the proximity calculations. Using the zscore
function, you can convert all the values in the data set to use the same proportional scale. See
zscore for more information.

For example, consider a data set, X, made up of five objects where each object is a set of x,y
coordinates.

• Object 1: 1, 2
• Object 2: 2.5, 4.5
• Object 3: 2, 2
• Object 4: 4, 1.5
• Object 5: 4, 2.5

You can define this data set as a matrix

rng("default") % For reproducibility
X = [1 2; 2.5 4.5; 2 2; 4 1.5; ...
    4 2.5];

and pass it to pdist. The pdist function calculates the distance between object 1 and object 2,
object 1 and object 3, and so on until the distances between all the pairs have been calculated. The
following figure plots these objects in a graph. The Euclidean distance between object 2 and object 3
is shown to illustrate one interpretation of distance.
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Distance Information

The pdist function returns this distance information in a vector, Y, where each element contains the
distance between a pair of objects.

Y = pdist(X)

Y =

  Columns 1 through 6

    2.9155    1.0000    3.0414    3.0414    2.5495    3.3541

  Columns 7 through 10

    2.5000    2.0616    2.0616    1.0000

To make it easier to see the relationship between the distance information generated by pdist and
the objects in the original data set, you can reformat the distance vector into a matrix using the
squareform function. In this matrix, element i,j corresponds to the distance between object i and
object j in the original data set. In the following example, element 1,1 represents the distance
between object 1 and itself (which is zero). Element 1,2 represents the distance between object 1 and
object 2, and so on.

squareform(Y)

ans =

         0    2.9155    1.0000    3.0414    3.0414
    2.9155         0    2.5495    3.3541    2.5000
    1.0000    2.5495         0    2.0616    2.0616
    3.0414    3.3541    2.0616         0    1.0000
    3.0414    2.5000    2.0616    1.0000         0

Linkages
Once the proximity between objects in the data set has been computed, you can determine how
objects in the data set should be grouped into clusters, using the linkage function. The linkage
function takes the distance information generated by pdist and links pairs of objects that are close
together into binary clusters (clusters made up of two objects). The linkage function then links
these newly formed clusters to each other and to other objects to create bigger clusters until all the
objects in the original data set are linked together in a hierarchical tree.

For example, given the distance vector Y generated by pdist from the sample data set of x- and y-
coordinates, the linkage function generates a hierarchical cluster tree, returning the linkage
information in a matrix, Z.

Z = linkage(Y)

Z =

    4.0000    5.0000    1.0000
    1.0000    3.0000    1.0000
    6.0000    7.0000    2.0616
    2.0000    8.0000    2.5000
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In this output, each row identifies a link between objects or clusters. The first two columns identify
the objects that have been linked. The third column contains the distance between these objects. For
the sample data set of x- and y-coordinates, the linkage function begins by grouping objects 4
and 5, which have the closest proximity (distance value = 1.0000). The linkage function continues
by grouping objects 1 and 3, which also have a distance value of 1.0000.

The third row indicates that the linkage function grouped objects 6 and 7. If the original sample
data set contained only five objects, what are objects 6 and 7? Object 6 is the newly formed binary
cluster created by the grouping of objects 4 and 5. When the linkage function groups two objects
into a new cluster, it must assign the cluster a unique index value, starting with the value m + 1,
where m is the number of objects in the original data set. (Values 1 through m are already used by
the original data set.) Similarly, object 7 is the cluster formed by grouping objects 1 and 3.

linkage uses distances to determine the order in which it clusters objects. The distance vector Y
contains the distances between the original objects 1 through 5. But linkage must also be able to
determine distances involving clusters that it creates, such as objects 6 and 7. By default, linkage
uses a method known as single linkage. However, there are a number of different methods available.
See the linkage reference page for more information.

As the final cluster, the linkage function grouped object 8, the newly formed cluster made up of
objects 6 and 7, with object 2 from the original data set. The following figure graphically illustrates
the way linkage groups the objects into a hierarchy of clusters.

Dendrograms
The hierarchical, binary cluster tree created by the linkage function is most easily understood when
viewed graphically. The function dendrogram plots the tree as follows.

dendrogram(Z)
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In the figure, the numbers along the horizontal axis represent the indices of the objects in the original
data set. The links between objects are represented as upside-down U-shaped lines. The height of the
U indicates the distance between the objects. For example, the link representing the cluster
containing objects 1 and 3 has a height of 1. The link representing the cluster that groups object 2
together with objects 1, 3, 4, and 5, (which are already clustered as object 8) has a height of 2.5. The
height represents the distance linkage computes between objects 2 and 8. For more information
about creating a dendrogram diagram, see the dendrogram reference page.

Verify the Cluster Tree
After linking the objects in a data set into a hierarchical cluster tree, you might want to verify that
the distances (that is, heights) in the tree reflect the original distances accurately. In addition, you
might want to investigate natural divisions that exist among links between objects. Statistics and
Machine Learning Toolbox functions are available for both of these tasks, as described in the
following sections.

• “Verify Dissimilarity” on page 17-10
• “Verify Consistency” on page 17-11

Verify Dissimilarity

In a hierarchical cluster tree, any two objects in the original data set are eventually linked together at
some level. The height of the link represents the distance between the two clusters that contain those
two objects. This height is known as the cophenetic distance between the two objects. One way to
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measure how well the cluster tree generated by the linkage function reflects your data is to
compare the cophenetic distances with the original distance data generated by the pdist function. If
the clustering is valid, the linking of objects in the cluster tree should have a strong correlation with
the distances between objects in the distance vector. The cophenet function compares these two
sets of values and computes their correlation, returning a value called the cophenetic correlation
coefficient. The closer the value of the cophenetic correlation coefficient is to 1, the more accurately
the clustering solution reflects your data.

You can use the cophenetic correlation coefficient to compare the results of clustering the same data
set using different distance calculation methods or clustering algorithms. For example, you can use
the cophenet function to evaluate the clusters created for the sample data set.

c = cophenet(Z,Y)

c =

    0.8615

Z is the matrix output by the linkage function and Y is the distance vector output by the pdist
function.

Execute pdist again on the same data set, this time specifying the city block metric. After running
the linkage function on this new pdist output using the average linkage method, call cophenet to
evaluate the clustering solution.

Y = pdist(X,"cityblock");
Z = linkage(Y,"average");
c = cophenet(Z,Y)

c =

    0.9047

The cophenetic correlation coefficient shows that using a different distance and linkage method
creates a tree that represents the original distances slightly better.

Verify Consistency

One way to determine the natural cluster divisions in a data set is to compare the height of each link
in a cluster tree with the heights of neighboring links below it in the tree.

A link that is approximately the same height as the links below it indicates that there are no distinct
divisions between the objects joined at this level of the hierarchy. These links are said to exhibit a
high level of consistency, because the distance between the objects being joined is approximately the
same as the distances between the objects they contain.

On the other hand, a link whose height differs noticeably from the height of the links below it
indicates that the objects joined at this level in the cluster tree are much farther apart from each
other than their components were when they were joined. This link is said to be inconsistent with the
links below it.

In cluster analysis, inconsistent links can indicate the border of a natural division in a data set. The
cluster function uses a quantitative measure of inconsistency to determine where to partition your
data set into clusters.
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The following dendrogram illustrates inconsistent links. Note how the objects in the dendrogram fall
into two groups that are connected by links at a much higher level in the tree. These links are
inconsistent when compared with the links below them in the hierarchy.

The relative consistency of each link in a hierarchical cluster tree can be quantified and expressed as
the inconsistency coefficient. This value compares the height of a link in a cluster hierarchy with the
average height of links below it. Links that join distinct clusters have a high inconsistency coefficient;
links that join indistinct clusters have a low inconsistency coefficient.

To generate a listing of the inconsistency coefficient for each link in the cluster tree, use the
inconsistent function. By default, the inconsistent function compares each link in the cluster
hierarchy with adjacent links that are less than two levels below it in the cluster hierarchy. This is
called the depth of the comparison. You can also specify other depths. The objects at the bottom of
the cluster tree, called leaf nodes, that have no further objects below them, have an inconsistency
coefficient of zero. Clusters that join two leaves also have a zero inconsistency coefficient.

For example, you can use the inconsistent function to calculate the inconsistency values for the
links created by the linkage function in “Linkages” on page 17-8.

First, recompute the distance and linkage values using the default settings.
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Y = pdist(X);
Z = linkage(Y);

Next, use inconsistent to calculate the inconsistency values.

I = inconsistent(Z)

I =

    1.0000         0    1.0000         0
    1.0000         0    1.0000         0
    1.3539    0.6129    3.0000    1.1547
    2.2808    0.3100    2.0000    0.7071

The inconsistent function returns data about the links in an (m-1)-by-4 matrix, whose columns are
described in the following table.

Column Description
1 Mean of the heights of all the links included in the calculation
2 Standard deviation of all the links included in the calculation
3 Number of links included in the calculation
4 Inconsistency coefficient

In the sample output, the first row represents the link between objects 4 and 5. This cluster is
assigned the index 6 by the linkage function. Because both 4 and 5 are leaf nodes, the inconsistency
coefficient for the cluster is zero. The second row represents the link between objects 1 and 3, both of
which are also leaf nodes. This cluster is assigned the index 7 by the linkage function.

The third row evaluates the link that connects these two clusters, objects 6 and 7. (This new cluster is
assigned index 8 in the linkage output). Column 3 indicates that three links are considered in the
calculation: the link itself and the two links directly below it in the hierarchy. Column 1 represents the
mean of the heights of these links. The inconsistent function uses the height information output
by the linkage function to calculate the mean. Column 2 represents the standard deviation between
the links. The last column contains the inconsistency value for these links, 1.1547. It is the difference
between the current link height and the mean, normalized by the standard deviation.

(2.0616 - 1.3539) / 0.6129

ans =

    1.1547

The following figure illustrates the links and heights included in this calculation.
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Note In the preceding figure, the lower limit on the y-axis is set to 0 to show the heights of the links.
To set the lower limit to 0, select Axes Properties from the Edit menu, click the Y Axis tab, and
enter 0 in the field immediately to the right of Y Limits.

Row 4 in the output matrix describes the link between object 8 and object 2. Column 3 indicates that
two links are included in this calculation: the link itself and the link directly below it in the hierarchy.
The inconsistency coefficient for this link is 0.7071.

The following figure illustrates the links and heights included in this calculation.
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Create Clusters
After you create the hierarchical tree of binary clusters, you can prune the tree to partition your data
into clusters using the cluster function. The cluster function lets you create clusters in two ways,
as discussed in the following sections:

• “Find Natural Divisions in Data” on page 17-15
• “Specify Arbitrary Clusters” on page 17-16

Find Natural Divisions in Data

The hierarchical cluster tree may naturally divide the data into distinct, well-separated clusters. This
can be particularly evident in a dendrogram diagram created from data where groups of objects are
densely packed in certain areas and not in others. The inconsistency coefficient of the links in the
cluster tree can identify these divisions where the similarities between objects change abruptly. (See
“Verify the Cluster Tree” on page 17-10 for more information about the inconsistency coefficient.) You
can use this value to determine where the cluster function creates cluster boundaries.

For example, if you use the cluster function to group the sample data set into clusters, specifying
an inconsistency coefficient threshold of 1.2 as the value of the cutoff argument, the cluster
function groups all the objects in the sample data set into one cluster. In this case, none of the links in
the cluster hierarchy had an inconsistency coefficient greater than 1.2.

T = cluster(Z,"cutoff",1.2)
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T =

     1
     1
     1
     1
     1

The cluster function outputs a vector, T, that is the same size as the original data set. Each element
in this vector contains the number of the cluster into which the corresponding object from the
original data set was placed.

If you lower the inconsistency coefficient threshold to 0.8, the cluster function divides the sample
data set into three separate clusters.

T = cluster(Z,"cutoff",0.8)

T =

     1
     2
     1
     3
     3

This output indicates that objects 1 and 3 are in one cluster, objects 4 and 5 are in another cluster,
and object 2 is in its own cluster.

When clusters are formed in this way, the cutoff value is applied to the inconsistency coefficient.
These clusters may, but do not necessarily, correspond to a horizontal slice across the dendrogram at
a certain height. If you want clusters corresponding to a horizontal slice of the dendrogram, you can
either use the criterion option to specify that the cutoff should be based on distance rather than
inconsistency, or you can specify the number of clusters directly as described in the following section.

Specify Arbitrary Clusters

Instead of letting the cluster function create clusters determined by the natural divisions in the
data set, you can specify the number of clusters you want created.

For example, you can specify that you want the cluster function to partition the sample data set
into two clusters. In this case, the cluster function creates one cluster containing objects 1, 3, 4,
and 5 and another cluster containing object 2.

T = cluster(Z,"maxclust",2)

T =

     2
     1
     2
     2
     2

To help you visualize how the cluster function determines these clusters, the following figure shows
the dendrogram of the hierarchical cluster tree. The horizontal dashed line intersects two lines of the
dendrogram, corresponding to setting maxclust to 2. These two lines partition the objects into two
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clusters: the objects below the left-hand line, namely 1, 3, 4, and 5, belong to one cluster, while the
object below the right-hand line, namely 2, belongs to the other cluster.

On the other hand, if you set maxclust to  3, the cluster function groups objects 4 and 5 in one
cluster, objects 1 and 3 in a second cluster, and object 2 in a third cluster. The following command
illustrates this.

T = cluster(Z,"maxclust",3)

T =

     1
     3
     1
     2
     2

This time, the cluster function cuts off the hierarchy at a lower point, corresponding to the
horizontal line that intersects three lines of the dendrogram in the following figure.
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See Also

More About
• “Choose Cluster Analysis Method” on page 17-2
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DBSCAN
In this section...
“Introduction to DBSCAN” on page 17-19
“Algorithm Description” on page 17-19
“Determine Values for DBSCAN Parameters” on page 17-20

Introduction to DBSCAN
Density-Based Spatial Clustering of Applications with Noise (DBSCAN) identifies arbitrarily shaped
clusters and noise (outliers) in data. The Statistics and Machine Learning Toolbox function dbscan
performs clustering on an input data matrix or on pairwise distances between observations. dbscan
returns the cluster indices and a vector indicating the observations that are core points (points inside
clusters). Unlike k-means clustering, the DBSCAN algorithm does not require prior knowledge of the
number of clusters, and clusters are not necessarily spheroidal. DBSCAN is also useful for density-
based outlier detection, because it identifies points that do not belong to any cluster.

For a point to be assigned to a cluster, it must satisfy the condition that its epsilon neighborhood
(epsilon) contains at least a minimum number of neighbors (minpts). Or, the point can lie within
the epsilon neighborhood of another point that satisfies the epsilon and minpts conditions. The
DBSCAN algorithm identifies three kinds of points:

• Core point — A point in a cluster that has at least minpts neighbors in its epsilon neighborhood
• Border point — A point in a cluster that has fewer than minpts neighbors in its epsilon

neighborhood
• Noise point — An outlier that does not belong to any cluster

DBSCAN works with a wide range of distance metrics on page 35-0 , and you can define a custom
distance metric for your particular application. The choice of a distance metric determines the shape
of the neighborhood.

Algorithm Description
For specified values of the epsilon neighborhood epsilon and the minimum number of neighbors
minpts required for a core point, the dbscan function implements DBSCAN as follows:

1 From the input data set X, select the first unlabeled observation x1 as the current point, and
initialize the first cluster label C to 1.

2 Find the set of points within the epsilon neighborhood epsilon of the current point. These
points are the neighbors.

a If the number of neighbors is less than minpts, then label the current point as a noise point
(or an outlier). Go to step 4.

Note  dbscan can reassign noise points to clusters if the noise points later satisfy the
constraints set by epsilon and minpts from some other point in X. This process of
reassigning points happens for border points of a cluster.

b Otherwise, label the current point as a core point belonging to cluster C.
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3 Iterate over each neighbor (new current point) and repeat step 2 until no new neighbors are
found that can be labeled as belonging to the current cluster C.

4 Select the next unlabeled point in X as the current point, and increase the cluster count by 1.
5 Repeat steps 2–4 until all points in X are labeled.

Determine Values for DBSCAN Parameters

This example shows how to select values for the epsilon and minpts parameters of dbscan. The
data set is a Lidar scan, stored as a collection of 3-D points, that contains the coordinates of objects
surrounding a vehicle.

Load, preprocess, and visualize the data set.

Load the x, y, z coordinates of the objects.

load('lidar_subset.mat') 
X = lidar_subset;

To highlight the environment around the vehicle, set the region of interest to span 20 meters to the
left and right of the vehicle, 20 meters in front and back of the vehicle, and the area above the
surface of the road.

xBound  = 20; % in meters
yBound  = 20; % in meters
zLowerBound = 0; % in meters

Crop the data to contain only points within the specified region.

indices = X(:,1) <= xBound & X(:,1) >= -xBound ...
    & X(:,2) <= yBound & X(:,2) >= -yBound ...
    & X(:,3) > zLowerBound;
X = X(indices,:); 

Visualize the data as a 2-D scatter plot. Annotate the plot to highlight the vehicle.

scatter(X(:,1),X(:,2),'.');
annotation('ellipse',[0.48 0.48 .1 .1],'Color','red')
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The center of the set of points (circled in red) contains the roof and hood of the vehicle. All other
points are obstacles.

Select a value for minpts.

To select a value for minpts, consider a value greater than or equal to one plus the number of
dimensions of the input data [1]. For example, for an n-by-p matrix X, set the value of 'minpts'
greater than or equal to p+1.

For the given data set, specify a minpts value greater than or equal to 4, specifically the value 50.

minpts = 50; % Minimum number of neighbors for a core point

Select a value for epsilon.

One strategy for estimating a value for epsilon is to generate a k-distance graph for the input data
X. For each point in X, find the distance to the kth nearest point, and plot sorted points against this
distance. The graph contains a knee. The distance that corresponds to the knee is generally a good
choice for epsilon, because it is the region where points start tailing off into outlier (noise) territory
[1].

Before plotting the k-distance graph, first find the minpts smallest pairwise distances for
observations in X, in ascending order.

kD = pdist2(X,X,'euc','Smallest',minpts);

Plot the k-distance graph.
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plot(sort(kD(end,:)));
title('k-distance graph')
xlabel('Points sorted with 50th nearest distances')
ylabel('50th nearest distances')
grid

The knee appears to be around 2; therefore, set the value of epsilon to 2.

epsilon = 2;

Cluster using dbscan.

Use dbscan with the values of minpts and epsilon that were determined in the previous steps.

labels = dbscan(X,epsilon,minpts);

Visualize the clustering and annotate the figure to highlight specific clusters.

numGroups = length(unique(labels));
gscatter(X(:,1),X(:,2),labels,hsv(numGroups));
title('epsilon = 2 and minpts = 50')
grid
annotation('ellipse',[0.54 0.41 .07 .07],'Color','red')
annotation('ellipse',[0.53 0.85 .07 .07],'Color','blue')
annotation('ellipse',[0.39 0.85 .07 .07],'Color','black')
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dbscan identifies 11 clusters and a set of noise points. The algorithm also identifies the vehicle at the
center of the set of points as a distinct cluster.

dbscan identifies some distinct clusters, such as the cluster circled in black (and centered around (–
6,18)) and the cluster circled in blue (and centered around (2.5,18)). The function also assigns the
group of points circled in red (and centered around (3,–4)) to the same cluster (group 7) as the
group of points in the southeast quadrant of the plot. The expectation is that these groups should be
in separate clusters.

Use a smaller value for epsilon to split up large clusters and further partition the points.

epsilon2 = 1;
labels2 = dbscan(X,epsilon2,minpts);

Visualize the clustering and annotate the figure to highlight specific clusters.

numGroups2 = length(unique(labels2));
gscatter(X(:,1),X(:,2),labels2,hsv(numGroups2));
title('epsilon = 1 and minpts = 50')
grid
annotation('ellipse',[0.54 0.41 .07 .07],'Color','red')
annotation('ellipse',[0.53 0.85 .07 .07],'Color','blue')
annotation('ellipse',[0.39 0.85 .07 .07],'Color','black')
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By using a smaller epsilon value, dbscan is able to assign the group of points circled in red to a
distinct cluster (group 13). However, some clusters that dbscan correctly identified before are now
split between cluster points and outliers. For example, see cluster group 2 (circled in black) and
cluster group 3 (circled in blue). The correct epsilon value is somewhere between 1 and 2.

Use an epsilon value of 1.55 to cluster the data.

epsilon3 = 1.55;
labels3 = dbscan(X,epsilon3,minpts);

Visualize the clustering and annotate the figure to highlight specific clusters.

numGroups3 = length(unique(labels3));
gscatter(X(:,1),X(:,2),labels3,hsv(numGroups3));
title('epsilon = 1.55 and minpts = 50')
grid
annotation('ellipse',[0.54 0.41 .07 .07],'Color','red')
annotation('ellipse',[0.53 0.85 .07 .07],'Color','blue')
annotation('ellipse',[0.39 0.85 .07 .07],'Color','black')
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dbscan does a better job of identifying the clusters when epsilon is set to 1.55. For example, the
function identifies the distinct clusters circled in red, black, and blue (with centers around (3,–4), (–
6,18), and (2.5,18), respectively).

References
[1] Ester, M., H.-P. Kriegel, J. Sander, and X. Xiaowei. “A density-based algorithm for discovering

clusters in large spatial databases with noise.” In Proceedings of the Second International
Conference on Knowledge Discovery in Databases and Data Mining, 226-231. Portland, OR:
AAAI Press, 1996.

See Also

More About
• “Choose Cluster Analysis Method” on page 17-2
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Partition Data Using Spectral Clustering
This topic provides an introduction to spectral clustering and an example that estimates the number
of clusters and performs spectral clustering.

Introduction to Spectral Clustering
Spectral clustering is a graph-based algorithm for partitioning data points, or observations, into k
clusters. The Statistics and Machine Learning Toolbox function spectralcluster performs
clustering on an input data matrix or on a similarity matrix on page 35-7064 of a similarity graph
derived from the data. spectralcluster returns the cluster indices, a matrix containing k
eigenvectors of the Laplacian matrix on page 35-7065, and a vector of eigenvalues corresponding to
the eigenvectors.

spectralcluster requires you to specify the number of clusters k. However, you can verify that
your estimate for k is correct by using one of these methods:

• Count the number of zero eigenvalues of the Laplacian matrix. The multiplicity of the zero
eigenvalues is an indicator of the number of clusters in your data.

• Find the number of connected components in your similarity matrix by using the MATLAB function
conncomp.

Algorithm Description
Spectral clustering is a graph-based algorithm for finding k arbitrarily shaped clusters in data. The
technique involves representing the data in a low dimension. In the low dimension, clusters in the
data are more widely separated, enabling you to use algorithms such as k-means or k-medoids
clustering. This low dimension is based on the eigenvectors corresponding to the k smallest
eigenvalues of a Laplacian matrix. A Laplacian matrix is one way of representing a similarity graph
that models the local neighborhood relationships between data points as an undirected graph. The
spectral clustering algorithm derives a similarity matrix of a similarity graph from your data, finds the
Laplacian matrix, and uses the Laplacian matrix to find k eigenvectors for splitting the similarity
graph into k partitions. You can use spectral clustering when you know the number of clusters, but
the algorithm also provides a way to estimate the number of clusters in your data.

By default, the algorithm for spectralcluster computes the normalized random-walk Laplacian
matrix using the method described by Shi-Malik [1]. spectralcluster also supports the
unnormalized Laplacian matrix and the normalized symmetric Laplacian matrix which uses the Ng-
Jordan-Weiss method [2]. The spectralcluster function implements clustering as follows:

1 For each data point in X, define a local neighborhood using either the radius search method or
nearest neighbor method, as specified by the 'SimilarityGraph' name-value pair argument
(see “Similarity Graph” on page 35-7064). Then, find the pairwise distances Disti, j for all points i
and j in the neighborhood.

2 Convert the distances to similarity measures using the kernel transformation

Si, j = exp −
Disti, j

σ
2

. The matrix S is the similarity matrix on page 35-7064, and σ is the scale

factor for the kernel, as specified using the 'KernelScale' name-value pair argument.
3 Calculate the unnormalized Laplacian matrix on page 35-7065 L , the normalized random-walk

Laplacian matrix Lrw, or the normalized symmetric Laplacian matrix Ls, depending on the value of
the 'LaplacianNormalization' name-value pair argument.
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4 Create a matrix V ∈ ℝn × k containing columns v1, …, vk, where the columns are the k
eigenvectors that correspond to the k smallest eigenvalues of the Laplacian matrix. If using Ls,
normalize each row of V to have unit length.

5 Treating each row of V as a point, cluster the n points using k-means clustering (default) or k-
medoids clustering, as specified by the 'ClusterMethod' name-value pair argument.

6 Assign the original points in X to the same clusters as their corresponding rows in V.

Estimate Number of Clusters and Perform Spectral Clustering

This example demonstrates two approaches for performing spectral clustering.

• The first approach estimates the number of clusters using the eigenvalues of the Laplacian matrix
and performs spectral clustering on the data set.

• The second approach estimates the number of clusters using the similarity graph and performs
spectral clustering on the similarity matrix.

Generate Sample Data

Randomly generate a sample data set with three well-separated clusters, each containing 20 points.

rng('default'); % For reproducibility
n = 20;
X = [randn(n,2)*0.5+3;
    randn(n,2)*0.5;
    randn(n,2)*0.5-3];

Perform Spectral Clustering on Data

Estimate the number of clusters in the data by using the eigenvalues of the Laplacian matrix, and
perform spectral clustering on the data set.

Compute the five smallest eigenvalues (in magnitude) of the Laplacian matrix by using the
spectralcluster function. By default, the function uses the normalized random-walk Laplacian
matrix.

[~,V_temp,D_temp] = spectralcluster(X,5)

V_temp = 60×5

    0.0000    0.2236   -0.0000   -0.1534   -0.0000
    0.0000    0.2236   -0.0000    0.3093    0.0000
    0.0000    0.2236   -0.0000   -0.2225    0.0000
    0.0000    0.2236   -0.0000   -0.1776   -0.0000
    0.0000    0.2236   -0.0000   -0.1331    0.0000
    0.0000    0.2236   -0.0000   -0.2176   -0.0000
    0.0000    0.2236   -0.0000   -0.1967    0.0000
    0.0000    0.2236   -0.0000    0.0088    0.0000
    0.0000    0.2236   -0.0000    0.2844    0.0000
    0.0000    0.2236   -0.0000    0.3275   -0.0000
      ⋮

D_temp = 5×1
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   -0.0000
   -0.0000
   -0.0000
    0.0876
    0.1653

Only the first three eigenvalues are approximately zero. The number of zero eigenvalues is a good
indicator of the number of connected components in a similarity graph and, therefore, is a good
estimate of the number of clusters in your data. So, k=3 is a good estimate of the number of clusters
in X.

Perform spectral clustering on observations by using the spectralcluster function. Specify k=3
clusters.

k = 3;
[idx1,V,D] = spectralcluster(X,k)

idx1 = 60×1

     1
     1
     1
     1
     1
     1
     1
     1
     1
     1
      ⋮

V = 60×3

    0.0000   -0.2236    0.0000
    0.0000   -0.2236    0.0000
    0.0000   -0.2236    0.0000
    0.0000   -0.2236    0.0000
    0.0000   -0.2236    0.0000
    0.0000   -0.2236    0.0000
    0.0000   -0.2236    0.0000
    0.0000   -0.2236    0.0000
    0.0000   -0.2236    0.0000
    0.0000   -0.2236    0.0000
      ⋮

D = 3×1
10-16 ×

   -0.1031
   -0.1601
   -0.3754

Elements of D correspond to the three smallest eigenvalues of the Laplacian matrix. The columns of V
contain the eigenvectors corresponding to the eigenvalues in D. For well-separated clusters, the
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eigenvectors are indicator vectors. The eigenvectors have values of zero (or close to zero) for points
that do not belong to a particular cluster, and nonzero values for points that belong to a particular
cluster.

Visualize the result of clustering.

gscatter(X(:,1),X(:,2),idx1);

The spectralcluster function correctly identifies the three clusters in the data set.

Instead of using the spectralcluster function again, you can pass V_temp to the kmeans function
to cluster the data points.

idx2 = kmeans(V_temp(:,1:3),3);
gscatter(X(:,1),X(:,2),idx2);
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The order of cluster assignments in idx1 and idx2 is different even though the data points are
clustered in the same way.

Perform Spectral Clustering on Similarity Matrix

Estimate the number of clusters using the similarity graph and perform spectral clustering on the
similarity matrix.

Find the distance between each pair of observations in X by using the pdist and squareform
functions with the default Euclidean distance metric.

dist_temp = pdist(X);
dist = squareform(dist_temp);

Construct the similarity matrix from the pairwise distance and confirm that the similarity matrix is
symmetric.

S = exp(-dist.^2);
issymmetric(S)

ans = logical
   1

Limit the similarity values to 0.5 so that the similarity graph connects only points whose pairwise
distances are smaller than the search radius.
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S_eps = S;
S_eps(S_eps<0.5) = 0;

Create a graph object from S.

G_eps = graph(S_eps);

Visualize the similarity graph.

plot(G_eps)

Identify the number of connected components in graph G_eps by using the unique and conncomp
functions.

unique(conncomp(G_eps))

ans = 1×3

     1     2     3

The similarity graph shows three sets of connected components. The number of connected
components in the similarity graph is a good estimate of the number of clusters in your data.
Therefore, k=3 is a good choice for the number of clusters in X.

Perform spectral clustering on the similarity matrix derived from the data set X.
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k = 3;
idx3 = spectralcluster(S_eps,k,'Distance','precomputed');
gscatter(X(:,1),X(:,2),idx3);

The spectralcluster function correctly identifies the three clusters in the data set.

References
[1] Shi, J., and J. Malik. “Normalized cuts and image segmentation.” IEEE Transactions on Pattern

Analysis and Machine Intelligence. Vol. 22, 2000, pp. 888–905.

[2] Ng, A.Y., M. Jordan, and Y. Weiss. “On spectral clustering: Analysis and an algorithm.” In
Proceedings of the Advances in Neural Information Processing Systems 14. MIT Press, 2001,
pp. 849–856.

See Also
spectralcluster | pdist2 | pdist | squareform | adjacency | conncomp

More About
• “Choose Cluster Analysis Method” on page 17-2
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k-Means Clustering
In this section...
“Introduction to k-Means Clustering” on page 17-33
“Compare k-Means Clustering Solutions” on page 17-33

This topic provides an introduction to k-means clustering and an example that uses the Statistics and
Machine Learning Toolbox function kmeans to find the best clustering solution for a data set.

Introduction to k-Means Clustering
k-means clustering is a partitioning method. The function kmeans partitions data into k mutually
exclusive clusters and returns the index of the cluster to which it assigns each observation. kmeans
treats each observation in your data as an object that has a location in space. The function finds a
partition in which objects within each cluster are as close to each other as possible, and as far from
objects in other clusters as possible. You can choose a distance metric on page 35-0  to use with
kmeans based on attributes of your data. Like many clustering methods, k-means clustering requires
you to specify the number of clusters k before clustering.

Unlike hierarchical clustering, k-means clustering operates on actual observations rather than the
dissimilarity between every pair of observations in the data. Also, k-means clustering creates a single
level of clusters, rather than a multilevel hierarchy of clusters. Therefore, k-means clustering is often
more suitable than hierarchical clustering for large amounts of data.

Each cluster in a k-means partition consists of member objects and a centroid (or center). In each
cluster, kmeans minimizes the sum of the distances between the centroid and all member objects of
the cluster. kmeans computes centroid clusters differently for the supported distance metrics. For
details, see 'Distance'.

You can control the details of the minimization using name-value pair arguments available to kmeans;
for example, you can specify the initial values of the cluster centroids and the maximum number of
iterations for the algorithm. By default, kmeans uses the k-means++ algorithm on page 35-4018 to
initialize cluster centroids, and the squared Euclidean distance metric to determine distances.

When performing k-means clustering, follow these best practices:

• Compare k-means clustering solutions for different values of k to determine an optimal number of
clusters for your data.

• Evaluate clustering solutions by examining silhouette plots and silhouette values. You can also use
the evalclusters function to evaluate clustering solutions based on criteria such as gap values,
silhouette values, Davies-Bouldin index values, and Calinski-Harabasz index values.

• Replicate clustering from different randomly selected centroids and return the solution with the
lowest total sum of distances among all the replicates.

To perform k-means clustering interactively, use the Cluster Data Live Editor task.

Compare k-Means Clustering Solutions

This example explores k-means clustering on a four-dimensional data set. The example shows how to
determine the correct number of clusters for the data set by using silhouette plots and values to
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analyze the results of different k-means clustering solutions. The example also shows how to use the
'Replicates' name-value pair argument to test a specified number of possible solutions and return
the one with the lowest total sum of distances.

Load Data Set

Load the kmeansdata data set.

rng('default')  % For reproducibility
load('kmeansdata.mat')
size(X)

ans = 1×2

   560     4

The data set is four-dimensional and cannot be visualized easily. However, kmeans enables you to
investigate whether a group structure exists in the data.

Create Clusters and Examine Separation

Partition the data set into three clusters using k-means clustering. Specify the city block distance
metric, and use the default k-means++ algorithm for cluster center initialization. Use the 'Display'
name-value pair argument to print the final sum of distances for the solution.

[idx3,C,sumdist3] = kmeans(X,3,'Distance','cityblock', ...
    'Display','final');

Replicate 1, 7 iterations, total sum of distances = 2459.98.
Best total sum of distances = 2459.98

idx3 contains cluster indices that indicate the cluster assignment for each row in X. To see if the
resulting clusters are well separated, you can create a silhouette plot.

A silhouette plot displays a measure of how close each point in one cluster is to points in the
neighboring clusters. This measure ranges from 1 (indicating points that are very distant from
neighboring clusters) through 0 (points that are not distinctly in one cluster or another) to –1 (points
that are probably assigned to the wrong cluster). silhouette returns these values in its first output.

Create a silhouette plot from idx3. Specify 'cityblock' for the distance metric to indicate that the
k-means clustering is based on the sum of absolute differences.

[silh3,h] = silhouette(X,idx3,'cityblock');
xlabel('Silhouette Value')
ylabel('Cluster')
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The silhouette plot shows that most points in the second cluster have a large silhouette value (greater
than 0.6), indicating that the cluster is somewhat separated from neighboring clusters. However, the
third cluster contains many points with low silhouette values, and the first and third clusters contain
a few points with negative values, indicating that these two clusters are not well separated.

To see if kmeans can find a better grouping of the data, increase the number of clusters to four. Print
information about each iteration by using the 'Display' name-value pair argument.

idx4 = kmeans(X,4,'Distance','cityblock','Display','iter');

  iter     phase         num             sum
     1         1         560         1792.72
     2         1           6          1771.1
Best total sum of distances = 1771.1

Create a silhouette plot for the four clusters.

[silh4,h] = silhouette(X,idx4,'cityblock');
xlabel('Silhouette Value')
ylabel('Cluster')
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The silhouette plot indicates that these four clusters are better separated than the three clusters in
the previous solution. You can take a more quantitative approach to comparing the two solutions by
computing the average silhouette values for the two cases.

Compute the average silhouette values.

cluster3 = mean(silh3)

cluster3 = 0.5352

cluster4 = mean(silh4)

cluster4 = 0.6400

The average silhouette value of the four clusters is higher than the average value of the three
clusters. These values support the conclusion represented in the silhouette plots.

Finally, find five clusters in the data. Create a silhouette plot and compute the average silhouette
values for the five clusters.

idx5 = kmeans(X,5,'Distance','cityblock','Display','final');

Replicate 1, 7 iterations, total sum of distances = 1647.26.
Best total sum of distances = 1647.26

[silh5,h] = silhouette(X,idx5,'cityblock');
xlabel('Silhouette Value')
ylabel('Cluster')
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mean(silh5)

ans = 0.5721

The silhouette plot indicates that five is probably not the right number of clusters, because two
clusters contain points with mostly low silhouette values, and the fifth cluster contains a few points
with negative values. Also, the average silhouette value for the five clusters is lower than the value
for the four clusters. Without knowing how many clusters are in the data, it is a good idea to
experiment with a range of values for k, the number of clusters.

Note that the sum of distances decreases as the number of clusters increases. For example, the sum
of distances decreases from 2459.98 to 1771.1 to 1647.26 as the number of clusters increases
from 3 to 4 to 5. Therefore, the sum of distances is not useful for determining the optimal number of
clusters.

Avoid Local Minima

By default, kmeans begins the clustering process using a randomly selected set of initial centroid
locations. The kmeans algorithm can converge to a solution that is a local (nonglobal) minimum; that
is, kmeans can partition the data such that moving any single point to a different cluster increases
the total sum of distances. However, as with many other types of numerical minimizations, the
solution that kmeans reaches sometimes depends on the starting points. Therefore, other solutions
(local minima) that have lower total sums of distances can exist for the data. You can use the
'Replicates' name-value pair argument to test different solutions. When you specify more than
one replicate, kmeans repeats the clustering process starting from different randomly selected
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centroids for each replicate, and returns the solution with the lowest total sum of distances among all
the replicates.

Find four clusters in the data and replicate the clustering five times. Also, specify the city block
distance metric, and use the 'Display' name-value pair argument to print the final sum of distances
for each solution.

[idx4,cent4,sumdist] = kmeans(X,4,'Distance','cityblock', ...
    'Display','final','Replicates',5);               

Replicate 1, 2 iterations, total sum of distances = 1771.1.
Replicate 2, 3 iterations, total sum of distances = 1771.1.
Replicate 3, 3 iterations, total sum of distances = 1771.1.
Replicate 4, 6 iterations, total sum of distances = 2300.23.
Replicate 5, 2 iterations, total sum of distances = 1771.1.
Best total sum of distances = 1771.1

In replicate 4, kmeans finds a local minimum. Because each replicate begins from a different
randomly selected set of initial centroids, kmeans sometimes finds more than one local minimum.
However, the final solution that kmeans returns is the one with the lowest total sum of distances over
all replicates.

Find the total of the within-cluster sums of point-to-centroid distances for the final solution returned
by kmeans.

sum(sumdist)

ans = 1.7711e+03

See Also
Cluster Data | kmeans | silhouette

More About
• “Choose Cluster Analysis Method” on page 17-2
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Cluster Using Gaussian Mixture Model
This topic provides an introduction to clustering with a Gaussian mixture model (GMM) using the
Statistics and Machine Learning Toolbox function cluster, and an example that shows the effects of
specifying optional parameters when fitting the GMM model using fitgmdist.

How Gaussian Mixture Models Cluster Data
Gaussian mixture models (GMMs) are often used for data clustering. You can use GMMs to perform
either hard clustering or soft clustering on query data.

To perform hard clustering, the GMM assigns query data points to the multivariate normal
components that maximize the component posterior probability, given the data. That is, given a fitted
GMM, cluster assigns query data to the component yielding the highest posterior probability. Hard
clustering assigns a data point to exactly one cluster. For an example showing how to fit a GMM to
data, cluster using the fitted model, and estimate component posterior probabilities, see “Cluster
Gaussian Mixture Data Using Hard Clustering” on page 17-46.

Additionally, you can use a GMM to perform a more flexible clustering on data, referred to as soft (or
fuzzy) clustering. Soft clustering methods assign a score to a data point for each cluster. The value of
the score indicates the association strength of the data point to the cluster. As opposed to hard
clustering methods, soft clustering methods are flexible because they can assign a data point to more
than one cluster. When you perform GMM clustering, the score is the posterior probability. For an
example of soft clustering with a GMM, see “Cluster Gaussian Mixture Data Using Soft Clustering”
on page 17-52.

GMM clustering can accommodate clusters that have different sizes and correlation structures within
them. Therefore, in certain applications,, GMM clustering can be more appropriate than methods
such as k-means clustering. Like many clustering methods, GMM clustering requires you to specify
the number of clusters before fitting the model. The number of clusters specifies the number of
components in the GMM.

For GMMs, follow these best practices:

• Consider the component covariance structure. You can specify diagonal or full covariance
matrices, and whether all components have the same covariance matrix.

• Specify initial conditions. The Expectation-Maximization (EM) algorithm fits the GMM. As in the k-
means clustering algorithm, EM is sensitive to initial conditions and might converge to a local
optimum. You can specify your own starting values for the parameters, specify initial cluster
assignments for data points or let them be selected randomly, or specify use of the k-means++
algorithm on page 35-2321.

• Implement regularization. For example, if you have more predictors than data points, then you can
regularize for estimation stability.

Fit GMM with Different Covariance Options and Initial Conditions

This example explores the effects of specifying different options for covariance structure and initial
conditions when you perform GMM clustering.

Load Fisher's iris data set. Consider clustering the sepal measurements, and visualize the data in 2-D
using the sepal measurements.
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load fisheriris;
X = meas(:,1:2);
[n,p] = size(X);

plot(X(:,1),X(:,2),'.','MarkerSize',15);
title('Fisher''s Iris Data Set');
xlabel('Sepal length (cm)');
ylabel('Sepal width (cm)');

The number of components k in a GMM determines the number of subpopulations, or clusters. In this
figure, it is difficult to determine if two, three, or perhaps more Gaussian components are
appropriate. A GMM increases in complexity as k increases.

Specify Different Covariance Structure Options

Each Gaussian component has a covariance matrix. Geometrically, the covariance structure
determines the shape of a confidence ellipsoid drawn over a cluster. You can specify whether the
covariance matrices for all components are diagonal or full, and whether all components have the
same covariance matrix. Each combination of specifications determines the shape and orientation of
the ellipsoids.

Specify three GMM components and 1000 maximum iterations for the EM algorithm. For
reproducibility, set the random seed.

rng(3);
k = 3; % Number of GMM components
options = statset('MaxIter',1000);
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Specify covariance structure options.

Sigma = {'diagonal','full'}; % Options for covariance matrix type
nSigma = numel(Sigma);

SharedCovariance = {true,false}; % Indicator for identical or nonidentical covariance matrices
SCtext = {'true','false'};
nSC = numel(SharedCovariance);

Create a 2-D grid covering the plane composed of extremes of the measurements. You will use this
grid later to draw confidence ellipsoids over the clusters.

d = 500; % Grid length
x1 = linspace(min(X(:,1))-2, max(X(:,1))+2, d);
x2 = linspace(min(X(:,2))-2, max(X(:,2))+2, d);
[x1grid,x2grid] = meshgrid(x1,x2);
X0 = [x1grid(:) x2grid(:)];

Specify the following:

• For all combinations of the covariance structure options, fit a GMM with three components.
• Use the fitted GMM to cluster the 2-D grid.
• Obtain the score that specifies a 99% probability threshold for each confidence region. This
specification determines the length of the major and minor axes of the ellipsoids.

• Color each ellipsoid using a similar color as its cluster.

threshold = sqrt(chi2inv(0.99,2));
count = 1;
for i = 1:nSigma
    for j = 1:nSC
        gmfit = fitgmdist(X,k,'CovarianceType',Sigma{i}, ...
            'SharedCovariance',SharedCovariance{j},'Options',options); % Fitted GMM
        clusterX = cluster(gmfit,X); % Cluster index 
        mahalDist = mahal(gmfit,X0); % Distance from each grid point to each GMM component
        % Draw ellipsoids over each GMM component and show clustering result.
        subplot(2,2,count);
        h1 = gscatter(X(:,1),X(:,2),clusterX);
        hold on
            for m = 1:k
                idx = mahalDist(:,m)<=threshold;
                Color = h1(m).Color*0.75 - 0.5*(h1(m).Color - 1);
                h2 = plot(X0(idx,1),X0(idx,2),'.','Color',Color,'MarkerSize',1);
                uistack(h2,'bottom');
            end    
        plot(gmfit.mu(:,1),gmfit.mu(:,2),'kx','LineWidth',2,'MarkerSize',10)
        title(sprintf('Sigma is %s\nSharedCovariance = %s',Sigma{i},SCtext{j}),'FontSize',8)
        legend(h1,{'1','2','3'})
        hold off
        count = count + 1;
    end
end

 Cluster Using Gaussian Mixture Model

17-41



The probability threshold for the confidence region determines the length of the major and minor
axes, and the covariance type determines the orientation of the axes. Note the following about
options for the covariance matrices:

• Diagonal covariance matrices indicate that the predictors are uncorrelated. The major and
minor axes of the ellipses are parallel or perpendicular to the x and y axes. This specification
increases the total number of parameters by p, the number of predictors, for each component, but
is more parsimonious than the full covariance specification.

• Full covariance matrices allow for correlated predictors with no restriction to the orientation of
the ellipses relative to the x and y axes. Each component increases the total number of parameters
by p(p + 1)/2, but captures the correlation structure among the predictors. This specification can
cause overfitting.

• Shared covariance matrices indicate that all components have the same covariance matrix. All
ellipses are the same size and have the same orientation. This specification is more parsimonious
than the unshared specification because the total number of parameters increases by the number
of covariance parameters for one component only.

• Unshared covariance matrices indicate that each component has its own covariance matrix.
The size and orientation of all ellipses might differ. This specification increases the number of
parameters by k times the number of covariance parameters for a component, but can capture
covariance differences among components.

The figure also shows that cluster does not always preserve cluster order. If you cluster several
fitted gmdistribution models, cluster can assign different cluster labels for similar components.
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Specify Different Initial Conditions

The algorithm that fits a GMM to the data can be sensitive to initial conditions. To illustrate this
sensitivity, fit four different GMMs as follows:

1 For the first GMM, assign most data points to the first cluster.
2 For the second GMM, randomly assign data points to clusters.
3 For the third GMM, make another random assignment of data points to clusters.
4 For the fourth GMM, use k-means++ to obtain initial cluster centers.

initialCond1 = [ones(n-8,1); [2; 2; 2; 2]; [3; 3; 3; 3]]; % For the first GMM
initialCond2 = randsample(1:k,n,true); % For the second GMM
initialCond3 = randsample(1:k,n,true); % For the third GMM
initialCond4 = 'plus'; % For the fourth GMM
cluster0 = {initialCond1; initialCond2; initialCond3; initialCond4};

For all instances, use k = 3 components, unshared and full covariance matrices, the same initial
mixture proportions, and the same initial covariance matrices. For stability when you try different
sets of initial values, increase the number of EM algorithm iterations. Also, draw confidence ellipsoids
over the clusters.

converged = nan(4,1);

for j = 1:4
    gmfit = fitgmdist(X,k,'CovarianceType','full', ...
        'SharedCovariance',false,'Start',cluster0{j}, ...
        'Options',options);
    clusterX = cluster(gmfit,X); % Cluster index 
    mahalDist = mahal(gmfit,X0); % Distance from each grid point to each GMM component
    % Draw ellipsoids over each GMM component and show clustering result.
    subplot(2,2,j);
    h1 = gscatter(X(:,1),X(:,2),clusterX); % Distance from each grid point to each GMM component
    hold on;
    nK = numel(unique(clusterX));
    for m = 1:nK
        idx = mahalDist(:,m)<=threshold;
        Color = h1(m).Color*0.75 + -0.5*(h1(m).Color - 1);
        h2 = plot(X0(idx,1),X0(idx,2),'.','Color',Color,'MarkerSize',1);
        uistack(h2,'bottom');
    end
    plot(gmfit.mu(:,1),gmfit.mu(:,2),'kx','LineWidth',2,'MarkerSize',10)
    legend(h1,{'1','2','3'});
    hold off
    converged(j) = gmfit.Converged; % Indicator for convergence
end
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sum(converged)

ans = 4

All algorithms converged. Each starting cluster assignment for the data points leads to a different,
fitted cluster assignment. You can specify a positive integer for the name-value pair argument
“Replicates” on page 35-0 , which runs the algorithm the specified number of times. Subsequently,
fitgmdist chooses the fit that yields the largest likelihood.

When to Regularize
Sometimes, during an iteration of the EM algorithm, a fitted covariance matrix can become ill
conditioned, which means the likelihood is escaping to infinity. This problem can happen if one or
more of the following conditions exist:

• You have more predictors than data points.
• You specify fitting with too many components.
• Variables are highly correlated.

To overcome this problem, you can specify a small, positive number using the
'RegularizationValue' name-value pair argument. fitgmdist adds this number to the diagonal
elements of all covariance matrices, which ensures that all matrices are positive definite.
Regularizing can reduce the maximal likelihood value.
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Model Fit Statistics
In most applications, the number of components k and appropriate covariance structure Σ are
unknown. One way you can tune a GMM is by comparing information criteria. Two popular
information criteria are the Akaike Information Criterion (AIC) and Bayesian Information Criterion
(BIC).

Both the AIC and BIC take the optimized, negative loglikelihood and then penalize it with the number
of parameters in the model (the model complexity). However, the BIC penalizes for complexity more
severely than the AIC. Therefore, the AIC tends to choose more complex models that might overfit,
and the BIC tends to choose simpler models that might underfit. A good practice is to look at both
criteria when evaluating a model. Lower AIC or BIC values indicate better fitting models. Also, ensure
that your choices for k and the covariance matrix structure are appropriate for your application.
fitgmdist stores the AIC and BIC of fitted gmdistribution model objects in the properties AIC
and BIC. You can access these properties by using dot notation. For an example showing how to
choose the appropriate parameters, see “Tune Gaussian Mixture Models” on page 17-57.

See Also
fitgmdist | gmdistribution | cluster

More About
• “Cluster Gaussian Mixture Data Using Hard Clustering” on page 17-46
• “Cluster Gaussian Mixture Data Using Soft Clustering” on page 17-52
• “Tune Gaussian Mixture Models” on page 17-57
• “Choose Cluster Analysis Method” on page 17-2
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Cluster Gaussian Mixture Data Using Hard Clustering

This example shows how to implement hard clustering on simulated data from a mixture of Gaussian
distributions.

Gaussian mixture models can be used for clustering data, by realizing that the multivariate normal
components of the fitted model can represent clusters.

Simulate Data from a Mixture of Gaussian Distributions

Simulate data from a mixture of two bivariate Gaussian distributions using mvnrnd.

rng('default')  % For reproducibility
mu1 = [1 2];
sigma1 = [3 .2; .2 2];
mu2 = [-1 -2];
sigma2 = [2 0; 0 1];
X = [mvnrnd(mu1,sigma1,200); mvnrnd(mu2,sigma2,100)];
n = size(X,1);

figure
scatter(X(:,1),X(:,2),10,'ko')
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Fit a Gaussian Mixture Model to the Simulated Data

Fit a two-component Gaussian mixture model (GMM). Here, you know the correct number of
components to use. In practice, with real data, this decision would require comparing models with
different numbers of components. Also, request to display the final iteration of the expectation-
maximization fitting routine.

options = statset('Display','final'); 
gm = fitgmdist(X,2,'Options',options)

26 iterations, log-likelihood = -1210.59

gm = 

Gaussian mixture distribution with 2 components in 2 dimensions
Component 1:
Mixing proportion: 0.629514
Mean:    1.0756    2.0421

Component 2:
Mixing proportion: 0.370486
Mean:   -0.8296   -1.8488

Plot the estimated probability density contours for the two-component mixture distribution. The two
bivariate normal components overlap, but their peaks are distinct. This suggests that the data could
reasonably be divided into two clusters.

hold on
gmPDF = @(x,y) arrayfun(@(x0,y0) pdf(gm,[x0,y0]),x,y);
fcontour(gmPDF,[-8,6])
title('Scatter Plot and Fitted GMM Contour')
hold off
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Cluster the Data Using the Fitted GMM

cluster implements "hard clustering", a method that assigns each data point to exactly one cluster.
For GMM, cluster assigns each point to one of the two mixture components in the GMM. The
center of each cluster is the corresponding mixture component mean. For details on "soft clustering,"
see “Cluster Gaussian Mixture Data Using Soft Clustering” on page 17-52.

Partition the data into clusters by passing the fitted GMM and the data to cluster.

idx = cluster(gm,X);
cluster1 = (idx == 1); % |1| for cluster 1 membership
cluster2 = (idx == 2); % |2| for cluster 2 membership

figure
gscatter(X(:,1),X(:,2),idx,'rb','+o')
legend('Cluster 1','Cluster 2','Location','best')
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Each cluster corresponds to one of the bivariate normal components in the mixture distribution.
cluster assigns data to clusters based on a cluster membership score. Each cluster membership
scores is the estimated posterior probability that the data point came from the corresponding
component. cluster assigns each point to the mixture component corresponding to the highest
posterior probability.

You can estimate cluster membership posterior probabilities by passing the fitted GMM and data to
either:

• posterior
• cluster, and request to return the third output argument

Estimate Cluster Membership Posterior Probabilities

Estimate and plot the posterior probability of the first component for each point.

P = posterior(gm,X); 

figure
scatter(X(cluster1,1),X(cluster1,2),10,P(cluster1,1),'+')
hold on
scatter(X(cluster2,1),X(cluster2,2),10,P(cluster2,1),'o')
hold off
clrmap = jet(80);
colormap(clrmap(9:72,:))
ylabel(colorbar,'Component 1 Posterior Probability')
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legend('Cluster 1','Cluster 2','Location','best')
title('Scatter Plot and Cluster 1 Posterior Probabilities')

P is an n-by-2 matrix of cluster membership posterior probabilities. The first column contains the
probabilities for cluster 1 and the second column corresponds to cluster 2.

Assign New Data to Clusters

You can also use the cluster method to assign new data points to the mixture components found in
the original data.

Simulate new data from a mixture of Gaussian distributions. Rather than using mvnrnd, you can
create a GMM with the true mixture component means and standard deviations using
gmdistribution, and then pass the GMM to random to simulate data.

Mu = [mu1; mu2]; 
Sigma = cat(3,sigma1,sigma2); 
p = [0.75 0.25]; % Mixing proportions

gmTrue = gmdistribution(Mu,Sigma,p);
X0 = random(gmTrue,75);

Assign clusters to the new data by pass the fitted GMM (gm) and the new data to cluster. Request
cluster membership posterior probabilities.

[idx0,~,P0] = cluster(gm,X0);
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figure
fcontour(gmPDF,[min(X0(:,1)) max(X0(:,1)) min(X0(:,2)) max(X0(:,2))])
hold on
gscatter(X0(:,1),X0(:,2),idx0,'rb','+o')
legend('Fitted GMM Contour','Cluster 1','Cluster 2','Location','best')
title('New Data Cluster Assignments')
hold off

For cluster to provide meaningful results when clustering new data, X0 should come from the same
population as X, the original data used to create the mixture distribution. In particular, when
computing the posterior probabilities for X0, cluster and posterior use the estimated mixing
probabilities.

See Also
fitgmdist | gmdistribution | cluster | posterior | random

More About
• “Cluster Using Gaussian Mixture Model” on page 17-39
• “Cluster Gaussian Mixture Data Using Soft Clustering” on page 17-52
• “Tune Gaussian Mixture Models” on page 17-57
• “Choose Cluster Analysis Method” on page 17-2
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Cluster Gaussian Mixture Data Using Soft Clustering

This example shows how to implement soft clustering on simulated data from a mixture of Gaussian
distributions.

cluster estimates cluster membership posterior probabilities, and then assigns each point to the
cluster corresponding to the maximum posterior probability. Soft clustering is an alternative
clustering method that allows some data points to belong to multiple clusters. To implement soft
clustering:

1 Assign a cluster membership score to each data point that describes how similar each point is to
each cluster's archetype. For a mixture of Gaussian distributions, the cluster archetype is
corresponding component mean, and the component can be the estimated cluster membership
posterior probability.

2 Rank the points by their cluster membership score.
3 Inspect the scores and determine cluster memberships.

For algorithms that use posterior probabilities as scores, a data point is a member of the cluster
corresponding to the maximum posterior probability. However, if there are other clusters with
corresponding posterior probabilities that are close to the maximum, then the data point can also be
a member of those clusters. It is good practice to determine the threshold on scores that yield
multiple cluster memberships before clustering.

This example follows from “Cluster Gaussian Mixture Data Using Hard Clustering” on page 17-46.

Simulate data from a mixture of two bivariate Gaussian distributions.

rng(0,'twister')  % For reproducibility
mu1 = [1 2];
sigma1 = [3 .2; .2 2];
mu2 = [-1 -2];
sigma2 = [2 0; 0 1];
X = [mvnrnd(mu1,sigma1,200); mvnrnd(mu2,sigma2,100)];

Fit a two-component Gaussian mixture model (GMM). Because there are two components, suppose
that any data point with cluster membership posterior probabilities in the interval [0.4,0.6] can be a
member of both clusters.

gm = fitgmdist(X,2);
threshold = [0.4 0.6];

Estimate component-member posterior probabilities for all data points using the fitted GMM gm.
These represent cluster membership scores.

P = posterior(gm,X);

For each cluster, rank the membership scores for all data points. For each cluster, plot each data
points membership score with respect to its ranking relative to all other data points.

n = size(X,1);
[~,order] = sort(P(:,1));

figure
plot(1:n,P(order,1),'r-',1:n,P(order,2),'b-')
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legend({'Cluster 1', 'Cluster 2'})
ylabel('Cluster Membership Score')
xlabel('Point Ranking')
title('GMM with Full Unshared Covariances')

Although a clear separation is hard to see in a scatter plot of the data, plotting the membership
scores indicates that the fitted distribution does a good job of separating the data into groups.

Plot the data and assign clusters by maximum posterior probability. Identify points that could be in
either cluster.

idx = cluster(gm,X);
idxBoth = find(P(:,1)>=threshold(1) & P(:,1)<=threshold(2)); 
numInBoth = numel(idxBoth)

numInBoth = 7

figure
gscatter(X(:,1),X(:,2),idx,'rb','+o',5)
hold on
plot(X(idxBoth,1),X(idxBoth,2),'ko','MarkerSize',10)
legend({'Cluster 1','Cluster 2','Both Clusters'},'Location','SouthEast')
title('Scatter Plot - GMM with Full Unshared Covariances')
hold off
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Using the score threshold interval, seven data points can be in either cluster.

Soft clustering using a GMM is similar to fuzzy k-means clustering, which also assigns each point to
each cluster with a membership score. The fuzzy k-means algorithm assumes that clusters are
roughly spherical in shape, and all of roughly equal size. This is comparable to a Gaussian mixture
distribution with a single covariance matrix that is shared across all components, and is a multiple of
the identity matrix. In contrast, gmdistribution allows you to specify different covariance
structures. The default is to estimate a separate, unconstrained covariance matrix for each
component. A more restricted option, closer to k-means, is to estimate a shared, diagonal covariance
matrix.

Fit a GMM to the data, but specify that the components share the same, diagonal covariance matrix.
This specification is similar to implementing fuzzy k-means clustering, but provides more flexibility by
allowing unequal variances for different variables.

gmSharedDiag = fitgmdist(X,2,'CovType','Diagonal', ...
    'SharedCovariance',true');

Estimate component-member posterior probabilities for all data points using the fitted GMM
gmSharedDiag. Estimate soft cluster assignments.

[idxSharedDiag,~,PSharedDiag] = cluster(gmSharedDiag,X);
idxBothSharedDiag = find(PSharedDiag(:,1)>=threshold(1) & ...
    PSharedDiag(:,1)<=threshold(2)); 
numInBoth = numel(idxBothSharedDiag)

numInBoth = 5
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Assuming shared, diagonal covariances among components, five data points could be in either cluster.

For each cluster:

1 Rank the membership scores for all data points.
2 Plot each data points membership score with respect to its ranking relative to all other data

points.

[~,orderSharedDiag] = sort(PSharedDiag(:,1));

figure
plot(1:n,PSharedDiag(orderSharedDiag,1),'r-',...
    1:n,PSharedDiag(orderSharedDiag,2),'b-')
legend({'Cluster 1' 'Cluster 2'},'Location','NorthEast')
ylabel('Cluster Membership Score')
xlabel('Point Ranking')
title('GMM with Shared Diagonal Component Covariances')

Plot the data and identify the hard, clustering assignments from the GMM analysis assuming the
shared, diagonal covariances among components. Also, identify those data points that could be in
either cluster.

figure
gscatter(X(:,1),X(:,2),idxSharedDiag,'rb','+o',5)
hold on
plot(X(idxBothSharedDiag,1),X(idxBothSharedDiag,2),'ko','MarkerSize',10)
legend({'Cluster 1','Cluster 2','Both Clusters'},'Location','SouthEast')
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title('Scatter Plot - GMM with Shared Diagonal Component Covariances')
hold off

See Also
fitgmdist | gmdistribution | cluster

More About
• “Cluster Using Gaussian Mixture Model” on page 17-39
• “Cluster Gaussian Mixture Data Using Hard Clustering” on page 17-46
• “Tune Gaussian Mixture Models” on page 17-57
• “Choose Cluster Analysis Method” on page 17-2
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Tune Gaussian Mixture Models

This example shows how to determine the best Gaussian mixture model (GMM) fit by adjusting the
number of components and the component covariance matrix structure.

Load Fisher's iris data set. Consider the petal measurements as predictors.

load fisheriris
X = meas(:,3:4);
[n,p] = size(X);
rng(1) % For reproducibility

figure
plot(X(:,1),X(:,2),'.','MarkerSize',15)
title('Fisher''s Iris Data Set')
xlabel('Petal length (cm)')
ylabel('Petal width (cm)')

Suppose k is the number of desired components or clusters, and Σ is the covariance structure for all
components. Follow these steps to tune a GMM.

1 Choose a (k,Σ) pair, and then fit a GMM using the chosen parameter specification and the entire
data set.

2 Estimate the AIC and BIC.
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3 Repeat steps 1 and 2 until you exhaust all (k,Σ) pairs of interest.
4 Choose the fitted GMM that balances low AIC with simplicity.

For this example, choose a grid of values for k that include 2 and 3, and some surrounding numbers.
Specify all available choices for covariance structure. If k is too high for the data set, then the
estimated component covariances can be badly conditioned. Specify to use regularization to avoid
badly conditioned covariance matrices. Increase the number of EM algorithm iterations to 10000.

k = 1:5;
nK = numel(k);
Sigma = {'diagonal','full'};
nSigma = numel(Sigma);
SharedCovariance = {true,false};
SCtext = {'true','false'};
nSC = numel(SharedCovariance);
RegularizationValue = 0.01;
options = statset('MaxIter',10000);

Fit the GMMs using all parameter combination. Compute the AIC and BIC for each fit. Track the
terminal convergence status of each fit.

% Preallocation
gm = cell(nK,nSigma,nSC);         
aic = zeros(nK,nSigma,nSC);
bic = zeros(nK,nSigma,nSC);
converged = false(nK,nSigma,nSC);

% Fit all models
for m = 1:nSC
    for j = 1:nSigma
        for i = 1:nK
            gm{i,j,m} = fitgmdist(X,k(i),...
                'CovarianceType',Sigma{j},...
                'SharedCovariance',SharedCovariance{m},...
                'RegularizationValue',RegularizationValue,...
                'Options',options);
            aic(i,j,m) = gm{i,j,m}.AIC;
            bic(i,j,m) = gm{i,j,m}.BIC;
            converged(i,j,m) = gm{i,j,m}.Converged;
        end
    end
end

allConverge = (sum(converged(:)) == nK*nSigma*nSC)

allConverge = logical
   1

gm is a cell array containing all of the fitted gmdistribution model objects. All of the fitting
instances converged.

Plot separate bar charts to compare the AIC and BIC among all fits. Group the bars by k.

figure
bar(reshape(aic,nK,nSigma*nSC))
title('AIC For Various $k$ and $\Sigma$ Choices','Interpreter','latex')
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xlabel('$k$','Interpreter','Latex')
ylabel('AIC')
legend({'Diagonal-shared','Full-shared','Diagonal-unshared',...
    'Full-unshared'})

figure
bar(reshape(bic,nK,nSigma*nSC))
title('BIC For Various $k$ and $\Sigma$ Choices','Interpreter','latex')
xlabel('$c$','Interpreter','Latex')
ylabel('BIC')
legend({'Diagonal-shared','Full-shared','Diagonal-unshared',...
    'Full-unshared'})
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According to the AIC and BIC values, the best model has 3 components and a full, unshared
covariance matrix structure.

Cluster the training data using the best fitting model. Plot the clustered data and the component
ellipses.

gmBest = gm{3,2,2};
clusterX = cluster(gmBest,X);
kGMM = gmBest.NumComponents;
d = 500;
x1 = linspace(min(X(:,1)) - 2,max(X(:,1)) + 2,d);
x2 = linspace(min(X(:,2)) - 2,max(X(:,2)) + 2,d);
[x1grid,x2grid] = meshgrid(x1,x2);
X0 = [x1grid(:) x2grid(:)];
mahalDist = mahal(gmBest,X0);
threshold = sqrt(chi2inv(0.99,2));

figure
h1 = gscatter(X(:,1),X(:,2),clusterX);
hold on
for j = 1:kGMM
    idx = mahalDist(:,j)<=threshold;
    Color = h1(j).Color*0.75 + -0.5*(h1(j).Color - 1);
    h2 = plot(X0(idx,1),X0(idx,2),'.','Color',Color,'MarkerSize',1);
    uistack(h2,'bottom')
end
plot(gmBest.mu(:,1),gmBest.mu(:,2),'kx','LineWidth',2,'MarkerSize',10)
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title('Clustered Data and Component Structures')
xlabel('Petal length (cm)')
ylabel('Petal width (cm)')
legend(h1,'Cluster 1','Cluster 2','Cluster 3','Location','NorthWest')
hold off

This data set includes labels. Determine how well gmBest clusters the data by comparing each
prediction to the true labels.

species = categorical(species);
Y = zeros(n,1);
Y(species == 'versicolor') = 1;
Y(species == 'virginica') = 2;
Y(species == 'setosa') = 3;

miscluster = Y ~= clusterX;
clusterError = sum(miscluster)/n

clusterError = 0.0800

The best fitting GMM groups 8% of the observations into the wrong cluster.

cluster does not always preserve cluster order. That is, if you cluster several fitted
gmdistribution models, cluster might assign different cluster labels for similar components.
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See Also
fitgmdist | gmdistribution | cluster

More About
• “Cluster Using Gaussian Mixture Model” on page 17-39
• “Cluster Gaussian Mixture Data Using Hard Clustering” on page 17-46
• “Cluster Gaussian Mixture Data Using Soft Clustering” on page 17-52
• “Choose Cluster Analysis Method” on page 17-2
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Cluster Evaluation

This example shows how to identify clusters in Fisher's iris data.

Load Fisher's iris data set.

load fisheriris
X = meas;
y = categorical(species);

X is a numeric matrix that contains two petal measurements for 150 irises. Y is a cell array of
character vectors that contains the corresponding iris species.

Evaluate multiple clusters from 1 to 10.

eva = evalclusters(X,'kmeans','CalinskiHarabasz','KList',1:10)

eva = 
  CalinskiHarabaszEvaluation with properties:

    NumObservations: 150
         InspectedK: [1 2 3 4 5 6 7 8 9 10]
    CriterionValues: [NaN 513.9245 561.6278 530.4871 456.1279 469.5068 ... ]
           OptimalK: 3

The OptimalK value indicates that, based on the Calinski-Harabasz criterion, the optimal number of
clusters is three.

Visualize eva to see the results for each number of clusters.

plot(eva)
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Most clustering algorithms need prior knowledge of the number of clusters. When this information is
not available, use cluster evaluation techniques to determine the number of clusters present in the
data based on a specified metric.

Three clusters is consistent with the three species in the data.

categories(y)

ans = 3x1 cell
    {'setosa'    }
    {'versicolor'}
    {'virginica' }

Compute a nonnegative rank-two approximation of the data for visualization purposes.

Xred = nnmf(X,2);

The original features are reduced to two features. Since none of the features are negative, nnmf also
guarantees that the features are nonnegative.

Confirm the three clusters visually using a scatter plot.

gscatter(Xred(:,1),Xred(:,2),y)
xlabel('Column 1')
ylabel('Column 2')
grid on
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See Also
evalclusters | nnmf
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Cluster Analysis

This example shows how to examine similarities and dissimilarities of observations or objects using
cluster analysis in Statistics and Machine Learning Toolbox™. Data often fall naturally into groups (or
clusters) of observations, where the characteristics of objects in the same cluster are similar and the
characteristics of objects in different clusters are dissimilar.

K-Means and Hierarchical Clustering

The Statistics and Machine Learning Toolbox includes functions to perform K-means clustering and
hierarchical clustering.

K-means clustering is a partitioning method that treats observations in your data as objects having
locations and distances from each other. It partitions the objects into K mutually exclusive clusters,
such that objects within each cluster are as close to each other as possible, and as far from objects in
other clusters as possible. Each cluster is characterized by its centroid, or center point. Of course,
the distances used in clustering often do not represent spatial distances.

Hierarchical clustering is a way to investigate grouping in your data, simultaneously over a variety of
scales of distance, by creating a cluster tree. The tree is not a single set of clusters, as in K-Means,
but rather a multi-level hierarchy, where clusters at one level are joined as clusters at the next higher
level. This allows you to decide what scale or level of clustering is most appropriate in your
application.

Some of the functions used in this example call MATLAB® built-in random number generation
functions. To duplicate the exact results shown in this example, you should execute the command
below, to set the random number generator to a known state. If you do not set the state, your results
may differ in trivial ways, for example, you may see clusters numbered in a different order. There is
also a chance that a suboptimal cluster solution may result (the example includes a discussion of
suboptimal solutions, including ways to avoid them).

rng(6,'twister')

Fisher's Iris Data

In the 1920's, botanists collected measurements on the sepal length, sepal width, petal length, and
petal width of 150 iris specimens, 50 from each of three species. The measurements became known
as Fisher's iris data set.

Each observation in this data set comes from a known species, and so there is already an obvious way
to group the data. For the moment, we will ignore the species information and cluster the data using
only the raw measurements. When we are done, we can compare the resulting clusters to the actual
species, to see if the three types of iris possess distinct characteristics.

Clustering Fisher's Iris Data Using K-Means Clustering

The function kmeans performs K-Means clustering, using an iterative algorithm that assigns objects
to clusters so that the sum of distances from each object to its cluster centroid, over all clusters, is a
minimum. Used on Fisher's iris data, it will find the natural groupings among iris specimens, based
on their sepal and petal measurements. With K-means clustering, you must specify the number of
clusters that you want to create.

First, load the data and call kmeans with the desired number of clusters set to 2, and using squared
Euclidean distance. To get an idea of how well-separated the resulting clusters are, you can make a
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silhouette plot. The silhouette plot displays a measure of how close each point in one cluster is to
points in the neighboring clusters.

load fisheriris
[cidx2,cmeans2] = kmeans(meas,2,'dist','sqeuclidean');
[silh2,h] = silhouette(meas,cidx2,'sqeuclidean');

From the silhouette plot, you can see that most points in both clusters have a large silhouette value,
greater than 0.8, indicating that those points are well-separated from neighboring clusters. However,
each cluster also contains a few points with low silhouette values, indicating that they are nearby to
points from other clusters.

It turns out that the fourth measurement in these data, the petal width, is highly correlated with the
third measurement, the petal length, and so a 3-D plot of the first three measurements gives a good
representation of the data, without resorting to four dimensions. If you plot the data, using different
symbols for each cluster created by kmeans, you can identify the points with small silhouette values
as those points that are close to points from other clusters.

ptsymb = {'bs','r^','md','go','c+'};
for i = 1:2
    clust = find(cidx2==i);
    plot3(meas(clust,1),meas(clust,2),meas(clust,3),ptsymb{i});
    hold on
end
plot3(cmeans2(:,1),cmeans2(:,2),cmeans2(:,3),'ko');
plot3(cmeans2(:,1),cmeans2(:,2),cmeans2(:,3),'kx');
hold off
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xlabel('Sepal Length');
ylabel('Sepal Width');
zlabel('Petal Length');
view(-137,10);
grid on

The centroids of each cluster are plotted using circled X's. Three of the points from the lower cluster
(plotted with triangles) are very close to points from the upper cluster (plotted with squares).
Because the upper cluster is so spread out, those three points are closer to the centroid of the lower
cluster than to that of the upper cluster, even though the points are separated from the bulk of the
points in their own cluster by a gap. Because K-means clustering only considers distances, and not
densities, this kind of result can occur.

You can increase the number of clusters to see if kmeans can find further grouping structure in the
data. This time, use the optional 'Display' name-value pair argument to print out information about
each iteration in the clustering algorithm.

[cidx3,cmeans3] = kmeans(meas,3,'Display','iter');

  iter     phase         num             sum
     1         1         150         146.424
     2         1           5         144.333
     3         1           4         143.924
     4         1           3          143.61
     5         1           1         143.542
     6         1           2         143.414
     7         1           2         143.023
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     8         1           2         142.823
     9         1           1         142.786
    10         1           1         142.754
Best total sum of distances = 142.754

At each iteration, the kmeans algorithm (see “Algorithms” on page 35-4019) reassigns points among
clusters to decrease the sum of point-to-centroid distances, and then recomputes cluster centroids for
the new cluster assignments. Notice that the total sum of distances and the number of reassignments
decrease at each iteration until the algorithm reaches a minimum. The algorithm used in kmeans
consists of two phases. In the example here, the second phase of the algorithm did not make any
reassignments, indicating that the first phase reached a minimum after only a few iterations.

By default, kmeans begins the clustering process using a randomly selected set of initial centroid
locations. The kmeans algorithm can converge to a solution that is a local minimum; that is, kmeans
can partition the data such that moving any single point to a different cluster increases the total sum
of distances. However, as with many other types of numerical minimizations, the solution that kmeans
reaches sometimes depends on the starting points. Therefore, other solutions (local minima) that
have a lower total sum of distances can exist for the data. You can use the optional 'Replicates'
name-value pair argument to test different solutions. When you specify more than one replicate,
kmeans repeats the clustering process starting from different randomly selected centroids for each
replicate. kmeans then returns the solution with the lowest total sum of distances among all the
replicates.

[cidx3,cmeans3,sumd3] = kmeans(meas,3,'replicates',5,'display','final');

Replicate 1, 9 iterations, total sum of distances = 78.8557.
Replicate 2, 10 iterations, total sum of distances = 78.8557.
Replicate 3, 8 iterations, total sum of distances = 78.8557.
Replicate 4, 8 iterations, total sum of distances = 78.8557.
Replicate 5, 1 iterations, total sum of distances = 78.8514.
Best total sum of distances = 78.8514

The output shows that, even for this relatively simple problem, non-global minima do exist. Each of
these five replicates began from a different set of initial centroids. Depending on where it started
from, kmeans reached one of two different solutions. However, the final solution that kmeans returns
is the one with the lowest total sum of distances, over all replicates. The third output argument
contains the sum of distances within each cluster for that best solution.

sum(sumd3)

ans =

   78.8514

A silhouette plot for this three-cluster solution indicates that there is one cluster that is well-
separated, but that the other two clusters are not very distinct.

[silh3,h] = silhouette(meas,cidx3,'sqeuclidean');
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Again, you can plot the raw data to see how kmeans has assigned the points to clusters.

for i = 1:3
    clust = find(cidx3==i);
    plot3(meas(clust,1),meas(clust,2),meas(clust,3),ptsymb{i});
    hold on
end
plot3(cmeans3(:,1),cmeans3(:,2),cmeans3(:,3),'ko');
plot3(cmeans3(:,1),cmeans3(:,2),cmeans3(:,3),'kx');
hold off
xlabel('Sepal Length');
ylabel('Sepal Width');
zlabel('Petal Length');
view(-137,10);
grid on
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You can see that kmeans has split the upper cluster from the two-cluster solution, and that those two
clusters are very close to each other. Depending on what you intend to do with these data after
clustering them, this three-cluster solution may be more or less useful than the previous, two-cluster,
solution. The first output argument from silhouette contains the silhouette values for each point,
which you can use to compare the two solutions quantitatively. The average silhouette value was
larger for the two-cluster solution, indicating that it is a better answer purely from the point of view
of creating distinct clusters.

[mean(silh2) mean(silh3)]

ans =

    0.8504    0.7357

You can also cluster these data using a different distance. The cosine distance might make sense for
these data because it would ignore absolute sizes of the measurements, and only consider their
relative sizes. Thus, two flowers that were different sizes, but which had similarly shaped petals and
sepals, might not be close with respect to squared Euclidean distance, but would be close with
respect to cosine distance.

[cidxCos,cmeansCos] = kmeans(meas,3,'dist','cos');

From the silhouette plot, these clusters appear to be only slightly better separated than those found
using squared Euclidean distance.
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[silhCos,h] = silhouette(meas,cidxCos,'cos');
[mean(silh2) mean(silh3) mean(silhCos)]

ans =

    0.8504    0.7357    0.7491

Notice that the order of the clusters is different than in the previous silhouette plot. This is because
kmeans chooses initial cluster assignments at random.

By plotting the raw data, you can see the differences in the cluster shapes created using the two
different distances. The two solutions are similar, but the two upper clusters are elongated in the
direction of the origin when using cosine distance.

for i = 1:3
    clust = find(cidxCos==i);
    plot3(meas(clust,1),meas(clust,2),meas(clust,3),ptsymb{i});
    hold on
end
hold off
xlabel('Sepal Length');
ylabel('Sepal Width');
zlabel('Petal Length');
view(-137,10);
grid on
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This plot does not include the cluster centroids, because a centroid with respect to the cosine
distance corresponds to a half-line from the origin in the space of the raw data. However, you can
make a parallel coordinate plot of the normalized data points to visualize the differences between
cluster centroids.

lnsymb = {'b-','r-','m-'};
names = {'SL','SW','PL','PW'};
meas0 = meas ./ repmat(sqrt(sum(meas.^2,2)),1,4);
ymin = min(min(meas0));
ymax = max(max(meas0));
for i = 1:3
    subplot(1,3,i);
    plot(meas0(cidxCos==i,:)',lnsymb{i});
    hold on;
    plot(cmeansCos(i,:)','k-','LineWidth',2);
    hold off;
    title(sprintf('Cluster %d',i));
    xlim([.9, 4.1]);
    ylim([ymin, ymax]);
    h_gca = gca;
    h_gca.XTick = 1:4;
    h_gca.XTickLabel = names;
end
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It's clear from this plot that specimens from each of the three clusters have distinctly different
relative sizes of petals and sepals on average. The first cluster has petals that are strictly smaller
than their sepals. The second two clusters' petals and sepals overlap in size, however, those from the
third cluster overlap more than the second. You can also see that the second and third clusters
include some specimens which are very similar to each other.

Because we know the species of each observation in the data, you can compare the clusters
discovered by kmeans to the actual species, to see if the three species have discernibly different
physical characteristics. In fact, as the following plot shows, the clusters created using cosine
distance differ from the species groups for only five of the flowers. Those five points, plotted with
stars, are all near the boundary of the upper two clusters.

subplot(1,1,1);
for i = 1:3
    clust = find(cidxCos==i);
    plot3(meas(clust,1),meas(clust,2),meas(clust,3),ptsymb{i});
    hold on
end
xlabel('Sepal Length');
ylabel('Sepal Width');
zlabel('Petal Length');
view(-137,10);
grid on
sidx = grp2idx(species);
miss = find(cidxCos ~= sidx);
plot3(meas(miss,1),meas(miss,2),meas(miss,3),'k*');
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legend({'setosa','versicolor','virginica'});
hold off

Clustering Fisher's Iris Data Using Hierarchical Clustering

K-Means clustering produced a single partition of the iris data, but you might also want to investigate
different scales of grouping in your data. Hierarchical clustering lets you do just that, by creating a
hierarchical tree of clusters.

First, create a cluster tree using distances between observations in the iris data. Begin by using
Euclidean distance.

eucD = pdist(meas,'euclidean');
clustTreeEuc = linkage(eucD,'average');

The cophenetic correlation is one way to verify that the cluster tree is consistent with the original
distances. Large values indicate that the tree fits the distances well, in the sense that pairwise
linkages between observations correlate with their actual pairwise distances. This tree seems to be a
fairly good fit to the distances.

cophenet(clustTreeEuc,eucD)

ans =

    0.8770

 Cluster Analysis

17-75



To visualize the hierarchy of clusters, you can plot a dendrogram.

[h,nodes] = dendrogram(clustTreeEuc,0);
h_gca = gca;
h_gca.TickDir = 'out';
h_gca.TickLength = [.002 0];
h_gca.XTickLabel = [];

The root node in this tree is much higher than the remaining nodes, confirming what you saw from K-
Means clustering: there are two large, distinct groups of observations. Within each of those two
groups, you can see that lower levels of groups emerge as you consider smaller and smaller scales in
distance. There are many different levels of groups, of different sizes, and at different degrees of
distinctness.

Based on the results from K-Means clustering, cosine might also be a good choice of distance
measure. The resulting hierarchical tree is quite different, suggesting a very different way to look at
group structure in the iris data.

cosD = pdist(meas,'cosine');
clustTreeCos = linkage(cosD,'average');
cophenet(clustTreeCos,cosD)

ans =

    0.9360
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[h,nodes] = dendrogram(clustTreeCos,0);
h_gca = gca;
h_gca.TickDir = 'out';
h_gca.TickLength = [.002 0];
h_gca.XTickLabel = [];

The highest level of this tree separates iris specimens into two very distinct groups. The dendrogram
shows that, with respect to cosine distance, the within-group differences are much smaller relative to
the between-group differences than was the case for Euclidean distance. This is exactly what you
would expect for these data, since the cosine distance computes a zero pairwise distance for objects
that are in the same "direction" from the origin.

With 150 observations, the plot is cluttered, but you can make a simplified dendrogram that does not
display the very lowest levels of the tree.

[h,nodes] = dendrogram(clustTreeCos,12);
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The three highest nodes in this tree separate out three equally-sized groups, plus a single specimen
(labeled as leaf node 5) that is not near any others.

[sum(ismember(nodes,[11 12 9 10])) sum(ismember(nodes,[6 7 8])) ...
                  sum(ismember(nodes,[1 2 4 3])) sum(nodes==5)]

ans =

    54    46    49     1

For many purposes, the dendrogram might be a sufficient result. However, you can go one step
further, and use the cluster function to cut the tree and explicitly partition observations into
specific clusters, as with K-Means. Using the hierarchy from the cosine distance to create clusters,
specify a linkage height that will cut the tree below the three highest nodes, and create four clusters,
then plot the clustered raw data.

hidx = cluster(clustTreeCos,'criterion','distance','cutoff',.006);
for i = 1:5
    clust = find(hidx==i);
    plot3(meas(clust,1),meas(clust,2),meas(clust,3),ptsymb{i});
    hold on
end
hold off
xlabel('Sepal Length');
ylabel('Sepal Width');
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zlabel('Petal Length');
view(-137,10);
grid on

This plot shows that the results from hierarchical clustering with cosine distance are qualitatively
similar to results from K-Means, using three clusters. However, creating a hierarchical cluster tree
allows you to visualize, all at once, what would require considerable experimentation with different
values for K in K-Means clustering.

Hierarchical clustering also allows you to experiment with different linkages. For example, clustering
the iris data with single linkage, which tends to link together objects over larger distances than
average distance does, gives a very different interpretation of the structure in the data.

clustTreeSng = linkage(eucD,'single');
[h,nodes] = dendrogram(clustTreeSng,0);
h_gca = gca;
h_gca.TickDir = 'out';
h_gca.TickLength = [.002 0];
h_gca.XTickLabel = [];
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Anomaly Detection with Isolation Forest
Introduction to Isolation Forest
The isolation forest algorithm [1] detects anomalies by isolating anomalies from normal points using
an ensemble of isolation trees. Each isolation tree is trained for a subset of training observations,
sampled without replacements. The algorithm grows an isolation tree by choosing a split variable and
split position at random until every observation in a subset lands in a separate leaf node. Anomalies
are few and different; therefore, an anomaly lands in a separate leaf node closer to the root node and
has a shorter path length (the distance from the root node to the leaf node) than normal points. The
algorithm identifies anomalies using anomaly scores defined based on the average path lengths over
all isolation trees.

Use the iforest function, IsolationForest object, and isanomaly object function for outlier
detection and novelty detection.

• Outlier detection (detecting anomalies in training data) — Detect anomalies in training data by
using the iforest function. iforest builds an IsolationForest object and returns anomaly
indicators and scores for the training data. For an example, see “Detect Outliers” on page 35-3728.

• Novelty detection (detecting anomalies in new data with uncontaminated training data) — Create
an IsolationForest object by passing uncontaminated training data (data with no outliers) to
iforest, and detect anomalies in new data by passing the object and the new data to the object
function isanomaly. For each observation of the new data, the function finds the average path
length to reach a leaf node from the root node in the trained isolation forest, and returns an
anomaly indicator and score. For an example, see “Detect Novelties” on page 35-3732.

Parameters for Isolation Forests
You can specify parameters for the isolation forest algorithm by using the name-value arguments of
iforest:

• NumObservationsPerLearner (number of observations for each isolation tree) — Each isolation
tree corresponds to a subset of training observations. For each tree, iforest samples
min(N,256) number of observations from the training data without replacement, where N is the
number of training observations. The isolation forest algorithm performs well with a small sample
size because it helps to detect dense anomalies and anomalies close to normal points. However,
you need to experiment with the sample size if N is small. For an example, see “Examine
NumObservationsPerLearner for Small Data” on page 17-85.

• NumLearners (number of isolation trees) — By default, the iforest function grows 100 isolation
trees for the isolation forest because the average path lengths usually converge well before
growing 100 isolation trees [1].

Anomaly Scores
The isolation forest algorithm computes the anomaly score s(x) of an observation x by normalizing the
path length h(x):

s(x) = 2−
E[h(x)]

c(n) ,

where E[h(x)] is the average path length over all isolation trees in the isolation forest, and c(n) is the
average path length of unsuccessful searches in a binary search tree of n observations.

 Anomaly Detection with Isolation Forest

17-81



• The score approaches 1 as E[h(x)] approaches 0. Therefore, a score value close to 1 indicates an
anomaly.

• The score approaches 0 as E[h(x)] approaches n – 1. Also, the score approaches 0.5 when E[h(x)]
approaches c(n). Therefore, a score value smaller than 0.5 and close to 0 indicates a normal point.

Anomaly Indicators
iforest and isanomaly identify observations with anomaly scores above the score threshold as
anomalies. The functions return a logical vector that has the same length as the input data. A value of
logical 1 (true) indicates that the corresponding row of the input data is an anomaly.

• iforest determines the threshold value (ScoreThreshold property value) to detect the
specified fraction (ContaminationFraction name-value argument) of training observations as
anomalies. By default, the function treats all training observations as normal observations.

• isanomaly provides the ScoreThreshold name-value argument, which you can use to specify
the threshold. The default threshold is the value determined when the isolation forest is trained.

Detect Outliers and Plot Contours of Anomaly Scores

This example uses generated sample data containing outliers. Train an isolation forest model and
detect the outliers by using the iforest function. Then, compute anomaly scores for the points
around the sample data by using the isanomaly function, and create a contour plot of the anomaly
scores.

Generate Sample Data

Use a Gaussian copula to generate random data points from a bivariate distribution.

rng("default")
rho = [1,0.05;0.05,1];
n = 1000;
u = copularnd("Gaussian",rho,n);

Add noise to 5% of randomly selected observations to make the observations outliers.

noise = randperm(n,0.05*n);
true_tf = false(n,1);
true_tf(noise) = true;
u(true_tf,1) = u(true_tf,1)*5;

Train Isolation Forest and Detect Outliers

Train an isolation forest model by using the iforest function. Specify the fraction of anomalies in
the training observations as 0.05.

[f,tf,scores] = iforest(u,ContaminationFraction=0.05);

f is an IsolationForest object. iforest also returns the anomaly indicators (tf) and anomaly
scores (scores) for the training data.

Plot a histogram of the score values. Create a vertical line at the score threshold corresponding to the
specified fraction.
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histogram(scores)
xline(f.ScoreThreshold,"r-",join(["Threshold" f.ScoreThreshold]))

Plot Contours of Anomaly Scores

Use the trained isolation forest model and the isanomaly function to compute anomaly scores for 2-
D grid coordinates around the training observations.

l1 = linspace(min(u(:,1),[],1),max(u(:,1),[],1));
l2 = linspace(min(u(:,2),[],1),max(u(:,2),[],1));
[X1,X2] = meshgrid(l1,l2);
[~,scores_grid] = isanomaly(f,[X1(:),X2(:)]);
scores_grid = reshape(scores_grid,size(X1,1),size(X2,2));

Create a scatter plot of the training observations and a contour plot of the anomaly scores. Flag true
outliers and the outliers detected by iforest.

idx = setdiff(1:1000,noise);
scatter(u(idx,1),u(idx,2),[],[0.5 0.5 0.5],".")
hold on
scatter(u(noise,1),u(noise,2),"ro","filled")
scatter(u(tf,1),u(tf,2),60,"kx",LineWidth=1)
contour(X1,X2,scores_grid,"ShowText","on")
legend(["Normal Points" "Outliers" "Detected Outliers"],Location="best")
colorbar
hold off
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Check Performance

Check the performance of iforest by plotting a precision-recall curve and computing the area
under the curve (AUC) value. Create a rocmetrics object. rocmetrics computes the false positive
rates and the true positive rates (or recall) by default. Specify the AdditionalMetrics name-value
argument to additionally compute the precision values (or positive predictive values).

rocObj = rocmetrics(true_tf,scores,true,AdditionalMetrics="PositivePredictiveValue");

Plot the curve by using the plot function of rocmetrics. Specify the y-axis metric as precision (or
positive predictive value) and the x-axis metric as recall (or true positive rate). Display a filled circle
at the model operating point corresponding to f.ScoreThreshold. Compute the area under the
precision-recall curve using the trapezoidal method of the trapz function, and display the value in
the legend.

r = plot(rocObj,YAxisMetric="PositivePredictiveValue",XAxisMetric="TruePositiveRate");
hold on
idx = find(rocObj.Metrics.Threshold>=f.ScoreThreshold,1,'last');
scatter(rocObj.Metrics.TruePositiveRate(idx), ...
    rocObj.Metrics.PositivePredictiveValue(idx), ...
    [],r.Color,"filled")
xyData = rmmissing([r.XData r.YData]);
auc = trapz(xyData(:,1),xyData(:,2));
legend(join([r.DisplayName " (AUC = " string(auc) ")"],""),"true Model Operating Point")
xlabel("Recall")
ylabel("Precision")
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title("Precision-Recall Curve")
hold off

Examine NumObservationsPerLearner for Small Data

For each isolation tree, iforest samples min(N,256) number of observations from the training
data without replacement, where N is the number of training observations. Keeping the sample size
small helps to detect dense anomalies and anomalies close to normal points. However, you need to
experiment with the sample size if N is small.

This example shows how to train isolation forest models for small data with various sample sizes,
create plots of anomaly score values versus sample sizes, and visualize identified anomalies.

Load Sample Data

Load Fisher's iris data set.

load fisheriris

The data contains four measurements (sepal length, sepal width, petal length, and petal width) from
three species of iris flowers. The matrix meas contains all four measurements for 150 flowers.

Train Isolation Forest with Various Sample Sizes

Train isolation forest models with various sample sizes, and obtain anomaly scores for the training
observations.
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s = NaN(150,150);
rng("default")
for i = 3: 150
    [~,~,s(:,i)] = iforest(meas,NumObservationsPerLearner=i);
end

Divide the observations into three groups based on the average scores, and create plots of anomaly
scores versus sample sizes.

score_threshold1 = 0.5;
score_threshold2 = 0.55;

m = mean(s,2,"omitnan");
ind1 = find(m < score_threshold1);
ind2 = find(m <= score_threshold2 & m >= score_threshold1);
ind3 = find(m > score_threshold2);

figure
t = tiledlayout(3,1);
nexttile
plot(s(ind1,:)')
title(join(["Observations with average score <  " score_threshold1]))
nexttile
plot(s(ind2,:)')
title(join(["Observations with average score in [" ...
    score_threshold1 " " score_threshold2 "]"]))
nexttile
plot(s(ind3,:)')
title(join(["Observations with average score >  " score_threshold2]))
xlabel(t,"Number of Observations for Each Tree")
ylabel(t,"Anomaly Score")
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The anomaly score decreases as the sample size increases for the observations whose average score
values are less than 0.5. For the observations whose average score values are greater than 0.55, the
anomaly score increases as the sample size increases and then the score converges roughly when the
sample size reaches 50.

Detect anomalies in training observations by using isolation forest models with the sample sizes 50
and 100. Specify the fraction of anomalies in the training observations as 0.05.

[f1,tf1,scores1] = iforest(meas,NumObservationsPerLearner=50, ...
    ContaminationFraction=0.05);
[f2,tf2,scores2] = iforest(meas,NumObservationsPerLearner=100, ...
    ContaminationFraction=0.05);

Display the observation indexes of the anomalies.

find(tf1)

ans = 7×1

    14
    42
   110
   118
   119
   123
   132
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find(tf2)

ans = 7×1

    14
    15
    16
   110
   118
   119
   132

The two isolation forest models have five anomalies in common.

Visualize Anomalies

For the isolation forest model with the sample size 50, visually compare observation values between
normal points and anomalies. Create a matrix of grouped histograms and grouped scatter plots for
each combination of variables by using the gplotmatrix function.

tf1 = categorical(tf1,[0 1],["Normal Points" "Anomalies"]);
predictorNames = ["Sepal Length" "Sepal Width" ...
    "Petal Length" "Petal Width"];
gplotmatrix(meas,[],tf1,"kr",".x",[],[],[],predictorNames)
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For high-dimensional data, you can visualize data by using only the important features. You can also
visualize data after reducing the dimension by using t-SNE (t-Distributed Stochastic Neighbor
Embedding).

Visualize observation values using the two most important features selected by the fsulaplacian
function.

idx = fsulaplacian(meas)

idx = 1×4

     3     4     1     2

gscatter(meas(:,idx(1)),meas(:,idx(2)),tf1,"kr",".x",[],"on", ...
    predictorNames(idx(1)),predictorNames(idx(2)))

Visualize observation values after reducing the dimension by using the tsne function.

Y = tsne(meas);
gscatter(Y(:,1),Y(:,2),tf1,"kr",".x")
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See Also
iforest | IsolationForest | isanomaly

Related Examples
• “Unsupervised Anomaly Detection” on page 17-91
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Unsupervised Anomaly Detection
This topic introduces the unsupervised anomaly detection features for multivariate sample data
available in Statistics and Machine Learning Toolbox, and describes the workflows of the features for
outlier detection on page 17-91 (detecting anomalies in training data) and novelty detection on page
17-99 (detecting anomalies in new data with uncontaminated training data).

For unlabeled multivariate sample data, you can detect anomalies by using isolation forest, local
outlier factor, one-class support vector machine (SVM), and Mahalanobis distance. These methods
detect outliers either by training a model or by learning parameters. For novelty detection, you train
a model or learn parameters with uncontaminated training data (data with no outliers) and detect
anomalies in new data by using the trained model or learned parameters.

• Isolation forest — The “Isolation Forest” on page 35-3733 algorithm detects anomalies by isolating
them from normal points using an ensemble of isolation trees. Detect outliers by using the
iforest function, and detect novelties by using the object function isanomaly.

• Local outlier factor — The “Local Outlier Factor” on page 35-4279 (LOF) algorithm detects
anomalies based on the relative density of an observation with respect to the surrounding
neighborhood. Detect outliers by using the lof function, and detect novelties by using the object
function isanomaly.

• One-class support vector machine (SVM) — One-class SVM on page 35-5156, or unsupervised SVM,
tries to separate data from the origin in the transformed high-dimensional predictor space. Detect
outliers by using the ocsvm function, and detect novelties by using the object function
isanomaly.

• “Mahalanobis Distance” on page 35-6791 — If sample data follows a multivariate normal
distribution, then the squared Mahalanobis distances from samples to the distribution follow a chi-
square distribution. Therefore, you can use the distances to detect anomalies based on the critical
values of the chi-square distribution. For outlier detection, use the robustcov function to
compute robust Mahalanobis distances. For novelty detection, you can compute Mahalanobis
distances by using the robustcov and pdist2 functions.

Outlier Detection

This example illustrates the workflows of the four unsupervised anomaly detection methods (isolation
forest, local outlier factor, one-class SVM, and Mahalanobis distance) for outlier detection.

Load Data

Load the humanactivity data set, which contains the variables feat and actid. The variable feat
contains the predictor data matrix of 60 features for 24,075 observations, and the response variable
actid contains the activity IDs for the observations as integers. This example uses the feat variable
for anomaly detection.

load humanactivity

Find the size of the variable feat.

[N,D] = size(feat)

N = 24075

D = 60
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Assume that the fraction of outliers in the data is 0.05.

contaminationFraction = 0.05;

Isolation Forest

Detect outliers by using the iforest function.

Train an isolation forest model by using the iforest function. Specify the fraction of outliers
(ContaminationFraction) as 0.05.

rng("default") % For reproducibility
[forest,tf_forest,s_forest] = iforest(feat, ...
    ContaminationFraction=contaminationFraction);

forest is an IsolationForest object. iforest also returns the anomaly indicators (tf_forest)
and anomaly scores (s_forest) for the data (feat). iforest determines the score threshold value
(forest.ScoreThreshold) so that the function detects the specified fraction of observations as
outliers.

Plot a histogram of the score values. Create a vertical line at the score threshold corresponding to the
specified fraction.

figure
histogram(s_forest,Normalization="probability")
xline(forest.ScoreThreshold,"k-", ...
    join(["Threshold =" forest.ScoreThreshold]))
title("Histogram of Anomaly Scores for Isolation Forest")
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Check the fraction of detected anomalies in the data.

OF_forest = sum(tf_forest)/N

OF_forest = 0.0496

The outlier fraction can be smaller than the specified fraction (0.05) when the scores have tied values
at the threshold.

Local Outlier Factor

Detect outliers by using the lof function.

Train a local outlier factor model by using the lof function. Specify the fraction of outliers
(ContaminationFraction) as 0.05, 500 nearest neighbors, and the Mahalanobis distance.

[LOFObj,tf_lof,s_lof] = lof(feat, ...
    ContaminationFraction=contaminationFraction, ...
    NumNeighbors=500,Distance="mahalanobis");

LOFObj is a LocalOutlierFactor object. lof also returns the anomaly indicators (tf_lof) and
anomaly scores (s_lof) for the data (feat). lof determines the score threshold value
(LOFObj.ScoreThreshold) so that the function detects the specified fraction of observations as
outliers.

Plot a histogram of the score values. Create a vertical line at the score threshold corresponding to the
specified fraction.

figure
histogram(s_lof,Normalization="probability")
xline(LOFObj.ScoreThreshold,"k-", ...
    join(["Threshold =" LOFObj.ScoreThreshold]))
title("Histogram of Anomaly Scores for Local Outlier Factor")
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Check the fraction of detected anomalies in the data.

OF_lof = sum(tf_lof)/N

OF_lof = 0.0500

One-Class SVM

Detect outliers by using the ocsvm function.

Train a one-class SVM model by using the ocsvm function. Specify the fraction of outliers
(ContaminationFraction) as 0.05. In addition, set KernelScale to "auto" to let the function
select an appropriate kernel scale parameter using a heuristic procedure, and specify
StandardizeData as true to standardize the input data.

[Mdl,tf_OCSVM,s_OCSVM] = ocsvm(feat, ...
    ContaminationFraction=contaminationFraction, ...
    KernelScale="auto",StandardizeData=true);

Mdl is a OneClassSVM object. ocsvm also returns the anomaly indicators (tf_OCSVM) and anomaly
scores (s_OCSVM) for the data (feat). ocsvm determines the score threshold value
(Mdl.ScoreThreshold) so that the function detects the specified fraction of observations as
outliers.

Plot a histogram of the score values. Create a vertical line at the score threshold corresponding to the
specified fraction.
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figure
histogram(s_OCSVM,Normalization="probability")
xline(Mdl.ScoreThreshold,"k-", ...
    join(["Threshold =" Mdl.ScoreThreshold]))
title("Histogram of Anomaly Scores for One-Class SVM")

Check the fraction of detected anomalies in the data.

OF_OCSVM = sum(tf_OCSVM)/N

OF_OCSVM = 0.0500

Mahalanobis Distance

Use the robustcov function to compute robust Mahalanobis distances and robust estimates for the
mean and covariance of the data.

Compute the Mahalanobis distance from feat to the distribution of feat by using the robustcov
function. Specify the fraction of outliers (OutlierFraction) as 0.05. robustcov minimizes the
covariance determinant over 95% of the observations.

[sigma,mu,s_robustcov,tf_robustcov_default] = robustcov(feat, ...
    OutlierFraction=contaminationFraction);

robustcov finds the robust covariance matrix estimate (sigma) and robust mean estimate (mu),
which are less sensitive to outliers than the estimates from the cov and mean functions. The
robustcov function also computes the Mahalanobis distances (s_robustcov) and the outlier
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indicators (tf_robustcov_default). By default, the function assumes that the data set follows a
multivariate normal distribution, and identifies 2.5% of input observations as outliers based on the
critical values of the chi-square distribution.

If the data set satisfies the normality assumption, then the squared Mahalanobis distance follows a
chi-square distribution with D degrees of freedom, where D is the dimension of the data. In that case,
you can find a new threshold by using the chi2inv function to detect the specified fraction of
observations as outliers.

s_robustcov_threshold = sqrt(chi2inv(1-contaminationFraction,D));
tf_robustcov = s_robustcov > s_robustcov_threshold;

Create a distance-distance plot (DD plot) to check the multivariate normality of the data.

figure
d_classical = pdist2(feat,mean(feat),"mahalanobis");
gscatter(d_classical,s_robustcov,tf_robustcov,"kr",".x")
xline(s_robustcov_threshold,"k-")
yline(s_robustcov_threshold,"k-", ...
    join(["Threshold = " s_robustcov_threshold]));
l = refline([1 0]);
l.Color = "k";
xlabel("Mahalanobis Distance")
ylabel("Robust Distance")
legend("Normal Points","Outliers",Location="northwest")
title("Distance-Distance Plot")

Zoom in the axes to see the normal points.
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xlim([0 10])
ylim([0 10])

If a data set follows a multivariate normal distribution, then data points cluster tightly around the 45
degree reference line. The DD plot indicates that the data set does not follow a multivariate normal
distribution.

Because the data set does not satisfy the normality assumption, use the quantile of the distance
values for the cumulative probability (1 — contaminationFraction) to find a threshold.

s_robustcov_threshold = quantile(s_robustcov,1-contaminationFraction);

Obtain the anomaly indicators for feat using the new threshold s_robustcov_threshold.

tf_robustcov = s_robustcov > s_robustcov_threshold;

Check the fraction of detected anomalies in the data.

OF_robustcov = sum(tf_robustcov)/N

OF_robustcov = 0.0500

Compare Detected Outliers

To visualize the detected outliers, reduce the data dimension by using the tsne function.

rng("default") % For reproducibility
T = tsne(feat,Standardize=true,Perplexity=100,Exaggeration=20);

 Unsupervised Anomaly Detection

17-97



Plot the normal points and outliers in the reduced dimension. Compare the results of the four
methods: the isolation forest algorithm, local outlier factor algorithm, one-class SVM model, and
robust Mahalanobis distance from robustcov.

figure
tiledlayout(2,2)
nexttile
gscatter(T(:,1),T(:,2),tf_forest,"kr",[],[],"off")
title("Isolation Forest")
nexttile
gscatter(T(:,1),T(:,2),tf_lof,"kr",[],[],"off")
title("Local Outlier Factor")
nexttile
gscatter(T(:,1),T(:,2),tf_OCSVM,"kr",[],[],"off")
title("One-Class SVM")
nexttile
gscatter(T(:,1),T(:,2),tf_robustcov,"kr",[],[],"off")
title("Robust Mahalanobis Distance")
l = legend("Normal Points","Outliers",Orientation="horizontal");
l.Layout.Tile = "north";

The novelties identified by the four methods are located near each other in the reduced dimension.
Compute the fraction of data for which the four methods return the same identifiers.

mean((tf_forest==tf_lof) & (tf_lof==tf_OCSVM) & (tf_OCSVM==tf_robustcov))

ans = 0.9420
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You can also visualize observation values using the two most important features selected by the
fsulaplacian function.

idx = fsulaplacian(feat);
figure
t = tiledlayout(2,2);
nexttile
gscatter(feat(:,idx(1)),feat(:,idx(2)),tf_forest,"kr",[],[],"off")
title("Isolation Forest")
nexttile
gscatter(feat(:,idx(1)),feat(:,idx(2)),tf_lof,"kr",[],[],"off")
title("Local Outlier Factor")
nexttile(3)
gscatter(feat(:,idx(1)),feat(:,idx(2)),tf_OCSVM,"kr",[],[],"off")
title("One-Class SVM")
nexttile(4)
gscatter(feat(:,idx(1)),feat(:,idx(2)),tf_robustcov,"kr",[],[],"off")
title("Mahalanobis Distance")
l = legend("Normal Points","Outliers",Orientation="horizontal");
l.Layout.Tile = "north";
xlabel(t,join(["Column" idx(1)]))
ylabel(t,join(["Column" idx(2)]))

Novelty Detection
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This example illustrates the workflows of the four unsupervised anomaly detection methods (isolation
forest, local outlier factor, one-class SVM, and Mahalanobis distance) for novelty detection.

Load Data

Load the humanactivity data set, which contains the variables feat and actid. The variable feat
contains the predictor data matrix of 60 features for 24,075 observations, and the response variable
actid contains the activity IDs for the observations as integers. This example uses the feat variable
for anomaly detection.

load humanactivity

Partition the data into training and test sets by using the cvpartition function. Use 50% of the
observations as training data and 50% of the observations as test data for novelty detection.

rng("default") % For reproducibility 
c = cvpartition(actid,Holdout=0.50);
trainingIndices = training(c); % Indices for the training set
testIndices = test(c); % Indices for the test set
XTrain = feat(trainingIndices,:);
XTest = feat(testIndices,:);

Assume that the training data is not contaminated (no outliers).

Find the size of the training and test sets.

[N,D] = size(XTrain)

N = 12038

D = 60

NTest = size(XTest,1)

NTest = 12037

Isolation Forest

Detect novelties using the object function isanomaly after training an isolation forest model by
using the iforest function.

Train an isolation forest model.

[forest,tf_forest,s_forest] = iforest(XTrain);

forest is an IsolationForest object. iforest also returns the anomaly indicators (tf_forest)
and anomaly scores (s_forest) for the training data (XTrain). By default, iforest treats all
training observations as normal observations, and sets the score threshold
(forest.ScoreThreshold) to the maximum score value.

Use the trained isolation forest model and the object function isanomaly to find novelties in XTest.
The isanomaly function identifies observations with scores above the threshold
(forest.ScoreThreshold) as novelties.

[tfTest_forest,sTest_forest] = isanomaly(forest,XTest);

The isanomaly function returns the anomaly indicators (tfTest_forest) and anomaly scores
(sTest_forest) for the test data.
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Plot histograms of the score values. Create a vertical line at the score threshold.

figure
histogram(s_forest,Normalization="probability")
hold on
histogram(sTest_forest,Normalization="probability")
xline(forest.ScoreThreshold,"k-", ...
    join(["Threshold =" forest.ScoreThreshold]))
legend("Training data","Test data",Location="southeast")
title("Histograms of Anomaly Scores for Isolation Forest")
hold off

The anomaly score distribution of the test data is similar to that of the training data, so isanomaly
detects a small number of anomalies in the test data.

Check the fraction of detected anomalies in the test data.

NF_forest = sum(tfTest_forest)/NTest

NF_forest = 8.3077e-05

Display the observation index of the anomalies in the test data.

idx_forest = find(tfTest_forest)

idx_forest = 3422
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Local Outlier Factor

Detect novelties using the object function isanomaly after training a local outlier factor model by
using the lof function.

Train a local outlier factor model.

[LOFObj,tf_lof,s_lof] = lof(XTrain);

LOFObj is a LocalOutlierFactor object. lof returns the anomaly indicators (tf_lof) and
anomaly scores (s_lof) for the training data (XTrain). By default, lof treats all training
observations as normal observations, and sets the score threshold (LOFObj.ScoreThreshold) to
the maximum score value.

Use the trained local outlier factor model and the object function isanomaly to find novelties in
XTest. The isanomaly function identifies observations with scores above the threshold
(LOFObj.ScoreThreshold) as novelties.

[tfTest_lof,sTest_lof] = isanomaly(LOFObj,XTest);

The isanomaly function returns the anomaly indicators (tfTest_lof) and anomaly scores
(sTest_lof) for the test data.

Plot histograms of the score values. Create a vertical line at the score threshold.

figure
histogram(s_lof,Normalization="probability")
hold on
histogram(sTest_lof,Normalization="probability")
xline(LOFObj.ScoreThreshold,"k-", ...
    join(["Threshold =" LOFObj.ScoreThreshold]))
legend("Training data","Test data",Location="southeast")
title("Histograms of Anomaly Scores for Local Outlier Factor")
hold off
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The anomaly score distribution of the test data is similar to that of the training data, so isanomaly
detects a small number of anomalies in the test data.

Check the fraction of detected anomalies in the test data.

NF_lof = sum(tfTest_lof)/NTest

NF_lof = 8.3077e-05

Display the observation index of the anomalies in the test data.

idx_lof = find(tfTest_lof)

idx_lof = 8704

One-Class SVM

Detect novelties using the object function isanomaly after training a one-class SVM model by using
the ocsvm function.

Train a one-class SVM model. Set KernelScale to "auto" to let the function select an appropriate
kernel scale parameter using a heuristic procedure, and specify StandardizeData as true to
standardize the input data.

[Mdl,tf_OCSVM,s_OCSVM] = ocsvm(XTrain, ...
    KernelScale="auto",Standardize=true);

Mdl is a OneClassSVM object. ocsvm returns the anomaly indicators (tf_OCSVM) and anomaly scores
(s_OCSVM) for the training data (XTrain). By default, ocsvm treats all training observations as
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normal observations, and sets the score threshold (Mdl.ScoreThreshold) to the maximum score
value.

Use the trained one-class SVM model and the object function isanomaly to find novelties in the test
data (XTest). The isanomaly function identifies observations with scores above the threshold
(Mdl.ScoreThreshold) as novelties.

[tfTest_OCSVM,sTest_OCSVM] = isanomaly(Mdl,XTest);

The isanomaly function returns the anomaly indicators (tfTest_OCSVM) and anomaly scores
(sTest_OCSVM) for the test data.

Plot histograms of the score values. Create a vertical line at the score threshold.

figure
histogram(s_OCSVM,Normalization="probability")
hold on
histogram(sTest_OCSVM,Normalization="probability")
xline(Mdl.ScoreThreshold,"k-", ...
    join(["Threshold =" Mdl.ScoreThreshold]))
legend("Training data","Test data",Location="southeast")
title("Histograms of Anomaly Scores for One-Class SVM")
hold off

Display the observation index of the anomalies in the test data.

idx_OCSVM = find(tfTest_OCSVM)
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idx_OCSVM =

  0x1 empty double column vector

The anomaly score distribution of the test data is similar to that of the training data, so isanomaly
does not detect any anomalies in the test data.

Mahalanobis Distance

Use the robustcov function to compute Mahalanobis distances of training data, and use the pdist2
function to compute Mahalanobis distances of test data.

Compute the Mahalanobis distance from XTrain to the distribution of XTrain by using the
robustcov function. Specify the fraction of outliers (OutlierFraction) as 0.

[sigma,mu,s_mahal] = robustcov(XTrain,OutlierFraction=0);

robustcov also returns the estimates of covariance matrix (sigma) and mean (mu), which you can
use to compute distances of test data.

Use the maximum value of s_mahal as the score threshold for novelty detection.

s_mahal_threshold = max(s_mahal);

Compute the Mahalanobis distance from XTest to the distribution of XTrain by using the pdist2
function.

sTest_mahal = pdist2(XTest,mu,"mahalanobis",sigma);

Obtain the anomaly indicators for XTest.

tfTest_mahal = sTest_mahal > s_mahal_threshold;

Plot histograms of the score values.

figure
histogram(s_mahal,Normalization="probability");
hold on
histogram(sTest_mahal,Normalization="probability");
xline(s_mahal_threshold,"k-", ...
    join(["Threshold =" s_mahal_threshold]))
legend("Training data","Test Data",Location="southeast")
title("Histograms of Mahalanobis Distances")
hold off
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Check the fraction of detected anomalies in the test data.

NF_mahal = sum(tfTest_mahal)/NTest

NF_mahal = 8.3077e-05

Display the observation index of the anomalies in the test data.

idx_mahal = find(tfTest_mahal)

idx_mahal = 3654

See Also
iforest | isanomaly (IsolationForest) | lof | isanomaly (LocalOutlierFactor) |
ocsvm | isanomaly (OneClassSVM) | robustcov | pdist2

Related Examples
• “Anomaly Detection with Isolation Forest” on page 17-81
• “Model-Specific Anomaly Detection” on page 17-107
• “Anomaly Detection in Industrial Machinery Using Three-Axis Vibration Data” (Predictive

Maintenance Toolbox)
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Model-Specific Anomaly Detection
Statistics and Machine Learning Toolbox provides model-specific anomaly detection features that you
can apply after training a classification, regression, or clustering model. For example, you can detect
anomalies by using these object functions:

• Proximity matrix — outlierMeasure for random forest (CompactTreeBagger)
• Mahalanobis distance — mahal for discriminant analysis classifier

(ClassificationDiscriminant) and mahal for Gaussian mixture model (gmdistribution)
• Unconditional probability density — logp for discriminant analysis classifier

(ClassificationDiscriminant), logp for naive Bayes classifier
(ClassificationNaiveBayes), and logp for naive Bayes classifier for incremental learning
(incrementalClassificationNaiveBayes)

For details, see the function reference pages.

Detect Outliers After Training Random Forest

Train a random forest classifier by using the TreeBagger function, and detect outliers in the training
data by using the object function outlierMeasure.

Train Random Forest Classifier

Load the ionosphere data set, which contains radar return qualities (Y) and predictor data (X) for
34 variables. Radar returns are either of good quality ('g') or bad quality ('b').

load ionosphere

Train a random forest classifier. Store the out-of-bag information for predictor importance estimation.

rng("default") % For reproducibility
Mdl_TB = TreeBagger(100,X,Y,Method="classification", ...
    OOBPredictorImportance="on");

Mdl_TB is a TreeBagger model object for classification. TreeBagger stores predictor importance
estimates in the property OOBPermutedPredictorDeltaError.

Detect Outliers Using Proximity

Detect outliers in the training data by using the outlierMeasure function. The function computes
outlier measures based on the average squared proximity between one observation and the other
observations in the trained random forest.

CMdl_TB = compact(Mdl_TB);
s_proximity = outlierMeasure(CMdl_TB,X,Labels=Y);

A high value of the outlier measure indicates that the observation is an outlier. Find the threshold
corresponding to the 95th percentile and identify outliers by using the isoutlier function.

[TF,~,U] = isoutlier(s_proximity,Percentiles=[0 95]);

Plot a histogram of the outlier measures. Create a vertical line at the outlier threshold.
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histogram(s_proximity)
xline(U,"r-",join(["Threshold =" U]))
title("Histogram of Outlier Measures")

Visualize observation values using the two most important features selected by the predictor
importance estimates in the property OOBPermutedPredictorDeltaError.

[~,idx] = sort(Mdl_TB.OOBPermutedPredictorDeltaError,'descend');
TF_c = categorical(TF,[0 1],["Normal Points" "Anomalies"]);
gscatter(X(:,idx(1)),X(:,idx(2)),TF_c,"kr",".x",[],"on", ...
    Mdl_TB.PredictorNames(idx(1)),Mdl_TB.PredictorNames(idx(2)))
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Train the classifier again without outliers, and plot the histogram of the outlier measures.

Mdl_TB = TreeBagger(100,X(~TF,:),Y(~TF),Method="classification");
s_proximity = outlierMeasure(CMdl_TB,X(~TF,:),Labels=Y(~TF));
histogram(s_proximity)
title("Histogram of Outlier Measures After Removing Outliers")
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Detect Outliers After Training Discriminant Analysis Classifier

Train a discriminant analysis model by using the fitcdiscr function, and detect outliers in the
training data by using the object functions logp and mahal.

Train Discriminant Analysis Model

Load Fisher's iris data set. The matrix meas contains flower measurements for 150 different flowers.
The variable species lists the species for each flower.

load fisheriris

Train a discriminant analysis model using the entire data set.

Mdl = fitcdiscr(meas,species,PredictorNames= ...
    ["Sepal Length" "Sepal Width" "Petal Length" "Petal Width"]);

Mdl is a ClassificationDiscriminant model.

Detect Outliers Using Log Unconditional Probability Density

Compute the log unconditional probability densities of the training data.

s_logp = logp(Mdl,meas);

A low density value indicates that the corresponding observation is an outlier.
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Determine the lower density threshold for outliers by using the isoutlier function.

[~,L_logp] = isoutlier(s_logp);

Identify outliers by using the threshold.

TF_logp = s_logp < L_logp;

Plot a histogram of the density values. Create a vertical line at the outlier threshold.

figure
histogram(s_logp)
xline(L_logp,"r-",join(["Threshold =" L_logp]))
title("Histogram of Log Unconditional Probability Densities ")

To compare observation values between normal points and anomalies, create a matrix of grouped
histograms and grouped scatter plots for each combination of variables by using the gplotmatrix
function.

TF_logp_c = categorical(TF_logp,[0 1],["Normal Points" "Anomalies"]);
gplotmatrix(meas,[],TF_logp_c,"kr",".x",[],[],[],Mdl.PredictorNames)
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Detect Outliers Using Mahalanobis Distance

Find the squared Mahalanobis distances from the training data to the class means of true labels.

s_mahal = mahal(Mdl,meas,ClassLabels=species);

A large distance value indicates that the corresponding observation is an outlier.

Determine the threshold corresponding to the 95th percentile and identify outliers by using the
isoutlier function.

[TF_mahal,~,U_mahal] = isoutlier(s_mahal,Percentiles=[0 95]);

Plot a histogram of the distances. Create a vertical line at the outlier threshold.

figure
histogram(s_mahal)
xline(U_mahal,"-r",join(["Threshold =" U_mahal]))
title("Histogram of Mahalanobis Distances")
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Compare the observation values between normal points and anomalies by using the gplotmatrix
function.

TF_mahal_c = categorical(TF_mahal,[0 1],["Normal Points" "Anomalies"]);
gplotmatrix(meas,[],TF_mahal_c,"kr",".x",[],[],[],Mdl.PredictorNames)
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See Also
outlierMeasure | mahal (ClassificationDiscriminant) | mahal (gmdistribution) |
logp (ClassificationDiscriminant) | logp (ClassificationNaiveBayes) | logp
(incrementalClassificationNaiveBayes) | isoutlier

Related Examples
• “Unsupervised Anomaly Detection” on page 17-91
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Parametric Classification

• “Parametric Classification” on page 18-2
• “ROC Curve and Performance Metrics” on page 18-3
• “Performance Curves by perfcurve” on page 18-19
• “Classification” on page 18-24
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Parametric Classification
Models of data with a categorical response are called classifiers. A classifier is built from training
data, for which classifications are known. The classifier assigns new test data to one of the
categorical levels of the response.

Parametric methods, like “Discriminant Analysis Classification” on page 21-2, fit a parametric
model to the training data and interpolate to classify test data.

Nonparametric methods, like classification and regression trees, use other means to determine
classifications.

See Also
fitcdiscr | fitcnb

Related Examples
• “Discriminant Analysis Classification” on page 21-2
• “Naive Bayes Classification” on page 22-2
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ROC Curve and Performance Metrics
In this section...
“Introduction to ROC Curve” on page 18-3
“Performance Curve with MATLAB” on page 18-4
“ROC Curve for Multiclass Classification” on page 18-9
“Performance Metrics” on page 18-11
“Classification Scores and Thresholds” on page 18-13
“Pointwise Confidence Intervals” on page 18-17

This topic describes the performance metrics for classification, including the receiver operating
characteristic (ROC) curve and the area under a ROC curve (AUC), and introduces the Statistics and
Machine Learning Toolbox object rocmetrics, which you can use to compute performance metrics
for binary and multiclass classification problems.

Introduction to ROC Curve
After training a classification model, such as ClassificationNaiveBayes or
ClassificationEnsemble, you can examine the performance of the algorithm on a specific test
data set. A common approach is to compute a gross measure of performance, such as quadratic loss
or accuracy, averaged over the entire test data set. You can inspect the classifier performance more
closely by plotting a ROC curve and computing performance metrics. For example, you can find the
threshold that maximizes the classification accuracy, or assess how the classifier performs in the
regions of high sensitivity and high specificity.

Receiver Operating Characteristic (ROC) Curve

A ROC curve shows the true positive rate (TPR, or sensitivity) versus the false positive rate (FPR, or
1-specificity) for different thresholds of classification scores.

Each point on a ROC curve corresponds to a pair of TPR and FPR values for a specific threshold
value. You can find different pairs of TPR and FPR values by varying the threshold value, and then
create a ROC curve using the pairs.

For a multiclass classification problem, you can use the one-versus-all on page 18-9 coding design
and find a ROC curve for each class. The one-versus-all coding design treats a multiclass
classification problem as a set of binary classification problems, and assumes one class as positive
and the rest as negative in each binary problem.

A binary classifier typically classifies an observation into a class that yields a larger score, which
corresponds to a positive adjusted score on page 18-14 for a one-versus-all binary classification
problem. That is, a classifier typically uses 0 as a threshold and determines whether an observation is
positive or negative. For example, if an adjusted score for an observation is 0.2, then the classifier
with a threshold value of 0 assigns the observation to the positive class. You can find a pair of TPR
and FPR values by applying the threshold value to all observations, and use the pair as a single point
on a ROC curve. Now, assume you use a new threshold value of 0.25. Then, the classifier with a
threshold value of 0.25 assigns the observation with an adjusted score of 0.2 to the negative class. By
applying the new threshold to all observations, you can find a new pair of TPR and FPR values and
have a new point on the a ROC curve. By repeating this process for various threshold values, you find
pairs of TPR and FPR values and create a ROC curve using the pairs.

 ROC Curve and Performance Metrics

18-3



Area Under ROC Curve (AUC)

The area under a ROC curve (AUC) corresponds to the integral of a ROC curve (TPR values) with
respect to FPR from FPR = 0 to FPR = 1.

The AUC provides an aggregate performance measure across all possible thresholds. The AUC values
are in the range 0 to 1, and larger AUC values indicate better classifier performance.

• A perfect classifier always correctly assigns positive class observations to the positive class and
has a true positive rate of 1 for any threshold values. Therefore, the line passing through [0,0],
[0,1], and [1,1] represents the perfect classifier, and the AUC value is 1.

• A random classifier returns random score values and has the same values for the false positive
rate and true positive rate for any threshold values. Therefore, the ROC curve for the random
classifier lies on the diagonal line, and the AUC value is 0.5.

Performance Curve with MATLAB
You can compute a ROC curve and other performance curves by creating a rocmetrics object. The
rocmetrics object supports both binary and multiclass classification problems and provides the
following object functions:

• plot — Plot ROC or other classifier performance curves. plot returns a ROCCurve graphics
object for each curve. You can modify the properties of the objects to control the appearance of
each curve. For details, see ROCCurve Properties.

• average — Compute performance metrics for an average ROC curve for multiclass problems.
• addMetrics — Compute additional classification performance metrics.

You can also compute the confidence intervals of performance curves by providing cross-validated
inputs or by bootstrapping the input data.

After training a classifier, use a performance curve to evaluate the classifier performance on test
data. Various measures such as mean squared error, classification error, or exponential loss can
summarize the predictive power of a classifier in a single number. However, a performance curve
offers more information because it lets you explore the classifier performance across a range of
thresholds on the classification scores.

Plot ROC Curve for Binary Classifier

Compute the performance metrics (FPR and TPR) for a binary classification problem by creating a
rocmetrics object, and plot a ROC curve by using plot function.

Load the ionosphere data set. This data set has 34 predictors (X) and 351 binary responses (Y) for
radar returns, either bad ('b') or good ('g').

load ionosphere

Partition the data into training and test sets. Use approximately 80% of the observations to train a
support vector machine (SVM) model, and 20% of the observations to test the performance of the
trained model on new data. Partition the data using cvpartition.

rng("default") % For reproducibility of the partition
c = cvpartition(Y,Holdout=0.20);
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trainingIndices = training(c); % Indices for the training set
testIndices = test(c); % Indices for the test set
XTrain = X(trainingIndices,:);
YTrain = Y(trainingIndices);
XTest = X(testIndices,:);
YTest = Y(testIndices);

Train an SVM classification model.

Mdl = fitcsvm(XTrain,YTrain);

Compute the classification scores for the test set.

[~,Scores] = predict(Mdl,XTest);
size(Scores)

ans = 1×2

    70     2

The output Scores is a matrix of size 70-by-2. The column order of Scores follows the class order in
Mdl. Display the class order stored in Mdl.ClassNames.

Mdl.ClassNames

ans = 2x1 cell
    {'b'}
    {'g'}

Create a rocmetrics object by using the true labels in YTest and the classification scores in
Scores. Specify the column order of Scores using Mdl.ClassNames.

rocObj = rocmetrics(YTest,Scores,Mdl.ClassNames);

rocObj is a rocmetrics object that stores the AUC values and performance metrics for each class
in the AUC and Metrics properties. Display the AUC property.

rocObj.AUC

ans = 1×2

    0.8587    0.8587

For a binary classification problem, the AUC values are equal to each other.

The table in Metrics contains the performance metric values for both classes, vertically
concatenated according to the class order. Find the rows for the first class in the table, and display
the first eight rows.

idx = strcmp(rocObj.Metrics.ClassName,Mdl.ClassNames(1));
head(rocObj.Metrics(idx,:))

    ClassName    Threshold    FalsePositiveRate    TruePositiveRate
    _________    _________    _________________    ________________

      {'b'}       15.544              0                     0      
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      {'b'}       15.544              0                  0.04      
      {'b'}       15.104              0                  0.08      
      {'b'}       11.424              0                  0.16      
      {'b'}       10.078              0                   0.2      
      {'b'}       9.9721              0                  0.24      
      {'b'}       9.9401              0                  0.28      
      {'b'}       9.0326              0                  0.32      

Plot the ROC curve for each class by using the plot function.

plot(rocObj)

For each class, the plot function plots a ROC curve and displays a filled circle marker at the model
operating point. The legend displays the class name and AUC value for each curve.

Note that you do not need to examine ROC curves for both classes in a binary classification problem.
The two ROC curves are symmetric, and the AUC values are identical. A TPR of one class is a true
negative rate (TNR) of the other class, and TNR is 1-FPR. Therefore, a plot of TPR versus FPR for one
class is the same as a plot of 1-FPR versus 1-TPR for the other class.

Plot the ROC curve for the first class only by specifying the ClassNames name-value argument.

plot(rocObj,ClassNames=Mdl.ClassNames(1))
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Plot ROC Curves for Multiclass Classifier

Compute the performance metrics (FPR and TPR) for a multiclass classification problem by creating a
rocmetrics object, and plot a ROC curve for each class by using the plot function. Specify the
AverageROCType name-value argument of plot to create the average ROC curve for the multiclass
problem.

Load the fisheriris data set. The matrix meas contains flower measurements for 150 different
flowers. The vector species lists the species for each flower. species contains three distinct flower
names.

load fisheriris

Train a classification tree that classifies observations into one of the three labels. Cross-validate the
model using 10-fold cross-validation.

rng("default") % For reproducibility
Mdl = fitctree(meas,species,Crossval="on");

Compute the classification scores for validation-fold observations.

[~,Scores] = kfoldPredict(Mdl);
size(Scores)

ans = 1×2
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   150     3

The output Scores is a matrix of size 150-by-3. The column order of Scores follows the class order
in Mdl. Display the class order stored in Mdl.ClassNames.

Mdl.ClassNames

ans = 3x1 cell
    {'setosa'    }
    {'versicolor'}
    {'virginica' }

Create a rocmetrics object by using the true labels in species and the classification scores in
Scores. Specify the column order of Scores using Mdl.ClassNames.

rocObj = rocmetrics(species,Scores,Mdl.ClassNames);

rocObj is a rocmetrics object that stores the AUC values and performance metrics for each class
in the AUC and Metrics properties. Display the AUC property.

rocObj.AUC

ans = 1×3

    1.0000    0.9636    0.9636

The table in Metrics contains the performance metric values for all three classes, vertically
concatenated according to the class order. Find and display the rows for the second class in the table.

idx = strcmp(rocObj.Metrics.ClassName,Mdl.ClassNames(2));
rocObj.Metrics(idx,:)

ans=13×4 table
      ClassName       Threshold    FalsePositiveRate    TruePositiveRate
    ______________    _________    _________________    ________________

    {'versicolor'}           1              0                    0      
    {'versicolor'}           1           0.01                  0.7      
    {'versicolor'}     0.95455           0.02                  0.8      
    {'versicolor'}     0.91304           0.03                  0.9      
    {'versicolor'}        -0.2           0.04                  0.9      
    {'versicolor'}    -0.33333           0.06                  0.9      
    {'versicolor'}        -0.6           0.08                  0.9      
    {'versicolor'}    -0.86957           0.12                 0.92      
    {'versicolor'}    -0.91111           0.16                 0.96      
    {'versicolor'}    -0.95122           0.31                 0.96      
    {'versicolor'}    -0.95238           0.38                 0.98      
    {'versicolor'}    -0.95349           0.44                 0.98      
    {'versicolor'}          -1              1                    1      

Plot the ROC curve for each class. Specify AverageROCType="micro" to compute the performance
metrics for the average ROC curve using the micro-averaging method.

plot(rocObj,AverageROCType="micro")
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The filled circle markers indicate the model operating points. The legend displays the class name and
AUC value for each curve.

ROC Curve for Multiclass Classification
For a multiclass classifier, the rocmetrics function computes the performance metrics of a one-
versus-all ROC curve for each class, and the average function computes the metrics for an average
of the ROC curves. You can use the plot function to plot a ROC curve for each class and the average
ROC curve.

One-Versus-All (OVA) Coding Design

The one-versus-all (OVA) coding design reduces a multiclass classification problem to a set of binary
classification problems. In this coding design, each binary classification treats one class as positive
and the rest of the classes as negative. rocmetrics uses the OVA coding design for multiclass
classification and evaluates the performance on each class by using the binary classification that the
class is positive.

For example, the OVA coding design for three classes formulates three binary classifications:

Binary 1 Binary 2 Binary 3
Class 1 1 −1 −1
Class 2 −1 1 −1
Class 3 −1 −1 1
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Each row corresponds to a class, and each column corresponds to a binary classification problem.
The first binary classification assumes that class 1 is a positive class and the rest of the classes are
negative. rocmetrics evaluates the performance on the first class by using the first binary
classification problem.

rocmetrics applies the OVA coding design to a binary classification problem as well if you specify
classification scores as a two-column matrix. rocmetrics formulates two one-versus-all binary
classification problems each of which treats one class as a positive class and the other class as a
negative class, and rocmetrics finds two ROC curves. You can use one of them to evaluate the
binary classification problem.

Average of Performance Metrics

You can compute metrics for an average ROC curve by using the average function. Alternatively, you
can use the plot function to compute the metrics and plot the average ROC curve. For examples, see
“Find Average ROC Curve” on page 35-132 (example for average) and “Plot Average ROC Curve for
Multiclass Classifier” on page 35-5489 (example for plot).

average and plot support three algorithms for computing the average false positive rate (FPR) and
average true positive rate (TPR) to find the average ROC curve:

• Micro-averaging — The software combines all one-versus-all on page 18-9 binary classification
problems into one binary classification problem and computes the average performance metrics as
follows:

1 Convert the values in the Labels property of a rocmetrics object to logical values where
logical 1 (true) indicates a positive class for each binary problem.

2 Stack the converted vectors of labels, one vector from each binary problem, into a single
vector.

3 Convert the matrix that contains the adjusted values on page 18-14 of the classification
scores (the Scores property) into a vector by stacking the columns of the matrix.

4 Compute the components of the confusion matrix on page 18-11 for the combined binary
problem for each threshold (each distinct value of adjusted scores). A confusion matrix
contains the number of instances for true positive (TP), false negative (FN), false positive
(FP), and true negative (TN).

5 Compute the average FPR and TPR based on the components of the confusion matrix.
• Macro-averaging — The software computes the average values for FPR and TPR by averaging the

values of all one-versus-all binary classification problems.

The software uses three metrics—threshold, FPR, and TPR—to compute the average values as
follows:

1 Determine a fixed metric. If you specify FixedMetric of rocmetrics as
"FalsePositiveRate" or "TruePositiveRate", then the function holds the specified
metric fixed. Otherwise, the function holds the threshold values fixed.

2 Find all distinct values in the Metrics property for the fixed metric.
3 Find the corresponding values for the other two metrics for each binary problem.
4 Average the FPR and TPR values of all binary problems.

• Weighted macro-averaging — The software computes the weighted average values for FPR and
TPR using the macro-averaging algorithm and using the prior class probabilities (the Prior
property) as weights.
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Performance Metrics
The rocmetrics object supports these built-in performance metrics:

• Number of true positives (TP)
• Number of false negatives (FN)
• Number of false positives (FP)
• Number of true negatives (TN)
• Sum of TP and FP
• Rate of positive predictions (RPP)
• Rate of negative predictions (RNP)
• Accuracy
• True positive rate (TPR), recall, or sensitivity
• False negative rate (FNR), or miss rate
• False positive rate (FPR), fallout, or 1-specificity
• True negative rate (TNR), or specificity
• Positive predictive value (PPV), or precision
• Negative predictive value (NPR)
• Expected cost

rocmetrics also supports a custom metric specified as a function handle. For details, see the
AdditionalMetrics name-value argument of the rocmetrics function.

rocmetrics computes performance metric values for various thresholds for each one-versus-all on
page 18-9 binary classification problem using a confusion matrix, scale vector, and misclassification
cost matrix. Each performance metric is a function of a confusion matrix and scale vector. The
expected cost is also a function of the misclassification cost matrix, as is a custom metric.

• Confusion matrix — A confusion matrix contains the number of instances for true positive (TP),
false negative (FN), false positive (FP), and true negative (TN). rocmetrics computes confusion
matrices for various threshold values for each binary problem.

• Scale vector — A scale vector is defined by the prior class probabilities and the number of classes
in true labels. rocmetrics finds the probabilities and number of classes for each binary problem
from the prior class probabilities specified by the Prior name-value argument and the true labels
specified by the Labels input argument.

• Misclassification cost matrix — rocmetrics converts the misclassification cost matrix specified
by the Cost name-value argument to the values for each binary problem.

By default, rocmetrics uses all distinct adjusted score on page 18-14 values as threshold values
for each binary problem. For more details on threshold values, see “Thresholds, Fixed Metric, and
Fixed Metric Values” on page 18-15.

Confusion Matrix

A confusion matrix is defined as

TP FN
FP TN

,
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where

• P stands for "positive".
• N stands for "negative".
• T stands for "true".
• F stands for "false".

For example, the first row of the confusion matrix defines how the classifier identifies instances of the
positive class: TP is the count of correctly identified positive instances, and FN is the count of positive
instances misidentified as negative.

rocmetrics computes confusion matrices for various threshold values for each one-versus-all binary
classification. The one-versus-all binary classification model classifies an observation into a positive
class if the score for the observation is greater than or equal to the threshold value.

Prior Class Probabilities

By default, rocmetrics uses empirical probabilities, which are class frequencies in the true labels.

rocmetrics normalizes the 1-by-K prior probability vector π to a 1-by-2 vector for each one-versus-
all binary classification, where K is the number of classes.

The prior probabilities for the kth binary classification in which the positive class is the kth class is
πk, 1− πk , where πk is the prior probability for class k in the multiclass problem.

Scale Vector

rocmetrics defines a scale vector sk of size 2-by-1 for each one-versus-all binary classification
problem:

sk = 1
πkN + 1− πk P

πkN
1− πk P

,

where P and N represent the total instances of positive class and negative class, respectively. That is,
P is the sum of TP and FN, and N is the sum of FP and TN. sk(1) (first element of sk) and sk(2) (second
element of sk) are the scales for the positive class (kth class) and negative class (the rest),
respectively.

rocmetrics applies the scale values as multiplicative factors to the counts from the corresponding
class. That is, the function multiplies counts from the positive class by sk(1) and counts from the
negative class by sk(2). For example, to compute the positive predictive value (PPV = TP/(TP+FP))
for the kth binary problem, rocmetrics scales PPV as follows:

PPV =
sk(1) ⋅ TP

sk(1) ⋅ TP + sk(2) ⋅ FP .

Misclassification Cost Matrix

By default, rocmetrics uses a K-by-K cost matrix C, where C(i,j) = 1 if i ~= j, and C(i,j) = 0 if i = j.
C(i,j) is the cost of classifying a point into class j if its true class is i (that is, the rows correspond to
the true class and the columns correspond to the predicted class).

rocmetrics normalizes the K-by-K cost matrix C to a 2-by-2 matrix for each one-versus-all binary
classification:
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Ck =
0 costk(N P)

costk(P N) 0
.

Ck is the cost matrix for the kth binary classification in which the positive class is the kth class, where
costk(N|P) is the cost of misclassifying a positive class as a negative class, and costk(P|N) is the
cost of misclassifying a negative class as a positive class.

For class k, let πk
+ and πk

- be K-by-1 vectors with the following values:

πki
+ =

πi if k = i,
0 otherwise.

πki
− =

0 if k = i,
πi otherwise.

πki
+ and πki

- are the ith elements of πk
+ and πk

-, respectively.

The cost of classifying a positive-class (class k) observation into the negative class (the rest) is

costk(N P) = πk
+ ′Cπk

− .

Similarly, the cost of classifying a negative-class observation into the positive class is

costk(P N) = πk
− ′Cπk

+ .

Classification Scores and Thresholds
The rocmetrics function determines threshold values from the input classification scores or the
FixedMetricValues name-value argument.

Classification Score Input for rocmetrics

rocmetrics accepts classification scores (Scores) in a matrix of size n-by-K or a vector of length n,
where n is the number of observations and K is the number classes. For cross-validated data, Scores
can be a cell array of vectors or a cell array of matrices.

• Matrix of size n-by-K — Specify Scores using the second output argument of the predict
function of a classification model object (such as predict of ClassificationTree). Each row
of the output contains classification scores for an observation for all classes, and the column order
of the output matches the class order in the ClassNames property of the classification model
object. You can specify Scores as a matrix for both binary classification and multiclass
classification problems.

If you use a matrix format, rocmetrics adjusts the classification scores for each class relative to
the scores for the rest of the classes. Specifically, the adjusted score for a class given an
observation is the difference between the score for the class and the maximum value of the scores
for the rest of the classes. For more details, see “Adjusted Scores for Multiclass Classification
Problem” on page 18-14.

• Vector of length n — Specify Scores using a vector when you have classification scores for one
class only. A vector input is also suitable when you want to use a different type of adjusted scores
for a multiclass problem. As an example, consider a problem with three classes, A, B, and C. If you
want to compute a performance curve for separating classes A and B, with C ignored, you need to
address the ambiguity in selecting A over B. You can use the score ratio s(A)/s(B) or score
difference s(A)–s(B) and pass the vector to rocmetrics; this approach can depend on the
nature of the scores and their normalization.
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You can use rocmetrics with any classifier or any function that returns a numeric score for an
instance of input data.

• A high score returned by a classifier for a given instance and class signifies that the instance is
likely from the respective class.

• A low score signifies that the instance is not likely from the respective class.

For some classifiers, you can interpret the score as the posterior probability of observing an instance
of a class given an observation. An example of such a score is the fraction of observations for a
certain class in a leaf of a decision tree. In this case, scores fall into the range from 0 to 1, and scores
from all classes add up to 1. Other functions can return scores ranging between minus and plus
infinity, without any obvious mapping from the score to the posterior class probability.

rocmetrics does not impose any requirements on the input score range. Because of this lack of
normalization, you can use rocmetrics to process scores returned by any classification, regression,
or fit functions. rocmetrics does not make any assumptions about the nature of input scores.

rocmetrics is intended for use with classifiers that return scores, not those that return only
predicted classes. Consider a classifier that returns only classification labels, 0 or 1, for data with two
classes. In this case, the performance curve reduces to a single point because the software can split
classified instances into positive and negative categories in one way only.

Adjusted Scores for Multiclass Classification Problem

For each class, rocmetrics adjusts the classification scores (input argument Scores of
rocmetrics) relative to the scores for the rest of the classes if you specify Scores as a matrix.
Specifically, the adjusted score for a class given an observation is the difference between the score
for the class and the maximum value of the scores for the rest of the classes.

For example, if you have [s1,s2,s3] in a row of Scores for a classification problem with three classes,
the adjusted score values are [s1-max(s2,s3),s2-max(s1,s3),s3-max(s1,s2)].

rocmetrics computes the performance metrics using the adjusted score values for each class.

For a binary classification problem, you can specify Scores as a two-column matrix or a column
vector. Using a two-column matrix is a simpler option because the predict function of a
classification object returns classification scores as a matrix, which you can pass to rocmetrics. If
you pass scores in a two-column matrix, rocmetrics adjusts scores in the same way that it adjusts
scores for multiclass classification, and it computes performance metrics for both classes. You can
use the metric values for one of the two classes to evaluate the binary classification problem. The
metric values for a class returned by rocmetrics when you pass a two-column matrix are equivalent
to the metric values returned by rocmetrics when you specify classification scores for the class as a
column vector.

Model Operating Point

The model operating point represents the FPR and TPR corresponding to the typical threshold value.

The typical threshold value depends on the input format of the Scores argument (classification
scores) specified when you create a rocmetrics object:

• If you specify Scores as a matrix, rocmetrics assumes that the values in Scores are the scores
for a multiclass classification problem and uses adjusted score on page 18-14 values. A multiclass
classification model classifies an observation into a class that yields the largest score, which
corresponds to a nonnegative score in the adjusted scores. Therefore, the threshold value is 0.
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• If you specify Scores as a column vector, rocmetrics assumes that the values in Scores are
posterior probabilities of the class specified in ClassNames. A binary classification model
classifies an observation into a class that yields a higher posterior probability, that is, a posterior
probability greater than 0.5. Therefore, the threshold value is 0.5.

For a binary classification problem, you can specify Scores as a two-column matrix or a column
vector. However, if the classification scores are not posterior probabilities, you must specify Scores
as a matrix. A binary classifier classifies an observation into a class that yields a larger score, which
is equivalent to a class that yields a nonnegative adjusted score. Therefore, if you specify Scores as a
matrix for a binary classifier, rocmetrics can find a correct model operating point using the same
scheme that it applies to a multiclass classifier. If you specify classification scores that are not
posterior probabilities as a vector, rocmetrics cannot identify a correct model operating point
because it always uses 0.5 as a threshold for the model operating point.

The plot function displays a filled circle marker at the model operating point for each ROC curve
(see ShowModelOperatingPoint). The function chooses a point corresponding to the typical
threshold value. If the curve does not have a data point for the typical threshold value, the function
finds a point that has the smallest threshold value greater than the typical threshold. The point on the
curve indicates identical performance to the performance of the typical threshold value.

For an example, see “Find Model Operating Point and Optimal Operating Point” on page 35-6841.

Thresholds, Fixed Metric, and Fixed Metric Values

rocmetrics finds the ROC curves and other metric values that correspond to the fixed values
(FixedMetricValues name-value argument) of the fixed metric (FixedMetric name-value
argument), and stores the values in the Metrics property as a table.

The default FixedMetric value is "Thresholds", and the default FixedMetricValues value is
"all". For each class, rocmetrics uses all distinct adjusted score on page 18-14 values as
threshold values, computes the components of the confusion matrix on page 18-11 for each threshold
value, and then computes performance metrics using the confusion matrix components.

If you use the default FixedMetricValues value ("all"), specifying a nondefault FixedMetric
value does not change the software behavior unless you specify to compute confidence intervals. If
rocmetrics computes confidence intervals, then it holds FixedMetric fixed at
FixedMetricValues and computes confidence intervals for other metrics. For more details, see
“Pointwise Confidence Intervals” on page 18-17.

If you specify a nondefault value for FixedMetricValues, rocmetrics finds the threshold values
corresponding to the specified fixed metric values (FixedMetricValues for FixedMetric) and
computes other performance metric values using the threshold values.

• If you set the UseNearestNeighbor name-value argument to false, then rocmetrics uses the
exact threshold values corresponding to the specified fixed metric values.

• If you set UseNearestNeighbor to true, then among the adjusted scores, rocmetrics finds a
value that is the nearest to the threshold value corresponding to each specified fixed metric value.

The Metrics property includes an additional threshold value that replicates the largest threshold
value for each class so that a ROC curve starts from the origin (0,0). The additional threshold value
represents the reject-all threshold, for which TP = FP = 0 (no positive instances, that is, zero true
positive instances and zero false positive instances).
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Another special threshold in Metrics is the accept-all threshold, which is the smallest threshold
value for which TN = FN = 0 (no negative instances, that is, zero true negative instances and zero
false negative instances).

Note that the positive predictive value (PPV = TP/(TP+FP)) is NaN for the reject-all threshold, and
the negative predictive value (NPV = TN/(TN+FN)) is NaN for the accept-all threshold.

NaN Score Values

rocmetrics processes NaN values in the classification score input (Scores) in one of two ways:

• If you specify NaNFlag="omitnan" (default), then rocmetrics discards rows with NaN scores.
• If you specify NaNFlag="includenan", then rocmetrics adds the instances of NaN scores to

false classification counts in the respective class for each one-versus-all binary classification. That
is, for any threshold, the software counts instances with NaN scores from the positive class as false
negative (FN), and counts instances with NaN scores from the negative class as false positive (FP).
The software computes the metrics corresponding to a threshold of 1 by setting the number of
true positive (TP) instances to zero and setting the number of true negative (TN) instances to the
total count minus the NaN count in the negative class.

Consider an example with two rows in the positive class and two rows in the negative class, each pair
having a NaN score:

True Class Label Classification Score
Negative 0.2
Negative NaN
Positive 0.7
Positive NaN

If you discard rows with NaN scores (NaNFlag="omitnan"), then as the score threshold varies,
rocmetrics computes performance metrics as shown in the following table. For example, a
threshold of 0.5 corresponds to the middle row where rocmetrics classifies rows 1 and 3 correctly
and omits rows 2 and 4.

Threshold TP FN FP TN
1 0 1 0 1
0.5 1 0 0 1
0 1 0 1 0

If you add rows with NaN scores to the false category in their respective classes
(NaNFlag="includenan"), rocmetrics computes performance metrics as shown in the following
table. For example, a threshold of 0.5 corresponds to the middle row where rocmetrics counts rows
2 and 4 as incorrectly classified. Notice that only the FN and FP columns differ between these two
tables.

Threshold TP FN FP TN
1 0 2 1 1
0.5 1 1 1 1
0 1 1 2 0
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Pointwise Confidence Intervals
rocmetrics computes pointwise confidence intervals for the performance metrics, including the
AUC values and score thresholds, by using either bootstrap samples or cross-validated data. The
object stores the values in the Metrics and AUC properties.

• Bootstrap — To compute confidence intervals using bootstrapping, set the NumBootstraps name-
value argument to a positive integer. rocmetrics generates NumBootstraps bootstrap samples.
The function creates each bootstrap sample by randomly selecting n out of the n rows of input
data with replacement. For an example, see “Compute Confidence Intervals Using Bootstrapping”
on page 35-6836.

• Cross-validation — To compute confidence intervals using cross-validation, specify cross-validated
data for true class labels (Labels), classification scores (Scores), and observation weights
(Weights) using cell arrays. rocmetrics treats elements in the cell arrays as cross-validation
folds. For an example, see “Compute Confidence Intervals with Cross-Validated Input Data” on
page 35-6838.

You cannot specify both options. If you specify a custom metric in AdditionalMetrics, you must
use bootstrap to compute confidence intervals. rocmetrics does not support cross-validation for a
custom metric.

rocmetrics holds FixedMetric (threshold, FPR, TPR, or a metric specified in
AdditionalMetrics) fixed at FixedMetricValues and computes the confidence intervals on AUC
and other metrics for the points corresponding to the values in FixedMetricValues.

• Threshold averaging (TA) (when FixedMetric is "Thresholds" (default)) — rocmetrics
estimates confidence intervals for performance metrics at fixed threshold values. The function
takes samples at the fixed thresholds and averages the corresponding metric values.

• Vertical averaging (VA) (when FixedMetric is a performance metric) — rocmetrics estimates
confidence intervals for thresholds and other performance metrics at the fixed metric values. The
function takes samples at the fixed metric values and averages the corresponding threshold and
metric values.

The function estimates confidence intervals for the AUC value only when FixedMetric is
"Thresholds", "FalsePositiveRate", or "TruePositiveRate".
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Performance Curves by perfcurve
The perfcurve function computes a receiver operating characteristic (ROC) curve and other
performance curves. You can use this function to evaluate classifier performance on test data after
you train a classifier.

Alternatively, you can compute performance metrics for a ROC curve and other performance curves
by creating a rocmetrics object. rocmetrics supports both binary and multiclass classification
problems, and provides object functions to plot a ROC curve (plot), compute an average ROC curve
for multiclass problems (average), and compute additional metrics after creating an object
(addMetrics). For more details, see “ROC Curve and Performance Metrics” on page 18-3.

Input Scores and Labels for perfcurve
You can use perfcurve with any classifier or, more broadly, with any function that returns a numeric
score for an instance of input data. By convention adopted here,

• A high score returned by a classifier for any given instance signifies that the instance is likely from
the positive class.

• A low score signifies that the instance is likely from the negative classes.

For some classifiers, you can interpret the score as the posterior probability of observing an instance
of the positive class at point X. An example of such a score is the fraction of positive observations in a
leaf of a decision tree. In this case, scores fall into the range from 0 to 1 and scores from positive and
negative classes add up to unity. Other methods can return scores ranging between minus and plus
infinity, without any obvious mapping from the score to the posterior class probability.

perfcurve does not impose any requirements on the input score range. Because of this lack of
normalization, you can use perfcurve to process scores returned by any classification, regression,
or fit method. perfcurve does not make any assumptions about the nature of input scores or
relationships between the scores for different classes. As an example, consider a problem with three
classes, A, B, and C, and assume that the scores returned by some classifier for two instances are as
follows:

 A B C
Instance 1 0.4 0.5 0.1
Instance 2 0.4 0.1 0.5

If you want to compute a performance curve for separation of classes A and B, with C ignored, you
need to address the ambiguity in selecting A over B. You could opt to use the score ratio, s(A)/s(B),
or score difference, s(A)-s(B); this choice could depend on the nature of these scores and their
normalization. perfcurve always takes one score per instance. If you only supply scores for class A,
perfcurve does not distinguish between observations 1 and 2. The performance curve in this case
may not be optimal.

perfcurve is intended for use with classifiers that return scores, not those that return only
predicted classes. As a counter-example, consider a decision tree that returns only hard classification
labels, 0 or 1, for data with two classes. In this case, the performance curve reduces to a single point
because classified instances can be split into positive and negative categories in one way only.

For input, perfcurve takes true class labels for some data and scores assigned by a classifier to
these data. By default, this utility computes a Receiver Operating Characteristic (ROC) curve and
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returns values of 1–specificity, or false positive rate, for X and sensitivity, or true positive rate, for Y.
You can choose other criteria for X and Y by selecting one out of several provided criteria or
specifying an arbitrary criterion through an anonymous function. You can display the computed
performance curve using plot(X,Y).

Computation of Performance Metrics
perfcurve can compute values for various criteria to plot either on the x- or the y-axis. All such
criteria are described by a 2-by-2 confusion matrix, a 2-by-2 cost matrix, and a 2-by-1 vector of scales
applied to class counts.

Confusion Matrix

The confusionchart matrix, C, is defined as

TP FN
FP TN

where

• P stands for "positive".
• N stands for "negative".
• T stands for "true".
• F stands for "false".

For example, the first row of the confusion matrix defines how the classifier identifies instances of the
positive class: C(1,1) is the count of correctly identified positive instances and C(1,2) is the count
of positive instances misidentified as negative.

Misclassification Cost Matrix

The cost matrix defines the cost of misclassification for each category:

Cost(P P) Cost(N P)
Cost(P N) Cost(N N)

where Cost(I|J) is the cost of assigning an instance of class J to class I. Usually Cost(I|J)=0 for
I=J. For flexibility, perfcurve allows you to specify nonzero costs for correct classification as well.

Scale Vector

The two scales include prior information about class probabilities. perfcurve computes these scales
by taking scale(P)=prior(P)*N and scale(N)=prior(N)*P and normalizing the sum scale(P)
+scale(N) to 1. P=TP+FN and N=TN+FP are the total instance counts in the positive and negative
class, respectively. The function then applies the scales as multiplicative factors to the counts from
the corresponding class: perfcurve multiplies counts from the positive class by scale(P) and
counts from the negative class by scale(N). Consider, for example, computation of positive
predictive value, PPV = TP/(TP+FP). TP counts come from the positive class and FP counts come
from the negative class. Therefore, you need to scale TP by scale(P) and FP by scale(N), and the
modified formula for PPV with prior probabilities taken into account is now:

PPV = scale(P) * TP
scale(P) * TP + scale(N) * FP
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If all scores in the data are above a certain threshold, perfcurve classifies all instances as
'positive'. This means that TP is the total number of instances in the positive class and FP is the
total number of instances in the negative class. In this case, PPV is simply given by the prior:

PPV = prior(P)
prior(P) + prior(N)

The perfcurve function returns two vectors, X and Y, of performance measures. Each measure is
some function of confusion, cost, and scale values. You can request specific measures by name or
provide a function handle to compute a custom measure. The function you provide should take
confusion, cost, and scale as its three inputs and return a vector of output values.

Thresholds

The criterion for X must be a monotone function of the positive classification count, or equivalently,
threshold for the supplied scores. If perfcurve cannot perform a one-to-one mapping between
values of the X criterion and score thresholds, it exits with an error message.

By default, perfcurve computes values of the X and Y criteria for all possible score thresholds.
Alternatively, it can compute a reduced number of specific X values supplied as an input argument. In
either case, for M requested values, perfcurve computes M+1 values for X and Y. The first value out
of these M+1 values is special. perfcurve computes it by setting the TP instance count to zero and
setting TN to the total count in the negative class. This value corresponds to the 'reject all'
threshold. On a standard ROC curve, this translates into an extra point placed at (0,0).

NaN Score Values

If there are NaN values among input scores, perfcurve can process them in either of two ways:

• It can discard rows with NaN scores.
• It can add them to false classification counts in the respective class.

That is, for any threshold, instances with NaN scores from the positive class are counted as false
negative (FN), and instances with NaN scores from the negative class are counted as false positive
(FP). In this case, the first value of X or Y is computed by setting TP to zero and setting TN to the total
count minus the NaN count in the negative class. For illustration, consider an example with two rows
in the positive and two rows in the negative class, each pair having a NaN score:

Class Score
Negative 0.2
Negative NaN
Positive 0.7
Positive NaN

If you discard rows with NaN scores, then as the score cutoff varies, perfcurve computes
performance measures as in the following table. For example, a cutoff of 0.5 corresponds to the
middle row where rows 1 and 3 are classified correctly, and rows 2 and 4 are omitted.

TP FN FP TN
0 1 0 1
1 0 0 1
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TP FN FP TN
1 0 1 0

If you add rows with NaN scores to the false category in their respective classes, perfcurve
computes performance measures as in the following table. For example, a cutoff of 0.5 corresponds to
the middle row where now rows 2 and 4 are counted as incorrectly classified. Notice that only the FN
and FP columns differ between these two tables.

TP FN FP TN
0 2 1 1
1 1 1 1
1 1 2 0

Multiclass Classification Problems
For data with three or more classes, perfcurve takes one positive class and a list of negative classes
for input. The function computes the X and Y values using counts in the positive class to estimate TP
and FN, and using counts in all negative classes to estimate TN and FP. perfcurve can optionally
compute Y values for each negative class separately and, in addition to Y, return a matrix of size M-by-
C, where M is the number of elements in X or Y and C is the number of negative classes. You can use
this functionality to monitor components of the negative class contribution. For example, you can plot
TP counts on the X-axis and FP counts on the Y-axis. In this case, the returned matrix shows how the
FP component is split across negative classes.

Confidence Intervals
You can also use perfcurve to estimate confidence intervals. perfcurve computes confidence
bounds using either cross-validation or bootstrap. If you supply cell arrays for labels and scores,
perfcurve uses cross-validation and treats elements in the cell arrays as cross-validation folds. If
you set input parameter NBoot to a positive integer, perfcurve generates nboot bootstrap replicas
to compute pointwise confidence bounds.

perfcurve estimates the confidence bounds using one of two methods:

• Vertical averaging (VA) — estimate confidence bounds on Y and T at fixed values of X. Use the
XVals input parameter to use this method for computing confidence bounds.

• Threshold averaging (TA) — estimate confidence bounds for X and Y at fixed thresholds for the
positive class score. Use the TVals input parameter to use this method for computing confidence
bounds.

Observation Weights
To use observation weights instead of observation counts, you can use the 'Weights' parameter in
your call to perfcurve. When you use this parameter, to compute X, Y and T or to compute
confidence bounds by cross-validation, perfcurve uses your supplied observation weights instead of
observation counts. To compute confidence bounds by bootstrap, perfcurve samples N out of N with
replacement using your weights as multinomial sampling probabilities.
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Classification

This example shows how to perform classification using discriminant analysis, naive Bayes classifiers,
and decision trees. Suppose you have a data set containing observations with measurements on
different variables (called predictors) and their known class labels. If you obtain predictor values for
new observations, could you determine to which classes those observations probably belong? This is
the problem of classification.

Fisher's Iris Data

Fisher's iris data consists of measurements on the sepal length, sepal width, petal length, and petal
width for 150 iris specimens. There are 50 specimens from each of three species. Load the data and
see how the sepal measurements differ between species. You can use the two columns containing
sepal measurements.

load fisheriris
f = figure;
gscatter(meas(:,1), meas(:,2), species,'rgb','osd');
xlabel('Sepal length');
ylabel('Sepal width');

N = size(meas,1);
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Suppose you measure a sepal and petal from an iris, and you need to determine its species on the
basis of those measurements. One approach to solving this problem is known as discriminant
analysis.

Linear and Quadratic Discriminant Analysis

The fitcdiscr function can perform classification using different types of discriminant analysis.
First classify the data using the default linear discriminant analysis (LDA).

lda = fitcdiscr(meas(:,1:2),species);
ldaClass = resubPredict(lda);

The observations with known class labels are usually called the training data. Now compute the
resubstitution error, which is the misclassification error (the proportion of misclassified observations)
on the training set.

ldaResubErr = resubLoss(lda)

ldaResubErr = 0.2000

You can also compute the confusion matrix on the training set. A confusion matrix contains
information about known class labels and predicted class labels. Generally speaking, the (i,j) element
in the confusion matrix is the number of samples whose known class label is class i and whose
predicted class is j. The diagonal elements represent correctly classified observations.

figure
ldaResubCM = confusionchart(species,ldaClass);
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Of the 150 training observations, 20% or 30 observations are misclassified by the linear discriminant
function. You can see which ones they are by drawing X through the misclassified points.

figure(f)
bad = ~strcmp(ldaClass,species);
hold on;
plot(meas(bad,1), meas(bad,2), 'kx');
hold off;

The function has separated the plane into regions divided by lines, and assigned different regions to
different species. One way to visualize these regions is to create a grid of (x,y) values and apply the
classification function to that grid.

[x,y] = meshgrid(4:.1:8,2:.1:4.5);
x = x(:);
y = y(:);
j = classify([x y],meas(:,1:2),species);
gscatter(x,y,j,'grb','sod')
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For some data sets, the regions for the various classes are not well separated by lines. When that is
the case, linear discriminant analysis is not appropriate. Instead, you can try quadratic discriminant
analysis (QDA) for our data.

Compute the resubstitution error for quadratic discriminant analysis.

qda = fitcdiscr(meas(:,1:2),species,'DiscrimType','quadratic');
qdaResubErr = resubLoss(qda)

qdaResubErr = 0.2000

You have computed the resubstitution error. Usually people are more interested in the test error (also
referred to as generalization error), which is the expected prediction error on an independent set. In
fact, the resubstitution error will likely under-estimate the test error.

In this case you don't have another labeled data set, but you can simulate one by doing cross-
validation. A stratified 10-fold cross-validation is a popular choice for estimating the test error on
classification algorithms. It randomly divides the training set into 10 disjoint subsets. Each subset has
roughly equal size and roughly the same class proportions as in the training set. Remove one subset,
train the classification model using the other nine subsets, and use the trained model to classify the
removed subset. You could repeat this by removing each of the ten subsets one at a time.

Because cross-validation randomly divides data, its outcome depends on the initial random seed. To
reproduce the exact results in this example, execute the following command:

rng(0,'twister');
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First use cvpartition to generate 10 disjoint stratified subsets.

cp = cvpartition(species,'KFold',10)

cp = 
K-fold cross validation partition
   NumObservations: 150
       NumTestSets: 10
         TrainSize: 135  135  135  135  135  135  135  135  135  135
          TestSize: 15  15  15  15  15  15  15  15  15  15

The crossval and kfoldLoss methods can estimate the misclassification error for both LDA and
QDA using the given data partition cp.

Estimate the true test error for LDA using 10-fold stratified cross-validation.

cvlda = crossval(lda,'CVPartition',cp);
ldaCVErr = kfoldLoss(cvlda)

ldaCVErr = 0.2000

The LDA cross-validation error has the same value as the LDA resubstitution error on this data.

Estimate the true test error for QDA using 10-fold stratified cross-validation.

cvqda = crossval(qda,'CVPartition',cp);
qdaCVErr = kfoldLoss(cvqda)

qdaCVErr = 0.2200

QDA has a slightly larger cross-validation error than LDA. It shows that a simpler model may get
comparable, or better performance than a more complicated model.

Naive Bayes Classifiers

The fitcdiscr function has other two other types, 'DiagLinear' and 'DiagQuadratic'. They
are similar to 'linear' and 'quadratic', but with diagonal covariance matrix estimates. These
diagonal choices are specific examples of a naive Bayes classifier, because they assume the variables
are conditionally independent given the class label. Naive Bayes classifiers are among the most
popular classifiers. While the assumption of class-conditional independence between variables is not
true in general, naive Bayes classifiers have been found to work well in practice on many data sets.

The fitcnb function can be used to create a more general type of naive Bayes classifier.

First model each variable in each class using a Gaussian distribution. You can compute the
resubstitution error and the cross-validation error.

nbGau = fitcnb(meas(:,1:2), species);
nbGauResubErr = resubLoss(nbGau)

nbGauResubErr = 0.2200

nbGauCV = crossval(nbGau, 'CVPartition',cp);
nbGauCVErr = kfoldLoss(nbGauCV)

nbGauCVErr = 0.2200
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labels = predict(nbGau, [x y]);
gscatter(x,y,labels,'grb','sod')

So far you have assumed the variables from each class have a multivariate normal distribution. Often
that is a reasonable assumption, but sometimes you may not be willing to make that assumption or
you may see clearly that it is not valid. Now try to model each variable in each class using a kernel
density estimation, which is a more flexible nonparametric technique. Here we set the kernel to box.

nbKD = fitcnb(meas(:,1:2), species, 'DistributionNames','kernel', 'Kernel','box');
nbKDResubErr = resubLoss(nbKD)

nbKDResubErr = 0.2067

nbKDCV = crossval(nbKD, 'CVPartition',cp);
nbKDCVErr = kfoldLoss(nbKDCV)

nbKDCVErr = 0.2133

labels = predict(nbKD, [x y]);
gscatter(x,y,labels,'rgb','osd')

 Classification

18-29



For this data set, the naive Bayes classifier with kernel density estimation gets smaller resubstitution
error and cross-validation error than the naive Bayes classifier with a Gaussian distribution.

Decision Tree

Another classification algorithm is based on a decision tree. A decision tree is a set of simple rules,
such as "if the sepal length is less than 5.45, classify the specimen as setosa." Decision trees are also
nonparametric because they do not require any assumptions about the distribution of the variables in
each class.

The fitctree function creates a decision tree. Create a decision tree for the iris data and see how
well it classifies the irises into species.

t = fitctree(meas(:,1:2), species,'PredictorNames',{'SL' 'SW' });

It's interesting to see how the decision tree method divides the plane. Use the same technique as
above to visualize the regions assigned to each species.

[grpname,node] = predict(t,[x y]);
gscatter(x,y,grpname,'grb','sod')
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Another way to visualize the decision tree is to draw a diagram of the decision rule and class
assignments.

view(t,'Mode','graph');
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This cluttered-looking tree uses a series of rules of the form "SL < 5.45" to classify each specimen
into one of 19 terminal nodes. To determine the species assignment for an observation, start at the
top node and apply the rule. If the point satisfies the rule you take the left path, and if not you take
the right path. Ultimately you reach a terminal node that assigns the observation to one of the three
species.

Compute the resubstitution error and the cross-validation error for decision tree.

dtResubErr = resubLoss(t)

dtResubErr = 0.1333

cvt = crossval(t,'CVPartition',cp);
dtCVErr = kfoldLoss(cvt)

dtCVErr = 0.3000

For the decision tree algorithm, the cross-validation error estimate is significantly larger than the
resubstitution error. This shows that the generated tree overfits the training set. In other words, this
is a tree that classifies the original training set well, but the structure of the tree is sensitive to this
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particular training set so that its performance on new data is likely to degrade. It is often possible to
find a simpler tree that performs better than a more complex tree on new data.

Try pruning the tree. First compute the resubstitution error for various subsets of the original tree.
Then compute the cross-validation error for these sub-trees. A graph shows that the resubstitution
error is overly optimistic. It always decreases as the tree size grows, but beyond a certain point,
increasing the tree size increases the cross-validation error rate.

resubcost = resubLoss(t,'Subtrees','all');
[cost,secost,ntermnodes,bestlevel] = cvloss(t,'Subtrees','all');
plot(ntermnodes,cost,'b-', ntermnodes,resubcost,'r--')
figure(gcf);
xlabel('Number of terminal nodes');
ylabel('Cost (misclassification error)')
legend('Cross-validation','Resubstitution')

Which tree should you choose? A simple rule would be to choose the tree with the smallest cross-
validation error. While this may be satisfactory, you might prefer to use a simpler tree if it is roughly
as good as a more complex tree. For this example, take the simplest tree that is within one standard
error of the minimum. That's the default rule used by the cvloss method of ClassificationTree.

You can show this on the graph by computing a cutoff value that is equal to the minimum cost plus
one standard error. The "best" level computed by the cvloss method is the smallest tree under this
cutoff. (Note that bestlevel=0 corresponds to the unpruned tree, so you have to add 1 to use it as
an index into the vector outputs from cvloss.)
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[mincost,minloc] = min(cost);
cutoff = mincost + secost(minloc);
hold on
plot([0 20], [cutoff cutoff], 'k:')
plot(ntermnodes(bestlevel+1), cost(bestlevel+1), 'mo')
legend('Cross-validation','Resubstitution','Min + 1 std. err.','Best choice')
hold off

Finally, you can look at the pruned tree and compute the estimated misclassification error for it.

pt = prune(t,'Level',bestlevel);
view(pt,'Mode','graph')
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cost(bestlevel+1)

ans = 0.2467

Conclusions

This example shows how to perform classification in MATLAB® using Statistics and Machine
Learning Toolbox™ functions.

This example is not meant to be an ideal analysis of the Fisher iris data, In fact, using the petal
measurements instead of, or in addition to, the sepal measurements may lead to better classification.
Also, this example is not meant to compare the strengths and weaknesses of different classification
algorithms. You may find it instructive to perform the analysis on other data sets and compare
different algorithms. There are also Toolbox functions that implement other classification algorithms.
For instance, you can use TreeBagger to perform bootstrap aggregation for an ensemble of decision
trees, as described in the example “Bootstrap Aggregation (Bagging) of Classification Trees Using
TreeBagger” on page 19-125.
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Nonparametric Supervised Learning

• “Supervised Learning Workflow and Algorithms” on page 19-2
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Supervised Learning Workflow and Algorithms
In this section...
“What Is Supervised Learning?” on page 19-2
“Steps in Supervised Learning” on page 19-3
“Characteristics of Classification Algorithms” on page 19-6
“Misclassification Cost Matrix, Prior Probabilities, and Observation Weights” on page 19-8

What Is Supervised Learning?
The aim of supervised, machine learning is to build a model that makes predictions based on evidence
in the presence of uncertainty. As adaptive algorithms identify patterns in data, a computer "learns"
from the observations. When exposed to more observations, the computer improves its predictive
performance.

Specifically, a supervised learning algorithm takes a known set of input data and known responses to
the data (output), and trains a model to generate reasonable predictions for the response to new
data.

For example, suppose you want to predict whether someone will have a heart attack within a year.
You have a set of data on previous patients, including age, weight, height, blood pressure, etc. You
know whether the previous patients had heart attacks within a year of their measurements. So, the
problem is combining all the existing data into a model that can predict whether a new person will
have a heart attack within a year.

You can think of the entire set of input data as a heterogeneous matrix. Rows of the matrix are called
observations, examples, or instances, and each contain a set of measurements for a subject (patients
in the example). Columns of the matrix are called predictors, attributes, or features, and each are
variables representing a measurement taken on every subject (age, weight, height, etc. in the
example). You can think of the response data as a column vector where each row contains the output
of the corresponding observation in the input data (whether the patient had a heart attack). To fit or
train a supervised learning model, choose an appropriate algorithm, and then pass the input and
response data to it.

Supervised learning splits into two broad categories: classification and regression.

• In classification, the goal is to assign a class (or label) from a finite set of classes to an
observation. That is, responses are categorical variables. Applications include spam filters,
advertisement recommendation systems, and image and speech recognition. Predicting whether a
patient will have a heart attack within a year is a classification problem, and the possible classes
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are true and false. Classification algorithms usually apply to nominal response values. However,
some algorithms can accommodate ordinal classes (see fitcecoc).

• In regression, the goal is to predict a continuous measurement for an observation. That is, the
responses variables are real numbers. Applications include forecasting stock prices, energy
consumption, or disease incidence.

Statistics and Machine Learning Toolbox supervised learning functionalities comprise a stream-lined,
object framework. You can efficiently train a variety of algorithms, combine models into an ensemble,
assess model performances, cross-validate, and predict responses for new data.

Steps in Supervised Learning
While there are many Statistics and Machine Learning Toolbox algorithms for supervised learning,
most use the same basic workflow for obtaining a predictor model. (Detailed instruction on the steps
for ensemble learning is in “Framework for Ensemble Learning” on page 19-33.) The steps for
supervised learning are:

1. “Prepare Data” on page 19-3
2. “Choose an Algorithm” on page 19-4
3. “Fit a Model” on page 19-4
4. “Choose a Validation Method” on page 19-4
5. “Examine Fit and Update Until Satisfied” on page 19-5
6. “Use Fitted Model for Predictions” on page 19-6

Prepare Data

All supervised learning methods start with an input data matrix, usually called X here. Each row of X
represents one observation. Each column of X represents one variable, or predictor. Represent
missing entries with NaN values in X. Statistics and Machine Learning Toolbox supervised learning
algorithms can handle NaN values, either by ignoring them or by ignoring any row with a NaN value.

You can use various data types for response data Y. Each element in Y represents the response to the
corresponding row of X. Observations with missing Y data are ignored.

• For regression, Y must be a numeric vector with the same number of elements as the number of
rows of X.

• For classification, Y can be any of these data types. This table also contains the method of
including missing entries.

Data Type Missing Entry
Numeric vector NaN
Categorical vector <undefined>
Character array Row of spaces
String array <missing> or ""
Cell array of character vectors ''
Logical vector (Cannot represent)
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Choose an Algorithm

There are tradeoffs between several characteristics of algorithms, such as:

• Speed of training
• Memory usage
• Predictive accuracy on new data
• Transparency or interpretability, meaning how easily you can understand the reasons an algorithm

makes its predictions

Details of the algorithms appear in “Characteristics of Classification Algorithms” on page 19-6.
More detail about ensemble algorithms is in “Choose an Applicable Ensemble Aggregation Method”
on page 19-34.

Fit a Model

The fitting function you use depends on the algorithm you choose.

Algorithm Fitting Function for
Classification

Fitting Function for
Regression

Decision trees fitctree fitrtree
Discriminant analysis fitcdiscr Not applicable
Ensembles (for example,
Random Forests [1])

fitcensemble, TreeBagger fitrensemble, TreeBagger

Gaussian kernel model fitckernel (SVM and logistic
regression learners)

fitrkernel (SVM and least-
squares regression learners)

Gaussian process regression
(GPR)

Not applicable fitrgp

Generalized additive model
(GAM)

fitcgam fitrgam

k-nearest neighbors fitcknn Not applicable
Linear model fitclinear (SVM and logistic

regression)
fitrlinear (SVM and least-
squares regression)

Multiclass, error-correcting
output codes (ECOC) model for
SVM or other classifiers

fitcecoc Not applicable

Naive Bayes model fitcnb Not applicable
Neural network model fitcnet fitrnet
Support vector machines (SVM) fitcsvm fitrsvm

For a comparison of these algorithms, see “Characteristics of Classification Algorithms” on page 19-
6.

Choose a Validation Method

The three main methods to examine the accuracy of the resulting fitted model are:

• Examine the resubstitution error. For examples, see:
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• “Classification Tree Resubstitution Error” on page 20-13
• “Cross Validate a Regression Tree” on page 20-14
• “Test Ensemble Quality” on page 19-68
• “Example: Resubstitution Error of a Discriminant Analysis Classifier” on page 21-16

• Examine the cross-validation error. For examples, see:

• “Cross Validate a Regression Tree” on page 20-14
• “Test Ensemble Quality” on page 19-68
• “Estimate Generalization Error of Boosting Ensemble” on page 35-1967
• “Cross Validating a Discriminant Analysis Classifier” on page 21-17

• Examine the out-of-bag error for bagged decision trees. For examples, see:

• “Test Ensemble Quality” on page 19-68
• “Bootstrap Aggregation (Bagging) of Regression Trees Using TreeBagger” on page 19-114
• “Bootstrap Aggregation (Bagging) of Classification Trees Using TreeBagger” on page 19-125

Examine Fit and Update Until Satisfied

After validating the model, you might want to change it for better accuracy, better speed, or to use
less memory.

• Change fitting parameters to try to get a more accurate model. For examples, see:

• “Tune RobustBoost” on page 19-102
• “Handle Imbalanced Data or Unequal Misclassification Costs in Classification Ensembles” on

page 19-86
• “Improving Discriminant Analysis Models” on page 21-15

• Change fitting parameters to try to get a smaller model. This sometimes gives a model with more
accuracy. For examples, see:

• “Select Appropriate Tree Depth” on page 20-16
• “Prune a Classification Tree” on page 20-20
• “Surrogate Splits” on page 19-92
• “Ensemble Regularization” on page 19-72
• “Bootstrap Aggregation (Bagging) of Regression Trees Using TreeBagger” on page 19-114
• “Bootstrap Aggregation (Bagging) of Classification Trees Using TreeBagger” on page 19-125

• Try a different algorithm. For applicable choices, see:

• “Characteristics of Classification Algorithms” on page 19-6
• “Choose an Applicable Ensemble Aggregation Method” on page 19-34

When satisfied with a model of some types, you can trim it using the appropriate compact function
(compact for classification trees, compact for regression trees, compact for discriminant analysis,
compact for naive Bayes, compact for SVM, compact for ECOC models, compact for classification
ensembles, and compact for regression ensembles). compact removes training data and other
properties not required for prediction, e.g., pruning information for decision trees, from the model to
reduce memory consumption. Because kNN classification models require all of the training data to
predict labels, you cannot reduce the size of a ClassificationKNN model.
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Use Fitted Model for Predictions

To predict classification or regression response for most fitted models, use the predict method:

Ypredicted = predict(obj,Xnew)

• obj is the fitted model or fitted compact model.
• Xnew is the new input data.
• Ypredicted is the predicted response, either classification or regression.

Characteristics of Classification Algorithms
This table shows typical characteristics of the various supervised learning algorithms. The
characteristics in any particular case can vary from the listed ones. Use the table as a guide for your
initial choice of algorithms. Decide on the tradeoff you want in speed, memory usage, flexibility, and
interpretability.

Tip Try a decision tree or discriminant first, because these classifiers are fast and easy to interpret.
If the models are not accurate enough predicting the response, try other classifiers with higher
flexibility.

To control flexibility, see the details for each classifier type. To avoid overfitting, look for a model of
lower flexibility that provides sufficient accuracy.

Classifier Multiclass
Support

Categorical
Predictor Support
on page 19-7

Prediction
Speed

Memory
Usage

Interpretabili
ty

“Decision Trees” on
page 20-2 —
fitctree

Yes Yes Fast Small Easy

Discriminant analysis
on page 21-2 —
fitcdiscr

Yes No Fast Small for
linear, large
for quadratic

Easy

SVM on page 19-151 —
fitcsvm

No.
Combine
multiple
binary SVM
classifiers
using
fitcecoc.

Yes Medium for
linear.
Slow for others.

Medium for
linear.
All others:
medium for
multiclass,
large for
binary.

Easy for linear
SVM.
Hard for all
other kernel
types.
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Classifier Multiclass
Support

Categorical
Predictor Support
on page 19-7

Prediction
Speed

Memory
Usage

Interpretabili
ty

Naive Bayes on page
22-2 — fitcnb

Yes Yes Medium for
simple
distributions.
Slow for kernel
distributions or
high-dimensional
data

Small for
simple
distributions.
Medium for
kernel
distributions
or high-
dimensional
data

Easy

Nearest neighbor on
page 19-14 —
fitcknn

Yes Yes Slow for cubic.
Medium for
others.

Medium Hard

Ensembles on page 19-
33 — fitcensemble
and fitrensemble

Yes Yes Fast to medium
depending on
choice of
algorithm

Low to high
depending on
choice of
algorithm.

Hard

The results in this table are based on an analysis of many data sets. The data sets in the study have
up to 7000 observations, 80 predictors, and 50 classes. This list defines the terms in the table.

Speed:

• Fast — 0.01 second
• Medium — 1 second
• Slow — 100 seconds

Memory

• Small — 1MB
• Medium — 4MB
• Large — 100MB

Note The table provides a general guide. Your results depend on your data and the speed of your
machine.

Categorical Predictor Support

This table describes the data-type support of predictors for each classifier.

Classifier All predictors
numeric

All predictors
categorical

Some categorical,
some numeric

Decision Trees Yes Yes Yes
Discriminant Analysis Yes No No
SVM Yes Yes Yes
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Classifier All predictors
numeric

All predictors
categorical

Some categorical,
some numeric

Naive Bayes Yes Yes Yes
Nearest Neighbor Euclidean distance only Hamming distance only No
Ensembles Yes Yes, except subspace

ensembles of
discriminant analysis
classifiers

Yes, except subspace
ensembles

Misclassification Cost Matrix, Prior Probabilities, and Observation
Weights
When you train a classification model, you can specify the misclassification cost matrix, prior
probabilities, and observation weights by using the Cost, Prior, and Weights name-value
arguments, respectively. Classification learning algorithms use the specified values for cost-sensitive
learning and evaluation.

Specify Cost, Prior, and Weights Name-Value Arguments

Suppose that you specify Cost as C, Prior as p, and Weights as w. The values C, p, and w have the
forms

C = (ci j),
p = [p1 p2 ⋯ pK],

w = [w1 w2 ⋯ wn]′ .

• C is a K-by-K numeric matrix, where K is the number of classes. cij = C(i,j) is the cost of classifying
an observation into class j when its true class is i.

• wj is the observation weight for observation j, and n is the number of observations.
• p is a 1-by-K numeric vector, where pk is the prior probability of the class k. If you specify Prior

as "empirical", then the software sets pk to the sum of observation weights for the observations
in class k:

pk = ∑
∀ j ∈ Class k

w j .

Cost, Prior, and W Properties of Classification Model

The software stores the user-specified cost matrix (C) in the Cost property as is, and stores the prior
probabilities and observation weights in the Prior and W properties, respectively, after
normalization.

A classification model trained by the fitcdiscr, fitcgam, fitcknn, or fitcnb function uses the
Cost property for prediction, but the functions do not use Cost for training. Therefore, the Cost
property of the model is not read-only; you can change the property value by using dot notation after
creating the trained model. For models that use Cost for training, the property is read-only.

The software normalizes the prior probabilities to sum to 1 and normalizes observation weights to
sum up to the value of the prior probability in the respective class.
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pk =
pk

∑
k = 1

K
pk

,

w j =
w j
∑

∀ j ∈ Class k
w j

pk .

Cost-Sensitive Learning

These classification models support cost-sensitive learning:

• Classification decision tree, trained by fitctree
• Classification ensemble, trained by fitcensemble or TreeBagger
• Gaussian kernel classification with SVM and logistic regression learners, trained by fitckernel
• Multiclass, error-correcting output codes (ECOC) model, trained by fitcecoc
• Linear classification for SVM and logistic regression, trained by fitclinear
• SVM classification, trained by fitcsvm

The fitting functions use the misclassification cost matrix specified by the Cost name-value argument
for model training. Approaches to cost-sensitive learning vary from one classifier to another.

• fitcecoc converts the specified cost matrix and prior probability values for multiclass
classification into the values for binary classification for each binary learner. For more
information, see “Prior Probabilities and Misclassification Cost” on page 35-1957.

• fitctree applies average cost correction for growing a tree.
• fitcensemble, TreeBagger, fitckernel, fitclinear, and fitcsvm adjust prior

probabilities and observation weights for the specified cost matrix.
• fitcensemble and TreeBagger generate in-bag samples by oversampling classes with large
misclassification costs and undersampling classes with small misclassification costs. Consequently,
out-of-bag samples have fewer observations from classes with large misclassification costs and
more observations from classes with small misclassification costs. If you train a classification
ensemble using a small data set and a highly skewed cost matrix, then the number of out-of-bag
observations per class might be very low. Therefore, the estimated out-of-bag error can have a
large variance and might be difficult to interpret. The same phenomenon can occur for classes
with large prior probabilities.

Adjust Prior Probabilities and Observation Weights for Misclassification Cost Matrix

For model training, the fitcensemble, TreeBagger, fitckernel, fitclinear, and fitcsvm
functions update the class prior probabilities p to p* and the observation weights w to w* to
incorporate the penalties described in the cost matrix C.

For a binary classification model, the software completes these steps:

1 Update p to incorporate the cost matrix C.

p 1 = p1c12,
p 2 = p2c21 .

2 Normalize p  so that the updated prior probabilities sum to 1.
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p* = 1
p 1 + p 2

p .

3 Remove observations from the training data corresponding to classes with zero prior probability.
4 Normalize the observation weights wj to sum up to the updated prior probability of the class to

which the observation belongs. That is, the normalized weight for observation j in class k is

w j* =
w j
∑

∀ j ∈ Class k
w j

pk* .

5 Remove observations that have zero weight.

If you have three or more classes for an ensemble model, trained by fitcensemble or TreeBagger,
the software also adjusts prior probabilities for the misclassification cost matrix. This conversion is
more complex. First, the software attempts to solve a matrix equation described in Zhou and Liu [2].
If the software fails to find a solution, it applies the “average cost” adjustment described in Breiman
et al. [3]. For more information, see Zadrozny et al. [4].

Cost-Sensitive Evaluation

You can account for the cost imbalance in classification models and data sets by conducting a cost-
sensitive analysis:

• Perform a cost-sensitive test by using the compareHoldout or testcholdout function. Both
functions statistically compare the predictive performance of two classification models by
including a cost matrix in the analysis. For details, see “Cost-Sensitive Testing” on page 35-1025.

• Compare observed misclassification costs, returned by the object functions loss, resubLoss,
and kfoldLoss of classification models. Specify the LossFun name-value argument as
"classifcost". The functions return a weighted average misclassification cost of the input data,
training data, and data for cross-validation, respectively. For details, see the object function
reference page of any classification model object. For example, see “Classification Loss” on page
35-4452.

For an example of cost-sensitive evaluation, see “Conduct Cost-Sensitive Comparison of Two
Classification Models” on page 35-1015.
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Visualize Decision Surfaces of Different Classifiers

This example shows how to plot the decision surface of different classification algorithms.

Load Fisher's iris data set.

load fisheriris
X = meas(:,1:2);
y = categorical(species);
labels = categories(y);

X is a numeric matrix that contains two petal measurements for 150 irises. Y is a cell array of
character vectors that contains the corresponding iris species.

Visualize the data using a scatter plot. Group the variables by iris species.

gscatter(X(:,1),X(:,2),species,'rgb','osd');
xlabel('Sepal length');
ylabel('Sepal width');

Train four different classifiers and store the models in a cell array.

classifier_name = {'Naive Bayes','Discriminant Analysis','Classification Tree','Nearest Neighbor'};

Train a naive Bayes model.

classifier{1} = fitcnb(X,y);
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Train a discriminant analysis classifier.

classifier{2} = fitcdiscr(X,y);

Train a classification decision tree.

classifier{3} = fitctree(X,y);

Train a k-nearest neighbor classifier.

classifier{4} = fitcknn(X,y);

Create a grid of points spanning the entire space within some bounds of the actual data values.

x1range = min(X(:,1)):.01:max(X(:,1));
x2range = min(X(:,2)):.01:max(X(:,2));
[xx1, xx2] = meshgrid(x1range,x2range);
XGrid = [xx1(:) xx2(:)];

Predict the iris species of each observation in XGrid using all classifiers. Plot scatter plots of the
results.

for i = 1:numel(classifier)
   predictedspecies = predict(classifier{i},XGrid);

   subplot(2,2,i);
   gscatter(xx1(:), xx2(:), predictedspecies,'rgb');

   title(classifier_name{i})
   legend off, axis tight
end

legend(labels,'Location',[0.35,0.01,0.35,0.05],'Orientation','Horizontal')
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Each classification algorithm generates different decision making rules. A decision surface can help
you visualize these rules.

See Also
Functions
fitcnb | fitcdiscr | fitctree | fitcknn

Related Examples
• “Plot Posterior Classification Probabilities” on page 22-5
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Classification Using Nearest Neighbors
In this section...
“Pairwise Distance Metrics” on page 19-14
“k-Nearest Neighbor Search and Radius Search” on page 19-16
“Classify Query Data” on page 19-20
“Find Nearest Neighbors Using a Custom Distance Metric” on page 19-26
“K-Nearest Neighbor Classification for Supervised Learning” on page 19-29
“Construct KNN Classifier” on page 19-30
“Examine Quality of KNN Classifier” on page 19-30
“Predict Classification Using KNN Classifier” on page 19-31
“Modify KNN Classifier” on page 19-31

Pairwise Distance Metrics
Categorizing query points based on their distance to points in a training data set can be a simple yet
effective way of classifying new points. You can use various metrics to determine the distance,
described next. Use pdist2 to find the distance between a set of data and query points.

Distance Metrics

Given an mx-by-n data matrix X, which is treated as mx (1-by-n) row vectors x1, x2, ..., xmx, and an my-
by-n data matrix Y, which is treated as my (1-by-n) row vectors y1, y2, ...,ymy, the various distances
between the vector xs and yt are defined as follows:

• Euclidean distance

dst
2 = (xs− yt)(xs− yt)′ .

The Euclidean distance is a special case of the Minkowski distance, where p = 2.
• Standardized Euclidean distance

dst
2 = (xs− yt)V−1(xs− yt)′,

where V is the n-by-n diagonal matrix whose jth diagonal element is (S(j))2, where S is a vector of
scaling factors for each dimension.

• Mahalanobis distance

dst
2 = (xs− yt)C−1(xs− yt)′,

where C is the covariance matrix.
• City block distance

dst = ∑
j = 1

n
xs j− yt j .

The city block distance is a special case of the Minkowski distance, where p = 1.
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• Minkowski distance

dst = ∑
j = 1

n
xs j− yt j

pp .

For the special case of p = 1, the Minkowski distance gives the city block distance. For the special
case of p = 2, the Minkowski distance gives the Euclidean distance. For the special case of p = ∞,
the Minkowski distance gives the Chebychev distance.

• Chebychev distance

dst = max j xs j− yt j .

The Chebychev distance is a special case of the Minkowski distance, where p = ∞.
• Cosine distance

dst = 1−
xsy′t

xsx′s yty′t
.

• Correlation distance

dst = 1−
xs− xs yt− yt ′

xs− xs xs− xs ′ yt − yt yt − yt ′ ,

where

xs = 1
n∑j xs j

and

yt = 1
n∑j yt j .

• Hamming distance

dst = ( # (xs j ≠ yt j)/n) .
• Jaccard distance

dst =
# xs j ≠ yt j ∩ xs j ≠ 0 ∪ yt j ≠ 0

# xs j ≠ 0 ∪ yt j ≠ 0
.

• Spearman distance

dst = 1−
rs− r s rt − r t ′

rs− r s rs− r s ′ rt − r t rt− r t ′ ,

where

• rsj is the rank of xsj taken over x1j, x2j, ...xmx,j, as computed by tiedrank.
• rtj is the rank of ytj taken over y1j, y2j, ...ymy,j, as computed by tiedrank.
• rs and rt are the coordinate-wise rank vectors of xs and yt, that is, rs = (rs1, rs2, ... rsn) and rt =

(rt1, rt2, ... rtn).
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• r s = 1
n∑j rs j = n + 1

2 .

• r t = 1
n∑j rt j = n + 1

2 .

k-Nearest Neighbor Search and Radius Search
Given a set X of n points and a distance function, k-nearest neighbor (kNN) search lets you find the k
closest points in X to a query point or set of points Y. The kNN search technique and kNN-based
algorithms are widely used as benchmark learning rules. The relative simplicity of the kNN search
technique makes it easy to compare the results from other classification techniques to kNN results.
The technique has been used in various areas such as:

• bioinformatics
• image processing and data compression
• document retrieval
• computer vision
• multimedia database
• marketing data analysis

You can use kNN search for other machine learning algorithms, such as:

• kNN classification
• local weighted regression
• missing data imputation and interpolation
• density estimation

You can also use kNN search with many distance-based learning functions, such as K-means
clustering.

In contrast, for a positive real value r, rangesearch finds all points in X that are within a distance r
of each point in Y. This fixed-radius search is closely related to kNN search, as it supports the same
distance metrics and search classes, and uses the same search algorithms.

k-Nearest Neighbor Search Using Exhaustive Search

When your input data meets any of the following criteria, knnsearch uses the exhaustive search
method by default to find the k-nearest neighbors:

• The number of columns of X is more than 10.
• X is sparse.
• The distance metric is either:

• 'seuclidean'
• 'mahalanobis'
• 'cosine'
• 'correlation'
• 'spearman'
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• 'hamming'
• 'jaccard'
• A custom distance function

knnsearch also uses the exhaustive search method if your search object is an
ExhaustiveSearcher model object. The exhaustive search method finds the distance from each
query point to every point in X, ranks them in ascending order, and returns the k points with the
smallest distances. For example, this diagram shows the k = 3 nearest neighbors.

k-Nearest Neighbor Search Using a Kd-Tree

When your input data meets all of the following criteria, knnsearch creates a Kd-tree by default to
find the k-nearest neighbors:

• The number of columns of X is less than 10.
• X is not sparse.
• The distance metric is either:

• 'euclidean' (default)
• 'cityblock'
• 'minkowski'
• 'chebychev'

knnsearch also uses a Kd-tree if your search object is a KDTreeSearcher model object.
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Kd-trees divide your data into nodes with at most BucketSize (default is 50) points per node, based
on coordinates (as opposed to categories). The following diagrams illustrate this concept using patch
objects to color code the different “buckets.”

When you want to find the k-nearest neighbors to a given query point, knnsearch does the following:

1 Determines the node to which the query point belongs. In the following example, the query point
(32,90) belongs to Node 4.

2 Finds the closest k points within that node and its distance to the query point. In the following
example, the points in red circles are equidistant from the query point, and are the closest points
to the query point within Node 4.

3 Chooses all other nodes having any area that is within the same distance, in any direction, from
the query point to the kth closest point. In this example, only Node 3 overlaps the solid black
circle centered at the query point with radius equal to the distance to the closest points within
Node 4.

4 Searches nodes within that range for any points closer to the query point. In the following
example, the point in a red square is slightly closer to the query point than those within Node 4.
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Using a Kd-tree for large data sets with fewer than 10 dimensions (columns) can be much more
efficient than using the exhaustive search method, as knnsearch needs to calculate only a subset of
the distances. To maximize the efficiency of Kd-trees, use a KDTreeSearcher model.

What Are Search Model Objects?

Basically, model objects are a convenient way of storing information. Related models have the same
properties with values and types relevant to a specified search method. In addition to storing
information within models, you can perform certain actions on models.

You can efficiently perform a k-nearest neighbors search on your search model using knnsearch. Or,
you can search for all neighbors within a specified radius using your search model and
rangesearch. In addition, there are a generic knnsearch and rangesearch functions that search
without creating or using a model.

To determine which type of model and search method is best for your data, consider the following:

• Does your data have many columns, say more than 10? The ExhaustiveSearcher model may
perform better.

• Is your data sparse? Use the ExhaustiveSearcher model.
• Do you want to use one of these distance metrics to find the nearest neighbors? Use the

ExhaustiveSearcher model.

• 'seuclidean'
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• 'mahalanobis'
• 'cosine'
• 'correlation'
• 'spearman'
• 'hamming'
• 'jaccard'
• A custom distance function

• Is your data set huge (but with fewer than 10 columns)? Use the KDTreeSearcher model.
• Are you searching for the nearest neighbors for a large number of query points? Use the

KDTreeSearcher model.

Classify Query Data

This example shows how to classify query data by:

1 Growing a Kd-tree
2 Conducting a k nearest neighbor search using the grown tree.
3 Assigning each query point the class with the highest representation among their respective

nearest neighbors.

Classify a new point based on the last two columns of the Fisher iris data. Using only the last two
columns makes it easier to plot.

load fisheriris
x = meas(:,3:4);
gscatter(x(:,1),x(:,2),species)
legend('Location','best')
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Plot the new point.

newpoint = [5 1.45];
line(newpoint(1),newpoint(2),'marker','x','color','k',...
   'markersize',10,'linewidth',2)
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Prepare a Kd-tree neighbor searcher model.

Mdl = KDTreeSearcher(x)

Mdl = 
  KDTreeSearcher with properties:

       BucketSize: 50
         Distance: 'euclidean'
    DistParameter: []
                X: [150x2 double]

Mdl is a KDTreeSearcher model. By default, the distance metric it uses to search for neighbors is
Euclidean distance.

Find the 10 sample points closest to the new point.

[n,d] = knnsearch(Mdl,newpoint,'k',10);
line(x(n,1),x(n,2),'color',[.5 .5 .5],'marker','o',...
    'linestyle','none','markersize',10)
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It appears that knnsearch has found only the nearest eight neighbors. In fact, this particular dataset
contains duplicate values.

x(n,:)

ans = 10×2

    5.0000    1.5000
    4.9000    1.5000
    4.9000    1.5000
    5.1000    1.5000
    5.1000    1.6000
    4.8000    1.4000
    5.0000    1.7000
    4.7000    1.4000
    4.7000    1.4000
    4.7000    1.5000

Make the axes equal so the calculated distances correspond to the apparent distances on the plot axis
equal and zoom in to see the neighbors better.

xlim([4.5 5.5]);
ylim([1 2]);
axis square
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Find the species of the 10 neighbors.

tabulate(species(n))

       Value    Count   Percent
   virginica        2     20.00%
  versicolor        8     80.00%

Using a rule based on the majority vote of the 10 nearest neighbors, you can classify this new point as
a versicolor.

Visually identify the neighbors by drawing a circle around the group of them. Define the center and
diameter of a circle, based on the location of the new point.

ctr = newpoint - d(end);
diameter = 2*d(end);
% Draw a circle around the 10 nearest neighbors.
h = rectangle('position',[ctr,diameter,diameter],...
   'curvature',[1 1]);
h.LineStyle = ':';
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Using the same dataset, find the 10 nearest neighbors to three new points.

figure 
newpoint2 = [5 1.45;6 2;2.75 .75];
gscatter(x(:,1),x(:,2),species)
legend('location','best')
[n2,d2] = knnsearch(Mdl,newpoint2,'k',10);
line(x(n2,1),x(n2,2),'color',[.5 .5 .5],'marker','o',...
   'linestyle','none','markersize',10)
line(newpoint2(:,1),newpoint2(:,2),'marker','x','color','k',...
   'markersize',10,'linewidth',2,'linestyle','none')
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Find the species of the 10 nearest neighbors for each new point.

tabulate(species(n2(1,:)))

       Value    Count   Percent
   virginica        2     20.00%
  versicolor        8     80.00%

tabulate(species(n2(2,:)))

      Value    Count   Percent
  virginica       10    100.00%

tabulate(species(n2(3,:)))

       Value    Count   Percent
  versicolor        7     70.00%
      setosa        3     30.00%

For more examples using knnsearch methods and function, see the individual reference pages.

Find Nearest Neighbors Using a Custom Distance Metric

This example shows how to find the indices of the three nearest observations in X to each observation
in Y with respect to the chi-square distance. This distance metric is used in correspondence analysis,
particularly in ecological applications.
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Randomly generate normally distributed data into two matrices. The number of rows can vary, but the
number of columns must be equal. This example uses 2-D data for plotting.

rng(1) % For reproducibility
X = randn(50,2);
Y = randn(4,2);

h = zeros(3,1);
figure
h(1) = plot(X(:,1),X(:,2),'bx');
hold on
h(2) = plot(Y(:,1),Y(:,2),'rs','MarkerSize',10);
title('Heterogeneous Data')

The rows of X and Y correspond to observations, and the columns are, in general, dimensions (for
example, predictors).

The chi-square distance between j-dimensional points x and z is

χ(x, z) = ∑
j = 1

J
w j x j− z j

2,

where w j is the weight associated with dimension j.

Choose weights for each dimension, and specify the chi-square distance function. The distance
function must:
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• Take as input arguments one row of X, e.g., x, and the matrix Z.
• Compare x to each row of Z.
• Return a vector D of length nz, where nz is the number of rows of Z. Each element of D is the

distance between the observation corresponding to x and the observations corresponding to each
row of Z.

w = [0.4; 0.6];
chiSqrDist = @(x,Z)sqrt((bsxfun(@minus,x,Z).^2)*w);

This example uses arbitrary weights for illustration.

Find the indices of the three nearest observations in X to each observation in Y.

k = 3;
[Idx,D] = knnsearch(X,Y,'Distance',chiSqrDist,'k',k);

idx and D are 4-by-3 matrices.

• idx(j,1) is the row index of the closest observation in X to observation j of Y, and D(j,1) is
their distance.

• idx(j,2) is the row index of the next closest observation in X to observation j of Y, and D(j,2)
is their distance.

• And so on.

Identify the nearest observations in the plot.

for j = 1:k
    h(3) = plot(X(Idx(:,j),1),X(Idx(:,j),2),'ko','MarkerSize',10);
end 
legend(h,{'\texttt{X}','\texttt{Y}','Nearest Neighbor'},'Interpreter','latex')
title('Heterogeneous Data and Nearest Neighbors')
hold off
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Several observations of Y share nearest neighbors.

Verify that the chi-square distance metric is equivalent to the Euclidean distance metric, but with an
optional scaling parameter.

[IdxE,DE] = knnsearch(X,Y,'Distance','seuclidean','k',k, ...
    'Scale',1./(sqrt(w)));
AreDiffIdx = sum(sum(Idx ~= IdxE))

AreDiffIdx = 0

AreDiffDist = sum(sum(abs(D - DE) > eps))

AreDiffDist = 0

The indices and distances between the two implementations of three nearest neighbors are
practically equivalent.

K-Nearest Neighbor Classification for Supervised Learning
The ClassificationKNN classification model lets you:

• “Construct KNN Classifier” on page 19-30
• “Examine Quality of KNN Classifier” on page 19-30
• “Predict Classification Using KNN Classifier” on page 19-31
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• “Modify KNN Classifier” on page 19-31

Prepare your data for classification according to the procedure in “Steps in Supervised Learning” on
page 19-3. Then, construct the classifier using fitcknn.

Construct KNN Classifier

This example shows how to construct a k-nearest neighbor classifier for the Fisher iris data.

Load the Fisher iris data.

load fisheriris
X = meas;    % Use all data for fitting
Y = species; % Response data

Construct the classifier using fitcknn.

Mdl = fitcknn(X,Y)

Mdl = 
  ClassificationKNN
             ResponseName: 'Y'
    CategoricalPredictors: []
               ClassNames: {'setosa'  'versicolor'  'virginica'}
           ScoreTransform: 'none'
          NumObservations: 150
                 Distance: 'euclidean'
             NumNeighbors: 1

  Properties, Methods

A default k-nearest neighbor classifier uses a single nearest neighbor only. Often, a classifier is more
robust with more neighbors than that.

Change the neighborhood size of Mdl to 4, meaning that Mdl classifies using the four nearest
neighbors.

Mdl.NumNeighbors = 4;

Examine Quality of KNN Classifier

This example shows how to examine the quality of a k-nearest neighbor classifier using resubstitution
and cross validation.

Construct a KNN classifier for the Fisher iris data as in “Construct KNN Classifier” on page 19-30.

load fisheriris
X = meas;    
Y = species; 
rng(10); % For reproducibility
Mdl = fitcknn(X,Y,'NumNeighbors',4);
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Examine the resubstitution loss, which, by default, is the fraction of misclassifications from the
predictions of Mdl. (For nondefault cost, weights, or priors, see loss.).

rloss = resubLoss(Mdl)

rloss = 0.0400

The classifier predicts incorrectly for 4% of the training data.

Construct a cross-validated classifier from the model.

CVMdl = crossval(Mdl);

Examine the cross-validation loss, which is the average loss of each cross-validation model when
predicting on data that is not used for training.

kloss = kfoldLoss(CVMdl)

kloss = 0.0333

The cross-validated classification accuracy resembles the resubstitution accuracy. Therefore, you can
expect Mdl to misclassify approximately 4% of new data, assuming that the new data has about the
same distribution as the training data.

Predict Classification Using KNN Classifier

This example shows how to predict classification for a k-nearest neighbor classifier.

Construct a KNN classifier for the Fisher iris data as in “Construct KNN Classifier” on page 19-30.

load fisheriris
X = meas;    
Y = species; 
Mdl = fitcknn(X,Y,'NumNeighbors',4);

Predict the classification of an average flower.

flwr = mean(X); % an average flower
flwrClass = predict(Mdl,flwr)

flwrClass = 1x1 cell array
    {'versicolor'}

Modify KNN Classifier

This example shows how to modify a k-nearest neighbor classifier.

Construct a KNN classifier for the Fisher iris data as in “Construct KNN Classifier” on page 19-30.

load fisheriris
X = meas;    
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Y = species; 
Mdl = fitcknn(X,Y,'NumNeighbors',4);

Modify the model to use the three nearest neighbors, rather than the default one nearest neighbor.

Mdl.NumNeighbors = 3;

Compare the resubstitution predictions and cross-validation loss with the new number of neighbors.

loss = resubLoss(Mdl)

loss = 0.0400

rng(10); % For reproducibility
CVMdl = crossval(Mdl,'KFold',5);
kloss = kfoldLoss(CVMdl)

kloss = 0.0333

In this case, the model with three neighbors has the same cross-validated loss as the model with four
neighbors (see “Examine Quality of KNN Classifier” on page 19-30).

Modify the model to use cosine distance instead of the default, and examine the loss. To use cosine
distance, you must recreate the model using the exhaustive search method.

CMdl = fitcknn(X,Y,'NSMethod','exhaustive','Distance','cosine');
CMdl.NumNeighbors = 3;
closs = resubLoss(CMdl)

closs = 0.0200

The classifier now has lower resubstitution error than before.

Check the quality of a cross-validated version of the new model.

CVCMdl = crossval(CMdl);
kcloss = kfoldLoss(CVCMdl)

kcloss = 0.0200

CVCMdl has a better cross-validated loss than CVMdl. However, in general, improving the
resubstitution error does not necessarily produce a model with better test-sample predictions.

See Also
fitcknn | ClassificationKNN | ExhaustiveSearcher | KDTreeSearcher
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Framework for Ensemble Learning
Using various methods, you can meld results from many weak learners into one high-quality
ensemble predictor. These methods closely follow the same syntax, so you can try different methods
with minor changes in your commands.

You can create an ensemble for classification by using fitcensemble or for regression by using
fitrensemble.

To train an ensemble for classification using fitcensemble, use this syntax.

ens = fitcensemble(X,Y,Name,Value)

• X is the matrix of data. Each row contains one observation, and each column contains one
predictor variable.

• Y is the vector of responses, with the same number of observations as the rows in X.
• Name,Value specify additional options using one or more name-value pair arguments. For

example, you can specify the ensemble aggregation method with the 'Method' argument, the
number of ensemble learning cycles with the 'NumLearningCycles' argument, and the type of
weak learners with the 'Learners' argument. For a complete list of name-value pair arguments,
see the fitcensemble function page.

This figure shows the information you need to create a classification ensemble.

Similarly, you can train an ensemble for regression by using fitrensemble, which follows the same
syntax as fitcensemble. For details on the input arguments and name-value pair arguments, see
the fitrensemble function page.

For all classification or nonlinear regression problems, follow these steps to create an ensemble:

1. “Prepare the Predictor Data” on page 19-34
2. “Prepare the Response Data” on page 19-34
3. “Choose an Applicable Ensemble Aggregation Method” on page 19-34
4. “Set the Number of Ensemble Members” on page 19-37
5. “Prepare the Weak Learners” on page 19-37
6. “Call fitcensemble or fitrensemble” on page 19-39
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Prepare the Predictor Data
All supervised learning methods start with predictor data, usually called X in this documentation. X
can be stored in a matrix or a table. Each row of X represents one observation, and each column of X
represents one variable or predictor.

Prepare the Response Data
You can use a wide variety of data types for the response data.

• For regression ensembles, Y must be a numeric vector with the same number of elements as the
number of rows of X.

• For classification ensembles, Y can be a numeric vector, categorical vector, character array, string
array, cell array of character vectors, or logical vector.

For example, suppose your response data consists of three observations in the following order:
true, false, true. You could express Y as:

• [1;0;1] (numeric vector)
• categorical({'true','false','true'}) (categorical vector)
• [true;false;true] (logical vector)
• ['true ';'false';'true '] (character array, padded with spaces so each row has the

same length)
• ["true","false","true"] (string array)
• {'true','false','true'} (cell array of character vectors)

Use whichever data type is most convenient. Because you cannot represent missing values with
logical entries, do not use logical entries when you have missing values in Y.

fitcensemble and fitrensemble ignore missing values in Y when creating an ensemble. This
table contains the method of including missing entries.

Data Type Missing Entry
Numeric vector NaN
Categorical vector <undefined>
Character array Row of spaces
String array <missing> or ""
Cell array of character vectors ''
Logical vector (not possible to represent)

Choose an Applicable Ensemble Aggregation Method
To create classification and regression ensembles with fitcensemble and fitrensemble,
respectively, choose appropriate algorithms from this list.

• For classification with two classes:

• 'AdaBoostM1'
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• 'LogitBoost'
• 'GentleBoost'
• 'RobustBoost' (requires Optimization Toolbox)
• 'LPBoost' (requires Optimization Toolbox)
• 'TotalBoost' (requires Optimization Toolbox)
• 'RUSBoost'
• 'Subspace'
• 'Bag'

• For classification with three or more classes:

• 'AdaBoostM2'
• 'LPBoost' (requires Optimization Toolbox)
• 'TotalBoost' (requires Optimization Toolbox)
• 'RUSBoost'
• 'Subspace'
• 'Bag'

• For regression:

• 'LSBoost'
• 'Bag'

For descriptions of the various algorithms, see “Ensemble Algorithms” on page 19-41.

See “Suggestions for Choosing an Appropriate Ensemble Algorithm” on page 19-36.

This table lists characteristics of the various algorithms. In the table titles:

• Imbalance — Good for imbalanced data (one class has many more observations than the other)
• Stop — Algorithm self-terminates
• Sparse — Requires fewer weak learners than other ensemble algorithms

Algorithm Regression Binary
Classificatio
n

Multiclass
Classificatio
n

Class
Imbalance

Stop Sparse

Bag × × ×    
AdaBoostM1  ×     
AdaBoostM2   ×    
LogitBoost  ×     
GentleBoost  ×     
RobustBoost  ×     
LPBoost  × ×  × ×
TotalBoost  × ×  × ×
RUSBoost  × × ×   
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Algorithm Regression Binary
Classificatio
n

Multiclass
Classificatio
n

Class
Imbalance

Stop Sparse

LSBoost ×      
Subspace  × ×    

RobustBoost, LPBoost, and TotalBoost require an Optimization Toolbox license. Try
TotalBoost before LPBoost, as TotalBoost can be more robust.

Suggestions for Choosing an Appropriate Ensemble Algorithm

• Regression — Your choices are LSBoost or Bag. See “General Characteristics of Ensemble
Algorithms” on page 19-36 for the main differences between boosting and bagging.

• Binary Classification — Try AdaBoostM1 first, with these modifications:

Data Characteristic Recommended Algorithm
Many predictors Subspace
Skewed data (many more observations of one
class)

RUSBoost

Label noise (some training data has the wrong
class)

RobustBoost

Many observations Avoid LPBoost and TotalBoost

• Multiclass Classification — Try AdaBoostM2 first, with these modifications:

Data Characteristic Recommended Algorithm
Many predictors Subspace
Skewed data (many more observations of one
class)

RUSBoost

Many observations Avoid LPBoost and TotalBoost

For details of the algorithms, see “Ensemble Algorithms” on page 19-41.

General Characteristics of Ensemble Algorithms

• Boost algorithms generally use very shallow trees. This construction uses relatively little time or
memory. However, for effective predictions, boosted trees might need more ensemble members
than bagged trees. Therefore it is not always clear which class of algorithms is superior.

• Bag generally constructs deep trees. This construction is both time consuming and memory-
intensive. This also leads to relatively slow predictions.

• Bag can estimate the generalization error without additional cross validation. See oobLoss.
• Except for Subspace, all boosting and bagging algorithms are based on decision tree on page 20-

2 learners. Subspace can use either discriminant analysis on page 21-2 or k-nearest
neighbor on page 19-14 learners.

For details of the characteristics of individual ensemble members, see “Characteristics of
Classification Algorithms” on page 19-6.
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Set the Number of Ensemble Members
Choosing the size of an ensemble involves balancing speed and accuracy.

• Larger ensembles take longer to train and to generate predictions.
• Some ensemble algorithms can become overtrained (inaccurate) when too large.

To set an appropriate size, consider starting with several dozen to several hundred members in an
ensemble, training the ensemble, and then checking the ensemble quality, as in “Test Ensemble
Quality” on page 19-68. If it appears that you need more members, add them using the resume
method (classification) or the resume method (regression). Repeat until adding more members does
not improve ensemble quality.

Tip For classification, the LPBoost and TotalBoost algorithms are self-terminating, meaning you
do not have to investigate the appropriate ensemble size. Try setting NumLearningCycles to 500.
The algorithms usually terminate with fewer members.

Prepare the Weak Learners
Currently the weak learner types are:

• 'Discriminant' (recommended for Subspace ensemble)
• 'KNN' (only for Subspace ensemble)
• 'Tree' (for any ensemble except Subspace)

There are two ways to set the weak learner type in an ensemble.

• To create an ensemble with default weak learner options, specify the value of the 'Learners'
name-value pair argument as the character vector or string scalar of the weak learner name. For
example:

ens = fitcensemble(X,Y,'Method','Subspace', ...
   'NumLearningCycles',50,'Learners','KNN');
% or
ens = fitrensemble(X,Y,'Method','Bag', ...
   'NumLearningCycles',50,'Learners','Tree');

• To create an ensemble with nondefault weak learner options, create a nondefault weak learner
using the appropriate template method.

For example, if you have missing data, and want to use classification trees with surrogate splits for
better accuracy:

templ = templateTree('Surrogate','all');
ens = fitcensemble(X,Y,'Method','AdaBoostM2', ...
   'NumLearningCycles',50,'Learners',templ);

To grow trees with leaves containing a number of observations that is at least 10% of the sample
size:

templ = templateTree('MinLeafSize',size(X,1)/10);
ens = fitcensemble(X,Y,'Method','AdaBoostM2', ...
   'NumLearningCycles',50,'Learners',templ);
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Alternatively, choose the maximal number of splits per tree:

templ = templateTree('MaxNumSplits',4);
ens = fitcensemble(X,Y,'Method','AdaBoostM2', ...
   'NumLearningCycles',50,'Learners',templ);

You can also use nondefault weak learners in fitrensemble.

While you can give fitcensemble and fitrensemble a cell array of learner templates, the most
common usage is to give just one weak learner template.

For examples using a template, see “Handle Imbalanced Data or Unequal Misclassification Costs in
Classification Ensembles” on page 19-86 and “Surrogate Splits” on page 19-92.

Decision trees can handle NaN values in X. Such values are called “missing”. If you have some missing
values in a row of X, a decision tree finds optimal splits using nonmissing values only. If an entire row
consists of NaN, fitcensemble and fitrensemble ignore that row. If you have data with a large
fraction of missing values in X, use surrogate decision splits. For examples of surrogate splits, see
“Handle Imbalanced Data or Unequal Misclassification Costs in Classification Ensembles” on page
19-86 and “Surrogate Splits” on page 19-92.

Common Settings for Tree Weak Learners

• The depth of a weak learner tree makes a difference for training time, memory usage, and
predictive accuracy. You control the depth these parameters:

• MaxNumSplits — The maximal number of branch node splits is MaxNumSplits per tree. Set
large values of MaxNumSplits to get deep trees. The default for bagging is size(X,1) - 1.
The default for boosting is 1.

• MinLeafSize — Each leaf has at least MinLeafSize observations. Set small values of
MinLeafSize to get deep trees. The default for classification is 1 and 5 for regression.

• MinParentSize — Each branch node in the tree has at least MinParentSize observations.
Set small values of MinParentSize to get deep trees. The default for classification is 2 and 10
for regression.

If you supply both MinParentSize and MinLeafSize, the learner uses the setting that gives
larger leaves (shallower trees):

MinParent = max(MinParent,2*MinLeaf)

If you additionally supply MaxNumSplits, then the software splits a tree until one of the three
splitting criteria is satisfied.

• Surrogate — Grow decision trees with surrogate splits when Surrogate is 'on'. Use surrogate
splits when your data has missing values.

Note Surrogate splits cause slower training and use more memory.
• PredictorSelection — fitcensemble, fitrensemble, and TreeBagger grow trees using

the standard CART algorithm [11] by default. If the predictor variables are heterogeneous or there
are predictors having many levels and other having few levels, then standard CART tends to select
predictors having many levels as split predictors. For split-predictor selection that is robust to the
number of levels that the predictors have, consider specifying 'curvature' or 'interaction-
curvature'. These specifications conduct chi-square tests of association between each predictor
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and the response or each pair of predictors and the response, respectively. The predictor that
yields the minimal p-value is the split predictor for a particular node. For more details, see
“Choose Split Predictor Selection Technique” on page 20-14.

Note When boosting decision trees, selecting split predictors using the curvature or interaction
tests is not recommended.

Call fitcensemble or fitrensemble
The syntaxes for fitcensemble and fitrensemble are identical. For fitrensemble, the syntax is:

ens = fitrensemble(X,Y,Name,Value)

• X is the matrix of data. Each row contains one observation, and each column contains one
predictor variable.

• Y is the responses, with the same number of observations as rows in X.
• Name,Value specify additional options using one or more name-value pair arguments. For

example, you can specify the ensemble aggregation method with the 'Method' argument, the
number of ensemble learning cycles with the 'NumLearningCycles' argument, and the type of
weak learners with the 'Learners' argument. For a complete list of name-value pair arguments,
see the fitrensemble function page.

The result of fitrensemble and fitcensemble is an ensemble object, suitable for making
predictions on new data. For a basic example of creating a regression ensemble, see “Train
Regression Ensemble” on page 19-59. For a basic example of creating a classification ensemble, see
“Train Classification Ensemble” on page 19-56.

Where to Set Name-Value Pairs

There are several name-value pairs you can pass to fitcensemble or fitrensemble, and several
that apply to the weak learners (templateDiscriminant, templateKNN, and templateTree). To
determine which name-value pair argument is appropriate, the ensemble or the weak learner:

• Use template name-value pairs to control the characteristics of the weak learners.
• Use fitcensemble or fitrensemble name-value pair arguments to control the ensemble as a

whole, either for algorithms or for structure.

For example, for an ensemble of boosted classification trees with each tree deeper than the default,
set the templateTree name-value pair arguments MinLeafSize and MinParentSize to smaller
values than the defaults. Or, MaxNumSplits to a larger value than the defaults. The trees are then
leafier (deeper).

To name the predictors in a classification ensemble (part of the structure of the ensemble), use the
PredictorNames name-value pair in fitcensemble.

See Also
fitcensemble | fitrensemble | oobLoss | resume | resume | templateDiscriminant |
templateKNN | templateTree
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Related Examples
• “Train Classification Ensemble” on page 19-56
• “Train Regression Ensemble” on page 19-59
• “Ensemble Algorithms” on page 19-41
• “Decision Trees” on page 20-2
• “Choose Split Predictor Selection Technique” on page 20-14
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Ensemble Algorithms
In this section...
“Bootstrap Aggregation (Bagging) and Random Forest” on page 19-44
“Random Subspace” on page 19-47
“Boosting Algorithms” on page 19-48

This topic provides descriptions of ensemble learning algorithms supported by Statistics and Machine
Learning Toolbox, including bagging, random space, and various boosting algorithms. You can specify
the algorithm by using the 'Method' name-value pair argument of fitcensemble, fitrensemble,
or templateEnsemble. Use fitcensemble or fitrensemble to create an ensemble of learners for
classification or regression, respectively. Use templateEnsemble to create an ensemble learner
template, and pass the template to fitcecoc to specify ensemble binary learners for ECOC
multiclass learning.

For bootstrap aggregation (bagging) and random forest, you can use TreeBagger as well.
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Value of 'Method' Algorithm Supported Problems Examples
'Bag' “Bootstrap Aggregation

(Bagging) and Random
Forest” on page 19-44
([1], [2], [3])

Binary and multiclass
classification,
regression

• “Select Predictors
for Random Forests”
on page 19-62

• “Test Ensemble
Quality” on page 19-
68

• “Surrogate Splits”
on page 19-92

• “Bootstrap
Aggregation
(Bagging) of
Classification Trees
Using TreeBagger”
on page 19-125

• “Bootstrap
Aggregation
(Bagging) of
Regression Trees
Using TreeBagger”
on page 19-114

• “Tune Random
Forest Using
Quantile Error and
Bayesian
Optimization” on
page 19-146

• “Detect Outliers
Using Quantile
Regression” on page
19-138

• “Conditional
Quantile Estimation
Using Kernel
Smoothing” on page
19-143

'Subspace' “Random Subspace” on
page 19-47 ([9])

Binary and multiclass
classification

“Random Subspace
Classification” on page
19-105
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Value of 'Method' Algorithm Supported Problems Examples
'AdaBoostM1' “Adaptive Boosting for

Binary Classification”
on page 19-48 ([5], [6],
[7], [11])

Binary classification • “Create an Ensemble
Template for ECOC
Multiclass Learning”
on page 35-7211

• “Conduct Cost-
Sensitive
Comparison of Two
Classification
Models” on page 35-
1015

'AdaBoostM2' “Adaptive Boosting for
Multiclass
Classification” on page
19-49 ([5])

Multiclass classification “Predict Class Labels
Using Classification
Ensemble” on page 35-
5772

'GentleBoost' “Gentle Adaptive
Boosting” on page 19-
50 ([7])

Binary classification • “Speed Up Training
ECOC Classifiers
Using Binning and
Parallel Computing”
on page 35-7212

• “Handle Imbalanced
Data or Unequal
Misclassification
Costs in
Classification
Ensembles” on page
19-86

'LogitBoost' “Adaptive Logistic
Regression” on page 19-
50 ([7])

Binary classification • “Train Classification
Ensemble” on page
19-56

• “Speed Up Training
by Binning Numeric
Predictor Values” on
page 35-1965

'LPBoost' “Linear Programming
Boosting” on page 19-
51 ([13])

Binary and multiclass
classification

“LPBoost and
TotalBoost for Small
Ensembles” on page 19-
97
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Value of 'Method' Algorithm Supported Problems Examples
'LSBoost' “Least-Squares

Boosting” on page 19-
52 ([2], [8])

Regression • “Ensemble
Regularization” on
page 19-72

• “Optimize a Boosted
Regression
Ensemble” on page
10-67

• “Train Regression
Ensemble” on page
19-59

'RobustBoost' “Robust Boosting” on
page 19-52 ([4])

Binary classification “Tune RobustBoost” on
page 19-102

'RUSBoost' “Random
Undersampling
Boosting” on page 19-
53 ([12])

Binary and multiclass
classification

“Classification with
Imbalanced Data” on
page 19-81

'TotalBoost' “Totally Corrective
Boosting” on page 19-
53 ([13])

Binary and multiclass
classification

“LPBoost and
TotalBoost for Small
Ensembles” on page 19-
97

To learn about how to choose an appropriate algorithm, see “Choose an Applicable Ensemble
Aggregation Method” on page 19-34.

Note that usage of some algorithms, such as LPBoost, TotalBoost, and RobustBoost, requires
Optimization Toolbox.

Bootstrap Aggregation (Bagging) and Random Forest
Statistics and Machine Learning Toolbox offers three objects for bagging and random forest:

• ClassificationBaggedEnsemble object created by the fitcensemble function for
classification

• RegressionBaggedEnsemble object created by the fitrensemble function for regression
• TreeBagger object created by the TreeBagger function for classification and regression

For details about the differences between TreeBagger and bagged ensembles
(ClassificationBaggedEnsemble and RegressionBaggedEnsemble), see “Comparison of
TreeBagger and Bagged Ensembles” on page 19-46.

Bootstrap aggregation (bagging) is a type of ensemble learning. To bag a weak learner such as a
decision tree on a data set, generate many bootstrap replicas of the data set and grow decision trees
on the replicas. Obtain each bootstrap replica by randomly selecting N out of N observations with
replacement, where N is the data set size. In addition, every tree in the ensemble can randomly select
predictors for each decision split, a technique called random forest [2] known to improve the
accuracy of bagged trees. By default, the number of predictors to select at random for each split is
equal to the square root of the number of predictors for classification, and one third of the number of
predictors for regression. After training a model, you can find the predicted response of a trained
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ensemble for new data by using the predict function. predict takes an average over predictions
from individual trees.

By default, the minimum number of observations per leaf for bagged trees is set to 1 for classification
and 5 for regression. Trees grown with the default leaf size are usually very deep. These settings are
close to optimal for the predictive power of an ensemble. Often you can grow trees with larger leaves
without losing predictive power. Doing so reduces training and prediction time, as well as memory
usage for the trained ensemble. You can control the minimum number of observations per leaf by
using the 'MinLeafSize' name-value pair argument of templateTree or TreeBagger. Note that
you use the templateTree function to specify the options of tree learners when you create a bagged
ensemble by using fitcensemble or fitrensemble.

Several features of bagged decision trees make them a unique algorithm. Drawing N out of N
observations with replacement omits 37% of observations, on average, for each decision tree. These
omitted observations are called “out-of-bag” observations. TreeBagger and bagged ensembles
(ClassificationBaggedEnsemble and RegressionBaggedEnsemble) have properties and object
functions, whose names start with oob, that use out-of-bag observations.

• Use the oobPredict function to estimate predictive power and feature importance. For each
observation, oobPredict estimates the out-of-bag prediction by averaging predictions from all
trees in the ensemble for which the observation is out of bag.

• Estimate the average out-of-bag error by using oobError (for TreeBagger) or oobLoss (for
bagged ensembles). These functions compare the out-of-bag predicted responses against the
observed responses for all observations used for training. The out-of-bag average is an unbiased
estimator of the true ensemble error.

• Obtain out-of-bag estimates of feature importance by using the
OOBPermutedPredictorDeltaError property (for TreeBagger) or
oobPermutedPredictorImportance property (for bagged ensembles). The software randomly
permutes out-of-bag data across one variable or column at a time and estimates the increase in
the out-of-bag error due to this permutation. The larger the increase, the more important the
feature. Therefore, you do not need to supply test data for bagged ensembles because you can
obtain reliable estimates of predictive power and feature importance in the process of training.

TreeBagger also offers the proximity matrix in the Proximity property. Every time two
observations land on the same leaf of a tree, their proximity increases by 1. For normalization, sum
these proximities over all trees in the ensemble and divide by the number of trees. The resulting
matrix is symmetric with diagonal elements equal to 1 and off-diagonal elements ranging from 0 to 1.
You can use this matrix to find outlier observations and discover clusters in the data through
multidimensional scaling.

For examples using bagging, see:

• “Select Predictors for Random Forests” on page 19-62
• “Test Ensemble Quality” on page 19-68
• “Surrogate Splits” on page 19-92
• “Bootstrap Aggregation (Bagging) of Classification Trees Using TreeBagger” on page 19-125
• “Bootstrap Aggregation (Bagging) of Regression Trees Using TreeBagger” on page 19-114
• “Tune Random Forest Using Quantile Error and Bayesian Optimization” on page 19-146
• “Detect Outliers Using Quantile Regression” on page 19-138
• “Conditional Quantile Estimation Using Kernel Smoothing” on page 19-143
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Comparison of TreeBagger and Bagged Ensembles

TreeBagger and bagged ensembles (ClassificationBaggedEnsemble and
RegressionBaggedEnsemble) share most functionalities, but not all. Additionally, some
functionalities have different names.

TreeBagger features not in bagged ensembles

Feature TreeBagger Property TreeBagger Method
Computation of
proximity matrix

Proximity fillprox, mdsprox

When you estimate the proximity matrix and
outliers of a TreeBagger model using
fillprox, MATLAB must fit an n-by-n matrix in
memory, where n is the number of observations.
Therefore, if n is moderate to large, avoid
estimating the proximity matrix and outliers.

Computation of outliers OutlierMeasure N/A
Out-of-bag estimates of
predictor importance
using classification
margins

OOBPermutedPredict
orDeltaMeanMargin
and
OOBPermutedPredict
orCountRaiseMargin

N/A

Merging two ensembles
trained separately

N/A append

Quantile regression N/A quantilePredict, quantileError,
oobQuantilePredict, oobQuantileError

Tall array support for
creating ensemble

N/A For details, see “Tall Arrays” on page 35-7402.

Bagged ensemble features not in TreeBagger

Feature Description
Hyperparameter optimization Use the 'OptimizeHyperparameters' name-

value pair argument.
Binning numeric predictors to speed up training Use the 'NumBins' name-value pair argument.
Code generation for predict After training a model, you can generate C/C++

code that predicts labels for new data.
Generating C/C++ code requires MATLAB
Coder™. For details, see “Introduction to Code
Generation” on page 34-2.
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Different names for TreeBagger and bagged ensembles

Feature TreeBagger Bagged Ensembles
Split criterion contributions for
each predictor

DeltaCriterionDecisionSp
lit property

First output of
predictorImportance
(classification) or
predictorImportance
(regression)

Predictor associations SurrogateAssociation
property

Second output of
predictorImportance
(classification) or
predictorImportance
(regression)

Out-of-bag estimates of
predictor importance

OOBPermutedPredictorDelt
aError property

Output of
oobPermutedPredictorImpo
rtance (classification) or
oobPermutedPredictorImpo
rtance (regression)

Error (misclassification
probability or mean-squared
error)

error and oobError methods loss and oobLoss methods
(classification) or loss and
oobLoss methods (regression)

Training additional trees and
adding them to ensemble

growTrees method resume method (classification)
or resume method (regression)

Mean classification margin per
tree

meanMargin and
oobMeanMargin methods

edge and oobEdge methods
(classification)

In addition, two important differences exist when you train a model and predict responses:

• If you pass a misclassification cost matrix to TreeBagger, it passes the matrix along to the trees.
If you pass a misclassification cost matrix to fitcensemble, it uses the matrix to adjust the class
prior probabilities. fitcensemble then passes the adjusted prior probabilities and the default
cost matrix to the trees. The default cost matrix is ones(K)–eye(K) for K classes.

• Unlike the loss and edge methods in ClassificationBaggedEnsemble, the TreeBagger
error and meanMargin methods do not normalize input observation weights of the prior
probabilities in the respective class.

Random Subspace
Use random subspace ensembles (Subspace) to improve the accuracy of discriminant analysis
(ClassificationDiscriminant) or k-nearest neighbor (ClassificationKNN) classifiers.
Subspace ensembles also have the advantage of using less memory than ensembles with all
predictors, and can handle missing values (NaNs).

The basic random subspace algorithm uses these parameters.

• m is the number of dimensions (variables) to sample in each learner. Set m using the
NPredToSample name-value pair.

• d is the number of dimensions in the data, which is the number of columns (predictors) in the data
matrix X.
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• n is the number of learners in the ensemble. Set n using the NLearn input.

The basic random subspace algorithm performs the following steps:

1 Choose without replacement a random set of m predictors from the d possible values.
2 Train a weak learner using just the m chosen predictors.
3 Repeat steps 1 and 2 until there are n weak learners.
4 Predict by taking an average of the score prediction of the weak learners, and classify the

category with the highest average score.

You can choose to create a weak learner for every possible set of m predictors from the d dimensions.
To do so, set n, the number of learners, to 'AllPredictorCombinations'. In this case, there are
nchoosek(size(X,2),NPredToSample) weak learners in the ensemble.

fitcensemble downweights predictors after choosing them for a learner, so subsequent learners
have a lower chance of using a predictor that was previously used. This weighting tends to make
predictors more evenly distributed among learners than in uniform weighting.

For examples using Subspace, see “Random Subspace Classification” on page 19-105.

Boosting Algorithms
Adaptive Boosting for Binary Classification

Adaptive boosting named AdaBoostM1 is a very popular boosting algorithm for binary classification.
The algorithm trains learners sequentially. For every learner with index t, AdaBoostM1 computes the
weighted classification error

εt =∑
n = 1

N

dn
t I yn ≠ ht xn ,

where

• xn is a vector of predictor values for observation n.
• yn is the true class label.
• ht is the prediction of learner (hypothesis) with index t.
• I is the indicator function.
• dn

t  is the weight of observation n at step t.

AdaBoostM1 then increases weights for observations misclassified by learner t and reduces weights
for observations correctly classified by learner t. The next learner t + 1 is then trained on the data
with updated weights dn

t + 1 .

After training finishes, AdaBoostM1 computes prediction for new data using

f x =∑t = 1

T

αtht x ,

where
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αt = 1
2 log

1− εt
εt

are weights of the weak hypotheses in the ensemble.

Training by AdaBoostM1 can be viewed as stagewise minimization of the exponential loss

∑n = 1

N

wnexp −ynf xn ,

where

• yn ∊ {–1,+1} is the true class label.
• wn are observation weights normalized to add up to 1.
• f(xn) ∊ (–∞,+∞) is the predicted classification score.

The observation weights wn are the original observation weights you passed to fitcensemble.

The second output from the predict method of an AdaBoostM1 classification ensemble is an N-by-2
matrix of classification scores for the two classes and N observations. The second column in this
matrix is always equal to minus the first column. The predict method returns two scores to be
consistent with multiclass models, though this is redundant because the second column is always the
negative of the first.

Most often AdaBoostM1 is used with decision stumps (default) or shallow trees. If boosted stumps
give poor performance, try setting the minimal parent node size to one quarter of the training data.

By default, the learning rate for boosting algorithms is 1. If you set the learning rate to a lower
number, the ensemble learns at a slower rate, but can converge to a better solution. 0.1 is a popular
choice for the learning rate. Learning at a rate less than 1 is often called “shrinkage”.

For examples using AdaBoostM1, see “Conduct Cost-Sensitive Comparison of Two Classification
Models” on page 35-1015 and “Create an Ensemble Template for ECOC Multiclass Learning” on page
35-7211.

Adaptive Boosting for Multiclass Classification

Adaptive boosting named AdaBoostM2 is an extension of AdaBoostM1 for multiple classes. Instead of
weighted classification error, AdaBoostM2 uses weighted pseudo-loss for N observations and K
classes

εt = 1
2∑n = 1

N ∑k ≠ yn
dn, k

t 1− ht xn, yn + ht xn, k ,

where

• ht(xn,k) is the confidence of prediction by learner at step t into class k ranging from 0 (not at all
confident) to 1 (highly confident).

• dn, k
t  are observation weights at step t for class k.

• yn is the true class label taking one of the K values.
• The second sum is over all classes other than the true class yn.
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Interpreting the pseudo-loss is harder than classification error, but the idea is the same. Pseudo-loss
can be used as a measure of the classification accuracy from any learner in an ensemble. Pseudo-loss
typically exhibits the same behavior as a weighted classification error for AdaBoostM1: the first few
learners in a boosted ensemble give low pseudo-loss values. After the first few training steps, the
ensemble begins to learn at a slower pace, and the pseudo-loss value approaches 0.5 from below.

For an example using AdaBoostM2, see “Predict Class Labels Using Classification Ensemble” on page
35-5772.

Gentle Adaptive Boosting

Gentle adaptive boosting (GentleBoost, also known as Gentle AdaBoost) combines features of
AdaBoostM1 and LogitBoost. Like AdaBoostM1, GentleBoost minimizes the exponential loss.
But its numeric optimization is set up differently. Like LogitBoost, every weak learner fits a
regression model to response values yn ∊ {–1,+1}.

fitcensemble computes and stores the mean-squared error in the FitInfo property of the
ensemble object. The mean-squared error is

∑n = 1

N

dn
t yn− ht xn

2,

where

• dn
t  are observation weights at step t (the weights add up to 1).

• ht(xn) are predictions of the regression model ht fitted to response values yn.

As the strength of individual learners weakens, the weighted mean-squared error approaches 1.

For examples using GentleBoost, see “Speed Up Training ECOC Classifiers Using Binning and
Parallel Computing” on page 35-7212 and “Handle Imbalanced Data or Unequal Misclassification Costs
in Classification Ensembles” on page 19-86.

Adaptive Logistic Regression

Adaptive logistic regression (LogitBoost) is another popular algorithm for binary classification.
LogitBoost works similarly to AdaBoostM1, except it minimizes binomial deviance

∑n = 1

N

wnlog 1 + exp −2ynf xn ,

where

• yn ∊ {–1,+1} is the true class label.
• wn are observation weights normalized to add up to 1.
• f(xn) ∊ (–∞,+∞) is the predicted classification score.

Binomial deviance assigns less weight to badly misclassified observations (observations with large
negative values of ynf(xn)). LogitBoost can give better average accuracy than AdaBoostM1 for data
with poorly separable classes.

Learner t in a LogitBoost ensemble fits a regression model to response values

19 Nonparametric Supervised Learning

19-50



yn =
yn* − pt xn

pt xn 1− pt xn
,

where

• y*n ∊ {0,+1} are relabeled classes (0 instead of –1).
• pt(xn) is the current ensemble estimate of the probability for observation xn to be of class 1.

fitcensemble computes and stores the mean-squared error in the FitInfo property of the
ensemble object. The mean-squared error is

∑n = 1

N

dn
t yn− ht xn

2,

where

• dn
t  are observation weights at step t (the weights add up to 1).

• ht(xn) are predictions of the regression model ht fitted to response values yn.

Values yn can range from –∞ to +∞, so the mean-squared error does not have well-defined bounds.

For examples using LogitBoost, see “Train Classification Ensemble” on page 19-56 and “Speed Up
Training by Binning Numeric Predictor Values” on page 35-1965.

Linear Programming Boosting

Linear programming boosting (LPBoost), like TotalBoost, performs multiclass classification by
attempting to maximize the minimal margin in the training set. This attempt uses optimization
algorithms, namely linear programming for LPBoost. So you need an Optimization Toolbox license to
use LPBoost or TotalBoost.

The margin of a classification is the difference between the predicted soft classification score for the
true class, and the largest score for the false classes. For trees, the score of a classification of a leaf
node is the posterior probability of the classification at that node. The posterior probability of the
classification at a node is the number of training sequences that lead to that node with the
classification, divided by the number of training sequences that lead to that node. For more
information, see “More About” on page 35-4701 in margin.

Why maximize the minimal margin? For one thing, the generalization error (the error on new data) is
the probability of obtaining a negative margin. Schapire and Singer [10] establish this inequality on
the probability of obtaining a negative margin:

Ptest m ≤ 0 ≤ Ptrain m ≤ θ + O 1
N

Vlog2(N/V)
θ2 + log(1/δ) .

Here m is the margin, θ is any positive number, V is the Vapnik-Chervonenkis dimension of the
classifier space, N is the size of the training set, and δ is a small positive number. The inequality holds
with probability 1–δ over many i.i.d. training and test sets. This inequality says: To obtain a low
generalization error, minimize the number of observations below margin θ in the training set.

LPBoost iteratively maximizes the minimal margin through a sequence of linear programming
problems. Equivalently, by duality, LPBoost minimizes the maximal edge, where edge is the weighted
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mean margin (see “More About” on page 35-1563). At each iteration, there are more constraints in the
problem. So, for large problems, the optimization problem becomes increasingly constrained, and
slow to solve.

LPBoost typically creates ensembles with many learners having weights that are orders of
magnitude smaller than those of other learners. Therefore, to better enable you to remove the
unimportant ensemble members, the compact method reorders the members of an LPBoost
ensemble from largest weight to smallest. Therefore, you can easily remove the least important
members of the ensemble using the removeLearners method.

For an example using LPBoost, see “LPBoost and TotalBoost for Small Ensembles” on page 19-97.

Least-Squares Boosting

Least-squares boosting (LSBoost) fits regression ensembles. At every step, the ensemble fits a new
learner to the difference between the observed response and the aggregated prediction of all learners
grown previously. The ensemble fits to minimize mean-squared error.

You can use LSBoost with shrinkage by passing in the LearnRate parameter. By default this
parameter is set to 1, and the ensemble learns at the maximal speed. If you set LearnRate to a value
from 0 to 1, the ensemble fits every new learner to yn – ηf(xn), where

• yn is the observed response.
• f(xn) is the aggregated prediction from all weak learners grown so far for observation xn.
• η is the learning rate.

For examples using LSBoost, see “Train Regression Ensemble” on page 19-59, “Optimize a Boosted
Regression Ensemble” on page 10-67, and “Ensemble Regularization” on page 19-72.

Robust Boosting

Boosting algorithms such as AdaBoostM1 and LogitBoost increase weights for misclassified
observations at every boosting step. These weights can become very large. If this happens, the
boosting algorithm sometimes concentrates on a few misclassified observations and neglects the
majority of training data. Consequently the average classification accuracy suffers. In this situation,
you can try using robust boosting (RobustBoost). This algorithm does not assign almost the entire
data weight to badly misclassified observations. It can produce better average classification accuracy.
You need an Optimization Toolbox license to use RobustBoost.

Unlike AdaBoostM1 and LogitBoost, RobustBoost does not minimize a specific loss function.
Instead, it maximizes the number of observations with the classification margin above a certain
threshold.

RobustBoost trains based on time evolution. The algorithm starts at t = 0. At every step,
RobustBoost solves an optimization problem to find a positive step in time Δt and a corresponding
positive change in the average margin for training data Δm. RobustBoost stops training and exits if
at least one of these three conditions is true:

• Time t reaches 1.
• RobustBoost cannot find a solution to the optimization problem with positive updates Δt and Δm.
• RobustBoost grows as many learners as you requested.

Results from RobustBoost can be usable for any termination condition. Estimate the classification
accuracy by cross validation or by using an independent test set.
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To get better classification accuracy from RobustBoost, you can adjust three parameters in
fitcensemble: RobustErrorGoal, RobustMaxMargin, and RobustMarginSigma. Start by
varying values for RobustErrorGoal from 0 to 1. The maximal allowed value for RobustErrorGoal
depends on the two other parameters. If you pass a value that is too high, fitcensemble produces
an error message showing the allowed range for RobustErrorGoal.

For an example using RobustBoost, see “Tune RobustBoost” on page 19-102.

Random Undersampling Boosting

Random undersampling boosting (RUSBoost) is especially effective at classifying imbalanced data,
meaning some class in the training data has many fewer members than another. RUS stands for
Random Under Sampling. The algorithm takes N, the number of members in the class with the fewest
members in the training data, as the basic unit for sampling. Classes with more members are under
sampled by taking only N observations of every class. In other words, if there are K classes, then, for
each weak learner in the ensemble, RUSBoost takes a subset of the data with N observations from
each of the K classes. The boosting procedure follows the procedure in “Adaptive Boosting for
Multiclass Classification” on page 19-49 for reweighting and constructing the ensemble.

When you construct a RUSBoost ensemble, there is an optional name-value pair called
RatioToSmallest. Give a vector of K values, each value representing the multiple of N to sample
for the associated class. For example, if the smallest class has N = 100 members, then
RatioToSmallest = [2,3,4] means each weak learner has 200 members in class 1, 300 in class 2,
and 400 in class 3. If RatioToSmallest leads to a value that is larger than the number of members
in a particular class, then RUSBoost samples the members with replacement. Otherwise, RUSBoost
samples the members without replacement.

For an example using RUSBoost, see “Classification with Imbalanced Data” on page 19-81.

Totally Corrective Boosting

Totally corrective boosting (TotalBoost), like linear programming boost (LPBoost), performs
multiclass classification by attempting to maximize the minimal margin in the training set. This
attempt uses optimization algorithms, namely quadratic programming for TotalBoost. So you need
an Optimization Toolbox license to use LPBoost or TotalBoost.

The margin of a classification is the difference between the predicted soft classification score for the
true class, and the largest score for the false classes. For trees, the score of a classification of a leaf
node is the posterior probability of the classification at that node. The posterior probability of the
classification at a node is the number of training sequences that lead to that node with the
classification, divided by the number of training sequences that lead to that node. For more
information, see “More About” on page 35-4701 in margin.

Why maximize the minimal margin? For one thing, the generalization error (the error on new data) is
the probability of obtaining a negative margin. Schapire and Singer [10] establish this inequality on
the probability of obtaining a negative margin:

Ptest m ≤ 0 ≤ Ptrain m ≤ θ + O 1
N

Vlog2(N/V)
θ2 + log(1/δ) .

Here m is the margin, θ is any positive number, V is the Vapnik-Chervonenkis dimension of the
classifier space, N is the size of the training set, and δ is a small positive number. The inequality holds
with probability 1–δ over many i.i.d. training and test sets. This inequality says: To obtain a low
generalization error, minimize the number of observations below margin θ in the training set.
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TotalBoost minimizes a proxy of the Kullback-Leibler divergence between the current weight
distribution and the initial weight distribution, subject to the constraint that the edge (the weighted
margin) is below a certain value. The proxy is a quadratic expansion of the divergence:

D(W, W0) = ∑
n = 1

N
log W(n)

W0(n) ≈ ∑
n = 1

N
1 + W(n)

W0(n) Δ + 1
2W(n)Δ2,

where Δ is the difference between W(n), the weights at the current and next iteration, and W0, the
initial weight distribution, which is uniform. This optimization formulation keeps weights from
becoming zero. At each iteration, there are more constraints in the problem. So, for large problems,
the optimization problem becomes increasingly constrained, and slow to solve.

TotalBoost typically creates ensembles with many learners having weights that are orders of
magnitude smaller than those of other learners. Therefore, to better enable you to remove the
unimportant ensemble members, the compact method reorders the members of a TotalBoost
ensemble from largest weight to smallest. Therefore you can easily remove the least important
members of the ensemble using the removeLearners method.

For an example using TotalBoost, see “LPBoost and TotalBoost for Small Ensembles” on page 19-
97.
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Related Examples
• “Framework for Ensemble Learning” on page 19-33
• “Tune RobustBoost” on page 19-102
• “Surrogate Splits” on page 19-92
• “Handle Imbalanced Data or Unequal Misclassification Costs in Classification Ensembles” on

page 19-86
• “LPBoost and TotalBoost for Small Ensembles” on page 19-97
• “Random Subspace Classification” on page 19-105
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Train Classification Ensemble

This example shows how to create a classification tree ensemble for the ionosphere data set, and
use it to predict the classification of a radar return with average measurements.

Load the ionosphere data set.

load ionosphere

Train a classification ensemble. For binary classification problems, fitcensemble aggregates 100
classification trees using LogitBoost.

Mdl = fitcensemble(X,Y)

Mdl = 
  ClassificationEnsemble
             ResponseName: 'Y'
    CategoricalPredictors: []
               ClassNames: {'b'  'g'}
           ScoreTransform: 'none'
          NumObservations: 351
               NumTrained: 100
                   Method: 'LogitBoost'
             LearnerNames: {'Tree'}
     ReasonForTermination: 'Terminated normally after completing the requested number of training cycles.'
                  FitInfo: [100x1 double]
       FitInfoDescription: {2x1 cell}

  Properties, Methods

Mdl is a ClassificationEnsemble model.

Plot a graph of the first trained classification tree in the ensemble.

view(Mdl.Trained{1}.CompactRegressionLearner,'Mode','graph');
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By default, fitcensemble grows shallow trees for boosting algorithms. You can alter the tree depth
by passing a tree template object to fitcensemble. For more details, see templateTree.

Predict the quality of a radar return with average predictor measurements.

label = predict(Mdl,mean(X))

label = 1x1 cell array
    {'g'}

See Also
fitcensemble | predict

Related Examples
• “Train Regression Ensemble” on page 19-59
• “Select Predictors for Random Forests” on page 19-62
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• “Decision Trees” on page 20-2
• “Ensemble Algorithms” on page 19-41
• “Framework for Ensemble Learning” on page 19-33
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Train Regression Ensemble

This example shows how to create a regression ensemble to predict mileage of cars based on their
horsepower and weight, trained on the carsmall data.

Load the carsmall data set.

load carsmall

Prepare the predictor data.

X = [Horsepower Weight];

The response data is MPG. The only available boosted regression ensemble type is LSBoost. For this
example, arbitrarily choose an ensemble of 100 trees, and use the default tree options.

Train an ensemble of regression trees.

Mdl = fitrensemble(X,MPG,'Method','LSBoost','NumLearningCycles',100)

Mdl = 
  RegressionEnsemble
             ResponseName: 'Y'
    CategoricalPredictors: []
        ResponseTransform: 'none'
          NumObservations: 94
               NumTrained: 100
                   Method: 'LSBoost'
             LearnerNames: {'Tree'}
     ReasonForTermination: 'Terminated normally after completing the requested number of training cycles.'
                  FitInfo: [100x1 double]
       FitInfoDescription: {2x1 cell}
           Regularization: []

  Properties, Methods

Plot a graph of the first trained regression tree in the ensemble.

view(Mdl.Trained{1},'Mode','graph');
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By default, fitrensemble grows shallow trees for LSBoost.

Predict the mileage of a car with 150 horsepower weighing 2750 lbs.

mileage = predict(Mdl,[150 2750])

mileage = 23.6713

See Also
fitrensemble | predict

Related Examples
• “Train Classification Ensemble” on page 19-56
• “Select Predictors for Random Forests” on page 19-62
• “Decision Trees” on page 20-2
• “Ensemble Algorithms” on page 19-41
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• “Framework for Ensemble Learning” on page 19-33
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Select Predictors for Random Forests

This example shows how to choose the appropriate split predictor selection technique for your data
set when growing a random forest of regression trees. This example also shows how to decide which
predictors are most important to include in the training data.

Load and Preprocess Data

Load the carbig data set. Consider a model that predicts the fuel economy of a car given its number
of cylinders, engine displacement, horsepower, weight, acceleration, model year, and country of
origin. Consider Cylinders, Model_Year, and Origin as categorical variables.

load carbig
Cylinders = categorical(Cylinders);
Model_Year = categorical(Model_Year);
Origin = categorical(cellstr(Origin));
X = table(Cylinders,Displacement,Horsepower,Weight,Acceleration,Model_Year,Origin);

Determine Levels in Predictors

The standard CART algorithm tends to split predictors with many unique values (levels), e.g.,
continuous variables, over those with fewer levels, e.g., categorical variables. If your data is
heterogeneous, or your predictor variables vary greatly in their number of levels, then consider using
the curvature or interaction tests for split-predictor selection instead of standard CART.

For each predictor, determine the number of levels in the data. One way to do this is define an
anonymous function that:

1 Converts all variables to the categorical data type using categorical
2 Determines all unique categories while ignoring missing values using categories
3 Counts the categories using numel

Then, apply the function to each variable using varfun.

countLevels = @(x)numel(categories(categorical(x)));
numLevels = varfun(countLevels,X,'OutputFormat','uniform');

Compare the number of levels among the predictor variables.

figure
bar(numLevels)
title('Number of Levels Among Predictors')
xlabel('Predictor variable')
ylabel('Number of levels')
h = gca;
h.XTickLabel = X.Properties.VariableNames(1:end-1);
h.XTickLabelRotation = 45;
h.TickLabelInterpreter = 'none';
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The continuous variables have many more levels than the categorical variables. Because the number
of levels among the predictors varies so much, using standard CART to select split predictors at each
node of the trees in a random forest can yield inaccurate predictor importance estimates. In this case,
use the curvature test or interaction test. Specify the algorithm by using the
'PredictorSelection' name-value pair argument. For more details, see “Choose Split Predictor
Selection Technique” on page 20-14.

Train Bagged Ensemble of Regression Trees

Train a bagged ensemble of 200 regression trees to estimate predictor importance values. Define a
tree learner using these name-value pair arguments:

• 'NumVariablesToSample','all' — Use all predictor variables at each node to ensure that
each tree uses all predictor variables.

• 'PredictorSelection','interaction-curvature' — Specify usage of the interaction test
to select split predictors.

• 'Surrogate','on' — Specify usage of surrogate splits to increase accuracy because the data
set includes missing values.

t = templateTree('NumVariablesToSample','all',...
    'PredictorSelection','interaction-curvature','Surrogate','on');
rng(1); % For reproducibility
Mdl = fitrensemble(X,MPG,'Method','Bag','NumLearningCycles',200, ...
    'Learners',t);

Mdl is a RegressionBaggedEnsemble model.
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Estimate the model R2 using out-of-bag predictions.

yHat = oobPredict(Mdl);
R2 = corr(Mdl.Y,yHat)^2

R2 = 0.8744

Mdl explains 87% of the variability around the mean.

Predictor Importance Estimation

Estimate predictor importance values by permuting out-of-bag observations among the trees.

impOOB = oobPermutedPredictorImportance(Mdl);

impOOB is a 1-by-7 vector of predictor importance estimates corresponding to the predictors in
Mdl.PredictorNames. The estimates are not biased toward predictors containing many levels.

Compare the predictor importance estimates.

figure
bar(impOOB)
title('Unbiased Predictor Importance Estimates')
xlabel('Predictor variable')
ylabel('Importance')
h = gca;
h.XTickLabel = Mdl.PredictorNames;
h.XTickLabelRotation = 45;
h.TickLabelInterpreter = 'none';
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Greater importance estimates indicate more important predictors. The bar graph suggests that
Model_Year is the most important predictor, followed by Cylinders and Weight. The Model_Year
and Cylinders variables have only 13 and 5 distinct levels, respectively, whereas the Weight
variable has over 300 levels.

Compare predictor importance estimates by permuting out-of-bag observations and those estimates
obtained by summing gains in the mean squared error due to splits on each predictor. Also, obtain
predictor association measures estimated by surrogate splits.

[impGain,predAssociation] = predictorImportance(Mdl);

figure
plot(1:numel(Mdl.PredictorNames),[impOOB' impGain'])
title('Predictor Importance Estimation Comparison')
xlabel('Predictor variable')
ylabel('Importance')
h = gca;
h.XTickLabel = Mdl.PredictorNames;
h.XTickLabelRotation = 45;
h.TickLabelInterpreter = 'none';
legend('OOB permuted','MSE improvement')
grid on

According to the values of impGain, the variables Displacement, Horsepower, and Weight appear
to be equally important.
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predAssociation is a 7-by-7 matrix of predictor association measures. Rows and columns
correspond to the predictors in Mdl.PredictorNames. The “Predictive Measure of Association” on
page 35-6026 is a value that indicates the similarity between decision rules that split observations. The
best surrogate decision split yields the maximum predictive measure of association. You can infer the
strength of the relationship between pairs of predictors using the elements of predAssociation.
Larger values indicate more highly correlated pairs of predictors.

figure
imagesc(predAssociation)
title('Predictor Association Estimates')
colorbar
h = gca;
h.XTickLabel = Mdl.PredictorNames;
h.XTickLabelRotation = 45;
h.TickLabelInterpreter = 'none';
h.YTickLabel = Mdl.PredictorNames;

predAssociation(1,2)

ans = 0.6871

The largest association is between Cylinders and Displacement, but the value is not high enough
to indicate a strong relationship between the two predictors.

Grow Random Forest Using Reduced Predictor Set

Because prediction time increases with the number of predictors in random forests, a good practice is
to create a model using as few predictors as possible.
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Grow a random forest of 200 regression trees using the best two predictors only. The default
'NumVariablesToSample' value of templateTree is one third of the number of predictors for
regression, so fitrensemble uses the random forest algorithm.

t = templateTree('PredictorSelection','interaction-curvature','Surrogate','on', ...
    'Reproducible',true); % For reproducibility of random predictor selections
MdlReduced = fitrensemble(X(:,{'Model_Year' 'Weight'}),MPG,'Method','Bag', ...
    'NumLearningCycles',200,'Learners',t);

Compute the R2 of the reduced model.

yHatReduced = oobPredict(MdlReduced);
r2Reduced = corr(Mdl.Y,yHatReduced)^2

r2Reduced = 0.8653

The R2 for the reduced model is close to the R2 of the full model. This result suggests that the
reduced model is sufficient for prediction.

See Also
templateTree | fitrensemble | oobPredict | oobPermutedPredictorImportance |
predictorImportance | corr

Related Examples
• “Improving Classification Trees and Regression Trees” on page 20-13
• “Bootstrap Aggregation (Bagging) of Regression Trees Using TreeBagger” on page 19-114
• “Surrogate Splits” on page 19-92
• “Introduction to Feature Selection” on page 16-47
• “Interpret Machine Learning Models” on page 27-2
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Test Ensemble Quality

You cannot evaluate the predictive quality of an ensemble based on its performance on training data.
Ensembles tend to "overtrain," meaning they produce overly optimistic estimates of their predictive
power. This means the result of resubLoss for classification (resubLoss for regression) usually
indicates lower error than you get on new data.

To obtain a better idea of the quality of an ensemble, use one of these methods:

• Evaluate the ensemble on an independent test set (useful when you have a lot of training data).
• Evaluate the ensemble by cross validation (useful when you don't have a lot of training data).
• Evaluate the ensemble on out-of-bag data (useful when you create a bagged ensemble with

fitcensemble or fitrensemble).

This example uses a bagged ensemble so it can use all three methods of evaluating ensemble quality.

Generate an artificial dataset with 20 predictors. Each entry is a random number from 0 to 1. The
initial classification is Y = 1 if X1 + X2 + X3 + X4 + X5 > 2 . 5 and Y = 0 otherwise.

rng(1,'twister') % For reproducibility
X = rand(2000,20);
Y = sum(X(:,1:5),2) > 2.5;

In addition, to add noise to the results, randomly switch 10% of the classifications.

idx = randsample(2000,200);
Y(idx) = ~Y(idx);

Independent Test Set

Create independent training and test sets of data. Use 70% of the data for a training set by calling
cvpartition using the holdout option.

cvpart = cvpartition(Y,'holdout',0.3);
Xtrain = X(training(cvpart),:);
Ytrain = Y(training(cvpart),:);
Xtest = X(test(cvpart),:);
Ytest = Y(test(cvpart),:);

Create a bagged classification ensemble of 200 trees from the training data.

t = templateTree('Reproducible',true);  % For reproducibility of random predictor selections
bag = fitcensemble(Xtrain,Ytrain,'Method','Bag','NumLearningCycles',200,'Learners',t)

bag = 
  ClassificationBaggedEnsemble
             ResponseName: 'Y'
    CategoricalPredictors: []
               ClassNames: [0 1]
           ScoreTransform: 'none'
          NumObservations: 1400
               NumTrained: 200
                   Method: 'Bag'
             LearnerNames: {'Tree'}
     ReasonForTermination: 'Terminated normally after completing the requested number of training cycles.'
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                  FitInfo: []
       FitInfoDescription: 'None'
                FResample: 1
                  Replace: 1
         UseObsForLearner: [1400x200 logical]

  Properties, Methods

Plot the loss (misclassification) of the test data as a function of the number of trained trees in the
ensemble.

figure
plot(loss(bag,Xtest,Ytest,'mode','cumulative'))
xlabel('Number of trees')
ylabel('Test classification error')

Cross Validation

Generate a five-fold cross-validated bagged ensemble.

cv = fitcensemble(X,Y,'Method','Bag','NumLearningCycles',200,'Kfold',5,'Learners',t)

cv = 
  ClassificationPartitionedEnsemble
    CrossValidatedModel: 'Bag'
         PredictorNames: {1x20 cell}
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           ResponseName: 'Y'
        NumObservations: 2000
                  KFold: 5
              Partition: [1x1 cvpartition]
      NumTrainedPerFold: [200 200 200 200 200]
             ClassNames: [0 1]
         ScoreTransform: 'none'

  Properties, Methods

Examine the cross-validation loss as a function of the number of trees in the ensemble.

figure
plot(loss(bag,Xtest,Ytest,'mode','cumulative'))
hold on
plot(kfoldLoss(cv,'mode','cumulative'),'r.')
hold off
xlabel('Number of trees')
ylabel('Classification error')
legend('Test','Cross-validation','Location','NE')

Cross validating gives comparable estimates to those of the independent set.

Out-of-Bag Estimates

Generate the loss curve for out-of-bag estimates, and plot it along with the other curves.

19 Nonparametric Supervised Learning

19-70



figure
plot(loss(bag,Xtest,Ytest,'mode','cumulative'))
hold on
plot(kfoldLoss(cv,'mode','cumulative'),'r.')
plot(oobLoss(bag,'mode','cumulative'),'k--')
hold off
xlabel('Number of trees')
ylabel('Classification error')
legend('Test','Cross-validation','Out of bag','Location','NE')

The out-of-bag estimates are again comparable to those of the other methods.

See Also
fitcensemble | fitrensemble | resubLoss | resubLoss | cvpartition | oobLoss | kfoldLoss
| loss

Related Examples
• “Framework for Ensemble Learning” on page 19-33
• “Ensemble Algorithms” on page 19-41
• “Bootstrap Aggregation (Bagging) of Classification Trees Using TreeBagger” on page 19-125
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Ensemble Regularization
Regularization is a process of choosing fewer weak learners for an ensemble in a way that does not
diminish predictive performance. Currently you can regularize regression ensembles. (You can also
regularize a discriminant analysis classifier in a non-ensemble context; see “Regularize Discriminant
Analysis Classifier” on page 21-21.)

The regularize method finds an optimal set of learner weights αt that minimize

∑n = 1

N

wng ∑t = 1

T

αtht xn , yn + λ∑t = 1

T

αt .

Here

• λ ≥ 0 is a parameter you provide, called the lasso parameter.
• ht is a weak learner in the ensemble trained on N observations with predictors xn, responses yn,

and weights wn.
• g(f,y) = (f – y)2 is the squared error.

The ensemble is regularized on the same (xn,yn,wn) data used for training, so

∑n = 1

N

wng ∑t = 1

T

αtht xn , yn

is the ensemble resubstitution error. The error is measured by mean squared error (MSE).

If you use λ = 0, regularize finds the weak learner weights by minimizing the resubstitution MSE.
Ensembles tend to overtrain. In other words, the resubstitution error is typically smaller than the true
generalization error. By making the resubstitution error even smaller, you are likely to make the
ensemble accuracy worse instead of improving it. On the other hand, positive values of λ push the
magnitude of the αt coefficients to 0. This often improves the generalization error. Of course, if you
choose λ too large, all the optimal coefficients are 0, and the ensemble does not have any accuracy.
Usually you can find an optimal range for λ in which the accuracy of the regularized ensemble is
better or comparable to that of the full ensemble without regularization.

A nice feature of lasso regularization is its ability to drive the optimized coefficients precisely to 0. If
a learner's weight αt is 0, this learner can be excluded from the regularized ensemble. In the end, you
get an ensemble with improved accuracy and fewer learners.

Regularize a Regression Ensemble

This example uses data for predicting the insurance risk of a car based on its many attributes.

Load the imports-85 data into the MATLAB workspace.

load imports-85;

Look at a description of the data to find the categorical variables and predictor names.

Description
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Description = 9x79 char array
    '1985 Auto Imports Database from the UCI repository                             '
    'http://archive.ics.uci.edu/ml/machine-learning-databases/autos/imports-85.names'
    'Variables have been reordered to place variables with numeric values (referred '
    'to as "continuous" on the UCI site) to the left and categorical values to the  '
    'right. Specifically, variables 1:16 are: symboling, normalized-losses,         '
    'wheel-base, length, width, height, curb-weight, engine-size, bore, stroke,     '
    'compression-ratio, horsepower, peak-rpm, city-mpg, highway-mpg, and price.     '
    'Variables 17:26 are: make, fuel-type, aspiration, num-of-doors, body-style,    '
    'drive-wheels, engine-location, engine-type, num-of-cylinders, and fuel-system. '

The objective of this process is to predict the "symboling," the first variable in the data, from the
other predictors. "symboling" is an integer from -3 (good insurance risk) to 3 (poor insurance risk).
You could use a classification ensemble to predict this risk instead of a regression ensemble. When
you have a choice between regression and classification, you should try regression first.

Prepare the data for ensemble fitting.

Y = X(:,1);
X(:,1) = [];
VarNames = {'normalized-losses' 'wheel-base' 'length' 'width' 'height' ...
  'curb-weight' 'engine-size' 'bore' 'stroke' 'compression-ratio' ...
  'horsepower' 'peak-rpm' 'city-mpg' 'highway-mpg' 'price' 'make' ...
  'fuel-type' 'aspiration' 'num-of-doors' 'body-style' 'drive-wheels' ...
  'engine-location' 'engine-type' 'num-of-cylinders' 'fuel-system'};
catidx = 16:25; % indices of categorical predictors

Create a regression ensemble from the data using 300 trees.

ls = fitrensemble(X,Y,'Method','LSBoost','NumLearningCycles',300, ...
    'LearnRate',0.1,'PredictorNames',VarNames, ...
    'ResponseName','Symboling','CategoricalPredictors',catidx)

ls = 
  RegressionEnsemble
           PredictorNames: {1x25 cell}
             ResponseName: 'Symboling'
    CategoricalPredictors: [16 17 18 19 20 21 22 23 24 25]
        ResponseTransform: 'none'
          NumObservations: 205
               NumTrained: 300
                   Method: 'LSBoost'
             LearnerNames: {'Tree'}
     ReasonForTermination: 'Terminated normally after completing the requested number of training cycles.'
                  FitInfo: [300x1 double]
       FitInfoDescription: {2x1 cell}
           Regularization: []

  Properties, Methods

The final line, Regularization, is empty ([]). To regularize the ensemble, you have to use the
regularize method.

cv = crossval(ls,'KFold',5);
figure;

 Ensemble Regularization

19-73



plot(kfoldLoss(cv,'Mode','Cumulative'));
xlabel('Number of trees');
ylabel('Cross-validated MSE');
ylim([0.2,2])

It appears you might obtain satisfactory performance from a smaller ensemble, perhaps one
containing from 50 to 100 trees.

Call the regularize method to try to find trees that you can remove from the ensemble. By default,
regularize examines 10 values of the lasso (Lambda) parameter spaced exponentially.

ls = regularize(ls)

ls = 
  RegressionEnsemble
           PredictorNames: {1x25 cell}
             ResponseName: 'Symboling'
    CategoricalPredictors: [16 17 18 19 20 21 22 23 24 25]
        ResponseTransform: 'none'
          NumObservations: 205
               NumTrained: 300
                   Method: 'LSBoost'
             LearnerNames: {'Tree'}
     ReasonForTermination: 'Terminated normally after completing the requested number of training cycles.'
                  FitInfo: [300x1 double]
       FitInfoDescription: {2x1 cell}
           Regularization: [1x1 struct]
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  Properties, Methods

The Regularization property is no longer empty.

Plot the resubstitution mean-squared error (MSE) and number of learners with nonzero weights
against the lasso parameter. Separately plot the value at Lambda = 0. Use a logarithmic scale
because the values of Lambda are exponentially spaced.

figure;
semilogx(ls.Regularization.Lambda,ls.Regularization.ResubstitutionMSE, ...
    'bx-','Markersize',10);
line([1e-3 1e-3],[ls.Regularization.ResubstitutionMSE(1) ...
     ls.Regularization.ResubstitutionMSE(1)],...
    'Marker','x','Markersize',10,'Color','b');
r0 = resubLoss(ls);
line([ls.Regularization.Lambda(2) ls.Regularization.Lambda(end)],...
     [r0 r0],'Color','r','LineStyle','--');
xlabel('Lambda');
ylabel('Resubstitution MSE');
annotation('textbox',[0.5 0.22 0.5 0.05],'String','unregularized ensemble', ...
    'Color','r','FontSize',14,'LineStyle','none');

figure;
loglog(ls.Regularization.Lambda,sum(ls.Regularization.TrainedWeights>0,1));
line([1e-3 1e-3],...
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    [sum(ls.Regularization.TrainedWeights(:,1)>0) ...
    sum(ls.Regularization.TrainedWeights(:,1)>0)],...
    'marker','x','markersize',10,'color','b');
line([ls.Regularization.Lambda(2) ls.Regularization.Lambda(end)],...
    [ls.NTrained ls.NTrained],...
    'color','r','LineStyle','--');
xlabel('Lambda');
ylabel('Number of learners');
annotation('textbox',[0.3 0.8 0.5 0.05],'String','unregularized ensemble',...
    'color','r','FontSize',14,'LineStyle','none');

The resubstitution MSE values are likely to be overly optimistic. To obtain more reliable estimates of
the error associated with various values of Lambda, cross validate the ensemble using cvshrink.
Plot the resulting cross-validation loss (MSE) and number of learners against Lambda.

rng(0,'Twister') % for reproducibility
[mse,nlearn] = cvshrink(ls,'Lambda',ls.Regularization.Lambda,'KFold',5);

Warning: Some folds do not have any trained weak learners.

figure;
semilogx(ls.Regularization.Lambda,ls.Regularization.ResubstitutionMSE, ...
    'bx-','Markersize',10);
hold on;
semilogx(ls.Regularization.Lambda,mse,'ro-','Markersize',10);
hold off;
xlabel('Lambda');
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ylabel('Mean squared error');
legend('resubstitution','cross-validation','Location','NW');
line([1e-3 1e-3],[ls.Regularization.ResubstitutionMSE(1) ...
     ls.Regularization.ResubstitutionMSE(1)],...
    'Marker','x','Markersize',10,'Color','b','HandleVisibility','off');
line([1e-3 1e-3],[mse(1) mse(1)],'Marker','o',...
    'Markersize',10,'Color','r','LineStyle','--','HandleVisibility','off');

figure;
loglog(ls.Regularization.Lambda,sum(ls.Regularization.TrainedWeights>0,1));
hold;

Current plot held

loglog(ls.Regularization.Lambda,nlearn,'r--');
hold off;
xlabel('Lambda');
ylabel('Number of learners');
legend('resubstitution','cross-validation','Location','NE');
line([1e-3 1e-3],...
    [sum(ls.Regularization.TrainedWeights(:,1)>0) ...
    sum(ls.Regularization.TrainedWeights(:,1)>0)],...
    'Marker','x','Markersize',10,'Color','b','HandleVisibility','off');
line([1e-3 1e-3],[nlearn(1) nlearn(1)],'marker','o',...
    'Markersize',10,'Color','r','LineStyle','--','HandleVisibility','off');
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Examining the cross-validated error shows that the cross-validation MSE is almost flat for Lambda up
to a bit over 1e-2.

Examine ls.Regularization.Lambda to find the highest value that gives MSE in the flat region
(up to a bit over 1e-2).

jj = 1:length(ls.Regularization.Lambda);
[jj;ls.Regularization.Lambda]

ans = 2×10

    1.0000    2.0000    3.0000    4.0000    5.0000    6.0000    7.0000    8.0000    9.0000   10.0000
         0    0.0019    0.0045    0.0107    0.0254    0.0602    0.1428    0.3387    0.8033    1.9048

Element 5 of ls.Regularization.Lambda has value 0.0254, the largest in the flat range.

Reduce the ensemble size using the shrink method. shrink returns a compact ensemble with no
training data. The generalization error for the new compact ensemble was already estimated by cross
validation in mse(5).

cmp = shrink(ls,'weightcolumn',5)

cmp = 
  CompactRegressionEnsemble
           PredictorNames: {1x25 cell}
             ResponseName: 'Symboling'
    CategoricalPredictors: [16 17 18 19 20 21 22 23 24 25]
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        ResponseTransform: 'none'
               NumTrained: 8

  Properties, Methods

The number of trees in the new ensemble has notably reduced from the 300 in ls.

Compare the sizes of the ensembles.

sz(1) = whos('cmp'); sz(2) = whos('ls');
[sz(1).bytes sz(2).bytes]

ans = 1×2

       91209     3227100

The size of the reduced ensemble is a fraction of the size of the original. Note that your ensemble
sizes can vary depending on your operating system.

Compare the MSE of the reduced ensemble to that of the original ensemble.

figure;
plot(kfoldLoss(cv,'mode','cumulative'));
hold on
plot(cmp.NTrained,mse(5),'ro','MarkerSize',10);
xlabel('Number of trees');
ylabel('Cross-validated MSE');
legend('unregularized ensemble','regularized ensemble',...
    'Location','NE');
hold off
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The reduced ensemble gives low loss while using many fewer trees.

See Also
fitrensemble | regularize | kfoldLoss | cvshrink | shrink | resubLoss | crossval

Related Examples
• “Regularize Discriminant Analysis Classifier” on page 21-21
• “Framework for Ensemble Learning” on page 19-33
• “Ensemble Algorithms” on page 19-41
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Classification with Imbalanced Data

This example shows how to perform classification when one class has many more observations than
another. You use the RUSBoost algorithm first, because it is designed to handle this case. Another
way to handle imbalanced data is to use the name-value pair arguments 'Prior' or 'Cost'. For
details, see “Handle Imbalanced Data or Unequal Misclassification Costs in Classification Ensembles”
on page 19-86.

This example uses the "Cover type" data from the UCI machine learning archive, described in https://
archive.ics.uci.edu/ml/datasets/Covertype. The data classifies types of forest (ground cover), based on
predictors such as elevation, soil type, and distance to water. The data has over 500,000 observations
and over 50 predictors, so training and using a classifier is time consuming.

Blackard and Dean [1] describe a neural net classification of this data. They quote a 70.6%
classification accuracy. RUSBoost obtains over 81% classification accuracy.

Obtain the data

Import the data into your workspace. Extract the last data column into a variable named Y.

gunzip('https://archive.ics.uci.edu/ml/machine-learning-databases/covtype/covtype.data.gz')
load covtype.data
Y = covtype(:,end);
covtype(:,end) = [];

Examine the response data

tabulate(Y)

  Value    Count   Percent
      1    211840     36.46%
      2    283301     48.76%
      3    35754      6.15%
      4     2747      0.47%
      5     9493      1.63%
      6    17367      2.99%
      7    20510      3.53%

There are hundreds of thousands of data points. Those of class 4 are less than 0.5% of the total. This
imbalance indicates that RUSBoost is an appropriate algorithm.

Partition the data for quality assessment

Use half the data to fit a classifier, and half to examine the quality of the resulting classifier.

rng(10,'twister')         % For reproducibility
part = cvpartition(Y,'Holdout',0.5);
istrain = training(part); % Data for fitting
istest = test(part);      % Data for quality assessment
tabulate(Y(istrain))

  Value    Count   Percent
      1    105919     36.46%
      2    141651     48.76%
      3    17877      6.15%
      4     1374      0.47%
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      5     4747      1.63%
      6     8684      2.99%
      7    10254      3.53%

Create the ensemble

Use deep trees for higher ensemble accuracy. To do so, set the trees to have maximal number of
decision splits of N, where N is the number of observations in the training sample. Set LearnRate to
0.1 in order to achieve higher accuracy as well. The data is large, and, with deep trees, creating the
ensemble is time consuming.

N = sum(istrain);         % Number of observations in the training sample
t = templateTree('MaxNumSplits',N);
tic
rusTree = fitcensemble(covtype(istrain,:),Y(istrain),'Method','RUSBoost', ...
    'NumLearningCycles',1000,'Learners',t,'LearnRate',0.1,'nprint',100);

Training RUSBoost...
Grown weak learners: 100
Grown weak learners: 200
Grown weak learners: 300
Grown weak learners: 400
Grown weak learners: 500
Grown weak learners: 600
Grown weak learners: 700
Grown weak learners: 800
Grown weak learners: 900
Grown weak learners: 1000

toc

Elapsed time is 242.836734 seconds.

Inspect the classification error

Plot the classification error against the number of members in the ensemble.

figure;
tic
plot(loss(rusTree,covtype(istest,:),Y(istest),'mode','cumulative'));
toc

Elapsed time is 164.470086 seconds.

grid on;
xlabel('Number of trees');
ylabel('Test classification error');
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The ensemble achieves a classification error of under 20% using 116 or more trees. For 500 or more
trees, the classification error decreases at a slower rate.

Examine the confusion matrix for each class as a percentage of the true class.

tic
Yfit = predict(rusTree,covtype(istest,:));
toc

Elapsed time is 132.353489 seconds.

confusionchart(Y(istest),Yfit,'Normalization','row-normalized','RowSummary','row-normalized')
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All classes except class 2 have over 90% classification accuracy. But class 2 makes up close to half the
data, so the overall accuracy is not that high.

Compact the ensemble

The ensemble is large. Remove the data using the compact method.

cmpctRus = compact(rusTree);

sz(1) = whos('rusTree');
sz(2) = whos('cmpctRus');
[sz(1).bytes sz(2).bytes]

ans = 1×2
109 ×

    1.6579    0.9423

The compacted ensemble is about half the size of the original.

Remove half the trees from cmpctRus. This action is likely to have minimal effect on the predictive
performance, based on the observation that 500 out of 1000 trees give nearly optimal accuracy.

cmpctRus = removeLearners(cmpctRus,[500:1000]);

sz(3) = whos('cmpctRus');
sz(3).bytes
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ans = 452868660

The reduced compact ensemble takes about a quarter of the memory of the full ensemble. Its overall
loss rate is under 19%:

L = loss(cmpctRus,covtype(istest,:),Y(istest))

L = 0.1833

The predictive accuracy on new data might differ, because the ensemble accuracy might be biased.
The bias arises because the same data used for assessing the ensemble was used for reducing the
ensemble size. To obtain an unbiased estimate of requisite ensemble size, you should use cross
validation. However, that procedure is time consuming.

References
[1] Blackard, J. A. and D. J. Dean. "Comparative accuracies of artificial neural networks and

discriminant analysis in predicting forest cover types from cartographic variables".
Computers and Electronics in Agriculture Vol. 24, Issue 3, 1999, pp. 131–151.

See Also
fitcensemble | tabulate | cvpartition | training | test | templateTree | loss | predict |
compact | removeLearners | confusionchart

Related Examples
• “Surrogate Splits” on page 19-92
• “Ensemble Algorithms” on page 19-41
• “Test Ensemble Quality” on page 19-68
• “Handle Imbalanced Data or Unequal Misclassification Costs in Classification Ensembles” on

page 19-86
• “LPBoost and TotalBoost for Small Ensembles” on page 19-97
• “Tune RobustBoost” on page 19-102
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Handle Imbalanced Data or Unequal Misclassification Costs in
Classification Ensembles

In many applications, you might prefer to treat classes in your data asymmetrically. For example, the
data might have many more observations of one class than any other. Or misclassifying observations
of one class has more severe consequences than misclassifying observations of another class. In such
situations, you can either use the RUSBoost algorithm (specify 'Method' as 'RUSBoost') or use the
name-value pair argument 'Prior' or 'Cost' of fitcensemble.

If some classes are underrepresented or overrepresented in your training set, use either the 'Prior'
name-value pair argument or the RUSBoost algorithm. For example, suppose you obtain your training
data by simulation. Because simulating class A is more expensive than simulating class B, you choose
to generate fewer observations of class A and more observations of class B. The expectation, however,
is that class A and class B are mixed in a different proportion in real (nonsimulated) situations. In this
case, use 'Prior' to set prior probabilities for class A and B approximately to the values you expect
to observe in a real situation. The fitcensemble function normalizes prior probabilities to make
them add up to 1. Multiplying all prior probabilities by the same positive factor does not affect the
result of classification. Another way to handle imbalanced data is to use the RUSBoost algorithm
('Method','RUSBoost'). You do not need to adjust the prior probabilities when using this
algorithm. For details, see “Random Undersampling Boosting” on page 19-53 and “Classification with
Imbalanced Data” on page 19-81.

If classes are adequately represented in the training data but you want to treat them asymmetrically,
use the 'Cost' name-value pair argument. Suppose you want to classify benign and malignant
tumors in cancer patients. Failure to identify a malignant tumor (false negative) has far more severe
consequences than misidentifying benign as malignant (false positive). You should assign high cost to
misidentifying malignant as benign and low cost to misidentifying benign as malignant.

You must pass misclassification costs as a square matrix with nonnegative elements. Element C(i,j)
of this matrix is the cost of classifying an observation into class j if the true class is i. The diagonal
elements C(i,i) of the cost matrix must be 0. For the previous example, you can choose malignant
tumor to be class 1 and benign tumor to be class 2. Then you can set the cost matrix to

0 c
1 0

where c > 1 is the cost of misidentifying a malignant tumor as benign. Costs are relative—multiplying
all costs by the same positive factor does not affect the result of classification.

If you have only two classes, fitcensemble adjusts their prior probabilities using Pi = Ci jPifor class
i = 1,2 and j ≠ i. Pi are prior probabilities either passed into fitcensemble or computed from class
frequencies in the training data, and Pi are adjusted prior probabilities. fitcensemble uses the
adjusted probabilities for training its weak learners and does not use the cost matrix. Manipulating
the cost matrix is thus equivalent to manipulating the prior probabilities.

If you have three or more classes, fitcensemble also converts input costs into adjusted prior
probabilities. This conversion is more complex. First, fitcensemble attempts to solve a matrix
equation described in Zhou and Liu [1]. If it fails to find a solution, fitcensemble applies the
“average cost” adjustment described in Breiman et al. [2]. For more information, see Zadrozny,
Langford, and Abe [3].
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Train Ensemble With Unequal Classification Costs

This example shows how to train an ensemble of classification trees with unequal classification costs.
This example uses data on patients with hepatitis to see if they live or die as a result of the disease.
The data set is described at UCI Machine Learning Data Repository.

Read the hepatitis data set from the UCI repository as a character array. Then convert the result to a
cell array of character vectors using textscan. Specify a cell array of character vectors containing
the variable names.

options = weboptions('ContentType','text');
hepatitis = textscan(webread(['http://archive.ics.uci.edu/ml/' ...
    'machine-learning-databases/hepatitis/hepatitis.data'],options),...
    '%f%f%f%f%f%f%f%f%f%f%f%f%f%f%f%f%f%f%f%f','Delimiter',',',...
    'EndOfLine','\n','TreatAsEmpty','?');
size(hepatitis)

ans = 1×2

     1    20

VarNames = {'dieOrLive' 'age' 'sex' 'steroid' 'antivirals' 'fatigue' ...
    'malaise' 'anorexia' 'liverBig' 'liverFirm' 'spleen' ...
    'spiders' 'ascites' 'varices' 'bilirubin' 'alkPhosphate' 'sgot' ...
    'albumin' 'protime' 'histology'};

hepatitis is a 1-by-20 cell array of character vectors. The cells correspond to the response
(liveOrDie) and 19 heterogeneous predictors.

Specify a numeric matrix containing the predictors and a cell vector containing 'Die' and 'Live',
which are response categories. The response contains two values: 1 indicates that a patient died, and
2 indicates that a patient lived. Specify a cell array of character vectors for the response using the
response categories. The first variable in hepatitis contains the response.

X = cell2mat(hepatitis(2:end));
ClassNames = {'Die' 'Live'};
Y = ClassNames(hepatitis{:,1});

X is a numeric matrix containing the 19 predictors. Y is a cell array of character vectors containing
the response.

Inspect the data for missing values.

figure
barh(sum(isnan(X),1)/size(X,1))
h = gca;
h.YTick = 1:numel(VarNames) - 1;
h.YTickLabel = VarNames(2:end);
ylabel('Predictor')
xlabel('Fraction of missing values')
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Most predictors have missing values, and one has nearly 45% of the missing values. Therefore, use
decision trees with surrogate splits for better accuracy. Because the data set is small, training time
with surrogate splits should be tolerable.

Create a classification tree template that uses surrogate splits.

rng(0,'twister') % For reproducibility
t = templateTree('surrogate','all');

Examine the data or the description of the data to see which predictors are categorical.

X(1:5,:)

ans = 5×19

   30.0000    2.0000    1.0000    2.0000    2.0000    2.0000    2.0000    1.0000    2.0000    2.0000    2.0000    2.0000    2.0000    1.0000   85.0000   18.0000    4.0000       NaN    1.0000
   50.0000    1.0000    1.0000    2.0000    1.0000    2.0000    2.0000    1.0000    2.0000    2.0000    2.0000    2.0000    2.0000    0.9000  135.0000   42.0000    3.5000       NaN    1.0000
   78.0000    1.0000    2.0000    2.0000    1.0000    2.0000    2.0000    2.0000    2.0000    2.0000    2.0000    2.0000    2.0000    0.7000   96.0000   32.0000    4.0000       NaN    1.0000
   31.0000    1.0000       NaN    1.0000    2.0000    2.0000    2.0000    2.0000    2.0000    2.0000    2.0000    2.0000    2.0000    0.7000   46.0000   52.0000    4.0000   80.0000    1.0000
   34.0000    1.0000    2.0000    2.0000    2.0000    2.0000    2.0000    2.0000    2.0000    2.0000    2.0000    2.0000    2.0000    1.0000       NaN  200.0000    4.0000       NaN    1.0000

It appears that predictors 2 through 13 are categorical, as well as predictor 19. You can confirm this
inference using the data set description at UCI Machine Learning Data Repository.

List the categorical variables.

catIdx = [2:13,19];
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Create a cross-validated ensemble using 50 learners and the GentleBoost algorithm.

Ensemble = fitcensemble(X,Y,'Method','GentleBoost', ...
    'NumLearningCycles',50,'Learners',t,'PredictorNames',VarNames(2:end), ...
    'LearnRate',0.1,'CategoricalPredictors',catIdx,'KFold',5);

Inspect the confusion matrix to see which patients the ensemble predicts correctly.

[yFit,sFit] = kfoldPredict(Ensemble);
confusionchart(Y,yFit)

Of the 123 patient who live, the ensemble predicts correctly that 116 will live. But for the 32 patients
who die of hepatitis, the ensemble only predicts correctly that about half will die of hepatitis.

There are two types of error in the predictions of the ensemble:

• Predicting that the patient lives, but the patient dies
• Predicting that the patient dies, but the patient lives

Suppose you believe that the first error is five times worse than the second. Create a new
classification cost matrix that reflects this belief.

cost.ClassNames = ClassNames;
cost.ClassificationCosts = [0 5; 1 0];

Create a new cross-validated ensemble using cost as the misclassification cost, and inspect the
resulting confusion matrix.
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EnsembleCost = fitcensemble(X,Y,'Method','GentleBoost', ...
    'NumLearningCycles',50,'Learners',t,'PredictorNames',VarNames(2:end), ...
    'LearnRate',0.1,'CategoricalPredictors',catIdx,'KFold',5,'Cost',cost);
[yFitCost,sFitCost] = kfoldPredict(EnsembleCost);
confusionchart(Y,yFitCost)

As expected, the new ensemble does a better job classifying the patients who die. Somewhat
surprisingly, the new ensemble also does a better job classifying the patients who live, though the
result is not statistically significantly better. The results of the cross validation are random, so this
result is simply a statistical fluctuation. The result seems to indicate that the classification of patients
who live is not very sensitive to the cost.

References
[1] Zhou, Z.-H., and X.-Y. Liu. “On Multi-Class Cost-Sensitive Learning.” Computational Intelligence.

Vol. 26, Issue 3, 2010, pp. 232–257 CiteSeerX.

[2] Breiman, L., J. H. Friedman, R. A. Olshen, and C. J. Stone. Classification and Regression Trees.
Boca Raton, FL: Chapman & Hall, 1984.

[3] Zadrozny, B., J. Langford, and N. Abe. “Cost-Sensitive Learning by Cost-Proportionate Example
Weighting.” Third IEEE International Conference on Data Mining, 435–442. 2003.

See Also
fitcensemble | templateTree | kfoldLoss | kfoldPredict | confusionchart

19 Nonparametric Supervised Learning

19-90



Related Examples
• “Surrogate Splits” on page 19-92
• “Ensemble Algorithms” on page 19-41
• “Test Ensemble Quality” on page 19-68
• “Classification with Imbalanced Data” on page 19-81
• “LPBoost and TotalBoost for Small Ensembles” on page 19-97
• “Tune RobustBoost” on page 19-102
• “Misclassification Cost Matrix, Prior Probabilities, and Observation Weights” on page 19-8
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Surrogate Splits

When the value of the optimal split predictor for an observation is missing, if you specify to use
surrogate splits, the software sends the observation to the left or right child node using the best
surrogate predictor. When you have missing data, trees and ensembles of trees with surrogate splits
give better predictions. This example shows how to improve the accuracy of predictions for data with
missing values by using decision trees with surrogate splits.

Load Sample Data

Load the ionosphere data set.

load ionosphere

Partition the data set into training and test sets. Hold out 30% of the data for testing.

rng('default') % For reproducibility
cv = cvpartition(Y,'Holdout',0.3);

Identify the training and testing data.

Xtrain = X(training(cv),:);
Ytrain = Y(training(cv));
Xtest = X(test(cv),:);
Ytest = Y(test(cv));

Suppose half of the values in the test set are missing. Set half of the values in the test set to NaN.

Xtest(rand(size(Xtest))>0.5) = NaN;

Train Random Forest

Train a random forest of 150 classification trees without surrogate splits.

templ = templateTree('Reproducible',true);  % For reproducibility of random predictor selections
Mdl = fitcensemble(Xtrain,Ytrain,'Method','Bag','NumLearningCycles',150,'Learners',templ);

Create a decision tree template that uses surrogate splits. A tree using surrogate splits does not
discard the entire observation when it includes missing data in some predictors.

templS = templateTree('Surrogate','On','Reproducible',true);

Train a random forest using the template templS.

Mdls = fitcensemble(Xtrain,Ytrain,'Method','Bag','NumLearningCycles',150,'Learners',templS);

Test Accuracy

Test the accuracy of predictions with and without surrogate splits.

Predict responses and create confusion matrix charts using both approaches.

Ytest_pred = predict(Mdl,Xtest);
figure
cm = confusionchart(Ytest,Ytest_pred);
cm.Title = 'Model Without Surrogates';
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Ytest_preds = predict(Mdls,Xtest);
figure
cms = confusionchart(Ytest,Ytest_preds);
cms.Title = 'Model with Surrogates';
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All off-diagonal elements on the confusion matrix represent misclassified data. A good classifier yields
a confusion matrix that looks dominantly diagonal. In this case, the classification error is lower for
the model trained with surrogate splits.

Estimate cumulative classification errors. Specify 'Mode','Cumulative' when estimating
classification errors by using the loss function. The loss function returns a vector in which element
J indicates the error using the first J learners.

figure
plot(loss(Mdl,Xtest,Ytest,'Mode','Cumulative'))
hold on
plot(loss(Mdls,Xtest,Ytest,'Mode','Cumulative'),'r--')
legend('Trees without surrogate splits','Trees with surrogate splits')
xlabel('Number of trees')
ylabel('Test classification error')
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The error value decreases as the number of trees increases, which indicates good performance. The
classification error is lower for the model trained with surrogate splits.

Check the statistical significance of the difference in results with by using compareHoldout. This
function uses the McNemar test.

[~,p] = compareHoldout(Mdls,Mdl,Xtest,Xtest,Ytest,'Alternative','greater')

p = 0.0384

The low p-value indicates that the ensemble with surrogate splits is better in a statistically significant
manner.

Estimate Predictor Importance

Predictor importance estimates can vary depending on whether or not a tree uses surrogate splits.
Estimate predictor importance measures by permuting out-of-bag observations. Then, find the five
most important predictors.

imp = oobPermutedPredictorImportance(Mdl);
[~,ind] = maxk(imp,5)

ind = 1×5

     5     3    27     8    14
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imps = oobPermutedPredictorImportance(Mdls);
[~,inds] = maxk(imps,5)

inds = 1×5

     3     5     8    27     7

After estimating predictor importance, you can exclude unimportant predictors and train a model
again. Eliminating unimportant predictors saves time and memory for predictions, and makes
predictions easier to understand.

If the training data includes many predictors and you want to analyze predictor importance, then
specify 'NumVariablesToSample' of the templateTree function as 'all' for the tree learners of
the ensemble. Otherwise, the software might not select some predictors, underestimating their
importance. For an example, see “Select Predictors for Random Forests” on page 19-62.

See Also
compareHoldout | fitcensemble | fitrensemble

Related Examples
• “Ensemble Algorithms” on page 19-41
• “Test Ensemble Quality” on page 19-68
• “Handle Imbalanced Data or Unequal Misclassification Costs in Classification Ensembles” on

page 19-86
• “Classification with Imbalanced Data” on page 19-81
• “LPBoost and TotalBoost for Small Ensembles” on page 19-97
• “Tune RobustBoost” on page 19-102
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LPBoost and TotalBoost for Small Ensembles

This example shows how to obtain the benefits of the LPBoost and TotalBoost algorithms. These
algorithms share two beneficial characteristics:

• They are self-terminating, which means you do not have to figure out how many members to
include.

• They produce ensembles with some very small weights, enabling you to safely remove ensemble
members.

Load the data

Load the ionosphere data set.

load ionosphere

Create the classification ensembles

Create ensembles for classifying the ionosphere data using the LPBoost, TotalBoost, and, for
comparison, AdaBoostM1 algorithms. It is hard to know how many members to include in an
ensemble. For LPBoost and TotalBoost, try using 500. For comparison, also use 500 for
AdaBoostM1.

The default weak learners for boosting methods are decision trees with the MaxNumSplits property
set to 10. These trees tend to fit better than tree stumps (with 1 maximum split) and may overfit
more. Therefore, to prevent overfitting, use tree stumps as weak learners for the ensembles.

rng('default') % For reproducibility
T = 500;
treeStump = templateTree('MaxNumSplits',1);
adaStump = fitcensemble(X,Y,'Method','AdaBoostM1','NumLearningCycles',T,'Learners',treeStump);
totalStump = fitcensemble(X,Y,'Method','TotalBoost','NumLearningCycles',T,'Learners',treeStump);
lpStump = fitcensemble(X,Y,'Method','LPBoost','NumLearningCycles',T,'Learners',treeStump);

figure
plot(resubLoss(adaStump,'Mode','Cumulative'));
hold on
plot(resubLoss(totalStump,'Mode','Cumulative'),'r');
plot(resubLoss(lpStump,'Mode','Cumulative'),'g');
hold off
xlabel('Number of stumps');
ylabel('Training error');
legend('AdaBoost','TotalBoost','LPBoost','Location','NE');
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All three algorithms achieve perfect prediction on the training data after a while.

Examine the number of members in all three ensembles.

[adaStump.NTrained totalStump.NTrained lpStump.NTrained]

ans = 1×3

   500    52    79

AdaBoostM1 trained all 500 members. The other two algorithms stopped training early.

Cross validate the ensembles

Cross validate the ensembles to better determine ensemble accuracy.

cvlp = crossval(lpStump,'KFold',5);
cvtotal = crossval(totalStump,'KFold',5);
cvada = crossval(adaStump,'KFold',5);

figure
plot(kfoldLoss(cvada,'Mode','Cumulative'));
hold on
plot(kfoldLoss(cvtotal,'Mode','Cumulative'),'r');
plot(kfoldLoss(cvlp,'Mode','Cumulative'),'g');
hold off
xlabel('Ensemble size');

19 Nonparametric Supervised Learning

19-98



ylabel('Cross-validated error');
legend('AdaBoost','TotalBoost','LPBoost','Location','NE');

The results show that each boosting algorithm achieves a loss of 10% or lower with 50 ensemble
members.

Compact and remove ensemble members

To reduce the ensemble sizes, compact them, and then use removeLearners. The question is, how
many learners should you remove? The cross-validated loss curves give you one measure. For
another, examine the learner weights for LPBoost and TotalBoost after compacting.

cada = compact(adaStump);
clp = compact(lpStump);
ctotal = compact(totalStump);

figure
subplot(2,1,1)
plot(clp.TrainedWeights)
title('LPBoost weights')
subplot(2,1,2)
plot(ctotal.TrainedWeights)
title('TotalBoost weights')
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Both LPBoost and TotalBoost show clear points where the ensemble member weights become
negligible.

Remove the unimportant ensemble members.

cada = removeLearners(cada,150:cada.NTrained);
clp = removeLearners(clp,60:clp.NTrained);
ctotal = removeLearners(ctotal,40:ctotal.NTrained);

Check that removing these learners does not affect ensemble accuracy on the training data.

[loss(cada,X,Y) loss(clp,X,Y) loss(ctotal,X,Y)]

ans = 1×3

     0     0     0

Check the resulting compact ensemble sizes.

s(1) = whos('cada');
s(2) = whos('clp');
s(3) = whos('ctotal');
s.bytes

ans = 590844

ans = 236030
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ans = 157190

The sizes of the compact ensembles are approximately proportional to the number of members in
each.

See Also
fitcensemble | resubLoss | crossval | kfoldLoss | compact | loss | removeLearners

Related Examples
• “Surrogate Splits” on page 19-92
• “Ensemble Algorithms” on page 19-41
• “Test Ensemble Quality” on page 19-68
• “Handle Imbalanced Data or Unequal Misclassification Costs in Classification Ensembles” on

page 19-86
• “Classification with Imbalanced Data” on page 19-81
• “Tune RobustBoost” on page 19-102
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Tune RobustBoost

The RobustBoost algorithm can make good classification predictions even when the training data
has noise. However, the default RobustBoost parameters can produce an ensemble that does not
predict well. This example shows one way of tuning the parameters for better predictive accuracy.

Generate data with label noise. This example has twenty uniform random numbers per observation,
and classifies the observation as 1 if the sum of the first five numbers exceeds 2.5 (so is larger than
average), and 0 otherwise:

rng(0,'twister') % for reproducibility
Xtrain = rand(2000,20);
Ytrain = sum(Xtrain(:,1:5),2) > 2.5;

To add noise, randomly switch 10% of the classifications:

idx = randsample(2000,200);
Ytrain(idx) = ~Ytrain(idx);

Create an ensemble with AdaBoostM1 for comparison purposes:

ada = fitcensemble(Xtrain,Ytrain,'Method','AdaBoostM1', ...
    'NumLearningCycles',300,'Learners','Tree','LearnRate',0.1);

Create an ensemble with RobustBoost. Because the data has 10% incorrect classification, perhaps
an error goal of 15% is reasonable.

rb1 = fitcensemble(Xtrain,Ytrain,'Method','RobustBoost', ...
    'NumLearningCycles',300,'Learners','Tree','RobustErrorGoal',0.15, ...
    'RobustMaxMargin',1);

Note that if you set the error goal to a high enough value, then the software returns an error.

Create an ensemble with very optimistic error goal, 0.01:

rb2 = fitcensemble(Xtrain,Ytrain,'Method','RobustBoost', ...
    'NumLearningCycles',300,'Learners','Tree','RobustErrorGoal',0.01);

Compare the resubstitution error of the three ensembles:

figure
plot(resubLoss(rb1,'Mode','Cumulative'));
hold on
plot(resubLoss(rb2,'Mode','Cumulative'),'r--');
plot(resubLoss(ada,'Mode','Cumulative'),'g.');
hold off;
xlabel('Number of trees');
ylabel('Resubstitution error');
legend('ErrorGoal=0.15','ErrorGoal=0.01',...
    'AdaBoostM1','Location','NE');
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All the RobustBoost curves show lower resubstitution error than the AdaBoostM1 curve. The error
goal of 0.01 curve shows the lowest resubstitution error over most of the range.

Xtest = rand(2000,20);
Ytest = sum(Xtest(:,1:5),2) > 2.5;
idx = randsample(2000,200);
Ytest(idx) = ~Ytest(idx);
figure;
plot(loss(rb1,Xtest,Ytest,'Mode','Cumulative'));
hold on
plot(loss(rb2,Xtest,Ytest,'Mode','Cumulative'),'r--');
plot(loss(ada,Xtest,Ytest,'Mode','Cumulative'),'g.');
hold off;
xlabel('Number of trees');
ylabel('Test error');
legend('ErrorGoal=0.15','ErrorGoal=0.01',...
    'AdaBoostM1','Location','NE');
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The error curve for error goal 0.15 is lowest (best) in the plotted range. AdaBoostM1 has higher
error than the curve for error goal 0.15. The curve for the too-optimistic error goal 0.01 remains
substantially higher (worse) than the other algorithms for most of the plotted range.

See Also
fitcensemble | resubLoss | loss

Related Examples
• “Surrogate Splits” on page 19-92
• “Ensemble Algorithms” on page 19-41
• “Test Ensemble Quality” on page 19-68
• “Handle Imbalanced Data or Unequal Misclassification Costs in Classification Ensembles” on

page 19-86
• “Classification with Imbalanced Data” on page 19-81
• “LPBoost and TotalBoost for Small Ensembles” on page 19-97
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Random Subspace Classification

This example shows how to use a random subspace ensemble to increase the accuracy of
classification. It also shows how to use cross validation to determine good parameters for both the
weak learner template and the ensemble.

Load the data

Load the ionosphere data. This data has 351 binary responses to 34 predictors.

load ionosphere;
[N,D] = size(X)

N = 351

D = 34

resp = unique(Y)

resp = 2x1 cell
    {'b'}
    {'g'}

Choose the number of nearest neighbors

Find a good choice for k, the number of nearest neighbors in the classifier, by cross validation.
Choose the number of neighbors approximately evenly spaced on a logarithmic scale.

rng(8000,'twister') % for reproducibility
K = round(logspace(0,log10(N),10)); % number of neighbors 
cvloss = zeros(numel(K),1);
for k=1:numel(K)
    knn = fitcknn(X,Y,...
        'NumNeighbors',K(k),'CrossVal','On');
    cvloss(k) = kfoldLoss(knn);
end
figure; % Plot the accuracy versus k
semilogx(K,cvloss);
xlabel('Number of nearest neighbors');
ylabel('10 fold classification error');
title('k-NN classification');
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The lowest cross-validation error occurs for k = 2.

Create the ensembles

Create ensembles for 2-nearest neighbor classification with various numbers of dimensions, and
examine the cross-validated loss of the resulting ensembles.

This step takes a long time. To keep track of the progress, print a message as each dimension
finishes.

NPredToSample = round(linspace(1,D,10)); % linear spacing of dimensions
cvloss = zeros(numel(NPredToSample),1);
learner = templateKNN('NumNeighbors',2);
for npred=1:numel(NPredToSample)
   subspace = fitcensemble(X,Y,'Method','Subspace','Learners',learner, ...
       'NPredToSample',NPredToSample(npred),'CrossVal','On');
   cvloss(npred) = kfoldLoss(subspace);
   fprintf('Random Subspace %i done.\n',npred);
end

Random Subspace 1 done.
Random Subspace 2 done.
Random Subspace 3 done.
Random Subspace 4 done.
Random Subspace 5 done.
Random Subspace 6 done.
Random Subspace 7 done.
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Random Subspace 8 done.
Random Subspace 9 done.
Random Subspace 10 done.

figure; % plot the accuracy versus dimension
plot(NPredToSample,cvloss);
xlabel('Number of predictors selected at random');
ylabel('10 fold classification error');
title('k-NN classification with Random Subspace');

The ensembles that use five and eight predictors per learner have the lowest cross-validated error.
The error rate for these ensembles is about 0.06, while the other ensembles have cross-validated
error rates that are approximately 0.1 or more.

Find a good ensemble size

Find the smallest number of learners in the ensemble that still give good classification.

ens = fitcensemble(X,Y,'Method','Subspace','Learners',learner, ...
       'NPredToSample',5,'CrossVal','on');
figure; % Plot the accuracy versus number in ensemble
plot(kfoldLoss(ens,'Mode','Cumulative'))
xlabel('Number of learners in ensemble');
ylabel('10 fold classification error');
title('k-NN classification with Random Subspace');
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There seems to be no advantage in an ensemble with more than 50 or so learners. It is possible that
25 learners gives good predictions.

Create a final ensemble

Construct a final ensemble with 50 learners. Compact the ensemble and see if the compacted version
saves an appreciable amount of memory.

ens = fitcensemble(X,Y,'Method','Subspace','NumLearningCycles',50,...
    'Learners',learner,'NPredToSample',5);
cens = compact(ens);
s1 = whos('ens');
s2 = whos('cens');
[s1.bytes s2.bytes] % si.bytes = size in bytes

ans = 1×2

     1748675     1518820

The compact ensemble is about 10% smaller than the full ensemble. Both give the same predictions.

See Also
fitcknn | fitcensemble | kfoldLoss | templateKNN | compact
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Related Examples
• “Framework for Ensemble Learning” on page 19-33
• “Ensemble Algorithms” on page 19-41
• “Train Classification Ensemble” on page 19-56
• “Test Ensemble Quality” on page 19-68
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Train Classification Ensemble in Parallel

This example shows how to train a classification ensemble in parallel. The model has ten red and ten
green base locations, and red and green populations that are normally distributed and centered at
the base locations. The objective is to classify points based on their locations. These classifications
are ambiguous because some base locations are near the locations of the other color.

Create and plot ten base locations of each color.

rng default % For reproducibility
grnpop = mvnrnd([1,0],eye(2),10);
redpop = mvnrnd([0,1],eye(2),10);
plot(grnpop(:,1),grnpop(:,2),'go')
hold on
plot(redpop(:,1),redpop(:,2),'ro')
hold off

Create 40,000 points of each color centered on random base points.

N = 40000;
redpts = zeros(N,2);grnpts = redpts;
for i = 1:N
    grnpts(i,:) = mvnrnd(grnpop(randi(10),:),eye(2)*0.02);
    redpts(i,:) = mvnrnd(redpop(randi(10),:),eye(2)*0.02);
end
figure
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plot(grnpts(:,1),grnpts(:,2),'go')
hold on
plot(redpts(:,1),redpts(:,2),'ro')
hold off

cdata = [grnpts;redpts];
grp = ones(2*N,1);
% Green label 1, red label -1
grp(N+1:2*N) = -1;

Fit a bagged classification ensemble to the data. For comparison with parallel training, fit the
ensemble in serial and return the training time.

tic
mdl = fitcensemble(cdata,grp,'Method','Bag');
stime = toc

stime = 12.4671

Evaluate the out-of-bag loss for the fitted model.

myerr = oobLoss(mdl)

myerr = 0.0572

Create a bagged classification model in parallel, using a reproducible tree template and parallel
substreams. You can create a parallel pool on a cluster or a parallel pool of thread workers on your
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local machine. To choose the appropriate parallel environment, see “Choose Between Thread-Based
and Process-Based Environments” (Parallel Computing Toolbox).

parpool

Starting parallel pool (parpool) using the 'local' profile ...
Connected to the parallel pool (number of workers: 8).

ans = 

 ProcessPool with properties: 

            Connected: true
           NumWorkers: 8
                 Busy: false
              Cluster: local
        AttachedFiles: {}
    AutoAddClientPath: true
            FileStore: [1x1 parallel.FileStore]
           ValueStore: [1x1 parallel.ValueStore]
          IdleTimeout: 30 minutes (30 minutes remaining)
          SpmdEnabled: true

s = RandStream('mrg32k3a');
options = statset("UseParallel",true,"UseSubstreams",true,"Streams",s);
t = templateTree("Reproducible",true);
tic
mdl2 = fitcensemble(cdata,grp,'Method','Bag','Learners',t,'Options',options);
ptime = toc

ptime = 5.9234

On this six-core system, the training process in parallel is faster.

speedup = stime/ptime

speedup = 2.1047

Evaluate the out-of-bag loss for this model.

myerr2 = oobLoss(mdl2)

myerr2 = 0.0577

The error rate is similar to the rate of the first model.

To demonstrate the reproducibility of the model, reset the random number stream and fit the model
again.

reset(s);
tic
mdl2 = fitcensemble(cdata,grp,'Method','Bag','Learners',t,'Options',options);
toc

Elapsed time is 3.446164 seconds.

Check that the loss is the same as the previous loss.

myerr2 = oobLoss(mdl2)
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myerr2 = 0.0577

See Also
fitcensemble | fitrensemble

Related Examples
• “Classification Ensembles”
• “Regression Tree Ensembles”
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Bootstrap Aggregation (Bagging) of Regression Trees Using
TreeBagger

Statistics and Machine Learning Toolbox™ offers two objects that support bootstrap aggregation
(bagging) of regression trees: TreeBagger created by using TreeBagger and
RegressionBaggedEnsemble created by using fitrensemble. See “Comparison of TreeBagger
and Bagged Ensembles” on page 19-46 for differences between TreeBagger and
RegressionBaggedEnsemble.

This example shows the workflow for regression using the features in TreeBagger only.

Use a database of 1985 car imports with 205 observations, 25 predictors, and 1 response, which is
insurance risk rating, or "symboling." The first 15 variables are numeric and the last 10 are
categorical. The symboling index takes integer values from -3 to 3.

Load the data set and split it into predictor and response arrays.

load imports-85
Y = X(:,1);
X = X(:,2:end);
isCategorical = [zeros(15,1);
                 ones(size(X,2)-15,1)]; % Categorical variable flag

Because bagging uses randomized data drawings, its exact outcome depends on the initial random
seed. To reproduce the results in this example, use the random stream settings.

rng(1945,'twister')

Finding the Optimal Leaf Size

For regression, the general rule is to the set leaf size to 5 and select one third of the input features
for decision splits at random. In the following step, verify the optimal leaf size by comparing mean
squared errors obtained by regression for various leaf sizes. oobError computes MSE versus the
number of grown trees. You must set OOBPred to 'On' to obtain out-of-bag predictions later.

leaf = [5 10 20 50 100];
col = 'rbcmy';
figure
hold on
for i=1:length(leaf)
    b = TreeBagger(50,X,Y,'Method','regression', ...
        'OOBPrediction','On', ...
        'CategoricalPredictors',find(isCategorical == 1), ...
        'MinLeafSize',leaf(i));
    plot(oobError(b),col(i))
end
xlabel('Number of Grown Trees')
ylabel('Mean Squared Error') 
legend({'5' '10' '20' '50' '100'},'Location','NorthEast')
hold off
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The red curve (leaf size 5) yields the lowest MSE values.

Estimating Feature Importance

In practical applications, you typically grow ensembles with hundreds of trees. For example, the
previous code block uses 50 trees for faster processing. Now that you have estimated the optimal leaf
size, grow a larger ensemble with 100 trees and use it to estimate feature importance.

b = TreeBagger(100,X,Y,'Method','regression', ...
    'OOBPredictorImportance','On', ...
    'CategoricalPredictors',find(isCategorical == 1), ...
    'MinLeafSize',5);

Inspect the error curve again to make sure nothing went wrong during training.

figure
plot(oobError(b))
xlabel('Number of Grown Trees')
ylabel('Out-of-Bag Mean Squared Error')
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Prediction ability should depend more on important features than unimportant features. You can use
this idea to measure feature importance.

For each feature, permute the values of this feature across every observation in the data set and
measure how much worse the MSE becomes after the permutation. You can repeat this for each
feature.

Plot the increase in MSE due to permuting out-of-bag observations across each input variable. The
OOBPermutedPredictorDeltaError array stores the increase in MSE averaged over all trees in
the ensemble and divided by the standard deviation taken over the trees, for each variable. The
larger this value, the more important the variable. Imposing an arbitrary cutoff at 0.7, you can select
the four most important features.

figure
bar(b.OOBPermutedPredictorDeltaError)
xlabel('Feature Number') 
ylabel('Out-of-Bag Feature Importance')
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idxvar = find(b.OOBPermutedPredictorDeltaError>0.7)

idxvar = 1×4

     1     2    16    19

idxCategorical = find(isCategorical(idxvar)==1);

The OOBIndices property of TreeBagger tracks which observations are out of bag for what trees.
Using this property, you can monitor the fraction of observations in the training data that are in bag
for all trees. The curve starts at approximately 2/3, which is the fraction of unique observations
selected by one bootstrap replica, and goes down to 0 at approximately 10 trees.

finbag = zeros(1,b.NTrees);
for t=1:b.NTrees
    finbag(t) = sum(all(~b.OOBIndices(:,1:t),2));
end
finbag = finbag/size(X,1);
figure
plot(finbag)
xlabel('Number of Grown Trees')
ylabel('Fraction of In-Bag Observations')
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Growing Trees on a Reduced Set of Features

Using just the four most powerful features, determine if it is possible to obtain a similar predictive
power. To begin, grow 100 trees on these features only. The first two of the four selected features are
numeric and the last two are categorical.

b5v = TreeBagger(100,X(:,idxvar),Y, ...
    'Method','regression','OOBPredictorImportance','On', ...
    'CategoricalPredictors',idxCategorical,'MinLeafSize',5);
figure
plot(oobError(b5v))
xlabel('Number of Grown Trees')
ylabel('Out-of-Bag Mean Squared Error')
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figure
bar(b5v.OOBPermutedPredictorDeltaError)
xlabel('Feature Index')
ylabel('Out-of-Bag Feature Importance')
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These four most powerful features give the same MSE as the full set, and the ensemble trained on the
reduced set ranks these features similarly to each other. If you remove features 1 and 2 from the
reduced set, then the predictive power of the algorithm might not decrease significantly.

Finding Outliers

To find outliers in the training data, compute the proximity matrix using fillProximities.

b5v = fillProximities(b5v);

The method normalizes this measure by subtracting the mean outlier measure for the entire sample.
Then it takes the magnitude of this difference and divides the result by the median absolute deviation
for the entire sample.

figure
histogram(b5v.OutlierMeasure)
xlabel('Outlier Measure')
ylabel('Number of Observations')
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Discovering Clusters in the Data

By applying multidimensional scaling to the computed matrix of proximities, you can inspect the
structure of the input data and look for possible clusters of observations. The mdsProx method
returns scaled coordinates and eigenvalues for the computed proximity matrix. If you run it with the
Colors name-value-pair argument, then this method creates a scatter plot of two scaled coordinates.

figure
[~,e] = mdsProx(b5v,'Colors','K');
xlabel('First Scaled Coordinate')
ylabel('Second Scaled Coordinate')
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Assess the relative importance of the scaled axes by plotting the first 20 eigenvalues.

figure
bar(e(1:20))
xlabel('Scaled Coordinate Index')
ylabel('Eigenvalue')

19 Nonparametric Supervised Learning

19-122



Saving the Ensemble Configuration for Future Use

To use the trained ensemble for predicting the response on unseen data, store the ensemble to disk
and retrieve it later. If you do not want to compute predictions for out-of-bag data or reuse training
data in any other way, there is no need to store the ensemble object itself. Saving the compact version
of the ensemble is enough in this case. Extract the compact object from the ensemble.

c = compact(b5v)

c = 
  CompactTreeBagger
Ensemble with 100 bagged decision trees:
              Method:           regression
       NumPredictors:                    4

  Properties, Methods

You can save the resulting CompactTreeBagger model in a *.mat file.

See Also
TreeBagger | compact | oobError | mdsprox | fillprox | fitrensemble

Related Examples
• “Bootstrap Aggregation (Bagging) of Classification Trees Using TreeBagger” on page 19-125
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• “Comparison of TreeBagger and Bagged Ensembles” on page 19-46
• “Use Parallel Processing for Regression TreeBagger Workflow” on page 33-4
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Bootstrap Aggregation (Bagging) of Classification Trees Using
TreeBagger

Statistics and Machine Learning Toolbox™ offers two objects that support bootstrap aggregation
(bagging) of classification trees: TreeBagger created by using TreeBagger and
ClassificationBaggedEnsemble created by using fitcensemble. See “Comparison of
TreeBagger and Bagged Ensembles” on page 19-46 for differences between TreeBagger and
ClassificationBaggedEnsemble.

This example shows the workflow for classification using the features in TreeBagger only.

Use ionosphere data with 351 observations and 34 real-valued predictors. The response variable is
categorical with two levels:

• 'g' represents good radar returns.
• 'b' represents bad radar returns.

The goal is to predict good or bad returns using a set of 34 measurements.

Fix the initial random seed, grow 50 trees, inspect how the ensemble error changes with
accumulation of trees, and estimate feature importance. For classification, it is best to set the
minimal leaf size to 1 and select the square root of the total number of features for each decision split
at random. These settings are defaults for TreeBagger used for classification.

load ionosphere
rng(1945,'twister')
b = TreeBagger(50,X,Y,'OOBPredictorImportance','On');
figure
plot(oobError(b))
xlabel('Number of Grown Trees')
ylabel('Out-of-Bag Classification Error')
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The method trains ensembles with few trees on observations that are in bag for all trees. For such
observations, it is impossible to compute the true out-of-bag prediction, and TreeBagger returns the
most probable class for classification and the sample mean for regression. You can change the default
value returned for in-bag observations using the DefaultYfit property. If you set the default value
to an empty character vector for classification, the method excludes in-bag observations from
computation of the out-of-bag error. In this case, the curve is more variable when the number of trees
is small, either because some observations are never out of bag (and are therefore excluded) or
because their predictions are based on few trees.

b.DefaultYfit = '';
figure
plot(oobError(b))
xlabel('Number of Grown Trees')
ylabel('Out-of-Bag Error Excluding In-Bag Observations')
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The OOBIndices property of TreeBagger tracks which observations are out of bag for what trees.
Using this property, you can monitor the fraction of observations in the training data that are in bag
for all trees. The curve starts at approximately 2/3, which is the fraction of unique observations
selected by one bootstrap replica, and goes down to 0 at approximately 10 trees.

finbag = zeros(1,b.NumTrees);
for t=1:b.NTrees
    finbag(t) = sum(all(~b.OOBIndices(:,1:t),2));
end
finbag = finbag / size(X,1);
figure
plot(finbag)
xlabel('Number of Grown Trees')
ylabel('Fraction of In-Bag Observations')
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Estimate feature importance.

figure
bar(b.OOBPermutedPredictorDeltaError)
xlabel('Feature Index')
ylabel('Out-of-Bag Feature Importance')
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Select the features yielding an importance measure greater than 0.75. This threshold is chosen
arbitrarily.

idxvar = find(b.OOBPermutedPredictorDeltaError>0.75)

idxvar = 1×5

     3     5     7     8    27

Having selected the most important features, grow a larger ensemble on the reduced feature set.
Save time by not permuting out-of-bag observations to obtain new estimates of feature importance for
the reduced feature set (set OOBVarImp to 'off'). You would still be interested in obtaining out-of-
bag estimates of classification error (set OOBPred to 'on').

b5v = TreeBagger(100,X(:,idxvar),Y,'OOBPredictorImportance','off','OOBPrediction','on');
figure
plot(oobError(b5v))
xlabel('Number of Grown Trees')
ylabel('Out-of-Bag Classification Error')
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For classification ensembles, in addition to classification error (fraction of misclassified observations),
you can also monitor the average classification margin. For each observation, the margin is defined as
the difference between the score for the true class and the maximal score for other classes predicted
by this tree. The cumulative classification margin uses the scores averaged over all trees and the
mean cumulative classification margin is the cumulative margin averaged over all observations. The
oobMeanMargin method with the 'mode' argument set to 'cumulative' (default) shows how the
mean cumulative margin changes as the ensemble grows: every new element in the returned array
represents the cumulative margin obtained by including a new tree in the ensemble. If training is
successful, you would expect to see a gradual increase in the mean classification margin.

The method trains ensembles with few trees on observations that are in bag for all trees. For such
observations, it is impossible to compute the true out-of-bag prediction, and TreeBagger returns the
most probable class for classification and the sample mean for regression.

For decision trees, a classification score is the probability of observing an instance of this class in this
tree leaf. For example, if the leaf of a grown decision tree has five 'good' and three 'bad' training
observations in it, the scores returned by this decision tree for any observation fallen on this leaf are
5/8 for the 'good' class and 3/8 for the 'bad' class. These probabilities are called 'scores' for
consistency with other classifiers that might not have an obvious interpretation for numeric values of
returned predictions.

figure
plot(oobMeanMargin(b5v));
xlabel('Number of Grown Trees')
ylabel('Out-of-Bag Mean Classification Margin')

19 Nonparametric Supervised Learning

19-130



Compute the matrix of proximities and examine the distribution of outlier measures. Unlike
regression, outlier measures for classification ensembles are computed within each class separately.

b5v = fillProximities(b5v);
figure
histogram(b5v.OutlierMeasure)
xlabel('Outlier Measure')
ylabel('Number of Observations')
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Find the class of the extreme outliers.

extremeOutliers = b5v.Y(b5v.OutlierMeasure>40)

extremeOutliers = 6x1 cell
    {'g'}
    {'g'}
    {'g'}
    {'g'}
    {'g'}
    {'g'}

percentGood = 100*sum(strcmp(extremeOutliers,'g'))/numel(extremeOutliers)

percentGood = 100

All of the extreme outliers are labeled 'good'.

As for regression, you can plot scaled coordinates, displaying the two classes in different colors using
the 'Colors' name-value pair argument of mdsProx. This argument takes a character vector in which
every character represents a color. The software does not rank class names. Therefore, it is best
practice to determine the position of the classes in the ClassNames property of the ensemble.

gPosition = find(strcmp('g',b5v.ClassNames))

gPosition = 2
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The 'bad' class is first and the 'good' class is second. Display scaled coordinates using red for the
'bad' class and blue for the 'good' class observations.

figure
[s,e] = mdsProx(b5v,'Colors','rb');
xlabel('First Scaled Coordinate')
ylabel('Second Scaled Coordinate')

Plot the first 20 eigenvalues obtained by scaling. The first eigenvalue clearly dominates and the first
scaled coordinate is most important.

figure
bar(e(1:20))
xlabel('Scaled Coordinate Index')
ylabel('Eigenvalue')
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Another way of exploring the performance of a classification ensemble is to plot its receiver operating
characteristic (ROC) curve or another performance curve suitable for the current problem. Obtain
predictions for out-of-bag observations. For a classification ensemble, the oobPredict method
returns a cell array of classification labels as the first output argument and a numeric array of scores
as the second output argument. The returned array of scores has two columns, one for each class. In
this case, the first column is for the 'bad' class and the second column is for the 'good' class. One
column in the score matrix is redundant because the scores represent class probabilities in tree
leaves and by definition add up to 1.

[Yfit,Sfit] = oobPredict(b5v);

Use rocmetrics to compute a performance curve. By default, rocmetrics computes true positive
rates and false positive rates for a ROC curve.

rocObj = rocmetrics(b5v.Y,Sfit(:,gPosition),'g');

Plot the ROC curve for the 'good' class by using the plot function of rocmetrics.

plot(rocObj)
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Instead of the standard ROC curve, you might want to plot, for example, ensemble accuracy versus
threshold on the score for the 'good' class. Compute accuracy by using the addMetrics function of
rocmetrics. Accuracy is the fraction of correctly classified observations, or equivalently, 1 minus
the classification error.

rocObj = addMetrics(rocObj,'Accuracy');

Create a plot of ensemble accuracy versus threshold.

thre = rocObj.Metrics.Threshold;
accu = rocObj.Metrics.Accuracy;
plot(thre,accu)
xlabel('Threshold for ''good'' Returns')
ylabel('Classification Accuracy')

 Bootstrap Aggregation (Bagging) of Classification Trees Using TreeBagger

19-135



The curve shows a flat region indicating that any threshold from 0.2 to 0.6 is a reasonable choice. By
default, a classification model assigns classification labels using 0.5 as the boundary between the two
classes. You can find exactly what accuracy this corresponds to.

[~,idx] = min(abs(thre-0.5));
accu(idx)

ans = 0.9316

Find the maximal accuracy.

[maxaccu,iaccu] = max(accu)

maxaccu = 0.9345

iaccu = 99

The maximal accuracy is a little higher than the default one. The optimal threshold is therefore.

thre(iaccu)

ans = 0.5278

See Also
TreeBagger | compact | oobError | mdsprox | oobMeanMargin | oobPredict | perfcurve |
fitcensemble
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Related Examples
• “Bootstrap Aggregation (Bagging) of Regression Trees Using TreeBagger” on page 19-114
• “Comparison of TreeBagger and Bagged Ensembles” on page 19-46
• “Use Parallel Processing for Regression TreeBagger Workflow” on page 33-4

 Bootstrap Aggregation (Bagging) of Classification Trees Using TreeBagger

19-137



Detect Outliers Using Quantile Regression

This example shows how to detect outliers using quantile random forest. Quantile random forest can
detect outliers with respect to the conditional distribution of Y given X. However, this method cannot
detect outliers in the predictor data. For outlier detection in the predictor data using a bag of
decision trees, see the OutlierMeasure property of a TreeBagger model.

An outlier is an observation that is located far enough from most of the other observations in a data
set and can be considered anomalous. Causes of outlying observations include inherent variability or
measurement error. Outliers significant affect estimates and inference, so it is important to detect
them and decide whether to remove them or consider a robust analysis.

Statistics and Machine Learning Toolbox™ provides several functions to detect outliers, including:

• zscore — Compute z scores of observations.
• trimmean — Estimate mean of data, excluding outliers.
• boxplot — Draw box plot of data.
• probplot — Draw probability plot.
• robustcov — Estimate robust covariance of multivariate data.
• fitcsvm — Fit a one-class support vector machine (SVM) to determine which observations are

located far from the decision boundary.
• dbscan — Partition observations into clusters and identify outliers using the density-based spatial

clustering of application with noise (DBSCAN) algorithm.

Also, MATLAB® provides the isoutlier function, which finds outliers in data.

To demonstrate outlier detection, this example:

1 Generates data from a nonlinear model with heteroscedasticity and simulates a few outliers.
2 Grows a quantile random forest of regression trees.
3 Estimates conditional quartiles (Q1, Q2, and Q3) and the interquartile range (IQR) within the

ranges of the predictor variables.
4 Compares the observations to the fences, which are the quantities F1 = Q1− 1 . 5IQR and

F2 = Q3 + 1 . 5IQR. Any observation that is less than F1 or greater than F2 is an outlier.

Generate Data

Generate 500 observations from the model

yt = 10 + 3t + tsin(2t) + εt .

t is uniformly distributed between 0 and 4π, and εt ∼ N(0, t + 0 . 01). Store the data in a table.

n = 500;
rng('default'); % For reproducibility
t = randsample(linspace(0,4*pi,1e6),n,true)';
epsilon = randn(n,1).*sqrt((t+0.01));
y = 10 + 3*t + t.*sin(2*t) + epsilon;

Tbl = table(t,y);
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Move five observations in a random vertical direction by 90% of the value of the response.

numOut = 5;
[~,idx] = datasample(Tbl,numOut);
Tbl.y(idx) = Tbl.y(idx) + randsample([-1 1],numOut,true)'.*(0.9*Tbl.y(idx));

Draw a scatter plot of the data and identify the outliers.

figure;
plot(Tbl.t,Tbl.y,'.');
hold on
plot(Tbl.t(idx),Tbl.y(idx),'*');
axis tight;
ylabel('y');
xlabel('t');
title('Scatter Plot of Data');
legend('Data','Simulated outliers','Location','NorthWest');

Grow Quantile Random Forest

Grow a bag of 200 regression trees using TreeBagger.

Mdl = TreeBagger(200,Tbl,'y','Method','regression');

Mdl is a TreeBagger ensemble.
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Predict Conditional Quartiles and Interquartile Ranges

Using quantile regression, estimate the conditional quartiles of 50 equally spaced values within the
range of t.

tau = [0.25 0.5 0.75];
predT = linspace(0,4*pi,50)';
quartiles = quantilePredict(Mdl,predT,'Quantile',tau);

quartiles is a 500-by-3 matrix of conditional quartiles. Rows correspond to the observations in t,
and columns correspond to the probabilities in tau.

On the scatter plot of the data, plot the conditional mean and median responses.

meanY = predict(Mdl,predT);

plot(predT,[quartiles(:,2) meanY],'LineWidth',2);
legend('Data','Simulated outliers','Median response','Mean response',...
    'Location','NorthWest');
hold off;

Although the conditional mean and median curves are close, the simulated outliers can affect the
mean curve.

Compute the conditional IQR, F1, and F2.

iqr = quartiles(:,3) - quartiles(:,1);
k = 1.5;
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f1 = quartiles(:,1) - k*iqr;
f2 = quartiles(:,3) + k*iqr;

k = 1.5 means that all observations less than f1 or greater than f2 are considered outliers, but this
threshold does not disambiguate from extreme outliers. A k of 3 identifies extreme outliers.

Compare Observations to Fences

Plot the observations and the fences.

figure;
plot(Tbl.t,Tbl.y,'.');
hold on
plot(Tbl.t(idx),Tbl.y(idx),'*');
plot(predT,[f1 f2]);
legend('Data','Simulated outliers','F_1','F_2','Location','NorthWest');
axis tight
title('Outlier Detection Using Quantile Regression')
hold off

All simulated outliers fall outside [F1, F2], and some observations are outside this interval as well.

See Also
Classes
TreeBagger
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Functions
predict | quantilePredict

Related Examples
• “Conditional Quantile Estimation Using Kernel Smoothing” on page 19-143
• “Tune Random Forest Using Quantile Error and Bayesian Optimization” on page 19-146
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Conditional Quantile Estimation Using Kernel Smoothing

This example shows how to estimate conditional quantiles of a response given predictor data using
quantile random forest and by estimating the conditional distribution function of the response using
kernel smoothing.

For quantile-estimation speed, quantilePredict, oobQuantilePredict, quantileError, and
oobQuantileError use linear interpolation to predict quantiles in the conditional distribution of the
response. However, you can obtain response weights, which comprise the distribution function, and
then pass them to ksdensity to possibly gain accuracy at the cost of computation speed.

Generate 2000 observations from the model

yt = 0 . 5 + t + εt .

t is uniformly distributed between 0 and 1, and εt ∼ N(0, t2/2 + 0 . 01). Store the data in a table.

n = 2000;
rng('default'); % For reproducibility
t = randsample(linspace(0,1,1e2),n,true)';
epsilon = randn(n,1).*sqrt(t.^2/2 + 0.01);
y = 0.5 + t + epsilon;

Tbl = table(t,y);

Train an ensemble of bagged regression trees using the entire data set. Specify 200 weak learners
and save the out-of-bag indices.

rng('default'); % For reproducibility
Mdl = TreeBagger(200,Tbl,'y','Method','regression',...
    'OOBPrediction','on');

Mdl is a TreeBagger ensemble.

Predict out-of-bag, conditional 0.05 and 0.95 quantiles (90% confidence intervals) for all training-
sample observations using oobQuantilePredict, that is, by interpolation. Request response
weights. Record the execution time.

tau = [0.05 0.95];
tic
[quantInterp,yw] = oobQuantilePredict(Mdl,'Quantile',tau);
timeInterp = toc;

quantInterp is a 94-by-2 matrix of predicted quantiles; rows correspond to the observations in
Mdl.X and columns correspond to the quantile probabilities in tau. yw is a 94-by-94 sparse matrix of
response weights; rows correspond to training-sample observations and columns correspond to the
observations in Mdl.X. Response weights are independent of tau.

Predict out-of-bag, conditional 0.05 and 0.95 quantiles using kernel smoothing and record the
execution time.

n = numel(Tbl.y);
quantKS = zeros(n,numel(tau)); % Preallocation
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tic
for j = 1:n
    quantKS(j,:) = ksdensity(Tbl.y,tau,'Function','icdf','Weights',yw(:,j));
end
timeKS = toc;

quantKS is commensurate with quantInterp.

Evaluate the ratio of execution times between kernel smoothing estimation and interpolation.

timeKS/timeInterp

ans = 6.3945

It takes much more time to execute kernel smoothing than interpolation. This ratio is dependent on
the memory of your machine, so your results will vary.

Plot the data with both sets of predicted quantiles.

[sT,idx] = sort(t);

figure;
h1 = plot(t,y,'.');
hold on
h2 = plot(sT,quantInterp(idx,:),'b');
h3 = plot(sT,quantKS(idx,:),'r');
legend([h1 h2(1) h3(1)],'Data','Interpolation','Kernel Smoothing');
title('Quantile Estimates')
hold off
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Both sets of estimated quantiles agree fairly well. However, the quantile intervals from interpolation
appear slightly tighter for smaller values of t than the ones from kernel smoothing.

See Also
oobQuantilePredict | TreeBagger | ksdensity

Related Examples
• “Detect Outliers Using Quantile Regression” on page 19-138
• “Tune Random Forest Using Quantile Error and Bayesian Optimization” on page 19-146
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Tune Random Forest Using Quantile Error and Bayesian
Optimization

This example shows how to implement Bayesian optimization to tune the hyperparameters of a
random forest of regression trees using quantile error. Tuning a model using quantile error, rather
than mean squared error, is appropriate if you plan to use the model to predict conditional quantiles
rather than conditional means.

Load and Preprocess Data

Load the carsmall data set. Consider a model that predicts the median fuel economy of a car given
its acceleration, number of cylinders, engine displacement, horsepower, manufacturer, model year,
and weight. Consider Cylinders, Mfg, and Model_Year as categorical variables.

load carsmall
Cylinders = categorical(Cylinders);
Mfg = categorical(cellstr(Mfg));
Model_Year = categorical(Model_Year);
X = table(Acceleration,Cylinders,Displacement,Horsepower,Mfg,...
    Model_Year,Weight,MPG);
rng('default'); % For reproducibility

Specify Tuning Parameters

Consider tuning:

• The complexity (depth) of the trees in the forest. Deep trees tend to over-fit, but shallow trees
tend to underfit. Therefore, specify that the minimum number of observations per leaf be at most
20.

• When growing the trees, the number of predictors to sample at each node. Specify sampling from
1 through all of the predictors.

bayesopt, the function that implements Bayesian optimization, requires you to pass these
specifications as optimizableVariable objects.

maxMinLS = 20;
minLS = optimizableVariable('minLS',[1,maxMinLS],'Type','integer');
numPTS = optimizableVariable('numPTS',[1,size(X,2)-1],'Type','integer');
hyperparametersRF = [minLS; numPTS];

hyperparametersRF is a 2-by-1 array of OptimizableVariable objects.

You should also consider tuning the number of trees in the ensemble. bayesopt tends to choose
random forests containing many trees because ensembles with more learners are more accurate. If
available computation resources is a consideration, and you prefer ensembles with as fewer trees,
then consider tuning the number of trees separately from the other parameters or penalizing models
containing many learners.

Define Objective Function

Define an objective function for the Bayesian optimization algorithm to optimize. The function should:

• Accept the parameters to tune as an input.
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• Train a random forest using TreeBagger. In the TreeBagger call, specify the parameters to tune
and specify returning the out-of-bag indices.

• Estimate the out-of-bag quantile error based on the median.
• Return the out-of-bag quantile error.

function oobErr = oobErrRF(params,X)
%oobErrRF Trains random forest and estimates out-of-bag quantile error
%   oobErr trains a random forest of 300 regression trees using the
%   predictor data in X and the parameter specification in params, and then
%   returns the out-of-bag quantile error based on the median. X is a table
%   and params is an array of OptimizableVariable objects corresponding to
%   the minimum leaf size and number of predictors to sample at each node.
randomForest = TreeBagger(300,X,'MPG','Method','regression',...
    'OOBPrediction','on','MinLeafSize',params.minLS,...
    'NumPredictorstoSample',params.numPTS);
oobErr = oobQuantileError(randomForest);
end

Minimize Objective Using Bayesian Optimization

Find the model achieving the minimal, penalized, out-of-bag quantile error with respect to tree
complexity and number of predictors to sample at each node using Bayesian optimization. Specify the
expected improvement plus function as the acquisition function and suppress printing the
optimization information.

results = bayesopt(@(params)oobErrRF(params,X),hyperparametersRF,...
    'AcquisitionFunctionName','expected-improvement-plus','Verbose',0);
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results is a BayesianOptimization object containing, among other things, the minimum of the
objective function and the optimized hyperparameter values.

Display the observed minimum of the objective function and the optimized hyperparameter values.

bestOOBErr = results.MinObjective
bestHyperparameters = results.XAtMinObjective

bestOOBErr =

    1.0890

bestHyperparameters =

  1×2 table

    minLS    numPTS
    _____    ______

      7        7   

Train Model Using Optimized Hyperparameters

Train a random forest using the entire data set and the optimized hyperparameter values.
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Mdl = TreeBagger(300,X,'MPG','Method','regression',...
    'MinLeafSize',bestHyperparameters.minLS,...
    'NumPredictorstoSample',bestHyperparameters.numPTS);

Mdl is TreeBagger object optimized for median prediction. You can predict the median fuel economy
given predictor data by passing Mdl and the new data to quantilePredict.

See Also
oobQuantileError | TreeBagger | bayesopt | optimizableVariable

Related Examples
• “Detect Outliers Using Quantile Regression” on page 19-138
• “Conditional Quantile Estimation Using Kernel Smoothing” on page 19-143
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Support Vector Machines for Binary Classification

In this section...
“Understanding Support Vector Machines” on page 19-151
“Using Support Vector Machines” on page 19-155
“Train SVM Classifiers Using a Gaussian Kernel” on page 19-157
“Train SVM Classifier Using Custom Kernel” on page 19-160
“Optimize Classifier Fit Using Bayesian Optimization” on page 19-164
“Plot Posterior Probability Regions for SVM Classification Models” on page 19-174
“Analyze Images Using Linear Support Vector Machines” on page 19-176

Understanding Support Vector Machines
• “Separable Data” on page 19-151
• “Nonseparable Data” on page 19-153
• “Nonlinear Transformation with Kernels” on page 19-154

Separable Data

You can use a support vector machine (SVM) when your data has exactly two classes. An SVM
classifies data by finding the best hyperplane that separates all data points of one class from those of
the other class. The best hyperplane for an SVM means the one with the largest margin between the
two classes. Margin means the maximal width of the slab parallel to the hyperplane that has no
interior data points.

The support vectors are the data points that are closest to the separating hyperplane; these points
are on the boundary of the slab. The following figure illustrates these definitions, with + indicating
data points of type 1, and – indicating data points of type –1.

Mathematical Formulation: Primal

This discussion follows Hastie, Tibshirani, and Friedman [1] and Christianini and Shawe-Taylor [2].
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The data for training is a set of points (vectors) xj along with their categories yj. For some dimension
d, the xj ∊ Rd, and the yj = ±1. The equation of a hyperplane is

f (x) = x′β + b = 0

where β ∊ Rd and b is a real number.

The following problem defines the best separating hyperplane (i.e., the decision boundary). Find β
and b that minimize ||β|| such that for all data points (xj,yj),

y jf x j ≥ 1.

The support vectors are the xj on the boundary, those for which y jf x j = 1.

For mathematical convenience, the problem is usually given as the equivalent problem of minimizing
β . This is a quadratic programming problem. The optimal solution β , b  enables classification of a

vector z as follows:

class(z) = sign z′β + b = sign f z .

f z  is the classification score and represents the distance z is from the decision boundary.

Mathematical Formulation: Dual

It is computationally simpler to solve the dual quadratic programming problem. To obtain the dual,
take positive Lagrange multipliers αj multiplied by each constraint, and subtract from the objective
function:

LP = 1
2β′β− ∑

j
α j y j x j′β + b − 1 ,

where you look for a stationary point of LP over β and b. Setting the gradient of LP to 0, you get

β = ∑
j

α jy jx j

0 = ∑
j

α jy j .
 (19-1)

Substituting into LP, you get the dual LD:

LD = ∑
j

α j−
1
2∑j ∑k α jαky jykx j′xk,

which you maximize over αj ≥ 0. In general, many αj are 0 at the maximum. The nonzero αj in the
solution to the dual problem define the hyperplane, as seen in “Equation 19-1”, which gives β as the
sum of αjyjxj. The data points xj corresponding to nonzero αj are the support vectors.

The derivative of LD with respect to a nonzero αj is 0 at an optimum. This gives

y jf x j − 1 = 0.

In particular, this gives the value of b at the solution, by taking any j with nonzero αj.
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The dual is a standard quadratic programming problem. For example, the Optimization Toolbox
quadprog solver solves this type of problem.

Nonseparable Data

Your data might not allow for a separating hyperplane. In that case, SVM can use a soft margin,
meaning a hyperplane that separates many, but not all data points.

There are two standard formulations of soft margins. Both involve adding slack variables ξj and a
penalty parameter C.

• The L1-norm problem is:

min
β, b, ξ

1
2β′β + C∑

j
ξ j

such that

y jf x j ≥ 1− ξ j
ξ j ≥ 0.

The L1-norm refers to using ξj as slack variables instead of their squares. The three solver options
SMO, ISDA, and L1QP of fitcsvm minimize the L1-norm problem.

• The L2-norm problem is:

min
β, b, ξ

1
2β′β + C∑

j
ξ j

2

subject to the same constraints.

In these formulations, you can see that increasing C places more weight on the slack variables ξj,
meaning the optimization attempts to make a stricter separation between classes. Equivalently,
reducing C towards 0 makes misclassification less important.
Mathematical Formulation: Dual

For easier calculations, consider the L1 dual problem to this soft-margin formulation. Using Lagrange
multipliers μj, the function to minimize for the L1-norm problem is:

LP = 1
2β′β + C∑

j
ξ j− ∑

j
α j yif x j − 1− ξ j − ∑

j
μ jξ j,

where you look for a stationary point of LP over β, b, and positive ξj. Setting the gradient of LP to 0,
you get

β = ∑
j

α jy jx j

∑
j

α jy j = 0

α j = C− μ j
α j, μ j, ξ j ≥ 0.

These equations lead directly to the dual formulation:
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max
α
∑
j

α j−
1
2∑j ∑k α jαky jykx j′xk

subject to the constraints

∑
j

y jα j = 0

0 ≤ α j ≤ C .

The final set of inequalities, 0 ≤ αj ≤ C, shows why C is sometimes called a box constraint. C keeps
the allowable values of the Lagrange multipliers αj in a “box”, a bounded region.

The gradient equation for b gives the solution b in terms of the set of nonzero αj, which correspond to
the support vectors.

You can write and solve the dual of the L2-norm problem in an analogous manner. For details, see
Christianini and Shawe-Taylor [2], Chapter 6.

fitcsvm Implementation

Both dual soft-margin problems are quadratic programming problems. Internally, fitcsvm has
several different algorithms for solving the problems.

• For one-class or binary classification, if you do not set a fraction of expected outliers in the data
(see OutlierFraction), then the default solver is Sequential Minimal Optimization (SMO). SMO
minimizes the one-norm problem by a series of two-point minimizations. During optimization, SMO
respects the linear constraint ∑

i
αiyi = 0, and explicitly includes the bias term in the model. SMO is

relatively fast. For more details on SMO, see [3].
• For binary classification, if you set a fraction of expected outliers in the data, then the default

solver is the Iterative Single Data Algorithm. Like SMO, ISDA solves the one-norm problem. Unlike
SMO, ISDA minimizes by a series on one-point minimizations, does not respect the linear
constraint, and does not explicitly include the bias term in the model. For more details on ISDA,
see [4].

• For one-class or binary classification, and if you have an Optimization Toolbox license, you can
choose to use quadprog to solve the one-norm problem. quadprog uses a good deal of memory,
but solves quadratic programs to a high degree of precision. For more details, see “Quadratic
Programming Definition” (Optimization Toolbox).

Nonlinear Transformation with Kernels

Some binary classification problems do not have a simple hyperplane as a useful separating criterion.
For those problems, there is a variant of the mathematical approach that retains nearly all the
simplicity of an SVM separating hyperplane.

This approach uses these results from the theory of reproducing kernels:

• There is a class of functions G(x1,x2) with the following property. There is a linear space S and a
function φ mapping x to S such that

G(x1,x2) = <φ(x1),φ(x2)>.

The dot product takes place in the space S.
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• This class of functions includes:

• Polynomials: For some positive integer p,

G(x1,x2) = (1 + x1′x2)p.
• Radial basis function (Gaussian):

G(x1,x2) = exp(–∥x1–x2)∥2).
• Multilayer perceptron or sigmoid (neural network): For a positive number p1 and a negative

number p2,

G(x1,x2) = tanh(p1x1′x2 + p2).

Note

• Not every set of p1 and p2 yields a valid reproducing kernel.
• fitcsvm does not support the sigmoid kernel. Instead, you can define the sigmoid kernel

and specify it by using the 'KernelFunction' name-value pair argument. For details, see
“Train SVM Classifier Using Custom Kernel” on page 19-160.

The mathematical approach using kernels relies on the computational method of hyperplanes. All the
calculations for hyperplane classification use nothing more than dot products. Therefore, nonlinear
kernels can use identical calculations and solution algorithms, and obtain classifiers that are
nonlinear. The resulting classifiers are hypersurfaces in some space S, but the space S does not have
to be identified or examined.

Using Support Vector Machines
As with any supervised learning model, you first train a support vector machine, and then cross
validate the classifier. Use the trained machine to classify (predict) new data. In addition, to obtain
satisfactory predictive accuracy, you can use various SVM kernel functions, and you must tune the
parameters of the kernel functions.

• “Training an SVM Classifier” on page 19-155
• “Classifying New Data with an SVM Classifier” on page 19-156
• “Tuning an SVM Classifier” on page 19-156

Training an SVM Classifier

Train, and optionally cross validate, an SVM classifier using fitcsvm. The most common syntax is:

SVMModel = fitcsvm(X,Y,'KernelFunction','rbf',...
    'Standardize',true,'ClassNames',{'negClass','posClass'});

The inputs are:

• X — Matrix of predictor data, where each row is one observation, and each column is one
predictor.

• Y — Array of class labels with each row corresponding to the value of the corresponding row in X.
Y can be a categorical, character, or string array, a logical or numeric vector, or a cell array of
character vectors.

 Support Vector Machines for Binary Classification

19-155



• KernelFunction — The default value is 'linear' for two-class learning, which separates the
data by a hyperplane. The value 'gaussian' (or 'rbf') is the default for one-class learning, and
specifies to use the Gaussian (or radial basis function) kernel. An important step to successfully
train an SVM classifier is to choose an appropriate kernel function.

• Standardize — Flag indicating whether the software should standardize the predictors before
training the classifier.

• ClassNames — Distinguishes between the negative and positive classes, or specifies which
classes to include in the data. The negative class is the first element (or row of a character array),
e.g., 'negClass', and the positive class is the second element (or row of a character array), e.g.,
'posClass'. ClassNames must be the same data type as Y. It is good practice to specify the
class names, especially if you are comparing the performance of different classifiers.

The resulting, trained model (SVMModel) contains the optimized parameters from the SVM algorithm,
enabling you to classify new data.

For more name-value pairs you can use to control the training, see the fitcsvm reference page.

Classifying New Data with an SVM Classifier

Classify new data using predict. The syntax for classifying new data using a trained SVM classifier
(SVMModel) is:

[label,score] = predict(SVMModel,newX);

The resulting vector, label, represents the classification of each row in X. score is an n-by-2 matrix
of soft scores. Each row corresponds to a row in X, which is a new observation. The first column
contains the scores for the observations being classified in the negative class, and the second column
contains the scores observations being classified in the positive class.

To estimate posterior probabilities rather than scores, first pass the trained SVM classifier
(SVMModel) to fitPosterior, which fits a score-to-posterior-probability transformation function to
the scores. The syntax is:

ScoreSVMModel = fitPosterior(SVMModel,X,Y);

The property ScoreTransform of the classifier ScoreSVMModel contains the optimal
transformation function. Pass ScoreSVMModel to predict. Rather than returning the scores, the
output argument score contains the posterior probabilities of an observation being classified in the
negative (column 1 of score) or positive (column 2 of score) class.

Tuning an SVM Classifier

Use the 'OptimizeHyperparameters' name-value pair argument of fitcsvm to find parameter
values that minimize the cross-validation loss. The eligible parameters are 'BoxConstraint',
'KernelFunction', 'KernelScale', 'PolynomialOrder', and 'Standardize'. For an
example, see “Optimize Classifier Fit Using Bayesian Optimization” on page 19-164. Alternatively, you
can use the bayesopt function, as shown in “Optimize Cross-Validated Classifier Using bayesopt” on
page 10-46. The bayesopt function allows more flexibility to customize optimization. You can use the
bayesopt function to optimize any parameters, including parameters that are not eligible to optimize
when you use the fitcsvm function.

You can also try tuning parameters of your classifier manually according to this scheme:

1 Pass the data to fitcsvm, and set the name-value pair argument 'KernelScale','auto'.
Suppose that the trained SVM model is called SVMModel. The software uses a heuristic
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procedure to select the kernel scale. The heuristic procedure uses subsampling. Therefore, to
reproduce results, set a random number seed using rng before training the classifier.

2 Cross validate the classifier by passing it to crossval. By default, the software conducts 10-fold
cross validation.

3 Pass the cross-validated SVM model to kfoldLoss to estimate and retain the classification error.
4 Retrain the SVM classifier, but adjust the 'KernelScale' and 'BoxConstraint' name-value

pair arguments.

• BoxConstraint — One strategy is to try a geometric sequence of the box constraint
parameter. For example, take 11 values, from 1e-5 to 1e5 by a factor of 10. Increasing
BoxConstraint might decrease the number of support vectors, but also might increase
training time.

• KernelScale — One strategy is to try a geometric sequence of the RBF sigma parameter
scaled at the original kernel scale. Do this by:

a Retrieving the original kernel scale, e.g., ks, using dot notation: ks =
SVMModel.KernelParameters.Scale.

b Use as new kernel scales factors of the original. For example, multiply ks by the 11
values 1e-5 to 1e5, increasing by a factor of 10.

Choose the model that yields the lowest classification error. You might want to further refine your
parameters to obtain better accuracy. Start with your initial parameters and perform another cross-
validation step, this time using a factor of 1.2.

Train SVM Classifiers Using a Gaussian Kernel

This example shows how to generate a nonlinear classifier with Gaussian kernel function. First,
generate one class of points inside the unit disk in two dimensions, and another class of points in the
annulus from radius 1 to radius 2. Then, generates a classifier based on the data with the Gaussian
radial basis function kernel. The default linear classifier is obviously unsuitable for this problem,
since the model is circularly symmetric. Set the box constraint parameter to Inf to make a strict
classification, meaning no misclassified training points. Other kernel functions might not work with
this strict box constraint, since they might be unable to provide a strict classification. Even though
the rbf classifier can separate the classes, the result can be overtrained.

Generate 100 points uniformly distributed in the unit disk. To do so, generate a radius r as the square
root of a uniform random variable, generate an angle t uniformly in (0, 2π), and put the point at (r
cos(t), r sin(t)).

rng(1); % For reproducibility
r = sqrt(rand(100,1)); % Radius
t = 2*pi*rand(100,1);  % Angle
data1 = [r.*cos(t), r.*sin(t)]; % Points

Generate 100 points uniformly distributed in the annulus. The radius is again proportional to a square
root, this time a square root of the uniform distribution from 1 through 4.

r2 = sqrt(3*rand(100,1)+1); % Radius
t2 = 2*pi*rand(100,1);      % Angle
data2 = [r2.*cos(t2), r2.*sin(t2)]; % points

Plot the points, and plot circles of radii 1 and 2 for comparison.
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figure;
plot(data1(:,1),data1(:,2),'r.','MarkerSize',15)
hold on
plot(data2(:,1),data2(:,2),'b.','MarkerSize',15)
ezpolar(@(x)1);ezpolar(@(x)2);
axis equal
hold off

Put the data in one matrix, and make a vector of classifications.

data3 = [data1;data2];
theclass = ones(200,1);
theclass(1:100) = -1;

Train an SVM classifier with KernelFunction set to 'rbf' and BoxConstraint set to Inf. Plot
the decision boundary and flag the support vectors.

%Train the SVM Classifier
cl = fitcsvm(data3,theclass,'KernelFunction','rbf',...
    'BoxConstraint',Inf,'ClassNames',[-1,1]);

% Predict scores over the grid
d = 0.02;
[x1Grid,x2Grid] = meshgrid(min(data3(:,1)):d:max(data3(:,1)),...
    min(data3(:,2)):d:max(data3(:,2)));
xGrid = [x1Grid(:),x2Grid(:)];
[~,scores] = predict(cl,xGrid);
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% Plot the data and the decision boundary
figure;
h(1:2) = gscatter(data3(:,1),data3(:,2),theclass,'rb','.');
hold on
ezpolar(@(x)1);
h(3) = plot(data3(cl.IsSupportVector,1),data3(cl.IsSupportVector,2),'ko');
contour(x1Grid,x2Grid,reshape(scores(:,2),size(x1Grid)),[0 0],'k');
legend(h,{'-1','+1','Support Vectors'});
axis equal
hold off

fitcsvm generates a classifier that is close to a circle of radius 1. The difference is due to the
random training data.

Training with the default parameters makes a more nearly circular classification boundary, but one
that misclassifies some training data. Also, the default value of BoxConstraint is 1, and, therefore,
there are more support vectors.

cl2 = fitcsvm(data3,theclass,'KernelFunction','rbf');
[~,scores2] = predict(cl2,xGrid);

figure;
h(1:2) = gscatter(data3(:,1),data3(:,2),theclass,'rb','.');
hold on
ezpolar(@(x)1);
h(3) = plot(data3(cl2.IsSupportVector,1),data3(cl2.IsSupportVector,2),'ko');
contour(x1Grid,x2Grid,reshape(scores2(:,2),size(x1Grid)),[0 0],'k');
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legend(h,{'-1','+1','Support Vectors'});
axis equal
hold off

Train SVM Classifier Using Custom Kernel

This example shows how to use a custom kernel function, such as the sigmoid kernel, to train SVM
classifiers, and adjust custom kernel function parameters.

Generate a random set of points within the unit circle. Label points in the first and third quadrants as
belonging to the positive class, and those in the second and fourth quadrants in the negative class.

rng(1);  % For reproducibility
n = 100; % Number of points per quadrant

r1 = sqrt(rand(2*n,1));                     % Random radii
t1 = [pi/2*rand(n,1); (pi/2*rand(n,1)+pi)]; % Random angles for Q1 and Q3
X1 = [r1.*cos(t1) r1.*sin(t1)];             % Polar-to-Cartesian conversion

r2 = sqrt(rand(2*n,1));
t2 = [pi/2*rand(n,1)+pi/2; (pi/2*rand(n,1)-pi/2)]; % Random angles for Q2 and Q4
X2 = [r2.*cos(t2) r2.*sin(t2)];

X = [X1; X2];        % Predictors

19 Nonparametric Supervised Learning

19-160



Y = ones(4*n,1);
Y(2*n + 1:end) = -1; % Labels

Plot the data.

figure;
gscatter(X(:,1),X(:,2),Y);
title('Scatter Diagram of Simulated Data')

Write a function that accepts two matrices in the feature space as inputs, and transforms them into a
Gram matrix using the sigmoid kernel.

function G = mysigmoid(U,V)
% Sigmoid kernel function with slope gamma and intercept c
gamma = 1;
c = -1;
G = tanh(gamma*U*V' + c);
end

Save this code as a file named mysigmoid on your MATLAB® path.

Train an SVM classifier using the sigmoid kernel function. It is good practice to standardize the data.

Mdl1 = fitcsvm(X,Y,'KernelFunction','mysigmoid','Standardize',true);

Mdl1 is a ClassificationSVM classifier containing the estimated parameters.
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Plot the data, and identify the support vectors and the decision boundary.

    % Compute the scores over a grid
d = 0.02; % Step size of the grid
[x1Grid,x2Grid] = meshgrid(min(X(:,1)):d:max(X(:,1)),...
    min(X(:,2)):d:max(X(:,2)));
xGrid = [x1Grid(:),x2Grid(:)];        % The grid
[~,scores1] = predict(Mdl1,xGrid); % The scores

figure;
h(1:2) = gscatter(X(:,1),X(:,2),Y);
hold on
h(3) = plot(X(Mdl1.IsSupportVector,1),...
    X(Mdl1.IsSupportVector,2),'ko','MarkerSize',10);
    % Support vectors
contour(x1Grid,x2Grid,reshape(scores1(:,2),size(x1Grid)),[0 0],'k');
    % Decision boundary
title('Scatter Diagram with the Decision Boundary')
legend({'-1','1','Support Vectors'},'Location','Best');
hold off

You can adjust the kernel parameters in an attempt to improve the shape of the decision boundary.
This might also decrease the within-sample misclassification rate, but, you should first determine the
out-of-sample misclassification rate.

Determine the out-of-sample misclassification rate by using 10-fold cross validation.
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CVMdl1 = crossval(Mdl1);
misclass1 = kfoldLoss(CVMdl1);
misclass1

misclass1 =

    0.1350

The out-of-sample misclassification rate is 13.5%.

Write another sigmoid function, but Set gamma = 0.5;.

function G = mysigmoid2(U,V)
% Sigmoid kernel function with slope gamma and intercept c
gamma = 0.5;
c = -1;
G = tanh(gamma*U*V' + c);
end

Save this code as a file named mysigmoid2 on your MATLAB® path.

Train another SVM classifier using the adjusted sigmoid kernel. Plot the data and the decision region,
and determine the out-of-sample misclassification rate.

Mdl2 = fitcsvm(X,Y,'KernelFunction','mysigmoid2','Standardize',true);
[~,scores2] = predict(Mdl2,xGrid);

figure;
h(1:2) = gscatter(X(:,1),X(:,2),Y);
hold on
h(3) = plot(X(Mdl2.IsSupportVector,1),...
    X(Mdl2.IsSupportVector,2),'ko','MarkerSize',10);
title('Scatter Diagram with the Decision Boundary')
contour(x1Grid,x2Grid,reshape(scores2(:,2),size(x1Grid)),[0 0],'k');
legend({'-1','1','Support Vectors'},'Location','Best');
hold off

CVMdl2 = crossval(Mdl2);
misclass2 = kfoldLoss(CVMdl2);
misclass2

misclass2 =

    0.0450
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After the sigmoid slope adjustment, the new decision boundary seems to provide a better within-
sample fit, and the cross-validation rate contracts by more than 66%.

Optimize Classifier Fit Using Bayesian Optimization

This example shows how to optimize an SVM classification using the fitcsvm function and the
OptimizeHyperparameters name-value argument.

Generate Data

The classification works on locations of points from a Gaussian mixture model. In The Elements of
Statistical Learning, Hastie, Tibshirani, and Friedman (2009), page 17 describes the model. The
model begins with generating 10 base points for a "green" class, distributed as 2-D independent
normals with mean (1,0) and unit variance. It also generates 10 base points for a "red" class,
distributed as 2-D independent normals with mean (0,1) and unit variance. For each class (green and
red), generate 100 random points as follows:

1 Choose a base point m of the appropriate color uniformly at random.
2 Generate an independent random point with 2-D normal distribution with mean m and variance

I/5, where I is the 2-by-2 identity matrix. In this example, use a variance I/50 to show the
advantage of optimization more clearly.

Generate the 10 base points for each class.

19 Nonparametric Supervised Learning

19-164



rng('default') % For reproducibility
grnpop = mvnrnd([1,0],eye(2),10);
redpop = mvnrnd([0,1],eye(2),10);

View the base points.

plot(grnpop(:,1),grnpop(:,2),'go')
hold on
plot(redpop(:,1),redpop(:,2),'ro')
hold off

Since some red base points are close to green base points, it can be difficult to classify the data
points based on location alone.

Generate the 100 data points of each class.

redpts = zeros(100,2);
grnpts = redpts;
for i = 1:100
    grnpts(i,:) = mvnrnd(grnpop(randi(10),:),eye(2)*0.02);
    redpts(i,:) = mvnrnd(redpop(randi(10),:),eye(2)*0.02);
end

View the data points.

figure
plot(grnpts(:,1),grnpts(:,2),'go')
hold on
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plot(redpts(:,1),redpts(:,2),'ro')
hold off

Prepare Data for Classification

Put the data into one matrix, and make a vector grp that labels the class of each point. 1 indicates
the green class, and –1 indicates the red class.

cdata = [grnpts;redpts];
grp = ones(200,1);
grp(101:200) = -1;

Prepare Cross-Validation

Set up a partition for cross-validation.

c = cvpartition(200,'KFold',10);

This step is optional. If you specify a partition for the optimization, then you can compute an actual
cross-validation loss for the returned model.

Optimize Fit

To find a good fit, meaning one with optimal hyperparameters that minimize the cross-validation loss,
use Bayesian optimization. Specify a list of hyperparameters to optimize by using the
OptimizeHyperparameters name-value argument, and specify optimization options by using the
HyperparameterOptimizationOptions name-value argument.
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Specify 'OptimizeHyperparameters' as 'auto'. The 'auto' option includes a typical set of
hyperparameters to optimize. fitcsvm finds optimal values of BoxConstraint and KernelScale.
Set the hyperparameter optimization options to use the cross-validation partition c and to choose the
'expected-improvement-plus' acquisition function for reproducibility. The default acquisition
function depends on run time and, therefore, can give varying results.

opts = struct('CVPartition',c,'AcquisitionFunctionName','expected-improvement-plus');
Mdl = fitcsvm(cdata,grp,'KernelFunction','rbf', ...
    'OptimizeHyperparameters','auto','HyperparameterOptimizationOptions',opts)

|=====================================================================================================|
| Iter | Eval   | Objective   | Objective   | BestSoFar   | BestSoFar   | BoxConstraint|  KernelScale |
|      | result |             | runtime     | (observed)  | (estim.)    |              |              |
|=====================================================================================================|
|    1 | Best   |       0.345 |     0.76327 |       0.345 |       0.345 |      0.00474 |       306.44 |
|    2 | Best   |       0.115 |     0.42645 |       0.115 |     0.12678 |       430.31 |       1.4864 |
|    3 | Accept |        0.52 |     0.32806 |       0.115 |      0.1152 |     0.028415 |     0.014369 |
|    4 | Accept |        0.61 |     0.37875 |       0.115 |     0.11504 |       133.94 |    0.0031427 |
|    5 | Accept |        0.34 |     0.33024 |       0.115 |     0.11504 |     0.010993 |       5.7742 |
|    6 | Best   |       0.085 |     0.35843 |       0.085 |    0.085039 |       885.63 |      0.68403 |
|    7 | Accept |       0.105 |     0.33501 |       0.085 |    0.085428 |       0.3057 |      0.58118 |
|    8 | Accept |        0.21 |     0.37447 |       0.085 |     0.09566 |      0.16044 |      0.91824 |
|    9 | Accept |       0.085 |     0.37825 |       0.085 |     0.08725 |       972.19 |      0.46259 |
|   10 | Accept |         0.1 |     0.46175 |       0.085 |    0.090952 |       990.29 |        0.491 |
|   11 | Best   |        0.08 |     0.34912 |        0.08 |    0.079362 |       2.5195 |        0.291 |
|   12 | Accept |        0.09 |     0.31453 |        0.08 |     0.08402 |       14.338 |      0.44386 |
|   13 | Accept |         0.1 |     0.33135 |        0.08 |     0.08508 |    0.0022577 |      0.23803 |
|   14 | Accept |        0.11 |      0.3311 |        0.08 |    0.087378 |       0.2115 |      0.32109 |
|   15 | Best   |        0.07 |     0.33437 |        0.07 |    0.081507 |        910.2 |      0.25218 |
|   16 | Best   |       0.065 |     0.35245 |       0.065 |    0.072457 |       953.22 |      0.26253 |
|   17 | Accept |       0.075 |     0.33658 |       0.065 |    0.072554 |       998.74 |      0.23087 |
|   18 | Accept |       0.295 |     0.57731 |       0.065 |    0.072647 |       996.18 |       44.626 |
|   19 | Accept |        0.07 |     0.36027 |       0.065 |     0.06946 |       985.37 |      0.27389 |
|   20 | Accept |       0.165 |     0.34144 |       0.065 |    0.071622 |     0.065103 |      0.13679 |
|=====================================================================================================|
| Iter | Eval   | Objective   | Objective   | BestSoFar   | BestSoFar   | BoxConstraint|  KernelScale |
|      | result |             | runtime     | (observed)  | (estim.)    |              |              |
|=====================================================================================================|
|   21 | Accept |       0.345 |     0.30097 |       0.065 |    0.071764 |        971.7 |       999.01 |
|   22 | Accept |        0.61 |     0.36624 |       0.065 |    0.071967 |    0.0010168 |    0.0010005 |
|   23 | Accept |       0.345 |       0.365 |       0.065 |    0.071959 |    0.0011459 |       995.89 |
|   24 | Accept |        0.35 |     0.30814 |       0.065 |    0.071863 |    0.0010003 |       40.628 |
|   25 | Accept |        0.24 |      0.4192 |       0.065 |    0.072124 |       996.55 |       10.423 |
|   26 | Accept |        0.61 |     0.42319 |       0.065 |    0.072067 |       994.71 |    0.0010063 |
|   27 | Accept |        0.47 |     0.37079 |       0.065 |     0.07218 |       993.69 |     0.029723 |
|   28 | Accept |         0.3 |     0.34093 |       0.065 |    0.072291 |       993.15 |       170.01 |
|   29 | Accept |        0.16 |      0.5717 |       0.065 |    0.072103 |       992.81 |       3.8594 |
|   30 | Accept |       0.365 |     0.35355 |       0.065 |    0.072112 |    0.0010017 |     0.044287 |
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__________________________________________________________
Optimization completed.
MaxObjectiveEvaluations of 30 reached.
Total function evaluations: 30
Total elapsed time: 67.9383 seconds
Total objective function evaluation time: 11.5829

Best observed feasible point:
    BoxConstraint    KernelScale
    _____________    ___________

       953.22          0.26253  

Observed objective function value = 0.065
Estimated objective function value = 0.073726
Function evaluation time = 0.35245

Best estimated feasible point (according to models):
    BoxConstraint    KernelScale
    _____________    ___________
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       985.37          0.27389  

Estimated objective function value = 0.072112
Estimated function evaluation time = 0.35386

Mdl = 
  ClassificationSVM
                         ResponseName: 'Y'
                CategoricalPredictors: []
                           ClassNames: [-1 1]
                       ScoreTransform: 'none'
                      NumObservations: 200
    HyperparameterOptimizationResults: [1x1 BayesianOptimization]
                                Alpha: [77x1 double]
                                 Bias: -0.2352
                     KernelParameters: [1x1 struct]
                       BoxConstraints: [200x1 double]
                      ConvergenceInfo: [1x1 struct]
                      IsSupportVector: [200x1 logical]
                               Solver: 'SMO'

  Properties, Methods

fitcsvm returns a ClassificationSVM model object that uses the best estimated feasible point.
The best estimated feasible point is the set of hyperparameters that minimizes the upper confidence
bound of the cross-validation loss based on the underlying Gaussian process model of the Bayesian
optimization process.

The Bayesian optimization process internally maintains a Gaussian process model of the objective
function. The objective function is the cross-validated misclassification rate for classification. For
each iteration, the optimization process updates the Gaussian process model and uses the model to
find a new set of hyperparameters. Each line of the iterative display shows the new set of
hyperparameters and these column values:

• Objective — Objective function value computed at the new set of hyperparameters.
• Objective runtime — Objective function evaluation time.
• Eval result — Result report, specified as Accept, Best, or Error. Accept indicates that the

objective function returns a finite value, and Error indicates that the objective function returns a
value that is not a finite real scalar. Best indicates that the objective function returns a finite
value that is lower than previously computed objective function values.

• BestSoFar(observed) — The minimum objective function value computed so far. This value is
either the objective function value of the current iteration (if the Eval result value for the
current iteration is Best) or the value of the previous Best iteration.

• BestSoFar(estim.) — At each iteration, the software estimates the upper confidence bounds of
the objective function values, using the updated Gaussian process model, at all the sets of
hyperparameters tried so far. Then the software chooses the point with the minimum upper
confidence bound. The BestSoFar(estim.) value is the objective function value returned by the
predictObjective function at the minimum point.

The plot below the iterative display shows the BestSoFar(observed) and BestSoFar(estim.)
values in blue and green, respectively.
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The returned object Mdl uses the best estimated feasible point, that is, the set of hyperparameters
that produces the BestSoFar(estim.) value in the final iteration based on the final Gaussian
process model.

You can obtain the best point from the HyperparameterOptimizationResults property or by
using the bestPoint function.

Mdl.HyperparameterOptimizationResults.XAtMinEstimatedObjective

ans=1×2 table
    BoxConstraint    KernelScale
    _____________    ___________

       985.37          0.27389  

[x,CriterionValue,iteration] = bestPoint(Mdl.HyperparameterOptimizationResults)

x=1×2 table
    BoxConstraint    KernelScale
    _____________    ___________

       985.37          0.27389  

CriterionValue = 0.0888

iteration = 19

By default, the bestPoint function uses the 'min-visited-upper-confidence-interval'
criterion. This criterion chooses the hyperparameters obtained from the 19th iteration as the best
point. CriterionValue is the upper bound of the cross-validated loss computed by the final
Gaussian process model. Compute the actual cross-validated loss by using the partition c.

L_MinEstimated = kfoldLoss(fitcsvm(cdata,grp,'CVPartition',c,'KernelFunction','rbf', ...
    'BoxConstraint',x.BoxConstraint,'KernelScale',x.KernelScale))

L_MinEstimated = 0.0700

The actual cross-validated loss is close to the estimated value. The Estimated objective
function value is displayed below the plots of the optimization results.

You can also extract the best observed feasible point (that is, the last Best point in the iterative
display) from the HyperparameterOptimizationResults property or by specifying Criterion as
'min-observed'.

Mdl.HyperparameterOptimizationResults.XAtMinObjective

ans=1×2 table
    BoxConstraint    KernelScale
    _____________    ___________

       953.22          0.26253  

[x_observed,CriterionValue_observed,iteration_observed] = bestPoint(Mdl.HyperparameterOptimizationResults,'Criterion','min-observed')

x_observed=1×2 table
    BoxConstraint    KernelScale
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    _____________    ___________

       953.22          0.26253  

CriterionValue_observed = 0.0650

iteration_observed = 16

The 'min-observed' criterion chooses the hyperparameters obtained from the 16th iteration as the
best point. CriterionValue_observed is the actual cross-validated loss computed using the
selected hyperparameters. For more information, see the “Criterion” on page 35-0  name-value
argument of bestPoint.

Visualize the optimized classifier.

d = 0.02;
[x1Grid,x2Grid] = meshgrid(min(cdata(:,1)):d:max(cdata(:,1)), ...
    min(cdata(:,2)):d:max(cdata(:,2)));
xGrid = [x1Grid(:),x2Grid(:)];
[~,scores] = predict(Mdl,xGrid);

figure
h(1:2) = gscatter(cdata(:,1),cdata(:,2),grp,'rg','+*');
hold on
h(3) = plot(cdata(Mdl.IsSupportVector,1), ...
    cdata(Mdl.IsSupportVector,2),'ko');
contour(x1Grid,x2Grid,reshape(scores(:,2),size(x1Grid)),[0 0],'k');
legend(h,{'-1','+1','Support Vectors'},'Location','Southeast');
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Evaluate Accuracy on New Data

Generate and classify new test data points.

grnobj = gmdistribution(grnpop,.2*eye(2));
redobj = gmdistribution(redpop,.2*eye(2));

newData = random(grnobj,10);
newData = [newData;random(redobj,10)];
grpData = ones(20,1); % green = 1
grpData(11:20) = -1; % red = -1

v = predict(Mdl,newData);

Compute the misclassification rates on the test data set.

L_Test = loss(Mdl,newData,grpData)

L_Test = 0.3500

Determine which new data points are classified correctly. Format the correctly classified points in red
squares and the incorrectly classified points in black squares.

h(4:5) = gscatter(newData(:,1),newData(:,2),v,'mc','**');

mydiff = (v == grpData); % Classified correctly

for ii = mydiff % Plot red squares around correct pts
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    h(6) = plot(newData(ii,1),newData(ii,2),'rs','MarkerSize',12);
end

for ii = not(mydiff) % Plot black squares around incorrect pts
    h(7) = plot(newData(ii,1),newData(ii,2),'ks','MarkerSize',12);
end
legend(h,{'-1 (training)','+1 (training)','Support Vectors', ...
    '-1 (classified)','+1 (classified)', ...
    'Correctly Classified','Misclassified'}, ...
    'Location','Southeast');
hold off

Plot Posterior Probability Regions for SVM Classification Models

This example shows how to predict posterior probabilities of SVM models over a grid of observations,
and then plot the posterior probabilities over the grid. Plotting posterior probabilities exposes
decision boundaries.

Load Fisher's iris data set. Train the classifier using the petal lengths and widths, and remove the
virginica species from the data.

load fisheriris
classKeep = ~strcmp(species,'virginica');
X = meas(classKeep,3:4);
y = species(classKeep);
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Train an SVM classifier using the data. It is good practice to specify the order of the classes.

SVMModel = fitcsvm(X,y,'ClassNames',{'setosa','versicolor'});

Estimate the optimal score transformation function.

rng(1); % For reproducibility
[SVMModel,ScoreParameters] = fitPosterior(SVMModel); 

Warning: Classes are perfectly separated. The optimal score-to-posterior transformation is a step function.

ScoreParameters

ScoreParameters = struct with fields:
                        Type: 'step'
                  LowerBound: -0.8431
                  UpperBound: 0.6897
    PositiveClassProbability: 0.5000

The optimal score transformation function is the step function because the classes are separable. The
fields LowerBound and UpperBound of ScoreParameters indicate the lower and upper end points
of the interval of scores corresponding to observations within the class-separating hyperplanes (the
margin). No training observation falls within the margin. If a new score is in the interval, then the
software assigns the corresponding observation a positive class posterior probability, i.e., the value in
the PositiveClassProbability field of ScoreParameters.

Define a grid of values in the observed predictor space. Predict the posterior probabilities for each
instance in the grid.

xMax = max(X);
xMin = min(X);
d = 0.01;
[x1Grid,x2Grid] = meshgrid(xMin(1):d:xMax(1),xMin(2):d:xMax(2));

[~,PosteriorRegion] = predict(SVMModel,[x1Grid(:),x2Grid(:)]);

Plot the positive class posterior probability region and the training data.

figure;
contourf(x1Grid,x2Grid,...
        reshape(PosteriorRegion(:,2),size(x1Grid,1),size(x1Grid,2)));
h = colorbar;
h.Label.String = 'P({\it{versicolor}})';
h.YLabel.FontSize = 16;
caxis([0 1]);
colormap jet;

hold on
gscatter(X(:,1),X(:,2),y,'mc','.x',[15,10]);
sv = X(SVMModel.IsSupportVector,:);
plot(sv(:,1),sv(:,2),'yo','MarkerSize',15,'LineWidth',2);
axis tight
hold off
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In two-class learning, if the classes are separable, then there are three regions: one where
observations have positive class posterior probability 0, one where it is 1, and the other where it is
the positive class prior probability.

Analyze Images Using Linear Support Vector Machines

This example shows how to determine which quadrant of an image a shape occupies by training an
error-correcting output codes (ECOC) model comprised of linear SVM binary learners. This example
also illustrates the disk-space consumption of ECOC models that store support vectors, their labels,
and the estimated α coefficients.

Create the Data Set

Randomly place a circle with radius five in a 50-by-50 image. Make 5000 images. Create a label for
each image indicating the quadrant that the circle occupies. Quadrant 1 is in the upper right,
quadrant 2 is in the upper left, quadrant 3 is in the lower left, and quadrant 4 is in the lower right.
The predictors are the intensities of each pixel.

d = 50;  % Height and width of the images in pixels
n = 5e4; % Sample size

X = zeros(n,d^2); % Predictor matrix preallocation 
Y = zeros(n,1);   % Label preallocation
theta = 0:(1/d):(2*pi);
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r = 5;            % Circle radius
rng(1);           % For reproducibility

for j = 1:n
    figmat = zeros(d);                       % Empty image
    c = datasample((r + 1):(d - r - 1),2);   % Random circle center
    x = r*cos(theta) + c(1);                 % Make the circle 
    y = r*sin(theta) + c(2);               
    idx = sub2ind([d d],round(y),round(x));  % Convert to linear indexing
    figmat(idx) = 1;                         % Draw the circle
    X(j,:) = figmat(:);                % Store the data
    Y(j) = (c(2) >= floor(d/2)) + 2*(c(2) < floor(d/2)) + ...
        (c(1) < floor(d/2)) + ...
        2*((c(1) >= floor(d/2)) & (c(2) < floor(d/2))); % Determine the quadrant
end

Plot an observation.

figure
imagesc(figmat)
h = gca;
h.YDir = 'normal';
title(sprintf('Quadrant %d',Y(end)))

Train the ECOC Model

Use a 25% holdout sample and specify the training and holdout sample indices.
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p = 0.25;
CVP = cvpartition(Y,'Holdout',p); % Cross-validation data partition
isIdx = training(CVP);            % Training sample indices
oosIdx = test(CVP);               % Test sample indices

Create an SVM template that specifies storing the support vectors of the binary learners. Pass it and
the training data to fitcecoc to train the model. Determine the training sample classification error.

t = templateSVM('SaveSupportVectors',true);
MdlSV = fitcecoc(X(isIdx,:),Y(isIdx),'Learners',t);
isLoss = resubLoss(MdlSV)

isLoss = 0

MdlSV is a trained ClassificationECOC multiclass model. It stores the training data and the
support vectors of each binary learner. For large data sets, such as those in image analysis, the model
can consume a lot of memory.

Determine the amount of disk space that the ECOC model consumes.

infoMdlSV = whos('MdlSV');
mbMdlSV = infoMdlSV.bytes/1.049e6

mbMdlSV = 763.6150

The model consumes 763.6 MB.

Improve Model Efficiency

You can assess out-of-sample performance. You can also assess whether the model has been overfit
with a compacted model that does not contain the support vectors, their related parameters, and the
training data.

Discard the support vectors and related parameters from the trained ECOC model. Then, discard the
training data from the resulting model by using compact.

Mdl = discardSupportVectors(MdlSV);
CMdl = compact(Mdl);
info = whos('Mdl','CMdl');
[bytesCMdl,bytesMdl] = info.bytes;
memReduction = 1 - [bytesMdl bytesCMdl]/infoMdlSV.bytes

memReduction = 1×2

    0.0626    0.9996

In this case, discarding the support vectors reduces the memory consumption by about 6%.
Compacting and discarding support vectors reduces the size by about 99.96%.

An alternative way to manage support vectors is to reduce their numbers during training by
specifying a larger box constraint, such as 100. Though SVM models that use fewer support vectors
are more desirable and consume less memory, increasing the value of the box constraint tends to
increase the training time.

Remove MdlSV and Mdl from the workspace.

clear Mdl MdlSV
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Assess Holdout Sample Performance

Calculate the classification error of the holdout sample. Plot a sample of the holdout sample
predictions.

oosLoss = loss(CMdl,X(oosIdx,:),Y(oosIdx))

oosLoss = 0

yHat = predict(CMdl,X(oosIdx,:));
nVec = 1:size(X,1);
oosIdx = nVec(oosIdx);

figure;
for j = 1:9
    subplot(3,3,j)
    imagesc(reshape(X(oosIdx(j),:),[d d]))
    h = gca;
    h.YDir = 'normal';
    title(sprintf('Quadrant: %d',yHat(j)))
end
text(-1.33*d,4.5*d + 1,'Predictions','FontSize',17)

The model does not misclassify any holdout sample observations.

See Also
fitcsvm | bayesopt | kfoldLoss
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More About
• “Train Support Vector Machines Using Classification Learner App” on page 23-107
• “Optimize Cross-Validated Classifier Using bayesopt” on page 10-46
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Assess Neural Network Classifier Performance

Create a feedforward neural network classifier with fully connected layers using fitcnet. Use
validation data for early stopping of the training process to prevent overfitting the model. Then, use
the object functions of the classifier to assess the performance of the model on test data.

Load and Preprocess Sample Data

This example uses the 1994 census data stored in census1994.mat. The data set consists of
demographic information from the US Census Bureau that you can use to predict whether an
individual makes over $50,000 per year.

Load the sample data census1994, which contains the training data adultdata and the test data
adulttest. Preview the first few rows of the training data set.

load census1994
head(adultdata)

    age       workClass          fnlwgt      education    education_num       marital_status           occupation        relationship     race      sex      capital_gain    capital_loss    hours_per_week    native_country    salary
    ___    ________________    __________    _________    _____________    _____________________    _________________    _____________    _____    ______    ____________    ____________    ______________    ______________    ______

    39     State-gov                77516    Bachelors         13          Never-married            Adm-clerical         Not-in-family    White    Male          2174             0                40          United-States     <=50K 
    50     Self-emp-not-inc         83311    Bachelors         13          Married-civ-spouse       Exec-managerial      Husband          White    Male             0             0                13          United-States     <=50K 
    38     Private             2.1565e+05    HS-grad            9          Divorced                 Handlers-cleaners    Not-in-family    White    Male             0             0                40          United-States     <=50K 
    53     Private             2.3472e+05    11th               7          Married-civ-spouse       Handlers-cleaners    Husband          Black    Male             0             0                40          United-States     <=50K 
    28     Private             3.3841e+05    Bachelors         13          Married-civ-spouse       Prof-specialty       Wife             Black    Female           0             0                40          Cuba              <=50K 
    37     Private             2.8458e+05    Masters           14          Married-civ-spouse       Exec-managerial      Wife             White    Female           0             0                40          United-States     <=50K 
    49     Private             1.6019e+05    9th                5          Married-spouse-absent    Other-service        Not-in-family    Black    Female           0             0                16          Jamaica           <=50K 
    52     Self-emp-not-inc    2.0964e+05    HS-grad            9          Married-civ-spouse       Exec-managerial      Husband          White    Male             0             0                45          United-States     >50K  

Each row contains the demographic information for one adult. The last column, salary, shows
whether a person has a salary less than or equal to $50,000 per year or greater than $50,000 per
year.

Delete the rows of adultdata and adulttest in which the tables have missing values.

adultdata = rmmissing(adultdata);
adulttest = rmmissing(adulttest);

Combine the education_num and education variables in both the training and test data to create a
single ordered categorical variable that shows the highest level of education a person has achieved.

edOrder = unique(adultdata.education_num,"stable");
edCats = unique(adultdata.education,"stable");
[~,edIdx] = sort(edOrder);

adultdata.education = categorical(adultdata.education, ...
    edCats(edIdx),"Ordinal",true);
adultdata.education_num = [];

adulttest.education = categorical(adulttest.education, ...
    edCats(edIdx),"Ordinal",true);
adulttest.education_num = [];
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Partition Training Data

Split the training data further using a stratified holdout partition. Create a separate validation data
set to stop the model training process early. Reserve approximately 30% of the observations for the
validation data set and use the rest of the observations to train the neural network classifier.

rng("default") % For reproducibility of the partition
c = cvpartition(adultdata.salary,"Holdout",0.30);
trainingIndices = training(c);
validationIndices = test(c);
tblTrain = adultdata(trainingIndices,:);
tblValidation = adultdata(validationIndices,:);

Train Neural Network

Train a neural network classifier by using the training set. Specify the salary column of tblTrain
as the response and the fnlwgt column as the observation weights, and standardize the numeric
predictors. Evaluate the model at each iteration by using the validation set. Specify to display the
training information at each iteration by using the Verbose name-value argument. By default, the
training process ends early if the validation cross-entropy loss is greater than or equal to the
minimum validation cross-entropy loss computed so far, six times in a row. To change the number of
times the validation loss is allowed to be greater than or equal to the minimum, specify the
ValidationPatience name-value argument.

Mdl = fitcnet(tblTrain,"salary","Weights","fnlwgt", ...
    "Standardize",true,"ValidationData",tblValidation, ...
    "Verbose",1);

|==========================================================================================|
| Iteration  | Train Loss | Gradient   | Step       | Iteration  | Validation | Validation |
|            |            |            |            | Time (sec) | Loss       | Checks     |
|==========================================================================================|
|           1|    0.326435|    0.105391|    1.174862|    0.057852|    0.325292|           0|
|           2|    0.275413|    0.024249|    0.259219|    0.076875|    0.275310|           0|
|           3|    0.258430|    0.027390|    0.173985|    0.057622|    0.258820|           0|
|           4|    0.218429|    0.024172|    0.617121|    0.068052|    0.220265|           0|
|           5|    0.194545|    0.022570|    0.717853|    0.054032|    0.197881|           0|
|           6|    0.187702|    0.030800|    0.706053|    0.033241|    0.192706|           0|
|           7|    0.182328|    0.016970|    0.175624|    0.047338|    0.187243|           0|
|           8|    0.180458|    0.007389|    0.241016|    0.043444|    0.184689|           0|
|           9|    0.179364|    0.007194|    0.112335|    0.030347|    0.183928|           0|
|          10|    0.175531|    0.008233|    0.271539|    0.022187|    0.180789|           0|
|==========================================================================================|
| Iteration  | Train Loss | Gradient   | Step       | Iteration  | Validation | Validation |
|            |            |            |            | Time (sec) | Loss       | Checks     |
|==========================================================================================|
|          11|    0.167236|    0.014633|    0.941927|    0.035812|    0.172918|           0|
|          12|    0.164107|    0.007069|    0.186935|    0.054458|    0.169584|           0|
|          13|    0.162421|    0.005973|    0.226712|    0.035202|    0.167040|           0|
|          14|    0.161055|    0.004590|    0.142162|    0.019353|    0.165982|           0|
|          15|    0.159318|    0.007807|    0.438498|    0.032744|    0.164524|           0|
|          16|    0.158856|    0.003321|    0.054253|    0.041105|    0.164177|           0|
|          17|    0.158481|    0.004336|    0.125983|    0.032780|    0.163746|           0|
|          18|    0.158042|    0.004697|    0.160583|    0.026014|    0.163042|           0|
|          19|    0.157412|    0.007637|    0.304204|    0.037357|    0.162194|           0|
|          20|    0.156931|    0.003145|    0.182916|    0.039648|    0.161804|           0|
|==========================================================================================|
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| Iteration  | Train Loss | Gradient   | Step       | Iteration  | Validation | Validation |
|            |            |            |            | Time (sec) | Loss       | Checks     |
|==========================================================================================|
|          21|    0.156666|    0.003791|    0.089101|    0.040337|    0.161714|           0|
|          22|    0.156457|    0.003157|    0.039609|    0.026148|    0.161592|           0|
|          23|    0.156210|    0.002608|    0.081463|    0.034700|    0.161511|           0|
|          24|    0.155981|    0.003497|    0.088109|    0.026339|    0.161557|           1|
|          25|    0.155520|    0.004131|    0.181666|    0.045351|    0.161433|           0|
|          26|    0.154899|    0.002309|    0.327281|    0.024935|    0.161065|           0|
|          27|    0.154703|    0.001210|    0.055537|    0.026209|    0.160733|           0|
|          28|    0.154503|    0.002407|    0.089433|    0.035625|    0.160449|           0|
|          29|    0.154304|    0.003212|    0.118986|    0.018603|    0.160163|           0|
|          30|    0.154026|    0.002823|    0.183600|    0.021577|    0.159885|           0|
|==========================================================================================|
| Iteration  | Train Loss | Gradient   | Step       | Iteration  | Validation | Validation |
|            |            |            |            | Time (sec) | Loss       | Checks     |
|==========================================================================================|
|          31|    0.153738|    0.004477|    0.405824|    0.028838|    0.159378|           0|
|          32|    0.153538|    0.003659|    0.065795|    0.024571|    0.159333|           0|
|          33|    0.153491|    0.001184|    0.017043|    0.028962|    0.159377|           1|
|          34|    0.153460|    0.000988|    0.017456|    0.039570|    0.159446|           2|
|          35|    0.153420|    0.002433|    0.032119|    0.031071|    0.159463|           3|
|          36|    0.153329|    0.003517|    0.058506|    0.035333|    0.159478|           4|
|          37|    0.153181|    0.002436|    0.116169|    0.024700|    0.159453|           5|
|          38|    0.153025|    0.001577|    0.177446|    0.033700|    0.159377|           6|
|==========================================================================================|

Use the information inside the TrainingHistory property of the object Mdl to check the iteration
that corresponds to the minimum validation cross-entropy loss. The final returned model Mdl is the
model trained at this iteration.

iteration = Mdl.TrainingHistory.Iteration;
valLosses = Mdl.TrainingHistory.ValidationLoss;
[~,minIdx] = min(valLosses);
iteration(minIdx)

ans = 32

Evaluate Test Set Performance

Evaluate the performance of the trained classifier Mdl on the test set adulttest by using the
predict, loss, margin, and edge object functions.

Find the predicted labels and classification scores for the observations in the test set.

[labels,Scores] = predict(Mdl,adulttest);

Create a confusion matrix from the test set results. The diagonal elements indicate the number of
correctly classified instances of a given class. The off-diagonal elements are instances of misclassified
observations.

confusionchart(adulttest.salary,labels)
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Compute the test set classification accuracy.

error = loss(Mdl,adulttest,"salary");
accuracy = (1-error)*100

accuracy = 85.0172

The neural network classifier correctly classifies approximately 85% of the test set observations.

Compute the test set classification margins for the trained neural network. Display a histogram of the
margins.

The classification margins are the difference between the classification score for the true class and
the classification score for the false class. Because neural network classifiers return scores that are
posterior probabilities, classification margins close to 1 indicate confident classifications and negative
margin values indicate misclassifications.

m = margin(Mdl,adulttest,"salary");
histogram(m)
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Use the classification edge, or mean of the classification margins, to assess the overall performance
of the classifier.

meanMargin = edge(Mdl,adulttest,"salary")

meanMargin = 0.5943

Alternatively, compute the weighted classification edge by using observation weights.

weightedMeanMargin = edge(Mdl,adulttest,"salary", ...
    "Weight","fnlwgt")

weightedMeanMargin = 0.6045

Visualize the predicted labels and classification scores using scatter plots, in which each point
corresponds to an observation. Use the predicted labels to set the color of the points, and use the
maximum scores to set the transparency of the points. Points with less transparency are labeled with
greater confidence.

First, find the maximum classification score for each test set observation.

maxScores = max(Scores,[],2);

Create a scatter plot comparing maximum scores across the number of work hours per week and
level of education. Because the education variable is categorical, randomly jitter (or space out) the
points along the y-dimension.
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Change the colormap so that maximum scores corresponding to salaries that are less than or equal to
$50,000 per year appear as blue, and maximum scores corresponding to salaries greater than
$50,000 per year appear as red.

scatter(adulttest.hours_per_week,adulttest.education,[],labels, ...
    "filled","MarkerFaceAlpha","flat","AlphaData",maxScores, ...
    "YJitter","rand");
xlabel("Number of Work Hours Per Week")
ylabel("Education")

Mdl.ClassNames

ans = 2x1 categorical
     <=50K 
     >50K 

colors = lines(2)

colors = 2×3

         0    0.4470    0.7410
    0.8500    0.3250    0.0980

colormap(colors);

The colors in the scatter plot indicate that, in general, the neural network predicts that people with
lower levels of education (12th grade or below) have salaries less than or equal to $50,000 per year.
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The transparency of some of the points in the lower right of the plot indicates that the model is less
confident in this prediction for people who work many hours per week (60 hours or more).

See Also
fitcnet | margin | edge | loss | predict | ClassificationNeuralNetwork | confusionchart
| scatter
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Assess Regression Neural Network Performance

Create a feedforward regression neural network model with fully connected layers using fitrnet.
Use validation data for early stopping of the training process to prevent overfitting the model. Then,
use the object functions of the model to assess its performance on test data.

Load Sample Data

Load the carbig data set, which contains measurements of cars made in the 1970s and early 1980s.

load carbig

Convert the Origin variable to a categorical variable. Then create a table containing the predictor
variables Acceleration, Displacement, and so on, as well as the response variable MPG. Each row
contains the measurements for a single car. Delete the rows of the table in which the table has
missing values.

Origin = categorical(cellstr(Origin));
Tbl = table(Acceleration,Displacement,Horsepower, ...
    Model_Year,Origin,Weight,MPG);
Tbl = rmmissing(Tbl);

Partition Data

Split the data into training, validation, and test sets. First, reserve approximately one third of the
observations for the test set. Then, split the remaining data in half to create the training and
validation sets.

rng("default") % For reproducibility of the data partitions
cvp1 = cvpartition(size(Tbl,1),"Holdout",1/3);
testTbl = Tbl(test(cvp1),:);
remainingTbl = Tbl(training(cvp1),:);

cvp2 = cvpartition(size(remainingTbl,1),"Holdout",1/2);
validationTbl = remainingTbl(test(cvp2),:);
trainTbl = remainingTbl(training(cvp2),:);

Train Neural Network

Train a regression neural network model by using the training set. Specify the MPG column of
tblTrain as the response variable, and standardize the numeric predictors. Evaluate the model at
each iteration by using the validation set. Specify to display the training information at each iteration
by using the Verbose name-value argument. By default, the training process ends early if the
validation loss is greater than or equal to the minimum validation loss computed so far, six times in a
row. To change the number of times the validation loss is allowed to be greater than or equal to the
minimum, specify the ValidationPatience name-value argument.

Mdl = fitrnet(trainTbl,"MPG","Standardize",true, ...
    "ValidationData",validationTbl, ...
    "Verbose",1);

|==========================================================================================|
| Iteration  | Train Loss | Gradient   | Step       | Iteration  | Validation | Validation |
|            |            |            |            | Time (sec) | Loss       | Checks     |
|==========================================================================================|

19 Nonparametric Supervised Learning

19-188



|           1|  102.962345|   46.853164|    6.700877|    0.029542|  115.730384|           0|
|           2|   55.403995|   22.171181|    1.811805|    0.018923|   53.086379|           0|
|           3|   37.588848|   11.135231|    0.782861|    0.005370|   38.580002|           0|
|           4|   29.713458|    8.379231|    0.392009|    0.001635|   31.021379|           0|
|           5|   17.523851|    9.958164|    2.137584|    0.002198|   17.594863|           0|
|           6|   12.700624|    2.957771|    0.744551|    0.001186|   14.209019|           0|
|           7|   11.841152|    1.907378|    0.201770|    0.002117|   13.159899|           0|
|           8|   10.162988|    2.542555|    0.576907|    0.001102|   11.352490|           0|
|           9|    8.889095|    2.779980|    0.615716|    0.001031|   10.446334|           0|
|          10|    7.670335|    2.400272|    0.648711|    0.001265|   10.424337|           0|
|==========================================================================================|
| Iteration  | Train Loss | Gradient   | Step       | Iteration  | Validation | Validation |
|            |            |            |            | Time (sec) | Loss       | Checks     |
|==========================================================================================|
|          11|    7.416274|    0.505111|    0.214707|    0.003674|   10.522517|           1|
|          12|    7.338923|    0.880655|    0.119085|    0.003375|   10.648031|           2|
|          13|    7.149407|    1.784821|    0.277908|    0.001632|   10.800952|           3|
|          14|    6.866385|    1.904480|    0.472190|    0.001998|   10.839202|           4|
|          15|    6.815575|    3.339285|    0.943063|    0.001767|   10.031692|           0|
|          16|    6.428137|    0.684771|    0.133729|    0.001259|    9.867819|           0|
|          17|    6.363299|    0.456606|    0.125363|    0.001148|    9.720076|           0|
|          18|    6.289887|    0.742923|    0.152290|    0.001664|    9.576588|           0|
|          19|    6.215407|    0.964684|    0.183503|    0.001518|    9.422910|           0|
|          20|    6.078333|    2.124971|    0.566948|    0.001047|    9.599573|           1|
|==========================================================================================|
| Iteration  | Train Loss | Gradient   | Step       | Iteration  | Validation | Validation |
|            |            |            |            | Time (sec) | Loss       | Checks     |
|==========================================================================================|
|          21|    5.947923|    1.217291|    0.583867|    0.001030|    9.618400|           2|
|          22|    5.855505|    0.671774|    0.285123|    0.001756|    9.734680|           3|
|          23|    5.831802|    1.882061|    0.657368|    0.001373|   10.365968|           4|
|          24|    5.713261|    1.004072|    0.134719|    0.001194|   10.314258|           5|
|          25|    5.520766|    0.967032|    0.290156|    0.002401|   10.177322|           6|
|==========================================================================================|

Use the information inside the TrainingHistory property of the object Mdl to check the iteration
that corresponds to the minimum validation mean squared error (MSE). The final returned model Mdl
is the model trained at this iteration.

iteration = Mdl.TrainingHistory.Iteration;
valLosses = Mdl.TrainingHistory.ValidationLoss;
[~,minIdx] = min(valLosses);
iteration(minIdx)

ans = 19

Evaluate Test Set Performance

Evaluate the performance of the trained model Mdl on the test set testTbl by using the loss and
predict object functions.

Compute the test set mean squared error (MSE). Smaller MSE values indicate better performance.

mse = loss(Mdl,testTbl,"MPG")

mse = 7.4101

Compare the predicted test set response values to the true response values. Plot the predicted miles
per gallon (MPG) along the vertical axis and the true MPG along the horizontal axis. Points on the
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reference line indicate correct predictions. A good model produces predictions that are scattered
near the line.

predictedY = predict(Mdl,testTbl);

plot(testTbl.MPG,predictedY,".")
hold on
plot(testTbl.MPG,testTbl.MPG)
hold off
xlabel("True Miles Per Gallon (MPG)")
ylabel("Predicted Miles Per Gallon (MPG)")

Use box plots to compare the distribution of predicted and true MPG values by country of origin.
Create the box plots by using the boxchart function. Each box plot displays the median, the lower
and upper quartiles, any outliers (computed using the interquartile range), and the minimum and
maximum values that are not outliers. In particular, the line inside each box is the sample median,
and the circular markers indicate outliers.

For each country of origin, compare the red box plot (showing the distribution of predicted MPG
values) to the blue box plot (showing the distribution of true MPG values). Similar distributions for
the predicted and true MPG values indicate good predictions.

boxchart(testTbl.Origin,testTbl.MPG)
hold on
boxchart(testTbl.Origin,predictedY)
hold off
legend(["True MPG","Predicted MPG"])
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xlabel("Country of Origin")
ylabel("Miles Per Gallon (MPG)")

For most countries, the predicted and true MPG values have similar distributions. Some
discrepancies are possibly due to the small number of cars in the training and test sets.

Compare the range of MPG values for cars in the training and test sets.

trainSummary = grpstats(trainTbl(:,["MPG","Origin"]),"Origin", ...
    "range")

trainSummary=6×3 table
               Origin     GroupCount    range_MPG
               _______    __________    _________

    France     France          2           1.2   
    Germany    Germany        12          23.4   
    Italy      Italy           1             0   
    Japan      Japan          26          26.6   
    Sweden     Sweden          4             8   
    USA        USA            86            27   

testSummary = grpstats(testTbl(:,["MPG","Origin"]),"Origin", ...
    "range")

testSummary=6×3 table
               Origin     GroupCount    range_MPG
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               _______    __________    _________

    France     France          4          19.8   
    Germany    Germany        13          20.3   
    Italy      Italy           4          11.3   
    Japan      Japan          26          25.6   
    Sweden     Sweden          1             0   
    USA        USA            82            29   

For countries like France, Italy, and Sweden, which have few cars in the training and test sets, the
range of the MPG values varies significantly in both sets.

Plot the test set residuals. A good model usually has residuals scattered roughly symmetrically
around 0. Clear patterns in the residuals are a sign that you can improve your model.

residuals = testTbl.MPG - predictedY;
plot(testTbl.MPG,residuals,".")
hold on
yline(0)
hold off
xlabel("True Miles Per Gallon (MPG)")
ylabel("MPG Residuals")

The plot suggests that the residuals are well distributed.

You can obtain more information about the observations with the greatest residuals, in terms of
absolute value.
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[~,residualIdx] = sort(residuals,"descend", ...
    "ComparisonMethod","abs");
residuals(residualIdx)

ans = 130×1

   -8.8469
    8.4427
    8.0493
    7.8996
   -6.2220
    5.8589
    5.7007
   -5.6733
   -5.4545
    5.1899
      ⋮

Display the three observations with the greatest residuals, that is, with magnitudes greater than 8.

testTbl(residualIdx(1:3),:)

ans=3×7 table
    Acceleration    Displacement    Horsepower    Model_Year    Origin    Weight    MPG 
    ____________    ____________    __________    __________    ______    ______    ____

        17.6             91             68            82        Japan      1970       31
        11.4            168            132            80        Japan      2910     32.7
        13.8             91             67            80        Japan      1850     44.6

See Also
fitrnet | loss | predict | RegressionNeuralNetwork | boxchart
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Automated Feature Engineering for Classification
The gencfeatures function enables you to automate the feature engineering process in the context
of a machine learning workflow. Before passing tabular training data to a classifier, you can create
new features from the predictors in the data by using gencfeatures. Use the returned data to train
the classifier.

Generate new features based on your machine learning workflow.

• To generate features for an interpretable binary classifier, use the default TargetLearner value
of "linear" in the call to gencfeatures. You can then use the returned data to train a binary
linear classifier. For an example, see “Interpret Linear Model with Generated Features” on page
19-194.

• To generate features that can lead to better model accuracy, specify TargetLearner="bag" or
TargetLearner="gaussian-svm" in the call to gencfeatures. You can then use the returned
data to train a bagged ensemble classifier or a binary support vector machine (SVM) classifier
with a Gaussian kernel, respectively. For an example, see “Generate New Features to Improve
Bagged Ensemble Accuracy” on page 19-197.

To better understand the generated features, use the describe function of the
FeatureTransformer object. To apply the same training set feature transformations to a test or
validation set, use the transform function of the FeatureTransformer object.

Interpret Linear Model with Generated Features

Use automated feature engineering to generate new features. Train a linear classifier using the
generated features. Interpret the relationship between the generated features and the trained model.

Load the patients data set. Create a table from a subset of the variables. Display the first few rows
of the table.

load patients
Tbl = table(Age,Diastolic,Gender,Height,SelfAssessedHealthStatus, ...
    Systolic,Weight,Smoker);
head(Tbl)

    Age    Diastolic      Gender      Height    SelfAssessedHealthStatus    Systolic    Weight    Smoker
    ___    _________    __________    ______    ________________________    ________    ______    ______

    38        93        {'Male'  }      71           {'Excellent'}            124        176      true  
    43        77        {'Male'  }      69           {'Fair'     }            109        163      false 
    38        83        {'Female'}      64           {'Good'     }            125        131      false 
    40        75        {'Female'}      67           {'Fair'     }            117        133      false 
    49        80        {'Female'}      64           {'Good'     }            122        119      false 
    46        70        {'Female'}      68           {'Good'     }            121        142      false 
    33        88        {'Female'}      64           {'Good'     }            130        142      true  
    40        82        {'Male'  }      68           {'Good'     }            115        180      false 

Generate 10 new features from the variables in Tbl. Specify the Smoker variable as the response. By
default, gencfeatures assumes that the new features will be used to train a binary linear classifier.

rng("default") % For reproducibility
[T,NewTbl] = gencfeatures(Tbl,"Smoker",10)
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T = 
  FeatureTransformer with properties:

                     Type: 'classification'
            TargetLearner: 'linear'
    NumEngineeredFeatures: 10
      NumOriginalFeatures: 0
         TotalNumFeatures: 10

NewTbl=100×11 table
    zsc(Systolic.^2)    eb8(Diastolic)    q8(Systolic)    eb8(Systolic)    q8(Diastolic)    zsc(kmd9)    zsc(sin(Age))    zsc(sin(Weight))    zsc(Height-Systolic)    zsc(kmc1)    Smoker
    ________________    ______________    ____________    _____________    _____________    _________    _____________    ________________    ____________________    _________    ______

         0.15379              8                6                4                8           -1.7207        0.50027            0.19202               0.40418            0.76177    true  
         -1.9421              2                1                1                2          -0.22056        -1.1319            -0.4009                2.3431             1.1617    false 
         0.30311              4                6                5                5           0.57695        0.50027             -1.037              -0.78898            -1.4456    false 
        -0.85785              2                2                2                2           0.83391         1.1495             1.3039               0.85162          -0.010294    false 
        -0.14125              3                5                4                4             1.779        -1.3083           -0.42387              -0.34154            0.99368    false 
        -0.28697              1                4                3                1           0.67326         1.3761           -0.72529               0.40418             1.3755    false 
          1.0677              6                8                6                6          -0.42521         1.5181           -0.72529               -1.5347            -1.4456    true  
         -1.1361              4                2                2                5          -0.79995         1.1495            -1.0225                1.2991             1.1617    false 
         -1.1361              3                2                2                3          -0.80136        0.46343             1.0806                1.2991             -1.208    false 
        -0.71693              5                3                3                6           0.37961       -0.51304            0.16741               0.55333            -1.4456    false 
         -1.2734              2                1                1                2            1.2572         1.3025             1.0978                1.4482          -0.010294    false 
         -1.1361              1                2                2                1             1.001        -1.2545            -1.2194                1.0008          -0.010294    false 
         0.60534              1                6                5                1          -0.98493       -0.11998             -1.211             -0.043252             -1.208    false 
          1.0677              8                8                6                8          -0.27307         1.4659             1.2168              -0.34154            0.24706    true  
         -1.2734              3                1                1                4           0.93395        -1.3633           -0.17603                1.0008          -0.010294    false 
          1.0677              7                8                6                8          -0.91396          -1.04            -1.2109              -0.49069            0.24706    true  
      ⋮

T is a FeatureTransformer object that can be used to transform new data, and newTbl contains
the new features generated from the Tbl data.

To better understand the generated features, use the describe object function of the
FeatureTransformer object. For example, inspect the first two generated features.

describe(T,1:2)

                           Type        IsOriginal    InputVariables                            Transformations
                        ___________    __________    ______________    _______________________________________________________________

    zsc(Systolic.^2)    Numeric          false         Systolic        power(  ,2)
                                                                       Standardization with z-score (mean = 15119.54, std = 1667.5858)
    eb8(Diastolic)      Categorical      false         Diastolic       Equal-width binning (number of bins = 8)

The first feature in newTbl is a numeric variable, created by first squaring the values of the
Systolic variable and then converting the results to z-scores. The second feature in newTbl is a
categorical variable, created by binning the values of the Diastolic variable into 8 bins of equal
width.

Use the generated features to fit a linear classifier without any regularization.

Mdl = fitclinear(NewTbl,"Smoker",Lambda=0);
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Plot the coefficients of the predictors used to train Mdl. Note that fitclinear expands categorical
predictors before fitting a model.

p = length(Mdl.Beta);
[sortedCoefs,expandedIndex] = sort(Mdl.Beta,ComparisonMethod="abs");
sortedExpandedPreds = Mdl.ExpandedPredictorNames(expandedIndex);
bar(sortedCoefs,Horizontal="on")
yticks(1:2:p)
yticklabels(sortedExpandedPreds(1:2:end))
xlabel("Coefficient")
ylabel("Expanded Predictors")
title("Coefficients for Expanded Predictors")

Identify the predictors whose coefficients have larger absolute values.

bigCoefs = abs(sortedCoefs) >= 4;
flip(sortedExpandedPreds(bigCoefs))

ans = 1x7 cell
  Columns 1 through 3

    {'zsc(Systolic.^2)'}    {'eb8(Systolic) ...'}    {'q8(Diastolic) ...'}

  Columns 4 through 6

    {'eb8(Diastolic)...'}    {'q8(Systolic) >= 6'}    {'q8(Diastolic) ...'}

  Column 7
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    {'zsc(Height-Sys...'}

You can use partial dependence plots to analyze the categorical features whose levels have large
coefficients in terms of absolute value. For example, inspect the partial dependence plot for the
q8(Diastolic) variable, whose levels q8(Diastolic) >= 3 and q8(Diastolic) >= 6 have
coefficients with large absolute values. These two levels correspond to noticeable changes in the
predicted scores.

plotPartialDependence(Mdl,"q8(Diastolic)",Mdl.ClassNames,NewTbl);

Generate New Features to Improve Bagged Ensemble Accuracy

Use gencfeatures to engineer new features before training a bagged ensemble classifier. Before
making predictions on new data, apply the same feature transformations to the new data set.
Compare the test set performance of the ensemble that uses the engineered features to the test set
performance of the ensemble that uses the original features.

Read the sample file CreditRating_Historical.dat into a table. The predictor data consists of
financial ratios and industry sector information for a list of corporate customers. The response
variable consists of credit ratings assigned by a rating agency. Preview the first few rows of the data
set.
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creditrating = readtable("CreditRating_Historical.dat");
head(creditrating)

     ID      WC_TA     RE_TA     EBIT_TA    MVE_BVTD    S_TA     Industry    Rating 
    _____    ______    ______    _______    ________    _____    ________    _______

    62394     0.013     0.104     0.036      0.447      0.142        3       {'BB' }
    48608     0.232     0.335     0.062      1.969      0.281        8       {'A'  }
    42444     0.311     0.367     0.074      1.935      0.366        1       {'A'  }
    48631     0.194     0.263     0.062      1.017      0.228        4       {'BBB'}
    43768     0.121     0.413     0.057      3.647      0.466       12       {'AAA'}
    39255    -0.117    -0.799      0.01      0.179      0.082        4       {'CCC'}
    62236     0.087     0.158     0.049      0.816      0.324        2       {'BBB'}
    39354     0.005     0.181     0.034      2.597      0.388        7       {'AA' }

Because each value in the ID variable is a unique customer ID, that is,
length(unique(creditrating.ID)) is equal to the number of observations in creditrating,
the ID variable is a poor predictor. Remove the ID variable from the table, and convert the Industry
variable to a categorical variable.

creditrating = removevars(creditrating,"ID");
creditrating.Industry = categorical(creditrating.Industry);

Convert the Rating response variable to an ordinal categorical variable.

creditrating.Rating = categorical(creditrating.Rating, ...
    ["AAA","AA","A","BBB","BB","B","CCC"],Ordinal=true);

Partition the data into training and test sets. Use approximately 75% of the observations as training
data, and 25% of the observations as test data. Partition the data using cvpartition.

rng("default") % For reproducibility of the partition
c = cvpartition(creditrating.Rating,Holdout=0.25);
trainingIndices = training(c); % Indices for the training set
testIndices = test(c); % Indices for the test set
creditTrain = creditrating(trainingIndices,:);
creditTest = creditrating(testIndices,:);

Use the training data to generate 40 new features to fit a bagged ensemble. By default, the 40
features include original features that can be used as predictors by a bagged ensemble.

[T,newCreditTrain] = gencfeatures(creditTrain,"Rating",40, ...
    TargetLearner="bag");
T

T = 
  FeatureTransformer with properties:

                     Type: 'classification'
            TargetLearner: 'bag'
    NumEngineeredFeatures: 34
      NumOriginalFeatures: 6
         TotalNumFeatures: 40

Create newCreditTest by applying the transformations stored in the object T to the test data.

newCreditTest = transform(T,creditTest);
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Compare the test set performances of a bagged ensemble trained on the original features and a
bagged ensemble trained on the new features.

Train a bagged ensemble using the original training set creditTrain. Compute the accuracy of the
model on the original test set creditTest. Visualize the results using a confusion matrix.

originalMdl = fitcensemble(creditTrain,"Rating",Method="Bag");
originalTestAccuracy = 1 - loss(originalMdl,creditTest, ...
    "Rating",LossFun="classiferror")

originalTestAccuracy = 0.7512

predictedTestLabels = predict(originalMdl,creditTest);
confusionchart(creditTest.Rating,predictedTestLabels);

Train a bagged ensemble using the transformed training set newCreditTrain. Compute the
accuracy of the model on the transformed test set newCreditTest. Visualize the results using a
confusion matrix.

newMdl = fitcensemble(newCreditTrain,"Rating",Method="Bag");
newTestAccuracy = 1 - loss(newMdl,newCreditTest, ...
    "Rating",LossFun="classiferror")

newTestAccuracy = 0.7512

newPredictedTestLabels = predict(newMdl,newCreditTest);
confusionchart(newCreditTest.Rating,newPredictedTestLabels)
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The bagged ensemble trained on the transformed data seems to outperform the bagged ensemble
trained on the original data.

See Also
gencfeatures | FeatureTransformer | describe | transform | fitclinear | fitcensemble |
fitcsvm | plotPartialDependence | genrfeatures
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Automated Feature Engineering for Regression
The genrfeatures function enables you to automate the feature engineering process in the context
of a machine learning workflow. Before passing tabular training data to a regression model, you can
create new features from the predictors in the data by using genrfeatures. Use the returned data
to train the model.

Generate new features based on your machine learning workflow.

• To generate features for an interpretable regression model, use the default TargetLearner value
of "linear" in the call to genrfeatures. You can then use the returned data to train a linear
regression model. For an example, see “Interpret Linear Model with Generated Features” on page
19-201.

• To generate features that can lead to better model prediction, specify TargetLearner="bag" or
TargetLearner="gaussian-svm" in the call to genrfeatures. You can then use the returned
data to train a bagged ensemble regression model or a support vector machine (SVM) regression
model with a Gaussian kernel, respectively. For an example, see “Generate New Features to
Improve Bagged Ensemble Performance” on page 19-204.

To better understand the generated features, use the describe function of the
FeatureTransformer object. To apply the same training set feature transformations to a test or
validation set, use the transform function of the FeatureTransformer object.

Interpret Linear Model with Generated Features

Use automated feature engineering to generate new features. Train a linear regression model using
the generated features. Interpret the relationship between the generated features and the trained
model.

Load the patients data set. Create a table from a subset of the variables. Display the first few rows
of the table.

load patients
Tbl = table(Age,Diastolic,Gender,Height,SelfAssessedHealthStatus, ...
    Smoker,Weight,Systolic);
head(Tbl)

    Age    Diastolic      Gender      Height    SelfAssessedHealthStatus    Smoker    Weight    Systolic
    ___    _________    __________    ______    ________________________    ______    ______    ________

    38        93        {'Male'  }      71           {'Excellent'}          true       176        124   
    43        77        {'Male'  }      69           {'Fair'     }          false      163        109   
    38        83        {'Female'}      64           {'Good'     }          false      131        125   
    40        75        {'Female'}      67           {'Fair'     }          false      133        117   
    49        80        {'Female'}      64           {'Good'     }          false      119        122   
    46        70        {'Female'}      68           {'Good'     }          false      142        121   
    33        88        {'Female'}      64           {'Good'     }          true       142        130   
    40        82        {'Male'  }      68           {'Good'     }          false      180        115   

Generate 10 new features from the variables in Tbl. Specify the Systolic variable as the response.
By default, genrfeatures assumes that the new features will be used to train a linear regression
model.
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rng("default") % For reproducibility
[T,NewTbl] = genrfeatures(Tbl,"Systolic",10)

T = 
  FeatureTransformer with properties:

                     Type: 'regression'
            TargetLearner: 'linear'
    NumEngineeredFeatures: 10
      NumOriginalFeatures: 0
         TotalNumFeatures: 10

NewTbl=100×11 table
    zsc(d(Smoker))    q8(Age)    eb8(Age)    zsc(sin(Height))    zsc(kmd8)    q6(Height)    eb8(Diastolic)    q8(Diastolic)    zsc(fenc(c(SelfAssessedHealthStatus)))    q10(Weight)    Systolic
    ______________    _______    ________    ________________    _________    __________    ______________    _____________    ______________________________________    ___________    ________

         1.3863          4          5              1.1483         -0.56842        6               8                 8                         0.27312                        7            124   
       -0.71414          6          6             -0.3877          -2.0772        5               2                 2                         -1.4682                        6            109   
       -0.71414          4          5              1.1036         -0.21519        2               4                 5                         0.82302                        3            125   
       -0.71414          5          6             -1.4552         -0.32389        4               2                 2                         -1.4682                        4            117   
       -0.71414          8          8              1.1036           1.2302        2               3                 4                         0.82302                        1            122   
       -0.71414          7          7             -1.5163         -0.88497        4               1                 1                         0.82302                        5            121   
         1.3863          3          3              1.1036          -1.1434        2               6                 6                         0.82302                        5            130   
       -0.71414          5          6             -1.5163          -0.3907        4               4                 5                         0.82302                        8            115   
       -0.71414          1          2             -1.5163           0.4278        4               3                 3                         0.27312                        9            115   
       -0.71414          2          3            -0.26055        -0.092621        3               5                 6                         0.27312                        3            118   
       -0.71414          7          7             -1.5163          0.16737        4               2                 2                         0.27312                        2            114   
       -0.71414          6          6            -0.26055         -0.32104        3               1                 1                         -1.8348                        5            115   
       -0.71414          1          1              1.1483        -0.051074        6               1                 1                         -1.8348                        7            127   
         1.3863          5          5             0.14351           2.3695        6               8                 8                         0.27312                        10           130   
       -0.71414          3          4             0.96929         0.092962        2               3                 4                         0.82302                        3            114   
         1.3863          8          8              1.1483        -0.049336        6               7                 8                         0.82302                        8            130   
      ⋮

T is a FeatureTransformer object that can be used to transform new data, and newTbl contains
the new features generated from the Tbl data.

To better understand the generated features, use the describe object function of the
FeatureTransformer object. For example, inspect the first two generated features.

describe(T,1:2)

                         Type        IsOriginal    InputVariables                          Transformations
                      ___________    __________    ______________    ___________________________________________________________

    zsc(d(Smoker))    Numeric          false           Smoker        Variable of type double converted from an integer data type
                                                                     Standardization with z-score (mean = 0.34, std = 0.4761)
    q8(Age)           Categorical      false           Age           Equiprobable binning (number of bins = 8)

The first feature in newTbl is a numeric variable, created by first converting the values of the
Smoker variable to a numeric variable of type double and then transforming the results to z-scores.
The second feature in newTbl is a categorical variable, created by binning the values of the Age
variable into 8 equiprobable bins.

Use the generated features to fit a linear regression model without any regularization.

Mdl = fitrlinear(NewTbl,"Systolic",Lambda=0);
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Plot the coefficients of the predictors used to train Mdl. Note that fitrlinear expands categorical
predictors before fitting a model.

p = length(Mdl.Beta);
[sortedCoefs,expandedIndex] = sort(Mdl.Beta,ComparisonMethod="abs");
sortedExpandedPreds = Mdl.ExpandedPredictorNames(expandedIndex);
bar(sortedCoefs,Horizontal="on")
yticks(1:2:p)
yticklabels(sortedExpandedPreds(1:2:end))
xlabel("Coefficient")
ylabel("Expanded Predictors")
title("Coefficients for Expanded Predictors")

Identify the predictors whose coefficients have larger absolute values.

bigCoefs = abs(sortedCoefs) >= 4;
flip(sortedExpandedPreds(bigCoefs))

ans = 1x6 cell
  Columns 1 through 3

    {'eb8(Diastolic)...'}    {'zsc(d(Smoker))'}    {'q8(Age) >= 2'}

  Columns 4 through 6

    {'q10(Weight) >= 9'}    {'q6(Height) >= 5'}    {'eb8(Diastolic)...'}
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You can use partial dependence plots to analyze the categorical features whose levels have large
coefficients in terms of absolute value. For example, inspect the partial dependence plot for the
eb8(Diastolic) variable, whose levels eb8(Diastolic) >= 5 and eb8(Diastolic) >= 6 have
coefficients with large absolute values. These two levels correspond to noticeable changes in the
predicted Systolic values.

plotPartialDependence(Mdl,"eb8(Diastolic)",NewTbl);

Generate New Features to Improve Bagged Ensemble Performance

Use genrfeatures to engineer new features before training a bagged ensemble regression model.
Before making predictions on new data, apply the same feature transformations to the new data set.
Compare the test set performance of the ensemble that uses the engineered features to the test set
performance of the ensemble that uses the original features.

Read power outage data into the workspace as a table. Remove observations with missing values, and
display the first few rows of the table.

outages = readtable("outages.csv");
Tbl = rmmissing(outages);
head(Tbl)

       Region           OutageTime        Loss     Customers     RestorationTime            Cause       
    _____________    ________________    ______    __________    ________________    ___________________

19 Nonparametric Supervised Learning

19-204



    {'SouthWest'}    2002-02-01 12:18    458.98    1.8202e+06    2002-02-07 16:50    {'winter storm'   }
    {'SouthEast'}    2003-02-07 21:15     289.4    1.4294e+05    2003-02-17 08:14    {'winter storm'   }
    {'West'     }    2004-04-06 05:44    434.81    3.4037e+05    2004-04-06 06:10    {'equipment fault'}
    {'MidWest'  }    2002-03-16 06:18    186.44    2.1275e+05    2002-03-18 23:23    {'severe storm'   }
    {'West'     }    2003-06-18 02:49         0             0    2003-06-18 10:54    {'attack'         }
    {'NorthEast'}    2003-07-16 16:23    239.93         49434    2003-07-17 01:12    {'fire'           }
    {'MidWest'  }    2004-09-27 11:09    286.72         66104    2004-09-27 16:37    {'equipment fault'}
    {'SouthEast'}    2004-09-05 17:48    73.387         36073    2004-09-05 20:46    {'equipment fault'}

Some of the variables, such as OutageTime and RestorationTime, have data types that are not
supported by regression model training functions like fitrensemble.

Partition the data into training and test sets. Use approximately 70% of the observations as training
data, and 30% of the observations as test data. Partition the data using cvpartition.

rng("default") % For reproducibility of the partition
c = cvpartition(size(Tbl,1),Holdout=0.30);
TrainTbl = Tbl(training(c),:);
TestTbl = Tbl(test(c),:);

Use the training data to generate 30 new features to fit a bagged ensemble. By default, the 30
features include original features that can be used as predictors by a bagged ensemble.

[Transformer,NewTrainTbl] = genrfeatures(TrainTbl,"Loss",30, ...
    TargetLearner="bag");
Transformer

Transformer = 
  FeatureTransformer with properties:

                     Type: 'regression'
            TargetLearner: 'bag'
    NumEngineeredFeatures: 27
      NumOriginalFeatures: 3
         TotalNumFeatures: 30

Create NewTestTbl by applying the transformations stored in the object Transformer to the test
data.

NewTestTbl = transform(Transformer,TestTbl);

Train a bagged ensemble using the original training set TrainTbl, and compute the mean squared
error (MSE) of the model on the original test set TestTbl. Specify only the three predictor variables
that can be used by fitrensemble (Region, Customers, and Cause), and omit the two datetime
predictor variables (OutageTime and RestorationTime). Then, train a bagged ensemble using the
transformed training set NewTrainTbl, and compute the MSE of the model on the transformed test
set NewTestTbl.

originalMdl = fitrensemble(TrainTbl,"Loss ~ Region + Customers + Cause", ...
    Method="bag");
originalTestMSE = loss(originalMdl,TestTbl)

originalTestMSE = 1.8999e+06

newMdl = fitrensemble(NewTrainTbl,"Loss",Method="bag");
newTestMSE = loss(newMdl,NewTestTbl)
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newTestMSE = 1.8617e+06

newTestMSE is less than originalTestMSE, which suggests that the bagged ensemble trained on
the transformed data performs slightly better than the bagged ensemble trained on the original data.

Compare the predicted test set response values to the true response values for both models. Plot the
log of the predicted response along the vertical axis and the log of the true response (Loss) along the
horizontal axis. Points on the reference line indicate correct predictions. A good model produces
predictions that are scattered near the line.

predictedTestY = predict(originalMdl,TestTbl);
newPredictedTestY = predict(newMdl,NewTestTbl);

plot(log(TestTbl.Loss),log(predictedTestY),".")
hold on
plot(log(TestTbl.Loss),log(newPredictedTestY),".")
hold on
plot(log(TestTbl.Loss),log(TestTbl.Loss))
hold off
xlabel("log(True Response)")
ylabel("log(Predicted Response)")
legend(["Original Model Results","New Model Results","Reference Line"], ...
    Location="southeast")
xlim([-1 10])
ylim([-1 10])
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See Also
genrfeatures | FeatureTransformer | describe | transform | fitrlinear | fitrensemble |
fitrsvm | plotPartialDependence | gencfeatures
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Moving Towards Automating Model Selection Using Bayesian
Optimization

This example shows how to build multiple classification models for a given training data set, optimize
their hyperparameters using Bayesian optimization, and select the model that performs the best on a
test data set.

Training several models and tuning their hyperparameters can often take days or weeks. Creating a
script to develop and compare multiple models automatically can be much faster. You can also use
Bayesian optimization to speed up the process. Instead of training each model with different sets of
hyperparameters, you select a few different models and tune their default hyperparameters using
Bayesian optimization. Bayesian optimization finds an optimal set of hyperparameters for a given
model by minimizing the objective function of the model. This optimization algorithm strategically
selects new hyperparameters in each iteration and typically arrives at the optimal set of
hyperparameters more quickly than a simple grid search. You can use the script in this example to
train several classification models using Bayesian optimization for a given training data set and
identify the model that performs best on a test data set.

Alternatively, to choose a classification model automatically across a selection of classifier types and
hyperparameter values, use fitcauto. For an example, see “Automated Classifier Selection with
Bayesian and ASHA Optimization” on page 19-216.

Load Sample Data

This example uses the 1994 census data stored in census1994.mat. The data set consists of
demographic data from the US Census Bureau to predict whether an individual makes over $50,000
per year. The classification task is to fit a model that predicts the salary category of people given their
age, working class, education level, marital status, race, and so on.

Load the sample data census1994 and display the variables in the data set.

load census1994
whos

  Name                 Size              Bytes  Class    Attributes

  Description         20x74               2960  char               
  adultdata        32561x15            1872566  table              
  adulttest        16281x15             944466  table              

census1994 contains the training data set adultdata and the test data set adulttest. For this
example, to reduce the running time, subsample 5000 training and test observations each, from the
original tables adultdata and adulttest, by using the datasample function. (You can skip this
step if you want to use the complete data sets.)

NumSamples = 5000;
s = RandStream('mlfg6331_64'); % For reproducibility
adultdata = datasample(s,adultdata,NumSamples,'Replace',false);
adulttest = datasample(s,adulttest,NumSamples,'Replace',false);

Preview the first few rows of the training data set.

head(adultdata)
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    age     workClass       fnlwgt       education      education_num      marital_status         occupation         relationship     race      sex      capital_gain    capital_loss    hours_per_week    native_country    salary
    ___    ___________    __________    ____________    _____________    __________________    _________________    ______________    _____    ______    ____________    ____________    ______________    ______________    ______

    39     Private          4.91e+05    Bachelors            13          Never-married         Exec-managerial      Other-relative    Black    Male           0               0                45          United-States     <=50K 
    25     Private        2.2022e+05    11th                  7          Never-married         Handlers-cleaners    Own-child         White    Male           0               0                45          United-States     <=50K 
    24     Private        2.2761e+05    10th                  6          Divorced              Handlers-cleaners    Unmarried         White    Female         0               0                58          United-States     <=50K 
    51     Private        1.7329e+05    HS-grad               9          Divorced              Other-service        Not-in-family     White    Female         0               0                40          United-States     <=50K 
    54     Private        2.8029e+05    Some-college         10          Married-civ-spouse    Sales                Husband           White    Male           0               0                32          United-States     <=50K 
    53     Federal-gov         39643    HS-grad               9          Widowed               Exec-managerial      Not-in-family     White    Female         0               0                58          United-States     <=50K 
    52     Private             81859    HS-grad               9          Married-civ-spouse    Machine-op-inspct    Husband           White    Male           0               0                48          United-States     >50K  
    37     Private        1.2429e+05    Some-college         10          Married-civ-spouse    Adm-clerical         Husband           White    Male           0               0                50          United-States     <=50K 

Each row represents the attributes of one adult, such as age, education, and occupation. The last
column salary shows whether a person has a salary less than or equal to $50,000 per year or
greater than $50,000 per year.

Understand Data and Choose Classification Models

Statistics and Machine Learning Toolbox™ provides several options for classification, including
classification trees, discriminant analysis, naive Bayes, nearest neighbors, support vector machines
(SVMs), and classification ensembles. For the complete list of algorithms, see “Classification”.

Before choosing the algorithms to use for your problem, inspect your data set. The census data has
several noteworthy characteristics:

• The data is tabular and contains both numeric and categorical variables.
• The data contains missing values.
• The response variable (salary) has two classes (binary classification).

Without making any assumptions or using prior knowledge of algorithms that you expect to work well
on your data, you simply train all the algorithms that support tabular data and binary classification.
Error-correcting output codes (ECOC) models are used for data with more than two classes.
Discriminant analysis and nearest neighbor algorithms do not analyze data that contains both
numeric and categorical variables. Therefore, the algorithms appropriate for this example are SVMs,
a decision tree, an ensemble of decision trees, and a naive Bayes model. Some of these models, like
decision tree and naive Bayes models, are better at handling data with missing values; that is, they
return non-NaN predicted scores for observations with missing values.

Build Models and Tune Hyperparameters

To speed up the process, customize the hyperparameter optimization options. Specify 'ShowPlots'
as false and 'Verbose' as 0 to disable plot and message displays, respectively. Also, specify
'UseParallel' as true to run Bayesian optimization in parallel, which requires Parallel Computing
Toolbox™. Due to the nonreproducibility of parallel timing, parallel Bayesian optimization does not
necessarily yield reproducible results.

hypopts = struct('ShowPlots',false,'Verbose',0,'UseParallel',true);

Start a parallel pool.

poolobj = gcp;

Starting parallel pool (parpool) using the 'local' profile ...
Connected to the parallel pool (number of workers: 8).
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You can fit the training data set and tune parameters easily by calling each fitting function and
setting its 'OptimizeHyperparameters' name-value pair argument to 'auto'. Create the
classification models.

% SVMs: SVM with polynomial kernel & SVM with Gaussian kernel
mdls{1} = fitcsvm(adultdata,'salary','KernelFunction','polynomial','Standardize','on', ...
    'OptimizeHyperparameters','auto','HyperparameterOptimizationOptions', hypopts);
mdls{2} = fitcsvm(adultdata,'salary','KernelFunction','gaussian','Standardize','on', ...
    'OptimizeHyperparameters','auto','HyperparameterOptimizationOptions', hypopts);

% Decision tree
mdls{3} = fitctree(adultdata,'salary', ...
    'OptimizeHyperparameters','auto','HyperparameterOptimizationOptions', hypopts);

% Ensemble of Decision trees
mdls{4} = fitcensemble(adultdata,'salary','Learners','tree', ...
    'OptimizeHyperparameters','auto','HyperparameterOptimizationOptions', hypopts);

% Naive Bayes
mdls{5} = fitcnb(adultdata,'salary', ...
    'OptimizeHyperparameters','auto','HyperparameterOptimizationOptions', hypopts);

Warning: It is recommended that you first standardize all numeric predictors when optimizing the Naive Bayes 'Width' parameter. Ignore this warning if you have done that.

Plot Minimum Objective Curves

Extract the Bayesian optimization results from each model and plot the minimum observed value of
the objective function for each model over every iteration of the hyperparameter optimization. The
objective function value corresponds to the misclassification rate measured by five-fold cross-
validation using the training data set. The plot compares the performance of each model.

figure
hold on
N = length(mdls);
for i = 1:N
    mdl = mdls{i};
    results = mdls{i}.HyperparameterOptimizationResults;
    plot(results.ObjectiveMinimumTrace,'Marker','o','MarkerSize',5);
end
names = {'SVM-Polynomial','SVM-Gaussian','Decision Tree','Ensemble-Trees','Naive Bayes'};
legend(names,'Location','northeast')
title('Bayesian Optimization')
xlabel('Number of Iterations')
ylabel('Minimum Objective Value')
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Using Bayesian optimization to find better hyperparameter sets improves the performance of models
over several iterations. In this case, the plot indicates that the ensemble of decision trees has the best
prediction accuracy for the data. This model performs well consistently over several iterations and
different sets of Bayesian optimization hyperparameters.

Check Performance with Test Set

Check the classifier performance with the test data set by using the confusion matrix and the receiver
operating characteristic (ROC) curve.

Find the predicted labels and the score values of the test data set.

label = cell(N,1);
score = cell(N,1);
for i = 1:N
    [label{i},score{i}] = predict(mdls{i},adulttest);
end

Confusion Matrix

Obtain the most likely class for each test observation by using the predict function of each model.
Then compute the confusion matrix with the predicted classes and the known (true) classes of the
test data set by using the confusionchart function.

figure
c = cell(N,1);
for i = 1:N
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    subplot(2,3,i)
    c{i} = confusionchart(adulttest.salary,label{i});
    title(names{i})
end

The diagonal elements indicate the number of correctly classified instances of a given class. The off-
diagonal elements are instances of misclassified observations.

ROC Curve

Inspect the classifier performance more closely by plotting a ROC curve for each classifier and
computing the area under the ROC curve (AUC). A ROC curve shows the true positive rate versus the
false positive rate for different thresholds of classification scores. For a perfect classifier, whose true
positive rate is always 1 regardless of the threshold, AUC = 1. For a binary classifier that randomly
assigns observations to classes, AUC = 0.5. A large AUC value (close to 1) indicates good classifier
performance.

Compute the metrics for a ROC curve and find the AUC value by creating a rocmetrics object for
each classifier. Plot the ROC curves for the label '<=50K' by using the plot function of
rocmetrics.

figure
AUC = zeros(1,N);
for i = 1:N
    rocObj = rocmetrics(adulttest.salary,score{i},mdls{i}.ClassNames);
    [r,g] = plot(rocObj,'ClassNames','<=50K');
    r.DisplayName = replace(r.DisplayName,'<=50K',names{i});

19 Nonparametric Supervised Learning

19-212



    g(1).DisplayName = join([names{i},' Model Operating Point']);
    AUC(i) = rocObj.AUC(1);
    hold on
end
title('ROC Curves for Class <=50K')
hold off

A ROC curve shows the true positive rate versus the false positive rate (or, sensitivity versus 1–
specificity) for different thresholds of the classifier output.

Now plot the AUC values using a bar graph. For a perfect classifier, whose true positive rate is always
1 regardless of the thresholds, AUC = 1. For a classifier that randomly assigns observations to
classes, AUC = 0.5. Larger AUC values indicate better classifier performance.

figure
bar(AUC)
title('Area Under the Curve')
xlabel('Model')
ylabel('AUC')
xticklabels(names)
xtickangle(30)
ylim([0.85,0.925])
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Based on the confusion matrix and the AUC bar graph, the ensemble of decision trees and SVM
models achieve better accuracy than the decision tree and naive Bayes models.

Resume Optimization of Most Promising Models

Running Bayesian optimization on all models for further iterations can be computationally expensive.
Instead, select a subset of models that have performed well so far and continue the optimization for
30 more iterations by using the resume function. Plot the minimum observed values of the objective
function for each iteration of Bayesian optimization.

figure
hold on
selectedMdls = mdls([1,2,4]);
newresults = cell(1,length(selectedMdls));
for i = 1:length(selectedMdls)
    newresults{i} = resume(selectedMdls{i}.HyperparameterOptimizationResults,'MaxObjectiveEvaluations',30);
    plot(newresults{i}.ObjectiveMinimumTrace,'Marker','o','MarkerSize',5)
end
title('Bayesian Optimization with resume')
xlabel('Number of Iterations')
ylabel('Minimum Objective Value')
legend({'SVM-Polynomial','SVM-Gaussian','Ensemble-Trees'},'Location','northeast')
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The first 30 iterations correspond to the first round of Bayesian optimization. The next 30 iterations
correspond to the results of the resume function. Resuming optimization is useful because the loss
continues to reduce further after the first 30 iterations.

See Also
confusionchart | perfcurve | resume | BayesianOptimization

More About
• “Bayesian Optimization Workflow” on page 10-25
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Automated Classifier Selection with Bayesian and ASHA
Optimization

This example shows how to use fitcauto to automatically try a selection of classification model
types with different hyperparameter values, given training predictor and response data. By default,
the function uses Bayesian optimization to select and assess models. If your training data set contains
many observations, you can use an asynchronous successive halving algorithm (ASHA) instead. After
the optimization is complete, fitcauto returns the model, trained on the entire data set, that is
expected to best classify new data. Check the model performance on test data.

Load Sample Data

This example uses the 1994 census data stored in census1994.mat. The data set consists of
demographic information from the US Census Bureau that can be used to predict whether an
individual makes over $50,000 per year.

Load the sample data census1994, which contains the training data adultdata and the test data
adulttest. Preview the first few rows of the training data set.

load census1994
head(adultdata)

ans=8×15 table
    age       workClass          fnlwgt      education    education_num       marital_status           occupation        relationship     race      sex      capital_gain    capital_loss    hours_per_week    native_country    salary
    ___    ________________    __________    _________    _____________    _____________________    _________________    _____________    _____    ______    ____________    ____________    ______________    ______________    ______

    39     State-gov                77516    Bachelors         13          Never-married            Adm-clerical         Not-in-family    White    Male          2174             0                40          United-States     <=50K 
    50     Self-emp-not-inc         83311    Bachelors         13          Married-civ-spouse       Exec-managerial      Husband          White    Male             0             0                13          United-States     <=50K 
    38     Private             2.1565e+05    HS-grad            9          Divorced                 Handlers-cleaners    Not-in-family    White    Male             0             0                40          United-States     <=50K 
    53     Private             2.3472e+05    11th               7          Married-civ-spouse       Handlers-cleaners    Husband          Black    Male             0             0                40          United-States     <=50K 
    28     Private             3.3841e+05    Bachelors         13          Married-civ-spouse       Prof-specialty       Wife             Black    Female           0             0                40          Cuba              <=50K 
    37     Private             2.8458e+05    Masters           14          Married-civ-spouse       Exec-managerial      Wife             White    Female           0             0                40          United-States     <=50K 
    49     Private             1.6019e+05    9th                5          Married-spouse-absent    Other-service        Not-in-family    Black    Female           0             0                16          Jamaica           <=50K 
    52     Self-emp-not-inc    2.0964e+05    HS-grad            9          Married-civ-spouse       Exec-managerial      Husband          White    Male             0             0                45          United-States     >50K  

Each row contains the demographic information for one adult. The last column salary shows
whether a person has a salary less than or equal to $50,000 per year or greater than $50,000 per
year.

Remove observations from adultdata and adulttest that contain missing values.

adultdata = rmmissing(adultdata);
adulttest = rmmissing(adulttest);

Use Automated Model Selection with Bayesian Optimization

Find an appropriate classifier for the data in adultdata by using fitcauto. By default, fitcauto
uses Bayesian optimization to select models and their hyperparameter values, and computes the
cross-validation classification error (Validation loss) for each model. By default, fitcauto
provides a plot of the optimization and an iterative display of the optimization results. For more
information on how to interpret these results, see “Verbose Display” on page 35-1878.

Set the observation weights, and specify to run the Bayesian optimization in parallel, which requires
Parallel Computing Toolbox™. Due to the nonreproducibility of parallel timing, parallel Bayesian
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optimization does not necessarily yield reproducible results. Because of the complexity of the
optimization, this process can take some time, especially for larger data sets.

bayesianOptions = struct("UseParallel",true);
[bayesianMdl,bayesianResults] = fitcauto(adultdata,"salary","Weights","fnlwgt", ...
    "HyperparameterOptimizationOptions",bayesianOptions);

Warning: Data set has more than 10000 observations. Because ASHA optimization often finds good solutions faster than Bayesian optimization for data sets with many observations, try specifying the 'Optimizer' field value as 'asha' in the 'HyperparameterOptimizationOptions' value structure.

Warning: It is recommended that you first standardize all numeric predictors when optimizing the Naive Bayes 'Width' parameter. Ignore this warning if you have done that.

Starting parallel pool (parpool) using the 'local' profile ...
Connected to the parallel pool (number of workers: 8).
Copying objective function to workers...
Done copying objective function to workers.
Learner types to explore: ensemble, nb, svm, tree
Total iterations (MaxObjectiveEvaluations): 120
Total time (MaxTime): Inf

|=======================================================================================================================================================|
| Iter | Active  | Eval   | Validation | Time for training | Observed min    | Estimated min   | Learner      | Hyperparameter:                 Value   |
|      | workers | result | loss       | & validation (sec)| validation loss | validation loss |              |                                         |
|=======================================================================================================================================================|
|    1 |       8 | Best   |    0.14546 |            9.0638 |         0.14546 |         0.14546 |         tree | MinLeafSize:                        118 |
|    2 |       7 | Accept |    0.24677 |            11.074 |         0.14546 |         0.14704 |          svm | BoxConstraint:                   3.8856 |
|      |         |        |            |                   |                 |                 |              | KernelScale:                    0.00432 |
|    3 |       7 | Accept |    0.14868 |            9.9597 |         0.14546 |         0.14704 |         tree | MinLeafSize:                         26 |
|    4 |       8 | Accept |    0.15457 |            156.73 |         0.14546 |         0.14704 |     ensemble | Method:                             Bag |
|      |         |        |            |                   |                 |                 |              | NumLearningCycles:                  203 |
|      |         |        |            |                   |                 |                 |              | MinLeafSize:                        105 |
|    5 |       8 | Accept |    0.18015 |            153.77 |         0.14546 |         0.14704 |     ensemble | Method:                             Bag |
|      |         |        |            |                   |                 |                 |              | NumLearningCycles:                  239 |
|      |         |        |            |                   |                 |                 |              | MinLeafSize:                       2417 |
|    6 |       8 | Accept |    0.14921 |            233.35 |         0.14546 |         0.14704 |     ensemble | Method:                      LogitBoost |
|      |         |        |            |                   |                 |                 |              | NumLearningCycles:                  258 |
|      |         |        |            |                   |                 |                 |              | MinLeafSize:                        542 |
|    7 |       8 | Accept |    0.24677 |            113.54 |         0.14546 |         0.14704 |     ensemble | Method:                             Bag |
|      |         |        |            |                   |                 |                 |              | NumLearningCycles:                  298 |
|      |         |        |            |                   |                 |                 |              | MinLeafSize:                      11733 |
|    8 |       8 | Best   |    0.14517 |            318.06 |         0.14517 |         0.14704 |          svm | BoxConstraint:                  0.10777 |
|      |         |        |            |                   |                 |                 |              | KernelScale:                     4.1321 |
|    9 |       8 | Accept |    0.15414 |            196.23 |         0.14517 |         0.14704 |     ensemble | Method:                             Bag |
|      |         |        |            |                   |                 |                 |              | NumLearningCycles:                  267 |
|      |         |        |            |                   |                 |                 |              | MinLeafSize:                          1 |
|   10 |       8 | Accept |    0.24677 |            382.69 |         0.14517 |         0.14704 |          svm | BoxConstraint:                 0.043508 |
|      |         |        |            |                   |                 |                 |              | KernelScale:                     931.39 |
|   11 |       8 | Accept |    0.24677 |             393.3 |         0.14517 |         0.14704 |          svm | BoxConstraint:                 0.043508 |
|      |         |        |            |                   |                 |                 |              | KernelScale:                     931.39 |
|   12 |       8 | Accept |    0.16391 |            11.028 |         0.14517 |          0.1523 |         tree | MinLeafSize:                          5 |
|   13 |       8 | Accept |    0.17328 |            2.6893 |         0.14517 |         0.15762 |         tree | MinLeafSize:                        846 |
|   14 |       8 | Accept |    0.24677 |            1.4486 |         0.14517 |         0.17323 |         tree | MinLeafSize:                       8098 |
|   15 |       8 | Accept |    0.24169 |            425.67 |         0.14517 |         0.17323 |          svm | BoxConstraint:                  0.15557 |
|      |         |        |            |                   |                 |                 |              | KernelScale:                     72.871 |
|   16 |       8 | Accept |    0.24677 |            1.0011 |         0.14517 |         0.16798 |         tree | MinLeafSize:                      11604 |
|   17 |       8 | Accept |     0.1511 |            88.912 |         0.14517 |          0.1511 |           nb | DistributionNames:               kernel |
|      |         |        |            |                   |                 |                 |              | Width:                          0.67978 |
|   18 |       8 | Accept |    0.18099 |            162.32 |         0.14517 |         0.16694 |           nb | DistributionNames:               kernel |
|      |         |        |            |                   |                 |                 |              | Width:                            232.3 |
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|   19 |       8 | Accept |    0.18403 |            2.8724 |         0.14517 |         0.16363 |         tree | MinLeafSize:                       2226 |
|   20 |       8 | Accept |    0.24677 |            9.3034 |         0.14517 |         0.16363 |          svm | BoxConstraint:                 0.019712 |
|      |         |        |            |                   |                 |                 |              | KernelScale:                  0.0047701 |
|=======================================================================================================================================================|
| Iter | Active  | Eval   | Validation | Time for training | Observed min    | Estimated min   | Learner      | Hyperparameter:                 Value   |
|      | workers | result | loss       | & validation (sec)| validation loss | validation loss |              |                                         |
|=======================================================================================================================================================|
|   21 |       8 | Accept |    0.15364 |            141.13 |         0.14517 |         0.16209 |           nb | DistributionNames:               kernel |
|      |         |        |            |                   |                 |                 |              | Width:                           3.2128 |
|   22 |       8 | Accept |    0.16345 |            351.87 |         0.14517 |         0.16209 |          svm | BoxConstraint:                0.0017882 |
|      |         |        |            |                   |                 |                 |              | KernelScale:                     3.4862 |
|   23 |       8 | Accept |     0.1585 |            391.52 |         0.14517 |         0.16209 |          svm | BoxConstraint:                   19.675 |
|      |         |        |            |                   |                 |                 |              | KernelScale:                     205.34 |
|   24 |       8 | Accept |    0.18472 |            180.24 |         0.14517 |         0.16363 |           nb | DistributionNames:               kernel |
|      |         |        |            |                   |                 |                 |              | Width:                           1676.9 |
|   25 |       8 | Accept |    0.15005 |            209.17 |         0.14517 |         0.15973 |     ensemble | Method:                      LogitBoost |
|      |         |        |            |                   |                 |                 |              | NumLearningCycles:                  218 |
|      |         |        |            |                   |                 |                 |              | MinLeafSize:                         34 |
|   26 |       8 | Accept |    0.15429 |            172.14 |         0.14517 |         0.15973 |           nb | DistributionNames:               kernel |
|      |         |        |            |                   |                 |                 |              | Width:                           3.6464 |
|   27 |       8 | Accept |      0.168 |            1.2833 |         0.14517 |         0.15973 |           nb | DistributionNames:               normal |
|      |         |        |            |                   |                 |                 |              | Width:                              NaN |
|   28 |       8 | Accept |    0.15045 |            225.03 |         0.14517 |         0.15445 |     ensemble | Method:                      LogitBoost |
|      |         |        |            |                   |                 |                 |              | NumLearningCycles:                  235 |
|      |         |        |            |                   |                 |                 |              | MinLeafSize:                          7 |
|   29 |       8 | Accept |      0.168 |            2.4337 |         0.14517 |         0.15445 |           nb | DistributionNames:               normal |
|      |         |        |            |                   |                 |                 |              | Width:                              NaN |
|   30 |       8 | Accept |      0.168 |            2.0997 |         0.14517 |         0.15445 |           nb | DistributionNames:               normal |
|      |         |        |            |                   |                 |                 |              | Width:                              NaN |
|   31 |       8 | Accept |    0.15761 |            198.66 |         0.14517 |         0.15445 |           nb | DistributionNames:               kernel |
|      |         |        |            |                   |                 |                 |              | Width:                           5.6802 |
|   32 |       8 | Accept |    0.15055 |             214.5 |         0.14517 |          0.1515 |     ensemble | Method:                      LogitBoost |
|      |         |        |            |                   |                 |                 |              | NumLearningCycles:                  202 |
|      |         |        |            |                   |                 |                 |              | MinLeafSize:                          2 |
|   33 |       8 | Accept |    0.15429 |            143.42 |         0.14517 |          0.1515 |           nb | DistributionNames:               kernel |
|      |         |        |            |                   |                 |                 |              | Width:                           3.6279 |
|   34 |       8 | Accept |    0.14984 |            211.73 |         0.14517 |         0.15084 |     ensemble | Method:                      LogitBoost |
|      |         |        |            |                   |                 |                 |              | NumLearningCycles:                  271 |
|      |         |        |            |                   |                 |                 |              | MinLeafSize:                         13 |
|   35 |       8 | Accept |    0.15455 |            182.76 |         0.14517 |         0.15058 |     ensemble | Method:                             Bag |
|      |         |        |            |                   |                 |                 |              | NumLearningCycles:                  261 |
|      |         |        |            |                   |                 |                 |              | MinLeafSize:                          1 |
|   36 |       8 | Accept |    0.24182 |            435.16 |         0.14517 |         0.15058 |          svm | BoxConstraint:                 0.088843 |
|      |         |        |            |                   |                 |                 |              | KernelScale:                     60.035 |
|   37 |       8 | Accept |    0.15528 |            150.14 |         0.14517 |         0.15062 |     ensemble | Method:                             Bag |
|      |         |        |            |                   |                 |                 |              | NumLearningCycles:                  244 |
|      |         |        |            |                   |                 |                 |              | MinLeafSize:                          3 |
|   38 |       8 | Accept |    0.15115 |            5.0809 |         0.14517 |         0.15062 |         tree | MinLeafSize:                        262 |
|   39 |       8 | Accept |    0.14982 |            154.77 |         0.14517 |         0.15003 |     ensemble | Method:                      LogitBoost |
|      |         |        |            |                   |                 |                 |              | NumLearningCycles:                  218 |
|      |         |        |            |                   |                 |                 |              | MinLeafSize:                         19 |
|   40 |       8 | Accept |    0.15044 |            145.66 |         0.14517 |          0.1501 |     ensemble | Method:                      LogitBoost |
|      |         |        |            |                   |                 |                 |              | NumLearningCycles:                  201 |
|      |         |        |            |                   |                 |                 |              | MinLeafSize:                          1 |
|=======================================================================================================================================================|
| Iter | Active  | Eval   | Validation | Time for training | Observed min    | Estimated min   | Learner      | Hyperparameter:                 Value   |
|      | workers | result | loss       | & validation (sec)| validation loss | validation loss |              |                                         |
|=======================================================================================================================================================|
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|   41 |       8 | Accept |    0.24677 |           0.61497 |         0.14517 |          0.1501 |         tree | MinLeafSize:                      12837 |
|   42 |       8 | Accept |    0.17342 |            8.1501 |         0.14517 |          0.1501 |         tree | MinLeafSize:                          3 |
|   43 |       8 | Accept |    0.15795 |            137.62 |         0.14517 |         0.15019 |     ensemble | Method:                      LogitBoost |
|      |         |        |            |                   |                 |                 |              | NumLearningCycles:                  224 |
|      |         |        |            |                   |                 |                 |              | MinLeafSize:                       2353 |
|   44 |       8 | Accept |    0.17696 |            1.4365 |         0.14517 |         0.15019 |         tree | MinLeafSize:                       1170 |
|   45 |       8 | Accept |     0.1683 |            144.68 |         0.14517 |         0.15019 |           nb | DistributionNames:               kernel |
|      |         |        |            |                   |                 |                 |              | Width:                           18.063 |
|   46 |       8 | Accept |     0.2011 |            125.96 |         0.14517 |         0.15019 |           nb | DistributionNames:               kernel |
|      |         |        |            |                   |                 |                 |              | Width:                            58214 |
|   47 |       8 | Accept |     0.1883 |            134.06 |         0.14517 |         0.15019 |           nb | DistributionNames:               kernel |
|      |         |        |            |                   |                 |                 |              | Width:                           2612.2 |
|   48 |       8 | Accept |     0.1494 |            865.49 |         0.14517 |         0.15019 |          svm | BoxConstraint:                 0.028795 |
|      |         |        |            |                   |                 |                 |              | KernelScale:                     1.4357 |
|   49 |       8 | Accept |    0.17342 |            7.5968 |         0.14517 |         0.15019 |         tree | MinLeafSize:                          3 |
|   50 |       8 | Accept |    0.15016 |            3.9429 |         0.14517 |         0.15019 |         tree | MinLeafSize:                        171 |
|   51 |       8 | Accept |    0.16106 |            170.49 |         0.14517 |          0.1505 |     ensemble | Method:                             Bag |
|      |         |        |            |                   |                 |                 |              | NumLearningCycles:                  248 |
|      |         |        |            |                   |                 |                 |              | MinLeafSize:                        358 |
|   52 |       8 | Accept |    0.17901 |            9.2773 |         0.14517 |          0.1505 |         tree | MinLeafSize:                          2 |
|   53 |       8 | Accept |    0.17487 |            146.78 |         0.14517 |          0.1505 |           nb | DistributionNames:               kernel |
|      |         |        |            |                   |                 |                 |              | Width:                           65.783 |
|   54 |       8 | Accept |    0.15025 |            243.33 |         0.14517 |         0.15019 |     ensemble | Method:                      LogitBoost |
|      |         |        |            |                   |                 |                 |              | NumLearningCycles:                  293 |
|      |         |        |            |                   |                 |                 |              | MinLeafSize:                         37 |
|   55 |       8 | Accept |    0.23138 |            406.36 |         0.14517 |         0.15019 |          svm | BoxConstraint:                 0.064193 |
|      |         |        |            |                   |                 |                 |              | KernelScale:                     38.054 |
|   56 |       8 | Accept |    0.15038 |            245.69 |         0.14517 |         0.15032 |     ensemble | Method:                      LogitBoost |
|      |         |        |            |                   |                 |                 |              | NumLearningCycles:                  300 |
|      |         |        |            |                   |                 |                 |              | MinLeafSize:                         16 |
|   57 |       8 | Accept |    0.14853 |            224.07 |         0.14517 |         0.15057 |     ensemble | Method:                      LogitBoost |
|      |         |        |            |                   |                 |                 |              | NumLearningCycles:                  259 |
|      |         |        |            |                   |                 |                 |              | MinLeafSize:                        684 |
|   58 |       8 | Accept |    0.15075 |            210.06 |         0.14517 |         0.15016 |     ensemble | Method:                      LogitBoost |
|      |         |        |            |                   |                 |                 |              | NumLearningCycles:                  296 |
|      |         |        |            |                   |                 |                 |              | MinLeafSize:                         33 |
|   59 |       8 | Accept |    0.14981 |            221.88 |         0.14517 |         0.15016 |     ensemble | Method:                      LogitBoost |
|      |         |        |            |                   |                 |                 |              | NumLearningCycles:                  300 |
|      |         |        |            |                   |                 |                 |              | MinLeafSize:                         18 |
|   60 |       8 | Accept |    0.15111 |            192.41 |         0.14517 |         0.15004 |     ensemble | Method:                      LogitBoost |
|      |         |        |            |                   |                 |                 |              | NumLearningCycles:                  250 |
|      |         |        |            |                   |                 |                 |              | MinLeafSize:                       1571 |
|=======================================================================================================================================================|
| Iter | Active  | Eval   | Validation | Time for training | Observed min    | Estimated min   | Learner      | Hyperparameter:                 Value   |
|      | workers | result | loss       | & validation (sec)| validation loss | validation loss |              |                                         |
|=======================================================================================================================================================|
|   61 |       8 | Accept |    0.15018 |             219.2 |         0.14517 |         0.15006 |     ensemble | Method:                      LogitBoost |
|      |         |        |            |                   |                 |                 |              | NumLearningCycles:                  297 |
|      |         |        |            |                   |                 |                 |              | MinLeafSize:                         29 |
|   62 |       8 | Accept |    0.14983 |            207.92 |         0.14517 |         0.14994 |     ensemble | Method:                      LogitBoost |
|      |         |        |            |                   |                 |                 |              | NumLearningCycles:                  272 |
|      |         |        |            |                   |                 |                 |              | MinLeafSize:                        553 |
|   63 |       8 | Accept |    0.15006 |            208.62 |         0.14517 |         0.15004 |     ensemble | Method:                      LogitBoost |
|      |         |        |            |                   |                 |                 |              | NumLearningCycles:                  299 |
|      |         |        |            |                   |                 |                 |              | MinLeafSize:                         13 |
|   64 |       8 | Accept |    0.15116 |            199.41 |         0.14517 |         0.14986 |     ensemble | Method:                      LogitBoost |
|      |         |        |            |                   |                 |                 |              | NumLearningCycles:                  256 |
|      |         |        |            |                   |                 |                 |              | MinLeafSize:                       1574 |

 Automated Classifier Selection with Bayesian and ASHA Optimization

19-219



|   65 |       8 | Accept |    0.14934 |            214.65 |         0.14517 |         0.14923 |     ensemble | Method:                      LogitBoost |
|      |         |        |            |                   |                 |                 |              | NumLearningCycles:                  264 |
|      |         |        |            |                   |                 |                 |              | MinLeafSize:                       1469 |
|   66 |       8 | Accept |    0.16747 |            359.01 |         0.14517 |         0.14923 |          svm | BoxConstraint:                 0.033521 |
|      |         |        |            |                   |                 |                 |              | KernelScale:                     12.508 |
|   67 |       8 | Accept |    0.14883 |            219.75 |         0.14517 |         0.14919 |     ensemble | Method:                      LogitBoost |
|      |         |        |            |                   |                 |                 |              | NumLearningCycles:                  254 |
|      |         |        |            |                   |                 |                 |              | MinLeafSize:                        986 |
|   68 |       8 | Accept |    0.14959 |               207 |         0.14517 |         0.14912 |     ensemble | Method:                      LogitBoost |
|      |         |        |            |                   |                 |                 |              | NumLearningCycles:                  259 |
|      |         |        |            |                   |                 |                 |              | MinLeafSize:                       1173 |
|   69 |       8 | Accept |    0.15016 |            207.07 |         0.14517 |         0.14918 |     ensemble | Method:                      LogitBoost |
|      |         |        |            |                   |                 |                 |              | NumLearningCycles:                  290 |
|      |         |        |            |                   |                 |                 |              | MinLeafSize:                       1897 |
|   70 |       8 | Accept |    0.14754 |            275.92 |         0.14517 |         0.14918 |          svm | BoxConstraint:                  0.10603 |
|      |         |        |            |                   |                 |                 |              | KernelScale:                     5.0157 |
|   71 |       8 | Accept |    0.14794 |             282.2 |         0.14517 |         0.14918 |          svm | BoxConstraint:                  0.11374 |
|      |         |        |            |                   |                 |                 |              | KernelScale:                     5.4724 |
|   72 |       8 | Accept |    0.15093 |             190.3 |         0.14517 |         0.14914 |     ensemble | Method:                      LogitBoost |
|      |         |        |            |                   |                 |                 |              | NumLearningCycles:                  267 |
|      |         |        |            |                   |                 |                 |              | MinLeafSize:                       1707 |
|   73 |       8 | Accept |    0.14908 |            300.63 |         0.14517 |         0.14914 |          svm | BoxConstraint:                 0.087041 |
|      |         |        |            |                   |                 |                 |              | KernelScale:                     6.0336 |
|   74 |       8 | Accept |    0.14875 |            246.04 |         0.14517 |         0.14913 |     ensemble | Method:                      LogitBoost |
|      |         |        |            |                   |                 |                 |              | NumLearningCycles:                  299 |
|      |         |        |            |                   |                 |                 |              | MinLeafSize:                        934 |
|   75 |       8 | Accept |    0.16303 |            345.34 |         0.14517 |         0.14913 |          svm | BoxConstraint:                  0.10529 |
|      |         |        |            |                   |                 |                 |              | KernelScale:                      18.53 |
|   76 |       8 | Accept |    0.14828 |            274.59 |         0.14517 |         0.14913 |          svm | BoxConstraint:                 0.060389 |
|      |         |        |            |                   |                 |                 |              | KernelScale:                     4.7508 |
|   77 |       8 | Accept |    0.15908 |            326.16 |         0.14517 |         0.14913 |          svm | BoxConstraint:                     0.11 |
|      |         |        |            |                   |                 |                 |              | KernelScale:                     16.289 |
|   78 |       8 | Accept |    0.15976 |            297.48 |         0.14517 |         0.14852 |          svm | BoxConstraint:                  0.26147 |
|      |         |        |            |                   |                 |                 |              | KernelScale:                     25.792 |
|   79 |       8 | Accept |    0.14857 |             279.1 |         0.14517 |         0.14802 |          svm | BoxConstraint:                 0.048355 |
|      |         |        |            |                   |                 |                 |              | KernelScale:                     4.4186 |
|   80 |       8 | Accept |    0.14944 |            302.39 |         0.14517 |         0.14845 |          svm | BoxConstraint:                 0.041852 |
|      |         |        |            |                   |                 |                 |              | KernelScale:                     4.9836 |
|=======================================================================================================================================================|
| Iter | Active  | Eval   | Validation | Time for training | Observed min    | Estimated min   | Learner      | Hyperparameter:                 Value   |
|      | workers | result | loss       | & validation (sec)| validation loss | validation loss |              |                                         |
|=======================================================================================================================================================|
|   81 |       8 | Accept |    0.19487 |            401.11 |         0.14517 |         0.14861 |          svm | BoxConstraint:                 0.078452 |
|      |         |        |            |                   |                 |                 |              | KernelScale:                     30.022 |
|   82 |       8 | Accept |     0.1461 |            315.95 |         0.14517 |         0.14876 |          svm | BoxConstraint:                  0.15302 |
|      |         |        |            |                   |                 |                 |              | KernelScale:                     4.7768 |
|   83 |       8 | Accept |    0.15583 |            333.62 |         0.14517 |         0.14716 |          svm | BoxConstraint:                0.0071375 |
|      |         |        |            |                   |                 |                 |              | KernelScale:                     4.1809 |
|   84 |       8 | Accept |    0.14761 |            297.08 |         0.14517 |          0.1478 |          svm | BoxConstraint:                 0.070313 |
|      |         |        |            |                   |                 |                 |              | KernelScale:                     4.4613 |
|   85 |       8 | Accept |    0.14531 |            326.83 |         0.14517 |         0.14706 |          svm | BoxConstraint:                  0.73357 |
|      |         |        |            |                   |                 |                 |              | KernelScale:                     5.3351 |
|   86 |       8 | Accept |    0.14691 |            303.06 |         0.14517 |         0.14643 |          svm | BoxConstraint:                 0.089237 |
|      |         |        |            |                   |                 |                 |              | KernelScale:                      4.479 |
|   87 |       8 | Accept |    0.15009 |            313.15 |         0.14517 |         0.14635 |          svm | BoxConstraint:                 0.028044 |
|      |         |        |            |                   |                 |                 |              | KernelScale:                     4.6944 |
|   88 |       8 | Accept |     0.1578 |            212.73 |         0.14517 |         0.14635 |     ensemble | Method:                      LogitBoost |
|      |         |        |            |                   |                 |                 |              | NumLearningCycles:                  283 |
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|      |         |        |            |                   |                 |                 |              | MinLeafSize:                       2103 |
|   89 |       8 | Accept |    0.14521 |            456.62 |         0.14517 |         0.14617 |          svm | BoxConstraint:                   1.9049 |
|      |         |        |            |                   |                 |                 |              | KernelScale:                     4.7834 |
|   90 |       8 | Accept |    0.15028 |            224.72 |         0.14517 |         0.14617 |     ensemble | Method:                      LogitBoost |
|      |         |        |            |                   |                 |                 |              | NumLearningCycles:                  271 |
|      |         |        |            |                   |                 |                 |              | MinLeafSize:                       1953 |
|   91 |       8 | Accept |    0.15213 |             316.5 |         0.14517 |         0.14614 |          svm | BoxConstraint:                 0.016203 |
|      |         |        |            |                   |                 |                 |              | KernelScale:                     4.3045 |
|   92 |       8 | Accept |    0.14533 |            405.52 |         0.14517 |         0.14618 |          svm | BoxConstraint:                   2.5334 |
|      |         |        |            |                   |                 |                 |              | KernelScale:                     5.0734 |
|   93 |       8 | Accept |     0.4955 |              5808 |         0.14517 |         0.14629 |          svm | BoxConstraint:                0.0055052 |
|      |         |        |            |                   |                 |                 |              | KernelScale:                    0.11946 |
|   94 |       8 | Accept |    0.14599 |             421.4 |         0.14517 |         0.14552 |          svm | BoxConstraint:                   0.1423 |
|      |         |        |            |                   |                 |                 |              | KernelScale:                     2.5078 |
|   95 |       8 | Accept |    0.15696 |            334.19 |         0.14517 |          0.1459 |          svm | BoxConstraint:                0.0086085 |
|      |         |        |            |                   |                 |                 |              | KernelScale:                     4.7011 |
|   96 |       8 | Accept |    0.16125 |            335.61 |         0.14517 |         0.14572 |          svm | BoxConstraint:                0.0043914 |
|      |         |        |            |                   |                 |                 |              | KernelScale:                     4.3671 |
|   97 |       8 | Accept |    0.24245 |            6787.2 |         0.14517 |         0.14594 |          svm | BoxConstraint:                   11.252 |
|      |         |        |            |                   |                 |                 |              | KernelScale:                    0.48339 |
|   98 |       8 | Accept |    0.16294 |            354.47 |         0.14517 |         0.14602 |          svm | BoxConstraint:                0.0062158 |
|      |         |        |            |                   |                 |                 |              | KernelScale:                     5.3367 |
|   99 |       8 | Accept |    0.16271 |            339.55 |         0.14517 |         0.14604 |          svm | BoxConstraint:                0.0046539 |
|      |         |        |            |                   |                 |                 |              | KernelScale:                     4.7345 |
|  100 |       8 | Accept |    0.17184 |            5978.5 |         0.14517 |         0.14589 |          svm | BoxConstraint:                   7.6879 |
|      |         |        |            |                   |                 |                 |              | KernelScale:                     1.6339 |
|=======================================================================================================================================================|
| Iter | Active  | Eval   | Validation | Time for training | Observed min    | Estimated min   | Learner      | Hyperparameter:                 Value   |
|      | workers | result | loss       | & validation (sec)| validation loss | validation loss |              |                                         |
|=======================================================================================================================================================|
|  101 |       8 | Accept |    0.16142 |            355.72 |         0.14517 |         0.14624 |          svm | BoxConstraint:                0.0057866 |
|      |         |        |            |                   |                 |                 |              | KernelScale:                     4.8082 |
|  102 |       8 | Accept |    0.15067 |            1030.9 |         0.14517 |         0.14639 |          svm | BoxConstraint:                0.0050117 |
|      |         |        |            |                   |                 |                 |              | KernelScale:                     1.0093 |
|  103 |       8 | Best   |    0.14513 |            501.17 |         0.14513 |          0.1457 |          svm | BoxConstraint:                   3.1097 |
|      |         |        |            |                   |                 |                 |              | KernelScale:                      5.013 |
|  104 |       8 | Accept |    0.35434 |            7976.9 |         0.14513 |         0.14584 |          svm | BoxConstraint:                  0.06472 |
|      |         |        |            |                   |                 |                 |              | KernelScale:                  0.0099007 |
|  105 |       8 | Accept |    0.26591 |            8022.4 |         0.14513 |         0.14609 |          svm | BoxConstraint:                   3.0956 |
|      |         |        |            |                   |                 |                 |              | KernelScale:                   0.013802 |
|  106 |       8 | Accept |    0.35499 |            5418.2 |         0.14513 |         0.14564 |          svm | BoxConstraint:                  0.37919 |
|      |         |        |            |                   |                 |                 |              | KernelScale:                    0.14009 |
|  107 |       8 | Accept |      0.167 |            6198.1 |         0.14513 |         0.14563 |          svm | BoxConstraint:                   659.16 |
|      |         |        |            |                   |                 |                 |              | KernelScale:                     4.3029 |
|  108 |       8 | Accept |    0.14539 |            747.98 |         0.14513 |         0.14574 |          svm | BoxConstraint:                   5.9153 |
|      |         |        |            |                   |                 |                 |              | KernelScale:                     4.9842 |
|  109 |       8 | Accept |    0.14543 |            586.07 |         0.14513 |         0.14532 |          svm | BoxConstraint:                   3.9618 |
|      |         |        |            |                   |                 |                 |              | KernelScale:                     4.9501 |
|  110 |       8 | Accept |    0.17056 |            5739.7 |         0.14513 |          0.1457 |          svm | BoxConstraint:                0.0024422 |
|      |         |        |            |                   |                 |                 |              | KernelScale:                    0.46361 |
|  111 |       8 | Accept |    0.29426 |            4906.9 |         0.14513 |         0.14557 |          svm | BoxConstraint:                0.0064138 |
|      |         |        |            |                   |                 |                 |              | KernelScale:                    0.31177 |
|  112 |       8 | Accept |     0.1717 |            5907.9 |         0.14513 |         0.14571 |          svm | BoxConstraint:                  0.10504 |
|      |         |        |            |                   |                 |                 |              | KernelScale:                    0.82207 |
|  113 |       8 | Accept |    0.17241 |            5909.3 |         0.14513 |         0.14549 |          svm | BoxConstraint:                 0.028608 |
|      |         |        |            |                   |                 |                 |              | KernelScale:                    0.64777 |
|  114 |       8 | Accept |    0.17806 |            6444.5 |         0.14513 |         0.14558 |          svm | BoxConstraint:                  0.34511 |
|      |         |        |            |                   |                 |                 |              | KernelScale:                    0.72366 |
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|  115 |       8 | Accept |    0.16555 |              5481 |         0.14513 |         0.14533 |          svm | BoxConstraint:                  0.17641 |
|      |         |        |            |                   |                 |                 |              | KernelScale:                     1.0964 |
|  116 |       8 | Accept |    0.14788 |            1249.1 |         0.14513 |         0.14565 |          svm | BoxConstraint:                   11.881 |
|      |         |        |            |                   |                 |                 |              | KernelScale:                     4.8553 |
|  117 |       8 | Accept |    0.24664 |            5351.2 |         0.14513 |         0.14631 |          svm | BoxConstraint:                0.0048502 |
|      |         |        |            |                   |                 |                 |              | KernelScale:                    0.38595 |
|  118 |       8 | Best   |    0.14483 |            563.53 |         0.14483 |          0.1454 |          svm | BoxConstraint:                   2.2083 |
|      |         |        |            |                   |                 |                 |              | KernelScale:                     4.5125 |
|  119 |       8 | Accept |    0.15403 |            340.78 |         0.14483 |         0.14559 |          svm | BoxConstraint:                    0.843 |
|      |         |        |            |                   |                 |                 |              | KernelScale:                     26.671 |
|  120 |       8 | Accept |    0.27575 |            4752.3 |         0.14483 |         0.14532 |          svm | BoxConstraint:                0.0017988 |
|      |         |        |            |                   |                 |                 |              | KernelScale:                    0.21724 |

__________________________________________________________
Optimization completed.
Total iterations: 120
Total elapsed time: 17271.6899 seconds
Total time for training and validation: 116613.8436 seconds

Best observed learner is an svm model with:
    Learner:                   svm
    BoxConstraint:          2.2083
    KernelScale:            4.5125
Observed validation loss: 0.14483
Time for training and validation: 563.5264 seconds

Best estimated learner (returned model) is an svm model with:
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    Learner:                   svm
    BoxConstraint:          3.1097
    KernelScale:             5.013
Estimated validation loss: 0.14532
Estimated time for training and validation: 574.6554 seconds

Documentation for fitcauto display

The Total elapsed time value shows that the Bayesian optimization took a while to run (about 4.8
hours).

The final model returned by fitcauto corresponds to the best estimated learner. Before returning
the model, the function retrains it using the entire training data set (adultdata), the listed Learner
(or model) type, and the displayed hyperparameter values.

Use Automated Model Selection with ASHA Optimization

When fitcauto with Bayesian optimization takes a long time to run because of the number of
observations in your training set, consider using fitcauto with ASHA optimization instead. Given
that adultdata contains over 10,000 observations, try using fitcauto with ASHA optimization to
automatically find an appropriate classifier. When you use fitcauto with ASHA optimization, the
function randomly chooses several models with different hyperparameter values and trains them on a
small subset of the training data. If the cross-validation classification error (Validation Loss) of a
particular model is promising, the model is promoted and trained on a larger amount of the training
data. This process repeats, and successful models are trained on progressively larger amounts of
data. By default, fitcauto provides a plot of the optimization and an iterative display of the
optimization results. For more information on how to interpret these results, see “Verbose Display” on
page 35-1878.

Set the observation weights, and specify to run the ASHA optimization in parallel. Note that ASHA
optimization often has more iterations than Bayesian optimization by default. If you have a time
constraint, you can specify the MaxTime field of the HyperparameterOptimizationOptions
structure to limit the number of seconds fitcauto runs.

ashaOptions = struct("Optimizer","asha","UseParallel",true);
[ashaMdl,ashaResults] = fitcauto(adultdata,"salary","Weights","fnlwgt", ...
   "HyperparameterOptimizationOptions",ashaOptions);

Warning: It is recommended that you first standardize all numeric predictors when optimizing the Naive Bayes 'Width' parameter. Ignore this warning if you have done that.

Copying objective function to workers...
Done copying objective function to workers.
Learner types to explore: ensemble, nb, svm, tree
Total iterations (MaxObjectiveEvaluations): 425
Total time (MaxTime): Inf

|====================================================================================================================================================|
| Iter | Active  | Eval   | Validation | Time for training | Observed min    | Training set | Learner      | Hyperparameter:                 Value   |
|      | workers | result | loss       | & validation (sec)| validation loss | size         |              |                                         |
|====================================================================================================================================================|
|    1 |       8 | Best   |     0.1831 |           0.59595 |          0.1831 |          378 |           nb | DistributionNames:               normal |
|      |         |        |            |                   |                 |              |              | Width:                              NaN |
|    2 |       7 | Accept |    0.24677 |           0.64255 |          0.1831 |          378 |         tree | MinLeafSize:                       2865 |
|    3 |       7 | Accept |    0.24677 |           0.88001 |          0.1831 |          378 |         tree | MinLeafSize:                       1629 |
|    4 |       7 | Accept |    0.24677 |           0.49804 |          0.1831 |          378 |          svm | BoxConstraint:                   93.722 |
|      |         |        |            |                   |                 |              |              | KernelScale:                  0.0031746 |
|    5 |       8 | Best   |    0.15872 |            2.6522 |         0.15872 |          378 |          svm | BoxConstraint:                   622.14 |
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|      |         |        |            |                   |                 |              |              | KernelScale:                     8.3947 |
|    6 |       8 | Accept |    0.17662 |           0.88532 |         0.15872 |         1509 |           nb | DistributionNames:               normal |
|      |         |        |            |                   |                 |              |              | Width:                              NaN |
|    7 |       8 | Accept |    0.17844 |            0.7806 |         0.15872 |          378 |           nb | DistributionNames:               normal |
|      |         |        |            |                   |                 |              |              | Width:                              NaN |
|    8 |       7 | Accept |    0.24677 |            1.6871 |         0.15872 |          378 |          svm | BoxConstraint:                   16.149 |
|      |         |        |            |                   |                 |              |              | KernelScale:                     418.84 |
|    9 |       7 | Accept |    0.18401 |           0.70381 |         0.15872 |          378 |           nb | DistributionNames:               normal |
|      |         |        |            |                   |                 |              |              | Width:                              NaN |
|   10 |       7 | Accept |    0.17244 |           0.31131 |         0.15872 |          378 |         tree | MinLeafSize:                          4 |
|   11 |       8 | Accept |    0.17135 |           0.45227 |         0.15872 |          378 |         tree | MinLeafSize:                         13 |
|   12 |       8 | Accept |    0.24677 |           0.53034 |         0.15872 |          378 |          svm | BoxConstraint:                    272.5 |
|      |         |        |            |                   |                 |              |              | KernelScale:                  0.0013306 |
|   13 |       8 | Accept |    0.24677 |           0.34333 |         0.15872 |          378 |         tree | MinLeafSize:                        701 |
|   14 |       8 | Best   |    0.15344 |            1.0465 |         0.15344 |         1509 |         tree | MinLeafSize:                         13 |
|   15 |       8 | Accept |     0.1538 |            12.371 |         0.15344 |         1509 |          svm | BoxConstraint:                   622.14 |
|      |         |        |            |                   |                 |              |              | KernelScale:                     8.3947 |
|   16 |       8 | Accept |    0.24677 |           0.31034 |         0.15344 |          378 |         tree | MinLeafSize:                       1773 |
|   17 |       8 | Accept |      0.186 |             21.17 |         0.15344 |          378 |           nb | DistributionNames:               kernel |
|      |         |        |            |                   |                 |              |              | Width:                           9030.3 |
|   18 |       8 | Accept |    0.17043 |            21.308 |         0.15344 |          378 |           nb | DistributionNames:               kernel |
|      |         |        |            |                   |                 |              |              | Width:                           512.37 |
|   19 |       8 | Accept |    0.18322 |            20.058 |         0.15344 |          378 |           nb | DistributionNames:               kernel |
|      |         |        |            |                   |                 |              |              | Width:                            30.45 |
|   20 |       8 | Accept |     0.1802 |            1.1355 |         0.15344 |          378 |           nb | DistributionNames:               normal |
|      |         |        |            |                   |                 |              |              | Width:                              NaN |
|====================================================================================================================================================|
| Iter | Active  | Eval   | Validation | Time for training | Observed min    | Training set | Learner      | Hyperparameter:                 Value   |
|      | workers | result | loss       | & validation (sec)| validation loss | size         |              |                                         |
|====================================================================================================================================================|
|   21 |       8 | Accept |    0.18721 |            23.236 |         0.15344 |          378 |           nb | DistributionNames:               kernel |
|      |         |        |            |                   |                 |              |              | Width:                           9222.9 |
|   22 |       8 | Accept |    0.20066 |            21.173 |         0.15344 |          378 |           nb | DistributionNames:               kernel |
|      |         |        |            |                   |                 |              |              | Width:                           129.74 |
|   23 |       8 | Accept |     0.2205 |            17.802 |         0.15344 |          378 |           nb | DistributionNames:               kernel |
|      |         |        |            |                   |                 |              |              | Width:                            30996 |
|   24 |       8 | Accept |      0.155 |           0.81516 |         0.15344 |         1509 |         tree | MinLeafSize:                          4 |
|   25 |       8 | Best   |    0.14361 |            1.0991 |         0.14361 |         6033 |         tree | MinLeafSize:                         13 |
|   26 |       8 | Accept |    0.19409 |            33.202 |         0.14361 |          378 |          svm | BoxConstraint:                   259.24 |
|      |         |        |            |                   |                 |              |              | KernelScale:                    0.32997 |
|   27 |       8 | Accept |    0.24677 |            2.6882 |         0.14361 |          378 |          svm | BoxConstraint:                0.0059822 |
|      |         |        |            |                   |                 |              |              | KernelScale:                     713.08 |
|   28 |       8 | Accept |    0.16587 |            1.8275 |         0.14361 |          378 |           nb | DistributionNames:               normal |
|      |         |        |            |                   |                 |              |              | Width:                              NaN |
|   29 |       8 | Accept |    0.18015 |            16.315 |         0.14361 |          378 |          svm | BoxConstraint:                   0.5769 |
|      |         |        |            |                   |                 |              |              | KernelScale:                    0.36299 |
|   30 |       8 | Accept |    0.17001 |            1.1164 |         0.14361 |         1509 |           nb | DistributionNames:               normal |
|      |         |        |            |                   |                 |              |              | Width:                              NaN |
|   31 |       8 | Accept |    0.18193 |           0.55339 |         0.14361 |          378 |           nb | DistributionNames:               normal |
|      |         |        |            |                   |                 |              |              | Width:                              NaN |
|   32 |       8 | Accept |    0.16862 |            24.418 |         0.14361 |          378 |           nb | DistributionNames:               kernel |
|      |         |        |            |                   |                 |              |              | Width:                            102.7 |
|   33 |       7 | Accept |      0.241 |            2.5999 |         0.14361 |          378 |          svm | BoxConstraint:                   0.6369 |
|      |         |        |            |                   |                 |              |              | KernelScale:                     23.843 |
|   34 |       7 | Accept |     0.1821 |            1.0709 |         0.14361 |          378 |           nb | DistributionNames:               normal |
|      |         |        |            |                   |                 |              |              | Width:                              NaN |
|   35 |       8 | Accept |    0.18464 |            29.794 |         0.14361 |          378 |           nb | DistributionNames:               kernel |
|      |         |        |            |                   |                 |              |              | Width:                           9256.9 |
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|   36 |       8 | Accept |    0.24677 |            34.988 |         0.14361 |          378 |     ensemble | Method:                      LogitBoost |
|      |         |        |            |                   |                 |              |              | NumLearningCycles:                  289 |
|      |         |        |            |                   |                 |              |              | MinLeafSize:                        929 |
|   37 |       8 | Accept |    0.16073 |            50.947 |         0.14361 |          378 |     ensemble | Method:                      LogitBoost |
|      |         |        |            |                   |                 |              |              | NumLearningCycles:                  283 |
|      |         |        |            |                   |                 |              |              | MinLeafSize:                          5 |
|   38 |       8 | Accept |    0.17086 |            52.897 |         0.14361 |         1509 |           nb | DistributionNames:               kernel |
|      |         |        |            |                   |                 |              |              | Width:                           512.37 |
|   39 |       8 | Accept |    0.17374 |           0.96688 |         0.14361 |          378 |         tree | MinLeafSize:                          7 |
|   40 |       8 | Accept |    0.16598 |            37.543 |         0.14361 |          378 |     ensemble | Method:                      LogitBoost |
|      |         |        |            |                   |                 |              |              | NumLearningCycles:                  281 |
|      |         |        |            |                   |                 |              |              | MinLeafSize:                          2 |
|====================================================================================================================================================|
| Iter | Active  | Eval   | Validation | Time for training | Observed min    | Training set | Learner      | Hyperparameter:                 Value   |
|      | workers | result | loss       | & validation (sec)| validation loss | size         |              |                                         |
|====================================================================================================================================================|
|   41 |       8 | Accept |      0.242 |            1.7295 |         0.14361 |          378 |          svm | BoxConstraint:                0.0093388 |
|      |         |        |            |                   |                 |              |              | KernelScale:                     4.7672 |
|   42 |       8 | Accept |    0.20568 |            32.829 |         0.14361 |          378 |          svm | BoxConstraint:                 0.091315 |
|      |         |        |            |                   |                 |              |              | KernelScale:                    0.30293 |
|   43 |       8 | Accept |    0.16465 |            56.109 |         0.14361 |          378 |     ensemble | Method:                             Bag |
|      |         |        |            |                   |                 |              |              | NumLearningCycles:                  265 |
|      |         |        |            |                   |                 |              |              | MinLeafSize:                          2 |
|   44 |       8 | Accept |    0.16598 |             2.096 |         0.14361 |          378 |          svm | BoxConstraint:                   49.164 |
|      |         |        |            |                   |                 |              |              | KernelScale:                     1.7376 |
|   45 |       8 | Accept |    0.18456 |            52.012 |         0.14361 |         1509 |           nb | DistributionNames:               kernel |
|      |         |        |            |                   |                 |              |              | Width:                            102.7 |
|   46 |       8 | Accept |    0.24677 |           0.77083 |         0.14361 |          378 |         tree | MinLeafSize:                      13706 |
|   47 |       8 | Accept |    0.16477 |            25.694 |         0.14361 |          378 |     ensemble | Method:                      LogitBoost |
|      |         |        |            |                   |                 |              |              | NumLearningCycles:                  218 |
|      |         |        |            |                   |                 |              |              | MinLeafSize:                         36 |
|   48 |       8 | Accept |    0.17952 |             1.107 |         0.14361 |          378 |           nb | DistributionNames:               normal |
|      |         |        |            |                   |                 |              |              | Width:                              NaN |
|   49 |       8 | Accept |    0.32627 |            84.486 |         0.14361 |          378 |          svm | BoxConstraint:                    549.6 |
|      |         |        |            |                   |                 |              |              | KernelScale:                   0.036915 |
|   50 |       8 | Accept |    0.16346 |            14.925 |         0.14361 |          378 |           nb | DistributionNames:               kernel |
|      |         |        |            |                   |                 |              |              | Width:                          0.65733 |
|   51 |       8 | Accept |    0.24677 |            4.6465 |         0.14361 |          378 |          svm | BoxConstraint:                   0.9246 |
|      |         |        |            |                   |                 |              |              | KernelScale:                     398.37 |
|   52 |       8 | Accept |    0.15285 |            42.395 |         0.14361 |         1509 |     ensemble | Method:                      LogitBoost |
|      |         |        |            |                   |                 |              |              | NumLearningCycles:                  283 |
|      |         |        |            |                   |                 |              |              | MinLeafSize:                          5 |
|   53 |       8 | Accept |    0.24677 |            2.1044 |         0.14361 |          378 |          svm | BoxConstraint:                 0.041664 |
|      |         |        |            |                   |                 |              |              | KernelScale:                     29.281 |
|   54 |       8 | Accept |    0.24677 |            39.272 |         0.14361 |          378 |     ensemble | Method:                             Bag |
|      |         |        |            |                   |                 |              |              | NumLearningCycles:                  216 |
|      |         |        |            |                   |                 |              |              | MinLeafSize:                       1096 |
|   55 |       8 | Accept |    0.15401 |            48.294 |         0.14361 |         1509 |     ensemble | Method:                      LogitBoost |
|      |         |        |            |                   |                 |              |              | NumLearningCycles:                  218 |
|      |         |        |            |                   |                 |              |              | MinLeafSize:                         36 |
|   56 |       8 | Accept |    0.14704 |            59.661 |         0.14361 |         1509 |     ensemble | Method:                             Bag |
|      |         |        |            |                   |                 |              |              | NumLearningCycles:                  265 |
|      |         |        |            |                   |                 |              |              | MinLeafSize:                          2 |
|   57 |       8 | Accept |    0.15196 |            41.835 |         0.14361 |         1509 |           nb | DistributionNames:               kernel |
|      |         |        |            |                   |                 |              |              | Width:                          0.65733 |
|   58 |       8 | Accept |    0.24285 |            97.209 |         0.14361 |          378 |          svm | BoxConstraint:                   62.688 |
|      |         |        |            |                   |                 |              |              | KernelScale:                   0.019392 |
|   59 |       8 | Accept |    0.24677 |           0.75744 |         0.14361 |          378 |         tree | MinLeafSize:                        159 |

 Automated Classifier Selection with Bayesian and ASHA Optimization

19-225



|   60 |       8 | Accept |     0.1928 |             24.43 |         0.14361 |          378 |           nb | DistributionNames:               kernel |
|      |         |        |            |                   |                 |              |              | Width:                           24.876 |
|====================================================================================================================================================|
| Iter | Active  | Eval   | Validation | Time for training | Observed min    | Training set | Learner      | Hyperparameter:                 Value   |
|      | workers | result | loss       | & validation (sec)| validation loss | size         |              |                                         |
|====================================================================================================================================================|
|   61 |       8 | Accept |    0.20489 |            21.827 |         0.14361 |          378 |           nb | DistributionNames:               kernel |
|      |         |        |            |                   |                 |              |              | Width:                           6524.9 |
|   62 |       8 | Accept |    0.24677 |            0.5275 |         0.14361 |          378 |          svm | BoxConstraint:                0.0012686 |
|      |         |        |            |                   |                 |              |              | KernelScale:                  0.0019115 |
|   63 |       8 | Accept |    0.24677 |           0.43222 |         0.14361 |          378 |          svm | BoxConstraint:                   68.024 |
|      |         |        |            |                   |                 |              |              | KernelScale:                  0.0023633 |
|   64 |       8 | Accept |    0.26755 |            94.048 |         0.14361 |          378 |          svm | BoxConstraint:                   3.4696 |
|      |         |        |            |                   |                 |              |              | KernelScale:                   0.026518 |
|   65 |       8 | Accept |    0.25611 |            97.151 |         0.14361 |          378 |          svm | BoxConstraint:                   14.395 |
|      |         |        |            |                   |                 |              |              | KernelScale:                   0.018438 |
|   66 |       8 | Accept |    0.24677 |            0.6123 |         0.14361 |          378 |          svm | BoxConstraint:                   6.1487 |
|      |         |        |            |                   |                 |              |              | KernelScale:                  0.0012672 |
|   67 |       8 | Accept |    0.23521 |            38.994 |         0.14361 |          378 |          svm | BoxConstraint:                  0.47847 |
|      |         |        |            |                   |                 |              |              | KernelScale:                    0.21848 |
|   68 |       8 | Accept |    0.14949 |            75.744 |         0.14361 |         6033 |     ensemble | Method:                      LogitBoost |
|      |         |        |            |                   |                 |              |              | NumLearningCycles:                  283 |
|      |         |        |            |                   |                 |              |              | MinLeafSize:                          5 |
|   69 |       8 | Accept |     0.1689 |            26.118 |         0.14361 |         1509 |          svm | BoxConstraint:                   49.164 |
|      |         |        |            |                   |                 |              |              | KernelScale:                     1.7376 |
|   70 |       8 | Accept |    0.17936 |              25.8 |         0.14361 |          378 |     ensemble | Method:                      LogitBoost |
|      |         |        |            |                   |                 |              |              | NumLearningCycles:                  228 |
|      |         |        |            |                   |                 |              |              | MinLeafSize:                        164 |
|   71 |       8 | Accept |     0.2466 |            34.448 |         0.14361 |          378 |     ensemble | Method:                             Bag |
|      |         |        |            |                   |                 |              |              | NumLearningCycles:                  239 |
|      |         |        |            |                   |                 |              |              | MinLeafSize:                         88 |
|   72 |       8 | Accept |    0.15654 |            2.6753 |         0.14361 |         1509 |         tree | MinLeafSize:                          7 |
|   73 |       8 | Accept |    0.18175 |           0.87169 |         0.14361 |          378 |           nb | DistributionNames:               normal |
|      |         |        |            |                   |                 |              |              | Width:                              NaN |
|   74 |       8 | Accept |    0.16188 |            42.445 |         0.14361 |          378 |     ensemble | Method:                             Bag |
|      |         |        |            |                   |                 |              |              | NumLearningCycles:                  232 |
|      |         |        |            |                   |                 |              |              | MinLeafSize:                         14 |
|   75 |       8 | Accept |    0.24677 |            2.9432 |         0.14361 |          378 |          svm | BoxConstraint:                   5.2509 |
|      |         |        |            |                   |                 |              |              | KernelScale:                     566.41 |
|   76 |       8 | Accept |    0.24677 |           0.68866 |         0.14361 |          378 |          svm | BoxConstraint:                   121.38 |
|      |         |        |            |                   |                 |              |              | KernelScale:                  0.0038679 |
|   77 |       8 | Accept |    0.24677 |            1.8912 |         0.14361 |          378 |          svm | BoxConstraint:                   4.2627 |
|      |         |        |            |                   |                 |              |              | KernelScale:                      139.4 |
|   78 |       8 | Accept |    0.21364 |            25.979 |         0.14361 |          378 |           nb | DistributionNames:               kernel |
|      |         |        |            |                   |                 |              |              | Width:                            69985 |
|   79 |       8 | Accept |    0.16991 |            22.652 |         0.14361 |          378 |           nb | DistributionNames:               kernel |
|      |         |        |            |                   |                 |              |              | Width:                           12.131 |
|   80 |       8 | Accept |    0.24677 |            27.661 |         0.14361 |          378 |     ensemble | Method:                             Bag |
|      |         |        |            |                   |                 |              |              | NumLearningCycles:                  200 |
|      |         |        |            |                   |                 |              |              | MinLeafSize:                        285 |
|====================================================================================================================================================|
| Iter | Active  | Eval   | Validation | Time for training | Observed min    | Training set | Learner      | Hyperparameter:                 Value   |
|      | workers | result | loss       | & validation (sec)| validation loss | size         |              |                                         |
|====================================================================================================================================================|
|   81 |       8 | Accept |    0.16426 |            2.4413 |         0.14361 |          378 |          svm | BoxConstraint:                  0.10011 |
|      |         |        |            |                   |                 |              |              | KernelScale:                     3.7337 |
|   82 |       8 | Accept |    0.17779 |           0.78782 |         0.14361 |          378 |           nb | DistributionNames:               normal |
|      |         |        |            |                   |                 |              |              | Width:                              NaN |
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|   83 |       8 | Accept |    0.15315 |            42.755 |         0.14361 |         1509 |     ensemble | Method:                      LogitBoost |
|      |         |        |            |                   |                 |              |              | NumLearningCycles:                  281 |
|      |         |        |            |                   |                 |              |              | MinLeafSize:                          2 |
|   84 |       7 | Accept |    0.17499 |            1.8123 |         0.14361 |          378 |          svm | BoxConstraint:                   235.48 |
|      |         |        |            |                   |                 |              |              | KernelScale:                     1.5618 |
|   85 |       7 | Accept |     0.1702 |            1.7494 |         0.14361 |          378 |          svm | BoxConstraint:                   1.7191 |
|      |         |        |            |                   |                 |              |              | KernelScale:                     1.7936 |
|   86 |       8 | Accept |    0.17428 |           0.71717 |         0.14361 |          378 |         tree | MinLeafSize:                          1 |
|   87 |       8 | Accept |    0.24677 |           0.35012 |         0.14361 |          378 |         tree | MinLeafSize:                      10340 |
|   88 |       8 | Accept |    0.15506 |            4.6537 |         0.14361 |         1509 |          svm | BoxConstraint:                  0.10011 |
|      |         |        |            |                   |                 |              |              | KernelScale:                     3.7337 |
|   89 |       8 | Accept |    0.17907 |           0.93664 |         0.14361 |          378 |           nb | DistributionNames:               normal |
|      |         |        |            |                   |                 |              |              | Width:                              NaN |
|   90 |       8 | Accept |    0.15925 |            7.5152 |         0.14361 |         1509 |          svm | BoxConstraint:                   1.7191 |
|      |         |        |            |                   |                 |              |              | KernelScale:                     1.7936 |
|   91 |       8 | Accept |    0.16344 |            30.309 |         0.14361 |          378 |     ensemble | Method:                      LogitBoost |
|      |         |        |            |                   |                 |              |              | NumLearningCycles:                  213 |
|      |         |        |            |                   |                 |              |              | MinLeafSize:                         25 |
|   92 |       8 | Accept |    0.18234 |           0.92613 |         0.14361 |          378 |           nb | DistributionNames:               normal |
|      |         |        |            |                   |                 |              |              | Width:                              NaN |
|   93 |       8 | Accept |    0.24677 |            1.8464 |         0.14361 |          378 |          svm | BoxConstraint:                 0.019224 |
|      |         |        |            |                   |                 |              |              | KernelScale:                     574.94 |
|   94 |       8 | Accept |     0.1566 |            31.765 |         0.14361 |          378 |     ensemble | Method:                      LogitBoost |
|      |         |        |            |                   |                 |              |              | NumLearningCycles:                  209 |
|      |         |        |            |                   |                 |              |              | MinLeafSize:                          2 |
|   95 |       8 | Accept |    0.15317 |            50.355 |         0.14361 |         1509 |     ensemble | Method:                             Bag |
|      |         |        |            |                   |                 |              |              | NumLearningCycles:                  232 |
|      |         |        |            |                   |                 |              |              | MinLeafSize:                         14 |
|   96 |       8 | Accept |    0.24677 |           0.43111 |         0.14361 |          378 |         tree | MinLeafSize:                         95 |
|   97 |       8 | Accept |    0.16512 |            35.087 |         0.14361 |          378 |     ensemble | Method:                      LogitBoost |
|      |         |        |            |                   |                 |              |              | NumLearningCycles:                  239 |
|      |         |        |            |                   |                 |              |              | MinLeafSize:                         37 |
|   98 |       8 | Accept |    0.17052 |           0.45685 |         0.14361 |          378 |         tree | MinLeafSize:                          2 |
|   99 |       8 | Accept |    0.17347 |            1.1812 |         0.14361 |          378 |           nb | DistributionNames:               normal |
|      |         |        |            |                   |                 |              |              | Width:                              NaN |
|  100 |       8 | Accept |    0.16896 |            54.887 |         0.14361 |         1509 |           nb | DistributionNames:               kernel |
|      |         |        |            |                   |                 |              |              | Width:                           12.131 |
|====================================================================================================================================================|
| Iter | Active  | Eval   | Validation | Time for training | Observed min    | Training set | Learner      | Hyperparameter:                 Value   |
|      | workers | result | loss       | & validation (sec)| validation loss | size         |              |                                         |
|====================================================================================================================================================|
|  101 |       8 | Accept |    0.18156 |           0.49723 |         0.14361 |          378 |         tree | MinLeafSize:                         59 |
|  102 |       8 | Accept |    0.24677 |           0.68678 |         0.14361 |          378 |          svm | BoxConstraint:                0.0010962 |
|      |         |        |            |                   |                 |              |              | KernelScale:                  0.0023771 |
|  103 |       8 | Accept |    0.24677 |            33.615 |         0.14361 |          378 |     ensemble | Method:                             Bag |
|      |         |        |            |                   |                 |              |              | NumLearningCycles:                  262 |
|      |         |        |            |                   |                 |              |              | MinLeafSize:                       1898 |
|  104 |       8 | Accept |    0.15192 |            81.549 |         0.14361 |         6033 |     ensemble | Method:                             Bag |
|      |         |        |            |                   |                 |              |              | NumLearningCycles:                  265 |
|      |         |        |            |                   |                 |              |              | MinLeafSize:                          2 |
|  105 |       8 | Accept |    0.15412 |            32.695 |         0.14361 |         1509 |     ensemble | Method:                      LogitBoost |
|      |         |        |            |                   |                 |              |              | NumLearningCycles:                  209 |
|      |         |        |            |                   |                 |              |              | MinLeafSize:                          2 |
|  106 |       8 | Accept |    0.24677 |            2.1129 |         0.14361 |          378 |          svm | BoxConstraint:                  0.51162 |
|      |         |        |            |                   |                 |              |              | KernelScale:                     901.32 |
|  107 |       8 | Accept |    0.24712 |            96.705 |         0.14361 |          378 |          svm | BoxConstraint:                  0.12031 |
|      |         |        |            |                   |                 |              |              | KernelScale:                    0.03735 |
|  108 |       8 | Accept |    0.24677 |            0.5869 |         0.14361 |          378 |          svm | BoxConstraint:                   878.36 |
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|      |         |        |            |                   |                 |              |              | KernelScale:                  0.0032037 |
|  109 |       8 | Accept |    0.15335 |            46.629 |         0.14361 |         1509 |     ensemble | Method:                      LogitBoost |
|      |         |        |            |                   |                 |              |              | NumLearningCycles:                  213 |
|      |         |        |            |                   |                 |              |              | MinLeafSize:                         25 |
|  110 |       8 | Accept |    0.24677 |            42.807 |         0.14361 |          378 |     ensemble | Method:                             Bag |
|      |         |        |            |                   |                 |              |              | NumLearningCycles:                  229 |
|      |         |        |            |                   |                 |              |              | MinLeafSize:                        133 |
|  111 |       8 | Accept |    0.18895 |            1.9037 |         0.14361 |          378 |           nb | DistributionNames:               normal |
|      |         |        |            |                   |                 |              |              | Width:                              NaN |
|  112 |       8 | Accept |    0.16369 |             2.104 |         0.14361 |         1509 |         tree | MinLeafSize:                          2 |
|  113 |       8 | Accept |    0.16353 |            1.0029 |         0.14361 |          378 |         tree | MinLeafSize:                          3 |
|  114 |       8 | Accept |    0.15127 |            93.189 |         0.14361 |         6033 |           nb | DistributionNames:               kernel |
|      |         |        |            |                   |                 |              |              | Width:                          0.65733 |
|  115 |       8 | Accept |    0.16092 |            25.041 |         0.14361 |          378 |           nb | DistributionNames:               kernel |
|      |         |        |            |                   |                 |              |              | Width:                          0.59189 |
|  116 |       8 | Accept |    0.24677 |           0.91976 |         0.14361 |          378 |         tree | MinLeafSize:                        123 |
|  117 |       8 | Accept |    0.16083 |            55.658 |         0.14361 |          378 |     ensemble | Method:                             Bag |
|      |         |        |            |                   |                 |              |              | NumLearningCycles:                  241 |
|      |         |        |            |                   |                 |              |              | MinLeafSize:                          4 |
|  118 |       8 | Accept |    0.17643 |           0.91472 |         0.14361 |          378 |           nb | DistributionNames:               normal |
|      |         |        |            |                   |                 |              |              | Width:                              NaN |
|  119 |       8 | Accept |    0.15053 |            9.4088 |         0.14361 |        24130 |         tree | MinLeafSize:                         13 |
|  120 |       8 | Accept |    0.18671 |            1.1927 |         0.14361 |          378 |           nb | DistributionNames:               normal |
|      |         |        |            |                   |                 |              |              | Width:                              NaN |
|====================================================================================================================================================|
| Iter | Active  | Eval   | Validation | Time for training | Observed min    | Training set | Learner      | Hyperparameter:                 Value   |
|      | workers | result | loss       | & validation (sec)| validation loss | size         |              |                                         |
|====================================================================================================================================================|
|  121 |       8 | Accept |    0.15504 |            52.066 |         0.14361 |         1509 |     ensemble | Method:                      LogitBoost |
|      |         |        |            |                   |                 |              |              | NumLearningCycles:                  239 |
|      |         |        |            |                   |                 |              |              | MinLeafSize:                         37 |
|  122 |       7 | Accept |     0.1873 |           0.88051 |         0.14361 |          378 |           nb | DistributionNames:               normal |
|      |         |        |            |                   |                 |              |              | Width:                              NaN |
|  123 |       7 | Accept |    0.18138 |            1.4255 |         0.14361 |          378 |           nb | DistributionNames:               normal |
|      |         |        |            |                   |                 |              |              | Width:                              NaN |
|  124 |       8 | Accept |     0.1836 |            1.6767 |         0.14361 |          378 |           nb | DistributionNames:               normal |
|      |         |        |            |                   |                 |              |              | Width:                              NaN |
|  125 |       8 | Accept |    0.24677 |           0.53547 |         0.14361 |          378 |          svm | BoxConstraint:                 0.015196 |
|      |         |        |            |                   |                 |              |              | KernelScale:                  0.0050979 |
|  126 |       8 | Accept |    0.16782 |            76.114 |         0.14361 |          378 |     ensemble | Method:                             Bag |
|      |         |        |            |                   |                 |              |              | NumLearningCycles:                  270 |
|      |         |        |            |                   |                 |              |              | MinLeafSize:                         21 |
|  127 |       8 | Accept |    0.65702 |             109.5 |         0.14361 |          378 |          svm | BoxConstraint:                   11.102 |
|      |         |        |            |                   |                 |              |              | KernelScale:                    0.02167 |
|  128 |       8 | Accept |    0.15785 |           0.97717 |         0.14361 |         1509 |         tree | MinLeafSize:                          3 |
|  129 |       8 | Accept |    0.16396 |            43.391 |         0.14361 |          378 |     ensemble | Method:                      LogitBoost |
|      |         |        |            |                   |                 |              |              | NumLearningCycles:                  206 |
|      |         |        |            |                   |                 |              |              | MinLeafSize:                         52 |
|  130 |       8 | Accept |    0.20726 |            29.078 |         0.14361 |          378 |           nb | DistributionNames:               kernel |
|      |         |        |            |                   |                 |              |              | Width:                            71433 |
|  131 |       8 | Accept |    0.15259 |            46.724 |         0.14361 |         1509 |           nb | DistributionNames:               kernel |
|      |         |        |            |                   |                 |              |              | Width:                          0.59189 |
|  132 |       8 | Accept |    0.19003 |            42.596 |         0.14361 |          378 |          svm | BoxConstraint:                   6.2931 |
|      |         |        |            |                   |                 |              |              | KernelScale:                    0.33148 |
|  133 |       8 | Accept |    0.16091 |             28.84 |         0.14361 |          378 |           nb | DistributionNames:               kernel |
|      |         |        |            |                   |                 |              |              | Width:                           1.1628 |
|  134 |       8 | Accept |    0.17784 |            29.872 |         0.14361 |          378 |           nb | DistributionNames:               kernel |
|      |         |        |            |                   |                 |              |              | Width:                           886.95 |
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|  135 |       8 | Accept |    0.15027 |            76.937 |         0.14361 |         1509 |     ensemble | Method:                             Bag |
|      |         |        |            |                   |                 |              |              | NumLearningCycles:                  241 |
|      |         |        |            |                   |                 |              |              | MinLeafSize:                          4 |
|  136 |       8 | Accept |    0.18327 |            29.845 |         0.14361 |          378 |           nb | DistributionNames:               kernel |
|      |         |        |            |                   |                 |              |              | Width:                           4528.8 |
|  137 |       8 | Accept |    0.24677 |           0.38473 |         0.14361 |          378 |         tree | MinLeafSize:                      10969 |
|  138 |       8 | Accept |    0.15068 |             106.4 |         0.14361 |         6033 |     ensemble | Method:                      LogitBoost |
|      |         |        |            |                   |                 |              |              | NumLearningCycles:                  281 |
|      |         |        |            |                   |                 |              |              | MinLeafSize:                          2 |
|  139 |       8 | Accept |    0.24677 |            27.445 |         0.14361 |          378 |     ensemble | Method:                             Bag |
|      |         |        |            |                   |                 |              |              | NumLearningCycles:                  223 |
|      |         |        |            |                   |                 |              |              | MinLeafSize:                         98 |
|  140 |       8 | Accept |    0.24341 |            100.59 |         0.14361 |          378 |          svm | BoxConstraint:                   2.7209 |
|      |         |        |            |                   |                 |              |              | KernelScale:                   0.010215 |
|====================================================================================================================================================|
| Iter | Active  | Eval   | Validation | Time for training | Observed min    | Training set | Learner      | Hyperparameter:                 Value   |
|      | workers | result | loss       | & validation (sec)| validation loss | size         |              |                                         |
|====================================================================================================================================================|
|  141 |       8 | Accept |    0.24187 |            2.6075 |         0.14361 |          378 |          svm | BoxConstraint:                0.0079129 |
|      |         |        |            |                   |                 |              |              | KernelScale:                     4.8667 |
|  142 |       8 | Accept |    0.17089 |           0.53327 |         0.14361 |          378 |         tree | MinLeafSize:                          3 |
|  143 |       8 | Accept |    0.15068 |            41.021 |         0.14361 |         1509 |           nb | DistributionNames:               kernel |
|      |         |        |            |                   |                 |              |              | Width:                           1.1628 |
|  144 |       8 | Accept |    0.24677 |            26.637 |         0.14361 |          378 |     ensemble | Method:                      LogitBoost |
|      |         |        |            |                   |                 |              |              | NumLearningCycles:                  258 |
|      |         |        |            |                   |                 |              |              | MinLeafSize:                       6413 |
|  145 |       8 | Accept |    0.24677 |            26.876 |         0.14361 |          378 |     ensemble | Method:                      LogitBoost |
|      |         |        |            |                   |                 |              |              | NumLearningCycles:                  283 |
|      |         |        |            |                   |                 |              |              | MinLeafSize:                       3673 |
|  146 |       8 | Accept |    0.16076 |            3.2005 |         0.14361 |          378 |          svm | BoxConstraint:                   4.4667 |
|      |         |        |            |                   |                 |              |              | KernelScale:                     13.015 |
|  147 |       8 | Accept |     0.1567 |            2.1777 |         0.14361 |          378 |          svm | BoxConstraint:                  0.35692 |
|      |         |        |            |                   |                 |              |              | KernelScale:                     4.2583 |
|  148 |       8 | Accept |    0.18396 |           0.90132 |         0.14361 |          378 |           nb | DistributionNames:               normal |
|      |         |        |            |                   |                 |              |              | Width:                              NaN |
|  149 |       8 | Accept |    0.15063 |            6.9084 |         0.14361 |         1509 |          svm | BoxConstraint:                  0.35692 |
|      |         |        |            |                   |                 |              |              | KernelScale:                     4.2583 |
|  150 |       8 | Accept |    0.17674 |            1.2601 |         0.14361 |          378 |           nb | DistributionNames:               normal |
|      |         |        |            |                   |                 |              |              | Width:                              NaN |
|  151 |       8 | Accept |      0.156 |            35.953 |         0.14361 |         1509 |     ensemble | Method:                      LogitBoost |
|      |         |        |            |                   |                 |              |              | NumLearningCycles:                  206 |
|      |         |        |            |                   |                 |              |              | MinLeafSize:                         52 |
|  152 |       8 | Accept |    0.16561 |             27.77 |         0.14361 |          378 |           nb | DistributionNames:               kernel |
|      |         |        |            |                   |                 |              |              | Width:                           905.18 |
|  153 |       8 | Accept |    0.24677 |            34.957 |         0.14361 |          378 |     ensemble | Method:                      LogitBoost |
|      |         |        |            |                   |                 |              |              | NumLearningCycles:                  295 |
|      |         |        |            |                   |                 |              |              | MinLeafSize:                       4587 |
|  154 |       8 | Accept |    0.17262 |            25.102 |         0.14361 |          378 |           nb | DistributionNames:               kernel |
|      |         |        |            |                   |                 |              |              | Width:                           7.0619 |
|  155 |       8 | Accept |     0.1518 |            94.985 |         0.14361 |         6033 |           nb | DistributionNames:               kernel |
|      |         |        |            |                   |                 |              |              | Width:                          0.59189 |
|  156 |       8 | Accept |    0.15191 |            4.8239 |         0.14361 |         1509 |          svm | BoxConstraint:                   4.4667 |
|      |         |        |            |                   |                 |              |              | KernelScale:                     13.015 |
|  157 |       8 | Accept |    0.70666 |             88.91 |         0.14361 |          378 |          svm | BoxConstraint:                   144.03 |
|      |         |        |            |                   |                 |              |              | KernelScale:                  0.0087964 |
|  158 |       8 | Accept |    0.20845 |            1.2899 |         0.14361 |          378 |          svm | BoxConstraint:                   14.266 |
|      |         |        |            |                   |                 |              |              | KernelScale:                    0.56134 |
|  159 |       8 | Accept |    0.16207 |            2.2155 |         0.14361 |          378 |          svm | BoxConstraint:                 0.018808 |
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|      |         |        |            |                   |                 |              |              | KernelScale:                     1.4491 |
|  160 |       8 | Accept |    0.17735 |           0.30364 |         0.14361 |          378 |         tree | MinLeafSize:                         16 |
|====================================================================================================================================================|
| Iter | Active  | Eval   | Validation | Time for training | Observed min    | Training set | Learner      | Hyperparameter:                 Value   |
|      | workers | result | loss       | & validation (sec)| validation loss | size         |              |                                         |
|====================================================================================================================================================|
|  161 |       8 | Accept |    0.14814 |            3.7088 |         0.14361 |         1509 |          svm | BoxConstraint:                 0.018808 |
|      |         |        |            |                   |                 |              |              | KernelScale:                     1.4491 |
|  162 |       8 | Accept |    0.15674 |            54.506 |         0.14361 |         1509 |     ensemble | Method:                             Bag |
|      |         |        |            |                   |                 |              |              | NumLearningCycles:                  270 |
|      |         |        |            |                   |                 |              |              | MinLeafSize:                         21 |
|  163 |       8 | Accept |    0.18367 |            22.255 |         0.14361 |          378 |           nb | DistributionNames:               kernel |
|      |         |        |            |                   |                 |              |              | Width:                           79.973 |
|  164 |       8 | Accept |     0.1802 |           0.81271 |         0.14361 |          378 |           nb | DistributionNames:               normal |
|      |         |        |            |                   |                 |              |              | Width:                              NaN |
|  165 |       8 | Accept |    0.27102 |            87.837 |         0.14361 |          378 |          svm | BoxConstraint:                   2.3737 |
|      |         |        |            |                   |                 |              |              | KernelScale:                  0.0096356 |
|  166 |       8 | Accept |    0.24677 |            15.367 |         0.14361 |          378 |     ensemble | Method:                      LogitBoost |
|      |         |        |            |                   |                 |              |              | NumLearningCycles:                  211 |
|      |         |        |            |                   |                 |              |              | MinLeafSize:                       8387 |
|  167 |       8 | Accept |    0.16134 |            17.629 |         0.14361 |          378 |           nb | DistributionNames:               kernel |
|      |         |        |            |                   |                 |              |              | Width:                           1.1013 |
|  168 |       8 | Accept |    0.24677 |            1.5152 |         0.14361 |          378 |          svm | BoxConstraint:                0.0011611 |
|      |         |        |            |                   |                 |              |              | KernelScale:                     20.262 |
|  169 |       8 | Accept |     0.1889 |           0.58768 |         0.14361 |          378 |           nb | DistributionNames:               normal |
|      |         |        |            |                   |                 |              |              | Width:                              NaN |
|  170 |       8 | Accept |    0.20571 |            21.075 |         0.14361 |          378 |           nb | DistributionNames:               kernel |
|      |         |        |            |                   |                 |              |              | Width:                            51434 |
|  171 |       8 | Accept |    0.17171 |           0.54565 |         0.14361 |          378 |           nb | DistributionNames:               normal |
|      |         |        |            |                   |                 |              |              | Width:                              NaN |
|  172 |       8 | Accept |    0.16136 |            43.429 |         0.14361 |          378 |     ensemble | Method:                             Bag |
|      |         |        |            |                   |                 |              |              | NumLearningCycles:                  264 |
|      |         |        |            |                   |                 |              |              | MinLeafSize:                          1 |
|  173 |       8 | Accept |    0.24677 |           0.74563 |         0.14361 |          378 |          svm | BoxConstraint:                   82.364 |
|      |         |        |            |                   |                 |              |              | KernelScale:                  0.0048723 |
|  174 |       8 | Accept |    0.17774 |           0.82021 |         0.14361 |          378 |           nb | DistributionNames:               normal |
|      |         |        |            |                   |                 |              |              | Width:                              ...
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__________________________________________________________
Optimization completed.
Total iterations: 425
Total elapsed time: 1225.1049 seconds
Total time for training and validation: 8476.6632 seconds

Best observed learner is a tree model with:
    Learner:                  tree
    MinLeafSize:                14
Observed validation loss: 0.14138
Time for training and validation: 1.6545 seconds

Documentation for fitcauto display

The Total elapsed time value shows that the ASHA optimization took less time to run than the
Bayesian optimization (about 0.3 hours).

The final model returned by fitcauto corresponds to the best observed learner. Before returning
the model, the function retrains it using the entire training data set (adultdata), the listed Learner
(or model) type, and the displayed hyperparameter values.

Evaluate Test Set Performance

Evaluate the performance of the returned bayesianMdl and ashaMdl models on the test set
adulttest by using confusion matrices and receiver operating characteristic (ROC) curves.

For each model, find the predicted labels and score values for the test set.
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[bayesianLabels,bayesianScores] = predict(bayesianMdl,adulttest);
[ashaLabels,ashaScores] = predict(ashaMdl,adulttest);

Create confusion matrices from the test set results. The diagonal elements indicate the number of
correctly classified instances of a given class. The off-diagonal elements are instances of misclassified
observations. Use a 1-by-2 tiled layout to compare the results.

tiledlayout(1,2)

nexttile
confusionchart(adulttest.salary,bayesianLabels)
title("Bayesian Optimization")

nexttile
confusionchart(adulttest.salary,ashaLabels)
title("ASHA Optimization")

Compute the test set classification accuracy for each model, where the accuracy is the percentage of
correctly classified test set observations.

bayesianAccuracy = (1-loss(bayesianMdl,adulttest,"salary"))*100

bayesianAccuracy = 85.2062

ashaAccuracy = (1-loss(ashaMdl,adulttest,"salary"))*100

ashaAccuracy = 84.1612
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Based on the confusion matrices and the accuracy values, bayesianMdl slightly outperforms
ashaMdl on the test set. However, both models perform well.

For each model, plot the ROC curve and compute the area under the ROC curve (AUC). The ROC
curve shows the true positive rate versus the false positive rate for different thresholds of
classification scores. For a perfect classifier, whose true positive rate is always 1 regardless of the
threshold, AUC = 1. For a binary classifier that randomly assigns observations to classes, AUC = 0.5.
A large AUC value (close to 1) indicates good classifier performance.

For each model, compute the metrics for the ROC curve and find the AUC value by creating a
rocmetrics object.

bayesianROC = rocmetrics(adulttest.salary,bayesianScores,bayesianMdl.ClassNames);
ashaROC = rocmetrics(adulttest.salary,ashaScores,ashaMdl.ClassNames);

Plot the ROC curves for the label <=50K by using the plot function of rocmetrics.

figure
[r1,g1] = plot(bayesianROC,"ClassNames","<=50K");
hold on
[r2,g2] = plot(ashaROC,"ClassNames","<=50K");
r1.DisplayName = replace(r1.DisplayName,"<=50K","Bayesian Optimization");
r2.DisplayName = replace(r2.DisplayName,"<=50K","ASHA Optimization");
g1(1).DisplayName = "Bayesian Optimization Model Operating Point";
g2(1).DisplayName = "ASHA Optimization Model Operating Point";
title("ROC Curves for Class <=50K")
hold off
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Based on the AUC values, both classifiers perform well on the test data.

See Also
fitcauto | confusionchart | perfcurve | BayesianOptimization

More About
• “Bayesian Optimization Workflow” on page 10-25
• “Hyperparameter Optimization in Classification Learner App” on page 23-54
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Automated Regression Model Selection with Bayesian and
ASHA Optimization

This example shows how to use the fitrauto function to automatically try a selection of regression
model types with different hyperparameter values, given training predictor and response data. By
default, the function uses Bayesian optimization to select and assess models. If your training data set
contains many observations, you can use an asynchronous successive halving algorithm (ASHA)
instead. After the optimization is complete, fitrauto returns the model, trained on the entire data
set, that is expected to best predict the responses for new data. Check the model performance on test
data.

Prepare Data

Load the sample data set NYCHousing2015, which includes 10 variables with information on the
sales of properties in New York City in 2015. This example uses some of these variables to analyze the
sale prices.

load NYCHousing2015

Instead of loading the sample data set NYCHousing2015, you can download the data from the NYC
Open Data website and import the data as follows.

folder = 'Annualized_Rolling_Sales_Update';
ds = spreadsheetDatastore(folder,"TextType","string","NumHeaderLines",4);
ds.Files = ds.Files(contains(ds.Files,"2015"));
ds.SelectedVariableNames = ["BOROUGH","NEIGHBORHOOD","BUILDINGCLASSCATEGORY","RESIDENTIALUNITS", ...
    "COMMERCIALUNITS","LANDSQUAREFEET","GROSSSQUAREFEET","YEARBUILT","SALEPRICE","SALEDATE"];
NYCHousing2015 = readall(ds);

Preprocess the data set to choose the predictor variables of interest. Some of the preprocessing steps
match those in the example “Train Linear Regression Model” on page 11-163.

First, change the variable names to lowercase for readability.

NYCHousing2015.Properties.VariableNames = lower(NYCHousing2015.Properties.VariableNames);

Next, remove samples with certain problematic values. For example, retain only those samples where
at least one of the area measurements grosssquarefeet or landsquarefeet is nonzero. Assume
that a saleprice of $0 indicates an ownership transfer without a cash consideration, and remove
the samples with that saleprice value. Assume that a yearbuilt value of 1500 or less is a typo,
and remove the corresponding samples.

NYCHousing2015(NYCHousing2015.grosssquarefeet == 0 & NYCHousing2015.landsquarefeet == 0,:) = [];
NYCHousing2015(NYCHousing2015.saleprice == 0,:) = [];
NYCHousing2015(NYCHousing2015.yearbuilt <= 1500,:) = [];

Convert the saledate variable, specified as a datetime array, into two numeric columns MM (month)
and DD (day), and remove the saledate variable. Ignore the year values because all samples are for
the year 2015.

[~,NYCHousing2015.MM,NYCHousing2015.DD] = ymd(NYCHousing2015.saledate);
NYCHousing2015.saledate = [];

The numeric values in the borough variable indicate the names of the boroughs. Change the variable
to a categorical variable using the names.
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NYCHousing2015.borough = categorical(NYCHousing2015.borough,1:5, ...
    ["Manhattan","Bronx","Brooklyn","Queens","Staten Island"]);

The neighborhood variable has 254 categories. Remove this variable for simplicity.

NYCHousing2015.neighborhood = [];

Convert the buildingclasscategory variable to a categorical variable, and explore the variable by
using the wordcloud function.

NYCHousing2015.buildingclasscategory = categorical(NYCHousing2015.buildingclasscategory);
wordcloud(NYCHousing2015.buildingclasscategory);

Assume that you are interested only in one-, two-, and three-family dwellings. Find the sample indices
for these dwellings and delete the other samples. Then, change the buildingclasscategory
variable to an ordinal categorical variable, with integer-valued category names.

idx = ismember(string(NYCHousing2015.buildingclasscategory), ...
    ["01  ONE FAMILY DWELLINGS","02  TWO FAMILY DWELLINGS","03  THREE FAMILY DWELLINGS"]);
NYCHousing2015 = NYCHousing2015(idx,:);
NYCHousing2015.buildingclasscategory = categorical(NYCHousing2015.buildingclasscategory, ...
    ["01  ONE FAMILY DWELLINGS","02  TWO FAMILY DWELLINGS","03  THREE FAMILY DWELLINGS"], ...
    ["1","2","3"],'Ordinal',true);

The buildingclasscategory variable now indicates the number of families in one dwelling.

Explore the response variable saleprice by using the summary function.
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s = summary(NYCHousing2015);
s.saleprice

ans = struct with fields:
           Size: [24972 1]
           Type: 'double'
    Description: ''
          Units: ''
     Continuity: []
            Min: 1
         Median: 515000
            Max: 37000000
     NumMissing: 0

Create a histogram of the saleprice variable.

histogram(NYCHousing2015.saleprice)

Because the distribution of saleprice values is right-skewed, with all values greater than 0, log
transform the saleprice variable.

NYCHousing2015.saleprice = log(NYCHousing2015.saleprice);

Similarly, transform the grosssquarefeet and landsquarefeet variables. Add a value of 1 before
taking the logarithm of each variable, in case the variable is equal to 0.
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NYCHousing2015.grosssquarefeet = log(1 + NYCHousing2015.grosssquarefeet);
NYCHousing2015.landsquarefeet = log(1 + NYCHousing2015.landsquarefeet);

Partition Data and Remove Outliers

Partition the data set into a training set and a test set by using cvpartition. Use approximately
80% of the observations for the model selection and hyperparameter tuning process, and the other
20% to test the performance of the final model returned by fitrauto.

rng("default") % For reproducibility of the partition
c = cvpartition(length(NYCHousing2015.saleprice),"Holdout",0.2);
trainData = NYCHousing2015(training(c),:);
testData = NYCHousing2015(test(c),:);

Identify and remove the outliers of saleprice, grosssquarefeet, and landsquarefeet from the
training data by using the isoutlier function.

[priceIdx,priceL,priceU] = isoutlier(trainData.saleprice);
trainData(priceIdx,:) = [];

[grossIdx,grossL,grossU] = isoutlier(trainData.grosssquarefeet);
trainData(grossIdx,:) = [];

[landIdx,landL,landU] = isoutlier(trainData.landsquarefeet);
trainData(landIdx,:) = [];

Remove the outliers of saleprice, grosssquarefeet, and landsquarefeet from the test data by
using the same lower and upper thresholds computed on the training data.

testData(testData.saleprice < priceL | testData.saleprice > priceU,:) = [];
testData(testData.grosssquarefeet < grossL | testData.grosssquarefeet > grossU,:) = [];
testData(testData.landsquarefeet < landL | testData.landsquarefeet > landU,:) = [];

Use Automated Model Selection with Bayesian Optimization

Find an appropriate regression model for the data in trainData by using fitrauto. By default,
fitrauto uses Bayesian optimization to select models and their hyperparameter values, and
computes the log(1 + valLoss) value for each model, where valLoss is the cross-validation mean
squared error (MSE). fitrauto provides a plot of the optimization and an iterative display of the
optimization results. For more information on how to interpret these results, see “Verbose Display” on
page 35-2456.

Specify to run the Bayesian optimization in parallel, which requires Parallel Computing Toolbox™.
Due to the nonreproducibility of parallel timing, parallel Bayesian optimization does not necessarily
yield reproducible results. Because of the complexity of the optimization, this process can take some
time, especially for larger data sets.

bayesianOptions = struct("UseParallel",true);
[bayesianMdl,bayesianResults] = fitrauto(trainData,"saleprice", ...
    "HyperparameterOptimizationOptions",bayesianOptions);

Warning: Data set has more than 10000 observations. Because ASHA optimization often finds good solutions faster than Bayesian optimization for data sets with many observations, try specifying the 'Optimizer' field value as 'asha' in the 'HyperparameterOptimizationOptions' value structure.

Copying objective function to workers...
Done copying objective function to workers.
Learner types to explore: ensemble, svm, tree
Total iterations (MaxObjectiveEvaluations): 90
Total time (MaxTime): Inf
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|==========================================================================================================================================================|
| Iter | Active  | Eval   | log(1+valLoss)| Time for training | Observed min    | Estimated min   | Learner      | Hyperparameter:                 Value   |
|      | workers | result |               | & validation (sec)| validation loss | validation loss |              |                                         |
|==========================================================================================================================================================|
|    1 |       8 | Best   |       0.25922 |            8.7966 |         0.25922 |         0.25922 |          svm | BoxConstraint:                0.0055914 |
|      |         |        |               |                   |                 |                 |              | KernelScale:                  0.0056086 |
|      |         |        |               |                   |                 |                 |              | Epsilon:                          17.88 |
|    2 |       7 | Accept |       0.19644 |            67.356 |         0.19314 |         0.19521 |     ensemble | Method:                             Bag |
|      |         |        |               |                   |                 |                 |              | NumLearningCycles:                  232 |
|      |         |        |               |                   |                 |                 |              | MinLeafSize:                          8 |
|    3 |       7 | Best   |       0.19314 |             67.33 |         0.19314 |         0.19521 |          svm | BoxConstraint:                   529.96 |
|      |         |        |               |                   |                 |                 |              | KernelScale:                     813.67 |
|      |         |        |               |                   |                 |                 |              | Epsilon:                      0.0014318 |
|    4 |       8 | Accept |       0.19662 |            75.495 |         0.19314 |         0.19521 |     ensemble | Method:                             Bag |
|      |         |        |               |                   |                 |                 |              | NumLearningCycles:                  271 |
|      |         |        |               |                   |                 |                 |              | MinLeafSize:                         53 |
|    5 |       8 | Best   |       0.18769 |            79.998 |         0.18769 |          0.1877 |          svm | BoxConstraint:                   23.501 |
|      |         |        |               |                   |                 |                 |              | KernelScale:                      37.99 |
|      |         |        |               |                   |                 |                 |              | Epsilon:                      0.0072166 |
|    6 |       8 | Accept |       0.20198 |            67.278 |         0.18769 |          0.1877 |     ensemble | Method:                             Bag |
|      |         |        |               |                   |                 |                 |              | NumLearningCycles:                  246 |
|      |         |        |               |                   |                 |                 |              | MinLeafSize:                       1114 |
|    7 |       8 | Accept |       0.20227 |            71.042 |         0.18769 |          0.1877 |     ensemble | Method:                             Bag |
|      |         |        |               |                   |                 |                 |              | NumLearningCycles:                  246 |
|      |         |        |               |                   |                 |                 |              | MinLeafSize:                       1114 |
|    8 |       8 | Accept |       0.29931 |            30.061 |         0.18769 |          0.1877 |         tree | MinLeafSize:                          2 |
|    9 |       8 | Best   |       0.18737 |            101.93 |         0.18737 |          0.1874 |     ensemble | Method:                         LSBoost |
|      |         |        |               |                   |                 |                 |              | NumLearningCycles:                  297 |
|      |         |        |               |                   |                 |                 |              | MinLeafSize:                       3220 |
|   10 |       8 | Accept |       0.25922 |            8.4803 |         0.18737 |          0.1874 |          svm | BoxConstraint:                  0.31228 |
|      |         |        |               |                   |                 |                 |              | KernelScale:                       73.3 |
|      |         |        |               |                   |                 |                 |              | Epsilon:                         2.1891 |
|   11 |       8 | Accept |       0.25922 |            7.6613 |         0.18737 |          0.1874 |          svm | BoxConstraint:                   107.75 |
|      |         |        |               |                   |                 |                 |              | KernelScale:                     414.93 |
|      |         |        |               |                   |                 |                 |              | Epsilon:                         27.903 |
|   12 |       8 | Accept |       0.19582 |            62.053 |         0.18737 |         0.18742 |     ensemble | Method:                         LSBoost |
|      |         |        |               |                   |                 |                 |              | NumLearningCycles:                  247 |
|      |         |        |               |                   |                 |                 |              | MinLeafSize:                       4243 |
|   13 |       8 | Accept |       0.18795 |            1.6154 |         0.18737 |         0.18742 |         tree | MinLeafSize:                        219 |
|   14 |       8 | Best   |       0.17764 |            256.31 |         0.17764 |         0.17767 |     ensemble | Method:                         LSBoost |
|      |         |        |               |                   |                 |                 |              | NumLearningCycles:                  275 |
|      |         |        |               |                   |                 |                 |              | MinLeafSize:                          4 |
|   15 |       8 | Accept |        0.1971 |            59.641 |         0.17764 |         0.17767 |     ensemble | Method:                             Bag |
|      |         |        |               |                   |                 |                 |              | NumLearningCycles:                  208 |
|      |         |        |               |                   |                 |                 |              | MinLeafSize:                        210 |
|   16 |       8 | Accept |       0.19855 |            1.8433 |         0.17764 |         0.17767 |         tree | MinLeafSize:                        895 |
|   17 |       8 | Accept |       0.18966 |            78.082 |         0.17764 |         0.17767 |          svm | BoxConstraint:                   18.072 |
|      |         |        |               |                   |                 |                 |              | KernelScale:                     48.632 |
|      |         |        |               |                   |                 |                 |              | Epsilon:                       0.014558 |
|   18 |       8 | Accept |       0.18558 |            1.0007 |         0.17764 |         0.17767 |         tree | MinLeafSize:                         81 |
|   19 |       8 | Accept |       0.21098 |            3.0171 |         0.17764 |         0.17767 |         tree | MinLeafSize:                         12 |
|   20 |       8 | Best   |       0.17762 |            292.86 |         0.17762 |         0.17765 |     ensemble | Method:                         LSBoost |
|      |         |        |               |                   |                 |                 |              | NumLearningCycles:                  299 |
|      |         |        |               |                   |                 |                 |              | MinLeafSize:                        161 |
|==========================================================================================================================================================|
| Iter | Active  | Eval   | log(1+valLoss)| Time for training | Observed min    | Estimated min   | Learner      | Hyperparameter:                 Value   |
|      | workers | result |               | & validation (sec)| validation loss | validation loss |              |                                         |

 Automated Regression Model Selection with Bayesian and ASHA Optimization

19-239



|==========================================================================================================================================================|
|   21 |       8 | Accept |       0.23354 |            76.519 |         0.17762 |         0.17765 |          svm | BoxConstraint:                0.0045714 |
|      |         |        |               |                   |                 |                 |              | KernelScale:                     31.869 |
|      |         |        |               |                   |                 |                 |              | Epsilon:                      0.0072361 |
|   22 |       8 | Accept |       0.27791 |            16.397 |         0.17762 |         0.17765 |         tree | MinLeafSize:                          3 |
|   23 |       8 | Accept |       0.20705 |           0.56716 |         0.17762 |         0.17765 |         tree | MinLeafSize:                       1381 |
|   24 |       8 | Accept |       0.25951 |            8.5641 |         0.17762 |         0.17765 |         tree | MinLeafSize:                          4 |
|   25 |       8 | Accept |        0.1853 |            103.97 |         0.17762 |         0.17765 |     ensemble | Method:                         LSBoost |
|      |         |        |               |                   |                 |                 |              | NumLearningCycles:                  218 |
|      |         |        |               |                   |                 |                 |              | MinLeafSize:                       2260 |
|   26 |       8 | Best   |       0.17748 |            234.83 |         0.17748 |         0.17795 |     ensemble | Method:                         LSBoost |
|      |         |        |               |                   |                 |                 |              | NumLearningCycles:                  227 |
|      |         |        |               |                   |                 |                 |              | MinLeafSize:                        161 |
|   27 |       8 | Accept |       0.21866 |            47.523 |         0.17748 |         0.17756 |     ensemble | Method:                             Bag |
|      |         |        |               |                   |                 |                 |              | NumLearningCycles:                  239 |
|      |         |        |               |                   |                 |                 |              | MinLeafSize:                       2731 |
|   28 |       8 | Best   |       0.17744 |            209.05 |         0.17744 |         0.17723 |     ensemble | Method:                         LSBoost |
|      |         |        |               |                   |                 |                 |              | NumLearningCycles:                  209 |
|      |         |        |               |                   |                 |                 |              | MinLeafSize:                         12 |
|   29 |       8 | Accept |       0.23155 |            5.0007 |         0.17744 |         0.17723 |         tree | MinLeafSize:                          7 |
|   30 |       8 | Accept |       0.25922 |            9.2475 |         0.17744 |         0.17723 |          svm | BoxConstraint:                   404.64 |
|      |         |        |               |                   |                 |                 |              | KernelScale:                     3.2648 |
|      |         |        |               |                   |                 |                 |              | Epsilon:                         1.9718 |
|   31 |       8 | Accept |        0.1856 |            223.47 |         0.17744 |         0.17723 |          svm | BoxConstraint:                   169.91 |
|      |         |        |               |                   |                 |                 |              | KernelScale:                     27.071 |
|      |         |        |               |                   |                 |                 |              | Epsilon:                      0.0098403 |
|   32 |       8 | Accept |       0.23949 |            8.5208 |         0.17744 |         0.17723 |         tree | MinLeafSize:                          6 |
|   33 |       8 | Accept |       0.25922 |            7.5558 |         0.17744 |         0.17723 |          svm | BoxConstraint:                   1.3089 |
|      |         |        |               |                   |                 |                 |              | KernelScale:                   0.051591 |
|      |         |        |               |                   |                 |                 |              | Epsilon:                           10.5 |
|   34 |       8 | Accept |       0.29931 |            49.086 |         0.17744 |         0.17723 |         tree | MinLeafSize:                          2 |
|   35 |       8 | Accept |       0.19293 |            2.0938 |         0.17744 |         0.17723 |         tree | MinLeafSize:                        421 |
|   36 |       8 | Accept |        0.2433 |            44.756 |         0.17744 |         0.17745 |     ensemble | Method:                             Bag |
|      |         |        |               |                   |                 |                 |              | NumLearningCycles:                  213 |
|      |         |        |               |                   |                 |                 |              | MinLeafSize:                       5333 |
|   37 |       8 | Accept |       0.21113 |           0.58255 |         0.17744 |         0.17745 |         tree | MinLeafSize:                       2018 |
|   38 |       8 | Accept |         0.178 |             196.2 |         0.17744 |         0.17745 |     ensemble | Method:                         LSBoost |
|      |         |        |               |                   |                 |                 |              | NumLearningCycles:                  200 |
|      |         |        |               |                   |                 |                 |              | MinLeafSize:                        530 |
|   39 |       8 | Accept |       0.25922 |           0.15808 |         0.17744 |         0.17745 |         tree | MinLeafSize:                       9074 |
|   40 |       8 | Accept |       0.18727 |            1.3591 |         0.17744 |         0.17745 |         tree | MinLeafSize:                         46 |
|==========================================================================================================================================================|
| Iter | Active  | Eval   | log(1+valLoss)| Time for training | Observed min    | Estimated min   | Learner      | Hyperparameter:                 Value   |
|      | workers | result |               | & validation (sec)| validation loss | validation loss |              |                                         |
|==========================================================================================================================================================|
|   41 |       8 | Accept |       0.18556 |            1.1831 |         0.17744 |         0.17745 |         tree | MinLeafSize:                        106 |
|   42 |       8 | Accept |       0.18534 |            1.2318 |         0.17744 |         0.17745 |         tree | MinLeafSize:                         91 |
|   43 |       8 | Accept |       0.18634 |           0.78251 |         0.17744 |         0.17745 |         tree | MinLeafSize:                         69 |
|   44 |       8 | Accept |       0.18657 |           0.66041 |         0.17744 |         0.17745 |         tree | MinLeafSize:                        127 |
|   45 |       8 | Accept |        0.1859 |            1.1918 |         0.17744 |         0.17745 |         tree | MinLeafSize:                         71 |
|   46 |       8 | Accept |       0.19423 |            89.074 |         0.17744 |         0.17745 |          svm | BoxConstraint:                   111.04 |
|      |         |        |               |                   |                 |                 |              | KernelScale:                     660.47 |
|      |         |        |               |                   |                 |                 |              | Epsilon:                       0.011798 |
|   47 |       8 | Accept |       0.18592 |            1.2115 |         0.17744 |         0.17745 |         tree | MinLeafSize:                        111 |
|   48 |       8 | Accept |       0.18682 |            1.6234 |         0.17744 |         0.17745 |         tree | MinLeafSize:                        143 |
|   49 |       8 | Best   |       0.17736 |            276.94 |         0.17736 |         0.17735 |     ensemble | Method:                         LSBoost |
|      |         |        |               |                   |                 |                 |              | NumLearningCycles:                  254 |
|      |         |        |               |                   |                 |                 |              | MinLeafSize:                        330 |
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|   50 |       8 | Accept |       0.18845 |            2.9137 |         0.17736 |         0.17735 |         tree | MinLeafSize:                         41 |
|   51 |       8 | Accept |       0.18563 |            2.2093 |         0.17736 |         0.17735 |         tree | MinLeafSize:                         80 |
|   52 |       8 | Accept |       0.18529 |           0.84567 |         0.17736 |         0.17735 |         tree | MinLeafSize:                         82 |
|   53 |       8 | Accept |       0.18529 |           0.98317 |         0.17736 |         0.17735 |         tree | MinLeafSize:                         83 |
|   54 |       8 | Accept |       0.19472 |            1.9906 |         0.17736 |         0.17735 |         tree | MinLeafSize:                         25 |
|   55 |       8 | Accept |       0.22651 |           0.65124 |         0.17736 |         0.17735 |         tree | MinLeafSize:                       4236 |
|   56 |       8 | Accept |       0.33688 |             103.3 |         0.17736 |         0.17735 |         tree | MinLeafSize:                          1 |
|   57 |       8 | Accept |       0.18636 |            1.2646 |         0.17736 |         0.17735 |         tree | MinLeafSize:                         67 |
|   58 |       8 | Best   |       0.17725 |            212.81 |         0.17725 |         0.17725 |     ensemble | Method:                         LSBoost |
|      |         |        |               |                   |                 |                 |              | NumLearningCycles:                  221 |
|      |         |        |               |                   |                 |                 |              | MinLeafSize:                         63 |
|   59 |       8 | Accept |       0.18521 |            1.2055 |         0.17725 |         0.17725 |         tree | MinLeafSize:                         99 |
|   60 |       8 | Accept |       0.18521 |            1.5858 |         0.17725 |         0.17725 |         tree | MinLeafSize:                         97 |
|==========================================================================================================================================================|
| Iter | Active  | Eval   | log(1+valLoss)| Time for training | Observed min    | Estimated min   | Learner      | Hyperparameter:                 Value   |
|      | workers | result |               | & validation (sec)| validation loss | validation loss |              |                                         |
|==========================================================================================================================================================|
|   61 |       8 | Accept |       0.18545 |            1.5226 |         0.17725 |         0.17725 |         tree | MinLeafSize:                         96 |
|   62 |       8 | Accept |       0.18547 |           0.87251 |         0.17725 |         0.17725 |         tree | MinLeafSize:                         95 |
|   63 |       8 | Accept |       0.19011 |            1.0096 |         0.17725 |         0.17725 |         tree | MinLeafSize:                        291 |
|   64 |       8 | Accept |        0.1949 |            1.1552 |         0.17725 |         0.17725 |         tree | MinLeafSize:                        598 |
|   65 |       8 | Accept |       0.18745 |            1.2691 |         0.17725 |         0.17725 |         tree | MinLeafSize:                        175 |
|   66 |       8 | Accept |        0.1867 |            1.1783 |         0.17725 |         0.17725 |         tree | MinLeafSize:                         56 |
|   67 |       8 | Accept |       0.18534 |            1.4406 |         0.17725 |         0.17725 |         tree | MinLeafSize:                         91 |
|   68 |       8 | Accept |       0.18592 |             1.183 |         0.17725 |         0.17725 |         tree | MinLeafSize:                        111 |
|   69 |       8 | Accept |       0.18535 |            1.0641 |         0.17725 |         0.17725 |         tree | MinLeafSize:                         89 |
|   70 |       8 | Accept |       0.18535 |            1.2021 |         0.17725 |         0.17725 |         tree | MinLeafSize:                         89 |
|   71 |       8 | Accept |       0.19073 |            2.2491 |         0.17725 |         0.17725 |         tree | MinLeafSize:                         35 |
|   72 |       8 | Accept |       0.18662 |            1.7733 |         0.17725 |         0.17725 |         tree | MinLeafSize:                         57 |
|   73 |       8 | Accept |       0.18534 |            1.7077 |         0.17725 |         0.17725 |         tree | MinLeafSize:                         91 |
|   74 |       8 | Accept |       0.17749 |             237.6 |         0.17725 |         0.17725 |     ensemble | Method:                         LSBoost |
|      |         |        |               |                   |                 |                 |              | NumLearningCycles:                  234 |
|      |         |        |               |                   |                 |                 |              | MinLeafSize:                        291 |
|   75 |       8 | Accept |        0.1854 |            1.3993 |         0.17725 |         0.17725 |         tree | MinLeafSize:                         93 |
|   76 |       8 | Accept |       0.18516 |            2.5983 |         0.17725 |         0.17725 |         tree | MinLeafSize:                         85 |
|   77 |       8 | Accept |       0.18519 |            1.0102 |         0.17725 |         0.17725 |         tree | MinLeafSize:                        100 |
|   78 |       8 | Accept |       0.18518 |           0.85859 |         0.17725 |         0.17725 |         tree | MinLeafSize:                         87 |
|   79 |       8 | Accept |       0.18545 |           0.74629 |         0.17725 |         0.17725 |         tree | MinLeafSize:                         96 |
|   80 |       8 | Accept |       0.18516 |           0.93654 |         0.17725 |         0.17725 |         tree | MinLeafSize:                         84 |
|==========================================================================================================================================================|
| Iter | Active  | Eval   | log(1+valLoss)| Time for training | Observed min    | Estimated min   | Learner      | Hyperparameter:                 Value   |
|      | workers | result |               | & validation (sec)| validation loss | validation loss |              |                                         |
|==========================================================================================================================================================|
|   81 |       8 | Accept |       0.18523 |            1.1649 |         0.17725 |         0.17725 |         tree | MinLeafSize:                         88 |
|   82 |       8 | Accept |       0.18719 |            1.7177 |         0.17725 |         0.17725 |         tree | MinLeafSize:                        157 |
|   83 |       8 | Accept |       0.18545 |             1.704 |         0.17725 |         0.17725 |         tree | MinLeafSize:                         96 |
|   84 |       8 | Accept |       0.18529 |           0.95989 |         0.17725 |         0.17725 |         tree | MinLeafSize:                         82 |
|   85 |       8 | Accept |       0.18535 |           0.95307 |         0.17725 |         0.17725 |         tree | MinLeafSize:                         89 |
|   86 |       8 | Accept |       0.18596 |            1.1768 |         0.17725 |         0.17725 |         tree | MinLeafSize:                        110 |
|   87 |       8 | Accept |       0.18518 |            1.3797 |         0.17725 |         0.17725 |         tree | MinLeafSize:                         86 |
|   88 |       8 | Accept |       0.18535 |           0.89804 |         0.17725 |         0.17725 |         tree | MinLeafSize:                         89 |
|   89 |       8 | Accept |       0.18572 |            303.75 |         0.17725 |         0.17725 |          svm | BoxConstraint:                   205.71 |
|      |         |        |               |                   |                 |                 |              | KernelScale:                     26.184 |
|      |         |        |               |                   |                 |                 |              | Epsilon:                      0.0010342 |
|   90 |       8 | Accept |       0.18562 |            1.5575 |         0.17725 |         0.17725 |         tree | MinLeafSize:                         79 |
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__________________________________________________________
Optimization completed.
Total iterations: 90
Total elapsed time: 940.6075 seconds
Total time for training and validation: 3869.0047 seconds

Best observed learner is an ensemble model with:
    Learner:              ensemble
    Method:                LSBoost
    NumLearningCycles:         221
    MinLeafSize:                63
Observed log(1 + valLoss): 0.17725
Time for training and validation: 212.8107 seconds

Best estimated learner (returned model) is an ensemble model with:
    Learner:              ensemble
    Method:                LSBoost
    NumLearningCycles:         221
    MinLeafSize:                63
Estimated log(1 + valLoss): 0.17725
Estimated time for training and validation: 212.9539 seconds

Documentation for fitrauto display

The Total elapsed time value shows that the Bayesian optimization took a while to run (about 16
minutes).

19 Nonparametric Supervised Learning

19-242



The final model returned by fitrauto corresponds to the best estimated learner. Before returning
the model, the function retrains it using the entire training data set (trainData), the listed Learner
(or model) type, and the displayed hyperparameter values.

Use Automated Model Selection with ASHA Optimization

When fitrauto with Bayesian optimization takes a long time to run because of the number of
observations in your training set, consider using fitrauto with ASHA optimization instead. Given
that trainData contains over 10,000 observations, try using fitrauto with ASHA optimization to
automatically find an appropriate regression model. When you use fitrauto with ASHA
optimization, the function randomly chooses several models with different hyperparameter values and
trains them on a small subset of the training data. If the log(1 + valLoss) value for a particular model
is promising, where valLoss is the cross-validation MSE, the model is promoted and trained on a
larger amount of the training data. This process repeats, and successful models are trained on
progressively larger amounts of data. By default, fitrauto provides a plot of the optimization and
an iterative display of the optimization results. For more information on how to interpret these
results, see “Verbose Display” on page 35-2456.

Specify to run the ASHA optimization in parallel. Note that ASHA optimization often has more
iterations than Bayesian optimization by default. If you have a time constraint, you can specify the
MaxTime field of the HyperparameterOptimizationOptions structure to limit the number of
seconds fitrauto runs.

ashaOptions = struct("Optimizer","asha","UseParallel",true);
[ashaMdl,ashaResults] = fitrauto(trainData,"saleprice", ...
    "HyperparameterOptimizationOptions",ashaOptions);

Copying objective function to workers...
Done copying objective function to workers.
Learner types to explore: ensemble, svm, tree
Total iterations (MaxObjectiveEvaluations): 340
Total time (MaxTime): Inf

|=======================================================================================================================================================|
| Iter | Active  | Eval   | log(1+valLoss)| Time for training | Observed min    | Training set | Learner      | Hyperparameter:                 Value   |
|      | workers | result |               | & validation (sec)| validation loss | size         |              |                                         |
|=======================================================================================================================================================|
|    1 |       7 | Error  |           NaN |           0.74354 |         0.25939 |          228 |          svm | BoxConstraint:                  0.75271 |
|      |         |        |               |                   |                 |              |              | KernelScale:                     11.791 |
|      |         |        |               |                   |                 |              |              | Epsilon:                        0.70708 |
|    2 |       7 | Best   |       0.25939 |            0.6809 |         0.25939 |          228 |          svm | BoxConstraint:                    322.3 |
|      |         |        |               |                   |                 |              |              | KernelScale:                      183.2 |
|      |         |        |               |                   |                 |              |              | Epsilon:                         18.839 |
|    3 |       4 | Error  |           NaN |            1.3032 |         0.20407 |          228 |          svm | BoxConstraint:                 0.097665 |
|      |         |        |               |                   |                 |              |              | KernelScale:                     15.388 |
|      |         |        |               |                   |                 |              |              | Epsilon:                      0.0088338 |
|    4 |       4 | Error  |           NaN |           0.99145 |         0.20407 |          228 |          svm | BoxConstraint:                  0.23529 |
|      |         |        |               |                   |                 |              |              | KernelScale:                  0.0053637 |
|      |         |        |               |                   |                 |              |              | Epsilon:                        0.19924 |
|    5 |       4 | Error  |           NaN |           0.96507 |         0.20407 |          228 |          svm | BoxConstraint:                  0.22674 |
|      |         |        |               |                   |                 |              |              | KernelScale:                     80.959 |
|      |         |        |               |                   |                 |              |              | Epsilon:                         1.3516 |
|    6 |       4 | Best   |       0.20407 |            1.2793 |         0.20407 |          228 |         tree | MinLeafSize:                          7 |
|    7 |       7 | Accept |       0.26031 |           0.20035 |         0.20407 |          228 |          svm | BoxConstraint:                 0.020147 |
|      |         |        |               |                   |                 |              |              | KernelScale:                     172.03 |
|      |         |        |               |                   |                 |              |              | Epsilon:                         23.989 |
|    8 |       7 | Accept |       0.21268 |            0.5432 |         0.20407 |          228 |         tree | MinLeafSize:                          2 |
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|    9 |       8 | Best   |       0.19076 |            1.3514 |         0.19076 |          910 |         tree | MinLeafSize:                          7 |
|   10 |       8 | Accept |       0.20199 |            1.5091 |         0.19076 |          228 |          svm | BoxConstraint:                0.0010751 |
|      |         |        |               |                   |                 |              |              | KernelScale:                     1.1093 |
|      |         |        |               |                   |                 |              |              | Epsilon:                      0.0079776 |
|   11 |       8 | Accept |       0.25956 |            0.4022 |         0.19076 |          228 |         tree | MinLeafSize:                       6369 |
|   12 |       8 | Accept |        0.1994 |           0.19641 |         0.19076 |          228 |         tree | MinLeafSize:                         20 |
|   13 |       8 | Accept |       0.24111 |            11.229 |         0.19076 |          228 |     ensemble | Method:                         LSBoost |
|      |         |        |               |                   |                 |              |              | NumLearningCycles:                  209 |
|      |         |        |               |                   |                 |              |              | MinLeafSize:                         95 |
|   14 |       8 | Best   |       0.19072 |           0.40043 |         0.19072 |          910 |         tree | MinLeafSize:                         20 |
|   15 |       8 | Accept |       0.25943 |           0.18893 |         0.19072 |          228 |         tree | MinLeafSize:                        239 |
|   16 |       8 | Accept |       0.25931 |            14.082 |         0.19072 |          228 |     ensemble | Method:                         LSBoost |
|      |         |        |               |                   |                 |              |              | NumLearningCycles:                  234 |
|      |         |        |               |                   |                 |              |              | MinLeafSize:                       3498 |
|   17 |       7 | Accept |        0.2316 |            22.039 |         0.19072 |          228 |     ensemble | Method:                             Bag |
|      |         |        |               |                   |                 |              |              | NumLearningCycles:                  289 |
|      |         |        |               |                   |                 |              |              | MinLeafSize:                         65 |
|   18 |       7 | Accept |       0.19145 |             21.99 |         0.19072 |          228 |     ensemble | Method:                         LSBoost |
|      |         |        |               |                   |                 |              |              | NumLearningCycles:                  221 |
|      |         |        |               |                   |                 |              |              | MinLeafSize:                          2 |
|   19 |       8 | Accept |       0.25944 |            20.756 |         0.19072 |          228 |     ensemble | Method:                             Bag |
|      |         |        |               |                   |                 |              |              | NumLearningCycles:                  239 |
|      |         |        |               |                   |                 |              |              | MinLeafSize:                       4727 |
|   20 |       8 | Accept |        0.2593 |           0.28174 |         0.19072 |          228 |          svm | BoxConstraint:                   235.91 |
|      |         |        |               |                   |                 |              |              | KernelScale:                     152.29 |
|      |         |        |               |                   |                 |              |              | Epsilon:                          18.94 |
|=======================================================================================================================================================|
| Iter | Active  | Eval   | log(1+valLoss)| Time for training | Observed min    | Training set | Learner      | Hyperparameter:                 Value   |
|      | workers | result |               | & validation (sec)| validation loss | size         |              |                                         |
|=======================================================================================================================================================|
|   21 |       8 | Accept |        0.4238 |            16.204 |         0.19072 |          228 |          svm | BoxConstraint:                   159.02 |
|      |         |        |               |                   |                 |              |              | KernelScale:                     809.99 |
|      |         |        |               |                   |                 |              |              | Epsilon:                       0.037815 |
|   22 |       7 | Accept |       0.19826 |            26.317 |         0.19072 |          228 |     ensemble | Method:                             Bag |
|      |         |        |               |                   |                 |              |              | NumLearningCycles:                  260 |
|      |         |        |               |                   |                 |              |              | MinLeafSize:                          4 |
|   23 |       7 | Accept |       0.25943 |           0.15328 |         0.19072 |          228 |         tree | MinLeafSize:                        469 |
|   24 |       7 | Accept |       0.19506 |            21.139 |         0.19072 |          228 |     ensemble | Method:                         LSBoost |
|      |         |        |               |                   |                 |              |              | NumLearningCycles:                  289 |
|      |         |        |               |                   |                 |              |              | MinLeafSize:                          2 |
|   25 |       8 | Best   |       0.18635 |             16.44 |         0.18635 |          910 |     ensemble | Method:                         LSBoost |
|      |         |        |               |                   |                 |              |              | NumLearningCycles:                  221 |
|      |         |        |               |                   |                 |              |              | MinLeafSize:                          2 |
|   26 |       8 | Accept |       0.20324 |            23.523 |         0.18635 |          228 |     ensemble | Method:                             Bag |
|      |         |        |               |                   |                 |              |              | NumLearningCycles:                  293 |
|      |         |        |               |                   |                 |              |              | MinLeafSize:                          1 |
|   27 |       8 | Accept |        0.2593 |           0.41755 |         0.18635 |          228 |          svm | BoxConstraint:                   71.635 |
|      |         |        |               |                   |                 |              |              | KernelScale:                     360.15 |
|      |         |        |               |                   |                 |              |              | Epsilon:                         1.6391 |
|   28 |       8 | Accept |        0.1979 |            20.326 |         0.18635 |          910 |     ensemble | Method:                             Bag |
|      |         |        |               |                   |                 |              |              | NumLearningCycles:                  260 |
|      |         |        |               |                   |                 |              |              | MinLeafSize:                          4 |
|   29 |       8 | Best   |       0.18429 |            27.503 |         0.18429 |          910 |     ensemble | Method:                         LSBoost |
|      |         |        |               |                   |                 |              |              | NumLearningCycles:                  289 |
|      |         |        |               |                   |                 |              |              | MinLeafSize:                          2 |
|   30 |       8 | Error  |           NaN |           0.85989 |         0.18429 |          228 |          svm | BoxConstraint:                0.0015051 |
|      |         |        |               |                   |                 |              |              | KernelScale:                     153.62 |
|      |         |        |               |                   |                 |              |              | Epsilon:                        0.39629 |
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|   31 |       8 | Accept |       0.25996 |           0.33645 |         0.18429 |          228 |          svm | BoxConstraint:                   26.844 |
|      |         |        |               |                   |                 |              |              | KernelScale:                  0.0013803 |
|      |         |        |               |                   |                 |              |              | Epsilon:                        0.63605 |
|   32 |       8 | Accept |       0.21217 |           0.65386 |         0.18429 |          228 |         tree | MinLeafSize:                          2 |
|   33 |       8 | Error  |           NaN |            61.857 |         0.18429 |          228 |          svm | BoxConstraint:                  0.76664 |
|      |         |        |               |                   |                 |              |              | KernelScale:                    0.26621 |
|      |         |        |               |                   |                 |              |              | Epsilon:                      0.0062126 |
|   34 |       8 | Accept |        0.2595 |           0.54994 |         0.18429 |          228 |         tree | MinLeafSize:                        452 |
|   35 |       8 | Accept |        3.9362 |            72.511 |         0.18429 |          228 |          svm | BoxConstraint:                  0.16539 |
|      |         |        |               |                   |                 |              |              | KernelScale:                    0.10362 |
|      |         |        |               |                   |                 |              |              | Epsilon:                      0.0028173 |
|   36 |       8 | Accept |       0.19261 |            2.1563 |         0.18429 |          910 |          svm | BoxConstraint:                0.0010751 |
|      |         |        |               |                   |                 |              |              | KernelScale:                     1.1093 |
|      |         |        |               |                   |                 |              |              | Epsilon:                      0.0079776 |
|   37 |       8 | Accept |        0.2592 |           0.17352 |         0.18429 |          228 |         tree | MinLeafSize:                       5784 |
|   38 |       8 | Accept |       0.25932 |           0.33198 |         0.18429 |          228 |          svm | BoxConstraint:                   9.1472 |
|      |         |        |               |                   |                 |              |              | KernelScale:                  0.0014485 |
|      |         |        |               |                   |                 |              |              | Epsilon:                       0.013142 |
|   39 |       8 | Accept |        4.0201 |            95.532 |         0.18429 |          228 |          svm | BoxConstraint:                0.0034677 |
|      |         |        |               |                   |                 |              |              | KernelScale:                   0.024607 |
|      |         |        |               |                   |                 |              |              | Epsilon:                        0.51376 |
|   40 |       8 | Accept |       0.25946 |            14.029 |         0.18429 |          228 |     ensemble | Method:                         LSBoost |
|      |         |        |               |                   |                 |              |              | NumLearningCycles:                  233 |
|      |         |        |               |                   |                 |              |              | MinLeafSize:                       1217 |
|=======================================================================================================================================================|
| Iter | Active  | Eval   | log(1+valLoss)| Time for training | Observed min    | Training set | Learner      | Hyperparameter:                 Value   |
|      | workers | result |               | & validation (sec)| validation loss | size         |              |                                         |
|=======================================================================================================================================================|
|   41 |       8 | Best   |       0.17949 |            55.465 |         0.17949 |         3639 |     ensemble | Method:                         LSBoost |
|      |         |        |               |                   |                 |              |              | NumLearningCycles:                  221 |
|      |         |        |               |                   |                 |              |              | MinLeafSize:                          2 |
|   42 |       8 | Accept |       0.25919 |           0.47484 |         0.17949 |          228 |          svm | BoxConstraint:                0.0012342 |
|      |         |        |               |                   |                 |              |              | KernelScale:                     1.9096 |
|      |         |        |               |                   |                 |              |              | Epsilon:                         10.912 |
|   43 |       8 | Accept |       0.19872 |            16.731 |         0.17949 |          228 |     ensemble | Method:                         LSBoost |
|      |         |        |               |                   |                 |              |              | NumLearningCycles:                  284 |
|      |         |        |               |                   |                 |              |              | MinLeafSize:                          5 |
|   44 |       8 | Accept |         8.752 |            78.427 |         0.17949 |          228 |          svm | BoxConstraint:                0.0038233 |
|      |         |        |               |                   |                 |              |              | KernelScale:                     0.1099 |
|      |         |        |               |                   |                 |              |              | Epsilon:                       0.021148 |
|   45 |       8 | Accept |       0.25934 |            13.151 |         0.17949 |          228 |     ensemble | Method:                         LSBoost |
|      |         |        |               |                   |                 |              |              | NumLearningCycles:                  291 |
|      |         |        |               |                   |                 |              |              | MinLeafSize:                       1016 |
|   46 |       8 | Accept |       0.25921 |            10.067 |         0.17949 |          228 |     ensemble | Method:                         LSBoost |
|      |         |        |               |                   |                 |              |              | NumLearningCycles:                  227 |
|      |         |        |               |                   |                 |              |              | MinLeafSize:                       8012 |
|   47 |       8 | Error  |           NaN |           0.83663 |         0.17949 |          228 |          svm | BoxConstraint:                   2.8936 |
|      |         |        |               |                   |                 |              |              | KernelScale:                     7.6973 |
|      |         |        |               |                   |                 |              |              | Epsilon:                       0.010032 |
|   48 |       8 | Error  |           NaN |            93.522 |         0.17949 |          228 |          svm | BoxConstraint:                0.0057789 |
|      |         |        |               |                   |                 |              |              | KernelScale:                   0.024173 |
|      |         |        |               |                   |                 |              |              | Epsilon:                      0.0019218 |
|   49 |       8 | Accept |       0.19661 |            26.107 |         0.17949 |          910 |     ensemble | Method:                             Bag |
|      |         |        |               |                   |                 |              |              | NumLearningCycles:                  293 |
|      |         |        |               |                   |                 |              |              | MinLeafSize:                          1 |
|   50 |       8 | Accept |       0.25921 |           0.27531 |         0.17949 |          228 |          svm | BoxConstraint:                 0.058053 |
|      |         |        |               |                   |                 |              |              | KernelScale:                     14.827 |
|      |         |        |               |                   |                 |              |              | Epsilon:                         13.791 |
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|   51 |       8 | Error  |           NaN |           0.59973 |         0.17949 |          228 |          svm | BoxConstraint:                 0.023521 |
|      |         |        |               |                   |                 |              |              | KernelScale:                      5.596 |
|      |         |        |               |                   |                 |              |              | Epsilon:                      0.0014762 |
|   52 |       8 | Accept |        4.3906 |            99.781 |         0.17949 |          228 |          svm | BoxConstraint:                   96.756 |
|      |         |        |               |                   |                 |              |              | KernelScale:                   0.010139 |
|      |         |        |               |                   |                 |              |              | Epsilon:                        0.13254 |
|   53 |       8 | Error  |           NaN |            2.0696 |         0.17949 |          228 |          svm | BoxConstraint:                 0.006626 |
|      |         |        |               |                   |                 |              |              | KernelScale:                    0.70401 |
|      |         |        |               |                   |                 |              |              | Epsilon:                      0.0054568 |
|   54 |       8 | Accept |       0.25924 |             15.37 |         0.17949 |          228 |     ensemble | Method:                             Bag |
|      |         |        |               |                   |                 |              |              | NumLearningCycles:                  290 |
|      |         |        |               |                   |                 |              |              | MinLeafSize:                       2231 |
|   55 |       8 | Error  |           NaN |           0.31071 |         0.17949 |          228 |          svm | BoxConstraint:                   361.12 |
|      |         |        |               |                   |                 |              |              | KernelScale:                     52.988 |
|      |         |        |               |                   |                 |              |              | Epsilon:                        0.43709 |
|   56 |       8 | Error  |           NaN |            2.0388 |         0.17949 |          228 |          svm | BoxConstraint:                   16.409 |
|      |         |        |               |                   |                 |              |              | KernelScale:                     3.8514 |
|      |         |        |               |                   |                 |              |              | Epsilon:                       0.023638 |
|   57 |       8 | Accept |       0.20898 |           0.93287 |         0.17949 |          910 |         tree | MinLeafSize:                          2 |
|   58 |       8 | Accept |       0.20038 |           0.35381 |         0.17949 |          228 |         tree | MinLeafSize:                          8 |
|   59 |       8 | Accept |       0.25945 |            17.341 |         0.17949 |          228 |     ensemble | Method:                             Bag |
|      |         |        |               |                   |                 |              |              | NumLearningCycles:                  273 |
|      |         |        |               |                   |                 |              |              | MinLeafSize:                        688 |
|   60 |       8 | Error  |           NaN |            64.494 |         0.17949 |          228 |          svm | BoxConstraint:                  0.11582 |
|      |         |        |               |                   |                 |              |              | KernelScale:                    0.34549 |
|      |         |        |               |                   |                 |              |              | Epsilon:                        0.16015 |
|=======================================================================================================================================================|
| Iter | Active  | Eval   | log(1+valLoss)| Time for training | Observed min    | Training set | Learner      | Hyperparameter:                 Value   |
|      | workers | result |               | & validation (sec)| validation loss | size         |              |                                         |
|=======================================================================================================================================================|
|   61 |       7 | Accept |       0.25938 |            11.039 |         0.17949 |          228 |     ensemble | Method:                             Bag |
|      |         |        |               |                   |                 |              |              | NumLearningCycles:                  207 |
|      |         |        |               |                   |                 |              |              | MinLeafSize:                       2893 |
|   62 |       7 | Accept |       0.22949 |           0.29853 |         0.17949 |          228 |         tree | MinLeafSize:                         77 |
|   63 |       8 | Accept |       0.19119 |           0.70442 |         0.17949 |          910 |         tree | MinLeafSize:                          8 |
|   64 |       8 | Accept |       0.18582 |            25.838 |         0.17949 |          910 |     ensemble | Method:                         LSBoost |
|      |         |        |               |                   |                 |              |              | NumLearningCycles:                  284 |
|      |         |        |               |                   |                 |              |              | MinLeafSize:                          5 |
|   65 |       8 | Accept |       0.21762 |            20.878 |         0.17949 |          228 |     ensemble | Method:                             Bag |
|      |         |        |               |                   |                 |              |              | NumLearningCycles:                  202 |
|      |         |        |               |                   |                 |              |              | MinLeafSize:                         38 |
|   66 |       8 | Error  |           NaN |            73.825 |         0.17949 |          228 |          svm | BoxConstraint:                   913.22 |
|      |         |        |               |                   |                 |              |              | KernelScale:                    0.38887 |
|      |         |        |               |                   |                 |              |              | Epsilon:                        0.15596 |
|   67 |       8 | Accept |       0.25935 |           0.33883 |         0.17949 |          228 |         tree | MinLeafSize:                        150 |
|   68 |       8 | Accept |       0.20006 |            23.908 |         0.17949 |          228 |     ensemble | Method:                             Bag |
|      |         |        |               |                   |                 |              |              | NumLearningCycles:                  249 |
|      |         |        |               |                   |                 |              |              | MinLeafSize:                          2 |
|   69 |       8 | Accept |       0.20364 |            33.513 |         0.17949 |          228 |     ensemble | Method:                             Bag |
|      |         |        |               |                   |                 |              |              | NumLearningCycles:                  287 |
|      |         |        |               |                   |                 |              |              | MinLeafSize:                         15 |
|   70 |       8 | Accept |       0.20016 |            20.232 |         0.17949 |          228 |     ensemble | Method:                         LSBoost |
|      |         |        |               |                   |                 |              |              | NumLearningCycles:                  259 |
|      |         |        |               |                   |                 |              |              | MinLeafSize:                          6 |
|   71 |       8 | Accept |       0.25946 |           0.16791 |         0.17949 |          228 |         tree | MinLeafSize:                       6893 |
|   72 |       8 | Accept |       0.35187 |           0.63625 |         0.17949 |          228 |          svm | BoxConstraint:                  0.19105 |
|      |         |        |               |                   |                 |              |              | KernelScale:                     84.991 |
|      |         |        |               |                   |                 |              |              | Epsilon:                       0.073344 |
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|   73 |       8 | Accept |       0.20327 |            15.236 |         0.17949 |          228 |     ensemble | Method:                             Bag |
|      |         |        |               |                   |                 |              |              | NumLearningCycles:                  211 |
|      |         |        |               |                   |                 |              |              | MinLeafSize:                          2 |
|   74 |       8 | Error  |           NaN |             72.02 |         0.17949 |          228 |          svm | BoxConstraint:                  0.23518 |
|      |         |        |               |                   |                 |              |              | KernelScale:                    0.53603 |
|      |         |        |               |                   |                 |              |              | Epsilon:                       0.011066 |
|   75 |       8 | Accept |       0.26049 |           0.33939 |         0.17949 |          228 |          svm | BoxConstraint:                0.0013512 |
|      |         |        |               |                   |                 |              |              | KernelScale:                  0.0015726 |
|      |         |        |               |                   |                 |              |              | Epsilon:                         24.722 |
|   76 |       8 | Error  |           NaN |           0.85688 |         0.17949 |          228 |          svm | BoxConstraint:                   843.32 |
|      |         |        |               |                   |                 |              |              | KernelScale:                     98.622 |
|      |         |        |               |                   |                 |              |              | Epsilon:                      0.0013207 |
|   77 |       8 | Accept |       0.25939 |           0.24487 |         0.17949 |          228 |          svm | BoxConstraint:                   288.52 |
|      |         |        |               |                   |                 |              |              | KernelScale:                  0.0011806 |
|      |         |        |               |                   |                 |              |              | Epsilon:                        0.12918 |
|   78 |       8 | Accept |       0.19746 |            21.241 |         0.17949 |          910 |     ensemble | Method:                             Bag |
|      |         |        |               |                   |                 |              |              | NumLearningCycles:                  249 |
|      |         |        |               |                   |                 |              |              | MinLeafSize:                          2 |
|   79 |       8 | Accept |       0.25967 |           0.36212 |         0.17949 |          228 |          svm | BoxConstraint:                  0.86126 |
|      |         |        |               |                   |                 |              |              | KernelScale:                    0.80732 |
|      |         |        |               |                   |                 |              |              | Epsilon:                         3.6131 |
|   80 |       8 | Error  |           NaN |            30.648 |         0.17949 |          228 |          svm | BoxConstraint:                 0.014789 |
|      |         |        |               |                   |                 |              |              | KernelScale:                     10.262 |
|      |         |        |               |                   |                 |              |              | Epsilon:                     0.00053097 |
|=======================================================================================================================================================|
| Iter | Active  | Eval   | log(1+valLoss)| Time for training | Observed min    | Training set | Learner      | Hyperparameter:                 Value   |
|      | workers | result |               | & validation (sec)| validation loss | size         |              |                                         |
|=======================================================================================================================================================|
|   81 |       8 | Best   |       0.17835 |            69.425 |         0.17835 |         3639 |     ensemble | Method:                         LSBoost |
|      |         |        |               |                   |                 |              |              | NumLearningCycles:                  289 |
|      |         |        |               |                   |                 |              |              | MinLeafSize:                          2 |
|   82 |       8 | Error  |           NaN |           0.70287 |         0.17835 |          228 |          svm | BoxConstraint:                 0.044119 |
|      |         |        |               |                   |                 |              |              | KernelScale:                     725.24 |
|      |         |        |               |                   |                 |              |              | Epsilon:                       0.067068 |
|   83 |       8 | Accept |       0.25922 |           0.20654 |         0.17835 |          228 |         tree | MinLeafSize:                       5151 |
|   84 |       8 | Accept |       0.18422 |            21.378 |         0.17835 |          910 |     ensemble | Method:                         LSBoost |
|      |         |        |               |                   |                 |              |              | NumLearningCycles:                  259 |
|      |         |        |               |                   |                 |              |              | MinLeafSize:                          6 |
|   85 |       8 | Accept |       0.25956 |            15.603 |         0.17835 |          228 |     ensemble | Method:                             Bag |
|      |         |        |               |                   |                 |              |              | NumLearningCycles:                  220 |
|      |         |        |               |                   |                 |              |              | MinLeafSize:                        398 |
|   86 |       8 | Accept |       0.25925 |            16.649 |         0.17835 |          228 |     ensemble | Method:                         LSBoost |
|      |         |        |               |                   |                 |              |              | NumLearningCycles:                  287 |
|      |         |        |               |                   |                 |              |              | MinLeafSize:                       3704 |
|   87 |       8 | Accept |       0.19717 |            20.535 |         0.17835 |          910 |     ensemble | Method:                             Bag |
|      |         |        |               |                   |                 |              |              | NumLearningCycles:                  211 |
|      |         |        |               |                   |                 |              |              | MinLeafSize:                          2 |
|   88 |       8 | Accept |       0.25922 |            14.481 |         0.17835 |          228 |     ensemble | Method:                         LSBoost |
|      |         |        |               |                   |                 |              |              | NumLearningCycles:                  215 |
|      |         |        |               |                   |                 |              |              | MinLeafSize:                       4480 |
|   89 |       8 | Accept |       0.25923 |           0.31075 |         0.17835 |          228 |          svm | BoxConstraint:                   93.534 |
|      |         |        |               |                   |                 |              |              | KernelScale:                  0.0012628 |
|      |         |        |               |                   |                 |              |              | Epsilon:                     0.00070881 |
|   90 |       8 | Error  |           NaN |            105.27 |         0.17835 |          228 |          svm | BoxConstraint:                 0.002754 |
|      |         |        |               |                   |                 |              |              | KernelScale:                   0.030396 |
|      |         |        |               |                   |                 |              |              | Epsilon:                      0.0049664 |
|   91 |       8 | Accept |       0.38786 |            1.3545 |         0.17835 |          228 |          svm | BoxConstraint:                   59.578 |
|      |         |        |               |                   |                 |              |              | KernelScale:                     7.0125 |
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|      |         |        |               |                   |                 |              |              | Epsilon:                       0.048114 |
|   92 |       8 | Error  |           NaN |            20.814 |         0.17835 |          228 |          svm | BoxConstraint:                   16.856 |
|      |         |        |               |                   |                 |              |              | KernelScale:                  0.0069656 |
|      |         |        |               |                   |                 |              |              | Epsilon:                     0.00079872 |
|   93 |       7 | Accept |       0.25921 |            16.582 |         0.17835 |          228 |     ensemble | Method:                             Bag |
|      |         |        |               |                   |                 |              |              | NumLearningCycles:                  275 |
|      |         |        |               |                   |                 |              |              | MinLeafSize:                        779 |
|   94 |       7 | Accept |        0.2592 |           0.15883 |         0.17835 |          228 |         tree | MinLeafSize:                       5053 |
|   95 |       7 | Accept |       0.29146 |            1.0903 |         0.17835 |          228 |          svm | BoxConstraint:                0.0029396 |
|      |         |        |               |                   |                 |              |              | KernelScale:                      35.64 |
|      |         |        |               |                   |                 |              |              | Epsilon:                      0.0034305 |
|   96 |       8 | Accept |       0.41923 |           0.56162 |         0.17835 |          228 |          svm | BoxConstraint:                 0.034261 |
|      |         |        |               |                   |                 |              |              | KernelScale:                     9.1273 |
|      |         |        |               |                   |                 |              |              | Epsilon:                        0.04355 |
|   97 |       8 | Accept |       0.20525 |           0.70228 |         0.17835 |          910 |         tree | MinLeafSize:                          2 |
|   98 |       8 | Accept |       0.20139 |            0.2252 |         0.17835 |          228 |         tree | MinLeafSize:                         12 |
|   99 |       8 | Accept |       0.25923 |           0.21183 |         0.17835 |          228 |          svm | BoxConstraint:                 0.076547 |
|      |         |        |               |                   |                 |              |              | KernelScale:                     1.3896 |
|      |         |        |               |                   |                 |              |              | Epsilon:                         5.7928 |
|  100 |       8 | Error  |           NaN |            1.1784 |         0.17835 |          228 |          svm | BoxConstraint:                   103.69 |
|      |         |        |               |                   |                 |              |              | KernelScale:                     380.67 |
|      |         |        |               |                   |                 |              |              | Epsilon:                       0.023201 |
|=======================================================================================================================================================|
| Iter | Active  | Eval   | log(1+valLoss)| Time for training | Observed min    | Training set | Learner      | Hyperparameter:                 Value   |
|      | workers | result |               | & validation (sec)| validation loss | size         |              |                                         |
|=======================================================================================================================================================|
|  101 |       8 | Accept |       0.44687 |           0.86774 |         0.17835 |          228 |          svm | BoxConstraint:                 0.011037 |
|      |         |        |               |                   |                 |              |              | KernelScale:                     464.93 |
|      |         |        |               |                   |                 |              |              | Epsilon:                        0.01088 |
|  102 |       8 | Accept |       0.19127 |           0.46502 |         0.17835 |          910 |         tree | MinLeafSize:                         12 |
|  103 |       8 | Accept |        3.9177 |            105.84 |         0.17835 |          228 |          svm | BoxConstraint:                  0.18091 |
|      |         |        |               |                   |                 |              |              | KernelScale:                  0.0093375 |
|      |         |        |               |                   |                 |              |              | Epsilon:                      0.0046786 |
|  104 |       8 | Error  |           NaN |           0.33372 |         0.17835 |          228 |          svm | BoxConstraint:                   0.3297 |
|      |         |        |               |                   |                 |              |              | KernelScale:                      60.67 |
|      |         |        |               |                   |                 |              |              | Epsilon:                          1.522 |
|  105 |       8 | Accept |       0.21268 |           0.30804 |         0.17835 |          228 |         tree | MinLeafSize:                         46 |
|  106 |       8 | Accept |       0.19508 |           0.63479 |         0.17835 |          228 |          svm | BoxConstraint:                   141.35 |
|      |         |        |               |                   |                 |              |              | KernelScale:                     51.798 |
|      |         |        |               |                   |                 |              |              | Epsilon:                      0.0064846 |
|  107 |       8 | Accept |       0.25922 |           0.28154 |         0.17835 |          228 |          svm | BoxConstraint:                   111.07 |
|      |         |        |               |                   |                 |              |              | KernelScale:                   0.010862 |
|      |         |        |               |                   |                 |              |              | Epsilon:                          2.691 |
|  108 |       8 | Accept |        0.2592 |            13.479 |         0.17835 |          228 |     ensemble | Method:                         LSBoost |
|      |         |        |               |                   |                 |              |              | NumLearningCycles:                  289 |
|      |         |        |               |                   |                 |              |              | MinLeafSize:                        163 |
|  109 |       7 | Accept |       0.19161 |            1.6643 |         0.17835 |          910 |          svm | BoxConstraint:                   141.35 |
|      |         |        |               |                   |                 |              |              | KernelScale:                     51.798 |
|      |         |        |               |                   |                 |              |              | Epsilon:                      0.0064846 |
|  110 |       7 | Accept |       0.25926 |           0.23349 |         0.17835 |          228 |          svm | BoxConstraint:                0.0014645 |
|      |         |        |               |                   |                 |              |              | KernelScale:                    0.37849 |
|      |         |        |               |                   |                 |              |              | Epsilon:                         2.0091 |
|  111 |       8 | Accept |       0.25923 |           0.21702 |         0.17835 |          228 |          svm | BoxConstraint:                   46.088 |
|      |         |        |               |                   |                 |              |              | KernelScale:                  0.0015015 |
|      |         |        |               |                   |                 |              |              | Epsilon:                        0.30073 |
|  112 |       8 | Accept |       0.19687 |            25.947 |         0.17835 |          910 |     ensemble | Method:                             Bag |
|      |         |        |               |                   |                 |              |              | NumLearningCycles:                  287 |
|      |         |        |               |                   |                 |              |              | MinLeafSize:                         15 |
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|  113 |       8 | Accept |       0.17871 |             51.27 |         0.17835 |         3639 |     ensemble | Method:                         LSBoost |
|      |         |        |               |                   |                 |              |              | NumLearningCycles:                  259 |
|      |         |        |               |                   |                 |              |              | MinLeafSize:                          6 |
|  114 |       8 | Accept |       0.20081 |            17.879 |         0.17835 |          228 |     ensemble | Method:                             Bag |
|      |         |        |               |                   |                 |              |              | NumLearningCycles:                  278 |
|      |         |        |               |                   |                 |              |              | MinLeafSize:                          2 |
|  115 |       8 | Accept |       0.20322 |            17.346 |         0.17835 |          228 |     ensemble | Method:                             Bag |
|      |         |        |               |                   |                 |              |              | NumLearningCycles:                  255 |
|      |         |        |               |                   |                 |              |              | MinLeafSize:                          4 |
|  116 |       8 | Error  |           NaN |           0.95447 |         0.17835 |          228 |          svm | BoxConstraint:                   2.9117 |
|      |         |        |               |                   |                 |              |              | KernelScale:                     16.756 |
|      |         |        |               |                   |                 |              |              | Epsilon:                      0.0023456 |
|  117 |       8 | Accept |       0.19387 |            13.294 |         0.17835 |          228 |     ensemble | Method:                         LSBoost |
|      |         |        |               |                   |                 |              |              | NumLearningCycles:                  215 |
|      |         |        |               |                   |                 |              |              | MinLeafSize:                          1 |
|  118 |       8 | Accept |       0.19425 |            15.035 |         0.17835 |          228 |     ensemble | Method:                         LSBoost |
|      |         |        |               |                   |                 |              |              | NumLearningCycles:                  212 |
|      |         |        |               |                   |                 |              |              | MinLeafSize:                          8 |
|  119 |       8 | Accept |       0.25924 |           0.37346 |         0.17835 |          228 |          svm | BoxConstraint:                   0.0209 |
|      |         |        |               |                   |                 |              |              | KernelScale:                     9.3689 |
|      |         |        |               |                   |                 |              |              | Epsilon:                          26.54 |
|  120 |       8 | Accept |       0.26066 |           0.27477 |         0.17835 |          228 |         tree | MinLeafSize:                        272 |
|=======================================================================================================================================================|
| Iter | Active  | Eval   | log(1+valLoss)| Time for training | Observed min    | Training set | Learner      | Hyperparameter:                 Value   |
|      | workers | result |               | & validation (sec)| validation loss | size         |              |                                         |
|=======================================================================================================================================================|
|  121 |       8 | Accept |       0.19484 |            18.004 |         0.17835 |          228 |     ensemble | Method:                         LSBoost |
|      |         |        |               |                   |                 |              |              | NumLearningCycles:                  261 |
|      |         |        |               |                   |                 |              |              | MinLeafSize:                         14 |
|  122 |       8 | Accept |        0.2592 |           0.23541 |         0.17835 |          228 |         tree | MinLeafSize:                        133 |
|  123 |       8 | Accept |       0.25921 |           0.29134 |         0.17835 |          228 |          svm | BoxConstraint:                   1.5995 |
|      |         |        |               |                   |                 |              |              | KernelScale:                     2.8676 |
|      |         |        |               |                   |                 |              |              | Epsilon:                         15.471 |
|  124 |       8 | Accept |       0.23223 |           0.43343 |         0.17835 |          228 |         tree | MinLeafSize:                          1 |
|  125 |       8 | Accept |       0.25972 |             0.203 |         0.17835 |          228 |          svm | BoxConstraint:                0.0086335 |
|      |         |        |               |                   |                 |              |              | KernelScale:                      400.4 |
|      |         |        |               |                   |                 |              |              | Epsilon:                         2.0501 |
|  126 |       8 | Error  |           NaN |            0.2949 |         0.17835 |          228 |          svm | BoxConstraint:                   7.4426 |
|      |         |        |               |                   |                 |              |              | KernelScale:                   0.002509 |
|      |         |        |               |                   |                 |              |              | Epsilon:                      0.0026332 |
|  127 |       8 | Accept |       0.26011 |           0.29631 |         0.17835 |          228 |          svm | BoxConstraint:                  0.11427 |
|      |         |        |               |                   |                 |              |              | KernelScale:                     567.97 |
|      |         |        |               |                   |                 |              |              | Epsilon:                          17.13 |
|  128 |       8 | Accept |       0.25923 |           0.32762 |         0.17835 |          228 |          svm | BoxConstraint:                   83.085 |
|      |         |        |               |                   |                 |              |              | KernelScale:                  0.0012722 |
|      |         |        |               |                   |                 |              |              | Epsilon:                      0.0023782 |
|  129 |       8 | Accept |       0.19582 |            20.926 |         0.17835 |          910 |     ensemble | Method:                             Bag |
|      |         |        |               |                   |                 |              |              | NumLearningCycles:                  278 |
|      |         |        |               |                   |                 |              |              | MinLeafSize:                          2 |
|  130 |       8 | Accept |       0.21135 |           0.35596 |         0.17835 |          228 |         tree | MinLeafSize:                          3 |
|  131 |       8 | Error  |           NaN |            87.153 |         0.17835 |          228 |          svm | BoxConstraint:                    358.5 |
|      |         |        |               |                   |                 |              |              | KernelScale:                   0.081127 |
|      |         |        |               |                   |                 |              |              | Epsilon:                       0.002852 |
|  132 |       8 | Accept |       0.25922 |           0.18321 |         0.17835 |          228 |         tree | MinLeafSize:                       4593 |
|  133 |       7 | Error  |           NaN |           0.80608 |         0.17835 |          228 |          svm | BoxConstraint:                0.0082359 |
|      |         |        |               |                   |                 |              |              | KernelScale:                     64.836 |
|      |         |        |               |                   |                 |              |              | Epsilon:                        0.25191 |
|  134 |       7 | Accept |        0.2592 |            0.1831 |         0.17835 |          228 |          svm | BoxConstraint:                 0.029216 |
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|      |         |        |               |                   |                 |              |              | KernelScale:                     8.6693 |
|      |         |        |               |                   |                 |              |              | Epsilon:                         14.283 |
|  135 |       8 | Accept |       0.21864 |           0.42231 |         0.17835 |          228 |         tree | MinLeafSize:                         66 |
|  136 |       8 | Accept |        4.0359 |            106.74 |         0.17835 |          228 |          svm | BoxConstraint:                     97.5 |
|      |         |        |               |                   |                 |              |              | KernelScale:                   0.013998 |
|      |         |        |               |                   |                 |              |              | Epsilon:                        0.04939 |
|  137 |       8 | Accept |        0.1864 |            18.298 |         0.17835 |          910 |     ensemble | Method:                         LSBoost |
|      |         |        |               |                   |                 |              |              | NumLearningCycles:                  215 |
|      |         |        |               |                   |                 |              |              | MinLeafSize:                          1 |
|  138 |       8 | Error  |           NaN |           0.93006 |         0.17835 |          228 |          svm | BoxConstraint:                0.0092347 |
|      |         |        |               |                   |                 |              |              | KernelScale:                     496.16 |
|      |         |        |               |                   |                 |              |              | Epsilon:                        0.11821 |
|  139 |       8 | Accept |       0.18463 |            21.544 |         0.17835 |          910 |     ensemble | Method:                         LSBoost |
|      |         |        |               |                   |                 |              |              | NumLearningCycles:                  212 |
|      |         |        |               |                   |                 |              |              | MinLeafSize:                          8 |
|  140 |       8 | Error  |           NaN |            4.9749 |         0.17835 |          228 |          svm | BoxConstraint:                  0.24317 |
|      |         |        |               ...

__________________________________________________________
Optimization completed.
Total iterations: 340
Total elapsed time: 725.1069 seconds
Total time for training and validation: 5193.6688 seconds

Best observed learner is an ensemble model with:
    Learner:              ensemble
    Method:                LSBoost
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    NumLearningCycles:         289
    MinLeafSize:                 2
Observed log(1 + valLoss): 0.17753
Time for training and validation: 295.4965 seconds

Documentation for fitrauto display

The Total elapsed time value shows that the ASHA optimization took less time to run than the
Bayesian optimization (about 12 minutes).

The final model returned by fitrauto corresponds to the best observed learner. Before returning
the model, the function retrains it using the entire training data set (trainData), the listed Learner
(or model) type, and the displayed hyperparameter values.

Evaluate Test Set Performance

Evaluate the performance of the returned bayesianMdl and ashaMdl models on the test set
testData. For each model, compute the test set mean squared error (MSE), and take a log
transform of the MSE to match the values in the verbose display of fitrauto. Smaller MSE (and log-
transformed MSE) values indicate better performance.

bayesianTestMSE = loss(bayesianMdl,testData,"saleprice");
bayesianTestError = log(1 + bayesianTestMSE)

bayesianTestError = 0.1782

ashaTestMSE = loss(ashaMdl,testData,"saleprice");
ashaTestError = log(1 + ashaTestMSE)

ashaTestError = 0.1795

For each model, compare the predicted test set response values to the true response values. Plot the
predicted sale price along the vertical axis and the true sale price along the horizontal axis. Points on
the reference line indicate correct predictions. A good model produces predictions that are scattered
near the line. Use a 1-by-2 tiled layout to compare the results for the two models.

bayesianTestPredictions = predict(bayesianMdl,testData);
ashaTestPredictions = predict(ashaMdl,testData);

tiledlayout(1,2)

nexttile
plot(testData.saleprice,bayesianTestPredictions,".")
hold on
plot(testData.saleprice,testData.saleprice) % Reference line
hold off
xlabel(["True Sale Price","(log transformed)"])
ylabel(["Predicted Sale Price","(log transformed)"])
title("Bayesian Optimization Model")

nexttile
plot(testData.saleprice,ashaTestPredictions,".")
hold on
plot(testData.saleprice,testData.saleprice) % Reference line
hold off
xlabel(["True Sale Price","(log transformed)"])
ylabel(["Predicted Sale Price","(log transformed)"])
title("ASHA Optimization Model")
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Based on the log-transformed MSE values and the prediction plots, the bayesianMdl and ashaMdl
models perform similarly well on the test set.

For each model, use box plots to compare the distribution of predicted and true sale prices by
borough. Create the box plots by using the boxchart function. Each box plot displays the median,
the lower and upper quartiles, any outliers (computed using the interquartile range), and the
minimum and maximum values that are not outliers. In particular, the line inside each box is the
sample median, and the circular markers indicate outliers.

For each borough, compare the red box plot (showing the distribution of predicted prices) to the blue
box plot (showing the distribution of true prices). Similar distributions for the predicted and true sale
prices indicate good predictions. Use a 1-by-2 tiled layout to compare the results for the two models.

tiledlayout(1,2)

nexttile
boxchart(testData.borough,testData.saleprice)
hold on
boxchart(testData.borough,bayesianTestPredictions)
hold off
legend(["True Sale Prices","Predicted Sale Prices"])
xlabel("Borough")
ylabel(["Sale Price","(log transformed)"])
title("Bayesian Optimization Model")

nexttile
boxchart(testData.borough,testData.saleprice)
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hold on
boxchart(testData.borough,ashaTestPredictions)
hold off
legend(["True Sale Prices","Predicted Sale Prices"])
xlabel("Borough")
ylabel(["Sale Price","(log transformed)"])
title("ASHA Optimization Model")

For both models, the predicted median sale price closely matches the median true sale price in each
borough. The predicted sale prices seem to vary less than the true sale prices.

For each model, display box charts that compare the distribution of predicted and true sale prices by
the number of families in a dwelling. Use a 1-by-2 tiled layout to compare the results for the two
models.

tiledlayout(1,2)

nexttile
boxchart(testData.buildingclasscategory,testData.saleprice)
hold on
boxchart(testData.buildingclasscategory,bayesianTestPredictions)
hold off
legend(["True Sale Prices","Predicted Sale Prices"])
xlabel("Number of Families in Dwelling")
ylabel(["Sale Price","(log transformed)"])
title("Bayesian Optimization Model")
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nexttile
boxchart(testData.buildingclasscategory,testData.saleprice)
hold on
boxchart(testData.buildingclasscategory,ashaTestPredictions)
hold off
legend(["True Sale Prices","Predicted Sale Prices"])
xlabel("Number of Families in Dwelling")
ylabel(["Sale Price","(log transformed)"])
title("ASHA Optimization Model")

For both models, the predicted median sale price closely matches the median true sale price in each
type of dwelling. The predicted sale prices seem to vary less than the true sale prices.

For each model, plot a histogram of the test set residuals, and check that they are normally
distributed. (Recall that the sale prices are log transformed.) Use a 1-by-2 tiled layout to compare the
results for the two models.

bayesianTestResiduals = testData.saleprice - bayesianTestPredictions;
ashaTestResiduals = testData.saleprice - ashaTestPredictions;

tiledlayout(1,2)

nexttile
histogram(bayesianTestResiduals)
title("Test Set Residuals (Bayesian)")

nexttile
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histogram(ashaTestResiduals)
title("Test Set Residuals (ASHA)")

Although the histograms are slightly left-skewed, they are both approximately symmetric about 0.

See Also
fitrauto | boxchart | histogram | BayesianOptimization

More About
• “Bayesian Optimization Workflow” on page 10-25
• “Hyperparameter Optimization in Regression Learner App” on page 24-35
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Credit Rating by Bagging Decision Trees

This example shows how to build an automated credit rating tool.

One of the fundamental tasks in credit risk management is to assign a credit grade to a borrower.
Grades are used to rank customers according to their perceived creditworthiness: better grades
mean less risky customers; similar grades mean similar level of risk. Grades come in two categories:
credit ratings and credit scores. Credit ratings are a small number of discrete classes, usually labeled
with letters, such as 'AAA', 'BB-', and so on. Credit scores are numeric grades such as '640' or
'720'. Credit grades are one of the key elements in regulatory frameworks, such as Basel II (see Basel
Committee on Banking Supervision [3 on page 19-271]).

Assigning a credit grade involves analyzing information on the borrower. If the borrower is an
individual, information of interest could be the individual's income, outstanding debt (mortgage,
credit cards), household size, residential status, and so on. For corporate borrowers, one may
consider certain financial ratios (for example, sales divided by total assets), industry, and so on. These
pieces of information about a borrower as called features or predictors. Different institutions use
different predictors, and they may also have different rating classes or score ranges to rank their
customers. For relatively small loans offered to a large market of potential borrowers (for example,
credit cards), it is common to use credit scores, and the process of grading a borrower is usually
automated. For larger loans, accessible to small- to medium-sized companies and larger corporations,
credit ratings are usually used, and the grading process may involve a combination of automated
algorithms and expert analysis.

There are rating agencies that keep track of the creditworthiness of companies. Yet, most banks
develop an internal methodology to assign credit grades for their customers. Rating a customer
internally can be a necessity if the customer has not been rated by a rating agency, but even if a
third-party rating exists, an internal rating offers a complementary assessment of a customer's risk
profile.

This example shows how MATLAB® can help with the automated stage of a credit rating process. In
particular, this example takes advantage of one of the statistical learning tools readily available in
Statistics and Machine Learning Toolbox™, a classification algorithm known as a bagged decision
tree.

This example assumes that historical information is available in the form of a data set where each
record contains the features of a borrower and the credit rating that was assigned to it. These may be
internal ratings, assigned by a committee that followed policies and procedures already in place.
Alternatively, the ratings may come from a rating agency, whose ratings are being used to "jump
start" a new internal credit rating system.

The existing historical data is the starting point, and it is used to train the bagged decision tree that
will automate the credit rating. In the vocabulary of statistical learning, this training process falls in
the category of supervised learning. The classifier is then used to assign ratings to new customers. In
practice, these automated or predicted ratings would most likely be regarded as tentative, until a
credit committee of experts reviews them. The type of classifier used in this example can also
facilitate the revision of these ratings, because it provides a measure of certainty for the predicted
ratings, a classification score.

In practice, you need to train a classifier first, then use it to assign a credit rating to new customers,
and finally you also need to profile or evaluate the quality or accuracy of the classifier, a process also
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known as validation or back-testing. This example also discusses some readily available back-testing
tools.

Loading the Existing Credit Rating Data

Load the historical data from the comma-delimited text file CreditRating_Historical.dat. This
example works with text files, but if you have access to Database Toolbox™, you can load this
information directly from a database.

The data set contains financial ratios, industry sector, and credit ratings for a list of corporate
customers. This is simulated, not real data. The first column is a customer ID. Then there are five
columns of financial ratios. These are the same ratios used in Altman's z-score (see Altman [1 on page
19-271]; see also Loeffler and Posch [4 on page 19-271] for a related analysis).

• Working capital / Total Assets (WC_TA)
• Retained Earnings / Total Assets (RE_TA)
• Earnings Before Interests and Taxes / Total Assets (EBIT_TA)
• Market Value of Equity / Book Value of Total Debt (MVE_BVTD)
• Sales / Total Assets (S_TA)

Next, there is an industry sector label, an integer value ranging from 1 to 12. The last column has the
credit rating assigned to the customer.

Load the data into a table array.

creditDS = readtable('CreditRating_Historical.dat');

Copy the features into a matrix X, and the corresponding classes, the ratings, into a vector Y. This is
not a required step, since you could access this information directly from the dataset or table
array, but this example does it here to simplify some repeated function calls below.

The features to be stored in the matrix X are the five financial ratios, and the industry label.
Industry is a categorical variable, nominal in fact, because there is no ordering in the industry
sectors. The response variable, the credit ratings, is also categorical, though this is an ordinal
variable, because, by definition, ratings imply a ranking of creditworthiness. This example uses this
variable "as is" to train the classifier. This variable is copied into an ordinal array because this way
the outputs come out in the natural order of the ratings and are easier to read. The ordering of the
ratings is established by the cell array that is passed as a third argument in the definition of Y. The
credit ratings can also be mapped into numeric values, which can be useful to try alternative methods
to analyze the data (for example, regression). It is always recommended to try different methods in
practice.

X = [creditDS.WC_TA creditDS.RE_TA creditDS.EBIT_TA creditDS.MVE_BVTD...
     creditDS.S_TA creditDS.Industry];
Y = ordinal(creditDS.Rating);

Use the predictors X and the response Y to fit a particular type of classification ensemble called a
bagged decision tree. "Bagging," in this context, stands for "bootstrap aggregation." The methodology
consists in generating a number of sub-samples, or bootstrap replicas, from the data set. These sub-
samples are randomly generated, sampling with replacement from the list of customers in the data
set. For each replica, a decision tree is grown. Each decision tree is a trained classifier on its own,
and could be used in isolation to classify new customers. The predictions of two trees grown from two
different bootstrap replicas may be different, though. The ensemble aggregates the predictions of all
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the decision trees that are grown for all the bootstrap replicas. If the majority of the trees predict one
particular class for a new customer, it is reasonable to consider that prediction to be more robust
than the prediction of any single tree alone. Moreover, if a different class is predicted by a smaller set
of trees, that information is useful, too. In fact, the proportion of trees that predict different classes is
the basis for the classification scores that are reported by the ensemble when classifying new data.

Constructing the Tree Bagger

The first step to construct the classification ensemble will be to find a good leaf size for the individual
trees; here the example tries sizes of 1, 5, and 10. (See Statistics and Machine Learning Toolbox
documentation for more on TreeBagger.) Start with a small number of trees, 25 only, because you
mostly want to compare the initial trend in the classification error for different leaf sizes. For
reproducibility and fair comparisons, reinitialize the random number generator, which is used to
sample with replacement from the data, each time you build a classifier.

leaf = [1 5 10];
nTrees = 25;
rng(9876,'twister');
savedRng = rng; % Save the current RNG settings

color = 'bgr';
for ii = 1:length(leaf)
   % Reinitialize the random number generator, so that the
   % random samples are the same for each leaf size
   rng(savedRng)
   % Create a bagged decision tree for each leaf size and plot out-of-bag
   % error 'oobError'
   b = TreeBagger(nTrees,X,Y,'OOBPrediction','on',...
                             'CategoricalPredictors',6,...
                             'MinLeafSize',leaf(ii));
   plot(oobError(b),color(ii))
   hold on
end
xlabel('Number of grown trees')
ylabel('Out-of-bag classification error')
legend({'1', '5', '10'},'Location','NorthEast')
title('Classification Error for Different Leaf Sizes')
hold off
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The errors are comparable for the three leaf-size options. Therefore work with a leaf size of 10,
because it results in leaner trees and more efficient computations.

Note that you did not have to split the data into training and test subsets. This is done internally, it is
implicit in the sampling procedure that underlies the method. At each bootstrap iteration, the
bootstrap replica is the training set, and any customers left out ("out-of-bag") are used as test points
to estimate the out-of-bag classification error reported above.

Next, find out whether all the features are important for the accuracy of the classifier. Do this by
turning on the feature importance measure (OOBPredictorImportance), and plot the results to
visually find the most important features. Now try a larger number of trees and store the
classification error, for further comparisons below.

nTrees = 50;
leaf = 10;
rng(savedRng);
b = TreeBagger(nTrees,X,Y,'OOBPredictorImportance','on', ...
                          'CategoricalPredictors',6, ...
                          'MinLeafSize',leaf);

bar(b.OOBPermutedPredictorDeltaError)
xlabel('Feature number')
ylabel('Out-of-bag feature importance')
title('Feature importance results')
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oobErrorFullX = oobError(b);

Features 2, 4 and 6 stand out from the rest. Feature 4, market value of equity / book value of total
debt (MVE_BVTD), is the most important predictor for this data set. This ratio is closely related to the
predictors of creditworthiness in structural models, such as Merton's model [5 on page 19-271],
where the value of the firm's equity is compared to its outstanding debt to determine the default
probability.

Information on the industry sector, feature 6 (Industry), is also relatively more important than other
variables to assess the creditworthiness of a firm for this data set.

Although not as important as MVE_BVTD, feature 2, retained earnings / total assets (RE_TA), stands
out from the rest. There is a correlation between retained earnings and the age of a firm (the longer a
firm has existed, the more earnings it can accumulate, in general), and in turn the age of a firm is
correlated to its creditworthiness (older firms tend to be more likely to survive in tough times).

Fit a new classification ensemble using only predictors RE_TA, MVE_BVTD, and Industry. Compare
its classification error with the previous classifier, which uses all features.

X = [creditDS.RE_TA creditDS.MVE_BVTD creditDS.Industry];

rng(savedRng)
b = TreeBagger(nTrees,X,Y,'OOBPrediction','on', ...
                          'CategoricalPredictors',3, ...
                          'MinLeafSize',leaf);

oobErrorX246 = oobError(b);
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plot(oobErrorFullX,'b')
hold on
plot(oobErrorX246,'r')
xlabel('Number of grown trees')
ylabel('Out-of-bag classification error')
legend({'All features', 'Features 2, 4, 6'},'Location','NorthEast')
title('Classification Error for Different Sets of Predictors')
hold off

The accuracy of the classification does not deteriorate significantly when you remove the features
with relatively low importance (1, 3, and 5), so you will use the more parsimonious classification
ensemble for the predictions.

This example started with a set of only six features, and used the feature importance measure of the
classifier, and the out-of-bag classification error as criteria to screen out three of the variables.
Feature selection can be a time consuming process when the initial set of potential predictors
contains dozens of variables. Besides the tools used here (variable importance and a "visual"
comparison of out-of-bag errors), other variable selection tools in Statistics and Machine Learning
Toolbox can be helpful for these types of analyses. However, in the end, a successful feature selection
process requires a combination of quantitative tools and an analyst's judgement.

For example, the variable importance measure used here is a ranking mechanism that estimates the
relative impact of a feature by measuring how much the predictive accuracy of the classifier
deteriorates when this feature's values are randomly permuted. The idea is that when the feature in
question adds little to the predictive power of the classifier, using altered (in this case permuted)
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values should not impact the classification results. Relevant information, on the other hand, cannot be
randomly swapped without degrading the predictions. Now, if two highly correlated features are
important, they will both rank high in this analysis. In that case, keeping one of these features should
suffice for accurate classifications, but you would not know that from the ranking results alone. You
would have to check the correlations separately, or use an expert's judgement. That is to say, tools
like variable importance or sequentialfs can greatly help for feature selection, but an analyst's
judgment is a key piece in this process.

At this point, the classifier could be saved (for example, save classifier.mat b), to be loaded in
a future session (load classifier) to classify new customers. For efficiency, it is recommended to
keep a compact version of the classifier once the training process is finished.

b = compact(b);

Classifying New Data

Use the previously constructed classification ensemble to assign credit ratings to new customers.
Because the ratings of existing customers need to be reviewed, too, on a regular basis, especially
when their financial information has substantially changed, the data set could also contain a list of
existing customers under review. Start by loading the new data.

newDS = readtable('CreditRating_NewCompanies.dat');

To predict the credit rating for this new data, call the predict method on the classifier. The method
returns two arguments, the predicted class and the classification score. You certainly want to get
both output arguments, since the classification scores contain information on how certain the
predicted ratings seem to be. You could copy variables RE_TA, MVE_BVTD and Industry into a
matrix X, as before, but since you will make only one call to predict, you can skip this step and use
newDS directly.

[predClass,classifScore] = predict(b,[newDS.RE_TA newDS.MVE_BVTD newDS.Industry]);

At this point, you can create a report. Here this example only displays on the screen a small report for
the first three customers, for illustration purposes, but MATLAB deployment tools could greatly
improve the workflow here. For example, credit analysts could run this classification remotely, using a
web browser, and get a report, without even having MATLAB on their desktops.

for i = 1:3
   fprintf('Customer %d:\n',newDS.ID(i));
   fprintf('   RE/TA    = %5.2f\n',newDS.RE_TA(i));
   fprintf('   MVE/BVTD = %5.2f\n',newDS.MVE_BVTD(i));
   fprintf('   Industry = %2d\n',newDS.Industry(i));
   fprintf('   Predicted Rating : %s\n',predClass{i});
   fprintf('   Classification score : \n');
   for j = 1:length(b.ClassNames)
      if (classifScore(i,j)>0)
         fprintf('      %s : %5.4f \n',b.ClassNames{j},classifScore(i,j));
      end
   end
end

Customer 60644:

   RE/TA    =  0.22

   MVE/BVTD =  2.40
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   Industry =  6

   Predicted Rating : AA

   Classification score : 

      A : 0.2349 
      AA : 0.7519 
      AAA : 0.0011 
      BBB : 0.0121 

Customer 33083:

   RE/TA    =  0.24

   MVE/BVTD =  1.51

   Industry =  4

   Predicted Rating : BBB

   Classification score : 

      A : 0.1060 
      BBB : 0.8940 

Customer 63830:

   RE/TA    =  0.18

   MVE/BVTD =  1.69

   Industry =  7

   Predicted Rating : A

   Classification score : 

      A : 0.6305 
      AA : 0.0172 
      AAA : 0.0010 
      BBB : 0.3513 

Keeping records of the predicted ratings and corresponding scores can be useful for periodic
assessments of the quality of the classifier. You can store this information in the table array predDS.

classnames = b.ClassNames;
predDS = [table(newDS.ID,predClass),array2table(classifScore)];
predDS.Properties.VariableNames = [{'ID'},{'PredRating'},classnames'];

This information could be saved, for example, to a comma-delimited text file
PredictedRatings.dat using the command

  writetable(predDS,'PredictedRatings.dat');

or written directly to a database using Database Toolbox.

Back-Testing: Profiling the Classification Process

Validation or back-testing is the process of profiling or assessing the quality of the credit ratings.
There are many different measures and tests related to this task (see, for example, Basel Committee
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on Banking Supervision [2 on page 19-271]). Here, this example focuses on the following two
questions:

• How accurate are the predicted ratings, as compared to the actual ratings? Here "predicted
ratings" refers to those obtained from the automated classification process, and "actual ratings" to
those assigned by a credit committee that puts together the predicted ratings and their
classification scores, and other pieces of information, such as news and the state of the economy
to determine a final rating.

• How well do the actual ratings rank customers according to their creditworthiness? This is done in
an ex-post analysis performed, for example, one year later, when it is known which companies
defaulted during the year.

The file CreditRating_ExPost.dat contains "follow up" data on the same companies considered in
the previous section. It contains the actual ratings that the committee assigned to these companies,
as well as a "default flag" that indicates whether the corresponding company defaulted within one
year of the rating process (if 1) or not (if 0).

exPostDS = readtable('CreditRating_ExPost.dat');

Comparing predicted ratings vs. actual ratings.

The rationale to train an automated classifier is to expedite the work of the credit committee. The
more accurate the predicted ratings are, the less time the committee has to spend reviewing the
predicted ratings. So it is conceivable that the committee wants to have regular checks on how
closely the predicted ratings match the final ratings they assign, and to recommend re-training the
automated classifier (and maybe include new features, for example) if the mismatch seems
concerning.

The first tool you can use to compare predicted vs. actual ratings is a confusion matrix, readily
available in Statistics and Machine Learning Toolbox:

C = confusionchart(exPostDS.Rating,predDS.PredRating);
sortClasses(C,{'AAA' 'AA' 'A' 'BBB' 'BB' 'B' 'CCC'})
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The rows correspond to the actual ratings, and the columns to the predicted ratings. The amount in
the position (i,j) in the confusion matrix indicates how many customers received an actual rating i
and were predicted as rating j. For example, position (3,2) tells us how many customers received a
rating of 'A' by the credit committee, but were predicted as 'AA' with the automated classifier. You
can also present this matrix in percentage. Normalize each value by the number of observations that
has the same true rating.

C.Normalization = 'row-normalized';
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Good agreement between the predicted and the actual ratings would result in values in the main
diagonal that dominate the rest of the values in a row, ideally values close to 1. In this case, you can
actually see an important disagreement for 'B', since about half of the customers that were rated as
'B' by the credit committee had been predicted as 'BB' by the automated classifier. On the other
hand, it is good to see that ratings differ in at most one notch in most cases, with the only exception
of 'BBB'.

A confusion matrix could also be used to compare the internal ratings assigned by the institution
against third-party ratings; this is often done in practice.

For each specific rating, you can compute another measure of agreement between predicted and
actual ratings. You can build a Receiver Operating Characteristic (ROC) curve and check the area
under the curve (AUC) by using the rocmetrics object. rocmetrics takes the actual ratings (the
standard you are comparing against) and the 'BBB' classification scores determined by the
automated process.

rocObj1 = rocmetrics(exPostDS.Rating,predDS.BBB,'BBB');

Plot the ROC curve for the rating 'BBB' by using the plot function of rocmetrics.

plot(rocObj1)
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Here is an explanation of how the ROC is built. Recall that for each customer the automated classifier
returns a classification score for each of the credit ratings, in particular, for 'BBB', which can be
interpreted as how likely it is that this particular customer should be rated 'BBB'. In order to build
the ROC curve, you need to vary the classification threshold. That is, the minimum score to classify a
customer as 'BBB'. In other words, if the threshold is t, you only classify customers as 'BBB' if their
'BBB' score is greater than or equal to t. For example, suppose that company XYZ had a 'BBB'
score of 0.87. If the actual rating of XYZ (the information in exPostDS.Rating) is 'BBB', then XYZ
would be correctly classified as 'BBB' for any threshold of up to 0.87. This would be a true positive,
and it would increase what is called the sensitivity of the classifier. For any threshold greater than
0.87, this company would not receive a 'BBB' rating, and you would have a false negative case. To
complete the description, suppose now that XYZ's actual rating is 'BB'. Then it would be correctly
rejected as a 'BBB' for thresholds of more than 0.87, becoming a true negative, and thus increasing
the so called specificity of the classifier. However, for thresholds of up to 0.87, it would become a
false positive (it would be classified as 'BBB', when it actually is a 'BB'). The ROC curve is
constructed by plotting the proportion of true positives (sensitivity), versus false positives (1-
specificity), as the threshold varies from 0 to 1.

The AUC, as its name indicates, is the area under the ROC curve. The closer the AUC is to 1, the
more accurate the classifier (a perfect classifier would have an AUC of 1). In this example, the AUC
seems high enough, but it would be up to the committee to decide which level of AUC for the ratings
should trigger a recommendation to improve the automated classifier.
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Comparing actual ratings vs. defaults in the following year.

A common tool used to assess the ranking of customers implicit in the credit ratings is the
Cumulative Accuracy Profile (CAP), and the associated accuracy ratio measure. The idea is to
measure the relationship between the credit ratings assigned and the number of defaults observed in
the following year. One would expect that fewer defaults are observed for better rating classes. If the
default rate were the same for all ratings, the rating system would be no different from a naive (and
useless) classification system in which customers were randomly assigned a rating, independently of
their creditworthiness.

It is not hard to see that rocmetrics can also be used to construct the CAP. The standard compared
against is not a rating, as before, but the default flag that is loaded from the
CreditRating_ExPost.dat file. The score that you use is a "dummy score" that indicates the
ranking in creditworthiness implicit in the list of ratings. The dummy score only needs to satisfy that
better ratings get lower dummy scores (they are "less likely to have a default flag of 1"), and that any
two customers with the same rating get the same dummy score. A default probability could be passed
as a score, of course, but you do not have default probabilities here, and in fact you do not need to
have estimates of the default probabilities to construct the CAP, because you are not validating
default probabilities. All that this example is assessing with this tool is how well the ratings rank
customers according to their creditworthiness.

Usually, the CAP of the rating system under consideration is plotted together with the CAP of the
"perfect rating system." The latter is a hypothetical credit rating system for which the lowest rating
includes all the defaulters, and no other customers. The area under this perfect curve is the maximum
possible AUC attainable by a rating system. By convention, the AUC is adjusted for CAPs to subtract
the area under the naive system's CAP, that is, the CAP of the system that randomly assigns ratings to
customers. The naive system's CAP is simply a straight line from the origin to (1,1), with an AUC of
0.5. The accuracy ratio for a rating system is then defined as the ratio of the adjusted AUC (AUC of
the system in consideration minus AUC of the naive system) to the maximum accuracy (AUC of the
perfect system minus AUC of the naive system).

ratingsList = {'AAA' 'AA' 'A' 'BBB' 'BB' 'B' 'CCC'};
Nratings = length(ratingsList);
dummyDelta = 1/(Nratings+1);
dummyRank = linspace(dummyDelta,1-dummyDelta,Nratings)';

D = exPostDS.Def_tplus1;
fracTotDef = sum(D)/length(D);
maxAcc = 0.5 - 0.5 * fracTotDef;

R = double(ordinal(exPostDS.Rating,[],ratingsList));
S = dummyRank(R);
rocObj2 = rocmetrics(D,S,1);
xVal = rocObj2.Metrics.FalsePositiveRate;
yVal = rocObj2.Metrics.TruePositiveRate;
auc = rocObj2.AUC;

accRatio = (auc-0.5)/maxAcc;
fprintf('Accuracy ratio for actual ratings: %5.3f\n',accRatio);

Accuracy ratio for actual ratings: 0.850

xPerfect(1) = 0; xPerfect(2) = fracTotDef; xPerfect(3) = 1;
yPerfect(1) = 0; yPerfect(2) = 1; yPerfect(3) = 1;
xNaive(1) = 0; xNaive(2) = 1;
yNaive(1) = 0; yNaive(2) = 1;
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plot(xPerfect,yPerfect,'--k',xVal,yVal,'b',xNaive,yNaive,'-.k')
xlabel('Fraction of all companies')
ylabel('Fraction of defaulted companies')
title('Cumulative Accuracy Profile')
legend({'Perfect','Actual','Naive'},'Location','SouthEast')
text(xVal(2)+0.01,yVal(2)-0.01,'CCC')
text(xVal(3)+0.01,yVal(3)-0.02,'B')
text(xVal(4)+0.01,yVal(4)-0.03,'BB')

The key to reading the information of the CAP is in the "kinks," labeled in the plot for ratings 'CCC',
'B', and 'BB'. For example, the second kink is associated with the second lowest rating, 'B', and it
is located at (0.097, 0.714). This means that 9.7% of the customers were ranked 'B' or lower, and
they account for 71.4% of the defaults observed.

In general, the accuracy ratio should be treated as a relative, rather than an absolute measure. For
example, you can add the CAP of the predicted ratings in the same plot, and compute its accuracy
ratio to compare it with the accuracy ratio of the actual ratings.

Rpred = double(ordinal(predDS.PredRating,[],ratingsList));
Spred = dummyRank(Rpred);
rocObj3 = rocmetrics(D,Spred,1);
xValPred = rocObj3.Metrics.FalsePositiveRate;
yValPred = rocObj3.Metrics.TruePositiveRate;
aucPred = rocObj3.AUC;
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accRatioPred = (aucPred-0.5)/maxAcc;
fprintf('Accuracy ratio for predicted ratings: %5.3f\n',accRatioPred);

Accuracy ratio for predicted ratings: 0.811

plot(xPerfect,yPerfect,'--k',xVal,yVal,'b',xNaive,yNaive,'-.k',...
   xValPred,yValPred,':r')
xlabel('Fraction of all companies')
ylabel('Fraction of defaulted companies')
title('Cumulative Accuracy Profile')
legend({'Perfect','Actual','Naive','Predicted'},'Location','SouthEast')

The accuracy ratio of the predicted rating is smaller, and its CAP is mostly below the CAP of the
actual rating. This is reasonable, since the actual ratings are assigned by the credit committees that
take into consideration the predicted ratings and extra information that can be important to fine-tune
the ratings.

Final Remarks

MATLAB offers a wide range of machine learning tools, besides bagged decision trees, that can be
used in the context of credit rating. In Statistics and Machine Learning Toolbox you can find
classification tools such as discriminant analysis and naive Bayes classifiers. MATLAB also offers
Deep Learning Toolbox™. Also, Database Toolbox and MATLAB deployment tools may provide you
with more flexibility to adapt the workflow presented here to your own preferences and needs.
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No probabilities of default have been computed here. For credit ratings, the probabilities of default
are usually computed based on credit-rating migration history. See the transprob (Financial
Toolbox) reference page in Financial Toolbox™ for more information.
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Combine Heterogeneous Models into Stacked Ensemble

This example shows how to build multiple machine learning models for a given training data set, and
then combine the models using a technique called stacking to improve the accuracy on a test data set
compared to the accuracy of the individual models.

Stacking is a technique used to combine several heterogeneous models by training an additional
model, often referred to as a stacked ensemble model, or stacked learner, on the k-fold cross-
validated predictions (classification scores for classification models and predicted responses for
regression models) of the original (base) models. The concept behind stacking is that certain models
might correctly classify a test observation while others might fail to do so. The algorithm learns from
this diversity of predictions and attempts to combine the models to improve upon the predicted
accuracy of the base models.

In this example, you train several heterogeneous classification models on a data set, and then
combine the models using stacking.

Load Sample Data

This example uses the 1994 census data stored in census1994.mat. The data set consists of
demographic data from the US Census Bureau to predict whether an individual makes over $50,000
per year. The classification task is to fit a model that predicts the salary category of people given their
age, working class, education level, marital status, race, and so on.

Load the sample data census1994 and display the variables in the data set.

load census1994
whos

  Name                 Size              Bytes  Class    Attributes

  Description         20x74               2960  char               
  adultdata        32561x15            1872567  table              
  adulttest        16281x15             944467  table              

census1994 contains the training data set adultdata and the test data set adulttest. For this
example, to reduce the running time, subsample 5000 training and test observations each, from the
original tables adultdata and adulttest, by using the datasample function. (You can skip this
step if you want to use the complete data sets.)

NumSamples = 5e3;
s = RandStream('mlfg6331_64','seed',0); % For reproducibility
adultdata = datasample(s,adultdata,NumSamples,'Replace',false);
adulttest = datasample(s,adulttest,NumSamples,'Replace',false);

Some models, such as support vector machines (SVMs), remove observations containing missing
values whereas others, such as decision trees, do not remove such observations. To maintain
consistency between the models, remove rows containing missing values before fitting the models.

adultdata = rmmissing(adultdata);
adulttest = rmmissing(adulttest);

Preview the first few rows of the training data set.

head(adultdata)
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ans=8×15 table
    age     workClass       fnlwgt       education      education_num      marital_status         occupation         relationship     race      sex      capital_gain    capital_loss    hours_per_week    native_country    salary
    ___    ___________    __________    ____________    _____________    __________________    _________________    ______________    _____    ______    ____________    ____________    ______________    ______________    ______

    39     Private          4.91e+05    Bachelors            13          Never-married         Exec-managerial      Other-relative    Black    Male           0               0                45          United-States     <=50K 
    25     Private        2.2022e+05    11th                  7          Never-married         Handlers-cleaners    Own-child         White    Male           0               0                45          United-States     <=50K 
    24     Private        2.2761e+05    10th                  6          Divorced              Handlers-cleaners    Unmarried         White    Female         0               0                58          United-States     <=50K 
    51     Private        1.7329e+05    HS-grad               9          Divorced              Other-service        Not-in-family     White    Female         0               0                40          United-States     <=50K 
    54     Private        2.8029e+05    Some-college         10          Married-civ-spouse    Sales                Husband           White    Male           0               0                32          United-States     <=50K 
    53     Federal-gov         39643    HS-grad               9          Widowed               Exec-managerial      Not-in-family     White    Female         0               0                58          United-States     <=50K 
    52     Private             81859    HS-grad               9          Married-civ-spouse    Machine-op-inspct    Husband           White    Male           0               0                48          United-States     >50K  
    37     Private        1.2429e+05    Some-college         10          Married-civ-spouse    Adm-clerical         Husband           White    Male           0               0                50          United-States     <=50K 

Each row represents the attributes of one adult, such as age, education, and occupation. The last
column salary shows whether a person has a salary less than or equal to $50,000 per year or
greater than $50,000 per year.

Understand Data and Choose Classification Models

Statistics and Machine Learning Toolbox™ provides several options for classification, including
classification trees, discriminant analysis, naive Bayes, nearest neighbors, SVMs, and classification
ensembles. For the complete list of algorithms, see “Classification”.

Before choosing the algorithms to use for your problem, inspect your data set. The census data has
several noteworthy characteristics:

• The data is tabular and contains both numeric and categorical variables.
• The data contains missing values.
• The response variable (salary) has two classes (binary classification).

Without making any assumptions or using prior knowledge of algorithms that you expect to work well
on your data, you simply train all the algorithms that support tabular data and binary classification.
Error-correcting output codes (ECOC) models are used for data with more than two classes.
Discriminant analysis and nearest neighbor algorithms do not analyze data that contains both
numeric and categorical variables. Therefore, the algorithms appropriate for this example are an
SVM, a decision tree, an ensemble of decision trees, and a naive Bayes model.

Build Base Models

Fit two SVM models, one with a Gaussian kernel and one with a polynomial kernel. Also, fit a decision
tree, a naive Bayes model, and an ensemble of decision trees.

% SVM with Gaussian kernel
rng('default') % For reproducibility
mdls{1} = fitcsvm(adultdata,'salary','KernelFunction','gaussian', ...
    'Standardize',true,'KernelScale','auto');

% SVM with polynomial kernel
rng('default')
mdls{2} = fitcsvm(adultdata,'salary','KernelFunction','polynomial', ...
    'Standardize',true,'KernelScale','auto');

% Decision tree
rng('default')
mdls{3} = fitctree(adultdata,'salary');
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% Naive Bayes
rng('default')
mdls{4} = fitcnb(adultdata,'salary');

% Ensemble of decision trees
rng('default')
mdls{5} = fitcensemble(adultdata,'salary');

Combine Models Using Stacking

If you use only the prediction scores of the base models on the training data, the stacked ensemble
might be subject to overfitting. To reduce overfitting, use the k-fold cross-validated scores instead. To
ensure that you train each model using the same k-fold data split, create a cvpartition object and
pass that object to the crossval function of each base model. This example is a binary classification
problem, so you only need to consider scores for either the positive or negative class.

Obtain k-fold cross-validation scores.

rng('default') % For reproducibility
N = numel(mdls);
Scores = zeros(size(adultdata,1),N);
cv = cvpartition(adultdata.salary,"KFold",5);
for ii = 1:N
    m = crossval(mdls{ii},'cvpartition',cv);
    [~,s] = kfoldPredict(m);
    Scores(:,ii) = s(:,m.ClassNames=='<=50K');
end

Create the stacked ensemble by training it on the cross-validated classification scores Scores with
these options:

• To obtain the best results for the stacked ensemble, optimize its hyperparameters. You can fit the
training data set and tune parameters easily by calling the fitting function and setting its
'OptimizeHyperparameters' name-value pair argument to 'auto'.

• Specify 'Verbose' as 0 to disable message displays.
• For reproducibility, set the random seed and use the 'expected-improvement-plus'

acquisition function. Also, for reproducibility of the random forest algorithm, specify the
'Reproducible' name-value pair argument as true for tree learners.

rng('default') % For reproducibility
t = templateTree('Reproducible',true);
stckdMdl = fitcensemble(Scores,adultdata.salary, ...
    'OptimizeHyperparameters','auto', ...
    'Learners',t, ...
    'HyperparameterOptimizationOptions',struct('Verbose',0,'AcquisitionFunctionName','expected-improvement-plus'));
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Compare Predictive Accuracy

Check the classifier performance with the test data set by using the confusion matrix and McNemar's
hypothesis test.

Predict Labels and Scores on Test Data

Find the predicted labels, scores, and loss values of the test data set for the base models and the
stacked ensemble.

First, iterate over the base models to the compute predicted labels, scores, and loss values.

label = [];
score = zeros(size(adulttest,1),N);
mdlLoss = zeros(1,numel(mdls));
for i = 1:N
    [lbl,s] = predict(mdls{i},adulttest);
    label = [label,lbl];
    score(:,i) = s(:,m.ClassNames=='<=50K');
    mdlLoss(i) = mdls{i}.loss(adulttest);
end

Attach the predictions from the stacked ensemble to label and mdlLoss.

[lbl,s] = predict(stckdMdl,score);
label = [label,lbl];
mdlLoss(end+1) = stckdMdl.loss(score,adulttest.salary);
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Concatenate the score of the stacked ensemble to the scores of the base models.

score = [score,s(:,1)];

Display the loss values.

names = {'SVM-Gaussian','SVM-Polynomial','Decision Tree','Naive Bayes', ...
    'Ensemble of Decision Trees','Stacked Ensemble'};
array2table(mdlLoss,'VariableNames',names)

ans=1×6 table
    SVM-Gaussian    SVM-Polynomial    Decision Tree    Naive Bayes    Ensemble of Decision Trees    Stacked Ensemble
    ____________    ______________    _____________    ___________    __________________________    ________________

      0.15668          0.17473           0.1975          0.16764               0.15833                  0.14519     

The loss value of the stacked ensemble is lower than the loss values of the base models.

Confusion Matrix

Compute the confusion matrix with the predicted classes and the known (true) classes of the test data
set by using the confusionchart function.

figure
c = cell(N+1,1);
for i = 1:numel(c)
    subplot(2,3,i)
    c{i} = confusionchart(adulttest.salary,label(:,i));
    title(names{i})
end
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The diagonal elements indicate the number of correctly classified instances of a given class. The off-
diagonal elements are instances of misclassified observations.

McNemar's Hypothesis Test

To test whether the improvement in prediction is significant, use the testcholdout function, which
conducts McNemar's hypothesis test. Compare the stacked ensemble to the naive Bayes model.

 [hNB,pNB] = testcholdout(label(:,6),label(:,4),adulttest.salary)

hNB = logical
   1

pNB = 9.7646e-07

Compare the stacked ensemble to the ensemble of decision trees.

 [hE,pE] = testcholdout(label(:,6),label(:,5),adulttest.salary)

hE = logical
   1

pE = 1.9357e-04
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In both cases, the low p-value of the stacked ensemble confirms that its predictions are statistically
superior to those of the other models.
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Label Data Using Semi-Supervised Learning Techniques

This example shows how to use graph-based and self-training semi-supervised learning techniques to
label data.

Semi-supervised learning combines aspects of supervised learning, where all of the training data is
labeled, and unsupervised learning, where true labels are unknown. That is, some training
observations are labeled, but the vast majority are unlabeled. Semi-supervised learning methods try
to leverage the underlying structure of the data to fit labels to the unlabeled data.

Statistics and Machine Learning Toolbox™ provides these semi-supervised learning functions for
classification:

• fitsemigraph constructs a similarity graph with labeled and unlabeled observations as nodes,
and distributes label information from labeled observations to unlabeled observations.

• fitsemiself iteratively trains a classifier on the data. First, the function trains a classifier on the
labeled data alone, and then uses that classifier to make label predictions for the unlabeled data.
fitsemiself provides scores for the predictions, and then treats the predictions as true labels
for the next training cycle of the classifier if the scores are above a certain threshold. This process
repeats until the label predictions converge.

Generate Data

Generate data from two half-moon shapes. Determine which moon new points belong to by using
graph-based and self-training semi-supervised techniques.

Create the custom function twomoons (shown at the end of this example). This function takes an
input argument n and creates n points in each of two interlaced half-moons: a top moon that is
concave down and a bottom moon that is concave up.

Generate a set of 40 labeled data points by using the twomoons function. Each point in X is in one of
the two moons, with the corresponding moon label stored in the vector label.

rng('default') % For reproducibility
[X,label] = twomoons(20);

Visualize the points by using a scatter plot. Points in the same moon have the same color.

scatter(X(:,1),X(:,2),[],label,'filled')
title('Labeled Data')
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Generate a set of 400 unlabeled data points by using the twomoons function. Each point in newX
belongs to one of the two moons, but the corresponding moon label is unknown.

newX = twomoons(200);

Label Data Using Graph-Based Method

Label the unlabeled data in newX by using a semi-supervised graph-based method. By default,
fitsemigraph constructs a similarity graph from the data in X and newX, and uses a label
propagation technique to fit labels to newX.

graphMdl = fitsemigraph(X,label,newX)

graphMdl = 
  SemiSupervisedGraphModel with properties:

             FittedLabels: [400x1 double]
              LabelScores: [400x2 double]
               ClassNames: [1 2]
             ResponseName: 'Y'
    CategoricalPredictors: []
                   Method: 'labelpropagation'

  Properties, Methods
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The function returns a SemiSupervisedGraphModel object whose FittedLabels property
contains the fitted labels for the unlabeled data and whose LabelScores property contains the
associated label scores.

Visualize the fitted label results by using a scatter plot. Use the fitted labels to set the color of the
points, and use the maximum label scores to set the transparency of the points. Points with less
transparency are labeled with greater confidence.

maxGraphScores = max(graphMdl.LabelScores,[],2);
rescaledGraphScores = rescale(maxGraphScores,0.05,0.95);
scatter(newX(:,1),newX(:,2),[],graphMdl.FittedLabels,'filled', ...
    'MarkerFaceAlpha','flat','AlphaData',rescaledGraphScores);
title(["Fitted Labels for Unlabeled Data","(Graph-Based)"])

This method seems to label the newX points accurately. The two moons are visually distinct, and the
points that are labeled with the most uncertainty lie on the boundary between the two shapes.

Label Data Using Self-Training Method

Label the unlabeled data in newX by using a semi-supervised self-training method. By default,
fitsemiself uses a support vector machine (SVM) model with a Gaussian kernel to label the data
iteratively.

selfSVMMdl = fitsemiself(X,label,newX)

selfSVMMdl = 
  SemiSupervisedSelfTrainingModel with properties:
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             FittedLabels: [400x1 double]
              LabelScores: [400x2 double]
               ClassNames: [1 2]
             ResponseName: 'Y'
    CategoricalPredictors: []
                  Learner: [1x1 classreg.learning.classif.CompactClassificationSVM]

  Properties, Methods

The function returns a SemiSupervisedSelfTrainingModel object whose FittedLabels
property contains the fitted labels for the unlabeled data and whose LabelScores property contains
the associated label scores.

Visualize the fitted label results by using a scatter plot. As before, use the fitted labels to set the color
of the points, and use the maximum label scores to set the transparency of the points.

maxSVMScores = max(selfSVMMdl.LabelScores,[],2);
rescaledSVMScores = rescale(maxSVMScores,0.05,0.95);
scatter(newX(:,1),newX(:,2),[],selfSVMMdl.FittedLabels,'filled', ...
    'MarkerFaceAlpha','flat','AlphaData',rescaledSVMScores);
title(["Fitted Labels for Unlabeled Data","(Self-Training: SVM)"])
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This method, with an SVM learner, also seems to label the newX points accurately. The two moons are
visually distinct, and the points that are labeled with the most uncertainty lie on the boundary
between the two shapes.

Some learners might not label the unlabeled data as effectively, however. For example, use a tree
model instead of the default SVM model to label the data in newX.

selfTreeMdl = fitsemiself(X,label,newX,'Learner','tree');

Visualize the fitted label results.

maxTreeScores = max(selfTreeMdl.LabelScores,[],2);
rescaledTreeScores = rescale(maxTreeScores,0.05,0.95);
scatter(newX(:,1),newX(:,2),[],selfTreeMdl.FittedLabels,'filled', ...
    'MarkerFaceAlpha','flat','AlphaData',rescaledTreeScores);
title(["Fitted Labels for Unlabeled Data","(Self-Training: Tree)"])

This method, with a tree learner, mislabels many of the points in the top moon. When you use a semi-
supervised self-training method, make sure to use an underlying learner that is appropriate for the
structure of your data.

This code creates the function twomoons.

function [X,label] = twomoons(n) % Generate two moons, with n points in each moon.

% Specify the radius and relevant angles for the two moons.
noise = (1/6).*randn(n,1);
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radius = 1 + noise;
angle1 = pi + pi/10;
angle2 = pi/10;

% Create the bottom moon with a center at (1,0).
bottomTheta = linspace(-angle1,angle2,n)';
bottomX1 = radius.*cos(bottomTheta) + 1;
bottomX2 = radius.*sin(bottomTheta);

% Create the top moon with a center at (0,0).
topTheta = linspace(angle1,-angle2,n)';
topX1 = radius.*cos(topTheta);
topX2 = radius.*sin(topTheta);

% Return the moon points and their labels.
X = [bottomX1 bottomX2; topX1 topX2];
label = [ones(n,1); 2*ones(n,1)];
end

See Also
fitsemigraph | fitsemiself
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Decision Trees

• “Decision Trees” on page 20-2
• “View Decision Tree” on page 20-4
• “Growing Decision Trees” on page 20-7
• “Prediction Using Classification and Regression Trees” on page 20-9
• “Predict Out-of-Sample Responses of Subtrees” on page 20-10
• “Improving Classification Trees and Regression Trees” on page 20-13
• “Splitting Categorical Predictors in Classification Trees” on page 20-25
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Decision Trees
Decision trees, or classification trees and regression trees, predict responses to data. To predict a
response, follow the decisions in the tree from the root (beginning) node down to a leaf node. The leaf
node contains the response. Classification trees give responses that are nominal, such as 'true' or
'false'. Regression trees give numeric responses.

Statistics and Machine Learning Toolbox trees are binary. Each step in a prediction involves checking
the value of one predictor (variable). For example, here is a simple classification tree:

This tree predicts classifications based on two predictors, x1 and x2. To predict, start at the top node,
represented by a triangle (Δ). The first decision is whether x1 is smaller than 0.5. If so, follow the
left branch, and see that the tree classifies the data as type 0.

If, however, x1 exceeds 0.5, then follow the right branch to the lower-right triangle node. Here the
tree asks if x2 is smaller than 0.5. If so, then follow the left branch to see that the tree classifies the
data as type 0. If not, then follow the right branch to see that the tree classifies the data as type 1.

To learn how to prepare your data for classification or regression using decision trees, see “Steps in
Supervised Learning” on page 19-3.

Train Classification Tree

This example shows how to train a classification tree.

Create a classification tree using the entire ionosphere data set.

load ionosphere % Contains X and Y variables
Mdl = fitctree(X,Y)

Mdl = 
  ClassificationTree
             ResponseName: 'Y'
    CategoricalPredictors: []
               ClassNames: {'b'  'g'}
           ScoreTransform: 'none'
          NumObservations: 351

  Properties, Methods

Train Regression Tree

This example shows how to train a regression tree.
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Create a regression tree using all observation in the carsmall data set. Consider the Horsepower
and Weight vectors as predictor variables, and the MPG vector as the response.

load carsmall % Contains Horsepower, Weight, MPG
X = [Horsepower Weight];

Mdl = fitrtree(X,MPG)

Mdl = 
  RegressionTree
             ResponseName: 'Y'
    CategoricalPredictors: []
        ResponseTransform: 'none'
          NumObservations: 94

  Properties, Methods

References
[1] Breiman, L., J. H. Friedman, R. A. Olshen, and C. J. Stone. Classification and Regression Trees.

Boca Raton, FL: Chapman & Hall, 1984.

See Also
fitctree | fitrtree | ClassificationTree | RegressionTree

Related Examples
• “View Decision Tree” on page 20-4
• “Growing Decision Trees” on page 20-7
• “Prediction Using Classification and Regression Trees” on page 20-9
• “Improving Classification Trees and Regression Trees” on page 20-13
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View Decision Tree

This example shows how to view a classification or regression tree. There are two ways to view a
tree: view(tree) returns a text description and view(tree,'mode','graph') returns a graphic
description of the tree.

Create and view a classification tree.

load fisheriris % load the sample data
ctree = fitctree(meas,species); % create classification tree
view(ctree) % text description

Decision tree for classification
1  if x3<2.45 then node 2 elseif x3>=2.45 then node 3 else setosa
2  class = setosa
3  if x4<1.75 then node 4 elseif x4>=1.75 then node 5 else versicolor
4  if x3<4.95 then node 6 elseif x3>=4.95 then node 7 else versicolor
5  class = virginica
6  if x4<1.65 then node 8 elseif x4>=1.65 then node 9 else versicolor
7  class = virginica
8  class = versicolor
9  class = virginica

view(ctree,'mode','graph') % graphic description
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Now, create and view a regression tree.

load carsmall % load the sample data, contains Horsepower, Weight, MPG
X = [Horsepower Weight];
rtree = fitrtree(X,MPG,'MinParent',30); % create classification tree
view(rtree) % text description

Decision tree for regression
1  if x2<3085.5 then node 2 elseif x2>=3085.5 then node 3 else 23.7181
2  if x1<89 then node 4 elseif x1>=89 then node 5 else 28.7931
3  if x1<115 then node 6 elseif x1>=115 then node 7 else 15.5417
4  if x2<2162 then node 8 elseif x2>=2162 then node 9 else 30.9375
5  fit = 24.0882
6  fit = 19.625
7  fit = 14.375
8  fit = 33.3056
9  fit = 29

view(rtree,'mode','graph') % graphic description
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See Also
fitctree | fitrtree | view (CompactClassificationTree) | view
(CompactRegressionTree)

Related Examples
• “Decision Trees” on page 20-2
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Growing Decision Trees
By default, fitctree and fitrtree use the standard CART algorithm [1] to create decision trees.
That is, they perform the following steps:

1 Start with all input data, and examine all possible binary splits on every predictor.
2 Select a split with best optimization criterion.

• A split might lead to a child node having too few observations (less than the MinLeafSize
parameter). To avoid this, the software chooses a split that yields the best optimization
criterion subject to the MinLeafSize constraint.

3 Impose the split.
4 Repeat recursively for the two child nodes.

The explanation requires two more items: description of the optimization criterion and stopping rule.

Stopping rule: Stop splitting when any of the following hold:

• The node is pure.

• For classification, a node is pure if it contains only observations of one class.
• For regression, a node is pure if the mean squared error (MSE) for the observed response in

this node drops below the MSE for the observed response in the entire data multiplied by the
tolerance on quadratic error per node (QuadraticErrorTolerance parameter).

• There are fewer than MinParentSize observations in this node.
• Any split imposed on this node produces children with fewer than MinLeafSize observations.
• The algorithm splits MaxNumSplits nodes.

Optimization criterion:

• Regression: mean-squared error (MSE). Choose a split to minimize the MSE of predictions
compared to the training data.

• Classification: One of three measures, depending on the setting of the SplitCriterion name-
value pair:

• 'gdi' (Gini's diversity index, the default)
• 'twoing'
• 'deviance'

For details, see ClassificationTree “More About” on page 35-678.

For alternative split predictor selection techniques, see “Choose Split Predictor Selection Technique”
on page 20-14.

For a continuous predictor, a tree can split halfway between any two adjacent unique values found for
this predictor. For a categorical predictor with L levels, a classification tree needs to consider 2L–1–1
splits to find the optimal split. Alternatively, you can choose a heuristic algorithm to find a good split,
as described in “Splitting Categorical Predictors in Classification Trees” on page 20-25.

For dual-core systems and above, fitctree and fitrtree parallelize training decision trees using
Intel® Threading Building Blocks (TBB). For details on Intel TBB, see https://www.intel.com/
content/www/us/en/developer/tools/oneapi/onetbb.html.
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References
[1] Breiman, L., J. H. Friedman, R. A. Olshen, and C. J. Stone. Classification and Regression Trees.

Boca Raton, FL: Chapman & Hall, 1984.

See Also
fitctree | fitrtree | ClassificationTree | RegressionTree

Related Examples
• “Decision Trees” on page 20-2
• “Splitting Categorical Predictors in Classification Trees” on page 20-25
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Prediction Using Classification and Regression Trees

This example shows how to predict class labels or responses using trained classification and
regression trees.

After creating a tree, you can easily predict responses for new data. Suppose Xnew is new data that
has the same number of columns as the original data X. To predict the classification or regression
based on the tree (Mdl) and the new data, enter

Ynew = predict(Mdl,Xnew)

For each row of data in Xnew, predict runs through the decisions in Mdl and gives the resulting
prediction in the corresponding element of Ynew. For more information on classification tree
prediction, see the predict. For regression, see predict.

For example, find the predicted classification of a point at the mean of the ionosphere data.

load ionosphere 
CMdl = fitctree(X,Y);
Ynew = predict(CMdl,mean(X))

Ynew = 1x1 cell array
    {'g'}

Find the predicted MPG of a point at the mean of the carsmall data.

load carsmall 
X = [Horsepower Weight];
RMdl = fitrtree(X,MPG);
Ynew = predict(RMdl,mean(X))

Ynew = 28.7931

See Also
fitctree | fitrtree | ClassificationTree | RegressionTree | predict
(CompactRegressionTree) | predict (CompactClassificationTree)

Related Examples
• “Decision Trees” on page 20-2
• “Predict Out-of-Sample Responses of Subtrees” on page 20-10
• “Improving Classification Trees and Regression Trees” on page 20-13
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Predict Out-of-Sample Responses of Subtrees

This example shows how to predict out-of-sample responses of regression trees, and then plot the
results.

Load the carsmall data set. Consider Weight as a predictor of the response MPG.

load carsmall
idxNaN = isnan(MPG + Weight);
X = Weight(~idxNaN);
Y = MPG(~idxNaN);
n = numel(X);

Partition the data into training (50%) and validation (50%) sets.

rng(1) % For reproducibility
idxTrn = false(n,1);
idxTrn(randsample(n,round(0.5*n))) = true; % Training set logical indices
idxVal = idxTrn == false;                  % Validation set logical indices

Grow a regression tree using the training observations.

Mdl = fitrtree(X(idxTrn),Y(idxTrn));
view(Mdl,'Mode','graph')
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Compute fitted values of the validation observations for each of several subtrees.

m = max(Mdl.PruneList);
pruneLevels = 0:2:m; % Pruning levels to consider
z = numel(pruneLevels);
Yfit = predict(Mdl,X(idxVal),'SubTrees',pruneLevels);

Yfit is an n-by- z matrix of fitted values in which the rows correspond to observations and the
columns correspond to a subtree.

Plot Yfit and Y against X.

figure;
sortDat = sortrows([X(idxVal) Y(idxVal) Yfit],1); % Sort all data with respect to X
plot(sortDat(:,1),sortDat(:,2),'*');
hold on;
plot(repmat(sortDat(:,1),1,size(Yfit,2)),sortDat(:,3:end));
lev = cellstr(num2str((pruneLevels)','Level %d MPG'));
legend(['Observed MPG'; lev])
title 'Out-of-Sample Predictions'
xlabel 'Weight (lbs)';
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ylabel 'MPG';
h = findobj(gcf);
axis tight;
set(h(4:end),'LineWidth',3) % Widen all lines

The values of Yfit for lower pruning levels tend to follow the data more closely than higher levels.
Higher pruning levels tend to be flat for large X intervals.

See Also
RegressionTree | predict

Related Examples
• “Decision Trees” on page 20-2
• “Improving Classification Trees and Regression Trees” on page 20-13
• “Prediction Using Classification and Regression Trees” on page 20-9
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Improving Classification Trees and Regression Trees
In this section...
“Examining Resubstitution Error” on page 20-13
“Cross Validation” on page 20-13
“Choose Split Predictor Selection Technique” on page 20-14
“Control Depth or “Leafiness”” on page 20-15
“Pruning” on page 20-19

You can tune trees by setting name-value pairs in fitctree and fitrtree. The remainder of this
section describes how to determine the quality of a tree, how to decide which name-value pairs to set,
and how to control the size of a tree.

Examining Resubstitution Error
Resubstitution error is the difference between the response training data and the predictions the tree
makes of the response based on the input training data. If the resubstitution error is high, you cannot
expect the predictions of the tree to be good. However, having low resubstitution error does not
guarantee good predictions for new data. Resubstitution error is often an overly optimistic estimate
of the predictive error on new data.

Classification Tree Resubstitution Error

This example shows how to examine the resubstitution error of a classification tree.

Load Fisher's iris data.

load fisheriris

Train a default classification tree using the entire data set.

Mdl = fitctree(meas,species);

Examine the resubstitution error.

resuberror = resubLoss(Mdl)

resuberror = 0.0200

The tree classifies nearly all the Fisher iris data correctly.

Cross Validation
To get a better sense of the predictive accuracy of your tree for new data, cross validate the tree. By
default, cross validation splits the training data into 10 parts at random. It trains 10 new trees, each
one on nine parts of the data. It then examines the predictive accuracy of each new tree on the data
not included in training that tree. This method gives a good estimate of the predictive accuracy of the
resulting tree, since it tests the new trees on new data.
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Cross Validate a Regression Tree

This example shows how to examine the resubstitution and cross-validation accuracy of a regression
tree for predicting mileage based on the carsmall data.

Load the carsmall data set. Consider acceleration, displacement, horsepower, and weight as
predictors of MPG.

load carsmall
X = [Acceleration Displacement Horsepower Weight];

Grow a regression tree using all of the observations.

rtree = fitrtree(X,MPG);

Compute the in-sample error.

resuberror = resubLoss(rtree)

resuberror = 4.7188

The resubstitution loss for a regression tree is the mean-squared error. The resulting value indicates
that a typical predictive error for the tree is about the square root of 4.7, or a bit over 2.

Estimate the cross-validation MSE.

rng 'default';
cvrtree = crossval(rtree);
cvloss = kfoldLoss(cvrtree)

cvloss = 23.5706

The cross-validated loss is almost 25, meaning a typical predictive error for the tree on new data is
about 5. This demonstrates that cross-validated loss is usually higher than simple resubstitution loss.

Choose Split Predictor Selection Technique
The standard CART algorithm tends to select continuous predictors that have many levels.
Sometimes, such a selection can be spurious and can also mask more important predictors that have
fewer levels, such as categorical predictors. That is, the predictor-selection process at each node is
biased. Also, standard CART tends to miss the important interactions between pairs of predictors and
the response.

To mitigate selection bias and increase detection of important interactions, you can specify usage of
the curvature or interaction tests using the 'PredictorSelection' name-value pair argument.
Using the curvature or interaction test has the added advantage of producing better predictor
importance estimates than standard CART.

This table summarizes the supported predictor-selection techniques.
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Techniqu
e

'Predic
torSele
ction'
Value

Description Training speed When to specify

Standard
CART [1]

Default Selects the split
predictor that maximizes
the split-criterion gain
over all possible splits of
all predictors.

Baseline for comparison Specify if any of these
conditions are true:

• All predictors are
continuous

• Predictor importance
is not the analysis
goal

• For boosting decision
trees

Curvature
test [2][3]

'curvat
ure'

Selects the split
predictor that minimizes
the p-value of chi-square
tests of independence
between each predictor
and the response.

Comparable to standard
CART

Specify if any of these
conditions are true:

• The predictor
variables are
heterogeneous

• Predictor importance
is an analysis goal

• Enhance tree
interpretation

Interactio
n test [3]

'intera
ction-
curvatu
re'

Chooses the split
predictor that minimizes
the p-value of chi-square
tests of independence
between each predictor
and the response (that is,
conducts curvature
tests), and that
minimizes the p-value of
a chi-square test of
independence between
each pair of predictors
and response.

Slower than standard
CART, particularly when
data set contains many
predictor variables.

Specify if any of these
conditions are true:

• The predictor
variables are
heterogeneous

• You suspect
associations between
pairs of predictors
and the response

• Predictor importance
is an analysis goal

• Enhance tree
interpretation

For more details on predictor selection techniques:

• For classification trees, see PredictorSelection and “Node Splitting Rules” on page 35-2272.
• For regression trees, see PredictorSelection and “Node Splitting Rules” on page 35-2795.

Control Depth or “Leafiness”
When you grow a decision tree, consider its simplicity and predictive power. A deep tree with many
leaves is usually highly accurate on the training data. However, the tree is not guaranteed to show a
comparable accuracy on an independent test set. A leafy tree tends to overtrain (or overfit), and its
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test accuracy is often far less than its training (resubstitution) accuracy. In contrast, a shallow tree
does not attain high training accuracy. But a shallow tree can be more robust — its training accuracy
could be close to that of a representative test set. Also, a shallow tree is easy to interpret. If you do
not have enough data for training and test, estimate tree accuracy by cross validation.

fitctree and fitrtree have three name-value pair arguments that control the depth of resulting
decision trees:

• MaxNumSplits — The maximal number of branch node splits is MaxNumSplits per tree. Set a
large value for MaxNumSplits to get a deep tree. The default is size(X,1) – 1.

• MinLeafSize — Each leaf has at least MinLeafSize observations. Set small values of
MinLeafSize to get deep trees. The default is 1.

• MinParentSize — Each branch node in the tree has at least MinParentSize observations. Set
small values of MinParentSize to get deep trees. The default is 10.

If you specify MinParentSize and MinLeafSize, the learner uses the setting that yields trees with
larger leaves (i.e., shallower trees):

MinParent = max(MinParentSize,2*MinLeafSize)

If you supply MaxNumSplits, the software splits a tree until one of the three splitting criteria is
satisfied.

For an alternative method of controlling the tree depth, see “Pruning” on page 20-19.

Select Appropriate Tree Depth

This example shows how to control the depth of a decision tree, and how to choose an appropriate
depth.

Load the ionosphere data.

load ionosphere

Generate an exponentially spaced set of values from 10 through 100 that represent the minimum
number of observations per leaf node.

leafs = logspace(1,2,10);

Create cross-validated classification trees for the ionosphere data. Specify to grow each tree using
a minimum leaf size in leafs.

rng('default')
N = numel(leafs);
err = zeros(N,1);
for n=1:N
    t = fitctree(X,Y,'CrossVal','On',...
        'MinLeafSize',leafs(n));
    err(n) = kfoldLoss(t);
end
plot(leafs,err);
xlabel('Min Leaf Size');
ylabel('cross-validated error');
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The best leaf size is between about 20 and 50 observations per leaf.

Compare the near-optimal tree with at least 40 observations per leaf with the default tree, which uses
10 observations per parent node and 1 observation per leaf.

DefaultTree = fitctree(X,Y);
view(DefaultTree,'Mode','Graph')
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OptimalTree = fitctree(X,Y,'MinLeafSize',40);
view(OptimalTree,'mode','graph')
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resubOpt = resubLoss(OptimalTree);
lossOpt = kfoldLoss(crossval(OptimalTree));
resubDefault = resubLoss(DefaultTree);
lossDefault = kfoldLoss(crossval(DefaultTree));
resubOpt,resubDefault,lossOpt,lossDefault

resubOpt = 0.0883

resubDefault = 0.0114

lossOpt = 0.1054

lossDefault = 0.1054

The near-optimal tree is much smaller and gives a much higher resubstitution error. Yet, it gives
similar accuracy for cross-validated data.

Pruning
Pruning optimizes tree depth (leafiness) by merging leaves on the same tree branch. “Control Depth
or “Leafiness”” on page 20-15 describes one method for selecting the optimal depth for a tree. Unlike
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in that section, you do not need to grow a new tree for every node size. Instead, grow a deep tree,
and prune it to the level you choose.

Prune a tree at the command line using the prune method (classification) or prune method
(regression). Alternatively, prune a tree interactively with the tree viewer:

view(tree,'mode','graph')

To prune a tree, the tree must contain a pruning sequence. By default, both fitctree and fitrtree
calculate a pruning sequence for a tree during construction. If you construct a tree with the 'Prune'
name-value pair set to 'off', or if you prune a tree to a smaller level, the tree does not contain the
full pruning sequence. Generate the full pruning sequence with the prune method (classification) or
prune method (regression).

Prune a Classification Tree

This example creates a classification tree for the ionosphere data, and prunes it to a good level.

Load the ionosphere data:

load ionosphere

Construct a default classification tree for the data:

tree = fitctree(X,Y);

View the tree in the interactive viewer:

view(tree,'Mode','Graph')
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Find the optimal pruning level by minimizing cross-validated loss:

[~,~,~,bestlevel] = cvLoss(tree,...
    'SubTrees','All','TreeSize','min')

bestlevel = 6

Prune the tree to level 6:

view(tree,'Mode','Graph','Prune',6)
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Alternatively, use the interactive window to prune the tree.

The pruned tree is the same as the near-optimal tree in the "Select Appropriate Tree Depth" example.

Set 'TreeSize' to 'SE' (default) to find the maximal pruning level for which the tree error does not
exceed the error from the best level plus one standard deviation:

[~,~,~,bestlevel] = cvLoss(tree,'SubTrees','All')

bestlevel = 6

In this case the level is the same for either setting of 'TreeSize'.

Prune the tree to use it for other purposes:

tree = prune(tree,'Level',6); 
view(tree,'Mode','Graph')
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Related Examples
• “Decision Trees” on page 20-2
• “Prediction Using Classification and Regression Trees” on page 20-9
• “Predict Out-of-Sample Responses of Subtrees” on page 20-10
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Splitting Categorical Predictors in Classification Trees
In this section...
“Challenges in Splitting Multilevel Predictors” on page 20-25
“Algorithms for Categorical Predictor Split” on page 20-25
“Inspect Data with Multilevel Categorical Predictors” on page 20-26

Challenges in Splitting Multilevel Predictors
When you grow a classification tree, finding an optimal binary split for a categorical predictor with
many levels is more computationally challenging than finding a split for a continuous predictor. For a
continuous predictor, a tree can split halfway between any two adjacent, unique values of the
predictor. In contrast, to find an exact, optimal binary split for a categorical predictor with L levels, a
classification tree must consider 2L–1–1 splits. To obtain this formula:

1 Count the number of ways to assign L distinct values to the left and right nodes. There are 2L

ways.
2 Divide 2L by 2, because left and right can be swapped.
3 Discard the case that has an empty node.

For regression problems and binary classification problems, the software uses the exact search
algorithm through a computational shortcut[1]. The tree can order the categories by mean response
(for regression) or class probability for one of the classes (for classification). Then, the optimal split is
one of the L – 1 splits for the ordered list. Therefore, computational challenges arise only when you
grow classification trees for data with K ≥ 3 classes.

Algorithms for Categorical Predictor Split
To reduce computation, the software offers several heuristic algorithms for finding a good split. You
can choose an algorithm for splitting categorical predictors by using the
'AlgorithmForCategorical' name-value pair argument when you grow a classification tree using
fitctree or when you create a classification learner using templateTree for a classification
ensemble (fitcensemble) or a multiclass ECOC model (fitcecoc).

If you do not specify an algorithm, the software selects the optimal algorithm for each split using the
known number of classes and levels of a categorical predictor. If the predictor has at most
MaxNumCategories levels, the software splits categorical predictors using the exact search
algorithm. Otherwise, the software chooses a heuristic search algorithm based on the number of
classes and levels. The default MaxNumCategories level is 10. Depending on your platform, the
software cannot perform an exact search on categorical predictors with more than 32 or 64 levels.

The available heuristic algorithms are: pull left by purity, principal component-based partitioning, and
one-versus-all by class.

Pull Left by Purity

The pull left by purity algorithm starts with all L categorical levels on the right branch. The algorithm
then takes these actions:

1 Inspect the K categories that have the largest class probabilities for each class.
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2 Move the category with the maximum value of the split criterion to the left branch.
3 Continue moving categories from right to left, recording the split criterion at each move, until

the right child has only one category remaining.

Out of this sequence, the selected split is the one that maximizes the split criterion.

Select this algorithm by specifying 'AlgorithmForCategorical','PullLeft' in fitctree or
templateTree.

Principal Component-Based Partitioning

The principal component-based partitioning algorithm[2] finds a close-to-optimal binary partition of
the L predictor levels by searching for a separating hyperplane. The hyperplane is perpendicular to
the first principal component of the weighted covariance matrix of the centered class probability
matrix.

The algorithm assigns a score to each of the L categories, computed as the inner product between the
found principal component and the vector of class probabilities for that category. Then, the selected
split is one of the L – 1 splits that maximizes the split criterion.

Select this algorithm by specifying 'AlgorithmForCategorical','PCA' in fitctree or
templateTree.

One-Versus-All by Class

The one-versus-all by class algorithm starts with all L categorical levels on the right branch. For each
of the K classes, the algorithm orders the categories based on their probability for that class.

For the first class, the algorithm moves each category to the left branch in order, recording the split
criterion at each move. Then the algorithm repeats this process for the remaining classes. Out of this
sequence, the selected split is the one that maximizes the split criterion.

Select this algorithm by specifying 'AlgorithmForCategorical','OVAbyClass' in fitctree or
templateTree.

Inspect Data with Multilevel Categorical Predictors

This example shows how to inspect a data set that includes categorical predictors with many levels
(categories) and how to train a binary decision tree for classification.

Load Sample Data

Load the census1994 file. This data set consists of demographic data from the US Census Bureau to
predict whether an individual makes over $50,000 a year. Specify a cell array of character vectors
containing the variable names.

load census1994
VarNames = adultdata.Properties.VariableNames;

Some variable names in the adultdata table contain the _ character. Replace instances of _ with a
space.

VarNames = strrep(VarNames,'_',' ');
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Specify the predictor data tbl and the response vector Y.

tbl = adultdata(:,1:end-1);
Y = categorical(adultdata.salary);

Inspect Categorical Predictors

Some categorical variables have many levels (categories). Count the number of levels of each
categorical predictor.

Find the indexes of categorical predictors that are not numeric in the tbl table by using varfun and
isnumeric. The varfun function applies the isnumeric function to each variable of the table tbl.

cat = ~varfun(@isnumeric,tbl,'OutputFormat','uniform');

Define an anonymous function to count the number of categories in a categorical predictor using
numel and categories.

countNumCats = @(var)numel(categories(categorical(var)));

The anonymous function countNumCats converts a predictor to a categorical array, then counts the
unique, nonempty categories of the predictor.

Use varfun and countNumCats to count the number of categories for the categorical predictors in
tbl.

numCat = varfun(@(var)countNumCats(var),tbl(:,cat),'OutputFormat','uniform'); 

Plot the number of categories for each categorical predictor.

figure
barh(numCat);
h = gca;
h.YTickLabel = VarNames(cat);
ylabel('Predictor')
xlabel('Number of categories')
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Train Model

For binary classification, the software uses a computational shortcut to find an optimal split for
categorical predictors with many categories. For classification with more than two classes, you can
choose an exact algorithm or a heuristic algorithm to find a good split by using the
'AlgorithmForCategorical' name-value pair argument of fitctree or templateTree. By
default, the software selects the optimal subset of algorithms for each split using the known number
of classes and levels of a categorical predictor.

Train a classification tree using tbl and Y. The response vector Y has two classes, so the software
uses the exact algorithm for categorical predictor splits.

Mdl = fitctree(tbl,Y)

Mdl = 
  ClassificationTree
           PredictorNames: {1x14 cell}
             ResponseName: 'Y'
    CategoricalPredictors: [2 4 6 7 8 9 10 14]
               ClassNames: [<=50K    >50K]
           ScoreTransform: 'none'
          NumObservations: 32561
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  Properties, Methods
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See Also
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Related Examples
• “Decision Trees” on page 20-2
• “Growing Decision Trees” on page 20-7
• “Ensemble Algorithms” on page 19-41
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Discriminant Analysis

• “Discriminant Analysis Classification” on page 21-2
• “Creating Discriminant Analysis Model” on page 21-4
• “Prediction Using Discriminant Analysis Models” on page 21-6
• “Create and Visualize Discriminant Analysis Classifier” on page 21-9
• “Improving Discriminant Analysis Models” on page 21-15
• “Regularize Discriminant Analysis Classifier” on page 21-21
• “Examine the Gaussian Mixture Assumption” on page 21-27
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Discriminant Analysis Classification
Discriminant analysis is a classification method. It assumes that different classes generate data based
on different Gaussian distributions.

• To train (create) a classifier, the fitting function estimates the parameters of a Gaussian
distribution for each class (see “Creating Discriminant Analysis Model” on page 21-4).

• To predict the classes of new data, the trained classifier finds the class with the smallest
misclassification cost (see “Prediction Using Discriminant Analysis Models” on page 21-6).

Linear discriminant analysis is also known as the Fisher discriminant, named for its inventor, Sir R. A.
Fisher [1].

Create Discriminant Analysis Classifiers

This example shows how to train a basic discriminant analysis classifier to classify irises in Fisher's
iris data.

Load the data.

load fisheriris

Create a default (linear) discriminant analysis classifier.

MdlLinear = fitcdiscr(meas,species);

To visualize the classification boundaries of a 2-D linear classification of the data, see “Create and
Visualize Discriminant Analysis Classifier” on page 21-9.

Classify an iris with average measurements.

meanmeas = mean(meas);
meanclass = predict(MdlLinear,meanmeas)

meanclass = 1x1 cell array
    {'versicolor'}

Create a quadratic classifier.

MdlQuadratic = fitcdiscr(meas,species,'DiscrimType','quadratic');

To visualize the classification boundaries of a 2-D quadratic classification of the data, see “Create and
Visualize Discriminant Analysis Classifier” on page 21-9.

Classify an iris with average measurements using the quadratic classifier.

meanclass2 = predict(MdlQuadratic,meanmeas)

meanclass2 = 1x1 cell array
    {'versicolor'}
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See Also
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Related Examples
• “Creating Discriminant Analysis Model” on page 21-4
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Creating Discriminant Analysis Model
The model for discriminant analysis is:

• Each class (Y) generates data (X) using a multivariate normal distribution. In other words, the
model assumes X has a Gaussian mixture distribution (gmdistribution).

• For linear discriminant analysis, the model has the same covariance matrix for each class; only
the means vary.

• For quadratic discriminant analysis, both means and covariances of each class vary.

Under this modeling assumption, fitcdiscr infers the mean and covariance parameters of each
class.

• For linear discriminant analysis, it computes the sample mean of each class. Then it computes the
sample covariance by first subtracting the sample mean of each class from the observations of
that class, and taking the empirical covariance matrix of the result.

• For quadratic discriminant analysis, it computes the sample mean of each class. Then it computes
the sample covariances by first subtracting the sample mean of each class from the observations
of that class, and taking the empirical covariance matrix of each class.

The fit method does not use prior probabilities or costs for fitting.

Weighted Observations
fitcdiscr constructs weighted classifiers using the following scheme. Suppose M is an N-by-K class
membership matrix:

Mnk = 1 if observation n is from class k
Mnk = 0 otherwise.

The estimate of the class mean for unweighted data is

μ k =
∑n = 1

N

Mnkxn

∑n = 1

N

Mnk

.

For weighted data with positive weights wn, the natural generalization is

μ k =
∑n = 1

N Mnkwnxn

∑n = 1
N Mnkwn

.

The unbiased estimate of the pooled-in covariance matrix for unweighted data is

Σ =
∑n = 1

N ∑k = 1
K Mnk xn− μ k xn− μ k

T

N − K .

For quadratic discriminant analysis, fitcdiscr uses K = 1.
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For weighted data, assuming the weights sum to 1, the unbiased estimate of the pooled-in covariance
matrix is

Σ =
∑n = 1

N ∑k = 1
K Mnkwn xn− μ k xn− μ k

T

1− ∑k = 1
K Wk

2

Wk

,

where

• Wk = ∑n = 1
N Mnkwn is the sum of the weights for class k.

• Wk
2 = ∑n = 1

N Mnkwn
2 is the sum of squared weights per class.

See Also
Functions
fitcdiscr

Objects
ClassificationDiscriminant | gmdistribution

Related Examples
• “Discriminant Analysis Classification” on page 21-2
• “Examine the Gaussian Mixture Assumption” on page 21-27
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Prediction Using Discriminant Analysis Models
predict uses three quantities to classify observations: posterior probability on page 21-6, prior
probability on page 21-6, and cost on page 21-7.

predict classifies so as to minimize the expected classification cost:

y = argmin
y = 1, ..., K

∑
k = 1

K
P k x C y k ,

where

• y  is the predicted classification.
• K is the number of classes.
• P k x  is the posterior probability of class k for observation x.
• C y k  is the cost of classifying an observation as y when its true class is k.

The space of X values divides into regions where a classification Y is a particular value. The regions
are separated by straight lines for linear discriminant analysis, and by conic sections (ellipses,
hyperbolas, or parabolas) for quadratic discriminant analysis. For a visualization of these regions, see
“Create and Visualize Discriminant Analysis Classifier” on page 21-9.

Posterior Probability
The posterior probability that a point x belongs to class k is the product of the prior probability on
page 21-6 and the multivariate normal density. The density function of the multivariate normal with
1-by-d mean μk and d-by-d covariance Σk at a 1-by-d point x is

P x k = 1
2π d Σk

1/2exp −1
2 x− μk Σk

−1 x− μk
T ,

where Σk  is the determinant of Σk, and Σk
−1 is the inverse matrix.

Let P(k) represent the prior probability of class k. Then the posterior probability that an observation x
is of class k is

P k x = P x k P k
P x ,

where P(x) is a normalization constant, namely, the sum over k of P(x|k)P(k).

Prior Probability
The prior probability is one of three choices:

• 'uniform' — The prior probability of class k is 1 over the total number of classes.
• 'empirical' — The prior probability of class k is the number of training samples of class k

divided by the total number of training samples.
• A numeric vector — The prior probability of class k is the jth element of the Prior vector. See

fitcdiscr.
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After creating a classifier obj, you can set the prior using dot notation:

obj.Prior = v;

where v is a vector of positive elements representing the frequency with which each element occurs.
You do not need to retrain the classifier when you set a new prior.

Cost
There are two costs associated with discriminant analysis classification: the true misclassification
cost per class, and the expected misclassification cost per observation.

True Misclassification Cost per Class

Cost(i,j) is the cost of classifying an observation into class j if its true class is i. By default,
Cost(i,j)=1 if i~=j, and Cost(i,j)=0 if i=j. In other words, the cost is 0 for correct
classification, and 1 for incorrect classification.

You can set any cost matrix you like when creating a classifier. Pass the cost matrix in the Cost name-
value pair in fitcdiscr.

After you create a classifier obj, you can set a custom cost using dot notation:

obj.Cost = B;

B is a square matrix of size K-by-K when there are K classes. You do not need to retrain the classifier
when you set a new cost.

Expected Misclassification Cost per Observation

Suppose you have Nobs observations that you want to classify with a trained discriminant analysis
classifier obj. Suppose you have K classes. You place the observations into a matrix Xnew with one
observation per row. The command

[label,score,cost] = predict(obj,Xnew)

returns, among other outputs, a cost matrix of size Nobs-by-K. Each row of the cost matrix contains
the expected (average) cost of classifying the observation into each of the K classes. cost(n,k) is

∑
i = 1

K
P i X(n) C k i ,

where

• K is the number of classes.
• P i X(n)  is the posterior probability on page 21-6 of class i for observation Xnew(n).
• C k i  is the cost on page 21-7 of classifying an observation as k when its true class is i.

See Also
Functions
fitcdiscr | predict
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Objects
ClassificationDiscriminant | CompactClassificationDiscriminant

Related Examples
• “Discriminant Analysis Classification” on page 21-2
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Create and Visualize Discriminant Analysis Classifier

This example shows how to perform linear and quadratic classification of Fisher iris data.

Load the sample data.

load fisheriris

The column vector, species , consists of iris flowers of three different species, setosa, versicolor,
virginica. The double matrix meas consists of four types of measurements on the flowers, the length
and width of sepals and petals in centimeters, respectively.

Use petal length (third column in meas) and petal width (fourth column in meas) measurements. Save
these as variables PL and PW, respectively.

PL = meas(:,3);
PW = meas(:,4);

Plot the data, showing the classification, that is, create a scatter plot of the measurements, grouped
by species.

h1 = gscatter(PL,PW,species,'krb','ov^',[],'off');
h1(1).LineWidth = 2;
h1(2).LineWidth = 2;
h1(3).LineWidth = 2;
legend('Setosa','Versicolor','Virginica','Location','best')
hold on
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Create a linear classifier.

X = [PL,PW];
MdlLinear = fitcdiscr(X,species);

Retrieve the coefficients for the linear boundary between the second and third classes.

MdlLinear.ClassNames([2 3])

ans = 2x1 cell
    {'versicolor'}
    {'virginica' }

K = MdlLinear.Coeffs(2,3).Const;  
L = MdlLinear.Coeffs(2,3).Linear;

Plot the curve that separates the second and third classes

K + x1 x2 L = 0 .

f = @(x1,x2) K + L(1)*x1 + L(2)*x2;
h2 = fimplicit(f,[.9 7.1 0 2.5]);
h2.Color = 'r';
h2.LineWidth = 2;
h2.DisplayName = 'Boundary between Versicolor & Virginica';

Retrieve the coefficients for the linear boundary between the first and second classes.
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MdlLinear.ClassNames([1 2])

ans = 2x1 cell
    {'setosa'    }
    {'versicolor'}

K = MdlLinear.Coeffs(1,2).Const;
L = MdlLinear.Coeffs(1,2).Linear;

Plot the curve that separates the first and second classes.

f = @(x1,x2) K + L(1)*x1 + L(2)*x2;
h3 = fimplicit(f,[.9 7.1 0 2.5]);
h3.Color = 'k';
h3.LineWidth = 2;
h3.DisplayName = 'Boundary between Versicolor & Setosa';
axis([.9 7.1 0 2.5])
xlabel('Petal Length')
ylabel('Petal Width')
title('{\bf Linear Classification with Fisher Training Data}')

Create a quadratic discriminant classifier.

MdlQuadratic = fitcdiscr(X,species,'DiscrimType','quadratic');

Remove the linear boundaries from the plot.
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delete(h2);
delete(h3);

Retrieve the coefficients for the quadratic boundary between the second and third classes.

MdlQuadratic.ClassNames([2 3])

ans = 2x1 cell
    {'versicolor'}
    {'virginica' }

K = MdlQuadratic.Coeffs(2,3).Const;
L = MdlQuadratic.Coeffs(2,3).Linear; 
Q = MdlQuadratic.Coeffs(2,3).Quadratic;

Plot the curve that separates the second and third classes

K + x1 x2 L + x1 x2 Q
x1
x2

= 0 .

f = @(x1,x2) K + L(1)*x1 + L(2)*x2 + Q(1,1)*x1.^2 + ...
    (Q(1,2)+Q(2,1))*x1.*x2 + Q(2,2)*x2.^2;
h2 = fimplicit(f,[.9 7.1 0 2.5]);
h2.Color = 'r';
h2.LineWidth = 2;
h2.DisplayName = 'Boundary between Versicolor & Virginica';
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Retrieve the coefficients for the quadratic boundary between the first and second classes.

MdlQuadratic.ClassNames([1 2])

ans = 2x1 cell
    {'setosa'    }
    {'versicolor'}

K = MdlQuadratic.Coeffs(1,2).Const;
L = MdlQuadratic.Coeffs(1,2).Linear; 
Q = MdlQuadratic.Coeffs(1,2).Quadratic;

Plot the curve that separates the first and second and classes.

f = @(x1,x2) K + L(1)*x1 + L(2)*x2 + Q(1,1)*x1.^2 + ...
    (Q(1,2)+Q(2,1))*x1.*x2 + Q(2,2)*x2.^2;
h3 = fimplicit(f,[.9 7.1 0 1.02]); % Plot the relevant portion of the curve.
h3.Color = 'k';
h3.LineWidth = 2;
h3.DisplayName = 'Boundary between Versicolor & Setosa';
axis([.9 7.1 0 2.5])
xlabel('Petal Length')
ylabel('Petal Width')
title('{\bf Quadratic Classification with Fisher Training Data}')
hold off
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See Also
Functions
fitcdiscr

Objects
ClassificationDiscriminant

Related Examples
• “Discriminant Analysis Classification” on page 21-2
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Improving Discriminant Analysis Models
In this section...
“Deal with Singular Data” on page 21-15
“Choose a Discriminant Type” on page 21-15
“Examine the Resubstitution Error and Confusion Matrix” on page 21-16
“Cross Validation” on page 21-17
“Change Costs and Priors” on page 21-18

Deal with Singular Data
Discriminant analysis needs data sufficient to fit Gaussian models with invertible covariance matrices.
If your data is not sufficient to fit such a model uniquely, fitcdiscr fails. This section shows
methods for handling failures.

Tip To obtain a discriminant analysis classifier without failure, set the DiscrimType name-value pair
to 'pseudoLinear' or 'pseudoQuadratic' in fitcdiscr.

“Pseudo” discriminants never fail, because they use the pseudoinverse of the covariance matrix Σk
(see pinv).

Example: Singular Covariance Matrix

When the covariance matrix of the fitted classifier is singular, fitcdiscr can fail:
load popcorn
X = popcorn(:,[1 2]);
X(:,3) = 0; % a zero-variance column
Y = popcorn(:,3);
ppcrn = fitcdiscr(X,Y);

Error using ClassificationDiscriminant (line 635)
Predictor x3 has zero variance. Either exclude this predictor or set 'discrimType' to
'pseudoLinear' or 'diagLinear'.

Error in classreg.learning.FitTemplate/fit (line 243)
            obj = this.MakeFitObject(X,Y,W,this.ModelParameters,fitArgs{:});

Error in fitcdiscr (line 296)
            this = fit(temp,X,Y);

To proceed with linear discriminant analysis, use a pseudoLinear or diagLinear discriminant
type:

ppcrn = fitcdiscr(X,Y,...
    'discrimType','pseudoLinear');
meanpredict = predict(ppcrn,mean(X))

meanpredict =
    3.5000

Choose a Discriminant Type
There are six types of discriminant analysis classifiers: linear and quadratic, with diagonal and
pseudo variants of each type.
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Tip To see if your covariance matrix is singular, set discrimType to 'linear' or 'quadratic'. If
the matrix is singular, the fitcdiscr method fails for 'quadratic', and the Gamma property is
nonzero for 'linear'.

To obtain a quadratic classifier even when your covariance matrix is singular, set DiscrimType to
'pseudoQuadratic' or 'diagQuadratic'.

obj = fitcdiscr(X,Y,'DiscrimType','pseudoQuadratic') % or 'diagQuadratic'

Choose a classifier type by setting the discrimType name-value pair to one of:

• 'linear' (default) — Estimate one covariance matrix for all classes.
• 'quadratic' — Estimate one covariance matrix for each class.
• 'diagLinear' — Use the diagonal of the 'linear' covariance matrix, and use its

pseudoinverse if necessary.
• 'diagQuadratic' — Use the diagonals of the 'quadratic' covariance matrices, and use their

pseudoinverses if necessary.
• 'pseudoLinear' — Use the pseudoinverse of the 'linear' covariance matrix if necessary.
• 'pseudoQuadratic' — Use the pseudoinverses of the 'quadratic' covariance matrices if

necessary.

fitcdiscr can fail for the 'linear' and 'quadratic' classifiers. When it fails, it returns an
explanation, as shown in “Deal with Singular Data” on page 21-15.

fitcdiscr always succeeds with the diagonal and pseudo variants. For information about
pseudoinverses, see pinv.

You can set the discriminant type using dot notation after constructing a classifier:

obj.DiscrimType = 'discrimType'

You can change between linear types or between quadratic types, but cannot change between a linear
and a quadratic type.

Examine the Resubstitution Error and Confusion Matrix
The resubstitution error is the difference between the response training data and the predictions the
classifier makes of the response based on the input training data. If the resubstitution error is high,
you cannot expect the predictions of the classifier to be good. However, having low resubstitution
error does not guarantee good predictions for new data. Resubstitution error is often an overly
optimistic estimate of the predictive error on new data.

The confusion matrix shows how many errors, and which types, arise in resubstitution. When there
are K classes, the confusion matrix R is a K-by-K matrix with

R(i,j) = the number of observations of class i that the classifier predicts to be of class j.

Example: Resubstitution Error of a Discriminant Analysis Classifier

Examine the resubstitution error of the default discriminant analysis classifier for the Fisher iris data:

21 Discriminant Analysis

21-16



load fisheriris
obj = fitcdiscr(meas,species);
resuberror = resubLoss(obj)

resuberror =
    0.0200

The resubstitution error is very low, meaning obj classifies nearly all the Fisher iris data correctly.
The total number of misclassifications is:

resuberror * obj.NumObservations

ans =
    3.0000

To see the details of the three misclassifications, examine the confusion matrix:

R = confusionmat(obj.Y,resubPredict(obj))

R =
    50     0     0
     0    48     2
     0     1    49

obj.ClassNames

ans = 
    'setosa'
    'versicolor'
    'virginica'

• R(1,:) = [50 0 0] means obj classifies all 50 setosa irises correctly.
• R(2,:) = [0 48 2] means obj classifies 48 versicolor irises correctly, and misclassifies two

versicolor irises as virginica.
• R(3,:) = [0 1 49] means obj classifies 49 virginica irises correctly, and misclassifies one

virginica iris as versicolor.

Cross Validation
Typically, discriminant analysis classifiers are robust and do not exhibit overtraining when the
number of predictors is much less than the number of observations. Nevertheless, it is good practice
to cross validate your classifier to ensure its stability.

Cross Validating a Discriminant Analysis Classifier

This example shows how to perform five-fold cross validation of a quadratic discriminant analysis
classifier.

Load the sample data.

load fisheriris

Create a quadratic discriminant analysis classifier for the data.

quadisc = fitcdiscr(meas,species,'DiscrimType','quadratic');
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Find the resubstitution error of the classifier.

qerror = resubLoss(quadisc)

qerror = 0.0200

The classifier does an excellent job. Nevertheless, resubstitution error can be an optimistic estimate
of the error when classifying new data. So proceed to cross validation.

Create a cross-validation model.

cvmodel = crossval(quadisc,'kfold',5);

Find the cross-validation loss for the model, meaning the error of the out-of-fold observations.

cverror = kfoldLoss(cvmodel)

cverror = 0.0200

The cross-validated loss is as low as the original resubstitution loss. Therefore, you can have
confidence that the classifier is reasonably accurate.

Change Costs and Priors
Sometimes you want to avoid certain misclassification errors more than others. For example, it might
be better to have oversensitive cancer detection instead of undersensitive cancer detection.
Oversensitive detection gives more false positives (unnecessary testing or treatment). Undersensitive
detection gives more false negatives (preventable illnesses or deaths). The consequences of
underdetection can be high. Therefore, you might want to set costs to reflect the consequences.

Similarly, the training data Y can have a distribution of classes that does not represent their true
frequency. If you have a better estimate of the true frequency, you can include this knowledge in the
classification Prior property.

Example: Setting Custom Misclassification Costs

Consider the Fisher iris data. Suppose that the cost of classifying a versicolor iris as virginica is 10
times as large as making any other classification error. Create a classifier from the data, then
incorporate this cost and then view the resulting classifier.

1 Load the Fisher iris data and create a default (linear) classifier as in “Example: Resubstitution
Error of a Discriminant Analysis Classifier” on page 21-16:

load fisheriris
obj = fitcdiscr(meas,species);
resuberror = resubLoss(obj)

resuberror =
    0.0200

R = confusionmat(obj.Y,resubPredict(obj))

R =
    50     0     0
     0    48     2
     0     1    49
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obj.ClassNames

ans = 
    'setosa'
    'versicolor'
    'virginica'

R(2,:) = [0 48 2] means obj classifies 48 versicolor irises correctly, and misclassifies two
versicolor irises as virginica.

2 Change the cost matrix to make fewer mistakes in classifying versicolor irises as virginica:

obj.Cost(2,3) = 10;
R2 = confusionmat(obj.Y,resubPredict(obj))

R2 =
    50     0     0
     0    50     0
     0     7    43

obj now classifies all versicolor irises correctly, at the expense of increasing the number of
misclassifications of virginica irises from 1 to 7.

Example: Setting Alternative Priors

Consider the Fisher iris data. There are 50 irises of each kind in the data. Suppose that, in a
particular region, you have historical data that shows virginica are five times as prevalent as the
other kinds. Create a classifier that incorporates this information.

1 Load the Fisher iris data and make a default (linear) classifier as in “Example: Resubstitution
Error of a Discriminant Analysis Classifier” on page 21-16:

load fisheriris
obj = fitcdiscr(meas,species);
resuberror = resubLoss(obj)

resuberror =
    0.0200

R = confusionmat(obj.Y,resubPredict(obj))

R =
    50     0     0
     0    48     2
     0     1    49

obj.ClassNames

ans = 
    'setosa'
    'versicolor'
    'virginica'

R(3,:) = [0 1 49] means obj classifies 49 virginica irises correctly, and misclassifies one
virginica iris as versicolor.

2 Change the prior to match your historical data, and examine the confusion matrix of the new
classifier:
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obj.Prior = [1 1 5];
R2 = confusionmat(obj.Y,resubPredict(obj))

R2 =
    50     0     0
     0    46     4
     0     0    50

The new classifier classifies all virginica irises correctly, at the expense of increasing the number
of misclassifications of versicolor irises from 2 to 4.

See Also
Functions
fitcdiscr | crossval | cvshrink | loss | resubLoss | logp | predict

Objects
ClassificationDiscriminant

Related Examples
• “Discriminant Analysis Classification” on page 21-2
• “Regularize Discriminant Analysis Classifier” on page 21-21
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Regularize Discriminant Analysis Classifier

This example shows how to make a more robust and simpler model by trying to remove predictors
without hurting the predictive power of the model. This is especially important when you have many
predictors in your data. Linear discriminant analysis uses the two regularization parameters,
“Gamma and Delta” on page 35-1239, to identify and remove redundant predictors. The cvshrink
method helps identify appropriate settings for these parameters.

Load data and create a classifier.

Create a linear discriminant analysis classifier for the ovariancancer data. Set the SaveMemory
and FillCoeffs name-value pair arguments to keep the resulting model reasonably small. For
computational ease, this example uses a random subset of about one third of the predictors to train
the classifier.

load ovariancancer
rng(1); % For reproducibility
numPred = size(obs,2);
obs = obs(:,randsample(numPred,ceil(numPred/3)));
Mdl = fitcdiscr(obs,grp,'SaveMemory','on','FillCoeffs','off');

Cross validate the classifier.

Use 25 levels of Gamma and 25 levels of Delta to search for good parameters. This search is time
consuming. Set Verbose to 1 to view the progress.

[err,gamma,delta,numpred] = cvshrink(Mdl,...
    'NumGamma',24,'NumDelta',24,'Verbose',1);

Done building cross-validated model.
Processing Gamma step 1 out of 25.
Processing Gamma step 2 out of 25.
Processing Gamma step 3 out of 25.
Processing Gamma step 4 out of 25.
Processing Gamma step 5 out of 25.
Processing Gamma step 6 out of 25.
Processing Gamma step 7 out of 25.
Processing Gamma step 8 out of 25.
Processing Gamma step 9 out of 25.
Processing Gamma step 10 out of 25.
Processing Gamma step 11 out of 25.
Processing Gamma step 12 out of 25.
Processing Gamma step 13 out of 25.
Processing Gamma step 14 out of 25.
Processing Gamma step 15 out of 25.
Processing Gamma step 16 out of 25.
Processing Gamma step 17 out of 25.
Processing Gamma step 18 out of 25.
Processing Gamma step 19 out of 25.
Processing Gamma step 20 out of 25.
Processing Gamma step 21 out of 25.
Processing Gamma step 22 out of 25.
Processing Gamma step 23 out of 25.
Processing Gamma step 24 out of 25.
Processing Gamma step 25 out of 25.
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Examine the quality of the regularized classifiers.

Plot the number of predictors against the error.

plot(err,numpred,'k.')
xlabel('Error rate')
ylabel('Number of predictors')

Examine the lower-left part of the plot more closely.

axis([0 .1 0 1000])

21 Discriminant Analysis

21-22



There is a clear tradeoff between lower number of predictors and lower error.

Choose an optimal tradeoff between model size and accuracy.

Multiple pairs of Gamma and Delta values produce about the same minimal error. Display the indices
of these pairs and their values.

First, find the minimal error value.

minerr = min(min(err))

minerr = 0.0139

Find the subscripts of err producing minimal error.

[p,q] = find(err < minerr + 1e-4);

Convert from subscripts to linear indices.

idx = sub2ind(size(delta),p,q);

Display the Gamma and Delta values.

[gamma(p) delta(idx)]

ans = 4×2

    0.7202    0.1145
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    0.7602    0.1131
    0.8001    0.1128
    0.8001    0.1410

These points have as few as 29% of the total predictors with nonzero coefficients in the model.

numpred(idx)/ceil(numPred/3)*100

ans = 4×1

   39.8051
   38.9805
   36.8066
   28.7856

To further lower the number of predictors, you must accept larger error rates. For example, to choose
the Gamma and Delta that give the lowest error rate with 200 or fewer predictors.

low200 = min(min(err(numpred <= 200)));
lownum = min(min(numpred(err == low200)));
[low200 lownum]

ans = 1×2

    0.0185  173.0000

You need 173 predictors to achieve an error rate of 0.0185, and this is the lowest error rate among
those that have 200 predictors or fewer.

Display the Gamma and Delta that achieve this error/number of predictors.

[r,s] = find((err == low200) & (numpred == lownum));
[gamma(r); delta(r,s)]

ans = 2×1

    0.6403
    0.2399

Set the regularization parameters.

To set the classifier with these values of Gamma and Delta, use dot notation.

Mdl.Gamma = gamma(r);
Mdl.Delta = delta(r,s);

Heatmap plot

To compare the cvshrink calculation to that in Guo, Hastie, and Tibshirani [1], plot heatmaps of
error and number of predictors against Gamma and the index of the Delta parameter. (The Delta
parameter range depends on the value of the Gamma parameter. So to get a rectangular plot, use the
Delta index, not the parameter itself.)

% Create the Delta index matrix
indx = repmat(1:size(delta,2),size(delta,1),1);
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figure
subplot(1,2,1)
imagesc(err)
colorbar
colormap('jet')
title('Classification error')
xlabel('Delta index')
ylabel('Gamma index')

subplot(1,2,2)
imagesc(numpred)
colorbar
title('Number of predictors in the model')
xlabel('Delta index')
ylabel('Gamma index')

You see the best classification error when Delta is small, but fewest predictors when Delta is large.

References
[1] Guo, Y., T. Hastie, and R. Tibshirani. "Regularized Discriminant Analysis and Its Application in

Microarray." Biostatistics, Vol. 8, No. 1, pp. 86–100, 2007.
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See Also
Functions
fitcdiscr | cvshrink

Objects
ClassificationDiscriminant

Related Examples
• “Discriminant Analysis Classification” on page 21-2
• “Improving Discriminant Analysis Models” on page 21-15
• “Introduction to Feature Selection” on page 16-47
• “Interpret Machine Learning Models” on page 27-2

21 Discriminant Analysis

21-26



Examine the Gaussian Mixture Assumption
Discriminant analysis assumes that the data comes from a Gaussian mixture model (see “Creating
Discriminant Analysis Model” on page 21-4). If the data appears to come from a Gaussian mixture
model, you can expect discriminant analysis to be a good classifier. Furthermore, the default linear
discriminant analysis assumes that all class covariance matrices are equal. This section shows
methods to check these assumptions:

In this section...
“Bartlett Test of Equal Covariance Matrices for Linear Discriminant Analysis” on page 21-27
“Q-Q Plot” on page 21-29
“Mardia Kurtosis Test of Multivariate Normality” on page 21-31

Bartlett Test of Equal Covariance Matrices for Linear Discriminant
Analysis
The Bartlett test (see Box [1]) checks equality of the covariance matrices of the various classes. If the
covariance matrices are equal, the test indicates that linear discriminant analysis is appropriate. If
not, consider using quadratic discriminant analysis, setting the DiscrimType name-value pair
argument to 'quadratic' in fitcdiscr.

The Bartlett test assumes normal (Gaussian) samples, where neither the means nor covariance
matrices are known. To determine whether the covariances are equal, compute the following
quantities:

• Sample covariance matrices per class Σi, 1 ≤ i ≤ k, where k is the number of classes.
• Pooled-in covariance matrix Σ.
• Test statistic V:

V = n− k log Σ − ∑
i = 1

k
ni− 1 log Σi

where n is the total number of observations, ni is the number of observations in class i, and |Σ|
means the determinant of the matrix Σ.

• Asymptotically, as the number of observations in each class ni becomes large, V is distributed
approximately χ2 with kd(d + 1)/2 degrees of freedom, where d is the number of predictors
(number of dimensions in the data).

The Bartlett test is to check whether V exceeds a given percentile of the χ2 distribution with
kd(d + 1)/2 degrees of freedom. If it does, then reject the hypothesis that the covariances are equal.

Bartlett Test of Equal Covariance Matrices

Check whether the Fisher iris data is well modeled by a single Gaussian covariance, or whether it is
better modeled as a Gaussian mixture by performing a Bartlett test of equal covariance matrices.

Load the fisheriris data set.

load fisheriris;
prednames = {'SepalLength','SepalWidth','PetalLength','PetalWidth'};
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When all the class covariance matrices are equal, a linear discriminant analysis is appropriate.

Train a linear discriminant analysis model (the default type) using the Fisher iris data.

L = fitcdiscr(meas,species,'PredictorNames',prednames);

When the class covariance matrices are not equal, a quadratic discriminant analysis is appropriate.

Train a quadratic discriminant analysis model using the Fisher iris data and compute statistics

Q = fitcdiscr(meas,species,'PredictorNames',prednames,'DiscrimType','quadratic');

Store as variables the number of observations N, dimension of the data set D, number of classes K,
and number of observations in each class Nclass.

[N,D] = size(meas)

N = 150

D = 4

K = numel(unique(species))

K = 3

Nclass = grpstats(meas(:,1),species,'numel')'

Nclass = 1×3

    50    50    50

Compute the test statistic V.

SigmaL = L.Sigma;
SigmaQ = Q.Sigma;
V = (N-K)*log(det(SigmaL));
for k=1:K
    V = V - (Nclass(k)-1)*log(det(SigmaQ(:,:,k)));
end
V

V = 146.6632

Compute the p-value.

nu = K*D*(D+1)/2;
pval1 = chi2cdf(V,nu,'upper')

pval1 = 2.6091e-17

Because pval1 is smaller than 0.05, the Bartlett test rejects the hypothesis of equal covariance
matrices. The result indicates to use quadratic discriminant analysis, as opposed to linear
discriminant analysis.
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Q-Q Plot
A Q-Q plot graphically shows whether an empirical distribution is close to a theoretical distribution. If
the two are equal, the Q-Q plot lies on a 45° line. If not, the Q-Q plot strays from the 45° line.

Compare Q-Q Plots for Linear and Quadratic Discriminants

Analyze the Q-Q plots to check whether the Fisher iris data is better modeled by a single Gaussian
covariance or as a Gaussian mixture.

Load the fisheriris data set.

load fisheriris;
prednames = {'SepalLength','SepalWidth','PetalLength','PetalWidth'};

When all the class covariance matrices are equal, a linear discriminant analysis is appropriate.

Train a linear discriminant analysis model.

L = fitcdiscr(meas,species,'PredictorNames',prednames);

When the class covariance matrices are not equal, a quadratic discriminant analysis is appropriate.

Train a quadratic discriminant analysis model using the Fisher iris data.

Q = fitcdiscr(meas,species,'PredictorNames',prednames,'DiscrimType','quadratic');

Compute the number of observations, dimension of the data set, and expected quantiles.

[N,D] = size(meas);
expQuant = chi2inv(((1:N)-0.5)/N,D);

Compute the observed quantiles for the linear discriminant model.

obsL = mahal(L,L.X,'ClassLabels',L.Y);
[obsL,sortedL] = sort(obsL);

Graph the Q-Q plot for the linear discriminant.

figure;
gscatter(expQuant,obsL,L.Y(sortedL),'bgr',[],[],'off');
legend('virginica','versicolor','setosa','Location','NW');
xlabel('Expected quantile');
ylabel('Observed quantile for LDA');
line([0 20],[0 20],'color','k');
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The expected and observed quantiles agree somewhat. The deviation of the plot from the 45° line
upward indicates that the data has heavier tails than a normal distribution. The plot shows three
possible outliers at the top: two observations from class 'setosa' and one observation from class
'virginica'.

Compute the observed quantiles for the quadratic discriminant model.

obsQ = mahal(Q,Q.X,'ClassLabels',Q.Y);
[obsQ,sortedQ] = sort(obsQ);

Graph the Q-Q plot for the quadratic discriminant.

figure;
gscatter(expQuant,obsQ,Q.Y(sortedQ),'bgr',[],[],'off');
legend('virginica','versicolor','setosa','Location','NW');
xlabel('Expected quantile');
ylabel('Observed quantile for QDA');
line([0 20],[0 20],'color','k');
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The Q-Q plot for the quadratic discriminant shows a better agreement between the observed and
expected quantiles. The plot shows only one possible outlier from class 'setosa'. The Fisher iris
data is better modeled as a Gaussian mixture with covariance matrices that are not required to be
equal across classes.

Mardia Kurtosis Test of Multivariate Normality
The Mardia kurtosis test (see Mardia [2]) is an alternative to examining a Q-Q plot. It gives a numeric
approach to deciding if data matches a Gaussian mixture model.

In the Mardia kurtosis test you compute M, the mean of the fourth power of the Mahalanobis distance
of the data from the class means. If the data is normally distributed with a constant covariance matrix
(and is thus suitable for linear discriminant analysis), M is asymptotically distributed as normal with
mean d(d + 2) and variance 8d(d + 2)/n, where

• d is the number of predictors (number of dimensions in the data).
• n is the total number of observations.

The Mardia test is two sided: check whether M is close enough to d(d + 2) with respect to a normal
distribution of variance 8d(d + 2)/n.

Mardia Kurtosis Test for Linear and Quadratic Discriminants

Perform a Mardia kurtosis tests to check whether the Fisher iris data is approximately normally
distributed for both linear and quadratic discriminant analyses.

Load the fisheriris data set.

load fisheriris;
prednames = {'SepalLength','SepalWidth','PetalLength','PetalWidth'};
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When all the class covariance matrices are equal, a linear discriminant analysis is appropriate.

Train a linear discriminant analysis model.

L = fitcdiscr(meas,species,'PredictorNames',prednames);

When the class covariance matrices are not equal, a quadratic discriminant analysis is appropriate.

Train a quadratic discriminant analysis model using the Fisher iris data.

Q = fitcdiscr(meas,species,'PredictorNames',prednames,'DiscrimType','quadratic');

Compute the mean and variance of the asymptotic distribution.

[N,D] = size(meas);
meanKurt = D*(D+2)

meanKurt = 24

varKurt = 8*D*(D+2)/N

varKurt = 1.2800

Compute the p-value for the Mardia kurtosis test on the linear discriminant model.

mahL = mahal(L,L.X,'ClassLabels',L.Y);
meanL = mean(mahL.^2);
[~,pvalL] = ztest(meanL,meanKurt,sqrt(varKurt))

pvalL = 0.0208

Because pvalL is smaller than 0.05, the Mardia kurtosis test rejects the hypothesis of the data being
normally distributed with a constant covariance matrix.

Compute the p-value for the Mardia kurtosis test on the quadratic discriminant model.

mahQ = mahal(Q,Q.X,'ClassLabels',Q.Y);
meanQ = mean(mahQ.^2);
[~,pvalQ] = ztest(meanQ,meanKurt,sqrt(varKurt))

pvalQ = 0.7230

Because pvalQ is greater than 0.05, the data is consistent with the multivariate normal distribution.

The results indicate to use quadratic discriminant analysis, as opposed to linear discriminant analysis.

References
[1] Box, G. E. P. “A General Distribution Theory for a Class of Likelihood Criteria.” Biometrika 36, no.

3–4 (1949): 317–46. https://doi.org/10.1093/biomet/36.3-4.317.

[2] Mardia, K. V. “Measures of Multivariate Skewness and Kurtosis with Applications.” Biometrika 57,
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Naive Bayes

• “Naive Bayes Classification” on page 22-2
• “Plot Posterior Classification Probabilities” on page 22-5
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Naive Bayes Classification
The naive Bayes classifier is designed for use when predictors are independent of one another within
each class, but it appears to work well in practice even when that independence assumption is not
valid. It classifies data in two steps:

1 Training step: Using the training data, the method estimates the parameters of a probability
distribution, assuming predictors are conditionally independent given the class.

2 Prediction step: For any unseen test data, the method computes the posterior probability of that
sample belonging to each class. The method then classifies the test data according the largest
posterior probability.

The class-conditional independence assumption greatly simplifies the training step since you can
estimate the one-dimensional class-conditional density for each predictor individually. While the class-
conditional independence between predictors is not true in general, research shows that this
optimistic assumption works well in practice. This assumption of class-conditional independence of
the predictors allows the naive Bayes classifier to estimate the parameters required for accurate
classification while using less training data than many other classifiers. This makes it particularly
effective for data sets containing many predictors.

Supported Distributions
The training step in naive Bayes classification is based on estimating P(X|Y), the probability or
probability density of predictors X given class Y. The naive Bayes classification model
ClassificationNaiveBayes and training function fitcnb provide support for normal (Gaussian),
kernel, multinomial, and multivariate, multinomial predictor conditional distributions. To specify
distributions for the predictors, use the DistributionNames name-value pair argument of fitcnb.
You can specify one type of distribution for all predictors by supplying the character vector or string
scalar corresponding to the distribution name, or specify different distributions for the predictors by
supplying a length D string array or cell array of character vectors, where D is the number of
predictors (that is, the number of columns of X).

Normal (Gaussian) Distribution

The 'normal' distribution (specify using 'normal' ) is appropriate for predictors that have normal
distributions in each class. For each predictor you model with a normal distribution, the naive Bayes
classifier estimates a separate normal distribution for each class by computing the mean and
standard deviation of the training data in that class.

Kernel Distribution

The 'kernel' distribution (specify using 'kernel') is appropriate for predictors that have a
continuous distribution. It does not require a strong assumption such as a normal distribution and
you can use it in cases where the distribution of a predictor may be skewed or have multiple peaks or
modes. It requires more computing time and more memory than the normal distribution. For each
predictor you model with a kernel distribution, the naive Bayes classifier computes a separate kernel
density estimate for each class based on the training data for that class. By default the kernel is the
normal kernel, and the classifier selects a width automatically for each class and predictor. The
software supports specifying different kernels for each predictor, and different widths for each
predictor or class.
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Multivariate Multinomial Distribution

The multivariate, multinomial distribution (specify using 'mvmn') is appropriate for a predictor
whose observations are categorical. Naive Bayes classifier construction using a multivariate
multinomial predictor is described below. To illustrate the steps, consider an example where
observations are labeled 0, 1, or 2, and a predictor the weather when the sample was conducted.

1 Record the distinct categories represented in the observations of the entire predictor. For
example, the distinct categories (or predictor levels) might include sunny, rain, snow, and cloudy.

2 Separate the observations by response class. For example, segregate observations labeled 0 from
observations labeled 1 and 2, and observations labeled 1 from observations labeled 2.

3 For each response class, fit a multinomial model using the category relative frequencies and total
number of observations. For example, for observations labeled 0, the estimated probability it was
sunny is psunny 0 = (number of sunny observations with label 0)/(number of observations with
label 0), and similar for the other categories and response labels.

The class-conditional, multinomial random variables comprise a multivariate multinomial random
variable.

Here are some other properties of naive Bayes classifiers that use multivariate multinomial.

• For each predictor you model with a multivariate multinomial distribution, the naive Bayes
classifier:

• Records a separate set of distinct predictor levels for each predictor
• Computes a separate set of probabilities for the set of predictor levels for each class.

• The software supports modeling continuous predictors as multivariate multinomial. In this case,
the predictor levels are the distinct occurrences of a measurement. This can lead a predictor
having many predictor levels. It is good practice to discretize such predictors.

If an observation is a set of successes for various categories (represented by all of the predictors) out
of a fixed number of independent trials, then specify that the predictors comprise a multinomial
distribution. For details, see “Multinomial Distribution” on page 22-3.

Multinomial Distribution

The multinomial distribution (specify using 'DistributionNames','mn') is appropriate when,
given the class, each observation is a multinomial random variable. That is, observation, or row, j of
the predictor data X represents D categories, where xjd is the number of successes for category (i.e.,

predictor) d in n j = ∑
d = 1

D
x jd independent trials. The steps to train a naive Bayes classifier are outlined

next.

1 For each class, fit a multinomial distribution for the predictors given the class by:

a Aggregating the weighted, category counts over all observations. Additionally, the software
implements additive smoothing [1].

b Estimating the D category probabilities within each class using the aggregated category
counts. These category probabilities compose the probability parameters of the multinomial
distribution.

2 Let a new observation have a total count of m. Then, the naive Bayes classifier:
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a Sets the total count parameter of each multinomial distribution to m
b For each class, estimates the class posterior probability using the estimated multinomial

distributions
c Predicts the observation into the class corresponding to the highest posterior probability

Consider the so-called the bag-of-tokens model, where there is a bag containing a number of tokens
of various types and proportions. Each predictor represents a distinct type of token in the bag, an
observation is n independent draws (i.e., with replacement) of tokens from the bag, and the data is a
vector of counts, where element d is the number of times token d appears.

A machine-learning application is the construction of an email spam classifier, where each predictor
represents a word, character, or phrase (i.e., token), an observation is an email, and the data are
counts of the tokens in the email. One predictor might count the number of exclamation points,
another might count the number of times the word "money" appears, and another might count the
number of times the recipient's name appears. This is a naive Bayes model under the further
assumption that the total number of tokens (or the total document length) is independent of response
class.

Other properties of naive Bayes classifiers that use multinomial observations include:

• Classification is based on the relative frequencies of the categories. If nj = 0 for observation j, then
classification is not possible for that observation.

• The predictors are not conditionally independent since they must sum to nj.
• Naive Bayes is not appropriate when nj provides information about the class. That is, this classifier

requires that nj is independent of the class.
• If you specify that the predictors are conditionally multinomial, then the software applies this
specification to all predictors. In other words, you cannot include 'mn' in a cell array when
specifying 'DistributionNames'.

If a predictor is categorical, i.e., is multinomial within a response class, then specify that it is
multivariate multinomial. For details, see “Multivariate Multinomial Distribution” on page 22-3.

References
[1] Manning, C. D., P. Raghavan, and M. Schütze. Introduction to Information Retrieval, NY:

Cambridge University Press, 2008.

See Also
Functions
fitcnb | predict

Objects
ClassificationNaiveBayes

Related Examples
• “Plot Posterior Classification Probabilities” on page 22-5
• “Visualize Decision Surfaces of Different Classifiers” on page 19-11
• “Classification” on page 18-24
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Plot Posterior Classification Probabilities

This example shows how to visualize posterior classification probabilities predicted by a naive Bayes
classification model.

Load Fisher's iris data set.

load fisheriris
X = meas(:,1:2);
Y = species;
labels = unique(Y);

X is a numeric matrix that contains two petal measurements for 150 irises. Y is a cell array of
character vectors that contains the corresponding iris species.

Visualize the data using a scatter plot. Group the variables by iris species.

figure;
gscatter(X(:,1), X(:,2), species,'rgb','osd');
xlabel('Sepal length');
ylabel('Sepal width'); 

Train a naive Bayes classifier.

mdl = fitcnb(X,Y);
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mdl is a trained ClassificationNaiveBayes classifier.

Create a grid of points spanning the entire space within some bounds of the data. The data in X(:,1)
ranges between 4.3 and 7.9. The data in X(:,2) ranges between 2 and 4.4.

[xx1, xx2] = meshgrid(4:.01:8,2:.01:4.5);
XGrid = [xx1(:) xx2(:)];

Predict the iris species and posterior class probabilities of each observation in XGrid using mdl.

[predictedspecies,Posterior,~] = predict(mdl,XGrid);

Plot the posterior probability distribution for each species.

sz = size(xx1);
s = max(Posterior,[],2);

figure
hold on
surf(xx1,xx2,reshape(Posterior(:,1),sz),'EdgeColor','none')
surf(xx1,xx2,reshape(Posterior(:,2),sz),'EdgeColor','none')
surf(xx1,xx2,reshape(Posterior(:,3),sz),'EdgeColor','none')
xlabel('Sepal length');
ylabel('Sepal width');
colorbar
view(2) 
hold off
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The closer an observation gets to the decision surface, the less probable it is that the data belongs to
a certain species.

Plot the classification probability distributions individually.

figure('Units','Normalized','Position',[0.25,0.55,0.4,0.35]);
hold on
surf(xx1,xx2,reshape(Posterior(:,1),sz),'FaceColor','red','EdgeColor','none')
surf(xx1,xx2,reshape(Posterior(:,2),sz),'FaceColor','blue','EdgeColor','none')
surf(xx1,xx2,reshape(Posterior(:,3),sz),'FaceColor','green','EdgeColor','none')
xlabel('Sepal length');
ylabel('Sepal width');
zlabel('Probability');
legend(labels)
title('Classification Probability')
alpha(0.2)
view(3)
hold off

See Also
Functions
fitcnb | predict

Objects
ClassificationNaiveBayes
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Related Examples
• “Naive Bayes Classification” on page 22-2
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Classification Learner

• “Machine Learning in MATLAB” on page 23-2
• “Train Classification Models in Classification Learner App” on page 23-10
• “Select Data for Classification or Open Saved App Session” on page 23-18
• “Choose Classifier Options” on page 23-23
• “Feature Selection and Feature Transformation Using Classification Learner App” on page 23-42
• “Misclassification Costs in Classification Learner App” on page 23-49
• “Hyperparameter Optimization in Classification Learner App” on page 23-54
• “Visualize and Assess Classifier Performance in Classification Learner” on page 23-66
• “Export Plots in Classification Learner App” on page 23-78
• “Export Classification Model to Predict New Data” on page 23-83
• “Train Decision Trees Using Classification Learner App” on page 23-89
• “Train Discriminant Analysis Classifiers Using Classification Learner App” on page 23-99
• “Train Logistic Regression Classifiers Using Classification Learner App” on page 23-103
• “Train Support Vector Machines Using Classification Learner App” on page 23-107
• “Train Nearest Neighbor Classifiers Using Classification Learner App” on page 23-111
• “Train Kernel Approximation Classifiers Using Classification Learner App” on page 23-115
• “Train Ensemble Classifiers Using Classification Learner App” on page 23-120
• “Train Naive Bayes Classifiers Using Classification Learner App” on page 23-124
• “Train Neural Network Classifiers Using Classification Learner App” on page 23-133
• “Train and Compare Classifiers Using Misclassification Costs in Classification Learner App”

on page 23-137
• “Train Classifier Using Hyperparameter Optimization in Classification Learner App”

on page 23-145
• “Check Classifier Performance Using Test Set in Classification Learner App” on page 23-152
• “Interpret Classifiers Trained in Classification Learner App” on page 23-157
• “Deploy Model Trained in Classification Learner to MATLAB Production Server” on page 23-167
• “Build Condition Model for Industrial Machinery and Manufacturing Processes” on page 23-171
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Machine Learning in MATLAB

In this section...
“What Is Machine Learning?” on page 23-2
“Selecting the Right Algorithm” on page 23-3
“Train Classification Models in Classification Learner App” on page 23-6
“Train Regression Models in Regression Learner App” on page 23-7
“Train Neural Networks for Deep Learning” on page 23-8

What Is Machine Learning?
Machine learning teaches computers to do what comes naturally to humans: learn from experience.
Machine learning algorithms use computational methods to “learn” information directly from data
without relying on a predetermined equation as a model. The algorithms adaptively improve their
performance as the number of samples available for learning increases.

Machine learning uses two types of techniques: supervised learning, which trains a model on known
input and output data so that it can predict future outputs, and unsupervised learning, which finds
hidden patterns or intrinsic structures in input data.

The aim of supervised machine learning is to build a model that makes predictions based on evidence
in the presence of uncertainty. A supervised learning algorithm takes a known set of input data and
known responses to the data (output) and trains a model to generate reasonable predictions for the
response to new data. Supervised learning uses classification and regression techniques to develop
predictive models.

• Classification techniques predict categorical responses, for example, whether an email is genuine
or spam, or whether a tumor is cancerous or benign. Classification models classify input data into
categories. Typical applications include medical imaging, image and speech recognition, and
credit scoring.
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• Regression techniques predict continuous responses, for example, changes in temperature or
fluctuations in power demand. Typical applications include electricity load forecasting and
algorithmic trading.

Unsupervised learning finds hidden patterns or intrinsic structures in data. It is used to draw
inferences from datasets consisting of input data without labeled responses. Clustering is the most
common unsupervised learning technique. It is used for exploratory data analysis to find hidden
patterns or groupings in data. Applications for clustering include gene sequence analysis, market
research, and object recognition.

Selecting the Right Algorithm
Choosing the right algorithm can seem overwhelming—there are dozens of supervised and
unsupervised machine learning algorithms, and each takes a different approach to learning. There is
no best method or one size fits all. Finding the right algorithm is partly based on trial and error—even
highly experienced data scientists cannot tell whether an algorithm will work without trying it out.
Highly flexible models tend to overfit data by modeling minor variations that could be noise. Simple
models are easier to interpret but might have lower accuracy. Therefore, choosing the right algorithm
requires trading off one benefit against another, including model speed, accuracy, and complexity.
Trial and error is at the core of machine learning—if one approach or algorithm does not work, you
try another. MATLAB provides tools to help you try out a variety of machine learning models and
choose the best.
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To find MATLAB apps and functions to help you solve machine learning tasks, consult the following
table. Some machine learning tasks are made easier by using apps, and others use command-line
features.

Task MATLAB Apps and
Functions

Product Learn More

Classification to predict
categorical responses

Use the Classification
Learner app to
automatically train a
selection of models and
help you choose the
best. You can generate
MATLAB code to work
with scripts.

For more options, you
can use the command-
line interface.

Statistics and Machine
Learning Toolbox

“Train Classification
Models in Classification
Learner App” on page
23-6

Classification Functions

Regression to predict
continuous responses

Use the Regression
Learner app to
automatically train a
selection of models and
help you choose the
best. You can generate
MATLAB code to work
with scripts and other
function options.

For more options, you
can use the command-
line interface.

Statistics and Machine
Learning Toolbox

“Train Regression
Models in Regression
Learner App” on page
23-7

Regression Functions

Clustering Use cluster analysis
functions.

Statistics and Machine
Learning Toolbox

“Cluster Analysis”

Computational finance
tasks such as credit
scoring

Use tools for modeling
credit risk analysis.

Financial Toolbox™ and
Risk Management
Toolbox™

“Credit Risk” (Financial
Toolbox)

Deep learning with
neural networks for
classification and
regression

Use pretrained
networks and functions
to train convolutional
neural networks.

Deep Learning
Toolbox™

“Deep Learning in
MATLAB” (Deep
Learning Toolbox)

Facial recognition,
motion detection, and
object detection

Use deep learning tools
for image processing
and computer vision.

Deep Learning Toolbox
and Computer Vision
Toolbox™

“Recognition, Object
Detection, and Semantic
Segmentation”
(Computer Vision
Toolbox)

The following systematic machine learning workflow can help you tackle machine learning
challenges. You can complete the entire workflow in MATLAB.
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To integrate the best trained model into a production system, you can deploy Statistics and Machine
Learning Toolbox machine learning models using MATLAB Compiler™. For many models, you can
generate C-code for prediction using MATLAB Coder.

Train Classification Models in Classification Learner App
Use the Classification Learner app to train models to classify data using supervised machine learning.
The app lets you explore supervised machine learning interactively using various classifiers.

• Automatically train a selection of models to help you choose the best model. Model types include
decision trees, discriminant analysis, support vector machines, logistic regression, nearest
neighbors, naive Bayes, kernel approximation, ensemble, and neural network classifiers.

• Explore your data, specify validation schemes, select features, and visualize results. By default,
the app protects against overfitting by applying cross-validation. Alternatively, you can select
holdout validation. Validation results help you choose the best model for your data. Plots and
performance measures reflect the validated model results.

• Export models to the workspace to make predictions with new data. The app always trains a
model on full data in addition to a model with the specified validation scheme, and the full model
is the model you export.

• Generate MATLAB code from the app to create scripts, train with new data, work with huge data
sets, or modify the code for further analysis.

To learn more, see “Train Classification Models in Classification Learner App” on page 23-10.
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For more options, you can use the command-line interface. See “Classification”.

Train Regression Models in Regression Learner App
Use the Regression Learner app to train models to predict continuous data using supervised machine
learning. The app lets you explore supervised machine learning interactively using various regression
models.

• Automatically train a selection of models to help you choose the best model. Model types include
linear regression models, regression trees, Gaussian process regression models, support vector
machines, kernel approximation models, ensembles of regression trees, and neural network
regression models.

• Explore your data, select features, and visualize results. Similar to Classification Learner, the
Regression Learner applies cross-validation by default. The results and visualizations reflect the
validated model. Use the results to choose the best model for your data.

• Export models to the workspace to make predictions with new data. The app always trains a
model on full data in addition to a model with the specified validation scheme, and the full model
is the model you export.

• Generate MATLAB code from the app to create scripts, train with new data, work with huge data
sets, or modify the code for further analysis.
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To learn more, see “Train Regression Models in Regression Learner App” on page 24-2.

For more options, you can use the command-line interface. See “Regression”.

Train Neural Networks for Deep Learning
Deep Learning Toolbox enables you to perform deep learning with convolutional neural networks for
classification, regression, feature extraction, and transfer learning. The toolbox provides simple
MATLAB commands for creating and interconnecting the layers of a deep neural network. Examples
and pretrained networks make it easy to use MATLAB for deep learning, even without extensive
knowledge of advanced computer vision algorithms or neural networks.

To learn more, see “Deep Learning in MATLAB” (Deep Learning Toolbox).

See Also

Related Examples
• “Train Regression Models in Regression Learner App” on page 24-2
• “Train Classification Models in Classification Learner App” on page 23-10
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• “Cluster Analysis”
• “Credit Risk” (Financial Toolbox)
• “Recognition, Object Detection, and Semantic Segmentation” (Computer Vision Toolbox)
• “Deep Learning in MATLAB” (Deep Learning Toolbox)

External Websites
• Machine Learning Made Easy (34 min 34 sec)
• Machine Learning for Regression (MathWorks Teaching Resources)
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Train Classification Models in Classification Learner App
In this section...
“Automated Classifier Training” on page 23-10
“Manual Classifier Training” on page 23-13
“Parallel Classifier Training” on page 23-14
“Compare and Improve Classification Models” on page 23-14

You can use Classification Learner to train models of these classifiers: decision trees, discriminant
analysis, support vector machines, logistic regression, nearest neighbors, naive Bayes, kernel
approximation, ensembles, and neural networks. In addition to training models, you can explore your
data, select features, specify validation schemes, and evaluate results. You can export a model to the
workspace to use the model with new data or generate MATLAB code to learn about programmatic
classification.

Training a model in Classification Learner consists of two parts:

• Validated Model: Train a model with a validation scheme. By default, the app protects against
overfitting by applying cross-validation. Alternatively, you can choose holdout validation. The
validated model is visible in the app.

• Full Model: Train a model on full data without validation. The app trains this model simultaneously
with the validated model. However, the model trained on full data is not visible in the app. When
you choose a classifier to export to the workspace, Classification Learner exports the full model.

Note The app does not use test data for model training. Models exported from the app are trained on
the full data, excluding any data reserved for testing.

The app displays the results of the validated model. Diagnostic measures, such as model accuracy,
and plots, such as a scatter plot or the confusion matrix chart, reflect the validated model results. You
can automatically train one or more classifiers, compare validation results, and choose the best model
that works for your classification problem. When you choose a model to export to the workspace,
Classification Learner exports the full model. Because Classification Learner creates a model object
of the full model during training, you experience no lag time when you export the model. You can use
the exported model to make predictions on new data.

To get started by training a selection of model types, see “Automated Classifier Training” on page 23-
10. If you already know what classifier type you want to train, see “Manual Classifier Training” on
page 23-13.

Automated Classifier Training
You can use Classification Learner to automatically train a selection of different classification models
on your data.

• Get started by automatically training multiple models at once. You can quickly try a selection of
models, then explore promising models interactively.

• If you already know what classifier type you want, train individual classifiers instead. See “Manual
Classifier Training” on page 23-13.
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1 On the Apps tab, in the Machine Learning and Deep Learning group, click Classification
Learner to open the Classification Learner app.

2 On the Classification Learner tab, in the File section, click New Session and select data from
the workspace or from a file. Specify a response variable and variables to use as predictors.
Alternatively, click Open to open a previously saved app session. See “Select Data for
Classification or Open Saved App Session” on page 23-18.

3 In the Models section, click the arrow to expand the list of classification models. Select All
Quick-To-Train. This option trains all the model presets available for your data set that are fast
to fit.

4 In the Train section, click Train All and select Train All.

Note If you have Parallel Computing Toolbox, the app trains the models in parallel by default.
See “Parallel Classifier Training” on page 23-14.

A selection of model types appears in the Models pane. When the models finish training, the best
percentage Accuracy (Validation) score is outlined in a box.
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5 Click models in the Models pane and open the corresponding plots to explore the results.

For next steps, see “Manual Classifier Training” on page 23-13 or “Compare and Improve
Classification Models” on page 23-14.

6 To try all the nonoptimizable classifier model presets available for your data set, click All in the
Models section of the Classification Learner tab.
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7 In the Train section, click Train All and select Train Selected.

Manual Classifier Training
If you want to explore individual model types, or if you already know what classifier type you want,
you can train classifiers one at a time or as a group.

1 Choose a classifier. On the Classification Learner tab, in the Models section, click a classifier
type. To see all available classifier options, click the arrow on the far right of the Models section
to expand the list of classifiers. The nonoptimizable model options in the Models gallery are
preset starting points with different settings, suitable for a range of different classification
problems.

To read a description of each classifier, switch to the details view.

For more information on each option, see “Choose Classifier Options” on page 23-23.
2 After selecting a classifier, you can train the model. In the Train section, click Train All and

select Train Selected. Repeat the process to try different classifiers.

Alternatively, you can create several draft models and then train the models as a group. In the
Train section, click Train All and select Train All.

Tip Try decision trees and discriminants first. If the models are not accurate enough predicting
the response, try other classifiers with higher flexibility. To avoid overfitting, look for a model of
lower flexibility that provides sufficient accuracy.

3 If you want to try all nonoptimizable models of the same or different types, then select one of the
All options in the Models gallery.
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Alternatively, if you want to automatically tune hyperparameters of a specific model type, select
the corresponding Optimizable model and perform hyperparameter optimization. For more
information, see “Hyperparameter Optimization in Classification Learner App” on page 23-54.

For next steps, see “Compare and Improve Classification Models” on page 23-14

Parallel Classifier Training
You can train models in parallel using Classification Learner if you have Parallel Computing Toolbox.
Parallel training allows you to train multiple classifiers at once and continue working.

To control parallel training, toggle the Use Parallel button in the Train section of the Classification
Learner tab. To train draft models in parallel, ensure the button is toggled on before clicking Train
All. The Use Parallel button is available only if you have Parallel Computing Toolbox.

The Use Parallel button is on by default. The first time you click Train All and select Train All or
Train Selected, a dialog box is displayed while the app opens a parallel pool of workers. After the
pool opens, you can train multiple classifiers at once.

When classifiers are training in parallel, progress indicators appear on each training and queued
model in the Models pane. You can cancel individual models, if you want. During training, you can
examine results and plots from models, and initiate training of more classifiers.

If you have Parallel Computing Toolbox, then parallel training is available for nonoptimizable models
in Classification Learner, and you do not need to set the UseParallel option of the statset
function.

Note Even if you do not have Parallel Computing Toolbox, you can keep the app responsive during
model training. Before training draft models, on the Classification Learner tab, in the Train
section, click Train All and ensure the Use Background Training check box is selected. Then,
select the Train All option. A dialog box is displayed while the app opens a background pool. After
the pool opens, you can continue to interact with the app while models train in the background.

Compare and Improve Classification Models
1 Examine the Accuracy (Validation) score reported in the Models pane for each model. Click

models in the Models pane and open the corresponding plots to explore the results. Compare
model performance by inspecting results in the plots. You can rearrange the layout of the plots to
compare results across multiple models: use the options in the Layout button, drag and drop
plots, or select the options provided by the Document Actions arrow located to the right of the
model plot tabs.

Additionally, you can compare the models by using the Sort by options in the Models pane.
Delete any unwanted model by selecting the model and clicking the Delete selected model
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button in the upper right of the pane, clicking Delete in the Models section of the
Classification Learner tab, or right-clicking the model and selecting Delete.

See “Visualize and Assess Classifier Performance in Classification Learner” on page 23-66.
2 Select the best model in the Models pane and then try including and excluding different features

in the model.

First, create a copy of the model. After selecting the model, either click Duplicate in the Models
section of the Classification Learner tab or right-click the model and select Duplicate.

Then, click Feature Selection in the Options section of the Classification Learner tab. Use
the available feature ranking algorithms to select features.

Try the parallel coordinates plot to help you identify features to remove. See if you can improve
the model by removing features with low predictive power. Specify predictors to include in the
model, and train new models using the new options. Compare results among the models in the
Models pane.

You can also try transforming features with PCA to reduce dimensionality. Click PCA in the
Options section of the Classification Learner tab.

See “Feature Selection and Feature Transformation Using Classification Learner App” on page
23-42.

3 To try to improve the model further, you can duplicate it, change the classifier hyperparameter
options in the Model Hyperparameters section of the model Summary tab, and then train the
model using the new options. To learn how to control model flexibility, see “Choose Classifier
Options” on page 23-23. For information on how to tune model hyperparameters automatically,
see “Hyperparameter Optimization in Classification Learner App” on page 23-54.

4 If feature selection, PCA, or new hyperparameter values improve your model, try training All
model types with the new settings. See if another model type does better with the new settings.

Tip To avoid overfitting, look for a model of lower flexibility that provides sufficient accuracy. For
example, look for simple models such as decision trees and discriminants that are fast and easy to
interpret. If the models are not accurate enough predicting the response, choose other classifiers
with higher flexibility, such as ensembles. To learn about the model flexibility, see “Choose Classifier
Options” on page 23-23.

This figure shows the app with a Models pane containing various classifier types.
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For a step-by-step example comparing different classifiers, see “Train Decision Trees Using
Classification Learner App” on page 23-89.

For next steps, generate code to train the model with different data, or export trained models to the
workspace to make predictions using new data. See “Export Classification Model to Predict New
Data” on page 23-83.

See Also

Related Examples
• “Select Data for Classification or Open Saved App Session” on page 23-18
• “Choose Classifier Options” on page 23-23
• “Feature Selection and Feature Transformation Using Classification Learner App” on page 23-

42
• “Visualize and Assess Classifier Performance in Classification Learner” on page 23-66
• “Export Classification Model to Predict New Data” on page 23-83
• “Train Decision Trees Using Classification Learner App” on page 23-89
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• “Machine Learning in MATLAB” on page 23-2
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Select Data for Classification or Open Saved App Session
In this section...
“Select Data from Workspace” on page 23-18
“Import Data from File” on page 23-19
“Example Data for Classification” on page 23-19
“Choose Validation Scheme” on page 23-20
“(optional) Reserve Data for Testing” on page 23-22
“Save and Open App Session” on page 23-22

When you first launch the Classification Learner app, you can choose to import data or to open a
previously saved app session. To import data, see “Select Data from Workspace” on page 23-18 and
“Import Data from File” on page 23-19. To open a saved session, see “Save and Open App Session”
on page 23-22.

Select Data from Workspace

Tip In Classification Learner, tables are the easiest way to use your data, because they can contain
numeric and label data. Use the Import Tool to bring your data into the MATLAB workspace as a
table, or use the table functions to create a table from workspace variables. See “Tables”.

1 Load your data into the MATLAB workspace.

Predictor and response variables can be numeric, categorical, string, or logical vectors, cell
arrays of character vectors, or character arrays. The response variable cannot contain more than
500 unique class labels. Note: If your response variable is a string vector, then the predictions of
the trained model form a cell array of character vectors.

Combine the predictor data into one variable, either a table or a matrix. You can additionally
combine your predictor data and response variable, or you can keep them separate.

For example data sets, see “Example Data for Classification” on page 23-19.
2 On the Apps tab, click Classification Learner.
3 On the Classification Learner tab, in the File section, click New Session > From Workspace.
4 In the New Session from Workspace dialog box, under Data Set Variable, select a table or

matrix from the list of workspace variables.

If you select a matrix, choose whether to use rows or columns for observations by clicking the
option buttons.

5 Under Response, observe the default response variable. The app tries to select a suitable
response variable from the data set variable and treats all other variables as predictors.

If you want to use a different response variable, you can:

• Use the list to select another variable from the data set variable.
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• Select a separate workspace variable by clicking the From workspace option button and
then selecting a variable from the list.

6 Under Predictors, add or remove predictors using the check boxes. Add or remove all predictors
by clicking Add All or Remove All. You can also add or remove multiple predictors by selecting
them in the table, and then clicking Add N or Remove N, where N is the number of selected
predictors. The Add All and Remove All buttons change to Add N and Remove N when you
select multiple predictors.

7 To accept the default validation scheme and continue, click Start Session. The default validation
option is 5-fold cross-validation, which protects against overfitting.

Tip If you have a large data set you might want to switch to holdout validation. To learn more,
see “Choose Validation Scheme” on page 23-20.

Note If you prefer loading data into the app directly from the command line, you can specify the
predictor data, response variable, and validation type to use in Classification Learner in the command
line call to classificationLearner. For more information, see Classification Learner.

For next steps, see “Train Classification Models in Classification Learner App” on page 23-10.

Import Data from File
1 On the Classification Learner tab, in the File section, select New Session > From File.
2 Select a file type in the list, such as spreadsheets, text files, or comma separated values (.csv)

files, or select All Files to browse for other file types such as .dat.

Example Data for Classification
To get started using Classification Learner, try the following example data sets.

Name Size Description
Fisher Iris Number of predictors: 4

Number of observations: 150
Number of classes: 3
Response: Species

Measurements from three species of
iris. Try to classify the species.

For a step-by-step example, see “Train
Decision Trees Using Classification
Learner App” on page 23-89.

Create a table from the .csv file:

fishertable = readtable('fisheriris.csv');

Credit Rating Number of predictors: 6
Number of observations: 3932
Number of classes: 7
Response: Rating

Financial ratios and industry sectors
information for a list of corporate
customers. The response variable
consists of credit ratings (AAA, AA, A,
BBB, BB, B, CCC) assigned by a rating
agency.
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Name Size Description
Create a table from the CreditRating_Historical.dat file:

creditrating = readtable('CreditRating_Historical.dat');

Cars Number of predictors: 7
Number of observations: 100
Number of classes: 7
Response: Origin

Measurements of cars, in 1970, 1976,
and 1982. Try to classify the country of
origin.

Create a table from variables in the carsmall.mat file:

load carsmall
cartable = table(Acceleration, Cylinders, Displacement,...
Horsepower, Model_Year, MPG, Weight, Origin);

Arrhythmia Number of predictors: 279
Number of observations: 452
Number of classes: 16
Response: Class (Y)

Patient information and response
variables that indicate the presence and
absence of cardiac arrhythmia.
Misclassifying a patient as "normal" has
more severe consequences than false
positives classified as “has arrhythmia.”

Create a table from the .mat file:

load arrhythmia
Arrhythmia = array2table(X);
Arrhythmia.Class = categorical(Y);

Ovarian Cancer Number of predictors: 4000
Number of observations: 216
Number of classes: 2
Response: Group

Ovarian cancer data generated using
the WCX2 protein array. Includes 95
controls and 121 ovarian cancers.

Create a table from the .mat file:

load ovariancancer
ovariancancer = array2table(obs);
ovariancancer.Group = categorical(grp);

Ionosphere Number of predictors: 34
Number of observations: 351
Number of classes: 2
Response: Group (Y)

Signals from a phased array of 16 high-
frequency antennas. Good (“g”)
returned radar signals are those
showing evidence of some type of
structure in the ionosphere. Bad (“b”)
signals are those that pass through the
ionosphere.

Create a table from the .mat file:

load ionosphere
ionosphere = array2table(X);
ionosphere.Group = Y;

Choose Validation Scheme
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Choose a validation method to examine the predictive accuracy of the fitted models. Validation
estimates model performance on new data compared to the training data, and helps you choose the
best model. Validation protects against overfitting. Choose a validation scheme before training any
models, so that you can compare all the models in your session using the same validation scheme.

Tip Try the default validation scheme and click Start Session to continue. The default option is 5-
fold cross-validation, which protects against overfitting.

If you have a large data set and training models takes too long using cross-validation, reimport your
data and try the faster holdout validation instead.

Assume that no data is reserved for testing, which is true by default.

• Cross-Validation: Select a number of folds (or divisions) to partition the data set.

If you choose k folds, then the app:

1 Partitions the data into k disjoint sets or folds
2 For each validation fold:

a Trains a model using the training-fold observations (observations not in the validation
fold)

b Assesses model performance using validation-fold data
3 Calculates the average validation error over all folds

This method gives a good estimate of the predictive accuracy of the final model trained with all
the data. It requires multiple fits but makes efficient use of all the data, so it is recommended for
small data sets.

• Holdout Validation: Select a percentage of the data to use as a validation set. The app trains a
model on the training set and assesses its performance with the validation set. The model used for
validation is based on only a portion of the data, so Holdout Validation is recommended only for
large data sets. The final model is trained with the full data set.

• Resubstitution Validation: No protection against overfitting. The app uses all of the data for
training and computes the error rate on the same data. Without any separate validation data, you
get an unrealistic estimate of the model’s performance on new data. That is, the training sample
accuracy is likely to be unrealistically high, and the predictive accuracy is likely to be lower.

To help you avoid overfitting to the training data, choose another validation scheme instead.

Note The validation scheme only affects the way that Classification Learner computes validation
metrics. The final model is always trained using the full data set, excluding any data reserved for
testing.

All the classification models you train after selecting data use the same validation scheme that you
select in this dialog box. You can compare all the models in your session using the same validation
scheme.

To change the validation selection and train new models, you can select data again, but you lose any
trained models. The app warns you that importing data starts a new session. Save any trained models
you want to keep to the workspace, and then import the data.
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For next steps training models, see “Train Classification Models in Classification Learner App” on
page 23-10.

(optional) Reserve Data for Testing
When you import data into Classification Learner, you can specify to reserve a percentage of the data
for testing. In the Test section of the New Session dialog box, click the check box to set aside a test
data set. Specify the percentage of the imported data to use as a test set. If you prefer, you can still
choose to import a separate test data set after starting an app session.

You can use the test set to evaluate the performance of a trained model. In particular, you can check
whether the validation metrics provide good estimates for the model performance on new data. For
more information, see “Evaluate Test Set Model Performance” on page 23-76. For an example, see
“Train Classifier Using Hyperparameter Optimization in Classification Learner App” on page 23-145.

Note The app does not use test data for model training. Models exported from the app are trained on
the full training and validation data, excluding any data reserved for testing.

Save and Open App Session
In Classification Learner, you can save the current app session and open a previously saved app
session.

• To save the current app session, click Save in the File section of the Classification Learner tab.
When you first save the current session, you must specify the session file name and the file
location. The Save Session option saves the current session, and the Save Session As option
saves the current session to a new file.

• To open a saved app session, click Open in the File section. In the Select File to Open dialog box,
select the saved session you want to open.

See Also

Related Examples
• “Train Classification Models in Classification Learner App” on page 23-10
• “Choose Classifier Options” on page 23-23
• “Feature Selection and Feature Transformation Using Classification Learner App” on page 23-

42
• “Visualize and Assess Classifier Performance in Classification Learner” on page 23-66
• “Export Classification Model to Predict New Data” on page 23-83
• “Train Decision Trees Using Classification Learner App” on page 23-89
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Choose Classifier Options
In this section...
“Choose Classifier Type” on page 23-23
“Decision Trees” on page 23-27
“Discriminant Analysis” on page 23-29
“Logistic Regression” on page 23-30
“Naive Bayes Classifiers” on page 23-30
“Support Vector Machines” on page 23-31
“Nearest Neighbor Classifiers” on page 23-34
“Kernel Approximation Classifiers” on page 23-36
“Ensemble Classifiers” on page 23-37
“Neural Network Classifiers” on page 23-40

Choose Classifier Type
You can use Classification Learner to automatically train a selection of different classification models
on your data. Use automated training to quickly try a selection of model types, then explore
promising models interactively. To get started, try these options first:

Get Started Classifier Options Description
All Quick-To-Train Try this first. The app will train all the model

types available for your data set that are typically
fast to fit.

All Linear Try this if you expect linear boundaries between
the classes in your data. This option fits only
Linear SVM and Linear Discriminant.

All Use this to train all available nonoptimizable
model types. Trains every type regardless of any
prior trained models. Can be time-consuming.

See “Automated Classifier Training” on page 23-10.

If you want to explore classifiers one at a time, or you already know what classifier type you want,
you can select individual models or train a group of the same type. To see all available classifier
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options, on the Classification Learner tab, click the arrow in the Models section to expand the list
of classifiers. The nonoptimizable model options in the Models gallery are preset starting points with
different settings, suitable for a range of different classification problems. To use optimizable model
options and tune model hyperparameters automatically, see “Hyperparameter Optimization in
Classification Learner App” on page 23-54.

For help choosing the best classifier type for your problem, see the table showing typical
characteristics of different supervised learning algorithms. Use the table as a guide for your final
choice of algorithms. Decide on the tradeoff you want in speed, flexibility, and interpretability. The
best classifier type depends on your data.

Tip To avoid overfitting, look for a model of lower flexibility that provides sufficient accuracy. For
example, look for simple models such as decision trees and discriminants that are fast and easy to
interpret. If the models are not accurate enough predicting the response, choose other classifiers
with higher flexibility, such as ensembles. To control flexibility, see the details for each classifier type.
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Characteristics of Classifier Types

Classifier Interpretability
“Decision Trees” on page 23-27 Easy

“Discriminant Analysis” on page 23-29 Easy

“Logistic Regression” on page 23-30 Easy

“Naive Bayes Classifiers” on page 23-30 Easy

“Support Vector Machines” on page 23-31 Easy for Linear SVM.
Hard for all other kernel types.

“Nearest Neighbor Classifiers” on page 23-34 Hard

“Kernel Approximation Classifiers” on page 23-
36

Hard

“Ensemble Classifiers” on page 23-37 Hard

“Neural Network Classifiers” on page 23-40 Hard

To read a description of each classifier in Classification Learner, switch to the details view.

 Choose Classifier Options

23-25



Tip After you choose a classifier type (for example, decision trees), try training using each of the
classifiers. The nonoptimizable options in the Models gallery are starting points with different
settings. Try them all to see which option produces the best model with your data.

For workflow instructions, see “Train Classification Models in Classification Learner App” on page 23-
10.

Categorical Predictor Support

In Classification Learner, the Models gallery shows as available the classifier types that support your
selected data.

Classifier All predictors
numeric

All predictors
categorical

Some categorical,
some numeric

Decision Trees Yes Yes Yes
Discriminant Analysis Yes No No
Logistic Regression Yes Yes Yes
Naive Bayes Yes Yes Yes
SVM Yes Yes Yes
Nearest Neighbor Euclidean distance only Hamming distance only No
Kernel Approximation Yes Yes Yes
Ensembles Yes Yes, except Subspace

Discriminant
Yes, except any
Subspace
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Classifier All predictors
numeric

All predictors
categorical

Some categorical,
some numeric

Neural Networks Yes Yes Yes

Decision Trees

Decision trees are easy to interpret, fast for fitting and prediction, and low on memory usage, but
they can have low predictive accuracy. Try to grow simpler trees to prevent overfitting. Control the
depth with the Maximum number of splits setting.

Tip Model flexibility increases with the Maximum number of splits setting.

Classifier Type Interpretability Model Flexibility
Coarse Tree Easy Low

Few leaves to make coarse
distinctions between classes
(maximum number of splits is
4).

Medium Tree Easy Medium
Medium number of leaves for
finer distinctions between
classes (maximum number of
splits is 20).

Fine Tree Easy High
Many leaves to make many fine
distinctions between classes
(maximum number of splits is
100).

Tip In the Models gallery, click All Trees to try each of the nonoptimizable decision tree options.
Train them all to see which settings produce the best model with your data. Select the best model in
the Models pane. To try to improve your model, try feature selection, and then try changing some
advanced options.

You train classification trees to predict responses to data. To predict a response, follow the decisions
in the tree from the root (beginning) node down to a leaf node. The leaf node contains the response.
Statistics and Machine Learning Toolbox trees are binary. Each step in a prediction involves checking
the value of one predictor (variable). For example, here is a simple classification tree:
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This tree predicts classifications based on two predictors, x1 and x2. To predict, start at the top node.
At each decision, check the values of the predictors to decide which branch to follow. When the
branches reach a leaf node, the data is classified either as type 0 or 1.

You can visualize your decision tree model by exporting the model from the app, and then entering:

view(trainedModel.ClassificationTree,"Mode","graph") 

The figure shows an example fine tree trained with the fisheriris data.

Tip For an example, see “Train Decision Trees Using Classification Learner App” on page 23-89.

Tree Model Hyperparameter Options

Classification trees in Classification Learner use the fitctree function. You can set these options:

• Maximum number of splits
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Specify the maximum number of splits or branch points to control the depth of your tree. When
you grow a decision tree, consider its simplicity and predictive power. To change the number of
splits, click the buttons or enter a positive integer value in the Maximum number of splits box.

• A fine tree with many leaves is usually highly accurate on the training data. However, the tree
might not show comparable accuracy on an independent test set. A leafy tree tends to
overtrain, and its validation accuracy is often far lower than its training (or resubstitution)
accuracy.

• In contrast, a coarse tree does not attain high training accuracy. But a coarse tree can be more
robust in that its training accuracy can approach that of a representative test set. Also, a
coarse tree is easy to interpret.

• Split criterion

Specify the split criterion measure for deciding when to split nodes. Try each of the three settings
to see if they improve the model with your data.

Split criterion options are Gini's diversity index, Twoing rule, or Maximum deviance
reduction (also known as cross entropy).

The classification tree tries to optimize to pure nodes containing only one class. Gini's diversity
index (the default) and the deviance criterion measure node impurity. The twoing rule is a
different measure for deciding how to split a node, where maximizing the twoing rule expression
increases node purity.

For details of these split criteria, see ClassificationTree “More About” on page 35-678.
• Surrogate decision splits — Only for missing data.

Specify surrogate use for decision splits. If you have data with missing values, use surrogate splits
to improve the accuracy of predictions.

When you set Surrogate decision splits to On, the classification tree finds at most 10 surrogate
splits at each branch node. To change the number, click the buttons or enter a positive integer
value in the Maximum surrogates per node box.

When you set Surrogate decision splits to Find All, the classification tree finds all surrogate
splits at each branch node. The Find All setting can use considerable time and memory.

Alternatively, you can let the app choose some of these model options automatically by using
hyperparameter optimization. See “Hyperparameter Optimization in Classification Learner App” on
page 23-54.

Discriminant Analysis

Discriminant analysis is a popular first classification algorithm to try because it is fast, accurate and
easy to interpret. Discriminant analysis is good for wide datasets.

Discriminant analysis assumes that different classes generate data based on different Gaussian
distributions. To train a classifier, the fitting function estimates the parameters of a Gaussian
distribution for each class.
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Classifier Type Interpretability Model Flexibility
Linear Discriminant Easy Low

Creates linear boundaries
between classes.

Quadratic Discriminant Easy Low
Creates nonlinear boundaries
between classes (ellipse,
parabola or hyperbola).

Discriminant Model Hyperparameter Options

Discriminant analysis in Classification Learner uses the fitcdiscr function. For both linear and
quadratic discriminants, you can change the Covariance structure option. If you have predictors
with zero variance or if any of the covariance matrices of your predictors are singular, training can
fail using the default, Full covariance structure. If training fails, select the Diagonal covariance
structure instead.

Alternatively, you can let the app choose some of these model options automatically by using
hyperparameter optimization. See “Hyperparameter Optimization in Classification Learner App” on
page 23-54.

Logistic Regression

If you have 2 classes, logistic regression is a popular simple classification algorithm to try because it
is easy to interpret. The classifier models the class probabilities as a function of the linear
combination of predictors.

Classifier Type Interpretability Model Flexibility
Logistic Regression Easy Low

You cannot change any
parameters to control model
flexibility.

Logistic regression in Classification Learner uses the fitglm function. You cannot set any options for
this classifier in the app.

Naive Bayes Classifiers

Naive Bayes classifiers are easy to interpret and useful for multiclass classification. The naive Bayes
algorithm leverages Bayes theorem and makes the assumption that predictors are conditionally
independent, given the class. Use these classifiers if this independence assumption is valid for
predictors in your data. However, the algorithm still appears to work well when the independence
assumption is not valid.

For kernel naive Bayes classifiers, you can control the kernel smoother type with the Kernel Type
setting, and control the kernel smoothing density support with the Support setting.
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Classifier Type Interpretability Model Flexibility
Gaussian Naive Bayes Easy Low

You cannot change any
parameters to control model
flexibility.

Kernel Naive Bayes Easy Medium
You can change settings for
Kernel Type and Support to
control how the classifier
models predictor distributions.

Naive Bayes in Classification Learner uses the fitcnb function.

Naive Bayes Model Hyperparameter Options

For kernel naive Bayes classifiers, you can set these options:

• Kernel Type — Specify the kernel smoother type. Try setting each of these options to see if they
improve the model with your data.

Kernel type options are Gaussian, Box, Epanechnikov, or Triangle.
• Support — Specify the kernel smoothing density support. Try setting each of these options to see

if they improve the model with your data.

Support options are Unbounded (all real values) or Positive (all positive real values).

Alternatively, you can let the app choose some of these model options automatically by using
hyperparameter optimization. See “Hyperparameter Optimization in Classification Learner App” on
page 23-54.

For next steps training models, see “Train Classification Models in Classification Learner App” on
page 23-10.

Support Vector Machines

In Classification Learner, you can train SVMs when your data has two or more classes.

Classifier Type Interpretability Model Flexibility
Linear SVM Easy Low

Makes a simple linear
separation between classes.

Quadratic SVM Hard Medium

Cubic SVM Hard Medium
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Classifier Type Interpretability Model Flexibility
Fine Gaussian SVM Hard High — decreases with kernel

scale setting.
Makes finely detailed
distinctions between classes,
with kernel scale set to
sqrt(P)/4.

Medium Gaussian SVM Hard Medium
Medium distinctions, with
kernel scale set to sqrt(P).

Coarse Gaussian SVM Hard Low
Makes coarse distinctions
between classes, with kernel
scale set to sqrt(P)*4, where
P is the number of predictors.

Tip Try training each of the nonoptimizable support vector machine options in the Models gallery.
Train them all to see which settings produce the best model with your data. Select the best model in
the Models pane. To try to improve your model, try feature selection, and then try changing some
advanced options.

An SVM classifies data by finding the best hyperplane that separates data points of one class from
those of the other class. The best hyperplane for an SVM means the one with the largest margin
between the two classes. Margin means the maximal width of the slab parallel to the hyperplane that
has no interior data points.

The support vectors are the data points that are closest to the separating hyperplane; these points
are on the boundary of the slab. The following figure illustrates these definitions, with + indicating
data points of type 1, and – indicating data points of type –1.

SVMs can also use a soft margin, meaning a hyperplane that separates many, but not all data points.

For an example, see “Train Support Vector Machines Using Classification Learner App” on page 23-
107.
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SVM Model Hyperparameter Options

If you have exactly two classes, Classification Learner uses the fitcsvm function to train the
classifier. If you have more than two classes, the app uses the fitcecoc function to reduce the
multiclass classification problem to a set of binary classification subproblems, with one SVM learner
for each subproblem. To examine the code for the binary and multiclass classifier types, you can
generate code from your trained classifiers in the app.

You can set these options in the app:

• Kernel function

Specify the Kernel function to compute the classifier.

• Linear kernel, easiest to interpret
• Gaussian or Radial Basis Function (RBF) kernel
• Quadratic
• Cubic

• Box constraint level

Specify the box constraint to keep the allowable values of the Lagrange multipliers in a box, a
bounded region.

To tune your SVM classifier, try increasing the box constraint level. Click the buttons or enter a
positive scalar value in the Box constraint level box. Increasing the box constraint level can
decrease the number of support vectors, but also can increase training time.

The Box Constraint parameter is the soft-margin penalty known as C in the primal equations, and
is a hard “box” constraint in the dual equations.

• Kernel scale mode

Specify manual kernel scaling if desired.

When you set Kernel scale mode to Auto, then the software uses a heuristic procedure to select
the scale value. The heuristic procedure uses subsampling. Therefore, to reproduce results, set a
random number seed using rng before training the classifier.

When you set Kernel scale mode to Manual, you can specify a value. Click the buttons or enter a
positive scalar value in the Manual kernel scale box. The software divides all elements of the
predictor matrix by the value of the kernel scale. Then, the software applies the appropriate
kernel norm to compute the Gram matrix.

Tip Model flexibility decreases with the kernel scale setting.
• Multiclass method

Only for data with 3 or more classes. This method reduces the multiclass classification problem to
a set of binary classification subproblems, with one SVM learner for each subproblem. One-vs-
One trains one learner for each pair of classes. It learns to distinguish one class from the other.
One-vs-All trains one learner for each class. It learns to distinguish one class from all others.

• Standardize data
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Specify whether to scale each coordinate distance. If predictors have widely different scales,
standardizing can improve the fit.

Alternatively, you can let the app choose some of these model options automatically by using
hyperparameter optimization. See “Hyperparameter Optimization in Classification Learner App” on
page 23-54.

Nearest Neighbor Classifiers

Nearest neighbor classifiers typically have good predictive accuracy in low dimensions, but might not
in high dimensions. They have high memory usage, and are not easy to interpret.

Tip Model flexibility decreases with the Number of neighbors setting.

Classifier Type Interpretability Model Flexibility
Fine KNN Hard Finely detailed distinctions

between classes. The number of
neighbors is set to 1.

Medium KNN Hard Medium distinctions between
classes. The number of
neighbors is set to 10.

Coarse KNN Hard Coarse distinctions between
classes. The number of
neighbors is set to 100.

Cosine KNN Hard Medium distinctions between
classes, using a Cosine distance
metric. The number of
neighbors is set to 10.

Cubic KNN Hard Medium distinctions between
classes, using a cubic distance
metric. The number of
neighbors is set to 10.

Weighted KNN Hard Medium distinctions between
classes, using a distance weight.
The number of neighbors is set
to 10.

Tip Try training each of the nonoptimizable nearest neighbor options in the Models gallery. Train
them all to see which settings produce the best model with your data. Select the best model in the
Models pane. To try to improve your model, try feature selection, and then (optionally) try changing
some advanced options.

What is k-Nearest Neighbor classification? Categorizing query points based on their distance to
points (or neighbors) in a training dataset can be a simple yet effective way of classifying new points.
You can use various metrics to determine the distance. Given a set X of n points and a distance
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function, k-nearest neighbor (kNN) search lets you find the k closest points in X to a query point or
set of points. kNN-based algorithms are widely used as benchmark machine learning rules.

For an example, see “Train Nearest Neighbor Classifiers Using Classification Learner App” on page
23-111.

KNN Model Hyperparameter Options

Nearest Neighbor classifiers in Classification Learner use the fitcknn function. You can set these
options:

• Number of neighbors

Specify the number of nearest neighbors to find for classifying each point when predicting.
Specify a fine (low number) or coarse classifier (high number) by changing the number of
neighbors. For example, a fine KNN uses one neighbor, and a coarse KNN uses 100. Many
neighbors can be time consuming to fit.

• Distance metric

You can use various metrics to determine the distance to points. For definitions, see the class
ClassificationKNN.

• Distance weight

Specify the distance weighting function. You can choose Equal (no weights), Inverse (weight is
1/distance), or Squared Inverse (weight is 1/distance2).

• Standardize data

Specify whether to scale each coordinate distance. If predictors have widely different scales,
standardizing can improve the fit.
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Alternatively, you can let the app choose some of these model options automatically by using
hyperparameter optimization. See “Hyperparameter Optimization in Classification Learner App” on
page 23-54.

Kernel Approximation Classifiers

In Classification Learner, you can use kernel approximation classifiers to perform nonlinear
classification of data with many observations. For large in-memory data, kernel classifiers tend to
train and predict faster than SVM classifiers with Gaussian kernels.

The Gaussian kernel classification models map predictors in a low-dimensional space into a high-
dimensional space, and then fit a linear model to the transformed predictors in the high-dimensional
space. Choose between fitting an SVM linear model and fitting a logistic regression linear model in
the expanded space.

Tip In the Models gallery, click All Kernels  to try each of the preset kernel approximation
options and see which settings produce the best model with your data. Select the best model in the
Models pane, and try to improve that model by using feature selection and changing some advanced
options.

Classifier Type Interpretability Model Flexibility
SVM Kernel Hard Medium — increases as the

Kernel scale setting decreases

Logistic Regression Kernel Hard Medium — increases as the
Kernel scale setting decreases

For an example, see “Train Kernel Approximation Classifiers Using Classification Learner App” on
page 23-115.

Kernel Model Hyperparameter Options

If you have exactly two classes, Classification Learner uses the fitckernel function to train kernel
classifiers. If you have more than two classes, the app uses the fitcecoc function to reduce the
multiclass classification problem to a set of binary classification subproblems, with one kernel learner
for each subproblem.

You can set these options:

• Learner — Specify the linear classification model type to fit in the expanded space, either SVM or
Logistic Regression. SVM kernel classifiers use a hinge loss function during model fitting,
whereas logistic regression kernel classifiers use a deviance (logistic) loss.

• Number of expansion dimensions — Specify the number of dimensions in the expanded space.

• When you set this option to Auto, the software sets the number of dimensions to
2.^ceil(min(log2(p)+5,15)), where p is the number of predictors.
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• When you set this option to Manual, you can specify a value by clicking the buttons or entering
a positive scalar value in the box.

• Regularization strength (Lambda) — Specify the ridge (L2) regularization penalty term. When
you use an SVM learner, the box constraint C and the regularization term strength λ are related
by C = 1/(λn), where n is the number of observations.

• When you set this option to Auto, the software sets the regularization strength to 1/n, where n
is the number of observations.

• When you set this option to Manual, you can specify a value by clicking the buttons or entering
a positive scalar value in the box.

• Kernel scale — Specify the kernel scaling. The software uses this value to obtain a random basis
for the random feature expansion. For more details, see “Random Feature Expansion” on page 35-
7966.

• When you set this option to Auto, the software uses a heuristic procedure to select the scale
value. The heuristic procedure uses subsampling. Therefore, to reproduce results, set a
random number seed using rng before training the classifier.

• When you set this option to Manual, you can specify a value by clicking the buttons or entering
a positive scalar value in the box.

• Multiclass method — Specify the method for reducing the multiclass problem to a set of binary
subproblems, with one kernel learner for each subproblem. This value is applicable only for data
with more than two classes.

• One-vs-One trains one learner for each pair of classes. This method learns to distinguish one
class from the other.

• One-vs-All trains one learner for each class. This method learns to distinguish one class
from all others.

• Iteration limit — Specify the maximum number of training iterations.

Ensemble Classifiers

Ensemble classifiers meld results from many weak learners into one high-quality ensemble model.
Qualities depend on the choice of algorithm.

Tip Model flexibility increases with the Number of learners setting.

All ensemble classifiers tend to be slow to fit because they often need many learners.
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Classifier Type Interpretability Ensemble Method Model Flexibility
Boosted Trees Hard AdaBoost, with

Decision Tree
learners

Medium to high —
increases with Number
of learners or
Maximum number of
splits setting.

Tip Boosted trees can
usually do better than
bagged, but might
require parameter
tuning and more
learners

Bagged Trees Hard Random forest
Bag, with Decision
Tree learners

High — increases with
Number of learners
setting.

Tip Try this classifier
first.

Subspace Discriminant Hard Subspace, with
Discriminant
learners

Medium — increases
with Number of
learners setting.

Good for many
predictors

Subspace KNN Hard Subspace, with
Nearest Neighbor
learners

Medium — increases
with Number of
learners setting.

Good for many
predictors

RUSBoost Trees Hard RUSBoost, with
Decision Tree
learners

Medium — increases
with Number of
learners or Maximum
number of splits
setting.

Good for skewed data
(with many more
observations of 1 class)

GentleBoost or
LogitBoost — not
available in the Model
Type gallery.
If you have 2 class data,
select manually.

Hard GentleBoost or
LogitBoost, with
Decision Tree
learners
Choose Boosted
Trees and change to
GentleBoost method.

Medium — increases
with Number of
learners or Maximum
number of splits
setting.

For binary classification
only
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Bagged trees use Breiman's 'random forest' algorithm. For reference, see Breiman, L. Random
Forests. Machine Learning 45, pp. 5–32, 2001.

Tips

• Try bagged trees first. Boosted trees can usually do better but might require searching many
parameter values, which is time-consuming.

• Try training each of the nonoptimizable ensemble classifier options in the Models gallery. Train
them all to see which settings produce the best model with your data. Select the best model in the
Models pane. To try to improve your model, try feature selection, PCA, and then (optionally) try
changing some advanced options.

• For boosting ensemble methods, you can get fine detail with either deeper trees or larger numbers
of shallow trees. As with single tree classifiers, deep trees can cause overfitting. You need to
experiment to choose the best tree depth for the trees in the ensemble, in order to trade-off data
fit with tree complexity. Use the Number of learners and Maximum number of splits settings.

For an example, see “Train Ensemble Classifiers Using Classification Learner App” on page 23-120.

Ensemble Model Hyperparameter Options

Ensemble classifiers in Classification Learner use the fitcensemble function. You can set these
options:

• For help choosing Ensemble method and Learner type, see the Ensemble table. Try the presets
first.

• Maximum number of splits

For boosting ensemble methods, specify the maximum number of splits or branch points to control
the depth of your tree learners. Many branches tend to overfit, and simpler trees can be more
robust and easy to interpret. Experiment to choose the best tree depth for the trees in the
ensemble.

• Number of learners

Try changing the number of learners to see if you can improve the model. Many learners can
produce high accuracy, but can be time consuming to fit. Start with a few dozen learners, and then
inspect the performance. An ensemble with good predictive power can need a few hundred
learners.

• Learning rate

Specify the learning rate for shrinkage. If you set the learning rate to less than 1, the ensemble
requires more learning iterations but often achieves better accuracy. 0.1 is a popular choice.

• Subspace dimension

For subspace ensembles, specify the number of predictors to sample in each learner. The app
chooses a random subset of the predictors for each learner. The subsets chosen by different
learners are independent.

• Number of predictors to sample

Specify the number of predictors to select at random for each split in the tree learners.

• When you set this option to Select All, the software uses all available predictors.
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• When you set this option to Set Limit, you can specify a value by clicking the buttons or
entering a positive integer value in the box.

Alternatively, you can let the app choose some of these model options automatically by using
hyperparameter optimization. See “Hyperparameter Optimization in Classification Learner App” on
page 23-54.

Neural Network Classifiers

Neural network models typically have good predictive accuracy and can be used for multiclass
classification; however, they are not easy to interpret.

Model flexibility increases with the size and number of fully connected layers in the neural network.

Tip In the Models gallery, click All Neural Networks  to try each of the preset neural network
options and see which settings produce the best model with your data. Select the best model in the
Models pane, and try to improve that model by using feature selection and changing some advanced
options.

Classifier Type Interpretability Model Flexibility
Narrow Neural Network Hard Medium — increases with the

First layer size setting

Medium Neural Network Hard Medium — increases with the
First layer size setting

Wide Neural Network Hard Medium — increases with the
First layer size setting

Bilayered Neural Network Hard High — increases with the First
layer size and Second layer
size settings

Trilayered Neural Network Hard High — increases with the First
layer size, Second layer size,
and Third layer size settings

Each model is a feedforward, fully connected neural network for classification. The first fully
connected layer of the neural network has a connection from the network input (predictor data), and
each subsequent layer has a connection from the previous layer. Each fully connected layer multiplies
the input by a weight matrix and then adds a bias vector. An activation function follows each fully
connected layer. The final fully connected layer and the subsequent softmax activation function
produce the network's output, namely classification scores (posterior probabilities) and predicted
labels. For more information, see “Neural Network Structure” on page 35-2167.
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For an example, see “Train Neural Network Classifiers Using Classification Learner App” on page 23-
133.

Neural Network Model Hyperparameter Options

Neural network classifiers in Classification Learner use the fitcnet function. You can set these
options:

• Number of fully connected layers — Specify the number of fully connected layers in the neural
network, excluding the final fully connected layer for classification. You can choose a maximum of
three fully connected layers.

• First layer size, Second layer size, and Third layer size — Specify the size of each fully
connected layer, excluding the final fully connected layer. If you choose to create a neural network
with multiple fully connected layers, consider specifying layers with decreasing sizes.

• Activation — Specify the activation function for all fully connected layers, excluding the final fully
connected layer. The activation function for the last fully connected layer is always softmax.
Choose from the following activation functions: ReLU, Tanh, None, and Sigmoid.

• Iteration limit — Specify the maximum number of training iterations.
• Regularization strength (Lambda) — Specify the ridge (L2) regularization penalty term.
• Standardize data — Specify whether to standardize the numeric predictors. If predictors have

widely different scales, standardizing can improve the fit. Standardizing the data is highly
recommended.

Alternatively, you can let the app choose some of these model options automatically by using
hyperparameter optimization. See “Hyperparameter Optimization in Classification Learner App” on
page 23-54.

See Also

Related Examples
• “Train Classification Models in Classification Learner App” on page 23-10
• “Select Data for Classification or Open Saved App Session” on page 23-18
• “Feature Selection and Feature Transformation Using Classification Learner App” on page 23-

42
• “Visualize and Assess Classifier Performance in Classification Learner” on page 23-66
• “Export Classification Model to Predict New Data” on page 23-83
• “Train Decision Trees Using Classification Learner App” on page 23-89
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Feature Selection and Feature Transformation Using
Classification Learner App

In this section...
“Investigate Features in the Scatter Plot” on page 23-42
“Select Features to Include” on page 23-44
“Transform Features with PCA in Classification Learner” on page 23-46
“Investigate Features in the Parallel Coordinates Plot” on page 23-46

Investigate Features in the Scatter Plot

In Classification Learner, try to identify predictors that separate classes well by plotting different
pairs of predictors on the scatter plot. The plot can help you investigate features to include or
exclude. You can visualize training data and misclassified points on the scatter plot.

Before you train a classifier, the scatter plot shows the data. If you have trained a classifier, the
scatter plot shows model prediction results. Switch to plotting only the data by selecting Data in the
Plot controls.

• Choose features to plot using the X and Y lists under Predictors.
• Look for predictors that separate classes well. For example, plotting the fisheriris data, you

can see that sepal length and sepal width separate one of the classes well (setosa). You need to
plot other predictors to see if you can separate the other two classes.
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• Show or hide specific classes using the check boxes under Show.
• Change the stacking order of the plotted classes by selecting a class under Classes and then

clicking Move to Front.
• Investigate finer details by zooming in and out and panning across the plot. To enable zooming or

panning, hover the mouse over the scatter plot and click the corresponding button on the toolbar
that appears above the top right of the plot.

• If you identify predictors that are not useful for separating out classes, then try using Feature
Selection to remove them and train classifiers including only the most useful predictors. See
“Select Features to Include” on page 23-44.

After you train a classifier, the scatter plot shows model prediction results. You can show or hide
correct or incorrect results and visualize the results by class. See “Plot Classifier Results” on page
23-69.

You can export the scatter plots you create in the app to figures. See “Export Plots in Classification
Learner App” on page 23-78.

 Feature Selection and Feature Transformation Using Classification Learner App

23-43



Select Features to Include

In Classification Learner, you can specify different features (or predictors) to include in the model.
See if you can improve models by removing features with low predictive power. If data collection is
expensive or difficult, you might prefer a model that performs satisfactorily without some predictors.

You can determine which important predictors to include by using different feature ranking
algorithms. After you select a feature ranking algorithm, the app displays a plot of the sorted feature
importance scores, where larger scores (including Infs) indicate greater feature importance. The
app also displays the ranked features and their scores in a table.

To use feature ranking algorithms in Classification Learner, click Feature Selection in the Options
section of the Classification Learner tab. The app opens a Default Feature Selection tab, where
you can choose a feature ranking algorithm.

Feature Ranking Algorithm Supported Data Type Description
MRMR Categorical and continuous

features
Rank features sequentially
using the “Minimum
Redundancy Maximum
Relevance (MRMR) Algorithm”
on page 35-2865.

For more information, see
fscmrmr.

Chi2 Categorical and continuous
features

Examine whether each predictor
variable is independent of the
response variable by using
individual chi-square tests, and
then rank features using the p-
values of the chi-square test
statistics. Scores correspond to
–log(p).

For more information, see
fscchi2.

ReliefF Either all categorical or all
continuous features

Rank features using the
“ReliefF” on page 35-6496
algorithm. This algorithm works
best for estimating feature
importance for distance-based
supervised models that use
pairwise distances between
observations to predict the
response.

For more information, see
relieff.
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Feature Ranking Algorithm Supported Data Type Description
ANOVA Categorical and continuous

features
Perform one-way analysis of
variance for each predictor
variable, grouped by class, and
then rank features using the p-
values. For each predictor
variable, the app tests the
hypothesis that the predictor
values grouped by the response
classes are drawn from
populations with the same mean
against the alternative
hypothesis that the population
means are not all the same.
Scores correspond to –log(p).

For more information, see
anova1.

Kruskal Wallis Categorical and continuous
features

Rank features using the p-
values returned by the “Kruskal-
Wallis Test” on page 35-4065. For
each predictor variable, the app
tests the hypothesis that the
predictor values grouped by the
response classes are drawn
from populations with the same
median against the alternative
hypothesis that the population
medians are not all the same.
Scores correspond to –log(p).

For more information, see
kruskalwallis.

Choose between selecting the highest ranked features and selecting individual features.

• Choose Select highest ranked features to avoid bias in validation metrics. For example, if you
use a cross-validation scheme, then for each training fold, the app performs feature selection
before training a model. Different folds can select different predictors as the highest ranked
features.

• Choose Select individual features to include specific features in model training. If you use a
cross-validation scheme, then the app uses the same features across all training folds.

When you are done selecting features, click Save and Apply. Your selections affect all draft models
in the Models pane and will be applied to new draft models that you create using the gallery in the
Models section of the Classification Learner tab.

To select features for a single draft model, open and edit the model summary. Click the model in the
Models pane, and then click the model Summary tab (if necessary). The Summary tab includes an
editable Feature Selection section.
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After you train a model, the Feature Selection section of the model Summary tab lists the features
used to train the full model (that is, the model trained using training and validation data). To learn
more about how Classification Learner applies feature selection to your data, generate code for your
trained classifier. For more information, see “Generate MATLAB Code to Train the Model with New
Data” on page 23-84.

For an example using feature selection, see “Train Decision Trees Using Classification Learner App”
on page 23-89.

Transform Features with PCA in Classification Learner

Use principal component analysis (PCA) to reduce the dimensionality of the predictor space.
Reducing the dimensionality can create classification models in Classification Learner that help
prevent overfitting. PCA linearly transforms predictors in order to remove redundant dimensions, and
generates a new set of variables called principal components.

1 On the Classification Learner tab, in the Options section, select PCA.
2 In the Default PCA Options dialog box, select the Enable PCA check box, and then click Save

and Apply.

The app applies the changes to all existing draft models in the Models pane and to new draft
models that you create using the gallery in the Models section of the Classification Learner
tab.

3 When you next train a model using the Train All button, the pca function transforms your
selected features before training the classifier.

4 By default, PCA keeps only the components that explain 95% of the variance. In the Default PCA
Options dialog box, you can change the percentage of variance to explain by selecting the
Explained variance value. A higher value risks overfitting, while a lower value risks removing
useful dimensions.

5 If you want to limit the number of PCA components manually, select Specify number of
components in the Component reduction criterion list. Select the Number of numeric
components value. The number of components cannot be larger than the number of numeric
predictors. PCA is not applied to categorical predictors.

You can check PCA options for trained models in the PCA section of the Summary tab. Click a
trained model in the Models pane, and then click the model Summary tab (if necessary). For
example:

PCA is keeping enough components to explain 95% variance. 
After training, 2 components were kept. 
Explained variance per component (in order): 92.5%, 5.3%, 1.7%, 0.5%

Check the explained variance percentages to decide whether to change the number of components.

To learn more about how Classification Learner applies PCA to your data, generate code for your
trained classifier. For more information on PCA, see the pca function.

Investigate Features in the Parallel Coordinates Plot

To investigate features to include or exclude, use the parallel coordinates plot. You can visualize high-
dimensional data on a single plot to see 2-D patterns. The plot can help you understand relationships
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between features and identify useful predictors for separating classes. You can visualize training data
and misclassified points on the parallel coordinates plot. When you plot classifier results,
misclassified points have dashed lines.

1 On the Classification Learner tab, in the Plot and Interpret section, click the arrow to open
the gallery, and then click Parallel Coordinates in the Validation Results group.

2 On the plot, drag the X tick labels to reorder the predictors. Changing the order can help you
identify predictors that separate classes well.

3 To specify which predictors to plot, use the Predictors check boxes. A good practice is to plot a
few predictors at a time. If your data has many predictors, the plot shows the first 10 predictors
by default.

4 If the predictors have significantly different scales, scale the data for easier visualization. Try
different options in the Scaling list:

• None displays raw data along coordinate rulers that have the same minimum and maximum
limits.

• Range displays raw data along coordinate rulers that have independent minimum and
maximum limits.

• Z-Score displays z-scores (with a mean of 0 and a standard deviation of 1) along each
coordinate ruler.

• Zero Mean displays data centered to have a mean of 0 along each coordinate ruler.
• Unit Variance displays values scaled by standard deviation along each coordinate ruler.
• L2 Norm displays 2-norm values along each coordinate ruler.

5 If you identify predictors that are not useful for separating out classes, use Feature Selection to
remove them and train classifiers including only the most useful predictors. See “Select Features
to Include” on page 23-44.

The plot of the fisheriris data shows the petal length and petal width features separate the
classes best.
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For more information, see parallelplot.

You can export the parallel coordinates plots you create in the app to figures. See “Export Plots in
Classification Learner App” on page 23-78.

See Also

Related Examples
• “Train Classification Models in Classification Learner App” on page 23-10
• “Select Data for Classification or Open Saved App Session” on page 23-18
• “Choose Classifier Options” on page 23-23
• “Visualize and Assess Classifier Performance in Classification Learner” on page 23-66
• “Export Plots in Classification Learner App” on page 23-78
• “Generate MATLAB Code to Train the Model with New Data” on page 23-84
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Misclassification Costs in Classification Learner App

In this section...
“Specify Misclassification Costs” on page 23-49
“Assess Model Performance” on page 23-52
“Misclassification Costs in Exported Model and Generated Code” on page 23-53

By default, the Classification Learner app creates models that assign the same penalty to all
misclassifications during training. For a given observation, the app assigns a penalty of 0 if the
observation is classified correctly and a penalty of 1 if the observation is classified incorrectly. In
some cases, this assignment is inappropriate. For example, suppose you want to classify patients as
either healthy or sick. The cost of misclassifying a sick person as healthy might be five times the cost
of misclassifying a healthy person as sick. For cases where you know the cost of misclassifying
observations of one class into another, and the costs vary across the classes, specify the
misclassification costs before training your models.

Note Custom misclassification costs are not supported for logistic regression or neural network
models.

Specify Misclassification Costs
In the Classification Learner app, in the Options section of the Classification Learner tab, select
Costs. The app opens a dialog box that shows the default misclassification costs (cost matrix) as a
table with row and column labels determined by the classes in the response variable. The rows of the
table correspond to the true classes, and the columns correspond to the predicted classes. You can
interpret the cost matrix in this way: the entry in row i and column j is the cost of misclassifying ith
class observations into the jth class. The diagonal entries of the cost matrix must be 0, and the off-
diagonal entries must be nonnegative real numbers.

You can specify your own misclassification costs in two ways: by entering values directly into the
table in the dialog box or by importing a workspace variable that contains the cost values.
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Note A scaled version of the cost matrix gives the same classification results (for example, confusion
matrix and accuracy), but with a different total misclassification cost. That is, if CostMat is the
misclassification cost matrix and a is a positive, real scalar, then a model trained with the cost matrix
a*CostMat has the same confusion matrix as that model trained with CostMat.

Enter Costs Directly in Dialog Box

In the misclassification costs dialog box, double-click an entry in the table that you want to edit.
Delete the value and type the correct misclassification cost for the entry. When you are done editing
the table, click Save and Apply to save your changes. The changes apply to all existing draft models
and to any new draft models you create using the Models gallery on the Classification Learner tab.

Import Workspace Variable Containing Costs

In the misclassification costs dialog box, click Import from Workspace. The app opens a dialog box
for importing costs from a variable in the MATLAB workspace.
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From the Cost variable list, select the cost matrix or structure that contains the misclassification
costs.

• Cost matrix — The matrix must contain the misclassification costs. The diagonal entries must be 0,
and the off-diagonal entries must be nonnegative real numbers. By default, the app uses the class
order shown in the previous misclassification costs dialog box to interpret the cost matrix values.

To specify the order of the classes in the cost matrix, create a separate workspace variable
containing the class names in the correct order. In the import dialog box, select the appropriate
variable from the Class order in cost variable list. The workspace variable containing the class
names must be a categorical vector, logical vector, numeric vector, string array, or cell array of
character vectors. The class names must match (in spelling and capitalization) the class names in
the response variable.

• Structure — The structure must contain the fields ClassificationCosts and ClassNames with
these specifications:

• ClassificationCosts — Matrix that contains misclassification costs.
• ClassNames — Names of the classes. The order of the classes in ClassNames determines the

order of the rows and columns of ClassificationCosts. The variable ClassNames must be
a categorical vector, logical vector, numeric vector, string array, or cell array of character
vectors. The class names must match (in spelling and capitalization) the class names in the
response variable.

After specifying the cost variable and the class order in the cost variable, click Import. The app
updates the table in the misclassification costs dialog box.

After you specify a cost matrix that differs from the default, the app updates the Summary tab of
existing draft models. To open this tab, click Summary in the Models section of the Classification
Learner tab. In the Summary pane, the app displays a Misclassification Costs: Custom section.
For models that use the default misclassification costs, the app displays a Misclassification Costs:
Default section.
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You can click Misclassification Costs: Custom to expand the section and view the table of
misclassification costs.

Assess Model Performance
After specifying misclassification costs, you can train and tune your models as usual. However, using
custom misclassification costs can change how you assess the performance of a model. For example,
instead of choosing the model with the best accuracy, choose a model that has good accuracy and a
low total misclassification cost. The total misclassification cost for a model is
sum(CostMat.*ConfusionMat,"all"), where CostMat is the misclassification cost matrix and
ConfusionMat is the confusion matrix for the model. The confusion matrix shows how the model
classifies observations in each class. See “Check Performance Per Class in the Confusion Matrix” on
page 23-70.

To inspect the total misclassification cost of a trained model, select the model in the Models pane. On
the Classification Learner tab, in the Models section, click Summary. In the Summary tab, look
at the Training Results section. The total misclassification cost is listed below the accuracy of the
model.
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Misclassification Costs in Exported Model and Generated Code
After you train a model with custom misclassification costs and export it from the app, you can find
the custom costs inside the exported model. For example, if you export a tree model as a structure
named trainedModel, you can use the following code to access the cost matrix and the order of the
classes in the matrix.

trainedModel.ClassificationTree.Cost
trainedModel.ClassificationTree.ClassNames

When you generate MATLAB code for a model trained with custom misclassification costs, the
generated code includes a cost matrix that is passed to the training function through the Cost name-
value argument.

See Also

Related Examples
• “Train and Compare Classifiers Using Misclassification Costs in Classification Learner App” on

page 23-137
• “Train Classification Models in Classification Learner App” on page 23-10
• “Select Data for Classification or Open Saved App Session” on page 23-18
• “Feature Selection and Feature Transformation Using Classification Learner App” on page 23-42
• “Choose Classifier Options” on page 23-23
• “Visualize and Assess Classifier Performance in Classification Learner” on page 23-66
• “Export Classification Model to Predict New Data” on page 23-83
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Hyperparameter Optimization in Classification Learner App
In this section...
“Select Hyperparameters to Optimize” on page 23-54
“Optimization Options” on page 23-59
“Minimum Classification Error Plot” on page 23-61
“Optimization Results” on page 23-63

After you choose a particular type of model to train, for example a decision tree or a support vector
machine (SVM), you can tune your model by selecting different advanced options. For example, you
can change the maximum number of splits for a decision tree or the box constraint of an SVM. Some
of these options are internal parameters of the model, or hyperparameters, that can strongly affect its
performance. Instead of manually selecting these options, you can use hyperparameter optimization
within the Classification Learner app to automate the selection of hyperparameter values. For a given
model type, the app tries different combinations of hyperparameter values by using an optimization
scheme that seeks to minimize the model classification error, and returns a model with the optimized
hyperparameters. You can use the resulting model as you would any other trained model.

Note Because hyperparameter optimization can lead to an overfitted model, the recommended
approach is to create a separate test set before importing your data into the Classification Learner
app. After you train your optimizable model, you can see how it performs on your test set. For an
example, see “Train Classifier Using Hyperparameter Optimization in Classification Learner App” on
page 23-145.

To perform hyperparameter optimization in Classification Learner, follow these steps:

1 Choose a model type and decide which hyperparameters to optimize. See “Select
Hyperparameters to Optimize” on page 23-54.

Note Hyperparameter optimization is not supported for logistic regression or kernel
approximation models.

2 (Optional) Specify how the optimization is performed. For more information, see “Optimization
Options” on page 23-59.

3 Train your model. Use the “Minimum Classification Error Plot” on page 23-61 to track the
optimization results.

4 Inspect your trained model. See “Optimization Results” on page 23-63.

Select Hyperparameters to Optimize

In the Classification Learner app, in the Models section of the Classification Learner tab, click the
arrow to open the gallery. The gallery includes optimizable models that you can train using
hyperparameter optimization.

After you select an optimizable model, you can choose which of its hyperparameters you want to
optimize. In the model Summary tab, in the Model Hyperparameters section, select Optimize
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check boxes for the hyperparameters that you want to optimize. Under Values, specify the fixed
values for the hyperparameters that you do not want to optimize or that are not optimizable.

This table describes the hyperparameters that you can optimize for each type of model and the
search range of each hyperparameter. It also includes the additional hyperparameters for which you
can specify fixed values.

Model Optimizable
Hyperparameters

Additional
Hyperparameters

Notes

Optimizable Tree • Maximum number
of splits – The
software searches
among integers log-
scaled in the range
[1,max(2,n–1)],
where n is the
number of
observations.

• Split criterion –
The software
searches among
Gini's diversity
index, Twoing
rule, and Maximum
deviance
reduction.

• Surrogate decision
splits

• Maximum
surrogates per
node

For more information,
see “Tree Model
Hyperparameter
Options” on page 23-28.

Optimizable
Discriminant

• Discriminant type
– The software
searches among
Linear,
Quadratic,
Diagonal Linear,
and Diagonal
Quadratic.

 • The Discriminant
type optimizable
hyperparameter
combines the preset
model types (Linear
Discriminant and
Quadratic
Discriminant) with
the Covariance
structure advanced
option of the preset
models.

For more information,
see “Discriminant
Model Hyperparameter
Options” on page 23-30.
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Model Optimizable
Hyperparameters

Additional
Hyperparameters

Notes

Optimizable Naive
Bayes

• Distribution names
– The software
searches between
Gaussian and
Kernel.

• Kernel type – The
software searches
among Gaussian,
Box,
Epanechnikov, and
Triangle.

• Support • The Gaussian value
of the Distribution
names optimizable
hyperparameter
specifies a Gaussian
Naive Bayes model.
Similarly, the
Kernel
Distribution names
value specifies a
Kernel Naive
Bayes model.

For more information,
see “Naive Bayes Model
Hyperparameter
Options” on page 23-31.

Optimizable SVM • Kernel function –
The software
searches among
Gaussian, Linear,
Quadratic, and
Cubic.

• Box constraint
level – The software
searches among
positive values log-
scaled in the range
[0.001,1000].

• Kernel scale – The
software searches
among positive
values log-scaled in
the range
[0.001,1000].

• Multiclass method
– The software
searches between
One-vs-One and
One-vs-All.

• Standardize data –
The software
searches between
Yes and No.

 • The Kernel scale
optimizable
hyperparameter
combines the
Kernel scale mode
and Manual kernel
scale advanced
options of the preset
SVM models.

• You can optimize the
Kernel scale
optimizable
hyperparameter only
when the Kernel
function value is
Gaussian. Unless
you specify a value
for Kernel scale by
clearing the
Optimize check box,
the app uses the
Manual value of 1
by default when the
Kernel function
has a value other
than Gaussian.

For more information,
see “SVM Model
Hyperparameter
Options” on page 23-33.
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Model Optimizable
Hyperparameters

Additional
Hyperparameters

Notes

Optimizable KNN • Number of
neighbors – The
software searches
among integers log-
scaled in the range
[1,max(2,round(n
/2))], where n is
the number of
observations.

• Distance metric –
The software
searches among:

• Euclidean
• City block
• Chebyshev
• Minkowski

(cubic)
• Mahalanobis
• Cosine
• Correlation
• Spearman
• Hamming
• Jaccard

• Distance weight –
The software
searches among
Equal, Inverse,
and Squared
inverse.

• Standardize data –
The software
searches between
Yes and No.

 For more information,
see “KNN Model
Hyperparameter
Options” on page 23-35.
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Model Optimizable
Hyperparameters

Additional
Hyperparameters

Notes

Optimizable
Ensemble

• Ensemble method
– The software
searches among
AdaBoost,
RUSBoost,
LogitBoost,
GentleBoost, and
Bag.

• Maximum number
of splits – The
software searches
among integers log-
scaled in the range
[1,max(2,n–1)],
where n is the
number of
observations.

• Number of
learners – The
software searches
among integers log-
scaled in the range
[10,500].

• Learning rate – The
software searches
among real values
log-scaled in the
range [0.001,1].

• Number of
predictors to
sample – The
software searches
among integers in
the range
[1,max(2,p)],
where p is the
number of predictor
variables.

• Learner type • The AdaBoost,
LogitBoost, and
GentleBoost
values of the
Ensemble method
optimizable
hyperparameter
specify a Boosted
Trees model.
Similarly, the
RUSBoost
Ensemble method
value specifies an
RUSBoosted Trees
model, and the Bag
Ensemble method
value specifies a
Bagged Trees
model.

• The LogitBoost
and GentleBoost
values are available
only for binary
classification.

• You can optimize the
Number of
predictors to
sample optimizable
hyperparameter only
when the Ensemble
method value is
Bag. Unless you
specify a value for
Number of
predictors to
sample by clearing
the Optimize check
box, the app uses the
default value of
Select All when the
Ensemble method
has a value other
than Bag.

For more information,
see “Ensemble Model
Hyperparameter
Options” on page 23-39.
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Model Optimizable
Hyperparameters

Additional
Hyperparameters

Notes

Optimizable Neural
Network

• Number of fully
connected layers –
The software
searches among 1,
2, and 3 fully
connected layers.

• First layer size –
The software
searches among
integers log-scaled
in the range
[1,300].

• Second layer size –
The software
searches among
integers log-scaled
in the range
[1,300].

• Third layer size –
The software
searches among
integers log-scaled
in the range
[1,300].

• Activation – The
software searches
among ReLU, Tanh,
None, and Sigmoid.

• Regularization
strength (Lambda)
– The software
searches among real
values log-scaled in
the range [1e-5/
n,1e5/n], where n
is the number of
observations.

• Standardize data –
The software
searches between
Yes and No.

• Iteration limit For more information,
see “Neural Network
Model Hyperparameter
Options” on page 23-41.

Optimization Options

By default, the Classification Learner app performs hyperparameter tuning by using Bayesian
optimization. The goal of Bayesian optimization, and optimization in general, is to find a point that
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minimizes an objective function. In the context of hyperparameter tuning in the app, a point is a set
of hyperparameter values, and the objective function is the loss function, or the classification error.
For more information on the basics of Bayesian optimization, see “Bayesian Optimization Workflow”
on page 10-25.

You can specify how the hyperparameter tuning is performed. For example, you can change the
optimization method to grid search or limit the training time. On the Classification Learner tab, in
the Options section, click Optimizer. The app opens a dialog box in which you can select
optimization options.

After making your selections, click Save and Apply. Your selections affect all draft optimizable
models in the Models pane and will be applied to new optimizable models that you create using the
gallery in the Models section of the Classification Learner tab.

To specify optimization options for a single optimizable model, open and edit the model summary
before training the model. Click the model in the Models pane. The model Summary tab includes an
editable Optimizer section.

This table describes the available optimization options and their default values.

Option Description
Optimizer The optimizer values are:

• Bayesopt (default) – Use Bayesian
optimization. Internally, the app calls the
bayesopt function.

• Grid search – Use grid search with the
number of values per dimension determined
by the Number of grid divisions value. The
app searches in a random order, using uniform
sampling without replacement from the grid.

• Random search – Search at random among
points, where the number of points
corresponds to the Iterations value.
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Option Description
Acquisition function When the app performs Bayesian optimization for

hyperparameter tuning, it uses the acquisition
function to determine the next set of
hyperparameter values to try.

The acquisition function values are:

• Expected improvement per second
plus (default)

• Expected improvement
• Expected improvement plus
• Expected improvement per second
• Lower confidence bound
• Probability of improvement

For details on how these acquisition functions
work in the context of Bayesian optimization, see
“Acquisition Function Types” on page 10-3.

Iterations Each iteration corresponds to a combination of
hyperparameter values that the app tries. When
you use Bayesian optimization or random search,
specify a positive integer that sets the number of
iterations. The default value is 30.

When you use grid search, the app ignores the
Iterations value and evaluates the loss at every
point in the entire grid. You can set a training
time limit to stop the optimization process
prematurely.

Training time limit To set a training time limit, select this option and
set the Maximum training time in seconds
option. By default, the app does not have a
training time limit.

Maximum training time in seconds Set the training time limit in seconds as a positive
real number. The default value is 300. The run
time can exceed the training time limit because
this limit does not interrupt an iteration
evaluation.

Number of grid divisions When you use grid search, set a positive integer
as the number of values the app tries for each
numeric hyperparameter. The app ignores this
value for categorical hyperparameters. The
default value is 10.

Minimum Classification Error Plot
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After specifying which model hyperparameters to optimize and setting any additional optimization
options (optional), train your optimizable model. On the Classification Learner tab, in the Train
section, click Train All and select Train Selected. The app creates a Minimum Classification
Error Plot that it updates as the optimization runs.

The minimum classification error plot displays the following information:

• Estimated minimum classification error – Each light blue point corresponds to an estimate of
the minimum classification error computed by the optimization process when considering all the
sets of hyperparameter values tried so far, including the current iteration.

The estimate is based on an upper confidence interval of the current classification error objective
model, as mentioned in the Bestpoint hyperparameters description.

If you use grid search or random search to perform hyperparameter optimization, the app does
not display these light blue points.

• Observed minimum classification error – Each dark blue point corresponds to the observed
minimum classification error computed so far by the optimization process. For example, at the
third iteration, the dark blue point corresponds to the minimum of the classification error
observed in the first, second, and third iterations.
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• Bestpoint hyperparameters – The red square indicates the iteration that corresponds to the
optimized hyperparameters. You can find the values of the optimized hyperparameters listed in
the upper right of the plot under Optimization Results.

The optimized hyperparameters do not always provide the observed minimum classification error.
When the app performs hyperparameter tuning by using Bayesian optimization (see “Optimization
Options” on page 23-59 for a brief introduction), it chooses the set of hyperparameter values that
minimizes an upper confidence interval of the classification error objective model, rather than the
set that minimizes the classification error. For more information, see the "Criterion","min-
visited-upper-confidence-interval" name-value argument of bestPoint.

• Minimum error hyperparameters – The yellow point indicates the iteration that corresponds to
the hyperparameters that yield the observed minimum classification error.

For more information, see the "Criterion","min-observed" name-value argument of
bestPoint.

If you use grid search to perform hyperparameter optimization, the Bestpoint hyperparameters
and the Minimum error hyperparameters are the same.

Missing points in the plot correspond to NaN minimum classification error values.

Optimization Results
When the app finishes tuning model hyperparameters, it returns a model trained with the optimized
hyperparameter values (Bestpoint hyperparameters). The model metrics, displayed plots, and
exported model correspond to this trained model with fixed hyperparameter values.

To inspect the optimization results of a trained optimizable model, select the model in the Models
pane and look at the model Summary tab.
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The model Summary tab includes these sections:

• Training Results – Shows the performance of the optimizable model. See “View Model Metrics in
Summary Tab and Models Pane” on page 23-67.

• Model Hyperparameters – Displays the type of optimizable model and lists any fixed
hyperparameter values

• Optimized Hyperparameters – Lists the values of the optimized hyperparameters
• Hyperparameter Search Range – Displays the search ranges for the optimized

hyperparameters
• Optimizer – Shows the selected optimizer options

When you perform hyperparameter tuning using Bayesian optimization and you export the resulting
trained optimizable model to the workspace as a structure, the structure includes a
BayesianOptimization object in the HyperParameterOptimizationResult field. The object
contains the results of the optimization performed in the app.

When you generate MATLAB code from a trained optimizable model, the generated code uses the
fixed and optimized hyperparameter values of the model to train on new data. The generated code
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does not include the optimization process. For information on how to perform Bayesian optimization
when you use a fit function, see “Bayesian Optimization Using a Fit Function” on page 10-26.

See Also

Related Examples
• “Train Classifier Using Hyperparameter Optimization in Classification Learner App” on page 23-

145
• “Bayesian Optimization Workflow” on page 10-25
• “Train Classification Models in Classification Learner App” on page 23-10
• “Select Data for Classification or Open Saved App Session” on page 23-18
• “Choose Classifier Options” on page 23-23
• “Visualize and Assess Classifier Performance in Classification Learner” on page 23-66
• “Export Classification Model to Predict New Data” on page 23-83
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Visualize and Assess Classifier Performance in Classification
Learner

In this section...
“Check Performance in the Models Pane” on page 23-66
“View Model Metrics in Summary Tab and Models Pane” on page 23-67
“Compare Model Information and Results in Table View” on page 23-68
“Plot Classifier Results” on page 23-69
“Check Performance Per Class in the Confusion Matrix” on page 23-70
“Check ROC Curve” on page 23-72
“Interpret Model Using Partial Dependence Plots” on page 23-74
“Compare Model Plots by Changing Layout” on page 23-76
“Evaluate Test Set Model Performance” on page 23-76

After training classifiers in Classification Learner, you can compare models based on accuracy scores,
visualize results by plotting class predictions, and check performance using the confusion matrix and
ROC curve.

• If you use k-fold cross-validation, then the app computes the accuracy scores using the
observations in the k validation folds and reports the average cross-validation error. It also makes
predictions on the observations in these validation folds and computes the confusion matrix and
ROC curve based on these predictions.

Note When you import data into the app, if you accept the defaults, the app automatically uses
cross-validation. To learn more, see “Choose Validation Scheme” on page 23-20.

• If you use holdout validation, the app computes the accuracy scores using the observations in the
validation fold and makes predictions on these observations. The app also computes the confusion
matrix and ROC curve based on these predictions.

• If you use resubstitution validation, the score is the resubstitution accuracy based on all the
training data, and the predictions are resubstitution predictions.

Check Performance in the Models Pane

After training a model in Classification Learner, check the Models pane to see which model has the
best overall accuracy in percent. The best Accuracy (Validation) score is highlighted in a box. This
score is the validation accuracy. The validation accuracy score estimates a model's performance on
new data compared to the training data. Use the score to help you choose the best model.

• For cross-validation, the score is the accuracy on all observations not set aside for testing,
counting each observation when it was in a holdout (validation) fold.

• For holdout validation, the score is the accuracy on the held-out observations.
• For resubstitution validation, the score is the resubstitution accuracy against all the training data

observations.

The best overall score might not be the best model for your goal. A model with a slightly lower overall
accuracy might be the best classifier for your goal. For example, false positives in a particular class
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might be important to you. You might want to exclude some predictors where data collection is
expensive or difficult.

To find out how the classifier performed in each class, examine the confusion matrix.

View Model Metrics in Summary Tab and Models Pane
You can view model metrics in the model Summary tab and the Models pane, and use these metrics
to assess and compare models. Alternatively, you can use the Results Table tab to compare models.
For more information, see “Compare Model Information and Results in Table View” on page 23-68.

The Training Results metrics are calculated on the validation set. The Test Results metrics, if
displayed, are calculated on an imported test set. For more information, see “Evaluate Test Set Model
Performance” on page 23-76.

Model Metrics

Metric Description Tip
Accuracy Percentage of observations that are correctly classified Look for larger accuracy

values.
Total cost Total misclassification cost Look for smaller total cost

values. Make sure the
accuracy value is still
large.

You can sort models based on the different model metrics. To select a metric for model sorting, use
the Sort by list at the top of the Models pane.

You can also delete unwanted models listed in the Models pane. Select the model you want to delete
and click the Delete selected model button in the upper right of the pane, click Delete in the
Models section of the Classification Learner tab, or right-click the model and select Delete. You
cannot delete the last remaining model in the Models pane.

 Visualize and Assess Classifier Performance in Classification Learner

23-67



Compare Model Information and Results in Table View
Rather than using the Summary tab or the Models pane to compare model metrics, you can use a
table of results. On the Classification Learner tab, in the Models section, click Results Table. In
the Results Table tab, you can sort models by their training and test results, as well as by their
options (such as model type, selected features, PCA, and so on). For example, to sort models by
validation accuracy, click the sorting arrows in the Accuracy (Validation) column header. A down
arrow indicates that models are sorted from highest accuracy to lowest accuracy.

To view more table column options, click the "Select columns to display" button  at the top right
of the table. In the Select Columns to Display dialog box, check the boxes for the columns you want to
display in the results table. Newly selected columns are appended to the table on the right.

Within the results table, you can manually drag and drop the table columns so that they appear in
your preferred order.
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You can mark some models as favorites by using the Favorite column. The app keeps the selection of
favorite models consistent between the results table and the Models pane. Unlike other columns, the
Favorite and Model Number columns cannot be removed from the table.

To remove a row from the table, right-click any entry within the row and click Hide row (or Hide
selected row(s) if the row is highlighted). To remove consecutive rows, click any entry within the
first row you want to remove, press Shift, and click any entry within the last row you want to remove.
Then, right-click one of the highlighted entries and click Hide selected row(s). To restore all
removed rows, right-click any entry in the table and click Show all rows. The restored rows are
appended to the bottom of the table.

To export the information in the table, use one of the export buttons  at the top right of the
table. Choose between exporting the table to the workspace or to a file. The exported table includes
only the displayed rows and columns.

Plot Classifier Results
Use a scatter plot to examine the classifier results. To view the scatter plot for a model, select the
model in the Models pane. On the Classification Learner tab, in the Plot and Interpret section,
click the arrow to open the gallery, and then click Scatter in the Validation Results group. After you
train a classifier, the scatter plot switches from displaying the data to showing model predictions. If
you are using holdout or cross-validation, then these predictions are the predictions on the held-out
(validation) observations. In other words, the software obtains each prediction by using a model that
was trained without the corresponding observation.

To investigate your results, use the controls on the right. You can:

• Choose whether to plot model predictions or the data alone.
• Show or hide correct or incorrect results using the check boxes under Model predictions.
• Choose features to plot using the X and Y lists under Predictors.
• Visualize results by class by showing or hiding specific classes using the check boxes under Show.
• Change the stacking order of the plotted classes by selecting a class under Classes and then

clicking Move to Front.
• Zoom in and out, or pan across the plot. To enable zooming or panning, place the mouse over the

scatter plot and click the corresponding button on the toolbar that appears above the top right of
the plot.
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See also “Investigate Features in the Scatter Plot” on page 23-42.

To export the scatter plots you create in the app to figures, see “Export Plots in Classification Learner
App” on page 23-78.

Check Performance Per Class in the Confusion Matrix

Use the confusion matrix plot to understand how the currently selected classifier performed in each
class. After you train a classification model, the app automatically opens the confusion matrix for that
model. If you train an "All" model, the app opens the confusion matrix for the first model only. To view
the confusion matrix for another model, select the model in the Models pane. On the Classification
Learner tab, in the Plot and Interpret section, click the arrow to open the gallery, and then click
Confusion Matrix (Validation) in the Validation Results group. The confusion matrix helps you
identify the areas where the classifier performed poorly.
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When you open the plot, the rows show the true class, and the columns show the predicted class. If
you are using holdout or cross-validation, then the confusion matrix is calculated using the
predictions on the held-out (validation) observations. The diagonal cells show where the true class
and predicted class match. If these diagonal cells are blue, the classifier has classified observations of
this true class correctly.

The default view shows the number of observations in each cell.

To see how the classifier performed per class, under Plot, select the True Positive Rates (TPR),
False Negative Rates (FNR) option. The TPR is the proportion of correctly classified observations
per true class. The FNR is the proportion of incorrectly classified observations per true class. The plot
shows summaries per true class in the last two columns on the right.

Tip Look for areas where the classifier performed poorly by examining cells off the diagonal that
display high percentages and are orange. The higher the percentage, the darker the hue of the cell
color. In these orange cells, the true class and the predicted class do not match. The data points are
misclassified.
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In this example, which uses the carbig data set, the fifth row from the top shows all cars with the
true class Japan. The columns show the predicted classes. Of the cars from Japan, 77.2% are
correctly classified, so 77.2% is the true positive rate for correctly classified points in this class,
shown in the blue cell in the TPR column.

The other cars in the Japan row are misclassified: 5.1% of the cars are incorrectly classified as from
Germany, 5.1% are classified as from Sweden, and 12.7% are classified as from the USA. The false
negative rate for incorrectly classified points in this class is 22.8%, shown in the orange cell in the
FNR column.

If you want to see numbers of observations (cars, in this example) instead of percentages, under Plot,
select Number of observations.

If false positives are important in your classification problem, plot results per predicted class (instead
of true class) to investigate false discovery rates. To see results per predicted class, under Plot,
select the Positive Predictive Values (PPV), False Discovery Rates (FDR) option. The PPV is the
proportion of correctly classified observations per predicted class. The FDR is the proportion of
incorrectly classified observations per predicted class. With this option selected, the confusion matrix
now includes summary rows below the table. Positive predictive values are shown in blue for the
correctly predicted points in each class, and false discovery rates are shown in orange for the
incorrectly predicted points in each class.

If you decide there are too many misclassified points in the classes of interest, try changing classifier
settings or feature selection to search for a better model.

To export the confusion matrix plots you create in the app to figures, see “Export Plots in
Classification Learner App” on page 23-78.

Check ROC Curve

View a receiver operating characteristic (ROC) curve after training a model. In the Plot and
Interpret section, click the arrow to open the gallery, and then click ROC Curve (Validation) in the
Validation Results group. The app creates a ROC curve by using the rocmetrics function.
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The ROC curve shows the true positive rate (TPR) versus the false positive rate (FPR) for different
thresholds of classification scores, computed by the currently selected classifier. The Model
Operating Point shows the false positive rate and true positive rate corresponding to the threshold
used by the classifier to classify an observation. For example, a false positive rate of 0.4 indicates that
the classifier incorrectly assigns 40% of the negative class observations to the positive class. A true
positive rate of 0.9 indicates that the classifier correctly assigns 90% of the positive class
observations to the positive class.

The AUC (area the under curve) value corresponds to the integral of a ROC curve (TPR values) with
respect to FPR from FPR = 0 to FPR = 1. The AUC value is a measure of the overall quality of the
classifier. The AUC values are in the range 0 to 1, and larger AUC values indicate better classifier
performance. Compare classes and trained models to see if they perform differently in the ROC
curve.

You can create a ROC curve for a specific class using the Show check boxes under Plot. However,
you do not need to examine ROC curves for both classes in a binary classification problem. The two
ROC curves are symmetric, and the AUC values are identical. A TPR of one class is a true negative
rate (TNR) of the other class, and TNR is 1–FPR. Therefore, a plot of TPR versus FPR for one class is
the same as a plot of 1–FPR versus 1–TPR for the other class.

For a multiclass classifier, the app formulates a set of one-versus-all binary classification problems to
have one binary problem for each class, and finds a ROC curve for each class using the corresponding
binary problem. Each binary problem assumes that one class is positive and the rest are negative.
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The model operating point on the plot shows the performance of the classifier for each class in its
one-versus-all binary problem.

For more information, see rocmetrics and “ROC Curve and Performance Metrics” on page 18-3.

To export the ROC curve plots you create in the app to figures, see “Export Plots in Classification
Learner App” on page 23-78.

Interpret Model Using Partial Dependence Plots

Partial dependence plots (PDPs) allow you to visualize the marginal effect of each predictor on the
predicted scores of a trained classification model. After you train a model in Classification Learner,
you can view a partial dependence plot for the model. On the Classification Learner tab, in the Plot
and Interpret section, click the arrow to open the gallery. In the Interpretation Results section,
click Partial Dependence. When computing partial dependence values, the app uses the final model,
trained on the full data set (including training and validation data, but excluding test data).

To investigate your results, use the controls on the right.

• Under Data, choose whether to plot results using Training set data or Test set data. The training
set refers to the data used to train the final model and includes all the observations that are not
reserved for testing.
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• Under Feature, choose the feature to plot using the X list. The x-axis tick marks in the plot
correspond to the unique predictor values in the selected data set.

If you use PCA to train a model, you can select principal components from the X list.
• Visualize the predicted scores by class. Each line in the plot corresponds to the average predicted

scores across the predictor values for a specific class. Show or hide a plotted line by checking or
clearing the corresponding Show box under Classes. Make a plotted line thicker by clicking the
corresponding Class name under Classes.

• Zoom in and out, or pan across the plot. To enable zooming or panning, place the mouse over the
PDP and click the corresponding button on the toolbar that appears above the top right of the
plot.

For an example, see “Interpret Classifiers Trained in Classification Learner App” on page 23-157. For
more information on partial dependence plots, see plotPartialDependence.

To export PDPs you create in the app to figures, see “Export Plots in Classification Learner App” on
page 23-78.
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Compare Model Plots by Changing Layout
Visualize the results of models trained in Classification Learner by using the plot options in the Plot
and Interpret section of the Classification Learner tab. You can rearrange the layout of the plots
to compare results across multiple models: use the options in the Layout button, drag and drop plots,
or select the options provided by the Document Actions arrow located to the right of the model plot
tabs.

For example, after training two models in Classification Learner, display a plot for each model and
change the plot layout to compare the plots by using one of these procedures:

• In the Plot and Interpret section, click Layout and select Compare models.
• Click the second model tab name, and then drag and drop the second model tab to the right.
• Click the Document Actions arrow located to the far right of the model plot tabs. Select the Tile

All option and specify a 1-by-2 layout.

Note that you can click the Hide plot options button  at the top right of the plots to make more
room for the plots.

Evaluate Test Set Model Performance

After training a model in Classification Learner, you can evaluate the model performance on a test set
in the app. This process allows you to check whether the validation accuracy provides a good
estimate for the model performance on new data.

1 Import a test data set into Classification Learner. Alternatively, reserve some data for testing
when importing data into the app (see “(optional) Reserve Data for Testing” on page 23-22).

• If the test data set is in the MATLAB workspace, then in the Test section on the
Classification Learner tab, click Test Data and select From Workspace.
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• If the test data set is in a file, then in the Test section, click Test Data and select From File.
Select a file type in the list, such as a spreadsheet, text file, or comma-separated values
(.csv) file, or select All Files to browse for other file types such as .dat.

In the Import Test Data dialog box, select the test data set from the Test Data Set Variable list.
The test set must have the same variables as the predictors imported for training and validation.
The unique values in the test response variable must be a subset of the classes in the full
response variable.

2 Compute the test set metrics.

• To compute test metrics for a single model, select the trained model in the Models pane. On
the Classification Learner tab, in the Test section, click Test All and select Test Selected.

• To compute test metrics for all trained models, click Test All and select Test All in the Test
section.

The app computes the test set performance of each model trained on the full data set, including
training and validation data (but excluding test data).

3 Compare the validation accuracy with the test accuracy.

In the model Summary tab, the app displays the validation metrics and test metrics in the
Training Results section and Test Results section, respectively. You can check if the validation
accuracy gives a good estimate for the test accuracy.

You can also visualize the test results using plots.

• Display a confusion matrix. In the Plot and Interpret section on the Classification Learner
tab, click the arrow to open the gallery, and then click Confusion Matrix (Test) in the Test
Results group.

• Display a ROC curve. In the Plot and Interpret section, click the arrow to open the gallery,
and then click ROC Curve (Test) in the Test Results group.

For an example, see “Check Classifier Performance Using Test Set in Classification Learner App” on
page 23-152. For an example that uses test set metrics in a hyperparameter optimization workflow,
see “Train Classifier Using Hyperparameter Optimization in Classification Learner App” on page 23-
145.

See Also

Related Examples
• “Train Classification Models in Classification Learner App” on page 23-10
• “Select Data for Classification or Open Saved App Session” on page 23-18
• “Choose Classifier Options” on page 23-23
• “Feature Selection and Feature Transformation Using Classification Learner App” on page 23-42
• “Export Plots in Classification Learner App” on page 23-78
• “Export Classification Model to Predict New Data” on page 23-83
• “Train Decision Trees Using Classification Learner App” on page 23-89
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Export Plots in Classification Learner App
After you create plots interactively in the Classification Learner app, you can export your app plots to
MATLAB figures. You can then copy, save, or customize the new figures. Choose among the available
plots: scatter plot on page 23-42, parallel coordinates plot on page 23-46, confusion matrix on page
23-70, ROC curve on page 23-72, minimum classification error plot on page 23-61, and partial
dependence plot on page 23-74.

• Before exporting a plot, make sure the plot in the app displays the same data that you want in the
new figure.

• On the Classification Learner tab, in the Export section, click Export Plot to Figure. The app
creates a figure from the selected plot.

• The new figure might not have the same interactivity options as the plot in the Classification
Learner app. For example, data tips for the exported scatter plot show only X,Y values for the
selected point, not the detailed information displayed in the app.

• Additionally, the figure might have a different axes toolbar than the one in the app plot. For
plots in Classification Learner, an axes toolbar appears above the top right of the plot. The
buttons available on the toolbar depend on the contents of the plot. The toolbar can include
buttons to export the plot as an image, add data tips, pan or zoom the data, and restore the
view.

• Copy, save, or customize the new figure, which is displayed in the figure window.

• To copy the figure, select Edit > Copy Figure. For more information, see “Copy Figure to
Clipboard from Edit Menu”.

• To save the figure, select File > Save As. Alternatively, you can follow the workflow described
in “Customize Figure Before Saving”.

•
To customize the figure, click the Edit Plot button  on the figure toolbar. Right-click the
section of the plot that you want to edit. You can change the listed properties, which might
include Color, Font, Line Style, and other properties. Or, you can use the Property
Inspector to change the figure properties.

As an example, export a scatter plot in the app to a figure, customize the figure, and save the
modified figure.

1 In the MATLAB Command Window, read the sample file fisheriris.csv into a table.

fishertable = readtable('fisheriris.csv');
2 Click the Apps tab.
3 In the Apps section, click the arrow to open the gallery. Under Machine Learning and Deep

Learning, click Classification Learner.
4

On the Classification Learner tab, in the File section, click New Session .
5 In the New Session from Workspace dialog box, select the table fishertable from the Data

Set Variable list.
6 Click Start Session. Classification Learner creates a scatter plot of the data by default.
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7 Change the predictors in the scatter plot to PetalLength and PetalWidth.

8 On the Classification Learner tab, in the Export section, click Export Plot to Figure.
9

In the new figure, click the Edit Plot button  on the figure toolbar. Right-click the points in the
plot corresponding to the versicolor irises. In the context menu, select Color.

 Export Plots in Classification Learner App

23-79



10 In the Color dialog box, select a new color and click OK.
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11 To save the figure, select File > Save As. Specify the saved file location, name, and type.
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See Also

Related Examples
• “Feature Selection and Feature Transformation Using Classification Learner App” on page 23-42
• “Visualize and Assess Classifier Performance in Classification Learner” on page 23-66
• “Export Classification Model to Predict New Data” on page 23-83
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Export Classification Model to Predict New Data
In this section...
“Export the Model to the Workspace to Make Predictions for New Data” on page 23-83
“Make Predictions for New Data” on page 23-83
“Generate MATLAB Code to Train the Model with New Data” on page 23-84
“Generate C Code for Prediction” on page 23-85
“Deploy Predictions Using MATLAB Compiler” on page 23-87
“Export Model for Deployment to MATLAB Production Server” on page 23-88

Export the Model to the Workspace to Make Predictions for New Data
After you create classification models interactively in Classification Learner, you can export your best
model to the workspace. You can then use the trained model to make predictions using new data.

Note The final model Classification Learner exports is always trained using the full data set,
excluding any data reserved for testing. The validation scheme that you use only affects the way that
the app computes validation metrics. You can use the validation metrics and various plots that
visualize results to pick the best model for your classification problem.

Here are the steps for exporting a model to the MATLAB workspace:

1 In Classification Learner, select the model you want to export in the Models pane.
2 On the Classification Learner tab, in the Export section, click one of the export options:

• To include the data used for training the model, click Export Model and select Export
Model. This option exports the trained model to the workspace as a structure containing a
classification object, such as ClassificationTree. The model object includes the training
data when possible. Note that some models, such as kernel approximation models, never store
training data.

• To exclude the training data, click Export Model and select Export Compact Model. This
option exports the model with unnecessary data removed. That is, the exported structure
contains a classification object that does not include the training data (when possible). You
can still use the model for making predictions on new data.

Note that some models, such as nearest neighbor models, always store training data.
3 In the Export Model dialog box, edit the name for your exported variable if you want, and then

click OK. The default name for your exported model, trainedModel, increments every time you
export to avoid overwriting your classifiers (for example, trainedModel1).

The new variable (for example, trainedModel) appears in your workspace.

The app displays information about the exported model in the command window. Read the
message to learn how to make predictions with new data.

Make Predictions for New Data
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After you export a model to the workspace from Classification Learner, or run the code generated
from the app, you get a trainedModel structure that you can use to make predictions using new
data. The structure contains a classification object and a function for prediction. The structure allows
you to make predictions for models that include principal component analysis (PCA).

1 To use the exported classifier to make predictions for new data, T, use the form:

yfit = C.predictFcn(T)

where C is the name of your variable (for example, trainedModel).

Supply the data T with the same format and data type as the training data used in the app (table
or matrix).

• If you supply a table, ensure it contains the same predictor names as your training data. The
predictFcn function ignores additional variables in tables. Variable formats and types must
match the original training data.

• If you supply a matrix, it must contain the same predictor columns or rows as your training
data, in the same order and format. Do not include a response variable, any variables that you
did not import in the app, or other unused variables.

The output yfit contains a class prediction for each data point.
2 Examine the fields of the exported structure. For help making predictions, enter:

C.HowToPredict

You can also extract the classification object from the exported structure for further analysis (for
example, trainedModel.ClassificationSVM, trainedModel.ClassificationTree, and so
on, depending on your model type). Be aware that if you used feature transformation such as PCA in
the app, you will need to take account of this transformation by using the information in the PCA
fields of the structure.

Generate MATLAB Code to Train the Model with New Data
After you create classification models interactively in Classification Learner, you can generate
MATLAB code for your best model. You can then use the code to train the model with new data.

Generate MATLAB code to:

• Train on huge data sets. Explore models in the app trained on a subset of your data, then generate
code to train a selected model on a larger data set

• Create scripts for training models without needing to learn syntax of the different functions
• Examine the code to learn how to train classifiers programmatically
• Modify the code for further analysis, for example to set options that you cannot change in the app
• Repeat your analysis on different data and automate training

1 In Classification Learner, in the Models pane, select the model you want to generate code for.
2 On the Classification Learner tab, in the Export section, click Generate Function.

The app generates code from your session and displays the file in the MATLAB Editor. The file
includes the predictors and response, the classifier training methods, and validation methods.
Save the file.
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3 To retrain your classifier model, call the function from the command line with your original data
or new data as the input argument or arguments. New data must have the same shape as the
original data.

Copy the first line of the generated code, excluding the word function, and edit the
trainingData input argument to reflect the variable name of your training data or new data.
Similarly, edit the responseData input argument (if applicable).

For example, to retrain a classifier trained with the fishertable data set, enter:

[trainedModel,validationAccuracy] = trainClassifier(fishertable)

The generated code returns a trainedModel structure that contains the same fields as the
structure you create when you export a classifier from Classification Learner to the workspace.

4 If you want to automate training the same classifier with new data, or learn how to
programmatically train classifiers, examine the generated code. The code shows you how to:

• Process the data into the right shape
• Train a classifier and specify all the classifier options
• Perform cross-validation
• Compute validation accuracy
• Compute validation predictions and scores

Note If you generate MATLAB code from a trained optimizable model, the generated code does
not include the optimization process.

Generate C Code for Prediction

If you train one of the models in this table using Classification Learner, you can generate C code for
prediction.

Model Type Underlying Model Object
Decision Tree ClassificationTree or

CompactClassificationTree
Discriminant Analysis ClassificationDiscriminant or

CompactClassificationDiscriminant
Naive Bayes ClassificationNaiveBayes or

CompactClassificationNaiveBayes
Support Vector Machine ClassificationSVM (binary),

CompactClassificationSVM (binary),
ClassificationECOC (multiclass), or
CompactClassificationECOC (multiclass)

Nearest Neighbor ClassificationKNN
Ensemble ClassificationEnsemble,

CompactClassificationEnsemble, or
ClassificationBaggedEnsemble
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Note You can generate C code for prediction using a logistic regression model. However, because the
underlying model for logistic regression is a GeneralizedLinearModel or
CompactGeneralizedLinearModel object, this process requires you to add extra lines of code in
the prediction entry-point function to convert numeric predictions to class predictions. For an
example, see “Code Generation for Logistic Regression Model Trained in Classification Learner” on
page 34-176.

C code generation requires:

• MATLAB Coder license
• Appropriate model (binary or multiclass)

1 For example, train an SVM model in Classification Learner, and then export the model to the
workspace.

Find the underlying classification model object in the exported structure. Examine the fields of
the structure to find the model object, for example, C.ClassificationSVM, where C is the
name of your structure.

The underlying model object depends on what type of SVM you trained (binary or multiclass) and
whether you exported a compact model. The model object can be ClassificationSVM,
CompactClassificationSVM, ClassificationECOC, or CompactClassificationECOC.

2 Use the function saveLearnerForCoder to prepare the model for code generation:
saveLearnerForCoder(Mdl,filename). For example:

saveLearnerForCoder(C.ClassificationSVM,'mySVM')
3 Create a function that loads the saved model and makes predictions on new data. For example:

function label = classifyX (X) %#codegen 
%CLASSIFYX Classify using SVM Model 
%  CLASSIFYX classifies the measurements in X 
%  using the SVM model in the file mySVM.mat, and then 
%  returns class labels in label.

CompactMdl = loadLearnerForCoder('mySVM'); 
label = predict(CompactMdl,X);
end

4 Generate a MEX function from your function. For example:

codegen classifyX.m -args {data}

The %#codegen compilation directive indicates that the MATLAB code is intended for code
generation. To ensure that the MEX function can use the same input, specify the data in the
workspace as arguments to the function using the -args option. Specify data as a matrix
containing only the predictor columns used to train the model.

5 Use the MEX function to make predictions. For example:

labels = classifyX_mex(data);

If you used feature selection or PCA feature transformation in the app, then you need to take
additional steps. If you used manual feature selection, supply the same columns in X. The X argument
is the input to your function.
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If you used PCA in the app, use the information in the PCA fields of the exported structure to take
account of this transformation. It does not matter whether you imported a table or a matrix into the
app, as long as X contains the matrix columns in the same order. Before generating code, follow these
steps:

1 Save the PCACenters and PCACoefficients fields of the trained classifier structure, C, to file
using the following command:

save('pcaInfo.mat','-struct','C','PCACenters','PCACoefficients'); 
2 In your function file, include additional lines to perform the PCA transformation. Create a

function that loads the saved model, performs PCA, and makes predictions on new data. For
example:

function label = classifyX (X) %#codegen 
%CLASSIFYX Classify using SVM Model 
%  CLASSIFYX classifies the measurements in X 
%  using the SVM model in the file mySVM.mat,  
%  and then returns class labels in label.
% If you used manual feature selection in the app, ensure that X
% contains only the columns you included in the model.

CompactMdl = loadLearnerForCoder('mySVM'); 
pcaInfo = coder.load('pcaInfo.mat','PCACenters','PCACoefficients');
PCACenters = pcaInfo.PCACenters;
PCACoefficients = pcaInfo.PCACoefficients;

% Performs PCA transformation 
pcaTransformedX = bsxfun(@minus,X,PCACenters)*PCACoefficients;

[label,scores] = predict(CompactMdl,pcaTransformedX);
end

For a more detailed example, see “Code Generation and Classification Learner App” on page 34-32.
For more information on the C code generation workflow and limitations, see “Code Generation”.

Deploy Predictions Using MATLAB Compiler
After you export a model to the workspace from Classification Learner, you can deploy it using
MATLAB Compiler.

Suppose you export the trained model to MATLAB Workspace based on the instructions in “Export
Model to Workspace” on page 24-65, with the name trainedModel. To deploy predictions, follow
these steps.

• Save the trainedModel structure in a .mat file.

save mymodel trainedModel

• Write the code to be compiled. This code must load the trained model and use it to make a
prediction. It must also have a pragma, so the compiler recognizes that Statistics and Machine
Learning Toolbox code is needed in the compiled application. This pragma can be any model
training function used in Classification Learner (for example, fitctree).

function ypred = mypredict(tbl)
%#function fitctree
load('mymodel.mat');
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ypred = trainedModel.predictFcn(tbl);
end

• Compile as a standalone application.

mcc -m mypredict.m

Export Model for Deployment to MATLAB Production Server
After you train a model in Classification Learner, you can export the model for deployment to
MATLAB Production Server (requires MATLAB Compiler SDK™).

• Select the trained model in the Models pane. On the Classification Learner tab, in the Export
section, click Export Model and select Export Model for Deployment.

• In the Select Project File for Model Deployment dialog box, select a location and name for your
project file.

• In the autogenerated predictFunction.m file, inspect and amend the code as needed.
• Use the Production Server Compiler app to package your model and prediction function. You can

simulate the model deployment to MATLAB Production Server by clicking the Test Client button
in the Test section of the Compiler tab, and then package your code by clicking the Package
button in the Package section.

For an example, see “Deploy Model Trained in Classification Learner to MATLAB Production Server”
on page 23-167. For more information, see “Create Deployable Archive for MATLAB Production
Server” (MATLAB Production Server).

See Also
Functions
fitctree | fitcdiscr | fitcsvm | fitcecoc | fitcknn | fitckernel | fitcensemble |
fitcnet | fitglm

Classes
ClassificationTree | CompactClassificationTree | ClassificationDiscriminant |
CompactClassificationDiscriminant | ClassificationSVM | CompactClassificationSVM
| ClassificationECOC | CompactClassificationECOC | ClassificationKNN |
ClassificationNaiveBayes | CompactClassificationNaiveBayes |
ClassificationKernel | ClassificationEnsemble | ClassificationBaggedEnsemble |
CompactClassificationEnsemble | ClassificationNeuralNetwork |
CompactClassificationNeuralNetwork | GeneralizedLinearModel

Related Examples
• “Train Classification Models in Classification Learner App” on page 23-10
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Train Decision Trees Using Classification Learner App
This example shows how to create and compare various classification trees using Classification
Learner, and export trained models to the workspace to make predictions for new data.

You can train classification trees to predict responses to data. To predict a response, follow the
decisions in the tree from the root (beginning) node down to a leaf node. The leaf node contains the
response.

Statistics and Machine Learning Toolbox trees are binary. Each step in a prediction involves checking
the value of one predictor (variable). For example, here is a simple classification tree:

This tree predicts classifications based on two predictors, x1 and x2. To predict, start at the top node.
At each decision, check the values of the predictors to decide which branch to follow. When the
branches reach a leaf node, the data is classified either as type 0 or 1.

1 In MATLAB, load the fisheriris data set and create a table of measurement predictors (or
features) using variables from the data set to use for a classification.

fishertable = readtable("fisheriris.csv");
2 On the Apps tab, in the Machine Learning and Deep Learning group, click Classification

Learner.
3 On the Classification Learner tab, in the File section, click New Session > From Workspace.

4 In the New Session from Workspace dialog box, select the table fishertable from the Data
Set Variable list (if necessary).

Observe that the app has selected response and predictor variables based on their data type.
Petal and sepal length and width are predictors, and species is the response that you want to
classify. For this example, do not change the selections.
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5 To accept the default validation scheme and continue, click Start Session. The default validation
option is cross-validation, to protect against overfitting.

Classification Learner creates a scatter plot of the data.
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6 Use the scatter plot to investigate which variables are useful for predicting the response. To
visualize the distribution of species and measurements, select different variables in the X and Y
lists under Predictors to the right of the plot. Observe which variables separate the species
colors most clearly.

Observe that the setosa species (blue points) is easy to separate from the other two species
with all four predictors. The versicolor and virginica species are much closer together in
all predictor measurements, and overlap especially when you plot sepal length and width.
setosa is easier to predict than the other two species.

7 Train fine, medium, and coarse trees simultaneously. The Models pane already contains a fine
tree model. Add medium and coarse tree models to the list of draft models. On the Classification
Learner tab, in the Models section, click the arrow to open the gallery. In the Decision Trees
group, click Medium Tree. The app creates a draft medium tree in the Models pane. Reopen
the model gallery and click Coarse Tree in the Decision Trees group. The app creates a draft
coarse tree in the Models pane.

In the Train section, click Train All and select Train All. The app trains the three tree models.

Note

• If you have Parallel Computing Toolbox, then the app has the Use Parallel button toggled on
by default. After you click Train All and select Train All or Train Selected, the app opens a
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parallel pool of workers. During this time, you cannot interact with the software. After the
pool opens, you can continue to interact with the app while models train in parallel.

• If you do not have Parallel Computing Toolbox, then the app has the Use Background
Training check box in the Train All menu selected by default. After you select an option to
train models, the app opens a background pool. After the pool opens, you can continue to
interact with the app while models train in the background.

Note Validation introduces some randomness into the results. Your model validation results can
vary from the results shown in this example.

In the Models pane, each model has a validation accuracy score that indicates the percentage of
correctly predicted responses. The app highlights the highest Accuracy (Validation) score (or
scores) by outlining it in a box.

8 Click a model to view the results, which are displayed in the Summary tab. On the
Classification Learner tab, in the Models section, click Summary.

9 For each model, examine the scatter plot. On the Classification Learner tab, in the Plot and
Interpret section, click the arrow to open the gallery, and then click Scatter in the Validation
Results group. An X indicates misclassified points.

For all three models, the blue points (setosa species) are all correctly classified, but some of the
other two species are misclassified. Under Plot, switch between the Data and Model
Predictions options. Observe the color of the incorrect (X) points. Alternatively, while plotting
model predictions, to view only the incorrect points, clear the Correct check box.

10 To try to improve the models, include different features during model training. See if you can
improve the model by removing features with low predictive power.
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On the Classification Learner tab, in the Options section, click Feature Selection.

In the Default Feature Selection tab, you can select different feature ranking algorithms to
determine the most important features. After you select a feature ranking algorithm, the app
displays a plot of the sorted feature importance scores, where larger scores (including Infs)
indicate greater feature importance. The table shows the ranked features and their scores.

In this example, the Chi2, ReliefF, ANOVA, and Kruskal Wallis feature ranking algorithms all
identify the petal measurements as the most important features. Under Feature Ranking
Algorithm, click Chi2.

Under Feature Selection, use the default option of selecting the highest ranked features to
avoid bias in the validation metrics. Specify to keep 2 of the 4 features for model training. Click
Save and Apply. The app applies the feature selection changes to new models created using the
Models gallery.

11 Train new tree models using the reduced set of features. On the Classification Learner tab, in
the Models section, click the arrow to open the gallery. In the Decision Trees group, click All
Tree. In the Train section, click Train All and select Train All or Train Selected.
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The models trained using only two measurements perform comparably to the models containing
all predictors. The models predict no better using all the measurements compared to only the
two measurements. If data collection is expensive or difficult, you might prefer a model that
performs satisfactorily without some predictors.

12 Note the last model in the Models pane, a Coarse Tree model trained using only 2 of 4
predictors. The app displays how many predictors are excluded. To check which predictors are
included, click the model in the Models pane, and note the check boxes in the expanded Feature
Selection section of the model Summary tab.

Note If you use a cross-validation scheme and choose to perform feature selection using the
Select highest ranked features option, then for each training fold, the app performs feature
selection before training a model. Different folds can select different predictors as the highest
ranked features. The table on the Default Feature Selection tab shows the list of predictors
used by the full model, trained on the training and validation data.

13 Train new tree models using another subset of measurements. On the Classification Learner
tab, in the Options section, click Feature Selection. In the Default Feature Selection tab,
click MRMR under Feature Ranking Algorithm. Under Feature Selection, specify to keep 3
of the 4 features for model training. Click Save and Apply.

On the Classification Learner tab, in the Models section, click the arrow to open the gallery. In
the Decision Trees group, click All Tree. In the Train section, click Train All and select Train
All or Train Selected.

The models trained using only 3 of 4 predictors do not perform as well as the other trained
models.

14 Choose a best model among those of similar scores by examining the performance in each class.
For example, select the coarse tree that includes 2 of 4 predictors. Inspect the accuracy of the
predictions in each class. On the Classification Learner tab, in the Plot and Interpret section,
click the arrow to open the gallery, and then click Confusion Matrix (Validation) in the
Validation Results group. Use this plot to understand how the currently selected classifier
performed in each class. View the matrix of true class and predicted class results.

Look for areas where the classifier performed poorly by examining cells off the diagonal that
display high numbers and are red. In these red cells, the true class and the predicted class do not
match. The data points are misclassified.
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In this figure, examine the third cell in the middle row. In this cell, true class is versicolor, but
the model misclassified the points as virginica. For this model, the cell shows 2 misclassified
(your results can vary). To view percentages instead of numbers of observations, select the True
Positive Rates option under Plot controls.

You can use this information to help you choose the best model for your goal. If false positives in
this class are very important to your classification problem, then choose the best model at
predicting this class. If false positives in this class are not very important, and models with fewer
predictors do better in other classes, then choose a model to tradeoff some overall accuracy to
exclude some predictors and make future data collection easier.

15 Compare the confusion matrix for each model in the Models pane. Check the Feature Selection
section of the model Summary tab to see which predictors are included in each model.

In this example, the coarse tree that includes 2 of 4 predictors performs as well as the coarse
tree with all predictors. That is, both models provide the same validation accuracy and have the
same confusion matrix.

16 To further investigate features to include or exclude, use the parallel coordinates plot. On the
Classification Learner tab, in the Plot and Interpret section, click the arrow to open the
gallery, and then click Parallel Coordinates in the Validation Results group. You can see that
petal length and petal width are the features that separate the classes best.
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17 To learn about model hyperparameter settings, choose a model in the Models pane and expand
the Model Hyperparameters section in the model Summary tab. Compare the coarse and
medium tree models, and note the differences in the model hyperparameters. In particular, the
Maximum number of splits setting is 4 for coarse trees and 20 for medium trees. This setting
controls the tree depth.

To try to improve the coarse tree model further, change the Maximum number of splits
setting. First, click the model in the Models pane. On the Classification Learner tab, in the
Models section, click Duplicate. In the Summary tab, change the Maximum number of splits
value. Then, in the Train section of the Classification Learner tab, click Train All and select
Train Selected.

18 To export the best trained model to the workspace, on the Classification Learner tab, in the
Export section, click Export Model and select Export Model. In the Export Model dialog box,
click OK to accept the default variable name trainedModel.

Look in the command window to see information about the results.
19 To visualize your decision tree model, enter:

view(trainedModel.ClassificationTree,"Mode","graph")
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20 You can use the exported classifier to make predictions on new data. For example, to make
predictions for the fishertable data in your workspace, enter:

yfit = trainedModel.predictFcn(fishertable)

The output yfit contains a class prediction for each data point.
21 If you want to automate training the same classifier with new data, or learn how to

programmatically train classifiers, you can generate code from the app. To generate code for the
best trained model, on the Classification Learner tab, in the Export section, click Generate
Function.

The app generates code from your model and displays the file in the MATLAB Editor. To learn
more, see “Generate MATLAB Code to Train the Model with New Data” on page 23-84.

This example uses Fisher's 1936 iris data. The iris data contains measurements of flowers: the petal
length, petal width, sepal length, and sepal width for specimens from three species. Train a classifier
to predict the species based on the predictor measurements.

Use the same workflow to evaluate and compare the other classifier types you can train in
Classification Learner.
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To try all the nonoptimizable classifier model presets available for your data set:

1 On the Classification Learner tab, in the Models section, click the arrow to open the gallery of
classification models.

2 In the Get Started group, click All.

3 In the Train section, click Train All and select Train All.

To learn about other classifier types, see “Train Classification Models in Classification Learner App”
on page 23-10.

See Also

Related Examples
• “Train Classification Models in Classification Learner App” on page 23-10
• “Select Data for Classification or Open Saved App Session” on page 23-18
• “Choose Classifier Options” on page 23-23
• “Feature Selection and Feature Transformation Using Classification Learner App” on page 23-42
• “Visualize and Assess Classifier Performance in Classification Learner” on page 23-66
• “Export Classification Model to Predict New Data” on page 23-83
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Train Discriminant Analysis Classifiers Using Classification
Learner App

This example shows how to construct discriminant analysis classifiers in the Classification Learner
app, using the fisheriris data set. You can use discriminant analysis with two or more classes in
Classification Learner.

1 In MATLAB, load the fisheriris data set.

fishertable = readtable("fisheriris.csv");
2 On the Apps tab, in the Machine Learning and Deep Learning group, click Classification

Learner.
3 On the Classification Learner tab, in the File section, click New Session > From Workspace.

In the New Session from Workspace dialog box, select the table fishertable from the Data
Set Variable list (if necessary). Observe that the app has selected response and predictor
variables based on their data type. Petal and sepal length and width are predictors, and species
is the response that you want to classify. For this example, do not change the selections.

4 Click Start Session.

Classification Learner creates a scatter plot of the data.
5 Use the scatter plot to visualize which variables are useful for predicting the response. Select

different variables in the X- and Y-axis controls. Observe which variables separate the classes
most clearly.

6 Train two discriminant analysis classifiers (one linear and one quadratic). On the Classification
Learner tab, in the Models section, click the arrow to expand the list of classifiers, and under
Discriminant Analysis, click All Discriminants. Then, in the Train section, click Train All and
select Train All.

Note

• If you have Parallel Computing Toolbox, then the app has the Use Parallel button toggled on
by default. After you click Train All and select Train All or Train Selected, the app opens a
parallel pool of workers. During this time, you cannot interact with the software. After the
pool opens, you can continue to interact with the app while models train in parallel.

• If you do not have Parallel Computing Toolbox, then the app has the Use Background
Training check box in the Train All menu selected by default. After you select an option to
train models, the app opens a background pool. After the pool opens, you can continue to
interact with the app while models train in the background.

Classification Learner trains one of each discriminant option in the gallery, as well as the default
fine tree model. In the Models pane, the app outlines in a box the Accuracy (Validation) score
of the best model (or models). Classification Learner also displays a validation confusion matrix
for the first discriminant model (Linear Discriminant).
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Note Validation introduces some randomness into the results. Your model validation results can
vary from the results shown in this example.

7 To view the results for a model, select the model in the Models pane, and inspect the Summary
tab. On the Classification Learner tab, in the Models section, click Summary. The Summary
tab displays the Training Results metrics, calculated on the validation set.

8 Select the second discriminant model (Quadratic Discriminant) in the Models pane, and
inspect the accuracy of the predictions in each class. On the Classification Learner tab, in the
Plot and Interpret section, click the arrow to open the gallery, and then click Confusion
Matrix (Validation) in the Validation Results group. View the matrix of true class and
predicted class results.

9 Compare the results for the two discriminant models. For information on the strengths of
different model types, see “Discriminant Analysis” on page 23-29.

10 Choose the best model in the Models pane (the best score is highlighted in a box). To improve
the model, try including different features in the model. See if you can improve the model by
removing features with low predictive power.

First, duplicate the best model. On the Classification Learner tab, in the Models section, click
Duplicate.

11 Investigate features to include or exclude using one of these methods.

• Use the parallel coordinates plot. On the Classification Learner tab, in the Plot and
Interpret section, click the arrow to open the gallery, and click Parallel Coordinates in the
Validation Results group. Keep predictors that separate classes well.

In the model Summary tab, you can specify the predictors to use during training. Click
Feature Selection to expand the section, and specify predictors to remove from the model.
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• Use a feature ranking algorithm. On the Classification Learner tab, in the Options section,
click Feature Selection. In the Default Feature Selection tab, specify the feature ranking
algorithm you want to use, and the number of features to keep among the highest ranked
features. The bar graph can help you decide how many features to use.

Click Save and Apply to save your changes. The new feature selection is applied to the
existing draft model in the Models pane and will be applied to new draft models that you
create using the gallery in the Models section of the Classification Learner tab.

12 Train the model. On the Classification Learner tab, in the Train section, click Train All and
select Train Selected to train the model using the new options. Compare results among the
classifiers in the Models pane.

13 Choose the best model in the Models pane. To try to improve the model further, try changing its
hyperparameters. First, duplicate the model by clicking Duplicate in the Models section. Then,
try changing a hyperparameter setting in the model Summary tab. Train the new model by
clicking Train All and selecting Train Selected in the Train section. For information on
settings, see “Discriminant Analysis” on page 23-29.

14 You can export a full or compact version of the trained model to the workspace. On the
Classification Learner tab, in the Export section, click Export Model and select either Export
Model or Export Compact Model. See “Export Classification Model to Predict New Data” on
page 23-83.

15 To examine the code for training this classifier, click Generate Function in the Export section.

Use the same workflow to evaluate and compare the other classifier types you can train in
Classification Learner.

To try all the nonoptimizable classifier model presets available for your data set:

1 On the Classification Learner tab, in the Models section, click the arrow to open the gallery of
classification models.

2 In the Get Started group, click All.

3 In the Train section, click Train All and select Train All.

To learn about other classifier types, see “Train Classification Models in Classification Learner App”
on page 23-10.
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See Also

Related Examples
• “Train Classification Models in Classification Learner App” on page 23-10
• “Select Data for Classification or Open Saved App Session” on page 23-18
• “Choose Classifier Options” on page 23-23
• “Feature Selection and Feature Transformation Using Classification Learner App” on page 23-42
• “Visualize and Assess Classifier Performance in Classification Learner” on page 23-66
• “Export Classification Model to Predict New Data” on page 23-83
• “Train Decision Trees Using Classification Learner App” on page 23-89

23 Classification Learner

23-102



Train Logistic Regression Classifiers Using Classification
Learner App

This example shows how to construct logistic regression classifiers in the Classification Learner app,
using the ionosphere data set that contains two classes. You can use logistic regression with two
classes in Classification Learner. In the ionosphere data, the response variable is categorical with
two levels: g represents good radar returns, and b represents bad radar returns.

1 In MATLAB, load the ionosphere data set and define some variables from the data set to use for
a classification.

load ionosphere
ionosphere = array2table(X);
ionosphere.Group = Y;

Alternatively, you can load the ionosphere data set and keep the X and Y data as separate
variables.

2 On the Apps tab, in the Machine Learning and Deep Learning group, click Classification
Learner.

3 On the Classification Learner tab, in the File section, click New Session > From Workspace.

In the New Session from Workspace dialog box, select the table ionosphere from the Data Set
Variable list. Observe that the app has selected Group for the response variable, and the rest as
predictors. Group has two levels.

Alternatively, if you kept your predictor data X and response variable Y as two separate variables,
you can first select the matrix X from the Data Set Variable list. Then, under Response, click
the From workspace option button and select Y from the list. The Y variable is the same as the
Group variable.

4 Click Start Session.

Classification Learner creates a scatter plot of the data.
5 Use the scatter plot to visualize which variables are useful for predicting the response. Select

different variables in the X- and Y-axis controls. Observe which variables separate the class colors
most clearly.

6 To train the logistic regression classifier, on the Classification Learner tab, in the Models
section, click the down arrow to expand the list of classifiers, and under Logistic Regression
Classifiers, click Logistic Regression. Then, in the Train section, click Train All and select
Train All.

Note

• If you have Parallel Computing Toolbox, then the app has the Use Parallel button toggled on
by default. After you click Train All and select Train All or Train Selected, the app opens a
parallel pool of workers. During this time, you cannot interact with the software. After the
pool opens, you can continue to interact with the app while models train in parallel.
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• If you do not have Parallel Computing Toolbox, then the app has the Use Background
Training check box in the Train All menu selected by default. After you select an option to
train models, the app opens a background pool. After the pool opens, you can continue to
interact with the app while models train in the background.

Classification Learner trains the model as well as the default fine tree model. The app outlines in
a box the Accuracy (Validation) score of the best model. Classification Learner also displays a
validation confusion matrix for the logistic regression model.

Note Validation introduces some randomness into the results. Your model validation results can
vary from the results shown in this example.

7 To view the results for the model, inspect the Summary tab. On the Classification Learner tab,
in the Models section, click Summary. The Summary tab displays the Training Results
metrics, calculated on the validation set.

8 Examine the scatter plot for the trained model. On the Classification Learner tab, in the Plot
and Interpret section, click the arrow to open the gallery, and then click Scatter in the
Validation Results group. Try plotting different predictors. Misclassified points are shown as an
X.

9 Inspect the accuracy of the predictions in each class. On the Classification Learner tab, in the
Plot and Interpret section, click the arrow to open the gallery, and then click Confusion
Matrix (Validation) in the Validation Results group. View the matrix of true class and
predicted class results.

10 Choose the best model in the Models pane (the best score is highlighted in a box). To improve
the model, try including different features in the model. See if you can improve the model by
removing features with low predictive power.
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First, duplicate the best model. On the Classification Learner tab, in the Models section, click
Duplicate.

11 Investigate features to include or exclude using one of these methods.

• Use the parallel coordinates plot. On the Classification Learner tab, in the Plot and
Interpret section, click the arrow to open the gallery, and then click Parallel Coordinates in
the Validation Results group. Keep predictors that separate classes well.

In the model Summary tab, you can specify the predictors to use during training. Click
Feature Selection to expand the section, and specify predictors to remove from the model.

• Use a feature ranking algorithm. On the Classification Learner tab, in the Options section,
click Feature Selection. In the Default Feature Selection tab, specify the feature ranking
algorithm you want to use, and the number of features to keep among the highest ranked
features. The bar graph can help you decide how many features to use.

Click Save and Apply to save your changes. The new feature selection is applied to the
existing draft model in the Models pane and will be applied to new draft models that you
create using the gallery in the Models section of the Classification Learner tab.

12 Train the model. On the Classification Learner tab, in the Train section, click Train All and
select Train Selected to train the model using the new options. Compare results among the
classifiers in the Models pane.

13 You can export a full or compact version of the trained model to the workspace. On the
Classification Learner tab, in the Export section, click Export Model and select either Export
Model or Export Compact Model. See “Export Classification Model to Predict New Data” on
page 23-83.

14 To examine the code for training this classifier, click Generate Function.

Use the same workflow to evaluate and compare the other classifier types you can train in
Classification Learner.

To try all the nonoptimizable classifier model presets available for your data set:

1 On the Classification Learner tab, in the Models section, click the arrow to open the gallery of
classification models.

2 In the Get Started group, click All.

3 In the Train section, click Train All and select Train All.

To learn about other classifier types, see “Train Classification Models in Classification Learner App”
on page 23-10.
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See Also

Related Examples
• “Train Classification Models in Classification Learner App” on page 23-10
• “Select Data for Classification or Open Saved App Session” on page 23-18
• “Choose Classifier Options” on page 23-23
• “Logistic Regression” on page 23-30
• “Feature Selection and Feature Transformation Using Classification Learner App” on page 23-42
• “Visualize and Assess Classifier Performance in Classification Learner” on page 23-66
• “Export Classification Model to Predict New Data” on page 23-83
• “Train Decision Trees Using Classification Learner App” on page 23-89
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Train Support Vector Machines Using Classification Learner
App

This example shows how to construct support vector machine (SVM) classifiers in the Classification
Learner app, using the ionosphere data set that contains two classes. You can use a support vector
machine (SVM) with two or more classes in Classification Learner. An SVM classifies data by finding
the best hyperplane that separates all data points of one class from those of another class. In the
ionosphere data, the response variable is categorical with two levels: g represents good radar
returns, and b represents bad radar returns.

1 In MATLAB, load the ionosphere data set and define some variables from the data set to use for
a classification.

load ionosphere
ionosphere = array2table(X);
ionosphere.Group = Y;

Alternatively, you can load the ionosphere data set and keep the X and Y data as separate
variables.

2 On the Apps tab, in the Machine Learning and Deep Learning group, click Classification
Learner.

3 On the Classification Learner tab, in the File section, click New Session > From Workspace.

In the New Session from Workspace dialog box, select the table ionosphere from the Data Set
Variable list. Observe that the app has selected response and predictor variables based on their
data type. The response variable Group has two levels. All the other variables are predictors.

Alternatively, if you kept your predictor data X and response variable Y as two separate variables,
you can first select the matrix X from the Data Set Variable list. Then, under Response, click
the From workspace option button and select Y from the list. The Y variable is the same as the
Group variable.

4 Click Start Session.

Classification Learner creates a scatter plot of the data.
5 Use the scatter plot to visualize which variables are useful for predicting the response. Select

different variables in the X- and Y-axis controls. Observe which variables separate the class colors
most clearly.

6 Train a selection of SVM models. On the Classification Learner tab, in the Models section,
click the arrow to expand the list of classifiers, and under Support Vector Machines, click All
SVMs. Then, in the Train section, click Train All and select Train All.

Note

• If you have Parallel Computing Toolbox, then the app has the Use Parallel button toggled on
by default. After you click Train All and select Train All or Train Selected, the app opens a

 Train Support Vector Machines Using Classification Learner App

23-107



parallel pool of workers. During this time, you cannot interact with the software. After the
pool opens, you can continue to interact with the app while models train in parallel.

• If you do not have Parallel Computing Toolbox, then the app has the Use Background
Training check box in the Train All menu selected by default. After you select an option to
train models, the app opens a background pool. After the pool opens, you can continue to
interact with the app while models train in the background.

Classification Learner trains one of each SVM option in the gallery, as well as the default fine
tree model. In the Models pane, the app outlines in a box the Accuracy (Validation) score of
the best model. Classification Learner also displays a validation confusion matrix for the first
SVM model (Linear SVM).

Note Validation introduces some randomness into the results. Your model validation results can
vary from the results shown in this example.

7 To view the results for a model, select the model in the Models pane, and inspect the Summary
tab. The Summary tab displays the Training Results metrics, calculated on the validation set.

8 For the selected model, inspect the accuracy of the predictions in each class. On the
Classification Learner tab, in the Plot and Interpret section, click the arrow to open the
gallery, and then click Confusion Matrix (Validation) in the Validation Results group. View
the matrix of true class and predicted class results.

9 For each remaining model, select the model in the Models pane, open the validation confusion
matrix, and then compare the results across the models.

10 Choose the best model in the Models pane (the best score is highlighted in a box). To improve
the model, try including different features in the model. See if you can improve the model by
removing features with low predictive power.
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First, duplicate the best model. On the Classification Learner tab, in the Models section, click
Duplicate.

11 Investigate features to include or exclude using one of these methods.

• Use the parallel coordinates plot. On the Classification Learner tab, in the Plot and
Interpret section, click the arrow to open the gallery, and then click Parallel Coordinates in
the Validation Results group. Keep predictors that separate classes well.

In the model Summary tab, you can specify the predictors to use during training. Click
Feature Selection to expand the section, and specify predictors to remove from the model.

• Use a feature ranking algorithm. On the Classification Learner tab, in the Options section,
click Feature Selection. In the Default Feature Selection tab, specify the feature ranking
algorithm you want to use, and the number of features to keep among the highest ranked
features. The bar graph can help you decide how many features to use.

Click Save and Apply to save your changes. The new feature selection is applied to the
existing draft model in the Models pane and will be applied to new draft models that you
create using the gallery in the Models section of the Classification Learner tab.

12 Train the model. On the Classification Learner tab, in the Train section, click Train All and
select Train Selected to train the model using the new options. Compare results among the
classifiers in the Models pane.

13 Choose the best model in the Models pane. To try to improve the model further, try changing its
hyperparameters. First, duplicate the model by clicking Duplicate in the Models section. Then,
try changing a hyperparameter setting in the model Summary tab. Train the new model by
clicking Train All and selecting Train Selected in the Train section. For information on
settings, see “Support Vector Machines” on page 23-31.

14 You can export a full or compact version of the trained model to the workspace. On the
Classification Learner tab, in the Export section, click Export Model and select either Export
Model or Export Compact Model. See “Export Classification Model to Predict New Data” on
page 23-83.

15 To examine the code for training this classifier, click Generate Function. For SVM models, see
also “Generate C Code for Prediction” on page 23-85.

Use the same workflow to evaluate and compare the other classifier types you can train in
Classification Learner.

To try all the nonoptimizable classifier model presets available for your data set:

1 On the Classification Learner tab, in the Models section, click the arrow to open the gallery of
classification models.

2 In the Get Started group, click All.
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3 In the Train section, click Train All and select Train All.

To learn about other classifier types, see “Train Classification Models in Classification Learner App”
on page 23-10.

See Also

Related Examples
• “Train Classification Models in Classification Learner App” on page 23-10
• “Select Data for Classification or Open Saved App Session” on page 23-18
• “Choose Classifier Options” on page 23-23
• “Feature Selection and Feature Transformation Using Classification Learner App” on page 23-42
• “Visualize and Assess Classifier Performance in Classification Learner” on page 23-66
• “Export Classification Model to Predict New Data” on page 23-83
• “Generate C Code for Prediction” on page 23-85
• “Train Decision Trees Using Classification Learner App” on page 23-89
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Train Nearest Neighbor Classifiers Using Classification Learner
App

This example shows how to construct nearest neighbors classifiers in the Classification Learner app.

1 In MATLAB, load the fisheriris data set and define some variables from the data set to use for
a classification.

fishertable = readtable("fisheriris.csv");
2 On the Apps tab, in the Machine Learning and Deep Learning group, click Classification

Learner.
3 On the Classification Learner tab, in the File section, click New Session > From Workspace.

In the New Session from Workspace dialog box, select the table fishertable from the Data
Set Variable list (if necessary). Observe that the app has selected response and predictor
variables based on their data type. Petal and sepal length and width are predictors, and species
is the response that you want to classify. For this example, do not change the selections.

4 Click Start Session.

The app creates a scatter plot of the data.
5 Use the scatter plot to investigate which variables are useful for predicting the response. To

visualize the distribution of species and measurements, select different options in the X- and Y-
axis controls. Observe which variables separate the species colors most clearly.

6 To train a selection of nearest neighbor models, on the Classification Learner tab, in the
Models section, click the arrow to expand the list of classifiers, and under Nearest Neighbor
Classifiers, click All KNNs. Then, in the Train section, click Train All and select Train All.

Note

• If you have Parallel Computing Toolbox, then the app has the Use Parallel button toggled on
by default. After you click Train All and select Train All or Train Selected, the app opens a
parallel pool of workers. During this time, you cannot interact with the software. After the
pool opens, you can continue to interact with the app while models train in parallel.

• If you do not have Parallel Computing Toolbox, then the app has the Use Background
Training check box in the Train All menu selected by default. After you select an option to
train models, the app opens a background pool. After the pool opens, you can continue to
interact with the app while models train in the background.

Classification Learner trains one of each nearest neighbor classification option in the gallery, as
well as the default fine tree model. The app outlines in a box the Accuracy (Validation) score of
the best model. Classification Learner also displays a validation confusion matrix for the first
KNN model (Fine KNN).
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Note Validation introduces some randomness into the results. Your model validation results can
vary from the results shown in this example.

7 To view the results for a model, select the model in the Models pane, and inspect the Summary
tab. The Summary tab displays the Training Results metrics, calculated on the validation set.

8 For the selected model, inspect the accuracy of the predictions in each class. On the
Classification Learner tab, in the Plot and Interpret section, click the arrow to open the
gallery, and then click Confusion Matrix (Validation) in the Validation Results group. View
the matrix of true class and predicted class results.

9 For each remaining model, select the model in the Models pane, open the validation confusion
matrix, and then compare the results across the models.

10 Choose the best model in the Models pane (the best score is highlighted in a box). To improve
the model, try including different features in the model. See if you can improve the model by
removing features with low predictive power.

First, duplicate the model. On the Classification Learner tab, in the Models section, click
Duplicate.

11 Investigate features to include or exclude using one of these methods.

• Use the parallel coordinates plot. On the Classification Learner tab, in the Plot and
Interpret section, click the arrow to open the gallery, and then click Parallel Coordinates in
the Validation Results group. Keep predictors that separate classes well.

In the model Summary tab, you can specify the predictors to use during training. Click
Feature Selection to expand the section, and specify predictors to remove from the model.

• Use a feature ranking algorithm. On the Classification Learner tab, in the Options section,
click Feature Selection. In the Default Feature Selection tab, specify the feature ranking
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algorithm you want to use, and the number of features to keep among the highest ranked
features. The bar graph can help you decide how many features to use.

Click Save and Apply to save your changes. The new feature selection is applied to the
existing draft model in the Models pane and will be applied to new draft models that you
create using the gallery in the Models section of the Classification Learner tab.

12 Train the model. On the Classification Learner tab, in the Train section, click Train All and
select Train Selected to train the model using the new options. Compare results among the
classifiers in the Models pane.

13 Choose the best model in the Models pane. To try to improve the model further, try changing its
hyperparameters. First, duplicate the model by clicking Duplicate in the Models section. Then,
try changing a hyperparameter setting in the model Summary tab. Train the new model by
clicking Train All and selecting Train Selected in the Train section. For information on settings
and the strengths of different nearest neighbor model types, see “Nearest Neighbor Classifiers”
on page 23-34.

14 You can export a full version of the trained model to the workspace. On the Classification
Learner tab, in the Export section, click Export Model and select either Export Model or
Export Compact Model. Note that either option exports a full version of the trained model
because nearest neighbor models always store the training data. See “Export Classification
Model to Predict New Data” on page 23-83.

15 To examine the code for training this classifier, click Generate Function.

Use the same workflow to evaluate and compare the other classifier types you can train in
Classification Learner.

To try all the nonoptimizable classifier model presets available for your data set:

1 On the Classification Learner tab, in the Models section, click the arrow to open the gallery of
classification models.

2 In the Get Started group, click All.

3 In the Train section, click Train All and select Train All.

To learn about other classifier types, see “Train Classification Models in Classification Learner App”
on page 23-10.
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See Also

Related Examples
• “Train Classification Models in Classification Learner App” on page 23-10
• “Select Data for Classification or Open Saved App Session” on page 23-18
• “Choose Classifier Options” on page 23-23
• “Feature Selection and Feature Transformation Using Classification Learner App” on page 23-42
• “Visualize and Assess Classifier Performance in Classification Learner” on page 23-66
• “Export Classification Model to Predict New Data” on page 23-83
• “Train Decision Trees Using Classification Learner App” on page 23-89
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Train Kernel Approximation Classifiers Using Classification
Learner App

This example shows how to create and compare kernel approximation classifiers in the Classification
Learner app, and export trained models to the workspace to make predictions for new data. You can
use kernel approximation classifiers to perform nonlinear classification of data with many
observations. For large in-memory data, kernel classifiers tend to train and predict faster than SVM
classifiers with Gaussian kernels.

1 In the MATLAB Command Window, load the humanactivity data set, and create a table from
the variables in the data set to use for classification. The data set contains 24,075 observations of
five physical human activities: sitting, standing, walking, running, and dancing. Each observation
has 60 features extracted from acceleration data measured by smartphone accelerometer
sensors.

load humanactivity
Tbl = array2table(feat);
Tbl.Properties.VariableNames = featlabels';
activity = categorical(actid,1:5,actnames);
Tbl.Activity = activity;

Alternatively, you can load the humanactivity data set, create the categorical activity
response variable, and keep the feat and activity data as separate variables.

2 Click the Apps tab, and then click the Show more arrow on the right to open the apps gallery. In
the Machine Learning and Deep Learning group, click Classification Learner.

3 On the Classification Learner tab, in the File section, click New Session and select From
Workspace.

4 In the New Session from Workspace dialog box, select the table Tbl from the Data Set Variable
list. Note that the app selects response and predictor variables based on their data types. In
particular, the app selects Activity as the response variable because it is the only categorical
variable. For this example, do not change the selections.

Alternatively, if you keep the predictor data feat and response variable activity as two
separate variables, you can first select the matrix feat from the Data Set Variable list. Then,
under Response, click the From workspace option button and select activity from the list.

5 To accept the default validation scheme and continue, click Start Session. The default validation
option is 5-fold cross-validation, to protect against overfitting.

Classification Learner creates a scatter plot of the data.
6 Use the scatter plot to investigate which variables are useful for predicting the response. Select

different options in the X and Y lists under Predictors to visualize the distribution of activities
and measurements. Note which variables separate the activities (colors) most clearly.

7 Create a selection of kernel approximation models. On the Classification Learner tab, in the
Models section, click the arrow to open the gallery. In the Kernel Approximation Classifiers
group, click All Kernels.

 Train Kernel Approximation Classifiers Using Classification Learner App

23-115



8 In the Train section, click Train All and select Train All.

Note

• If you have Parallel Computing Toolbox, then the app has the Use Parallel button toggled on
by default. After you click Train All and select Train All or Train Selected, the app opens a
parallel pool of workers. During this time, you cannot interact with the software. After the
pool opens, you can continue to interact with the app while models train in parallel.

• If you do not have Parallel Computing Toolbox, then the app has the Use Background
Training check box in the Train All menu selected by default. After you select an option to
train models, the app opens a background pool. After the pool opens, you can continue to
interact with the app while models train in the background.

Classification Learner trains one of each kernel approximation option in the gallery, as well as the
default fine tree model. In the Models pane, the app outlines the Accuracy (Validation) score
of the best model. Classification Learner also displays a validation confusion matrix for the first
kernel model (SVM Kernel).

Note Validation introduces some randomness into the results. Your model validation results can
vary from the results shown in this example.

9 To view the results for a model, double-click the model in the Models pane, and inspect the
model Summary tab. The Summary tab displays the Training Results metrics, calculated on
the validation set.
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10 Select the second kernel model (Logistic Regression Kernel) in the Models pane, and inspect
the accuracy of the predictions in each class using a validation confusion matrix. On the
Classification Learner tab, in the Plot and Interpret section, click the arrow to open the
gallery, and then click Confusion Matrix (Validation) in the Validation Results group. View
the matrix of true class and predicted class results.

11 Compare the confusion matrices for the two kernel models side-by-side. First, close the plot and
summary tabs for Model 1. On the Classification Learner tab, in the Plot and Interpret
section, click the Layout button and select Compare models. In the top right of each plot, click

the Hide plot options button  to make more room for the plot.

To return to the original layout, you can click the Layout button and select Single model
(Default).

12 Choose the best kernel model in the Models pane (the best overall score is highlighted in the
Accuracy (Validation) box). See if you can improve the model by removing features with low
predictive power.

First, duplicate the best kernel model. On the Classification Learner tab, in the Models
section, click Duplicate.
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13 Investigate features to include or exclude using one of these methods.

• Use the parallel coordinates plot. On the Classification Learner tab, in the Plot and
Interpret section, click the arrow to open the gallery, and then click Parallel Coordinates in
the Validation Results group. Keep predictors that separate classes well.

In the model Summary tab, you can specify the predictors to use during training. Click
Feature Selection to expand the section, and specify predictors to remove from the model.

• Use a feature ranking algorithm. On the Classification Learner tab, in the Options section,
click Feature Selection. In the Default Feature Selection tab, specify the feature ranking
algorithm you want to use, and the number of features to keep among the highest ranked
features. The bar graph can help you decide how many features to use.

Click Save and Apply to save your changes. The new feature selection is applied to the
existing draft model in the Models pane and will be applied to new draft models that you
create using the gallery in the Models section of the Classification Learner tab.

14 Train the model. On the Classification Learner tab, in the Train section, click Train All and
select Train Selected to train the model using the new options. Compare results among the
classifiers in the Models pane.

15 Choose the best kernel model in the Models pane. To try to improve the model further, change
its hyperparameters. First, duplicate the model by clicking Duplicate in the Models section.
Then, try changing some hyperparameter settings in the model Summary tab. Train the new
model by clicking Train All and selecting Train Selected in the Train section.

To learn more about kernel model settings, see “Kernel Approximation Classifiers” on page 23-
36.

16 You can export a compact version of the trained model to the workspace. On the Classification
Learner tab, in the Export section, click Export Model and select either Export Model or
Export Compact Model. Note that either option exports a compact version of the trained model
because kernel approximation models do not store training data. See “Export Classification
Model to Predict New Data” on page 23-83.

17 To examine the code for training this classifier, click Generate Function in the Export section.
Because the data set used to train this classifier has more than two classes, the generated code
uses the fitcecoc function rather than fitckernel.

Tip Use the same workflow to evaluate and compare the other classifier types you can train in
Classification Learner.

To train all the nonoptimizable classifier model presets available for your data set:

1 On the Classification Learner tab, in the Models section, click the arrow to open the gallery of
classification models.

2 In the Get Started group, click All.
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3 In the Train section, click Train All and select Train All.

To learn about other classifier types, see “Train Classification Models in Classification Learner App”
on page 23-10.

See Also

Related Examples
• “Train Classification Models in Classification Learner App” on page 23-10
• “Select Data for Classification or Open Saved App Session” on page 23-18
• “Choose Classifier Options” on page 23-23
• “Feature Selection and Feature Transformation Using Classification Learner App” on page 23-42
• “Visualize and Assess Classifier Performance in Classification Learner” on page 23-66
• “Export Classification Model to Predict New Data” on page 23-83
• “Train Decision Trees Using Classification Learner App” on page 23-89
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Train Ensemble Classifiers Using Classification Learner App
This example shows how to construct ensembles of classifiers in the Classification Learner app.
Ensemble classifiers meld results from many weak learners into one high-quality ensemble predictor.
Qualities depend on the choice of algorithm, but ensemble classifiers tend to be slow to fit because
they often need many learners.

1 In MATLAB, load the fisheriris data set and define some variables from the data set to use for
a classification.

fishertable = readtable("fisheriris.csv");
2 On the Apps tab, in the Machine Learning and Deep Learning group, click Classification

Learner.
3 On the Classification Learner tab, in the File section, click New Session > From Workspace.

In the New Session from Workspace dialog box, select the table fishertable from the Data
Set Variable list (if necessary). Observe that the app has selected response and predictor
variables based on their data type. Petal and sepal length and width are predictors. Species is the
response that you want to classify. For this example, do not change the selections.

4 Click Start Session.

Classification Learner creates a scatter plot of the data.
5 Use the scatter plot to investigate which variables are useful for predicting the response. Select

different variables in the X- and Y-axis controls to visualize the distribution of species and
measurements. Observe which variables separate the species colors most clearly.

6 Train a selection of ensemble models. On the Classification Learner tab, in the Models section,
click the arrow to expand the list of classifiers, and under Ensemble Classifiers, click All
Ensembles. Then, in the Train section, click Train All and select Train All.

Note

• If you have Parallel Computing Toolbox, then the app has the Use Parallel button toggled on
by default. After you click Train All and select Train All or Train Selected, the app opens a
parallel pool of workers. During this time, you cannot interact with the software. After the
pool opens, you can continue to interact with the app while models train in parallel.

• If you do not have Parallel Computing Toolbox, then the app has the Use Background
Training check box in the Train All menu selected by default. After you select an option to
train models, the app opens a background pool. After the pool opens, you can continue to
interact with the app while models train in the background.

Classification Learner trains one of each ensemble classification option in the gallery, as well as
the default fine tree model. In the Models pane, the app outlines in a box the Accuracy
(Validation) score of the best model. Classification Learner also displays a validation confusion
matrix for the first ensemble model (Boosted Trees).
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7 Select a model in the Models pane to view the results. For example, select the Subspace
Discriminant model (model 2.3). Inspect the model Summary tab, which displays the Training
Results metrics, calculated on the validation set.

8 Examine the scatter plot for the trained model. On the Classification Learner tab, in the Plot
and Interpret section, click the arrow to open the gallery, and then click Scatter in the
Validation Results group. Misclassified points are shown as an X.

Note Validation introduces some randomness into the results. Your model validation results can
vary from the results shown in this example.

9 Inspect the accuracy of the predictions in each class. On the Classification Learner tab, in the
Plot and Interpret section, click the arrow to open the gallery, and then click Confusion
Matrix (Validation) in the Validation Results group. View the matrix of true class and
predicted class results.

10 For each remaining model, select the model in the Models pane, open the validation confusion
matrix, and then compare the results across the models.

11 Choose the best model (the best score is highlighted in the Accuracy (Validation) box). To
improve the model, try including different features in the model. See if you can improve the
model by removing features with low predictive power.

First, duplicate the best model. On the Classification Learner tab, in the Models section, click
Duplicate.

12 Investigate features to include or exclude using one of these methods.

• Use the parallel coordinates plot. On the Classification Learner tab, in the Plot and
Interpret section, click the arrow to open the gallery, and then click Parallel Coordinates in
the Validation Results group. Keep predictors that separate classes well.
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In the model Summary tab, you can specify the predictors to use during training. Click
Feature Selection to expand the section, and specify predictors to remove from the model.

• Use a feature ranking algorithm. On the Classification Learner tab, in the Options section,
click Feature Selection. In the Default Feature Selection tab, specify the feature ranking
algorithm you want to use, and the number of features to keep among the highest ranked
features. The bar graph can help you decide how many features to use.

Click Save and Apply to save your changes. The new feature selection is applied to the
existing draft model in the Models pane and will be applied to new draft models that you
create using the gallery in the Models section of the Classification Learner tab.

13 Train the model. On the Classification Learner tab, in the Train section, click Train All and
select Train Selected to train the model using the new options. Compare results among the
classifiers in the Models pane.

14 Choose the best model in the Models pane. To try to improve the model further, try changing its
hyperparameters. First, duplicate the model by clicking Duplicate in the Models section. Then,
try changing a hyperparameter setting in the model Summary tab. Train the new model by
clicking Train All and selecting Train Selected in the Train section.

For information on the settings to try and the strengths of different ensemble model types, see
“Ensemble Classifiers” on page 23-37.

15 You can export a full or compact version of the trained model to the workspace. On the
Classification Learner tab, in the Export section, click Export Model and select either Export
Model or Export Compact Model. See “Export Classification Model to Predict New Data” on
page 23-83.

16 To examine the code for training this classifier, click Generate Function.

Use the same workflow to evaluate and compare the other classifier types you can train in
Classification Learner.

To try all the nonoptimizable classifier model presets available for your data set:

1 On the Classification Learner tab, in the Models section, click the arrow to open the gallery of
classification models.

2 In the Get Started group, click All.

3 In the Train section, click Train All and select Train All.

To learn about other classifier types, see “Train Classification Models in Classification Learner App”
on page 23-10.
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See Also

Related Examples
• “Train Classification Models in Classification Learner App” on page 23-10
• “Select Data for Classification or Open Saved App Session” on page 23-18
• “Choose Classifier Options” on page 23-23
• “Feature Selection and Feature Transformation Using Classification Learner App” on page 23-42
• “Visualize and Assess Classifier Performance in Classification Learner” on page 23-66
• “Export Classification Model to Predict New Data” on page 23-83
• “Train Decision Trees Using Classification Learner App” on page 23-89
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Train Naive Bayes Classifiers Using Classification Learner App
This example shows how to create and compare different naive Bayes classifiers using the
Classification Learner app, and export trained models to the workspace to make predictions for new
data.

Naive Bayes classifiers leverage Bayes' theorem and make the assumption that predictors are
independent of one another within each class. However, the classifiers appear to work well even
when the independence assumption is not valid. You can use naive Bayes with two or more classes in
Classification Learner. The app allows you to train a Gaussian naive Bayes model or a kernel naive
Bayes model individually or simultaneously.

This table lists the available naive Bayes models in Classification Learner and the probability
distributions used by each model to fit predictors.

Model Numerical Predictor Categorical Predictor
Gaussian naive Bayes Gaussian distribution (or normal

distribution)
multivariate multinomial
distribution

Kernel naive Bayes Kernel distribution
You can specify the kernel type
and support. Classification
Learner automatically
determines the kernel width
using the underlying fitcnb
function.

multivariate multinomial
distribution

This example uses Fisher's iris data set, which contains measurements of flowers (petal length, petal
width, sepal length, and sepal width) for specimens from three species. Train naive Bayes classifiers
to predict the species based on the predictor measurements.

1 In the MATLAB Command Window, load the Fisher iris data set and create a table of
measurement predictors (or features) using variables from the data set.

fishertable = readtable("fisheriris.csv");

2 Click the Apps tab, and then click the arrow at the right of the Apps section to open the apps
gallery. In the Machine Learning and Deep Learning group, click Classification Learner.

3 On the Classification Learner tab, in the File section, select New Session > From
Workspace.

4 In the New Session from Workspace dialog box, select the table fishertable from the Data
Set Variable list (if necessary).

As shown in the dialog box, the app selects the response and predictor variables based on their
data type. Petal and sepal length and width are predictors, and species is the response that you
want to classify. For this example, do not change the selections.
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5 To accept the default validation scheme and continue, click Start Session. The default validation
option is cross-validation, to protect against overfitting.

Classification Learner creates a scatter plot of the data.
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6 Use the scatter plot to investigate which variables are useful for predicting the response. Select
different options on the X and Y lists under Predictors to visualize the distribution of species
and measurements. Observe which variables separate the species colors most clearly.

The setosa species (blue points) is easy to separate from the other two species with all four
predictors. The versicolor and virginica species are much closer together in all predictor
measurements and overlap, especially when you plot sepal length and width. setosa is easier to
predict than the other two species.

7 Create a naive Bayes model. On the Classification Learner tab, in the Models section, click the
arrow to open the gallery. In the Naive Bayes Classifiers group, click Gaussian Naive Bayes.
Note that the Model Hyperparameters section of the model Summary tab contains no
hyperparameter options.

8 In the Train section, click Train All and select Train Selected.

Note

• If you have Parallel Computing Toolbox, then the app has the Use Parallel button toggled on
by default. After you click Train All and select Train All or Train Selected, the app opens a
parallel pool of workers. During this time, you cannot interact with the software. After the
pool opens, you can continue to interact with the app while models train in parallel.
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• If you do not have Parallel Computing Toolbox, then the app has the Use Background
Training check box in the Train All menu selected by default. After you select an option to
train models, the app opens a background pool. After the pool opens, you can continue to
interact with the app while models train in the background.

The app creates a Gaussian naive Bayes model, and plots a validation confusion matrix.

The app displays the Gaussian Naive Bayes model in the Models pane. Check the model
validation score in the Accuracy (Validation) box. The score shows that the model performs
well.

For the Gaussian Naive Bayes model, by default, the app models the distribution of numerical
predictors using the Gaussian distribution, and models the distribution of categorical predictors
using the multivariate multinomial distribution (MVMN).

Note Validation introduces some randomness into the results. Your model validation results can
vary from the results shown in this example.

9 Examine the scatter plot for the trained model. On the Classification Learner tab, in the Plot
and Interpret section, click the arrow to open the gallery, and then click Scatter in the
Validation Results group. An X indicates a misclassified point. The blue points (setosa species)
are all correctly classified, but the other two species have misclassified points. Under Plot,
switch between the Data and Model predictions options. Observe the color of the incorrect (X)
points. Or, to view only the incorrect points, clear the Correct check box.

10 Train a kernel naive Bayes model for comparison. On the Classification Learner tab, in the
Models gallery, click Kernel Naive Bayes. The app displays a draft kernel naive Bayes model in
the Models pane.
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In the model Summary tab, under Model Hyperparameters, select Triangle from the Kernel
Type list, and select Positive from the Support list.

Note The hyperparameter options are available for continuous data only. Pointing to Kernel
Type displays the tooltip "Specify Kernel smoothing function for continuous variables," and
pointing to Support displays the tooltip "Specify Kernel smoothing density support for
continuous variables."

In the Train section, click Train All and select Train Selected to train the new model.
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The Models pane displays the model validation score for the new kernel naive Bayes model. Its
score is the same as the score for the Gaussian naive Bayes model. The app highlights the
Accuracy (Validation) score of the best model (or models) by outlining it in a box.

11 In the Models pane, click each model to view and compare the results. To view the results for a
model, inspect the model Summary tab. The Summary tab displays the Training Results
metrics, calculated on the validation set.

12 Train a Gaussian naive Bayes model and a kernel naive Bayes model simultaneously. On the
Classification Learner tab, in the Models gallery, click All Naive Bayes. In the Train section,
click Train All and select Train Selected.

The app trains one of each naive Bayes model type and highlights the Accuracy (Validation)
score of the best model or models. Classification Learner displays a validation confusion matrix
for the first model (model 4.1).

13 In the Models pane, click a model to view the results. For example, select model 2. Examine the
scatter plot for the trained model. On the Classification Learner tab, in the Plot and Interpret
section, click the arrow to open the gallery, and then click Scatter in the Validation Results
group. Try plotting different predictors. Misclassified points appear as an X.

14 Inspect the accuracy of the predictions in each class. On the Classification Learner tab, in the
Plot and Interpret section, click the arrow to open the gallery, and then click Confusion
Matrix (Validation) in the Validation Results group. The app displays a matrix of true class
and predicted class results.

15 In the Models pane, click the other trained models and compare their results.
16 To try to improve the models, include different features during model training. See if you can

improve the models by removing features with low predictive power.

On the Classification Learner tab, in the Options section, click Feature Selection.
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In the Default Feature Selection tab, you can select different feature ranking algorithms to
determine the most important features. After you select a feature ranking algorithm, the app
displays a plot of the sorted feature importance scores, where larger scores (including Infs)
indicate greater feature importance. The table shows the ranked features and their scores.

In this example, use one-way ANOVA to rank the features. Under Feature Ranking Algorithm,
click ANOVA.

Under Feature Selection, use the default option of selecting the highest ranked features to
avoid bias in the validation metrics. Specify to keep 2 of the 4 features for model training. Click
Save and Apply. The app applies the feature selection changes to new models created using the
Models gallery.

17 Train new naive Bayes models using the reduced set of features. On the Classification Learner
tab, in the Models gallery, click All Naive Bayes. In the Train section, click Train All and select
Train Selected.

In this example, the two models trained using a reduced set of features perform better than the
models trained using all the predictors. If data collection is expensive or difficult, you might
prefer a model that performs satisfactorily without some predictors.
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18 To determine which predictors are included, click a model in the Models pane, and note the
check boxes in the expanded Feature Selection section of the model Summary tab. For
example, model 5.1 contains only the petal measurements.

Note If you use a cross-validation scheme and choose to perform feature selection using the
Select highest ranked features option, then for each training fold, the app performs feature
selection before training a model. Different folds can select different predictors as the highest
ranked features. The table on the Default Feature Selection tab shows the list of predictors
used by the full model, trained on the training and validation data.

19 To further investigate features to include or exclude, use the parallel coordinates plot. On the
Classification Learner tab, in the Plot and Interpret section, click the arrow to open the
gallery, and then click Parallel Coordinates in the Validation Results group.

20 In the Models pane, click the model with the highest Accuracy (Validation) score. To try to
improve the model further, change its hyperparameters (if possible). First, duplicate the model by
clicking Duplicate in the Models section of the Classification Learner tab. Then, try changing
hyperparameter settings in the model Summary tab. Recall that hyperparameter options are
available only for some models. Train the new model by clicking Train All and selecting Train
Selected in the Train section.

21 Export the trained model to the workspace. On the Classification Learner tab, in the Export
section, select Export Model > Export Model. See “Export Classification Model to Predict New
Data” on page 23-83.

22 Examine the code for training this classifier. In the Export section, click Generate Function.

Use the same workflow to evaluate and compare the other classifier types you can train in
Classification Learner.

To try all the nonoptimizable classifier model presets available for your data set:

1 On the Classification Learner tab, in the Models section, click the arrow to open the gallery of
models.

2 In the Get Started group, click All.

3 In the Train section, click Train All and select Train All.

For information about other classifier types, see “Train Classification Models in Classification Learner
App” on page 23-10.
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See Also

Related Examples
• “Train Classification Models in Classification Learner App” on page 23-10
• “Select Data for Classification or Open Saved App Session” on page 23-18
• “Choose Classifier Options” on page 23-23
• “Naive Bayes Classification” on page 22-2
• “Feature Selection and Feature Transformation Using Classification Learner App” on page 23-42
• “Visualize and Assess Classifier Performance in Classification Learner” on page 23-66
• “Export Classification Model to Predict New Data” on page 23-83
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Train Neural Network Classifiers Using Classification Learner
App

This example shows how to create and compare neural network classifiers in the Classification
Learner app, and export trained models to the workspace to make predictions for new data.

1 In the MATLAB Command Window, load the fisheriris data set, and create a table from the
variables in the data set to use for classification.

fishertable = readtable("fisheriris.csv");
2 Click the Apps tab, and then click the Show more arrow on the right to open the apps gallery. In

the Machine Learning and Deep Learning group, click Classification Learner.
3 On the Classification Learner tab, in the File section, click New Session and select From

Workspace.

4 In the New Session from Workspace dialog box, select the table fishertable from the Data
Set Variable list (if necessary). Observe that the app has selected response and predictor
variables based on their data types. Petal and sepal length and width are predictors, and species
is the response that you want to classify. For this example, do not change the selections.

5 To accept the default validation scheme and continue, click Start Session. The default validation
option is 5-fold cross-validation, to protect against overfitting.

Classification Learner creates a scatter plot of the data.
6 Use the scatter plot to investigate which variables are useful for predicting the response. Select

different options in the X and Y lists under Predictors to visualize the distribution of species and
measurements. Note which variables separate the species colors most clearly.

7 Create a selection of neural network models. On the Classification Learner tab, in the Models
section, click the arrow to open the gallery. In the Neural Network Classifiers group, click All
Neural Networks.

8 In the Train section, click Train All and select Train All.

Note

• If you have Parallel Computing Toolbox, then the app has the Use Parallel button toggled on
by default. After you click Train All and select Train All or Train Selected, the app opens a
parallel pool of workers. During this time, you cannot interact with the software. After the
pool opens, you can continue to interact with the app while models train in parallel.

• If you do not have Parallel Computing Toolbox, then the app has the Use Background
Training check box in the Train All menu selected by default. After you select an option to
train models, the app opens a background pool. After the pool opens, you can continue to
interact with the app while models train in the background.

Classification Learner trains one of each neural network classification option in the gallery, as
well as the default fine tree model. In the Models pane, the app outlines the Accuracy
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(Validation) score of the best model. Classification Learner also displays a validation confusion
matrix for the first neural network model (Narrow Neural Network).

9 Select a model in the Models pane to view the results. For example, double-click the Narrow
Neural Network model (model 2.1). Inspect the model Summary tab, which displays the
Training Results metrics, calculated on the validation set.

10 Examine the scatter plot for the trained model. On the Classification Learner tab, in the Plot
and Interpret section, click the arrow to open the gallery, and then click Scatter in the
Validation Results group. Correctly classified points are marked with an O, and incorrectly
classified points are marked with an X.

Note Validation introduces some randomness into the results. Your model validation results can
vary from the results shown in this example.

11 Inspect the accuracy of the predictions in each class. On the Classification Learner tab, in the
Plot and Interpret section, click the arrow to open the gallery, and then click Confusion
Matrix (Validation) in the Validation Results group. View the matrix of true class and
predicted class results.

12 For each remaining model, select the model in the Models pane, open the validation confusion
matrix, and then compare the results across the models.

13 Choose the best model in the Models pane (the best score is highlighted in the Accuracy
(Validation) box). See if you can improve the model by removing features with low predictive
power.

First, duplicate the best model. On the Classification Learner tab, in the Models section, click
Duplicate.
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14 Investigate features to include or exclude using one of these methods.

• Use the parallel coordinates plot. On the Classification Learner tab, in the Plot and
Interpret section, click the arrow to open the gallery, and then click Parallel Coordinates in
the Validation Results group. Keep predictors that separate classes well.

In the model Summary tab, you can specify the predictors to use during training. Click
Feature Selection to expand the section, and specify predictors to remove from the model.

• Use a feature ranking algorithm. On the Classification Learner tab, in the Options section,
click Feature Selection. In the Default Feature Selection tab, specify the feature ranking
algorithm you want to use, and the number of features to keep among the highest ranked
features. The bar graph can help you decide how many features to use.

Click Save and Apply to save your changes. The new feature selection is applied to the
existing draft model in the Models pane and will be applied to new draft models that you
create using the gallery in the Models section of the Classification Learner tab.

15 Train the model. On the Classification Learner tab, in the Train section, click Train All and
select Train Selected to train the model using the new options. Compare results among the
classifiers in the Models pane.

16 Choose the best model in the Models pane. To try to improve the model further, change its
hyperparameters. First, duplicate the model by clicking Duplicate in the Models section. Then,
try changing hyperparameter settings, like the sizes of the fully connected layers or the
regularization strength, in the model Summary tab. Train the new model by clicking Train All
and selecting Train Selected in the Train section.

To learn more about neural network model settings, see “Neural Network Classifiers” on page
23-40.

17 You can export a full or compact version of the trained model to the workspace. On the
Classification Learner tab, in the Export section, click Export Model and select either Export
Model or Export Compact Model. See “Export Classification Model to Predict New Data” on
page 23-83.

18 To examine the code for training this classifier, click Generate Function in the Export section.

Tip Use the same workflow to evaluate and compare the other classifier types you can train in
Classification Learner.

To train all the nonoptimizable classifier model presets available for your data set:

1 On the Classification Learner tab, in the Models section, click the arrow to open the gallery of
models.

2 In the Get Started group, click All.
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3 In the Train section, click Train All and select Train All.

To learn about other classifier types, see “Train Classification Models in Classification Learner App”
on page 23-10.

See Also

Related Examples
• “Train Classification Models in Classification Learner App” on page 23-10
• “Select Data for Classification or Open Saved App Session” on page 23-18
• “Choose Classifier Options” on page 23-23
• “Feature Selection and Feature Transformation Using Classification Learner App” on page 23-42
• “Visualize and Assess Classifier Performance in Classification Learner” on page 23-66
• “Export Classification Model to Predict New Data” on page 23-83
• “Train Decision Trees Using Classification Learner App” on page 23-89
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Train and Compare Classifiers Using Misclassification Costs in
Classification Learner App

This example shows how to create and compare classifiers that use specified misclassification costs in
the Classification Learner app. Specify the misclassification costs before training, and use the
accuracy and total misclassification cost results to compare the trained models.

1 In the MATLAB Command Window, read the sample file CreditRating_Historical.dat into
a table. The predictor data consists of financial ratios and industry sector information for a list of
corporate customers. The response variable consists of credit ratings assigned by a rating
agency. Combine all the A ratings into one rating. Do the same for the B and C ratings, so that the
response variable has three distinct ratings. Among the three ratings, A is considered the best
and C the worst.

creditrating = readtable("CreditRating_Historical.dat");
Rating = categorical(creditrating.Rating);
Rating = mergecats(Rating,["AAA","AA","A"],"A");
Rating = mergecats(Rating,["BBB","BB","B"],"B");
Rating = mergecats(Rating,["CCC","CC","C"],"C");
creditrating.Rating = Rating;

2 Assume these are the costs associated with misclassifying the credit ratings of customers.

 Customer Predicted Rating
A B C

Customer True
Rating

A $0 $100 $200
B $500 $0 $100
C $1000 $500 $0

For example, the cost of misclassifying a C rating customer as an A rating customer is $1000. The
costs indicate that classifying a customer with bad credit as a customer with good credit is more
costly than classifying a customer with good credit as a customer with bad credit.

Create a matrix variable that contains the misclassification costs. Create another variable that
specifies the class names and their order in the matrix variable.

ClassificationCosts = [0 100 200; 500 0 100; 1000 500 0];
ClassNames = categorical(["A","B","C"]);

Tip Alternatively, you can specify misclassification costs directly inside the Classification Learner
app. See “Specify Misclassification Costs” on page 23-49 for more information.

3 Open Classification Learner. Click the Apps tab, and then click the arrow at the right of the Apps
section to open the apps gallery. In the Machine Learning and Deep Learning group, click
Classification Learner.

4 On the Classification Learner tab, in the File section, select New Session > From
Workspace.
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5 In the New Session from Workspace dialog box, select the table creditrating from the Data
Set Variable list.

As shown in the dialog box, the app selects the response and predictor variables based on their
data type. The default response variable is the Rating variable. The default validation option is
cross-validation, to protect against overfitting. For this example, do not change the default
settings.

6 To accept the default settings, click Start Session.
7 Specify the misclassification costs. On the Classification Learner tab, in the Options section,

click Costs. The app opens a dialog box showing the default misclassification costs.

In the dialog box, click Import from Workspace.
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In the import dialog box, select ClassificationCosts as the cost variable and ClassNames as
the class order in the cost variable. Click Import.

The app updates the values in the misclassification costs dialog box. Click Save and Apply to
save your changes. The new misclassification costs are applied to the existing draft model in the
Models pane and will be applied to new draft models that you create using the gallery in the
Models section of the Classification Learner tab.
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8 Train fine, medium, and coarse trees simultaneously. The Models pane already contains a fine
tree model. Add medium and coarse tree models to the list of draft models. On the Classification
Learner tab, in the Models section, click the arrow to open the gallery. In the Decision Trees
group, click Medium Tree. The app creates a draft medium tree and adds it to the Models pane.
Reopen the model gallery and click Coarse Tree in the Decision Trees group. The app creates a
draft coarse tree and adds it to the Models pane.

In the Train section, click Train All and select Train All. The app trains the three tree models.

Note

• If you have Parallel Computing Toolbox, then the app has the Use Parallel button toggled on
by default. After you click Train All and select Train All or Train Selected, the app opens a
parallel pool of workers. During this time, you cannot interact with the software. After the
pool opens, you can continue to interact with the app while models train in parallel.

• If you do not have Parallel Computing Toolbox, then the app has the Use Background
Training check box in the Train All menu selected by default. After you select an option to
train models, the app opens a background pool. After the pool opens, you can continue to
interact with the app while models train in the background.
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Note Validation introduces some randomness into the results. Your model validation results can
vary from the results shown in this example.

In the Models pane, each model has a validation accuracy score that indicates the percentage of
correctly predicted responses. The app highlights the highest Accuracy (Validation) score by
outlining it in a box.

9 Click a model to view the results, which are displayed in the Summary tab. On the
Classification Learner tab, in the Models section, click Summary.

10 Inspect the accuracy of the predictions in each class. On the Classification Learner tab, in the
Plot and Interpret section, click the arrow to open the gallery, and then click Confusion
Matrix (Validation) in the Validation Results group. The app displays a matrix of true class
and predicted class results for the selected model (in this case, for the medium tree).
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11 You can also plot results per predicted class to investigate false discovery rates. Under Plot,
select the Positive Predictive Values (PPV) False Discovery Rates (FDR) option.

In the confusion matrix for the medium tree, the entries below the diagonal have small
percentage values. These values indicate that the model tries to avoid assigning a credit rating
that is higher than the true rating for a customer.
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12 Compare the total misclassification costs of the tree models. To inspect the total misclassification
cost of a model, select the model in the Models pane, and then view the Training Results
section of the Summary tab. For example, the medium tree has these results.
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Alternatively, you can sort the models based on the total misclassification cost. In the Models
pane, open the Sort by list and select Total Cost (Validation).

In general, choose a model that has high accuracy and low total misclassification cost. In this
example, the medium tree has the highest validation accuracy value and the lowest total
misclassification cost of the three models.

You can perform feature selection and transformation or tune your model just as you do in the
workflow without misclassification costs. However, always check the total misclassification cost of
your model when assessing its performance. For information on how to find misclassification costs in
the exported model and exported code, see “Misclassification Costs in Exported Model and Generated
Code” on page 23-53.

See Also

Related Examples
• “Misclassification Costs in Classification Learner App” on page 23-49
• “Train Classification Models in Classification Learner App” on page 23-10
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Train Classifier Using Hyperparameter Optimization in
Classification Learner App

This example shows how to tune hyperparameters of a classification support vector machine (SVM)
model by using hyperparameter optimization in the Classification Learner app. Compare the test set
performance of the trained optimizable SVM to that of the best-performing preset SVM model.

1 In the MATLAB Command Window, load the ionosphere data set, and create a table containing
the data.

load ionosphere
tbl = array2table(X);
tbl.Y = Y;

2 Open Classification Learner. Click the Apps tab, and then click the arrow at the right of the Apps
section to open the apps gallery. In the Machine Learning and Deep Learning group, click
Classification Learner.

3 On the Classification Learner tab, in the File section, select New Session > From
Workspace.

4 In the New Session from Workspace dialog box, select tbl from the Data Set Variable list. The
app selects the response and predictor variables. The default response variable is Y. The default
validation option is 5-fold cross-validation, to protect against overfitting.

In the Test section, click the check box to set aside a test data set. Specify to use 15 percent of
the imported data as a test set.
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5 To accept the options and continue, click Start Session.
6 Train all preset SVM models. On the Classification Learner tab, in the Models section, click

the arrow to open the gallery. In the Support Vector Machines group, click All SVMs. In the
Train section, click Train All and select Train All. The app trains one of each SVM model type,
as well as the default fine tree model, and displays the models in the Models pane.

Note

• If you have Parallel Computing Toolbox, then the app has the Use Parallel button toggled on
by default. After you click Train All and select Train All or Train Selected, the app opens a
parallel pool of workers. During this time, you cannot interact with the software. After the
pool opens, you can continue to interact with the app while models train in parallel.

• If you do not have Parallel Computing Toolbox, then the app has the Use Background
Training check box in the Train All menu selected by default. After you select an option to
train models, the app opens a background pool. After the pool opens, you can continue to
interact with the app while models train in the background.
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The app displays a validation confusion matrix for the first SVM model (model 2.1). Blue values
indicate correct classifications, and red values indicate incorrect classifications. The Models
pane on the left shows the validation accuracy for each model.

Note Validation introduces some randomness into the results. Your model validation results can
vary from the results shown in this example.

7 Select an optimizable SVM model to train. On the Classification Learner tab, in the Models
section, click the arrow to open the gallery. In the Support Vector Machines group, click
Optimizable SVM.

8 Select the model hyperparameters to optimize. In the Summary tab, you can select Optimize
check boxes for the hyperparameters that you want to optimize. By default, all the check boxes
for the available hyperparameters are selected. For this example, clear the Optimize check
boxes for Kernel function and Standardize data. By default, the app disables the Optimize
check box for Kernel scale whenever the kernel function has a fixed value other than
Gaussian. Select a Gaussian kernel function, and select the Optimize check box for Kernel
scale.
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9 Train the optimizable model. In the Train section of the Classification Learner tab, click Train
All and select Train Selected.

10 The app displays a Minimum Classification Error Plot as it runs the optimization process. At
each iteration, the app tries a different combination of hyperparameter values and updates the
plot with the minimum validation classification error observed up to that iteration, indicated in
dark blue. When the app completes the optimization process, it selects the set of optimized
hyperparameters, indicated by a red square. For more information, see “Minimum Classification
Error Plot” on page 23-61.

The app lists the optimized hyperparameters in both the Optimization Results section to the
right of the plot and the Optimizable SVM Model Hyperparameters section of the model
Summary tab.
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Note In general, the optimization results are not reproducible.
11 Compare the trained preset SVM models to the trained optimizable model. In the Models pane,

the app highlights the highest Accuracy (Validation) by outlining it in a box. In this example,
the trained optimizable SVM model outperforms the six preset models.

A trained optimizable model does not always have a higher accuracy than the trained preset
models. If a trained optimizable model does not perform well, you can try to get better results by
running the optimization for longer. On the Classification Learner tab, in the Options section,
click Optimizer. In the dialog box, increase the Iterations value. For example, you can double-
click the default value of 30 and enter a value of 60. Then click Save and Apply. The options will
be applied to future optimizable models created using the Models gallery.

12 Because hyperparameter tuning often leads to overfitted models, check the performance of the
optimizable SVM model on a test set and compare it to the performance of the best preset SVM
model. Use the data you reserved for testing when you imported data into the app.

First, in the Models pane, click the star icons next to the Medium Gaussian SVM model and
the Optimizable SVM model.

13 For each model, select the model in the Models pane. In the Test section of the Classification
Learner tab, click Test All and then select Test Selected. The app computes the test set
performance of the model trained on the rest of the data, namely the training and validation data.

14 Sort the models based on the test set accuracy. In the Models pane, open the Sort by list and
select Accuracy (Test).

In this example, the trained optimizable model still outperforms the trained preset model on the
test set data. However, neither model has a test accuracy as high as its validation accuracy.
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15 Visually compare the test set performance of the models. For each of the starred models, select
the model in the Models pane. On the Classification Learner tab, in the Plot and Interpret
section, click the arrow to open the gallery, and then click Confusion Matrix (Test) in the Test
Results group.

16 Rearrange the layout of the plots to better compare them. First, close the plot and summary tabs
for all models except Model 2.5 and Model 3. Then, in the Plot and Interpret section, click the

Layout button and select Compare models. Click the Hide plot options button  at the top
right of the plots to make more room for the plots.
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To return to the original layout, you can click the Layout button and select Single model
(Default).

See Also

Related Examples
• “Hyperparameter Optimization in Classification Learner App” on page 23-54
• “Train Classification Models in Classification Learner App” on page 23-10
• “Select Data for Classification or Open Saved App Session” on page 23-18
• “Choose Classifier Options” on page 23-23
• “Visualize and Assess Classifier Performance in Classification Learner” on page 23-66
• “Export Classification Model to Predict New Data” on page 23-83
• “Bayesian Optimization Workflow” on page 10-25
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Check Classifier Performance Using Test Set in Classification
Learner App

This example shows how to train multiple models in Classification Learner, and determine the best-
performing models based on their validation accuracy. Check the test accuracy for the best-
performing models trained on the full data set, including training and validation data.

1 In the MATLAB Command Window, load the ionosphere data set, and create a table containing
the data. Separate the table into training and test sets.

load ionosphere
tbl = array2table(X);
tbl.Y = Y;

rng("default") % For reproducibility of the data split
partition = cvpartition(Y,"Holdout",0.15);
idxTrain = training(partition); % Indices for the training set
tblTrain = tbl(idxTrain,:);
tblTest = tbl(~idxTrain,:);

Alternatively, you can create a test set later on when you import data into the app. For more
information, see “(optional) Reserve Data for Testing” on page 23-22.

2 Open Classification Learner. Click the Apps tab, and then click the arrow at the right of the Apps
section to open the apps gallery. In the Machine Learning and Deep Learning group, click
Classification Learner.

3 On the Classification Learner tab, in the File section, click New Session and select From
Workspace.

4 In the New Session from Workspace dialog box, select the tblTrain table from the Data Set
Variable list.

As shown in the dialog box, the app selects the response and predictor variables. The default
response variable is Y. To protect against overfitting, the default validation option is 5-fold cross-
validation. For this example, do not change the default settings.
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5 To accept the default options and continue, click Start Session.
6 Train all preset models. On the Classification Learner tab, in the Models section, click the

arrow to open the gallery. In the Get Started group, click All. In the Train section, click Train
All and select Train All. The app trains one of each preset model type, along with the default
fine tree model, and displays the models in the Models pane.

Note

• If you have Parallel Computing Toolbox, then the app has the Use Parallel button toggled on
by default. After you click Train All and select Train All or Train Selected, the app opens a
parallel pool of workers. During this time, you cannot interact with the software. After the
pool opens, you can continue to interact with the app while models train in parallel.

• If you do not have Parallel Computing Toolbox, then the app has the Use Background
Training check box in the Train All menu selected by default. After you select an option to
train models, the app opens a background pool. After the pool opens, you can continue to
interact with the app while models train in the background.

7 Sort the trained models based on the validation accuracy. In the Models pane, open the Sort by
list and select Accuracy (Validation).
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8 In the Models pane, click the star icons next to the three models with the highest validation
accuracy. The app highlights the highest validation accuracy by outlining it in a box. In this
example, the trained Medium Gaussian SVM model has the highest validation accuracy.

The app displays a validation confusion matrix for the second fine tree model (model 2.1). Blue
values indicate correct classifications, and red values indicate incorrect classifications. The
Models pane on the left shows the validation accuracy for each model.

Note Validation introduces some randomness into the results. Your model validation results can
vary from the results shown in this example.

9 Check the test set performance of the best-performing models. Begin by importing test data into
the app.

On the Classification Learner tab, in the Test section, click Test Data and select From
Workspace.

10 In the Import Test Data dialog box, select the tblTest table from the Test Data Set Variable
list.

As shown in the dialog box, the app identifies the response and predictor variables.
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11 Click Import.
12 Compute the accuracy of the best preset models on the tblTest data. For convenience, compute

the test set accuracy for all models at once. On the Classification Learner tab, in the Test
section, click Test All and select Test All. The app computes the test set performance of the
model trained on the full data set, including training and validation data.

13 Sort the models based on the test set accuracy. In the Models pane, open the Sort by list and
select Accuracy (Test). The app still outlines the metric for the model with the highest
validation accuracy, despite displaying the test accuracy.

14 Visually check the test set performance of the models. For each starred model, select the model
in the Models pane. On the Classification Learner tab, in the Plot and Interpret section, click
the arrow to open the gallery, and then click Confusion Matrix (Test) in the Test Results
group.

15 Rearrange the layout of the plots to better compare them. First, close the summary and plot tabs
for Model 1 and Model 2.1. Then, click the Document Actions arrow located to the far right of
the model plot tabs. Select the Tile All option and specify a 1-by-3 layout. Click the Hide plot

options button  at the top right of the plots to make more room for the plots.

In this example, the trained Medium Gaussian SVM model remains one of the best-performing
models on the test set data.
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To return to the original layout, you can click the Layout button in the Plot and Interpret
section and select Single model (Default).

16 Compare the validation and test accuracy for the trained Medium Gaussian SVM model. In the
Models pane, double-click the model. In the model Summary tab, compare the Accuracy
(Validation) value under Training Results to the Accuracy (Test) value under Test Results.
In this example, the validation accuracy is higher than the test accuracy, which indicates that the
validation accuracy is perhaps overestimating the performance of this model.

See Also

Related Examples
• “Visualize and Assess Classifier Performance in Classification Learner” on page 23-66
• “Export Classification Model to Predict New Data” on page 23-83
• “Train Classifier Using Hyperparameter Optimization in Classification Learner App” on page 23-

145
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Interpret Classifiers Trained in Classification Learner App
Understanding how some machine learning models make predictions can be difficult. Interpretability
tools help reveal how predictors contribute (or do not contribute) to predictions. For trained
classification models, partial dependence plots (PDPs) show the relationship between a predictor and
the predicted class scores. The partial dependence on the selected predictor is defined by the
averaged prediction obtained by marginalizing out the effect of the other predictors.

This example shows how to train classification models in the Classification Learner app and interpret
the best-performing models using PDPs. You can use PDP results to confirm that models use features
as expected, or to remove unhelpful features from model training.

1 In the MATLAB Command Window, load the carbig data set, which contains measurements of
cars made in the 1970s and early 1980s.

load carbig
2 Categorize the cars based on whether they were made in the USA.

Origin = categorical(cellstr(Origin));
Origin = mergecats(Origin,["France","Japan","Germany", ...
    "Sweden","Italy","England"],"NotUSA");

3 Create a table containing the predictor variables Acceleration, Displacement, and so on, as
well as the response variable Origin.

cars = table(Acceleration,Displacement,Horsepower, ...
    Model_Year,MPG,Weight,Origin);

4 Remove rows of cars where the table has missing values.

cars = rmmissing(cars);
5 Open Classification Learner. Click the Apps tab, and then click the arrow at the right of the Apps

section to open the apps gallery. In the Machine Learning and Deep Learning group, click
Classification Learner.

6 On the Classification Learner tab, in the File section, click New Session and select From
Workspace.

7 In the New Session from Workspace dialog box, select the cars table from the Data Set
Variable list. The app selects the response and predictor variables. The default response variable
is Origin. The default validation option is 5-fold cross-validation, to protect against overfitting.

In the Test section, click the check box to set aside a test data set. Specify 15 percent of the
imported data as a test set.

8 To accept the options and continue, click Start Session.
9 Train all preset models. On the Classification Learner tab, in the Models section, click the

arrow to open the gallery. In the Get Started group, click All. In the Train section, click Train
All and select Train All. The app trains one of each preset model type, along with the default
fine tree model, and displays the models in the Models pane.

Note

• If you have Parallel Computing Toolbox, then the app has the Use Parallel button toggled on
by default. After you click Train All and select Train All or Train Selected, the app opens a
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parallel pool of workers. During this time, you cannot interact with the software. After the
pool opens, you can continue to interact with the app while models train in parallel.

• If you do not have Parallel Computing Toolbox, then the app has the Use Background
Training check box in the Train All menu selected by default. After you select an option to
train models, the app opens a background pool. After the pool opens, you can continue to
interact with the app while models train in the background.

10 Sort the trained models based on the validation accuracy. In the Models pane, open the Sort by
list and select Accuracy (Validation).

11 In the Models pane, click the star icons next to the two models with the highest validation
accuracy. The app highlights the highest validation accuracy by outlining it in a box. In this
example, the trained Bagged Trees model has the highest validation accuracy.

Note Validation introduces some randomness into the results. Your model validation results can
vary from the results shown in this example.

12 For each of the starred models, you can check the model performance by using various plots (for
example, scatter plots, confusion matrices, and ROC curves). In the Models pane, select a model.
On the Classification Learner tab, in the Plot and Interpret section, click the arrow to open
the gallery. Then, click any of the buttons in the Validation Results group to open the
corresponding plot.

After opening multiple plots, you can change the layout of the plots by using the Document
Actions arrow located to the far right of the model plot tabs. For example, click the arrow, select
the Sub-Tile option, and specify a layout. For more information on how to use and display
validation plots, see “Visualize and Assess Classifier Performance in Classification Learner” on
page 23-66.
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To return to the original layout, you can click the Layout button in the Plot and Interpret
section and select Single model (Default).

13 For each of the starred models, see how the model features relate to the model predictions by
using partial dependence plots (PDPs). On the Classification Learner tab, in the Plot and
Interpret section, click the arrow to open the gallery. In the Interpretation Results section,
click Partial Dependence. The PDP allows you to visualize the marginal effect of each predictor
on the predicted scores of the trained model. To compute the partial dependence values, the app
uses the model trained on the 85% of observations in cars not reserved for testing.

14 Examine the relationship between the model predictors and model scores on the training data
(that is, 85% of the observations in cars). Under Data, select Training set.

Look for features that seem to contribute to model predictions. For example, under Feature,
select Displacement.
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The blue plotted line represents the averaged partial relationship between the Displacement
feature and the NotUSA predicted scores. The red plotted line represents the averaged partial
relationship between the Displacement feature and the USA predicted scores. The tick marks
along the x-axis indicate the unique Displacement values in the training data set.

According to this model (Model 2.22), the probability of a car originating in the USA tends to
increase as its engine displacement increases. In particular, the probability of a car originating
outside of the USA drops to almost 0 when the engine displacement is greater than 200. Notice,
however, that few cars have a displacement value greater than 200.

Note In general, consider the distribution of values when interpreting partial dependence plots.
Results tend to be more reliable in intervals where you have sufficient observations whose
predictor values are spread evenly.

15 You can tune your best-performing models by removing predictors that do not seem to contribute
to model predictions. For example, in the partial dependence plot for each of the starred models,
select Model_Year under Feature.
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For both models, the predicted scores do not seem to vary greatly as the model year increases.
This result does not necessarily imply that the predictor is an unimportant feature. Because the
Model_Year variable is discrete, the x-axis tick marks cannot fully reflect the distribution of the
predictor values; that is, the values might be sparsely or unevenly distributed across the range of
model years.

Although you cannot determine that Model_Year is an unimportant feature, you might expect
the model year to have limited influence on the car origin. Therefore, you can try removing the
Model_Year predictor. In general, you do not need to remove predictors that contribute to
predictions as expected.

16 For this example, remove the Model_Year predictor from the best-performing models. For each
starred model, create a copy of the model. After selecting the model in the Models pane, click
the Duplicate button in the Models section of the Classification Learner tab.

Then, in the model Summary tab, expand the Feature Selection section, and clear the Select
check box for the Model_Year feature.
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17 Train the two new models. In the Train section of the Classification Learner tab, click Train
All and select Train All.

18 In the Models pane, click the star icons next to the two new models. To group the starred models
together, open the Sort by list and select Favorites.

19 For each starred model, compute the accuracy of the model on the test set. First, select the
model in the Models pane. Then, on the Classification Learner tab, in the Test section, click
Test All and select Test Selected.

20 Compare the validation and test accuracy results for the starred models by using a table. On the
Classification Learner tab, in the Models section, click Results Table. In the Results Table
tab, click the "Select columns to display" button at the top right of the table.
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In the Select Columns to Display dialog box, check the Select box for the Preset column, and
clear the Select check boxes for the Total Cost (Validation) and Total Cost (Test) columns.
Click OK.

In this example, the original Bagged Trees model (Model 2.22) outperforms the other models in
terms of validation and test accuracy.

21 For the best-performing model, look at the PDPs on the test data set. Ensure that the partial
relationships meet expectations.

For this example, compare the training set and test set PDPs for the Acceleration feature and
the Model 2.22 predicted scores. In the Partial Dependence Plot tab, under Feature, select
Acceleration. Under Data, select Training set and then select Test set to see each plot.
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The PDPs are similar for the training and test data sets. For lower acceleration values, the
predicted scores remain fairly consistent. The scores begin to change noticeably at an
acceleration value of approximately 19.5. The test data set does not appear to include many
observations with acceleration values above 20; therefore, comparing predictions for that range
of values is not possible.

If you are satisfied with the best-performing model, you can export the trained model to the
workspace. For more information, see “Export the Model to the Workspace to Make Predictions for
New Data” on page 23-83. You can also export any of the partial dependence plots you create in
Classification Learner. For more information, see “Export Plots in Classification Learner App” on page
23-78.

See Also
plotPartialDependence | partialDependence
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Related Examples
• “Visualize and Assess Classifier Performance in Classification Learner” on page 23-66
• “Interpret Machine Learning Models” on page 27-2
• “Export Plots in Classification Learner App” on page 23-78
• “Export Classification Model to Predict New Data” on page 23-83
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Deploy Model Trained in Classification Learner to MATLAB
Production Server

This example shows how to train a model in Classification Learner and export it for deployment to
MATLAB Production Server. This workflow requires MATLAB Compiler SDK.

Choose Trained Model to Deploy
1 In the Command Window, load the patients data set, and create a table from a subset of the

variables in the data set. Each row in patientTbl corresponds to a patient, and each column
corresponds to a diagnostic variable.

load patients
patientTbl = table(Age,Diastolic,Gender,Height, ...
    SelfAssessedHealthStatus,Systolic,Weight,Smoker);

2 Convert the SelfAssessedHealthStatus variable to an ordinal categorical predictor.

patientTbl.SelfAssessedHealthStatus = categorical(patientTbl.SelfAssessedHealthStatus, ...
    ["Poor","Fair","Good","Excellent"],"Ordinal",true);

3 From the Command Window, open the Classification Learner app. Populate the New Session from
Arguments dialog box with the predictor data in patientTbl and the response variable Smoker.

classificationLearner(patientTbl,"Smoker")

The default validation option is 5-fold cross-validation, to protect against overfitting. For this
example, do not change the default validation setting.

4 To accept the selections in the New Session from Arguments dialog box and continue, click Start
Session.

5 Train all preset models. On the Classification Learner tab, in the Models section, click the
arrow to open the gallery. In the Get Started group, click All. In the Train section, click Train
All and select Train All. The app trains all preset models, along with the default fine tree model,
and displays the models in the Models pane.

Note

• If you have Parallel Computing Toolbox, then the app has the Use Parallel button toggled on
by default. After you click Train All and select Train All or Train Selected, the app opens a
parallel pool of workers. During this time, you cannot interact with the software. After the
pool opens, you can continue to interact with the app while models train in parallel.

• If you do not have Parallel Computing Toolbox, then the app has the Use Background
Training check box in the Train All menu selected by default. After you select an option to
train models, the app opens a background pool. After the pool opens, you can continue to
interact with the app while models train in the background.

The app displays a confusion matrix for the second fine tree model (model 2.1). Blue values
indicate correct classifications, and red values indicate incorrect classifications. The Models
pane on the left shows the validation accuracy for each model.
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6 Sort the models based on the validation accuracy. In the Models pane, open the Sort by list and
select Accuracy (Validation). The app outlines the metric for the model (or models) with the
highest validation accuracy.

7 Select the model in the Models pane with the highest validation accuracy.

Export Model for Deployment
1 Export the selected model for deployment to MATLAB Production Server. On the Classification

Learner tab, in the Export section, click Export Model and select Export Model for
Deployment.

2 In the Select Project File for Model Deployment dialog box, select a location and name for your
project file. For this example, use the default project name
ClassificationLearnerDeployedModel.prj. Click Save.

The software opens the Production Server Compiler app and the autogenerated
predictFunction.m file.

In the Compiler tab of the Production Server Compiler app, the Exported Functions section
includes the files modelInformation.m and predictFunction.m. The section Additional
files required for your archive to run includes the files processInputData.m and
TrainedClassificationModel.mat.

3 Update the code in the files processInputData.m and predictFunction.m to include
preprocessing steps performed before you imported data in Classification Learner. Open the
processInputData.m file from the ClassificationLearnerDeployedModel_resources
folder, and change the code to include the conversion of the SelfAssessedHealthStatus
variable to an ordinal categorical predictor.

function processedData = processInputData(T)
    T.SelfAssessedHealthStatus = categorical(T.SelfAssessedHealthStatus, ...
        ["Poor","Fair","Good","Excellent"],"Ordinal",true);
    processedData = T;
end

4 In the predictFunction.m file, uncomment the following lines of code so that the
predictFunction function calls the processInputData function.

processedData = processInputData(T);
T = processedData;

5 Edit the predictFunction.m code so that the function returns two outputs, labels and
scores, instead of the single output result. Update the function signature in the first line of
code.

function [labels,scores] = predictFunction(varargin)

Then, update the result = model.predictFcn(T); line of code to include the two output
arguments.

[labels,scores] = model.predictFcn(T);

Also update the commented-out description of the predictFunction function to include
descriptions of the new output arguments. labels contains the predicted labels returned by the
trained model, and scores contains the predicted scores returned by the trained model.

6 Close the files predictFunction.m and processInputData.m.
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(Optional) Simulate Model Deployment
Before packaging your code for deployment to MATLAB Production Server, you can simulate the
model deployment using a MATLAB client. Completing this process requires opening another
instance of MATLAB. For an example that shows how to use a sample Java® client for sending data to
a MATLAB function deployed on the server, see “Evaluate Deployed Machine Learning Models Using
Java Client” (MATLAB Production Server).

1 In the Production Server Compiler app, click the Test Client button in the Test section on the
Compiler tab.

2 On the Test tab, in the Server Actions section, click the Start button. Note the address listed in
the Server Address pane, which in this example is http://localhost:9910/
DeployedClassificationModel.

3 Open a new instance of MATLAB.

In the new MATLAB instance, the Production Server Compiler app automatically opens. Close
this instance of the app.

4 In the Command Window of the new MATLAB instance, load the predictor and response data.
Ensure that the data has the same format as the training data used in Classification Learner.

load patients
patientTbl = table(Age,Diastolic,Gender,Height, ...
    SelfAssessedHealthStatus,Systolic,Weight,Smoker);
patientTbl.SelfAssessedHealthStatus = categorical(patientTbl.SelfAssessedHealthStatus, ...
    ["Poor","Fair","Good","Excellent"],"Ordinal",true);

5 Prepare the data to send it to MATLAB Production Server.

You must convert categorical variables and tables to cell arrays and structures, respectively,
before sending them to MATLAB Production Server. Because SelfAssessedHealthStatus is a
categorical variable and patientTbl is a table, process the input data further before sending it.

inputTbl = patientTbl;
columnNames = patientTbl.Properties.VariableNames;
for i=1:length(columnNames)
   if iscategorical(patientTbl.(columnNames{i}))
       inputTbl.(columnNames{i}) = cellstr(patientTbl.(columnNames{i}));
   end
end
inputData = table2struct(inputTbl);

6 Send the input data to MATLAB Production Server. Use the server address displayed in the
Production Server Compiler app.

jsonData = mps.json.encoderequest({inputData},"Nargout",2);
URL = "http://localhost:9910/DeployedClassificationModel/predictFunction";
options = weboptions("MediaType","application/json","Timeout",30);
response = webwrite(URL,jsonData,options);

In the original MATLAB instance, in the opened Production Server Compiler app, the MATLAB
Execution Requests pane under the Test tab shows a successful request between the server
and the MATLAB client.

7 In the Command Window of the new MATLAB instance, extract the predicted labels and scores
from the response variable. Check that the predicted values are correct.
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labels = response.lhs{1};
scores = response.lhs{2};

8 In the original MATLAB instance, in the Production Server Compiler app, click Stop in the
Server Actions section on the Test tab. In the Close section, click Close Test.

Package Code
1 Use the Production Server Compiler app to package your model and prediction function. On the

Compiler tab, in the Package section, click the Package button.
2 In the Package dialog box, verify that the option Open output folder when process completes

is selected.

After the deployment process finishes, examine the generated output.

• for_redistribution — Folder containing the DeployedClassificationModel.ctf file
• for_testing — Folder containing the raw generated files required to create the installer
• PackagingLog.html — Log file generated by MATLAB Compiler SDK

See Also

Related Examples
• “Visualize and Assess Classifier Performance in Classification Learner” on page 23-66
• “Export Classification Model to Predict New Data” on page 23-83
• “Create Deployable Archive for MATLAB Production Server” (MATLAB Production Server)
• “Evaluate Deployed Machine Learning Models Using Java Client” (MATLAB Production Server)
• “Execute Deployed MATLAB Functions” (MATLAB Production Server)
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Build Condition Model for Industrial Machinery and
Manufacturing Processes

This example builds a condition model for sensor data collected from an industrial manufacturing
machine. Use the Classification Learner App to build a binary classification model that determines
the condition of the machine as either "after maintenance" or "before maintenance." Train the model
using the data collected both immediately before and after a scheduled maintenance. Assume that the
data collected after scheduled maintenance represents normal observations, and the data collected
before maintenance represents anomalies. You can use the trained model to monitor incoming
observations and determine whether a new maintenance cycle is necessary by detecting anomalies in
the observations.

The classification workflow in this example includes these steps:

1 Load data into the MATLAB workspace.
2 Import data into the Classification Learner app and reserve a percentage of the data for testing.
3 Train binary classification models that can detect anomalies in sensor data. Use all features in

the data set.
4 Assess model performance using the model accuracy on the validation data.
5 Interrupt the app session to explore aspects of model deployment, including whether the model

can fit on the target hardware within the resources designated for the classification task.
6 Resume the app session to build new models with reduced size. To reduce model size, train the

models after selecting features using feature ranking.
7 Select a final model and observe its accuracy on the test set.
8 Export the final model for deployment on the target hardware.

Load Data
This example uses a data set that contains 12 features extracted from three-axis vibration
measurements of an industrial machine. Execute the following commands to download and extract
the data set file.

url = "https://ssd.mathworks.com/supportfiles/predmaint/" + ...
    "anomalyDetection3axisVibration/v1/vibrationData.zip";
outfilename = websave("vibrationData.zip",url);
unzip(outfilename)

Load the featureAll table in the FeatureEntire.mat file.

load("FeatureEntire.mat")

The table contains 17,642 observations for 13 variables (one categorical response variable and 12
predictor variables).

Shorten the predictor variable names by removing the redundant phrase ("_stats/Col1_").

for i = 2:13
    featureAll.Properties.VariableNames(i) = ...
        erase(featureAll.Properties.VariableNames(i),"_stats/Col1_");
end

Preview the first eight rows of the table.
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head(featureAll)

ans=8×13 table
    label     ch1CrestFactor    ch1Kurtosis    ch1RMS    ch1Std     ch2Mean      ch2RMS     ch2Skewness    ch2Std     ch3CrestFactor    ch3SINAD    ch3SNR     ch3THD 
    ______    ______________    ___________    ______    ______    __________    _______    ___________    _______    ______________    ________    _______    _______

    Before        2.3683           1.927       2.2225    2.2225     -0.015149    0.62512      4.2931       0.62495        5.6569        -5.4476     -4.9977    -4.4608
    Before         2.402          1.9206       2.1807    2.1803     -0.018269    0.56773      3.9985       0.56744        8.7481        -12.532     -12.419    -3.2353
    Before        2.4157          1.9523       2.1789    2.1788    -0.0063652    0.45646      2.8886       0.45642        8.3111        -12.977     -12.869    -2.9591
    Before        2.4595          1.8205         2.14    2.1401     0.0017307    0.41418      2.0635       0.41418        7.2318        -13.566     -13.468    -2.7944
    Before        2.2502          1.8609       2.3391     2.339    -0.0081829     0.3694      3.3498       0.36931        6.8134         -13.33     -13.225    -2.7182
    Before        2.4211          2.2479       2.1286    2.1285      0.011139    0.36638      1.8602       0.36621        7.4712        -13.324     -13.226    -3.0313
    Before        3.3111          4.0304       1.5896    1.5896    -0.0080759    0.47218      2.1132       0.47211        8.2412         -13.85     -13.758    -2.7822
    Before        2.2655          2.0656       2.3233    2.3233    -0.0049447    0.37829      2.4936       0.37827        7.6947        -13.781     -13.683    -2.5601

The values in the first column are the labels of observations, Before or After, which indicate
whether each observation is collected immediately before or after a scheduled maintenance,
respectively. The remaining columns contain 12 features extracted from the vibration measurements
using the Diagnostic Feature Designer app in Predictive Maintenance Toolbox™. For more
information about the extracted features, see “Anomaly Detection in Industrial Machinery Using
Three-Axis Vibration Data” (Predictive Maintenance Toolbox).

Import Data into App and Partition Data
Import the featureAll table into the Classification Learner app, and set aside 10% of the data as a
test set.

1 On the Apps tab, click the Show more arrow to display the apps gallery. In the Machine
Learning and Deep Learning group, click Classification Learner.

2 On the Classification Learner tab, in the File section, click New Session > From Workspace.

3 In the New Session from Workspace dialog box, select the table featureAll from the Data Set
Variable list. The app selects the response (label) and predictor variables (12 features) based
on their data types.

4 In the Test section, click the check box to set aside a test data set. Specify to use 10% of the
imported data as a test set. The featureAll table contains 17,642 samples, so setting aside
10% yields 1764 samples in the test set and 15,878 samples in the training set.
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5 To accept the default validation scheme and continue, click Start Session. The default validation
option is 5-fold cross-validation, to protect against overfitting.

Alternatively, you can open the Classification Learner app from the MATLAB Command Window by
entering classificationLearner. You can specify the predictor data, response variable, and
percentage of the data for testing.

classificationLearner(featureAll,"label",TestDataFraction=0.1)

Train Models Using All Features
First, train models using all 12 features in the data set. The Models pane already contains a draft for
a fine tree model. You can add a variety of draft models to the Models pane by selecting them from
the Models gallery, and then train all models.

1 On the Classification Learner tab, in the Models section, click the Show more arrow to open
the gallery.
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2 Select three models:

• Bagged trees — In the Ensemble Classifiers group, click Bagged Trees.
• Fine Gaussian support vector machine (SVM) — In the Support Vector Machines group,

click Fine Gaussian SVM.
• Bilayered neural network — In the Neural Network Classifiers group, click Bilayered

Neural Network.

The app includes the draft models in the Models pane.

For more information on each classifier option, see “Choose Classifier Options” on page 23-23.
3 In the Train section of the Classification Learner tab, click Train All and select Train All. The

app trains the four models using all 12 features.

Note

• If you have Parallel Computing Toolbox, then the app has the Use Parallel button toggled on
by default. After you click Train All and select Train All or Train Selected, the app opens a
parallel pool of workers. During this time, you cannot interact with the software. After the
pool opens, you can continue to interact with the app while models train in parallel.

• If you do not have Parallel Computing Toolbox, then the app has the Use Background
Training check box in the Train All menu selected by default. After you select an option to
train models, the app opens a background pool. After the pool opens, you can continue to
interact with the app while models train in the background.

Assess Model Performance
You can compare trained models based on multiple characteristics. For example, you can assess the
model accuracy, model size (which affects memory or disk storage needs), computational costs
associated with training and testing the model, and model interpretability.

Compare the four trained models based on the model accuracy measured on validation data.
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In the Models pane, each model has a validation accuracy score that indicates the percentage of
correctly predicted responses.

Note Validation introduces some randomness into the results. Your model validation results can vary
from the results shown in this example.

1 Sort the trained models based on the validation accuracy. In the Models pane, click the Sort by
arrow and select Accuracy (Validation).

Although three of the models share the same percentage for validation accuracy, when viewed
with three significant digits, the ensemble model achieves the highest accuracy by a small
margin. The app highlights the ensemble model by outlining its accuracy score, and the model
appears first when the models are sorted by validation accuracy.

2 To better understand the results, rearrange the layout of the plots so you can compare the
confusion matrices for the four models. Click the Document Actions arrow located to the far right
of the model plot tabs. Select the Tile All option and specify a 2-by-2 layout.
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In the top right of each plot, click the Hide plot options button  to make more room for the
plot.
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Compared to the other models, the ensemble model (Model 2) has fewer off-diagonal cells
corresponding to incorrectly classified observations.

For more details on assessing model performance, see “Visualize and Assess Classifier Performance
in Classification Learner” on page 23-66.

Export Model to the Workspace and Save App Session
Export the best model to the workspace and check the model size.

1 In the Models pane, click the ensemble model to select it.
2 On the Classification Learner tab, in the Export section, select Export Model > Export

Compact Model. This option exports the model with unnecessary data removed. That is, the
exported structure contains a classification object that does not include the training data (when
possible). You can still use the model for making predictions on new data.

Note The final model exported by Classification Learner is always trained using the full data set,
excluding any data reserved for testing. The validation scheme that you use only affects the way
the app computes validation metrics.
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3 In the Export Model dialog box, edit the name of the exported variable, if you want, and then
click OK. The default name for the exported model, trainedModel, increments every time you
export (for example, trainedModel1), to avoid overwriting existing exported models.

The new variable trainedModel appears in the workspace.
4 Save and close the current app session. Click Save in the File section of the Classification

Learner tab. Specify the session file name and location, and then close the app.

Check Model Size
Check the exported model size by using the whos function in the Command Window.

mdl = trainedModel.ClassificationEnsemble;
whos mdl

  Name      Size             Bytes  Class                                                      Attributes

  mdl       1x1             315622  classreg.learning.classif.CompactClassificationEnsemble              

Assume that you want to deploy the model on a programmable logic controller (PLC) with limited
memory, and the ensemble model with all 12 features does not fit within the resources designated on
the PLC.

Resume App Session
In Classification Learner, open the previously saved app session. Click Open in the File section. In
the Select File to Open dialog box, select the saved session.

Select Features Using Feature Ranking
One approach to reducing model size is to reduce the number of features in a model using feature
ranking and selection. Build new models with a reduced set of features and assess the model
accuracy.

1 Create a copy of each trained model. After selecting a model in the Models pane, either click
Duplicate in the Models section of the Classification Learner tab, or right-click the model and
select Duplicate.

2 To use feature ranking algorithms in Classification Learner, click Feature Selection in the
Options section of the Classification Learner tab. The app opens a Default Feature Selection
tab.

3 In the Default Feature Selection tab, click MRMR under Feature Ranking Algorithm. The
app displays a bar graph of the sorted feature importance scores, where larger scores (including
Infs) indicate greater feature importance. The table on the right shows the ranked features and
their scores.

4 Under Feature Selection, use the default option of selecting the highest ranked features to
avoid bias in the validation metrics. Specify to keep 3 features for model training.
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The feature ranking results are based on the full data set, including the training and validation
data but not the test data. The app uses the highest ranked features to train the full model (that
is, the model trained on the full data set). For each training fold, the app performs feature
selection before training the model. Different folds can choose different predictors as the highest
ranked features.

5 Click Save and Apply. The app applies the feature selection changes to the new draft models in
the Models pane. Note that the draft models use 3/12 features (3 features out of 12).

6 In the Train section, click Train All and select Train All. The app trains all new draft models
using three features.
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The models trained using only three features perform comparably to the models trained on all
features. This result indicates that a model based on only the top three features can achieve
similar accuracy as a model based on all features.

Among all the trained models, the best performing model is the neural network model with three
features.

For more details on feature selection, see “Feature Selection and Feature Transformation Using
Classification Learner App” on page 23-42.

Investigate Important Features in Scatter Plot
Examine the scatter plot for the best performing model using the top two features, ch3THD and
ch3SINAD. The plot should show strong class separation, given the high observed model accuracies.

1 In the Models pane, select the best performing model (Model 7, neural network model).
2 On the Classification Learner tab, in the Plot and Interpret section, click the Show more

arrow to open the gallery, and then click Scatter in the Validation Results group.
3 Choose the two most important predictors, ch3THD and ch3SINAD, using the X and Y lists under

Predictors.

The app creates a scatter plot of the two selected predictors, grouped by the model predictions.
Because you are using cross-validation, these predictions are on the validation observations. In
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other words, the software obtains each prediction by using a model that was trained without the
corresponding observation.

The plot shows the strong separation between the Before and After categories for the two
features.

For more information, see “Investigate Features in the Scatter Plot” on page 23-42 and “Plot
Classifier Results” on page 23-69.

Further Experimentation
To choose a final model, you can explore further on these aspects, if necessary:
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• Model accuracy — To achieve better accuracy, you can explore additional model types (for
example, try All in the Models gallery), further feature selection, or hyperparameter tuning. For
example, before training, select a draft model in the Models pane, and then click the model
Summary tab. You can specify the classifier hyperparameter options in the Model
Hyperparameters section. The tab also includes Feature Selection and PCA sections with
options you can set.
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If you want to automatically tune hyperparameters of a specific model type, you can select the
corresponding Optimizable model in the Models gallery and perform hyperparameter
optimization. For more information, see “Hyperparameter Optimization in Classification Learner
App” on page 23-54.

• Computational complexity — You can find the training time and prediction speed in the Summary
tab for a trained model. For example, see the Summary tab of the best performing model (Model
7, neural network model).

Assume that you decide to use the neural network model trained with the top three features based on
the validation accuracy and computational complexity.

Assess Model Accuracy on Test Set
You can use the test set accuracy as an estimate of the model accuracy on unseen data. Assess the
neural network model using the test set.

1 In the Models pane, select the neural network model.
2 On the Classification Learner tab, in the Test section, click Test All and select Test Selected.

The app computes the test set performance of the model trained on the full data set. As expected,
the model achieves similar accuracy on the test data (99.8%) compared to the validation
accuracy.
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3 Display the confusion matrix of the test set. In the Plot and Interpret section on the
Classification Learner tab, open the gallery, and then click Confusion Matrix (Test) in the
Test Results group.
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For more details, see “Evaluate Test Set Model Performance” on page 23-76.

Export Final Model
Export the final model to the workspace and check the model size.

1 In Classification Learner, select the neural network model in the Models pane.
2 On the Classification Learner tab, in the Export section, select Export Model > Export

Compact Model.

23 Classification Learner

23-186



3 In the Export Model dialog box, edit the name of the exported variable, if you want, and then
click OK. The default name is trainedModel1.

4 Check the model size by using the whos function.

mdl_final = trainedModel1.ClassificationNeuralNetwork;
whos mdl_final

  Name           Size            Bytes  Class                                                           Attributes

  mdl_final      1x1              7842  classreg.learning.classif.CompactClassificationNeuralNetwork              

The size of the final model (mdl_final from trainedModel1) is smaller than the size of the
ensemble model (mdl from trainedModel).

For information about potential next steps of generating code for prediction or deploying predictions,
see “Export Classification Model to Predict New Data” on page 23-83.

See Also

See Also

Related Examples
• “Train Classification Models in Classification Learner App” on page 23-10
• “Select Data for Classification or Open Saved App Session” on page 23-18
• “Choose Classifier Options” on page 23-23
• “Feature Selection and Feature Transformation Using Classification Learner App” on page 23-42
• “Visualize and Assess Classifier Performance in Classification Learner” on page 23-66
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• “Train Decision Trees Using Classification Learner App” on page 23-89
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Regression Learner

• “Train Regression Models in Regression Learner App” on page 24-2
• “Select Data for Regression or Open Saved App Session” on page 24-9
• “Choose Regression Model Options” on page 24-14
• “Feature Selection and Feature Transformation Using Regression Learner App” on page 24-30
• “Hyperparameter Optimization in Regression Learner App” on page 24-35
• “Visualize and Assess Model Performance in Regression Learner” on page 24-48
• “Export Plots in Regression Learner App” on page 24-61
• “Export Regression Model to Predict New Data” on page 24-65
• “Train Regression Trees Using Regression Learner App” on page 24-71
• “Train Regression Neural Networks Using Regression Learner App” on page 24-82
• “Train Kernel Approximation Model Using Regression Learner App” on page 24-89
• “Train Regression Model Using Hyperparameter Optimization in Regression Learner App”

on page 24-97
• “Check Model Performance Using Test Set in Regression Learner App” on page 24-103
• “Interpret Regression Models Trained in Regression Learner App” on page 24-108
• “Deploy Model Trained in Regression Learner to MATLAB Production Server” on page 24-119
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Train Regression Models in Regression Learner App

In this section...
“Automated Regression Model Training” on page 24-2
“Manual Regression Model Training” on page 24-4
“Parallel Regression Model Training” on page 24-5
“Compare and Improve Regression Models” on page 24-6

You can use Regression Learner to train regression models including linear regression models,
regression trees, Gaussian process regression models, support vector machines, kernel
approximation, ensembles of regression trees, and neural network regression models. In addition to
training models, you can explore your data, select features, specify validation schemes, and evaluate
results. You can export a model to the workspace to use the model with new data or generate
MATLAB code to learn about programmatic regression.

Training a model in Regression Learner consists of two parts:

• Validated Model: Train a model with a validation scheme. By default, the app protects against
overfitting by applying cross-validation. Alternatively, you can choose holdout validation. The
validated model is visible in the app.

• Full Model: Train a model on full data, excluding test data. The app trains this model
simultaneously with the validated model. However, the model trained on full data is not visible in
the app. When you choose a regression model to export to the workspace, Regression Learner
exports the full model.

Note The app does not use test data for model training. Models exported from the app are trained on
the full data, excluding any data reserved for testing.

The app displays the results of the validated model. Diagnostic measures, such as model accuracy,
and plots, such as a response plot or residuals plot, reflect the validated model results. You can
automatically train one or more regression models, compare validation results, and choose the best
model that works for your regression problem. When you choose a model to export to the workspace,
Regression Learner exports the full model. Because Regression Learner creates a model object of the
full model during training, you experience no lag time when you export the model. You can use the
exported model to make predictions on new data.

To get started by training a selection of model types, see “Automated Regression Model Training” on
page 24-2. If you already know which regression model you want to train, see “Manual Regression
Model Training” on page 24-4.

Automated Regression Model Training
You can use Regression Learner to automatically train a selection of different regression models on
your data.

• Get started by automatically training multiple models simultaneously. You can quickly try a
selection of models, and then explore promising models interactively.
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• If you already know what model type you want, then you can train individual models instead. See
“Manual Regression Model Training” on page 24-4.

1 On the Apps tab, in the Machine Learning and Deep Learning group, click Regression
Learner to open the Regression Learner app.

2 On the Regression Learner tab, in the File section, click New Session and select data from the
workspace or from a file. Specify a response variable and variables to use as predictors.
Alternatively, click Open to open a previously saved app session. See “Select Data for Regression
or Open Saved App Session” on page 24-9.

3 In the Models section, click the arrow to expand the list of regression models. Select All Quick-
To-Train. This option trains all the model presets that are fast to fit.

4 In the Train section, click Train All and select Train All.

Note If you have Parallel Computing Toolbox, the app trains the models in parallel by default.
See “Parallel Regression Model Training” on page 24-5.

A selection of model types appears in the Models pane. When the models finish training, the best
RMSE (Validation) score is outlined in a box.
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5 Click models in the Models pane and open the corresponding plots to explore the results.

For the next steps, see “Manual Regression Model Training” on page 24-4 or “Compare and
Improve Regression Models” on page 24-6.

6 To try all the nonoptimizable model presets available, click All in the Models section of the
Regression Learner tab.

7 In the Train section, click Train All and select Train Selected.

Manual Regression Model Training
To explore individual model types, you can train models one at a time or as a group.

1 Choose a model type. On the Regression Learner tab, in the Models section, click a model
type. To see all available model options, click the arrow in the Models section to expand the list
of regression models. The nonoptimizable model options in the gallery are preset starting points
with different settings, suitable for a range of different regression problems.

To read descriptions of the models, switch to the details view.
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For more information on each option, see “Choose Regression Model Options” on page 24-14.
2 After selecting a model, you can train the model. In the Train section, click Train All and select

Train Selected. Repeat the process to explore different models.

Alternatively, you can create several draft models and then train the models as a group. In the
Train section, click Train All and select Train All.

Tip Select regression trees first. If your trained models do not predict the response accurately
enough, then try other models with higher flexibility. To avoid overfitting, look for a less flexible
model that provides sufficient accuracy.

3 If you want to try all nonoptimizable models of the same or different types, then select one of the
All options in the Models gallery.

Alternatively, if you want to automatically tune hyperparameters of a specific model type, select
the corresponding Optimizable model and perform hyperparameter optimization. For more
information, see “Hyperparameter Optimization in Regression Learner App” on page 24-35.

For next steps, see “Compare and Improve Regression Models” on page 24-6.

Parallel Regression Model Training
You can train models in parallel using Regression Learner if you have Parallel Computing Toolbox.
Parallel training allows you to train multiple models simultaneously and continue working.

To control parallel training, toggle the Use Parallel button in the Train section of the Regression
Learner tab. To train draft models in parallel, ensure the button is toggled on before clicking Train
All. The Use Parallel button is available only if you have Parallel Computing Toolbox.

 Train Regression Models in Regression Learner App

24-5



The Use Parallel button is on by default. The first time you click Train All and select Train All or
Train Selected, a dialog box is displayed while the app opens a parallel pool of workers. After the
pool opens, you can train multiple models at once.

When models are training in parallel, progress indicators appear on each training and queued model
in the Models pane. If you want, you can cancel individual models. During training, you can examine
results and plots from models, and initiate training of more models.

If you have Parallel Computing Toolbox, then parallel training is available for nonoptimizable models
in Regression Learner, and you do not need to set the UseParallel option of the statset function.

Note Even if you do not have Parallel Computing Toolbox, you can keep the app responsive during
model training. Before training draft models, on the Regression Learner tab, in the Train section,
click Train All and ensure the Use Background Training check box is selected. Then, select the
Train All option. A dialog box is displayed while the app opens a background pool. After the pool
opens, you can continue to interact with the app while models train in the background.

Compare and Improve Regression Models
1 Examine the RMSE (Validation) score reported in the Models pane for each model. Click

models in the Models pane and open the corresponding plots to explore the results. Compare
model performance by inspecting results in the plots. You can rearrange the layout of the plots to
compare results across multiple models: use the options in the Layout button, drag and drop
plots, or select the options provided by the Document Actions arrow located to the right of the
model plot tabs.

Additionally, you can compare the models by using the Sort by options in the Models pane.
Delete any unwanted model by selecting the model and clicking the Delete selected model
button in the upper right of the pane, clicking Delete in the Models section of the Regression
Learner tab, or right-clicking the model and selecting Delete.

See “Visualize and Assess Model Performance in Regression Learner” on page 24-48.
2 Select the best model in the Models pane and then try including and excluding different features

in the model.

First, create a copy of the model. After selecting the model, either click Duplicate in the Models
section of the Regression Learner tab or right-click the model and select Duplicate.

Then, click Feature Selection in the Options section of the Regression Learner tab. Use the
available feature ranking algorithms to select features.

Try the response plot to help you identify features to remove. See if you can improve the model
by removing features with low predictive power. Specify predictors to include in the model, and
train new models using the new options. Compare results among the models in the Models pane.
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You also can try transforming features with PCA to reduce dimensionality. Click PCA in the
Options section of the Regression Learner tab.

See “Feature Selection and Feature Transformation Using Regression Learner App” on page 24-
30.

3 To try to improve the model further, you can duplicate it, change the hyperparameter options in
the Model Hyperparameters section of the model Summary tab, and then train the model
using the new options. To learn how to control model flexibility, see “Choose Regression Model
Options” on page 24-14. For information on how to tune model hyperparameters automatically,
see “Hyperparameter Optimization in Regression Learner App” on page 24-35.

If feature selection, PCA, or new hyperparameter values improve your model, try training All
model types with the new settings. See if another model type does better with the new settings.

Tip To avoid overfitting, look for a less flexible model that provides sufficient accuracy. For example,
look for simple models, such as regression trees that are fast and easy to interpret. If your models are
not accurate enough, then try other models with higher flexibility, such as ensembles. To learn about
the model flexibility, see “Choose Regression Model Options” on page 24-14.

This figure shows the app with a Models pane containing various regression model types.
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For a step-by-step example comparing different regression models, see “Train Regression Trees Using
Regression Learner App” on page 24-71.

Next, you can generate code to train the model with different data or export trained models to the
workspace to make predictions using new data. See “Export Regression Model to Predict New Data”
on page 24-65.

See Also

Related Examples
• “Select Data for Regression or Open Saved App Session” on page 24-9
• “Choose Regression Model Options” on page 24-14
• “Feature Selection and Feature Transformation Using Regression Learner App” on page 24-30
• “Visualize and Assess Model Performance in Regression Learner” on page 24-48
• “Export Regression Model to Predict New Data” on page 24-65
• “Train Regression Trees Using Regression Learner App” on page 24-71
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Select Data for Regression or Open Saved App Session
In this section...
“Select Data from Workspace” on page 24-9
“Import Data from File” on page 24-10
“Example Data for Regression” on page 24-10
“Choose Validation Scheme” on page 24-11
“(optional) Reserve Data for Testing” on page 24-12
“Save and Open App Session” on page 24-12

When you first launch the Regression Learner app, you can choose to import data or to open a
previously saved app session. To import data, see “Select Data from Workspace” on page 24-9 and
“Import Data from File” on page 24-10. To open a saved session, see “Save and Open App Session”
on page 24-12.

Select Data from Workspace

Tip In Regression Learner, tables are the easiest way to work with your data, because they can
contain numeric and label data. Use the Import Tool to bring your data into the MATLAB workspace
as a table, or use the table functions to create a table from workspace variables. See “Tables”.

1 Load your data into the MATLAB workspace.

Predictor variables can be numeric, categorical, string, or logical vectors, cell arrays of character
vectors, or character arrays. The response variable must be a floating-point vector (single or
double precision).

Combine the predictor data into one variable, either a table or a matrix. You can additionally
combine your predictor data and response variable, or you can keep them separate.

For example data sets, see “Example Data for Regression” on page 24-10.
2 On the Apps tab, click Regression Learner to open the app.
3 On the Regression Learner tab, in the File section, click New Session > From Workspace.
4 In the New Session from Workspace dialog box, under Data Set Variable, select a table or

matrix from the workspace variables.

If you select a matrix, choose whether to use rows or columns for observations by clicking the
option buttons.

5 Under Response, observe the default response variable. The app tries to select a suitable
response variable from the data set variable and treats all other variables as predictors.

If you want to use a different response variable, you can:

• Use the list to select another variable from the data set variable.
• Select a separate workspace variable by clicking the From workspace option button and

then selecting a variable from the list.
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6 Under Predictors, add or remove predictors using the check boxes. Add or remove all predictors
by clicking Add All or Remove All. You can also add or remove multiple predictors by selecting
them in the table, and then clicking Add N or Remove N, where N is the number of selected
predictors. The Add All and Remove All buttons change to Add N and Remove N when you
select multiple predictors.

7 Click Start Session to accept the default validation scheme and continue. The default validation
option is 5-fold cross-validation, which protects against overfitting.

Tip If you have a large data set, you might want to switch to holdout validation. To learn more,
see “Choose Validation Scheme” on page 24-11.

Note If you prefer loading data into the app directly from the command line, you can specify the
predictor data, response variable, and validation type to use in Regression Learner in the command
line call to regressionLearner. For more information, see Regression Learner.

For next steps, see “Train Regression Models in Regression Learner App” on page 24-2.

Import Data from File
1 On the Regression Learner tab, in the File section, select New Session > From File.
2 Select a file type in the list, such as spreadsheets, text files, or comma-separated values (.csv)

files, or select All Files to browse for other file types such as .dat.

Example Data for Regression
To get started using Regression Learner, try these example data sets.

Name Size Description
Cars Number of predictors: 7

Number of observations: 406
Response: MPG (miles per gallon)

Data on different car models, 1970–
1982. Predict the fuel economy (in miles
per gallon), or one of the other
characteristics.

For a step-by-step example, see “Train
Regression Trees Using Regression
Learner App” on page 24-71.

Create a table from variables in the carbig data set.

load carbig
cartable = table(Acceleration,Cylinders,Displacement, ...
    Horsepower,Model_Year,Weight,Origin,MPG);

Abalone Number of predictors: 8
Number of observations: 4177
Response: Rings

Measurements of abalone (a group of
sea snails). Predict the age of abalones,
which is closely related to the number of
rings in their shells.
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Name Size Description
Download the data from the UCI Machine Learning Repository and save it in your
current folder. Read the data into a table and specify the variable names.

url = "https://archive.ics.uci.edu/ml/" + ...
    "machine-learning-databases/abalone/abalone.data";
websave("abalone.csv",url);
varnames = ["Sex";"Length";"Diameter";"Height";"Whole_weight"; ...
    "Shucked_weight";"Viscera_weight";"Shell_weight";"Rings"]; 
abalonetable = readtable("abalone.csv");
abalonetable.Properties.VariableNames = varnames;

Hospital Number of predictors: 5
Number of observations: 100
Response: Diastolic

Simulated hospital data. Predict the
diastolic blood pressure of patients.

Create a table from variables in the patients data set.

load patients
hospitaltable = table(Gender,Age,Weight,Smoker,Systolic, ...
    Diastolic);

Choose Validation Scheme

Choose a validation method to examine the predictive accuracy of the fitted models. Validation
estimates model performance on new data, and helps you choose the best model. Validation protects
against overfitting. A model that is too flexible and suffers from overfitting has a worse validation
accuracy. Choose a validation scheme before training any models so that you can compare all the
models in your session using the same validation scheme.

Tip Try the default validation scheme and click Start Session to continue. The default option is 5-
fold cross-validation, which protects against overfitting.

If you have a large data set and training the models takes too long using cross-validation, reimport
your data and try the faster holdout validation instead.

Assume that no data is reserved for testing, which is true by default.

• Cross-Validation: Select the number of folds (or divisions) to partition the data set.

If you choose k folds, then the app:

1 Partitions the data into k disjoint sets or folds
2 For each validation fold:

a Trains a model using the training-fold observations (observations not in the validation
fold)

b Assesses model performance using validation-fold data
3 Calculates the average validation error over all folds
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This method gives a good estimate of the predictive accuracy of the final model trained using the
full data set. The method requires multiple fits, but makes efficient use of all the data, so it works
well for small data sets.

• Holdout Validation: Select a percentage of the data to use as a validation set. The app trains a
model on the training set and assesses its performance with the validation set. The model used for
validation is based on only a portion of the data, so holdout validation is appropriate only for large
data sets. The final model is trained using the full data set.

• Resubstitution Validation: No protection against overfitting. The app uses all the data for
training and computes the error rate on the same data. Without any separate validation data, you
get an unrealistic estimate of the model’s performance on new data. That is, the training sample
accuracy is likely to be unrealistically high, and the predictive accuracy is likely to be lower.

To help you avoid overfitting to the training data, choose another validation scheme instead.

Note The validation scheme only affects the way that Regression Learner computes validation
metrics. The final model is always trained using the full data set, excluding any data reserved for
testing.

All the models you train after selecting data use the same validation scheme that you select in this
dialog box. You can compare all the models in your session using the same validation scheme.

To change the validation selection and train new models, you can select data again, but you lose any
trained models. The app warns you that importing data starts a new session. Save any trained models
you want to keep to the workspace, and then import the data.

For next steps training models, see “Train Regression Models in Regression Learner App” on page
24-2.

(optional) Reserve Data for Testing
When you import data into Regression Learner, you can specify to reserve a percentage of the data
for testing. In the Test section of the New Session dialog box, click the check box to set aside a test
data set. Specify the percentage of the imported data to use as a test set. If you prefer, you can still
choose to import a separate test data set after starting an app session.

You can use the test set to evaluate the performance of a trained model. In particular, you can check
whether the validation metrics provide good estimates for the model performance on new data. For
more information, see “Evaluate Test Set Model Performance” on page 24-59. For an example, see
“Train Regression Model Using Hyperparameter Optimization in Regression Learner App” on page
24-97.

Note The app does not use test data for model training. Models exported from the app are trained on
the full training and validation data, excluding any data reserved for testing.

Save and Open App Session
In Regression Learner, you can save the current app session and open a previously saved app session.

• To save the current app session, click Save in the File section of the Regression Learner tab.
When you first save the current session, you must specify the session file name and the file
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location. The Save Session option saves the current session, and the Save Session As option
saves the current session to a new file.

• To open a saved app session, click Open in the File section. In the Select File to Open dialog box,
select the saved session you want to open.

See Also

Related Examples
• “Train Regression Models in Regression Learner App” on page 24-2
• “Choose Regression Model Options” on page 24-14
• “Feature Selection and Feature Transformation Using Regression Learner App” on page 24-30
• “Visualize and Assess Model Performance in Regression Learner” on page 24-48
• “Export Regression Model to Predict New Data” on page 24-65
• “Train Regression Trees Using Regression Learner App” on page 24-71
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Choose Regression Model Options
In this section...
“Choose Regression Model Type” on page 24-14
“Linear Regression Models” on page 24-16
“Regression Trees” on page 24-18
“Support Vector Machines” on page 24-20
“Gaussian Process Regression Models” on page 24-22
“Kernel Approximation Models” on page 24-24
“Ensembles of Trees” on page 24-26
“Neural Networks” on page 24-27

Choose Regression Model Type
You can use the Regression Learner app to automatically train a selection of different models on your
data. Use automated training to quickly try a selection of model types, and then explore promising
models interactively. To get started, try these options first:

Get Started Regression Model Options Description
All Quick-To-Train Try the All Quick-To-Train option first. The app

trains all model types that are typically quick to
train.

All Use the All option to train all available
nonoptimizable model types. Trains every type
regardless of any prior trained models. Can be
time-consuming.

To learn more about automated model training, see “Automated Regression Model Training” on page
24-2.

If you want to explore models one at a time, or if you already know what model type you want, you
can select individual models or train a group of the same type. To see all available regression model
options, on the Regression Learner tab, click the arrow in the Models section to expand the list of
regression models. The nonoptimizable model options in the gallery are preset starting points with
different settings, suitable for a range of different regression problems. To use optimizable model
options and tune model hyperparameters automatically, see “Hyperparameter Optimization in
Regression Learner App” on page 24-35.
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For help choosing the best model type for your problem, see the tables showing typical
characteristics of different regression model types. Decide on the tradeoff you want in speed,
flexibility, and interpretability. The best model type depends on your data.

Tip To avoid overfitting, look for a less flexible model that provides sufficient accuracy. For example,
look for simple models such as regression trees that are fast and easy to interpret. If the models are
not accurate enough predicting the response, choose other models with higher flexibility, such as
ensembles. To control flexibility, see the details for each model type.

Characteristics of Regression Model Types

Regression Model Type Interpretability
“Linear Regression Models” on page 24-16 Easy

“Regression Trees” on page 24-18 Easy

“Support Vector Machines” on page 24-20 Easy for linear SVMs. Hard for other kernels.

“Gaussian Process Regression Models” on
page 24-22

Hard

“Ensembles of Trees” on page 24-26 Hard

“Neural Networks” on page 24-27 Hard

To read a description of each model in Regression Learner, switch to the details view in the list of all
model presets.
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Tip The nonoptimizable models in the Models gallery are preset starting points with different
settings. After you choose a model type, such as regression trees, try training all the nonoptimizable
presets to see which one produces the best model with your data.

For workflow instructions, see “Train Regression Models in Regression Learner App” on page 24-2.

Categorical Predictor Support

In Regression Learner, all model types support categorical predictors.

Tip If you have categorical predictors with many unique values, training linear models with
interaction or quadratic terms and stepwise linear models can use a lot of memory. If the model fails
to train, try removing these categorical predictors.

Linear Regression Models

Linear regression models have predictors that are linear in the model parameters, are easy to
interpret, and are fast for making predictions. These characteristics make linear regression models
popular models to try first. However, the highly constrained form of these models means that they
often have low predictive accuracy. After fitting a linear regression model, try creating more flexible
models, such as regression trees, and compare the results.

Tip In the Models gallery, click All Linear  to try each of the linear regression options and see
which settings produce the best model with your data. Select the best model in the Models pane and
try to improve that model by using feature selection and changing some advanced options.
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Regression Model Type Interpretability Model Flexibility
Linear Easy Very low

Interactions Linear Easy Medium

Robust Linear Easy Very low. Less sensitive to
outliers, but can be slow to
train.

Stepwise Linear Easy Medium

Tip For a workflow example, see “Train Regression Trees Using Regression Learner App” on page
24-71.

Linear Regression Model Hyperparameter Options

Regression Learner uses the fitlm function to train Linear, Interactions Linear, and Robust Linear
models. The app uses the stepwiselm function to train Stepwise Linear models.

For Linear, Interactions Linear, and Robust Linear models you can set these options:

• Terms

Specify which terms to use in the linear model. You can choose from:

• Linear. A constant term and linear terms in the predictors
• Interactions. A constant term, linear terms, and interaction terms between the predictors
• Pure Quadratic. A constant term, linear terms, and terms that are purely quadratic in each

of the predictors
• Quadratic. A constant term, linear terms, and quadratic terms (including interactions)

• Robust option

Specify whether to use a robust objective function and make your model less sensitive to outliers.
With this option, the fitting method automatically assigns lower weights to data points that are
more likely to be outliers.

Stepwise linear regression starts with an initial model and systematically adds and removes terms to
the model based on the explanatory power of these incrementally larger and smaller models. For
Stepwise Linear models, you can set these options:

• Initial terms

Specify the terms that are included in the initial model of the stepwise procedure. You can choose
from Constant, Linear, Interactions, Pure Quadratic, and Quadratic.

• Upper bound on terms
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Specify the highest order of the terms that the stepwise procedure can add to the model. You can
choose from Linear, Interactions, Pure Quadratic, and Quadratic.

• Maximum number of steps

Specify the maximum number of different linear models that can be tried in the stepwise
procedure. To speed up training, try reducing the maximum number of steps. Selecting a small
maximum number of steps decreases your chances of finding a good model.

Tip If you have categorical predictors with many unique values, training linear models with
interaction or quadratic terms and stepwise linear models can use a lot of memory. If the model fails
to train, try removing these categorical predictors.

Regression Trees

Regression trees are easy to interpret, fast for fitting and prediction, and low on memory usage. Try
to grow smaller trees with fewer larger leaves to prevent overfitting. Control the leaf size with the
Minimum leaf size setting.

Tip In the Models gallery, click All Trees  to try each of the nonoptimizable regression tree
options and see which settings produce the best model with your data. Select the best model in the
Models pane, and try to improve that model by using feature selection and changing some advanced
options.

Regression Model Type Interpretability Model Flexibility
Fine Tree Easy High

Many small leaves for a highly
flexible response function (Minimum
leaf size is 4.)

Medium Tree Easy Medium
Medium-sized leaves for a less
flexible response function (Minimum
leaf size is 12.)

Coarse Tree Easy Low
Few large leaves for a coarse
response function (Minimum leaf
size is 36.)

To predict a response of a regression tree, follow the tree from the root (beginning) node down to a
leaf node. The leaf node contains the value of the response.

Statistics and Machine Learning Toolbox trees are binary. Each step in a prediction involves checking
the value of one predictor variable. For example, here is a simple regression tree
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This tree predicts the response based on two predictors, x1 and x2. To make a prediction, start at the
top node. At each node, check the values of the predictors to decide which branch to follow. When the
branches reach a leaf node, the response is set to the value corresponding to that node.

You can visualize your regression tree model by exporting the model from the app, and then entering:

view(trainedModel.RegressionTree,"Mode","graph") 

Tip For a workflow example, see “Train Regression Trees Using Regression Learner App” on page
24-71.

Regression Tree Model Hyperparameter Options

The Regression Learner app uses the fitrtree function to train regression trees. You can set these
options:

• Minimum leaf size

Specify the minimum number of training samples used to calculate the response of each leaf node.
When you grow a regression tree, consider its simplicity and predictive power. To change the
minimum leaf size, click the buttons or enter a positive integer value in the Minimum leaf size
box.

• A fine tree with many small leaves is usually highly accurate on the training data. However, the
tree might not show comparable accuracy on an independent test set. A very leafy tree tends to
overfit, and its validation accuracy is often far lower than its training (or resubstitution)
accuracy.

• In contrast, a coarse tree with fewer large leaves does not attain high training accuracy. But a
coarse tree can be more robust in that its training accuracy can be near that of a
representative test set.
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Tip Decrease the Minimum leaf size to create a more flexible model.
• Surrogate decision splits — For missing data only.

Specify surrogate use for decision splits. If you have data with missing values, use surrogate splits
to improve the accuracy of predictions.

When you set Surrogate decision splits to On, the regression tree finds at most 10 surrogate
splits at each branch node. To change the number of surrogate splits, click the buttons or enter a
positive integer value in the Maximum surrogates per node box.

When you set Surrogate decision splits to Find All, the regression tree finds all surrogate
splits at each branch node. The Find All setting can use considerable time and memory.

Alternatively, you can let the app choose some of these model options automatically by using
hyperparameter optimization. See “Hyperparameter Optimization in Regression Learner App” on
page 24-35.

Support Vector Machines

You can train regression support vector machines (SVMs) in Regression Learner. Linear SVMs are
easy to interpret, but can have low predictive accuracy. Nonlinear SVMs are more difficult to
interpret, but can be more accurate.

Tip In the Models gallery, click All SVMs  to try each of the nonoptimizable SVM options and
see which settings produce the best model with your data. Select the best model in the Models pane,
and try to improve that model by using feature selection and changing some advanced options.

Regression Model
Type

Interpretability Model Flexibility

Linear SVM Easy Low

Quadratic SVM Hard Medium

Cubic SVM Hard Medium

Fine Gaussian SVM Hard High
Allows rapid variations in the response function.
Kernel scale is set to sqrt(P)/4, where P is the
number of predictors.

Medium Gaussian
SVM

Hard Medium
Gives a less flexible response function. Kernel scale is
set to sqrt(P).
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Regression Model
Type

Interpretability Model Flexibility

Coarse Gaussian
SVM

Hard Low
Gives a rigid response function. Kernel scale is set to
sqrt(P)*4.

Statistics and Machine Learning Toolbox implements linear epsilon-insensitive SVM regression. This
SVM ignores prediction errors that are less than some fixed number ε. The support vectors are the
data points that have errors larger than ε. The function the SVM uses to predict new values depends
only on the support vectors. To learn more about SVM regression, see Understanding Support Vector
Machine Regression on page 25-2.

Tip For a workflow example, see “Train Regression Trees Using Regression Learner App” on page
24-71.

SVM Model Hyperparameter Options

Regression Learner uses the fitrsvm function to train SVM regression models.

You can set these options in the app:

• Kernel function

The kernel function determines the nonlinear transformation applied to the data before the SVM is
trained. You can choose from:

• Gaussian or Radial Basis Function (RBF) kernel
• Linear kernel, easiest to interpret
• Quadratic kernel
• Cubic kernel

• Box constraint mode

The box constraint controls the penalty imposed on observations with large residuals. A larger box
constraint gives a more flexible model. A smaller value gives a more rigid model, less sensitive to
overfitting.

When Box constraint mode is set to Auto, the app uses a heuristic procedure to select the box
constraint.

Try to fine-tune your model by specifying the box constraint manually. Set Box constraint mode
to Manual and specify a value. Change the value by clicking the arrows or entering a positive
scalar value in the Manual box constraint box. The app automatically preselects a reasonable
value for you. Try to increase or decrease this value slightly and see if this improves your model.

Tip Increase the box constraint value to create a more flexible model.
• Epsilon mode
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Prediction errors that are smaller than the epsilon (ε) value are ignored and treated as equal to
zero. A smaller epsilon value gives a more flexible model.

When Epsilon mode is set to Auto, the app uses a heuristic procedure to select the kernel scale.

Try to fine-tune your model by specifying the epsilon value manually. Set Epsilon mode to
Manual and specify a value. Change the value by clicking the arrows or entering a positive scalar
value in the Manual epsilon box. The app automatically preselects a reasonable value for you.
Try to increase or decrease this value slightly and see if this improves your model.

Tip Decrease the epsilon value to create a more flexible model.
• Kernel scale mode

The kernel scale controls the scale of the predictors on which the kernel varies significantly. A
smaller kernel scale gives a more flexible model.

When Kernel scale mode is set to Auto, the app uses a heuristic procedure to select the kernel
scale.

Try to fine-tune your model by specifying the kernel scale manually. Set Kernel scale mode to
Manual and specify a value. Change the value by clicking the arrows or entering a positive scalar
value in the Manual kernel scale box. The app automatically preselects a reasonable value for
you. Try to increase or decrease this value slightly and see if this improves your model.

Tip Decrease the kernel scale value to create a more flexible model.
• Standardize data

Standardizing the predictors transforms them so that they have mean 0 and standard deviation 1.
Standardizing removes the dependence on arbitrary scales in the predictors and generally
improves performance.

Alternatively, you can let the app choose some of these model options automatically by using
hyperparameter optimization. See “Hyperparameter Optimization in Regression Learner App” on
page 24-35.

Gaussian Process Regression Models

You can train Gaussian process regression (GPR) models in Regression Learner. GPR models are often
highly accurate, but can be difficult to interpret.

Tip In the Models gallery, click All GPR Models  to try each of the nonoptimizable GPR model
options and see which settings produce the best model with your data. Select the best model in the
Models pane, and try to improve that model by using feature selection and changing some advanced
options.
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Regression Model
Type

Interpretability Model Flexibility

Rational Quadratic Hard Automatic

Squared
Exponential

Hard Automatic

Matern 5/2 Hard Automatic

Exponential Hard Automatic

In Gaussian process regression, the response is modeled using a probability distribution over a space
of functions. The flexibility of the presets in the Models gallery is automatically chosen to give a
small training error and, simultaneously, protection against overfitting. To learn more about Gaussian
process regression, see Gaussian Process Regression Models on page 6-2.

Tip For a workflow example, see “Train Regression Trees Using Regression Learner App” on page
24-71.

Gaussian Process Regression Model Hyperparameter Options

Regression Learner uses the fitrgp function to train GPR models.

You can set these options in the app:

• Basis function

The basis function specifies the form of the prior mean function of the Gaussian process
regression model. You can choose from Zero, Constant, and Linear. Try to choose a different
basis function and see if this improves your model.

• Kernel function

The kernel function determines the correlation in the response as a function of the distance
between the predictor values. You can choose from Rational Quadratic, Squared
Exponential, Matern 5/2, Matern 3/2, and Exponential.

To learn more about kernel functions, see Kernel (Covariance) Function Options on page 6-6.
• Use isotropic kernel

If you use an isotropic kernel, the correlation length scales are the same for all the predictors.
With a nonisotropic kernel, each predictor variable has its own separate correlation length scale.

Using a nonisotropic kernel can improve the accuracy of your model, but can make the model slow
to fit.
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To learn more about nonisotropic kernels, see Kernel (Covariance) Function Options. on page 6-6
• Kernel mode

You can manually specify initial values of the kernel parameters Kernel scale and Signal
standard deviation. The signal standard deviation is the prior standard deviation of the response
values. By default the app locally optimizes the kernel parameters starting from the initial values.
To use fixed kernel parameters, set Optimize numeric parameters to No.

When Kernel scale mode is set to Auto, the app uses a heuristic procedure to select the initial
kernel parameters.

If you set Kernel scale mode to Manual, you can specify the initial values. Click the buttons or
enter a positive scalar value in the Kernel scale box and the Signal standard deviation box.

If you set Use isotropic kernel to No, you cannot set initial kernel parameters manually.
• Sigma mode

You can specify manually the initial value of the observation noise standard deviation Sigma. By
default the app optimizes the observation noise standard deviation, starting from the initial value.
To use fixed kernel parameters, clear the Optimize numeric parameters check box in the
advanced options.

When Sigma mode is set to Auto, the app uses a heuristic procedure to select the initial
observation noise standard deviation.

If you set Sigma mode to Manual, you can specify the initial values. Click the buttons or enter a
positive scalar value in the Sigma box.

• Standardize data

Standardizing the predictors transforms them so that they have mean 0 and standard deviation 1.
Standardizing removes the dependence on arbitrary scales in the predictors and generally
improves performance.

• Optimize numeric parameters

With this option, the app automatically optimizes numeric parameters of the GPR model. The
optimized parameters are the coefficients of the Basis function, the kernel parameters Kernel
scale and Signal standard deviation, and the observation noise standard deviation Sigma.

Alternatively, you can let the app choose some of these model options automatically by using
hyperparameter optimization. See “Hyperparameter Optimization in Regression Learner App” on
page 24-35.

Kernel Approximation Models

In Regression Learner, you can use kernel approximation models to perform nonlinear regression of
data with many observations. For large in-memory data, kernel approximation models tend to train
and predict faster than SVM models with Gaussian kernels.

Gaussian kernel regression models map predictors in a low-dimensional space into a high-
dimensional space, and then fit a linear model to the transformed predictors in the high-dimensional
space. Choose between fitting an SVM linear model and fitting a least-squares linear model in the
expanded space.
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Tip In the Models gallery, click All Kernels  to try each of the preset kernel approximation
options and see which settings produce the best model with your data. Select the best model in the
Models pane, and try to improve that model by using feature selection and changing some advanced
options.

Regression Model Type Interpretability Model Flexibility
SVM Kernel Hard Medium — increases as the

Kernel scale setting decreases

Least Squares Kernel
Regression

Hard Medium — increases as the
Kernel scale setting decreases

For an example, see “Train Kernel Approximation Model Using Regression Learner App” on page 24-
89.

Kernel Model Hyperparameter Options

Regression Learner uses the fitrkernel function to train kernel approximation regression models.

You can set these options on the Summary tab for the selected model:

• Learner — Specify the linear regression model type to fit in the expanded space, either SVM or
Least Squares Kernel. SVM models use an epsilon-insensitive loss during model fitting,
whereas least-square models use a mean squared error (MSE).

• Number of expansion dimensions — Specify the number of dimensions in the expanded space.

• When you set this option to Auto, the software sets the number of dimensions to
2.^ceil(min(log2(p)+5,15)), where p is the number of predictors.

• When you set this option to Manual, you can specify a value by clicking the arrows or entering
a positive scalar value in the box.

• Regularization strength (Lambda) — Specify the ridge (L2) regularization penalty term. When
you use an SVM learner, the box constraint C and the regularization term strength λ are related
by C = 1/(λn), where n is the number of observations.

• When you set this option to Auto, the software sets the regularization strength to 1/n, where n
is the number of observations.

• When you set this option to Manual, you can specify a value by clicking the arrows or entering
a positive scalar value in the box.

• Kernel scale — Specify the kernel scaling. The software uses this value to obtain a random basis
for the random feature expansion. For more details, see “Random Feature Expansion” on page 35-
8048.

• When you set this option to Auto, the software uses a heuristic procedure to select the scale
value. The heuristic procedure uses subsampling. Therefore, to reproduce results, set a
random number seed using rng before training the regression model.
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• When you set this option to Manual, you can specify a value by clicking the arrows or entering
a positive scalar value in the box.

• Epsilon — Specify half the width of the epsilon-insensitive band. This option is available when
Learner is SVM.

• When you set this option to Auto, the software determines the value of Epsilon as iqr(Y)/
13.49, which is an estimate of a tenth of the standard deviation using the interquartile range
of the response variable Y. If iqr(Y) is equal to zero, then the software sets the value to 0.1.

• When you set this option to Manual, you can specify a value by clicking the arrows or entering
a positive scalar value in the box.

• Iteration limit — Specify the maximum number of training iterations.

Ensembles of Trees

You can train ensembles of regression trees in Regression Learner. Ensemble models combine results
from many weak learners into one high-quality ensemble model.

Tip In the Models gallery, click All Ensembles  to try each of the nonoptimizable ensemble
options and see which settings produce the best model with your data. Select the best model in the
Models pane, and try to improve that model by using feature selection and changing some advanced
options.

Regression
Model Type

Interpretabili
ty

Ensemble Method Model Flexibility

Boosted
Trees

Hard Least-squares boosting (LSBoost)
with regression tree learners.

Medium to high

Bagged
Trees

Hard Bootstrap aggregating or bagging,
with regression tree learners.

High

Tip For a workflow example, see “Train Regression Trees Using Regression Learner App” on page
24-71.

Ensemble Model Hyperparameter Options

Regression Learner uses the fitrensemble function to train ensemble models. You can set these
options:

• Minimum leaf size
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Specify the minimum number of training samples used to calculate the response of each leaf node.
When you grow a regression tree, consider its simplicity and predictive power. To change the
minimum leaf size, click the buttons or enter a positive integer value in the Minimum leaf size
box.

• A fine tree with many small leaves is usually highly accurate on the training data. However, the
tree might not show comparable accuracy on an independent test set. A very leafy tree tends to
overfit, and its validation accuracy is often far lower than its training (or resubstitution)
accuracy.

• In contrast, a coarse tree with fewer large leaves does not attain high training accuracy. But a
coarse tree can be more robust in that its training accuracy can be near that of a
representative test set.

Tip Decrease the Minimum leaf size to create a more flexible model.
• Number of learners

Try changing the number of learners to see if you can improve the model. Many learners can
produce high accuracy, but can be time consuming to fit.

Tip Increase the Number of learners to create a more flexible model.
• Learning rate

For boosted trees, specify the learning rate for shrinkage. If you set the learning rate to less than
1, the ensemble requires more learning iterations but often achieves better accuracy. 0.1 is a
popular initial choice.

Alternatively, you can let the app choose some of these model options automatically by using
hyperparameter optimization. See “Hyperparameter Optimization in Regression Learner App” on
page 24-35.

Neural Networks

Neural network models typically have good predictive accuracy; however, they are not easy to
interpret.

Model flexibility increases with the size and number of fully connected layers in the neural network.

Tip In the Models gallery, click All Neural Networks  to try each of the preset neural network
options and see which settings produce the best model with your data. Select the best model in the
Models pane, and try to improve that model by using feature selection and changing some advanced
options.
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Regression Model Type Interpretability Model Flexibility
Narrow Neural Network Hard Medium — increases with the

First layer size setting

Medium Neural Network Hard Medium — increases with the
First layer size setting

Wide Neural Network Hard Medium — increases with the
First layer size setting

Bilayered Neural Network Hard High — increases with the First
layer size and Second layer
size settings

Trilayered Neural Network Hard High — increases with the First
layer size, Second layer size,
and Third layer size settings

Each model is a feedforward, fully connected neural network for regression. The first fully connected
layer of the neural network has a connection from the network input (predictor data), and each
subsequent layer has a connection from the previous layer. Each fully connected layer multiplies the
input by a weight matrix and then adds a bias vector. An activation function follows each fully
connected layer, excluding the last. The final fully connected layer produces the network's output,
namely predicted response values. For more information, see “Neural Network Structure” on page
35-2614.

For an example, see “Train Regression Neural Networks Using Regression Learner App” on page 24-
82.

Neural Network Model Hyperparameter Options

Regression Learner uses the fitrnet function to train neural network models. You can set these
options:

• Number of fully connected layers — Specify the number of fully connected layers in the neural
network, excluding the final fully connected layer for regression. You can choose a maximum of
three fully connected layers.

• First layer size, Second layer size, and Third layer size — Specify the size of each fully
connected layer, excluding the final fully connected layer. If you choose to create a neural network
with multiple fully connected layers, consider specifying layers with decreasing sizes.

• Activation — Specify the activation function for all fully connected layers, excluding the final fully
connected layer. Choose from the following activation functions: ReLU, Tanh, None, and Sigmoid.

• Iteration limit — Specify the maximum number of training iterations.
• Regularization strength (Lambda) — Specify the ridge (L2) regularization penalty term.
• Standardize data — Specify whether to standardize the numeric predictors. If predictors have

widely different scales, standardizing can improve the fit. Standardizing the data is highly
recommended.

24 Regression Learner

24-28



Alternatively, you can let the app choose some of these model options automatically by using
hyperparameter optimization. See “Hyperparameter Optimization in Regression Learner App” on
page 24-35.

See Also

Related Examples
• “Train Regression Models in Regression Learner App” on page 24-2
• “Select Data for Regression or Open Saved App Session” on page 24-9
• “Feature Selection and Feature Transformation Using Regression Learner App” on page 24-30
• “Visualize and Assess Model Performance in Regression Learner” on page 24-48
• “Export Regression Model to Predict New Data” on page 24-65
• “Train Regression Trees Using Regression Learner App” on page 24-71
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Feature Selection and Feature Transformation Using
Regression Learner App

In this section...
“Investigate Features in the Response Plot” on page 24-30
“Select Features to Include” on page 24-31
“Transform Features with PCA in Regression Learner” on page 24-33

Investigate Features in the Response Plot
In Regression Learner, use the response plot to try to identify predictors that are useful for predicting
the response. To visualize the relation between different predictors and the response, under X-axis,
select different variables in the X list.

Before you train a regression model, the response plot shows the training data. If you have trained a
regression model, then the response plot also shows the model predictions.

Observe which variables are associated most clearly with the response. When you plot the carbig
data set, the predictor Horsepower shows a clear negative association with the response.

Look for features that do not seem to have any association with the response and use Feature
Selection to remove those features from the set of used predictors. See “Select Features to Include”
on page 24-31.
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You can export the response plots you create in the app to figures. See “Export Plots in Regression
Learner App” on page 24-61.

Select Features to Include

In Regression Learner, you can specify different features (or predictors) to include in the model. See
if you can improve models by removing features with low predictive power. If data collection is
expensive or difficult, you might prefer a model that performs satisfactorily with fewer predictors.

You can determine which important predictors to include by using different feature ranking
algorithms. After you select a feature ranking algorithm, the app displays a plot of the sorted feature
importance scores, where larger scores (including Infs) indicate greater feature importance. The
app also displays the ranked features and their scores in a table.

To use feature ranking algorithms in Regression Learner, click Feature Selection in the Options
section of the Regression Learner tab. The app opens a Default Feature Selection tab, where you
can choose a feature ranking algorithm.
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Feature Ranking Algorithm Supported Data Type Description
MRMR Categorical and continuous

features
Rank features sequentially
using the “Minimum
Redundancy Maximum
Relevance (MRMR) Algorithm”
on page 35-2923.

For more information, see
fsrmrmr.

F Test Categorical and continuous
features

Examine the importance of each
predictor individually using an
F-test, and then rank features
using the p-values of the F-test
statistics. Each F-test tests the
hypothesis that the response
values grouped by predictor
variable values are drawn from
populations with the same mean
against the alternative
hypothesis that the population
means are not all the same.
Scores correspond to –log(p).

For more information, see
fsrftest.

RReliefF Either all categorical or all
continuous features

Rank features using the
“RReliefF” on page 35-6497
algorithm. This algorithm works
best for estimating feature
importance for distance-based
supervised models that use
pairwise distances between
observations to predict the
response.

For more information, see
relieff.

Choose between selecting the highest ranked features and selecting individual features.

• Choose Select highest ranked features to avoid bias in validation metrics. For example, if you
use a cross-validation scheme, then for each training fold, the app performs feature selection
before training a model. Different folds can select different predictors as the highest ranked
features.

• Choose Select individual features to include specific features in model training. If you use a
cross-validation scheme, then the app uses the same features across all training folds.

When you are done selecting features, click Save and Apply. Your selections affect all draft models
in the Models pane and will be applied to new draft models that you create using the gallery in the
Models section of the Regression Learner tab.
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To select features for a single draft model, open and edit the model summary. Click the model in the
Models pane, and then click the model Summary tab (if necessary). The Summary tab includes an
editable Feature Selection section.

After you train a model, the Feature Selection section of the model Summary tab lists the features
used to train the full model (that is, the model trained using training and validation data). To learn
more about how Regression Learner applies feature selection to your data, generate code for your
trained regression model. For more information, see “Generate MATLAB Code to Train Model with
New Data” on page 24-66.

For an example using feature selection, see “Train Regression Trees Using Regression Learner App”
on page 24-71.

Transform Features with PCA in Regression Learner

Use principal component analysis (PCA) to reduce the dimensionality of the predictor space.
Reducing the dimensionality can create regression models in Regression Learner that help prevent
overfitting. PCA linearly transforms predictors to remove redundant dimensions, and generates a new
set of variables called principal components.

1 On the Regression Learner tab, in the Options section, select PCA.
2 In the Default PCA Options dialog box, select the Enable PCA check box, and then click Save

and Apply.

The app applies the changes to all existing draft models in the Models pane and to new draft
models that you create using the gallery in the Models section of the Regression Learner tab.

3 When you next train a model using the Train All button, the pca function transforms your
selected features before training the model.

4 By default, PCA keeps only the components that explain 95% of the variance. In the Default PCA
Options dialog box, you can change the percentage of variance to explain by selecting the
Explained variance value. A higher value risks overfitting, while a lower value risks removing
useful dimensions.

5 If you want to limit the number of PCA components manually, select Specify number of
components in the Component reduction criterion list. Select the Number of numeric
components value. The number of components cannot be larger than the number of numeric
predictors. PCA is not applied to categorical predictors.

You can check PCA options for trained models in the PCA section of the Summary tab. Click a
trained model in the Models pane, and then click the model Summary tab (if necessary). For
example:

PCA is keeping enough components to explain 95% variance. 
After training, 2 components were kept. 
Explained variance per component (in order): 92.5%, 5.3%, 1.7%, 0.5%

Check the explained variance percentages to decide whether to change the number of components.

To learn more about how Regression Learner applies PCA to your data, generate code for your
trained regression model. For more information on PCA, see the pca function.
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See Also

Related Examples
• “Train Regression Models in Regression Learner App” on page 24-2
• “Select Data for Regression or Open Saved App Session” on page 24-9
• “Choose Regression Model Options” on page 24-14
• “Visualize and Assess Model Performance in Regression Learner” on page 24-48
• “Export Plots in Regression Learner App” on page 24-61
• “Export Regression Model to Predict New Data” on page 24-65
• “Train Regression Trees Using Regression Learner App” on page 24-71
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Hyperparameter Optimization in Regression Learner App
In this section...
“Select Hyperparameters to Optimize” on page 24-35
“Optimization Options” on page 24-41
“Minimum MSE Plot” on page 24-43
“Optimization Results” on page 24-45

After you choose a particular type of model to train, for example a decision tree or a support vector
machine (SVM), you can tune your model by selecting different advanced options. For example, you
can change the minimum leaf size of a decision tree or the box constraint of an SVM. Some of these
options are internal parameters of the model, or hyperparameters, that can strongly affect its
performance. Instead of manually selecting these options, you can use hyperparameter optimization
within the Regression Learner app to automate the selection of hyperparameter values. For a given
model type, the app tries different combinations of hyperparameter values by using an optimization
scheme that seeks to minimize the model mean squared error (MSE), and returns a model with the
optimized hyperparameters. You can use the resulting model as you would any other trained model.

Note Because hyperparameter optimization can lead to an overfitted model, the recommended
approach is to create a separate test set before importing your data into the Regression Learner app.
After you train your optimizable model, you can see how it performs on your test set. For an example,
see “Train Regression Model Using Hyperparameter Optimization in Regression Learner App” on
page 24-97.

To perform hyperparameter optimization in Regression Learner, follow these steps:

1 Choose a model type and decide which hyperparameters to optimize. See “Select
Hyperparameters to Optimize” on page 24-35.

Note Hyperparameter optimization is not supported for linear regression models.
2 (Optional) Specify how the optimization is performed. For more information, see “Optimization

Options” on page 24-41.
3 Train your model. Use the “Minimum MSE Plot” on page 24-43 to track the optimization results.
4 Inspect your trained model. See “Optimization Results” on page 24-45.

Select Hyperparameters to Optimize

In the Regression Learner app, in the Models section of the Regression Learner tab, click the
arrow to open the gallery. The gallery includes optimizable models that you can train using
hyperparameter optimization.

After you select an optimizable model, you can choose which of its hyperparameters you want to
optimize. In the model Summary tab, in the Model Hyperparameters section, select Optimize
check boxes for the hyperparameters that you want to optimize. Under Values, specify the fixed
values for the hyperparameters that you do not want to optimize or that are not optimizable.

 Hyperparameter Optimization in Regression Learner App

24-35



This table describes the hyperparameters that you can optimize for each type of model and the
search range of each hyperparameter. It also includes the additional hyperparameters for which you
can specify fixed values.

Model Optimizable
Hyperparameters

Additional
Hyperparameters

Notes

Optimizable Tree • Minimum leaf size
– The software
searches among
integers log-scaled
in the range
[1,max(2,floor(n
/2))], where n is
the number of
observations.

• Surrogate decision
splits

• Maximum
surrogates per
node

For more information,
see “Regression Tree
Model Hyperparameter
Options” on page 24-19.
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Model Optimizable
Hyperparameters

Additional
Hyperparameters

Notes

Optimizable SVM • Kernel function –
The software
searches among
Gaussian, Linear,
Quadratic, and
Cubic.

• Box constraint –
The software
searches among
positive values log-
scaled in the range
[0.001,1000].

• Kernel scale – The
software searches
among positive
values log-scaled in
the range
[0.001,1000].

• Epsilon – The
software searches
among positive
values log-scaled in
the range
[0.001,100]*iqr(
Y)/1.349, where Y
is the response
variable.

• Standardize data –
The software
searches between
Yes and No.

 • The Box constraint
optimizable
hyperparameter
combines the Box
constraint mode
and Manual box
constraint
advanced options of
the preset SVM
models.

• The Kernel scale
optimizable
hyperparameter
combines the
Kernel scale mode
and Manual kernel
scale advanced
options of the preset
SVM models.

• You can optimize the
Kernel scale
optimizable
hyperparameter only
when the Kernel
function value is
Gaussian. Unless
you specify a value
for Kernel scale by
clearing the
Optimize check box,
the app uses the
Manual value of 1
by default when the
Kernel function
has a value other
than Gaussian.

• The Epsilon
optimizable
hyperparameter
combines the
Epsilon mode and
Manual epsilon
advanced options of
the preset SVM
models.

For more information,
see “SVM Model
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Model Optimizable
Hyperparameters

Additional
Hyperparameters

Notes

Hyperparameter
Options” on page 24-21.
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Model Optimizable
Hyperparameters

Additional
Hyperparameters

Notes

Optimizable GPR • Basis function –
The software
searches among
Zero, Constant,
and Linear.

• Kernel function –
The software
searches among:

• Nonisotropic
Rational
Quadratic

• Isotropic
Rational
Quadratic

• Nonisotropic
Squared
Exponential

• Isotropic
Squared
Exponential

• Nonisotropic
Matern 5/2

• Isotropic
Matern 5/2

• Nonisotropic
Matern 3/2

• Isotropic
Matern 3/2

• Nonisotropic
Exponential

• Isotropic
Exponential

• Kernel scale – The
software searches
among real values in
the range
[0.001,1]*XMaxRa
nge, where
XMaxRange =
max(max(X) –
min(X)) and X is
the predictor data.

• Sigma – The
software searches
among real values in

• Signal standard
deviation

• Optimize numeric
parameters

• The Kernel
function
optimizable
hyperparameter
combines the
Kernel function
and Use isotropic
kernel advanced
options of the preset
Gaussian process
models.

• The Kernel scale
optimizable
hyperparameter
combines the
Kernel mode and
Kernel scale
advanced options of
the preset Gaussian
process models.

• The Sigma
optimizable
hyperparameter
combines the Sigma
mode and Sigma
advanced options of
the preset Gaussian
process models.

• When you optimize
the Kernel scale of
isotropic kernel
functions, only the
kernel scale is
optimized, not the
signal standard
deviation. You can
either specify a
Signal standard
deviation value or
use its default value.

You cannot optimize
the Kernel scale of
nonisotropic kernel
functions.

For more information,
see “Gaussian Process
Regression Model
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Model Optimizable
Hyperparameters

Additional
Hyperparameters

Notes

the range
[0.0001,max(0.00
1,10*std(Y))],
where Y is the
response variable.

• Standardize data –
The software
searches between
Yes and No.

Hyperparameter
Options” on page 24-23.

Optimizable
Ensemble

• Ensemble method
– The software
searches among Bag
and LSBoost.

• Minimum leaf size
– The software
searches among
integers log-scaled
in the range
[1,max(2,floor(n
/2))], where n is
the number of
observations.

• Number of
learners – The
software searches
among integers log-
scaled in the range
[10,500].

• Learning rate – The
software searches
among real values
log-scaled in the
range [0.001,1].

• Number of
predictors to
sample – The
software searches
among integers in
the range
[1,max(2,p)],
where p is the
number of predictor
variables.

 • The Bag value of the
Ensemble method
optimizable
hyperparameter
specifies a Bagged
Trees model.
Similarly, the
LSBoost Ensemble
method value
specifies a Boosted
Trees model.

• The Number of
predictors to
sample optimizable
hyperparameter is
not available in the
hyperparameter
options of the preset
ensemble models.

For more information,
see “Ensemble Model
Hyperparameter
Options” on page 24-26.
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Model Optimizable
Hyperparameters

Additional
Hyperparameters

Notes

Optimizable Neural
Network

• Number of fully
connected layers –
The software
searches among 1,
2, and 3 fully
connected layers.

• First layer size –
The software
searches among
integers log-scaled
in the range
[1,300].

• Second layer size –
The software
searches among
integers log-scaled
in the range
[1,300].

• Third layer size –
The software
searches among
integers log-scaled
in the range
[1,300].

• Activation – The
software searches
among ReLU, Tanh,
None, and Sigmoid.

• Regularization
strength (Lambda)
– The software
searches among real
values log-scaled in
the range [1e-5/
n,1e5/n], where n
is the number of
observations.

• Standardize data –
The software
searches between
Yes and No.

• Iteration limit For more information,
see “Neural Network
Model Hyperparameter
Options” on page 24-28.

Optimization Options

By default, the Regression Learner app performs hyperparameter tuning by using Bayesian
optimization. The goal of Bayesian optimization, and optimization in general, is to find a point that
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minimizes an objective function. In the context of hyperparameter tuning in the app, a point is a set
of hyperparameter values, and the objective function is the loss function, or the mean squared error
(MSE). For more information on the basics of Bayesian optimization, see “Bayesian Optimization
Workflow” on page 10-25.

You can specify how the hyperparameter tuning is performed. For example, you can change the
optimization method to grid search or limit the training time. On the Regression Learner tab, in the
Options section, click Optimizer. The app opens a dialog box in which you can select optimization
options.

After making your selections, click Save and Apply. Your selections affect all draft optimizable
models in the Models pane and will be applied to new optimizable models that you create using the
gallery in the Models section of the Regression Learner tab.

To specify optimization options for a single optimizable model, open and edit the model summary
before training the model. Click the model in the Models pane. The model Summary tab includes an
editable Optimizer section.

This table describes the available optimization options and their default values.

Option Description
Optimizer The optimizer values are:

• Bayesopt (default) – Use Bayesian
optimization. Internally, the app calls the
bayesopt function.

• Grid search – Use grid search with the
number of values per dimension determined
by the Number of grid divisions value. The
app searches in a random order, using uniform
sampling without replacement from the grid.

• Random search – Search at random among
points, where the number of points
corresponds to the Iterations value.
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Option Description
Acquisition function When the app performs Bayesian optimization for

hyperparameter tuning, it uses the acquisition
function to determine the next set of
hyperparameter values to try.

The acquisition function values are:

• Expected improvement per second
plus (default)

• Expected improvement
• Expected improvement plus
• Expected improvement per second
• Lower confidence bound
• Probability of improvement

For details on how these acquisition functions
work in the context of Bayesian optimization, see
“Acquisition Function Types” on page 10-3.

Iterations Each iteration corresponds to a combination of
hyperparameter values that the app tries. When
you use Bayesian optimization or random search,
specify a positive integer that sets the number of
iterations. The default value is 30.

When you use grid search, the app ignores the
Iterations value and evaluates the loss at every
point in the entire grid. You can set a training
time limit to stop the optimization process
prematurely.

Training time limit To set a training time limit, select this option and
set the Maximum training time in seconds
option. By default, the app does not have a
training time limit.

Maximum training time in seconds Set the training time limit in seconds as a positive
real number. The default value is 300. The run
time can exceed the training time limit because
this limit does not interrupt an iteration
evaluation.

Number of grid divisions When you use grid search, set a positive integer
as the number of values the app tries for each
numeric hyperparameter. The app ignores this
value for categorical hyperparameters. The
default value is 10.

Minimum MSE Plot
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After specifying which model hyperparameters to optimize and setting any additional optimization
options (optional), train your optimizable model. On the Regression Learner tab, in the Train
section, click Train All and select Train Selected. The app creates a Minimum MSE Plot that it
updates as the optimization runs.

The minimum mean squared error (MSE) plot displays the following information:

• Estimated minimum MSE – Each light blue point corresponds to an estimate of the minimum
MSE computed by the optimization process when considering all the sets of hyperparameter
values tried so far, including the current iteration.

The estimate is based on an upper confidence interval of the current MSE objective model, as
mentioned in the Bestpoint hyperparameters description.

If you use grid search or random search to perform hyperparameter optimization, the app does
not display these light blue points.

• Observed minimum MSE – Each dark blue point corresponds to the observed minimum MSE
computed so far by the optimization process. For example, at the third iteration, the blue point
corresponds to the minimum of the MSE observed in the first, second, and third iterations.

• Bestpoint hyperparameters – The red square indicates the iteration that corresponds to the
optimized hyperparameters. You can find the values of the optimized hyperparameters listed in
the upper right of the plot under Optimization Results.
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The optimized hyperparameters do not always provide the observed minimum MSE. When the app
performs hyperparameter tuning by using Bayesian optimization (see “Optimization Options” on
page 24-41 for a brief introduction), it chooses the set of hyperparameter values that minimizes an
upper confidence interval of the MSE objective model, rather than the set that minimizes the
MSE. For more information, see the "Criterion","min-visited-upper-confidence-
interval" name-value argument of bestPoint.

• Minimum error hyperparameters – The yellow point indicates the iteration that corresponds to
the hyperparameters that yield the observed minimum MSE.

For more information, see the "Criterion","min-observed" name-value argument of
bestPoint.

If you use grid search to perform hyperparameter optimization, the Bestpoint hyperparameters
and the Minimum error hyperparameters are the same.

Missing points in the plot correspond to NaN minimum MSE values.

Optimization Results
When the app finishes tuning model hyperparameters, it returns a model trained with the optimized
hyperparameter values (Bestpoint hyperparameters). The model metrics, displayed plots, and
exported model correspond to this trained model with fixed hyperparameter values.

To inspect the optimization results of a trained optimizable model, select the model in the Models
pane and look at the model Summary tab.
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The Summary tab includes these sections:

• Training Results – Shows the performance of the optimizable model. See “View Model Statistics
in Summary Tab and Models Pane” on page 24-49.

• Model Hyperparameters – Displays the type of optimizable model and lists any fixed
hyperparameter values

• Optimized Hyperparameters – Lists the values of the optimized hyperparameters
• Hyperparameter Search Range – Displays the search ranges for the optimized

hyperparameters
• Optimizer – Shows the selected optimizer options

When you perform hyperparameter tuning using Bayesian optimization and you export a trained
optimizable model to the workspace as a structure, the structure includes a
BayesianOptimization object in the HyperParameterOptimizationResult field. The object
contains the results of the optimization performed in the app.

When you generate MATLAB code from a trained optimizable model, the generated code uses the
fixed and optimized hyperparameter values of the model to train on new data. The generated code
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does not include the optimization process. For information on how to perform Bayesian optimization
when you use a fit function, see “Bayesian Optimization Using a Fit Function” on page 10-26.

See Also

Related Examples
• “Train Regression Model Using Hyperparameter Optimization in Regression Learner App” on

page 24-97
• “Bayesian Optimization Workflow” on page 10-25
• “Train Regression Models in Regression Learner App” on page 24-2
• “Select Data for Regression or Open Saved App Session” on page 24-9
• “Choose Regression Model Options” on page 24-14
• “Visualize and Assess Model Performance in Regression Learner” on page 24-48
• “Export Regression Model to Predict New Data” on page 24-65
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Visualize and Assess Model Performance in Regression Learner
In this section...
“Check Performance in Models Pane” on page 24-48
“View Model Statistics in Summary Tab and Models Pane” on page 24-49
“Compare Model Information and Results in Table View” on page 24-50
“Explore Data and Results in Response Plot” on page 24-52
“Plot Predicted vs. Actual Response” on page 24-54
“Evaluate Model Using Residuals Plot” on page 24-55
“Interpret Model Using Partial Dependence Plots” on page 24-56
“Compare Model Plots by Changing Layout” on page 24-58
“Evaluate Test Set Model Performance” on page 24-59

After training regression models in Regression Learner, you can compare models based on model
statistics, visualize results in a response plot or by plotting the actual versus predicted response, and
evaluate models using the residual plot.

• If you use k-fold cross-validation, then the app computes the model statistics using the
observations in the k validation folds and reports the average values. It makes predictions on the
observations in the validation folds and the plots show these predictions. It also computes the
residuals on the observations in the validation folds.

Note When you import data into the app, if you accept the defaults, the app automatically uses
cross-validation. To learn more, see “Choose Validation Scheme” on page 23-20.

• If you use holdout validation, the app computes the model statistics using the observations in the
validation fold and makes predictions on these observations. The app uses these predictions in the
plots and also computes the residuals based on the predictions.

• If you use resubstitution validation, the scores are resubstitution model statistics based on all the
training data, and the predictions are resubstitution predictions.

Check Performance in Models Pane

After training a model in Regression Learner, check the Models pane to see which model has the best
overall score. The best RMSE (Validation) is highlighted in a box. This score is the root mean
squared error (RMSE) on the validation set. The score estimates the performance of the trained
model on new data. Use the score to help you choose the best model.
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• For cross-validation, the score is the RMSE on all observations not set aside for testing, counting
each observation when it was in a holdout (validation) fold.

• For holdout validation, the score is the RMSE on the held-out observations.
• For resubstitution validation, the score is the resubstitution RMSE on all the training data.

The best overall score might not be the best model for your goal. Sometimes a model with a slightly
lower overall score is the better model for your goal. You want to avoid overfitting, and you might
want to exclude some predictors where data collection is expensive or difficult.

View Model Statistics in Summary Tab and Models Pane
You can view model statistics in the model Summary tab and the Models pane, and use these
statistics to assess and compare models. Alternatively, you can use the Results Table tab to compare
models. For more information, see “Compare Model Information and Results in Table View” on page
24-50.

The Training Results statistics are calculated on the validation set. The Test Results statistics, if
displayed, are calculated on an imported test set. For more information, see “Evaluate Test Set Model
Performance” on page 24-59.
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Model Statistics
Statistic Description Tip
RMSE Root mean squared error. The RMSE is always positive and

its units match the units of your response.
Look for smaller values of
the RMSE.

R-Squared Coefficient of determination. R-squared is always smaller
than 1 and usually larger than 0. It compares the trained
model with the model where the response is constant and
equals the mean of the training response. If your model is
worse than this constant model, then R-Squared is negative.

Look for an R-Squared
close to 1.

MSE Mean squared error. The MSE is the square of the RMSE. Look for smaller values of
the MSE.

MAE Mean absolute error. The MAE is always positive and similar
to the RMSE, but less sensitive to outliers.

Look for smaller values of
the MAE.

You can sort models based on the different model statistics. To select a statistic for model sorting, use
the Sort by list at the top of the Models pane.

You can also delete unwanted models listed in the Models pane. Select the model you want to delete
and click the Delete selected model button in the upper right of the pane, click Delete in the
Models section of the Regression Learner tab, or right-click the model and select Delete. You
cannot delete the last remaining model in the Models pane.

Compare Model Information and Results in Table View
Rather than using the Summary tab or the Models pane to compare model statistics, you can use a
table of results. On the Regression Learner tab, in the Models section, click Results Table. In the
Results Table tab, you can sort models by their training and test results, as well as by their options
(such as model type, selected features, PCA, and so on). For example, to sort models by root mean
squared error, click the sorting arrows in the RMSE (Validation) column header. An up arrow
indicates that models are sorted from lowest RMSE to highest RMSE.
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To view more table column options, click the "Select columns to display" button  at the top right
of the table. In the Select Columns to Display dialog box, check the boxes for the columns you want to
display in the results table. Newly selected columns are appended to the table on the right.

Within the results table, you can manually drag and drop the table columns so that they appear in
your preferred order.

You can mark some models as favorites by using the Favorite column. The app keeps the selection of
favorite models consistent between the results table and the Models pane. Unlike other columns, the
Favorite and Model Number columns cannot be removed from the table.

To remove a row from the table, right-click any entry within the row and click Hide row (or Hide
selected row(s) if the row is highlighted). To remove consecutive rows, click any entry within the
first row you want to remove, press Shift, and click any entry within the last row you want to remove.
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Then, right-click one of the highlighted entries and click Hide selected row(s). To restore all
removed rows, right-click any entry in the table and click Show all rows. The restored rows are
appended to the bottom of the table.

To export the information in the table, use one of the export buttons  at the top right of the
table. Choose between exporting the table to the workspace or to a file. The exported table includes
only the displayed rows and columns.

Explore Data and Results in Response Plot

View the regression model results by using the response plot, which displays the predicted response
versus the record number. After you train a regression model, the app automatically opens the
response plot for that model. If you train an "All" model, the app opens the response plot for the first
model only. To view the response plot for another model, select the model in the Models pane. On the
Regression Learner tab, in the Plot and Interpret section, click the arrow to open the gallery, and
then click Response in the Validation Results group. If you are using holdout or cross-validation,
then the predicted response values are the predictions on the held-out (validation) observations. In
other words, the software obtains each prediction by using a model that was trained without the
corresponding observation.

To investigate your results, use the controls on the right. You can:

• Plot predicted and/or true responses. Use the check boxes under Plot to make your selection.
• Show prediction errors, drawn as vertical lines between the predicted and true responses, by

selecting the Errors check box.
• Choose the variable to plot on the x-axis under X-axis. You can choose the record number or one

of your predictor variables.
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• Plot the response as markers, or as a box plot under Style. You can select Box plot only when the
variable on the x-axis has few unique values.

A box plot displays the typical values of the response and any possible outliers. The central mark
indicates the median, and the bottom and top edges of the box are the 25th and 75th percentiles,
respectively. Vertical lines, called whiskers, extend from the boxes to the most extreme data points
that are not considered outliers. The outliers are plotted individually using the '+' symbol. For
more information about box plots, see boxplot.
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To export the response plots you create in the app to figures, see “Export Plots in Regression Learner
App” on page 24-61.

Plot Predicted vs. Actual Response

Use the Predicted vs. Actual plot to check model performance. Use this plot to understand how well
the regression model makes predictions for different response values. To view the Predicted vs.
Actual plot after training a model, click the arrow in the Plot and Interpret section to open the
gallery, and then click Predicted vs. Actual (Validation) in the Validation Results group.

When you open the plot, the predicted response of your model is plotted against the actual, true
response. A perfect regression model has a predicted response equal to the true response, so all the
points lie on a diagonal line. The vertical distance from the line to any point is the error of the
prediction for that point. A good model has small errors, which means the predictions are scattered
near the line.

24 Regression Learner

24-54



Usually a good model has points scattered roughly symmetrically around the diagonal line. If you can
see any clear patterns in the plot, it is likely that you can improve your model. Try training a different
model type or making your current model type more flexible by duplicating the model and using the
Model Hyperparameters options in the model Summary tab. If you are unable to improve your
model, it is possible that you need more data, or that you are missing an important predictor.

To export the Predicted vs. Actual plots you create in the app to figures, see “Export Plots in
Regression Learner App” on page 24-61.

Evaluate Model Using Residuals Plot

Use the residuals plot to check model performance. To view the residuals plot after training a model,
click the arrow in the Plot and Interpret section to open the gallery, and then click Residuals
(Validation) in the Validation Results group. The residuals plot displays the difference between the
predicted and true responses. Choose the variable to plot on the x-axis under X-axis. Choose the true
response, predicted response, record number, or one of the predictors.
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Usually a good model has residuals scattered roughly symmetrically around 0. If you can see any
clear patterns in the residuals, it is likely that you can improve your model. Look for these patterns:

• Residuals are not symmetrically distributed around 0.
• Residuals change significantly in size from left to right in the plot.
• Outliers occur, that is, residuals that are much larger than the rest of the residuals.
• A clear, nonlinear pattern appears in the residuals.

Try training a different model type, or making your current model type more flexible by duplicating
the model and using the Model Hyperparameters options in the model Summary tab. If you are
unable to improve your model, it is possible that you need more data, or that you are missing an
important predictor.

To export the residuals plots you create in the app to figures, see “Export Plots in Regression Learner
App” on page 24-61.

Interpret Model Using Partial Dependence Plots

24 Regression Learner

24-56



Partial dependence plots (PDPs) allow you to visualize the marginal effect of each predictor on the
predicted response of a trained regression model. After you train a model in Regression Learner, you
can view a partial dependence plot for the model. On the Regression Learner tab, in the Plot and
Interpret section, click the arrow to open the gallery. In the Interpretation Results section, click
Partial Dependence. When computing partial dependence values, the app uses the final model,
trained on the full data set (including training and validation data, but excluding test data).

To investigate your results, use the controls on the right.

• Under Data, choose whether to plot results using Training set data or Test set data. The training
set refers to the data used to train the final model and includes all the observations that are not
reserved for testing.

• Under Feature, choose the feature to plot using the X list. The plotted line corresponds to the
average predicted response across the predictor values. The x-axis tick marks in the plot
correspond to the unique predictor values in the selected data set.

If you use PCA to train a model, you can select principal components from the X list.
• Zoom in and out, or pan across the plot. To enable zooming or panning, place the mouse over the

PDP and click the corresponding button on the toolbar that appears above the top right of the
plot.
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For an example, see “Interpret Regression Models Trained in Regression Learner App” on page 24-
108. For more information on partial dependence plots, see plotPartialDependence.

To export PDPs you create in the app to figures, see “Export Plots in Regression Learner App” on
page 24-61.

Compare Model Plots by Changing Layout
Visualize the results of models trained in Regression Learner by using the plot options in the Plot
and Interpret section of the Regression Learner tab. You can rearrange the layout of the plots to
compare results across multiple models: use the options in the Layout button, drag and drop plots, or
select the options provided by the Document Actions arrow located to the right of the model plot tabs.

For example, after training two models in Regression Learner, display a plot for each model and
change the plot layout to compare the plots by using one of these procedures:

• In the Plot and Interpret section, click Layout and select Compare models.
• Click the second model tab name, and then drag and drop the second model tab to the right.
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• Click the Document Actions arrow located to the far right of the model plot tabs. Select the Tile
All option and specify a 1-by-2 layout.

Note that you can click the Hide plot options button  at the top right of the plots to make more
room for the plots.

Evaluate Test Set Model Performance

After training a model in Regression Learner, you can evaluate the model performance on a test set in
the app. This process allows you to check whether the validation metrics provide good estimates for
the model performance on new data.

1 Import a test data set into Regression Learner. Alternatively, reserve some data for testing when
importing data into the app (see “(optional) Reserve Data for Testing” on page 24-12).

• If the test data set is in the MATLAB workspace, then in the Test section on the Regression
Learner tab, click Test Data and select From Workspace.

• If the test data set is in a file, then in the Test section, click Test Data and select From File.
Select a file type in the list, such as a spreadsheet, text file, or comma-separated values
(.csv) file, or select All Files to browse for other file types such as .dat.

In the Import Test Data dialog box, select the test data set from the Test Data Set Variable list.
The test set must have the same variables as the predictors imported for training and validation.

2 Compute the test set metrics.

• To compute test metrics for a single model, select the trained model in the Models pane. On
the Regression Learner tab, in the Test section, click Test All and select Test Selected.

• To compute test metrics for all trained models, click Test All and select Test All in the Test
section.
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The app computes the test set performance of each model trained on the full data set, including
training and validation data (but excluding test data).

3 Compare the validation metrics with the test metrics.

In the model Summary tab, the app displays the validation metrics and test metrics in the
Training Results section and Test Results section, respectively. You can check if the validation
metrics give good estimates for the test metrics.

You can also visualize the test results using plots.

• Display a predicted vs. actual plot. In the Plot and Interpret section on the Regression
Learner tab, click the arrow to open the gallery, and then click Predicted vs. Actual (Test)
in the Test Results group.

• Display a residuals plot. In the Plot and Interpret section, click the arrow to open the
gallery, and then click Residuals (Test) in the Test Results group.

For an example, see “Check Model Performance Using Test Set in Regression Learner App” on page
24-103. For an example that uses test set metrics in a hyperparameter optimization workflow, see
“Train Regression Model Using Hyperparameter Optimization in Regression Learner App” on page
24-97.

See Also

Related Examples
• “Train Regression Models in Regression Learner App” on page 24-2
• “Select Data for Regression or Open Saved App Session” on page 24-9
• “Choose Regression Model Options” on page 24-14
• “Feature Selection and Feature Transformation Using Regression Learner App” on page 24-30
• “Export Plots in Regression Learner App” on page 24-61
• “Export Regression Model to Predict New Data” on page 24-65
• “Train Regression Trees Using Regression Learner App” on page 24-71
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Export Plots in Regression Learner App
After you create plots interactively in the Regression Learner app, you can export your app plots to
MATLAB figures. You can then copy, save, or customize the new figures. Choose among the available
plots: response plot on page 24-30, Predicted vs. Actual plot on page 24-54, residuals plot on page 24-
55, minimum MSE plot on page 24-43, and partial dependence plot on page 24-56.

• Before exporting a plot, make sure the plot in the app displays the same data that you want in the
new figure.

• On the Regression Learner tab, in the Export section, click Export Plot to Figure. The app
creates a figure from the selected plot.

• The new figure might not have the same interactivity options as the plot in the Regression
Learner app.

• Additionally, the figure might have a different axes toolbar than the one in the app plot. For
plots in Regression Learner, an axes toolbar appears above the top right of the plot. The
buttons available on the toolbar depend on the contents of the plot. The toolbar can include
buttons to export the plot as an image, add data tips, pan or zoom the data, and restore the
view.

• Copy, save, or customize the new figure, which is displayed in the figure window.

• To copy the figure, select Edit > Copy Figure. For more information, see “Copy Figure to
Clipboard from Edit Menu”.

• To save the figure, select File > Save As. Alternatively, you can follow the workflow described
in “Customize Figure Before Saving”.

•
To customize the figure, click the Edit Plot button  on the figure toolbar. Right-click the
section of the plot that you want to edit. You can change the listed properties, which might
include Color, Font, Line Style, and other properties. Or, you can use the Property
Inspector to change the figure properties.

As an example, export a response plot in the app to a figure, customize the figure, and save the
modified figure.

1 In the MATLAB Command Window, load the carbig data set.

load carbig
cartable = table(Acceleration,Cylinders,Displacement, ...
    Horsepower,Model_Year,Weight,Origin,MPG);

2 Click the Apps tab.
3 In the Apps section, click the arrow to open the gallery. Under Machine Learning and Deep

Learning, click Regression Learner.
4

On the Regression Learner tab, in the File section, click .
5 In the New Session from Workspace dialog box, select the table cartable from the Data Set

Variable list.
6 Click Start Session. Regression Learner creates a response plot of the data by default.
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7 Change the x-axis data in the response plot to Weight.

8 On the Regression Learner tab, in the Export section, click Export Plot to Figure.
9

In the new figure, click the Edit Plot button  on the figure toolbar. Right-click the points in the
plot. In the context menu, select Marker > square.
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10 To save the figure, select File > Save As. Specify the saved file location, name, and type.

 Export Plots in Regression Learner App

24-63



See Also

Related Examples
• “Feature Selection and Feature Transformation Using Regression Learner App” on page 24-30
• “Visualize and Assess Model Performance in Regression Learner” on page 24-48
• “Export Regression Model to Predict New Data” on page 24-65
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Export Regression Model to Predict New Data
In this section...
“Export Model to Workspace” on page 24-65
“Make Predictions for New Data” on page 24-65
“Generate MATLAB Code to Train Model with New Data” on page 24-66
“Generate C Code for Prediction” on page 24-67
“Deploy Predictions Using MATLAB Compiler” on page 24-69
“Export Model for Deployment to MATLAB Production Server” on page 24-69

Export Model to Workspace
After you create regression models interactively in the Regression Learner app, you can export your
best model to the workspace. Then you can use that trained model to make predictions using new
data.

Note The final model Regression Learner exports is always trained using the full data set, excluding
any data reserved for testing. The validation scheme that you use only affects the way that the app
computes validation metrics. You can use the validation metrics and various plots that visualize
results to pick the best model for your regression problem.

Here are the steps for exporting a model to the MATLAB workspace:

1 In the app, select the model you want to export in the Models pane.
2 On the Regression Learner tab, in the Export section, click one of the export options:

• To include the data used for training the model, click Export Model and select Export
Model. This option exports the trained model to the workspace as a structure containing a
regression object, such as RegressionTree. The model object includes the training data
when possible. Note that some models, such as kernel approximation models, never store
training data.

• To exclude the training data, click Export Model and select Export Compact Model. This
option exports the model with unnecessary data removed. That is, the exported structure
contains a regression object that, when possible, does not include the training data. You can
still use the model for making predictions on new data.

3 In the Export Model dialog box, check the name of your exported variable, and edit it if you want.
Then, click OK. The default name for your exported model, trainedModel, increments every
time you export to avoid overwriting your models (for example, trainedModel1).

The new variable (for example, trainedModel) appears in your workspace.

The app displays information about the exported model in the command window. Read the
message to learn how to make predictions with new data.

Make Predictions for New Data
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After you export a model to the workspace from Regression Learner, or run the code generated from
the app, you get a trainedModel structure that you can use to make predictions using new data.
The structure contains a model object and a function for prediction. The structure enables you to
make predictions for models that include principal component analysis (PCA).

1 Use the exported model to make predictions for new data, T:

yfit = trainedModel.predictFcn(T)

where trainedModel is the name of your exported variable.

Supply the data T with the same format and data type as the training data used in the app (table
or matrix).

• If you supply a table, then ensure that it contains the same predictor names as your training
data. The predictFcn ignores additional variables in tables. Variable formats and types must
match the original training data.

• If you supply a matrix, it must contain the same predictor columns or rows as your training
data, in the same order and format. Do not include a response variable, any variables that you
did not import in the app, or other unused variables.

The output yfit contains a prediction for each data point.
2 Examine the fields of the exported structure. For help making predictions, enter:

trainedModel.HowToPredict

You also can extract the model object from the exported structure for further analysis. If you use
feature transformation such as PCA in the app, you must take into account this transformation by
using the information in the PCA fields of the structure.

Generate MATLAB Code to Train Model with New Data
After you create regression models interactively in the Regression Learner app, you can generate
MATLAB code for your best model. Then you can use the code to train the model with new data.

Generate MATLAB code to:

• Train on huge data sets. Explore models in the app trained on a subset of your data, and then
generate code to train a selected model on a larger data set.

• Create scripts for training models without needing to learn syntax of the different functions.
• Examine the code to learn how to train models programmatically.
• Modify the code for further analysis, for example to set options that you cannot change in the app.
• Repeat your analysis on different data and automate training.

To generate code and use it to train a model with new data:

1 In the app, from the Models pane, select the model you want to generate code for.
2 On the Regression Learner tab, in the Export section, click Generate Function.

The app generates code from your session and displays the file in the MATLAB Editor. The file
includes the predictors and response, the model training methods, and the validation methods.
Save the file.
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3 To retrain your model, call the function from the command line with your original data or new
data as the input argument or arguments. New data must have the same shape as the original
data.

Copy the first line of the generated code, excluding the word function, and edit the
trainingData input argument to reflect the variable name of your training data or new data.
Similarly, edit the responseData input argument (if applicable).

For example, to retrain a regression model trained with the cartable data set, enter:

[trainedModel,validationRMSE] = trainRegressionModel(cartable)

The generated code returns a trainedModel structure that contains the same fields as the
structure you create when you export a model from Regression Learner to the workspace.

If you want to automate training the same model with new data, or learn how to programmatically
train models, examine the generated code. The code shows you how to:

• Process the data into the right shape.
• Train a model and specify all the model options.
• Perform cross-validation.
• Compute statistics.
• Compute validation predictions and scores.

Note If you generate MATLAB code from a trained optimizable model, the generated code does not
include the optimization process.

Generate C Code for Prediction

If you train one of the models in this table using Regression Learner, you can generate C code for
prediction.

Model Type Underlying Model Object
Linear Regression LinearModel or CompactLinearModel
Decision Tree RegressionTree or CompactRegressionTree
Support Vector Machine RegressionSVM or CompactRegressionSVM
Gaussian Process Regression RegressionGP or CompactRegressionGP
Ensemble RegressionEnsemble,

CompactRegressionEnsemble, or
RegressionBaggedEnsemble

C code generation requires:

• MATLAB Coder license
• Appropriate model

1 For example, train a tree model in Regression Learner, and then export the model to the
workspace.
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Find the underlying regression model object in the exported structure. Examine the fields of the
structure to find the model object, for example, S.RegressionTree, where S is the name of
your structure.

The underlying model object depends on whether you exported a compact model. The model
object can be a RegressionTree or CompactRegressionTree object.

2 Use the function saveLearnerForCoder to prepare the model for code generation:
saveLearnerForCoder(Mdl,filename). For example:

saveLearnerForCoder(S.RegressionTree,'myTree')
3 Create a function that loads the saved model and makes predictions on new data. For example:

function yfit = predictY (X) %#codegen
%PREDICTY Predict responses using tree model
%  PREDICTY uses the measurements in X 
%  and the tree model in the file myTree.mat, and then 
%  returns predicted responses in yfit.

CompactMdl = loadLearnerForCoder('myTree'); 
yfit = predict(CompactMdl,X);
end

4 Generate a MEX function from your function. For example:

codegen predictY.m -args {data}

The %#codegen compilation directive indicates that the MATLAB code is intended for code
generation. To ensure that the MEX function can use the same input, specify the data in the
workspace as arguments to the function using the -args option. Specify data as a matrix
containing only the predictor columns used to train the model.

5 Use the MEX function to make predictions. For example:

yfit = predictY_mex(data);

If you used feature selection or PCA feature transformation in the app, then you need to take
additional steps. If you used manual feature selection, supply the same columns in X. The X argument
is the input to your function.

If you used PCA in the app, use the information in the PCA fields of the exported structure to take
account of this transformation. It does not matter whether you imported a table or a matrix into the
app, as long as X contains the matrix columns in the same order. Before generating code, follow these
steps:

1 Save the PCACenters and PCACoefficients fields of the trained regression structure, S, to file
using the following command:

save('pcaInfo.mat','-struct','S','PCACenters','PCACoefficients');
2 In your function file, include additional lines to perform the PCA transformation. Create a

function that loads the saved model, performs PCA, and makes predictions on new data. For
example:

function yfit = predictY (X) %#codegen
%PREDICTY Predict responses using tree model
%  PREDICTY uses the measurements in X 
%  and the tree model in the file myTree.mat, 
%  and then returns predicted responses in yfit.
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% If you used manual feature selection in the app, ensure that X
% contains only the columns you included in the model.

CompactMdl = loadLearnerForCoder('myTree'); 
pcaInfo = coder.load('pcaInfo.mat','PCACenters','PCACoefficients');
PCACenters = pcaInfo.PCACenters;
PCACoefficients = pcaInfo.PCACoefficients;

% Performs PCA transformation 
pcaTransformedX = bsxfun(@minus,X,PCACenters)*PCACoefficients;

yfit = predict(CompactMdl,pcaTransformedX);
end

For more information on the C code generation workflow and limitations, see “Code Generation”. For
examples, see saveLearnerForCoder and loadLearnerForCoder.

Deploy Predictions Using MATLAB Compiler
After you export a model to the workspace from Regression Learner, you can deploy it using MATLAB
Compiler.

Suppose you export the trained model to MATLAB Workspace based on the instructions in “Export
Model to Workspace” on page 24-65, with the name trainedModel. To deploy predictions, follow
these steps.

• Save the trainedModel structure in a .mat file.

save mymodel trainedModel

• Write the code to be compiled. This code must load the trained model and use it to make a
prediction. It must also have a pragma, so the compiler recognizes that Statistics and Machine
Learning Toolbox code is needed in the compiled application. This pragma can be any model
training function used in Regression Learner (for example, fitrtree).

function ypred = mypredict(tbl)
%#function fitrtree
load('mymodel.mat');
ypred = trainedModel.predictFcn(tbl);
end

• Compile as a standalone application.

mcc -m mypredict.m

Export Model for Deployment to MATLAB Production Server
After you train a model in Regression Learner, you can export the model for deployment to MATLAB
Production Server (requires MATLAB Compiler SDK).

• Select the trained model in the Models pane. On the Regression Learner tab, in the Export
section, click Export Model and select Export Model for Deployment.

• In the Select Project File for Model Deployment dialog box, select a location and name for your
project file.

• In the autogenerated predictFunction.m file, inspect and amend the code as needed.
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• Use the Production Server Compiler app to package your model and prediction function. You can
simulate the model deployment to MATLAB Production Server by clicking the Test Client button
in the Test section of the Compiler tab, and then package your code by clicking the Package
button in the Package section.

For an example, see “Deploy Model Trained in Regression Learner to MATLAB Production Server” on
page 24-119. For more information, see “Create Deployable Archive for MATLAB Production Server”
(MATLAB Production Server).

See Also
Functions
fitrtree | fitlm | stepwiselm | fitrsvm | fitrgp | fitrkernel | fitrensemble | fitrnet

Classes
RegressionTree | CompactRegressionTree | LinearModel | CompactLinearModel |
RegressionSVM | CompactRegressionSVM | RegressionGP | CompactRegressionGP |
RegressionKernel | RegressionEnsemble | CompactRegressionEnsemble |
RegressionNeuralNetwork | CompactRegressionNeuralNetwork

Related Examples
• “Train Regression Models in Regression Learner App” on page 24-2
• “Select Data for Regression or Open Saved App Session” on page 24-9
• “Choose Regression Model Options” on page 24-14
• “Feature Selection and Feature Transformation Using Regression Learner App” on page 24-30
• “Visualize and Assess Model Performance in Regression Learner” on page 24-48
• “Train Regression Trees Using Regression Learner App” on page 24-71
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Train Regression Trees Using Regression Learner App
This example shows how to create and compare various regression trees using the Regression
Learner app, and export trained models to the workspace to make predictions for new data.

You can train regression trees to predict responses to given input data. To predict the response of a
regression tree, follow the tree from the root (beginning) node down to a leaf node. At each node,
decide which branch to follow using the rule associated to that node. Continue until you arrive at a
leaf node. The predicted response is the value associated to that leaf node.

Statistics and Machine Learning Toolbox trees are binary. Each step in a prediction involves checking
the value of one predictor variable. For example, here is a simple regression tree:

This tree predicts the response based on two predictors, x1 and x2. To predict, start at the top node.
At each node, check the values of the predictors to decide which branch to follow. When the branches
reach a leaf node, the response is set to the value corresponding to that node.

This example uses the carbig data set. This data set contains characteristics of different car models
produced from 1970 through 1982, including:

• Acceleration
• Number of cylinders
• Engine displacement
• Engine power (Horsepower)
• Model year
• Weight
• Country of origin
• Miles per gallon (MPG)
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Train regression trees to predict the fuel economy in miles per gallon of a car model, given the other
variables as inputs.

1 In MATLAB, load the carbig data set and create a table containing the different variables:

load carbig
cartable = table(Acceleration,Cylinders,Displacement, ...
Horsepower,Model_Year,Weight,Origin,MPG);

2 On the Apps tab, in the Machine Learning and Deep Learning group, click Regression
Learner.

3 On the Regression Learner tab, in the File section, select New Session > From Workspace.
4 Under Data Set Variable in the New Session from Workspace dialog box, select cartable from

the list of tables and matrices in your workspace.

Observe that the app has preselected response and predictor variables. MPG is chosen as the
response, and all the other variables as predictors. For this example, do not change the
selections.
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5 To accept the default validation scheme and continue, click Start Session. The default validation
option is cross-validation, to protect against overfitting.

Regression Learner creates a plot of the response with the record number on the x-axis.
6 Use the response plot to investigate which variables are useful for predicting the response. To

visualize the relation between different predictors and the response, select different variables in
the X list under X-axis to the right of the plot.

Observe which variables are correlated most clearly with the response. Displacement,
Horsepower, and Weight all have a clearly visible impact on the response and all show a
negative association with the response.

7 Select the variable Origin under X-axis. A box plot is automatically displayed. A box plot shows
the typical values of the response and any possible outliers. The box plot is useful when plotting
markers results in many points overlapping. To show a box plot when the variable on the x-axis
has few unique values, under Style, select Box plot.
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8 Train a selection of regression trees. The Models pane already contains a fine tree model. Add
medium and coarse tree models to the list of draft models. On the Regression Learner tab, in
the Models section, click the arrow to open the gallery. In the Regression Trees group, click
Medium Tree. The app creates a draft medium tree in the Models pane. Reopen the model
gallery and click Coarse Tree in the Regression Trees group. The app creates a draft coarse
tree in the Models pane.

In the Train section, click Train All and select Train All. The app trains the three tree models
and plots both the true training response and the predicted response for each model.

Note

• If you have Parallel Computing Toolbox, then the app has the Use Parallel button toggled on
by default. After you click Train All and select Train All or Train Selected, the app opens a
parallel pool of workers. During this time, you cannot interact with the software. After the
pool opens, you can continue to interact with the app while models train in parallel.

• If you do not have Parallel Computing Toolbox, then the app has the Use Background
Training check box in the Train All menu selected by default. After you select an option to
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train models, the app opens a background pool. After the pool opens, you can continue to
interact with the app while models train in the background.

Note Validation introduces some randomness into the results. Your model validation results can
vary from the results shown in this example.

9 In the Models pane, check the RMSE (Validation) (validation root mean squared error) of the
models. The best score is highlighted in a box.

The Fine Tree and the Medium Tree have similar RMSEs, while the Coarse Tree is less
accurate.

10 Choose a model in the Models pane to view the results of that model. For example, select the
Medium Tree model (model 2). In the Response Plot tab, under X-axis, select Horsepower
and examine the response plot. Both the true and predicted responses are now plotted. Show the
prediction errors, drawn as vertical lines between the predicted and true responses, by selecting
the Errors check box.

11 See more details on the currently selected model in the model's Summary tab. On the
Regression Learner tab, in the Models section, click Summary. Check and compare additional
model characteristics, such as R-squared (coefficient of determination), MAE (mean absolute
error), and prediction speed. To learn more, see “View Model Statistics in Summary Tab and
Models Pane” on page 24-49. In the Summary tab, you also can find details on the currently
selected model type, such as the hyperparameters used for training the model.
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12 Plot the predicted response versus true response. On the Regression Learner tab, in the Plot
and Interpret section, click the arrow to open the gallery, and then click Predicted vs. Actual
(Validation) in the Validation Results group. Use this plot to understand how well the
regression model makes predictions for different response values.

A perfect regression model has predicted response equal to true response, so all the points lie on
a diagonal line. The vertical distance from the line to any point is the error of the prediction for
that point. A good model has small errors, so the predictions are scattered near the line. Usually
a good model has points scattered roughly symmetrically around the diagonal line. If you can see
any clear patterns in the plot, it is likely that you can improve your model.

13 Select the other models in the Models pane, open the predicted versus actual plot for each of the
models, and then compare the results. Rearrange the layout of the plots to better compare the
plots. Click the Document Actions arrow located to the far right of the model plot tabs. Select the

Tile All option and specify a 1-by-3 layout. Click the Hide plot options button  at the top
right of the plots to make more room for the plots.
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To return to the original layout, you can click the Layout button in the Plot and Interpret
section and select Single model (Default).

14 In the Models gallery, select All Trees in the Regression Trees group. To try to improve the
tree models, include different features in the models. See if you can improve the model by
removing features with low predictive power.

On the Regression Learner tab, in the Options section, click Feature Selection.

In the Default Feature Selection tab, you can select different feature ranking algorithms to
determine the most important features. After you select a feature ranking algorithm, the app
displays a plot of the sorted feature importance scores, where larger scores (including Infs)
indicate greater feature importance. The table shows the ranked features and their scores.

In this example, both the MRMR and F Test feature ranking algorithms rank the acceleration
and country of origin predictors the lowest. The app disables the RReliefF option because the
predictors include a mix of numeric and categorical variables.
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Under Feature Ranking Algorithm, click F Test. Under Feature Selection, use the default
option of selecting the highest ranked features to avoid bias in the validation metrics. Specify to
keep 4 of the 7 features for model training.

Click Save and Apply. The app applies the feature selection changes to the current draft model
and any new models created using the Models gallery.

15 Train the tree models using the reduced set of features. On the Regression Learner tab, in the
Train section, click Train All and select Train All or Train Selected.

16 Observe the new models in the Models pane. These models are the same regression trees as
before, but trained using only 4 of 7 predictors. The app displays how many predictors are used.
To check which predictors are used, click a model in the Models pane, and note the check boxes
in the expanded Feature Selection section of the model Summary tab.

Note If you use a cross-validation scheme and choose to perform feature selection using the
Select highest ranked features option, then for each training fold, the app performs feature
selection before training a model. Different folds can select different predictors as the highest
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ranked features. The table on the Default Feature Selection tab shows the list of predictors
used by the full model, trained on the training and validation data.

The models with the three features removed do not perform as well as the models using all
predictors. In general, if data collection is expensive or difficult, you might prefer a model that
performs satisfactorily without some predictors.

17 Train the three regression tree presets using only Horsepower as a predictor. In the Models
gallery, select All Trees in the Regression Trees group. In the model Summary tab, expand the
Feature Selection section. Choose the Select individual features option, and clear the check
boxes for all features except Horsepower. On the Regression Learner tab, in the Train
section, click Train All and select Train Selected.

Using only the engine power as a predictor results in models with lower accuracy. However, the
models perform well given that they are using only a single predictor. With this simple one-
dimensional predictor space, the coarse tree now performs as well as the medium and fine trees.

18 Select the best model in the Models pane and view the residuals plot. On the Regression
Learner tab, in the Plot and Interpret section, click the arrow to open the gallery, and then
click Residuals (Validation) in the Validation Results group. The residuals plot displays the
difference between the predicted and true responses. To display the residuals as a line graph, in
the Style section, choose Lines.

Under X-axis, select the variable to plot on the x-axis. Choose the true response, predicted
response, record number, or one of the predictors.
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Usually a good model has residuals scattered roughly symmetrically around 0. If you can see any
clear patterns in the residuals, it is likely that you can improve your model.

19 To learn about model hyperparameter settings, choose the best model in the Models pane and
expand the Model Hyperparameters section in the model Summary tab. Compare the coarse,
medium, and fine tree models, and note the differences in the model hyperparameters. In
particular, the Minimum leaf size setting is 36 for coarse trees, 12 for medium trees, and 4 for
fine trees. This setting controls the size of the tree leaves, and through that the size and depth of
the regression tree.

To try to improve the best model (the medium tree trained using all predictors), change the
Minimum leaf size setting. First, click the model in the Models pane. On the Regression
Learner tab, in the Models section, click Duplicate. In the Summary tab, change the
Minimum leaf size value to 8. Then, in the Train section of the Regression Learner tab, click
Train All and select Train Selected.

To learn more about regression tree settings, see “Regression Trees” on page 24-18.
20 You can export a full or compact version of the selected model to the workspace. On the

Regression Learner tab, in the Export section, click Export Model and select either Export
Model or Export Compact Model. In the Export Model dialog box, click OK to accept the
default variable name trainedModel.
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To see information about the results, look in the command window.
21 Use the exported model to make predictions on new data. For example, to make predictions for

the cartable data in your workspace, enter:

yfit = trainedModel.predictFcn(cartable)

The output yfit contains the predicted response for each data point.
22 If you want to automate training the same model with new data or learn how to programmatically

train regression models, you can generate code from the app. To generate code for the best
trained model, on the Regression Learner tab, in the Export section, click Generate
Function.

The app generates code from your model and displays the file in the MATLAB Editor. To learn
more, see “Generate MATLAB Code to Train Model with New Data” on page 24-66.

Tip Use the same workflow as in this example to evaluate and compare the other regression model
types you can train in Regression Learner.

Train all the nonoptimizable regression model presets available:

1 On the Regression Learner tab, in the Models section, click the arrow to open the gallery of
regression models.

2 In the Get Started group, click All.

3 In the Train section, click Train All and select Train All.

To learn about other regression model types, see “Train Regression Models in Regression Learner
App” on page 24-2.

See Also

Related Examples
• “Train Regression Models in Regression Learner App” on page 24-2
• “Select Data for Regression or Open Saved App Session” on page 24-9
• “Choose Regression Model Options” on page 24-14
• “Feature Selection and Feature Transformation Using Regression Learner App” on page 24-30
• “Visualize and Assess Model Performance in Regression Learner” on page 24-48
• “Export Regression Model to Predict New Data” on page 24-65
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Train Regression Neural Networks Using Regression Learner
App

This example shows how to create and compare various regression neural network models using the
Regression Learner app, and export trained models to the workspace to make predictions for new
data.

1 In the MATLAB Command Window, load the carbig data set, and create a table containing the
different variables.

load carbig
cartable = table(Acceleration,Cylinders,Displacement, ...
    Horsepower,Model_Year,Weight,Origin,MPG);

2 Click the Apps tab, and then click the Show more arrow on the right to open the apps gallery. In
the Machine Learning and Deep Learning group, click Regression Learner.

3 On the Regression Learner tab, in the File section, click New Session and select From
Workspace.

4 In the New Session from Workspace dialog box, select the table cartable from the Data Set
Variable list.

As shown in the dialog box, the app selects MPG as the response and the other variables as
predictors. For this example, do not change the selections.
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5 To accept the default validation scheme and continue, click Start Session. The default validation
option is 5-fold cross-validation, to protect against overfitting.

Regression Learner creates a plot of the response with the record number on the x-axis.
6 Use the response plot to investigate which variables are useful for predicting the response. To

visualize the relation between different predictors and the response, select different variables in
the X list under X-axis to the right of the plot. Observe which variables are correlated most
clearly with the response.

7 Create a selection of neural network models. On the Regression Learner tab, in the Models
section, click the arrow to open the gallery. In the Neural Networks group, click All Neural
Networks.

8 In the Train section, click Train All and select Train All.

Note
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• If you have Parallel Computing Toolbox, then the app has the Use Parallel button toggled on
by default. After you click Train All and select Train All or Train Selected, the app opens a
parallel pool of workers. During this time, you cannot interact with the software. After the
pool opens, you can continue to interact with the app while models train in parallel.

• If you do not have Parallel Computing Toolbox, then the app has the Use Background
Training check box in the Train All menu selected by default. After you select an option to
train models, the app opens a background pool. After the pool opens, you can continue to
interact with the app while models train in the background.

Regression Learner trains one of each neural network option in the gallery, as well as the default
fine tree model. In the Models pane, the app outlines the RMSE (Validation) (root mean
squared error) of the best model.

9 Select a model in the Models pane to view the results. On the Regression Learner tab, in the
Plot and Interpret section, click the arrow to open the gallery, and then click Response in the
Validation Results group. Examine the response plot for the trained model. True responses are
blue, and predicted responses are yellow.

Note Validation introduces some randomness into the results. Your model validation results can
vary from the results shown in this example.

10 Under X-axis, select Horsepower and examine the response plot. Both the true and predicted
responses are now plotted. Show the prediction errors, drawn as vertical lines between the
predicted and true responses, by selecting the Errors check box under Plot to the right of the
plot.
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11 For more information on the currently selected model, consult the Summary tab. Check and
compare additional model characteristics, such as R-squared (coefficient of determination), MAE
(mean absolute error), and prediction speed. To learn more, see “View Model Statistics in
Summary Tab and Models Pane” on page 24-49. In the Summary tab, you can also find details on
the currently selected model type, such as options used for training the model.

12 Plot the predicted response versus the true response. On the Regression Learner tab, in the
Plot and Interpret section, click the arrow to open the gallery, and then click Predicted vs.
Actual (Validation) in the Validation Results group. Use this plot to determine how well the
regression model makes predictions for different response values.

A perfect regression model has predicted responses equal to the true responses, so all the points
lie on a diagonal line. The vertical distance from the line to any point is the error of the
prediction for that point. A good model has small errors, so the predictions are scattered near the
line. Typically, a good model has points scattered roughly symmetrically around the diagonal line.
If you can see any clear patterns in the plot, you can most likely improve your model.
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13 For each remaining model, select the model in the Models pane, open the predicted versus
actual plot, and then compare the results across the models. For more information, see “Compare
Model Plots by Changing Layout” on page 24-58.

14 To try to improve the models, include different features. In the Models gallery, select All Neural
Networks again. See if you can improve the models by removing features with low predictive
power. In the Summary tab, click Feature Selection to expand the section.

In the Feature Selection section, clear the check boxes for Acceleration and Cylinders to
exclude them from the predictors. You can use the response plot to see that these variables are
not highly correlated with the response variable.

In the Train section, click Train All and select Train All or Train Selected to train the neural
network models using the new set of features.

15 Observe the new models in the Models pane. These models are the same neural network models
as before, but trained using only five of the seven predictors. For each model, the app displays
how many predictors are used. To check which predictors are used, click a model in the Models
pane and consult the Feature Selection section of the Summary tab.

The models with the two features removed perform comparably to the models with all predictors.
The models predict no better using all the predictors compared to using only a subset of them. If
data collection is expensive or difficult, you might prefer a model that performs satisfactorily
without some predictors.

16 Select the model in the Models pane with the lowest validation RMSE (best model), and view the
residuals plot. On the Regression Learner tab, in the Plot and Interpret section, click the
arrow to open the gallery, and then click Residuals (Validation) in the Validation Results
group. The residuals plot displays the difference between the predicted and true responses. To
display the residuals as a line graph select Lines under Style.

Under X-axis, select the variable to plot on the x-axis. Choose the true response, predicted
response, record number, or one of the predictors.
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Typically, a good model has residuals scattered roughly symmetrically around 0. If you can see
any clear patterns in the residuals, you can most likely improve your model.

17 You can try to further improve the best model in the Models pane by changing its
hyperparameters. First, duplicate the model. On the Regression Learner tab, in the Models
section, click Duplicate.

Then, in the Summary tab of the duplicated model, try changing some of the hyperparameter
settings, like the sizes of the fully connected layers or the regularization strength. Train the new
model by clicking Train All and selecting Train Selected.

To learn more about neural network model settings, see “Neural Networks” on page 24-27.
18 You can export a full or compact version of the trained model to the workspace. On the

Regression Learner tab, in the Export section, click Export Model and select either Export
Model or Export Compact Model. See “Export Regression Model to Predict New Data” on page
24-65.
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19 To examine the code for training this model, click Generate Function in the Export section.

Tip Use the same workflow to evaluate and compare the other regression model types you can train
in Regression Learner.

To train all the nonoptimizable regression model presets available for your data set:

1 On the Regression Learner tab, in the Models section, click the arrow to open the gallery of
regression models.

2 In the Get Started group, click All.

3 In the Train section, click Train All and select Train All.

To learn about other regression model types, see “Train Regression Models in Regression Learner
App” on page 24-2.

See Also

Related Examples
• “Train Regression Models in Regression Learner App” on page 24-2
• “Select Data for Regression or Open Saved App Session” on page 24-9
• “Choose Regression Model Options” on page 24-14
• “Feature Selection and Feature Transformation Using Regression Learner App” on page 24-30
• “Visualize and Assess Model Performance in Regression Learner” on page 24-48
• “Export Regression Model to Predict New Data” on page 24-65
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Train Kernel Approximation Model Using Regression Learner
App

This example shows how to create and compare various kernel approximation regression models
using the Regression Learner app, and export trained models to the workspace to make predictions
for new data. Kernel approximation models are typically useful for performing nonlinear regression
with many observations. For large in-memory data, kernel approximation models tend to train and
predict faster than SVM models with Gaussian kernels.

1 In the MATLAB Command Window, load the carbig data set, and create a table containing the
different variables.

load carbig
cartable = table(Acceleration,Cylinders,Displacement, ...
    Horsepower,Model_Year,Weight,Origin,MPG);

2 Click the Apps tab, and then click the Show more arrow on the right to open the apps gallery. In
the Machine Learning and Deep Learning group, click Regression Learner.

3 On the Regression Learner tab, in the File section, click New Session and select From
Workspace.

4 In the New Session from Workspace dialog box, select the table cartable from the Data Set
Variable list.

As shown in the dialog box, the app selects MPG as the response and the other variables as
predictors. For this example, do not change the selections.
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5 To accept the default validation scheme and continue, click Start Session. The default validation
option is 5-fold cross-validation, to protect against overfitting.

Regression Learner creates a plot of the response with the record number on the x-axis.
6 Use the response plot to investigate which variables are useful for predicting the response. To

visualize the relation between different predictors and the response, select different variables in
the X list under X-axis to the right of the plot. Observe which variables are correlated most
clearly with the response.

7 Create a selection of kernel approximation models. On the Regression Learner tab, in the
Models section, click the arrow to open the gallery. In the Kernel Approximation Regression
Models group, click All Kernels.

8 In the Train section, click Train All and select Train All.

Note
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• If you have Parallel Computing Toolbox, then the app has the Use Parallel button toggled on
by default. After you click Train All and select Train All or Train Selected, the app opens a
parallel pool of workers. During this time, you cannot interact with the software. After the
pool opens, you can continue to interact with the app while models train in parallel.

• If you do not have Parallel Computing Toolbox, then the app has the Use Background
Training check box in the Train All menu selected by default. After you select an option to
train models, the app opens a background pool. After the pool opens, you can continue to
interact with the app while models train in the background.

Regression Learner trains one of each kernel approximation option in the gallery, as well as the
default fine tree model. In the Models pane, the app outlines the RMSE (Validation) (root mean
squared error) of the best model.

9 Select a model in the Models pane to view the results. On the Regression Learner tab, in the
Plot and Interpret section, click the arrow to open the gallery, and then click Response in the
Validation Results group. Examine the response plot for the trained model. True responses are
blue, and predicted responses are yellow.
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Note Validation introduces some randomness into the results. Your model validation results can
vary from the results shown in this example.

10 Under X-axis, select Horsepower and examine the response plot. Both the true and predicted
responses are now plotted. Show the prediction errors, drawn as vertical lines between the
predicted and true responses, by selecting the Errors check box under Plot to the right of the
plot.

11 For more information on the currently selected model, consult the Summary tab. Check and
compare additional model characteristics, such as R-squared (coefficient of determination), MAE
(mean absolute error), and prediction speed. To learn more, see “View Model Statistics in
Summary Tab and Models Pane” on page 24-49. In the Summary tab, you can also find details on
the currently selected model type, such as options used for training the model.

12 Plot the predicted response versus the true response. On the Regression Learner tab, in the
Plot and Interpret section, click the arrow to open the gallery, and then click Predicted vs.
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Actual (Validation) in the Validation Results group. Use this plot to determine how well the
regression model makes predictions for different response values.

A perfect regression model has predicted responses equal to the true responses, so all the points
lie on a diagonal line. The vertical distance from the line to any point is the error of the
prediction for that point. A good model has small errors, so the predictions are scattered near the
line. Typically, a good model has points scattered roughly symmetrically around the diagonal line.
If you can see any clear patterns in the plot, you can most likely improve your model.

13 For each remaining model, select the model in the Models pane, open the predicted versus
actual plot, and then compare the results across the models. For more information, see “Compare
Model Plots by Changing Layout” on page 24-58.

14 To try to improve the models, include different features. In the Models gallery, select All
Kernels again. See if you can improve the models by removing features with low predictive
power. In the Summary tab, click Feature Selection to expand the section.
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In the Feature Selection section, clear the check boxes for Acceleration and Cylinders to
exclude them from the predictors. The response plot shows that these variables are not highly
correlated with the response variable.

In the Train section, click Train All and select Train All or Train Selected to train the kernel
approximation models using the new set of features.

15 Observe the new models in the Models pane. These models are the same kernel approximation
models as before, but trained using only five of the seven predictors. For each model, the app
displays how many predictors are used. To check which predictors are used, click a model in the
Models pane and consult the Feature Selection section of the Summary tab.

The models with the two features removed perform comparably to the models with all predictors.
The models predict no better using all the predictors compared to using only a subset of them. If
data collection is expensive or difficult, you might prefer a model that performs satisfactorily
without some predictors.

16 Select the model in the Models pane with the lowest validation RSME (best model), and view the
residuals plot. On the Regression Learner tab, in the Plot and Interpret section, click the
arrow to open the gallery, and then click Residuals (Validation) in the Validation Results
group. The residuals plot displays the difference between the predicted and true responses. To
display the residuals as a line graph select Lines under Style.

Under X-axis, select the variable to plot on the x-axis. Choose the true response, predicted
response, record number, or one of the predictors.
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Typically, a good model has residuals scattered roughly symmetrically around 0. If you can see
any clear patterns in the residuals, you can most likely improve your model.

17 You can try to further improve the best model in the Models pane by changing its
hyperparameters. First, duplicate the model. On the Regression Learner tab, in the Models
section, click Duplicate.

Then, in the Summary tab of the duplicated model, try changing some of the hyperparameter
settings, like the kernel scale parameter or the regularization strength. Train the new model by
clicking Train All and selecting Train Selected.

To learn more about kernel approximation model settings, see “Kernel Approximation Models” on
page 24-24.

18 You can export a compact version of the trained model to the workspace. On the Regression
Learner tab, in the Export section, click Export Model and select either Export Model or
Export Compact Model. Note that either option exports a compact version of the trained model
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because kernel approximation models do not store training data. See “Export Regression Model
to Predict New Data” on page 24-65.

19 To examine the code for training this model, click Generate Function in the Export section.

Tip Use the same workflow to evaluate and compare the other regression model types you can train
in Regression Learner.

To train all the nonoptimizable regression model presets available for your data set:

1 On the Regression Learner tab, in the Models section, click the arrow to open the gallery of
regression models.

2 In the Get Started group, click All.

3 In the Train section, click Train All and select Train All.

To learn about other regression model types, see “Train Regression Models in Regression Learner
App” on page 24-2.

See Also
fitrkernel | predict

Related Examples
• “Train Regression Models in Regression Learner App” on page 24-2
• “Select Data for Regression or Open Saved App Session” on page 24-9
• “Choose Regression Model Options” on page 24-14
• “Feature Selection and Feature Transformation Using Regression Learner App” on page 24-30
• “Visualize and Assess Model Performance in Regression Learner” on page 24-48
• “Export Regression Model to Predict New Data” on page 24-65
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Train Regression Model Using Hyperparameter Optimization in
Regression Learner App

This example shows how to tune hyperparameters of a regression ensemble by using hyperparameter
optimization in the Regression Learner app. Compare the test set performance of the trained
optimizable ensemble to that of the best-performing preset ensemble model.

1 In the MATLAB Command Window, load the carbig data set, and create a table containing most
of the variables.

load carbig
cartable = table(Acceleration,Cylinders,Displacement, ...
    Horsepower,Model_Year,Weight,Origin,MPG);

2 Open Regression Learner. Click the Apps tab, and then click the arrow at the right of the Apps
section to open the apps gallery. In the Machine Learning and Deep Learning group, click
Regression Learner.

3 On the Regression Learner tab, in the File section, select New Session > From Workspace.
4 In the New Session from Workspace dialog box, select cartable from the Data Set Variable

list. The app selects the response and predictor variables. The default response variable is MPG.
The default validation option is 5-fold cross-validation, to protect against overfitting.

In the Test section, click the check box to set aside a test data set. Specify to use 15 percent of
the imported data as a test set.
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5 To accept the options and continue, click Start Session.
6 Train all preset ensemble models. On the Regression Learner tab, in the Models section, click

the arrow to open the gallery. In the Ensembles of Trees group, click All Ensembles. In the
Train section, click Train All and select Train All. The app trains one of each ensemble model
type, as well as the default fine tree model, and displays the models in the Models pane.

Note

• If you have Parallel Computing Toolbox, then the app has the Use Parallel button toggled on
by default. After you click Train All and select Train All or Train Selected, the app opens a
parallel pool of workers. During this time, you cannot interact with the software. After the
pool opens, you can continue to interact with the app while models train in parallel.

• If you do not have Parallel Computing Toolbox, then the app has the Use Background
Training check box in the Train All menu selected by default. After you select an option to
train models, the app opens a background pool. After the pool opens, you can continue to
interact with the app while models train in the background.
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The app displays a response plot for the first ensemble model (model 2.1). Blue points are true
values, and yellow points are predicted values. The Models pane on the left shows the validation
RMSE for each model.

Note Validation introduces some randomness into the results. Your model validation results can
vary from the results shown in this example.

7 Select an optimizable ensemble model to train. On the Regression Learner tab, in the Models
section, click the arrow to open the gallery. In the Ensembles of Trees group, click
Optimizable Ensemble.

8 Select the model hyperparameters to optimize. In the Summary tab, you can select Optimize
check boxes for the hyperparameters that you want to optimize. By default, all the check boxes
are selected. For this example, accept the default selections.
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9 Train the optimizable model. In the Train section of the Regression Learner tab, click Train All
and select Train Selected.

10 The app displays a Minimum MSE Plot as it runs the optimization process. At each iteration,
the app tries a different combination of hyperparameter values and updates the plot with the
minimum validation mean squared error (MSE) observed up to that iteration, indicated in dark
blue. When the app completes the optimization process, it selects the set of optimized
hyperparameters, indicated by a red square. For more information, see “Minimum MSE Plot” on
page 24-43.

The app lists the optimized hyperparameters in both the Optimization Results section to the
right of the plot and the Optimizable Ensemble Model Hyperparameters section of the model
Summary tab.
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Note In general, the optimization results are not reproducible.
11 Compare the trained preset ensemble models to the trained optimizable model. In the Models

pane, the app highlights the lowest RMSE (Validation) (validation root mean squared error) by
outlining it in a box. In this example, the trained optimizable ensemble outperforms the two
preset models.

A trained optimizable model does not always have a lower RMSE than the trained preset models.
If a trained optimizable model does not perform well, you can try to get better results by running
the optimization for longer. On the Regression Learner tab, in the Options section, click
Optimizer. In the dialog box, increase the Iterations value. For example, you can double-click
the default value of 30 and enter a value of 60. Then click Save and Apply. The options will be
applied to future optimizable models created using the Models gallery.

12 Because hyperparameter tuning often leads to overfitted models, check the performance of the
optimizable ensemble model on a test set and compare it to the performance of the best preset
ensemble model. Use the data you reserved for testing when you imported data into the app.

First, in the Models pane, click the star icons next to the Bagged Trees model and the
Optimizable Ensemble model.

13 For each model, select the model in the Models pane. In the Test section of the Regression
Learner tab, click Test All and then select Test Selected. The app computes the test set
performance of the model trained on the rest of the data, namely the training and validation data.
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14 Sort the models based on the test set RMSE. In the Models pane, open the Sort by list and
select RMSE (Test).

In this example, the trained optimizable ensemble still outperforms the trained preset model on
the test set data. More importantly, the test set RMSE is comparable to the validation RMSE for
the optimizable model.

See Also

Related Examples
• “Hyperparameter Optimization in Regression Learner App” on page 24-35
• “Train Regression Models in Regression Learner App” on page 24-2
• “Select Data for Regression or Open Saved App Session” on page 24-9
• “Choose Regression Model Options” on page 24-14
• “Visualize and Assess Model Performance in Regression Learner” on page 24-48
• “Export Regression Model to Predict New Data” on page 24-65
• “Bayesian Optimization Workflow” on page 10-25
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Check Model Performance Using Test Set in Regression Learner
App

This example shows how to train multiple models in Regression Learner, and determine the best-
performing models based on their validation metrics. Check the test metrics for the best-performing
models trained on the full data set, including training and validation data.

1 In the MATLAB Command Window, load the carbig data set, and create a table containing most
of the variables. Separate the table into training and test sets.

load carbig
cartable = table(Acceleration,Cylinders,Displacement, ...
    Horsepower,Model_Year,Weight,Origin,MPG);

rng("default") % For reproducibility of the data split
n = length(MPG);
partition = cvpartition(n,"Holdout",0.15);
idxTrain = training(partition); % Indices for the training set
cartableTrain = cartable(idxTrain,:);
cartableTest = cartable(~idxTrain,:);

Alternatively, you can create a test set later on when you import data into the app. For more
information, see “(optional) Reserve Data for Testing” on page 24-12.

2 Open Regression Learner. Click the Apps tab, and then click the arrow at the right of the Apps
section to open the apps gallery. In the Machine Learning and Deep Learning group, click
Regression Learner.

3 On the Regression Learner tab, in the File section, click New Session and select From
Workspace.

4 In the New Session from Workspace dialog box, select the cartableTrain table from the Data
Set Variable list.

As shown in the dialog box, the app selects the response and predictor variables. The default
response variable is MPG. To protect against overfitting, the default validation option is 5-fold
cross-validation. For this example, do not change the default settings.
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5 To accept the default options and continue, click Start Session.
6 Train all preset models. On the Regression Learner tab, in the Models section, click the arrow

to open the gallery. In the Get Started group, click All. In the Train section, click Train All and
select Train All. The app trains one of each preset model type, along with the default fine tree
model, and displays the models in the Models pane.

Note

• If you have Parallel Computing Toolbox, then the app has the Use Parallel button toggled on
by default. After you click Train All and select Train All or Train Selected, the app opens a
parallel pool of workers. During this time, you cannot interact with the software. After the
pool opens, you can continue to interact with the app while models train in parallel.

• If you do not have Parallel Computing Toolbox, then the app has the Use Background
Training check box in the Train All menu selected by default. After you select an option to
train models, the app opens a background pool. After the pool opens, you can continue to
interact with the app while models train in the background.

7 Sort the trained models based on the validation root mean squared error (RMSE). In the Models
pane, open the Sort by list and select RMSE (Validation).
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8 In the Models pane, click the star icons next to the three models with the lowest validation
RMSE. The app highlights the lowest validation RMSE by outlining it in a box. In this example,
the trained Exponential GPR model has the lowest validation RMSE.

The app displays a response plot for the linear regression model (model 2.1). Blue points are true
values, and yellow points are predicted values. The Models pane on the left shows the validation
RMSE for each model.

Note Validation introduces some randomness into the results. Your model validation results can
vary from the results shown in this example.

9 Check the test set performance of the best-performing models. Begin by importing test data into
the app.

On the Regression Learner tab, in the Test section, click Test Data and select From
Workspace.

10 In the Import Test Data dialog box, select the cartableTest table from the Test Data Set
Variable list.

As shown in the dialog box, the app identifies the response and predictor variables.
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11 Click Import.
12 Compute the RMSE of the best preset models on the cartableTest data. For convenience,

compute the test set RMSE for all models at once. On the Regression Learner tab, in the Test
section, click Test All and select Test All. The app computes the test set performance of the
model trained on the full data set, including training and validation data.

13 Sort the models based on the test set RMSE. In the Models pane, open the Sort by list and
select RMSE (Test). The app still outlines the metric for the model with the lowest validation
RMSE, despite displaying the test RMSE.

14 Visually check the test set performance of the models. For each starred model, select the model
in the Models pane. On the Regression Learner tab, in the Plot and Interpret section, click
the arrow to open the gallery, and then click Predicted vs. Actual (Test) in the Test Results
group.

15 Rearrange the layout of the plots to better compare them. First, close the summary and plot tabs
for Model 1 and Model 2.1. Then, click the Document Actions arrow located to the far right of
the model plot tabs. Select the Tile All option and specify a 1-by-3 layout. Click the Hide plot

options button  at the top right of the plots to make more room for the plots.

In this example, the three starred models perform similarly on the test set data.
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To return to the original layout, you can click the Layout button in the Plot and Interpret
section and select Single model (Default).

16 Compare the validation and test RMSE for the trained Exponential GPR model. In the Models
pane, double-click the model. In the model Summary tab, compare the RMSE (Validation)
value under Training Results to the RMSE (Test) value under Test Results. In this example,
the validation RMSE is lower than the test RMSE, which indicates that the validation RMSE
might be overestimating the performance of this model.

See Also

Related Examples
• “Visualize and Assess Model Performance in Regression Learner” on page 24-48
• “Export Regression Model to Predict New Data” on page 24-65
• “Train Regression Model Using Hyperparameter Optimization in Regression Learner App” on

page 24-97
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Interpret Regression Models Trained in Regression Learner
App

Understanding how some machine learning models make predictions can be difficult. Interpretability
tools help reveal how predictors contribute (or do not contribute) to predictions. For trained
regression models, partial dependence plots (PDPs) show the relationship between a predictor and
the predicted response. The partial dependence on the selected predictor is defined by the averaged
prediction obtained by marginalizing out the effect of the other predictors.

This example shows how to train regression models in the Regression Learner app and interpret the
best-performing models using PDPs. You can use PDP results to confirm that models use features as
expected, or to remove unhelpful features from model training.

1 In the MATLAB Command Window, load the carbig data set, which contains measurements of
cars made in the 1970s and early 1980s.

load carbig
2 Categorize the cars based on whether they were made in the USA.

Origin = categorical(cellstr(Origin));
Origin = mergecats(Origin,["France","Japan","Germany", ...
    "Sweden","Italy","England"],"NotUSA");

3 Create a table containing the predictor variables Acceleration, Displacement, and so on, as
well as the response variable MPG.

cars = table(Acceleration,Displacement,Horsepower, ...
    Model_Year,Origin,Weight,MPG);

4 Remove rows of cars where the table has missing values.

cars = rmmissing(cars);
5 Open Regression Learner. Click the Apps tab, and then click the arrow at the right of the Apps

section to open the apps gallery. In the Machine Learning and Deep Learning group, click
Regression Learner.

6 On the Regression Learner tab, in the File section, click New Session and select From
Workspace.

7 In the New Session from Workspace dialog box, select the cars table from the Data Set
Variable list. The app selects the response and predictor variables. The default response variable
is MPG. The default validation option is 5-fold cross-validation, to protect against overfitting.

In the Test section, click the check box to set aside a test data set. Specify 15 percent of the
imported data as a test set.

8 To accept the options and continue, click Start Session.
9 Train all preset models. On the Regression Learner tab, in the Models section, click the arrow

to open the gallery. In the Get Started group, click All. In the Train section, click Train All and
select Train All. The app trains one of each preset model type, along with the default fine tree
model, and displays the models in the Models pane.

Note

• If you have Parallel Computing Toolbox, then the app has the Use Parallel button toggled on
by default. After you click Train All and select Train All or Train Selected, the app opens a
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parallel pool of workers. During this time, you cannot interact with the software. After the
pool opens, you can continue to interact with the app while models train in parallel.

• If you do not have Parallel Computing Toolbox, then the app has the Use Background
Training check box in the Train All menu selected by default. After you select an option to
train models, the app opens a background pool. After the pool opens, you can continue to
interact with the app while models train in the background.

10 Sort the trained models based on the validation root mean squared error (RMSE). In the Models
pane, open the Sort by list and select RMSE (Validation).

11 In the Models pane, click the star icon next to the model with the lowest validation RMSE
values. The app highlights the lowest validation RMSE by outlining it in a box. In this example,
the trained Matern 5/2 GPR model has the lowest validation RMSE.

Note Validation introduces some randomness into the results. Your model validation results can
vary from the results shown in this example.

12 For the starred model, you can check the model performance by using various plots (for example,
response, Predicted vs. Actual, and residuals plots). In the Models pane, select the model. On
the Regression Learner tab, in the Plot and Interpret section, click the arrow to open the
gallery. Then, click any of the buttons in the Validation Results group to open the
corresponding plot.

After opening multiple plots, you can change the layout of the plots by using the Document
Actions arrow located to the far right of the model plot tabs. For example, click the arrow, select
the Sub-Tile option, and specify a layout. For more information on how to use and display
validation plots, see “Visualize and Assess Model Performance in Regression Learner” on page
24-48.
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To return to the original layout, you can click the Layout button in the Plot and Interpret
section and select Single model (Default).

13 For the starred model, see how the model features relate to the model predictions by using
partial dependence plots (PDPs). On the Regression Learner tab, in the Plot and Interpret
section, click the arrow to open the gallery. In the Interpretation Results section, click Partial
Dependence. The PDP allows you to visualize the marginal effect of each predictor on the
predicted response of the trained model. To compute the partial dependence values, the app uses
the model trained on the 85% of observations in cars not reserved for testing.

14 Examine the relationship between the model predictors and model predictions on the training
data (that is, 85% of the observations in cars). Under Data, select Training set.

Look for features that seem to contribute to model predictions. For example, under Feature,
select Weight.
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The blue plotted line represents the averaged partial relationship between the Weight feature
and the predicted MPG response. The tick marks along the x-axis indicate the unique Weight
values in the training data set. According to this model (Model 2.17), the MPG (miles per gallon)
value tends to decrease as the car weight increases.

Note In general, consider the distribution of values when interpreting partial dependence plots.
Results tend to be more reliable in intervals where you have sufficient observations whose
predictor values are spread evenly.

15 You can tune your best-performing model by removing predictors that do not seem to contribute
to model predictions. A PDP where the predicted response remains constant across all predictor
values can indicate a poor predictor.

In this example, none of the predictors have a PDP where the plotted line is flat. However, two
predictors, Displacement and Horsepower, show a similar relationship to the model predicted
response as the Weight predictor.

Under Feature, first select Displacement and then select Horsepower.
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16 Remove the Displacement and Horsepower predictors from the best-performing model. Create
a copy of the starred model. After selecting the model in the Models pane, click the Duplicate
button in the Models section of the Regression Learner tab.

Then, in the model Summary tab, expand the Feature Selection section, and clear the Select
check boxes for the Displacement and Horsepower features.
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17 Train the new model. In the Train section of the Regression Learner tab, click Train All and
select Train Selected.

18 In the Models pane, click the star icon next to the new model. To group the starred models
together, open the Sort by list and select Favorites.
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The model trained with fewer features, Model 3, performs slightly better than the model trained
with all features, Model 2.17.

19 For each starred model, compute the RMSE of the model on the test set. First, select the model
in the Models pane. Then, on the Regression Learner tab, in the Test section, click Test All
and select Test Selected.

20 Compare the validation and test RMSE results for the starred models by using a table. On the
Regression Learner tab, in the Models section, click Results Table. In the Results Table tab,
click the "Select columns to display" button at the top right of the table.

In the Select Columns to Display dialog box, check the Select box for the Preset column, and
clear the Select check boxes for the MSE (Validation), RSquared (Validation), MAE
(Validation), MSE (Test), RSquared (Test), and MAE (Test) columns. Click OK.
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In this example, both of the starred models perform well on the test set.
21 For the best-performing model, look at the PDPs on the test data set. Ensure that the partial

relationships meet expectations.

For this example, because the model trained on fewer features still performs well on the test set,
select this model (Model 3). Compare the training set and test set PDPs for the Acceleration
feature and the Model 3 predicted response. In the Partial Dependence Plot tab, under
Feature, select Acceleration. Under Data, select Training set and then select Test set to see
each plot.
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The PDPs have similar trends for the training and test data sets. However, the predicted response
values vary slightly between the plots. This discrepancy might be due to a difference in the
distribution of training set observations and test set observations.

If you are satisfied with the best-performing model, you can export the trained model to the
workspace. For more information, see “Export Model to Workspace” on page 24-65. You can also
export any of the partial dependence plots you create in Regression Learner. For more information,
see “Export Plots in Regression Learner App” on page 24-61.

See Also
plotPartialDependence | partialDependence

Related Examples
• “Visualize and Assess Model Performance in Regression Learner” on page 24-48
• “Interpret Machine Learning Models” on page 27-2
• “Export Plots in Regression Learner App” on page 24-61
• “Export Regression Model to Predict New Data” on page 24-65
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Deploy Model Trained in Regression Learner to MATLAB
Production Server

This example shows how to train a model in Regression Learner and export it for deployment to
MATLAB Production Server. This workflow requires MATLAB Compiler SDK.

Choose Trained Model to Deploy
1 In the Command Window, simulate 100 observations from a regression model with four predictor

variables. Create a random matrix X, whose rows correspond to observations and whose columns
correspond to predictor variables. Add missing values to the matrix by randomly setting
approximately 2% of the values in each column as NaNs. Create a response variable y from the
variables in X.

rng("default")
numRows = 100;
numCols = 4;
X = rand(numRows,numCols);

randIdx = randi(numRows*numCols,floor(0.02*numRows)*numCols,1);
X(randIdx) = NaN;

y = 10*X(:,1) + 5*X(:,2) + 3*X(:,3) + 7*X(:,4) + 0.1*randn(numRows,1);
2 From the Command Window, open the Regression Learner app. Populate the New Session from

Arguments dialog box with the predictor matrix X and the response variable y.

regressionLearner(X,y)

The default validation option is 5-fold cross-validation, to protect against overfitting. For this
example, do not change the default validation setting.

3 To accept the selections in the New Session from Arguments dialog box and continue, click Start
Session.

4 Train all preset models. On the Regression Learner tab, in the Models section, click the arrow
to open the gallery. In the Get Started group, click All. In the Train section, click Train All and
select Train All. The app trains all preset models, along with the default fine tree model, and
displays the models in the Models pane.

Note

• If you have Parallel Computing Toolbox, then the app has the Use Parallel button toggled on
by default. After you click Train All and select Train All or Train Selected, the app opens a
parallel pool of workers. During this time, you cannot interact with the software. After the
pool opens, you can continue to interact with the app while models train in parallel.

• If you do not have Parallel Computing Toolbox, then the app has the Use Background
Training check box in the Train All menu selected by default. After you select an option to
train models, the app opens a background pool. After the pool opens, you can continue to
interact with the app while models train in the background.

 Deploy Model Trained in Regression Learner to MATLAB Production Server

24-119



The app displays a response plot for the linear regression model (model 2.1). Blue points are true
values, and yellow points are predicted values. The Models pane on the left shows the validation
RMSE (root mean squared error) for each model.

5 Sort the models based on the validation RMSE. In the Models pane, open the Sort by list and
select RMSE (Validation). The app outlines the metric for the model (or models) with the
lowest validation RMSE.

6 Select the model in the Models pane with the lowest validation RMSE.

Export Model for Deployment
1 Export the selected model for deployment to MATLAB Production Server. On the Regression

Learner tab, in the Export section, click Export Model and select Export Model for
Deployment.

2 In the Select Project File for Model Deployment dialog box, select a location and name for your
project file. For this example, use the default project name
RegressionLearnerDeployedModel.prj. Click Save.

The software opens the Production Server Compiler app and the autogenerated
predictFunction.m file.

3 In the Compiler tab of the Production Server Compiler app, the Exported Functions section
includes the files modelInformation.m and predictFunction.m. The section Additional
files required for your archive to run includes the files processInputData.m and
TrainedRegressionModel.mat. For an example where you must update the code in some of
these files to include preprocessing steps, see “Deploy Model Trained in Classification Learner to
MATLAB Production Server” on page 23-167. For this example, inspect the
predictFunction.m code and close the file.

(Optional) Simulate Model Deployment
Before packaging your code for deployment to MATLAB Production Server, you can simulate the
model deployment using a MATLAB client. Completing this process requires opening another
instance of MATLAB. For an example that shows how to use a sample Java client for sending data to a
MATLAB function deployed on the server, see “Evaluate Deployed Machine Learning Models Using
Java Client” (MATLAB Production Server).

1 In the Production Server Compiler app, click the Test Client button in the Test section on the
Compiler tab.

2 On the Test tab, in the Server Actions section, click the Start button. Note the address listed in
the Server Address pane, which in this example is http://localhost:9910/
DeployedRegressionModel.

3 Open a new instance of MATLAB.

In the new MATLAB instance, the Production Server Compiler app automatically opens. Close
this instance of the app.

4 In the Command Window of the new MATLAB instance, load predictor data that has the same
format as the training data used in Regression Learner.

rng("default")
numRows = 100;
numCols = 4;
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X = rand(numRows,numCols);

randIdx = randi(numRows*numCols,floor(0.02*numRows)*numCols,1);
X(randIdx) = NaN;

5 Send the data to MATLAB Production Server. Use the server address displayed in the Production
Server Compiler app.

Because X is a numeric matrix, the argument does not require further processing before being
sent to MATLAB Production Server. You must convert categorical variables and tables to cell
arrays and structures, respectively, before sending them to MATLAB Production Server. For an
example, see “Deploy Model Trained in Classification Learner to MATLAB Production Server” on
page 23-167.

jsonData = mps.json.encoderequest({X},"Nargout",1, ...
    "OutputFormat","large");
URL = "http://localhost:9910/DeployedRegressionModel/predictFunction";
options = weboptions("MediaType","application/json","Timeout",30);
response = webwrite(URL,jsonData,options);

In the original MATLAB instance, in the opened Production Server Compiler app, the MATLAB
Execution Requests pane under the Test tab shows a successful request between the server
and the MATLAB client.

6 In the Command Window of the new MATLAB instance, extract the predicted responses from the
response variable. Convert the predicted responses to a numeric vector, and check that the
values are correct.

cellResults = response.lhs.mwdata;
numericResults = arrayfun(@str2double,string(cellResults));

Note that the data type of response.lhs.mwdata changes depending on the presence of NaN
values. For example, response.lhs.mwdata is a numeric vector when the predicted responses
do not include NaN values.

7 In the original MATLAB instance, in the Production Server Compiler app, click Stop in the
Server Actions section on the Test tab. In the Close section, click Close Test.

Package Code
1 Use the Production Server Compiler app to package your model and prediction function. On the

Compiler tab, in the Package section, click the Package button.
2 In the Package dialog box, verify that the option Open output folder when process completes

is selected.

After the deployment process finishes, examine the generated output.

• for_redistribution — Folder containing the DeployedRegressionModel.ctf file
• for_testing — Folder containing the raw generated files required to create the installer
• PackagingLog.html — Log file generated by MATLAB Compiler SDK
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See Also

Related Examples
• “Visualize and Assess Model Performance in Regression Learner” on page 24-48
• “Export Regression Model to Predict New Data” on page 24-65
• “Create Deployable Archive for MATLAB Production Server” (MATLAB Production Server)
• “Evaluate Deployed Machine Learning Models Using Java Client” (MATLAB Production Server)
• “Execute Deployed MATLAB Functions” (MATLAB Production Server)
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Understanding Support Vector Machine Regression

In this section...
“Mathematical Formulation of SVM Regression” on page 25-2
“Solving the SVM Regression Optimization Problem” on page 25-5

Mathematical Formulation of SVM Regression
Overview

Support vector machine (SVM) analysis is a popular machine learning tool for classification and
regression, first identified by Vladimir Vapnik and his colleagues in 1992[5]. SVM regression is
considered a nonparametric technique because it relies on kernel functions.

Statistics and Machine Learning Toolbox implements linear epsilon-insensitive SVM (ε-SVM)
regression, which is also known as L1 loss. In ε-SVM regression, the set of training data includes
predictor variables and observed response values. The goal is to find a function f(x) that deviates
from yn by a value no greater than ε for each training point x, and at the same time is as flat as
possible.

Linear SVM Regression: Primal Formula

Suppose we have a set of training data where xn is a multivariate set of N observations with observed
response values yn.

To find the linear function

f (x) = x′β + b,

and ensure that it is as flat as possible, find f(x) with the minimal norm value (β′β). This is formulated
as a convex optimization problem to minimize

J β = 1
2β′β

subject to all residuals having a value less than ε; or, in equation form:

∀n: yn− xn′β + b ≤ ε .

It is possible that no such function f(x) exists to satisfy these constraints for all points. To deal with
otherwise infeasible constraints, introduce slack variables ξn and ξ*

n for each point. This approach is
similar to the “soft margin” concept in SVM classification, because the slack variables allow
regression errors to exist up to the value of ξn and ξ*

n, yet still satisfy the required conditions.

Including slack variables leads to the objective function, also known as the primal formula[5]:

J β = 1
2β′β + C ∑

n = 1

N
ξn + ξn* ,

subject to:
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∀n: yn− xn′β + b ≤ ε + ξn

∀n: xn′β + b − yn ≤ ε + ξn*
∀n:ξn* ≥ 0
∀n:ξn ≥ 0 .

The constant C is the box constraint, a positive numeric value that controls the penalty imposed on
observations that lie outside the epsilon margin (ε) and helps to prevent overfitting (regularization).
This value determines the trade-off between the flatness of f(x) and the amount up to which
deviations larger than ε are tolerated.

The linear ε-insensitive loss function ignores errors that are within ε distance of the observed value
by treating them as equal to zero. The loss is measured based on the distance between observed
value y and the ε boundary. This is formally described by

Lε =
0 if  y − f x ≤ ε
y − f x − ε otherwise

Linear SVM Regression: Dual Formula

The optimization problem previously described is computationally simpler to solve in its Lagrange
dual formulation. The solution to the dual problem provides a lower bound to the solution of the
primal (minimization) problem. The optimal values of the primal and dual problems need not be
equal, and the difference is called the “duality gap.” But when the problem is convex and satisfies a
constraint qualification condition, the value of the optimal solution to the primal problem is given by
the solution of the dual problem.

To obtain the dual formula, construct a Lagrangian function from the primal function by introducing
nonnegative multipliers αn and α*

n for each observation xn. This leads to the dual formula, where we
minimize

L α = 1
2 ∑i = 1

N
∑

j = 1

N
αi− αi* α j− α j* xi′x j + ε ∑

i = 1

N
αi + αi* + ∑

i = 1

N
yi αi*− αi

subject to the constraints

∑
n = 1

N
αn− αn* = 0

∀n:0 ≤ αn ≤ C
∀n:0 ≤ αn* ≤ C .

The β parameter can be completely described as a linear combination of the training observations
using the equation

β = ∑
n = 1

N
αn− αn* xn .

The function used to predict new values depends only on the support vectors:

f x = ∑
n = 1

N
αn− αn* xn′x + b .  (25-1)
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The Karush-Kuhn-Tucker (KKT) complementarity conditions are optimization constraints required to
obtain optimal solutions. For linear SVM regression, these conditions are

∀n:αn ε + ξn− yn + xn′β + b = 0
∀n:αn* ε + ξn* + yn− xn′β− b = 0
∀n:ξn C− αn = 0
∀n:ξn* C− αn* = 0 .

These conditions indicate that all observations strictly inside the epsilon tube have Lagrange
multipliers αn = 0 and αn

* = 0. If either αn or αn
* is not zero, then the corresponding observation is

called a support vector.

The property Alpha of a trained SVM model stores the difference between two Lagrange multipliers
of support vectors, αn – αn

*. The properties SupportVectors and Bias store xn and b, respectively.

Nonlinear SVM Regression: Primal Formula

Some regression problems cannot adequately be described using a linear model. In such a case, the
Lagrange dual formulation allows the previously-described technique to be extended to nonlinear
functions.

Obtain a nonlinear SVM regression model by replacing the dot product x1′x2 with a nonlinear kernel
function G(x1,x2) = <φ(x1),φ(x2)>, where φ(x) is a transformation that maps x to a high-dimensional
space. Statistics and Machine Learning Toolbox provides the following built-in positive semidefinite
kernel functions.

Kernel Name Kernel Function
Linear (dot product) G(x j, xk) = x j′xk

Gaussian G x j, xk = exp − x j− xk
2

Polynomial G(x j, xk) = (1 + x j′xk)q, where q is in the set
{2,3,...}.

The Gram matrix is an n-by-n matrix that contains elements gi,j = G(xi,xj). Each element gi,j is equal to
the inner product of the predictors as transformed by φ. However, we do not need to know φ, because
we can use the kernel function to generate Gram matrix directly. Using this method, nonlinear SVM
finds the optimal function f(x) in the transformed predictor space.

Nonlinear SVM Regression: Dual Formula

The dual formula for nonlinear SVM regression replaces the inner product of the predictors (xi′xj)
with the corresponding element of the Gram matrix (gi,j).

Nonlinear SVM regression finds the coefficients that minimize

L α = 1
2 ∑i = 1

N
∑

j = 1

N
αi− αi* α j− α j* G xi, x j + ε ∑

i = 1

N
αi + αi* − ∑

i = 1

N
yi αi− αi*

subject to
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∑
n = 1

N
αn− αn* = 0

∀n:0 ≤ αn ≤ C
∀n:0 ≤ αn* ≤ C .

The function used to predict new values is equal to

f x = ∑
n = 1

N
αn− αn* G xn, x + b .  (25-2)

The KKT complementarity conditions are

∀n:αn ε + ξn− yn + f xn = 0
∀n:αn* ε + ξn* + yn− f xn = 0
∀n:ξn C− αn = 0
∀n:ξn* C− αn* = 0 .

Solving the SVM Regression Optimization Problem
Solver Algorithms

The minimization problem can be expressed in standard quadratic programming form and solved
using common quadratic programming techniques. However, it can be computationally expensive to
use quadratic programming algorithms, especially since the Gram matrix may be too large to be
stored in memory. Using a decomposition method instead can speed up the computation and avoid
running out of memory.

Decomposition methods (also called chunking and working set methods) separate all observations
into two disjoint sets: the working set and the remaining set. A decomposition method modifies only
the elements in the working set in each iteration. Therefore, only some columns of the Gram matrix
are needed in each iteration, which reduces the amount of storage needed for each iteration.

Sequential minimal optimization (SMO) is the most popular approach for solving SVM problems[4].
SMO performs a series of two-point optimizations. In each iteration, a working set of two points are
chosen based on a selection rule that uses second-order information. Then the Lagrange multipliers
for this working set are solved analytically using the approach described in [2] and [1].

In SVM regression, the gradient vector ∇L for the active set is updated after each iteration. The
decomposed equation for the gradient vector is

∇L n =
∑

i = 1

N
αi− αi* G xi, xn + ε− yn , n ≤ N

− ∑
i = 1

N
αi− αi* G xi, xn + ε + yn , n > N

.

Iterative single data algorithm (ISDA) updates one Lagrange multiplier with each iteration[3]. ISDA is
often conducted without the bias term b by adding a small positive constant a to the kernel function.
Dropping b drops the sum constraint
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∑
n = 1

N
αi− α* = 0

in the dual equation. This allows us to update one Lagrange multiplier in each iteration, which makes
it easier than SMO to remove outliers. ISDA selects the worst KKT violator among all the αn and αn

*

values as the working set to be updated.

Convergence Criteria

Each of these solver algorithms iteratively computes until the specified convergence criterion is met.
There are several options for convergence criteria:

• Feasibility gap — The feasibility gap is expressed as

Δ = J β + L α
J β + 1 ,

where J(β) is the primal objective and L(α) is the dual objective. After each iteration, the software
evaluates the feasibility gap. If the feasibility gap is less than the value specified by
GapTolerance, then the algorithm met the convergence criterion and the software returns a
solution.

• Gradient difference — After each iteration, the software evaluates the gradient vector, ∇L. If the
difference in gradient vector values for the current iteration and the previous iteration is less than
the value specified by DeltaGradientTolerance, then the algorithm met the convergence
criterion and the software returns a solution.

• Largest KKT violation — After each iteration, the software evaluates the KKT violation for all the
αn and αn

* values. If the largest violation is less than the value specified by KKTTolerance, then
the algorithm met the convergence criterion and the software returns a solution.
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See Also
RegressionSVM | fitrsvm | predict | resubPredict
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Related Examples
• “Train Linear Support Vector Machine Regression Model” on page 35-2719
• “Train Support Vector Machine Regression Model” on page 35-2721
• “Cross-Validate SVM Regression Model” on page 35-2722
• “Optimize SVM Regression” on page 35-2724
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Introduction to Fairness in Binary Classification
The functions fairnessMetrics, fairnessWeights, and disparateImpactRemover in Statistics
and Machine Learning Toolbox allow you to detect and mitigate societal bias in binary classification.
First, use fairnessMetrics to evaluate the fairness of a data set or classification model with bias
and group metrics. Then, use fairnessWeights to reweight observations, or use
disparateImpactRemover to remove the disparate impact of a sensitive attribute.

• fairnessMetrics — The fairnessMetrics function computes fairness metrics (bias metrics
and group metrics) for a data set or classification model with respect to sensitive attributes. The
data-level evaluation examines binary, true labels of the data. The model-level evaluation examines
the predicted labels returned by the binary classification model, using both true labels and
predicted labels. You can use the metrics to determine if your data or model contains bias toward
a group within each sensitive attribute.

• fairnessWeights — The fairnessWeights function computes fairness weights with respect to
a sensitive attribute and the response variable. For every combination of a group in the sensitive
attribute and a class label in the response variable, the software computes a weight value. The
function then assigns each observation its corresponding weight. The returned weights introduce
fairness across the sensitive attribute groups. Pass the weights to an appropriate training
function, such as fitcsvm, using the Weights name-value argument.

• disparateImpactRemover — The disparateImpactRemover function tries to remove the
disparate impact of a sensitive attribute on model predictions by using the sensitive attribute to
transform the continuous predictors in the data set. The function returns the transformed data set
and a disparateImpactRemover object that contains the transformation. Pass the transformed
data set to an appropriate training function, such as fitcsvm, and pass the object to the
transform object function to apply the transformation to a new data set, such as a test data set.

Reduce Statistical Parity Difference Using Fairness Weights

Train a neural network model, and compute the statistical parity difference (SPD) for each group in
the sensitive attribute. To reduce the SPD values, compute fairness weights, and retrain the neural
network model.

Read the sample file CreditRating_Historical.dat into a table. The predictor data consists of
financial ratios and industry sector information for a list of corporate customers. The response
variable consists of credit ratings assigned by a rating agency.

creditrating = readtable("CreditRating_Historical.dat");

Because each value in the ID variable is a unique customer ID—that is,
length(unique(creditrating.ID)) is equal to the number of observations in creditrating—
the ID variable is a poor predictor. Remove the ID variable from the table, and convert the Industry
variable to a categorical variable.

creditrating.ID = [];
creditrating.Industry = categorical(creditrating.Industry);

In the Rating response variable, combine the AAA, AA, A, and BBB ratings into a category of "good"
ratings, and the BB, B, and CCC ratings into a category of "poor" ratings.

Rating = categorical(creditrating.Rating);
Rating = mergecats(Rating,["AAA","AA","A","BBB"],"good");
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Rating = mergecats(Rating,["BB","B","CCC"],"poor");
creditrating.Rating = Rating;

Train a neural network model on the creditrating data. For better results, standardize the
predictors before fitting the model. Use the trained model to predict labels for the training data set.

rng("default") % For reproducibility
netMdl = fitcnet(creditrating,"Rating",Standardize=true);
netPredictions = predict(netMdl,creditrating);

Compute fairness metrics with respect to the Industry sensitive attribute by using the model
predictions. In particular, find the statistical parity difference (SPD) for each group in Industry.

netEvaluator = fairnessMetrics(creditrating,"Rating", ...
    SensitiveAttributeNames="Industry",Predictions=netPredictions);
report(netEvaluator,BiasMetrics="StatisticalParityDifference")

ans=12×3 table
    SensitiveAttributeNames    Groups    StatisticalParityDifference
    _______________________    ______    ___________________________

           Industry              1                 0.080018         
           Industry              2                 0.089973         
           Industry              3                        0         
           Industry              4                   0.1033         
           Industry              5                  0.06399         
           Industry              6                0.0053739         
           Industry              7                  0.02906         
           Industry              8                  0.09641         
           Industry              9                  0.16917         
           Industry              10                 0.16239         
           Industry              11                0.027949         
           Industry              12                0.037569         

To better understand the distribution of SPD values, plot the values using a box plot.

spdValues = netEvaluator.BiasMetrics.StatisticalParityDifference;
boxchart(spdValues)
ylabel("Statistical Parity Difference")
title("Distribution of Statistical Parity Differences")
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The median SPD value is around 0.06, which is higher than the value 0 of a fair model.

Compute fairness weights, and refit a neural network model using the weights. As before, standardize
the predictors. Then, predict labels for the training data by using the new model.

weights = fairnessWeights(creditrating,"Industry","Rating");

rng("default") % For reproducibility
newNetMdl = fitcnet(creditrating,"Rating",Weights=weights, ...
    Standardize=true);
newNetPredictions = predict(newNetMdl,creditrating);

Compute the new SPD values.

newNetEvaluator = fairnessMetrics(creditrating,"Rating", ...
    SensitiveAttributeNames="Industry",Predictions=newNetPredictions);
report(newNetEvaluator,BiasMetrics="StatisticalParityDifference")

ans=12×3 table
    SensitiveAttributeNames    Groups    StatisticalParityDifference
    _______________________    ______    ___________________________

           Industry              1                 0.042932         
           Industry              2                  0.06161         
           Industry              3                        0         
           Industry              4                 0.065591         
           Industry              5                 0.029718         
           Industry              6               -0.0080011         
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           Industry              7                 0.010419         
           Industry              8                 0.065071         
           Industry              9                  0.10734         
           Industry              10                 0.11254         
           Industry              11                0.013276         
           Industry              12               0.0030654         

Display the two distributions of SPD values. The left box plot shows the SPD values computed using
the original model. The right box plot shows the SPD values computed using the new model trained
with fairness weights.

spdValuesUpdated = newNetEvaluator.BiasMetrics.StatisticalParityDifference;
boxchart([spdValues spdValuesUpdated])
xticklabels(["Without Weights","With Weights"])
ylabel("Statistical Parity Difference")
title("Distribution of Statistical Parity Differences")

The new SPD values have a median around 0.04, which is closer to 0 than the previous median of 0.6.
The maximum value of the new SPD values, which is around 0.11, is also closer to 0 than the previous
maximum value, which is around 0.16.

Reduce Disparate Impact of Predictions
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Train a binary classifier, classify test data using the model, and compute the disparate impact for
each group in the sensitive attribute. To reduce the disparate impact values, use
disparateImpactRemover, and then retrain the binary classifier. Transform the test data set,
reclassify the observations, and compute the disparate impact values.

Load the sample data census1994, which contains the training data adultdata and the test data
adulttest. The data sets consist of demographic information from the US Census Bureau that can
be used to predict whether an individual makes over $50,000 per year. Preview the first few rows of
the training data set.

load census1994
head(adultdata)

    age       workClass          fnlwgt      education    education_num       marital_status           occupation        relationship     race      sex      capital_gain    capital_loss    hours_per_week    native_country    salary
    ___    ________________    __________    _________    _____________    _____________________    _________________    _____________    _____    ______    ____________    ____________    ______________    ______________    ______

    39     State-gov                77516    Bachelors         13          Never-married            Adm-clerical         Not-in-family    White    Male          2174             0                40          United-States     <=50K 
    50     Self-emp-not-inc         83311    Bachelors         13          Married-civ-spouse       Exec-managerial      Husband          White    Male             0             0                13          United-States     <=50K 
    38     Private             2.1565e+05    HS-grad            9          Divorced                 Handlers-cleaners    Not-in-family    White    Male             0             0                40          United-States     <=50K 
    53     Private             2.3472e+05    11th               7          Married-civ-spouse       Handlers-cleaners    Husband          Black    Male             0             0                40          United-States     <=50K 
    28     Private             3.3841e+05    Bachelors         13          Married-civ-spouse       Prof-specialty       Wife             Black    Female           0             0                40          Cuba              <=50K 
    37     Private             2.8458e+05    Masters           14          Married-civ-spouse       Exec-managerial      Wife             White    Female           0             0                40          United-States     <=50K 
    49     Private             1.6019e+05    9th                5          Married-spouse-absent    Other-service        Not-in-family    Black    Female           0             0                16          Jamaica           <=50K 
    52     Self-emp-not-inc    2.0964e+05    HS-grad            9          Married-civ-spouse       Exec-managerial      Husband          White    Male             0             0                45          United-States     >50K  

Each row contains the demographic information for one adult. The last column salary shows
whether a person has a salary less than or equal to $50,000 per year or greater than $50,000 per
year.

Remove observations from adultdata and adulttest that contain missing values.

adultdata = rmmissing(adultdata);
adulttest = rmmissing(adulttest);

Specify the continuous numeric predictors to use for model training.

predictors = ["age","education_num","capital_gain","capital_loss", ...
    "hours_per_week"];

Train an ensemble classifier using the training set adultdata. Specify salary as the response
variable and fnlwgt as the observation weights. Because the training set is imbalanced, use the
RUSBoost algorithm. After training the model, predict the salary (class label) of the observations in
the test set adulttest.

rng("default") % For reproducibility
mdl = fitcensemble(adultdata,"salary",Weights="fnlwgt", ...
    PredictorNames=predictors,Method="RUSBoost");
labels = predict(mdl,adulttest);

Transform the training set predictors by using the race sensitive attribute.

[remover,newadultdata] = disparateImpactRemover(adultdata, ...
    "race",PredictorNames=predictors);
remover

remover = 
  disparateImpactRemover with properties:
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        RepairFraction: 1
        PredictorNames: {1x5 cell}
    SensitiveAttribute: 'race'

remover is a disparateImpactRemover object, which contains the transformation of the
remover.PredictorNames predictors with respect to the remover.SensitiveAttribute
variable.

Apply the same transformation stored in remover to the test set predictors. Note: You must
transform both the training and test data sets before passing them to a classifier.

newadulttest = transform(remover,adulttest, ...
    PredictorNames=predictors);

Train the same type of ensemble classifier as mdl, but use the transformed predictor data. As before,
predict the salary (class label) of the observations in the test set adulttest.

rng("default") % For reproducibility
newMdl = fitcensemble(newadultdata,"salary",Weights="fnlwgt", ...
    PredictorNames=predictors,Method="RUSBoost");
newLabels = predict(newMdl,newadulttest);

Compare the disparate impact values for the predictions made by the original model (mdl) and the
predictions made by the model trained with the transformed data (newMdl). For each group in the
sensitive attribute, the disparate impact value is the proportion of predictions in that group with a
positive class value (pg + ) divided by the proportion of predictions in the reference group with a
positive class value (pr + ). An ideal classifier makes predictions where, for each group, pg +  is close to
pr +  (that is, where the disparate impact value is close to 1).

Compute the disparate impact values for the mdl predictions made using the original predictor data.
Include the observation weights. You can use the report object function to display bias metrics, such
as disparate impact, that are stored in the evaluator object.

evaluator = fairnessMetrics(adulttest,"salary", ...
    SensitiveAttributeNames="race",Predictions=labels, ...
    Weights="fnlwgt");
evaluator.PositiveClass

ans = categorical
     >50K 

evaluator.ReferenceGroup

ans = 
'White'

report(evaluator,BiasMetrics="DisparateImpact")

ans=5×3 table
    SensitiveAttributeNames          Groups          DisparateImpact
    _______________________    __________________    _______________

             race              Amer-Indian-Eskimo        0.41702    
             race              Asian-Pac-Islander          1.719    
             race              Black                     0.60571    
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             race              Other                     0.66958    
             race              White                           1    

Several of the disparate impact values are below the industry standard of 0.8, and one value is above
1.25. These values indicate bias in the predictions with respect to the positive class >50K and the
sensitive attribute race.

Compute the disparate impact values for the newMdl predictions.

newEvaluator = fairnessMetrics(newadulttest,"salary", ...
    SensitiveAttributeNames="race",Predictions=newLabels, ...
    Weights="fnlwgt");
newEvaluator.PositiveClass

ans = categorical
     >50K 

newEvaluator.ReferenceGroup

ans = 
'White'

report(newEvaluator,BiasMetrics="DisparateImpact")

ans=5×3 table
    SensitiveAttributeNames          Groups          DisparateImpact
    _______________________    __________________    _______________

             race              Amer-Indian-Eskimo        0.92804    
             race              Asian-Pac-Islander         0.9697    
             race              Black                     0.66629    
             race              Other                     0.86039    
             race              White                           1    

The disparate impact values for the newMdl predictions are closer to 1 than the disparate impact
values for the mdl predictions. One value is still below 0.8.

Visually compare the disparate impact values by using a bar graph.

bar([evaluator.BiasMetrics.DisparateImpact, ...
    newEvaluator.BiasMetrics.DisparateImpact])
xticklabels(evaluator.BiasMetrics.Groups)
ylabel("Disparate Impact")
legend(["Original","Transformed"], ...
    Location="eastoutside")
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The disparateImpactRemover function seems to have improved the model predictions on the test
set with respect to the disparate impact metric.

Check whether the transformed predictors negatively affect the accuracy of the model predictions.
Compute the accuracy of the test set predictions for the two models mdl and newMdl.

accuracy = 1-loss(mdl,adulttest,"salary")

accuracy = 0.8024

newAccuracy = 1-loss(newMdl,newadulttest,"salary")

newAccuracy = 0.7955

The model trained using the transformed predictors (newMdl) achieves similar test set accuracy
compared to the model trained with the original predictors (mdl).

See Also
fairnessMetrics | fairnessWeights | disparateImpactRemover | transform
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Interpretability

• “Interpret Machine Learning Models” on page 27-2
• “Shapley Values for Machine Learning Model” on page 27-18
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Interpret Machine Learning Models
This topic introduces Statistics and Machine Learning Toolbox features for model interpretation and
shows how to interpret a machine learning model (classification and regression).

A machine learning model is often referred to as a "black box" model because it can be difficult to
understand how the model makes predictions. Interpretability tools help you overcome this aspect of
machine learning algorithms and reveal how predictors contribute (or do not contribute) to
predictions. Also, you can validate whether the model uses the correct evidence for its predictions,
and find model biases that are not immediately apparent.

Features for Model Interpretation
Use lime, shapley, and plotPartialDependence to explain the contribution of individual
predictors to the predictions of a trained classification or regression model.

• lime — Local interpretable model-agnostic explanations (LIME [1]) interpret a prediction for a
query point by fitting a simple interpretable model for the query point. The simple model acts as
an approximation for the trained model and explains model predictions around the query point.
The simple model can be either a linear model or a decision tree model. You can use the estimated
coefficients of a linear model or the estimated predictor importance of a decision tree model to
explain the contribution of individual predictors to the prediction for the query point. For more
details, see “LIME” on page 35-4199.

• shapley — The Shapley value [2][3] of a predictor for a query point explains the deviation of the
prediction (response for regression or class scores for classification) for the query point from the
average prediction, due to the predictor. For a query point, the sum of the Shapley values for all
features corresponds to the total deviation of the prediction from the average. For more details,
see “Shapley Values for Machine Learning Model” on page 27-18.

• plotPartialDependence and partialDependence — A partial dependence plot (PDP [4])
shows the relationships between a predictor (or a pair of predictors) and the prediction (response
for regression or class scores for classification) in the trained model. The partial dependence on
the selected predictor is defined by the averaged prediction obtained by marginalizing out the
effect of the other variables. Therefore, the partial dependence is a function of the selected
predictor that shows the average effect of the selected predictor over the data set. You can also
create a set of individual conditional expectation (ICE [5]) plots for each observation, showing the
effect of the selected predictor on a single observation. For more details, see “More About” on
page 35-5608 on the plotPartialDependence reference page.

Some machine learning models support embedded type feature selection, where the model learns
predictor importance as part of the model learning process. You can use the estimated predictor
importance to explain model predictions. For example:

• Train an ensemble (ClassificationBaggedEnsemble or RegressionBaggedEnsemble) of
bagged decision trees (for example, random forest) and use the predictorImportance and
oobPermutedPredictorImportance functions.

• Train a linear model with lasso regularization, which shrinks the coefficients of the least important
predictors. Then use the estimated coefficients as measures for predictor importance. For
example, use fitclinear or fitrlinear and specify the 'Regularization' name-value
argument as 'lasso'.

For a list of machine learning models that support embedded type feature selection, see “Embedded
Type Feature Selection” on page 16-52.
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Use Statistics and Machine Learning Toolbox features for three levels of model interpretation: local,
cohort, and global.

Level Objective Use Case Statistics and Machine Learning
Toolbox Feature

Local
interpretation

Explain a
prediction for a
single query point.

• Identify
important
predictors for
an individual
prediction.

• Examine a
counterintuitive
prediction.

Use lime and shapley for a specified
query point.

Cohort
interpretation

Explain how a
trained model
makes predictions
for a subset of the
entire data set.

Validate
predictions for a
particular group of
samples.

• Use lime and shapley for multiple
query points. After creating a lime
or shapley object, you can call the
object function fit multiple times
to interpret predictions for other
query points.

• Pass a subset of data when you call
lime, shapley, and
plotPartialDependence. The
features interpret the trained model
using the specified subset instead of
the entire training data set.

Global
interpretation

Explain how a
trained model
makes predictions
for the entire data
set.

• Demonstrate
how a trained
model works.

• Compare
different
models.

• Use plotPartialDependence to
create PDPs and ICE plots for the
predictors of interest.

• Find important predictors from a
trained model that supports
“Embedded Type Feature Selection”
on page 16-52.

Interpret Classification Model

This example trains an ensemble of bagged decision trees using the random forest algorithm, and
interprets the trained model using interpretability features. Use the object functions
(oobPermutedPredictorImportance and predictorImportance) of the trained model to find
important predictors in the model. Also, use lime and shapley to interpret the predictions for
specified query points. Then use plotPartialDependence to create a plot that shows the
relationships between an important predictor and predicted classification scores.

Train Classification Ensemble Model

Load the CreditRating_Historical data set. The data set contains customer IDs and their
financial ratios, industry labels, and credit ratings.

tbl = readtable('CreditRating_Historical.dat');

Display the first three rows of the table.
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head(tbl,3)

ans=3×8 table
     ID      WC_TA    RE_TA    EBIT_TA    MVE_BVTD    S_TA     Industry    Rating
    _____    _____    _____    _______    ________    _____    ________    ______

    62394    0.013    0.104     0.036      0.447      0.142       3        {'BB'}
    48608    0.232    0.335     0.062      1.969      0.281       8        {'A' }
    42444    0.311    0.367     0.074      1.935      0.366       1        {'A' }

Create a table of predictor variables by removing the columns containing customer IDs and ratings
from tbl.

tblX = removevars(tbl,["ID","Rating"]);

Train an ensemble of bagged decision trees by using the fitcensemble function and specifying the
ensemble aggregation method as random forest ('Bag'). For reproducibility of the random forest
algorithm, specify the 'Reproducible' name-value argument as true for tree learners. Also,
specify the class names to set the order of the classes in the trained model.

rng('default') % For reproducibility
t = templateTree('Reproducible',true);
blackbox = fitcensemble(tblX,tbl.Rating, ...
    'Method','Bag','Learners',t, ...
    'CategoricalPredictors','Industry', ...
    'ClassNames',{'AAA' 'AA' 'A' 'BBB' 'BB' 'B' 'CCC'});

blackbox is a ClassificationBaggedEnsemble model.

Use Model-Specific Interpretability Features

ClassificationBaggedEnsemble supports two object functions,
oobPermutedPredictorImportance and predictorImportance, which find important
predictors in the trained model.

Estimate out-of-bag predictor importance by using the oobPermutedPredictorImportance
function. The function randomly permutes out-of-bag data across one predictor at a time, and
estimates the increase in the out-of-bag error due to this permutation. The larger the increase, the
more important the feature.

Imp1 = oobPermutedPredictorImportance(blackbox);

Estimate predictor importance by using the predictorImportance function. The function estimates
predictor importance by summing changes in the node risk due to splits on each predictor and
dividing the sum by the number of branch nodes.

Imp2 = predictorImportance(blackbox);

Create a table containing the predictor importance estimates, and use the table to create horizontal
bar graphs. To display an existing underscore in any predictor name, change the
TickLabelInterpreter value of the axes to 'none'.

table_Imp = table(Imp1',Imp2', ...
    'VariableNames',{'Out-of-Bag Permuted Predictor Importance','Predictor Importance'}, ...
    'RowNames',blackbox.PredictorNames);
tiledlayout(1,2)
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ax1 = nexttile;
table_Imp1 = sortrows(table_Imp,'Out-of-Bag Permuted Predictor Importance');
barh(categorical(table_Imp1.Row,table_Imp1.Row),table_Imp1.('Out-of-Bag Permuted Predictor Importance'))
xlabel('Out-of-Bag Permuted Predictor Importance')
ylabel('Predictor')
ax2 = nexttile;
table_Imp2 = sortrows(table_Imp,'Predictor Importance');
barh(categorical(table_Imp2.Row,table_Imp2.Row),table_Imp2.('Predictor Importance'))
xlabel('Predictor Importance')
ax1.TickLabelInterpreter = 'none';
ax2.TickLabelInterpreter = 'none';

Both object functions identify MVE_BVTD and RE_TA as the two most important predictors.

Specify Query Point

Find the observations whose Rating is 'AAA' and choose four query points among them.

tblX_AAA = tblX(strcmp(tbl.Rating,'AAA'),:);
queryPoint = datasample(tblX_AAA,4,'Replace',false)

queryPoint=4×6 table
    WC_TA    RE_TA    EBIT_TA    MVE_BVTD    S_TA     Industry
    _____    _____    _______    ________    _____    ________

    0.331    0.531     0.077      7.116      0.522       12   
     0.26    0.515     0.065      3.394      0.515        1   
    0.121    0.413     0.057      3.647      0.466       12   
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    0.617    0.766     0.126      4.442      0.483        9   

Use LIME with Linear Simple Models

Explain the predictions for the query points using lime with linear simple models. lime generates a
synthetic data set and fits a simple model to the synthetic data set.

Create a lime object using tblX_AAA so that lime generates a synthetic data set using only the
observations whose Rating is 'AAA', not the entire data set.

explainer_lime = lime(blackbox,tblX_AAA);

The default value of “DataLocality” on page 35-0  for lime is 'global', which implies that, by
default, lime generates a global synthetic data set and uses it for any query points. lime uses
different observation weights so that weight values are more focused on the observations near the
query point. Therefore, you can interpret each simple model as an approximation of the trained model
for a specific query point.

Fit simple models for the four query points by using the object function fit. Specify the third input
(the number of important predictors to use in the simple model) as 6 to use all six predictors.

explainer_lime1 = fit(explainer_lime,queryPoint(1,:),6);
explainer_lime2 = fit(explainer_lime,queryPoint(2,:),6);
explainer_lime3 = fit(explainer_lime,queryPoint(3,:),6);
explainer_lime4 = fit(explainer_lime,queryPoint(4,:),6);

Plot the coefficients of the simple models by using the object function plot.

tiledlayout(2,2)
ax1 = nexttile; plot(explainer_lime1);
ax2 = nexttile; plot(explainer_lime2);
ax3 = nexttile; plot(explainer_lime3);
ax4 = nexttile; plot(explainer_lime4);
ax1.TickLabelInterpreter = 'none';
ax2.TickLabelInterpreter = 'none';
ax3.TickLabelInterpreter = 'none';
ax4.TickLabelInterpreter = 'none';
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All simple models identify EBIT_TA, RE_TA, and MVE_BVTD as the three most important predictors.
The positive coefficients for the predictors suggest that increasing the predictor values leads to an
increase in the predicted scores in the simple models.

For a categorical predictor, the plot function displays only the most important dummy variable of the
categorical predictor. Therefore, each bar graph displays a different dummy variable.

Compute Shapley Values

The Shapley value of a predictor for a query point explains the deviation of the predicted score for
the query point from the average score, due to the predictor. Create a shapley object using
tblX_AAA so that shapley computes the expected contribution based on the samples for 'AAA'.

explainer_shapley = shapley(blackbox,tblX_AAA);

Compute the Shapley values for the query points by using the object function fit.

explainer_shapley1 = fit(explainer_shapley,queryPoint(1,:));
explainer_shapley2 = fit(explainer_shapley,queryPoint(2,:));
explainer_shapley3 = fit(explainer_shapley,queryPoint(3,:));
explainer_shapley4 = fit(explainer_shapley,queryPoint(4,:));

Plot the Shapley values by using the object function plot.

tiledlayout(2,2)
nexttile
plot(explainer_shapley1)
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nexttile
plot(explainer_shapley2)
nexttile
plot(explainer_shapley3)
nexttile
plot(explainer_shapley4)

MVE_BVTD and RE_TA are two of the three most important predictors for all four query points.

The Shapley values of MVE_BVTD are positive for the first and fourth query points, and negative for
the second and third query points. The MVE_BVTD variable values are about 7 and 4 for the first and
fourth query points, respectively, and the value for both the second and third query points is about
3.5. According to the Shapley values for the four query points, a large MVE_BVTD value leads to an
increase in the predicted score, and a small MVE_BVTD value leads to a decrease in the predicted
scores compared to the average. The results are consistent with the results from lime.

Create Partial Dependence Plot (PDP)

A PDP plot shows the averaged relationships between the predictor and the predicted score in the
trained model. Create PDPs for RE_TA and MVE_BVTD, which the other interpretability tools identify
as important predictors. Pass tblx_AAA to plotPartialDependence so that the function computes
the expectation of the predicted scores using only the samples for 'AAA'.

figure
plotPartialDependence(blackbox,'RE_TA','AAA',tblX_AAA)
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plotPartialDependence(blackbox,'MVE_BVTD','AAA',tblX_AAA)

 Interpret Machine Learning Models

27-9



The minor ticks in the x-axis represent the unique values of the predictor in tbl_AAA. The plot for
MVE_BVTD shows that the predicted score is large when the MVE_BVTD value is small. The score value
decreases as the MVE_BVTD value increases until it reaches about 5, and then the score value stays
unchanged as the MVE_BVTD value increases. The dependency on MVE_BVTD in the subset tbl_AAA
identified by plotPartialDependence is not consistent with the local contributions of MVE_BVTD at
the four query points identified by lime and shapley.

Interpret Regression Model

The model interpretation workflow for a regression problem is similar to the workflow for a
classification problem, as demonstrated in the example “Interpret Classification Model” on page 27-3.

This example trains a Gaussian process regression (GPR) model and interprets the trained model
using interpretability features. Use a kernel parameter of the GPR model to estimate predictor
weights. Also, use lime and shapley to interpret the predictions for specified query points. Then
use plotPartialDependence to create a plot that shows the relationships between an important
predictor and predicted responses.

Train GPR Model

Load the carbig data set, which contains measurements of cars made in the 1970s and early 1980s.

load carbig

Create a table containing the predictor variables Acceleration, Cylinders, and so on
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tbl = table(Acceleration,Cylinders,Displacement,Horsepower,Model_Year,Weight);

Train a GPR model of the response variable MPG by using the fitrgp function. Specify
'KernelFunction' as 'ardsquaredexponential' to use the squared exponential kernel with a
separate length scale per predictor.

blackbox = fitrgp(tbl,MPG,'ResponseName','MPG','CategoricalPredictors',[2 5], ...
    'KernelFunction','ardsquaredexponential');

blackbox is a RegressionGP model.

Use Model-Specific Interpretability Features

You can compute predictor weights (predictor importance) from the learned length scales of the
kernel function used in the model. The length scales define how far apart a predictor can be for the
response values to become uncorrelated. Find the normalized predictor weights by taking the
exponential of the negative learned length scales.

sigmaL = blackbox.KernelInformation.KernelParameters(1:end-1); % Learned length scales
weights = exp(-sigmaL); % Predictor weights
weights = weights/sum(weights); % Normalized predictor weights

Create a table containing the normalized predictor weights, and use the table to create horizontal bar
graphs. To display an existing underscore in any predictor name, change the
TickLabelInterpreter value of the axes to 'none'.

tbl_weight = table(weights,'VariableNames',{'Predictor Weight'}, ...
    'RowNames',blackbox.ExpandedPredictorNames);
tbl_weight = sortrows(tbl_weight,'Predictor Weight');
b = barh(categorical(tbl_weight.Row,tbl_weight.Row),tbl_weight.('Predictor Weight'));
b.Parent.TickLabelInterpreter = 'none'; 
xlabel('Predictor Weight')
ylabel('Predictor')
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The predictor weights indicate that multiple dummy variables for the categorical predictors
Model_Year and Cylinders are important.

Specify Query Point

Find the observations whose MPG values are smaller than the 0.25 quantile of MPG. From the subset,
choose four query points that do not include missing values.

rng('default') % For reproducibility
idx_subset = find(MPG < quantile(MPG,0.25));
tbl_subset = tbl(idx_subset,:);
queryPoint = datasample(rmmissing(tbl_subset),4,'Replace',false)

queryPoint=4×6 table
    Acceleration    Cylinders    Displacement    Horsepower    Model_Year    Weight
    ____________    _________    ____________    __________    __________    ______

        13.2            8            318            150            76         3940 
        14.9            8            302            130            77         4295 
          14            8            360            215            70         4615 
        13.7            8            318            145            77         4140 

Use LIME with Tree Simple Models

Explain the predictions for the query points using lime with decision tree simple models. lime
generates a synthetic data set and fits a simple model to the synthetic data set.
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Create a lime object using tbl_subset so that lime generates a synthetic data set using the subset
instead of the entire data set. Specify 'SimpleModelType' as 'tree' to use a decision tree simple
model.

explainer_lime = lime(blackbox,tbl_subset,'SimpleModelType','tree');

The default value of “DataLocality” on page 35-0  for lime is 'global', which implies that, by
default, lime generates a global synthetic data set and uses it for any query points. lime uses
different observation weights so that weight values are more focused on the observations near the
query point. Therefore, you can interpret each simple model as an approximation of the trained model
for a specific query point.

Fit simple models for the four query points by using the object function fit. Specify the third input
(the number of important predictors to use in the simple model) as 6. With this setting, the software
specifies the maximum number of decision splits (or branch nodes) as 6 so that the fitted decision
tree uses at most all predictors.

explainer_lime1 = fit(explainer_lime,queryPoint(1,:),6);
explainer_lime2 = fit(explainer_lime,queryPoint(2,:),6);
explainer_lime3 = fit(explainer_lime,queryPoint(3,:),6);
explainer_lime4 = fit(explainer_lime,queryPoint(4,:),6);

Plot the predictor importance by using the object function plot.

tiledlayout(2,2)
ax1 = nexttile; plot(explainer_lime1);
ax2 = nexttile; plot(explainer_lime2);
ax3 = nexttile; plot(explainer_lime3);
ax4 = nexttile; plot(explainer_lime4);
ax1.TickLabelInterpreter = 'none';
ax2.TickLabelInterpreter = 'none';
ax3.TickLabelInterpreter = 'none';
ax4.TickLabelInterpreter = 'none';
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All simple models identify Displacement, Model_Year, and Weight as important predictors.

Compute Shapley Values

The Shapley value of a predictor for a query point explains the deviation of the predicted response for
the query point from the average response, due to the predictor. Create a shapley object for the
model blackbox using tbl_subset so that shapley computes the expected contribution based on
the observations in tbl_subset.

explainer_shapley = shapley(blackbox,tbl_subset);

Compute the Shapley values for the query points by using the object function fit.

explainer_shapley1 = fit(explainer_shapley,queryPoint(1,:));
explainer_shapley2 = fit(explainer_shapley,queryPoint(2,:));
explainer_shapley3 = fit(explainer_shapley,queryPoint(3,:));
explainer_shapley4 = fit(explainer_shapley,queryPoint(4,:));

Plot the Shapley values by using the object function plot.

tiledlayout(2,2)
nexttile
plot(explainer_shapley1)
nexttile
plot(explainer_shapley2)
nexttile
plot(explainer_shapley3)
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nexttile
plot(explainer_shapley4)

Model_Year is the most important predictor for the first, second, and fourth query points, and the
Shapley values of Model_Year are positive for the three query points. The Model_Year variable
value is 76 or 77 for these three points, and the value for the third query point is 70. According to the
Shapley values for the four query points, a small Model_Year value leads to a decrease in the
predicted response, and a large Model_Year value leads to an increase in the predicted response
compared to the average.

Create Partial Dependence Plot (PDP)

A PDP plot shows the averaged relationships between the predictor and the predicted response in the
trained model. Create a PDP for Model_Year, which the other interpretability tools identify as an
important predictor. Pass tbl_subset to plotPartialDependence so that the function computes
the expectation of the predicted responses using only the samples in tbl_subset.

figure
plotPartialDependence(blackbox,'Model_Year',tbl_subset)
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The plot shows the same trend identified by the Shapley values for the four query points. The
predicted response (MPG) value increases as the Model_Year value increases.
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Related Examples
• “Shapley Values for Machine Learning Model” on page 27-18
• “Introduction to Feature Selection” on page 16-47
• “Interpret Deep Network Predictions on Tabular Data Using LIME” (Deep Learning Toolbox)
• Discover Interpretability Features
• Model Interpretability in MATLAB
• Lowering Barriers to AI Adoption with AutoML and Interpretability
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Shapley Values for Machine Learning Model
This topic defines Shapley values, describes two available algorithms in the Statistics and Machine
Learning Toolbox feature that computes Shapley values, provides examples for each, and shows how
to reduce the computational cost.

What Is a Shapley Value?
In game theory, the Shapley value of a player is the average marginal contribution of the player in a
cooperative game. That is, Shapley values are fair allocations, to individual players, of the total gain
generated from a cooperative game. In the context of machine learning prediction, the Shapley value
of a feature for a query point explains the contribution of the feature to a prediction (response for
regression or score of each class for classification) at the specified query point. The Shapley value
corresponds to the deviation of the prediction for the query point from the average prediction, due to
the feature. For each query point, the sum of the Shapley values for all features corresponds to the
total deviation of the prediction from the average.

The Shapley value of the ith feature for the query point x is defined by the value function v:

φi(vx) = 1
M ∑

S ⊆ℳ \ i

vx S∪ i − vx S
M − 1 !

S ! M − S − 1 !
 (27-1)

• M is the number of all features.
• ℳ  is the set of all features.
• |S| is the cardinality of the set S, or the number of elements in the set S.
• vx(S) is the value function of the features in a set S for the query point x. The value of the function

indicates the expected contribution of the features in S to the prediction for the query point x.

Shapley Value with MATLAB
You can compute Shapley values for a machine learning model by using a shapley object. Use the
values to interpret the contributions of individual features in the model to the prediction for a query
point. There are two ways to compute Shapley values:

• Create a shapley object for a machine learning model with a specified query point by using the
shapley function. The function computes the Shapley values of all features in the model for the
query point.

• Create a shapley object for a machine learning model by using the shapley function and, then
compute the Shapley values for a specified query point by using the fit function.

Algorithms
shapley offers two algorithms: kernelSHAP [1], which uses interventional distributions for the value
function, and the extension to kernelSHAP [2], which uses conditional distributions for the value
function. You can specify the algorithm to use by setting the 'Method' name-value argument of the
shapley function or the fit function.

The difference between the two algorithms is the definition of the value function. Both algorithms
define the value function such that the sum of the Shapley values of a query point over all features
corresponds to the total deviation of the prediction for the query point from the average.
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∑
i = 1

M
φi vx = f x − E f x .

Therefore, the value function vx(S) must correspond to the expected contribution of the features in S
to the prediction (f) for the query point x. The two algorithms compute the expected contribution by
using artificial samples created from the specified data (X). You must provide X through the machine
learning model input or a separate data input argument when you create a shapley object. In the
artificial samples, the values for the features in S come from the query point. For the rest of the
features (features in Sc, the complement of S), the kernelSHAP algorithm generates samples using
interventional distributions, whereas the extension to the kernelSHAP algorithm generates samples
using conditional distributions.

KernelSHAP ('Method','interventional-kernel')

shapley uses the kernelSHAP algorithm by default.

The kernelSHAP algorithm defines the value function of the features in S at the query point x as the
expected prediction with respect to the interventional distribution D, which is the joint distribution of
the features in Sc:

vx S = ED f xS, XSc ,

where xS is the query point value for the features in S, and XSc are the features in Sc.

To evaluate the value function vx(S) at the query point x, with the assumption that the features are
not highly correlated, shapley uses the values in the data X as samples of the interventional
distribution D for the features in Sc:

vx S = ED f xS, XSc ≈ 1
N ∑

j = 1

N
f xS, XSc j ,

where N is the number of observations, and (XSc)j contains the values of the features in Sc for the jth
observation.

For example, suppose you have three features in X and four observations: (x11,x12,x13), (x21,x22,x23),
(x31,x32,x33), and (x41,x42,x43). Assume that S includes the first feature, and Sc includes the rest. In this
case, the value function of the first feature evaluated at the query point (x41,x42,x43) is

vx S = 1
4 f x41, x12, x13 + f x41, x22, x23 + f x41, x32, x33 + f x41, x42, x43 .

The kernelSHAP algorithm is computationally less expensive than the extension to the kernelSHAP
algorithm, supports ordered categorical predictors, and can handle missing values in X. However, the
algorithm requires the feature independence assumption and uses out-of-distribution samples [3]. The
artificial samples created with a mix of the query point and the data X can contain unrealistic
observations. For example, (x41,x12,x13) might be a sample that does not occur in the full joint
distribution of the three features.

Extension to KernelSHAP ('Method','conditional-kernel')

Specify 'Method','conditional-kernel' to use the extension to the kernelSHAP algorithm.

the extension to the kernelSHAP algorithm defines the value function of the features in S at the query
point x using the conditional distribution of XSc, given that XS has the query point values:
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vx S = EXSc XS = xS f xS, XSc .

To evaluate the value function vx(S) at the query point x, shapley uses nearest neighbors of the
query point, which correspond to 10% of the observations in the data X. This approach uses more
realistic samples than the kernelSHAP algorithm and does not require the feature independence
assumption. However, this algorithm is computationally more expensive, does not support ordered
categorical predictors, and cannot handle NaNs in continuous features. Also, the algorithm might
assign a nonzero Shapley value to a dummy feature that does not contribute to the prediction, if the
dummy feature is correlated with an important feature [3].

Specify Computation Algorithm

This example trains a linear classification model and computes Shapley values using both the
kernelSHAP algorithm ('Method','interventional-kernel') and the extension to the
kernelSHAP algorithm ('Method','conditional-kernel').

Train Linear Classification Model

Load the ionosphere data set. This data set has 34 predictors and 351 binary responses for radar
returns, either bad ('b') or good ('g').

load ionosphere

Train a linear classification model. Specify the objective function minimization technique ('Solver'
name-value argument) as the limited-memory Broyden-Fletcher-Goldfarb-Shanno quasi-Newton
algorithm ('lbfgs') for better accuracy of linear coefficients.

Mdl = fitclinear(X,Y,'Solver','lbfgs')

Mdl = 
  ClassificationLinear
      ResponseName: 'Y'
        ClassNames: {'b'  'g'}
    ScoreTransform: 'none'
              Beta: [34x1 double]
              Bias: -3.7100
            Lambda: 0.0028
           Learner: 'svm'

  Properties, Methods

KernelSHAP

Compute the Shapley values for the first observation using the kernelSHAP algorithm, which uses the
interventional distribution for the value function evaluation. You do not have to specify the 'Method'
value because 'interventional-kernel' is the default.

queryPoint = X(1,:);
explainer1 = shapley(Mdl,X,'QueryPoint',queryPoint); 

For a classification model, shapley computes Shapley values using the predicted class score for each
class. Plot the Shapley values for the predicted class by using the plot function.
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plot(explainer1)

The horizontal bar graph shows the Shapley values for the 10 most important variables, sorted by
their absolute values. Each value explains the deviation of the score for the query point from the
average score of the predicted class, due to the corresponding variable.

For a linear model where you assume features are independent from one another, you can compute
the interventional Shapley values for the positive class (or the second class in Mdl.ClassNames,
'g') from the estimated coefficients (Mdl.Beta) [1].

linearSHAPValues = (Mdl.Beta'.*(queryPoint-mean(X)))';

Create a table containing the Shapley values computed from the kernelSHAP algorithm and the
values from the coefficients.

t = table(explainer1.ShapleyValues.Predictor,explainer1.ShapleyValues.g,linearSHAPValues, ...
    'VariableNames',{'Predictor','KernelSHAP Value','LinearSHAP Value'})

t=34×3 table
    Predictor    KernelSHAP Value    LinearSHAP Value
    _________    ________________    ________________

      "x1"             0.28789            0.28789    
      "x2"         -2.8754e-15                  0    
      "x3"             0.20822            0.20822    
      "x4"            -0.01998           -0.01998    
      "x5"             0.20872            0.20872    
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      "x6"           -0.076991          -0.076991    
      "x7"             0.19188            0.19188    
      "x8"            -0.64386           -0.64386    
      "x9"             0.42348            0.42348    
      "x10"          -0.030049          -0.030049    
      "x11"           -0.23132           -0.23132    
      "x12"             0.1422             0.1422    
      "x13"          -0.045973          -0.045973    
      "x14"           -0.29022           -0.29022    
      "x15"            0.21051            0.21051    
      "x16"            0.13382            0.13382    
      ⋮

Extension to KernelSHAP

Compute the Shapley values for the first observation using the extension to the kernelSHAP
algorithm, which uses the conditional distribution for the value function evaluation.

explainer2 = shapley(Mdl,X,'QueryPoint',queryPoint,'Method','conditional-kernel');

Plot the Shapley values.

plot(explainer2)
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The two algorithms identify different sets for the 10 most important variables. Only the two variables
x8 and x22 are common to both sets.

Computational Cost
The computational cost for Shapley values increases if the number of observations or features is
large.

Large Number of Observations

Computing the value function (v) can be computationally expensive if you have a large number of
observations, for example, more than 1000. For faster computation, use a smaller sample of the
observations when you create a shapley object, or run in parallel by specifying 'UseParallel' as
true when you compute the values using the shapley or fit function. Computing in parallel
requires Parallel Computing Toolbox.

Large Number of Features

Computing the summand in “Equation 27-1” for all available subsets S can be computationally
expensive when M (the number of features) is large. The total number of subsets to consider is 2M.
Instead of computing the summand for all subsets, you can specify the maximum number of subsets
by using the 'MaxNumSubsets' name-value argument. shapley chooses subsets to use based on
their weight values. The weight of a subset is proportional to 1/(denominator of the summand), which

corresponds to 1 over the binomial coefficient: 1/
M − 1

S
. Therefore, a subset with a high or low value

of cardinality has a large weight value. shapley includes the subsets with the highest weight first,
and then includes the other subsets in descending order based on their weight values.

Reduce Computational Cost

This example shows how to reduce the computational cost for Shapley values when you have a large
number of both observations and features.

Load the sample data set NYCHousing2015.

load NYCHousing2015

The data set includes 55,246 observations of 10 variables with information on the sales of properties
in New York City in 2015. This example uses these variables to analyze the sale prices (SALEPRICE).

Preprocess the data set. Convert the datetime array (SALEDATE) to the month numbers.

NYCHousing2015.SALEDATE = month(NYCHousing2015.SALEDATE);

Train a regression ensemble.

Mdl = fitrensemble(NYCHousing2015,'SALEPRICE');

Compute the Shapley values of all predictor variables for the first observation. Measure the time
required for the computation by using tic and toc.

tic
explainer1 = shapley(Mdl,'QueryPoint',NYCHousing2015(1,:));
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Warning: Computation can be slow because the predictor data has over 1000 observations. Use a smaller sample of the training set or specify 'UseParallel' as true for faster computation.

toc

Elapsed time is 504.276830 seconds.

As the warning message indicates, the computation can be slow because the predictor data has over
1000 observations.

shapley provides several options to reduce the computational cost when you have a large number of
observations or features.

• Large number of observations — Use a smaller sample of the training data and run in parallel by
specifying 'UseParallel' as true.

• Large number of features — Specify the 'MaxNumSubsets' name-value argument to limit the
number of subsets included in the computation.

Compute the Shapley values again using a smaller sample of the training data and the parallel
computing option. Also, specify the maximum number of subsets as 2^5.

NumSamples = 5e2;
Tbl = datasample(NYCHousing2015,NumSamples,'Replace',false);
tic
explainer2 = shapley(Mdl,Tbl,'QueryPoint',NYCHousing2015(1,:), ...
    'UseParallel',true,'MaxNumSubsets',2^5);

Starting parallel pool (parpool) using the 'local' profile ...
Connected to the parallel pool (number of workers: 6).

toc

Elapsed time is 71.145339 seconds.

Specifying the additional options reduces the computation time.
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See Also
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Related Examples
• “Interpret Machine Learning Models” on page 27-2
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• Lowering Barriers to AI Adoption with AutoML and Interpretability

 Shapley Values for Machine Learning Model

27-25

https://www.mathworks.com/discovery/interpretability.html
https://www.mathworks.com/videos/explainable-machine-learning-with-matlab-1597917680801.html
https://www.mathworks.com/videos/lowering-barriers-to-ai-adoption-with-automl-and-interpretability-1608220803963.html




Incremental Learning

• “Incremental Learning Overview” on page 28-2
• “Configure Incremental Learning Model” on page 28-9
• “Implement Incremental Learning for Regression Using Succinct Workflow” on page 28-19
• “Implement Incremental Learning for Classification Using Succinct Workflow” on page 28-22
• “Implement Incremental Learning for Regression Using Flexible Workflow” on page 28-25
• “Implement Incremental Learning for Classification Using Flexible Workflow” on page 28-29
• “Initialize Incremental Learning Model from SVM Regression Model Trained in Regression

Learner” on page 28-33
• “Initialize Incremental Learning Model from Logistic Regression Model Trained in Classification

Learner” on page 28-40
• “Perform Conditional Training During Incremental Learning” on page 28-45
• “Perform Text Classification Incrementally” on page 28-49
• “Incremental Learning with Naive Bayes and Heterogeneous Data” on page 28-52
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Incremental Learning Overview
In this section...
“What Is Incremental Learning?” on page 28-2
“Incremental Learning with MATLAB” on page 28-3

What Is Incremental Learning?
Incremental learning, or online learning, is a branch of machine learning that involves processing
incoming data from a data stream—continuously and in real time—possibly given little to no
knowledge of the distribution of the predictor variables, sample size, aspects of the prediction or
objective function (including adequate tuning parameter values), and whether the observations have
labels.

Incremental learning algorithms are flexible, efficient, and adaptive. The following characteristics
distinguish incremental learning from traditional machine learning:

• An incremental model is fit to data quickly and efficiently, which means it can adapt, in real time,
to changes (or drifts) in the data distribution.

• Because observation labels can be missing when corresponding predictor data is available, the
algorithm must be able to generate predictions from the latest version of the model quickly, and
defer training the model.

• Little information might be known about the population before incremental learning starts.
Therefore, the algorithm can be run with a cold start. For example, for classification problems, the
class names might not be known until after the model processes observations. When enough
information is known before learning begins (for example, you have good estimates of linear
model coefficients), you can specify such information to provide the model with a warm start.

• Because observations can arrive in a stream, the sample size is likely unknown and possibly large,
which makes data storage inefficient or impossible. Therefore, the algorithm must process
observations when they are available and before the system discards them. This incremental
learning characteristic makes hyperparameter tuning difficult or impossible.

In traditional machine learning, a batch of labeled data is available to perform cross-validation to
estimate the generalization error and tune hyperparameters, infer the predictor variable distribution,
and fit the model. However, the resulting model must be retrained from the beginning if underlying
distributions drift or the model degrades. Although performing cross-validation to tune
hyperparameters is difficult in an incremental learning environment, incremental learning methods
are flexible because they can adapt to distribution drift in real time, with predictive accuracy
approaching that of a traditionally trained model as the model trains more data.

Suppose an incremental model is prepared to generate predictions and have its predictive
performance measured. Given incoming chunks of observations, an incremental learning scheme
processes data in real time and in any of the following ways, but usually in the specified order:

1 Evaluate model: Track the predictive performance of the model when true labels are available,
either on the incoming data only, over a sliding window of observations, or over the entire history
of the model used for incremental learning.

2 Detect drift: Check for structural breaks or distribution drift. For example, determine whether
the distribution of any predictor variable has sufficiently changed.
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3 Train model: Update the model by training it on the incoming observations, when true labels are
available or when the current model has sufficiently degraded.

4 Generate predictions: Predict labels from the latest model.

This procedure is a special case of incremental learning, in which all incoming chunks are treated as
test (holdout) sets. The procedure is called interleaved test-then-train or prequential evaluation [1].

If insufficient information exists for an incremental model to generate predictions, or you do not want
to track the predictive performance of the model because it has not been trained enough, you can
include an optional initial step to find adequate values for hyperparameters, for models that support
one (estimation period), or an initial training period before model evaluation (metrics warm-up
period).

As an example of an incremental learning problem, consider a smart thermostat that automatically
sets a temperature given the ambient temperature, relative humidity, time of day, and other
measurements, and can learn the user's indoor temperature preferences. Suppose the manufacturer
prepared the device by embedding a known model that describes the average person's preferences
given the measurements. After installation, the device collects data every minute, and adjusts the
temperature to its presets. The thermostat adjusts the embedded model, or retrains itself, based on
the user's actions or inactions with the device. This cycle can continue indefinitely. If the thermostat
has limited disk space to store historical data, it needs to retrain itself in real time. If the
manufacturer did not prepare the device with a known model, the device retrains itself more often.

Incremental Learning with MATLAB
Statistics and Machine Learning Toolbox functionalities enable you to implement incremental
learning for classification or regression. Like other Statistics and Machine Learning Toolbox machine
learning functionalities, the entry point into incremental learning is an incremental learning object,
which you pass to functions with data to implement incremental learning. Unlike other machine
learning functions, data is not required to create an incremental learning object. However, the
incremental learning object specifies how to process incoming data, such as when to fit the model,
measure performance metrics, or perform both actions, in addition to the parametric form of the
model and problem-specific options.

Incremental Learning Model Objects

This table contains the available entry-point model objects for incremental learning with their
supported machine learning objective, model type, and information required to create the model
object.

Model Object Objective Model Type Required Information
incrementalClassif
icationECOC

Multiclass classification Error-correcting output
codes (ECOC) model
with binary learners

Maximum number of
classes expected in the
data during incremental
learning or the names of
all expected classes

incrementalClassif
icationKernel

Binary classification Linear support vector
machine (SVM) and
logistic regression with
Gaussian kernels

None
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Model Object Objective Model Type Required Information
incrementalClassif
icationLinear

Binary classification Linear SVM and logistic
regression

None

incrementalClassif
icationNaiveBayes

Multiclass classification Naive Bayes with
normal, multinomial, or
multivariate
multinomial predictor
conditional distributions

Maximum number of
classes expected in the
data during incremental
learning or the names of
all expected classes

incrementalRegress
ionKernel

Regression Least-squares and
linear SVM regression
with Gaussian kernels

None

incrementalRegress
ionLinear

Regression Least-squares and
linear SVM regression

None

Properties of an incremental learning model object specify:

• Data characteristics, such as the number of predictor variables NumPredictors and their first
and second moments

• Model characteristics, such as, for linear models, the learner type Learner, linear coefficients
Beta, and intercept Bias

• Training options, such as, for linear models, the objective solver Solver and solver-specific
hyperparameters such as the ridge penalty Lambda for standard and average stochastic gradient
descent (SGD and ASGD)

• Model performance evaluation characteristics and options, such as whether the model is warm
IsWarm, which performance metrics to track Metrics, and the latest values of the performance
metrics

Unlike when working with other machine learning model objects, you can create an incremental
learning model by directly calling the object and specifying property values of options using name-
value arguments; you do not need to fit a model to data to create one. This feature is convenient
when you have little information about the data or model before training it. Depending on your
specifications, the software can enforce estimation and metrics warm-up periods, during which
incremental fitting functions infer data characteristics and then train the model for performance
evaluation. By default, for linear models, the software solves the objective function using the adaptive
scale-invariant solver, which does not require tuning and is insensitive to the predictor variable scales
[2].

Alternatively, you can convert a traditionally trained model to a model for incremental learning by
using the incrementalLearner function. For example, incrementalLearner converts a trained
linear classification model of type ClassificationLinear to an
incrementalClassificationLinear object. This table lists the convertible models and their
conversion functions.

Traditionally Trained
Convertible Model Object

Conversion Function Model Object for Incremental
Learning

ClassificationECOC and
CompactClassificationECO
C

incrementalLearner incrementalClassificatio
nECOC
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Traditionally Trained
Convertible Model Object

Conversion Function Model Object for Incremental
Learning

ClassificationKernel incrementalLearner incrementalClassificatio
nKernel

ClassificationSVM and
CompactClassificationSVM

incrementalLearner incrementalClassificatio
nLinear

ClassificationLinear incrementalLearner incrementalClassificatio
nLinear

ClassificationNaiveBayes incrementalLearner incrementalClassificatio
nNaiveBayes

RegressionKernel incrementalLearner incrementalRegressionKer
nel

RegressionSVM and
CompactRegressionSVM

incrementalLearner incrementalRegressionLin
ear

RegressionLinear incrementalLearner incrementalRegressionLin
ear

By default, the software considers converted models to be prepared for all aspects of incremental
learning (converted models are warm). incrementalLearner carries over data characteristics
(such as class names), fitted parameters, and options available for incremental learning from the
traditionally trained model being converted. For example:

• For naive Bayes classification, incrementalLearner carries over all class names in the data
expected during incremental learning, and the fitted moments of the conditional predictor
distributions (DistributionParameters).

• For linear models, if the objective solver of the traditionally trained model is SGD,
incrementalLearner sets the incremental learning solver to SGD.

For more details, see the output argument description of each incrementalLearner function page.

Incremental Learning Functions

The incremental learning model object specifies all aspects of the incremental learning algorithm,
from training and model evaluation preparation through training and model evaluation. To implement
incremental learning, you pass the configured incremental learning model to an incremental fitting
function or model evaluation function. You can find the list of supported incremental learning
functions in the Object Functions section of each incremental learning model object page.

Statistics and Machine Learning Toolbox incremental learning functions offer two workflows that are
well suited for prequential learning. For simplicity, the following workflow descriptions assume that
the model is prepared to evaluate the model performance (in other words, the model is warm).

• Flexible workflow — When a data chunk is available:

1 Compute cumulative and window model performance metrics by passing the data and current
model to the updateMetrics function. The data is treated as test (holdout) data because the
model has not been trained on it yet. updateMetrics overwrites the model performance
stored in the model with the new values.

2 Optionally detect distribution drift or whether the model has degraded.
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3 Train the model by passing the incoming data chunk and current model to the fit function.
The fit function uses the specified solver to fit the model to the incoming data chunk, and
overwrites the current coefficients and bias with the new estimates.

The flexible workflow enables you to perform custom model and data quality assessments before
deciding whether to train the model. All steps are optional, but call updateMetrics before fit
when you plan to call both functions.

• Succinct workflow — When a data chunk is available, supply the incoming chunk and a
configured incremental model to the updateMetricsAndFit function. updateMetricsAndFit
calls updateMetrics immediately followed by fit. The succinct workflow enables you to
implement incremental learning with prequential evaluation easily when you plan to track the
model performance and train the model on all incoming data chunks.

Once you create an incremental model object and choose a workflow to use, write a loop that
implements incremental learning:

1 Read a chunk of observations from a data stream, when the chunk is available.
2 Implement the flexible or succinct workflow. To perform incremental learning properly, overwrite

the input model with the output model. For example:

• Flexible workflow

Mdl = updateMetrics(Mdl,X,Y);
%
% Insert optional code
%
Mdl = fit(Mdl,X,Y);

• Succinct workflow

Mdl = updateMetricsAndFit(Mdl,X,Y);

The model tracks its performance on incoming data incrementally using metrics measured since
the beginning of training (cumulative) and over a specified window of consecutive observations
(window). However, you can optionally compute the model loss on the incoming chunk, and then
pass the incoming chunk and current model to the loss function. loss returns the scalar loss; it
does not adjust the model.

Model configurations determine whether incremental learning functions train or evaluate model
performance during each iteration. Configurations can change as the functions process data. For
more details, see “Incremental Learning Periods” on page 28-6.

3 Optionally:

• Generate predictions by passing the chunk and latest model to predict.
• If the model was fit to data, compute the resubstitution loss by passing the chunk and latest

model to loss.
• For naive Bayes classification models, the logp function enables you to detect outliers in real-

time. The function returns the log unconditional probability density of the predictor variables
at each observation in the chunk.

Incremental Learning Periods

Given incoming chunks of data, the actions performed by incremental learning functions depend on
the current configuration or state of the model. This figure shows the periods (consecutive groups of
observations) during which incremental learning functions perform particular actions.
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This table describes the actions performed by incremental learning functions during each period.

Period Associated Model
Properties

Size
(Number
of
Observatio
ns)

Actions

Estimation EstimationPeriod,
applies to linear
classification, kernel
classification, linear
regression, and kernel
regression models only

n1 When required, fitting functions choose values for
hyperparameters based on estimation period
observations. Actions can include the following:

• Estimate predictor moments Mu and Sigma for
data standardization (applies to linear models
only).

• Adjust the learning rate LearnRate for SGD
solvers according to the learning rate
schedule LearnRateSchedule.

• Estimate the SVM regression parameter ε
Epsilon.

• Store information buffers required for
estimation.

• Update corresponding properties at the end of
the period.

For more details, see the Algorithm section of
each object and incrementalLearner function
pages.

Metrics
Warm-up

MetricsWarmupPerio
d

n2 – n1 When the property IsWarm is false, fitting
functions perform the following actions:

• Fit the model to the incoming chunk of data.
• Update corresponding model properties, such

as Beta or DistributionParameters, after
fitting the model.

• At the end of the period, the model is warm
(the IsWarm property becomes true).
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Period Associated Model
Properties

Size
(Number
of
Observatio
ns)

Actions

Performanc
e
Evaluation j

Metrics and
MetricsWindowSize

m • At the start of Performance Evaluation Period
1, functions begin to track cumulative
Cumulative and window Window metrics.
Window is a vector of NaNs throughout this
period.

• Functions overwrite Cumulative metrics
with the updated cumulative metric at each
iteration. At the end of each Performance
Evaluation Period, functions compute and
overwrite Window metrics based on the last m
observations.

• Functions store information buffers required
for computing model performance.

References
[1] Bifet, Albert, Ricard Gavaldá, Geoffrey Holmes, and Bernhard Pfahringer. Machine Learning for

Data Streams with Practical Example in MOA. Cambridge, MA: The MIT Press, 2007.

[2] Kempka, Michał, Wojciech Kotłowski, and Manfred K. Warmuth. "Adaptive Scale-Invariant Online
Algorithms for Learning Linear Models." Preprint, submitted February 10, 2019. https://
arxiv.org/abs/1902.07528.

See Also
Objects
incrementalClassificationLinear | incrementalRegressionLinear |
incrementalClassificationNaiveBayes

More About
• “Configure Incremental Learning Model” on page 28-9
• “Implement Incremental Learning for Classification Using Succinct Workflow” on page 28-22
• “Implement Incremental Learning for Classification Using Flexible Workflow” on page 28-29
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Configure Incremental Learning Model
An incremental learning model object fully specifies how functions implement incremental fitting and
model performance evaluation. To configure (or prepare) an incremental learning model, create one
by calling the object directly, or by converting a traditionally trained model to one of the objects. The
following table lists the available model types, model objects for incremental learning, and conversion
functions.

Objective Model Type Model Object for
Incremental Learning

Conversion Function

Binary classification Linear support vector
machine (SVM) and
logistic regression with
Gaussian kernels

incrementalClassif
icationKernel

incrementalLearner
converts a kernel
classification model
(ClassificationKern
el).

Linear SVM and logistic
regression

incrementalClassif
icationLinear

incrementalLearner
converts a linear SVM
model
(ClassificationSVM
or
CompactClassificat
ionSVM).

incrementalLearner
converts a linear
classification model
(ClassificationLine
ar).

Multiclass classification Error-correcting output
codes (ECOC) model
with binary learners

incrementalClassif
icationECOC

incrementalLearner
converts an ECOC
model
(ClassificationECOC
or
CompactClassificat
ionECOC) with binary
learners.

Naive Bayes with
normal, multinomial, or
multivariate
multinomial predictor
conditional distributions

incrementalClassif
icationNaiveBayes

incrementalLearner
converts a full naive
Bayes classification
model
(ClassificationNaiv
eBayes).

Regression Least-squares and
linear SVM regression
with Gaussian kernels

incrementalRegress
ionKernel

incrementalLearner
converts a kernel
regression model
(RegressionKernel).
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Objective Model Type Model Object for
Incremental Learning

Conversion Function

Least-squares and
linear SVM regression

incrementalRegress
ionLinear

incrementalLearner
converts a linear SVM
regression model
(RegressionSVM or
CompactRegressionS
VM).

incrementalLearner
converts a linear
regression model
(RegressionLinear).

The approach you choose to create an incremental model depends on the information you have and
your preferences.

• Call object: Create an incremental model to your specifications by calling the object directly. This
approach is flexible, enabling you to specify most options to suit your preferences, and the
resulting model provides reasonable default values. For more details, see “Call Object Directly” on
page 28-11.

• Convert model: Convert a traditionally trained model to an incremental learner to initialize a
model for incremental learning by using the incrementalLearner function. The function passes
information that the traditionally trained model learned from the data. To convert a traditionally
trained model, you must have a set of labeled data to which you can fit a model.

When you use incrementalLearner, you can specify all performance evaluation options and
only those training, model, and data options that are unknown during conversion. For more
details, see “Convert Traditionally Trained Model” on page 28-15.

Regardless of the approach you use, consider these configurations:

• Model performance evaluation settings, such as the performance metrics to measure. For details,
see “Model Options and Data Properties” on page 28-11.

• For ECOC models:

• Binary learners
• Coding design matrix for the binary learners.

• For kernel models:

• Model type, such as SVM
• Objective function solver, such as standard stochastic gradient descent (SGD)
• Hyperparameters for random feature expansion, such as the kernel scale parameter and

number of dimensions of expanded space
• For linear models:

• Model type, such as SVM
• Coefficient initial values
• Objective function solver, such as standard stochastic gradient descent (SGD)
• Solver hyperparameter values, such as the learning rate of SGD solvers
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• For naive Bayes models, the conditional distribution of the predictor variables. In a data set, you
can specify that real-valued predictors are normally distributed and that categorical predictors
(where levels are numeric scalars) are multivariate multinomial. For a bag-of-tokens model, where
each predictor is a count, you can specify that all predictors are jointly multinomial.

Call Object Directly
Unlike when working with other machine learning model objects, you can create an incremental
learning model by calling the corresponding object directly, with little knowledge about the data. For
example, the following code creates a default incremental model for linear regression and a naive
Bayes classification model for a data stream containing 5 classes.

MdlLR = incrementalRegressionLinear();
MdlNB = incrementalClassificationNaiveBayes(MaxNumClasses=5)

• For linear and kernel models, the only information required to create a model directly is the
machine learning problem, either classification or regression. An estimation period might also be
required, depending on your specifications.

• For naive Bayes and ECOC classification models, you must specify the maximum number of
classes or all class names expected in the data during incremental learning.

If you have information about the data to specify, or you want to configure model options or
performance evaluation settings, use name-value arguments when you call the object. (All model
properties are read-only; you cannot adjust them using dot notation.) For example, the following
pseudocode creates an incremental logistic regression model for binary classification, initializes the
linear model coefficients Beta and bias Bias (obtained from prior knowledge of the problem), and
sets the performance metrics warm-up period to 500 observations.

Mdl = incrementalClassificationLinear(Learner="logistic", ...
    Beta=beta,Bias=bias,MetricsWarmupPeriod=500);

The following tables briefly describe notable options for the major aspects of incremental learning.
For more details on all options, see the Properties section of each incremental model object page.

Model Options and Data Properties

This table contains notable model options and data characteristics.

Model Type Model Options and
Data Properties

Description

Classification ClassNames For classification, the expected class names in the
observation labels

ECOC classification BinaryLearners* Binary learners
CodingMatrix* Class assignment codes
CodingName* Coding design name

Kernel classification or
regression

KernelScale Kernel scale parameter that the software uses for
random feature expansion

Learner Model type, such as linear SVM, logistic
regression, or least-squares regression
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Model Type Model Options and
Data Properties

Description

NumExpansionDimens
ions

Number of dimensions of expanded space

Linear classification or
regression

Beta Linear coefficients that also serve as initial values
for incremental fitting

Bias Model intercept that also serve as an initial value
for incremental fitting

Learner Model type, such as linear SVM, logistic
regression, or least-squares regression

Naive Bayes
classification

Cost Misclassification cost matrix

*You can specify the BinaryLearners property by using the Learners name-value argument, and
specify the CodingMatrix and CodingName properties by using the Coding name-value argument.
Set the other properties by using name-value argument syntax with the arguments of the same name
when you call the object. For example,
incrementalClassificationKernel(Learner="logistic") sets the Learner property to
"logistic".

Training and Solver Options and Properties

This table contains notable training and solver options and properties.

Model Type Training and Solver Options
and Properties

Description

Kernel classification or
regression

EstimationPeriod Pretraining estimation period
Solver Objective function optimization

algorithm
Linear classification or
regression

EstimationPeriod Pretraining estimation period
Solver Objective function optimization

algorithm
Standardize Flag to standardize predictor

data
Lambda Ridge penalty, a model

hyperparameter that requires
tuning for SGD optimization

BatchSize Mini-batch size, an SGD
hyperparameter

LearnRate Learning rate, an SGD
hyperparameter

Mu** Predictor variable means
Sigma** Predictor variable standard

deviations
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Model Type Training and Solver Options
and Properties

Description

Naive Bayes classification DistributionParameters** Learned distribution
parameters.

• For each predictor with
conditionally normal
distributions given a class,
the fitted, weighted mean
and standard deviation.

• For conditionally joint
multinomial predictors given
a class, relative frequencies
of the levels the predictors
represent.

• For each conditionally
multivariate multinomial
given a class, a vector of
relative frequencies of the
levels of a predictor.

**You cannot specify the Mu, Sigma, and DistributionParameters properties, whereas you can
set the other properties by using name-value argument syntax when you call the object.

• Mu and Sigma (linear models) — When you set Standardize=true and specify a positive
estimation period, and the properties are empty, incremental fitting functions estimate means and
standard deviations using the estimation period observations. For more details, see “Standardize
Data” on page 35-3447.

• DistributionParameters (naive Bayes classification models) — The property must be fitted to
data, by fit, or updateMetricsAndFit.

For linear classification and regression models:

• The estimation period, specified by the number of observations in EstimationPeriod, occurs
before training begins (see Incremental Learning Periods on page 28-6). During the estimation
period, the incremental fitting function fit or updateMetricsAndFit computes quantities
required for training when they are unknown. For example, if you set Standardize=true,
incremental learning functions require predictor means and standard deviations to standardize
the predictor data. Consequently, the incremental model requires a positive estimation period (the
default is 1000).

• The default solver is the adaptive scale-invariant solver "scale-invariant" [2], which is
hyperparameter free and insensitive to the predictor variable scales; therefore, predictor data
standardization is not required. You can specify standard or average SGD instead, "sgd" or
"asgd". However, SGD is sensitive to predictor variable scales and requires hyperparameter
tuning, which can be difficult or impossible to do during incremental learning. If you plan to use
an SGD solver, complete these steps:

1 Obtain labeled data.
2 Traditionally train a linear classification or regression model by calling fitclinear or

fitrlinear, respectively. Specify the SGD solver you plan to use for incremental learning,
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cross-validate to determine an appropriate set of hyperparameters, and standardize the
predictor data.

3 Train the model on the entire sample using the specified hyperparameter set.
4 Convert the resulting model to an incremental learner by using incrementalLearner.

Performance Evaluation Options and Properties

Performance evaluation properties and options enable you to configure how and when model
performance is measured by the incremental learning function updateMetrics or
updateMetricsAndFit. Regardless of the options you choose, first familiarize yourself with the
incremental learning periods on page 28-6.

This table contains all performance evaluation options and properties.

Performance Evaluation Options and
Properties

Description

Metrics Specify the list of performance metrics or loss
functions to measure incrementally by using the
Metrics name-value argument. The Metrics
property stores a table of tracked cumulative and
window metrics.

MetricsWarmupPeiod Number of observations to which the incremental
model must be fit before it tracks performance
metrics

MetricsWindowSize Number of observations to use to compute
window performance metrics

IsWarm*** Flag indicating whether the model is warm
(measures performance metrics)

***You cannot specify the IsWarm property, whereas you can set the other properties by using name-
value argument syntax when you call the object.

The metrics specified by the Metrics name-value argument form a table stored in the Metrics
property of the model. For example, if you specify Metrics=["Metric1","Metric2"] when you
create an incremental model Mdl, the Metrics property is

>> Mdl.Metrics

ans =

  2×2 table
                Cumulative    Window
                __________    ______

    Metric1        NaN         NaN
    Metric2        NaN         NaN  

Specify a positive metrics warm-up period when you believe the model is of low quality and needs to
be trained before the function updateMetrics or updateMetricsAndFit tracks performance
metrics in the Metrics property. In this case, the IsWarm property is false, and you must pass the
incoming data and model to the incremental fitting function fit or updateMetricsAndFit.
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When the incremental fitting function processes enough data to satisfy the estimation period (for
linear and kernel models) and the metrics warm-up period, the IsWarm property becomes true, and
you can measure the model performance on incoming data and optionally train the model. For naive
Bayes and ECOC classification models, incremental fitting functions must additionally fit the model to
all expected classes to become warm.

When the model is warm, updateMetrics or updateMetricsAndFit tracks all specified metrics
cumulatively (from the start of the evaluation) and within a window of observations specified by the
MetricsWindowSize property. Cumulative metrics reflect the model performance over the entire
incremental learning history; after Performance Evaluation Period 1 starts, cumulative metrics are
independent of the evaluation period. Window metrics reflect the model performance only over the
specified window size for each performance evaluation period.

Convert Traditionally Trained Model
incrementalLearner enables you to initialize an incremental model using information learned from
a traditionally trained model. The converted model can generate predictions and it is warm, which
means that incremental learning functions can measure model performance metrics from the start of
the data stream. In other words, estimation and performance metrics warm-up periods are not
required for incremental learning.

To convert a traditionally trained model to an incremental learner, pass the model and any options
specified by name-value arguments to incrementalLearner. For example, the following
pseudocode initializes an incremental classification model by using all information that a linear SVM
model for binary classification has learned from a batch of data.

Mdl = fitcsvm(X,Y);
IncrementalMdl = incrementalLearner(Mdl,Name=Value);

IncrementalMdl is an incremental learner object associated with the machine learning objective.

Ease of incremental model creation and initialization is offset by decreased flexibility. The software
assumes that fitted parameters, hyperparameter values, and data characteristics learned during
traditional training are appropriate for incremental learning. Therefore, you cannot set
corresponding learned or tuned options when you call incrementalLearner.

This table lists notable read-only properties of IncrementalMdl that the incrementalLearner
function transfers from Mdl or infers from other values. For more details, see the output argument
description of each incrementalLearner function page.

Model Type Property Description
All NumPredictors Number of predictor variables. For models that

dummy-code categorical predictor variables,
NumPredictors is
numel(Mdl.ExpandedPredictorNames),
and predictor variables expected during
incremental learning correspond to the names.
For more details, see “Dummy Variables” on
page 2-49.

Classification ClassNames All class labels expected during incremental
learning
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Model Type Property Description
Prior Prior class distribution
ScoreTransform A function to apply to classification scores. For

example, if you configure an SVM model to
compute posterior class probabilities,
ScoreTransform (containing the score-to-
posterior-probability function learned from the
data) is transferred.

Regression Epsilon For an SVM learner, half the width of the
epsilon-insensitive band

ResponseTransform A function to apply to predicted responses
ECOC classification BinaryLearners Trained binary learners, a cell array of model

objects
CodingMatrix Class assignment codes for the binary learners
CodingName Coding design name

Kernel classification or
regression

KernelScale Kernel scale parameter
Learner Linear model type
NumExpansionDimensi
ons

Number of dimensions of expanded space, a
positive integer

Linear classification or
regression

Beta Linear model coefficients
Bias Model intercept
Learner Linear model type
Mu For an SVM model object, the predictor

variable means
Sigma For an SVM model object, the predictor

variable standard deviations
Naive Bayes
classification

DistributionNames Conditional distribution of the predictor
variables given the class, having either of the
following values:

• A NumPredictors length cell vector with
entries "normal", when the corresponding
predictor is normal, or "mvmn", when the
corresponding predictor is multivariate
multinomial.

• "mn", when all predictor variables compose
a multinomial distribution.

If you convert a naive Bayes classification
model containing at least one predictor with a
kernel distribution, incrementalLearner
issues an error.

DistributionParamet
ers

Fitted distribution parameters of each
conditional predictor distribution given each
class, a NumPredictors-by-K cell matrix.
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Model Type Property Description
CategoricalPredicto
rs

Numeric vector of indices of categorical
predictors

CategoricalLevels Multivariate multinomial predictor levels, a cell
vector of length NumPredictors

Note

• The NumTrainingObservations property of IncrementalMdl does not include the
observations used to train Mdl. It only includes the observations used for incremental learning
when you call fit or updateMetricsAndFit.

• If you specify Standardize=true when you train Mdl, IncrementalMdl is configured to
standardize predictors during incremental learning by default.

The following conditions apply when you convert a linear classification or regression model
(ClassificationLinear and RegressionLinear, respectively):

• Incremental fitting functions support ridge (L2) regularization only.
• Incremental fitting functions support the specification of only one regularization value. Therefore,

if you specify a regularization path (vector of regularization values) when you call fitclinear or
fitrlinear, choose the model associated with one penalty by passing it to selectModels.

• If you solve the objective function by using standard or average SGD ("sgd" or "asgd" for the
Solver name-value argument), these conditions apply when you call incrementalLearner:

• incrementalLearner transfers the solver used to optimize Mdl to IncrementalMdl.
• You can specify the adaptive scale-invariant solver "scale-invariant" instead, but you

cannot specify a different SGD solver.
• If you do not specify the adaptive scale-invariant solver, incrementalLearner transfers

model and solver hyperparameter values to the incremental model object, such as the learning
rate LearnRate, mini-batch size BatchSize, and ridge penalty Lambda. You cannot modify
the transferred properties.

Call Object After Training Model

If you require more flexibility when you create an incremental model, you can call the object directly
on page 28-11 and initialize the model by individually setting learned information using name-value
arguments. The following pseudocode show two examples:

• Initialize an incremental classification model from the coefficients and class names learned by
fitting a linear SVM model for binary classification to a batch of data Xc and Yc.

Mdl = fitcsvm(Xc,Yc);
IncrementalMdl = incrementalClassificationLinear( ...
    Beta=Mdl.Beta,Bias=Mdl.Bias,ClassNames=Mdl.ClassNames);

• Initialize an incremental regression model from the coefficients learned by fitting a linear model to
a batch of data Xr and Yr.

Mdl = fitlm(Xr,Yr);
bias = Mdl.Coefficients.Estimate(1);
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beta = Mdl.Coefficients.Estimate(2:end);
IncrementalMdl = incrementalRegressionLinear( ...
    Learner="leastsquares",Bias=bias,Beta=beta);

References
[1] Bifet, Albert, Ricard Gavaldá, Geoffrey Holmes, and Bernhard Pfahringer. Machine Learning for

Data Streams with Practical Example in MOA. Cambridge, MA: The MIT Press, 2007.

[2] Kempka, Michał, Wojciech Kotłowski, and Manfred K. Warmuth. "Adaptive Scale-Invariant Online
Algorithms for Learning Linear Models." Preprint, submitted February 10, 2019. https://
arxiv.org/abs/1902.07528.

See Also
Objects
incrementalClassificationLinear | incrementalRegressionLinear |
incrementalClassificationNaiveBayes

More About
• “Incremental Learning Overview” on page 28-2
• “Implement Incremental Learning for Classification Using Succinct Workflow” on page 28-22
• “Implement Incremental Learning for Classification Using Flexible Workflow” on page 28-29
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Implement Incremental Learning for Regression Using Succinct
Workflow

This example shows how to use the succinct workflow to implement incremental learning for linear
regression with prequential evaluation. Specifically, this example does the following:

1 Create a default incremental learning model for linear regression.
2 Simulate a data stream using a for loop, which feeds small chunks of observations to the

incremental learning algorithm.
3 For each chunk, use updateMetricsAndFit to measure the model performance given the

incoming data, and then fit the model to that data.

Create Default Model Object

Create a default incremental learning model for linear regression.

Mdl = incrementalRegressionLinear()

Mdl = 
  incrementalRegressionLinear

               IsWarm: 0
              Metrics: [1x2 table]
    ResponseTransform: 'none'
                 Beta: [0x1 double]
                 Bias: 0
              Learner: 'svm'

  Properties, Methods

Mdl.EstimationPeriod

ans = 1000

Mdl is an incrementalRegressionLinear model object. All its properties are read-only.

Mdl must be fit to data before you can use it to perform any other operations. The software sets the
estimation period to 1000 because half the width of the epsilon insensitive band Epsilon is
unknown. You can set Epsilon to a positive floating-point scalar by using the 'Epsilon' name-
value pair argument. This action results in a default estimation period of 0.

Load Data

Load the robot arm data set.

load robotarm

For details on the data set, enter Description at the command line.

Implement Incremental Learning

Use the succinct workflow to update model performance metrics and fit the incremental model to the
training data by calling the updateMetricsAndFit function. At each iteration:
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• Process 50 observations to simulate a data stream.
• Overwrite the previous incremental model with a new one fitted to the incoming observations.
• Store the cumulative metrics, window metrics, and the first coefficient β1 to see how they evolve

during incremental learning.

% Preallocation
n = numel(ytrain);
numObsPerChunk = 50;
nchunk = floor(n/numObsPerChunk);
ei = array2table(zeros(nchunk,2),'VariableNames',["Cumulative" "Window"]);
beta1 = zeros(nchunk,1);    

% Incremental fitting
for j = 1:nchunk
    ibegin = min(n,numObsPerChunk*(j-1) + 1);
    iend   = min(n,numObsPerChunk*j);
    idx = ibegin:iend;    
    Mdl = updateMetricsAndFit(Mdl,Xtrain(idx,:),ytrain(idx));
    ei{j,:} = Mdl.Metrics{"EpsilonInsensitiveLoss",:};
    beta1(j + 1) = Mdl.Beta(1);
end

IncrementalMdl is an incrementalRegressionLinear model object trained on all the data in
the stream. During incremental learning and after the model is warmed up, updateMetricsAndFit
checks the performance of the model on the incoming observations, and then fits the model to those
observations.

Inspect Model Evolution

To see how the performance metrics and β1 evolve during training, plot them on separate tiles.

t = tiledlayout(2,1);
nexttile
plot(beta1)
ylabel('\beta_1')
xlim([0 nchunk])
xline(Mdl.EstimationPeriod/numObsPerChunk,'r-.')
nexttile
h = plot(ei.Variables);
xlim([0 nchunk])
ylabel('Epsilon Insensitive Loss')
xline(Mdl.EstimationPeriod/numObsPerChunk,'r-.')
xline((Mdl.EstimationPeriod + Mdl.MetricsWarmupPeriod)/numObsPerChunk,'g-.')
legend(h,ei.Properties.VariableNames)
xlabel(t,'Iteration')
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The plot suggests that updateMetricsAndFit does the following:

• After the estimation period (first 20 iterations), fit β1 during all incremental learning iterations.
• Compute the performance metrics after the metrics warm-up period only.
• Compute the cumulative metrics during each iteration.
• Compute the window metrics after processing 200 observations (4 iterations).

See Also
Objects
incrementalRegressionLinear

Functions
updateMetricsAndFit

More About
• “Configure Incremental Learning Model” on page 28-9
• “Implement Incremental Learning for Regression Using Flexible Workflow” on page 28-25
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Implement Incremental Learning for Classification Using
Succinct Workflow

This example shows how to use the succinct workflow to implement incremental learning for binary
classification with prequential evaluation. Specifically, this example does the following:

1 Create a default incremental learning model for binary classification.
2 Simulate a data stream using a for loop, which feeds small chunks of observations to the

incremental learning algorithm.
3 For each chunk, use updateMetricsAndFit to measure the model performance given the

incoming data, and then fit the model to that data.

Although this example treats the application as a binary classification problem, you can implement
multiclass incremental learning using an object for a multiclass problem by following this same
workflow.

Create Default Model Object

Create a default incremental learning model for binary classification.

Mdl = incrementalClassificationLinear()

Mdl = 
  incrementalClassificationLinear

            IsWarm: 0
           Metrics: [1x2 table]
        ClassNames: [1x0 double]
    ScoreTransform: 'none'
              Beta: [0x1 double]
              Bias: 0
           Learner: 'svm'

  Properties, Methods

Mdl is an incrementalClassificationLinear model object. All its properties are read-only.

Mdl must be fit to data before you can use it to perform any other operations.

Load and Preprocess Data

Load the human activity data set. Randomly shuffle the data.

load humanactivity
n = numel(actid);
rng(1) % For reproducibility
idx = randsample(n,n);
X = feat(idx,:);
Y = actid(idx);

For details on the data set, enter Description at the command line.
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Responses can be one of five classes: Sitting, Standing, Walking, Running, or Dancing. Dichotomize
the response by identifying whether the subject is moving (actid > 2).

Y = Y > 2;

Implement Incremental Learning

Use the succinct workflow to update model performance metrics and fit the incremental model to the
training data by calling the updateMetricsAndFit function. At each iteration:

• Process 50 observations to simulate a data stream.
• Overwrite the previous incremental model with a new one fitted to the incoming observations.
• Store the cumulative metrics, the window metrics, and the first coefficient β1 to see how they

evolve during incremental learning.

% Preallocation
numObsPerChunk = 50;
nchunk = floor(n/numObsPerChunk);
ce = array2table(zeros(nchunk,2),'VariableNames',["Cumulative" "Window"]);
beta1 = zeros(nchunk,1);    

% Incremental fitting
for j = 1:nchunk
    ibegin = min(n,numObsPerChunk*(j-1) + 1);
    iend   = min(n,numObsPerChunk*j);
    idx = ibegin:iend;    
    Mdl = updateMetricsAndFit(Mdl,X(idx,:),Y(idx));
    ce{j,:} = Mdl.Metrics{"ClassificationError",:};
    beta1(j + 1) = Mdl.Beta(1);
end

Mdl is an incrementalClassificationLinear model object trained on all the data in the stream.
During incremental learning and after the model is warmed up, updateMetricsAndFit checks the
performance of the model on the incoming observations, and then fits the model to those
observations.

Inspect Model Evolution

To see how the performance metrics and β1 evolve during training, plot them on separate tiles.

t = tiledlayout(2,1);
nexttile
plot(beta1)
ylabel('\beta_1')
xlim([0 nchunk])
nexttile
h = plot(ce.Variables);
xlim([0 nchunk])
ylabel('Classification Error')
xline(Mdl.MetricsWarmupPeriod/numObsPerChunk,'g-.')
legend(h,ce.Properties.VariableNames)
xlabel(t,'Iteration')
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The plot suggests that updateMetricsAndFit does the following:

• Fit β1 during all incremental learning iterations.
• Compute the performance metrics after the metrics warm-up period only.
• Compute the cumulative metrics during each iteration.
• Compute the window metrics after processing 200 observations (4 iterations).

See Also
Objects
incrementalClassificationLinear

Functions
updateMetricsAndFit

More About
• “Configure Incremental Learning Model” on page 28-9
• “Implement Incremental Learning for Classification Using Flexible Workflow” on page 28-29
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Implement Incremental Learning for Regression Using Flexible
Workflow

This example shows how to use the flexible workflow to implement incremental learning for linear
regression with prequential evaluation. A traditionally trained model initializes the incremental
model. Specifically, this example does the following:

1 Train a linear regression model on a subset of data.
2 Convert the traditionally trained model to an incremental learning model for linear regression.
3 Simulate a data stream using a for loop, which feeds small chunks of observations to the

incremental learning algorithm.
4 For each chunk, use updateMetrics to measure the model performance given the incoming

data, and then use fit to fit the model to that data.

Load and Preprocess Data

Load the 2015 NYC housing data set, and shuffle the data. For more details on the data, see NYC
Open Data.

load NYCHousing2015
rng(1) % For reproducibility
n = size(NYCHousing2015,1);
idxshuff = randsample(n,n);
NYCHousing2015 = NYCHousing2015(idxshuff,:);

Suppose that the data collected from Manhattan (BOROUGH = 1) was collected using a new method
that doubles its quality. Create a weight variable that attributes 2 to observations collected from
Manhattan, and 1 to all other observations.

NYCHousing2015.W = ones(n,1) + (NYCHousing2015.BOROUGH == 1);

Extract the response variable SALEPRICE from the table. For numerical stability, scale SALEPRICE by
1e6.

Y = NYCHousing2015.SALEPRICE/1e6;
NYCHousing2015.SALEPRICE = [];

Create dummy variable matrices from the categorical predictors.

catvars = ["BOROUGH" "BUILDINGCLASSCATEGORY" "NEIGHBORHOOD"];
dumvarstbl = varfun(@(x)dummyvar(categorical(x)),NYCHousing2015,...
    'InputVariables',catvars);
dumvarmat = table2array(dumvarstbl);
NYCHousing2015(:,catvars) = [];

Treat all other numeric variables in the table as linear predictors of sales price. Concatenate the
matrix of dummy variables to the rest of the predictor data. Transpose the data.

idxnum = varfun(@isnumeric,NYCHousing2015,'OutputFormat','uniform');
X = [dumvarmat NYCHousing2015{:,idxnum}]';
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Train Linear Regression Model

Fit a linear regression model to a random sample of half the data. Specify that observations are
oriented along the columns of the data.

idxtt = randsample([true false],n,true);
TTMdl = fitrlinear(X(:,idxtt),Y(idxtt),'ObservationsIn','columns')

TTMdl = 
  RegressionLinear
         ResponseName: 'Y'
    ResponseTransform: 'none'
                 Beta: [313x1 double]
                 Bias: 0.1889
               Lambda: 2.1977e-05
              Learner: 'svm'

  Properties, Methods

TTMdl is a RegressionLinear model object representing a traditionally trained linear regression
model.

Convert Trained Model

Convert the traditionally trained linear regression model to a linear regression model for incremental
learning.

IncrementalMdl = incrementalLearner(TTMdl)

IncrementalMdl = 
  incrementalRegressionLinear

               IsWarm: 1
              Metrics: [1x2 table]
    ResponseTransform: 'none'
                 Beta: [313x1 double]
                 Bias: 0.1889
              Learner: 'svm'

  Properties, Methods

Implement Incremental Learning

Use the flexible workflow to update model performance metrics and fit the incremental model to the
training data by calling the updateMetrics and fit functions separately. Simulate a data stream by
processing 500 observations at a time. At each iteration:

1 Call updateMetrics to update the cumulative and window epsilon insensitive loss of the model
given the incoming chunk of observations. Overwrite the previous incremental model to update
the losses in the Metrics property. Note that the function does not fit the model to the chunk of
data—the chunk is "new" data for the model. Specify that observations are oriented along the
columns of the data.
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2 Call fit to fit the model to the incoming chunk of observations. Overwrite the previous
incremental model to update the model parameters. Specify that observations are oriented along
the columns of the data.

3 Store the losses and last estimated coefficient β313.

% Preallocation
numObsPerChunk = 500;
nchunk = floor(n/numObsPerChunk);
ei = array2table(zeros(nchunk,2),'VariableNames',["Cumulative" "Window"]);
beta313 = zeros(nchunk,1);

% Incremental fitting
for j = 1:nchunk
    ibegin = min(n,numObsPerChunk*(j-1) + 1);
    iend   = min(n,numObsPerChunk*j);
    idx = ibegin:iend;
    IncrementalMdl = updateMetrics(IncrementalMdl,X(:,idx),Y(idx),'ObservationsIn','columns');
    ei{j,:} = IncrementalMdl.Metrics{"EpsilonInsensitiveLoss",:};
    IncrementalMdl = fit(IncrementalMdl,X(:,idx),Y(idx),'ObservationsIn','columns');
    beta313(j) = IncrementalMdl.Beta(end);
end

IncrementalMdl is an incrementalRegressionLinear model object trained on all the data in
the stream.

Alternatively, you can use updateMetricsAndFit to update performance metrics of the model given
a new chunk of data, and then fit the model to the data.

Inspect Model Evolution

Plot a trace plot of the performance metrics and estimated coefficient β313.

t = tiledlayout(2,1);
nexttile
h = plot(ei.Variables);
xlim([0 nchunk])
ylabel('Epsilon Insensitive Loss')
legend(h,ei.Properties.VariableNames)
nexttile
plot(beta313)
ylabel('\beta_{313}')
xlim([0 nchunk])
xlabel(t,'Iteration')
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The cumulative loss gradually changes with each iteration (chunk of 500 observations), whereas the
window loss jumps. Because the metrics window is 200 by default, updateMetrics measures the
performance based on the latest 200 observations in each 500 observation chunk.

β313 changes abruptly at first and then just slightly as fit processes chunks of observations.

See Also
Objects
incrementalRegressionLinear

Functions
fit | updateMetrics

More About
• “Configure Incremental Learning Model” on page 28-9
• “Implement Incremental Learning for Regression Using Succinct Workflow” on page 28-19
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Implement Incremental Learning for Classification Using
Flexible Workflow

This example shows how to use the flexible workflow to implement incremental learning for binary
classification with prequential evaluation. A traditionally trained model initializes the incremental
model. Specifically, this example does the following:

1 Train a linear model for binary classification on a subset of data.
2 Convert the traditionally trained model to an incremental learning model for binary classification.
3 Simulate a data stream using a for loop, which feeds small chunks of observations to the

incremental learning algorithm.
4 For each chunk, use updateMetrics to measure the model performance given the incoming

data, and then use fit to fit the model to that data.

Although this example treats the application as a binary classification problem, you can implement
multiclass incremental learning using an object for a multiclass problem by following this same
workflow.

Load and Preprocess Data

Load the human activity data set. Randomly shuffle the data. Orient the observations of the predictor
data in columns.

load humanactivity
rng(1) % For reproducibility
n = numel(actid);
idx = randsample(n,n);
X = feat(idx,:)';
Y = actid(idx);

For details on the data set, enter Description at the command line.

Responses can be one of five classes: Sitting, Standing, Walking, Running, or Dancing. Dichotomize
the response by identifying whether the subject is moving (actid > 2).

Y = Y > 2;

Train Linear Model for Binary Classification

Fit a linear model for binary classification to a random sample of half the data. Specify that the
observations are oriented along the columns of the data.

idxtt = randsample([true false],n,true);
TTMdl = fitclinear(X(:,idxtt),Y(idxtt),'ObservationsIn','columns')

TTMdl = 
  ClassificationLinear
      ResponseName: 'Y'
        ClassNames: [0 1]
    ScoreTransform: 'none'
              Beta: [60x1 double]
              Bias: -0.3005
            Lambda: 8.2967e-05
           Learner: 'svm'
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  Properties, Methods

TTMdl is a ClassificationLinear model object representing a traditionally trained linear model
for binary classification.

Convert Trained Model

Convert the traditionally trained classification model to a binary classification linear model for
incremental learning.

IncrementalMdl = incrementalLearner(TTMdl)

IncrementalMdl = 
  incrementalClassificationLinear

            IsWarm: 1
           Metrics: [1x2 table]
        ClassNames: [0 1]
    ScoreTransform: 'none'
              Beta: [60x1 double]
              Bias: -0.3005
           Learner: 'svm'

  Properties, Methods

Implement Incremental Learning

Use the flexible workflow to update model performance metrics and fit the incremental model to the
training data by calling the updateMetrics and fit functions separately. Simulate a data stream by
processing 50 observations at a time. At each iteration:

1 Call updateMetrics to update the cumulative and window classification error of the model
given the incoming chunk of observations. Overwrite the previous incremental model to update
the losses in the Metrics property. Note that the function does not fit the model to the chunk of
data—the chunk is "new" data for the model. Specify that the observations are oriented in
columns.

2 Call fit to fit the model to the incoming chunk of observations. Overwrite the previous
incremental model to update the model parameters. Specify that the observations are oriented in
columns.

3 Store the classification error and first estimated coefficient β1.

% Preallocation
idxil = ~idxtt;
nil = sum(idxil);
numObsPerChunk = 50;
nchunk = floor(nil/numObsPerChunk);
ce = array2table(zeros(nchunk,2),'VariableNames',["Cumulative" "Window"]);
beta1 = [IncrementalMdl.Beta(1); zeros(nchunk,1)];
Xil = X(:,idxil);
Yil = Y(idxil);
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% Incremental fitting
for j = 1:nchunk
    ibegin = min(nil,numObsPerChunk*(j-1) + 1);
    iend   = min(nil,numObsPerChunk*j);
    idx = ibegin:iend;
    IncrementalMdl = updateMetrics(IncrementalMdl,Xil(:,idx),Yil(idx),...
        'ObservationsIn','columns');
    ce{j,:} = IncrementalMdl.Metrics{"ClassificationError",:};
    IncrementalMdl = fit(IncrementalMdl,Xil(:,idx),Yil(idx),'ObservationsIn','columns');
    beta1(j + 1) = IncrementalMdl.Beta(end);
end

IncrementalMdl is an incrementalClassificationLinear model object trained on all the data
in the stream.

Alternatively, you can use updateMetricsAndFit to update performance metrics of the model given
a new chunk of data, and then fit the model to the data.

Inspect Model Evolution

Plot a trace plot of the performance metrics and estimated coefficient β1.

t = tiledlayout(2,1);
nexttile
h = plot(ce.Variables);
xlim([0 nchunk])
ylabel('Classification Error')
legend(h,ce.Properties.VariableNames)
nexttile
plot(beta1)
ylabel('\beta_1')
xlim([0 nchunk])
xlabel(t,'Iteration')
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The cumulative loss is stable and decreases gradually, whereas the window loss jumps.

β1 changes abruptly at first, and then gradually levels off as fit processes more chunks of
observations.

See Also
Objects
incrementalClassificationLinear

Functions
fit | updateMetrics

More About
• “Configure Incremental Learning Model” on page 28-9
• “Implement Incremental Learning for Classification Using Succinct Workflow” on page 28-22
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Initialize Incremental Learning Model from SVM Regression
Model Trained in Regression Learner

This example shows how to tune and train a linear SVM regression model using the Regression
Learner app. Then, at the command line, initialize and train an incremental model for linear SVM
regression using the information gained from training in the app.

Load and Preprocess Data

Load the 2015 NYC housing data set, and shuffle the data. For more details on the data, see NYC
Open Data.

load NYCHousing2015
rng(1); % For reproducibility
n = size(NYCHousing2015,1);
idxshuff = randsample(n,n);
NYCHousing2015 = NYCHousing2015(idxshuff,:);

For numerical stability, scale SALEPRICE by 1e6.

NYCHousing2015.SALEPRICE = NYCHousing2015.SALEPRICE/1e6;

Consider training a linear SVM regression model to about 1% of the data, and reserving the
remaining data for incremental learning.

Regression Learner supports categorical variables. However, models for incremental learning
require dummy-coded categorical variables. Because the BUILDINGCLASSCATEGORY and
NEIGHBORHOOD variables contain many levels (some with low representation), the probability that a
partition does not have all categories is high. Therefore, dummy-code all categorical variables.
Concatenate the matrix of dummy variables to the rest of the numeric variables.

catvars = ["BOROUGH" "BUILDINGCLASSCATEGORY" "NEIGHBORHOOD"];
dumvars = splitvars(varfun(@(x)dummyvar(categorical(x)),NYCHousing2015, ...
      'InputVariables',catvars));
NYCHousing2015(:,catvars) = [];
idxnum = varfun(@isnumeric,NYCHousing2015,'OutputFormat','uniform');
NYCHousing2015 = [dumvars NYCHousing2015(:,idxnum)];

Randomly partition the data into 1% and 99% subsets by calling cvpartition and specifying a
holdout (test) sample proportion of 0.99. Create tables for the 1% and 99% partitions.

cvp = cvpartition(n,'HoldOut',0.99);
idxtt = cvp.training;
idxil = cvp.test;
NYCHousing2015tt = NYCHousing2015(idxtt,:);
NYCHousing2015il = NYCHousing2015(idxil,:);

Tune and Train Model Using Regression Learner

Open Regression Learner by entering regressionLearner at the command line.

regressionLearner

Alternatively, on the Apps tab, click the Show more arrow to open the apps gallery. Under Machine
Learning and Deep Learning, click the app icon.
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Choose the training data set and variables.

1 On the Regression Learner tab, in the File section, select New Session, and then select From
Workspace.

2 In the New Session from Workspace dialog box, under Data Set Variable, select the data set
NYCHousing2015tt.

3 Under Response, ensure the response variable SALEPRICE is selected.
4 Click Start Session.

The app implements 5-fold cross-validation by default.

Train a linear SVM regression model. Tune only the Epsilon hyperparameter by using Bayesian
optimization.

1 On the Regression Learner tab, in the Models section, click the Show more arrow to open the
apps gallery. In the Support Vector Machines section, click Optimizable SVM.

2 On the model Summary tab, in the Model Hyperparameters section:

a Deselect the Optimize boxes for all available options except Epsilon.
b Set the value of Kernel scale to Manual and 1.
c Set the value of Standardize data to No.
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3 On the Regression Learner tab, in the Train section, click Train All and select Train Selected.

The app shows a plot of the generalization minimum MSE of the model as optimization progresses.
The app can take some time to optimize the algorithm.

 Initialize Incremental Learning Model from SVM Regression Model Trained in Regression Learner

28-35



Export the trained, optimized linear SVM regression model.

1 On the Regression Learner tab, in the Export section, select Export Model, and select Export
Model.

2 In the Export Model dialog box, click OK.

The app passes the trained model, among other variables, in the structure array trainedModel to
the workspace. Close Regression Learner .

Convert Exported Model to Incremental Model

At the command line, extract the trained SVM regression model from trainedModel.

Mdl = trainedModel.RegressionSVM;

Convert the model to an incremental model.

IncrementalMdl = incrementalLearner(Mdl)
IncrementalMdl.Epsilon

IncrementalMdl = 

  incrementalRegressionLinear
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               IsWarm: 1
              Metrics: [1×2 table]
    ResponseTransform: 'none'
                 Beta: [312×1 double]
                 Bias: 12.3802
              Learner: 'svm'

  Properties, Methods

ans =

    5.4536

IncrementalMdl is an incrementalRegressionLinear model object for incremental learning
using a linear SVM regression model. incrementalLearner initializes IncrementalMdl using the
coefficients and the optimized value of the Epsilon hyperparameter learned from Mdl. Therefore,
you can predict responses by passing IncrementalMdl and data to predict. Also, the IsWarm
property is true, which means that the incremental learning functions measure the model
performance from the start of incremental learning.

Implement Incremental Learning

Because incremental learning functions accept floating-point matrices only, create matrices for the
predictor and response data.

Xil = NYCHousing2015il{:,1:(end-1)};
Yil = NYCHousing2015il{:,end};

Perform incremental learning on the 99% data partition by using the updateMetricsAndFit
function. Simulate a data stream by processing 500 observations at a time. At each iteration:

1 Call updateMetricsAndFit to update the cumulative and window epsilon insensitive loss of the
model given the incoming chunk of observations. Overwrite the previous incremental model to
update the losses in the Metrics property.

2 Store the losses and last estimated coefficient β313.

% Preallocation
nil = sum(idxil);
numObsPerChunk = 500;
nchunk = floor(nil/numObsPerChunk);
ei = array2table(zeros(nchunk,2),'VariableNames',["Cumulative" "Window"]);
beta313 = [IncrementalMdl.Beta(end); zeros(nchunk,1)];

% Incremental learning
for j = 1:nchunk
    ibegin = min(nil,numObsPerChunk*(j-1) + 1);
    iend   = min(nil,numObsPerChunk*j);
    idx = ibegin:iend;
    IncrementalMdl = updateMetricsAndFit(IncrementalMdl,Xil(idx,:),Yil(idx));
    ei{j,:} = IncrementalMdl.Metrics{"EpsilonInsensitiveLoss",:};
    beta313(j + 1) = IncrementalMdl.Beta(end);
end

 Initialize Incremental Learning Model from SVM Regression Model Trained in Regression Learner

28-37



IncrementalMdl is an incrementalRegressionLinear model object trained on all the data in
the stream.

Plot a trace plot of the performance metrics and estimated coefficient β313.

figure
subplot(2,1,1)
h = plot(ei.Variables);
xlim([0 nchunk])
ylabel('Epsilon Insensitive Loss')
legend(h,ei.Properties.VariableNames)
subplot(2,1,2)
plot(beta313)
ylabel('\beta_{313}')
xlim([0 nchunk])
xlabel('Iteration')

The cumulative loss gradually changes with each iteration (chunk of 500 observations), whereas the
window loss jumps. Because the metrics window is 200 by default, updateMetricsAndFit
measures the performance based on the latest 200 observations in each 500 observation chunk.
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β313 changes abruptly and then levels off as updateMetricsAndFit processes chunks of
observations.

See Also
Apps
Regression Learner

Objects
incrementalRegressionLinear

Functions
updateMetricsAndFit | predict

More About
• “Configure Incremental Learning Model” on page 28-9
• “Implement Incremental Learning for Regression Using Flexible Workflow” on page 28-25
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Initialize Incremental Learning Model from Logistic Regression
Model Trained in Classification Learner

This example shows how to train a logistic regression model using the Classification Learner app.
Then, at the command line, initialize and train an incremental model for binary classification using
the information gained from training in the app.

Load and Preprocess Data

Load the human activity data set. Randomly shuffle the data.

load humanactivity
rng(1); % For reproducibility
n = numel(actid);
idx = randsample(n,n);
X = feat(idx,:);
actid = actid(idx);

For details on the data set, enter Description at the command line.

Responses can be one of five classes: Sitting, Standing, Walking, Running, or Dancing. Dichotomize
the response by creating a categorical array that identifies whether the subject is moving (actid >
2).

moveidx = actid > 2;
Y = repmat("NotMoving",n,1);
Y(moveidx) = "Moving";
Y = categorical(Y);

Consider training a logistic regression model to about 1% of the data, and reserving the remaining
data for incremental learning.

Randomly partition the data into 1% and 99% subsets by calling cvpartition and specifying a
holdout (test) sample proportion of 0.99. Create variables for the 1% and 99% partitions.

cvp = cvpartition(n,'HoldOut',0.99);
idxtt = cvp.training;
idxil = cvp.test;

Xtt = X(idxtt,:);
Xil = X(idxil,:);
Ytt = Y(idxtt);
Yil = Y(idxil);

Train Model Using Classification Learner

Open Classification Learner by entering classificationLearner at the command line.

classificationLearner

Alternatively, on the Apps tab, click the Show more arrow to open the apps gallery. Under Machine
Learning and Deep Learning, click the app icon.

Choose the training data set and variables.

1 On the Classification Learner tab, in the File section, select New Session > From
Workspace.
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2 In the New Session from Workspace dialog box, under Data Set Variable, select the predictor
variable Xtt.

3 Under Response, click From workspace; note that Ytt is selected automatically.
4 Under Validation Scheme, select Resubstitution Validation.
5 Click Start Session.

Train a logistic regression model.

1 On the Classification Learner tab, in the Models section, click the Show more arrow to open
the gallery of models. In the Logistic Regression Classifiers section, click Logistic
Regression.

2 On the Classification Learner tab, in the Train section, click Train All and select Train
Selected.

After training the model, the app displays a confusion matrix.
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The confusion matrix suggests that the model classifies in-sample observations well.

Export the trained logistic regression model.

1 On the Classification Learner tab, in the Export section, select Export Model > Export
Model.

2 In the Export Model dialog box, click OK.

The app passes the trained model, among other variables, in the structure array trainedModel to
the workspace. Close Classification Learner .

Initialize Incremental Model Using Exported Model

At the command line, extract the trained logistic regression model and the class names from
trainedModel. The model is a GeneralizedLinearModel object. Because class names must
match the data type of the response variable, convert the stored value to categorical.

Mdl = trainedModel.GeneralizedLinearModel;
ClassNames = categorical(trainedModel.ClassNames);

Extract the intercept and the coefficients from the model. The intercept is the first coefficient.

Bias = Mdl.Coefficients.Estimate(1);
Beta = Mdl.Coefficients.Estimate(2:end);

You cannot convert a GeneralizedLinearModel object to an incremental model directly. However,
you can initialize an incremental model for binary classification by passing information learned from
the app, such as estimated coefficients and class names.

Create an incremental model for binary classification directly. Specify the learner, intercept,
coefficient estimates, and class names learned from Classification Learner. Because good initial
values of coefficients exist and all class names are known, specify a metrics warm-up period of length
0.

IncrementalMdl = incrementalClassificationLinear('Learner','logistic', ...
    'Beta',Beta,'Bias',Bias,'ClassNames',ClassNames, ...
    'MetricsWarmupPeriod',0)

IncrementalMdl = 

  incrementalClassificationLinear

            IsWarm: 0
           Metrics: [1×2 table]
        ClassNames: [Moving    NotMoving]
    ScoreTransform: 'logit'
              Beta: [60×1 double]
              Bias: -471.7873
           Learner: 'logistic'

  Properties, Methods

IncrementalMdl is an incrementalClassificationLinear model object for incremental
learning using a logistic regression model. Because coefficients and all class names are specified, you
can predict responses by passing IncrementalMdl and data to predict.
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Implement Incremental Learning

Perform incremental learning on the 99% data partition by using the updateMetricsAndFit
function. Simulate a data stream by processing 50 observations at a time. At each iteration:

1 Call updateMetricsAndFit to update the cumulative and window classification error of the
model given the incoming chunk of observations. Overwrite the previous incremental model to
update the losses in the Metrics property.

2 Store the losses and the estimated coefficient β14.

% Preallocation
nil = sum(idxil);
numObsPerChunk = 50;
nchunk = floor(nil/numObsPerChunk);
ce = array2table(zeros(nchunk,2),'VariableNames',["Cumulative" "Window"]);
beta14 = [IncrementalMdl.Beta(14); zeros(nchunk,1)];

% Incremental learning
for j = 1:nchunk
    ibegin = min(nil,numObsPerChunk*(j-1) + 1);
    iend   = min(nil,numObsPerChunk*j);
    idx = ibegin:iend;
    IncrementalMdl = updateMetricsAndFit(IncrementalMdl,Xil(idx,:),Yil(idx));
    ce{j,:} = IncrementalMdl.Metrics{"ClassificationError",:};
    beta14(j + 1) = IncrementalMdl.Beta(14);
end

IncrementalMdl is an incrementalClassificationLinear model object trained on all the data
in the stream.

Plot a trace plot of the performance metrics and β14.

figure;
subplot(2,1,1)
h = plot(ce.Variables);
xlim([0 nchunk]);
ylabel('Classification Error')
legend(h,ce.Properties.VariableNames)
subplot(2,1,2)
plot(beta14)
ylabel('\beta_{14}')
xlim([0 nchunk]);
xlabel('Iteration')
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The cumulative loss gradually changes with each iteration (chunk of 50 observations), whereas the
window loss jumps. Because the metrics window is 200 by default and updateMetricsAndFit
measures the performance every four iterations.

β14 adapts to the data as updateMetricsAndFit processes chunks of observations.

See Also
Apps
Classification Learner

Objects
incrementalClassificationLinear

Functions
updateMetricsAndFit | predict

More About
• “Configure Incremental Learning Model” on page 28-9
• “Implement Incremental Learning for Classification Using Flexible Workflow” on page 28-29
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Perform Conditional Training During Incremental Learning

This example shows how to train a naive Bayes multiclass classification model for incremental
learning only when the model performance is unsatisfactory.

The flexible incremental learning workflow enables you to train an incremental model on an incoming
batch of data only when training is necessary (see “What Is Incremental Learning?” on page 28-2).
For example, if the performance metrics of a model are satisfactory, then, to increase efficiency, you
can skip training on incoming batches until the metrics become unsatisfactory.

Load Data

Load the human activity data set. Randomly shuffle the data.

load humanactivity
n = numel(actid);
rng(1) % For reproducibility
idx = randsample(n,n);
X = feat(idx,:);
Y = actid(idx);

For details on the data set, enter Description at the command line.

Train Naive Bayes Classification Model

Configure a naive Bayes classification model for incremental learning by setting:

• The maximum number of expected classes to 5
• The tracked performance metric to the misclassification error rate, which also includes minimal

cost
• The metrics window size to 1000
• The metrics warmup period to 50

initobs = 50;
Mdl = incrementalClassificationNaiveBayes('MaxNumClasses',5,'MetricsWindowSize',1000,...
    'Metrics','classiferror','MetricsWarmupPeriod',initobs);

Fit the configured model to the first 50 observations.

Mdl = fit(Mdl,X(1:initobs,:),Y(1:initobs))

Mdl = 
  incrementalClassificationNaiveBayes

                    IsWarm: 1
                   Metrics: [2x2 table]
                ClassNames: [1 2 3 4 5]
            ScoreTransform: 'none'
         DistributionNames: {1x60 cell}
    DistributionParameters: {5x60 cell}

  Properties, Methods
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haveTrainedAllClasses = numel(unique(Y(1:initobs))) == 5

haveTrainedAllClasses = logical
   1

Mdl is an incrementalClassificationNaiveBayes model object. The model is warm (IsWarm is
1) because all the following conditions apply:

• The initial training data contains all expected classes (haveTrainedAllClasses is true).
• Mdl is fit to Mdl.MetricsWarmupPeriod observations.

Therefore, the model is prepared to generate predictions, and incremental learning functions
measure performance metrics within the model.

Perform Incremental Learning with Conditional Training

Suppose that you want to train the model only when the most recent 1000 observations have a
misclassification error greater than 5%.

Perform incremental learning, with conditional training, by following this procedure for each
iteration:

1 Simulate a data stream by processing a chunk of 100 observations at a time.
2 Update the model performance by passing the model and current chunk of data to

updateMetrics. Overwrite the input model with the output model.
3 Store the misclassification error rate and the mean of the first predictor in the second class μ21

to see how they evolve during training.
4 Fit the model to the chunk of data only when the misclassification error rate is greater than 0.05.

Overwrite the input model with the output model when training occurs.
5 Track when fit trains the model.

% Preallocation
numObsPerChunk = 100;
nchunk = floor((n - initobs)/numObsPerChunk);
mu21 = zeros(nchunk,1);
ce = array2table(nan(nchunk,2),'VariableNames',["Cumulative" "Window"]);
trained = false(nchunk,1);

% Incremental fitting
for j = 1:nchunk
    ibegin = min(n,numObsPerChunk*(j-1) + 1 + initobs);
    iend   = min(n,numObsPerChunk*j + initobs);
    idx = ibegin:iend;
    Mdl = updateMetrics(Mdl,X(idx,:),Y(idx));
    ce{j,:} = Mdl.Metrics{"ClassificationError",:};
    if ce{j,"Window"} > 0.05
        Mdl = fit(Mdl,X(idx,:),Y(idx));
        trained(j) = true;
    end    
    mu21(j) = Mdl.DistributionParameters{2,1}(1);
end

Mdl is an incrementalClassificationNaiveBayes model object trained on all the data in the
stream.

28 Incremental Learning

28-46



To see how the model performance and μ21 evolve during training, plot them on separate tiles.
Identify periods during which the model is trained.

t = tiledlayout(2,1);
nexttile
plot(mu21)
hold on
plot(find(trained),mu21(trained),'r.')
ylabel('\mu_{21}')
legend('\mu_{21}','Training occurs','Location','best')
hold off
nexttile
plot(ce.Variables)
ylabel('Misclassification Error Rate')
legend(ce.Properties.VariableNames,'Location','best')
xlabel(t,'Iteration')

The trace plot of μ21 shows periods of constant values, during which the model performance within
the previous observation window is at most 0.05.

See Also
Objects
incrementalClassificationNaiveBayes
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Functions
predict | fit | updateMetrics

More About
• “Configure Incremental Learning Model” on page 28-9
• “Implement Incremental Learning for Classification Using Flexible Workflow” on page 28-29
• “Perform Text Classification Incrementally” on page 28-49
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Perform Text Classification Incrementally

This example shows how to incrementally train a model to classify documents based on word
frequencies in the documents; a bag-of-words model.

Load the NLP data set, which contains a sparse matrix of word frequencies X computed from
MathWorks® documentation. Labels Y are the toolbox documentation to which the page belongs.

load nlpdata

For more details on the data set, such as the dictionary and corpus, enter Description.

The observations are arranged by label. Because the incremental learning software does not start
computing performance metrics until it processes all labels at least once, shuffle the data set.

[n,p] = size(X)

n = 31572

p = 34023

rng(1);
shflidx = randperm(n);
X = X(shflidx,:);
Y = Y(shflidx);

Determine the number of classes in the data.

cats = categories(Y);
maxNumClasses = numel(cats);

Create a naive Bayes incremental learner. Specify the number of classes, a metrics warmup period of
0, and a metrics window size of 1000. Because predictor j is the word frequency of word j in the
dictionary, specify that the predictors are conditionally, jointly multinomial, given the class.

Mdl = incrementalClassificationNaiveBayes(MaxNumClasses=maxNumClasses,...
    MetricsWarmupPeriod=0,MetricsWindowSize=1000,DistributionNames='mn');

Mdl is an incrementalClassificationNaiveBayes object. Mdl is a cold model because it has not
processed observation; it represents a template for training.

Measure the model performance and fit the incremental model to the training data by using the
updateMetricsAndFit function. Simulate a data stream by processing chunks of 1000 observations
at a time. At each iteration:

1 Process 1000 observations.
2 Overwrite the previous incremental model with a new one fitted to the incoming observations.
3 Store the current minimal cost.

This stage can take several minutes to run.

numObsPerChunk = 1000;
nchunks = floor(n/numObsPerChunk);
mc = array2table(zeros(nchunks,2),'VariableNames',["Cumulative" "Window"]);
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for j = 1:nchunks
    ibegin = min(n,numObsPerChunk*(j-1) + 1);
    iend   = min(n,numObsPerChunk*j);
    idx = ibegin:iend; 
    XChunk = full(X(idx,:));
    Mdl = updateMetricsAndFit(Mdl,XChunk,Y(idx));
    mc{j,:} = Mdl.Metrics{"MinimalCost",:};
end

Mdl is an incrementalClassificationNaiveBayes model object trained on all the data in the
stream. During incremental learning and after the model is warmed up, updateMetricsAndFit
checks the performance of the model on the incoming chunk of observations, and then fits the model
to those observations.

Plot the minimal cost to see how it evolved during training.

figure
plot(mc.Variables)
ylabel('Minimal Cost')
legend(mc.Properties.VariableNames)
xlabel('Iteration')

The cumulative minimal cost smoothly decreases and settles near 0.16, while the minimal cost
computed for the chunk jumps between 0.14 and 0.18.
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See Also
Objects
incrementalClassificationNaiveBayes

Functions
predict | fit | updateMetrics

More About
• “Configure Incremental Learning Model” on page 28-9
• “Implement Incremental Learning for Classification Using Flexible Workflow” on page 28-29
• “Incremental Learning with Naive Bayes and Heterogeneous Data” on page 28-52
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Incremental Learning with Naive Bayes and Heterogeneous
Data

This example shows how to prepare heterogeneous predictor data, containing real-valued and
categorical measurements, for incremental learning using a naive Bayes classifier.

Naive Bayes classifiers for incremental learning support only numeric predictor data sets, but they
can adapt to unseen categorical levels during training. If your data is heterogeneous and contained in
a table, you must preprocess before performing incremental learning by following this general
procedure:

1 Create a running hash map for each categorical variable by using container.Map MATLAB®
objects. The hash map assigns a string to a unique numeric value, and it can easily adapt to new
levels. Although you can create a cold hash map, this example assumes the first 50 observations
from the data are available for populating a hash map and warming up the model.

2 Consistently concatenate all real-valued measurements with the numeric categorical levels.

Load and Preprocess Data

Load the 1994 US Census data set. The learning objective is to predict a US citizen's salary (salary,
either <=50K or >50K) from several heterogeneous measurements on the citizen.

load census1994.mat

The training data is in the table adultdata. For details on the data set, enter Description.

Remove all observations containing at least one missing value from the data.

adultdata = adultdata(~any(ismissing(adultdata),2),:);
[n,p] = size(adultdata);
p = p - 1;  % Number of predictor variables    

Suppose only the first 50 observations are currently available.

n0 = 50;
sample0 = adultdata(1:n0,:);

Create Initial Hash Maps

Identify all categorical variables in the data, and determine their levels.

catpredidx = table2array(varfun(@iscategorical,adultdata(:,1:(end-1))));
numcatpreds = sum(catpredidx);
lvlstmp = varfun(@unique,adultdata(:,catpredidx),OutputFormat="cell");
lvls0 = cell(1,p);
lvls0(catpredidx) = lvlstmp;

For each categorical variable, create an initial hash map that assigns an integer, from 1 to the
number of corresponding levels, to each level. Store all hash maps in a cell vector.

catmaps = cell(1,p);
J = find(catpredidx);

for j = J
    numlvls = numel(lvls0{j});
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    catmaps{j} = containers.Map(cellstr(lvls0{j}),1:numlvls);
end
example1 = catmaps{find(catpredidx,1)}

example1 = 
  Map with properties:

        Count: 7
      KeyType: char
    ValueType: double

val = example1('Private')

val = 3

catmaps is a numcatpreds-by-1 cell vector of containers.Map objects, each representing a hash
map for the corresponding categorical variable. For example, the first hash map assigns 3 to the level
'Private'.

Represent Categorical Variables as Numeric

The supporting, local function processPredictorData has the following characteristics:

• Accept a table containing categorical and numeric variables, and the current cell vector of hash
maps for each categorical variable.

• Return a matrix of homogenous, numeric predictor data with categorical variables replaced by
numeric variables. The function replaces string-based levels with positive integers.

• Return an updated cell vector of hash maps when the input data contains variables with levels
unknown to the current hash map.

Represent the categorical data in the initial sample as numeric by using processPredictorData.

[X0,catmaps] = processPredictorData(sample0(:,1:(end-1)),catmaps);
y0 = adultdata.salary(1:n0);

Fit Naive Bayes Model to Initial Sample

Fit a naive Bayes model to the initial sample. Identify the categorical variables.

Mdl = fitcnb(X0,y0,CategoricalPredictors=catpredidx);

Mdl is a ClassificationNaiveBayes model.

Prepare Naive Bayes Model for Incremental Learning

Covert the traditionally trained naive Bayes model to an incremental learner. Specify that the
incremental model should base window metrics on 2000 observations.

IncrementalMdl = incrementalLearner(Mdl,MetricsWindowSize=2000);

IncrementalMdl is a warmed incrementalClassificationNaiveBayes object prepared for
incremental learning. incrementalLearner initializes the parameters of the conditional
distributions of the predictor variables with the values learned from the initial sample.
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Perform Incremental Learning

Measure the model performance and fit the incremental model to the training data by using the
updateMetricsAndFit function. Simulate a data stream by processing chunks of 100 observations
at a time. At each iteration:

1 Process the predictor data and update the hash maps in the incoming 100 observations by using
processPredictorData.

2 Fit a naive Bayes model to the processed data.
3 Overwrite the previous incremental model with a new one fitted to the incoming observations.
4 Store the current minimal cost and the learned conditional probability of selecting a female US

citizen given each salary level.

numObsPerChunk = 100;
nchunks = floor(n/numObsPerChunk);
mc = array2table(zeros(nchunks,2),'VariableNames',["Cumulative" "Window"]);
catdistms = zeros(nchunks,2);
sexidx = string(adultdata.Properties.VariableNames) == "sex";
fidx = string(keys(catmaps{sexidx(1:end-1)})) == "Female";

for j = 1:nchunks
    ibegin = min(n,numObsPerChunk*(j-1) + 1 + n0);
    iend   = min(n,numObsPerChunk*j + n0);
    idx = ibegin:iend;
    [XChunk,catmaps] = processPredictorData(adultdata(idx,1:(end-1)),catmaps);
    IncrementalMdl = updateMetricsAndFit(IncrementalMdl,XChunk,adultdata.salary(idx));
    mc{j,:} = IncrementalMdl.Metrics{"MinimalCost",:};
    catdistms(j,1) = IncrementalMdl.DistributionParameters{1,sexidx}(fidx);
    catdistms(j,2) = IncrementalMdl.DistributionParameters{2,sexidx}(fidx);
end

IncrementalMdl is an incrementalClassificationNaiveBayes object incrementally fit to the
entire stream. During incremental learning, updateMetricsAndFit checks the performance of the
model on the incoming chunk of observations, and then fits the model to those observations.

Plot the cumulative and window minimal cost computed during incremental learning.

figure
plot(mc.Variables)
ylabel('Minimal Cost')
legend(mc.Properties.VariableNames)
xlabel('Iteration')
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The cumulative loss gradually changes with each iteration (chunk of 100 observations), whereas the
window loss jumps. Because the metrics window is 2000, updateMetricsAndFit measures the
performance every 20 iterations.

Plot the running probability of selecting a female within each salary level.

figure
plot(catdistms)
ylabel('P(Female|Salary=y)')
legend(sprintf("y=%s",IncrementalMdl.ClassNames(1)),sprintf("y=%s",IncrementalMdl.ClassNames(2)))
xlabel('Iteration')
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The fitted probabilities gradually settle during incremental learning.

Compare Performance on Test Data

Fit a naive Bayes classifier to the entire training data set.

MdlTT = fitcnb(adultdata,"salary");

MdlTT is a traditionally trained ClassificationNaiveBayes object.

Compute the minimal cost of the traditionally trained model on the test data adulttest.

adulttest = adulttest(~any(ismissing(adulttest),2),:); % Remove missing values
mctt = loss(MdlTT,adulttest)

mctt = 0.1773

Process the predictors of the test data by using processPredictorData, and then compute the
minimal cost of incremental learning model on the test data.

XTest = processPredictorData(adulttest(:,1:(end-1)),catmaps);
ilmc = loss(IncrementalMdl,XTest,adulttest.salary)

ilmc = 0.1657

The minimal costs between the incremental model and the traditionally trained model are nearly the
same.
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Supporting functions

function [Pred,maps] = processPredictorData(tbl,maps)
% PROCESSPREDICTORDATA Process heterogeneous data to homogeneous numeric
% data
%
% Input arguments:
%   tbl:  A table of raw input data
%   maps: A cell vector of container.Map hash maps.  Cells correspond to
%       categorical variables in tbl.
%
% Output arguments:
%   Pred: A numeric matrix of data with the same dimensions as tbl. Numeric
%   variables in tbl are assigned to the corresponding column of Pred,
%   categorical variables in tbl are processed and placed in the
%   corresponding column of Pred.

    catidx = varfun(@iscategorical,tbl,OutputFormat="uniform");
    numidx = ~catidx;
    numcats = sum(catidx);
    p = numcats + sum(numidx);
    currlvlstmp = varfun(@unique,tbl(:,catidx),OutputFormat="cell");
    currlvls0 = cell(1,p);
    currlvls0(catidx) = currlvlstmp;
    currlvlstmp = cellfun(@categories,currlvls0(catidx),UniformOutput=false);
    currlvls = cell(1,p);
    currlvls(catidx) = currlvlstmp;
    Pred = zeros(size(tbl));
    Pred(:,numidx) = tbl{:,numidx};
    J = find(catidx);
    for j = J
        hasNewlvl = ~isKey(maps{j},currlvls{j});
        if any(hasNewlvl)
            newcats = currlvls{j}(hasNewlvl);
            numnewcats = sum(hasNewlvl);
            g = numel(maps{j}.Count);
            for h = 1:numnewcats
                g = g + 1;
                maps{j}(newcats{h}) = g;
            end
        end
        conv2cell = cellstr(tbl{:,j});
        Pred(:,j) = cell2mat(values(maps{j},conv2cell));
    end
end

See Also
Objects
incrementalClassificationNaiveBayes | ClassificationNaiveBayes | containers.Map

Functions
loss | fit | updateMetrics
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More About
• “Configure Incremental Learning Model” on page 28-9
• “Implement Incremental Learning for Classification Using Flexible Workflow” on page 28-29
• “Perform Text Classification Incrementally” on page 28-49
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Markov Models

• “Markov Chains” on page 29-2
• “Hidden Markov Models (HMM)” on page 29-4
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Markov Chains
Markov processes are examples of stochastic processes—processes that generate random sequences
of outcomes or states according to certain probabilities. Markov processes are distinguished by being
memoryless—their next state depends only on their current state, not on the history that led them
there. Models of Markov processes are used in a wide variety of applications, from daily stock prices
to the positions of genes in a chromosome.

A Markov model is given visual representation with a state diagram, such as the one below.

State Diagram for a Markov Model

The rectangles in the diagram represent the possible states of the process you are trying to model,
and the arrows represent transitions between states. The label on each arrow represents the
probability of that transition. At each step of the process, the model may generate an output, or
emission, depending on which state it is in, and then make a transition to another state. An important
characteristic of Markov models is that the next state depends only on the current state, and not on
the history of transitions that lead to the current state.

For example, for a sequence of coin tosses the two states are heads and tails. The most recent coin
toss determines the current state of the model and each subsequent toss determines the transition to
the next state. If the coin is fair, the transition probabilities are all 1/2. The emission might simply be
the current state. In more complicated models, random processes at each state will generate
emissions. You could, for example, roll a die to determine the emission at any step.

Markov chains are mathematical descriptions of Markov models with a discrete set of states. Markov
chains are characterized by:

• A set of states {1, 2, ..., M}
• An M-by-M transition matrix T whose i,j entry is the probability of a transition from state i to state

j. The sum of the entries in each row of T must be 1, because this is the sum of the probabilities of
making a transition from a given state to each of the other states.

• A set of possible outputs, or emissions, {s1, s2, ... , sN}. By default, the set of emissions is {1, 2, ... ,
N}, where N is the number of possible emissions, but you can choose a different set of numbers or
symbols.
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• An M-by-N emission matrix E whose i,k entry gives the probability of emitting symbol sk given that
the model is in state i.

Markov chains begin in an initial state i0 at step 0. The chain then transitions to state i1 with
probability T1i1, and emits an output sk1 with probability Ei1k1. Consequently, the probability of
observing the sequence of states i1i2...ir and the sequence of emissions sk1sk2...skr in the first r steps,
is

T1i1Ei1k1Ti1i2Ei2k2...Tir − 1irEirk

See Also

Related Examples
• “Hidden Markov Models (HMM)” on page 29-4
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Hidden Markov Models (HMM)
In this section...
“Introduction to Hidden Markov Models (HMM)” on page 29-4
“Analyzing Hidden Markov Models” on page 29-5

Introduction to Hidden Markov Models (HMM)
A hidden Markov model (HMM) is one in which you observe a sequence of emissions, but do not know
the sequence of states the model went through to generate the emissions. Analyses of hidden Markov
models seek to recover the sequence of states from the observed data.

As an example, consider a Markov model with two states and six possible emissions. The model uses:

• A red die, having six sides, labeled 1 through 6.
• A green die, having twelve sides, five of which are labeled 2 through 6, while the remaining seven

sides are labeled 1.
• A weighted red coin, for which the probability of heads is .9 and the probability of tails is .1.
• A weighted green coin, for which the probability of heads is .95 and the probability of tails is .05.

The model creates a sequence of numbers from the set {1, 2, 3, 4, 5, 6} with the following rules:

• Begin by rolling the red die and writing down the number that comes up, which is the emission.
• Toss the red coin and do one of the following:

• If the result is heads, roll the red die and write down the result.
• If the result is tails, roll the green die and write down the result.

• At each subsequent step, you flip the coin that has the same color as the die you rolled in the
previous step. If the coin comes up heads, roll the same die as in the previous step. If the coin
comes up tails, switch to the other die.

The state diagram for this model has two states, red and green, as shown in the following figure.

29 Markov Models

29-4



You determine the emission from a state by rolling the die with the same color as the state. You
determine the transition to the next state by flipping the coin with the same color as the state.

The transition matrix is:

T =
0.9
0.05

0.1
0.95

The emissions matrix is:

E =

1
6

1
6

1
6

1
6

1
6

1
6

7
12

1
12

1
12

1
12

1
12

1
12

The model is not hidden because you know the sequence of states from the colors of the coins and
dice. Suppose, however, that someone else is generating the emissions without showing you the dice
or the coins. All you see is the sequence of emissions. If you start seeing more 1s than other numbers,
you might suspect that the model is in the green state, but you cannot be sure because you cannot
see the color of the die being rolled.

Hidden Markov models raise the following questions:

• Given a sequence of emissions, what is the most likely state path?
• Given a sequence of emissions, how can you estimate transition and emission probabilities of the

model?
• What is the forward probability that the model generates a given sequence?
• What is the posterior probability that the model is in a particular state at any point in the

sequence?

Analyzing Hidden Markov Models
• “Generating a Test Sequence” on page 29-6
• “Estimating the State Sequence” on page 29-6
• “Estimating Transition and Emission Matrices” on page 29-6
• “Estimating Posterior State Probabilities” on page 29-8
• “Changing the Initial State Distribution” on page 29-8

Statistics and Machine Learning Toolbox functions related to hidden Markov models are:

• hmmgenerate — Generates a sequence of states and emissions from a Markov model
• hmmestimate — Calculates maximum likelihood estimates of transition and emission probabilities

from a sequence of emissions and a known sequence of states
• hmmtrain — Calculates maximum likelihood estimates of transition and emission probabilities

from a sequence of emissions
• hmmviterbi — Calculates the most probable state path for a hidden Markov model
• hmmdecode — Calculates the posterior state probabilities of a sequence of emissions

This section shows how to use these functions to analyze hidden Markov models.
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Generating a Test Sequence

The following commands create the transition and emission matrices for the model described in the
“Introduction to Hidden Markov Models (HMM)” on page 29-4:

TRANS = [.9 .1; .05 .95];

EMIS = [1/6, 1/6, 1/6, 1/6, 1/6, 1/6;...
7/12, 1/12, 1/12, 1/12, 1/12, 1/12];

To generate a random sequence of states and emissions from the model, use hmmgenerate:

[seq,states] = hmmgenerate(1000,TRANS,EMIS);

The output seq is the sequence of emissions and the output states is the sequence of states.

hmmgenerate begins in state 1 at step 0, makes the transition to state i1 at step 1, and returns i1 as
the first entry in states. To change the initial state, see “Changing the Initial State Distribution” on
page 29-8.

Estimating the State Sequence

Given the transition and emission matrices TRANS and EMIS, the function hmmviterbi uses the
Viterbi algorithm to compute the most likely sequence of states the model would go through to
generate a given sequence seq of emissions:

likelystates = hmmviterbi(seq, TRANS, EMIS);

likelystates is a sequence the same length as seq.

To test the accuracy of hmmviterbi, compute the percentage of the actual sequence states that
agrees with the sequence likelystates.

sum(states==likelystates)/1000
ans =
   0.8200

In this case, the most likely sequence of states agrees with the random sequence 82% of the time.

Estimating Transition and Emission Matrices

• “Using hmmestimate” on page 29-6
• “Using hmmtrain” on page 29-7

The functions hmmestimate and hmmtrain estimate the transition and emission matrices TRANS and
EMIS given a sequence seq of emissions.

Using hmmestimate

The function hmmestimate requires that you know the sequence of states states that the model
went through to generate seq.

The following takes the emission and state sequences and returns estimates of the transition and
emission matrices:

[TRANS_EST, EMIS_EST] = hmmestimate(seq, states)
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TRANS_EST =
0.8989    0.1011
0.0585    0.9415

EMIS_EST =
0.1721    0.1721    0.1749    0.1612    0.1803    0.1393
0.5836    0.0741    0.0804    0.0789    0.0726    0.1104

You can compare the outputs with the original transition and emission matrices, TRANS and EMIS:

TRANS
TRANS =
0.9000    0.1000
0.0500    0.9500

EMIS
EMIS =
0.1667    0.1667    0.1667    0.1667    0.1667    0.1667
0.5833    0.0833    0.0833    0.0833    0.0833    0.0833

Using hmmtrain

If you do not know the sequence of states states, but you have initial guesses for TRANS and EMIS,
you can still estimate TRANS and EMIS using hmmtrain.

Suppose you have the following initial guesses for TRANS and EMIS.

TRANS_GUESS = [.85 .15; .1 .9];
EMIS_GUESS = [.17 .16 .17 .16 .17 .17;.6 .08 .08 .08 .08 08];

You estimate TRANS and EMIS as follows:

[TRANS_EST2, EMIS_EST2] = hmmtrain(seq, TRANS_GUESS, EMIS_GUESS)

TRANS_EST2 =
0.2286    0.7714
0.0032    0.9968

EMIS_EST2 =
0.1436    0.2348    0.1837    0.1963    0.2350    0.0066
0.4355    0.1089    0.1144    0.1082    0.1109    0.1220

hmmtrain uses an iterative algorithm that alters the matrices TRANS_GUESS and EMIS_GUESS so
that at each step the adjusted matrices are more likely to generate the observed sequence, seq. The
algorithm halts when the matrices in two successive iterations are within a small tolerance of each
other.

If the algorithm fails to reach this tolerance within a maximum number of iterations, whose default
value is 100, the algorithm halts. In this case, hmmtrain returns the last values of TRANS_EST and
EMIS_EST and issues a warning that the tolerance was not reached.

If the algorithm fails to reach the desired tolerance, increase the default value of the maximum
number of iterations with the command:

hmmtrain(seq,TRANS_GUESS,EMIS_GUESS,'maxiterations',maxiter)

where maxiter is the maximum number of steps the algorithm executes.
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Change the default value of the tolerance with the command:

hmmtrain(seq, TRANS_GUESS, EMIS_GUESS, 'tolerance', tol)

where tol is the desired value of the tolerance. Increasing the value of tol makes the algorithm halt
sooner, but the results are less accurate.

Two factors reduce the reliability of the output matrices of hmmtrain:

• The algorithm converges to a local maximum that does not represent the true transition and
emission matrices. If you suspect this, use different initial guesses for the matrices TRANS_EST
and EMIS_EST.

• The sequence seq may be too short to properly train the matrices. If you suspect this, use a
longer sequence for seq.

Estimating Posterior State Probabilities

The posterior state probabilities of an emission sequence seq are the conditional probabilities that
the model is in a particular state when it generates a symbol in seq, given that seq is emitted. You
compute the posterior state probabilities with hmmdecode:

PSTATES = hmmdecode(seq,TRANS,EMIS)

The output PSTATES is an M-by-L matrix, where M is the number of states and L is the length of seq.
PSTATES(i,j) is the conditional probability that the model is in state i when it generates the jth
symbol of seq, given that seq is emitted.

hmmdecode begins with the model in state 1 at step 0, prior to the first emission. PSTATES(i,1) is
the probability that the model is in state i at the following step 1. To change the initial state, see
“Changing the Initial State Distribution” on page 29-8.

To return the logarithm of the probability of the sequence seq, use the second output argument of
hmmdecode:

[PSTATES,logpseq] = hmmdecode(seq,TRANS,EMIS)

The probability of a sequence tends to 0 as the length of the sequence increases, and the probability
of a sufficiently long sequence becomes less than the smallest positive number your computer can
represent. hmmdecode returns the logarithm of the probability to avoid this problem.

Changing the Initial State Distribution

By default, Statistics and Machine Learning Toolbox hidden Markov model functions begin in state 1.
In other words, the distribution of initial states has all of its probability mass concentrated at state 1.
To assign a different distribution of probabilities, p = [p1, p2, ..., pM], to the M initial states, do the
following:

1 Create an M+1-by-M+1 augmented transition matrix, T  of the following form:

T =
0 p
0 T

where T is the true transition matrix. The first column of T  contains M+1 zeros. p must sum to 1.
2 Create an M+1-by-N augmented emission matrix, E , that has the following form:
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E =
0
E

If the transition and emission matrices are TRANS and EMIS, respectively, you create the augmented
matrices with the following commands:

TRANS_HAT = [0 p; zeros(size(TRANS,1),1) TRANS];

EMIS_HAT = [zeros(1,size(EMIS,2)); EMIS];

See Also
hmmdecode | hmmestimate | hmmgenerate | hmmtrain | hmmviterbi

More About
• “Markov Chains” on page 29-2

 Hidden Markov Models (HMM)

29-9





Design of Experiments

• “Design of Experiments” on page 30-2
• “Full Factorial Designs” on page 30-3
• “Fractional Factorial Designs” on page 30-5
• “Response Surface Designs” on page 30-8
• “D-Optimal Designs” on page 30-12
• “Improve an Engine Cooling Fan Using Design for Six Sigma Techniques” on page 30-19
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Design of Experiments
Passive data collection leads to a number of problems in statistical modeling. Observed changes in a
response variable may be correlated with, but not caused by, observed changes in individual factors
(process variables). Simultaneous changes in multiple factors may produce interactions that are
difficult to separate into individual effects. Observations may be dependent, while a model of the data
considers them to be independent.

Designed experiments address these problems. In a designed experiment, the data-producing process
is actively manipulated to improve the quality of information and to eliminate redundant data. A
common goal of all experimental designs is to collect data as parsimoniously as possible while
providing sufficient information to accurately estimate model parameters.

For example, a simple model of a response y in an experiment with two controlled factors x1 and x2
might look like this:

y = β0 + β1x1 + β2x2 + β3x1x2 + ε

Here ε includes both experimental error and the effects of any uncontrolled factors in the experiment.
The terms β1x1 and β2x2 are main effects and the term β3x1x2 is a two-way interaction effect. A
designed experiment would systematically manipulate x1 and x2 while measuring y, with the objective
of accurately estimating β0, β1, β2, and β3.
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Full Factorial Designs
In this section...
“Multilevel Designs” on page 30-3
“Two-Level Designs” on page 30-3

Multilevel Designs
To systematically vary experimental factors, assign each factor a discrete set of levels. Full factorial
designs measure response variables using every treatment (combination of the factor levels). A full
factorial design for n factors with N1, ..., Nn levels requires N1 × ... × Nn experimental runs—one for
each treatment. While advantageous for separating individual effects, full factorial designs can make
large demands on data collection.

As an example, suppose a machine shop has three machines and four operators. If the same operator
always uses the same machine, it is impossible to determine if a machine or an operator is the cause
of variation in production. By allowing every operator to use every machine, effects are separated. A
full factorial list of treatments is generated by the function fullfact:

dFF = fullfact([3,4])
dFF =
     1     1
     2     1
     3     1
     1     2
     2     2
     3     2
     1     3
     2     3
     3     3
     1     4
     2     4
     3     4

Each of the 3×4 = 12 rows of dFF represent one machine/operator combination.

Two-Level Designs
Many experiments can be conducted with two-level factors, using two-level designs. For example,
suppose the machine shop in the previous example always keeps the same operator on the same
machine, but wants to measure production effects that depend on the composition of the day and
night shifts. The function ff2n generates a full factorial list of treatments:

dFF2 = ff2n(4)
dFF2 =
     0     0     0     0
     0     0     0     1
     0     0     1     0
     0     0     1     1
     0     1     0     0
     0     1     0     1
     0     1     1     0
     0     1     1     1
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     1     0     0     0
     1     0     0     1
     1     0     1     0
     1     0     1     1
     1     1     0     0
     1     1     0     1
     1     1     1     0
     1     1     1     1

Each of the 24 = 16 rows of dFF2 represent one schedule of operators for the day (0) and night (1)
shifts.
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Fractional Factorial Designs
In this section...
“Introduction to Fractional Factorial Designs” on page 30-5
“Plackett-Burman Designs” on page 30-5
“General Fractional Designs” on page 30-5

Introduction to Fractional Factorial Designs
Two-level designs are sufficient for evaluating many production processes. Factor levels of ±1 can
indicate categorical factors, normalized factor extremes, or simply “up” and “down” from current
factor settings. Experimenters evaluating process changes are interested primarily in the factor
directions that lead to process improvement.

For experiments with many factors, two-level full factorial designs can lead to large amounts of data.
For example, a two-level full factorial design with 10 factors requires 210 = 1024 runs. Often,
however, individual factors or their interactions have no distinguishable effects on a response. This is
especially true of higher order interactions. As a result, a well-designed experiment can use fewer
runs for estimating model parameters.

Fractional factorial designs use a fraction of the runs required by full factorial designs. A subset of
experimental treatments is selected based on an evaluation (or assumption) of which factors and
interactions have the most significant effects. Once this selection is made, the experimental design
must separate these effects. In particular, significant effects should not be confounded, that is, the
measurement of one should not depend on the measurement of another.

Plackett-Burman Designs
Plackett-Burman designs are used when only main effects are considered significant. Two-level
Plackett-Burman designs require a number of experimental runs that are a multiple of 4 rather than a
power of 2. The function hadamard generates these designs:

dPB = hadamard(8)
dPB =
     1    1    1    1    1    1    1    1
     1   -1    1   -1    1   -1    1   -1
     1    1   -1   -1    1    1   -1   -1
     1   -1   -1    1    1   -1   -1    1
     1    1    1    1   -1   -1   -1   -1
     1   -1    1   -1   -1    1   -1    1
     1    1   -1   -1   -1   -1    1    1
     1   -1   -1    1   -1    1    1   -1

Binary factor levels are indicated by ±1. The design is for eight runs (the rows of dPB) manipulating
seven two-level factors (the last seven columns of dPB). The number of runs is a fraction 8/27 =
0.0625 of the runs required by a full factorial design. Economy is achieved at the expense of
confounding main effects with any two-way interactions.

General Fractional Designs
At the cost of a larger fractional design, you can specify which interactions you wish to consider
significant. A design of resolution R is one in which no n-factor interaction is confounded with any
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other effect containing less than R – n factors. Thus, a resolution III design does not confound main
effects with one another but may confound them with two-way interactions (as in “Plackett-Burman
Designs” on page 30-5), while a resolution IV design does not confound either main effects or two-
way interactions but may confound two-way interactions with each other.

Specify general fractional factorial designs using a full factorial design for a selected subset of basic
factors and generators for the remaining factors. Generators are products of the basic factors, giving
the levels for the remaining factors. Use the function fracfact to generate these designs:

dfF = fracfact('a b c d bcd acd')
dfF =
    -1    -1    -1    -1    -1    -1
    -1    -1    -1     1     1     1
    -1    -1     1    -1     1     1
    -1    -1     1     1    -1    -1
    -1     1    -1    -1     1    -1
    -1     1    -1     1    -1     1
    -1     1     1    -1    -1     1
    -1     1     1     1     1    -1
     1    -1    -1    -1    -1     1
     1    -1    -1     1     1    -1
     1    -1     1    -1     1    -1
     1    -1     1     1    -1     1
     1     1    -1    -1     1     1
     1     1    -1     1    -1    -1
     1     1     1    -1    -1    -1
     1     1     1     1     1     1

This is a six-factor design in which four two-level basic factors (a, b, c, and d in the first four columns
of dfF) are measured in every combination of levels, while the two remaining factors (in the last
three columns of dfF) are measured only at levels defined by the generators bcd and acd,
respectively. Levels in the generated columns are products of corresponding levels in the columns
that make up the generator.

The challenge of creating a fractional factorial design is to choose basic factors and generators so
that the design achieves a specified resolution in a specified number of runs. Use the function
fracfactgen to find appropriate generators:

generators = fracfactgen('a b c d e f',4,4)
generators = 
    'a'
    'b'
    'c'
    'd'
    'bcd'
    'acd'

These are generators for a six-factor design with factors a through f, using 24 = 16 runs to achieve
resolution IV. The fracfactgen function uses an efficient search algorithm to find generators that
meet the requirements.

An optional output from fracfact displays the confounding pattern of the design:

[dfF,confounding] = fracfact(generators);
confounding
confounding = 
    'Term'     'Generator'    'Confounding'  
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    'X1'       'a'            'X1'           
    'X2'       'b'            'X2'           
    'X3'       'c'            'X3'           
    'X4'       'd'            'X4'           
    'X5'       'bcd'          'X5'           
    'X6'       'acd'          'X6'           
    'X1*X2'    'ab'           'X1*X2 + X5*X6'
    'X1*X3'    'ac'           'X1*X3 + X4*X6'
    'X1*X4'    'ad'           'X1*X4 + X3*X6'
    'X1*X5'    'abcd'         'X1*X5 + X2*X6'
    'X1*X6'    'cd'           'X1*X6 + X2*X5 + X3*X4'
    'X2*X3'    'bc'           'X2*X3 + X4*X5'
    'X2*X4'    'bd'           'X2*X4 + X3*X5'
    'X2*X5'    'cd'           'X1*X6 + X2*X5 + X3*X4'
    'X2*X6'    'abcd'         'X1*X5 + X2*X6'
    'X3*X4'    'cd'           'X1*X6 + X2*X5 + X3*X4'
    'X3*X5'    'bd'           'X2*X4 + X3*X5'
    'X3*X6'    'ad'           'X1*X4 + X3*X6'
    'X4*X5'    'bc'           'X2*X3 + X4*X5'
    'X4*X6'    'ac'           'X1*X3 + X4*X6'
    'X5*X6'    'ab'           'X1*X2 + X5*X6'

The confounding pattern shows that main effects are effectively separated by the design, but two-way
interactions are confounded with various other two-way interactions.
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Response Surface Designs
In this section...
“Introduction to Response Surface Designs” on page 30-8
“Central Composite Designs” on page 30-8
“Box-Behnken Designs” on page 30-10

Introduction to Response Surface Designs
Quadratic response surfaces are simple models that provide a maximum or minimum without making
additional assumptions about the form of the response. Quadratic models can be calibrated using full
factorial designs with three or more levels for each factor, but these designs generally require more
runs than necessary to accurately estimate model parameters. This section discusses designs for
calibrating quadratic models that are much more efficient, using three or five levels for each factor,
but not using all combinations of levels.

Central Composite Designs
Central composite designs (CCDs), also known as Box-Wilson designs, are appropriate for calibrating
full quadratic models. There are three types of CCDs—circumscribed, inscribed, and faced—pictured
below:
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Each design consists of a factorial design (the corners of a cube) together with center and star points
that allow for estimation of second-order effects. For a full quadratic model with n factors, CCDs have
enough design points to estimate the (n+2)(n+1)/2 coefficients.

The type of CCD used (the position of the factorial and star points) is determined by the number of
factors and by the desired properties of the design. The following table summarizes some important
properties. A design is rotatable if the prediction variance depends only on the distance of the design
point from the center of the design.
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Design Rotatable Factor
Levels

Uses Points
Outside ±1

Accuracy of Estimates

Circumscribed
(CCC)

Yes 5 Yes Good over entire design space

Inscribed (CCI) Yes 5 No Good over central subset of
design space

Faced (CCF) No 3 No Fair over entire design space;
poor for pure quadratic
coefficients

Generate CCDs with the function ccdesign:

dCC = ccdesign(3,'type','circumscribed')
dCC =
   -1.0000   -1.0000   -1.0000
   -1.0000   -1.0000    1.0000
   -1.0000    1.0000   -1.0000
   -1.0000    1.0000    1.0000
    1.0000   -1.0000   -1.0000
    1.0000   -1.0000    1.0000
    1.0000    1.0000   -1.0000
    1.0000    1.0000    1.0000
   -1.6818         0         0
    1.6818         0         0
         0   -1.6818         0
         0    1.6818         0
         0         0   -1.6818
         0         0    1.6818
         0         0         0
         0         0         0
         0         0         0
         0         0         0
         0         0         0
         0         0         0
         0         0         0
         0         0         0
         0         0         0
         0         0         0

The repeated center point runs allow for a more uniform estimate of the prediction variance over the
entire design space.

Box-Behnken Designs
Like the designs described in “Central Composite Designs” on page 30-8, Box-Behnken designs are
used to calibrate full quadratic models. Box-Behnken designs are rotatable and, for a small number of
factors (four or less), require fewer runs than CCDs. By avoiding the corners of the design space, they
allow experimenters to work around extreme factor combinations. Like an inscribed CCD, however,
extremes are then poorly estimated.

The geometry of a Box-Behnken design is pictured in the following figure.
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Design points are at the midpoints of edges of the design space and at the center, and do not contain
an embedded factorial design.

Generate Box-Behnken designs with the function bbdesign:

dBB = bbdesign(3)
dBB =
    -1    -1     0
    -1     1     0
     1    -1     0
     1     1     0
    -1     0    -1
    -1     0     1
     1     0    -1
     1     0     1
     0    -1    -1
     0    -1     1
     0     1    -1
     0     1     1
     0     0     0
     0     0     0
     0     0     0

Again, the repeated center point runs allow for a more uniform estimate of the prediction variance
over the entire design space.
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D-Optimal Designs

In this section...
“Introduction to D-Optimal Designs” on page 30-12
“Generate D-Optimal Designs” on page 30-13
“Augment D-Optimal Designs” on page 30-14
“Specify Fixed Covariate Factors” on page 30-15
“Specify Categorical Factors” on page 30-16
“Specify Candidate Sets” on page 30-16

Introduction to D-Optimal Designs
Traditional experimental designs (“Full Factorial Designs” on page 30-3, “Fractional Factorial
Designs” on page 30-5, and “Response Surface Designs” on page 30-8) are appropriate for calibrating
linear models in experimental settings where factors are relatively unconstrained in the region of
interest. In some cases, however, models are necessarily nonlinear. In other cases, certain treatments
(combinations of factor levels) may be expensive or infeasible to measure. D-optimal designs are
model-specific designs that address these limitations of traditional designs.

A D-optimal design is generated by an iterative search algorithm and seeks to minimize the
covariance of the parameter estimates for a specified model. This is equivalent to maximizing the
determinant D = |XTX|, where X is the design matrix of model terms (the columns) evaluated at
specific treatments in the design space (the rows). Unlike traditional designs, D-optimal designs do
not require orthogonal design matrices, and as a result, parameter estimates may be correlated.
Parameter estimates may also be locally, but not globally, D-optimal.

There are several Statistics and Machine Learning Toolbox functions for generating D-optimal
designs:

Function Description
candexch Uses a row-exchange algorithm to generate a D-optimal design with a specified

number of runs for a specified model and a specified candidate set. This is the
second component of the algorithm used by rowexch.

candgen Generates a candidate set for a specified model. This is the first component of the
algorithm used by rowexch.

cordexch Uses a coordinate-exchange algorithm to generate a D-optimal design with a
specified number of runs for a specified model.

daugment Uses a coordinate-exchange algorithm to augment an existing D-optimal design with
additional runs to estimate additional model terms.

dcovary Uses a coordinate-exchange algorithm to generate a D-optimal design with fixed
covariate factors.

rowexch Uses a row-exchange algorithm to generate a D-optimal design with a specified
number of runs for a specified model. The algorithm calls candgen and then
candexch. (Call candexch separately to specify a candidate set.)

The following sections explain how to use these functions to generate D-optimal designs.
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Note The function rsmdemo generates simulated data for experimental settings specified by either
the user or by a D-optimal design generated by cordexch. It uses the rstool interface to visualize
response surface models fit to the data, and it uses the nlintool interface to visualize a nonlinear
model fit to the data.

Generate D-Optimal Designs
Two Statistics and Machine Learning Toolbox algorithms generate D-optimal designs:

• The cordexch function uses a coordinate-exchange algorithm
• The rowexch function uses a row-exchange algorithm

Both cordexch and rowexch use iterative search algorithms. They operate by incrementally
changing an initial design matrix X to increase D = |XTX| at each step. In both algorithms, there is
randomness built into the selection of the initial design and into the choice of the incremental
changes. As a result, both algorithms may return locally, but not globally, D-optimal designs. Run each
algorithm multiple times and select the best result for your final design. Both functions have a
'tries' parameter that automates this repetition and comparison.

At each step, the row-exchange algorithm exchanges an entire row of X with a row from a design
matrix C evaluated at a candidate set of feasible treatments. The rowexch function automatically
generates a C appropriate for a specified model, operating in two steps by calling the candgen and
candexch functions in sequence. Provide your own C by calling candexch directly. In either case, if
C is large, its static presence in memory can affect computation.

The coordinate-exchange algorithm, by contrast, does not use a candidate set. (Or rather, the
candidate set is the entire design space.) At each step, the coordinate-exchange algorithm exchanges
a single element of X with a new element evaluated at a neighboring point in design space. The
absence of a candidate set reduces demands on memory, but the smaller scale of the search means
that the coordinate-exchange algorithm is more likely to become trapped in a local minimum than the
row-exchange algorithm.

For example, suppose you want a design to estimate the parameters in the following three-factor,
seven-term interaction model:

y = β0 + β1x +1 β2x +2 β3x +3 β12x x1 +2 β13x x1 +3 β23x x2 +3 ε

Use cordexch to generate a D-optimal design with seven runs:

nfactors = 3;
nruns = 7;
[dCE,X] = cordexch(nfactors,nruns,'interaction','tries',10)
dCE =
    -1     1     1
    -1    -1    -1
     1     1     1
    -1     1    -1
     1    -1     1
     1    -1    -1
    -1    -1     1
X =
     1    -1     1     1    -1    -1     1
     1    -1    -1    -1     1     1     1
     1     1     1     1     1     1     1
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     1    -1     1    -1    -1     1    -1
     1     1    -1     1    -1     1    -1
     1     1    -1    -1    -1    -1     1
     1    -1    -1     1     1    -1    -1

Columns of the design matrix X are the model terms evaluated at each row of the design dCE. The
terms appear in order from left to right:

1 Constant term
2 Linear terms (1, 2, 3)
3 Interaction terms (12, 13, 23)

Use X in a linear regression model fit to response data measured at the design points in dCE.

Use rowexch in a similar fashion to generate an equivalent design:

[dRE,X] = rowexch(nfactors,nruns,'interaction','tries',10)
dRE =
    -1    -1     1
     1    -1     1
     1    -1    -1
     1     1     1
    -1    -1    -1
    -1     1    -1
    -1     1     1
X =
     1    -1    -1     1     1    -1    -1
     1     1    -1     1    -1     1    -1
     1     1    -1    -1    -1    -1     1
     1     1     1     1     1     1     1
     1    -1    -1    -1     1     1     1
     1    -1     1    -1    -1     1    -1
     1    -1     1     1    -1    -1     1

Augment D-Optimal Designs
In practice, you may want to add runs to a completed experiment to learn more about a process and
estimate additional model coefficients. The daugment function uses a coordinate-exchange algorithm
to augment an existing D-optimal design.

For example, the following eight-run design is adequate for estimating main effects in a four-factor
model:

dCEmain = cordexch(4,8)
dCEmain =
     1    -1    -1     1
    -1    -1     1     1
    -1     1    -1     1
     1     1     1    -1
     1     1     1     1
    -1     1    -1    -1
     1    -1    -1    -1
    -1    -1     1    -1

To estimate the six interaction terms in the model, augment the design with eight additional runs:
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dCEinteraction = daugment(dCEmain,8,'interaction')
dCEinteraction =
     1    -1    -1     1
    -1    -1     1     1
    -1     1    -1     1
     1     1     1    -1
     1     1     1     1
    -1     1    -1    -1
     1    -1    -1    -1
    -1    -1     1    -1
    -1     1     1     1
    -1    -1    -1    -1
     1    -1     1    -1
     1     1    -1     1
    -1     1     1    -1
     1     1    -1    -1
     1    -1     1     1
     1     1     1    -1

The augmented design is full factorial, with the original eight runs in the first eight rows.

The 'start' parameter of the candexch function provides the same functionality as daugment, but
uses a row exchange algorithm rather than a coordinate-exchange algorithm.

Specify Fixed Covariate Factors
In many experimental settings, certain factors and their covariates are constrained to a fixed set of
levels or combinations of levels. These cannot be varied when searching for an optimal design. The
dcovary function allows you to specify fixed covariate factors in the coordinate exchange algorithm.

For example, suppose you want a design to estimate the parameters in a three-factor linear additive
model, with eight runs that necessarily occur at different times. If the process experiences temporal
linear drift, you may want to include the run time as a variable in the model. Produce the design as
follows:

time = linspace(-1,1,8)';
[dCV,X] = dcovary(3,time,'linear')
dCV =
   -1.0000    1.0000    1.0000   -1.0000
    1.0000   -1.0000   -1.0000   -0.7143
   -1.0000   -1.0000   -1.0000   -0.4286
    1.0000   -1.0000    1.0000   -0.1429
    1.0000    1.0000   -1.0000    0.1429
   -1.0000    1.0000   -1.0000    0.4286
    1.0000    1.0000    1.0000    0.7143
   -1.0000   -1.0000    1.0000    1.0000
X =
    1.0000   -1.0000    1.0000    1.0000   -1.0000
    1.0000    1.0000   -1.0000   -1.0000   -0.7143
    1.0000   -1.0000   -1.0000   -1.0000   -0.4286
    1.0000    1.0000   -1.0000    1.0000   -0.1429
    1.0000    1.0000    1.0000   -1.0000    0.1429
    1.0000   -1.0000    1.0000   -1.0000    0.4286
    1.0000    1.0000    1.0000    1.0000    0.7143
    1.0000   -1.0000   -1.0000    1.0000    1.0000
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The column vector time is a fixed factor, normalized to values between ±1. The number of rows in
the fixed factor specifies the number of runs in the design. The resulting design dCV gives factor
settings for the three controlled model factors at each time.

Specify Categorical Factors
Categorical factors take values in a discrete set of levels. Both cordexch and rowexch have a
'categorical' parameter that allows you to specify the indices of categorical factors and a
'levels' parameter that allows you to specify a number of levels for each factor.

For example, the following eight-run design is for a linear additive model with five factors in which
the final factor is categorical with three levels:

dCEcat = cordexch(5,8,'linear','categorical',5,'levels',3)
dCEcat =
    -1    -1     1     1     2
    -1    -1    -1    -1     3
     1     1     1     1     3
     1     1    -1    -1     2
     1    -1    -1     1     3
    -1     1    -1     1     1
    -1     1     1    -1     3
     1    -1     1    -1     1

Specify Candidate Sets
The row-exchange algorithm exchanges rows of an initial design matrix X with rows from a design
matrix C evaluated at a candidate set of feasible treatments. The rowexch function automatically
generates a C appropriate for a specified model, operating in two steps by calling the candgen and
candexch functions in sequence. Provide your own C by calling candexch directly.

For example, the following uses rowexch to generate a five-run design for a two-factor pure
quadratic model using a candidate set that is produced internally:

dRE1 = rowexch(2,5,'purequadratic','tries',10)
dRE1 =
    -1     1
     0     0
     1    -1
     1     0
     1     1

The same thing can be done using candgen and candexch in sequence:

[dC,C] = candgen(2,'purequadratic') % Candidate set, C
dC =
    -1    -1
     0    -1
     1    -1
    -1     0
     0     0
     1     0
    -1     1
     0     1
     1     1

30 Design of Experiments

30-16



C =
     1    -1    -1     1     1
     1     0    -1     0     1
     1     1    -1     1     1
     1    -1     0     1     0
     1     0     0     0     0
     1     1     0     1     0
     1    -1     1     1     1
     1     0     1     0     1
     1     1     1     1     1
treatments = candexch(C,5,'tries',10) % D-opt subset
treatments =
     2
     1
     7
     3
     4
dRE2 = dC(treatments,:) % Display design
dRE2 =
     0    -1
    -1    -1
    -1     1
     1    -1
    -1     0

You can replace C in this example with a design matrix evaluated at your own candidate set. For
example, suppose your experiment is constrained so that the two factors cannot have extreme
settings simultaneously. The following produces a restricted candidate set:

constraint = sum(abs(dC),2) < 2; % Feasible treatments
my_dC = dC(constraint,:)
my_dC =
     0    -1
    -1     0
     0     0
     1     0
     0     1

Use the x2fx function to convert the candidate set to a design matrix:

my_C = x2fx(my_dC,'purequadratic')
my_C =
     1     0    -1     0     1
     1    -1     0     1     0
     1     0     0     0     0
     1     1     0     1     0
     1     0     1     0     1

Find the required design in the same manner:

my_treatments = candexch(my_C,5,'tries',10) % D-opt subset
my_treatments =
     2
     4
     5
     1
     3
my_dRE = my_dC(my_treatments,:) % Display design
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my_dRE =
    -1     0
     1     0
     0     1
     0    -1
     0     0
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Improve an Engine Cooling Fan Using Design for Six Sigma
Techniques

This example shows how to improve the performance of an engine cooling fan through a Design for
Six Sigma approach using Define, Measure, Analyze, Improve, and Control (DMAIC). The initial fan
does not circulate enough air through the radiator to keep the engine cool during difficult conditions.
First the example shows how to design an experiment to investigate the effect of three performance
factors: fan distance from the radiator, blade-tip clearance, and blade pitch angle. It then shows how
to estimate optimum values for each factor, resulting in a design that produces airflows beyond the
goal of 875 ft3 per minute using test data. Finally it shows how to use simulations to verify that the
new design produces airflow according to the specifications in more than 99.999% of the fans
manufactured.

Define the Problem

This example addresses an engine cooling fan design that is unable to pull enough air through the
radiator to keep the engine cool during difficult conditions, such as stop-and-go traffic or hot weather.
Suppose you estimate that you need airflow of at least 875 ft3/min to keep the engine cool during
difficult conditions. You need to evaluate the current design and develop an alternative design that
can achieve the target airflow.

Assess Cooling Fan Performance

Load the sample data, which is available when you run this example.

load("OriginalFan.mat")

The data consists of 10,000 measurements (historical production data) of the existing cooling fan
performance.

Plot the data to analyze the current fan's performance.

plot(originalfan)
xlabel("Observation")
ylabel("Max Airflow (ft^3/min)")
title("Historical Production Data")
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The data is centered around 842 ft3/min and most values fall within the range of about 8 ft3/min. The
plot does not tell much about the underlying distribution of data, however. Plot the histogram and fit
a normal distribution to the data.

figure
histfit(originalfan) % Plot histogram with normal distribution fit
format shortg
xlabel("Airflow (ft^3/min)")
ylabel("Frequency (counts)")
title("Airflow Histogram")
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pd = fitdist(originalfan,"normal") % Fit normal distribution to data

pd = 
  NormalDistribution

  Normal distribution
       mu = 841.652   [841.616, 841.689]
    sigma =  1.8768   [1.85114, 1.90318]

fitdist fits a normal distribution to data and estimates the parameters from data. The estimate for
the mean airflow speed is 841.652 ft3/min, and the 95% confidence interval for the mean airflow
speed is (841.616, 841.689). This estimate makes it clear that the current fan is not close to the
required 875 ft3/min. There is need to improve the fan design to achieve the target airflow.

Determine Factors That Affect Fan Performance

Evaluate the factors that affect cooling fan performance using design of experiments (DOE). The
response is the cooling fan airflow rate (ft3/min). Suppose that the factors that you can modify and
control are:

• Distance from radiator
• Pitch angle
• Blade tip clearance

In general, fluid systems have nonlinear behavior. Therefore, use a response surface design to
estimate any nonlinear interactions among the factors. Generate the experimental runs for a Box-
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Behnken design in coded (normalized) variables [-1, 0, +1]; see “Box-Behnken Designs” on page 30-
10.

CodedValue = bbdesign(3)

CodedValue = 15×3

    -1    -1     0
    -1     1     0
     1    -1     0
     1     1     0
    -1     0    -1
    -1     0     1
     1     0    -1
     1     0     1
     0    -1    -1
     0    -1     1
      ⋮

The first column is for the distance from radiator, the second column is for the pitch angle, and the
third column is for the blade tip clearance. Suppose you want to test the effects of the variables at the
following minimum and maximum values.

Distance from radiator: 1 to 1.5 inches

Pitch angle: 15 to 35 degrees

Blade tip clearance: 1 to 2 inches

Randomize the order of the runs, convert the coded design values to real-world units, and perform
the experiment in the order specified.

runorder = randperm(15);     % Random permutation of the runs
bounds = [1 1.5;15 35;1 2];  % Min and max values for each factor

RealValue = zeros(size(CodedValue));
for i = 1:size(CodedValue,2) % Convert coded values to real-world units
    zmax = max(CodedValue(:,i));
    zmin = min(CodedValue(:,i));
    RealValue(:,i) = interp1([zmin zmax],bounds(i,:),CodedValue(:,i));
end

Suppose that at the end of the experiments, you collect the following response values in the variable
TestResult.

TestResult = [837 864 829 856 880 879 872 874 834 833 860 859 874 876 875]';

Save the design values and the response in a table.

Expmt = table(runorder', CodedValue(:,1), CodedValue(:,2), CodedValue(:,3), ...
    TestResult,'VariableNames',{'RunNumber','D','P','C','Airflow'});

Display the design values and the response.

disp(Expmt)

    RunNumber    D     P     C     Airflow
    _________    __    __    __    _______
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        6        -1    -1     0      837  
        3        -1     1     0      864  
       11         1    -1     0      829  
        7         1     1     0      856  
       14        -1     0    -1      880  
        8        -1     0     1      879  
        5         1     0    -1      872  
       15         1     0     1      874  
        1         0    -1    -1      834  
        2         0    -1     1      833  
        4         0     1    -1      860  
       13         0     1     1      859  
        9         0     0     0      874  
       10         0     0     0      876  
       12         0     0     0      875  

D stands for Distance, P stands for Pitch, and C stands for Clearance. Based on the experimental
test results, the airflow rate is sensitive to the changing factors values. Also, four experimental runs
meet or exceed the target airflow rate of 875 ft3/min (runs 2, 4,12, and 14). However, it is not clear
which, if any, of these runs is the optimal one. In addition, it is not obvious how robust the design is to
variation in the factors. Create a model based on the current experimental data and use the model to
estimate the optimal factor settings.

Improve the Cooling Fan Performance

The Box-Behnken design enables you to test for nonlinear (quadratic) effects. The form of the
quadratic model is:

AF = β0 + β1 * Distance + β2 * Pitch + β3 * Clearance + β4 * Distance * Pitch

+β5 * Distance * Clearance + β6 * Pitch * Clearance + β7 * Distance2

+β8 * Pitch2 + β9 * Clearance2,

where AF is the airflow rate and βi is the coefficient for the term i. Estimate the coefficients of this
model using the fitlm function.

mdl = fitlm(Expmt,"Airflow~D*P*C-D:P:C+D^2+P^2+C^2");

Display the magnitudes of the coefficients (for normalized values) in a bar chart.

figure
h = bar(mdl.Coefficients.Estimate(2:10));
set(h,"facecolor",[0.8 0.8 0.9])
legend("Coefficient")
set(gcf,"units","normalized","position",[0.05 0.4 0.35 0.4])
set(gca,"xticklabel",mdl.CoefficientNames(2:10))
ylabel("Airflow (ft^3/min)")
xlabel("Normalized Coefficient")
title("Quadratic Model Coefficients")
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The bar chart shows that Pitch and Pitch2 are dominant factors. You can look at the relationship
between multiple input variables and one output variable by generating a response surface plot. Use
plotSlice to generate response surface plots for the model mdl interactively.

plotSlice(mdl)
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The plot shows the nonlinear relationship of airflow with pitch. Move the blue dashed lines around
and see the effect the different factors have on airflow. Although you can use plotSlice to
determine the optimum factor settings, you can also use Optimization Toolbox to automate the task.

Optimize Factor Settings

Find the optimal factor settings using the “Problem-Based Optimization Workflow” (Optimization
Toolbox). First, define an optimization problem for maximization.

prob = optimproblem("ObjectiveSense","max");

Write the objective function using the x2fx function to convert the predictor matrix to a design
matrix. Multiply the result by the model coefficient estimates.

fun = @(x) x2fx(x,"quadratic")*mdl.Coefficients.Estimate;

Create an optimization variable named factors that is bounded between –1 and 1, and has three
components, which represent the three factors.

factors = optimvar("factors",1,3,LowerBound=-1,UpperBound=1);

Convert the objective function to an optimization expression in factors by using the
fcn2optimexpr (Optimization Toolbox) function.

objective = fcn2optimexpr(fun,factors);

Place the objective function expression into the problem prob.

prob.Objective = objective;

Set the initial point to be the center of the design of the experimental test matrix, meaning the vector
[0 0 0]. For the problem-based approach, the initial point must be a structure with the variable
name as the name field.
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x0 = struct("factors",[0 0 0]);

Find the optimal design.

[sol,fval] = solve(prob,x0);

Solving problem using fmincon.

Feasible point with lower objective function value found.

Local minimum possible. Constraints satisfied.

fmincon stopped because the size of the current step is less than
the value of the step size tolerance and constraints are 
satisfied to within the value of the constraint tolerance.

Convert the results to real-world units.

maxloc = (sol.factors + 1)';
maxloc = bounds(:,1)+maxloc .* ((bounds(:,2) - bounds(:,1))/2);
fprintf("Optimal Values:\n" + ...
    "Distance  Pitch    Clearance  Airflow\n" + ...
    " %g       %g    %g         %g\n",maxloc',fval);

Optimal Values:
Distance  Pitch    Clearance  Airflow
 1       27.2747    1         882.257

The optimization result suggests placing the new fan one inch from the radiator, with pitch angle
27.3, and with a one-inch clearance between the tips of the fan blades and the shroud.

Because pitch angle has such a significant effect on airflow, perform additional analysis to verify that
a 27.3 degree pitch angle is optimal.

load("AirflowData.mat")
tbl = table(pitch,airflow);
mdl2 = fitlm(tbl,"airflow~pitch^2");
mdl2.Rsquared.Ordinary

ans = 
      0.99632

The results show that a quadratic model explains the effect of pitch on the airflow well.

Plot the pitch angle against airflow and impose the fitted model.

figure
plot(pitch,airflow,".r") 
hold on
ylim([840 885])
line(pitch,mdl2.Fitted,"color","b") 
title("Fitted Model and Data")
xlabel("Pitch angle (degrees)") 
ylabel("Airflow (ft^3/min)")
legend("Test data","Quadratic model","Location","se")
hold off
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Find the pitch value that corresponds to the maximum airflow.

pitch(find(airflow==max(airflow)))

ans = 
    27

The additional analysis confirms that a 27.3 degree pitch angle is optimal.

The improved cooling fan design meets the airflow requirements. You also have a model that
approximates the fan performance well based on the factors you can modify in the design. Ensure
that the fan performance is robust to variability in manufacturing and installation by performing a
sensitivity analysis.

Sensitivity Analysis

Suppose that, based on historical experience, the manufacturing uncertainty is as follows.

table(["Distance from radiator";"Blade pitch angle";"Blade tip clearance"],...
    ["1.00 +/- 0.05 inch";"27.3 +/- 0.25 degrees";"1.00 +/- 0.125 inch"],...
    ["1.00 +/- 0.20 inch";"0.227 +/- 0.028 degrees";"-1.00 +/- 0.25 inch"],...
    'VariableNames',{'Factor' 'Real Values' 'Coded Values'})

ans=3×3 table
             Factor                   Real Values                Coded Values       
    ________________________    _______________________    _________________________
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    "Distance from radiator"    "1.00 +/- 0.05 inch"       "1.00 +/- 0.20 inch"     
    "Blade pitch angle"         "27.3 +/- 0.25 degrees"    "0.227 +/- 0.028 degrees"
    "Blade tip clearance"       "1.00 +/- 0.125 inch"      "-1.00 +/- 0.25 inch"    

Verify that these variations in factors will enable to maintain a robust design around the target
airflow. The philosophy of Six Sigma targets a defect rate of no more than 3.4 per 1,000,000 fans.
That is, the fans must hit the 875 ft3/min target 99.999% of the time.

You can verify the design using Monte Carlo simulation. Generate 10,000 random numbers for three
factors with the specified tolerance. Include a noise variable that is proportional to the noise in the
fitted model, mdl (that is, the RMS error of the model). Because the model coefficients are in coded
variables, you must generate dist, pitch, and clearance using the coded definition.

dist = random("normal",sol.factors(1),0.20,[10000 1]);
pitch = random("normal",sol.factors(2),0.028,[10000 1]);
clearance = random("normal",sol.factors(3),0.25,[10000 1]);
noise = random("normal",0,mdl2.RMSE,[10000 1]);

Calculate airflow for 10,000 random factor combinations using the model.

simfactor = [dist pitch clearance];
X = x2fx(simfactor,"quadratic");

Add noise to the model (the variation in the data that the model did not account for).

simflow = X*mdl.Coefficients.Estimate+noise;

Evaluate the variation in the model's predicted airflow using a histogram. To estimate the mean and
standard deviation, fit a normal distribution to data.

pd = fitdist(simflow,"normal");
figure
histfit(simflow) 
hold on
text(pd.mu+2,300,["Mean: " num2str(round(pd.mu))])
text(pd.mu+2,280,["Standard deviation: " num2str(round(pd.sigma))])
hold off
xlabel("Airflow (ft^3/min)")
ylabel("Frequency")
title("Monte Carlo Simulation Results")
hold off
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The results look promising. The average airflow is 882 ft3/min and appears to be better than 875 ft
3/min for most of the data.

Determine the probability that the airflow is at 875 ft3/min or below.

format long
pfail = cdf(pd,875)

pfail = 
     1.454076891948706e-07

pass = (1-pfail)*100

pass = 
  99.999985459231084

The design appears to achieve at least 875 ft3/min of airflow 99.999% of the time.

Use the simulation results to estimate the process capability.

S = capability(simflow,[875.0 890])

S = struct with fields:
       mu: 8.822983078354938e+02
    sigma: 1.422865135485995
        P: 0.999999823569866

 Improve an Engine Cooling Fan Using Design for Six Sigma Techniques

30-29



       Pl: 1.454076891948706e-07
       Pu: 3.102244480618696e-08
       Cp: 1.757018242734648
      Cpl: 1.709768001074111
      Cpu: 1.804268484395185
      Cpk: 1.709768001074111

pass = (1-S.Pl)*100

pass = 
  99.999985459231084

The Cp value is 1.75. A process is considered high quality when Cp is greater than or equal to 1.6.
The Cpk is similar to the Cp value, which indicates that the process is centered. Now implement this
design. Monitor to verify the design process and to ensure that the cooling fan delivers high-quality
performance.

Control Manufacturing of the Improved Cooling Fan

You can monitor and evaluate the manufacturing and installation process of the new fan using control
charts. Evaluate the first 30 days of production of the new cooling fan. Initially, five cooling fans per
day were produced. First, load the sample data from the new process.

load("spcdata.mat")

Plot the X-bar and S charts.

figure
controlchart(spcflow,"chart",{'xbar','s'}) % Reshape the data into daily sets
xlabel("Day")
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According to the results, the manufacturing process is in statistical control, as indicated by the
absence of violations of control limits or nonrandom patterns in the data over time. You can also run a
capability analysis on the data to evaluate the process.

[row,col] = size(spcflow);
S2 = capability(reshape(spcflow,row*col,1),[875.0 890])

S2 = struct with fields:
       mu: 8.821061141685465e+02
    sigma: 1.423887508874697
        P: 0.999999684316149
       Pl: 3.008932155898586e-07
       Pu: 1.479063578225176e-08
       Cp: 1.755756676295137
      Cpl: 1.663547652525458
      Cpu: 1.847965700064817
      Cpk: 1.663547652525458

pass = (1-S.Pl)*100

pass = 
  99.999985459231084

The Cp value of 1.755 is very similar to the estimated value of 1.73. The Cpk value of 1.66 is smaller
than the Cp value. However, only a Cpk value less than 1.33, which indicates that the process shifted
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significantly toward one of the process limits, is a concern. The process is well within the limits and it
achieves the target airflow (875 ft3/min) more than 99.999% of the time.

See Also
bbdesign | fitlm | x2fx | solve | controlchart | capability

Related Examples
• “Box-Behnken Designs” on page 30-10
• “Problem-Based Optimization Workflow” (Optimization Toolbox)
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Statistical Process Control

• “Control Charts” on page 31-2
• “Capability Studies” on page 31-4
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Control Charts

A control chart displays measurements of process samples over time. The measurements are plotted
together with user-defined specification limits and process-defined control limits. The process can
then be compared with its specifications—to see if it is in control or out of control.

The chart is just a monitoring tool. Control activity might occur if the chart indicates an undesirable,
systematic change in the process. The control chart is used to discover the variation, so that the
process can be adjusted to reduce it.

Control charts are created with the controlchart function. Any of the following chart types may be
specified:

• Xbar or mean
• Standard deviation
• Range
• Exponentially weighted moving average
• Individual observation
• Moving range of individual observations
• Moving average of individual observations
• Proportion defective
• Number of defectives
• Defects per unit
• Count of defects

Control rules are specified with the controlrules function. The following example illustrates how
to use Western Electric rules to mark out of control measurements on an Xbar chart.

First load the sample data.

load parts

Construct the Xbar control chart using the Western Electric 2 rule (2 of 3 points at least 2 standard
errors above the center line) to mark the out of control measurements.

st = controlchart(runout,'rules','we2');

For a better understanding of the Western Electric 2 rule, calculate and plot the 2 standard errors
line on the chart.

x = st.mean;
cl = st.mu;
se = st.sigma./sqrt(st.n);
hold on
plot(cl+2*se,'m')
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Identify the measurements that violate the control rule.

R = controlrules('we2',x,cl,se);
I = find(R)

I = 6×1

    21
    23
    24
    25
    26
    27

See Also
controlchart | controlrules

Related Examples
• “Capability Studies” on page 31-4

 Control Charts

31-3



Capability Studies

Before going into production, many manufacturers run a capability study to determine if their process
will run within specifications enough of the time. Capability indices produced by such a study are
used to estimate expected percentages of defective parts.

Capability studies are conducted with the capability function. The following capability indices are
produced:

• mu — Sample mean
• sigma — Sample standard deviation
• P — Estimated probability of being within the lower (L) and upper (U) specification limits
• Pl — Estimated probability of being below L
• Pu — Estimated probability of being above U
• Cp — (U-L)/(6*sigma)
• Cpl — (mu-L)./(3.*sigma)
• Cpu — (U-mu)./(3.*sigma)
• Cpk — min(Cpl,Cpu)

As an example, simulate a sample from a process with a mean of 3 and a standard deviation of 0.005:

rng default; % For reproducibility
data = normrnd(3,0.005,100,1);

Compute capability indices if the process has an upper specification limit of 3.01 and a lower
specification limit of 2.99:

S = capability(data,[2.99 3.01])

S = struct with fields:
       mu: 3.0006
    sigma: 0.0058
        P: 0.9129
       Pl: 0.0339
       Pu: 0.0532
       Cp: 0.5735
      Cpl: 0.6088
      Cpu: 0.5382
      Cpk: 0.5382

Visualize the specification and process widths:

capaplot(data,[2.99 3.01]);
grid on
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See Also
capability

Related Examples
• “Control Charts” on page 31-2
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Tall Arrays

• “Logistic Regression with Tall Arrays” on page 32-2
• “Bayesian Optimization with Tall Arrays” on page 32-9
• “Statistics and Machine Learning with Big Data Using Tall Arrays” on page 32-24
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Logistic Regression with Tall Arrays

This example shows how to use logistic regression and other techniques to perform data analysis on
tall arrays. Tall arrays represent data that is too large to fit into computer memory.

Define Execution Environment

When you perform calculations on tall arrays, MATLAB® uses either a parallel pool (default if you
have Parallel Computing Toolbox™) or the local MATLAB session. To run the example using the local
MATLAB session when you have Parallel Computing Toolbox, change the global execution
environment by using the mapreducer function.

mapreducer(0)

Get Data into MATLAB

Create a datastore that references the folder location with the data. The data can be contained in a
single file, a collection of files, or an entire folder. Treat 'NA' values as missing data so that
datastore replaces them with NaN values. Select a subset of the variables to work with, and include
the name of the airline (UniqueCarrier) as a categorical variable. Create a tall table on top of the
datastore.

ds = datastore('airlinesmall.csv');
ds.TreatAsMissing = 'NA';
ds.SelectedVariableNames = {'DayOfWeek','UniqueCarrier',...
    'ArrDelay','DepDelay','Distance'};
ds.SelectedFormats{2} = '%C';
tt = tall(ds);
tt.DayOfWeek = categorical(tt.DayOfWeek,1:7,...
    {'Sun','Mon','Tues','Wed','Thu','Fri','Sat'},'Ordinal',true)

tt =

  Mx5 tall table

    DayOfWeek    UniqueCarrier    ArrDelay    DepDelay    Distance
    _________    _____________    ________    ________    ________

        ?              ?             ?           ?           ?    
        ?              ?             ?           ?           ?    
        ?              ?             ?           ?           ?    
        :              :             :           :           :
        :              :             :           :           :

Late Flights

Determine the flights that are late by 20 minutes or more by defining a logical variable that is true for
a late flight. Add this variable to the tall table of data, noting that it is not yet evaluated. A preview of
this variable includes the first few rows.

tt.LateFlight = tt.ArrDelay>=20

tt =

  Mx6 tall table
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    DayOfWeek    UniqueCarrier    ArrDelay    DepDelay    Distance    LateFlight
    _________    _____________    ________    ________    ________    __________

        ?              ?             ?           ?           ?            ?     
        ?              ?             ?           ?           ?            ?     
        ?              ?             ?           ?           ?            ?     
        :              :             :           :           :            :
        :              :             :           :           :            :

Calculate the mean of LateFlight to determine the overall proportion of late flights. Use gather to
trigger evaluation of the tall array and bring the result into memory.

m = mean(tt.LateFlight)

m =

  tall double

    ?

m = gather(m)

Evaluating tall expression using the Local MATLAB Session:
- Pass 1 of 2: Completed in 1.7 sec
- Pass 2 of 2: Completed in 2.2 sec
Evaluation completed in 5.1 sec

m = 0.1580

Late Flights by Carrier

Examine whether certain types of flights tend to be late. First, check to see if certain carriers are
more likely to have late flights.

tt.LateFlight = double(tt.LateFlight);
late_by_carrier = gather(grpstats(tt,'UniqueCarrier','mean','DataVar','LateFlight'))

Evaluating tall expression using the Local MATLAB Session:
- Pass 1 of 1: Completed in 5.3 sec
Evaluation completed in 6.6 sec

late_by_carrier=29×4 table
    GroupLabel    UniqueCarrier    GroupCount    mean_LateFlight
    __________    _____________    __________    _______________

    {'9E'    }       9E                521           0.13436    
    {'AA'    }       AA              14930           0.16236    
    {'AQ'    }       AQ                154          0.051948    
    {'AS'    }       AS               2910           0.16014    
    {'B6'    }       B6                806           0.23821    
    {'CO'    }       CO               8138           0.16319    
    {'DH'    }       DH                696           0.17672    
    {'DL'    }       DL              16578           0.15261    
    {'EA'    }       EA                920           0.15217    
    {'EV'    }       EV               1699           0.21248    
    {'F9'    }       F9                335           0.18209    
    {'FL'    }       FL               1263           0.19952    
    {'HA'    }       HA                273          0.047619    
    {'HP'    }       HP               3660           0.13907    
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    {'ML (1)'}       ML (1)             69          0.043478    
    {'MQ'    }       MQ               3962           0.18778    
      ⋮

Carriers B6 and EV have higher proportions of late flights. Carriers AQ, ML(1), and HA have relatively
few flights, but lower proportions of them are late.

Late Flights by Day of Week

Next, check to see if different days of the week tend to have later flights.

late_by_day = gather(grpstats(tt,'DayOfWeek','mean','DataVar','LateFlight'))

Evaluating tall expression using the Local MATLAB Session:
- Pass 1 of 1: Completed in 2.4 sec
Evaluation completed in 2.9 sec

late_by_day=7×4 table
    GroupLabel    DayOfWeek    GroupCount    mean_LateFlight
    __________    _________    __________    _______________

     {'Fri' }       Fri          15839           0.12899    
     {'Mon' }       Mon          18077           0.14234    
     {'Sat' }       Sat          16958           0.15603    
     {'Sun' }       Sun          18019           0.15117    
     {'Thu' }       Thu          18227           0.18418    
     {'Tues'}       Tues         18163           0.15526    
     {'Wed' }       Wed          18240           0.18399    

Wednesdays and Thursdays have the highest proportion of late flights, while Fridays have the lowest
proportion.

Late Flights by Distance

Check to see if longer or shorter flights tend to be late. First, look at the density of the flight distance
for flights that are late, and compare that with flights that are on time.

ksdensity(tt.Distance(tt.LateFlight==1))

Evaluating tall expression using the Local MATLAB Session:
- Pass 1 of 2: Completed in 2 sec
- Pass 2 of 2: Completed in 1.6 sec
Evaluation completed in 4.3 sec

hold on
ksdensity(tt.Distance(tt.LateFlight==0))

Evaluating tall expression using the Local MATLAB Session:
- Pass 1 of 2: Completed in 1.5 sec
- Pass 2 of 2: Completed in 1.6 sec
Evaluation completed in 3.5 sec

hold off
legend('Late','On time')
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Flight distance does not make a dramatic difference in whether a flight is early or late. However, the
density appears to be slightly higher for on-time flights at distances of about 400 miles. The density is
also higher for late flights at distances of about 2000 miles. Calculate some simple descriptive
statistics for the late and on-time flights.

late_by_distance = gather(grpstats(tt,'LateFlight',{'mean' 'std'},'DataVar','Distance'))

Evaluating tall expression using the Local MATLAB Session:
- Pass 1 of 1: Completed in 2.1 sec
Evaluation completed in 2.8 sec

late_by_distance=2×5 table
    GroupLabel    LateFlight    GroupCount    mean_Distance    std_Distance
    __________    __________    __________    _____________    ____________

      {'0'}           0          1.04e+05        693.14           544.75   
      {'1'}           1             19519        750.24           574.12   

Late flights are about 60 miles longer on average, although this value makes up only a small portion
of the standard deviation of the distance values.

Logistic Regression Model

Build a model for the probability of a late flight, using both continuous variables (such as Distance)
and categorical variables (such as DayOfWeek) to predict the probabilities. This model can help to
determine if the previous results observed for each predictor individually also hold true when you
consider them together.
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glm = fitglm(tt,'LateFlight~Distance+DayOfWeek','Distribution','binomial')

Iteration [1]:      0% completed
Iteration [1]:     100% completed
Iteration [2]:      0% completed
Iteration [2]:     100% completed
Iteration [3]:      0% completed
Iteration [3]:     100% completed
Iteration [4]:      0% completed
Iteration [4]:     100% completed
Iteration [5]:      0% completed
Iteration [5]:     100% completed

glm = 
Compact generalized linear regression model:
    logit(LateFlight) ~ 1 + DayOfWeek + Distance
    Distribution = Binomial

Estimated Coefficients:
                       Estimate         SE         tStat       pValue  
                      __________    __________    _______    __________

    (Intercept)           -1.855      0.023052    -80.469             0
    DayOfWeek_Mon      -0.072603      0.029798    -2.4365       0.01483
    DayOfWeek_Tues      0.026909      0.029239    0.92029       0.35742
    DayOfWeek_Wed         0.2359      0.028276      8.343    7.2452e-17
    DayOfWeek_Thu        0.23569      0.028282     8.3338    7.8286e-17
    DayOfWeek_Fri       -0.19285      0.031583     -6.106    1.0213e-09
    DayOfWeek_Sat       0.033542      0.029702     1.1293       0.25879
    Distance          0.00018373    1.3507e-05     13.602    3.8741e-42

123319 observations, 123311 error degrees of freedom
Dispersion: 1
Chi^2-statistic vs. constant model: 504, p-value = 8.74e-105

The model confirms that the previously observed conclusions hold true here as well:

• The Wednesday and Thursday coefficients are positive, indicating a higher probability of a late
flight on those days. The Friday coefficient is negative, indicating a lower probability.

• The Distance coefficient is positive, indicating that longer flights have a higher probability of
being late.

All of these coefficients have very small p-values. This is common with data sets that have many
observations, since one can reliably estimate small effects with large amounts of data. In fact, the
uncertainty in the model is larger than the uncertainty in the estimates for the parameters in the
model.

Prediction with Model

Predict the probability of a late flight for each day of the week, and for distances ranging from 0 to
3000 miles. Create a table to hold the predictor values by indexing the first 100 rows in the original
table tt.

x = gather(tt(1:100,{'Distance' 'DayOfWeek'}));
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Evaluating tall expression using the Local MATLAB Session:
- Pass 1 of 1: Completed in 0.45 sec
Evaluation completed in 0.81 sec

x.Distance = linspace(0,3000)';
x.DayOfWeek(:) = 'Sun';
plot(x.Distance,predict(glm,x));

days = {'Sun' 'Mon' 'Tues' 'Wed' 'Thu' 'Fri' 'Sat'};
hold on
for j=2:length(days)
    x.DayOfWeek(:) = days{j};
    plot(x.Distance,predict(glm,x));
end
legend(days)

According to this model, a Wednesday or Thursday flight of 500 miles has the same probability of
being late, about 18%, as a Friday flight of about 3000 miles.

Since these probabilities are all much less than 50%, the model is unlikely to predict that any given
flight will be late using this information. Investigate the model more by focusing on the flights for
which the model predicts a probability of 20% or more of being late, and compare that to the actual
results.

C = gather(crosstab(tt.LateFlight,predict(glm,tt)>.20))
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Evaluating tall expression using the Local MATLAB Session:
- Pass 1 of 1: Completed in 1.8 sec
Evaluation completed in 2 sec

C = 2×2

       99613        4391
       18394        1125

Among the flights predicted to have a 20% or higher probability of being late, about 20% were late
1125/(1125 + 4391). Among the remainder, less than 16% were late 18394/(18394 + 99613).
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Bayesian Optimization with Tall Arrays

This example shows how to use Bayesian optimization to select optimal parameters for training a
kernel classifier by using the 'OptimizeHyperparameters' name-value argument. The sample
data set airlinesmall.csv is a large data set that contains a tabular file of airline flight data. This
example creates a tall table containing the data, and extracts class labels and predictor data from the
tall table to run the optimization procedure.

When you perform calculations on tall arrays, MATLAB® uses either a parallel pool (default if you
have Parallel Computing Toolbox™) or the local MATLAB session. If you want to run the example
using the local MATLAB session when you have Parallel Computing Toolbox, you can change the
global execution environment by using the mapreducer function.

Get Data into MATLAB®

Create a datastore that references the folder location with the data. The data can be contained in a
single file, a collection of files, or an entire folder. For folders that contain a collection of files, you can
specify the entire folder location, or use the wildcard character, '*.csv', to include multiple files
with the same file extension in the datastore. Select a subset of the variables to work with, and treat
'NA' values as missing data so that datastore replaces them with NaN values. Create a tall table
that contains the data in the datastore.

ds = datastore('airlinesmall.csv');
ds.SelectedVariableNames = {'Month','DayofMonth','DayOfWeek',...
                            'DepTime','ArrDelay','Distance','DepDelay'};
ds.TreatAsMissing = 'NA';
tt  = tall(ds) % Tall table

Starting parallel pool (parpool) using the 'local' profile ...
Connected to the parallel pool (number of workers: 6).

tt =

  M×7 tall table

    Month    DayofMonth    DayOfWeek    DepTime    ArrDelay    Distance    DepDelay
    _____    __________    _________    _______    ________    ________    ________

     10          21            3          642          8         308          12   
     10          26            1         1021          8         296           1   
     10          23            5         2055         21         480          20   
     10          23            5         1332         13         296          12   
     10          22            4          629          4         373          -1   
     10          28            3         1446         59         308          63   
     10           8            4          928          3         447          -2   
     10          10            6          859         11         954          -1   
      :          :             :           :          :           :           :
      :          :             :           :          :           :           :

Prepare Class Labels and Predictor Data

Determine the flights that are late by 10 minutes or more by defining a logical variable that is true for
a late flight. This variable contains the class labels. A preview of this variable includes the first few
rows.
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Y = tt.DepDelay > 10 % Class labels

Y =

  M×1 tall logical array

   1
   0
   1
   1
   0
   1
   0
   0
   :
   :

Create a tall array for the predictor data.

X = tt{:,1:end-1} % Predictor data

X =

  M×6 tall double matrix

          10          21           3         642           8         308
          10          26           1        1021           8         296
          10          23           5        2055          21         480
          10          23           5        1332          13         296
          10          22           4         629           4         373
          10          28           3        1446          59         308
          10           8           4         928           3         447
          10          10           6         859          11         954
          :           :            :          :           :           :
          :           :            :          :           :           :

Remove rows in X and Y that contain missing data.

R = rmmissing([X Y]); % Data with missing entries removed
X = R(:,1:end-1); 
Y = R(:,end); 

Perform Bayesian Optimization Using OptimizeHyperparameters

Optimize hyperparameters automatically using the 'OptimizeHyperparameters' name-value
argument.

Standardize the predictor variables.

Z = zscore(X);

Find the optimal values for the 'KernelScale' and 'Lambda' name-value arguments that minimize
the loss on the holdout validation set. By default, the software selects and reserves 20% of the data as
validation data, and trains the model using the rest of the data. You can change the holdout fraction
by using the 'HyperparameterOptimizationOptions' name-value argument. For reproducibility,
use the 'expected-improvement-plus' acquisition function and set the seeds of the random
number generators using rng and tallrng. The results can vary depending on the number of
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workers and the execution environment for the tall arrays. For details, see “Control Where Your Code
Runs”.

rng('default') 
tallrng('default')
Mdl = fitckernel(Z,Y,'Verbose',0,'OptimizeHyperparameters','auto',...
    'HyperparameterOptimizationOptions',struct('AcquisitionFunctionName','expected-improvement-plus'))

Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 2: Completed in 7.1 sec
- Pass 2 of 2: Completed in 2.2 sec
Evaluation completed in 12 sec

Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 1: Completed in 1.6 sec
Evaluation completed in 1.8 sec
|=====================================================================================================|
| Iter | Eval   | Objective   | Objective   | BestSoFar   | BestSoFar   |  KernelScale |       Lambda |
|      | result |             | runtime     | (observed)  | (estim.)    |              |              |
|=====================================================================================================|
|    1 | Best   |     0.19672 |      125.49 |     0.19672 |     0.19672 |       1.2297 |    0.0080902 |

Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 1: Completed in 0.93 sec
Evaluation completed in 1.1 sec
|    2 | Accept |     0.19672 |      53.653 |     0.19672 |     0.19672 |     0.039643 |   2.5756e-05 |

Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 1: Completed in 1.5 sec
Evaluation completed in 1.6 sec
|    3 | Accept |     0.19672 |      52.453 |     0.19672 |     0.19672 |      0.02562 |   1.2555e-08 |

Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 1: Completed in 1.1 sec
Evaluation completed in 1.2 sec
|    4 | Accept |     0.19672 |      57.223 |     0.19672 |     0.19672 |       92.644 |   1.2056e-07 |

Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 1: Completed in 1.4 sec
Evaluation completed in 1.5 sec
|    5 | Best   |     0.11469 |      89.981 |     0.11469 |     0.12698 |       11.173 |   0.00024836 |

Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 1: Completed in 0.94 sec
Evaluation completed in 1.1 sec
|    6 | Best   |     0.11365 |      82.031 |     0.11365 |     0.11373 |       10.609 |   0.00025761 |

Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 1: Completed in 0.92 sec
Evaluation completed in 1.1 sec
|    7 | Accept |     0.19672 |      50.604 |     0.11365 |     0.11373 |    0.0059498 |   0.00043861 |

Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 1: Completed in 0.89 sec
Evaluation completed in 1 sec
|    8 | Accept |     0.12122 |      91.341 |     0.11365 |     0.11371 |        11.44 |   0.00045722 |

Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 1: Completed in 0.97 sec
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Evaluation completed in 1.1 sec
|    9 | Best   |     0.10417 |      42.696 |     0.10417 |     0.10417 |       8.0424 |   6.7998e-05 |

Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 1: Completed in 0.87 sec
Evaluation completed in 1 sec
|   10 | Accept |     0.10433 |      42.215 |     0.10417 |     0.10417 |       9.6694 |   1.4948e-05 |

Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 1: Completed in 0.87 sec
Evaluation completed in 1 sec
|   11 | Best   |     0.10409 |      41.618 |     0.10409 |     0.10411 |       6.2099 |   6.1093e-06 |

Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 1: Completed in 0.88 sec
Evaluation completed in 1 sec
|   12 | Best   |     0.10383 |      44.635 |     0.10383 |     0.10404 |       5.6767 |   7.6134e-08 |

Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 1: Completed in 0.89 sec
Evaluation completed in 1 sec
|   13 | Accept |     0.10408 |      45.429 |     0.10383 |     0.10365 |       8.1769 |   8.5993e-09 |

Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 1: Completed in 0.89 sec
Evaluation completed in 1 sec
|   14 | Accept |     0.10404 |      41.928 |     0.10383 |     0.10361 |       7.6191 |   6.4079e-07 |

Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 1: Completed in 0.93 sec
Evaluation completed in 1.1 sec
|   15 | Best   |     0.10351 |      42.094 |     0.10351 |     0.10362 |       4.2987 |   9.2645e-08 |

Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 1: Completed in 0.88 sec
Evaluation completed in 1 sec
|   16 | Accept |     0.10404 |      44.684 |     0.10351 |     0.10362 |       4.8747 |   1.7838e-08 |

Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 1: Completed in 0.87 sec
Evaluation completed in 1 sec
|   17 | Accept |     0.10657 |      88.006 |     0.10351 |     0.10357 |       4.8239 |   0.00016344 |

Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 1: Completed in 0.88 sec
Evaluation completed in 1 sec
|   18 | Best   |     0.10299 |      41.303 |     0.10299 |     0.10358 |       3.5555 |   2.7165e-06 |

Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 1: Completed in 0.89 sec
Evaluation completed in 1 sec
|   19 | Accept |     0.10366 |      41.301 |     0.10299 |     0.10324 |       3.8035 |   1.3542e-06 |

Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 1: Completed in 0.87 sec
Evaluation completed in 0.99 sec
|   20 | Accept |     0.10337 |      41.345 |     0.10299 |     0.10323 |        3.806 |   1.8101e-06 |

Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 1: Completed in 0.89 sec
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Evaluation completed in 1 sec
|=====================================================================================================|
| Iter | Eval   | Objective   | Objective   | BestSoFar   | BestSoFar   |  KernelScale |       Lambda |
|      | result |             | runtime     | (observed)  | (estim.)    |              |              |
|=====================================================================================================|
|   21 | Accept |     0.10345 |      41.418 |     0.10299 |     0.10322 |       3.3655 |    9.082e-09 |

Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 1: Completed in 0.86 sec
Evaluation completed in 0.98 sec
|   22 | Accept |     0.19672 |      60.129 |     0.10299 |     0.10322 |       999.62 |   1.2609e-06 |

Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 1: Completed in 0.88 sec
Evaluation completed in 1 sec
|   23 | Accept |     0.10315 |      41.133 |     0.10299 |     0.10306 |       3.6716 |   1.2445e-08 |

Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 1: Completed in 0.88 sec
Evaluation completed in 1 sec
|   24 | Accept |     0.19672 |      48.262 |     0.10299 |     0.10306 |    0.0010004 |   2.6214e-08 |

Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 1: Completed in 0.89 sec
Evaluation completed in 1 sec
|   25 | Accept |     0.19672 |      48.334 |     0.10299 |     0.10306 |      0.21865 |    0.0026529 |

Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 1: Completed in 0.86 sec
Evaluation completed in 0.98 sec
|   26 | Accept |     0.19672 |      60.229 |     0.10299 |     0.10306 |       299.92 |    0.0032109 |

Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 1: Completed in 0.87 sec
Evaluation completed in 0.99 sec
|   27 | Accept |     0.19672 |      48.361 |     0.10299 |     0.10306 |     0.002436 |    0.0040428 |

Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 1: Completed in 1.2 sec
Evaluation completed in 1.4 sec
|   28 | Accept |     0.19672 |      52.539 |     0.10299 |     0.10305 |      0.50559 |   3.3667e-08 |

Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 1: Completed in 0.88 sec
Evaluation completed in 1 sec
|   29 | Accept |     0.10354 |      43.957 |     0.10299 |     0.10313 |       3.7754 |   9.5626e-09 |

Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 1: Completed in 0.93 sec
Evaluation completed in 1.1 sec
|   30 | Accept |     0.10405 |      41.388 |     0.10299 |     0.10315 |       8.9864 |   2.3136e-07 |
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__________________________________________________________
Optimization completed.
MaxObjectiveEvaluations of 30 reached.
Total function evaluations: 30
Total elapsed time: 1677.1387 seconds
Total objective function evaluation time: 1645.7748

Best observed feasible point:
    KernelScale      Lambda  
    ___________    __________

      3.5555       2.7165e-06

Observed objective function value = 0.10299
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Estimated objective function value = 0.10332
Function evaluation time = 41.3029

Best estimated feasible point (according to models):
    KernelScale      Lambda  
    ___________    __________

      3.6716       1.2445e-08

Estimated objective function value = 0.10315
Estimated function evaluation time = 42.3461

Mdl = 
  ClassificationKernel
            PredictorNames: {'x1'  'x2'  'x3'  'x4'  'x5'  'x6'}
              ResponseName: 'Y'
                ClassNames: [0 1]
                   Learner: 'svm'
    NumExpansionDimensions: 256
               KernelScale: 3.6716
                    Lambda: 1.2445e-08
             BoxConstraint: 665.9442

  Properties, Methods

Perform Bayesian Optimization by Using bayesopt

Alternatively, you can use the bayesopt function to find the optimal values of hyperparameters.

Split the data set into training and test sets. Specify a 1/3 holdout sample for the test set.

rng('default') % For reproducibility
tallrng('default') % For reproducibility
Partition = cvpartition(Y,'Holdout',1/3);
trainingInds = training(Partition); % Indices for the training set
testInds = test(Partition);         % Indices for the test set

Extract training and testing data and standardize the predictor data.

Ytrain = Y(trainingInds); % Training class labels
Xtrain = X(trainingInds,:);
[Ztrain,mu,stddev] = zscore(Xtrain); % Standardized training data

Ytest = Y(testInds); % Testing class labels
Xtest = X(testInds,:);
Ztest = (Xtest-mu)./stddev; % Standardized test data

Define the variables sigma and lambda to find the optimal values for the 'KernelScale' and
'Lambda' name-value arguments. Use optimizableVariable and specify a wide range for the
variables because optimal values are unknown. Apply logarithmic transformation to the variables to
search for the optimal values on a log scale.

N = gather(numel(Ytrain)); % Evaluate the length of the tall training array in memory

Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 1: 0% complete
Evaluation 0% complete
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- Pass 1 of 1: Completed in 0.95 sec
Evaluation 91% complete

Evaluation completed in 1.1 sec

sigma = optimizableVariable('sigma',[1e-3,1e3],'Transform','log');
lambda = optimizableVariable('lambda',[(1e-3)/N, (1e3)/N],'Transform','log');

Create the objective function for Bayesian optimization. The objective function takes in a table that
contains the variables sigma and lambda, and then computes the classification loss value for the
binary Gaussian kernel classification model trained using the fitckernel function. Set
'Verbose',0 within fitckernel to suppress the iterative display of diagnostic information.

minfn = @(z)gather(loss(fitckernel(Ztrain,Ytrain, ...
    'KernelScale',z.sigma,'Lambda',z.lambda,'Verbose',0), ...
    Ztest,Ytest));

Optimize the parameters [sigma,lambda] of the kernel classification model with respect to the
classification loss by using bayesopt. By default, bayesopt displays iterative information about the
optimization at the command line. For reproducibility, set the AcquisitionFunctionName option to
'expected-improvement-plus'. The default acquisition function depends on run time and,
therefore, can give varying results.

results = bayesopt(minfn,[sigma,lambda],'AcquisitionFunctionName','expected-improvement-plus')

Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 1: Completed in 1.1 sec
Evaluation completed in 1.3 sec
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|=====================================================================================================|
| Iter | Eval   | Objective   | Objective   | BestSoFar   | BestSoFar   |        sigma |       lambda |
|      | result |             | runtime     | (observed)  | (estim.)    |              |              |
|=====================================================================================================|
|    1 | Best   |     0.19651 |      84.526 |     0.19651 |     0.19651 |       1.2297 |     0.012135 |

Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 1: Completed in 1.1 sec
Evaluation completed in 1.2 sec
|    2 | Accept |     0.19651 |      112.57 |     0.19651 |     0.19651 |     0.039643 |   3.8633e-05 |

Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 1: Completed in 1.1 sec
Evaluation completed in 1.3 sec
|    3 | Accept |     0.19651 |      80.282 |     0.19651 |     0.19651 |      0.02562 |   1.8832e-08 |

Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 1: Completed in 1.1 sec
Evaluation completed in 1.3 sec
|    4 | Accept |     0.19651 |      52.306 |     0.19651 |     0.19651 |       92.644 |   1.8084e-07 |

Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 1: Completed in 1.1 sec
Evaluation completed in 1.2 sec
|    5 | Accept |     0.19651 |      52.717 |     0.19651 |     0.19651 |       978.95 |   0.00015066 |

Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 1: Completed in 1.1 sec
Evaluation completed in 1.2 sec
|    6 | Accept |     0.19651 |      90.336 |     0.19651 |     0.19651 |    0.0089609 |    0.0059189 |

Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 1: Completed in 1.1 sec
Evaluation completed in 1.2 sec
|    7 | Accept |     0.19651 |      110.35 |     0.19651 |     0.19651 |    0.0010228 |    1.292e-08 |

Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 1: Completed in 1.1 sec
Evaluation completed in 1.3 sec
|    8 | Accept |     0.19651 |      76.594 |     0.19651 |     0.19651 |      0.27475 |    0.0044831 |

Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 1: Completed in 1.1 sec
Evaluation completed in 1.2 sec
|    9 | Accept |     0.19651 |      77.641 |     0.19651 |     0.19651 |      0.81326 |   1.0753e-07 |

Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 1: Completed in 1.1 sec
Evaluation completed in 1.2 sec
|   10 | Accept |     0.19651 |      100.21 |     0.19651 |     0.19651 |    0.0040507 |   0.00011333 |

Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 1: Completed in 1.1 sec
Evaluation completed in 1.2 sec
|   11 | Accept |     0.19651 |      52.287 |     0.19651 |     0.19651 |       964.67 |   1.2786e-08 |

Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 1: Completed in 1.1 sec
Evaluation completed in 1.2 sec
|   12 | Accept |     0.19651 |       107.7 |     0.19651 |     0.19651 |      0.24069 |    0.0070503 |
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Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 1: Completed in 1.1 sec
Evaluation completed in 1.2 sec
|   13 | Accept |     0.19651 |      52.092 |     0.19651 |     0.19651 |       974.15 |     0.010898 |

Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 1: Completed in 1.1 sec
Evaluation completed in 1.3 sec
|   14 | Accept |     0.19651 |      92.184 |     0.19651 |     0.19651 |    0.0013246 |    0.0011748 |

Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 1: Completed in 1.1 sec
Evaluation completed in 1.2 sec
|   15 | Accept |     0.19651 |      87.893 |     0.19651 |     0.19651 |    0.0067415 |   1.9074e-07 |

Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 1: Completed in 1.1 sec
Evaluation completed in 1.3 sec
|   16 | Accept |     0.19651 |      110.46 |     0.19651 |     0.19651 |     0.020448 |    1.247e-08 |

Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 1: Completed in 1.1 sec
Evaluation completed in 1.2 sec
|   17 | Accept |     0.19651 |      104.12 |     0.19651 |     0.19651 |    0.0016556 |    0.0001784 |

Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 1: Completed in 1.1 sec
Evaluation completed in 1.2 sec
|   18 | Accept |     0.19651 |      85.263 |     0.19651 |     0.19651 |    0.0047914 |   2.3289e-06 |

Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 1: Completed in 1.1 sec
Evaluation completed in 1.2 sec
|   19 | Accept |     0.19651 |      52.102 |     0.19651 |     0.19651 |       90.015 |   0.00024412 |

Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 1: Completed in 1.1 sec
Evaluation completed in 1.3 sec
|   20 | Accept |     0.19651 |      82.238 |     0.19651 |     0.19651 |      0.68775 |   2.7178e-07 |

Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 1: Completed in 1.1 sec
Evaluation completed in 1.2 sec
|=====================================================================================================|
| Iter | Eval   | Objective   | Objective   | BestSoFar   | BestSoFar   |        sigma |       lambda |
|      | result |             | runtime     | (observed)  | (estim.)    |              |              |
|=====================================================================================================|
|   21 | Accept |     0.19651 |      49.468 |     0.19651 |     0.19651 |       49.073 |   0.00014766 |

Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 1: Completed in 1.1 sec
Evaluation completed in 1.2 sec
|   22 | Accept |     0.19651 |      49.183 |     0.19651 |     0.19651 |       25.955 |   8.4946e-05 |

Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 1: Completed in 1.1 sec
Evaluation completed in 1.2 sec
|   23 | Accept |     0.19651 |      84.781 |     0.19651 |     0.19651 |     0.002241 |   1.6284e-06 |

Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 1: Completed in 1.1 sec
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Evaluation completed in 1.2 sec
|   24 | Accept |     0.19651 |      90.023 |     0.19651 |     0.19651 |     0.060661 |   0.00041011 |

Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 1: Completed in 1.1 sec
Evaluation completed in 1.2 sec
|   25 | Accept |     0.19651 |      87.349 |     0.19651 |     0.19651 |     0.035771 |    0.0023369 |

Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 1: Completed in 1.1 sec
Evaluation completed in 1.3 sec
|   26 | Accept |     0.19651 |      49.932 |     0.19651 |     0.19651 |       713.45 |   3.5177e-08 |

Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 1: Completed in 1.1 sec
Evaluation completed in 1.2 sec
|   27 | Accept |     0.19651 |      87.169 |     0.19651 |     0.19651 |     0.012395 |   1.8186e-06 |

Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 1: Completed in 1.1 sec
Evaluation completed in 1.2 sec
|   28 | Accept |     0.19651 |       94.87 |     0.19651 |     0.19651 |     0.042872 |    0.0015886 |

Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 1: Completed in 1.1 sec
Evaluation completed in 1.2 sec
|   29 | Best   |     0.10795 |      37.932 |     0.10795 |     0.19346 |       1.5886 |   4.9128e-07 |

Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 1: Completed in 1.1 sec
Evaluation completed in 1.3 sec
|   30 | Accept |     0.19651 |      52.241 |     0.10795 |     0.19356 |       236.64 |   5.0506e-06 |

32 Tall Arrays

32-20



 Bayesian Optimization with Tall Arrays

32-21



__________________________________________________________
Optimization completed.
MaxObjectiveEvaluations of 30 reached.
Total function evaluations: 30
Total elapsed time: 2455.5118 seconds
Total objective function evaluation time: 2346.8025

Best observed feasible point:
    sigma       lambda  
    ______    __________

    1.5886    4.9128e-07

Observed objective function value = 0.10795
Estimated objective function value = 0.19356
Function evaluation time = 37.9317

Best estimated feasible point (according to models):
    sigma       lambda  
    ______    __________

    1.5886    4.9128e-07

Estimated objective function value = 0.19356
Estimated function evaluation time = 66.1901

results = 
  BayesianOptimization with properties:
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                      ObjectiveFcn: @(z)gather(loss(fitckernel(Ztrain,Ytrain,'KernelScale',z.sigma,'Lambda',z.lambda,'Verbose',0),Ztest,Ytest))
              VariableDescriptions: [1×2 optimizableVariable]
                           Options: [1×1 struct]
                      MinObjective: 0.1079
                   XAtMinObjective: [1×2 table]
             MinEstimatedObjective: 0.1936
          XAtMinEstimatedObjective: [1×2 table]
           NumObjectiveEvaluations: 30
                  TotalElapsedTime: 2.4555e+03
                         NextPoint: [1×2 table]
                            XTrace: [30×2 table]
                    ObjectiveTrace: [30×1 double]
                  ConstraintsTrace: []
                     UserDataTrace: {30×1 cell}
      ObjectiveEvaluationTimeTrace: [30×1 double]
                IterationTimeTrace: [30×1 double]
                        ErrorTrace: [30×1 double]
                  FeasibilityTrace: [30×1 logical]
       FeasibilityProbabilityTrace: [30×1 double]
               IndexOfMinimumTrace: [30×1 double]
             ObjectiveMinimumTrace: [30×1 double]
    EstimatedObjectiveMinimumTrace: [30×1 double]

Return the best feasible point in the Bayesian model results by using the bestPoint function. Use
the default criterion min-visited-upper-confidence-interval, which determines the best
feasible point as the visited point that minimizes an upper confidence interval on the objective
function value.

zbest = bestPoint(results)

zbest=1×2 table
    sigma       lambda  
    ______    __________

    1.5886    4.9128e-07

The table zbest contains the optimal estimated values for the 'KernelScale' and 'Lambda'
name-value arguments. You can specify these values when training a new optimized kernel classifier
by using

Mdl = fitckernel(Ztrain,Ytrain,'KernelScale',zbest.sigma,'Lambda',zbest.lambda)

For tall arrays, the optimization procedure can take a long time. If the data set is too large to run the
optimization procedure, you can try to optimize the parameters by using only partial data. Use the
datasample function and specify 'Replace','false' to sample data without replacement.

See Also
bayesopt | bestPoint | cvpartition | datastore | fitckernel | gather | loss |
optimizableVariable | tall
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Statistics and Machine Learning with Big Data Using Tall
Arrays

This example shows how to perform statistical analysis and machine learning on out-of-memory data
with MATLAB® and Statistics and Machine Learning Toolbox™.

Tall arrays and tables are designed for working with out-of-memory data. This type of data consists of
a very large number of rows (observations) compared to a smaller number of columns (variables).
Instead of writing specialized code that takes into account the huge size of the data, such as with
MapReduce, you can use tall arrays to work with large data sets in a manner similar to in-memory
MATLAB arrays. The fundamental difference is that tall arrays typically remain unevaluated until you
request that the calculations be performed.

When you perform calculations on tall arrays, MATLAB® uses either a parallel pool (default if you
have Parallel Computing Toolbox™) or the local MATLAB session. To run the example using the local
MATLAB session when you have Parallel Computing Toolbox, change the global execution
environment by using the mapreducer function.

mapreducer(0)

This example works with a subset of data on a single computer to develop a linear regression model,
and then it scales up to analyze all of the data set. You can scale up this analysis even further to:

• Work with data that cannot be read into memory
• Work with data distributed across clusters using MATLAB Parallel Server™
• Integrate with big data systems like Hadoop® and Spark®

Introduction to Machine Learning with Tall Arrays

Several unsupervised and supervised learning algorithms in Statistics and Machine Learning Toolbox
are available to work with tall arrays to perform data mining and predictive modeling with out-of-
memory data. These algorithms are appropriate for out-of-memory data and can include slight
variations from the in-memory algorithms. Capabilities include:

• k-Means clustering
• Linear regression
• Generalized linear regression
• Logistic regression
• Discriminant analysis

The machine learning workflow for out-of-memory data in MATLAB is similar to in-memory data:

1 Preprocess
2 Explore
3 Develop model
4 Validate model
5 Scale up to larger data
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This example follows a similar structure in developing a predictive model for airline delays. The data
includes a large file of airline flight information from 1987 through 2008. The example goal is to
predict the departure delay based on a number of variables.

Details on the fundamental aspects of tall arrays are included in the example “Analyze Big Data in
MATLAB Using Tall Arrays”. This example extends the analysis to include machine learning with tall
arrays.

Create Tall Table of Airline Data

A datastore is a repository for collections of data that are too large to fit in memory. You can create a
datastore from a number of different file formats as the first step to create a tall array from an
external data source.

Create a datastore for the sample file airlinesmall.csv. Select the variables of interest, treat
'NA' values as missing data, and generate a preview table of the data.

ds = datastore(fullfile(matlabroot,'toolbox','matlab','demos','airlinesmall.csv'));
ds.SelectedVariableNames = {'Year','Month','DayofMonth','DayOfWeek',...
    'DepTime','ArrDelay','DepDelay','Distance'};
ds.TreatAsMissing = 'NA';
pre = preview(ds)

pre=8×8 table
    Year    Month    DayofMonth    DayOfWeek    DepTime    ArrDelay    DepDelay    Distance
    ____    _____    __________    _________    _______    ________    ________    ________

    1987     10          21            3          642          8          12         308   
    1987     10          26            1         1021          8           1         296   
    1987     10          23            5         2055         21          20         480   
    1987     10          23            5         1332         13          12         296   
    1987     10          22            4          629          4          -1         373   
    1987     10          28            3         1446         59          63         308   
    1987     10           8            4          928          3          -2         447   
    1987     10          10            6          859         11          -1         954   

Create a tall table backed by the datastore to facilitate working with the data. The underlying data
type of a tall array depends on the type of datastore. In this case, the datastore is tabular text and
returns a tall table. The display includes a preview of the data, with indication that the size is
unknown.

tt = tall(ds)

tt =

  Mx8 tall table

    Year    Month    DayofMonth    DayOfWeek    DepTime    ArrDelay    DepDelay    Distance
    ____    _____    __________    _________    _______    ________    ________    ________

    1987     10          21            3          642          8          12         308   
    1987     10          26            1         1021          8           1         296   
    1987     10          23            5         2055         21          20         480   
    1987     10          23            5         1332         13          12         296   
    1987     10          22            4          629          4          -1         373   
    1987     10          28            3         1446         59          63         308   
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    1987     10           8            4          928          3          -2         447   
    1987     10          10            6          859         11          -1         954   
     :        :          :             :           :          :           :           :
     :        :          :             :           :          :           :           :

Preprocess Data

This example aims to explore the time of day and day of week in more detail. Convert the day of week
to categorical data with labels and determine the hour of day from the numeric departure time
variable.

tt.DayOfWeek = categorical(tt.DayOfWeek,1:7,{'Sun','Mon','Tues',...
    'Wed','Thu','Fri','Sat'});
tt.Hr = discretize(tt.DepTime,0:100:2400,0:23)

tt =

  Mx9 tall table

    Year    Month    DayofMonth    DayOfWeek    DepTime    ArrDelay    DepDelay    Distance    Hr
    ____    _____    __________    _________    _______    ________    ________    ________    __

    1987     10          21          Tues         642          8          12         308        6
    1987     10          26          Sun         1021          8           1         296       10
    1987     10          23          Thu         2055         21          20         480       20
    1987     10          23          Thu         1332         13          12         296       13
    1987     10          22          Wed          629          4          -1         373        6
    1987     10          28          Tues        1446         59          63         308       14
    1987     10           8          Wed          928          3          -2         447        9
    1987     10          10          Fri          859         11          -1         954        8
     :        :          :             :           :          :           :           :        :
     :        :          :             :           :          :           :           :        :

Include only years after 2000 and ignore rows with missing data. Identify data of interest by logical
condition.

idx = tt.Year >= 2000 & ...
    ~any(ismissing(tt),2);
tt = tt(idx,:);

Explore Data by Group

A number of exploratory functions are available for tall arrays. For example, the grpstats function
calculates grouped statistics of tall arrays. Explore the data by determining the centrality and spread
of the data with summary statistics grouped by day of week. Also, explore the correlation between the
departure delay and arrival delay.

g = grpstats(tt(:,{'ArrDelay','DepDelay','DayOfWeek'}),'DayOfWeek',...
    {'mean','std','skewness','kurtosis'})

g =

  Mx11 tall table

    GroupLabel    DayOfWeek    GroupCount    mean_ArrDelay    std_ArrDelay    skewness_ArrDelay    kurtosis_ArrDelay    mean_DepDelay    std_DepDelay    skewness_DepDelay    kurtosis_DepDelay
    __________    _________    __________    _____________    ____________    _________________    _________________    _____________    ____________    _________________    _________________

        ?             ?            ?               ?               ?                  ?                    ?                  ?               ?                  ?                    ?        
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        ?             ?            ?               ?               ?                  ?                    ?                  ?               ?                  ?                    ?        
        ?             ?            ?               ?               ?                  ?                    ?                  ?               ?                  ?                    ?        
        :             :            :               :               :                  :                    :                  :               :                  :                    :
        :             :            :               :               :                  :                    :                  :               :                  :                    :

C = corr(tt.DepDelay,tt.ArrDelay)

C =

  MxNx... tall array

    ?    ?    ?    ...
    ?    ?    ?    ...
    ?    ?    ?    ...
    :    :    :
    :    :    :

These commands produce more tall arrays. The commands are not executed until you explicitly
gather the results into the workspace. The gather command triggers execution and attempts to
minimize the number of passes required through the data to perform the calculations. gather
requires that the resulting variables fit into memory.

[statsByDay,C] = gather(g,C)

Evaluating tall expression using the Local MATLAB Session:
- Pass 1 of 1: Completed in 6.1 sec
Evaluation completed in 8.5 sec

statsByDay=7×11 table
    GroupLabel    DayOfWeek    GroupCount    mean_ArrDelay    std_ArrDelay    skewness_ArrDelay    kurtosis_ArrDelay    mean_DepDelay    std_DepDelay    skewness_DepDelay    kurtosis_DepDelay
    __________    _________    __________    _____________    ____________    _________________    _________________    _____________    ____________    _________________    _________________

     {'Fri' }       Fri           7339          4.1512             32.1             7.082               120.53             7.0857           29.339            8.9387               168.37      
     {'Mon' }       Mon           8443          5.2487           32.453            4.5811               37.175             6.8319           28.573            5.6468               50.271      
     {'Sat' }       Sat           8045           7.132           33.108            3.6457               22.991             9.1557           29.731            4.5135               31.228      
     {'Sun' }       Sun           8570          7.7515           36.003            5.7943                80.91             9.3324           32.516            7.2146               118.25      
     {'Thu' }       Thu           8601          10.053            36.18            4.1381               37.051             10.923           34.708            1.1414               138.38      
     {'Tues'}       Tues          8381          6.4786           32.322             4.374               38.694             7.6083           28.394            5.2012               46.249      
     {'Wed' }       Wed           8489          9.3324           37.406            5.1638               57.479                 10           33.426            6.4336               85.426      

C = 0.8966

The variables containing the results are now in-memory variables in the Workspace. Based on these
calculations, variation occurs in the data and there is correlation between the delays that you can
investigate further.

Explore the effect of day of week and hour of day and gain additional statistical information such as
the standard error of the mean and the 95% confidence interval for the mean. You can pass the entire
tall table and specify which variables to perform calculations on.

byDayHr = grpstats(tt,{'Hr','DayOfWeek'},...
    {'mean','sem','meanci'},'DataVar','DepDelay');
byDayHr = gather(byDayHr);

Evaluating tall expression using the Local MATLAB Session:
- Pass 1 of 1: Completed in 4.6 sec
Evaluation completed in 5.7 sec

 Statistics and Machine Learning with Big Data Using Tall Arrays

32-27



Due to the data partitioning of the tall array, the output might be unordered. Rearrange the data in
memory for further exploration.

x = unstack(byDayHr(:,{'Hr','DayOfWeek','mean_DepDelay'}),...
    'mean_DepDelay','DayOfWeek');
x = sortrows(x)

x=24×8 table
    Hr      Sun        Mon         Tues        Wed        Thu        Fri        Sat  
    __    _______    ________    ________    _______    _______    _______    _______

     0     38.519      71.914      39.656     34.667         90     25.536     65.579
     1     45.846      27.875        93.6     125.23     52.765     38.091     29.182
     2        NaN          39         102        NaN      78.25       -1.5        NaN
     3        NaN         NaN         NaN        NaN     -377.5       53.5        NaN
     4         -7     -6.2857          -7    -7.3333      -10.5         -5        NaN
     5    -2.2409     -3.7099     -4.0146    -3.9565    -3.5897    -3.5766    -4.1474
     6        0.4     -1.8909     -1.9802    -1.8304    -1.3578    0.84161    -2.2537
     7     3.4173    -0.47222    -0.18893    0.71546       0.08      1.069    -1.3221
     8     2.3759      1.4054      1.6745     2.2345     2.9668     1.6727    0.88213
     9     2.5325      1.6805      2.7656      2.683     5.6138     3.4838     2.5011
    10       6.37      5.2868      3.6822     7.5773     5.3372     6.9391     4.9979
    11     6.9946      4.9165      5.5639     5.5936     7.0435     4.8989     5.2839
    12      5.673      5.1193      5.7081     7.9178     7.5269     8.0625     7.4686
    13     8.0879      7.1017      5.0857     8.8082     8.2878     8.0675     6.2107
    14     9.5164      5.8343       7.416     9.5954     8.6667     6.0677      8.444
    15     8.1257      4.8802      7.4726     9.8674     10.235      7.167     8.6219
      ⋮

Visualize Data in Tall Arrays

Currently, you can visualize tall array data using histogram, histogram2, binScatterPlot, and
ksdensity. The visualizations all trigger execution, similar to calling the gather function.

Use binScatterPlot to examine the relationship between the Hr and DepDelay variables.

binScatterPlot(tt.Hr,tt.DepDelay,'Gamma',0.25)

Evaluating tall expression using the Local MATLAB Session:
- Pass 1 of 1: Completed in 2.1 sec
Evaluation completed in 2.8 sec
Evaluating tall expression using the Local MATLAB Session:
- Pass 1 of 1: Completed in 2.1 sec
Evaluation completed in 2.2 sec

ylim([0 500])
xlabel('Time of Day')
ylabel('Delay (Minutes)')
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As noted in the output display, the visualizations often take two passes through the data: one to
perform the binning, and one to perform the binned calculation and produce the visualization.

Split Data into Training and Validation Sets

To develop a machine learning model, it is useful to reserve part of the data to train and develop the
model and another part of the data to test the model. A number of ways exist for you to split the data
into training and validation sets.

Use datasample to obtain a random sampling of the data. Then use cvpartition to partition the
data into test and training sets. To obtain nonstratified partitions, set a uniform grouping variable by
multiplying the data samples by zero.

For reproducibility, set the seed of the random number generator using tallrng. The results can
vary depending on the number of workers and the execution environment for the tall arrays. For
details, see “Control Where Your Code Runs”.

tallrng('default')
data = datasample(tt,25000,'Replace',false);
groups = 0*data.DepDelay;
y = cvpartition(groups,'HoldOut',1/3);
dataTrain = data(training(y),:); 
dataTest = data(test(y),:);
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Fit Supervised Learning Model

Build a model to predict the departure delay based on several variables. The linear regression model
function fitlm behaves similarly to the in-memory function. However, calculations with tall arrays
result in a CompactLinearModel, which is more efficient for large data sets. Model fitting triggers
execution because it is an iterative process.

model = fitlm(dataTrain,'ResponseVar','DepDelay')

Evaluating tall expression using the Local MATLAB Session:
- Pass 1 of 2: Completed in 1.7 sec
- Pass 2 of 2: Completed in 5.4 sec
Evaluation completed in 8.2 sec

model = 
Compact linear regression model:
    DepDelay ~ [Linear formula with 9 terms in 8 predictors]

Estimated Coefficients:
                       Estimate         SE         tStat        pValue  
                      __________    __________    ________    __________

    (Intercept)           30.715        75.873     0.40482       0.68562
    Year                -0.01585      0.037853    -0.41872       0.67543
    Month                0.03009      0.028097      1.0709       0.28421
    DayofMonth        -0.0094266      0.010903    -0.86457       0.38729
    DayOfWeek_Mon       -0.36333       0.35527     -1.0227       0.30648
    DayOfWeek_Tues       -0.2858       0.35245    -0.81091       0.41743
    DayOfWeek_Wed       -0.56082       0.35309     -1.5883       0.11224
    DayOfWeek_Thu       -0.25295       0.35239    -0.71782       0.47288
    DayOfWeek_Fri        0.91768       0.36625      2.5056      0.012234
    DayOfWeek_Sat        0.45668       0.35785      1.2762       0.20191
    DepTime            -0.011551     0.0053851      -2.145      0.031964
    ArrDelay              0.8081      0.002875      281.08             0
    Distance           0.0012881    0.00016887      7.6281    2.5106e-14
    Hr                    1.4058       0.53785      2.6138     0.0089613

Number of observations: 16667, Error degrees of freedom: 16653
Root Mean Squared Error: 12.4
R-squared: 0.834,  Adjusted R-Squared: 0.833
F-statistic vs. constant model: 6.41e+03, p-value = 0

Predict and Validate the Model

The display indicates fit information, as well as coefficients and associated coefficient statistics.

The model variable contains information about the fitted model as properties, which you can access
using dot notation. Alternatively, double click the variable in the Workspace to explore the properties
interactively.

model.Rsquared

ans = struct with fields:
    Ordinary: 0.8335
    Adjusted: 0.8334
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Predict new values based on the model, calculate the residuals, and visualize using a histogram. The
predict function predicts new values for both tall and in-memory data.

pred = predict(model,dataTest);
err = pred - dataTest.DepDelay;
figure
histogram(err,'BinLimits',[-100 100],'Normalization','pdf')

Evaluating tall expression using the Local MATLAB Session:
- Pass 1 of 2: Completed in 3.3 sec
- Pass 2 of 2: Completed in 2 sec
Evaluation completed in 6.1 sec

title('Histogram of Residuals')

Assess and Adjust Model

Looking at the output p-values in the display, some variables might be unnecessary in the model. You
can reduce the complexity of the model by removing these variables.

Examine the significance of the variables in the model more closely using anova.

a = anova(model)

a=9×5 table
                    SumSq        DF        MeanSq         F         pValue  
                  __________    _____    __________    _______    __________
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    Year               26.88        1         26.88    0.17533       0.67543
    Month             175.84        1        175.84     1.1469       0.28421
    DayofMonth         114.6        1         114.6    0.74749       0.38729
    DayOfWeek         3691.4        6        615.23     4.0129    0.00050851
    DepTime           705.42        1        705.42     4.6012      0.031964
    ArrDelay      1.2112e+07        1    1.2112e+07      79004             0
    Distance          8920.9        1        8920.9     58.188    2.5106e-14
    Hr                1047.5        1        1047.5     6.8321     0.0089613
    Error         2.5531e+06    16653        153.31                         

Based on the p-values, the variables Year, Month, and DayOfMonth are not significant to this model,
so you can remove them without negatively affecting the model quality.

To explore these model parameters further, use interactive visualizations such as plotSlice,
plotInterations, and plotEffects. For example, use plotEffects to examine the estimated
effect that each predictor variable has on the departure delay.

plotEffects(model)

Based on these calculations, ArrDelay is the main effect in the model (it is highly correlated to
DepDelay). The other effects are observable, but have much less impact. In addition, Hr was
determined from DepTime, so only one of these variables is necessary to the model.

Reduce the number of variables to exclude all date components, and then fit a new model.

model2 = fitlm(dataTrain,'DepDelay ~ DepTime + ArrDelay + Distance')
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Evaluating tall expression using the Local MATLAB Session:
- Pass 1 of 1: Completed in 3.5 sec
Evaluation completed in 3.8 sec

model2 = 
Compact linear regression model:
    DepDelay ~ 1 + DepTime + ArrDelay + Distance

Estimated Coefficients:
                   Estimate         SE         tStat       pValue  
                   _________    __________    _______    __________

    (Intercept)      -1.4646       0.31696    -4.6207    3.8538e-06
    DepTime        0.0025087    0.00020401     12.297    1.3333e-34
    ArrDelay         0.80767     0.0028712      281.3             0
    Distance       0.0012981    0.00016886     7.6875    1.5838e-14

Number of observations: 16667, Error degrees of freedom: 16663
Root Mean Squared Error: 12.4
R-squared: 0.833,  Adjusted R-Squared: 0.833
F-statistic vs. constant model: 2.77e+04, p-value = 0

Model Development

Even with the model simplified, it can be useful to further adjust the relationships between the
variables and include specific interactions. To experiment further, repeat this workflow with smaller
tall arrays. For performance while tuning the model, you can consider working with a small extraction
of in-memory data before scaling up to the entire tall array.

In this example, you can use functionality like stepwise regression, which is suited for iterative, in-
memory model development. After tuning the model, you can scale up to use tall arrays.

Gather a subset of the data into the workspace and use stepwiselm to iteratively develop the model
in memory.

subset = gather(dataTest);

Evaluating tall expression using the Local MATLAB Session:
- Pass 1 of 1: Completed in 1.6 sec
Evaluation completed in 1.7 sec

sModel = stepwiselm(subset,'ResponseVar','DepDelay')

1. Adding ArrDelay, FStat = 42200.3016, pValue = 0
2. Adding DepTime, FStat = 51.7918, pValue = 6.70647e-13
3. Adding DepTime:ArrDelay, FStat = 42.4982, pValue = 7.48624e-11
4. Adding Distance, FStat = 15.4303, pValue = 8.62963e-05
5. Adding ArrDelay:Distance, FStat = 231.9012, pValue = 1.135326e-51
6. Adding DayOfWeek, FStat = 3.4704, pValue = 0.0019917
7. Adding DayOfWeek:ArrDelay, FStat = 26.334, pValue = 3.16911e-31
8. Adding DayOfWeek:DepTime, FStat = 2.1732, pValue = 0.042528

sModel = 
Linear regression model:
    DepDelay ~ [Linear formula with 9 terms in 4 predictors]

Estimated Coefficients:
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                                Estimate          SE         tStat        pValue  
                               ___________    __________    ________    __________

    (Intercept)                     1.1799        1.0675      1.1053       0.26904
    DayOfWeek_Mon                  -2.1377        1.4298     -1.4951       0.13493
    DayOfWeek_Tues                 -4.2868        1.4683     -2.9196     0.0035137
    DayOfWeek_Wed                  -1.6233         1.476     -1.0998       0.27145
    DayOfWeek_Thu                 -0.74772        1.5226    -0.49109       0.62338
    DayOfWeek_Fri                  -1.7618        1.5079     -1.1683        0.2427
    DayOfWeek_Sat                  -2.1121        1.5214     -1.3882       0.16511
    DepTime                     7.5229e-05    0.00073613     0.10219        0.9186
    ArrDelay                        0.8671      0.013836      62.669             0
    Distance                     0.0015163    0.00023426      6.4728    1.0167e-10
    DayOfWeek_Mon:DepTime        0.0017633     0.0010106      1.7448      0.081056
    DayOfWeek_Tues:DepTime       0.0032578     0.0010331      3.1534     0.0016194
    DayOfWeek_Wed:DepTime       0.00097506      0.001044     0.93398       0.35034
    DayOfWeek_Thu:DepTime        0.0012517     0.0010694      1.1705       0.24184
    DayOfWeek_Fri:DepTime        0.0026464     0.0010711      2.4707      0.013504
    DayOfWeek_Sat:DepTime        0.0021477     0.0010646      2.0174      0.043689
    DayOfWeek_Mon:ArrDelay        -0.11023      0.014744     -7.4767     8.399e-14
    DayOfWeek_Tues:ArrDelay       -0.14589      0.014814     -9.8482    9.2943e-23
    DayOfWeek_Wed:ArrDelay       -0.041878      0.012849     -3.2593     0.0011215
    DayOfWeek_Thu:ArrDelay       -0.096741      0.013308     -7.2693    3.9414e-13
    DayOfWeek_Fri:ArrDelay       -0.077713      0.015462     -5.0259    5.1147e-07
    DayOfWeek_Sat:ArrDelay        -0.13669      0.014652      -9.329    1.3471e-20
    DepTime:ArrDelay            6.4148e-05    7.7372e-06      8.2909    1.3002e-16
    ArrDelay:Distance          -0.00010512    7.3888e-06     -14.227    2.1138e-45

Number of observations: 8333, Error degrees of freedom: 8309
Root Mean Squared Error: 12
R-squared: 0.845,  Adjusted R-Squared: 0.845
F-statistic vs. constant model: 1.97e+03, p-value = 0

The model that results from the stepwise fit includes interaction terms.

Now try to fit a model for the tall data by using fitlm with the formula returned by stepwiselm.

model3 = fitlm(dataTrain,sModel.Formula)

Evaluating tall expression using the Local MATLAB Session:
- Pass 1 of 1: Completed in 4.3 sec
Evaluation completed in 4.5 sec

model3 = 
Compact linear regression model:
    DepDelay ~ [Linear formula with 9 terms in 4 predictors]

Estimated Coefficients:
                                Estimate          SE         tStat        pValue  
                               ___________    __________    ________    __________

    (Intercept)                   -0.31595       0.74499     -0.4241        0.6715
    DayOfWeek_Mon                 -0.64218        1.0473    -0.61316       0.53978
    DayOfWeek_Tues                -0.90163        1.0383    -0.86836       0.38521
    DayOfWeek_Wed                  -1.0798        1.0417     -1.0365       0.29997
    DayOfWeek_Thu                  -3.2765        1.0379      -3.157     0.0015967
    DayOfWeek_Fri                  0.44193        1.0813     0.40869       0.68277
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    DayOfWeek_Sat                   1.1428        1.0777      1.0604       0.28899
    DepTime                      0.0014188    0.00051612      2.7489     0.0059853
    ArrDelay                       0.72526      0.011907      60.913             0
    Distance                     0.0014824    0.00017027      8.7059    3.4423e-18
    DayOfWeek_Mon:DepTime       0.00040994    0.00073548     0.55738       0.57728
    DayOfWeek_Tues:DepTime      0.00051826    0.00073645     0.70373       0.48161
    DayOfWeek_Wed:DepTime       0.00058426    0.00073695     0.79281        0.4279
    DayOfWeek_Thu:DepTime        0.0026229    0.00073649      3.5614    0.00036991
    DayOfWeek_Fri:DepTime        0.0002959    0.00077194     0.38332       0.70149
    DayOfWeek_Sat:DepTime      -0.00060921    0.00075776    -0.80396       0.42143
    DayOfWeek_Mon:ArrDelay       -0.034886      0.010435     -3.3432    0.00082993
    DayOfWeek_Tues:ArrDelay     -0.0073661      0.010113    -0.72837        0.4664
    DayOfWeek_Wed:ArrDelay       -0.028158     0.0099004     -2.8441     0.0044594
    DayOfWeek_Thu:ArrDelay       -0.061065      0.010381     -5.8821    4.1275e-09
    DayOfWeek_Fri:ArrDelay        0.052437      0.010927      4.7987    1.6111e-06
    DayOfWeek_Sat:ArrDelay        0.014205       0.01039      1.3671        0.1716
    DepTime:ArrDelay            7.2632e-05    5.3946e-06      13.464     4.196e-41
    ArrDelay:Distance          -2.4743e-05    4.6508e-06     -5.3203    1.0496e-07

Number of observations: 16667, Error degrees of freedom: 16643
Root Mean Squared Error: 12.3
R-squared: 0.837,  Adjusted R-Squared: 0.836
F-statistic vs. constant model: 3.7e+03, p-value = 0

You can repeat this process to continue to adjust the linear model. However, in this case, you should
explore different types of regression that might be more appropriate for this data. For example, if you
do not want to include the arrival delay, then this type of linear model is no longer appropriate. See
“Logistic Regression with Tall Arrays” on page 32-2 for more information.

Scale to Spark

A key capability of tall arrays in MATLAB and Statistics and Machine Learning Toolbox is the
connectivity to platforms such as Hadoop and Spark. You can even compile the code and run it on
Spark using MATLAB Compiler™. See “Extend Tall Arrays with Other Products” for more information
about using these products:

• Database Toolbox™
• Parallel Computing Toolbox™
• MATLAB® Parallel Server™
• MATLAB Compiler™

See Also

More About
• Function List (Tall Arrays)
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Quick Start Parallel Computing for Statistics and Machine
Learning Toolbox

Note To use parallel computing, you must have a Parallel Computing Toolbox license.

Parallel Statistics and Machine Learning Toolbox Functionality
You can use any of the Statistics and Machine Learning Toolbox functions with Parallel Computing
Toolbox constructs such as parfor and spmd. However, some functions, such as those with
interactive displays, can lose functionality in parallel. In particular, displays and interactive usage are
not effective on workers (see “Vocabulary for Parallel Computation” on page 33-6).

Additionally, some Statistics and Machine Learning Toolbox functions are enhanced to use parallel
computing internally. For example, some model fitting functions perform hyperparameter
optimization in parallel. For a complete list of Statistics and Machine Learning Toolbox functions that
support parallel computing, see Function List (Automatic Parallel Support). For the usage notes and
limitations of each function, see the Automatic Parallel Support section on the function reference
page.

How to Compute in Parallel
This section gives the simplest way to use the enhanced functions in parallel. For more advanced
topics, including the issues of reproducibility and nested parfor loops, see the other topics in
“Speed Up Statistical Computations”.

For information on parallel statistical computing at the command line, enter

help parallelstats

To have a function compute in parallel:

1. “Set Up a Parallel Environment” on page 33-2
2. “Set the UseParallel Option to true” on page 33-3
3. “Call the Function Using the Options Structure” on page 33-3

Set Up a Parallel Environment

To run a statistical computation in parallel, first set up a parallel environment.

Note Setting up a parallel environment can take several seconds.

For a multicore machine, enter the following at the MATLAB command line:

parpool(n)

n is the number of workers you want to use.

You can also run parallel code in MATLAB Online™. For details, see “Use Parallel Computing Toolbox
with Cloud Center Cluster in MATLAB Online” (Parallel Computing Toolbox).
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Set the UseParallel Option to true

Create an options structure with the statset function. To run in parallel, set the UseParallel
option to true:

paroptions = statset('UseParallel',true);

Call the Function Using the Options Structure

Call your function with syntax that uses the options structure. For example:

% Run crossval in parallel
cvMse = crossval('mse',x,y,'predfun',regf,'Options',paroptions);

% Run bootstrp in parallel
sts = bootstrp(100,@(x)[mean(x) std(x)],y,'Options',paroptions);

% Run TreeBagger in parallel
b = TreeBagger(50,meas,spec,'OOBPred','on','Options',paroptions);

For more complete examples of parallel statistical functions, see “Use Parallel Processing for
Regression TreeBagger Workflow” on page 33-4, “Implement Jackknife Using Parallel Computing”
on page 33-20, “Implement Cross-Validation Using Parallel Computing” on page 33-21, and
“Implement Bootstrap Using Parallel Computing” on page 33-23.

After you have finished computing in parallel, close the parallel environment:

delete mypool

Tip To save time, keep the pool open if you expect to compute in parallel again soon.
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Use Parallel Processing for Regression TreeBagger Workflow

This example shows you how to:

• Use an ensemble of bagged regression trees to estimate feature importance.
• Improve computation speed by using parallel computing.

The sample data is a database of 1985 car imports with 205 observations, 25 predictors, and 1
response, which is insurance risk rating, or "symboling." The first 15 variables are numeric and the
last 10 are categorical. The symboling index takes integer values from -3 to 3.

Load the sample data and separate it into predictor and response arrays.

load imports-85;
Y = X(:,1);
X = X(:,2:end);

Set up the parallel environment to use the default number of workers. The computer that created this
example has six cores.

mypool = parpool

Starting parallel pool (parpool) using the 'local' profile ...
Connected to the parallel pool (number of workers: 6).

mypool = 

 ProcessPool with properties: 

            Connected: true
           NumWorkers: 6
              Cluster: local
        AttachedFiles: {}
    AutoAddClientPath: true
          IdleTimeout: 30 minutes (30 minutes remaining)
          SpmdEnabled: true

Set the options to use parallel processing.

paroptions = statset('UseParallel',true);

Estimate feature importance using leaf size 1 and 5000 trees in parallel. Time the function for
comparison purposes.

tic
b = TreeBagger(5000,X,Y,'Method','r','OOBVarImp','on', ...
    'cat',16:25,'MinLeafSize',1,'Options',paroptions);
toc

Elapsed time is 9.873065 seconds.

Perform the same computation in serial for timing comparison.

tic
b = TreeBagger(5000,X,Y,'Method','r','OOBVarImp','on', ...
    'cat',16:25,'MinLeafSize',1);
toc
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Elapsed time is 28.092654 seconds.

The results show that computing in parallel takes a fraction of the time it takes to compute serially.
Note that the elapsed time can vary depending on your operating system.

See Also
parpool | statset | TreeBagger

Related Examples
• “Bootstrap Aggregation (Bagging) of Regression Trees Using TreeBagger” on page 19-114
• “Bootstrap Aggregation (Bagging) of Classification Trees Using TreeBagger” on page 19-125
• “Comparison of TreeBagger and Bagged Ensembles” on page 19-46

 Use Parallel Processing for Regression TreeBagger Workflow

33-5



Concepts of Parallel Computing in Statistics and Machine
Learning Toolbox

In this section...
“Subtleties in Parallel Computing” on page 33-6
“Vocabulary for Parallel Computation” on page 33-6

Subtleties in Parallel Computing
There are two main subtleties in parallel computations:

• Nested parallel evaluations (see “No Nested parfor Loops” on page 33-14). Only the outermost
parfor loop runs in parallel, the others run serially.

• Reproducible results when using random numbers (see “Reproducibility in Parallel Statistical
Computations” on page 33-16). How can you get exactly the same results when repeatedly
running a parallel computation that uses random numbers?

Vocabulary for Parallel Computation
• worker — An independent MATLAB session that runs code distributed by the client.
• client — The MATLAB session with which you interact, and that distributes jobs to workers.
• parfor — A Parallel Computing Toolbox function that distributes independent code segments to

workers (see “Working with parfor” on page 33-14).
• random stream — A pseudorandom number generator, and the sequence of values it generates.

MATLAB implements random streams with the RandStream class.
• reproducible computation — A computation that can be exactly replicated, even in the presence of

random numbers (see “Reproducibility in Parallel Statistical Computations” on page 33-16).
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When to Run Statistical Functions in Parallel
In this section...
“Why Run in Parallel?” on page 33-7
“Factors Affecting Speed” on page 33-7
“Factors Affecting Results” on page 33-7

Why Run in Parallel?
The main reason to run statistical computations in parallel is to gain speed, meaning to reduce the
execution time of your program or functions. “Factors Affecting Speed” on page 33-7 discusses the
main items affecting the speed of programs or functions. “Factors Affecting Results” on page 33-7
discusses details that can cause a parallel run to give different results than a serial run.

Note Some Statistics and Machine Learning Toolbox functions have built-in parallel computing
capabilities. See Quick Start Parallel Computing for Statistics and Machine Learning Toolbox on page
33-2. You can also use any Statistics and Machine Learning Toolbox functions with Parallel
Computing Toolbox functions such as parfor loops. To decide when to call functions in parallel,
consider the factors affecting speed and results.

Factors Affecting Speed
Some factors that can affect the speed of execution of parallel processing are:

• Parallel environment setup. It takes time to run parpool to begin computing in parallel. If your
computation is fast, the setup time can exceed any time saved by computing in parallel.

• Parallel overhead. There is overhead in communication and coordination when running in parallel.
If function evaluations are fast, this overhead could be an appreciable part of the total
computation time. Thus, solving a problem in parallel can be slower than solving the problem
serially. For an example, see Improving Optimization Performance with Parallel Computing in
MATLAB Digest, March 2009.

• No nested parfor loops. This is described in “Working with parfor” on page 33-14. parfor does
not work in parallel when called from within another parfor loop. If you have programmed your
custom functions to take advantage of parallel processing, the limitation of no nested parfor
loops can cause a parallel function to run slower than expected.

• When executing serially, parfor loops run slightly slower than for loops.
• Passing parameters. Parameters are automatically passed to worker sessions during the execution

of parallel computations. If there are many parameters, or they take a large amount of memory,
passing parameters can slow the execution of your computation.

• Contention for resources: network and computing. If the pool of workers has low bandwidth or
high latency, parallel computation can be slow.

Factors Affecting Results
Some factors can affect results when using parallel processing. You might need to adjust your code to
run in parallel, for example, you need independent loops and the workers must be able to access the
variables. Some important factors are:
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• Persistent or global variables. If any functions use persistent or global variables, these variables
can take different values on different worker processors. The body of a parfor loop cannot
contain global or persistent variable declarations.

• Accessing external files. The order of computations is not guaranteed during parallel processing,
so external files can be accessed in unpredictable order, leading to unpredictable results.
Furthermore, if multiple processors try to read an external file simultaneously, the file can become
locked, leading to a read error, and halting function execution.

• Noncomputational functions, such as input, plot, and keyboard, can behave badly when used
in your custom functions. Do not use these functions in a parfor loop, because they can cause a
worker to become nonresponsive, since it is waiting for input.

• parfor does not allow break or return statements.
• The random numbers you use can affect the results of your computations. See “Reproducibility in

Parallel Statistical Computations” on page 33-16.

For advice on converting for loops to use parfor, see “Parallel for-Loops (parfor)” (Parallel
Computing Toolbox).
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Analyze and Model Data on GPU

This example shows how to improve code performance by executing on a graphical processing unit
(GPU). Execution on a GPU can improve performance if:

• Your code is computationally expensive, where computing time significantly exceeds the time
spent transferring data to and from GPU memory.

• Your workflow uses functions with gpuArray (Parallel Computing Toolbox) support and large
array inputs.

When writing code for a GPU, start with code that already performs well on a CPU. Vectorization is
usually critical for achieving high performance on a GPU. Convert code to use functions that support
GPU array arguments and transfer the input data to the GPU. For more information about MATLAB
functions with GPU array inputs, see “Run MATLAB Functions on a GPU” (Parallel Computing
Toolbox).

Many functions in Statistics and Machine Learning Toolbox™ automatically execute on a GPU when
you use GPU array input data. For example, you can create a probability distribution object on a GPU,
where the output is a GPU array.

pd = fitdist(gpuArray(x),"Normal")

Using a GPU requires Parallel Computing Toolbox™ and a supported GPU device. For information
about supported devices, see “GPU Computing Requirements” (Parallel Computing Toolbox). For the
complete list of Statistics and Machine Learning Toolbox™ functions that accept GPU arrays, see
“Functions” and then, in the left navigation bar, scroll to the Extended Capability section and select
GPU Arrays.

Examine Properties of GPU

You can query and select your GPU device using the gpuDevice function. If you have multiple GPUs,
you can examine the properties of all GPUs detected in your system by using the gpuDeviceTable
function. Then, you can select a specific GPU for single-GPU execution by using its index
(gpuDevice(index)).

D = gpuDevice

D = 
  CUDADevice with properties:

                      Name: 'TITAN V'
                     Index: 1
         ComputeCapability: '7.0'
            SupportsDouble: 1
             DriverVersion: 11.2000
            ToolkitVersion: 11.2000
        MaxThreadsPerBlock: 1024
          MaxShmemPerBlock: 49152 (49.15 KB)
        MaxThreadBlockSize: [1024 1024 64]
               MaxGridSize: [2.1475e+09 65535 65535]
                 SIMDWidth: 32
               TotalMemory: 12652838912 (12.65 GB)
           AvailableMemory: 12096045056 (12.10 GB)
       MultiprocessorCount: 80
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              ClockRateKHz: 1455000
               ComputeMode: 'Default'
      GPUOverlapsTransfers: 1
    KernelExecutionTimeout: 0
          CanMapHostMemory: 1
           DeviceSupported: 1
           DeviceAvailable: 1
            DeviceSelected: 1

Execute Function on GPU

Explore a data distribution on a GPU using descriptive statistics.

Generate a data set of normally distributed random numbers on a GPU.

dist = randn(6e4,6e3,"gpuArray");

Determine whether dist is a GPU array.

TF = isgpuarray(dist)

TF = logical
   1

Execute a function with a GPU array input argument. For example, calculate the sample skewness for
each column in dist. Because dist is a GPU array, the skewness function executes on the GPU and
returns the result as a GPU array.

skew = skewness(dist);

Verify that the output skew is a GPU array.

TF = isgpuarray(skew)

TF = logical
   1

Evaluate Speedup of GPU Execution

Evaluate function execution time on the GPU and compare performance with execution on a CPU.

Comparing the time taken to execute code on a CPU and a GPU can be useful in determining the
appropriate execution environment. For example, if you want to compute descriptive statistics from
sample data, considering the execution time and the data transfer time is important to evaluating the
overall performance. If a function has GPU array support, as the number of observations increases,
computation on the GPU generally improves compared to the CPU.

Measure the function run time in seconds by using the gputimeit (Parallel Computing Toolbox)
function. gputimeit is preferable to timeit for functions that use a GPU, because it ensures
operation completion and compensates for overhead.

skew = @() skewness(dist);
t = gputimeit(skew)

t = 0.2458
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Evaluate the performance difference between the GPU and CPU by independently measuring the CPU
execution time. In this case, execution of the code is faster on the GPU than on the CPU.

The performance of code on a GPU is heavily dependent on the GPU used. For additional information
about measuring and improving GPU performance, see “Measure and Improve GPU Performance”
(Parallel Computing Toolbox).

Single Precision on GPU

You can improve the performance of your code by calculating in single precision instead of double
precision.

Determine the execution time of the skewness function using an input argument of the dist data
set in single precision.

dist_single = single(dist);
skew_single = @() skewness(dist_single);
t_single = gputimeit(skew_single)

t_single = 0.0503

In this case, execution of the code with single precision data is faster than execution with double
precision data.

The performance improvement is dependent on the GPU card and total number of cores. For more
information about using single precision with a GPU, see “Measure and Improve GPU Performance”
(Parallel Computing Toolbox).

Dimensionality Reduction and Model Fitting on GPU

Implement dimensionality reduction and classification workflows on a GPU.

Functions such as pca and fitcensemble can be used together to train a machine learning model.

• The pca (principal component analysis) function reduces data dimensionality by replacing several
correlated variables with a new set of variables that are linear combinations of the original
variables.

• The fitcensemble function fits many classification learners to form an ensemble model that can
make better predictions than a single learner.

Both functions are computationally intensive and can be significantly accelerated using a GPU.

For example, consider the humanactivity data set. The data set contains 24,075 observations of
five physical human activities: sitting, standing, walking, running, and dancing. Each observation has
60 features extracted from acceleration data measured by smartphone accelerometer sensors. The
data set contains the following variables:

• actid — Response vector containing the activity IDs in integers: 1, 2, 3, 4, and 5 representing
sitting, standing, walking, running, and dancing, respectively

• actnames — Activity names corresponding to the integer activity IDs
• feat — Feature matrix of 60 features for 24,075 observations
• featlabels — Labels of the 60 features

load humanactivity
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Use 90% of the observations to train a model that classifies the five types of human activities, and use
10% of the observations to validate the trained model. Specify a 10% holdout for the test set by using
cvpartition.

Partition = cvpartition(actid,"Holdout",0.10);
trainingInds = training(Partition); % Indices for the training set
testInds = test(Partition); % Indices for the test set

Transfer the training and test data to the GPU.

XTrain = gpuArray(feat(trainingInds,:));
YTrain = gpuArray(actid(trainingInds));
XTest = gpuArray(feat(testInds,:));
YTest = gpuArray(actid(testInds));

Find the principal components for the training data set XTrain.

[coeff,score,~,~,explained,mu] = pca(XTrain);

Find the number of components required to explain at least 99% of variability.

idx = find(cumsum(explained)>99,1);

Determine the principal component scores that represent X in the principal component space.

XTrainPCA = score(:,1:idx);

Fit an ensemble of learners for classification.

template = templateTree("MaxNumSplits",20,"Reproducible",true);
classificationEnsemble = fitcensemble(XTrainPCA,YTrain, ...
    "Method","AdaBoostM2", ...
    "NumLearningCycles",30, ...
    "Learners",template, ...
    "LearnRate",0.1, ...
    "ClassNames",[1; 2; 3; 4; 5]);

To use the trained model for the test set, you need to transform the test data set by using the PCA
obtained from the training data set.

XTestPCA = (XTest-mu)*coeff(:,1:idx);

Evaluate the accuracy of the trained classifier with the test data.

classificationError = loss(classificationEnsemble,XTestPCA,YTest);

Transfer to Local Workspace

Transfer data or model properties from a GPU to the local workspace for use with a function that
does not support GPU arrays.

Transferring GPU arrays can be costly and is generally not necessary unless you need to use the
results with functions that do not support GPU arrays, or use the results in another workspace where
a GPU is unavailable.

The gather (Parallel Computing Toolbox) function transfers data from the GPU into the local
workspace. Gather the dist data, and then confirm that the data is no longer a GPU array.
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dist = gather(dist);
TF = isgpuarray(dist)

TF = logical
   0

The gather function transfers properties of a machine learning model from a GPU into the local
workspace. Gather the classificationEnsemble model, and then confirm that the model
properties that were previously GPU arrays, such as X, are no longer GPU arrays.

classificationEnsemble = gather(classificationEnsemble);
TF = isgpuarray(classificationEnsemble.X)

TF = logical
   0

See Also
gpuArray | gputimeit | gather

Related Examples
• “Measure and Improve GPU Performance” (Parallel Computing Toolbox)
• “Run MATLAB Functions on a GPU” (Parallel Computing Toolbox)
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Working with parfor
In this section...
“How Statistical Functions Use parfor” on page 33-14
“Characteristics of parfor” on page 33-14

How Statistical Functions Use parfor
parfor is a Parallel Computing Toolbox function similar to a for loop. Parallel statistical functions
call parfor internally. parfor distributes computations to worker processors.

Characteristics of parfor
You might need to adjust your code to run in parallel, for example, you need independent loops and
the workers must be able to access the variables. For advice on using parfor, see “Parallel for-Loops
(parfor)” (Parallel Computing Toolbox).

No Nested parfor Loops

parfor does not work in parallel when called from within another parfor loop, or from an spmd
block. Parallelization occurs only at the outermost level.
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Suppose, for example, you want to apply jackknife to your function userfcn, which calls parfor,
and you want to call jackknife in a loop. The following figure shows three cases:

1 The outermost loop is parfor. Only that loop runs in parallel.
2 The outermost parfor loop is in jackknife. Only jackknife runs in parallel.
3 The outermost parfor loop is in userfcn. userfcn uses parfor in parallel.

When parfor Runs in Parallel

For help converting nested loops to use parfor, see “Convert for-Loops Into parfor-Loops” (Parallel
Computing Toolbox).

See also Quick Start Parallel Computing for Statistics and Machine Learning Toolbox on page 33-2.
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Reproducibility in Parallel Statistical Computations
In this section...
“Issues and Considerations in Reproducing Parallel Computations” on page 33-16
“Running Reproducible Parallel Computations” on page 33-16
“Parallel Statistical Computation Using Random Numbers” on page 33-17

Issues and Considerations in Reproducing Parallel Computations
A reproducible computation is one that gives the same results every time it runs. Reproducibility is
important for:

• Debugging — To correct an anomalous result, you need to reproduce the result.
• Confidence — When you can reproduce results, you can investigate and understand them.
• Modifying existing code — When you change existing code, you want to ensure that you do not

break anything.

Generally, you do not need to ensure reproducibility for your computation. Often, when you want
reproducibility, the simplest technique is to run in serial instead of in parallel. In serial computation
you can simply call the rng function as follows:

s = rng % Obtain the current state of the random stream
% run the statistical function
rng(s) % Reset the stream to the previous state
% run the statistical function again, obtain identical results

This section addresses the case when your function uses random numbers, and you want
reproducible results in parallel. This section also addresses the case when you want the same results
in parallel as in serial.

Running Reproducible Parallel Computations
To run a Statistics and Machine Learning Toolbox function reproducibly:

1 Set the UseSubstreams option to true using statset.
2 Set the Streams option to a type that supports substreams: 'mlfg6331_64' or 'mrg32k3a'.

For information on these streams, see RandStream.list.
3 To compute in parallel, set the UseParallel option to true.
4 To fit an ensemble in parallel using fitcensemble or fitrensemble, create a tree template

with the 'Reproducible' name-value pair set to true:

t = templateTree('Reproducible',true);
ens = fitcensemble(X,Y,'Method','bag','Learners',t,...
    'Options',options);

5 Call the function with the options structure.
6 To reproduce the computation, reset the stream, then call the function again.

To understand why this technique gives reproducibility, see “How Substreams Enable Reproducible
Parallel Computations” on page 33-17.
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For example, to use the 'mlfg6331_64' stream for reproducible computation:

1 Create an appropriate options structure:

s = RandStream('mlfg6331_64');
options = statset('UseParallel',true, ...
    'Streams',s,'UseSubstreams',true);

2 Run your parallel computation. For instructions, see Quick Start Parallel Computing for Statistics
and Machine Learning Toolbox on page 33-2.

3 Reset the random stream:

reset(s);
4 Rerun your parallel computation. You obtain identical results.

For examples of parallel computation run this reproducible way, see “Reproducible Parallel
Bootstrap” on page 33-24 and “Train Classification Ensemble in Parallel” on page 19-110.

Parallel Statistical Computation Using Random Numbers
What Are Substreams?

A substream is a portion of a random stream that RandStream can access quickly. There is a number
M such that for any positive integer k, RandStream can go to the kMth pseudorandom number in the
stream. From that point, RandStream can generate the subsequent entries in the stream. Currently,
RandStream has M = 272, about 5e21, or more.

The entries in different substreams have good statistical properties, similar to the properties of
entries in a single stream: independence, and lack of k-way correlation at various lags. The
substreams are so long that you can view the substreams as being independent streams, as in the
following picture.

Two RandStream stream types support substreams: 'mlfg6331_64' and 'mrg32k3a'.

How Substreams Enable Reproducible Parallel Computations

When MATLAB performs computations in parallel with parfor, each worker receives loop iterations
in an unpredictable order. Therefore, you cannot predict which worker gets which iteration, so cannot
determine the random numbers associated with each iteration.
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Substreams allow MATLAB to tie each iteration to a particular sequence of random numbers. parfor
gives each iteration an index. The iteration uses the index as the substream number. Since the
random numbers are associated with the iterations, not with the workers, the entire computation is
reproducible.

To obtain reproducible results, simply reset the stream, and all the substreams generate identical
random numbers when called again. This method succeeds when all the workers use the same
stream, and the stream supports substreams. This concludes the discussion of how the procedure in
“Running Reproducible Parallel Computations” on page 33-16 gives reproducible parallel results.

Random Numbers on the Client or Workers

A few functions generate random numbers on the client before distributing them to parallel workers.
The workers do not use random numbers, so operate purely deterministically. For these functions,
you can run a parallel computation reproducibly using any random stream type.

The functions that operate this way include:

• crossval
• plsregress
• sequentialfs

To obtain identical results, reset the random stream on the client, or the random stream you pass to
the client. For example:

s = rng % Obtain the current state of the random stream
% run the statistical function
rng(s) % Reset the stream to the previous state
% run the statistical function again, obtain identical results

While this method enables you to run reproducibly in parallel, the results can differ from a serial
computation. The reason for the difference is parfor loops run in reverse order from for loops.
Therefore, a serial computation can generate random numbers in a different order than a parallel
computation. For unequivocal reproducibility, use the technique in “Running Reproducible Parallel
Computations” on page 33-16.

Distributing Streams Explicitly

For testing or comparison using particular random number algorithms, you must set the random
number generators. How do you set these generators in parallel, or initialize streams on each worker
in a particular way? Or you might want to run a computation using a different sequence of random
numbers than any other you have run. How can you ensure the sequence you use is statistically
independent?

Parallel Statistics and Machine Learning Toolbox functions allow you to set random streams on each
worker explicitly. For information on creating multiple streams, enter help RandStream/create at
the command line. To create four independent streams using the 'mrg32k3a' generator:

s = RandStream.create('mrg32k3a','NumStreams',4,...
    'CellOutput',true);

Pass these streams to a statistical function using the Streams option. For example:

parpool(4) % if you have at least 4 cores
s = RandStream.create('mrg32k3a','NumStreams',4,...
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    'CellOutput',true); % create 4 independent streams
paroptions = statset('UseParallel',true,...
    'Streams',s); % set the 4 different streams
x = [randn(700,1); 4 + 2*randn(300,1)];
latt = -4:0.01:12;
myfun = @(X) ksdensity(X,latt); 
pdfestimate = myfun(x);
B = bootstrp(200,myfun,x,'Options',paroptions);

This method of distributing streams gives each worker a different stream for the computation.
However, it does not allow for a reproducible computation, because the workers perform the 200
bootstraps in an unpredictable order. If you want to perform a reproducible computation, use
substreams as described in “Running Reproducible Parallel Computations” on page 33-16.

If you set the UseSubstreams option to true, then set the Streams option to a single random
stream of the type that supports substreams ('mlfg6331_64' or 'mrg32k3a'). This setting gives
reproducible computations.
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Implement Jackknife Using Parallel Computing
This example is from the jackknife function reference page, but runs in parallel.

Generate a sample data of size 10000 from a normal distribution with mean 0 and standard deviation
5.

sigma = 5;
rng('default')
y = normrnd(0,sigma,10000,1);

Run jackknife in parallel to estimate the variance. To do this, use statset to create the options
structure and set the UseParallel field to true.

opts = statset('UseParallel',true);
m = jackknife(@var,y,1,'Options',opts);

Compare the known bias formula with the jackknife bias estimate.

n = length(y);
bias = -sigma^2/n % Known bias formula
jbias = (n-1)*(mean(m)-var(y,1)) % jackknife bias estimate

Starting parallel pool (parpool) using the 'local' profile ...

Connected to the parallel pool (number of workers: 6).

bias =

   -0.0025

jbias =

   -0.0025

Compare how long it takes to compute in serial and in parallel.

tic;m = jackknife(@var,y,1);toc  % Serial computation

Elapsed time is 1.638026 seconds.

tic;m = jackknife(@var,y,1,'Options',opts);toc % Parallel computation

Elapsed time is 0.507961 seconds.

jackknife does not use random numbers, so gives the same results every time, whether run in
parallel or serial.
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Implement Cross-Validation Using Parallel Computing
In this section...
“Simple Parallel Cross Validation” on page 33-21
“Reproducible Parallel Cross Validation” on page 33-21

Simple Parallel Cross Validation
In this example, use crossval to compute a cross-validation estimate of mean-squared error for a
regression model. Run the computations in parallel.

mypool = parpool()
Starting parpool using the 'local' profile ... connected to 2 workers.

mypool = 

  Pool with properties:

    AttachedFiles: {0x1 cell}
       NumWorkers: 2
      IdleTimeout: 30
          Cluster: [1x1 parallel.cluster.Local]
     RequestQueue: [1x1 parallel.RequestQueue]
      SpmdEnabled: 1

opts = statset('UseParallel',true);

load('fisheriris');
y = meas(:,1);
X = [ones(size(y,1),1),meas(:,2:4)];
regf=@(XTRAIN,ytrain,XTEST)(XTEST*regress(ytrain,XTRAIN));

cvMse = crossval('mse',X,y,'Predfun',regf,'Options',opts)

cvMse =

    0.1028

This simple example is not a good candidate for parallel computation:

% How long to compute in serial?
tic;cvMse = crossval('mse',X,y,'Predfun',regf);toc
Elapsed time is 0.073438 seconds.

% How long to compute in parallel?
tic;cvMse = crossval('mse',X,y,'Predfun',regf,...
    'Options',opts);toc
Elapsed time is 0.289585 seconds.

Reproducible Parallel Cross Validation
To run crossval in parallel in a reproducible fashion, set the options and reset the random stream
appropriately (see “Running Reproducible Parallel Computations” on page 33-16).
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mypool = parpool()

Starting parpool using the 'local' profile ... connected to 2 workers.

mypool = 

  Pool with properties:

    AttachedFiles: {0x1 cell}
       NumWorkers: 2
      IdleTimeout: 30
          Cluster: [1x1 parallel.cluster.Local]
     RequestQueue: [1x1 parallel.RequestQueue]
      SpmdEnabled: 1

s = RandStream('mlfg6331_64');
opts = statset('UseParallel',true,...
    'Streams',s,'UseSubstreams',true);

load('fisheriris');
y = meas(:,1);
X = [ones(size(y,1),1),meas(:,2:4)];
regf=@(XTRAIN,ytrain,XTEST)(XTEST*regress(ytrain,XTRAIN));

cvMse = crossval('mse',X,y,'Predfun',regf,'Options',opts)

cvMse =

    0.1020

Reset the stream:

reset(s)
cvMse = crossval('mse',X,y,'Predfun',regf,'Options',opts)

cvMse =

    0.1020
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Implement Bootstrap Using Parallel Computing
In this section...
“Bootstrap in Serial and Parallel” on page 33-23
“Reproducible Parallel Bootstrap” on page 33-24

Bootstrap in Serial and Parallel
Here is an example timing a bootstrap in parallel versus in serial. The example generates data from a
mixture of two Gaussians, constructs a nonparametric estimate of the resulting data, and uses a
bootstrap to get a sense of the sampling variability.

1 Generate the data:

% Generate a random sample of size 1000,
% from a mixture of two Gaussian distributions 
x = [randn(700,1); 4 + 2*randn(300,1)];

2 Construct a nonparametric estimate of the density from the data:

latt = -4:0.01:12;
myfun = @(X) ksdensity(X,latt); 
pdfestimate = myfun(x);

3 Bootstrap the estimate to get a sense of its sampling variability. Run the bootstrap in serial for
timing comparison.

tic;B = bootstrp(200,myfun,x);toc

Elapsed time is 10.878654 seconds.
4 Run the bootstrap in parallel for timing comparison:

mypool = parpool()
Starting parpool using the 'local' profile ... connected to 2 workers.

mypool = 

  Pool with properties:

    AttachedFiles: {0x1 cell}
       NumWorkers: 2
      IdleTimeout: 30
          Cluster: [1x1 parallel.cluster.Local]
     RequestQueue: [1x1 parallel.RequestQueue]
      SpmdEnabled: 1

opt = statset('UseParallel',true);
tic;B = bootstrp(200,myfun,x,'Options',opt);toc

Elapsed time is 6.304077 seconds.

Computing in parallel is nearly twice as fast as computing in serial for this example.

Overlay the ksdensity density estimate with the 200 bootstrapped estimates obtained in the
parallel bootstrap. You can get a sense of how to assess the accuracy of the density estimate from this
plot.
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hold on
for i=1:size(B,1),
    plot(latt,B(i,:),'c:')
end
plot(latt,pdfestimate);
xlabel('x');ylabel('Density estimate')

Reproducible Parallel Bootstrap
To run the example in parallel in a reproducible fashion, set the options appropriately (see “Running
Reproducible Parallel Computations” on page 33-16). First set up the problem and parallel
environment as in “Bootstrap in Serial and Parallel” on page 33-23. Then set the options to use
substreams along with a stream that supports substreams.

s = RandStream('mlfg6331_64'); % has substreams
opts = statset('UseParallel',true,...
    'Streams',s,'UseSubstreams',true);
B2 = bootstrp(200,myfun,x,'Options',opts);

To rerun the bootstrap and get the same result:

reset(s) % set the stream to initial state
B3 = bootstrp(200,myfun,x,'Options',opts);
isequal(B2,B3) % check if same results
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ans =
     1
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Code Generation

• “Introduction to Code Generation” on page 34-2
• “General Code Generation Workflow” on page 34-5
• “Code Generation for Prediction of Machine Learning Model at Command Line” on page 34-9
• “Code Generation for Incremental Learning” on page 34-13
• “Code Generation for Nearest Neighbor Searcher” on page 34-20
• “Code Generation for Prediction of Machine Learning Model Using MATLAB Coder App”

on page 34-23
• “Code Generation and Classification Learner App” on page 34-32
• “Deploy Neural Network Regression Model to FPGA/ASIC Platform” on page 34-40
• “Predict Class Labels Using MATLAB Function Block” on page 34-51
• “Specify Variable-Size Arguments for Code Generation” on page 34-56
• “Create Dummy Variables for Categorical Predictors and Generate C/C++ Code” on page 34-61
• “System Objects for Classification and Code Generation” on page 34-65
• “Predict Class Labels Using Stateflow” on page 34-73
• “Human Activity Recognition Simulink Model for Smartphone Deployment” on page 34-77
• “Human Activity Recognition Simulink Model for Fixed-Point Deployment” on page 34-86
• “Code Generation for Prediction and Update Using Coder Configurer” on page 34-92
• “Code Generation for Probability Distribution Objects” on page 34-94
• “Fixed-Point Code Generation for Prediction of SVM” on page 34-99
• “Generate Code to Classify Data in Table” on page 34-112
• “Code Generation for Image Classification” on page 34-115
• “Predict Class Labels Using ClassificationSVM Predict Block” on page 34-123
• “Predict Responses Using RegressionSVM Predict Block” on page 34-127
• “Predict Class Labels Using ClassificationTree Predict Block” on page 34-133
• “Predict Responses Using RegressionTree Predict Block” on page 34-139
• “Predict Class Labels Using ClassificationEnsemble Predict Block” on page 34-142
• “Predict Responses Using RegressionEnsemble Predict Block” on page 34-149
• “Predict Class Labels Using ClassificationNeuralNetwork Predict Block” on page 34-156
• “Predict Responses Using RegressionNeuralNetwork Predict Block” on page 34-160
• “Predict Responses Using RegressionGP Predict Block” on page 34-164
• “Predict Class Labels Using ClassificationKNN Predict Block” on page 34-170
• “Code Generation for Logistic Regression Model Trained in Classification Learner”

on page 34-176
• “Code Generation for Anomaly Detection” on page 34-179
• “Compress Machine Learning Model for Memory-Limited Hardware” on page 34-185
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Introduction to Code Generation
In this section...
“Code Generation Workflows” on page 34-2
“Code Generation Applications” on page 34-4

MATLAB Coder generates readable and portable C and C++ code from Statistics and Machine
Learning Toolbox functions that support code generation. You can integrate the generated code into
your projects as source code, static libraries, or dynamic libraries. You can also use the generated
code within the MATLAB environment to accelerate computationally intensive portions of your
MATLAB code.

Generating C/C++ code requires MATLAB Coder and has the following limitations:

• You cannot call any function at the top level when generating code by using codegen. Instead, call
the function within an entry-point function, and then generate code from the entry-point function.
The entry-point function, also known as the top-level or primary function, is a function you define
for code generation. All functions within the entry-point function must support code generation.

• The MATLAB Coder limitations also apply to Statistics and Machine Learning Toolbox for code
generation. For details, see “MATLAB Language Features Supported for C/C++ Code Generation”
(MATLAB Coder).

• Code generation in Statistics and Machine Learning Toolbox does not support sparse matrices.
• For the code generation usage notes and limitations for each function, see the Code Generation

section on the function reference page.

For a list of Statistics and Machine Learning Toolbox functions that support code generation, see
Function List (C/C++ Code Generation).

Code Generation Workflows
You can generate C/C++ code for the Statistics and Machine Learning Toolbox functions in several
ways.

• General code generation workflow for functions that are not the object functions of machine
learning models

Define an entry-point function that calls the function that supports code generation, generate C/C
++ code for the entry-point function by using codegen, and then verify the generated code. The
entry-point function, also known as the top-level or primary function, is a function you define for
code generation. Because you cannot call any function at the top level using codegen, you must
define an entry-point function. All functions within the entry-point function must support code
generation.

For details, see “General Code Generation Workflow” on page 34-5.
• Code generation workflow for the object function of a machine learning model (including

predict, random, knnsearch, rangesearch, isanomaly, and incremental learning object
functions)

34 Code Generation

34-2



Save a trained model by using saveLearnerForCoder, and define an entry-point function that
loads the saved model by using loadLearnerForCoder and calls the object function. Then
generate code for the entry-point function by using codegen, and verify the generated code. The
input arguments of the entry-point function cannot be classification or regression model objects.
Therefore, you need to work around this limitation by using saveLearnerForCoder and
loadLearnerForCoder.

You can also generate single-precision C/C++ code for the prediction of machine learning models
for classification and regression. For single-precision code generation, specify the name-value pair
argument 'Datatype','single' as an additional input to the loadLearnerForCoder
function.

For details, see these examples

• “Code Generation for Prediction of Machine Learning Model at Command Line” on page 34-
9

• “Code Generation for Incremental Learning” on page 34-13
• “Code Generation for Prediction of Machine Learning Model Using MATLAB Coder App” on

page 34-23
• “Code Generation for Nearest Neighbor Searcher” on page 34-20
• “Code Generation and Classification Learner App” on page 34-32
• “Specify Variable-Size Arguments for Code Generation” on page 34-56

You can also generate fixed-point C/C++ code for the prediction of a support vector machine
(SVM) model, a decision tree model, and an ensemble of decision trees for classification and
regression. This type of code generation requires Fixed-Point Designer™.

Fixed-point code generation requires an additional step that defines the fixed-point data types of
the variables required for prediction. Create a fixed-point data type structure by using the data
type function generated by generateLearnerDataTypeFcn, and use the structure as an input
argument of loadLearnerForCoder in an entry-point function. You can also optimize the fixed-
point data types before generating code.

For details, see “Fixed-Point Code Generation for Prediction of SVM” on page 34-99.
• Code generation workflow for the predict and update functions of a tree model, an SVM model,

a linear model, or a multiclass error-correcting output codes (ECOC) classification model using
SVM or linear binary learners
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After training a model, create a coder configurer by using learnerCoderConfigurer, generate
code by using generateCode, and then verify the generated code. You can configure code
generation options and specify the coder attributes of the model parameters using object
properties. After you retrain the model with new data or settings, you can update model
parameters in the generated C/C++ code without having to regenerate the code. This feature
reduces the effort required to regenerate, redeploy, and reverify C/C++ code.

For details, see “Code Generation for Prediction and Update Using Coder Configurer” on page 34-
92.

Code Generation Applications
To integrate the prediction of a machine learning model into Simulink®, use a MATLAB Function
block or the Simulink blocks in the Statistics and Machine Learning Toolbox library. For details, see
these examples:

• “Predict Class Labels Using MATLAB Function Block” on page 34-51
• “Predict Responses Using RegressionSVM Predict Block” on page 34-127
• “Predict Class Labels Using ClassificationSVM Predict Block” on page 34-123

Code generation for the Statistics and Machine Learning Toolbox functions also works with other
toolboxes such as System object™ and Stateflow®, as described in these examples:

• “System Objects for Classification and Code Generation” on page 34-65
• “Predict Class Labels Using Stateflow” on page 34-73

For more applications of code generation, see these examples:

• “Code Generation for Image Classification” on page 34-115
• “Human Activity Recognition Simulink Model for Smartphone Deployment” on page 34-77

See Also
codegen | saveLearnerForCoder | loadLearnerForCoder | learnerCoderConfigurer |
generateLearnerDataTypeFcn

Related Examples
• “Get Started with MATLAB Coder” (MATLAB Coder)
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General Code Generation Workflow
The general code generation workflow for the Statistics and Machine Learning Toolbox functions that
are not the object functions of machine learning models is the same as the workflow described in
MATLAB Coder. For details, see “Get Started with MATLAB Coder” (MATLAB Coder). To learn how to
generate code for the object functions of machine learning models, see “Introduction to Code
Generation” on page 34-2.

This example briefly explains the general code generation workflow as summarized in this flow chart:

Define Entry-Point Function
An entry-point function, also known as the top-level or primary function, is a function you define for
code generation. Because you cannot call any function at the top level using codegen, you must
define an entry-point function that calls code-generation-enabled functions, and generate C/C++ code
for the entry-point function by using codegen. All functions within the entry-point function must
support code generation.

Add the %#codegen compiler directive (or pragma) to the entry-point function after the function
signature to indicate that you intend to generate code for the MATLAB algorithm. Adding this
directive instructs the MATLAB Code Analyzer to help you diagnose and fix violations that would
cause errors during code generation. See “Check Code with the Code Analyzer” (MATLAB Coder).

For example, to generate code that estimates the interquartile range of a data set using iqr, define
this function.

function r = iqrCodeGen(x) %#codegen
%IQRCODEGEN Estimate interquartile range 
%   iqrCodeGen returns the interquartile range of the data x, 
%   a single- or double-precision vector.
r = iqr(x);
end

You can allow for optional input arguments by specifying varargin as an input argument. For
details, see “Code Generation for Variable Length Argument Lists” (MATLAB Coder) and “Specify
Variable-Size Arguments for Code Generation” on page 34-56.

Generate Code
Set Up Compiler

To generate C/C++ code, you must have access to a compiler that is configured properly. MATLAB
Coder locates and uses a supported, installed compiler. To view and change the default C compiler,
enter:

mex -setup

For more details, see “Change Default Compiler”.
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Generate Code Using codegen

After setting up your compiler, generate code for the entry-point function by using codegen or the
MATLAB Coder app. To learn how to generate code using the MATLAB Coder app, see “Generate
MEX Functions by Using the MATLAB Coder App” (MATLAB Coder).

To generate code at the command line, use codegen. Because C and C++ are statically typed
languages, you must determine the properties of all variables in the entry-point function at compile
time. Specify the data types and sizes of all inputs of the entry-point function when you call codegen
by using the -args option.

• To specify the data type and exact input array size, pass a MATLAB expression that represents the
set of values with a certain data type and array size. For example, to specify that the generated
code from iqrCodeGen.m must accept a double-precision numeric column vector with 100
elements, enter:

testX = randn(100,1);
codegen iqrCodeGen -args {testX} -report

The -report flag generates a code generation report. See “Code Generation Reports” (MATLAB
Coder).

• To specify that at least one of the dimensions can have any length, use the -args option with
coder.typeof as follows.

-args {coder.typeof(example_value, size_vector, variable_dims)}

The values of example_value, size_vector, and variable_dims specify the properties of the
input array that the generated code can accept.

• An input array has the same data type as the example values in example_value.
• size_vector is the array size of an input array if the corresponding variable_dims value is

false.
• size_vector is the upper bound of the array size if the corresponding variable_dims value

is true.
• variable_dims specifies whether each dimension of the array has a variable size or a fixed

size. A value of true (logical 1) means that the corresponding dimension has a variable size; a
value of false (logical 0) means that the corresponding dimension has a fixed size.

Specifying a variable-size input is convenient when you have data with an unknown number of
observations at compile time. For example, to specify that the generated code from
iqrCodeGen.m can accept a double-precision numeric column vector of any length, enter:

testX = coder.typeof(0,[Inf,1],[1,0]);
codegen iqrCodeGen -args {testX} -report

0 for the example_value value implies that the data type is double because double is the
default numeric data type of MATLAB. [Inf,1] for the size_vector value and [1,0] for the
variable_dims value imply that the size of the first dimension is variable and unbounded, and
the size of the second dimension is fixed to be 1.

Note Specification of variable size inputs can affect performance. For details, see “Control
Memory Allocation for Variable-Size Arrays” (MATLAB Coder).
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• To specify a character array, such as supported name-value pair arguments, specify the character
array as a constant using coder.Constant. For example, suppose that 'Name' is a valid name-
value pair argument for iqrCodeGen.m, and the corresponding value value is numeric. Then
enter:

codegen iqrCodeGen -args {testX,coder.Constant('Name'),value} -report

For more details, see “Generate C Code at the Command Line” (MATLAB Coder) and “Specify
Properties of Entry-Point Function Inputs” (MATLAB Coder).

Build Type

MATLAB Coder can generate code for these types:

• MEX (MATLAB Executable) function
• Standalone C/C++ code
• Standalone C/C++ code compiled to a static library
• Standalone C/C++ code compiled to a dynamically linked library
• Standalone C/C++ code compiled to an executable

You can specify the build type using the -config option of codegen. For more details on setting
code generation options, see “Configure Build Settings” (MATLAB Coder).

By default, codegen generates a MEX function. A MEX function is a C/C++ program that is
executable from MATLAB. You can use a MEX function to accelerate MATLAB algorithms and to test
the generated code for functionality and run-time issues. For details, see “MATLAB Algorithm
Acceleration” (MATLAB Coder) and “Why Test MEX Functions in MATLAB?” (MATLAB Coder).

Code Generation Report

You can use the -report flag to produce a code generation report. This report helps you debug code
generation issues and view the generated C/C++ code. For details, see “Code Generation Reports”
(MATLAB Coder).

Verify Generated Code
Test a MEX function to verify that the generated code provides the same functionality as the original
MATLAB code. To perform this test, run the MEX function using the same inputs that you used to run
the original MATLAB code, and then compare the results. Running the MEX function in MATLAB
before generating standalone code also enables you to detect and fix run-time errors that are much
harder to diagnose in the generated standalone code. For more details, see “Why Test MEX Functions
in MATLAB?” (MATLAB Coder).

Pass some data to verify whether iqr, iqrCodeGen, and iqrCodeGen_mex return the same
interquartile range.

testX = randn(100,1);
r = iqr(testX);
r_entrypoint = iqrCodeGen(testX);
r_mex = iqrCodeGen_mex(testX);

Compare the outputs by using isequal.

isequal(r,r_entrypoint,r_mex)
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isequal returns logical 1 (true) if all the inputs are equal.

You can also verify the MEX function using a test file and coder.runTest. For details, see “Testing
Code Generated from MATLAB Code” (MATLAB Coder).

See Also
codegen

More About
• “Introduction to Code Generation” on page 34-2
• “Code Generation for Probability Distribution Objects” on page 34-94
• Function List (C/C++ Code Generation)
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Code Generation for Prediction of Machine Learning Model at
Command Line

This example shows how to generate code for the prediction of classification and regression model
objects at the command line. You can also generate code using the MATLAB® Coder™ app. See
“Code Generation for Prediction of Machine Learning Model Using MATLAB Coder App” on page 34-
23 for details.

Certain classification and regression model objects have a predict or random function that supports
code generation. Prediction using these object functions requires a trained classification or
regression model object, but the -args option of codegen (MATLAB Coder) does not accept these
objects. Work around this limitation by using saveLearnerForCoder and loadLearnerForCoder
as described in this example.

This flow chart shows the code generation workflow for the object functions of classification and
regression model objects.

After you train a model, save the trained model by using saveLearnerForCoder. Define an entry-
point function that loads the saved model by using loadLearnerForCoder and calls the object
function. Then generate code for the entry-point function by using codegen, and verify the generated
code.

Train Classification Model

Train a classification model object equipped with a code-generation-enabled predict function. In
this case, train a support vector machine (SVM) classification model.

load fisheriris
inds = ~strcmp(species,'setosa');
X = meas(inds,3:4);
Y = species(inds);
Mdl = fitcsvm(X,Y);

This step can include data preprocessing, feature selection, and optimizing the model using cross-
validation, for example.

Save Model Using saveLearnerForCoder

Save the classification model to the file SVMModel.mat by using saveLearnerForCoder.

saveLearnerForCoder(Mdl,'SVMModel');

saveLearnerForCoder saves the classification model to the MATLAB binary file SVMModel.mat as
a structure array in the current folder.

Define Entry-Point Function

An entry-point function, also known as the top-level or primary function, is a function you define for
code generation. Because you cannot call any function at the top level using codegen, you must
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define an entry-point function that calls code-generation-enabled functions, and generate C/C++ code
for the entry-point function by using codegen. All functions within the entry-point function must
support code generation.

Define an entry-point function that returns predicted labels for input predictor data. Within the
function, load the trained classification model by using loadLearnerForCoder, and then pass the
loaded model to predict. In this case, define the predictLabelsSVM function, which predicts
labels using the SVM model Mdl.

type predictLabelsSVM.m % Display contents of predictLabelsSVM.m file

function label = predictLabelsSVM(x) %#codegen
%PREDICTLABELSSVM Label new observations using trained SVM model Mdl
%   predictLabelsSVM predicts the vector of labels label using 
%   the saved SVM model Mdl and the predictor data x.
Mdl = loadLearnerForCoder('SVMModel');
label = predict(Mdl,x);
end

Add the %#codegen compiler directive (or pragma) to the entry-point function after the function
signature to indicate that you intend to generate code for the MATLAB algorithm. Adding this
directive instructs the MATLAB Code Analyzer to help you diagnose and fix violations that would
result in errors during code generation. See “Check Code with the Code Analyzer” (MATLAB Coder).

Note: If you click the button located in the upper-right section of this page and open this example in
MATLAB®, then MATLAB® opens the example folder. This folder includes the entry-point function
file.

Generate Code

Set Up Compiler

To generate C/C++ code, you must have access to a C/C++ compiler that is configured properly.
MATLAB Coder locates and uses a supported, installed compiler. You can use mex -setup to view and
change the default compiler. For more details, see “Change Default Compiler”.

Generate Code Using codegen

Generate code for the entry-point function using codegen (MATLAB Coder). Because C and C++ are
statically typed languages, you must determine the properties of all variables in the entry-point
function at compile time. Specify the data types and sizes of all inputs of the entry-point function
when you call codegen by using the -args option.

In this case, pass X as a value of the -args option to specify that the generated code must accept an
input that has the same data type and array size as the training data X.

codegen predictLabelsSVM -args {X}

Code generation successful.

If the number of observations is unknown at compile time, you can also specify the input as variable-
size by using coder.typeof (MATLAB Coder). For details, see “Specify Variable-Size Arguments for
Code Generation” on page 34-56 and “Specify Properties of Entry-Point Function Inputs” (MATLAB
Coder)

Build Type
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MATLAB Coder can generate code for the following build types:

• MEX (MATLAB Executable) function
• Standalone C/C++ code
• Standalone C/C++ code compiled to a static library
• Standalone C/C++ code compiled to a dynamically linked library
• Standalone C/C++ code compiled to an executable

You can specify the build type using the -config option of codegen (MATLAB Coder). For more
details on setting code generation options, see the -config option of codegen (MATLAB Coder) and
“Configure Build Settings” (MATLAB Coder).

By default, codegen generates a MEX function. A MEX function is a C/C++ program that is
executable from MATLAB. You can use a MEX function to accelerate MATLAB algorithms and to test
the generated code for functionality and run-time issues. For details, see “MATLAB Algorithm
Acceleration” (MATLAB Coder) and “Why Test MEX Functions in MATLAB?” (MATLAB Coder).

Code Generation Report

You can use the -report flag to produce a code generation report. This report helps you debug code
generation issues and view the generated C/C++ code. For details, see “Code Generation Reports”
(MATLAB Coder).

Verify Generated Code

Test a MEX function to verify that the generated code provides the same functionality as the original
MATLAB code. To perform this test, run the MEX function using the same inputs that you used to run
the original MATLAB code, and then compare the results. Running the MEX function in MATLAB
before generating standalone code also enables you to detect and fix run-time errors that are much
harder to diagnose in the generated standalone code. For more details, see “Why Test MEX Functions
in MATLAB?” (MATLAB Coder).

Pass some predictor data to verify whether predict, predictLabelsSVM, and the MEX function
return the same labels.

labels1 = predict(Mdl,X);
labels2 = predictLabelsSVM(X);
labels3 = predictLabelsSVM_mex(X);

Compare the predicted labels by using isequal.

verifyMEX = isequal(labels1,labels2,labels3)

verifyMEX = logical
   1

isequal returns logical 1 (true), which means all the inputs are equal. The comparison confirms
that the predict function, predictLabelsSVM function, and MEX function return the same labels.

See Also
codegen | saveLearnerForCoder | loadLearnerForCoder | learnerCoderConfigurer
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Related Examples
• “Introduction to Code Generation” on page 34-2
• “Code Generation for Prediction of Machine Learning Model Using MATLAB Coder App” on

page 34-23
• “Code Generation for Prediction and Update Using Coder Configurer” on page 34-92
• “Code Generation and Classification Learner App” on page 34-32
• “Specify Variable-Size Arguments for Code Generation” on page 34-56
• Function List (C/C++ Code Generation)
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Code Generation for Incremental Learning

This example shows how to generate code that implements incremental learning for binary linear
classification. To motivate its purpose, consider training a wearable device tasked to determine
whether the wearer is idle or moving, based on sensory features the device reads.

The generated code performs the following tasks, as defined in entry-point functions:

1 Load a configured incremental learning model template created at the command line.
2 Track performance metrics on the incoming batch of data from a data stream. This example

tracks misclassification rate and hinge loss.
3 Update the model by fitting the incremental model to the batch of data.
4 Predicts labels for the batch of data.

This example generates code from the MATLAB® command line, but you can generate code using the
MATLAB® Coder™ app instead. For more details, see “Code Generation for Prediction of Machine
Learning Model Using MATLAB Coder App” on page 34-23.

All incremental learning object functions for binary linear classification (and also linear regression)
support code generation. To prepare code to generate for incremental learning, the object functions
require an appropriately configured incremental learning model object, but the -args option of
codegen (MATLAB Coder) does not accept these objects. To work around this limitation, use the
saveLearnerForCoder and loadLearnerForCoder functions.

This flow chart shows the code generation workflows for the incremental learning object functions for
linear models.

The flow chart suggests two distinct but merging workflows.

• The workflow beginning with Train Model > Convert Model requires data, in which case you
can optionally perform feature selection or optimize the model by performing cross-validation
before generating code for incremental learning.

• The workflow beginning with Configure Model does not require data. Instead, you must
manually configure an incremental learning model object.

For details on the differences between the workflows, and for help deciding which one to use, see
“Configure Incremental Learning Model” on page 28-9.

Regardless of the workflow you choose, the resulting incremental learning model must have all the
following qualities:
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• The NumPredictors property reflect the number of predictors in the predictor data during
incremental learning.

• For classification, the ClassNames property must contain all class names expected during
incremental learning.

If you choose the Train Model > Convert Model workflow and you fit the model to data containing
all known classes, the model is configured for code generation.

After you prepare an incremental learning model, save the model object by using
saveLearnerForCoder. Then, define an entry-point function that loads the saved model by using
loadLearnerForCoder, and that performs incremental learning by calling the object functions.
Alternatively, you can define multiple entry-point functions that perform the stages of incremental
learning separately (this example uses this workflow). However, this workflow requires special
treatment when an updated model object is an input to another entry-point function. For example,
you write the following three entry-point functions:

• A function that accepts the current model and a batch of data, calls updateMetrics, and returns
a model with updated performance metrics.

• A function that accepts the updated model and the batch of data, calls fit, and returns a model
with updated coefficients.

• A function that accepts the further updated model and the batch of predictor data, calls predict,
and returns predicted labels.

Finally, generate code for the entry-point functions by using codegen, and verify the generated code.

Load and Preprocess Data

Load the human activity data set. Randomly shuffle the data.

load humanactivity
rng(1); % For reproducibility
n = numel(actid);
p = size(feat,2);
idx = randsample(n,n);
X = feat(idx,:);
actid = actid(idx);

For details on the data set, enter Description at the command line.

Responses can be one of five classes: Sitting, Standing, Walking, Running, or Dancing. Dichotomize
the response by identifying whether the subject is idle (actid <= 2). Store the unique class names.
Create categorical arrays.

classnames = categorical(["Idle" "NotIdle"]);
Y = repmat(classnames(1),n,1);
Y(actid > 2) = classnames(2);

Configure Incremental Learning Model

To generate code for incremental classification, you must appropriately configure a binary
classification linear model for incremental learning incrementalClassificationLinear.

Create a binary classification (SVM) model for incremental learning. Fully configure the model for
code generation by specify all expected class names and the number of predictor variables. Also,
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specify tracking the misclassification rate and hinge loss. For reproducibility, this example turns off
observation shuffling for the scale-invariant solver.

metrics = ["classiferror" "hinge"];
IncrementalMdl = incrementalClassificationLinear('ClassNames',classnames,'NumPredictors',p,...
    'Shuffle',false,'Metrics',metrics)

IncrementalMdl = 
  incrementalClassificationLinear

            IsWarm: 0
           Metrics: [2x2 table]
        ClassNames: [Idle    NotIdle]
    ScoreTransform: 'none'
              Beta: [60x1 double]
              Bias: 0
           Learner: 'svm'

  Properties, Methods

Mdl is an incremenalClassificationLinear model object configured for code generation. Mdl is
cold (Mdl.IsWarm is 0) because it has not processed data—the coefficients are 0.

Alternatively, because the data is available, you can fit an SVM model to the data by using either
fitcsvm or fitclinear, and then convert the resulting model to an incremental learning model by
passing the model to incrementalLearner. The resulting model is warm because it has processed
data—its coefficients are likely non-zero.

Save Model Using saveLearnerForCoder

Save the incremental learning model to the file InitialMdl.mat by using saveLearnerForCoder.

saveLearnerForCoder(IncrementalMdl,'InitialMdl');

saveLearnerForCoder saves the incremental learning model to the MATLAB binary file
SVMClassIncrLearner.mat as structure arrays in the current folder.

Define Entry-Point Functions

An entry-point function, also known as the top-level or primary function, is a function you define for
code generation. Because you cannot call any function at the top level using codegen, you must
define an entry-point function that calls code-generation-enabled functions, and generate C/C++ code
for the entry-point function by using codegen. All functions within the entry-point function must
support code generation.

Define four separate entry-point functions in your current folder that perform the following actions:

• myInitialModelIncrLearn.m — Load the saved model by using loadLearnerForCoder, and
return a model of the same form for code generation. This entry-point function facilitates the use
of a model, returned by an entry-point function, as an input to another entry-point function.

• myUpdateMetricsIncrLearn.m — Measure the performance of the current model on an
incoming batch of data, and store the performance metrics in the model. The function accepts the
current model, and predictor and response data, and returns an updated model.
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• myFitIncrLearn.m — Fit the current model to the incoming batch of data, and store the
updated coefficients in the model. The function accepts the current model, and predictor and
response data, and returns an updated model.

• myPredictIncrLearn.m — Predicted labels for the incoming batch of data using the current
model. The function accepts the current model and predictor data, and returns labels and class
scores.

For more details on generating code for multiple entry-point functions, see “Generate Code for
Multiple Entry-Point Functions” (MATLAB Coder).

Add the %#codegen compiler directive (or pragma) to the entry-point function after the function
signature to indicate that you intend to generate code for the MATLAB algorithm. Adding this
directive instructs the MATLAB Code Analyzer to help you diagnose and fix violations that would
result in errors during code generation. See “Check Code with the Code Analyzer” (MATLAB Coder).

Alternatively, you can access the functions in mlr/examples/stats/main, where mlr is the value
of matlabroot.

Display the body of each function.

type myInitialModelIncrLearn.m

function incrementalModel = myInitialModelIncrLearn() %#codegen
% MYINITIALMODELINCRLEARN Load and return configured linear model for
% binary classification InitialMdl
    incrementalModel = loadLearnerForCoder('InitialMdl');
end

type myUpdateMetricsIncrLearn.m

function incrementalModel = myUpdateMetricsIncrLearn(incrementalModel,X,Y) %#codegen
% MYUPDATEMETRICSINCRLEARN Measure model performance metrics on new data
      incrementalModel = updateMetrics(incrementalModel,X,Y); 
end

type myFitIncrLearn.m

function incrementalModel = myFitIncrLearn(incrementalModel,X,Y) %#codegen
% MYFITINCRLEARN Fit model to new data
      incrementalModel = fit(incrementalModel,X,Y); 
end

type myPredictIncrLearn.m

function [labels,scores] = myPredictIncrLearn(incrementalModel,X) %#codegen
% MYPREDICTINCRLEARN Predict labels and classification scores on new data
      [labels,scores] = predict(incrementalModel,X); 
end

Generate Code

Set Up Compiler

To generate C/C++ code, you must have access to a C/C++ compiler that is configured properly.
MATLAB Coder locates and uses a supported, installed compiler. You can use mex -setup to view and
change the default compiler. For more details, see “Change Default Compiler”.

Build Type
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MATLAB Coder can generate code for the following build types:

• MEX (MATLAB Executable) function
• Standalone C/C++ code
• Standalone C/C++ code compiled to a static library
• Standalone C/C++ code compiled to a dynamically linked library
• Standalone C/C++ code compiled to an executable

You can specify the build type using the -config option of codegen (MATLAB Coder). For more
details on setting code generation options, see the -config option of codegen (MATLAB Coder) and
“Configure Build Settings” (MATLAB Coder).

By default, codegen generates a MEX function. A MEX function is a C/C++ program that is
executable from MATLAB. You can use a MEX function to accelerate MATLAB algorithms and to test
the generated code for functionality and run-time issues. For details, see “MATLAB Algorithm
Acceleration” (MATLAB Coder) and “Why Test MEX Functions in MATLAB?” (MATLAB Coder).

Generate Code Using codegen

Because C and C++ are statically typed languages, you must specify the properties of all variables in
the entry-point function at compile time. Specify the following:

• The data types of the data inputs of the entry-point functions by using coder.typeof (MATLAB
Coder). Also, because the number of observations can vary from batch to batch, specify that the
number of observations (first dimension) has variable size. For details, see “Specify Variable-Size
Arguments for Code Generation” on page 34-56 and “Specify Properties of Entry-Point Function
Inputs” (MATLAB Coder).

• Because several entry-point functions accept an incremental model object as a input, and operate
on it, create a representation of the model object for code generation by using
coder.OutputType (MATLAB Coder). For more details, see “Pass an Entry-Point Function
Output as an Input” (MATLAB Coder).

predictorData = coder.typeof(X,[],[true false]); 
responseData = coder.typeof(Y,[],true);
IncrMdlOutputType = coder.OutputType('myInitialModelIncrLearn');

Generate code for the entry-point functions using codegen (MATLAB Coder). For each entry-point
function argument, use the -args flags to specify the coder representations of the variables. Specify
the output MEX function name myIncrLearn_mex.

 codegen -o myIncrLearn_mex ...
 myInitialModelIncrLearn ... 
 myUpdateMetricsIncrLearn -args {IncrMdlOutputType,predictorData,responseData} ...
 myFitIncrLearn -args {IncrMdlOutputType,predictorData,responseData} ...
 myPredictIncrLearn –args {IncrMdlOutputType,predictorData} -report

Code generation successful: To view the report, open('codegen\mex\myIncrLearn_mex\html\report.mldatx')

For help debugging code generation issues, view the generated C/C++ code by clicking View
report (see “Code Generation Reports” (MATLAB Coder)).

Verify Generated Code

Test the MEX function to verify that the generated code provides the same functionality as the
original MATLAB code. To perform this test, run the MEX function using the same inputs that you
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used to run the original MATLAB code, and then compare the results. Running the MEX function in
MATLAB before generating standalone code also enables you to detect and fix run-time errors that
are much harder to diagnose in the generated standalone code. For more details, see “Why Test MEX
Functions in MATLAB?” (MATLAB Coder).

Perform incremental learning by using the generated MEX functions and directly by using the object
functions. Specify a batch

% Preallocation
numObsPerChunk = 50;
nchunk = floor(n/numObsPerChunk);
ce = array2table(zeros(nchunk,2),'VariableNames',["Cumulative" "Window"]);
hinge = ce;
ceCG = ce;
hingeCG = ce;
IncrementalMdlCG = myIncrLearn_mex('myInitialModelIncrLearn');
scores = zeros(n,2);
scoresCG = zeros(n,2);

% Incremental fitting
for j = 1:nchunk
    ibegin = min(n,numObsPerChunk*(j-1) + 1);
    iend   = min(n,numObsPerChunk*j);
    idx = ibegin:iend;

    IncrementalMdl = updateMetrics(IncrementalMdl,X(idx,:),Y(idx));
    ce{j,:} = IncrementalMdl.Metrics{"ClassificationError",:};
    hinge{j,:} = IncrementalMdl.Metrics{"HingeLoss",:};
    IncrementalMdlCG = myIncrLearn_mex('myUpdateMetricsIncrLearn',IncrementalMdlCG,...
        X(idx,:),Y(idx));
    ceCG{j,:} = IncrementalMdlCG.Metrics{"ClassificationError",:};
    hingeCG{j,:} = IncrementalMdlCG.Metrics{"HingeLoss",:};

    IncrementalMdl = fit(IncrementalMdl,X(idx,:),Y(idx));
    IncrementalMdlCG = myIncrLearn_mex('myFitIncrLearn',IncrementalMdlCG,X(idx,:),Y(idx));
    
    [~,scores(idx,:)] = predict(IncrementalMdl,X(idx,:));
    [~,scoresCG(idx,:)] = myIncrLearn_mex('myPredictIncrLearn',IncrementalMdlCG,X(idx,:));
end

Compare the cumulative metrics and scores for classifying Idle returned by the object functions and
MEX functions.

idx = all(~isnan(ce.Variables),2);
areCEsEqual = norm(ce.Cumulative(idx) - ceCG.Cumulative(idx))

areCEsEqual = 8.9904e-18

idx = all(~isnan(hinge.Variables),2);
areHingeLossesEqual = norm(hinge.Cumulative(idx) - hingeCG.Cumulative(idx))

areHingeLossesEqual = 9.5220e-17

areScoresEqual = norm(scores(:,1) - scoresCG(:,1))

areScoresEqual = 8.7996e-13
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The differences between the returned quantities are negligible.
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Code Generation for Nearest Neighbor Searcher

The object functions knnsearch and rangesearch of the nearest neighbor searcher objects,
ExhaustiveSearcher and KDTreeSearcher, support code generation. This example shows how to
generate code for finding the nearest neighbor using an exhaustive searcher object at the command
line. The example shows two different ways to generate code, depending on the way you use the
object: load the object by using loadLearnerForCoder in an entry-point function, and pass a
compile-time constant object to the generated code.

Train Exhaustive Nearest Neighbor Searcher

Load Fisher's iris data set.

load fisheriris

Remove five irises randomly from the predictor data to use as a query set.

rng('default');             % For reproducibility
n = size(meas,1);           % Sample size
qIdx = randsample(n,5);     % Indices of query data
X = meas(~ismember(1:n,qIdx),:);
Y = meas(qIdx,:);

Prepare an exhaustive nearest neighbor searcher using the training data. Specify the 'Distance'
and 'P' name-value pair arguments to use the Minkowski distance with an exponent of 1 for finding
the nearest neighbor.

Mdl = ExhaustiveSearcher(X,'Distance','minkowski','P',1);

Find the index of the training data (X) that is the nearest neighbor of each point in the query data (Y).

Idx = knnsearch(Mdl,Y);

Generate Code Using saveLearnerForCoder and loadLearnerForCoder

Generate code that loads an exhaustive searcher, takes query data as an input argument, and then
finds the nearest neighbor.

Save the exhaustive searcher to a file using saveLearnerForCoder.

saveLearnerForCoder(Mdl,'searcherModel')

saveLearnerForCoder saves the model to the MATLAB binary file searcherModel.mat as a
structure array in the current folder.

Define the entry-point function myknnsearch1 that takes query data as an input argument. Within
the function, load the searcher object by using loadLearnerForCoder, and then pass the loaded
model to knnsearch.

type myknnsearch1.m % Display contents of myknnsearch1.m file

function idx = myknnsearch1(Y) %#codegen
Mdl = loadLearnerForCoder('searcherModel');
idx = knnsearch(Mdl,Y);
end
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Note: If you click the button located in the upper-right section of this page and open this example in
MATLAB®, then MATLAB® opens the example folder. This folder includes the entry-point function
files, myknnsearch1.m, myknnsearch2.m, and myknnsearch3.m.

Generate code for myknnsearch1 by using codegen (MATLAB Coder). Specify the data type and
dimension of the input argument by using coder.typeof (MATLAB Coder) so that the generated
code accepts a variable-size array.

codegen myknnsearch1 -args {coder.typeof(Y,[Inf,4],[1,0])}

Code generation successful.

For a more detailed code generation example that uses saveLearnerForCoder and
loadLearnerForCoder, see “Code Generation for Prediction of Machine Learning Model at
Command Line” on page 34-9. For more details about specifying variable-size arguments, see
“Specify Variable-Size Arguments for Code Generation” on page 34-56.

Pass the query data (Y) to verify that myknnsearch1 and the MEX file return the same indices.

myIdx1 = myknnsearch1(Y);
myIdx1_mex = myknnsearch1_mex(Y);

Compare myIdx1 and myIdx1_mex by using isequal.

verifyMEX1 = isequal(Idx,myIdx1,myIdx1_mex)

verifyMEX1 = logical
   1

isequal returns logical 1 (true) if all the inputs are equal. This comparison confirms that
myknnsearch1 and the MEX file return the same results.

Generate Code with Constant Folded Model Object

Nearest neighbor searcher objects can be an input argument of a function you define for code
generation. The -args option of codegen (MATLAB Coder) accept a compile-time constant searcher
object.

Define the entry-point function myknnsearch2 that takes both an exhaustive searcher model and
query data as input arguments instead of loading the model in the function.

type myknnsearch2.m % Display contents of myknnsearch2.m file

function idx = myknnsearch2(Mdl,Y) %#codegen
idx = knnsearch(Mdl,Y);
end

To generate code that takes the model object as well as the query data, designate the model object as
a compile-time constant by using coder.Constant (MATLAB Coder) and include the constant folded
model object in the -args value of codegen.

codegen myknnsearch2 -args {coder.Constant(Mdl),coder.typeof(Y,[Inf,4],[1,0])}

Code generation successful.

The code generation workflow with a constant folded model object follows general code generation
workflow. For details, see “General Code Generation Workflow” on page 34-5.
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Verify that myknnsearch2 and the MEX file return the same results.

myIdx2 = myknnsearch2(Mdl,Y);
myIdx2_mex = myknnsearch2_mex(Mdl,Y);
verifyMEX2 = isequal(Idx,myIdx2,myIdx2_mex)

verifyMEX2 = logical
   1

Generate Code with Name-Value Pair Arguments

Define the entry-point function myknnsearch3 that takes a model object, query data, and name-value
pair arguments. You can allow for optional name-value arguments by specifying varargin as an input
argument. For details, see “Code Generation for Variable Length Argument Lists” (MATLAB Coder).

type myknnsearch3.m % Display contents of myknnsearch3.m file

function idx = myknnsearch3(Mdl,Y,varargin) %#codegen
idx = knnsearch(Mdl,Y,varargin{:});
end

To generate code that allows a user-defined exponent for the Minkowski distance, include
{coder.Constant('P'),0} in the -args value of codegen. Use coder.Constant (MATLAB
Coder) because the name of a name-value pair argument must be a compile-time constant.

codegen myknnsearch3 -args {coder.Constant(Mdl),coder.typeof(Y,[Inf,4],[1,0]),coder.Constant('P'),0}

Code generation successful.

Verify that myknnsearch3 and the MEX file return the same results.

newIdx = knnsearch(Mdl,Y,'P',2);
myIdx3 = myknnsearch3(Mdl,Y,'P',2);
myIdx3_mex = myknnsearch3_mex(Mdl,Y,'P',2);
verifyMEX3 = isequal(newIdx,myIdx3,myIdx3_mex)

verifyMEX3 = logical
   1

See Also
codegen | saveLearnerForCoder | loadLearnerForCoder | knnsearch | rangesearch |
ExhaustiveSearcher | KDTreeSearcher

Related Examples
• “Introduction to Code Generation” on page 34-2
• “General Code Generation Workflow” on page 34-5
• “Code Generation for Prediction of Machine Learning Model at Command Line” on page 34-9
• “Specify Variable-Size Arguments for Code Generation” on page 34-56
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Code Generation for Prediction of Machine Learning Model
Using MATLAB Coder App

This example shows how to generate C/C++ code for the prediction of classification and regression
model objects by using the MATLAB® Coder™ app. You can also generate code at the command line
using codegen (MATLAB Coder). See “Code Generation for Prediction of Machine Learning Model at
Command Line” on page 34-9 for details.

Certain classification and regression model objects have a predict or random function that supports
code generation. Prediction using these object functions requires a trained classification or
regression model object, but an entry-point function for code generation cannot have these objects as
input variables. Work around this limitation by using saveLearnerForCoder and
loadLearnerForCoder as described in this example.

This flow chart shows the code generation workflow for the object functions of classification and
regression model objects.

In this example, you train a classification ensemble model using k-nearest-neighbor weak learners
and save the trained model by using saveLearnerForCoder. Then, define an entry-point function
that loads the saved model by using loadLearnerForCoder and calls the object function. Write a
script to test the entry-point function. Finally, generate code by using the MATLAB Coder app and
verify the generated code.

Train Classification Model

Load the ionosphere data set. This data set has 34 predictors and 351 binary responses for radar
returns, either bad ('b') or good ('g').

load ionosphere

Train a classification ensemble model with k-nearest-neighbor weak learners by using the random
subspace method. For details of classifications that use a random subspace ensemble, see “Random
Subspace Classification” on page 19-105.

rng('default')  % For reproducibility
learner = templateKNN('NumNeighbors',2);
Mdl = fitcensemble(X,Y,'Method','Subspace','NPredToSample',5, ...
    'Learners',learner,'NumLearningCycles',13);

Save Model Using saveLearnerForCoder

Save the trained ensemble model to a file named knnEnsemble.mat in your current folder.

saveLearnerForCoder(Mdl,'knnEnsemble')

saveLearnerForCoder makes the full classification model Mdl compact, and then saves it to the
MATLAB binary file knnEnsemble.mat as a structure array in the current folder.
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Define Entry-Point Function

An entry-point function, also known as the top-level or primary function, is a function you define for
code generation. You must define an entry-point function that calls code-generation-enabled functions
and generate C/C++ code from the entry-point function. All functions within the entry-point function
must support code generation.

In a new file in your current folder, define an entry-point function named myknnEnsemblePredict
that does the following:

• Accept input data (X), the file name of the saved model (fileName), and valid name-value pair
arguments of the predict function (varargin).

• Load a trained ensemble model by using loadLearnerForCoder.
• Predict labels and corresponding scores from the loaded model.

You can allow for optional name-value arguments by specifying varargin as an input argument. For
details, see “Code Generation for Variable Length Argument Lists” (MATLAB Coder).

type myknnEnsemblePredict.m % Display the contents of myknnEnsemblePredict.m file. 

function [label,score] = myknnEnsemblePredict(X,fileName,varargin) %#codegen
CompactMdl = loadLearnerForCoder(fileName);
[label,score] = predict(CompactMdl,X,varargin{:});
end

Add the %#codegen compiler directive (or pragma) to the entry-point function after the function
signature to indicate that you intend to generate code for the MATLAB algorithm. Adding this
directive instructs the MATLAB Code Analyzer to help you diagnose and fix violations that would
result in errors during code generation. See “Check Code with the Code Analyzer” (MATLAB Coder).

Note: If you click the button located in the upper-right section of this page and open this example in
MATLAB, then MATLAB opens the example folder. This folder includes the entry-point function file
(myknnEnsemblePredict.m) and the test file (test_myknnEnsemblePredict.m, described later
on).

Set Up Compiler

To generate C/C++ code, you must have access to a C/C++ compiler that is configured properly.
MATLAB Coder locates and uses a supported, installed compiler. You can use mex -setup to view and
change the default compiler. For more details, see “Change Default Compiler”.

Create Test File

Write a test script that calls the myknnEnsemblePredict function. In the test script, specify the
input arguments and name-value pair arguments that you use in the generated code. You use this test
script to define input types automatically when generating code using the MATLAB Coder app.

In this example, create the test_myknnEnsemblePredict.m file in your current folder, as shown.

type test_myknnEnsemblePredict.m % Display the contents of test_myknnEnsemblePredict.m file. 

%% Load Sample data
load ionosphere

%% Test myknnEnsemblePredict
[label,score] = myknnEnsemblePredict(X,'knnEnsemble','Learners',1:13);
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For details, see “Automatically Define Input Types by Using the App” (MATLAB Coder).

Generate Code Using MATLAB Coder App

The MATLAB Coder app generates C or C++ code from MATLAB code. The workflow-based user
interface steps you through the code generation process. The following steps describe a brief
workflow of the MATLAB Coder App. For more details, see MATLAB Coder (MATLAB Coder) and
“Generate C Code by Using the MATLAB Coder App” (MATLAB Coder).

1. Open the MATLAB Coder App and Select the Entry-Point Function File.

On the Apps tab, in the Apps section, click the Show more arrow to open the apps gallery. Under
Code Generation, click MATLAB Coder. The app opens the Select Source Files page. Enter or
select the name of the entry-point function, myknnEnsemblePredict.

Click Next to go to the Define Input Types page.

2. Define Input Types

Because C uses static typing, MATLAB Coder must determine the properties of all variables in the
MATLAB files at compile time. Therefore, you need to specify the properties of the entry-point
function inputs.
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Enter or select the test script test_myknnEnsemblePredict and click Autodefine Input Types.

The MATLAB Coder app recognizes input types of the myknnEnsemblePredict function based on
the test script.

Modify the input types:

• X — The app infers that input X is double(351x34). The number of predictors must be fixed to
be the same as the number of predictors in the trained model. However, you can have a different
number of observations for prediction. If the number of observations is unknown, change
double(351x34) to double(:351x34) or double(:infx34). The setting double(:351x34)
allows the number of observations up to 351, and the setting double(:infx34) allows an
unbounded number of observations. In this example, specify double(:infx34) by clicking 351
and selecting :inf.

• fileName — Click char, select Define Constant, and type the file name with single quotes,
'knnEnsemble'.

• varargin{1} — Names in name-value pair arguments must be compile-time constants. Click
char, select Define Constant, and type 'Learners'.

• varargin{2} — To allow user-defined indices up to 13 weak learners in the generated code,
change double(1x13) to double(1x:13).
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Click Next to go to the Check for Run-Time Issues page. This optional step generates a MEX file,
runs the MEX function, and reports issues. Click Next to go to the Generate Code page.

3. Generate C Code

Set Build type to MEX and click Generate. The app generates a MEX function,
myknnEnsemblePredict_mex. A MEX function is a C/C++ program that is executable from
MATLAB. You can use a MEX function to accelerate MATLAB algorithms and to test the generated
code for functionality and run-time issues. For details, see “MATLAB Algorithm Acceleration”
(MATLAB Coder) and “Why Test MEX Functions in MATLAB?” (MATLAB Coder).

Depending on the specified build type, MATLAB Coder generates a MEX function or standalone C/C+
+ code compiled to a static library, dynamic linked library, or executable. For details on setting a
build type, see “Configure Build Settings” (MATLAB Coder).
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Click Next to go to the Finish Workflow page.

4. Review the Finish Workflow Page

The Finish Workflow page indicates that code generation succeeded. This page also provides a
project summary and links to generated output.
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Generate Code Using Script

You can convert a MATLAB Coder project to the equivalent script of MATLAB commands after you
define input types. Then you run the script to generate code. For details, see “Convert MATLAB
Coder Project to MATLAB Script” (MATLAB Coder).

On the MATLAB Coder app toolbar, click the Open action menu button: 

Select Convert to script, and then click Save. The app creates the file
myknnEnsemblePredict_script.m, which reproduces the project in a configuration object and
runs the codegen (MATLAB Coder) function.

Display the contents of the file myknnEnsemblePredict_script.m.

type myknnEnsemblePredict_script.m

% MYKNNENSEMBLEPREDICT_SCRIPT   Generate MEX-function myknnEnsemblePredict_mex
%  from myknnEnsemblePredict.
% 
% Script generated from project 'myknnEnsemblePredict.prj' on 17-Nov-2017.
% 
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% See also CODER, CODER.CONFIG, CODER.TYPEOF, CODEGEN.

%% Create configuration object of class 'coder.MexCodeConfig'.
cfg = coder.config('mex');
cfg.GenerateReport = true;
cfg.ReportPotentialDifferences = false;

%% Define argument types for entry-point 'myknnEnsemblePredict'.
ARGS = cell(1,1);
ARGS{1} = cell(4,1);
ARGS{1}{1} = coder.typeof(0,[Inf  34],[1 0]);
ARGS{1}{2} = coder.Constant('knnEnsemble');
ARGS{1}{3} = coder.Constant('Learners');
ARGS{1}{4} = coder.typeof(0,[1 13],[0 1]);

%% Invoke MATLAB Coder.
codegen -config cfg myknnEnsemblePredict -args ARGS{1} -nargout 2

Run the script.

myknnEnsemblePredict_script

Code generation successful: To view the report, open('codegen\mex\myknnEnsemblePredict\html\report.mldatx')

Verify Generated Code

Test a MEX function to verify that the generated code provides the same functionality as the original
MATLAB code. To perform this test, run the MEX function using the same inputs that you used to run
the original MATLAB code, and then compare the results. Running the MEX function in MATLAB
before generating standalone code also enables you to detect and fix run-time errors that are much
harder to diagnose in the generated standalone code. For more details, see “Why Test MEX Functions
in MATLAB?” (MATLAB Coder).

Pass some predictor data to verify that myknnEnsemblePredict and the MEX function return the
same results.

[label1,score1] = predict(Mdl,X,'Learners',1:10);
[label2,score2] = myknnEnsemblePredict(X,'knnEnsemble','Learners',1:10);
[label3,score3] = myknnEnsemblePredict_mex(X,'knnEnsemble','Learners',1:10);

Compare label1, label2, and label3 by using isequal.

isequal(label1,label2,label3)

ans = logical
   1

isequal returns logical 1 (true), which means all the inputs are equal.

The score3 output from the MEX function might include round-off differences compared with the
output from the predict function. In this case, compare score1 and score3, allowing a small
tolerance.

find(abs(score1-score3) > 1e-12)

ans =

  0x1 empty double column vector
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find returns an empty vector if the element-wise absolute difference between score1 and score3 is
not larger than the specified tolerance 1e-12. The comparisons confirm that
myknnEnsemblePredict and the MEX function return the same results.

See Also
codegen | saveLearnerForCoder | loadLearnerForCoder | learnerCoderConfigurer

More About
• “Introduction to Code Generation” on page 34-2
• “Code Generation for Prediction of Machine Learning Model at Command Line” on page 34-9
• “Code Generation for Prediction and Update Using Coder Configurer” on page 34-92
• “Code Generation and Classification Learner App” on page 34-32
• “Specify Variable-Size Arguments for Code Generation” on page 34-56
• “Generate C Code by Using the MATLAB Coder App” (MATLAB Coder)
• Function List (C/C++ Code Generation)
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Code Generation and Classification Learner App
Classification Learner is well suited for choosing and training classification models interactively, but
it does not generate C/C++ code that labels data based on a trained model. The Generate Function
button in the Export section of the Classification Learner app generates MATLAB code for training a
model but does not generate C/C++ code. This example shows how to generate C code from a
function that predicts labels using an exported classification model. The example builds a model that
predicts the credit rating of a business given various financial ratios, according to these steps:

1 Use the credit rating data set in the file CreditRating_Historical.dat, which is included
with Statistics and Machine Learning Toolbox.

2 Reduce the data dimensionality using principal component analysis (PCA).
3 Train a set of models that support code generation for label prediction.
4 Export the model with the minimum 5-fold, cross-validated classification accuracy.
5 Generate C code from an entry-point function that transforms the new predictor data and then

predicts corresponding labels using the exported model.

Load Sample Data
Load sample data and import the data into the Classification Learner app. Review the data using
scatter plots and remove unnecessary predictors.

Use readtable to load the historical credit rating data set in the file
CreditRating_Historical.dat into a table.

creditrating = readtable('CreditRating_Historical.dat');

On the Apps tab, click Classification Learner.

In Classification Learner, on the Classification Learner tab, in the File section, click New Session
and select From Workspace.

In the New Session from Workspace dialog box, select the table creditrating. All variables, except
the one identified as the response, are double-precision numeric vectors. Click Start Session to
compare classification models based on the 5-fold, cross-validated classification accuracy.

Classification Learner loads the data and plots a scatter plot of the variables WC_TA versus ID.
Because identification numbers are not helpful to display in a plot, choose RE_TA for X under
Predictors.
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The scatter plot suggests that the two variables can separate the classes AAA, BBB, BB, and CCC fairly
well. However, the observations corresponding to the remaining classes are mixed into these classes.

Identification numbers are not helpful for prediction. Therefore, in the Options section of the
Classification Learner tab, click Feature Selection. In the Default Feature Selection tab, clear
the ID check box, and click Save and Apply. You can also remove unnecessary predictors from the
beginning by using the check boxes in the New Session from Workspace dialog box. This example
shows how to remove unused predictors for code generation when you have included all predictors.

Enable PCA
Enable PCA to reduce the data dimensionality.

In the Options section of the Classification Learner tab, click PCA. In the Default PCA Options
dialog box, select Enable PCA, and click Save and Apply. This action applies PCA to the predictor
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data, and then transforms the data before training the models. Classification Learner uses only
components that collectively explain 95% of the variability.

Train Models
Train a set of models that support code generation for label prediction. For a list of models in
Classification Learner that support code generation, see “Generate C Code for Prediction” on page
23-85.

Select the following classification models and options, which support code generation for label
prediction, and then perform cross-validation (for more details, see “Introduction to Code
Generation” on page 34-2). To select each model, in the Models section, click the Show more arrow,
and then click the model.

Models and Options to Select Description
Under Decision Trees, select All Trees Classification trees of various complexities
Under Support Vector Machines, select All
SVMs

SVMs of various complexities and using various
kernels. Complex SVMs require time to fit.

Under Ensemble Classifiers, select Boosted
Trees. In the model Summary tab, under Model
Hyperparameters, reduce Maximum number
of splits to 5 and increase Number of learners
to 100.

Boosted ensemble of classification trees

Under Ensemble Classifiers, select Bagged
Trees. In the model Summary tab, under Model
Hyperparameters, reduce Maximum number
of splits to 50 and increase Number of
learners to 100.

Random forest of classification trees

After selecting the models and specifying any options, delete the default fine tree model (model 1).
Right-click the model in the Models pane and select Delete. Then, in the Train section, click Train
All and select Train All.

After the app cross-validates each model type, the Models pane displays each model and its 5-fold,
cross-validated classification accuracy, and highlights the model with the best accuracy.
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Select the model that yields the maximum 5-fold, cross-validated classification accuracy, which is the
error-correcting output codes (ECOC) model of Fine Gaussian SVM learners. With PCA enabled,
Classification Learner uses two predictors out of six.

In the Plot and Interpret section, click the arrow to open the gallery, and then click Confusion
Matrix (Validation) in the Validation Results group.
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The model does well distinguishing between A, B, and C classes. However, the model does not do as
well distinguishing between particular levels within those groups, the lower B levels in particular.

Export Model to Workspace
Export the model to the MATLAB Workspace and save the model using saveLearnerForCoder.

In the Export section, click Export Model, and then select Export Compact Model. Click OK in the
dialog box.

The structure trainedModel appears in the MATLAB Workspace. The field ClassificationSVM of
trainedModel contains the compact model.

At the command line, save the compact model to a file called ClassificationLearnerModel.mat
in your current folder.
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saveLearnerForCoder(trainedModel.ClassificationSVM,'ClassificationLearnerModel')

Generate C Code for Prediction
Prediction using the object functions requires a trained model object, but the -args option of
codegen does not accept such objects. Work around this limitation by using saveLearnerForCoder
and loadLearnerForCoder. Save a trained model by using saveLearnerForCoder. Then, define
an entry-point function that loads the saved model by using loadLearnerForCoder and calls the
predict function. Finally, use codegen to generate code for the entry-point function.

Preprocess Data

Preprocess new data in the same way you preprocess the training data.

To preprocess, you need the following three model parameters:

• removeVars — Column vector of at most p elements identifying indices of variables to remove
from the data, where p is the number of predictor variables in the raw data

• pcaCenters — Row vector of exactly q PCA centers
• pcaCoefficients — q-by-r matrix of PCA coefficients, where r is at most q

Specify the indices of predictor variables that you removed while selecting data using Feature
Selection in Classification Learner. Extract the PCA statistics from trainedModel.

removeVars = 1;
pcaCenters = trainedModel.PCACenters;
pcaCoefficients = trainedModel.PCACoefficients;

Save the model parameters to a file named ModelParameters.mat in your current folder.

save('ModelParameters.mat','removeVars','pcaCenters','pcaCoefficients');

Define Entry-Point Function

An entry-point function is a function you define for code generation. Because you cannot call any
function at the top level using codegen, you must define an entry-point function that calls code-
generation-enabled functions, and then generate C/C++ code for the entry-point function by using
codegen.

In your current folder, define a function named mypredictCL.m that:

• Accepts a numeric matrix (X) of raw observations containing the same predictor variables as the
ones passed into Classification Learner

• Loads the classification model in ClassificationLearnerModel.mat and the model
parameters in ModelParameters.mat

• Removes the predictor variables corresponding to the indices in removeVars
• Transforms the remaining predictor data using the PCA centers (pcaCenters) and coefficients

(pcaCoefficients) estimated by Classification Learner
• Returns predicted labels using the model

function label = mypredictCL(X) %#codegen
%MYPREDICTCL Classify credit rating using model exported from
%Classification Learner
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%   MYPREDICTCL loads trained classification model (SVM) and model
%   parameters (removeVars, pcaCenters, and pcaCoefficients), removes the
%   columns of the raw matrix of predictor data in X corresponding to the
%   indices in removeVars, transforms the resulting matrix using the PCA
%   centers in pcaCenters and PCA coefficients in pcaCoefficients, and then
%   uses the transformed data to classify credit ratings. X is a numeric
%   matrix with n rows and 7 columns. label is an n-by-1 cell array of
%   predicted labels.

% Load trained classification model and model parameters
SVM = loadLearnerForCoder('ClassificationLearnerModel');
data = coder.load('ModelParameters');
removeVars = data.removeVars;
pcaCenters = data.pcaCenters;
pcaCoefficients = data.pcaCoefficients;

% Remove unused predictor variables
keepvars = 1:size(X,2);
idx = ~ismember(keepvars,removeVars);
keepvars = keepvars(idx);
XwoID = X(:,keepvars);

% Transform predictors via PCA
Xpca = bsxfun(@minus,XwoID,pcaCenters)*pcaCoefficients;

% Generate label from SVM
label = predict(SVM,Xpca);
end

Generate Code

Because C and C++ are statically typed languages, you must determine the properties of all variables
in the entry-point function at compile time. Specify variable-size arguments using coder.typeof
and generate code using the arguments.

Create a double-precision matrix called x for code generation using coder.typeof. Specify that the
number of rows of x is arbitrary, but that x must have p columns.

p = size(creditrating,2) - 1;
x = coder.typeof(0,[Inf,p],[1 0]);

For more details about specifying variable-size arguments, see “Specify Variable-Size Arguments for
Code Generation” on page 34-56.

Generate a MEX function from mypredictCL.m. Use the -args option to specify x as an argument.

codegen mypredictCL -args x

codegen generates the MEX file mypredictCL_mex.mexw64 in your current folder. The file
extension depends on your platform.

Verify Generated Code

Verify that the MEX function returns the expected labels.

Remove the response variable from the original data set, and then randomly draw 15 observations.
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rng('default'); % For reproducibility
m = 15;
testsampleT = datasample(creditrating(:,1:(end - 1)),m);

Predict corresponding labels by using predictFcn in the classification model trained by
Classification Learner.

testLabels = trainedModel.predictFcn(testsampleT);

Convert the resulting table to a matrix.

testsample = table2array(testsampleT);

The columns of testsample correspond to the columns of the predictor data loaded by Classification
Learner.

Pass the test data to mypredictCL. The function mypredictCL predicts corresponding labels by
using predict and the classification model trained by Classification Learner.

testLabelsPredict = mypredictCL(testsample);

Predict corresponding labels by using the generated MEX function mypredictCL_mex.

testLabelsMEX = mypredictCL_mex(testsample);

Compare the sets of predictions.

isequal(testLabels,testLabelsMEX,testLabelsPredict)

ans =

  logical

   1

isequal returns logical 1 (true) if all the inputs are equal. predictFcn, mypredictCL, and the
MEX function return the same values.

See Also
loadLearnerForCoder | saveLearnerForCoder | coder.typeof | codegen |
learnerCoderConfigurer

Related Examples
• “Classification Learner App”
• “Predict Responses Using RegressionSVM Predict Block” on page 34-127
• “Introduction to Code Generation” on page 34-2
• “Code Generation for Prediction of Machine Learning Model at Command Line” on page 34-9
• “Code Generation for Prediction of Machine Learning Model Using MATLAB Coder App” on

page 34-23
• “Code Generation for Prediction and Update Using Coder Configurer” on page 34-92
• “Specify Variable-Size Arguments for Code Generation” on page 34-56
• “Apply PCA to New Data and Generate C/C++ Code” on page 35-5325
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Deploy Neural Network Regression Model to FPGA/ASIC
Platform

This example shows how to train a neural network regression model, use the trained regression
model in a Simulink® model that estimates the state of charge of a battery, and generate HDL code
from the Simulink model for deployment to an FPGA/ASIC (Field-Programmable Gate Array /
Application-Specific Integrated Circuit) platform.

State of charge (SoC) is the level of charge of an electric battery relative to its capacity, measured as
a percentage. SoC is critical for a vehicle's energy management system. You cannot measure SoC
directly; therefore, you must estimate it. The SoC estimation must be accurate to ensure reliable and
affordable electrified vehicles (xEV). However, because of the nonlinear temperature, health, and
SoC-dependent behavior of Li-ion batteries, SoC estimation remains a significant challenge in
automotive engineering. Traditional approaches to this problem, such as electrochemical models,
usually require precise parameters and knowledge of the battery composition and physical response.

In contrast, modeling SoC with neural networks is a data-driven approach that requires minimal
knowledge of the battery and its nonlinear characteristics [1]. This example uses a neural network
regression model to predict SoC from the battery's current, voltage, and temperature measurements
[2].

The Simulink model in this example includes a plant simulation of the battery and a battery
management system (BMS). The BMS monitors the battery state, manages the battery temperature,
and ensures safe operation. For example, the BMS helps to avoid overcharging and overdischarging.
From the battery sensors, the BMS collects information on the current, voltage, and temperature in a
closed-loop system.

Train Regression Model at Command Line

To begin, load the data set for this example. Then, train the regression model at the command line
and evaluate the model performance.

Load Data Set

This example uses the batterySmall data set, which is a subset of the data set in [1]. The
batterySmall data set contains two tables: trainDataSmall (training data set) and
testDataSmall (test data set). Both the training and test data sets have a balanced representation
of various temperature ranges. In both data sets, the observations are normalized.
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Load the batterySmall data set.

load batterysmall.mat

Display the first eight rows of the tables trainDataSmall and testDataSmall.

head(trainDataSmall)

       V          I        Temp       V_avg      I_avg        Y   
    _______    _______    _______    _______    _______    _______

     0.3855    0.75102    0.49157    0.38535    0.75102    0.20642
    0.38704    0.75102    0.85766    0.38571    0.75102    0.20642
    0.38709    0.75102    0.85824    0.38572    0.75102    0.20642
    0.38924    0.75102    0.85628    0.38658    0.75102    0.20642
    0.39174    0.75102    0.90589    0.38919    0.75102    0.20642
    0.39338    0.75102    0.90368    0.39149    0.75102    0.20642
    0.39508    0.75102    0.91501     0.3939    0.75102    0.20642
    0.39529    0.75102    0.91306    0.39417    0.75102    0.20642

head(testDataSmall)

       V          I         Temp        V_avg      I_avg        Y   
    _______    _______    _________    _______    _______    _______

    0.68309    0.63084    0.0084771     0.8907    0.72464    0.99725
    0.74425    0.70388      0.01131    0.87824     0.7214     0.9958
    0.76465    0.69525     0.014143    0.85308    0.71765     0.9915
    0.91283    0.74702     0.014143    0.86508    0.72354    0.99175
    0.81809    0.71665     0.014143    0.86544    0.72384    0.98893
    0.63116    0.58937     0.016976    0.86426    0.72321    0.98804
    0.55114     0.5736     0.031141     0.7997    0.69442    0.96458
    0.90598    0.80312     0.033973    0.79805    0.69475    0.96337

Both tables contain variables of battery sensor data: voltage (V), current (I), temperature (Temp),
average voltage (V_avg), and average current (I_avg). Both tables also contain the state of charge
(SoC) variable, which is represented by Y.

Train Regression Model

Train a neural network regression model by using the fitrnet function on the training data set.
Specify the sizes of the hidden, fully connected layers in the neural network model.

nnetMdl = fitrnet(trainDataSmall,"Y",LayerSizes=[10,10]);

nnetMdl is a RegressionNeuralNetwork model.

Evaluate Model Performance

Cross-validate the trained model using 5-fold cross-validation, and estimate the cross-validated
classification accuracy.

partitionedModel = crossval(nnetMdl,KFold=5);
validationAccuracy = 1-kfoldLoss(partitionedModel)

validationAccuracy = 0.9994

Calculate the test set accuracy to evaluate how well the trained model generalizes.
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testAccuracy = 1-loss(nnetMdl,testDataSmall,"Y")

testAccuracy = 0.9994

The test set accuracy is larger than 99.9%, which confirms that the model does not overfit to the
training set.

Import Model to Simulink for Prediction

This example provides the Simulink model slexFPGAPredictExample, which includes the
RegressionNeuralNetwork Predict block, for estimating the battery SoC. The model also includes the
measured SoC, so you can compare it to the estimated SoC.

Load Data

The batterySmall data set contains the dataLarge structure with the input data (X) and the
measured SoC (Y). Use the X data to create the input data to the slexFPGAPredictExample model.

Create an input signal (input) in the form of an array for the Simulink model. The first column of the
array contains the timeVector variable, which includes the points in time at which the observations
enter the model. The other five columns of the array contain variables of battery measurements.

timeVector = (0:length(dataLarge.X)-1)';
input = [timeVector,dataLarge.X];
measuredSOC = [timeVector dataLarge.Y];

Load the minimum and maximum values of the raw input data used for denormalizing input.

minmaxData = load("MinMaxVectors");
X_MIN = minmaxData.X_MIN;
X_MAX = minmaxData.X_MAX;
stepSize = 10;

Simulate Simulink Model

Open the Simulink model slexFPGAPredictExample. Simulate the model and export the simulation
output to the workspace.

open_system("slexFPGAPredictExample.slx")
simOut = sim("slexFPGAPredictExample.slx");
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Plot the simulated and measured values of the battery SoC.

sim_ypred = simOut.yout.get("estim").Values.Data;

plot(simOut.tout,sim_ypred)
hold on
plot(dataLarge.Y)
hold off
legend("Simulated SoC","Measured SoC",location="northwest")

Convert Simulink Model to Fixed-Point

To deploy the Simulink model to FPGA or ASIC hardware with no floating-point support, you must
convert the RegressionNeuralNetwork Predict block to fixed-point. You can convert the Neural
Network subsystem to fixed-point by using the “Fixed-Point Tool” (Fixed-Point Designer). You can also
specify the fixed-point values directly using the Data Type tab of the RegressionNeuralNetwork
Predict block dialog box. For more details on how to convert to fixed-point, see “Human Activity
Recognition Simulink Model for Fixed-Point Deployment” on page 34-86.

Open the Simulink model slexFPGAPredictFixedPointExample, which is already converted to
fixed-point. Simulate the fixed-point Simulink model and export the simulation output to the
workspace.

open_system("slexFPGAPredictFixedPointExample.slx")
simOutFixedPoint = sim("slexFPGAPredictFixedPointExample.slx");
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Compare the simulation results for the floating-point (soc_dl) and fixed-point (soc_fp) estimation of
the battery SoC.

soc_dl_sig = simOut.yout.getElement(1);
soc_fp_sig = simOutFixedPoint.yout.getElement(1);
soc_dl = soc_dl_sig.Values.Data;
soc_fp = soc_fp_sig.Values.Data;
max(abs(soc_dl-soc_fp)./soc_dl)

ans = 0.0180

This result shows less than a 2% difference between floating-point and fixed-point values for the SoC
estimation.

Prepare Simulink Model for HDL Code Generation

To prepare the RegressionNeuralNetwork Predict block for HDL code generation, you must break the
block's link to the Statistics and Machine Learning Toolbox™ library. Doing so allows you to further
modify the model.

Break Library Links

Navigate to the neural network subsystem, right-click the RegressionNeuralNetwork Predict block,
and select Library Link > Disable Link. Right-click the block again and select Library Link >
Break Link.

Repeat the same steps to break the library links in the two hidden blocks hiddenLayer1 and
hiddenLayer2, which are contained in the RegressionNeuralNetwork Predict block. To see the hidden
blocks in the Design section of the Modeling tab, select Model Workspace.
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Use HDL Code Advisor

Open and run HDL Code Advisor to verify and update the neural network subsystem for compatibility
with HDL code generation. For more information, see “Check HDL Compatibility of Simulink Model
Using HDL Code Advisor” (HDL Coder).

Open HDL Code Advisor by right-clicking the neural network subsystem and selecting HDL Code >
HDL Code Advisor. Alternatively, you can enter:

open_system("slexFPGAPredictPreparedExample.slx")
hdlcodeadvisor("slexFPGAPredictPreparedExample/neural network")

Updating Model Advisor cache...
Model Advisor cache updated. For new customizations, to update the cache, use the Advisor.Manager.refresh_customizations method.

In HDL Code Advisor, the left pane lists the folders in the hierarchy. Each folder represents a group
or category of related checks. Expand the folders to see the available checks in each group. Make
sure that all the checks are selected in the left pane, and then click Run Selected Checks in the
right pane.

If HDL Code Advisor returns a failure or a warning, the corresponding folder is marked accordingly.
Expand each group to view the checks that failed. To fix a failure, click Run This Check in the right
pane. Then, click Modify Settings. Click Run This Check again after you apply the modified
settings. Repeat this process for each failed check in the following lists.

Failed checks in the Checks for blocks and block settings group:
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1 Check for infinite and continuous sample time sources
2 Check for large matrix operations - This check flags large matrix operations with Add, Sum,

or Product blocks that result in a matrix output with more than 10 elements. These matrix
operations can use a large number of resources on the target FPGA. For now, you can skip this
check. For more information on efficient implementation of matrix operations, see Optimize the
Model for Generating Efficient Code on page 34-48.

Failed checks in the Industry standard checks group:

1 Check clock, reset, and enable signals - This check verifies if the clock, reset, and enable
signals follow the recommended naming convention.

2 Check package file names
3 Check signal and port names
4 Check top-level subsystem/port names

Failed checks in the Model configuration checks group:

1 Check for model parameters suited for the HDL code generation

After you apply the suggested settings, run all checks again and inspect that make sure they pass.

Replace Blocks with Unsupported Operations

If you try to generate HDL code by right-clicking the neural network subsystem and selecting HDL
Code > Generate HDL for Subsystem, the software issues an error about using the Max block to
compare scalar values with vectors. The error occurs in these subsystems:

• /neural network/RegressionNeuralNetwork Predict/getScore/hiddenLayers/hiddenLayer1/
Activation/relu

• /neural network/RegressionNeuralNetwork Predict/getScore/hiddenLayers/hiddenLayer2/
Activation/relu

To fix the issue that causes the error, replace the Max block with the Switch block, as shown in the
following figure.
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Generate HDL Code

This example provides the Simulink model slexFPGAPredictReadyExample, which is ready for
HDL code generation. Open the Simulink model.

open_system("slexFPGAPredictReadyExample.slx")

To generate HDL code for the neural network subsystem, right-click the subsystem and select HDL
Code > Generate HDL for Subsystem. After the code generation is complete, a code generation
report opens. The report contains the generated source files and various reports on the efficiency of
the code.

Optimize Model for Efficient Resource Usage on Hardware

Open the generated report High-level Resource Report. Note that the Simulink model uses a large
number of multipliers and adders/subtractors, because of the matrix-vector operations flagged by
HDL Code Advisor. To optimize resource usage, you can enable streaming for your model before
generating HDL code. When streaming is enabled, the generated code saves chip area by
multiplexing the data over a smaller number of hardware resources. That is, streaming allows some
computations to share a hardware resource.
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The subsystems that can benefit from streaming are:

• neural network/RegressionNeuralNetwork Predict/getScore/hiddenLayers/hiddenLayer1
• neural network/RegressionNeuralNetwork Predict/getScore/hiddenLayers/hiddenLayer2

To enable streaming for these two subsystems, perform these steps for each subsystem:

1 Right-click the subsystem (hiddenLayer1 or hiddenLayer2) and select HDL Code > HDL Block
Properties.

2 In the dialog box that opens, change the StreamingFactor option from 0 to 10, because each
hidden layer contains 10 neurons.

3 Click OK.

Generate HDL code again and note the reduced number of multipliers and adders/subtractors in the
High-level Resource Report. To open the autogenerated version of the model that uses streaming
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in the generated report, open the Streaming and Sharing report and click the link to the
autogenerated model under the link Generated model after the transformation. To see the
changes made to the subsystem, navigate to:

/neural network/RegressionNeuralNetwork Predict/getScore/hiddenLayers/hiddenLayer1

To run the autogenerated model, you must extract the parameters of the neural network model that
are stored in the mask workspace of the original Simulink model slexFPGAPredictExample. These
parameters now need to be in the base workspace.

blockName = "slexFPGAPredictReadyExample/neural network/RegressionNeuralNetwork Predict";
bmw = Simulink.Mask.get(blockName);
mv = bmw.getWorkspaceVariables;
learnerParams = mv(end).Value;

Deploy New Neural Network Model

If you train a new neural network model with different settings (for example, different activation
function, number of hidden layers, or size of hidden layers), follow the steps in this example from the
start to deploy the new model. The HDL Coder optimization (prior to HDL code generation) might be
different, depending on the new model architecture, target hardware, or other requirements.

References
[1] Kollmeyer, Phillip, Carlos Vidal, Mina Naguib, and Michael Skells. "LG 18650HG2 Li-ion Battery

Data and Example Deep Neural Network xEV SOC Estimator Script." Mendeley 3 (March
2020). https://doi.org/10.17632/CP3473X7XV.3.

[2] Vezzini, Andrea. "Lithium-Ion Battery Management." In Lithium-Ion Batteries, edited by
Gianfranco Pistoia, 345-360. Elsevier, 2014. https://doi.org/10.1016/
B978-0-444-59513-3.00015-7.

See Also
RegressionNeuralNetwork Predict | fitrnet | RegressionNeuralNetwork

Related Examples
• “Predict Responses Using RegressionNeuralNetwork Predict Block” on page 34-160
• “Human Activity Recognition Simulink Model for Fixed-Point Deployment” on page 34-86
• “HDL Coder Checks in Model Advisor / HDL Code Advisor Overview” (HDL Coder)
• “Fixed-Point Tool” (Fixed-Point Designer)

34 Code Generation

34-50

https://doi.org/10.17632/CP3473X7XV.3
https://doi.org/10.1016/B978-0-444-59513-3.00015-7
https://doi.org/10.1016/B978-0-444-59513-3.00015-7


Predict Class Labels Using MATLAB Function Block

This example shows how to add a MATLAB® Function block to a Simulink® model for label
prediction. The MATLAB Function block accepts streaming data, and predicts the label and
classification score using a trained, support vector machine (SVM) classification model. For details on
using the MATLAB Function block, see “Implement MATLAB Functions in Simulink with MATLAB
Function Blocks” (Simulink).

Train Classification Model

This example uses the ionosphere data set, which contains radar-return qualities (Y) and predictor
data (X). Radar returns are either of good quality ('g') or of bad quality ('b').

Load the ionosphere data set. Determine the sample size.

load ionosphere
n = numel(Y)

n = 351

The MATLAB Function block cannot return cell arrays. Convert the response variable to a logical
vector whose elements are 1 if the radar returns are good, and 0 otherwise.

Y = strcmp(Y,'g');

Suppose that the radar returns are detected in sequence, and you have the first 300 observations, but
you have not received the last 51 yet. Partition the data into present and future samples.

prsntX = X(1:300,:);
prsntY = Y(1:300);
ftrX = X(301:end,:);
ftrY = Y(301:end);

Train an SVM model using all, presently available data. Specify predictor data standardization.

Mdl = fitcsvm(prsntX,prsntY,'Standardize',true);

Mdl is a ClassificationSVM model.

Save Model Using saveLearnerForCoder

At the command line, you can use Mdl to make predictions for new observations. However, you
cannot use Mdl as an input argument in a function meant for code generation.

Prepare Mdl to be loaded within the function using saveLearnerForCoder.

saveLearnerForCoder(Mdl,'SVMIonosphere');

saveLearnerForCoder compacts Mdl, and then saves it in the MAT-file SVMIonosphere.mat.

Define MATLAB Function

Define a MATLAB function named svmIonospherePredict.m that predicts whether a radar return
is of good quality. The function must:
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• Include the code generation directive %#codegen somewhere in the function.
• Accept radar-return predictor data. The data must be commensurate with X except for the number

of rows.
• Load SVMIonosphere.mat using loadLearnerForCoder.
• Return predicted labels and classification scores for predicting the quality of the radar return as

good (that is, the positive-class score).

function [label,score] = svmIonospherePredict(X) %#codegen
%svmIonospherePredict Predict radar-return quality using SVM model
%   svmIonospherePredict predicts labels and estimates classification
%   scores of the radar returns in the numeric matrix of predictor data X
%   using the compact SVM model in the file SVMIonosphere.mat.  Rows of X
%   correspond to observations and columns to predictor variables.  label
%   is the predicted label and score is the confidence measure for
%   classifying the radar-return quality as good.
%
% Copyright 2016 The MathWorks Inc.
Mdl = loadLearnerForCoder('SVMIonosphere');
[label,bothscores] = predict(Mdl,X);
score = bothscores(:,2);
end

Note: If you click the button located in the upper-right section of this page and open this example in
MATLAB, then MATLAB opens the example folder. This folder includes the entry-point function file.

Create Simulink Model

Create a Simulink model with the MATLAB Function block that dispatches to
svmIonospherePredict.m.

This example provides the Simulink model slexSVMIonospherePredictExample.slx. Open the
Simulink model.

SimMdlName = 'slexSVMIonospherePredictExample'; 
open_system(SimMdlName)
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The figure displays the Simulink model. When the input node detects a radar return, it directs that
observation into the MATLAB Function block that dispatches to svmIonospherePredict.m. After
predicting the label and score, the model returns these values to the workspace and displays the
values within the model one at a time. When you load slexSVMIonospherePredictExample.slx,
MATLAB also loads the data set that it requires called radarReturnInput. However, this example
shows how to construct the required data set.

The model expects to receive input data as a structure array called radarReturnInput containing
these fields:

• time - The points in time at which the observations enter the model. In the example, the duration
includes the integers from 0 though 50. The orientation must correspond to the observations in
the predictor data. So, for this example, time must be a column vector.

• signals - A 1-by-1 structure array describing the input data, and containing the fields values
and dimensions. values is a matrix of predictor data. dimensions is the number of predictor
variables.

Create an appropriate structure array for future radar returns.

radarReturnInput.time = (0:50)';
radarReturnInput.signals(1).values = ftrX;
radarReturnInput.signals(1).dimensions = size(ftrX,2);

You can change the name from radarReturnInput, and then specify the new name in the model.
However, Simulink expects the structure array to contain the described field names.

Simulate the model using the data held out of training, that is, the data in radarReturnInput.

sim(SimMdlName);
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The figure shows the model after it processes all observations in radarReturnInput one at a time.
The predicted label of X(351,:) is 1 and its positive-class score is 1.431. The variables tout, yout,
and svmlogsout appear in the workspace. yout and svmlogsout are SimulinkData.Dataset
objects containing the predicted labels and scores. For more details, see “Data Format for Logged
Simulation Data” (Simulink).

Extract the simulation data from the simulation log.

labelsSL = svmlogsout.getElement(1).Values.Data;
scoresSL = svmlogsout.getElement(2).Values.Data;

labelsSL is a 51-by-1 numeric vector of predicted labels. labelsSL(j) = 1 means that the SVM
model predicts that radar return j in the future sample is of good quality, and 0 means otherwise.
scoresSL is a 51-by-1 numeric vector of positive-class scores, that is, signed distances from the
decision boundary. Positive scores correspond to predicted labels of 1, and negative scores
correspond to predicted labels of 0.

Predict labels and positive-class scores at the command line using predict.

[labelCMD,scoresCMD] = predict(Mdl,ftrX);
scoresCMD = scoresCMD(:,2);

labelCMD and scoresCMD are commensurate with labelsSL and scoresSL.

Compare the future-sample, positive-class scores returned by
slexSVMIonospherePredictExample to those returned by calling predict at the command line.

err = sum((scoresCMD - scoresSL).^2);
err < eps
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ans = logical
   1

The sum of squared deviations between the sets of scores is negligible.

If you also have a Simulink Coder™ license, then you can generate C code from
slexSVMIonospherePredictExample.slx in Simulink or from the command line using slbuild
(Simulink). For more details, see “Generate C Code for a Model” (Simulink Coder).

See Also
predict | loadLearnerForCoder | saveLearnerForCoder | slbuild |
learnerCoderConfigurer

Related Examples
• “Predict Responses Using RegressionSVM Predict Block” on page 34-127
• “Predict Class Labels Using ClassificationSVM Predict Block” on page 34-123
• “Introduction to Code Generation” on page 34-2
• “Code Generation for Image Classification” on page 34-115
• “System Objects for Classification and Code Generation” on page 34-65
• “Predict Class Labels Using Stateflow” on page 34-73
• “Human Activity Recognition Simulink Model for Smartphone Deployment” on page 34-77
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Specify Variable-Size Arguments for Code Generation

This example shows how to specify variable-size input arguments when you generate code for the
object functions of classification and regression model objects. Variable-size data is data whose size
might change at run time. Specifying variable-size input arguments is convenient when you have data
with an unknown size at compile time. This example also describes how to include name-value pair
arguments in an entry-point function and how to specify them when generating code.

For more detailed code generation workflow examples, see “Code Generation for Prediction of
Machine Learning Model at Command Line” on page 34-9 and “Code Generation for Prediction of
Machine Learning Model Using MATLAB Coder App” on page 34-23.

Train Classification Model

Load Fisher's iris data set. Convert the labels to a character matrix.

load fisheriris
species = char(species);

Train a classification tree using the entire data set.

Mdl = fitctree(meas,species);

Mdl is a ClassificationTree model.

Save Model Using saveLearnerForCoder

Save the trained classification tree to a file named ClassTreeIris.mat in your current folder by
using saveLearnerForCoder.

MdlName = 'ClassTreeIris';
saveLearnerForCoder(Mdl,MdlName);

Define Entry-Point Function

In your current folder, define an entry-point function named mypredictTree.m that does the
following:

• Accept measurements with columns corresponding to meas and accept valid name-value pair
arguments.

• Load a trained classification tree by using loadLearnerForCoder.
• Predict labels and corresponding scores, node numbers, and class numbers from the loaded
classification tree.

You can allow for optional name-value pair arguments by specifying varargin as an input argument.
For details, see “Code Generation for Variable Length Argument Lists” (MATLAB Coder).

type mypredictTree.m  % Display contents of mypredictTree.m file

function [label,score,node,cnum] = mypredictTree(x,savedmdl,varargin) %#codegen
%MYPREDICTTREE Predict iris species using classification tree
%   MYPREDICTTREE predicts iris species for the n observations in the
%   n-by-4 matrix x using the classification tree stored in the MAT-file
%   whose name is in savedmdl, and then returns the predictions in the
%   array label. Each row of x contains the lengths and widths of the petal
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%   and sepal of an iris (see the fisheriris data set). For other output
%   argument descriptions, see the predict reference page.
CompactMdl = loadLearnerForCoder(savedmdl);
[label,score,node,cnum] = predict(CompactMdl,x,varargin{:});
end

Note: If you click the button located in the upper-right section of this page and open this example in
MATLAB®, then MATLAB® opens the example folder. This folder includes the entry-point function
file.

Generate Code

Specify Variable-Size Arguments

Because C and C++ are statically typed languages, you must determine the properties of all variables
in an entry-point function at compile time using the -args option of codegen.

Use coder.Constant (MATLAB Coder) to specify a compile-time constant input.

coder.Constant(v)

coder.Constant(v) creates a coder.Constant type variable whose values are constant, the same
as v, during code generation.

Use coder.typeof (MATLAB Coder) to specify a variable-size input.

coder.typeof(example_value, size_vector, variable_dims)

The values of example_value, size_vector, and variable_dims specify the properties of the
input array that the generated code can accept.

• An input array has the same data type as the example values in example_value.
• size_vector is the array size of an input array if the corresponding variable_dims value is

false.
• size_vector is the upper bound of the array size if the corresponding variable_dims value is

true.
• variable_dims specifies whether each dimension of the array has a variable size or a fixed size.

A value of true (logical 1) means that the corresponding dimension has a variable size; a value of
false (logical 0) means that the corresponding dimension has a fixed size.

The entry-point function mypredictTree accepts predictor data, the MAT-file name containing the
trained model object, and optional name-value pair arguments. Suppose that you want to generate
code that accepts a variable-size array for predictor data and the 'Subtrees' name-value pair
argument with a variable-size vector for its value. Then you have four input arguments: predictor
data, the MAT-file name, and the name and value of the 'Subtrees' name-value pair argument.

Define a 4-by-1 cell array and assign each input argument type of the entry-point function to each
cell.

ARGS = cell(4,1);

For the first input, use coder.typeof to specify that the predictor data variable is double-precision
with the same number of columns as the predictor data used in training the model, but that the
number of observations (rows) is arbitrary.
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p = numel(Mdl.PredictorNames);
ARGS{1} = coder.typeof(0,[Inf,p],[1,0]);

0 for the example_value value implies that the data type is double because double is the default
numeric data type of MATLAB. [Inf,p] for the size_vector value and [1,0] for the
variable_dims value imply that the size of the first dimension is variable and unbounded, and the
size of the second dimension is fixed to be p.

The second input is the MAT-file name, which must be a compile-time constant. Use
coder.Constant to specify the type of the second input.

ARGS{2} = coder.Constant(MdlName);

The last two inputs are the name and value of the 'Subtrees' name-value pair argument. Names of
name-value pair arguments must be compile-time constants.

ARGS{3} = coder.Constant('Subtrees');

Use coder.typeof to specify that the value of 'Subtrees' is a double-precision row vector and
that the upper bound of the row vector size is max(Mdl.PrunedList).

m = max(Mdl.PruneList);
ARGS{4} = coder.typeof(0,[1,m],[0,1]);

Again, 0 for the example_value value implies that the data type is double because double is the
default numeric data type of MATLAB. [1,m] for the size_vector value and [0,1] for the
variable_dims value imply that the size of the first dimension is fixed to be 1, and the size of the
second dimension is variable and its upper bound is m.

Generate Code Using codegen

Generate a MEX function from the entry-point function mypredictTree using the cell array ARGS,
which includes input argument types for mypredictTree. Specify the input argument types using
the -args option. Specify the number of output arguments in the generated entry-point function
using the -nargout option. The generate code includes the specified number of output arguments in
the order in which they occur in the entry-point function definition.

codegen mypredictTree -args ARGS -nargout 2

Code generation successful.

codegen generates the MEX function mypredictTree_mex with a platform-dependent extension in
your current folder.

The predict function accepts single-precision values, double-precision values, and 'all' for the
'SubTrees' name-value pair argument. However, you can specify only double-precision values when
you use the MEX function for prediction because the data type specified by ARGS{4} is double.

Verify Generated Code

Predict labels for a random selection of 15 values from the training data using the generated MEX
function and the subtree at pruning level 1. Compare the labels from the MEX function with those
predicted by predict.

rng('default'); % For reproducibility
Xnew = datasample(meas,15);
[labelMEX,scoreMEX] = mypredictTree_mex(Xnew,MdlName,'Subtrees',1);
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[labelPREDICT,scorePREDICT] = predict(Mdl,Xnew,'Subtrees',1);
labelPREDICT

labelPREDICT = 15x10 char array
    'virginica '
    'virginica '
    'setosa    '
    'virginica '
    'versicolor'
    'setosa    '
    'setosa    '
    'versicolor'
    'virginica '
    'virginica '
    'setosa    '
    'virginica '
    'virginica '
    'versicolor'
    'virginica '

labelMEX

labelMEX = 15x1 cell
    {'virginica' }
    {'virginica' }
    {'setosa'    }
    {'virginica' }
    {'versicolor'}
    {'setosa'    }
    {'setosa'    }
    {'versicolor'}
    {'virginica' }
    {'virginica' }
    {'setosa'    }
    {'virginica' }
    {'virginica' }
    {'versicolor'}
    {'virginica' }

The predicted labels are the same as the MEX function labels except for the data type. When the
response data type is char and codegen cannot determine that the value of Subtrees is a scalar,
then the output from the generated code is a cell array of character vectors.

For the comparison, you can convert labelsPREDICT to a cell array and use isequal.

cell_labelPREDICT = cellstr(labelPREDICT);
verifyLabel = isequal(labelMEX,cell_labelPREDICT)

verifyLabel = logical
   1

isequal returns logical 1 (true), which means all the inputs are equal.

Compare the second outputs as well. scoreMex might include round-off differences compared with
scorePREDICT. In this case, compare scoreMEX and scorePREDICT, allowing a small tolerance.
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find(abs(scorePREDICT-scoreMEX) > 1e-8)

ans =

  0x1 empty double column vector

find returns an empty vector if the element-wise absolute difference between scorePREDICT and
scoreMEX is not larger than the specified tolerance 1e-8. The comparison confirms that
scorePREDICT and scoreMEX are equal within the tolerance 1e–8.

See Also
codegen | coder.typeof | loadLearnerForCoder | coder.Constant | saveLearnerForCoder
| learnerCoderConfigurer

Related Examples
• “Introduction to Code Generation” on page 34-2
• “Code Generation for Prediction of Machine Learning Model at Command Line” on page 34-9
• “Code Generation for Prediction of Machine Learning Model Using MATLAB Coder App” on

page 34-23
• “Code Generation for Prediction and Update Using Coder Configurer” on page 34-92
• “Code Generation for Nearest Neighbor Searcher” on page 34-20
• “Code Generation and Classification Learner App” on page 34-32
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Create Dummy Variables for Categorical Predictors and
Generate C/C++ Code

This example shows how to generate code for classifying data using a support vector machine (SVM)
model. Train the model using numeric and encoded categorical predictors. Use dummyvar to convert
categorical predictors to numeric dummy variables before fitting an SVM classifier. When passing
new data to your trained model, you must preprocess the data in a similar manner.

Alternatively, if a trained model identifies categorical predictors in the CategoricalPredictors
property, then you do not need to create dummy variables manually to generate code. The software
handles categorical predictors automatically. For an example, see “Generate Code to Classify Data in
Table” on page 34-112.

Preprocess Data and Train SVM Classifier

Load the patients data set. Create a table using the Diastolic and Systolic numeric variables.
Each row of the table corresponds to a different patient.

load patients
tbl = table(Diastolic,Systolic);
head(tbl)

    Diastolic    Systolic
    _________    ________

       93          124   
       77          109   
       83          125   
       75          117   
       80          122   
       70          121   
       88          130   
       82          115   

Convert the Gender variable to a categorical variable. The order of the categories in
categoricalGender is important because it determines the order of the columns in the predictor
data. Use dummyvar to convert the categorical variable to a matrix of zeros and ones, where a 1
value in the (i,j)th entry indicates that the ith patient belongs to the jth category.

categoricalGender = categorical(Gender);
orderGender = categories(categoricalGender)

orderGender = 2x1 cell
    {'Female'}
    {'Male'  }

dummyGender = dummyvar(categoricalGender);

Note: The resulting dummyGender matrix is rank deficient. Depending on the type of model you
train, this rank deficiency can be problematic. For example, when training linear models, remove the
first column of the dummy variables.

Create a table that contains the dummy variable dummyGender with the corresponding variable
headings. Combine this new table with tbl.
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tblGender = array2table(dummyGender,'VariableNames',orderGender);
tbl = [tbl tblGender];
head(tbl)

    Diastolic    Systolic    Female    Male
    _________    ________    ______    ____

       93          124         0        1  
       77          109         0        1  
       83          125         1        0  
       75          117         1        0  
       80          122         1        0  
       70          121         1        0  
       88          130         1        0  
       82          115         0        1  

Convert the SelfAssessedHealthStatus variable to a categorical variable. Note the order of
the categories in categoricalHealth, and convert the variable to a numeric matrix using
dummyvar.

categoricalHealth = categorical(SelfAssessedHealthStatus);
orderHealth = categories(categoricalHealth)

orderHealth = 4x1 cell
    {'Excellent'}
    {'Fair'     }
    {'Good'     }
    {'Poor'     }

dummyHealth = dummyvar(categoricalHealth);

Create a table that contains dummyHealth with the corresponding variable headings. Combine this
new table with tbl.

tblHealth = array2table(dummyHealth,'VariableNames',orderHealth);
tbl = [tbl tblHealth];
head(tbl)

    Diastolic    Systolic    Female    Male    Excellent    Fair    Good    Poor
    _________    ________    ______    ____    _________    ____    ____    ____

       93          124         0        1          1         0       0       0  
       77          109         0        1          0         1       0       0  
       83          125         1        0          0         0       1       0  
       75          117         1        0          0         1       0       0  
       80          122         1        0          0         0       1       0  
       70          121         1        0          0         0       1       0  
       88          130         1        0          0         0       1       0  
       82          115         0        1          0         0       1       0  

The third row of tbl, for example, corresponds to a patient with these characteristics: diastolic blood
pressure of 83, systolic blood pressure of 125, female, and good self-assessed health status.

Because all the values in tbl are numeric, you can convert the table to a matrix X.

X = table2array(tbl);

Train an SVM classifier using X. Specify the Smoker variable as the response.
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Y = Smoker;
Mdl = fitcsvm(X,Y);

Generate C/C++ Code

Generate code that loads the SVM classifier, takes new predictor data as an input argument, and then
classifies the new data.

Save the SVM classifier to a file using saveLearnerForCoder.

saveLearnerForCoder(Mdl,'SVMClassifier')

saveLearnerForCoder saves the classifier to the MATLAB® binary file SVMClassifier.mat as a
structure array in the current folder.

Define the entry-point function mySVMPredict, which takes new predictor data as an input
argument. Within the function, load the SVM classifier by using loadLearnerForCoder, and then
pass the loaded classifier to predict.

function label = mySVMPredict(X) %#codegen
Mdl = loadLearnerForCoder('SVMClassifier');
label = predict(Mdl,X);
end

Generate code for mySVMPredict by using codegen. Specify the data type and dimensions of the
new predictor data by using coder.typeof so that the generated code accepts a variable-size array.

codegen mySVMPredict -args {coder.typeof(X,[Inf 8],[1 0])}

Code generation successful.

Verify that mySVMPredict and the MEX file return the same results for the training data.

label = predict(Mdl,X);
mylabel = mySVMPredict(X);
mylabel_mex = mySVMPredict_mex(X);
verifyMEX = isequal(label,mylabel,mylabel_mex)

verifyMEX = logical
   1

Predict Labels for New Data

To predict labels for new data, you must first preprocess the new data. If you run the generated code
in the MATLAB environment, you can follow the preprocessing steps described in this section. If you
deploy the generated code outside the MATLAB environment, the preprocessing steps can differ. In
either case, you must ensure that the new data has the same columns as the training data X.

In this example, take the third, fourth, and fifth patients in the patients data set. Preprocess the
data for these patients so that the resulting numeric matrix matches the form of the training data.

Convert the categorical variables to dummy variables. Because the new observations might not
include values from all categories, you need to specify the same categories as the ones used during
training and maintain the same category order. In MATLAB, pass the ordered cell array of category
names associated with the corresponding training data variable (in this example, orderGender for
gender values and orderHealth for self-assessed health status values).

 Create Dummy Variables for Categorical Predictors and Generate C/C++ Code

34-63



newcategoricalGender = categorical(Gender(3:5),orderGender);
newdummyGender = dummyvar(newcategoricalGender);

newcategoricalHealth = categorical(SelfAssessedHealthStatus(3:5),orderHealth);
newdummyHealth = dummyvar(newcategoricalHealth);

Combine all the new data into a numeric matrix.

newX = [Diastolic(3:5) Systolic(3:5) newdummyGender newdummyHealth]

newX = 3×8

    83   125     1     0     0     0     1     0
    75   117     1     0     0     1     0     0
    80   122     1     0     0     0     1     0

Note that newX corresponds exactly to the third, fourth, and fifth rows of the matrix X.

Verify that mySVMPredict and the MEX file return the same results for the new data.

newlabel = predict(Mdl,newX);
newmylabel = mySVMPredict(newX);
newmylabel_mex = mySVMPredict_mex(newX);
newverifyMEX = isequal(newlabel,newmylabel,newmylabel_mex)

newverifyMEX = logical
   1

See Also
dummyvar | categorical | ClassificationSVM | codegen | coder.typeof |
loadLearnerForCoder | coder.Constant | saveLearnerForCoder

Related Examples
• “Introduction to Code Generation” on page 34-2
• “Code Generation for Prediction of Machine Learning Model at Command Line” on page 34-9
• “Code Generation for Prediction of Machine Learning Model Using MATLAB Coder App” on

page 34-23
• “Code Generation and Classification Learner App” on page 34-32
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System Objects for Classification and Code Generation

This example shows how to generate C code from a MATLAB® System object™ that classifies images
of digits by using a trained classification model. This example also shows how to use the System
object for classification in Simulink®. The benefit of using System objects over MATLAB function is
that System objects are more appropriate for processing large amounts of streaming data. For more
details, see “What Are System Objects?”.

This example is based on “Code Generation for Image Classification” on page 34-115, which is an
alternative workflow to “Digit Classification Using HOG Features” (Computer Vision Toolbox).

Load Data

Load the digitimages.

load digitimages.mat

images is a 28-by-28-by-3000 array of uint16 integers. Each page is a raster image of a digit. Each
element is a pixel intensity. Corresponding labels are in the 3000-by-1 numeric vector Y. For more
details, enter Description at the command line.

Store the number of observations and the number of predictor variables. Create a data partition that
specifies to hold out 20% of the data. Extract training and test set indices from the data partition.

rng(1); % For reproducibility
n = size(images,3);
p = numel(images(:,:,1));
cvp = cvpartition(n,'Holdout',0.20);
idxTrn = training(cvp);
idxTest = test(cvp);

Rescale Data

Rescale the pixel intensities so that they range in the interval [0,1] within each image. Specifically,
suppose pi j is pixel intensity j within image i. For image i, rescale all of its pixel intensities by using
this formula:

pi j =
pi j−min

j
(pi j)

max
j

(pi j)−min
j

(pi j)
.

X = double(images);

for i = 1:n
    minX = min(min(X(:,:,i)));
    maxX = max(max(X(:,:,i)));
    X(:,:,i) = (X(:,:,i) - minX)/(maxX - minX);
end

Reshape Data

For code generation, the predictor data for training must be in a table of numeric variables or a
numeric matrix.
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Reshape the data to a matrix such that predictor variables correspond to columns and images
correspond to rows. Because reshape takes elements column-wise, transpose its result.

X = reshape(X,[p,n])';

Train and Optimize Classification Models

Cross-validate an ECOC model of SVM binary learners and a random forest based on the training
observations. Use 5-fold cross-validation.

For the ECOC model, specify predictor standardization and optimize classification error over the
ECOC coding design and the SVM box constraint. Explore all combinations of these values:

• For the ECOC coding design, use one-versus-one and one-versus-all.
• For the SVM box constraint, use three logarithmically spaced values from 0.1 to 100 each. For all

models, store the 5-fold cross-validated misclassification rates.

coding = {'onevsone' 'onevsall'};
boxconstraint = logspace(-1,2,3);
cvLossECOC = nan(numel(coding),numel(boxconstraint)); % For preallocation

for i = 1:numel(coding)
    for j = 1:numel(boxconstraint)
        t = templateSVM('BoxConstraint',boxconstraint(j),'Standardize',true);
        CVMdl = fitcecoc(X(idxTrn,:),Y(idxTrn),'Learners',t,'KFold',5,...
            'Coding',coding{i});
        cvLossECOC(i,j) = kfoldLoss(CVMdl);
        fprintf('cvLossECOC = %f for model using %s coding and box constraint=%f\n',...
            cvLossECOC(i,j),coding{i},boxconstraint(j))
    end
end

cvLossECOC = 0.058333 for model using onevsone coding and box constraint=0.100000
cvLossECOC = 0.057083 for model using onevsone coding and box constraint=3.162278
cvLossECOC = 0.050000 for model using onevsone coding and box constraint=100.000000
cvLossECOC = 0.120417 for model using onevsall coding and box constraint=0.100000
cvLossECOC = 0.121667 for model using onevsall coding and box constraint=3.162278
cvLossECOC = 0.127917 for model using onevsall coding and box constraint=100.000000

For the random forest, vary the maximum number of splits by using the values in the sequence
{32, 33, . . . , 3m}. m is such that 3m is no greater than n - 1. To reproduce random predictor
selections, specify 'Reproducible',true.

n = size(X,1);
m = floor(log(n - 1)/log(3));
maxNumSplits = 3.^(2:m);
cvLossRF = nan(numel(maxNumSplits));
for i = 1:numel(maxNumSplits)
    t = templateTree('MaxNumSplits',maxNumSplits(i),'Reproducible',true);
    CVMdl = fitcensemble(X(idxTrn,:),Y(idxTrn),'Method','bag','Learners',t,...
        'KFold',5);
    cvLossRF(i) = kfoldLoss(CVMdl);
    fprintf('cvLossRF = %f for model using %d as the maximum number of splits\n',...
        cvLossRF(i),maxNumSplits(i))
end

cvLossRF = 0.319167 for model using 9 as the maximum number of splits
cvLossRF = 0.192917 for model using 27 as the maximum number of splits
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cvLossRF = 0.066250 for model using 81 as the maximum number of splits
cvLossRF = 0.015000 for model using 243 as the maximum number of splits
cvLossRF = 0.013333 for model using 729 as the maximum number of splits
cvLossRF = 0.009583 for model using 2187 as the maximum number of splits

For each algorithm, determine the hyperparameter indices that yield the minimal misclassification
rates.

minCVLossECOC = min(cvLossECOC(:))

minCVLossECOC = 0.0500

linIdx = find(cvLossECOC == minCVLossECOC,1);
[bestI,bestJ] = ind2sub(size(cvLossECOC),linIdx);
bestCoding = coding{bestI}

bestCoding = 
'onevsone'

bestBoxConstraint = boxconstraint(bestJ)

bestBoxConstraint = 100

minCVLossRF = min(cvLossRF(:))

minCVLossRF = 0.0096

linIdx = find(cvLossRF == minCVLossRF,1);
[bestI,bestJ] = ind2sub(size(cvLossRF),linIdx);
bestMNS = maxNumSplits(bestI)

bestMNS = 2187

The random forest achieves a smaller cross-validated misclassification rate.

Train an ECOC model and a random forest using the training data. Supply the optimal
hyperparameter combinations.

t = templateSVM('BoxConstraint',bestBoxConstraint,'Standardize',true);
MdlECOC = fitcecoc(X(idxTrn,:),Y(idxTrn),'Learners',t,'Coding',bestCoding);
t = templateTree('MaxNumSplits',bestMNS);
MdlRF = fitcensemble(X(idxTrn,:),Y(idxTrn),'Method','bag','Learners',t);

Create a variable for the test sample images and use the trained models to predict test sample labels.

testImages = X(idxTest,:);
testLabelsECOC = predict(MdlECOC,testImages);
testLabelsRF = predict(MdlRF,testImages);

Save Classification Model to Disk

MdlECOC and MdlRF are predictive classification models, but you must prepare them for code
generation. Save MdlECOC and MdlRF to your present working folder using saveLearnerForCoder.

saveLearnerForCoder(MdlECOC,'DigitImagesECOC');
saveLearnerForCoder(MdlRF,'DigitImagesRF');

Create System Object for Prediction

Create two System objects, one for the ECOC model and the other for the random forest, that:
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• Load the previously saved trained model by using loadLearnerForCoder.
• Make sequential predictions by the step method.
• Enforce no size changes to the input data.
• Enforce double-precision, scalar output.

type ECOCClassifier.m % Display contents of ECOCClassifier.m file

classdef ECOCClassifier < matlab.System
    % ECOCCLASSIFIER Predict image labels from trained ECOC model
    %
    % ECOCCLASSIFIER loads the trained ECOC model from
    % |'DigitImagesECOC.mat'|, and predicts labels for new observations
    % based on the trained model.  The ECOC model in
    % |'DigitImagesECOC.mat'| was cross-validated using the training data
    % in the sample data |digitimages.mat|.

    properties(Access = private)
        CompactMdl % The compacted, trained ECOC model
    end
        
    methods(Access = protected)
        
        function setupImpl(obj)
            % Load ECOC model from file
            obj.CompactMdl = loadLearnerForCoder('DigitImagesECOC');
        end
        
        function y = stepImpl(obj,u)
            y = predict(obj.CompactMdl,u);
        end
        
        function flag = isInputSizeMutableImpl(obj,index)
            % Return false if input size is not allowed to change while
            % system is running
            flag = false;
        end
        
        function dataout = getOutputDataTypeImpl(~)
            dataout = 'double';
        end
        
        function sizeout = getOutputSizeImpl(~)
            sizeout = [1 1];
        end
    end
end

type RFClassifier.m % Display contents of RFClassifier.m file

classdef RFClassifier < matlab.System
    % RFCLASSIFIER Predict image labels from trained random forest
    %
    % RFCLASSIFIER loads the trained random forest from
    % |'DigitImagesRF.mat'|, and predicts labels for new observations based
    % on the trained model.  The random forest in |'DigitImagesRF.mat'|
    % was cross-validated using the training data in the sample data
    % |digitimages.mat|.
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    properties(Access = private)
        CompactMdl % The compacted, trained random forest
    end
        
    methods(Access = protected)
        
        function setupImpl(obj)
            % Load random forest from file
            obj.CompactMdl = loadLearnerForCoder('DigitImagesRF');
        end
        
        function y = stepImpl(obj,u)
            y = predict(obj.CompactMdl,u);
        end
        
        function flag = isInputSizeMutableImpl(obj,index)
            % Return false if input size is not allowed to change while
            % system is running
            flag = false;
        end
        
        function dataout = getOutputDataTypeImpl(~)
            dataout = 'double';
        end
        
        function sizeout = getOutputSizeImpl(~)
            sizeout = [1 1];
        end
    end
end

Note: If you click the button located in the upper-right section of this page and open this example in
MATLAB®, then MATLAB® opens the example folder. This folder includes the files used in this
example.

For System object basic requirements, see “Define Basic System Objects”.

Define Prediction Functions for Code Generation

Define two MATLAB functions called predictDigitECOCSO.m and predictDigitRFSO.m. The
functions:

• Include the code generation directive %#codegen.
• Accept image data commensurate with X.
• Predict labels using the ECOCClassifier and RFClassifier System objects, respectively.
• Return predicted labels.

type predictDigitECOCSO.m % Display contents of predictDigitECOCSO.m file

function label = predictDigitECOCSO(X) %#codegen
%PREDICTDIGITECOCSO Classify digit in image using ECOC Model System object
%   PREDICTDIGITECOCSO classifies the 28-by-28 images in the rows of X
%   using the compact ECOC model in the System object ECOCClassifier, and
%   then returns class labels in label.
classifier = ECOCClassifier;
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label = step(classifier,X); 
end

type predictDigitRFSO.m % Display contents of predictDigitRFSO.m file

function label = predictDigitRFSO(X) %#codegen
%PREDICTDIGITRFSO Classify digit in image using RF Model System object
%   PREDICTDIGITRFSO classifies the 28-by-28 images in the rows of X
%   using the compact random forest in the System object RFClassifier, and
%   then returns class labels in label.
classifier = RFClassifier;
label = step(classifier,X); 
end

Compile MATLAB Function to MEX File

Compile the prediction function that achieves better test-sample accuracy to a MEX file by using
codegen. Specify the test set images by using the -args argument.

if(minCVLossECOC <= minCVLossRF)
    codegen predictDigitECOCSO -args testImages    
else   
    codegen predictDigitRFSO -args testImages
end

Code generation successful.

Verify that the generated MEX file produces the same predictions as the MATLAB function.

if(minCVLossECOC <= minCVLossRF)
    mexLabels = predictDigitECOCSO_mex(testImages);
    verifyMEX = sum(mexLabels == testLabelsECOC) == numel(testLabelsECOC)    
else   
    mexLabels = predictDigitRFSO_mex(testImages);
    verifyMEX = sum(mexLabels == testLabelsRF) == numel(testLabelsRF)    
end

verifyMEX = logical
   1

verifyMEX is 1, which indicates that the predictions made by the generated MEX file and the
corresponding MATLAB function are the same.

Predict Labels by Using System Objects in Simulink

Create a video file that displays the test-set images frame-by-frame.

v = VideoWriter('testImages.avi','Uncompressed AVI');
v.FrameRate = 1;
open(v);
dim = sqrt(p)*[1 1];
for j = 1:size(testImages,1)
    writeVideo(v,reshape(testImages(j,:),dim));
end
close(v);

Define a function called scalePixelIntensities.m that converts RGB images to grayscale, and
then scales the resulting pixel intensities so that their values are in the interval [0,1].
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type scalePixelIntensities.m % Display contents of scalePixelIntensities.m file

function x = scalePixelIntensities(imdat)
%SCALEPIXELINTENSITIES Scales image pixel intensities
%   SCALEPIXELINTENSITIES scales the pixel intensities of the image such
%   that the result x is a row vector of values in the interval [0,1].
imdat = rgb2gray(imdat);

minimdat = min(min(imdat));
maximdat = max(max(imdat));
x = (imdat - minimdat)/(maximdat - minimdat);
end

Load the Simulink® model slexClassifyAndDisplayDigitImages.slx.

SimMdlName = 'slexClassifyAndDisplayDigitImages';
open_system(SimMdlName);

The figure displays the Simulink® model. At the beginning of simulation, the From Multimedia File
block loads the video file of the test-set images. For each image in the video:

• The From Multimedia File block converts and outputs the image to a 28-by-28 matrix of pixel
intensities.

• The Process Data block scales the pixel intensities by using scalePixelIntensities.m, and
outputs a 1-by-784 vector of scaled intensities.

• The Classification Subsystem block predicts labels given the processed image data. The block
chooses the System object that minimizes classification error. In this case, the block chooses the
random forest. The block outputs a double-precision scalar label.

• The Data Type Conversion block converts the label to an int32 scalar.
• The Insert Text block embeds the predicted label on the current frame.
• The To Video Display block displays the annotated frame.

Simulate the model.

sim(SimMdlName)
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The model displays all 600 test-set images and its prediction quickly. The last image remains in the
video display. You can generate predictions and display them with corresponding images one-by-one
by clicking the Step Forward button instead.

If you also have a Simulink® Coder™ license, then you can generate C code from
slexClassifyAndDisplayDigitImages.slx in Simulink® or from the command line using
slbuild (Simulink). For more details, see “Generate C Code for a Model” (Simulink Coder).

See Also
loadLearnerForCoder | saveLearnerForCoder | predict | predict

Related Examples
• “Introduction to Code Generation” on page 34-2
• “Code Generation for Image Classification” on page 34-115
• “Predict Class Labels Using MATLAB Function Block” on page 34-51
• “Predict Class Labels Using Stateflow” on page 34-73
• “Human Activity Recognition Simulink Model for Smartphone Deployment” on page 34-77
• “Digit Classification Using HOG Features” (Computer Vision Toolbox)
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Predict Class Labels Using Stateflow

This example shows how to use a Stateflow® chart for label prediction. The example trains a
discriminant analysis model for the Fisher iris data set by using fitcdiscr, and defines a function
for code generation that loads the trained model and predicts labels for new data. The Stateflow
chart in this example accepts streaming data and predicts labels using the function you define.

Fisher's iris data set, which is included in Statistics and Machine Learning Toolbox™, contains
species (species) and measurements (meas) on sepal length, sepal width, petal length, and petal
width for 150 iris specimens. The data set contains 50 specimens from each of three species: setosa,
versicolor, and virginica.

Load the Fisher iris data set.

load fisheriris

Convert species to an index vector where 1, 2, and 3 correspond to setosa, versicolor, and virginica,
respectively.

species = grp2idx(species);

Partition the data into a training set and a test set.

rng('default') % For reproducibility
idx1 = randperm(150,75)';
idx2 = setdiff((1:150)',idx1);
X = meas(idx1,:);
Y = species(idx1,:);
trainX = meas(idx2,:);
trainY = species(idx2,:);

Use trainX and trainY to train a model, and use X and Y to test the trained model.

Train a quadratic discriminant analysis model.

Mdl = fitcdiscr(trainX,trainY,'DiscrimType','quadratic');

Mdl is a ClassificationDiscriminant model. At the command line, you can use Mdl to make
predictions for new observations. However, you cannot use Mdl as an input argument in a function
for code generation. Prepare Mdl to be loaded within the function by using saveLearnerForCoder.

saveLearnerForCoder(Mdl,'DiscrIris');

saveLearnerForCoder compacts Mdl and saves it in the MAT-file DiscrIris.mat.

To display the predicted species in the display box of the Stateflow model, define an enumeration
class by using a classdef block in the MATLAB® file IrisSpecies.m.

classdef IrisSpecies < Simulink.IntEnumType
  enumeration
    Setosa(1)
    Versicolor(2)
    Virginica(3)
  end
end
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For details about enumerated data, see “Define Enumerated Data Types” (Stateflow).

Define a function named mypredict.m that predicts the iris species from new measurement data by
using the trained model. The function should:

• Include the code generation directive %#codegen somewhere in the function.
• Accept iris measurement data. The data must be consistent with X except for the number of rows.
• Load DiscrIris.mat using loadLearnerForCoder.
• Return predicted iris species.

function label  = mypredict(X) %#codegen
%MYPREDICT Predict species of iris flowers using discriminant model
%   mypredict predicts species of iris flowers using the compact
%   discriminant model in the file DiscrIris.mat. Rows of X correspond to
%   observations and columns correspond to predictor variables. label is
%   the predicted species.
mdl = loadLearnerForCoder('DiscrIris');
labelTemp = predict(mdl,X);
label = IrisSpecies(labelTemp);
end

Open the Simulink® model sf_countflowers.slx.

sfName = 'sf_countflowers';
open_system(sfName);

The figures display the Simulink model and the flow graph contained in the Stateflow chart. When the
input node detects measurement data, it directs the data into the chart. The chart then predicts a
species of iris flower and counts the number of flowers for each species. The chart returns the

34 Code Generation

34-74



predicted species to the workspace and displays the species within the model, one at a time. The data
store memory block NumFlowers stores the number of flowers for each species.

The chart expects to receive input data as a structure array called fisheririsInput containing
these fields:

• time - The points in time at which the observations enter the model. In the example, the duration
includes the integers from 0 through 74. The orientation of time must correspond to the
observations in the predictor data. So, for this example, time must be a column vector.

• signals - A 1-by-1 structure array describing the input data and containing the fields values
and dimensions. The values field is a matrix of predictor data. The dimensions field is the
number of predictor variables.

Create an appropriate structure array for iris flower measurements.

fisheririsInput.time = (0:74)';
fisheririsInput.signals.dimensions = 4;
fisheririsInput.signals.values = X;

You can change the name from fisheririsInput, and then specify the new name in the model.
However, Stateflow expects the structure array to contain the described field names. For more
details, see “Loading Data Structures to Root-Level Inputs” (Simulink).

Simulate the model.

sim(sfName)

The figure shows the model after it processes all observations in fisheririsInput, one at a time.
The predicted species of X(75,:) is virginica. The number of setosa, versicolor, and virginica in X is
22, 22, and 31, respectively.
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The variable logsout appears in the workspace. logsout is a SimulinkData.Dataset object
containing the predicted species. Extract the predicted species data from the simulation log.

labelSF = logsout.getElement(1).Values.Data;

Predict species at the command line using predict.

labelCMD = predict(Mdl,X);

Compare the predicted species returned by sf_countflowers to those returned by calling predict
at the command line.

isequal(labelCMD,labelSF)

ans = logical
   1

isequal returns logical 1 (true) if all the inputs are equal. This comparison confirms that
sf_countflowers returns the expected results.

If you also have a Simulink Coder™ license, then you can generate C code from
sf_countflowers.slx in Simulink or from the command line using rtwbuild (Simulink Coder).
For more details, see “Generate C Code for a Model” (Simulink Coder).

See Also
loadLearnerForCoder | saveLearnerForCoder | predict | slbuild

More About
• “Introduction to Code Generation” on page 34-2
• “Code Generation for Image Classification” on page 34-115
• “Predict Class Labels Using MATLAB Function Block” on page 34-51
• “System Objects for Classification and Code Generation” on page 34-65
• “Human Activity Recognition Simulink Model for Smartphone Deployment” on page 34-77
• “Chart Programming” (Stateflow)
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Human Activity Recognition Simulink Model for Smartphone
Deployment

This example shows how to prepare a Simulink® model that classifies human activity based on
smartphone sensor signals for code generation and smartphone deployment. The example provides
two Simulink models that are ready for deployment to an Android™ device and an iOS device. After
you install the required support package for a target device, train the classification model and deploy
the Simulink model to the device.

Load Sample Data Set

Load the humanactivity data set.

load humanactivity

The humanactivity data set contains 24,075 observations of five different physical human
activities: Sitting, Standing, Walking, Running, and Dancing. Each observation has 60 features
extracted from acceleration data measured by smartphone accelerometer sensors. The data set
contains the following variables:

• actid — Response vector containing the activity IDs in integers: 1, 2, 3, 4, and 5 representing
Sitting, Standing, Walking, Running, and Dancing, respectively

• actnames — Activity names corresponding to the integer activity IDs
• feat — Feature matrix of 60 features for 24,075 observations
• featlabels — Labels of the 60 features

The Sensor HAR (human activity recognition) App [1] on page 34-85 was used to create the
humanactivity data set. When measuring the raw acceleration data with this app, a person placed
a smartphone in a pocket so that the smartphone was upside down and the screen faced toward the
person. The software then calibrated the measured raw data accordingly and extracted the 60
features from the calibrated data. For details about the calibration and feature extraction, see [2] on
page 34-85 and [3] on page 34-85, respectively. The Simulink models described later also use the
raw acceleration data and include blocks for calibration and feature extraction.

Prepare Data

This example uses 90% of the observations to train a model that classifies the five types of human
activities and 10% of the observations to validate the trained model. Use cvpartition to specify a
10% holdout for the test set.

rng('default') % For reproducibility
Partition = cvpartition(actid,'Holdout',0.10);
trainingInds = training(Partition); % Indices for the training set
XTrain = feat(trainingInds,:);
YTrain = actid(trainingInds);
testInds = test(Partition); % Indices for the test set
XTest = feat(testInds,:);
YTest = actid(testInds);

Convert the feature matrix XTrain and the response vector YTrain into a table to load the training
data set in the Classification Learner app.

tTrain = array2table([XTrain YTrain]);
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Specify the variable name for each column of the table.

tTrain.Properties.VariableNames = [featlabels' 'Activities'];

Train Boosted Tree Ensemble Using Classification Learner App

Train a classification model by using the Classification Learner app. To open the Classification
Learner app, enter classificationLearner at the command line. Alternatively, click the Apps tab,
and click the arrow at the right of the Apps section to open the gallery. Then, under Machine
Learning and Deep Learning, click Classification Learner.

On the Classification Learner tab, in the File section, click New Session and select From
Workspace.

In the New Session from Workspace dialog box, click the arrow for Data Set Variable, and then
select the table tTrain. Classification Learner detects the predictors and the response from the
table.
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The default option is 5-fold cross-validation, which protects against overfitting. Click Start Session.
Classification Learner loads the data set and plots a scatter plot of the first two features.
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On the Classification Learner tab, click the arrow at the right of the Models section to open the
gallery. Then, under Ensemble Classifiers, click Boosted Trees.

The model Summary tab displays the default settings of the boosted tree ensemble model.
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On the Classification Learner tab, in the Train section, click Train All and select Train Selected.
When the training is complete, the Models pane displays the 5-fold, cross-validated classification
accuracy.

On the Classification Learner tab, in the Export section, click Export Model, and then select
Export Compact Model. Click OK in the dialog box. The structure trainedModel appears in the
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MATLAB® Workspace. The field ClassificationEnsemble of trainedModel contains the
compact model. Extract the trained model from the structure.

classificationEnsemble = trainedModel.ClassificationEnsemble;

Train Boosted Tree Ensemble at Command Line

Alternatively, you can train the same classification model at the command line.

template = templateTree('MaxNumSplits',20,'Reproducible',true);
classificationEnsemble = fitcensemble(XTrain,YTrain, ...
    'Method','AdaBoostM2', ...
    'NumLearningCycles',30, ...
    'Learners',template, ...
    'LearnRate',0.1, ...
    'ClassNames',[1; 2; 3; 4; 5]);

Perform 5-fold cross-validation for classificationEnsemble and compute the validation accuracy.

partitionedModel = crossval(classificationEnsemble,'KFold',5);
validationAccuracy = 1-kfoldLoss(partitionedModel)

validationAccuracy = 0.9833

Evaluate Performance on Test Data

Evaluate performance on the test data set.

testAccuracy = 1-loss(classificationEnsemble,XTest,YTest)

testAccuracy = 0.9759

The trained model correctly classifies 97.59% of the human activities on the test data set. This result
confirms that the trained model does not overfit to the training data set.

Note that the accuracy values can vary slightly depending on your operating system.

Save Trained Model

For code generation including a classification model object, use saveLearnerForCoder and
loadLearnerForCoder.

Save the trained model by using saveLearnerForCoder.

saveLearnerForCoder(classificationEnsemble,'EnsembleModel.mat');

The function block predictActivity in the Simulink models loads the trained model by using
loadLearnerForCoder and uses the trained model to classify new data.

Deploy Simulink Model to Device

Now that you have prepared a classification model, you can open the Simulink model, depending on
which type of smartphone you have, and deploy the model to your device. Note that the Simulink
model requires the EnsembleModel.mat file and the calibration matrix file
slexHARAndroidCalibrationMatrix.mat or slexHARiOSCalibrationMatrix.mat. If you
click the button located in the upper-right section of this page and open this example in MATLAB,
then MATLAB opens the example folder that includes these calibration matrix files.
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Type slexHARAndroidExample to open the Simulink model for Android deployment.

Type slexHARiOSExample to open the Simulink model for iOS deployment. You can open the model
on the Mac OS platform.

The two Simulink models classify human activity based on acceleration data measured by a
smartphone sensor. The models include the following blocks:

• The Accelerometer block receives raw acceleration data from accelerometer sensors on the
device.

• The calibrate block is a MATLAB Function block that calibrates the raw acceleration data. This
block uses the calibration matrix in the slexHARAndroidCalibrationMatrix.mat file or the
slexHARiOSCalibrationMatrix.mat file. If you click the button located in the upper-right
section of this page and open this example in MATLAB, then MATLAB opens the example folder
that includes these files.

• The display blocks Acc X, Acc Y, and Acc Z are connected to the calibrate block and display
calibrated data points for each axis on the device.
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• Each of the Buffer blocks, X Buffer, Y Buffer, and Z Buffer, buffers 32 samples of an
accelerometer axis with 12 samples of overlap between buffered frames. After collecting 20
samples, each Buffer block joins the 20 samples with 12 samples from the previous frame and
passes the total 32 samples to the extractFeatures block. Each Buffer block receives an input
sample every 0.1 second and outputs a buffered frame including 32 samples every 2 seconds.

• The extractFeatures block is a MATLAB Function block that extracts 60 features from a buffered
frame of 32 accelerometer samples. This function block uses DSP System Toolbox™ and Signal
Processing Toolbox™.

• The predictActivity block is a MATLAB Function block that loads the trained model from the
EnsembleModel.mat file by using loadLearnerForCoder and classifies the user activity using
the extracted features. The output is an integer between 1 and 5, corresponding to Sitting,
Standing, Walking, Running, and Dancing, respectively.

• The Predicted Activity block displays the classified user activity values on the device.
• The Video Output subsystem uses a multiport switch block to choose the corresponding user

activity image data to display on the device. The Convert to RGB block decomposes the selected
image into separate RGB vectors and passes the image to the Activity Display block.

To deploy the Simulink model to your device, follow the steps in “Run Model on Android Devices”
(Simulink Support Package for Android Devices) or “Run Model on Apple iOS Devices” (Simulink
Support Package for Apple iOS Devices). Run the model on your device, place the device in the same
way as described earlier for collecting the training data, and try the five activities. The model displays
the classified activity accordingly.

To ensure the accuracy of the model, you need to place your device in the same way as described for
collecting the training data. If you want to place your device in a different location or orientation,
then collect the data in your own way and use your data to train the classification model.

The accuracy of the model can be different from the accuracy of the test data set (testaccuracy),
depending on the device. To improve the model, you can consider using additional sensors and
updating the calibration matrix. Also, you can add another output block for audio feedback to the
output subsystem using Audio Toolbox™. Use a ThingSpeak™ write block to publish classified
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activities and acceleration data from your device to the Internet of Things. For details, see https://
thingspeak.com/.

References

[1] El Helou, A. Sensor HAR recognition App. MathWorks File Exchange https://www.mathworks.com/
matlabcentral/fileexchange/54138-sensor-har-recognition-app

[2] STMicroelectronics, AN4508 Application note. “Parameters and calibration of a low-g 3-axis
accelerometer.” 2014.

[3] El Helou, A. Sensor Data Analytics. MathWorks File Exchange https://www.mathworks.com/
matlabcentral/fileexchange/54139-sensor-data-analytics-french-webinar-code

See Also
loadLearnerForCoder | saveLearnerForCoder | fitcensemble | predict

More About
• “Introduction to Code Generation” on page 34-2
• “Code Generation for Image Classification” on page 34-115
• “Predict Class Labels Using MATLAB Function Block” on page 34-51
• “System Objects for Classification and Code Generation” on page 34-65
• “Predict Class Labels Using Stateflow” on page 34-73
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Human Activity Recognition Simulink Model for Fixed-Point
Deployment

This example shows how to prepare a Simulink® model that classifies human activity based on sensor
signals for code generation and deployment to low-power hardware. The example provides a Simulink
classification model that is ready for deployment to a BBC micro:bit device. First, download and
install Simulink Coder™ Support Package for BBC micro:bit from the Add-On Explorer. Then, train
the classification model and deploy the Simulink model to the target device.

Load Sample Data Set

Load the humanactivity data set.

load humanactivity

The humanactivity data set contains 24,075 observations of five physical human activities: Sitting,
Standing, Walking, Running, and Dancing. Each observation has 60 features extracted from
acceleration data measured by smartphone accelerometer sensors. The data set contains the
following variables:

• actid — Response vector containing the activity IDs in integers: 1, 2, 3, 4, and 5 representing
Sitting, Standing, Walking, Running, and Dancing, respectively

• actnames — Activity names corresponding to the integer activity IDs
• feat — Feature matrix of 60 features for 24,075 observations
• featlabels — Labels of the 60 features

The Sensor HAR (human activity recognition) App [1] on page 34-90 was used to create the
humanactivity data set. When measuring the raw acceleration data with this app, a person placed
a smartphone in a pocket so that the smartphone was upside down and the screen faced toward the
person. The software then calibrated the measured raw data accordingly and extracted the 60
features from the calibrated data. For details about the calibration and feature extraction, see [2] on
page 34-91 and [3] on page 34-91, respectively. The Simulink models described later also use the
raw acceleration data and include blocks for calibration and feature extraction.

To reduce the memory footprint for fixed-point deployment, specify to use only the first 15 features of
the data set in the trained classifier.

feat = feat(:,1:15);
featlabels = featlabels(1:15);

Prepare Data

This example uses 90% of the observations to train a model that classifies the five types of human
activities, and 10% of the observations to validate the trained model. Use cvpartition to specify a
10% holdout for the test set.

rng('default') % For reproducibility
Partition = cvpartition(actid,'Holdout',0.10);

Extract the training and test indices.

trainInds = training(Partition);
testInds = test(Partition);
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Specify the training and test data sets.

XTrain = feat(trainInds,:);
YTrain = actid(trainInds);
XTest = feat(testInds,:);
YTest = actid(testInds);

Train Decision Tree at Command Line

Train a fitted binary classification decision tree using the predictors XTrain and class labels YTrain.
A recommended practice is to specify the class names. Also, specify a maximum of 20 branch nodes
for the decision tree.

classificationTree = fitctree(XTrain,YTrain,...
    'ClassNames',[1;2;3;4;5],...
    'MaxNumSplits',20)

classificationTree = 
  ClassificationTree
             ResponseName: 'Y'
    CategoricalPredictors: []
               ClassNames: [1 2 3 4 5]
           ScoreTransform: 'none'
          NumObservations: 21668

  Properties, Methods

Perform 5-fold cross-validation for classificationTree and compute the validation accuracy.

partitionedModel = crossval(classificationTree,'KFold',5);
validationAccuracy = 1-kfoldLoss(partitionedModel)

validationAccuracy = 0.9700

Alternatively, you can train and cross-validate the same classification model using the Classification
Learner app. For a similar example, see “Human Activity Recognition Simulink Model for Smartphone
Deployment” on page 34-77.

Evaluate Performance on Test Data

Determine how well the algorithm generalizes by estimating the test sample classification error.

testAccuracy = 1-loss(classificationTree,XTest,YTest)

testAccuracy = 0.9617

The trained model correctly classifies 96.17% of the human activities on the test data set. This result
confirms that the trained model does not overfit to the training data set.

Note that the accuracy values can vary slightly depending on your operating system.

Predict in Simulink Model

Now that you have prepared a classification model, you can open the Simulink model. You can import
the trained classification object containing the decision tree classificationTree into a
ClassificationTree Predict block. You can add this block from the Statistics and Machine Learning
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Toolbox™ library. For more information on how to create a model that includes a ClassificationTree
Predict block, see “Predict Class Labels Using ClassificationTree Predict Block” on page 34-133. In
this case, you will use the Simulink model slexHARFixedPointExample provided with this
example.

Create a large set of accelerometer data ts to use as input to the Simulink model.

inData = load('rawAccData');
Xacc = inData.acc_data;
t = 0:size(Xacc,1)-1;
ts = timeseries(Xacc,t,'InterpretSingleRowDataAs3D',true);
numSteps = numel(t)-1;

Open the Simulink model slexHARFixedPointExample by entering the following at the command
line. Note that the Simulink model includes callbacks that load necessary variables for the
preprocessing subsystem into the base workspace.

slexHARFixedPointExample

The slexHARFixedPointExample model contains the following blocks:

• The X block (input port) links the signal ts from the Workspace into the system.
• The Buffer and Calibration block contains three Buffer blocks: X Buffer, Y Buffer, and Z
Buffer. Each of these blocks buffers 32 samples of an accelerometer axis with 12 samples of
overlap between buffered frames. After collecting 20 samples, each Buffer block joins them with
12 samples from the previous frame and passes the total of 32 samples to the Preprocessing
block. Each Buffer block receives an input sample every 0.1 second and outputs a buffered frame
including 32 samples every 2 seconds.

• The Preprocessing block extracts 15 features from a buffered frame of 32 accelerometer
samples. This subsystem block uses DSP System Toolbox™ and Signal Processing Toolbox™.

• The ClassificationTree Predict block is a library block from the Statistics and Machine Learning
Toolbox library that classifies the human activities using the extracted features. The output is an
integer between 1 and 5, corresponding to Sitting, Standing, Walking, Running, and Dancing,
respectively.

Convert to Fixed-Point

Convert the slexHARFixedPointExample model to the fixed-point model
slexHARFixedPointConvertedExample. Then, deploy slexHARFixedPointConvertedExample
to the BBC micro:bit board. The target device does not have a floating-point unit (FPU), and performs
fixed-point calculations more efficiently than floating-point calculations.

In the slexHARFixedPointExample model, right-click the Label port and select Log Selected
Signals. Then, open the Fixed-Point Tool app by selecting it from the apps gallery, available from
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the Apps tab. In the Fixed-Point Tool, under New workflow, select Iterative Fixed-Point
Conversion.

On the Iterative Fixed-Point Conversion tab, in the Signal Tolerances section, specify the
acceptable level of tolerance (difference between the original value and the value of the new design)
for the label signal. A recommended practice for classification models is to specify 0 absolute
tolerance. With this setting, the labels returned by the fixed-point classification model must be the
same as the labels returned by the floating-point model. (For regression models, the acceptable
tolerance can be a nonzero user-specified number.)

Then, review the steps in the example “Convert Floating-Point Model to Fixed Point” (Fixed-Point
Designer) to learn how to create a Simulink model that is converted to fixed-point.

Open the fixed-point Simulink model slexHARFixedPointConvertedExample by entering the
following at the command line. The Subsystem block contains the Buffer and Calibration,
Preprocessing, and ClassificationTree Predict blocks as shown earlier for the
slexHARFixedPointExample model.

slexHARFixedPointConvertedExample

 Human Activity Recognition Simulink Model for Fixed-Point Deployment

34-89



Alternatively, you can select the Optimized Fixed-Point Conversion workflow in the Fixed-
Point Tool app or manually define the data type in the block dialog box. For more information, see
“Configure Blocks with Fixed-Point Output” (Fixed-Point Designer).

Deploy to Hardware

Open the Simulink model for deployment to the BBC micro:bit device by entering the following at the
command line. The slexHARFixedPointDeployExample model is converted to fixed-point, and has
I/O blocks for the accelerometer and display ports on the target device.

slexHARFixedPointDeployExample

The Simulink model slexHARFixedPointDeployExample classifies the human activities based on
acceleration data measured by a smartphone sensor. The model includes the following blocks:

• The Accelerometer block receives raw acceleration data from accelerometer sensors on the
device.

• The Buffer and Calibration, Preprocessing, and ClassificationTree Predict blocks are the
same as those shown earlier for the slexHARFixedPointExample model.

• The Predicted Activity block displays the classified human activity values on the 5x5 LED matrix
of the BBC micro:bit device. The letters "S", "T", "W", "R", and "D" represent Sitting, Standing,
Walking, Running, and Dancing, respectively.

To deploy the Simulink model to your device, follow the steps in “Getting Started with Simulink Coder
Support Package for BBC micro:bit” (Simulink Coder Support Package for BBC micro:bit). Run the
model on your device, place the device in the same way as described earlier for collecting the
training data, and try the five activities. The model displays the classified activity accordingly.

To ensure the accuracy of the model, you must place your device in the same way as described for
collecting the training data. If you want to place your device in a different location or at a different
orientation, then collect the data in your own way and use your data to train the classification model.

The accuracy of the model can be different from the accuracy of the test data set (testAccuracy),
depending on the device. To improve the model accuracy, consider using additional sensors, such as a
gyroscope.

References
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See Also
fitctree | crossval | ClassificationTree Predict

More About
• “Introduction to Code Generation” on page 34-2
• “Predict Class Labels Using ClassificationTree Predict Block” on page 34-133
• “Predict Class Labels Using ClassificationEnsemble Predict Block” on page 34-142
• “Predict Class Labels Using ClassificationSVM Predict Block” on page 34-123
• “Predict Class Labels Using MATLAB Function Block” on page 34-51
• “System Objects for Classification and Code Generation” on page 34-65
• “Get Started with Fixed-Point Designer” (Fixed-Point Designer)
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Code Generation for Prediction and Update Using Coder
Configurer

A coder configurer offers convenient features to configure code generation options, generate C/C++
code, and update model parameters in the generated code.

• Configure code generation options and specify the coder attributes of model parameters using
object properties.

• Generate C/C++ code for the predict and update functions of the model by using
generateCode. This requires MATLAB Coder.

• Update model parameters in the generated C/C++ code without having to regenerate the code.
This feature reduces the effort required to regenerate, redeploy, and reverify C/C++ code when
you retrain the model with new data or settings. Before updating model parameters, use
validatedUpdateInputs to validate and extract the model parameters to update.

This flow chart shows the code generation workflow for the predict and update functions using a
coder configurer.

• After training a model, create a coder configurer by using learnerCoderConfigurer, generate
code by using generateCode, and then verify the generated code.

• After you retrain the model with new data or settings, use validatedUpdateInputs to validate
and extract the model parameters. If the retrained model is not eligible for an update, then
validatedUpdateInputs returns an error, and you can then create a coder configurer.
Otherwise, you can update model parameters in the generated C/C++ code without having to
regenerate the code.

This table shows coder configurer objects corresponding to the supported machine learning models.

Model Coder Configurer Object
Binary decision tree for multiclass classification ClassificationTreeCoderConfigurer
SVM for one-class and binary classification ClassificationSVMCoderConfigurer
Linear model for binary classification ClassificationLinearCoderConfigurer
Multiclass model for SVMs and linear models ClassificationECOCCoderConfigurer
Binary decision tree for regression RegressionTreeCoderConfigurer
Support vector machine (SVM) regression RegressionSVMCoderConfigurer
Linear regression RegressionLinearCoderConfigurer

For details and examples, see the reference pages for the coder configurer objects.
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See Also
learnerCoderConfigurer | generateCode | generateFiles | validatedUpdateInputs |
update

More About
• “Introduction to Code Generation” on page 34-2
• “Code Generation for Prediction of Machine Learning Model at Command Line” on page 34-9
• “Code Generation for Prediction of Machine Learning Model Using MATLAB Coder App” on

page 34-23
• “Code Generation and Classification Learner App” on page 34-32
• “Specify Variable-Size Arguments for Code Generation” on page 34-56
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Code Generation for Probability Distribution Objects

This example shows how to generate code that fits a probability distribution to sample data and
evaluates the fitted distribution.

First, define an entry-point function that uses fitdist to create a probability distribution object and
uses its object functions to evaluate the fitted distribution. Then, generate code for the entry-point
function by using codegen (MATLAB Coder). An entry-point function can have a probability
distribution object as both an input argument and an output argument. Therefore, alternatively, you
can define two entry-point functions, one for fitting a distribution and the other for evaluating the
fitted distribution. The first entry-point function returns a fitted distribution, and the second entry-
point function accepts the fitted distribution as an input argument. This example first describes the
workflow with a single entry-point function, and then briefly describes the workflow with two entry-
point functions.

fitdist supports code generation for beta, exponential, extreme value, lognormal, normal, and
Weibull distributions. The supported object functions of the fitted probability distribution objects,
created by fitdist, are cdf, icdf, iqr, mean, median, pdf, std, truncate, and var.

For more information on code generation, see “General Code Generation Workflow” on page 34-5.

Define Entry-Point Function

Define an entry-point function named myFitandEvaluate that takes the sample data, distribution
name, truncation limits of the distribution, and data values at which to evaluate the cumulative
distribution function (cdf) and probability density function (pdf). Within the entry-point function, fit a
probability distribution object to the sample data, truncate the distribution to the specified truncation
limits, compute the mean of the truncated distribution, and compute the cdf and pdf values at the
specified data values.

Display the contents of the myFitandEvaluate.m file.

type myFitandEvaluate.m

function [pd_truncated,st] = myFitandEvaluate(data,distname,truncation_limits,x) %#codegen
% Fit a probability distribution object to data.
pd = fitdist(data,distname);

% Truncate pd.
pd_truncated = truncate(pd,truncation_limits(1),truncation_limits(2));

% Compute the mean of the truncated pd.
mean_val = mean(pd_truncated);

% Compute the cdf and pdf, evaluated at x.
cdf_val = cdf(pd_truncated,x);
pdf_val = pdf(pd_truncated,x);

% Create a structure array containing the mean, cdf, and pdf values.
st = struct('mean', mean_val,'cdf',cdf_val,'pdf',pdf_val);
end

Note: If you click the button located in the upper-right section of this page and open this example in
MATLAB®, then MATLAB opens the example folder. This folder includes the entry-point function files
for this example.
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Generate Code

Specify the input argument types of myFitandEvaluate using a 4-by-1 cell array. Assign each input
argument type of the entry-point function to each cell. Specify the data type and exact input array
size by using an example value that represents the set of values with a certain data type and array
size.

ARGS = cell(4,1);
ARGS{1} = ones(100,1);
ARGS{2} = coder.Constant('Exponential');
ARGS{3} = ones(1,2);
ARGS{4} = ones(10,1);

The second input of myFitandEvaluate is a distribution name, which is the second input argument
of fitdist. This argument must be a compile-time constant. Therefore, you specify ARGS{2} by
using coder.Constant (MATLAB Coder).

If you want to specify ARGS{1} and ARGS{3} as variable-size inputs, use coder.typeof (MATLAB
Coder). For details, see “General Code Generation Workflow” on page 34-5.

Generate a MEX function from the entry-point function myFitandEvaluate. Specify the input
argument types using the -args option and the cell array ARGS.

codegen myFitandEvaluate -args ARGS

Code generation successful.

codegen (MATLAB Coder) generates the MEX function myFitandEvaluate_mex with a platform-
dependent extension in your current folder.

Verify Generated Code

Pass some data to verify whether myFitandEvaluate and myFitandEvaluate_mex return the
same outputs.

rng('default') % For reproducibility
data = exprnd(1,[100,1]); % Exponential random numbers with mean parameter 1
distname = 'Exponential';
truncation_limits = [0,4];
x = (0:9)';
[pd_truncated,st] = myFitandEvaluate(data,distname,truncation_limits,x);
[pd_truncated_mex,st_mex] = myFitandEvaluate_mex(data,distname,truncation_limits,x);

Compare the probability distribution objects pd_truncated and pd_truncated_mex.

pd_truncated

pd_truncated = 
  ExponentialDistribution

  Exponential distribution
    mu = 0.917049
  Truncated to the interval [0, 4]

pd_truncated_mex

pd_truncated_mex = 
  ExponentialDistribution
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  Exponential distribution
    mu = 0.917049
  Truncated to the interval [0, 4]

verifyMEX_pd = isequal(pd_truncated,pd_truncated_mex)

verifyMEX_pd = logical
   1

isequal returns logical 1 (true), which means pd_truncated and pd_truncated_mex are equal.

Compare the structure arrays that contain the mean, cdf, and pdf values.

verifyMEX_st = isequal(st,st_mex)

verifyMEX_st = logical
   1

The comparison confirms that myFitandEvaluate and myFitandEvaluate_mex return the same
outputs. The generated code might not produce the same floating-point numerical results as
MATLAB, as described in “Differences Between Generated Code and MATLAB Code” (MATLAB
Coder). In that case, compare the values allowing a small tolerance.

Workflow with Two Entry-Point Functions

An entry-point function can have a probability distribution object as both an input argument and an
output argument. Therefore, you can define two entry-point functions, one for fitting a distribution
and the other for evaluating the fitted distribution. Then generate code for the two entry-point
functions.

Define Entry-Point Functions

Define two entry-point functions. The first entry-point function myFitDist fits a probability
distribution object to the sample data. The second entry-point function myEvaluateDist truncates
the distribution, computes the mean of the truncated distribution, and computes the cdf and pdf
values at the specified data values. myEvaluateDist takes the output of myFitDist as an input
argument.

Display the contents of the myFitDist.m and myEvaluateDist.m files.

type myFitDist.m

function pd = myFitDist(data,dist) %#codegen
% Fit probability distribution object to data.
pd = fitdist(data,dist);
end

type myEvaluateDist.m

function [pd_truncated,st] = myEvaluateDist(pd,truncation_limits,x) %#codegen
% Truncate pd.
pd_truncated = truncate(pd,truncation_limits(1),truncation_limits(2));

% Compute the mean of the truncated pd.
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mean_val = mean(pd_truncated);

% Compute the cdf and pdf, evaluated at x.
cdf_val = cdf(pd_truncated,x);
pdf_val = pdf(pd_truncated,x);

% Create a structure array containing the mean, cdf, and pdf values.
st = struct('mean', mean_val,'cdf',cdf_val,'pdf',pdf_val);
end

Generate Code

Specify the input argument types of myFitDist and myEvaluateDist.

ARGS_myFitDist = cell(2,1);
ARGS_myFitDist{1} = ones(100,1);
ARGS_myFitDist{2} = coder.Constant('Exponential');

ARGS_myEvaluateDist = cell(3,1);
ARGS_myEvaluateDist{1} = fitdist(exprnd(1,[100,1]),'Exponential');
ARGS_myEvaluateDist{2} = ones(1,2); 
ARGS_myEvaluateDist{3} = ones(10,1);

If you do not need to generate a MEX function, then you can specify ARGS_myEvaluateDist{1} as
coder.OutputType('myFitdist'), as described in “Pass an Entry-Point Function Output as an
Input” (MATLAB Coder). You cannot use coder.OutputType (MATLAB Coder) when generating a
MEX function, because the data type of the output from myFitDist does not match the data type of
the input to myEvaluateDist in the generated MEX function.

Generate code for the two entry-point functions.

codegen -o myFitandEvaluate_mex2 myFitDist -args ARGS_myFitDist myEvaluateDist -args ARGS_myEvaluateDist

Code generation successful.

codegen (MATLAB Coder) generates the MEX function myFitandEvaluate_mex2. For details about
generating code for multiple entry-point functions, see “Generate Code for Multiple Entry-Point
Functions” (MATLAB Coder).

Verify Generated Code

Verify the generated code.

rng('default') 
data = exprnd(1,[100,1]);
distname = 'Exponential';
truncation_limits = [0,4];
x = (0:9)';
pd2 = myFitDist(data,distname);
[pd_truncated2,st2] = myEvaluateDist(pd2,truncation_limits,x);
pd_mex2 = myFitandEvaluate_mex2('myFitDist',data,distname);
[pd_truncated_mex2,st_mex2] = myFitandEvaluate_mex2('myEvaluateDist',pd_mex2,truncation_limits,x);
verifyMEX_pd2 = isequal(pd2,pd_mex2)

verifyMEX_pd2 = logical
   1

verifyMEX_pd_truncated2 = isequal(pd_truncated2,pd_truncated_mex)
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verifyMEX_pd_truncated2 = logical
   1

verifyMEX_st2 = isequal(st2,st_mex2)

verifyMEX_st2 = logical
   1

isequal returns logical 1 (true), which means that the entry-point functions and the corresponding
MEX functions return the same outputs.

See Also
codegen | fitdist | BetaDistribution | ExponentialDistribution |
ExtremeValueDistribution | LognormalDistribution | NormalDistribution |
WeibullDistribution

More About
• “Introduction to Code Generation” on page 34-2
• “General Code Generation Workflow” on page 34-5
• Function List (C/C++ Code Generation)
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Fixed-Point Code Generation for Prediction of SVM

This example shows how to generate fixed-point C/C++ code for the prediction of a support vector
machine (SVM) model. Compared to the general C/C++ code generation workflow, fixed-point code
generation requires an additional step that defines the fixed-point data types of the variables required
for prediction. Create a fixed-point data type structure by using generateLearnerDataTypeFcn,
and use the structure as an input argument of loadLearnerForCoder in an entry-point function.
You can also optimize the fixed-point data types before generating code.

This flow chart shows the fixed-point code generation workflow.

1 Train an SVM model.
2 Save the trained model by using saveLearnerForCoder.
3 Define the fixed-point data types of the variables required for prediction by using the data type

function generated by generateLearnerDataTypeFcn.
4 Define an entry-point function that loads the model by using both loadLearnerForCoder and

the structure, and then calls the predict function.
5 (Optional) Optimize the fixed-point data types.
6 Generate fixed-point C/C++ code.
7 Verify the generated code.

Step 5 is an optional step to improve the performance of the generated fixed-point code. To do so,
repeat these two steps until you are satisfied with the code performance:

1 Record minimum and maximum values of the variables for prediction by using
buildInstrumentedMex (Fixed-Point Designer).

2 View the instrumentation results using showInstrumentationResults (Fixed-Point Designer).
Then, tune the fixed-point data types (if necessary) to prevent overflow and underflow, and to
improve the precision of the fixed-point code.

In this workflow, you define the fixed-point data types by using the data type function generated from
generateLearnerDataTypeFcn. Separating data types of the variables from the algorithm makes
testing simpler. You can programmatically toggle data types between floating-point and fixed-point by
using the input argument of the data type function. Also, this workflow is compatible with “Manual
Fixed-Point Conversion Workflow” (Fixed-Point Designer).

Preprocess Data

Load the census1994 data set. This data set consists of demographic data from the US Census
Bureau used to predict whether an individual makes over $50,000 a year.

load census1994

Consider a model that predicts the salary category of employees given their age, working class,
education level, capital gain and loss, and number of working hours per week. Extract the variables of
interest and save them using a table.

tbl = adultdata(:,{'age','education_num','capital_gain','capital_loss','hours_per_week'});
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Print a summary of the table.

summary(tbl)

Variables:

    age: 32561x1 double

        Values:

            Min          17   
            Median       37   
            Max          90   

    education_num: 32561x1 double

        Values:

            Min           1   
            Median       10   
            Max          16   

    capital_gain: 32561x1 double

        Values:

            Min            0  
            Median         0  
            Max        99999  

    capital_loss: 32561x1 double

        Values:

            Min            0  
            Median         0  
            Max         4356  

    hours_per_week: 32561x1 double

        Values:

            Min           1   
            Median       40   
            Max          99   

The scales of the variables are not consistent. In this case, you can train a model using a standardized
data set by specifying the 'Standardize' name-value pair argument of fitcsvm. However, adding
the operations for standardization to the fixed-point code can reduce precision and increase memory
use. Instead, you can manually standardize the data set, as shown in this example. The example also
describes how to check the memory use at the end.

Fixed-point code generation does not support tables or categorical arrays. So, define the predictor
data X using a numeric matrix, and define the class labels Y using a logical vector. A logical vector
uses memory most efficiently in a binary classification problem.

X = table2array(tbl);
Y = adultdata.salary == '<=50K';
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Define the observation weights w.

w = adultdata.fnlwgt;

The memory use of a trained model increases as the number of support vectors in the model
increases. To reduce the number of support vectors, you can increase the box constraint when
training by using the 'BoxConstraint' name-value pair argument or use a subsampled
representative data set for training. Note that increasing the box constraint can lead to longer
training times, and using a subsampled data set can reduce the accuracy of the trained model. In this
example, you randomly sample 1000 observations from the data set and use the subsampled data for
training.

rng('default') % For reproducibility
[X_sampled,idx] = datasample(X,1000,'Replace',false);
Y_sampled = Y(idx);
w_sampled = w(idx);

Find the weighted means and standard deviations by training the model using the 'Weight' and
'Standardize' name-value pair arguments.

tempMdl = fitcsvm(X_sampled,Y_sampled,'Weight',w_sampled,'KernelFunction','gaussian','Standardize',true);
mu = tempMdl.Mu;
sigma = tempMdl.Sigma;

If you do not use the 'Cost', 'Prior', or 'Weight' name-value pair argument for training, then
you can find the mean and standard deviation values by using the zscore function.

[standardizedX_sampled,mu,sigma] = zscore(X_sampled);

Standardize the predictor data by using mu and sigma.

standardizedX = (X-mu)./sigma;
standardizedX_sampled = standardizedX(idx,:);

You can use a test data set to validate the trained model and to test an instrumented MEX function.
Specify a test data set and standardize the test predictor data by using mu and sigma.

XTest = table2array(adulttest(:,{'age','education_num','capital_gain','capital_loss','hours_per_week'}));
standardizedXTest = (XTest-mu)./sigma;
YTest = adulttest.salary == '<=50K';

Train Model

Train a binary SVM classification model.

Mdl = fitcsvm(standardizedX_sampled,Y_sampled,'Weight',w_sampled,'KernelFunction','gaussian');

Mdl is a ClassificationSVM model.

Compute the classification error for the training data set and the test data set.

loss(Mdl,standardizedX_sampled,Y_sampled) 

ans = 0.1663

loss(Mdl,standardizedXTest,YTest)

ans = 0.1905
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The SVM classifier misclassifies approximately 17% of the training data and 19% of the test data.

Save Model

Save the SVM classification model to the file myMdl.mat by using saveLearnerForCoder.

saveLearnerForCoder(Mdl,'myMdl');

Define Fixed-Point Data Types

Use generateLearnerDataTypeFcn to generate a function that defines the fixed-point data types
of the variables required for prediction of the SVM model. Use all available predictor data to obtain
realistic ranges for the fixed-point data types.

generateLearnerDataTypeFcn('myMdl',[standardizedX; standardizedXTest])

generateLearnerDataTypeFcn generates the myMdl_datatype function. Display the contents of
myMdl_datatype.m by using the type function.

type myMdl_datatype.m

function T = myMdl_datatype(dt)
%MYMDL_DATATYPE Define data types for fixed-point code generation
%   
%   T = MYMDL_DATATYPE(DT) returns the data type structure T, which defines
%   data types for the variables required to generate fixed-point C/C++ code
%   for prediction of a machine learning model. Each field of T contains a
%   fixed-point object returned by fi. The input argument dt specifies the
%   DataType property of the fixed-point object. Specify dt as 'Fixed' (default)
%   for fixed-point code generation or specify dt as 'Double' to simulate
%   floating-point behavior of the fixed-point code.
%   
%   Use the output structure T as both an input argument of an entry-point
%   function and the second input argument of loadLearnerForCoder within the
%   entry-point function. For more information, see loadLearnerForCoder.
     
%   File: myMdl_datatype.m
%   Statistics and Machine Learning Toolbox Version 12.4 (Release R2022b)
%   Generated by MATLAB, 01-Sep-2022 11:39:26
     
if nargin < 1
    dt = 'Fixed';
end

% Set fixed-point math settings
fm = fimath('RoundingMethod','Floor', ...
    'OverflowAction','Wrap', ...
    'ProductMode','FullPrecision', ...
    'MaxProductWordLength',128, ...
    'SumMode','FullPrecision', ...
    'MaxSumWordLength',128);

% Data type for predictor data
T.XDataType = fi([],true,16,11,fm,'DataType',dt);

% Data type for output score
T.ScoreDataType = fi([],true,16,14,fm,'DataType',dt);
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% Internal variables
% Data type of the squared distance dist = (x-sv)^2 for the Gaussian kernel G(x,sv) = exp(-dist),
% where x is the predictor data for an observation and sv is a support vector
T.InnerProductDataType = fi([],true,16,6,fm,'DataType',dt);

end

Note: If you click the button located in the upper-right section of this example and open the example
in MATLAB®, then MATLAB opens the example folder. This folder includes the entry-point function
file.

The myMdl_datatype function uses the default word length (16) and proposes the maximum fraction
length to avoid overflows, based on the default word length (16) and safety margin (10%) for each
variable.

Create a structure T that defines the fixed-point data types by using myMdl_datatype.

T = myMdl_datatype('Fixed')

T = struct with fields:
               XDataType: [0x0 embedded.fi]
           ScoreDataType: [0x0 embedded.fi]
    InnerProductDataType: [0x0 embedded.fi]

The structure T includes the fields for the named and internal variables required to run the predict
function. Each field contains a fixed-point object, returned by fi (Fixed-Point Designer). For example,
display the fixed-point data type properties of the predictor data.

T.XDataType

ans = 

[]

          DataTypeMode: Fixed-point: binary point scaling
            Signedness: Signed
            WordLength: 16
        FractionLength: 11

        RoundingMethod: Floor
        OverflowAction: Wrap
           ProductMode: FullPrecision
  MaxProductWordLength: 128
               SumMode: FullPrecision
      MaxSumWordLength: 128

For more details about the generated function and the structure, see “Data Type Function” on page
35-3041.

Define Entry-Point Function

Define an entry-point function named myFixedPointPredict that does the following:

• Accept the predictor data X and the fixed-point data type structure T.
• Load a fixed-point version of a trained SVM classification model by using both

loadLearnerForCoder and the structure T.
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• Predict labels and scores using the loaded model.

function [label,score] = myFixedPointPredict(X,T) %#codegen
Mdl = loadLearnerForCoder('myMdl','DataType',T);
[label,score] = predict(Mdl,X);
end

(Optional) Optimize Fixed-Point Data Types

Optimize the fixed-point data types by using buildInstrumentedMex and
showInstrumentationResults. Record minimum and maximum values of all named and internal
variables for prediction by using buildInstrumentedMex. View the instrumentation results using
showInstrumentationResults; then, based on the results, tune the fixed-point data type
properties of the variables.

Specify Input Argument Types of Entry-Point Function

Specify the input argument types of myFixedPointPredict using a 2-by-1 cell array.

ARGS = cell(2,1);

The first input argument is the predictor data. The XDataType field of the structure T specifies the
fixed-point data type of the predictor data. Convert X to the type specified in T.XDataType by using
the cast (Fixed-Point Designer) function.

X_fx = cast(standardizedX,'like',T.XDataType);

The test data set does not have the same size as the training data set. Specify ARGS{1} by using
coder.typeof (MATLAB Coder) so that the MEX function can take variable-size inputs.

ARGS{1} = coder.typeof(X_fx,size(standardizedX),[1,0]);

The second input argument is the structure T, which must be a compile-time constant. Use
coder.Constant (MATLAB Coder) to specify T as a constant during code generation.

ARGS{2} = coder.Constant(T);

Create Instrumented MEX Function

Create an instrumented MEX function by using buildInstrumentedMex (Fixed-Point Designer).

• Specify the input argument types of the entry-point function by using the -args option.
• Specify the MEX function name by using the -o option.
• Compute a histogram by using the -histogram option.
• Allow full code generation support by using the -coder option.

buildInstrumentedMex myFixedPointPredict -args ARGS -o myFixedPointPredict_instrumented -histogram -coder

Code generation successful.

Test Instrumented MEX Function

Run the instrumented MEX function to record instrumentation results.

[labels_fx1,scores_fx1] = myFixedPointPredict_instrumented(X_fx,T);
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You can run the instrumented MEX function multiple times to record results from various test data
sets. Run the instrumented MEX function using standardizedXTest.

Xtest_fx = cast(standardizedXTest,'like',T.XDataType);
[labels_fx1_test,scores_fx1_test] = myFixedPointPredict_instrumented(Xtest_fx,T);

View Results of Instrumented MEX Function

Call showInstrumentationResults (Fixed-Point Designer) to open a report containing the
instrumentation results. View the simulation minimum and maximum values, proposed fraction
length, percent of current range, and whole number status.

showInstrumentationResults('myFixedPointPredict_instrumented')

The proposed word lengths and fraction lengths in X are the same as those in XDataType in the
structure T.

View the histogram for a variable by clicking  on the Variables tab.
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The window contains the histogram, information about potential overflows and underflows, and the
data type of the variable.

Clear the results by using clearInstrumentationResults (Fixed-Point Designer).

clearInstrumentationResults('myFixedPointPredict_instrumented')

Verify Instrumented MEX Function

Compare the outputs from predict and myFixedPointPredict_instrumented.

[labels,scores] = predict(Mdl,standardizedX);
verify_labels1 = isequal(labels,labels_fx1)

verify_labels1 = logical
   0

isequal returns logical 1 (true) if labels and labels_fx1 are equal. If the labels are not equal,
you can compute the percentage of incorrectly classified labels as follows.

diff_labels1 = sum(strcmp(string(labels_fx1),string(labels))==0)/length(labels_fx1)*100

diff_labels1 = 0.1228

Find the maximum of the relative differences between the score outputs.

diff_scores1 = max(abs((scores_fx1.double(:,1)-scores(:,1))./scores(:,1)))

diff_scores1 = 174.0771

Tune Fixed-Point Data Types

You can tune the fixed-point data types if the recorded results show overflow or underflow, or if you
want to improve the precision of the generated code. Modify the fixed-point data types by updating
the myMdl_datatype function and creating a new structure, and then generate the code using the
new structure. To update the myMdl_datatype function, you can manually modify the fixed-point
data types in the function file (myMdl_datatype.m). Or, you can generate the function by using
generateLearnerDataTypeFcn and specifying a longer word length, as shown in this example. For
more details, see “Tips” on page 35-3042.
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Generate a new data type function. Specify the word length 32 and the name myMdl_datatype2 for
the generated function.

generateLearnerDataTypeFcn('myMdl',[standardizedX; standardizedXTest],'WordLength',32,'OutputFunctionName','myMdl_datatype2')

Display the contents of myMdl_datatype2.m.

type myMdl_datatype2.m

function T = myMdl_datatype2(dt)
%MYMDL_DATATYPE2 Define data types for fixed-point code generation
%   
%   T = MYMDL_DATATYPE2(DT) returns the data type structure T, which defines
%   data types for the variables required to generate fixed-point C/C++ code
%   for prediction of a machine learning model. Each field of T contains a
%   fixed-point object returned by fi. The input argument dt specifies the
%   DataType property of the fixed-point object. Specify dt as 'Fixed' (default)
%   for fixed-point code generation or specify dt as 'Double' to simulate
%   floating-point behavior of the fixed-point code.
%   
%   Use the output structure T as both an input argument of an entry-point
%   function and the second input argument of loadLearnerForCoder within the
%   entry-point function. For more information, see loadLearnerForCoder.
     
%   File: myMdl_datatype2.m
%   Statistics and Machine Learning Toolbox Version 12.4 (Release R2022b)
%   Generated by MATLAB, 01-Sep-2022 11:43:02
     
if nargin < 1
    dt = 'Fixed';
end

% Set fixed-point math settings
fm = fimath('RoundingMethod','Floor', ...
    'OverflowAction','Wrap', ...
    'ProductMode','FullPrecision', ...
    'MaxProductWordLength',128, ...
    'SumMode','FullPrecision', ...
    'MaxSumWordLength',128);

% Data type for predictor data
T.XDataType = fi([],true,32,27,fm,'DataType',dt);

% Data type for output score
T.ScoreDataType = fi([],true,32,30,fm,'DataType',dt);

% Internal variables
% Data type of the squared distance dist = (x-sv)^2 for the Gaussian kernel G(x,sv) = exp(-dist),
% where x is the predictor data for an observation and sv is a support vector
T.InnerProductDataType = fi([],true,32,22,fm,'DataType',dt);

end

The myMdl_datatype2 function specifies the word length 32 and proposes the maximum fraction
length to avoid overflows.

Create a structure T2 that defines the fixed-point data types by using myMdl_datatype2.
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T2 = myMdl_datatype2('Fixed')

T2 = struct with fields:
               XDataType: [0x0 embedded.fi]
           ScoreDataType: [0x0 embedded.fi]
    InnerProductDataType: [0x0 embedded.fi]

Create a new instrumented MEX function, record the results, and view the results by using
buildInstrumentedMex and showInstrumentationResults.

X_fx2 = cast(standardizedX,'like',T2.XDataType);
buildInstrumentedMex myFixedPointPredict -args {X_fx2,coder.Constant(T2)} -o myFixedPointPredict_instrumented2 -histogram -coder

Code generation successful.

[labels_fx2,scores_fx2] = myFixedPointPredict_instrumented2(X_fx2,T2);
showInstrumentationResults('myFixedPointPredict_instrumented2')

Review the instrumentation report, and then clear the results.

clearInstrumentationResults('myFixedPointPredict_instrumented2')

Verify myFixedPointPredict_instrumented2.

verify_labels2 = isequal(labels,labels_fx2)

verify_labels2 = logical
   0

diff_labels2 = sum(strcmp(string(labels_fx2),string(labels))==0)/length(labels_fx2)*100

diff_labels2 = 0.0031

diff_scores2 = max(abs((scores_fx2.double(:,1)-scores(:,1))./scores(:,1)))

diff_scores2 = 4.5598

The percentage of incorrectly classified labels diff_labels2 and the relative difference in score
values diff_scores2 are smaller than those from the previous MEX function generated using the
default word length (16).

For more details about optimizing fixed-point data types by instrumenting MATLAB® code, see the
reference pages buildInstrumentedMex (Fixed-Point Designer), showInstrumentationResults
(Fixed-Point Designer), and clearInstrumentationResults (Fixed-Point Designer), and the
example “Set Data Types Using Min/Max Instrumentation” (Fixed-Point Designer).

Generate Code

Generate code for the entry-point function using codegen. Instead of specifying a variable-size input
for a predictor data set, specify a fixed-size input by using coder.typeof. If you know the size of the
predictor data set that you pass to the generated code, then generating code for a fixed-size input is
preferable for the simplicity of the code.

codegen myFixedPointPredict -args {coder.typeof(X_fx2,[1,5],[0,0]),coder.Constant(T2)}

Code generation successful.
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codegen generates the MEX function myFixedPointPredict_mex with a platform-dependent
extension.

Verify Generated Code

You can verify the myFixedPointPredict_mex function in the same way that you verify the
instrumented MEX function. See the Verify Instrumented MEX Function section for details.

[labels_sampled,scores_sampled] = predict(Mdl,standardizedX_sampled);
n = size(standardizedX_sampled,1);
labels_fx = true(n,1);
scores_fx = zeros(n,2);
for i = 1:n
    [labels_fx(i),scores_fx(i,:)] = myFixedPointPredict_mex(X_fx2(idx(i),:),T2);
end
verify_labels = isequal(labels_sampled,labels_fx)

verify_labels = logical
   1

diff_labels = sum(strcmp(string(labels_fx),string(labels_sampled))==0)/length(labels_fx)*100

diff_labels = 0

diff_scores = max(abs((scores_fx(:,1)-scores_sampled(:,1))./scores_sampled(:,1)))

diff_scores = 0.0633

Memory Use

A good practice is to manually standardize predictor data before training a model. If you use the
'Standardize' name-value pair argument instead, then the generated fixed-point code includes
standardization operations, which can cause loss of precision and increased memory use.

If you generate a static library, you can find the memory use of the generated code by using a code
generation report. Specify -config:lib to generate a static library, and use the -report option to
generate a code generation report.

codegen myFixedPointPredict -args {coder.typeof(X_fx2,[1,5],[0,0]),coder.Constant(T2)} -o myFixedPointPredict_lib -config:lib -report

On the Summary tab of the code generation report, click Code Metrics. The Function Information
section shows the accumulated stack size.
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To find the memory use of a model trained with 'Standardized','true', you can run the
following code.

Mdl = fitcsvm(X_sampled,Y_sampled,'Weight',w_sampled,'KernelFunction','gaussian','Standardize',true);
saveLearnerForCoder(Mdl,'myMdl');
generateLearnerDataTypeFcn('myMdl',[X; XTest],'WordLength',32,'OutputFunctionName','myMdl_standardize_datatype')
T3 = myMdl_standardize_datatype('Fixed');
X_fx3 = cast(X_sampled,'like',T3.XDataType);
codegen myFixedPointPredict -args {coder.typeof(X_fx3,[1,5],[0,0]),coder.Constant(T3)} -o myFixedPointPredict_standardize_lib -config:lib -report

See Also
loadLearnerForCoder | saveLearnerForCoder | buildInstrumentedMex |
showInstrumentationResults | clearInstrumentationResults | codegen | cast |
generateLearnerDataTypeFcn | fi

More About
• “Fixed-Point Data Types” (Fixed-Point Designer)
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• “Create Fixed-Point Data in MATLAB” (Fixed-Point Designer)
• “Set Data Types Using Min/Max Instrumentation” (Fixed-Point Designer)
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Generate Code to Classify Data in Table

This example shows how to generate code for classifying numeric and categorical data in a table
using a binary decision tree model. The trained model in this example identifies categorical
predictors in the CategoricalPredictors property; therefore, the software handles categorical
predictors automatically. You do not need to create dummy variables manually for categorical
predictors to generate code.

In the general code generation workflow, you can train a classification or regression model on data in
a table. You pass arrays (instead of a table) to your entry-point function for prediction, create a table
inside the entry-point function, and then pass the table to predict. For more information on table
support in code generation, see “Code Generation for Tables” (MATLAB Coder) and “Table
Limitations for Code Generation” (MATLAB Coder).

Train Classification Model

Load the patients data set. Create a table that contains numeric predictors of type single and
double, categorical predictors of type categorical, and the response variable Smoker of type
logical. Each row of the table corresponds to a different patient.

load patients
Age = single(Age);
Weight = single(Weight);
Gender = categorical(Gender);
SelfAssessedHealthStatus = categorical(SelfAssessedHealthStatus);
Tbl = table(Age,Diastolic,Systolic,Weight,Gender,SelfAssessedHealthStatus,Smoker);

Train a classification tree using the data in Tbl.

Mdl = fitctree(Tbl,'Smoker')

Mdl = 
  ClassificationTree
           PredictorNames: {1x6 cell}
             ResponseName: 'Smoker'
    CategoricalPredictors: [5 6]
               ClassNames: [0 1]
           ScoreTransform: 'none'
          NumObservations: 100

  Properties, Methods

The CategoricalPredictors property value is [5 6], which indicates that Mdl identifies the 5th
and 6th predictors ('Gender' and 'SelfAssessedHealthStatus') as categorical predictors. To
identify any other predictors as categorical predictors, you can specify them by using the
'CategoricalPredictors' name-value argument.

Display the predictor names and their order in Mdl.

Mdl.PredictorNames

ans = 1x6 cell
  Columns 1 through 5
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    {'Age'}    {'Diastolic'}    {'Systolic'}    {'Weight'}    {'Gender'}

  Column 6

    {'SelfAssessedHe...'}

Save Model

Save the tree classifier to a file using saveLearnerForCoder.

saveLearnerForCoder(Mdl,'TreeModel');

saveLearnerForCoder saves the classifier to the MATLAB® binary file TreeModel.mat as a
structure array in the current folder.

Define Entry-Point Function

Define the entry-point function predictSmoker, which takes predictor variables as input arguments.
Within the function, load the tree classifier by using loadLearnerForCoder, create a table from the
input arguments, and then pass the classifier and table to predict.

function [labels,scores] = predictSmoker(age,diastolic,systolic,weight,gender,selfAssessedHealthStatus) %#codegen
%PREDICTSMOKER Label new observations using a trained tree model
%   predictSmoker predicts whether patients are smokers (1) or nonsmokers
%   (0) based on their age, diastolic blood pressure, systolic blood
%   pressure, weight, gender, and self assessed health status. The function
%   also provides classification scores indicating the likelihood that a
%   predicted label comes from a particular class (smoker or nonsmoker).
mdl = loadLearnerForCoder('TreeModel');
varnames = mdl.PredictorNames;
tbl = table(age,diastolic,systolic,weight,gender,selfAssessedHealthStatus, ...
    'VariableNames',varnames);
[labels,scores] = predict(mdl,tbl);
end

When you create a table inside an entry-point function, you must specify the variable names (for
example, by using the 'VariableNames' name-value pair argument of table). If your table
contains only predictor variables, and the predictors are in the same order as in the table used to
train the model, then you can find the predictor variable names in mdl.PredictorNames.

Generate Code

Generate code for predictSmoker by using codegen. Specify the data type and dimensions of the
predictor variable input arguments using coder.typeof.

• The first input argument of coder.typeof specifies the data type of the predictor.
• The second input argument specifies the upper bound on the number of rows (Inf) and columns

(1) in the predictor.
• The third input argument specifies that the number of rows in the predictor can change at run

time but the number of columns is fixed.

ARGS = cell(4,1);
ARGS{1} = coder.typeof(Age,[Inf 1],[1 0]);
ARGS{2} = coder.typeof(Diastolic,[Inf 1],[1 0]);
ARGS{3} = coder.typeof(Systolic,[Inf 1],[1 0]);
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ARGS{4} = coder.typeof(Weight,[Inf 1],[1 0]);
ARGS{5} = coder.typeof(Gender,[Inf 1],[1 0]);
ARGS{6} = coder.typeof(SelfAssessedHealthStatus,[Inf 1],[1 0]);

codegen predictSmoker -args ARGS

Code generation successful.

codegen generates the MEX function predictSmoker_mex with a platform-dependent extension in
your current folder.

Verify Generated Code

Verify that predict, predictSmoker, and the MEX file return the same results for a random sample
of 20 patients.

rng('default') % For reproducibility
[newTbl,idx] = datasample(Tbl,20);

[labels1,scores1] = predict(Mdl,newTbl);
[labels2,scores2] = predictSmoker(Age(idx),Diastolic(idx),Systolic(idx),Weight(idx),Gender(idx),SelfAssessedHealthStatus(idx));
[labels3,scores3] = predictSmoker_mex(Age(idx),Diastolic(idx),Systolic(idx),Weight(idx),Gender(idx),SelfAssessedHealthStatus(idx));

verifyMEXlabels = isequal(labels1,labels2,labels3)

verifyMEXlabels = logical
   1

verifyMEXscores = isequal(scores1,scores2,scores3)

verifyMEXscores = logical
   1

See Also
codegen | coder.typeof | loadLearnerForCoder | saveLearnerForCoder

More About
• “Introduction to Code Generation” on page 34-2
• “Code Generation for Prediction of Machine Learning Model at Command Line” on page 34-9
• “Code Generation for Tables” (MATLAB Coder)
• “Table Limitations for Code Generation” (MATLAB Coder)

34 Code Generation

34-114



Code Generation for Image Classification

This example shows how to generate C code from a MATLAB® function that classifies images of
digits using a trained classification model. This example demonstrates an alternative workflow to
“Digit Classification Using HOG Features” (Computer Vision Toolbox). However, to support code
generation in that example, you can follow the code generation steps in this example.

Automated image classification is an ubiquitous tool. For example, a trained classifier can be
deployed to a drone to automatically identify anomalies on land in captured footage, or to a machine
that scans handwritten zip codes on letters. In the latter example, after the machine finds the ZIP
code and stores individual images of digits, the deployed classifier must guess which digits are in the
images to reconstruct the ZIP code.

This example shows how to train and optimize a multiclass error-correcting output codes (ECOC)
classification model to classify digits based on pixel intensities in raster images. The ECOC model
contains binary support vector machine (SVM) learners. Then, this example shows how to generate C
code that uses the trained model to classify new images. The data are synthetic images of warped
digits of various fonts, which simulates handwritten digits.

Set Up Your C Compiler

To generate C/C++ code, you must have access to a C/C++ compiler that is configured properly.
MATLAB Coder™ locates and uses a supported, installed compiler. You can use mex -setup to view
and change the default compiler. For more details, see “Change Default Compiler”.

Assumptions and Limitations

To generate C code, MATLAB Coder:

• Requires a properly configured compiler.
• Requires supported functions to be in a MATLAB function that you define. For the basic workflow,

see “Introduction to Code Generation” on page 34-2.
• Forbids objects as input arguments of the defined function.

Concerning the last limitation, consider that:

• Trained classification models are objects
• MATLAB Coder supports predict to classify observations using trained models, but does not

support fitting the model

To work around the code generation limitations for classification, train the classification model using
MATLAB, then pass the resulting model object to saveLearnerForCoder. The
saveLearnerForCoder function removes some properties that are not required for prediction, and
then saves the trained model to disk as a structure array. Like the model, the structure array contains
the information used to classify new observations.

After saving the model to disk, load the model in the MATLAB function by using
loadLearnerForCoder. The loadLearnerForCoder function loads the saved structure array, and
then reconstructs the model object. In the MATLAB function, to classify the observations, you can
pass the model and predictor data set, which can be an input argument of the function, to predict.
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Code Generation for Classification Workflow

Before deploying an image classifier onto a device:

1 Obtain a sufficient amount of labeled images.
2 Decide which features to extract from the images.
3 Train and optimize a classification model. This step includes choosing an appropriate algorithm

and tuning hyperparameters, that is, model parameters not fit during training.
4 Save the model to disk by using saveLearnerForCoder.
5 Define a function for classifying new images. The function must load the model by using

loadLearnerForCoder, and can return labels, such as classification scores.
6 Set up your C compiler.
7 Decide the environment in which to execute the generated code.
8 Generate C code for the function.

Load Data

Load the digitimages data set.

load digitimages

images is a 28-by-28-by-3000 array of uint16 integers. Each page is a raster image of a digit. Each
element is a pixel intensity. Corresponding labels are in the 3000-by-1 numeric vector Y. For more
details, enter Description at the command line.

Store the number of observations and number of predictor variables. Create a data partition that
specifies to hold out 20% of the data. Extract training and test set indices from the data partition.

rng(1) % For reproducibility
n = size(images,3);
p = numel(images(:,:,1));
cvp = cvpartition(n,'Holdout',0.20);
idxTrn = training(cvp);
idxTest = test(cvp);

Display nine random images from the data.

figure
for j = 1:9
    subplot(3,3,j)
    selectImage = datasample(images,1,3);
    imshow(selectImage,[])
end
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Rescale Data

Because raw pixel intensities vary widely, you should normalize their values before training a
classification model. Rescale the pixel intensities so that they range in the interval [0,1]. That is,
suppose pi j is pixel intensity j within image i. For image i, rescale all of its pixel intensities using this
formula:

pi j =
pi j−min

j
(pi j)

max
j

(pi j)−min
j

(pi j)
.

X = double(images);
for i = 1:n
    minX = min(min(X(:,:,i)));
    maxX = max(max(X(:,:,i)));
    X(:,:,i) = (X(:,:,i) - minX)/(maxX - minX);
end

Alternatively, if you have an Image Processing Toolbox™ license, then you can efficiently rescale pixel
intensities of images to [0,1] by using mat2gray. For more details, see mat2gray (Image Processing
Toolbox).

Reshape Data

For code generation, the predictor data for training must be in a table of numeric variables or a
numeric matrix.
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Reshape the data to a matrix such that predictor variables (pixel intensities) correspond to columns,
and images (observations) to rows. Because reshape takes elements column-wise, you must
transpose its result.

X = reshape(X,[p,n])';

To ensure that preprocessing the data maintains the image, plot the first observation in X.

figure
imshow(reshape(X(1,:),sqrt(p)*[1 1]),[],'InitialMagnification','fit')

Extract Features

Computer Vision Toolbox™ offers several feature-extraction techniques for images. One such
technique is the extraction of histogram of oriented gradient (HOG) features. To learn how to train an
ECOC model using HOG features, see “Digit Classification Using HOG Features” (Computer Vision
Toolbox). For details on other supported techniques, see “Local Feature Detection and Extraction”
(Computer Vision Toolbox). This example uses the rescaled pixel intensities as predictor variables.

Train and Optimize Classification Model

Linear SVM models are often applied to image data sets for classification. However, SVM are binary
classifiers, and there are 10 possible classes in the data set.

You can create a multiclass model of multiple binary SVM learners using fitcecoc. fitcecoc
combines multiple binary learners using a coding design. By default, fitcecoc applies the one-
versus-one design, which specifies training binary learners based on observations from all
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combinations of pairs of classes. For example, in a problem with 10 classes, fitcecoc must train 45
binary SVM models.

In general, when you train a classification model, you should tune the hyperparameters until you
achieve a satisfactory generalization error. That is, you should cross-validate models for particular
sets of hyperparameters, and then compare the out-of-fold misclassification rates.

You can choose your own sets of hyperparameter values, or you can specify to implement Bayesian
optimization. (For general details on Bayesian optimization, see “Bayesian Optimization Workflow” on
page 10-25.) This example performs cross-validation over a chosen grid of values.

To cross-validate an ECOC model of SVM binary learners based on the training observations, use 5-
fold cross-validation. Although the predictor values have the same range, to avoid numerical
difficulties during training, standardize the predictors. Also, optimize the ECOC coding design and
the SVM box constraint. Use all combinations of these values:

• For the ECOC coding design, use one-versus-one and one-versus-all.
• For the SVM box constraint, use three logarithmically-spaced values from 0.1 to 100 each.

For all models, store the 5-fold cross-validated misclassification rates.

coding = {'onevsone' 'onevsall'};
boxconstraint = logspace(-1,2,3);
cvLoss = nan(numel(coding),numel(boxconstraint)); % For preallocation

for i = 1:numel(coding)
    for j = 1:numel(boxconstraint)
        t = templateSVM('BoxConstraint',boxconstraint(j),'Standardize',true);
        CVMdl = fitcecoc(X(idxTrn,:),Y(idxTrn),'Learners',t,'KFold',5,...
            'Coding',coding{i});
        cvLoss(i,j) = kfoldLoss(CVMdl);
        fprintf('cvLoss = %f for model using %s coding and box constraint=%f\n',...
            cvLoss(i,j),coding{i},boxconstraint(j))
    end
end

cvLoss = 0.052083 for model using onevsone coding and box constraint=0.100000
cvLoss = 0.055000 for model using onevsone coding and box constraint=3.162278
cvLoss = 0.050000 for model using onevsone coding and box constraint=100.000000
cvLoss = 0.116667 for model using onevsall coding and box constraint=0.100000
cvLoss = 0.123750 for model using onevsall coding and box constraint=3.162278
cvLoss = 0.125000 for model using onevsall coding and box constraint=100.000000

Determine the hyperparameter indices that yield the minimal misclassification rate. Train an ECOC
model using the training data. Standardize the training data and supply the observed, optimal
hyperparameter combination.

minCVLoss = min(cvLoss(:))

minCVLoss = 0.0500

linIdx = find(cvLoss == minCVLoss);
[bestI,bestJ] = ind2sub(size(cvLoss),linIdx);
bestCoding = coding{bestI}

bestCoding = 
'onevsone'
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bestBoxConstraint = boxconstraint(bestJ)

bestBoxConstraint = 100

t = templateSVM('BoxConstraint',bestBoxConstraint,'Standardize',true);
Mdl = fitcecoc(X(idxTrn,:),Y(idxTrn),'Learners',t,'Coding',bestCoding);

Construct a confusion matrix for the test set images.

testImages = X(idxTest,:);
testLabels = predict(Mdl,testImages);
confusionMatrix = confusionchart(Y(idxTest),testLabels);

Diagonal and off-diagonal elements correspond to correctly and incorrectly classified observations,
respectively. Mdl seems to correctly classify most images.

If you are satisfied with the performance of Mdl, then you can proceed to generate code for
prediction. Otherwise, you can continue adjusting hyperparameters. For example, you can try
training the SVM learners using different kernel functions.

Save Classification Model to Disk

Mdl is a predictive classification model, but you must prepare it for code generation. Save Mdl to
your present working directory using saveLearnerForCoder.

saveLearnerForCoder(Mdl,'DigitImagesECOC')
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saveLearnerForCoder compacts Mdl, converts it to a structure array, and saves it in the MAT-file
DigitImagesECOC.mat.

Define Prediction Function for Code Generation

Define an entry-point function named predictDigitECOC.m that does the following:

• Include the code generation directive %#codegen somewhere in the function.
• Accept image data commensurate with X.
• Load DigitImagesECOC.mat using loadLearnerForCoder.
• Return predicted labels.

type predictDigitECOC.m % Display contents of predictDigitECOC.m file

function label = predictDigitECOC(X) %#codegen
%PREDICTDIGITECOC Classify digit in image using ECOC Model 
%   PREDICTDIGITECOC classifies the 28-by-28 images in the rows of X using
%   the compact ECOC model in the file DigitImagesECOC.mat, and then
%   returns class labels in label.
CompactMdl = loadLearnerForCoder('DigitImagesECOC.mat');
label = predict(CompactMdl,X); 
end

Note: If you click the button located in the upper-right section of this page and open this example in
MATLAB, then MATLAB opens the example folder. This folder includes the entry-point function file.

Verify that the prediction function returns the same test set labels as predict.

pfLabels = predictDigitECOC(testImages);
verifyPF = isequal(pfLabels,testLabels)

verifyPF = logical
   1

isequal returns logical 1 (true), which means all the inputs are equal. The predictDigitECOC
yields the expected results.

Decide Which Environment to Execute Generated Code

Generated code can run:

• Inside the MATLAB environment as a C-MEX file
• Outside the MATLAB environment as a standalone executable
• Outside the MATLAB environment as a shared utility linked to another standalone executable

This example generates a MEX file to be run in the MATLAB environment. Generating such a MEX file
allows you to test the generated code using MATLAB tools before deploying the function outside the
MATLAB environment. In the MEX function, you can include code for verification, but not for code
generation, by declaring the commands as extrinsic using coder.extrinsic (MATLAB Coder).
Extrinsic commands can include functions that do not have code generation support. All extrinsic
commands in the MEX function run in MATLAB, but codegen does not generate code for them.

If you plan to deploy the code outside the MATLAB environment, then you must generate a
standalone executable. One way to specify your compiler choice is by using the -config option of

 Code Generation for Image Classification

34-121



codegen. For example, to generate a static C executable, specify -config:exe when you call
codegen. For more details on setting code generation options, see the -config option of codegen
(MATLAB Coder).

Compile MATLAB Function to MEX File

Compile predictDigitECOC.m to a MEX file using codegen. Specify these options:

• -report — Generates a compilation report that identifies the original MATLAB code and the
associated files that codegen creates during code generation.

• -args — MATLAB Coder requires that you specify the properties of all the function input
arguments. One way to do this is to provide codegen with an example of input values.
Consequently, MATLAB Coder infers the properties from the example values. Specify the test set
images commensurate with X.

codegen predictDigitECOC -report -args {testImages}

Code generation successful: View report

codegen successfully generated the code for the prediction function. You can view the report by
clicking the View report link or by entering open('codegen/mex/predictDigitECOC/html/
report.mldatx') in the Command Window. If code generation is unsuccessful, then the report can
help you debug.

codegen creates the directory pwd/codegen/mex/predictDigitECOC, where pwd is your present
working directory. In the child directory, codegen generates, among other things, the MEX-file
predictDigitECOC_mex.mexw64.

Verify that the MEX file returns the same labels as predict.

mexLabels = predictDigitECOC_mex(testImages);
verifyMEX = isequal(mexLabels,testLabels)

verifyMEX = logical
   1

isequal returns logical 1 (true), meaning that the MEX-file yields the expected results.

See Also
saveLearnerForCoder | loadLearnerForCoder | predict | codegen

Related Examples
• “Introduction to Code Generation” on page 34-2
• “Predict Class Labels Using MATLAB Function Block” on page 34-51
• “System Objects for Classification and Code Generation” on page 34-65
• “Predict Class Labels Using Stateflow” on page 34-73
• “Human Activity Recognition Simulink Model for Smartphone Deployment” on page 34-77
• “Digit Classification Using HOG Features” (Computer Vision Toolbox)
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Predict Class Labels Using ClassificationSVM Predict Block

This example shows how to use the ClassificationSVM Predict block for label prediction in Simulink®.
The block accepts an observation (predictor data) and returns the predicted class label and class
score for the observation using the trained support vector machine (SVM) classification model.

Train Classification Model

This example uses the ionosphere data set, which contains radar return qualities (Y) and predictor
data (X) of 34 variables. Radar returns are either of good quality ('g') or bad quality ('b').

Load the ionosphere data set. Determine the sample size.

load ionosphere
n = numel(Y)

n = 351

Suppose that the radar returns are detected in sequence, and you have the first 300 observations, but
you have not received the last 51 yet. Partition the data into present and future samples.

prsntX = X(1:300,:);
prsntY = Y(1:300);
ftrX = X(301:end,:);
ftrY = Y(301:end);

Train an SVM model using all presently available data. Specify predictor data standardization.

svmMdl = fitcsvm(prsntX,prsntY,'Standardize',true);

svmMdl is a ClassificationSVM model.

Check the negative and positive class names by using the ClassNames property of svmMdl.

svmMdl.ClassNames

ans = 2x1 cell
    {'b'}
    {'g'}

The negative class is 'b', and the positive class is 'g'. The output values from the score port of the
ClassificationSVM Predict block have the same order. The first and second elements correspond to
the negative class and positive class scores, respectively.

Create Simulink Model

This example provides the Simulink model
slexIonosphereClassificationSVMPredictExample.slx, which includes the
ClassificationSVM Predict block. You can open the Simulink model or create a new model as
described in this section.

Open the Simulink model slexIonosphereClassificationSVMPredictExample.slx.

SimMdlName = 'slexIonosphereClassificationSVMPredictExample'; 
open_system(SimMdlName)
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The PreLoadFcn callback function of slexIonosphereClassificationSVMPredictExample
includes code to load the sample data, train the SVM model, and create an input signal for the
Simulink model. If you open the Simulink model, then the software runs the code in PreLoadFcn
before loading the Simulink model. To view the callback function, in the Setup section on the
Modeling tab, click Model Settings and select Model Properties. Then, on the Callbacks tab,
select the PreLoadFcn callback function in the Model callbacks pane.

To create a new Simulink model, open the Blank Model template and add the ClassificationSVM
Predict block. Add the Inport and Outport blocks and connect them to the ClassificationSVM Predict
block.

Double-click the ClassificationSVM Predict block to open the Block Parameters dialog box. Specify
the Select trained machine learning model parameter as svmMdl, which is the name of a
workspace variable that contains the trained SVM model. Click the Refresh button. The dialog box
displays the options used to train the SVM model svmMdl under Trained Machine Learning Model.
Select the Add output port for predicted class scores check box to add the second output port
score.
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The ClassificationSVM Predict block expects an observation containing 34 predictor values. Double-
click the Inport block, and set the Port dimensions to 34 on the Signal Attributes tab.

Create an input signal in the form of a structure array for the Simulink model. The structure array
must contain these fields:

• time — The points in time at which the observations enter the model. In this example, the
duration includes the integers from 0 through 50. The orientation must correspond to the
observations in the predictor data. So, in this case, time must be a column vector.

• signals — A 1-by-1 structure array describing the input data and containing the fields values
and dimensions, where values is a matrix of predictor data, and dimensions is the number of
predictor variables.
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Create an appropriate structure array for future radar returns.

radarReturnInput.time = (0:50)';
radarReturnInput.signals(1).values = ftrX;
radarReturnInput.signals(1).dimensions = size(ftrX,2);

To import signal data from the workspace:

• Open the Configuration Parameters dialog box. On the Modeling tab, click Model Settings.
• In the Data Import/Export pane, select the Input check box and enter radarReturnInput in

the adjacent text box.
• In the Solver pane, under Simulation time, set Stop time to radarReturnInput.time(end).

Under Solver selection, set Type to Fixed-step, and set Solver to discrete (no
continuous states).

For more details, see “Load Signal Data for Simulation” (Simulink).

Simulate the model.

sim(SimMdlName);

When the Inport block detects an observation, it directs the observation into the ClassificationSVM
Predict block. You can use the Simulation Data Inspector (Simulink) to view the logged data of the
Outport blocks.

See Also
ClassificationSVM Predict

Related Examples
• “Predict Class Labels Using ClassificationTree Predict Block” on page 34-133
• “Predict Class Labels Using ClassificationEnsemble Predict Block” on page 34-142
• “Predict Class Labels Using MATLAB Function Block” on page 34-51
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Predict Responses Using RegressionSVM Predict Block

This example shows how to train a support vector machine (SVM) regression model using the
Regression Learner app, and then use the RegressionSVM Predict block for response prediction in
Simulink®. The block accepts an observation (predictor data) and returns the predicted response for
the observation using the trained SVM regression model.

Train Regression Model in Regression Learner App

Train an SVM regression model by using hyperparameter optimization in the Regression Learner
App.

1. In the MATLAB® Command Window, load the carbig data set, and create a matrix containing
most of the predictor variables and a vector of the response variable.

load carbig
X = [Acceleration,Cylinders,Displacement,Horsepower,Model_Year,Weight];
Y = MPG;

2. Delete rows of X and Y where either array has missing values.

R = rmmissing([X Y]);
X = R(:,1:end-1);
Y = R(:,end);

3. Open Regression Learner. On the Apps tab, in the Apps section, click the Show more arrow to
display the apps gallery. In the Machine Learning and Deep Learning group, click Regression
Learner.

4. On the Regression Learner tab, in the File section, select New Session and select From
Workspace.

5. In the New Session from Workspace dialog box, select the matrix X from the Data Set Variable
list. Under Response, click the From workspace option button and select the vector Y from the
workspace. The default validation option is 5-fold cross-validation, to protect against overfitting. For
this example, do not change the default settings.
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6. To accept the default options and continue, click Start Session.

7. Select an optimizable SVM model to train. On the Regression Learner tab, in the Models section,
click the Show more arrow to open the gallery. In the Support Vector Machines group, click
Optimizable SVM.

8. Select the model hyperparameters to optimize. In the Summary tab, you can select Optimize
check boxes for the hyperparameters that you want to optimize. By default, all the check boxes for
the available hyperparameters are selected. For this example, clear the Optimize check boxes for
Kernel function and Standardize data. By default, the app disables the Optimize check box for
Kernel scale whenever the kernel function has a fixed value other than Gaussian. Select a
Gaussian kernel function, and select the Optimize check box for Kernel scale.
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9. In the Train section, click Train All and select Train Selected. The app displays a Minimum
MSE Plot as it runs the optimization process. At each iteration, the app tries a different combination
of hyperparameter values and updates the plot with the minimum validation mean squared error
(MSE) observed up to that iteration, indicated in dark blue. When the app completes the optimization
process, it selects the set of optimized hyperparameters, indicated by a red square. For more
information, see “Minimum MSE Plot” on page 24-43.

The app lists the optimized hyperparameters in both the Optimization Results section to the right
of the plot and the Model Hyperparameters section of the model Summary tab. In general, the
optimization results are not reproducible.

10. Export the model to the MATLAB workspace. On the Regression Learner tab, in the Export
section, click Export Model and select Export Model, then click OK. The default name for the
exported model is trainedModel.

Alternatively, you can generate MATLAB code that trains a regression model with the same settings
used to train the SVM model in the app. On the Regression Learner tab, in the Export section, click
Generate Function. The app generates code from your session and displays the file in the MATLAB
Editor. The file defines a function that accepts predictor and response variables, trains a regression
model, and performs cross-validation. Change the function name to trainRegressionSVMModel
and save the function file. Train an SVM model by using the trainRegressionSVMModel function.

trainedModel = trainRegressionSVMModel(X,Y);
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11. Extract the trained SVM model from the trainedModel variable. trainedModel contains a
RegressionSVM model object in the RegressionSVM field.

svmMdl = trainedModel.RegressionSVM;

Because hyperparameter optimization can lead to an overfitted model, the recommended approach is
to create a separate test set before importing your data into the Regression Learner app and see how
the optimized model performs on your test set. For more details, see “Train Regression Model Using
Hyperparameter Optimization in Regression Learner App” on page 24-97.

Create Simulink Model

This example provides the Simulink model slexCarDataRegressionSVMPredictExample.slx,
which includes the RegressionSVM Predict block. You can open the Simulink model or create a new
model as described in this section.

Open the Simulink model slexCarDataRegressionSVMPredictExample.slx.

SimMdlName = 'slexCarDataRegressionSVMPredictExample'; 
open_system(SimMdlName)

The PreLoadFcn callback function of slexCarDataRegressionSVMPredictExample includes
code to load the sample data, train the SVM model, and create an input signal for the Simulink model.
If you open the Simulink model, then the software runs the code in PreLoadFcn before loading the
Simulink model. To view the callback function, in the Setup section on the Modeling tab, click
Model Settings and select Model Properties. Then, on the Callbacks tab, select the PreLoadFcn
callback function in the Model callbacks pane.

To create a new Simulink model, open the Blank Model template and add the RegressionSVM
Predict block. Add the Inport and Outport blocks and connect them to the RegressionSVM Predict
block.

Double-click the RegressionSVM Predict block to open the Block Parameters dialog box. You can
specify the name of a workspace variable that contains the trained SVM model. The default variable
name is svmMdl. Click the Refresh button. The dialog box displays the options used to train the SVM
model svmMdl under Trained Machine Learning Model.
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The RegressionSVM Predict block expects an observation containing 6 predictor values. Double-click
the Inport block, and set the Port dimensions to 6 on the Signal Attributes tab.

Create an input signal in the form of a structure array for the Simulink model. The structure array
must contain these fields:

• time — The points in time at which the observations enter the model. The orientation must
correspond to the observations in the predictor data. So, in this example, time must be a column
vector.

• signals — A 1-by-1 structure array describing the input data and containing the fields values
and dimensions, where values is a matrix of predictor data, and dimensions is the number of
predictor variables.

Create an appropriate structure array for the slexCarDataRegressionSVMPredictExample
model from the carsmall data set.

load carsmall
testX = [Acceleration,Cylinders,Displacement,Horsepower,Model_Year,Weight];
testX = rmmissing(testX);
carsmallInput.time = (0:size(testX,1)-1)';
carsmallInput.signals(1).values = testX;
carsmallInput.signals(1).dimensions = size(testX,2);
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To import signal data from the workspace:

• Open the Configuration Parameters dialog box. On the Modeling tab, click Model Settings.
• In the Data Import/Export pane, select the Input check box and enter carsmallInput in the

adjacent text box.
• In the Solver pane, under Simulation time, set Stop time to carsmallInput.time(end).

Under Solver selection, set Type to Fixed-step, and set Solver to discrete (no
continuous states).

For more details, see “Load Signal Data for Simulation” (Simulink).

Simulate the model.

sim(SimMdlName);

When the Inport block detects an observation, it directs the observation into the RegressionSVM
Predict block. You can use the Simulation Data Inspector (Simulink) to view the logged data of the
Outport block.

See Also
RegressionSVM Predict

Related Examples
• “Predict Responses Using RegressionTree Predict Block” on page 34-139
• “Predict Responses Using RegressionEnsemble Predict Block” on page 34-149
• “Predict Class Labels Using MATLAB Function Block” on page 34-51
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Predict Class Labels Using ClassificationTree Predict Block

This example shows how to train a classification decision tree model using the Classification Learner
app, and then use the ClassificationTree Predict block for label prediction in Simulink®. The block
accepts an observation (predictor data) and returns the predicted class label and class score for the
observation using the trained classification decision tree model.

Train Classification Model in Classification Learner App

Train a classification decision tree model by using hyperparameter optimization in the Classification
Learner App.

1. In the MATLAB® Command Window, load the ionosphere data set, which contains radar return
qualities (Y) and predictor data (X) of 34 variables. Radar returns are either of good quality ('g') or
bad quality ('b').

Load the ionosphere data set. Determine the sample size.

load ionosphere
n = numel(Y)

n = 351

Suppose that the radar returns are detected in sequence, and you have the first 300 observations, but
you have not received the last 51 yet. Partition the data into present and future samples.

prsntX = X(1:300,:);
prsntY = Y(1:300);
ftrX = X(301:end,:);
ftrY = Y(301:end);

2. Open Classification Learner. On the Apps tab, in the Apps section, click the Show more arrow to
display the apps gallery. In the Machine Learning and Deep Learning group, click Classification
Learner.

3. On the Classification Learner tab, in the File section, click New Session and select From
Workspace.

4. In the New Session from Workspace dialog box, select the matrix prsntX from the Data Set
Variable list. Under Response, click the From workspace option button and select the vector
prsntY from the workspace. The default validation option is 5-fold cross-validation, to protect
against overfitting. For this example, do not change the default settings.
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5. To accept the default options and continue, click Start Session.

6. Select an optimizable tree model to train. On the Classification Learner tab, in the Models
section, click the Show more arrow to open the gallery. In the Decision Trees group, click
Optimizable Tree.
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7. In the Train section, click Train All and select Train Selected. The app displays a Minimum
Classification Error Plot as it runs the optimization process. At each iteration, the app tries a
different combination of hyperparameter values and updates the plot with the minimum validation
classification error observed up to that iteration, indicated in dark blue. When the app completes the
optimization process, it selects the set of optimized hyperparameters, indicated by a red square. For
more information, see “Minimum Classification Error Plot” on page 23-61.

The app lists the optimized hyperparameters in both the Optimization Results section to the right
of the plot and the Model Hyperparameters section of the model Summary tab. In general, the
optimization results are not reproducible.

8. Export the model to the MATLAB workspace. On the Classification Learner tab, in the Export
section, click Export Model and select Export Model, then click OK. The default name for the
exported model is trainedModel.

Alternatively, you can generate MATLAB code that trains a classification model with the same settings
used to train the model in the app. On the Classification Learner tab, in the Export section, click
Generate Function. The app generates code from your session and displays the file in the MATLAB
Editor. The file defines a function that accepts predictor and response variables, trains a classification
model, and performs cross-validation. Change the function name to
trainClassificationTreeModel and save the function file. Train a decision tree classification
model by using the trainClassificationTreeModel function.
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trainedModel = trainClassificationTreeModel(prsntX,prsntY);

9. Extract the trained model from the trainedModel variable. trainedModel contains a
ClassificationTree model object in the ClassificationTree field.

treeMdl = trainedModel.ClassificationTree;

Because hyperparameter optimization can lead to an overfitted model, the recommended approach is
to create a separate test set before importing your data into the Classification Learner app and see
how the optimized model performs on your test set. For more details, see “Train Classifier Using
Hyperparameter Optimization in Classification Learner App” on page 23-145.

Create Simulink Model

This example provides the Simulink model
slexIonosphereClassificationTreePredictExample.slx, which includes the
ClassificationTree Predict block. You can open the Simulink model or create a new model as
described in this section.

Open the Simulink model slexIonosphereClassificationTreePredictExample.slx.

SimMdlName = 'slexIonosphereClassificationTreePredictExample'; 
open_system(SimMdlName)

The PreLoadFcn callback function of slexIonosphereClassificationTreePredictExample
includes code to load the sample data, train the model, and create an input signal for the Simulink
model. If you open the Simulink model, then the software runs the code in PreLoadFcn before
loading the Simulink model. To view the callback function, in the Setup section on the Modeling tab,
click Model Settings and select Model Properties. Then, on the Callbacks tab, select the
PreLoadFcn callback function in the Model callbacks pane.

To create a new Simulink model, open the Blank Model template and add the ClassificationTree
Predict block. Add the Inport and Outport blocks and connect them to the ClassificationTree Predict
block.

Double-click the ClassificationTree Predict block to open the Block Parameters dialog box. You can
specify the name of a workspace variable that contains the trained model. The default variable name
is treeMdl. Click the Refresh button. The dialog box displays the options used to train the model
treeMdl under Trained Machine Learning Model. Select the Add output port for predicted
class scores check box to add the second output port score.
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The ClassificationTree Predict block expects an observation containing 34 predictor values. Double-
click the Inport block, and set the Port dimensions to 34 on the Signal Attributes tab.

Create an input signal in the form of a structure array for the Simulink model. The structure array
must contain these fields:

• time — The points in time at which the observations enter the model. In this example, the
duration includes the integers from 0 through 50. The orientation must correspond to the
observations in the predictor data. So, in this case, time must be a column vector.

• signals — A 1-by-1 structure array describing the input data and containing the fields values
and dimensions, where values is a matrix of predictor data, and dimensions is the number of
predictor variables.

Create an appropriate structure array for future radar returns.

 Predict Class Labels Using ClassificationTree Predict Block

34-137



radarReturnInput.time = (0:50)';
radarReturnInput.signals(1).values = ftrX;
radarReturnInput.signals(1).dimensions = size(ftrX,2);

To import signal data from the workspace:

• Open the Configuration Parameters dialog box. On the Modeling tab, click Model Settings.
• In the Data Import/Export pane, select the Input check box and enter radarReturnInput in

the adjacent text box.
• In the Solver pane, under Simulation time, set Stop time to radarReturnInput.time(end).

Under Solver selection, set Type to Fixed-step, and set Solver to discrete (no
continuous states).

For more details, see “Load Signal Data for Simulation” (Simulink).

Simulate the model.

sim(SimMdlName);

When the Inport block detects an observation, it directs the observation into the ClassificationTree
Predict block. You can use the Simulation Data Inspector (Simulink) to view the logged data of the
Outport blocks.

See Also
ClassificationTree Predict

Related Examples
• “Predict Class Labels Using ClassificationSVM Predict Block” on page 34-123
• “Predict Class Labels Using ClassificationEnsemble Predict Block” on page 34-142
• “Predict Class Labels Using MATLAB Function Block” on page 34-51
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Predict Responses Using RegressionTree Predict Block

This example shows how to use the RegressionTree Predict block for response prediction in
Simulink®. The block accepts an observation (predictor data) and returns the predicted response for
the observation using the trained regression tree model.

Train Regression Model

Load the carbig data set, which contains measurements of cars made in the 1970s and early 1980s.
Create a matrix containing the predictor variables and a vector of the response variable.

load carbig
X = [Acceleration,Cylinders,Displacement,Horsepower,Model_Year,Weight];
Y = MPG;

Train a regression tree model.

treeMdl = fitrtree(X,Y);

treeMdl is a RegressionTree model.

Create Simulink Model

This example provides the Simulink model slexCarDataRegressionTreePredictExample.slx,
which includes the RegressionTree Predict block. You can open the Simulink model or create a new
model as described in this section.

Open the Simulink model slexCarDataRegressionTreePredictExample.slx.

SimMdlName = 'slexCarDataRegressionTreePredictExample'; 
open_system(SimMdlName)

The PreLoadFcn callback function of slexCarDataRegressionTreePredictExample includes
code to load the sample data, train the tree model, and create an input signal for the Simulink model.
If you open the Simulink model, then the software runs the code in PreLoadFcn before loading the
Simulink model. To view the callback function, in the Setup section on the Modeling tab, click
Model Settings and select Model Properties. Then, on the Callbacks tab, select the PreLoadFcn
callback function in the Model callbacks pane.
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To create a new Simulink model, open the Blank Model template and add the RegressionTree
Predict block. Add the Inport and Outport blocks and connect them to the RegressionTree Predict
block.

Double-click the RegressionTree Predict block to open the Block Parameters dialog box. You can
specify the name of a workspace variable that contains the trained tree model. The default variable
name is treeMdl. Click the Refresh button. The dialog box displays the options used to train the
tree model treeMdl under Trained Machine Learning Model.

The RegressionTree Predict block expects an observation containing 6 predictor values. Double-click
the Inport block, and set the Port dimensions to 6 on the Signal Attributes tab.

Create an input signal in the form of a structure array for the Simulink model. The structure array
must contain these fields:

• time — The points in time at which the observations enter the model. The orientation must
correspond to the observations in the predictor data. So, in this example, time must be a column
vector.

• signals — A 1-by-1 structure array describing the input data and containing the fields values
and dimensions, where values is a matrix of predictor data, and dimensions is the number of
predictor variables.
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Create an appropriate structure array for the slexCarDataRegressionTreePredictExample
model from the carsmall data set.

load carsmall
testX = [Acceleration,Cylinders,Displacement,Horsepower,Model_Year,Weight];
testX = rmmissing(testX);
carsmallInput.time = (0:size(testX,1)-1)';
carsmallInput.signals(1).values = testX;
carsmallInput.signals(1).dimensions = size(testX,2);

To import signal data from the workspace:

• Open the Configuration Parameters dialog box. On the Modeling tab, click Model Settings.
• In the Data Import/Export pane, select the Input check box and enter carsmallInput in the

adjacent text box.
• In the Solver pane, under Simulation time, set Stop time to carsmallInput.time(end).

Under Solver selection, set Type to Fixed-step, and set Solver to discrete (no
continuous states).

For more details, see “Load Signal Data for Simulation” (Simulink).

Simulate the model.

sim(SimMdlName);

When the Inport block detects an observation, it directs the observation into the RegressionTree
Predict block. You can use the Simulation Data Inspector (Simulink) to view the logged data of the
Outport block.

See Also
RegressionTree Predict

Related Examples
• “Predict Responses Using RegressionSVM Predict Block” on page 34-127
• “Predict Responses Using RegressionEnsemble Predict Block” on page 34-149
• “Predict Class Labels Using MATLAB Function Block” on page 34-51
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Predict Class Labels Using ClassificationEnsemble Predict
Block

This example shows how to train an ensemble model with optimal hyperparameters, and then use the
ClassificationEnsemble Predict block for label prediction in Simulink®. The block accepts an
observation (predictor data) and returns the predicted class label and class score for the observation
using the trained classification ensemble model.

Train Classification Model with Optimal Hyperparameters

Load the CreditRating_Historical data set. This data set contains customer IDs and their
financial ratios, industry labels, and credit ratings. Determine the sample size.

tbl = readtable('CreditRating_Historical.dat');
n = numel(tbl)

n = 31456

Display the first three rows of the table.

head(tbl,3)

ans=3×8 table
     ID      WC_TA    RE_TA    EBIT_TA    MVE_BVTD    S_TA     Industry    Rating
    _____    _____    _____    _______    ________    _____    ________    ______

    62394    0.013    0.104     0.036      0.447      0.142       3        {'BB'}
    48608    0.232    0.335     0.062      1.969      0.281       8        {'A' }
    42444    0.311    0.367     0.074      1.935      0.366       1        {'A' }

tbl.Industry is a categorical variable for an industry label. When you train a model for the
ClassificationEnsemble Predict block, you must preprocess categorical predictors by using the
dummyvar function to include the categorical predictors in the model. You cannot use the
'CategoricalPredictors' name-value argument. Create dummy variables for tbl.Industry.

d = dummyvar(tbl.Industry);

dummyvar creates dummy variables for each category of tbl.Industry. Determine the number of
categories in tbl.Industry and the number of dummy variables in d.

unique(tbl.Industry)'

ans = 1×12

     1     2     3     4     5     6     7     8     9    10    11    12

size(d)

ans = 1×2

        3932          12

Create a numeric matrix for the predictor variables and a cell array for the response variable.
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X = [table2array(tbl(:,2:6)) d];
Y = tbl.Rating;

X is a numeric matrix that contains 17 variables: the five financial ratios and the 12 dummy variables
for the industry label. X does not use tbl.ID because the variable is not helpful in predicting credit
ratings. Y is a cell array of character vectors that contains the corresponding credit ratings.

Suppose that you receive the data in sequence, and you have the first 3000 observations, but you
have not received the last 932 yet. Partition the data into present and future samples.

prsntX = X(1:3000,:);
prsntY = Y(1:3000);
ftrX = X(3001:end,:);
ftrY = Y(3001:end);

Train an ensemble using all presently available data prsntX and prsntY with these options:

• Specify 'OptimizeHyperparameters' as 'auto' to train an ensemble with optimal
hyperparameters. The 'auto' option finds optimal values for
'Method','NumLearningCycles', and 'LearnRate' (for applicable methods) of
fitcensemble and 'MinLeafSize' of tree learners.

• For reproducibility, set the random seed and use the 'expected-improvement-plus'
acquisition function. Also, for reproducibility of the random forest algorithm, specify
'Reproducible' as true for tree learners.

• Specify the order of the classes by using the 'ClassNames' name-value argument. The output
values from the score port of the ClassificationEnsemble Predict block have the same order.

rng('default')
t = templateTree('Reproducible',true);
ensMdl = fitcensemble(prsntX,prsntY, ...
    'ClassNames',{'AAA' 'AA' 'A' 'BBB' 'BB' 'B' 'CCC'}, ...
    'OptimizeHyperparameters','auto','Learners',t, ...
    'HyperparameterOptimizationOptions', ...
    struct('AcquisitionFunctionName','expected-improvement-plus'))

|===================================================================================================================================|
| Iter | Eval   | Objective   | Objective   | BestSoFar   | BestSoFar   |       Method | NumLearningC-|    LearnRate |  MinLeafSize |
|      | result |             | runtime     | (observed)  | (estim.)    |              | ycles        |              |              |
|===================================================================================================================================|
|    1 | Best   |     0.51133 |      13.652 |     0.51133 |     0.51133 |   AdaBoostM2 |          429 |     0.082478 |          871 |
|    2 | Best   |     0.26133 |      18.827 |     0.26133 |     0.27463 |   AdaBoostM2 |          492 |      0.19957 |            4 |
|    3 | Accept |     0.85133 |     0.76925 |     0.26133 |     0.28421 |     RUSBoost |           10 |      0.34528 |         1179 |
|    4 | Accept |       0.263 |     0.61254 |     0.26133 |     0.26124 |   AdaBoostM2 |           13 |      0.27107 |           10 |
|    5 | Best   |        0.26 |      0.9413 |        0.26 |     0.26003 |          Bag |           10 |            - |            1 |
|    6 | Accept |     0.28933 |      1.7101 |        0.26 |      0.2602 |          Bag |           36 |            - |          101 |
|    7 | Best   |     0.25667 |      1.3583 |     0.25667 |     0.25726 |   AdaBoostM2 |           33 |      0.99501 |           11 |
|    8 | Best   |       0.244 |      28.725 |       0.244 |     0.24406 |          Bag |          460 |            - |            7 |
|    9 | Accept |       0.246 |        4.19 |       0.244 |     0.24435 |          Bag |           60 |            - |            4 |
|   10 | Accept |     0.25533 |      1.3969 |       0.244 |     0.24437 |   AdaBoostM2 |           33 |      0.99516 |            1 |
|   11 | Accept |     0.25733 |      1.5294 |       0.244 |      0.2442 |          Bag |           25 |            - |            8 |
|   12 | Accept |     0.74267 |      16.444 |       0.244 |     0.24995 |          Bag |          488 |            - |         1494 |
|   13 | Accept |     0.28567 |      7.9382 |       0.244 |     0.24624 |     RUSBoost |          158 |    0.0010063 |            1 |
|   14 | Accept |       0.257 |      23.416 |       0.244 |     0.24559 |          Bag |          491 |            - |           31 |
|   15 | Accept |     0.28433 |     0.71501 |       0.244 |     0.24557 |     RUSBoost |           12 |      0.48085 |            6 |
|   16 | Accept |       0.267 |       17.82 |       0.244 |      0.2456 |   AdaBoostM2 |          484 |    0.0028818 |           43 |
|   17 | Accept |     0.24667 |      33.219 |       0.244 |     0.24601 |          Bag |          488 |            - |            3 |
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|   18 | Best   |       0.244 |      34.953 |       0.244 |      0.2454 |          Bag |          498 |            - |            3 |
|   19 | Accept |     0.24467 |      31.568 |       0.244 |     0.24489 |          Bag |          473 |            - |            3 |
|   20 | Accept |       0.259 |      19.187 |       0.244 |     0.24488 |   AdaBoostM2 |          497 |      0.67001 |           19 |
|===================================================================================================================================|
| Iter | Eval   | Objective   | Objective   | BestSoFar   | BestSoFar   |       Method | NumLearningC-|    LearnRate |  MinLeafSize |
|      | result |             | runtime     | (observed)  | (estim.)    |              | ycles        |              |              |
|===================================================================================================================================|
|   21 | Accept |     0.27733 |      19.735 |       0.244 |     0.24468 |     RUSBoost |          386 |      0.91461 |            2 |
|   22 | Accept |       0.245 |      32.172 |       0.244 |      0.2441 |          Bag |          482 |            - |            4 |
|   23 | Accept |       0.244 |      33.117 |       0.244 |     0.24388 |          Bag |          497 |            - |            4 |
|   24 | Accept |       0.245 |       34.32 |       0.244 |     0.24406 |          Bag |          497 |            - |            4 |
|   25 | Best   |       0.243 |      33.134 |       0.243 |     0.24394 |          Bag |          499 |            - |            5 |
|   26 | Accept |     0.25733 |     0.55541 |       0.243 |     0.24371 |   AdaBoostM2 |           12 |      0.87848 |           53 |
|   27 | Accept |       0.263 |     0.52438 |       0.243 |     0.24371 |   AdaBoostM2 |           11 |       0.6978 |            2 |
|   28 | Accept |     0.24367 |      31.167 |       0.243 |     0.24344 |          Bag |          484 |            - |            5 |
|   29 | Accept |       0.292 |      19.748 |       0.243 |     0.24342 |   AdaBoostM2 |          497 |    0.0010201 |            1 |
|   30 | Accept |       0.292 |      0.7854 |       0.243 |     0.24342 |     RUSBoost |           13 |    0.0012334 |            3 |

__________________________________________________________
Optimization completed.
MaxObjectiveEvaluations of 30 reached.
Total function evaluations: 30
Total elapsed time: 488.5833 seconds
Total objective function evaluation time: 464.2275

Best observed feasible point:
    Method    NumLearningCycles    LearnRate    MinLeafSize
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    ______    _________________    _________    ___________

     Bag             499              NaN            5     

Observed objective function value = 0.243
Estimated objective function value = 0.24342
Function evaluation time = 33.1343

Best estimated feasible point (according to models):
    Method    NumLearningCycles    LearnRate    MinLeafSize
    ______    _________________    _________    ___________

     Bag             499              NaN            5     

Estimated objective function value = 0.24342
Estimated function evaluation time = 32.1002

ensMdl = 
  ClassificationBaggedEnsemble
                         ResponseName: 'Y'
                CategoricalPredictors: []
                           ClassNames: {'AAA'  'AA'  'A'  'BBB'  'BB'  'B'  'CCC'}
                       ScoreTransform: 'none'
                      NumObservations: 3000
    HyperparameterOptimizationResults: [1×1 BayesianOptimization]
                           NumTrained: 499
                               Method: 'Bag'
                         LearnerNames: {'Tree'}
                 ReasonForTermination: 'Terminated normally after completing the requested number of training cycles.'
                              FitInfo: []
                   FitInfoDescription: 'None'
                            FResample: 1
                              Replace: 1
                     UseObsForLearner: [3000×499 logical]

  Properties, Methods

fitcensemble returns a ClassificationBaggedEnsemble object because the function finds the
random forest algorithm ('Bag') as the optimal method.

Create Simulink Model

This example provides the Simulink model
slexCreditRatingClassificationEnsemblePredictExample.slx, which includes the
ClassificationEnsemble Predict block. You can open the Simulink model or create a new model as
described in this section.

Open the Simulink model slexCreditRatingClassificationEnsemblePredictExample.slx.

SimMdlName = 'slexCreditRatingClassificationEnsemblePredictExample'; 
open_system(SimMdlName)
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The PreLoadFcn callback function of
slexCreditRatingClassificationEnsemblePredictExample includes code to load the sample
data, train the model using the optimal hyperparameters, and create an input signal for the Simulink
model. If you open the Simulink model, then the software runs the code in PreLoadFcn before
loading the Simulink model. To view the callback function, in the Setup section on the Modeling tab,
click Model Settings and select Model Properties. Then, on the Callbacks tab, select the
PreLoadFcn callback function in the Model callbacks pane.

To create a new Simulink model, open the Blank Model template and add the
ClassificationEnsemble Predict block. Add the Inport and Outport blocks and connect them to the
ClassificationEnsemble Predict block.

Double-click the ClassificationEnsemble Predict block to open the Block Parameters dialog box.
Specify the Select trained machine learning model parameter as ensMdl, which is the name of a
workspace variable that contains the trained model. Click the Refresh button. The dialog box
displays the options used to train the model ensMdl under Trained Machine Learning Model.
Select the Add output port for predicted class scores check box to add the second output port
score.
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The ClassificationEnsemble Predict block expects an observation containing 17 predictor values.
Double-click the Inport block, and set the Port dimensions to 17 on the Signal Attributes tab.

Create an input signal in the form of a structure array for the Simulink model. The structure array
must contain these fields:

• time — The points in time at which the observations enter the model. In this example, the
duration includes the integers from 0 through 931. The orientation must correspond to the
observations in the predictor data. So, in this case, time must be a column vector.

• signals — A 1-by-1 structure array describing the input data and containing the fields values
and dimensions, where values is a matrix of predictor data, and dimensions is the number of
predictor variables.

Create an appropriate structure array for future samples.
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creditRatingInput.time = (0:931)';
creditRatingInput.signals(1).values = ftrX;
creditRatingInput.signals(1).dimensions = size(ftrX,2);

To import signal data from the workspace:

• Open the Configuration Parameters dialog box. On the Modeling tab, click Model Settings.
• In the Data Import/Export pane, select the Input check box and enter creditRatingInput in

the adjacent text box.
• In the Solver pane, under Simulation time, set Stop time to

creditRatingInput.time(end). Under Solver selection, set Type to Fixed-step, and set
Solver to discrete (no continuous states).

For more details, see “Load Signal Data for Simulation” (Simulink).

Simulate the model.

sim(SimMdlName);

When the Inport block detects an observation, it directs the observation into the
ClassificationEnsemble Predict block. You can use the Simulation Data Inspector (Simulink) to view
the logged data of the Outport blocks.

See Also
ClassificationEnsemble Predict

Related Examples
• “Predict Class Labels Using ClassificationSVM Predict Block” on page 34-123
• “Predict Class Labels Using ClassificationTree Predict Block” on page 34-133
• “Predict Class Labels Using MATLAB Function Block” on page 34-51
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Predict Responses Using RegressionEnsemble Predict Block

This example shows how to train an ensemble model with optimal hyperparameters, and then use the
RegressionEnsemble Predict block for response prediction in Simulink®. The block accepts an
observation (predictor data) and returns the predicted response for the observation using the trained
regression ensemble model.

Train Regression Model with Optimal Hyperparameters

Load the carbig data set, which contains measurements of cars made in the 1970s and early 1980s.

load carbig
whos

  Name                Size            Bytes  Class     Attributes

  Acceleration      406x1              3248  double              
  Cylinders         406x1              3248  double              
  Displacement      406x1              3248  double              
  Horsepower        406x1              3248  double              
  MPG               406x1              3248  double              
  Mfg               406x13            10556  char                
  Model             406x36            29232  char                
  Model_Year        406x1              3248  double              
  Origin            406x7              5684  char                
  Weight            406x1              3248  double              
  cyl4              406x5              4060  char                
  org               406x7              5684  char                
  when              406x5              4060  char                

Origin is a categorical variable. When you train a model for the RegressionEnsemble Predict block,
you must preprocess categorical predictors by using the dummyvar function to include the
categorical predictors in the model. You cannot use the 'CategoricalPredictors' name-value
argument. Create dummy variables for Origin.

c_Origin = categorical(cellstr(Origin));
d_Origin = dummyvar(c_Origin);

dummyvar creates dummy variables for each category of c_Origin. Determine the number of
categories in c_Origin and the number of dummy variables in d_Origin.

unique(cellstr(Origin))

ans = 7x1 cell
    {'England'}
    {'France' }
    {'Germany'}
    {'Italy'  }
    {'Japan'  }
    {'Sweden' }
    {'USA'    }

size(d_Origin)

ans = 1×2
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   406     7

dummyvar creates dummy variables for each category of Origin.

Create a matrix containing six numeric predictor variables and the seven dummy variables for
Origin. Also, create a vector of the response variable.

X = [Acceleration,Cylinders,Displacement,Horsepower,Model_Year,Weight,d_Origin];
Y = MPG;

Train an ensemble using X and Y with these options:

• Specify 'OptimizeHyperparameters' as 'auto' to train an ensemble with optimal
hyperparameters. The 'auto' option finds optimal values for
'Method','NumLearningCycles', and 'LearnRate' (for applicable methods) of
fitrensemble and 'MinLeafSize' of tree learners.

• For reproducibility, set the random seed and use the 'expected-improvement-plus'
acquisition function. Also, for reproducibility of the random forest algorithm, specify
'Reproducible' as true for tree learners.

rng('default')
t = templateTree('Reproducible',true);
ensMdl = fitrensemble(X,Y,'Learners',t, ...
    'OptimizeHyperparameters','auto', ...
    'HyperparameterOptimizationOptions', ...
    struct('AcquisitionFunctionName','expected-improvement-plus'))

|===================================================================================================================================|
| Iter | Eval   | Objective:  | Objective   | BestSoFar   | BestSoFar   |       Method | NumLearningC-|    LearnRate |  MinLeafSize |
|      | result | log(1+loss) | runtime     | (observed)  | (estim.)    |              | ycles        |              |              |
|===================================================================================================================================|
|    1 | Best   |      2.7403 |      17.103 |      2.7403 |      2.7403 |          Bag |          184 |            - |           69 |
|    2 | Accept |      4.1317 |      1.1135 |      2.7403 |      2.8143 |          Bag |           10 |            - |          176 |
|    3 | Best   |      2.1687 |      14.494 |      2.1687 |      2.1689 |          Bag |          118 |            - |            2 |
|    4 | Accept |      2.2747 |      3.1936 |      2.1687 |      2.1688 |      LSBoost |           24 |      0.37779 |            7 |
|    5 | Best   |      2.1421 |      7.9223 |      2.1421 |      2.1422 |          Bag |           75 |            - |            1 |
|    6 | Best   |      2.1365 |      47.143 |      2.1365 |      2.1365 |          Bag |          500 |            - |            1 |
|    7 | Accept |      2.4302 |      3.1945 |      2.1365 |      2.1365 |      LSBoost |           37 |      0.94779 |           71 |
|    8 | Accept |      2.1813 |      44.114 |      2.1365 |      2.1365 |      LSBoost |          497 |     0.023582 |            1 |
|    9 | Accept |      6.1992 |      9.5947 |      2.1365 |      2.1363 |      LSBoost |           91 |    0.0012439 |            1 |
|   10 | Accept |      2.2119 |       44.06 |      2.1365 |      2.1363 |      LSBoost |          497 |     0.087441 |           11 |
|   11 | Accept |      4.7782 |      1.5709 |      2.1365 |      2.1366 |      LSBoost |           15 |     0.055744 |            1 |
|   12 | Accept |      2.3093 |      43.314 |      2.1365 |      2.1366 |      LSBoost |          493 |      0.39665 |            1 |
|   13 | Accept |      4.1304 |      16.689 |      2.1365 |      2.1366 |      LSBoost |          198 |      0.33031 |          201 |
|   14 | Accept |       2.595 |      1.6357 |      2.1365 |      2.1367 |      LSBoost |           16 |      0.99848 |            1 |
|   15 | Accept |      2.6643 |      2.6424 |      2.1365 |      2.1363 |      LSBoost |           25 |      0.97637 |            5 |
|   16 | Accept |      2.2388 |      1.3779 |      2.1365 |      2.1363 |      LSBoost |           11 |      0.42205 |            1 |
|   17 | Accept |      4.1304 |      1.8718 |      2.1365 |      2.1789 |      LSBoost |           19 |      0.79808 |          202 |
|   18 | Accept |      2.3399 |      6.8934 |      2.1365 |      2.1363 |      LSBoost |           71 |      0.44856 |            1 |
|   19 | Accept |      2.7734 |      9.0248 |      2.1365 |      2.1394 |      LSBoost |          107 |     0.020776 |            2 |
|   20 | Accept |      2.3204 |        37.4 |      2.1365 |       2.136 |          Bag |          463 |            - |           16 |
|===================================================================================================================================|
| Iter | Eval   | Objective:  | Objective   | BestSoFar   | BestSoFar   |       Method | NumLearningC-|    LearnRate |  MinLeafSize |
|      | result | log(1+loss) | runtime     | (observed)  | (estim.)    |              | ycles        |              |              |
|===================================================================================================================================|
|   21 | Accept |      2.2005 |      40.809 |      2.1365 |       2.137 |      LSBoost |          464 |      0.10107 |           10 |
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|   22 | Accept |       2.479 |      4.0117 |      2.1365 |       2.136 |      LSBoost |           40 |      0.93931 |           26 |
|   23 | Accept |      4.4432 |      1.4783 |      2.1365 |      2.1366 |      LSBoost |           16 |     0.094719 |          189 |
|   24 | Accept |      2.2531 |      47.388 |      2.1365 |       2.137 |      LSBoost |          497 |      0.32798 |            5 |
|   25 | Accept |       2.158 |      39.746 |      2.1365 |      2.1366 |      LSBoost |          433 |     0.015137 |            1 |
|   26 | Accept |      2.6254 |      31.986 |      2.1365 |      2.1369 |      LSBoost |          467 |      0.94779 |           50 |
|   27 | Accept |      2.5612 |      1.1838 |      2.1365 |      2.1369 |      LSBoost |           12 |      0.19061 |           17 |
|   28 | Accept |       2.256 |      1.0522 |      2.1365 |      2.1366 |      LSBoost |           10 |      0.37427 |            2 |
|   29 | Accept |      2.2065 |      41.208 |      2.1365 |      2.1366 |      LSBoost |          499 |     0.018238 |            5 |
|   30 | Accept |      2.2539 |      1.1374 |      2.1365 |      2.1369 |          Bag |           10 |            - |            7 |

__________________________________________________________
Optimization completed.
MaxObjectiveEvaluations of 30 reached.
Total function evaluations: 30
Total elapsed time: 560.4549 seconds
Total objective function evaluation time: 524.3526

Best observed feasible point:
    Method    NumLearningCycles    LearnRate    MinLeafSize
    ______    _________________    _________    ___________

     Bag             500              NaN            1     

Observed objective function value = 2.1365
Estimated objective function value = 2.1369
Function evaluation time = 47.1426
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Best estimated feasible point (according to models):
    Method    NumLearningCycles    LearnRate    MinLeafSize
    ______    _________________    _________    ___________

     Bag             500              NaN            1     

Estimated objective function value = 2.1369
Estimated function evaluation time = 44.5952

ensMdl = 
  RegressionBaggedEnsemble
                         ResponseName: 'Y'
                CategoricalPredictors: []
                    ResponseTransform: 'none'
                      NumObservations: 398
    HyperparameterOptimizationResults: [1x1 BayesianOptimization]
                           NumTrained: 500
                               Method: 'Bag'
                         LearnerNames: {'Tree'}
                 ReasonForTermination: 'Terminated normally after completing the requested number of training cycles.'
                              FitInfo: []
                   FitInfoDescription: 'None'
                       Regularization: []
                            FResample: 1
                              Replace: 1
                     UseObsForLearner: [398x500 logical]

  Properties, Methods

fitrensemble returns a RegressionBaggedEnsemble object because the function finds the
random forest algorithm ('Bag') as the optimal method.

Create Simulink Model

This example provides the Simulink model
slexCarDataRegressionEnsemblePredictExample.slx, which includes the
RegressionEnsemble Predict block. You can open the Simulink model or create a new model as
described in this section.

Open the Simulink model slexCarDataRegressionEnsemblePredictExample.slx.

SimMdlName = 'slexCarDataRegressionEnsemblePredictExample'; 
open_system(SimMdlName)
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The PreLoadFcn callback function of slexCarDataRegressionEnsemblePredictExample
includes code to load the sample data, train the model using the optimal hyperparameters, and create
an input signal for the Simulink model. If you open the Simulink model, then the software runs the
code in PreLoadFcn before loading the Simulink model. To view the callback function, in the Setup
section on the Modeling tab, click Model Settings and select Model Properties. Then, on the
Callbacks tab, select the PreLoadFcn callback function in the Model callbacks pane.

To create a new Simulink model, open the Blank Model template and add the RegressionEnsemble
Predict block. Add the Inport and Outport blocks and connect them to the RegressionEnsemble
Predict block.

Double-click the RegressionEnsemble Predict block to open the Block Parameters dialog box. Specify
the Select trained machine learning model parameter as ensMdl, which is the name of a
workspace variable that contains the trained model. Click the Refresh button. The dialog box
displays the options used to train the model ensMdl under Trained Machine Learning Model.

 Predict Responses Using RegressionEnsemble Predict Block

34-153



The RegressionEnsemble Predict block expects an observation containing 13 predictor values.
Double-click the Inport block, and set the Port dimensions to 13 on the Signal Attributes tab.

Create an input signal in the form of a structure array for the Simulink model. The structure array
must contain these fields:

• time — The points in time at which the observations enter the model. The orientation must
correspond to the observations in the predictor data. So, in this example, time must be a column
vector.

• signals — A 1-by-1 structure array describing the input data and containing the fields values
and dimensions, where values is a matrix of predictor data, and dimensions is the number of
predictor variables.

Create an appropriate structure array for the
slexCarDataRegressionEnsemblePredictExample model from the carsmall data set. When
you convert Origin in carsmall to the categorical data type array c_Origin_small, use
categories(c_Origin) so that c_Origin and c_Origin_small have the same number of
categories in the same order.

load carsmall
c_Origin_small = categorical(cellstr(Origin),categories(c_Origin));
d_Origin_small = dummyvar(c_Origin_small);

34 Code Generation

34-154



testX = [Acceleration,Cylinders,Displacement,Horsepower,Model_Year,Weight,d_Origin_small];
testX = rmmissing(testX);
carsmallInput.time = (0:size(testX,1)-1)';
carsmallInput.signals(1).values = testX;
carsmallInput.signals(1).dimensions = size(testX,2);

To import signal data from the workspace:

• Open the Configuration Parameters dialog box. On the Modeling tab, click Model Settings.
• In the Data Import/Export pane, select the Input check box and enter carsmallInput in the

adjacent text box.
• In the Solver pane, under Simulation time, set Stop time to carsmallInput.time(end).

Under Solver selection, set Type to Fixed-step, and set Solver to discrete (no
continuous states).

For more details, see “Load Signal Data for Simulation” (Simulink).

Simulate the model.

sim(SimMdlName);

When the Inport block detects an observation, it directs the observation into the RegressionTree
Predict block. You can use the Simulation Data Inspector (Simulink) to view the logged data of the
Outport block.

See Also
RegressionEnsemble Predict

Related Examples
• “Predict Responses Using RegressionSVM Predict Block” on page 34-127
• “Predict Responses Using RegressionTree Predict Block” on page 34-139
• “Predict Class Labels Using MATLAB Function Block” on page 34-51
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Predict Class Labels Using ClassificationNeuralNetwork Predict
Block

This example shows how to use the ClassificationNeuralNetwork Predict block for label prediction in
Simulink®. The block accepts an observation (predictor data) and returns the predicted class label
and class score for the observation using the trained neural network classification model.

Train Neural Network Classifier

Train a neural network classifier, and assess the performance of the classifier on a test set.

Load the humanactivity data set. This data set contains 24,075 observations of five physical human
activities: Sitting, Standing, Walking, Running, and Dancing. Each observation has 60 features
extracted from acceleration data measured by smartphone accelerometer sensors.

load humanactivity

Create the predictor X as a numeric matrix that contains 60 features for 24,075 observations. Create
the class labels Y as a numeric vector that contains the activity IDs in integers: 1, 2, 3, 4, and 5
representing Sitting, Standing, Walking, Running, and Dancing, respectively.

X = feat;
Y = actid;

Randomly partition observations into a training set and a test set with stratification, using the class
information in Y. Use approximately 80% of the observations to train a neural network model, and
20% of the observations to test the performance of the trained model on new data.

rng("default") % For reproducibility of the partition
cv = cvpartition(Y,"Holdout",0.20);

Extract the training and test indices.

trainingInds = training(cv);
testInds = test(cv);

Specify the training and test data sets.

XTrain = X(trainingInds,:);
YTrain = Y(trainingInds);
XTest = X(testInds,:);
YTest = Y(testInds);

Train a neural network classifier by passing the training data XTrain and YTrain to the fitcnet
function. Specify 40 outputs for the first fully connected layer and 20 outputs for the second fully
connected layer.

nnetMdl = fitcnet(XTrain,YTrain,"LayerSizes",[40 20])

nnetMdl = 
  ClassificationNeuralNetwork
             ResponseName: 'Y'
    CategoricalPredictors: []
               ClassNames: [1 2 3 4 5]
           ScoreTransform: 'none'
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          NumObservations: 19260
               LayerSizes: [40 20]
              Activations: 'relu'
    OutputLayerActivation: 'softmax'
                   Solver: 'LBFGS'
          ConvergenceInfo: [1x1 struct]
          TrainingHistory: [1000x7 table]

  Properties, Methods

nnetMdl is a trained ClassificationNeuralNetwork model. You can use dot notation to access
the properties of nnetMdl. For example, you can specify nnetMdl.TrainingHistory to get more
information about the training history of the neural network model.

Evaluate the performance of the classifier on the test set by computing the test set classification
accuracy.

testError = loss(nnetMdl,XTest,YTest,"LossFun","classiferror");
testAccuracy = 1 - testError

testAccuracy = 0.9817

Create Simulink Model

This example provides the Simulink model
slexClassificationNeuralNetworkPredictExample.slx, which includes the
ClassificationNeuralNetwork Predict block. You can open the Simulink model or create a new model
as described in this section.

Open Provided Model

Open the Simulink model slexClassificationNeuralNetworkPredictExample.slx.

SimMdlName = 'slexClassificationNeuralNetworkPredictExample';
open_system(SimMdlName)

The PreLoadFcn callback function of slexClassificationNeuralNetworkPredictExample
includes code to load the sample data, train the model, and create an input signal for the Simulink
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model. If you open the Simulink model, the software runs the code in PreLoadFcn before loading the
Simulink model. To view the callback function, in the Setup section on the Modeling tab, click
Model Settings and select Model Properties. Then, on the Callbacks tab, select the PreLoadFcn
callback function in the Model callbacks pane.

Create New Model

Instead of opening the model provided, you can create a new model. To create a new Simulink model,
open the Blank Model template and add the ClassificationNeuralNetwork Predict block. Add the
Inport and Outport blocks and connect them to the ClassificationNeuralNetwork Predict block.

Double-click the ClassificationNeuralNetwork Predict block to open the Block Parameters dialog box.
You can specify the name of a workspace variable that contains the trained neural network model.
The default variable name is nnetMdl. Click the Refresh button. The Trained Machine Learning
Model section of the dialog box displays the options used to train the model nnetMdl. Select the
Add output port for predicted class scores check box to add the second output port score.

The ClassificationNeuralNetwork Predict block expects an observation containing 60 predictor
values. Double-click the Inport block, and set the Port dimensions to 60 on the Signal Attributes
tab.
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Create an input signal in the form of a structure array for the Simulink model. The structure array
must contain these fields:

• time — The points in time at which the observations enter the model. The orientation must
correspond to the observations in the predictor data. In this example, time must be a column
vector.

• signals — A 1-by-1 structure array describing the input data and containing the fields values
and dimensions, where values is a matrix of predictor data, and dimensions is the number of
predictor variables.

Create an appropriate structure array for future human activity.

activityInput.time = (0:length(YTest)-1)';
activityInput.signals(1).values = XTest;
activityInput.signals(1).dimensions = size(XTest,2);

Import the signal data from the workspace:

• Open the Configuration Parameters dialog box. On the Modeling tab, click Model Settings.
• In the Data Import/Export pane, select the Input check box and enter activityInput in the

adjacent text box.
• In the Solver pane, under Simulation time, set Stop time to activityInput.time(end).

Under Solver selection, set Type to Fixed-step, and set Solver to discrete (no
continuous states).

For more details, see “Load Signal Data for Simulation” (Simulink).

Simulate Model

Simulate the model.

sim(SimMdlName);

When the Inport block detects an observation, it places the observation into the ClassificationNeural
Predict block. You can use the Simulation Data Inspector (Simulink) to view the logged data of the
Outport blocks.

See Also
ClassificationNeuralNetwork Predict

Related Examples
• “Predict Class Labels Using ClassificationSVM Predict Block” on page 34-123
• “Predict Class Labels Using ClassificationEnsemble Predict Block” on page 34-142
• “Predict Class Labels Using ClassificationTree Predict Block” on page 34-133

 Predict Class Labels Using ClassificationNeuralNetwork Predict Block

34-159



Predict Responses Using RegressionNeuralNetwork Predict
Block

This example shows how to use the RegressionNeuralNetwork Predict block for response prediction
in Simulink®. The block accepts an observation (predictor data) and returns the predicted response
for the observation using the trained neural network regression model.

Train Regression Model

Load the cereal data set. Create the predictor X as a numeric matrix that contains 6 features for 77
observations. Create the response Y as a numeric vector that contains the calories for each cereal.

load cereal
X = [Carbo Cups Fat Fiber Protein Sugars];
Y = Calories;

Separate the data into a training set and a test set by using a nonstratified holdout partition. The
software reserves approximately 20% of the observations for the test data set and uses the rest of the
observations for the training data set.

rng("default") % For reproducibility of the partition
cv = cvpartition(length(Y),"Holdout",0.20);

Extract the training and test indices.

trainingInds = training(cv);
testInds = test(cv);

Specify the training and test data sets.

XTrain = X(trainingInds,:);
YTrain = Y(trainingInds);
XTest = X(testInds,:);
YTest = Y(testInds);

Train a neural network regression model by passing the training data XTrain and YTrain to the
fitrnet function. Specify to standardize the numeric predictors and initialize the weights with the
He initializer.

nnetMdl = fitrnet(XTrain,YTrain,"Standardize",true, ...
    "LayerWeightsInitializer","he")

nnetMdl = 
  RegressionNeuralNetwork
             ResponseName: 'Y'
    CategoricalPredictors: []
        ResponseTransform: 'none'
          NumObservations: 62
               LayerSizes: 10
              Activations: 'relu'
    OutputLayerActivation: 'none'
                   Solver: 'LBFGS'
          ConvergenceInfo: [1x1 struct]
          TrainingHistory: [55x7 table]
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  Properties, Methods

nnetMdl is a RegressionNeuralNetwork model. You can use dot notation to access the properties
of nnetMdl. For example, you can specify nnetMdl.TrainingHistory to get more information
about the training history of the neural network model.

Create Simulink Model

This example provides the Simulink model
slexRegressionNeuralNetworkPredictExample.slx, which includes the
RegressionNeuralNetwork Predict block. You can open the Simulink model or create a new model as
described in this section.

Open Provided Model

Open the Simulink model slexRegressionNeuralNetworkPredictExample.slx.

SimMdlName = 'slexRegressionNeuralNetworkPredictExample'; 
open_system(SimMdlName)

The PreLoadFcn callback function of slexRegressionNeuralNetworkPredictExample includes
code to load the sample data, train the neural network model, and create an input signal for the
Simulink model. If you open the Simulink model, the software runs the code in PreLoadFcn before
loading the Simulink model. To view the callback function, in the Setup section on the Modeling tab,
click Model Settings and select Model Properties. Then, on the Callbacks tab, select the
PreLoadFcn callback function in the Model callbacks pane.

Create New Model

Instead of opening the model provided, you can create a new model. To create a new Simulink model,
open the Blank Model template and add the RegressionNeuralNetwork Predict block. Add the Inport
and Outport blocks and connect them to the RegressionNeuralNetwork Predict block.

Double-click the RegressionNeuralNetwork Predict block to open the Block Parameters dialog box.
You can specify the name of a workspace variable that contains the trained neural network model.
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The default variable name is nnetMdl. Click the Refresh button. The Trained Machine Learning
Model section of the dialog box displays the options used to train the model nnetMdl.

The RegressionNeuralNetwork Predict block expects an observation containing 6 predictor values.
Double-click the Inport block, and set the Port dimensions to 6 on the Signal Attributes tab.

Create an input signal in the form of a structure array for the Simulink model. The structure array
must contain these fields:

• time — The points in time at which the observations enter the model. The orientation must
correspond to the observations in the predictor data. In this example, time must be a column
vector.

• signals — A 1-by-1 structure array describing the input data and containing the fields values
and dimensions, where values is a matrix of predictor data, and dimensions is the number of
predictor variables.

Create an appropriate structure array for future predictions.

cerealInput.time = (0:length(YTest)-1)';
cerealInput.signals(1).values = XTest;
cerealInput.signals(1).dimensions = size(XTest,2);

Import the signal data from the workspace:
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• Open the Configuration Parameters dialog box. On the Modeling tab, click Model Settings.
• In the Data Import/Export pane, select the Input check box and enter cerealInput in the

adjacent text box.
• In the Solver pane, under Simulation time, set Stop time to cerealInput.time(end). Under

Solver selection, set Type to Fixed-step, and set Solver to discrete (no continuous
states).

For more details, see “Load Signal Data for Simulation” (Simulink).

Simulate Model

Simulate the model.

sim(SimMdlName);

When the Inport block detects an observation, it places the observation into the
RegressionNeuralNetwork Predict block. You can use the Simulation Data Inspector (Simulink) to
view the logged data of the Outport block.

See Also
RegressionNeuralNetwork Predict

Related Examples
• “Predict Responses Using RegressionSVM Predict Block” on page 34-127
• “Predict Responses Using RegressionTree Predict Block” on page 34-139
• “Predict Responses Using RegressionEnsemble Predict Block” on page 34-149
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Predict Responses Using RegressionGP Predict Block

This example shows how to use the RegressionGP Predict block for response prediction in Simulink®.
The block accepts an observation (predictor data) and returns the predicted response for the
observation using the trained Gaussian process (GP) regression model. The block can also return the
standard deviation and prediction intervals of the response.

Train Regression Model

Train a GP regression model at the MATLAB® command line, and calculate the predicted responses
and prediction intervals.

Load the gprdata data set. The data set contains simulated training and test data, with 500
observations in training data and 100 observations in test data. The data has 6 predictor variables.

load gprdata

Train a GP regression model by passing the training data Xtrain and ytrain to the fitrgp
function. Specify to standardize the numeric predictors.

gpMdl = fitrgp(Xtrain,ytrain,Standardize=1)

gpMdl = 
  RegressionGP
             ResponseName: 'Y'
    CategoricalPredictors: []
        ResponseTransform: 'none'
          NumObservations: 500
           KernelFunction: 'SquaredExponential'
        KernelInformation: [1x1 struct]
            BasisFunction: 'Constant'
                     Beta: 304.8486
                    Sigma: 0.8235
        PredictorLocation: [6x1 double]
           PredictorScale: [6x1 double]
                    Alpha: [500x1 double]
         ActiveSetVectors: [500x6 double]
            PredictMethod: 'Exact'
            ActiveSetSize: 500
                FitMethod: 'Exact'
          ActiveSetMethod: 'Random'
        IsActiveSetVector: [500x1 logical]
            LogLikelihood: -770.2440
         ActiveSetHistory: []
           BCDInformation: []

  Properties, Methods

gpMdl is a RegressionGP model. You can use dot notation to access the properties of gpMdl. For
example, you can specify gpMdl.TrainingHistory to display more information about the training
history of the GP model.

Compute the predictions ypred and prediction intervals yint, and calculate the root mean squared
error (RMSE).
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[ypred,~,yint] = predict(gpMdl,Xtest);
rmse = sqrt(mean((ypred-ytest).^2))

rmse = 0.9166

Plot the true responses, predicted responses, and prediction intervals.

hold on
plot(ytest)
plot(ypred)
plot(yint(:,1),"k:")
plot(yint(:,2),"k:")
hold off
legend("True Responses","GP Predictions",...
    "Prediction Intervals",Location="best")

Now that you have trained the model gpMdl, you can import it into the RegressionGP Predict block.

Create Simulink Model

Create a new model using the RegressionGP Predict block. To create a new Simulink model, open the
Blank Model template and add the RegressionGP Predict block from the Statistics and Machine
Learning Toolbox™ library.

Double-click the RegressionGP Predict block to open the Block Parameters dialog box. Import a
trained RegressionGP model into the block by specifying the name of a workspace variable that
contains the model. The default variable name is gpMdl, which is the model you trained at the
command line.
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Click the Refresh button to refresh the settings of the trained model in the dialog box. The Trained
Machine Learning Model section of the dialog box displays the options used to train the model
gpMdl. Select the check box Add output port for prediction intervals to add a second output port
(yint) in the block.

Add one Inport and two Outport blocks, and connect them to the input and outputs of the
RegressionGP Predict block.

The RegressionGP Predict block expects an observation containing 6 predictor values, because the
model was trained using a data set with 6 predictor variables. Double-click the Inport block, and set
Port dimensions to 6 on the Signal Attributes tab. If you want the output signals to have the same
length as the input signal, set Sample Time to 1.

Create an input signal in the form of a structure array for the Simulink model. The structure array
must contain these fields:

• time — The points in time at which the observations enter the model. The orientation must
correspond to the observations in the predictor data. In this example, time must be a column
vector.

• signals — A 1-by-1 structure array describing the input data and containing the fields values
and dimensions, where values is a matrix of predictor data, and dimensions is the number of
predictor variables.
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Create an appropriate structure array for future predictions. For more information, see “Structure
with Time” (Simulink).

modelInput.time = (0:length(ytest)-1)';
modelInput.signals(1).values = Xtest;
modelInput.signals(1).dimensions = size(Xtest,2);

Import the signal data from the workspace:

• Open the Configuration Parameters dialog box. On the Modeling tab, click Model Settings.
• In the Data Import/Export pane, select the Input check box and enter modelInput in the

adjacent text box.
• In the Solver pane, under Simulation time, set Stop time to modelInput.time(end). Under

Solver selection, set Type to Fixed-step, and set Solver to discrete (no continuous
states).

For more details, see “Load Signal Data for Simulation” (Simulink).

Double-click the Outport 1 block and set Signal name to ypred on the Main tab. Similarly, double-
click the Outport 2 block and set Signal name to yint.

Open Provided Model

Instead of creating a new model, you can open the provided Simulink model
slexRegressionGPPredictExample.slx, which includes the RegressionGP Predict block. To
access this model, you must open the example as a live script.

Open the Simulink model slexRegressionGPPredictExample.slx.

SimMdlName = "slexRegressionGPPredictExample"; 
open_system(SimMdlName)
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The PreLoadFcn callback function of slexRegressionGPPredictExample includes code to load
the sample data, train the GP model, and create an input signal for the Simulink model. If you open
the Simulink model, the software runs the code in PreLoadFcn before loading the Simulink model.
To view the callback function, in the Setup section on the Modeling tab, click Model Settings and
select Model Properties. Then, on the Callbacks tab, select the PreLoadFcn callback function in
the Model callbacks pane.

Simulate Simulink Model

Simulate the Simulink model, and export the simulation outputs to the workspace. When the Inport
block detects an observation, it places the observation into the RegressionGP Predict block. You can
use the Simulation Data Inspector (Simulink) to view the logged data of the Outport block.

simOut = sim(SimMdlName)

simOut = 
  Simulink.SimulationOutput:

                   tout: [100x1 double] 
                   yout: [1x1 Simulink.SimulationData.Dataset] 

     SimulationMetadata: [1x1 Simulink.SimulationMetadata] 
           ErrorMessage: [0x0 char] 

Determine the simulated predictions and prediction intervals, and calculate the RMSE for the
simulated predictions.

outputs = simOut.yout;
sim_ypred = outputs.get("ypred").Values.Data;
sim_yint = outputs.get("yint").Values.Data;
sim_rmse = sqrt(mean((sim_ypred-ytest).^2))

sim_rmse = 0.9166

Plot the true responses, simulated predictions, and simulated prediction intervals.
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hold on
plot(ytest,"b")
plot(sim_ypred,"r")
plot(sim_yint(:,1),"k:")
plot(sim_yint(:,2),"k:")
hold off
legend("True Responses","Simulated GP Predictions",...
    "Simulated Prediction Intervals",Location="best")

The plot is similar to the plot created with the outputs of the predict function.

See Also
RegressionGP Predict

Related Examples
• “Predict Responses Using RegressionSVM Predict Block” on page 34-127
• “Predict Responses Using RegressionTree Predict Block” on page 34-139
• “Predict Responses Using RegressionEnsemble Predict Block” on page 34-149
• “Predict Responses Using RegressionNeuralNetwork Predict Block” on page 34-160
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Predict Class Labels Using ClassificationKNN Predict Block

This example shows how to use the ClassificationKNN Predict block for label prediction in
Simulink®. The block accepts an observation (predictor data) and returns the predicted class label,
class score for the observation, and expected classification cost using the trained nearest-neighbor
classification model.

Train Nearest-Neighbor Classifier

Train a nearest-neighbor classifier, and assess the performance of the classifier on a test set.

Load the fisheriris data set. Create X as a numeric matrix that contains four petal measurements
for 150 irises. Create Y as a cell array of character vectors that contains the corresponding iris
species.

load fisheriris
X = meas;
Y = species;

For reproducibility of the partition, set the seed for the random number generator. Randomly
partition observations into a training set and a test set with stratification, using the class information
in Y. Use approximately 80% of the observations to train a nearest-neighbor model, and 20% of the
observations to test the performance of the trained model on new data.

rng("default")
cv = cvpartition(Y,"HoldOut",0.2);

Extract the training and test indices. Specify the training and test data sets.

trainingInds = training(cv);
testInds = test(cv);

Xtrain = X(trainingInds,:);
Ytrain = Y(trainingInds);
Xtest = X(testInds,:);
Ytest = Y(testInds);

Train a 5-nearest neighbor classifier by using the fitcknn function. Standardize the noncategorical
predictor data.

knnMdl = fitcknn(Xtrain,Ytrain, ...
    NumNeighbors=5,Standardize=1)

knnMdl = 
  ClassificationKNN
             ResponseName: 'Y'
    CategoricalPredictors: []
               ClassNames: {'setosa'  'versicolor'  'virginica'}
           ScoreTransform: 'none'
          NumObservations: 120
                 Distance: 'euclidean'
             NumNeighbors: 5

  Properties, Methods
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knnMdl is a trained ClassificationKNN model.

Evaluate the performance of the classifier on the test set by computing the test set classification
accuracy.

testError = loss(knnMdl,Xtest,Ytest,LossFun="classiferror");
testAccuracy = 1 - testError

testAccuracy = 0.9333

Create Simulink Model

Create a new model using the ClassificationKNN Predict block. To create a new Simulink model, open
the Blank Model template and add the ClassificationKNN Predict block from the Statistics and
Machine Learning Toolbox™ library.

Double-click the ClassificationKNN Predict block to open the Block Parameters dialog box. Import a
trained ClassificationKNN model into the block by specifying the name of a workspace variable
that contains the model. The default variable name is knnMdl, which is the model you trained at the
command line.

Click the Refresh button to refresh the settings of the trained model in the dialog box. The Trained
Machine Learning Model section of the dialog box displays the options used to train the model
knnMdl. Select the check boxes Add output port for predicted class scores and Add output port
for expected classification cost to add the second (score) and third (cost) output ports in the
block.
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Add one Inport and three Outport blocks, and connect them to the input and outputs of the
ClassificationKNN Predict block.

The ClassificationKNN Predict block expects an observation containing four predictor values, because
the model was trained using a data set with four predictor variables. Double-click the Inport block,
and set Port dimensions to 4 on the Signal Attributes tab. To specify that the output signals have
the same length as the input signal, set Sample Time to 1 on the Execution tab.

Create an input signal in the form of a structure array for the Simulink model. The structure array
must contain these fields:

• time — The points in time at which the observations enter the model. The orientation must
correspond to the observations in the predictor data. In this example, time must be a column
vector.

• signals — A 1-by-1 structure array describing the input data and containing the fields values
and dimensions, where values is a matrix of predictor data, and dimensions is the number of
predictor variables.
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Create an appropriate structure array for future predictions. For more information, see “Structure
with Time” (Simulink).

modelInput.time = (0:length(Ytest)-1)';
modelInput.signals(1).values = Xtest;
modelInput.signals(1).dimensions = size(Xtest,2);

Import the signal data from the workspace:

1 Open the Configuration Parameters dialog box. On the Modeling tab, click Model Settings.
2 On the left of the Configuration Parameters dialog box, click Data Import/Export. Then select

the Input check box and enter modelInput in the adjacent text box.
3 On the left, click Solver. Under Simulation time, set Stop time to modelInput.time(end).

Under Solver selection, set Type to Fixed-step, and set Solver to discrete (no
continuous states).

For more details, see “Load Signal Data for Simulation” (Simulink).

Click the Outport 1 block and set the block name to label. Similarly, change the Outport 2 and
Outport 3 block names to score and cost, respectively.

Open Provided Model

Instead of creating a new model, you can open the provided Simulink model
slexClassificationKNNPredictExample.slx, which includes the ClassificationKNN Predict
block. To access this model, you must open the example as a live script.

Open the Simulink model slexClassificationKNNPredictExample.slx.

SimMdlName = "slexClassificationKNNPredictExample"; 
open_system(SimMdlName)
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The PreLoadFcn callback function of slexClassificationKNNPredictExample includes code to
load the sample data, train the nearest-neighbor model, and create an input signal for the Simulink
model. If you open the Simulink model, the software runs the code in PreLoadFcn before loading the
Simulink model. To view the callback function, in the Setup section on the Modeling tab, click
Model Settings and select Model Properties. Then, on the Callbacks tab, select the PreLoadFcn
callback function in the Model callbacks pane.

Simulate Simulink Model

Simulate the Simulink model, and export the simulation outputs to the workspace. When the Inport
block detects an observation, it places the observation into the ClassificationKNN Predict block. You
can use the Simulation Data Inspector (Simulink) to view the logged data of an Outport block.

simOut = sim(SimMdlName)

simOut = 
  Simulink.SimulationOutput:

                   tout: [30x1 double] 
                   yout: [1x1 Simulink.SimulationData.Dataset] 

     SimulationMetadata: [1x1 Simulink.SimulationMetadata] 
           ErrorMessage: [0x0 char] 

Determine the simulated classification labels.

outputs = simOut.yout;
sim_label = outputs.get("label").Values.Data;

Create a confusion matrix chart from the true labels (Ytest) and the labels predicted by the Simulink
model (sim_label).

confusionchart(string(Ytest),string(sim_label))
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Large values on the diagonal indicate accurate predictions for the corresponding class.

See Also
ClassificationKNN Predict | ClassificationKNN | fitcknn

Related Examples
• “Predict Class Labels Using ClassificationSVM Predict Block” on page 34-123
• “Predict Class Labels Using ClassificationTree Predict Block” on page 34-133
• “Predict Class Labels Using ClassificationEnsemble Predict Block” on page 34-142
• “Predict Class Labels Using ClassificationNeuralNetwork Predict Block” on page 34-156
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Code Generation for Logistic Regression Model Trained in
Classification Learner

This example shows how to train a logistic regression model using Classification Learner, and then
generate C code that predicts labels using the exported classification model.

Load Sample Data

Load sample data and import the data into the Classification Learner app.

Load the patients data set. Specify the predictor data X, consisting of p predictors, and the
response variable Y.

load patients
X = [Age Diastolic Height Systolic Weight];
p = size(X,2);
Y = Gender;

On the Apps tab, click the Show more arrow at the right of the Apps section to display the gallery,
and select Classification Learner. On the Classification Learner tab, in the File section, select
New Session > From Workspace.

In the New Session from Workspace dialog box, under Data Set Variable, select X from the list of
workspace variables. Under Response, click the From workspace option button and then select Y
from the list. To accept the default validation scheme and continue, click Start Session. The default
validation option is 5-fold cross-validation, to protect against overfitting.

By default, Classification Learner creates a scatter plot of the data.

Train Logistic Regression Model

Train a logistic regression model within the Classification Learner app.

On the Classification Learner tab, in the Models section, click the Show more arrow to display the
gallery of classifiers. Under Logistic Regression Classifiers, click the Logistic Regression model.
Click Train All and select Train Selected in the Train section. The app trains the model and
displays its cross-validation accuracy score Accuracy (Validation).

Export Model to Workspace

Export the model to the MATLAB® Workspace and save it using saveLearnerForCoder.

In the Export section, select Export Model > Export Compact Model. In the dialog box, specify
trainedLogisticRegressionModel as the model name and click OK.

The structure trainedLogisticRegressionModel appears in the MATLAB Workspace. The field
GeneralizedLinearModel of trainedLogisticRegressionModel contains the compact model.

Note: If you run this example with all supporting files, you can load the
trainedLogisticRegressionModel.mat file at the command line rather than exporting the
model. The trainedLogisticRegressionModel structure was created using the previous steps.

load('trainedLogisticRegressionModel.mat')
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At the command line, save the compact model to a file named myModel.mat in your current folder.

saveLearnerForCoder(trainedLogisticRegressionModel.GeneralizedLinearModel,'myModel')

Additionally, save the names of the success, failure, and missing classes of the trained model.

classNames = {trainedLogisticRegressionModel.SuccessClass, ...
    trainedLogisticRegressionModel.FailureClass,trainedLogisticRegressionModel.MissingClass};
save('ModelParameters.mat','classNames');

Generate C Code for Prediction

Define the entry-point function for prediction, and generate code for the function by using codegen.

In your current folder, define a function named classifyX.m that does the following:

• Accepts a numeric matrix (X) of observations containing the same predictor variables as the ones
used to train the logistic regression model

• Loads the classification model in myModel.mat
• Computes predicted probabilities using the model
• Converts the predicted probabilities to indices, where 1 indicates a success, 2 indicates a failure,

and 3 indicates a missing value
• Loads the class names in ModelParameters.mat
• Returns predicted labels by indexing into the class names

function label = classifyX (X) %#codegen 
%CLASSIFYX Classify using Logistic Regression Model 
%  CLASSIFYX classifies the measurements in X 
%  using the logistic regression model in the file myModel.mat, 
%  and then returns class labels in label.

n = size(X,1);
label = coder.nullcopy(cell(n,1));

CompactMdl = loadLearnerForCoder('myModel');
probability = predict(CompactMdl,X);

index = ~isnan(probability).*((probability<0.5)+1) + isnan(probability)*3;

classInfo = coder.load('ModelParameters');
classNames = classInfo.classNames;

for i = 1:n    
    label{i} = classNames{index(i)};
end
end

Note: If you create a logistic regression model in Classification Learner after using feature selection
or principal component analysis (PCA), you must include additional lines of code in your entry-point
function. For an example that shows these additional steps, see “Code Generation and Classification
Learner App” on page 34-32.

Generate a MEX function from classifyX.m. Create a matrix data for code generation using
coder.typeof. Specify that the number of rows in data is arbitrary, but that data must have p
columns, where p is the number of predictors used to train the logistic regression model. Use the -
args option to specify data as an argument.
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data = coder.typeof(X,[Inf p],[1 0]);
codegen classifyX.m -args data

Code generation successful.

codegen generates the MEX file classifyX_mex.mex64 in your current folder. The file extension
depends on your platform.

Verify that the MEX function returns the expected labels. Randomly draw 15 observations from X.

rng('default') % For reproducibility
testX = datasample(X,15);

Classify the observations by using the predictFcn function in the classification model trained in
Classification Learner.

testLabels = trainedLogisticRegressionModel.predictFcn(testX);

Classify the observations by using the generated MEX function classifyX_mex.

testLabelsMEX = classifyX_mex(testX);

Compare the sets of predictions. isequal returns logical 1 (true) if testLabels and
testLabelsMEX are equal.

isequal(testLabels,testLabelsMEX)

ans = logical
   1

predictFcn and the MEX function classifyX_mex return the same values.

See Also
loadLearnerForCoder | saveLearnerForCoder | coder.typeof | codegen | fitglm | predict

Related Examples
• “Code Generation and Classification Learner App” on page 34-32
• “Train Logistic Regression Classifiers Using Classification Learner App” on page 23-103
• “Export Classification Model to Predict New Data” on page 23-83
• “Code Generation for Prediction of Machine Learning Model at Command Line” on page 34-9
• “Classification Learner App”
• “Introduction to Code Generation” on page 34-2
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Code Generation for Anomaly Detection

This example shows how to generate single-precision code that detects anomalies in data using a
trained isolation forest model or one-class support vector machine (OCSVM).

The isanomaly function of isolationForest and the predict function for ClassificationSVM
support code generation. These object functions require a trained model object, but the -args option
of codegen (MATLAB Coder) does not accept these objects. Work around this limitation by using
saveLearnerForCoder and loadLearnerForCoder as described in this example.

This flow chart shows the code generation workflow for anomaly detection.

After you train a model, save the trained model by using saveLearnerForCoder. Define an entry-
point function that loads the saved model by using loadLearnerForCoder and calls the object
function. Then generate code for the entry-point function by using codegen, and verify the generated
code. For a more detailed code generation workflow example, see “Code Generation for Prediction of
Machine Learning Model at Command Line” on page 34-9.

Load Data

Load the lidar scan data set, which contains the coordinates of objects surrounding a vehicle, stored
as a collection of 3-D points.

load("lidar_subset.mat") 
loc = lidar_subset;

To highlight the environment around the vehicle, set the region of interest to span 20 meters to the
left and right of the vehicle, 20 meters in front and back of the vehicle, and the area above the
surface of the road.

xBound = 20; % in meters
yBound = 20; % in meters
zLowerBound = 0; % in meters

Crop the data to contain only points within the specified region.

indices = loc(:,1) <= xBound & loc(:,1) >= -xBound ...
    & loc(:,2) <= yBound & loc(:,2) >= -yBound ...
    & loc(:,3) > zLowerBound;
loc = loc(indices,:);
whos loc

  Name          Size             Bytes  Class     Attributes

  loc       19070x3             228840  single              

loc is a single-precision matrix containing 19,070 samples of 3-D points.

Visualize the data as a 2-D scatter plot. Annotate the plot to highlight the vehicle.
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scatter(loc(:,1),loc(:,2),".");
annotation("ellipse",[0.48 0.48 .1 .1],Color="red")

The center of the set of points (circled in red) contains the roof and hood of the vehicle. All other
points are obstacles.

Assume that the fraction of outliers in the data is 0.05.

contaminationFraction = single(0.05);

Code Generation for Isolation Forest

Train Isolation Forest Model

Train an isolation forest model by using the iforest function. Specify the fraction of outliers
(ContaminationFraction) as 0.05.

rng("default") % For reproducibility
[forest,tf_forest,s_forest] = iforest(loc,ContaminationFraction=contaminationFraction);

forest is an IsolationForest object. iforest also returns the anomaly indicators (tf_forest)
and anomaly scores (s_forest) for the data (loc). iforest determines the score threshold value
(forest.ScoreThreshold) so that the function detects the specified fraction of observations as
outliers.

Save Model Using saveLearnerForCoder

Save the model object to the file IsolationForestModel.mat by using saveLearnerForCoder.
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ForestMdlFileName = "IsolationForestModel";
saveLearnerForCoder(forest,ForestMdlFileName)

saveLearnerForCoder saves the object to the MATLAB binary file IsolationForestModel.mat
as a structure array in the current folder.

Define Entry-Point Function

Define an entry-point function that returns anomaly indicators and anomaly scores for the input data.
Within the function, load a single-precision model by using loadLearnerForCoder, and then pass
the loaded model to isanomaly.

type myIsanomaly.m % Display contents of myIsanomaly.m file

function varargout = myIsanomaly(MdlFileName,x,varargin) %#codegen
%MYISANOMALY Entry-point function for anomaly detection 
% This function supports only the example Code Generation for Anomaly 
% Detection and might change in a future release. 
% This function detects anomalies in new observations x using the saved 
% anomaly detection model in the MdlFileName file.
Mdl = loadLearnerForCoder(MdlFileName,DataType="single");
[varargout{1:nargout}] = isanomaly(Mdl,x,varargin{:});
end

Generate Code

Specify the input argument types of myIsanomaly using a 4-by-1 cell array. Assign each input
argument type of the entry-point function to each cell. Specify the data type and exact input array
size by using an example value that represents the set of values with a certain data type and array
size.

ARGS = cell(4,1);
p = numel(forest.PredictorNames);
ARGS{1} = coder.Constant(ForestMdlFileName);
ARGS{2} = coder.typeof(single(0),[Inf,p],[1,0]);
ARGS{3} = coder.Constant("ScoreThreshold");
ARGS{4} = single(0.5);

The second input of myIsanomaly is a variable-size input. For more details on variable-size
arguments, see “Specify Variable-Size Arguments for Code Generation” on page 34-56.

Generate a MEX function from the entry-point function myIsanomaly. Specify the input argument
types using the -args option and the cell array ARGS. Specify the number of output arguments in the
generated entry-point function using the -nargout option.

codegen myIsanomaly -args ARGS -nargout 2

Code generation successful.

codegen generates the MEX function myIsanomaly_mex with a platform-dependent extension in the
current folder.

Verify Generated Code

Detect anomalies in the training data using the generated MEX function. Compare the anomaly
indicators and scores from the MEX function with those returned by iforest.

 Code Generation for Anomaly Detection

34-181



[tf_forest_MEX,s_forest_MEX] = myIsanomaly_mex(ForestMdlFileName,loc,"ScoreThreshold",single(forest.ScoreThreshold));
isequal(tf_forest,tf_forest_MEX)

ans = logical
   1

max(abs(s_forest-s_forest_MEX))

ans = single
    5.9605e-08

isequal returns logical 1 (true), which means all the anomaly indicators are equal. The difference
in the anomaly scores is insignificant.

Code Generation for OCSVM

Train OCSVM Model

Train a support vector machine model for one-class learning by using the fitcsvm function. The
function trains a model for one-class learning if the class label variable is a vector of ones. Specify the
fraction of outliers (OutlierFraction) as 0.05.

MdlOCSVM = fitcsvm(loc,single(ones(size(loc,1),1)),OutlierFraction=contaminationFraction, ...
    Standardize=true);

MdlOCSVM is a ClassificationSVM object. Compute the outlier scores for loc by using the
resubPredict function.

[~,s_OCSVM] = resubPredict(MdlOCSVM);

Negative score values indicate that the corresponding observations are outliers. Obtain the anomaly
indicators.

tf_OCSVM = s_OCSVM < 0;

Save Model Using saveLearnerForCoder

Save the model object to the file SVMModel.mat by using saveLearnerForCoder.

SVMMdlFileName = "SVMModel";
saveLearnerForCoder(MdlOCSVM,SVMMdlFileName)

Define Entry-Point Function

Define an entry-point function that returns anomaly indicators and anomaly scores for the input data.
Within the function, load a single-precision model by using loadLearnerForCoder, and then pass
the loaded model to predict to compute anomaly scores. Use the scores to find anomaly indicators.

type myIsanomalySVM.m % Display contents of myIsanomalySVM.m file

function [tf,scores] = myIsanomalySVM(MdlFileName,x,scoreThreshold) %#codegen
%MYISANOMALY Entry-point function for anomaly detection 
% This function supports only the example Code Generation for Anomaly 
% Detection and might change in a future release. 
% This function detects anomalies in new observations x using the saved 
% one-class support vector machine model in the MdlFileName file.
Mdl = loadLearnerForCoder(MdlFileName,DataType="single");
[~,scores] = predict(Mdl,x);
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tf = scores < scoreThreshold;
end

Generate Code

Specify the input argument types of myIsanomalySVM using a 3-by-1 cell array.

ARGS = cell(3,1);
p = numel(MdlOCSVM.PredictorNames);
ARGS{1} = coder.Constant(SVMMdlFileName);
ARGS{2} = coder.typeof(single(0),[Inf,p],[1,0]);
ARGS{3} = single(0);

Generate a MEX function from the entry-point function myIsanomalySVM.

codegen myIsanomalySVM -args ARGS -nargout 2

Code generation successful.

Verify Generated Code

Detect anomalies in the training data using the generated MEX function. Compare the anomaly
indicators and scores from the MEX function with those returned by resubPredict.

[tf_OCSVM_MEX,s_OCSVM_MEX] = myIsanomalySVM_mex(SVMMdlFileName,loc,single(0));

isequal(tf_OCSVM,tf_OCSVM_MEX)

ans = logical
   1

max(abs(s_OCSVM-s_OCSVM_MEX))

ans = single
    0.0133

isequal returns logical 1 (true), which means all the anomaly indicators are equal. The difference
in the anomaly scores is acceptable because the average score (mean(s_OCSVM)) is around 700. You
see some differences in the scores when you use the Gaussian kernel, which is the default for one-
class learning.

Compare Detected Outliers

Plot the normal points and outliers detected in the isolation forest model and one-class SVM model.

tiledlayout(2,1)
nexttile
gscatter(loc(:,1),loc(:,2),tf_forest)
legend("Normal Points","Outliers")
title("Isolation Forest")
nexttile
gscatter(loc(:,1),loc(:,2),tf_OCSVM)
legend("Normal Points","Outliers")
title("One-Class SVM")
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The outliers identified by the two methods are similar to each other. Compute the fraction of the same
identifiers in the outputs for both methods.

mean(tf_forest == tf_OCSVM)

ans = 0.9732

See Also
codegen | iforest | isanomaly | fitcsvm | predict

Related Examples
• “Code Generation for Prediction of Machine Learning Model at Command Line” on page 34-9
• “Introduction to Code Generation” on page 34-2
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Compress Machine Learning Model for Memory-Limited
Hardware

This example shows how to reduce the size of a machine learning model for deployment to memory-
limited hardware. To demonstrate the model compression workflow, the example builds models for
the acoustic scene classification (ASC) task, which classifies environments from the sounds they
produce. ASC is a generic multiclass classification problem that is foundational for context awareness
in devices, robots, and other applications [1] on page 34-199.

Assume that you want to build a model for hearing aids where the available memory size is 30 KB.
First, simplify the multiclass ASC task to a binary classification problem, and them perform these
steps:

• Reduce the number of features by selecting important features.
• Optimize hyperparameters with coupled constraints, which limit the size of a machine learning

model.
• Quantize model parameters.

For more details on optimizing hyperparameters to reduce the memory size, see More About on page
34-198.

Load Data

Load the acousticscenes data set, and display the variables in the data set.

load("acousticscenes.mat")
whos

  Name           Size               Bytes  Class          Attributes

  xEval        300x286             686400  double                   
  xTest        300x286             686400  double                   
  xTrain      1500x286            3432000  double                   
  yEval        300x1                 2102  categorical              
  yTest        300x1                 2102  categorical              
  yTrain      1500x1                 3302  categorical              

xTrain, xEval, and xTest contain features extracted from the TUT acoustic scene data set using
wavelet scattering. yTrain, yEval, and yTest contain acoustic scene labels of 15 different types for
xTrain, xEval, and xTest, respectively. In this example, you use xTrain and yTrain to train
models and xTest and yTest to test the accuracy of the trained models. During the optimization
step, you use xEval and yEval as a holdout validation set.

The TUT acoustic scene data set provides development data (TUT-acoustic-scenes-2017-
development [3] on page 34-199) and test data (TUT-acoustic-scenes-2017-evaluation [4]
on page 34-199). The development data provides a 4-fold cross-validation setup. xTrain and xEval
are from the subsets of the training and evaluation sets (respectively) defined by the first fold of the
cross-validation setup, and xTest is from the subset of the test data set. The example “Acoustic
Scene Recognition Using Late Fusion” (Audio Toolbox) describes how you can obtain these variables
from a subset of the TUT acoustic scene data set.

Normalize the data sets.
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[xTrain,mu,sigma] = normalize(xTrain);
xEval = normalize(xEval,center=mu,scale=sigma);
xTest = normalize(xTest,center=mu,scale=sigma);

Select Classification Model Types

Select types of classification models for this example by using the Classification Learner app.

1 On the Apps tab, open the apps gallery. Then, in the Machine Learning and Deep Learning
group, click Classification Learner.

2 On the Classification Learner tab, in the File section, click New Session and select From
Workspace. In the dialog box, specify yTrain as the response variable, and specify the variables
in xTrain as predictors.

3 In the Models section of the app, click All. This option trains all the model presets available for
your data set.

4 In the Train section, click Train All and select Train All.

You can compare trained models based on accuracy scores, visualize results by plotting class
predictions, and check performance using the confusion matrix and ROC curve. For more details on
Classification Learner, see “Train Classification Models in Classification Learner App” on page 23-10.

In this example, you work with these five model types:

• Bilayered neural network
• Linear discriminant
• Random subspace ensemble with discriminant analysis learners
• Linear SVM
• Logistic regression

Create a variable containing the model names.

MdlNames = ["Bilayered NN","Linear Discriminant", ...
    "Subspace Discriminant","Linear SVM","Logistic Regression"]';

Train Multiclass Classification Models

Train the five models using fitting functions at the command line, and then reduce the size of the
trained models by using the compact function. The compact function discards information that is not
necessary for prediction.

SVM and logistic regression models support only binary classification. Therefore, use the fitcecoc
function to train a multiclass classification model with linear SVM learners and a multiclass
classification model with logistic regression learners. For the logistic regression model, use a
templateLinear learner; in this case, you do not use the compact function because fitcecoc
returns a compact model object (CompactClassificationECOC).

rng("default") % For reproducibility
multiMdls = cell(5,1);

% Bilayered NN
multiMdls{1} = compact(fitcnet(xTrain,yTrain,LayerSizes=[10 10]));

% Linear Discriminant
multiMdls{2} = compact(fitcdiscr(xTrain,yTrain));
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% Subspace Discriminant
multiMdls{3} = compact(fitcensemble(xTrain,yTrain, ...
    Method="Subspace",Learners="discriminant", ...
    NumLearningCycles=30,NPredToSample=25));

% Linear SVM
multiMdls{4} = compact(fitcecoc(xTrain,yTrain));

% Logistic Regression
tLinear = templateLinear(Learner="logistic");
multiMdls{5} = fitcecoc(xTrain,yTrain,Learners=tLinear);

Specify the output display format as bank to display two digits after the decimal point.

format("bank")

Test the models with the test data set using the helper function helperMdlMetrics.This function
returns a table of model metrics including the model accuracy in percent and model size in KB. The
code for the helperMdlMetrics function appears at the end of this example on page 34-197.

multiMdlTbl = helperMdlMetrics(multiMdls,xTest,yTest);
tbl1 = multiMdlTbl;
tbl1.Properties.RowNames = MdlNames;
disp(tbl1)

                             Accuracy    Model Size
                             ________    __________

    Bilayered NN              54.33         36.17  
    Linear Discriminant       53.33       2776.71  
    Subspace Discriminant     50.67        881.54  
    Linear SVM                34.33        901.90  
    Logistic Regression       50.00       1937.67  

The size of each model is more than 30 KB, and the accuracy value is approximately 50% for most
models.

Simplify Problem as Binary Classification

For the hearing aid application, assume you only want to distinguish background sounds and sounds
from specific sources, instead of classifying sounds into the 15 types included in the data set. Group
the types of sounds into two types (AllAround and Directional) by using the mergecats
function.

AllAround = ["beach","forest_path","park","office","home", ...
    "library","city_center","residential_area"];
Directional = ["train","bus","car","tram","grocery_store", ...
    "metro_station","cafe/restaurant"];
yTrainMapped = mergecats(yTrain,AllAround,"AllAround");
yTrainMapped = mergecats(yTrainMapped,Directional,"Directional");
yEvalMapped = mergecats(yEval,AllAround,"AllAround");
yEvalMapped = mergecats(yEvalMapped,Directional,"Directional");
yTestMapped = mergecats(yTest,AllAround,"AllAround");
yTestMapped = mergecats(yTestMapped,Directional,"Directional");

Create a grouped scatter plot of the first two principal components to see whether the binary
grouping works.
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figure
[~,score] = pca(xTrain);
gscatter(score(:,1),score(:,2),yTrainMapped)
xlabel("First principal component")
ylabel("Second principal component")

Train Binary Classification Models

Train the models for the binary sound labels yTrainMapped. For the linear SVM model, reduce the
memory size by discarding the support vectors by using the discardSupportVectors function. The
model can still predict new data using the linear predictor coefficients stored in the model property
Beta. For the logistic regression model, the fitclinear function returns a compact model that does
not store the training data.

rng("default")
binaryMdls = cell(5,1);

% Bilayered NN
binaryMdls{1} = compact(fitcnet(xTrain,yTrainMapped,LayerSizes=[10 10]));

% Linear Discriminant
binaryMdls{2} = compact(fitcdiscr(xTrain,yTrainMapped));

% Subspace Discriminant
binaryMdls{3} = compact(fitcensemble(xTrain,yTrainMapped, ...
    Method="Subspace",Learners="discriminant",NumLearningCycles=30,NPredToSample=25));
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% Linear SVM
binaryMdls{4} = discardSupportVectors(compact(fitcsvm(xTrain,yTrainMapped)));

% Logistic Regression
binaryMdls{5} = fitclinear(xTrain,yTrainMapped,Learner="logistic");

Test the binary classification models with the test data set yTestMapped.

binaryMdlTbl = helperMdlMetrics(binaryMdls,xTest,yTestMapped);
tbl2 = table(multiMdlTbl,binaryMdlTbl);
tbl2.Properties.RowNames = MdlNames;
tbl2.Properties.VariableNames = ["Multiclass","Binary"];
disp(tbl2)

                                   Multiclass                  Binary        
                             Accuracy    Model Size    Accuracy    Model Size
                             ______________________    ______________________

    Bilayered NN              54.33         36.17       99.33         31.89  
    Linear Discriminant       53.33       2776.71       98.00       1314.90  
    Subspace Discriminant     50.67        881.54       99.33        552.08  
    Linear SVM                34.33        901.90       97.00          8.74  
    Logistic Regression       50.00       1937.67       98.67         18.60  

The trained models accurately classify the acoustic scenes for the binary classification problem. The
linear SVM and logistic regression models are smaller than 30 KB.

Train Models with Fewer Features

You can make machine learning models smaller without losing too much accuracy by building models
using only important features. xTrain, xTest, and xEval include 286 features. Select 50 features
by using the fscmrmr function.

idx = fscmrmr(xTrain,yTrainMapped);
xTrainSelected = xTrain(:,idx(1:50));
xEvalSelected = xEval(:,idx(1:50));
xTestSelected = xTest(:,idx(1:50));

Train binary classification models using the selected features.

rng("default")
feat50binaryMdls = cell(5,1);

% Bilayered NN
feat50binaryMdls{1} = compact(fitcnet(xTrainSelected,yTrainMapped,LayerSizes=[10 10]));

% Linear Discriminant
feat50binaryMdls{2} = compact(fitcdiscr(xTrainSelected,yTrainMapped));

% Subspace Discriminant
feat50binaryMdls{3} = compact(fitcensemble(xTrainSelected,yTrainMapped, ...
    Method="Subspace",Learners="discriminant",NumLearningCycles=30,NPredToSample=25));

% Linear SVM
feat50binaryMdls{4} = discardSupportVectors(compact(fitcsvm(xTrainSelected,yTrainMapped)));

% Logistic Regression
feat50binaryMdls{5} = fitclinear(xTrainSelected,yTrainMapped,Learner="logistic");
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Test the models with the test data set yTestMapped.

feat50binaryMdlTbl = helperMdlMetrics(feat50binaryMdls,xTestSelected,yTestMapped);
tbl3 = table(multiMdlTbl,binaryMdlTbl,feat50binaryMdlTbl);
tbl3.Properties.RowNames = MdlNames;
tbl3.Properties.VariableNames = ["Multiclass","Binary","50 Features"];
disp(tbl3)

                                   Multiclass                  Binary                 50 Features      
                             Accuracy    Model Size    Accuracy    Model Size    Accuracy    Model Size
                             ______________________    ______________________    ______________________

    Bilayered NN              54.33         36.17       99.33         31.89       90.67         11.38  
    Linear Discriminant       53.33       2776.71       98.00       1314.90       95.33         51.70  
    Subspace Discriminant     50.67        881.54       99.33        552.08       91.33        541.91  
    Linear SVM                34.33        901.90       97.00          8.74       96.33          4.82  
    Logistic Regression       50.00       1937.67       98.67         18.60       97.00         12.18  

In addition to the linear SVM and logistic regression models, the bilayered neural network model is
also smaller than 30 KB. However, reducing the number of features causes the accuracy to decrease
in the trained models.

Restore the default display format.

format("default")

Optimize Neural Network with Coupled Constraints

Find optimal model hyperparameters while limiting the memory use of the models. The constraints
depend on the type of machine learning model. For example, you can limit the number of support
vectors for an SVM model or limit the number of parameters in a neural network model. For more
details on Bayesian optimization and an example for an SVM model, see “Constraints in Bayesian
Optimization” on page 10-39. This example shows constraint-coupled optimization for a bilayered
neural network model.

For constraint-coupled optimization, specify the hyperparameters to optimize and define a customized
objective function. Then, use the bayesopt function to find the optimal hyperparameters based on
the objective function.

First, get the default hyperparameters of the bilayered neural network model by using the
hyperparameters function.

params_bilayeredNet = hyperparameters("fitcnet",xTrainSelected,yTrainMapped);

Modify the first, third, and ninth hyperparameters, which correspond to NumLayers, Standardize,
and Layer_3_Size, so that they are not optimized. In this way, you can build a bilayered model and
use training data without standardization. The training data is already standardized.

params_bilayeredNet(1).Range = [1 2]; % NumLayers
params_bilayeredNet(1).Optimize = false;
params_bilayeredNet(3).Optimize = false; % Standardize
params_bilayeredNet(9).Optimize = false; % Layer_3_Size

Use the customized objective function helperOptimizeConstrainedBilayer, which trains a
bilayered neural network model using a given set of parameters for the training data set, and returns
the loss for the holdout validation set. The code for the helperOptimizeConstrainedBilayer
function appears at the end of this example on page 34-197. The function also accepts the upper limit
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for the number of weight parameters in the model and returns a constraint value. A positive
constraint value indicates that the number of parameters is greater than the specified limit.

Define a function handle fun that takes the hyperparameters and calls the
helperOptimizeConstrainedBilayer function. Specify the upper limit for the number of weight
parameters as 300.

fun = @(params)helperOptimizeConstrainedBilayer(params,xTrainSelected,yTrainMapped,xEvalSelected,yEvalMapped,300);

When you call the bayesopt function, specify the objective function as fun and specify the
hyperparameters as params_bilayeredNet. Also, specify NumCoupledConstraints as 1 to
indicate that the objective function has one coupled constraint. For reproducibility, set the random
seed and use the expected-improvement-plus acquisition function.

rng("default")
resultNN = bayesopt(fun,params_bilayeredNet, ...
    AcquisitionFunctionName="expected-improvement-plus", ...
    NumCoupledConstraints=1);

|==================================================================================================================================================|
| Iter | Eval   | Objective   | Objective   | BestSoFar   | BestSoFar   | Constraint1  |  Activations |       Lambda | Layer_1_Size | Layer_2_Size |
|      | result |             | runtime     | (observed)  | (estim.)    |              |              |              |              |              |
|==================================================================================================================================================|
|    1 | Infeas |    0.076667 |      4.1321 |         NaN |    0.076667 |      2.4e+03 |         none |   7.6806e-06 |           15 |          115 |
|    2 | Best   |        0.07 |      1.4299 |        0.07 |    0.070445 |         -196 |         none |    0.0001221 |            2 |            1 |
|    3 | Infeas |     0.46667 |    0.086145 |        0.07 |    0.070862 |     1.39e+03 |      sigmoid |       45.438 |           26 |           14 |
|    4 | Best   |    0.063333 |      1.6533 |    0.063333 |    0.063353 |        -52.5 |         tanh |   2.6069e-05 |            4 |            8 |
|    5 | Accept |     0.11333 |      1.8806 |    0.063333 |    0.063423 |        -58.5 |         relu |   2.2423e-05 |            4 |            7 |
|    6 | Accept |        0.07 |      1.4079 |    0.063333 |    0.063344 |         -196 |         none |    0.0001411 |            2 |            1 |
|    7 | Infeas |    0.046667 |      1.7468 |    0.063333 |     0.06318 |     1.95e+04 |         tanh |   1.2269e-07 |          300 |           16 |
|    8 | Infeas |     0.11333 |      5.8725 |    0.063333 |    0.063575 |     9.47e+04 |         tanh |     0.045218 |          298 |          267 |
|    9 | Accept |     0.46667 |    0.029372 |    0.063333 |    0.063332 |         -196 |         none |       9.1357 |            2 |            1 |
|   10 | Infeas |     0.46667 |    0.030363 |    0.063333 |    0.063332 |     1.42e+03 |         relu |       3.0052 |           30 |            7 |
|   11 | Best   |    0.046667 |      2.4672 |    0.046667 |    0.046678 |         -172 |         relu |    6.691e-09 |            2 |            7 |
|   12 | Accept |    0.046667 |      1.2965 |    0.046667 |    0.046675 |        -52.5 |         tanh |   6.7859e-09 |            4 |            8 |
|   13 | Accept |    0.086667 |      3.0389 |    0.046667 |    0.046686 |         -172 |         relu |   1.1251e-07 |            2 |            7 |
|   14 | Accept |     0.46667 |     0.03666 |    0.046667 |     0.04668 |        -58.5 |         tanh |       60.245 |            4 |            7 |
|   15 | Best   |        0.03 |      1.4417 |        0.03 |    0.030086 |        -58.5 |         tanh |    0.0011383 |            4 |            7 |
|   16 | Infeas |     0.12333 |     0.18129 |        0.03 |     0.03007 |          296 |      sigmoid |    6.766e-09 |           10 |            8 |
|   17 | Accept |    0.076667 |     0.90302 |        0.03 |    0.030071 |         -146 |         none |   8.2973e-09 |            3 |            1 |
|   18 | Best   |    0.023333 |      1.2746 |    0.023333 |    0.026599 |        -58.5 |         tanh |    0.0009958 |            4 |            7 |
|   19 | Accept |    0.026667 |      1.2009 |    0.023333 |     0.02661 |        -52.5 |         tanh |    0.0009402 |            4 |            8 |
|   20 | Accept |        0.05 |       1.467 |    0.023333 |    0.026601 |         -226 |      sigmoid |    1.086e-05 |            1 |            8 |
|==================================================================================================================================================|
| Iter | Eval   | Objective   | Objective   | BestSoFar   | BestSoFar   | Constraint1  |  Activations |       Lambda | Layer_1_Size | Layer_2_Size |
|      | result |             | runtime     | (observed)  | (estim.)    |              |              |              |              |              |
|==================================================================================================================================================|
|   21 | Accept |    0.036667 |      1.2228 |    0.023333 |    0.027248 |         -110 |         tanh |   0.00090677 |            3 |            8 |
|   22 | Infeas |    0.053333 |      6.5087 |    0.023333 |    0.027181 |     1.41e+04 |         tanh |   0.00048938 |          283 |            1 |
|   23 | Infeas |     0.12333 |     0.39799 |    0.023333 |    0.027429 |     1.71e+04 |         relu |   7.1367e-09 |          238 |           23 |
|   24 | Accept |    0.076667 |      1.0528 |    0.023333 |    0.029543 |         -248 |         none |   6.7138e-07 |            1 |            1 |
|   25 | Accept |    0.046667 |      1.4113 |    0.023333 |     0.02962 |         -226 |         tanh |   1.1434e-07 |            1 |            8 |
|   26 | Accept |    0.043333 |      1.4368 |    0.023333 |    0.029659 |         -168 |      sigmoid |   9.1787e-07 |            2 |            8 |
|   27 | Accept |    0.043333 |     0.79319 |    0.023333 |    0.029584 |         -226 |         tanh |    0.0018534 |            1 |            8 |
|   28 | Infeas |        0.06 |      4.1008 |    0.023333 |    0.030036 |     1.31e+04 |      sigmoid |   2.3192e-06 |          257 |            2 |
|   29 | Accept |    0.066667 |      1.4127 |    0.023333 |    0.026647 |         -226 |         tanh |   0.00050488 |            1 |            8 |
|   30 | Accept |    0.036667 |      0.8016 |    0.023333 |    0.028015 |        -52.5 |         tanh |    0.0044111 |            4 |            8 |
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__________________________________________________________
Optimization completed.
MaxObjectiveEvaluations of 30 reached.
Total function evaluations: 30
Total elapsed time: 66.903 seconds
Total objective function evaluation time: 50.7154

Best observed feasible point:
    Activations     Lambda      Layer_1_Size    Layer_2_Size
    ___________    _________    ____________    ____________

       tanh        0.0009958         4               7      

Observed objective function value = 0.023333
Estimated objective function value = 0.029092
Function evaluation time = 1.2746
Observed constraint violations =[ -58.500000 ]

Best estimated feasible point (according to models):
    Activations     Lambda      Layer_1_Size    Layer_2_Size
    ___________    _________    ____________    ____________

       tanh        0.0011383         4               7      

Estimated objective function value = 0.028015
Estimated function evaluation time = 1.3037
Estimated constraint violations =[ -58.501089 ]
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bayesopt finds optimal hyperparameters that minimize an error in the holdout validation set and
satisfy the constraint. Extract the best point in the optimization results resultNN by using the
bestPoint function.

[optimalParams,CriterionValue1,iteration] = bestPoint(resultNN)

optimalParams=1×4 table
    Activations     Lambda      Layer_1_Size    Layer_2_Size
    ___________    _________    ____________    ____________

       tanh        0.0011383         4               7      

CriterionValue1 = 0.0332

iteration = 15

Train the bilayered neural network model with the optimal hyperparameters.

rng("default")
modelNNOpt = compact(fitcnet(xTrainSelected,yTrainMapped, ...
    Activations=char(optimalParams.Activations), ...
    LayerSizes=[optimalParams.Layer_1_Size optimalParams.Layer_2_Size], ...
    Lambda=optimalParams.Lambda));

Find the accuracy and size of the trained model.

OptimizedNNAccuracy = (1-loss(modelNNOpt,xTestSelected,yTestMapped))*100

OptimizedNNAccuracy = 93.3333

OptimizedNNSize = whos("modelNNOpt").bytes/1024

OptimizedNNSize = 8.3555

Quantize Model Parameters with Simulink Block

You can also reduce the memory footprint of a machine learning model by quantizing model
parameters with a Simulink block. Statistics and Machine Learning Toolbox™ provides various
prediction blocks that allows you to import a trained machine learning model into a Simulink model.
In the prediction blocks, you can specify the data types for some or all model parameters as single-
precision, fixed-point, half-precision, and so on. For an example of fixed-point conversion, see “Human
Activity Recognition Simulink Model for Fixed-Point Deployment” on page 34-86.

This example provides the Simulink model
slexAcousticSceneClassificationNNPredictExample.slx, which includes the
ClassificationNeuralNetwork Predict block. Open this model.

SimMdlName = 'slexAcousticSceneClassificationNNPredictExample'; 
open_system(SimMdlName)

 Compress Machine Learning Model for Memory-Limited Hardware

34-193



Double-click the ClassificationNeuralNetwork Predict block to open the Block Parameters dialog box.
You can specify the data types for the model parameters in the Data Types tab. to reduce the memory
size, specify the data types for the layers as single. For details on specifying data types, see
“Specify Data Types Using Data Type Assistant” (Simulink).
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Prepare the input data for the Simulink model. Convert the predictor data (xTestSelected) to
single precision by using the single function.

soundInput.time = (0:size(xTestSelected,1)-1)';
soundInput.signals(1).values = single(xTestSelected);
soundInput.signals(1).dimensions = size(xTestSelected,2);

Simulate the Simulink model and assign the result to the out variable.

out = sim(SimMdlName);

Find the accuracy of the predict block using the data logged in the To Workspace (Simulink) block.

pred = categorical(out.simout.Data,unique(out.simout.Data),["AllAround","Directional"]);
QuantizedNNAccuracy = sum(pred == yTestMapped)/length(yTestMapped)*100
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QuantizedNNAccuracy = 93.3333

Find the size of the quantized model parameters.

p = Simulink.Mask.get("slexAcousticSceneClassificationNNPredictExample/ClassificationNeuralNetwork Predict");
vars = p.getWorkspaceVariables;
blockParams = vars(end).Value;
save("params.mat","blockParams")
s = dir("params.mat");
QuantizedNNSize = s.bytes/1024

QuantizedNNSize = 2.5000

Model Compression Summary

Display the changes in model size and accuracy during the model compression workflow for the
bilayered neural network model. In general, the model loses some accuracy as you apply additional
model compression schemes.

NNccuracy = [multiMdlTbl{1,"Accuracy"} binaryMdlTbl{1,"Accuracy"} ...
    feat50binaryMdlTbl{1,"Accuracy"} ...
    OptimizedNNAccuracy QuantizedNNAccuracy];
NNSize = [multiMdlTbl{1,"Model Size"} binaryMdlTbl{1,"Model Size"} ...
    feat50binaryMdlTbl{1,"Model Size"} ...
    OptimizedNNSize QuantizedNNSize];
ModelType = ["Multiclass","Binary","50 Features","Optimized","Quantized"];

figure
yyaxis left
b = bar(NNSize);
xtips = b.XEndPoints;
ytips = b.YEndPoints;
labels = string(round(b.YData,2));
text(xtips,ytips,labels,HorizontalAlignment="center",VerticalAlignment="bottom", ...
    Color='#0072BD')
ylabel("Model Size [KB]")
yyaxis right
plot(NNccuracy,"-o")
ylabel("Accuracy [%]")
xticklabels(ModelType)
grid on
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For the bilayered neural network model, the model size decreases to less than 30 KB after you reduce
the number of features. The constrained optimization and quantization with a Simulink block further
reduce the model size.

The accuracy of the initial multiclass classification model is lower compared to the other models,
because the multiclass model classifies sounds into 15 types. After you simplify the multiclass
problem into a binary classification problem, the models accurately classify more than 90% of the test
data. Reducing the number of features leads to a loss of model accuracy, but the constrained
optimization step improves accuracy, and the quantization does not reduce accuracy.

Helper Functions

The helperMdlMetrics function takes a cell array of trained models (Mdls) and test data sets (X
and Y) and returns a table of model metrics including the model accuracy in percent and model size
in KB. The helper function uses the whos function to estimate the model size. However, note that the
size returned by the whos function can be different from the actual model size required for
deployment. To generate C/C++ code for deployment, you save a trained model using the
saveLearnerForCoder function. The function can reduce the model size further. For example, it
removes the ModelParameters property stored in the logistic regression learners in
CompactClassificationECOC.

function tbl = helperMdlMetrics(Mdls,X,Y)
numMdl = length(Mdls);
metrics = NaN(numMdl,2);
for i = 1 : numMdl
    Mdl = Mdls{i};

 Compress Machine Learning Model for Memory-Limited Hardware

34-197



    MdlInfo = whos("Mdl");
    metrics(i,:) = [(1-loss(Mdl,X,Y))*100 MdlInfo.bytes/1024];
end
tbl = array2table(metrics, ...
    VariableNames=["Accuracy","Model Size"]);
end

The helperOptimizeConstrainedBilayer function trains a bilayered neural network model using
a given set of parameters for the training data, and returns the loss for the holdout validation set. In
addition, the function accepts the upper limit (maxSize) for the number of weight parameters in the
model and returns a constraint value. A positive constraint value indicates that the number of
parameters is greater than the specified limit maxSize.

function [objective,constraint] = helperOptimizeConstrainedBilayer(params,xTrain,yTrain,xEval,yEval,maxSize)
mdl = fitcnet(xTrain,yTrain, ...
    Activations=char(params.Activations), ...
    LayerSizes=[params.Layer_1_Size params.Layer_2_Size], ...
    Lambda=params.Lambda);
objective = loss(mdl,xEval,yEval);

numClasses = size(unique(yTrain),1);
sizeEst = size(xTrain,2)*params.Layer_1_Size + ...
    params.Layer_1_Size*params.Layer_2_Size + ...
    params.Layer_2_Size*numClasses;
constraint = sizeEst - maxSize - 0.5;
end

More About

For constraint-coupled optimization, you can consider minimizing these hyperparameters to limit the
memory use, depending on the type of machine learning model:

• Decision tree — Minimum number of leaf node observations (“MinLeafSize” on page 35-0 ) and
the maximum number of decision splits (“MaxNumSplits” on page 35-0 ). A decision tree model
has a small memory footprint.

• Linear discriminant and logistic regression — Number of features and classes. Both a linear
discriminant model and a logistic regression model have a small to medium memory footprint.

• Shallow neural network — Number of fully connected layers and the number of hidden units in
each layer (“LayerSizes” on page 35-0 ). A shallow neural network model has a small to medium
memory footprint.

• k-nearest neighbor — Training data size, the number of nearest neighbors (“NumNeighbors” on
page 35-0 ), and the maximum number of data points in the leaf node for the Kd-tree algorithm
(“BucketSize” on page 35-0 ). A k-nearest neighbor model has a medium memory footprint.

• Support vector machine (SVM) — Number of support vectors determined by the box constrains
(“BoxConstraint” on page 35-0 ). An SVM has a medium to large memory footprint. For an SVM
model that uses the linear kernel function, you can reduce the footprint by discarding support
vectors from the model using the discardSupportVectors function. The reduced SVM model
can still predict new data using predictor coefficients (Beta property) stored in the model.

• Ensemble — Number of learners and the size of each learner determined by
“NumLearningCycles” on page 35-0  and “Learners” on page 35-0 . An ensemble has a
medium to large memory footprint.

• Gaussian process regression (regression only) — Size of the active set (“ActiveSetSize” on page
35-0 ). A Gaussian process regression model has a medium to large memory footprint.
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Several factors determine the memory use of a machine learning model. However, in general, the
memory footprint for a decision tree model is small. A linear discriminant model, logistic regression
model, and shallow neural network model have a small to medium memory footprint, and a k-nearest
neighbor model has a medium memory footprint. An SVM, ensemble, and Gaussian process model
have a medium to large memory footprint. For an SVM model that uses the linear kernel function, you
can discard support vectors from the model to reduce the footprint by using the
discardSupportVectors function. The reduced SVM model can still predict new data using
predictor coefficients (Beta property) stored in the model.

For deployment to memory-limited hardware, a recommended practice is to specify training data
using a matrix, not a table. If you specify training data using a table, some model properties, such as
PredictorNames, can take a considerable proportion of the model memory footprint.
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See Also
fscmrmr | bayesopt | discardSupportVectors | ClassificationNeuralNetwork Predict

Related Examples
• “Human Activity Recognition Simulink Model for Fixed-Point Deployment” on page 34-86
• “Acoustic Scene Recognition Using Late Fusion” (Audio Toolbox)
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addedvarplot
Create added variable plot using input data

Syntax
addedvarplot(X,y,num,inmodel)
addedvarplot(X,y,num,inmodel,stats)
addedvarplot(ax, ___ )

Description
addedvarplot(X,y,num,inmodel) displays an added variable plot using the predictive terms in X,
the response values in y, the added term in column num of X, and the model with current terms
specified by inmodel. X is an n-by-p matrix of n observations of p predictive terms. y is vector of n
response values. num is a scalar index specifying the column of X with the term to be added. inmodel
is a logical vector of p elements specifying the columns of X in the current model. By default, all
elements of inmodel are false.

Note addedvarplot automatically includes a constant term in all models. Do not enter a column of
1s directly into X.

addedvarplot(X,y,num,inmodel,stats) uses the stats output from the stepwisefit
function to improve the efficiency of repeated calls to addedvarplot. Otherwise, this syntax is
equivalent to the previous syntax.

addedvarplot(ax, ___ ) creates the plot in the axes specified by ax instead of the current axes
(gca). The option ax can precede any of the input argument combinations in the previous syntaxes.
For more information on creating an Axes object, see axes and gca.

Added variable plots are used to determine the unique effect of adding a new term to a multilinear
model. The plot shows the relationship between the part of the response unexplained by terms
already in the model and the part of the new term unexplained by terms already in the model. The
“unexplained” parts are measured by the residuals of the respective regressions. A scatter of the
residuals from the two regressions forms the added variable plot. In addition to the scatter of
residuals, the plot produced by addedvarplot shows 95% confidence intervals on predictions from
the fitted line. The slope of the fitted line is the coefficient that the new term would have if it were
added to the model with terms inmodel. For more details, see “Added Variable Plot” on page 35-5514.

Added variable plots are sometimes known as partial regression leverage plots.

Examples

Create Added Variable Plot

Load the data in hald.mat, which contains observations of the reaction to heat for various cement
mixtures.
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load hald
whos

  Name              Size            Bytes  Class     Attributes

  Description      22x58             2552  char                
  hald             13x5               520  double              
  heat             13x1               104  double              
  ingredients      13x4               416  double              

Create an added variable plot to investigate the effect of adding the third column of ingredients to
a model that contains the first two columns.

inmodel = [true true false false];
addedvarplot(ingredients,heat,3,inmodel)

The wide scatter plot and the low slope of the fitted line are evidence against the statistical
significance of adding the third column to the model.

Alternative Functionality
You can create a linear regression model object LinearModel by using fitlm or stepwiselm and
use the object function plotAdded to create an added variable plot.

A LinearModel object provides the object properties and the object functions to investigate a fitted
linear regression model. The object properties include information about coefficient estimates,
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summary statistics, fitting method, and input data. Use the object functions to predict responses and
to modify, evaluate, and visualize the linear regression model.

Version History
Introduced before R2006a

See Also
stepwisefit | stepwise | plotAdded
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addK
Package: clustering.evaluation

Evaluate additional numbers of clusters

Syntax
updatedEvaluation = addK(evaluation,klist)

Description
updatedEvaluation = addK(evaluation,klist) returns a clustering evaluation object
updatedEvaluation, which contains the evaluation data in the clustering evaluation object
evaluation and additional evaluation data for the proposed number of clusters specified in klist.

Examples

Evaluate Additional Numbers of Clusters

Create a clustering evaluation object using evalclusters, and then use addK to evaluate additional
numbers of clusters.

Load the fisheriris data set. The data contains length and width measurements from the sepals
and petals of three species of iris flowers.

load fisheriris

Cluster the flower measurement data using kmeans, and use the Calinski-Harabasz criterion to
evaluate proposed solutions for 1 to 5 clusters.

evaluation = evalclusters(meas,"kmeans","CalinskiHarabasz","KList",1:5)

evaluation = 
  CalinskiHarabaszEvaluation with properties:

    NumObservations: 150
         InspectedK: [1 2 3 4 5]
    CriterionValues: [NaN 513.9245 561.6278 530.4871 456.1279]
           OptimalK: 3

The clustering evaluation object evaluation contains data on each proposed clustering solution.
The returned value of OptimalK indicates that the optimal solution is three clusters.

Evaluate proposed solutions for 6 to 10 clusters using the same criterion. Add these evaluations to
the original clustering evaluation object.

evaluation = addK(evaluation,6:10)

evaluation = 
  CalinskiHarabaszEvaluation with properties:
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    NumObservations: 150
         InspectedK: [1 2 3 4 5 6 7 8 9 10]
    CriterionValues: [NaN 513.9245 561.6278 530.4871 456.1279 469.5068 ... ]
           OptimalK: 3

The updated values for InspectedK and CriterionValues show that evaluation now evaluates
proposed solutions for 1 to 10 clusters. The OptimalK value is still 3, indicating that the optimal
solution is still three clusters.

Input Arguments
evaluation — Clustering evaluation data
CalinskiHarabaszEvaluation object | DaviesBouldinEvaluation object | GapEvaluation
object | SilhouetteEvaluation object

Clustering evaluation data, specified as a CalinskiHarabaszEvaluation,
DaviesBouldinEvaluation, GapEvaluation, or SilhouetteEvaluation clustering evaluation
object. Create a clustering evaluation object by using evalclusters.

klist — Additional number of clusters to evaluate
positive integer vector

Additional number of clusters to evaluate, specified as a positive integer vector. If any values in
klist overlap with clustering solutions already evaluated in the evaluation object, then addK
ignores the overlapping values.
Data Types: single | double

Output Arguments
updatedEvaluation — Updated clustering evaluation data
CalinskiHarabaszEvaluation object | DaviesBouldinEvaluation object | GapEvaluation
object | SilhouetteEvaluation object

Updated clustering evaluation data, returned as a CalinskiHarabaszEvaluation,
DaviesBouldinEvaluation, GapEvaluation, or SilhouetteEvaluation clustering evaluation
object. updatedEvaluation contains data on the proposed clustering solutions included in
evaluation and data on the additional proposed number of clusters specified in klist.

For all clustering evaluation objects, addK updates the InspectedK and CriterionValues
properties to include the proposed clustering solutions specified in klist and their corresponding
criterion values. If the software finds a new optimal number of clusters and optimal clustering
solution, then addK also updates the OptimalK and OptimalY properties.

For certain clustering evaluation objects, addK updates these additional property values:

• LogW, ExpectedLogW, StdLogW, and SE (for gap criterion evaluation objects)
• ClusterSilhouettes (for silhouette criterion evaluation objects)
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Version History
Introduced in R2014a

See Also
evalclusters | CalinskiHarabaszEvaluation | DaviesBouldinEvaluation |
GapEvaluation | SilhouetteEvaluation
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addlevels
(Not Recommended) Add levels to nominal or ordinal arrays

Note The nominal and ordinal array data types are not recommended. To represent ordered and
unordered discrete, nonnumeric data, use the “Categorical Arrays” data type instead.

Syntax
B = addlevels(A,newlevels)

Description
B = addlevels(A,newlevels) adds new levels specified by newlevels to the nominal or
ordinal array A. addlevels adds the new levels at the end of the list of possible levels in A, but
does not modify the value of any element. B does not contain elements at the new levels.

Examples

Add Levels To A Nominal Array

Add levels for additional species to Fisher's iris data.

Create a nominal array of the existing species in Fisher's iris data.

load fisheriris
species = nominal(species);
getlevels(species)

ans = 1x3 nominal
     setosa      versicolor      virginica 

Add two additional species.

species = addlevels(species,{'spuria','ruthenica'});
getlevels(species)

ans = 1x5 nominal
     setosa      versicolor      virginica      spuria      ruthenica 

Even though there are new levels, there are no elements in species that are in these new levels.

sum(species=='spuria')

ans = 0

sum(species=='ruthenica')

ans = 0
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Input Arguments
A — Nominal or ordinal array
nominal array | ordinal array

Nominal or ordinal array, specified as a nominal or ordinal array object created with nominal or
ordinal.

newlevels — Levels to add
string array | cell array of character vectors | 2-D character matrix

Levels to add to the input nominal or ordinal array, specified as a string array, a cell array of
character vectors, or a 2-D character matrix.
Data Types: char | string | cell

Output Arguments
B — Nominal or ordinal array
nominal array | ordinal array

Nominal or ordinal array, returned as a nominal or ordinal array object.

Version History
Introduced in R2007a

See Also
droplevels | mergelevels | reorderlevels | nominal | ordinal

Topics
“Add and Drop Category Levels” on page 2-18

 addlevels

35-9



addInteractions
Add interaction terms to univariate generalized additive model (GAM)

Syntax
UpdatedMdl = addInteractions(Mdl,Interactions)
UpdatedMdl = addInteractions(Mdl,Interactions,Name,Value)

Description
UpdatedMdl = addInteractions(Mdl,Interactions) returns an updated model UpdatedMdl
by adding the interaction terms in Interactions to the univariate generalized additive model Mdl.
The model Mdl must contain only linear terms for predictors.

If you want to resume training for the existing terms in Mdl, use the resume function.

UpdatedMdl = addInteractions(Mdl,Interactions,Name,Value) specifies additional
options using one or more name-value arguments. For example, 'MaxPValue',0.05 specifies to
include only the interaction terms whose p-values are not greater than 0.05.

Examples

Train GAM with Interaction Terms

Train a univariate GAM, which contains linear terms for predictors, and then add interaction terms to
the trained model by using the addInteractions function.

Load the carbig data set, which contains measurements of cars made in the 1970s and early 1980s.

load carbig

Create a table that contains the predictor variables (Acceleration, Displacement, Horsepower,
and Weight) and the response variable (MPG).

tbl = table(Acceleration,Displacement,Horsepower,Weight,MPG);

Train a univariate GAM that contains linear terms for predictors in tbl.

Mdl = fitrgam(tbl,'MPG');

Add the five most important interaction terms to the trained model.

UpdatedMdl = addInteractions(Mdl,5);

Mdl is a univariate GAM, and UpdatedMdl is an updated GAM that contains all the terms in Mdl and
five additional interaction terms. Display the interaction terms in UpdatedMdl.

UpdatedMdl.Interactions

ans = 5×2
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     2     3
     1     2
     3     4
     1     4
     1     3

Each row of the Interactions property represents one interaction term and contains the column
indexes of the predictor variables for the interaction term. You can use the Interactions property
to check the interaction terms in the model and the order in which fitrgam adds them to the model.

Specify Options for Interaction Terms

Train a univariate GAM, which contains linear terms for predictors, and then add interaction terms to
the trained model by using the addInteractions function. Specify the 'MaxPValue' name-value
argument to add interaction terms whose p-values are not greater than the 'MaxPValue' value.

Load Fisher's iris data set. Create a table that contains observations for versicolor and virginica.

load fisheriris
inds = strcmp(species,'versicolor') | strcmp(species,'virginica');
Tbl = array2table(meas(inds,:),'VariableNames',["x1","x2","x3","x4"]);
Tbl.Y = species(inds,:);

Train a univariate GAM that contains linear terms for predictors in Tbl.

Mdl = fitcgam(Tbl,'Y');

Add important interaction terms to the trained model Mdl. Specify 'all' for the Interactions
argument, and set the 'MaxPValue' name-value argument to 0.05. Among all available interaction
terms, addInteractions identifies those whose p-values are not greater than the 'MaxPValue'
value and adds them to the model. The default 'MaxPValue' is 1 so that the function adds all
specified interaction terms to the model.

UpdatedMdl = addInteractions(Mdl,'all','MaxPValue',0.05);
UpdatedMdl.Interactions

ans = 5×2

     3     4
     2     4
     1     4
     2     3
     1     3

Mdl is a univariate GAM, and UpdatedMdl is an updated GAM that contains all the terms in Mdl and
five additional interaction terms. UpdatedMdl includes five of the six available pairs of interaction
terms.
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Input Arguments
Mdl — Generalized additive model
ClassificationGAM model object | RegressionGAM model object

Generalized additive model, specified as a ClassificationGAM or RegressionGAM model object.

Interactions — Number of interaction terms or list of interaction terms
0 | nonnegative integer | logical matrix | 'all'

Number or list of interaction terms to include in the candidate set S, specified as a nonnegative
integer scalar, a logical matrix, or 'all'.

• Number of interaction terms, specified as a nonnegative integer — S includes the specified
number of important interaction terms, selected based on the p-values of the terms.

• List of interaction terms, specified as a logical matrix — S includes the terms specified by a t-by-p
logical matrix, where t is the number of interaction terms, and p is the number of predictors used
to train the model. For example, logical([1 1 0; 0 1 1]) represents two pairs of interaction
terms: a pair of the first and second predictors, and a pair of the second and third predictors.

If addInteractions uses a subset of input variables as predictors, then the function indexes the
predictors using only the subset. That is, the column indexes of the logical matrix do not count the
response and observation weight variables. The indexes also do not count any variables not used
by the function.

• 'all' — S includes all possible pairs of interaction terms, which is p*(p – 1)/2 number of
terms in total.

Among the interaction terms in S, the addInteractions function identifies those whose p-values
are not greater than the 'MaxPValue' value and uses them to build a set of interaction trees. Use
the default value ('MaxPValue',1) to build interaction trees using all terms in S.
Data Types: single | double | logical | char | string

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: addInteractions(Mdl,'all','MaxPValue',0.05,'Verbose',1,'NumPrints',10)
specifies to include all available interaction terms whose p-values are not greater than 0.05 and to
display diagnostic messages every 10 iterations.

InitialLearnRateForInteractions — Learning rate of gradient boosting for interaction
terms
1 (default) | numeric scalar in (0,1]

Initial learning rate of gradient boosting for interaction terms, specified as a numeric scalar in the
interval (0,1].

For each boosting iteration for interaction trees, addInteractions starts fitting with the initial
learning rate. For classification, the function halves the learning rate until it finds a rate that
improves the model fit. For regression, the function uses the initial rate throughout the training.
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Training a model using a small learning rate requires more learning iterations, but often achieves
better accuracy.

For more details about gradient boosting, see “Gradient Boosting Algorithm” on page 35-15.
Example: 'InitialLearnRateForInteractions',0.1
Data Types: single | double

MaxNumSplitsPerInteraction — Maximum number of decision splits per interaction tree
4 (default) | positive integer scalar

Maximum number of decision splits (or branch nodes) for each interaction tree (boosted tree for an
interaction term), specified as a positive integer scalar.
Example: 'MaxNumSplitsPerInteraction',5
Data Types: single | double

MaxPValue — Maximum p-value for detecting interaction terms
1 (default) | numeric scalar in [0,1]

Maximum p-value for detecting interaction terms, specified as a numeric scalar in the interval [0,1].

addInteractions first finds the candidate set S of interaction terms from the Interactions
value. Then the function identifies the interaction terms whose p-values are not greater than the
'MaxPValue' value and uses them to build a set of interaction trees.

The default value ('MaxPValue',1) builds interaction trees for all interaction terms in the candidate
set S.

For more details about detecting interaction terms, see “Interaction Term Detection” on page 35-16.
Example: 'MaxPValue',0.05
Data Types: single | double

NumPrint — Number of iterations between diagnostic message printouts
Mdl.ModelParameters.NumPrint (default) | nonnegative integer scalar

Number of iterations between diagnostic message printouts, specified as a nonnegative integer
scalar. This argument is valid only when you specify 'Verbose' as 1.

If you specify 'Verbose',1 and 'NumPrint',numPrint, then the software displays diagnostic
messages every numPrint iterations in the Command Window.

The default value is Mdl.ModelParameters.NumPrint, which is the NumPrint value that you
specify when creating the GAM object Mdl.
Example: 'NumPrint',500
Data Types: single | double

NumTreesPerInteraction — Number of trees per interaction term
100 (default) | positive integer scalar

Number of trees per interaction term, specified as a positive integer scalar.

The 'NumTreesPerInteraction' value is equivalent to the number of gradient boosting iterations
for the interaction terms for predictors. For each iteration, addInteractions adds a set of
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interaction trees to the model, one tree for each interaction term. To learn about the gradient
boosting algorithm, see “Gradient Boosting Algorithm” on page 35-15.

You can determine whether the fitted model has the specified number of trees by viewing the
diagnostic message displayed when 'Verbose' is 1 or 2, or by checking the
ReasonForTermination property value of the model Mdl.
Example: 'NumTreesPerInteraction',500
Data Types: single | double

Verbose — Verbosity level
Mdl.ModelParameters.VerbosityLevel (default) | 0 | 1 | 2

Verbosity level, specified as 0, 1, or 2. The Verbose value controls the amount of information that the
software displays in the Command Window.

This table summarizes the available verbosity level options.

Value Description
0 The software displays no information.
1 The software displays diagnostic messages every numPrint iterations,

where numPrint is the 'NumPrint' value.
2 The software displays diagnostic messages at every iteration.

Each line of the diagnostic messages shows the information about each boosting iteration and
includes the following columns:

• Type — Type of trained trees, 1D (predictor trees, or boosted trees for linear terms for predictors)
or 2D (interaction trees, or boosted trees for interaction terms for predictors)

• NumTrees — Number of trees per linear term or interaction term that addInteractions added
to the model so far

• Deviance — “Deviance” on page 35-15 of the model
• RelTol — Relative change of model predictions: y k− y k− 1 ′ y k− y k− 1 /y k′y k, where y k is a

column vector of model predictions at iteration k
• LearnRate — Learning rate used for the current iteration

The default value is Mdl.ModelParameters.VerbosityLevel, which is the Verbose value that
you specify when creating the GAM object Mdl.
Example: 'Verbose',1
Data Types: single | double

Output Arguments
UpdatedMdl — Updated generalized additive model
ClassificationGAM model object | RegressionGAM model object

Updated generalized additive model, returned as a ClassificationGAM or RegressionGAM model
object. UpdatedMdl has the same object type as the input model Mdl.

To overwrite the input argument Mdl, assign the output of addInteractions to Mdl:
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Mdl = addInteractions(Mdl,Interactions);

More About
Deviance

Deviance is a generalization of the residual sum of squares. It measures the goodness of fit compared
to the saturated model.

The deviance of a fitted model is twice the difference between the loglikelihoods of the model and the
saturated model:

-2(logL - logLs),
where L and Ls are the likelihoods of the fitted model and the saturated model, respectively. The
saturated model is the model with the maximum number of parameters that you can estimate.

addInteractions uses the deviance to measure the goodness of model fit and finds a learning rate
that reduces the deviance at each iteration. Specify 'Verbose' as 1 or 2 to display the deviance and
learning rate in the Command Window.

Algorithms
Gradient Boosting Algorithm

addInteractions adds sets of interaction trees (boosted trees for interaction terms for predictors)
to a univariate generalized additive model by using a gradient boosting algorithm (“Least-Squares
Boosting” on page 19-52 for regression and “Adaptive Logistic Regression” on page 19-50 for
classification). The algorithm iterates for at most 'NumTreesPerInteraction' times for interaction
trees.

For each boosting iteration, addInteractions builds a set of interaction trees with the initial
learning rate 'InitialLearnRateForInteractions'.

• When building a set of trees, the function trains one tree at a time. It fits a tree to the residual
that is the difference between the response (observed response values for regression or scores of
observed classes for classification) and the aggregated prediction from all trees grown previously.
To control the boosting learning speed, the function shrinks the tree by the learning rate and then
adds the tree to the model and updates the residual.

• Updated model = current model + (learning rate)·(new tree)
• Updated residual = current residual – (learning rate)·(response explained by new tree)

• If adding the set of trees improves the model fit (that is, reduces the deviance of the fit by a value
larger than the tolerance), then addInteractions moves to the next iteration.

• Otherwise, for classification, addInteractions halves the learning rate and uses it to update the
model and residual. The function continues to halve the learning rate until it finds a rate that
improves the model fit. If the function cannot find such a learning rate for interaction trees, then it
terminates the model fitting. For regression, if adding the set of trees does not improve the model
fit with the initial learning rate, then the function terminates the model fitting.

You can determine why training stopped by checking the ReasonForTermination property of
the trained model.
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Interaction Term Detection

For each pairwise interaction term xixj (specified by Interactions), the software performs an F-test
to examine whether the term is statistically significant.

To speed up the process, addInteractions bins numeric predictors into at most 8 equiprobable
bins. The number of bins can be less than 8 if a predictor has fewer than 8 unique values. The F-test
examines the null hypothesis that the bins created by xi and xj have equal responses versus the
alternative that at least one bin has a different response value from the others. A small p-value
indicates that differences are significant, which implies that the corresponding interaction term is
significant and, therefore, including the term can improve the model fit.

addInteractions builds a set of interaction trees using the terms whose p-values are not greater
than the 'MaxPValue' value. You can use the default 'MaxPValue' value 1 to build interaction
trees using all terms specified by Interactions.

addInteractions adds interaction terms to the model in the order of importance based on the p-
values. Use the Interactions property of the returned model to check the order of the interaction
terms added to the model.

Version History
Introduced in R2021a

See Also
resume | RegressionGAM | ClassificationGAM

Topics
“Train Generalized Additive Model for Binary Classification” on page 12-77
“Train Generalized Additive Model for Regression” on page 12-86
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addlistener
Class: qrandstream

Add listener for event

Syntax
el = addlistener(hsource,'eventname',callback)
el = addlistener(hsource,property,'eventname',callback)

Description
el = addlistener(hsource,'eventname',callback) creates a listener for the event named
eventname, the source of which is handle object hsource. If hsource is an array of source handles,
the listener responds to the named event on any handle in the array. callback is a function handle
that is invoked when the event is triggered.

el = addlistener(hsource,property,'eventname',callback) adds a listener for a property
event. eventname must be 'PreGet', 'PostGet', 'PreSet', or 'PostSet'. property must be
either a property name or cell array of property names, or a meta.property or array of
meta.property. The properties must belong to the class of hsource. If hsource is scalar,
property can include dynamic properties.

For all forms, addlistener returns an event.listener. To remove a listener, delete the object
returned by addlistener. For example, delete(el) calls the handle class delete method to
remove the listener and delete it from the workspace.

See Also
delete | dynamicprops | event.listener | events | meta.property | notify | qrandstream |
reset
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addMetrics
Compute additional classification performance metrics

Syntax
UpdatedROCObj = addMetrics(rocObj,metrics)

Description
rocmetrics computes the false positive rates (FPR), true positive rates (TPR), and additional
metrics specified by the AdditionalMetrics name-value argument. After creating a rocmetrics
object, you can compute additional classification performance metrics by using the addMetrics
function.

UpdatedROCObj = addMetrics(rocObj,metrics) computes additional classification
performance metrics specified in metrics using the classification model information stored in the
rocmetrics object rocObj.

UpdatedROCObj contains all the information in rocObj plus additional performance metrics
computed by addMetrics. The function attaches the additional computed metrics (metrics) as new
variables in the table of the Metrics property.

If you compute confidence intervals when you create rocObj, the addMetrics function computes
the confidence intervals for the additional metrics. The new variables in the Metrics property
contain a three-column matrix in which the first column corresponds to the metric values, and the
second and third columns correspond to the lower and upper bounds, respectively.

Examples

Compute Additional Metrics

Compute the performance metrics (FPR, TPR, and expected cost) for a multiclass classification
problem when you create a rocmetrics object. Compute additional metrics, the positive predictive
value (PPV) and the negative predictive value (NPV), and add them to the object.

Load the fisheriris data set. The matrix meas contains flower measurements for 150 different
flowers. The vector species lists the species for each flower. species contains three distinct flower
names.

load fisheriris

Train a classification tree that classifies observations into one of the three labels. Cross-validate the
model using 10-fold cross-validation.

rng("default") % For reproducibility
Mdl = fitctree(meas,species,Crossval="on");

Compute the classification scores for validation-fold observations.
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[~,Scores] = kfoldPredict(Mdl);
size(Scores)

ans = 1×2

   150     3

Scores is a matrix of size 150-by-3. The column order of Scores follows the class order in Mdl.
Display the class order stored in Mdl.ClassNames.

Mdl.ClassNames

ans = 3x1 cell
    {'setosa'    }
    {'versicolor'}
    {'virginica' }

Create a rocmetrics object by using the true labels in species and the classification scores in
Scores. Specify the column order of Scores using Mdl.ClassNames. By default, rocmetrics
computes the FPR and TPR. Specify AdditionalMetrics="ExpectedCost" to compute the
expected cost as well.

rocObj = rocmetrics(species,Scores,Mdl.ClassNames, ...
    AdditionalMetrics="ExpectedCost");

The table in the Metrics property of rocObj contains performance metric values for all three
classes, vertically concatenated according to the class order. Find and display the rows for the second
class in the table.

idx = strcmp(rocObj.Metrics.ClassName,Mdl.ClassNames(2));
rocObj.Metrics(idx,:)

ans=13×5 table
      ClassName       Threshold    FalsePositiveRate    TruePositiveRate    ExpectedCost
    ______________    _________    _________________    ________________    ____________

    {'versicolor'}           1              0                    0            0.074074  
    {'versicolor'}           1           0.01                  0.7            0.023704  
    {'versicolor'}     0.95455           0.02                  0.8            0.017778  
    {'versicolor'}     0.91304           0.03                  0.9            0.011852  
    {'versicolor'}        -0.2           0.04                  0.9            0.013333  
    {'versicolor'}    -0.33333           0.06                  0.9            0.016296  
    {'versicolor'}        -0.6           0.08                  0.9            0.019259  
    {'versicolor'}    -0.86957           0.12                 0.92            0.023704  
    {'versicolor'}    -0.91111           0.16                 0.96            0.026667  
    {'versicolor'}    -0.95122           0.31                 0.96            0.048889  
    {'versicolor'}    -0.95238           0.38                 0.98            0.057778  
    {'versicolor'}    -0.95349           0.44                 0.98            0.066667  
    {'versicolor'}          -1              1                    1             0.14815  

The table in Metrics contains the variables for the class names, threshold, false positive rate, true
positive rate, and expected cost (the additional metric).
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After creating a rocmetrics object, you can compute additional metrics using the classification
model information stored in the object. Compute the PPV and NPV by using the addMetrics
function. To overwrite the input argument rocObj, assign the output of addMetrics to the input.

rocObj = addMetrics(rocObj,["PositivePredictiveValue","NegativePredictiveValue"]);

Display the Metrics property.

rocObj.Metrics(idx,:)

ans=13×7 table
      ClassName       Threshold    FalsePositiveRate    TruePositiveRate    ExpectedCost    PositivePredictiveValue    NegativePredictiveValue
    ______________    _________    _________________    ________________    ____________    _______________________    _______________________

    {'versicolor'}           1              0                    0            0.074074                  NaN                    0.66667        
    {'versicolor'}           1           0.01                  0.7            0.023704              0.97222                    0.86842        
    {'versicolor'}     0.95455           0.02                  0.8            0.017778              0.95238                    0.90741        
    {'versicolor'}     0.91304           0.03                  0.9            0.011852               0.9375                    0.95098        
    {'versicolor'}        -0.2           0.04                  0.9            0.013333              0.91837                     0.9505        
    {'versicolor'}    -0.33333           0.06                  0.9            0.016296              0.88235                    0.94949        
    {'versicolor'}        -0.6           0.08                  0.9            0.019259              0.84906                    0.94845        
    {'versicolor'}    -0.86957           0.12                 0.92            0.023704               0.7931                    0.95652        
    {'versicolor'}    -0.91111           0.16                 0.96            0.026667                 0.75                    0.97674        
    {'versicolor'}    -0.95122           0.31                 0.96            0.048889              0.60759                    0.97183        
    {'versicolor'}    -0.95238           0.38                 0.98            0.057778              0.56322                    0.98413        
    {'versicolor'}    -0.95349           0.44                 0.98            0.066667              0.52688                    0.98246        
    {'versicolor'}          -1              1                    1             0.14815              0.33333                        NaN        

The table in Metrics now includes the PositivePredictiveValue and
NegativePredictiveValue variables in the last two columns, in the order you specified. Note that
the positive predictive value (PPV = TP/(TP+FP)) is NaN for the reject-all threshold (largest
threshold), and the negative predictive value (NPV = TN/(TN+FN)) is NaN for the accept-all
threshold (lowest threshold). TP, FP, TN, and FN represent the number of true positives, false
positives, true negatives, and false negatives, respectively.

Input Arguments
rocObj — Object evaluating classification performance
rocmetrics object

Object evaluating classification performance, specified as a rocmetrics object.

metrics — Additional model performance metrics
character vector | string array | function handle | cell array

Additional model performance metrics to compute, specified as a character vector or string scalar of
the built-in metric name, string array of names, function handle (@metricName), or cell array of
names or function handles. A rocmetrics object always computes the false positive rates (FPR) and
the true positive rates (TPR) to obtain a ROC curve. Therefore, you do not have to specify to compute
FPR and TPR.

• Built-in metrics — Specify one of the following built-in metric names by using a character vector
or string scalar. You can specify more than one by using a string array.

35 Functions

35-20



Name Description
"TruePositives" or "tp" Number of true positives (TP)
"FalseNegatives" or "fn" Number of false negatives (FN)
"FalsePositives" or "fp" Number of false positives (FP)
"TrueNegatives" or "tn" Number of true negatives (TN)
"SumOfTrueAndFalsePosit
ives" or "tp+fp"

Sum of TP and FP

"RateOfPositivePredicti
ons" or "rpp"

Rate of positive predictions (RPP), (TP+FP)/(TP+FN+FP+TN)

"RateOfNegativePredicti
ons" or "rnp"

Rate of negative predictions (RNP), (TN+FN)/(TP+FN+FP
+TN)

"Accuracy" or "accu" Accuracy, (TP+TN)/(TP+FN+FP+TN)
"FalseNegativeRate",
"fnr", or "miss"

False negative rate (FNR), or miss rate, FN/(TP+FN)

"TrueNegativeRate",
"tnr", or "spec"

True negative rate (TNR), or specificity, TN/(TN+FP)

"PositivePredictiveValu
e", "ppv", or "prec"

Positive predictive value (PPV), or precision, TP/(TP+FP)

"NegativePredictiveValu
e" or "npv"

Negative predictive value (NPV), TN/(TN+FN)

"ExpectedCost" or
"ecost"

Expected cost, (TP*cost(P|P)+FN*cost(N|P)
+FP*cost(P|N)+TN*cost(N|N))/(TP+FN+FP+TN), where
cost is a 2-by-2 misclassification cost matrix containing
[0,cost(N|P);cost(P|N),0]. cost(N|P) is the cost of
misclassifying a positive class (P) as a negative class (N), and
cost(P|N) is the cost of misclassifying a negative class as a
positive class.

The software converts the K-by-K matrix specified by the Cost
name-value argument of rocmetrics to a 2-by-2 matrix for
each one-versus-all binary problem. For details, see
“Misclassification Cost Matrix” on page 18-12.

The software computes the scale vector using the prior class probabilities (Prior) and the
number of classes in Labels, and then scales the performance metrics according to this scale
vector. For details, see “Performance Metrics” on page 18-11.

• Custom metric — Specify a custom metric by using a function handle. A custom function that
returns a performance metric must have this form:

metric = customMetric(C,scale,cost)

• The output argument metric is a scalar value.
• A custom metric is a function of the confusion matrix (C), scale vector (scale), and cost matrix

(cost). The software finds these input values for each one-versus-all binary problem. For
details, see “Performance Metrics” on page 18-11.

• C is a 2-by-2 confusion matrix consisting of [TP,FN;FP,TN].
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• scale is a 2-by-1 scale vector.
• cost is a 2-by-2 misclassification cost matrix.

The software does not support cross-validation for a custom metric. Instead, you can specify to use
bootstrap when you create a rocmetrics object.

Note that the positive predictive value (PPV) is NaN for the reject-all threshold for which TP = FP = 0,
and the negative predictive value (NPV) is NaN for the accept-all threshold for which TN = FN = 0. For
more details, see “Thresholds, Fixed Metric, and Fixed Metric Values” on page 18-15.
Example: ["Accuracy","PositivePredictiveValue"]
Example: {"Accuracy",@m1,@m2} specifies the accuracy metric and the custom metrics m1 and m2
as additional metrics. addMetrics stores the custom metric values as variables named
CustomMetric1 and CustomMetric2 in the Metrics property.
Data Types: char | string | cell | function_handle

Output Arguments
UpdatedROCObj — Object evaluating classification performance
rocmetrics object

Object evaluating classification performance, returned as a rocmetrics object.

To overwrite the input argument rocObj, assign the output of addMetrics to rocObj:

rocObj = addMetrics(rocObj,metrics);

Version History
Introduced in R2022a

See Also
rocmetrics | average | plot

Topics
“ROC Curve and Performance Metrics” on page 18-3
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anova
Class: GeneralizedLinearMixedModel

Analysis of variance for generalized linear mixed-effects model

Syntax
stats = anova(glme)
stats = anova(glme,Name,Value)

Description
stats = anova(glme) returns a table, stats, that contains the results of F-tests to determine if all
coefficients representing each fixed-effects term in the generalized linear mixed-effects model glme
are equal to 0.

stats = anova(glme,Name,Value) returns a table, stats, using additional options specified by
one or more Name,Value pair arguments. For example, you can specify the method used to compute
the approximate denominator degrees of freedom for the F-tests.

Input Arguments
glme — Generalized linear mixed-effects model
GeneralizedLinearMixedModel object

Generalized linear mixed-effects model, specified as a GeneralizedLinearMixedModel object. For
properties and methods of this object, see GeneralizedLinearMixedModel.

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.

DFMethod — Method for computing approximate denominator degrees of freedom
'residual' (default) | 'none'

Method for computing approximate denominator degrees of freedom to use in the F-test, specified as
the comma-separated pair consisting of 'DFMethod' and one of the following.

Value Description
'residual' The degrees of freedom are assumed to be

constant and equal to n – p, where n is the
number of observations and p is the number of
fixed effects.

'none' All degrees of freedom are set to infinity.
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The denominator degrees of freedom for the F-statistic correspond to the column DF2 in the output
structure stats.
Example: 'DFMethod','none'

Output Arguments
stats — Results of F-tests for fixed-effects terms
table

Results of F-tests for fixed-effects terms, returned as a table with one row for each fixed-effects term
in glme and the following columns.

Column Name Description
Term Name of the fixed-effects term
FStat F-statistic for the term
DF1 Numerator degrees of freedom for the F-statistic
DF2 Denominator degrees of freedom for the F-

statistic
pValue p-value for the term

Each fixed-effects term is a continuous variable, a grouping variable, or an interaction between two
or more continuous or grouping variables. For each fixed-effects term, anova performs an F-test
(marginal test) to determine if all coefficients representing the fixed-effects term are equal to 0.

To perform tests for the type III hypothesis, when fitting the generalized linear mixed-effects model
fitglme, you must use the 'effects' contrasts for the 'DummyVarCoding' name-value pair
argument.

Examples

F-Tests for Fixed Effects

Load the sample data.

load mfr

This simulated data is from a manufacturing company that operates 50 factories across the world,
with each factory running a batch process to create a finished product. The company wants to
decrease the number of defects in each batch, so it developed a new manufacturing process. To test
the effectiveness of the new process, the company selected 20 of its factories at random to participate
in an experiment: Ten factories implemented the new process, while the other ten continued to run
the old process. In each of the 20 factories, the company ran five batches (for a total of 100 batches)
and recorded the following data:

• Flag to indicate whether the batch used the new process (newprocess)
• Processing time for each batch, in hours (time)
• Temperature of the batch, in degrees Celsius (temp)
• Categorical variable indicating the supplier (A, B, or C) of the chemical used in the batch

(supplier)
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• Number of defects in the batch (defects)

The data also includes time_dev and temp_dev, which represent the absolute deviation of time and
temperature, respectively, from the process standard of 3 hours at 20 degrees Celsius.

Fit a generalized linear mixed-effects model using newprocess, time_dev, temp_dev, and
supplier as fixed-effects predictors. Include a random-effects term for intercept grouped by
factory, to account for quality differences that might exist due to factory-specific variations. The
response variable defects has a Poisson distribution, and the appropriate link function for this
model is log. Use the Laplace fit method to estimate the coefficients. Specify the dummy variable
encoding as 'effects', so the dummy variable coefficients sum to 0.

The number of defects can be modeled using a Poisson distribution

defecti j ∼  Poisson(μi j)

This corresponds to the generalized linear mixed-effects model

logμi j = β0 + β1newprocessi j + β2time_devi j + β3temp_devi j + β4supplier_Ci j + β5supplier_Bi j + bi,

where

• defectsi j is the number of defects observed in the batch produced by factory i during batch j.
• μi j is the mean number of defects corresponding to factory i (where i = 1, 2, . . . , 20) during batch

j (where j = 1, 2, . . . , 5).
• newprocessi j, time_devi j, and temp_devi j are the measurements for each variable that correspond

to factory i during batch j. For example, newprocessi j indicates whether the batch produced by
factory i during batch j used the new process.

• supplier_Ci j and supplier_Bi j are dummy variables that use effects (sum-to-zero) coding to indicate
whether company C or B, respectively, supplied the process chemicals for the batch produced by
factory i during batch j.

• bi ∼ N(0, σb
2) is a random-effects intercept for each factory i that accounts for factory-specific

variation in quality.

glme = fitglme(mfr,'defects ~ 1 + newprocess + time_dev + temp_dev + supplier + (1|factory)',...
'Distribution','Poisson','Link','log','FitMethod','Laplace','DummyVarCoding','effects')

glme = 
Generalized linear mixed-effects model fit by ML

Model information:
    Number of observations             100
    Fixed effects coefficients           6
    Random effects coefficients         20
    Covariance parameters                1
    Distribution                    Poisson
    Link                            Log   
    FitMethod                       Laplace

Formula:
    defects ~ 1 + newprocess + time_dev + temp_dev + supplier + (1 | factory)

Model fit statistics:
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    AIC       BIC       LogLikelihood    Deviance
    416.35    434.58    -201.17          402.35  

Fixed effects coefficients (95% CIs):
    Name                   Estimate     SE          tStat       DF    pValue    
    {'(Intercept)'}           1.4689     0.15988      9.1875    94    9.8194e-15
    {'newprocess' }         -0.36766     0.17755     -2.0708    94      0.041122
    {'time_dev'   }        -0.094521     0.82849    -0.11409    94       0.90941
    {'temp_dev'   }         -0.28317      0.9617    -0.29444    94       0.76907
    {'supplier_C' }        -0.071868    0.078024     -0.9211    94       0.35936
    {'supplier_B' }         0.071072     0.07739     0.91836    94       0.36078

    Lower        Upper    
       1.1515       1.7864
     -0.72019    -0.015134
      -1.7395       1.5505
      -2.1926       1.6263
     -0.22679     0.083051
    -0.082588      0.22473

Random effects covariance parameters:
Group: factory (20 Levels)
    Name1                  Name2                  Type           Estimate
    {'(Intercept)'}        {'(Intercept)'}        {'std'}        0.31381 

Group: Error
    Name                        Estimate
    {'sqrt(Dispersion)'}        1       

Perform an F-test to determine if all fixed-effects coefficients are equal to 0.

stats = anova(glme)

stats = 
    ANOVA marginal tests: DFMethod = 'residual'

    Term                   FStat       DF1    DF2    pValue    
    {'(Intercept)'}           84.41    1      94     9.8194e-15
    {'newprocess' }          4.2881    1      94       0.041122
    {'time_dev'   }        0.013016    1      94        0.90941
    {'temp_dev'   }        0.086696    1      94        0.76907
    {'supplier'   }         0.59212    2      94         0.5552

The p-values for the intercept, newprocess, time_dev, and temp_dev are the same as in the
coefficient table of the glme display. The small p-values for the intercept and newprocess indicate
that these are significant predictors at the 5% significance level. The large p-values for time_dev
and temp_dev indicate that these are not significant predictors at this level.

The p-value of 0.5552 for supplier measures the combined significance for both coefficients
representing the categorical variable supplier. This includes the dummy variables supplier_C
and supplier_B as shown in the coefficient table of the glme display. The large p-value indicates
that supplier is not a significant predictor at the 5% significance level.
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Tips
• For each fixed-effects term, anova performs an F-test (marginal test) to determine if all
coefficients representing the fixed-effects term are equal to 0.

When fitting a generalized linear mixed-effects (GLME) model using fitglme and one of the
maximum likelihood fit methods ('Laplace' or 'ApproximateLaplace'):

• If you specify the 'CovarianceMethod' name-value pair argument as 'conditional', then
the F-tests are conditional on the estimated covariance parameters.

• If you specify the 'CovarianceMethod' name-value pair as 'JointHessian', then the F-
tests account for the uncertainty in estimation of covariance parameters.

When fitting a GLME model using fitglme and one of the pseudo likelihood fit methods ('MPL'
or 'REMPL'), anova uses the fitted linear mixed effects model from the final pseudo likelihood
iteration for inference on fixed effects.

See Also
GeneralizedLinearMixedModel | fitglme | coefTest | coefCI | disp | fixedEffects
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addTerms
Add terms to generalized linear regression model

Syntax
NewMdl = addTerms(mdl,terms)

Description
NewMdl = addTerms(mdl,terms) returns a generalized linear regression model fitted using the
input data and settings in mdl with the terms terms added.

Examples

Add Terms to Generalized Linear Regression Model

Create a generalized linear regression model using one predictor, and then add another predictor.

Generate sample data using Poisson random numbers with two underlying predictors X(:,1) and
X(:,2).

rng('default') % For reproducibility
rndvars = randn(100,2);
X = [2 + rndvars(:,1),rndvars(:,2)];
mu = exp(1 + X*[1;2]);
y = poissrnd(mu);

Create a generalized linear regression model of Poisson data. Include only the first predictor in the
model.

mdl = fitglm(X,y,'y ~ x1','Distribution','poisson')

mdl = 
Generalized linear regression model:
    log(y) ~ 1 + x1
    Distribution = Poisson

Estimated Coefficients:
                   Estimate       SE        tStat     pValue
                   ________    _________    ______    ______

    (Intercept)     2.7784      0.014043    197.85      0   
    x1              1.1732     0.0033653     348.6      0   

100 observations, 98 error degrees of freedom
Dispersion: 1
Chi^2-statistic vs. constant model: 1.25e+05, p-value = 0

Add the second predictor to the model.

mdl1 = addTerms(mdl,'x2')
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mdl1 = 
Generalized linear regression model:
    log(y) ~ 1 + x1 + x2
    Distribution = Poisson

Estimated Coefficients:
                   Estimate       SE        tStat     pValue
                   ________    _________    ______    ______

    (Intercept)     1.0405      0.022122    47.034      0   
    x1              0.9968      0.003362    296.49      0   
    x2               1.987     0.0063433    313.24      0   

100 observations, 97 error degrees of freedom
Dispersion: 1
Chi^2-statistic vs. constant model: 2.95e+05, p-value = 0

Input Arguments
mdl — Generalized linear regression model
GeneralizedLinearModel object

Generalized linear regression model, specified as a GeneralizedLinearModel object created using
fitglm or stepwiseglm.

terms — Terms to add to regression model
character vector or string scalar formula in Wilkinson notation | t-by-p terms matrix

Terms to add to the regression model mdl, specified as one of the following:

• Character vector or string scalar formula in “Wilkinson Notation” on page 35-30 representing
one or more terms. The variable names in the formula must be valid MATLAB identifiers.

• Terms matrix T of size t-by-p, where t is the number of terms and p is the number of predictor
variables in mdl. The value of T(i,j) is the exponent of variable j in term i.

For example, suppose mdl has three variables A, B, and C in that order. Each row of T represents
one term:

• [0 0 0] — Constant term or intercept
• [0 1 0] — B; equivalently, A^0 * B^1 * C^0
• [1 0 1] — A*C
• [2 0 0] — A^2
• [0 1 2] — B*(C^2)

addTerms treats a group of indicator variables for a categorical predictor as a single variable.
Therefore, you cannot specify an indicator variable to add to the model. If you specify a categorical
predictor to add to the model, addTerms adds a group of indicator variables for the predictor in one
step.

 addTerms

35-29



Output Arguments
NewMdl — Generalized linear regression model with additional terms
GeneralizedLinearModel object

Generalized linear regression model with additional terms, returned as a
GeneralizedLinearModel object. NewMdl is a newly fitted model that uses the input data and
settings in mdl with additional terms specified in terms.

To overwrite the input argument mdl, assign the newly fitted model to mdl:

mdl = addTerms(mdl,terms);

More About
Wilkinson Notation

Wilkinson notation describes the terms present in a model. The notation relates to the terms present
in a model, not to the multipliers (coefficients) of those terms.

Wilkinson notation uses these symbols:

• + means include the next variable.
• – means do not include the next variable.
• : defines an interaction, which is a product of terms.
• * defines an interaction and all lower-order terms.
• ^ raises the predictor to a power, exactly as in * repeated, so ^ includes lower-order terms as well.
• () groups terms.

This table shows typical examples of Wilkinson notation.

Wilkinson Notation Terms in Standard Notation
1 Constant (intercept) term
x1^k, where k is a positive integer x1, x12, ..., x1k

x1 + x2 x1, x2
x1*x2 x1, x2, x1*x2
x1:x2 x1*x2 only
–x2 Do not include x2
x1*x2 + x3 x1, x2, x3, x1*x2
x1 + x2 + x3 + x1:x2 x1, x2, x3, x1*x2
x1*x2*x3 – x1:x2:x3 x1, x2, x3, x1*x2, x1*x3, x2*x3
x1*(x2 + x3) x1, x2, x3, x1*x2, x1*x3

For more details, see “Wilkinson Notation” on page 11-93.
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Algorithms
• addTerms treats a categorical predictor as follows:

• A model with a categorical predictor that has L levels (categories) includes L – 1 indicator
variables. The model uses the first category as a reference level, so it does not include the
indicator variable for the reference level. If the data type of the categorical predictor is
categorical, then you can check the order of categories by using categories and reorder
the categories by using reordercats to customize the reference level. For more details about
creating indicator variables, see “Automatic Creation of Dummy Variables” on page 2-50.

• addTerms treats the group of L – 1 indicator variables as a single variable. If you want to treat
the indicator variables as distinct predictor variables, create indicator variables manually by
using dummyvar. Then use the indicator variables, except the one corresponding to the
reference level of the categorical variable, when you fit a model. For the categorical predictor
X, if you specify all columns of dummyvar(X) and an intercept term as predictors, then the
design matrix becomes rank deficient.

• Interaction terms between a continuous predictor and a categorical predictor with L levels
consist of the element-wise product of the L – 1 indicator variables with the continuous
predictor.

• Interaction terms between two categorical predictors with L and M levels consist of the (L –
 1)*(M – 1) indicator variables to include all possible combinations of the two categorical
predictor levels.

• You cannot specify higher-order terms for a categorical predictor because the square of an
indicator is equal to itself.

Alternative Functionality
• Use stepwiseglm to specify terms in a starting model and continue improving the model until no

single step of adding or removing a term is beneficial.
• Use removeTerms to remove specific terms from a model.
• Use step to optimally improve a model by adding or removing terms.

Version History
Introduced in R2012a

Extended Capabilities
GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

This function fully supports GPU arrays. For more information, see “Run MATLAB Functions on a
GPU” (Parallel Computing Toolbox).

See Also
GeneralizedLinearModel | removeTerms | step | stepwiseglm
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Topics
“Generalized Linear Models” on page 12-9
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addTerms
Add terms to linear regression model

Syntax
NewMdl = addTerms(mdl,terms)

Description
NewMdl = addTerms(mdl,terms) returns a linear regression model fitted using the input data and
settings in mdl with the terms terms added.

Examples

Add Terms to Linear Regression Model

Create a linear regression model of the carsmall data set without any interactions, and then add an
interaction term.

Load the carsmall data set and create a model of the MPG as a function of weight and model year.

load carsmall
tbl = table(MPG,Weight);
tbl.Year = categorical(Model_Year);
mdl = fitlm(tbl,'MPG ~ Year + Weight^2')

mdl = 
Linear regression model:
    MPG ~ 1 + Weight + Year + Weight^2

Estimated Coefficients:
                    Estimate         SE         tStat       pValue  
                   __________    __________    _______    __________

    (Intercept)        54.206        4.7117     11.505    2.6648e-19
    Weight          -0.016404     0.0031249    -5.2493    1.0283e-06
    Year_76            2.0887       0.71491     2.9215     0.0044137
    Year_82            8.1864       0.81531     10.041    2.6364e-16
    Weight^2       1.5573e-06    4.9454e-07      3.149     0.0022303

Number of observations: 94, Error degrees of freedom: 89
Root Mean Squared Error: 2.78
R-squared: 0.885,  Adjusted R-Squared: 0.88
F-statistic vs. constant model: 172, p-value = 5.52e-41

The model includes five terms, Intercept, Weight, Year_76, Year_82, and Weight^2, where
Year_76 and Year_82 are indicator variables for the categorical variable Year that has three
distinct values.

Add an interaction term between the Year and Weight variables to mdl.
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terms = 'Year*Weight';
NewMdl = addTerms(mdl,terms)

NewMdl = 
Linear regression model:
    MPG ~ 1 + Weight*Year + Weight^2

Estimated Coefficients:
                       Estimate          SE         tStat        pValue  
                      ___________    __________    ________    __________

    (Intercept)            48.045         6.779      7.0874    3.3967e-10
    Weight              -0.012624     0.0041455     -3.0454     0.0030751
    Year_76                2.7768        3.0538     0.90931        0.3657
    Year_82                16.416        4.9802      3.2962     0.0014196
    Weight:Year_76    -0.00020693    0.00092403    -0.22394       0.82333
    Weight:Year_82     -0.0032574     0.0018919     -1.7217      0.088673
    Weight^2           1.0121e-06      6.12e-07      1.6538       0.10177

Number of observations: 94, Error degrees of freedom: 87
Root Mean Squared Error: 2.76
R-squared: 0.89,  Adjusted R-Squared: 0.882
F-statistic vs. constant model: 117, p-value = 1.88e-39

NewMdl includes two additional terms, Weight*Year_76 and Weight*Year_82.

Input Arguments
mdl — Linear regression model
LinearModel object

Linear regression model, specified as a LinearModel object created using fitlm or stepwiselm.

terms — Terms to add to regression model
character vector or string scalar formula in Wilkinson notation | t-by-p terms matrix

Terms to add to the regression model mdl, specified as one of the following:

• Character vector or string scalar formula in “Wilkinson Notation” on page 35-35 representing
one or more terms. The variable names in the formula must be valid MATLAB identifiers.

• Terms matrix T of size t-by-p, where t is the number of terms and p is the number of predictor
variables in mdl. The value of T(i,j) is the exponent of variable j in term i.

For example, suppose mdl has three variables A, B, and C in that order. Each row of T represents
one term:

• [0 0 0] — Constant term or intercept
• [0 1 0] — B; equivalently, A^0 * B^1 * C^0
• [1 0 1] — A*C
• [2 0 0] — A^2
• [0 1 2] — B*(C^2)
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addTerms treats a group of indicator variables for a categorical predictor as a single variable.
Therefore, you cannot specify an indicator variable to add to the model. If you specify a categorical
predictor to add to the model, addTerms adds a group of indicator variables for the predictor in one
step. See “Modify Linear Regression Model Using step” on page 35-7098 for an example that describes
how to create indicator variables manually and treat each one as a separate variable.

Output Arguments
NewMdl — Linear regression model with additional terms
LinearModel object

Linear regression model with additional terms, returned as a LinearModel object. NewMdl is a
newly fitted model that uses the input data and settings in mdl with additional terms specified in
terms.

To overwrite the input argument mdl, assign the newly fitted model to mdl:

mdl = addTerms(mdl,terms);

More About
Wilkinson Notation

Wilkinson notation describes the terms present in a model. The notation relates to the terms present
in a model, not to the multipliers (coefficients) of those terms.

Wilkinson notation uses these symbols:

• + means include the next variable.
• – means do not include the next variable.
• : defines an interaction, which is a product of terms.
• * defines an interaction and all lower-order terms.
• ^ raises the predictor to a power, exactly as in * repeated, so ^ includes lower-order terms as well.
• () groups terms.

This table shows typical examples of Wilkinson notation.

Wilkinson Notation Terms in Standard Notation
1 Constant (intercept) term
x1^k, where k is a positive integer x1, x12, ..., x1k

x1 + x2 x1, x2
x1*x2 x1, x2, x1*x2
x1:x2 x1*x2 only
–x2 Do not include x2
x1*x2 + x3 x1, x2, x3, x1*x2
x1 + x2 + x3 + x1:x2 x1, x2, x3, x1*x2
x1*x2*x3 – x1:x2:x3 x1, x2, x3, x1*x2, x1*x3, x2*x3
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Wilkinson Notation Terms in Standard Notation
x1*(x2 + x3) x1, x2, x3, x1*x2, x1*x3

For more details, see “Wilkinson Notation” on page 11-93.

Algorithms
• addTerms treats a categorical predictor as follows:

• A model with a categorical predictor that has L levels (categories) includes L – 1 indicator
variables. The model uses the first category as a reference level, so it does not include the
indicator variable for the reference level. If the data type of the categorical predictor is
categorical, then you can check the order of categories by using categories and reorder
the categories by using reordercats to customize the reference level. For more details about
creating indicator variables, see “Automatic Creation of Dummy Variables” on page 2-50.

• addTerms treats the group of L – 1 indicator variables as a single variable. If you want to treat
the indicator variables as distinct predictor variables, create indicator variables manually by
using dummyvar. Then use the indicator variables, except the one corresponding to the
reference level of the categorical variable, when you fit a model. For the categorical predictor
X, if you specify all columns of dummyvar(X) and an intercept term as predictors, then the
design matrix becomes rank deficient.

• Interaction terms between a continuous predictor and a categorical predictor with L levels
consist of the element-wise product of the L – 1 indicator variables with the continuous
predictor.

• Interaction terms between two categorical predictors with L and M levels consist of the (L –
 1)*(M – 1) indicator variables to include all possible combinations of the two categorical
predictor levels.

• You cannot specify higher-order terms for a categorical predictor because the square of an
indicator is equal to itself.

Alternative Functionality
• Use stepwiselm to specify terms in a starting model and continue improving the model until no

single step of adding or removing a term is beneficial.
• Use removeTerms to remove specific terms from a model.
• Use step to optimally improve a model by adding or removing terms.

Version History
Introduced in R2012a

Extended Capabilities
GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

This function fully supports GPU arrays. For more information, see “Run MATLAB Functions on a
GPU” (Parallel Computing Toolbox).
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See Also
LinearModel | removeTerms | step | stepwiselm

Topics
“Linear Regression Workflow” on page 11-35
“Interpret Linear Regression Results” on page 11-52
“Linear Regression” on page 11-9
“Stepwise Regression” on page 11-101
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adtest
Anderson-Darling test

Syntax
h = adtest(x)
h = adtest(x,Name,Value)
[h,p] = adtest( ___ )
[h,p,adstat,cv] = adtest( ___ )

Description
h = adtest(x) returns a test decision for the null hypothesis that the data in vector x is from a
population with a normal distribution, using the Anderson-Darling test on page 35-42. The
alternative hypothesis is that x is not from a population with a normal distribution. The result h is 1 if
the test rejects the null hypothesis at the 5% significance level, or 0 otherwise.

h = adtest(x,Name,Value) returns a test decision for the Anderson-Darling test with additional
options specified by one or more name-value pair arguments. For example, you can specify a null
distribution other than normal, or select an alternative method for calculating the p-value.

[h,p] = adtest( ___ ) also returns the p-value, p, of the Anderson-Darling test, using any of the
input arguments from the previous syntaxes.

[h,p,adstat,cv] = adtest( ___ ) also returns the test statistic, adstat, and the critical value,
cv, for the Anderson-Darling test.

Examples

Anderson-Darling Test for a Normal Distribution

Load the sample data. Create a vector containing the first column of the students' exam grades data.

load examgrades
x = grades(:,1);

Test the null hypothesis that the exam grades come from a normal distribution. You do not need to
specify values for the population parameters.

[h,p,adstat,cv] = adtest(x)

h = logical
   0

p = 0.1854

adstat = 0.5194

cv = 0.7470
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The returned value of h = 0 indicates that adtest fails to reject the null hypothesis at the default
5% significance level.

Anderson-Darling Test for Extreme Value Distribution

Load the sample data. Create a vector containing the first column of the students' exam grades data.

load examgrades
x = grades(:,1);

Test the null hypothesis that the exam grades come from an extreme value distribution. You do not
need to specify values for the population parameters.

[h,p] = adtest(x,'Distribution','ev')

h = logical
   0

p = 0.0714

The returned value of h = 0 indicates that adtest fails to reject the null hypothesis at the default
5% significance level.

Anderson-Darling Test Using Specified Probability Distribution

Load the sample data. Create a vector containing the first column of the students' exam grades data.

load examgrades
x = grades(:,1);

Create a normal probability distribution object with mean mu = 75 and standard deviation sigma =
10.

dist = makedist('normal','mu',75,'sigma',10)

dist = 
  NormalDistribution

  Normal distribution
       mu = 75
    sigma = 10

Test the null hypothesis that x comes from the hypothesized normal distribution.

[h,p] = adtest(x,'Distribution',dist)

h = logical
   0

p = 0.4687
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The returned value of h = 0 indicates that adtest fails to reject the null hypothesis at the default
5% significance level.

Input Arguments
x — Sample data
vector

Sample data, specified as a vector. Missing observations in x, indicated by NaN, are ignored.
Data Types: single | double

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: 'Alpha',0.01,'MCTol',0.01 conducts the hypothesis test at the 1% significance level,
and determines the p-value, p, using a Monte Carlo simulation with a maximum Monte Carlo standard
error for p of 0.01.

Distribution — Hypothesized distribution
'norm' (default) | 'exp' | 'ev' | 'logn' | 'weibull' | probability distribution object

Hypothesized distribution of data vector x, specified as the comma-separated pair consisting of
'Distribution' and one of the following.

'norm' Normal distribution
'exp' Exponential distribution
'ev' Extreme value distribution
'logn' Lognormal distribution
'weibull' Weibull distribution

In this case, you do not need to specify population parameters. Instead, adtest estimates the
distribution parameters from the sample data and tests x against a composite hypothesis that it
comes from the selected distribution family with parameters unspecified.

Alternatively, you can specify any continuous probability distribution object for the null distribution.
In this case, you must specify all the distribution parameters, and adtest tests x against a simple
hypothesis that it comes from the given distribution with its specified parameters.
Example: 'Distribution','exp'

Alpha — Significance level
0.05 (default) | scalar value in the range (0,1)

Significance level of the hypothesis test, specified as the comma-separated pair consisting of
'Alpha' and a scalar value in the range (0,1).
Example: 'Alpha',0.01
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Data Types: single | double

MCTol — Maximum Monte Carlo standard error
positive scalar value

Maximum Monte Carlo standard error on page 35-43 for the p-value, p, specified as the comma-
separated pair consisting of 'MCTol' and a positive scalar value. If you use MCTol, adtest
determines p using a Monte Carlo simulation, and the name-value pair argument Asymptotic must
have the value false.
Example: 'MCTol',0.01
Data Types: single | double

Asymptotic — Method for calculating p-value
false (default) | true

Method for calculating the p-value of the Anderson-Darling test, specified as the comma-separated
pair consisting of 'Asymptotic' and either true or false. If you specify 'true', adtest
estimates the p-value using the limiting distribution of the Anderson-Darling test statistic. If you
specify false, adtest calculates the p-value based on an analytical formula. For sample sizes
greater than 120, the limiting distribution estimate is likely to be more accurate than the small
sample size approximation method.

• If you specify a distribution family with unknown parameters for the Distribution name-value
pair, Asymptotic must be false.

• If you use MCTol to calculate the p-value using a Monte Carlo simulation, Asymptotic must be
false.

Example: 'Asymptotic',true
Data Types: logical

Output Arguments
h — Hypothesis test result
1 | 0

Hypothesis test result, returned as a logical value.

• If h = 1, this indicates the rejection of the null hypothesis at the Alpha significance level.
• If h = 0, this indicates a failure to reject the null hypothesis at the Alpha significance level.

p — p-value
scalar value in the range [0,1]

p-value of the Anderson-Darling test, returned as a scalar value in the range [0,1]. p is the probability
of observing a test statistic as extreme as, or more extreme than, the observed value under the null
hypothesis. p is calculated using one of these methods:

• If the hypothesized distribution is a fully specified probability distribution object, adtest
calculates p analytically. If 'Asymptotic' is true, adtest uses the asymptotic distribution of
the test statistic. If you specify a value for 'MCTol', adtest uses a Monte Carlo simulation.

 adtest

35-41



• If the hypothesized distribution is specified as a distribution family with unknown parameters,
adtest retrieves the critical value from a table and uses inverse interpolation to determine the p-
value. If you specify a value for 'MCTol', adtest uses a Monte Carlo simulation.

adstat — Test statistic
scalar value

Test statistic for the Anderson-Darling test, returned as a scalar value.

• If the hypothesized distribution is a fully specified probability distribution object, adtest
computes adstat using specified parameters.

• If the hypothesized distribution is specified as a distribution family with unknown parameters,
adtest computes adstat using parameters estimated from the sample data.

cv — Critical value
scalar value

Critical value for the Anderson-Darling test at the significance level Alpha, returned as a scalar
value. adtest determines cv by interpolating into a table based on the specified Alpha significance
level.

More About
Anderson-Darling Test

The Anderson-Darling test is commonly used to test whether a data sample comes from a normal
distribution. However, it can be used to test for another hypothesized distribution, even if you do not
fully specify the distribution parameters. Instead, the test estimates any unknown parameters from
the data sample.

The test statistic belongs to the family of quadratic empirical distribution function statistics, which
measure the distance between the hypothesized distribution, F(x) and the empirical cdf, Fn(x) as

n∫−∞
∞

Fn x − F x w2 x dF x ,

over the ordered sample values x1 < x2 < ... < xn, where w(x) is a weight function and n is the number
of data points in the sample.

The weight function for the Anderson-Darling test is

w x = F x 1− F x −1,

which places greater weight on the observations in the tails of the distribution, thus making the test
more sensitive to outliers and better at detecting departure from normality in the tails of the
distribution.

The Anderson-Darling test statistic is

An
2 = − n− ∑

i = 1

n 2i− 1
n ln F Xi + ln 1− F Xn + 1− i ,

where X1 < ... < Xn  are the ordered sample data points and n is the number of data points in the
sample.
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In adtest, the decision to reject or not reject the null hypothesis is based on comparing the p-value
for the hypothesis test with the specified significance level, not on comparing the test statistic with
the critical value.

Monte Carlo Standard Error

The Monte Carlo standard error is the error due to simulating the p-value.

The Monte Carlo standard error is calculated as

SE = p 1− p
mcreps ,

where p  is the estimated p-value of the hypothesis test, and mcreps is the number of Monte Carlo
replications performed.

adtest chooses the number of Monte Carlo replications, mcreps, large enough to make the Monte
Carlo standard error for p  less than the value specified for MCTol.

Version History
Introduced in R2013a

See Also
kstest | jbtest
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andrewsplot
Andrews plot

Syntax
andrewsplot(X)
andrewsplot(X,...,'Standardize',standopt)
andrewsplot(X,...,'Quantile',alpha)
andrewsplot(X,...,'Group',group)
andrewsplot(X,...,'PropName',PropVal,...)
andrewsplot(ax,X,...)
h = andrewsplot(X,...)

Description
andrewsplot(X) creates an Andrews plot of the multivariate data in the matrix X. The rows of X
correspond to observations, the columns to variables. Andrews plots represent each observation by a
function f(t) of a continuous dummy variable t over the interval [0,1]. f(t) is defined for the ith
observation in X as

f (t) = X(i, 1)/ 2 + X(i, 2)sin(2πt) + X(i, 3)cos(2πt) + …

andrewsplot treats NaN values in X as missing values and ignores the corresponding rows.

andrewsplot(X,...,'Standardize',standopt) creates an Andrews plot where standopt is
one of the following:

• 'on' — scales each column of X to have mean 0 and standard deviation 1 before making the plot.
• 'PCA' — creates an Andrews plot from the principal component scores of X, in order of

decreasing eigenvalue. (See pca.)
• 'PCAStd' — creates an Andrews plot using the standardized principal component scores. (See

pca.)

andrewsplot(X,...,'Quantile',alpha) plots only the median and the alpha and (1 – alpha)
quantiles of f(t) at each value of t. This is useful if X contains many observations.

andrewsplot(X,...,'Group',group) plots the data in different groups with different colors.
Groups are defined by group, a numeric array containing a group index for each observation. group
can also be a categorical array, character matrix, string array, or cell array of character vectors
containing a group name for each observation.

andrewsplot(X,...,'PropName',PropVal,...) sets optional Line object properties to the
specified values for all Line objects created by andrewsplot. (See Line Properties.)

andrewsplot(ax,X,...) uses the plot axes specified in ax, an Axes object. (See axes.) Specify ax
as the first input argument followed by any of the input argument combinations in the previous
syntaxes.

h = andrewsplot(X,...) returns a column vector of handles to the Line objects created by
andrewsplot, one handle per row of X. If you use the 'Quantile' input parameter, h contains one

35 Functions

35-44



handle for each of the three Line objects created. If you use both the 'Quantile' and the 'Group'
input parameters, h contains three handles for each group.

Examples

Create Andrews Plot to Visualize Grouped Data

This example shows how to create an Andrews plot to visualize grouped sample data.

Load the sample data.

load fisheriris

Create an Andrews plot, grouping the sample data by species.

andrewsplot(meas,'group',species)

Create a second, simplified Andrews plot that only displays the median and quartiles of each group.

andrewsplot(meas,'group',species,'quantile',.25)
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Version History
Introduced before R2006a

See Also
parallelcoords | glyphplot

Topics
“Grouping Variables” on page 2-46
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anova
Package: 

Analysis of variance for linear regression model

Syntax
tbl = anova(mdl)
tbl = anova(mdl,anovatype)
tbl = anova(mdl,'component',sstype)

Description
tbl = anova(mdl) returns a table with component ANOVA statistics.

tbl = anova(mdl,anovatype) returns ANOVA statistics of the specified type anovatype. For
example, specify anovatype as 'component'(default) to return a table with component ANOVA
statistics, or specify anovatype as 'summary' to return a table with summary ANOVA statistics.

tbl = anova(mdl,'component',sstype) computes component ANOVA statistics using the
specified type of sum of squares.

Examples

Component ANOVA Table

Create a component ANOVA table from a linear regression model of the hospital data set.

Load the hospital data set and create a model of blood pressure as a function of age and gender.

load hospital
tbl = table(hospital.Age,hospital.Sex,hospital.BloodPressure(:,2), ...
    'VariableNames',{'Age','Sex','BloodPressure'});
tbl.Sex = categorical(tbl.Sex);
mdl = fitlm(tbl,'BloodPressure ~ Sex + Age^2')

mdl = 
Linear regression model:
    BloodPressure ~ 1 + Age + Sex + Age^2

Estimated Coefficients:
                   Estimate        SE        tStat       pValue  
                   _________    ________    ________    _________

    (Intercept)       63.942      19.194      3.3314    0.0012275
    Age              0.90673      1.0442     0.86837      0.38736
    Sex_Male          3.0019      1.3765      2.1808     0.031643
    Age^2          -0.011275    0.013853    -0.81389      0.41772

Number of observations: 100, Error degrees of freedom: 96
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Root Mean Squared Error: 6.83
R-squared: 0.0577,  Adjusted R-Squared: 0.0283
F-statistic vs. constant model: 1.96, p-value = 0.125

Create an ANOVA table of the model.

tbl = anova(mdl)

tbl=4×5 table
             SumSq     DF    MeanSq       F        pValue 
             ______    __    ______    _______    ________

    Age      18.705     1    18.705    0.40055     0.52831
    Sex      222.09     1    222.09     4.7558    0.031643
    Age^2    30.934     1    30.934    0.66242     0.41772
    Error    4483.1    96    46.699                       

The table displays the following columns for each term except the constant (intercept) term:

• SumSq — Sum of squares explained by the term.
• DF — Degrees of freedom. In this example, DF is 1 for each term in the model and n – p for the

error term, where n is the number of observations and p is the number of coefficients (including
the intercept) in the model. For example, the DF for the error term in this model is 100 – 4 = 96. If
any variable in the model is a categorical variable, the DF for that variable is the number of
indicator variables created for its categories (number of categories – 1).

• MeanSq — Mean square, defined by MeanSq = SumSq/DF. For example, the mean square of the
error term, mean squared error (MSE), is 4.4831e+03/96 = 46.6991.

• F — F-statistic value to test the null hypothesis that the corresponding coefficient is zero,
computed by F = MeanSq/MSE, where MSE is the mean squared error. When the null hypothesis
is true, the F-statistic follows the F-distribution. The numerator degrees of freedom is the DF value
for the corresponding term, and the denominator degrees of freedom is n – p. In this example,
each F-statistic follows an F(1, 96)-distribution.

• pValue — p-value of the F-statistic value. For example, the p-value for Age is 0.5283, implying
that Age is not significant at the 5% significance level given the other terms in the model.

Summary ANOVA Table

Create a summary ANOVA table from a linear regression model of the hospital data set.

Load the hospital data set and create a model of blood pressure as a function of age and gender.

load hospital
tbl = table(hospital.Age,hospital.Sex,hospital.BloodPressure(:,2), ...
    'VariableNames',{'Age','Sex','BloodPressure'});
tbl.Sex = categorical(tbl.Sex);
mdl = fitlm(tbl,'BloodPressure ~ Sex + Age^2')

mdl = 
Linear regression model:
    BloodPressure ~ 1 + Age + Sex + Age^2

Estimated Coefficients:
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                   Estimate        SE        tStat       pValue  
                   _________    ________    ________    _________

    (Intercept)       63.942      19.194      3.3314    0.0012275
    Age              0.90673      1.0442     0.86837      0.38736
    Sex_Male          3.0019      1.3765      2.1808     0.031643
    Age^2          -0.011275    0.013853    -0.81389      0.41772

Number of observations: 100, Error degrees of freedom: 96
Root Mean Squared Error: 6.83
R-squared: 0.0577,  Adjusted R-Squared: 0.0283
F-statistic vs. constant model: 1.96, p-value = 0.125

Create a summary ANOVA table of the model.

tbl = anova(mdl,'summary')

tbl=7×5 table
                     SumSq     DF    MeanSq       F        pValue 
                     ______    __    ______    _______    ________

    Total            4757.8    99    48.059                       
    Model            274.73     3    91.577      1.961     0.12501
    . Linear          243.8     2     121.9     2.6103    0.078726
    . Nonlinear      30.934     1    30.934    0.66242     0.41772
    Residual         4483.1    96    46.699                       
    . Lack of fit    1483.1    39    38.028    0.72253     0.85732
    . Pure error       3000    57    52.632                       

The table displays tests for groups of terms: Total, Model, and Residual.

• Total — This row shows the total sum of squares (SumSq), degrees of freedom (DF), and the
mean squared error (MeanSq). Note that MeanSq = SumSq/DF.

• Model — This row includes SumSq, DF, MeanSq, F-statistic value (F), and p-value (pValue).
Because this model includes a nonlinear term (Age^2), anova partitions the sum of squares
(SumSq) of Model into two parts: SumSq explained by the linear terms (Age and Sex) and SumSq
explained by the nonlinear term (Age^2). The corresponding F-statistic values are for testing the
significance of the linear terms and the nonlinear term as separate groups. The nonlinear group
consists of the Age^2 term only, so it has the same p-value as the Age^2 term in the “Component
ANOVA Table” on page 35-47.

• Residual — This row includes SumSq, DF, MeanSq, F, and pValue. Because the data set includes
replications, anova partitions the residual SumSq into the part for the replications (Pure error)
and the rest (Lack of fit). To test the lack of fit, anova computes the F-statistic value by
comparing the model residuals to the model-free variance estimate computed on the replications.
The F-statistic value shows no evidence of lack of fit.

Linear Regression with Categorical Predictor

Fit a linear regression model that contains a categorical predictor. Reorder the categories of the
categorical predictor to control the reference level in the model. Then, use anova to test the
significance of the categorical variable.
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Model with Categorical Predictor

Load the carsmall data set and create a linear regression model of MPG as a function of
Model_Year. To treat the numeric vector Model_Year as a categorical variable, identify the
predictor using the 'CategoricalVars' name-value pair argument.

load carsmall
mdl = fitlm(Model_Year,MPG,'CategoricalVars',1,'VarNames',{'Model_Year','MPG'})

mdl = 
Linear regression model:
    MPG ~ 1 + Model_Year

Estimated Coefficients:
                     Estimate      SE      tStat       pValue  
                     ________    ______    ______    __________

    (Intercept)        17.69     1.0328    17.127    3.2371e-30
    Model_Year_76     3.8839     1.4059    2.7625     0.0069402
    Model_Year_82      14.02     1.4369    9.7571    8.2164e-16

Number of observations: 94, Error degrees of freedom: 91
Root Mean Squared Error: 5.56
R-squared: 0.531,  Adjusted R-Squared: 0.521
F-statistic vs. constant model: 51.6, p-value = 1.07e-15

The model formula in the display, MPG ~ 1 + Model_Year, corresponds to

MPG = β0 + β1ΙYear = 76 + β2ΙYear = 82 + ϵ,

where ΙYear = 76 and ΙYear = 82 are indicator variables whose value is one if the value of Model_Year is
76 and 82, respectively. The Model_Year variable includes three distinct values, which you can
check by using the unique function.

unique(Model_Year)

ans = 3×1

    70
    76
    82

fitlm chooses the smallest value in Model_Year as a reference level ('70') and creates two
indicator variables ΙYear = 76 and ΙYear = 82. The model includes only two indicator variables because
the design matrix becomes rank deficient if the model includes three indicator variables (one for each
level) and an intercept term.

Model with Full Indicator Variables

You can interpret the model formula of mdl as a model that has three indicator variables without an
intercept term:

y = β0Ιx1 = 70 + β0 + β1 Ιx1 = 76 + β0 + β2 Ιx2 = 82 + ϵ.
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Alternatively, you can create a model that has three indicator variables without an intercept term by
manually creating indicator variables and specifying the model formula.

temp_Year = dummyvar(categorical(Model_Year));
Model_Year_70 = temp_Year(:,1);
Model_Year_76 = temp_Year(:,2);
Model_Year_82 = temp_Year(:,3);
tbl = table(Model_Year_70,Model_Year_76,Model_Year_82,MPG);
mdl = fitlm(tbl,'MPG ~ Model_Year_70 + Model_Year_76 + Model_Year_82 - 1')

mdl = 
Linear regression model:
    MPG ~ Model_Year_70 + Model_Year_76 + Model_Year_82

Estimated Coefficients:
                     Estimate      SE       tStat       pValue  
                     ________    _______    ______    __________

    Model_Year_70      17.69      1.0328    17.127    3.2371e-30
    Model_Year_76     21.574     0.95387    22.617    4.0156e-39
    Model_Year_82      31.71     0.99896    31.743    5.2234e-51

Number of observations: 94, Error degrees of freedom: 91
Root Mean Squared Error: 5.56

Choose Reference Level in Model

You can choose a reference level by modifying the order of categories in a categorical variable. First,
create a categorical variable Year.

Year = categorical(Model_Year);

Check the order of categories by using the categories function.

categories(Year)

ans = 3x1 cell
    {'70'}
    {'76'}
    {'82'}

If you use Year as a predictor variable, then fitlm chooses the first category '70' as a reference
level. Reorder Year by using the reordercats function.

Year_reordered = reordercats(Year,{'76','70','82'});
categories(Year_reordered)

ans = 3x1 cell
    {'76'}
    {'70'}
    {'82'}

The first category of Year_reordered is '76'. Create a linear regression model of MPG as a function
of Year_reordered.

mdl2 = fitlm(Year_reordered,MPG,'VarNames',{'Model_Year','MPG'})
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mdl2 = 
Linear regression model:
    MPG ~ 1 + Model_Year

Estimated Coefficients:
                     Estimate      SE        tStat       pValue  
                     ________    _______    _______    __________

    (Intercept)       21.574     0.95387     22.617    4.0156e-39
    Model_Year_70    -3.8839      1.4059    -2.7625     0.0069402
    Model_Year_82     10.136      1.3812     7.3385    8.7634e-11

Number of observations: 94, Error degrees of freedom: 91
Root Mean Squared Error: 5.56
R-squared: 0.531,  Adjusted R-Squared: 0.521
F-statistic vs. constant model: 51.6, p-value = 1.07e-15

mdl2 uses '76' as a reference level and includes two indicator variables ΙYear = 70 and ΙYear = 82.

Evaluate Categorical Predictor

The model display of mdl2 includes a p-value of each term to test whether or not the corresponding
coefficient is equal to zero. Each p-value examines each indicator variable. To examine the categorical
variable Model_Year as a group of indicator variables, use anova. Use the 'components'(default)
option to return a component ANOVA table that includes ANOVA statistics for each variable in the
model except the constant term.

anova(mdl2,'components')

ans=2×5 table
                  SumSq     DF    MeanSq      F        pValue  
                  ______    __    ______    _____    __________

    Model_Year    3190.1     2    1595.1    51.56    1.0694e-15
    Error         2815.2    91    30.936                       

The component ANOVA table includes the p-value of the Model_Year variable, which is smaller than
the p-values of the indicator variables.

Input Arguments
mdl — Linear regression model object
LinearModel object | CompactLinearModel object

Linear regression model object, specified as a LinearModel object created by using fitlm or
stepwiselm, or a CompactLinearModel object created by using compact.

anovatype — ANOVA type
'component' (default) | 'summary'

ANOVA type, specified as one of these values:

• 'component' — anova returns the table tbl with ANOVA statistics for each variable in the
model except the constant term.
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• 'summary' — anova returns the table tbl with summary ANOVA statistics for grouped variables
and the model as a whole.

For details, see the tbl output argument description.

sstype — Sum of squares type
'h' (default) | 1 | 2 | 3

Sum of squares type for each term, specified as one of the values in this table.

Value Description
1 Type 1 sum of squares — Reduction in residual

sum of squares obtained by adding the term to a
fit that already includes the preceding terms

2 Type 2 sum of squares — Reduction in residual
sum of squares obtained by adding the term to a
model that contains all other terms

3 Type 3 sum of squares — Reduction in residual
sum of squares obtained by adding the term to a
model that contains all other terms, but with
their effects constrained to obey the usual “sigma
restrictions” that make models estimable

'h' Hierarchical model — Similar to Type 2, but uses
both continuous and categorical factors to
determine the hierarchy of terms

The sum of squares for any term is determined by comparing two models. For a model containing
main effects but no interactions, the value of sstype influences the computations on unbalanced
data only.

Suppose you are fitting a model with two factors and their interaction, and the terms appear in the
order A, B, AB. Let R(·) represent the residual sum of squares for the model. So, R(A, B, AB) is the
residual sum of squares fitting the whole model, R(A) is the residual sum of squares fitting the main
effect of A only, and R(1) is the residual sum of squares fitting the mean only. The three sum of
squares types are as follows:

Term Type 1 Sum of Squares Type 2 Sum of Squares Type 3 Sum of Squares
A R(1) – R(A) R(B) – R(A, B) R(B, AB) – R(A, B, AB)
B R(A) – R(A, B) R(A) – R(A, B) R(A, AB) – R(A, B, AB)
AB R(A, B) – R(A, B, AB) R(A, B) – R(A, B, AB) R(A, B) – R(A, B, AB)

The models for Type 3 sum of squares have sigma restrictions imposed. This means, for example, that
in fitting R(B, AB), the array of AB effects is constrained to sum to 0 over A for each value of B, and
over B for each value of A.

For Type 3 sum of squares:

• If mdl is a CompactLinearModel object and the regression model is nonhierarchical, anova
returns an error.

• If mdl is a LinearModel object and the regression model is nonhierarchical, anova refits the
model using effects coding whenever it needs to compute a Type 3 sum of squares.
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• If the regression model in mdl is hierarchical, anova computes the results without refitting the
model.

sstype applies only if anovatype is 'component'.

Output Arguments
tbl — ANOVA summary statistics table
table

ANOVA summary statistics table, returned as a table.

The contents of tbl depend on the ANOVA type specified in anovatype.

• If anovatype is 'component', then tbl contains ANOVA statistics for each variable in the model
except the constant (intercept) term. The table includes these columns for each variable:

Column Description
SumSq Sum of squares explained by the term, computed depending

on sstype
DF Degrees of freedom

• DF of a numeric variable is 1.
• DF of a categorical variable is the number of indicator

variables created for the category (number of categories –
1). Note that tbl contains one row for each categorical
variable instead of one row for each indicator variable as in
the model display. Use anova to test a categorical variable
as a group of indicator variables.

• DF of an error term is n – p, where n is the number of
observations and p is the number of coefficients in the
model.

MeanSq Mean square, defined by MeanSq = SumSq/DF

MeanSq for the error term is the mean squared error (MSE).
F F-statistic value to test the null hypothesis that the

corresponding coefficient is zero, computed by F =
MeanSq/MSE

When the null hypothesis is true, the F-statistic follows the F-
distribution. The numerator degrees of freedom is the DF
value for the corresponding term, and the denominator
degrees of freedom is n – p.

pValue p-value of the F-statistic value

For an example, see “Component ANOVA Table” on page 35-47.
• If anovatype is 'summary', then tbl contains summary statistics of grouped terms for each row.

The table includes the same columns as 'component' and these rows:
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Row Description
Total Total statistics

• SumSq — Total sum of squares, which is the sum of the
squared deviations of the response around its mean

• DF — Sum of degrees of freedom of Model and Residual
Model Statistics for the model as a whole

• SumSq — Model sum of squares, which is the sum of the
squared deviations of the fitted value around the response
mean.

• F and pValue — These values provide a test of whether the
model as a whole fits significantly better than a degenerate
model consisting of only a constant term.

If mdl includes only linear terms, then anova does not
decompose Model into Linear and NonLinear.

Linear Statistics for linear terms

• SumSq — Sum of squares for linear terms, which is the
difference between the model sum of squares and the sum
of squares for nonlinear terms.

• F and pValue — These values provide a test of whether the
model with only linear terms fits better than a degenerate
model consisting of only a constant term. anova uses the
mean squared error that is based on the full model to
compute this F-value, so the F-value obtained by dropping
the nonlinear terms and repeating the test is not the same
as the value in this row.

Nonlinear Statistics for nonlinear terms

• SumSq — Sum of squares for nonlinear (higher-order or
interaction) terms, which is the increase in the residual
sum of squares obtained by keeping only the linear terms
and dropping all nonlinear terms.

• F and pValue — These values provide a test of whether the
full model fits significantly better than a smaller model
consisting of only the linear terms.
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Row Description
Residual Statistics for residuals

• SumSq — Residual sum of squares, which is the sum of the
squared residual values

• MeanSq — Mean squared error, used to compute the F-
statistic values for Model, Linear, and NonLinear

If mdl is a full LinearModel object and the sample data
contains replications (multiple observations sharing the same
predictor values), then anova decomposes the residual sum of
squares into a sum of squares for the replicated observations
(Lack of fit) and the remaining sum of squares (Pure
error).

Lack of fit Lack-of-fit statistics

• SumSq — Sum of squares due to lack of fit, which is the
difference between the residual sum of squares and the
replication sum of squares.

• F and pValue — The F-statistic value is the ratio of lack-of-
fit MeanSq to pure error MeanSq. The ratio provides a test
of bias by measuring whether the variation of the residuals
is larger than the variation of the replications. A low p-
value implies that adding additional terms to the model can
improve the fit.

Pure error Statistics for pure error

• SumSq — Replication sum of squares, obtained by finding
the sets of points with identical predictor values,
computing the sum of squared deviations around the mean
within each set, and pooling the computed values

• MeanSq — Model-free pure error variance estimate of the
response

For an example, see “Summary ANOVA Table” on page 35-48.

Alternative Functionality
More complete ANOVA statistics are available in the anova1, anova2, and anovan functions.

Version History
Introduced in R2012a

Extended Capabilities
GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.
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This function fully supports GPU arrays. For more information, see “Run MATLAB Functions on a
GPU” (Parallel Computing Toolbox).

See Also
CompactLinearModel | LinearModel | coefCI | coefTest | dwtest

Topics
“F-statistic and t-statistic” on page 11-74
“Interpret Linear Regression Results” on page 11-52
“Linear Regression with Categorical Covariates” on page 2-53
“Linear Regression Workflow” on page 11-35
“Linear Regression” on page 11-9
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anova
Class: LinearMixedModel

Analysis of variance for linear mixed-effects model

Syntax
stats = anova(lme)
stats = anova(lme,Name,Value)

Description
stats = anova(lme) returns the dataset array stats that includes the results of the F-tests for
each fixed-effects term in the linear mixed-effects model lme.

stats = anova(lme,Name,Value) also returns the dataset array stats with additional options
specified by one or more Name,Value pair arguments.

Input Arguments
lme — Linear mixed-effects model
LinearMixedModel object

Linear mixed-effects model, specified as a LinearMixedModel object constructed using fitlme or
fitlmematrix.

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.

DFMethod — Method for computing approximate degrees of freedom
'residual' (default) | 'satterthwaite' | 'none'

Method for computing approximate degrees of freedom to use in the F-test, specified as the comma-
separated pair consisting of 'DFMethod' and one of the following.

'residual' Default. The degrees of freedom are assumed to
be constant and equal to n – p, where n is the
number of observations and p is the number of
fixed effects.

'satterthwaite' Satterthwaite approximation.
'none' All degrees of freedom are set to infinity.

For example, you can specify the Satterthwaite approximation as follows.
Example: 'DFMethod','satterthwaite'

35 Functions

35-58



Output Arguments
stats — Results of F-tests for fixed-effects terms
dataset array

Results of F-tests for fixed-effects terms, returned as a dataset array with the following columns.

Term Name of the fixed effects term
Fstat F-statistic for the term
DF1 Numerator degrees of freedom for the F-statistic
DF2 Denominator degrees of freedom for the F-

statistic
pValue p-value of the test for the term

There is one row for each fixed-effects term. Each term is a continuous variable, a grouping variable,
or an interaction between two or more continuous or grouping variables. For each fixed-effects term,
anova performs an F-test (marginal test) to determine if all coefficients representing the fixed-effects
term are 0. To perform tests for the type III hypothesis, you must use the 'effects' contrasts while
fitting the linear mixed-effects model.

Examples

F-Tests for Fixed Effects

Load the sample data.

load('shift.mat')

The data shows the deviations from the target quality characteristic measured from the products that
five operators manufacture during three shifts: morning, evening, and night. This is a randomized
block design, where the operators are the blocks. The experiment is designed to study the impact of
the time of shift on the performance. The performance measure is the deviation of the quality
characteristics from the target value. This is simulated data.

Shift and Operator are nominal variables.

shift.Shift = nominal(shift.Shift);
shift.Operator = nominal(shift.Operator);

Fit a linear mixed-effects model with a random intercept grouped by operator to assess if
performance significantly differs according to the time of the shift. Use the restricted maximum
likelihood method and 'effects' contrasts.

'effects' contrasts indicate that the coefficients sum to 0, and fitlme creates two contrast-coded
variables in the fixed-effects design matrix, $X$1 and $X$2, where

Shif t_Evening =
0, if Morning
1, if Evening
−1, if Night

and
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Shif t_Morning =
1, if Morning
0, if Evening
−1, if Night

.

The model corresponds to

MorningShift:QCDevim = β0 + β2Shif t_Morningi + b0m + εim, m = 1, 2, . . . , 5,
EveningShift:QCDevim = β0 + β1Shif t_Eveningi + b0m + εim,
NightShift: QCDevim = β0− β1Shif t_Eveningi− β2Shif t_Morningi + b0m + εim,

where b ~ N(0, σb
2 ) and ϵ ~ N(0, σ2 ).

lme = fitlme(shift,'QCDev ~ Shift + (1|Operator)',...
'FitMethod','REML','DummyVarCoding','effects')

lme = 
Linear mixed-effects model fit by REML

Model information:
    Number of observations              15
    Fixed effects coefficients           3
    Random effects coefficients          5
    Covariance parameters                2

Formula:
    QCDev ~ 1 + Shift + (1 | Operator)

Model fit statistics:
    AIC       BIC       LogLikelihood    Deviance
    58.913    61.337    -24.456          48.913  

Fixed effects coefficients (95% CIs):
    Name                     Estimate    SE         tStat      DF    pValue   
    {'(Intercept)'  }          3.6525    0.94109     3.8812    12    0.0021832
    {'Shift_Evening'}        -0.53293    0.31206    -1.7078    12      0.11339
    {'Shift_Morning'}        -0.91973    0.31206    -2.9473    12     0.012206

    Lower      Upper   
     1.6021       5.703
    -1.2129     0.14699
    -1.5997    -0.23981

Random effects covariance parameters (95% CIs):
Group: Operator (5 Levels)
    Name1                  Name2                  Type           Estimate
    {'(Intercept)'}        {'(Intercept)'}        {'std'}        2.0457  

    Lower      Upper 
    0.98207    4.2612

Group: Error
    Name               Estimate    Lower      Upper
    {'Res Std'}        0.85462     0.52357    1.395
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Perform an F-test to determine if all fixed-effects coefficients are 0.

anova(lme)

ans = 
    ANOVA marginal tests: DFMethod = 'Residual'

    Term                   FStat     DF1    DF2    pValue   
    {'(Intercept)'}        15.063    1      12     0.0021832
    {'Shift'      }        11.091    2      12     0.0018721

The p-value for the constant term, 0.0021832, is the same as in the coefficient table in the lme
display. The p-value of 0.0018721 for Shift measures the combined significance for both coefficients
representing Shift.

ANOVA for Fixed-Effects in LME Model

Load the sample data.

load('fertilizer.mat')

The dataset array includes data from a split-plot experiment, where soil is divided into three blocks
based on the soil type: sandy, silty, and loamy. Each block is divided into five plots, where five types of
tomato plants (cherry, heirloom, grape, vine, and plum) are randomly assigned to these plots. The
tomato plants in the plots are then divided into subplots, where each subplot is treated by one of four
fertilizers. This is simulated data.

Store the data in a dataset array called ds, for practical purposes, and define Tomato, Soil, and
Fertilizer as categorical variables.

ds = fertilizer;
ds.Tomato = nominal(ds.Tomato);
ds.Soil = nominal(ds.Soil);
ds.Fertilizer = nominal(ds.Fertilizer);

Fit a linear mixed-effects model, where Fertilizer and Tomato are the fixed-effects variables, and
the mean yield varies by the block (soil type) and the plots within blocks (tomato types within soil
types) independently. Use the 'effects' contrasts when fitting the data for the type III sum of
squares.

lme = fitlme(ds,'Yield ~ Fertilizer * Tomato + (1|Soil) + (1|Soil:Tomato)',...
'DummyVarCoding','effects')

lme = 
Linear mixed-effects model fit by ML

Model information:
    Number of observations              60
    Fixed effects coefficients          20
    Random effects coefficients         18
    Covariance parameters                3

Formula:
    Yield ~ 1 + Tomato*Fertilizer + (1 | Soil) + (1 | Soil:Tomato)
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Model fit statistics:
    AIC       BIC       LogLikelihood    Deviance
    522.57    570.74    -238.29          476.57  

Fixed effects coefficients (95% CIs):
    Name                                    Estimate    SE        tStat       DF
    {'(Intercept)'                 }           104.6    3.3008       31.69    40
    {'Tomato_Cherry'               }             1.4    5.9353     0.23588    40
    {'Tomato_Grape'                }         -7.7667    5.9353     -1.3085    40
    {'Tomato_Heirloom'             }         -11.183    5.9353     -1.8842    40
    {'Tomato_Plum'                 }          30.233    5.9353      5.0938    40
    {'Fertilizer_1'                }         -28.267    2.3475     -12.041    40
    {'Fertilizer_2'                }         -1.9333    2.3475    -0.82356    40
    {'Fertilizer_3'                }          10.733    2.3475      4.5722    40
    {'Tomato_Cherry:Fertilizer_1'  }        -0.73333    4.6951    -0.15619    40
    {'Tomato_Grape:Fertilizer_1'   }         -7.5667    4.6951     -1.6116    40
    {'Tomato_Heirloom:Fertilizer_1'}          5.1833    4.6951       1.104    40
    {'Tomato_Plum:Fertilizer_1'    }          2.7667    4.6951     0.58927    40
    {'Tomato_Cherry:Fertilizer_2'  }             7.6    4.6951      1.6187    40
    {'Tomato_Grape:Fertilizer_2'   }            -1.9    4.6951    -0.40468    40
    {'Tomato_Heirloom:Fertilizer_2'}          5.5167    4.6951       1.175    40
    {'Tomato_Plum:Fertilizer_2'    }            -3.9    4.6951    -0.83066    40
    {'Tomato_Cherry:Fertilizer_3'  }         -6.0667    4.6951     -1.2921    40
    {'Tomato_Grape:Fertilizer_3'   }          3.7667    4.6951     0.80226    40
    {'Tomato_Heirloom:Fertilizer_3'}          3.1833    4.6951     0.67802    40
    {'Tomato_Plum:Fertilizer_3'    }             1.1    4.6951     0.23429    40

    pValue        Lower      Upper  
    5.9086e-30     97.929     111.27
       0.81473    -10.596     13.396
       0.19816    -19.762     4.2291
      0.066821    -23.179    0.81242
     8.777e-06     18.238     42.229
    7.0265e-15    -33.011    -23.522
       0.41507    -6.6779     2.8112
     4.577e-05     5.9888     15.478
       0.87667    -10.222     8.7558
       0.11491    -17.056     1.9224
       0.27619    -4.3058     14.672
       0.55899    -6.7224     12.256
       0.11337    -1.8891     17.089
       0.68787    -11.389     7.5891
       0.24695    -3.9724     15.006
        0.4111    -13.389     5.5891
       0.20373    -15.556     3.4224
       0.42714    -5.7224     13.256
       0.50167    -6.3058     12.672
       0.81596    -8.3891     10.589

Random effects covariance parameters (95% CIs):
Group: Soil (3 Levels)
    Name1                  Name2                  Type           Estimate
    {'(Intercept)'}        {'(Intercept)'}        {'std'}        2.5028  

    Lower       Upper 
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    0.027711    226.05

Group: Soil:Tomato (15 Levels)
    Name1                  Name2                  Type           Estimate
    {'(Intercept)'}        {'(Intercept)'}        {'std'}        10.225  

    Lower     Upper 
    6.1497    17.001

Group: Error
    Name               Estimate    Lower     Upper 
    {'Res Std'}        10.499      8.5389    12.908

Perform an analysis of variance to test for the fixed-effects.

anova(lme)

ans = 
    ANOVA marginal tests: DFMethod = 'Residual'

    Term                         FStat     DF1    DF2    pValue    
    {'(Intercept)'      }        1004.2     1     40     5.9086e-30
    {'Tomato'           }        7.1663     4     40     0.00018935
    {'Fertilizer'       }        58.833     3     40     1.0024e-14
    {'Tomato:Fertilizer'}        1.4182    12     40        0.19804

The p-value for the constant term, 5.9086e-30, is the same as in the coefficient table in the lme
display. The p-values of 0.00018935, 1.0024e-14, and 0.19804 for Tomato, Fertilizer, and
Tomato:Fertilizer represent the combined significance for all tomato coefficients, fertilizer
coefficients, and coefficients representing the interaction between the tomato and fertilizer,
respectively. The p-value of 0.19804 indicates that the interaction between tomato and fertilizer is not
significant.

Satterthwaite Approximation for Degrees of Freedom

Load the sample data.

load('weight.mat')

weight contains data from a longitudinal study, where 20 subjects are randomly assigned 4 exercise
programs, and their weight loss is recorded over six 2-week time periods. This is simulated data.

Store the data in a table. Define Subject and Program as categorical variables.

tbl = table(InitialWeight,Program,Subject,Week,y);
tbl.Subject = nominal(tbl.Subject);
tbl.Program = nominal(tbl.Program);

Fit the model using the 'effects' contrasts.

lme = fitlme(tbl,'y ~ InitialWeight + Program*Week + (Week|Subject)',...
        'DummyVarCoding','effects')
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lme = 
Linear mixed-effects model fit by ML

Model information:
    Number of observations             120
    Fixed effects coefficients           9
    Random effects coefficients         40
    Covariance parameters                4

Formula:
    y ~ 1 + InitialWeight + Program*Week + (1 + Week | Subject)

Model fit statistics:
    AIC        BIC       LogLikelihood    Deviance
    -22.981    13.257    24.49            -48.981 

Fixed effects coefficients (95% CIs):
    Name                      Estimate     SE           tStat       DF 
    {'(Intercept)'   }          0.77122      0.24309      3.1725    111
    {'InitialWeight' }        0.0031879    0.0013814      2.3078    111
    {'Program_A'     }         -0.11017     0.080377     -1.3707    111
    {'Program_B'     }          0.25061      0.08045      3.1151    111
    {'Program_C'     }         -0.14344     0.080475     -1.7824    111
    {'Week'          }          0.19881     0.033727      5.8946    111
    {'Program_A:Week'}        -0.025607     0.058417    -0.43835    111
    {'Program_B:Week'}         0.013164     0.058417     0.22535    111
    {'Program_C:Week'}        0.0049357     0.058417    0.084492    111

    pValue        Lower         Upper    
     0.0019549       0.28951       1.2529
      0.022863    0.00045067    0.0059252
       0.17323      -0.26945       0.0491
     0.0023402      0.091195      0.41003
      0.077424       -0.3029     0.016031
    4.1099e-08       0.13198      0.26564
       0.66198      -0.14136     0.090149
       0.82212      -0.10259      0.12892
       0.93282      -0.11082      0.12069

Random effects covariance parameters (95% CIs):
Group: Subject (20 Levels)
    Name1                  Name2                  Type            Estimate
    {'(Intercept)'}        {'(Intercept)'}        {'std' }        0.18407 
    {'Week'       }        {'(Intercept)'}        {'corr'}        0.66841 
    {'Week'       }        {'Week'       }        {'std' }        0.15033 

    Lower      Upper  
    0.12281    0.27587
    0.21076    0.88573
    0.11004    0.20537

Group: Error
    Name               Estimate    Lower       Upper  
    {'Res Std'}        0.10261     0.087882    0.11981
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The p-values 0.022863 and 4.1099e-08 indicate significant effects of the initial weights of the subjects
and the time factor in the amount of weight lost. The weight loss of subjects who are in program B is
significantly different relative to the weight loss of subjects that are in program A. The lower and
upper limits of the covariance parameters for the random effects do not include zero, thus they are
significant.

Perform an F-test that all fixed-effects coefficients are zero.

anova(lme)

ans = 
    ANOVA marginal tests: DFMethod = 'Residual'

    Term                     FStat       DF1    DF2    pValue    
    {'(Intercept)'  }          10.065    1      111     0.0019549
    {'InitialWeight'}           5.326    1      111      0.022863
    {'Program'      }          3.6798    3      111      0.014286
    {'Week'         }          34.747    1      111    4.1099e-08
    {'Program:Week' }        0.066648    3      111       0.97748

The p-values for the constant term, initial weight, and week are the same as in the coefficient table in
the previous lme output display. The p-value of 0.014286 for Program represents the combined
significance for all program coefficients. Similarly, the p-value for the interaction between program
and week (Program:Week) measures the combined significance for all coefficients representing this
interaction.

Now, use the Satterthwaite method to compute the degrees of freedom.

anova(lme,'DFMethod','satterthwaite')

ans = 
    ANOVA marginal tests: DFMethod = 'Satterthwaite'

    Term                     FStat       DF1    DF2       pValue    
    {'(Intercept)'  }          10.065    1      20.445      0.004695
    {'InitialWeight'}           5.326    1          20      0.031827
    {'Program'      }          3.6798    3       19.14      0.030233
    {'Week'         }          34.747    1          20    9.1346e-06
    {'Program:Week' }        0.066648    3          20       0.97697

The Satterthwaite method produces smaller denominator degrees of freedom and slightly larger p-
values.

Tips
• For each fixed-effects term, anova performs an F-test (marginal test), that all coefficients

representing the fixed-effects term are 0. To perform tests for type III hypotheses, you must set
the 'DummyVarCoding' name-value pair argument to 'effects' contrasts while fitting your
linear mixed-effects model.

See Also
LinearMixedModel | fitlme | fitlmematrix
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anova
Analysis of variance (ANOVA) results

Description
An anova object contains the results of a one- on page 9-2, two- on page 9-11, or N-way ANOVA on
page 9-26. Use the properties of an anova object to determine if the means in a set of response data
differ with respect to the values (levels) of a factor or multiple factors. The object properties include
information about the coefficient estimates, ANOVA model fit to the response data, and factors used
to perform the analysis.

Creation

Syntax
aov = anova(y)
aov = anova(factors,y)
aov = anova(tbl,y)
aov = anova(tbl,responseVarName)
aov = anova(tbl,formula)
aov = anova( ___ ,Name=Value)

Description

aov = anova(y) performs a one-way ANOVA and returns an anova object for the response data in
the matrix y. Each column of y is treated as a different factor value.

aov = anova(factors,y) performs a one-, two-, or N-way ANOVA and returns an anova object for
the response data in the vector y. The argument factors specifies the number of factors and their
values.

aov = anova(tbl,y) uses the variables in the table tbl as factors for the response data in the
vector y. Each table variable corresponds to a factor.

aov = anova(tbl,responseVarName) uses the variables in tbl as factors and response data. The
responseVarName argument specifies which variable contains the response data.

aov = anova(tbl,formula) specifies the ANOVA model in Wilkinson notation on page 11-93. The
terms of formula use only the variable names in tbl.

aov = anova( ___ ,Name=Value) specifies additional options using one or more name-value
arguments. For example, you can specify which factors are categorical or random, and specify the
sum of squares type.

Input Arguments

y — Response data
matrix | numeric vector
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Response data, specified as a matrix or a numeric vector.

• If y is a matrix, anova treats each column of y as a separate factor value in a one-way ANOVA. In
this design, the function evaluates whether the population means of the columns are equal. Use
this design when you want to perform a one-way ANOVA on data that is equally divided between
each group (balanced ANOVA).

• If y is a numeric vector, you must also specify either the factors or tbl input argument. For a
one-way ANOVA, factors is a cell array of character vectors or a vector in which each element
represents the factor value of the corresponding element in y.

• For an N-way ANOVA, factors is a cell array of vectors in which each cell is treated as a
separate factor. Alternatively, for an N-way ANOVA, you can provide a table tbl in which each
variable is treated as a separate factor. Use this design when you want to perform a two- or N-way
ANOVA, or when factor values correspond to different numbers of observations in y (unbalanced
ANOVA).

Note The anova function ignores NaN values, <undefined> values, empty characters, and empty
strings in y. If factors or tbl contains NaN or <undefined> values, or empty characters or strings,
the function ignores the corresponding observations in y. The ANOVA is balanced if each factor value
has the same number of observations after the function disregards empty or NaN values. Otherwise,
the function performs an unbalanced ANOVA.

Data Types: single | double

factors — factors and factor values
numeric vector | logical vector | categorical vector | string vector | character vector | cell array of
vectors

Factors and factor values for the ANOVA, specified as a numeric, logical, categorical, string, or
character vector, or a cell array of vectors. Factors and factor values are sometimes called grouping
variables and group names, respectively.

 anova

35-67



For a one-way ANOVA, factors is a vector or cell array of character vectors in which each element
represents the factor value of the observation in y at the same position. The anova function groups
observations in y by their factor values during the ANOVA. The length of factors must be the same
as the length of y.

For a two- or N-way ANOVA, factors is a cell array of vectors in which each cell corresponds to a
different factor. Each vector contains the values of the corresponding factor and must have the same
length as y. Factor values are associated with observations in y by their index.

If factors contains NaN values, anova ignores the corresponding observations in y.

For more information on factors, see “Grouping Variables” on page 2-46.

Note If factors or tbl contains NaN values, <undefined> values, empty characters, or empty
strings, the anova function ignores the corresponding observations in y. The ANOVA is balanced if
each factor value has the same number of observations after the function disregards empty or NaN
values. Otherwise, the function performs an unbalanced ANOVA.

Example: [1,2,1,3,1,...,3,1]
Example: ["white","red","white",...,"black","red"]
Example:
school=["Springfield","Springfield","Springfield","Arlington","Springfield","
Arlington","Arlington"]; monthnumber=[6,12,1,9,4,6,2];
factors={school,monthnumber};
Data Types: single | double | logical | categorical | char | string | cell

tbl — Factors, factor values, and response data
table

Factors, factor values, and response data, specified as a table. The variables of tbl can contain
numeric, logical, categorical, character vector, or string elements, or cell arrays of characters. When
you specify tbl, you must also specify the response data y, responseVarName, or formula.

• If you specify the response data in y, the table variables represent only the factors for the ANOVA.
A factor value in a variable of tbl corresponds to the observation in y at the same position. tbl
must have the same number of rows as the length of y. If tbl contains NaN values, then anova
ignores the corresponding observations in y.

• If you do not specify y, you must indicate which variable in tbl contains the response data by
using the responseVarName or formula input argument. You can also choose a subset of factors
in tbl to use in the ANOVA by setting the name-value argument FactorNames. The anova
function associates the values of the factor variables in tbl with the response data in the same
row.
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Note If factors or tbl contains NaN values, <undefined> values, empty characters, or empty
strings, the anova function ignores the corresponding observations in y. The ANOVA is balanced if
each factor value has the same number of observations after the function disregards empty or NaN
values. Otherwise, the function performs an unbalanced ANOVA.

Example: mountain=table(altitude,temperature,soilpH); anova(mountain,"soilpH")
Data Types: table

responseVarName — Name of response data
string scalar | character vector

Name of the response data, specified as a string scalar or character vector. responseVarName
indicates which variable in tbl contains the response data. When you specify responseVarName,
you must also specify the tbl input argument.
Example: "r"
Data Types: char | string

formula — ANOVA model
string scalar | character vector

ANOVA model, specified as a string scalar or a character vector in Wilkinson notation on page 11-93.
anova supports the use of parentheses and commas to specify nested factors in formula. For
example, you can specify that factor f1 is nested inside factor f2 by including the term f1(f2) in
formula. To specify that f1 is nested inside two factors, f2 and f3, include the term f1(f2,f3).
When you specify formula, you must also specify tbl.
Example: "r ~ f1 + f2 + f3 + f1:f2:f3"
Example: "MPG ~ Origin + Model(Origin)"
Data Types: char | string

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.
Example: anova(factors,y,CategoricalFactors=[1 2],FactorNames=["school" "major"
"age"],ResponseName="GPA") specifies the first two factors in factors as categorical, the factor
names as "school", "major", and "age", and the name of the response variable as "GPA".

CategoricalFactors — Factors to treat as categorical
"all" (default) | numeric vector | logical vector | string vector | cell array of character vectors

Factors to treat as categorical, specified as a numeric, logical, or string vector, or a cell array of
character vectors. When CategoricalFactors is set to the default value "all", the anova
function treats all factors as categorical.

Specify CategoricalFactors as one of the following:

• A numeric vector with indices between 1 and N, where N is the number of factor variables. The
anova function treats factors with indices in CategoricalFactors as categorical. The index of a
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factor is the order in which it appears in the columns of matrix y, the cells of factors, or the
columns of tbl.

• A logical vector of length N, where a true entry means that the corresponding factor is
categorical.

• A string vector or cell array of factor names. The factor names must match the names in tbl or
FactorNames.

Example: CategoricalFactors=["Location" "Smoker"]
Example: CategoricalFactors=[1 3 4]
Data Types: single | double | logical | char | string | cell

FactorNames — Factor names
string vector | cell array of character vectors

Factor names, specified as a string vector or a cell array of character vectors.

• If you specify tbl in the call to anova, FactorNames must be a subset of the table variables in
tbl. anova uses only the factors specified in FactorNames. In this case, the default value of
FactorNames is the collection of names of the factor variables in tbl.

• If you specify the matrix y or factors in the call to anova, you can specify any names for
FactorNames. In this case, the default value of FactorNames is ["Factor1","Factor2",
…,"FactorN"], where N is the number of factors.

When you specify formula, anova ignores FactorNames.
Example: FactorNames=["time","latitude"]
Data Types: char | string | cell

ModelSpecification — Type of ANOVA model to fit
"linear" (default) | "interactions" | "purequadratic" | "quadratic" | "polyIJK" | "full"
| integer | string scalar | character vector | terms matrix

Type of ANOVA model to fit, specified as one of the options in the following table or an integer, string
scalar, character vector, or terms matrix. The default value for ModelSpecification is "linear".

Option Terms Included in ANOVA Model
"linear" (default) Main effect (linear) terms
"interactions" Main effect and pairwise interaction terms
"purequadratic" Main effects and squared main effects. All factors

must be continuous to use this option. Set
CategoricalFactors = [] to specify all
factors as continuous.

"quadratic" Main effect, squared main effect, and pairwise
interaction terms. All factors must be continuous
to use this option.
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Option Terms Included in ANOVA Model
"polyIJK" Polynomial terms up to degree I for the first

factor, degree J for the second factor, and so on.
The degree of an interaction term cannot exceed
the maximum exponent of a main term. You must
specify a degree for each factor.

"full" Main effect and all interaction terms

To include all main effects and interaction levels up to the kth level, set ModelSpecification equal
to k. When ModelSpecification is an integer, the maximum level of an interaction term in the
ANOVA model is the minimum between ModelSpecification and the number of factors.

If you specify formula, anova ignores ModelSpecification.

You can also specify the terms of an ANOVA regression model using one of the following:

• Double or single terms matrix, T, with a column for each factor. Each term in the ANOVA model is
a product corresponding to a row of T. The row elements are the exponents of their corresponding
factors. For example, T(i,:) = [1 2 1] means that term i is (Factor1)(Factor2)2(Factor3).
Because the anova function automatically includes a constant term in the ANOVA model, you do
not need to include a row of zeros in the terms matrix.

• Character vector or string scalar formula in Wilkinson notation on page 11-93, representing one
or more terms. anova supports the use of parentheses and commas to specify nested factors, as
described in formula. The formula must use names contained in FactorNames, ResponseName,
or table variable names if tbl is specified.

Example: ModelSpecification="poly3212"
Example: ModelSpecification=3
Example: ModelSpecification="r ~ c1*c2"
Example: ModelSpecification=[0 0 0;1 0 0;0 1 0;0 0 1]
Data Types: single | double | char | string

RandomFactors — Factors to treat as random
"all" | numeric vector | logical vector | string vector | cell array of character vectors

Factors to treat as random rather than fixed, specified as a numeric, logical, or string vector, or a cell
array of character vectors. The anova function treats an interaction term as random if it contains at
least one random factor. The default value is [], meaning all factors are fixed. To specify all factors as
random, set RandomFactors to "all".

Specify RandomFactors as one of the following:

• A numeric vector with indices between 1 and N, where N is the number of factor variables. The
anova function treats factors with indices in RandomFactors as random. The index of a factor is
the order in which it appears in the columns of matrix y, the cells of factors, or the columns of
tbl.

• A logical vector of length N, where a true entry means that the corresponding factor is random.
• A string vector or cell array of factor names. The factor names must match the names in tbl or

FactorNames.
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Example: RandomFactors=[1]
Example: RandomFactors=[1 0 0]
Data Types: single | double | logical | char | string | cell

ResponseName — Name of response variable
string scalar | character vector

Name of the response variable, specified as a string scalar or a character vector. If you specify
responseVarName or formula, anova ignores ResponseName.
Example: ResponseName="soilpH"
Data Types: char | string

SumOfSquaresType — Type of sum of squares
"three" (default) | "two" | "one" | "hierarchical"

Type of sum of squares used to perform the ANOVA, specified as "three", "two", "one", or
"hierarchical". For a model containing main effects but no interactions, the value of
SumOfSquaresType influences the computations on the unbalanced data only.

The sum of squares of a term (SSTerm) is defined as the reduction in the sum of squares error (SSE)
obtained by adding the term to a model that excludes it. The formula for the sum of squares of a term
Term has the form

SSTerm = ∑
i = 1

n
(yi− fexcl(g1, ..., gN))2

⚬
SSEfexcl

− ∑
i = 1

n
(yi− f incl(g1, ..., gN))2

⚬
SSEfincl

where n is the number of observations, yi are the response data, g1, ..., gN are the factors used to
perform the ANOVA, fexcl is a model that excludes Term, and f incl is a model that includes Term. Both
fexcl and f incl are specified by SumOfSquaresType. The variables SSEfexcl and SSEf incl are the sum
of squares errors for fexcl and f incl, respectively. You can specify fexcl and f incl using one of the
options for SumOfSquaresType described in the following table.

Option Type of Sum of Squares
"three" (default) f incl is the full ANOVA model specified in the

property Formula. fexcl is a model composed of
all terms in f incl except Term. The model fexcl has
the same sigma-restricted coding as f incl. This
type of sum of squares is known as Type III.

"two" fexcl is a model composed of all terms in the
ANOVA model specified in the property Formula
that do not contain Term. If Term is a continuous
term, then powers of Term are treated as
separate terms that do not contain Term. f incl is a
model composed of Term and all the terms in
fexcl. This type of sum of squares is known as
Type II.
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Option Type of Sum of Squares
"one" fexcl is a model composed of all the terms that

precede Term in the ANOVA model specified in
the property Formula. f incl is a model composed
of Term and all the terms in fexcl. This type of
sum of squares is known as Type I.

"hierarchical" fexcl and f incl are defined as in Type II, except
powers of Term are treated as terms that contain
Term.

Example: SumOfSquaresType="hierarchical"
Data Types: char | string

Properties
CategoricalFactors — Indices of categorical factors
numeric vector

This property is read-only.

Indices of categorical factors, specified as a numeric vector. This property is set by the
CategoricalFactors name-value argument.
Data Types: double

Coefficients — Fitted ANOVA model coefficients
double vector

This property is read-only.

Fitted ANOVA model coefficients, specified as a double vector. The anova function expands each
categorical factor into F dummy variables, where F is the number of values for the factor. Each
dummy variable is fit with a different coefficient during the ANOVA. Continuous factors have
coefficients that are constant across factor values.

For example, let y be a set of response data and factor1 be a continuous factor. Let factor2 be a
categorical factor with values value1, value2, and value3. The formula "y ~ 1 + factor1 +
factor2" expands to "y ~ 1 + factor1 + (factor2==value1) + (factor2==value2) +
(factor2==value3)" and anova fits the expanded formula with coefficients.
Data Types: single | double

ExpandedFactorNames — Names of coefficients
string vector

This property is read-only

Names of coefficients, specified as a string vector of names. The anova function expands each
categorical factor into F dummy variables, where F is the number of values for the factor. The vector
ExpandedFactorNames contains the name of each dummy variable. For more information, see
Coefficients.
Data Types: string
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FactorNames — Names of factors
string vector

This property is read-only.

Names of the factors used to fit the ANOVA model, specified as a string vector of names. This
property is set by the tbl input argument or the FactorNames name-value argument.
Data Types: string

Factors — Names and values of factors
table

This property is read-only.

Names and values of the factors used to fit the ANOVA model, specified as a table. The names of the
table variables are the factor names, and each variable contains the values of its corresponding
factor. If the factors used to fit the model are not given as a table, anova converts them into a table
with one column per factor.

This property is set by one of the following:

• tbl input argument
• Matrix y input argument together with the FactorNames name-value argument
• Vector y input argument together with the factors input argument and the FactorNames name-

value argument

Data Types: table

Formula — ANOVA model
LinearFormulaWithNesting object

This property is read-only.

ANOVA model, specified as a LinearFormulaWithNesting object. This property is set by the
formula input argument or the ModelSpecification name-value argument.

Metrics — Model metrics
table

Model metrics, specified as a table. The table Metrics has these variables:

• MSE — Mean squared error.
• RMSE — Root mean squared error, which is the square root of MSE.
• SSE — Sum of squares of the error.
• SSR — Sum of squares regression.
• SST — Total sum of squares.
• RSquared — Coefficient of determination, also known as R2.
• AdjustedRSquared — R2 value, adjusted for the number of coefficients. This value is given by the

formula Rad j
2 = 1− (n− 1)SSE

(n− p)SST , where n is the number of observations, and p is the number of

coefficients. A higher value for R2 indicates a better fit for the ANOVA model.
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Data Types: table

NumObservations — Number of observations
positive integer

This property is read-only.

Number of observations used to fit the ANOVA model, specified as a positive integer.
Data Types: double

RandomFactors — Indices of random factors
numeric vector

This property is read-only.

Indices of random factors, specified as a numeric vector. This property is set by the RandomFactors
name-value argument.
Data Types: double

Residuals — Residual values
n-by-2 table

This property is read-only.

Residual values, specified as an n-by-2 table, where n is the number of observations. Residuals has
two variables:

• Raw contains the observed minus fitted values.
• Pearson contains the raw residuals divided by the root mean squared error (RMSE).

Data Types: table

SumOfSquaresType — Type of sum of squares
"three" (default) | "two" | "one" | "hierarchical"

This property is read only.

Type of sum of squares used when fitting the ANOVA model, specified as "three", "two", "one", or
"hierarchical". This property is set by the SumOfSquaresType name-value argument.
Data Types: string

ResponseName — Name of response variable
string scalar | character vector

This property is read-only.

Name of the response variable, specified as a string scalar or character vector. This property is set by
the responseVarName input argument or the ResponseName name-value argument.
Data Types: char | string

Y — Response data
numeric vector

This property is read-only.
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Response data used to fit the ANOVA model, specified as a numeric vector. This property is set by the
y input argument, or the tbl input argument together with the responseVarName input argument.
Data Types: single | double

Object Functions
boxchart Box chart (box plot) for analysis of variance (ANOVA)
groupmeans Mean response estimates for analysis of variance (ANOVA)
multcompare Multiple comparison of means for analysis of variance (ANOVA)
plotComparisons Interactive plot of multiple comparisons of means for analysis of variance

(ANOVA)
stats Analysis of variance (ANOVA) table
varianceComponent Variance component estimates for analysis of variance (ANOVA)

Examples

Perform One-Way ANOVA for Matrix Data

Load popcorn yield data.

load popcorn.mat

The columns of the 6-by-3 matrix popcorn contain popcorn yield observations in cups for three
different brands. Perform a one-way ANOVA to test the null hypothesis that the popcorn yield is not
affected by the brand of popcorn.

aov = anova(popcorn)

aov = 
1-way anova, constrained (Type III) sums of squares.

Y ~ 1 + Factor1

               SumOfSquares    DF    MeanSquares     F        pValue  
               ____________    __    ___________    ____    __________

    Factor1       15.75         2        7.875      18.9    7.9603e-05
    Error          6.25        15      0.41667                        
    Total            22        17                                     

  Properties, Methods

aov is an anova object that contains the results of the one-way ANOVA.

The Factor1 row of the ANOVA table shows statistics for the model term Factor1, and the Error
row shows statistics for the entire model. The sum of squares and the degrees of freedom are given in
the SumOfSquares and DF columns, respectively. The Total degrees of freedom is the total number
of observations minus one, which is 18 – 1 = 17. The Factor1 degrees of freedom is the number
of factor values minus one, which is 3 – 1 = 2. The Error degrees of freedom is the total degrees
of freedom minus the Factor1 degrees of freedom, which is 17 – 2 = 15.
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The mean squares, given in the MeanSquares column, are calculated with the formula
SumOfSquares/DF. The F-statistic is the ratio of the mean squares, which is 7.875/0.41667 =
18.9. The F-statistic follows an F-distribution with degrees of freedom 2 and 15. The p-value is
calculated using the cumulative distribution function (cdf). The p-value for the F-statistic is small
enough that the null hypothesis can be rejected at the 0.01 significance level. Therefore, the brand of
popcorn has a significant effect on the popcorn yield.

Perform Two-Way ANOVA for Vector Data

Load popcorn yield data.

load popcorn.mat

The columns of the 6-by-3 matrix popcorn contain popcorn yield observations in cups for the brands
Gourmet, National, and Generic. The first three rows of the matrix correspond to popcorn that was
popped with an oil popper, and the last three rows correspond to popcorn that was popped with an air
popper.

Create string vectors containing factor values for the brand and popper type. Use the function
repmat to repeat copies of strings.

brand = [repmat("Gourmet",6,1);repmat("National",6,1);repmat("Generic",6,1)];
poppertype = [repmat("Air",3,1);repmat("Oil",3,1);repmat("Air",3,1);repmat("Oil",3,1);repmat("Air",3,1);repmat("Oil",3,1)];
factors = {brand,poppertype};

Perform a two-way ANOVA to test the null hypothesis that the popcorn yield is not affected by the
brand of popcorn or the type of popper.

aov = anova(factors,popcorn(:),FactorNames=["Brand" "PopperType"])

aov = 
2-way anova, constrained (Type III) sums of squares.

Y ~ 1 + Brand + PopperType

                  SumOfSquares    DF    MeanSquares     F       pValue  
                  ____________    __    ___________    ___    __________

    Brand            15.75         2       7.875        63         1e-07
    PopperType         4.5         1         4.5        36    3.2548e-05
    Error             1.75        14       0.125                        
    Total               22        17                                    

  Properties, Methods

aov is an anova object containing the results of the two-way ANOVA. The small p-values indicate that
both the brand and popper type have a statistically significant effect on the popcorn yield.

Compute the mean response estimates to see which brand and popper type produce the most
popcorn.

groupmeans(aov,["Brand" "PopperType"])
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ans=6×6 table
      Brand       PopperType    Mean      SE       MeanLower    MeanUpper
    __________    __________    ____    _______    _________    _________

    "Gourmet"       "Air"       5.75    0.16667     5.0329       6.4671  
    "National"      "Air"       4.25    0.16667     3.5329       4.9671  
    "Generic"       "Air"        3.5    0.16667     2.7829       4.2171  
    "Gourmet"       "Oil"       6.75    0.16667     6.0329       7.4671  
    "National"      "Oil"       5.25    0.16667     4.5329       5.9671  
    "Generic"       "Oil"        4.5    0.16667     3.7829       5.2171  

The table shows the mean response estimates with their standard error and 95% confidence bounds.
The mean response estimates indicate that the Gourmet brand popped in an oil popper yields the
most popcorn.

Perform Two-Way ANOVA with Random Effects

Load the patient sample data.

load patients.mat

Create a table of factors from the Age and Smoker variables.

tbl = table(Age,Smoker,VariableNames=["Age" "SmokingStatus"]);

The factor SmokingStatus is a randomly sampled categorical factor, and Age is a continuous factor.
Perform a two-way ANOVA to test the null hypothesis that systolic blood pressure is not affected by
age or smoking status.

aov = anova(tbl,Systolic,CategoricalFactors=2,RandomFactors=2)

aov = 
2-way anova, constrained (Type III) sums of squares.

Y ~ 1 + Age + SmokingStatus

                     SumOfSquares    DF    MeanSquares      F         pValue  
                     ____________    __    ___________    ______    __________

    Age                 37.562        1      37.562       1.6577       0.20098
    SmokingStatus       2182.9        1      2182.9       96.337    3.3613e-16
    Error                 2198       97      22.659                           
    Total               4461.2       99                                       

  Properties, Methods

aov is an anova object that contains the results of the two-way ANOVA. The p-value for Age is larger
than 0.05. At the 95% confidence level, not enough evidence exists to reject the null hypothesis that
age does not have a statistically significant effect on systolic blood pressure. SmokingStatus has a
p-value smaller than 0.05, indicating that smoking status has a statistically significant effect on
systolic blood pressure.
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To investigate whether the variability of the random factor SmokingStatus has an effect on the
SmokingStatus mean square, use the object functions varianceComponent and stats.

v = varianceComponent(aov)

v=2×3 table
                     VarianceComponent    VarianceComponentLower    VarianceComponentUpper
                     _________________    ______________________    ______________________

    SmokingStatus          48.31                  9.0308                    49707         
    Error                 22.659                  17.425                    30.68         

[~,ems] = stats(aov)

ems=3×5 table
                       Type              ExpectedMeanSquares            MeanSquaresDenominator    DFDenominator    FDenominator
                     ________    ___________________________________    ______________________    _____________    ____________

    Age              "fixed"     "5135.47*Q(Age)+V(Error)"                      22.659                  97          MS(Error)  
    SmokingStatus    "random"    "44.7172*V(SmokingStatus)+V(Error)"            22.659                  97          MS(Error)  
    Error            "random"    "V(Error)"                                                                                    

Inserting the VarianceComponent values into the SmokingStatus formula for
ExpectedMeanSquares gives 44.7172*48.3098+22.6594 = 2.1829e+03. To see how much the
variance component of SmokingStatus affects the expected mean squares, divide the
SmokingStatus term of ExpectedMeanSquares by ExpectedMeanSquares to get
44.7172*48.3098/2.1829e+03 = 0.9896. This calculation shows that the SmokingStatus
variance component contributes to almost 99% of the SmokingStatus expected mean squares.

Perform ANOVA for Data in Table

Load data of the results for five exams taken by 120 students.

load examgrades.mat

Create a table with variables for the math, biology, history, literature, and multisubject
comprehensive exams.

subject = ["math" "biology" "history" "literature" "comprehensive"];
grades = table(grades(:,1),grades(:,2),grades(:,3),grades(:,4),grades(:,5),VariableNames=subject)

grades=120×5 table
    math    biology    history    literature    comprehensive
    ____    _______    _______    __________    _____________

     65       77         69           75             69      
     61       74         70           66             68      
     81       80         71           74             79      
     88       76         80           88             79      
     69       77         74           69             76      
     89       93         78           77             80      
     55       64         60           50             63      
     84       83         80           77             78      
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     86       75         81           87             79      
     84       82         86           92             85      
     71       70         73           81             79      
     81       88         80           79             83      
     84       78         80           74             80      
     81       77         81           83             79      
     78       66         90           84             75      
     67       74         73           76             72      
      ⋮

Perform a four-way ANOVA for the continuous factors math, biology, history, and literature,
and the response data comprehensive.

aov = anova(grades,"comprehensive",CategoricalFactors = [])

aov = 
N-way anova, constrained (Type III) sums of squares.

comprehensive ~ 1 + math + biology + history + literature

                  SumOfSquares    DF     MeanSquares      F         pValue  
                  ____________    ___    ___________    ______    __________

    math             58.973         1      58.973       6.1964      0.014231
    biology          100.35         1      100.35       10.544     0.0015275
    history          243.89         1      243.89       25.626    1.5901e-06
    literature       152.22         1      152.22       15.994    0.00011269
    Error            1094.5       115      9.5173                           
    Total              3291       119                                       

  Properties, Methods

aov is an anova object that contains the results of the four-way ANOVA. The p-values of all factors
are all smaller than 0.05, indicating that each subject exam can be used to predict a student's grade
on the comprehensive exam. Display the estimated coefficients of the ANOVA model.

coef = aov.Coefficients

coef = 5×1

   21.9901
    0.0997
    0.1805
    0.2563
    0.1701

The coefficient corresponding to the history exam is the largest; therefore, history makes the
largest contribution to the predicted value of comprehensive.
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Compare Two anova Objects Created Using Table

Load popcorn yield data.

load popcorn.mat

The columns of the 6-by-3 matrix popcorn contain popcorn yield observations for the brands
Gourmet, National, and Generic. The first three rows of the matrix correspond to popcorn that was
popped with an oil popper, and the last three rows correspond to popcorn that was popped with an air
popper.

Create a table containing variables representing the brand, popper type, and popcorn yield by using
the repmat and table functions.

brand = [repmat("Gourmet",6,1);repmat("National",6,1);repmat("Generic",6,1)];
poppertype = [repmat("air",3,1);repmat("oil",3,1);repmat("air",3,1);repmat("oil",3,1);repmat("air",3,1);repmat("oil",3,1)];
tbl = table(brand,poppertype,popcorn(:),VariableNames=["Brand" "PopperType" "PopcornYield"]);

Perform a two-way ANOVA to test the null hypothesis that the popcorn yield is the same across the
three brands and the two popper types. Specify the ANOVA model formula using Wilkinson notation.

aovLinear = anova(tbl,"PopcornYield ~ Brand + PopperType")

aovLinear = 
2-way anova, constrained (Type III) sums of squares.

PopcornYield ~ 1 + Brand + PopperType

                  SumOfSquares    DF    MeanSquares     F       pValue  
                  ____________    __    ___________    ___    __________

    Brand            15.75         2       7.875        63         1e-07
    PopperType         4.5         1         4.5        36    3.2548e-05
    Error             1.75        14       0.125                        
    Total               22        17                                    

  Properties, Methods

aovLinear is an anova object that contains the results of the two-way ANOVA. The ANOVA model
for aovLinear is linear and does not include an interaction term. The small p-values indicate that
both the brand and popper type have a significant effect on the popcorn yield.

To investigate whether the interaction between the brand and popper type has a significant effect on
the popcorn yield, perform a two-way ANOVA with a model that contains the interaction term
Brand:PopperType.

aovInteraction = anova(tbl,"PopcornYield ~ Brand + PopperType + Brand:PopperType")

aovInteraction = 
2-way anova, constrained (Type III) sums of squares.

PopcornYield ~ 1 + Brand*PopperType

                        SumOfSquares    DF    MeanSquares     F        pValue  
                        ____________    __    ___________    ____    __________
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    Brand                    15.75       2        7.875      56.7     7.679e-07
    PopperType                 4.5       1          4.5      32.4    0.00010037
    Brand:PopperType      0.083333       2     0.041667       0.3       0.74622
    Error                   1.6667      12      0.13889                        
    Total                       22      17                                     

  Properties, Methods

The ANOVA model for the anova object aovInteraction includes the interaction term
Brand:PopperType. The p-value for the Brand:PopperType term is larger than 0.05. Therefore,
not enough evidence exists to conclude that the brand and popper type have an interaction effect on
the popcorn yield.

The Metrics property of an anova object provides statistics about the fit of the ANOVA model. To
determine which model is a better fit for the response data, display the Metrics property of
aovLinear and aovInteraction.

aovLinear.Metrics

ans=1×7 table
     MSE      RMSE      SSE      SSR     SST    RSquared    AdjustedRSquared
    _____    _______    ____    _____    ___    ________    ________________

    0.125    0.35355    1.75    20.25    22     0.92045         0.88731     

aovInteraction.Metrics

ans=1×7 table
      MSE       RMSE       SSE       SSR      SST    RSquared    AdjustedRSquared
    _______    _______    ______    ______    ___    ________    ________________

    0.13889    0.37268    1.6667    20.333    22     0.92424         0.78535     

The metrics tables show that the mean squared error (MSE) is slightly smaller for the linear model
than for the interaction model. The adjusted R-squared value is higher for the linear model. Together,
these metrics suggest that the linear model is a better fit for the popcorn data than the interaction
model.

Perform Nested Two-Way ANOVA

Load the sample car data.

load carbig.mat

The variable Model contains data for the car model, and the variable Origin contains data for the
country in which the car is manufactured. Convert Model and Origin from character arrays with
trailing whitespace to string vectors.
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Model = strtrim(string(Model));
Origin = strtrim(string(Origin));

The variable MPG contains mileage data for the cars. Create a table containing data for the model,
country of origin, and mileage of the cars manufactured in Japan and the United States.

idxJapanUSA = (Origin=="Japan"|Origin=="USA");
tbl = table(Model(idxJapanUSA),Origin(idxJapanUSA),MPG(idxJapanUSA),VariableNames=["Origin" "Model" "MPG"]);

Japan and the United States each manufacture a unique set of models. Therefore, the factor Model is
nested in the factor Origin. Perform a two-way, nested ANOVA to test the null hypothesis that the
car mileage is the same between the models and countries of origin.

aov = anova(tbl,"MPG ~ Origin + Model(Origin)")

aov = 
2-way anova, constrained (Type III) sums of squares.

MPG ~ 1 + Model(Origin) + Origin

                     SumOfSquares    DF     MeanSquares      F         pValue  
                     ____________    ___    ___________    ______    __________

    Model(Origin)            0         0           0            0           NaN
    Origin               18873       244      77.347       10.138    3.0582e-25
    Error               633.26        83      7.6296                           
    Total                19506       327                                       

  Properties, Methods

The small p-values indicate that the null hypothesis can be rejected at the 99% confidence level.
Enough evidence exists to conclude that the model of the car and the country of origin have a
statistically significant effect on the car mileage.

Algorithms
ANOVA partitions the total variation in the response data into two components:

• Variation in the relationship between the factor data and the response data, as described by the
ANOVA model. This variation is known as the sum of squares regression (SSR). The SSR is

represented by the equation ∑
i = 1

n
(y i− y)2, where n is the number of observations in the sample, y i

is the predicted value of observation i, and y is the sample mean.
• Variation in the data due to the ANOVA model error term, known as the sum of squares error

(SSE). The SSE is represented by the equation ∑
i = 1

n
(yi− y i)

2, where yi is the value of observation i.

With the above partitioning, the total sum of squares (SST) is represented by

∑
i = 1

n
(yi− y)2

⚬
SST

= ∑
i = 1

n
(y i− y)2

⚬
SSR

+ ∑
i = 1

n
(yi− y i)

2

⚬
SSE
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The anova function calculates the sum of squares of a term (SSTerm) in the ANOVA model by
measuring the reduction in the SSE when the term is added to a comparison model. The comparison
model is given by aov.SumOfSquaresType (see SumOfSquaresType for more information).

ANOVA uses SSE and SSTerm to perform an F-test. For categorical main effects, the null hypothesis is
that the term's coefficient is the same across all groups. For continuous and interaction terms, the
null hypothesis is that the term's coefficient is zero. A zero coefficient means that the value of the
term does not have an effect on the response data. The F-statistic is calculated as

F =
SSTerm/dfTerm

SSE/dfError
=

MSTerm
MSError

In the above formula, dfTerm is the degrees of freedom of a term, dfError is the degrees of freedom of
the error, and MSTerm and MSError are the mean squares of the term and error, respectively.

The anova function displays a component ANOVA table with rows for the model terms and error. The
columns of the ANOVA table are described as follows:

Column Definition
SumOfSquares Sum of squares
DF Degrees of freedom
MeanSquares Mean squares, which is the ratio

SumOfSquares/DF
F F-statistic, which is the source mean square to

error mean square ratio
pValue p-value, which is the probability that the F-

statistic, as computed under the null hypothesis,
can take a value larger than the computed test-
statistic value. anova derives this probability from
the cdf of the F-distribution

Version History
Introduced in R2022b
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anova1
One-way analysis of variance

Syntax
p = anova1(y)
p = anova1(y,group)
p = anova1(y,group,displayopt)
[p,tbl] = anova1( ___ )
[p,tbl,stats] = anova1( ___ )

Description
p = anova1(y) performs one-way ANOVA on page 9-2 for the sample data y and returns the p-
value. anova1 treats each column of y as a separate group. The function tests the hypothesis that the
samples in the columns of y are drawn from populations with the same mean against the alternative
hypothesis that the population means are not all the same. The function also displays the box plot on
page 35-95 for each group in y and the standard ANOVA table (tbl).

p = anova1(y,group) performs one-way ANOVA for the sample data y, grouped by group.

p = anova1(y,group,displayopt) enables the ANOVA table and box plot displays when
displayopt is 'on' (default) and suppresses the displays when displayopt is 'off'.

[p,tbl] = anova1( ___ ) returns the ANOVA table (including column and row labels) in the cell
array tbl using any of the input argument combinations in the previous syntaxes. To copy a text
version of the ANOVA table to the clipboard, select Edit > Copy Text from the ANOVA table figure.

[p,tbl,stats] = anova1( ___ ) returns a structure, stats, which you can use to perform a
multiple comparison test on page 9-18. A multiple comparison test enables you to determine which
pairs of group means are significantly different. To perform this test, use multcompare, providing
the stats structure as an input argument.

Examples

One-Way ANOVA

Create sample data matrix y with columns that are constants, plus random normal disturbances with
mean 0 and standard deviation 1.

y = meshgrid(1:5);
rng default; % For reproducibility
y = y + normrnd(0,1,5,5)

y = 5×5

    1.5377    0.6923    1.6501    3.7950    5.6715
    2.8339    1.5664    6.0349    3.8759    3.7925
   -1.2588    2.3426    3.7254    5.4897    5.7172
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    1.8622    5.5784    2.9369    5.4090    6.6302
    1.3188    4.7694    3.7147    5.4172    5.4889

Perform one-way ANOVA.

p = anova1(y)

p = 0.0023

The ANOVA table shows the between-groups variation (Columns) and within-groups variation
(Error). SS is the sum of squares, and df is the degrees of freedom. The total degrees of freedom is
total number of observations minus one, which is 25 - 1 = 24. The between-groups degrees of
freedom is number of groups minus one, which is 5 - 1 = 4. The within-groups degrees of freedom is
total degrees of freedom minus the between groups degrees of freedom, which is 24 - 4 = 20.

MS is the mean squared error, which is SS/df for each source of variation. The F-statistic is the ratio
of the mean squared errors (13.4309/2.2204). The p-value is the probability that the test statistic can
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take a value greater than the value of the computed test statistic, i.e., P(F > 6.05). The small p-value
of 0.0023 indicates that differences between column means are significant.

Compare Beam Strength Using One-Way ANOVA

Input the sample data.

strength = [82 86 79 83 84 85 86 87 74 82 ...
            78 75 76 77 79 79 77 78 82 79];
alloy = {'st','st','st','st','st','st','st','st',...
         'al1','al1','al1','al1','al1','al1',...
         'al2','al2','al2','al2','al2','al2'};

The data are from a study of the strength of structural beams in Hogg (1987). The vector strength
measures deflections of beams in thousandths of an inch under 3000 pounds of force. The vector alloy
identifies each beam as steel ('st'), alloy 1 ('al1'), or alloy 2 ('al2'). Although alloy is sorted in
this example, grouping variables do not need to be sorted.

Test the null hypothesis that the steel beams are equal in strength to the beams made of the two
more expensive alloys. Turn the figure display off and return the ANOVA results in a cell array.

[p,tbl] = anova1(strength,alloy,'off')

p = 1.5264e-04

tbl=4×6 cell array
  Columns 1 through 5

    {'Source'}    {'SS'      }    {'df'}    {'MS'      }    {'F'       }
    {'Groups'}    {[184.8000]}    {[ 2]}    {[ 92.4000]}    {[ 15.4000]}
    {'Error' }    {[102.0000]}    {[17]}    {[  6.0000]}    {0x0 double}
    {'Total' }    {[286.8000]}    {[19]}    {0x0 double}    {0x0 double}

  Column 6

    {'Prob>F'    }
    {[1.5264e-04]}
    {0x0 double  }
    {0x0 double  }

The total degrees of freedom is total number of observations minus one, which is 20− 1 = 19. The
between-groups degrees of freedom is number of groups minus one, which is 3− 1 = 2. The within-
groups degrees of freedom is total degrees of freedom minus the between groups degrees of freedom,
which is 19− 2 = 17.

MS is the mean squared error, which is SS/df for each source of variation. The F-statistic is the ratio
of the mean squared errors. The p-value is the probability that the test statistic can take a value
greater than or equal to the value of the test statistic. The p-value of 1.5264e-04 suggests rejection of
the null hypothesis.

You can retrieve the values in the ANOVA table by indexing into the cell array. Save the F-statistic
value and the p-value in the new variables Fstat and pvalue.

Fstat = tbl{2,5}
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Fstat = 15.4000

pvalue = tbl{2,6}

pvalue = 1.5264e-04

Multiple Comparisons for One-Way ANOVA

Input the sample data.

strength = [82 86 79 83 84 85 86 87 74 82 ...
            78 75 76 77 79 79 77 78 82 79];
alloy = {'st','st','st','st','st','st','st','st',...
         'al1','al1','al1','al1','al1','al1',...
         'al2','al2','al2','al2','al2','al2'};

The data are from a study of the strength of structural beams in Hogg (1987). The vector strength
measures deflections of beams in thousandths of an inch under 3000 pounds of force. The vector alloy
identifies each beam as steel (st), alloy 1 (al1), or alloy 2 (al2). Although alloy is sorted in this
example, grouping variables do not need to be sorted.

Perform one-way ANOVA using anova1. Return the structure stats, which contains the statistics
multcompare needs for performing “Multiple Comparisons” on page 9-18.

[~,~,stats] = anova1(strength,alloy);
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The small p-value of 0.0002 suggests that the strength of the beams is not the same.

Perform a multiple comparison of the mean strength of the beams.

[c,~,~,gnames] = multcompare(stats);
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In the figure, the blue bar represents the comparison interval for mean material strength for steel.
The red bars represent the comparison intervals for the mean material strength for alloy 1 and alloy
2. Neither of the red bars overlaps with the blue bar, which indicates that the mean material strength
for steel is significantly different from that of alloy 1 and alloy 2. You can confirm the significant
difference by clicking the bars that represent alloy 1 and 2.

Display the multiple comparison results and the corresponding group names in a table.

tbl = array2table(c,"VariableNames", ...
    ["Group A","Group B","Lower Limit","A-B","Upper Limit","P-value"]);
tbl.("Group A") = gnames(tbl.("Group A"));
tbl.("Group B") = gnames(tbl.("Group B"))

tbl=3×6 table
    Group A    Group B    Lower Limit    A-B    Upper Limit     P-value  
    _______    _______    ___________    ___    ___________    __________

    {'st' }    {'al1'}      3.6064        7       10.394       0.00016831
    {'st' }    {'al2'}      1.6064        5       8.3936        0.0040464
    {'al1'}    {'al2'}      -5.628       -2        1.628          0.35601

The first two columns show the pair of groups that are compared. The fourth column shows the
difference between the estimated group means. The third and fifth columns show the lower and upper
limits for the 95% confidence intervals of the true difference of means. The sixth column shows the p-
value for a hypothesis that the true difference of means for the corresponding groups is equal to zero.
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The first two rows show that both comparisons involving the first group (steel) have confidence
intervals that do not include zero. Because the corresponding p-values (1.6831e-04 and 0.0040,
respectively) are small, those differences are significant.

The third row shows that the differences in strength between the two alloys is not significant. A 95%
confidence interval for the difference is [-5.6,1.6], so you cannot reject the hypothesis that the true
difference is zero. The corresponding p-value of 0.3560 in the sixth column confirms this result.

Input Arguments
y — sample data
vector | matrix

Sample data, specified as a vector or matrix.

• If y is a vector, you must specify the group input argument. Each element in group represents a
group name of the corresponding element in y. The anova1 function treats the y values
corresponding to the same value of group as part of the same group. Use this design when groups
have different numbers of elements (unbalanced ANOVA).

• If y is a matrix and you do not specify group, then anova1 treats each column of y as a separate
group. In this design, the function evaluates whether the population means of the columns are
equal. Use this design when each group has the same number of elements (balanced ANOVA).

• If y is a matrix and you specify group, then each element in group represents a group name for
the corresponding column in y. The anova1 function treats the columns that have the same group
name as part of the same group.
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Note anova1 ignores any NaN values in y. Also, if group contains empty or NaN values, anova1
ignores the corresponding observations in y. The anova1 function performs balanced ANOVA if each
group has the same number of observations after the function disregards empty or NaN values.
Otherwise, anova1 performs unbalanced ANOVA.

Data Types: single | double

group — Grouping variable
numeric vector | logical vector | categorical vector | character array | string array | cell array of
character vectors

Grouping variable containing group names, specified as a numeric vector, logical vector, categorical
vector, character array, string array, or cell array of character vectors.

• If y is a vector, then each element in group represents a group name of the corresponding
element in y. The anova1 function treats the y values corresponding to the same value of group
as part of the same group.

N is the total number of observations.
• If y is a matrix, then each element in group represents a group name for the corresponding

column in y. The anova1 function treats the columns of y that have the same group name as part
of the same group.
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If you do not want to specify group names for the matrix sample data y, enter an empty array ([])
or omit this argument. In this case, anova1 treats each column of y as a separate group.

If group contains empty or NaN values, anova1 ignores the corresponding observations in y.

For more information on grouping variables, see “Grouping Variables” on page 2-46.
Example: 'group',[1,2,1,3,1,...,3,1] when y is a vector with observations categorized into
groups 1, 2, and 3
Example: 'group',{'white','red','white','black','red'} when y is a matrix with five
columns categorized into groups red, white, and black
Data Types: single | double | logical | categorical | char | string | cell

displayopt — Indicator to display ANOVA table and box plot
'on' (default) | 'off'

Indicator to display the ANOVA table and box plot, specified as 'on' or 'off'. When displayopt is
'off', anova1 returns the output arguments, only. It does not display the standard ANOVA table and
box plot.
Example: p = anova(x,group,'off')

Output Arguments
p — p-value for the F-test
scalar value

p-value for the F-test, returned as a scalar value. p-value is the probability that the F-statistic can
take a value larger than the computed test-statistic value. anova1 tests the null hypothesis that all
group means are equal to each other against the alternative hypothesis that at least one group mean
is different from the others. The function derives the p-value from the cdf of the F-distribution.

A p-value that is smaller than the significance level indicates that at least one of the sample means is
significantly different from the others. Common significance levels are 0.05 or 0.01.

tbl — ANOVA table
cell array

ANOVA table, returned as a cell array. tbl has six columns.
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Column Definition
source The source of the variability.
SS The sum of squares due to each source.
df The degrees of freedom associated with each

source. Suppose N is the total number of
observations and k is the number of groups.
Then, N – k is the within-groups degrees of
freedom (Error), k – 1 is the between-groups
degrees of freedom (Columns), and N – 1 is the
total degrees of freedom. N – 1 = (N – k) + (k – 1)

MS The mean squares for each source, which is the
ratio SS/df.

F F-statistic, which is the ratio of the mean squares.
Prob>F The p-value, which is the probability that the F-

statistic can take a value larger than the
computed test-statistic value. anova1 derives
this probability from the cdf of F-distribution.

The rows of the ANOVA table show the variability in the data that is divided by the source.

Row Definition
Groups Variability due to the differences among the

group means (variability between groups)
Error Variability due to the differences between the

data in each group and the group mean
(variability within groups)

Total Total variability

stats — Statistics for multiple comparison tests
structure

Statistics for multiple comparison tests on page 9-18, returned as a structure with the fields
described in this table.

Field name Definition
gnames Names of the groups
n Number of observations in each group
source Source of the stats output
means Estimated values of the means
df Error (within-groups) degrees of freedom (N – k,

where N is the total number of observations and
k is the number of groups)

s Square root of the mean squared error
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More About
Box Plot

anova1 returns a box plot of the observations for each group in y. Box plots provide a visual
comparison of the group location parameters.

On each box, the central mark is the median (2nd quantile, q2) and the edges of the box are the 25th
and 75th percentiles (1st and 3rd quantiles, q1 and q3, respectively). The whiskers extend to the most
extreme data points that are not considered outliers. The outliers are plotted individually using the
'+' symbol. The extremes of the whiskers correspond to q3 + 1.5 × (q3 – q1) and q1 – 1.5 × (q3 – q1).

Box plots include notches for the comparison of the median values. Two medians are significantly
different at the 5% significance level if their intervals, represented by notches, do not overlap. This
test is different from the F-test that ANOVA performs; however, large differences in the center lines of
the boxes correspond to a large F-statistic value and correspondingly a small p-value. The extremes
of the notches correspond to q2 – 1.57(q3 – q1)/sqrt(n) and q2 + 1.57(q3 – q1)/sqrt(n), where n is the
number of observations without any NaN values. In some cases, notches can extend outside the boxes.

For more information about box plots, see 'Whisker' and 'Notch' of boxplot.

Version History
Introduced before R2006a
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References
[1] Hogg, R. V., and J. Ledolter. Engineering Statistics. New York: MacMillan, 1987.

See Also
anova2 | anovan | boxplot | multcompare

Topics
“Perform One-Way ANOVA” on page 9-4
“One-Way ANOVA” on page 9-2
“Multiple Comparisons” on page 9-18
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anova2
Two-way analysis of variance

Syntax
p = anova2(y,reps)
p = anova2(y,reps,displayopt)
[p,tbl] = anova2( ___ )
[p,tbl,stats] = anova2( ___ )

Description
anova2 performs two-way analysis of variance (ANOVA) with balanced designs. To perform two-way
ANOVA with unbalanced designs, see anovan.

p = anova2(y,reps) returns the p-values for a balanced two-way ANOVA for comparing the means
of two or more columns and two or more rows of the observations in y.

reps is the number of replicates for each combination of factor groups, which must be constant,
indicating a balanced design. For unbalanced designs, use anovan. The anova2 function tests the
main effects for column and row factors and their interaction effect. To test the interaction effect,
reps must be greater than 1.

anova2 also displays the standard ANOVA table.

p = anova2(y,reps,displayopt) enables the ANOVA table display when displayopt is 'on'
(default) and suppresses the display when displayopt is 'off'.

[p,tbl] = anova2( ___ ) returns the ANOVA table (including column and row labels) in cell array
tbl. To copy a text version of the ANOVA table to the clipboard, select Edit > Copy Text menu.

[p,tbl,stats] = anova2( ___ ) returns a stats structure, which you can use to perform a
multiple comparison test on page 9-18. A multiple comparison test enables you to determine which
pairs of group means are significantly different. To perform this test, use multcompare, providing
the stats structure as input.

Examples

Two-Way ANOVA

Load the sample data.

load popcorn
popcorn

popcorn = 6×3

    5.5000    4.5000    3.5000
    5.5000    4.5000    4.0000
    6.0000    4.0000    3.0000
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    6.5000    5.0000    4.0000
    7.0000    5.5000    5.0000
    7.0000    5.0000    4.5000

The data is from a study of popcorn brands and popper types (Hogg 1987). The columns of the matrix
popcorn are brands, Gourmet, National, and Generic, respectively. The rows are popper types, oil
and air. In the study, researchers popped a batch of each brand three times with each popper, that is,
the number of replications is 3. The first three rows correspond to the oil popper, and the last three
rows correspond to the air popper. The response values are the yield in cups of popped popcorn.

Perform a two-way ANOVA. Save the ANOVA table in the cell array tbl for easy access to results.

[p,tbl] = anova2(popcorn,3);

The column Prob>F shows the p-values for the three brands of popcorn (0.0000), the two popper
types (0.0001), and the interaction between brand and popper type (0.7462). These values indicate
that popcorn brand and popper type affect the yield of popcorn, but there is no evidence of an
interaction effect of the two.

Display the cell array containing the ANOVA table.

tbl

tbl=6×6 cell array
  Columns 1 through 5

    {'Source'     }    {'SS'     }    {'df'}    {'MS'      }    {'F'       }
    {'Columns'    }    {[15.7500]}    {[ 2]}    {[  7.8750]}    {[ 56.7000]}
    {'Rows'       }    {[ 4.5000]}    {[ 1]}    {[  4.5000]}    {[ 32.4000]}
    {'Interaction'}    {[ 0.0833]}    {[ 2]}    {[  0.0417]}    {[  0.3000]}
    {'Error'      }    {[ 1.6667]}    {[12]}    {[  0.1389]}    {0x0 double}
    {'Total'      }    {[     22]}    {[17]}    {0x0 double}    {0x0 double}

  Column 6

    {'Prob>F'    }
    {[7.6790e-07]}
    {[1.0037e-04]}
    {[    0.7462]}
    {0x0 double  }
    {0x0 double  }

Store the F-statistic for the factors and factor interaction in separate variables.
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Fbrands = tbl{2,5}

Fbrands = 56.7000

Fpoppertype = tbl{3,5}

Fpoppertype = 32.4000

Finteraction = tbl{4,5}

Finteraction = 0.3000

Multiple Comparisons for Two-Way ANOVA

Load the sample data.

load popcorn
popcorn

popcorn = 6×3

    5.5000    4.5000    3.5000
    5.5000    4.5000    4.0000
    6.0000    4.0000    3.0000
    6.5000    5.0000    4.0000
    7.0000    5.5000    5.0000
    7.0000    5.0000    4.5000

The data is from a study of popcorn brands and popper types (Hogg 1987). The columns of the matrix
popcorn are brands (Gourmet, National, and Generic). The rows are popper types oil and air. The
first three rows correspond to the oil popper, and the last three rows correspond to the air popper. In
the study, researchers popped a batch of each brand three times with each popper. The values are the
yield in cups of popped popcorn.

Perform a two-way ANOVA. Also compute the statistics that you need to perform a multiple
comparison test on the main effects.

[~,~,stats] = anova2(popcorn,3,"off")

stats = struct with fields:
      source: 'anova2'
     sigmasq: 0.1389
    colmeans: [6.2500 4.7500 4]
        coln: 6
    rowmeans: [4.5000 5.5000]
        rown: 9
       inter: 1
        pval: 0.7462
          df: 12

The stats structure includes

• The mean squared error (sigmasq)
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• The estimates of the mean yield for each popcorn brand (colmeans)
• The number of observations for each popcorn brand (coln)
• The estimate of the mean yield for each popper type (rowmeans)
• The number of observations for each popper type (rown)
• The number of interactions (inter)
• The p-value that shows the significance level of the interaction term (pval)
• The error degrees of freedom (df).

Perform a multiple comparison test to see if the popcorn yield differs between pairs of popcorn
brands (columns).

c1 = multcompare(stats);

Note: Your model includes an interaction term.  A test of main effects can be 
difficult to interpret when the model includes interactions.

The figure shows the multiple comparisons of the means. By default, the group 1 mean is highlighted
and the comparison interval is in blue. Because the comparison intervals for the other two groups do
not intersect with the intervals for the group 1 mean, they are highlighted in red. This lack of
intersection indicates that both means are different than group 1 mean. Select other group means to
confirm that all group means are significantly different from each other.

Display the multiple comparison results in a table.

35 Functions

35-100



tbl1 = array2table(c1,"VariableNames", ...
    ["Group A","Group B","Lower Limit","A-B","Upper Limit","P-value"])

tbl1=3×6 table
    Group A    Group B    Lower Limit    A-B     Upper Limit     P-value  
    _______    _______    ___________    ____    ___________    __________

       1          2         0.92597       1.5       2.074       4.1188e-05
       1          3           1.676      2.25       2.824       6.1588e-07
       2          3         0.17597      0.75       1.324         0.011591

The first two columns of c1 show the groups that are compared. The fourth column shows the
difference between the estimated group means. The third and fifth columns show the lower and upper
limits for 95% confidence intervals for the true mean difference. The sixth column contains the p-
value for a hypothesis test that the corresponding mean difference is equal to zero. All p-values are
very small, which indicates that the popcorn yield differs across all three brands.

Perform a multiple comparison test to see the popcorn yield differs between the two popper types
(rows).

c2 = multcompare(stats,"Estimate","row");

Note: Your model includes an interaction term.  A test of main effects can be 
difficult to interpret when the model includes interactions.

tbl2 = array2table(c2,"VariableNames", ...
    ["Group A","Group B","Lower Limit","A-B","Upper Limit","P-value"])
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tbl2=1×6 table
    Group A    Group B    Lower Limit    A-B    Upper Limit     P-value  
    _______    _______    ___________    ___    ___________    __________

       1          2         -1.3828      -1      -0.61722      0.00010037

The small p-value indicates that the popcorn yield differs between the two popper types (air and oil).
The figure shows the same results. The disjoint comparison intervals indicate that the group means
are significantly different from each other.

Input Arguments
y — Sample data
matrix

Sample data, specified as a matrix. The columns correspond to groups of one factor, and the rows
correspond to the groups of the other factor and the replications. Replications are the measurements
or observations for each combination of groups (levels) of the row and column factor. For example, in
the following data the row factor A has three levels, column factor B has two levels, and there are two
replications (reps = 2). The subscripts indicate row, column, and replication, respectively.

B = 1 B = 2
y111 y121
y112 y122
y211 y221
y212 y222
y311 y321
y312 y322

A = 1
A = 2
A = 3

Data Types: single | double

reps — Number of replications
1 (default) | an integer number

Number of replications for each combination of groups, specified as an integer number. For example,
the following data has two replications (reps = 2) for each group combination of row factor A and
column factor B.

B = 1 B = 2
y111 y121
y112 y122
y211 y221
y212 y222
y311 y321
y312 y322

A = 1
A = 2
A = 3

• When reps is 1 (default), anova2 returns two p-values in vector p:
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• The p-value for the null hypothesis that all samples from factor B (i.e., all column samples in y)
are drawn from the same population.

• The p-value for the null hypothesis, that all samples from factor A (i.e., all row samples in y)
are drawn from the same population.

• When reps is greater than 1, anova2 also returns the p-value for the null hypothesis that factors
A and B have no interaction (i.e., the effects due to factors A and B are additive).

Example: p = anova(y,3) specifies that each combination of groups (levels) has three replications.
Data Types: single | double

displayopt — Indicator to display the ANOVA table
'on' (default) | 'off'

Indicator to display the ANOVA table as a figure, specified as 'on' or 'off'.

Output Arguments
p — p-value
scalar value

p-value for the F-test, returned as a scalar value. A small p-value indicates that the results are
statistically significant. Common significance levels are 0.05 or 0.01. For example:

• A sufficiently small p-value for the null hypothesis for group means of row factor A suggests that
at least one row-sample mean is significantly different from the other row-sample means; i.e.,
there is a main effect due to factor A

• A sufficiently small p-value for the null hypothesis for group (level) means of column factor B
suggests that at least one column-sample mean is significantly different from the other column-
sample means; i.e., there is a main effect due to factor B.

• A sufficiently small p-value for combinations of groups (levels) of factors A and B suggests that
there is an interaction between factors A and B.

tbl — ANOVA table
cell array

ANOVA table, returned as a cell array. tbl has six columns.

Column name Definition
source Source of the variability.
SS Sum of squares due to each source.
df Degrees of freedom associated with each source.
MS Mean squares for each source, which is the ratio

SS/df.
F F-statistic, which is the ratio of the mean squares.
Prob>F p-value, which is the probability that the F-

statistic can take a value larger than the
computed test-statistic value. anova2 derives
this probability from the cdf of the F-distribution.
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The rows of the ANOVA table show the variability in the data, divided by the source into three or four
parts, depending on the value of reps.

Row Definition
Columns Variability due to the differences among the

column means
Rows Variability due to the differences among the row

means
Interaction Variability due to the interaction between rows

and columns (if reps is greater than its default
value of 1)

Error Remaining variability not explained by any
systematic source

Data Types: cell

stats — Statistics for multiple comparison test
structure

Statistics for multiple comparisons tests on page 9-18, returned as a structure. Use multcompare to
perform multiple comparison tests, supplying stats as an input argument. stats has nine fields.

Field Definition
source Source of the stats output
sigmasq Mean squared error
colmeans Estimated values of the column means
coln Number of observations for each group in

columns
rowmeans Estimated values of the row means
rown Number of observations for each group in rows
inter Number of interactions
pval p-value for the interaction term
df Error degrees of freedom (reps — 1)*r*c where

reps is the number of replications and c and r are
the number of groups in factors, respectively.

Data Types: struct

Version History
Introduced before R2006a

References
[1] Hogg, R. V., and J. Ledolter. Engineering Statistics. New York: MacMillan, 1987.
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See Also
anova1 | anovan | multcompare

Topics
“Perform Two-Way ANOVA” on page 9-13
“Two-Way ANOVA” on page 9-11
“Multiple Comparisons” on page 9-18
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anovan
N-way analysis of variance

Syntax
p = anovan(y,group)
p = anovan(y,group,Name,Value)
[p,tbl] = anovan( ___ )
[p,tbl,stats] = anovan( ___ )
[p,tbl,stats,terms] = anovan( ___ )

Description
p = anovan(y,group) returns a vector of p-values, one per term, for multiway (n-way) analysis of
variance (ANOVA) for testing the effects of multiple factors on the mean of the vector y.

anovan also displays a figure showing the standard ANOVA table.

p = anovan(y,group,Name,Value) returns a vector of p-values for multiway (n-way) ANOVA
using additional options specified by one or more Name,Value pair arguments.

For example, you can specify which predictor variable is continuous, if any, or the type of sum of
squares to use.

[p,tbl] = anovan( ___ ) returns the ANOVA table (including factor labels) in cell array tbl for
any of the input arguments specified in the previous syntaxes. Copy a text version of the ANOVA table
to the clipboard by using the Copy Text item on the Edit menu.

[p,tbl,stats] = anovan( ___ ) returns a stats structure that you can use to perform a
multiple comparison test on page 9-18, which enables you to determine which pairs of group means
are significantly different. You can perform such a test using the multcompare function by providing
the stats structure as input.

[p,tbl,stats,terms] = anovan( ___ ) returns the main and interaction terms used in the
ANOVA computations in terms.

Examples

Three-Way ANOVA

Load the sample data.

y = [52.7 57.5 45.9 44.5 53.0 57.0 45.9 44.0]';
g1 = [1 2 1 2 1 2 1 2]; 
g2 = {'hi';'hi';'lo';'lo';'hi';'hi';'lo';'lo'}; 
g3 = {'may';'may';'may';'may';'june';'june';'june';'june'};

y is the response vector and g1, g2, and g3 are the grouping variables (factors). Each factor has two
levels ,and every observation in y is identified by a combination of factor levels. For example,
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observation y(1) is associated with level 1 of factor g1, level 'hi' of factor g2, and level 'may' of
factor g3. Similarly, observation y(6) is associated with level 2 of factor g1, level 'hi' of factor g2,
and level 'june' of factor g3.

Test if the response is the same for all factor levels.

p = anovan(y,{g1,g2,g3})

p = 3×1

    0.4174
    0.0028
    0.9140

In the ANOVA table, X1, X2, and X3 correspond to the factors g1, g2, and g3, respectively. The p-
value 0.4174 indicates that the mean responses for levels 1 and 2 of the factor g1 are not
significantly different. Similarly, the p-value 0.914 indicates that the mean responses for levels 'may'
and 'june', of the factor g3 are not significantly different. However, the p-value 0.0028 is small
enough to conclude that the mean responses are significantly different for the two levels, 'hi' and
'lo' of the factor g2. By default, anovan computes p-values just for the three main effects.

Test the two-factor interactions. This time specify the variable names.

p = anovan(y,{g1 g2 g3},'model','interaction','varnames',{'g1','g2','g3'})

p = 6×1

 anovan

35-107



    0.0347
    0.0048
    0.2578
    0.0158
    0.1444
    0.5000

The interaction terms are represented by g1*g2, g1*g3, and g2*g3 in the ANOVA table. The first
three entries of p are the p-values for the main effects. The last three entries are the p-values for the
two-way interactions. The p-value of 0.0158 indicates that the interaction between g1 and g2 is
significant. The p-values of 0.1444 and 0.5 indicate that the corresponding interactions are not
significant.

Two-Way ANOVA for Unbalanced Design

Load the sample data.

load carbig

The data has measurements on 406 cars. The variable org shows where the cars were made and
when shows when in the year the cars were manufactured.

Study how the mileage depends on when and where the cars were made. Also include the two-way
interactions in the model.

p = anovan(MPG,{org when},'model',2,'varnames',{'origin','mfg date'})

p = 3×1

    0.0000
    0.0000
    0.3059

The 'model',2 name-value pair argument represents the two-way interactions. The p-value for the
interaction term, 0.3059, is not small, indicating little evidence that the effect of the time of
manufacture (mfg date) depends on where the car was made (origin). The main effects of origin
and manufacturing date, however, are significant, both p-values are 0.
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Multiple Comparisons for Three-Way ANOVA

Load the sample data.

y = [52.7 57.5 45.9 44.5 53.0 57.0 45.9 44.0]';
g1 = [1 2 1 2 1 2 1 2];
g2 = ["hi" "hi" "lo" "lo" "hi" "hi" "lo" "lo"];
g3 = ["may" "may" "may" "may" "june" "june" "june" "june"];

y is the response vector and g1, g2, and g3 are the grouping variables (factors). Each factor has two
levels, and every observation in y is identified by a combination of factor levels. For example,
observation y(1) is associated with level 1 of factor g1, level hi of factor g2, and level may of factor
g3. Similarly, observation y(6) is associated with level 2 of factor g1, level hi of factor g2, and level
june of factor g3.

Test if the response is the same for all factor levels. Also compute the statistics required for multiple
comparison tests.

[~,~,stats] = anovan(y,{g1 g2 g3},"Model","interaction", ...
    "Varnames",["g1","g2","g3"]);

The p-value of 0.2578 indicates that the mean responses for levels may and june of factor g3 are not
significantly different. The p-value of 0.0347 indicates that the mean responses for levels 1 and 2 of
factor g1 are significantly different. Similarly, the p-value of 0.0048 indicates that the mean responses
for levels hi and lo of factor g2 are significantly different.

Perform a multiple comparison test to find out which groups of factors g1 and g2 are significantly
different.

[results,~,~,gnames] = multcompare(stats,"Dimension",[1 2]);
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You can test the other groups by clicking on the corresponding comparison interval for the group. The
bar you click on turns to blue. The bars for the groups that are significantly different are red. The
bars for the groups that are not significantly different are gray. For example, if you click on the
comparison interval for the combination of level 1 of g1 and level lo of g2, the comparison interval
for the combination of level 2 of g1 and level lo of g2 overlaps, and is therefore gray. Conversely, the
other comparison intervals are red, indicating significant difference.

Display the multiple comparison results and the corresponding group names in a table.

tbl = array2table(results,"VariableNames", ...
    ["Group A","Group B","Lower Limit","A-B","Upper Limit","P-value"]);
tbl.("Group A")=gnames(tbl.("Group A"));
tbl.("Group B")=gnames(tbl.("Group B"))

tbl=6×6 table
       Group A           Group B        Lower Limit     A-B     Upper Limit     P-value 
    ______________    ______________    ___________    _____    ___________    _________

    {'g1=1,g2=hi'}    {'g1=2,g2=hi'}      -6.8604       -4.4      -1.9396       0.027249
    {'g1=1,g2=hi'}    {'g1=1,g2=lo'}       4.4896       6.95       9.4104       0.016983
    {'g1=1,g2=hi'}    {'g1=2,g2=lo'}       6.1396        8.6        11.06       0.013586
    {'g1=2,g2=hi'}    {'g1=1,g2=lo'}       8.8896      11.35        13.81       0.010114
    {'g1=2,g2=hi'}    {'g1=2,g2=lo'}        10.54         13        15.46      0.0087375
    {'g1=1,g2=lo'}    {'g1=2,g2=lo'}      -0.8104       1.65       4.1104        0.07375
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The multcompare function compares the combinations of groups (levels) of the two grouping
variables, g1 and g2. For example, the first row of the matrix shows that the combination of level 1 of
g1 and level hi of g2 has the same mean response values as the combination of level 2 of g1 and
level hi of g2. The p-value corresponding to this test is 0.0272, which indicates that the mean
responses are significantly different. You can also see this result in the figure. The blue bar shows the
comparison interval for the mean response for the combination of level 1 of g1 and level hi of g2.
The red bars are the comparison intervals for the mean response for other group combinations. None
of the red bars overlap with the blue bar, which means the mean response for the combination of
level 1 of g1 and level hi of g2 is significantly different from the mean response for other group
combinations.

Input Arguments
y — Sample data
numeric vector

Sample data, specified as a numeric vector.
Data Types: single | double

group — Grouping variables
cell array

Grouping variables, i.e. the factors and factor levels of the observations in y, specified as a cell array.
Each of the cells in group contains a list of factor levels identifying the observations in y with respect
to one of the factors. The list within each cell can be a categorical array, numeric vector, character
matrix, string array, or single-column cell array of character vectors, and must have the same number
of elements as y.

y = [ y1, y2, y3, y4, y5, ⋯, yN ]′

g1 = ′A′, ′A′, ′C′, ′B′, ′B′, ⋯, ′D′
g2 = [ 1 2 1 3 1 ⋯, 2 ]
g3 = ′hi′, ′mid′, ′low′, ′mid′, ′hi′, ⋯, ′low′

By default, anovan treats all grouping variables as fixed effects.

For example, in a study you want to investigate the effects of gender, school, and the education
method on the academic success of elementary school students, then you can specify the grouping
variables as follows.
Example: {'Gender','School','Method'}
Data Types: cell

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
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Example: 'alpha',0.01,'model','interaction','sstype',2 specifies anovan to compute
the 99% confidence bounds and p-values for the main effects and two-way interactions using type II
sum of squares.

alpha — Significance level
0.05 (default) | scalar value in the range 0 to 1

Significance level for confidence bounds, specified as the comma-separated pair consisting
of'alpha' and a scalar value in the range 0 to 1. For a value α, the confidence level is 100*(1–α)%.
Example: 'alpha',0.01 corresponds to 99% confidence intervals
Data Types: single | double

continuous — Indicator for continuous predictors
vector of indices

Indicator for continuous predictors, representing which grouping variables should be treated as
continuous predictors rather than as categorical predictors, specified as the comma-separated pair
consisting of 'continuous' and a vector of indices.

For example, if there are three grouping variables and second one is continuous, then you can specify
as follows.
Example: 'continuous',[2]
Data Types: single | double

display — Indicator to display ANOVA table
'on' (default) | 'off'

Indicator to display ANOVA table, specified as the comma-separated pair consisting of 'display'
and 'on' or 'off'. When 'display' is 'off', anovan only returns the output arguments, and
does not display the standard ANOVA table as a figure.
Example: 'display','off'

model — Type of the model
'linear' (default) | 'interaction' | 'full' | integer value | terms matrix

Type of the model, specified as the comma-separated pair consisting of 'model' and one of the
following:

• 'linear' — The default 'linear' model computes only the p-values for the null hypotheses on
the N main effects.

• 'interaction' — The 'interaction' model computes the p-values for null hypotheses on the

N main effects and the 
N
2

 two-factor interactions.

• 'full' — The 'full' model computes the p-values for null hypotheses on the N main effects
and interactions at all levels.

• An integer — For an integer value of k, (k ≤ N) for model type, anovan computes all interaction
levels through the kth level. For example, the value 3 means main effects plus two- and three-
factor interactions. The values k = 1 and k = 2 are equivalent to the 'linear' and
'interaction' specifications, respectively. The value k = N is equivalent to the 'full'
specification.
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• Terms matrix — A matrix of term definitions having the same form as the input to the x2fx
function. All entries must be 0 or 1 (no higher powers).

For more precise control over the main and interaction terms that anovan computes, you can
specify a matrix containing one row for each main or interaction term to include in the ANOVA
model. Each row defines one term using a vector of N zeros and ones. The table below illustrates
the coding for a 3-factor ANOVA for factors A, B, and C.

Matrix Row ANOVA Term
[1 0 0] Main term A
[0 1 0] Main term B
[0 0 1] Main term C
[1 1 0] Interaction term AB
[1 0 1] Interaction term AC
[0 1 1] Interaction term BC
[1 1 1] Interaction term ABC

For example, if there are three factors A, B, and C, and 'model',[0 1 0;0 0 1;0 1 1], then
anovan tests for the main effects B and C, and the interaction effect BC, respectively.

A simple way to generate the terms matrix is to modify the terms output, which codes the terms
in the current model using the format described above. If anovan returns [0 1 0;0 0 1;0 1
1] for terms, for example, and there is no significant interaction BC, then you can recompute
ANOVA on just the main effects B and C by specifying [0 1 0;0 0 1] for model.

Example: 'model',[0 1 0;0 0 1;0 1 1]
Example: 'model','interaction'
Data Types: char | string | single | double

nested — Nesting relationships
matrix of 0’s and 1’s

Nesting relationships among the grouping variables, specified as the comma-separated pair
consisting of 'nested' and a matrix M of 0’s and 1’s, i.e.M(i,j) = 1 if variable i is nested in variable j.

You cannot specify nesting in a continuous variable.

For example, if there are two grouping variables District and School, where School is nested in
District, then you can express this relationship as follows.
Example: 'nested',[0 0;1 0]
Data Types: single | double

random — Indicator for random variables
vector of indices

Indicator for random variables, representing which grouping variables are random, specified as the
comma-separated pair consisting of 'random' and a vector of indices. By default, anovan treats all
grouping variables as fixed.

anovan treats an interaction term as random if any of the variables in the interaction term is random.
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Example: 'random',[3]
Data Types: single | double

sstype — Type of sum of squares
3 (default) | 1 | 2 | 'h'

Type of sum squares, specified as the comma-separated pair consisting of 'sstype' and the
following:

• 1 — Type I sum of squares. The reduction in residual sum of squares obtained by adding that term
to a fit that already includes the terms listed before it.

• 2 — Type II sum of squares. The reduction in residual sum of squares obtained by adding that
term to a model consisting of all other terms that do not contain the term in question.

• 3 — Type III sum of squares. The reduction in residual sum of squares obtained by adding that
term to a model containing all other terms, but with their effects constrained to obey the usual
“sigma restrictions” that make models estimable.

• 'h' — Hierarchical model. Similar to type 2, but with continuous as well as categorical factors
used to determine the hierarchy of terms.

The sum of squares for any term is determined by comparing two models. For a model containing
main effects but no interactions, the value of sstype influences the computations on unbalanced
data only.

Suppose you are fitting a model with two factors and their interaction, and the terms appear in the
order A, B, AB. Let R(·) represent the residual sum of squares for the model. So, R(A, B, AB) is the
residual sum of squares fitting the whole model, R(A) is the residual sum of squares fitting the main
effect of A only, and R(1) is the residual sum of squares fitting the mean only. The three sum of
squares types are as follows:

Term Type 1 Sum of Squares Type 2 Sum of Squares Type 3 Sum of Squares
A R(1) – R(A) R(B) – R(A, B) R(B, AB) – R(A, B, AB)
B R(A) – R(A, B) R(A) – R(A, B) R(A, AB) – R(A, B, AB)
AB R(A, B) – R(A, B, AB) R(A, B) – R(A, B, AB) R(A, B) – R(A, B, AB)

The models for Type 3 sum of squares have sigma restrictions imposed. This means, for example, that
in fitting R(B, AB), the array of AB effects is constrained to sum to 0 over A for each value of B, and
over B for each value of A.
Example: 'sstype','h'
Data Types: single | double | char | string

varnames — Names of grouping variables
X1,X2,...,XN (default) | character matrix | string array | cell array of character vectors

Names of grouping variables, specified as the comma-separating pair consisting of 'varnames' and
a character matrix, a string array, or a cell array of character vectors.
Example: 'varnames',{'Gender','City'}
Data Types: char | string | cell
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Output Arguments
p — p-values
vector

p-values, returned as a vector.

Output vector p contains p-values for the null hypotheses on the N main effects and any interaction
terms specified. Element p(1) contains the p-value for the null hypotheses that samples at all levels
of factor A are drawn from the same population; element p(2) contains the p-value for the null
hypotheses that samples at all levels of factor B are drawn from the same population; and so on.

For example, if there are three factors A, B, and C, and 'model',[0 1 0;0 0 1;0 1 1], then the
output vector p contains the p-values for the null hypotheses on the main effects B and C and the
interaction effect BC, respectively.

A sufficiently small p-value corresponding to a factor suggests that at least one group mean is
significantly different from the other group means; that is, there is a main effect due to that factor. It
is common to declare a result significant if the p-value is less than 0.05 or 0.01.

tbl — ANOVA table
cell array

ANOVA table, returned as a cell array. The ANOVA table has seven columns:

Column name Definition
source Source of the variability.
SS Sum of squares due to each source.
df Degrees of freedom associated with each source.
MS Mean squares for each source, which is the ratio

SS/df.
Singular? Indication of whether the term is singular.
F F-statistic, which is the ratio of the mean squares.
Prob>F The p-values, which is the probability that the F-

statistic can take a value larger than a computed
test-statistic value. anovan derives these
probabilities from the cdf of F-distribution.

The ANOVA table also contains the following columns if at least one of the grouping variables is
specified as random using the name-value pair argument random:

Column name Definition
Type Type of each source; 'fixed' for a fixed effect

or 'random' for a random effect.
Expected MS Text representation of the expected value for the

mean square. Q(source) represents a quadratic
function of source and V(source) represents
the variance of source.

MS denom Denominator of the F-statistic.

 anovan

35-115



Column name Definition
d.f. denom Degrees of freedom for the denominator of the F-

statistic.
Denom. defn. Text representation of the denominator of the F-

statistic. MS(source) represents the mean
square of source.

Var. est. Variance component estimate.
Var. lower bnd Lower bound of the 95% confidence interval for

the variance component estimate.
Var. upper bnd Upper bound of the 95% confidence interval for

the variance component estimate.

stats — Statistics
structure

Statistics to use in a multiple comparison test on page 9-18 using the multcompare function,
returned as a structure.

anovan evaluates the hypothesis that the different groups (levels) of a factor (or more generally, a
term) have the same effect, against the alternative that they do not all have the same effect.
Sometimes it is preferable to perform a test to determine which pairs of levels are significantly
different, and which are not. Use the multcompare function to perform such tests by supplying the
stats structure as input.

The stats structure contains the fields listed below, in addition to a number of other fields required
for doing multiple comparisons using the multcompare function:

Field Description
coeffs Estimated coefficients
coeffnames Name of term for each coefficient
vars Matrix of grouping variable values for each term
resid Residuals from the fitted model

The stats structure also contains the following fields if at least one of the grouping variables is
specified as random using the name-value pair argument random:

Field Description
ems Expected mean squares
denom Denominator definition
rtnames Names of random terms
varest Variance component estimates (one per random term)
varci Confidence intervals for variance components

terms — Main and interaction terms
matrix
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Main and interaction terms, returned as a matrix. The terms are encoded in the output matrix terms
using the same format described above for input model. When you specify model itself in this format,
the matrix returned in terms is identical.

Version History
Introduced before R2006a

References
[1] Dunn, O.J., and V.A. Clark. Applied Statistics: Analysis of Variance and Regression. New York:

Wiley, 1974.

[2] Goodnight, J.H., and F.M. Speed. Computing Expected Mean Squares. Cary, NC: SAS Institute,
1978.

[3] Seber, G. A. F., and A. J. Lee. Linear Regression Analysis. 2nd ed. Hoboken, NJ: Wiley-Interscience,
2003.

See Also
anova1 | anova2 | multcompare | fitrm | ranova | anova

Topics
“Perform N-Way ANOVA” on page 9-28
“ANOVA with Random Effects” on page 9-33
“Multiple Comparisons” on page 9-18
“N-Way ANOVA” on page 9-26
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anova
Class: RepeatedMeasuresModel

Analysis of variance for between-subject effects

Syntax
anovatbl = anova(rm)
anovatbl = anova(rm,'WithinModel',WM)

Description
anovatbl = anova(rm) returns the analysis of variance results for the repeated measures model
rm.

anovatbl = anova(rm,'WithinModel',WM) returns the analysis of variance results it performs
using the response or responses specified by the within-subject model WM.

Input Arguments
rm — Repeated measures model
RepeatedMeasuresModel object

Repeated measures model, returned as a RepeatedMeasuresModel object.

For properties and methods of this object, see RepeatedMeasuresModel.

WM — Within-subject model
'separatemeans' (default) | 'orthogonalcontrasts' | character vector or string scalar defining
a model specification | r-by-nc matrix specifying nc contrasts

Within-subject model, specified as one of the following:

• 'separatemeans' — The response is the average of the repeated measures (average across the
within-subject model).

• 'orthogonalcontrasts' — This is valid when the within-subject model has a single numeric
factor T. Responses are the average, the slope of centered T, and, in general, all orthogonal
contrasts for a polynomial up to T^(p – 1), where p is the number of rows in the within-subject
model. anova multiplies Y, the response you use in the repeated measures model rm by the
orthogonal contrasts, and uses the columns of the resulting product matrix as the responses.

anova computes the orthogonal contrasts for T using the Q factor of a QR factorization on page
35-122 of the Vandermonde matrix on page 35-122.

• A character vector or string scalar that defines a model specification in the within-subject factors.
Responses are defined by the terms in that model. anova multiplies Y, the response matrix you
use in the repeated measures model rm by the terms of the model, and uses the columns of the
result as the responses.

35 Functions

35-118



For example, if there is a Time factor and 'Time' is the model specification, then anova uses two
terms, the constant and the uncentered Time term. The default is '1' to perform on the average
response.

• An r-by-nc matrix, C, specifying nc contrasts among the r repeated measures. If Y represents the
matrix of repeated measures you use in the repeated measures model rm, then the output tbl
contains a separate analysis of variance for each column of Y*C.

The anova table contains a separate univariate analysis of variance results for each response.
Example: 'WithinModel','Time'
Example: 'WithinModel','orthogonalcontrasts'

Output Arguments
anovatbl — Results of analysis of variance
table

Results of analysis of variance for between-subject effects, returned as a table. This includes all terms
on the between-subjects model and the following columns.

Column Name Definition
Within Within-subject factors
Between Between-subject factors
SumSq Sum of squares
DF Degrees of freedom
MeanSq Mean squared error
F F-statistic
pValue p-value corresponding to the F-statistic

Examples

Analysis of Variance for Average Response

Load the sample data.

load fisheriris

The column vector species consists of iris flowers of three different species: setosa, versicolor, and
virginica. The double matrix meas consists of four types of measurements on the flowers: the length
and width of sepals and petals in centimeters, respectively.

Store the data in a table array.

t = table(species,meas(:,1),meas(:,2),meas(:,3),meas(:,4),...
'VariableNames',{'species','meas1','meas2','meas3','meas4'});
Meas = dataset([1 2 3 4]','VarNames',{'Measurements'});

Fit a repeated measures model where the measurements are the responses and the species is the
predictor variable.
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rm = fitrm(t,'meas1-meas4~species','WithinDesign',Meas);

Perform analysis of variance.

anova(rm)

ans=3×7 table
     Within     Between     SumSq     DF     MeanSq       F         pValue   
    ________    ________    ______    ___    _______    ______    ___________

    Constant    constant    7201.7      1     7201.7     19650    2.0735e-158
    Constant    species     309.61      2      154.8    422.39     1.1517e-61
    Constant    Error       53.875    147    0.36649                         

There are 150 observations and 3 species. The degrees of freedom for species is 3 - 1 = 2, and for
error it is 150 - 3 = 147. The small p-value of 1.1517e-61 indicates that the measurements differ
significantly according to species.

Panel Data

Load the sample panel data.

load('panelData.mat');

The dataset array, panelData, contains yearly observations on eight cities for 6 years. The first
variable, Growth, measures economic growth (the response variable). The second and third variables
are city and year indicators, respectively. The last variable, Employ, measures employment (the
predictor variable). This is simulated data.

Store the data in a table array and define city as a nominal variable.

t = table(panelData.Growth,panelData.City,panelData.Year,...
    'VariableNames',{'Growth','City','Year'});

Convert the data in a proper format to do repeated measures analysis.

t = unstack(t,'Growth','Year','NewDataVariableNames',...
    {'year1','year2','year3','year4','year5','year6'});

Add the mean employment level over the years as a predictor variable to the table t.

t(:,8) = table(grpstats(panelData.Employ,panelData.City));
t.Properties.VariableNames{'Var8'} = 'meanEmploy';

Define the within-subjects variable.

Year = [1 2 3 4 5 6]';

Fit a repeated measures model, where the growth figures over the 6 years are the responses and the
mean employment is the predictor variable.

rm = fitrm(t,'year1-year6 ~ meanEmploy','WithinDesign',Year);

Perform analysis of variance.
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anovatbl = anova(rm,'WithinModel',Year)

anovatbl=3×7 table
     Within       Between        SumSq       DF      MeanSq         F         pValue  
    _________    __________    __________    __    __________    ________    _________

    Contrast1    constant          588.17    1         588.17    0.038495      0.85093
    Contrast1    meanEmploy    3.7064e+05    1     3.7064e+05      24.258    0.0026428
    Contrast1    Error              91675    6          15279                         

Longitudinal Data

Load the sample data.

load('longitudinalData.mat');

The matrix Y contains response data for 16 individuals. The response is the blood level of a drug
measured at five time points (time = 0, 2, 4, 6, and 8). Each row of Y corresponds to an individual,
and each column corresponds to a time point. The first eight subjects are female, and the second
eight subjects are male. This is simulated data.

Define a variable that stores gender information.

Gender = ['F' 'F' 'F' 'F' 'F' 'F' 'F' 'F' 'M' 'M' 'M' 'M' 'M' 'M' 'M' 'M']';

Store the data in a proper table array format to do repeated measures analysis.

t = table(Gender,Y(:,1),Y(:,2),Y(:,3),Y(:,4),Y(:,5),...
'VariableNames',{'Gender','t0','t2','t4','t6','t8'});

Define the within-subjects variable.

Time = [0 2 4 6 8]';

Fit a repeated measures model, where blood levels are the responses and gender is the predictor
variable.

rm = fitrm(t,'t0-t8 ~ Gender','WithinDesign',Time);

Perform analysis of variance.

anovatbl = anova(rm)

anovatbl=3×7 table
     Within     Between     SumSq     DF    MeanSq      F         pValue  
    ________    ________    ______    __    ______    ______    __________

    Constant    constant     54702     1     54702    1079.2    1.1897e-14
    Constant    Gender      2251.7     1    2251.7    44.425    1.0693e-05
    Constant    Error        709.6    14    50.685                        

There are 2 genders and 16 observations, so the degrees of freedom for gender is (2 - 1) = 1 and for
error it is (16 - 2)*(2 - 1) = 14. The small p-value of 1.0693e-05 indicates that there is a significant
effect of gender on blood pressure.
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Repeat analysis of variance using orthogonal contrasts.

anovatbl = anova(rm,'WithinModel','orthogonalcontrasts')

anovatbl=15×7 table
     Within     Between       SumSq       DF      MeanSq          F           pValue  
    ________    ________    __________    __    __________    __________    __________

    Constant    constant         54702     1         54702        1079.2    1.1897e-14
    Constant    Gender          2251.7     1        2251.7        44.425    1.0693e-05
    Constant    Error            709.6    14        50.685                            
    Time        constant        310.83     1        310.83        31.023    6.9065e-05
    Time        Gender          13.341     1        13.341        1.3315       0.26785
    Time        Error           140.27    14        10.019                            
    Time^2      constant        565.42     1        565.42        98.901    1.0003e-07
    Time^2      Gender          1.4076     1        1.4076       0.24621       0.62746
    Time^2      Error           80.039    14        5.7171                            
    Time^3      constant        2.6127     1        2.6127        1.4318       0.25134
    Time^3      Gender      7.8853e-06     1    7.8853e-06    4.3214e-06       0.99837
    Time^3      Error           25.546    14        1.8247                            
    Time^4      constant        2.8404     1        2.8404       0.47924       0.50009
    Time^4      Gender          2.9016     1        2.9016       0.48956       0.49559
    Time^4      Error           82.977    14        5.9269                            

More About
Vandermonde Matrix

Vandermonde matrix is the matrix where columns are the powers of the vector a, that is, V(i,j) = a(i)(n
— j), where n is the length of a.

QR Factorization

QR factorization of an m-by-n matrix A is the factorization that matrix into the product A = Q*R,
where R is an m-by-n upper triangular matrix and Q is an m-by-m unitary matrix.

See Also
ranova | manova | fitrm | qr | vander

Topics
“Model Specification for Repeated Measures Models” on page 9-54
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ansaribradley
Ansari-Bradley test

Syntax
h = ansaribradley(x,y)
h = ansaribradley(x,y,Name,Value)
[h,p] = ansaribradley( ___ )
[h,p,stats] = ansaribradley( ___ )

Description
h = ansaribradley(x,y) returns a test decision for the null hypothesis that the data in vectors x
and y comes from the same distribution, using the Ansari-Bradley test on page 35-126. The
alternative hypothesis is that the data in x and y comes from distributions with the same median and
shape but different dispersions (e.g., variances). The result h is 1 if the test rejects the null
hypothesis at the 5% significance level, or 0 otherwise.

h = ansaribradley(x,y,Name,Value) returns a test decision for the Ansari-Bradley test with
additional options specified by one or more name-value pair arguments. For example, you can change
the significance level, conduct a one-sided test, or use a normal approximation to calculate the value
of the test statistic.

[h,p] = ansaribradley( ___ ) also returns the p-value, p, of the test, using any of the input
arguments in the previous syntaxes.

[h,p,stats] = ansaribradley( ___ ) also returns the structure stats containing information
about the test statistic.

Examples

Ansari-Bradley Test for Equal Variances

Load the sample data. Create data vectors of miles per gallon (MPG) measurements for the model
years 1982 and 1976.

load carsmall
x = MPG(Model_Year==82);
y = MPG(Model_Year==76);

Test the null hypothesis that the miles per gallon measured in cars from 1982 and 1976 have equal
variances.

[h,p,stats] = ansaribradley(x,y)

h = 0

p = 0.8426

stats = struct with fields:
        W: 526.9000
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    Wstar: 0.1986

The returned value of h = 0 indicates that ansaribradley does not reject the null hypothesis at
the default 5% significance level.

Ansari-Bradley One-Sided Hypothesis Test

Load the sample data. Create data vectors of miles per gallon (MPG) measurements for the model
years 1982 and 1976.

load carsmall
x = MPG(Model_Year==82);
y = MPG(Model_Year==76);

Test the null hypothesis that the miles per gallon measured in cars from 1982 and 1976 have equal
variances, against the alternative hypothesis that the variance of cars from 1982 is greater than that
of cars from 1976.

[h,p,stats] = ansaribradley(x,y,'Tail','right')

h = 0

p = 0.5787

stats = struct with fields:
        W: 526.9000
    Wstar: 0.1986

The returned value of h = 0 indicates that ansaribradley does not reject the null hypothesis that
the variance in miles per gallon is the same for the two model years, when the alternative is that the
variance of cars from 1982 is greater than that of cars from 1976.

Input Arguments
x — Sample data
vector | matrix | multidimensional array

Sample data, specified as a vector, matrix, or multidimensional array.

• If x and y are specified as vectors, they do not need to be the same length.
• If x and y are specified as matrices, they must have the same number of columns.

ansaribradley performs separate tests along each column and returns a vector of results.
• If x and y are specified as multidimensional arrays on page 35-127, ansaribradley works along

the first nonsingleton dimension on page 35-127. x and y must have the same size along all
remaining dimensions.

Data Types: single | double

y — Sample data
vector | matrix | multidimensional array
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Sample data, specified as a vector, matrix, or multidimensional array.

• If x and y are specified as vectors, they do not need to be the same length.
• If x and y are specified as matrices, they must have the same number of columns.

ansaribradley performs separate tests along each column and returns a vector of results.
• If x and y are specified as multidimensional arrays on page 35-127, ansaribradley works along

the first nonsingleton dimension on page 35-127. x and y must have the same size along all
remaining dimensions.

Data Types: single | double

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: 'Tail','right','Alpha',0.01 specifies a right-tailed hypothesis test at the 1%
significance level.

Alpha — Significance level
0.05 (default) | scalar value in the range (0,1)

Significance level of the hypothesis test, specified as the comma-separated pair consisting of
'Alpha' and a scalar value in the range (0,1).
Example: 'Alpha',0.01
Data Types: single | double

Dim — Dimension
first nonsingleton dimension (default) | positive integer value

Dimension of the input matrix along which to test the means, specified as the comma-separated pair
consisting of 'Dim' and a positive integer value. For example, specifying 'Dim',1 tests the column
means, while 'Dim',2 tests the row means.
Example: 'Dim',2
Data Types: single | double

Tail — Type of alternative hypothesis
'both' (default) | 'left' | 'right'

Type of alternative hypothesis to evaluate, specified as the comma-separated pair consisting of
'Tail' and one of the following.

'both' Test the alternative hypothesis that the dispersion parameters of x and y are
not equal.

'right' Test the alternative hypothesis that the dispersion parameter of x is greater
than that of y.

'left' Test the alternative hypothesis that the dispersion parameter of x is less than
that of y.
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Example: 'Tail','right'

Method — Computation method
'exact' | 'approximate'

Computation method for the test statistic, specified as the comma-separated pair consisting of
'Method' and one of the following.

'exact' Compute p using an exact calculation of the distribution of the test statistic W.
This is the default if n, the total number of rows in x and y, is 25 or less. Note
that n is computed before any NaN values (representing missing data) are
removed.

'approximate' Compute p using a normal approximation for the statistic W*. This is the
default if n, the total number of rows in x and y, is greater than 25.

Example: 'Method','exact'

Output Arguments
h — Hypothesis test result
1 | 0

Hypothesis test result, returned as 1 or 0.

• If h = 1, this indicates the rejection of the null hypothesis at the Alpha significance level.
• If h = 0, this indicates a failure to reject the null hypothesis at the Alpha significance level.

p — p-value
scalar value in the range [0,1]

p-value of the test, returned as a scalar value in the range [0,1]. p is the probability of observing a
test statistic as extreme as, or more extreme than, the observed value under the null hypothesis.
Small values of p cast doubt on the validity of the null hypothesis.

stats — Test statistics
structure

Test statistics for the Ansari-Bradley test, returned as a structure containing:

• W — Value of the test statistic, which is the sum of the Ansari-Bradley ranks for the x sample.
• Wstar — Approximate normal statistic W*.

More About
Ansari-Bradley Test

The Ansari-Bradley test is a nonparametric alternative to the two-sample F-test of equal variances. It
does not require the assumption that x and y come from normal distributions. The dispersion of a
distribution is generally measured by its variance or standard deviation, but the Ansari-Bradley test
can be used with samples from distributions that do not have finite variances.

This test requires that the samples have equal medians. Under that assumption, and if the
distributions of the samples are continuous and identical, the test is independent of the distributions.
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If the samples do not have the same medians, the results can be misleading. In that case, Ansari and
Bradley recommend subtracting the median, but then the distribution of the resulting test under the
null hypothesis is no longer independent of the common distribution of x and y. If you want to
perform the tests with medians subtracted, you should subtract the medians from x and y before
calling ansaribradley.

Multidimensional Array

A multidimensional array has more than two dimensions. For example, if x is a 1-by-3-by-4 array, then
x is a three-dimensional array.

First Nonsingleton Dimension

The first nonsingleton dimension is the first dimension of an array whose size is not equal to 1. For
example, if x is a 1-by-2-by-3-by-4 array, then the second dimension is the first nonsingleton
dimension of x.

Version History
Introduced before R2006a

See Also
vartest2 | vartestn | ttest2
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aoctool
Interactive analysis of covariance

Syntax
aoctool(x,y,group)
aoctool(x,y,group,alpha)
aoctool(x,y,group,alpha,xname,yname,gname)
aoctool(x,y,group,alpha,xname,yname,gname,displayopt)
aoctool(x,y,group,alpha,xname,yname,gname,displayopt,model)
h = aoctool(...)
[h,atab,ctab] = aoctool(...)
[h,atab,ctab,stats] = aoctool(...)

Description
aoctool(x,y,group) fits a separate line to the column vectors, x and y, for each group defined by
the values in the array group. group may be a categorical variable, numeric vector, character array,
string array, or cell array of character vectors. These types of models are known as one-way analysis
of covariance (ANOCOVA) models. The output consists of three figures:

• An interactive graph of the data and prediction curves
• An ANOVA table
• A table of parameter estimates

You can use the figures to change models and to test different parts of the model. More information
about interactive use of the aoctool function appears in “Analysis of Covariance Tool” on page 9-39.

aoctool(x,y,group,alpha) determines the confidence levels of the prediction intervals. The
confidence level is 100(1-alpha)%. The default value of alpha is 0.05.

aoctool(x,y,group,alpha,xname,yname,gname) specifies the name to use for the x, y, and g
variables in the graph and tables. If you enter simple variable names for the x, y, and g arguments,
the aoctool function uses those names. If you enter an expression for one of these arguments, you
can specify a name to use in place of that expression by supplying these arguments. For example, if
you enter m(:,2) as the x argument, you might choose to enter 'Col 2' as the xname argument.

aoctool(x,y,group,alpha,xname,yname,gname,displayopt) enables the graph and table
displays when displayopt is 'on' (default) and suppresses those displays when displayopt is
'off'.

aoctool(x,y,group,alpha,xname,yname,gname,displayopt,model) specifies the initial
model to fit. The value of model can be any of the following:

• 'same mean' — Fit a single mean, ignoring grouping
• 'separate means' — Fit a separate mean to each group
• 'same line' — Fit a single line, ignoring grouping
• 'parallel lines' — Fit a separate line to each group, but constrain the lines to be parallel
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• 'separate lines' — Fit a separate line to each group, with no constraints

h = aoctool(...) returns a vector of handles to the line objects in the plot.

[h,atab,ctab] = aoctool(...) returns cell arrays containing the entries in ANOVA table (atab)
and the table of coefficient estimates (ctab). (You can copy a text version of either table to the
clipboard by using the Copy Text item on the Edit menu.)

[h,atab,ctab,stats] = aoctool(...) returns a stats structure that you can use to perform a
follow-up multiple comparison test. The ANOVA table output includes tests of the hypotheses that the
slopes or intercepts are all the same, against a general alternative that they are not all the same.
Sometimes it is preferable to perform a test to determine which pairs of values are significantly
different, and which are not. You can use the multcompare function to perform such tests by
supplying the stats structure as input. You can test either the slopes, the intercepts, or population
marginal means (the heights of the curves at the mean x value).

Examples
This example illustrates how to fit different models non-interactively. After loading the smaller car
data set and fitting a separate-slopes model, you can examine the coefficient estimates.

load carsmall
[h,a,c,s] = aoctool(Weight,MPG,Model_Year,0.05,...
                    '','','','off','separate lines');
c(:,1:2)
ans = 
  'Term'       'Estimate'
  'Intercept'  [45.97983716833132]
  ' 70'        [-8.58050531454973]
  ' 76'        [-3.89017396094922]
  ' 82'        [12.47067927549897]
  'Slope'      [-0.00780212907455]
  ' 70'        [ 0.00195840368824]
  ' 76'        [ 0.00113831038418]
  ' 82'        [-0.00309671407243]

Roughly speaking, the lines relating MPG to Weight have an intercept close to 45.98 and a slope close
to -0.0078. Each group's coefficients are offset from these values somewhat. For instance, the
intercept for the cars made in 1970 is 45.98-8.58 = 37.40.

Next, try a fit using parallel lines. (The ANOVA table shows that the parallel-lines fit is significantly
worse than the separate-lines fit.)

[h,a,c,s] = aoctool(Weight,MPG,Model_Year,0.05,...
                    '','','','off','parallel lines');

c(:,1:2)

ans = 

  'Term'       'Estimate'
  'Intercept'  [43.38984085130596]
  ' 70'        [-3.27948192983761]
  ' 76'        [-1.35036234809006]
  ' 82'        [ 4.62984427792768]
  'Slope'      [-0.00664751826198]
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Again, there are different intercepts for each group, but this time the slopes are constrained to be the
same.

Version History
Introduced before R2006a

See Also
anova1 | multcompare | polytool
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append
Append new trees to ensemble

Syntax
B = append(B,other)

Description
B = append(B,other) appends the trees from the other ensemble to those in B. This method
checks for consistency of the X and Y properties of the two ensembles, as well as consistency of their
compact objects and out-of-bag indices, before appending the trees. The output ensemble B takes
training parameters such as FBoot, Prior, Cost, and other from the B input. There is no attempt to
check if these training parameters are consistent between the two objects.

See Also
combine
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average
Compute performance metrics for average receiver operating characteristic (ROC) curve in
multiclass problem

Syntax
[FPR,TPR,Thresholds,AUC] = average(rocObj,type)

Description
[FPR,TPR,Thresholds,AUC] = average(rocObj,type) computes the averages of performance
metrics stored in the rocmetrics object rocObj for a multiclass classification problem using the
averaging method specified in type. The function returns the average false positive rate (FPR) and
the average true positive rate (TPR) for each threshold value in Thresholds. The function also
returns AUC, the area under the ROC curve composed of FPR and TPR.

Examples

Find Average ROC Curve

Compute the performance metrics for a multiclass classification problem by creating a rocmetrics
object, and then compute the average values for the metrics by using the average function. Plot the
average ROC curve using the outputs of average.

Load the fisheriris data set. The matrix meas contains flower measurements for 150 different
flowers. The vector species lists the species for each flower. species contains three distinct flower
names.

load fisheriris

Train a classification tree that classifies observations into one of the three labels. Cross-validate the
model using 10-fold cross-validation.

rng("default") % For reproducibility
Mdl = fitctree(meas,species,Crossval="on");

Compute the classification scores for validation-fold observations.

[~,Scores] = kfoldPredict(Mdl);
size(Scores)

ans = 1×2

   150     3

The output Scores is a matrix of size 150-by-3. The column order of Scores follows the class order
in Mdl, stored in Mdl.ClassNames.

Create a rocmetrics object by using the true labels in species and the classification scores in
Scores. Specify the column order of Scores using Mdl.ClassNames.
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rocObj = rocmetrics(species,Scores,Mdl.ClassNames);

rocmetrics computes the FPR and TPR at different thresholds and finds the AUC value for each
class.

Compute the average performance metric values, including the FPR and TPR at different thresholds
and the AUC value, using the macro-averaging method.

[FPR,TPR,Thresholds,AUC] = average(rocObj,"macro");

Plot the average ROC curve and display the average AUC value. Include (0,0) so that the curve starts
from the origin (0,0).

plot([0;FPR],[0;TPR])
xlabel("False Positive Rate")
ylabel("True Positive Rate")
title("Average ROC Curve")
hold on
plot([0,1],[0,1],"k--")
legend(join(["Macro-average (AUC =",AUC,")"]), ...
    Location="southeast")
axis padded
hold off

Alternatively, you can create the average ROC curve by using the plot function. Specify
AverageROCType="macro" to compute the metrics for the average ROC curve using the macro-
averaging method.
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plot(rocObj,AverageROCType="macro",ClassNames=[])

Input Arguments
rocObj — Object evaluating classification performance
rocmetrics object

Object evaluating classification performance, specified as a rocmetrics object.

type — Averaging method
"micro" | "macro" | "weighted"

Averaging method, specified as "micro", "macro", or "weighted".

• "micro" (micro-averaging) — average finds the average performance metrics by treating all
one-versus-all on page 35-136 binary classification problems as one binary classification problem.
The function computes the confusion matrix components for the combined binary classification
problem, and then computes the average FPR and TPR using the values of the confusion matrix.

• "macro" (macro-averaging) — average computes the average values for FPR and TPR by
averaging the values of all one-versus-all binary classification problems.

• "weighted" (weighted macro-averaging) — average computes the weighted average values for
FPR and TPR using the macro-averaging method and using the prior class probabilities (the
Prior property of rocObj) as weights.
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The algorithm type determines the length of the vectors for the output arguments (FPR, TPR, and
Thresholds). For more details, see “Average of Performance Metrics” on page 18-10.
Data Types: char | string

Output Arguments
FPR — Average false positive rates
numeric vector

Average false positive rates, returned as a numeric vector.

TPR — Average true positive rates
numeric vector

Average true positive rates, returned as a numeric vector.

Thresholds — Thresholds on classification scores
numeric vector

Thresholds on classification scores at which the function finds each of the average performance
metric values (FPR and TPR), returned as a vector.

AUC — Area under average ROC curve
numeric scalar

Area under the average ROC curve on page 35-136 composed of FPR and TPR, returned as a numeric
scalar.

More About
Receiver Operating Characteristic (ROC) Curve

A ROC curve shows the true positive rate versus the false positive rate for different thresholds of
classification scores.

The true positive rate and the false positive rate are defined as follows:

• True positive rate (TPR), also known as recall or sensitivity — TP/(TP+FN), where TP is the
number of true positives and FN is the number of false negatives

• False positive rate (FPR), also known as fallout or 1-specificity — FP/(TN+FP), where FP is the
number of false positives and TN is the number of true negatives

Each point on a ROC curve corresponds to a pair of TPR and FPR values for a specific threshold
value. You can find different pairs of TPR and FPR values by varying the threshold value, and then
create a ROC curve using the pairs. For each class, rocmetrics uses all distinct adjusted score on
page 35-136 values as threshold values to create a ROC curve.

For a multiclass classification problem, rocmetrics formulates a set of one-versus-all on page 35-
136 binary classification problems to have one binary problem for each class, and finds a ROC curve
for each class using the corresponding binary problem. Each binary problem assumes one class as
positive and the rest as negative.

For a binary classification problem, if you specify the classification scores as a matrix, rocmetrics
formulates two one-versus-all binary classification problems. Each of these problems treats one class
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as a positive class and the other class as a negative class, and rocmetrics finds two ROC curves.
Use one of the curves to evaluate the binary classification problem.

For more details, see “ROC Curve and Performance Metrics” on page 18-3.

Area Under ROC Curve (AUC)

The area under a ROC curve (AUC) corresponds to the integral of a ROC curve (TPR values) with
respect to FPR from FPR = 0 to FPR = 1.

The AUC provides an aggregate performance measure across all possible thresholds. The AUC values
are in the range 0 to 1, and larger AUC values indicate better classifier performance.

One-Versus-All (OVA) Coding Design

The one-versus-all (OVA) coding design reduces a multiclass classification problem to a set of binary
classification problems. In this coding design, each binary classification treats one class as positive
and the rest of the classes as negative. rocmetrics uses the OVA coding design for multiclass
classification and evaluates the performance on each class by using the binary classification that the
class is positive.

For example, the OVA coding design for three classes formulates three binary classifications:

Binary 1 Binary 2 Binary 3
Class 1 1 −1 −1
Class 2 −1 1 −1
Class 3 −1 −1 1

Each row corresponds to a class, and each column corresponds to a binary classification problem.
The first binary classification assumes that class 1 is a positive class and the rest of the classes are
negative. rocmetrics evaluates the performance on the first class by using the first binary
classification problem.

Algorithms
Adjusted Scores for Multiclass Classification Problem

For each class, rocmetrics adjusts the classification scores (input argument Scores of
rocmetrics) relative to the scores for the rest of the classes if you specify Scores as a matrix.
Specifically, the adjusted score for a class given an observation is the difference between the score
for the class and the maximum value of the scores for the rest of the classes.

For example, if you have [s1,s2,s3] in a row of Scores for a classification problem with three classes,
the adjusted score values are [s1-max(s2,s3),s2-max(s1,s3),s3-max(s1,s2)].

rocmetrics computes the performance metrics using the adjusted score values for each class.

For a binary classification problem, you can specify Scores as a two-column matrix or a column
vector. Using a two-column matrix is a simpler option because the predict function of a
classification object returns classification scores as a matrix, which you can pass to rocmetrics. If
you pass scores in a two-column matrix, rocmetrics adjusts scores in the same way that it adjusts
scores for multiclass classification, and it computes performance metrics for both classes. You can
use the metric values for one of the two classes to evaluate the binary classification problem. The
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metric values for a class returned by rocmetrics when you pass a two-column matrix are equivalent
to the metric values returned by rocmetrics when you specify classification scores for the class as a
column vector.

Alternative Functionality
• You can use the plot function to create the average ROC curve. The function returns a ROCCurve

object containing the XData, YData, Thresholds, and AUC properties, which correspond to the
output arguments FPR, TPR, Thresholds, and AUC of the average function, respectively. For an
example, see “Plot Average ROC Curve for Multiclass Classifier” on page 35-5489.

Version History
Introduced in R2022a

References
[1] Sebastiani, Fabrizio. "Machine Learning in Automated Text Categorization." ACM Computing

Surveys 34, no. 1 (March 2002): 1–47.

See Also
rocmetrics | addMetrics | plot

Topics
“ROC Curve and Performance Metrics” on page 18-3
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barttest
Bartlett’s test

Syntax
ndim = barttest(x,alpha)
[ndim,prob,chisquare] = barttest(x,alpha)

Description
ndim = barttest(x,alpha) returns the number of dimensions necessary to explain the
nonrandom variation in the data matrix x at the alpha significance level.

[ndim,prob,chisquare] = barttest(x,alpha) also returns the significance values for the
hypothesis tests prob, and the χ2 values associated with the tests chisquare.

Examples

Determine Dimensions Needed to Explain Nonrandom Data Variation

Generate a 20-by-6 matrix of random numbers from a multivariate normal distribution with mean mu
= [0 0] and covariance sigma = [1 0.99; 0.99 1].

rng default  % for reproducibility
mu = [0 0];
sigma = [1 0.99; 0.99 1];
X = mvnrnd(mu,sigma,20);  % columns 1 and 2
X(:,3:4) = mvnrnd(mu,sigma,20);  % columns 3 and 4
X(:,5:6) = mvnrnd(mu,sigma,20);  % columns 5 and 6

Determine the number of dimensions necessary to explain the nonrandom variation in data matrix X.
Report the significance values for the hypothesis tests.

[ndim, prob] = barttest(X,0.05)

ndim = 3

prob = 5×1

    0.0000
    0.0000
    0.0000
    0.5148
    0.3370

The returned value of ndim indicates that three dimensions are necessary to explain the nonrandom
variation in X.
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Input Arguments
x — Input data
matrix of scalar values

Input data, specified as a matrix of scalar values.
Data Types: single | double

alpha — Significance level
0.05 (default) | scalar value in the range (0,1)

Significance level of the hypothesis test, specified as a scalar value in the range (0,1).
Example: 0.1
Data Types: single | double

Output Arguments
ndim — Number of dimensions
positive integer value

Number of dimensions, returned as a positive integer value. The dimension is determined by a series
of hypothesis tests. The test for ndim = 1 tests the hypothesis that the variances of the data values
along each principal component are equal, the test for ndim = 2 tests the hypothesis that the
variances along the second through last components are equal, and so on. The null hypothesis is that
the number of dimensions is equal to the number of the largest unequal eigenvalues of the covariance
matrix of x.

prob — Significance value
vector of scalar values in the range (0,1)

Significance value for the hypothesis tests, returned as a vector of scalar values in the range (0,1).
Each element in prob corresponds to an element of chisquare.

chisquare — Test statistics
vector of scalar values

Test statistics for each dimension’s hypothesis test, returned as a vector of scalar values.

Version History
Introduced before R2006a

See Also
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BayesianOptimization
Bayesian optimization results

Description
A BayesianOptimization object contains the results of a Bayesian optimization. It is the output of
bayesopt or a fit function that accepts the OptimizeHyperparameters name-value pair such as
fitcdiscr. In addition, a BayesianOptimization object contains data for each iteration of
bayesopt that can be accessed by a plot function or an output function.

Creation
Create a BayesianOptimization object by using the bayesopt function or one of the following fit
functions with the OptimizeHyperparameters name-value argument.

• Classification fit functions: fitcdiscr, fitcecoc, fitcensemble, fitcgam, fitckernel,
fitcknn, fitclinear, fitcnb, fitcnet, fitcsvm, fitctree

• Regression fit functions: fitrensemble, fitrgam, fitrgp, fitrkernel, fitrlinear,
fitrnet, fitrsvm, fitrtree

Properties
Problem Definition Properties

ObjectiveFcn — ObjectiveFcn argument used by bayesopt
function handle

This property is read-only.

ObjectiveFcn argument used by bayesopt, specified as a function handle.

• If you call bayesopt directly, ObjectiveFcn is the bayesopt objective function argument.
• If you call a fit function containing the 'OptimizeHyperparameters' name-value pair

argument, ObjectiveFcn is a function handle that returns the misclassification rate for
classification or returns the logarithm of one plus the cross-validation loss for regression,
measured by five-fold cross-validation.

Data Types: function_handle

VariableDescriptions — VariableDescriptions argument that bayesopt used
vector of optimizableVariable objects

This property is read-only.

VariableDescriptions argument that bayesopt used, specified as a vector of
optimizableVariable objects.
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• If you called bayesopt directly, VariableDescriptions is the bayesopt variable description
argument.

• If you called a fit function with the OptimizeHyperparameters name-value pair,
VariableDescriptions is the vector of hyperparameters.

Options — Options that bayesopt used
structure

This property is read-only.

Options that bayesopt used, specified as a structure.

• If you called bayesopt directly, Options is the options used in bayesopt, which are the name-
value pairs See bayesopt “Input Arguments” on page 35-164.

• If you called a fit function with the OptimizeHyperparameters name-value pair, Options are
the default bayesopt options, modified by the HyperparameterOptimizationOptions name-
value pair.

Options is a read-only structure containing the following fields.

Option Name Meaning
AcquisitionFunctionName Acquisition function name. See “Acquisition Function

Types” on page 10-3.
IsObjectiveDeterministic true means the objective function is deterministic,

false otherwise.
ExplorationRatio Used only when AcquisitionFunctionName is

'expected-improvement-plus' or 'expected-
improvement-per-second-plus'. See “Plus” on page
10-5.

  
MaxObjectiveEvaluations Objective function evaluation limit.
MaxTime Time limit.
  
XConstraintFcn Deterministic constraints on variables. See “Deterministic

Constraints — XConstraintFcn” on page 10-39.
ConditionalVariableFcn Conditional variable constraints. See “Conditional

Constraints — ConditionalVariableFcn” on page 10-40.
NumCoupledConstraints Number of coupled constraints. See “Coupled

Constraints” on page 10-41.
CoupledConstraintTolerances Coupled constraint tolerances. See “Coupled Constraints”

on page 10-41.
AreCoupledConstraintsDeterminis
tic

Logical vector specifying whether each coupled
constraint is deterministic.

  
Verbose Command-line display level.
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Option Name Meaning
OutputFcn Function called after each iteration. See “Bayesian

Optimization Output Functions” on page 10-19.
SaveVariableName Variable name for the @assignInBase output function.
SaveFileName File name for the @saveToFile output function.
PlotFcn Plot function called after each iteration. See “Bayesian

Optimization Plot Functions” on page 10-11
  
InitialX Points where bayesopt evaluated the objective function.
InitialObjective Objective function values at InitialX.
InitialConstraintViolations Coupled constraint function values at InitialX.
InitialErrorValues Error values at InitialX.
InitialObjectiveEvaluationTimes Objective function evaluation times at InitialX.
InitialIterationTimes Time for each iteration, including objective function

evaluation and other computations.

Data Types: struct

Solution Properties

MinObjective — Minimum observed value of objective function
real scalar

This property is read-only.

Minimum observed value of objective function, specified as a real scalar. When there are coupled
constraints or evaluation errors, this value is the minimum over all observed points that are feasible
according to the final constraint and Error models.
Data Types: double

XAtMinObjective — Observed point with minimum objective function value
1-by-D table

This property is read-only.

Observed point with minimum objective function value, specified as a 1-by-D table, where D is the
number of variables.
Data Types: table

MinEstimatedObjective — Estimated objective function value
real scalar

This property is read-only.

Estimated objective function value at XAtMinEstimatedObjective, specified as a real scalar.

MinEstimatedObjective is the mean value of the posterior distribution of the final objective
model. The software estimates the MinEstimatedObjective value by passing
XAtMinEstimatedObjective to the object function predictObjective.
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Data Types: double

XAtMinEstimatedObjective — Point with minimum upper confidence bound of objective
function value
1-by-D table

This property is read-only.

Point with the minimum upper confidence bound of the objective function value among the visited
points, specified as a 1-by-D table, where D is the number of variables. The software uses the final
objective model to find the upper confidence bounds of the visited points.

XAtMinEstimatedObjective is the same as the best point returned by the bestPoint function
with the default criterion ('min-visited-upper-confidence-interval').
Data Types: table

NumObjectiveEvaluations — Number of objective function evaluations
positive integer

This property is read-only.

Number of objective function evaluations, specified as a positive integer. This includes the initial
evaluations to form a posterior model as well as evaluation during the optimization iterations.
Data Types: double

TotalElapsedTime — Total elapsed time of optimization in seconds
positive scalar

This property is read-only.

Total elapsed time of optimization in seconds, specified as a positive scalar.
Data Types: double

NextPoint — Next point to evaluate if optimization continues
1-by-D table

This property is read-only.

Next point to evaluate if optimization continues, specified as a 1-by-D table, where D is the number of
variables.
Data Types: table

Trace Properties

XTrace — Points where the objective function was evaluated
T-by-D table

This property is read-only.

Points where the objective function was evaluated, specified as a T-by-D table, where T is the number
of evaluation points and D is the number of variables.
Data Types: table
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ObjectiveTrace — Objective function values
column vector of length T

This property is read-only.

Objective function values, specified as a column vector of length T, where T is the number of
evaluation points. ObjectiveTrace contains the history of objective function evaluations.
Data Types: double

ObjectiveEvaluationTimeTrace — Objective function evaluation times
column vector of length T

This property is read-only.

Objective function evaluation times, specified as a column vector of length T, where T is the number
of evaluation points. ObjectiveEvaluationTimeTrace includes the time in evaluating coupled
constraints, because the objective function computes these constraints.
Data Types: double

IterationTimeTrace — Iteration times
column vector of length T

This property is read-only.

Iteration times, specified as a column vector of length T, where T is the number of evaluation points.
IterationTimeTrace includes both objective function evaluation time and other overhead.
Data Types: double

ConstraintsTrace — Coupled constraint values
T-by-K array

This property is read-only.

Coupled constraint values, specified as a T-by-K array, where T is the number of evaluation points and
K is the number of coupled constraints.
Data Types: double

ErrorTrace — Error indications
column vector of length T of -1 or 1 entries

This property is read-only.

Error indications, specified as a column vector of length T of -1 or 1 entries, where T is the number
of evaluation points. Each 1 entry indicates that the objective function errored or returned NaN on the
corresponding point in XTrace. Each -1 entry indicates that the objective function value was
computed.
Data Types: double

FeasibilityTrace — Feasibility indications
logical column vector of length T

This property is read-only.
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Feasibility indications, specified as a logical column vector of length T, where T is the number of
evaluation points. Each 1 entry indicates that the final constraint model predicts feasibility at the
corresponding point in XTrace.
Data Types: logical

FeasibilityProbabilityTrace — Probability that evaluation point is feasible
column vector of length T

This property is read-only.

Probability that evaluation point is feasible, specified as a column vector of length T, where T is the
number of evaluation points. The probabilities come from the final constraint model, including the
error constraint model, on the corresponding points in XTrace.
Data Types: double

IndexOfMinimumTrace — Which evaluation gave minimum feasible objective
column vector of integer indices of length T

This property is read-only.

Which evaluation gave minimum feasible objective, specified as a column vector of integer indices of
length T, where T is the number of evaluation points. Feasibility is determined with respect to the
constraint models that existed at each iteration, including the error constraint model.
Data Types: double

ObjectiveMinimumTrace — Minimum observed objective
column vector of length T

This property is read-only.

Minimum observed objective, specified as a column vector of length T, where T is the number of
evaluation points.
Data Types: double

EstimatedObjectiveMinimumTrace — Estimated objective
column vector of length T

This property is read-only.

Estimated objective, specified as a column vector of length T, where T is the number of evaluation
points. The estimated objective at each iteration is determined with respect to the objective model at
that iteration. At each iteration, the software uses the object function predictObjective to
estimate the objective function value at the point with the minimum upper confidence bound of the
objective function among the visited points.
Data Types: double

UserDataTrace — Auxiliary data from the objective function
cell array of length T

This property is read-only.
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Auxiliary data from the objective function, specified as a cell array of length T, where T is the number
of evaluation points. Each entry in the cell array is the UserData returned in the third output of the
objective function.
Data Types: cell

Object Functions
bestPoint Best point in a Bayesian optimization according to a criterion
plot Plot Bayesian optimization results
predictConstraints Predict coupled constraint violations at a set of points
predictError Predict error value at a set of points
predictObjective Predict objective function at a set of points
predictObjectiveEvaluationTime Predict objective function run times at a set of points
resume Resume a Bayesian optimization

Examples

Create a BayesianOptimization Object Using bayesopt

This example shows how to create a BayesianOptimization object by using bayesopt to minimize
cross-validation loss.

Optimize hyperparameters of a KNN classifier for the ionosphere data, that is, find KNN
hyperparameters that minimize the cross-validation loss. Have bayesopt minimize over the following
hyperparameters:

• Nearest-neighborhood sizes from 1 to 30
• Distance functions 'chebychev', 'euclidean', and 'minkowski'.

For reproducibility, set the random seed, set the partition, and set the AcquisitionFunctionName
option to 'expected-improvement-plus'. To suppress iterative display, set 'Verbose' to 0. Pass
the partition c and fitting data X and Y to the objective function fun by creating fun as an
anonymous function that incorporates this data. See “Parameterizing Functions”.

load ionosphere
rng default
num = optimizableVariable('n',[1,30],'Type','integer');
dst = optimizableVariable('dst',{'chebychev','euclidean','minkowski'},'Type','categorical');
c = cvpartition(351,'Kfold',5);
fun = @(x)kfoldLoss(fitcknn(X,Y,'CVPartition',c,'NumNeighbors',x.n,...
    'Distance',char(x.dst),'NSMethod','exhaustive'));
results = bayesopt(fun,[num,dst],'Verbose',0,...
    'AcquisitionFunctionName','expected-improvement-plus')
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results = 
  BayesianOptimization with properties:

                      ObjectiveFcn: [function_handle]
              VariableDescriptions: [1x2 optimizableVariable]
                           Options: [1x1 struct]
                      MinObjective: 0.1197
                   XAtMinObjective: [1x2 table]
             MinEstimatedObjective: 0.1213
          XAtMinEstimatedObjective: [1x2 table]
           NumObjectiveEvaluations: 30
                  TotalElapsedTime: 70.5632
                         NextPoint: [1x2 table]
                            XTrace: [30x2 table]
                    ObjectiveTrace: [30x1 double]
                  ConstraintsTrace: []
                     UserDataTrace: {30x1 cell}
      ObjectiveEvaluationTimeTrace: [30x1 double]
                IterationTimeTrace: [30x1 double]
                        ErrorTrace: [30x1 double]
                  FeasibilityTrace: [30x1 logical]
       FeasibilityProbabilityTrace: [30x1 double]
               IndexOfMinimumTrace: [30x1 double]
             ObjectiveMinimumTrace: [30x1 double]
    EstimatedObjectiveMinimumTrace: [30x1 double]
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Create a BayesianOptimization Object Using a Fit Function

This example shows how to minimize the cross-validation loss in the ionosphere data using
Bayesian optimization of an SVM classifier.

Load the data.

load ionosphere

Optimize the classification using the 'auto' parameters.

rng default % For reproducibility
Mdl = fitcsvm(X,Y,'OptimizeHyperparameters','auto')

|=====================================================================================================|
| Iter | Eval   | Objective   | Objective   | BestSoFar   | BestSoFar   | BoxConstraint|  KernelScale |
|      | result |             | runtime     | (observed)  | (estim.)    |              |              |
|=====================================================================================================|
|    1 | Best   |     0.21937 |        30.5 |     0.21937 |     0.21937 |       64.836 |    0.0015729 |
|    2 | Accept |     0.35897 |     0.26679 |     0.21937 |     0.22807 |     0.036335 |       5.5755 |
|    3 | Best   |     0.13105 |      12.842 |     0.13105 |     0.14149 |    0.0022147 |    0.0023957 |
|    4 | Accept |     0.35897 |     0.33472 |     0.13105 |     0.13108 |       5.1259 |        98.62 |
|    5 | Best   |     0.12821 |     0.37408 |     0.12821 |     0.12823 |    0.0010294 |      0.03159 |
|    6 | Accept |      0.1396 |     0.57538 |     0.12821 |     0.13068 |    0.0011115 |    0.0086377 |
|    7 | Best   |     0.12536 |     0.29126 |     0.12536 |     0.12933 |    0.0010606 |     0.016446 |
|    8 | Accept |     0.13105 |      2.1845 |     0.12536 |     0.12874 |     0.035889 |     0.018531 |
|    9 | Accept |     0.12536 |     0.35834 |     0.12536 |      0.1248 |    0.0010456 |     0.021249 |
|   10 | Accept |     0.12821 |     0.40041 |     0.12536 |     0.12549 |    0.0025112 |     0.020407 |
|   11 | Best   |     0.12251 |     0.29842 |     0.12251 |     0.12464 |    0.0010061 |     0.023339 |
|   12 | Accept |     0.12821 |     0.35138 |     0.12251 |     0.12557 |    0.0011005 |     0.021313 |
|   13 | Accept |     0.35897 |     0.21693 |     0.12251 |     0.12547 |       2.4705 |       957.64 |
|   14 | Accept |     0.35897 |     0.23039 |     0.12251 |     0.12545 |    0.0010144 |        40.05 |
|   15 | Accept |     0.35897 |     0.20217 |     0.12251 |     0.12547 |    0.0010315 |       324.64 |
|   16 | Accept |     0.35897 |     0.24637 |     0.12251 |     0.12537 |    0.0010105 |      0.88564 |
|   17 | Accept |     0.35897 |     0.21962 |     0.12251 |     0.12537 |    0.0010627 |       996.42 |
|   18 | Accept |     0.12821 |      7.9796 |     0.12251 |     0.12541 |       995.49 |       1.8554 |
|   19 | Accept |     0.13105 |      27.783 |     0.12251 |     0.12543 |       998.73 |      0.20605 |
|   20 | Accept |     0.13675 |      19.697 |     0.12251 |     0.12519 |          907 |      0.70254 |
|=====================================================================================================|
| Iter | Eval   | Objective   | Objective   | BestSoFar   | BestSoFar   | BoxConstraint|  KernelScale |
|      | result |             | runtime     | (observed)  | (estim.)    |              |              |
|=====================================================================================================|
|   21 | Accept |     0.14245 |     0.52257 |     0.12251 |     0.12513 |     0.034022 |     0.039089 |
|   22 | Accept |      0.1339 |      23.649 |     0.12251 |     0.12509 |       4.8359 |     0.037952 |
|   23 | Accept |      0.1339 |      21.483 |     0.12251 |     0.12512 |    0.0010028 |     0.001006 |
|   24 | Accept |     0.12251 |     0.22325 |     0.12251 |      0.1252 |     0.028698 |      0.27562 |
|   25 | Accept |     0.12821 |     0.32581 |     0.12251 |     0.12514 |      0.21685 |      0.18346 |
|   26 | Accept |     0.12821 |     0.23294 |     0.12251 |     0.12524 |     0.037898 |      0.17167 |
|   27 | Accept |     0.12251 |     0.31169 |     0.12251 |     0.12221 |      0.21441 |      0.26977 |
|   28 | Accept |      0.1453 |      0.2059 |     0.12251 |     0.12204 |    0.0011073 |      0.18933 |
|   29 | Accept |      0.1339 |     0.25278 |     0.12251 |     0.12549 |     0.051261 |      0.23743 |
|   30 | Accept |      0.1339 |     0.39775 |     0.12251 |     0.12556 |      0.55294 |      0.26671 |
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__________________________________________________________
Optimization completed.
MaxObjectiveEvaluations of 30 reached.
Total function evaluations: 30
Total elapsed time: 199.0054 seconds
Total objective function evaluation time: 152.9564

Best observed feasible point:
    BoxConstraint    KernelScale
    _____________    ___________

      0.0010061       0.023339  

Observed objective function value = 0.12251
Estimated objective function value = 0.12555
Function evaluation time = 0.29842

Best estimated feasible point (according to models):
    BoxConstraint    KernelScale
    _____________    ___________
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      0.0011005       0.021313  

Estimated objective function value = 0.12556
Estimated function evaluation time = 0.32863

Mdl = 
  ClassificationSVM
                         ResponseName: 'Y'
                CategoricalPredictors: []
                           ClassNames: {'b'  'g'}
                       ScoreTransform: 'none'
                      NumObservations: 351
    HyperparameterOptimizationResults: [1x1 BayesianOptimization]
                                Alpha: [94x1 double]
                                 Bias: -5.4265
                     KernelParameters: [1x1 struct]
                       BoxConstraints: [351x1 double]
                      ConvergenceInfo: [1x1 struct]
                      IsSupportVector: [351x1 logical]
                               Solver: 'SMO'

  Properties, Methods

The fit achieved about 12% loss for the default 5-fold cross validation.

Examine the BayesianOptimization object that is returned in the
HyperparameterOptimizationResults property of the returned model.

disp(Mdl.HyperparameterOptimizationResults)

  BayesianOptimization with properties:

                      ObjectiveFcn: @createObjFcn/inMemoryObjFcn
              VariableDescriptions: [5x1 optimizableVariable]
                           Options: [1x1 struct]
                      MinObjective: 0.1225
                   XAtMinObjective: [1x2 table]
             MinEstimatedObjective: 0.1256
          XAtMinEstimatedObjective: [1x2 table]
           NumObjectiveEvaluations: 30
                  TotalElapsedTime: 199.0054
                         NextPoint: [1x2 table]
                            XTrace: [30x2 table]
                    ObjectiveTrace: [30x1 double]
                  ConstraintsTrace: []
                     UserDataTrace: {30x1 cell}
      ObjectiveEvaluationTimeTrace: [30x1 double]
                IterationTimeTrace: [30x1 double]
                        ErrorTrace: [30x1 double]
                  FeasibilityTrace: [30x1 logical]
       FeasibilityProbabilityTrace: [30x1 double]
               IndexOfMinimumTrace: [30x1 double]
             ObjectiveMinimumTrace: [30x1 double]
    EstimatedObjectiveMinimumTrace: [30x1 double]
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Version History
Introduced in R2016b

See Also
bayesopt

Topics
“Bayesian Optimization Workflow” on page 10-25
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bayesopt
Select optimal machine learning hyperparameters using Bayesian optimization

Syntax
results = bayesopt(fun,vars)
results = bayesopt(fun,vars,Name,Value)

Description
results = bayesopt(fun,vars) attempts to find values of vars that minimize fun(vars).

Note To include extra parameters in an objective function, see “Parameterizing Functions”.

results = bayesopt(fun,vars,Name,Value) modifies the optimization process according to
the Name,Value arguments.

Examples

Create a BayesianOptimization Object Using bayesopt

This example shows how to create a BayesianOptimization object by using bayesopt to minimize
cross-validation loss.

Optimize hyperparameters of a KNN classifier for the ionosphere data, that is, find KNN
hyperparameters that minimize the cross-validation loss. Have bayesopt minimize over the following
hyperparameters:

• Nearest-neighborhood sizes from 1 to 30
• Distance functions 'chebychev', 'euclidean', and 'minkowski'.

For reproducibility, set the random seed, set the partition, and set the AcquisitionFunctionName
option to 'expected-improvement-plus'. To suppress iterative display, set 'Verbose' to 0. Pass
the partition c and fitting data X and Y to the objective function fun by creating fun as an
anonymous function that incorporates this data. See “Parameterizing Functions”.

load ionosphere
rng default
num = optimizableVariable('n',[1,30],'Type','integer');
dst = optimizableVariable('dst',{'chebychev','euclidean','minkowski'},'Type','categorical');
c = cvpartition(351,'Kfold',5);
fun = @(x)kfoldLoss(fitcknn(X,Y,'CVPartition',c,'NumNeighbors',x.n,...
    'Distance',char(x.dst),'NSMethod','exhaustive'));
results = bayesopt(fun,[num,dst],'Verbose',0,...
    'AcquisitionFunctionName','expected-improvement-plus')
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results = 
  BayesianOptimization with properties:

                      ObjectiveFcn: [function_handle]
              VariableDescriptions: [1x2 optimizableVariable]
                           Options: [1x1 struct]
                      MinObjective: 0.1197
                   XAtMinObjective: [1x2 table]
             MinEstimatedObjective: 0.1213
          XAtMinEstimatedObjective: [1x2 table]
           NumObjectiveEvaluations: 30
                  TotalElapsedTime: 70.5632
                         NextPoint: [1x2 table]
                            XTrace: [30x2 table]
                    ObjectiveTrace: [30x1 double]
                  ConstraintsTrace: []
                     UserDataTrace: {30x1 cell}
      ObjectiveEvaluationTimeTrace: [30x1 double]
                IterationTimeTrace: [30x1 double]
                        ErrorTrace: [30x1 double]
                  FeasibilityTrace: [30x1 logical]
       FeasibilityProbabilityTrace: [30x1 double]
               IndexOfMinimumTrace: [30x1 double]
             ObjectiveMinimumTrace: [30x1 double]
    EstimatedObjectiveMinimumTrace: [30x1 double]
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Bayesian Optimization with Coupled Constraints

A coupled constraint is one that can be evaluated only by evaluating the objective function. In this
case, the objective function is the cross-validated loss of an SVM model. The coupled constraint is
that the number of support vectors is no more than 100. The model details are in “Optimize Cross-
Validated Classifier Using bayesopt” on page 10-46.

Create the data for classification.

rng default
grnpop = mvnrnd([1,0],eye(2),10);
redpop = mvnrnd([0,1],eye(2),10);
redpts = zeros(100,2);
grnpts = redpts;
for i = 1:100
    grnpts(i,:) = mvnrnd(grnpop(randi(10),:),eye(2)*0.02);
    redpts(i,:) = mvnrnd(redpop(randi(10),:),eye(2)*0.02);
end
cdata = [grnpts;redpts];
grp = ones(200,1);
grp(101:200) = -1;
c = cvpartition(200,'KFold',10);
sigma = optimizableVariable('sigma',[1e-5,1e5],'Transform','log');
box = optimizableVariable('box',[1e-5,1e5],'Transform','log');

The objective function is the cross-validation loss of the SVM model for partition c. The coupled
constraint is the number of support vectors minus 100.5. This ensures that 100 support vectors give a
negative constraint value, but 101 support vectors give a positive value. The model has 200 data
points, so the coupled constraint values range from -99.5 (there is always at least one support vector)
to 99.5. Positive values mean the constraint is not satisfied.

function [objective,constraint] = mysvmfun(x,cdata,grp,c)
SVMModel = fitcsvm(cdata,grp,'KernelFunction','rbf',...
    'BoxConstraint',x.box,...
    'KernelScale',x.sigma);
cvModel = crossval(SVMModel,'CVPartition',c);
objective = kfoldLoss(cvModel);
constraint = sum(SVMModel.IsSupportVector)-100.5;

Pass the partition c and fitting data cdata and grp to the objective function fun by creating fun as
an anonymous function that incorporates this data. See “Parameterizing Functions”.

fun = @(x)mysvmfun(x,cdata,grp,c);

Set the NumCoupledConstraints to 1 so the optimizer knows that there is a coupled constraint. Set
options to plot the constraint model.

results = bayesopt(fun,[sigma,box],'IsObjectiveDeterministic',true,...
    'NumCoupledConstraints',1,'PlotFcn',...
    {@plotMinObjective,@plotConstraintModels},...
    'AcquisitionFunctionName','expected-improvement-plus','Verbose',0);
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Most points lead to an infeasible number of support vectors.

Parallel Bayesian Optimization

Improve the speed of a Bayesian optimization by using parallel objective function evaluation.

Prepare variables and the objective function for Bayesian optimization.

The objective function is the cross-validation error rate for the ionosphere data, a binary classification
problem. Use fitcsvm as the classifier, with BoxConstraint and KernelScale as the parameters
to optimize.

load ionosphere
box = optimizableVariable('box',[1e-4,1e3],'Transform','log');
kern = optimizableVariable('kern',[1e-4,1e3],'Transform','log');
vars = [box,kern];
fun = @(vars)kfoldLoss(fitcsvm(X,Y,'BoxConstraint',vars.box,'KernelScale',vars.kern,...
    'Kfold',5));
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Search for the parameters that give the lowest cross-validation error by using parallel Bayesian
optimization.

results = bayesopt(fun,vars,'UseParallel',true);

Copying objective function to workers...
Done copying objective function to workers.

|===============================================================================================================|
| Iter | Active  | Eval   | Objective   | Objective   | BestSoFar   | BestSoFar   |          box |         kern |
|      | workers | result |             | runtime     | (observed)  | (estim.)    |              |              |
|===============================================================================================================|
|    1 |       2 | Accept |      0.2735 |     0.56171 |     0.13105 |     0.13108 |    0.0002608 |       0.2227 |
|    2 |       2 | Accept |     0.35897 |      0.4062 |     0.13105 |     0.13108 |       3.6999 |       344.01 |
|    3 |       2 | Accept |     0.13675 |     0.42727 |     0.13105 |     0.13108 |      0.33594 |      0.39276 |
|    4 |       2 | Accept |     0.35897 |      0.4453 |     0.13105 |     0.13108 |     0.014127 |       449.58 |
|    5 |       2 | Best   |     0.13105 |     0.45503 |     0.13105 |     0.13108 |      0.29713 |       1.0859 |

|    6 |       6 | Accept |     0.35897 |     0.16605 |     0.13105 |     0.13108 |       8.1878 |        256.9 |

|    7 |       5 | Best   |     0.11396 |     0.51146 |     0.11396 |     0.11395 |       8.7331 |       0.7521 |
|    8 |       5 | Accept |     0.14245 |     0.24943 |     0.11396 |     0.11395 |    0.0020774 |     0.022712 |

|    9 |       6 | Best   |     0.10826 |      4.0711 |     0.10826 |     0.10827 |    0.0015925 |    0.0050225 |

|   10 |       6 | Accept |     0.25641 |      16.265 |     0.10826 |     0.10829 |   0.00057357 |   0.00025895 |

|   11 |       6 | Accept |      0.1339 |      15.581 |     0.10826 |     0.10829 |       1.4553 |     0.011186 |

|   12 |       6 | Accept |     0.16809 |      19.585 |     0.10826 |     0.10828 |      0.26919 |   0.00037649 |

|   13 |       6 | Accept |     0.20513 |      18.637 |     0.10826 |     0.10828 |       369.59 |     0.099122 |

|   14 |       6 | Accept |     0.12536 |     0.11382 |     0.10826 |     0.10829 |       5.7059 |       2.5642 |

|   15 |       6 | Accept |     0.13675 |        2.63 |     0.10826 |     0.10828 |       984.19 |       2.2214 |

|   16 |       6 | Accept |     0.12821 |      2.0743 |     0.10826 |     0.11144 |    0.0063411 |    0.0090242 |

|   17 |       6 | Accept |      0.1339 |      0.1939 |     0.10826 |     0.11302 |   0.00010225 |    0.0076795 |

|   18 |       6 | Accept |     0.12821 |     0.20933 |     0.10826 |     0.11376 |       7.7447 |       1.2868 |

|   19 |       4 | Accept |     0.55556 |      17.564 |     0.10826 |     0.10828 |    0.0087593 |   0.00014486 |
|   20 |       4 | Accept |      0.1396 |      16.473 |     0.10826 |     0.10828 |     0.054844 |     0.004479 |
|===============================================================================================================|
| Iter | Active  | Eval   | Objective   | Objective   | BestSoFar   | BestSoFar   |          box |         kern |
|      | workers | result |             | runtime     | (observed)  | (estim.)    |              |              |
|===============================================================================================================|
|   21 |       4 | Accept |      0.1339 |     0.17127 |     0.10826 |     0.10828 |       9.2668 |       1.2171 |

|   22 |       4 | Accept |     0.12821 |    0.089065 |     0.10826 |     0.10828 |       12.265 |       8.5455 |

|   23 |       4 | Accept |     0.12536 |    0.073586 |     0.10826 |     0.10828 |       1.3355 |       2.8392 |

|   24 |       4 | Accept |     0.12821 |     0.08038 |     0.10826 |     0.10828 |       131.51 |       16.878 |

|   25 |       3 | Accept |     0.11111 |      10.687 |     0.10826 |     0.10867 |       1.4795 |     0.041452 |
|   26 |       3 | Accept |     0.13675 |     0.18626 |     0.10826 |     0.10867 |       2.0513 |      0.70421 |

|   27 |       6 | Accept |     0.12821 |    0.078559 |     0.10826 |     0.10868 |       980.04 |        44.19 |
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|   28 |       5 | Accept |     0.33048 |    0.089844 |     0.10826 |     0.10843 |      0.41821 |       10.208 |
|   29 |       5 | Accept |     0.16239 |     0.12688 |     0.10826 |     0.10843 |       172.39 |       141.43 |

|   30 |       5 | Accept |     0.11966 |     0.14597 |     0.10826 |     0.10846 |       639.15 |        14.75 |
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__________________________________________________________
Optimization completed.
MaxObjectiveEvaluations of 30 reached.
Total function evaluations: 30
Total elapsed time: 48.2085 seconds.
Total objective function evaluation time: 128.3472

Best observed feasible point:
       box         kern   
    _________    _________

    0.0015925    0.0050225

Observed objective function value = 0.10826
Estimated objective function value = 0.10846
Function evaluation time = 4.0711

Best estimated feasible point (according to models):
       box         kern   
    _________    _________

    0.0015925    0.0050225

Estimated objective function value = 0.10846
Estimated function evaluation time = 2.8307
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Return the best feasible point in the Bayesian model results by using the bestPoint function. Use
the default criterion min-visited-upper-confidence-interval, which determines the best
feasible point as the visited point that minimizes an upper confidence interval on the objective
function value.

zbest = bestPoint(results)

zbest=1×2 table
       box         kern   
    _________    _________

    0.0015925    0.0050225

The table zbest contains the optimal estimated values for the 'BoxConstraint' and
'KernelScale' name-value pair arguments. Use these values to train a new optimized classifier.

Mdl = fitcsvm(X,Y,'BoxConstraint',zbest.box,'KernelScale',zbest.kern);

Observe that the optimal parameters are in Mdl.

Mdl.BoxConstraints(1)

ans = 0.0016

Mdl.KernelParameters.Scale

ans = 0.0050

Input Arguments
fun — Objective function
function handle | parallel.pool.Constant whose Value is a function handle

Objective function, specified as a function handle or, when the UseParallel name-value pair is
true, a parallel.pool.Constant whose Value is a function handle. Typically, fun returns a
measure of loss (such as a misclassification error) for a machine learning model that has tunable
hyperparameters to control its training. fun has these signatures:

objective = fun(x)
% or
[objective,constraints] = fun(x)
% or
[objective,constraints,UserData] = fun(x)

fun accepts x, a 1-by-D table of variable values, and returns objective, a real scalar representing
the objective function value fun(x).

Optionally, fun also returns:

• constraints, a real vector of coupled constraint violations. For a definition, see “Coupled
Constraints” on page 35-172. constraint(j) > 0 means constraint j is violated.
constraint(j) < 0 means constraint j is satisfied.

• UserData, an entity of any type (such as a scalar, matrix, structure, or object). For an example of
a custom plot function that uses UserData, see “Create a Custom Plot Function” on page 10-12.
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For details about using parallel.pool.Constant with bayesopt, see “Placing the Objective
Function on Workers” on page 10-8.
Example: @objfun
Data Types: function_handle

vars — Variable descriptions
vector of optimizableVariable objects defining the hyperparameters to be tuned

Variable descriptions, specified as a vector of optimizableVariable objects defining the
hyperparameters to be tuned.
Example: [X1,X2], where X1 and X2 are optimizableVariable objects

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: results = bayesopt(fun,vars,'AcquisitionFunctionName','expected-
improvement-plus')

Algorithm Control

AcquisitionFunctionName — Function to choose next evaluation point
'expected-improvement-per-second-plus' (default) | 'expected-improvement' |
'expected-improvement-plus' | 'expected-improvement-per-second' | 'lower-
confidence-bound' | 'probability-of-improvement'

Function to choose next evaluation point, specified as one of the listed choices.

Acquisition functions whose names include per-second do not yield reproducible results because
the optimization depends on the runtime of the objective function. Acquisition functions whose names
include plus modify their behavior when they are overexploiting an area. For more details, see
“Acquisition Function Types” on page 10-3.
Example: 'AcquisitionFunctionName','expected-improvement-per-second'

IsObjectiveDeterministic — Specify deterministic objective function
false (default) | true

Specify deterministic objective function, specified as false or true. If fun is stochastic (that is,
fun(x) can return different values for the same x), then set IsObjectiveDeterministic to
false. In this case, bayesopt estimates a noise level during optimization.
Example: 'IsObjectiveDeterministic',true
Data Types: logical

ExplorationRatio — Propensity to explore
0.5 (default) | positive real

Propensity to explore, specified as a positive real. Applies to the 'expected-improvement-plus'
and 'expected-improvement-per-second-plus' acquisition functions. See “Plus” on page 10-5.
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Example: 'ExplorationRatio',0.2
Data Types: double

GPActiveSetSize — Fit Gaussian Process model to GPActiveSetSize or fewer points
300 (default) | positive integer

Fit Gaussian Process model to GPActiveSetSize or fewer points, specified as a positive integer.
When bayesopt has visited more than GPActiveSetSize points, subsequent iterations that use a
GP model fit the model to GPActiveSetSize points. bayesopt chooses points uniformly at random
without replacement among visited points. Using fewer points leads to faster GP model fitting, at the
expense of possibly less accurate fitting.
Example: 'GPActiveSetSize',80
Data Types: double

UseParallel — Compute in parallel
false (default) | true

Compute in parallel, specified as false (do not compute in parallel) or true (compute in parallel).
Computing in parallel requires Parallel Computing Toolbox.

bayesopt performs parallel objective function evaluations concurrently on parallel workers. For
algorithmic details, see “Parallel Bayesian Optimization” on page 10-7.
Example: 'UseParallel',true
Data Types: logical

ParallelMethod — Imputation method for parallel worker objective function values
'clipped-model-prediction' (default) | 'model-prediction' | 'max-observed' | 'min-
observed'

Imputation method for parallel worker objective function values, specified as 'clipped-model-
prediction', 'model-prediction', 'max-observed', or 'min-observed'. To generate a new
point to evaluate, bayesopt fits a Gaussian process to all points, including the points being evaluated
on workers. To fit the process, bayesopt imputes objective function values for the points that are
currently on workers. ParallelMethod specifies the method used for imputation.

• 'clipped-model-prediction' — Impute the maximum of these quantities:

• Mean Gaussian process prediction at the point x
• Minimum observed objective function among feasible points visited
• Minimum model prediction among all feasible points

• 'model-prediction' — Impute the mean Gaussian process prediction at the point x.
• 'max-observed' — Impute the maximum observed objective function value among feasible

points.
• 'min-observed' — Impute the minimum observed objective function value among feasible

points.

Example: 'ParallelMethod','max-observed'

MinWorkerUtilization — Tolerance on number of active parallel workers
floor(0.8*Nworkers) (default) | positive integer
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Tolerance on the number of active parallel workers, specified as a positive integer. After bayesopt
assigns a point to evaluate, and before it computes a new point to assign, it checks whether fewer
than MinWorkerUtilization workers are active. If so, bayesopt assigns random points within
bounds to all available workers. Otherwise, bayesopt calculates the best point for one worker.
bayesopt creates random points much faster than fitted points, so this behavior leads to higher
utilization of workers, at the cost of possibly poorer points. For details, see “Parallel Bayesian
Optimization” on page 10-7.
Example: 'MinWorkerUtilization',3
Data Types: double

Starting and Stopping

MaxObjectiveEvaluations — Objective function evaluation limit
30 (default) | positive integer

Objective function evaluation limit, specified as a positive integer.
Example: 'MaxObjectiveEvaluations',60
Data Types: double

MaxTime — Time limit
Inf (default) | positive real

Time limit, specified as a positive real. The time limit is in seconds, as measured by tic and toc.

Run time can exceed MaxTime because bayesopt does not interrupt function evaluations.
Example: 'MaxTime',3600
Data Types: double

NumSeedPoints — Number of initial evaluation points
4 (default) | positive integer

Number of initial evaluation points, specified as a positive integer. bayesopt chooses these points
randomly within the variable bounds, according to the setting of the Transform setting for each
variable (uniform for 'none', logarithmically spaced for 'log').
Example: 'NumSeedPoints',10
Data Types: double

Constraints

XConstraintFcn — Deterministic constraints on variables
[] (default) | function handle

Deterministic constraints on variables, specified as a function handle.

For details, see “Deterministic Constraints — XConstraintFcn” on page 10-39.
Example: 'XConstraintFcn',@xconstraint
Data Types: function_handle

ConditionalVariableFcn — Conditional variable constraints
[] (default) | function handle
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Conditional variable constraints, specified as a function handle.

For details, see “Conditional Constraints — ConditionalVariableFcn” on page 10-40.
Example: 'ConditionalVariableFcn',@condfun
Data Types: function_handle

NumCoupledConstraints — Number of coupled constraints
0 (default) | positive integer

Number of coupled constraints, specified as a positive integer. For details, see “Coupled Constraints”
on page 10-41.

Note NumCoupledConstraints is required when you have coupled constraints.

Example: 'NumCoupledConstraints',3
Data Types: double

AreCoupledConstraintsDeterministic — Indication of whether coupled constraints are
deterministic
true for all coupled constraints (default) | logical vector

Indication of whether coupled constraints are deterministic, specified as a logical vector of length
NumCoupledConstraints. For details, see “Coupled Constraints” on page 10-41.
Example: 'AreCoupledConstraintsDeterministic',[true,false,true]
Data Types: logical

Reports, Plots, and Halting

Verbose — Command-line display level
1 (default) | 0 | 2

Command-line display level, specified as 0, 1, or 2.

• 0 — No command-line display.
• 1 — At each iteration, display the iteration number, result report (see the next paragraph),

objective function model, objective function evaluation time, best (lowest) observed objective
function value, best (lowest) estimated objective function value, and the observed constraint
values (if any). When optimizing in parallel, the display also includes a column showing the
number of active workers, counted after assigning a job to the next worker.

The result report for each iteration is one of the following:

• Accept — The objective function returns a finite value, and all constraints are satisfied.
• Best — Constraints are satisfied, and the objective function returns the lowest value among

feasible points.
• Error — The objective function returns a value that is not a finite real scalar.
• Infeas — At least one constraint is violated.
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• 2 — Same as 1, adding diagnostic information such as time to select the next point, model fitting
time, indication that "plus" acquisition functions declare overexploiting, and parallel workers are
being assigned to random points due to low parallel utilization.

Example: 'Verbose',2
Data Types: double

OutputFcn — Function called after each iteration
{} (default) | function handle | cell array of function handles

Function called after each iteration, specified as a function handle or cell array of function handles.
An output function can halt the solver, and can perform arbitrary calculations, including creating
variables or plotting. Specify several output functions using a cell array of function handles.

There are two built-in output functions:

• @assignInBase — Constructs a BayesianOptimization instance at each iteration and assigns
it to a variable in the base workspace. Choose a variable name using the SaveVariableName
name-value pair.

• @saveToFile — Constructs a BayesianOptimization instance at each iteration and saves it to
a file in the current folder. Choose a file name using the SaveFileName name-value pair.

You can write your own output functions. For details, see “Bayesian Optimization Output Functions”
on page 10-19.
Example: 'OutputFcn',{@saveToFile @myOutputFunction}
Data Types: cell | function_handle

SaveFileName — File name for the @saveToFile output function
'BayesoptResults.mat' (default) | character vector | string scalar

File name for the @saveToFile output function, specified as a character vector or string scalar. The
file name can include a path, such as '../optimizations/September2.mat'.
Example: 'SaveFileName','September2.mat'
Data Types: char | string

SaveVariableName — Variable name for the @assignInBase output function
'BayesoptResults' (default) | character vector | string scalar

Variable name for the @assignInBase output function, specified as a character vector or string
scalar.
Example: 'SaveVariableName','September2Results'
Data Types: char | string

PlotFcn — Plot function called after each iteration
{@plotObjectiveModel,@plotMinObjective} (default) | 'all' | function handle | cell array of
function handles

Plot function called after each iteration, specified as 'all', a function handle, or a cell array of
function handles. A plot function can halt the solver, and can perform arbitrary calculations, including
creating variables, in addition to plotting.
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Specify no plot function as [].

'all' calls all built-in plot functions. Specify several plot functions using a cell array of function
handles.

The built-in plot functions appear in the following tables.

Model Plots — Apply When D ≤ 2 Description
@plotAcquisitionFunction Plot the acquisition function surface.
@plotConstraintModels Plot each constraint model surface. Negative values indicate

feasible points.

Also plot a P(feasible) surface.

Also plot the error model, if it exists, which ranges from –1 to 1.
Negative values mean that the model probably does not error,
positive values mean that it probably does error. The model is:

Plotted error = 2*Probability(error) – 1.
@plotObjectiveEvaluationTime
Model

Plot the objective function evaluation time model surface.

@plotObjectiveModel Plot the fun model surface, the estimated location of the
minimum, and the location of the next proposed point to
evaluate. For one-dimensional problems, plot envelopes one
credible interval above and below the mean function, and
envelopes one noise standard deviation above and below the
mean.

Trace Plots — Apply to All D Description
@plotObjective Plot each observed function value versus the number of

function evaluations.
@plotObjectiveEvaluationTime Plot each observed function evaluation run time versus the

number of function evaluations.
@plotMinObjective Plot the minimum observed and estimated function values

versus the number of function evaluations.
@plotElapsedTime Plot three curves: the total elapsed time of the optimization, the

total function evaluation time, and the total modeling and point
selection time, all versus the number of function evaluations.

You can write your own plot functions. For details, see “Bayesian Optimization Plot Functions” on
page 10-11.

Note When there are coupled constraints, iterative display and plot functions can give
counterintuitive results such as:

• A minimum objective plot can increase.
• The optimization can declare a problem infeasible even when it showed an earlier feasible point.

The reason for this behavior is that the decision about whether a point is feasible can change as the
optimization progresses. bayesopt determines feasibility with respect to its constraint model, and
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this model changes as bayesopt evaluates points. So a “minimum objective” plot can increase when
the minimal point is later deemed infeasible, and the iterative display can show a feasible point that is
later deemed infeasible.

Example: 'PlotFcn','all'
Data Types: char | string | cell | function_handle

Initialization

InitialX — Initial evaluation points
NumSeedPoints-by-D random initial points within bounds (default) | N-by-D table

Initial evaluation points, specified as an N-by-D table, where N is the number of evaluation points, and
D is the number of variables.

Note If only InitialX is provided, it is interpreted as initial points to evaluate. The objective
function is evaluated at InitialX.

If any other initialization parameters are also provided, InitialX is interpreted as prior function
evaluation data. The objective function is not evaluated. Any missing values are set to NaN.

Data Types: table

InitialObjective — Objective values corresponding to InitialX
[] (default) | length-N vector

Objective values corresponding to InitialX, specified as a length-N vector, where N is the number of
evaluation points.
Example: 'InitialObjective',[17;-3;-12.5]
Data Types: double

InitialConstraintViolations — Constraint violations of coupled constraints
[] (default) | N-by-K matrix

Constraint violations of coupled constraints, specified as an N-by-K matrix, where N is the number of
evaluation points and K is the number of coupled constraints. For details, see “Coupled Constraints”
on page 10-41.
Data Types: double

InitialErrorValues — Errors for InitialX
[] (default) | length-N vector with entries -1 or 1

Errors for InitialX, specified as a length-N vector with entries -1 or 1, where N is the number of
evaluation points. Specify -1 for no error, and 1 for an error.
Example: 'InitialErrorValues',[-1,-1,-1,-1,1]
Data Types: double

InitialUserData — Initial data corresponding to InitialX
[] (default) | length-N cell vector
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Initial data corresponding to InitialX, specified as a length-N cell vector, where N is the number of
evaluation points.
Example: 'InitialUserData',{2,3,-1}
Data Types: cell

InitialObjectiveEvaluationTimes — Evaluation times of objective function at InitialX
[] (default) | length-N vector

Evaluation times of objective function at InitialX, specified as a length-N vector, where N is the
number of evaluation points. Time is measured in seconds.
Data Types: double

InitialIterationTimes — Times for the first N iterations
{} (default) | length-N vector

Times for the first N iterations, specified as a length-N vector, where N is the number of evaluation
points. Time is measured in seconds.
Data Types: double

Output Arguments
results — Bayesian optimization results
BayesianOptimization object

Bayesian optimization results, returned as a BayesianOptimization object.

More About
Coupled Constraints

Coupled constraints are those constraints whose value comes from the objective function calculation.
See “Coupled Constraints” on page 10-41.

Tips
• Bayesian optimization is not reproducible if one of these conditions exists:

• You specify an acquisition function whose name includes per-second, such as 'expected-
improvement-per-second'. The per-second modifier indicates that optimization depends
on the run time of the objective function. For more details, see “Acquisition Function Types” on
page 10-3.

• You specify to run Bayesian optimization in parallel. Due to the nonreproducibility of parallel
timing, parallel Bayesian optimization does not necessarily yield reproducible results. For more
details, see “Parallel Bayesian Optimization” on page 10-7.

Version History
Introduced in R2016b
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Extended Capabilities
Automatic Parallel Support
Accelerate code by automatically running computation in parallel using Parallel Computing Toolbox™.

To run in parallel, set the UseParallel name-value argument to true in the call to this function.

For more general information about parallel computing, see “Run MATLAB Functions with Automatic
Parallel Support” (Parallel Computing Toolbox).

See Also
BayesianOptimization | bestPoint | optimizableVariable

Topics
“Optimize Cross-Validated Classifier Using bayesopt” on page 10-46
“Bayesian Optimization Algorithm” on page 10-2
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bbdesign
Box-Behnken design

Syntax
dBB = bbdesign(n)
[dBB,blocks] = bbdesign(n)
[...] = bbdesign(n,param,val)

Description
dBB = bbdesign(n) generates a Box-Behnken design for n factors. n must be an integer 3 or
larger. The output matrix dBB is m-by-n, where m is the number of runs in the design. Each row
represents one run, with settings for all factors represented in the columns. Factor values are
normalized so that the cube points take values between -1 and 1.

[dBB,blocks] = bbdesign(n) requests a blocked design. The output blocks is an m-by-1 vector
of block numbers for each run. Blocks indicate runs that are to be measured under similar conditions
to minimize the effect of inter-block differences on the parameter estimates.

[...] = bbdesign(n,param,val) specifies one or more optional parameter/value pairs for the
design. The following table lists valid parameter/value pairs.

Parameter Description Values
'center' Number of center points. Integer. The default depends on n.
'blocksize' Maximum number of

points per block.
Integer. The default is Inf.

Examples

Create and Visualize 3-Factor Box-Behnken Design

Create a 3-factor Box-Behnken design.

dBB = bbdesign(3)

dBB = 15×3

    -1    -1     0
    -1     1     0
     1    -1     0
     1     1     0
    -1     0    -1
    -1     0     1
     1     0    -1
     1     0     1
     0    -1    -1
     0    -1     1
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      ⋮

The center point is run 3 times to allow for a more uniform estimate of the prediction variance over
the entire design space.

Visualize the design as follows:

plot3(dBB(:,1),dBB(:,2),dBB(:,3),'ro', ...
         'MarkerFaceColor','b')
X = [1 -1 -1 -1 1 -1 -1 -1 1 1 -1 -1; ...
     1 1 1 -1 1 1 1 -1 1 1 -1 -1];
Y = [-1 -1 1 -1 -1 -1 1 -1 1 -1 1 -1; ...
     1 -1 1 1 1 -1 1 1 1 -1 1 -1];
Z = [1 1 1 1 -1 -1 -1 -1 -1 -1 -1 -1; ...
     1 1 1 1 -1 -1 -1 -1 1 1 1 1];
line(X,Y,Z,'Color','b')
axis square equal

Version History
Introduced before R2006a
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See Also
ccdesign
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bestPoint
Best point in a Bayesian optimization according to a criterion

Syntax
x = bestPoint(results)
x = bestPoint(results,Name,Value)
[x,CriterionValue] = bestPoint( ___ )
[x,CriterionValue,iteration] = bestPoint( ___ )

Description
x = bestPoint(results) returns the best feasible point in the Bayesian model results
according to the default criterion 'min-visited-upper-confidence-interval'.

x = bestPoint(results,Name,Value) modifies the best point using name-value pairs.

[x,CriterionValue] = bestPoint( ___ ), for any previous syntax, also returns the value of the
criterion at x.

[x,CriterionValue,iteration] = bestPoint( ___ ) also returns the iteration number at
which the best point was returned. Applies when the Criterion name-value pair is 'min-
observed', 'min-visited-mean', or the default 'min-visited-upper-confidence-
interval'.

Examples

Best Point of an Optimized KNN Classifier

This example shows how to obtain the best point of an optimized classifier.

Optimize a KNN classifier for the ionosphere data, meaning find parameters that minimize the
cross-validation loss. Minimize over nearest-neighborhood sizes from 1 to 30, and over the distance
functions 'chebychev', 'euclidean', and 'minkowski'.

For reproducibility, set the random seed, and set the AcquisitionFunctionName option to
'expected-improvement-plus'.

load ionosphere
rng(11)
num = optimizableVariable('n',[1,30],'Type','integer');
dst = optimizableVariable('dst',{'chebychev','euclidean','minkowski'},'Type','categorical');
c = cvpartition(351,'Kfold',5);
fun = @(x)kfoldLoss(fitcknn(X,Y,'CVPartition',c,'NumNeighbors',x.n,...
    'Distance',char(x.dst),'NSMethod','exhaustive'));
results = bayesopt(fun,[num,dst],'Verbose',0,...
    'AcquisitionFunctionName','expected-improvement-plus');
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Obtain the best point according to the default 'min-visited-upper-confidence-interval'
criterion.

x = bestPoint(results)

x=1×2 table
    n       dst   
    _    _________

    1    chebychev

The lowest estimated cross-validation loss occurs for one nearest neighbor and 'chebychev'
distance.

Careful examination of the objective function model plot shows a point with two nearest neighbors
and 'chebychev' distance that has a lower objective function value. Find this point using a different
criterion.

x = bestPoint(results,'Criterion','min-observed')

x=1×2 table
    n       dst   
    _    _________

    2    chebychev
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Also find the minimum observed objective function value, and the iteration number at which it was
observed.

[x,CriterionValue,iteration] = bestPoint(results,'Criterion','min-observed')

x=1×2 table
    n       dst   
    _    _________

    2    chebychev

CriterionValue = 0.1054

iteration = 21

Input Arguments
results — Bayesian optimization results
BayesianOptimization object

Bayesian optimization results, specified as a BayesianOptimization object.

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: x = bestPoint(results,'Criterion','min-observed')

Criterion — Best point criterion
'min-visited-upper-confidence-interval' (default) | 'min-observed' | 'min-mean' |
'min-upper-confidence-interval' | 'min-visited-mean'

Best point criterion, specified as the comma-separated pair consisting of 'Criterion' and a
criterion name. The names are case-insensitive, do not require - characters, and require only enough
characters to make the name uniquely distinguishable.

Criterion Name Meaning
'min-observed' x is the feasible point with minimum observed objective.
'min-mean' x is the feasible point where the objective model mean is

minimized.
'min-upper-confidence-
interval'

x is the feasible point minimizing an upper confidence interval of
the objective model. See alpha.

'min-visited-mean' x is the feasible point where the objective model mean is
minimized among the visited points.

'min-visited-upper-
confidence-interval'

x is the feasible point minimizing an upper confidence interval of
the objective model among the visited points. See alpha.

Example: 'Criterion','min-visited-mean'
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alpha — Probability that modeled objective mean exceeds CriterionValue
0.01 (default) | scalar between 0 and 1

Probability that the modeled objective mean exceeds CriterionValue, specified as the comma-
separated pair consisting of 'alpha' and a scalar between 0 and 1. alpha relates to the 'min-
upper-confidence-interval' and 'min-visited-upper-confidence-interval'
Criterion values. The definition for the upper confidence interval is the value Y where

P(meanQ(fun(x)) > Y) = alpha,

where fun is the objective function, and the mean is calculated with respect to the posterior
distribution Q.
Example: 'alpha',0.05
Data Types: double

Output Arguments
x — Best point
1-by-D table

Best point, returned as a 1-by-D table, where D is the number of variables. The meaning of “best” is
with respect to Criterion.

CriterionValue — Value of criterion
real scalar

Value of criterion, returned as a real scalar. The value depends on the setting of the Criterion
name-value pair, which has a default value of 'min-visited-upper-confidence-interval'.

Criterion Name Meaning
'min-observed' Minimum observed objective.
'min-mean' Minimum of model mean.
'min-upper-confidence-
interval'

Value Y satisfying the equation P(meanQ(fun(x)) > Y) = alpha.

'min-visited-mean' Minimum of observed model mean.
'min-visited-upper-
confidence-interval'

Value Y satisfying the equation P(meanQ(fun(x)) > Y) = alpha
among observed points.

iteration — Iteration number at which best point was observed
positive integer

Iteration number at which best point was observed, returned as a positive integer. The best point is
defined by CriterionValue.

Version History
Introduced in R2016b
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See Also
BayesianOptimization | bayesopt
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betacdf
Beta cumulative distribution function

Syntax
p = betacdf(x,a,b)
p = betacdf(x,a,b,'upper')

Description
p = betacdf(x,a,b) returns the beta cdf at each of the values in x using the corresponding
parameters in a and b. x, a, and b can be vectors, matrices, or multidimensional arrays that all have
the same size. A scalar input is expanded to a constant array with the same dimensions as the other
inputs. The parameters in a and b must all be positive, and the values in x must lie on the interval
[0,1].

p = betacdf(x,a,b,'upper') returns the complement of the beta cdf at each of the values in x,
using an algorithm that more accurately computes the extreme upper tail probabilities.

The beta cdf for a given value x and given pair of parameters a and b is

p = F x a, b = 1
B(a, b)∫

0

x
ta− 1(1− t)b− 1dt

where B( · ) is the Beta function.

Examples

Compute Beta Distribution CDF

Compute the cdf for a beta distribution with parameters a = 2 and b = 2.

x = 0.1:0.2:0.9;
a = 2;
b = 2;
p = betacdf(x,a,b)

p = 1×5

    0.0280    0.2160    0.5000    0.7840    0.9720

a = [1 2 3];
p = betacdf(0.5,a,a)

p = 1×3

    0.5000    0.5000    0.5000
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Version History
Introduced before R2006a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

This function fully supports GPU arrays. For more information, see “Run MATLAB Functions on a
GPU” (Parallel Computing Toolbox).

See Also
cdf | betapdf | betainv | betastat | betalike | betarnd | betafit

Topics
“Beta Distribution” on page B-6
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betafit
Beta parameter estimates

Syntax
phat = betafit(data)
[phat,pci] = betafit(data,alpha)

Description
phat = betafit(data) computes the maximum likelihood estimates of the beta distribution
parameters a and b from the data in the vector data and returns a column vector containing the a
and b estimates, where the beta cdf is given by

F(x a, b) = 1
B(a, b)∫

0

x
ta− 1(1− t)b− 1dt

and B( · ) is the Beta function. The elements of data must lie in the open interval (0, 1), where the
beta distribution is defined. However, it is sometimes also necessary to fit a beta distribution to data
that include exact zeros or ones. For such data, the beta likelihood function is unbounded, and
standard maximum likelihood estimation is not possible. In that case, betafit maximizes a modified
likelihood that incorporates the zeros or ones by treating them as if they were values that have been
left-censored at sqrt(realmin) or right-censored at 1-eps/2, respectively.

[phat,pci] = betafit(data,alpha) returns confidence intervals on the a and b parameters in
the 2-by-2 matrix pci. The first column of the matrix contains the lower and upper confidence bounds
for parameter a, and the second column contains the confidence bounds for parameter b. The
optional input argument alpha is a value in the range [0, 1] specifying the width of the confidence
intervals. By default, alpha is 0.05, which corresponds to 95% confidence intervals. The confidence
intervals are based on a normal approximation for the distribution of the logs of the parameter
estimates.

Examples
This example generates 100 beta distributed observations. The true a and b parameters are 4 and 3,
respectively. Compare these to the values returned in p by the beta fit. Note that the columns of ci
both bracket the true parameters.

data = betarnd(4,3,100,1);
[p,ci] = betafit(data,0.01)
p =
    5.5328    3.8097
ci =
    3.6538    2.6197
    8.3781    5.5402

Version History
Introduced before R2006a
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References

[1] Hahn, Gerald J., and S. S. Shapiro. Statistical Models in Engineering. Hoboken, NJ: John Wiley &
Sons, Inc., 1994, p. 95.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

This function fully supports GPU arrays. For more information, see “Run MATLAB Functions on a
GPU” (Parallel Computing Toolbox).

See Also
mle | betapdf | betainv | betastat | betalike | betarnd | betacdf

Topics
“Beta Distribution” on page B-6
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betainv
Beta inverse cumulative distribution function

Syntax
X = betainv(P,A,B)

Description
X = betainv(P,A,B) computes the inverse of the beta cdf with parameters specified by A and B for
the corresponding probabilities in P. P, A, and B can be vectors, matrices, or multidimensional arrays
that are all the same size. A scalar input is expanded to a constant array with the same dimensions as
the other inputs. The parameters in A and B must all be positive, and the values in P must lie on the
interval [0, 1].

The inverse beta cdf for a given probability p and a given pair of parameters a and b is

x = F−1(p a, b) = x:F(x a, b) = p

where

p = F(x a, b) = 1
B(a, b)∫

0

x
ta− 1(1− t)b− 1dt

and B( · ) is the Beta function. Each element of output X is the value whose cumulative probability
under the beta cdf defined by the corresponding parameters in A and B is specified by the
corresponding value in P.

Examples
p = [0.01 0.5 0.99];
x = betainv(p,10,5)
x =
  0.3726  0.6742  0.8981

According to this result, for a beta cdf with a = 10 and b = 5, a value less than or equal to 0.3726
occurs with probability 0.01. Similarly, values less than or equal to 0.6742 and 0.8981 occur with
respective probabilities 0.5 and 0.99.

Algorithms
The betainv function uses Newton's method with modifications to constrain steps to the allowable
range for x, i.e., [0 1].

Version History
Introduced before R2006a
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Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

This function fully supports GPU arrays. For more information, see “Run MATLAB Functions on a
GPU” (Parallel Computing Toolbox).

See Also
icdf | betapdf | betafit | betainv | betastat | betalike | betarnd | betacdf

Topics
“Beta Distribution” on page B-6
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betalike
Beta negative log-likelihood

Syntax
nlogL = betalike(params,data)
[nlogL,AVAR] = betalike(params,data)

Description
nlogL = betalike(params,data) returns the negative of the beta log-likelihood function for the
beta parameters a and b specified in vector params and the observations specified in the column
vector data.

The elements of data must lie in the open interval (0, 1), where the beta distribution is defined.
However, it is sometimes also necessary to fit a beta distribution to data that include exact zeros or
ones. For such data, the beta likelihood function is unbounded, and standard maximum likelihood
estimation is not possible. In that case, betalike computes a modified likelihood that incorporates
the zeros or ones by treating them as if they were values that have been left-censored at
sqrt(realmin) or right-censored at 1-eps/2, respectively.

[nlogL,AVAR] = betalike(params,data) also returns AVAR, which is the asymptotic variance-
covariance matrix of the parameter estimates if the values in params are the maximum likelihood
estimates. AVAR is the inverse of Fisher's information matrix. The diagonal elements of AVAR are the
asymptotic variances of their respective parameters.

betalike is a utility function for maximum likelihood estimation of the beta distribution. The
likelihood assumes that all the elements in the data sample are mutually independent. Since
betalike returns the negative beta log-likelihood function, minimizing betalike using
fminsearch is the same as maximizing the likelihood.

Examples
This example continues the betafit example, which calculates estimates of the beta parameters for
some randomly generated beta distributed data.

r = betarnd(4,3,100,1);
[nlogl,AVAR] = betalike(betafit(r),r)
nlogl =

  -27.5996

AVAR =

    0.2783    0.1316
    0.1316    0.0867
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Version History
Introduced before R2006a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

This function fully supports GPU arrays. For more information, see “Run MATLAB Functions on a
GPU” (Parallel Computing Toolbox).

See Also
betapdf | betafit | betainv | betastat | betarnd | betacdf

Topics
“Beta Distribution” on page B-6
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betapdf
Beta probability density function

Syntax
Y = betapdf(X,A,B)

Description
Y = betapdf(X,A,B) computes the beta pdf at each of the values in X using the corresponding
parameters in A and B. X, A, and B can be vectors, matrices, or multidimensional arrays that all have
the same size. A scalar input is expanded to a constant array with the same dimensions of the other
inputs. The parameters in A and B must all be positive, and the values in X must lie on the interval
[0, 1].

The beta probability density function for a given value x and given pair of parameters a and b is

y = f (x a, b) = 1
B(a, b)xa− 1(1− x)b− 1I 0, 1 (x)

where B( · ) is the Beta function. The uniform distribution on (0 1) is a degenerate case of the beta
pdf where a = 1 and b = 1.

A likelihood function is the pdf viewed as a function of the parameters. Maximum likelihood
estimators (MLEs) are the values of the parameters that maximize the likelihood function for a fixed
value of x.

Examples
a = [0.5 1; 2 4]
a =
  0.5000  1.0000
  2.0000  4.0000
y = betapdf(0.5,a,a)
y =
  0.6366  1.0000
  1.5000  2.1875

Version History
Introduced before R2006a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.
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This function fully supports GPU arrays. For more information, see “Run MATLAB Functions on a
GPU” (Parallel Computing Toolbox).

See Also
pdf | betafit | betainv | betastat | betalike | betarnd | betacdf

Topics
“Beta Distribution” on page B-6
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betarnd
Beta random numbers

Syntax
R = betarnd(A,B)
R = betarnd(A,B,m,n,...)
R = betarnd(A,B,[m,n,...])

Description
R = betarnd(A,B) generates random numbers from the beta distribution with parameters
specified by A and B. A and B can be vectors, matrices, or multidimensional arrays that have the same
size, which is also the size of R. A scalar input for A or B is expanded to a constant array with the
same dimensions as the other input.

R = betarnd(A,B,m,n,...) or R = betarnd(A,B,[m,n,...]) generates an m-by-n-by-... array
containing random numbers from the beta distribution with parameters A and B. A and B can each be
scalars or arrays of the same size as R.

Examples
a = [1 1;2 2];
b = [1 2;1 2];

r = betarnd(a,b)
r =
  0.6987  0.6139
  0.9102  0.8067

r = betarnd(10,10,[1 5])
r =
  0.5974  0.4777  0.5538  0.5465  0.6327

r = betarnd(4,2,2,3)
r =
  0.3943  0.6101  0.5768
  0.5990  0.2760  0.5474

Version History
Introduced before R2006a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:
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The generated code can return a different sequence of numbers than MATLAB if either of the
following is true:

• The output is nonscalar.
• An input parameter is invalid for the distribution.

For more information on code generation, see “Introduction to Code Generation” on page 34-2 and
“General Code Generation Workflow” on page 34-5.

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

This function fully supports GPU arrays. For more information, see “Run MATLAB Functions on a
GPU” (Parallel Computing Toolbox).

See Also
random | betapdf | betafit | betainv | betastat | betalike | betacdf

Topics
“Beta Distribution” on page B-6

35 Functions

35-194



betastat
Beta mean and variance

Syntax
[M,V] = betastat(A,B)

Description
[M,V] = betastat(A,B), with A>0 and B>0, returns the mean of and variance for the beta
distribution with parameters specified by A and B. A and B can be vectors, matrices, or
multidimensional arrays that have the same size, which is also the size of M and V. A scalar input for A
or B is expanded to a constant array with the same dimensions as the other input.

The mean of the beta distribution with parameters a and b is a/(a + b) and the variance is

ab
(a + b + 1)(a + b)2

Examples
If parameters a and b are equal, the mean is 1/2.

a = 1:6;
[m,v] = betastat(a,a)
m =
  0.5000  0.5000  0.5000  0.5000  0.5000  0.5000
v =
  0.0833  0.0500  0.0357  0.0278  0.0227  0.0192

Version History
Introduced before R2006a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

This function fully supports GPU arrays. For more information, see “Run MATLAB Functions on a
GPU” (Parallel Computing Toolbox).

See Also
betapdf | betafit | betainv | betalike | betarnd | betacdf
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Topics
“Beta Distribution” on page B-6

35 Functions

35-196



binocdf
Binomial cumulative distribution function

Syntax
y = binocdf(x,n,p)
y = binocdf(x,n,p,'upper')

Description
y = binocdf(x,n,p) computes a binomial cumulative distribution function at each of the values in
x using the corresponding number of trials in n and the probability of success for each trial in p.

x, n, and p can be vectors, matrices, or multidimensional arrays of the same size. Alternatively, one or
more arguments can be scalars. The binocdf function expands scalar inputs to constant arrays with
the same dimensions as the other inputs.

y = binocdf(x,n,p,'upper') returns the complement of the binomial cumulative distribution
function at each value in x, using an algorithm that computes the extreme upper tail probabilities
more accurately than the default algorithm.

Examples

Compute and Plot Binomial Cumulative Distribution Function

Compute and plot the binomial cumulative distribution function for the specified range of integer
values, number of trials, and probability of success for each trial.

A baseball team plays 100 games in a season and has a 50-50 chance of winning each game. Find the
probability of the team winning more than 55 games in a season.

format long
1 - binocdf(55,100,0.5)

ans = 
   0.135626512036917

Find the probability of the team winning between 50 and 55 games in a season.

binocdf(55,100,0.5) - binocdf(49,100,0.5)

ans = 
   0.404168106656672

Compute the probabilities of the team winning more than 55 games in a season if the chance of
winning each game ranges from 10% to 90%.

chance = 0.1:0.05:0.9;
y = 1 - binocdf(55,100,chance);
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Plot the results.

scatter(chance,y)
grid on

Compute Extreme Upper Tail Probabilities

Compute the complement of the binomial cumulative distribution function with more accurate upper
tail probabilities.

A baseball team plays 100 games in a season and has a 50-50 chance of winning each game. Find the
probability of the team winning more than 95 games in a season.

format long
1 - binocdf(95,100,0.5)

ans = 
     0

This result shows that the probability is so close to 1 (within eps) that subtracting it from 1 gives 0.
To approximate the extreme upper tail probabilities better, compute the complement of the binomial
cumulative distribution function directly instead of computing the difference.

binocdf(95,100,0.5,'upper')

35 Functions

35-198



ans = 
     3.224844447881779e-24

Alternatively, use the binopdf function to find the probabilities of the team winning 96, 97, 98, 99,
and 100 games in a season. Find the sum of these probabilities by using the sum function.

sum(binopdf(96:100,100,0.5),'all')

ans = 
     3.224844447881779e-24

Input Arguments
x — Values at which to evaluate binomial cdf
integer from interval [0 n] | array of integers from interval [0 n]

Values at which to evaluate the binomial cdf, specified as an integer or an array of integers. All values
of x must belong to the interval [0 n], where n is the number of trials.
Example: [0 1 3 4]
Data Types: single | double

n — Number of trials
positive integer | array of positive integers

Number of trials, specified as a positive integer or an array of positive integers.
Example: [10 20 50 100]
Data Types: single | double

p — Probability of success for each trial
scalar value from interval [0 1] | array of scalar values from interval [0 1]

Probability of success for each trial, specified as a scalar value or an array of scalar values. All values
of p must belong to the interval [0 1].
Example: [0.01 0.1 0.5 0.7]
Data Types: single | double

Output Arguments
y — Binomial cdf values
scalar value | array of scalar values

Binomial cdf values, returned as a scalar value or an array of scalar values. Each element in y is the
binomial cdf value of the distribution evaluated at the corresponding element in x.
Data Types: single | double
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More About
Binomial Cumulative Distribution Function

The binomial cumulative distribution function lets you obtain the probability of observing less than or
equal to x successes in n trials, with the probability p of success on a single trial.

The binomial cumulative distribution function for a given value x and a given pair of parameters n
and p is

y = F(x n, p) = ∑
i = 0

x n
i

pi(1− p)(n− i)I(0, 1, ..., n)(i) .

The resulting value y is the probability of observing up to x successes in n independent trials, where
the probability of success in any given trial is p. The indicator function I(0, 1, ..., n)(i) ensures that x only
adopts values of 0,1,...,n.

Alternative Functionality
• binocdf is a function specific to binomial distribution. Statistics and Machine Learning Toolbox

also offers the generic function cdf, which supports various probability distributions. To use cdf,
specify the probability distribution name and its parameters. Alternatively, create a
BinomialDistribution probability distribution object and pass the object as an input
argument. Note that the distribution-specific function binocdf is faster than the generic function
cdf.

• Use the Probability Distribution Function app to create an interactive plot of the cumulative
distribution function (cdf) or probability density function (pdf) for a probability distribution.

Version History
Introduced before R2006a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

This function fully supports GPU arrays. For more information, see “Run MATLAB Functions on a
GPU” (Parallel Computing Toolbox).

See Also
cdf | binopdf | binoinv | binostat | binofit | binornd | BinomialDistribution

Topics
“Binomial Distribution” on page B-10
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binofit
Binomial parameter estimates

Syntax
phat = binofit(x,n)
[phat,pci] = binofit(x,n)
[phat,pci] = binofit(x,n,alpha)

Description
phat = binofit(x,n) returns a maximum likelihood estimate of the probability of success in a
given binomial trial based on the number of successes, x, observed in n independent trials. If x =
(x(1), x(2), ... x(k)) is a vector, binofit returns a vector of the same size as x whose ith
entry is the parameter estimate for x(i). All k estimates are independent of each other. If n =
(n(1), n(2), ..., n(k)) is a vector of the same size as x, the binomial fit, binofit, returns a
vector whose ith entry is the parameter estimate based on the number of successes x(i) in n(i)
independent trials. A scalar value for x or n is expanded to the same size as the other input.

[phat,pci] = binofit(x,n) returns the probability estimate, phat, and the 95% confidence
intervals, pci. binofit uses the Clopper-Pearson method to calculate confidence intervals.

[phat,pci] = binofit(x,n,alpha) returns the 100(1 - alpha)% confidence intervals. For
example, alpha = 0.01 yields 99% confidence intervals.

Note binofit behaves differently than other Statistics and Machine Learning Toolbox functions
that compute parameter estimates, in that it returns independent estimates for each entry of x. By
comparison, expfit returns a single parameter estimate based on all the entries of x.

Unlike most other distribution fitting functions, the binofit function treats its input x vector as a
collection of measurements from separate samples. If you want to treat x as a single sample and
compute a single parameter estimate for it, you can use binofit(sum(x),sum(n)) when n is a
vector, and binofit(sum(X),N*length(X)) when n is a scalar.

Examples
This example generates a binomial sample of 100 elements, where the probability of success in a
given trial is 0.6, and then estimates this probability from the outcomes in the sample.

r = binornd(100,0.6);
[phat,pci] = binofit(r,100)
phat =
  0.5800
pci =
  0.4771  0.6780

The 95% confidence interval, pci, contains the true value, 0.6.
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Version History
Introduced before R2006a

References

[1] Johnson, N. L., S. Kotz, and A. W. Kemp. Univariate Discrete Distributions. Hoboken, NJ: Wiley-
Interscience, 1993.

Extended Capabilities
GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

This function fully supports GPU arrays. For more information, see “Run MATLAB Functions on a
GPU” (Parallel Computing Toolbox).

See Also
mle | binopdf | binocdf | binoinv | binostat | binornd

Topics
“Binomial Distribution” on page B-10

35 Functions

35-202



binoinv
Binomial inverse cumulative distribution function

Syntax
X = binoinv(Y,N,P)

Description
X = binoinv(Y,N,P) returns the smallest integer X such that the binomial cdf evaluated at X is
equal to or exceeds Y. You can think of Y as the probability of observing X successes in N independent
trials where P is the probability of success in each trial. Each X is a positive integer less than or equal
to N.

Y, N, and P can be vectors, matrices, or multidimensional arrays that all have the same size. A scalar
input is expanded to a constant array with the same dimensions as the other inputs. The parameters
in N must be positive integers, and the values in both P and Y must lie on the interval [0 1].

Examples
If a baseball team has a 50-50 chance of winning any game, what is a reasonable range of games this
team might win over a season of 162 games?

binoinv([0.05 0.95],162,0.5)
ans =
    71    91

This result means that in 90% of baseball seasons, a .500 team should win between 71 and 91 games.

Version History
Introduced before R2006a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

This function fully supports GPU arrays. For more information, see “Run MATLAB Functions on a
GPU” (Parallel Computing Toolbox).

See Also
icdf | binopdf | binocdf | binofit | binostat | binornd
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Topics
“Binomial Distribution” on page B-10
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binopdf
Binomial probability density function

Syntax
y = binopdf(x,n,p)

Description
y = binopdf(x,n,p) computes the binomial probability density function at each of the values in x
using the corresponding number of trials in n and probability of success for each trial in p.

x, n, and p can be vectors, matrices, or multidimensional arrays of the same size. Alternatively, one or
more arguments can be scalars. The binopdf function expands scalar inputs to constant arrays with
the same dimensions as the other inputs.

Examples

Compute and Plot Binomial Probability Density Function

Compute and plot the binomial probability density function for the specified range of integer values,
number of trials, and probability of success for each trial.

In one day, a quality assurance inspector tests 200 circuit boards. 2% of the boards have defects.
Compute the probability that the inspector will find no defective boards on any given day.

binopdf(0,200,0.02)

ans = 0.0176

Compute the binomial probability density function values at each value from 0 to 200. These values
correspond to the probabilities that the inspector will find 0, 1, 2, ..., 200 defective boards on any
given day.

defects = 0:200;
y = binopdf(defects,200,.02);

Plot the resulting binomial probability values.

plot(defects,y)
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Compute the most likely number of defective boards that the inspector finds in a day.

[x,i] = max(y);
defects(i)

ans = 4

Input Arguments
x — Values at which to evaluate binomial pdf
integer from interval [0 n] | array of integers from interval [0 n]

Values at which to evaluate the binomial pdf, specified as an integer or an array of integers. All values
of x must belong to the interval [0 n], where n is the number of trials.
Example: [0,1,3,4]
Data Types: single | double

n — Number of trials
positive integer | array of positive integers

Number of trials, specified as a positive integer or an array of positive integers.
Example: [10,20,50,100]
Data Types: single | double
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p — Probability of success for each trial
scalar value from interval [0 1] | array of scalar values from interval [0 1]

Probability of success for each trial, specified as a scalar value or an array of scalar values. All values
of p must belong to the interval [0 1].
Example: [0.01,0.1,0.5,0.7]
Data Types: single | double

Output Arguments
y — Binomial pdf values
scalar value | array of scalar values

Binomial pdf values, returned as a scalar value or array of scalar values. Each element in y is the
binomial pdf value of the distribution evaluated at the corresponding element in x.
Data Types: single | double

More About
Binomial Probability Density Function

The binomial probability density function lets you obtain the probability of observing exactly x
successes in n trials, with the probability p of success on a single trial.

The binomial probability density function for a given value x and given pair of parameters n and p is

y = f (x n, p) =
n
x

pxq(n− x)I(0, 1, ..., n)(x)

where q = 1 – p. The resulting value y is the probability of observing exactly x successes in n
independent trials, where the probability of success in any given trial is p. The indicator function
I(0,1,...,n)(x) ensures that x only adopts values of 0, 1, ..., n.

Alternative Functionality
• binopdf is a function specific to binomial distribution. Statistics and Machine Learning Toolbox

also offers the generic function pdf, which supports various probability distributions. To use pdf,
specify the probability distribution name and its parameters. Alternatively, create a
BinomialDistribution probability distribution object and pass the object as an input
argument. Note that the distribution-specific function binopdf is faster than the generic function
pdf.

• Use the Probability Distribution Function app to create an interactive plot of the cumulative
distribution function (cdf) or probability density function (pdf) for a probability distribution.

Version History
Introduced before R2006a
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Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

This function fully supports GPU arrays. For more information, see “Run MATLAB Functions on a
GPU” (Parallel Computing Toolbox).

See Also
pdf | binoinv | binocdf | binofit | binostat | binornd | BinomialDistribution

Topics
“Binomial Distribution” on page B-10
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binornd
Random numbers from binomial distribution

Syntax
r = binornd(n,p)
r = binornd(n,p,sz1,...,szN)
r = binornd(n,p,sz)

Description
r = binornd(n,p) generates random numbers from the binomial distribution specified by the
number of trials n and the probability of success for each trial p.

n and p can be vectors, matrices, or multidimensional arrays of the same size. Alternatively, one or
more arguments can be scalars. The binornd function expands scalar inputs to constant arrays with
the same dimensions as the other inputs. The function returns a vector, matrix, or multidimensional
array r of the same size as n and p.

r = binornd(n,p,sz1,...,szN) generates an array of random numbers from the binomial
distribution with the scalar parameters n and p, where sz1,...,szN indicates the size of each
dimension.

r = binornd(n,p,sz) generates an array of random numbers from the binomial distribution with
the scalar parameters n and p, where vector sz specifies size(r).

Examples

Array of Random Numbers from Several Binomial Distributions

Generate an array of random numbers from the binomial distributions. For each distribution, you
specify the number of trials and the probability of success for each trial.

Specify the numbers of trials.

n = 10:10:60

n = 1×6

    10    20    30    40    50    60

Specify the probabilities of success for each trial.

p = 1./n

p = 1×6

    0.1000    0.0500    0.0333    0.0250    0.0200    0.0167
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Generate random numbers from the binomial distributions.

r = binornd(n,p)

r = 1×6

     0     1     1     0     1     1

Array of Random Numbers from One Binomial Distribution

Generate an array of random numbers from one binomial distribution. Here, the distribution
parameters n and p are scalars.

Use the binornd function to generate random numbers from the binomial distribution with 100
trials, where the probability of success in each trial is 0.2. The function returns one number.

r_scalar = binornd(100,0.2)

r_scalar = 20

Generate a 2-by-3 array of random numbers from the same distribution by specifying the required
array dimensions.

r_array = binornd(100,0.2,2,3)

r_array = 2×3

    18    23    20
    18    24    23

Alternatively, specify the required array dimensions as a vector.

r_array = binornd(100,0.2,[2 3])

r_array = 2×3

    21    21    20
    26    18    23

Input Arguments
n — Number of trials
positive integer | array of positive integers

Number of trials, specified as a positive integer or an array of positive integers.
Example: [10 20 50 100]
Data Types: single | double

p — Probability of success for each trial
scalar value | array of scalar values
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Probability of success for each trial, specified as a scalar value or an array of scalar values. All values
of p must belong to the interval [0 1].
Example: [0.01 0.1 0.5 0.7]
Data Types: single | double

sz1,...,szN — Size of each dimension (as separate arguments)
integers

Size of each dimension, specified as separate arguments of integers. For example, specifying 5,3,2
generates a 5-by-3-by-2 array of random numbers from the binomial probability distribution.

If either n or p is an array, then the specified dimensions sz1,...,szN must match the common
dimensions of n and p after any necessary scalar expansion. The default values of sz1,...,szN are
the common dimensions.

• If you specify a single value sz1, then r is a square matrix of size sz1-by-sz1.
• If the size of any dimension is 0 or negative, then r is an empty array.
• Beyond the second dimension, binornd ignores trailing dimensions with a size of 1. For example,

binornd(n,p,3,1,1,1) produces a 3-by-1 vector of random numbers.

Example: 5,3,2
Data Types: single | double

sz — Size of each dimension (as a row vector)
row vector of integers

Size of each dimension, specified as a row vector of integers. For example, specifying [5 3 2]
generates a 5-by-3-by-2 array of random numbers from the binomial probability distribution.

If either n or p is an array, then the specified dimensions sz must match the common dimensions of n
and p after any necessary scalar expansion. The default values of sz are the common dimensions.

• If you specify a single value [sz1], then r is a square matrix of size sz1-by-sz1.
• If the size of any dimension is 0 or negative, then r is an empty array.
• Beyond the second dimension, binornd ignores trailing dimensions with a size of 1. For example,

binornd(n,p,[3 1 1 1]) produces a 3-by-1 vector of random numbers.

Example: [5 3 2]
Data Types: single | double

Output Arguments
r — Random numbers from binomial distribution
scalar value | array of scalar values

Random numbers from the binomial distribution, returned as a scalar value or an array of scalar
values.
Data Types: single | double
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Alternative Functionality
• binornd is a function specific to binomial distribution. Statistics and Machine Learning Toolbox

also offers the generic function random, which supports various probability distributions. To use
random, specify the probability distribution name and its parameters. Alternatively, create a
BinomialDistribution probability distribution object and pass the object as an input
argument. Note that the distribution-specific function binornd is faster than the generic function
random.

• To generate random numbers interactively, use randtool, a user interface for random number
generation.

Version History
Introduced before R2006a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

The generated code can return a different sequence of numbers than MATLAB in these two cases:

• The output is nonscalar.
• An input parameter is invalid for the distribution.

For more information on code generation, see “Introduction to Code Generation” on page 34-2 and
“General Code Generation Workflow” on page 34-5.

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

This function fully supports GPU arrays. For more information, see “Run MATLAB Functions on a
GPU” (Parallel Computing Toolbox).

Distributed Arrays
Partition large arrays across the combined memory of your cluster using Parallel Computing
Toolbox™.

This function fully supports distributed arrays. For more information, see “Run MATLAB Functions
with Distributed Arrays” (Parallel Computing Toolbox).

See Also
random | binoinv | binocdf | binofit | binostat | binopdf | BinomialDistribution

Topics
“Binomial Distribution” on page B-10
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binostat
Binomial mean and variance

Syntax
[M,V] = binostat(N,P)

Description
[M,V] = binostat(N,P) returns the mean of and variance for the binomial distribution with
parameters specified by the number of trials, N, and probability of success for each trial, P. N and P
can be vectors, matrices, or multidimensional arrays that have the same size, which is also the size of
M and V. A scalar input for N or P is expanded to a constant array with the same dimensions as the
other input.

The mean of the binomial distribution with parameters n and p is np. The variance is npq, where q =
1 – p.

Examples
n = logspace(1,5,5)
n =
     10     100    1000    10000   100000

[m,v] = binostat(n,1./n)
m =
   1   1   1   1   1
v =
  0.9000  0.9900  0.9990  0.9999  1.0000

[m,v] = binostat(n,1/2)
m =
      5     50     500    5000    50000
v =
  1.0e+04 *
  0.0003  0.0025  0.0250  0.2500  2.5000

Version History
Introduced before R2006a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.
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This function fully supports GPU arrays. For more information, see “Run MATLAB Functions on a
GPU” (Parallel Computing Toolbox).

See Also
binoinv | binocdf | binofit | binornd | binopdf

Topics
“Binomial Distribution” on page B-10
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binScatterPlot
Scatter plot of bins for tall arrays

Syntax
binScatterPlot(X,Y)
binScatterPlot(X,Y,nbins)
binScatterPlot(X,Y,Xedges,Yedges)
binScatterPlot(X,Y,Name,Value)
h = binScatterPlot( ___ )

Description
binScatterPlot(X,Y) creates a binned scatter plot of the data in X and Y. The binScatterPlot
function uses an automatic binning algorithm that returns bins with a uniform area, chosen to cover
the range of elements in X and Y and reveal the underlying shape of the distribution.

binScatterPlot(X,Y,nbins) specifies the number of bins to use in each dimension.

binScatterPlot(X,Y,Xedges,Yedges) specifies the edges of the bins in each dimension using
the vectors Xedges and Yedges.

binScatterPlot(X,Y,Name,Value) specifies additional options with one or more name-value pair
arguments using any of the previous syntaxes. For example, you can specify 'Color' and a valid
color option to change the color theme of the plot, or 'Gamma' with a positive scalar to adjust the
level of detail.

h = binScatterPlot( ___ ) returns a Histogram2 object. Use this object to inspect properties of
the plot.

Examples

Binned Scatter Plot of Normally Distributed Random Data

Create two tall vectors of random data. Create a binned scatter plot for the data.

When you perform calculations on tall arrays, MATLAB® uses either a parallel pool (default if you
have Parallel Computing Toolbox™) or the local MATLAB session. To run the example using the local
MATLAB session when you have Parallel Computing Toolbox, change the global execution
environment by using the mapreducer function.

mapreducer(0)

X = tall(randn(1e5,1));
Y = tall(randn(1e5,1));
binScatterPlot(X,Y)

Evaluating tall expression using the Local MATLAB Session:
- Pass 1 of 1: Completed in 0.75 sec
Evaluation completed in 1.5 sec
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Evaluating tall expression using the Local MATLAB Session:
- Pass 1 of 1: Completed in 0.22 sec
Evaluation completed in 0.32 sec

The resulting figure contains a slider to adjust the level of detail in the image.

Specify Number of Scatter Plot Bins

Specify a scalar value as the third input argument to use the same number of bins in each dimension,
or a two-element vector to use a different number of bins in each dimension.

When you perform calculations on tall arrays, MATLAB® uses either a parallel pool (default if you
have Parallel Computing Toolbox™) or the local MATLAB session. To run the example using the local
MATLAB session when you have Parallel Computing Toolbox, change the global execution
environment by using the mapreducer function.

mapreducer(0)

Plot a binned scatter plot of random data sorted into 100 bins in each dimension.

X = tall(randn(1e5,1));
Y = tall(randn(1e5,1));
binScatterPlot(X,Y,100)

Evaluating tall expression using the Local MATLAB Session:
- Pass 1 of 1: Completed in 0.55 sec

35 Functions

35-216



Evaluation completed in 0.8 sec
Evaluating tall expression using the Local MATLAB Session:
- Pass 1 of 1: Completed in 0.24 sec
Evaluation completed in 0.34 sec

Use 20 bins in the x-dimension and continue to use 100 bins in the y-dimension.

binScatterPlot(X,Y,[20 100])

Evaluating tall expression using the Local MATLAB Session:
- Pass 1 of 1: Completed in 0.21 sec
Evaluation completed in 0.32 sec
Evaluating tall expression using the Local MATLAB Session:
- Pass 1 of 1: Completed in 0.25 sec
Evaluation completed in 0.33 sec
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Specify Bin Edges for Scatter Plot

Plot a binned scatter plot of random data with specific bin edges. Use bin edges of Inf and -Inf to
capture outliers.

When you perform calculations on tall arrays, MATLAB® uses either a parallel pool (default if you
have Parallel Computing Toolbox™) or the local MATLAB session. To run the example using the local
MATLAB session when you have Parallel Computing Toolbox, change the global execution
environment by using the mapreducer function.

mapreducer(0)

Create a binned scatter plot with 100 bin edges between [-2 2] in each dimension. The data outside
the specified bin edges is not included in the plot.

X = tall(randn(1e5,1));
Y = tall(randn(1e5,1));
Xedges = linspace(-2,2);
Yedges = linspace(-2,2);
binScatterPlot(X,Y,Xedges,Yedges)

Evaluating tall expression using the Local MATLAB Session:
- Pass 1 of 1: Completed in 2 sec
Evaluation completed in 2.6 sec
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Use coarse bins extending to infinity on the edges of the plot to capture outliers.

Xedges = [-Inf linspace(-2,2) Inf];
Yedges = [-Inf linspace(-2,2) Inf];
binScatterPlot(X,Y,Xedges,Yedges)

Evaluating tall expression using the Local MATLAB Session:
- Pass 1 of 1: Completed in 0.59 sec
Evaluation completed in 0.81 sec
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Adjust Plot Color Theme

Plot a binned scatter plot of random data, specifying 'Color' as 'c'.

When you perform calculations on tall arrays, MATLAB® uses either a parallel pool (default if you
have Parallel Computing Toolbox™) or the local MATLAB session. To run the example using the local
MATLAB session when you have Parallel Computing Toolbox, change the global execution
environment by using the mapreducer function.

mapreducer(0)

X = tall(randn(1e5,1));
Y = tall(randn(1e5,1));
binScatterPlot(X,Y,'Color','c')

Evaluating tall expression using the Local MATLAB Session:
- Pass 1 of 1: Completed in 2.2 sec
Evaluation completed in 5.3 sec
Evaluating tall expression using the Local MATLAB Session:
- Pass 1 of 1: Completed in 0.79 sec
Evaluation completed in 1.1 sec
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Input Arguments
X,Y — Data to distribute among bins (as separate arguments)
tall vectors | tall matrices | tall multidimensional arrays

Data to distribute among bins, specified as separate arguments of tall vectors, matrices, or
multidimensional arrays. X and Y must be the same size. If X and Y are not vectors, then
binScatterPlot treats them as single column vectors, X(:) and Y(:).

Corresponding elements in X and Y specify the x and y coordinates of 2-D data points, [X(k),Y(k)].
The underlying data types of X and Y can be different, but binScatterPlot concatenates these
inputs into a single N-by-2 tall matrix of the dominant underlying data type.

binScatterPlot ignores all NaN values. Similarly, binScatterPlot ignores Inf and -Inf values,
unless the bin edges explicitly specify Inf or -Inf as a bin edge.

Note If X or Y contain integers of type int64 or uint64 that are larger than flintmax, then it is
recommended that you explicitly specify the bin edges.binScatterPlot automatically bins the input
data using double precision, which lacks integer precision for numbers greater than flintmax.

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
logical
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nbins — Number of bins in each dimension
scalar | vector

Number of bins in each dimension, specified as a positive scalar integer or two-element vector of
positive integers. If you do not specify nbins, then binScatterPlot automatically calculates how
many bins to use based on the values in X and Y.

• If nbins is a scalar, then binScatterPlot uses that many bins in each dimension.
• If nbins is a vector, then nbins(1) specifies the number of bins in the x-dimension and

nbins(2) specifies the number of bins in the y-dimension.

Example: binScatterPlot(X,Y,20) uses 20 bins in each dimension.
Example: binScatterPlot(X,Y,[10 20]) uses 10 bins in the x-dimension and 20 bins in the y-
dimension.

Xedges — Bin edges in x-dimension
vector

Bin edges in x-dimension, specified as a vector. Xedges(1) is the first edge of the first bin in the x-
dimension, and Xedges(end) is the outer edge of the last bin.

The value [X(k),Y(k)] is in the (i,j)th bin if Xedges(i) ≤ X(k) < Xedges(i+1) and
Yedges(j) ≤ Y(k) < Yedges(j+1). The last bins in each dimension also include the last (outer)
edge. For example, [X(k),Y(k)] falls into the ith bin in the last row if Xedges(end-1) ≤ X(k) ≤
Xedges(end) and Yedges(i) ≤ Y(k) < Yedges(i+1).
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
logical

Yedges — Bin edges in y-dimension
vector

Bin edges in y-dimension, specified as a vector. Yedges(1) is the first edge of the first bin in the y-
dimension, and Yedges(end) is the outer edge of the last bin.

The value [X(k),Y(k)] is in the (i,j)th bin if Xedges(i) ≤ X(k) < Xedges(i+1) and
Yedges(j) ≤ Y(k) < Yedges(j+1). The last bins in each dimension also include the last (outer)
edge. For example, [X(k),Y(k)] falls into the ith bin in the last row if Xedges(end-1) ≤ X(k) ≤
Xedges(end) and Yedges(i) ≤ Y(k) < Yedges(i+1).
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
logical

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: binScatterPlot(X,Y,'BinWidth',[5 10])

BinMethod — Binning algorithm
'auto' (default) | 'scott' | 'integers'
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Binning algorithm, specified as the comma-separated pair consisting of 'BinMethod' and one of
these values.

Value Description
'auto' The default 'auto' algorithm uses a maximum of

100 bins and chooses a bin width to cover the
data range and reveal the shape of the underlying
distribution.

'scott' Scott’s rule is optimal if the data is close to being
jointly normally distributed. This rule is
appropriate for most other distributions, as well.
It uses a bin size of
[3.5*std(X)*numel(X)^(-1/4),
3.5*std(Y)*numel(Y)^(-1/4)].

'integers' The integer rule is useful with integer data, as it
creates a bin for each integer. It uses a bin width
of 1 and places bin edges halfway between
integers. To avoid accidentally creating too many
bins, you can use this rule to create a limit of
65536 bins (216). If the data range is greater than
65536, then the integer rule uses wider bins
instead.

Note The BinMethod property of the resulting Histogram2 object always has a value of 'manual'.

BinWidth — Width of bins in each dimension
scalar | vector

Width of bins in each dimension, specified as the comma-separated pair consisting of 'BinWidth'
and a scalar or two-element vector of positive integers, [xWidth yWidth]. A scalar value indicates
the same bin width for each dimension.

If you specify BinWidth, then binScatterPlot can use a maximum of 1024 bins (210) along each
dimension. If instead the specified bin width requires more bins, then binScatterPlot uses a larger
bin width corresponding to the maximum number of bins.
Example: binScatterPlot(X,Y,'BinWidth',[5 10]) uses bins with size 5 in the x-dimension
and size 10 in the y-dimension.

Color — Plot color theme
'b' (default) | 'y' | 'm' | 'c' | 'r' | 'g' | 'k'

Plot color theme, specified as the comma-separated pair consisting of 'Color' and one of these
options.

Option Description
'b' Blue
'm' Magenta
'c' Cyan
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Option Description
'r' Red
'g' Green
'y' Yellow
'k' Black

Gamma — Gamma correction
1 (default) | positive scalar

Gamma correction, specified as the comma-separated pair consisting of 'Gamma' and a positive
scalar. Use this option to adjust the brightness and color intensity to affect the amount of detail in the
image.

• gamma < 1 — As gamma decreases, the shading of bins with smaller bin counts becomes
progressively darker, including more detail in the image.

• gamma > 1 — As gamma increases, the shading of bins with smaller bin counts becomes
progressively lighter, removing detail from the image.

• The default value of 1 does not apply any correction to the display.

XBinLimits — Bin limits in x-dimension
vector

Bin limits in x-dimension, specified as the comma-separated pair consisting of 'XBinLimits' and a
two-element vector, [xbmin,xbmax]. The vector indicates the first and last bin edges in the x-
dimension.

binScatterPlot only plots data that falls within the bin limits inclusively,
Data(Data(:,1)>=xbmin & Data(:,1)<=xbmax).

YBinLimits — Bin limits in y-dimension
vector

Bin limits in y-dimension, specified as the comma-separated pair consisting of 'YBinLimits' and a
two-element vector, [ybmin,ybmax]. The vector indicates the first and last bin edges in the y-
dimension.

binScatterPlot only plots data that falls within the bin limits inclusively,
Data(Data(:,2)>=ybmin & Data(:,2)<=ybmax).

Output Arguments
h — Binned scatter plot
Histogram2 object

Binned scatter plot, returned as a Histogram2 object. For more information, see Histogram2
Properties.

Version History
Introduced in R2016b
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Extended Capabilities
Tall Arrays
Calculate with arrays that have more rows than fit in memory.

This function fully supports tall arrays. For more information, see “Tall Arrays”.

See Also
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biplot
Biplot

Syntax
biplot(coefs)
biplot(coefs,Name,Value)

biplot(ax, ___ )

h = biplot( ___ )

Description
biplot(coefs) creates a biplot of the coefficients in the matrix coefs. The biplot is 2-D if coefs
has two columns or 3-D if it has three columns. The axes in the biplot represent the columns of
coefs, and the vectors in the biplot represent the rows of coefs (the observed variables).

biplot(coefs,Name,Value) specifies additional options using one or more name-value pair
arguments. For example, you can specify 'Positive','true' to restrict the biplot to the positive
quadrant (in 2-D) or octant (in 3-D).

biplot(ax, ___ ) uses the plot axes specified by the Axes object ax. Specify ax as the first input
argument followed by any of the input argument combinations in the previous syntaxes.

h = biplot( ___ ) returns a column vector of handles to the graphics objects created by biplot.
Use h to query and modify properties of specific graphics objects. For more information, see Graphics
Object Properties.

Examples

Biplot of Coefficients and Scores

Create a biplot of the first three principal component coefficients, the observations, and the observed
variables for the carsmall data set.

Load the sample data.

load carsmall

Create a matrix consisting of the variables Acceleration, Displacement, Horsepower, MPG, and
Weight. Delete rows in the matrix that have missing values.

X = [Acceleration Displacement Horsepower MPG Weight];
X = rmmissing(X);

Standardize X and perform a principal component analysis.

Z = zscore(X); % Standardized data
[coefs,score] = pca(Z);
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The 5-by-5 matrix coefs contains the principal component coefficients (one column for each
principal component). The matrix score contains the principal component scores (the observations).

Create a biplot of the first three principal component coefficients. The axes of the biplot represent the
columns of coefs, and the vectors in the biplot represent the rows of coefs.

biplot(coefs(:,1:3))

Create a more detailed biplot by labeling each variable and plotting the observations in the space of
the first three principal components.

vbls = {'Accel','Disp','HP','MPG','Wgt'}; % Labels for the variables
biplot(coefs(:,1:3),'Scores',score(:,1:3),'VarLabels',vbls);
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Specify Axes for Biplot

Load the fisheriris data set, standardize the flower measurements in meas, and perform a
principal component analysis.

load fisheriris
Z = zscore(meas);
[coefs,scores] = pca(Z);

Create a figure with two subplots and return the Axes objects as ax1 and ax2. Create a biplot in
each set of axes by referring to the corresponding Axes object. In the top subplot, display a biplot
using the first two principal components. In the bottom subplot, display a biplot using the third and
fourth principal components. Specify the x-axis and y-axis limits by passing the corresponding Axes
objects to the xlim and ylim functions. Change the x-axis and y-axis labels in the bottom plot by
passing ax2 to xlabel and ylabel.

figure('Units','normalized','Position',[0.3 0.3 0.3 0.5])
variables = {'SepalLength','SepalWidth','PetalLength','PetalWidth'};
ax1 = subplot(2,1,1); % Top subplot
biplot(ax1,coefs(:,1:2),'Scores',scores(:,1:2),'VarLabels',variables);
xlim(ax1,[-1 1])
ylim(ax1,[-1 1])

ax2 = subplot(2,1,2); % Bottom subplot
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biplot(ax2,coefs(:,3:4),'Scores',scores(:,3:4),'VarLabels',variables);
xlim(ax2,[-1 1])
ylim(ax2,[-1 1])
xlabel(ax2,'Component 3')
ylabel(ax2,'Component 4')

Modify Biplot Properties

Control the appearance of a biplot by specifying supported line property names and values, and by
using handles to the graphics objects created by biplot.

Load the sample data.

load carsmall

Create a matrix consisting of the variables Acceleration, Displacement, and MPG. Delete rows in
the matrix that have missing values.
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X = [Acceleration Displacement MPG];
X = rmmissing(X);

Standardize X and perform a principal component analysis.

Z = zscore(X); % Standardized data
[coefs,score] = pca(Z);

The 3-by-3 matrix coefs contains the principal component coefficients (one column for each
principal component). The matrix score contains the principal component scores (the observations).

Create a biplot of the observations in the space of the first two principal components. Use the default
properties for the biplot.

h = biplot(coefs(:,1:2),'Scores',score(:,1:2));

h is a vector of handles to graphics objects. You can modify the properties of the line objects returned
by biplot.

Label the three variables for easy identification. Specify circles as the marker symbol and blue as the
line color for all line objects.

vbls = {'Accel','Disp','MPG'}; % Array of variable labels
h1 = biplot(coefs(:,1:2),'Scores',score(:,1:2),...
    'Color','b','Marker','o','VarLabels',vbls);
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h1 is a vector of handles to graphics objects. View the first few elements of h1.

h1(1:10) % First ten object handles

ans = 
  10x1 graphics array:

  Line    (varline)
  Line    (varline)
  Line    (varline)
  Line    (varmarker)
  Line    (varmarker)
  Line    (varmarker)
  Text    (varlabel)
  Text    (varlabel)
  Text    (varlabel)
  Line    (obsmarker)

The handles for the variable labels (h1(7:9)) are text. Therefore, the settings specified for the line
properties do not affect these labels.

Create another biplot of the observations in the space of the first two principal components, and label
the three variables for easy identification.

h2 = biplot(coefs(:,1:2),'Scores',score(:,1:2),'VarLabels',vbls);
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h2 is a vector of handles to graphics objects. View the first few elements of h2.

h2(1:10) % First ten object handles

ans = 
  10x1 graphics array:

  Line    (varline)
  Line    (varline)
  Line    (varline)
  Line    (varmarker)
  Line    (varmarker)
  Line    (varmarker)
  Text    (varlabel)
  Text    (varlabel)
  Text    (varlabel)
  Line    (obsmarker)

h2 contains 104 object handles.

• The first three handles (h(1:3)) correspond to line handles for the three variables.
• Handles h(4:6) correspond to marker handles for the three variables.
• Handles h(7:9) correspond to text handles for the three variables.
• The next 94 handles correspond to line handles for the observations.
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• The last handle corresponds to a line handle for the axis lines.

Modify specific properties of the biplot by using handles to the graphics objects.

Change the line color of the variables (vectors).

for k = 1:3
    h2(k).Color = 'r'; % Specify red as the line color
end

Modify the font of the variable labels.

for k = 7:9
    h2(k).FontWeight = 'bold';  % Specify bold font
end

Change the color of the observation markers.

for k = 10:103
    h2(k).MarkerEdgeColor = 'k';  % Specify black color for the observations
end

Input Arguments
coefs — Coefficients
matrix
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Coefficients, specified as a matrix that has two or three columns. If coefs has two columns, then the
biplot is 2-D; if coefs has three columns, then the biplot is 3-D. The columns of coefs usually
contain principal component coefficients created with pca or pcacov, or factor loadings estimated
with factoran. The axes in the biplot represent columns of coefs, and the vectors in the biplot
represent rows of coefs (the observed variables).
Data Types: single | double

ax — Axes for plot
Axes object

Axes for the plot, specified as an Axes object. If you do not specify ax, then biplot creates the plot
using the current axes. For more information on creating an Axes object, see axes.

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: biplot(coefs,'VarLabels',varlabels) labels each vector (variable) with the text in
the array varlabels.

Scores — Scores
matrix

Scores, specified as the comma-separated pair consisting of 'Scores' and a matrix with the same
number of columns as coefs. Scores usually contains principal component scores created with pca
or factor scores estimated with factoran. The biplot function represents each row of Scores (the
observations) as points and each row of coefs (the observed variables) as vectors.
Example: 'Scores',score(:,1:3)
Data Types: single | double

VarLabels — Variable labels
character array | string array | cell array

Variable labels, specified as the comma-separated pair consisting of 'VarLabels' and a character
array, string array, or cell array. biplot labels each vector (observed variable) with the text in the
array.
Example: 'VarLabels',varlabels
Data Types: char | string | cell

ObsLabels — Observation labels
character array | string array | cell array

Observation labels, specified as the comma-separated pair consisting of 'ObsLabels' and a
character array, string array, or cell array. biplot uses the text in the array as observation names
when displaying data cursors.
Example: 'ObsLabels',obslabels
Data Types: char | string | cell
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Positive — Indicator for plotting in positive coordinates
false (default) | true

Indicator for plotting in the positive coordinates, specified as the comma-separated pair consisting of
'Positive' and one of these logical values.

Value Description
false Creates the biplot over the range +/– max(coefs(:)) for all coordinates (default)
true Restricts the biplot to the positive quadrant (in 2-D) or octant (in 3-D)

Example: 'Positive',true
Data Types: logical

PropertyName — Property name
supported line property value

Property name, specified as the comma-separated pair consisting of a property name and its
associated value for one or more supported Line Properties. These properties are the names and
values for all primitive line graphics objects created by biplot. The specified property names control
the appearance and behavior of the graphics objects.
Example: 'Marker','square','MarkerSize',10

Output Arguments
h — Handles to graphics objects
column vector

Handles to the graphics objects created by biplot, returned as a column vector. The vector contains
handles in this order:

1 Handles corresponding to variables (line handles first, followed by marker handles then text
handles)

2 Handles corresponding to observations (marker handles first, followed by text handles)
3 Handles corresponding to the axis lines

You can use the handles to query and modify properties of specific graphics objects. See Graphics
Object Handles and Graphics Arrays for more details.

Algorithms
A biplot allows you to visualize the magnitude and sign of each variable's contribution to the first two
or three principal components, and to represent each observation in terms of those components. The
biplot function:

• Imposes a sign convention, forcing the element with the largest magnitude in each column of
coefs to be positive. This action flips some of the vectors in coefs to the opposite direction, but
often makes the plot easier to read. Interpretation of the plot is unaffected, because changing the
sign of a coefficient vector does not change its meaning.

• Scales the scores so that they fit on the plot. That is, the function divides each score by the
maximum absolute value of all scores, and multiplies by the maximum coefficient length of coefs.
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Then biplot changes the sign of the score coordinates according to the sign convention for the
coefficients.

Version History
Introduced before R2006a

See Also
factoran | nnmf | pca | pcacov | rotatefactors | zscore

Topics
Principal Component Analysis (PCA) on page 16-66
Line Properties
Graphics Arrays
Access Property Values
Graphics Object Properties
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bootci
Bootstrap confidence interval

Syntax
ci = bootci(nboot,bootfun,d)
ci = bootci(nboot,bootfun,d1,...,dN)
ci = bootci(nboot,{bootfun,d},Name,Value)
ci = bootci(nboot,{bootfun,d1,...,dN},Name,Value)
[ci,bootstat] = bootci( ___ )

Description
ci = bootci(nboot,bootfun,d) computes a 95% bootstrap confidence interval for each statistic
computed by the function bootfun. The bootci function uses nboot bootstrap samples in its
computation, and creates each bootstrap sample by sampling with replacement from the rows of d.

ci = bootci(nboot,bootfun,d1,...,dN) creates each bootstrap sample by sampling with
replacement from the rows of the nonscalar data arguments in d1,...,dN. These nonscalar
arguments must have the same number of rows. The bootci function passes the samples of
nonscalar data and the unchanged scalar data arguments in d1,...,dN to bootfun.

ci = bootci(nboot,{bootfun,d},Name,Value) specifies options using one or more name-value
arguments. For example, you can change the type of confidence interval by specifying the 'Type'
name-value argument.

Note that you must pass the bootfun and d arguments to bootci as a single cell array.

ci = bootci(nboot,{bootfun,d1,...,dN},Name,Value) specifies options using one or more
name-value arguments. For example, you can change the significance level of the confidence interval
by specifying the 'Alpha' name-value argument.

Note that you must pass the bootfun and d1,...,dN arguments to bootci as a single cell array.

[ci,bootstat] = bootci( ___ ) also returns the bootstrapped statistic computed for each of the
nboot bootstrap replicate samples, using any of the input argument combinations in the previous
syntaxes. Each row of bootstat contains the results of applying bootfun to one bootstrap sample.

Examples

Bootstrap Confidence Interval

Compute the confidence interval for the capability index in statistical process control.

Generate 30 random numbers from the normal distribution with mean 1 and standard deviation 1.

rng('default') % For reproducibility
y = normrnd(1,1,30,1);

Specify the lower and upper specification limits of the process. Define the capability index.
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LSL = -3;
USL = 3;
capable = @(x)(USL-LSL)./(6*std(x));

Compute the 95% confidence interval for the capability index by using 2000 bootstrap samples. By
default, bootci uses the bias corrected and accelerated percentile method to construct the
confidence interval.

ci = bootci(2000,capable,y)

ci = 2×1

    0.5937
    0.9900

Compute the studentized confidence interval for the capability index.

sci = bootci(2000,{capable,y},'Type','student')

sci = 2×1

    0.5193
    0.9930

Bootstrap Confidence Intervals for Nonlinear Regression Model Coefficients

Compute bootstrap confidence intervals for the coefficients of a nonlinear regression model. The
technique used in this example involves bootstrapping the predictor and response values, and
assumes that the predictor variable is random. For a technique that assumes the predictor variable is
fixed and bootstraps the residuals, see “Bootstrap Confidence Intervals for Linear Regression Model
Coefficients” on page 35-239.

Note: This example uses nlinfit, which is useful when you only need the coefficient estimates or
residuals of a nonlinear regression model and you need to repeat fitting a model multiple times, as in
the case of bootstrapping. If you need to investigate a fitted regression model further, create a
nonlinear regression model object by using fitnlm. You can create confidence intervals for the
coefficients of the resulting model by using the coefCI object function, although this function does
not use bootstrapping.

Generate data from the nonlinear regression model y = b1 + b2 ⋅ exp(− b3x) + ϵ, where b1 = 1, b2 = 3,
and b3 = 2 are coefficients; the predictor variable x is exponentially distributed with mean 2; and the
error term ϵ is normally distributed with mean 0 and standard deviation 0.1.

modelfun = @(b,x)(b(1)+b(2)*exp(-b(3)*x));

rng('default') % For reproducibility
b = [1;3;2];
x = exprnd(2,100,1);
y = modelfun(b,x) + normrnd(0,0.1,100,1);

Create a function handle for the nonlinear regression model that uses the initial values in beta0.
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beta0 = [2;2;2];
beta = @(predictor,response)nlinfit(predictor,response,modelfun,beta0)

beta = function_handle with value:
    @(predictor,response)nlinfit(predictor,response,modelfun,beta0)

Compute the 95% bootstrap confidence intervals for the coefficients of the nonlinear regression
model. Create the bootstrap samples from the generated data x and y.

ci = bootci(1000,beta,x,y)

ci = 2×3

    0.9821    2.9552    2.0180
    1.0410    3.1623    2.2695

The first two confidence intervals include the true coefficient values b1 = 1 and b2 = 3, respectively.
However, the third confidence interval does not include the true coefficient value b3 = 2.

Now compute the 99% bootstrap confidence intervals for the model coefficients.

newci = bootci(1000,{beta,x,y},'Alpha',0.01)

newci = 2×3

    0.9730    2.9112    1.9562
    1.0469    3.1876    2.3133

All three confidence intervals include the true coefficient values.

Bootstrap Confidence Intervals for Linear Regression Model Coefficients

Compute bootstrap confidence intervals for the coefficients of a linear regression model. The
technique used in this example involves bootstrapping the residuals and assumes that the predictor
variable is fixed. For a technique that assumes the predictor variable is random and bootstraps the
predictor and response values, see “Bootstrap Confidence Intervals for Nonlinear Regression Model
Coefficients” on page 35-238.

Note: This example uses regress, which is useful when you only need the coefficient estimates or
residuals of a regression model and you need to repeat fitting a model multiple times, as in the case
of bootstrapping. If you need to investigate a fitted regression model further, create a linear
regression model object by using fitlm. You can create confidence intervals for the coefficients of
the resulting model by using the coefCI object function, although this function does not use
bootstrapping.

Load the sample data.

load hald

Perform a linear regression and compute the residuals.
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x = [ones(size(heat)),ingredients];
y = heat;
b = regress(y,x);
yfit = x*b;
resid = y - yfit;

Compute the 95% bootstrap confidence intervals for the coefficients of the linear regression model.
Create the bootstrap samples from the residuals. Use normal approximated intervals with
bootstrapped bias and standard error by specifying 'Type','normal'. You cannot use the default
confidence interval type in this case.

ci = bootci(1000,{@(bootr)regress(yfit+bootr,x),resid}, ...
    'Type','normal')

ci = 2×5

  -47.7130    0.3916   -0.6298   -1.0697   -1.2604
  172.4899    2.7202    1.6495    1.2778    0.9704

Plot the estimated coefficients b, omitting the intercept term, and display error bars showing the
coefficient confidence intervals.

slopes = b(2:end)';
lowerBarLengths = slopes-ci(1,2:end);
upperBarLengths = ci(2,2:end)-slopes;
errorbar(1:4,slopes,lowerBarLengths,upperBarLengths)
xlim([0 5])
title('Coefficient Confidence Intervals')
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Only the first nonintercept coefficient is significantly different from 0.

Confidence Intervals for Multiple Statistics

Compute the mean and standard deviation of 100 bootstrap samples. Find the 95% confidence
interval for each statistic.

Generate 100 random numbers from the exponential distribution with mean 5.

rng('default') % For reproducibility
y = exprnd(5,100,1);

Draw 100 bootstrap samples from the vector y. For each bootstrap sample, compute the mean and
standard deviation. Find the 95% bootstrap confidence interval for the mean and standard deviation.

[ci,bootstat] = bootci(100,@(x)[mean(x) std(x)],y);

ci(:,1) contains the lower and upper bounds of the mean confidence interval, and c(:,2) contains
the lower and upper bounds of the standard deviation confidence interval. Each row of bootstat
contains the mean and standard deviation of a bootstrap sample.

Plot the mean and standard deviation of each bootstrap sample as a point. Plot the lower and upper
bounds of the mean confidence interval as dotted vertical lines, and plot the lower and upper bounds
of the standard deviation confidence interval as dotted horizontal lines.
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plot(bootstat(:,1),bootstat(:,2),'o')
xline(ci(1,1),':')
xline(ci(2,1),':')
yline(ci(1,2),':')
yline(ci(2,2),':')
xlabel('Mean')
ylabel('Standard Deviation')

Input Arguments
nboot — Number of bootstrap samples
positive integer scalar

Number of bootstrap samples to draw, specified as a positive integer scalar. To create each bootstrap
sample, bootci randomly selects with replacement n out of the n rows of nonscalar data in d or
d1,...,dN.
Example: 100
Data Types: single | double

bootfun — Function to apply to each sample
function handle

Function to apply to each sample, specified as a function handle. The function can be a custom or
built-in function. You must specify bootfun with the @ symbol.
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Example: @mean
Data Types: function_handle

d — Data to sample from
column vector | matrix

Data to sample from, specified as a column vector or matrix. The n rows of d correspond to
observations. When you use multiple data input arguments d1,...,dN, you can specify some
arguments as scalar values, but all nonscalar arguments must have the same number of rows.

If you use a single vector argument d, you can specify it as a row vector. bootci then samples from
the elements of the vector.
Data Types: single | double

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: bootci(100,{@mean,1:6'},'Alpha',0.1) specifies to draw 100 bootstrap samples
from the values 1 through 6, take the mean of each sample, and then compute the 90% confidence
interval for the sample mean.

Alpha — Significance level
0.05 (default) | positive scalar in (0,1)

Significance level, specified as a positive scalar between 0 and 1. bootci computes the 100*(1-
Alpha) bootstrap confidence interval of each statistic defined by the function bootfun.
Example: 'Alpha',0.01
Data Types: single | double

Type — Confidence interval type
'bca' (default) | 'norm' | 'per' | 'cper' | 'stud' | ...

Confidence interval type, specified as one of the values in this table.

Value Description
'norm' or 'normal' Normal approximated interval with bootstrapped

bias and standard error [1]
'per' or 'percentile' Basic percentile method
'cper' or 'corrected percentile' Bias corrected percentile method [2]
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Value Description
'bca' Bias corrected and accelerated percentile method

[3], [4]. This method involves a z0 factor
computed using the proportion of bootstrap
values that are less than the original sample
value. To produce reasonable results when the
sample is lumpy, the software computes z0 by
including half of the bootstrap values that are the
same as the original sample value.

'stud' or 'student' Studentized confidence interval [3]

Example: 'Type','student'

NBootStd — Number of bootstrap samples for studentized standard error estimate
100 (default) | positive integer scalar

Number of bootstrap samples for the studentized standard error estimate, specified as a positive
integer scalar.

bootci computes the studentized bootstrap confidence interval of the statistic defined by the
function bootfun, and estimates the standard error of the bootstrap statistics by using NBootStd
bootstrap data samples.

Note To use this name-value argument, the Type value must be 'stud' or 'student'. Specify
either NBootStd or StdErr, but not both.

Example: 'NBootStd',50
Data Types: single | double

StdErr — Function used to compute studentized standard error estimate
function handle

Function used to compute the studentized standard error estimate, specified as a function handle.

bootci computes the studentized bootstrap confidence interval of the statistic defined by the
function bootfun, and estimates the standard error of the bootstrap statistics by using the function
StdErr. The StdErr function must take the same arguments as bootfun and return the standard
error of the statistic computed by bootfun.

Note To use this name-value argument, the Type value must be 'stud' or 'student'. Specify
either NBootStd or StdErr, but not both.

Example: 'StdErr',@std
Data Types: function_handle

Weights — Observation weights
ones(n,1)/n (default) | nonnegative vector

Observation weights, specified as a nonnegative vector with at least one positive element. The
number of elements in Weights must be equal to the number of rows n in the data d or d1,...,dN.
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To obtain one bootstrap sample, bootci randomly selects with replacement n out of n rows of data
using these weights as multinomial sampling probabilities.
Data Types: single | double

Options — Options for computing iterations in parallel and setting random numbers
structure

Options for computing bootstrap iterations in parallel and setting random numbers during the
bootstrap sampling, specified as a structure. Create the Options structure with statset. This table
lists the option fields and their values.

Field Name Value Default
UseParallel Set this value to true to

compute bootstrap iterations in
parallel.

false

UseSubstreams Set this value to true to run
computations in parallel in a
reproducible manner.

To compute reproducibly, set
Streams to a type that allows
substreams: 'mlfg6331_64' or
'mrg32k3a'.

false

Streams Specify this value as a
RandStream object or cell array
of such objects. Use a single
object except when the
UseParallel value is true
and the UseSubstreams value
is false. In that case, use a cell
array that has the same size as
the parallel pool.

If you do not specify Streams,
then bootci uses the default
stream or streams.

Note You need Parallel Computing Toolbox to run computations in parallel.

Example: 'Options',statset('UseParallel',true)
Data Types: struct

Output Arguments
ci — Confidence interval bounds
vector with two rows | matrix with two rows | multidimensional array with two rows

Confidence interval bounds, returned as a vector, matrix, or multidimensional array with two rows.

• If bootfun returns a scalar, then ci is a vector containing the lower and upper bounds of the
confidence interval.

• If bootfun returns a vector of length m, then ci is a matrix of size 2-by-m, where ci(1,:) are
lower bounds and ci(2,:) are upper bounds.
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• If bootfun returns a multidimensional array, then ci is an array, where ci(1,:,...) is an array
of lower bounds and ci(2,:,...) is an array of upper bounds.

bootstat — Bootstrap statistics
column vector | matrix

Bootstrap statistics, returned as a column vector or matrix with nboot rows. The ith row of
bootstat corresponds to the results of applying bootfun to the ith bootstrap sample. If bootfun
returns a matrix or array, then the bootci function first converts this output to a row vector before
storing it in bootstat.

Version History
Introduced in R2006a

References
[1] Davison, A. C., and D. V. Hinkley. Bootstrap Methods and Their Applications. Cambridge University

Press, 1997.

[2] Efron, Bradley. The Jackknife, the Bootstrap and Other Resampling Plans. Philadelphia: The
Society for Industrial and Applied Mathematics, 1982.

[3] DiCiccio, Thomas J., and Bradley Efron. “Bootstrap Confidence Intervals.” Statistical Science 11,
no. 3 (1996): 189–228.

[4] Efron, Bradley, and Robert J. Tibshirani. An Introduction to the Bootstrap. New York: Chapman &
Hall, 1993.

Extended Capabilities
Automatic Parallel Support
Accelerate code by automatically running computation in parallel using Parallel Computing Toolbox™.

To run in parallel, specify the 'Options' name-value argument in the call to this function and set the
'UseParallel' field of the options structure to true using statset.

For example: 'Options',statset('UseParallel',true)

For more information about parallel computing, see “Run MATLAB Functions with Automatic Parallel
Support” (Parallel Computing Toolbox).

See Also
bootstrp | jackknife | statget | statset | randsample | parfor

Topics
“Resampling Statistics” on page 3-10
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bootstrp
Bootstrap sampling

Syntax
bootstat = bootstrp(nboot,bootfun,d)
bootstat = bootstrp(nboot,bootfun,d1,...,dN)
bootstat = bootstrp( ___ ,Name,Value)
[bootstat,bootsam] = bootstrp( ___ )

Description
bootstat = bootstrp(nboot,bootfun,d) draws nboot bootstrap data samples from d,
computes statistics on each sample using the function bootfun, and returns the results in
bootstat. The bootstrp function creates each bootstrap sample by sampling with replacement
from the rows of d. Each row of the output argument bootstat contains the results of applying
bootfun to one bootstrap sample.

bootstat = bootstrp(nboot,bootfun,d1,...,dN) draws nboot bootstrap samples from the
data in dl,...,dN. The nonscalar data arguments in dl,...,dN must have the same number of
rows, n. The bootstrp function creates each bootstrap sample by sampling with replacement from
the indices 1:n and selecting the corresponding rows of the nonscalar dl,...,dN. The function
passes the sample of nonscalar data and the unchanged scalar data arguments in dl,...,dN to
bootfun.

bootstat = bootstrp( ___ ,Name,Value) specifies options using one or more name-value pair
arguments in addition to any of the input argument combinations in previous syntaxes. For example,
you can add observation weights to your data or compute bootstrap iterations in parallel.

[bootstat,bootsam] = bootstrp( ___ ) also returns bootsam, an n-by-nboot matrix of
bootstrap sample indices, where n is the number of rows in the original, nonscalar data. Each column
in bootsam corresponds to one bootstrap sample and contains the row indices of the values drawn
from the nonscalar data to create that sample.

To get the bootstrap sample indices without applying a function to the samples, set bootfun to
empty ([]).

Examples

Estimate Density of Bootstrapped Statistic

Estimate the kernel density of bootstrapped means.

Generate 100 random numbers from the exponential distribution with mean 5.

rng('default')  % For reproducibility
y = exprnd(5,100,1);

Compute a sample of 100 bootstrapped means of random samples taken from the vector y.
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m = bootstrp(100,@mean,y);

Plot an estimate of the density of the bootstrapped means.

[fi,xi] = ksdensity(m);
plot(xi,fi)

Bootstrapping Multiple Statistics

Compute and plot the means and standard deviations of 100 bootstrap samples.

Generate 100 random numbers from the exponential distribution with mean 5.

rng('default')  % For reproducibility
y = exprnd(5,100,1);

Compute a sample of 100 bootstrapped means and standard deviations of random samples taken from
the vector y.

stats = bootstrp(100,@(x)[mean(x) std(x)],y);

Plot the bootstrap estimate pairs.

plot(stats(:,1),stats(:,2),'o')
xlabel('Mean')
ylabel('Standard Deviation')
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Bootstrap Samples of Observations

Take bootstrap samples of patient data, compute the mean measurements for each data sample, and
visualize the results.

Load the patients data set. Create the matrix patientData containing age, weight, and height
measurements. Each row of patientData corresponds to one patient.

load patients
patientData = [Age Weight Height];

Create 200 bootstrap data samples from the data in patientData. To create each sample, randomly
select with replacement 100 rows (that is, size(patientData,1)) from the rows in patientData.
For each sample, calculate the mean age, weight, and height measurements. Each row of bootstat
contains the three mean measurements for one bootstrap sample.

rng('default') % For reproducibility
bootstat = bootstrp(200,@mean,patientData);

Visualize the mean measurements for all 200 bootstrap data samples. Note that bootstrap samples
with greater mean weights tend to have greater mean heights.

scatter3(bootstat(:,1),bootstat(:,2),bootstat(:,3))
xlabel('Mean Age')
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ylabel('Mean Weight')
zlabel('Mean Height')

view([-75 10])

Bootstrapping Correlation Coefficient Standard Error

Compute a correlation coefficient standard error using bootstrap resampling of the sample data.

Load the lawdata data set, which contains the LSAT score and law school GPA for 15 students.

load lawdata
rng('default')  % For reproducibility
size(lsat)

ans = 1×2

    15     1

size(gpa)

ans = 1×2

    15     1
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Create 1000 data samples by resampling the 15 data points, and compute the correlation between the
two variables for each data sample.

[bootstat,bootsam] = bootstrp(1000,@corr,lsat,gpa);

Display the first 5 bootstrapped correlation coefficients.

bootstat(1:5,:)

ans = 5×1

    0.9874
    0.4918
    0.5459
    0.8458
    0.8959

Display the indices of the data selected for the first 5 bootstrap samples.

bootsam(:,1:5)

ans = 15×5

    13     3    11     8    12
    14     7     1     7     4
     2    14     5    10     8
    14    12     1    11    11
    10    15     2    12    14
     2    10    13     5    15
     5     1    11    11     9
     9    13     5    10     3
    15    15    15     3     3
    15    11     1     2     4
      ⋮

Create a histogram that shows the variation of the correlation coefficient across all the bootstrap
samples.

histogram(bootstat)

 bootstrp

35-251



The sample minimum is positive, indicating that the relationship between LSAT score and GPA is not
accidental.

Finally, compute a bootstrap standard of error for the estimated correlation coefficient.

se = std(bootstat)

se = 0.1285

Compare Bootstrap Samples with Different Observation Weights

Compare bootstrap samples with different observation weights. Create a custom function that
computes statistics for each sample.

Create 50 bootstrap samples from the numbers 1 through 6. To create each sample, bootstrp
randomly chooses with replacement from the numbers 1 through 6, six times. This process is similar
to rolling a die six times. For each sample, the custom function countfun (shown at the end of this
example) counts the number of 1s in the sample.

rng('default') %For reproducibility
counts = bootstrp(50,@countfun,(1:6)');

Note: If you use the live script file for this example, the countfun function is already included at the
end of the file. Otherwise, you need to create this function at the end of your .m file or add it as a file
on the MATLAB® path.
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Create 50 bootstrap samples from the numbers 1 through 6, but assign different weights to the
numbers. Each time bootstrp randomly chooses from the numbers 1 through 6, the probability of
choosing a 1 is 0.5, the probability of choosing a 2 is 0.1, and so on. Again, countfun counts the
number of 1s in each sample.

weights = [0.5 0.1 0.1 0.1 0.1 0.1]';
weightedCounts = bootstrp(50,@countfun,(1:6)','Weights',weights);

Compare the two sets of bootstrap samples by using histograms.

histogram(counts)
hold on
histogram(weightedCounts)
legend
xlabel('Number of 1s in Sample')
ylabel('Number of Samples')
hold off

The two sets of bootstrap samples have different distributions; in particular, the samples in the
second set tend to contain more 1s. For example, of the 50 samples in the first set, only two samples
contain more than two 1s. By contrast, of the 50 samples in the second set (with observation
weights), 12 + 14 + 4 + 2 = 32 samples contain more than two 1s.

This code creates the function countfun.

function numberofones = countfun(sample)
numberofones = sum(sample == 1);
end
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Bootstrapping Regression Model

Estimate the standard errors for a coefficient vector in a linear regression by bootstrapping the
residuals.

Note: This example uses regress, which is useful when you simply need the coefficient estimates or
residuals of a regression model and you need to repeat fitting a model multiple times, as in the case
of bootstrapping. If you need to investigate a fitted regression model further, create a linear
regression model object by using fitlm.

Load the sample data.

load hald

Perform a linear regression, and compute the residuals.

x = [ones(size(heat)),ingredients];
y = heat;
b = regress(y,x);
yfit = x*b;
resid = y - yfit;

Estimate the standard errors by bootstrapping the residuals.

se = std(bootstrp(1000,@(bootr)regress(yfit+bootr,x),resid))

se = 1×5

   56.1752    0.5940    0.5815    0.5989    0.5691

Input Arguments
nboot — Number of bootstrap samples
positive integer scalar

Number of bootstrap samples to draw, specified as a positive integer scalar. To create each bootstrap
sample, bootstrp randomly selects with replacement n out of the n rows of (nonscalar) data in d or
d1,...,dN.
Example: 100
Data Types: single | double

bootfun — Function to apply to each sample
function handle

Function to apply to each sample, specified as a function handle. The function can be a custom or
built-in function. You must specify bootfun with the @ symbol.

For an example that uses a custom function, see “Compare Bootstrap Samples with Different
Observation Weights” on page 35-252.
Example: @mean
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Data Types: function_handle

d — Data to sample from
column vector | matrix

Data to sample from, specified as a column vector or matrix. The n rows of d correspond to
observations. When you use multiple data input arguments d1,...,dN, you can specify some
arguments as scalar values, but all nonscalar arguments must have the same number of rows.

If you use a single vector argument d, you can specify it as a row vector. bootstrp then samples
from the elements of the vector.
Data Types: single | double | logical | char | string | cell | categorical

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: bootstrp(4,@mean,(1:2)','Weights',[0.4 0.6]') specifies to draw four bootstrap
samples from the values 1 and 2 and take the mean of each sample. For each draw, the probability of
getting a 1 is 0.4, and the probability of getting a 2 is 0.6.

Weights — Observation weights
ones(n,1)/n (default) | nonnegative vector

Observation weights, specified as the comma-separated pair consisting of 'Weights' and a
nonnegative vector with at least one positive element. The number of elements in Weights must be
equal to the number of rows n in the data d or d1,...,dN. To obtain one bootstrap sample,
bootstrp randomly selects with replacement n out of n rows of data using the weights as
multinomial sampling probabilities.
Data Types: single | double

Options — Options for computing in parallel and setting random numbers
structure

Options for computing bootstrap iterations in parallel and setting random numbers during the
bootstrap sampling, specified as the comma-separated pair consisting of 'Options' and a structure.
Create the Options structure with statset. This table lists the option fields and their values.

Field Name Value Default
UseParallel Set this value to true to

compute bootstrap iterations in
parallel.

false
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Field Name Value Default
UseSubstreams Set this value to true to run

computations in parallel in a
reproducible manner.

To compute reproducibly, set
Streams to a type that allows
substreams: 'mlfg6331_64' or
'mrg32k3a'.

false

Streams Specify this value as a
RandStream object or cell array
of such objects. Use a single
object except when the
UseParallel value is true
and the UseSubstreams value
is false. In that case, use a cell
array that has the same size as
the parallel pool.

If you do not specify Streams,
then bootstrp uses the default
stream or streams.

Note You need Parallel Computing Toolbox to run computations in parallel.

Example: 'Options',statset('UseParallel',true)
Data Types: struct

Output Arguments
bootstat — Bootstrap sample statistics
column vector | matrix

Bootstrap sample statistics, returned as a column vector or matrix with nboot rows. The ith row of
bootstat corresponds to the results of applying bootfun to the ith bootstrap sample. If bootfun
returns a matrix or array, then the bootstrp function first converts this output to a row vector
before storing it in bootstat.

bootsam — Bootstrap sample indices
numeric matrix

Bootstrap sample indices, returned as an n-by-nboot numeric matrix, where n is the number of rows
in the original, nonscalar data. Each column in bootsam corresponds to one bootstrap sample and
contains the row indices of the values drawn from the nonscalar data to create that sample.

For example, if each data input argument in d1,...,dN contains 16 values, and nboot = 4, then
bootsam is a 16-by-4 matrix. The first column contains the indices of the 16 values drawn from
d1,...,dN for the first bootstrap sample, the second column contains the indices for the second
bootstrap sample, and so on. The bootstrap indices are the same for all input data sets d1,...,dN.

Tips
• To get the bootstrap sample indices bootsam without applying a function to the samples, set

bootfun to empty ([]).
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Version History
Introduced before R2006a

Extended Capabilities
Automatic Parallel Support
Accelerate code by automatically running computation in parallel using Parallel Computing Toolbox™.

To run in parallel, specify the 'Options' name-value argument in the call to this function and set the
'UseParallel' field of the options structure to true using statset.

For example: 'Options',statset('UseParallel',true)

For more information about parallel computing, see “Run MATLAB Functions with Automatic Parallel
Support” (Parallel Computing Toolbox).

See Also
histogram | bootci | ksdensity | parfor | random | randsample | RandStream | statget |
statset

Topics
“Resampling Statistics” on page 3-10
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boxchart
Box chart (box plot) for analysis of variance (ANOVA)

Syntax
boxchart(aov)
boxchart(aov,factors)
boxchart( ___ ,Name=Value)
boxchart(ax, ___ )
b = boxchart( ___ )

Description
boxchart(aov) creates a notched box plot of the response data for each factor value of the one-way
anova object aov. This syntax is supported only if the factor is categorical.

boxchart(aov,factors) creates a notched box plot for each value of the factors in factors. The
argument factors must consist of up to two of the categorical factor names in aov.FactorNames.

boxchart( ___ ,Name=Value) specifies options using one or more name-value arguments in
addition to any of the input argument combinations in the previous syntaxes. For example, you can
specify the box median line color and the marker style. For a list of properties, see BoxChart
Properties.

boxchart(ax, ___ ) plots the axes specified by ax instead of into the current axes (gca).

b = boxchart( ___ ) returns a graphics vector b of BoxChart objects for the generated box plots.

Examples

Plot Data for One-Way ANOVA

Load popcorn yield data.

load popcorn.mat

The columns of the 6-by-3 matrix popcorn contain popcorn yield observations in cups for three
different brands.

Perform a one-way ANOVA to test the null hypothesis that the popcorn yield is not affected by the
brand of popcorn.

aov = anova(popcorn,FactorNames="Brand")

aov = 
1-way anova, constrained (Type III) sums of squares.

Y ~ 1 + Brand

             SumOfSquares    DF    MeanSquares     F        pValue  
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             ____________    __    ___________    ____    __________

    Brand       15.75         2        7.875      18.9    7.9603e-05
    Error        6.25        15      0.41667                        
    Total          22        17                                     

  Properties, Methods

The small p-value indicates that at least one brand has a different popcorn yield that is statistically
significant.

Create a box plot of the response data for each value of Brand.

boxchart(aov)
xlabel("Brand")
ylabel("Popcorn Yield")

The shaded region of the first box plot does not overlap with the shaded regions of the other box
plots, indicating that the difference in popcorn yield for the first brand is statistically significant.
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Plot Data for Two-Way ANOVA

Load popcorn yield data.

load popcorn.mat

The columns of the 6-by-3 matrix popcorn contain popcorn yield observations in cups for the brands
Gourmet, National, and Generic. The first three rows of the matrix correspond to popcorn that was
popped with an oil popper, and the last three rows correspond to popcorn that was popped with an air
popper.

Create string arrays containing factor values for the brand and popper type by using the repmat
function.

brand = [repmat("Gourmet",6,1);repmat("National",6,1);repmat("Generic",6,1)];
poppertype = [repmat("Air",3,1);repmat("Oil",3,1);repmat("Air",3,1);...
    repmat("Oil",3,1);repmat("Air",3,1);repmat("Oil",3,1)];
factors = {brand,poppertype};

Perform a two-way ANOVA to test the null hypothesis that the popcorn yield is not affected by the
brand of popcorn, type of popper, or the interaction between the brand and type of popper.

aov = anova(factors,popcorn(:),FactorNames=["Brand","PopperType"],...
    ModelSpecification="interactions")

aov = 
2-way anova, constrained (Type III) sums of squares.

Y ~ 1 + Brand*PopperType

                        SumOfSquares    DF    MeanSquares     F        pValue  
                        ____________    __    ___________    ____    __________

    Brand                    15.75       2        7.875      56.7     7.679e-07
    PopperType                 4.5       1          4.5      32.4    0.00010037
    Brand:PopperType      0.083333       2     0.041667       0.3       0.74622
    Error                   1.6667      12      0.13889                        
    Total                       22      17                                     

  Properties, Methods

aov is an anova object that contains the results of the two-way ANOVA. The small p-values for Brand
and PopperType indicate that both the brand and type of popper have a statistically significant effect
on the popcorn yield. The large p-value for Brand:PopperType indicates that not enough evidence
exists to reject the null hypothesis that the interaction term does not have a statistically significant
effect on the popcorn yield.

Use boxchart to plot the response data grouped by the values for Brand and the response data
grouped by PopperType. To see the color boxchart assigns to each popper type, add a legend.

boxchart(aov,["Brand","PopperType"])
legend
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The box plots indicate that the popcorn yield is higher for popcorn popped in oil, regardless of the
brand. For each type of popper, the Gourmet brand yields the most popcorn and the Generic brand
yields the least. This result is consistent with the results from the two-way ANOVA.

Specify Axes for Box Plots

Load popcorn yield data.

load popcorn.mat

The columns of the 6-by-3 matrix popcorn contain popcorn yield observations in cups for the brands
Generic, Gourmet, and National. The first three rows of the matrix correspond to popcorn that was
popped with an oil popper, and the last three rows correspond to popcorn that was popped with an air
popper.

Create string arrays containing factor values for the brand and popper type using the function
repmat.

brand = [repmat("Gour.",6,1);repmat("Nat.",6,1);repmat("Gen.",6,1)];
poppertype = [repmat("Air",3,1);repmat("Oil",3,1);repmat("Air",3,1);...
    repmat("Oil",3,1);repmat("Air",3,1);repmat("Oil",3,1)];

Perform a two-way ANOVA to test the null hypothesis that the popcorn yield is not affected by the
brand of popcorn or type of popper.
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aov = anova({brand,poppertype}, popcorn(:), FactorNames=["Brand","PopperType"]);

Create a 1-by-2 tiled chart layout. In the first set of axes, plot the box plots for the brand. In the
second set of axes, plot the box plots for the popper type.

tiledlayout(1,2)

% Left axes
ax1 = nexttile;
boxchart(ax1,aov,"Brand")
xlabel(ax1,"Brand")
ylabel(ax1,"Popcorn Yield")

% Right axes
ax2 = nexttile;
boxchart(ax2,aov,"PopperType")
xlabel(ax2,"Popper Type")

The box plot median lines indicate that the brand of popcorn has a larger effect on the popcorn yield
than the type of popper.

Set Box Median Line and Face Color

Load popcorn yield data.
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load popcorn.mat

The columns of the 6-by-3 matrix popcorn contain popcorn yield observations in cups for three
different brands.

Perform a one-way ANOVA to test the null hypothesis that the popcorn yield is not affected by the
brand of popcorn.

aov = anova(popcorn,FactorNames="Brand")

aov = 
1-way anova, constrained (Type III) sums of squares.

Y ~ 1 + Brand

             SumOfSquares    DF    MeanSquares     F        pValue  
             ____________    __    ___________    ____    __________

    Brand       15.75         2        7.875      18.9    7.9603e-05
    Error        6.25        15      0.41667                        
    Total          22        17                                     

  Properties, Methods

Plot the response data for the different values of Brand. Plot the median line in red, the box face in
gray, and the box edges in black.

boxchart(aov,BoxFaceAlpha=0.2,BoxFaceColor="k",...
    BoxEdgeColor="k",BoxMedianLineColor="r")
xlabel("Brand")
ylabel("Popcorn Yield")
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The shaded region of the first box plot does not overlap with the shaded regions of the other box
plots, indicating that the difference in the popcorn yield for the first brand is statistically significant.

Input Arguments
aov — Analysis of variance results
anova object

Analysis of variance results, specified as an anova object. The properties of aov contain the factors
and response data used by boxchart to generate the box plots.

factors — Factors used to group response data
string vector | cell array of character vectors

Factors used to group the response data, specified as a string vector or cell array of character
vectors. The boxchart function groups the response data by the combinations of values for factors in
factors. The factors input argument must be one or two of the categorical factor names in
aov.FactorNames.
Example: ["g1","g2"]
Data Types: string | cell

ax — Target axes
Axes object
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Target axes, specified as an Axes object. If you do not specify the axes, then boxchart uses the
current axes (gca).

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.
Example: Orientation="horizontal",BoxMedianLineColor="r",WhiskerLineStyle="--"
creates horizontal box plots with red median lines and dashed whiskers.

BoxFaceColor — Box color
RGB triplet | hexadecimal color code | color name | short name

Box color, specified as an RGB triplet, hexadecimal color code, color name, or short name. The box
includes the box edges and median line. To specify the color of the box edges and median line
separately, you can use the BoxEdgeColor property. To specify the color of the median line only, use
the BoxMedianLineColor property.

For a custom color, specify an RGB triplet or a hexadecimal color code.

• An RGB triplet is a three-element row vector whose elements specify the intensities of the red,
green, and blue components of the color. The intensities must be in the range [0,1]; for example,
[0.4 0.6 0.7].

• A hexadecimal color code is a character vector or a string scalar that starts with a hash symbol (#)
followed by three or six hexadecimal digits, which can range from 0 to F. The values are not case
sensitive. Thus, the color codes "#FF8800", "#ff8800", "#F80", and "#f80" are equivalent.

Alternatively, you can specify some common colors by name. This table lists the named color options,
the equivalent RGB triplets, and hexadecimal color codes.

Color Name Short Name RGB Triplet Hexadecimal
Color Code

Appearance

"red" "r" [1 0 0] "#FF0000"
"green" "g" [0 1 0] "#00FF00"
"blue" "b" [0 0 1] "#0000FF"
"cyan" "c" [0 1 1] "#00FFFF"
"magenta" "m" [1 0 1] "#FF00FF"
"yellow" "y" [1 1 0] "#FFFF00"
"black" "k" [0 0 0] "#000000"
"white" "w" [1 1 1] "#FFFFFF"
"none" Not

applicable
Not applicable Not applicable No color

Here are the RGB triplets and hexadecimal color codes for the default colors MATLAB uses in many
types of plots.
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RGB Triplet Hexadecimal Color Code Appearance
[0 0.4470 0.7410] "#0072BD"
[0.8500 0.3250 0.0980] "#D95319"
[0.9290 0.6940 0.1250] "#EDB120"
[0.4940 0.1840 0.5560] "#7E2F8E"
[0.4660 0.6740 0.1880] "#77AC30"
[0.3010 0.7450 0.9330] "#4DBEEE"
[0.6350 0.0780 0.1840] "#A2142F"

Example: BoxFaceColor="red"
Example: BoxFaceColor=[0 0.5 0.5];
Example: BoxFaceColor="#EDB120";

MarkerStyle — Outlier style
"o" (default) | "+" | "*" | "." | "x" | ...

Outlier style, specified as one of the options listed in this table.

Marker Description Resulting Marker
"o" Circle

"+" Plus sign

"*" Asterisk

"." Point

"x" Cross

"_" Horizontal line

"|" Vertical line

"square" Square

"diamond" Diamond

"^" Upward-pointing triangle

"v" Downward-pointing triangle

">" Right-pointing triangle

"<" Left-pointing triangle

"pentagram" Pentagram

35 Functions

35-266



Marker Description Resulting Marker
"hexagram" Hexagram

"none" No markers Not applicable

Example: MarkerStyle="x"
Example: MarkerStyle="none";

JitterOutliers — Outlier marker displacement
"off" (default) | "on" | true or 1 | false or 0

Outlier marker displacement, specified as "on" or "off", or as numeric or logical 1 (true) or 0
(false). A value of "on" is equivalent to true, and "off" is equivalent to false. So, you can use
the value of this property as a logical value. The value is stored as an on/off logical value of type
matlab.lang.OnOffSwitchState.

If you set the JitterOutliers property to "on", then boxchart randomly displaces the outlier
markers along the XData direction to help you distinguish between outliers that have similar aov.Y
values. For an example, see “Visualize and Find Outliers”.
Example: JitterOutliers="on"

Notch — Median comparison display
"off" (default) | "on" | true or 1 | false or 0

Median comparison display, specified as "on" or "off", or as numeric or logical 1 (true) or 0
(false). A value of "on" is equivalent to true, and "off" is equivalent to false. So, you can use
the value of this property as a logical value. The value is stored as an on/off logical value of type
matlab.lang.OnOffSwitchState.

If you set the Notch property to "on", then boxchart creates a tapered, shaded region around each
median. Box plots whose notches do not overlap have different medians at the 5% significance level.
For more information, see “Box Chart (Box Plot)”.

Notches can extend beyond the lower and upper quartiles.
Example: Notch="off";

Orientation — Orientation of box plots
"vertical" (default) | "horizontal"

Orientation of box plots, specified as "vertical" or "horizontal". By default, box plots have a
vertical orientation, so that the aov.Y statistics are aligned with the y-axis. Regardless of the
orientation, boxchart stores the aov.Y values in the YData property of the BoxChart object.
Example: Orientation="horizontal";

Output Arguments
b — Box plots
vector of BoxChart objects

Box plots, returned as a vector of BoxChart objects. If the factors input argument contains only
one categorical factor name, b contains a single BoxChart object. If factors contains two
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categorical factor names, b contains the same number of BoxChart objects as the number of values
for the second factor. Use b to set properties of the box plots after creating them. For more
information see BoxChart Properties.

Version History
Introduced in R2022b

See Also
Objects
anova

Functions
plotComparisons | groupmeans | multcompare

Properties
BoxChart Properties
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boxplot
Visualize summary statistics with box plot

Syntax
boxplot(x)
boxplot(x,g)

boxplot(ax, ___ )

boxplot( ___ ,Name,Value)

Description
boxplot(x) creates a box plot of the data in x. If x is a vector, boxplot plots one box. If x is a
matrix, boxplot plots one box for each column of x.

On each box, the central mark indicates the median, and the bottom and top edges of the box indicate
the 25th and 75th percentiles, respectively. The whiskers extend to the most extreme data points not
considered outliers, and the outliers are plotted individually using the '+' marker symbol.

boxplot(x,g) creates a box plot using one or more grouping variables contained in g. boxplot
produces a separate box for each set of x values that share the same g value or values.

boxplot(ax, ___ ) creates a box plot using the axes specified by the axes graphic object ax, using
any of the previous syntaxes.

boxplot( ___ ,Name,Value) creates a box plot with additional options specified by one or more
Name,Value pair arguments. For example, you can specify the box style or order.

Examples

Create a Box Plot

Load the sample data.

load carsmall

Create a box plot of the miles per gallon (MPG) measurements. Add a title and label the axes.

boxplot(MPG)
xlabel('All Vehicles')
ylabel('Miles per Gallon (MPG)')
title('Miles per Gallon for All Vehicles')
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The boxplot shows that the median miles per gallon for all vehicles in the sample data is
approximately 24. The minimum value is about 9, and the maximum value is about 44.

Create Box Plots for Grouped Data

Load the sample data.

load carsmall

Create a box plot of the miles per gallon (MPG) measurements from the sample data, grouped by the
vehicles' country of origin (Origin). Add a title and label the axes.

boxplot(MPG,Origin)
title('Miles per Gallon by Vehicle Origin')
xlabel('Country of Origin')
ylabel('Miles per Gallon (MPG)')
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Each box visually represents the MPG data for cars from the specified country. Italy's "box" appears
as a single line because the sample data contains only one observation for this group.

Create Notched Box Plots

Generate two sets of sample data. The first sample, x1, contains random numbers generated from a
normal distribution with mu = 5 and sigma = 1. The second sample, x2, contains random numbers
generated from a normal distribution with mu = 6 and sigma = 1.

rng default  % For reproducibility
x1 = normrnd(5,1,100,1);
x2 = normrnd(6,1,100,1);

Create notched box plots of x1 and x2. Label each box with its corresponding mu value.

figure
boxplot([x1,x2],'Notch','on','Labels',{'mu = 5','mu = 6'})
title('Compare Random Data from Different Distributions')
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The boxplot shows that the difference between the medians of the two groups is approximately 1.
Since the notches in the box plot do not overlap, you can conclude, with 95% confidence, that the
true medians do differ.

The following figure shows the box plot for the same data with the maximum whisker length specified
as 1.0 times the interquartile range. Data points beyond the whiskers are displayed using +.

figure
boxplot([x1,x2],'Notch','on','Labels',{'mu = 5','mu = 6'},'Whisker',1)
title('Compare Random Data from Different Distributions')
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With the smaller whiskers, boxplot displays more data points as outliers.

Create Compact Box Plots

Create a 100-by-25 matrix of random numbers generated from a standard normal distribution to use
as sample data.

rng default  % For reproducibility
x = randn(100,25);

Create two box plots for the data in x on the same figure. Use the default formatting for the top plot,
and compact formatting for the bottom plot.

figure

subplot(2,1,1)
boxplot(x)

subplot(2,1,2)
boxplot(x,'PlotStyle','compact')
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Each plot presents the same data, but the compact formatting may improve readability for plots with
many boxes.

Box Plots for Vectors of Varying Length

Create box plots for data vectors of varying length by using a grouping variable.

Randomly generate three column vectors of varying length: one of length 5, one of length 10, and one
of length 15. Combine the data into a single column vector of length 30.

rng('default')  % For reproducibility
x1 = rand(5,1);
x2 = rand(10,1);
x3 = rand(15,1);
x = [x1; x2; x3];

Create a grouping variable that assigns the same value to rows that correspond to the same vector in
x. For example, the first five rows of g have the same value, First, because the first five rows of x all
come from the same vector, x1.

g1 = repmat({'First'},5,1);
g2 = repmat({'Second'},10,1);
g3 = repmat({'Third'},15,1);
g = [g1; g2; g3];
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Create the box plots.

boxplot(x,g)

Input Arguments
x — Input data
numeric vector | numeric matrix

Input data, specified as a numeric vector or numeric matrix. If x is a vector, boxplot plots one box. If
x is a matrix, boxplot plots one box for each column of x.

On each box, the central mark indicates the median, and the bottom and top edges of the box indicate
the 25th and 75th percentiles, respectively. The whiskers extend to the most extreme data points not
considered outliers, and the outliers are plotted individually using the '+' marker symbol.
Data Types: single | double

g — Grouping variables
numeric vector | character array | string array | cell array | categorical array

Grouping variables, specified as a numeric vector, character array, string array, cell array, or
categorical array. You can specify multiple grouping variables in g by using a cell array of these
variable types or a matrix. If you specify multiple grouping variables, they must all be the same
length.
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If x is a vector, then the grouping variables must contain one row for each element of x. If x is a
matrix, then the grouping variables must contain one row for each column of x. Groups that contain a
missing value (NaN), an empty character vector, an empty or <missing> string, or an <undefined>
value in a grouping variable are omitted, and are not counted in the number of groups considered by
other parameters.

By default, boxplot sorts character and string grouping variables in the order they initially appear
in the data, categorical grouping variables by the order of their levels, and numeric grouping
variables in numeric order. To control the order of groups, do one of the following:

• Use categorical variables in g and specify the order of their levels.
• Use the 'GroupOrder' name-value pair argument.
• Pre-sort your data.

Data Types: single | double | char | string | cell | categorical

ax — Axes on which to plot
axes graphic object

Axes on which to plot, specified as an axes graphic object. If you do not specify ax, then boxplot
creates the plot using the current axis. For more information on creating an axes graphic object, see
axes and Axes.

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: 'Notch','on','Labels',{'mu = 5','mu = 6'} creates a notched box plot and labels
the two boxes mu = 5 and mu = 6, from left to right

Box Appearance

BoxStyle — Box style
'outline' | 'filled'

Box style, specified as one of the following.

Name Value
'outline' Plot boxes using an unfilled box with dashed

whiskers. This is the default if 'PlotStyle' is
'traditional'.

'filled' Plot boxes using a narrow filled box with lines for
whiskers. This is the default if 'PlotStyle' is
'compact'.

Example: 'BoxStyle','filled'

Colors — Box colors
RGB triplet | character vector or string scalar of color names
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Box colors, specified as an RGB triplet, character vector, or string scalar. An RGB triplet is a three-
element row vector whose elements specify the intensities of the red, green, and blue components of
the color, respectively. Each intensity must be in the range [0,1].

The following table lists the available color characters and their equivalent RGB triplet values.

Long Name Short Name RGB Triplet
Yellow 'y' [1 1 0]
Magenta 'm' [1 0 1]
Cyan 'c' [0 1 1]
Red 'r' [1 0 0]
Green 'g' [0 1 0]
Blue 'b' [0 0 1]
White 'w' [1 1 1]
Black 'k' [0 0 0]

You can specify multiple colors either as a character vector or string scalar of color names (for
example, 'rgbm') or a three-column matrix of RGB values. The sequence is replicated or truncated
as required, so for example, 'rb' gives boxes that alternate red and blue.

If you do not specify the name-value pair 'ColorGroup', then boxplot uses the same color scheme
for all boxes. If you do specify 'ColorGroup', then the default is a modified hsv colormap.
Example: 'Colors','rgbm'

MedianStyle — Median style
'line' | 'target'

Median style, specified as one of the following.

Name Value
'line' Draw a line to represent the median in each box.

This is the default when 'PlotStyle' is
'traditional'.

'target' Draw a black dot inside a white circle to
represent the median in each box. This is the
default when 'PlotStyle' is 'compact'.

Example: 'MedianStyle','target'

Notch — Marker for comparison intervals
'off' (default) | 'on' | 'marker'

Marker for comparison intervals, specified as one of the following.

Name Value
'off' Omit comparison intervals from box display.
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Name Value
'on' If 'PlotStyle' is 'traditional', draw

comparison intervals using notches. If
'PlotStyle' is 'compact', draw comparison
intervals using triangular markers.

'marker' Draw comparison intervals using triangular
markers.

Two medians are significantly different at the 5% significance level if their intervals do not overlap.
boxplot represents interval endpoints using the extremes of the notches or the centers of the
triangular markers. The notch extremes correspond to q2 – 1.57(q3 – q1)/sqrt(n) and q2 + 1.57(q3 – q1)/
sqrt(n), where q2 is the median (50th percentile), q1 and q3 are the 25th and 75th percentiles,
respectively, and n is the number of observations without any NaN values. If the sample size is small,
the notches might extend beyond the end of the box.

For a labeled example of box plots with notches, see “Box Plot” on page 35-284.
Example: 'Notch','on'

OutlierSize — Marker size for outliers
positive numeric value

Marker size for outliers, specified as a positive numeric value. The specified value represents the
marker size in points.

If 'PlotStyle' is 'traditional', then the default value for OutlierSize is 6. If 'PlotStyle'
is 'compact', then the default value for OutlierSize is 4.
Example: 'OutlierSize',8
Data Types: single | double

PlotStyle — Plot style
'traditional' (default) | 'compact'

Plot style, specified as one of the following.

Name Value
'traditional' Plot boxes using a traditional box style.
'compact' Plot boxes using a smaller box style designed for

plots with many groups. This style changes the
defaults for some other parameters.

Example: 'PlotStyle','compact'

Symbol — Marker and color for outliers
character vector | string scalar

Marker and color for outliers, specified as a character vector or string scalar containing symbols for
the marker and color. The symbols can appear in any order. If you omit the marker symbol, then
outliers are invisible. If you omit the color symbol, then outliers appear in the same color as the box.

If 'PlotStyle' is 'traditional', then the default value is '+r', which plots each outlier using a
red plus sign '+' marker symbol.
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If 'PlotStyle' is 'compact', then the default value is 'o', which plots each outlier using a circle
'o' marker symbol in the same color as the corresponding box.

Marker Description Resulting Marker
"o" Circle

"+" Plus sign

"*" Asterisk

"." Point

"x" Cross

"_" Horizontal line

"|" Vertical line

"square" Square

"diamond" Diamond

"^" Upward-pointing triangle

"v" Downward-pointing triangle

">" Right-pointing triangle

"<" Left-pointing triangle

"pentagram" Pentagram

"hexagram" Hexagram

Color Description
'y' Yellow
'm' Magenta
'c' Cyan
'r' Red
'g' Green
'b' Blue
'w' White
'k' Black

Example: Specify 'Symbol','' to make the outliers invisible.

Widths — Box width
numeric scalar | numeric vector
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Box width, specified as a numeric scalar or numeric vector. If the number of boxes is not equal to the
number of width values specified, then the list of values is replicated or truncated as necessary.

This name-value pair argument does not alter the spacing between boxes. Therefore, if you specify a
large value for 'Widths', the boxes might overlap.

The default box width is equal to half of the minimum separation between boxes, which is 0.5 when
the 'Positions' name-value pair argument takes its default value.
Example: 'Widths',0.3
Data Types: single | double

Group Appearance

ColorGroup — Grouping variable for box color change
[] (default) | numeric vector | character array | string array | cell array | categorical array

Grouping variable for box color change, specified as a grouping variable. The grouping variable is a
numeric vector, character array, string array, cell array, or categorical array. The box color changes
when the specified grouping variable changes. The default value [] indicates that the box color does
not change based on the group.
Data Types: single | double | char | string | cell | categorical

FactorDirection — Order of factors on plot
'data' (default) | 'list' | 'auto'

Order of factors on plot, specified as one of the following.

Name Value
'data' Factors appear with the first value next to the

plot origin.
'list' Factors appear left-to-right if on the x-axis, or

top-to-bottom if on the y-axis.
'auto' If the grouping variables are numeric, then

boxplot uses 'data'. If the grouping variables
are character arrays, string arrays, cell arrays, or
categorical arrays, then boxplot uses 'list'.

Example: 'FactorDirection','auto'

FullFactors — Plot all group factors
'off' (default) | 'on'

Plot all group factors, specified as either 'off' or 'on'. If 'off', then boxplot plots one box for
each unique row of grouping variables. If 'on', then boxplot plots one box for each possible
combination of grouping variable values, including combinations that do not appear in the data.
Example: 'FullFactors','on'

FactorGap — Distance between different grouping factors
[] | positive numeric value | vector of positive numeric values | 'auto'
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Distance between different grouping factors, specified as a positive numeric value, a vector of
positive numeric values, or 'auto'. If you specify a vector, then the vector length must be less than
or equal to the number of grouping variables.

'FactorGap' represents the distance of the gap between different factors of a grouping variable,
expressed as a percentage of the width of the plot. For example, if you specify [3,1], then the gap is
three percent of the width of the plot between groups with different values of the first grouping
variable, and one percent between groups with the same value of the first grouping variable but
different values for the second.

If you specify 'auto', then boxplot selects a gap distance automatically. The value [] indicates no
change in gap size between different factors.

If 'PlotStyle' is 'traditional', then the default value for FactorGap is []. If 'PlotStyle' is
'compact', then the default value is 'auto'.
Example: 'FactorGap',[3,1]
Data Types: single | double | char | string

FactorSeparator — Separation between grouping factors
[] | positive integer | vector of positive integers | 'auto'

Separation between grouping factors, specified as a positive integer or a vector of positive integers,
or 'auto'. If you specify a vector, then the length of the vector should be less than or equal to the
number of grouping variables. The integer values must be in the range [1,G], where G is the number
of grouping variables.

'FactorSeparator' specifies which factors should have their values separated by a grid line. For
example, [1,2] adds a separator line when the first or second grouping variable changes value.

If 'PlotStyle' is 'traditional', then the default value for FactorSeparator is []. If
'PlotStyle' is 'compact', then the default value is 'auto'.
Example: 'FactorSeparator',[1,2]
Data Types: single | double | char | string

GroupOrder — Plotting order of groups
[] (default) | string array | cell array

Plotting order of groups, specified as a string array or cell array containing the names of the
grouping variables. If you have multiple grouping variables, separate values with a comma. You can
also use categorical arrays as grouping variables to control the order of the boxes. The default value
[] does not reorder the boxes.
Data Types: string | cell

Data Limits and Maximum Distances

DataLim — Extreme data limits
[-Inf,Inf] (default) | two-element numeric vector

Extreme data limits, specified as a two-element numeric vector containing the lower and upper limits,
respectively. The values specified for 'DataLim' are used by 'ExtremeMode' to determine which
data points are extreme.
Data Types: single | double
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ExtremeMode — Handling method for extreme data
'clip' (default) | 'compress'

Handling method for extreme data, specified as one of the following.

Name Value
'clip' If any data values fall outside the limits specified

by 'DataLim', then boxplot displays these
values at DataLim on the plot.

'compress' If any data values fall outside the limits specified
by 'DataLim' , then boxplot displays these
values evenly distributed in a region just outside
DataLim, retaining the relative order of the
points.

If any data points lie outside the limit specified by 'DataLim', then the limit is marked with a dotted
line. If any data points are compressed, then two gray lines mark the compression region. Values at –
Inf or Inf can be clipped or compressed, but NaN values do not appear on the plot. Box notches are
drawn to scale and may extend beyond the bounds if the median is inside the limit. Box notches are
not drawn if the median is outside the limits.
Example: 'ExtremeMode','compress'

Jitter — Maximum outlier displacement distance
numeric value

Maximum outlier displacement distance, specified as a numeric value. Jitter is the maximum
distance to displace outliers along the factor axis by a uniform random amount, in order to make
duplicate points visible. If you specify 'Jitter' equal to 1, then the jitter regions just touch between
the closest adjacent groups.

If 'PlotStyle' is 'traditional', then the default value for Jitter is 0. If 'PlotStyle' is
'compact', then the default value is 0.5.
Example: 'Jitter',1
Data Types: single | double

Whisker — Multiplier for maximum whisker length
1.5 (default) | positive numeric value

Multiplier for the maximum whisker length, specified as a positive numeric value. The maximum
whisker length is the product of Whisker and the interquartile range.

boxplot draws points as outliers if they are greater than q3 + w × (q3 – q1) or less than q1 – w × (q3 –
q1), where w is the multiplier Whisker, and q1 and q3 are the 25th and 75th percentiles of the sample
data, respectively.

The default value for 'Whisker' corresponds to approximately +/–2.7σ and 99.3 percent coverage if
the data are normally distributed. The plotted whisker extends to the adjacent value, which is the
most extreme data value that is not an outlier.

Specify 'Whisker' as 0 to give no whiskers and to make every point outside of q1 and q3 an outlier.

For a labeled example of box plots with whiskers, see “Box Plot” on page 35-284.
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Example: 'Whisker',0
Data Types: single | double

Plot Appearance

Labels — Box labels
character array | string array | cell array | numeric vector | numeric matrix

Box labels, specified as a character array, string array, cell array, or numeric vector containing the
box label names. Specify one label per x value or one label per group. To specify multiple label
variables, use a numeric matrix or a cell array containing any of the accepted data types.

To remove labels from a plot , use the following command: set(gca,'XTickLabel',{' '}).
Data Types: char | string | cell | single | double

LabelOrientation — Label orientation
'inline' | 'horizontal'

Label orientation, specified as one of the following.

Name Value
'inline' Rotate box labels to be vertical. This is the

default when 'PlotStyle' is 'compact'.
'horizontal' Leave box labels horizontal. This is the default

when 'PlotStyle' is 'traditional'.

If the labels are on the y axis, then both settings leave the labels horizontal.
Example: 'LabelOrientation','inline'

LabelVerbosity — Labels to display on plot
'all' | 'minor' | 'majorminor'

Labels to display on plot, specified as one of the following.

Name Value
'all' Display a label for every value of a grouping

variable. This is the default when 'PlotStyle'
is 'traditional'.

'minor' For any grouping variable, display the value
corresponding to box j only if that value differs
from the value corresponding to box (j – 1).

'majorminor' For any grouping variable g(:,i), display the
value corresponding to box j, only if that value
differs from the value of g(:,i) corresponding
to box (j – 1), or if the condition above holds
for at least one of the grouping variables
g(:,1),…,g(:,i-1). This is the default when
'PlotStyle' is 'compact'.

Example: 'LabelVerbosity','minor'
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Orientation — Plot orientation
'vertical' (default) | 'horizontal'

Plot orientation, specified as one of the following.

Name Value
'vertical' Plot x on the y-axis.
'horizontal' Plot x on the x-axis.

Example: 'Orientation','horizontal'

Positions — Box positions
numeric vector

Box positions, specified as a numeric vector containing one entry for each group or x value. The
default is 1:NumGroups, where NumGroups is the number of groups.
Data Types: single | double

More About
Box Plot

A box plot provides a visualization of summary statistics for sample data and contains the following
features:

• The bottom and top of each box are the 25th and 75th percentiles of the sample, respectively. The
distance between the bottom and top of each box is the interquartile range.

• The red line in the middle of each box is the sample median. If the median is not centered in the
box, the plot shows sample skewness.

• The whiskers are lines extending above and below each box. Whiskers go from the end of the
interquartile range to the furthest observation within the whisker length (the adjacent value).

• Observations beyond the whisker length are marked as outliers. By default, an outlier is a value
that is more than 1.5 times the interquartile range away from the bottom or top of the box.
However, you can adjust this value by using additional input arguments. An outlier appears as a
red + sign.

• Notches display the variability of the median between samples. The width of a notch is computed
so that boxes whose notches do not overlap have different medians at the 5% significance level.
The significance level is based on a normal distribution assumption, but comparisons of medians
are reasonably robust for other distributions. Comparing box plot medians is like a visual
hypothesis test, analogous to the t test used for means. In some cases, notches can extend outside
the boxes.
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Tips
• boxplot creates a visual representation of the data, but does not return numeric values. To

calculate the relevant summary statistics for the sample data, use the following functions:

• min — Find the minimum value in the sample data.
• max — Find the maximum value in the sample data.
• median — Find the median value in the sample data.
• quantile — Find the quantile values in the sample data. For example, to compute the 25th

and 75th percentiles of x, specify quantile(x,[0.25 0.75]).
• iqr — Find the interquartile range in the sample data.
• grpstats — Calculate summary statistics for the sample data, organized by group.

• You can see data values and group names using the data cursor in the figure window. The cursor
shows the original values of any points affected by the datalim parameter. You can label the
group to which an outlier belongs using the gname function.

• To modify graphics properties of a box plot component, use findobj with the Tag property to find
the component's handle. Tag values for box plot components depend on parameter settings, and
are listed in the following table.
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Parameter Settings Tag Values
All settings • 'Box'

• 'Outliers'
When 'PlotStyle' is 'traditional' • 'Median'

• 'Upper Whisker'
• 'Lower Whisker'
• 'Upper Adjacent Value'
• 'Lower Adjacent Value'

When 'PlotStyle' is 'compact' • 'Whisker'
• 'MedianOuter'
• 'MedianInner'

When 'Notch' is 'marker' • 'NotchLo'
• 'NotchHi'

Alternative Functionality
You can also create a BoxChart object by using the boxchart function. Although boxchart does
not include all the functionality of boxplot, it has some advantages. Unlike boxplot, the boxchart
function:

• Allows for categorical rulers along the group axis
• Provides the option of a legend
• Works well with the hold on command
• Has an improved visual design that helps you see notches more easily

To control the appearance and behavior of the object, change the BoxChart Properties.

Version History
Introduced before R2006a

References
[1] McGill, R., J. W. Tukey, and W. A. Larsen. “Variations of Boxplots.” The American Statistician. Vol.

32, No. 1, 1978, pp. 12–16.

[2] Velleman, P.F., and D.C. Hoaglin. Applications, Basics, and Computing of Exploratory Data
Analysis. Pacific Grove, CA: Duxbury Press, 1981.

[3] Nelson, L. S. “Evaluating Overlapping Confidence Intervals.” Journal of Quality Technology. Vol.
21, 1989, pp. 140–141.

[4] Langford, E. “Quartiles in Elementary Statistics”, Journal of Statistics Education. Vol. 14, No. 3,
2006.
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See Also
anova1 | kruskalwallis | multcompare | min | max | median | quantile | iqr | grpstats

Topics
“Compare Grouped Data Using Box Plots” on page 4-4
“Grouping Variables” on page 2-46
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boundary
Piecewise distribution boundaries

Syntax
[p,q] = boundary(pd)
[p,q] = boundary(pd,j)

Description
[p,q] = boundary(pd) returns the boundary points between segments in pd, the piecewise
distribution. p is a vector of the cumulative probabilities at the boundaries, and q is a vector of the
corresponding quantiles.

[p,q] = boundary(pd,j) returns boundary values of the jth boundary.

Examples

Boundaries in paretotails Object

Generate a sample data set and create a paretotails object by fitting a piecewise distribution with
Pareto tails to the generated data. Find the boundary points between segments in a paretotails
object by using the object function boundary.

Generate a sample data set containing 20% outliers.

rng('default');  % For reproducibility
left_tail = -exprnd(1,100,1);
right_tail = exprnd(5,100,1);
center = randn(800,1);
x = [left_tail;center;right_tail];

Create a paretotails object by fitting a piecewise distribution to x. Specify the boundaries of the
tails using the lower and upper tail cumulative probabilities so that a fitted object consists of the
empirical distribution for the middle 80% of the data set and generalized Pareto distributions (GPDs)
for the lower and upper 10% of the data set.

pd = paretotails(x,0.1,0.9)

pd = 
Piecewise distribution with 3 segments
      -Inf < x < -1.33251    (0 < p < 0.1): lower tail, GPD(-0.0063504,0.567017)
   -1.33251 < x < 1.80149  (0.1 < p < 0.9): interpolated empirical cdf
        1.80149 < x < Inf    (0.9 < p < 1): upper tail, GPD(0.24874,3.00974)

Return the boundary values between the piecewise segments by using the boundary function.

[p,q] = boundary(pd)

p = 2×1
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    0.1000
    0.9000

q = 2×1

   -1.3325
    1.8015

The values in p are the cumulative probabilities at the boundaries, and the values in q are the
corresponding quantiles.

Plot the cdf of the paretotails object and mark the boundary points on the figure.

xi = sort(x);
plot(xi,cdf(pd,xi))
hold on
plot(q,p,'ro')
legend('Pareto Tails Object','Boundary Points','Location','best')
hold off

Input Arguments
pd — Piecewise distribution with Pareto tails
paretotails object
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Piecewise distribution with Pareto tails, specified as a paretotails object.

j — Boundary index
positive integer

Boundary index indicating which boundary to return, specified as a positive integer.
Data Types: single | double

Output Arguments
p — Cumulative probability at boundary
numeric vector of range (0,1) values

Cumulative probability at each boundary, returned as a numeric vector of range (0,1) values.

q — Quantile at boundary
numeric vector

Quantile at each boundary, returned as a numeric vector.

Version History
Introduced in R2007a

See Also
paretotails | segment | upperparams | lowerparams | nsegments

Topics
“Fit a Nonparametric Distribution with Pareto Tails” on page 5-44
“Nonparametric and Empirical Probability Distributions” on page 5-31
“Nonparametric Estimates of Cumulative Distribution Functions and Their Inverses” on page 5-192
“Generalized Pareto Distribution” on page B-60
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CalinskiHarabaszEvaluation
Calinski-Harabasz criterion clustering evaluation object

Description
CalinskiHarabaszEvaluation is an object consisting of sample data (X), clustering data
(OptimalY), and Calinski-Harabasz criterion values (CriterionValues) used to evaluate the
optimal number of clusters (OptimalK). The Calinski-Harabasz criterion is sometimes called the
variance ratio criterion (VRC). Well-defined clusters have a large between-cluster variance and a
small within-cluster variance. The optimal number of clusters corresponds to the solution with the
highest Calinski-Harabasz index value. For more information, see “Calinski-Harabasz Criterion” on
page 35-295.

Creation
Create a Calinski-Harabasz criterion clustering evaluation object by using the evalclusters
function and specifying the criterion as "CalinskiHarabasz".

You can then use compact to create a compact version of the Calinski-Harabasz criterion clustering
evaluation object. The function removes the contents of the properties X, OptimalY, and Missing.

Properties
Clustering Evaluation Properties

ClusteringFunction — Clustering algorithm
'kmeans' | 'linkage' | 'gmdistribution' | function handle | []

This property is read-only.

Clustering algorithm used to cluster the sample data, returned as 'kmeans', 'linkage',
'gmdistribution', or a function handle. If you specify the clustering solutions as an input
argument to evalclusters when you create the clustering evaluation object, then
ClusteringFunction is empty.

Value Description
'kmeans' Cluster the data in X using the kmeans clustering

algorithm, with EmptyAction set to
"singleton" and Replicates set to 5.

'linkage' Cluster the data in X using the clusterdata
agglomerative clustering algorithm, with
Linkage set to "ward".
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Value Description
'gmdistribution' Cluster the data in X using the gmdistribution

Gaussian mixture distribution algorithm, with
SharedCov set to true and Replicates set to
5.

Data Types: double | char | function_handle

CriterionName — Name of criterion
'CalinskiHarabasz'

This property is read-only.

Name of the criterion used for clustering evaluation, returned as 'CalinskiHarabasz'.

CriterionValues — Criterion values
numeric vector

This property is read-only.

Criterion values, returned as a numeric vector. Each value corresponds to a proposed number of
clusters in InspectedK.
Data Types: double

InspectedK — List of number of proposed clusters
positive integer vector

This property is read-only.

List of the number of proposed clusters for which to compute criterion values, returned as a positive
integer vector.
Data Types: double

OptimalK — Optimal number of clusters
positive integer scalar

This property is read-only.

Optimal number of clusters, returned as a positive integer scalar.
Data Types: double

OptimalY — Optimal clustering solution
positive integer column vector | []

This property is read-only.

Optimal clustering solution corresponding to OptimalK, returned as a positive integer column vector.
Each row of OptimalY represents the cluster index of the corresponding observation (or row) in X. If
you specify the clustering solutions as an input argument to evalclusters when you create the
clustering evaluation object, or if the clustering evaluation object is compact (see compact), then
OptimalY is empty.
Data Types: double
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Sample Data Properties

Missing — Excluded data
logical column vector | []

This property is read-only.

Excluded data, returned as a logical column vector. If an element of Missing is true, then the
corresponding observation (or row) in the data matrix X is not used in the clustering solutions. If the
clustering evaluation object is compact (see compact), then Missing is empty.
Data Types: double | logical

NumObservations — Number of observations
positive integer scalar

This property is read-only.

Number of observations in the data matrix X, ignoring observations with missing (NaN) values,
returned as a positive integer scalar.
Data Types: double

X — Data used for clustering
numeric matrix | []

This property is read-only.

Data used for clustering, returned as a numeric matrix. Rows correspond to observations, and
columns correspond to variables. If the clustering evaluation object is compact (see compact), then X
is empty.
Data Types: single | double

Object Functions
addK Evaluate additional numbers of clusters
compact Compact clustering evaluation object
plot Plot clustering evaluation object criterion values

Examples

Evaluate Clustering Solution Using Calinski-Harabasz Criterion

Evaluate the optimal number of clusters using the Calinski-Harabasz clustering evaluation criterion.

Load the fisheriris data set. The data contains length and width measurements from the sepals
and petals of three species of iris flowers.

load fisheriris

Evaluate the optimal number of clusters using the Calinski-Harabasz criterion. Cluster the data using
kmeans.

rng("default") % For reproducibility
evaluation = evalclusters(meas,"kmeans","CalinskiHarabasz","KList",1:6)
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evaluation = 
  CalinskiHarabaszEvaluation with properties:

    NumObservations: 150
         InspectedK: [1 2 3 4 5 6]
    CriterionValues: [NaN 513.9245 561.6278 530.4871 456.1279 469.5068]
           OptimalK: 3

The OptimalK value indicates that, based on the Calinski-Harabasz criterion, the optimal number of
clusters is three.

Plot the Calinski-Harabasz criterion values for each number of clusters tested.

plot(evaluation)

The plot shows that the highest Calinski-Harabasz value occurs at three clusters, suggesting that the
optimal number of clusters is three.

Create a grouped scatter plot to examine the relationship between petal length and width. Group the
data by suggested clusters.

PetalLength = meas(:,3);
PetalWidth = meas(:,4);
clusters = evaluation.OptimalY;
gscatter(PetalLength,PetalWidth,clusters,[],"xod");
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The plot shows cluster 3 in the lower-left corner, completely separated from the other two clusters.
Cluster 3 contains flowers with the smallest petal widths and lengths. Cluster 1 is in the upper-right
corner, and contains flowers with the largest petal widths and lengths. Cluster 2 is near the center of
the plot, and contains flowers with measurements between these two extremes.

More About
Calinski-Harabasz Criterion

The Calinski-Harabasz criterion is sometimes called the variance ratio criterion (VRC). The Calinski-
Harabasz index is defined as

VRCk =
SSB
SSW

× N − k
k− 1 ,

where SSB is the overall between-cluster variance, SSW is the overall within-cluster variance, k is the
number of clusters, and N is the number of observations.

The overall between-cluster variance SSB is defined as

SSB = ∑
i = 1

k
ni mi−m 2,
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where k is the number of clusters, ni is the number of observations in cluster i, mi is the centroid of
cluster i, m is the overall mean of the sample data, and mi−m  is the L2 norm (Euclidean distance)
between the two vectors.

The overall within-cluster variance SSW is defined as

SSW = ∑
i = 1

k
∑

x ∈ ci
x−mi

2,

where k is the number of clusters, x is a data point, ci is the ith cluster, mi is the centroid of cluster i,
and x−mi  is the L2 norm (Euclidean distance) between the two vectors.

Well-defined clusters have a large between-cluster variance (SSB) and a small within-cluster variance
(SSW). The larger the VRCk ratio, the better the data partition. To determine the optimal number of
clusters, maximize VRCk with respect to k. The optimal number of clusters corresponds to the
solution with the highest Calinski-Harabasz index value.

The Calinski-Harabasz criterion is best suited for k-means clustering solutions with squared
Euclidean distances.

Version History
Introduced in R2013b

References
[1] Calinski, T., and J. Harabasz. “A dendrite method for cluster analysis.” Communications in

Statistics. Vol. 3, No. 1, 1974, pp. 1–27.

See Also
evalclusters | DaviesBouldinEvaluation | GapEvaluation | SilhouetteEvaluation
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candexch
D-optimal design from candidate set using row exchanges

Syntax
rlist = candexch(C,nrows)
rlist = candexch(C,nrows,Name,Value)

Description
rlist = candexch(C,nrows) uses a row-exchange algorithm to select a D-optimal design from
the candidate set C.

rlist = candexch(C,nrows,Name,Value) generates a D-optimal design with additional options
specified by one or more Name,Value pair arguments.

Input Arguments
C

N-by-P matrix containing the values of P model terms at each of N points.

Default:

nrows

The desired number of rows in the design.

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.

display

When 'on', displays iteration number. Disable the display by setting to 'off'.

Default: 'on', except when the UseParallel option is true

init

nrows-by-P matrix giving an initial design.

Default: A random subset of the rows of C

maxiter

Maximum number of iterations, a positive integer.
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Default: 10

options

A structure that specifies whether to run in parallel, and specifies the random stream or streams. This
option requires Parallel Computing Toolbox.

Create the options structure with statset. Option fields:

• UseParallel — Set to true to compute in parallel. Default is false.
• UseSubstreams — Set to true to compute in parallel in a reproducible fashion. Default is false.

To compute reproducibly, set Streams to a type allowing substreams: 'mlfg6331_64' or
'mrg32k3a'.

• Streams — A RandStream object or cell array of such objects. If you do not specify Streams,
candexch uses the default stream or streams. If you choose to specify Streams, use a single
object except in the case

• UseParallel is true
• UseSubstreams is false

In that case, use a cell array the same size as the Parallel pool.

Default: []

start

An nobs-by-p matrix of factor settings, specifying a set of nobs fixed design points to include in the
design. candexch finds nrows additional rows to add to the start design. The parameter provides
the same functionality as the daugment function, using a row-exchange algorithm rather than a
coordinate-exchange algorithm.

Default: []

tries

Number of times to try to generate a design from a new starting point. The algorithm uses random
points for each try, except possibly the first.

Default: 1

Output Arguments
rlist

Vector of length nrows listing the selected rows.

Examples
This example shows how to generate a D-optimal design when there is a restriction on the candidate
set, so the rowexch function isn't appropriate.

F = (fullfact([5 5 5])-1)/4; % factor settings in unit cube
T = sum(F,2)<=1.51;         % find rows matching a restriction
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F = F(T,:);                 % take only those rows
C = [ones(size(F,1),1) F F.^2]; 
                            % compute model terms including
                            % a constant and all squared terms
R = candexch(C,12);         % find a D-optimal 12-point subset
X = F(R,:);                 % get factor settings

Algorithms
candexch selects a starting design X at random, and uses a row-exchange algorithm to iteratively
replace rows of X by rows of C in an attempt to improve the determinant of X'*X.

Alternatives
The rowexch function also generates D-optimal designs using a row-exchange algorithm, but it
automatically generates a candidate set that is appropriate for a specified model. The daugment
function augments a set of fixed design points using a coordinate-exchange algorithm; the 'start'
parameter provides the same functionality using the row exchange algorithm.

Version History
Introduced before R2006a

Extended Capabilities
Automatic Parallel Support
Accelerate code by automatically running computation in parallel using Parallel Computing Toolbox™.

To run in parallel, specify the 'Options' name-value argument in the call to this function and set the
'UseParallel' field of the options structure to true using statset.

For example: 'Options',statset('UseParallel',true)

For more information about parallel computing, see “Run MATLAB Functions with Automatic Parallel
Support” (Parallel Computing Toolbox).

See Also
candgen | rowexch | cordexch | daugment | x2fx

Topics
“Specify Candidate Sets” on page 30-16
“D-Optimal Designs” on page 30-12
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candgen
Candidate set generation

Syntax
dC = candgen(nfactors,'model')
[dC,C] = candgen(nfactors,'model')
[...] = candgen(nfactors,'model','Name',value)

Description
dC = candgen(nfactors,'model') generates a candidate set dC of treatments appropriate for
estimating the parameters in the model with nfactors factors. dC has nfactors columns and one
row for each candidate treatment. model is one of the following:

• 'linear' — Constant and linear terms. This is the default.
• 'interaction' — Constant, linear, and interaction terms
• 'quadratic' — Constant, linear, interaction, and squared terms
• 'purequadratic' — Constant, linear, and squared terms

Alternatively, model can be a matrix specifying polynomial terms of arbitrary order. In this case,
model should have one column for each factor and one row for each term in the model. The entries in
any row of model are powers for the factors in the columns. For example, if a model has factors X1,
X2, and X3, then a row [0 1 2] in model specifies the term (X1.^0).*(X2.^1).*(X3.^2). A row
of all zeros in model specifies a constant term, which can be omitted.

[dC,C] = candgen(nfactors,'model') also returns the design matrix C evaluated at the
treatments in dC. The order of the columns of C for a full quadratic model with n terms is:

1 The constant term
2 The linear terms in order 1, 2, ..., n
3 The interaction terms in order (1, 2), (1, 3), ..., (1, n), (2, 3), ..., (n – 1, n)
4 The squared terms in order 1, 2, ..., n

Other models use a subset of these terms, in the same order.

Pass C to candexch to generate a D-optimal design using a coordinate-exchange algorithm.

[...] = candgen(nfactors,'model','Name',value) specifies one or more optional name/
value pairs for the design. Valid parameters and their values are listed in the following table. Specify
Name inside single quotes.

Name Value
bounds Lower and upper bounds for each factor, specified as a 2-by-nfactors

matrix. Alternatively, this value can be a cell array containing nfactors
elements, each element specifying the vector of allowable values for the
corresponding factor.
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Name Value
categorical Indices of categorical predictors.
levels Vector of number of levels for each factor.

Note The rowexch function automatically generates a candidate set using candgen, and then
creates a D-optimal design from that candidate set using candexch. Call candexch separately to
specify your own candidate set to the row-exchange algorithm.

Examples
The following example uses rowexch to generate a five-run design for a two-factor pure quadratic
model using a candidate set that is produced internally:

dRE1 = rowexch(2,5,'purequadratic','tries',10)
dRE1 =
    -1     1
     0     0
     1    -1
     1     0
     1     1

The same thing can be done using candgen and candexch in sequence:

[dC,C] = candgen(2,'purequadratic') % Candidate set, C
dC =
    -1    -1
     0    -1
     1    -1
    -1     0
     0     0
     1     0
    -1     1
     0     1
     1     1
C =
     1    -1    -1     1     1
     1     0    -1     0     1
     1     1    -1     1     1
     1    -1     0     1     0
     1     0     0     0     0
     1     1     0     1     0
     1    -1     1     1     1
     1     0     1     0     1
     1     1     1     1     1
treatments = candexch(C,5,'tries',10) % Find D-opt subset
treatments =
     2
     1
     7
     3
     4
dRE2 = dC(treatments,:) % Display design
dRE2 =
     0    -1
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    -1    -1
    -1     1
     1    -1
    -1     0

Version History
Introduced before R2006a

See Also
candexch | rowexch
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canoncorr
Canonical correlation

Syntax
[A,B] = canoncorr(X,Y)
[A,B,r] = canoncorr(X,Y)
[A,B,r,U,V] = canoncorr(X,Y)
[A,B,r,U,V,stats] = canoncorr(X,Y)

Description
[A,B] = canoncorr(X,Y) computes the sample canonical coefficients for the data matrices X and
Y.

[A,B,r] = canoncorr(X,Y) also returns r, a vector of the sample canonical correlations.

[A,B,r,U,V] = canoncorr(X,Y) also returns U and V, matrices of the canonical scores for X and
Y, respectively.

[A,B,r,U,V,stats] = canoncorr(X,Y) also returns stats, a structure containing information
related to testing the sequence of hypotheses that the remaining correlations are all zero.

Examples

Compute Sample Canonical Correlation

Perform canonical correlation analysis for a sample data set.

The data set carbig contains measurements for 406 cars from the years 1970 to 1982.

Load the sample data.

load carbig;
data = [Displacement Horsepower Weight Acceleration MPG];

Define X as the matrix of displacement, horsepower, and weight observations, and Y as the matrix of
acceleration and MPG observations. Omit rows with insufficient data.

nans = sum(isnan(data),2) > 0;
X = data(~nans,1:3);
Y = data(~nans,4:5);

Compute the sample canonical correlation.

[A,B,r,U,V] = canoncorr(X,Y);

View the output of A to determine the linear combinations of displacement, horsepower, and weight
that make up the canonical variables of X.

A
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A = 3×2

    0.0025    0.0048
    0.0202    0.0409
   -0.0000   -0.0027

A(3,1) is displayed as —0.000 because it is very small. Display A(3,1) separately.

A(3,1)

ans = -2.4737e-05

The first canonical variable of X is u1 = 0.0025*Disp + 0.0202*HP — 0.000025*Wgt.

The second canonical variable of X is u2 = 0.0048*Disp + 0.0409*HP — 0.0027*Wgt.

View the output of B to determine the linear combinations of acceleration and MPG that make up the
canonical variables of Y.

B

B = 2×2

   -0.1666   -0.3637
   -0.0916    0.1078

The first canonical variable of Y is v1 = —0.1666*Accel — 0.0916*MPG.

The second canonical variable of Y is v2 = —0.3637*Accel + 0.1078*MPG.

Plot the scores of the canonical variables of X and Y against each other.

t = tiledlayout(2,2);
title(t,'Canonical Scores of X vs Canonical Scores of Y')
xlabel(t,'Canonical Variables of X')
ylabel(t,'Canonical Variables of Y')
t.TileSpacing = 'compact';

nexttile
plot(U(:,1),V(:,1),'.')
xlabel('u1')
ylabel('v1')

nexttile
plot(U(:,2),V(:,1),'.')
xlabel('u2')
ylabel('v1')

nexttile
plot(U(:,1),V(:,2),'.')
xlabel('u1')
ylabel('v2')

nexttile
plot(U(:,2),V(:,2),'.')
xlabel('u2')
ylabel('v2')
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The pairs of canonical variables {ui, vi} are ordered from the strongest to weakest correlation, with
all other pairs independent.

Return the correlation coefficient of the variables u1 and v1.

r(1)

ans = 0.8782

Input Arguments
X — Input matrix
matrix

Input matrix, specified as an n-by-d1 matrix. The rows of X correspond to observations, and the
columns correspond to variables.
Data Types: single | double

Y — Input matrix
matrix

Input matrix, specified as an n-by-d2 matrix where X is an n-by-d1 matrix. The rows of Y correspond to
observations, and the columns correspond to variables.
Data Types: single | double
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Output Arguments
A — Sample canonical coefficients for X variables
matrix

Sample canonical coefficients for the variables in X, returned as a d1-by-d matrix, where d =
min(rank(X),rank(Y)).

The jth column of A contains the linear combination of variables that makes up the jth canonical
variable for X.

If X is less than full rank, canoncorr gives a warning and returns zeros in the rows of A
corresponding to dependent columns of X.

B — Sample canonical coefficients for Y variables
matrix

Sample canonical coefficients for the variables in Y, returned as a d2-by-d matrix, where d =
min(rank(X),rank(Y)).

The jth column of B contains the linear combination of variables that makes up the jth canonical
variable for Y.

If Y is less than full rank, canoncorr gives a warning and returns zeros in the rows of B
corresponding to dependent columns of Y.

r — Sample canonical correlations
vector

Sample canonical correlations, returned as a 1-by-d vector, where d = min(rank(X),rank(Y)).

The jth element of r is the correlation between the jth columns of U and V.

U — Canonical scores for the X variables
matrix

Canonical scores for the variables in X, returned as an n-by-d matrix, where X is an n-by-d1 matrix and
d = min(rank(X),rank(Y)).

V — Canonical scores for the Y variables
matrix

Canonical scores for the variables in Y, returned as an n-by-d matrix, where Y is an n-by-d2 matrix and
d = min(rank(X),rank(Y)).

stats — Hypothesis test information
structure

Hypothesis test information, returned as a structure. This information relates to the sequence of d
null hypotheses H0

(k) that the (k+1)st through dth correlations are all zero for k=1,…,d-1, and d =
min(rank(X),rank(Y)).

The fields of stats are 1-by-d vectors with elements corresponding to the values of k.
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Field Description
Wilks Wilks' lambda (likelihood ratio) statistic
df1 Degrees of freedom for the chi-squared statistic, and the numerator degrees

of freedom for the F statistic
df2 Denominator degrees of freedom for the F statistic
F Rao's approximate F statistic for H0

(k)

pF Right-tail significance level for F
chisq Bartlett's approximate chi-squared statistic for H0

(k) with Lawley's
modification

pChisq Right-tail significance level for chisq

stats has two other fields (dfe and p), which are equal to df1 and pChisq, respectively, and exist
for historical reasons.
Data Types: struct

More About
Canonical Correlation Analysis

The canonical scores of the data matrices X and Y are defined as

Ui = Xai
Vi = Ybi

where ai and bi maximize the Pearson correlation coefficient ρ(Ui,Vi) subject to being uncorrelated to
all previous canonical scores and scaled so that Ui and Vi have zero mean and unit variance.

The canonical coefficients of X and Y are the matrices A and B with columns ai and bi, respectively.

The canonical variables of X and Y are the linear combinations of the columns of X and Y given by the
canonical coefficients in A and B respectively.

The canonical correlations are the values ρ(Ui,Vi) measuring the correlation of each pair of canonical
variables of X and Y.

Algorithms
canoncorr computes A, B, and r using qr and svd. canoncorr computes U and V as U = (X—
mean(X))*A and V = (Y—mean(Y))*B.

Version History
Introduced before R2006a
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References
[1] Krzanowski, W. J. Principles of Multivariate Analysis: A User's Perspective. New York: Oxford

University Press, 1988.

[2] Seber, G. A. F. Multivariate Observations. Hoboken, NJ: John Wiley & Sons, Inc., 1984.

See Also
manova1 | pca
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capability
Process capability indices

Syntax
S = capability(data,specs)

Description
S = capability(data,specs) estimates capability indices for measurements in data given the
specifications in specs. data can be either a vector or a matrix of measurements. If data is a
matrix, indices are computed for the columns. specs can be either a two-element vector of the form
[L,U] containing lower and upper specification limits, or (if data is a matrix) a two-row matrix with
the same number of columns as data. If there is no lower bound, use -Inf as the first element of
specs. If there is no upper bound, use Inf as the second element of specs.

The output S is a structure with the following fields:

• mu — Sample mean
• sigma — Sample standard deviation
• P — Estimated probability of being within limits
• Pl — Estimated probability of being below L
• Pu — Estimated probability of being above U
• Cp — (U-L)/(6*sigma)
• Cpl — (mu-L)./(3.*sigma)
• Cpu — (U-mu)./(3.*sigma)
• Cpk — min(Cpl,Cpu)

Indices are computed under the assumption that data values are independent samples from a normal
population with constant mean and variance.

Indices divide a “specification width” (between specification limits) by a “process width” (between
control limits). Higher ratios indicate a process with fewer measurements outside of specification.

Examples

Compute Capability Indices

Simulate a sample from a process with a mean of 3 and a standard deviation of 0.005.

rng default; % for reproducibility
data = normrnd(3,0.005,100,1);

Compute capability indices if the process has an upper specification limit of 3.01 and a lower
specification limit of 2.99.

S = capability(data,[2.99 3.01])
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S = struct with fields:
       mu: 3.0006
    sigma: 0.0058
        P: 0.9129
       Pl: 0.0339
       Pu: 0.0532
       Cp: 0.5735
      Cpl: 0.6088
      Cpu: 0.5382
      Cpk: 0.5382

Visualize the specification and process widths.

capaplot(data,[2.99 3.01]);
grid on

Version History
Introduced in R2006b

References

[1] Montgomery, D. Introduction to Statistical Quality Control. Hoboken, NJ: John Wiley & Sons, 1991,
pp. 369–374.
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See Also
capaplot | histfit

 capability

35-311



capaplot
Process capability plot

Syntax
p = capaplot(data,specs)
[p,h] = capaplot(data,specs)

Description
p = capaplot(data,specs) estimates the mean of and variance for the observations in input
vector data, and plots the pdf of the resulting T distribution. The observations in data are assumed
to be normally distributed. The output, p, is the probability that a new observation from the estimated
distribution will fall within the range specified by the two-element vector specs. The portion of the
distribution between the lower and upper bounds specified in specs is shaded in the plot.

[p,h] = capaplot(data,specs) additionally returns handles to the plot elements in h.

capaplot treats NaN values in data as missing, and ignores them.

Examples

Create a Process Capability Plot

Randomly generate sample data from a normal process with a mean of 3 and a standard deviation of
0.005.

rng default; % For reproducibility
data = normrnd(3,0.005,100,1);

Compute capability indices if the process has an upper specification limit of 3.01 and a lower
specification limit of 2.99.

S = capability(data,[2.99 3.01])

S = struct with fields:
       mu: 3.0006
    sigma: 0.0058
        P: 0.9129
       Pl: 0.0339
       Pu: 0.0532
       Cp: 0.5735
      Cpl: 0.6088
      Cpu: 0.5382
      Cpk: 0.5382

Visualize the specification and process widths.

capaplot(data,[2.99 3.01]);
grid on
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Version History
Introduced before R2006a

See Also
capability | histfit
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caseread
Read case names from file

Syntax
names = caseread(filename)
names = caseread

Description
names = caseread(filename) reads the contents of filename and returns a character array
names. The caseread function treats each line of the file as a separate case name. Specify
filename as either the name of a file in the current folder or the complete path name of a file.

filename can have one of the following file extensions:

• .txt, .dat, or .csv for delimited text files
• .xls, .xlsm, or .xlsx for Excel spreadsheet files

names = caseread opens the Select File to Open dialog box so that you can interactively select the
file to read.

Examples

Write and Read Case Names

Create a character array of case names representing months.

months = char('January','February', ...
    'March','April','May');

Write the names to a file named months.dat. View the contents of the file by using the type
function.

casewrite(months,'months.dat')
type months.dat

January 
February
March   
April   
May     

Read the names in the months.dat file.

names = caseread('months.dat')

names = 5x8 char array
    'January '
    'February'
    'March   '
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    'April   '
    'May     '

Input Arguments
filename — Name of file to read
character vector | string scalar

Name of the file to read, specified as a character vector or string scalar.

Depending on the location of the file, filename has one of these forms.

Location of File Form
Current folder or folder on the MATLAB path Specify the name of the file in filename.

Example: 'myTextFile.csv'
Folder that is not the current folder or a folder on
the MATLAB path

Specify the full or relative path name in
filename.

Example: 'C:\myFolder\myTextFile.csv'

Example: 'months.dat'
Data Types: char | string

Alternative Functionality
Instead of using casewrite and caseread with character arrays, consider using writecell and
readcell with cell arrays. For example:

months = {'January';'February';'March';'April';'May'};
writecell(months,'months.dat')
names = readcell('months.dat')

names =

  5×1 cell array

    {'January' }
    {'February'}
    {'March'   }
    {'April'   }
    {'May'     }

Version History
Introduced before R2006a

See Also
casewrite | gname | readcell | writecell | readtable | writetable
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casewrite
Write case names to file

Syntax
casewrite(strmat,filename)
casewrite(strmat)

Description
casewrite(strmat,filename) writes the contents of the character array or string column vector
strmat to a file filename. Each row of strmat represents one case name, and casewrite writes
each name to a separate line in filename. Specify filename as either a file name (to write the file
to the current folder) or a complete path name (to write the file to a different folder).

filename can have one of the following file extensions:

• .txt, .dat, or .csv for delimited text files
• .xls, .xlsm, or .xlsx for Excel spreadsheet files

casewrite(strmat) opens the Select File to Write dialog box so that you can interactively specify
the file to write.

Examples

Write and Read Case Names

Create a character array of case names representing months.

months = char('January','February', ...
    'March','April','May');

Write the names to a file named months.dat. View the contents of the file by using the type
function.

casewrite(months,'months.dat')
type months.dat

January 
February
March   
April   
May     

Read the names in the months.dat file.

names = caseread('months.dat')

names = 5x8 char array
    'January '
    'February'
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    'March   '
    'April   '
    'May     '

Input Arguments
strmat — Case names
character array | string column vector

Case names, specified as a character array or string column vector. Each row of strmat corresponds
to a case name and becomes a line in filename.
Data Types: char | string

filename — Name of file to write
character vector | string scalar

Name of the file to write, specified as a character vector or string scalar.

Depending on the location you are writing to, filename has one of these forms.

Location of File Form
Current folder Specify the name of the file in filename.

Example: 'myTextFile.csv'
Folder that is different from the current folder Specify the full or relative path name in

filename.

Example: 'C:\myFolder\myTextFile.csv'

Example: 'months.dat'
Data Types: char | string

Alternative Functionality
Instead of using casewrite and caseread with character arrays, consider using writecell and
readcell with cell arrays. For example:

months = {'January';'February';'March';'April';'May'};
writecell(months,'months.dat')
names = readcell('months.dat')

names =

  5×1 cell array

    {'January' }
    {'February'}
    {'March'   }
    {'April'   }
    {'May'     }
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Version History
Introduced before R2006a

See Also
gname | caseread | readcell | writecell | readtable | writetable
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DaviesBouldinEvaluation
Davies-Bouldin criterion clustering evaluation object

Description
DaviesBouldinEvaluation is an object consisting of sample data (X), clustering data (OptimalY),
and Davies-Bouldin criterion values (CriterionValues) used to evaluate the optimal number of
clusters (OptimalK). The Davies-Bouldin criterion is based on a ratio of within-cluster and between-
cluster distances. The optimal clustering solution has the smallest Davies-Bouldin index value. For
more information, see “Davies-Bouldin Criterion” on page 35-323.

Creation
Create a Davies-Bouldin criterion clustering evaluation object by using the evalclusters function
and specifying the criterion as "DaviesBouldin".

You can then use compact to create a compact version of the Davies-Bouldin criterion clustering
evaluation object. The function removes the contents of the properties X, OptimalY, and Missing.

Properties
Clustering Evaluation Properties

ClusteringFunction — Clustering algorithm
'kmeans' | 'linkage' | 'gmdistribution' | function handle | []

This property is read-only.

Clustering algorithm used to cluster the sample data, returned as 'kmeans', 'linkage',
'gmdistribution', or a function handle. If you specify the clustering solutions as an input
argument to evalclusters when you create the clustering evaluation object, then
ClusteringFunction is empty.

Value Description
'kmeans' Cluster the data in X using the kmeans clustering

algorithm, with EmptyAction set to
"singleton" and Replicates set to 5.

'linkage' Cluster the data in X using the clusterdata
agglomerative clustering algorithm, with
Linkage set to "ward".

'gmdistribution' Cluster the data in X using the gmdistribution
Gaussian mixture distribution algorithm, with
SharedCov set to true and Replicates set to
5.

Data Types: double | char | function_handle
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CriterionName — Name of criterion
'DaviesBouldin'

This property is read-only.

Name of the criterion used for clustering evaluation, returned as 'DaviesBouldin'.

CriterionValues — Criterion values
numeric vector

This property is read-only.

Criterion values, returned as a numeric vector. Each value corresponds to a proposed number of
clusters in InspectedK.
Data Types: double

InspectedK — List of number of proposed clusters
positive integer vector

This property is read-only.

List of the number of proposed clusters for which to compute criterion values, returned as a positive
integer vector.
Data Types: double

OptimalK — Optimal number of clusters
positive integer scalar

This property is read-only.

Optimal number of clusters, returned as a positive integer scalar.
Data Types: double

OptimalY — Optimal clustering solution
positive integer column vector | []

This property is read-only.

Optimal clustering solution corresponding to OptimalK, returned as a positive integer column vector.
Each row of OptimalY represents the cluster index of the corresponding observation (or row) in X. If
you specify the clustering solutions as an input argument to evalclusters when you create the
clustering evaluation object, or if the clustering evaluation object is compact (see compact), then
OptimalY is empty.
Data Types: double

Sample Data Properties

Missing — Excluded data
logical column vector | []

This property is read-only.

35 Functions

35-320



Excluded data, returned as a logical column vector. If an element of Missing is true, then the
corresponding observation (or row) in the data matrix X is not used in the clustering solutions. If the
clustering evaluation object is compact (see compact), then Missing is empty.
Data Types: double | logical

NumObservations — Number of observations
positive integer scalar

This property is read-only.

Number of observations in the data matrix X, ignoring observations with missing (NaN) values,
returned as a positive integer scalar.
Data Types: double

X — Data used for clustering
numeric matrix | []

This property is read-only.

Data used for clustering, returned as a numeric matrix. Rows correspond to observations, and
columns correspond to variables. If the clustering evaluation object is compact (see compact), then X
is empty.
Data Types: single | double

Object Functions
addK Evaluate additional numbers of clusters
compact Compact clustering evaluation object
plot Plot clustering evaluation object criterion values

Examples

Evaluate Clustering Solution Using Davies-Bouldin Criterion

Evaluate the optimal number of clusters using the Davies-Bouldin clustering evaluation criterion.

Generate sample data containing random numbers from three multivariate distributions with
different parameter values.

rng("default") % For reproducibility
n = 200;

mu1 = [2 2];
sigma1 = [0.9 -0.0255; -0.0255 0.9];

mu2 = [5 5];
sigma2 = [0.5 0; 0 0.3];

mu3 = [-2 -2];
sigma3 = [1 0; 0 0.9];

X = [mvnrnd(mu1,sigma1,n); ...
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     mvnrnd(mu2,sigma2,n); ...
     mvnrnd(mu3,sigma3,n)];

Evaluate the optimal number of clusters using the Davies-Bouldin criterion. Cluster the data using
kmeans.

evaluation = evalclusters(X,"kmeans","DaviesBouldin","KList",1:6)

evaluation = 
  DaviesBouldinEvaluation with properties:

    NumObservations: 600
         InspectedK: [1 2 3 4 5 6]
    CriterionValues: [NaN 0.4663 0.4454 0.8316 1.0444 0.9236]
           OptimalK: 3

The OptimalK value indicates that, based on the Davies-Bouldin criterion, the optimal number of
clusters is three.

Plot the Davies-Bouldin criterion values for each number of clusters tested.

plot(evaluation)

The plot shows that the lowest Davies-Bouldin value occurs at three clusters, suggesting that the
optimal number of clusters is three.

Create a grouped scatter plot to visually examine the suggested clusters.
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clusters = evaluation.OptimalY;
gscatter(X(:,1),X(:,2),clusters,[],"xod")

The plot shows three distinct clusters within the data: cluster 1 in the lower-left corner, cluster 2 in
the upper-right corner, and cluster 3 near the center of the plot.

More About
Davies-Bouldin Criterion

The Davies-Bouldin criterion is based on a ratio of within-cluster and between-cluster distances. The
Davies-Bouldin index is defined as

DB = 1
k ∑i = 1

k
max j ≠ i Di, j ,

where Di,j is the within-to-between cluster distance ratio for the ith and jth clusters.

In mathematical terms,

Di, j =
di + d j

di, j
.
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di is the average distance between each point in the ith cluster and the centroid of the ith cluster. d j
is the average distance between each point in the jth cluster and the centroid of the jth cluster. di, j is
the Euclidean distance between the centroids of the ith and jth clusters.

The maximum value of Di,j represents the worst-case within-to-between cluster ratio for cluster i. The
optimal clustering solution has the smallest Davies-Bouldin index value.

Version History
Introduced in R2013b

References
[1] Davies, D. L., and D. W. Bouldin. “A Cluster Separation Measure.” IEEE Transactions on Pattern

Analysis and Machine Intelligence. Vol. PAMI-1, No. 2, 1979, pp. 224–227.

See Also
evalclusters | CalinskiHarabaszEvaluation | GapEvaluation | SilhouetteEvaluation

35 Functions

35-324



cat
Class: dataset

(Not Recommended) Concatenate dataset arrays

Note The dataset data type is not recommended. To work with heterogeneous data, use the
MATLAB® table data type instead. See MATLAB table documentation for more information.

Syntax
ds = cat(dim, ds1, ds2, ...)

Description
ds = cat(dim, ds1, ds2, ...) concatenates the dataset arrays ds1, ds2, ... along
dimension dim by calling the dataset/horzcat or dataset/vertcat method. dim must be 1 or 2.

See Also
horzcat | vertcat
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cdf
Cumulative distribution function for Gaussian mixture distribution

Syntax
y = cdf(gm,X)

Description
y = cdf(gm,X) returns the cumulative distribution function (cdf) of the Gaussian mixture
distribution gm, evaluated at the values in X.

Examples

Compute cdf Values

Create a gmdistribution object and compute its cdf values.

Define the distribution parameters (means and covariances) of a two-component bivariate Gaussian
mixture distribution.

mu = [1 2;-3 -5];
sigma = [1 1]; % shared diagonal covariance matrix

Create a gmdistribution object by using the gmdistribution function. By default, the function
creates an equal proportion mixture.

gm = gmdistribution(mu,sigma)

gm = 

Gaussian mixture distribution with 2 components in 2 dimensions
Component 1:
Mixing proportion: 0.500000
Mean:     1     2

Component 2:
Mixing proportion: 0.500000
Mean:    -3    -5

Compute the cdf values of gm.

X = [0 0;1 2;3 3;5 3];
cdf(gm,X)

ans = 4×1

    0.5011
    0.6250
    0.9111
    0.9207

35 Functions

35-326



Plot cdf

Create a gmdistribution object and plot its cdf.

Define the distribution parameters (means, covariances, and mixing proportions) of two bivariate
Gaussian mixture components.

p = [0.4 0.6];               % Mixing proportions     
mu = [1 2;-3 -5];            % Means
sigma = cat(3,[2 .5],[1 1])  % Covariances 1-by-2-by-2 array

sigma = 
sigma(:,:,1) =

    2.0000    0.5000

sigma(:,:,2) =

     1     1

The cat function concatenates the covariances along the third array dimension. The defined
covariance matrices are diagonal matrices. sigma(1,:,i) contains the diagonal elements of the
covariance matrix of component i.

Create a gmdistribution object by using the gmdistribution function.

gm = gmdistribution(mu,sigma,p)

gm = 

Gaussian mixture distribution with 2 components in 2 dimensions
Component 1:
Mixing proportion: 0.400000
Mean:     1     2

Component 2:
Mixing proportion: 0.600000
Mean:    -3    -5

Plot the cdf of the Gaussian mixture distribution by using fsurf.

gmCDF = @(x,y) arrayfun(@(x0,y0) cdf(gm,[x0 y0]),x,y);
fsurf(gmCDF,[-10 10])
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Input Arguments
gm — Gaussian mixture distribution
gmdistribution object

Gaussian mixture distribution, also called Gaussian mixture model (GMM), specified as a
gmdistribution object.

You can create a gmdistribution object using gmdistribution or fitgmdist. Use the
gmdistribution function to create a gmdistribution object by specifying the distribution
parameters. Use the fitgmdist function to fit a gmdistribution model to data given a fixed
number of components.

X — Values at which to evaluate cdf
n-by-m numeric matrix

Values at which to evaluate the cdf, specified as an n-by-m numeric matrix, where n is the number of
observations and m is the number of variables in each observation.
Data Types: single | double

Output Arguments
y — cdf values
n-by-1 numeric vector
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cdf values of the Gaussian mixture distribution gm, evaluated at X, returned as an n-by-1 numeric
vector, where n is the number of observations in X.

Version History
Introduced in R2007b

See Also
gmdistribution | fitgmdist | pdf | mvncdf | random

Topics
“Create Gaussian Mixture Model” on page 5-120
“Fit Gaussian Mixture Model to Data” on page 5-123
“Simulate Data from Gaussian Mixture Model” on page 5-127
“Cluster Using Gaussian Mixture Model” on page 17-39
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ccdesign
Central composite design

Syntax
dCC = ccdesign(n)
[dCC,blocks] = ccdesign(n)
[...] = ccdesign(n,'Name',value)

Description
dCC = ccdesign(n) generates a central composite design for n factors. n must be an integer 2 or
larger. The output matrix dCC is m-by-n, where m is the number of runs in the design. Each row
represents one run, with settings for all factors represented in the columns. Factor values are
normalized so that the cube points take values between -1 and 1.

[dCC,blocks] = ccdesign(n) requests a blocked design. The output blocks is an m-by-1 vector
of block numbers for each run. Blocks indicate runs that are to be measured under similar conditions
to minimize the effect of inter-block differences on the parameter estimates.

[...] = ccdesign(n,'Name',value) specifies one or more optional name/value pairs for the
design. Valid parameters and their values are listed in the following table. Specify Name in single
quotes.

Parameter Description Values Value Description
center Number of center

points.
Integer Number of center points to

include.
'uniform' Select number of center

points to give uniform
precision.

'orthogonal' Select number of center
points to give an orthogonal
design. This is the default.

fraction Fraction of full-
factorial cube,
expressed as an
exponent of 1/2.

0 Whole design. Default when
n ≤ 4.

1 1/2 fraction. Default when
4 < n ≤ 7 or n > 11.

2 1/4 fraction. Default when
7 < n ≤ 9

3 1/8 fraction. Default when
n = 10.

4 1/16 fraction. Default when
n = 11.

type Type of CCD. 'circumscribed' Circumscribed (CCC). This
is the default.
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Parameter Description Values Value Description
'inscribed' Inscribed (CCI).
'faced' Faced (CCF).

blocksize Maximum number of
points per block.

Integer The default is Inf.

Examples

Two-Factor Central Composite Design

Create a 2-factor central composite design.

dCC = ccdesign(2,'type','circumscribed')

dCC = 16×2

   -1.0000   -1.0000
   -1.0000    1.0000
    1.0000   -1.0000
    1.0000    1.0000
   -1.4142         0
    1.4142         0
         0   -1.4142
         0    1.4142
         0         0
         0         0
      ⋮

The center point is run 8 times to reduce the correlations among the coefficient estimates.

Visualize the design.

plot(dCC(:,1),dCC(:,2),'ro','MarkerFaceColor','b')
X = [1 -1 -1 -1; 1 1 1 -1];
Y = [-1 -1 1 -1; 1 -1 1 1];
line(X,Y,'Color','b')
axis square equal
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Version History
Introduced before R2006a

See Also
bbdesign
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cdf
Package: prob

Cumulative distribution function

Syntax
y = cdf(name,x,A)
y = cdf(name,x,A,B)
y = cdf(name,x,A,B,C)
y = cdf(name,x,A,B,C,D)

y = cdf(pd,x)

y = cdf( ___ ,'upper')

Description
y = cdf(name,x,A) returns the cumulative distribution function (cdf) for the one-parameter
distribution family specified by name and the distribution parameter A, evaluated at the values in x.

y = cdf(name,x,A,B) returns the cdf for the two-parameter distribution family specified by name
and the distribution parameters A and B, evaluated at the values in x.

y = cdf(name,x,A,B,C) returns the cdf for the three-parameter distribution family specified by
name and the distribution parameters A, B, and C, evaluated at the values in x.

y = cdf(name,x,A,B,C,D) returns the cdf for the four-parameter distribution family specified by
name and the distribution parameters A, B, C, and D, evaluated at the values in x.

y = cdf(pd,x) returns the cdf of the probability distribution object pd, evaluated at the values in x.

y = cdf( ___ ,'upper') returns the complement of the cdf using an algorithm that more
accurately computes the extreme upper-tail probabilities. 'upper' can follow any of the input
arguments in the previous syntaxes.

Examples

Compute Normal Distribution cdf by Specifying Distribution Name and Parameters

Compute the cdf values for a normal distribution by specifying the distribution name 'Normal' and
the distribution parameters.

Define the input vector x to contain the values at which to calculate the cdf.

x = [-2,-1,0,1,2];

Compute the cdf values for the normal distribution with the mean μ equal to 1 and the standard
deviation σ equal to 5.
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mu = 1;
sigma = 5;
y = cdf('Normal',x,mu,sigma)

y = 1×5

    0.2743    0.3446    0.4207    0.5000    0.5793

Each value in y corresponds to a value in the input vector x. For example, at the value x equal to 1,
the corresponding cdf value y is equal to 0.5000.

Compute Normal Distribution cdf Using Distribution Object

Create a normal distribution object and compute the cdf values of the normal distribution using the
object.

Create a normal distribution object with the mean μ equal to 1 and the standard deviation σ equal to
5.

mu = 1;
sigma = 5;
pd = makedist('Normal','mu',mu,'sigma',sigma);

Define the input vector x to contain the values at which to calculate the cdf.

x = [-2,-1,0,1,2];

Compute the cdf values for the normal distribution at the values in x.

y = cdf(pd,x)

y = 1×5

    0.2743    0.3446    0.4207    0.5000    0.5793

Each value in y corresponds to a value in the input vector x. For example, at the value x equal to 1,
the corresponding cdf value y is equal to 0.5000.

Compute Poisson Distribution cdf

Create a Poisson distribution object with the rate parameter, λ, equal to 2.

lambda = 2;
pd = makedist('Poisson','lambda',lambda);

Define the input vector x to contain the values at which to calculate the cdf.

x = [0,1,2,3,4];

Compute the cdf values for the Poisson distribution at the values in x.
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y = cdf(pd,x)

y = 1×5

    0.1353    0.4060    0.6767    0.8571    0.9473

Each value in y corresponds to a value in the input vector x. For example, at the value x equal to 3,
the corresponding cdf value y is equal to 0.8571.

Alternatively, you can compute the same cdf values without creating a probability distribution object.
Use the cdf function, and specify a Poisson distribution using the same value for the rate parameter,
λ.

y2 = cdf('Poisson',x,lambda)

y2 = 1×5

    0.1353    0.4060    0.6767    0.8571    0.9473

The cdf values are the same as those computed using the probability distribution object.

Plot Standard Normal Distribution cdf

Create a standard normal distribution object.

pd = makedist('Normal')

pd = 
  NormalDistribution

  Normal distribution
       mu = 0
    sigma = 1

Specify the x values and compute the cdf.

x = -3:.1:3;
p = cdf(pd,x);

Plot the cdf of the standard normal distribution.

plot(x,p)
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Plot Gamma Distribution cdf

Create three gamma distribution objects. The first uses the default parameter values. The second
specifies a = 1 and b = 2. The third specifies a = 2 and b = 1.

pd_gamma = makedist('Gamma')

pd_gamma = 
  GammaDistribution

  Gamma distribution
    a = 1
    b = 1

pd_12 = makedist('Gamma','a',1,'b',2)

pd_12 = 
  GammaDistribution

  Gamma distribution
    a = 1
    b = 2

pd_21 = makedist('Gamma','a',2,'b',1)
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pd_21 = 
  GammaDistribution

  Gamma distribution
    a = 2
    b = 1

Specify the x values and compute the cdf for each distribution.

x = 0:.1:5;
cdf_gamma = cdf(pd_gamma,x);
cdf_12 = cdf(pd_12,x);
cdf_21 = cdf(pd_21,x);

Create a plot to visualize how the cdf of the gamma distribution changes when you specify different
values for the shape parameters a and b.

figure;
J = plot(x,cdf_gamma);
hold on;
K = plot(x,cdf_12,'r--');
L = plot(x,cdf_21,'k-.');
set(J,'LineWidth',2);
set(K,'LineWidth',2);
legend([J K L],'a = 1, b = 1','a = 1, b = 2','a = 2, b = 1','Location','southeast');
hold off;
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Fit Pareto Tails to t Distribution and Compute the cdf

Fit Pareto tails to a t distribution at cumulative probabilities 0.1 and 0.9.

t = trnd(3,100,1);
obj = paretotails(t,0.1,0.9);
[p,q] = boundary(obj)

p = 2×1

    0.1000
    0.9000

q = 2×1

   -1.8487
    2.0766

Compute the cdf at the values in q.

cdf(obj,q)

ans = 2×1

    0.1000
    0.9000

Input Arguments
name — Probability distribution name
character vector or string scalar of probability distribution name

Probability distribution name, specified as one of the probability distribution names in this table.

name Distribution Input
Parameter A

Input
Parameter B

Input
Parameter C

Input
Parameter D

'Beta' “Beta Distribution” on
page B-6

a first shape
parameter

b second
shape
parameter

N/A N/A

'Binomial' “Binomial
Distribution” on page
B-10

n number of
trials

p probability
of success for
each trial

N/A N/A

'BirnbaumSaunders
'

“Birnbaum-Saunders
Distribution” on page
B-18

β scale
parameter

γ shape
parameter

N/A N/A

'Burr' “Burr Type XII
Distribution” on page
B-19

α scale
parameter

c first shape
parameter

k second
shape
parameter

N/A
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name Distribution Input
Parameter A

Input
Parameter B

Input
Parameter C

Input
Parameter D

'Chisquare' or
'chi2'

“Chi-Square
Distribution” on page
B-29

ν degrees of
freedom

N/A N/A N/A

'Exponential' “Exponential
Distribution” on page
B-34

μ mean N/A N/A N/A

'Extreme Value' or
'ev'

“Extreme Value
Distribution” on page
B-41

μ location
parameter

σ scale
parameter

N/A N/A

'F' “F Distribution” on
page B-46

ν1 numerator
degrees of
freedom

ν2
denominator
degrees of
freedom

N/A N/A

'Gamma' “Gamma Distribution”
on page B-48

a shape
parameter

b scale
parameter

N/A N/A

'Generalized
Extreme Value' or
'gev'

“Generalized Extreme
Value Distribution” on
page B-56

k shape
parameter

σ scale
parameter

μ location
parameter

N/A

'Generalized
Pareto' or 'gp'

“Generalized Pareto
Distribution” on page
B-60

k tail index
(shape)
parameter

σ scale
parameter

μ threshold
(location)
parameter

N/A

'Geometric' “Geometric
Distribution” on page
B-64

p probability
parameter

N/A N/A N/A

'Half Normal' or
'hn'

“Half-Normal
Distribution” on page
B-69

μ location
parameter

σ scale
parameter

N/A N/A

'Hypergeometric'
or 'hyge'

“Hypergeometric
Distribution” on page
B-74

m size of the
population

k number of
items with the
desired
characteristic
in the
population

n number of
samples drawn

N/A

'InverseGaussian' “Inverse Gaussian
Distribution” on page
B-76

μ scale
parameter

λ shape
parameter

N/A N/A

'Logistic' “Logistic Distribution”
on page B-86

μ mean σ scale
parameter

N/A N/A

'LogLogistic' “Loglogistic
Distribution” on page
B-87

μ mean of
logarithmic
values

σ scale
parameter of
logarithmic
values

N/A N/A

 cdf

35-339



name Distribution Input
Parameter A

Input
Parameter B

Input
Parameter C

Input
Parameter D

'LogNormal' “Lognormal
Distribution” on page
B-89

μ mean of
logarithmic
values

σ standard
deviation of
logarithmic
values

N/A N/A

'Loguniform' “Loguniform
Distribution” on page
B-97

a lower
endpoint
(minimum)

b upper
endpoint
(maximum)

N/A N/A

'Nakagami' “Nakagami
Distribution” on page
B-114

μ shape
parameter

ω scale
parameter

N/A N/A

'Negative
Binomial' or 'nbin'

“Negative Binomial
Distribution” on page
B-115

r number of
successes

p probability
of success in a
single trial

N/A N/A

'Noncentral F' or
'ncf'

“Noncentral F
Distribution” on page
B-121

ν1 numerator
degrees of
freedom

ν2
denominator
degrees of
freedom

δ noncentrality
parameter

N/A

'Noncentral t' or
'nct'

“Noncentral t
Distribution” on page
B-123

ν degrees of
freedom

δ noncentrality
parameter

N/A N/A

'Noncentral Chi-
square' or 'ncx2'

“Noncentral Chi-
Square Distribution”
on page B-119

ν degrees of
freedom

δ noncentrality
parameter

N/A N/A

'Normal' “Normal Distribution”
on page B-125

μ mean σ standard
deviation

N/A N/A

'Poisson' “Poisson Distribution”
on page B-137

λ mean N/A N/A N/A

'Rayleigh' “Rayleigh
Distribution” on page
B-143

b scale
parameter

N/A N/A N/A

'Rician' “Rician Distribution”
on page B-145

s noncentrality
parameter

σ scale
parameter

N/A N/A

'Stable' “Stable Distribution”
on page B-147

α first shape
parameter

β second
shape
parameter

γ scale
parameter

δ location
parameter

'T' “Student's t
Distribution” on page
B-156

ν degrees of
freedom

N/A N/A N/A

'tLocationScale' “t Location-Scale
Distribution” on page
B-163

μ location
parameter

σ scale
parameter

ν shape
parameter

N/A

'Uniform' “Uniform Distribution
(Continuous)” on page
B-170

a lower
endpoint
(minimum)

b upper
endpoint
(maximum)

N/A N/A
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name Distribution Input
Parameter A

Input
Parameter B

Input
Parameter C

Input
Parameter D

'Discrete
Uniform' or 'unid'

“Uniform Distribution
(Discrete)” on page B-
175

n maximum
observable
value

N/A N/A N/A

'Weibull' or 'wbl' “Weibull Distribution”
on page B-177

a scale
parameter

b shape
parameter

N/A N/A

Example: 'Normal'

x — Values at which to evaluate cdf
scalar value | array of scalar values

Values at which to evaluate the cdf, specified as a scalar value or an array of scalar values.

If one or more of the input arguments x, A, B, C, and D are arrays, then the array sizes must be the
same. In this case, cdf expands each scalar input into a constant array of the same size as the array
inputs. See name for the definitions of A, B, C, and D for each distribution.
Example: [0.1,0.25,0.5,0.75,0.9]
Data Types: single | double

A — First probability distribution parameter
scalar value | array of scalar values

First probability distribution parameter, specified as a scalar value or an array of scalar values.

If one or more of the input arguments x, A, B, C, and D are arrays, then the array sizes must be the
same. In this case, cdf expands each scalar input into a constant array of the same size as the array
inputs. See name for the definitions of A, B, C, and D for each distribution.
Data Types: single | double

B — Second probability distribution parameter
scalar value | array of scalar values

Second probability distribution parameter, specified as a scalar value or an array of scalar values.

If one or more of the input arguments x, A, B, C, and D are arrays, then the array sizes must be the
same. In this case, cdf expands each scalar input into a constant array of the same size as the array
inputs. See name for the definitions of A, B, C, and D for each distribution.
Data Types: single | double

C — Third probability distribution parameter
scalar value | array of scalar values

Third probability distribution parameter, specified as a scalar value or an array of scalar values.

If one or more of the input arguments x, A, B, C, and D are arrays, then the array sizes must be the
same. In this case, cdf expands each scalar input into a constant array of the same size as the array
inputs. See name for the definitions of A, B, C, and D for each distribution.
Data Types: single | double
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D — Fourth probability distribution parameter
scalar value | array of scalar values

Fourth probability distribution parameter, specified as a scalar value or an array of scalar values.

If one or more of the input arguments x, A, B, C, and D are arrays, then the array sizes must be the
same. In this case, cdf expands each scalar input into a constant array of the same size as the array
inputs. See name for the definitions of A, B, C, and D for each distribution.
Data Types: single | double

pd — Probability distribution
probability distribution object

Probability distribution, specified as one of the probability distribution objects in this table.

Distribution Object Function or App to Create Probability
Distribution Object

BetaDistribution makedist, fitdist, Distribution Fitter
BinomialDistribution makedist, fitdist, Distribution Fitter
BirnbaumSaundersDistribution makedist, fitdist, Distribution Fitter
BurrDistribution makedist, fitdist, Distribution Fitter
ExponentialDistribution makedist, fitdist, Distribution Fitter
ExtremeValueDistribution makedist, fitdist, Distribution Fitter
GammaDistribution makedist, fitdist, Distribution Fitter
GeneralizedExtremeValueDistribution makedist, fitdist, Distribution Fitter
GeneralizedParetoDistribution makedist, fitdist, Distribution Fitter
HalfNormalDistribution makedist, fitdist, Distribution Fitter
InverseGaussianDistribution makedist, fitdist, Distribution Fitter
KernelDistribution fitdist, Distribution Fitter
LogisticDistribution makedist, fitdist, Distribution Fitter
LoglogisticDistribution makedist, fitdist, Distribution Fitter
LognormalDistribution makedist, fitdist, Distribution Fitter
LoguniformDistribution makedist
MultinomialDistribution makedist
NakagamiDistribution makedist, fitdist, Distribution Fitter
NegativeBinomialDistribution makedist, fitdist, Distribution Fitter
NormalDistribution makedist, fitdist, Distribution Fitter
Piecewise distribution with generalized Pareto
distributions in the tails

paretotails

PiecewiseLinearDistribution makedist
PoissonDistribution makedist, fitdist, Distribution Fitter
RayleighDistribution makedist, fitdist, Distribution Fitter
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Distribution Object Function or App to Create Probability
Distribution Object

RicianDistribution makedist, fitdist, Distribution Fitter
StableDistribution makedist, fitdist, Distribution Fitter
tLocationScaleDistribution makedist, fitdist, Distribution Fitter
TriangularDistribution makedist
UniformDistribution makedist
WeibullDistribution makedist, fitdist, Distribution Fitter

Output Arguments
y — cdf values
scalar value | array of scalar values

cdf values, returned as a scalar value or an array of scalar values. y is the same size as x after any
necessary scalar expansion. Each element in y is the cdf value of the distribution, specified by the
corresponding elements in the distribution parameters (A, B, C, and D) or the probability distribution
object (pd), evaluated at the corresponding element in x.

Alternative Functionality
• cdf is a generic function that accepts either a distribution by its name name or a probability

distribution object pd. It is faster to use a distribution-specific function, such as normcdf for the
normal distribution and binocdf for the binomial distribution. For a list of distribution-specific
functions, see “Supported Distributions” on page 5-16.

• Use the Probability Distribution Function app to create an interactive plot of the cumulative
distribution function (cdf) or probability density function (pdf) for a probability distribution.

Version History
Introduced before R2006a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• The input argument name must be a compile-time constant. For example, to use the normal
distribution, include coder.Constant('Normal') in the -args value of codegen.

• The input argument pd can be a fitted probability distribution object for beta, exponential,
extreme value, lognormal, normal, and Weibull distributions. Create pd by fitting a probability
distribution to sample data from the fitdist function. For an example, see “Code Generation for
Probability Distribution Objects” on page 34-94.

For more information on code generation, see “Introduction to Code Generation” on page 34-2 and
“General Code Generation Workflow” on page 34-5.
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GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

This function fully supports GPU arrays. For more information, see “Run MATLAB Functions on a
GPU” (Parallel Computing Toolbox).

See Also
pdf | ecdf | icdf | mle | random | makedist | fitdist | Distribution Fitter | paretotails

Topics
“Working with Probability Distributions” on page 5-3
“Supported Distributions” on page 5-16
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cdfplot
Empirical cumulative distribution function (cdf) plot

Syntax
cdfplot(x)
h = cdfplot(x)
[h,stats] = cdfplot(x)

Description
cdfplot(x) creates an empirical cumulative distribution function (cdf) plot for the data in x. For a
value t in x, the empirical cdf F(t) is the proportion of the values in x less than or equal to t.

h = cdfplot(x) returns a handle of the empirical cdf plot line object. Use h to query or modify
properties of the object after you create it. For a list of properties, see Line Properties.

[h,stats] = cdfplot(x) also returns a structure including summary statistics for the data in x.

Examples

Compare Empirical cdf to Theoretical cdf

Plot the empirical cdf of a sample data set and compare it to the theoretical cdf of the underlying
distribution of the sample data set. In practice, a theoretical cdf can be unknown.

Generate a random sample data set from the extreme value distribution with a location parameter of
0 and a scale parameter of 3.

rng('default')  % For reproducibility
y = evrnd(0,3,100,1);

Plot the empirical cdf of the sample data set and the theoretical cdf on the same figure.

cdfplot(y)
hold on
x = linspace(min(y),max(y));
plot(x,evcdf(x,0,3))
legend('Empirical CDF','Theoretical CDF','Location','best')
hold off
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The plot shows the similarity between the empirical cdf and the theoretical cdf.

Alternatively, you can use the ecdf function. The ecdf function also plots the 95% confidence
intervals estimated by using Greenwood's Formula. For details, see “Algorithms” on page 35-1512.

ecdf(y,'Bounds','on')
hold on
plot(x,evcdf(x,0,3))
grid on
title('Empirical CDF')
legend('Empirical CDF','Lower Confidence Bound','Upper Confidence Bound','Theoretical CDF','Location','best')
hold off
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Test for Standard Normal Distribution

Perform the one-sample Kolmogorov-Smirnov test by using kstest. Confirm the test decision by
visually comparing the empirical cumulative distribution function (cdf) to the standard normal cdf.

Load the examgrades data set. Create a vector containing the first column of the exam grade data.

load examgrades
test1 = grades(:,1);

Test the null hypothesis that the data comes from a normal distribution with a mean of 75 and a
standard deviation of 10. Use these parameters to center and scale each element of the data vector,
because kstest tests for a standard normal distribution by default.

x = (test1-75)/10;
h = kstest(x)

h = logical
   0

The returned value of h = 0 indicates that kstest fails to reject the null hypothesis at the default
5% significance level.

Plot the empirical cdf and the standard normal cdf for a visual comparison.
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cdfplot(x)
hold on
x_values = linspace(min(x),max(x));
plot(x_values,normcdf(x_values,0,1),'r-')
legend('Empirical CDF','Standard Normal CDF','Location','best')

The figure shows the similarity between the empirical cdf of the centered and scaled data vector and
the cdf of the standard normal distribution.

Input Arguments
x — Input data
numeric vector

Input data, specified as a numeric vector.
Data Types: single | double

Output Arguments
h — Handle of plot line object
chart line object

Handle of the empirical cdf plot line object, returned as a chart line object. Use h to query or modify
properties of the object after you create it. For a list of properties, see Line Properties.
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stats — Summary statistics
structure

Summary statistics for the data in x, returned as a structure with the following fields:

Field Description
min Minimum value
max Maximum value
mean Sample mean
median Sample median (50th percentile)
std Sample standard deviation

Tips
• cdfplot is useful for examining the distribution of a sample data set. You can overlay a

theoretical cdf on the same plot of cdfplot to compare the empirical distribution of the sample to
the theoretical distribution. For an example, see “Compare Empirical cdf to Theoretical cdf” on
page 35-345.

• The kstest, kstest2, and lillietest functions compute test statistics derived from an
empirical cdf. cdfplot is useful in helping you to understand the output from these functions. For
an example, see “Test for Standard Normal Distribution” on page 35-347.

Alternative Functionality
You can use the ecdf function to find the empirical cdf values and create an empirical cdf plot. The
ecdf function enables you to indicate censored data and compute the confidence bounds for the
estimated cdf values.

Version History
Introduced before R2006a

See Also
probplot | qqplot | ecdf | ecdfhist

Topics
“Distribution Plots” on page 4-7
“Hypothesis Testing” on page 8-5
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cell2dataset
(Not Recommended) Convert cell array to dataset array

Note The dataset data type is not recommended. To work with heterogeneous data, use the
MATLAB® table data type instead. See MATLAB table documentation for more information.

Syntax
ds = cell2dataset(C)
ds = cell2dataset(C,Name,Value)

Description
ds = cell2dataset(C) converts a cell array to a dataset array.

ds = cell2dataset(C,Name,Value) performs the conversion using additional options specified
by one or more Name,Value pair arguments.

Examples

Convert Cell Array to Dataset Array

Convert a cell array to a dataset array using the default options.

Create a cell array to convert.

C = {'Name','Gender','SystolicBP','DiastolicBP';
     'CLARK','M',124,93;
     'BROWN','F',122,80;
     'MARTIN','M',130,92}

C=4×4 cell array
    {'Name'  }    {'Gender'}    {'SystolicBP'}    {'DiastolicBP'}
    {'CLARK' }    {'M'     }    {[       124]}    {[         93]}
    {'BROWN' }    {'F'     }    {[       122]}    {[         80]}
    {'MARTIN'}    {'M'     }    {[       130]}    {[         92]}

Convert the cell array to a dataset array.

ds = cell2dataset(C)

ds = 
    Name              Gender       SystolicBP    DiastolicBP
    {'CLARK' }        {'M'}        124           93         
    {'BROWN' }        {'F'}        122           80         
    {'MARTIN'}        {'M'}        130           92         

The first row of C become the variable names in the output dataset array, ds.
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Create a Dataset Array with Multicolumn Variables

Convert a cell array to a dataset array containing multicolumn variables.

Create a cell array to convert.

C = {'Name','Gender','SystolicBP','DiastolicBP';
     'CLARK','M',124,93;
     'BROWN','F',122,80;
     'MARTIN','M',130,92}

C=4×4 cell array
    {'Name'  }    {'Gender'}    {'SystolicBP'}    {'DiastolicBP'}
    {'CLARK' }    {'M'     }    {[       124]}    {[         93]}
    {'BROWN' }    {'F'     }    {[       122]}    {[         80]}
    {'MARTIN'}    {'M'     }    {[       130]}    {[         92]}

Convert the cell array to a dataset array, combining the systolic and diastolic blood pressure
measurements into one variable named BloodPressure.

ds = cell2dataset(C,'NumCols',[1,1,2]);
ds.Properties.VarNames{3} = 'BloodPressure';
ds

ds = 
    Name              Gender       BloodPressure  
    {'CLARK' }        {'M'}        124          93
    {'BROWN' }        {'F'}        122          80
    {'MARTIN'}        {'M'}        130          92

The output dataset array has three observations and three variables.

Input Arguments
C — Input cell array
cell array

Input cell array to convert to a dataset array, specified as an M-by-N cell array. Each column of C
becomes a variable in the output dataset array, ds. By default, cell2dataset assumes that the first
row of C contains variable names.
Data Types: cell | string

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
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Example: 'ReadVarNames',false,'ReadObsNames',true specifies that the first row of the cell
array does not contain variable names, but the first column contains observation names.

ReadVarNames — Indicator for whether or not to read variable names
true (default) | false

Indicator for whether or not to read variable names from the first row of the input cell array, specified
as the comma-separated pair consisting of 'ReadVarNames' and either true or false. The default
value is true, unless variable names are specified using the name-value pair argument VarNames.
When ReadVarNames is false, cell2dataset creates default variable names if you do not provide
any.
Example: 'ReadVarNames',false

VarNames — Variable names for output dataset array
string array | cell array of character vectors

Variable names for the output dataset array, specified as the comma-separated pair consisting of
'VarNames' and a string array or cell array of character vectors. You must provide a variable name
for each variable in ds. The names must be valid MATLAB identifiers, and must be unique.
Example: 'VarNames',{'myVar1','myVar2','myVar3'}

ReadObsNames — Indicator for whether or not to read observation names
false (default) | true

Indicator for whether or not to read observation names from the input cell array, specified as the
comma-separated pair consisting of 'ReadObsNames' and either true or false. When
ReadObsNames has the value true, cell2dataset creates observation names in ds using the first
column of C, and sets ds.Properties.DimNames equal to {C{1,1},'Variables'}.
Example: 'ReadObsNames',true

ObsNames — Observation names for output dataset array
string array | cell array of character vectors

Observation names for the output dataset array, specified as the comma-separated pair consisting of
'ObsNames' and a string array or cell array of character vectors. The names do not need to be valid
MATLAB identifiers, but they must be unique.

NumCols — Number of columns for each variable
vector of nonnegative integers

Number of columns for each variable in ds, specified as the comma-separated pair consisting of
'NumCols' and a vector of nonnegative integers. When the number of columns for a variable is
greater than one, cell2dataset combines multiple columns in C into a single variable in ds. The
vector you assign to NumCols must sum to size(C,2), or size(C,1) of ReadObsNames is equal to
true.

For example, to convert a cell array with eight columns into a dataset array with five variables,
specify a vector with five elements that sum to eight, such as 'NumCols',[1,1,3,1,2].

Output Arguments
ds — Output dataset array
dataset array
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Output dataset array, returned by default with a variable for each column of C, an observation for
each row of C (except for the first row), and variable names corresponding to the first row of C.

• If you set ReadVarNames equal to false (or specify VarNames), then there is an observation in
ds for each row of C, and cell2dataset creates default variable names (or uses the names in
VarNames).

• If you set ReadObsNames equal to true, then cell2dataset uses the first column of C as
observation names.

• If you specify NumCols, then the number of variables in ds is equal to the length of the specified
vector of column numbers.

Version History
Introduced in R2012b

See Also
dataset | dataset2cell | struct2dataset

Topics
“Create a Dataset Array from Workspace Variables” on page 2-58
“Create a Dataset Array from a File” on page 2-63
“Dataset Arrays” on page 2-113
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cellstr
Class: dataset

(Not Recommended) Create cell array of character vectors from dataset array

Note The dataset data type is not recommended. To work with heterogeneous data, use the
MATLAB® table data type instead. See MATLAB table documentation for more information.

Syntax
B = cellstr(A)
B = cellstr(A,VARS)

Description
B = cellstr(A) returns the contents of the dataset A, converted to a cell array of character
vectors. The variables in the dataset must support the conversion and must have compatible sizes.

B = cellstr(A,VARS) returns the contents of the dataset variables specified by VARS. VARS is a
positive integer, a vector of positive integers, a character vector, a string array, a cell array of
character vectors, or a logical vector.

See Also
double | replacedata
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chi2cdf
Chi-square cumulative distribution function

Syntax
p = chi2cdf(x,nu)
p = chi2cdf(x,nu,'upper')

Description
p = chi2cdf(x,nu) returns the cumulative distribution function (cdf) of the chi-square distribution
with degrees of freedom nu, evaluated at the values in x.

p = chi2cdf(x,nu,'upper') returns the complement of the cdf, evaluated at the values in x with
degrees of freedom nu, using an algorithm that more accurately computes the extreme upper-tail
probabilities than subtracting the lower tail value from 1.

Examples

Compute Chi-Square cdf

Compute the probability that an observation from the chi-square distribution with 5 degrees of
freedom is in the interval [0 3].

p1 = chi2cdf(3,5)

p1 = 0.3000

Compute the probability that an observation from the chi-square distributions with degrees of
freedom 1 through 5 is in the interval [0 3].

p2 = chi2cdf(3,1:5)

p2 = 1×5

    0.9167    0.7769    0.6084    0.4422    0.3000

The mean of the chi-square distribution is equal to the degrees of freedom. Compute the probability
that an observation is in the interval [0 nu] for degrees of freedom 1 through 6.

nu = 1:6;
x = nu;
p3 = chi2cdf(x,nu)

p3 = 1×6

    0.6827    0.6321    0.6084    0.5940    0.5841    0.5768

As the degrees of freedom increase, the probability that an observation from a chi-square distribution
with degrees of freedom nu is less than the mean value approaches 0.5.
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Complementary cdf (Tail Distribution)

Determine the probability that an observation from the chi-square distribution with 3 degrees of
freedom is in on the interval [100 Inf].

p1 = 1 - chi2cdf(100,3)

p1 = 0

chi2cdf(100,3) is nearly 1, so p1 becomes 0. Specify 'upper' so that chi2cdf computes the
extreme upper-tail probabilities more accurately.

p2 = chi2cdf(100,3,'upper')

p2 = 1.5542e-21

Input Arguments
x — Values at which to evaluate cdf
nonnegative scalar value | array of nonnegative scalar values

Values at which to evaluate the cdf, specified as a nonnegative scalar value or an array of nonnegative
scalar values.

• To evaluate the cdf at multiple values, specify x using an array.
• To evaluate the cdfs of multiple distributions, specify nu using an array.

If either or both of the input arguments x and nu are arrays, then the array sizes must be the same.
In this case, chi2cdf expands each scalar input into a constant array of the same size as the array
inputs. Each element in p is the cdf value of the distribution specified by the corresponding element
in nu, evaluated at the corresponding element in x.
Example: [3 4 7 9]
Data Types: single | double

nu — Degrees of freedom
positive scalar value | array of positive scalar values

Degrees of freedom for the chi-square distribution, specified as a positive scalar value or an array of
positive scalar values.

• To evaluate the cdf at multiple values, specify x using an array.
• To evaluate the cdfs of multiple distributions, specify nu using an array.

If either or both of the input arguments x and nu are arrays, then the array sizes must be the same.
In this case, chi2cdf expands each scalar input into a constant array of the same size as the array
inputs. Each element in p is the cdf value of the distribution specified by the corresponding element
in nu, evaluated at the corresponding element in x.
Example: [9 19 49 99]
Data Types: single | double
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Output Arguments
p — cdf values
scalar value | array of scalar values

cdf values evaluated at the values in x, returned as a scalar value or an array of scalar values. p is the
same size as x and nu after any necessary scalar expansion. Each element in p is the cdf value of the
distribution specified by the corresponding element in nu, evaluated at the corresponding element in
x.

More About
Chi-Square cdf

The chi-square distribution is a one-parameter family of curves. The parameter ν is the degrees of
freedom.

The cdf of the chi-square distribution is

p = F(x ν) =∫0 x t(ν− 2)/2e−t/2

2ν/2Γ(ν/2)
dt,

where ν is the degrees of freedom and Γ( · ) is the Gamma function. The result p is the probability
that a single observation from the chi-square distribution with ν degrees of freedom falls in the
interval [0, x].

For more information, see “Chi-Square Distribution” on page B-29.

Alternative Functionality
• chi2cdf is a function specific to the chi-square distribution. Statistics and Machine Learning

Toolbox also offers the generic function cdf, which supports various probability distributions. To
use cdf, specify the probability distribution name and its parameters. Note that the distribution-
specific function chi2cdf is faster than the generic function cdf.

• Use the Probability Distribution Function app to create an interactive plot of the cumulative
distribution function (cdf) or probability density function (pdf) for a probability distribution.

Version History
Introduced before R2006a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

This function fully supports GPU arrays. For more information, see “Run MATLAB Functions on a
GPU” (Parallel Computing Toolbox).
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See Also
cdf | chi2pdf | chi2inv | chi2stat | chi2rnd

Topics
“Chi-Square Distribution” on page B-29
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chi2gof
Chi-square goodness-of-fit test

Syntax
h = chi2gof(x)
h = chi2gof(x,Name,Value)
[h,p] = chi2gof( ___ )
[h,p,stats] = chi2gof( ___ )

Description
h = chi2gof(x) returns a test decision for the null hypothesis that the data in vector x comes from
a normal distribution with a mean and variance estimated from x, using the chi-square goodness-of-fit
test on page 35-364. The alternative hypothesis is that the data does not come from such a
distribution. The result h is 1 if the test rejects the null hypothesis at the 5% significance level, and 0
otherwise.

h = chi2gof(x,Name,Value) returns a test decision for the chi-square goodness-of-fit test with
additional options specified by one or more name-value pair arguments. For example, you can test for
a distribution other than normal, or change the significance level of the test.

[h,p] = chi2gof( ___ ) also returns the p-value p of the hypothesis test, using any of the input
arguments from the previous syntaxes.

[h,p,stats] = chi2gof( ___ ) also returns the structure stats, containing information about
the test statistic.

Examples

Test for Normal Distribution

Create a standard normal probability distribution object. Generate a data vector x using random
numbers from the distribution.

pd = makedist('Normal');
rng default;  % for reproducibility
x = random(pd,100,1);

Test the null hypothesis that the data in x comes from a population with a normal distribution.

h = chi2gof(x)

h = 0

The returned value h = 0 indicates that chi2gof does not reject the null hypothesis at the default
5% significance level.
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Test Hypothesis at Different Significance Level

Create a standard normal probability distribution object. Generate a data vector x using random
numbers from the distribution.

pd = makedist('Normal');
rng default;  % for reproducibility
x = random(pd,100,1);

Test the null hypothesis that the data in x comes from a population with a normal distribution at the
1% significance level.

[h,p] = chi2gof(x,'Alpha',0.01)

h = 0

p = 0.3775

The returned value h = 0 indicates that chi2gof does not reject the null hypothesis at the 1%
significance level.

Test for Weibull Distribution Using Probability Distribution Object

Load the light bulb lifetime sample data.

load lightbulb

Create a vector from the first column of the data matrix, which contains the lifetime in hours of the
light bulbs.

x = lightbulb(:,1);

Test the null hypothesis that the data in x comes from a population with a Weibull distribution. Use
fitdist to create a probability distribution object with A and B parameters estimated from the data.

pd = fitdist(x,'Weibull');
h = chi2gof(x,'CDF',pd)

h = 1

The returned value h = 1 indicates that chi2gof rejects the null hypothesis at the default 5%
significance level.

Test for Poisson Distribution

Create six bins, numbered 0 through 5, to use for data pooling.

bins = 0:5;

Create a vector containing the observed counts for each bin and compute the total number of
observations.
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obsCounts = [6 16 10 12 4 2];
n = sum(obsCounts);

Fit a Poisson probability distribution object to the data and compute the expected count for each bin.
Use the transpose operator .' to transform bins and obsCounts from row vectors to column
vectors.

pd = fitdist(bins','Poisson','Frequency',obsCounts');
expCounts = n * pdf(pd,bins);

Test the null hypothesis that the data in obsCounts comes from a Poisson distribution with a lambda
parameter equal to lambdaHat.

[h,p,st] = chi2gof(bins,'Ctrs',bins,...
                        'Frequency',obsCounts, ...
                        'Expected',expCounts,...
                        'NParams',1)

h = 0

p = 0.4654

st = struct with fields:
    chi2stat: 2.5550
          df: 3
       edges: [-0.5000 0.5000 1.5000 2.5000 3.5000 5.5000]
           O: [6 16 10 12 6]
           E: [7.0429 13.8041 13.5280 8.8383 6.0284]

The returned value h = 0 indicates that chi2gof does not reject the null hypothesis at the default
5% significance level. The vector E contains the expected counts for each bin under the null
hypothesis, and O contains the observed counts for each bin.

Test for Normal Distribution Using Function Handle

Use the probability distribution function normcdf as a function handle in the chi-square goodness-of-
fit test (chi2gof).

Test the null hypothesis that the sample data in the input vector x comes from a normal distribution
with parameters µ and σ equal to the mean (mean) and standard deviation (std) of the sample data,
respectively.

rng('default') % For reproducibility
x = normrnd(50,5,100,1);
h = chi2gof(x,'cdf',{@normcdf,mean(x),std(x)})

h = 0

The returned result h = 0 indicates that chi2gof does not reject the null hypothesis at the default
5% significance level.

Input Arguments
x — Sample data
vector
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Sample data for the hypothesis test, specified as a vector.

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: 'NBins',8,'Alpha',0.01 pools the data into eight bins and conducts the hypothesis test
at the 1% significance level.

NBins — Number of bins
10 (default) | positive integer value

Number of bins to use for the data pooling, specified as the comma-separated pair consisting of
'NBins' and a positive integer value. If you specify a value for NBins, do not specify a value for
Ctrs or Edges.
Example: 'NBins',8
Data Types: single | double

Ctrs — Bin centers
vector

Bin centers, specified as the comma-separated pair consisting of 'Ctrs' and a vector of center
values for each bin. If you specify a value for Ctrs, do not specify a value for NBins or Edges.
Example: 'Ctrs',[1 2 3 4 5]
Data Types: single | double

Edges — Bin edges
vector

Bin edges, specified as the comma-separated pair consisting of 'Edges' and a vector of edge values
for each bin. If you specify a value for Edges, do not specify a value for NBins or Ctrs.
Example: 'Edges',[-2.5 -1.5 -0.5 0.5 1.5 2.5]
Data Types: single | double

CDF — cdf of hypothesized distribution
probability distribution object | function handle | cell array

The cdf of the hypothesized distribution, specified as the comma-separated pair consisting of 'CDF'
and a probability distribution object, function handle, or cell array.

• If CDF is a probability distribution object, the degrees of freedom account for whether you
estimate the parameters using fitdist or specify them using makedist.

• If CDF is a function handle, the distribution function must take x as its only argument.
• If CDF is a cell array, the first element must be a function handle, and the remaining elements

must be parameter values, one per cell. The function must take x as its first argument, and the
other parameters in the array as later arguments.

If you specify a value for CDF, do not specify a value for Expected.
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Example: 'CDF',pd_object
Data Types: single | double

Expected — Expected counts
vector of nonnegative values

Expected counts for each bin, specified as the comma-separated pair of 'Expected' and a vector of
nonnegative values. If Expected depends on estimated parameters, use NParams to ensure that
chi2gof correctly calculates the degrees of freedom. If you specify a value for Expected, do not
specify a value for CDF.
Example: 'Expected',[19.1446 18.3789 12.3224 8.2432 4.1378]
Data Types: single | double

NParams — Number of estimated parameters
positive integer value

Number of estimated parameters used to describe the null distribution, specified as the comma-
separated pair consisting of 'NParams' and a positive integer value. This value adjusts the degrees
of freedom of the test based on the number of estimated parameters used to compute the cdf or
expected counts.

The default value for NParams depends on how you specify the null distribution:

• If you specify CDF as a probability distribution object, NParams is equal to the number of
estimated parameters used to create the object.

• If you specify CDF as a function name or handle, the default value of NParams is 0.
• If you specify CDF as a cell array, the default value of NParams is the number of parameters in the

array.
• If you specify Expected, the default value of NParams is 0.

Example: 'NParams',1
Data Types: single | double

EMin — Minimum expected count per bin
5 (default) | nonnegative integer value

Minimum expected count per bin, specified as the comma-separated pair consisting of 'EMin' and a
nonnegative integer value. If the bin at the extreme end of either tail has an expected value less than
EMin, it is combined with a neighboring bin until the count in each extreme bin is at least 5. If any
interior bins have a count less than 5, chi2gof displays a warning, but does not combine the interior
bins. In that case, you should use fewer bins, or provide bin centers or edges, to increase the
expected counts in all bins. Specify EMin as 0 to prevent the combining of bins.
Example: 'EMin',0
Data Types: single | double

Frequency — Frequency
vector of nonnegative integer values

Frequency of data values, specified as the comma-separated pair consisting of 'Frequency' and a
vector of nonnegative integer values that is the same length as the vector x.
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Example: 'Frequency',[20 16 13 10 8]
Data Types: single | double

Alpha — Significance level
0.05 (default) | scalar value in the range (0,1)

Significance level of the hypothesis test, specified as the comma-separated pair consisting of
'Alpha' and a scalar value in the range (0,1).
Example: 'Alpha',0.01
Data Types: single | double

Output Arguments
h — Hypothesis test result
1 | 0

Hypothesis test result, returned as 1 or 0.

• If h = 1, this indicates the rejection of the null hypothesis at the Alpha significance level.
• If h = 0, this indicates a failure to reject the null hypothesis at the Alpha significance level.

p — p-value
scalar value in the range [0,1]

p-value of the test, returned as a scalar value in the range [0,1]. p is the probability of observing a
test statistic as extreme as, or more extreme than, the observed value under the null hypothesis.
Small values of p cast doubt on the validity of the null hypothesis.

stats — Test statistics
structure

Test statistics, returned as a structure containing the following:

• chi2stat — Value of the test statistic.
• df — Degrees of freedom of the test.
• edges — Vector of bin edges after pooling.
• O — Vector of observed counts for each bin.
• E — Vector of expected counts for each bin.

More About
Chi-Square Goodness-of-Fit Test

The chi-square goodness-of-fit test determines if a data sample comes from a specified probability
distribution, with parameters estimated from the data.

The test groups the data into bins, calculating the observed and expected counts for those bins, and
computing the chi-square test statistic

χ2 = ∑
i = 1

N
Oi− Ei

2/Ei ,
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where Oi are the observed counts and Ei are the expected counts based on the hypothesized
distribution. The test statistic has an approximate chi-square distribution when the counts are
sufficiently large.

Algorithms
chi2gof compares the value of the test statistic to a chi-square distribution with degrees of freedom
equal to nbins - 1 - nparams, where nbins is the number of bins used for the data pooling and
nparams is the number of estimated parameters used to determine the expected counts. If there are
not enough degrees of freedom to conduct the test, chi2gof returns the p-value as NaN.

Version History
Introduced before R2006a

Extended Capabilities
GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

This function fully supports GPU arrays. For more information, see “Run MATLAB Functions on a
GPU” (Parallel Computing Toolbox).

See Also
kstest | lillietest

Topics
“Chi-Square Distribution” on page B-29
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chi2inv
Chi-square inverse cumulative distribution function

Syntax
x = chi2inv(p,nu)

Description
x = chi2inv(p,nu) returns the inverse cumulative distribution function (icdf) of the chi-square
distribution with degrees of freedom nu, evaluated at the probability values in p.

Examples

Compute Chi-Square icdf

Find the 95th percentile for the chi-square distribution with 10 degrees of freedom.

x = chi2inv(0.95,10)

x = 18.3070

If you generate random numbers from this chi-square distribution, you would observe numbers
greater than 18.3 only 5% of the time.

Median of Chi-Square Distributions

Compute the medians of the chi-square distributions with degrees of freedom one through six.

x = chi2inv(0.50,1:6)

x = 1×6

    0.4549    1.3863    2.3660    3.3567    4.3515    5.3481

Input Arguments
p — Probability values at which to evaluate icdf
scalar value in [0,1] | array of scalar values

Probability values at which to evaluate the icdf, specified as a scalar value or an array of scalar
values, where each element is in the range [0,1].

• To evaluate the icdf at multiple values, specify p using an array.
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• To evaluate the icdfs of multiple distributions, specify nu using an array.

If either or both of the input arguments p and nu are arrays, then the array sizes must be the same.
In this case, chi2inv expands each scalar input into a constant array of the same size as the array
inputs. Each element in x is the icdf value of the distribution specified by the corresponding element
in nu, evaluated at the corresponding probabilities in p.
Example: [0.1,0.5,0.9]
Data Types: single | double

nu — Degrees of freedom
positive scalar value | array of positive scalar values

Degrees of freedom for the chi-square distribution, specified as a positive scalar value or an array of
positive scalar values.

• To evaluate the icdf at multiple values, specify p using an array.
• To evaluate the icdfs of multiple distributions, specify nu using an array.

If either or both of the input arguments p and nu are arrays, then the array sizes must be the same.
In this case, chi2inv expands each scalar input into a constant array of the same size as the array
inputs. Each element in x is the icdf value of the distribution specified by the corresponding element
in nu, evaluated at the corresponding probabilities in p.
Example: [9 19 49 99]
Data Types: single | double

Output Arguments
x — icdf values
scalar value | array of scalar values

icdf values evaluated at the probabilities in p, returned as a scalar value or an array of scalar values.
x is the same size as p and nu after any necessary scalar expansion. Each element in x is the icdf
value of the distribution specified by the corresponding element in nu, evaluated at the
corresponding probabilities in p.

More About
Chi-Square icdf

The chi-square distribution is a one-parameter family of curves. The parameter ν is the degrees of
freedom.

The icdf of the chi-square distribution is

x = F−1(p ν) = x:F(x ν) = p ,

where

p = F(x ν) =∫0 x t(ν− 2)/2e−t/2

2ν/2Γ(ν/2)
dt,
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ν is the degrees of freedom, and Γ( · ) is the Gamma function. The result p is the probability that a
single observation from the chi-square distribution with ν degrees of freedom falls in the interval [0,
x].

For more information, see “Chi-Square Distribution” on page B-29.

Alternative Functionality
• chi2inv is a function specific to the chi-square distribution. Statistics and Machine Learning

Toolbox also offers the generic function icdf, which supports various probability distributions. To
use icdf, specify the probability distribution name and its parameters. Note that the distribution-
specific function chi2inv is faster than the generic function icdf.

Version History
Introduced before R2006a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

This function fully supports GPU arrays. For more information, see “Run MATLAB Functions on a
GPU” (Parallel Computing Toolbox).

See Also
icdf | chi2cdf | chi2pdf | chi2stat | chi2rnd

Topics
“Chi-Square Distribution” on page B-29
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chi2pdf
Chi-square probability density function

Syntax
y = chi2pdf(x,nu)

Description
y = chi2pdf(x,nu) returns the probability density function (pdf) of the chi-square distribution
with nu degrees of freedom, evaluated at the values in x.

Examples

Compute Chi-Square pdf

Compute the density of the observed value 2 in the chi-square distribution with 3 degrees of freedom.

y1 = chi2pdf(2,3)

y1 = 0.2076

Compute the density of the observed value 4 in the chi-square distributions with degrees of freedom
1 through 6.

y2 = chi2pdf(4,1:6)

y2 = 1×6

    0.0270    0.0677    0.1080    0.1353    0.1440    0.1353

The mean of the chi-square distribution is equal to the degrees of freedom. Compute the density of
the mean for the chi-square distributions with degrees of freedom 1 through 6.

nu = 1:6;
x = nu;
y3 = chi2pdf(x,nu)

y3 = 1×6

    0.2420    0.1839    0.1542    0.1353    0.1220    0.1120

As the degrees of freedom increase, the density of the mean decreases.

Input Arguments
x — Values at which to evaluate pdf
nonnegative scalar value | array of nonnegative scalar values
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Values at which to evaluate the pdf, specified as a nonnegative scalar value or an array of
nonnegative scalar values.

• To evaluate the pdf at multiple values, specify x using an array.
• To evaluate the pdfs of multiple distributions, specify nu using an array.

If either or both of the input arguments x and nu are arrays, then the array sizes must be the same.
In this case, chi2pdf expands each scalar input into a constant array of the same size as the array
inputs. Each element in y is the pdf value of the distribution specified by the corresponding element
in nu, evaluated at the corresponding element in x.
Example: [3 4 7 9]
Data Types: single | double

nu — Degrees of freedom
positive scalar value | array of positive scalar values

Degrees of freedom for the chi-square distribution, specified as a positive scalar value or an array of
positive scalar values.

• To evaluate the pdf at multiple values, specify x using an array.
• To evaluate the pdfs of multiple distributions, specify nu using an array.

If either or both of the input arguments x and nu are arrays, then the array sizes must be the same.
In this case, chi2pdf expands each scalar input into a constant array of the same size as the array
inputs. Each element in y is the pdf value of the distribution specified by the corresponding element
in nu, evaluated at the corresponding element in x.
Example: [9 19 49 99]
Data Types: single | double

Output Arguments
y — pdf values
scalar value | array of scalar values

pdf values evaluated at the values in x, returned as a scalar value or an array of scalar values. p is the
same size as x and nu after any necessary scalar expansion. Each element in y is the pdf value of the
distribution specified by the corresponding element in nu, evaluated at the corresponding element in
x.

More About
Chi-Square pdf

The chi-square distribution is a one-parameter family of curves. The parameter ν is the degrees of
freedom.

The pdf of the chi-square distribution is

y = f x ν = x ν− 2 /2e−x/2

2
ν
2Γ ν/2

,
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where ν is the degrees of freedom and Γ( · ) is the Gamma function.

For more information, see “Chi-Square Distribution” on page B-29.

Alternative Functionality
• chi2pdf is a function specific to the chi-square distribution. Statistics and Machine Learning

Toolbox also offers the generic function pdf, which supports various probability distributions. To
use pdf, specify the probability distribution name and its parameters. Note that the distribution-
specific function chi2pdf is faster than the generic function pdf.

• Use the Probability Distribution Function app to create an interactive plot of the cumulative
distribution function (cdf) or probability density function (pdf) for a probability distribution.

Version History
Introduced before R2006a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

This function fully supports GPU arrays. For more information, see “Run MATLAB Functions on a
GPU” (Parallel Computing Toolbox).

See Also
pdf | chi2cdf | chi2inv | chi2stat | chi2rnd

Topics
“Chi-Square Distribution” on page B-29
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chi2rnd
Chi-square random numbers

Syntax
r = chi2rnd(nu)
r = chi2rnd(nu,sz1,...,szN)
r = chi2rnd(nu,sz)

Description
r = chi2rnd(nu) generates a random number from the chi-square distribution with nu degrees of
freedom.

r = chi2rnd(nu,sz1,...,szN) generates an array of random numbers from the chi-square
distribution, where sz1,...,szN indicates the size of each dimension.

r = chi2rnd(nu,sz) generates an array of random numbers from the chi-square distribution,
where vector sz specifies size(r).

Examples

Generate Chi-Square Random Number

Generate a single random number from the chi-square distribution with 10 degrees of freedom.

nu = 10;
r = chi2rnd(nu)

r = 19.7102

Generate Chi-Square Random Numbers

Generate a 1-by-6 array of chi-square random numbers with 1 degree of freedom.

nu1 = ones(1,6);  % 1-by-6 array of ones
r1 = chi2rnd(nu1)

r1 = 1×6

    2.5368    0.2447    0.4314    2.0153    0.0418    4.3486

By default, chi2rnd generates an array that is the same size as nu.

If you specify nu as a scalar, chi2rnd expands nu into a constant array with dimensions specified by
sz1,...,szN.
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Generate a 2-by-6 array of chi-square random numbers, all with 3 degrees of freedom.

nu2 = 3;
sz1 = 2;
sz2 = 6;
r2 = chi2rnd(nu2,sz1,sz2)

r2 = 2×6

    0.5761    5.3582    1.0124    0.9851    1.0529    3.0765
    7.9240    1.7373    0.6291    7.0240    1.8496    2.2690

If you specify both nu and sz as arrays, then the dimensions specified by sz must match the
dimension of nu.

Generate a 1-by-6 array of chi-square random numbers with 3 to 8 degrees of freedom.

nu3 = 3:8;
sz = [1 6];
r3 = chi2rnd(nu3,sz)

r3 = 1×6

    3.9690    7.0961    4.5651    2.4606   13.5038    8.8495

Input Arguments
nu — Degrees of freedom
positive scalar value | array of positive scalar values

Degrees of freedom for the chi-square distribution, specified as a positive scalar value or an array of
positive scalar values.

To generate random numbers from multiple distributions, specify nu using an array. Each element in
r is the random number generated from the distribution specified by the corresponding element in
nu.
Example: [9 19 49 99]
Data Types: single | double

sz1,...,szN — Size of each dimension (as separate arguments)
integers

Size of each dimension, specified as separate arguments of integers.

If nu is an array, then the specified dimensions sz1,...,szN must match the dimensions of nu. The
default values of sz1,...,szN are the dimensions of nu.

• If you specify a single value sz1, then r is a square matrix of size sz1-by-sz1.
• If the size of any dimension is 0 or negative, then r is an empty array.
• Beyond the second dimension, chi2rnd ignores trailing dimensions with a size of 1. For example,

chi2rnd(5,3,1,1,1) produces a 3-by-1 vector of random numbers from the distribution with
five degrees of freedom.

 chi2rnd

35-373



Example: 2,3
Data Types: single | double

sz — Size of each dimension (as a row vector)
row vector of integers

Size of each dimension, specified as a row vector of integers.

If nu is an array, then the specified dimensions sz must match the dimensions of nu. The default
values of sz are the dimensions of nu.

• If you specify a single value [sz1], then r is a square matrix of size sz1-by-sz1.
• If the size of any dimension is 0 or negative, then r is an empty array.
• Beyond the second dimension, chi2rnd ignores trailing dimensions with a size of 1. For example,

chi2rnd(5,[3 1 1 1]) produces a 3-by-1 vector of random numbers from the distribution with
five degrees of freedom.

Example: [2 3]
Data Types: single | double

Output Arguments
r — Chi-square random numbers
scalar value | array of scalar values

Chi-square random numbers, returned as a scalar value or an array of scalar values with the
dimensions specified by sz1,...,szN or sz. Each element in r is the random number generated
from the distribution specified by the corresponding element in nu.

Alternative Functionality
• chi2rnd is a function specific to the chi-square distribution. Statistics and Machine Learning

Toolbox also offers the generic function random, which supports various probability distributions.
To use random, specify the probability distribution name and its parameters. Note that the
distribution-specific function chi2rnd is faster than the generic function random.

• To generate random numbers interactively, use randtool, a user interface for random number
generation.

Version History
Introduced before R2006a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:
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The generated code can return a different sequence of numbers from the sequence returned by
MATLAB if either of the following is true:

• The output is nonscalar.
• An input parameter is invalid for the distribution.

For more information on code generation, see “Introduction to Code Generation” on page 34-2 and
“General Code Generation Workflow” on page 34-5.

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

This function fully supports GPU arrays. For more information, see “Run MATLAB Functions on a
GPU” (Parallel Computing Toolbox).

See Also
random | chi2cdf | chi2pdf | chi2inv | chi2stat

Topics
“Chi-Square Distribution” on page B-29
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chi2stat
Chi-square mean and variance

Syntax
[M,V] = chi2stat(NU)

Description
[M,V] = chi2stat(NU) returns the mean of and variance for the chi-square distribution with
degrees of freedom parameters specified by NU. NU can be a vector, a matrix, or a multidimensional
array. The degrees of freedom parameters in NU must be positive.

The mean of the chi-square distribution is ν, the degrees of freedom parameter, and the variance is
2ν.

Examples
nu = 1:10;
nu = nu'*nu;
[m,v] = chi2stat(nu)
m =
 1   2   3   4   5   6   7   8   9  10
 2   4   6   8  10  12  14  16  18  20
 3   6   9  12  15  18  21  24  27  30
 4   8  12  16  20  24  28  32  36  40
 5  10  15  20  25  30  35  40  45  50
 6  12  18  24  30  36  42  48  54  60
 7  14  21  28  35  42  49  56  63  70
 8  16  24  32  40  48  56  64  72  80
 9  18  27  36  45  54  63  72  81  90
10  20  30  40  50  60  70  80  90 100

v =
 2   4   6   8  10  12  14  16  18  20
 4   8  12  16  20  24  28  32  36  40
 6  12  18  24  30  36  42  48  54  60
 8  16  24  32  40  48  56  64  72  80
10  20  30  40  50  60  70  80  90 100
12  24  36  48  60  72  84  96 108 120
14  28  42  56  70  84  98 112 126 140
16  32  48  64  80  96 112 128 144 160
18  36  54  72  90 108 126 144 162 180
20  40  60  80 100 120 140 160 180 200

Version History
Introduced before R2006a
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Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

This function fully supports GPU arrays. For more information, see “Run MATLAB Functions on a
GPU” (Parallel Computing Toolbox).

See Also
chi2cdf | chi2pdf | chi2inv | chi2rnd

Topics
“Chi-Square Distribution” on page B-29
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cholcov
Cholesky-like covariance decomposition

Syntax
T = cholcov(SIGMA)
[T,num] = cholcov(SIGMA)
[T,num] = cholcov(SIGMA,0)

Description
T = cholcov(SIGMA) computes T such that SIGMA = T'*T. SIGMA must be square, symmetric,
and positive semi-definite. If SIGMA is positive definite, then T is the square, upper triangular
Cholesky factor. If SIGMA is not positive definite, T is computed from an eigenvalue decomposition of
SIGMA. T is not necessarily triangular or square in this case. Any eigenvectors whose corresponding
eigenvalue is close to zero (within a small tolerance) are omitted. If any remaining eigenvalues are
negative, T is empty.

[T,num] = cholcov(SIGMA) returns the number num of negative eigenvalues of SIGMA, and T is
empty if num is positive. If num is zero, SIGMA is positive semi-definite. If SIGMA is not square and
symmetric, num is NaN and T is empty.

[T,num] = cholcov(SIGMA,0) returns num equal to zero if SIGMA is positive definite, and T is the
Cholesky factor. If SIGMA is not positive definite, num is a positive integer and T is empty. [...] =
cholcov(SIGMA,1) is equivalent to [...] = cholcov(SIGMA).

Examples
The following 4-by-4 covariance matrix is rank-deficient:

C1 = [2 1 1 2;1 2 1 2;1 1 2 2;2 2 2 3]
C1 =
     2     1     1     2
     1     2     1     2
     1     1     2     2
     2     2     2     3
rank(C1)
ans =
     3

Use cholcov to factor C1:

T = cholcov(C1)
T =
   -0.2113    0.7887   -0.5774         0
    0.7887   -0.2113   -0.5774         0
    1.1547    1.1547    1.1547    1.7321

C2 = T'*T
C2 =
    2.0000   1.0000   1.0000   2.0000
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    1.0000   2.0000   1.0000   2.0000
    1.0000   1.0000   2.0000   2.0000
    2.0000   2.0000   2.0000   3.0000

Use T to generate random data with the specified covariance:

C3 = cov(randn(1e6,3)*T)
C3 =
    1.9973    0.9982    0.9995    1.9975
    0.9982    1.9962    0.9969    1.9956
    0.9995    0.9969    1.9980    1.9972
    1.9975    1.9956    1.9972    2.9951

Version History
Introduced in R2007a

Extended Capabilities
Thread-Based Environment
Run code in the background using MATLAB® backgroundPool or accelerate code with Parallel
Computing Toolbox™ ThreadPool.

This function fully supports thread-based environments. For more information, see “Run MATLAB
Functions in Thread-Based Environment”.

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

This function fully supports GPU arrays. For more information, see “Run MATLAB Functions on a
GPU” (Parallel Computing Toolbox).

See Also
chol | cov
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ClassificationBaggedEnsemble
Package: classreg.learning.classif
Superclasses: ClassificationEnsemble

Classification ensemble grown by resampling

Description
ClassificationBaggedEnsemble combines a set of trained weak learner models and data on
which these learners were trained. It can predict ensemble response for new data by aggregating
predictions from its weak learners.

Construction
Create a bagged classification ensemble object (ens) using fitcensemble. Set the name-value pair
argument 'Method' of fitcensemble to 'Bag' to use bootstrap aggregation (bagging, for
example, random forest).

Properties
BinEdges

Bin edges for numeric predictors, specified as a cell array of p numeric vectors, where p is the
number of predictors. Each vector includes the bin edges for a numeric predictor. The element in the
cell array for a categorical predictor is empty because the software does not bin categorical
predictors.

The software bins numeric predictors only if you specify the 'NumBins' name-value argument as a
positive integer scalar when training a model with tree learners. The BinEdges property is empty if
the 'NumBins' value is empty (default).

You can reproduce the binned predictor data Xbinned by using the BinEdges property of the trained
model mdl.

X = mdl.X; % Predictor data
Xbinned = zeros(size(X));
edges = mdl.BinEdges;
% Find indices of binned predictors.
idxNumeric = find(~cellfun(@isempty,edges));
if iscolumn(idxNumeric)
    idxNumeric = idxNumeric';
end
for j = idxNumeric 
    x = X(:,j);
    % Convert x to array if x is a table.
    if istable(x) 
        x = table2array(x);
    end
    % Group x into bins by using the discretize function.
    xbinned = discretize(x,[-inf; edges{j}; inf]); 
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    Xbinned(:,j) = xbinned;
end

Xbinned contains the bin indices, ranging from 1 to the number of bins, for numeric predictors.
Xbinned values are 0 for categorical predictors. If X contains NaNs, then the corresponding Xbinned
values are NaNs.

CategoricalPredictors

Categorical predictor indices, specified as a vector of positive integers. CategoricalPredictors
contains index values indicating that the corresponding predictors are categorical. The index values
are between 1 and p, where p is the number of predictors used to train the model. If none of the
predictors are categorical, then this property is empty ([]).

ClassNames

List of the elements in Y with duplicates removed. ClassNames can be a numeric vector, categorical
vector, logical vector, character array, or cell array of character vectors. ClassNames has the same
data type as the data in the argument Y. (The software treats string arrays as cell arrays of character
vectors.)

CombineWeights

Character vector describing how ens combines weak learner weights, either 'WeightedSum' or
'WeightedAverage'.

Cost

Square matrix, where Cost(i,j) is the cost of classifying a point into class j if its true class is i
(the rows correspond to the true class and the columns correspond to the predicted class). The order
of the rows and columns of Cost corresponds to the order of the classes in ClassNames. The number
of rows and columns in Cost is the number of unique classes in the response. This property is read-
only.

ExpandedPredictorNames

Expanded predictor names, stored as a cell array of character vectors.

If the model uses encoding for categorical variables, then ExpandedPredictorNames includes the
names that describe the expanded variables. Otherwise, ExpandedPredictorNames is the same as
PredictorNames.

FitInfo

Numeric array of fit information. The FitInfoDescription property describes the content of this
array.

FitInfoDescription

Character vector describing the meaning of the FitInfo array.

FResample

Numeric scalar between 0 and 1. FResample is the fraction of training data fitcensemble
resampled at random for every weak learner when constructing the ensemble.
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HyperparameterOptimizationResults

Description of the cross-validation optimization of hyperparameters, stored as a
BayesianOptimization object or a table of hyperparameters and associated values. Nonempty
when the OptimizeHyperparameters name-value pair is nonempty at creation. Value depends on
the setting of the HyperparameterOptimizationOptions name-value pair at creation:

• 'bayesopt' (default) — Object of class BayesianOptimization
• 'gridsearch' or 'randomsearch' — Table of hyperparameters used, observed objective

function values (cross-validation loss), and rank of observations from lowest (best) to highest
(worst)

LearnerNames

Cell array of character vectors with the names of weak learners in the ensemble. The name of each
learner appears only once. For example, if you have an ensemble of 100 trees, LearnerNames is
{'Tree'}.

Method

Character vector describing the method that creates ens.

ModelParameters

Parameters used in training ens.

NumObservations

Numeric scalar containing the number of observations in the training data.

NumTrained

Number of trained weak learners in ens, a scalar.

PredictorNames

Cell array of names for the predictor variables, in the order in which they appear in X.

Prior

Numeric vector of prior probabilities for each class. The order of the elements of Prior corresponds
to the order of the classes in ClassNames. The number of elements of Prior is the number of unique
classes in the response. This property is read-only.

ReasonForTermination

Character vector describing the reason fitcensemble stopped adding weak learners to the
ensemble.

Replace

Logical value indicating if the ensemble was trained with replacement (true) or without replacement
(false).

35 Functions

35-382



ResponseName

Character vector with the name of the response variable Y.

ScoreTransform

Function handle for transforming scores, or character vector representing a built-in transformation
function. 'none' means no transformation; equivalently, 'none' means @(x)x. For a list of built-in
transformation functions and the syntax of custom transformation functions, see fitctree.

Add or change a ScoreTransform function using dot notation:

ens.ScoreTransform = 'function'

or

ens.ScoreTransform = @function

Trained

Trained learners, a cell array of compact classification models.

TrainedWeights

Numeric vector of trained weights for the weak learners in ens. TrainedWeights has T elements,
where T is the number of weak learners in learners.

UseObsForLearner

Logical matrix of size N-by-NumTrained, where N is the number of observations in the training data
and NumTrained is the number of trained weak learners. UseObsForLearner(I,J) is true if
observation I was used for training learner J, and is false otherwise.

W

Scaled weights, a vector with length n, the number of rows in X. The sum of the elements of W is 1.

X

Matrix or table of predictor values that trained the ensemble. Each column of X represents one
variable, and each row represents one observation.

Y

A categorical array, cell array of character vectors, character array, logical vector, or a numeric
vector with the same number of rows as X. Each row of Y represents the classification of the
corresponding row of X.

Object Functions
compact Compact classification ensemble
compareHoldout Compare accuracies of two classification models using new data
crossval Cross-validate ensemble
edge Classification edge
gather Gather properties of Statistics and Machine Learning Toolbox

object from GPU
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lime Local interpretable model-agnostic explanations (LIME)
loss Classification error
margin Classification margins
oobEdge Out-of-bag classification edge
oobLoss Out-of-bag classification error
oobMargin Out-of-bag classification margins
oobPermutedPredictorImportance Predictor importance estimates by permutation of out-of-bag

predictor observations for random forest of classification trees
oobPredict Predict out-of-bag response of ensemble
partialDependence Compute partial dependence
plotPartialDependence Create partial dependence plot (PDP) and individual conditional

expectation (ICE) plots
predict Classify observations using ensemble of classification models
predictorImportance Estimates of predictor importance for classification ensemble of

decision trees
removeLearners Remove members of compact classification ensemble
resubEdge Classification edge by resubstitution
resubLoss Classification error by resubstitution
resubMargin Classification margins by resubstitution
resubPredict Classify observations in ensemble of classification models
resume Resume training ensemble
shapley Shapley values
testckfold Compare accuracies of two classification models by repeated

cross-validation

Copy Semantics
Value. To learn how value classes affect copy operations, see Copying Objects.

Examples

Train Bagged Ensemble of Classification Trees

Load the ionosphere data set.

load ionosphere

You can train a bagged ensemble of 100 classification trees using all measurements.

Mdl = fitcensemble(X,Y,'Method','Bag')

fitcensemble uses a default template tree object templateTree() as a weak learner when
'Method' is 'Bag'. In this example, for reproducibility, specify 'Reproducible',true when you
create a tree template object, and then use the object as a weak learner.

rng('default') % For reproducibility
t = templateTree('Reproducible',true); % For reproducibiliy of random predictor selections
Mdl = fitcensemble(X,Y,'Method','Bag','Learners',t)

Mdl = 
  ClassificationBaggedEnsemble
             ResponseName: 'Y'
    CategoricalPredictors: []
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               ClassNames: {'b'  'g'}
           ScoreTransform: 'none'
          NumObservations: 351
               NumTrained: 100
                   Method: 'Bag'
             LearnerNames: {'Tree'}
     ReasonForTermination: 'Terminated normally after completing the requested number of training cycles.'
                  FitInfo: []
       FitInfoDescription: 'None'
                FResample: 1
                  Replace: 1
         UseObsForLearner: [351x100 logical]

  Properties, Methods

Mdl is a ClassificationBaggedEnsemble model object.

Mdl.Trained is the property that stores a 100-by-1 cell vector of the trained classification trees
(CompactClassificationTree model objects) that compose the ensemble.

Plot a graph of the first trained classification tree.

view(Mdl.Trained{1},'Mode','graph')
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By default, fitcensemble grows deep decision trees for bagged ensembles.

Estimate the in-sample misclassification rate.

L = resubLoss(Mdl)

L = 0

L is 0, which indicates that Mdl is perfect at classifying the training data.

Tip
For a bagged ensemble of classification trees, the Trained property of ens stores a cell vector of
ens.NumTrained CompactClassificationTree model objects. For a textual or graphical display
of tree t in the cell vector, enter

view(ens.Trained{t})
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Version History
Introduced in R2011a

Cost property stores the user-specified cost matrix
Behavior changed in R2022a

Starting in R2022a, the Cost property stores the user-specified cost matrix, so that you can compute
the observed misclassification cost using the specified cost value. The software stores normalized
prior probabilities (Prior) and observation weights (W) that do not reflect the penalties described in
the cost matrix. To compute the observed misclassification cost, specify the LossFun name-value
argument as "classifcost" when you call the loss, resubLoss, or oobLoss function.

Note that model training has not changed and, therefore, the decision boundaries between classes
have not changed.

For training, the fitting function updates the specified prior probabilities by incorporating the
penalties described in the specified cost matrix, and then normalizes the prior probabilities and
observation weights. This behavior has not changed. In previous releases, the software stored the
default cost matrix in the Cost property and stored the prior probabilities and observation weights
used for training in the Prior and W properties, respectively. Starting in R2022a, the software stores
the user-specified cost matrix without modification, and stores normalized prior probabilities and
observation weights that do not reflect the cost penalties. For more details, see “Misclassification
Cost Matrix, Prior Probabilities, and Observation Weights” on page 19-8.

Some object functions use the Cost, Prior, and W properties:

• The loss, resubLoss, and oobLoss functions use the cost matrix stored in the Cost property if
you specify the LossFun name-value argument as "classifcost" or "mincost".

• The loss and edge functions use the prior probabilities stored in the Prior property to
normalize the observation weights of the input data.

• The resubLoss, resubEdge, oobLoss, and oobEdge functions use the observation weights
stored in the W property.

If you specify a nondefault cost matrix when you train a classification model, the object functions
return a different value compared to previous releases.

If you want the software to handle the cost matrix, prior probabilities, and observation weights as in
previous releases, adjust the prior probabilities and observation weights for the nondefault cost
matrix, as described in “Adjust Prior Probabilities and Observation Weights for Misclassification Cost
Matrix” on page 19-9. Then, when you train a classification model, specify the adjusted prior
probabilities and observation weights by using the Prior and Weights name-value arguments,
respectively, and use the default cost matrix.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• The predict function supports code generation.
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• To integrate the prediction of an ensemble into Simulink, you can use the ClassificationEnsemble
Predict block in the Statistics and Machine Learning Toolbox library or a MATLAB Function block
with the predict function.

• When you train an ensemble by using fitcensemble, code generation limitations for the weak
learners used in the ensemble also apply to the ensemble. For more details, see the Code
Generation sections of CompactClassificationDiscriminant and
CompactClassificationTree.

• For fixed-point code generation, you must train an ensemble using tree learners.

For more information, see “Introduction to Code Generation” on page 34-2.

See Also
ClassificationEnsemble | fitcensemble | fitctree | view | compareHoldout

Topics
“Framework for Ensemble Learning” on page 19-33
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ClassificationECOC
Multiclass model for support vector machines (SVMs) and other classifiers

Description
ClassificationECOC is an error-correcting output codes (ECOC) classifier on page 35-402 for
multiclass learning, where the classifier consists of multiple binary learners such as support vector
machines (SVMs). Trained ClassificationECOC classifiers store training data, parameter values,
prior probabilities, and coding matrices. Use these classifiers to perform tasks such as predicting
labels or posterior probabilities for new data (see predict).

Creation
Create a ClassificationECOC object by using fitcecoc.

If you specify linear or kernel binary learners without specifying cross-validation options, then
fitcecoc returns a CompactClassificationECOC object instead.

Properties
After you create a ClassificationECOC model object, you can use dot notation to access its
properties. For an example, see “Train Multiclass Model Using SVM Learners” on page 35-396.

ECOC Properties

BinaryLearners — Trained binary learners
cell vector of model objects

Trained binary learners, specified as a cell vector of model objects. The number of binary learners
depends on the number of classes in Y and the coding design.

The software trains BinaryLearner{j} according to the binary problem specified by
CodingMatrix(:,j). For example, for multiclass learning using SVM learners, each element of
BinaryLearners is a CompactClassificationSVM classifier.
Data Types: cell

BinaryLoss — Binary learner loss function
'binodeviance' | 'exponential' | 'hamming' | 'hinge' | 'linear' | 'logit' | 'quadratic'

Binary learner loss function, specified as a character vector representing the loss function name.

The default BinaryLoss value depends on the score ranges returned by the binary learners. This
table identifies what some default BinaryLoss values are when you use the default score transform
(ScoreTransform property of the model is 'none').
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Assumption Default Value
All binary learners are any of the following:

• Classification decision trees
• Discriminant analysis models
• k-nearest neighbor models
• Linear or kernel classification models of logistic regression

learners
• Naive Bayes models

'quadratic'

All binary learners are SVMs or linear or kernel classification
models of SVM learners.

'hinge'

All binary learners are ensembles trained by AdaboostM1 or
GentleBoost.

'exponential'

All binary learners are ensembles trained by LogitBoost. 'binodeviance'
You specify to predict class posterior probabilities by setting
'FitPosterior',true in fitcecoc.

'quadratic'

Binary learners are heterogeneous and use different loss functions. 'hamming'

To check the default value, use dot notation to display the BinaryLoss property of the trained model
at the command line.

To potentially increase accuracy, specify a binary loss function other than the default during a
prediction or loss computation by using the BinaryLoss name-value argument of predict or loss.
For more information, see “Binary Loss” on page 35-5763.
Data Types: char

BinaryY — Binary learner class labels
numeric matrix

Binary learner class labels, specified as a numeric matrix. BinaryY is a NumObservations-by-L
matrix, where L is the number of binary learners (length(Mdl.BinaryLearners)).

Elements of BinaryY are –1, 0, or 1, and the value corresponds to a dichotomous class assignment.
This table describes how learner j assigns observation k to a dichotomous class corresponding to the
value of BinaryY(k,j).

Value Dichotomous Class Assignment
–1 Learner j assigns observation k to a negative

class.
0 Before training, learner j removes observation k

from the data set.
1 Learner j assigns observation k to a positive

class.

Data Types: double

BinEdges — Bin edges for numeric predictors
cell array of numeric vectors | []
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This property is read-only.

Bin edges for numeric predictors, specified as a cell array of p numeric vectors, where p is the
number of predictors. Each vector includes the bin edges for a numeric predictor. The element in the
cell array for a categorical predictor is empty because the software does not bin categorical
predictors.

The software bins numeric predictors only if you specify the 'NumBins' name-value argument as a
positive integer scalar when training a model with tree learners. The BinEdges property is empty if
the 'NumBins' value is empty (default).

You can reproduce the binned predictor data Xbinned by using the BinEdges property of the trained
model mdl.

X = mdl.X; % Predictor data
Xbinned = zeros(size(X));
edges = mdl.BinEdges;
% Find indices of binned predictors.
idxNumeric = find(~cellfun(@isempty,edges));
if iscolumn(idxNumeric)
    idxNumeric = idxNumeric';
end
for j = idxNumeric 
    x = X(:,j);
    % Convert x to array if x is a table.
    if istable(x) 
        x = table2array(x);
    end
    % Group x into bins by using the discretize function.
    xbinned = discretize(x,[-inf; edges{j}; inf]); 
    Xbinned(:,j) = xbinned;
end

Xbinned contains the bin indices, ranging from 1 to the number of bins, for numeric predictors.
Xbinned values are 0 for categorical predictors. If X contains NaNs, then the corresponding Xbinned
values are NaNs.
Data Types: cell

CodingMatrix — Class assignment codes
numeric matrix

Class assignment codes for the binary learners, specified as a numeric matrix. CodingMatrix is a K-
by-L matrix, where K is the number of classes and L is the number of binary learners.

The elements of CodingMatrix are –1, 0, and 1, and the values correspond to dichotomous class
assignments. This table describes how learner j assigns observations in class i to a dichotomous
class corresponding to the value of CodingMatrix(i,j).

Value Dichotomous Class Assignment
–1 Learner j assigns observations in class i to a negative class.
0 Before training, learner j removes observations in class i from the

data set.
1 Learner j assigns observations in class i to a positive class.
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Data Types: double | single | int8 | int16 | int32 | int64

CodingName — Coding design name
character vector

Coding design name, specified as a character vector. For more details, see “Coding Design” on page
35-402.
Data Types: char

LearnerWeights — Binary learner weights
numeric row vector

Binary learner weights, specified as a numeric row vector. The length of LearnerWeights is equal to
the number of binary learners (length(Mdl.BinaryLearners)).

LearnerWeights(j) is the sum of the observation weights that binary learner j uses to train its
classifier.

The software uses LearnerWeights to fit posterior probabilities by minimizing the Kullback-Leibler
divergence. The software ignores LearnerWeights when it uses the quadratic programming method
of estimating posterior probabilities.
Data Types: double | single

Other Classification Properties

CategoricalPredictors — Categorical predictor indices
vector of positive integers | []

Categorical predictor indices, specified as a vector of positive integers. CategoricalPredictors
contains index values indicating that the corresponding predictors are categorical. The index values
are between 1 and p, where p is the number of predictors used to train the model. If none of the
predictors are categorical, then this property is empty ([]).
Data Types: single | double

ClassNames — Unique class labels
categorical array | character array | logical vector | numeric vector | cell array of character vectors

Unique class labels used in training, specified as a categorical or character array, logical or numeric
vector, or cell array of character vectors. ClassNames has the same data type as the class labels Y.
(The software treats string arrays as cell arrays of character vectors.) ClassNames also determines
the class order.
Data Types: categorical | char | logical | single | double | cell

Cost — Misclassification costs
square numeric matrix

This property is read-only.

Misclassification costs, specified as a square numeric matrix. Cost has K rows and columns, where K
is the number of classes.

Cost(i,j) is the cost of classifying a point into class j if its true class is i. The order of the rows
and columns of Cost corresponds to the order of the classes in ClassNames.
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Data Types: double

ExpandedPredictorNames — Expanded predictor names
cell array of character vectors

Expanded predictor names, specified as a cell array of character vectors.

If the model uses encoding for categorical variables, then ExpandedPredictorNames includes the
names that describe the expanded variables. Otherwise, ExpandedPredictorNames is the same as
PredictorNames.
Data Types: cell

ModelParameters — Parameter values
object

Parameter values, such as the name-value pair argument values, used to train the ECOC classifier,
specified as an object. ModelParameters does not contain estimated parameters.

Access properties of ModelParameters using dot notation. For example, list the templates
containing parameters of the binary learners by using Mdl.ModelParameters.BinaryLearner.

NumObservations — Number of observations
positive numeric scalar

Number of observations in the training data, specified as a positive numeric scalar.
Data Types: double

PredictorNames — Predictor names
cell array of character vectors

Predictor names in order of their appearance in the predictor data X, specified as a cell array of
character vectors. The length of PredictorNames is equal to the number of columns in X.
Data Types: cell

Prior — Prior class probabilities
numeric vector

This property is read-only.

Prior class probabilities, specified as a numeric vector. Prior has as many elements as the number of
classes in ClassNames, and the order of the elements corresponds to the order of the classes in
ClassNames.

fitcecoc incorporates misclassification costs differently among different types of binary learners.
Data Types: double

ResponseName — Response variable name
character vector

Response variable name, specified as a character vector.
Data Types: char
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RowsUsed — Rows used in fitting
[] (default) | logical vector

Rows of the original training data used in fitting the ClassificationECOC model, specified as a
logical vector. This property is empty if all rows are used.
Data Types: logical

ScoreTransform — Score transformation function to apply to predicted scores
'doublelogit' | 'invlogit' | 'ismax' | 'logit' | 'none' | function handle | ...

Score transformation function to apply to predicted scores, specified as a function name or function
handle.

To change the score transformation function to function, for example, use dot notation.

• For a built-in function, enter this code and replace function with a value in the table.

Mdl.ScoreTransform = 'function';

Value Description
"doublelogit" 1/(1 + e–2x)
"invlogit" log(x / (1 – x))
"ismax" Sets the score for the class with the largest score to

1, and sets the scores for all other classes to 0
"logit" 1/(1 + e–x)
"none" or "identity" x (no transformation)
"sign" –1 for x < 0

0 for x = 0
1 for x > 0

"symmetric" 2x – 1
"symmetricismax" Sets the score for the class with the largest score to

1, and sets the scores for all other classes to –1
"symmetriclogit" 2/(1 + e–x) – 1

• For a MATLAB function or a function that you define, enter its function handle.

Mdl.ScoreTransform = @function;

function must accept a matrix (the original scores) and return a matrix of the same size (the
transformed scores).

Data Types: char | function_handle

W — Observation weights
numeric vector

Observation weights used to train the ECOC classifier, specified as a numeric vector. W has
NumObservations elements.

The software normalizes the weights used for training so that sum(W,'omitnan') is 1.
Data Types: single | double
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X — Unstandardized predictor data
numeric matrix | table

Unstandardized predictor data used to train the ECOC classifier, specified as a numeric matrix or
table.

Each row of X corresponds to one observation, and each column corresponds to one variable.
Data Types: single | double | table

Y — Observed class labels
categorical array | character array | logical vector | numeric vector | cell array of character vectors

Observed class labels used to train the ECOC classifier, specified as a categorical or character array,
logical or numeric vector, or cell array of character vectors. Y has NumObservations elements and
has the same data type as the input argument Y of fitcecoc. (The software treats string arrays as
cell arrays of character vectors.)

Each row of Y represents the observed classification of the corresponding row of X.
Data Types: categorical | char | logical | single | double | cell

Hyperparameter Optimization Properties

HyperparameterOptimizationResults — Cross-validation optimization of hyperparameters
BayesianOptimization object | table

This property is read-only.

Cross-validation optimization of hyperparameters, specified as a BayesianOptimization object or
a table of hyperparameters and associated values. This property is nonempty if the
'OptimizeHyperparameters' name-value pair argument is nonempty when you create the model.
The value of HyperparameterOptimizationResults depends on the setting of the Optimizer
field in the HyperparameterOptimizationOptions structure when you create the model.

Value of Optimizer Field Value of
HyperparameterOptimizationResults

'bayesopt' (default) Object of class BayesianOptimization
'gridsearch' or 'randomsearch' Table of hyperparameters used, observed

objective function values (cross-validation loss),
and rank of observations from lowest (best) to
highest (worst)

Object Functions
compact Reduce size of multiclass error-correcting output codes (ECOC) model
compareHoldout Compare accuracies of two classification models using new data
crossval Cross-validate multiclass error-correcting output codes (ECOC) model
discardSupportVectors Discard support vectors of linear SVM binary learners in ECOC model
edge Classification edge for multiclass error-correcting output codes (ECOC)

model
gather Gather properties of Statistics and Machine Learning Toolbox object from

GPU
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incrementalLearner Convert multiclass error-correcting output codes (ECOC) model to
incremental learner

loss Classification loss for multiclass error-correcting output codes (ECOC)
model

margin Classification margins for multiclass error-correcting output codes (ECOC)
model

partialDependence Compute partial dependence
plotPartialDependence Create partial dependence plot (PDP) and individual conditional expectation

(ICE) plots
predict Classify observations using multiclass error-correcting output codes (ECOC)

model
resubEdge Resubstitution classification edge for multiclass error-correcting output

codes (ECOC) model
lime Local interpretable model-agnostic explanations (LIME)
resubLoss Resubstitution classification loss for multiclass error-correcting output

codes (ECOC) model
resubMargin Resubstitution classification margins for multiclass error-correcting output

codes (ECOC) model
resubPredict Classify observations in multiclass error-correcting output codes (ECOC)

model
shapley Shapley values
testckfold Compare accuracies of two classification models by repeated cross-

validation

Examples

Train Multiclass Model Using SVM Learners

Train a multiclass error-correcting output codes (ECOC) model using support vector machine (SVM)
binary learners.

Load Fisher's iris data set. Specify the predictor data X and the response data Y.

load fisheriris
X = meas;
Y = species;

Train a multiclass ECOC model using the default options.

Mdl = fitcecoc(X,Y)

Mdl = 
  ClassificationECOC
             ResponseName: 'Y'
    CategoricalPredictors: []
               ClassNames: {'setosa'  'versicolor'  'virginica'}
           ScoreTransform: 'none'
           BinaryLearners: {3x1 cell}
               CodingName: 'onevsone'

  Properties, Methods
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Mdl is a ClassificationECOC model. By default, fitcecoc uses SVM binary learners and a one-
versus-one coding design. You can access Mdl properties using dot notation.

Display the class names and the coding design matrix.

Mdl.ClassNames

ans = 3x1 cell
    {'setosa'    }
    {'versicolor'}
    {'virginica' }

CodingMat = Mdl.CodingMatrix

CodingMat = 3×3

     1     1     0
    -1     0     1
     0    -1    -1

A one-versus-one coding design for three classes yields three binary learners. The columns of
CodingMat correspond to the learners, and the rows correspond to the classes. The class order is the
same as the order in Mdl.ClassNames. For example, CodingMat(:,1) is [1; –1; 0] and
indicates that the software trains the first SVM binary learner using all observations classified as
'setosa' and 'versicolor'. Because 'setosa' corresponds to 1, it is the positive class;
'versicolor' corresponds to –1, so it is the negative class.

You can access each binary learner using cell indexing and dot notation.

Mdl.BinaryLearners{1}   % The first binary learner

ans = 
  CompactClassificationSVM
             ResponseName: 'Y'
    CategoricalPredictors: []
               ClassNames: [-1 1]
           ScoreTransform: 'none'
                     Beta: [4x1 double]
                     Bias: 1.4505
         KernelParameters: [1x1 struct]

  Properties, Methods

Compute the resubstitution classification error.

error = resubLoss(Mdl)

error = 0.0067

The classification error on the training data is small, but the classifier might be an overfitted model.
You can cross-validate the classifier using crossval and compute the cross-validation classification
error instead.
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Inspect Binary Learner Properties of ECOC Classifier

Train an ECOC classifier using SVM binary learners. Then, access properties of the binary learners,
such as estimated parameters, by using dot notation.

Load Fisher's iris data set. Specify the petal dimensions as the predictors and the species names as
the response.

load fisheriris
X = meas(:,3:4);
Y = species;

Train an ECOC classifier using SVM binary learners and the default coding design (one-versus-one).
Standardize the predictors and save the support vectors.

t = templateSVM('Standardize',true,'SaveSupportVectors',true);
predictorNames = {'petalLength','petalWidth'};
responseName = 'irisSpecies';
classNames = {'setosa','versicolor','virginica'}; % Specify class order
Mdl = fitcecoc(X,Y,'Learners',t,'ResponseName',responseName,...
    'PredictorNames',predictorNames,'ClassNames',classNames)

Mdl = 
  ClassificationECOC
           PredictorNames: {'petalLength'  'petalWidth'}
             ResponseName: 'irisSpecies'
    CategoricalPredictors: []
               ClassNames: {'setosa'  'versicolor'  'virginica'}
           ScoreTransform: 'none'
           BinaryLearners: {3x1 cell}
               CodingName: 'onevsone'

  Properties, Methods

t is a template object that contains options for SVM classification. The function fitcecoc uses
default values for the empty ([]) properties. Mdl is a ClassificationECOC classifier. You can
access properties of Mdl using dot notation.

Display the class names and the coding design matrix.

Mdl.ClassNames

ans = 3x1 cell
    {'setosa'    }
    {'versicolor'}
    {'virginica' }

Mdl.CodingMatrix

ans = 3×3

     1     1     0
    -1     0     1
     0    -1    -1

35 Functions

35-398



The columns correspond to SVM binary learners, and the rows correspond to the distinct classes. The
row order is the same as the order in the ClassNames property of Mdl. For each column:

• 1 indicates that fitcecoc trains the SVM using observations in the corresponding class as
members of the positive group.

• –1 indicates that fitcecoc trains the SVM using observations in the corresponding class as
members of the negative group.

• 0 indicates that the SVM does not use observations in the corresponding class.

In the first SVM, for example, fitcecoc assigns all observations to 'setosa' or 'versicolor',
but not 'virginica'.

Access properties of the SVMs using cell subscripting and dot notation. Store the standardized
support vectors of each SVM. Unstandardize the support vectors.

L = size(Mdl.CodingMatrix,2); % Number of SVMs
sv = cell(L,1); % Preallocate for support vector indices
for j = 1:L
    SVM = Mdl.BinaryLearners{j};
    sv{j} = SVM.SupportVectors;
    sv{j} = sv{j}.*SVM.Sigma + SVM.Mu;
end

sv is a cell array of matrices containing the unstandardized support vectors for the SVMs.

Plot the data, and identify the support vectors.

figure
gscatter(X(:,1),X(:,2),Y);
hold on
markers = {'ko','ro','bo'}; % Should be of length L
for j = 1:L
    svs = sv{j};
    plot(svs(:,1),svs(:,2),markers{j},...
        'MarkerSize',10 + (j - 1)*3);
end
title('Fisher''s Iris -- ECOC Support Vectors')
xlabel(predictorNames{1})
ylabel(predictorNames{2})
legend([classNames,{'Support vectors - SVM 1',...
    'Support vectors - SVM 2','Support vectors - SVM 3'}],...
    'Location','Best')
hold off
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You can pass Mdl to these functions:

• predict, to classify new observations
• resubLoss, to estimate the classification error on the training data
• crossval, to perform 10-fold cross-validation

Cross-Validate ECOC Classifier

Cross-validate an ECOC classifier with SVM binary learners, and estimate the generalized
classification error.

Load Fisher's iris data set. Specify the predictor data X and the response data Y.

load fisheriris
X = meas;
Y = species;
rng(1); % For reproducibility

Create an SVM template, and standardize the predictors.

t = templateSVM('Standardize',true)

t = 
Fit template for classification SVM.
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                     Alpha: [0x1 double]
             BoxConstraint: []
                 CacheSize: []
             CachingMethod: ''
                ClipAlphas: []
    DeltaGradientTolerance: []
                   Epsilon: []
              GapTolerance: []
              KKTTolerance: []
            IterationLimit: []
            KernelFunction: ''
               KernelScale: []
              KernelOffset: []
     KernelPolynomialOrder: []
                  NumPrint: []
                        Nu: []
           OutlierFraction: []
          RemoveDuplicates: []
           ShrinkagePeriod: []
                    Solver: ''
           StandardizeData: 1
        SaveSupportVectors: []
            VerbosityLevel: []
                   Version: 2
                    Method: 'SVM'
                      Type: 'classification'

t is an SVM template. Most of the template object properties are empty. When training the ECOC
classifier, the software sets the applicable properties to their default values.

Train the ECOC classifier, and specify the class order.

Mdl = fitcecoc(X,Y,'Learners',t,...
    'ClassNames',{'setosa','versicolor','virginica'});

Mdl is a ClassificationECOC classifier. You can access its properties using dot notation.

Cross-validate Mdl using 10-fold cross-validation.

CVMdl = crossval(Mdl);

CVMdl is a ClassificationPartitionedECOC cross-validated ECOC classifier.

Estimate the generalized classification error.

genError = kfoldLoss(CVMdl)

genError = 0.0400

The generalized classification error is 4%, which indicates that the ECOC classifier generalizes fairly
well.
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More About
Error-Correcting Output Codes Model

An error-correcting output codes (ECOC) model reduces the problem of classification with three or
more classes to a set of binary classification problems.

ECOC classification requires a coding design, which determines the classes that the binary learners
train on, and a decoding scheme, which determines how the results (predictions) of the binary
classifiers are aggregated.

Assume the following:

• The classification problem has three classes.
• The coding design is one-versus-one. For three classes, this coding design is

Learner 1 Learner 2 Learner 3
Class 1 1 1 0
Class 2 −1 0 1
Class 3 0 −1 −1

You can specify a different coding design by using the Coding name-value argument when you
create a classification model.

• The model determines the predicted class by using the loss-weighted decoding scheme with the
binary loss function g. The software also supports the loss-based decoding scheme. You can
specify the decoding scheme and binary loss function by using the Decoding and BinaryLoss
name-value arguments, respectively, when you call object functions, such as predict, loss,
margin, edge, and so on.

The ECOC algorithm follows these steps.

1 Learner 1 trains on observations in Class 1 or Class 2, and treats Class 1 as the positive class and
Class 2 as the negative class. The other learners are trained similarly.

2 Let M be the coding design matrix with elements mkl, and sl be the predicted classification score
for the positive class of learner l. The algorithm assigns a new observation to the class (k ) that
minimizes the aggregation of the losses for the B binary learners.

k = argmin
k

∑l = 1

B

mkl g mkl, sl

∑l = 1

B

mkl

.

ECOC models can improve classification accuracy, compared to other multiclass models [1].

Coding Design

The coding design is a matrix whose elements direct which classes are trained by each binary learner,
that is, how the multiclass problem is reduced to a series of binary problems.

Each row of the coding design corresponds to a distinct class, and each column corresponds to a
binary learner. In a ternary coding design, for a particular column (or binary learner):
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• A row containing 1 directs the binary learner to group all observations in the corresponding class
into a positive class.

• A row containing –1 directs the binary learner to group all observations in the corresponding class
into a negative class.

• A row containing 0 directs the binary learner to ignore all observations in the corresponding class.

Coding design matrices with large, minimal, pairwise row distances based on the Hamming measure
are optimal. For details on the pairwise row distance, see “Random Coding Design Matrices” on page
35-405 and [2].

This table describes popular coding designs.

Coding Design Description Number of Learners Minimal Pairwise Row
Distance

one-versus-all (OVA) For each binary learner,
one class is positive and
the rest are negative.
This design exhausts all
combinations of positive
class assignments.

K 2

one-versus-one (OVO) For each binary learner,
one class is positive,
one class is negative,
and the rest are
ignored. This design
exhausts all
combinations of class
pair assignments.

K(K – 1)/2 1

binary complete This design partitions
the classes into all
binary combinations,
and does not ignore any
classes. That is, all class
assignments are –1 and
1 with at least one
positive class and one
negative class in the
assignment for each
binary learner.

2K – 1 – 1 2K – 2

ternary complete This design partitions
the classes into all
ternary combinations.
That is, all class
assignments are 0, –1,
and 1 with at least one
positive class and one
negative class in the
assignment for each
binary learner.

(3K – 2K + 1 + 1)/2 3K – 2
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Coding Design Description Number of Learners Minimal Pairwise Row
Distance

ordinal For the first binary
learner, the first class is
negative and the rest
are positive. For the
second binary learner,
the first two classes are
negative and the rest
are positive, and so on.

K – 1 1

dense random For each binary learner,
the software randomly
assigns classes into
positive or negative
classes, with at least
one of each type. For
more details, see
“Random Coding Design
Matrices” on page 35-
405.

Random, but
approximately 10 log2K

Variable

sparse random For each binary learner,
the software randomly
assigns classes as
positive or negative
with probability 0.25 for
each, and ignores
classes with probability
0.5. For more details,
see “Random Coding
Design Matrices” on
page 35-405.

Random, but
approximately 15 log2K

Variable

This plot compares the number of binary learners for the coding designs with increasing K.
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Algorithms
Random Coding Design Matrices

For a given number of classes K, the software generates random coding design matrices as follows.

1 The software generates one of these matrices:

a Dense random — The software assigns 1 or –1 with equal probability to each element of the
K-by-Ld coding design matrix, where Ld ≈ 10log2K .

b Sparse random — The software assigns 1 to each element of the K-by-Ls coding design
matrix with probability 0.25, –1 with probability 0.25, and 0 with probability 0.5, where
Ls ≈ 15log2K .

2 If a column does not contain at least one 1 and one –1, then the software removes that column.
3 For distinct columns u and v, if u = v or u = –v, then the software removes v from the coding

design matrix.

The software randomly generates 10,000 matrices by default, and retains the matrix with the largest,
minimal, pairwise row distance based on the Hamming measure ([2]) given by

Δ(k1, k2) = 0.5∑
l = 1

L

mk1l mk2l mk1l−mk2l ,
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where mkjl is an element of coding design matrix j.

Support Vector Storage

By default and for efficiency, fitcecoc empties the Alpha, SupportVectorLabels, and
SupportVectors properties for all linear SVM binary learners. fitcecoc lists Beta, rather than
Alpha, in the model display.

To store Alpha, SupportVectorLabels, and SupportVectors, pass a linear SVM template that
specifies storing support vectors to fitcecoc. For example, enter:

t = templateSVM('SaveSupportVectors',true)
Mdl = fitcecoc(X,Y,'Learners',t);

You can remove the support vectors and related values by passing the resulting
ClassificationECOC model to discardSupportVectors.

Alternative Functionality
You can use these alternative algorithms to train a multiclass model:

• Classification ensembles—see fitcensemble and ClassificationEnsemble
• Classification trees—see fitctree and ClassificationTree
• Discriminant analysis classifiers—see fitcdiscr and ClassificationDiscriminant
• k-nearest neighbor classifiers—see fitcknn and ClassificationKNN
• Naive Bayes classifiers—see fitcnb and ClassificationNaiveBayes

Version History
Introduced in R2014b
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Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• The predict and update functions support code generation.
• When you train an ECOC model by using fitcecoc, the following restrictions apply.

• All binary learners must be either SVM classifiers or linear classification models. For the
Learners name-value argument, you can specify:
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• 'svm' or 'linear'
• An SVM template object or a cell array of such objects (see templateSVM)
• A linear classification model template object or a cell array of such objects (see

templateLinear)
• When you generate code using a coder configurer for predict and update, the following

additional restrictions apply for binary learners.

• If you use a cell array of SVM template objects, the value of Standardize for SVM
learners must be consistent. For example, if you specify 'Standardize',true for one
SVM learner, you must specify the same value for all SVM learners.

• If you use a cell array of SVM template objects, and you use one SVM learner with a linear
kernel ('KernelFunction','linear') and another with a different type of kernel
function, then you must specify 'SaveSupportVectors',true for the learner with a
linear kernel.

For details, see ClassificationECOCCoderConfigurer. For information on name-value
arguments that you cannot modify when you retrain a model, see “Tips” on page 35-7665.

• Code generation limitations for SVM classifiers and linear classification models also apply to
ECOC classifiers, depending on the choice of binary learners. For more details, see “Code
Generation” on page 35-921 of the CompactClassificationSVM class and “Code
Generation” on page 35-489 of the ClassificationLinear class.

For more information, see “Introduction to Code Generation” on page 34-2.

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

Usage notes and limitations:

• The following object functions fully support GPU arrays:

• compact
• crossval
• discardSupportVectors
• gather
• resubEdge
• resubLoss
• resubMargin
• resubPredict

• The following object functions offer limited support for GPU arrays:

• compareHoldout
• edge
• loss
• margin
• partialDependence
• plotPartialDependence
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• predict
• The object functions execute on a GPU if either of the following apply:

• The model was fitted with GPU arrays.
• The predictor data that you pass to the object function is a GPU array.

For more information, see “Run MATLAB Functions on a GPU” (Parallel Computing Toolbox).

See Also
fitcecoc | CompactClassificationECOC | ClassificationPartitionedECOC | fitcsvm
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ClassificationECOCCoderConfigurer
Coder configurer for multiclass model using binary learners

Description
A ClassificationECOCCoderConfigurer object is a coder configurer of a multiclass error-
correcting output codes (ECOC) classification model (ClassificationECOC or
CompactClassificationECOC) that uses support vector machine (SVM) or linear binary learners.

A coder configurer offers convenient features to configure code generation options, generate C/C++
code, and update model parameters in the generated code.

• Configure code generation options and specify the coder attributes of model parameters by using
object properties.

• Generate C/C++ code for the predict and update functions of the ECOC model by using
generateCode. Generating C/C++ code requires MATLAB Coder.

• Update model parameters in the generated C/C++ code without having to regenerate the code.
This feature reduces the effort required to regenerate, redeploy, and reverify C/C++ code when
you retrain the model with new data or settings. Before updating model parameters, use
validatedUpdateInputs to validate and extract the model parameters to update.

This flow chart shows the code generation workflow using a coder configurer.

For the code generation usage notes and limitations of a multiclass ECOC classification model, see
the Code Generation sections of CompactClassificationECOC, predict, and update.

Creation
After training a multiclass ECOC classification model with SVM or linear binary learners by using
fitcecoc, create a coder configurer for the model by using learnerCoderConfigurer. Use the
properties of a coder configurer to specify the coder attributes of predict and update arguments.
Then, use generateCode to generate C/C++ code based on the specified coder attributes.
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Properties
predict Arguments

The properties listed in this section specify the coder attributes of the predict function arguments
in the generated code.

X — Coder attributes of predictor data
LearnerCoderInput object

Coder attributes of predictor data to pass to the generated C/C++ code for the predict function of
the ECOC classification model, specified as a LearnerCoderInput on page 35-424 object.

When you create a coder configurer by using the learnerCoderConfigurer function, the input
argument X determines the default values of the LearnerCoderInput coder attributes:

• SizeVector — The default value is the array size of the input X.

• If the Value attribute of the ObservationsIn property for the
ClassificationECOCCoderConfigurer is 'rows', then this SizeVector value is [n p],
where n corresponds to the number of observations and p corresponds to the number of
predictors.

• If the Value attribute of the ObservationsIn property for the
ClassificationECOCCoderConfigurer is 'columns', then this SizeVector value is [p
n].

To switch the elements of SizeVector (for example, to change [n p] to [p n]), modify the
Value attribute of the ObservationsIn property for the
ClassificationECOCCoderConfigurer accordingly. You cannot modify the SizeVector value
directly.

• VariableDimensions — The default value is [0 0], which indicates that the array size is fixed
as specified in SizeVector.

You can set this value to [1 0] if the SizeVector value is [n p] or to [0 1] if it is [p n],
which indicates that the array has variable-size rows and fixed-size columns. For example, [1 0]
specifies that the first value of SizeVector (n) is the upper bound for the number of rows, and
the second value of SizeVector (p) is the number of columns.

• DataType — This value is single or double. The default data type depends on the data type of
the input X.

• Tunability — This value must be true, meaning that predict in the generated C/C++ code
always includes predictor data as an input.

You can modify the coder attributes by using dot notation. For example, to generate C/C++ code that
accepts predictor data with 100 observations (in rows) of three predictor variables (in columns),
specify these coder attributes of X for the coder configurer configurer:

configurer.X.SizeVector = [100 3];
configurer.X.DataType = 'double';
configurer.X.VariableDimensions = [0 0];

[0 0] indicates that the first and second dimensions of X (number of observations and number of
predictor variables, respectively) have fixed sizes.
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To allow the generated C/C++ code to accept predictor data with up to 100 observations, specify
these coder attributes of X:

configurer.X.SizeVector = [100 3];
configurer.X.DataType = 'double';
configurer.X.VariableDimensions = [1 0];

[1 0] indicates that the first dimension of X (number of observations) has a variable size and the
second dimension of X (number of predictor variables) has a fixed size. The specified number of
observations, 100 in this example, becomes the maximum allowed number of observations in the
generated C/C++ code. To allow any number of observations, specify the bound as Inf.

BinaryLoss — Coder attributes of binary learner loss function
EnumeratedInput object

Coder attributes of the binary learner loss function ('BinaryLoss' name-value pair argument of
predict), specified as an EnumeratedInput on page 35-425 object.

The default attribute values of the EnumeratedInput object are based on the default values of the
predict function:

• Value — Binary learner loss function, specified as one of the character vectors in
BuiltInOptions or a character vector designating a custom function name. If the binary
learners are SVMs or linear classification models of SVM learners, the default value is 'hinge'. If
the binary learners are linear classification models of logistic regression learners, the default
value is 'quadratic'.

To use a custom option, define a custom function on the MATLAB search path, and specify Value
as the name of the custom function.

• SelectedOption — This value is 'Built-in'(default) or 'Custom'. The software sets
SelectedOption according to Value. This attribute is read-only.

• BuiltInOptions — Cell array of 'hamming', 'linear', 'quadratic', 'exponential',
'binodeviance', 'hinge', and 'logit'. This attribute is read-only.

• IsConstant — This value must be true.
• Tunability — The default value is false. If you specify other attribute values when

Tunability is false, the software sets Tunability to true.

Decoding — Coder attributes of decoding scheme
EnumeratedInput object

Coder attributes of the decoding scheme ('Decoding' name-value pair argument of predict),
specified as an EnumeratedInput on page 35-425 object.

The default attribute values of the EnumeratedInput object are based on the default values of the
predict function:

• Value — Decoding scheme value, specified as 'lossweighted'(default), 'lossbased', or a
LearnerCoderInput on page 35-424 object.

If you set IsConstant to false, then the software changes Value to a LearnerCoderInput on
page 35-424 object with these read-only coder attribute values:

• SizeVector — [1 12]
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• VariableDimensions — [0 1]
• DataType — 'char'
• Tunability — 1

The input in the generated code is a variable-size, tunable character vector that is either
'lossweighted' or 'lossbased'.

• SelectedOption — This value is 'Built-in'(default) or 'NonConstant'. The software sets
SelectedOption according to Value. This attribute is read-only.

• BuiltInOptions — Cell array of 'lossweighted' and 'lossbased'. This attribute is read-
only.

• IsConstant — The default value is true. If you set this value to false, the software changes
Value to a LearnerCoderInput object.

• Tunability — The default value is false. If you specify other attribute values when
Tunability is false, the software sets Tunability to true.

ObservationsIn — Coder attributes of predictor data observation dimension
EnumeratedInput object

Coder attributes of the predictor data observation dimension ('ObservationsIn' name-value pair
argument of predict), specified as an EnumeratedInput on page 35-425 object.

When you create a coder configurer by using the learnerCoderConfigurer function, the
'ObservationsIn' name-value pair argument determines the default values of the
EnumeratedInput coder attributes:

• Value — The default value is the predictor data observation dimension you use when creating the
coder configurer, specified as 'rows' or 'columns'. If you do not specify 'ObservationsIn'
when creating the coder configurer, the default value is 'rows'.

This value must be 'rows' for a model that uses SVM binary learners.
• SelectedOption — This value is always 'Built-in'. This attribute is read-only.
• BuiltInOptions — Cell array of 'rows' and 'columns'. This attribute is read-only.
• IsConstant — This value must be true.
• Tunability — The default value is false if you specify 'ObservationsIn','rows' when

creating the coder configurer, and true if you specify 'ObservationsIn','columns'. If you
set Tunability to false, the software sets Value to 'rows'. If you specify other attribute
values when Tunability is false, the software sets Tunability to true.

NumOutputs — Number of outputs in predict
1 (default) | 2 | 3

Number of output arguments to return from the generated C/C++ code for the predict function of
the ECOC classification model, specified as 1, 2, or 3.

The output arguments of predict are, in order: label (predicted class labels), NegLoss (negated
average binary losses), and PBScore (positive-class scores). predict in the generated C/C++ code
returns the first n outputs of the predict function, where n is the NumOutputs value.

After creating the coder configurer configurer, you can specify the number of outputs by using dot
notation.
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configurer.NumOutputs = 2;

The NumOutputs property is equivalent to the '-nargout' compiler option of codegen. This option
specifies the number of output arguments in the entry-point function of code generation. The object
function generateCode generates two entry-point functions—predict.m and update.m for the
predict and update functions of an ECOC classification model, respectively—and generates C/C++
code for the two entry-point functions. The specified value for the NumOutputs property corresponds
to the number of output arguments in the entry-point function predict.m.
Data Types: double

update Arguments

The properties listed in this section specify the coder attributes of the update function arguments in
the generated code. The update function takes a trained model and new model parameters as input
arguments, and returns an updated version of the model that contains the new parameters. To enable
updating the parameters in the generated code, you need to specify the coder attributes of the
parameters before generating code. Use a LearnerCoderInput on page 35-424 object to specify the
coder attributes of each parameter. The default attribute values are based on the model parameters
in the input argument Mdl of learnerCoderConfigurer.

BinaryLearners — Coder attributes of trained binary learners
ClassificationSVMCoderConfigurer object | ClassificationLinearCoderConfigurer
object

Coder attributes of the trained binary learners (BinaryLearners of an ECOC classification model),
specified as a ClassificationSVMCoderConfigurer object (for SVM binary learners) or a
ClassificationLinearCoderConfigurer object (for linear binary learners).

Use the update arguments of the SVM or linear coder configurer object to specify the coder
attributes of all binary learners.

• For ClassificationSVMCoderConfigurer, the update arguments are Alpha, Beta, Bias,
Cost, Mu, Prior, Scale, Sigma, SupportVectorLabels, and SupportVectors.

• For ClassificationLinearCoderConfigurer, the update arguments are Beta, Bias, Cost,
and Prior.

For the configuration of BinaryLearners, the software uses only the update argument properties
and ignores the other properties of the object.

When you train an ECOC model with SVM binary learners, each learner can have a different number
of support vectors. Therefore, the software configures the default attribute values of the
LearnerCoderInput on page 35-424 objects for Alpha, SupportVectorLabels, and
SupportVectors to accommodate all binary learners, based on the input argument Mdl of
learnerCoderConfigurer.

• SizeVector

• This value is [s 1] for Alpha and SupportVectorLabels, where s is the largest number of
support vectors in the binary learners.

• This value is [s p] for SupportVectors, where p is the number of predictors.
• VariableDimensions — This value is [0 0] or [1 0]. If each learner has the same number of

support vectors, the default value is [0 0]. Otherwise, this value must be [1 0].
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• [0 0] indicates that the array size is fixed as specified in SizeVector.
• [1 0] indicates that the array has variable-size rows and fixed-size columns. In this case, the
first value of SizeVector is the upper bound for the number of rows, and the second value of
SizeVector is the number of columns.

• DataType — This value is 'single' or 'double'. The default data type is consistent with the
data type of the training data you use to train Mdl.

• Tunability — If you train a model with a linear kernel function, and the model stores the linear
predictor coefficients (Beta) without the support vectors and related values, then this value must
be false. Otherwise, this value must be true.

For details about the other update arguments, see update arguments on page 35-640 of
ClassificationSVMCoderConfigurer and update arguments on page 35-493 of
ClassificationLinearCoderConfigurer.

Cost — Coder attributes of misclassification cost
LearnerCoderInput object

Coder attributes of the misclassification cost (Cost of an ECOC classification model), specified as a
LearnerCoderInput on page 35-424 object.

The default attribute values of the LearnerCoderInput object are based on the input argument Mdl
of learnerCoderConfigurer:

• SizeVector — This value must be [c c], where c is the number of classes.
• VariableDimensions — This value must be [0 0], indicating that the array size is fixed as
specified in SizeVector.

• DataType — This value is 'single' or 'double'. The default data type is consistent with the
data type of the training data you use to train Mdl.

• Tunability — The default value is true.

Prior — Coder attributes of prior probabilities
LearnerCoderInput object

Coder attributes of the prior probabilities (Prior of an ECOC classification model), specified as a
LearnerCoderInput on page 35-424 object.

The default attribute values of the LearnerCoderInput object are based on the input argument Mdl
of learnerCoderConfigurer:

• SizeVector — This value must be [1 c], where c is the number of classes.
• VariableDimensions — This value must be [0 0], indicating that the array size is fixed as
specified in SizeVector.

• DataType — This value is 'single' or 'double'. The default data type is consistent with the
data type of the training data you use to train Mdl.

• Tunability — The default value is true.

Other Configurer Options

OutputFileName — File name of generated C/C++ code
'ClassificationECOCModel' (default) | character vector

File name of the generated C/C++ code, specified as a character vector.
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The object function generateCode of ClassificationECOCCoderConfigurer generates C/C++
code using this file name.

The file name must not contain spaces because they can lead to code generation failures in certain
operating system configurations. Also, the name must be a valid MATLAB function name.

After creating the coder configurer configurer, you can specify the file name by using dot notation.

configurer.OutputFileName = 'myModel';

Data Types: char

Verbose — Verbosity level
true (logical 1) (default) | false (logical 0)

Verbosity level, specified as true (logical 1) or false (logical 0). The verbosity level controls the
display of notification messages at the command line.

Value Description
true (logical 1) The software displays notification messages when your changes to the

coder attributes of a parameter result in changes for other dependent
parameters.

false (logical 0) The software does not display notification messages.

To enable updating machine learning model parameters in the generated code, you need to configure
the coder attributes of the parameters before generating code. The coder attributes of parameters
are dependent on each other, so the software stores the dependencies as configuration constraints. If
you modify the coder attributes of a parameter by using a coder configurer, and the modification
requires subsequent changes to other dependent parameters to satisfy configuration constraints,
then the software changes the coder attributes of the dependent parameters. The verbosity level
determines whether or not the software displays notification messages for these subsequent changes.

After creating the coder configurer configurer, you can modify the verbosity level by using dot
notation.

configurer.Verbose = false;

Data Types: logical

Options for Code Generation Customization

To customize the code generation workflow, use the generateFiles function and the following three
properties with codegen, instead of using the generateCode function.

After generating the two entry-point function files (predict.m and update.m) by using the
generateFiles function, you can modify these files according to your code generation workflow.
For example, you can modify the predict.m file to include data preprocessing, or you can add these
entry-point functions to another code generation project. Then, you can generate C/C++ code by
using the codegen function and the codegen arguments appropriate for the modified entry-point
functions or code generation project. Use the three properties described in this section as a starting
point to set the codegen arguments.

CodeGenerationArguments — codegen arguments
cell array
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This property is read-only.

codegen arguments, specified as a cell array.

This property enables you to customize the code generation workflow. Use the generateCode
function if you do not need to customize your workflow.

Instead of using generateCode with the coder configurer configurer, you can generate C/C++
code as follows:

generateFiles(configurer)
cgArgs = configurer.CodeGenerationArguments;
codegen(cgArgs{:})

If you customize the code generation workflow, modify cgArgs accordingly before calling codegen.

If you modify other properties of configurer, the software updates the
CodeGenerationArguments property accordingly.
Data Types: cell

PredictInputs — List of tunable input arguments of predict
cell array

This property is read-only.

List of tunable input arguments of the entry-point function predict.m for code generation, specified
as a cell array. The cell array contains another cell array that includes coder.PrimitiveType
objects and coder.Constant objects.

If you modify the coder attributes of predict arguments on page 35-410, then the software updates
the corresponding objects accordingly. If you specify the Tunability attribute as false, then the
software removes the corresponding objects from the PredictInputs list.

The cell array in PredictInputs is equivalent to configurer.CodeGenerationArguments{6}
for the coder configurer configurer.
Data Types: cell

UpdateInputs — List of tunable input arguments of update
cell array

This property is read-only.

List of the tunable input arguments of the entry-point function update.m for code generation,
specified as a cell array of a structure. The structure includes a coder.CellType object for
BinaryLearners and coder.PrimitiveType objects for Cost and Prior.

If you modify the coder attributes of update arguments on page 35-413, then the software updates
the corresponding objects accordingly. If you specify the Tunability attribute as false, then the
software removes the corresponding object from the UpdateInputs list.

The structure in UpdateInputs is equivalent to configurer.CodeGenerationArguments{3} for
the coder configurer configurer.
Data Types: cell
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Object Functions
generateCode Generate C/C++ code using coder configurer
generateFiles Generate MATLAB files for code generation using coder configurer
validatedUpdateInputs Validate and extract machine learning model parameters to update

Examples

Generate Code Using Coder Configurer

Train a machine learning model, and then generate code for the predict and update functions of
the model by using a coder configurer.

Load Fisher's iris data set and train a multiclass ECOC model using SVM binary learners.

load fisheriris
X = meas;
Y = species;
Mdl = fitcecoc(X,Y);

Mdl is a ClassificationECOC object.

Create a coder configurer for the ClassificationECOC model by using
learnerCoderConfigurer. Specify the predictor data X. The learnerCoderConfigurer function
uses the input X to configure the coder attributes of the predict function input.

configurer = learnerCoderConfigurer(Mdl,X)

configurer = 
  ClassificationECOCCoderConfigurer with properties:

   Update Inputs:
    BinaryLearners: [1x1 ClassificationSVMCoderConfigurer]
             Prior: [1x1 LearnerCoderInput]
              Cost: [1x1 LearnerCoderInput]

   Predict Inputs:
                 X: [1x1 LearnerCoderInput]

   Code Generation Parameters:
        NumOutputs: 1
    OutputFileName: 'ClassificationECOCModel'

  Properties, Methods

configurer is a ClassificationECOCCoderConfigurer object, which is a coder configurer of a
ClassificationECOC object.

To generate C/C++ code, you must have access to a C/C++ compiler that is configured properly.
MATLAB Coder locates and uses a supported, installed compiler. You can use mex -setup to view and
change the default compiler. For more details, see “Change Default Compiler”.

Generate code for the predict and update functions of the ECOC classification model (Mdl) with
default settings.

 ClassificationECOCCoderConfigurer

35-417



generateCode(configurer)

generateCode creates these files in output folder:
'initialize.m', 'predict.m', 'update.m', 'ClassificationECOCModel.mat'
Code generation successful.

The generateCode function completes these actions:

• Generate the MATLAB files required to generate code, including the two entry-point functions
predict.m and update.m for the predict and update functions of Mdl, respectively.

• Create a MEX function named ClassificationECOCModel for the two entry-point functions.
• Create the code for the MEX function in the codegen\mex\ClassificationECOCModel folder.
• Copy the MEX function to the current folder.

Display the contents of the predict.m, update.m, and initialize.m files by using the type
function.

type predict.m

function varargout = predict(X,varargin) %#codegen
% Autogenerated by MATLAB, 01-Sep-2022 11:18:21
[varargout{1:nargout}] = initialize('predict',X,varargin{:});
end

type update.m

function update(varargin) %#codegen
% Autogenerated by MATLAB, 01-Sep-2022 11:18:21
initialize('update',varargin{:});
end

type initialize.m

function [varargout] = initialize(command,varargin) %#codegen
% Autogenerated by MATLAB, 01-Sep-2022 11:18:21
coder.inline('always')
persistent model
if isempty(model)
    model = loadLearnerForCoder('ClassificationECOCModel.mat');
end
switch(command)
    case 'update'
        % Update struct fields: BinaryLearners
        %                       Prior
        %                       Cost
        model = update(model,varargin{:});
    case 'predict'
        % Predict Inputs: X
        X = varargin{1};
        if nargin == 2
            [varargout{1:nargout}] = predict(model,X);
        else
            PVPairs = cell(1,nargin-2);
            for i = 1:nargin-2
                PVPairs{1,i} = varargin{i+1};
            end
            [varargout{1:nargout}] = predict(model,X,PVPairs{:});
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        end
end
end

Update Parameters of ECOC Classification Model in Generated Code

Train an error-correcting output codes (ECOC) model using SVM binary learners and create a coder
configurer for the model. Use the properties of the coder configurer to specify coder attributes of the
ECOC model parameters. Use the object function of the coder configurer to generate C code that
predicts labels for new predictor data. Then retrain the model using different settings, and update
parameters in the generated code without regenerating the code.

Train Model

Load Fisher's iris data set.

load fisheriris
X = meas;
Y = species;

Create an SVM binary learner template to use a Gaussian kernel function and to standardize
predictor data.

t = templateSVM('KernelFunction','gaussian','Standardize',true);

Train a multiclass ECOC model using the template t.

Mdl = fitcecoc(X,Y,'Learners',t);

Mdl is a ClassificationECOC object.

Create Coder Configurer

Create a coder configurer for the ClassificationECOC model by using
learnerCoderConfigurer. Specify the predictor data X. The learnerCoderConfigurer function
uses the input X to configure the coder attributes of the predict function input. Also, set the number
of outputs to 2 so that the generated code returns the first two outputs of the predict function,
which are the predicted labels and negated average binary losses.

configurer = learnerCoderConfigurer(Mdl,X,'NumOutputs',2)

configurer = 
  ClassificationECOCCoderConfigurer with properties:

   Update Inputs:
    BinaryLearners: [1x1 ClassificationSVMCoderConfigurer]
             Prior: [1x1 LearnerCoderInput]
              Cost: [1x1 LearnerCoderInput]

   Predict Inputs:
                 X: [1x1 LearnerCoderInput]

   Code Generation Parameters:
        NumOutputs: 2
    OutputFileName: 'ClassificationECOCModel'
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  Properties, Methods

configurer is a ClassificationECOCCoderConfigurer object, which is a coder configurer of a
ClassificationECOC object. The display shows the tunable input arguments of predict and
update: X, BinaryLearners, Prior, and Cost.

Specify Coder Attributes of Parameters

Specify the coder attributes of predict arguments (predictor data and the name-value pair
arguments 'Decoding' and 'BinaryLoss') and update arguments (support vectors of the SVM
learners) so that you can use these arguments as the input arguments of predict and update in the
generated code.

First, specify the coder attributes of X so that the generated code accepts any number of
observations. Modify the SizeVector and VariableDimensions attributes. The SizeVector
attribute specifies the upper bound of the predictor data size, and the VariableDimensions
attribute specifies whether each dimension of the predictor data has a variable size or fixed size.

configurer.X.SizeVector = [Inf 4];
configurer.X.VariableDimensions = [true false];

The size of the first dimension is the number of observations. In this case, the code specifies that the
upper bound of the size is Inf and the size is variable, meaning that X can have any number of
observations. This specification is convenient if you do not know the number of observations when
generating code.

The size of the second dimension is the number of predictor variables. This value must be fixed for a
machine learning model. X contains 4 predictors, so the second value of the SizeVector attribute
must be 4 and the second value of the VariableDimensions attribute must be false.

Next, modify the coder attributes of BinaryLoss and Decoding to use the 'BinaryLoss' and
'Decoding' name-value pair arguments in the generated code. Display the coder attributes of
BinaryLoss.

configurer.BinaryLoss

ans = 
  EnumeratedInput with properties:

             Value: 'hinge'
    SelectedOption: 'Built-in'
    BuiltInOptions: {1x7 cell}
        IsConstant: 1
        Tunability: 0

To use a nondefault value in the generated code, you must specify the value before generating the
code. Specify the Value attribute of BinaryLoss as 'exponential'.

configurer.BinaryLoss.Value = 'exponential';
configurer.BinaryLoss

ans = 
  EnumeratedInput with properties:
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             Value: 'exponential'
    SelectedOption: 'Built-in'
    BuiltInOptions: {1x7 cell}
        IsConstant: 1
        Tunability: 1

If you modify attribute values when Tunability is false (logical 0), the software sets the
Tunability to true (logical 1).

Display the coder attributes of Decoding.

configurer.Decoding

ans = 
  EnumeratedInput with properties:

             Value: 'lossweighted'
    SelectedOption: 'Built-in'
    BuiltInOptions: {'lossweighted'  'lossbased'}
        IsConstant: 1
        Tunability: 0

Specify the IsConstant attribute of Decoding as false so that you can use all available values in
BuiltInOptions in the generated code.

configurer.Decoding.IsConstant = false;
configurer.Decoding

ans = 
  EnumeratedInput with properties:

             Value: [1x1 LearnerCoderInput]
    SelectedOption: 'NonConstant'
    BuiltInOptions: {'lossweighted'  'lossbased'}
        IsConstant: 0
        Tunability: 1

The software changes the Value attribute of Decoding to a LearnerCoderInput object so that you
can use both 'lossweighted' and 'lossbased' as the value of 'Decoding'. Also, the software
sets the SelectedOption to 'NonConstant' and the Tunability to true.

Finally, modify the coder attributes of SupportVectors in BinaryLearners. Display the coder
attributes of SupportVectors.

configurer.BinaryLearners.SupportVectors

ans = 
  LearnerCoderInput with properties:

            SizeVector: [54 4]
    VariableDimensions: [1 0]
              DataType: 'double'
            Tunability: 1
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The default value of VariableDimensions is [true false] because each learner has a different
number of support vectors. If you retrain the ECOC model using new data or different settings, the
number of support vectors in the SVM learners can vary. Therefore, increase the upper bound of the
number of support vectors.

configurer.BinaryLearners.SupportVectors.SizeVector = [150 4];

SizeVector attribute for Alpha has been modified to satisfy configuration constraints.
SizeVector attribute for SupportVectorLabels has been modified to satisfy configuration constraints.

If you modify the coder attributes of SupportVectors, then the software modifies the coder
attributes of Alpha and SupportVectorLabels to satisfy configuration constraints. If the
modification of the coder attributes of one parameter requires subsequent changes to other
dependent parameters to satisfy configuration constraints, then the software changes the coder
attributes of the dependent parameters.

Display the coder configurer.

configurer

configurer = 
  ClassificationECOCCoderConfigurer with properties:

   Update Inputs:
    BinaryLearners: [1x1 ClassificationSVMCoderConfigurer]
             Prior: [1x1 LearnerCoderInput]
              Cost: [1x1 LearnerCoderInput]

   Predict Inputs:
                 X: [1x1 LearnerCoderInput]
        BinaryLoss: [1x1 EnumeratedInput]
          Decoding: [1x1 EnumeratedInput]

   Code Generation Parameters:
        NumOutputs: 2
    OutputFileName: 'ClassificationECOCModel'

  Properties, Methods

The display now includes BinaryLoss and Decoding as well.

Generate Code

To generate C/C++ code, you must have access to a C/C++ compiler that is configured properly.
MATLAB Coder locates and uses a supported, installed compiler. You can use mex -setup to view and
change the default compiler. For more details, see “Change Default Compiler”.

Generate code for the predict and update functions of the ECOC classification model (Mdl).

generateCode(configurer)

generateCode creates these files in output folder:
'initialize.m', 'predict.m', 'update.m', 'ClassificationECOCModel.mat'
Code generation successful.

The generateCode function completes these actions:
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• Generate the MATLAB files required to generate code, including the two entry-point functions
predict.m and update.m for the predict and update functions of Mdl, respectively.

• Create a MEX function named ClassificationECOCModel for the two entry-point functions.
• Create the code for the MEX function in the codegen\mex\ClassificationECOCModel folder.
• Copy the MEX function to the current folder.

Verify Generated Code

Pass some predictor data to verify whether the predict function of Mdl and the predict function in
the MEX function return the same labels. To call an entry-point function in a MEX function that has
more than one entry point, specify the function name as the first input argument. Because you
specified 'Decoding' as a tunable input argument by changing the IsConstant attribute before
generating the code, you also need to specify it in the call to the MEX function, even though
'lossweighted' is the default value of 'Decoding'.

[label,NegLoss] = predict(Mdl,X,'BinaryLoss','exponential');
[label_mex,NegLoss_mex] = ClassificationECOCModel('predict',X,'BinaryLoss','exponential','Decoding','lossweighted');

Compare label to label_mex by using isequal.

isequal(label,label_mex)

ans = logical
   1

isequal returns logical 1 (true) if all the inputs are equal. The comparison confirms that the
predict function of Mdl and the predict function in the MEX function return the same labels.

NegLoss_mex might include round-off differences compared to NegLoss. In this case, compare
NegLoss_mex to NegLoss, allowing a small tolerance.

find(abs(NegLoss-NegLoss_mex) > 1e-8)

ans =

  0x1 empty double column vector

The comparison confirms that NegLoss and NegLoss_mex are equal within the tolerance 1e–8.

Retrain Model and Update Parameters in Generated Code

Retrain the model using a different setting. Specify 'KernelScale' as 'auto' so that the software
selects an appropriate scale factor using a heuristic procedure.

t_new = templateSVM('KernelFunction','gaussian','Standardize',true,'KernelScale','auto');
retrainedMdl = fitcecoc(X,Y,'Learners',t_new);

Extract parameters to update by using validatedUpdateInputs. This function detects the modified
model parameters in retrainedMdl and validates whether the modified parameter values satisfy the
coder attributes of the parameters.

params = validatedUpdateInputs(configurer,retrainedMdl);

Update parameters in the generated code.

ClassificationECOCModel('update',params)
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Verify Generated Code

Compare the outputs from the predict function of retrainedMdl to the outputs from the predict
function in the updated MEX function.

[label,NegLoss] = predict(retrainedMdl,X,'BinaryLoss','exponential','Decoding','lossbased');
[label_mex,NegLoss_mex] = ClassificationECOCModel('predict',X,'BinaryLoss','exponential','Decoding','lossbased');
isequal(label,label_mex)

ans = logical
   1

find(abs(NegLoss-NegLoss_mex) > 1e-8)

ans =

  0x1 empty double column vector

The comparison confirms that label and label_mex are equal, and NegLoss and NegLoss_mex are
equal within the tolerance.

More About
LearnerCoderInput Object

A coder configurer uses a LearnerCoderInput object to specify the coder attributes of predict
and update input arguments.

A LearnerCoderInput object has the following attributes to specify the properties of an input
argument array in the generated code.

Attribute Name Description
SizeVector Array size if the corresponding VariableDimensions value is

false.

Upper bound of the array size if the corresponding
VariableDimensions value is true. To allow an unbounded
array, specify the bound as Inf.

VariableDimensions Indicator specifying whether each dimension of the array has a
variable size or fixed size, specified as true (logical 1) or false
(logical 0):

• A value of true (logical 1) means that the corresponding
dimension has a variable size.

• A value of false (logical 0) means that the corresponding
dimension has a fixed size.

DataType Data type of the array
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Attribute Name Description
Tunability Indicator specifying whether or not predict or update includes

the argument as an input in the generated code, specified as true
(logical 1) or false (logical 0).

If you specify other attribute values when Tunability is false,
the software sets Tunability to true.

After creating a coder configurer, you can modify the coder attributes by using dot notation. For
example, specify the coder attributes of the coefficients Alpha in BinaryLearners of the coder
configurer configurer:

configurer.BinaryLearners.Alpha.SizeVector = [100 1];
configurer.BinaryLearners.Alpha.VariableDimensions = [1 0];
configurer.BinaryLearners.Alpha.DataType = 'double';

If you specify the verbosity level (Verbose) as true (default), then the software displays notification
messages when you modify the coder attributes of a machine learning model parameter and the
modification changes the coder attributes of other dependent parameters.

EnumeratedInput Object

A coder configurer uses an EnumeratedInput object to specify the coder attributes of predict
input arguments that have a finite set of available values.

An EnumeratedInput object has the following attributes to specify the properties of an input
argument array in the generated code.
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Attribute Name Description
Value Value of the predict argument in the generated code, specified as

a character vector or a LearnerCoderInput on page 35-424
object.

• Character vector in BuiltInOptions — You can specify one of
the BuiltInOptions using either the option name or its index
value. For example, to choose the first option, specify Value as
either the first character vector in BuiltInOptions or 1.

• Character vector designating a custom function name — To use
a custom option, define a custom function on the MATLAB
search path, and specify Value as the name of the custom
function.

• LearnerCoderInput on page 35-424 object — If you set
IsConstant to false (logical 0), then the software changes
Value to a LearnerCoderInput on page 35-424 object with
the following read-only coder attribute values. These values
indicate that the input in the generated code is a variable-size,
tunable character vector that is one of the available values in
BuiltInOptions.

• SizeVector — [1 c], indicating the upper bound of the
array size, where c is the length of the longest available
character vector in Option

• VariableDimensions — [0 1], indicating that the array
is a variable-size vector

• DataType — 'char'
• Tunability — 1

The default value of Value is consistent with the default value of
the corresponding predict argument, which is one of the
character vectors in BuiltInOptions.

SelectedOption Status of the selected option, specified as 'Built-in',
'Custom', or 'NonConstant'. The software sets
SelectedOption according to Value:

• 'Built-in'(default) — When Value is one of the character
vectors in BuiltInOptions

• 'Custom' — When Value is a character vector that is not in
BuiltInOptions

• 'NonConstant' — When Value is a LearnerCoderInput on
page 35-424 object

This attribute is read-only.
BuiltInOptions List of available character vectors for the corresponding predict

argument, specified as a cell array.

This attribute is read-only.
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Attribute Name Description
IsConstant Indicator specifying whether or not the array value is a compile-

time constant (coder.Constant) in the generated code, specified
as true (logical 1, default) or false (logical 0).

If you set this value to false, then the software changes Value to
a LearnerCoderInput on page 35-424 object.

Tunability Indicator specifying whether or not predict includes the
argument as an input in the generated code, specified as true
(logical 1) or false (logical 0, default).

If you specify other attribute values when Tunability is false,
the software sets Tunability to true.

After creating a coder configurer, you can modify the coder attributes by using dot notation. For
example, specify the coder attributes of BinaryLoss of the coder configurer configurer:

configurer.BinaryLoss.Value = 'linear';

Version History
Introduced in R2019a

See Also
learnerCoderConfigurer | ClassificationECOC | CompactClassificationECOC | predict |
update | ClassificationSVMCoderConfigurer | ClassificationLinearCoderConfigurer

Topics
“Introduction to Code Generation” on page 34-2
“Code Generation for Prediction and Update Using Coder Configurer” on page 34-92
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ClassificationDiscriminant class
Superclasses: CompactClassificationDiscriminant

Discriminant analysis classification

Description
A ClassificationDiscriminant object encapsulates a discriminant analysis classifier, which is a
Gaussian mixture model for data generation. A ClassificationDiscriminant object can predict
responses for new data using the predict method. The object contains the data used for training, so
can compute resubstitution predictions.

Construction
Create a ClassificationDiscriminant object by using fitcdiscr.

Properties
BetweenSigma

p-by-p matrix, the between-class covariance, where p is the number of predictors.

CategoricalPredictors

Categorical predictor indices, which is always empty ([]) .

ClassNames

List of the elements in the training data Y with duplicates removed. ClassNames can be a categorical
array, cell array of character vectors, character array, logical vector, or a numeric vector.
ClassNames has the same data type as the data in the argument Y. (The software treats string arrays
as cell arrays of character vectors.)

Coeffs

k-by-k structure of coefficient matrices, where k is the number of classes. Coeffs(i,j) contains
coefficients of the linear or quadratic boundaries between classes i and j. Fields in Coeffs(i,j):

• DiscrimType
• Class1 — ClassNames(i)
• Class2 — ClassNames(j)
• Const — A scalar
• Linear — A vector with p components, where p is the number of columns in X
• Quadratic — p-by-p matrix, exists for quadratic DiscrimType

The equation of the boundary between class i and class j is

Const + Linear * x + x' * Quadratic * x = 0,
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where x is a column vector of length p.

If fitcdiscr had the FillCoeffs name-value pair set to 'off' when constructing the classifier,
Coeffs is empty ([]).

Cost

Square matrix, where Cost(i,j) is the cost of classifying a point into class j if its true class is i
(i.e., the rows correspond to the true class and the columns correspond to the predicted class). The
order of the rows and columns of Cost corresponds to the order of the classes in ClassNames. The
number of rows and columns in Cost is the number of unique classes in the response.

Change a Cost matrix using dot notation: obj.Cost = costMatrix.

Delta

Value of the Delta threshold for a linear discriminant model, a nonnegative scalar. If a coefficient of
obj has magnitude smaller than Delta, obj sets this coefficient to 0, and so you can eliminate the
corresponding predictor from the model. Set Delta to a higher value to eliminate more predictors.

Delta must be 0 for quadratic discriminant models.

Change Delta using dot notation: obj.Delta = newDelta.

DeltaPredictor

Row vector of length equal to the number of predictors in obj. If DeltaPredictor(i) < Delta
then coefficient i of the model is 0.

If obj is a quadratic discriminant model, all elements of DeltaPredictor are 0.

DiscrimType

Character vector specifying the discriminant type. One of:

• 'linear'
• 'quadratic'
• 'diagLinear'
• 'diagQuadratic'
• 'pseudoLinear'
• 'pseudoQuadratic'

Change DiscrimType using dot notation: obj.DiscrimType = newDiscrimType.

You can change between linear types, or between quadratic types, but cannot change between linear
and quadratic types.

Gamma

Value of the Gamma regularization parameter, a scalar from 0 to 1. Change Gamma using dot notation:
obj.Gamma = newGamma.

• If you set 1 for linear discriminant, the discriminant sets its type to 'diagLinear'.
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• If you set a value between MinGamma and 1 for linear discriminant, the discriminant sets its type
to 'linear'.

• You cannot set values below the value of the MinGamma property.
• For quadratic discriminant, you can set either 0 (for DiscrimType 'quadratic') or 1 (for

DiscrimType 'diagQuadratic').

HyperparameterOptimizationResults

Description of the cross-validation optimization of hyperparameters, stored as a
BayesianOptimization object or a table of hyperparameters and associated values. Nonempty
when the OptimizeHyperparameters name-value pair is nonempty at creation. Value depends on
the setting of the HyperparameterOptimizationOptions name-value pair at creation:

• 'bayesopt' (default) — Object of class BayesianOptimization
• 'gridsearch' or 'randomsearch' — Table of hyperparameters used, observed objective

function values (cross-validation loss), and rank of observations from lowest (best) to highest
(worst)

LogDetSigma

Logarithm of the determinant of the within-class covariance matrix. The type of LogDetSigma
depends on the discriminant type:

• Scalar for linear discriminant analysis
• Vector of length K for quadratic discriminant analysis, where K is the number of classes

MinGamma

Nonnegative scalar, the minimal value of the Gamma parameter so that the correlation matrix is
invertible. If the correlation matrix is not singular, MinGamma is 0.

ModelParameters

Parameters used in training obj.

Mu

Class means, specified as a K-by-p matrix of scalar values class means of size. K is the number of
classes, and p is the number of predictors. Each row of Mu represents the mean of the multivariate
normal distribution of the corresponding class. The class indices are in the ClassNames attribute.

NumObservations

Number of observations in the training data, a numeric scalar. NumObservations can be less than
the number of rows of input data X when there are missing values in X or response Y.

PredictorNames

Cell array of names for the predictor variables, in the order in which they appear in the training data
X.

Prior

Numeric vector of prior probabilities for each class. The order of the elements of Prior corresponds
to the order of the classes in ClassNames.
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Add or change a Prior vector using dot notation: obj.Prior = priorVector.

ResponseName

Character vector describing the response variable Y.

ScoreTransform

Character vector representing a built-in transformation function, or a function handle for
transforming scores. 'none' means no transformation; equivalently, 'none' means @(x)x. For a list
of built-in transformation functions and the syntax of custom transformation functions, see
fitcdiscr.

Implement dot notation to add or change a ScoreTransform function using one of the following:

• cobj.ScoreTransform = 'function'
• cobj.ScoreTransform = @function

Sigma

Within-class covariance matrix or matrices. The dimensions depend on DiscrimType:

• 'linear' (default) — Matrix of size p-by-p, where p is the number of predictors
• 'quadratic' — Array of size p-by-p-by-K, where K is the number of classes
• 'diagLinear' — Row vector of length p
• 'diagQuadratic' — Array of size 1-by-p-by-K
• 'pseudoLinear' — Matrix of size p-by-p
• 'pseudoQuadratic' — Array of size p-by-p-by-K

W

Scaled weights, a vector with length n, the number of rows in X.

X

Matrix of predictor values. Each column of X represents one predictor (variable), and each row
represents one observation.

Xcentered

X data with class means subtracted. If Y(i) is of class j,

Xcentered(i,:) = X(i,:) – Mu(j,:),

where Mu is the class mean property.

Y

A categorical array, cell array of character vectors, character array, logical vector, or a numeric
vector with the same number of rows as X. Each row of Y represents the classification of the
corresponding row of X.
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Object Functions
compact Compact discriminant analysis classifier
compareHoldout Compare accuracies of two classification models using new data
crossval Cross-validated discriminant analysis classifier
cvshrink Cross-validate regularization of linear discriminant
edge Classification edge
lime Local interpretable model-agnostic explanations (LIME)
logp Log unconditional probability density for discriminant analysis classifier
loss Classification error
mahal Mahalanobis distance to class means of discriminant analysis classifier
margin Classification margins
nLinearCoeffs Number of nonzero linear coefficients
partialDependence Compute partial dependence
plotPartialDependence Create partial dependence plot (PDP) and individual conditional expectation

(ICE) plots
predict Predict labels using discriminant analysis classification model
resubEdge Classification edge by resubstitution
resubLoss Classification error by resubstitution
resubMargin Classification margins by resubstitution
resubPredict Predict resubstitution labels of discriminant analysis classification model
shapley Shapley values
testckfold Compare accuracies of two classification models by repeated cross-

validation

Copy Semantics
Value. To learn how value classes affect copy operations, see Copying Objects.

Examples

Train Discriminant Analysis Model

Load Fisher's iris data set.

load fisheriris

Train a discriminant analysis model using the entire data set.

Mdl = fitcdiscr(meas,species)

Mdl = 
  ClassificationDiscriminant
             ResponseName: 'Y'
    CategoricalPredictors: []
               ClassNames: {'setosa'  'versicolor'  'virginica'}
           ScoreTransform: 'none'
          NumObservations: 150
              DiscrimType: 'linear'
                       Mu: [3x4 double]
                   Coeffs: [3x3 struct]
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  Properties, Methods

Mdl is a ClassificationDiscriminant model. To access its properties, use dot notation. For
example, display the group means for each predictor.

Mdl.Mu

ans = 3×4

    5.0060    3.4280    1.4620    0.2460
    5.9360    2.7700    4.2600    1.3260
    6.5880    2.9740    5.5520    2.0260

To predict labels for new observations, pass Mdl and predictor data to predict.

More About
Discriminant Classification

The model for discriminant analysis is:

• Each class (Y) generates data (X) using a multivariate normal distribution. That is, the model
assumes X has a Gaussian mixture distribution (gmdistribution).

• For linear discriminant analysis, the model has the same covariance matrix for each class, only
the means vary.

• For quadratic discriminant analysis, both means and covariances of each class vary.

predict classifies so as to minimize the expected classification cost:

y = argmin
y = 1, ..., K

∑
k = 1

K
P k x C y k ,

where

• y  is the predicted classification.
• K is the number of classes.
• P k x  is the posterior probability on page 21-6 of class k for observation x.
• C y k  is the cost on page 21-7 of classifying an observation as y when its true class is k.

For details, see “Prediction Using Discriminant Analysis Models” on page 21-6.

Regularization

Regularization is the process of finding a small set of predictors that yield an effective predictive
model. For linear discriminant analysis, there are two parameters, γ and δ, that control regularization
as follows. cvshrink helps you select appropriate values of the parameters.

Let Σ represent the covariance matrix of the data X, and let X  be the centered data (the data X minus
the mean by class). Define
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D = diag X T * X .

The regularized covariance matrix Σ is

Σ = 1− γ Σ + γD .

Whenever γ ≥ MinGamma, Σ is nonsingular.

Let μk be the mean vector for those elements of X in class k, and let μ0 be the global mean vector (the
mean of the rows of X). Let C be the correlation matrix of the data X, and let C be the regularized
correlation matrix:

C = 1− γ C + γI,

where I is the identity matrix.

The linear term in the regularized discriminant analysis classifier for a data point x is

x− μ0
TΣ−1 μk− μ0 = x− μ0

TD−1/2 C−1D−1/2 μk− μ0 .

The parameter δ enters into this equation as a threshold on the final term in square brackets. Each
component of the vector C−1D−1/2 μk− μ0  is set to zero if it is smaller in magnitude than the
threshold δ. Therefore, for class k, if component j is thresholded to zero, component j of x does not
enter into the evaluation of the posterior probability.

The DeltaPredictor property is a vector related to this threshold. When
δ ≥ DeltaPredictor(i), all classes k have

C−1D−1/2 μk− μ0 ≤ δ .

Therefore, when δ ≥ DeltaPredictor(i), the regularized classifier does not use predictor i.

Version History
Introduced in R2011b

References

[1] Guo, Y., T. Hastie, and R. Tibshirani. "Regularized linear discriminant analysis and its application
in microarrays." Biostatistics, Vol. 8, No. 1, pp. 86–100, 2007.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:
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• The predict function supports code generation.
• When you train a discriminant analysis model by using fitcdiscr or create a compact

discriminant analysis model by using makecdiscr, the value of the 'ScoreTransform' name-
value pair argument cannot be an anonymous function.

For more information, see “Introduction to Code Generation” on page 34-2.

See Also
CompactClassificationDiscriminant | fitcdiscr | compareHoldout

Topics
“Discriminant Analysis Classification” on page 21-2
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ClassificationEnsemble
Package: classreg.learning.classif
Superclasses: CompactClassificationEnsemble

Ensemble classifier

Description
ClassificationEnsemble combines a set of trained weak learner models and data on which these
learners were trained. It can predict ensemble response for new data by aggregating predictions
from its weak learners. It stores data used for training, can compute resubstitution predictions, and
can resume training if desired.

Construction
Create a classification ensemble object (ens) using fitcensemble.

Properties
BinEdges

Bin edges for numeric predictors, specified as a cell array of p numeric vectors, where p is the
number of predictors. Each vector includes the bin edges for a numeric predictor. The element in the
cell array for a categorical predictor is empty because the software does not bin categorical
predictors.

The software bins numeric predictors only if you specify the 'NumBins' name-value argument as a
positive integer scalar when training a model with tree learners. The BinEdges property is empty if
the 'NumBins' value is empty (default).

You can reproduce the binned predictor data Xbinned by using the BinEdges property of the trained
model mdl.

X = mdl.X; % Predictor data
Xbinned = zeros(size(X));
edges = mdl.BinEdges;
% Find indices of binned predictors.
idxNumeric = find(~cellfun(@isempty,edges));
if iscolumn(idxNumeric)
    idxNumeric = idxNumeric';
end
for j = idxNumeric 
    x = X(:,j);
    % Convert x to array if x is a table.
    if istable(x) 
        x = table2array(x);
    end
    % Group x into bins by using the discretize function.
    xbinned = discretize(x,[-inf; edges{j}; inf]); 
    Xbinned(:,j) = xbinned;
end
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Xbinned contains the bin indices, ranging from 1 to the number of bins, for numeric predictors.
Xbinned values are 0 for categorical predictors. If X contains NaNs, then the corresponding Xbinned
values are NaNs.

CategoricalPredictors

Categorical predictor indices, specified as a vector of positive integers. CategoricalPredictors
contains index values indicating that the corresponding predictors are categorical. The index values
are between 1 and p, where p is the number of predictors used to train the model. If none of the
predictors are categorical, then this property is empty ([]).

ClassNames

List of the elements in Y with duplicates removed. ClassNames can be a numeric vector, categorical
vector, logical vector, character array, or cell array of character vectors. ClassNames has the same
data type as the data in the argument Y. (The software treats string arrays as cell arrays of character
vectors.)

CombineWeights

Character vector describing how ens combines weak learner weights, either 'WeightedSum' or
'WeightedAverage'.

Cost

Square matrix, where Cost(i,j) is the cost of classifying a point into class j if its true class is i
(the rows correspond to the true class and the columns correspond to the predicted class). The order
of the rows and columns of Cost corresponds to the order of the classes in ClassNames. The number
of rows and columns in Cost is the number of unique classes in the response. This property is read-
only.

ExpandedPredictorNames

Expanded predictor names, stored as a cell array of character vectors.

If the model uses encoding for categorical variables, then ExpandedPredictorNames includes the
names that describe the expanded variables. Otherwise, ExpandedPredictorNames is the same as
PredictorNames.

FitInfo

Numeric array of fit information. The FitInfoDescription property describes the content of this
array.

FitInfoDescription

Character vector describing the meaning of the FitInfo array.

HyperparameterOptimizationResults

Description of the cross-validation optimization of hyperparameters, stored as a
BayesianOptimization object or a table of hyperparameters and associated values. Nonempty
when the OptimizeHyperparameters name-value pair is nonempty at creation. Value depends on
the setting of the HyperparameterOptimizationOptions name-value pair at creation:
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• 'bayesopt' (default) — Object of class BayesianOptimization
• 'gridsearch' or 'randomsearch' — Table of hyperparameters used, observed objective

function values (cross-validation loss), and rank of observations from lowest (best) to highest
(worst)

LearnerNames

Cell array of character vectors with names of weak learners in the ensemble. The name of each
learner appears just once. For example, if you have an ensemble of 100 trees, LearnerNames is
{'Tree'}.

Method

Character vector describing the method that creates ens.

ModelParameters

Parameters used in training ens.

NumObservations

Numeric scalar containing the number of observations in the training data.

NumTrained

Number of trained weak learners in ens, a scalar.

PredictorNames

Cell array of names for the predictor variables, in the order in which they appear in X.

Prior

Numeric vector of prior probabilities for each class. The order of the elements of Prior corresponds
to the order of the classes in ClassNames. The number of elements of Prior is the number of unique
classes in the response. This property is read-only.

ReasonForTermination

Character vector describing the reason fitcensemble stopped adding weak learners to the
ensemble.

ResponseName

Character vector with the name of the response variable Y.

ScoreTransform

Function handle for transforming scores, or character vector representing a built-in transformation
function. 'none' means no transformation; equivalently, 'none' means @(x)x. For a list of built-in
transformation functions and the syntax of custom transformation functions, see fitctree.

Add or change a ScoreTransform function using dot notation:

ens.ScoreTransform = 'function'
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or

ens.ScoreTransform = @function

Trained

A cell vector of trained classification models.

• If Method is 'LogitBoost' or 'GentleBoost', then ClassificationEnsemble stores
trained learner j in the CompactRegressionLearner property of the object stored in
Trained{j}. That is, to access trained learner j, use
ens.Trained{j}.CompactRegressionLearner.

• Otherwise, cells of the cell vector contain the corresponding, compact classification models.

TrainedWeights

Numeric vector of trained weights for the weak learners in ens. TrainedWeights has T elements,
where T is the number of weak learners in learners.

UsePredForLearner

Logical matrix of size P-by-NumTrained, where P is the number of predictors (columns) in the
training data X. UsePredForLearner(i,j) is true when learner j uses predictor i, and is false
otherwise. For each learner, the predictors have the same order as the columns in the training data X.

If the ensemble is not of type Subspace, all entries in UsePredForLearner are true.

W

Scaled weights, a vector with length n, the number of rows in X. The sum of the elements of W is 1.

X

Matrix or table of predictor values that trained the ensemble. Each column of X represents one
variable, and each row represents one observation.

Y

Numeric vector, categorical vector, logical vector, character array, or cell array of character vectors.
Each row of Y represents the classification of the corresponding row of X.

Object Functions
compact Compact classification ensemble
compareHoldout Compare accuracies of two classification models using new data
crossval Cross-validate ensemble
edge Classification edge
gather Gather properties of Statistics and Machine Learning Toolbox object from

GPU
lime Local interpretable model-agnostic explanations (LIME)
loss Classification error
margin Classification margins
partialDependence Compute partial dependence
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plotPartialDependence Create partial dependence plot (PDP) and individual conditional expectation
(ICE) plots

predict Classify observations using ensemble of classification models
predictorImportance Estimates of predictor importance for classification ensemble of decision

trees
resubEdge Classification edge by resubstitution
resubLoss Classification error by resubstitution
resubMargin Classification margins by resubstitution
resubPredict Classify observations in ensemble of classification models
resume Resume training ensemble
shapley Shapley values
testckfold Compare accuracies of two classification models by repeated cross-

validation

Copy Semantics
Value. To learn how value classes affect copy operations, see Copying Objects.

Examples

Train Boosted Classification Ensemble

Load the ionosphere data set.

load ionosphere

Train a boosted ensemble of 100 classification trees using all measurements and the AdaBoostM1
method.

Mdl = fitcensemble(X,Y,'Method','AdaBoostM1')

Mdl = 
  ClassificationEnsemble
             ResponseName: 'Y'
    CategoricalPredictors: []
               ClassNames: {'b'  'g'}
           ScoreTransform: 'none'
          NumObservations: 351
               NumTrained: 100
                   Method: 'AdaBoostM1'
             LearnerNames: {'Tree'}
     ReasonForTermination: 'Terminated normally after completing the requested number of training cycles.'
                  FitInfo: [100x1 double]
       FitInfoDescription: {2x1 cell}

  Properties, Methods

Mdl is a ClassificationEnsemble model object.

Mdl.Trained is the property that stores a 100-by-1 cell vector of the trained classification trees
(CompactClassificationTree model objects) that compose the ensemble.
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Plot a graph of the first trained classification tree.

view(Mdl.Trained{1},'Mode','graph')

By default, fitcensemble grows shallow trees for boosted ensembles of trees.

Predict the label of the mean of X.

predMeanX = predict(Mdl,mean(X))

predMeanX = 1x1 cell array
    {'g'}

Tip
For an ensemble of classification trees, the Trained property of ens stores an ens.NumTrained-
by-1 cell vector of compact classification models. For a textual or graphical display of tree t in the
cell vector, enter:
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• view(ens.Trained{t}.CompactRegressionLearner) for ensembles aggregated using
LogitBoost or GentleBoost.

• view(ens.Trained{t}) for all other aggregation methods.

Version History
Introduced in R2011a

Cost property stores the user-specified cost matrix
Behavior changed in R2022a

Starting in R2022a, the Cost property stores the user-specified cost matrix, so that you can compute
the observed misclassification cost using the specified cost value. The software stores normalized
prior probabilities (Prior) and observation weights (W) that do not reflect the penalties described in
the cost matrix. To compute the observed misclassification cost, specify the LossFun name-value
argument as "classifcost" when you call the loss or resubLoss function.

Note that model training has not changed and, therefore, the decision boundaries between classes
have not changed.

For training, the fitting function updates the specified prior probabilities by incorporating the
penalties described in the specified cost matrix, and then normalizes the prior probabilities and
observation weights. This behavior has not changed. In previous releases, the software stored the
default cost matrix in the Cost property and stored the prior probabilities and observation weights
used for training in the Prior and W properties, respectively. Starting in R2022a, the software stores
the user-specified cost matrix without modification, and stores normalized prior probabilities and
observation weights that do not reflect the cost penalties. For more details, see “Misclassification
Cost Matrix, Prior Probabilities, and Observation Weights” on page 19-8.

Some object functions use the Cost, Prior, and W properties:

• The loss and resubLoss functions use the cost matrix stored in the Cost property if you specify
the LossFun name-value argument as "classifcost" or "mincost".

• The loss and edge functions use the prior probabilities stored in the Prior property to
normalize the observation weights of the input data.

• The resubLoss and resubEdge functions use the observation weights stored in the W property.

If you specify a nondefault cost matrix when you train a classification model, the object functions
return a different value compared to previous releases.

If you want the software to handle the cost matrix, prior probabilities, and observation weights as in
previous releases, adjust the prior probabilities and observation weights for the nondefault cost
matrix, as described in “Adjust Prior Probabilities and Observation Weights for Misclassification Cost
Matrix” on page 19-9. Then, when you train a classification model, specify the adjusted prior
probabilities and observation weights by using the Prior and Weights name-value arguments,
respectively, and use the default cost matrix.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.
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Usage notes and limitations:

• The predict function supports code generation.
• To integrate the prediction of an ensemble into Simulink, you can use the ClassificationEnsemble

Predict block in the Statistics and Machine Learning Toolbox library or a MATLAB Function block
with the predict function.

• When you train an ensemble by using fitcensemble, code generation limitations for the weak
learners used in the ensemble also apply to the ensemble. For more details, see the Code
Generation sections of ClassificationKNN, CompactClassificationDiscriminant, and
CompactClassificationTree.

• For fixed-point code generation, you must train an ensemble using tree learners.

For more information, see “Introduction to Code Generation” on page 34-2.

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

Usage notes and limitations:

• The following object functions fully support GPU arrays:

• compact
• crossval
• gather
• predictorImportance
• resubEdge
• resubLoss
• resubMargin
• resubPredict
• resume

• The following object functions offer limited support for GPU arrays:

• compareHoldout
• edge
• loss
• margin
• partialDependence
• plotPartialDependence
• predict

• The object functions execute on a GPU if either of the following apply:

• The model was fitted with GPU arrays.
• The predictor data that you pass to the object function is a GPU array.

For more information, see “Run MATLAB Functions on a GPU” (Parallel Computing Toolbox).
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See Also
ClassificationTree | fitcensemble | CompactClassificationEnsemble | view |
compareHoldout
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ClassificationEnsemble Predict
Classify observations using ensemble of decision trees
Library: Statistics and Machine Learning Toolbox / Classification

Description
The ClassificationEnsemble Predict block classifies observations using an ensemble of decision trees
(ClassificationEnsemble, ClassificationBaggedEnsemble, or
CompactClassificationEnsemble) for multiclass classification.

Import a trained classification object into the block by specifying the name of a workspace variable
that contains the object. The input port x receives an observation (predictor data), and the output
port label returns a predicted class label for the observation. You can add an optional output port
score that returns predicted class scores or posterior probabilities.

Ports
Input

x — Predictor data
row vector | column vector

Predictor data, specified as a row or column vector of one observation.

Dependencies

The variables in x must have the same order as the predictor variables that trained the model
specified by Select trained machine learning model.
Data Types: single | double | half | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 |
uint64 | Boolean | fixed point

Output

label — Predicted class label
scalar

Predicted class label, returned as a scalar. The predicted class is the class yielding the largest score.
Data Types: single | double | half | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 |
uint64 | Boolean | fixed point | enumerated

score — Predicted class scores or posterior probabilities
row vector

Predicted class scores or posterior probabilities, returned as a row vector of size 1-by-k, where k is
the number of classes in the tree model.
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To check the order of the classes, use the ClassNames property of the tree model specified by
Select trained machine learning model.

Dependencies

• To enable this port, select the check box for Add output port for predicted class
scores on the Main tab of the Block Parameters dialog box.

• The definition and range of classification score values depend on the ensemble aggregation
method. You can specify the ensemble aggregation method by using the 'Method' name-value
argument of fitcensemble when training the ensemble model. For details, see the “More About”
on page 35-5776 section of the predict function reference page.

Data Types: single | double | half | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 |
uint64 | Boolean | fixed point

Parameters
Main

Select trained machine learning model — Classification ensemble model

ensMdl (default) | ClassificationEnsemble object | ClassificationBaggedEnsemble object |
CompactClassificationEnsemble object

Specify the name of a workspace variable that contains a ClassificationEnsemble object,
ClassificationBaggedEnsemble object, or CompactClassificationEnsemble object.

When you train the model by using fitcensemble, the following restrictions apply:

• You must train an ensemble using tree weak learners.
• The predictor data cannot include categorical predictors (logical, categorical, char,

string, or cell). If you supply training data in a table, the predictors must be numeric (double
or single). Also, you cannot use the CategoricalPredictors name-value argument. To
include categorical predictors in a model, preprocess the categorical predictors by using
dummyvar before fitting the model.

• The value of the 'ScoreTransform' name-value argument cannot be 'invlogit' or an
anonymous function.

• You cannot use surrogate splits for tree weak learners, that is, the value of the 'Surrogate'
name-value argument must be 'off' (default) when you define tree weak learners by using the
templateTree function.

Programmatic Use
Block Parameter: TrainedLearner
Type: workspace variable
Values: ClassificationEnsemble object | ClassificationBaggedEnsemble object |
CompactClassificationEnsemble object
Default: 'ensMdl'

Add output port for predicted class scores — Add second output port for predicted
class scores

off (default) | on
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Select the check box to include the second output port score in the ClassificationEnsemble Predict
block.

Programmatic Use
Block Parameter: ShowOutputScore
Type: character vector
Values: 'off' | 'on'
Default: 'off'

Data Types

Fixed-Point Operational Parameters

Integer rounding mode — Rounding mode for fixed-point operations

Floor (default) | Ceiling | Convergent | Nearest | Round | Simplest | Zero

Specify the rounding mode for fixed-point operations. For more information, see “Rounding” (Fixed-
Point Designer).

Block parameters always round to the nearest representable value. To control the rounding of a block
parameter, enter an expression into the mask field using a MATLAB rounding function.

Programmatic Use
Block Parameter: RndMeth
Type: character vector
Values: 'Ceiling' | 'Convergent' | 'Floor' | 'Nearest' | 'Round' | 'Simplest' |
'Zero'
Default: 'Floor'

Saturate on integer overflow — Method of overflow action

off (default) | on

Specify whether overflows saturate or wrap.

Action Rationale Impact on Overflows Example
Select this check
box (on).

Your model has possible
overflow, and you want
explicit saturation protection
in the generated code.

Overflows saturate to either
the minimum or maximum
value that the data type can
represent.

The maximum value that the
int8 (signed 8-bit integer)
data type can represent is
127. Any block operation
result greater than this
maximum value causes
overflow of the 8-bit integer.
With the check box selected,
the block output saturates at
127. Similarly, the block
output saturates at a
minimum output value of –
128.
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Action Rationale Impact on Overflows Example
Clear this check
box (off).

You want to optimize
efficiency of your generated
code.

You want to avoid
overspecifying how a block
handles out-of-range signals.
For more information, see
“Troubleshoot Signal Range
Errors” (Simulink).

Overflows wrap to the
appropriate value that the
data type can represent.

The maximum value that the
int8 (signed 8-bit integer)
data type can represent is
127. Any block operation
result greater than this
maximum value causes
overflow of the 8-bit integer.
With the check box cleared,
the software interprets the
value causing the overflow as
int8, which can produce an
unintended result. For
example, a block result of 130
(binary 1000 0010) expressed
as int8 is –126.

Programmatic Use
Block Parameter: SaturateOnIntegerOverflow
Type: character vector
Values: 'off' | 'on'
Default: 'off'

Lock output data type setting against changes by the fixed-point tools —
Prevention of fixed-point tools from overriding data type

off (default) | on

Select this parameter to prevent the fixed-point tools from overriding the data type you specify for
the block. For more information, see “Use Lock Output Data Type Setting” (Fixed-Point Designer).
Programmatic Use
Block Parameter: LockScale
Type: character vector
Values: 'off' | 'on'
Default: 'off'

Data Type

Label data type — Data type of label output

Inherit: Inherit via back propagation | Inherit: auto | double | single | half | int8
| uint8 | int16 | uint16 | int32 | uint32 | int64 | uint64 | boolean | fixdt(1,16) |
fixdt(1,16,0) | fixdt(1,16,2^0,0) | Enum: <class name> | <data type expression>

Specify the data type for the label output. The type can be inherited, specified as an enumerated data
type, or expressed as a data type object such as Simulink.NumericType.

When you select an inherited option, the software behaves as follows:

• Inherit: Inherit via back propagation (default for numeric and logical labels) —
Simulink automatically determines the Label data type of the block during data type propagation
(see “Data Type Propagation” (Simulink)). In this case, the block uses the data type of a
downstream block or signal object.
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• Inherit: auto (default for nonnumeric labels) — The block uses an autodefined enumerated
data type variable. For example, suppose the workspace variable name specified by Select
trained machine learning model is myMdl, and the class labels are class 1 and class 2.
Then, the corresponding label values are myMdl_enumLabels.class_1 and
myMdl_enumLabels.class_2. The block converts the class labels to valid MATLAB identifiers by
using the matlab.lang.makeValidName function.

For more information about data types, see “Control Data Types of Signals” (Simulink).

Click the Show data type assistant button  to display the Data Type Assistant, which helps
you set the data type attributes. For more information, see “Specify Data Types Using Data Type
Assistant” (Simulink).

Dependencies

The supported data types depend on the labels used in the model specified by Select trained
machine learning model.

• If the model uses numeric or logical labels, the supported data types are Inherit: Inherit
via back propagation (default), double, single, half, int8, uint8, int16, uint16,
int32, uint32, int64, uint64, boolean, fixed point, and a data type object.

• If the model uses nonnumeric labels, the supported data types are Inherit: auto (default),
Enum: <class name>, and a data type object.

Programmatic Use
Block Parameter: LabelDataTypeStr
Type: character vector
Values: 'Inherit: Inherit via back propagation' | 'Inherit: auto' | 'double' |
'single' | 'half' | 'int8' | 'uint8' | 'int16' | 'uint16' | 'int32' | 'uint32' | 'int64' |
'uint64' | 'boolean' | 'fixdt(1,16)' | 'fixdt(1,16,0)' | 'fixdt(1,16,2^0,0)' | 'Enum:
<class name>' | '<data type expression>'
Default: 'Inherit: Inherit via back propagation' (for numeric and logical labels) |
'Inherit: auto' (for nonnumeric labels)

Label minimum — Minimum value of label output for range checking
[] (default) | scalar

Lower value of the label output range that Simulink checks.

Simulink uses the minimum value to perform:

• Parameter range checking for some blocks (see “Specify Minimum and Maximum Values for Block
Parameters” (Simulink)).

• Simulation range checking (see “Specify Signal Ranges” (Simulink) and “Enable Simulation Range
Checking” (Simulink)).

• Automatic scaling of fixed-point data types.
• Optimization of the code that you generate from the model. This optimization can remove

algorithmic code and affect the results of some simulation modes, such as SIL or external mode.
For more information, see Optimize using the specified minimum and maximum values (Embedded
Coder).
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Note The Label minimum parameter does not saturate or clip the actual label output signal. Use
the Saturation block instead.

Dependencies

You can specify this parameter only if the model specified by Select trained machine learning
model uses numeric labels.

Programmatic Use
Block Parameter: LabelOutMin
Type: character vector
Values: '[]' | scalar
Default: '[]'

Label maximum — Maximum value of label output for range checking
[] (default) | scalar

Upper value of the label output range that Simulink checks.

Simulink uses the maximum value to perform:

• Parameter range checking for some blocks (see “Specify Minimum and Maximum Values for Block
Parameters” (Simulink)).

• Simulation range checking (see “Specify Signal Ranges” (Simulink) and “Enable Simulation Range
Checking” (Simulink)).

• Automatic scaling of fixed-point data types.
• Optimization of the code that you generate from the model. This optimization can remove

algorithmic code and affect the results of some simulation modes, such as SIL or external mode.
For more information, see Optimize using the specified minimum and maximum values (Embedded
Coder).

Note The Label maximum parameter does not saturate or clip the actual label output signal. Use
the Saturation block instead.

Dependencies

You can specify this parameter only if the model specified by Select trained machine learning
model uses numeric labels.

Programmatic Use
Block Parameter: LabelOutMax
Type: character vector
Values: '[]' | scalar
Default: '[]'

Score data type — Data type of score output

Inherit: auto (default) | double | single | half | int8 | uint8 | int16 | uint16 | int32 |
uint32 | int64 | uint64 | boolean | fixdt(1,16) | fixdt(1,16,0) | fixdt(1,16,2^0,0) |
<data type expression>
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Specify the data type for the score output. The type can be inherited, specified directly, or expressed
as a data type object such as Simulink.NumericType.

When you select Inherit: auto, the block uses a rule that inherits a data type.

For more information about data types, see “Control Data Types of Signals” (Simulink).

Click the Show data type assistant button  to display the Data Type Assistant, which helps
you set the data type attributes. For more information, see “Specify Data Types Using Data Type
Assistant” (Simulink).

Programmatic Use
Block Parameter: ScoreDataTypeStr
Type: character vector
Values: 'Inherit: auto' | 'double' | 'single' | 'half' | 'int8' | 'uint8' | 'int16' |
'uint16' | 'int32' | 'uint32' | 'int64' | 'uint64' | 'boolean' | 'fixdt(1,16)' |
'fixdt(1,16,0)' | 'fixdt(1,16,2^0,0)' | '<data type expression>'
Default: 'Inherit: auto'

Score minimum — Minimum value of score output for range checking
[] (default) | scalar

Lower value of the score output range that Simulink checks.

Simulink uses the minimum value to perform:

• Parameter range checking for some blocks (see “Specify Minimum and Maximum Values for Block
Parameters” (Simulink)).

• Simulation range checking (see “Specify Signal Ranges” (Simulink) and “Enable Simulation Range
Checking” (Simulink)).

• Automatic scaling of fixed-point data types.
• Optimization of the code that you generate from the model. This optimization can remove

algorithmic code and affect the results of some simulation modes, such as SIL or external mode.
For more information, see Optimize using the specified minimum and maximum values (Embedded
Coder).

Note The Score minimum parameter does not saturate or clip the actual score signal. Use the
Saturation block instead.

Programmatic Use
Block Parameter: ScoreOutMin
Type: character vector
Values: '[]' | scalar
Default: '[]'

Score maximum — Maximum value of score output for range checking
[] (default) | scalar

Upper value of the score output range that Simulink checks.

Simulink uses the maximum value to perform:
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• Parameter range checking for some blocks (see “Specify Minimum and Maximum Values for Block
Parameters” (Simulink)).

• Simulation range checking (see “Specify Signal Ranges” (Simulink) and “Enable Simulation Range
Checking” (Simulink)).

• Automatic scaling of fixed-point data types.
• Optimization of the code that you generate from the model. This optimization can remove

algorithmic code and affect the results of some simulation modes, such as SIL or external mode.
For more information, see Optimize using the specified minimum and maximum values (Embedded
Coder).

Note The Score maximum parameter does not saturate or clip the actual score signal. Use the
Saturation block instead.

Programmatic Use
Block Parameter: ScoreOutMax
Type: character vector
Values: '[]' | scalar
Default: '[]'

Raw score data type — Untransformed score data type

Inherit: auto (default) | double | single | half | int8 | uint8 | int16 | uint16 | int32 |
uint32 | int64 | uint64 | boolean | fixdt(1,16) | fixdt(1,16,0) | fixdt(1,16,2^0,0) |
<data type expression>

Specify the data type for the internal untransformed scores. The type can be inherited, specified
directly, or expressed as a data type object such as Simulink.NumericType.

When you select Inherit: auto, the block uses a rule that inherits a data type.

For more information about data types, see “Control Data Types of Signals” (Simulink).

Click the Show data type assistant button  to display the Data Type Assistant, which helps
you set the data type attributes. For more information, see “Specify Data Types Using Data Type
Assistant” (Simulink).

Dependencies

You can specify this parameter only if the model specified by Select trained machine learning
model uses a score transformation other than 'none' (default, same as 'identity').

• If the model uses no score transformations ('none' or 'identity'), then you can specify the
score data type by using Score data type.

• If the model uses a score transformation other than 'none' or 'identity', then you can specify
the data type of untransformed raw scores by using this parameter and specify the data type of
transformed scores by using Score data type.

You can change the score transformation option by specifying the 'ScoreTransform' name-value
argument during training, or by changing the ScoreTransform property after training.

35 Functions

35-452



Programmatic Use
Block Parameter: RawScoreDataTypeStr
Type: character vector
Values: 'Inherit: auto' | 'double' | 'single' | 'half' | 'int8' | 'uint8' | 'int16' |
'uint16' | 'int32' | 'uint32' | 'int64' | 'uint64' | 'boolean' | 'fixdt(1,16)' |
'fixdt(1,16,0)' | 'fixdt(1,16,2^0,0)' | '<data type expression>'
Default: 'Inherit: auto'

Raw score minimum — Minimum untransformed score for range checking
[] (default) | scalar

Lower value of the untransformed score range that Simulink checks.

Simulink uses the minimum value to perform:

• Parameter range checking for some blocks (see “Specify Minimum and Maximum Values for Block
Parameters” (Simulink)).

• Simulation range checking (see “Specify Signal Ranges” (Simulink) and “Enable Simulation Range
Checking” (Simulink)).

• Automatic scaling of fixed-point data types.
• Optimization of the code that you generate from the model. This optimization can remove

algorithmic code and affect the results of some simulation modes, such as SIL or external mode.
For more information, see Optimize using the specified minimum and maximum values (Embedded
Coder).

Note The Raw score minimum parameter does not saturate or clip the actual untransformed score
signal.

Programmatic Use
Block Parameter: RawScoreOutMin
Type: character vector
Values: '[]' | scalar
Default: '[]'

Raw score maximum — Maximum untransformed score for range checking
[] (default) | scalar

Upper value of the untransformed score range that Simulink checks.

Simulink uses the maximum value to perform:

• Parameter range checking for some blocks (see “Specify Minimum and Maximum Values for Block
Parameters” (Simulink)).

• Simulation range checking (see “Specify Signal Ranges” (Simulink) and “Enable Simulation Range
Checking” (Simulink)).

• Automatic scaling of fixed-point data types.
• Optimization of the code that you generate from the model. This optimization can remove

algorithmic code and affect the results of some simulation modes, such as SIL or external mode.
For more information, see Optimize using the specified minimum and maximum values (Embedded
Coder).
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Note The Raw score maximum parameter does not saturate or clip the actual untransformed score
signal.

Programmatic Use
Block Parameter: RawScoreOutMax
Type: character vector
Values: '[]' | scalar
Default: '[]'

Weak learner data type — Data type of weak learner outputs

Inherit: auto (default) | double | single | half | int8 | uint8 | int16 | uint16 | int32 |
uint32 | int64 | uint64 | boolean | fixdt(1,16) | fixdt(1,16,0) | fixdt(1,16,2^0,0) |
<data type expression>

Specify the data type for the outputs from weak learners. The type can be inherited, specified
directly, or expressed as a data type object such as Simulink.NumericType.

When you select Inherit: auto, the block uses a rule that inherits a data type.

For more information about data types, see “Control Data Types of Signals” (Simulink).

Click the Show data type assistant button  to display the Data Type Assistant, which helps
you set the data type attributes. For more information, see “Specify Data Types Using Data Type
Assistant” (Simulink).

Programmatic Use
Block Parameter: WeakLearnerDataTypeStr
Type: character vector
Values: 'Inherit: auto' | 'double' | 'single' | 'half' | 'int8' | 'uint8' | 'int16' |
'uint16' | 'int32' | 'uint32' | 'int64' | 'uint64' | 'boolean' | 'fixdt(1,16)' |
'fixdt(1,16,0)' | 'fixdt(1,16,2^0,0)' | '<data type expression>'
Default: 'Inherit: auto'

Weak learner minimum — Minimum value of weak learner outputs for range checking
[] (default) | scalar

Lower value of the weak learner output range that Simulink checks.

Simulink uses the minimum value to perform:

• Parameter range checking for some blocks (see “Specify Minimum and Maximum Values for Block
Parameters” (Simulink)).

• Simulation range checking (see “Specify Signal Ranges” (Simulink) and “Enable Simulation Range
Checking” (Simulink)).

• Automatic scaling of fixed-point data types.
• Optimization of the code that you generate from the model. This optimization can remove

algorithmic code and affect the results of some simulation modes, such as SIL or external mode.
For more information, see Optimize using the specified minimum and maximum values (Embedded
Coder).
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Note The Weak learner minimum parameter does not saturate or clip the actual weak learner
output signals.

Programmatic Use
Block Parameter: WeakLearnerOutMin
Type: character vector
Values: '[]' | scalar
Default: '[]'

Weak learner maximum — Maximum value of weak learner outputs for range checking
[] (default) | scalar

Upper value of the weak learner output range that Simulink checks.

Simulink uses the maximum value to perform:

• Parameter range checking for some blocks (see “Specify Minimum and Maximum Values for Block
Parameters” (Simulink)).

• Simulation range checking (see “Specify Signal Ranges” (Simulink) and “Enable Simulation Range
Checking” (Simulink)).

• Automatic scaling of fixed-point data types.
• Optimization of the code that you generate from the model. This optimization can remove

algorithmic code and affect the results of some simulation modes, such as SIL or external mode.
For more information, see Optimize using the specified minimum and maximum values (Embedded
Coder).

Note The Weak learner maximum parameter does not saturate or clip the actual weak learner
output signals.

Programmatic Use
Block Parameter: WeakLearnerOutMax
Type: character vector
Values: '[]' | scalar
Default: '[]'

Block Characteristics
Data Types Boolean | double | enumerated | fixed point | half | integer |

single
Direct Feedthrough yes
Multidimensional
Signals

no

Variable-Size Signals no
Zero-Crossing
Detection

no
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Alternative Functionality
You can use a MATLAB Function block with the predict object function of an ensemble of decision
trees (ClassificationEnsemble, ClassificationBaggedEnsemble, or
CompactClassificationEnsemble). For an example, see “Predict Class Labels Using MATLAB
Function Block” on page 34-51.

When deciding whether to use the ClassificationEnsemble Predict block in the Statistics and Machine
Learning Toolbox library or a MATLAB Function block with the predict function, consider the
following:

• If you use the Statistics and Machine Learning Toolbox library block, you can use the Fixed-Point
Tool to convert a floating-point model to fixed point.

• Support for variable-size arrays must be enabled for a MATLAB Function block with the predict
function.

• If you use a MATLAB Function block, you can use MATLAB functions for preprocessing or post-
processing before or after predictions in the same MATLAB Function block.

Version History
Introduced in R2021a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

Fixed-Point Conversion
Design and simulate fixed-point systems using Fixed-Point Designer™.

See Also
Blocks
ClassificationSVM Predict | ClassificationTree Predict | ClassificationNeuralNetwork Predict |
RegressionEnsemble Predict

Objects
ClassificationEnsemble | ClassificationBaggedEnsemble |
CompactClassificationEnsemble

Functions
predict | fitcensemble

Topics
“Predict Class Labels Using ClassificationSVM Predict Block” on page 34-123
“Predict Class Labels Using ClassificationTree Predict Block” on page 34-133
“Predict Class Labels Using ClassificationNeuralNetwork Predict Block” on page 34-156
“Predict Class Labels Using MATLAB Function Block” on page 34-51
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ClassificationKNN
k-nearest neighbor classification

Description
ClassificationKNN is a nearest-neighbor classification model in which you can alter both the
distance metric and the number of nearest neighbors. Because a ClassificationKNN classifier
stores training data, you can use the model to compute resubstitution predictions. Alternatively, use
the model to classify new observations using the predict method.

Creation
Create a ClassificationKNN model using fitcknn.

Properties
KNN Properties

BreakTies — Tie-breaking algorithm
'smallest' (default) | 'nearest' | 'random'

Tie-breaking algorithm used by predict when multiple classes have the same smallest cost,
specified as one of the following:

• 'smallest' — Use the smallest index among tied groups.
• 'nearest' — Use the class with the nearest neighbor among tied groups.
• 'random' — Use a random tiebreaker among tied groups.

By default, ties occur when multiple classes have the same number of nearest points among the k
nearest neighbors. BreakTies applies when IncludeTies is false.

Change BreakTies using dot notation: mdl.BreakTies = newBreakTies.

Distance — Distance metric
'cityblock' | 'chebychev' | 'correlation' | 'cosine' | 'euclidean' | function handle | ...

Distance metric, specified as a character vector or a function handle. The values allowed depend on
the NSMethod property.

NSMethod Distance Metric Allowed
'exhaustive' Any distance metric of ExhaustiveSearcher
'kdtree' 'cityblock', 'chebychev', 'euclidean', or 'minkowski'

The following table lists the ExhaustiveSearcher distance metrics.
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Value Description
'cityblock' City block distance.
'chebychev' Chebychev distance (maximum coordinate difference).
'correlation' One minus the sample linear correlation between observations

(treated as sequences of values).
'cosine' One minus the cosine of the included angle between observations

(treated as vectors).
'euclidean' Euclidean distance.
'hamming' Hamming distance, the percentage of coordinates that differ.
'jaccard' One minus the Jaccard coefficient, the percentage of nonzero

coordinates that differ.
'mahalanobis' Mahalanobis distance, computed using a positive definite

covariance matrix C. The default value of C is the sample covariance
matrix of X, as computed by cov(X,'omitrows'). To specify a
different value for C, set the DistParameter property of mdl using
dot notation.

'minkowski' Minkowski distance. The default exponent is 2. To specify a
different exponent, set the DistParameter property of mdl using
dot notation.

'seuclidean' Standardized Euclidean distance. Each coordinate difference
between X and a query point is scaled, meaning divided by a scale
value S. The default value of S is the standard deviation computed
from X, S = std(X,'omitnan'). To specify another value for S,
set the DistParameter property of mdl using dot notation.

'spearman' One minus the sample Spearman's rank correlation between
observations (treated as sequences of values).

@distfun Distance function handle. distfun has the form

function D2 = distfun(ZI,ZJ)
% calculation of distance
...

where

• ZI is a 1-by-N vector containing one row of X or Y.
• ZJ is an M2-by-N matrix containing multiple rows of X or Y.
• D2 is an M2-by-1 vector of distances, and D2(k) is the distance

between observations ZI and ZJ(k,:).

For more information, see “Distance Metrics” on page 19-14.

Change Distance using dot notation: mdl.Distance = newDistance.

If NSMethod is 'kdtree', you can use dot notation to change Distance only for the metrics
'cityblock', 'chebychev', 'euclidean', and 'minkowski'.
Data Types: char | function_handle
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DistanceWeight — Distance weighting function
'equal' | 'inverse' | 'squaredinverse' | function handle

Distance weighting function, specified as one of the values in this table.

Value Description
'equal' No weighting
'inverse' Weight is 1/distance
'squaredinverse' Weight is 1/distance2

@fcn fcn is a function that accepts a matrix of nonnegative distances and
returns a matrix of the same size containing nonnegative distance
weights. For example, 'squaredinverse' is equivalent to
@(d)d.^(–2).

Change DistanceWeight using dot notation: mdl.DistanceWeight = newDistanceWeight.
Data Types: char | function_handle

DistParameter — Parameter for distance metric
positive definite covariance matrix | positive scalar | vector of positive scale values

Parameter for the distance metric, specified as one of the values described in this table.

Distance Metric Parameter
'mahalanobis' Positive definite covariance matrix C
'minkowski' Minkowski distance exponent, a positive scalar
'seuclidean' Vector of positive scale values with length equal to the number of

columns of X

For any other distance metric, the value of DistParameter must be [].

You can alter DistParameter using dot notation: mdl.DistParameter = newDistParameter.
However, if Distance is 'mahalanobis' or 'seuclidean', then you cannot alter
DistParameter.
Data Types: single | double

IncludeTies — Tie inclusion flag
false (default) | true

Tie inclusion flag indicating whether predict includes all the neighbors whose distance values are
equal to the kth smallest distance, specified as false or true. If IncludeTies is true, predict
includes all of these neighbors. Otherwise, predict uses exactly k neighbors (see the BreakTies
property).

Change IncludeTies using dot notation: mdl.IncludeTies = newIncludeTies.
Data Types: logical

NSMethod — Nearest neighbor search method
'kdtree' | 'exhaustive'

This property is read-only.

 ClassificationKNN

35-459



Nearest neighbor search method, specified as either 'kdtree' or 'exhaustive'.

• 'kdtree' — Creates and uses a Kd-tree to find nearest neighbors.
• 'exhaustive' — Uses the exhaustive search algorithm. When predicting the class of a new point

xnew, the software computes the distance values from all points in X to xnew to find nearest
neighbors.

The default value is 'kdtree' when X has 10 or fewer columns, X is not sparse, and the distance
metric is a 'kdtree' type. Otherwise, the default value is 'exhaustive'.

NumNeighbors — Number of nearest neighbors
positive integer value

Number of nearest neighbors in X used to classify each point during prediction, specified as a positive
integer value.

Change NumNeighbors using dot notation: mdl.NumNeighbors = newNumNeighbors.
Data Types: single | double

Other Classification Properties

CategoricalPredictors — Categorical predictor indices
[] | vector of positive integers

This property is read-only.

Categorical predictor indices, specified as a vector of positive integers. CategoricalPredictors
contains index values indicating that the corresponding predictors are categorical. The index values
are between 1 and p, where p is the number of predictors used to train the model. If none of the
predictors are categorical, then this property is empty ([]).
Data Types: double

ClassNames — Names of classes in training data Y
categorical array | character array | logical vector | numeric vector | cell array of character vectors

This property is read-only.

Names of the classes in the training data Y with duplicates removed, specified as a categorical or
character array, logical or numeric vector, or cell array of character vectors. ClassNames has the
same data type as Y. (The software treats string arrays as cell arrays of character vectors.)
Data Types: categorical | char | logical | single | double | cell

Cost — Cost of misclassification
square matrix

Cost of the misclassification of a point, specified as a square matrix. Cost(i,j) is the cost of
classifying a point into class j if its true class is i (that is, the rows correspond to the true class and
the columns correspond to the predicted class). The order of the rows and columns in Cost
corresponds to the order of the classes in ClassNames. The number of rows and columns in Cost is
the number of unique classes in the response.

By default, Cost(i,j) = 1 if i ~= j, and Cost(i,j) = 0 if i = j. In other words, the cost is 0
for correct classification and 1 for incorrect classification.
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Change a Cost matrix using dot notation: mdl.Cost = costMatrix.
Data Types: single | double

ExpandedPredictorNames — Expanded predictor names
cell array of character vectors

This property is read-only.

Expanded predictor names, specified as a cell array of character vectors.

If the model uses encoding for categorical variables, then ExpandedPredictorNames includes the
names that describe the expanded variables. Otherwise, ExpandedPredictorNames is the same as
PredictorNames.
Data Types: cell

ModelParameters — Parameters used in training ClassificationKNN
object

This property is read-only.

Parameters used in training the ClassificationKNN model, specified as an object.

Mu — Predictor means
numeric vector

This property is read-only.

Predictor means, specified as a numeric vector of length numel(PredictorNames).

If you do not standardize mdl when training the model using fitcknn, then Mu is empty ([]).
Data Types: single | double

NumObservations — Number of observations
positive integer scalar

This property is read-only.

Number of observations used in training the ClassificationKNN model, specified as a positive
integer scalar. This number can be less than the number of rows in the training data because rows
containing NaN values are not part of the fit.
Data Types: double

PredictorNames — Predictor variable names
cell array of character vectors

This property is read-only.

Predictor variable names, specified as a cell array of character vectors. The variable names are in the
same order in which they appear in the training data X.
Data Types: cell

Prior — Prior probabilities for each class
numeric vector
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Prior probabilities for each class, specified as a numeric vector. The order of the elements in Prior
corresponds to the order of the classes in ClassNames.

Add or change a Prior vector using dot notation: mdl.Prior = priorVector.
Data Types: single | double

ResponseName — Response variable name
character vector

This property is read-only.

Response variable name, specified as a character vector.
Data Types: char

RowsUsed — Rows used in fitting
[] | logical vector

This property is read-only.

Rows of the original training data used in fitting the ClassificationKNN model, specified as a
logical vector. This property is empty if all rows are used.
Data Types: logical

ScoreTransform — Score transformation
'none' (default) | 'doublelogit' | 'invlogit' | 'ismax' | 'logit' | function handle | ...

Score transformation, specified as either a character vector or a function handle.

This table summarizes the available character vectors.

Value Description
"doublelogit" 1/(1 + e–2x)
"invlogit" log(x / (1 – x))
"ismax" Sets the score for the class with the largest score to 1,

and sets the scores for all other classes to 0
"logit" 1/(1 + e–x)
"none" or "identity" x (no transformation)
"sign" –1 for x < 0

0 for x = 0
1 for x > 0

"symmetric" 2x – 1
"symmetricismax" Sets the score for the class with the largest score to 1,

and sets the scores for all other classes to –1
"symmetriclogit" 2/(1 + e–x) – 1

For a MATLAB function or a function you define, use its function handle for score transform. The
function handle must accept a matrix (the original scores) and return a matrix of the same size (the
transformed scores).

Change ScoreTransform using dot notation: mdl.ScoreTransform = newScoreTransform.
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Data Types: char | function_handle

Sigma — Predictor standard deviations
numeric vector

This property is read-only.

Predictor standard deviations, specified as a numeric vector of length numel(PredictorNames).

If you do not standardize the predictor variables during training, then Sigma is empty ([]).
Data Types: single | double

W — Observation weights
vector of nonnegative values

This property is read-only.

Observation weights, specified as a vector of nonnegative values with the same number of rows as Y.
Each entry in W specifies the relative importance of the corresponding observation in Y.
Data Types: single | double

X — Unstandardized predictor data
numeric matrix

This property is read-only.

Unstandardized predictor data, specified as a numeric matrix. Each column of X represents one
predictor (variable), and each row represents one observation.
Data Types: single | double

Y — Class labels
categorical array | character array | logical vector | numeric vector | cell array of character vectors

This property is read-only.

Class labels, specified as a categorical or character array, logical or numeric vector, or cell array of
character vectors. Each value in Y is the observed class label for the corresponding row in X.

Y has the same data type as the data in Y used for training the model. (The software treats string
arrays as cell arrays of character vectors.)
Data Types: single | double | logical | char | cell | categorical

Hyperparameter Optimization Properties

HyperparameterOptimizationResults — Cross-validation optimization of hyperparameters
BayesianOptimization object | table

This property is read-only.

Cross-validation optimization of hyperparameters, specified as a BayesianOptimization object or
a table of hyperparameters and associated values. This property is nonempty when the
'OptimizeHyperparameters' name-value pair argument is nonempty when you create the model
using fitcknn. The value depends on the setting of the
'HyperparameterOptimizationOptions' name-value pair argument when you create the model:
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• 'bayesopt' (default) — Object of class BayesianOptimization
• 'gridsearch' or 'randomsearch' — Table of hyperparameters used, observed objective

function values (cross-validation loss), and rank of observations from lowest (best) to highest
(worst)

Object Functions
compareHoldout Compare accuracies of two classification models using new data
crossval Cross-validate machine learning model
edge Edge of k-nearest neighbor classifier
gather Gather properties of Statistics and Machine Learning Toolbox object from

GPU
lime Local interpretable model-agnostic explanations (LIME)
loss Loss of k-nearest neighbor classifier
margin Margin of k-nearest neighbor classifier
partialDependence Compute partial dependence
plotPartialDependence Create partial dependence plot (PDP) and individual conditional expectation

(ICE) plots
predict Predict labels using k-nearest neighbor classification model
resubEdge Resubstitution classification edge
resubLoss Resubstitution classification loss
resubMargin Resubstitution classification margin
resubPredict Classify training data using trained classifier
shapley Shapley values
testckfold Compare accuracies of two classification models by repeated cross-

validation

Examples
Train k-Nearest Neighbor Classifier

Train a k-nearest neighbor classifier for Fisher's iris data, where k, the number of nearest neighbors
in the predictors, is 5.

Load Fisher's iris data.

load fisheriris
X = meas;
Y = species;

X is a numeric matrix that contains four petal measurements for 150 irises. Y is a cell array of
character vectors that contains the corresponding iris species.

Train a 5-nearest neighbor classifier. Standardize the noncategorical predictor data.

Mdl = fitcknn(X,Y,'NumNeighbors',5,'Standardize',1)

Mdl = 
  ClassificationKNN
             ResponseName: 'Y'
    CategoricalPredictors: []
               ClassNames: {'setosa'  'versicolor'  'virginica'}
           ScoreTransform: 'none'
          NumObservations: 150

35 Functions

35-464



                 Distance: 'euclidean'
             NumNeighbors: 5

  Properties, Methods

Mdl is a trained ClassificationKNN classifier, and some of its properties appear in the Command
Window.

To access the properties of Mdl, use dot notation.

Mdl.ClassNames

ans = 3x1 cell
    {'setosa'    }
    {'versicolor'}
    {'virginica' }

Mdl.Prior

ans = 1×3

    0.3333    0.3333    0.3333

Mdl.Prior contains the class prior probabilities, which you can specify using the 'Prior' name-
value pair argument in fitcknn. The order of the class prior probabilities corresponds to the order
of the classes in Mdl.ClassNames. By default, the prior probabilities are the respective relative
frequencies of the classes in the data.

You can also reset the prior probabilities after training. For example, set the prior probabilities to 0.5,
0.2, and 0.3, respectively.

Mdl.Prior = [0.5 0.2 0.3];

You can pass Mdl to predict to label new measurements or crossval to cross-validate the
classifier.

Tips
• The compact function reduces the size of most classification models by removing the training

data properties and any other properties that are not required to predict the labels of new
observations. Because k-nearest neighbor classification models require all of the training data to
predict labels, you cannot reduce the size of a ClassificationKNN model.

Alternative Functionality
knnsearch finds the k-nearest neighbors of points. rangesearch finds all the points within a fixed
distance. You can use these functions for classification, as shown in “Classify Query Data” on page 19-
20. If you want to perform classification, then using ClassificationKNN models can be more
convenient because you can train a classifier in one step (using fitcknn) and classify in other steps
(using predict). Alternatively, you can train a k-nearest neighbor classification model using one of
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the cross-validation options in the call to fitcknn. In this case, fitcknn returns a
ClassificationPartitionedModel cross-validated model object.

Version History
Introduced in R2012a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• The predict function supports code generation.
• When you train a k-nearest neighbor classification model by using fitcknn, the following

restrictions apply.

• The value of the 'Distance' name-value pair argument cannot be a custom distance function.
• The value of the 'DistanceWeight' name-value pair argument can be a custom distance

weight function, but it cannot be an anonymous function.
• The value of the 'ScoreTransform' name-value pair argument cannot be an anonymous

function.

For more information, see “Introduction to Code Generation” on page 34-2.

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

Usage notes and limitations:

• The following object functions fully support GPU arrays:

• crossval
• gather
• resubEdge
• resubLoss
• resubMargin
• resubPredict

• The following object functions offer limited support for GPU arrays:

• compareHoldout
• edge
• loss
• margin
• partialDependence
• plotPartialDependence
• predict
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• The object functions execute on a GPU if either of the following apply:

• The model was fitted with GPU arrays.
• The predictor data that you pass to the object function is a GPU array.

For more information, see “Run MATLAB Functions on a GPU” (Parallel Computing Toolbox).

See Also
fitcknn | predict

Topics
“Construct KNN Classifier” on page 19-30
“Examine Quality of KNN Classifier” on page 19-30
“Predict Classification Using KNN Classifier” on page 19-31
“Modify KNN Classifier” on page 19-31
“Classification Using Nearest Neighbors” on page 19-14
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ClassificationKNN Predict
Classify observations using nearest-neighbor classification model
Library: Statistics and Machine Learning Toolbox / Classification

Description
The ClassificationKNN Predict block classifies observations using a nearest-neighbor classification
object (ClassificationKNN) for multiclass classification.

Import a trained classification object into the block by specifying the name of a workspace variable
that contains the object. The input port x receives an observation (predictor data), and the output
port label returns a predicted class label for the observation. The optional output score returns the
predicted class scores or posterior probabilities. The optional output cost returns the expected
classification costs.

Ports
Input

x — Predictor data
row vector | column vector

Predictor data, specified as a row or column vector of one observation.

Dependencies

The variables in x must have the same order as the predictor variables that trained the model
specified by Select trained machine learning model.
Data Types: single | double | half | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 |
uint64 | Boolean | fixed point

Output

label — Predicted class label
scalar

Predicted class label, returned as a scalar. The predicted class is the class that minimizes the
expected classification cost. For more details, see the “Algorithms” on page 35-5726 section of the
predict object function.
Data Types: single | double | half | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 |
uint64 | Boolean | fixed point | enumerated

score — Predicted class scores or posterior probabilities
row vector
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Predicted class scores or posterior probabilities, returned as a row vector of size 1-by-k, where k is
the number of classes in the nearest-neighbor model. The classification score Score(i) represents
the posterior probability that the observation in x belongs to class i.

To check the order of the classes, use the ClassNames property of the nearest-neighbor model
specified by Select trained machine learning model.

Dependencies

To enable this port, select the check box for Add output port for predicted class scores
on the Main tab of the Block Parameters dialog box.
Data Types: single | double | half | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 |
uint64 | Boolean | fixed point

cost — Expected classification costs
row vector

Expected classification costs, returned as a row vector of size 1-by-k, where k is the number of
classes in the nearest-neighbor model. The classification cost Cost(i) represents the cost of
classifying the observation in x to class i.

To check the order of the classes, use the ClassNames property of the nearest-neighbor model
specified by Select trained machine learning model.

Dependencies

To enable this port, select the check box for Add output port for expected costs on the
Main tab of the Block Parameters dialog box.
Data Types: single | double | half | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 |
uint64 | Boolean | fixed point

Parameters
Main

Select trained machine learning model — Nearest-neighbor classification model

knnMdl (default) | ClassificationKNN object

Specify the name of a workspace variable that contains a ClassificationKNN object.

When you train the model by using fitcknn, the following restrictions apply:

• The predictor data cannot include categorical predictors (logical, categorical, char,
string, or cell). If you supply training data in a table, the predictors must be numeric (double
or single). Also, you cannot use the CategoricalPredictors name-value argument. To
include categorical predictors in a model, preprocess the categorical predictors by using
dummyvar before fitting the model.

• The value of the ScoreTransform name-value argument cannot be "invlogit" or an
anonymous function.

Programmatic Use
Block Parameter: TrainedLearner
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Type: workspace variable
Values: ClassificationKNN object
Default: 'knnMdl'

Add output port for predicted class scores — Add optional output port for predicted
class scores

off (default) | on

Select the check box to include the output port score in the ClassificationKNN Predict block.
Programmatic Use
Block Parameter: ShowOutputScore
Type: character vector
Values: 'off' | 'on'
Default: 'off'

Add output port for expected costs — Add optional output port for expected
classification costs

off (default) | on

Select the check box to include the output port cost in the ClassificationKNN Predict block.
Programmatic Use
Block Parameter: ShowOutputCost
Type: character vector
Values: 'off' | 'on'
Default: 'off'

Data Types

Fixed-Point Operational Parameters

Integer rounding mode — Rounding mode for fixed-point operations

Floor (default) | Ceiling | Convergent | Nearest | Round | Simplest | Zero

Specify the rounding mode for fixed-point operations. For more information, see “Rounding” (Fixed-
Point Designer).

Block parameters always round to the nearest representable value. To control the rounding of a block
parameter, enter an expression into the mask field using a MATLAB rounding function.
Programmatic Use
Block Parameter: RndMeth
Type: character vector
Values: 'Ceiling' | 'Convergent' | 'Floor' | 'Nearest' | 'Round' | 'Simplest' |
'Zero'
Default: 'Floor'

Saturate on integer overflow — Method of overflow action

off (default) | on

Specify whether overflows saturate or wrap.
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Action Rationale Impact on Overflows Example
Select this check
box (on).

Your model has possible
overflow, and you want
explicit saturation protection
in the generated code.

Overflows saturate to either
the minimum or maximum
value that the data type can
represent.

The maximum value that the
int8 (signed 8-bit integer)
data type can represent is
127. Any block operation
result greater than this
maximum value causes
overflow of the 8-bit integer.
With the check box selected,
the block output saturates at
127. Similarly, the block
output saturates at a
minimum output value of –
128.

Clear this check
box (off).

You want to optimize
efficiency of your generated
code.

You want to avoid
overspecifying how a block
handles out-of-range signals.
For more information, see
“Troubleshoot Signal Range
Errors” (Simulink).

Overflows wrap to the
appropriate value that the
data type can represent.

The maximum value that the
int8 (signed 8-bit integer)
data type can represent is
127. Any block operation
result greater than this
maximum value causes
overflow of the 8-bit integer.
With the check box cleared,
the software interprets the
value causing the overflow as
int8, which can produce an
unintended result. For
example, a block result of 130
(binary 1000 0010) expressed
as int8 is –126.

Programmatic Use
Block Parameter: SaturateOnIntegerOverflow
Type: character vector
Values: 'off' | 'on'
Default: 'off'

Lock output data type setting against changes by the fixed-point tools —
Prevention of fixed-point tools from overriding data type

off (default) | on

Select this parameter to prevent the fixed-point tools from overriding the data type you specify for
the block. For more information, see “Use Lock Output Data Type Setting” (Fixed-Point Designer).

Programmatic Use
Block Parameter: LockScale
Type: character vector
Values: 'off' | 'on'
Default: 'off'
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Data Type

Label data type — Data type of label output

Inherit: Inherit via back propagation | Inherit: auto | double | single | half | int8
| uint8 | int16 | uint16 | int32 | uint32 | int64 | uint64 | boolean | fixdt(1,16) |
fixdt(1,16,0) | fixdt(1,16,2^0,0) | Enum: <class name> | <data type expression>

Specify the data type for the label output. The type can be inherited, specified as an enumerated data
type, or expressed as a data type object such as Simulink.NumericType.

When you select an inherited option, the software behaves as follows:

• Inherit: Inherit via back propagation (default for numeric and logical labels) —
Simulink automatically determines the Label data type of the block during data type propagation
(see “Data Type Propagation” (Simulink)). In this case, the block uses the data type of a
downstream block or signal object.

• Inherit: auto (default for nonnumeric labels) — The block uses an autodefined enumerated
data type variable. For example, suppose the workspace variable name specified by Select
trained machine learning model is myMdl, and the class labels are class 1 and class 2.
Then, the corresponding label values are myMdl_enumLabels.class_1 and
myMdl_enumLabels.class_2. The block converts the class labels to valid MATLAB identifiers by
using the matlab.lang.makeValidName function.

For more information about data types, see “Control Data Types of Signals” (Simulink).

Click the Show data type assistant button  to display the Data Type Assistant, which helps
you set the data type attributes. For more information, see “Specify Data Types Using Data Type
Assistant” (Simulink).

Dependencies

The supported data types depend on the labels used in the model specified by Select trained
machine learning model.

• If the model uses numeric or logical labels, the supported data types are Inherit: Inherit
via back propagation (default), double, single, half, int8, uint8, int16, uint16,
int32, uint32, int64, uint64, boolean, fixed point, and a data type object.

• If the model uses nonnumeric labels, the supported data types are Inherit: auto (default),
Enum: <class name>, and a data type object.

Programmatic Use
Block Parameter: LabelDataTypeStr
Type: character vector
Values: 'Inherit: Inherit via back propagation' | 'Inherit: auto' | 'double' |
'single' | 'half' | 'int8' | 'uint8' | 'int16' | 'uint16' | 'int32' | 'uint32' | 'int64' |
'uint64' | 'boolean' | 'fixdt(1,16)' | 'fixdt(1,16,0)' | 'fixdt(1,16,2^0,0)' | 'Enum:
<class name>' | '<data type expression>'
Default: 'Inherit: Inherit via back propagation' (for numeric and logical labels) |
'Inherit: auto' (for nonnumeric labels)

Label minimum — Minimum value of label output for range checking
[] (default) | scalar
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Lower value of the label output range that Simulink checks.

Simulink uses the minimum value to perform:

• Parameter range checking for some blocks (see “Specify Minimum and Maximum Values for Block
Parameters” (Simulink)).

• Simulation range checking (see “Specify Signal Ranges” (Simulink) and “Enable Simulation Range
Checking” (Simulink)).

• Automatic scaling of fixed-point data types.
• Optimization of the code that you generate from the model. This optimization can remove

algorithmic code and affect the results of some simulation modes, such as SIL or external mode.
For more information, see Optimize using the specified minimum and maximum values (Embedded
Coder).

Note The Label minimum parameter does not saturate or clip the actual label output signal. Use
the Saturation block instead.

Dependencies

You can specify this parameter only if the model specified by Select trained machine learning
model uses numeric labels.

Programmatic Use
Block Parameter: LabelOutMin
Type: character vector
Values: '[]' | scalar
Default: '[]'

Label maximum — Maximum value of label output for range checking
[] (default) | scalar

Upper value of the label output range that Simulink checks.

Simulink uses the maximum value to perform:

• Parameter range checking for some blocks (see “Specify Minimum and Maximum Values for Block
Parameters” (Simulink)).

• Simulation range checking (see “Specify Signal Ranges” (Simulink) and “Enable Simulation Range
Checking” (Simulink)).

• Automatic scaling of fixed-point data types.
• Optimization of the code that you generate from the model. This optimization can remove

algorithmic code and affect the results of some simulation modes, such as SIL or external mode.
For more information, see Optimize using the specified minimum and maximum values (Embedded
Coder).

Note The Label maximum parameter does not saturate or clip the actual label output signal. Use
the Saturation block instead.
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Dependencies

You can specify this parameter only if the model specified by Select trained machine learning
model uses numeric labels.

Programmatic Use
Block Parameter: LabelOutMax
Type: character vector
Values: '[]' | scalar
Default: '[]'

Score data type — Data type of score output

Inherit: auto (default) | double | single | half | int8 | uint8 | int16 | uint16 | int32 |
uint32 | int64 | uint64 | boolean | fixdt(1,16) | fixdt(1,16,0) | fixdt(1,16,2^0,0) |
<data type expression>

Specify the data type for the score output. The type can be inherited, specified directly, or expressed
as a data type object such as Simulink.NumericType.

When you select Inherit: auto, the block uses a rule that inherits a data type.

For more information about data types, see “Control Data Types of Signals” (Simulink).

Click the Show data type assistant button  to display the Data Type Assistant, which helps
you set the data type attributes. For more information, see “Specify Data Types Using Data Type
Assistant” (Simulink).

Programmatic Use
Block Parameter: ScoreDataTypeStr
Type: character vector
Values: 'Inherit: auto' | 'double' | 'single' | 'half' | 'int8' | 'uint8' | 'int16' |
'uint16' | 'int32' | 'uint32' | 'int64' | 'uint64' | 'boolean' | 'fixdt(1,16)' |
'fixdt(1,16,0)' | 'fixdt(1,16,2^0,0)' | '<data type expression>'
Default: 'Inherit: auto'

Score minimum — Minimum value of score output for range checking
[] (default) | scalar

Lower value of the score output range that Simulink checks.

Simulink uses the minimum value to perform:

• Parameter range checking for some blocks (see “Specify Minimum and Maximum Values for Block
Parameters” (Simulink)).

• Simulation range checking (see “Specify Signal Ranges” (Simulink) and “Enable Simulation Range
Checking” (Simulink)).

• Automatic scaling of fixed-point data types.
• Optimization of the code that you generate from the model. This optimization can remove

algorithmic code and affect the results of some simulation modes, such as SIL or external mode.
For more information, see Optimize using the specified minimum and maximum values (Embedded
Coder).
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Note The Score minimum parameter does not saturate or clip the actual score signal. Use the
Saturation block instead.

Programmatic Use
Block Parameter: ScoreOutMin
Type: character vector
Values: '[]' | scalar
Default: '[]'

Score maximum — Maximum value of score output for range checking
[] (default) | scalar

Upper value of the score output range that Simulink checks.

Simulink uses the maximum value to perform:

• Parameter range checking for some blocks (see “Specify Minimum and Maximum Values for Block
Parameters” (Simulink)).

• Simulation range checking (see “Specify Signal Ranges” (Simulink) and “Enable Simulation Range
Checking” (Simulink)).

• Automatic scaling of fixed-point data types.
• Optimization of the code that you generate from the model. This optimization can remove

algorithmic code and affect the results of some simulation modes, such as SIL or external mode.
For more information, see Optimize using the specified minimum and maximum values (Embedded
Coder).

Note The Score maximum parameter does not saturate or clip the actual score signal. Use the
Saturation block instead.

Programmatic Use
Block Parameter: ScoreOutMax
Type: character vector
Values: '[]' | scalar
Default: '[]'

Raw score data type — Untransformed score data type

Inherit: auto (default) | double | single | half | int8 | uint8 | int16 | uint16 | int32 |
uint32 | int64 | uint64 | boolean | fixdt(1,16) | fixdt(1,16,0) | fixdt(1,16,2^0,0) |
<data type expression>

Specify the data type for the internal untransformed scores. The type can be inherited, specified
directly, or expressed as a data type object such as Simulink.NumericType.

When you select Inherit: auto, the block uses a rule that inherits a data type.

For more information about data types, see “Control Data Types of Signals” (Simulink).
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Click the Show data type assistant button  to display the Data Type Assistant, which helps
you set the data type attributes. For more information, see “Specify Data Types Using Data Type
Assistant” (Simulink).

Dependencies

You can specify this parameter only if the model specified by Select trained machine learning
model uses a score transformation other than 'none' (default, same as 'identity').

• If the model uses no score transformations ('none' or 'identity'), then you can specify the
score data type by using Score data type.

• If the model uses a score transformation other than 'none' or 'identity', then you can specify
the data type of untransformed raw scores by using this parameter and specify the data type of
transformed scores by using Score data type.

You can change the score transformation option by specifying the 'ScoreTransform' name-value
argument during training, or by changing the ScoreTransform property after training.

Programmatic Use
Block Parameter: RawScoreDataTypeStr
Type: character vector
Values: 'Inherit: auto' | 'double' | 'single' | 'half' | 'int8' | 'uint8' | 'int16' |
'uint16' | 'int32' | 'uint32' | 'int64' | 'uint64' | 'boolean' | 'fixdt(1,16)' |
'fixdt(1,16,0)' | 'fixdt(1,16,2^0,0)' | '<data type expression>'
Default: 'Inherit: auto'

Raw score minimum — Minimum untransformed score for range checking
[] (default) | scalar

Lower value of the untransformed score range that Simulink checks.

Simulink uses the minimum value to perform:

• Parameter range checking for some blocks (see “Specify Minimum and Maximum Values for Block
Parameters” (Simulink)).

• Simulation range checking (see “Specify Signal Ranges” (Simulink) and “Enable Simulation Range
Checking” (Simulink)).

• Automatic scaling of fixed-point data types.
• Optimization of the code that you generate from the model. This optimization can remove

algorithmic code and affect the results of some simulation modes, such as SIL or external mode.
For more information, see Optimize using the specified minimum and maximum values (Embedded
Coder).

Note The Raw score minimum parameter does not saturate or clip the actual untransformed score
signal.

Programmatic Use
Block Parameter: RawScoreOutMin
Type: character vector
Values: '[]' | scalar
Default: '[]'
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Raw score maximum — Maximum untransformed score for range checking
[] (default) | scalar

Upper value of the untransformed score range that Simulink checks.

Simulink uses the maximum value to perform:

• Parameter range checking for some blocks (see “Specify Minimum and Maximum Values for Block
Parameters” (Simulink)).

• Simulation range checking (see “Specify Signal Ranges” (Simulink) and “Enable Simulation Range
Checking” (Simulink)).

• Automatic scaling of fixed-point data types.
• Optimization of the code that you generate from the model. This optimization can remove

algorithmic code and affect the results of some simulation modes, such as SIL or external mode.
For more information, see Optimize using the specified minimum and maximum values (Embedded
Coder).

Note The Raw score maximum parameter does not saturate or clip the actual untransformed score
signal.

Programmatic Use
Block Parameter: RawScoreOutMax
Type: character vector
Values: '[]' | scalar
Default: '[]'

Estimated cost data type — Data type of cost output

Inherit: auto (default) | double | single | half | int8 | uint8 | int16 | uint16 | int32 |
uint32 | int64 | uint64 | boolean | fixdt(1,16) | fixdt(1,16,0) | fixdt(1,16,2^0,0) |
<data type expression>

Specify the data type for the cost output. The type can be inherited, specified directly, or expressed
as a data type object such as Simulink.NumericType.

When you select Inherit: auto, the block uses a rule that inherits a data type.

For more information about data types, see “Control Data Types of Signals” (Simulink).

Click the Show data type assistant button  to display the Data Type Assistant, which helps
you set the data type attributes. For more information, see “Specify Data Types Using Data Type
Assistant” (Simulink).

Programmatic Use
Block Parameter: CostDataTypeStr
Type: character vector
Values: 'Inherit: auto' | 'double' | 'single' | 'half' | 'int8' | 'uint8' | 'int16' |
'uint16' | 'int32' | 'uint32' | 'int64' | 'uint64' | 'boolean' | 'fixdt(1,16)' |
'fixdt(1,16,0)' | 'fixdt(1,16,2^0,0)' | '<data type expression>'
Default: 'Inherit: auto'
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Estimated cost minimum — Minimum value of cost output for range checking
[] (default) | scalar

Lower value of the cost output range checked by Simulink.

Simulink uses the minimum value to perform:

• Parameter range checking for some blocks (see “Specify Minimum and Maximum Values for Block
Parameters” (Simulink)).

• Simulation range checking (see “Specify Signal Ranges” (Simulink) and “Enable Simulation Range
Checking” (Simulink)).

• Automatic scaling of fixed-point data types.
• Optimization of the code that you generate from the model. This optimization can remove

algorithmic code and affect the results of some simulation modes, such as SIL or external mode.
For more information, see Optimize using the specified minimum and maximum values (Embedded
Coder).

Note The Estimated cost minimum parameter does not saturate or clip the actual cost signal. Use
the Saturation block instead.

Programmatic Use
Block Parameter: CostOutMin
Type: character vector
Values: '[]' | scalar
Default: '[]'

Estimated cost maximum — Maximum value of cost output for range checking
[] (default) | scalar

Upper value of the cost output range checked by Simulink.

Simulink uses the maximum value to perform:

• Parameter range checking for some blocks (see “Specify Minimum and Maximum Values for Block
Parameters” (Simulink)).

• Simulation range checking (see “Specify Signal Ranges” (Simulink) and “Enable Simulation Range
Checking” (Simulink)).

• Automatic scaling of fixed-point data types.
• Optimization of the code that you generate from the model. This optimization can remove

algorithmic code and affect the results of some simulation modes, such as SIL or external mode.
For more information, see Optimize using the specified minimum and maximum values (Embedded
Coder).

Note The Estimated cost maximum parameter does not saturate or clip the actual cost signal. Use
the Saturation block instead.

Programmatic Use
Block Parameter: CostOutMax
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Type: character vector
Values: '[]' | scalar
Default: '[]'

Distance data type — Data type of distance metric

Inherit: auto (default) | double | single | half | int8 | uint8 | int16 | uint16 | int32 |
uint32 | int64 | uint64 | boolean | fixdt(1,16) | fixdt(1,16,0) | fixdt(1,16,2^0,0) |
<data type expression>

Specify the data type of the distance metric. The type can be inherited, specified directly, or
expressed as a data type object such as Simulink.NumericType.

When you select Inherit: auto, the block uses a rule that inherits a data type.

For more information about data types, see “Control Data Types of Signals” (Simulink).

Click the Show data type assistant button  to display the Data Type Assistant, which helps
you set the data type attributes. For more information, see “Specify Data Types Using Data Type
Assistant” (Simulink).
Tips

The Distance data type parameter specifies the data type of the distance metric for the nearest-
neighbor search method. For more information, see the Distance name-value argument of the
fitcknn function.
Programmatic Use
Block Parameter: DistanceDataTypeStr
Type: character vector
Values: 'Inherit: auto' | 'double' | 'single' | 'half' | 'int8' | 'uint8' | 'int16' |
'uint16' | 'int32' | 'uint32' | 'int64' | 'uint64' | 'boolean' | 'fixdt(1,16)' |
'fixdt(1,16,0)' | 'fixdt(1,16,2^0,0)' | '<data type expression>'
Default: 'Inherit: auto'

Distance minimum — Minimum value of distance metric
[] (default) | scalar

Specify the lower value of the distance metric's internal variable range checked by Simulink.

Simulink uses the minimum value to perform:

• Parameter range checking for some blocks (see “Specify Minimum and Maximum Values for Block
Parameters” (Simulink)).

• Simulation range checking (see “Specify Signal Ranges” (Simulink) and “Enable Simulation Range
Checking” (Simulink)).

• Automatic scaling of fixed-point data types.
• Optimization of the code that you generate from the model. This optimization can remove

algorithmic code and affect the results of some simulation modes, such as SIL or external mode.
For more information, see Optimize using the specified minimum and maximum values (Embedded
Coder).

Note The Distance minimum parameter does not saturate or clip the actual distance metric signal.
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Programmatic Use
Block Parameter: DistanceOutMin
Type: character vector
Values: '[]' | scalar
Default: '[]'

Distance maximum — Maximum value of distance metric
[] (default) | scalar

Specify the upper value of the distance metric's internal variable range checked by Simulink.

Simulink uses the maximum value to perform:

• Parameter range checking for some blocks (see “Specify Minimum and Maximum Values for Block
Parameters” (Simulink)).

• Simulation range checking (see “Specify Signal Ranges” (Simulink) and “Enable Simulation Range
Checking” (Simulink)).

• Automatic scaling of fixed-point data types.
• Optimization of the code that you generate from the model. This optimization can remove

algorithmic code and affect the results of some simulation modes, such as SIL or external mode.
For more information, see Optimize using the specified minimum and maximum values (Embedded
Coder).

Note The Distance maximum parameter does not saturate or clip the actual distance metric signal.

Programmatic Use
Block Parameter: DistanceOutMax
Type: character vector
Values: '[]' | scalar
Default: '[]'

Block Characteristics
Data Types Boolean | double | enumerated | fixed point | half | integer |

single
Direct Feedthrough yes
Multidimensional
Signals

no

Variable-Size Signals no
Zero-Crossing
Detection

no

Alternative Functionality
You can use a MATLAB Function block with the predict object function of a nearest-neighbor
classification object (ClassificationKNN). For an example, see “Predict Class Labels Using
MATLAB Function Block” on page 34-51.
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When deciding whether to use the ClassificationKNN Predict block in the Statistics and Machine
Learning Toolbox library or a MATLAB Function block with the predict function, consider the
following:

• If you use the Statistics and Machine Learning Toolbox library block, you can use the Fixed-Point
Tool to convert a floating-point model to fixed point.

• Support for variable-size arrays must be enabled for a MATLAB Function block with the predict
function.

• If you use a MATLAB Function block, you can use MATLAB functions for preprocessing or post-
processing before or after predictions in the same MATLAB Function block.

Version History
Introduced in R2022b

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

Fixed-Point Conversion
Design and simulate fixed-point systems using Fixed-Point Designer™.

See Also
Blocks
ClassificationSVM Predict | ClassificationTree Predict | ClassificationEnsemble Predict |
ClassificationNeuralNetwork Predict

Functions
predict | fitcknn

Objects
ClassificationKNN

Topics
“Predict Class Labels Using MATLAB Function Block” on page 34-51
“Predict Class Labels Using ClassificationSVM Predict Block” on page 34-123
“Predict Class Labels Using ClassificationEnsemble Predict Block” on page 34-142
“Predict Class Labels Using ClassificationTree Predict Block” on page 34-133
“Predict Class Labels Using ClassificationNeuralNetwork Predict Block” on page 34-156
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ClassificationLinear class

Linear model for binary classification of high-dimensional data

Description
ClassificationLinear is a trained linear model object for binary classification; the linear model is
a support vector machine (SVM) or logistic regression model. fitclinear fits a
ClassificationLinear model by minimizing the objective function using techniques that reduce
computation time for high-dimensional data sets (e.g., stochastic gradient descent). The classification
loss plus the regularization term compose the objective function.

Unlike other classification models, and for economical memory usage, ClassificationLinear
model objects do not store the training data. However, they do store, for example, the estimated
linear model coefficients, prior-class probabilities, and the regularization strength.

You can use trained ClassificationLinear models to predict labels or classification scores for
new data. For details, see predict.

Construction
Create a ClassificationLinear object by using fitclinear.

Properties
Linear Classification Properties

Lambda — Regularization term strength
nonnegative scalar | vector of nonnegative values

Regularization term strength, specified as a nonnegative scalar or vector of nonnegative values.
Data Types: double | single

Learner — Linear classification model type
'logistic' | 'svm'

Linear classification model type, specified as 'logistic' or 'svm'.

In this table, f x = xβ + b .

• β is a vector of p coefficients.
• x is an observation from p predictor variables.
• b is the scalar bias.

Value Algorithm Loss Function FittedLoss Value
'svm' Support vector machine Hinge: ℓ y, f x = max

0, 1− yf x
'hinge'
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Value Algorithm Loss Function FittedLoss Value
'logistic' Logistic regression Deviance (logistic):

ℓ y, f x = log
1 + exp −yf x

'logit'

Beta — Linear coefficient estimates
numeric vector

Linear coefficient estimates, specified as a numeric vector with length equal to the number of
predictors.
Data Types: double

Bias — Estimated bias term
numeric scalar

Estimated bias term or model intercept, specified as a numeric scalar.
Data Types: double

FittedLoss — Loss function used to fit linear model
'hinge' | 'logit'

This property is read-only.

Loss function used to fit the linear model, specified as 'hinge' or 'logit'.

Value Algorithm Loss Function Learner Value
'hinge' Support vector machine Hinge: ℓ y, f x = max

0, 1− yf x
'svm'

'logit' Logistic regression Deviance (logistic):
ℓ y, f x = log

1 + exp −yf x

'logistic'

Regularization — Complexity penalty type
'lasso (L1)' | 'ridge (L2)'

Complexity penalty type, specified as 'lasso (L1)' or 'ridge (L2)'.

The software composes the objective function for minimization from the sum of the average loss
function (see FittedLoss) and a regularization value from this table.

Value Description
'lasso (L1)'

Lasso (L1) penalty: λ ∑
j = 1

p
β j

'ridge (L2)'
Ridge (L2) penalty: λ2 ∑j = 1

p
β j

2

λ specifies the regularization term strength (see Lambda).

The software excludes the bias term (β0) from the regularization penalty.
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Other Classification Properties

CategoricalPredictors — Categorical predictor indices
vector of positive integers | []

Categorical predictor indices, specified as a vector of positive integers. CategoricalPredictors
contains index values indicating that the corresponding predictors are categorical. The index values
are between 1 and p, where p is the number of predictors used to train the model. If none of the
predictors are categorical, then this property is empty ([]).
Data Types: single | double

ClassNames — Unique class labels
categorical array | character array | logical vector | numeric vector | cell array of character vectors

Unique class labels used in training, specified as a categorical or character array, logical or numeric
vector, or cell array of character vectors. ClassNames has the same data type as the class labels Y.
(The software treats string arrays as cell arrays of character vectors.) ClassNames also determines
the class order.
Data Types: categorical | char | logical | single | double | cell

Cost — Misclassification costs
square numeric matrix

This property is read-only.

Misclassification costs, specified as a square numeric matrix. Cost has K rows and columns, where K
is the number of classes.

Cost(i,j) is the cost of classifying a point into class j if its true class is i. The order of the rows
and columns of Cost corresponds to the order of the classes in ClassNames.
Data Types: double

ModelParameters — Parameters used for training model
structure

Parameters used for training the ClassificationLinear model, specified as a structure.

Access fields of ModelParameters using dot notation. For example, access the relative tolerance on
the linear coefficients and the bias term by using Mdl.ModelParameters.BetaTolerance.
Data Types: struct

PredictorNames — Predictor names
cell array of character vectors

Predictor names in order of their appearance in the predictor data, specified as a cell array of
character vectors. The length of PredictorNames is equal to the number of variables in the training
data X or Tbl used as predictor variables.
Data Types: cell

ExpandedPredictorNames — Expanded predictor names
cell array of character vectors

Expanded predictor names, specified as a cell array of character vectors.
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If the model uses encoding for categorical variables, then ExpandedPredictorNames includes the
names that describe the expanded variables. Otherwise, ExpandedPredictorNames is the same as
PredictorNames.
Data Types: cell

Prior — Prior class probabilities
numeric vector

This property is read-only.

Prior class probabilities, specified as a numeric vector. Prior has as many elements as classes in
ClassNames, and the order of the elements corresponds to the elements of ClassNames.
Data Types: double

ResponseName — Response variable name
character vector

Response variable name, specified as a character vector.
Data Types: char

ScoreTransform — Score transformation function
'doublelogit' | 'invlogit' | 'ismax' | 'logit' | 'none' | function handle | ...

Score transformation function to apply to predicted scores, specified as a function name or function
handle.

For linear classification models and before transformation, the predicted classification score for the
observation x (row vector) is f(x) = xβ + b, where β and b correspond to Mdl.Beta and Mdl.Bias,
respectively.

To change the score transformation function to, for example, function, use dot notation.

• For a built-in function, enter this code and replace function with a value in the table.

Mdl.ScoreTransform = 'function';

Value Description
"doublelogit" 1/(1 + e–2x)
"invlogit" log(x / (1 – x))
"ismax" Sets the score for the class with the largest score to

1, and sets the scores for all other classes to 0
"logit" 1/(1 + e–x)
"none" or "identity" x (no transformation)
"sign" –1 for x < 0

0 for x = 0
1 for x > 0

"symmetric" 2x – 1
"symmetricismax" Sets the score for the class with the largest score to

1, and sets the scores for all other classes to –1
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Value Description
"symmetriclogit" 2/(1 + e–x) – 1

• For a MATLAB function, or a function that you define, enter its function handle.

Mdl.ScoreTransform = @function;

function must accept a matrix of the original scores for each class, and then return a matrix of
the same size representing the transformed scores for each class.

Data Types: char | function_handle

Object Functions
edge Classification edge for linear classification models
incrementalLearner Convert linear model for binary classification to incremental learner
lime Local interpretable model-agnostic explanations (LIME)
loss Classification loss for linear classification models
margin Classification margins for linear classification models
partialDependence Compute partial dependence
plotPartialDependence Create partial dependence plot (PDP) and individual conditional expectation

(ICE) plots
predict Predict labels for linear classification models
shapley Shapley values
selectModels Choose subset of regularized, binary linear classification models
update Update model parameters for code generation

Copy Semantics
Value. To learn how value classes affect copy operations, see Copying Objects.

Examples

Train Linear Classification Model

Train a binary, linear classification model using support vector machines, dual SGD, and ridge
regularization.

Load the NLP data set.

load nlpdata

X is a sparse matrix of predictor data, and Y is a categorical vector of class labels. There are more
than two classes in the data.

Identify the labels that correspond to the Statistics and Machine Learning Toolbox™ documentation
web pages.

Ystats = Y == 'stats';

Train a binary, linear classification model that can identify whether the word counts in a
documentation web page are from the Statistics and Machine Learning Toolbox™ documentation.
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Train the model using the entire data set. Determine how well the optimization algorithm fit the
model to the data by extracting a fit summary.

rng(1); % For reproducibility 
[Mdl,FitInfo] = fitclinear(X,Ystats)

Mdl = 
  ClassificationLinear
      ResponseName: 'Y'
        ClassNames: [0 1]
    ScoreTransform: 'none'
              Beta: [34023x1 double]
              Bias: -1.0059
            Lambda: 3.1674e-05
           Learner: 'svm'

  Properties, Methods

FitInfo = struct with fields:
                    Lambda: 3.1674e-05
                 Objective: 5.3783e-04
                 PassLimit: 10
                 NumPasses: 10
                BatchLimit: []
             NumIterations: 238561
              GradientNorm: NaN
         GradientTolerance: 0
      RelativeChangeInBeta: 0.0562
             BetaTolerance: 1.0000e-04
             DeltaGradient: 1.4582
    DeltaGradientTolerance: 1
           TerminationCode: 0
         TerminationStatus: {'Iteration limit exceeded.'}
                     Alpha: [31572x1 double]
                   History: []
                   FitTime: 0.3471
                    Solver: {'dual'}

Mdl is a ClassificationLinear model. You can pass Mdl and the training or new data to loss to
inspect the in-sample classification error. Or, you can pass Mdl and new predictor data to predict to
predict class labels for new observations.

FitInfo is a structure array containing, among other things, the termination status
(TerminationStatus) and how long the solver took to fit the model to the data (FitTime). It is
good practice to use FitInfo to determine whether optimization-termination measurements are
satisfactory. Because training time is small, you can try to retrain the model, but increase the number
of passes through the data. This can improve measures like DeltaGradient.

Predict Class Labels Using Linear Classification Model

Load the NLP data set.
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load nlpdata
n = size(X,1); % Number of observations

Identify the labels that correspond to the Statistics and Machine Learning Toolbox™ documentation
web pages.

Ystats = Y == 'stats';

Hold out 5% of the data.

rng(1); % For reproducibility
cvp = cvpartition(n,'Holdout',0.05)

cvp = 
Hold-out cross validation partition
   NumObservations: 31572
       NumTestSets: 1
         TrainSize: 29994
          TestSize: 1578

cvp is a CVPartition object that defines the random partition of n data into training and test sets.

Train a binary, linear classification model using the training set that can identify whether the word
counts in a documentation web page are from the Statistics and Machine Learning Toolbox™
documentation. For faster training time, orient the predictor data matrix so that the observations are
in columns.

idxTrain = training(cvp); % Extract training set indices
X = X';
Mdl = fitclinear(X(:,idxTrain),Ystats(idxTrain),'ObservationsIn','columns');

Predict observations and classification error for the hold out sample.

idxTest = test(cvp); % Extract test set indices
labels = predict(Mdl,X(:,idxTest),'ObservationsIn','columns');
L = loss(Mdl,X(:,idxTest),Ystats(idxTest),'ObservationsIn','columns')

L = 7.1753e-04

Mdl misclassifies fewer than 1% of the out-of-sample observations.

Version History
Introduced in R2016a

Cost property stores the user-specified cost matrix
Behavior changed in R2022a

Starting in R2022a, the Cost property stores the user-specified cost matrix, so that you can compute
the observed misclassification cost using the specified cost value. The software stores normalized
prior probabilities (Prior) that do not reflect the penalties described in the cost matrix. To compute
the observed misclassification cost, specify the LossFun name-value argument as "classifcost"
when you call the loss function.

Note that model training has not changed and, therefore, the decision boundaries between classes
have not changed.
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For training, the fitting function updates the specified prior probabilities by incorporating the
penalties described in the specified cost matrix, and then normalizes the prior probabilities and
observation weights. This behavior has not changed. In previous releases, the software stored the
default cost matrix in the Cost property and stored the prior probabilities used for training in the
Prior property. Starting in R2022a, the software stores the user-specified cost matrix without
modification, and stores normalized prior probabilities that do not reflect the cost penalties. For more
details, see “Misclassification Cost Matrix, Prior Probabilities, and Observation Weights” on page 19-
8.

Some object functions use the Cost and Prior properties:

• The loss function uses the cost matrix stored in the Cost property if you specify the LossFun
name-value argument as "classifcost" or "mincost".

• The loss and edge functions use the prior probabilities stored in the Prior property to
normalize the observation weights of the input data.

If you specify a nondefault cost matrix when you train a classification model, the object functions
return a different value compared to previous releases.

If you want the software to handle the cost matrix, prior probabilities, and observation weights as in
previous releases, adjust the prior probabilities and observation weights for the nondefault cost
matrix, as described in “Adjust Prior Probabilities and Observation Weights for Misclassification Cost
Matrix” on page 19-9. Then, when you train a classification model, specify the adjusted prior
probabilities and observation weights by using the Prior and Weights name-value arguments,
respectively, and use the default cost matrix.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• The predict and update functions support code generation.
• When you train a linear classification model by using fitclinear, the following restrictions

apply.

• If the predictor data input argument value is a matrix, it must be a full, numeric matrix. Code
generation does not support sparse data.

• You can specify only one regularization strength, either 'auto' or a nonnegative scalar for the
'Lambda' name-value pair argument.

• The value of the 'ScoreTransform' name-value pair argument cannot be an anonymous
function.

• For code generation with a coder configurer, the following additional restrictions apply.

• Categorical predictors (logical, categorical, char, string, or cell) are not
supported. You cannot use the CategoricalPredictors name-value argument.To include
categorical predictors in a model, preprocess them by using dummyvar before fitting the
model.

• Class labels with the categorical data type are not supported. Both the class label value
in training data (Tbl or Y) and the value of the ClassNames name-value argument cannot
be an array with the categorical data type.
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For more information, see “Introduction to Code Generation” on page 34-2.

See Also
predict | fitclinear | ClassificationPartitionedLinear | ClassificationECOC |
ClassificationPartitionedLinearECOC | ClassificationKernel
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ClassificationLinearCoderConfigurer
Coder configurer for linear binary classification of high-dimensional data

Description
A ClassificationLinearCoderConfigurer object is a coder configurer of a linear classification
model (ClassificationLinear) used for binary classification of high-dimensional data.

A coder configurer offers convenient features to configure code generation options, generate C/C++
code, and update model parameters in the generated code.

• Configure code generation options and specify the coder attributes of linear model parameters by
using object properties.

• Generate C/C++ code for the predict and update functions of the linear classification model by
using generateCode. Generating C/C++ code requires MATLAB Coder.

• Update model parameters in the generated C/C++ code without having to regenerate the code.
This feature reduces the effort required to regenerate, redeploy, and reverify C/C++ code when
you retrain the linear model with new data or settings. Before updating model parameters, use
validatedUpdateInputs to validate and extract the model parameters to update.

This flow chart shows the code generation workflow using a coder configurer.

For the code generation usage notes and limitations of a linear classification model, see the Code
Generation sections of ClassificationLinear, predict, and update.

Creation
After training a linear classification model by using fitclinear, create a coder configurer for the
model by using learnerCoderConfigurer. Use the properties of a coder configurer to specify the
coder attributes of the predict and update arguments. Then, use generateCode to generate C/C+
+ code based on the specified coder attributes.

Properties
predict Arguments

The properties listed in this section specify the coder attributes of the predict function arguments
in the generated code.
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X — Coder attributes of predictor data
LearnerCoderInput object

Coder attributes of the predictor data to pass to the generated C/C++ code for the predict function
of the linear classification model, specified as a LearnerCoderInput on page 35-503 object.

When you create a coder configurer by using the learnerCoderConfigurer function, the input
argument X determines the default values of the LearnerCoderInput coder attributes:

• SizeVector — The default value is the array size of the input X.

• If the Value attribute of the ObservationsIn property for the
ClassificationLinearCoderConfigurer is 'rows', then this SizeVector value is [n
p], where n corresponds to the number of observations and p corresponds to the number of
predictors.

• If the Value attribute of the ObservationsIn property for the
ClassificationLinearCoderConfigurer is 'columns', then this SizeVector value is
[p n].

To switch the elements of SizeVector (for example, to change [n p] to [p n]), modify the
Value attribute of the ObservationsIn property for the
ClassificationLinearCoderConfigurer accordingly. You cannot modify the SizeVector
value directly.

• VariableDimensions — The default value is [0 0], which indicates that the array size is fixed
as specified in SizeVector.

You can set this value to [1 0] if the SizeVector value is [n p] or to [0 1] if it is [p n],
which indicates that the array has variable-size rows and fixed-size columns. For example, [1 0]
specifies that the first value of SizeVector (n) is the upper bound for the number of rows, and
the second value of SizeVector (p) is the number of columns.

• DataType — This value is single or double. The default data type depends on the data type of
the input X.

• Tunability — This value must be true, meaning that predict in the generated C/C++ code
always includes predictor data as an input.

You can modify the coder attributes by using dot notation. For example, to generate C/C++ code that
accepts predictor data with 100 observations (in rows) of three predictor variables (in columns),
specify these coder attributes of X for the coder configurer configurer:

configurer.X.SizeVector = [100 3];
configurer.X.DataType = 'double';
configurer.X.VariableDimensions = [0 0];

[0 0] indicates that the first and second dimensions of X (number of observations and number of
predictor variables, respectively) have fixed sizes.

To allow the generated C/C++ code to accept predictor data with up to 100 observations, specify
these coder attributes of X:

configurer.X.SizeVector = [100 3];
configurer.X.DataType = 'double';
configurer.X.VariableDimensions = [1 0];

[1 0] indicates that the first dimension of X (number of observations) has a variable size and the
second dimension of X (number of predictor variables) has a fixed size. The specified number of
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observations, 100 in this example, becomes the maximum allowed number of observations in the
generated C/C++ code. To allow any number of observations, specify the bound as Inf.

ObservationsIn — Coder attributes of predictor data observation dimension
EnumeratedInput object

Coder attributes of the predictor data observation dimension ('ObservationsIn' name-value pair
argument of predict), specified as an EnumeratedInput on page 35-503 object.

When you create a coder configurer by using the learnerCoderConfigurer function, the
'ObservationsIn' name-value pair argument determines the default values of the
EnumeratedInput coder attributes:

• Value — The default value is the predictor data observation dimension you use when creating the
coder configurer, specified as 'rows' or 'columns'. If you do not specify 'ObservationsIn'
when creating the coder configurer, the default value is 'rows'.

• SelectedOption — This value is always 'Built-in'. This attribute is read-only.
• BuiltInOptions — Cell array of 'rows' and 'columns'. This attribute is read-only.
• IsConstant — This value must be true.
• Tunability — The default value is false if you specify 'ObservationsIn','rows' when

creating the coder configurer, and true if you specify 'ObservationsIn','columns'. If you
set Tunability to false, the software sets Value to 'rows'. If you specify other attribute
values when Tunability is false, the software sets Tunability to true.

NumOutputs — Number of outputs in predict
1 (default) | 2

Number of output arguments to return from the generated C/C++ code for the predict function of
the linear classification model, specified as 1 or 2.

The output arguments of predict are Label (predicted class labels) and Score (classification
scores), in that order. predict in the generated C/C++ code returns the first n outputs of the
predict function, where n is the NumOutputs value.

After creating the coder configurer configurer, you can specify the number of outputs by using dot
notation.

configurer.NumOutputs = 2;

The NumOutputs property is equivalent to the '-nargout' compiler option of codegen. This option
specifies the number of output arguments in the entry-point function of code generation. The object
function generateCode generates two entry-point functions—predict.m and update.m for the
predict and update functions of a linear classification model, respectively—and generates C/C++
code for the two entry-point functions. The specified value for the NumOutputs property corresponds
to the number of output arguments in the entry-point function predict.m.
Data Types: double

update Arguments

The properties listed in this section specify the coder attributes of the update function arguments in
the generated code. The update function takes a trained model and new model parameters as input
arguments, and returns an updated version of the model that contains the new parameters. To enable
updating the parameters in the generated code, you need to specify the coder attributes of the
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parameters before generating code. Use a LearnerCoderInput on page 35-503 object to specify the
coder attributes of each parameter. The default attribute values are based on the model parameters
in the input argument Mdl of learnerCoderConfigurer.

Beta — Coder attributes of linear predictor coefficients
LearnerCoderInput object

Coder attributes of the linear predictor coefficients (Beta of a linear classification model), specified
as a LearnerCoderInput on page 35-503 object.

The default attribute values of the LearnerCoderInput object are based on the input argument Mdl
of learnerCoderConfigurer:

• SizeVector — This value must be [p 1], where p is the number of predictors in Mdl.
• VariableDimensions — This value must be [0 0], indicating that the array size is fixed as
specified in SizeVector.

• DataType — This value is 'single' or 'double'. The default data type is consistent with the
data type of the training data you use to train Mdl.

• Tunability — This value must be true.

Bias — Coder attributes of bias term
LearnerCoderInput object

Coder attributes of the bias term (Bias of a linear classification model), specified as a
LearnerCoderInput on page 35-503 object.

The default attribute values of the LearnerCoderInput object are based on the input argument Mdl
of learnerCoderConfigurer:

• SizeVector — This value must be [1 1].
• VariableDimensions — This value must be [0 0], indicating that the array size is fixed as
specified in SizeVector.

• DataType — This value is 'single' or 'double'. The default data type is consistent with the
data type of the training data you use to train Mdl.

• Tunability — This value must be true.

Cost — Coder attributes of misclassification cost
LearnerCoderInput object

Coder attributes of the misclassification cost (Cost of a linear classification model), specified as a
LearnerCoderInput on page 35-503 object.

The default attribute values of the LearnerCoderInput object are based on the input argument Mdl
of learnerCoderConfigurer:

• SizeVector — This value must be [2 2].
• VariableDimensions — This value must be [0 0], indicating that the array size is fixed as
specified in SizeVector.

• DataType — This value is 'single' or 'double'. The default data type is consistent with the
data type of the training data you use to train Mdl.

• Tunability — The default value is true.

35 Functions

35-494



Prior — Coder attributes of prior probabilities
LearnerCoderInput object

Coder attributes of the prior probabilities (Prior of a linear classification model), specified as a
LearnerCoderInput on page 35-503 object.

The default attribute values of the LearnerCoderInput object are based on the input argument Mdl
of learnerCoderConfigurer:

• SizeVector — This value must be [1 2].
• VariableDimensions — This value must be [0 0], indicating that the array size is fixed as
specified in SizeVector.

• DataType — This value is 'single' or 'double'. The default data type is consistent with the
data type of the training data you use to train Mdl.

• Tunability — The default value is true.

Other Configurer Options

OutputFileName — File name of generated C/C++ code
'ClassificationLinearModel' (default) | character vector

File name of the generated C/C++ code, specified as a character vector.

The object function generateCode of ClassificationLinearCoderConfigurer generates C/C+
+ code using this file name.

The file name must not contain spaces because they can lead to code generation failures in certain
operating system configurations. Also, the name must be a valid MATLAB function name.

After creating the coder configurer configurer, you can specify the file name by using dot notation.

configurer.OutputFileName = 'myModel';

Data Types: char

Verbose — Verbosity level
true (logical 1) (default) | false (logical 0)

Verbosity level, specified as true (logical 1) or false (logical 0). The verbosity level controls the
display of notification messages at the command line.

Value Description
true (logical 1) The software displays notification messages when your changes to the

coder attributes of a parameter result in changes for other dependent
parameters.

false (logical 0) The software does not display notification messages.

To enable updating machine learning model parameters in the generated code, you need to configure
the coder attributes of the parameters before generating code. The coder attributes of parameters
are dependent on each other, so the software stores the dependencies as configuration constraints. If
you modify the coder attributes of a parameter by using a coder configurer, and the modification
requires subsequent changes to other dependent parameters to satisfy configuration constraints,

 ClassificationLinearCoderConfigurer

35-495



then the software changes the coder attributes of the dependent parameters. The verbosity level
determines whether or not the software displays notification messages for these subsequent changes.

After creating the coder configurer configurer, you can modify the verbosity level by using dot
notation.

configurer.Verbose = false;

Data Types: logical

Options for Code Generation Customization

To customize the code generation workflow, use the generateFiles function and the following three
properties with codegen, instead of using the generateCode function.

After generating the two entry-point function files (predict.m and update.m) by using the
generateFiles function, you can modify these files according to your code generation workflow.
For example, you can modify the predict.m file to include data preprocessing, or you can add these
entry-point functions to another code generation project. Then, you can generate C/C++ code by
using the codegen function and the codegen arguments appropriate for the modified entry-point
functions or code generation project. Use the three properties described in this section as a starting
point to set the codegen arguments.

CodeGenerationArguments — codegen arguments
cell array

This property is read-only.

codegen arguments, specified as a cell array.

This property enables you to customize the code generation workflow. Use the generateCode
function if you do not need to customize your workflow.

Instead of using generateCode with the coder configurer configurer, you can generate C/C++
code as follows:

generateFiles(configurer)
cgArgs = configurer.CodeGenerationArguments;
codegen(cgArgs{:})

If you customize the code generation workflow, modify cgArgs accordingly before calling codegen.

If you modify other properties of configurer, the software updates the
CodeGenerationArguments property accordingly.
Data Types: cell

PredictInputs — List of tunable input arguments of predict
cell array

This property is read-only.

List of tunable input arguments of the entry-point function predict.m for code generation, specified
as a cell array. The cell array contains another cell array that includes coder.PrimitiveType
objects and coder.Constant objects.
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If you modify the coder attributes of predict arguments on page 35-491, then the software updates
the corresponding objects accordingly. If you specify the Tunability attribute as false, then the
software removes the corresponding objects from the PredictInputs list.

The cell array in PredictInputs is equivalent to configurer.CodeGenerationArguments{6}
for the coder configurer configurer.
Data Types: cell

UpdateInputs — List of tunable input arguments of update
cell array of a structure including coder.PrimitiveType objects

This property is read-only.

List of the tunable input arguments of the entry-point function update.m for code generation,
specified as a cell array of a structure including coder.PrimitiveType objects. Each
coder.PrimitiveType object includes the coder attributes of a tunable machine learning model
parameter.

If you modify the coder attributes of a model parameter by using the coder configurer properties
(update Arguments on page 35-493 properties), then the software updates the corresponding
coder.PrimitiveType object accordingly. If you specify the Tunability attribute of a machine
learning model parameter as false, then the software removes the corresponding
coder.PrimitiveType object from the UpdateInputs list.

The structure in UpdateInputs is equivalent to configurer.CodeGenerationArguments{3} for
the coder configurer configurer.
Data Types: cell

Object Functions
generateCode Generate C/C++ code using coder configurer
generateFiles Generate MATLAB files for code generation using coder configurer
validatedUpdateInputs Validate and extract machine learning model parameters to update

Examples

Generate Code Using Coder Configurer

Train a machine learning model, and then generate code for the predict and update functions of
the model by using a coder configurer.

Load the ionosphere data set, and train a binary linear classification model. Pass the transposed
predictor matrix Xnew to fitclinear, and use the 'ObservationsIn' name-value pair argument
to specify that the columns of Xnew correspond to observations.

load ionosphere
Xnew = X';
Mdl = fitclinear(Xnew,Y,'ObservationsIn','columns');

Mdl is a ClassificationLinear object.

Create a coder configurer for the ClassificationLinear model by using
learnerCoderConfigurer. Specify the predictor data Xnew, and use the 'ObservationsIn'

 ClassificationLinearCoderConfigurer

35-497



name-value pair argument to specify the observation dimension of Xnew. The
learnerCoderConfigurer function uses these input arguments to configure the coder attributes of
the corresponding input arguments of predict.

configurer = learnerCoderConfigurer(Mdl,Xnew,'ObservationsIn','columns')

configurer = 
  ClassificationLinearCoderConfigurer with properties:

   Update Inputs:
              Beta: [1x1 LearnerCoderInput]
              Bias: [1x1 LearnerCoderInput]
             Prior: [1x1 LearnerCoderInput]
              Cost: [1x1 LearnerCoderInput]

   Predict Inputs:
                 X: [1x1 LearnerCoderInput]
    ObservationsIn: [1x1 EnumeratedInput]

   Code Generation Parameters:
        NumOutputs: 1
    OutputFileName: 'ClassificationLinearModel'

  Properties, Methods

configurer is a ClassificationLinearCoderConfigurer object, which is a coder configurer of
a ClassificationLinear object.

To generate C/C++ code, you must have access to a C/C++ compiler that is configured properly.
MATLAB Coder locates and uses a supported, installed compiler. You can use mex -setup to view and
change the default compiler. For more details, see “Change Default Compiler”.

Generate code for the predict and update functions of the linear classification model (Mdl).

generateCode(configurer)

generateCode creates these files in output folder:
'initialize.m', 'predict.m', 'update.m', 'ClassificationLinearModel.mat'
Code generation successful.

The generateCode function completes these actions:

• Generate the MATLAB files required to generate code, including the two entry-point functions
predict.m and update.m for the predict and update functions of Mdl, respectively.

• Create a MEX function named ClassificationLinearModel for the two entry-point functions.
• Create the code for the MEX function in the codegen\mex\ClassificationLinearModel

folder.
• Copy the MEX function to the current folder.

Display the contents of the predict.m, update.m, and initialize.m files by using the type
function.

type predict.m
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function varargout = predict(X,varargin) %#codegen
% Autogenerated by MATLAB, 01-Sep-2022 12:00:48
[varargout{1:nargout}] = initialize('predict',X,varargin{:});
end

type update.m

function update(varargin) %#codegen
% Autogenerated by MATLAB, 01-Sep-2022 12:00:48
initialize('update',varargin{:});
end

type initialize.m

function [varargout] = initialize(command,varargin) %#codegen
% Autogenerated by MATLAB, 01-Sep-2022 12:00:48
coder.inline('always')
persistent model
if isempty(model)
    model = loadLearnerForCoder('ClassificationLinearModel.mat');
end
switch(command)
    case 'update'
        % Update struct fields: Beta
        %                       Bias
        %                       Prior
        %                       Cost
        model = update(model,varargin{:});
    case 'predict'
        % Predict Inputs: X, ObservationsIn
        X = varargin{1};
        if nargin == 2
            [varargout{1:nargout}] = predict(model,X);
        else
            PVPairs = cell(1,nargin-2);
            for i = 1:nargin-2
                PVPairs{1,i} = varargin{i+1};
            end
            [varargout{1:nargout}] = predict(model,X,PVPairs{:});
        end
end
end

Update Parameters of Linear Classification Model in Generated Code

Train a linear classification model using a partial data set and create a coder configurer for the
model. Use the properties of the coder configurer to specify coder attributes of the linear model
parameters. Use the object function of the coder configurer to generate C code that predicts labels
for new predictor data. Then retrain the model using the entire data set, and update parameters in
the generated code without regenerating the code.

Train Model

Load the ionosphere data set. This data set has 34 predictors and 351 binary responses for radar
returns, either bad ('b') or good ('g'). Train a binary linear classification model using half of the
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observations. Transpose the predictor data, and use the 'ObservationsIn' name-value pair
argument to specify that the columns of XTrain correspond to observations.

load ionosphere

rng('default') % For reproducibility
n = length(Y);
c = cvpartition(Y,'HoldOut',0.5);
idxTrain = training(c,1);
XTrain = X(idxTrain,:)';
YTrain = Y(idxTrain);

Mdl = fitclinear(XTrain,YTrain,'ObservationsIn','columns');

Mdl is a ClassificationLinear object.

Create Coder Configurer

Create a coder configurer for the ClassificationLinear model by using
learnerCoderConfigurer. Specify the predictor data XTrain, and use the 'ObservationsIn'
name-value pair argument to specify the observation dimension of XTrain. The
learnerCoderConfigurer function uses these input arguments to configure the coder attributes of
the corresponding input arguments of predict. Also, set the number of outputs to 2 so that the
generated code returns predicted labels and scores.

configurer = learnerCoderConfigurer(Mdl,XTrain,'ObservationsIn','columns','NumOutputs',2);

configurer is a ClassificationLinearCoderConfigurer object, which is a coder configurer of
a ClassificationLinear object.

Specify Coder Attributes of Parameters

Specify the coder attributes of the linear classification model parameters so that you can update the
parameters in the generated code after retraining the model. This example specifies the coder
attributes of the predictor data that you want to pass to the generated code.

Specify the coder attributes of the X property of configurer so that the generated code accepts any
number of observations. Modify the SizeVector and VariableDimensions attributes. The
SizeVector attribute specifies the upper bound of the predictor data size, and the
VariableDimensions attribute specifies whether each dimension of the predictor data has a
variable size or fixed size.

configurer.X.SizeVector = [34 Inf];
configurer.X.VariableDimensions

ans = 1x2 logical array

   0   1

The size of the first dimension is the number of predictor variables. This value must be fixed for a
machine learning model. Because the predictor data contains 34 predictors, the value of the
SizeVector attribute must be 34 and the value of the VariableDimensions attribute must be 0.

The size of the second dimension is the number of observations. Setting the value of the SizeVector
attribute to Inf causes the software to change the value of the VariableDimensions attribute to 1.
In other words, the upper bound of the size is Inf and the size is variable, meaning that the predictor
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data can have any number of observations. This specification is convenient if you do not know the
number of observations when generating code.

The order of the dimensions in SizeVector and VariableDimensions depends on the coder
attributes of ObservationsIn.

configurer.ObservationsIn

ans = 
  EnumeratedInput with properties:

             Value: 'columns'
    SelectedOption: 'Built-in'
    BuiltInOptions: {'rows'  'columns'}
        IsConstant: 1
        Tunability: 1

When the Value attribute of the ObservationsIn property is 'columns', the first dimension of the
SizeVector and VariableDimensions attributes of X corresponds to the number of predictors,
and the second dimension corresponds to the number of observations. When the Value attribute of
ObservationsIn is 'rows', the order of the dimensions is switched.

Generate Code

To generate C/C++ code, you must have access to a C/C++ compiler that is configured properly.
MATLAB Coder locates and uses a supported, installed compiler. You can use mex -setup to view and
change the default compiler. For more details, see “Change Default Compiler”.

Generate code for the predict and update functions of the linear classification model (Mdl).

generateCode(configurer)

generateCode creates these files in output folder:
'initialize.m', 'predict.m', 'update.m', 'ClassificationLinearModel.mat'
Code generation successful.

The generateCode function completes these actions:

• Generate the MATLAB files required to generate code, including the two entry-point functions
predict.m and update.m for the predict and update functions of Mdl, respectively.

• Create a MEX function named ClassificationLinearModel for the two entry-point functions.
• Create the code for the MEX function in the codegen\mex\ClassificationLinearModel

folder.
• Copy the MEX function to the current folder.

Verify Generated Code

Pass some predictor data to verify whether the predict function of Mdl and the predict function in
the MEX function return the same labels. To call an entry-point function in a MEX function that has
more than one entry point, specify the function name as the first input argument.

[label,score] = predict(Mdl,XTrain,'ObservationsIn','columns');
[label_mex,score_mex] = ClassificationLinearModel('predict',XTrain,'ObservationsIn','columns');

Compare label and label_mex by using isequal.
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isequal(label,label_mex)

ans = logical
   1

isequal returns logical 1 (true) if all the inputs are equal. The comparison confirms that the
predict function of Mdl and the predict function in the MEX function return the same labels.

Compare score and score_mex.

max(abs(score-score_mex),[],'all')

ans = 0

In general, score_mex might include round-off differences compared to score. In this case, the
comparison confirms that score and score_mex are equal.

Retrain Model and Update Parameters in Generated Code

Retrain the model using the entire data set.

retrainedMdl = fitclinear(X',Y,'ObservationsIn','columns');

Extract parameters to update by using validatedUpdateInputs. This function detects the modified
model parameters in retrainedMdl and validates whether the modified parameter values satisfy the
coder attributes of the parameters.

params = validatedUpdateInputs(configurer,retrainedMdl);

Update parameters in the generated code.

ClassificationLinearModel('update',params)

Verify Generated Code

Compare the outputs from the predict function of retrainedMdl and the predict function in the
updated MEX function.

[label,score] = predict(retrainedMdl,X','ObservationsIn','columns');
[label_mex,score_mex] = ClassificationLinearModel('predict',X','ObservationsIn','columns');
isequal(label,label_mex)

ans = logical
   1

max(abs(score-score_mex),[],'all')

ans = 0
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The comparison confirms that label and label_mex are equal, and that the score values are equal.

More About
LearnerCoderInput Object

A coder configurer uses a LearnerCoderInput object to specify the coder attributes of predict
and update input arguments.

A LearnerCoderInput object has the following attributes to specify the properties of an input
argument array in the generated code.

Attribute Name Description
SizeVector Array size if the corresponding VariableDimensions value is

false.

Upper bound of the array size if the corresponding
VariableDimensions value is true. To allow an unbounded
array, specify the bound as Inf.

VariableDimensions Indicator specifying whether each dimension of the array has a
variable size or fixed size, specified as true (logical 1) or false
(logical 0):

• A value of true (logical 1) means that the corresponding
dimension has a variable size.

• A value of false (logical 0) means that the corresponding
dimension has a fixed size.

DataType Data type of the array
Tunability Indicator specifying whether or not predict or update includes

the argument as an input in the generated code, specified as true
(logical 1) or false (logical 0).

If you specify other attribute values when Tunability is false,
the software sets Tunability to true.

After creating a coder configurer, you can modify the coder attributes by using dot notation. For
example, specify the data type of the bias term Bias of the coder configurer configurer:

configurer.Bias.DataType = 'single';

If you specify the verbosity level (Verbose) as true (default), then the software displays notification
messages when you modify the coder attributes of a machine learning model parameter and the
modification changes the coder attributes of other dependent parameters.

EnumeratedInput Object

A coder configurer uses an EnumeratedInput object to specify the coder attributes of predict
input arguments that have a finite set of available values.

An EnumeratedInput object has the following attributes to specify the properties of an input
argument array in the generated code.
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Attribute Name Description
Value Value of the predict argument in the generated code, specified as

a character vector or a LearnerCoderInput on page 35-503
object.

• Character vector in BuiltInOptions — You can specify one of
the BuiltInOptions using either the option name or its index
value. For example, to choose the first option, specify Value as
either the first character vector in BuiltInOptions or 1.

• Character vector designating a custom function name — To use
a custom option, define a custom function on the MATLAB
search path, and specify Value as the name of the custom
function.

• LearnerCoderInput on page 35-503 object — If you set
IsConstant to false (logical 0), then the software changes
Value to a LearnerCoderInput on page 35-503 object with
the following read-only coder attribute values. These values
indicate that the input in the generated code is a variable-size,
tunable character vector that is one of the available values in
BuiltInOptions.

• SizeVector — [1 c], indicating the upper bound of the
array size, where c is the length of the longest available
character vector in Option

• VariableDimensions — [0 1], indicating that the array
is a variable-size vector

• DataType — 'char'
• Tunability — 1

The default value of Value is consistent with the default value of
the corresponding predict argument, which is one of the
character vectors in BuiltInOptions.

SelectedOption Status of the selected option, specified as 'Built-in',
'Custom', or 'NonConstant'. The software sets
SelectedOption according to Value:

• 'Built-in'(default) — When Value is one of the character
vectors in BuiltInOptions

• 'Custom' — When Value is a character vector that is not in
BuiltInOptions

• 'NonConstant' — When Value is a LearnerCoderInput on
page 35-503 object

This attribute is read-only.
BuiltInOptions List of available character vectors for the corresponding predict

argument, specified as a cell array.

This attribute is read-only.
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Attribute Name Description
IsConstant Indicator specifying whether or not the array value is a compile-

time constant (coder.Constant) in the generated code, specified
as true (logical 1, default) or false (logical 0).

If you set this value to false, then the software changes Value to
a LearnerCoderInput on page 35-503 object.

Tunability Indicator specifying whether or not predict includes the
argument as an input in the generated code, specified as true
(logical 1) or false (logical 0, default).

If you specify other attribute values when Tunability is false,
the software sets Tunability to true.

After creating a coder configurer, you can modify the coder attributes by using dot notation. For
example, specify the coder attributes of ObservationsIn of the coder configurer configurer:

configurer.ObservationsIn.Value = 'columns';

Version History
Introduced in R2019b

See Also
learnerCoderConfigurer | ClassificationLinear | update | predict |
ClassificationECOCCoderConfigurer

Topics
“Introduction to Code Generation” on page 34-2
“Code Generation for Prediction and Update Using Coder Configurer” on page 34-92
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ClassificationNaiveBayes
Naive Bayes classification for multiclass classification

Description
ClassificationNaiveBayes is a “Naive Bayes” on page 35-515 classifier for multiclass learning.
Trained ClassificationNaiveBayes classifiers store the training data, parameter values, data
distribution, and prior probabilities. Use these classifiers to perform tasks such as estimating
resubstitution predictions (see resubPredict) and predicting labels or posterior probabilities for
new data (see predict).

Creation
Create a ClassificationNaiveBayes object by using fitcnb.

Properties
Predictor Properties

PredictorNames — Predictor names
cell array of character vectors

This property is read-only.

Predictor names, specified as a cell array of character vectors. The order of the elements in
PredictorNames corresponds to the order in which the predictor names appear in the training data
X.

ExpandedPredictorNames — Expanded predictor names
cell array of character vectors

This property is read-only.

Expanded predictor names, specified as a cell array of character vectors.

If the model uses dummy variable encoding for categorical variables, then
ExpandedPredictorNames includes the names that describe the expanded variables. Otherwise,
ExpandedPredictorNames is the same as PredictorNames.

CategoricalPredictors — Categorical predictor indices
vector of positive integers | []

This property is read-only.

Categorical predictor indices, specified as a vector of positive integers. CategoricalPredictors
contains index values indicating that the corresponding predictors are categorical. The index values
are between 1 and p, where p is the number of predictors used to train the model. If none of the
predictors are categorical, then this property is empty ([]).
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Data Types: single | double

CategoricalLevels — Multivariate multinomial levels
cell array

This property is read-only.

Multivariate multinomial levels, specified as a cell array. The length of CategoricalLevels is equal
to the number of predictors (size(X,2)).

The cells of CategoricalLevels correspond to predictors that you specify as 'mvmn' during
training, that is, they have a multivariate multinomial distribution. Cells that do not correspond to a
multivariate multinomial distribution are empty ([]).

If predictor j is multivariate multinomial, then CategoricalLevels{j} is a list of all distinct values
of predictor j in the sample. NaNs are removed from unique(X(:,j)).

X — Unstandardized predictors
numeric matrix

This property is read-only.

Unstandardized predictors used to train the naive Bayes classifier, specified as a numeric matrix.
Each row of X corresponds to one observation, and each column corresponds to one variable. The
software excludes observations containing at least one missing value, and removes corresponding
elements from Y.

Predictor Distribution Properties

DistributionNames — Predictor distributions
'normal' (default) | 'kernel' | 'mn' | 'mvmn' | cell array of character vectors

This property is read-only.

Predictor distributions, specified as a character vector or cell array of character vectors. fitcnb
uses the predictor distributions to model the predictors. This table lists the available distributions.

Value Description
'kernel' Kernel smoothing density estimate
'mn' Multinomial distribution. If you specify mn, then

all features are components of a multinomial
distribution. Therefore, you cannot include 'mn'
as an element of a string array or a cell array of
character vectors. For details, see “Estimated
Probability for Multinomial Distribution” on page
35-516.

'mvmn' Multivariate multinomial distribution. For details,
see “Estimated Probability for Multivariate
Multinomial Distribution” on page 35-517.

'normal' Normal (Gaussian) distribution

If DistributionNames is a 1-by-P cell array of character vectors, then fitcnb models the feature j
using the distribution in element j of the cell array.
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Example: 'mn'
Example: {'kernel','normal','kernel'}
Data Types: char | string | cell

DistributionParameters — Distribution parameter estimates
cell array

This property is read-only.

Distribution parameter estimates, specified as a cell array. DistributionParameters is a K-by-D
cell array, where cell (k,d) contains the distribution parameter estimates for instances of predictor d
in class k. The order of the rows corresponds to the order of the classes in the property ClassNames,
and the order of the predictors corresponds to the order of the columns of X.

If class k has no observations for predictor j, then the Distribution{k,j} is empty ([]).

The elements of DistributionParameters depend on the distributions of the predictors. This table
describes the values in DistributionParameters{k,j}.

Distribution of
Predictor j

Value of Cell Array for Predictor j and Class k

kernel A KernelDistribution model. Display properties using cell indexing
and dot notation. For example, to display the estimated bandwidth of the
kernel density for predictor 2 in the third class, use
Mdl.DistributionParameters{3,2}.Bandwidth.

mn A scalar representing the probability that token j appears in class k. For
details, see “Estimated Probability for Multinomial Distribution” on page
35-516.

mvmn A numeric vector containing the probabilities for each possible level of
predictor j in class k. The software orders the probabilities by the sorted
order of all unique levels of predictor j (stored in the property
CategoricalLevels). For more details, see “Estimated Probability for
Multivariate Multinomial Distribution” on page 35-517.

normal A 2-by-1 numeric vector. The first element is the sample mean and the
second element is the sample standard deviation. For more details, see
“Normal Distribution Estimators” on page 35-516

Kernel — Kernel smoother type
'normal' (default) | 'box' | cell array | ...

This property is read-only.

Kernel smoother type, specified as the name of a kernel or a cell array of kernel names. The length of
Kernel is equal to the number of predictors (size(X,2)). Kernel{j} corresponds to predictor j and
contains a character vector describing the type of kernel smoother. If a cell is empty ([]), then
fitcnb did not fit a kernel distribution to the corresponding predictor.

This table describes the supported kernel smoother types. I{u} denotes the indicator function.

35 Functions

35-508



Value Kernel Formula
'box' Box (uniform) f (x) = 0.5I x ≤ 1
'epanechnik
ov'

Epanechnikov f (x) = 0.75 1− x2 I x ≤ 1

'normal' Gaussian f (x) = 1
2πexp −0.5x2

'triangle' Triangular f (x) = 1− x I x ≤ 1

Example: 'box'
Example: {'epanechnikov','normal'}
Data Types: char | string | cell

Support — Kernel smoother density support
cell array

This property is read-only.

Kernel smoother density support, specified as a cell array. The length of Support is equal to the
number of predictors (size(X,2)). The cells represent the regions to which fitcnb applies the
kernel density. If a cell is empty ([]), then fitcnb did not fit a kernel distribution to the
corresponding predictor.

This table describes the supported options.

Value Description
1-by-2 numeric row vector The density support applies to the specified bounds, for example [L,U],

where L and U are the finite lower and upper bounds, respectively.
'positive' The density support applies to all positive real values.
'unbounded' The density support applies to all real values.

Width — Kernel smoother window width
numeric matrix

This property is read-only.

Kernel smoother window width, specified as a numeric matrix. Width is a K-by-P matrix, where K is
the number of classes in the data, and P is the number of predictors (size(X,2)).

Width(k,j) is the kernel smoother window width for the kernel smoothing density of predictor j
within class k. NaNs in column j indicate that fitcnb did not fit predictor j using a kernel density.

Response Properties

ClassNames — Unique class names
categorical array | character array | logical vector | numeric vector | cell array of character vectors

This property is read-only.

Unique class names used in the training model, specified as a categorical or character array, logical
or numeric vector, or cell array of character vectors.
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ClassNames has the same data type as Y, and has K elements (or rows) for character arrays. (The
software treats string arrays as cell arrays of character vectors.)
Data Types: categorical | char | string | logical | double | cell

ResponseName — Response variable name
character vector

This property is read-only.

Response variable name, specified as a character vector.
Data Types: char | string

Y — Class labels
categorical array | character array | logical vector | numeric vector | cell array of character vectors

This property is read-only.

Class labels used to train the naive Bayes classifier, specified as a categorical or character array,
logical or numeric vector, or cell array of character vectors. Each row of Y represents the observed
classification of the corresponding row of X.

Y has the same data type as the data in Y used for training the model. (The software treats string
arrays as cell arrays of character vectors.)
Data Types: single | double | logical | char | string | cell | categorical

Training Properties

ModelParameters — Parameter values used to train model
object

This property is read-only.

Parameter values used to train the ClassificationNaiveBayes model, specified as an object.
ModelParameters contains parameter values such as the name-value pair argument values used to
train the naive Bayes classifier.

Access the properties of ModelParameters by using dot notation. For example, access the kernel
support using Mdl.ModelParameters.Support.

NumObservations — Number of training observations
numeric scalar

This property is read-only.

Number of training observations in the training data stored in X and Y, specified as a numeric scalar.

Prior — Prior probabilities
numeric vector

Prior probabilities, specified as a numeric vector. The order of the elements in Prior corresponds to
the elements of Mdl.ClassNames.

fitcnb normalizes the prior probabilities you set using the 'Prior' name-value pair argument, so
that sum(Prior) = 1.
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The value of Prior does not affect the best-fitting model. Therefore, you can reset Prior after
training Mdl using dot notation.
Example: Mdl.Prior = [0.2 0.8]
Data Types: double | single

W — Observation weights
vector of nonnegative values

This property is read-only.

Observation weights, specified as a vector of nonnegative values with the same number of rows as Y.
Each entry in W specifies the relative importance of the corresponding observation in Y. fitcnb
normalizes the value you set for the 'Weights' name-value pair argument, so that the weights
within a particular class sum to the prior probability for that class.

Classifier Properties

Cost — Misclassification cost
square matrix

Misclassification cost, specified as a numeric square matrix, where Cost(i,j) is the cost of
classifying a point into class j if its true class is i. The rows correspond to the true class and the
columns correspond to the predicted class. The order of the rows and columns of Cost corresponds
to the order of the classes in ClassNames.

The misclassification cost matrix must have zeros on the diagonal.

The value of Cost does not influence training. You can reset Cost after training Mdl using dot
notation.
Example: Mdl.Cost = [0 0.5 ; 1 0]
Data Types: double | single

HyperparameterOptimizationResults — Cross-validation optimization of hyperparameters
BayesianOptimization object | table

This property is read-only.

Cross-validation optimization of hyperparameters, specified as a BayesianOptimization object or
a table of hyperparameters and associated values. This property is nonempty if the
'OptimizeHyperparameters' name-value pair argument is nonempty when you create the model.
The value of HyperparameterOptimizationResults depends on the setting of the Optimizer
field in the HyperparameterOptimizationOptions structure when you create the model.

Value of Optimizer Field Value of
HyperparameterOptimizationResults

'bayesopt' (default) Object of class BayesianOptimization
'gridsearch' or 'randomsearch' Table of hyperparameters used, observed

objective function values (cross-validation loss),
and rank of observations from lowest (best) to
highest (worst)
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ScoreTransform — Classification score transformation
'none' (default) | 'doublelogit' | 'invlogit' | 'ismax' | 'logit' | function handle | ...

Classification score transformation, specified as a character vector or function handle. This table
summarizes the available character vectors.

Value Description
"doublelogit" 1/(1 + e–2x)
"invlogit" log(x / (1 – x))
"ismax" Sets the score for the class with the largest score to 1,

and sets the scores for all other classes to 0
"logit" 1/(1 + e–x)
"none" or "identity" x (no transformation)
"sign" –1 for x < 0

0 for x = 0
1 for x > 0

"symmetric" 2x – 1
"symmetricismax" Sets the score for the class with the largest score to 1,

and sets the scores for all other classes to –1
"symmetriclogit" 2/(1 + e–x) – 1

For a MATLAB function or a function you define, use its function handle for the score transformation.
The function handle must accept a matrix (the original scores) and return a matrix of the same size
(the transformed scores).
Example: Mdl.ScoreTransform = 'logit'
Data Types: char | string | function handle

Object Functions
compact Reduce size of machine learning model
compareHoldout Compare accuracies of two classification models using new data
crossval Cross-validate machine learning model
edge Classification edge for naive Bayes classifier
incrementalLearner Convert naive Bayes classification model to incremental learner
lime Local interpretable model-agnostic explanations (LIME)
logp Log unconditional probability density for naive Bayes classifier
loss Classification loss for naive Bayes classifier
margin Classification margins for naive Bayes classifier
partialDependence Compute partial dependence
plotPartialDependence Create partial dependence plot (PDP) and individual conditional expectation

(ICE) plots
predict Classify observations using naive Bayes classifier
resubEdge Resubstitution classification edge
resubLoss Resubstitution classification loss
resubMargin Resubstitution classification margin
resubPredict Classify training data using trained classifier
shapley Shapley values
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testckfold Compare accuracies of two classification models by repeated cross-
validation

Examples

Train Naive Bayes Classifier

Create a naive Bayes classifier for Fisher's iris data set. Then, specify prior probabilities after
training the classifier.

Load the fisheriris data set. Create X as a numeric matrix that contains four petal measurements
for 150 irises. Create Y as a cell array of character vectors that contains the corresponding iris
species.

load fisheriris
X = meas;
Y = species;

Train a naive Bayes classifier using the predictors X and class labels Y. fitcnb assumes each
predictor is independent and fits each predictor using a normal distribution by default.

Mdl = fitcnb(X,Y)

Mdl = 
  ClassificationNaiveBayes
              ResponseName: 'Y'
     CategoricalPredictors: []
                ClassNames: {'setosa'  'versicolor'  'virginica'}
            ScoreTransform: 'none'
           NumObservations: 150
         DistributionNames: {'normal'  'normal'  'normal'  'normal'}
    DistributionParameters: {3x4 cell}

  Properties, Methods

Mdl is a trained ClassificationNaiveBayes classifier. Some of the Mdl properties appear in the
Command Window.

Display the properties of Mdl using dot notation. For example, display the class names and prior
probabilities.

Mdl.ClassNames

ans = 3x1 cell
    {'setosa'    }
    {'versicolor'}
    {'virginica' }

Mdl.Prior

ans = 1×3

    0.3333    0.3333    0.3333
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The order of the class prior probabilities in Mdl.Prior corresponds to the order of the classes in
Mdl.ClassNames. By default, the prior probabilities are the respective relative frequencies of the
classes in the data. Alternatively, you can set the prior probabilities when calling fitcnb by using the
'Prior' name-value pair argument.

Set the prior probabilities after training the classifier by using dot notation. For example, set the
prior probabilities to 0.5, 0.2, and 0.3, respectively.

Mdl.Prior = [0.5 0.2 0.3];

You can now use this trained classifier to perform additional tasks. For example, you can label new
measurements using predict or cross-validate the classifier using crossval.

Train and Cross-Validate Naive Bayes Classifier

Train and cross-validate a naive Bayes classifier. fitcnb implements 10-fold cross-validation by
default. Then, estimate the cross-validated classification error.

Load the ionosphere data set. Remove the first two predictors for stability.

load ionosphere
X = X(:,3:end);
rng('default')  % for reproducibility

Train and cross-validate a naive Bayes classifier using the predictors X and class labels Y. A
recommended practice is to specify the class names. fitcnb assumes that each predictor is
conditionally and normally distributed.

CVMdl = fitcnb(X,Y,'ClassNames',{'b','g'},'CrossVal','on')

CVMdl = 
  ClassificationPartitionedModel
    CrossValidatedModel: 'NaiveBayes'
         PredictorNames: {1x32 cell}
           ResponseName: 'Y'
        NumObservations: 351
                  KFold: 10
              Partition: [1x1 cvpartition]
             ClassNames: {'b'  'g'}
         ScoreTransform: 'none'

  Properties, Methods

CVMdl is a ClassificationPartitionedModel cross-validated, naive Bayes classifier.
Alternatively, you can cross-validate a trained ClassificationNaiveBayes model by passing it to
crossval.

Display the first training fold of CVMdl using dot notation.

CVMdl.Trained{1}

ans = 
  CompactClassificationNaiveBayes
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              ResponseName: 'Y'
     CategoricalPredictors: []
                ClassNames: {'b'  'g'}
            ScoreTransform: 'none'
         DistributionNames: {1x32 cell}
    DistributionParameters: {2x32 cell}

  Properties, Methods

Each fold is a CompactClassificationNaiveBayes model trained on 90% of the data.

Full and compact naive Bayes models are not used for predicting on new data. Instead, use them to
estimate the generalization error by passing CVMdl to kfoldLoss.

genError = kfoldLoss(CVMdl)

genError = 0.1852

On average, the generalization error is approximately 19%.

You can specify a different conditional distribution for the predictors, or tune the conditional
distribution parameters to reduce the generalization error.

More About
Bag-of-Tokens Model

In the bag-of-tokens model, the value of predictor j is the nonnegative number of occurrences of
token j in the observation. The number of categories (bins) in the multinomial model is the number of
distinct tokens (number of predictors).

Naive Bayes

Naive Bayes is a classification algorithm that applies density estimation to the data.

The algorithm leverages Bayes theorem, and (naively) assumes that the predictors are conditionally
independent, given the class. Although the assumption is usually violated in practice, naive Bayes
classifiers tend to yield posterior distributions that are robust to biased class density estimates,
particularly where the posterior is 0.5 (the decision boundary) [1].

Naive Bayes classifiers assign observations to the most probable class (in other words, the maximum
a posteriori decision rule). Explicitly, the algorithm takes these steps:

1 Estimate the densities of the predictors within each class.
2 Model posterior probabilities according to Bayes rule. That is, for all k = 1,...,K,

P Y = k X1, .., XP =
π Y = k ∏

j = 1

P
P X j Y = k

∑k = 1

K

π Y = k ∏
j = 1

P
P X j Y = k

,

where:
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• Y is the random variable corresponding to the class index of an observation.
• X1,...,XP are the random predictors of an observation.
• π Y = k  is the prior probability that a class index is k.

3 Classify an observation by estimating the posterior probability for each class, and then assign the
observation to the class yielding the maximum posterior probability.

If the predictors compose a multinomial distribution, then the posterior probability
P Y = k X1, .., XP ∝ π Y = k Pmn X1, ..., XP Y = k , where Pmn X1, ..., XP Y = k  is the probability
mass function of a multinomial distribution.

Algorithms
Normal Distribution Estimators

If predictor variable j has a conditional normal distribution (see the DistributionNames property),
the software fits the distribution to the data by computing the class-specific weighted mean and the
unbiased estimate of the weighted standard deviation. For each class k:

• The weighted mean of predictor j is

x j k =
∑

i: yi = k
wixi j

∑
i: yi = k

wi
,

where wi is the weight for observation i. The software normalizes weights within a class such that
they sum to the prior probability for that class.

• The unbiased estimator of the weighted standard deviation of predictor j is

s j k =
∑

i: yi = k
wi xi j− x j k

2

z1 k−
z2 k
z1 k

1/2

,

where z1|k is the sum of the weights within class k and z2|k is the sum of the squared weights
within class k.

Estimated Probability for Multinomial Distribution

If all predictor variables compose a conditional multinomial distribution (see the
DistributionNames property), the software fits the distribution using the “Bag-of-Tokens Model”
on page 35-515. The software stores the probability that token j appears in class k in the property
DistributionParameters{k,j}. With additive smoothing [2], the estimated probability is

P(token  j class k) =
1 + c j k
P + ck

,

where:

•

c j k = nk

∑
i: yi = k

xi jwi

∑
i: yi = k

wi
, which is the weighted number of occurrences of token j in class k.
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• nk is the number of observations in class k.
• wi is the weight for observation i. The software normalizes weights within a class so that they sum

to the prior probability for that class.
•

ck = ∑
j = 1

P
c j k, which is the total weighted number of occurrences of all tokens in class k.

Estimated Probability for Multivariate Multinomial Distribution

If predictor variable j has a conditional multivariate multinomial distribution (see the
DistributionNames property), the software follows this procedure:

1 The software collects a list of the unique levels, stores the sorted list in CategoricalLevels,
and considers each level a bin. Each combination of predictor and class is a separate,
independent multinomial random variable.

2 For each class k, the software counts instances of each categorical level using the list stored in
CategoricalLevels{j}.

3 The software stores the probability that predictor j in class k has level L in the property
DistributionParameters{k,j}, for all levels in CategoricalLevels{j}. With additive
smoothing [2], the estimated probability is

P predictor  j = L class k =
1 + m j k(L)

m j + mk
,

where:

•

m j k(L) = nk

∑
i: yi = k

I xi j = L wi

∑
i: yi = k

wi
, which is the weighted number of observations for which

predictor j equals L in class k.
• nk is the number of observations in class k.
• I xi j = L = 1 if xij = L, and 0 otherwise.
• wi is the weight for observation i. The software normalizes weights within a class so that they

sum to the prior probability for that class.
• mj is the number of distinct levels in predictor j.
• mk is the weighted number of observations in class k.

Version History
Introduced in R2014b
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Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• The predict function supports code generation.
• When you train a naive Bayes model by using fitcnb, the following restrictions apply.

• The value of the 'DistributionNames' name-value pair argument cannot contain 'mn'.
• The value of the 'ScoreTransform' name-value pair argument cannot be an anonymous

function.

For more information, see “Introduction to Code Generation” on page 34-2.

See Also
CompactClassificationNaiveBayes | loss | predict | fitcnb

Topics
“Naive Bayes Classification” on page 22-2
“Grouping Variables” on page 2-46
“Incremental Learning with Naive Bayes and Heterogeneous Data” on page 28-52
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ClassificationNeuralNetwork
Neural network model for classification

Description
A ClassificationNeuralNetwork object is a trained, feedforward, and fully connected neural
network for classification. The first fully connected layer of the neural network has a connection from
the network input (predictor data X), and each subsequent layer has a connection from the previous
layer. Each fully connected layer multiplies the input by a weight matrix (LayerWeights) and then
adds a bias vector (LayerBiases). An activation function follows each fully connected layer
(Activations and OutputLayerActivation). The final fully connected layer and the subsequent
softmax activation function produce the network's output, namely classification scores (posterior
probabilities) and predicted labels. For more information, see “Neural Network Structure” on page
35-2167.

Creation
Create a ClassificationNeuralNetwork object by using fitcnet.

Properties
Neural Network Properties

LayerSizes — Sizes of fully connected layers
positive integer vector

This property is read-only.

Sizes of the fully connected layers in the neural network model, returned as a positive integer vector.
The ith element of LayerSizes is the number of outputs in the ith fully connected layer of the neural
network model.

LayerSizes does not include the size of the final fully connected layer. This layer always has K
outputs, where K is the number of classes in Y.
Data Types: single | double

LayerWeights — Learned layer weights
cell array

This property is read-only.

Learned layer weights for the fully connected layers, returned as a cell array. The ith entry in the cell
array corresponds to the layer weights for the ith fully connected layer. For example,
Mdl.LayerWeights{1} returns the weights for the first fully connected layer of the model Mdl.

LayerWeights includes the weights for the final fully connected layer.
Data Types: cell
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LayerBiases — Learned layer biases
cell array

This property is read-only.

Learned layer biases for the fully connected layers, returned as a cell array. The ith entry in the cell
array corresponds to the layer biases for the ith fully connected layer. For example,
Mdl.LayerBiases{1} returns the biases for the first fully connected layer of the model Mdl.

LayerBiases includes the biases for the final fully connected layer.
Data Types: cell

Activations — Activation functions for fully connected layers
'relu' | 'tanh' | 'sigmoid' | 'none' | cell array of character vectors

This property is read-only.

Activation functions for the fully connected layers of the neural network model, returned as a
character vector or cell array of character vectors with values from this table.

Value Description
'relu' Rectified linear unit (ReLU) function — Performs

a threshold operation on each element of the
input, where any value less than zero is set to
zero, that is,

f x =
x, x ≥ 0
0, x < 0

'tanh' Hyperbolic tangent (tanh) function — Applies the
tanh function to each input element

'sigmoid' Sigmoid function — Performs the following
operation on each input element:

f (x) = 1
1 + e−x

'none' Identity function — Returns each input element
without performing any transformation, that is,
f(x) = x

• If Activations contains only one activation function, then it is the activation function for every
fully connected layer of the neural network model, excluding the final fully connected layer. The
activation function for the final fully connected layer is always softmax
(OutputLayerActivation).

• If Activations is an array of activation functions, then the ith element is the activation function
for the ith layer of the neural network model.

Data Types: char | cell

OutputLayerActivation — Activation function for final fully connected layer
'softmax'

This property is read-only.
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Activation function for the final fully connected layer, returned as 'softmax'. The function takes
each input xi and returns the following, where K is the number of classes in the response variable:

f (xi) =
exp(xi)

∑
j = 1

K
exp(x j)

.

The results correspond to the predicted classification scores (or posterior probabilities).

ModelParameters — Parameter values used to train model
NeuralNetworkParams object

This property is read-only.

Parameter values used to train the ClassificationNeuralNetwork model, returned as a
NeuralNetworkParams object. ModelParameters contains parameter values such as the name-
value arguments used to train the neural network classifier.

Access the properties of ModelParameters by using dot notation. For example, access the function
used to initialize the fully connected layer weights of a model Mdl by using
Mdl.ModelParameters.LayerWeightsInitializer.

Convergence Control Properties

ConvergenceInfo — Convergence information
structure array

This property is read-only.

Convergence information, returned as a structure array.

Field Description
Iterations Number of training iterations used to train the

neural network model
TrainingLoss Training cross-entropy loss for the returned

model, or
resubLoss(Mdl,'LossFun','crossentropy'
) for model Mdl

Gradient Gradient of the loss function with respect to the
weights and biases at the iteration corresponding
to the returned model

Step Step size at the iteration corresponding to the
returned model

Time Total time spent across all iterations (in seconds)
ValidationLoss Validation cross-entropy loss for the returned

model
ValidationChecks Maximum number of times in a row that the

validation loss was greater than or equal to the
minimum validation loss

ConvergenceCriterion Criterion for convergence
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Field Description
History See TrainingHistory

Data Types: struct

TrainingHistory — Training history
table

This property is read-only.

Training history, returned as a table.

Column Description
Iteration Training iteration
TrainingLoss Training cross-entropy loss for the model at this

iteration
Gradient Gradient of the loss function with respect to the

weights and biases at this iteration
Step Step size at this iteration
Time Time spent during this iteration (in seconds)
ValidationLoss Validation cross-entropy loss for the model at this

iteration
ValidationChecks Running total of times that the validation loss is

greater than or equal to the minimum validation
loss

Data Types: table

Solver — Solver used to train neural network model
'LBFGS'

This property is read-only.

Solver used to train the neural network model, returned as 'LBFGS'. To create a
ClassificationNeuralNetwork model, fitcnet uses a limited-memory Broyden-Fletcher-
Goldfarb-Shanno quasi-Newton algorithm (LBFGS) as its loss function minimization technique, where
the software minimizes the cross-entropy loss.

Predictor Properties

PredictorNames — Predictor variable names
cell array of character vectors

This property is read-only.

Predictor variable names, returned as a cell array of character vectors. The order of the elements of
PredictorNames corresponds to the order in which the predictor names appear in the training data.
Data Types: cell

CategoricalPredictors — Categorical predictor indices
vector of positive integers | []
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This property is read-only.

Categorical predictor indices, returned as a vector of positive integers. Assuming that the predictor
data contains observations in rows, CategoricalPredictors contains index values corresponding
to the columns of the predictor data that contain categorical predictors. If none of the predictors are
categorical, then this property is empty ([]).
Data Types: double

ExpandedPredictorNames — Expanded predictor names
cell array of character vectors

This property is read-only.

Expanded predictor names, returned as a cell array of character vectors. If the model uses encoding
for categorical variables, then ExpandedPredictorNames includes the names that describe the
expanded variables. Otherwise, ExpandedPredictorNames is the same as PredictorNames.
Data Types: cell

X — Unstandardized predictors
numeric matrix | table

This property is read-only.

Unstandardized predictors used to train the neural network model, returned as a numeric matrix or
table. X retains its original orientation, with observations in rows or columns depending on the value
of the ObservationsIn name-value argument in the call to fitcnet.
Data Types: single | double | table

Response Properties

ClassNames — Unique class names
numeric vector | categorical vector | logical vector | character array | cell array of character vectors

This property is read-only.

Unique class names used in training, returned as a numeric vector, categorical vector, logical vector,
character array, or cell array of character vectors. ClassNames has the same data type as the class
labels Y. (The software treats string arrays as cell arrays of character vectors.) ClassNames also
determines the class order.
Data Types: single | double | categorical | logical | char | cell

ResponseName — Response variable name
character vector

This property is read-only.

Response variable name, returned as a character vector.
Data Types: char

Y — Class labels
numeric vector | categorical vector | logical vector | character array | cell array of character vectors

This property is read-only.
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Class labels used to train the model, returned as a numeric vector, categorical vector, logical vector,
character array, or cell array of character vectors. Y has the same data type as the response variable
used to train the model. (The software treats string arrays as cell arrays of character vectors.)

Each row of Y represents the classification of the corresponding observation in X.
Data Types: single | double | categorical | logical | char | cell

Other Data Properties

HyperparameterOptimizationResults — Cross-validation optimization of hyperparameters
BayesianOptimization object | table

This property is read-only.

Cross-validation optimization of hyperparameters, specified as a BayesianOptimization object or
a table of hyperparameters and associated values. This property is nonempty if the
'OptimizeHyperparameters' name-value pair argument is nonempty when you create the model.
The value of HyperparameterOptimizationResults depends on the setting of the Optimizer
field in the HyperparameterOptimizationOptions structure when you create the model.

Value of Optimizer Field Value of
HyperparameterOptimizationResults

'bayesopt' (default) Object of class BayesianOptimization
'gridsearch' or 'randomsearch' Table of hyperparameters used, observed

objective function values (cross-validation loss),
and rank of observations from lowest (best) to
highest (worst)

NumObservations — Number of observations
positive numeric scalar

This property is read-only.

Number of observations in the training data stored in X and Y, returned as a positive numeric scalar.
Data Types: double

RowsUsed — Rows used in fitting
[] | logical vector

This property is read-only.

Rows of the original training data used in fitting the model, returned as a logical vector. This property
is empty if all rows are used.
Data Types: logical

W — Observation weights
numeric vector

This property is read-only.

Observation weights used to train the model, returned as an n-by-1 numeric vector. n is the number of
observations (NumObservations).
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The software normalizes the observation weights specified in the Weights name-value argument so
that the elements of W within a particular class sum up to the prior probability of that class.
Data Types: single | double

Other Classification Properties

Cost — Misclassification cost
numeric square matrix

This property is read-only.

Misclassification cost, returned as a numeric square matrix, where Cost(i,j) is the cost of
classifying a point into class j if its true class is i. The cost matrix always has this form: Cost(i,j)
= 1 if i ~= j, and Cost(i,j) = 0 if i = j. The rows correspond to the true class and the
columns correspond to the predicted class. The order of the rows and columns of Cost corresponds
to the order of the classes in ClassNames.
Data Types: double

Prior — Prior probabilities
numeric vector

This property is read-only.

Prior probabilities for each class, returned as a numeric vector. The order of the elements of Prior
corresponds to the elements of ClassNames.
Data Types: double

ScoreTransform — Score transformation
character vector | function handle

Score transformation, specified as a character vector or function handle. ScoreTransform
represents a built-in transformation function or a function handle for transforming predicted
classification scores.

To change the score transformation function to function, for example, use dot notation.

• For a built-in function, enter a character vector.

Mdl.ScoreTransform = 'function';

This table describes the available built-in functions.

Value Description
'doublelogit' 1/(1 + e–2x)
'invlogit' log(x / (1 – x))
'ismax' Sets the score for the class with the largest score to

1, and sets the scores for all other classes to 0
'logit' 1/(1 + e–x)
'none' or 'identity' x (no transformation)
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Value Description
'sign' –1 for x < 0

0 for x = 0
1 for x > 0

'symmetric' 2x – 1
'symmetricismax' Sets the score for the class with the largest score to

1, and sets the scores for all other classes to –1
'symmetriclogit' 2/(1 + e–x) – 1

• For a MATLAB function or a function that you define, enter its function handle.

Mdl.ScoreTransform = @function;

function must accept a matrix (the original scores) and return a matrix of the same size (the
transformed scores).

Data Types: char | function_handle

Object Functions

Create CompactClassificationNeuralNetwork
compact Reduce size of machine learning model

Create ClassificationPartitionedModel
crossval Cross-validate machine learning model

Interpret Prediction
lime Local interpretable model-agnostic explanations (LIME)
partialDependence Compute partial dependence
plotPartialDependence Create partial dependence plot (PDP) and individual conditional expectation

(ICE) plots
shapley Shapley values

Assess Predictive Performance on New Observations
edge Classification edge for neural network classifier
loss Classification loss for neural network classifier
margin Classification margins for neural network classifier
predict Classify observations using neural network classifier

Assess Predictive Performance on Training Data
resubEdge Resubstitution classification edge
resubLoss Resubstitution classification loss
resubMargin Resubstitution classification margin
resubPredict Classify training data using trained classifier

Compare Accuracies
compareHoldout Compare accuracies of two classification models using new data
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testckfold Compare accuracies of two classification models by repeated cross-validation

Examples

Train Neural Network Classifier

Train a neural network classifier, and assess the performance of the classifier on a test set.

Read the sample file CreditRating_Historical.dat into a table. The predictor data consists of
financial ratios and industry sector information for a list of corporate customers. The response
variable consists of credit ratings assigned by a rating agency. Preview the first few rows of the data
set.

creditrating = readtable("CreditRating_Historical.dat");
head(creditrating)

     ID      WC_TA     RE_TA     EBIT_TA    MVE_BVTD    S_TA     Industry    Rating 
    _____    ______    ______    _______    ________    _____    ________    _______

    62394     0.013     0.104     0.036      0.447      0.142        3       {'BB' }
    48608     0.232     0.335     0.062      1.969      0.281        8       {'A'  }
    42444     0.311     0.367     0.074      1.935      0.366        1       {'A'  }
    48631     0.194     0.263     0.062      1.017      0.228        4       {'BBB'}
    43768     0.121     0.413     0.057      3.647      0.466       12       {'AAA'}
    39255    -0.117    -0.799      0.01      0.179      0.082        4       {'CCC'}
    62236     0.087     0.158     0.049      0.816      0.324        2       {'BBB'}
    39354     0.005     0.181     0.034      2.597      0.388        7       {'AA' }

Because each value in the ID variable is a unique customer ID, that is,
length(unique(creditrating.ID)) is equal to the number of observations in creditrating,
the ID variable is a poor predictor. Remove the ID variable from the table, and convert the Industry
variable to a categorical variable.

creditrating = removevars(creditrating,"ID");
creditrating.Industry = categorical(creditrating.Industry);

Convert the Rating response variable to an ordinal categorical variable.

creditrating.Rating = categorical(creditrating.Rating, ...
    ["AAA","AA","A","BBB","BB","B","CCC"],"Ordinal",true);

Partition the data into training and test sets. Use approximately 80% of the observations to train a
neural network model, and 20% of the observations to test the performance of the trained model on
new data. Use cvpartition to partition the data.

rng("default") % For reproducibility of the partition
c = cvpartition(creditrating.Rating,"Holdout",0.20);
trainingIndices = training(c); % Indices for the training set
testIndices = test(c); % Indices for the test set
creditTrain = creditrating(trainingIndices,:);
creditTest = creditrating(testIndices,:);

Train a neural network classifier by passing the training data creditTrain to the fitcnet function.

Mdl = fitcnet(creditTrain,"Rating")
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Mdl = 
  ClassificationNeuralNetwork
           PredictorNames: {1x6 cell}
             ResponseName: 'Rating'
    CategoricalPredictors: 6
               ClassNames: [AAA    AA    A    BBB    BB    B    CCC]
           ScoreTransform: 'none'
          NumObservations: 3146
               LayerSizes: 10
              Activations: 'relu'
    OutputLayerActivation: 'softmax'
                   Solver: 'LBFGS'
          ConvergenceInfo: [1x1 struct]
          TrainingHistory: [1000x7 table]

  Properties, Methods

Mdl is a trained ClassificationNeuralNetwork classifier. You can use dot notation to access the
properties of Mdl. For example, you can specify Mdl.TrainingHistory to get more information
about the training history of the neural network model.

Evaluate the performance of the classifier on the test set by computing the test set classification
error. Visualize the results by using a confusion matrix.

testAccuracy = 1 - loss(Mdl,creditTest,"Rating", ...
    "LossFun","classiferror")

testAccuracy = 0.7964

confusionchart(creditTest.Rating,predict(Mdl,creditTest))
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Specify Neural Network Classifier Architecture

Specify the structure of a neural network classifier, including the size of the fully connected layers.

Load the ionosphere data set, which includes radar signal data. X contains the predictor data, and Y
is the response variable, whose values represent either good ("g") or bad ("b") radar signals.

load ionosphere

Separate the data into training data (XTrain and YTrain) and test data (XTest and YTest) by using
a stratified holdout partition. Reserve approximately 30% of the observations for testing, and use the
rest of the observations for training.

rng("default") % For reproducibility of the partition
cvp = cvpartition(Y,"Holdout",0.3);
XTrain = X(training(cvp),:);
YTrain = Y(training(cvp));
XTest = X(test(cvp),:);
YTest = Y(test(cvp));

Train a neural network classifier. Specify to have 35 outputs in the first fully connected layer and 20
outputs in the second fully connected layer. By default, both layers use a rectified linear unit (ReLU)
activation function. You can change the activation functions for the fully connected layers by using
the Activations name-value argument.
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Mdl = fitcnet(XTrain,YTrain, ...
    "LayerSizes",[35 20])

Mdl = 
  ClassificationNeuralNetwork
             ResponseName: 'Y'
    CategoricalPredictors: []
               ClassNames: {'b'  'g'}
           ScoreTransform: 'none'
          NumObservations: 246
               LayerSizes: [35 20]
              Activations: 'relu'
    OutputLayerActivation: 'softmax'
                   Solver: 'LBFGS'
          ConvergenceInfo: [1x1 struct]
          TrainingHistory: [47x7 table]

  Properties, Methods

Access the weights and biases for the fully connected layers of the trained classifier by using the
LayerWeights and LayerBiases properties of Mdl. The first two elements of each property
correspond to the values for the first two fully connected layers, and the third element corresponds to
the values for the final fully connected layer with a softmax activation function for classification. For
example, display the weights and biases for the second fully connected layer.

Mdl.LayerWeights{2}

ans = 20×35

    0.0481    0.2501   -0.1535   -0.0934    0.0760   -0.0579   -0.2465    1.0411    0.3712   -1.2007    1.1162    0.4296    0.4045    0.5005    0.8839    0.4624   -0.3154    0.3454   -0.0487    0.2648    0.0732    0.5773    0.4286    0.0881    0.9468    0.2981    0.5534    1.0518   -0.0224    0.6894    0.5527    0.7045   -0.6124    0.2145   -0.0790
   -0.9489   -1.8343    0.5510   -0.5751   -0.8726    0.8815    0.0203   -1.6379    2.0315    1.7599   -1.4153   -1.4335   -1.1638   -0.1715    1.1439   -0.7661    1.1230   -1.1982   -0.5409   -0.5821   -0.0627   -0.7038   -0.0817   -1.5773   -1.4671    0.2053   -0.7931   -1.6201   -0.1737   -0.7762   -0.3063   -0.8771    1.5134   -0.4611   -0.0649
   -0.1910    0.0246   -0.3511    0.0097    0.3160   -0.0693    0.2270   -0.0783   -0.1626   -0.3478    0.2765    0.4179    0.0727   -0.0314   -0.1798   -0.0583    0.1375   -0.1876    0.2518    0.2137    0.1497    0.0395    0.2859   -0.0905    0.4325   -0.2012    0.0388   -0.1441   -0.1431   -0.0249   -0.2200    0.0860   -0.2076    0.0132    0.1737
   -0.0415   -0.0059   -0.0753   -0.1477   -0.1621   -0.1762    0.2164    0.1710   -0.0610   -0.1402    0.1452    0.2890    0.2872   -0.2616   -0.4204   -0.2831   -0.1901    0.0036    0.0781   -0.0826    0.1588   -0.2782    0.2510   -0.1069   -0.2692    0.2306    0.2521    0.0306    0.2524   -0.4218    0.2478    0.2343   -0.1031    0.1037    0.1598
    1.1848    1.6142   -0.1352    0.5774    0.5491    0.0103    0.0209    0.7219   -0.8643   -0.5578    1.3595    1.5385    1.0015    0.7416   -0.4342    0.2279    0.5667    1.1589    0.7100    0.1823    0.4171    0.7051    0.0794    1.3267    1.2659    0.3197    0.3947    0.3436   -0.1415    0.6607    1.0071    0.7726   -0.2840    0.8801    0.0848
    0.2486   -0.2920   -0.0004    0.2806    0.2987   -0.2709    0.1473   -0.2580   -0.0499   -0.0755    0.2000    0.1535   -0.0285   -0.0520   -0.2523   -0.2505   -0.0437   -0.2323    0.2023    0.2061   -0.1365    0.0744    0.0344   -0.2891    0.2341   -0.1556    0.1459    0.2533   -0.0583    0.0243   -0.2949   -0.1530    0.1546   -0.0340   -0.1562
   -0.0516    0.0640    0.1824   -0.0675   -0.2065   -0.0052   -0.1682   -0.1520    0.0060    0.0450    0.0813   -0.0234    0.0657    0.3219   -0.1871    0.0658   -0.2103    0.0060   -0.2831   -0.1811   -0.0988    0.2378   -0.0761    0.1714   -0.1596   -0.0011    0.0609    0.4003    0.3687   -0.2879    0.0910    0.0604   -0.2222   -0.2735   -0.1155
   -0.6192   -0.7804   -0.0506   -0.4205   -0.2584   -0.2020   -0.0008    0.0534    1.0185   -0.0307   -0.0539   -0.2020    0.0368   -0.1847    0.0886   -0.4086   -0.4648   -0.3785    0.1542   -0.5176   -0.3207    0.1893   -0.0313   -0.5297   -0.1261   -0.2749   -0.6152   -0.5914   -0.3089    0.2432   -0.3955   -0.1711    0.1710   -0.4477    0.0718
    0.5049   -0.1362   -0.2218    0.1637   -0.1282   -0.1008    0.1445    0.4527   -0.4887    0.0503    0.1453    0.1316   -0.3311   -0.1081   -0.7699    0.4062   -0.1105   -0.0855    0.0630   -0.1469   -0.2533    0.3976    0.0418    0.5294    0.3982    0.1027   -0.0973   -0.1282    0.2491    0.0425    0.0533    0.1578   -0.8403   -0.0535   -0.0048
    1.1109   -0.0466    0.4044    0.6366    0.1863    0.5660    0.2839    0.8793   -0.5497    0.0057    0.3468    0.0980    0.3364    0.4669    0.1466    0.7883   -0.1743    0.4444    0.4535    0.1521    0.7476    0.2246    0.4473    0.2829    0.8881    0.4666    0.6334    0.3105    0.9571    0.2808    0.6483    0.1180   -0.4558    1.2486    0.2453
      ⋮

Mdl.LayerBiases{2}

ans = 20×1

    0.6147
    0.1891
   -0.2767
   -0.2977
    1.3655
    0.0347
    0.1509
   -0.4839
   -0.3960
    0.9248
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      ⋮

The final fully connected layer has two outputs, one for each class in the response variable. The
number of layer outputs corresponds to the first dimension of the layer weights and layer biases.

size(Mdl.LayerWeights{end})

ans = 1×2

     2    20

size(Mdl.LayerBiases{end})

ans = 1×2

     2     1

To estimate the performance of the trained classifier, compute the test set classification error for Mdl.

testError = loss(Mdl,XTest,YTest, ...
    "LossFun","classiferror")

testError = 0.0774

accuracy = 1 - testError

accuracy = 0.9226

Mdl accurately classifies approximately 92% of the observations in the test set.

Version History
Introduced in R2021a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• The predict object function supports code generation.

For more information, see “Introduction to Code Generation” on page 34-2.

See Also
fitcnet | predict | loss | margin | edge | ClassificationPartitionedModel |
CompactClassificationNeuralNetwork

Topics
“Assess Neural Network Classifier Performance” on page 19-181
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ClassificationNeuralNetwork Predict
Classify observations using neural network classification model
Library: Statistics and Machine Learning Toolbox / Classification

Description
The ClassificationNeuralNetwork Predict block classifies observations using a neural network
classification object (ClassificationNeuralNetwork or
CompactClassificationNeuralNetwork) for multiclass classification.

Import a trained classification object into the block by specifying the name of a workspace variable
that contains the object. The input port x receives an observation (predictor data), and the output
port label returns a predicted class label for the observation. You can add an optional output port
score that returns predicted class scores or posterior probabilities.

Ports
Input

x — Predictor data
row vector | column vector

Predictor data, specified as a row or column vector of one observation.

Dependencies

The variables in x must have the same order as the predictor variables that trained the model
specified by Select trained machine learning model.
Data Types: single | double | half | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 |
uint64 | Boolean | fixed point

Output

label — Predicted class label
scalar

Predicted class label, returned as a scalar. The predicted class is the class that minimizes the
expected classification cost. For more details, see the “More About” on page 35-5798 section of the
predict function reference page.
Data Types: single | double | half | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 |
uint64 | Boolean | fixed point | enumerated

score — Predicted class scores or posterior probabilities
row vector
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Predicted class scores or posterior probabilities, returned as a row vector of size 1-by-k, where k is
the number of classes in the neural network model. The classification score Score(i) represents the
posterior probability that the observation in x belongs to class i.

To check the order of the classes, use the ClassNames property of the neural network model
specified by Select trained machine learning model.

Dependencies

To enable this port, select the check box for Add output port for predicted class scores
on the Main tab of the Block Parameters dialog box.
Data Types: single | double | half | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 |
uint64 | Boolean | fixed point

Parameters
Main

Select trained machine learning model — Neural network classification model

nnetMdl (default) | ClassificationNeuralNetwork object |
CompactClassificationNeuralNetwork object

Specify the name of a workspace variable that contains a ClassificationNeuralNetwork object
or CompactClassificationNeuralNetwork object.

When you train the model by using fitcnet, the following restrictions apply:

• The predictor data cannot include categorical predictors (logical, categorical, char,
string, or cell). If you supply training data in a table, the predictors must be numeric (double
or single). Also, you cannot use the CategoricalPredictors name-value argument. To
include categorical predictors in a model, preprocess the categorical predictors by using
dummyvar before fitting the model.

• The value of the 'ScoreTransform' name-value argument cannot be 'invlogit' or an
anonymous function.

Programmatic Use
Block Parameter: TrainedLearner
Type: workspace variable
Values: ClassificationNeuralNetwork object | CompactClassificationNeuralNetwork
object
Default: 'nnetMdl'

Add output port for predicted class scores — Add second output port for predicted
class scores

off (default) | on

Select the check box to include the second output port score in the ClassificationNeuralNetwork
Predict block.

Programmatic Use
Block Parameter: ShowOutputScore
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Type: character vector
Values: 'off' | 'on'
Default: 'off'

Data Types

Fixed-Point Operational Parameters

Integer rounding mode — Rounding mode for fixed-point operations

Floor (default) | Ceiling | Convergent | Nearest | Round | Simplest | Zero

Specify the rounding mode for fixed-point operations. For more information, see “Rounding” (Fixed-
Point Designer).

Block parameters always round to the nearest representable value. To control the rounding of a block
parameter, enter an expression into the mask field using a MATLAB rounding function.

Programmatic Use
Block Parameter: RndMeth
Type: character vector
Values: 'Ceiling' | 'Convergent' | 'Floor' | 'Nearest' | 'Round' | 'Simplest' |
'Zero'
Default: 'Floor'

Saturate on integer overflow — Method of overflow action

off (default) | on

Specify whether overflows saturate or wrap.

Action Rationale Impact on Overflows Example
Select this check
box (on).

Your model has possible
overflow, and you want
explicit saturation protection
in the generated code.

Overflows saturate to either
the minimum or maximum
value that the data type can
represent.

The maximum value that the
int8 (signed 8-bit integer)
data type can represent is
127. Any block operation
result greater than this
maximum value causes
overflow of the 8-bit integer.
With the check box selected,
the block output saturates at
127. Similarly, the block
output saturates at a
minimum output value of –
128.
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Action Rationale Impact on Overflows Example
Clear this check
box (off).

You want to optimize
efficiency of your generated
code.

You want to avoid
overspecifying how a block
handles out-of-range signals.
For more information, see
“Troubleshoot Signal Range
Errors” (Simulink).

Overflows wrap to the
appropriate value that the
data type can represent.

The maximum value that the
int8 (signed 8-bit integer)
data type can represent is
127. Any block operation
result greater than this
maximum value causes
overflow of the 8-bit integer.
With the check box cleared,
the software interprets the
value causing the overflow as
int8, which can produce an
unintended result. For
example, a block result of 130
(binary 1000 0010) expressed
as int8 is –126.

Programmatic Use
Block Parameter: SaturateOnIntegerOverflow
Type: character vector
Values: 'off' | 'on'
Default: 'off'

Lock output data type setting against changes by the fixed-point tools —
Prevention of fixed-point tools from overriding data type

off (default) | on

Select this parameter to prevent the fixed-point tools from overriding the data type you specify for
the block. For more information, see “Use Lock Output Data Type Setting” (Fixed-Point Designer).
Programmatic Use
Block Parameter: LockScale
Type: character vector
Values: 'off' | 'on'
Default: 'off'

Data Type

Label data type — Data type of label output

Inherit: Inherit via back propagation | Inherit: auto | double | single | half | int8
| uint8 | int16 | uint16 | int32 | uint32 | int64 | uint64 | boolean | fixdt(1,16) |
fixdt(1,16,0) | fixdt(1,16,2^0,0) | Enum: <class name> | <data type expression>

Specify the data type for the label output. The type can be inherited, specified as an enumerated data
type, or expressed as a data type object such as Simulink.NumericType.

When you select an inherited option, the software behaves as follows:

• Inherit: Inherit via back propagation (default for numeric and logical labels) —
Simulink automatically determines the Label data type of the block during data type propagation
(see “Data Type Propagation” (Simulink)). In this case, the block uses the data type of a
downstream block or signal object.

 ClassificationNeuralNetwork Predict

35-535



• Inherit: auto (default for nonnumeric labels) — The block uses an autodefined enumerated
data type variable. For example, suppose the workspace variable name specified by Select
trained machine learning model is myMdl, and the class labels are class 1 and class 2.
Then, the corresponding label values are myMdl_enumLabels.class_1 and
myMdl_enumLabels.class_2. The block converts the class labels to valid MATLAB identifiers by
using the matlab.lang.makeValidName function.

For more information about data types, see “Control Data Types of Signals” (Simulink).

Click the Show data type assistant button  to display the Data Type Assistant, which helps
you set the data type attributes. For more information, see “Specify Data Types Using Data Type
Assistant” (Simulink).

Dependencies

The supported data types depend on the labels used in the model specified by Select trained
machine learning model.

• If the model uses numeric or logical labels, the supported data types are Inherit: Inherit
via back propagation (default), double, single, half, int8, uint8, int16, uint16,
int32, uint32, int64, uint64, boolean, fixed point, and a data type object.

• If the model uses nonnumeric labels, the supported data types are Inherit: auto (default),
Enum: <class name>, and a data type object.

Programmatic Use
Block Parameter: LabelDataTypeStr
Type: character vector
Values: 'Inherit: Inherit via back propagation' | 'Inherit: auto' | 'double' |
'single' | 'half' | 'int8' | 'uint8' | 'int16' | 'uint16' | 'int32' | 'uint32' | 'int64' |
'uint64' | 'boolean' | 'fixdt(1,16)' | 'fixdt(1,16,0)' | 'fixdt(1,16,2^0,0)' | 'Enum:
<class name>' | '<data type expression>'
Default: 'Inherit: Inherit via back propagation' (for numeric and logical labels) |
'Inherit: auto' (for nonnumeric labels)

Label minimum — Minimum value of label output for range checking
[] (default) | scalar

Lower value of the label output range that Simulink checks.

Simulink uses the minimum value to perform:

• Parameter range checking for some blocks (see “Specify Minimum and Maximum Values for Block
Parameters” (Simulink)).

• Simulation range checking (see “Specify Signal Ranges” (Simulink) and “Enable Simulation Range
Checking” (Simulink)).

• Automatic scaling of fixed-point data types.
• Optimization of the code that you generate from the model. This optimization can remove

algorithmic code and affect the results of some simulation modes, such as SIL or external mode.
For more information, see Optimize using the specified minimum and maximum values (Embedded
Coder).
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Note The Label minimum parameter does not saturate or clip the actual label output signal. Use
the Saturation block instead.

Dependencies

You can specify this parameter only if the model specified by Select trained machine learning
model uses numeric labels.

Programmatic Use
Block Parameter: LabelOutMin
Type: character vector
Values: '[]' | scalar
Default: '[]'

Label maximum — Maximum value of label output for range checking
[] (default) | scalar

Upper value of the label output range that Simulink checks.

Simulink uses the maximum value to perform:

• Parameter range checking for some blocks (see “Specify Minimum and Maximum Values for Block
Parameters” (Simulink)).

• Simulation range checking (see “Specify Signal Ranges” (Simulink) and “Enable Simulation Range
Checking” (Simulink)).

• Automatic scaling of fixed-point data types.
• Optimization of the code that you generate from the model. This optimization can remove

algorithmic code and affect the results of some simulation modes, such as SIL or external mode.
For more information, see Optimize using the specified minimum and maximum values (Embedded
Coder).

Note The Label maximum parameter does not saturate or clip the actual label output signal. Use
the Saturation block instead.

Dependencies

You can specify this parameter only if the model specified by Select trained machine learning
model uses numeric labels.

Programmatic Use
Block Parameter: LabelOutMax
Type: character vector
Values: '[]' | scalar
Default: '[]'

Score data type — Data type of score output

Inherit: auto (default) | double | single | half | int8 | uint8 | int16 | uint16 | int32 |
uint32 | int64 | uint64 | boolean | fixdt(1,16) | fixdt(1,16,0) | fixdt(1,16,2^0,0) |
<data type expression>
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Specify the data type for the score output. The type can be inherited, specified directly, or expressed
as a data type object such as Simulink.NumericType.

When you select Inherit: auto, the block uses a rule that inherits a data type.

For more information about data types, see “Control Data Types of Signals” (Simulink).

Click the Show data type assistant button  to display the Data Type Assistant, which helps
you set the data type attributes. For more information, see “Specify Data Types Using Data Type
Assistant” (Simulink).

Programmatic Use
Block Parameter: ScoreDataTypeStr
Type: character vector
Values: 'Inherit: auto' | 'double' | 'single' | 'half' | 'int8' | 'uint8' | 'int16' |
'uint16' | 'int32' | 'uint32' | 'int64' | 'uint64' | 'boolean' | 'fixdt(1,16)' |
'fixdt(1,16,0)' | 'fixdt(1,16,2^0,0)' | '<data type expression>'
Default: 'Inherit: auto'

Score minimum — Minimum value of score output for range checking
[] (default) | scalar

Lower value of the score output range that Simulink checks.

Simulink uses the minimum value to perform:

• Parameter range checking for some blocks (see “Specify Minimum and Maximum Values for Block
Parameters” (Simulink)).

• Simulation range checking (see “Specify Signal Ranges” (Simulink) and “Enable Simulation Range
Checking” (Simulink)).

• Automatic scaling of fixed-point data types.
• Optimization of the code that you generate from the model. This optimization can remove

algorithmic code and affect the results of some simulation modes, such as SIL or external mode.
For more information, see Optimize using the specified minimum and maximum values (Embedded
Coder).

Note The Score minimum parameter does not saturate or clip the actual score signal. Use the
Saturation block instead.

Programmatic Use
Block Parameter: ScoreOutMin
Type: character vector
Values: '[]' | scalar
Default: '[]'

Score maximum — Maximum value of score output for range checking
[] (default) | scalar

Upper value of the score output range that Simulink checks.

Simulink uses the maximum value to perform:
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• Parameter range checking for some blocks (see “Specify Minimum and Maximum Values for Block
Parameters” (Simulink)).

• Simulation range checking (see “Specify Signal Ranges” (Simulink) and “Enable Simulation Range
Checking” (Simulink)).

• Automatic scaling of fixed-point data types.
• Optimization of the code that you generate from the model. This optimization can remove

algorithmic code and affect the results of some simulation modes, such as SIL or external mode.
For more information, see Optimize using the specified minimum and maximum values (Embedded
Coder).

Note The Score maximum parameter does not saturate or clip the actual score signal. Use the
Saturation block instead.

Programmatic Use
Block Parameter: ScoreOutMax
Type: character vector
Values: '[]' | scalar
Default: '[]'

Raw score data type — Untransformed score data type

Inherit: auto (default) | double | single | half | int8 | uint8 | int16 | uint16 | int32 |
uint32 | int64 | uint64 | boolean | fixdt(1,16) | fixdt(1,16,0) | fixdt(1,16,2^0,0) |
<data type expression>

Specify the data type for the internal untransformed scores. The type can be inherited, specified
directly, or expressed as a data type object such as Simulink.NumericType.

When you select Inherit: auto, the block uses a rule that inherits a data type.

For more information about data types, see “Control Data Types of Signals” (Simulink).

Click the Show data type assistant button  to display the Data Type Assistant, which helps
you set the data type attributes. For more information, see “Specify Data Types Using Data Type
Assistant” (Simulink).

Dependencies

You can specify this parameter only if the model specified by Select trained machine learning
model uses a score transformation other than 'none' (default, same as 'identity').

• If the model uses no score transformations ('none' or 'identity'), then you can specify the
score data type by using Score data type.

• If the model uses a score transformation other than 'none' or 'identity', then you can specify
the data type of untransformed raw scores by using this parameter and specify the data type of
transformed scores by using Score data type.

You can change the score transformation option by specifying the 'ScoreTransform' name-value
argument during training, or by changing the ScoreTransform property after training.
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Programmatic Use
Block Parameter: RawScoreDataTypeStr
Type: character vector
Values: 'Inherit: auto' | 'double' | 'single' | 'half' | 'int8' | 'uint8' | 'int16' |
'uint16' | 'int32' | 'uint32' | 'int64' | 'uint64' | 'boolean' | 'fixdt(1,16)' |
'fixdt(1,16,0)' | 'fixdt(1,16,2^0,0)' | '<data type expression>'
Default: 'Inherit: auto'

Raw score minimum — Minimum untransformed score for range checking
[] (default) | scalar

Lower value of the untransformed score range that Simulink checks.

Simulink uses the minimum value to perform:

• Parameter range checking for some blocks (see “Specify Minimum and Maximum Values for Block
Parameters” (Simulink)).

• Simulation range checking (see “Specify Signal Ranges” (Simulink) and “Enable Simulation Range
Checking” (Simulink)).

• Automatic scaling of fixed-point data types.
• Optimization of the code that you generate from the model. This optimization can remove

algorithmic code and affect the results of some simulation modes, such as SIL or external mode.
For more information, see Optimize using the specified minimum and maximum values (Embedded
Coder).

Note The Raw score minimum parameter does not saturate or clip the actual untransformed score
signal.

Programmatic Use
Block Parameter: RawScoreOutMin
Type: character vector
Values: '[]' | scalar
Default: '[]'

Raw score maximum — Maximum untransformed score for range checking
[] (default) | scalar

Upper value of the untransformed score range that Simulink checks.

Simulink uses the maximum value to perform:

• Parameter range checking for some blocks (see “Specify Minimum and Maximum Values for Block
Parameters” (Simulink)).

• Simulation range checking (see “Specify Signal Ranges” (Simulink) and “Enable Simulation Range
Checking” (Simulink)).

• Automatic scaling of fixed-point data types.
• Optimization of the code that you generate from the model. This optimization can remove

algorithmic code and affect the results of some simulation modes, such as SIL or external mode.
For more information, see Optimize using the specified minimum and maximum values (Embedded
Coder).
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Note The Raw score maximum parameter does not saturate or clip the actual untransformed score
signal.

Programmatic Use
Block Parameter: RawScoreOutMax
Type: character vector
Values: '[]' | scalar
Default: '[]'

Output layer data type — Data type of final fully connected layer

Inherit: Inherit via internal rule (default) | double | single | half | int8 | uint8 |
int16 | uint16 | int32 | uint32 | int64 | uint64 | boolean | fixdt(1,16) | fixdt(1,16,0) |
fixdt(1,16,2^0,0) | <data type expression>

Specify the data type for the output layer. The type can be inherited, specified directly, or expressed
as a data type object such as Simulink.NumericType.

When you select Inherit: Inherit via internal rule, the block uses an internal rule to
determine the output data type. The internal rule chooses a data type that optimizes numerical
accuracy, performance, and generated code size, while taking into account the properties of the
embedded target hardware. The software cannot always optimize efficiency and numerical accuracy
at the same time.

For more information about data types, see “Control Data Types of Signals” (Simulink).

Click the Show data type assistant button  to display the Data Type Assistant, which helps
you set the data type attributes. For more information, see “Specify Data Types Using Data Type
Assistant” (Simulink).
Programmatic Use
Block Parameter: OutputLayerDataTypeStr
Type: character vector
Values: 'Inherit: Inherit via internal rule' | 'double' | 'single' | 'half' | 'int8' |
'uint8' | 'int16' | 'uint16' | 'int32' | 'uint32' | 'int64' | 'uint64' | 'boolean' |
'fixdt(1,16)' | 'fixdt(1,16,0)' | 'fixdt(1,16,2^0,0)' | '<data type expression>'
Default: 'Inherit: Inherit via internal rule'

Output layer minimum — Minimum value for final fully connected layer
[] (default) | scalar

Lower value of the output layer's internal variable range checked by Simulink.

Simulink uses the minimum value to perform:

• Parameter range checking for some blocks (see “Specify Minimum and Maximum Values for Block
Parameters” (Simulink)).

• Simulation range checking (see “Specify Signal Ranges” (Simulink) and “Enable Simulation Range
Checking” (Simulink)).

• Automatic scaling of fixed-point data types.
• Optimization of the code that you generate from the model. This optimization can remove

algorithmic code and affect the results of some simulation modes, such as SIL or external mode.
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For more information, see Optimize using the specified minimum and maximum values (Embedded
Coder).

Note The Output layer minimum parameter does not saturate or clip the output layer value signal.

Programmatic Use
Block Parameter: OutputLayerOutMin
Type: character vector
Values: '[]' | scalar
Default: '[]'

Output layer maximum — Maximum value for final fully connected layer
[] (default) | scalar

Upper value of the output layer's internal variable range checked by Simulink.

Simulink uses the maximum value to perform:

• Parameter range checking for some blocks (see “Specify Minimum and Maximum Values for Block
Parameters” (Simulink)).

• Simulation range checking (see “Specify Signal Ranges” (Simulink) and “Enable Simulation Range
Checking” (Simulink)).

• Automatic scaling of fixed-point data types.
• Optimization of the code that you generate from the model. This optimization can remove

algorithmic code and affect the results of some simulation modes, such as SIL or external mode.
For more information, see Optimize using the specified minimum and maximum values (Embedded
Coder).

Note The Output layer maximum parameter does not saturate or clip the output layer value signal.

Programmatic Use
Block Parameter: OutputLayerOutMax
Type: character vector
Values: '[]' | scalar
Default: '[]'

Layer 1 data type — Data type of first fully connected layer

Inherit: Inherit via internal rule (default) | double | single | half | int8 | uint8 |
int16 | uint16 | int32 | uint32 | int64 | uint64 | boolean | fixdt(1,16) | fixdt(1,16,0) |
fixdt(1,16,2^0,0) | <data type expression>

Specify the data type for the first layer. The type can be inherited, specified directly, or expressed as a
data type object such as Simulink.NumericType.

When you select Inherit: Inherit via internal rule, the block uses an internal rule to
determine the data type. The internal rule chooses a data type that optimizes numerical accuracy,
performance, and generated code size, while taking into account the properties of the embedded
target hardware. The software cannot always optimize efficiency and numerical accuracy at the same
time.
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For more information about data types, see “Control Data Types of Signals” (Simulink).

Click the Show data type assistant button  to display the Data Type Assistant, which helps
you set the data type attributes. For more information, see “Specify Data Types Using Data Type
Assistant” (Simulink).

Tips

A trained neural network can have more than one fully connected layer, excluding the output layer.

• You can specify the data type for each individual layer for the first 10 layers. Specify the data type
Layer n data type for each layer. The data type of the first layer is Layer 1 data type, the data
type of the second layer is Layer 2 data type, and so on.

• You can specify the data type for layers 11 to k, where k is the total number of layers, by using the
data type Additional layer(s) data type. The Block Parameter for Additional layer(s) data
type is Layer11DataTypeStr.

• The data types Layer n data type and Additional layer(s) data type can be inherited, specified
directly, or expressed as a data type object such as Simulink.NumericType. These data types
support the same values as Layer 1 data type.

Programmatic Use
Block Parameter: Layer1DataTypeStr
Type: character vector
Values: 'Inherit: Inherit via internal rule' | 'double' | 'single' | 'half' | 'int8' |
'uint8' | 'int16' | 'uint16' | 'int32' | 'uint32' | 'int64' | 'uint64' | 'boolean' |
'fixdt(1,16)' | 'fixdt(1,16,0)' | 'fixdt(1,16,2^0,0)' | '<data type expression>'
Default: 'Inherit: Inherit via internal rule'

Layer 1 minimum — Minimum value for first fully connected layer
[] (default) | scalar

Lower value of the first layer's internal variable range checked by Simulink.

Simulink uses the minimum value to perform:

• Parameter range checking for some blocks (see “Specify Minimum and Maximum Values for Block
Parameters” (Simulink)).

• Simulation range checking (see “Specify Signal Ranges” (Simulink) and “Enable Simulation Range
Checking” (Simulink)).

• Automatic scaling of fixed-point data types.
• Optimization of the code that you generate from the model. This optimization can remove

algorithmic code and affect the results of some simulation modes, such as SIL or external mode.
For more information, see Optimize using the specified minimum and maximum values (Embedded
Coder).

Note The Layer 1 minimum parameter does not saturate or clip the first layer value signal.

Tips

A trained neural network can have more than one fully connected layer, excluding the output layer.
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• You can specify the lower value of each individual layer's internal variable range checked by
Simulink for the first 10 layers. Specify the lower value Layer n minimum for each layer. The
minimum value of the first layer is Layer 1 minimum, the minimum value of the second layer is
Layer 2 minimum, and so on.

• You can specify the lower value for layers 11 to k, where k is the total number of layers, by using
Additional layer(s) minimum. The Block Parameter for Additional layer(s) minimum is
Layer11OutMin.

• Layer n minimum and Additional layer(s) minimum support the same values as Layer 1
minimum.

Programmatic Use
Block Parameter: Layer1OutMin
Type: character vector
Values: '[]' | scalar
Default: '[]'

Layer 1 maximum — Maximum value for first fully connected layer
[] (default) | scalar

Upper value of the first layer's internal variable range checked by Simulink.

Simulink uses the maximum value to perform:

• Parameter range checking for some blocks (see “Specify Minimum and Maximum Values for Block
Parameters” (Simulink)).

• Simulation range checking (see “Specify Signal Ranges” (Simulink) and “Enable Simulation Range
Checking” (Simulink)).

• Automatic scaling of fixed-point data types.
• Optimization of the code that you generate from the model. This optimization can remove

algorithmic code and affect the results of some simulation modes, such as SIL or external mode.
For more information, see Optimize using the specified minimum and maximum values (Embedded
Coder).

Note The Layer 1 maximum parameter does not saturate or clip the first layer value signal.

Tips

A trained neural network can have more than one fully connected layer, excluding the output layer.

• You can specify the upper value of each individual layer's internal variable range checked by
Simulink for the first 10 layers. Specify the upper value Layer n maximum for each layer. The
maximum value of the first layer is Layer 1 maximum, the maximum value of the second layer is
Layer 2 maximum, and so on.

• You can specify the upper value for layers 11 to k, where k is the total number of layers, by using
Additional layer(s) maximum. The Block Parameter for Additional layer(s) maximum is
Layer11OutMax.

• Layer n maximum and Additional layer(s) maximum support the same values as Layer 1
maximum.
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Programmatic Use
Block Parameter: Layer1OutMax
Type: character vector
Values: '[]' | scalar
Default: '[]'

Block Characteristics
Data Types Boolean | double | enumerated | fixed point | half | integer |

single
Direct Feedthrough yes
Multidimensional
Signals

no

Variable-Size Signals no
Zero-Crossing
Detection

no

Alternative Functionality
You can use a MATLAB Function block with the predict object function of a neural network
classification object (ClassificationNeuralNetwork or
CompactClassificationNeuralNetwork). For an example, see “Predict Class Labels Using
MATLAB Function Block” on page 34-51.

When deciding whether to use the ClassificationNeuralNetwork Predict block in the Statistics and
Machine Learning Toolbox library or a MATLAB Function block with the predict function, consider
the following:

• If you use the Statistics and Machine Learning Toolbox library block, you can use the Fixed-Point
Tool to convert a floating-point model to fixed point.

• Support for variable-size arrays must be enabled for a MATLAB Function block with the predict
function.

• If you use a MATLAB Function block, you can use MATLAB functions for preprocessing or post-
processing before or after predictions in the same MATLAB Function block.

Version History
Introduced in R2021b

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

Fixed-Point Conversion
Design and simulate fixed-point systems using Fixed-Point Designer™.
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See Also
Blocks
ClassificationSVM Predict | ClassificationEnsemble Predict | ClassificationTree Predict |
RegressionNeuralNetwork Predict

Objects
ClassificationNeuralNetwork | CompactClassificationNeuralNetwork

Functions
predict | fitcnet

Topics
“Predict Class Labels Using ClassificationSVM Predict Block” on page 34-123
“Predict Class Labels Using ClassificationEnsemble Predict Block” on page 34-142
“Predict Class Labels Using ClassificationTree Predict Block” on page 34-133
“Predict Class Labels Using MATLAB Function Block” on page 34-51
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ClassificationPartitionedECOC
Cross-validated multiclass ECOC model for support vector machines (SVMs) and other classifiers

Description
ClassificationPartitionedECOC is a set of error-correcting output codes (ECOC) models
trained on cross-validated folds. Estimate the quality of the cross-validated classification by using one
or more “kfold” functions: kfoldPredict, kfoldLoss, kfoldMargin, kfoldEdge, and kfoldfun.

Every “kfold” method uses models trained on training-fold (in-fold) observations to predict the
response for validation-fold (out-of-fold) observations. For example, suppose you cross-validate using
five folds. In this case, the software randomly assigns each observation into five groups of equal size
(roughly). The training fold contains four of the groups (roughly 4/5 of the data), and the validation
fold contains the other group (roughly 1/5 of the data). In this case, cross-validation proceeds as
follows:

1 The software trains the first model (stored in CVMdl.Trained{1}) by using the observations in
the last four groups and reserves the observations in the first group for validation.

2 The software trains the second model (stored in CVMdl.Trained{2}) by using the observations
in the first group and the last three groups. The software reserves the observations in the second
group for validation.

3 The software proceeds in a similar fashion for the third, fourth, and fifth models.

If you validate by using kfoldPredict, the software computes predictions for the observations in
group i by using the ith model. In short, the software estimates a response for every observation by
using the model trained without that observation.

Creation
You can create a ClassificationPartitionedECOC model in two ways:

• Create a cross-validated ECOC model from an ECOC model by using the crossval object
function.

• Create a cross-validated ECOC model by using the fitcecoc function and specifying one of the
name-value pair arguments 'CrossVal', 'CVPartition', 'Holdout', 'KFold', or
'Leaveout'.

Properties
Cross-Validation Properties

CrossValidatedModel — Cross-validated model name
character vector

Cross-validated model name, specified as a character vector.

For example, 'ECOC' specifies a cross-validated ECOC model.
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Data Types: char

KFold — Number of cross-validated folds
positive integer

Number of cross-validated folds, specified as a positive integer.
Data Types: double

ModelParameters — Cross-validation parameter values
object

Cross-validation parameter values, specified as an object. The parameter values correspond to the
name-value pair argument values used to cross-validate the ECOC classifier. ModelParameters does
not contain estimated parameters.

You can access the properties of ModelParameters using dot notation.

NumObservations — Number of observations
positive numeric scalar

Number of observations in the training data, specified as a positive numeric scalar.
Data Types: double

Partition — Data partition
cvpartition model

Data partition indicating how the software splits the data into cross-validation folds, specified as a
cvpartition model.

Trained — Compact classifiers trained on cross-validation folds
cell array of CompactClassificationECOC models

Compact classifiers trained on cross-validation folds, specified as a cell array of
CompactClassificationECOC models. Trained has k cells, where k is the number of folds.
Data Types: cell

W — Observation weights
numeric vector

Observation weights used to cross-validate the model, specified as a numeric vector. W has
NumObservations elements.

The software normalizes the weights used for training so that sum(W,'omitnan') is 1.
Data Types: single | double

X — Unstandardized predictor data
numeric matrix | table

Unstandardized predictor data used to cross-validate the classifier, specified as a numeric matrix or
table.

Each row of X corresponds to one observation, and each column corresponds to one variable.
Data Types: single | double | table
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Y — Observed class labels
categorical array | character array | logical vector | numeric vector | cell array of character vectors

Observed class labels used to cross-validate the model, specified as a categorical or character array,
logical or numeric vector, or cell array of character vectors. Y has NumObservations elements and
has the same data type as the input argument Y that you pass to fitcecoc to cross-validate the
model. (The software treats string arrays as cell arrays of character vectors.)

Each row of Y represents the observed classification of the corresponding row of X.
Data Types: categorical | char | logical | single | double | cell

ECOC Properties

BinaryLoss — Binary learner loss function
'binodeviance' | 'exponential' | 'hamming' | 'hinge' | 'linear' | 'logit' | 'quadratic'

Binary learner loss function, specified as a character vector representing the loss function name.

The default BinaryLoss value depends on the score ranges returned by the binary learners. This
table identifies what some default BinaryLoss values are when you use the default score transform
(ScoreTransform property of the model is 'none').

Assumption Default Value
All binary learners are any of the following:

• Classification decision trees
• Discriminant analysis models
• k-nearest neighbor models
• Naive Bayes models

'quadratic'

All binary learners are SVMs. 'hinge'
All binary learners are ensembles trained by AdaboostM1 or
GentleBoost.

'exponential'

All binary learners are ensembles trained by LogitBoost. 'binodeviance'
You specify to predict class posterior probabilities by setting
'FitPosterior',true in fitcecoc.

'quadratic'

Binary learners are heterogeneous and use different loss functions. 'hamming'

To check the default value, use dot notation to display the BinaryLoss property of the trained model
at the command line.

To potentially increase accuracy, specify a binary loss function other than the default during a
prediction or loss computation by using the BinaryLoss name-value argument of kfoldPredict or
kfoldLoss. For more information, see “Binary Loss” on page 35-3945.
Data Types: char

BinaryY — Binary learner class labels
numeric matrix | []

Binary learner class labels, specified as a numeric matrix or [].
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• If the coding matrix is the same across all folds, then BinaryY is a NumObservations-by-L
matrix, where L is the number of binary learners (size(CodingMatrix,2)).

The elements of BinaryY are –1, 0, and 1, and the values correspond to dichotomous class
assignments. This table describes how learner j assigns observation k to a dichotomous class
corresponding to the value of BinaryY(k,j).

Value Dichotomous Class Assignment
–1 Learner j assigns observation k to a negative

class.
0 Before training, learner j removes

observation k from the data set.
1 Learner j assigns observation k to a positive

class.

• If the coding matrix varies across folds, then BinaryY is empty ([]).

Data Types: double

CodingMatrix — Codes specifying class assignments
numeric matrix | []

Codes specifying class assignments for the binary learners, specified as a numeric matrix or [].

• If the coding matrix is the same across all folds, then CodingMatrix is a K-by-L matrix, where K
is the number of classes and L is the number of binary learners.

The elements of CodingMatrix are –1, 0, and 1, and the values correspond to dichotomous class
assignments. This table describes how learner j assigns observations in class i to a dichotomous
class corresponding to the value of CodingMatrix(i,j).

Value Dichotomous Class Assignment
–1 Learner j assigns observations in class i to a negative class.
0 Before training, learner j removes observations in class i

from the data set.
1 Learner j assigns observations in class i to a positive class.

• If the coding matrix varies across folds, then CodingMatrix is empty ([]). You can obtain the
coding matrix for each fold by using the Trained property. For example,
CVMdl.Trained{1}.CodingMatrix is the coding matrix in the first fold of the cross-validated
ECOC model CVMdl.

Data Types: double | single | int8 | int16 | int32 | int64

Other Classification Properties

CategoricalPredictors — Categorical predictor indices
vector of positive integers | []

Categorical predictor indices, specified as a vector of positive integers. CategoricalPredictors
contains index values indicating that the corresponding predictors are categorical. The index values
are between 1 and p, where p is the number of predictors used to train the model. If none of the
predictors are categorical, then this property is empty ([]).
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Data Types: single | double

ClassNames — Unique class labels
categorical array | character array | logical vector | numeric vector | cell array of character vectors

Unique class labels used in training, specified as a categorical or character array, logical or numeric
vector, or cell array of character vectors. ClassNames has the same data type as the class labels Y.
(The software treats string arrays as cell arrays of character vectors.) ClassNames also determines
the class order.
Data Types: categorical | char | logical | single | double | cell

Cost — Misclassification costs
square numeric matrix

This property is read-only.

Misclassification costs, specified as a square numeric matrix. Cost has K rows and columns, where K
is the number of classes.

Cost(i,j) is the cost of classifying a point into class j if its true class is i. The order of the rows
and columns of Cost corresponds to the order of the classes in ClassNames.
Data Types: double

PredictorNames — Predictor names
cell array of character vectors

Predictor names in order of their appearance in the predictor data X, specified as a cell array of
character vectors. The length of PredictorNames is equal to the number of columns in X.
Data Types: cell

Prior — Prior class probabilities
numeric vector

This property is read-only.

Prior class probabilities, specified as a numeric vector. Prior has as many elements as the number of
classes in ClassNames, and the order of the elements corresponds to the order of the classes in
ClassNames.

fitcecoc incorporates misclassification costs differently among different types of binary learners.
Data Types: double

ResponseName — Response variable name
character vector

Response variable name, specified as a character vector.
Data Types: char

ScoreTransform — Score transformation function to apply to predicted scores
'doublelogit' | 'invlogit' | 'ismax' | 'logit' | 'none' | function handle | ...

Score transformation function to apply to predicted scores, specified as a function name or function
handle.
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To change the score transformation function to function, for example, use dot notation.

• For a built-in function, enter this code and replace function with a value in the table.

Mdl.ScoreTransform = 'function';

Value Description
"doublelogit" 1/(1 + e–2x)
"invlogit" log(x / (1 – x))
"ismax" Sets the score for the class with the largest score to

1, and sets the scores for all other classes to 0
"logit" 1/(1 + e–x)
"none" or "identity" x (no transformation)
"sign" –1 for x < 0

0 for x = 0
1 for x > 0

"symmetric" 2x – 1
"symmetricismax" Sets the score for the class with the largest score to

1, and sets the scores for all other classes to –1
"symmetriclogit" 2/(1 + e–x) – 1

• For a MATLAB function or a function that you define, enter its function handle.

Mdl.ScoreTransform = @function;

function must accept a matrix (the original scores) and return a matrix of the same size (the
transformed scores).

Data Types: char | function_handle

Object Functions
gather Gather properties of Statistics and Machine Learning Toolbox object from GPU
kfoldEdge Classification edge for cross-validated ECOC model
kfoldLoss Classification loss for cross-validated ECOC model
kfoldMargin Classification margins for cross-validated ECOC model
kfoldPredict Classify observations in cross-validated ECOC model
kfoldfun Cross-validate function using cross-validated ECOC model

Examples

Cross-Validate ECOC Classifier

Cross-validate an ECOC classifier with SVM binary learners, and estimate the generalized
classification error.

Load Fisher's iris data set. Specify the predictor data X and the response data Y.

load fisheriris
X = meas;
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Y = species;
rng(1); % For reproducibility

Create an SVM template, and standardize the predictors.

t = templateSVM('Standardize',true)

t = 
Fit template for classification SVM.

                     Alpha: [0x1 double]
             BoxConstraint: []
                 CacheSize: []
             CachingMethod: ''
                ClipAlphas: []
    DeltaGradientTolerance: []
                   Epsilon: []
              GapTolerance: []
              KKTTolerance: []
            IterationLimit: []
            KernelFunction: ''
               KernelScale: []
              KernelOffset: []
     KernelPolynomialOrder: []
                  NumPrint: []
                        Nu: []
           OutlierFraction: []
          RemoveDuplicates: []
           ShrinkagePeriod: []
                    Solver: ''
           StandardizeData: 1
        SaveSupportVectors: []
            VerbosityLevel: []
                   Version: 2
                    Method: 'SVM'
                      Type: 'classification'

t is an SVM template. Most of the template object properties are empty. When training the ECOC
classifier, the software sets the applicable properties to their default values.

Train the ECOC classifier, and specify the class order.

Mdl = fitcecoc(X,Y,'Learners',t,...
    'ClassNames',{'setosa','versicolor','virginica'});

Mdl is a ClassificationECOC classifier. You can access its properties using dot notation.

Cross-validate Mdl using 10-fold cross-validation.

CVMdl = crossval(Mdl);

CVMdl is a ClassificationPartitionedECOC cross-validated ECOC classifier.

Estimate the generalized classification error.

genError = kfoldLoss(CVMdl)

genError = 0.0400
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The generalized classification error is 4%, which indicates that the ECOC classifier generalizes fairly
well.

Speed Up Training ECOC Classifiers Using Binning and Parallel Computing

Train a one-versus-all ECOC classifier using a GentleBoost ensemble of decision trees with
surrogate splits. To speed up training, bin numeric predictors and use parallel computing. Binning is
valid only when fitcecoc uses a tree learner. After training, estimate the classification error using
10-fold cross-validation. Note that parallel computing requires Parallel Computing Toolbox™.

Load Sample Data

Load and inspect the arrhythmia data set.

load arrhythmia
[n,p] = size(X)

n = 452

p = 279

isLabels = unique(Y);
nLabels = numel(isLabels)

nLabels = 13

tabulate(categorical(Y))

  Value    Count   Percent
      1      245     54.20%
      2       44      9.73%
      3       15      3.32%
      4       15      3.32%
      5       13      2.88%
      6       25      5.53%
      7        3      0.66%
      8        2      0.44%
      9        9      1.99%
     10       50     11.06%
     14        4      0.88%
     15        5      1.11%
     16       22      4.87%

The data set contains 279 predictors, and the sample size of 452 is relatively small. Of the 16 distinct
labels, only 13 are represented in the response (Y). Each label describes various degrees of
arrhythmia, and 54.20% of the observations are in class 1.

Train One-Versus-All ECOC Classifier

Create an ensemble template. You must specify at least three arguments: a method, a number of
learners, and the type of learner. For this example, specify 'GentleBoost' for the method, 100 for
the number of learners, and a decision tree template that uses surrogate splits because there are
missing observations.

tTree = templateTree('surrogate','on');
tEnsemble = templateEnsemble('GentleBoost',100,tTree);
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tEnsemble is a template object. Most of its properties are empty, but the software fills them with
their default values during training.

Train a one-versus-all ECOC classifier using the ensembles of decision trees as binary learners. To
speed up training, use binning and parallel computing.

• Binning ('NumBins',50) — When you have a large training data set, you can speed up training (a
potential decrease in accuracy) by using the 'NumBins' name-value pair argument. This
argument is valid only when fitcecoc uses a tree learner. If you specify the 'NumBins' value,
then the software bins every numeric predictor into a specified number of equiprobable bins, and
then grows trees on the bin indices instead of the original data. You can try 'NumBins',50 first,
and then change the 'NumBins' value depending on the accuracy and training speed.

• Parallel computing ('Options',statset('UseParallel',true)) — With a Parallel
Computing Toolbox license, you can speed up the computation by using parallel computing, which
sends each binary learner to a worker in the pool. The number of workers depends on your system
configuration. When you use decision trees for binary learners, fitcecoc parallelizes training
using Intel® Threading Building Blocks (TBB) for dual-core systems and above. Therefore,
specifying the 'UseParallel' option is not helpful on a single computer. Use this option on a
cluster.

Additionally, specify that the prior probabilities are 1/K, where K = 13 is the number of distinct
classes.

options = statset('UseParallel',true);
Mdl = fitcecoc(X,Y,'Coding','onevsall','Learners',tEnsemble,...
                'Prior','uniform','NumBins',50,'Options',options);

Starting parallel pool (parpool) using the 'local' profile ...
Connected to the parallel pool (number of workers: 6).

Mdl is a ClassificationECOC model.

Cross-Validation

Cross-validate the ECOC classifier using 10-fold cross-validation.

CVMdl = crossval(Mdl,'Options',options);

Warning: One or more folds do not contain points from all the groups.

CVMdl is a ClassificationPartitionedECOC model. The warning indicates that some classes are
not represented while the software trains at least one fold. Therefore, those folds cannot predict
labels for the missing classes. You can inspect the results of a fold using cell indexing and dot
notation. For example, access the results of the first fold by entering CVMdl.Trained{1}.

Use the cross-validated ECOC classifier to predict validation-fold labels. You can compute the
confusion matrix by using confusionchart. Move and resize the chart by changing the inner
position property to ensure that the percentages appear in the row summary.

oofLabel = kfoldPredict(CVMdl,'Options',options);
ConfMat = confusionchart(Y,oofLabel,'RowSummary','total-normalized');
ConfMat.InnerPosition = [0.10 0.12 0.85 0.85];
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Reproduce Binned Data

Reproduce binned predictor data by using the BinEdges property of the trained model and the
discretize function.

X = Mdl.X; % Predictor data
Xbinned = zeros(size(X));
edges = Mdl.BinEdges;
% Find indices of binned predictors.
idxNumeric = find(~cellfun(@isempty,edges));
if iscolumn(idxNumeric)
    idxNumeric = idxNumeric';
end
for j = idxNumeric 
    x = X(:,j);
    % Convert x to array if x is a table.
    if istable(x)
        x = table2array(x);
    end
    % Group x into bins by using the discretize function.
    xbinned = discretize(x,[-inf; edges{j}; inf]);
    Xbinned(:,j) = xbinned;
end
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Xbinned contains the bin indices, ranging from 1 to the number of bins, for numeric predictors.
Xbinned values are 0 for categorical predictors. If X contains NaNs, then the corresponding Xbinned
values are NaNs.

Version History
Introduced in R2014b

Extended Capabilities
GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

Usage notes and limitations:

• The object functions of the ClassificationPartitionedECOC model fully support GPU arrays.

For more information, see “Run MATLAB Functions on a GPU” (Parallel Computing Toolbox).

See Also
cvpartition | crossval | fitcecoc | ClassificationECOC | CompactClassificationECOC
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ClassificationPartitionedEnsemble
Package: classreg.learning.partition
Superclasses: ClassificationPartitionedModel

Cross-validated classification ensemble

Description
ClassificationPartitionedEnsemble is a set of classification ensembles trained on cross-
validated folds. Estimate the quality of classification by cross validation using one or more “kfold”
methods: kfoldPredict, kfoldLoss, kfoldMargin, kfoldEdge, and kfoldfun.

Every “kfold” method uses models trained on in-fold observations to predict response for out-of-fold
observations. For example, suppose you cross validate using five folds. In this case, every training
fold contains roughly 4/5 of the data and every test fold contains roughly 1/5 of the data. The first
model stored in Trained{1} was trained on X and Y with the first 1/5 excluded, the second model
stored in Trained{2} was trained on X and Y with the second 1/5 excluded, and so on. When you call
kfoldPredict, it computes predictions for the first 1/5 of the data using the first model, for the
second 1/5 of data using the second model, and so on. In short, response for every observation is
computed by kfoldPredict using the model trained without this observation.

Construction
cvens = crossval(ens) creates a cross-validated ensemble from ens, a classification ensemble.
For syntax details, see the crossval method reference page.

cvens = fitcensemble(X,Y,Name,Value) creates a cross-validated ensemble when Name is one
of 'CrossVal', 'KFold', 'Holdout', 'Leaveout', or 'CVPartition'. For syntax details, see the
fitcensemble function reference page.

Properties
BinEdges

Bin edges for numeric predictors, specified as a cell array of p numeric vectors, where p is the
number of predictors. Each vector includes the bin edges for a numeric predictor. The element in the
cell array for a categorical predictor is empty because the software does not bin categorical
predictors.

The software bins numeric predictors only if you specify the 'NumBins' name-value argument as a
positive integer scalar when training a model with tree learners. The BinEdges property is empty if
the 'NumBins' value is empty (default).

You can reproduce the binned predictor data Xbinned by using the BinEdges property of the trained
model mdl.

X = mdl.X; % Predictor data
Xbinned = zeros(size(X));
edges = mdl.BinEdges;
% Find indices of binned predictors.

35 Functions

35-558



idxNumeric = find(~cellfun(@isempty,edges));
if iscolumn(idxNumeric)
    idxNumeric = idxNumeric';
end
for j = idxNumeric 
    x = X(:,j);
    % Convert x to array if x is a table.
    if istable(x) 
        x = table2array(x);
    end
    % Group x into bins by using the discretize function.
    xbinned = discretize(x,[-inf; edges{j}; inf]); 
    Xbinned(:,j) = xbinned;
end

Xbinned contains the bin indices, ranging from 1 to the number of bins, for numeric predictors.
Xbinned values are 0 for categorical predictors. If X contains NaNs, then the corresponding Xbinned
values are NaNs.

CategoricalPredictors

Categorical predictor indices, specified as a vector of positive integers. CategoricalPredictors
contains index values indicating that the corresponding predictors are categorical. The index values
are between 1 and p, where p is the number of predictors used to train the model. If none of the
predictors are categorical, then this property is empty ([]).

ClassNames

List of the elements in Y with duplicates removed. ClassNames can be a numeric vector, vector of
categorical variables, logical vector, character array, or cell array of character vectors. ClassNames
has the same data type as the data in the argument Y. (The software treats string arrays as cell
arrays of character vectors.)

Combiner

Cell array of combiners across all folds.

Cost

Square matrix, where Cost(i,j) is the cost of classifying a point into class j if its true class is i
(the rows correspond to the true class and the columns correspond to the predicted class). The order
of the rows and columns of Cost corresponds to the order of the classes in ClassNames. The number
of rows and columns in Cost is the number of unique classes in the response. This property is read-
only.

CrossValidatedModel

Name of the cross-validated model, a character vector.

KFold

Number of folds used in a cross-validated ensemble, a positive integer.

ModelParameters

Object holding parameters of cvens.
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NumObservations

Number of data points used in training the ensemble, a positive integer.

NumTrainedPerFold

Number of weak learners used in training each fold of the ensemble, a positive integer.

Partition

Partition of class cvpartition used in creating the cross-validated ensemble.

PredictorNames

Cell array of names for the predictor variables, in the order in which they appear in X.

Prior

Numeric vector of prior probabilities for each class. The order of the elements of Prior corresponds
to the order of the classes in ClassNames. The number of elements of Prior is the number of unique
classes in the response. This property is read-only.

ResponseName

Name of the response variable Y, a character vector.

ScoreTransform

Function handle for transforming scores, or character vector representing a built-in transformation
function. 'none' means no transformation; equivalently, 'none' means @(x)x. For a list of built-in
transformation functions and the syntax of custom transformation functions, see fitctree.

Add or change a ScoreTransform function using dot notation:

ens.ScoreTransform = 'function'

or

ens.ScoreTransform = @function

Trainable

Cell array of ensembles trained on cross-validation folds. Every ensemble is full, meaning it contains
its training data and weights.

Trained

Cell array of compact ensembles trained on cross-validation folds.

W

Scaled weights, a vector with length n, the number of rows in X.

X

A matrix or table of predictor values. Each column of X represents one variable, and each row
represents one observation.
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Y

Numeric vector, categorical vector, logical vector, character array, or cell array of character vectors.
Each row of Y is the response to the data in the corresponding row of X.

Object Functions
gather Gather properties of Statistics and Machine Learning Toolbox object from GPU
kfoldEdge Classification edge for cross-validated classification model
kfoldLoss Classification loss for cross-validated classification model
kfoldMargin Classification margins for cross-validated classification model
kfoldPredict Classify observations in cross-validated classification model
kfoldfun Cross-validate function for classification
resume Resume training learners on cross-validation folds

Copy Semantics
Value. To learn how value classes affect copy operations, see Copying Objects.

Examples
Evaluate K-Fold Cross-Validation Error for Classification Ensemble

Evaluate the k-fold cross-validation error for a classification ensemble that models the Fisher iris
data.

Load the sample data set.

load fisheriris

Train an ensemble of 100 boosted classification trees using AdaBoostM2.

t = templateTree('MaxNumSplits',1); % Weak learner template tree object
ens = fitcensemble(meas,species,'Method','AdaBoostM2','Learners',t);

Create a cross-validated ensemble from ens and find the k-fold cross-validation error.

rng(10,'twister') % For reproducibility
cvens = crossval(ens);
L = kfoldLoss(cvens)

L = 0.0533

Version History
Cost property stores the user-specified cost matrix
Behavior changed in R2022a

Starting in R2022a, the Cost property stores the user-specified cost matrix, so that you can compute
the observed misclassification cost using the specified cost value. The software stores normalized
prior probabilities (Prior) and observation weights (W) that do not reflect the penalties described in
the cost matrix. To compute the observed misclassification cost, specify the LossFun name-value
argument as "classifcost" when you call the kfoldLoss function.
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Note that model training has not changed and, therefore, the decision boundaries between classes
have not changed.

For training, the fitting function updates the specified prior probabilities by incorporating the
penalties described in the specified cost matrix, and then normalizes the prior probabilities and
observation weights. This behavior has not changed. In previous releases, the software stored the
default cost matrix in the Cost property and stored the prior probabilities and observation weights
used for training in the Prior and W properties, respectively. Starting in R2022a, the software stores
the user-specified cost matrix without modification, and stores normalized prior probabilities and
observation weights that do not reflect the cost penalties. For more details, see “Misclassification
Cost Matrix, Prior Probabilities, and Observation Weights” on page 19-8.

Some object functions use the Cost and W properties:

• The kfoldLoss function uses the cost matrix stored in the Cost property if you specify the
LossFun name-value argument as "classifcost" or "mincost".

• The kfoldLoss and kfoldEdge functions use the observation weights stored in the W property.

If you specify a nondefault cost matrix when you train a classification model, the object functions
return a different value compared to previous releases.

If you want the software to handle the cost matrix, prior probabilities, and observation weights as in
previous releases, adjust the prior probabilities and observation weights for the nondefault cost
matrix, as described in “Adjust Prior Probabilities and Observation Weights for Misclassification Cost
Matrix” on page 19-9. Then, when you train a classification model, specify the adjusted prior
probabilities and observation weights by using the Prior and Weights name-value arguments,
respectively, and use the default cost matrix.

Extended Capabilities
GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

Usage notes and limitations:

• The object functions of the ClassificationPartitionedEnsemble model fully support GPU
arrays.

For more information, see “Run MATLAB Functions on a GPU” (Parallel Computing Toolbox).

See Also
RegressionPartitionedEnsemble | ClassificationPartitionedModel |
ClassificationEnsemble | fitctree
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ClassificationPartitionedGAM
Cross-validated generalized additive model (GAM) for classification

Description
ClassificationPartitionedGAM is a set of generalized additive models trained on cross-
validated folds. Estimate the quality of the cross-validated classification by using one or more kfold
functions: kfoldPredict, kfoldLoss, kfoldMargin, kfoldEdge, and kfoldfun.

Every kfold object function uses models trained on training-fold (in-fold) observations to predict the
response for validation-fold (out-of-fold) observations. For example, suppose you cross-validate using
five folds. The software randomly assigns each observation into five groups of equal size (roughly).
The training fold contains four of the groups (roughly 4/5 of the data), and the validation fold contains
the other group (roughly 1/5 of the data). In this case, cross-validation proceeds as follows:

1 The software trains the first model (stored in CVMdl.Trained{1}) by using the observations in
the last four groups, and reserves the observations in the first group for validation.

2 The software trains the second model (stored in CVMdl.Trained{2}) by using the observations
in the first group and the last three groups. The software reserves the observations in the second
group for validation.

3 The software proceeds in a similar manner for the third, fourth, and fifth models.

If you validate by using kfoldPredict, the software computes predictions for the observations in
group i by using the ith model. In short, the software estimates a response for every observation by
using the model trained without that observation.

Creation
You can create a ClassificationPartitionedGAM model in two ways:

• Create a cross-validated model from a GAM object ClassificationGAM by using the crossval
object function.

• Create a cross-validated model by using the fitcgam function and specifying one of the name-
value arguments 'CrossVal', 'CVPartition', 'Holdout', 'KFold', or 'Leaveout'.

Properties
Cross-Validation Properties

CrossValidatedModel — Cross-validated model name
'GAM'

This property is read-only.

Cross-validated model name, specified as 'GAM'.

KFold — Number of cross-validated folds
positive integer
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This property is read-only.

Number of cross-validated folds, specified as a positive integer.
Data Types: double

ModelParameters — Cross-validation parameter values
object

This property is read-only.

Cross-validation parameter values, specified as an object. The parameter values correspond to the
values of the name-value arguments used to cross-validate the generalized additive model.
ModelParameters does not contain estimated parameters.

You can access the properties of ModelParameters using dot notation.

Partition — Data partition
cvpartition model

This property is read-only.

Data partition indicating how the software splits the data into cross-validation folds, specified as a
cvpartition model.

Trained — Compact classifiers trained on cross-validation folds
cell array of CompactClassificationGAM models

This property is read-only.

Compact classifiers trained on cross-validation folds, specified as a cell array of
CompactClassificationGAM model objects. Trained has k cells, where k is the number of folds.
Data Types: cell

Other Classification Properties

CategoricalPredictors — Categorical predictor indices
vector of positive integers | []

This property is read-only.

Categorical predictor indices, specified as a vector of positive integers. CategoricalPredictors
contains index values indicating that the corresponding predictors are categorical. The index values
are between 1 and p, where p is the number of predictors used to train the model. If none of the
predictors are categorical, then this property is empty ([]).
Data Types: double

ClassNames — Unique class labels
categorical array | character array | logical vector | numeric vector | cell array of character vectors

This property is read-only.

Unique class labels used in training, specified as a categorical or character array, logical or numeric
vector, or cell array of character vectors. ClassNames has the same data type as the class labels Y.
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(The software treats string arrays as cell arrays of character vectors.) ClassNames also determines
the class order.
Data Types: single | double | logical | char | cell | categorical

Cost — Misclassification costs
2-by-2 numeric matrix

Misclassification costs, specified as a 2-by-2 numeric matrix.

Cost(i,j) is the cost of classifying a point into class j if its true class is i. The order of the rows
and columns of Cost corresponds to the order of the classes in ClassNames.

The software uses the Cost value for prediction, but not training. You can change the value by using
dot notation.
Example: Mdl.Cost = C;
Data Types: double

NumObservations — Number of observations
numeric scalar

This property is read-only.

Number of observations in the training data stored in X and Y, specified as a numeric scalar.
Data Types: double

PredictorNames — Predictor variable names
cell array of character vectors

This property is read-only.

Predictor variable names, specified as a cell array of character vectors. The order of the elements of
PredictorNames corresponds to the order in which the predictor names appear in the training data.
Data Types: cell

Prior — Prior class probabilities
numeric vector

This property is read-only.

Prior class probabilities, specified as a numeric vector with two elements. The order of the elements
corresponds to the order of the elements in ClassNames.
Data Types: double

ResponseName — Response variable name
character vector

This property is read-only.

Response variable name, specified as a character vector.
Data Types: char
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ScoreTransform — Score transformation
character vector | function handle

Score transformation, specified as a character vector or function handle. ScoreTransform
represents a built-in transformation function or a function handle for transforming predicted
classification scores.

To change the score transformation function to function, for example, use dot notation.

• For a built-in function, enter a character vector.

Mdl.ScoreTransform = 'function';

This table describes the available built-in functions.

Value Description
'doublelogit' 1/(1 + e–2x)
'invlogit' log(x / (1 – x))
'ismax' Sets the score for the class with the largest score to

1, and sets the scores for all other classes to 0
'logit' 1/(1 + e–x)
'none' or 'identity' x (no transformation)
'sign' –1 for x < 0

0 for x = 0
1 for x > 0

'symmetric' 2x – 1
'symmetricismax' Sets the score for the class with the largest score to

1, and sets the scores for all other classes to –1
'symmetriclogit' 2/(1 + e–x) – 1

• For a MATLAB function or a function that you define, enter its function handle.

Mdl.ScoreTransform = @function;

function must accept a matrix (the original scores) and return a matrix of the same size (the
transformed scores).

This property determines the output score computation for object functions such as kfoldPredict,
kfoldMargin, and kfoldEdge. Use 'logit' to compute posterior probabilities, and use 'none' to
compute the logit of posterior probabilities.
Data Types: char | function_handle

W — Observation weights
numeric vector

This property is read-only.

Observation weights used to train the model, specified as an n-by-1 numeric vector. n is the number
of observations (NumObservations).

The software normalizes the observation weights specified in the 'Weights' name-value argument
so that the elements of W within a particular class sum up to the prior probability of that class.
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Data Types: double

X — Predictors
numeric matrix | table

This property is read-only.

Predictors used to cross-validate the model, specified as a numeric matrix or table.

Each row of X corresponds to one observation, and each column corresponds to one variable.
Data Types: single | double | table

Y — Class labels
categorical array | character array | logical vector | numeric vector | cell array of character vectors

This property is read-only.

Class labels used to cross-validate the model, specified as a categorical or character array, logical or
numeric vector, or cell array of character vectors. Y has the same data type as the response variable
used to train the model. (The software treats string arrays as cell arrays of character vectors.)

Each row of Y represents the observed classification of the corresponding row of X.
Data Types: single | double | logical | char | cell | categorical

Object Functions
kfoldPredict Classify observations in cross-validated classification model
kfoldLoss Classification loss for cross-validated classification model
kfoldMargin Classification margins for cross-validated classification model
kfoldEdge Classification edge for cross-validated classification model
kfoldfun Cross-validate function for classification

Examples

Create Cross-Validated GAM Using fitcgam

Train a cross-validated GAM with 10 folds, which is the default cross-validation option, by using
fitcgam. Then, use kfoldPredict to predict class labels for validation-fold observations using a
model trained on training-fold observations.

Load the ionosphere data set. This data set has 34 predictors and 351 binary responses for radar
returns, either bad ('b') or good ('g').

load ionosphere

Create a cross-validated GAM by using the default cross-validation option. Specify the 'CrossVal'
name-value argument as 'on'.

rng('default') % For reproducibility
CVMdl = fitcgam(X,Y,'CrossVal','on')

CVMdl = 
  ClassificationPartitionedGAM
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    CrossValidatedModel: 'GAM'
         PredictorNames: {1x34 cell}
           ResponseName: 'Y'
        NumObservations: 351
                  KFold: 10
              Partition: [1x1 cvpartition]
      NumTrainedPerFold: [1x1 struct]
             ClassNames: {'b'  'g'}
         ScoreTransform: 'logit'

  Properties, Methods

The fitcgam function creates a ClassificationPartitionedGAM model object CVMdl with 10
folds. During cross-validation, the software completes these steps:

1 Randomly partition the data into 10 sets.
2 For each set, reserve the set as validation data, and train the model using the other 9 sets.
3 Store the 10 compact, trained models in a 10-by-1 cell vector in the Trained property of the

cross-validated model object ClassificationPartitionedGAM.

You can override the default cross-validation setting by using the 'CVPartition', 'Holdout',
'KFold', or 'Leaveout' name-value argument.

Classify the observations in X by using kfoldPredict. The function predicts class labels for every
observation using the model trained without that observation.

label = kfoldPredict(CVMdl);

Create a confusion matrix to compare the true classes of the observations to their predicted labels.

C = confusionchart(Y,label);
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Compute the classification error.

L = kfoldLoss(CVMdl)

L = 0.0712

The average misclassification rate over 10 folds is about 7%.

Create Cross-Validated GAM Using crossval

Train a GAM by using fitcgam, and create a cross-validated GAM by using crossval and the
holdout option. Then, use kfoldPredict to predict responses for validation-fold observations using
a model trained on training-fold observations.

Load the 1994 census data stored in census1994.mat. The data set consists of demographic data
from the US Census Bureau to predict whether an individual makes over $50,000 per year. The
classification task is to fit a model that predicts the salary category of people given their age, working
class, education level, marital status, race, and so on.

load census1994

census1994 contains the training data set adultdata and the test data set adulttest. To reduce
the running time for this example, subsample 500 training observations from adultdata by using
the datasample function.

 ClassificationPartitionedGAM

35-569



rng('default')
NumSamples = 5e2;
adultdata = datasample(adultdata,NumSamples,'Replace',false);

Train a GAM that contains both linear and interaction terms for predictors. Specify to include all
available interaction terms whose p-values are not greater than 0.05.

Mdl = fitcgam(adultdata,'salary','Interactions','all','MaxPValue',0.05);

Mdl is a ClassificationGAM model object.

Cross-validate the model by specifying a 30% holdout sample.

CVMdl = crossval(Mdl,'Holdout',0.3)

CVMdl = 
  ClassificationPartitionedGAM
      CrossValidatedModel: 'GAM'
           PredictorNames: {1x14 cell}
    CategoricalPredictors: [2 4 6 7 8 9 10 14]
             ResponseName: 'salary'
          NumObservations: 500
                    KFold: 1
                Partition: [1x1 cvpartition]
        NumTrainedPerFold: [1x1 struct]
               ClassNames: [<=50K    >50K]
           ScoreTransform: 'logit'

  Properties, Methods

The crossval function creates a ClassificationPartitionedGAM model object CVMdl with the
holdout option. During cross-validation, the software completes these steps:

1 Randomly select and reserve 30% of the data as validation data, and train the model using the
rest of the data.

2 Store the compact, trained model in the Trained property of the cross-validated model object
ClassificationPartitionedGAM.

You can choose a different cross-validation setting by using the 'CrossVal', 'CVPartition',
'KFold', or 'Leaveout' name-value argument.

Classify the validation-fold observations by using kfoldPredict. The function predicts class labels
for the validation-fold observations by using the model trained on the training-fold observations. The
function assigns the most frequently predicted label to the training-fold observations.

[labels,scores] = kfoldPredict(CVMdl);

Find the validation-fold observations. kfoldPredict returns 0 scores for both classes for the
training-fold observations. Therefore, you can identify the validation-fold observations by finding the
observations whose scores are all zeros.

idx = find(sum(abs(scores),2)~=0);

Create a confusion matrix to compare the true classes of the observations to their predicted labels,
and compute the classification error for the validation-fold observations.
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C = confusionchart(adultdata.salary(idx),labels(idx));

L = kfoldLoss(CVMdl)

L = 0.1800

Find Optimal Number of Trees for GAM Using kfoldLoss

Train a cross-validated generalized additive model (GAM) with 10 folds. Then, use kfoldLoss to
compute cumulative cross-validation classification errors (misclassification rate in decimal). Use the
errors to determine the optimal number of trees per predictor (linear term for predictor) and the
optimal number of trees per interaction term.

Alternatively, you can find optimal values of fitcgam name-value arguments by using the
“OptimizeHyperparameters” on page 35-0  name-value argument. For an example, see “Optimize
GAM Using OptimizeHyperparameters” on page 35-2007.

Load the ionosphere data set. This data set has 34 predictors and 351 binary responses for radar
returns, either bad ('b') or good ('g').

load ionosphere

Create a cross-validated GAM by using the default cross-validation option. Specify the 'CrossVal'
name-value argument as 'on'. Specify to include all available interaction terms whose p-values are
not greater than 0.05.
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rng('default') % For reproducibility
CVMdl = fitcgam(X,Y,'CrossVal','on','Interactions','all','MaxPValue',0.05);

If you specify 'Mode' as 'cumulative' for kfoldLoss, then the function returns cumulative
errors, which are the average errors across all folds obtained using the same number of trees for
each fold. Display the number of trees for each fold.

CVMdl.NumTrainedPerFold 

ans = struct with fields:
      PredictorTrees: [65 64 59 61 60 66 65 62 64 61]
    InteractionTrees: [1 2 2 2 2 1 2 2 2 2]

kfoldLoss can compute cumulative errors using up to 59 predictor trees and one interaction tree.

Plot the cumulative, 10-fold cross-validated, classification error (misclassification rate in decimal).
Specify 'IncludeInteractions' as false to exclude interaction terms from the computation.

L_noInteractions = kfoldLoss(CVMdl,'Mode','cumulative','IncludeInteractions',false);
figure
plot(0:min(CVMdl.NumTrainedPerFold.PredictorTrees),L_noInteractions)

The first element of L_noInteractions is the average error over all folds obtained using only the
intercept (constant) term. The (J+1)th element of L_noInteractions is the average error obtained
using the intercept term and the first J predictor trees per linear term. Plotting the cumulative loss
allows you to monitor how the error changes as the number of predictor trees in GAM increases.
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Find the minimum error and the number of predictor trees used to achieve the minimum error.

[M,I] = min(L_noInteractions)

M = 0.0655

I = 23

The GAM achieves the minimum error when it includes 22 predictor trees.

Compute the cumulative classification error using both linear terms and interaction terms.

L = kfoldLoss(CVMdl,'Mode','cumulative')

L = 2×1

    0.0712
    0.0712

The first element of L is the average error over all folds obtained using the intercept (constant) term
and all predictor trees per linear term. The second element of L is the average error obtained using
the intercept term, all predictor trees per linear term, and one interaction tree per interaction term.
The error does not decrease when interaction terms are added.

If you are satisfied with the error when the number of predictor trees is 22, you can create a
predictive model by training the univariate GAM again and specifying
'NumTreesPerPredictor',22 without cross-validation.

Version History
Introduced in R2021a

See Also
ClassificationGAM | crossval

Topics
“Train Generalized Additive Model for Binary Classification” on page 12-77
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ClassificationPartitionedKernel
Cross-validated, binary kernel classification model

Description
ClassificationPartitionedKernel is a binary kernel classification model, trained on cross-
validated folds. You can estimate the quality of classification, or how well the kernel classification
model generalizes, using one or more “kfold” functions: kfoldPredict, kfoldLoss, kfoldMargin,
and kfoldEdge.

Every “kfold” method uses models trained on training-fold (in-fold) observations to predict the
response for validation-fold (out-of-fold) observations. For example, suppose that you cross-validate
using five folds. In this case, the software randomly assigns each observation into five groups of equal
size (roughly). The training fold contains four of the groups (that is, roughly 4/5 of the data) and the
validation fold contains the other group (that is, roughly 1/5 of the data). In this case, cross-validation
proceeds as follows:

1 The software trains the first model (stored in CVMdl.Trained{1}) by using the observations in
the last four groups and reserves the observations in the first group for validation.

2 The software trains the second model (stored in CVMdl.Trained{2}) using the observations in
the first group and the last three groups. The software reserves the observations in the second
group for validation.

3 The software proceeds in a similar fashion for the third, fourth, and fifth models.

If you validate by using kfoldPredict, the software computes predictions for the observations in
group i by using the ith model. In short, the software estimates a response for every observation by
using the model trained without that observation.

Note ClassificationPartitionedKernel model objects do not store the predictor data set.

Creation
You can create a ClassificationPartitionedKernel model by training a classification kernel
model using fitckernel and specifying one of these name-value pair arguments: 'Crossval',
'CVPartition', 'Holdout', 'KFold', or 'Leaveout'.

Properties
Cross-Validation Properties

CrossValidatedModel — Cross-validated model name
character vector

This property is read-only.

Cross-validated model name, specified as a character vector.
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For example, 'Kernel' specifies a cross-validated kernel model.
Data Types: char

KFold — Number of cross-validated folds
positive integer scalar

This property is read-only.

Number of cross-validated folds, specified as a positive integer scalar.
Data Types: double

ModelParameters — Cross-validation parameter values
object

This property is read-only.

Cross-validation parameter values, specified as an object. The parameter values correspond to the
name-value pair argument values used to cross-validate the kernel classifier. ModelParameters does
not contain estimated parameters.

You can access the properties of ModelParameters using dot notation.

NumObservations — Number of observations
positive numeric scalar

This property is read-only.

Number of observations in the training data, specified as a positive numeric scalar.
Data Types: double

Partition — Data partition
cvpartition model

This property is read-only.

Data partition indicating how the software splits the data into cross-validation folds, specified as a
cvpartition model.

Trained — Kernel classifiers trained on cross-validation folds
cell array of ClassificationKernel models

This property is read-only.

Kernel classifiers trained on cross-validation folds, specified as a cell array of
ClassificationKernel models. Trained has k cells, where k is the number of folds.
Data Types: cell

W — Observation weights
numeric vector

This property is read-only.

Observation weights used to cross-validate the model, specified as a numeric vector. W has
NumObservations elements.
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The software normalizes the weights used for training so that sum(W,'omitnan') is 1.
Data Types: single | double

Y — Observed class labels
categorical array | character array | logical vector | numeric vector | cell array of character vectors

This property is read-only.

Observed class labels used to cross-validate the model, specified as a categorical or character array,
logical or numeric vector, or cell array of character vectors. Y has NumObservations elements and
has the same data type as the input argument Y that you pass to fitckernel to cross-validate the
model. (The software treats string arrays as cell arrays of character vectors.)

Each row of Y represents the observed classification of the corresponding row of X.
Data Types: categorical | char | logical | single | double | cell

Other Classification Properties

CategoricalPredictors — Categorical predictor indices
vector of positive integers | []

This property is read-only.

Categorical predictor indices, specified as a vector of positive integers. CategoricalPredictors
contains index values indicating that the corresponding predictors are categorical. The index values
are between 1 and p, where p is the number of predictors used to train the model. If none of the
predictors are categorical, then this property is empty ([]).
Data Types: single | double

ClassNames — Unique class labels
categorical array | character array | logical vector | numeric vector | cell array of character vectors

This property is read-only.

Unique class labels used in training, specified as a categorical or character array, logical or numeric
vector, or cell array of character vectors. ClassNames has the same data type as the observed class
labels property Y and determines the class order.
Data Types: categorical | char | logical | single | double | cell

Cost — Misclassification costs
square numeric matrix

This property is read-only.

Misclassification costs, specified as a square numeric matrix. Cost has K rows and columns, where K
is the number of classes.

Cost(i,j) is the cost of classifying a point into class j if its true class is i. The order of the rows
and columns of Cost corresponds to the order of the classes in ClassNames.
Data Types: double

PredictorNames — Predictor names
cell array of character vectors
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This property is read-only.

Predictor names in order of their appearance in the predictor data, specified as a cell array of
character vectors. The length of PredictorNames is equal to the number of columns used as
predictor variables in the training data X or Tbl.
Data Types: cell

Prior — Prior class probabilities
numeric vector

This property is read-only.

Prior class probabilities, specified as a numeric vector. Prior has as many elements as there are
classes in ClassNames, and the order of the elements corresponds to the elements of ClassNames.
Data Types: double

ResponseName — Response variable name
character vector

This property is read-only.

Response variable name, specified as a character vector.
Data Types: char

ScoreTransform — Score transformation function
'doublelogit' | 'invlogit' | 'ismax' | 'logit' | 'none' | function handle | ...

Score transformation function to apply to predicted scores, specified as a function name or function
handle.

For a kernel classification model Mdl, and before the score transformation, the predicted
classification score for the observation x (row vector) is f x = T(x)β + b .

• T ·  is a transformation of an observation for feature expansion.
• β is the estimated column vector of coefficients.
• b is the estimated scalar bias.

To change the CVMdl score transformation function to function, for example, use dot notation.

• For a built-in function, enter this code and replace function with a value from the table.

CVMdl.ScoreTransform = 'function';

Value Description
"doublelogit" 1/(1 + e–2x)
"invlogit" log(x / (1 – x))
"ismax" Sets the score for the class with the largest score to

1, and sets the scores for all other classes to 0
"logit" 1/(1 + e–x)
"none" or "identity" x (no transformation)
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Value Description
"sign" –1 for x < 0

0 for x = 0
1 for x > 0

"symmetric" 2x – 1
"symmetricismax" Sets the score for the class with the largest score to

1, and sets the scores for all other classes to –1
"symmetriclogit" 2/(1 + e–x) – 1

• For a MATLAB function or a function that you define, enter its function handle.

CVMdl.ScoreTransform = @function;

function must accept a matrix of the original scores for each class, and then return a matrix of
the same size representing the transformed scores for each class.

Data Types: char | function_handle

Object Functions
kfoldEdge Classification edge for cross-validated kernel classification model
kfoldLoss Classification loss for cross-validated kernel classification model
kfoldMargin Classification margins for cross-validated kernel classification model
kfoldPredict Classify observations in cross-validated kernel classification model

Examples

Cross-Validate Kernel Classification Model

Load the ionosphere data set. This data set has 34 predictors and 351 binary responses for radar
returns, either bad ('b') or good ('g').

load ionosphere
rng('default') % For reproducibility

Cross-validate a binary kernel classification model. By default, the software uses 10-fold cross-
validation.

CVMdl = fitckernel(X,Y,'CrossVal','on')

CVMdl = 
  ClassificationPartitionedKernel
    CrossValidatedModel: 'Kernel'
           ResponseName: 'Y'
        NumObservations: 351
                  KFold: 10
              Partition: [1x1 cvpartition]
             ClassNames: {'b'  'g'}
         ScoreTransform: 'none'

  Properties, Methods
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numel(CVMdl.Trained)

ans = 10

CVMdl is a ClassificationPartitionedKernel model. Because fitckernel implements 10-fold
cross-validation, CVMdl contains 10 ClassificationKernel models that the software trains on
training-fold (in-fold) observations.

Estimate the cross-validated classification error.

kfoldLoss(CVMdl)

ans = 0.0940

The classification error rate is approximately 9%.

Version History
Introduced in R2018b

Cost property stores the user-specified cost matrix
Behavior changed in R2022a

Starting in R2022a, the Cost property stores the user-specified cost matrix, so that you can compute
the observed misclassification cost using the specified cost value. The software stores normalized
prior probabilities (Prior) and observation weights (W) that do not reflect the penalties described in
the cost matrix. To compute the observed misclassification cost, specify the LossFun name-value
argument as "classifcost" when you call the kfoldLoss function.

Note that model training has not changed and, therefore, the decision boundaries between classes
have not changed.

For training, the fitting function updates the specified prior probabilities by incorporating the
penalties described in the specified cost matrix, and then normalizes the prior probabilities and
observation weights. This behavior has not changed. In previous releases, the software stored the
default cost matrix in the Cost property and stored the prior probabilities and observation weights
used for training in the Prior and W properties, respectively. Starting in R2022a, the software stores
the user-specified cost matrix without modification, and stores normalized prior probabilities and
observation weights that do not reflect the cost penalties. For more details, see “Misclassification
Cost Matrix, Prior Probabilities, and Observation Weights” on page 19-8.

Some object functions use the Cost and W properties:

• The kfoldLoss function uses the cost matrix stored in the Cost property if you specify the
LossFun name-value argument as "classifcost" or "mincost".

• The kfoldLoss and kfoldEdge functions use the observation weights stored in the W property.

If you specify a nondefault cost matrix when you train a classification model, the object functions
return a different value compared to previous releases.

If you want the software to handle the cost matrix, prior probabilities, and observation weights as in
previous releases, adjust the prior probabilities and observation weights for the nondefault cost
matrix, as described in “Adjust Prior Probabilities and Observation Weights for Misclassification Cost
Matrix” on page 19-9. Then, when you train a classification model, specify the adjusted prior
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probabilities and observation weights by using the Prior and Weights name-value arguments,
respectively, and use the default cost matrix.

See Also
fitckernel | ClassificationKernel
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ClassificationPartitionedKernelECOC
Cross-validated kernel error-correcting output codes (ECOC) model for multiclass classification

Description
ClassificationPartitionedKernelECOC is an error-correcting output codes (ECOC) model
composed of kernel classification models, trained on cross-validated folds. Estimate the quality of the
classification by cross-validation using one or more “kfold” functions: kfoldPredict, kfoldLoss,
kfoldMargin, and kfoldEdge.

Every “kfold” method uses models trained on training-fold (in-fold) observations to predict the
response for validation-fold (out-of-fold) observations. For example, suppose that you cross-validate
using five folds. In this case, the software randomly assigns each observation into five groups of equal
size (roughly). The training fold contains four of the groups (that is, roughly 4/5 of the data) and the
validation fold contains the other group (that is, roughly 1/5 of the data). In this case, cross-validation
proceeds as follows:

1 The software trains the first model (stored in CVMdl.Trained{1}) by using the observations in
the last four groups and reserves the observations in the first group for validation.

2 The software trains the second model (stored in CVMdl.Trained{2}) using the observations in
the first group and the last three groups. The software reserves the observations in the second
group for validation.

3 The software proceeds in a similar fashion for the third, fourth, and fifth models.

If you validate by using kfoldPredict, the software computes predictions for the observations in
group i by using the ith model. In short, the software estimates a response for every observation by
using the model trained without that observation.

Note ClassificationPartitionedKernelECOC model objects do not store the predictor data
set.

Creation
You can create a ClassificationPartitionedKernelECOC model by training an ECOC model
using fitcecoc and specifying these name-value pair arguments:

• 'Learners'– Set the value to 'kernel', a template object returned by templateKernel, or a
cell array of such template objects.

• One of the arguments 'CrossVal', 'CVPartition', 'Holdout', 'KFold', or 'Leaveout'.

For more details, see fitcecoc.
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Properties
Cross-Validation Properties

CrossValidatedModel — Cross-validated model name
character vector

This property is read-only.

Cross-validated model name, specified as a character vector.

For example, 'KernelECOC' specifies a cross-validated kernel ECOC model.
Data Types: char

KFold — Number of cross-validated folds
positive integer scalar

This property is read-only.

Number of cross-validated folds, specified as a positive integer scalar.
Data Types: double

ModelParameters — Cross-validation parameter values
object

This property is read-only.

Cross-validation parameter values, specified as an object. The parameter values correspond to the
name-value pair argument values used to cross-validate the ECOC classifier. ModelParameters does
not contain estimated parameters.

You can access the properties of ModelParameters using dot notation.

NumObservations — Number of observations
positive numeric scalar

This property is read-only.

Number of observations in the training data, specified as a positive numeric scalar.
Data Types: double

Partition — Data partition
cvpartition model

This property is read-only.

Data partition indicating how the software splits the data into cross-validation folds, specified as a
cvpartition model.

Trained — Compact classifiers trained on cross-validation folds
cell array of CompactClassificationECOC models

This property is read-only.
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Compact classifiers trained on cross-validation folds, specified as a cell array of
CompactClassificationECOC models. Trained has k cells, where k is the number of folds.
Data Types: cell

W — Observation weights
numeric vector

This property is read-only.

Observation weights used to cross-validate the model, specified as a numeric vector. W has
NumObservations elements.

The software normalizes the weights used for training so that sum(W,'omitnan') is 1.
Data Types: single | double

Y — Observed class labels
categorical array | character array | logical vector | numeric vector | cell array of character vectors

This property is read-only.

Observed class labels used to cross-validate the model, specified as a categorical or character array,
logical or numeric vector, or cell array of character vectors. Y has NumObservations elements and
has the same data type as the input argument Y that you pass to fitcecoc to cross-validate the
model. (The software treats string arrays as cell arrays of character vectors.)

Each row of Y represents the observed classification of the corresponding row of the predictor data.
Data Types: categorical | char | logical | single | double | cell

ECOC Properties

BinaryLoss — Binary learner loss function
'hinge' | 'quadratic'

This property is read-only.

Binary learner loss function, specified as a character vector representing the loss function name.

By default, if all binary learners are kernel classification models using SVM, then BinaryLoss is
'hinge'. If all binary learners are kernel classification models using logistic regression, then
BinaryLoss is 'quadratic'. To potentially increase accuracy, specify a binary loss function other
than the default during a prediction or loss computation by using the BinaryLoss name-value
argument of kfoldPredict or kfoldLoss.

For the list of supported binary loss functions, see “Binary Loss” on page 35-3964.
Data Types: char

BinaryY — Binary learner class labels
numeric matrix | []

This property is read-only.

Binary learner class labels, specified as a numeric matrix or [].
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• If the coding matrix is the same across all folds, then BinaryY is a NumObservations-by-L
matrix, where L is the number of binary learners (size(CodingMatrix,2)).

The elements of BinaryY are –1, 0, and 1, and the values correspond to dichotomous class
assignments. This table describes how learner j assigns observation k to a dichotomous class
corresponding to the value of BinaryY(k,j).

Value Dichotomous Class Assignment
–1 Learner j assigns observation k to a negative

class.
0 Before training, learner j removes

observation k from the data set.
1 Learner j assigns observation k to a positive

class.

• If the coding matrix varies across folds, then BinaryY is empty ([]).

Data Types: double

CodingMatrix — Codes specifying class assignments
numeric matrix | []

This property is read-only.

Codes specifying class assignments for the binary learners, specified as a numeric matrix or [].

• If the coding matrix is the same across all folds, then CodingMatrix is a K-by-L matrix, where K
is the number of classes and L is the number of binary learners.

The elements of CodingMatrix are –1, 0, and 1, and the values correspond to dichotomous class
assignments. This table describes how learner j assigns observations in class i to a dichotomous
class corresponding to the value of CodingMatrix(i,j).

Value Dichotomous Class Assignment
–1 Learner j assigns observations in class i to a negative class.
0 Before training, learner j removes observations in class i

from the data set.
1 Learner j assigns observations in class i to a positive class.

• If the coding matrix varies across folds, then CodingMatrix is empty ([]). You can obtain the
coding matrix for each fold by using the Trained property. For example,
CVMdl.Trained{1}.CodingMatrix is the coding matrix in the first fold of the cross-validated
ECOC model CVMdl.

Data Types: double | single | int8 | int16 | int32 | int64

Other Classification Properties

CategoricalPredictors — Categorical predictor indices
vector of positive integers | []

This property is read-only.
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Categorical predictor indices, specified as a vector of positive integers. CategoricalPredictors
contains index values indicating that the corresponding predictors are categorical. The index values
are between 1 and p, where p is the number of predictors used to train the model. If none of the
predictors are categorical, then this property is empty ([]).
Data Types: single | double

ClassNames — Unique class labels
categorical array | character array | logical vector | numeric vector | cell array of character vectors

This property is read-only.

Unique class labels used in training, specified as a categorical or character array, logical or numeric
vector, or cell array of character vectors. ClassNames has the same data type as the observed class
labels property Y and determines the class order.
Data Types: categorical | char | logical | single | double | cell

Cost — Misclassification costs
square numeric matrix

This property is read-only.

Misclassification costs, specified as a square numeric matrix. Cost has K rows and columns, where K
is the number of classes.

Cost(i,j) is the cost of classifying a point into class j if its true class is i. The order of the rows
and columns of Cost corresponds to the order of the classes in ClassNames.
Data Types: double

PredictorNames — Predictor names
cell array of character vectors

This property is read-only.

Predictor names in order of their appearance in the predictor data, specified as a cell array of
character vectors. The length of PredictorNames is equal to the number of columns used as
predictor variables in the training data X or Tbl.
Data Types: cell

Prior — Prior class probabilities
numeric vector

This property is read-only.

Prior class probabilities, specified as a numeric vector. Prior has as many elements as there are
classes in ClassNames, and the order of the elements corresponds to the elements of ClassNames.
Data Types: double

ResponseName — Response variable name
character vector

This property is read-only.

Response variable name, specified as a character vector.
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Data Types: char

ScoreTransform — Score transformation function
'doublelogit' | 'invlogit' | 'ismax' | 'logit' | 'none' | function handle | ...

Score transformation function to apply to predicted scores, specified as a function name or function
handle.

For a kernel classification model Mdl, and before the score transformation, the predicted
classification score for the observation x (row vector) is f x = T(x)β + b .

• T ·  is a transformation of an observation for feature expansion.
• β is the estimated column vector of coefficients.
• b is the estimated scalar bias.

To change the CVMdl score transformation function to function, for example, use dot notation.

• For a built-in function, enter this code and replace function with a value from the table.

CVMdl.ScoreTransform = 'function';

Value Description
"doublelogit" 1/(1 + e–2x)
"invlogit" log(x / (1 – x))
"ismax" Sets the score for the class with the largest score to

1, and sets the scores for all other classes to 0
"logit" 1/(1 + e–x)
"none" or "identity" x (no transformation)
"sign" –1 for x < 0

0 for x = 0
1 for x > 0

"symmetric" 2x – 1
"symmetricismax" Sets the score for the class with the largest score to

1, and sets the scores for all other classes to –1
"symmetriclogit" 2/(1 + e–x) – 1

• For a MATLAB function or a function that you define, enter its function handle.

CVMdl.ScoreTransform = @function;

function must accept a matrix of the original scores for each class, and then return a matrix of
the same size representing the transformed scores for each class.

Data Types: char | function_handle

Object Functions
kfoldEdge Classification edge for cross-validated kernel ECOC model
kfoldLoss Classification loss for cross-validated kernel ECOC model
kfoldMargin Classification margins for cross-validated kernel ECOC model
kfoldPredict Classify observations in cross-validated kernel ECOC model
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Examples

Cross-Validate Multiclass Kernel Classification Model

Create a cross-validated, multiclass kernel ECOC classification model using fitcecoc.

Load Fisher's iris data set. X contains flower measurements, and Y contains the names of flower
species.

load fisheriris
X = meas;
Y = species;

Cross-validate a multiclass kernel ECOC classification model that can identify the species of a flower
based on the flower's measurements.

rng(1); % For reproducibility
CVMdl = fitcecoc(X,Y,'Learners','kernel','CrossVal','on')

CVMdl = 
  ClassificationPartitionedKernelECOC
    CrossValidatedModel: 'KernelECOC'
           ResponseName: 'Y'
        NumObservations: 150
                  KFold: 10
              Partition: [1x1 cvpartition]
             ClassNames: {'setosa'  'versicolor'  'virginica'}
         ScoreTransform: 'none'

  Properties, Methods

CVMdl is a ClassificationPartitionedKernelECOC cross-validated model. fitcecoc
implements 10-fold cross-validation by default. Therefore, CVMdl.Trained contains a 10-by-1 cell
array of ten CompactClassificationECOC models, one for each fold. Each compact ECOC model is
composed of binary kernel classification models.

Estimate the classification error by passing CVMdl to kfoldLoss.

error = kfoldLoss(CVMdl)

error = 0.0333

The estimated classification error is about 3% misclassified observations.

To change default options when training ECOC models composed of kernel classification models,
create a kernel classification model template using templateKernel, and then pass the template to
fitcecoc.

Version History
Introduced in R2018b
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See Also
fitcecoc | fitckernel | CompactClassificationECOC | ClassificationKernel
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ClassificationPartitionedLinear
Package: classreg.learning.partition
Superclasses: ClassificationPartitionedModel

Cross-validated linear model for binary classification of high-dimensional data

Description
ClassificationPartitionedLinear is a set of linear classification models trained on cross-
validated folds. To obtain a cross-validated, linear classification model, use fitclinear and specify
one of the cross-validation options. You can estimate the quality of classification, or how well the
linear classification model generalizes, using one or more of these “kfold” methods: kfoldPredict,
kfoldLoss, kfoldMargin, and kfoldEdge.

Every “kfold” method uses models trained on in-fold observations to predict the response for out-of-
fold observations. For example, suppose that you cross-validate using five folds. In this case, the
software randomly assigns each observation into five roughly equally sized groups. The training fold
contains four of the groups (that is, roughly 4/5 of the data) and the test fold contains the other group
(that is, roughly 1/5 of the data). In this case, cross-validation proceeds as follows:

1 The software trains the first model (stored in CVMdl.Trained{1}) using the observations in the
last four groups and reserves the observations in the first group for validation.

2 The software trains the second model, which is stored in CVMdl.Trained{2}, using the
observations in the first group and last three groups. The software reserves the observations in
the second group for validation.

3 The software proceeds in a similar fashion for the third through fifth models.

If you validate by calling kfoldPredict, it computes predictions for the observations in group 1
using the first model, group 2 for the second model, and so on. In short, the software estimates a
response for every observation using the model trained without that observation.

Note ClassificationPartitionedLinear model objects do not store the predictor data set.

Construction
CVMdl = fitclinear(X,Y,Name,Value) creates a cross-validated, linear classification model
when Name is either 'CrossVal', 'CVPartition', 'Holdout', or 'KFold'. For more details, see
fitclinear.

Properties
Cross-Validation Properties

CrossValidatedModel — Cross-validated model name
character vector

Cross-validated model name, specified as a character vector.
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For example, 'Linear' specifies a cross-validated linear model for binary classification or
regression.
Data Types: char

KFold — Number of cross-validated folds
positive integer

Number of cross-validated folds, specified as a positive integer.
Data Types: double

ModelParameters — Cross-validation parameter values
object

Cross-validation parameter values, e.g., the name-value pair argument values used to cross-validate
the linear model, specified as an object. ModelParameters does not contain estimated parameters.

Access properties of ModelParameters using dot notation.

NumObservations — Number of observations
positive numeric scalar

Number of observations in the training data, specified as a positive numeric scalar.
Data Types: double

Partition — Data partition
cvpartition model

Data partition indicating how the software splits the data into cross-validation folds, specified as a
cvpartition model.

Trained — Linear classification models trained on cross-validation folds
cell array of ClassificationLinear model objects

Linear classification models trained on cross-validation folds, specified as a cell array of
ClassificationLinear models. Trained has k cells, where k is the number of folds.
Data Types: cell

W — Observation weights
numeric vector

Observation weights used to cross-validate the model, specified as a numeric vector. W has
NumObservations elements.

The software normalizes W so that the weights for observations within a particular class sum up to the
prior probability of that class.
Data Types: single | double

Y — Observed class labels
categorical array | character array | logical vector | vector of numeric values | cell array of character
vectors

Observed class labels used to cross-validate the model, specified as a categorical or character array,
logical or numeric vector, or cell array of character vectors. Y has NumObservations elements, and
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is the same data type as the input argument Y that you passed to fitclinear to cross-validate the
model. (The software treats string arrays as cell arrays of character vectors.)

Each row of Y represents the observed classification of the corresponding observation in the
predictor data.
Data Types: categorical | char | logical | single | double | cell

Other Classification Properties

CategoricalPredictors — Categorical predictor indices
vector of positive integers | []

Categorical predictor indices, specified as a vector of positive integers. CategoricalPredictors
contains index values indicating that the corresponding predictors are categorical. The index values
are between 1 and p, where p is the number of predictors used to train the model. If none of the
predictors are categorical, then this property is empty ([]).
Data Types: single | double

ClassNames — Unique class labels
categorical array | character array | logical vector | numeric vector | cell array of character vectors

Unique class labels used in training, specified as a categorical or character array, logical or numeric
vector, or cell array of character vectors. ClassNames has the same data type as the class labels Y.
(The software treats string arrays as cell arrays of character vectors.) ClassNames also determines
the class order.
Data Types: categorical | char | logical | single | double | cell

Cost — Misclassification costs
square numeric matrix

This property is read-only.

Misclassification costs, specified as a square numeric matrix. Cost has K rows and columns, where K
is the number of classes.

Cost(i,j) is the cost of classifying a point into class j if its true class is i. The order of the rows
and columns of Cost corresponds to the order of the classes in ClassNames.
Data Types: double

PredictorNames — Predictor names
cell array of character vectors

Predictor names in order of their appearance in the predictor data, specified as a cell array of
character vectors. The length of PredictorNames is equal to the number of variables in the training
data X or Tbl used as predictor variables.
Data Types: cell

Prior — Prior class probabilities
numeric vector

This property is read-only.
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Prior class probabilities, specified as a numeric vector. Prior has as many elements as classes in
ClassNames, and the order of the elements corresponds to the elements of ClassNames.
Data Types: double

ResponseName — Response variable name
character vector

Response variable name, specified as a character vector.
Data Types: char

ScoreTransform — Score transformation function
'doublelogit' | 'invlogit' | 'ismax' | 'logit' | 'none' | function handle | ...

Score transformation function to apply to predicted scores, specified as a function name or function
handle.

For linear classification models and before transformation, the predicted classification score for the
observation x (row vector) is f(x) = xβ + b, where β and b correspond to Mdl.Beta and Mdl.Bias,
respectively.

To change the score transformation function to, for example, function, use dot notation.

• For a built-in function, enter this code and replace function with a value in the table.

Mdl.ScoreTransform = 'function';

Value Description
"doublelogit" 1/(1 + e–2x)
"invlogit" log(x / (1 – x))
"ismax" Sets the score for the class with the largest score to

1, and sets the scores for all other classes to 0
"logit" 1/(1 + e–x)
"none" or "identity" x (no transformation)
"sign" –1 for x < 0

0 for x = 0
1 for x > 0

"symmetric" 2x – 1
"symmetricismax" Sets the score for the class with the largest score to

1, and sets the scores for all other classes to –1
"symmetriclogit" 2/(1 + e–x) – 1

• For a MATLAB function, or a function that you define, enter its function handle.

Mdl.ScoreTransform = @function;

function must accept a matrix of the original scores for each class, and then return a matrix of
the same size representing the transformed scores for each class.

Data Types: char | function_handle
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Methods

kfoldEdge Classification edge for observations not used for training
kfoldLoss Classification loss for observations not used in training
kfoldMargin Classification margins for observations not used in training
kfoldPredict Predict labels for observations not used for training

Copy Semantics
Value. To learn how value classes affect copy operations, see Copying Objects.

Examples

Create Cross-Validated Binary Linear Classification Model

Load the NLP data set.

load nlpdata

X is a sparse matrix of predictor data, and Y is a categorical vector of class labels. There are more
than two classes in the data.

Identify the labels that correspond to the Statistics and Machine Learning Toolbox™ documentation
web pages.

Ystats = Y == 'stats';

Cross-validate a binary, linear classification model that can identify whether the word counts in a
documentation web page are from the Statistics and Machine Learning Toolbox™ documentation.

rng(1); % For reproducibility 
CVMdl = fitclinear(X,Ystats,'CrossVal','on')

CVMdl = 
  ClassificationPartitionedLinear
    CrossValidatedModel: 'Linear'
           ResponseName: 'Y'
        NumObservations: 31572
                  KFold: 10
              Partition: [1x1 cvpartition]
             ClassNames: [0 1]
         ScoreTransform: 'none'

  Properties, Methods

CVMdl is a ClassificationPartitionedLinear cross-validated model. Because fitclinear
implements 10-fold cross-validation by default, CVMdl.Trained contains ten
ClassificationLinear models that contain the results of training linear classification models for
each of the folds.
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Estimate labels for out-of-fold observations and estimate the generalization error by passing CVMdl to
kfoldPredict and kfoldLoss, respectively.

oofLabels = kfoldPredict(CVMdl);
ge = kfoldLoss(CVMdl)

ge = 7.6017e-04

The estimated generalization error is less than 0.1% misclassified observations.

Find Good Lasso Penalty Using Cross-Validation

To determine a good lasso-penalty strength for a linear classification model that uses a logistic
regression learner, implement 5-fold cross-validation.

Load the NLP data set.

load nlpdata

X is a sparse matrix of predictor data, and Y is a categorical vector of class labels. There are more
than two classes in the data.

The models should identify whether the word counts in a web page are from the Statistics and
Machine Learning Toolbox™ documentation. So, identify the labels that correspond to the Statistics
and Machine Learning Toolbox™ documentation web pages.

Ystats = Y == 'stats';

Create a set of 11 logarithmically-spaced regularization strengths from 10−6 through 10−0 . 5.

Lambda = logspace(-6,-0.5,11);

Cross-validate the models. To increase execution speed, transpose the predictor data and specify that
the observations are in columns. Estimate the coefficients using SpaRSA. Lower the tolerance on the
gradient of the objective function to 1e-8.

X = X'; 
rng(10); % For reproducibility
CVMdl = fitclinear(X,Ystats,'ObservationsIn','columns','KFold',5,...
    'Learner','logistic','Solver','sparsa','Regularization','lasso',...
    'Lambda',Lambda,'GradientTolerance',1e-8)

CVMdl = 
  ClassificationPartitionedLinear
    CrossValidatedModel: 'Linear'
           ResponseName: 'Y'
        NumObservations: 31572
                  KFold: 5
              Partition: [1x1 cvpartition]
             ClassNames: [0 1]
         ScoreTransform: 'none'

  Properties, Methods
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numCLModels = numel(CVMdl.Trained)

numCLModels = 5

CVMdl is a ClassificationPartitionedLinear model. Because fitclinear implements 5-fold
cross-validation, CVMdl contains 5 ClassificationLinear models that the software trains on each
fold.

Display the first trained linear classification model.

Mdl1 = CVMdl.Trained{1}

Mdl1 = 
  ClassificationLinear
      ResponseName: 'Y'
        ClassNames: [0 1]
    ScoreTransform: 'logit'
              Beta: [34023x11 double]
              Bias: [-13.1654 -13.1654 -13.1654 -13.1654 -9.2347 -7.0908 ... ]
            Lambda: [1.0000e-06 3.5481e-06 1.2589e-05 4.4668e-05 ... ]
           Learner: 'logistic'

  Properties, Methods

Mdl1 is a ClassificationLinear model object. fitclinear constructed Mdl1 by training on the
first four folds. Because Lambda is a sequence of regularization strengths, you can think of Mdl1 as
11 models, one for each regularization strength in Lambda.

Estimate the cross-validated classification error.

ce = kfoldLoss(CVMdl);

Because there are 11 regularization strengths, ce is a 1-by-11 vector of classification error rates.

Higher values of Lambda lead to predictor variable sparsity, which is a good quality of a classifier. For
each regularization strength, train a linear classification model using the entire data set and the same
options as when you cross-validated the models. Determine the number of nonzero coefficients per
model.

Mdl = fitclinear(X,Ystats,'ObservationsIn','columns',...
    'Learner','logistic','Solver','sparsa','Regularization','lasso',...
    'Lambda',Lambda,'GradientTolerance',1e-8);
numNZCoeff = sum(Mdl.Beta~=0);

In the same figure, plot the cross-validated, classification error rates and frequency of nonzero
coefficients for each regularization strength. Plot all variables on the log scale.

figure;
[h,hL1,hL2] = plotyy(log10(Lambda),log10(ce),...
    log10(Lambda),log10(numNZCoeff)); 
hL1.Marker = 'o';
hL2.Marker = 'o';
ylabel(h(1),'log_{10} classification error')
ylabel(h(2),'log_{10} nonzero-coefficient frequency')
xlabel('log_{10} Lambda')
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title('Test-Sample Statistics')
hold off

Choose the index of the regularization strength that balances predictor variable sparsity and low
classification error. In this case, a value between 10−4 to 10−1 should suffice.

idxFinal = 7;

Select the model from Mdl with the chosen regularization strength.

MdlFinal = selectModels(Mdl,idxFinal);

MdlFinal is a ClassificationLinear model containing one regularization strength. To estimate
labels for new observations, pass MdlFinal and the new data to predict.

Version History
Introduced in R2016a

Cost property stores the user-specified cost matrix
Behavior changed in R2022a

Starting in R2022a, the Cost property stores the user-specified cost matrix, so that you can compute
the observed misclassification cost using the specified cost value. The software stores normalized
prior probabilities (Prior) and observation weights (W) that do not reflect the penalties described in
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the cost matrix. To compute the observed misclassification cost, specify the LossFun name-value
argument as "classifcost" when you call the kfoldLoss function.

Note that model training has not changed and, therefore, the decision boundaries between classes
have not changed.

For training, the fitting function updates the specified prior probabilities by incorporating the
penalties described in the specified cost matrix, and then normalizes the prior probabilities and
observation weights. This behavior has not changed. In previous releases, the software stored the
default cost matrix in the Cost property and stored the prior probabilities and observation weights
used for training in the Prior and W properties, respectively. Starting in R2022a, the software stores
the user-specified cost matrix without modification, and stores normalized prior probabilities and
observation weights that do not reflect the cost penalties. For more details, see “Misclassification
Cost Matrix, Prior Probabilities, and Observation Weights” on page 19-8.

Some object functions use the Cost and W properties:

• The kfoldLoss function uses the cost matrix stored in the Cost property if you specify the
LossFun name-value argument as "classifcost" or "mincost".

• The kfoldLoss and kfoldEdge functions use the observation weights stored in the W property.

If you specify a nondefault cost matrix when you train a classification model, the object functions
return a different value compared to previous releases.

If you want the software to handle the cost matrix, prior probabilities, and observation weights as in
previous releases, adjust the prior probabilities and observation weights for the nondefault cost
matrix, as described in “Adjust Prior Probabilities and Observation Weights for Misclassification Cost
Matrix” on page 19-9. Then, when you train a classification model, specify the adjusted prior
probabilities and observation weights by using the Prior and Weights name-value arguments,
respectively, and use the default cost matrix.

See Also
ClassificationLinear | fitclinear | kfoldPredict | kfoldLoss
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ClassificationPartitionedLinearECOC
Package: classreg.learning.partition
Superclasses: ClassificationPartitionedModel

Cross-validated linear error-correcting output codes model for multiclass classification of high-
dimensional data

Description
ClassificationPartitionedLinearECOC is a set of error-correcting output codes (ECOC)
models composed of linear classification models, trained on cross-validated folds. Estimate the quality
of classification by cross-validation using one or more “kfold” functions: kfoldPredict, kfoldLoss,
kfoldMargin, and kfoldEdge.

Every “kfold” method uses models trained on in-fold observations to predict the response for out-of-
fold observations. For example, suppose that you cross-validate using five folds. In this case, the
software randomly assigns each observation into five roughly equal-sized groups. The training fold
contains four of the groups (that is, roughly 4/5 of the data) and the test fold contains the other group
(that is, roughly 1/5 of the data). In this case, cross-validation proceeds as follows.

1 The software trains the first model (stored in CVMdl.Trained{1}) using the observations in the
last four groups and reserves the observations in the first group for validation.

2 The software trains the second model (stored in CVMdl.Trained{2}) using the observations in
the first group and last three groups. The software reserves the observations in the second group
for validation.

3 The software proceeds in a similar fashion for the third, fourth, and fifth models.

If you validate by calling kfoldPredict, it computes predictions for the observations in group 1
using the first model, group 2 for the second model, and so on. In short, the software estimates a
response for every observation using the model trained without that observation.

Note ClassificationPartitionedLinearECOC model objects do not store the predictor data
set.

Construction
CVMdl = fitcecoc(X,Y,'Learners',t,Name,Value) returns a cross-validated, linear ECOC
model when:

• t is 'Linear' or a template object returned by templateLinear.
• Name is one of 'CrossVal', 'CVPartition', 'Holdout', or 'KFold'.

For more details, see fitcecoc.
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Properties
Cross-Validation Properties

CrossValidatedModel — Cross-validated model name
character vector

Cross-validated model name, specified as a character vector.

For example, 'ECOC' specifies a cross-validated ECOC model.
Data Types: char

KFold — Number of cross-validated folds
positive integer

Number of cross-validated folds, specified as a positive integer.
Data Types: double

ModelParameters — Cross-validation parameter values
object

Cross-validation parameter values, e.g., the name-value pair argument values used to cross-validate
the ECOC classifier, specified as an object. ModelParameters does not contain estimated
parameters.

Access properties of ModelParameters using dot notation.

NumObservations — Number of observations
positive numeric scalar

Number of observations in the training data, specified as a positive numeric scalar.
Data Types: double

Partition — Data partition
cvpartition model

Data partition indicating how the software splits the data into cross-validation folds, specified as a
cvpartition model.

Trained — Compact classifiers trained on cross-validation folds
cell array of CompactClassificationECOC models

Compact classifiers trained on cross-validation folds, specified as a cell array of
CompactClassificationECOC models. Trained has k cells, where k is the number of folds.
Data Types: cell

W — Observation weights
numeric vector

Observation weights used to cross-validate the model, specified as a numeric vector. W has
NumObservations elements.

The software normalizes the weights used for training so that sum(W,'omitnan') is 1.
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Data Types: single | double

Y — Observed class labels
categorical array | character array | logical vector | vector of numeric values | cell array of character
vectors

Observed class labels used to cross-validate the model, specified as a categorical or character array,
logical or numeric vector, or cell array of character vectors. Y has NumObservations elements, and
is the same data type as the input argument Y that you passed to fitcecoc to cross-validate the
model. (The software treats string arrays as cell arrays of character vectors.)

Each row of Y represents the observed classification of the observation in the predictor data.
Data Types: char | cell | categorical | logical | single | double

ECOC Properties

BinaryLoss — Binary learner loss function
'hinge' | 'quadratic'

This property is read-only.

Binary learner loss function, specified as a character vector representing the loss function name.

By default, if all binary learners are linear classification models using SVM, then BinaryLoss is
'hinge'. If all binary learners are linear classification models using logistic regression, then
BinaryLoss is 'quadratic'. To potentially increase accuracy, specify a binary loss function other
than the default during a prediction or loss computation by using the BinaryLoss name-value
argument of kfoldPredict or kfoldLoss.

For the list of supported binary loss functions, see “Binary Loss” on page 35-3986.
Data Types: char

BinaryY — Binary learner class labels
numeric matrix | []

Binary learner class labels, specified as a numeric matrix or [].

• If the coding matrix is the same across folds, then BinaryY is a NumObservations-by-L matrix,
where L is the number of binary learners (size(CodingMatrix,2)).

Elements of BinaryY are -1, 0, or 1, and the value corresponds to a dichotomous class
assignment. This table describes how learner j assigns observation k to a dichotomous class
corresponding to the value of BinaryY(k,j).

Value Dichotomous Class Assignment
–1 Learner j assigns observation k to a negative

class.
0 Before training, learner j removes

observation k from the data set.
1 Learner j assigns observation k to a positive

class.

• If the coding matrix varies across folds, then BinaryY is empty ([]).
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Data Types: double

CodingMatrix — Codes specifying class assignments
numeric matrix | []

Codes specifying class assignments for the binary learners, specified as a numeric matrix or [].

• If the coding matrix is the same across folds, then CodingMatrix is a K-by-L matrix. K is the
number of classes and L is the number of binary learners.

Elements of CodingMatrix are -1, 0, or 1, and the value corresponds to a dichotomous class
assignment. This table describes how learner j assigns observations in class i to a dichotomous
class corresponding to the value of CodingMatrix(i,j).

Value Dichotomous Class Assignment
–1 Learner j assigns observations in class i to a negative class.
0 Before training, learner j removes observations in class i

from the data set.
1 Learner j assigns observations in class i to a positive class.

• If the coding matrix varies across folds, then CodingMatrix is empty ([]). Obtain the coding
matrix for each fold using the Trained property. For example,
CVMdl.Trained{1}.CodingMatrix is the coding matrix in the first fold of the cross-validated
ECOC model CVMdl.

Data Types: double | single | int8 | int16 | int32 | int64

Other Classification Properties

CategoricalPredictors — Categorical predictor indices
vector of positive integers | []

Categorical predictor indices, specified as a vector of positive integers. CategoricalPredictors
contains index values indicating that the corresponding predictors are categorical. The index values
are between 1 and p, where p is the number of predictors used to train the model. If none of the
predictors are categorical, then this property is empty ([]).
Data Types: single | double

ClassNames — Unique class labels
categorical array | character array | logical vector | numeric vector | cell array of character vectors

Unique class labels used in training, specified as a categorical or character array, logical or numeric
vector, or cell array of character vectors. ClassNames has the same data type as the class labels Y.
(The software treats string arrays as cell arrays of character vectors.) ClassNames also determines
the class order.
Data Types: categorical | char | logical | single | double | cell

Cost — Misclassification costs
square numeric matrix

This property is read-only.

Misclassification costs, specified as a square numeric matrix. Cost has K rows and columns, where K
is the number of classes.
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Cost(i,j) is the cost of classifying a point into class j if its true class is i. The order of the rows
and columns of Cost corresponds to the order of the classes in ClassNames.
Data Types: double

PredictorNames — Predictor names
cell array of character vectors

Predictor names in order of their appearance in the predictor data, specified as a cell array of
character vectors. The length of PredictorNames is equal to the number of variables in the training
data X or Tbl used as predictor variables.
Data Types: cell

Prior — Prior class probabilities
numeric vector

This property is read-only.

Prior class probabilities, specified as a numeric vector. Prior has as many elements as the number of
classes in ClassNames, and the order of the elements corresponds to the order of the classes in
ClassNames.

fitcecoc incorporates misclassification costs differently among different types of binary learners.
Data Types: double

ResponseName — Response variable name
character vector

Response variable name, specified as a character vector.
Data Types: char

ScoreTransform — Score transformation function
'doublelogit' | 'invlogit' | 'ismax' | 'logit' | 'none' | function handle | ...

Score transformation function to apply to predicted scores, specified as a function name or function
handle.

For linear classification models and before transformation, the predicted classification score for the
observation x (row vector) is f(x) = xβ + b, where β and b correspond to Mdl.Beta and Mdl.Bias,
respectively.

To change the score transformation function to, for example, function, use dot notation.

• For a built-in function, enter this code and replace function with a value in the table.

Mdl.ScoreTransform = 'function';

Value Description
"doublelogit" 1/(1 + e–2x)
"invlogit" log(x / (1 – x))
"ismax" Sets the score for the class with the largest score to

1, and sets the scores for all other classes to 0
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Value Description
"logit" 1/(1 + e–x)
"none" or "identity" x (no transformation)
"sign" –1 for x < 0

0 for x = 0
1 for x > 0

"symmetric" 2x – 1
"symmetricismax" Sets the score for the class with the largest score to

1, and sets the scores for all other classes to –1
"symmetriclogit" 2/(1 + e–x) – 1

• For a MATLAB function, or a function that you define, enter its function handle.

Mdl.ScoreTransform = @function;

function must accept a matrix of the original scores for each class, and then return a matrix of
the same size representing the transformed scores for each class.

Data Types: char | function_handle

Methods
kfoldEdge Classification edge for observations not used for training
kfoldLoss Classification loss for observations not used in training
kfoldMargin Classification margins for observations not used in training
kfoldPredict Predict labels for observations not used for training

Copy Semantics
Value. To learn how value classes affect copy operations, see Copying Objects.

Examples

Create Cross-Validated Multiclass Linear Classification Model

Load the NLP data set.

load nlpdata

X is a sparse matrix of predictor data, and Y is a categorical vector of class labels.

Cross-validate a multiclass, linear classification model that can identify which MATLAB® toolbox a
documentation web page is from based on counts of words on the page.

rng(1); % For reproducibility 
CVMdl = fitcecoc(X,Y,'Learners','linear','CrossVal','on')

CVMdl = 
  ClassificationPartitionedLinearECOC
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    CrossValidatedModel: 'LinearECOC'
           ResponseName: 'Y'
        NumObservations: 31572
                  KFold: 10
              Partition: [1x1 cvpartition]
             ClassNames: [comm    dsp    ecoder    fixedpoint    ...    ]
         ScoreTransform: 'none'

  Properties, Methods

CVMdl is a ClassificationPartitionedLinearECOC cross-validated model. Because fitcecoc
implements 10-fold cross-validation by default, CVMdl.Trained contains a 10-by-1 cell vector of ten
CompactClassificationECOC models that contain the results of training ECOC models composed
of binary, linear classification models for each of the folds.

Estimate labels for out-of-fold observations and estimate the generalization error by passing CVMdl to
kfoldPredict and kfoldLoss, respectively.

oofLabels = kfoldPredict(CVMdl);
ge = kfoldLoss(CVMdl)

ge = 0.0958

The estimated generalization error is about 10% misclassified observations.

To improve generalization error, try specifying another solver, such as LBFGS. To change default
options when training ECOC models composed of linear classification models, create a linear
classification model template using templateLinear, and then pass the template to fitcecoc.

Find Good Lasso Penalty Using Cross-Validation

To determine a good lasso-penalty strength for an ECOC model composed of linear classification
models that use logistic regression learners, implement 5-fold cross-validation.

Load the NLP data set.

load nlpdata

X is a sparse matrix of predictor data, and Y is a categorical vector of class labels.

For simplicity, use the label 'others' for all observations in Y that are not 'simulink', 'dsp', or
'comm'.

Y(~(ismember(Y,{'simulink','dsp','comm'}))) = 'others';

Create a set of 11 logarithmically-spaced regularization strengths from 10−7 through 10−2.

Lambda = logspace(-7,-2,11);

Create a linear classification model template that specifies to use logistic regression learners, use
lasso penalties with strengths in Lambda, train using SpaRSA, and lower the tolerance on the
gradient of the objective function to 1e-8.
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t = templateLinear('Learner','logistic','Solver','sparsa',...
    'Regularization','lasso','Lambda',Lambda,'GradientTolerance',1e-8);

Cross-validate the models. To increase execution speed, transpose the predictor data and specify that
the observations are in columns.

X = X'; 
rng(10); % For reproducibility
CVMdl = fitcecoc(X,Y,'Learners',t,'ObservationsIn','columns','KFold',5);

CVMdl is a ClassificationPartitionedLinearECOC model.

Dissect CVMdl, and each model within it.

numECOCModels = numel(CVMdl.Trained)

numECOCModels = 5

ECOCMdl1 = CVMdl.Trained{1}

ECOCMdl1 = 
  CompactClassificationECOC
      ResponseName: 'Y'
        ClassNames: [comm    dsp    simulink    others]
    ScoreTransform: 'none'
    BinaryLearners: {6×1 cell}
      CodingMatrix: [4×6 double]

  Properties, Methods

numCLModels = numel(ECOCMdl1.BinaryLearners)

numCLModels = 6

CLMdl1 = ECOCMdl1.BinaryLearners{1}

CLMdl1 = 
  ClassificationLinear
      ResponseName: 'Y'
        ClassNames: [-1 1]
    ScoreTransform: 'logit'
              Beta: [34023×11 double]
              Bias: [-0.3169 -0.3169 -0.3168 -0.3168 -0.3168 -0.3167 -0.1725 -0.0805 -0.1762 -0.3450 -0.5174]
            Lambda: [1.0000e-07 3.1623e-07 1.0000e-06 3.1623e-06 1.0000e-05 3.1623e-05 1.0000e-04 3.1623e-04 1.0000e-03 0.0032 0.0100]
           Learner: 'logistic'

  Properties, Methods

Because fitcecoc implements 5-fold cross-validation, CVMdl contains a 5-by-1 cell array of
CompactClassificationECOC models that the software trains on each fold. The BinaryLearners
property of each CompactClassificationECOC model contains the ClassificationLinear
models. The number of ClassificationLinear models within each compact ECOC model depends
on the number of distinct labels and coding design. Because Lambda is a sequence of regularization
strengths, you can think of CLMdl1 as 11 models, one for each regularization strength in Lambda.
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Determine how well the models generalize by plotting the averages of the 5-fold classification error
for each regularization strength. Identify the regularization strength that minimizes the
generalization error over the grid.

ce = kfoldLoss(CVMdl);
figure;
plot(log10(Lambda),log10(ce))
[~,minCEIdx] = min(ce);
minLambda = Lambda(minCEIdx);
hold on
plot(log10(minLambda),log10(ce(minCEIdx)),'ro');
ylabel('log_{10} 5-fold classification error')
xlabel('log_{10} Lambda')
legend('MSE','Min classification error')
hold off

Train an ECOC model composed of linear classification model using the entire data set, and specify
the minimal regularization strength.

t = templateLinear('Learner','logistic','Solver','sparsa',...
    'Regularization','lasso','Lambda',minLambda,'GradientTolerance',1e-8);
MdlFinal = fitcecoc(X,Y,'Learners',t,'ObservationsIn','columns');

To estimate labels for new observations, pass MdlFinal and the new data to predict.
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Version History
Introduced in R2016a

See Also
kfoldLoss | kfoldPredict | fitcecoc | fitclinear | ClassificationECOC |
ClassificationLinear
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ClassificationPartitionedModel
Package: classreg.learning.partition

Cross-validated classification model

Description
ClassificationPartitionedModel is a set of classification models trained on cross-validated
folds. Estimate the quality of classification by cross validation using one or more “kfold” methods:
kfoldPredict, kfoldLoss, kfoldMargin, kfoldEdge, and kfoldfun.

Every “kfold” method uses models trained on in-fold observations to predict the response for out-of-
fold observations. For example, suppose you cross validate using five folds. In this case, the software
randomly assigns each observation into five roughly equally sized groups. The training fold contains
four of the groups (i.e., roughly 4/5 of the data) and the test fold contains the other group (i.e.,
roughly 1/5 of the data). In this case, cross validation proceeds as follows:

• The software trains the first model (stored in CVMdl.Trained{1}) using the observations in the
last four groups and reserves the observations in the first group for validation.

• The software trains the second model (stored in CVMdl.Trained{2}) using the observations in
the first group and last three groups, and reserves the observations in the second group for
validation.

• The software proceeds in a similar fashion for the third to fifth models.

If you validate by calling kfoldPredict, it computes predictions for the observations in group 1
using the first model, group 2 for the second model, and so on. In short, the software estimates a
response for every observation using the model trained without that observation.

Construction
CVMdl = crossval(Mdl) creates a cross-validated classification model from a classification model
(Mdl).

Alternatively:

• CVDiscrMdl = fitcdiscr(X,Y,Name,Value)
• CVKNNMdl = fitcknn(X,Y,Name,Value)
• CVNetMdl = fitcnet(X,Y,Name,Value)
• CVNBMdl = fitcnb(X,Y,Name,Value)
• CVSVMMdl = fitcsvm(X,Y,Name,Value)
• CVTreeMdl = fitctree(X,Y,Name,Value)

create a cross-validated model when Name is either 'CrossVal', 'KFold', 'Holdout',
'Leaveout', or 'CVPartition'. For syntax details, see fitcdiscr, fitcknn, fitcnet, fitcnb,
fitcsvm, and fitctree.
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Input Arguments

Mdl

A classification model, specified as one of the following:

• A classification tree trained using fitctree
• A discriminant analysis classifier trained using fitcdiscr
• A neural network classifier trained using fitcnet
• A naive Bayes classifier trained using fitcnb
• A nearest-neighbor classifier trained using fitcknn
• A support vector machine classifier trained using fitcsvm

Properties
BinEdges

Bin edges for numeric predictors, specified as a cell array of p numeric vectors, where p is the
number of predictors. Each vector includes the bin edges for a numeric predictor. The element in the
cell array for a categorical predictor is empty because the software does not bin categorical
predictors.

The software bins numeric predictors only if you specify the 'NumBins' name-value argument as a
positive integer scalar when training a model with tree learners. The BinEdges property is empty if
the 'NumBins' value is empty (default).

You can reproduce the binned predictor data Xbinned by using the BinEdges property of the trained
model mdl.

X = mdl.X; % Predictor data
Xbinned = zeros(size(X));
edges = mdl.BinEdges;
% Find indices of binned predictors.
idxNumeric = find(~cellfun(@isempty,edges));
if iscolumn(idxNumeric)
    idxNumeric = idxNumeric';
end
for j = idxNumeric 
    x = X(:,j);
    % Convert x to array if x is a table.
    if istable(x) 
        x = table2array(x);
    end
    % Group x into bins by using the discretize function.
    xbinned = discretize(x,[-inf; edges{j}; inf]); 
    Xbinned(:,j) = xbinned;
end

Xbinned contains the bin indices, ranging from 1 to the number of bins, for numeric predictors.
Xbinned values are 0 for categorical predictors. If X contains NaNs, then the corresponding Xbinned
values are NaNs.
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CategoricalPredictors

Categorical predictor indices, specified as a vector of positive integers. Assuming that the predictor
data contains observations in rows, CategoricalPredictors contains index values corresponding
to the columns of the predictor data that contain categorical predictors. If none of the predictors are
categorical, then this property is empty ([]).

If Mdl is a trained discriminant analysis classifier, then CategoricalPredictors is always empty
([]).

ClassNames

Unique class labels used in training the model, specified as a categorical or character array, logical or
numeric vector, or cell array of character vectors.

Cost

Square matrix, where Cost(i,j) is the cost of classifying a point into class j if its true class is i
(i.e., the rows correspond to the true class and the columns correspond to the predicted class). The
order of the rows and columns of Cost corresponds to the order of the classes in ClassNames. The
number of rows and columns in Cost is the number of unique classes in the response.

If CVModel is a cross-validated ClassificationDiscriminant, ClassificationKNN, or
ClassificationNaiveBayes model, then you can change its cost matrix to e.g., CostMatrix,
using dot notation.

CVModel.Cost = CostMatrix;

CrossValidatedModel

Name of the cross-validated model, which is a character vector.

KFold

Number of folds used in cross-validated model, which is a positive integer.

ModelParameters

Object holding parameters of CVModel.

NumObservations

Number of observations in the training data stored in X and Y, specified as a numeric scalar.

Partition

The partition of class CVPartition used in creating the cross-validated model.

PredictorNames

Predictor variable names, specified as a cell array of character vectors. The order of the elements of
PredictorNames corresponds to the order in which the predictor names appear in the training data.

Prior

Numeric vector of prior probabilities for each class. The order of the elements of Prior corresponds
to the order of the classes in ClassNames.
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If CVModel is a cross-validated ClassificationDiscriminant or ClassificationNaiveBayes
model, then you can change its vector of priors to e.g., priorVector, using dot notation.

CVModel.Prior = priorVector;

ResponseName

Response variable name, specified as a character vector.

ScoreTransform

Score transformation, specified as a character vector or function handle. ScoreTransform
represents a built-in transformation function or a function handle for transforming predicted
classification scores.

To change the score transformation function to function, for example, use dot notation.

• For a built-in function, enter a character vector.

Mdl.ScoreTransform = 'function';

This table describes the available built-in functions.

Value Description
'doublelogit' 1/(1 + e–2x)
'invlogit' log(x / (1 – x))
'ismax' Sets the score for the class with the largest score to

1, and sets the scores for all other classes to 0
'logit' 1/(1 + e–x)
'none' or 'identity' x (no transformation)
'sign' –1 for x < 0

0 for x = 0
1 for x > 0

'symmetric' 2x – 1
'symmetricismax' Sets the score for the class with the largest score to

1, and sets the scores for all other classes to –1
'symmetriclogit' 2/(1 + e–x) – 1

• For a MATLAB function or a function that you define, enter its function handle.

Mdl.ScoreTransform = @function;

function must accept a matrix (the original scores) and return a matrix of the same size (the
transformed scores).

Trained

The trained learners, which is a cell array of compact classification models.

W

The scaled weights, which is a vector with length n, the number of observations in X.
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X

A matrix or table of predictor values.

Y

Categorical or character array, logical or numeric vector, or cell array of character vectors specifying
the class labels for each observation. Each entry of Y is the response value of the corresponding
observation in X.

Object Functions
gather Gather properties of Statistics and Machine Learning Toolbox object from GPU
kfoldEdge Classification edge for cross-validated classification model
kfoldLoss Classification loss for cross-validated classification model
kfoldMargin Classification margins for cross-validated classification model
kfoldPredict Classify observations in cross-validated classification model
kfoldfun Cross-validate function for classification

Copy Semantics
Value. To learn how value classes affect copy operations, see Copying Objects.

Examples

Evaluate the Classification Error of a Classification Tree Classifier

Evaluate the k-fold cross-validation error for a classification tree model.

Load Fisher's iris data set.

load fisheriris

Train a classification tree using default options.

Mdl = fitctree(meas,species);

Cross validate the classification tree model.

CVMdl = crossval(Mdl);

Estimate the 10-fold cross-validation loss.

L = kfoldLoss(CVMdl)

L = 0.0533

Estimate Posterior Probabilities for Test Samples

Estimate positive class posterior probabilities for the test set of an SVM algorithm.

Load the ionosphere data set.
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load ionosphere

Train an SVM classifier. Specify a 20% holdout sample. It is good practice to standardize the
predictors and specify the class order.

rng(1) % For reproducibility
CVSVMModel = fitcsvm(X,Y,'Holdout',0.2,'Standardize',true,...
    'ClassNames',{'b','g'});

CVSVMModel is a trained ClassificationPartitionedModel cross-validated classifier.

Estimate the optimal score function for mapping observation scores to posterior probabilities of an
observation being classified as 'g'.

ScoreCVSVMModel = fitSVMPosterior(CVSVMModel);

ScoreSVMModel is a trained ClassificationPartitionedModel cross-validated classifier
containing the optimal score transformation function estimated from the training data.

Estimate the out-of-sample positive class posterior probabilities. Display the results for the first 10
out-of-sample observations.

[~,OOSPostProbs] = kfoldPredict(ScoreCVSVMModel);
indx = ~isnan(OOSPostProbs(:,2));
hoObs = find(indx); % Holdout observation numbers
OOSPostProbs = [hoObs, OOSPostProbs(indx,2)];
table(OOSPostProbs(1:10,1),OOSPostProbs(1:10,2),...
    'VariableNames',{'ObservationIndex','PosteriorProbability'})

ans=10×2 table
    ObservationIndex    PosteriorProbability
    ________________    ____________________

            6                   0.17381     
            7                   0.89639     
            8                 0.0076613     
            9                   0.91602     
           16                  0.026722     
           22                4.6114e-06     
           23                    0.9024     
           24                2.4137e-06     
           38                0.00042705     
           41                   0.86427     

Tips
To estimate posterior probabilities of trained, cross-validated SVM classifiers, use
fitSVMPosterior.

Version History
Cost property stores the user-specified cost matrix
Behavior changed in R2022a
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Starting in R2022a, the Cost property of a cross-validated SVM classification model stores the user-
specified cost matrix, so that you can compute the observed misclassification cost using the specified
cost value. The software stores normalized prior probabilities (Prior) and observation weights (W)
that do not reflect the penalties described in the cost matrix. Other cross-validated models already
had this behavior. To compute the observed misclassification cost, specify the LossFun name-value
argument as "classifcost" when you call the kfoldLoss function.

Note that model training has not changed and, therefore, the decision boundaries between classes
have not changed.

For training an SVM model, the fitting function updates the specified prior probabilities by
incorporating the penalties described in the specified cost matrix, and then normalizes the prior
probabilities and observation weights. This behavior has not changed. In previous releases, the
software stored the default cost matrix in the Cost property and stored the prior probabilities and
observation weights used for training in the Prior and W properties, respectively. Starting in R2022a,
the software stores the user-specified cost matrix without modification, and stores normalized prior
probabilities and observation weights that do not reflect the cost penalties. For more details, see
“Misclassification Cost Matrix, Prior Probabilities, and Observation Weights” on page 19-8.

Some object functions use the Cost and W properties:

• The kfoldLoss function uses the cost matrix stored in the Cost property if you specify the
LossFun name-value argument as "classifcost" or "mincost".

• The kfoldLoss and kfoldEdge functions use the observation weights stored in the W property.

If you specify a nondefault cost matrix when you train a classification model, the object functions
return a different value compared to previous releases.

If you want the software to handle the cost matrix, prior probabilities, and observation weights as in
previous releases, adjust the prior probabilities and observation weights for the nondefault cost
matrix, as described in “Adjust Prior Probabilities and Observation Weights for Misclassification Cost
Matrix” on page 19-9. Then, when you train a classification model, specify the adjusted prior
probabilities and observation weights by using the Prior and Weights name-value arguments,
respectively, and use the default cost matrix.

Extended Capabilities
GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

Usage notes and limitations:

• ClassificationPartitionedModel can be one of the following cross-validated model objects:

• k-nearest neighbor classifier trained with fitcknn
• Support vector machine classifier trained with fitcsvm
• Binary decision tree for multiclass classification trained with fitctree

• The object functions of the ClassificationPartitionedModel model fully support GPU
arrays.

For more information, see “Run MATLAB Functions on a GPU” (Parallel Computing Toolbox).
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See Also
CompactClassificationSVM | CompactClassificationTree |
CompactClassificationDiscriminant | fitcsvm | fitctree | fitcdiscr |
fitSVMPosterior | fitcknn | ClassificationKNN | ClassificationNaiveBayes | fitcnb |
ClassificationNeuralNetwork | fitcnet

Topics
“Cross Validating a Discriminant Analysis Classifier” on page 21-17
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ClassificationSVM
Support vector machine (SVM) for one-class and binary classification

Description
ClassificationSVM is a support vector machine (SVM) classifier on page 35-631 for one-class and
two-class learning. Trained ClassificationSVM classifiers store training data, parameter values,
prior probabilities, support vectors, and algorithmic implementation information. Use these classifiers
to perform tasks such as fitting a score-to-posterior-probability transformation function (see
fitPosterior) and predicting labels for new data (see predict).

Creation
Create a ClassificationSVM object by using fitcsvm.

Properties
SVM Properties

Alpha — Trained classifier coefficients
numeric vector

This property is read-only.

Trained classifier coefficients, specified as an s-by-1 numeric vector. s is the number of support
vectors in the trained classifier, sum(Mdl.IsSupportVector).

Alpha contains the trained classifier coefficients from the dual problem, that is, the estimated
Lagrange multipliers. If you remove duplicates by using the RemoveDuplicates name-value pair
argument of fitcsvm, then for a given set of duplicate observations that are support vectors, Alpha
contains one coefficient corresponding to the entire set. That is, MATLAB attributes a nonzero
coefficient to one observation from the set of duplicates and a coefficient of 0 to all other duplicate
observations in the set.
Data Types: single | double

Beta — Linear predictor coefficients
numeric vector

This property is read-only.

Linear predictor coefficients, specified as a numeric vector. The length of Beta is equal to the
number of predictors used to train the model.

MATLAB expands categorical variables in the predictor data using full dummy encoding. That is,
MATLAB creates one dummy variable for each level of each categorical variable. Beta stores one
value for each predictor variable, including the dummy variables. For example, if there are three
predictors, one of which is a categorical variable with three levels, then Beta is a numeric vector
containing five values.
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If KernelParameters.Function is 'linear', then the classification score for the observation x is

f x = x/s ′β + b .

Mdl stores β, b, and s in the properties Beta, Bias, and KernelParameters.Scale, respectively.

To estimate classification scores manually, you must first apply any transformations to the predictor
data that were applied during training. Specifically, if you specify 'Standardize',true when using
fitcsvm, then you must standardize the predictor data manually by using the mean Mdl.Mu and
standard deviation Mdl.Sigma, and then divide the result by the kernel scale in
Mdl.KernelParameters.Scale.

All SVM functions, such as resubPredict and predict, apply any required transformation before
estimation.

If KernelParameters.Function is not 'linear', then Beta is empty ([]).
Data Types: single | double

Bias — Bias term
scalar

This property is read-only.

Bias term, specified as a scalar.
Data Types: single | double

BoxConstraints — Box constraints
numeric vector

This property is read-only.

Box constraints, specified as a numeric vector of n-by-1 box constraints on page 35-630. n is the
number of observations in the training data (see the NumObservations property).

If you remove duplicates by using the RemoveDuplicates name-value pair argument of fitcsvm,
then for a given set of duplicate observations, MATLAB sums the box constraints and then attributes
the sum to one observation. MATLAB attributes the box constraints of 0 to all other observations in
the set.
Data Types: single | double

CacheInfo — Caching information
structure array

This property is read-only.

Caching information, specified as a structure array. The caching information contains the fields
described in this table.

Field Description
Size The cache size (in MB) that the software reserves to train the SVM classifier. For

details, see 'CacheSize'.
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Field Description
Algorithm The caching algorithm that the software uses during optimization. Currently, the only

available caching algorithm is Queue. You cannot set the caching algorithm.

Display the fields of CacheInfo by using dot notation. For example, Mdl.CacheInfo.Size displays
the value of the cache size.
Data Types: struct

IsSupportVector — Support vector indicator
logical vector

This property is read-only.

Support vector indicator, specified as an n-by-1 logical vector that flags whether a corresponding
observation in the predictor data matrix is a “Support Vector” on page 35-631. n is the number of
observations in the training data (see NumObservations).

If you remove duplicates by using the RemoveDuplicates name-value pair argument of fitcsvm,
then for a given set of duplicate observations that are support vectors, IsSupportVector flags only
one observation as a support vector.
Data Types: logical

KernelParameters — Kernel parameters
structure array

This property is read-only.

Kernel parameters, specified as a structure array. The kernel parameters property contains the fields
listed in this table.

Field Description
Function Kernel function used to compute the elements of the Gram matrix on page 35-2206.

For details, see 'KernelFunction'.
Scale Kernel scale parameter used to scale all elements of the predictor data on which the

model is trained. For details, see 'KernelScale'.

To display the values of KernelParameters, use dot notation. For example,
Mdl.KernelParameters.Scale displays the kernel scale parameter value.

The software accepts KernelParameters as inputs and does not modify them.
Data Types: struct

Nu — One-class learning parameter
positive scalar

This property is read-only.

One-class learning on page 35-630 parameter ν, specified as a positive scalar.
Data Types: single | double
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OutlierFraction — Proportion of outliers
numeric scalar

This property is read-only.

Proportion of outliers in the training data, specified as a numeric scalar.
Data Types: double

Solver — Optimization routine
'ISDA' | 'L1QP' | 'SMO'

This property is read-only.

Optimization routine used to train the SVM classifier, specified as 'ISDA', 'L1QP', or 'SMO'. For
more details, see 'Solver'.

SupportVectorLabels — Support vector class labels
s-by-1 numeric vector

This property is read-only.

Support vector class labels, specified as an s-by-1 numeric vector. s is the number of support vectors
in the trained classifier, sum(Mdl.IsSupportVector).

A value of +1 in SupportVectorLabels indicates that the corresponding support vector is in the
positive class (ClassNames{2}). A value of –1 indicates that the corresponding support vector is in
the negative class (ClassNames{1}).

If you remove duplicates by using the RemoveDuplicates name-value pair argument of fitcsvm,
then for a given set of duplicate observations that are support vectors, SupportVectorLabels
contains one unique support vector label.
Data Types: single | double

SupportVectors — Support vectors
s-by-p numeric matrix

This property is read-only.

Support vectors in the trained classifier, specified as an s-by-p numeric matrix. s is the number of
support vectors in the trained classifier, sum(Mdl.IsSupportVector), and p is the number of
predictor variables in the predictor data.

SupportVectors contains rows of the predictor data X that MATLAB considers to be support
vectors. If you specify 'Standardize',true when training the SVM classifier using fitcsvm, then
SupportVectors contains the standardized rows of X.

If you remove duplicates by using the RemoveDuplicates name-value pair argument of fitcsvm,
then for a given set of duplicate observations that are support vectors, SupportVectors contains
one unique support vector.
Data Types: single | double
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Other Classification Properties

CategoricalPredictors — Categorical predictor indices
vector of positive integers | []

This property is read-only.

Categorical predictor indices, specified as a vector of positive integers. CategoricalPredictors
contains index values indicating that the corresponding predictors are categorical. The index values
are between 1 and p, where p is the number of predictors used to train the model. If none of the
predictors are categorical, then this property is empty ([]).
Data Types: double

ClassNames — Unique class labels
categorical array | character array | logical vector | numeric vector | cell array of character vectors

This property is read-only.

Unique class labels used in training, specified as a categorical or character array, logical or numeric
vector, or cell array of character vectors. ClassNames has the same data type as the class labels Y.
(The software treats string arrays as cell arrays of character vectors.) ClassNames also determines
the class order.
Data Types: single | double | logical | char | cell | categorical

Cost — Misclassification cost
numeric square matrix

This property is read-only.

Misclassification cost, specified as a numeric square matrix.

• For two-class learning, the Cost property stores the misclassification cost matrix specified by the
Cost name-value argument of the fitting function. The rows correspond to the true class and the
columns correspond to the predicted class. That is, Cost(i,j) is the cost of classifying a point
into class j if its true class is i. The order of the rows and columns of Cost corresponds to the
order of the classes in ClassNames.

• For one-class learning, Cost = 0.

Data Types: double

ExpandedPredictorNames — Expanded predictor names
cell array of character vectors

This property is read-only.

Expanded predictor names, specified as a cell array of character vectors.

If the model uses dummy variable encoding for categorical variables, then
ExpandedPredictorNames includes the names that describe the expanded variables. Otherwise,
ExpandedPredictorNames is the same as PredictorNames.
Data Types: cell

Gradient — Training data gradient values
numeric vector
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This property is read-only.

Training data gradient values, specified as a numeric vector. The length of Gradient is equal to the
number of observations (NumObservations).
Data Types: single | double

ModelParameters — Parameters used to train model
object

This property is read-only.

Parameters used to train the ClassificationSVM model, specified as an object. ModelParameters
contains parameter values such as the name-value pair argument values used to train the SVM
classifier. ModelParameters does not contain estimated parameters.

Access the properties of ModelParameters by using dot notation. For example, access the initial
values for estimating Alpha by using Mdl.ModelParameters.Alpha.

Mu — Predictor means
numeric vector | []

This property is read-only.

Predictor means, specified as a numeric vector. If you specify 'Standardize',1 or
'Standardize',true when you train an SVM classifier using fitcsvm, the length of Mu is equal to
the number of predictors.

MATLAB expands categorical variables in the predictor data using dummy variables. Mu stores one
value for each predictor variable, including the dummy variables. However, MATLAB does not
standardize the columns that contain categorical variables.

If you set 'Standardize',false when you train the SVM classifier using fitcsvm, then Mu is an
empty vector ([]).
Data Types: single | double

NumObservations — Number of observations
numeric scalar

This property is read-only.

Number of observations in the training data stored in X and Y, specified as a numeric scalar.
Data Types: double

PredictorNames — Predictor variable names
cell array of character vectors

This property is read-only.

Predictor variable names, specified as a cell array of character vectors. The order of the elements of
PredictorNames corresponds to the order in which the predictor names appear in the training data.
Data Types: cell

Prior — Prior probabilities
numeric vector
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This property is read-only.

Prior probabilities for each class, specified as a numeric vector.

For two-class learning, if you specify a cost matrix, then the software updates the prior probabilities
by incorporating the penalties described in the cost matrix.

• For two-class learning, the software normalizes the prior probabilities specified by the Prior
name-value argument of the fitting function so that the probabilities sum to 1. The Prior property
stores the normalized prior probabilities. The order of the elements of Prior corresponds to the
elements of Mdl.ClassNames.

• For one-class learning, Prior = 1.

Data Types: single | double

ResponseName — Response variable name
character vector

This property is read-only.

Response variable name, specified as a character vector.
Data Types: char

RowsUsed — Rows used in fitting
[] | logical vector

This property is read-only.

Rows of the original training data used in fitting the ClassificationSVM model, specified as a
logical vector. This property is empty if all rows are used.
Data Types: logical

ScoreTransform — Score transformation
character vector | function handle

Score transformation, specified as a character vector or function handle. ScoreTransform
represents a built-in transformation function or a function handle for transforming predicted
classification scores.

To change the score transformation function to function, for example, use dot notation.

• For a built-in function, enter a character vector.

Mdl.ScoreTransform = 'function';

This table describes the available built-in functions.

Value Description
'doublelogit' 1/(1 + e–2x)
'invlogit' log(x / (1 – x))
'ismax' Sets the score for the class with the largest score to

1, and sets the scores for all other classes to 0
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Value Description
'logit' 1/(1 + e–x)
'none' or 'identity' x (no transformation)
'sign' –1 for x < 0

0 for x = 0
1 for x > 0

'symmetric' 2x – 1
'symmetricismax' Sets the score for the class with the largest score to

1, and sets the scores for all other classes to –1
'symmetriclogit' 2/(1 + e–x) – 1

• For a MATLAB function or a function that you define, enter its function handle.

Mdl.ScoreTransform = @function;

function must accept a matrix (the original scores) and return a matrix of the same size (the
transformed scores).

Data Types: char | function_handle

Sigma — Predictor standard deviations
[] (default) | numeric vector

This property is read-only.

Predictor standard deviations, specified as a numeric vector.

If you specify 'Standardize',true when you train the SVM classifier using fitcsvm, the length of
Sigma is equal to the number of predictor variables.

MATLAB expands categorical variables in the predictor data using dummy variables. Sigma stores
one value for each predictor variable, including the dummy variables. However, MATLAB does not
standardize the columns that contain categorical variables.

If you set 'Standardize',false when you train the SVM classifier using fitcsvm, then Sigma is
an empty vector ([]).
Data Types: single | double

W — Observation weights
numeric vector

This property is read-only.

Observation weights used to train the SVM classifier, specified as an n-by-1 numeric vector. n is the
number of observations (see NumObservations).

fitcsvm normalizes the observation weights specified in the 'Weights' name-value pair argument
so that the elements of W within a particular class sum up to the prior probability of that class.
Data Types: single | double

X — Unstandardized predictors
numeric matrix | table
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This property is read-only.

Unstandardized predictors used to train the SVM classifier, specified as a numeric matrix or table.

Each row of X corresponds to one observation, and each column corresponds to one variable.

MATLAB excludes observations containing at least one missing value, and removes corresponding
elements from Y.
Data Types: single | double

Y — Class labels
categorical array | character array | logical vector | numeric vector | cell array of character vectors

This property is read-only.

Class labels used to train the SVM classifier, specified as a categorical or character array, logical or
numeric vector, or cell array of character vectors. Y is the same data type as the input argument Y of
fitcsvm. (The software treats string arrays as cell arrays of character vectors.)

Each row of Y represents the observed classification of the corresponding row of X.

MATLAB excludes elements containing missing values, and removes corresponding observations from
X.
Data Types: single | double | logical | char | cell | categorical

Convergence Control Properties

ConvergenceInfo — Convergence information
structure array

This property is read-only.

Convergence information, specified as a structure array.

Field Description
Converged Logical flag indicating whether the algorithm

converged (1 indicates convergence).
ReasonForConvergence Character vector indicating the criterion the

software uses to detect convergence.
Gap Scalar feasibility gap between the dual and

primal objective functions.
GapTolerance Scalar feasibility gap tolerance. Set this

tolerance, for example to 1e-2, by using the
name-value pair argument
'GapTolerance',1e-2 of fitcsvm.

DeltaGradient Scalar-attained gradient difference between
upper and lower violators
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Field Description
DeltaGradientTolerance Scalar tolerance for the gradient difference

between upper and lower violators. Set this
tolerance, for example to 1e-2, by using the
name-value pair argument
'DeltaGradientTolerance',1e-2 of
fitcsvm.

LargestKKTViolation Maximal scalar Karush-Kuhn-Tucker (KKT)
violation value.

KKTTolerance Scalar tolerance for the largest KKT violation. Set
this tolerance, for example, to 1e-3, by using the
name-value pair argument
'KKTTolerance',1e-3 of fitcsvm.

History Structure array containing convergence
information at set optimization iterations. The
fields are:

• NumIterations: numeric vector of iteration
indices for which the software records
convergence information

• Gap: numeric vector of Gap values at the
iterations

• DeltaGradient: numeric vector of
DeltaGradient values at the iterations

• LargestKKTViolation: numeric vector of
LargestKKTViolation values at the
iterations

• NumSupportVectors: numeric vector
indicating the number of support vectors at
the iterations

• Objective: numeric vector of Objective
values at the iterations

Objective Scalar value of the dual objective function.

Data Types: struct

NumIterations — Number of iterations
positive integer

This property is read-only.

Number of iterations required by the optimization routine to attain convergence, specified as a
positive integer.

To set the limit on the number of iterations to 1000, for example, specify 'IterationLimit',1000
when you train the SVM classifier using fitcsvm.
Data Types: double

ShrinkagePeriod — Number of iterations between reductions of active set
nonnegative integer
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This property is read-only.

Number of iterations between reductions of the active set, specified as a nonnegative integer.

To set the shrinkage period to 1000, for example, specify 'ShrinkagePeriod',1000 when you
train the SVM classifier using fitcsvm.
Data Types: single | double

Hyperparameter Optimization Properties

HyperparameterOptimizationResults — Description of cross-validation optimization of
hyperparameters
BayesianOptimization object | table

This property is read-only.

Description of the cross-validation optimization of hyperparameters, specified as a
BayesianOptimization object or a table of hyperparameters and associated values. This property
is nonempty when the 'OptimizeHyperparameters' name-value pair argument of fitcsvm is
nonempty at creation. The value of HyperparameterOptimizationResults depends on the
setting of the Optimizer field in the HyperparameterOptimizationOptions structure of
fitcsvm at creation, as described in this table.

Value of Optimizer Field Value of
HyperparameterOptimizationResults

'bayesopt' (default) Object of class BayesianOptimization
'gridsearch' or 'randomsearch' Table of hyperparameters used, observed

objective function values (cross-validation loss),
and rank of observations from lowest (best) to
highest (worst)

Object Functions
compact Reduce size of machine learning model
compareHoldout Compare accuracies of two classification models using new data
crossval Cross-validate machine learning model
discardSupportVectors Discard support vectors for linear support vector machine (SVM) classifier
edge Find classification edge for support vector machine (SVM) classifier
fitPosterior Fit posterior probabilities for support vector machine (SVM) classifier
gather Gather properties of Statistics and Machine Learning Toolbox object from

GPU
incrementalLearner Convert binary classification support vector machine (SVM) model to

incremental learner
lime Local interpretable model-agnostic explanations (LIME)
loss Find classification error for support vector machine (SVM) classifier
margin Find classification margins for support vector machine (SVM) classifier
partialDependence Compute partial dependence
plotPartialDependence Create partial dependence plot (PDP) and individual conditional expectation

(ICE) plots
predict Classify observations using support vector machine (SVM) classifier
resubEdge Resubstitution classification edge
resubLoss Resubstitution classification loss
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resubMargin Resubstitution classification margin
resubPredict Classify training data using trained classifier
resume Resume training support vector machine (SVM) classifier
shapley Shapley values
testckfold Compare accuracies of two classification models by repeated cross-

validation

Examples

Train SVM Classifier

Load Fisher's iris data set. Remove the sepal lengths and widths and all observed setosa irises.

load fisheriris
inds = ~strcmp(species,'setosa');
X = meas(inds,3:4);
y = species(inds);

Train an SVM classifier using the processed data set.

SVMModel = fitcsvm(X,y)

SVMModel = 
  ClassificationSVM
             ResponseName: 'Y'
    CategoricalPredictors: []
               ClassNames: {'versicolor'  'virginica'}
           ScoreTransform: 'none'
          NumObservations: 100
                    Alpha: [24x1 double]
                     Bias: -14.4149
         KernelParameters: [1x1 struct]
           BoxConstraints: [100x1 double]
          ConvergenceInfo: [1x1 struct]
          IsSupportVector: [100x1 logical]
                   Solver: 'SMO'

  Properties, Methods

SVMModel is a trained ClassificationSVM classifier. Display the properties of SVMModel. For
example, to determine the class order, use dot notation.

classOrder = SVMModel.ClassNames

classOrder = 2x1 cell
    {'versicolor'}
    {'virginica' }

The first class ('versicolor') is the negative class, and the second ('virginica') is the positive
class. You can change the class order during training by using the 'ClassNames' name-value pair
argument.

Plot a scatter diagram of the data and circle the support vectors.
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sv = SVMModel.SupportVectors;
figure
gscatter(X(:,1),X(:,2),y)
hold on
plot(sv(:,1),sv(:,2),'ko','MarkerSize',10)
legend('versicolor','virginica','Support Vector')
hold off

The support vectors are observations that occur on or beyond their estimated class boundaries.

You can adjust the boundaries (and, therefore, the number of support vectors) by setting a box
constraint during training using the 'BoxConstraint' name-value pair argument.

Train and Cross-Validate SVM Classifier

Load the ionosphere data set.

load ionosphere

Train and cross-validate an SVM classifier. Standardize the predictor data and specify the order of the
classes.

rng(1);  % For reproducibility
CVSVMModel = fitcsvm(X,Y,'Standardize',true,...
    'ClassNames',{'b','g'},'CrossVal','on')
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CVSVMModel = 
  ClassificationPartitionedModel
    CrossValidatedModel: 'SVM'
         PredictorNames: {1x34 cell}
           ResponseName: 'Y'
        NumObservations: 351
                  KFold: 10
              Partition: [1x1 cvpartition]
             ClassNames: {'b'  'g'}
         ScoreTransform: 'none'

  Properties, Methods

CVSVMModel is a ClassificationPartitionedModel cross-validated SVM classifier. By default,
the software implements 10-fold cross-validation.

Alternatively, you can cross-validate a trained ClassificationSVM classifier by passing it to
crossval.

Inspect one of the trained folds using dot notation.

CVSVMModel.Trained{1}

ans = 
  CompactClassificationSVM
             ResponseName: 'Y'
    CategoricalPredictors: []
               ClassNames: {'b'  'g'}
           ScoreTransform: 'none'
                    Alpha: [78x1 double]
                     Bias: -0.2209
         KernelParameters: [1x1 struct]
                       Mu: [0.8888 0 0.6320 0.0406 0.5931 0.1205 0.5361 ... ]
                    Sigma: [0.3149 0 0.5033 0.4441 0.5255 0.4663 0.4987 ... ]
           SupportVectors: [78x34 double]
      SupportVectorLabels: [78x1 double]

  Properties, Methods

Each fold is a CompactClassificationSVM classifier trained on 90% of the data.

Estimate the generalization error.

genError = kfoldLoss(CVSVMModel)

genError = 0.1168

On average, the generalization error is approximately 12%.
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More About
Box Constraint

A box constraint is a parameter that controls the maximum penalty imposed on margin-violating
observations, which helps to prevent overfitting (regularization).

If you increase the box constraint, then the SVM classifier assigns fewer support vectors. However,
increasing the box constraint can lead to longer training times.

Gram Matrix

The Gram matrix of a set of n vectors {x1,..,xn; xj ∊ Rp} is an n-by-n matrix with element (j,k) defined
as G(xj,xk) = <ϕ(xj),ϕ(xk)>, an inner product of the transformed predictors using the kernel function
ϕ.

For nonlinear SVM, the algorithm forms a Gram matrix using the rows of the predictor data X. The
dual formalization replaces the inner product of the observations in X with corresponding elements of
the resulting Gram matrix (called the “kernel trick”). Consequently, nonlinear SVM operates in the
transformed predictor space to find a separating hyperplane.

Karush-Kuhn-Tucker Complementarity Conditions

KKT complementarity conditions are optimization constraints required for optimal nonlinear
programming solutions.

In SVM, the KKT complementarity conditions are

α j y jf x j − 1 + ξ j = 0
ξ j C− α j = 0

for all j = 1,...,n, where f x j = ϕ x j ′β + b, ϕ is a kernel function (see Gram matrix on page 35-2206),
and ξj is a slack variable. If the classes are perfectly separable, then ξj = 0 for all j = 1,...,n.

One-Class Learning

One-class learning, or unsupervised SVM, aims to separate data from the origin in the high-
dimensional predictor space (not the original predictor space), and is an algorithm used for outlier
detection.

The algorithm resembles that of SVM for binary classification on page 35-2207. The objective is to
minimize the dual expression

0.5∑
jk

α jαkG(x j, xk)

with respect to α1, ..., αn, subject to

∑α j = nν

and 0 ≤ α j ≤ 1 for all j = 1,...,n. The value of G(xj,xk) is in element (j,k) of the Gram matrix on page 35-
2206.

A small value of ν leads to fewer support vectors and, therefore, a smooth, crude decision boundary. A
large value of ν leads to more support vectors and, therefore, a curvy, flexible decision boundary. The
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optimal value of ν should be large enough to capture the data complexity and small enough to avoid
overtraining. Also, 0 < ν ≤ 1.

For more details, see [5].

Support Vector

Support vectors are observations corresponding to strictly positive estimates of α1,...,αn.

SVM classifiers that yield fewer support vectors for a given training set are preferred.

Support Vector Machines for Binary Classification

The SVM binary classification algorithm searches for an optimal hyperplane that separates the data
into two classes. For separable classes, the optimal hyperplane maximizes a margin (space that does
not contain any observations) surrounding itself, which creates boundaries for the positive and
negative classes. For inseparable classes, the objective is the same, but the algorithm imposes a
penalty on the length of the margin for every observation that is on the wrong side of its class
boundary.

The linear SVM score function is

f (x) = x′β + b,

where:

• x is an observation (corresponding to a row of X).
• The vector β contains the coefficients that define an orthogonal vector to the hyperplane

(corresponding to Mdl.Beta). For separable data, the optimal margin length is 2/ β .
• b is the bias term (corresponding to Mdl.Bias).

The root of f(x) for particular coefficients defines a hyperplane. For a particular hyperplane, f(z) is the
distance from point z to the hyperplane.

The algorithm searches for the maximum margin length, while keeping observations in the positive (y
= 1) and negative (y = –1) classes separate.

• For separable classes, the objective is to minimize β  with respect to the β and b subject to yjf(xj)
≥ 1, for all j = 1,..,n. This is the primal formalization for separable classes.

• For inseparable classes, the algorithm uses slack variables (ξj) to penalize the objective function
for observations that cross the margin boundary for their class. ξj = 0 for observations that do not
cross the margin boundary for their class, otherwise ξj ≥ 0.

The objective is to minimize 0.5 β 2 + C∑ξ j with respect to the β, b, and ξj subject to
y jf (x j) ≥ 1− ξ j and ξ j ≥ 0 for all j = 1,..,n, and for a positive scalar box constraint on page 35-
2206 C. This is the primal formalization for inseparable classes.

The algorithm uses the Lagrange multipliers method to optimize the objective, which introduces n
coefficients α1,...,αn (corresponding to Mdl.Alpha). The dual formalizations for linear SVM are as
follows:

• For separable classes, minimize
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0.5 ∑
j = 1

n ∑
k = 1

n

α jαky jykx j′xk−∑
j = 1

n

α j

with respect to α1,...,αn, subject to ∑α jy j = 0, αj ≥ 0 for all j = 1,...,n, and Karush-Kuhn-Tucker
(KKT) complementarity conditions on page 35-2206.

• For inseparable classes, the objective is the same as for separable classes, except for the
additional condition 0 ≤ α j ≤ C for all j = 1,..,n.

The resulting score function is

f (x) = ∑
j = 1

n
α jy jx′x j + b .

b  is the estimate of the bias and α j is the jth estimate of the vector α , j = 1,...,n. Written this way, the
score function is free of the estimate of β as a result of the primal formalization.

The SVM algorithm classifies a new observation z using sign f z .

In some cases, a nonlinear boundary separates the classes. Nonlinear SVM works in a transformed
predictor space to find an optimal, separating hyperplane.

The dual formalization for nonlinear SVM is

0.5 ∑
j = 1

n
∑

k = 1

n
α jαky jykG(x j, xk)− ∑

j = 1

n
α j

with respect to α1,...,αn, subject to ∑α jy j = 0, 0 ≤ α j ≤ C for all j = 1,..,n, and the KKT
complementarity conditions. G(xk,xj) are elements of the Gram matrix on page 35-2206. The resulting
score function is

f (x) = ∑
j = 1

n
α jy jG(x, x j) + b .

For more details, see Understanding Support Vector Machines on page 19-151, [1], and [3].

Algorithms
• For the mathematical formulation of the SVM binary classification algorithm, see “Support Vector

Machines for Binary Classification” on page 35-2207 and “Understanding Support Vector
Machines” on page 19-151.

• NaN, <undefined>, empty character vector (''), empty string (""), and <missing> values
indicate missing values. fitcsvm removes entire rows of data corresponding to a missing
response. When computing total weights (see the next bullets), fitcsvm ignores any weight
corresponding to an observation with at least one missing predictor. This action can lead to
unbalanced prior probabilities in balanced-class problems. Consequently, observation box
constraints might not equal BoxConstraint.

• If you specify the Cost, Prior, and Weights name-value arguments, the output model object
stores the specified values in the Cost, Prior, and W properties, respectively. The Cost property
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stores the user-specified cost matrix (C) without modification. The Prior and W properties store
the prior probabilities and observation weights, respectively, after normalization. For model
training, the software updates the prior probabilities and observation weights to incorporate the
penalties described in the cost matrix. For details, see “Misclassification Cost Matrix, Prior
Probabilities, and Observation Weights” on page 19-8.

Note that the Cost and Prior name-value arguments are used for two-class learning. For one-
class learning, the Cost and Prior properties store 0 and 1, respectively.

• For two-class learning, fitcsvm assigns a box constraint to each observation in the training data.
The formula for the box constraint of observation j is

C j = nC0w j
∗,

where C0 is the initial box constraint (see the BoxConstraint name-value argument), and wj
* is

the observation weight adjusted by Cost and Prior for observation j. For details about the
observation weights, see “Adjust Prior Probabilities and Observation Weights for Misclassification
Cost Matrix” on page 19-9.

• If you specify Standardize as true and set the Cost, Prior, or Weights name-value argument,
then fitcsvm standardizes the predictors using their corresponding weighted means and
weighted standard deviations. That is, fitcsvm standardizes predictor j (xj) using

x j
∗ =

x j− μ j
∗

σ j
∗ ,

where xjk is observation k (row) of predictor j (column), and

μ j
∗ = 1
∑
k

wk*
∑
k

wk*x jk,

σ j
∗ 2 =

v1
v1

2− v2
∑
k

wk* x jk− μ j
∗ 2,

v1 = ∑
j

w j*,

v2 = ∑
j

w j*
2 .

• Assume that p is the proportion of outliers that you expect in the training data, and that you set
'OutlierFraction',p.

• For one-class learning, the software trains the bias term such that 100p% of the observations
in the training data have negative scores.

• The software implements robust learning for two-class learning. In other words, the software
attempts to remove 100p% of the observations when the optimization algorithm converges.
The removed observations correspond to gradients that are large in magnitude.

• If your predictor data contains categorical variables, then the software generally uses full dummy
encoding for these variables. The software creates one dummy variable for each level of each
categorical variable.

• The PredictorNames property stores one element for each of the original predictor variable
names. For example, assume that there are three predictors, one of which is a categorical
variable with three levels. Then PredictorNames is a 1-by-3 cell array of character vectors
containing the original names of the predictor variables.
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• The ExpandedPredictorNames property stores one element for each of the predictor
variables, including the dummy variables. For example, assume that there are three predictors,
one of which is a categorical variable with three levels. Then ExpandedPredictorNames is a
1-by-5 cell array of character vectors containing the names of the predictor variables and the
new dummy variables.

• Similarly, the Beta property stores one beta coefficient for each predictor, including the
dummy variables.

• The SupportVectors property stores the predictor values for the support vectors, including
the dummy variables. For example, assume that there are m support vectors and three
predictors, one of which is a categorical variable with three levels. Then SupportVectors is
an n-by-5 matrix.

• The X property stores the training data as originally input and does not include the dummy
variables. When the input is a table, X contains only the columns used as predictors.

• For predictors specified in a table, if any of the variables contain ordered (ordinal) categories, the
software uses ordinal encoding for these variables.

• For a variable with k ordered levels, the software creates k – 1 dummy variables. The jth
dummy variable is –1 for levels up to j, and +1 for levels j + 1 through k.

• The names of the dummy variables stored in the ExpandedPredictorNames property indicate
the first level with the value +1. The software stores k – 1 additional predictor names for the
dummy variables, including the names of levels 2, 3, ..., k.

• All solvers implement L1 soft-margin minimization.
• For one-class learning, the software estimates the Lagrange multipliers, α1,...,αn, such that

∑
j = 1

n
α j = nν .

Version History
Introduced in R2014a

Cost property stores the user-specified cost matrix
Behavior changed in R2022a

Starting in R2022a, the Cost property stores the user-specified cost matrix, so that you can compute
the observed misclassification cost using the specified cost value. The software stores normalized
prior probabilities (Prior) and observation weights (W) that do not reflect the penalties described in
the cost matrix. To compute the observed misclassification cost, specify the LossFun name-value
argument as "classifcost" when you call the loss or resubLoss function.

Note that model training has not changed and, therefore, the decision boundaries between classes
have not changed.

For training, the fitting function updates the specified prior probabilities by incorporating the
penalties described in the specified cost matrix, and then normalizes the prior probabilities and
observation weights. This behavior has not changed. In previous releases, the software stored the
default cost matrix in the Cost property and stored the prior probabilities and observation weights
used for training in the Prior and W properties, respectively. Starting in R2022a, the software stores
the user-specified cost matrix without modification, and stores normalized prior probabilities and
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observation weights that do not reflect the cost penalties. For more details, see “Misclassification
Cost Matrix, Prior Probabilities, and Observation Weights” on page 19-8.

Some object functions use the Cost, Prior, and W properties:

• The loss and resubLoss functions use the cost matrix stored in the Cost property if you specify
the LossFun name-value argument as "classifcost" or "mincost".

• The loss and edge functions use the prior probabilities stored in the Prior property to
normalize the observation weights of the input data.

• The resubLoss and resubEdge functions use the observation weights stored in the W property.

If you specify a nondefault cost matrix when you train a classification model, the object functions
return a different value compared to previous releases.

If you want the software to handle the cost matrix, prior probabilities, and observation weights as in
previous releases, adjust the prior probabilities and observation weights for the nondefault cost
matrix, as described in “Adjust Prior Probabilities and Observation Weights for Misclassification Cost
Matrix” on page 19-9. Then, when you train a classification model, specify the adjusted prior
probabilities and observation weights by using the Prior and Weights name-value arguments,
respectively, and use the default cost matrix.
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Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• The predict and update functions support code generation.
• To integrate the prediction of an SVM classification model into Simulink, you can use the
ClassificationSVM Predict block in the Statistics and Machine Learning Toolbox library or a
MATLAB Function block with the predict function.

• When you train an SVM model by using fitcsvm, the following restrictions apply.

• The value of the 'ScoreTransform' name-value pair argument cannot be an anonymous
function. For generating code that predicts posterior probabilities given new observations,
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pass a trained SVM model to fitPosterior or fitSVMPosterior. The ScoreTransform
property of the returned model contains an anonymous function that represents the score-to-
posterior-probability function and is configured for code generation.

• For fixed-point code generation, the value of the 'ScoreTransform' name-value pair
argument cannot be 'invlogit'. Also, the value of the 'KernelFunction' name-value pair
argument must be 'gaussian', 'linear', or 'polynomial'.

• For fixed-point code generation and code generation with a coder configurer, the following
additional restrictions apply.

• Categorical predictors (logical, categorical, char, string, or cell) are not
supported. You cannot use the CategoricalPredictors name-value argument. To
include categorical predictors in a model, preprocess them by using dummyvar before
fitting the model.

• Class labels with the categorical data type are not supported. Both the class label value
in training data (Tbl or Y) and the value of the ClassNames name-value argument cannot
be an array with the categorical data type.

For more information, see “Introduction to Code Generation” on page 34-2.

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

Usage notes and limitations:

• The following object functions fully support GPU arrays:

• compact
• crossval
• discardSupportVectors
• fitPosterior
• gather
• resubEdge
• resubLoss
• resubMargin
• resubPredict
• resume

• The following object functions offer limited support for GPU arrays:

• compareHoldout
• edge
• loss
• margin
• partialDependence
• plotPartialDependence
• predict

• The object functions execute on a GPU if either of the following apply:
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• The model was fitted with GPU arrays.
• The predictor data that you pass to the object function is a GPU array.

For more information, see “Run MATLAB Functions on a GPU” (Parallel Computing Toolbox).

See Also
fitcsvm | CompactClassificationSVM | ClassificationPartitionedModel

Topics
Using Support Vector Machines on page 19-155
Understanding Support Vector Machines on page 19-151
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ClassificationSVMCoderConfigurer
Coder configurer for support vector machine (SVM) for one-class and binary classification

Description
A ClassificationSVMCoderConfigurer object is a coder configurer of an SVM classification
model (ClassificationSVM or CompactClassificationSVM).

A coder configurer offers convenient features to configure code generation options, generate C/C++
code, and update model parameters in the generated code.

• Configure code generation options and specify the coder attributes of SVM model parameters by
using object properties.

• Generate C/C++ code for the predict and update functions of the SVM classification model by
using generateCode. Generating C/C++ code requires MATLAB Coder.

• Update model parameters in the generated C/C++ code without having to regenerate the code.
This feature reduces the effort required to regenerate, redeploy, and reverify C/C++ code when
you retrain the SVM model with new data or settings. Before updating model parameters, use
validatedUpdateInputs to validate and extract the model parameters to update.

This flow chart shows the code generation workflow using a coder configurer.

For the code generation usage notes and limitations of an SVM classification model, see the Code
Generation sections of CompactClassificationSVM, predict, and update.

Creation
After training an SVM classification model by using fitcsvm, create a coder configurer for the model
by using learnerCoderConfigurer. Use the properties of a coder configurer to specify the coder
attributes of predict and update arguments. Then, use generateCode to generate C/C++ code
based on the specified coder attributes.

Properties
predict Arguments

The properties listed in this section specify the coder attributes of the predict function arguments
in the generated code.
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X — Coder attributes of predictor data
LearnerCoderInput object

Coder attributes of predictor data to pass to the generated C/C++ code for the predict function of
the SVM classification model, specified as a LearnerCoderInput on page 35-651 object.

When you create a coder configurer by using the learnerCoderConfigurer function, the input
argument X determines the default values of the LearnerCoderInput coder attributes:

• SizeVector — The default value is the array size of the input X.
• VariableDimensions — This value is [0 0](default) or [1 0].

• [0 0] indicates that the array size is fixed as specified in SizeVector.
• [1 0] indicates that the array has variable-size rows and fixed-size columns. In this case, the
first value of SizeVector is the upper bound for the number of rows, and the second value of
SizeVector is the number of columns.

• DataType — This value is single or double. The default data type depends on the data type of
the input X.

• Tunability — This value must be true, meaning that predict in the generated C/C++ code
always includes predictor data as an input.

You can modify the coder attributes by using dot notation. For example, to generate C/C++ code that
accepts predictor data with 100 observations of three predictor variables, specify these coder
attributes of X for the coder configurer configurer:

configurer.X.SizeVector = [100 3];
configurer.X.DataType = 'double';
configurer.X.VariableDimensions = [0 0];

[0 0] indicates that the first and second dimensions of X (number of observations and number of
predictor variables, respectively) have fixed sizes.

To allow the generated C/C++ code to accept predictor data with up to 100 observations, specify
these coder attributes of X:

configurer.X.SizeVector = [100 3];
configurer.X.DataType = 'double';
configurer.X.VariableDimensions = [1 0];

[1 0] indicates that the first dimension of X (number of observations) has a variable size and the
second dimension of X (number of predictor variables) has a fixed size. The specified number of
observations, 100 in this example, becomes the maximum allowed number of observations in the
generated C/C++ code. To allow any number of observations, specify the bound as Inf.

NumOutputs — Number of outputs in predict
1 (default) | 2

Number of output arguments to return from the generated C/C++ code for the predict function of
the SVM classification model, specified as 1 or 2.

The output arguments of predict are label (predicted class labels) and score (scores or posterior
probabilities) in the order of listed. predict in the generated C/C++ code returns the first n outputs
of the predict function, where n is the NumOutputs value.
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After creating the coder configurer configurer, you can specify the number of outputs by using dot
notation.

configurer.NumOutputs = 2;

The NumOutputs property is equivalent to the '-nargout' compiler option of codegen. This option
specifies the number of output arguments in the entry-point function of code generation. The object
function generateCode generates two entry-point functions—predict.m and update.m for the
predict and update functions of an SVM classification model, respectively—and generates C/C++
code for the two entry-point functions. The specified value for the NumOutputs property corresponds
to the number of output arguments in the entry-point function predict.m.
Data Types: double

update Arguments

The properties listed in this section specify the coder attributes of the update function arguments in
the generated code. The update function takes a trained model and new model parameters as input
arguments, and returns an updated version of the model that contains the new parameters. To enable
updating the parameters in the generated code, you need to specify the coder attributes of the
parameters before generating code. Use a LearnerCoderInput on page 35-651 object to specify
the coder attributes of each parameter. The default attribute values are based on the model
parameters in the input argument Mdl of learnerCoderConfigurer.

Alpha — Coder attributes of trained classifier coefficients
LearnerCoderInput object

Coder attributes of the trained classifier coefficients (Alpha of an SVM classification model),
specified as a LearnerCoderInput on page 35-651 object.

The default attribute values of the LearnerCoderInput object are based on the input argument Mdl
of learnerCoderConfigurer:

• SizeVector — The default value is [s,1], where s is the number of support vectors in Mdl.
• VariableDimensions — This value is [0 0](default) or [1 0].

• [0 0] indicates that the array size is fixed as specified in SizeVector.
• [1 0] indicates that the array has variable-size rows and fixed-size columns. In this case, the
first value of SizeVector is the upper bound for the number of rows, and the second value of
SizeVector is the number of columns.

• DataType — This value is 'single' or 'double'. The default data type is consistent with the
data type of the training data you use to train Mdl.

• Tunability — If you train a model with a linear kernel function, and the model stores the linear
predictor coefficients (Beta) without the support vectors and related values, then this value must
be false. Otherwise, this value must be true.

Beta — Coder attributes of linear predictor coefficients
LearnerCoderInput object

Coder attributes of the linear predictor coefficients (Beta of an SVM classification model), specified
as a LearnerCoderInput on page 35-651 object.

The default attribute values of the LearnerCoderInput object are based on the input argument Mdl
of learnerCoderConfigurer:
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• SizeVector — This value must be [p 1], where p is the number of predictors in Mdl.
• VariableDimensions — This value must be [0 0], indicating that the array size is fixed as
specified in SizeVector.

• DataType — This value is 'single' or 'double'. The default data type is consistent with the
data type of the training data you use to train Mdl.

• Tunability — If you train a model with a linear kernel function, and the model stores the linear
predictor coefficients (Beta) without the support vectors and related values, then this value must
be true. Otherwise, this value must be false.

Bias — Coder attributes of bias term
LearnerCoderInput object

Coder attributes of the bias term (Bias of an SVM classification model), specified as a
LearnerCoderInput on page 35-651 object.

The default attribute values of the LearnerCoderInput object are based on the input argument Mdl
of learnerCoderConfigurer:

• SizeVector — This value must be [1 1].
• VariableDimensions — This value must be [0 0], indicating that the array size is fixed as
specified in SizeVector.

• DataType — This value is 'single' or 'double'. The default data type is consistent with the
data type of the training data you use to train Mdl.

• Tunability — This value must be true.

Cost — Coder attributes of misclassification cost
LearnerCoderInput object

Coder attributes of the misclassification cost (Cost of an SVM classification model), specified as a
LearnerCoderInput on page 35-651 object.

The default attribute values of the LearnerCoderInput object are based on the input argument Mdl
of learnerCoderConfigurer:

• SizeVector — For binary classification, this value must be [2 2]. For one-class classification,
this value must be [1 1].

• VariableDimensions — This value must be [0 0], indicating that the array size is fixed as
specified in SizeVector.

• DataType — This value is 'single' or 'double'. The default data type is consistent with the
data type of the training data you use to train Mdl.

• Tunability — For binary classification, the default value is true. For one-class classification,
this value must be false.

Mu — Coder attributes of predictor means
LearnerCoderInput object

Coder attributes of the predictor means (Mu of an SVM classification model), specified as a
LearnerCoderInput on page 35-651 object.

The default attribute values of the LearnerCoderInput object are based on the input argument Mdl
of learnerCoderConfigurer:
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• SizeVector — If you train Mdl using standardized predictor data by specifying
'Standardize',true, this value must be [1,p], where p is the number of predictors in Mdl.
Otherwise, this value must be [0,0].

• VariableDimensions — This value must be [0 0], indicating that the array size is fixed as
specified in SizeVector.

• DataType — This value is 'single' or 'double'. The default data type is consistent with the
data type of the training data you use to train Mdl.

• Tunability — If you train Mdl using standardized predictor data by specifying
'Standardize',true, the default value is true. Otherwise, this value must be false.

Prior — Coder attributes of prior probabilities
LearnerCoderInput object

Coder attributes of the prior probabilities (Prior of an SVM classification model), specified as a
LearnerCoderInput on page 35-651 object.

The default attribute values of the LearnerCoderInput object are based on the input argument Mdl
of learnerCoderConfigurer:

• SizeVector — For binary classification, this value must be [1 2]. For one-class classification,
this value must be [1 1].

• VariableDimensions — This value must be [0 0], indicating that the array size is fixed as
specified in SizeVector.

• DataType — This value is 'single' or 'double'. The default data type is consistent with the
data type of the training data you use to train Mdl.

• Tunability — For binary classification, the default value is true. For one-class classification,
this value must be false.

Scale — Coder attributes of kernel scale parameter
LearnerCoderInput object

Coder attributes of the kernel scale parameter (KernelParameters.Scale of an SVM classification
model), specified as a LearnerCoderInput on page 35-651 object.

The default attribute values of the LearnerCoderInput object are based on the input argument Mdl
of learnerCoderConfigurer:

• SizeVector — This value must be [1 1].
• VariableDimensions — This value must be [0 0], indicating that the array size is fixed as
specified in SizeVector.

• DataType — This value is 'single' or 'double'. The default data type is consistent with the
data type of the training data you use to train Mdl.

• Tunability — The default value is true.

Sigma — Coder attributes of predictor standard deviations
LearnerCoderInput object

Coder attributes of the predictor standard deviations (Sigma of an SVM classification model),
specified as a LearnerCoderInput on page 35-651 object.

The default attribute values of the LearnerCoderInput object are based on the input argument Mdl
of learnerCoderConfigurer:
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• SizeVector — If you train Mdl using standardized predictor data by specifying
'Standardize',true, this value must be [1,p], where p is the number of predictors in Mdl.
Otherwise, this value must be [0,0].

• VariableDimensions — This value must be [0 0], indicating that the array size is fixed as
specified in SizeVector.

• DataType — This value is 'single' or 'double'. The default data type is consistent with the
data type of the training data you use to train Mdl.

• Tunability — If you train Mdl using standardized predictor data by specifying
'Standardize',true, the default value is true. Otherwise, this value must be false.

SupportVectorLabels — Coder attributes of support vector class labels
LearnerCoderInput object

Coder attributes of the support vector class labels (SupportVectorLabels of an SVM classification
model), specified as a LearnerCoderInput on page 35-651 object.

The default attribute values of the LearnerCoderInput object are based on the input argument Mdl
of learnerCoderConfigurer:

• SizeVector — The default value is [s,1], where s is the number of support vectors in Mdl.
• VariableDimensions — This value is [0 0](default) or [1 0].

• [0 0] indicates that the array size is fixed as specified in SizeVector.
• [1 0] indicates that the array has variable-size rows and fixed-size columns. In this case, the
first value of SizeVector is the upper bound for the number of rows, and the second value of
SizeVector is the number of columns.

• DataType — This value is 'single' or 'double'. The default data type is consistent with the
data type of the training data you use to train Mdl.

• Tunability — If you train a model with a linear kernel function, and the model stores the linear
predictor coefficients (Beta) without the support vectors and related values, then this value must
be false. Otherwise, this value must be true.

SupportVectors — Coder attributes of support vectors
LearnerCoderInput object

Coder attributes of the support vectors (SupportVectors of an SVM classification model), specified
as a LearnerCoderInput on page 35-651 object.

The default attribute values of the LearnerCoderInput object are based on the input argument Mdl
of learnerCoderConfigurer:

• SizeVector — The default value is [s,p], where s is the number of support vectors, and p is the
number of predictors in Mdl.

• VariableDimensions — This value is [0 0](default) or [1 0].

• [0 0] indicates that the array size is fixed as specified in SizeVector.
• [1 0] indicates that the array has variable-size rows and fixed-size columns. In this case, the
first value of SizeVector is the upper bound for the number of rows, and the second value of
SizeVector is the number of columns.

• DataType — This value is 'single' or 'double'. The default data type is consistent with the
data type of the training data you use to train Mdl.
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• Tunability — If you train a model with a linear kernel function, and the model stores the linear
predictor coefficients (Beta) without the support vectors and related values, then this value must
be false. Otherwise, this value must be true.

Other Configurer Options

OutputFileName — File name of generated C/C++ code
'ClassificationSVMModel' (default) | character vector

File name of the generated C/C++ code, specified as a character vector.

The object function generateCode of ClassificationSVMCoderConfigurer generates C/C++
code using this file name.

The file name must not contain spaces because they can lead to code generation failures in certain
operating system configurations. Also, the name must be a valid MATLAB function name.

After creating the coder configurer configurer, you can specify the file name by using dot notation.

configurer.OutputFileName = 'myModel';

Data Types: char

Verbose — Verbosity level
true (logical 1) (default) | false (logical 0)

Verbosity level, specified as true (logical 1) or false (logical 0). The verbosity level controls the
display of notification messages at the command line.

Value Description
true (logical 1) The software displays notification messages when your changes to the

coder attributes of a parameter result in changes for other dependent
parameters.

false (logical 0) The software does not display notification messages.

To enable updating machine learning model parameters in the generated code, you need to configure
the coder attributes of the parameters before generating code. The coder attributes of parameters
are dependent on each other, so the software stores the dependencies as configuration constraints. If
you modify the coder attributes of a parameter by using a coder configurer, and the modification
requires subsequent changes to other dependent parameters to satisfy configuration constraints,
then the software changes the coder attributes of the dependent parameters. The verbosity level
determines whether or not the software displays notification messages for these subsequent changes.

After creating the coder configurer configurer, you can modify the verbosity level by using dot
notation.

configurer.Verbose = false;

Data Types: logical

Options for Code Generation Customization

To customize the code generation workflow, use the generateFiles function and the following three
properties with codegen, instead of using the generateCode function.
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After generating the two entry-point function files (predict.m and update.m) by using the
generateFiles function, you can modify these files according to your code generation workflow.
For example, you can modify the predict.m file to include data preprocessing, or you can add these
entry-point functions to another code generation project. Then, you can generate C/C++ code by
using the codegen function and the codegen arguments appropriate for the modified entry-point
functions or code generation project. Use the three properties described in this section as a starting
point to set the codegen arguments.

CodeGenerationArguments — codegen arguments
cell array

This property is read-only.

codegen arguments, specified as a cell array.

This property enables you to customize the code generation workflow. Use the generateCode
function if you do not need to customize your workflow.

Instead of using generateCode with the coder configurer configurer, you can generate C/C++
code as follows:

generateFiles(configurer)
cgArgs = configurer.CodeGenerationArguments;
codegen(cgArgs{:})

If you customize the code generation workflow, modify cgArgs accordingly before calling codegen.

If you modify other properties of configurer, the software updates the
CodeGenerationArguments property accordingly.
Data Types: cell

PredictInputs — Input argument of predict
cell array of a coder.PrimitiveType object

This property is read-only.

Input argument of the entry-point function predict.m for code generation, specified as a cell array
of a coder.PrimitiveType object. The coder.PrimitiveType object includes the coder
attributes of the predictor data stored in the X property.

If you modify the coder attributes of the predictor data, then the software updates the
coder.PrimitiveType object accordingly.

The coder.PrimitiveType object in PredictInputs is equivalent to
configurer.CodeGenerationArguments{6} for the coder configurer configurer.
Data Types: cell

UpdateInputs — List of tunable input arguments of update
cell array of a structure including coder.PrimitiveType objects

This property is read-only.

List of the tunable input arguments of the entry-point function update.m for code generation,
specified as a cell array of a structure including coder.PrimitiveType objects. Each
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coder.PrimitiveType object includes the coder attributes of a tunable machine learning model
parameter.

If you modify the coder attributes of a model parameter by using the coder configurer properties
(update Arguments on page 35-640 properties), then the software updates the corresponding
coder.PrimitiveType object accordingly. If you specify the Tunability attribute of a machine
learning model parameter as false, then the software removes the corresponding
coder.PrimitiveType object from the UpdateInputs list.

The structure in UpdateInputs is equivalent to configurer.CodeGenerationArguments{3} for
the coder configurer configurer.
Data Types: cell

Object Functions
generateCode Generate C/C++ code using coder configurer
generateFiles Generate MATLAB files for code generation using coder configurer
validatedUpdateInputs Validate and extract machine learning model parameters to update

Examples

Generate Code Using Coder Configurer

Train a machine learning model, and then generate code for the predict and update functions of
the model by using a coder configurer.

Load the ionosphere data set and train a binary SVM classification model.

load ionosphere
Mdl = fitcsvm(X,Y);

Mdl is a ClassificationSVM object.

Create a coder configurer for the ClassificationSVM model by using learnerCoderConfigurer.
Specify the predictor data X. The learnerCoderConfigurer function uses the input X to configure
the coder attributes of the predict function input.

configurer = learnerCoderConfigurer(Mdl,X)

configurer = 
  ClassificationSVMCoderConfigurer with properties:

   Update Inputs:
                  Alpha: [1x1 LearnerCoderInput]
         SupportVectors: [1x1 LearnerCoderInput]
    SupportVectorLabels: [1x1 LearnerCoderInput]
                  Scale: [1x1 LearnerCoderInput]
                   Bias: [1x1 LearnerCoderInput]
                  Prior: [1x1 LearnerCoderInput]
                   Cost: [1x1 LearnerCoderInput]

   Predict Inputs:
                      X: [1x1 LearnerCoderInput]
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   Code Generation Parameters:
             NumOutputs: 1
         OutputFileName: 'ClassificationSVMModel'

  Properties, Methods

configurer is a ClassificationSVMCoderConfigurer object, which is a coder configurer of a
ClassificationSVM object.

To generate C/C++ code, you must have access to a C/C++ compiler that is configured properly.
MATLAB Coder locates and uses a supported, installed compiler. You can use mex -setup to view and
change the default compiler. For more details, see “Change Default Compiler”.

Generate code for the predict and update functions of the SVM classification model (Mdl) with
default settings.

generateCode(configurer)

generateCode creates these files in output folder:
'initialize.m', 'predict.m', 'update.m', 'ClassificationSVMModel.mat'
Code generation successful.

The generateCode function completes these actions:

• Generate the MATLAB files required to generate code, including the two entry-point functions
predict.m and update.m for the predict and update functions of Mdl, respectively.

• Create a MEX function named ClassificationSVMModel for the two entry-point functions.
• Create the code for the MEX function in the codegen\mex\ClassificationSVMModel folder.
• Copy the MEX function to the current folder.

Display the contents of the predict.m, update.m, and initialize.m files by using the type
function.

type predict.m

function varargout = predict(X,varargin) %#codegen
% Autogenerated by MATLAB, 01-Sep-2022 11:56:48
[varargout{1:nargout}] = initialize('predict',X,varargin{:});
end

type update.m

function update(varargin) %#codegen
% Autogenerated by MATLAB, 01-Sep-2022 11:56:48
initialize('update',varargin{:});
end

type initialize.m

function [varargout] = initialize(command,varargin) %#codegen
% Autogenerated by MATLAB, 01-Sep-2022 11:56:48
coder.inline('always')
persistent model
if isempty(model)
    model = loadLearnerForCoder('ClassificationSVMModel.mat');
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end
switch(command)
    case 'update'
        % Update struct fields: Alpha
        %                       SupportVectors
        %                       SupportVectorLabels
        %                       Scale
        %                       Bias
        %                       Prior
        %                       Cost
        model = update(model,varargin{:});
    case 'predict'
        % Predict Inputs: X
        X = varargin{1};
        if nargin == 2
            [varargout{1:nargout}] = predict(model,X);
        else
            PVPairs = cell(1,nargin-2);
            for i = 1:nargin-2
                PVPairs{1,i} = varargin{i+1};
            end
            [varargout{1:nargout}] = predict(model,X,PVPairs{:});
        end
end
end

Update Parameters of SVM Classification Model in Generated Code

Train a SVM model using a partial data set and create a coder configurer for the model. Use the
properties of the coder configurer to specify coder attributes of the SVM model parameters. Use the
object function of the coder configurer to generate C code that predicts labels for new predictor data.
Then retrain the model using the whole data set and update parameters in the generated code
without regenerating the code.

Train Model

Load the ionosphere data set. This data set has 34 predictors and 351 binary responses for radar
returns, either bad ('b') or good ('g'). Train a binary SVM classification model using the first 50
observations.

load ionosphere
Mdl = fitcsvm(X(1:50,:),Y(1:50));

Mdl is a ClassificationSVM object.

Create Coder Configurer

Create a coder configurer for the ClassificationSVM model by using learnerCoderConfigurer.
Specify the predictor data X. The learnerCoderConfigurer function uses the input X to configure
the coder attributes of the predict function input. Also, set the number of outputs to 2 so that the
generated code returns predicted labels and scores.

configurer = learnerCoderConfigurer(Mdl,X(1:50,:),'NumOutputs',2);
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configurer is a ClassificationSVMCoderConfigurer object, which is a coder configurer of a
ClassificationSVM object.

Specify Coder Attributes of Parameters

Specify the coder attributes of the SVM classification model parameters so that you can update the
parameters in the generated code after retraining the model. This example specifies the coder
attributes of predictor data that you want to pass to the generated code and the coder attributes of
the support vectors of the SVM model.

First, specify the coder attributes of X so that the generated code accepts any number of
observations. Modify the SizeVector and VariableDimensions attributes. The SizeVector
attribute specifies the upper bound of the predictor data size, and the VariableDimensions
attribute specifies whether each dimension of the predictor data has a variable size or fixed size.

configurer.X.SizeVector = [Inf 34];
configurer.X.VariableDimensions = [true false];

The size of the first dimension is the number of observations. In this case, the code specifies that the
upper bound of the size is Inf and the size is variable, meaning that X can have any number of
observations. This specification is convenient if you do not know the number of observations when
generating code.

The size of the second dimension is the number of predictor variables. This value must be fixed for a
machine learning model. X contains 34 predictors, so the value of the SizeVector attribute must be
34 and the value of the VariableDimensions attribute must be false.

If you retrain the SVM model using new data or different settings, the number of support vectors can
vary. Therefore, specify the coder attributes of SupportVectors so that you can update the support
vectors in the generated code.

configurer.SupportVectors.SizeVector = [250 34];

SizeVector attribute for Alpha has been modified to satisfy configuration constraints.
SizeVector attribute for SupportVectorLabels has been modified to satisfy configuration constraints.

configurer.SupportVectors.VariableDimensions = [true false];

VariableDimensions attribute for Alpha has been modified to satisfy configuration constraints.
VariableDimensions attribute for SupportVectorLabels has been modified to satisfy configuration constraints.

If you modify the coder attributes of SupportVectors, then the software modifies the coder
attributes of Alpha and SupportVectorLabels to satisfy configuration constraints. If the
modification of the coder attributes of one parameter requires subsequent changes to other
dependent parameters to satisfy configuration constraints, then the software changes the coder
attributes of the dependent parameters.

Generate Code

To generate C/C++ code, you must have access to a C/C++ compiler that is configured properly.
MATLAB Coder locates and uses a supported, installed compiler. You can use mex -setup to view and
change the default compiler. For more details, see “Change Default Compiler”.

Use generateCode to generate code for the predict and update functions of the SVM
classification model (Mdl) with default settings.

generateCode(configurer)
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generateCode creates these files in output folder:
'initialize.m', 'predict.m', 'update.m', 'ClassificationSVMModel.mat'
Code generation successful.

generateCode generates the MATLAB files required to generate code, including the two entry-point
functions predict.m and update.m for the predict and update functions of Mdl, respectively.
Then generateCode creates a MEX function named ClassificationSVMModel for the two entry-
point functions in the codegen\mex\ClassificationSVMModel folder and copies the MEX
function to the current folder.

Verify Generated Code

Pass some predictor data to verify whether the predict function of Mdl and the predict function in
the MEX function return the same labels. To call an entry-point function in a MEX function that has
more than one entry point, specify the function name as the first input argument.

[label,score] = predict(Mdl,X);
[label_mex,score_mex] = ClassificationSVMModel('predict',X);

Compare label and label_mex by using isequal.

isequal(label,label_mex)

ans = logical
   1

isequal returns logical 1 (true) if all the inputs are equal. The comparison confirms that the
predict function of Mdl and the predict function in the MEX function return the same labels.

score_mex might include round-off differences compared with score. In this case, compare
score_mex and score, allowing a small tolerance.

find(abs(score-score_mex) > 1e-8)

ans =

  0x1 empty double column vector

The comparison confirms that score and score_mex are equal within the tolerance 1e–8.

Retrain Model and Update Parameters in Generated Code

Retrain the model using the entire data set.

retrainedMdl = fitcsvm(X,Y);

Extract parameters to update by using validatedUpdateInputs. This function detects the modified
model parameters in retrainedMdl and validates whether the modified parameter values satisfy the
coder attributes of the parameters.

params = validatedUpdateInputs(configurer,retrainedMdl);

Update parameters in the generated code.

ClassificationSVMModel('update',params)

35 Functions

35-650



Verify Generated Code

Compare the outputs from the predict function of retrainedMdl and the predict function in the
updated MEX function.

[label,score] = predict(retrainedMdl,X);
[label_mex,score_mex] = ClassificationSVMModel('predict',X);
isequal(label,label_mex)

ans = logical
   1

find(abs(score-score_mex) > 1e-8)

ans =

  0x1 empty double column vector

The comparison confirms that labels and labels_mex are equal, and the score values are equal
within the tolerance.

More About
LearnerCoderInput Object

A coder configurer uses a LearnerCoderInput object to specify the coder attributes of predict
and update input arguments.

A LearnerCoderInput object has the following attributes to specify the properties of an input
argument array in the generated code.

Attribute Name Description
SizeVector Array size if the corresponding VariableDimensions value is

false.

Upper bound of the array size if the corresponding
VariableDimensions value is true. To allow an unbounded
array, specify the bound as Inf.

VariableDimensions Indicator specifying whether each dimension of the array has a
variable size or fixed size, specified as true (logical 1) or false
(logical 0):

• A value of true (logical 1) means that the corresponding
dimension has a variable size.

• A value of false (logical 0) means that the corresponding
dimension has a fixed size.

DataType Data type of the array
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Attribute Name Description
Tunability Indicator specifying whether or not predict or update includes

the argument as an input in the generated code, specified as true
(logical 1) or false (logical 0).

If you specify other attribute values when Tunability is false,
the software sets Tunability to true.

After creating a coder configurer, you can modify the coder attributes by using dot notation. For
example, specify the coder attributes of the coefficients Alpha of the coder configurer configurer
as follows:

configurer.Alpha.SizeVector = [100 1];
configurer.Alpha.VariableDimensions = [1 0];
configurer.Alpha.DataType = 'double';

If you specify the verbosity level (Verbose) as true (default), then the software displays notification
messages when you modify the coder attributes of a machine learning model parameter and the
modification changes the coder attributes of other dependent parameters.

Version History
Introduced in R2018b

See Also
learnerCoderConfigurer | CompactClassificationSVM | ClassificationSVM | update |
predict | ClassificationECOCCoderConfigurer

Topics
“Introduction to Code Generation” on page 34-2
“Code Generation for Prediction and Update Using Coder Configurer” on page 34-92
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ClassificationSVM Predict
Classify observations using support vector machine (SVM) classifier for one-class and binary
classification
Library: Statistics and Machine Learning Toolbox / Classification

Description
The ClassificationSVM Predict block classifies observations using an SVM classification object
(ClassificationSVM or CompactClassificationSVM) for one-class and two-class (binary)
classification.

Import a trained SVM classification object into the block by specifying the name of a workspace
variable that contains the object. The input port x receives an observation (predictor data), and the
output port label returns a predicted class label for the observation. You can add an optional output
port score that returns predicted class scores or posterior probabilities.

Ports
Input

x — Predictor data
row vector | column vector

Predictor data, specified as a column vector or row vector of one observation.

Dependencies

• The variables in x must have the same order as the predictor variables that trained the SVM
model specified by Select trained machine learning model.

• If you set 'Standardize',true in fitcsvm when training the SVM model, then the
ClassificationSVM Predict block standardizes the values of x using the means and standard
deviations in the Mu and Sigma properties (respectively) of the SVM model.

Data Types: single | double | half | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 |
uint64 | Boolean | fixed point

Output

label — Predicted class label
scalar

Predicted class label, returned as a scalar.

Dependencies

• For one-class learning, label is the value representing the positive class.
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• For two-class learning, label is the class yielding the largest score or the largest posterior
probability.

Data Types: single | double | half | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 |
uint64 | Boolean | fixed point | enumerated

score — Predicted class scores or posterior probabilities
scalar | 1-by-2 vector

Predicted class scores on page 35-664 or posterior probabilities on page 35-665, returned as a
scalar for one-class learning or a 1-by-2 vector for two-class learning.

• For one-class learning, score is the classification score of the positive class. You cannot obtain
posterior probabilities for one-class learning.

• For two-class learning, score is a 1-by-2 vector.

• The first and second element of score correspond to the classification scores of the negative
class (svmMdl.ClassNames(1)) and the positive class (svmMdl.ClassNames(2)),
respectively, where svmMdl is the SVM model specified by Select trained machine
learning model. You can use the ClassNames property of svmMdl to check the negative
and positive class names.

• If you fit the optimal score-to-posterior-probability transformation function using
fitPosterior or fitSVMPosterior, then score contains class posterior probabilities.
Otherwise, score contains class scores.

Dependencies

To enable this port, select the check box for Add output port for predicted class scores
on the Main tab of the Block Parameters dialog box.
Data Types: single | double | half | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 |
uint64 | Boolean | fixed point

Parameters
Main

Select trained machine learning model — SVM classification model

svmMdl (default) | ClassificationSVM object | CompactClassificationSVM object

Specify the name of a workspace variable that contains a ClassificationSVM object or
CompactClassificationSVM object.

When you train the SVM model by using fitcsvm, the following restrictions apply:

• The predictor data cannot include categorical predictors (logical, categorical, char,
string, or cell). If you supply training data in a table, the predictors must be numeric (double
or single). Also, you cannot use the CategoricalPredictors name-value argument. To
include categorical predictors in a model, preprocess the categorical predictors by using
dummyvar before fitting the model.

• The value of the 'ScoreTransform' name-value argument cannot be 'invlogit' or an
anonymous function. For a block that predicts posterior probabilities given new observations, pass
a trained SVM model to fitPosterior or fitSVMPosterior.
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• The value of the 'KernelFunction' name-value argument must be 'gaussian' (same as
'rbf', default for one-class learning), 'linear' (default for two-class learning), or
'polynomial'.

Programmatic Use
Block Parameter: TrainedLearner
Type: workspace variable
Values: ClassificationSVM object | CompactClassificationSVM object
Default: 'svmMdl'

Add output port for predicted class scores — Add second output port for predicted
class scores

off (default) | on

Select the check box to include the second output port score in the ClassificationSVM Predict block.

Programmatic Use
Block Parameter: ShowOutputScore
Type: character vector
Values: 'off' | 'on'
Default: 'off'

Data Types

Fixed-Point Operational Parameters

Integer rounding mode — Rounding mode for fixed-point operations

Floor (default) | Ceiling | Convergent | Nearest | Round | Simplest | Zero

Specify the rounding mode for fixed-point operations. For more information, see “Rounding” (Fixed-
Point Designer).

Block parameters always round to the nearest representable value. To control the rounding of a block
parameter, enter an expression into the mask field using a MATLAB rounding function.

Programmatic Use
Block Parameter: RndMeth
Type: character vector
Values: 'Ceiling' | 'Convergent' | 'Floor' | 'Nearest' | 'Round' | 'Simplest' |
'Zero'
Default: 'Floor'

Saturate on integer overflow — Method of overflow action

off (default) | on

Specify whether overflows saturate or wrap.
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Action Rationale Impact on Overflows Example
Select this check
box (on).

Your model has possible
overflow, and you want
explicit saturation protection
in the generated code.

Overflows saturate to either
the minimum or maximum
value that the data type can
represent.

The maximum value that the
int8 (signed 8-bit integer)
data type can represent is
127. Any block operation
result greater than this
maximum value causes
overflow of the 8-bit integer.
With the check box selected,
the block output saturates at
127. Similarly, the block
output saturates at a
minimum output value of –
128.

Clear this check
box (off).

You want to optimize
efficiency of your generated
code.

You want to avoid
overspecifying how a block
handles out-of-range signals.
For more information, see
“Troubleshoot Signal Range
Errors” (Simulink).

Overflows wrap to the
appropriate value that the
data type can represent.

The maximum value that the
int8 (signed 8-bit integer)
data type can represent is
127. Any block operation
result greater than this
maximum value causes
overflow of the 8-bit integer.
With the check box cleared,
the software interprets the
value causing the overflow as
int8, which can produce an
unintended result. For
example, a block result of 130
(binary 1000 0010) expressed
as int8 is –126.

Programmatic Use
Block Parameter: SaturateOnIntegerOverflow
Type: character vector
Values: 'off' | 'on'
Default: 'off'

Lock output data type setting against changes by the fixed-point tools —
Prevention of fixed-point tools from overriding data type

off (default) | on

Select this parameter to prevent the fixed-point tools from overriding the data type you specify for
the block. For more information, see “Use Lock Output Data Type Setting” (Fixed-Point Designer).

Programmatic Use
Block Parameter: LockScale
Type: character vector
Values: 'off' | 'on'
Default: 'off'
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Data Type

Label data type — Data type of label output

Inherit: Inherit via back propagation | Inherit: auto | double | single | half | int8
| uint8 | int16 | uint16 | int32 | uint32 | int64 | uint64 | boolean | fixdt(1,16) |
fixdt(1,16,0) | fixdt(1,16,2^0,0) | Enum: <class name> | <data type expression>

Specify the data type for the label output. The type can be inherited, specified as an enumerated data
type, or expressed as a data type object such as Simulink.NumericType.

When you select an inherited option, the software behaves as follows:

• Inherit: Inherit via back propagation (default for numeric and logical labels) —
Simulink automatically determines the Label data type of the block during data type propagation
(see “Data Type Propagation” (Simulink)). In this case, the block uses the data type of a
downstream block or signal object.

• Inherit: auto (default for nonnumeric labels) — The block uses an autodefined enumerated
data type variable. For example, suppose the workspace variable name specified by Select
trained machine learning model is myMdl, and the class labels are class 1 and class 2.
Then, the corresponding label values are myMdl_enumLabels.class_1 and
myMdl_enumLabels.class_2. The block converts the class labels to valid MATLAB identifiers by
using the matlab.lang.makeValidName function.

For more information about data types, see “Control Data Types of Signals” (Simulink).

Click the Show data type assistant button  to display the Data Type Assistant, which helps
you set the data type attributes. For more information, see “Specify Data Types Using Data Type
Assistant” (Simulink).

Dependencies

The supported data types depend on the labels used in the model specified by Select trained
machine learning model.

• If the model uses numeric or logical labels, the supported data types are Inherit: Inherit
via back propagation (default), double, single, half, int8, uint8, int16, uint16,
int32, uint32, int64, uint64, boolean, fixed point, and a data type object.

• If the model uses nonnumeric labels, the supported data types are Inherit: auto (default),
Enum: <class name>, and a data type object.

Programmatic Use
Block Parameter: LabelDataTypeStr
Type: character vector
Values: 'Inherit: Inherit via back propagation' | 'Inherit: auto' | 'double' |
'single' | 'half' | 'int8' | 'uint8' | 'int16' | 'uint16' | 'int32' | 'uint32' | 'int64' |
'uint64' | 'boolean' | 'fixdt(1,16)' | 'fixdt(1,16,0)' | 'fixdt(1,16,2^0,0)' | 'Enum:
<class name>' | '<data type expression>'
Default: 'Inherit: Inherit via back propagation' (for numeric and logical labels) |
'Inherit: auto' (for nonnumeric labels)

Label minimum — Minimum value of label output for range checking
[] (default) | scalar

 ClassificationSVM Predict

35-657



Lower value of the label output range that Simulink checks.

Simulink uses the minimum value to perform:

• Parameter range checking for some blocks (see “Specify Minimum and Maximum Values for Block
Parameters” (Simulink)).

• Simulation range checking (see “Specify Signal Ranges” (Simulink) and “Enable Simulation Range
Checking” (Simulink)).

• Automatic scaling of fixed-point data types.
• Optimization of the code that you generate from the model. This optimization can remove

algorithmic code and affect the results of some simulation modes, such as SIL or external mode.
For more information, see Optimize using the specified minimum and maximum values (Embedded
Coder).

Note The Label minimum parameter does not saturate or clip the actual label output signal. Use
the Saturation block instead.

Dependencies

You can specify this parameter only if the model specified by Select trained machine learning
model uses numeric labels.

Programmatic Use
Block Parameter: LabelOutMin
Type: character vector
Values: '[]' | scalar
Default: '[]'

Label maximum — Maximum value of label output for range checking
[] (default) | scalar

Upper value of the label output range that Simulink checks.

Simulink uses the maximum value to perform:

• Parameter range checking for some blocks (see “Specify Minimum and Maximum Values for Block
Parameters” (Simulink)).

• Simulation range checking (see “Specify Signal Ranges” (Simulink) and “Enable Simulation Range
Checking” (Simulink)).

• Automatic scaling of fixed-point data types.
• Optimization of the code that you generate from the model. This optimization can remove

algorithmic code and affect the results of some simulation modes, such as SIL or external mode.
For more information, see Optimize using the specified minimum and maximum values (Embedded
Coder).

Note The Label maximum parameter does not saturate or clip the actual label output signal. Use
the Saturation block instead.
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Dependencies

You can specify this parameter only if the model specified by Select trained machine learning
model uses numeric labels.

Programmatic Use
Block Parameter: LabelOutMax
Type: character vector
Values: '[]' | scalar
Default: '[]'

Score data type — Data type of score output

Inherit: auto (default) | double | single | half | int8 | uint8 | int16 | uint16 | int32 |
uint32 | int64 | uint64 | boolean | fixdt(1,16) | fixdt(1,16,0) | fixdt(1,16,2^0,0) |
<data type expression>

Specify the data type for the score output. The type can be inherited, specified directly, or expressed
as a data type object such as Simulink.NumericType.

When you select Inherit: auto, the block uses a rule that inherits a data type.

For more information about data types, see “Control Data Types of Signals” (Simulink).

Click the Show data type assistant button  to display the Data Type Assistant, which helps
you set the data type attributes. For more information, see “Specify Data Types Using Data Type
Assistant” (Simulink).

Programmatic Use
Block Parameter: ScoreDataTypeStr
Type: character vector
Values: 'Inherit: auto' | 'double' | 'single' | 'half' | 'int8' | 'uint8' | 'int16' |
'uint16' | 'int32' | 'uint32' | 'int64' | 'uint64' | 'boolean' | 'fixdt(1,16)' |
'fixdt(1,16,0)' | 'fixdt(1,16,2^0,0)' | '<data type expression>'
Default: 'Inherit: auto'

Score minimum — Minimum value of score output for range checking
[] (default) | scalar

Lower value of the score output range that Simulink checks.

Simulink uses the minimum value to perform:

• Parameter range checking for some blocks (see “Specify Minimum and Maximum Values for Block
Parameters” (Simulink)).

• Simulation range checking (see “Specify Signal Ranges” (Simulink) and “Enable Simulation Range
Checking” (Simulink)).

• Automatic scaling of fixed-point data types.
• Optimization of the code that you generate from the model. This optimization can remove

algorithmic code and affect the results of some simulation modes, such as SIL or external mode.
For more information, see Optimize using the specified minimum and maximum values (Embedded
Coder).

 ClassificationSVM Predict

35-659



Note The Score minimum parameter does not saturate or clip the actual score signal. Use the
Saturation block instead.

Programmatic Use
Block Parameter: ScoreOutMin
Type: character vector
Values: '[]' | scalar
Default: '[]'

Score maximum — Maximum value of score output for range checking
[] (default) | scalar

Upper value of the score output range that Simulink checks.

Simulink uses the maximum value to perform:

• Parameter range checking for some blocks (see “Specify Minimum and Maximum Values for Block
Parameters” (Simulink)).

• Simulation range checking (see “Specify Signal Ranges” (Simulink) and “Enable Simulation Range
Checking” (Simulink)).

• Automatic scaling of fixed-point data types.
• Optimization of the code that you generate from the model. This optimization can remove

algorithmic code and affect the results of some simulation modes, such as SIL or external mode.
For more information, see Optimize using the specified minimum and maximum values (Embedded
Coder).

Note The Score maximum parameter does not saturate or clip the actual score signal. Use the
Saturation block instead.

Programmatic Use
Block Parameter: ScoreOutMax
Type: character vector
Values: '[]' | scalar
Default: '[]'

Raw score data type — Untransformed score data type

Inherit: auto (default) | double | single | half | int8 | uint8 | int16 | uint16 | int32 |
uint32 | int64 | uint64 | boolean | fixdt(1,16) | fixdt(1,16,0) | fixdt(1,16,2^0,0) |
<data type expression>

Specify the data type for the internal untransformed scores. The type can be inherited, specified
directly, or expressed as a data type object such as Simulink.NumericType.

When you select Inherit: auto, the block uses a rule that inherits a data type.

For more information about data types, see “Control Data Types of Signals” (Simulink).
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Click the Show data type assistant button  to display the Data Type Assistant, which helps
you set the data type attributes. For more information, see “Specify Data Types Using Data Type
Assistant” (Simulink).

Dependencies

You can specify this parameter only if the model specified by Select trained machine learning
model uses a score transformation other than 'none' (default, same as 'identity').

• If the model uses no score transformations ('none' or 'identity'), then you can specify the
score data type by using Score data type.

• If the model uses a score transformation other than 'none' or 'identity', then you can specify
the data type of untransformed raw scores by using this parameter and specify the data type of
transformed scores by using Score data type.

You can change the score transformation option by specifying the 'ScoreTransform' name-value
argument during training, or by changing the ScoreTransform property after training.

Programmatic Use
Block Parameter: RawScoreDataTypeStr
Type: character vector
Values: 'Inherit: auto' | 'double' | 'single' | 'half' | 'int8' | 'uint8' | 'int16' |
'uint16' | 'int32' | 'uint32' | 'int64' | 'uint64' | 'boolean' | 'fixdt(1,16)' |
'fixdt(1,16,0)' | 'fixdt(1,16,2^0,0)' | '<data type expression>'
Default: 'Inherit: auto'

Raw score minimum — Minimum untransformed score for range checking
[] (default) | scalar

Lower value of the untransformed score range that Simulink checks.

Simulink uses the minimum value to perform:

• Parameter range checking for some blocks (see “Specify Minimum and Maximum Values for Block
Parameters” (Simulink)).

• Simulation range checking (see “Specify Signal Ranges” (Simulink) and “Enable Simulation Range
Checking” (Simulink)).

• Automatic scaling of fixed-point data types.
• Optimization of the code that you generate from the model. This optimization can remove

algorithmic code and affect the results of some simulation modes, such as SIL or external mode.
For more information, see Optimize using the specified minimum and maximum values (Embedded
Coder).

Note The Raw score minimum parameter does not saturate or clip the actual untransformed score
signal.

Programmatic Use
Block Parameter: RawScoreOutMin
Type: character vector
Values: '[]' | scalar
Default: '[]'
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Raw score maximum — Maximum untransformed score for range checking
[] (default) | scalar

Upper value of the untransformed score range that Simulink checks.

Simulink uses the maximum value to perform:

• Parameter range checking for some blocks (see “Specify Minimum and Maximum Values for Block
Parameters” (Simulink)).

• Simulation range checking (see “Specify Signal Ranges” (Simulink) and “Enable Simulation Range
Checking” (Simulink)).

• Automatic scaling of fixed-point data types.
• Optimization of the code that you generate from the model. This optimization can remove

algorithmic code and affect the results of some simulation modes, such as SIL or external mode.
For more information, see Optimize using the specified minimum and maximum values (Embedded
Coder).

Note The Raw score maximum parameter does not saturate or clip the actual untransformed score
signal.

Programmatic Use
Block Parameter: RawScoreOutMax
Type: character vector
Values: '[]' | scalar
Default: '[]'

Kernel data type — Kernel computation data type

double (default) | single | half | int8 | uint8 | int16 | uint16 | int32 | int64 | uint64 |
uint32 | boolean | fixdt(1,16) | fixdt(1,16,0) | fixdt(1,16,2^0,0) | <data type
expression>

Specify the data type of a parameter for kernel computation. The type can be specified directly or
expressed as a data type object such as Simulink.NumericType.

The Kernel data type parameter specifies the data type of a different parameter depending on the
type of kernel function of the specified SVM model. You specify the 'KernelFunction' name-value
argument when training the SVM model.

'KernelFunction'
value

Data Type

'gaussian' or 'rbf' Kernel data type specifies the data type of the squared distance
D2 = x− s 2 for the Gaussian kernel G x, s = exp −D2 , where x is the
predictor data for an observation and s is a support vector.

'linear' Kernel data type specifies the data type for the output of the linear kernel
function G x, s = xs′, where x is the predictor data for an observation and s
is a support vector.
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'KernelFunction'
value

Data Type

'polynomial' Kernel data type specifies the data type for the output of the polynomial
kernel function G x, s = 1 + xs′ p, where x is the predictor data for an
observation, s is a support vector, and p is a polynomial kernel function
order.

For more information about data types, see “Control Data Types of Signals” (Simulink).

Click the Show data type assistant button  to display the Data Type Assistant, which helps
you set the data type attributes. For more information, see “Specify Data Types Using Data Type
Assistant” (Simulink).

Programmatic Use
Block Parameter: KernelDataTypeStr
Type: character vector
Values: 'double' | 'single' | 'half' | 'int8' | 'uint8' | 'int16' | 'uint16' | 'int32' |
'uint32' | 'uint64' | 'int64' | 'boolean' | 'fixdt(1,16)' | 'fixdt(1,16,0)' |
'fixdt(1,16,2^0,0)' | '<data type expression>'
Default: 'double'

Kernel minimum — Minimum kernel computation value for range checking
[] (default) | scalar

Lower value of the kernel computation internal variable range that Simulink checks.

Simulink uses the minimum value to perform:

• Parameter range checking for some blocks (see “Specify Minimum and Maximum Values for Block
Parameters” (Simulink)).

• Simulation range checking (see “Specify Signal Ranges” (Simulink) and “Enable Simulation Range
Checking” (Simulink)).

• Automatic scaling of fixed-point data types.
• Optimization of the code that you generate from the model. This optimization can remove

algorithmic code and affect the results of some simulation modes, such as SIL or external mode.
For more information, see Optimize using the specified minimum and maximum values (Embedded
Coder).

Note The Kernel minimum parameter does not saturate or clip the actual kernel computation value
signal.

Programmatic Use
Block Parameter: KernelOutMin
Type: character vector
Values: '[]' | scalar
Default: '[]'

Kernel maximum — Maximum kernel computation value for range checking
[] (default) | scalar
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Upper value of the kernel computation internal variable range that Simulink checks.

Simulink uses the maximum value to perform:

• Parameter range checking for some blocks (see “Specify Minimum and Maximum Values for Block
Parameters” (Simulink)).

• Simulation range checking (see “Specify Signal Ranges” (Simulink) and “Enable Simulation Range
Checking” (Simulink)).

• Automatic scaling of fixed-point data types.
• Optimization of the code that you generate from the model. This optimization can remove

algorithmic code and affect the results of some simulation modes, such as SIL or external mode.
For more information, see Optimize using the specified minimum and maximum values (Embedded
Coder).

Note The Kernel maximum parameter does not saturate or clip the actual kernel computation
value signal.

Programmatic Use
Block Parameter: KernelOutMax
Type: character vector
Values: '[]' | scalar
Default: '[]'

Block Characteristics
Data Types Boolean | double | enumerated | fixed point | half | integer |

single
Direct Feedthrough yes
Multidimensional
Signals

no

Variable-Size Signals no
Zero-Crossing
Detection

no

More About
Classification Score

The SVM classification score for classifying observation x is the signed distance from x to the decision
boundary ranging from -∞ to +∞. A positive score for a class indicates that x is predicted to be in that
class. A negative score indicates otherwise.

The positive class classification score f (x) is the trained SVM classification function. f (x) is also the
numerical predicted response for x, or the score for predicting x into the positive class.

f (x) = ∑
j = 1

n
α jy jG(x j, x) + b,
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where (α1, ..., αn, b) are the estimated SVM parameters, G(x j, x) is the dot product in the predictor
space between x and the support vectors, and the sum includes the training set observations. The
negative class classification score for x, or the score for predicting x into the negative class, is –f(x).

If G(xj,x) = xj′x (the linear kernel), then the score function reduces to

f x = x/s ′β + b .

s is the kernel scale and β is the vector of fitted linear coefficients.

For more details, see “Understanding Support Vector Machines” on page 19-151.

Posterior Probability

The posterior probability is the probability that an observation belongs in a particular class, given the
data.

For SVM, the posterior probability is a function of the score P(s) that observation j is in class k =
{-1,1}.

• For separable classes, the posterior probability is the step function

P s j =

0; s < max
yk = − 1

sk

π; max
yk = − 1

sk ≤ s j ≤ min
yk = + 1

sk

1; s j > min
yk = + 1

sk

,

where:

• sj is the score of observation j.
• +1 and –1 denote the positive and negative classes, respectively.
• π is the prior probability that an observation is in the positive class.

• For inseparable classes, the posterior probability is the sigmoid function

P(s j) = 1
1 + exp(As j + B) ,

where the parameters A and B are the slope and intercept parameters, respectively.

Prior Probability

The prior probability of a class is the assumed relative frequency with which observations from that
class occur in a population.

Tips
• If you are using a linear SVM model and it has many support vectors, then prediction (classifying

observations) can be slow. To efficiently classify observations based on a linear SVM model,
remove the support vectors from the ClassificationSVM or CompactClassificationSVM
object by using discardSupportVectors.
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Alternative Functionality
You can use a MATLAB Function block with the predict object function of an SVM classification
object (ClassificationSVM or CompactClassificationSVM). For an example, see “Predict Class
Labels Using MATLAB Function Block” on page 34-51.

When deciding whether to use the ClassificationSVM Predict block in the Statistics and Machine
Learning Toolbox library or a MATLAB Function block with the predict function, consider the
following:

• If you use the Statistics and Machine Learning Toolbox library block, you can use the Fixed-Point
Tool to convert a floating-point model to fixed point.

• Support for variable-size arrays must be enabled for a MATLAB Function block with the predict
function.

• If you use a MATLAB Function block, you can use MATLAB functions for preprocessing or post-
processing before or after predictions in the same MATLAB Function block.

Version History
Introduced in R2020b

Default value of Label data type is Inherit: Inherit via back propagation for numeric
and logical labels and Inherit: auto for nonnumeric labels
Behavior changed in R2021a

Starting in R2021a, the default data type value and the supported data types of the Label data type
parameter depend on the labels used in the model specified by Select trained machine
learning model. The default value is Inherit: Inherit via back propagation for numeric
and logical labels, and Inherit: auto for nonnumeric labels.

If you specified Label data type as Inherit: Inherit via back propagation for nonnumeric
labels or Inherit: Inherit from 'Constant value', then change the value to Inherit:
auto.

Default value of Score data type and Raw score data type is Inherit: auto
Behavior changed in R2021a

Starting in R2021a, the default value of the parameters Score data type and Raw score data type
is Inherit: auto.

Specify Kernel data type as a data type name or data type object
Behavior changed in R2021a

Starting in R2021a, the Kernel data type parameter does not support inherited options. You can
specify Kernel data type as a supported data type name or data type object.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

Fixed-Point Conversion
Design and simulate fixed-point systems using Fixed-Point Designer™.
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See Also
Blocks
ClassificationTree Predict | ClassificationEnsemble Predict | ClassificationNeuralNetwork Predict |
RegressionSVM Predict

Objects
ClassificationSVM | CompactClassificationSVM

Functions
predict | fitcsvm

Topics
“Predict Class Labels Using ClassificationTree Predict Block” on page 34-133
“Predict Class Labels Using ClassificationEnsemble Predict Block” on page 34-142
“Predict Class Labels Using ClassificationNeuralNetwork Predict Block” on page 34-156
“Predict Class Labels Using MATLAB Function Block” on page 34-51
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ClassificationTree class
Superclasses: CompactClassificationTree

Binary decision tree for multiclass classification

Description
A ClassificationTree object represents a decision tree with binary splits for classification. An
object of this class can predict responses for new data using the predict method. The object
contains the data used for training, so it can also compute resubstitution predictions.

Construction
Create a ClassificationTree object by using fitctree.

Properties
BinEdges

Bin edges for numeric predictors, specified as a cell array of p numeric vectors, where p is the
number of predictors. Each vector includes the bin edges for a numeric predictor. The element in the
cell array for a categorical predictor is empty because the software does not bin categorical
predictors.

The software bins numeric predictors only if you specify the 'NumBins' name-value argument as a
positive integer scalar when training a model with tree learners. The BinEdges property is empty if
the 'NumBins' value is empty (default).

You can reproduce the binned predictor data Xbinned by using the BinEdges property of the trained
model mdl.

X = mdl.X; % Predictor data
Xbinned = zeros(size(X));
edges = mdl.BinEdges;
% Find indices of binned predictors.
idxNumeric = find(~cellfun(@isempty,edges));
if iscolumn(idxNumeric)
    idxNumeric = idxNumeric';
end
for j = idxNumeric 
    x = X(:,j);
    % Convert x to array if x is a table.
    if istable(x) 
        x = table2array(x);
    end
    % Group x into bins by using the discretize function.
    xbinned = discretize(x,[-inf; edges{j}; inf]); 
    Xbinned(:,j) = xbinned;
end
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Xbinned contains the bin indices, ranging from 1 to the number of bins, for numeric predictors.
Xbinned values are 0 for categorical predictors. If X contains NaNs, then the corresponding Xbinned
values are NaNs.

CategoricalPredictors

Categorical predictor indices, specified as a vector of positive integers. CategoricalPredictors
contains index values indicating that the corresponding predictors are categorical. The index values
are between 1 and p, where p is the number of predictors used to train the model. If none of the
predictors are categorical, then this property is empty ([]).

CategoricalSplit

An n-by-2 cell array, where n is the number of categorical splits in tree. Each row in
CategoricalSplit gives left and right values for a categorical split. For each branch node with
categorical split j based on a categorical predictor variable z, the left child is chosen if z is in
CategoricalSplit(j,1) and the right child is chosen if z is in CategoricalSplit(j,2). The
splits are in the same order as nodes of the tree. Nodes for these splits can be found by running
cuttype and selecting 'categorical' cuts from top to bottom.

Children

An n-by-2 array containing the numbers of the child nodes for each node in tree, where n is the
number of nodes. Leaf nodes have child node 0.

ClassCount

An n-by-k array of class counts for the nodes in tree, where n is the number of nodes and k is the
number of classes. For any node number i, the class counts ClassCount(i,:) are counts of
observations (from the data used in fitting the tree) from each class satisfying the conditions for node
i.

ClassNames

List of the elements in Y with duplicates removed. ClassNames can be a categorical array, cell array
of character vectors, character array, logical vector, or a numeric vector. ClassNames has the same
data type as the data in the argument Y. (The software treats string arrays as cell arrays of character
vectors.)

ClassProbability

An n-by-k array of class probabilities for the nodes in tree, where n is the number of nodes and k is
the number of classes. For any node number i, the class probabilities ClassProbability(i,:) are
the estimated probabilities for each class for a point satisfying the conditions for node i.

Cost

Square matrix, where Cost(i,j) is the cost of classifying a point into class j if its true class is i
(the rows correspond to the true class and the columns correspond to the predicted class). The order
of the rows and columns of Cost corresponds to the order of the classes in ClassNames. The number
of rows and columns in Cost is the number of unique classes in the response. This property is read-
only.

 ClassificationTree class

35-669



CutCategories

An n-by-2 cell array of the categories used at branches in tree, where n is the number of nodes. For
each branch node i based on a categorical predictor variable X, the left child is chosen if X is among
the categories listed in CutCategories{i,1}, and the right child is chosen if X is among those
listed in CutCategories{i,2}. Both columns of CutCategories are empty for branch nodes based
on continuous predictors and for leaf nodes.

CutPoint contains the cut points for 'continuous' cuts, and CutCategories contains the set of
categories.

CutPoint

An n-element vector of the values used as cut points in tree, where n is the number of nodes. For
each branch node i based on a continuous predictor variable X, the left child is chosen if
X<CutPoint(i) and the right child is chosen if X>=CutPoint(i). CutPoint is NaN for branch
nodes based on categorical predictors and for leaf nodes.

CutPoint contains the cut points for 'continuous' cuts, and CutCategories contains the set of
categories.

CutType

An n-element cell array indicating the type of cut at each node in tree, where n is the number of
nodes. For each node i, CutType{i} is:

• 'continuous' — If the cut is defined in the form X < v for a variable X and cut point v.
• 'categorical' — If the cut is defined by whether a variable X takes a value in a set of

categories.
• '' — If i is a leaf node.

CutPoint contains the cut points for 'continuous' cuts, and CutCategories contains the set of
categories.

CutPredictor

An n-element cell array of the names of the variables used for branching in each node in tree, where
n is the number of nodes. These variables are sometimes known as cut variables. For leaf nodes,
CutPredictor contains an empty character vector.

CutPoint contains the cut points for 'continuous' cuts, and CutCategories contains the set of
categories.

CutPredictorIndex

An n-element array of numeric indices for the variables used for branching in each node in tree,
where n is the number of nodes. For more information, see CutPredictor.

ExpandedPredictorNames

Expanded predictor names, stored as a cell array of character vectors.

If the model uses encoding for categorical variables, then ExpandedPredictorNames includes the
names that describe the expanded variables. Otherwise, ExpandedPredictorNames is the same as
PredictorNames.
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HyperparameterOptimizationResults

Description of the cross-validation optimization of hyperparameters, stored as a
BayesianOptimization object or a table of hyperparameters and associated values. Nonempty
when the OptimizeHyperparameters name-value pair is nonempty at creation. Value depends on
the setting of the HyperparameterOptimizationOptions name-value pair at creation:

• 'bayesopt' (default) — Object of class BayesianOptimization
• 'gridsearch' or 'randomsearch' — Table of hyperparameters used, observed objective

function values (cross-validation loss), and rank of observations from lowest (best) to highest
(worst)

IsBranchNode

An n-element logical vector that is true for each branch node and false for each leaf node of tree.

ModelParameters

Parameters used in training tree. To display all parameter values, enter tree.ModelParameters.
To access a particular parameter, use dot notation.

NumObservations

Number of observations in the training data, a numeric scalar. NumObservations can be less than
the number of rows of input data X when there are missing values in X or response Y.

NodeClass

An n-element cell array with the names of the most probable classes in each node of tree, where n is
the number of nodes in the tree. Every element of this array is a character vector equal to one of the
class names in ClassNames.

NodeError

An n-element vector of the errors of the nodes in tree, where n is the number of nodes.
NodeError(i) is the misclassification probability for node i.

NodeProbability

An n-element vector of the probabilities of the nodes in tree, where n is the number of nodes. The
probability of a node is computed as the proportion of observations from the original data that satisfy
the conditions for the node. This proportion is adjusted for any prior probabilities assigned to each
class.

NodeRisk

An n-element vector of the risk of the nodes in the tree, where n is the number of nodes. The risk for
each node is the measure of impurity (Gini index or deviance) for this node weighted by the node
probability. If the tree is grown by twoing, the risk for each node is zero.

NodeSize

An n-element vector of the sizes of the nodes in tree, where n is the number of nodes. The size of a
node is defined as the number of observations from the data used to create the tree that satisfy the
conditions for the node.
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NumNodes

The number of nodes in tree.

Parent

An n-element vector containing the number of the parent node for each node in tree, where n is the
number of nodes. The parent of the root node is 0.

PredictorNames

Cell array of character vectors containing the predictor names, in the order which they appear in X.

Prior

Numeric vector of prior probabilities for each class. The order of the elements of Prior corresponds
to the order of the classes in ClassNames. The number of elements of Prior is the number of unique
classes in the response. This property is read-only.

PruneAlpha

Numeric vector with one element per pruning level. If the pruning level ranges from 0 to M, then
PruneAlpha has M + 1 elements sorted in ascending order. PruneAlpha(1) is for pruning level 0
(no pruning), PruneAlpha(2) is for pruning level 1, and so on.

PruneList

An n-element numeric vector with the pruning levels in each node of tree, where n is the number of
nodes. The pruning levels range from 0 (no pruning) to M, where M is the distance between the
deepest leaf and the root node.

ResponseName

A character vector that specifies the name of the response variable (Y).

RowsUsed

An n-element logical vector indicating which rows of the original predictor data (X) were used in
fitting. If the software uses all rows of X, then RowsUsed is an empty array ([]).

ScoreTransform

Function handle for transforming predicted classification scores, or character vector representing a
built-in transformation function.

none means no transformation, or @(x)x.

To change the score transformation function to, for example, function, use dot notation.

• For available functions (see fitctree), enter

Mdl.ScoreTransform = 'function';
• You can set a function handle for an available function, or a function you define yourself by

entering

tree.ScoreTransform = @function;

35 Functions

35-672



SurrogateCutCategories

An n-element cell array of the categories used for surrogate splits in tree, where n is the number of
nodes in tree. For each node k, SurrogateCutCategories{k} is a cell array. The length of
SurrogateCutCategories{k} is equal to the number of surrogate predictors found at this node.
Every element of SurrogateCutCategories{k} is either an empty character vector for a
continuous surrogate predictor, or is a two-element cell array with categories for a categorical
surrogate predictor. The first element of this two-element cell array lists categories assigned to the
left child by this surrogate split, and the second element of this two-element cell array lists categories
assigned to the right child by this surrogate split. The order of the surrogate split variables at each
node is matched to the order of variables in SurrogateCutPredictor. The optimal-split variable at
this node does not appear. For nonbranch (leaf) nodes, SurrogateCutCategories contains an
empty cell.

SurrogateCutFlip

An n-element cell array of the numeric cut assignments used for surrogate splits in tree, where n is
the number of nodes in tree. For each node k, SurrogateCutFlip{k} is a numeric vector. The
length of SurrogateCutFlip{k} is equal to the number of surrogate predictors found at this node.
Every element of SurrogateCutFlip{k} is either zero for a categorical surrogate predictor, or a
numeric cut assignment for a continuous surrogate predictor. The numeric cut assignment can be
either –1 or +1. For every surrogate split with a numeric cut C based on a continuous predictor
variable Z, the left child is chosen if Z<C and the cut assignment for this surrogate split is +1, or if
Z≥C and the cut assignment for this surrogate split is –1. Similarly, the right child is chosen if Z≥C
and the cut assignment for this surrogate split is +1, or if Z<C and the cut assignment for this
surrogate split is –1. The order of the surrogate split variables at each node is matched to the order of
variables in SurrogateCutPredictor. The optimal-split variable at this node does not appear. For
nonbranch (leaf) nodes, SurrogateCutFlip contains an empty array.

SurrogateCutPoint

An n-element cell array of the numeric values used for surrogate splits in tree, where n is the
number of nodes in tree. For each node k, SurrogateCutPoint{k} is a numeric vector. The length
of SurrogateCutPoint{k} is equal to the number of surrogate predictors found at this node. Every
element of SurrogateCutPoint{k} is either NaN for a categorical surrogate predictor, or a numeric
cut for a continuous surrogate predictor. For every surrogate split with a numeric cut C based on a
continuous predictor variable Z, the left child is chosen if Z<C and SurrogateCutFlip for this
surrogate split is +1, or if Z≥C and SurrogateCutFlip for this surrogate split is –1. Similarly, the
right child is chosen if Z≥C and SurrogateCutFlip for this surrogate split is +1, or if Z<C and
SurrogateCutFlip for this surrogate split is –1. The order of the surrogate split variables at each
node is matched to the order of variables returned by SurrogateCutPredictor. The optimal-split
variable at this node does not appear. For nonbranch (leaf) nodes, SurrogateCutPoint contains an
empty cell.

SurrogateCutType

An n-element cell array indicating types of surrogate splits at each node in tree, where n is the
number of nodes in tree. For each node k, SurrogateCutType{k} is a cell array with the types of
the surrogate split variables at this node. The variables are sorted by the predictive measure of
association with the optimal predictor in the descending order, and only variables with the positive
predictive measure are included. The order of the surrogate split variables at each node is matched
to the order of variables in SurrogateCutPredictor. The optimal-split variable at this node does
not appear. For nonbranch (leaf) nodes, SurrogateCutType contains an empty cell. A surrogate split
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type can be either 'continuous' if the cut is defined in the form Z<V for a variable Z and cut point
V or 'categorical' if the cut is defined by whether Z takes a value in a set of categories.

SurrogateCutPredictor

An n-element cell array of the names of the variables used for surrogate splits in each node in tree,
where n is the number of nodes in tree. Every element of SurrogateCutPredictor is a cell array
with the names of the surrogate split variables at this node. The variables are sorted by the predictive
measure of association with the optimal predictor in the descending order, and only variables with the
positive predictive measure are included. The optimal-split variable at this node does not appear. For
nonbranch (leaf) nodes, SurrogateCutPredictor contains an empty cell.

SurrogatePredictorAssociation

An n-element cell array of the predictive measures of association for surrogate splits in tree, where
n is the number of nodes in tree. For each node k, SurrogatePredictorAssociation{k} is a
numeric vector. The length of SurrogatePredictorAssociation{k} is equal to the number of
surrogate predictors found at this node. Every element of SurrogatePredictorAssociation{k}
gives the predictive measure of association between the optimal split and this surrogate split. The
order of the surrogate split variables at each node is the order of variables in
SurrogateCutPredictor. The optimal-split variable at this node does not appear. For nonbranch
(leaf) nodes, SurrogatePredictorAssociation contains an empty cell.

W

The scaled weights, a vector with length n, the number of rows in X.

X

A matrix or table of predictor values. Each column of X represents one variable, and each row
represents one observation.

Y

A categorical array, cell array of character vectors, character array, logical vector, or a numeric
vector. Each row of Y represents the classification of the corresponding row of X.

Object Functions
compact Compact tree
compareHoldout Compare accuracies of two classification models using new data
crossval Cross-validated decision tree
cvloss Classification error by cross validation
edge Classification edge
gather Gather properties of Statistics and Machine Learning Toolbox object from

GPU
lime Local interpretable model-agnostic explanations (LIME)
loss Classification error
margin Classification margins
nodeVariableRange Retrieve variable range of decision tree node
partialDependence Compute partial dependence
plotPartialDependence Create partial dependence plot (PDP) and individual conditional expectation

(ICE) plots
predict Predict labels using classification tree
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predictorImportance Estimates of predictor importance for classification tree
prune Produce sequence of classification subtrees by pruning
resubEdge Classification edge by resubstitution
resubLoss Classification error by resubstitution
resubMargin Classification margins by resubstitution
resubPredict Predict resubstitution labels of classification tree
shapley Shapley values
surrogateAssociation Mean predictive measure of association for surrogate splits in classification

tree
testckfold Compare accuracies of two classification models by repeated cross-

validation
view View classification tree

Copy Semantics
Value. To learn how value classes affect copy operations, see Copying Objects.

Examples

Grow a Classification Tree

Grow a classification tree using the ionosphere data set.

load ionosphere
tc = fitctree(X,Y)

tc = 
  ClassificationTree
             ResponseName: 'Y'
    CategoricalPredictors: []
               ClassNames: {'b'  'g'}
           ScoreTransform: 'none'
          NumObservations: 351

  Properties, Methods

Control Tree Depth

You can control the depth of the trees using the MaxNumSplits, MinLeafSize, or MinParentSize
name-value pair parameters. fitctree grows deep decision trees by default. You can grow shallower
trees to reduce model complexity or computation time.

Load the ionosphere data set.

load ionosphere

The default values of the tree depth controllers for growing classification trees are:

• n - 1 for MaxNumSplits. n is the training sample size.
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• 1 for MinLeafSize.
• 10 for MinParentSize.

These default values tend to grow deep trees for large training sample sizes.

Train a classification tree using the default values for tree depth control. Cross-validate the model by
using 10-fold cross-validation.

rng(1); % For reproducibility
MdlDefault = fitctree(X,Y,'CrossVal','on');

Draw a histogram of the number of imposed splits on the trees. Also, view one of the trees.

numBranches = @(x)sum(x.IsBranch);
mdlDefaultNumSplits = cellfun(numBranches, MdlDefault.Trained);

figure;
histogram(mdlDefaultNumSplits)

view(MdlDefault.Trained{1},'Mode','graph')
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The average number of splits is around 15.

Suppose that you want a classification tree that is not as complex (deep) as the ones trained using the
default number of splits. Train another classification tree, but set the maximum number of splits at 7,
which is about half the mean number of splits from the default classification tree. Cross-validate the
model by using 10-fold cross-validation.

Mdl7 = fitctree(X,Y,'MaxNumSplits',7,'CrossVal','on');
view(Mdl7.Trained{1},'Mode','graph')
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Compare the cross-validation classification errors of the models.

classErrorDefault = kfoldLoss(MdlDefault)

classErrorDefault = 0.1168

classError7 = kfoldLoss(Mdl7)

classError7 = 0.1311

Mdl7 is much less complex and performs only slightly worse than MdlDefault.

More About
Impurity and Node Error

A decision tree splits nodes based on either impurity or node error.

Impurity means one of several things, depending on your choice of the SplitCriterion name-value
pair argument:
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• Gini's Diversity Index (gdi) — The Gini index of a node is

1− ∑
i

p2(i),

where the sum is over the classes i at the node, and p(i) is the observed fraction of classes with
class i that reach the node. A node with just one class (a pure node) has Gini index 0; otherwise
the Gini index is positive. So the Gini index is a measure of node impurity.

• Deviance ('deviance') — With p(i) defined the same as for the Gini index, the deviance of a node
is

−∑
i

p(i)log2p(i) .

A pure node has deviance 0; otherwise, the deviance is positive.
• Twoing rule ('twoing') — Twoing is not a purity measure of a node, but is a different measure

for deciding how to split a node. Let L(i) denote the fraction of members of class i in the left child
node after a split, and R(i) denote the fraction of members of class i in the right child node after a
split. Choose the split criterion to maximize

P(L)P(R) ∑
i

L(i)− R(i)
2
,

where P(L) and P(R) are the fractions of observations that split to the left and right respectively. If
the expression is large, the split made each child node purer. Similarly, if the expression is small,
the split made each child node similar to each other, and therefore similar to the parent node. The
split did not increase node purity.

• Node error — The node error is the fraction of misclassified classes at a node. If j is the class with
the largest number of training samples at a node, the node error is

1 – p(j).

Version History
Introduced in R2011a

References

[1] Breiman, L., J. Friedman, R. Olshen, and C. Stone. Classification and Regression Trees. Boca
Raton, FL: CRC Press, 1984.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• The predict and update functions support code generation.
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• To integrate the prediction of a classification tree model into Simulink, you can use the
ClassificationTree Predict block in the Statistics and Machine Learning Toolbox library or a
MATLAB Function block with the predict function.

• When you train a classification tree using fitctree, the following restrictions apply.

• The value of the 'ScoreTransform' name-value pair argument cannot be an anonymous
function. For fixed-point code generation, the 'ScoreTransform' value cannot be
'invlogit'.

• You cannot use surrogate splits, that is, the value of the 'Surrogate' name-value pair
argument must be 'off'.

• For fixed-point code generation and code generation with a coder configurer, the following
additional restrictions apply.

• Categorical predictors (logical, categorical, char, string, or cell) are not
supported. You cannot use the CategoricalPredictors name-value argument.To include
categorical predictors in a model, preprocess them by using dummyvar before fitting the
model.

• Class labels with the categorical data type are not supported. Both the class label value
in training data (Tbl or Y) and the value of the ClassNames name-value argument cannot
be an array with the categorical data type.

For more information, see “Introduction to Code Generation” on page 34-2.

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

Usage notes and limitations:

• The following object functions fully support GPU arrays:

• compact
• crossval
• cvloss
• gather
• nodeVariableRange
• predictorImportance
• resubEdge
• resubLoss
• resubMargin
• resubPredict
• surrogateAssociation

• The following object functions offer limited support for GPU arrays:

• compareHoldout
• edge
• loss
• margin
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• partialDependence
• plotPartialDependence
• predict
• prune
• view

• The object functions execute on a GPU if either of the following apply:

• The model was fitted with GPU arrays.
• The predictor data that you pass to the object function is a GPU array.

For more information, see “Run MATLAB Functions on a GPU” (Parallel Computing Toolbox).

See Also
RegressionTree | ClassificationEnsemble | fitctree | CompactClassificationTree |
predict | compareHoldout

Topics
“Decision Trees” on page 20-2
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ClassificationTree Predict
Classify observations using decision tree classifier
Library: Statistics and Machine Learning Toolbox / Classification

Description
The ClassificationTree Predict block classifies observations using a classification tree object
(ClassificationTree or CompactClassificationTree) for multiclass classification.

Import a trained classification object into the block by specifying the name of a workspace variable
that contains the object. The input port x receives an observation (predictor data), and the output
port label returns a predicted class label for the observation. You can add an optional output port
score that returns predicted class scores or posterior probabilities.

Ports
Input

x — Predictor data
row vector | column vector

Predictor data, specified as a row or column vector of one observation.

Dependencies

The variables in x must have the same order as the predictor variables that trained the model
specified by Select trained machine learning model.
Data Types: single | double | half | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 |
uint64 | Boolean | fixed point

Output

label — Predicted class label
scalar

Predicted class label, returned as a scalar. The predicted class is the class that minimizes the
expected classification cost. For more details, see the “More About” on page 35-5816 section of the
predict function reference page.
Data Types: single | double | half | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 |
uint64 | Boolean | fixed point | enumerated

score — Predicted class scores or posterior probabilities
row vector

35 Functions

35-682



Predicted class scores or posterior probabilities, returned as a row vector of size 1-by-k, where k is
the number of classes in the tree model.

The classification score of a leaf node is the posterior probability of the classification at the node. The
posterior probability of the classification at a node is the number of training observations that lead to
the node with the classification, divided by the number of training observations that lead to the node.

To check the order of the classes, use the ClassNames property of the tree model specified by
Select trained machine learning model.

Dependencies

To enable this port, select the check box for Add output port for predicted class scores
on the Main tab of the Block Parameters dialog box.
Data Types: single | double | half | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 |
uint64 | Boolean | fixed point

Parameters
Main

Select trained machine learning model — Classification tree model

treeMdl (default) | ClassificationTree object | CompactClassificationTree object

Specify the name of a workspace variable that contains a ClassificationTree object or
CompactClassificationTree object.

When you train the model by using fitctree, the following restrictions apply:

• The predictor data cannot include categorical predictors (logical, categorical, char,
string, or cell). If you supply training data in a table, the predictors must be numeric (double
or single). Also, you cannot use the CategoricalPredictors name-value argument. To
include categorical predictors in a model, preprocess the categorical predictors by using
dummyvar before fitting the model.

• The value of the 'ScoreTransform' name-value argument cannot be 'invlogit' or an
anonymous function.

• You cannot use surrogate splits, that is, the value of the 'Surrogate' name-value argument must
be 'off' (default).

Programmatic Use
Block Parameter: TrainedLearner
Type: workspace variable
Values: ClassificationTree object | CompactClassificationTree object
Default: 'treeMdl'

Add output port for predicted class scores — Add second output port for predicted
class scores

off (default) | on

Select the check box to include the second output port score in the ClassificationTree Predict block.
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Programmatic Use
Block Parameter: ShowOutputScore
Type: character vector
Values: 'off' | 'on'
Default: 'off'

Data Types

Fixed-Point Operational Parameters

Integer rounding mode — Rounding mode for fixed-point operations

Floor (default) | Ceiling | Convergent | Nearest | Round | Simplest | Zero

Specify the rounding mode for fixed-point operations. For more information, see “Rounding” (Fixed-
Point Designer).

Block parameters always round to the nearest representable value. To control the rounding of a block
parameter, enter an expression into the mask field using a MATLAB rounding function.

Programmatic Use
Block Parameter: RndMeth
Type: character vector
Values: 'Ceiling' | 'Convergent' | 'Floor' | 'Nearest' | 'Round' | 'Simplest' |
'Zero'
Default: 'Floor'

Saturate on integer overflow — Method of overflow action

off (default) | on

Specify whether overflows saturate or wrap.

Action Rationale Impact on Overflows Example
Select this check
box (on).

Your model has possible
overflow, and you want
explicit saturation protection
in the generated code.

Overflows saturate to either
the minimum or maximum
value that the data type can
represent.

The maximum value that the
int8 (signed 8-bit integer)
data type can represent is
127. Any block operation
result greater than this
maximum value causes
overflow of the 8-bit integer.
With the check box selected,
the block output saturates at
127. Similarly, the block
output saturates at a
minimum output value of –
128.
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Action Rationale Impact on Overflows Example
Clear this check
box (off).

You want to optimize
efficiency of your generated
code.

You want to avoid
overspecifying how a block
handles out-of-range signals.
For more information, see
“Troubleshoot Signal Range
Errors” (Simulink).

Overflows wrap to the
appropriate value that the
data type can represent.

The maximum value that the
int8 (signed 8-bit integer)
data type can represent is
127. Any block operation
result greater than this
maximum value causes
overflow of the 8-bit integer.
With the check box cleared,
the software interprets the
value causing the overflow as
int8, which can produce an
unintended result. For
example, a block result of 130
(binary 1000 0010) expressed
as int8 is –126.

Programmatic Use
Block Parameter: SaturateOnIntegerOverflow
Type: character vector
Values: 'off' | 'on'
Default: 'off'

Lock output data type setting against changes by the fixed-point tools —
Prevention of fixed-point tools from overriding data type

off (default) | on

Select this parameter to prevent the fixed-point tools from overriding the data type you specify for
the block. For more information, see “Use Lock Output Data Type Setting” (Fixed-Point Designer).
Programmatic Use
Block Parameter: LockScale
Type: character vector
Values: 'off' | 'on'
Default: 'off'

Data Type

Label data type — Data type of label output

Inherit: Inherit via back propagation | Inherit: auto | double | single | half | int8
| uint8 | int16 | uint16 | int32 | uint32 | int64 | uint64 | boolean | fixdt(1,16) |
fixdt(1,16,0) | fixdt(1,16,2^0,0) | Enum: <class name> | <data type expression>

Specify the data type for the label output. The type can be inherited, specified as an enumerated data
type, or expressed as a data type object such as Simulink.NumericType.

When you select an inherited option, the software behaves as follows:

• Inherit: Inherit via back propagation (default for numeric and logical labels) —
Simulink automatically determines the Label data type of the block during data type propagation
(see “Data Type Propagation” (Simulink)). In this case, the block uses the data type of a
downstream block or signal object.
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• Inherit: auto (default for nonnumeric labels) — The block uses an autodefined enumerated
data type variable. For example, suppose the workspace variable name specified by Select
trained machine learning model is myMdl, and the class labels are class 1 and class 2.
Then, the corresponding label values are myMdl_enumLabels.class_1 and
myMdl_enumLabels.class_2. The block converts the class labels to valid MATLAB identifiers by
using the matlab.lang.makeValidName function.

For more information about data types, see “Control Data Types of Signals” (Simulink).

Click the Show data type assistant button  to display the Data Type Assistant, which helps
you set the data type attributes. For more information, see “Specify Data Types Using Data Type
Assistant” (Simulink).

Dependencies

The supported data types depend on the labels used in the model specified by Select trained
machine learning model.

• If the model uses numeric or logical labels, the supported data types are Inherit: Inherit
via back propagation (default), double, single, half, int8, uint8, int16, uint16,
int32, uint32, int64, uint64, boolean, fixed point, and a data type object.

• If the model uses nonnumeric labels, the supported data types are Inherit: auto (default),
Enum: <class name>, and a data type object.

Programmatic Use
Block Parameter: LabelDataTypeStr
Type: character vector
Values: 'Inherit: Inherit via back propagation' | 'Inherit: auto' | 'double' |
'single' | 'half' | 'int8' | 'uint8' | 'int16' | 'uint16' | 'int32' | 'uint32' | 'int64' |
'uint64' | 'boolean' | 'fixdt(1,16)' | 'fixdt(1,16,0)' | 'fixdt(1,16,2^0,0)' | 'Enum:
<class name>' | '<data type expression>'
Default: 'Inherit: Inherit via back propagation' (for numeric and logical labels) |
'Inherit: auto' (for nonnumeric labels)

Label minimum — Minimum value of label output for range checking
[] (default) | scalar

Lower value of the label output range that Simulink checks.

Simulink uses the minimum value to perform:

• Parameter range checking for some blocks (see “Specify Minimum and Maximum Values for Block
Parameters” (Simulink)).

• Simulation range checking (see “Specify Signal Ranges” (Simulink) and “Enable Simulation Range
Checking” (Simulink)).

• Automatic scaling of fixed-point data types.
• Optimization of the code that you generate from the model. This optimization can remove

algorithmic code and affect the results of some simulation modes, such as SIL or external mode.
For more information, see Optimize using the specified minimum and maximum values (Embedded
Coder).
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Note The Label minimum parameter does not saturate or clip the actual label output signal. Use
the Saturation block instead.

Dependencies

You can specify this parameter only if the model specified by Select trained machine learning
model uses numeric labels.

Programmatic Use
Block Parameter: LabelOutMin
Type: character vector
Values: '[]' | scalar
Default: '[]'

Label maximum — Maximum value of label output for range checking
[] (default) | scalar

Upper value of the label output range that Simulink checks.

Simulink uses the maximum value to perform:

• Parameter range checking for some blocks (see “Specify Minimum and Maximum Values for Block
Parameters” (Simulink)).

• Simulation range checking (see “Specify Signal Ranges” (Simulink) and “Enable Simulation Range
Checking” (Simulink)).

• Automatic scaling of fixed-point data types.
• Optimization of the code that you generate from the model. This optimization can remove

algorithmic code and affect the results of some simulation modes, such as SIL or external mode.
For more information, see Optimize using the specified minimum and maximum values (Embedded
Coder).

Note The Label maximum parameter does not saturate or clip the actual label output signal. Use
the Saturation block instead.

Dependencies

You can specify this parameter only if the model specified by Select trained machine learning
model uses numeric labels.

Programmatic Use
Block Parameter: LabelOutMax
Type: character vector
Values: '[]' | scalar
Default: '[]'

Score data type — Data type of score output

Inherit: auto (default) | double | single | half | int8 | uint8 | int16 | uint16 | int32 |
uint32 | int64 | uint64 | boolean | fixdt(1,16) | fixdt(1,16,0) | fixdt(1,16,2^0,0) |
<data type expression>
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Specify the data type for the score output. The type can be inherited, specified directly, or expressed
as a data type object such as Simulink.NumericType.

When you select Inherit: auto, the block uses a rule that inherits a data type.

For more information about data types, see “Control Data Types of Signals” (Simulink).

Click the Show data type assistant button  to display the Data Type Assistant, which helps
you set the data type attributes. For more information, see “Specify Data Types Using Data Type
Assistant” (Simulink).

Programmatic Use
Block Parameter: ScoreDataTypeStr
Type: character vector
Values: 'Inherit: auto' | 'double' | 'single' | 'half' | 'int8' | 'uint8' | 'int16' |
'uint16' | 'int32' | 'uint32' | 'int64' | 'uint64' | 'boolean' | 'fixdt(1,16)' |
'fixdt(1,16,0)' | 'fixdt(1,16,2^0,0)' | '<data type expression>'
Default: 'Inherit: auto'

Score minimum — Minimum value of score output for range checking
[] (default) | scalar

Lower value of the score output range that Simulink checks.

Simulink uses the minimum value to perform:

• Parameter range checking for some blocks (see “Specify Minimum and Maximum Values for Block
Parameters” (Simulink)).

• Simulation range checking (see “Specify Signal Ranges” (Simulink) and “Enable Simulation Range
Checking” (Simulink)).

• Automatic scaling of fixed-point data types.
• Optimization of the code that you generate from the model. This optimization can remove

algorithmic code and affect the results of some simulation modes, such as SIL or external mode.
For more information, see Optimize using the specified minimum and maximum values (Embedded
Coder).

Note The Score minimum parameter does not saturate or clip the actual score signal. Use the
Saturation block instead.

Programmatic Use
Block Parameter: ScoreOutMin
Type: character vector
Values: '[]' | scalar
Default: '[]'

Score maximum — Maximum value of score output for range checking
[] (default) | scalar

Upper value of the score output range that Simulink checks.

Simulink uses the maximum value to perform:
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• Parameter range checking for some blocks (see “Specify Minimum and Maximum Values for Block
Parameters” (Simulink)).

• Simulation range checking (see “Specify Signal Ranges” (Simulink) and “Enable Simulation Range
Checking” (Simulink)).

• Automatic scaling of fixed-point data types.
• Optimization of the code that you generate from the model. This optimization can remove

algorithmic code and affect the results of some simulation modes, such as SIL or external mode.
For more information, see Optimize using the specified minimum and maximum values (Embedded
Coder).

Note The Score maximum parameter does not saturate or clip the actual score signal. Use the
Saturation block instead.

Programmatic Use
Block Parameter: ScoreOutMax
Type: character vector
Values: '[]' | scalar
Default: '[]'

Raw score data type — Untransformed score data type

Inherit: auto (default) | double | single | half | int8 | uint8 | int16 | uint16 | int32 |
uint32 | int64 | uint64 | boolean | fixdt(1,16) | fixdt(1,16,0) | fixdt(1,16,2^0,0) |
<data type expression>

Specify the data type for the internal untransformed scores. The type can be inherited, specified
directly, or expressed as a data type object such as Simulink.NumericType.

When you select Inherit: auto, the block uses a rule that inherits a data type.

For more information about data types, see “Control Data Types of Signals” (Simulink).

Click the Show data type assistant button  to display the Data Type Assistant, which helps
you set the data type attributes. For more information, see “Specify Data Types Using Data Type
Assistant” (Simulink).

Dependencies

You can specify this parameter only if the model specified by Select trained machine learning
model uses a score transformation other than 'none' (default, same as 'identity').

• If the model uses no score transformations ('none' or 'identity'), then you can specify the
score data type by using Score data type.

• If the model uses a score transformation other than 'none' or 'identity', then you can specify
the data type of untransformed raw scores by using this parameter and specify the data type of
transformed scores by using Score data type.

You can change the score transformation option by specifying the 'ScoreTransform' name-value
argument during training, or by changing the ScoreTransform property after training.
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Programmatic Use
Block Parameter: RawScoreDataTypeStr
Type: character vector
Values: 'Inherit: auto' | 'double' | 'single' | 'half' | 'int8' | 'uint8' | 'int16' |
'uint16' | 'int32' | 'uint32' | 'int64' | 'uint64' | 'boolean' | 'fixdt(1,16)' |
'fixdt(1,16,0)' | 'fixdt(1,16,2^0,0)' | '<data type expression>'
Default: 'Inherit: auto'

Raw score minimum — Minimum untransformed score for range checking
[] (default) | scalar

Lower value of the untransformed score range that Simulink checks.

Simulink uses the minimum value to perform:

• Parameter range checking for some blocks (see “Specify Minimum and Maximum Values for Block
Parameters” (Simulink)).

• Simulation range checking (see “Specify Signal Ranges” (Simulink) and “Enable Simulation Range
Checking” (Simulink)).

• Automatic scaling of fixed-point data types.
• Optimization of the code that you generate from the model. This optimization can remove

algorithmic code and affect the results of some simulation modes, such as SIL or external mode.
For more information, see Optimize using the specified minimum and maximum values (Embedded
Coder).

Note The Raw score minimum parameter does not saturate or clip the actual untransformed score
signal.

Programmatic Use
Block Parameter: RawScoreOutMin
Type: character vector
Values: '[]' | scalar
Default: '[]'

Raw score maximum — Maximum untransformed score for range checking
[] (default) | scalar

Upper value of the untransformed score range that Simulink checks.

Simulink uses the maximum value to perform:

• Parameter range checking for some blocks (see “Specify Minimum and Maximum Values for Block
Parameters” (Simulink)).

• Simulation range checking (see “Specify Signal Ranges” (Simulink) and “Enable Simulation Range
Checking” (Simulink)).

• Automatic scaling of fixed-point data types.
• Optimization of the code that you generate from the model. This optimization can remove

algorithmic code and affect the results of some simulation modes, such as SIL or external mode.
For more information, see Optimize using the specified minimum and maximum values (Embedded
Coder).
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Note The Raw score maximum parameter does not saturate or clip the actual untransformed score
signal.

Programmatic Use
Block Parameter: RawScoreOutMax
Type: character vector
Values: '[]' | scalar
Default: '[]'

Block Characteristics
Data Types Boolean | double | enumerated | fixed point | half | integer |

single
Direct Feedthrough yes
Multidimensional
Signals

no

Variable-Size Signals no
Zero-Crossing
Detection

no

Alternative Functionality
You can use a MATLAB Function block with the predict object function of a classification tree object
(ClassificationTree or CompactClassificationTree). For an example, see “Predict Class
Labels Using MATLAB Function Block” on page 34-51.

When deciding whether to use the ClassificationTree Predict block in the Statistics and Machine
Learning Toolbox library or a MATLAB Function block with the predict function, consider the
following:

• If you use the Statistics and Machine Learning Toolbox library block, you can use the Fixed-Point
Tool to convert a floating-point model to fixed point.

• Support for variable-size arrays must be enabled for a MATLAB Function block with the predict
function.

• If you use a MATLAB Function block, you can use MATLAB functions for preprocessing or post-
processing before or after predictions in the same MATLAB Function block.

Version History
Introduced in R2021a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

Fixed-Point Conversion
Design and simulate fixed-point systems using Fixed-Point Designer™.
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See Also
Blocks
ClassificationSVM Predict | ClassificationEnsemble Predict | ClassificationNeuralNetwork Predict |
RegressionTree Predict

Objects
ClassificationTree | CompactClassificationTree

Functions
predict | fitctree

Topics
“Predict Class Labels Using ClassificationSVM Predict Block” on page 34-123
“Predict Class Labels Using ClassificationEnsemble Predict Block” on page 34-142
“Predict Class Labels Using ClassificationNeuralNetwork Predict Block” on page 34-156
“Predict Class Labels Using MATLAB Function Block” on page 34-51
“Identify Punch and Flex Hand Gestures Using Machine Learning Algorithm on Arduino Hardware”
(Simulink Support Package for Arduino Hardware)
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ClassificationTreeCoderConfigurer
Coder configurer of binary decision tree model for multiclass classification

Description
A ClassificationTreeCoderConfigurer object is a coder configurer of a binary decision tree
model for multiclass classification (ClassificationTree or CompactClassificationTree).

A coder configurer offers convenient features to configure code generation options, generate C/C++
code, and update model parameters in the generated code.

• Configure code generation options and specify the coder attributes of the tree model parameters
by using object properties.

• Generate C/C++ code for the predict and update functions of the classification tree model by
using generateCode. Generating C/C++ code requires MATLAB Coder.

• Update model parameters in the generated C/C++ code without having to regenerate the code.
This feature reduces the effort required to regenerate, redeploy, and reverify C/C++ code when
you retrain the tree model with new data or settings. Before updating model parameters, use
validatedUpdateInputs to validate and extract the model parameters to update.

This flow chart shows the code generation workflow using a coder configurer.

For the code generation usage notes and limitations of a classification tree model, see the Code
Generation sections of CompactClassificationTree, predict, and update.

Creation
After training a classification tree model by using fitctree, create a coder configurer for the model
by using learnerCoderConfigurer. Use the properties of a coder configurer to specify the coder
attributes of the predict and update arguments. Then, use generateCode to generate C/C++
code based on the specified coder attributes.

Properties
predict Arguments

The properties listed in this section specify the coder attributes of the predict function arguments
in the generated code.
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X — Coder attributes of predictor data
LearnerCoderInput object

Coder attributes of the predictor data to pass to the generated C/C++ code for the predict function
of the classification tree model, specified as a LearnerCoderInput on page 35-706 object.

When you create a coder configurer by using the learnerCoderConfigurer function, the input
argument X determines the default values of the LearnerCoderInput coder attributes:

• SizeVector — The default value is the array size of the input X.
• VariableDimensions — This value is [0 0](default) or [1 0].

• [0 0] indicates that the array size is fixed as specified in SizeVector.
• [1 0] indicates that the array has variable-size rows and fixed-size columns. In this case, the
first value of SizeVector is the upper bound for the number of rows, and the second value of
SizeVector is the number of columns.

• DataType — This value is single or double. The default data type depends on the data type of
the input X.

• Tunability — This value must be true, meaning that predict in the generated C/C++ code
always includes predictor data as an input.

You can modify the coder attributes by using dot notation. For example, to generate C/C++ code that
accepts predictor data with 100 observations of three predictor variables, specify these coder
attributes of X for the coder configurer configurer:

configurer.X.SizeVector = [100 3];
configurer.X.DataType = 'double';
configurer.X.VariableDimensions = [0 0];

[0 0] indicates that the first and second dimensions of X (number of observations and number of
predictor variables, respectively) have fixed sizes.

To allow the generated C/C++ code to accept predictor data with up to 100 observations, specify
these coder attributes of X:

configurer.X.SizeVector = [100 3];
configurer.X.DataType = 'double';
configurer.X.VariableDimensions = [1 0];

[1 0] indicates that the first dimension of X (number of observations) has a variable size and the
second dimension of X (number of predictor variables) has a fixed size. The specified number of
observations, 100 in this example, becomes the maximum allowed number of observations in the
generated C/C++ code. To allow any number of observations, specify the bound as Inf.

NumOutputs — Number of outputs in predict
1 (default) | 2 | 3 | 4

Number of output arguments to return from the generated C/C++ code for the predict function of
the classification tree model, specified as 1, 2, 3, or 4.

The output arguments of predict are label (predicted class labels), score (posterior
probabilities), node (node numbers for predicted classes), and cnum (class numbers of predicted
labels), in that order. predict in the generated C/C++ code returns the first n outputs of the
predict function, where n is the NumOutputs value.

35 Functions

35-694



After creating the coder configurer configurer, you can specify the number of outputs by using dot
notation.

configurer.NumOutputs = 2;

The NumOutputs property is equivalent to the '-nargout' compiler option of codegen. This option
specifies the number of output arguments in the entry-point function of code generation. The object
function generateCode generates two entry-point functions—predict.m and update.m for the
predict and update functions of a classification tree model, respectively—and generates C/C++
code for the two entry-point functions. The specified value for the NumOutputs property corresponds
to the number of output arguments in the entry-point function predict.m.
Data Types: double

update Arguments

The properties listed in this section specify the coder attributes of the update function arguments in
the generated code. The update function takes a trained model and new model parameters as input
arguments, and returns an updated version of the model that contains the new parameters. To enable
updating the parameters in the generated code, you need to specify the coder attributes of the
parameters before generating code. Use a LearnerCoderInput on page 35-706 object to specify
the coder attributes of each parameter. The default attribute values are based on the model
parameters in the input argument Mdl of learnerCoderConfigurer.

Children — Coder attributes of child nodes for each node
LearnerCoderInput object

Coder attributes of the child nodes for each node in the tree (Children of a classification tree
model), specified as a LearnerCoderInput on page 35-706 object.

The default attribute values of the LearnerCoderInput object are based on the input argument Mdl
of learnerCoderConfigurer:

• SizeVector — The default value is [nd 2], where nd is the number of nodes in Mdl.
• VariableDimensions — This value is [0 0](default) or [1 0].

• [0 0] indicates that the array size is fixed as specified in SizeVector.
• [1 0] indicates that the array has variable-size rows and fixed-size columns. In this case, the
first value of SizeVector is the upper bound for the number of rows, and the second value of
SizeVector is the number of columns.

• DataType — This value is 'single' or 'double'. The default data type is consistent with the
data type of the training data you use to train Mdl.

• Tunability — This value must be true.

If you modify the first dimension of SizeVector to be newnd, then the software modifies the first
dimension of the SizeVector attribute to be newnd for the properties ClassProbability,
CutPoint, and CutPredictorIndex. Similarly, if you modify the first dimension of
VariableDimensions to be 1, then the software modifies the first dimension of the
VariableDimensions attribute to be 1 for these properties.

ClassProbability — Coder attributes of class probabilities for each node
LearnerCoderInput object
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Coder attributes of the class probabilities for each node in the tree (ClassProbability of a
classification tree model), specified as a LearnerCoderInput on page 35-706 object.

The default attribute values of the LearnerCoderInput object are based on the input argument Mdl
of learnerCoderConfigurer:

• SizeVector — The default value is [nd c], where nd is the number of nodes in Mdl and c is the
number of classes.

• VariableDimensions — This value is [0 0](default) or [1 0].

• [0 0] indicates that the array size is fixed as specified in SizeVector.
• [1 0] indicates that the array has variable-size rows and fixed-size columns. In this case, the
first value of SizeVector is the upper bound for the number of rows, and the second value of
SizeVector is the number of columns.

• DataType — This value is 'single' or 'double'. The default data type is consistent with the
data type of the training data you use to train Mdl.

• Tunability — This value must be true.

If you modify the first dimension of SizeVector to be newnd, then the software modifies the first
dimension of the SizeVector attribute to be newnd for the properties Children, CutPoint, and
CutPredictorIndex. Similarly, if you modify the first dimension of VariableDimensions to be 1,
then the software modifies the first dimension of the VariableDimensions attribute to be 1 for
these properties.

Cost — Coder attributes of misclassification cost
LearnerCoderInput object

Coder attributes of the misclassification cost (Cost of a classification tree model), specified as a
LearnerCoderInput on page 35-706 object.

The default attribute values of the LearnerCoderInput object are based on the input argument Mdl
of learnerCoderConfigurer:

• SizeVector — This value must be [c c], where c is the number of classes.
• VariableDimensions — This value must be [0 0], indicating that the array size is fixed as
specified in SizeVector.

• DataType — This value is 'single' or 'double'. The default data type is consistent with the
data type of the training data you use to train Mdl.

• Tunability — The default value is true.

CutPoint — Coder attributes of cut point for each node
LearnerCoderInput object

Coder attributes of the cut point for each node in the tree (CutPoint of a classification tree model),
specified as a LearnerCoderInput on page 35-706 object.

The default attribute values of the LearnerCoderInput object are based on the input argument Mdl
of learnerCoderConfigurer:

• SizeVector — The default value is [nd 1], where nd is the number of nodes in Mdl.
• VariableDimensions — This value is [0 0](default) or [1 0].
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• [0 0] indicates that the array size is fixed as specified in SizeVector.
• [1 0] indicates that the array has variable-size rows and fixed-size columns. In this case, the
first value of SizeVector is the upper bound for the number of rows, and the second value of
SizeVector is the number of columns.

• DataType — This value is 'single' or 'double'. The default data type is consistent with the
data type of the training data you use to train Mdl.

• Tunability — This value must be true.

If you modify the first dimension of SizeVector to be newnd, then the software modifies the first
dimension of the SizeVector attribute to be newnd for the properties Children,
ClassProbability, and CutPredictorIndex. Similarly, if you modify the first dimension of
VariableDimensions to be 1, then the software modifies the first dimension of the
VariableDimensions attribute to be 1 for these properties.

CutPredictorIndex — Coder attributes of cut predictor index for each node
LearnerCoderInput object

Coder attributes of the cut predictor index for each node in the tree (CutPredictorIndex of a
classification tree model), specified as a LearnerCoderInput on page 35-706 object.

The default attribute values of the LearnerCoderInput object are based on the input argument Mdl
of learnerCoderConfigurer:

• SizeVector — The default value is [nd 1], where nd is the number of nodes in Mdl.
• VariableDimensions — This value is [0 0](default) or [1 0].

• [0 0] indicates that the array size is fixed as specified in SizeVector.
• [1 0] indicates that the array has variable-size rows and fixed-size columns. In this case, the
first value of SizeVector is the upper bound for the number of rows, and the second value of
SizeVector is the number of columns.

• DataType — This value is 'single' or 'double'. The default data type is consistent with the
data type of the training data you use to train Mdl.

• Tunability — This value must be true.

If you modify the first dimension of SizeVector to be newnd, then the software modifies the first
dimension of the SizeVector attribute to be newnd for the properties Children,
ClassProbability, and CutPoint. Similarly, if you modify the first dimension of
VariableDimensions to be 1, then the software modifies the first dimension of the
VariableDimensions attribute to be 1 for these properties.

Prior — Coder attributes of prior probabilities
LearnerCoderInput object

Coder attributes of the prior probabilities (Prior of a classification tree model), specified as a
LearnerCoderInput on page 35-706 object.

The default attribute values of the LearnerCoderInput object are based on the input argument Mdl
of learnerCoderConfigurer:

• SizeVector — This value must be [1 c], where c is the number of classes.
• VariableDimensions — This value must be [0 0], indicating that the array size is fixed as
specified in SizeVector.
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• DataType — This value is 'single' or 'double'. The default data type is consistent with the
data type of the training data you use to train Mdl.

• Tunability — The default value is true.

Other Configurer Options

OutputFileName — File name of generated C/C++ code
'ClassificationTreeModel' (default) | character vector

File name of the generated C/C++ code, specified as a character vector.

The object function generateCode of ClassificationTreeCoderConfigurer generates C/C++
code using this file name.

The file name must not contain spaces because they can lead to code generation failures in certain
operating system configurations. Also, the name must be a valid MATLAB function name.

After creating the coder configurer configurer, you can specify the file name by using dot notation.

configurer.OutputFileName = 'myModel';

Data Types: char

Verbose — Verbosity level
true (logical 1) (default) | false (logical 0)

Verbosity level, specified as true (logical 1) or false (logical 0). The verbosity level controls the
display of notification messages at the command line.

Value Description
true (logical 1) The software displays notification messages when your changes to the

coder attributes of a parameter result in changes for other dependent
parameters.

false (logical 0) The software does not display notification messages.

To enable updating machine learning model parameters in the generated code, you need to configure
the coder attributes of the parameters before generating code. The coder attributes of parameters
are dependent on each other, so the software stores the dependencies as configuration constraints. If
you modify the coder attributes of a parameter by using a coder configurer, and the modification
requires subsequent changes to other dependent parameters to satisfy configuration constraints,
then the software changes the coder attributes of the dependent parameters. The verbosity level
determines whether or not the software displays notification messages for these subsequent changes.

After creating the coder configurer configurer, you can modify the verbosity level by using dot
notation.

configurer.Verbose = false;

Data Types: logical

Options for Code Generation Customization

To customize the code generation workflow, use the generateFiles function and the following three
properties with codegen, instead of using the generateCode function.
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After generating the two entry-point function files (predict.m and update.m) by using the
generateFiles function, you can modify these files according to your code generation workflow.
For example, you can modify the predict.m file to include data preprocessing, or you can add these
entry-point functions to another code generation project. Then, you can generate C/C++ code by
using the codegen function and the codegen arguments appropriate for the modified entry-point
functions or code generation project. Use the three properties described in this section as a starting
point to set the codegen arguments.

CodeGenerationArguments — codegen arguments
cell array

This property is read-only.

codegen arguments, specified as a cell array.

This property enables you to customize the code generation workflow. Use the generateCode
function if you do not need to customize your workflow.

Instead of using generateCode with the coder configurer configurer, you can generate C/C++
code as follows:

generateFiles(configurer)
cgArgs = configurer.CodeGenerationArguments;
codegen(cgArgs{:})

If you customize the code generation workflow, modify cgArgs accordingly before calling codegen.

If you modify other properties of configurer, the software updates the
CodeGenerationArguments property accordingly.
Data Types: cell

PredictInputs — Input argument of predict
cell array of a coder.PrimitiveType object

This property is read-only.

Input argument of the entry-point function predict.m for code generation, specified as a cell array
of a coder.PrimitiveType object. The coder.PrimitiveType object includes the coder
attributes of the predictor data stored in the X property.

If you modify the coder attributes of the predictor data, then the software updates the
coder.PrimitiveType object accordingly.

The coder.PrimitiveType object in PredictInputs is equivalent to
configurer.CodeGenerationArguments{6} for the coder configurer configurer.
Data Types: cell

UpdateInputs — List of tunable input arguments of update
cell array of a structure including coder.PrimitiveType objects

This property is read-only.

List of the tunable input arguments of the entry-point function update.m for code generation,
specified as a cell array of a structure including coder.PrimitiveType objects. Each
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coder.PrimitiveType object includes the coder attributes of a tunable machine learning model
parameter.

If you modify the coder attributes of a model parameter by using the coder configurer properties
(update Arguments on page 35-695 properties), then the software updates the corresponding
coder.PrimitiveType object accordingly. If you specify the Tunability attribute of a machine
learning model parameter as false, then the software removes the corresponding
coder.PrimitiveType object from the UpdateInputs list.

The structure in UpdateInputs is equivalent to configurer.CodeGenerationArguments{3} for
the coder configurer configurer.
Data Types: cell

Object Functions
generateCode Generate C/C++ code using coder configurer
generateFiles Generate MATLAB files for code generation using coder configurer
validatedUpdateInputs Validate and extract machine learning model parameters to update

Examples

Generate Code Using Coder Configurer

Train a machine learning model, and then generate code for the predict and update functions of
the model by using a coder configurer.

Load the fisheriris data set, which contains flower data, and train a decision tree model.

load fisheriris
X = meas;
Y = species;
Mdl = fitctree(X,Y);

Mdl is a ClassificationTree object.

Create a coder configurer for the ClassificationTree model by using
learnerCoderConfigurer. Specify the predictor data X. The learnerCoderConfigurer function
uses the input X to configure the coder attributes of the predict function input.

configurer = learnerCoderConfigurer(Mdl,X)

configurer = 
  ClassificationTreeCoderConfigurer with properties:

   Update Inputs:
             Children: [1x1 LearnerCoderInput]
     ClassProbability: [1x1 LearnerCoderInput]
             CutPoint: [1x1 LearnerCoderInput]
    CutPredictorIndex: [1x1 LearnerCoderInput]
                Prior: [1x1 LearnerCoderInput]
                 Cost: [1x1 LearnerCoderInput]

   Predict Inputs:
                    X: [1x1 LearnerCoderInput]
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   Code Generation Parameters:
           NumOutputs: 1
       OutputFileName: 'ClassificationTreeModel'

  Properties, Methods

configurer is a ClassificationTreeCoderConfigurer object, which is a coder configurer of a
ClassificationTree object.

To generate C/C++ code, you must have access to a C/C++ compiler that is configured properly.
MATLAB Coder locates and uses a supported, installed compiler. You can use mex -setup to view and
change the default compiler. For more details, see “Change Default Compiler”.

Generate code for the predict and update functions of the classification tree model (Mdl) with
default settings.

generateCode(configurer)

generateCode creates these files in output folder:
'initialize.m', 'predict.m', 'update.m', 'ClassificationTreeModel.mat'
Code generation successful.

The generateCode function completes these actions:

• Generate the MATLAB files required to generate code, including the two entry-point functions
predict.m and update.m for the predict and update functions of Mdl, respectively.

• Create a MEX function named ClassificationTreeModel for the two entry-point functions.
• Create the code for the MEX function in the codegen\mex\ClassificationTreeModel folder.
• Copy the MEX function to the current folder.

Display the contents of the predict.m, update.m, and initialize.m files by using the type
function.

type predict.m

function varargout = predict(X,varargin) %#codegen
% Autogenerated by MATLAB, 01-Sep-2022 12:01:19
[varargout{1:nargout}] = initialize('predict',X,varargin{:});
end

type update.m

function update(varargin) %#codegen
% Autogenerated by MATLAB, 01-Sep-2022 12:01:19
initialize('update',varargin{:});
end

type initialize.m

function [varargout] = initialize(command,varargin) %#codegen
% Autogenerated by MATLAB, 01-Sep-2022 12:01:19
coder.inline('always')
persistent model
if isempty(model)
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    model = loadLearnerForCoder('ClassificationTreeModel.mat');
end
switch(command)
    case 'update'
        % Update struct fields: Children
        %                       ClassProbability
        %                       CutPoint
        %                       CutPredictorIndex
        %                       Prior
        %                       Cost
        model = update(model,varargin{:});
    case 'predict'
        % Predict Inputs: X
        X = varargin{1};
        if nargin == 2
            [varargout{1:nargout}] = predict(model,X);
        else
            PVPairs = cell(1,nargin-2);
            for i = 1:nargin-2
                PVPairs{1,i} = varargin{i+1};
            end
            [varargout{1:nargout}] = predict(model,X,PVPairs{:});
        end
end
end

Update Parameters of Classification Tree Model in Generated Code

Train a decision tree for multiclass classification using a partial data set and create a coder
configurer for the model. Use the properties of the coder configurer to specify coder attributes of the
model parameters. Use the object function of the coder configurer to generate C code that predicts
labels for new predictor data. Then retrain the model using the entire data set, and update
parameters in the generated code without regenerating the code.

Train Model

Load the fisheriris data set, which contains flower data. This data set has four predictors: the
sepal length, sepal width, petal length, and petal width of the flowers. The response variable contains
the flower species names: setosa, versicolor, and virginica. Train a classification tree model using half
of the observations.

load fisheriris
X = meas;
Y = species;

rng('default') % For reproducibility
n = length(Y);
c = cvpartition(Y,'HoldOut',0.5);
idxTrain = training(c,1);
XTrain = X(idxTrain,:);
YTrain = Y(idxTrain);

Mdl = fitctree(XTrain,YTrain);

Mdl is a ClassificationTree object.
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Create Coder Configurer

Create a coder configurer for the ClassificationTree model by using
learnerCoderConfigurer. Specify the predictor data. The learnerCoderConfigurer function
uses the input XTrain to configure the coder attributes of the predict function input. Also, set the
number of outputs to 4 so that the generated code returns predicted labels, scores, node numbers,
and class numbers.

configurer = learnerCoderConfigurer(Mdl,XTrain,'NumOutputs',4);

configurer is a ClassificationTreeCoderConfigurer object, which is a coder configurer of a
ClassificationTree object.

Specify Coder Attributes of Parameters

Specify the coder attributes of the classification tree model parameters so that you can update the
parameters in the generated code after retraining the model.

First, specify the coder attributes of the X property of configurer so that the generated code
accepts any number of observations. Modify the SizeVector and VariableDimensions attributes.
The SizeVector attribute specifies the upper bound of the predictor data size, and the
VariableDimensions attribute specifies whether each dimension of the predictor data has a
variable size or fixed size.

configurer.X.SizeVector = [Inf 4];
configurer.X.VariableDimensions

ans = 1x2 logical array

   1   0

The size of the first dimension is the number of observations. Setting the value of the SizeVector
attribute to Inf causes the software to change the value of the VariableDimensions attribute to 1.
In other words, the upper bound of the size is Inf and the size is variable, meaning that the predictor
data can have any number of observations. This specification is convenient if you do not know the
number of observations when generating code.

The size of the second dimension is the number of predictor variables. This value must be fixed for a
machine learning model. Because the predictor data contains 4 predictors, the value of the
SizeVector attribute must be 4 and the value of the VariableDimensions attribute must be 0.

If you retrain the tree model using new data or different settings, the number of nodes in the tree can
vary. Therefore, specify the first dimension of the SizeVector attribute of one of these properties so
that you can update the number of nodes in the generated code: Children, ClassProbability,
CutPoint, or CutPredictorIndex. The software then modifies the other properties automatically.

For example, set the first value of the SizeVector attribute of the CutPoint property to Inf. The
software modifies the SizeVector and VariableDimensions attributes of Children,
ClassProbability, and CutPredictorIndex to match the new upper bound on the number of
nodes in the tree. Additionally, the first value of the VariableDimensions attribute of CutPoint
changes to 1.

configurer.CutPoint.SizeVector = [Inf 1];

SizeVector attribute for Children has been modified to satisfy configuration constraints.
SizeVector attribute for CutPredictorIndex has been modified to satisfy configuration constraints.
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VariableDimensions attribute for Children has been modified to satisfy configuration constraints.
VariableDimensions attribute for CutPredictorIndex has been modified to satisfy configuration constraints.
SizeVector attribute for ClassProbability has been modified to satisfy configuration constraints.
VariableDimensions attribute for ClassProbability has been modified to satisfy configuration constraints.

configurer.CutPoint.VariableDimensions

ans = 1x2 logical array

   1   0

Generate Code

To generate C/C++ code, you must have access to a C/C++ compiler that is configured properly.
MATLAB Coder locates and uses a supported, installed compiler. You can use mex -setup to view and
change the default compiler. For more details, see “Change Default Compiler”.

Generate code for the predict and update functions of the classification tree model (Mdl).

generateCode(configurer)

generateCode creates these files in output folder:
'initialize.m', 'predict.m', 'update.m', 'ClassificationTreeModel.mat'
Code generation successful.

The generateCode function completes these actions:

• Generate the MATLAB files required to generate code, including the two entry-point functions
predict.m and update.m for the predict and update functions of Mdl, respectively.

• Create a MEX function named ClassificationTreeModel for the two entry-point functions.
• Create the code for the MEX function in the codegen\mex\ClassificationTreeModel folder.
• Copy the MEX function to the current folder.

Verify Generated Code

Pass some predictor data to verify whether the predict function of Mdl and the predict function in
the MEX function return the same output arguments. To call an entry-point function in a MEX
function that has more than one entry point, specify the function name as the first input argument.

[label,score,node,cnum] = predict(Mdl,XTrain);
[label_mex,score_mex,node_mex,cnum_mex] = ClassificationTreeModel('predict',XTrain);

Compare label and label_mex by using isequal. Similarly, compare node to node_mex and cnum
to cnum_mex.

isequal(label,label_mex)

ans = logical
   1

isequal(node,node_mex)

ans = logical
   1
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isequal(cnum,cnum_mex)

ans = logical
   1

isequal returns logical 1 (true) if all the input arguments are equal. The comparison confirms that
the predict function of Mdl and the predict function in the MEX function return the same labels,
node numbers, and class numbers.

Compare score and score_mex.

max(abs(score-score_mex),[],'all')

ans = 0

In general, score_mex might include round-off differences compared to score. In this case, the
comparison confirms that score and score_mex are equal.

Retrain Model and Update Parameters in Generated Code

Retrain the model using the entire data set.

retrainedMdl = fitctree(X,Y);

Extract parameters to update by using validatedUpdateInputs. This function detects the modified
model parameters in retrainedMdl and validates whether the modified parameter values satisfy the
coder attributes of the parameters.

params = validatedUpdateInputs(configurer,retrainedMdl);

Update parameters in the generated code.

ClassificationTreeModel('update',params)

Verify Generated Code

Compare the output arguments from the predict function of retrainedMdl and the predict
function in the updated MEX function.

[label,score,node,cnum] = predict(retrainedMdl,X);
[label_mex,score_mex,node_mex,cnum_mex] = ClassificationTreeModel('predict',X);

isequal(label,label_mex)

ans = logical
   1

isequal(node,node_mex)

ans = logical
   1

isequal(cnum,cnum_mex)

ans = logical
   1
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max(abs(score-score_mex),[],'all')

ans = 0

The comparison confirms that the labels, node numbers, class numbers, and scores are equal.

More About
LearnerCoderInput Object

A coder configurer uses a LearnerCoderInput object to specify the coder attributes of predict
and update input arguments.

A LearnerCoderInput object has the following attributes to specify the properties of an input
argument array in the generated code.

Attribute Name Description
SizeVector Array size if the corresponding VariableDimensions value is

false.

Upper bound of the array size if the corresponding
VariableDimensions value is true. To allow an unbounded
array, specify the bound as Inf.

VariableDimensions Indicator specifying whether each dimension of the array has a
variable size or fixed size, specified as true (logical 1) or false
(logical 0):

• A value of true (logical 1) means that the corresponding
dimension has a variable size.

• A value of false (logical 0) means that the corresponding
dimension has a fixed size.

DataType Data type of the array
Tunability Indicator specifying whether or not predict or update includes

the argument as an input in the generated code, specified as true
(logical 1) or false (logical 0).

If you specify other attribute values when Tunability is false,
the software sets Tunability to true.

After creating a coder configurer, you can modify the coder attributes by using dot notation. For
example, specify the coder attributes of the CutPoint property of the coder configurer configurer:

configurer.CutPoint.SizeVector = [20 1];
configurer.CutPoint.VariableDimensions = [1 0];

If you specify the verbosity level (Verbose) as true (default), then the software displays notification
messages when you modify the coder attributes of a machine learning model parameter and the
modification changes the coder attributes of other dependent parameters.

Version History
Introduced in R2019b
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See Also
learnerCoderConfigurer | ClassificationTree | CompactClassificationTree | update |
predict

Topics
“Introduction to Code Generation” on page 34-2
“Code Generation for Prediction and Update Using Coder Configurer” on page 34-92

 ClassificationTreeCoderConfigurer

35-707



classify
Classify observations using discriminant analysis

Syntax
class = classify(sample,training,group)
class = classify(sample,training,group,type,prior)
[class,err,posterior,logp,coeff] = classify( ___ )

Description

Note fitcdiscr and predict are recommended over classify for training a discriminant
analysis classifier and predicting labels. fitcdiscr supports cross-validation and hyperparameter
optimization, and does not require you to fit the classifier every time you make a new prediction or
change prior probabilities.

class = classify(sample,training,group) classifies each row of the data in sample into one
of the groups to which the data in training belongs. The groups for training are specified by
group. The function returns class, which contains the assigned groups for each row of sample.

class = classify(sample,training,group,type,prior) also specifies the type of
discriminant function, and prior probabilities for each group.

[class,err,posterior,logp,coeff] = classify( ___ ) also returns the apparent error rate
(err), posterior probabilities for training observations (posterior), logarithm of the unconditional
probability density for sample observations (logp), and coefficients of the boundary curves (coeff),
using any of the input argument combinations in previous syntaxes.

Examples

Classify Using Linear Discriminant Analysis

Load the fisheriris data set. Create group as a cell array of character vectors that contains the
iris species.

load fisheriris
group = species;

The meas matrix contains four petal measurements for 150 irises. Randomly partition observations
into a training set (trainingData) and a sample set (sampleData) with stratification, using the
group information in group. Specify a 40% holdout sample for sampleData.

rng('default') % For reproducibility
cv = cvpartition(group,'HoldOut',0.40);
trainInds = training(cv);
sampleInds = test(cv);
trainingData = meas(trainInds,:);
sampleData = meas(sampleInds,:);
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Classify sampleData using linear discriminant analysis, and create a confusion chart from the true
labels in group and the predicted labels in class.

class = classify(sampleData,trainingData,group(trainInds));
cm = confusionchart(group(sampleInds),class);

The classify function misclassifies one versicolor iris as virginica in the sample data set.

Classify Using Quadratic Discriminant Analysis and Visualize Decision Boundary

Classify the data points in a grid of measurements (sample data) by using quadratic discriminant
analysis. Then, visualize the sample data, training data, and decision boundary.

Load the fisheriris data set. Create group as a cell array of character vectors that contains the
iris species.

load fisheriris
group = species(51:end);

Plot the sepal length (SL) and width (SW) measurements for the iris versicolor and virginica species.

SL = meas(51:end,1);
SW = meas(51:end,2);
h1 = gscatter(SL,SW,group,'rb','v^',[],'off');
h1(1).LineWidth = 2;
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h1(2).LineWidth = 2;
legend('Fisher versicolor','Fisher virginica','Location','NW')
xlabel('Sepal Length')
ylabel('Sepal Width')

Create sampleData as a numeric matrix that contains a grid of measurements. Create
trainingData as a numeric matrix that contains the sepal length and width measurements for the
iris versicolor and virginica species.

[X,Y] = meshgrid(linspace(4.5,8),linspace(2,4));
X = X(:); Y = Y(:);
sampleData = [X Y];
trainingData = [SL SW];

Classify sampleData using quadratic discriminant analysis.

[C,err,posterior,logp,coeff] = classify(sampleData,trainingData,group,'quadratic');

Retrieve the coefficients K, L, and M for the quadratic boundary between the two classes.

K = coeff(1,2).const;
L = coeff(1,2).linear; 
Q = coeff(1,2).quadratic;

The curve that separates the two classes is defined by this equation:

K + x1 x2 L + x1 x2 Q
x1
x2

= 0
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Visualize the discriminant classification.

hold on
h2 = gscatter(X,Y,C,'rb','.',1,'off');
f = @(x,y) K + L(1)*x + L(2)*y + Q(1,1)*x.*x + (Q(1,2)+Q(2,1))*x.*y + Q(2,2)*y.*y;
h3 = fimplicit(f,[4.5 8 2 4]);
h3.Color = 'm';
h3.LineWidth = 2;
h3.DisplayName = 'Decision Boundary';
hold off
axis tight
xlabel('Sepal Length')
ylabel('Sepal Width')
title('Classification with Fisher Training Data')

Visualize Classification Boundaries of Linear Discriminant Analysis

Partition a data set into sample and training data, and classify the sample data using linear
discriminant analysis. Then, visualize the decision boundaries.

Load the fisheriris data set. Create group as a cell array of character vectors that contains the
iris species. Create PL and PW as numeric vectors that contain the petal length and width
measurements, respectively.

 classify

35-711



load fisheriris
group = species;
PL = meas(:,3);
PW = meas(:,4);

Plot the sepal length (PL) and width (PW) measurements for the iris setosa, versicolor, and virginica
species.

h1 = gscatter(PL,PW,species,'krb','ov^',[],'off');
legend('Setosa','Versicolor','Virginica','Location','best')
xlabel('Petal Length')
ylabel('Petal Width')

Randomly partition observations into a training set (trainingData) and a sample set (sampleData)
with stratification, using the group information in group. Specify a 10% holdout sample for
sampleData.

rng('default') % For reproducibility
cv = cvpartition(group,'HoldOut',0.10);
trainInds = training(cv);
sampleInds = test(cv);
trainingData = [PL(trainInds) PW(trainInds)];
sampleData = [PL(sampleInds) PW(sampleInds)];

Classify sampleData using linear discriminant analysis.

[class,err,posterior,logp,coeff] = classify(sampleData,trainingData,group(trainInds));
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Retrieve the coefficients K and L for the linear boundary between the second and third classes.

K = coeff(2,3).const;  
L = coeff(2,3).linear;

The line that separates the second and third classes is defined by the equation K + x1 x2 L = 0. Plot
the boundary line between the second and third classes.

f = @(x1,x2) K + L(1)*x1 + L(2)*x2;
hold on
h2 = fimplicit(f,[.9 7.1 0 2.5]);
h2.Color = 'r';
h2.DisplayName = 'Boundary between Versicolor & Virginica';

Retrieve the coefficients K and L for the linear boundary between the first and second classes.

K = coeff(1,2).const;
L = coeff(1,2).linear;

Plot the line that separates the first and second classes.

f = @(x1,x2) K + L(1)*x1 + L(2)*x2;
h3 = fimplicit(f,[.9 7.1 0 2.5]);
hold off
h3.Color = 'k';
h3.DisplayName = 'Boundary between Versicolor & Setosa';
axis tight
title('Linear Classification with Fisher Training Data')
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Input Arguments
sample — Sample data
numeric matrix

Sample data, specified as a numeric matrix. Each column of sample represents one variable, and
each row represents one sample observation. sample must have the same number of columns as
training.
Data Types: single | double

training — Training data
numeric matrix

Training data, specified as a numeric matrix. Each column of training represents one variable, and
each row represents one training observation. training must have the same number of columns as
sample, and the same number of rows as group.
Data Types: single | double

group — Group names
categorical array | character array | string array | numeric vector | cell array of character vectors

Group names, specified as a categorical array, character array, string array, numeric vector, or cell
array of character vectors. Each element in group defines the group to which the corresponding row
of training belongs. group must have the same number of rows as training.
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NaN, <undefined>, empty character vector (''), empty string (""), and <missing> values in group
indicate missing values. classify removes entire rows of training data corresponding to a
missing group name.
Data Types: categorical | char | string | single | double | cell

type — Discriminant type
'linear' (default) | 'quadratic' | 'diagLinear' | 'diagQuadratic' | 'mahalanobis'

Discriminant type, specified as one of the values in the following table.

Value Description
'linear' Fits a multivariate normal density to each group,

with a pooled estimate of covariance. This option
uses likelihood ratios to assign sample
observations to groups.

'quadratic' Fits multivariate normal densities with
covariance estimates stratified by group. This
option uses likelihood ratios to assign sample
observations to groups.

'diagLinear' Similar to 'linear', but with a diagonal
covariance matrix estimate. This diagonal option
is a specific example of a naive Bayes classifier,
because it assumes that the variables are
conditionally independent given the group label.

'diagQuadratic' Similar to 'quadratic', but with a diagonal
covariance matrix estimate. This diagonal option
is a specific example of a naive Bayes classifier,
because it assumes that the variables are
conditionally independent given the group label.

'mahalanobis' Uses Mahalanobis distances with stratified
covariance estimates.

prior — Prior probabilities for each group
numeric vector | 'empirical' | structure

Prior probabilities for each group, specified as one of the values in the following table. By default, all
prior probabilities are equal to 1/K, where K is the number of groups.

Value Description
numeric vector Each element is a group prior probability. Order

the elements according to group. classify
normalizes the elements so that they sum to 1.

'empirical' The group prior probabilities are the group
relative frequencies in group.
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Value Description
structure A structure S with two fields:

• S.group contains the group names as a
variable of the same type as group.

• S.prob contains a numeric vector of
corresponding prior probabilities. classify
normalizes the elements so that they sum to 1.

prior is not used for discrimination by the Mahalanobis distance, except for the calculation of err.
Data Types: single | double | char | string | struct

Output Arguments
class — Predicted class for sample data
categorical array | character array | string array | numeric vector | cell array of character vectors

Predicted class for the sample data, returned as a categorical array, character array, string array,
numeric vector, or cell array of character vectors. class is of the same type as group. Each element
in class contains the group to which each row of sample has been assigned.
Data Types: categorical | char | string | single | double | cell

err — Apparent error rate
nonnegative number

Apparent error rate, returned as a nonnegative number. err is an estimate of the misclassification
error rate based on the training data. It is the percentage of observations in training that are
misclassified, weighted by the prior probabilities for the groups.
Data Types: single | double

posterior — Posterior probabilities for training observations
numeric matrix

Posterior probabilities for training observations, returned as an n-by-k numeric matrix, where n is the
number of observations (rows) in training and k is the number of groups in group. The element
posterior(i,j) is the posterior probability that observation i in training belongs to group j in
group. If you specify type as 'mahalanobis', the function does not compute posterior.
Data Types: single | double

logp — Logarithm of unconditional probability density for sample observations
numeric vector

Logarithm of the unconditional probability density for sample observations, returned as a numeric
vector. The predicted unconditional probability density for observation i in sample is

P(obsi) = ∑
j = 1

k
P(obsi | group j)P(group j),

where:
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• P(obsi group j) is the conditional density of observation i in sample given group j in group.
• P(group j) is the prior probability of group j.
• k is the number of groups.

If you specify type as 'mahalanobis', the function does not compute logp.
Data Types: single | double

coeff — Coefficients of boundary curves
structure

Coefficients of the boundary curves between pairs of groups, returned as a k-by-k structure, where k
is the number of groups in group. The element coeff(i,j) contains coefficients of the boundaries
between groups i and j. This table lists the coeff fields and their values.

Field Name Value
type Type of discriminant function, specified by type
name1 Name of the group i
name2 Name of the group j
const Constant term of the boundary equation (K)
linear Linear coefficients of the boundary equation (L)
quadratic Quadratic coefficient matrix of the boundary

equation (Q). The structure does not include this
field when you specify type as 'linear' or
'diagLinear'.

• If you specify type as 'linear' or 'diagLinear', the function classifies a row x from sample
into group i (instead of group j) when 0 < K + x*L.

• If you specify type as 'quadratic', 'diagQuadratic', or 'mahalanobis', the function
classifies a row x from sample into group i (instead of group j) when 0 < K + x*L + x*Q*x'.

Alternative Functionality
The fitcdiscr function also performs discriminant analysis. You can train a classifier by using the
fitcdiscr function and predict labels of new data by using the predict function. The fitcdiscr
function supports cross-validation and hyperparameter optimization, and does not require you to fit
the classifier every time you make a new prediction or change prior probabilities.

Version History
Introduced before R2006a

References
[1] Krzanowski, Wojtek. J. Principles of Multivariate Analysis: A User's Perspective. NY: Oxford

University Press, 1988.

[2] Seber, George A. F. Multivariate Observations. NJ: John Wiley & Sons, Inc., 1984.
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See Also
mahal | fitctree | ClassificationDiscriminant | predict | fitcdiscr | fitcnb

Topics
“Discriminant Analysis Classification” on page 21-2
“Classification” on page 18-24
“Grouping Variables” on page 2-46
“Create and Visualize Discriminant Analysis Classifier” on page 21-9
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cluster
Construct agglomerative clusters from linkages

Syntax
T = cluster(Z,'Cutoff',C)
T = cluster(Z,'Cutoff',C,'Depth',D)
T = cluster(Z,'Cutoff',C,'Criterion',criterion)

T = cluster(Z,'MaxClust',N)

Description
T = cluster(Z,'Cutoff',C) defines clusters from an agglomerative hierarchical cluster tree Z.
The input Z is the output of the linkage function for an input data matrix X. cluster cuts Z into
clusters, using C as a threshold for the inconsistency coefficients (or inconsistent values) of nodes
in the tree. The output T contains cluster assignments of each observation (row of X).

T = cluster(Z,'Cutoff',C,'Depth',D) evaluates inconsistent values by looking to a depth
D below each node.

T = cluster(Z,'Cutoff',C,'Criterion',criterion) uses either 'inconsistent' (default)
or 'distance' as the criterion for defining clusters. criterion must be less than C for
cluster to define clusters.

T = cluster(Z,'MaxClust',N) defines a maximum of N clusters using 'distance' as the
criterion for defining clusters.

Examples

Define Clusters by Specifying Depth

Perform agglomerative clustering on randomly generated data by evaluating inconsistent values to a
depth of four below each node.

Randomly generate the sample data.

rng('default'); % For reproducibility
X = [(randn(20,2)*0.75)+1;
    (randn(20,2)*0.25)-1];

Create a scatter plot of the data.

scatter(X(:,1),X(:,2));
title('Randomly Generated Data');
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Create a hierarchical cluster tree using the ward linkage method.

Z = linkage(X,'ward');

Create a dendrogram plot of the data.

dendrogram(Z)
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The scatter plot and the dendrogram plot seem to show two clusters in the data.

Cluster the data using a threshold of 3 for the inconsistency coefficient and looking to a depth of 4
below each node. Plot the resulting clusters.

T = cluster(Z,'cutoff',3,'Depth',4);
gscatter(X(:,1),X(:,2),T)
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cluster identifies two clusters in the data.

Cluster Data Using Distance Criterion

Perform agglomerative clustering on the fisheriris data set using 'distance' as the criterion for
defining clusters. Visualize the cluster assignments of the data.

Load the fisheriris data set.

load fisheriris

Visualize a 2-D scatter plot of the data using species as the grouping variable. Specify marker colors
and marker symbols for the three different species.

gscatter(meas(:,1),meas(:,2),species,'rgb','do*')
title("Actual Clusters of Fisher's Iris Data")
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Create a hierarchical cluster tree using the 'average' method and the 'chebychev' metric.

Z = linkage(meas,'average','chebychev');

Cluster the data using a threshold of 1.5 for the 'distance' criterion.

T = cluster(Z,'cutoff',1.5,'Criterion','distance')

T = 150×1

     2
     2
     2
     2
     2
     2
     2
     2
     2
     2
      ⋮

T contains numbers that correspond to the cluster assignments. Find the number of classes that
cluster identifies.

length(unique(T))

ans = 3

 cluster

35-723



cluster identifies three classes for the specified values of cutoff and Criterion.

Visualize a 2-D scatter plot of the clustering results using T as the grouping variable. Specify marker
colors and marker symbols for the three different classes.

gscatter(meas(:,1),meas(:,2),T,'rgb','do*')
title("Cluster Assignments of Fisher's Iris Data")

Clustering correctly identifies the setosa class (class 2) as belonging to a distinct cluster, but poorly
distinguishes between the versicolor and virginica classes (classes 1 and 3, respectively). Note that
the scatter plot labels the classes using the numbers contained in T.

Compare Cluster Assignments to Classes

Find a maximum of three clusters in the fisheriris data set and compare cluster assignments of
the flowers to their known classification.

Load the sample data.

load fisheriris

Create a hierarchical cluster tree using the 'average' method and the 'chebychev' metric.

Z = linkage(meas,'average','chebychev');
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Find a maximum of three clusters in the data.

T = cluster(Z,'maxclust',3);

Create a dendrogram plot of Z. To see the three clusters, use 'ColorThreshold' with a cutoff
halfway between the third-from-last and second-from-last linkages.

cutoff = median([Z(end-2,3) Z(end-1,3)]);
dendrogram(Z,'ColorThreshold',cutoff)

Display the last two rows of Z to see how the three clusters are combined into one. linkage
combines the 293rd (blue) cluster with the 297th (red) cluster to form the 298th cluster with a
linkage of 1.7583. linkage then combines the 296th (green) cluster with the 298th cluster.

lastTwo = Z(end-1:end,:)

lastTwo = 2×3

  293.0000  297.0000    1.7583
  296.0000  298.0000    3.4445

See how the cluster assignments correspond to the three species. For example, one of the clusters
contains 50 flowers of the second species and 40 flowers of the third species.

crosstab(T,species)
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ans = 3×3

     0     0    10
     0    50    40
    50     0     0

Cluster Data and Plot Result

Randomly generate sample data with 20,000 observations.

rng('default') % For reproducibility
X = rand(20000,3);

Create a hierarchical cluster tree using the ward linkage method. In this case, the 'SaveMemory'
option of the clusterdata function is set to 'on' by default. In general, specify the best value for
'SaveMemory' based on the dimensions of X and the available memory.

Z = linkage(X,'ward');

Cluster the data into a maximum of four groups and plot the result.

c = cluster(Z,'Maxclust',4);
scatter3(X(:,1),X(:,2),X(:,3),10,c)
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cluster identifies four groups in the data.

Input Arguments
Z — Agglomerative hierarchical cluster tree
numeric matrix

Agglomerative hierarchical cluster tree that is the output of the linkage function, specified as a
numeric matrix. For an input data matrix X with m rows (or observations), linkage returns an (m –
1)-by-3 matrix Z. For an explanation of how linkage creates the cluster tree, see Z.
Example: Z = linkage(X), where X is an input data matrix
Data Types: single | double

C — Threshold for defining clusters
positive scalar | vector of positive scalars

Threshold for defining clusters, specified as a positive scalar or a vector of positive scalars. cluster
uses C as a threshold for either the heights or the inconsistency coefficients of nodes, depending on
the criterion for defining clusters in a hierarchical cluster tree.

• If the criterion for defining clusters is 'distance', then cluster groups all leaves at or below a
node into a cluster, provided that the height of the node is less than C.

• If the criterion for defining clusters is 'inconsistent', then the inconsistent values of a
node and all its subnodes must be less than C for cluster to group them into a cluster. cluster
begins from the root of the cluster tree Z and steps down through the tree until it encounters a
node whose inconsistent value is less than the threshold C, and whose subnodes (or
descendants) have inconsistent values less than C. Then cluster groups all leaves at or below
the node into a cluster (or a singleton if the node itself is a leaf). cluster follows every branch in
the tree until all leaf nodes are in clusters.

Example: cluster(Z,'Cutoff',0.5)
Data Types: single | double

D — Depth for computing inconsistent values
2 (default) | numeric scalar

Depth for computing inconsistent values, specified as a numeric scalar. cluster evaluates
inconsistent values by looking to a depth D below each node.
Example: cluster(Z,'Cutoff',0.5,'Depth',3)
Data Types: single | double

criterion — Criterion for defining clusters
'inconsistent' (default) | 'distance'

Criterion for defining clusters, specified as 'inconsistent' or 'distance'.

If the criterion for defining clusters is 'distance', then cluster groups all leaves at or below a
node into a cluster (or a singleton if the node itself is a leaf), provided that the height of the node is
less than C. The height of a node in a tree represents the distance between the two subnodes that are
merged at that node. Specifying 'distance' results in clusters that correspond to a horizontal slice
of the dendrogram plot of Z.
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If the criterion for defining clusters is 'inconsistent', then cluster groups a node and all its
subnodes into a cluster, provided that the inconsistency coefficients (or inconsistent values) of the
node and subnodes are less than C. Specifying 'inconsistent' is equivalent to
cluster(Z,'Cutoff',C).
Example: cluster(Z,'Cutoff',0.5,'Criterion','distance')
Data Types: char | string

N — Maximum number of clusters
positive integer | vector of positive integers

Maximum number of clusters to form, specified as a positive integer or a vector of positive integers.
cluster constructs a maximum of N clusters, using 'distance' as the criterion for defining
clusters. The height of each node in the tree represents the distance between the two subnodes
merged at that node. cluster finds the smallest height at which a horizontal cut through the tree
will leave N or fewer clusters. See Specify Arbitrary Clusters on page 17-16 for more details.
Example: cluster(Z,'MaxClust',5)
Data Types: single | double

Output Arguments
T — Cluster assignment
numeric vector | numeric matrix

Cluster assignment, returned as a numeric vector or matrix. For the (m – 1)-by-3 hierarchical cluster
tree Z (the output of linkage given input X), T contains the cluster assignments of the m rows
(observations) of X.

The size of T depends on the corresponding size of C or N.

• If C is a positive scalar, then T is a vector of length m.
• If N is a positive integer, then T is a vector of length m.
• If C is a length l vector of positive scalars, then T is an m-by-l matrix with one column per value in

C.
• If N is a length l vector of positive integers, then T is an m-by-l matrix with one column per value

in N.

Alternative Functionality
If you have an input data matrix X, you can use clusterdata to perform agglomerative clustering
and return cluster indices for each observation (row) in X. The clusterdata function performs all
the necessary steps for you, so you do not need to execute the pdist, linkage, and cluster
functions separately.

Version History
Introduced before R2006a

See Also
clusterdata | cophenet | dendrogram | inconsistent | kmeans | linkage | pdist
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Topics
“Hierarchical Clustering” on page 17-6
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cluster
Construct clusters from Gaussian mixture distribution

Syntax
idx = cluster(gm,X)
[idx,nlogL] = cluster(gm,X)
[idx,nlogL,P] = cluster(gm,X)
[idx,nlogL,P,logpdf] = cluster(gm,X)
[idx,nlogL,P,logpdf,d2] = cluster(gm,X)

Description
idx = cluster(gm,X) partitions the data in X into k clusters determined by the k Gaussian
mixture components in gm. The value in idx(i) is the cluster index of observation i and indicates
the component with the largest posterior probability given the observation i.

[idx,nlogL] = cluster(gm,X) also returns the negative loglikelihood of the Gaussian mixture
model gm given the data X.

[idx,nlogL,P] = cluster(gm,X) also returns the posterior probabilities of each Gaussian
mixture component in gm given each observation in X.

[idx,nlogL,P,logpdf] = cluster(gm,X) also returns a logarithm of the estimated probability
density function (pdf) evaluated at each observation in X.

[idx,nlogL,P,logpdf,d2] = cluster(gm,X) also returns the squared Mahalanobis distance of
each observation in X to each Gaussian mixture component in gm.

Examples

Cluster Data

Generate random variates that follow a mixture of two bivariate Gaussian distributions by using the
mvnrnd function. Fit a Gaussian mixture model (GMM) to the generated data by using the
fitgmdist function. Then, use the cluster function to partition the data into two clusters
determined by the fitted GMM components.

Define the distribution parameters (means and covariances) of two bivariate Gaussian mixture
components.

mu1 = [2 2];          % Mean of the 1st component
sigma1 = [2 0; 0 1];  % Covariance of the 1st component
mu2 = [-2 -1];        % Mean of the 2nd component
sigma2 = [1 0; 0 1];  % Covariance of the 2nd component

Generate an equal number of random variates from each component, and combine the two sets of
random variates.
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rng('default') % For reproducibility
r1 = mvnrnd(mu1,sigma1,1000);
r2 = mvnrnd(mu2,sigma2,1000);
X = [r1; r2];

The combined data set X contains random variates following a mixture of two bivariate Gaussian
distribution.

Fit a two-component GMM to X.

gm = fitgmdist(X,2);

Plot X by using scatter. Visualize the fitted model gm by using pdf and fcontour.

figure
scatter(X(:,1),X(:,2),10,'.') % Scatter plot with points of size 10
hold on
gmPDF = @(x,y) arrayfun(@(x0,y0) pdf(gm,[x0 y0]),x,y);
fcontour(gmPDF,[-6 8 -4 6])

Partition the data into clusters by passing the fitted GMM and the data to cluster.

idx = cluster(gm,X);

Use gscatter to create a scatter plot grouped by idx.
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figure;
gscatter(X(:,1),X(:,2),idx);
legend('Cluster 1','Cluster 2','Location','best');

Input Arguments
gm — Gaussian mixture distribution
gmdistribution object

Gaussian mixture distribution, also called Gaussian mixture model (GMM), specified as a
gmdistribution object.

You can create a gmdistribution object using gmdistribution or fitgmdist. Use the
gmdistribution function to create a gmdistribution object by specifying the distribution
parameters. Use the fitgmdist function to fit a gmdistribution model to data given a fixed
number of components.

X — Data
n-by-m numeric matrix

Data, specified as an n-by-m numeric matrix, where n is the number of observations and m is the
number of variables in each observation.

To provide meaningful clustering results, X must come from the same population as the data used to
create gm.
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If a row of X contains NaNs, then cluster excludes the row from the computation. The
corresponding value in idx, P, logpdf, and d2 is NaN.
Data Types: single | double

Output Arguments
idx — Cluster index
n-by-1 positive integer vector

Cluster index, returned as an n-by-1 positive integer vector, where n is the number of observations in
X.

idx(i) is the cluster index of observation i and indicates the Gaussian mixture component with the
largest posterior probability given the observation i.

nlogL — Negative loglikelihood
numeric value

Negative loglikelihood value of the Gaussian mixture model gm given the data X, returned as a
numeric value.

P — Posterior probability
n-by-k numeric vector

Posterior probability of each Gaussian mixture component in gm given each observation in X, returned
as an n-by-k numeric vector, where n is the number of observations in X and k is the number of
mixture components in gm.

P(i,j) is the posterior probability of the jth Gaussian mixture component given observation i,
Probability(component j | observation i).

logpdf — Logarithm of estimated pdf
n-by-1 numeric vector

Logarithm of the estimated pdf, evaluated at each observation in X, returned as an n-by-1 numeric
vector, where n is the number of observations in X.

logpdf(i) is the logarithm of the estimated pdf at observation i. The cluster function computes
the estimated pdf by using the likelihood of each component given each observation and the
component probabilities.

logpdf(i) = log ∑
j = 1

k
L(C j Oi)P(C j),

where L(Cj|Oj) is the likelihood of component j given observation i, and P(Cj) is the probability of
component j. The cluster function computes the likelihood term by using the multivariate normal
pdf of the jth Gaussian mixture component evaluated at observation i. The component probabilities
are the mixing proportions of mixture components, the ComponentProportion property of gm.

d2 — Squared Mahalanobis distance
n-by-k numeric matrix
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Squared Mahalanobis distance of each observation in X to each Gaussian mixture component in gm,
returned as an n-by-k numeric matrix, where n is the number of observations in X and k is the number
of mixture components in gm.

d2(i,j) is the squared distance of observation i to the jth Gaussian mixture component.

Version History
Introduced in R2007b

See Also
fitgmdist | gmdistribution | mahal | posterior

Topics
“Cluster Using Gaussian Mixture Model” on page 17-39
“Cluster Gaussian Mixture Data Using Hard Clustering” on page 17-46
“Cluster Gaussian Mixture Data Using Soft Clustering” on page 17-52
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clusterdata
Construct agglomerative clusters from data

Syntax
T = clusterdata(X,cutoff)

T = clusterdata(X,Name,Value)

Description
T = clusterdata(X,cutoff) returns cluster indices for each observation (row) of an input data
matrix X, given a threshold cutoff for cutting an agglomerative hierarchical tree that the linkage
function generates from X.

clusterdata supports agglomerative clustering and incorporates the pdist, linkage, and
cluster functions, which you can use separately for more detailed analysis. See Algorithm
Description on page 17-6 for more details.

T = clusterdata(X,Name,Value) specifies clustering options using one or more name-value pair
arguments. You must specify either Cutoff or MaxClust. For example, specify 'MaxClust',5 to
find a maximum of five clusters.

Examples

Find Limited Number of Clusters from Sample Data

Find and visualize a maximum of three clusters in a randomly generated data set using two different
approaches:

1 Specify a value for the cutoff input argument.
2 Specify a value for the 'MaxClust' name-value pair argument.

Create a sample data set consisting of randomly generated data from three standard uniform
distributions.

rng('default');  % For reproducibility
X = [gallery('uniformdata',[10 3],12); ...
    gallery('uniformdata',[10 3],13)+1.2; ...
    gallery('uniformdata',[10 3],14)+2.5];
y = [ones(10,1);2*(ones(10,1));3*(ones(10,1))]; % Actual classes

Create a scatter plot of the data.

scatter3(X(:,1),X(:,2),X(:,3),100,y,'filled')
title('Randomly Generated Data in Three Clusters');
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Find a maximum of three clusters in the data by specifying the value 3 for the cutoff input
argument.

T1 = clusterdata(X,3);

Because the value of cutoff is greater than 2, clusterdata interprets cutoff as the maximum
number of clusters.

Plot the data with the resulting cluster assignments.

scatter3(X(:,1),X(:,2),X(:,3),100,T1,'filled')
title('Result of Clustering');
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Find a maximum of three clusters by specifying the value 3 for the 'MaxClust' name-value pair
argument.

T2 = clusterdata(X,'Maxclust',3); 

Plot the data with the resulting cluster assignments.

scatter3(X(:,1),X(:,2),X(:,3),100,T2,'filled')
title('Result of Clustering');
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Using both approaches, clusterdata identifies the three distinct clusters in the data.

Create and Cluster Hierarchical Tree

Create a hierarchical cluster tree and find clusters in one step. Visualize the clusters using a 3-D
scatter plot.

Create a 20,000-by-3 matrix of sample data generated from the standard uniform distribution.

rng('default');  % For reproducibility
X = rand(20000,3);

Find a maximum of four clusters in a hierarchical cluster tree created using the ward linkage
method. Specify 'SaveMemory' as 'on' to construct clusters without computing the distance
matrix. Otherwise, you can receive an out-of-memory error if your machine does not have enough
memory to hold the distance matrix.

T = clusterdata(X,'Linkage','ward','SaveMemory','on','Maxclust',4);

Plot the data with each cluster shown in a different color.

scatter3(X(:,1),X(:,2),X(:,3),10,T)
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clusterdata identifies four clusters in the data.

Input Arguments
X — Input data
numeric matrix

Input data, specified as a numeric matrix with two or more rows. The rows represent observations,
and the columns represent categories or dimensions.
Data Types: single | double

cutoff — Threshold for cutting the hierarchical tree
positive scalar between 0 and 2 | positive integer ≥ 2

Threshold for cutting the hierarchical tree defined by linkage, specified as a positive scalar between
0 and 2 or a positive integer ≥ 2. clusterdata behaves differently depending on the value specified
for cutoff.

• If 0 < cutoff < 2, then clusterdata forms clusters when inconsistent values are greater
than cutoff.

• If cutoff is an integer ≥ 2, then clusterdata forms a maximum of cutoff clusters.

When you specify cutoff, you cannot specify any name-value pair arguments.

 clusterdata

35-739



Example: clusterdata(X,3)
Data Types: single | double

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: clusterdata(X,'Linkage','ward','MaxClust',3) specifies creating a maximum of
three clusters of X using Ward linkage.

Criterion — Criterion for defining clusters
'inconsistent' | 'distance'

Criterion for defining clusters in a hierarchical cluster tree, specified as the comma-separated pair
consisting of 'Criterion' and either 'inconsistent' or 'distance'. When you specify
'Criterion', you must also specify a value for MaxClust or Cutoff.
Example: clusterdata(X,'Criterion','distance','Cutoff',.5)
Data Types: char | string

Cutoff — Cutoff for inconsistent or distance criterion
positive scalar

Cutoff for inconsistent or distance criterion, specified as the comma-separated pair consisting of
'Cutoff' and a positive scalar. clusterdata uses Cutoff as a threshold for either the heights or
the inconsistency coefficients of nodes, depending on the value of Criterion. If you specify a value
for 'Cutoff' without specifying the criterion for defining clusters, then clusterdata uses the
'inconsistent' criterion by default.

• If 'Criterion' is 'distance', then clusterdata groups all leaves at or below a node into a
cluster, provided that the height of the node is less than Cutoff.

• If 'Criterion' is 'inconsistent', then the inconsistent values of a node and all its
subnodes must be less than Cutoff for clusterdata to group them into a cluster.

You must specify either Cutoff or MaxClust.
Example: clusterdata(X,'Cutoff',0.2)
Data Types: single | double

Depth — Depth for computing inconsistent values
numeric scalar

Depth for computing inconsistent values, specified as the comma-separated pair consisting of
'Depth' and a numeric scalar. clusterdata evaluates inconsistent values by looking to the
specified depth below each node in the hierarchical cluster tree. When you specify 'Depth', you
must also specify a value for MaxClust or Cutoff.
Example: clusterdata(X,'Depth',3,'Cutoff',0.5)
Data Types: single | double
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Distance — Distance metric
'euclidean' (default) | 'squaredeuclidean' | 'seuclidean' | 'mahalanobis' | function
handle | ...

Distance metric, specified as the comma-separated pair consisting of 'Distance' and any distance
metric accepted by the pdist function, as descried in the following table. When you specify
'Distance', you must also specify a value for MaxClust or Cutoff.

Metric Description
'euclidean' Euclidean distance (default)
'squaredeuclidean' Squared Euclidean distance. (This option is provided for efficiency only.

It does not satisfy the triangle inequality.)
'seuclidean' Standardized Euclidean distance. Each coordinate difference between

observations is scaled by dividing by the corresponding element of the
standard deviation, S = std(X,'omitnan').

'mahalanobis' Mahalanobis distance using the sample covariance of X, C =
cov(X,'omitrows')

'cityblock' City block distance
'minkowski' Minkowski distance. The default exponent is 2. To use a different

exponent P, specify P after 'minkowski', where P is a positive scalar
value: 'minkowski',P.

'chebychev' Chebychev distance (maximum coordinate difference)
'cosine' One minus the cosine of the included angle between points (treated as

vectors)
'correlation' One minus the sample correlation between points (treated as

sequences of values)
'hamming' Hamming distance, which is the percentage of coordinates that differ
'jaccard' One minus the Jaccard coefficient, which is the percentage of nonzero

coordinates that differ
'spearman' One minus the sample Spearman's rank correlation between

observations (treated as sequences of values)
@distfun Custom distance function handle. A distance function has the form

function D2 = distfun(ZI,ZJ)
% calculation of distance
...

where

• ZI is a 1-by-n vector containing a single observation.
• ZJ is an m2-by-n matrix containing multiple observations. distfun

must accept a matrix ZJ with an arbitrary number of observations.
• D2 is an m2-by-1 vector of distances, and D2(k) is the distance

between observations ZI and ZJ(k,:).

If your data is not sparse, using a built-in distance is generally faster
than using a function handle.
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For more information, see “Distance Metrics” on page 35-5388.
Example: clusterdata(X,'Distance','minkowski','MaxClust',4)
Data Types: char | string | function_handle

Linkage — Algorithm for computing the distance between clusters
'average' | 'centroid' | 'complete' | 'median' | 'single' | 'ward' | 'weighted'

Algorithm for computing distance between clusters, specified as the comma-separated pair consisting
of 'Linkage' and any algorithm accepted by the linkage function, as described in the following
table. When you specify 'Linkage', you must also specify a value for MaxClust or Cutoff.

Algorithm Description
'average' Unweighted average distance (UPGMA)
'centroid' Centroid distance (UPGMC), appropriate for Euclidean distances only
'complete' Farthest distance
'median' Weighted center of mass distance (WPGMC), appropriate for Euclidean

distances only
'single' Shortest distance
'ward' Inner squared distance (minimum variance algorithm), appropriate for

Euclidean distances only
'weighted' Weighted average distance (WPGMA)

For more information, see “Linkages” on page 35-4249.
Example: clusterdata(X,'Linkage','median','MaxClust',4)
Data Types: char | string

MaxClust — Maximum number of clusters
positive integer

Maximum number of clusters to form, specified as the comma-separated pair consisting of
'MaxClust' and a positive integer.

You must specify either Cutoff or MaxClust.
Example: clusterdata(X,'MaxClust',4)
Data Types: single | double

SaveMemory — Option for saving memory
'on' | 'off'

Option for saving memory, specified as the comma-separated pair consisting of 'SaveMemory' and
either 'on' or 'off'. When you specify 'SaveMemory', you must also specify a value for MaxClust
or Cutoff.

The 'on' setting causes clusterdata to construct clusters without computing the distance matrix.
The 'on' setting applies when both of these conditions are satisfied:

• Linkage is 'centroid', 'median', or 'ward'.
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• Distance is 'euclidean' (default).

When these two conditions apply, the default value for 'SaveMemory' is 'on' if X has 20 columns or
fewer, or if the computer does not have enough memory to store the distance matrix. Otherwise, the
default value for 'SaveMemory' is 'off'.

When 'SaveMemory' is 'on', the linkage run time is proportional to the number of dimensions
(number of columns of X). When 'SaveMemory' is 'off', the linkage memory requirement is
proportional to N2, where N is the number of observations. Choosing the best (least-time) setting for
'SaveMemory' depends on the problem dimensions, number of observations, and available memory.
The default 'SaveMemory' setting is a rough approximation of an optimal setting.
Example: 'SaveMemory','on'
Data Types: char | string

Output Arguments
T — Cluster indices
numeric column vector

Cluster indices, returned as a numeric column vector. T has as many rows as X, and each row of T
indicates the cluster assignment of the corresponding observation in X.

Tips
• If 'Linkage' is 'centroid' or 'median', then linkage can produce a cluster tree that is not

monotonic. This result occurs when the distance from the union of two clusters, r and s, to a third
cluster is less than the distance between r and s. In this case, in a dendrogram drawn with the
default orientation, the path from a leaf to the root node takes some downward steps. To avoid this
result, specify another value for 'Linkage'. The following image shows a nonmonotonic cluster
tree.

In this case, cluster 1 and cluster 3 are joined into a new cluster, while the distance between this
new cluster and cluster 2 is less than the distance between cluster 1 and cluster 3.
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Algorithms
If you specify a value c for the cutoff input argument, then T = clusterdata(X,c) performs the
following steps:

1 Create a vector of the Euclidean distance between pairs of observations in X by using pdist.

Y = pdist(X,'euclidean')
2 Create an agglomerative hierarchical cluster tree from Y by using linkage with the 'single'

method for computing the shortest distance between clusters.

Z = linkage(Y,'single')
3 If 0 < c < 2, use cluster to define clusters from Z when inconsistent values are less than c.

T = cluster(Z,'Cutoff',c)
4 If c is an integer value ≥ 2, use cluster to find a maximum of c clusters from Z.

T = cluster(Z,'MaxClust',c)

Alternative Functionality
If you have a hierarchical cluster tree Z (the output of the linkage function for the input data matrix
X), you can use cluster to perform agglomerative clustering on Z and return the cluster assignment
for each observation (row) in X.

Version History
Introduced before R2006a

See Also
cluster | dendrogram | inconsistent | kmeans | linkage | pdist

Topics
“Hierarchical Clustering” on page 17-6
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Cluster Data
Cluster data using k-means algorithm in the Live Editor

Description
The Cluster Data Live Editor Task enables you to interactively perform k-means clustering. The task
generates MATLAB code for your live script and returns the resulting cluster indices and the cluster
centroid locations to the MATLAB workspace.

You can:

• Determine the optimal number of clusters for your data manually by selecting the number of
clusters or automatically by specifying criteria such as gap values, silhouette values, Davies-
Bouldin index values, and Calinski-Harabasz index values.

• Customize the parameters for clustering your data, including the distance metric and the number
of replicates.

• Automatically visualize the clustered data.

For general information about Live Editor tasks, see “Add Interactive Tasks to a Live Script”.

 Cluster Data

35-745



Open the Task
To add the Cluster Data task to a live script:

• On the Live Editor tab, select Task > Cluster Data.
• In a code block in the live script, type a relevant keyword, such as clustering or kmeans. Select

Cluster Data from the suggested command completions.

Examples
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Cluster Data with Specified Number of Clusters By Using Live Editor Task

This example shows how to use the Cluster Data task to interactively perform k-means clustering for
a specified number of clusters.

Load the sample data. The data contains length and width measurements from the sepals and petals
of three species of iris flowers.

load fisheriris

Open the Cluster Data task. To open the task, begin typing the keyword clustering in a code
block and select Cluster Data from the suggested command completions.

Cluster the data into two clusters.

• Select the meas variable as the input data.
• Set the number of clusters to 2.
•

In the Live Editor tab, press the  Run button to run the task.

MATLAB displays the clustered data and the cluster means in a scatter plot.
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Increase the number of clusters to 3 and rerun the task. MATLAB displays the updated clustered data
and the cluster means in a scatter plot.
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The task generates code in your live script. The generated code reflects the parameters and options
that you select, and includes code to generate the scatter plot. To see the generated code, click the 
at the bottom of the task parameter area. The task expands to display the generated code.

 Cluster Data

35-749



By default, the generated code uses clusterIndices and centroids as the name of the output
variables returned to the MATLAB workspace. The clusterIndices vector is a numeric column
vector containing the cluster indices. Each row in clusterIndices indicates the cluster assignment
of the corresponding observation. The centroids matrix is a numeric matrix containing the cluster
centroid locations. To specify a different output variable name, enter a new name in the summary line
at the top of the task. For instance, change the two variable names to c_indices and c_locations.

When the task runs, the generated code is updated to reflect the new variable names. The new
variables c_indices and c_locations appear in the MATLAB workspace.

Evaluate the Optimal Number of Clusters By Using Live Editor Task

This example shows how to use the Cluster Data task to interactively evaluate clustering solutions
based on selected criteria.

Load the sample data. The data contains length and width measurements from the sepals and petals
of three species of iris flowers.

load fisheriris

Open the Cluster Data task. To open the task, begin typing the keyword clustering in a code
block and select Cluster Data from the suggested command completions.
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Evaluate the optimal number of clusters.

• Select the meas variable as the input data.
• Set the number of clusters selection method to Optimal.
• Set the range min and max to 2 and 6.
•

In the Live Editor tab, press the  Run button to run the task.

MATLAB displays a bar chart with evaluation results, indicating that, based on the Calinski-Harabasz
criterion, the optimal number of clusters is 3. A scatter plot shows the clustered data and the cluster
means using the optimal number of clusters, 3. Your results may differ.
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• “k-Means Clustering” on page 17-33
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• “Add Interactive Tasks to a Live Script”

Parameters
Input data — Data to cluster
numeric matrix

Specify the data to cluster by selecting a variable from the available workspace variables. The
variable must be a numeric matrix to appear in the list.

Selection Method — Cluster selection method
Manual (default) | Optimal

Specify the method for determining the optimal number of clusters for your data.

• Manual — Specify the number of clusters to group your data into manually.
• Optimal— Use the evalclusters function to find the optimal number of clusters based on

criteria such as gap values, silhouette values, Davies-Bouldin index values, and Calinski-Harabasz
index values.

Range — List of number of clusters to evaluate
2:5 (default) | min and max positive integer values

Specify the list of number of clusters to evaluate as a range consisting of a min value and a max
value. For example, if you specify a min value of 2 and a max value of 6, the task evaluates the
number of clusters 2, 3, 4, 5, and 6 to determine the optimal number.

Plots to show — Plots to show results with
check boxes

To display the clustered data, select from the available options:

• Select 2D scatter plot (PCA) to display the principle components of the clustered data in a 2D
scatter plot. The Cluster Data task uses the gscatter function to create the scatter plot.

• Select Matrix of scatter plots to display the clustered data in a matrix of scatter plots. When you
select Matrix of scatter plots, a list appears to the right of the check box. Each item in the list
represents a column in the specified input data. Press the Ctrl key and select a maximum of four
input data columns from the list. The Cluster Data task uses the pca and gplotmatrix
functions to create the matrix of scatter plots from the selected columns.

The scatter plots in the matrix compare the selected input data columns across cluster indices.
The diagonal plots in the matrix are histograms showing the distribution of the selected columns
for each cluster indices.

Tips
• By default, the Cluster Data task does not automatically run when you modify the task

parameters. To have the task run automatically after any change, select the autorun  button at
the top-right of the task. If your dataset is large, do not enable this option.
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Version History
Introduced in R2021b

See Also
kmeans | evalclusters | gscatter | gplotmatrix

Topics
“k-Means Clustering” on page 17-33
“Add Interactive Tasks to a Live Script”

35 Functions

35-754



cmdscale
Classical multidimensional scaling

Syntax
Y = cmdscale(D)
[Y,e] = cmdscale(D)
[Y,e] = cmdscale(D,p)

Description
Y = cmdscale(D) takes an n-by-n distance matrix D, and returns an n-by-p configuration matrix Y.
Rows of Y are the coordinates of n points in p-dimensional space for some p < n. When D is a
Euclidean distance matrix, the distances between those points are given by D. p is the dimension of
the smallest space in which the n points whose inter-point distances are given by D can be embedded.

[Y,e] = cmdscale(D) also returns the eigenvalues of Y*Y'. When D is Euclidean, the first p
elements of e are positive, the rest zero. If the first k elements of e are much larger than the
remaining (n-k), then you can use the first k columns of Y as k-dimensional points whose inter-point
distances approximate D. This can provide a useful dimension reduction for visualization, e.g., for k =
2.

D need not be a Euclidean distance matrix. If it is non-Euclidean or a more general dissimilarity
matrix, then some elements of e are negative, and cmdscale chooses p as the number of positive
eigenvalues. In this case, the reduction to p or fewer dimensions provides a reasonable
approximation to D only if the negative elements of e are small in magnitude.

[Y,e] = cmdscale(D,p) also accepts a positive integer p between 1 and n. p specifies the
dimensionality of the desired embedding Y. If a p dimensional embedding is possible, then Y will be of
size n-by-p and e will be of size p-by-1. If only a q dimensional embedding with q < p is possible,
then Y will be of size n-by-q and e will be of size p-by-1. Specifying p may reduce the computational
burden when n is very large.

You can specify D as either a full dissimilarity matrix, or in upper triangle vector form such as is
output by pdist. A full dissimilarity matrix must be real and symmetric, and have zeros along the
diagonal and positive elements everywhere else. A dissimilarity matrix in upper triangle form must
have real, positive entries. You can also specify D as a full similarity matrix, with ones along the
diagonal and all other elements less than one. cmdscale transforms a similarity matrix to a
dissimilarity matrix in such a way that distances between the points returned in Y equal or
approximate sqrt(1-D). To use a different transformation, you must transform the similarities prior
to calling cmdscale.

Examples

Construct a Map Using Multidimensional Scaling

This example shows how to construct a map of 10 US cities based on the distances between those
cities, using cmdscale.

 cmdscale
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First, create the distance matrix and pass it to cmdscale. In this example, D is a full distance matrix:
it is square and symmetric, has positive entries off the diagonal, and has zeros on the diagonal.

cities = ...
{'Atl','Chi','Den','Hou','LA','Mia','NYC','SF','Sea','WDC'};
D = [    0  587 1212  701 1936  604  748 2139 2182   543;
       587    0  920  940 1745 1188  713 1858 1737   597;
      1212  920    0  879  831 1726 1631  949 1021  1494;
       701  940  879    0 1374  968 1420 1645 1891  1220;
      1936 1745  831 1374    0 2339 2451  347  959  2300;
       604 1188 1726  968 2339    0 1092 2594 2734   923;
       748  713 1631 1420 2451 1092    0 2571 2408   205;
      2139 1858  949 1645  347 2594 2571    0  678  2442;
      2182 1737 1021 1891  959 2734 2408  678    0  2329;
       543  597 1494 1220 2300  923  205 2442 2329     0];
[Y,eigvals] = cmdscale(D);

Next, look at the eigenvalues returned by cmdscale. Some of these are negative, indicating that the
original distances are not Euclidean. This is because of the curvature of the earth.

format short g
[eigvals eigvals/max(abs(eigvals))]

ans = 10×2

   9.5821e+06            1
   1.6868e+06      0.17604
       8157.3    0.0008513
       1432.9   0.00014954
       508.67   5.3085e-05
       25.143    2.624e-06
   5.7999e-10   6.0528e-17
       -897.7  -9.3685e-05
      -5467.6   -0.0005706
       -35479   -0.0037026

However, in this case, the two largest positive eigenvalues are much larger in magnitude than the
remaining eigenvalues. So, despite the negative eigenvalues, the first two coordinates of Y are
sufficient for a reasonable reproduction of D.

Dtriu = D(find(tril(ones(10),-1)))';
maxrelerr = max(abs(Dtriu-pdist(Y(:,1:2))))./max(Dtriu)

maxrelerr = 
    0.0075371

Here is a plot of the reconstructed city locations as a map. The orientation of the reconstruction is
arbitrary.

plot(Y(:,1),Y(:,2),'.')
text(Y(:,1)+25,Y(:,2),cities)
xlabel('Miles')
ylabel('Miles')
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Evaluate Reconstructions Using Different Distance Metrics

Determine how the quality of reconstruction varies when you reduce points to distances using
different metrics.

Generate ten points in 4-D space that are close to 3-D space. Take a linear transformation of the
points so that their transformed values are close to a 3-D subspace that does not align with the
coordinate axes.

rng default   % Set the seed for reproducibility
A = [normrnd(0,1,10,3) normrnd(0,0.1,10,1)];
B = randn(4,4);
X = A*B;

Reduce the points in X to distances by using the Euclidean metric. Find a configuration Y with the
inter-point distances.

D = pdist(X,'euclidean');
Y = cmdscale(D);

Compare the quality of the reconstructions when using 2, 3, or 4 dimensions. The small maxerr3
value indicates that the first 3 dimensions provide a good reconstruction.

maxerr2 = max(abs(pdist(X)-pdist(Y(:,1:2)))) 
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maxerr2 = 0.1631

maxerr3 = max(abs(pdist(X)-pdist(Y(:,1:3)))) 

maxerr3 = 0.0187

maxerr4 = max(abs(pdist(X)-pdist(Y)))

maxerr4 = 1.2434e-14

Reduce the points in X to distances by using the 'cityblock' metric. Find a configuration Y with
the inter-point distances.

D = pdist(X,'cityblock');
[Y,e] = cmdscale(D);

Evaluate the quality of the reconstruction. e contains at least one negative element of large
magnitude, which might account for the poor quality of the reconstruction.

maxerr = max(abs(pdist(X)-pdist(Y)))

maxerr = 9.0488

min(e)

ans = -5.6586

Version History
Introduced before R2006a

References

[1] Seber, G. A. F. Multivariate Observations. Hoboken, NJ: John Wiley & Sons, Inc., 1984.

See Also
mdscale | pdist | procrustes
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coefci
Confidence interval for Cox proportional hazards model coefficients

Syntax
ci = coefci(coxMdl)
ci = coefci(coxMdl,level)

Description
ci = coefci(coxMdl) returns a 95% confidence interval for the coefficients of a trained Cox
proportional hazards model.

ci = coefci(coxMdl,level) returns a 100(1 – level)% confidence interval for the coefficients.

Examples

Cox Model Confidence Interval

Perform a Cox proportional hazards regression on the lightbulb data set, which contains simulated
lifetimes of light bulbs. The first column of the light bulb data contains the lifetime (in hours) of two
different types of bulbs. The second column contains a binary variable indicating whether the bulb is
fluorescent or incandescent; 0 indicates the bulb is fluorescent, and 1 indicates it is incandescent.
The third column contains the censoring information, where 0 indicates the bulb was observed until
failure, and 1 indicates the observation was censored.

Fit a Cox proportional hazards model for the lifetime of the light bulbs, accounting for censoring. The
predictor variable is the type of bulb.

load lightbulb
coxMdl = fitcox(lightbulb(:,2),lightbulb(:,1), ...
    'Censoring',lightbulb(:,3))

coxMdl = 
Cox Proportional Hazards regression model

           Beta       SE      zStat       pValue  
          ______    ______    ______    __________

    X1    4.7262    1.0372    4.5568    5.1936e-06

Log-likelihood: -212.638

Find a 95% confidence interval for the returned Beta estimate.

ci = coefci(coxMdl)

ci = 1×2
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    2.6934    6.7590

Find a 99% confidence interval for the Beta estimate.

ci99 = coefci(coxMdl,0.01)

ci99 = 1×2

    2.0546    7.3978

Confidence Intervals for Multiple Predictors

Find confidence intervals for predictors of the readmissiontimes data set. The response variable is
ReadmissionTime, which shows the readmission times for 100 patients. The predictor variables are
Age, Sex, Weight, and Smoker, the smoking status of each patient. A 1 indicates the patient is a
smoker, and a 0 indicates the patient does not smoke. The column vector Censored contains the
censorship information for each patient, where 1 indicates censored data, and 0 indicates the exact
readmission times are observed. (This data is simulated.)

Load the data.

load readmissiontimes

Use all four predictors for fitting a model.

X = [Age Sex Weight Smoker];

Fit the model using the censoring information.

coxMdl = fitcox(X,ReadmissionTime,'censoring',Censored);

View the point estimates for the Age, Sex, Weight, and Smoker coefficients.

coxMdl.Coefficients.Beta

ans = 4×1

    0.0184
   -0.0676
    0.0343
    0.8172

Find 95% confidence intervals for these estimates.

ci = coefci(coxMdl)

ci = 4×2

   -0.0139    0.0506
   -1.6488    1.5136
    0.0042    0.0644
    0.2767    1.3576
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The Sex coefficient (second row) has a large confidence interval, and the first two coefficients
bracket the value 0. Therefore, you cannot reject the hypothesis that the Age and Sex predictors are
zero.

Input Arguments
coxMdl — Fitted Cox proportional hazards model
CoxModel object

Fitted Cox proportional hazards model, specified as a CoxModel object. Create coxMdl using
fitcox.

level — Level of significance for confidence interval
0.05 (default) | positive number less than 1

Level of significance for the confidence interval, specified as a positive number less than 1. The
resulting percentage is 100(1 – level)%. For example, for a 99% confidence interval, specify level
as 0.01.
Example: 0.01
Data Types: double

Output Arguments
ci — Confidence interval
real two-column matrix

Confidence interval, returned as a real two-column matrix. Each row of the matrix is a confidence
interval for the corresponding predictor. The probability that the true predictor coefficient lies in its
confidence interval is 100(1 – level)%. For example, the default value of level is 0.05, so with no
level specified, the probability that each predictor lies in its row of ci is 95%.

Version History
Introduced in R2021a

See Also
CoxModel | linhyptest | fitcox
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coefCI
Package: 

Confidence intervals of coefficient estimates of generalized linear regression model

Syntax
ci = coefCI(mdl)
ci = coefCI(mdl,alpha)

Description
ci = coefCI(mdl) returns 95% confidence intervals for the coefficients in mdl.

ci = coefCI(mdl,alpha) returns confidence intervals using the confidence level 1 – alpha.

Examples

Find Confidence Intervals for Model Coefficients

Find the confidence intervals for the coefficients of a fitted generalized linear regression model.

Generate sample data using Poisson random numbers with two underlying predictors X(:,1) and
X(:,2).

rng('default') % For reproducibility
rndvars = randn(100,2);
X = [2 + rndvars(:,1),rndvars(:,2)];
mu = exp(1 + X*[1;2]);
y = poissrnd(mu);

Create a generalized linear regression model of Poisson data.

mdl = fitglm(X,y,'y ~ x1 + x2','Distribution','poisson')

mdl = 
Generalized linear regression model:
    log(y) ~ 1 + x1 + x2
    Distribution = Poisson

Estimated Coefficients:
                   Estimate       SE        tStat     pValue
                   ________    _________    ______    ______

    (Intercept)     1.0405      0.022122    47.034      0   
    x1              0.9968      0.003362    296.49      0   
    x2               1.987     0.0063433    313.24      0   

100 observations, 97 error degrees of freedom
Dispersion: 1
Chi^2-statistic vs. constant model: 2.95e+05, p-value = 0
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Find 95% (default) confidence intervals for the coefficients of the model.

ci = coefCI(mdl)

ci = 3×2

    0.9966    1.0844
    0.9901    1.0035
    1.9744    1.9996

Find 99% confidence intervals for the coefficients.

alpha = 0.01;
ci = coefCI(mdl,alpha)

ci = 3×2

    0.9824    1.0986
    0.9880    1.0056
    1.9703    2.0036

Input Arguments
mdl — Generalized linear regression model
GeneralizedLinearModel object | CompactGeneralizedLinearModel object

Generalized linear regression model, specified as a GeneralizedLinearModel object created using
fitglm or stepwiseglm, or a CompactGeneralizedLinearModel object created using compact.

alpha — Significance level
0.05 (default) | numeric value in the range [0,1]

Significance level for the confidence interval, specified as a numeric value in the range [0,1]. The
confidence level of ci is equal to 100(1 – alpha)%. alpha is the probability that the confidence
interval does not contain the true value.
Example: 0.01
Data Types: single | double

Output Arguments
ci — Confidence intervals
numeric matrix

Confidence intervals, returned as a k-by-2 numeric matrix, where k is the number of coefficients. The
jth row of ci is the confidence interval of the jth coefficient of mdl. The name of coefficient j is stored
in the CoefficientNames property of mdl.
Data Types: single | double
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More About
Confidence Interval

The coefficient confidence intervals provide a measure of precision for regression coefficient
estimates.

A 100(1 – α)% confidence interval gives the range that the corresponding regression coefficient will
be in with 100(1 – α)% confidence, meaning that 100(1 – α)% of the intervals resulting from repeated
experimentation will contain the true value of the coefficient.

The software finds confidence intervals using the Wald method. The 100*(1 – α)% confidence intervals
for regression coefficients are

bi ± t 1− α/2, n− p SE bi ,

where bi is the coefficient estimate, SE(bi) is the standard error of the coefficient estimate, and t(1–α/
2,n–p) is the 100(1 – α/2) percentile of t-distribution with n – p degrees of freedom. n is the number of
observations and p is the number of regression coefficients.

Version History
Introduced in R2012a

Extended Capabilities
GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

This function fully supports GPU arrays. For more information, see “Run MATLAB Functions on a
GPU” (Parallel Computing Toolbox).

See Also
GeneralizedLinearModel | CompactGeneralizedLinearModel | coefTest | devianceTest

Topics
“Generalized Linear Model Workflow” on page 12-28
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coefCI
Class: GeneralizedLinearMixedModel

Confidence intervals for coefficients of generalized linear mixed-effects model

Syntax
feCI = coefCI(glme)
feCI = coefCI(glme,Name,Value)
[feCI,reCI] = coefCI( ___ )

Description
feCI = coefCI(glme) returns the 95% confidence intervals for the fixed-effects coefficients in the
generalized linear mixed-effects model glme.

feCI = coefCI(glme,Name,Value) returns the confidence intervals using additional options
specified by one or more Name,Value pair arguments. For example, you can specify a different
confidence level or the method used to compute the approximate degrees of freedom.

[feCI,reCI] = coefCI( ___ ) also returns the confidence intervals for the random-effects
coefficients using any of the previous syntaxes.

Input Arguments
glme — Generalized linear mixed-effects model
GeneralizedLinearMixedModel object

Generalized linear mixed-effects model, specified as a GeneralizedLinearMixedModel object. For
properties and methods of this object, see GeneralizedLinearMixedModel.

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.

Alpha — Significance level
0.05 (default) | scalar value in the range [0,1]

Significance level, specified as the comma-separated pair consisting of 'Alpha' and a scalar value in
the range [0,1]. For a value α, the confidence level is 100 × (1 – α)%.

For example, for 99% confidence intervals, you can specify the confidence level as follows.
Example: 'Alpha',0.01
Data Types: single | double
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DFMethod — Method for computing approximate degrees of freedom
'residual' (default) | 'none'

Method for computing approximate degrees of freedom, specified as the comma-separated pair
consisting of 'DFMethod' and one of the following.

Value Description
'residual' The degrees of freedom value is assumed to be

constant and equal to n – p, where n is the
number of observations and p is the number of
fixed effects.

'none' The degrees of freedom is set to infinity.

Example: 'DFMethod','none'

Output Arguments
feCI — Fixed-effects confidence intervals
p-by-2 matrix

Fixed-effects confidence intervals, returned as a p-by-2 matrix. feCI contains the confidence limits
that correspond to the p-by-1 fixed-effects vector returned by the fixedEffects method. The first
column of feCI contains the lower confidence limits and the second column contains the upper
confidence limits.

When fitting a GLME model using fitglme and one of the maximum likelihood fit methods
('Laplace' or 'ApproximateLaplace'):

• If you specify the 'CovarianceMethod' name-value pair argument as 'conditional', then the
confidence intervals are conditional on the estimated covariance parameters.

• If you specify the 'CovarianceMethod' name-value pair argument as 'JointHessian', then
the confidence intervals account for the uncertainty in the estimated covariance parameters.

When fitting a GLME model using fitglme and one of the pseudo likelihood fit methods ('MPL' or
'REMPL'), coefci uses the fitted linear mixed effects model from the final pseudo likelihood
iteration to compute confidence intervals on the fixed effects.

reCI — Random-effects confidence intervals
q-by-2 matrix

Random-effects confidence intervals, returned as a q-by-2 matrix. reCI contains the confidence limits
corresponding to the q-by-1 random-effects vector B returned by the randomEffects method. The
first column of reCI contains the lower confidence limits, and the second column contains the upper
confidence limits.

When fitting a GLME model using fitglme and one of the maximum likelihood fit methods
('Laplace' or 'ApproximateLaplace'), coefCI computes the confidence intervals using the
conditional mean squared error of prediction (CMSEP) approach conditional on the estimated
covariance parameters and the observed response. Alternatively, you can interpret the confidence
intervals from coefCI as approximate Bayesian credible intervals conditional on the estimated
covariance parameters and the observed response.
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When fitting a GLME model using fitglme and one of the pseudo likelihood fit methods ('MPL' or
'REMPL'), coefci uses the fitted linear mixed effects model from the final pseudo likelihood
iteration to compute confidence intervals on the random effects.

Examples

95% Confidence Intervals for Fixed Effects

Load the sample data.

load mfr

This simulated data is from a manufacturing company that operates 50 factories across the world,
with each factory running a batch process to create a finished product. The company wants to
decrease the number of defects in each batch, so it developed a new manufacturing process. To test
the effectiveness of the new process, the company selected 20 of its factories at random to participate
in an experiment: Ten factories implemented the new process, while the other ten continued to run
the old process. In each of the 20 factories, the company ran five batches (for a total of 100 batches)
and recorded the following data:

• Flag to indicate whether the batch used the new process (newprocess)
• Processing time for each batch, in hours (time)
• Temperature of the batch, in degrees Celsius (temp)
• Categorical variable indicating the supplier (A, B, or C) of the chemical used in the batch

(supplier)
• Number of defects in the batch (defects)

The data also includes time_dev and temp_dev, which represent the absolute deviation of time and
temperature, respectively, from the process standard of 3 hours at 20 degrees Celsius.

Fit a generalized linear mixed-effects model using newprocess, time_dev, temp_dev, and
supplier as fixed-effects predictors. Include a random-effects term for intercept grouped by
factory, to account for quality differences that might exist due to factory-specific variations. The
response variable defects has a Poisson distribution, and the appropriate link function for this
model is log. Use the Laplace fit method to estimate the coefficients. Specify the dummy variable
encoding as 'effects', so the dummy variable coefficients sum to 0.

The number of defects can be modeled using a Poisson distribution

defectsi j ∼ Poisson(μi j)

This corresponds to the generalized linear mixed-effects model

log(μi j) = β0 + β1newprocessi j + β2time_devi j + β3temp_devi j + β4supplier_Ci j + β5supplier_Bi j
+ bi,

where

• defectsi j is the number of defects observed in the batch produced by factory i during batch j.
• μi j is the mean number of defects corresponding to factory i (where i = 1, 2, . . . , 20) during batch

j (where j = 1, 2, . . . , 5).
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• newprocessi j, time_devi j, and temp_devi j are the measurements for each variable that correspond
to factory i during batch j. For example, newprocessi j indicates whether the batch produced by
factory i during batch j used the new process.

• supplier_Ci j and supplier_Bi j are dummy variables that use effects (sum-to-zero) coding to indicate
whether company C or B, respectively, supplied the process chemicals for the batch produced by
factory i during batch j.

• bi ∼ N(0, σb
2) is a random-effects intercept for each factory i that accounts for factory-specific

variation in quality.

glme = fitglme(mfr,'defects ~ 1 + newprocess + time_dev + temp_dev + supplier + (1|factory)','Distribution','Poisson','Link','log','FitMethod','Laplace','DummyVarCoding','effects');

Use fixedEffects to display the estimates and names of the fixed-effects coefficients in glme.

[beta,betanames] = fixedEffects(glme)

beta = 6×1

    1.4689
   -0.3677
   -0.0945
   -0.2832
   -0.0719
    0.0711

betanames=6×1 table
         Name      
    _______________

    {'(Intercept)'}
    {'newprocess' }
    {'time_dev'   }
    {'temp_dev'   }
    {'supplier_C' }
    {'supplier_B' }

Each row of beta contains the estimated value for the coefficient named in the corresponding row of
betanames. For example, the value –0.0945 in row 3 of beta is the estimated coefficient for the
predictor variable time_dev.

Compute the 95% confidence intervals for the fixed-effects coefficients.

feCI = coefCI(glme)

feCI = 6×2

    1.1515    1.7864
   -0.7202   -0.0151
   -1.7395    1.5505
   -2.1926    1.6263
   -0.2268    0.0831
   -0.0826    0.2247

Column 1 of feCI contains the lower bound of the 95% confidence interval. Column 2 contains the
upper bound. Row 1 corresponds to the intercept term. Rows 2, 3, and 4 correspond to newprocess,
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time_dev, and temp_dev, respectively. Rows 5 and 6 correspond to the indicator variables
supplier_C and supplier_B, respectively. For example, the 95% confidence interval for the
coefficient for time_dev is [-1.7395 , 1.5505]. Some of the confidence intervals include 0, which
indicates that those predictors are not significant at the 5% significance level. To obtain specific p-
values for each fixed-effects term, use fixedEffects. To test significance for entire terms, use
anova.

99% Confidence Intervals for Random Effects

Load the sample data.

load mfr

This simulated data is from a manufacturing company that operates 50 factories across the world,
with each factory running a batch process to create a finished product. The company wants to
decrease the number of defects in each batch, so it developed a new manufacturing process. To test
the effectiveness of the new process, the company selected 20 of its factories at random to participate
in an experiment: Ten factories implemented the new process, while the other ten continued to run
the old process. In each of the 20 factories, the company ran five batches (for a total of 100 batches)
and recorded the following data:

• Flag to indicate whether the batch used the new process (newprocess)
• Processing time for each batch, in hours (time)
• Temperature of the batch, in degrees Celsius (temp)
• Categorical variable indicating the supplier (A, B, or C) of the chemical used in the batch

(supplier)
• Number of defects in the batch (defects)

The data also includes time_dev and temp_dev, which represent the absolute deviation of time and
temperature, respectively, from the process standard of 3 hours at 20 degrees Celsius.

Fit a generalized linear mixed-effects model using newprocess, time_dev, temp_dev, and
supplier as fixed-effects predictors. Include a random-effects intercept grouped by factory, to
account for quality differences that might exist due to factory-specific variations. The response
variable defects has a Poisson distribution, and the appropriate link function for this model is log.
Use the Laplace fit method to estimate the coefficients.

The number of defects can be modeled using a Poisson distribution

defectsi j ∼ Poisson(μi j)

This corresponds to the generalized linear mixed-effects model

log(μi j) = β0 + β1newprocessi j + β2time_devi j + β3temp_devi j + β4supplier_Ci j + β5supplier_Bi j
+ bi,

where

• defectsi j is the number of defects observed in the batch produced by factory i during batch j.
• μi j is the mean number of defects corresponding to factory i (where i = 1, 2, . . . , 20) during batch

j (where j = 1, 2, . . . , 5).
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• newprocessi j, time_devi j, and temp_devi j are the measurements for each variable that correspond
to factory i during batch j. For example, newprocessi j indicates whether the batch produced by
factory i during batch j used the new process.

• supplier_Ci j and supplier_Bi j are dummy variables that use effects (sum-to-zero) coding to indicate
whether company C or B, respectively, supplied the process chemicals for the batch produced by
factory i during batch j.

• bi ∼ N(0, σb
2) is a random-effects intercept for each factory i that accounts for factory-specific

variation in quality.

glme = fitglme(mfr,'defects ~ 1 + newprocess + time_dev + temp_dev + supplier + (1|factory)','Distribution','Poisson','Link','log','FitMethod','Laplace','DummyVarCoding','effects');

Use randomEffects to compute and display the estimates of the empirical Bayes predictors (EBPs)
for the random effects associated with factory.

[B,Bnames] = randomEffects(glme)

B = 20×1

    0.2913
    0.1542
   -0.2633
   -0.4257
    0.5453
   -0.1069
    0.3040
   -0.1653
   -0.1458
   -0.0816
      ⋮

Bnames=20×3 table
       Group       Level          Name      
    ___________    ______    _______________

    {'factory'}    {'1' }    {'(Intercept)'}
    {'factory'}    {'2' }    {'(Intercept)'}
    {'factory'}    {'3' }    {'(Intercept)'}
    {'factory'}    {'4' }    {'(Intercept)'}
    {'factory'}    {'5' }    {'(Intercept)'}
    {'factory'}    {'6' }    {'(Intercept)'}
    {'factory'}    {'7' }    {'(Intercept)'}
    {'factory'}    {'8' }    {'(Intercept)'}
    {'factory'}    {'9' }    {'(Intercept)'}
    {'factory'}    {'10'}    {'(Intercept)'}
    {'factory'}    {'11'}    {'(Intercept)'}
    {'factory'}    {'12'}    {'(Intercept)'}
    {'factory'}    {'13'}    {'(Intercept)'}
    {'factory'}    {'14'}    {'(Intercept)'}
    {'factory'}    {'15'}    {'(Intercept)'}
    {'factory'}    {'16'}    {'(Intercept)'}
      ⋮
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Each row of B contains the estimated EBPs for the random-effects coefficient named in the
corresponding row of Bnames. For example, the value -0.2633 in row 3 of B is the estimated
coefficient of '(Intercept)' for level '3' of factory.

Compute the 99% confidence intervals of the EBPs for the random effects.

[feCI,reCI] = coefCI(glme,'Alpha',0.01);
reCI

reCI = 20×2

   -0.2125    0.7951
   -0.3510    0.6595
   -0.8219    0.2954
   -0.9953    0.1440
    0.0730    1.0176
   -0.6362    0.4224
   -0.1796    0.7877
   -0.7044    0.3738
   -0.6795    0.3880
   -0.6142    0.4509
      ⋮

Column 1 of reCI contains the lower bound of the 99% confidence interval. Column 2 contains the
upper bound. Each row corresponds to a level of factory, in the order shown in Bnames. For
example, row 3 corresponds to the coefficient of '(Intercept)' for level '3' of factory, which
has a 99% confidence interval of [-0.8219 , 0.2954]. For additional statistics related to each random-
effects term, use randomEffects.

References
[1] Booth, J.G., and J.P. Hobert. “Standard Errors of Prediction in Generalized Linear Mixed Models.”

Journal of the American Statistical Association. Vol. 93, 1998, pp. 262–272.

See Also
GeneralizedLinearMixedModel | anova | coefTest | covarianceParameters |
fixedEffects | randomEffects
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coefCI
Package: 

Confidence intervals of coefficient estimates of linear regression model

Syntax
ci = coefCI(mdl)
ci = coefCI(mdl,alpha)

Description
ci = coefCI(mdl) returns 95% confidence intervals for the coefficients in mdl.

ci = coefCI(mdl,alpha) returns confidence intervals using the confidence level 1 – alpha.

Examples

Find Confidence Intervals for Model Coefficients

Fit a linear regression model and obtain the default 95% confidence intervals for the resulting model
coefficients.

Load the carbig data set and create a table in which the Origin predictor is categorical.

load carbig
Origin = categorical(cellstr(Origin));
tbl = table(Horsepower,Weight,MPG,Origin);

Fit a linear regression model. Specify Horsepower, Weight, and Origin as predictor variables, and
specify MPG as the response variable.

modelspec = 'MPG ~ 1 + Horsepower + Weight + Origin';
mdl = fitlm(tbl,modelspec);

View the names of the coefficients.

mdl.CoefficientNames

ans = 1x9 cell
  Columns 1 through 4

    {'(Intercept)'}    {'Horsepower'}    {'Weight'}    {'Origin_France'}

  Columns 5 through 7

    {'Origin_Germany'}    {'Origin_Italy'}    {'Origin_Japan'}

  Columns 8 through 9

    {'Origin_Sweden'}    {'Origin_USA'}
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Find confidence intervals for the coefficients of the model.

ci = coefCI(mdl)

ci = 9×2

   43.3611   59.9390
   -0.0748   -0.0315
   -0.0059   -0.0037
  -17.3623   -0.3477
  -15.7503    0.7434
  -17.2091    0.0613
  -14.5106    1.8738
  -18.5820   -1.5036
  -17.3114   -0.9642

Specify Confidence Level

Fit a linear regression model and obtain the confidence intervals for the resulting model coefficients
using a specified confidence level.

Load the carbig data set and create a table in which the Origin predictor is categorical.

load carbig
Origin = categorical(cellstr(Origin));
tbl = table(Horsepower,Weight,MPG,Origin);

Fit a linear regression model. Specify Horsepower, Weight, and Origin as predictor variables, and
specify MPG as the response variable.

modelspec = 'MPG ~ 1 + Horsepower + Weight + Origin';
mdl = fitlm(tbl,modelspec);

Find 99% confidence intervals for the coefficients.

ci = coefCI(mdl,.01)

ci = 9×2

   40.7365   62.5635
   -0.0816   -0.0246
   -0.0062   -0.0034
  -20.0560    2.3459
  -18.3615    3.3546
  -19.9433    2.7955
  -17.1045    4.4676
  -21.2858    1.2002
  -19.8995    1.6238

The confidence intervals are wider than the default 95% confidence intervals in “Find Confidence
Intervals for Model Coefficients” on page 35-772.
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Input Arguments
mdl — Linear regression model object
LinearModel object | CompactLinearModel object

Linear regression model object, specified as a LinearModel object created by using fitlm or
stepwiselm, or a CompactLinearModel object created by using compact.

alpha — Significance level
0.05 (default) | numeric value in the range [0,1]

Significance level for the confidence interval, specified as a numeric value in the range [0,1]. The
confidence level of ci is equal to 100(1 – alpha)%. alpha is the probability that the confidence
interval does not contain the true value.
Example: 0.01
Data Types: single | double

Output Arguments
ci — Confidence intervals
numeric matrix

Confidence intervals, returned as a k-by-2 numeric matrix, where k is the number of coefficients. The
jth row of ci is the confidence interval of the jth coefficient of mdl. The name of coefficient j is stored
in the CoefficientNames property of mdl.
Data Types: single | double

More About
Confidence Interval

The coefficient confidence intervals provide a measure of precision for regression coefficient
estimates.

A 100(1 – α)% confidence interval gives the range that the corresponding regression coefficient will
be in with 100(1 – α)% confidence, meaning that 100(1 – α)% of the intervals resulting from repeated
experimentation will contain the true value of the coefficient.

The software finds confidence intervals using the Wald method. The 100*(1 – α)% confidence intervals
for regression coefficients are

bi ± t 1− α/2, n− p SE bi ,

where bi is the coefficient estimate, SE(bi) is the standard error of the coefficient estimate, and t(1–α/
2,n–p) is the 100(1 – α/2) percentile of t-distribution with n – p degrees of freedom. n is the number of
observations and p is the number of regression coefficients.

Version History
Introduced in R2012a
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Extended Capabilities
GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

This function fully supports GPU arrays. For more information, see “Run MATLAB Functions on a
GPU” (Parallel Computing Toolbox).

See Also
CompactLinearModel | LinearModel | anova | coefTest | dwtest

Topics
“Coefficient Standard Errors and Confidence Intervals” on page 11-60
“Interpret Linear Regression Results” on page 11-52
“Linear Regression Workflow” on page 11-35
“Linear Regression” on page 11-9
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coefCI
Class: LinearMixedModel

Confidence intervals for coefficients of linear mixed-effects model

Syntax
feCI = coefCI(lme)
feCI = coefCI(lme,Name,Value)
[feCI,reCI] = coefCI( ___ )

Description
feCI = coefCI(lme) returns the 95% confidence intervals for the fixed-effects coefficients in the
linear mixed-effects model lme.

feCI = coefCI(lme,Name,Value) returns the 95% confidence intervals for the fixed-effects
coefficients in the linear mixed-effects model lme with additional options specified by one or more
Name,Value pair arguments.

For example, you can specify the confidence level or method to compute the degrees of freedom.

[feCI,reCI] = coefCI( ___ ) also returns the 95% confidence intervals for the random-effects
coefficients in the linear mixed-effects model lme.

Input Arguments
lme — Linear mixed-effects model
LinearMixedModel object

Linear mixed-effects model, specified as a LinearMixedModel object constructed using fitlme or
fitlmematrix.

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.

Alpha — Significance level
0.05 (default) | scalar value in the range 0 to 1

Significance level, specified as the comma-separated pair consisting of 'Alpha' and a scalar value in
the range 0 to 1. For a value α, the confidence level is 100*(1–α)%.

For example, for 99% confidence intervals, you can specify the confidence level as follows.
Example: 'Alpha',0.01
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Data Types: single | double

DFMethod — Method for computing approximate degrees of freedom
'residual' (default) | 'satterthwaite' | 'none'

Method for computing approximate degrees of freedom for confidence interval computation, specified
as the comma-separated pair consisting of 'DFMethod' and one of the following.

'residual' Default. The degrees of freedom are assumed to
be constant and equal to n – p, where n is the
number of observations and p is the number of
fixed effects.

'satterthwaite' Satterthwaite approximation.
'none' All degrees of freedom are set to infinity.

For example, you can specify the Satterthwaite approximation as follows.
Example: 'DFMethod','satterthwaite'

Output Arguments
feCI — Fixed-effects confidence intervals
p-by-2 matrix

Fixed-effects confidence intervals, returned as a p-by-2 matrix. feCI contains the confidence limits
that correspond to the p fixed-effects estimates in the vector beta returned by the fixedEffects
method. The first column of feCI has the lower confidence limits and the second column has the
upper confidence limits.

reCI — Random-effects confidence intervals
q-by-2 matrix

Random-effects confidence intervals, returned as a q-by-2 matrix. reCI contains the confidence limits
corresponding to the q random-effects estimates in the vector B returned by the randomEffects
method. The first column of reCI has the lower confidence limits and the second column has the
upper confidence limits.

Examples

95% Confidence Intervals for Fixed-Effects Coefficients

Load the sample data.

load('weight.mat')

weight contains data from a longitudinal study, where 20 subjects are randomly assigned to 4
exercise programs, and their weight loss is recorded over six 2-week time periods. This is simulated
data.

Store the data in a table. Define Subject and Program as categorical variables.

 coefCI

35-777



tbl = table(InitialWeight, Program, Subject,Week, y);
tbl.Subject = nominal(tbl.Subject);
tbl.Program = nominal(tbl.Program);

Fit a linear mixed-effects model where the initial weight, type of program, week, and the interaction
between the week and type of program are the fixed effects. The intercept and week vary by subject.

lme = fitlme(tbl,'y ~ InitialWeight + Program*Week + (Week|Subject)');

Compute the fixed-effects coefficient estimates.

fe = fixedEffects(lme)

fe = 9×1

    0.6610
    0.0032
    0.3608
   -0.0333
    0.1132
    0.1732
    0.0388
    0.0305
    0.0331

The first estimate, 0.6610, corresponds to the constant term. The second row, 0.0032, and the third
row, 0.3608, are estimates for the coefficient of initial weight and week, respectively. Rows four to six
correspond to the indicator variables for programs B-D, and the last three rows correspond to the
interaction of programs B-D and week.

Compute the 95% confidence intervals for the fixed-effects coefficients.

fecI = coefCI(lme)

fecI = 9×2

    0.1480    1.1741
    0.0005    0.0059
    0.1004    0.6211
   -0.2932    0.2267
   -0.1471    0.3734
    0.0395    0.3069
   -0.1503    0.2278
   -0.1585    0.2196
   -0.1559    0.2221

Some confidence intervals include 0. To obtain specific p-values for each fixed-effects term, use the
fixedEffects method. To test for entire terms use the anova method.

Confidence Intervals with Specified Options

Load the sample data.

load carbig
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Fit a linear mixed-effects model for miles per gallon (MPG), with fixed effects for acceleration and
horsepower, and a potentially correlated random effect for intercept and acceleration grouped by
model year. First, store the data in a table.

tbl = table(Acceleration,Horsepower,Model_Year,MPG);

Fit the model.

lme = fitlme(tbl, 'MPG ~ Acceleration + Horsepower + (Acceleration|Model_Year)');

Compute the fixed-effects coefficient estimates.

fe = fixedEffects(lme)

fe = 3×1

   50.1325
   -0.5833
   -0.1695

Compute the 99% confidence intervals for fixed-effects coefficients using the residuals method to
determine the degrees of freedom. This is the default method.

feCI = coefCI(lme,'Alpha',0.01)

feCI = 3×2

   44.2690   55.9961
   -0.9300   -0.2365
   -0.1883   -0.1507

Compute the 99% confidence intervals for fixed-effects coefficients using the Satterthwaite
approximation to compute the degrees of freedom.

feCI = coefCI(lme,'Alpha',0.01,'DFMethod','satterthwaite')

feCI = 3×2

   44.0949   56.1701
   -0.9640   -0.2025
   -0.1884   -0.1507

The Satterthwaite approximation produces similar confidence intervals than the residual method.

Compute Confidence Intervals for Random Effects

Load the sample data.

load('shift.mat')

The data shows the deviations from the target quality characteristic measured from the products that
five operators manufacture during three shifts: morning, evening, and night. This is a randomized
block design, where the operators are the blocks. The experiment is designed to study the impact of
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the time of shift on the performance. The performance measure is the deviation of the quality
characteristics from the target value. This is simulated data.

Shift and Operator are nominal variables.

shift.Shift = nominal(shift.Shift);
shift.Operator = nominal(shift.Operator);

Fit a linear mixed-effects model with a random intercept grouped by operator to assess if there is
significant difference in the performance according to the time of the shift.

lme = fitlme(shift,'QCDev ~ Shift + (1|Operator)');

Compute the estimate of the BLUPs for random effects.

randomEffects(lme)

ans = 5×1

    0.5775
    1.1757
   -2.1715
    2.3655
   -1.9472

Compute the 95% confidence intervals for random effects.

[~,reCI] = coefCI(lme)

reCI = 5×2

   -1.3916    2.5467
   -0.7934    3.1449
   -4.1407   -0.2024
    0.3964    4.3347
   -3.9164    0.0219

Compute the 99% confidence intervals for random effects using the residuals method to determine
the degrees of freedom. This is the default method.

[~,reCI] = coefCI(lme,'Alpha',0.01)

reCI = 5×2

   -2.1831    3.3382
   -1.5849    3.9364
   -4.9322    0.5891
   -0.3951    5.1261
   -4.7079    0.8134

Compute the 99% confidence intervals for random effects using the Satterthwaite approximation to
determine the degrees of freedom.

[~,reCI] = coefCI(lme,'Alpha',0.01,'DFMethod','satterthwaite')

reCI = 5×2
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   -2.6840    3.8390
   -2.0858    4.4372
   -5.4330    1.0900
   -0.8960    5.6270
   -5.2087    1.3142

The Satterthwaite approximation might produce smaller DF values than the residual method. That is
why these confidence intervals are larger than the previous ones computed using the residual
method.

See Also
LinearMixedModel | coefTest | fixedEffects | randomEffects
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coefCI
Class: NonLinearModel

Confidence intervals of coefficient estimates of nonlinear regression model

Syntax
ci = coefCI(mdl)
ci = coefCI(mdl,alpha)

Description
ci = coefCI(mdl) returns confidence intervals for the coefficients in mdl.

ci = coefCI(mdl,alpha) returns confidence intervals with confidence level 1 - alpha.

Input Arguments
mdl

Nonlinear regression model, constructed by fitnlm.

alpha

Scalar from 0 to 1, the probability that the confidence interval does not contain the true value.

Default: 0.05

Output Arguments
ci

k-by-2 matrix of confidence intervals. The jth row of ci is the confidence interval of coefficient j of
mdl. The name of coefficient j of mdl is in mdl.CoefNames.

Examples

Default Confidence Intervals

Create a nonlinear model for auto mileage based on the carbig data. Then obtain confidence
intervals for the resulting model coefficients.

Load the data and create a nonlinear model.

load carbig
ds = dataset(Horsepower,Weight,MPG);
modelfun = @(b,x)b(1) + b(2)*x(:,1) + ...
    b(3)*x(:,2) + b(4)*x(:,1).*x(:,2);
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beta0 = [1 1 1 1];
mdl = fitnlm(ds,modelfun,beta0)

mdl = 
Nonlinear regression model:
    MPG ~ b1 + b2*Horsepower + b3*Weight + b4*Horsepower*Weight

Estimated Coefficients:
           Estimate         SE         tStat       pValue  
          __________    __________    _______    __________

    b1        63.558        2.3429     27.127    1.2343e-91
    b2      -0.25084      0.027279    -9.1952    2.3226e-18
    b3     -0.010772    0.00077381    -13.921    5.1372e-36
    b4    5.3554e-05    6.6491e-06     8.0542    9.9336e-15

Number of observations: 392, Error degrees of freedom: 388
Root Mean Squared Error: 3.93
R-Squared: 0.748,  Adjusted R-Squared 0.746
F-statistic vs. constant model: 385, p-value = 7.26e-116

All the coefficients have extremely small p-values. This means a confidence interval around the
coefficients will not contain the point 0, unless the confidence level is very high.

Find 95% confidence intervals for the coefficients of the model.

ci = coefCI(mdl)

ci = 4×2

   58.9515   68.1644
   -0.3045   -0.1972
   -0.0123   -0.0093
    0.0000    0.0001

The confidence interval for b4 seems to contain 0. Examine it in more detail.

ci(4,:)

ans = 1×2
10-4 ×

    0.4048    0.6663

As expected, the confidence interval does not contain the point 0.

More About
Confidence Interval

The coefficient confidence intervals provide a measure of precision for regression coefficient
estimates.
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A 100(1 – α)% confidence interval gives the range that the corresponding regression coefficient will
be in with 100(1 – α)% confidence, meaning that 100(1 – α)% of the intervals resulting from repeated
experimentation will contain the true value of the coefficient.

The software finds confidence intervals using the Wald method. The 100*(1 – α)% confidence intervals
for regression coefficients are

bi ± t 1− α/2, n− p SE bi ,

where bi is the coefficient estimate, SE(bi) is the standard error of the coefficient estimate, and t(1–α/
2,n–p) is the 100(1 – α/2) percentile of t-distribution with n – p degrees of freedom. n is the number of
observations and p is the number of regression coefficients.

See Also
NonLinearModel

Topics
“Nonlinear Regression Workflow” on page 13-13
“Nonlinear Regression” on page 13-2
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coefTest
Package: 

Linear hypothesis test on generalized linear regression model coefficients

Syntax
p = coefTest(mdl)
p = coefTest(mdl,H)
p = coefTest(mdl,H,C)
[p,F] = coefTest( ___ )
[p,F,r] = coefTest( ___ )

Description
p = coefTest(mdl) computes the p-value for an F test that all coefficient estimates in mdl, except
the intercept term, are zero.

p = coefTest(mdl,H) performs an F-test that H × B = 0, where B represents the coefficient
vector. Use H to specify the coefficients to include in the F-test.

p = coefTest(mdl,H,C) performs an F-test that H × B = C.

[p,F] = coefTest( ___ ) also returns the F-test statistic F using any of the input argument
combinations in previous syntaxes.

[p,F,r] = coefTest( ___ ) also returns the numerator degrees of freedom r for the test.

Examples

Test Significance of Generalized Linear Regression Model

Fit a generalized linear regression model, and test the coefficients of the fitted model to see if they
differ from zero.

Generate sample data using Poisson random numbers with two underlying predictors X(:,1) and
X(:,2).

rng('default') % For reproducibility
rndvars = randn(100,2);
X = [2 + rndvars(:,1),rndvars(:,2)];
mu = exp(1 + X*[1;2]);
y = poissrnd(mu);

Create a generalized linear regression model of Poisson data.

mdl = fitglm(X,y,'y ~ x1 + x2','Distribution','poisson')

mdl = 
Generalized linear regression model:
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    log(y) ~ 1 + x1 + x2
    Distribution = Poisson

Estimated Coefficients:
                   Estimate       SE        tStat     pValue
                   ________    _________    ______    ______

    (Intercept)     1.0405      0.022122    47.034      0   
    x1              0.9968      0.003362    296.49      0   
    x2               1.987     0.0063433    313.24      0   

100 observations, 97 error degrees of freedom
Dispersion: 1
Chi^2-statistic vs. constant model: 2.95e+05, p-value = 0

Test whether the fitted model has coefficients that differ significantly from zero.

p = coefTest(mdl)

p = 4.1131e-153

The small p-value indicates that the model fits significantly better than a degenerate model consisting
of only an intercept term.

Test Significance of Generalized Linear Regression Model Coefficient

Fit a generalized linear regression model, and test the significance of a specified coefficient in the
fitted model.

Generate sample data using Poisson random numbers with two underlying predictors X(:,1) and
X(:,2).

rng('default') % For reproducibility
rndvars = randn(100,2);
X = [2 + rndvars(:,1),rndvars(:,2)];
mu = exp(1 + X*[1;2]);
y = poissrnd(mu);

Create a generalized linear regression model of Poisson data.

mdl = fitglm(X,y,'y ~ x1 + x2','Distribution','poisson')

mdl = 
Generalized linear regression model:
    log(y) ~ 1 + x1 + x2
    Distribution = Poisson

Estimated Coefficients:
                   Estimate       SE        tStat     pValue
                   ________    _________    ______    ______

    (Intercept)     1.0405      0.022122    47.034      0   
    x1              0.9968      0.003362    296.49      0   
    x2               1.987     0.0063433    313.24      0   
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100 observations, 97 error degrees of freedom
Dispersion: 1
Chi^2-statistic vs. constant model: 2.95e+05, p-value = 0

Test the significance of the x1 coefficient. According to the model display, x1 is the second predictor.
Specify the coefficient by using a numeric index vector.

p = coefTest(mdl,[0 1 0])

p = 2.8681e-145

The returned p-value indicates that x1 is statistically significant in the fitted model.

Input Arguments
mdl — Generalized linear regression model
GeneralizedLinearModel object | CompactGeneralizedLinearModel object

Generalized linear regression model, specified as a GeneralizedLinearModel object created using
fitglm or stepwiseglm, or a CompactGeneralizedLinearModel object created using compact.

H — Hypothesis matrix
numeric index matrix

Hypothesis matrix, specified as a full-rank numeric index matrix of size r-by-s, where r is the number
of linear combinations of coefficients being tested, and s is the total number of coefficients.

• If you specify H, then the output p is the p-value for an F-test that H × B = 0, where B represents
the coefficient vector.

• If you specify H and C, then the output p is the p-value for an F-test that H × B = C.

Example: [1 0 0 0 0] tests the first coefficient among five coefficients.
Data Types: single | double

C — Hypothesized value
numeric vector

Hypothesized value for testing the null hypothesis, specified as a numeric vector with the same
number of rows as H.

If you specify H and C, then the output p is the p-value for an F-test that H × B = C, where B
represents the coefficient vector.
Data Types: single | double

Output Arguments
p — p-value for F-test
numeric value in the range [0,1]

p-value for the F-test, returned as a numeric value in the range [0,1].
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F — Value of test statistic for F-test
numeric value

Value of the test statistic for the F-test, returned as a numeric value.

r — Numerator degrees of freedom for F-test
positive integer

Numerator degrees of freedom for the F-test, returned as a positive integer. The F-statistic has r
degrees of freedom in the numerator and mdl.DFE degrees of freedom in the denominator.

Algorithms
The p-value, F-statistic, and numerator degrees of freedom are valid under these assumptions:

• The data comes from a model represented by the formula in the Formula property of the fitted
model.

• The observations are independent, conditional on the predictor values.

Under these assumptions, let β represent the (unknown) coefficient vector of the linear regression.
Suppose H is a full-rank numeric index matrix of size r-by-s, where r is the number of linear
combinations of coefficients being tested, and s is the total number of coefficients. Let c be a column
vector with r rows. The following is a test statistic for the hypothesis that Hβ = c:

F = Hβ − c ′ HVH′ −1 Hβ − c /r .

Here β  is the estimate of the coefficient vector β, stored in the Coefficients property, and V is the
estimated covariance of the coefficient estimates, stored in the CoefficientCovariance property.
When the hypothesis is true, the test statistic F has an “F Distribution” on page B-46 with r and u
degrees of freedom, where u is the degrees of freedom for error, stored in the DFE property.

Alternative Functionality
The values of commonly used test statistics are available in the Coefficients property of a fitted
model.

Version History
Introduced in R2012a

Extended Capabilities
GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

This function fully supports GPU arrays. For more information, see “Run MATLAB Functions on a
GPU” (Parallel Computing Toolbox).

See Also
GeneralizedLinearModel | CompactGeneralizedLinearModel | linhyptest | coefCI |
devianceTest
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Topics
“Generalized Linear Model Workflow” on page 12-28
“Generalized Linear Models” on page 12-9
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coefTest
Class: GeneralizedLinearMixedModel

Hypothesis test on fixed and random effects of generalized linear mixed-effects model

Syntax
pVal = coefTest(glme)
pVal = coefTest(glme,H)
pVal = coefTest(glme,H,C)
pVal = coefTest(glme,H,C,Name,Value)
[pVal,F,DF1,DF2] = coefTest( ___ )

Description
pVal = coefTest(glme) returns the p-value of an F-test of the null hypothesis that all fixed-effects
coefficients of the generalized linear mixed-effects model glme, except for the intercept, are equal to
0.

pVal = coefTest(glme,H) returns the p-value of an F-test using a specified contrast matrix, H.
The null hypothesis is H0: Hβ = 0, where β is the fixed-effects vector.

pVal = coefTest(glme,H,C) returns the p-value for an F-test using the hypothesized value, C.
The null hypothesis is H0: Hβ = C, where β is the fixed-effects vector.

pVal = coefTest(glme,H,C,Name,Value) returns the p-value for an F-test on the fixed- and/or
random-effects coefficients of the generalized linear mixed-effects model glme, with additional
options specified by one or more name-value pair arguments. For example, you can specify the
method to compute the approximate denominator degrees of freedom for the F-test.

[pVal,F,DF1,DF2] = coefTest( ___ ) also returns the F-statistic, F, and the numerator and
denominator degrees of freedom for F, respectively DF1 and DF2, using any of the previous syntaxes.

Input Arguments
glme — Generalized linear mixed-effects model
GeneralizedLinearMixedModel object

Generalized linear mixed-effects model, specified as a GeneralizedLinearMixedModel object. For
properties and methods of this object, see GeneralizedLinearMixedModel.

H — Fixed-effects contrasts
m-by-p matrix

Fixed-effects contrasts, specified as an m-by-p matrix, where p is the number of fixed-effects
coefficients in glme. Each row of H represents one contrast. The columns of H (left to right)
correspond to the rows of the p-by-1 fixed-effects vector beta (top to bottom) whose estimate is
returned by the fixedEffects method.
Data Types: single | double
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C — Hypothesized value
m-by-1 vector

Hypothesized value for testing the null hypothesis Hβ = C, specified as an m-by-1 vector. Here, β is
the vector of fixed-effects whose estimate is returned by fixedEffects.
Data Types: single | double

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.

DFMethod — Method for computing approximate degrees of freedom
'residual' (default) | 'none'

Method for computing approximate degrees of freedom, specified as the comma-separated pair
consisting of 'DFMethod' and one of the following.

Value Description
'residual' The degrees of freedom value is assumed to be

constant and equal to n – p, where n is the
number of observations and p is the number of
fixed effects.

'none' The degrees of freedom is set to infinity.

Example: 'DFMethod','none'

REContrast — Random-effects contrasts
m-by-q matrix

Random-effects contrasts, specified as the comma-separated pair consisting of 'REContrast' and
an m-by-q matrix, where q is the number of random effects parameters in glme. The columns of the
matrix (left to right) correspond to the rows of the q-by-1 random-effects vector B (top to bottom),
whose estimate is returned by the randomEffects method.
Data Types: single | double

Output Arguments
pVal — p-value
scalar value

p-value for the F-test on the fixed- and/or random-effects coefficients of the generalized linear mixed-
effects model glme, returned as a scalar value.

When fitting a GLME model using fitglme and one of the maximum likelihood fit methods
('Laplace' or 'ApproximateLaplace'), coefTest uses an approximation of the conditional mean
squared error of prediction (CMSEP) of the estimated linear combination of fixed- and random-effects
to compute p-values. This accounts for the uncertainty in the fixed-effects estimates, but not for the
uncertainty in the covariance parameter estimates. For tests on fixed effects only, if you specify the
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'CovarianceMethod' name-value pair argument in fitglme as 'JointHessian', then coefTest
accounts for the uncertainty in the estimation of covariance parameters.

When fitting a GLME model using fitglme and one of the pseudo likelihood fit methods ('MPL' or
'REMPL'), coefTest bases the inference on the fitted linear mixed effects model from the final
pseudo likelihood iteration.

F — F-statistic
scalar value

F-statistic, returned as a scalar value.

DF1 — Numerator degrees of freedom for F
scalar value

Numerator degrees of freedom for the F-statistic F, returned as a scalar value.

• If you test the null hypothesis H0: Hβ = 0 or H0: Hβ = C, then DF1 is equal to the number of
linearly independent rows in H.

• If you test the null hypothesis H0: Hβ + KB = C, then DF1 is equal to the number of linearly
independent rows in [H,K].

DF2 — Denominator degrees of freedom for F
scalar value

Denominator degrees of freedom for the F-statistic F, returned as a scalar value. The value of DF2
depends on the option specified by the 'DFMethod' name-value pair argument.

Examples

Test the Significance of Coefficients

Load the sample data.

load mfr

This simulated data is from a manufacturing company that operates 50 factories across the world,
with each factory running a batch process to create a finished product. The company wants to
decrease the number of defects in each batch, so it developed a new manufacturing process. To test
the effectiveness of the new process, the company selected 20 of its factories at random to participate
in an experiment: Ten factories implemented the new process, while the other ten continued to run
the old process. In each of the 20 factories, the company ran five batches (for a total of 100 batches)
and recorded the following data:

• Flag to indicate whether the batch used the new process (newprocess)
• Processing time for each batch, in hours (time)
• Temperature of the batch, in degrees Celsius (temp)
• Categorical variable indicating the supplier (A, B, or C) of the chemical used in the batch

(supplier)
• Number of defects in the batch (defects)
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The data also includes time_dev and temp_dev, which represent the absolute deviation of time and
temperature, respectively, from the process standard of 3 hours at 20 degrees Celsius.

Fit a generalized linear mixed-effects model using newprocess, time_dev, temp_dev, and
supplier as fixed-effects predictors. Include a random-effects intercept grouped by factory, to
account for quality differences that might exist due to factory-specific variations. The response
variable defects has a Poisson distribution, and the appropriate link function for this model is log.
Use the Laplace fit method to estimate the coefficients. Specify the dummy variable encoding as
'effects', so the dummy variable coefficients sum to 0.

The number of defects can be modeled using a Poisson distribution

defectsi j ∼ Poisson(μi j)

This corresponds to the generalized linear mixed-effects model

log(μi j) = β0 + β1newprocessi j + β2time_devi j + β3temp_devi j + β4supplier_Ci j + β5supplier_Bi j
+ bi,

where

• defectsi j is the number of defects observed in the batch produced by factory i during batch j.
• μi j is the mean number of defects corresponding to factory i (where i = 1, 2, . . . , 20) during batch

j (where j = 1, 2, . . . , 5).
• newprocessi j, time_devi j, and temp_devi j are the measurements for each variable that correspond

to factory i during batch j. For example, newprocessi j indicates whether the batch produced by
factory i during batch j used the new process.

• supplier_Ci j and supplier_Bi j are dummy variables that use effects (sum-to-zero) coding to indicate
whether company C or B, respectively, supplied the process chemicals for the batch produced by
factory i during batch j.

• bi ∼ N(0, σb
2) is a random-effects intercept for each factory i that accounts for factory-specific

variation in quality.

glme = fitglme(mfr,'defects ~ 1 + newprocess + time_dev + temp_dev + supplier + (1|factory)','Distribution','Poisson','Link','log','FitMethod','Laplace','DummyVarCoding','effects');

Test if there is any significant difference between supplier C and supplier B.

H = [0,0,0,0,1,-1];

[pVal,F,DF1,DF2] = coefTest(glme,H)

pVal = 0.2793

F = 1.1842

DF1 = 1

DF2 = 94

The large p-value indicates that there is no significant difference between supplier C and supplier B
at the 5% significance level. Here, coefTest also returns the F-statistic, the numerator degrees of
freedom, and the approximate denominator degrees of freedom.

Test if there is any significant difference between supplier A and supplier B.
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If you specify the 'DummyVarCoding' name-value pair argument as 'effects' when fitting the
model using fitglme, then

βA + βB + βC = 0,

where βA, βB, and βC correspond to suppliers A, B, and C, respectively. βA is the effect of A minus the
average effect of A, B, and C. To determine the contrast matrix corresponding to a test between
supplier A and supplier B,

βB− βA = βB− (− βB− βC) = 2βB + βC .

From the output of disp(glme), column 5 of the contrast matrix corresponds to βC, and column 6
corresponds to βB. Therefore, the contrast matrix for this test is specified as H = [0,0,0,0,1,2].

H = [0,0,0,0,1,2];

[pVal,F,DF1,DF2] = coefTest(glme,H)

pVal = 0.6177

F = 0.2508

DF1 = 1

DF2 = 94

The large p-value indicates that there is no significant difference between supplier A and supplier B
at the 5% significance level.

References
[1] Booth, J.G., and J.P. Hobert. “Standard Errors of Prediction in Generalized Linear Mixed Models.”

Journal of the American Statistical Association, Vol. 93, 1998, pp. 262–272.

See Also
GeneralizedLinearMixedModel | anova | coefCI | covarianceParameters | fixedEffects |
randomEffects
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coefTest
Package: 

Linear hypothesis test on linear regression model coefficients

Syntax
p = coefTest(mdl)
p = coefTest(mdl,H)
p = coefTest(mdl,H,C)
[p,F] = coefTest( ___ )
[p,F,r] = coefTest( ___ )

Description
p = coefTest(mdl) computes the p-value for an F-test that all coefficient estimates in mdl, except
for the intercept term, are zero.

p = coefTest(mdl,H) performs an F-test that H × B = 0, where B represents the coefficient
vector. Use H to specify the coefficients to include in the F-test.

p = coefTest(mdl,H,C) performs an F-test that H × B = C.

[p,F] = coefTest( ___ ) also returns the F-test statistic F using any of the input argument
combinations in previous syntaxes.

[p,F,r] = coefTest( ___ ) also returns the numerator degrees of freedom r for the test.

Examples

Test Significance of Linear Regression Model

Fit a linear regression model and test the coefficients of the fitted model to see if they are zero.

Load the carsmall data set and create a table in which the Model_Year predictor is categorical.

load carsmall
Model_Year = categorical(Model_Year);
tbl = table(MPG,Weight,Model_Year);

Fit a linear regression model of mileage as a function of the weight, weight squared, and model year.

mdl = fitlm(tbl,'MPG ~ Model_Year + Weight^2')

mdl = 
Linear regression model:
    MPG ~ 1 + Weight + Model_Year + Weight^2

Estimated Coefficients:
                      Estimate         SE         tStat       pValue  
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                     __________    __________    _______    __________

    (Intercept)          54.206        4.7117     11.505    2.6648e-19
    Weight            -0.016404     0.0031249    -5.2493    1.0283e-06
    Model_Year_76        2.0887       0.71491     2.9215     0.0044137
    Model_Year_82        8.1864       0.81531     10.041    2.6364e-16
    Weight^2         1.5573e-06    4.9454e-07      3.149     0.0022303

Number of observations: 94, Error degrees of freedom: 89
Root Mean Squared Error: 2.78
R-squared: 0.885,  Adjusted R-Squared: 0.88
F-statistic vs. constant model: 172, p-value = 5.52e-41

The last line of the model display shows the F-statistic value of the regression model and the
corresponding p-value. The small p-value indicates that the model fits significantly better than a
degenerate model consisting of only an intercept term. You can return these two values by using
coefTest.

[p,F] = coefTest(mdl)

p = 5.5208e-41

F = 171.8844

Test Significance of Linear Model Coefficient

Fit a linear regression model and test the significance of a specified coefficient in the fitted model by
using coefTest. You can also use anova to test the significance of each predictor in the model.

Load the carsmall data set and create a table in which the Model_Year predictor is categorical.

load carsmall
Model_Year = categorical(Model_Year);
tbl = table(MPG,Acceleration,Weight,Model_Year);

Fit a linear regression model of mileage as a function of the weight, weight squared, and model year.

mdl = fitlm(tbl,'MPG ~ Acceleration + Model_Year + Weight')

mdl = 
Linear regression model:
    MPG ~ 1 + Acceleration + Weight + Model_Year

Estimated Coefficients:
                      Estimate         SE         tStat        pValue  
                     __________    __________    ________    __________

    (Intercept)          40.523        2.5293      16.021    5.8302e-28
    Acceleration      -0.023438       0.11353    -0.20644       0.83692
    Weight           -0.0066799    0.00045796     -14.586    2.5314e-25
    Model_Year_76        1.9898       0.80696      2.4657      0.015591
    Model_Year_82        7.9661       0.89745      8.8763    6.7725e-14

Number of observations: 94, Error degrees of freedom: 89

35 Functions

35-796



Root Mean Squared Error: 2.93
R-squared: 0.873,  Adjusted R-Squared: 0.867
F-statistic vs. constant model: 153, p-value = 5.86e-39

The model display includes the p-value for the t-statistic for each coefficient to test the null
hypothesis that the corresponding coefficient is zero.

You can examine the significance of the coefficient using coefTest. For example, test the
significance of the Acceleration coefficient. According to the model display, Acceleration is the
second predictor. Specify the coefficient by using a numeric index vector.

[p_Acceleration,F_Acceleration,r_Acceleration] = coefTest(mdl,[0 1 0 0 0])

p_Acceleration = 0.8369

F_Acceleration = 0.0426

r_Acceleration = 1

p_Acceleration is the p-value corresponding to the F-statistic value F_Acceleration, and
r_Acceleration is the numerator degrees of freedom for the F-test. The returned p-value indicates
that Acceleration is not statistically significant in the fitted model. Note that p_Acceleration is
equal to the p-value of t-statistic (tStat) in the model display, and F_Acceleration is the square of
tStat.

Test the significance of the categorical predictor Model_Year. Instead of testing Model_Year_76
and Model_Year_82 separately, you can perform a single test for the categorical predictor
Model_Year. Specify Model_Year_76 and Model_Year_82 by using a numeric index matrix.

[p_Model_Year,F_Model_Year,r_Model_Year] = coefTest(mdl,[0 0 0 1 0; 0 0 0 0 1])

p_Model_Year = 2.7408e-14

F_Model_Year = 45.2691

r_Model_Year = 2

The returned p-value indicates that Model_Year is statistically significant in the fitted model.

You can also return these values by using anova.

anova(mdl)

ans=4×5 table
                     SumSq     DF    MeanSq        F          pValue  
                    _______    __    _______    ________    __________

    Acceleration    0.36613     1    0.36613    0.042618       0.83692
    Weight           1827.7     1     1827.7      212.75    2.5314e-25
    Model_Year       777.81     2      388.9      45.269    2.7408e-14
    Error            764.59    89      8.591                          

Input Arguments
mdl — Linear regression model object
LinearModel object | CompactLinearModel object
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Linear regression model object, specified as a LinearModel object created by using fitlm or
stepwiselm, or a CompactLinearModel object created by using compact.

H — Hypothesis matrix
numeric index matrix

Hypothesis matrix, specified as a full-rank numeric index matrix of size r-by-s, where r is the number
of linear combinations of coefficients being tested, and s is the total number of coefficients.

• If you specify H, then the output p is the p-value for an F-test that H × B = 0, where B represents
the coefficient vector.

• If you specify H and C, then the output p is the p-value for an F-test that H × B = C.

Example: [1 0 0 0 0] tests the first coefficient among five coefficients.
Data Types: single | double

C — Hypothesized value
numeric vector

Hypothesized value for testing the null hypothesis, specified as a numeric vector with the same
number of rows as H.

If you specify H and C, then the output p is the p-value for an F-test that H × B = C, where B
represents the coefficient vector.
Data Types: single | double

Output Arguments
p — p-value for F-test
numeric value in the range [0,1]

p-value for the F-test, returned as a numeric value in the range [0,1].

F — Value of test statistic for F-test
numeric value

Value of the test statistic for the F-test, returned as a numeric value.

r — Numerator degrees of freedom for F-test
positive integer

Numerator degrees of freedom for the F-test, returned as a positive integer. The F-statistic has r
degrees of freedom in the numerator and mdl.DFE degrees of freedom in the denominator.

Algorithms
The p-value, F-statistic, and numerator degrees of freedom are valid under these assumptions:

• The data comes from a model represented by the formula in the Formula property of the fitted
model.

• The observations are independent, conditional on the predictor values.
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Under these assumptions, let β represent the (unknown) coefficient vector of the linear regression.
Suppose H is a full-rank numeric index matrix of size r-by-s, where r is the number of linear
combinations of coefficients being tested, and s is the total number of coefficients. Let c be a column
vector with r rows. The following is a test statistic for the hypothesis that Hβ = c:

F = Hβ − c ′ HVH′ −1 Hβ − c /r .

Here β  is the estimate of the coefficient vector β, stored in the Coefficients property, and V is the
estimated covariance of the coefficient estimates, stored in the CoefficientCovariance property.
When the hypothesis is true, the test statistic F has an “F Distribution” on page B-46 with r and u
degrees of freedom, where u is the degrees of freedom for error, stored in the DFE property.

Alternative Functionality
• The values of commonly used test statistics are available in the Coefficients property of a
fitted model.

• anova provides tests for each model predictor and groups of predictors.

Version History
Introduced in R2012a

Extended Capabilities
GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

This function fully supports GPU arrays. For more information, see “Run MATLAB Functions on a
GPU” (Parallel Computing Toolbox).

See Also
anova | CompactLinearModel | LinearModel | linhyptest | coefCI | dwtest

Topics
“F-statistic and t-statistic” on page 11-74
“Interpret Linear Regression Results” on page 11-52
“Linear Regression Workflow” on page 11-35
“Linear Regression” on page 11-9
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coefTest
Class: LinearMixedModel

Hypothesis test on fixed and random effects of linear mixed-effects model

Syntax
pVal = coefTest(lme)
pVal = coefTest(lme,H)
pVal = coefTest(lme,H,C)
pVal = coefTest(lme,H,C,Name,Value)
[pVal,F,DF1,DF2] = coefTest( ___ )

Description
pVal = coefTest(lme) returns the p-value for an F-test that all fixed-effects coefficients except for
the intercept are 0.

pVal = coefTest(lme,H) returns the p-value for an F-test on fixed-effects coefficients of linear
mixed-effects model lme, using the contrast matrix H. It tests the null hypothesis that H0: Hβ = 0,
where β is the fixed-effects vector.

pVal = coefTest(lme,H,C) returns the p-value for an F-test on fixed-effects coefficients of the
linear mixed-effects model lme, using the contrast matrix H. It tests the null hypothesis that H0: Hβ =
C, where β is the fixed-effects vector.

pVal = coefTest(lme,H,C,Name,Value) returns the p-value for an F-test on the fixed- and/or
random-effects coefficients of the linear mixed-effects model lme, with additional options specified by
one or more name-value pair arguments. For example, 'REContrast',K tells coefTest to test the
null hypothesis that H0: Hβ + KB = C, where β is the fixed-effects vector and B is the random-effects
vector.

[pVal,F,DF1,DF2] = coefTest( ___ ) also returns the F-statistic F, and the numerator and
denominator degrees of freedom for F, respectively DF1 and DF2.

Input Arguments
lme — Linear mixed-effects model
LinearMixedModel object

Linear mixed-effects model, specified as a LinearMixedModel object constructed using fitlme or
fitlmematrix.

H — Fixed-effects contrasts
m-by-p matrix

Fixed-effects contrasts, specified as an m-by-p matrix, where p is the number of fixed-effects
coefficients in lme. Each row of H represents one contrast. The columns of H (left to right) correspond
to the rows of the p-by-1 fixed-effects vector beta (top to bottom), returned by the fixedEffects
method.
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Data Types: single | double

C — Hypothesized value
m-by-1 vector

Hypothesized value for testing the null hypothesis H*beta = C, specified as an m-by-1 matrix. Here,
beta is the vector of fixed-effects estimates returned by the fixedEffects method.
Data Types: single | double

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.

DFMethod — Method for computing approximate denominator degrees of freedom
'residual' (default) | 'satterthwaite' | 'none'

Method for computing the approximate denominator degrees of freedom for the F-test, specified as
the comma-separated pair consisting of 'DFMethod' and one of the following.

'residual' Default. The degrees of freedom are assumed to
be constant and equal to n – p, where n is the
number of observations and p is the number of
fixed effects.

'satterthwaite' Satterthwaite approximation.
'none' All degrees of freedom are set to infinity.

For example, you can specify the Satterthwaite approximation as follows.
Example: 'DFMethod','satterthwaite'

REContrast — Random-effects contrasts
m-by-q matrix

Random-effects contrasts, specified as the comma-separated pair consisting of 'REContrast' and
an m-by-q matrix K, where q is the number of random effects parameters in lme. The columns of K
(left to right) correspond to the rows of the random-effects best linear unbiased predictor vector B
(top to bottom), returned by the randomEffects method.
Data Types: single | double

Output Arguments
pVal — p-value
scalar value

p-value for the F-test on the fixed and/or random-effects coefficients of the linear mixed-effects model
lme, returned as a scalar value.

F — F-statistic
scalar value
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F-statistic, returned as a scalar value.

DF1 — Numerator degrees of freedom for F
scalar value

Numerator degrees of freedom for F, returned as a scalar value.

• If you test the null hypothesis H0: Hβ = 0, or H0: Hβ = C, then DF1 is equal to the number of
linearly independent rows in H.

• If you test the null hypothesis H0: Hβ + KB= C, then DF1 is equal to the number of linearly
independent rows in [H,K].

DF2 — Denominator degrees of freedom for F
scalar value

Denominator degrees of freedom for F, returned as a scalar value. The value of DF2 depends on the
option you select for DFMethod.

Examples

Test Fixed-Effects Coefficients for Categorical Data

Load the sample data.

load('shift.mat')

The data shows the absolute deviations from the target quality characteristic measured from the
products that five operators manufacture during three different shifts: morning, evening, and night.
This is a randomized block design, where the operators are the blocks. The experiment is designed to
study the impact of the time of shift on the performance. The performance measure is the absolute
deviation of the quality characteristics from the target value. This is simulated data.

Shift and Operator are nominal variables.

shift.Shift = nominal(shift.Shift);
shift.Operator = nominal(shift.Operator);

Fit a linear mixed-effects model with a random intercept grouped by operator to assess if there is
significant difference in the performance according to the time of the shift.

lme = fitlme(shift,'QCDev ~ Shift + (1|Operator)')

lme = 
Linear mixed-effects model fit by ML

Model information:
    Number of observations              15
    Fixed effects coefficients           3
    Random effects coefficients          5
    Covariance parameters                2

Formula:
    QCDev ~ 1 + Shift + (1 | Operator)

Model fit statistics:
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    AIC       BIC       LogLikelihood    Deviance
    59.012    62.552    -24.506          49.012  

Fixed effects coefficients (95% CIs):
    Name                     Estimate    SE         tStat       DF    pValue   
    {'(Intercept)'  }         3.1196     0.88681      3.5178    12    0.0042407
    {'Shift_Morning'}        -0.3868     0.48344    -0.80009    12      0.43921
    {'Shift_Night'  }         1.9856     0.48344      4.1072    12    0.0014535

    Lower      Upper  
     1.1874     5.0518
    -1.4401    0.66653
    0.93227     3.0389

Random effects covariance parameters (95% CIs):
Group: Operator (5 Levels)
    Name1                  Name2                  Type           Estimate
    {'(Intercept)'}        {'(Intercept)'}        {'std'}        1.8297  

    Lower      Upper 
    0.94915    3.5272

Group: Error
    Name               Estimate    Lower      Upper 
    {'Res Std'}        0.76439     0.49315    1.1848

Test if all fixed-effects coefficients except for the intercept are 0.

pVal = coefTest(lme)

pVal = 7.5956e-04

The small p-value indicates that not all fixed-effects coefficients are 0.

Test the significance of the Shift term using a contrast matrix.

H = [0 1 0; 0 0 1];
pVal = coefTest(lme,H)

pVal = 7.5956e-04

Test the significance of the Shift term using the anova method.

anova(lme)

ans = 
    ANOVA marginal tests: DFMethod = 'Residual'

    Term                   FStat     DF1    DF2    pValue    
    {'(Intercept)'}        12.375    1      12      0.0042407
    {'Shift'      }        13.864    2      12     0.00075956

The p-value for Shift, 0.00075956, is the same as the p-value of the previous hypothesis test.

Test if there is any difference between the evening and morning shifts.
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pVal = coefTest(lme,[0 1 -1])

pVal = 3.6147e-04

This small p-value indicates that the performance of the operators are not the same in the morning
and the evening shifts.

Hypothesis Tests for Fixed-Effects Coefficients

Load the sample data.

load('weight.mat')

weight contains data from a longitudinal study, where 20 subjects are randomly assigned to 4
exercise programs, and their weight loss is recorded over six 2-week time periods. This is simulated
data.

Store the data in a table. Define Subject and Program as categorical variables.

tbl = table(InitialWeight,Program,Subject,Week,y);
tbl.Subject = nominal(tbl.Subject);
tbl.Program = nominal(tbl.Program);

Fit a linear mixed-effects model where the initial weight, type of program, week, and the interaction
between the week and type of program are the fixed effects. The intercept and week vary by subject.

lme = fitlme(tbl,'y ~ InitialWeight + Program*Week + (Week|Subject)')

lme = 
Linear mixed-effects model fit by ML

Model information:
    Number of observations             120
    Fixed effects coefficients           9
    Random effects coefficients         40
    Covariance parameters                4

Formula:
    y ~ 1 + InitialWeight + Program*Week + (1 + Week | Subject)

Model fit statistics:
    AIC        BIC       LogLikelihood    Deviance
    -22.981    13.257    24.49            -48.981 

Fixed effects coefficients (95% CIs):
    Name                      Estimate     SE           tStat       DF 
    {'(Intercept)'   }          0.66105      0.25892      2.5531    111
    {'InitialWeight' }        0.0031879    0.0013814      2.3078    111
    {'Program_B'     }          0.36079      0.13139       2.746    111
    {'Program_C'     }        -0.033263      0.13117    -0.25358    111
    {'Program_D'     }          0.11317      0.13132     0.86175    111
    {'Week'          }           0.1732     0.067454      2.5677    111
    {'Program_B:Week'}         0.038771     0.095394     0.40644    111
    {'Program_C:Week'}         0.030543     0.095394     0.32018    111
    {'Program_D:Week'}         0.033114     0.095394     0.34713    111
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    pValue       Lower         Upper    
     0.012034       0.14798       1.1741
     0.022863    0.00045067    0.0059252
    0.0070394       0.10044      0.62113
      0.80029      -0.29319      0.22666
      0.39068      -0.14706       0.3734
     0.011567      0.039536      0.30686
      0.68521      -0.15026       0.2278
      0.74944      -0.15849      0.21957
      0.72915      -0.15592      0.22214

Random effects covariance parameters (95% CIs):
Group: Subject (20 Levels)
    Name1                  Name2                  Type            Estimate
    {'(Intercept)'}        {'(Intercept)'}        {'std' }        0.18407 
    {'Week'       }        {'(Intercept)'}        {'corr'}        0.66841 
    {'Week'       }        {'Week'       }        {'std' }        0.15033 

    Lower      Upper  
    0.12281    0.27587
    0.21076    0.88573
    0.11004    0.20537

Group: Error
    Name               Estimate    Lower       Upper  
    {'Res Std'}        0.10261     0.087882    0.11981

Test for the significance of the interaction between Program and Week.

H = [0 0 0 0 0 0 1 0 0; 
     0 0 0 0 0 0 0 1 0;
     0 0 0 0 0 0 0 0 1];
pVal = coefTest(lme,H)

pVal = 0.9775

The high p-value indicates that the interaction between Program and Week is not statistically
significant.

Now, test whether all coefficients involving Program are 0.

H = [0 0 1 0 0 0 0 0 0;
     0 0 0 1 0 0 0 0 0;
     0 0 0 0 1 0 0 0 0;
     0 0 0 0 0 0 1 0 0; 
     0 0 0 0 0 0 0 1 0;
     0 0 0 0 0 0 0 0 1];
C = [0;0;0;0;0;0];
pVal = coefTest(lme,H,C)

pVal = 0.0274

The p-value of 0.0274 indicates that not all coefficients involving Program are zero.
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Hypothesis Tests for Fixed- and Random-Effects Coefficients

Load the sample data.

load flu

The flu dataset array has a Date variable, and 10 variables containing estimated influenza rates (in
9 different regions, estimated from Google® searches, plus a nationwide estimate from the CDC).

To fit a linear-mixed effects model, your data must be in a properly formatted dataset array. To fit a
linear mixed-effects model with the influenza rates as the responses and region as the predictor
variable, combine the nine columns corresponding to the regions into an array. The new dataset
array, flu2, must have the response variable, FluRate, the nominal variable, Region, that shows
which region each estimate is from, and the grouping variable Date.

flu2 = stack(flu,2:10,'NewDataVarName','FluRate',...
    'IndVarName','Region');
flu2.Date = nominal(flu2.Date);

Fit a linear mixed-effects model with fixed effects for the region and a random intercept that varies by
Date.

lme = fitlme(flu2,'FluRate ~ 1 + Region + (1|Date)')

lme = 
Linear mixed-effects model fit by ML

Model information:
    Number of observations             468
    Fixed effects coefficients           9
    Random effects coefficients         52
    Covariance parameters                2

Formula:
    FluRate ~ 1 + Region + (1 | Date)

Model fit statistics:
    AIC       BIC       LogLikelihood    Deviance
    318.71    364.35    -148.36          296.71  

Fixed effects coefficients (95% CIs):
    Name                        Estimate    SE          tStat      DF 
    {'(Intercept)'     }          1.2233    0.096678     12.654    459
    {'Region_MidAtl'   }        0.010192    0.052221    0.19518    459
    {'Region_ENCentral'}        0.051923    0.052221     0.9943    459
    {'Region_WNCentral'}         0.23687    0.052221     4.5359    459
    {'Region_SAtl'     }        0.075481    0.052221     1.4454    459
    {'Region_ESCentral'}         0.33917    0.052221      6.495    459
    {'Region_WSCentral'}           0.069    0.052221     1.3213    459
    {'Region_Mtn'      }        0.046673    0.052221    0.89377    459
    {'Region_Pac'      }        -0.16013    0.052221    -3.0665    459

    pValue        Lower        Upper    
     1.085e-31       1.0334       1.4133
       0.84534    -0.092429      0.11281
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        0.3206    -0.050698      0.15454
    7.3324e-06      0.13424      0.33949
       0.14902     -0.02714       0.1781
    2.1623e-10      0.23655      0.44179
       0.18705    -0.033621      0.17162
       0.37191    -0.055948      0.14929
     0.0022936     -0.26276    -0.057514

Random effects covariance parameters (95% CIs):
Group: Date (52 Levels)
    Name1                  Name2                  Type           Estimate
    {'(Intercept)'}        {'(Intercept)'}        {'std'}        0.6443  

    Lower     Upper  
    0.5297    0.78368

Group: Error
    Name               Estimate    Lower      Upper
    {'Res Std'}        0.26627     0.24878    0.285

Test the hypothesis that the random effects-term for week 10/9/2005 is zero.

[~,~,STATS] = randomEffects(lme); % Compute the random-effects statistics (STATS)
STATS.Level = nominal(STATS.Level);
K = zeros(length(STATS),1);
K(STATS.Level == '10/9/2005') = 1;
pVal = coefTest(lme,[0 0 0 0 0 0 0 0 0],0,'REContrast',K')

pVal = 0.1692

Refit the model this time with a random intercept and slope.

lme = fitlme(flu2,'FluRate ~ 1 + Region + (1 + Region|Date)');

Test the hypothesis that the combined coefficient of region WNCentral for week 10/9/2005 is zero.

[~,~,STATS] = randomEffects(lme); STATS.Level = nominal(STATS.Level);
K = zeros(length(STATS),1);
K(STATS.Level == '10/9/2005' & flu2.Region == 'WNCentral') = 1;
pVal = coefTest(lme,[0 0 0 1 0 0 0 0 0],0,'REContrast',K')

pVal = 1.2059e-12

Also return the F-statistic with the numerator and denominator degrees of freedom.

[pVal,F,DF1,DF2] = coefTest(lme,[0 0 0 1 0 0 0 0 0],0,'REContrast',K')

pVal = 1.2059e-12

F = 53.4176

DF1 = 1

DF2 = 459

Repeat the test using the Satterthwaite approximation for the denominator degrees of freedom.
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[pVal,F,DF1,DF2] = coefTest(lme,[0 0 0 1 0 0 0 0 0],0,'REContrast',K',...
            'DFMethod','satterthwaite')

pVal = NaN

F = 53.4176

DF1 = 1

DF2 = 0

See Also
LinearMixedModel | anova | coefCI
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coefTest
Class: NonLinearModel

Linear hypothesis test on nonlinear regression model coefficients

Syntax
p = coefTest(mdl)
p = coefTest(mdl,H)
p = coefTest(mdl,H,C)
[p,F] = coefTest(mdl,...)
[p,F,r] = coefTest(mdl,...)

Description
p = coefTest(mdl) computes the p-value for an F test that all coefficient estimates in mdl are
zero.

p = coefTest(mdl,H) performs an F test that H*B = 0, where B represents the coefficient vector.

p = coefTest(mdl,H,C) performs an F test that H*B = C.

[p,F] = coefTest(mdl,...) returns the F test statistic.

[p,F,r] = coefTest(mdl,...) returns the numerator degrees of freedom for the test.

Input Arguments
mdl

Nonlinear regression model, constructed by fitnlm.

H

Numeric matrix having one column for each coefficient in the model. When H is an input, the output p
is the p-value for an F test that H*B = 0, where B represents the coefficient vector.

C

Numeric vector with the same number of rows as H. When C is an input, the output p is the p-value
for an F test that H*B = C, where B represents the coefficient vector.

Output Arguments
p

p-value of the F test (see “More About” on page 35-810).

F

Value of the test statistic for the F test (see “More About” on page 35-810).
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r

Numerator degrees of freedom for the F test (see “More About” on page 35-810). The F statistic has
r degrees of freedom in the numerator and mdl.DFE degrees of freedom in the denominator.

Examples

Test Nonlinear Regression Model Coefficients

Make a nonlinear model of mileage as a function of the weight from the carsmall data set. Test the
coefficients to see if all should be zero.

Create an exponential model of car mileage as a function of weight from the carsmall data. Scale
the weight by a factor of 1000 so all the variables are roughly equal in size.

load carsmall
X = Weight;
y = MPG;
modelfun = 'y ~ b1 + b2*exp(-b3*x/1000)';
beta0 = [1 1 1];
mdl = fitnlm(X,y,modelfun,beta0);

Test the model for significant differences from a constant model.

p = coefTest(mdl)

p = 1.3708e-36

There is no doubt that the model contains nonzero terms.

More About
Test Statistics

The p-value, F statistic, and numerator degrees of freedom are valid under these assumptions:

• The data comes from a normal distribution.
• The entries are independent.

Suppose these assumptions hold. Let β represent the unknown coefficient vector of the linear
regression. Suppose H is a full-rank numeric index matrix of size r-by-s, where r is the number of
linear combinations of coefficients being tested, and s is the number of terms in β. Let c be a vector
the same size as β. The following is a test statistic for the hypothesis that Hβ = c:

F = Hβ − c ′ HVH′ −1 Hβ − c /r .

Here β  is the estimate of the coefficient vector β in mdl.Coefs, and V is the estimated covariance of
the coefficient estimates in mdl.CoefCov. When the hypothesis is true, the test statistic F has an “F
Distribution” on page B-46 with r and u degrees of freedom.
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Alternatives
The values of commonly used test statistics are available in the mdl.Coefficients table.

See Also
NonLinearModel

Topics
“Nonlinear Regression” on page 13-2
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coeftest
Class: RepeatedMeasuresModel

Linear hypothesis test on coefficients of repeated measures model

Syntax
tbl = coeftest(rm,A,C,D)

Description
tbl = coeftest(rm,A,C,D) returns a table tbl containing the multivariate analysis of variance
(manova) for the repeated measures model rm.

Input Arguments
rm — Repeated measures model
RepeatedMeasuresModel object

Repeated measures model, returned as a RepeatedMeasuresModel object.

For properties and methods of this object, see RepeatedMeasuresModel.

A — Specification representing between-subjects model
a-by-p matrix

Specification representing the between-subjects model, specified as an a-by-p numeric matrix, with
rank a ≤ p.
Data Types: single | double

C — Specification representing within-subjects hypothesis
r-by-c matrix

Specification representing the within-subjects (within time) hypotheses, specified as an r-by-c
numeric matrix, with rank c ≤ r ≤ n – p.
Data Types: single | double

D — Hypothesized value
0 (default) | scalar value | a-by-c matrix

Hypothesized value, specified as a scalar value or an a-by-c matrix.
Data Types: single | double

Output Arguments
tbl — Results of multivariate analysis of variance
table
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Results of multivariate analysis of variance for the repeated measures model rm, returned as a table
containing the following columns.

Statistic Type of test statistic used
Value Value of the corresponding test statistic
F F-statistic value
RSquare Measure of variance explained
df1 Numerator degrees of freedom for the F-statistic
df2 Denominator degrees of freedom for the F-

statistic
pValue p-value associated with the test statistic value

Examples

Test Coefficients for First and Last Repeated Measures

Load the sample data.

load repeatedmeas

The table between includes the between-subject variables age, IQ, group, gender, and eight repeated
measures y1 through y8 as responses. The table within includes the within-subject variables w1 and
w2. This is simulated data.

Fit a repeated measures model, where the repeated measures y1 through y8 are the responses, and
age, IQ, group, gender, and the group-gender interaction are the predictor variables. Also specify the
within-subject design matrix.

rm = fitrm(between,'y1-y8 ~ Group*Gender + Age + IQ','WithinDesign',within);

Test that the coefficients of all terms in the between-subjects model are the same for the first and last
repeated measurement variable.

coeftest(rm,eye(8),[1 0 0 0 0 0 0 -1]')

ans=4×7 table
    Statistic     Value       F       RSquare    df1    df2    pValue 
    _________    _______    ______    _______    ___    ___    _______

    Pillai        0.3355    1.3884    0.3355      8     22     0.25567
    Wilks         0.6645    1.3884    0.3355      8     22     0.25567
    Hotelling    0.50488    1.3884    0.3355      8     22     0.25567
    Roy          0.50488    1.3884    0.3355      8     22     0.25567

The p-value of 0.25567 indicates that there is not enough statistical evidence to conclude that the
coefficients of all terms in the between-subjects model for the first and last repeated measures
variable are different.
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Tips
• This test is defined as A*B*C = D, where B is the matrix of coefficients in the repeated measures

model. A and C are numeric matrices of the proper size for this multiplication. D is a scalar or
numeric matrix of the proper size. The default is D = 0.

See Also
fitrm | manova
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combine
Combine two ensembles

Syntax
B1 = combine(B1,B2)

Description
B1 = combine(B1,B2) appends decision trees from ensemble B2 to those stored in B1 and returns
ensemble B1. This method requires that the class and variable names be identical in both ensembles.

See Also
append
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combnk
(Not recommended) Enumeration of combinations

Note combnk is not recommended. Use the MATLAB® function nchoosek instead. For more
information, see “Compatibility Considerations”.

Syntax
C = combnk(v,k)

Description
C = combnk(v,k) returns a matrix containing all possible combinations of the elements of vector v
taken k at a time. Matrix C has k columns and n!/((n – k)! k!) rows, where n is the number of
observations in v.

Examples

Combinations of Four Characters

Create a character array of every four-letter combination of the characters in the word 'tendril'.

C = combnk('tendril',4);

C is a 35-by-4 character array.

Display the last five combinations in the list.

last5 = C(31:35,:)

last5 = 5x4 char array
    'tedr'
    'tenl'
    'teni'
    'tenr'
    'tend'

Combinations of Elements from a Numeric Vector

List all two-number combinations of the numbers one through four.

C = combnk(1:4,2)

C = 6×2

     3     4
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     2     4
     2     3
     1     4
     1     3
     1     2

Because 1:4 is a vector of doubles, C is a matrix of doubles.

Input Arguments
v — Set of all elements
vector

Set of all elements, specified as a vector.
Example: [1 2 3 4 5]
Example: 'abcd'
Data Types: single | double | logical | char

k — Number of selected choices
nonnegative integer scalar

Number of elements to select, specified as a nonnegative integer scalar. k can be any numeric type,
but must be real.

There are no restrictions on combining inputs of different types for combnk(v,k).
Example: 3
Data Types: single | double

Output Arguments
C — All combinations
matrix

All combinations of v, returned as a matrix of the same type as v. C has k columns and n!/((n –
k)! k!) rows, where n is the number of observations in v.

Each row of C contains a combination of k items selected from v. The elements in each row of C are
listed in the same order as they appear in v.

If k is larger than n, then C is an empty matrix.

Limitations
combnk is practical only for situations where v has fewer than 15 observations.

Version History
Introduced before R2006a
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combnk is not recommended
Not recommended starting in R2020b

combnk is not recommended. Use the MATLAB function nchoosek instead. There are no plans to
remove combnk.

To update your code, change instances of the function name combnk to nchoosek. You do not need to
change the input arguments. For example, use C = nchoosek(v,k). The output C contains all
possible combinations of the elements of vector v taken k at a time. Note that C from nchoosek can
have a different order compared to the output from combnk.

The nchoosek function has several advantages over the combnk function.

• nchoosek also returns the binomial coefficient when the first input argument is a scalar value.
• nchoosek has extended functionality using MATLAB Coder.
• nchoosek is faster than combnk.

See Also
nchoosek | perms | randperm
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compact
Reduce size of machine learning model

Syntax
CompactMdl = compact(Mdl)

Description
CompactMdl = compact(Mdl) returns a compact model (CompactMdl), the compact version of the
trained machine learning model Mdl.

CompactMdl does not contain the training data, whereas Mdl contains the training data in its X and Y
properties. Therefore, although you can predict class labels using CompactMdl, you cannot perform
tasks such as cross-validation with the compact model.

Examples

Reduce Size of Naive Bayes Classifier

Reduce the size of a full naive Bayes classifier by removing the training data. Full naive Bayes
classifiers hold the training data. You can use a compact naive Bayes classifier to improve memory
efficiency.

Load the ionosphere data set. Remove the first two predictors for stability.

load ionosphere
X = X(:,3:end);

Train a naive Bayes classifier using the predictors X and class labels Y. A recommended practice is to
specify the class names. fitcnb assumes that each predictor is conditionally and normally
distributed.

Mdl = fitcnb(X,Y,'ClassNames',{'b','g'})

Mdl = 
  ClassificationNaiveBayes
              ResponseName: 'Y'
     CategoricalPredictors: []
                ClassNames: {'b'  'g'}
            ScoreTransform: 'none'
           NumObservations: 351
         DistributionNames: {1x32 cell}
    DistributionParameters: {2x32 cell}

  Properties, Methods

Mdl is a trained ClassificationNaiveBayes classifier.
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Reduce the size of the naive Bayes classifier.

CMdl = compact(Mdl)

CMdl = 
  CompactClassificationNaiveBayes
              ResponseName: 'Y'
     CategoricalPredictors: []
                ClassNames: {'b'  'g'}
            ScoreTransform: 'none'
         DistributionNames: {1x32 cell}
    DistributionParameters: {2x32 cell}

  Properties, Methods

CMdl is a trained CompactClassificationNaiveBayes classifier.

Display the amount of memory used by each classifier.

whos('Mdl','CMdl')

  Name      Size             Bytes  Class                                                        Attributes

  CMdl      1x1              15060  classreg.learning.classif.CompactClassificationNaiveBayes              
  Mdl       1x1             111190  ClassificationNaiveBayes                                               

The full naive Bayes classifier (Mdl) is more than seven times larger than the compact naive Bayes
classifier (CMdl).

To label new observations efficiently, you can remove Mdl from the MATLAB® Workspace, and then
pass CMdl and new predictor values to predict.

Reduce Size of SVM Classifier

Reduce the size of a full support vector machine (SVM) classifier by removing the training data. Full
SVM classifiers (that is, ClassificationSVM classifiers) hold the training data. To improve
efficiency, use a smaller classifier.

Load the ionosphere data set.

load ionosphere

Train an SVM classifier. Standardize the predictor data and specify the order of the classes.

SVMModel = fitcsvm(X,Y,'Standardize',true,...
    'ClassNames',{'b','g'})

SVMModel = 
  ClassificationSVM
             ResponseName: 'Y'
    CategoricalPredictors: []
               ClassNames: {'b'  'g'}
           ScoreTransform: 'none'
          NumObservations: 351
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                    Alpha: [90x1 double]
                     Bias: -0.1343
         KernelParameters: [1x1 struct]
                       Mu: [0.8917 0 0.6413 0.0444 0.6011 0.1159 0.5501 ... ]
                    Sigma: [0.3112 0 0.4977 0.4414 0.5199 0.4608 0.4927 ... ]
           BoxConstraints: [351x1 double]
          ConvergenceInfo: [1x1 struct]
          IsSupportVector: [351x1 logical]
                   Solver: 'SMO'

  Properties, Methods

SVMModel is a ClassificationSVM classifier.

Reduce the size of the SVM classifier.

CompactSVMModel = compact(SVMModel)

CompactSVMModel = 
  CompactClassificationSVM
             ResponseName: 'Y'
    CategoricalPredictors: []
               ClassNames: {'b'  'g'}
           ScoreTransform: 'none'
                    Alpha: [90x1 double]
                     Bias: -0.1343
         KernelParameters: [1x1 struct]
                       Mu: [0.8917 0 0.6413 0.0444 0.6011 0.1159 0.5501 ... ]
                    Sigma: [0.3112 0 0.4977 0.4414 0.5199 0.4608 0.4927 ... ]
           SupportVectors: [90x34 double]
      SupportVectorLabels: [90x1 double]

  Properties, Methods

CompactSVMModel is a CompactClassificationSVM classifier.

Display the amount of memory used by each classifier.

whos('SVMModel','CompactSVMModel')

  Name                 Size             Bytes  Class                                                 Attributes

  CompactSVMModel      1x1              31058  classreg.learning.classif.CompactClassificationSVM              
  SVMModel             1x1             141148  ClassificationSVM                                               

The full SVM classifier (SVMModel) is more than four times larger than the compact SVM classifier
(CompactSVMModel).

To label new observations efficiently, you can remove SVMModel from the MATLAB® Workspace, and
then pass CompactSVMModel and new predictor values to predict.

To further reduce the size of the compact SVM classifier, use the discardSupportVectors function
to discard support vectors.
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Reduce Size of Generalized Additive Model

Reduce the size of a full generalized additive model (GAM) for regression by removing the training
data. Full models hold the training data. You can use a compact model to improve memory efficiency.

Load the carbig data set.

load carbig

Specify Acceleration, Displacement, Horsepower, and Weight as the predictor variables (X)
and MPG as the response variable (Y).

X = [Acceleration,Displacement,Horsepower,Weight];
Y = MPG;

Train a GAM using X and Y.

Mdl = fitrgam(X,Y)

Mdl = 
  RegressionGAM
              ResponseName: 'Y'
     CategoricalPredictors: []
         ResponseTransform: 'none'
                 Intercept: 26.9442
    IsStandardDeviationFit: 0
           NumObservations: 398

  Properties, Methods

Mdl is a RegressionGAM model object.

Reduce the size of the model.

CMdl = compact(Mdl)

CMdl = 
  CompactRegressionGAM
              ResponseName: 'Y'
     CategoricalPredictors: []
         ResponseTransform: 'none'
                 Intercept: 26.9442
    IsStandardDeviationFit: 0

  Properties, Methods

CMdl is a CompactRegressionGAM model object.

Display the amount of memory used by each regression model.

whos('Mdl','CMdl')

  Name      Size             Bytes  Class                                          Attributes

35 Functions

35-822



  CMdl      1x1             578163  classreg.learning.regr.CompactRegressionGAM              
  Mdl       1x1             611957  RegressionGAM                                            

The full model (Mdl) is larger than the compact model (CMdl).

To efficiently predict responses for new observations, you can remove Mdl from the MATLAB®
Workspace, and then pass CMdl and new predictor values to predict.

Input Arguments
Mdl — Machine learning model
full regression model object | full classification model object

Machine learning model, specified as a full regression or classification model object, as given in the
following tables of supported models.

Regression Model Object

Model Full Regression Model Object
Gaussian process regression (GPR) model RegressionGP
Generalized additive model (GAM) RegressionGAM
Neural network model RegressionNeuralNetwork

Classification Model Object

Model Full Classification Model Object
Generalized additive model ClassificationGAM
Naive Bayes model ClassificationNaiveBayes
Neural network model ClassificationNeuralNetwork
Support vector machine for one-class and binary
classification

ClassificationSVM

Output Arguments
CompactMdl — Compact machine learning model
compact regression model object | compact classification model object

Compact machine learning model, returned as one of the compact model objects in the following
tables, depending on the input model Mdl.

Regression Model Object

Model Full Model (Mdl) Compact Model (CompactMdl)
Gaussian process regression
(GPR) model

RegressionGP CompactRegressionGP

Generalized additive model RegressionGAM CompactRegressionGAM
Neural network model RegressionNeuralNetwork CompactRegressionNeuralN

etwork
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Classification Model Object

Model Full Model (Mdl) Compact Model (CompactMdl)
Generalized additive model ClassificationGAM CompactClassificationGAM
Naive Bayes model ClassificationNaiveBayes CompactClassificationNai

veBayes
Neural network model ClassificationNeuralNetw

ork
CompactClassificationNeu
ralNetwork

Support vector machine for one-
class and binary classification

ClassificationSVM CompactClassificationSVM

Version History
Introduced in R2014a

Extended Capabilities
GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

Usage notes and limitations:

• This function fully supports GPU arrays for a trained classification model specified as a
ClassificationSVM object.

For more information, see “Run MATLAB Functions on a GPU” (Parallel Computing Toolbox).

See Also
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compact
Class: ClassificationDiscriminant

Compact discriminant analysis classifier

Syntax
cobj = compact(obj)

Description
cobj = compact(obj) creates a compact version of obj.

Input Arguments
obj

Discriminant analysis classifier created using fitcdiscr.

Output Arguments
cobj

Compact classifier. cobj has class CompactClassificationDiscriminant. You can predict
classifications using cobj exactly as you can using obj. However, since cobj does not contain
training data, you cannot perform some actions, such as cross validation.

Examples
Compare the size of the discriminant analysis classifier for Fisher's iris data to the compact version of
the classifier:

load fisheriris
fullobj = fitcdiscr(meas,species);
cobj = compact(fullobj);
b = whos('fullobj'); % b.bytes = size of fullobj
c = whos('cobj'); % c.bytes = size of cobj
[b.bytes c.bytes] % shows cobj uses 60% of the memory

ans =
       18578       11498

See Also
ClassificationDiscriminant | fitcdiscr

Topics
“Discriminant Analysis Classification” on page 21-2
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compact
Reduce size of multiclass error-correcting output codes (ECOC) model

Syntax
CompactMdl = compact(Mdl)

Description
CompactMdl = compact(Mdl) returns a compact multiclass error-correcting output codes (ECOC)
model (CompactMdl), the compact version of the trained ECOC model Mdl. CompactMdl is a
CompactClassificationECOC object.

CompactMdl does not contain the training data, whereas Mdl contains the training data in its X and Y
properties. Therefore, although you can predict class labels using CompactMdl, you cannot perform
tasks such as cross-validation with the compact ECOC model.

Examples

Reduce Size of Full ECOC Model

Reduce the size of a full ECOC model by removing the training data. Full ECOC models
(ClassificationECOC models) hold the training data. To improve efficiency, use a smaller classifier.

Load Fisher's iris data set. Specify the predictor data X, the response data Y, and the order of the
classes in Y.

load fisheriris
X = meas;
Y = categorical(species);
classOrder = unique(Y);

Train an ECOC model using SVM binary classifiers. Standardize the predictor data using an SVM
template t, and specify the order of the classes. During training, the software uses default values for
empty options in t.

t = templateSVM('Standardize',true);
Mdl = fitcecoc(X,Y,'Learners',t,'ClassNames',classOrder);

Mdl is a ClassificationECOC model.

Reduce the size of the ECOC model.

CompactMdl = compact(Mdl)

CompactMdl = 
  CompactClassificationECOC
             ResponseName: 'Y'
    CategoricalPredictors: []
               ClassNames: [setosa    versicolor    virginica]
           ScoreTransform: 'none'
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           BinaryLearners: {3x1 cell}
             CodingMatrix: [3x3 double]

  Properties, Methods

CompactMdl is a CompactClassificationECOC model. CompactMdl does not store all of the
properties that Mdl stores. In particular, it does not store the training data.

Display the amount of memory each classifier uses.

whos('CompactMdl','Mdl')

  Name            Size            Bytes  Class                                                  Attributes

  CompactMdl      1x1             15116  classreg.learning.classif.CompactClassificationECOC              
  Mdl             1x1             28357  ClassificationECOC                                               

The full ECOC model (Mdl) is approximately double the size of the compact ECOC model
(CompactMdl).

To label new observations efficiently, you can remove Mdl from the MATLAB® Workspace, and then
pass CompactMdl and new predictor values to predict.

Input Arguments
Mdl — Full, trained multiclass ECOC model
ClassificationECOC model

Full, trained multiclass ECOC model, specified as a ClassificationECOC model trained with
fitcecoc.

Version History
Introduced in R2014b

Extended Capabilities
GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

This function fully supports GPU arrays. For more information, see “Run MATLAB Functions on a
GPU” (Parallel Computing Toolbox).

See Also
ClassificationECOC | CompactClassificationECOC | fitcecoc | predict
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compact
Compact classification ensemble

Syntax
cens = compact(ens)

Description
cens = compact(ens) creates a compact version of ens. You can predict classifications using cens
exactly as you can using ens. However, since cens does not contain training data, you cannot
perform some actions, such as cross validation.

Input Arguments
ens

A classification ensemble created with fitcensemble.

Output Arguments
cens

A compact classification ensemble. cens has class CompactClassificationEnsemble.

Examples
View Size of Compact Classification Ensemble

Compare the size of a classification ensemble for the Fisher iris data to the compact version of the
ensemble.

Load the Fisher iris data set.

load fisheriris

Train an ensemble of 100 boosted classification trees using AdaBoostM2.

t = templateTree('MaxNumSplits',1); % Weak learner template tree object
ens = fitcensemble(meas,species,'Method','AdaBoostM2','Learners',t);

Create a compact version of ens and compare ensemble sizes.

cens = compact(ens);
b = whos('ens');  % b.bytes = size of ens
c = whos('cens'); % c.bytes = size of cens
[b.bytes c.bytes] % Shows cens uses less memory

ans = 1×2
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      447388      406462

The compact version of the ensemble uses less memory than the full ensemble. Note that the
ensemble sizes can vary slightly, depending on your operating system.

Extended Capabilities
GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

This function fully supports GPU arrays. For more information, see “Run MATLAB Functions on a
GPU” (Parallel Computing Toolbox).

See Also
ClassificationTree | fitcensemble

Topics
“Framework for Ensemble Learning” on page 19-33

 compact

35-829



compact
Class: ClassificationTree

Compact tree

Syntax
ctree = compact(tree)

Description
ctree = compact(tree) creates a compact version of tree.

Input Arguments
tree

A classification tree created using fitctree.

Output Arguments
ctree

A compact decision tree. ctree has class CompactClassificationTree. You can predict
classifications using ctree exactly as you can using tree. However, since ctree does not contain
training data, you cannot perform some actions, such as cross validation.

Examples

Create a Compact Classification Tree

Compare the size of the classification tree for Fisher's iris data to the compact version of the tree.

load fisheriris
fulltree = fitctree(meas,species);
ctree = compact(fulltree);
b = whos('fulltree'); % b.bytes = size of fulltree
c = whos('ctree'); % c.bytes = size of ctree
[b.bytes c.bytes] % shows ctree uses half the memory

ans = 1×2

       11762        5097
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Extended Capabilities
GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

This function fully supports GPU arrays. For more information, see “Run MATLAB Functions on a
GPU” (Parallel Computing Toolbox).

See Also
CompactClassificationTree | ClassificationTree | fitctree | predict
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compact
Compact linear regression model

Syntax
compactMdl = compact(mdl)

Description
compactMdl = compact(mdl) returns the compact linear regression model compactMdl, which is
the compact version of the full, fitted linear regression model mdl.

Examples

Compact Linear Regression Model

Fit a linear regression model to data and reduce the size of a full, fitted linear regression model by
discarding the sample data and some information related to the fitting process.

Load the largedata4reg data set, which contains 15,000 observations and 45 predictor variables.

load largedata4reg

Fit a linear regression model to the data.

mdl = fitlm(X,Y);

Compact the model.

compactMdl = compact(mdl);

The compact model discards the original sample data and some information related to the fitting
process.

Compare the size of the full model mdl and the compact model compactMdl.

vars = whos('compactMdl','mdl');
[vars(1).bytes,vars(2).bytes]

ans = 1×2

       81538    11409065

The compact model consumes less memory than the full model.

Input Arguments
mdl — Linear regression model
LinearModel object
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Linear regression model, specified as a LinearModel object created using fitlm or stepwiselm.

Output Arguments
compactMdl — Compact linear regression model
CompactLinearModel object

Compact linear regression model, returned as a CompactLinearModel object.

A CompactLinearModel object consumes less memory than a LinearModel object because a
compact model does not store the input data used to fit the model or information related to the fitting
process. You can still use a compact model to predict responses using new input data, but some
LinearModel object functions do not work with a compact model.

Version History
Introduced in R2016a

Extended Capabilities
GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

This function fully supports GPU arrays. For more information, see “Run MATLAB Functions on a
GPU” (Parallel Computing Toolbox).

See Also
CompactLinearModel | LinearModel | fitlm | stepwiselm

Topics
“Linear Regression Workflow” on page 11-35
“Interpret Linear Regression Results” on page 11-52
“Linear Regression” on page 11-9
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compact
Compact generalized linear regression model

Syntax
compactMdl = compact(mdl)

Description
compactMdl = compact(mdl) returns the compact generalized linear regression model
compactMdl, which is the compact version of the full, fitted generalized linear regression model mdl.

Examples

Compact Generalized Linear Regression Model

Fit a generalized linear regression model to data and reduce the size of a full, fitted model by
discarding the sample data and some information related to the fitting process.

Load the largedata4reg data set, which contains 15,000 observations and 45 predictor variables.

load largedata4reg

Fit a generalized linear regression model to the data using the first 15 predictor variables.

mdl = fitglm(X(:,1:15),Y);

Compact the model.

compactMdl = compact(mdl);

The compact model discards the original sample data and some information related to the fitting
process, so it uses less memory than the full model.

Compare the size of the full model mdl and the compact model compactMdl.

vars = whos('compactMdl','mdl');
[vars(1).bytes,vars(2).bytes]

ans = 1×2

       15518     4382501

The compact model consumes less memory than the full model.

Input Arguments
mdl — Generalized linear regression model
GeneralizedLinearModel object
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Generalized linear regression model, specified as a GeneralizedLinearModel object created using
fitglm or stepwiseglm.

Output Arguments
compactMdl — Compact generalized linear regression model
CompactGeneralizedLinearModel object

Compact generalized linear regression model, returned as a CompactGeneralizedLinearModel
object.

A CompactGeneralizedLinearModel object consumes less memory than a
GeneralizedLinearModel object because a compact model does not store the input data used to fit
the model or information related to the fitting process. You can still use a compact model to predict
responses using new input data, but some GeneralizedLinearModel object functions that require
the input data do not work with a compact model.

Version History
Introduced in R2016b

Extended Capabilities
GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

This function fully supports GPU arrays. For more information, see “Run MATLAB Functions on a
GPU” (Parallel Computing Toolbox).

See Also
CompactGeneralizedLinearModel | GeneralizedLinearModel | fitglm | stepwiseglm
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compact
Create compact regression ensemble

Syntax
cens = compact(ens)

Description
cens = compact(ens) creates a compact version of ens. You can predict regressions using cens
exactly as you can using ens. However, since cens does not contain training data, you cannot
perform some actions, such as cross validation.

Input Arguments
ens

A regression ensemble created with fitrensemble.

Output Arguments
cens

A compact regression ensemble. cens is of class CompactRegressionEnsemble.

Examples
View Size of Compact Regression Ensemble

Compare the size of a regression ensemble for the carsmall data to the size of the compact version
of the ensemble.

Load the carsmall data set and select acceleration, number of cylinders, displacement, horsepower,
and vehicle weight as predictors.

load carsmall
X = [Acceleration Cylinders Displacement Horsepower Weight];

Train an ensemble of regression trees.

ens = fitrensemble(X,MPG);

Create a compact version of ens and compare ensemble sizes.

cens = compact(ens);
b = whos('ens'); 
c = whos('cens');  
[b.bytes c.bytes]  % b.bytes = size of ens and c.bytes = size of cens

ans = 1×2
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      483838      451479

The compact ensemble uses less memory.

Extended Capabilities
GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

This function fully supports GPU arrays. For more information, see “Run MATLAB Functions on a
GPU” (Parallel Computing Toolbox).

See Also
RegressionEnsemble | CompactRegressionEnsemble
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compact
Class: RegressionSVM

Compact support vector machine regression model

Syntax
compactMdl = compact(mdl)

Description
compactMdl = compact(mdl) returns a compact support vector machine (SVM) regression model,
compactMdl, which is the compact version of the full, trained SVM regression model mdl.

compactMdl does not contain the training data, whereas mdl contains the training data in its
properties mdl.X and mdl.Y.

Input Arguments
mdl — Full, trained SVM regression model
RegressionSVM model

Full, trained SVM regression model, specified as a RegressionSVM model returned by fitrsvm.

Output Arguments
compactMdl — Compact SVM regression model
CompactRegressionSVM model

Compact SVM regression model, returned as a CompactRegressionSVM model.

Predict response values using compactMdl exactly as you would using mdl. However, since
compactMdl does not contain training data, you cannot perform certain tasks, such as cross
validation.

Examples

Compact an SVM Regression Model

This example shows how to reduce the size of a full, trained SVM regression model by discarding the
training data and some information related to the training process.

This example uses the abalone data from the UCI Machine Learning Repository. Download the data
and save it in your current directory with the name 'abalone.data'. Read the data into a table.

tbl = readtable('abalone.data','Filetype','text','ReadVariableNames',false);
rng default  % for reproducibility
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The sample data contains 4177 observations. All of the predictor variables are continuous except for
sex, which is a categorical variable with possible values 'M' (for males), 'F' (for females), and 'I'
(for infants). The goal is to predict the number of rings on the abalone, and thereby determine its age,
using physical measurements.

Train an SVM regression model using a Gaussian kernel function and an automatic kernel scale.
Standardize the data.

mdl = fitrsvm(tbl,'Var9','KernelFunction','gaussian','KernelScale','auto','Standardize',true)

mdl = 

  RegressionSVM
           PredictorNames: {1x8 cell}
             ResponseName: 'Var9'
    CategoricalPredictors: 1
        ResponseTransform: 'none'
                    Alpha: [3635x1 double]
                     Bias: 10.8144
         KernelParameters: [1x1 struct]
                       Mu: [1x10 double]
                    Sigma: [1x10 double]
          NumObservations: 4177
           BoxConstraints: [4177x1 double]
          ConvergenceInfo: [1x1 struct]
          IsSupportVector: [4177x1 logical]
                   Solver: 'SMO'

  Properties, Methods

Compact the model.

compactMdl = compact(mdl)

compactMdl = 

  classreg.learning.regr.CompactRegressionSVM
           PredictorNames: {1x8 cell}
             ResponseName: 'Var9'
    CategoricalPredictors: 1
        ResponseTransform: 'none'
                    Alpha: [3635x1 double]
                     Bias: 10.8144
         KernelParameters: [1x1 struct]
                       Mu: [1x10 double]
                    Sigma: [1x10 double]
           SupportVectors: [3635x10 double]

  Properties, Methods

The compacted model discards the training data and some information related to the training
process.

Compare the size of the full model mdl and the compact model compactMdl.

vars = whos('compactMdl','mdl');
[vars(1).bytes,vars(2).bytes]
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ans =

      323793      775968

The compacted model consumes about half the memory of the full model.

Reduce Memory Consumption of SVM Regression Model

This example shows how to reduce the memory consumption of a full, trained SVM regression model
by compacting the model and discarding the support vectors.

Load the carsmall sample data.

load carsmall
rng default  % for reproducibility

Train a linear SVM regression model using Weight as the predictor variable and MPG as the response
variable. Standardize the data.

mdl = fitrsvm(Weight,MPG,'Standardize',true);

Note that MPG contains several NaN values. When training a model, fitrsvm will remove rows that
contain NaN values from both the predictor and response data. As a result, the trained model uses
only 94 of the 100 total observations contained in the sample data.

Compact the regression model to discard the training data and some information related to the
training process.

compactMdl = compact(mdl);

compactMdl is a CompactRegressionSVM model that has the same parameters, support vectors,
and related estimates as mdl, but no longer stores the training data.

Discard the support vectors and related estimates for the compacted model.

mdlOut = discardSupportVectors(compactMdl);

mdlOut is a CompactRegressionSVM model that has the same parameters as mdl and compactMdl,
but no longer stores the support vectors and related estimates.

Compare the sizes of the three SVM regression models, compactMdl, mdl, and mdlOut.

vars = whos('compactMdl','mdl','mdlOut');
[vars(1).bytes,vars(2).bytes,vars(3).bytes]

ans =

        3601       13727        2305
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The compacted model compactMdl consumes 3601 bytes of memory, while the full model mdl
consumes 13727 bytes of memory. The model mdlOut, which also discards the support vectors,
consumes 2305 bytes of memory.

Version History
Introduced in R2015b

References

[1] Nash, W.J., T. L. Sellers, S. R. Talbot, A. J. Cawthorn, and W. B. Ford. "The Population Biology of
Abalone (Haliotis species) in Tasmania. I. Blacklip Abalone (H. rubra) from the North Coast
and Islands of Bass Strait." Sea Fisheries Division, Technical Report No. 48, 1994.

[2] Waugh, S. "Extending and Benchmarking Cascade-Correlation: Extensions to the Cascade-
Correlation Architecture and Benchmarking of Feed-forward Supervised Artificial Neural
Networks." University of Tasmania Department of Computer Science thesis, 1995.

[3] Clark, D., Z. Schreter, A. Adams. "A Quantitative Comparison of Dystal and Backpropagation."
submitted to the Australian Conference on Neural Networks, 1996.

[4] Lichman, M. UCI Machine Learning Repository, [http://archive.ics.uci.edu/ml]. Irvine, CA:
University of California, School of Information and Computer Science.

See Also
fitrsvm | RegressionSVM | CompactRegressionSVM
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compact
Class: RegressionTree

Compact regression tree

Syntax
ctree = compact(tree)

Description
ctree = compact(tree) creates a compact version of tree.

Input Arguments
tree

A regression tree created using fitrtree.

Output Arguments
ctree

A compact regression tree. ctree has class CompactRegressionTree. You can predict regressions
using ctree exactly as you can using tree. However, since ctree does not contain training data,
you cannot perform some actions, such as cross validation.

Examples

Reduce Memory Consumption of Regression Tree Model

Compare the size of a full regression tree model to the compacted model.

Load the carsmall data set. Consider Acceleration, Displacement, Horsepower, and Weight
as predictor variables.

load carsmall
X = [Acceleration Cylinders Displacement Horsepower Weight];

Grow a regression tree using the entire data set.

Mdl = fitrtree(X,MPG)

Mdl = 
  RegressionTree
             ResponseName: 'Y'
    CategoricalPredictors: []
        ResponseTransform: 'none'
          NumObservations: 94
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  Properties, Methods

Mdl is a RegressionTree model. It is a full model, that is, it stores information such as the predictor
and response data fitrtree used in training. For a properties list of full regression tree models, see
RegressionTree.

Create a compact version of the full regression tree. That is, one that contains enough information to
make predictions only.

CMdl = compact(Mdl)

CMdl = 
  CompactRegressionTree
             ResponseName: 'Y'
    CategoricalPredictors: []
        ResponseTransform: 'none'

  Properties, Methods

CMdl is a CompactRegressionTree model. For a properties list of compact regression tree models,
see CompactRegressionTree.

Inspect the amounts of memory that the full and compact regression trees consume.

mdlInfo = whos('Mdl');
cMdlInfo = whos('CMdl');
[mdlInfo.bytes cMdlInfo.bytes]

ans = 1×2

       12401        6898

cMdlInfo.bytes/mdlInfo.bytes

ans = 0.5562

In this case, the compact regression tree model uses approximately half the memory that the full
model uses.

Extended Capabilities
GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

This function fully supports GPU arrays. For more information, see “Run MATLAB Functions on a
GPU” (Parallel Computing Toolbox).

See Also
CompactRegressionTree | RegressionTree | predict | fitrtree
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compact
Compact ensemble of decision trees

Description
CMdl = compact(Mdl) creates a compact version of Mdl, a TreeBagger model object. You can
predict regressions using CMdl exactly as you can using Mdl. However, since CMdl does not contain
training data, you cannot perform some actions, such as make out-of-bag predictions using
oobPredict.

Input Arguments
Mdl

A regression ensemble created with TreeBagger.

Output Arguments
CMdl

A compact regression ensemble. CMdl is of class CompactTreeBagger.

Examples

Reduce Size of Ensemble of Bagged Trees

Reduce the size of a full ensemble of bagged classification trees by removing the training data and
parameters. Then, use the compact ensemble object to make predictions on new data. Using a
compact ensemble improves memory efficiency.

Load the ionosphere data set.

load ionosphere

Set the random number generator to default for reproducibility.

rng("default")

Train an ensemble of 100 bagged classification trees using the entire data set. By default,
TreeBagger grows deep trees.

Mdl = TreeBagger(100,X,Y,...
    Method="classification");

Mdl is a TreeBagger ensemble for classification trees.

Create a compact version of Mdl.

CMdl = compact(Mdl)
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CMdl = 
  CompactTreeBagger
Ensemble with 100 bagged decision trees:
              Method:       classification
       NumPredictors:                   34
          ClassNames: 'b' 'g'

  Properties, Methods

CMdl is a CompactTreeBagger ensemble for classification trees.

Display the amount of memory used by each ensemble.

whos("Mdl","CMdl")

  Name      Size              Bytes  Class                Attributes

  CMdl      1x1              976936  CompactTreeBagger              
  Mdl       1x1             1115742  TreeBagger                     

Mdl takes up more space than CMdl.

The CMdl.Trees property is a 100-by-1 cell vector that contains the trained classification trees for
the ensemble. Each tree is a CompactClassificationTree object. View the graphical display of
the first trained classification tree.

view(CMdl.Trees{1},Mode="graph");
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Predict the label of the mean of X by using the compact ensemble.

predMeanX = predict(CMdl,mean(X))

predMeanX = 1x1 cell array
    {'g'}

See Also
error | CompactTreeBagger | predict

Topics
“Bootstrap Aggregation (Bagging) of Regression Trees Using TreeBagger” on page 19-114
“Bootstrap Aggregation (Bagging) of Classification Trees Using TreeBagger” on page 19-125
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CompactClassificationDiscriminant
Package: classreg.learning.classif

Compact discriminant analysis class

Description
A CompactClassificationDiscriminant object is a compact version of a discriminant analysis
classifier. The compact version does not include the data for training the classifier. Therefore, you
cannot perform some tasks with a compact classifier, such as cross validation. Use a compact
classifier for making predictions (classifications) of new data.

Construction
cobj = compact(obj) constructs a compact classifier from a full classifier.

cobj = makecdiscr(Mu,Sigma) constructs a compact discriminant analysis classifier from the
class means Mu and covariance matrix Sigma. For syntax details, see makecdiscr.

Input Arguments

obj

Discriminant analysis classifier, created using fitcdiscr.

Properties
BetweenSigma

p-by-p matrix, the between-class covariance, where p is the number of predictors.

CategoricalPredictors

Categorical predictor indices, which is always empty ([]) .

ClassNames

List of the elements in the training data Y with duplicates removed. ClassNames can be a categorical
array, cell array of character vectors, character array, logical vector, or a numeric vector.
ClassNames has the same data type as the data in the argument Y. (The software treats string arrays
as cell arrays of character vectors.)

Coeffs

k-by-k structure of coefficient matrices, where k is the number of classes. Coeffs(i,j) contains
coefficients of the linear or quadratic boundaries between classes i and j. Fields in Coeffs(i,j):

• DiscrimType
• Class1 — ClassNames(i)
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• Class2 — ClassNames(j)
• Const — A scalar
• Linear — A vector with p components, where p is the number of columns in X
• Quadratic — p-by-p matrix, exists for quadratic DiscrimType

The equation of the boundary between class i and class j is

Const + Linear * x + x' * Quadratic * x = 0,

where x is a column vector of length p.

If fitcdiscr had the FillCoeffs name-value pair set to 'off' when constructing the classifier,
Coeffs is empty ([]).

Cost

Square matrix, where Cost(i,j) is the cost of classifying a point into class j if its true class is i
(i.e., the rows correspond to the true class and the columns correspond to the predicted class). The
order of the rows and columns of Cost corresponds to the order of the classes in ClassNames. The
number of rows and columns in Cost is the number of unique classes in the response.

Change a Cost matrix using dot notation: obj.Cost = costMatrix.

Delta

Value of the Delta threshold for a linear discriminant model, a nonnegative scalar. If a coefficient of
obj has magnitude smaller than Delta, obj sets this coefficient to 0, and so you can eliminate the
corresponding predictor from the model. Set Delta to a higher value to eliminate more predictors.

Delta must be 0 for quadratic discriminant models.

Change Delta using dot notation: obj.Delta = newDelta.

DeltaPredictor

Row vector of length equal to the number of predictors in obj. If DeltaPredictor(i) < Delta
then coefficient i of the model is 0.

If obj is a quadratic discriminant model, all elements of DeltaPredictor are 0.

DiscrimType

Character vector specifying the discriminant type. One of:

• 'linear'
• 'quadratic'
• 'diagLinear'
• 'diagQuadratic'
• 'pseudoLinear'
• 'pseudoQuadratic'

Change DiscrimType using dot notation: obj.DiscrimType = newDiscrimType.
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You can change between linear types, or between quadratic types, but cannot change between linear
and quadratic types.

Gamma

Value of the Gamma regularization parameter, a scalar from 0 to 1. Change Gamma using dot notation:
obj.Gamma = newGamma.

• If you set 1 for linear discriminant, the discriminant sets its type to 'diagLinear'.
• If you set a value between MinGamma and 1 for linear discriminant, the discriminant sets its type

to 'linear'.
• You cannot set values below the value of the MinGamma property.
• For quadratic discriminant, you can set either 0 (for DiscrimType 'quadratic') or 1 (for

DiscrimType 'diagQuadratic').

LogDetSigma

Logarithm of the determinant of the within-class covariance matrix. The type of LogDetSigma
depends on the discriminant type:

• Scalar for linear discriminant analysis
• Vector of length K for quadratic discriminant analysis, where K is the number of classes

MinGamma

Nonnegative scalar, the minimal value of the Gamma parameter so that the correlation matrix is
invertible. If the correlation matrix is not singular, MinGamma is 0.

Mu

Class means, specified as a K-by-p matrix of scalar values class means of size. K is the number of
classes, and p is the number of predictors. Each row of Mu represents the mean of the multivariate
normal distribution of the corresponding class. The class indices are in the ClassNames attribute.

PredictorNames

Cell array of names for the predictor variables, in the order in which they appear in the training data
X.

Prior

Numeric vector of prior probabilities for each class. The order of the elements of Prior corresponds
to the order of the classes in ClassNames.

Add or change a Prior vector using dot notation: obj.Prior = priorVector.

ResponseName

Character vector describing the response variable Y.

ScoreTransform

Character vector representing a built-in transformation function, or a function handle for
transforming scores. 'none' means no transformation; equivalently, 'none' means @(x)x. For a list
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of built-in transformation functions and the syntax of custom transformation functions, see
fitcdiscr.

Implement dot notation to add or change a ScoreTransform function using one of the following:

• cobj.ScoreTransform = 'function'
• cobj.ScoreTransform = @function

Sigma

Within-class covariance matrix or matrices. The dimensions depend on DiscrimType:

• 'linear' (default) — Matrix of size p-by-p, where p is the number of predictors
• 'quadratic' — Array of size p-by-p-by-K, where K is the number of classes
• 'diagLinear' — Row vector of length p
• 'diagQuadratic' — Array of size 1-by-p-by-K
• 'pseudoLinear' — Matrix of size p-by-p
• 'pseudoQuadratic' — Array of size p-by-p-by-K

Object Functions
compareHoldout Compare accuracies of two classification models using new data
edge Classification edge
lime Local interpretable model-agnostic explanations (LIME)
logp Log unconditional probability density for discriminant analysis classifier
loss Classification error
mahal Mahalanobis distance to class means of discriminant analysis classifier
margin Classification margins
nLinearCoeffs Number of nonzero linear coefficients
partialDependence Compute partial dependence
plotPartialDependence Create partial dependence plot (PDP) and individual conditional expectation

(ICE) plots
predict Predict labels using discriminant analysis classification model
shapley Shapley values

Copy Semantics
Value. To learn how value classes affect copy operations, see Copying Objects.

Examples

Construct a Compact Discriminant Analysis Classifier

Load the sample data.

load fisheriris

Construct a discriminant analysis classifier for the sample data.

fullobj = fitcdiscr(meas,species);
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Construct a compact discriminant analysis classifier, and compare its size to that of the full classifier.

cobj = compact(fullobj);
b = whos('fullobj'); % b.bytes = size of fullobj
c = whos('cobj'); % c.bytes = size of cobj
[b.bytes c.bytes] % shows cobj uses 60% of the memory

ans = 1×2

       18291       11678

The compact classifier is smaller than the full classifier.

Construct Classifier Using Means and Covariances

Construct a compact discriminant analysis classifier from the means and covariances of the Fisher
iris data.

load fisheriris
mu(1,:) = mean(meas(1:50,:));
mu(2,:) = mean(meas(51:100,:));
mu(3,:) = mean(meas(101:150,:));

mm1 = repmat(mu(1,:),50,1);
mm2 = repmat(mu(2,:),50,1);
mm3 = repmat(mu(3,:),50,1);
cc = meas;
cc(1:50,:) = cc(1:50,:) - mm1;
cc(51:100,:) = cc(51:100,:) - mm2;
cc(101:150,:) = cc(101:150,:) - mm3;
sigstar = cc' * cc / 147;
cpct = makecdiscr(mu,sigstar,...
    'ClassNames',{'setosa','versicolor','virginica'});

More About
Discriminant Classification

The model for discriminant analysis is:

• Each class (Y) generates data (X) using a multivariate normal distribution. That is, the model
assumes X has a Gaussian mixture distribution (gmdistribution).

• For linear discriminant analysis, the model has the same covariance matrix for each class, only
the means vary.

• For quadratic discriminant analysis, both means and covariances of each class vary.

predict classifies so as to minimize the expected classification cost:

y = argmin
y = 1, ..., K

∑
k = 1

K
P k x C y k ,
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where

• y  is the predicted classification.
• K is the number of classes.
• P k x  is the posterior probability on page 21-6 of class k for observation x.
• C y k  is the cost on page 21-7 of classifying an observation as y when its true class is k.

For details, see “Prediction Using Discriminant Analysis Models” on page 21-6.

Regularization

Regularization is the process of finding a small set of predictors that yield an effective predictive
model. For linear discriminant analysis, there are two parameters, γ and δ, that control regularization
as follows. cvshrink helps you select appropriate values of the parameters.

Let Σ represent the covariance matrix of the data X, and let X  be the centered data (the data X minus
the mean by class). Define

D = diag X T * X .

The regularized covariance matrix Σ is

Σ = 1− γ Σ + γD .

Whenever γ ≥ MinGamma, Σ is nonsingular.

Let μk be the mean vector for those elements of X in class k, and let μ0 be the global mean vector (the
mean of the rows of X). Let C be the correlation matrix of the data X, and let C be the regularized
correlation matrix:

C = 1− γ C + γI,

where I is the identity matrix.

The linear term in the regularized discriminant analysis classifier for a data point x is

x− μ0
TΣ−1 μk− μ0 = x− μ0

TD−1/2 C−1D−1/2 μk− μ0 .

The parameter δ enters into this equation as a threshold on the final term in square brackets. Each
component of the vector C−1D−1/2 μk− μ0  is set to zero if it is smaller in magnitude than the
threshold δ. Therefore, for class k, if component j is thresholded to zero, component j of x does not
enter into the evaluation of the posterior probability.

The DeltaPredictor property is a vector related to this threshold. When
δ ≥ DeltaPredictor(i), all classes k have

C−1D−1/2 μk− μ0 ≤ δ .

Therefore, when δ ≥ DeltaPredictor(i), the regularized classifier does not use predictor i.
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Version History
Introduced in R2011b

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• The predict function supports code generation.
• When you train a discriminant analysis model by using fitcdiscr or create a compact

discriminant analysis model by using makecdiscr, the value of the 'ScoreTransform' name-
value pair argument cannot be an anonymous function.

For more information, see “Introduction to Code Generation” on page 34-2.

See Also
ClassificationDiscriminant | compact | makecdiscr | fitcdiscr | predict |
compareHoldout

Topics
“Discriminant Analysis Classification” on page 21-2
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CompactClassificationECOC
Compact multiclass model for support vector machines (SVMs) and other classifiers

Description
CompactClassificationECOC is a compact version of the multiclass error-correcting output codes
(ECOC) model. The compact classifier does not include the data used for training the multiclass
ECOC model. Therefore, you cannot perform certain tasks, such as cross-validation, using the
compact classifier. Use a compact multiclass ECOC model for tasks such as classifying new data
(predict).

Creation
You can create a CompactClassificationECOC model in two ways:

• Create a compact ECOC model from a trained ClassificationECOC model by using the
compact object function.

• Create a compact ECOC model by using the fitcecoc function and specifying the 'Learners'
name-value pair argument as 'linear', 'kernel', a templateLinear or templateKernel
object, or a cell array of such objects.

Properties
After you create a CompactClassificationECOC model object, you can use dot notation to access
its properties. For an example, see “Train and Cross-Validate ECOC Classifier” on page 35-859.

ECOC Properties

BinaryLearners — Trained binary learners
cell vector of model objects

Trained binary learners, specified as a cell vector of model objects. The number of binary learners
depends on the number of classes in Y and the coding design.

The software trains BinaryLearner{j} according to the binary problem specified by
CodingMatrix(:,j). For example, for multiclass learning using SVM learners, each element of
BinaryLearners is a CompactClassificationSVM classifier.
Data Types: cell

BinaryLoss — Binary learner loss function
'binodeviance' | 'exponential' | 'hamming' | 'hinge' | 'linear' | 'logit' | 'quadratic'

Binary learner loss function, specified as a character vector representing the loss function name.

The default BinaryLoss value depends on the score ranges returned by the binary learners. This
table identifies what some default BinaryLoss values are when you use the default score transform
(ScoreTransform property of the model is 'none').
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Assumption Default Value
All binary learners are any of the following:

• Classification decision trees
• Discriminant analysis models
• k-nearest neighbor models
• Linear or kernel classification models of logistic regression

learners
• Naive Bayes models

'quadratic'

All binary learners are SVMs or linear or kernel classification
models of SVM learners.

'hinge'

All binary learners are ensembles trained by AdaboostM1 or
GentleBoost.

'exponential'

All binary learners are ensembles trained by LogitBoost. 'binodeviance'
You specify to predict class posterior probabilities by setting
'FitPosterior',true in fitcecoc.

'quadratic'

Binary learners are heterogeneous and use different loss functions. 'hamming'

To check the default value, use dot notation to display the BinaryLoss property of the trained model
at the command line.

To potentially increase accuracy, specify a binary loss function other than the default during a
prediction or loss computation by using the BinaryLoss name-value argument of predict or loss.
For more information, see “Binary Loss” on page 35-5763.
Data Types: char

CodingMatrix — Class assignment codes
numeric matrix

Class assignment codes for the binary learners, specified as a numeric matrix. CodingMatrix is a K-
by-L matrix, where K is the number of classes and L is the number of binary learners.

The elements of CodingMatrix are –1, 0, and 1, and the values correspond to dichotomous class
assignments. This table describes how learner j assigns observations in class i to a dichotomous
class corresponding to the value of CodingMatrix(i,j).

Value Dichotomous Class Assignment
–1 Learner j assigns observations in class i to a negative class.
0 Before training, learner j removes observations in class i from the

data set.
1 Learner j assigns observations in class i to a positive class.

Data Types: double | single | int8 | int16 | int32 | int64

LearnerWeights — Binary learner weights
numeric row vector

Binary learner weights, specified as a numeric row vector. The length of LearnerWeights is equal to
the number of binary learners (length(Mdl.BinaryLearners)).
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LearnerWeights(j) is the sum of the observation weights that binary learner j uses to train its
classifier.

The software uses LearnerWeights to fit posterior probabilities by minimizing the Kullback-Leibler
divergence. The software ignores LearnerWeights when it uses the quadratic programming method
of estimating posterior probabilities.
Data Types: double | single

Other Classification Properties

CategoricalPredictors — Categorical predictor indices
vector of positive integers | []

Categorical predictor indices, specified as a vector of positive integers. CategoricalPredictors
contains index values indicating that the corresponding predictors are categorical. The index values
are between 1 and p, where p is the number of predictors used to train the model. If none of the
predictors are categorical, then this property is empty ([]).
Data Types: single | double

ClassNames — Unique class labels
categorical array | character array | logical vector | numeric vector | cell array of character vectors

Unique class labels used in training, specified as a categorical or character array, logical or numeric
vector, or cell array of character vectors. ClassNames has the same data type as the class labels Y.
(The software treats string arrays as cell arrays of character vectors.) ClassNames also determines
the class order.
Data Types: categorical | char | logical | single | double | cell

Cost — Misclassification costs
square numeric matrix

This property is read-only.

Misclassification costs, specified as a square numeric matrix. Cost has K rows and columns, where K
is the number of classes.

Cost(i,j) is the cost of classifying a point into class j if its true class is i. The order of the rows
and columns of Cost corresponds to the order of the classes in ClassNames.
Data Types: double

PredictorNames — Predictor names
cell array of character vectors

Predictor names in order of their appearance in the predictor data, specified as a cell array of
character vectors. The length of PredictorNames is equal to the number of variables in the training
data X or Tbl used as predictor variables.
Data Types: cell

ExpandedPredictorNames — Expanded predictor names
cell array of character vectors

Expanded predictor names, specified as a cell array of character vectors.
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If the model uses encoding for categorical variables, then ExpandedPredictorNames includes the
names that describe the expanded variables. Otherwise, ExpandedPredictorNames is the same as
PredictorNames.
Data Types: cell

Prior — Prior class probabilities
numeric vector

This property is read-only.

Prior class probabilities, specified as a numeric vector. Prior has as many elements as the number of
classes in ClassNames, and the order of the elements corresponds to the order of the classes in
ClassNames.

fitcecoc incorporates misclassification costs differently among different types of binary learners.
Data Types: double

ResponseName — Response variable name
character vector

Response variable name, specified as a character vector.
Data Types: char

ScoreTransform — Score transformation function to apply to predicted scores
'doublelogit' | 'invlogit' | 'ismax' | 'logit' | 'none' | function handle | ...

Score transformation function to apply to predicted scores, specified as a function name or function
handle.

To change the score transformation function to function, for example, use dot notation.

• For a built-in function, enter this code and replace function with a value in the table.

Mdl.ScoreTransform = 'function';

Value Description
"doublelogit" 1/(1 + e–2x)
"invlogit" log(x / (1 – x))
"ismax" Sets the score for the class with the largest score to

1, and sets the scores for all other classes to 0
"logit" 1/(1 + e–x)
"none" or "identity" x (no transformation)
"sign" –1 for x < 0

0 for x = 0
1 for x > 0

"symmetric" 2x – 1
"symmetricismax" Sets the score for the class with the largest score to

1, and sets the scores for all other classes to –1
"symmetriclogit" 2/(1 + e–x) – 1
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• For a MATLAB function or a function that you define, enter its function handle.

Mdl.ScoreTransform = @function;

function must accept a matrix (the original scores) and return a matrix of the same size (the
transformed scores).

Data Types: char | function_handle

Object Functions
compareHoldout Compare accuracies of two classification models using new data
discardSupportVectors Discard support vectors of linear SVM binary learners in ECOC model
edge Classification edge for multiclass error-correcting output codes (ECOC)

model
gather Gather properties of Statistics and Machine Learning Toolbox object from

GPU
incrementalLearner Convert multiclass error-correcting output codes (ECOC) model to

incremental learner
lime Local interpretable model-agnostic explanations (LIME)
loss Classification loss for multiclass error-correcting output codes (ECOC)

model
margin Classification margins for multiclass error-correcting output codes (ECOC)

model
partialDependence Compute partial dependence
plotPartialDependence Create partial dependence plot (PDP) and individual conditional expectation

(ICE) plots
predict Classify observations using multiclass error-correcting output codes (ECOC)

model
shapley Shapley values
selectModels Choose subset of multiclass ECOC models composed of binary

ClassificationLinear learners
update Update model parameters for code generation

Examples

Reduce Size of Full ECOC Model

Reduce the size of a full ECOC model by removing the training data. Full ECOC models
(ClassificationECOC models) hold the training data. To improve efficiency, use a smaller classifier.

Load Fisher's iris data set. Specify the predictor data X, the response data Y, and the order of the
classes in Y.

load fisheriris
X = meas;
Y = categorical(species);
classOrder = unique(Y);

Train an ECOC model using SVM binary classifiers. Standardize the predictor data using an SVM
template t, and specify the order of the classes. During training, the software uses default values for
empty options in t.
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t = templateSVM('Standardize',true);
Mdl = fitcecoc(X,Y,'Learners',t,'ClassNames',classOrder);

Mdl is a ClassificationECOC model.

Reduce the size of the ECOC model.

CompactMdl = compact(Mdl)

CompactMdl = 
  CompactClassificationECOC
             ResponseName: 'Y'
    CategoricalPredictors: []
               ClassNames: [setosa    versicolor    virginica]
           ScoreTransform: 'none'
           BinaryLearners: {3x1 cell}
             CodingMatrix: [3x3 double]

  Properties, Methods

CompactMdl is a CompactClassificationECOC model. CompactMdl does not store all of the
properties that Mdl stores. In particular, it does not store the training data.

Display the amount of memory each classifier uses.

whos('CompactMdl','Mdl')

  Name            Size            Bytes  Class                                                  Attributes

  CompactMdl      1x1             15116  classreg.learning.classif.CompactClassificationECOC              
  Mdl             1x1             28357  ClassificationECOC                                               

The full ECOC model (Mdl) is approximately double the size of the compact ECOC model
(CompactMdl).

To label new observations efficiently, you can remove Mdl from the MATLAB® Workspace, and then
pass CompactMdl and new predictor values to predict.

Train and Cross-Validate ECOC Classifier

Train and cross-validate an ECOC classifier using different binary learners and the one-versus-all
coding design.

Load Fisher's iris data set. Specify the predictor data X and the response data Y. Determine the class
names and the number of classes.

load fisheriris
X = meas;
Y = species;
classNames = unique(species(~strcmp(species,''))) % Remove empty classes 

classNames = 3x1 cell
    {'setosa'    }
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    {'versicolor'}
    {'virginica' }

K = numel(classNames) % Number of classes

K = 3

You can use classNames to specify the order of the classes during training.

For a one-versus-all coding design, this example has K = 3 binary learners. Specify templates for the
binary learners such that:

• Binary learner 1 and 2 are naive Bayes classifiers. By default, each predictor is conditionally,
normally distributed given its label.

• Binary learner 3 is an SVM classifier. Specify to use the Gaussian kernel.

rng(1);  % For reproducibility
tNB = templateNaiveBayes();
tSVM = templateSVM('KernelFunction','gaussian');
tLearners = {tNB tNB tSVM};

tNB and tSVM are template objects for naive Bayes and SVM learning, respectively. The objects
indicate which options to use during training. Most of their properties are empty, except those
specified by name-value pair arguments. During training, the software fills in the empty properties
with their default values.

Train and cross-validate an ECOC classifier using the binary learner templates and the one-versus-all
coding design. Specify the order of the classes. By default, naive Bayes classifiers use posterior
probabilities as scores, whereas SVM classifiers use distances from the decision boundary. Therefore,
to aggregate the binary learners, you must specify to fit posterior probabilities.

CVMdl = fitcecoc(X,Y,'ClassNames',classNames,'CrossVal','on',...
    'Learners',tLearners,'FitPosterior',true);

CVMdl is a ClassificationPartitionedECOC cross-validated model. By default, the software
implements 10-fold cross-validation. The scores across the binary learners have the same form (that
is, they are posterior probabilities), so the software can aggregate the results of the binary
classifications properly.

Inspect one of the trained folds using dot notation.

CVMdl.Trained{1}

ans = 
  CompactClassificationECOC
             ResponseName: 'Y'
    CategoricalPredictors: []
               ClassNames: {'setosa'  'versicolor'  'virginica'}
           ScoreTransform: 'none'
           BinaryLearners: {3x1 cell}
             CodingMatrix: [3x3 double]

  Properties, Methods

Each fold is a CompactClassificationECOC model trained on 90% of the data.
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You can access the results of the binary learners using dot notation and cell indexing. Display the
trained SVM classifier (the third binary learner) in the first fold.

CVMdl.Trained{1}.BinaryLearners{3}

ans = 
  CompactClassificationSVM
             ResponseName: 'Y'
    CategoricalPredictors: []
               ClassNames: [-1 1]
           ScoreTransform: '@(S)sigmoid(S,-4.016735e+00,-3.243073e-01)'
                    Alpha: [33x1 double]
                     Bias: -0.1345
         KernelParameters: [1x1 struct]
           SupportVectors: [33x4 double]
      SupportVectorLabels: [33x1 double]

  Properties, Methods

Estimate the generalization error.

genError = kfoldLoss(CVMdl)

genError = 0.0333

On average, the generalization error is approximately 3%.

More About
Error-Correcting Output Codes Model

An error-correcting output codes (ECOC) model reduces the problem of classification with three or
more classes to a set of binary classification problems.

ECOC classification requires a coding design, which determines the classes that the binary learners
train on, and a decoding scheme, which determines how the results (predictions) of the binary
classifiers are aggregated.

Assume the following:

• The classification problem has three classes.
• The coding design is one-versus-one. For three classes, this coding design is

Learner 1 Learner 2 Learner 3
Class 1 1 1 0
Class 2 −1 0 1
Class 3 0 −1 −1

You can specify a different coding design by using the Coding name-value argument when you
create a classification model.

• The model determines the predicted class by using the loss-weighted decoding scheme with the
binary loss function g. The software also supports the loss-based decoding scheme. You can
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specify the decoding scheme and binary loss function by using the Decoding and BinaryLoss
name-value arguments, respectively, when you call object functions, such as predict, loss,
margin, edge, and so on.

The ECOC algorithm follows these steps.

1 Learner 1 trains on observations in Class 1 or Class 2, and treats Class 1 as the positive class and
Class 2 as the negative class. The other learners are trained similarly.

2 Let M be the coding design matrix with elements mkl, and sl be the predicted classification score
for the positive class of learner l. The algorithm assigns a new observation to the class (k ) that
minimizes the aggregation of the losses for the B binary learners.

k = argmin
k

∑l = 1

B

mkl g mkl, sl

∑l = 1

B

mkl

.

ECOC models can improve classification accuracy, compared to other multiclass models [1].

Coding Design

The coding design is a matrix whose elements direct which classes are trained by each binary learner,
that is, how the multiclass problem is reduced to a series of binary problems.

Each row of the coding design corresponds to a distinct class, and each column corresponds to a
binary learner. In a ternary coding design, for a particular column (or binary learner):

• A row containing 1 directs the binary learner to group all observations in the corresponding class
into a positive class.

• A row containing –1 directs the binary learner to group all observations in the corresponding class
into a negative class.

• A row containing 0 directs the binary learner to ignore all observations in the corresponding class.

Coding design matrices with large, minimal, pairwise row distances based on the Hamming measure
are optimal. For details on the pairwise row distance, see “Random Coding Design Matrices” on page
35-864 and [2].

This table describes popular coding designs.

Coding Design Description Number of Learners Minimal Pairwise Row
Distance

one-versus-all (OVA) For each binary learner,
one class is positive and
the rest are negative.
This design exhausts all
combinations of positive
class assignments.

K 2
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Coding Design Description Number of Learners Minimal Pairwise Row
Distance

one-versus-one (OVO) For each binary learner,
one class is positive,
one class is negative,
and the rest are
ignored. This design
exhausts all
combinations of class
pair assignments.

K(K – 1)/2 1

binary complete This design partitions
the classes into all
binary combinations,
and does not ignore any
classes. That is, all class
assignments are –1 and
1 with at least one
positive class and one
negative class in the
assignment for each
binary learner.

2K – 1 – 1 2K – 2

ternary complete This design partitions
the classes into all
ternary combinations.
That is, all class
assignments are 0, –1,
and 1 with at least one
positive class and one
negative class in the
assignment for each
binary learner.

(3K – 2K + 1 + 1)/2 3K – 2

ordinal For the first binary
learner, the first class is
negative and the rest
are positive. For the
second binary learner,
the first two classes are
negative and the rest
are positive, and so on.

K – 1 1

dense random For each binary learner,
the software randomly
assigns classes into
positive or negative
classes, with at least
one of each type. For
more details, see
“Random Coding Design
Matrices” on page 35-
864.

Random, but
approximately 10 log2K

Variable
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Coding Design Description Number of Learners Minimal Pairwise Row
Distance

sparse random For each binary learner,
the software randomly
assigns classes as
positive or negative
with probability 0.25 for
each, and ignores
classes with probability
0.5. For more details,
see “Random Coding
Design Matrices” on
page 35-864.

Random, but
approximately 15 log2K

Variable

This plot compares the number of binary learners for the coding designs with increasing K.

Algorithms
Random Coding Design Matrices

For a given number of classes K, the software generates random coding design matrices as follows.

1 The software generates one of these matrices:
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a Dense random — The software assigns 1 or –1 with equal probability to each element of the
K-by-Ld coding design matrix, where Ld ≈ 10log2K .

b Sparse random — The software assigns 1 to each element of the K-by-Ls coding design
matrix with probability 0.25, –1 with probability 0.25, and 0 with probability 0.5, where
Ls ≈ 15log2K .

2 If a column does not contain at least one 1 and one –1, then the software removes that column.
3 For distinct columns u and v, if u = v or u = –v, then the software removes v from the coding

design matrix.

The software randomly generates 10,000 matrices by default, and retains the matrix with the largest,
minimal, pairwise row distance based on the Hamming measure ([2]) given by

Δ(k1, k2) = 0.5∑
l = 1

L

mk1l mk2l mk1l−mk2l ,

where mkjl is an element of coding design matrix j.

Support Vector Storage

By default and for efficiency, fitcecoc empties the Alpha, SupportVectorLabels, and
SupportVectors properties for all linear SVM binary learners. fitcecoc lists Beta, rather than
Alpha, in the model display.

To store Alpha, SupportVectorLabels, and SupportVectors, pass a linear SVM template that
specifies storing support vectors to fitcecoc. For example, enter:

t = templateSVM('SaveSupportVectors',true)
Mdl = fitcecoc(X,Y,'Learners',t);

You can remove the support vectors and related values by passing the resulting
ClassificationECOC model to discardSupportVectors.

Version History
Introduced in R2014b

References
[1] Fürnkranz, Johannes. “Round Robin Classification.” J. Mach. Learn. Res., Vol. 2, 2002, pp. 721–

747.

[2] Escalera, S., O. Pujol, and P. Radeva. “Separability of ternary codes for sparse designs of error-
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Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:
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• The predict and update functions support code generation.
• When you train an ECOC model by using fitcecoc, the following restrictions apply.

• All binary learners must be either SVM classifiers or linear classification models. For the
Learners name-value argument, you can specify:

• 'svm' or 'linear'
• An SVM template object or a cell array of such objects (see templateSVM)
• A linear classification model template object or a cell array of such objects (see

templateLinear)
• When you generate code using a coder configurer for predict and update, the following

additional restrictions apply for binary learners.

• If you use a cell array of SVM template objects, the value of Standardize for SVM
learners must be consistent. For example, if you specify 'Standardize',true for one
SVM learner, you must specify the same value for all SVM learners.

• If you use a cell array of SVM template objects, and you use one SVM learner with a linear
kernel ('KernelFunction','linear') and another with a different type of kernel
function, then you must specify 'SaveSupportVectors',true for the learner with a
linear kernel.

For details, see ClassificationECOCCoderConfigurer. For information on name-value
arguments that you cannot modify when you retrain a model, see “Tips” on page 35-7665.

• Code generation limitations for SVM classifiers and linear classification models also apply to
ECOC classifiers, depending on the choice of binary learners. For more details, see “Code
Generation” on page 35-921 of the CompactClassificationSVM class and “Code
Generation” on page 35-489 of the ClassificationLinear class.

For more information, see “Introduction to Code Generation” on page 34-2.

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

Usage notes and limitations:

• The following object functions fully support GPU arrays:

• discardSupportVectors
• gather

• The following object functions offer limited support for GPU arrays:

• compareHoldout
• edge
• loss
• margin
• partialDependence
• plotPartialDependence
• predict

• The object functions execute on a GPU if either of the following apply:
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• The model was fitted with GPU arrays.
• The predictor data that you pass to the object function is a GPU array.

For more information, see “Run MATLAB Functions on a GPU” (Parallel Computing Toolbox).

See Also
ClassificationECOC | fitcecoc | compact | ClassificationPartitionedLinearECOC |
ClassificationPartitionedKernelECOC | ClassificationPartitionedECOC
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CompactClassificationEnsemble
Package: classreg.learning.classif

Compact classification ensemble class

Description
Compact version of a classification ensemble (of class ClassificationEnsemble). The compact
version does not include the data for training the classification ensemble. Therefore, you cannot
perform some tasks with a compact classification ensemble, such as cross validation. Use a compact
classification ensemble for making predictions (classifications) of new data.

Construction
ens = compact(fullEns) constructs a compact decision ensemble from a full decision ensemble.

Input Arguments

fullEns

A classification ensemble created by fitcensemble.

Properties
CategoricalPredictors

Categorical predictor indices, specified as a vector of positive integers. CategoricalPredictors
contains index values indicating that the corresponding predictors are categorical. The index values
are between 1 and p, where p is the number of predictors used to train the model. If none of the
predictors are categorical, then this property is empty ([]).

ClassNames

List of the elements in Y with duplicates removed. ClassNames can be a numeric vector, vector of
categorical variables, logical vector, character array, or cell array of character vectors. ClassNames
has the same data type as the data in the argument Y. (The software treats string arrays as cell
arrays of character vectors.)

CombineWeights

Character vector describing how ens combines weak learner weights, either 'WeightedSum' or
'WeightedAverage'.

Cost

Square matrix, where Cost(i,j) is the cost of classifying a point into class j if its true class is i
(the rows correspond to the true class and the columns correspond to the predicted class). The order
of the rows and columns of Cost corresponds to the order of the classes in ClassNames. The number
of rows and columns in Cost is the number of unique classes in the response. This property is read-
only.

35 Functions

35-868



ExpandedPredictorNames

Expanded predictor names, stored as a cell array of character vectors.

If the model uses encoding for categorical variables, then ExpandedPredictorNames includes the
names that describe the expanded variables. Otherwise, ExpandedPredictorNames is the same as
PredictorNames.

NumTrained

Number of trained weak learners in ens, a scalar.

PredictorNames

A cell array of names for the predictor variables, in the order in which they appear in X.

Prior

Numeric vector of prior probabilities for each class. The order of the elements of Prior corresponds
to the order of the classes in ClassNames. The number of elements of Prior is the number of unique
classes in the response. This property is read-only.

ResponseName

Character vector with the name of the response variable Y.

ScoreTransform

Function handle for transforming scores, or character vector representing a built-in transformation
function. 'none' means no transformation; equivalently, 'none' means @(x)x. For a list of built-in
transformation functions and the syntax of custom transformation functions, see fitctree.

Add or change a ScoreTransform function using dot notation:

ens.ScoreTransform = 'function'

or

ens.ScoreTransform = @function

Trained

A cell vector of trained classification models.

• If Method is 'LogitBoost' or 'GentleBoost', then CompactClassificationEnsemble
stores trained learner j in the CompactRegressionLearner property of the object stored in
Trained{j}. That is, to access trained learner j, use
ens.Trained{j}.CompactRegressionLearner.

• Otherwise, cells of the cell vector contain the corresponding, compact classification models.

TrainedWeights

Numeric vector of trained weights for the weak learners in ens. TrainedWeights has T elements,
where T is the number of weak learners in learners.
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UsePredForLearner

Logical matrix of size P-by-NumTrained, where P is the number of predictors (columns) in the
training data X. UsePredForLearner(i,j) is true when learner j uses predictor i, and is false
otherwise. For each learner, the predictors have the same order as the columns in the training data X.

If the ensemble is not of type Subspace, all entries in UsePredForLearner are true.

Object Functions
compareHoldout Compare accuracies of two classification models using new data
edge Classification edge
gather Gather properties of Statistics and Machine Learning Toolbox object from

GPU
lime Local interpretable model-agnostic explanations (LIME)
loss Classification error
margin Classification margins
partialDependence Compute partial dependence
plotPartialDependence Create partial dependence plot (PDP) and individual conditional expectation

(ICE) plots
predict Classify observations using ensemble of classification models
predictorImportance Estimates of predictor importance for classification ensemble of decision

trees
removeLearners Remove members of compact classification ensemble
shapley Shapley values

Copy Semantics
Value. To learn how value classes affect copy operations, see Copying Objects.

Examples

Reduce Size of Classification Ensemble

Create a compact classification ensemble for efficiently making predictions on new data.

Load the ionosphere data set.

load ionosphere

Train a boosted ensemble of 100 classification trees using all measurements and the AdaBoostM1
method.

Mdl = fitcensemble(X,Y,'Method','AdaBoostM1')

Mdl = 
  ClassificationEnsemble
             ResponseName: 'Y'
    CategoricalPredictors: []
               ClassNames: {'b'  'g'}
           ScoreTransform: 'none'
          NumObservations: 351
               NumTrained: 100
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                   Method: 'AdaBoostM1'
             LearnerNames: {'Tree'}
     ReasonForTermination: 'Terminated normally after completing the requested number of training cycles.'
                  FitInfo: [100x1 double]
       FitInfoDescription: {2x1 cell}

  Properties, Methods

Mdl is a ClassificationEnsemble model object that contains the training data, among other
things.

Create a compact version of Mdl.

CMdl = compact(Mdl)

CMdl = 
  CompactClassificationEnsemble
             ResponseName: 'Y'
    CategoricalPredictors: []
               ClassNames: {'b'  'g'}
           ScoreTransform: 'none'
               NumTrained: 100

  Properties, Methods

CMdl is a CompactClassificationEnsemble model object. CMdl is almost the same as Mdl. One
exception is that CMdl does not store the training data.

Compare the amounts of space consumed by Mdl and CMdl.

mdlInfo = whos('Mdl');
cMdlInfo = whos('CMdl');
[mdlInfo.bytes cMdlInfo.bytes]

ans = 1×2

      878354      631686

Mdl consumes more space than CMdl.

CMdl.Trained stores the trained classification trees (CompactClassificationTree model
objects) that compose Mdl.

Display a graph of the first tree in the compact ensemble.

view(CMdl.Trained{1},'Mode','graph');
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By default, fitcensemble grows shallow trees for boosted ensembles of trees.

Predict the label of the mean of X using the compact ensemble.

predMeanX = predict(CMdl,mean(X))

predMeanX = 1x1 cell array
    {'g'}

Tip
For an ensemble of classification trees, the Trained property of ens stores an ens.NumTrained-
by-1 cell vector of compact classification models. For a textual or graphical display of tree t in the
cell vector, enter:

• view(ens.Trained{t}.CompactRegressionLearner) for ensembles aggregated using
LogitBoost or GentleBoost.

• view(ens.Trained{t}) for all other aggregation methods.
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Version History
Introduced in R2011a

Cost property stores the user-specified cost matrix
Behavior changed in R2022a

Starting in R2022a, the Cost property stores the user-specified cost matrix, so that you can compute
the observed misclassification cost using the specified cost value. The software stores normalized
prior probabilities (Prior) that do not reflect the penalties described in the cost matrix. To compute
the observed misclassification cost, specify the LossFun name-value argument as "classifcost"
when you call the loss function.

Note that model training has not changed and, therefore, the decision boundaries between classes
have not changed.

For training, the fitting function updates the specified prior probabilities by incorporating the
penalties described in the specified cost matrix, and then normalizes the prior probabilities and
observation weights. This behavior has not changed. In previous releases, the software stored the
default cost matrix in the Cost property and stored the prior probabilities used for training in the
Prior property. Starting in R2022a, the software stores the user-specified cost matrix without
modification, and stores normalized prior probabilities that do not reflect the cost penalties. For more
details, see “Misclassification Cost Matrix, Prior Probabilities, and Observation Weights” on page 19-
8.

Some object functions use the Cost and Prior properties:

• The loss function uses the cost matrix stored in the Cost property if you specify the LossFun
name-value argument as "classifcost" or "mincost".

• The loss and edge functions use the prior probabilities stored in the Prior property to
normalize the observation weights of the input data.

If you specify a nondefault cost matrix when you train a classification model, the object functions
return a different value compared to previous releases.

If you want the software to handle the cost matrix, prior probabilities, and observation weights as in
previous releases, adjust the prior probabilities and observation weights for the nondefault cost
matrix, as described in “Adjust Prior Probabilities and Observation Weights for Misclassification Cost
Matrix” on page 19-9. Then, when you train a classification model, specify the adjusted prior
probabilities and observation weights by using the Prior and Weights name-value arguments,
respectively, and use the default cost matrix.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• The predict function supports code generation.
• To integrate the prediction of an ensemble into Simulink, you can use the ClassificationEnsemble

Predict block in the Statistics and Machine Learning Toolbox library or a MATLAB Function block
with the predict function.
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• When you train an ensemble by using fitcensemble, code generation limitations for the weak
learners used in the ensemble also apply to the ensemble. For more details, see the Code
Generation sections of ClassificationKNN, CompactClassificationDiscriminant, and
CompactClassificationTree.

• For fixed-point code generation, you must train an ensemble using tree learners.

For more information, see “Introduction to Code Generation” on page 34-2.

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

Usage notes and limitations:

• The following object functions fully support GPU arrays:

• gather
• predictorImportance
• removeLearners

• The following object functions offer limited support for GPU arrays:

• compareHoldout
• edge
• loss
• margin
• partialDependence
• plotPartialDependence
• predict

• The object functions execute on a GPU if either of the following apply:

• The model was fitted with GPU arrays.
• The predictor data that you pass to the object function is a GPU array.

For more information, see “Run MATLAB Functions on a GPU” (Parallel Computing Toolbox).

See Also
fitcensemble | ClassificationEnsemble | predict | compact | fitctree | view |
compareHoldout
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ClassificationGAM
Generalized additive model (GAM) for binary classification

Description
A ClassificationGAM object is a generalized additive model on page 35-886 (GAM) object for
binary classification. It is an interpretable model that explains class scores (the logit of class
probabilities) using a sum of univariate and bivariate shape functions.

You can classify new observations by using the predict function, and plot the effect of each shape
function on the prediction (class score) for an observation by using the plotLocalEffects function.
For the full list of object functions for ClassificationGAM, see “Object Functions” on page 35-
881.

Creation
Create a ClassificationGAM object by using fitcgam. You can specify both linear terms and
interaction terms for predictors to include univariate shape functions (predictor trees) and bivariate
shape functions (interaction trees) in a trained model, respectively.

You can update a trained model by using resume or addInteractions.

• The resume function resumes training for the existing terms in a model.
• The addInteractions function adds interaction terms to a model that contains only linear

terms.

Properties
GAM Properties

BinEdges — Bin edges for numeric predictors
cell array of numeric vectors | []

This property is read-only.

Bin edges for numeric predictors, specified as a cell array of p numeric vectors, where p is the
number of predictors. Each vector includes the bin edges for a numeric predictor. The element in the
cell array for a categorical predictor is empty because the software does not bin categorical
predictors.

The software bins numeric predictors only if you specify the 'NumBins' name-value argument as a
positive integer scalar when training a model with tree learners. The BinEdges property is empty if
the 'NumBins' value is empty (default).

You can reproduce the binned predictor data Xbinned by using the BinEdges property of the trained
model mdl.

X = mdl.X; % Predictor data
Xbinned = zeros(size(X));
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edges = mdl.BinEdges;
% Find indices of binned predictors.
idxNumeric = find(~cellfun(@isempty,edges));
if iscolumn(idxNumeric)
    idxNumeric = idxNumeric';
end
for j = idxNumeric 
    x = X(:,j);
    % Convert x to array if x is a table.
    if istable(x) 
        x = table2array(x);
    end
    % Group x into bins by using the discretize function.
    xbinned = discretize(x,[-inf; edges{j}; inf]); 
    Xbinned(:,j) = xbinned;
end

Xbinned contains the bin indices, ranging from 1 to the number of bins, for numeric predictors.
Xbinned values are 0 for categorical predictors. If X contains NaNs, then the corresponding Xbinned
values are NaNs.
Data Types: cell

Interactions — Interaction term indices
two-column matrix of positive integers | []

This property is read-only.

Interaction term indices, specified as a t-by-2 matrix of positive integers, where t is the number of
interaction terms in the model. Each row of the matrix represents one interaction term and contains
the column indexes of the predictor data X for the interaction term. If the model does not include an
interaction term, then this property is empty ([]).

The software adds interaction terms to the model in the order of importance based on the p-values.
Use this property to check the order of the interaction terms added to the model.
Data Types: double

Intercept — Intercept term of model
numeric scalar

This property is read-only.

Intercept (constant) term of the model, which is the sum of the intercept terms in the predictor trees
and interaction trees, specified as a numeric scalar.
Data Types: single | double

ModelParameters — Parameters used to train model
model parameter object

This property is read-only.

Parameters used to train the model, specified as a model parameter object. ModelParameters
contains parameter values such as those for the name-value arguments used to train the model.
ModelParameters does not contain estimated parameters.
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Access the fields of ModelParameters by using dot notation. For example, access the maximum
number of decision splits per interaction tree by using
Mdl.ModelParameters.MaxNumSplitsPerInteraction.

PairDetectionBinEdges — Bin edges for interaction term detection
cell array of numeric vectors

This property is read-only.

Bin edges for interaction term detection for numeric predictors, specified as a cell array of p numeric
vectors, where p is the number of predictors. Each vector includes the bin edges for a numeric
predictor. The element in the cell array for a categorical predictor is empty because the software does
not bin categorical predictors.

To speed up the interaction term detection process, the software bins numeric predictors into at most
8 equiprobable bins. The number of bins can be less than 8 if a predictor has fewer than 8 unique
values.
Data Types: cell

ReasonForTermination — Reason training stops
structure

This property is read-only.

Reason training the model stops, specified as a structure with two fields, PredictorTrees and
InteractionTrees.

Use this property to check if the model contains the specified number of trees for each linear term
('NumTreesPerPredictor') and for each interaction term ('NumTreesPerInteraction'). If the
fitcgam function terminates training before adding the specified number of trees, this property
contains the reason for the termination.
Data Types: struct

Other Classification Properties

CategoricalPredictors — Categorical predictor indices
vector of positive integers | []

This property is read-only.

Categorical predictor indices, specified as a vector of positive integers. CategoricalPredictors
contains index values indicating that the corresponding predictors are categorical. The index values
are between 1 and p, where p is the number of predictors used to train the model. If none of the
predictors are categorical, then this property is empty ([]).
Data Types: double

ClassNames — Unique class labels
categorical array | character array | logical vector | numeric vector | cell array of character vectors

This property is read-only.

Unique class labels used in training, specified as a categorical or character array, logical or numeric
vector, or cell array of character vectors. ClassNames has the same data type as the class labels Y.
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(The software treats string arrays as cell arrays of character vectors.) ClassNames also determines
the class order.
Data Types: single | double | logical | char | cell | categorical

Cost — Misclassification costs
2-by-2 numeric matrix

Misclassification costs, specified as a 2-by-2 numeric matrix.

Cost(i,j) is the cost of classifying a point into class j if its true class is i. The order of the rows
and columns of Cost corresponds to the order of the classes in ClassNames.

The software uses the Cost value for prediction, but not training. You can change the value by using
dot notation.
Example: Mdl.Cost = C;
Data Types: double

ExpandedPredictorNames — Expanded predictor names
cell array of character vectors

This property is read-only.

Expanded predictor names, specified as a cell array of character vectors.

ExpandedPredictorNames is the same as PredictorNames for a generalized additive model.
Data Types: cell

NumObservations — Number of observations
numeric scalar

This property is read-only.

Number of observations in the training data stored in X and Y, specified as a numeric scalar.
Data Types: double

PredictorNames — Predictor variable names
cell array of character vectors

This property is read-only.

Predictor variable names, specified as a cell array of character vectors. The order of the elements of
PredictorNames corresponds to the order in which the predictor names appear in the training data.
Data Types: cell

Prior — Prior class probabilities
numeric vector

This property is read-only.

Prior class probabilities, specified as a numeric vector with two elements. The order of the elements
corresponds to the order of the elements in ClassNames.
Data Types: double
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ResponseName — Response variable name
character vector

This property is read-only.

Response variable name, specified as a character vector.
Data Types: char

RowsUsed — Rows used in fitting
[] | logical vector

This property is read-only.

Rows of the original training data used in fitting the ClassificationGAM model, specified as a
logical vector. This property is empty if all rows are used.
Data Types: logical

ScoreTransform — Score transformation
character vector | function handle

Score transformation, specified as a character vector or function handle. ScoreTransform
represents a built-in transformation function or a function handle for transforming predicted
classification scores.

To change the score transformation function to function, for example, use dot notation.

• For a built-in function, enter a character vector.

Mdl.ScoreTransform = 'function';

This table describes the available built-in functions.

Value Description
'doublelogit' 1/(1 + e–2x)
'invlogit' log(x / (1 – x))
'ismax' Sets the score for the class with the largest score to

1, and sets the scores for all other classes to 0
'logit' 1/(1 + e–x)
'none' or 'identity' x (no transformation)
'sign' –1 for x < 0

0 for x = 0
1 for x > 0

'symmetric' 2x – 1
'symmetricismax' Sets the score for the class with the largest score to

1, and sets the scores for all other classes to –1
'symmetriclogit' 2/(1 + e–x) – 1

• For a MATLAB function or a function that you define, enter its function handle.

Mdl.ScoreTransform = @function;
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function must accept a matrix (the original scores) and return a matrix of the same size (the
transformed scores).

This property determines the output score computation for object functions such as predict,
margin, and edge. Use 'logit' to compute posterior probabilities, and use 'none' to compute the
logit of posterior probabilities.
Data Types: char | function_handle

W — Observation weights
numeric vector

This property is read-only.

Observation weights used to train the model, specified as an n-by-1 numeric vector. n is the number
of observations (NumObservations).

The software normalizes the observation weights specified in the 'Weights' name-value argument
so that the elements of W within a particular class sum up to the prior probability of that class.
Data Types: double

X — Predictors
numeric matrix | table

This property is read-only.

Predictors used to train the model, specified as a numeric matrix or table.

Each row of X corresponds to one observation, and each column corresponds to one variable.
Data Types: single | double | table

Y — Class labels
categorical array | character array | logical vector | numeric vector | cell array of character vectors

This property is read-only.

Class labels used to train the model, specified as a categorical or character array, logical or numeric
vector, or cell array of character vectors. Y has the same data type as the response variable used to
train the model. (The software treats string arrays as cell arrays of character vectors.)

Each row of Y represents the observed classification of the corresponding row of X.
Data Types: single | double | logical | char | cell | categorical

Hyperparameter Optimization Properties

HyperparameterOptimizationResults — Description of cross-validation optimization of
hyperparameters
BayesianOptimization object | table

This property is read-only.

Description of the cross-validation optimization of hyperparameters, specified as a
BayesianOptimization object or a table of hyperparameters and associated values. This property
is nonempty when the 'OptimizeHyperparameters' name-value argument of fitcgam is not
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'none' (default) when the object is created. The value of HyperparameterOptimizationResults
depends on the setting of the Optimizer field in the HyperparameterOptimizationOptions
structure of fitcgam when the object is created.

Value of Optimizer Field Value of
HyperparameterOptimizationResults

'bayesopt' (default) Object of class BayesianOptimization
'gridsearch' or 'randomsearch' Table of hyperparameters used, observed

objective function values (cross-validation loss),
and rank of observations from lowest (best) to
highest (worst)

Object Functions

Create CompactClassificationGAM
compact Reduce size of machine learning model

Create ClassificationPartitionedGAM
crossval Cross-validate machine learning model

Update GAM
addInteractions Add interaction terms to univariate generalized additive model (GAM)
resume Resume training of generalized additive model (GAM)

Interpret Prediction
lime Local interpretable model-agnostic explanations (LIME)
partialDependence Compute partial dependence
plotLocalEffects Plot local effects of terms in generalized additive model (GAM)
plotPartialDependence Create partial dependence plot (PDP) and individual conditional expectation

(ICE) plots
shapley Shapley values

Assess Predictive Performance on New Observations
predict Classify observations using generalized additive model (GAM)
loss Classification loss for generalized additive model (GAM)
margin Classification margins for generalized additive model (GAM)
edge Classification edge for generalized additive model (GAM)

Assess Predictive Performance on Training Data
resubPredict Classify training data using trained classifier
resubLoss Resubstitution classification loss
resubMargin Resubstitution classification margin
resubEdge Resubstitution classification edge

Compare Accuracies
compareHoldout Compare accuracies of two classification models using new data
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testckfold Compare accuracies of two classification models by repeated cross-validation

Examples

Train Generalized Additive Model

Train a univariate generalized additive model, which contains linear terms for predictors. Then,
interpret the prediction for a specified data instance by using the plotLocalEffects function.

Load the ionosphere data set. This data set has 34 predictors and 351 binary responses for radar
returns, either bad ('b') or good ('g').

load ionosphere

Train a univariate GAM that identifies whether the radar return is bad ('b') or good ('g').

Mdl = fitcgam(X,Y)

Mdl = 
  ClassificationGAM
             ResponseName: 'Y'
    CategoricalPredictors: []
               ClassNames: {'b'  'g'}
           ScoreTransform: 'logit'
                Intercept: 2.2715
          NumObservations: 351

  Properties, Methods

Mdl is a ClassificationGAM model object. The model display shows a partial list of the model
properties. To view the full list of properties, double-click the variable name Mdl in the Workspace.
The Variables editor opens for Mdl. Alternatively, you can display the properties in the Command
Window by using dot notation. For example, display the class order of Mdl.

classOrder = Mdl.ClassNames

classOrder = 2x1 cell
    {'b'}
    {'g'}

Classify the first observation of the training data, and plot the local effects of the terms in Mdl on the
prediction.

label = predict(Mdl,X(1,:))

label = 1x1 cell array
    {'g'}

plotLocalEffects(Mdl,X(1,:))
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The predict function classifies the first observation X(1,:) as 'g'. The plotLocalEffects
function creates a horizontal bar graph that shows the local effects of the 10 most important terms on
the prediction. Each local effect value shows the contribution of each term to the classification score
for 'g', which is the logit of the posterior probability that the classification is 'g' for the
observation.

Train GAM with Interaction Terms

Train a generalized additive model that contains linear and interaction terms for predictors in three
different ways:

• Specify the interaction terms using the formula input argument.
• Specify the 'Interactions' name-value argument.
• Build a model with linear terms first and add interaction terms to the model by using the

addInteractions function.

Load Fisher's iris data set. Create a table that contains observations for versicolor and virginica.

load fisheriris
inds = strcmp(species,'versicolor') | strcmp(species,'virginica');
tbl = array2table(meas(inds,:),'VariableNames',["x1","x2","x3","x4"]);
tbl.Y = species(inds,:);
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Specify formula

Train a GAM that contains the four linear terms (x1, x2, x3, and x4) and two interaction terms
(x1*x2 and x2*x3). Specify the terms using a formula in the form 'Y ~ terms'.

Mdl1 = fitcgam(tbl,'Y ~ x1 + x2 + x3 + x4 + x1:x2 + x2:x3');

The function adds interaction terms to the model in the order of importance. You can use the
Interactions property to check the interaction terms in the model and the order in which fitcgam
adds them to the model. Display the Interactions property.

Mdl1.Interactions

ans = 2×2

     2     3
     1     2

Each row of Interactions represents one interaction term and contains the column indexes of the
predictor variables for the interaction term.

Specify 'Interactions'

Pass the training data (tbl) and the name of the response variable in tbl to fitcgam, so that the
function includes the linear terms for all the other variables as predictors. Specify the
'Interactions' name-value argument using a logical matrix to include the two interaction terms,
x1*x2 and x2*x3.

Mdl2 = fitcgam(tbl,'Y','Interactions',logical([1 1 0 0; 0 1 1 0]));
Mdl2.Interactions

ans = 2×2

     2     3
     1     2

You can also specify 'Interactions' as the number of interaction terms or as 'all' to include all
available interaction terms. Among the specified interaction terms, fitcgam identifies those whose p-
values are not greater than the 'MaxPValue' value and adds them to the model. The default
'MaxPValue' is 1 so that the function adds all specified interaction terms to the model.

Specify 'Interactions','all' and set the 'MaxPValue' name-value argument to 0.01.

Mdl3 = fitcgam(tbl,'Y','Interactions','all','MaxPValue',0.01);
Mdl3.Interactions

ans = 5×2

     3     4
     2     4
     1     4
     2     3
     1     3

Mdl3 includes five of the six available pairs of interaction terms.
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Use addInteractions Function

Train a univariate GAM that contains linear terms for predictors, and then add interaction terms to
the trained model by using the addInteractions function. Specify the second input argument of
addInteractions in the same way you specify the 'Interactions' name-value argument of
fitcgam. You can specify the list of interaction terms using a logical matrix, the number of
interaction terms, or 'all'.

Specify the number of interaction terms as 5 to add the five most important interaction terms to the
trained model.

Mdl4 = fitcgam(tbl,'Y');
UpdatedMdl4 = addInteractions(Mdl4,5);
UpdatedMdl4.Interactions

ans = 5×2

     3     4
     2     4
     1     4
     2     3
     1     3

Mdl4 is a univariate GAM, and UpdatedMdl4 is an updated GAM that contains all the terms in Mdl4
and five additional interaction terms.

Resume Training Predictor Trees in GAM

Train a univariate classification GAM (which contains only linear terms) for a small number of
iterations. After training the model for more iterations, compare the resubstitution loss.

Load the ionosphere data set. This data set has 34 predictors and 351 binary responses for radar
returns, either bad ('b') or good ('g').

load ionosphere

Train a univariate GAM that identifies whether the radar return is bad ('b') or good ('g'). Specify
the number of trees per linear term as 2. fitcgam iterates the boosting algorithm for the specified
number of iterations. For each boosting iteration, the function adds one tree per linear term. Specify
'Verbose' as 2 to display diagnostic messages at every iteration.

Mdl = fitcgam(X,Y,'NumTreesPerPredictor',2,'Verbose',2);

|========================================================|
| Type | NumTrees |  Deviance  |   RelTol   | LearnRate  |
|========================================================|
|    1D|         0|      486.59|      -     |      -     |
|    1D|         1|      166.71|         Inf|           1|
|    1D|         2|      78.336|     0.58205|           1|

To check whether fitcgam trains the specified number of trees, display the
ReasonForTermination property of the trained model and view the displayed message.

Mdl.ReasonForTermination
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ans = struct with fields:
      PredictorTrees: 'Terminated after training the requested number of trees.'
    InteractionTrees: ''

Compute the classification loss for the training data.

resubLoss(Mdl)

ans = 0.0142

Resume training the model for another 100 iterations. Because Mdl contains only linear terms, the
resume function resumes training for the linear terms and adds more trees for them (predictor
trees). Specify 'Verbose' and 'NumPrint' to display diagnostic messages at every 10 iterations.

UpdatedMdl = resume(Mdl,100,'Verbose',1,'NumPrint',10);

|========================================================|
| Type | NumTrees |  Deviance  |   RelTol   | LearnRate  |
|========================================================|
|    1D|         0|      78.336|      -     |      -     |
|    1D|         1|      38.364|     0.17429|           1|
|    1D|        10|     0.16311|    0.011894|           1|
|    1D|        20|  0.00035693|   0.0025178|           1|
|    1D|        30|  8.1191e-07|   0.0011006|           1|
|    1D|        40|  1.7978e-09|  0.00074607|           1|
|    1D|        50|  3.6113e-12|  0.00034404|           1|
|    1D|        60|  1.7497e-13|  0.00016541|           1|

UpdatedMdl.ReasonForTermination

ans = struct with fields:
      PredictorTrees: 'Unable to improve the model fit.'
    InteractionTrees: ''

resume terminates training when adding more trees does not improve the deviance of the model fit.

Compute the classification loss using the updated model.

resubLoss(UpdatedMdl)

ans = 0

The classification loss decreases after resume updates the model with more iterations.

More About
Generalized Additive Model (GAM) for Binary Classification

A generalized additive model (GAM) is an interpretable model that explains class scores (the logit of
class probabilities) using a sum of univariate and bivariate shape functions of predictors.

fitcgam uses a boosted tree as a shape function for each predictor and, optionally, each pair of
predictors; therefore, the function can capture a nonlinear relation between a predictor and the
response variable. Because contributions of individual shape functions to the prediction (classification
score) are well separated, the model is easy to interpret.
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The standard GAM uses a univariate shape function for each predictor.

y Binomial(n, μ)

g(μ) = log μ
1− μ = c + f1(x1) + f2(x2) +⋯+ fp(xp),

where y is a response variable that follows the binomial distribution with the probability of success
(probability of positive class) μ in n observations. g(μ) is a logit link function, and c is an intercept
(constant) term. fi(xi) is a univariate shape function for the ith predictor, which is a boosted tree for a
linear term for the predictor (predictor tree).

You can include interactions between predictors in a model by adding bivariate shape functions of
important interaction terms to the model.

g(μ) = c + f1(x1) + f2(x2) +⋯+ fp(xp) + ∑
i, j ∈ 1, 2,⋯, p

f i j(xix j),

where fij(xixj) is a bivariate shape function for the ith and jth predictors, which is a boosted tree for an
interaction term for the predictors (interaction tree).

fitcgam finds important interaction terms based on the p-values of F-tests. For details, see
“Interaction Term Detection” on page 35-2032.

Version History
Introduced in R2021a
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See Also
CompactClassificationGAM | ClassificationPartitionedGAM | fitcgam | resume |
addInteractions

Topics
“Train Generalized Additive Model for Binary Classification” on page 12-77
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CompactClassificationNaiveBayes
Compact naive Bayes classifier for multiclass classification

Description
CompactClassificationNaiveBayes is a compact version of the naive Bayes classifier. The
compact classifier does not include the data used for training the naive Bayes classifier. Therefore,
you cannot perform some tasks, such as cross-validation, using the compact classifier. Use a compact
naive Bayes classifier for tasks such as predicting the labels of the data.

Creation
Create a CompactClassificationNaiveBayes model from a full, trained
ClassificationNaiveBayes classifier by using compact.

Properties
Predictor Properties

PredictorNames — Predictor names
cell array of character vectors

This property is read-only.

Predictor names, specified as a cell array of character vectors. The order of the elements in
PredictorNames corresponds to the order in which the predictor names appear in the training data
X.

ExpandedPredictorNames — Expanded predictor names
cell array of character vectors

This property is read-only.

Expanded predictor names, specified as a cell array of character vectors.

If the model uses dummy variable encoding for categorical variables, then
ExpandedPredictorNames includes the names that describe the expanded variables. Otherwise,
ExpandedPredictorNames is the same as PredictorNames.

CategoricalPredictors — Categorical predictor indices
vector of positive integers | []

This property is read-only.

Categorical predictor indices, specified as a vector of positive integers. CategoricalPredictors
contains index values indicating that the corresponding predictors are categorical. The index values
are between 1 and p, where p is the number of predictors used to train the model. If none of the
predictors are categorical, then this property is empty ([]).
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Data Types: single | double

CategoricalLevels — Multivariate multinomial levels
cell array

This property is read-only.

Multivariate multinomial levels, specified as a cell array. The length of CategoricalLevels is equal
to the number of predictors (size(X,2)).

The cells of CategoricalLevels correspond to predictors that you specify as 'mvmn' during
training, that is, they have a multivariate multinomial distribution. Cells that do not correspond to a
multivariate multinomial distribution are empty ([]).

If predictor j is multivariate multinomial, then CategoricalLevels{j} is a list of all distinct values
of predictor j in the sample. NaNs are removed from unique(X(:,j)).

Predictor Distribution Properties

DistributionNames — Predictor distributions
'normal' (default) | 'kernel' | 'mn' | 'mvmn' | cell array of character vectors

This property is read-only.

Predictor distributions, specified as a character vector or cell array of character vectors. fitcnb
uses the predictor distributions to model the predictors. This table lists the available distributions.

Value Description
'kernel' Kernel smoothing density estimate
'mn' Multinomial distribution. If you specify mn, then

all features are components of a multinomial
distribution. Therefore, you cannot include 'mn'
as an element of a string array or a cell array of
character vectors. For details, see “Estimated
Probability for Multinomial Distribution” on page
35-897.

'mvmn' Multivariate multinomial distribution. For details,
see “Estimated Probability for Multivariate
Multinomial Distribution” on page 35-897.

'normal' Normal (Gaussian) distribution

If DistributionNames is a 1-by-P cell array of character vectors, then fitcnb models the feature j
using the distribution in element j of the cell array.
Example: 'mn'
Example: {'kernel','normal','kernel'}
Data Types: char | string | cell

DistributionParameters — Distribution parameter estimates
cell array

This property is read-only.
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Distribution parameter estimates, specified as a cell array. DistributionParameters is a K-by-D
cell array, where cell (k,d) contains the distribution parameter estimates for instances of predictor d
in class k. The order of the rows corresponds to the order of the classes in the property ClassNames,
and the order of the predictors corresponds to the order of the columns of X.

If class k has no observations for predictor j, then the Distribution{k,j} is empty ([]).

The elements of DistributionParameters depend on the distributions of the predictors. This table
describes the values in DistributionParameters{k,j}.

Distribution of
Predictor j

Value of Cell Array for Predictor j and Class k

kernel A KernelDistribution model. Display properties using cell indexing
and dot notation. For example, to display the estimated bandwidth of the
kernel density for predictor 2 in the third class, use
Mdl.DistributionParameters{3,2}.Bandwidth.

mn A scalar representing the probability that token j appears in class k. For
details, see “Estimated Probability for Multinomial Distribution” on page
35-897.

mvmn A numeric vector containing the probabilities for each possible level of
predictor j in class k. The software orders the probabilities by the sorted
order of all unique levels of predictor j (stored in the property
CategoricalLevels). For more details, see “Estimated Probability for
Multivariate Multinomial Distribution” on page 35-897.

normal A 2-by-1 numeric vector. The first element is the sample mean and the
second element is the sample standard deviation. For more details, see
“Normal Distribution Estimators” on page 35-896

Kernel — Kernel smoother type
'normal' (default) | 'box' | cell array | ...

This property is read-only.

Kernel smoother type, specified as the name of a kernel or a cell array of kernel names. The length of
Kernel is equal to the number of predictors (size(X,2)). Kernel{j} corresponds to predictor j and
contains a character vector describing the type of kernel smoother. If a cell is empty ([]), then
fitcnb did not fit a kernel distribution to the corresponding predictor.

This table describes the supported kernel smoother types. I{u} denotes the indicator function.

Value Kernel Formula
'box' Box (uniform) f (x) = 0.5I x ≤ 1
'epanechnik
ov'

Epanechnikov f (x) = 0.75 1− x2 I x ≤ 1

'normal' Gaussian f (x) = 1
2πexp −0.5x2

'triangle' Triangular f (x) = 1− x I x ≤ 1

Example: 'box'
Example: {'epanechnikov','normal'}
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Data Types: char | string | cell

Support — Kernel smoother density support
cell array

This property is read-only.

Kernel smoother density support, specified as a cell array. The length of Support is equal to the
number of predictors (size(X,2)). The cells represent the regions to which fitcnb applies the
kernel density. If a cell is empty ([]), then fitcnb did not fit a kernel distribution to the
corresponding predictor.

This table describes the supported options.

Value Description
1-by-2 numeric row vector The density support applies to the specified bounds, for example [L,U],

where L and U are the finite lower and upper bounds, respectively.
'positive' The density support applies to all positive real values.
'unbounded' The density support applies to all real values.

Width — Kernel smoother window width
numeric matrix

This property is read-only.

Kernel smoother window width, specified as a numeric matrix. Width is a K-by-P matrix, where K is
the number of classes in the data, and P is the number of predictors (size(X,2)).

Width(k,j) is the kernel smoother window width for the kernel smoothing density of predictor j
within class k. NaNs in column j indicate that fitcnb did not fit predictor j using a kernel density.

Response Properties

ClassNames — Unique class names
categorical array | character array | logical vector | numeric vector | cell array of character vectors

This property is read-only.

Unique class names used in the training model, specified as a categorical or character array, logical
or numeric vector, or cell array of character vectors.

ClassNames has the same data type as Y, and has K elements (or rows) for character arrays. (The
software treats string arrays as cell arrays of character vectors.)
Data Types: categorical | char | string | logical | double | cell

ResponseName — Response variable name
character vector

This property is read-only.

Response variable name, specified as a character vector.
Data Types: char | string
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Training Properties

Prior — Prior probabilities
numeric vector

Prior probabilities, specified as a numeric vector. The order of the elements in Prior corresponds to
the elements of Mdl.ClassNames.

fitcnb normalizes the prior probabilities you set using the 'Prior' name-value pair argument, so
that sum(Prior) = 1.

The value of Prior does not affect the best-fitting model. Therefore, you can reset Prior after
training Mdl using dot notation.
Example: Mdl.Prior = [0.2 0.8]
Data Types: double | single

Classifier Properties

Cost — Misclassification cost
square matrix

Misclassification cost, specified as a numeric square matrix, where Cost(i,j) is the cost of
classifying a point into class j if its true class is i. The rows correspond to the true class and the
columns correspond to the predicted class. The order of the rows and columns of Cost corresponds
to the order of the classes in ClassNames.

The misclassification cost matrix must have zeros on the diagonal.

The value of Cost does not influence training. You can reset Cost after training Mdl using dot
notation.
Example: Mdl.Cost = [0 0.5 ; 1 0]
Data Types: double | single

ScoreTransform — Classification score transformation
'none' (default) | 'doublelogit' | 'invlogit' | 'ismax' | 'logit' | function handle | ...

Classification score transformation, specified as a character vector or function handle. This table
summarizes the available character vectors.

Value Description
"doublelogit" 1/(1 + e–2x)
"invlogit" log(x / (1 – x))
"ismax" Sets the score for the class with the largest score to 1,

and sets the scores for all other classes to 0
"logit" 1/(1 + e–x)
"none" or "identity" x (no transformation)
"sign" –1 for x < 0

0 for x = 0
1 for x > 0
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Value Description
"symmetric" 2x – 1
"symmetricismax" Sets the score for the class with the largest score to 1,

and sets the scores for all other classes to –1
"symmetriclogit" 2/(1 + e–x) – 1

For a MATLAB function or a function you define, use its function handle for the score transformation.
The function handle must accept a matrix (the original scores) and return a matrix of the same size
(the transformed scores).
Example: Mdl.ScoreTransform = 'logit'
Data Types: char | string | function handle

Object Functions
compareHoldout Compare accuracies of two classification models using new data
edge Classification edge for naive Bayes classifier
lime Local interpretable model-agnostic explanations (LIME)
logp Log unconditional probability density for naive Bayes classifier
loss Classification loss for naive Bayes classifier
margin Classification margins for naive Bayes classifier
partialDependence Compute partial dependence
plotPartialDependence Create partial dependence plot (PDP) and individual conditional expectation

(ICE) plots
predict Classify observations using naive Bayes classifier
shapley Shapley values

Examples

Reduce Size of Naive Bayes Classifier

Reduce the size of a full naive Bayes classifier by removing the training data. Full naive Bayes
classifiers hold the training data. You can use a compact naive Bayes classifier to improve memory
efficiency.

Load the ionosphere data set. Remove the first two predictors for stability.

load ionosphere
X = X(:,3:end);

Train a naive Bayes classifier using the predictors X and class labels Y. A recommended practice is to
specify the class names. fitcnb assumes that each predictor is conditionally and normally
distributed.

Mdl = fitcnb(X,Y,'ClassNames',{'b','g'})

Mdl = 
  ClassificationNaiveBayes
              ResponseName: 'Y'
     CategoricalPredictors: []
                ClassNames: {'b'  'g'}
            ScoreTransform: 'none'
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           NumObservations: 351
         DistributionNames: {1x32 cell}
    DistributionParameters: {2x32 cell}

  Properties, Methods

Mdl is a trained ClassificationNaiveBayes classifier.

Reduce the size of the naive Bayes classifier.

CMdl = compact(Mdl)

CMdl = 
  CompactClassificationNaiveBayes
              ResponseName: 'Y'
     CategoricalPredictors: []
                ClassNames: {'b'  'g'}
            ScoreTransform: 'none'
         DistributionNames: {1x32 cell}
    DistributionParameters: {2x32 cell}

  Properties, Methods

CMdl is a trained CompactClassificationNaiveBayes classifier.

Display the amount of memory used by each classifier.

whos('Mdl','CMdl')

  Name      Size             Bytes  Class                                                        Attributes

  CMdl      1x1              15060  classreg.learning.classif.CompactClassificationNaiveBayes              
  Mdl       1x1             111190  ClassificationNaiveBayes                                               

The full naive Bayes classifier (Mdl) is more than seven times larger than the compact naive Bayes
classifier (CMdl).

To label new observations efficiently, you can remove Mdl from the MATLAB® Workspace, and then
pass CMdl and new predictor values to predict.

Train and Cross-Validate Naive Bayes Classifier

Train and cross-validate a naive Bayes classifier. fitcnb implements 10-fold cross-validation by
default. Then, estimate the cross-validated classification error.

Load the ionosphere data set. Remove the first two predictors for stability.

load ionosphere
X = X(:,3:end);
rng('default')  % for reproducibility
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Train and cross-validate a naive Bayes classifier using the predictors X and class labels Y. A
recommended practice is to specify the class names. fitcnb assumes that each predictor is
conditionally and normally distributed.

CVMdl = fitcnb(X,Y,'ClassNames',{'b','g'},'CrossVal','on')

CVMdl = 
  ClassificationPartitionedModel
    CrossValidatedModel: 'NaiveBayes'
         PredictorNames: {1x32 cell}
           ResponseName: 'Y'
        NumObservations: 351
                  KFold: 10
              Partition: [1x1 cvpartition]
             ClassNames: {'b'  'g'}
         ScoreTransform: 'none'

  Properties, Methods

CVMdl is a ClassificationPartitionedModel cross-validated, naive Bayes classifier.
Alternatively, you can cross-validate a trained ClassificationNaiveBayes model by passing it to
crossval.

Display the first training fold of CVMdl using dot notation.

CVMdl.Trained{1}

ans = 
  CompactClassificationNaiveBayes
              ResponseName: 'Y'
     CategoricalPredictors: []
                ClassNames: {'b'  'g'}
            ScoreTransform: 'none'
         DistributionNames: {1x32 cell}
    DistributionParameters: {2x32 cell}

  Properties, Methods

Each fold is a CompactClassificationNaiveBayes model trained on 90% of the data.

Full and compact naive Bayes models are not used for predicting on new data. Instead, use them to
estimate the generalization error by passing CVMdl to kfoldLoss.

genError = kfoldLoss(CVMdl)

genError = 0.1852

On average, the generalization error is approximately 19%.

You can specify a different conditional distribution for the predictors, or tune the conditional
distribution parameters to reduce the generalization error.
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More About
Bag-of-Tokens Model

In the bag-of-tokens model, the value of predictor j is the nonnegative number of occurrences of
token j in the observation. The number of categories (bins) in the multinomial model is the number of
distinct tokens (number of predictors).

Naive Bayes

Naive Bayes is a classification algorithm that applies density estimation to the data.

The algorithm leverages Bayes theorem, and (naively) assumes that the predictors are conditionally
independent, given the class. Although the assumption is usually violated in practice, naive Bayes
classifiers tend to yield posterior distributions that are robust to biased class density estimates,
particularly where the posterior is 0.5 (the decision boundary) [1].

Naive Bayes classifiers assign observations to the most probable class (in other words, the maximum
a posteriori decision rule). Explicitly, the algorithm takes these steps:

1 Estimate the densities of the predictors within each class.
2 Model posterior probabilities according to Bayes rule. That is, for all k = 1,...,K,

P Y = k X1, .., XP =
π Y = k ∏

j = 1

P
P X j Y = k

∑k = 1

K

π Y = k ∏
j = 1

P
P X j Y = k

,

where:

• Y is the random variable corresponding to the class index of an observation.
• X1,...,XP are the random predictors of an observation.
• π Y = k  is the prior probability that a class index is k.

3 Classify an observation by estimating the posterior probability for each class, and then assign the
observation to the class yielding the maximum posterior probability.

If the predictors compose a multinomial distribution, then the posterior probability
P Y = k X1, .., XP ∝ π Y = k Pmn X1, ..., XP Y = k , where Pmn X1, ..., XP Y = k  is the probability
mass function of a multinomial distribution.

Algorithms
Normal Distribution Estimators

If predictor variable j has a conditional normal distribution (see the DistributionNames property),
the software fits the distribution to the data by computing the class-specific weighted mean and the
unbiased estimate of the weighted standard deviation. For each class k:

• The weighted mean of predictor j is
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x j k =
∑

i: yi = k
wixi j

∑
i: yi = k

wi
,

where wi is the weight for observation i. The software normalizes weights within a class such that
they sum to the prior probability for that class.

• The unbiased estimator of the weighted standard deviation of predictor j is

s j k =
∑

i: yi = k
wi xi j− x j k

2

z1 k−
z2 k
z1 k

1/2

,

where z1|k is the sum of the weights within class k and z2|k is the sum of the squared weights
within class k.

Estimated Probability for Multinomial Distribution

If all predictor variables compose a conditional multinomial distribution (see the
DistributionNames property), the software fits the distribution using the “Bag-of-Tokens Model”
on page 35-896. The software stores the probability that token j appears in class k in the property
DistributionParameters{k,j}. With additive smoothing [2], the estimated probability is

P(token  j class k) =
1 + c j k
P + ck

,

where:

•

c j k = nk

∑
i: yi = k

xi jwi

∑
i: yi = k

wi
, which is the weighted number of occurrences of token j in class k.

• nk is the number of observations in class k.
• wi is the weight for observation i. The software normalizes weights within a class so that they sum

to the prior probability for that class.
•

ck = ∑
j = 1

P
c j k, which is the total weighted number of occurrences of all tokens in class k.

Estimated Probability for Multivariate Multinomial Distribution

If predictor variable j has a conditional multivariate multinomial distribution (see the
DistributionNames property), the software follows this procedure:

1 The software collects a list of the unique levels, stores the sorted list in CategoricalLevels,
and considers each level a bin. Each combination of predictor and class is a separate,
independent multinomial random variable.

2 For each class k, the software counts instances of each categorical level using the list stored in
CategoricalLevels{j}.
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3 The software stores the probability that predictor j in class k has level L in the property
DistributionParameters{k,j}, for all levels in CategoricalLevels{j}. With additive
smoothing [2], the estimated probability is

P predictor  j = L class k =
1 + m j k(L)

m j + mk
,

where:

•

m j k(L) = nk

∑
i: yi = k

I xi j = L wi

∑
i: yi = k

wi
, which is the weighted number of observations for which

predictor j equals L in class k.
• nk is the number of observations in class k.
• I xi j = L = 1 if xij = L, and 0 otherwise.
• wi is the weight for observation i. The software normalizes weights within a class so that they

sum to the prior probability for that class.
• mj is the number of distinct levels in predictor j.
• mk is the weighted number of observations in class k.

Version History
Introduced in R2014b

References
[1] Hastie, Trevor, Robert Tibshirani, and Jerome Friedman. The Elements of Statistical Learning:

Data Mining, Inference, and Prediction. 2nd ed. Springer Series in Statistics. New York, NY:
Springer, 2009. https://doi.org/10.1007/978-0-387-84858-7.

[2] Manning, Christopher D., Prabhakar Raghavan, and Hinrich Schütze. Introduction to Information
Retrieval, NY: Cambridge University Press, 2008.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• The predict function supports code generation.
• When you train a naive Bayes model by using fitcnb, the following restrictions apply.

• The value of the 'DistributionNames' name-value pair argument cannot contain 'mn'.
• The value of the 'ScoreTransform' name-value pair argument cannot be an anonymous

function.

For more information, see “Introduction to Code Generation” on page 34-2.
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See Also
ClassificationNaiveBayes | loss | predict | fitcnb

Topics
“Naive Bayes Classification” on page 22-2
“Grouping Variables” on page 2-46
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CompactClassificationNeuralNetwork
Compact neural network model for classification

Description
CompactClassificationNeuralNetwork is a compact version of a
ClassificationNeuralNetwork model object. The compact model does not include the data used
for training the classifier. Therefore, you cannot perform some tasks, such as cross-validation, using
the compact model. Use a compact model for tasks such as predicting the labels of new data.

Creation
Create a CompactClassificationNeuralNetwork object from a full
ClassificationNeuralNetwork model object by using compact.

Properties
Neural Network Properties

LayerSizes — Sizes of fully connected layers
positive integer vector

This property is read-only.

Sizes of the fully connected layers in the neural network model, returned as a positive integer vector.
The ith element of LayerSizes is the number of outputs in the ith fully connected layer of the neural
network model.

LayerSizes does not include the size of the final fully connected layer. This layer always has K
outputs, where K is the number of classes in the response variable.
Data Types: single | double

LayerWeights — Learned layer weights
cell array

This property is read-only.

Learned layer weights for the fully connected layers, returned as a cell array. The ith entry in the cell
array corresponds to the layer weights for the ith fully connected layer. For example,
Mdl.LayerWeights{1} returns the weights for the first fully connected layer of the model Mdl.

LayerWeights includes the weights for the final fully connected layer.
Data Types: cell

LayerBiases — Learned layer biases
cell array

This property is read-only.
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Learned layer biases for the fully connected layers, returned as a cell array. The ith entry in the cell
array corresponds to the layer biases for the ith fully connected layer. For example,
Mdl.LayerBiases{1} returns the biases for the first fully connected layer of the model Mdl.

LayerBiases includes the biases for the final fully connected layer.
Data Types: cell

Activations — Activation functions for fully connected layers
'relu' | 'tanh' | 'sigmoid' | 'none' | cell array of character vectors

This property is read-only.

Activation functions for the fully connected layers of the neural network model, returned as a
character vector or cell array of character vectors with values from this table.

Value Description
'relu' Rectified linear unit (ReLU) function — Performs

a threshold operation on each element of the
input, where any value less than zero is set to
zero, that is,

f x =
x, x ≥ 0
0, x < 0

'tanh' Hyperbolic tangent (tanh) function — Applies the
tanh function to each input element

'sigmoid' Sigmoid function — Performs the following
operation on each input element:

f (x) = 1
1 + e−x

'none' Identity function — Returns each input element
without performing any transformation, that is,
f(x) = x

• If Activations contains only one activation function, then it is the activation function for every
fully connected layer of the neural network model, excluding the final fully connected layer. The
activation function for the final fully connected layer is always softmax
(OutputLayerActivation).

• If Activations is an array of activation functions, then the ith element is the activation function
for the ith layer of the neural network model.

Data Types: char | cell

OutputLayerActivation — Activation function for final fully connected layer
'softmax'

This property is read-only.

Activation function for the final fully connected layer, returned as 'softmax'. The function takes
each input xi and returns the following, where K is the number of classes in the response variable:
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f (xi) =
exp(xi)

∑
j = 1

K
exp(x j)

.

The results correspond to the predicted classification scores (or posterior probabilities).

Data Properties

PredictorNames — Predictor variable names
cell array of character vectors

This property is read-only.

Predictor variable names, returned as a cell array of character vectors. The order of the elements of
PredictorNames corresponds to the order in which the predictor names appear in the training data.
Data Types: cell

CategoricalPredictors — Categorical predictor indices
vector of positive integers | []

This property is read-only.

Categorical predictor indices, returned as a vector of positive integers. Assuming that the predictor
data contains observations in rows, CategoricalPredictors contains index values corresponding
to the columns of the predictor data that contain categorical predictors. If none of the predictors are
categorical, then this property is empty ([]).
Data Types: double

ExpandedPredictorNames — Expanded predictor names
cell array of character vectors

This property is read-only.

Expanded predictor names, returned as a cell array of character vectors. If the model uses encoding
for categorical variables, then ExpandedPredictorNames includes the names that describe the
expanded variables. Otherwise, ExpandedPredictorNames is the same as PredictorNames.
Data Types: cell

ClassNames — Unique class names
numeric vector | categorical vector | logical vector | character array | cell array of character vectors

This property is read-only.

Unique class names used in training, returned as a numeric vector, categorical vector, logical vector,
character array, or cell array of character vectors. ClassNames has the same data type as the class
labels in the response variable used to train the model. (The software treats string arrays as cell
arrays of character vectors.) ClassNames also determines the class order.
Data Types: single | double | categorical | logical | char | cell

ResponseName — Response variable name
character vector

This property is read-only.
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Response variable name, returned as a character vector.
Data Types: char

Other Classification Properties

Cost — Misclassification cost
numeric square matrix

This property is read-only.

Misclassification cost, returned as a numeric square matrix, where Cost(i,j) is the cost of
classifying a point into class j if its true class is i. The cost matrix always has this form: Cost(i,j)
= 1 if i ~= j, and Cost(i,j) = 0 if i = j. The rows correspond to the true class and the
columns correspond to the predicted class. The order of the rows and columns of Cost corresponds
to the order of the classes in ClassNames.
Data Types: double

Prior — Prior probabilities
numeric vector

This property is read-only.

Prior probabilities for each class, returned as a numeric vector. The order of the elements of Prior
corresponds to the elements of ClassNames.
Data Types: double

ScoreTransform — Score transformation
character vector | function handle

Score transformation, specified as a character vector or function handle. ScoreTransform
represents a built-in transformation function or a function handle for transforming predicted
classification scores.

To change the score transformation function to function, for example, use dot notation.

• For a built-in function, enter a character vector.

Mdl.ScoreTransform = 'function';

This table describes the available built-in functions.

Value Description
'doublelogit' 1/(1 + e–2x)
'invlogit' log(x / (1 – x))
'ismax' Sets the score for the class with the largest score to

1, and sets the scores for all other classes to 0
'logit' 1/(1 + e–x)
'none' or 'identity' x (no transformation)
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Value Description
'sign' –1 for x < 0

0 for x = 0
1 for x > 0

'symmetric' 2x – 1
'symmetricismax' Sets the score for the class with the largest score to

1, and sets the scores for all other classes to –1
'symmetriclogit' 2/(1 + e–x) – 1

• For a MATLAB function or a function that you define, enter its function handle.

Mdl.ScoreTransform = @function;

function must accept a matrix (the original scores) and return a matrix of the same size (the
transformed scores).

Data Types: char | function_handle

Object Functions

Interpret Prediction
lime Local interpretable model-agnostic explanations (LIME)
partialDependence Compute partial dependence
plotPartialDependence Create partial dependence plot (PDP) and individual conditional expectation

(ICE) plots
shapley Shapley values

Assess Predictive Performance on New Observations
edge Classification edge for neural network classifier
loss Classification loss for neural network classifier
margin Classification margins for neural network classifier
predict Classify observations using neural network classifier

Compare Accuracies
compareHoldout Compare accuracies of two classification models using new data
testckfold Compare accuracies of two classification models by repeated cross-validation

Examples

Reduce Size of Neural Network Classifier

Reduce the size of a full neural network classifier by removing the training data from the model. You
can use a compact model to improve memory efficiency.

Load the patients data set. Create a table from the data set. Each row corresponds to one patient,
and each column corresponds to a diagnostic variable. Use the Smoker variable as the response
variable, and the rest of the variables as predictors.
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load patients
tbl = table(Diastolic,Systolic,Gender,Height,Weight,Age,Smoker);

Train a neural network classifier using the data. Specify the Smoker column of tbl as the response
variable. Specify to standardize the numeric predictors.

Mdl = fitcnet(tbl,"Smoker","Standardize",true)

Mdl = 
  ClassificationNeuralNetwork
           PredictorNames: {1x6 cell}
             ResponseName: 'Smoker'
    CategoricalPredictors: 3
               ClassNames: [0 1]
           ScoreTransform: 'none'
          NumObservations: 100
               LayerSizes: 10
              Activations: 'relu'
    OutputLayerActivation: 'softmax'
                   Solver: 'LBFGS'
          ConvergenceInfo: [1x1 struct]
          TrainingHistory: [36x7 table]

  Properties, Methods

Mdl is a full ClassificationNeuralNetwork model object.

Reduce the size of the model by using compact.

compactMdl = compact(Mdl)

compactMdl = 
  CompactClassificationNeuralNetwork
               LayerSizes: 10
              Activations: 'relu'
    OutputLayerActivation: 'softmax'

  Properties, Methods

compactMdl is a CompactClassificationNeuralNetwork model object. compactMdl contains
fewer properties than the full model Mdl.

Display the amount of memory used by each neural network model.

whos("Mdl","compactMdl")

  Name            Size            Bytes  Class                                                           Attributes

  Mdl             1x1             18836  ClassificationNeuralNetwork                                               
  compactMdl      1x1              6663  classreg.learning.classif.CompactClassificationNeuralNetwork              

The full model is larger than the compact model.
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Version History
Introduced in R2021a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• The predict object function supports code generation.

For more information, see “Introduction to Code Generation” on page 34-2.

See Also
fitcnet | predict | loss | margin | edge | ClassificationPartitionedModel |
ClassificationNeuralNetwork | compact

Topics
“Assess Neural Network Classifier Performance” on page 19-181

35 Functions

35-906



CompactClassificationGAM
Compact generalized additive model (GAM) for binary classification

Description
CompactClassificationGAM is a compact version of a ClassificationGAM model object (GAM
for binary classification). The compact model does not include the data used for training the classifier.
Therefore, you cannot perform some tasks, such as cross-validation, using the compact model. Use a
compact model for tasks such as predicting the labels of new data.

Creation
Create a CompactClassificationGAM object from a full ClassificationGAM model object by
using compact.

Properties
GAM Properties

Interactions — Interaction term indices
two-column matrix of positive integers | []

This property is read-only.

Interaction term indices, specified as a t-by-2 matrix of positive integers, where t is the number of
interaction terms in the model. Each row of the matrix represents one interaction term and contains
the column indexes of the predictor data X for the interaction term. If the model does not include an
interaction term, then this property is empty ([]).

The software adds interaction terms to the model in the order of importance based on the p-values.
Use this property to check the order of the interaction terms added to the model.
Data Types: double

Intercept — Intercept term of model
numeric scalar

This property is read-only.

Intercept (constant) term of the model, which is the sum of the intercept terms in the predictor trees
and interaction trees, specified as a numeric scalar.
Data Types: single | double

Other Classification Properties

CategoricalPredictors — Categorical predictor indices
vector of positive integers | []

This property is read-only.
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Categorical predictor indices, specified as a vector of positive integers. CategoricalPredictors
contains index values indicating that the corresponding predictors are categorical. The index values
are between 1 and p, where p is the number of predictors used to train the model. If none of the
predictors are categorical, then this property is empty ([]).
Data Types: double

ClassNames — Unique class labels
categorical array | character array | logical vector | numeric vector | cell array of character vectors

This property is read-only.

Unique class labels used in training, specified as a categorical or character array, logical or numeric
vector, or cell array of character vectors. ClassNames has the same data type as the class labels Y.
(The software treats string arrays as cell arrays of character vectors.) ClassNames also determines
the class order.
Data Types: single | double | logical | char | cell | categorical

Cost — Misclassification costs
2-by-2 numeric matrix

Misclassification costs, specified as a 2-by-2 numeric matrix.

Cost(i,j) is the cost of classifying a point into class j if its true class is i. The order of the rows
and columns of Cost corresponds to the order of the classes in ClassNames.

The software uses the Cost value for prediction, but not training. You can change the value by using
dot notation.
Example: Mdl.Cost = C;
Data Types: double

ExpandedPredictorNames — Expanded predictor names
cell array of character vectors

This property is read-only.

Expanded predictor names, specified as a cell array of character vectors.

ExpandedPredictorNames is the same as PredictorNames for a generalized additive model.
Data Types: cell

PredictorNames — Predictor variable names
cell array of character vectors

This property is read-only.

Predictor variable names, specified as a cell array of character vectors. The order of the elements of
PredictorNames corresponds to the order in which the predictor names appear in the training data.
Data Types: cell

Prior — Prior class probabilities
numeric vector
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This property is read-only.

Prior class probabilities, specified as a numeric vector with two elements. The order of the elements
corresponds to the order of the elements in ClassNames.
Data Types: double

ResponseName — Response variable name
character vector

This property is read-only.

Response variable name, specified as a character vector.
Data Types: char

ScoreTransform — Score transformation
character vector | function handle

Score transformation, specified as a character vector or function handle. ScoreTransform
represents a built-in transformation function or a function handle for transforming predicted
classification scores.

To change the score transformation function to function, for example, use dot notation.

• For a built-in function, enter a character vector.

Mdl.ScoreTransform = 'function';

This table describes the available built-in functions.

Value Description
'doublelogit' 1/(1 + e–2x)
'invlogit' log(x / (1 – x))
'ismax' Sets the score for the class with the largest score to

1, and sets the scores for all other classes to 0
'logit' 1/(1 + e–x)
'none' or 'identity' x (no transformation)
'sign' –1 for x < 0

0 for x = 0
1 for x > 0

'symmetric' 2x – 1
'symmetricismax' Sets the score for the class with the largest score to

1, and sets the scores for all other classes to –1
'symmetriclogit' 2/(1 + e–x) – 1

• For a MATLAB function or a function that you define, enter its function handle.

Mdl.ScoreTransform = @function;

function must accept a matrix (the original scores) and return a matrix of the same size (the
transformed scores).
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This property determines the output score computation for object functions such as predict,
margin, and edge. Use 'logit' to compute posterior probabilities, and use 'none' to compute the
logit of posterior probabilities.
Data Types: char | function_handle

Object Functions

Interpret Prediction
lime Local interpretable model-agnostic explanations (LIME)
partialDependence Compute partial dependence
plotLocalEffects Plot local effects of terms in generalized additive model (GAM)
plotPartialDependence Create partial dependence plot (PDP) and individual conditional expectation

(ICE) plots
shapley Shapley values

Assess Predictive Performance on New Observations
predict Classify observations using generalized additive model (GAM)
loss Classification loss for generalized additive model (GAM)
margin Classification margins for generalized additive model (GAM)
edge Classification edge for generalized additive model (GAM)

Compare Accuracies
compareHoldout Compare accuracies of two classification models using new data

Examples

Reduce Size of Generalized Additive Model

Reduce the size of a full generalized additive model (GAM) by removing the training data. Full models
hold the training data. You can use a compact model to improve memory efficiency.

Load the ionosphere data set. This data set has 34 predictors and 351 binary responses for radar
returns, either bad ('b') or good ('g').

load ionosphere

Train a GAM using the predictors X and class labels Y. A recommended practice is to specify the class
names.

Mdl = fitcgam(X,Y,'ClassNames',{'b','g'})

Mdl = 
  ClassificationGAM
             ResponseName: 'Y'
    CategoricalPredictors: []
               ClassNames: {'b'  'g'}
           ScoreTransform: 'logit'
                Intercept: 2.2715
          NumObservations: 351
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  Properties, Methods

Mdl is a ClassificationGAM model object.

Reduce the size of the classifier.

CMdl = compact(Mdl)

CMdl = 
  CompactClassificationGAM
             ResponseName: 'Y'
    CategoricalPredictors: []
               ClassNames: {'b'  'g'}
           ScoreTransform: 'logit'
                Intercept: 2.2715

  Properties, Methods

CMdl is a CompactClassificationGAM model object.

Display the amount of memory used by each classifier.

whos('Mdl','CMdl')

  Name      Size              Bytes  Class                                                 Attributes

  CMdl      1x1             1030019  classreg.learning.classif.CompactClassificationGAM              
  Mdl       1x1             1230996  ClassificationGAM                                               

The full classifier (Mdl) is larger than the compact classifier (CMdl).

To efficiently label new observations, you can remove Mdl from the MATLAB® Workspace, and then
pass CMdl and new predictor values to predict.

Version History
Introduced in R2021a

See Also
ClassificationGAM | compact

Topics
“Train Generalized Additive Model for Binary Classification” on page 12-77
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CompactClassificationSVM
Compact support vector machine (SVM) for one-class and binary classification

Description
CompactClassificationSVM is a compact version of the support vector machine (SVM) classifier.
The compact classifier does not include the data used for training the SVM classifier. Therefore, you
cannot perform some tasks, such as cross-validation, using the compact classifier. Use a compact
SVM classifier for tasks such as predicting the labels of new data.

Creation
Create a CompactClassificationSVM model from a full, trained ClassificationSVM classifier
by using compact.

Properties
SVM Properties

Alpha — Trained classifier coefficients
numeric vector

This property is read-only.

Trained classifier coefficients, specified as an s-by-1 numeric vector. s is the number of support
vectors in the trained classifier, sum(Mdl.IsSupportVector).

Alpha contains the trained classifier coefficients from the dual problem, that is, the estimated
Lagrange multipliers. If you remove duplicates by using the RemoveDuplicates name-value pair
argument of fitcsvm, then for a given set of duplicate observations that are support vectors, Alpha
contains one coefficient corresponding to the entire set. That is, MATLAB attributes a nonzero
coefficient to one observation from the set of duplicates and a coefficient of 0 to all other duplicate
observations in the set.
Data Types: single | double

Beta — Linear predictor coefficients
numeric vector

This property is read-only.

Linear predictor coefficients, specified as a numeric vector. The length of Beta is equal to the
number of predictors used to train the model.

MATLAB expands categorical variables in the predictor data using full dummy encoding. That is,
MATLAB creates one dummy variable for each level of each categorical variable. Beta stores one
value for each predictor variable, including the dummy variables. For example, if there are three
predictors, one of which is a categorical variable with three levels, then Beta is a numeric vector
containing five values.
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If KernelParameters.Function is 'linear', then the classification score for the observation x is

f x = x/s ′β + b .

Mdl stores β, b, and s in the properties Beta, Bias, and KernelParameters.Scale, respectively.

To estimate classification scores manually, you must first apply any transformations to the predictor
data that were applied during training. Specifically, if you specify 'Standardize',true when using
fitcsvm, then you must standardize the predictor data manually by using the mean Mdl.Mu and
standard deviation Mdl.Sigma, and then divide the result by the kernel scale in
Mdl.KernelParameters.Scale.

All SVM functions, such as resubPredict and predict, apply any required transformation before
estimation.

If KernelParameters.Function is not 'linear', then Beta is empty ([]).
Data Types: single | double

Bias — Bias term
scalar

This property is read-only.

Bias term, specified as a scalar.
Data Types: single | double

KernelParameters — Kernel parameters
structure array

This property is read-only.

Kernel parameters, specified as a structure array. The kernel parameters property contains the fields
listed in this table.

Field Description
Function Kernel function used to compute the elements of the Gram matrix on page 35-2206.

For details, see 'KernelFunction'.
Scale Kernel scale parameter used to scale all elements of the predictor data on which the

model is trained. For details, see 'KernelScale'.

To display the values of KernelParameters, use dot notation. For example,
Mdl.KernelParameters.Scale displays the kernel scale parameter value.

The software accepts KernelParameters as inputs and does not modify them.
Data Types: struct

SupportVectorLabels — Support vector class labels
s-by-1 numeric vector

This property is read-only.

Support vector class labels, specified as an s-by-1 numeric vector. s is the number of support vectors
in the trained classifier, sum(Mdl.IsSupportVector).
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A value of +1 in SupportVectorLabels indicates that the corresponding support vector is in the
positive class (ClassNames{2}). A value of –1 indicates that the corresponding support vector is in
the negative class (ClassNames{1}).

If you remove duplicates by using the RemoveDuplicates name-value pair argument of fitcsvm,
then for a given set of duplicate observations that are support vectors, SupportVectorLabels
contains one unique support vector label.
Data Types: single | double

SupportVectors — Support vectors
s-by-p numeric matrix

This property is read-only.

Support vectors in the trained classifier, specified as an s-by-p numeric matrix. s is the number of
support vectors in the trained classifier, sum(Mdl.IsSupportVector), and p is the number of
predictor variables in the predictor data.

SupportVectors contains rows of the predictor data X that MATLAB considers to be support
vectors. If you specify 'Standardize',true when training the SVM classifier using fitcsvm, then
SupportVectors contains the standardized rows of X.

If you remove duplicates by using the RemoveDuplicates name-value pair argument of fitcsvm,
then for a given set of duplicate observations that are support vectors, SupportVectors contains
one unique support vector.
Data Types: single | double

Other Classification Properties

CategoricalPredictors — Categorical predictor indices
vector of positive integers | []

This property is read-only.

Categorical predictor indices, specified as a vector of positive integers. CategoricalPredictors
contains index values indicating that the corresponding predictors are categorical. The index values
are between 1 and p, where p is the number of predictors used to train the model. If none of the
predictors are categorical, then this property is empty ([]).
Data Types: double

ClassNames — Unique class labels
categorical array | character array | logical vector | numeric vector | cell array of character vectors

This property is read-only.

Unique class labels used in training, specified as a categorical or character array, logical or numeric
vector, or cell array of character vectors. ClassNames has the same data type as the class labels Y.
(The software treats string arrays as cell arrays of character vectors.) ClassNames also determines
the class order.
Data Types: single | double | logical | char | cell | categorical

Cost — Misclassification cost
numeric square matrix
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This property is read-only.

Misclassification cost, specified as a numeric square matrix.

• For two-class learning, the Cost property stores the misclassification cost matrix specified by the
Cost name-value argument of the fitting function. The rows correspond to the true class and the
columns correspond to the predicted class. That is, Cost(i,j) is the cost of classifying a point
into class j if its true class is i. The order of the rows and columns of Cost corresponds to the
order of the classes in ClassNames.

• For one-class learning, Cost = 0.

Data Types: double

ExpandedPredictorNames — Expanded predictor names
cell array of character vectors

This property is read-only.

Expanded predictor names, specified as a cell array of character vectors.

If the model uses dummy variable encoding for categorical variables, then
ExpandedPredictorNames includes the names that describe the expanded variables. Otherwise,
ExpandedPredictorNames is the same as PredictorNames.
Data Types: cell

Mu — Predictor means
numeric vector | []

This property is read-only.

Predictor means, specified as a numeric vector. If you specify 'Standardize',1 or
'Standardize',true when you train an SVM classifier using fitcsvm, the length of Mu is equal to
the number of predictors.

MATLAB expands categorical variables in the predictor data using dummy variables. Mu stores one
value for each predictor variable, including the dummy variables. However, MATLAB does not
standardize the columns that contain categorical variables.

If you set 'Standardize',false when you train the SVM classifier using fitcsvm, then Mu is an
empty vector ([]).
Data Types: single | double

PredictorNames — Predictor variable names
cell array of character vectors

This property is read-only.

Predictor variable names, specified as a cell array of character vectors. The order of the elements of
PredictorNames corresponds to the order in which the predictor names appear in the training data.
Data Types: cell

Prior — Prior probabilities
numeric vector

 CompactClassificationSVM

35-915



This property is read-only.

Prior probabilities for each class, specified as a numeric vector.

For two-class learning, if you specify a cost matrix, then the software updates the prior probabilities
by incorporating the penalties described in the cost matrix.

• For two-class learning, the software normalizes the prior probabilities specified by the Prior
name-value argument of the fitting function so that the probabilities sum to 1. The Prior property
stores the normalized prior probabilities. The order of the elements of Prior corresponds to the
elements of Mdl.ClassNames.

• For one-class learning, Prior = 1.

Data Types: single | double

ScoreTransform — Score transformation
character vector | function handle

Score transformation, specified as a character vector or function handle. ScoreTransform
represents a built-in transformation function or a function handle for transforming predicted
classification scores.

To change the score transformation function to function, for example, use dot notation.

• For a built-in function, enter a character vector.

Mdl.ScoreTransform = 'function';

This table describes the available built-in functions.

Value Description
'doublelogit' 1/(1 + e–2x)
'invlogit' log(x / (1 – x))
'ismax' Sets the score for the class with the largest score to

1, and sets the scores for all other classes to 0
'logit' 1/(1 + e–x)
'none' or 'identity' x (no transformation)
'sign' –1 for x < 0

0 for x = 0
1 for x > 0

'symmetric' 2x – 1
'symmetricismax' Sets the score for the class with the largest score to

1, and sets the scores for all other classes to –1
'symmetriclogit' 2/(1 + e–x) – 1

• For a MATLAB function or a function that you define, enter its function handle.

Mdl.ScoreTransform = @function;

function must accept a matrix (the original scores) and return a matrix of the same size (the
transformed scores).
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Data Types: char | function_handle

Sigma — Predictor standard deviations
[] (default) | numeric vector

This property is read-only.

Predictor standard deviations, specified as a numeric vector.

If you specify 'Standardize',true when you train the SVM classifier using fitcsvm, the length of
Sigma is equal to the number of predictor variables.

MATLAB expands categorical variables in the predictor data using dummy variables. Sigma stores
one value for each predictor variable, including the dummy variables. However, MATLAB does not
standardize the columns that contain categorical variables.

If you set 'Standardize',false when you train the SVM classifier using fitcsvm, then Sigma is
an empty vector ([]).
Data Types: single | double

Object Functions
compareHoldout Compare accuracies of two classification models using new data
discardSupportVectors Discard support vectors for linear support vector machine (SVM) classifier
edge Find classification edge for support vector machine (SVM) classifier
fitPosterior Fit posterior probabilities for compact support vector machine (SVM)

classifier
gather Gather properties of Statistics and Machine Learning Toolbox object from

GPU
incrementalLearner Convert binary classification support vector machine (SVM) model to

incremental learner
lime Local interpretable model-agnostic explanations (LIME)
loss Find classification error for support vector machine (SVM) classifier
margin Find classification margins for support vector machine (SVM) classifier
partialDependence Compute partial dependence
plotPartialDependence Create partial dependence plot (PDP) and individual conditional expectation

(ICE) plots
predict Classify observations using support vector machine (SVM) classifier
shapley Shapley values
update Update model parameters for code generation

Examples

Reduce Size of SVM Classifier

Reduce the size of a full support vector machine (SVM) classifier by removing the training data. Full
SVM classifiers (that is, ClassificationSVM classifiers) hold the training data. To improve
efficiency, use a smaller classifier.

Load the ionosphere data set.

load ionosphere
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Train an SVM classifier. Standardize the predictor data and specify the order of the classes.

SVMModel = fitcsvm(X,Y,'Standardize',true,...
    'ClassNames',{'b','g'})

SVMModel = 
  ClassificationSVM
             ResponseName: 'Y'
    CategoricalPredictors: []
               ClassNames: {'b'  'g'}
           ScoreTransform: 'none'
          NumObservations: 351
                    Alpha: [90x1 double]
                     Bias: -0.1343
         KernelParameters: [1x1 struct]
                       Mu: [0.8917 0 0.6413 0.0444 0.6011 0.1159 0.5501 ... ]
                    Sigma: [0.3112 0 0.4977 0.4414 0.5199 0.4608 0.4927 ... ]
           BoxConstraints: [351x1 double]
          ConvergenceInfo: [1x1 struct]
          IsSupportVector: [351x1 logical]
                   Solver: 'SMO'

  Properties, Methods

SVMModel is a ClassificationSVM classifier.

Reduce the size of the SVM classifier.

CompactSVMModel = compact(SVMModel)

CompactSVMModel = 
  CompactClassificationSVM
             ResponseName: 'Y'
    CategoricalPredictors: []
               ClassNames: {'b'  'g'}
           ScoreTransform: 'none'
                    Alpha: [90x1 double]
                     Bias: -0.1343
         KernelParameters: [1x1 struct]
                       Mu: [0.8917 0 0.6413 0.0444 0.6011 0.1159 0.5501 ... ]
                    Sigma: [0.3112 0 0.4977 0.4414 0.5199 0.4608 0.4927 ... ]
           SupportVectors: [90x34 double]
      SupportVectorLabels: [90x1 double]

  Properties, Methods

CompactSVMModel is a CompactClassificationSVM classifier.

Display the amount of memory used by each classifier.

whos('SVMModel','CompactSVMModel')

  Name                 Size             Bytes  Class                                                 Attributes
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  CompactSVMModel      1x1              31058  classreg.learning.classif.CompactClassificationSVM              
  SVMModel             1x1             141148  ClassificationSVM                                               

The full SVM classifier (SVMModel) is more than four times larger than the compact SVM classifier
(CompactSVMModel).

To label new observations efficiently, you can remove SVMModel from the MATLAB® Workspace, and
then pass CompactSVMModel and new predictor values to predict.

To further reduce the size of the compact SVM classifier, use the discardSupportVectors function
to discard support vectors.

Train and Cross-Validate SVM Classifier

Load the ionosphere data set.

load ionosphere

Train and cross-validate an SVM classifier. Standardize the predictor data and specify the order of the
classes.

rng(1);  % For reproducibility
CVSVMModel = fitcsvm(X,Y,'Standardize',true,...
    'ClassNames',{'b','g'},'CrossVal','on')

CVSVMModel = 
  ClassificationPartitionedModel
    CrossValidatedModel: 'SVM'
         PredictorNames: {1x34 cell}
           ResponseName: 'Y'
        NumObservations: 351
                  KFold: 10
              Partition: [1x1 cvpartition]
             ClassNames: {'b'  'g'}
         ScoreTransform: 'none'

  Properties, Methods

CVSVMModel is a ClassificationPartitionedModel cross-validated SVM classifier. By default,
the software implements 10-fold cross-validation.

Alternatively, you can cross-validate a trained ClassificationSVM classifier by passing it to
crossval.

Inspect one of the trained folds using dot notation.

CVSVMModel.Trained{1}

ans = 
  CompactClassificationSVM
             ResponseName: 'Y'
    CategoricalPredictors: []
               ClassNames: {'b'  'g'}
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           ScoreTransform: 'none'
                    Alpha: [78x1 double]
                     Bias: -0.2209
         KernelParameters: [1x1 struct]
                       Mu: [0.8888 0 0.6320 0.0406 0.5931 0.1205 0.5361 ... ]
                    Sigma: [0.3149 0 0.5033 0.4441 0.5255 0.4663 0.4987 ... ]
           SupportVectors: [78x34 double]
      SupportVectorLabels: [78x1 double]

  Properties, Methods

Each fold is a CompactClassificationSVM classifier trained on 90% of the data.

Estimate the generalization error.

genError = kfoldLoss(CVSVMModel)

genError = 0.1168

On average, the generalization error is approximately 12%.

Version History
Introduced in R2014a

Cost property stores the user-specified cost matrix
Behavior changed in R2022a

Starting in R2022a, the Cost property stores the user-specified cost matrix, so that you can compute
the observed misclassification cost using the specified cost value. The software stores normalized
prior probabilities (Prior) that do not reflect the penalties described in the cost matrix. To compute
the observed misclassification cost, specify the LossFun name-value argument as "classifcost"
when you call the loss function.

Note that model training has not changed and, therefore, the decision boundaries between classes
have not changed.

For training, the fitting function updates the specified prior probabilities by incorporating the
penalties described in the specified cost matrix, and then normalizes the prior probabilities and
observation weights. This behavior has not changed. In previous releases, the software stored the
default cost matrix in the Cost property and stored the prior probabilities used for training in the
Prior property. Starting in R2022a, the software stores the user-specified cost matrix without
modification, and stores normalized prior probabilities that do not reflect the cost penalties. For more
details, see “Misclassification Cost Matrix, Prior Probabilities, and Observation Weights” on page 19-
8.

Some object functions use the Cost and Prior properties:

• The loss function uses the cost matrix stored in the Cost property if you specify the LossFun
name-value argument as "classifcost" or "mincost".

• The loss and edge functions use the prior probabilities stored in the Prior property to
normalize the observation weights of the input data.
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If you specify a nondefault cost matrix when you train a classification model, the object functions
return a different value compared to previous releases.

If you want the software to handle the cost matrix, prior probabilities, and observation weights as in
previous releases, adjust the prior probabilities and observation weights for the nondefault cost
matrix, as described in “Adjust Prior Probabilities and Observation Weights for Misclassification Cost
Matrix” on page 19-9. Then, when you train a classification model, specify the adjusted prior
probabilities and observation weights by using the Prior and Weights name-value arguments,
respectively, and use the default cost matrix.
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Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• The predict and update functions support code generation.
• To integrate the prediction of an SVM classification model into Simulink, you can use the
ClassificationSVM Predict block in the Statistics and Machine Learning Toolbox library or a
MATLAB Function block with the predict function.

• When you train an SVM model by using fitcsvm, the following restrictions apply.

• The value of the 'ScoreTransform' name-value pair argument cannot be an anonymous
function. For generating code that predicts posterior probabilities given new observations,
pass a trained SVM model to fitPosterior or fitSVMPosterior. The ScoreTransform
property of the returned model contains an anonymous function that represents the score-to-
posterior-probability function and is configured for code generation.

• For fixed-point code generation, the value of the 'ScoreTransform' name-value pair
argument cannot be 'invlogit'. Also, the value of the 'KernelFunction' name-value pair
argument must be 'gaussian', 'linear', or 'polynomial'.

• For fixed-point code generation and code generation with a coder configurer, the following
additional restrictions apply.

• Categorical predictors (logical, categorical, char, string, or cell) are not
supported. You cannot use the CategoricalPredictors name-value argument. To
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include categorical predictors in a model, preprocess them by using dummyvar before
fitting the model.

• Class labels with the categorical data type are not supported. Both the class label value
in training data (Tbl or Y) and the value of the ClassNames name-value argument cannot
be an array with the categorical data type.

For more information, see “Introduction to Code Generation” on page 34-2.

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

Usage notes and limitations:

• The following object functions fully support GPU arrays:

• discardSupportVectors
• fitPosterior
• gather

• The following object functions offer limited support for GPU arrays:

• compareHoldout
• edge
• loss
• margin
• partialDependence
• plotPartialDependence
• predict

For more information, see “Run MATLAB Functions on a GPU” (Parallel Computing Toolbox).

See Also
ClassificationSVM | fitcsvm | compact | discardSupportVectors

Topics
Using Support Vector Machines on page 19-155
Understanding Support Vector Machines on page 19-151

35 Functions

35-922



CompactClassificationTree
Package: classreg.learning.classif

Compact classification tree

Description
Compact version of a classification tree (of class ClassificationTree). The compact version does
not include the data for training the classification tree. Therefore, you cannot perform some tasks
with a compact classification tree, such as cross validation. Use a compact classification tree for
making predictions (classifications) of new data.

Construction
ctree = compact(tree) constructs a compact decision tree from a full decision tree.

Input Arguments

tree

A decision tree constructed using fitctree.

Properties
CategoricalPredictors

Categorical predictor indices, specified as a vector of positive integers. CategoricalPredictors
contains index values indicating that the corresponding predictors are categorical. The index values
are between 1 and p, where p is the number of predictors used to train the model. If none of the
predictors are categorical, then this property is empty ([]).

CategoricalSplit

An n-by-2 cell array, where n is the number of categorical splits in tree. Each row in
CategoricalSplit gives left and right values for a categorical split. For each branch node with
categorical split j based on a categorical predictor variable z, the left child is chosen if z is in
CategoricalSplit(j,1) and the right child is chosen if z is in CategoricalSplit(j,2). The
splits are in the same order as nodes of the tree. Nodes for these splits can be found by running
cuttype and selecting 'categorical' cuts from top to bottom.

Children

An n-by-2 array containing the numbers of the child nodes for each node in tree, where n is the
number of nodes. Leaf nodes have child node 0.

ClassCount

An n-by-k array of class counts for the nodes in tree, where n is the number of nodes and k is the
number of classes. For any node number i, the class counts ClassCount(i,:) are counts of
observations (from the data used in fitting the tree) from each class satisfying the conditions for node
i.
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ClassNames

List of the elements in Y with duplicates removed. ClassNames can be a numeric vector, vector of
categorical variables, logical vector, character array, or cell array of character vectors. ClassNames
has the same data type as the data in the argument Y. (The software treats string arrays as cell
arrays of character vectors.)

If the value of a property has at least one dimension of length k, then ClassNames indicates the
order of the elements along that dimension (e.g., Cost and Prior).

ClassProbability

An n-by-k array of class probabilities for the nodes in tree, where n is the number of nodes and k is
the number of classes. For any node number i, the class probabilities ClassProbability(i,:) are
the estimated probabilities for each class for a point satisfying the conditions for node i.

Cost

Square matrix, where Cost(i,j) is the cost of classifying a point into class j if its true class is i
(the rows correspond to the true class and the columns correspond to the predicted class). The order
of the rows and columns of Cost corresponds to the order of the classes in ClassNames. The number
of rows and columns in Cost is the number of unique classes in the response. This property is read-
only.

CutCategories

An n-by-2 cell array of the categories used at branches in tree, where n is the number of nodes. For
each branch node i based on a categorical predictor variable x, the left child is chosen if x is among
the categories listed in CutCategories{i,1}, and the right child is chosen if x is among those
listed in CutCategories{i,2}. Both columns of CutCategories are empty for branch nodes based
on continuous predictors and for leaf nodes.

CutPoint contains the cut points for 'continuous' cuts, and CutCategories contains the set of
categories.

CutPoint

An n-element vector of the values used as cut points in tree, where n is the number of nodes. For
each branch node i based on a continuous predictor variable x, the left child is chosen if
x<CutPoint(i) and the right child is chosen if x>=CutPoint(i). CutPoint is NaN for branch
nodes based on categorical predictors and for leaf nodes.

CutPoint contains the cut points for 'continuous' cuts, and CutCategories contains the set of
categories.

CutType

An n-element cell array indicating the type of cut at each node in tree, where n is the number of
nodes. For each node i, CutType{i} is:

• 'continuous' — If the cut is defined in the form x < v for a variable x and cut point v.
• 'categorical' — If the cut is defined by whether a variable x takes a value in a set of

categories.
• '' — If i is a leaf node.
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CutPoint contains the cut points for 'continuous' cuts, and CutCategories contains the set of
categories.

CutPredictor

An n-element cell array of the names of the variables used for branching in each node in tree, where
n is the number of nodes. These variables are sometimes known as cut variables. For leaf nodes,
CutPredictor contains an empty character vector.

CutPoint contains the cut points for 'continuous' cuts, and CutCategories contains the set of
categories.

CutPredictorIndex

An n-element array of numeric indices for the variables used for branching in each node in tree,
where n is the number of nodes. For more information, see CutPredictor.

ExpandedPredictorNames

Expanded predictor names, stored as a cell array of character vectors.

If the model uses encoding for categorical variables, then ExpandedPredictorNames includes the
names that describe the expanded variables. Otherwise, ExpandedPredictorNames is the same as
PredictorNames.

IsBranchNode

An n-element logical vector that is true for each branch node and false for each leaf node of tree.

NodeClass

An n-element cell array with the names of the most probable classes in each node of tree, where n is
the number of nodes in the tree. Every element of this array is a character vector equal to one of the
class names in ClassNames.

NodeError

An n-element vector of the errors of the nodes in tree, where n is the number of nodes.
NodeError(i) is the misclassification probability for node i.

NodeProbability

An n-element vector of the probabilities of the nodes in tree, where n is the number of nodes. The
probability of a node is computed as the proportion of observations from the original data that satisfy
the conditions for the node. This proportion is adjusted for any prior probabilities assigned to each
class.

NodeRisk

An n-element vector of the risk of the nodes in the tree, where n is the number of nodes. The risk for
each node is the measure of impurity (Gini index or deviance) for this node weighted by the node
probability. If the tree is grown by twoing, the risk for each node is zero.
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NodeSize

An n-element vector of the sizes of the nodes in tree, where n is the number of nodes. The size of a
node is defined as the number of observations from the data used to create the tree that satisfy the
conditions for the node.

NumNodes

The number of nodes in tree.

Parent

An n-element vector containing the number of the parent node for each node in tree, where n is the
number of nodes. The parent of the root node is 0.

PredictorNames

A cell array of names for the predictor variables, in the order in which they appear in X.

Prior

Numeric vector of prior probabilities for each class. The order of the elements of Prior corresponds
to the order of the classes in ClassNames. The number of elements of Prior is the number of unique
classes in the response. This property is read-only.

PruneAlpha

Numeric vector with one element per pruning level. If the pruning level ranges from 0 to M, then
PruneAlpha has M + 1 elements sorted in ascending order. PruneAlpha(1) is for pruning level 0
(no pruning), PruneAlpha(2) is for pruning level 1, and so on.

PruneList

An n-element numeric vector with the pruning levels in each node of tree, where n is the number of
nodes. The pruning levels range from 0 (no pruning) to M, where M is the distance between the
deepest leaf and the root node.

ResponseName

Character vector describing the response variable Y.

ScoreTransform

Function handle for transforming scores, or character vector representing a built-in transformation
function. 'none' means no transformation; equivalently, 'none' means @(x)x. For a list of built-in
transformation functions and the syntax of custom transformation functions, see fitctree.

Add or change a ScoreTransform function using dot notation:

ctree.ScoreTransform = 'function'
or
ctree.ScoreTransform = @function

SurrogateCutCategories

An n-element cell array of the categories used for surrogate splits in tree, where n is the number of
nodes in tree. For each node k, SurrogateCutCategories{k} is a cell array. The length of
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SurrogateCutCategories{k} is equal to the number of surrogate predictors found at this node.
Every element of SurrogateCutCategories{k} is either an empty character vector for a
continuous surrogate predictor, or is a two-element cell array with categories for a categorical
surrogate predictor. The first element of this two-element cell array lists categories assigned to the
left child by this surrogate split and the second element of this two-element cell array lists categories
assigned to the right child by this surrogate split. The order of the surrogate split variables at each
node is matched to the order of variables in SurrogateCutVar. The optimal-split variable at this
node does not appear. For nonbranch (leaf) nodes, SurrogateCutCategories contains an empty
cell.

SurrogateCutFlip

An n-element cell array of the numeric cut assignments used for surrogate splits in tree, where n is
the number of nodes in tree. For each node k, SurrSurrogateCutFlip{k} is a numeric vector.
The length of SurrogateCutFlip{k} is equal to the number of surrogate predictors found at this
node. Every element of SurrogateCutFlip{k} is either zero for a categorical surrogate predictor,
or a numeric cut assignment for a continuous surrogate predictor. The numeric cut assignment can
be either –1 or +1. For every surrogate split with a numeric cut C based on a continuous predictor
variable Z, the left child is chosen if Z<C and the cut assignment for this surrogate split is +1, or if
Z≥C and the cut assignment for this surrogate split is –1. Similarly, the right child is chosen if Z≥C
and the cut assignment for this surrogate split is +1, or if Z<C and the cut assignment for this
surrogate split is –1. The order of the surrogate split variables at each node is matched to the order of
variables in SurrogateCutPredictor. The optimal-split variable at this node does not appear. For
nonbranch (leaf) nodes, SurrogateCutFlip contains an empty array.

SurrogateCutPoint

An n-element cell array of the numeric values used for surrogate splits in tree, where n is the
number of nodes in tree. For each node k, SurrogateCutPoint{k} is a numeric vector. The length
of SurrogateCutPoint{k} is equal to the number of surrogate predictors found at this node. Every
element of SurrogateCutPoint{k} is either NaN for a categorical surrogate predictor, or a numeric
cut for a continuous surrogate predictor. For every surrogate split with a numeric cut C based on a
continuous predictor variable Z, the left child is chosen if Z<C and SurrogateCutFlip for this
surrogate split is +1, or if Z≥C and SurrogateCutFlip for this surrogate split is –1. Similarly, the
right child is chosen if Z≥C and SurrogateCutFlip for this surrogate split is +1, or if Z<C and
SurrogateCutFlip for this surrogate split is –1. The order of the surrogate split variables at each
node is matched to the order of variables returned by SurrogateCutPredictor. The optimal-split
variable at this node does not appear. For nonbranch (leaf) nodes, SurrogateCutPoint contains an
empty cell.

SurrogateCutType

An n-element cell array indicating types of surrogate splits at each node in tree, where n is the
number of nodes in tree. For each node k, SurrogateCutType{k} is a cell array with the types of
the surrogate split variables at this node. The variables are sorted by the predictive measure of
association with the optimal predictor in the descending order, and only variables with the positive
predictive measure are included. The order of the surrogate split variables at each node is matched
to the order of variables in SurrogateCutPredictor. The optimal-split variable at this node does
not appear. For nonbranch (leaf) nodes, SurrogateCutType contains an empty cell. A surrogate split
type can be either 'continuous' if the cut is defined in the form Z<V for a variable Z and cut point
V or 'categorical' if the cut is defined by whether Z takes a value in a set of categories.
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SurrogateCutPredictor

An n-element cell array of the names of the variables used for surrogate splits in each node in tree,
where n is the number of nodes in tree. Every element of SurrogateCutPredictor is a cell array
with the names of the surrogate split variables at this node. The variables are sorted by the predictive
measure of association with the optimal predictor in the descending order, and only variables with the
positive predictive measure are included. The optimal-split variable at this node does not appear. For
nonbranch (leaf) nodes, SurrogateCutPredictor contains an empty cell.

SurrogatePredictorAssociation

An n-element cell array of the predictive measures of association for surrogate splits in tree, where
n is the number of nodes in tree. For each node k, SurrogatePredictorAssociation{k} is a
numeric vector. The length of SurrogatePredictorAssociation{k} is equal to the number of
surrogate predictors found at this node. Every element of SurrogatePredictorAssociation{k}
gives the predictive measure of association between the optimal split and this surrogate split. The
order of the surrogate split variables at each node is the order of variables in
SurrogateCutPredictor. The optimal-split variable at this node does not appear. For nonbranch
(leaf) nodes, SurrogatePredictorAssociation contains an empty cell.

Object Functions
compareHoldout Compare accuracies of two classification models using new data
edge Classification edge
gather Gather properties of Statistics and Machine Learning Toolbox object from

GPU
lime Local interpretable model-agnostic explanations (LIME)
loss Classification error
margin Classification margins
nodeVariableRange Retrieve variable range of decision tree node
partialDependence Compute partial dependence
plotPartialDependence Create partial dependence plot (PDP) and individual conditional expectation

(ICE) plots
predict Predict labels using classification tree
predictorImportance Estimates of predictor importance for classification tree
shapley Shapley values
surrogateAssociation Mean predictive measure of association for surrogate splits in classification

tree
update Update model parameters for code generation
view View classification tree

Copy Semantics
Value. To learn how value classes affect copy operations, see Copying Objects.

Examples

Construct a Compact Classification Tree

Construct a compact classification tree for the Fisher iris data.
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load fisheriris
tree = fitctree(meas,species);
ctree = compact(tree);

Compare the size of the resulting tree to that of the original tree.

t = whos('tree'); % t.bytes = size of tree in bytes
c = whos('ctree'); % c.bytes = size of ctree in bytes
[c.bytes t.bytes]

ans = 1×2

        5097       11762

The compact tree is smaller than the original tree.

More About
Impurity and Node Error

A decision tree splits nodes based on either impurity or node error.

Impurity means one of several things, depending on your choice of the SplitCriterion name-value
pair argument:

• Gini's Diversity Index (gdi) — The Gini index of a node is

1− ∑
i

p2(i),

where the sum is over the classes i at the node, and p(i) is the observed fraction of classes with
class i that reach the node. A node with just one class (a pure node) has Gini index 0; otherwise
the Gini index is positive. So the Gini index is a measure of node impurity.

• Deviance ('deviance') — With p(i) defined the same as for the Gini index, the deviance of a node
is

−∑
i

p(i)log2p(i) .

A pure node has deviance 0; otherwise, the deviance is positive.
• Twoing rule ('twoing') — Twoing is not a purity measure of a node, but is a different measure

for deciding how to split a node. Let L(i) denote the fraction of members of class i in the left child
node after a split, and R(i) denote the fraction of members of class i in the right child node after a
split. Choose the split criterion to maximize

P(L)P(R) ∑
i

L(i)− R(i)
2
,

where P(L) and P(R) are the fractions of observations that split to the left and right respectively. If
the expression is large, the split made each child node purer. Similarly, if the expression is small,
the split made each child node similar to each other, and therefore similar to the parent node. The
split did not increase node purity.
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• Node error — The node error is the fraction of misclassified classes at a node. If j is the class with
the largest number of training samples at a node, the node error is

1 – p(j).

Version History
Introduced in R2011a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• The predict and update functions support code generation.
• To integrate the prediction of a classification tree model into Simulink, you can use the
ClassificationTree Predict block in the Statistics and Machine Learning Toolbox library or a
MATLAB Function block with the predict function.

• When you train a classification tree using fitctree, the following restrictions apply.

• The value of the 'ScoreTransform' name-value pair argument cannot be an anonymous
function. For fixed-point code generation, the 'ScoreTransform' value cannot be
'invlogit'.

• You cannot use surrogate splits, that is, the value of the 'Surrogate' name-value pair
argument must be 'off'.

• For fixed-point code generation and code generation with a coder configurer, the following
additional restrictions apply.

• Categorical predictors (logical, categorical, char, string, or cell) are not
supported. You cannot use the CategoricalPredictors name-value argument.To include
categorical predictors in a model, preprocess them by using dummyvar before fitting the
model.

• Class labels with the categorical data type are not supported. Both the class label value
in training data (Tbl or Y) and the value of the ClassNames name-value argument cannot
be an array with the categorical data type.

For more information, see “Introduction to Code Generation” on page 34-2.

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

Usage notes and limitations:

• The following object functions fully support GPU arrays:

• gather
• nodeVariableRange
• predictorImportance
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• surrogateAssociation
• The following object functions offer limited support for GPU arrays:

• compareHoldout
• edge
• loss
• margin
• predict
• partialDependence
• plotPartialDependence
• view

• The object functions execute on a GPU if either of the following apply:

• The model was fitted with GPU arrays.
• The predictor data that you pass to the object function is a GPU array.

For more information, see “Run MATLAB Functions on a GPU” (Parallel Computing Toolbox).

See Also
ClassificationTree | fitctree | compact | compareHoldout
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CompactLinearModel
Compact linear regression model

Description
CompactLinearModel is a compact version of a full linear regression model object LinearModel.
Because a compact model does not store the input data used to fit the model or information related to
the fitting process, a CompactLinearModel object consumes less memory than a LinearModel
object. You can still use a compact model to predict responses using new input data, but some
LinearModel object functions do not work with a compact model.

Creation
Create a CompactLinearModel model from a full, trained LinearModel model by using compact.

Properties
Coefficient Estimates

CoefficientCovariance — Covariance matrix of coefficient estimates
numeric matrix

This property is read-only.

Covariance matrix of coefficient estimates, specified as a p-by-p matrix of numeric values. p is the
number of coefficients in the fitted model.

For details, see “Coefficient Standard Errors and Confidence Intervals” on page 11-60.
Data Types: single | double

CoefficientNames — Coefficient names
cell array of character vectors

This property is read-only.

Coefficient names, specified as a cell array of character vectors, each containing the name of the
corresponding term.
Data Types: cell

Coefficients — Coefficient values
table

This property is read-only.

Coefficient values, specified as a table. Coefficients contains one row for each coefficient and
these columns:
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• Estimate — Estimated coefficient value
• SE — Standard error of the estimate
• tStat — t-statistic for a two-sided test with the null hypothesis that the coefficient is zero
• pValue — p-value for the t-statistic

Use anova (only for a linear regression model) or coefTest to perform other tests on the
coefficients. Use coefCI to find the confidence intervals of the coefficient estimates.

To obtain any of these columns as a vector, index into the property using dot notation. For example,
obtain the estimated coefficient vector in the model mdl:

beta = mdl.Coefficients.Estimate

Data Types: table

NumCoefficients — Number of model coefficients
positive integer

This property is read-only.

Number of model coefficients, specified as a positive integer. NumCoefficients includes coefficients
that are set to zero when the model terms are rank deficient.
Data Types: double

NumEstimatedCoefficients — Number of estimated coefficients
positive integer

This property is read-only.

Number of estimated coefficients in the model, specified as a positive integer.
NumEstimatedCoefficients does not include coefficients that are set to zero when the model
terms are rank deficient. NumEstimatedCoefficients is the degrees of freedom for regression.
Data Types: double

Summary Statistics

DFE — Degrees of freedom for error
positive integer

This property is read-only.

Degrees of freedom for the error (residuals), equal to the number of observations minus the number
of estimated coefficients, specified as a positive integer.
Data Types: double

LogLikelihood — Loglikelihood
numeric value

This property is read-only.

Loglikelihood of response values, specified as a numeric value, based on the assumption that each
response value follows a normal distribution. The mean of the normal distribution is the fitted
(predicted) response value, and the variance is the MSE.
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Data Types: single | double

ModelCriterion — Criterion for model comparison
structure

This property is read-only.

Criterion for model comparison, specified as a structure with these fields:

• AIC — Akaike information criterion. AIC = –2*logL + 2*m, where logL is the loglikelihood and
m is the number of estimated parameters.

• AICc — Akaike information criterion corrected for the sample size. AICc = AIC + (2*m*(m +
1))/(n – m – 1), where n is the number of observations.

• BIC — Bayesian information criterion. BIC = –2*logL + m*log(n).
• CAIC — Consistent Akaike information criterion. CAIC = –2*logL + m*(log(n) + 1).

Information criteria are model selection tools that you can use to compare multiple models fit to the
same data. These criteria are likelihood-based measures of model fit that include a penalty for
complexity (specifically, the number of parameters). Different information criteria are distinguished
by the form of the penalty.

When you compare multiple models, the model with the lowest information criterion value is the best-
fitting model. The best-fitting model can vary depending on the criterion used for model comparison.

To obtain any of the criterion values as a scalar, index into the property using dot notation. For
example, obtain the AIC value aic in the model mdl:

aic = mdl.ModelCriterion.AIC

Data Types: struct

MSE — Mean squared error
numeric value

This property is read-only.

Mean squared error (residuals), specified as a numeric value.
MSE = SSE / DFE,

where MSE is the mean squared error, SSE is the sum of squared errors, and DFE is the degrees of
freedom.
Data Types: single | double

RMSE — Root mean squared error
numeric value

This property is read-only.

Root mean squared error (residuals), specified as a numeric value.
RMSE = sqrt(MSE),

where RMSE is the root mean squared error and MSE is the mean squared error.
Data Types: single | double
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Rsquared — R-squared value for model
structure

This property is read-only.

R-squared value for the model, specified as a structure with two fields:

• Ordinary — Ordinary (unadjusted) R-squared
• Adjusted — R-squared adjusted for the number of coefficients

The R-squared value is the proportion of the total sum of squares explained by the model. The
ordinary R-squared value relates to the SSR and SST properties:

Rsquared = SSR/SST,
where SST is the total sum of squares, and SSR is the regression sum of squares.

For details, see “Coefficient of Determination (R-Squared)” on page 11-63.

To obtain either of these values as a scalar, index into the property using dot notation. For example,
obtain the adjusted R-squared value in the model mdl:

r2 = mdl.Rsquared.Adjusted

Data Types: struct

SSE — Sum of squared errors
numeric value

This property is read-only.

Sum of squared errors (residuals), specified as a numeric value. If the model was trained with
observation weights, the sum of squares in the SSE calculation is the weighted sum of squares.

For a linear model with an intercept, the Pythagorean theorem implies
SST = SSE + SSR,

where SST is the total sum of squares, SSE is the sum of squared errors, and SSR is the regression
sum of squares.

For more information on the calculation of SST for a robust linear model, see SST.
Data Types: single | double

SSR — Regression sum of squares
numeric value

This property is read-only.

Regression sum of squares, specified as a numeric value. SSR is equal to the sum of the squared
deviations between the fitted values and the mean of the response. If the model was trained with
observation weights, the sum of squares in the SSR calculation is the weighted sum of squares.

For a linear model with an intercept, the Pythagorean theorem implies
SST = SSE + SSR,

where SST is the total sum of squares, SSE is the sum of squared errors, and SSR is the regression
sum of squares.

For more information on the calculation of SST for a robust linear model, see SST.
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Data Types: single | double

SST — Total sum of squares
numeric value

This property is read-only.

Total sum of squares, specified as a numeric value. SST is equal to the sum of squared deviations of
the response vector y from the mean(y). If the model was trained with observation weights, the sum
of squares in the SST calculation is the weighted sum of squares.

For a linear model with an intercept, the Pythagorean theorem implies
SST = SSE + SSR,

where SST is the total sum of squares, SSE is the sum of squared errors, and SSR is the regression
sum of squares.

For a robust linear model, SST is not calculated as the sum of squared deviations of the response
vector y from the mean(y). It is calculated as SST = SSE + SSR.
Data Types: single | double

Fitting Method

Robust — Robust fit information
structure

This property is read-only.

Robust fit information, specified as a structure with the fields described in this table.

Field Description
WgtFun Robust weighting function, such as 'bisquare' (see 'RobustOpts')
Tune Tuning constant. This field is empty ([]) if WgtFun is 'ols' or if

WgtFun is a function handle for a custom weight function with the
default tuning constant 1.

Weights Vector of weights used in the final iteration of robust fit. This field is
empty for a CompactLinearModel object.

This structure is empty unless you fit the model using robust regression.
Data Types: struct

Input Data

Formula — Model information
LinearFormula object

This property is read-only.

Model information, specified as a LinearFormula object.

Display the formula of the fitted model mdl using dot notation:

mdl.Formula
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NumObservations — Number of observations
positive integer

This property is read-only.

Number of observations the fitting function used in fitting, specified as a positive integer.
NumObservations is the number of observations supplied in the original table, dataset, or matrix,
minus any excluded rows (set with the 'Exclude' name-value pair argument) or rows with missing
values.
Data Types: double

NumPredictors — Number of predictor variables
positive integer

This property is read-only.

Number of predictor variables used to fit the model, specified as a positive integer.
Data Types: double

NumVariables — Number of variables
positive integer

This property is read-only.

Number of variables in the input data, specified as a positive integer. NumVariables is the number
of variables in the original table or dataset, or the total number of columns in the predictor matrix
and response vector.

NumVariables also includes any variables that are not used to fit the model as predictors or as the
response.
Data Types: double

PredictorNames — Names of predictors used to fit model
cell array of character vectors

This property is read-only.

Names of predictors used to fit the model, specified as a cell array of character vectors.
Data Types: cell

ResponseName — Response variable name
character vector

This property is read-only.

Response variable name, specified as a character vector.
Data Types: char

VariableInfo — Information about variables
table

This property is read-only.
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Information about variables contained in Variables, specified as a table with one row for each
variable and the columns described in this table.

Column Description
Class Variable class, specified as a cell array of character vectors, such as

'double' and 'categorical'
Range Variable range, specified as a cell array of vectors

• Continuous variable — Two-element vector [min,max], the minimum
and maximum values

• Categorical variable — Vector of distinct variable values
InModel Indicator of which variables are in the fitted model, specified as a logical

vector. The value is true if the model includes the variable.
IsCategorical Indicator of categorical variables, specified as a logical vector. The value

is true if the variable is categorical.

VariableInfo also includes any variables that are not used to fit the model as predictors or as the
response.
Data Types: table

VariableNames — Names of variables
cell array of character vectors

This property is read-only.

Names of variables, specified as a cell array of character vectors.

• If the fit is based on a table or dataset, this property provides the names of the variables in the
table or dataset.

• If the fit is based on a predictor matrix and response vector, VariableNames contains the values
specified by the 'VarNames' name-value pair argument of the fitting method. The default value of
'VarNames' is {'x1','x2',...,'xn','y'}.

VariableNames also includes any variables that are not used to fit the model as predictors or as the
response.
Data Types: cell

Object Functions

Predict Responses
feval Predict responses of linear regression model using one input for each predictor
predict Predict responses of linear regression model
random Simulate responses with random noise for linear regression model

Evaluate Linear Model
anova Analysis of variance for linear regression model
coefCI Confidence intervals of coefficient estimates of linear regression model
coefTest Linear hypothesis test on linear regression model coefficients
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partialDependence Compute partial dependence

Visualize Linear Model
plotEffects Plot main effects of predictors in linear regression model
plotInteraction Plot interaction effects of two predictors in linear regression model
plotPartialDependence Create partial dependence plot (PDP) and individual conditional expectation

(ICE) plots
plotSlice Plot of slices through fitted linear regression surface

Gather Properties of Linear Model
gather Gather properties of Statistics and Machine Learning Toolbox object from GPU

Examples

Compact Linear Regression Model

Fit a linear regression model to data and reduce the size of a full, fitted linear regression model by
discarding the sample data and some information related to the fitting process.

Load the largedata4reg data set, which contains 15,000 observations and 45 predictor variables.

load largedata4reg

Fit a linear regression model to the data.

mdl = fitlm(X,Y);

Compact the model.

compactMdl = compact(mdl);

The compact model discards the original sample data and some information related to the fitting
process.

Compare the size of the full model mdl and the compact model compactMdl.

vars = whos('compactMdl','mdl');
[vars(1).bytes,vars(2).bytes]

ans = 1×2

       81538    11409065

The compact model consumes less memory than the full model.

Version History
Introduced in R2016a
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Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• The predict and random functions support code generation.

For more information, see “Introduction to Code Generation” on page 34-2.

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

Usage notes and limitations:

• The object functions of the CompactLinearModel model fully support GPU arrays.

For more information, see “Run MATLAB Functions on a GPU” (Parallel Computing Toolbox).

See Also
LinearModel | fitlm | compact | stepwiselm

Topics
“Linear Regression” on page 11-9
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CompactGeneralizedLinearModel
Compact generalized linear regression model class

Description
CompactGeneralizedLinearModel is a compact version of a full generalized linear regression
model object GeneralizedLinearModel. Because a compact model does not store the input data
used to fit the model or information related to the fitting process, a
CompactGeneralizedLinearModel object consumes less memory than a
GeneralizedLinearModel object. You can still use a compact model to predict responses using
new input data, but some GeneralizedLinearModel object functions do not work with a compact
model.

Creation
Create a CompactGeneralizedLinearModel model from a full, trained
GeneralizedLinearModel model by using compact.

fitglm returns CompactGeneralizedLinearModel when you work with tall arrays, and returns
GeneralizedLinearModel when you work with in-memory tables and arrays.

Properties
Coefficient Estimates

CoefficientCovariance — Covariance matrix of coefficient estimates
numeric matrix

This property is read-only.

Covariance matrix of coefficient estimates, specified as a p-by-p matrix of numeric values. p is the
number of coefficients in the fitted model.

For details, see “Coefficient Standard Errors and Confidence Intervals” on page 11-60.
Data Types: single | double

CoefficientNames — Coefficient names
cell array of character vectors

This property is read-only.

Coefficient names, specified as a cell array of character vectors, each containing the name of the
corresponding term.
Data Types: cell

Coefficients — Coefficient values
table

 CompactGeneralizedLinearModel

35-941



This property is read-only.

Coefficient values, specified as a table. Coefficients contains one row for each coefficient and
these columns:

• Estimate — Estimated coefficient value
• SE — Standard error of the estimate
• tStat — t-statistic for a two-sided test with the null hypothesis that the coefficient is zero
• pValue — p-value for the t-statistic

Use anova (only for a linear regression model) or coefTest to perform other tests on the
coefficients. Use coefCI to find the confidence intervals of the coefficient estimates.

To obtain any of these columns as a vector, index into the property using dot notation. For example,
obtain the estimated coefficient vector in the model mdl:

beta = mdl.Coefficients.Estimate

Data Types: table

NumCoefficients — Number of model coefficients
positive integer

This property is read-only.

Number of model coefficients, specified as a positive integer. NumCoefficients includes coefficients
that are set to zero when the model terms are rank deficient.
Data Types: double

NumEstimatedCoefficients — Number of estimated coefficients
positive integer

This property is read-only.

Number of estimated coefficients in the model, specified as a positive integer.
NumEstimatedCoefficients does not include coefficients that are set to zero when the model
terms are rank deficient. NumEstimatedCoefficients is the degrees of freedom for regression.
Data Types: double

Summary Statistics

Deviance — Deviance of fit
numeric value

This property is read-only.

Deviance of the fit, specified as a numeric value. The deviance is useful for comparing two models
when one model is a special case of the other model. The difference between the deviance of the two
models has a chi-square distribution with degrees of freedom equal to the difference in the number of
estimated parameters between the two models. For more information, see “Deviance” on page 35-
949.
Data Types: single | double

35 Functions

35-942



DFE — Degrees of freedom for error
positive integer

This property is read-only.

Degrees of freedom for the error (residuals), equal to the number of observations minus the number
of estimated coefficients, specified as a positive integer.
Data Types: double

Dispersion — Scale factor of variance of response
numeric scalar

This property is read-only.

Scale factor of the variance of the response, specified as a numeric scalar.

If the 'DispersionFlag' name-value pair argument of fitglm or stepwiseglm is true, then the
function estimates the Dispersion scale factor in computing the variance of the response. The
variance of the response equals the theoretical variance multiplied by the scale factor.

For example, the variance function for the binomial distribution is p(1–p)/n, where p is the probability
parameter and n is the sample size parameter. If Dispersion is near 1, the variance of the data
appears to agree with the theoretical variance of the binomial distribution. If Dispersion is larger
than 1, the data set is “overdispersed” relative to the binomial distribution.
Data Types: double

DispersionEstimated — Flag to indicate use of dispersion scale factor
logical value

This property is read-only.

Flag to indicate whether fitglm used the Dispersion scale factor to compute standard errors for
the coefficients in Coefficients.SE, specified as a logical value. If DispersionEstimated is
false, fitglm used the theoretical value of the variance.

• DispersionEstimated can be false only for the binomial and Poisson distributions.
• Set DispersionEstimated by setting the 'DispersionFlag' name-value pair argument of

fitglm or stepwiseglm.

Data Types: logical

LogLikelihood — Loglikelihood
numeric value

This property is read-only.

Loglikelihood of the model distribution at the response values, specified as a numeric value. The
mean is fitted from the model, and other parameters are estimated as part of the model fit.
Data Types: single | double

ModelCriterion — Criterion for model comparison
structure

This property is read-only.
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Criterion for model comparison, specified as a structure with these fields:

• AIC — Akaike information criterion. AIC = –2*logL + 2*m, where logL is the loglikelihood and
m is the number of estimated parameters.

• AICc — Akaike information criterion corrected for the sample size. AICc = AIC + (2*m*(m +
1))/(n – m – 1), where n is the number of observations.

• BIC — Bayesian information criterion. BIC = –2*logL + m*log(n).
• CAIC — Consistent Akaike information criterion. CAIC = –2*logL + m*(log(n) + 1).

Information criteria are model selection tools that you can use to compare multiple models fit to the
same data. These criteria are likelihood-based measures of model fit that include a penalty for
complexity (specifically, the number of parameters). Different information criteria are distinguished
by the form of the penalty.

When you compare multiple models, the model with the lowest information criterion value is the best-
fitting model. The best-fitting model can vary depending on the criterion used for model comparison.

To obtain any of the criterion values as a scalar, index into the property using dot notation. For
example, obtain the AIC value aic in the model mdl:

aic = mdl.ModelCriterion.AIC

Data Types: struct

Rsquared — R-squared value for model
structure

This property is read-only.

R-squared value for the model, specified as a structure with five fields.

Field Description Equation
Ordinary Ordinary (unadjusted)

R-squared ROrdinary
2 = 1− SSE

SST

SSE is the sum of squared errors, and SST is the
total sum of squared deviations of the response
vector from the mean of the response vector.

Adjusted R-squared adjusted for
the number of
coefficients

RAdjusted
2 = 1− SSE

SST ⋅
N − 1
DFE

N is the number of observations
(NumObservations), and DFE is the degrees of
freedom for the error (residuals).

LLR Loglikelihood ratio RLLR
2 = 1− L

L0

L is the loglikelihood of the fitted model
(LogLikelihood), and L0 is the loglikelihood of
a model that includes only a constant term. R2

LLR
is the McFadden pseudo R-squared value [1] for
logistic regression models.
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Field Description Equation
Deviance Deviance R-squared RDeviance

2 = 1− D
D0

D is the deviance of the fitted model (Deviance),
and D0 is the deviance of a model that includes
only a constant term.

AdjGeneralized Adjusted generalized R-
squared RAdjGeneralized

2 =
1− exp

2 L0− L
N

1− exp
2L0
N

R2
AdjGeneralized is the Nagelkerke adjustment [2] to

a formula proposed by Maddala [3], Cox and
Snell [4], and Magee [5] for logistic regression
models.

To obtain any of these values as a scalar, index into the property using dot notation. For example, to
obtain the adjusted R-squared value in the model mdl, enter:

r2 = mdl.Rsquared.Adjusted

Data Types: struct

SSE — Sum of squared errors
numeric value

This property is read-only.

Sum of squared errors (residuals), specified as a numeric value. If the model was trained with
observation weights, the sum of squares in the SSE calculation is the weighted sum of squares.
Data Types: single | double

SSR — Regression sum of squares
numeric value

This property is read-only.

Regression sum of squares, specified as a numeric value. SSR is equal to the sum of the squared
deviations between the fitted values and the mean of the response. If the model was trained with
observation weights, the sum of squares in the SSR calculation is the weighted sum of squares.
Data Types: single | double

SST — Total sum of squares
numeric value

This property is read-only.

Total sum of squares, specified as a numeric value. SST is equal to the sum of squared deviations of
the response vector y from the mean(y). If the model was trained with observation weights, the sum
of squares in the SST calculation is the weighted sum of squares.
Data Types: single | double
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Input Data

Distribution — Generalized distribution information
structure

This property is read-only.

Generalized distribution information, specified as a structure with the fields described in this table.

Field Description
Name Name of the distribution: 'normal', 'binomial', 'poisson', 'gamma', or

'inverse gaussian'
DevianceFunction Function that computes the components of the deviance as a function of the

fitted parameter values and the response values
VarianceFunction Function that computes the theoretical variance for the distribution as a function

of the fitted parameter values. When DispersionEstimated is true, the
software multiplies the variance function by Dispersion in the computation of
the coefficient standard errors.

Data Types: struct

Formula — Model information
LinearFormula object

This property is read-only.

Model information, specified as a LinearFormula object.

Display the formula of the fitted model mdl using dot notation:

mdl.Formula

Link — Link function
structure

This property is read-only.

Link function, specified as a structure with the fields described in this table.

Field Description
Name Name of the link function, specified as a character vector. If you specify the link

function using a function handle, then Name is ''.
Link Function f that defines the link function, specified as a function handle
Derivative Derivative of f, specified as a function handle
Inverse Inverse of f, specified as a function handle

The link function is a function f that links the distribution parameter μ to the fitted linear combination
Xb of the predictors:

f(μ) = Xb.
Data Types: struct
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NumObservations — Number of observations
positive integer

This property is read-only.

Number of observations the fitting function used in fitting, specified as a positive integer.
NumObservations is the number of observations supplied in the original table, dataset, or matrix,
minus any excluded rows (set with the 'Exclude' name-value pair argument) or rows with missing
values.
Data Types: double

NumPredictors — Number of predictor variables
positive integer

This property is read-only.

Number of predictor variables used to fit the model, specified as a positive integer.
Data Types: double

NumVariables — Number of variables
positive integer

This property is read-only.

Number of variables in the input data, specified as a positive integer. NumVariables is the number
of variables in the original table or dataset, or the total number of columns in the predictor matrix
and response vector.

NumVariables also includes any variables that are not used to fit the model as predictors or as the
response.
Data Types: double

PredictorNames — Names of predictors used to fit model
cell array of character vectors

This property is read-only.

Names of predictors used to fit the model, specified as a cell array of character vectors.
Data Types: cell

ResponseName — Response variable name
character vector

This property is read-only.

Response variable name, specified as a character vector.
Data Types: char

VariableInfo — Information about variables
table

This property is read-only.
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Information about variables contained in Variables, specified as a table with one row for each
variable and the columns described in this table.

Column Description
Class Variable class, specified as a cell array of character vectors, such as

'double' and 'categorical'
Range Variable range, specified as a cell array of vectors

• Continuous variable — Two-element vector [min,max], the minimum
and maximum values

• Categorical variable — Vector of distinct variable values
InModel Indicator of which variables are in the fitted model, specified as a logical

vector. The value is true if the model includes the variable.
IsCategorical Indicator of categorical variables, specified as a logical vector. The value

is true if the variable is categorical.

VariableInfo also includes any variables that are not used to fit the model as predictors or as the
response.
Data Types: table

VariableNames — Names of variables
cell array of character vectors

This property is read-only.

Names of variables, specified as a cell array of character vectors.

• If the fit is based on a table or dataset, this property provides the names of the variables in the
table or dataset.

• If the fit is based on a predictor matrix and response vector, VariableNames contains the values
specified by the 'VarNames' name-value pair argument of the fitting method. The default value of
'VarNames' is {'x1','x2',...,'xn','y'}.

VariableNames also includes any variables that are not used to fit the model as predictors or as the
response.
Data Types: cell

Object Functions

Predict Responses
feval Predict responses of generalized linear regression model using one input for each predictor
predict Predict responses of generalized linear regression model
random Simulate responses with random noise for generalized linear regression model

Evaluate Generalized Linear Model
coefCI Confidence intervals of coefficient estimates of generalized linear regression

model
coefTest Linear hypothesis test on generalized linear regression model coefficients
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devianceTest Analysis of deviance for generalized linear regression model
partialDependence Compute partial dependence

Visualize Generalized Linear Model and Summary Statistics
plotPartialDependence Create partial dependence plot (PDP) and individual conditional expectation

(ICE) plots
plotSlice Plot of slices through fitted generalized linear regression surface

Gather Properties of Generalized Linear Model
gather Gather properties of Statistics and Machine Learning Toolbox object from GPU

Examples

Compact Generalized Linear Regression Model

Fit a generalized linear regression model to data and reduce the size of a full, fitted model by
discarding the sample data and some information related to the fitting process.

Load the largedata4reg data set, which contains 15,000 observations and 45 predictor variables.

load largedata4reg

Fit a generalized linear regression model to the data using the first 15 predictor variables.

mdl = fitglm(X(:,1:15),Y);

Compact the model.

compactMdl = compact(mdl);

The compact model discards the original sample data and some information related to the fitting
process, so it uses less memory than the full model.

Compare the size of the full model mdl and the compact model compactMdl.

vars = whos('compactMdl','mdl');
[vars(1).bytes,vars(2).bytes]

ans = 1×2

       15518     4382501

The compact model consumes less memory than the full model.

More About
Deviance

Deviance is a generalization of the residual sum of squares. It measures the goodness of fit compared
to a saturated model.
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Deviance of a model M1 is twice the difference between the loglikelihood of the model M1 and the
saturated model Ms. A saturated model is a model with the maximum number of parameters that you
can estimate.

For example, if you have n observations (yi, i = 1, 2, ..., n) with potentially different values for Xi
Tβ,

then you can define a saturated model with n parameters. Let L(b,y) denote the maximum value of
the likelihood function for a model with the parameters b. Then the deviance of the model M1 is

−2 logL b1, y − logL bS, y ,

where b1 and bs contain the estimated parameters for the model M1 and the saturated model,
respectively. The deviance has a chi-square distribution with n – p degrees of freedom, where n is the
number of parameters in the saturated model and p is the number of parameters in the model M1.

Assume you have two different generalized linear regression models M1 and M2, and M1 has a subset
of the terms in M2. You can assess the fit of the models by comparing the deviances D1 and D2 of the
two models. The difference of the deviances is

D = D2− D1 = − 2 logL b2, y − logL bS, y + 2 logL b1, y − logL bS, y
= − 2 logL b2, y − logL b1, y .

Asymptotically, the difference D has a chi-square distribution with degrees of freedom v equal to the
difference in the number of parameters estimated in M1 and M2. You can obtain the p-value for this
test by using 1 – chi2cdf(D,v).

Typically, you examine D using a model M2 with a constant term and no predictors. Therefore, D has a
chi-square distribution with p – 1 degrees of freedom. If the dispersion is estimated, the difference
divided by the estimated dispersion has an F distribution with p – 1 numerator degrees of freedom
and n – p denominator degrees of freedom.

Version History
Introduced in R2016b
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Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• The predict and random functions support code generation.
• When you fit a model by using fitglm or stepwiseglm, you cannot specify Link, Derivative,

and Inverse fields of the 'Link' name-value pair argument as anonymous functions. That is, you
cannot generate code using a generalized linear model that was created using anonymous
functions for links. Instead, define functions for link components.

For more information, see “Introduction to Code Generation” on page 34-2.

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

Usage notes and limitations:

• The object functions of the CompactGeneralizedLinearModel model fully support GPU arrays.

For more information, see “Run MATLAB Functions on a GPU” (Parallel Computing Toolbox).

See Also
GeneralizedLinearModel | fitglm | compact | stepwiseglm

Topics
“Generalized Linear Model Workflow” on page 12-28
“Generalized Linear Models” on page 12-9
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CompactRegressionEnsemble
Package: classreg.learning.regr

Compact regression ensemble class

Description
Compact version of a regression ensemble (of class RegressionEnsemble). The compact version
does not include the data for training the regression ensemble. Therefore, you cannot perform some
tasks with a compact regression ensemble, such as cross validation. Use a compact regression
ensemble for making predictions (regressions) of new data.

Construction
ens = compact(fullEns) constructs a compact decision ensemble from a full decision ensemble.

Input Arguments

fullEns

A regression ensemble created by fitrensemble.

Properties
CategoricalPredictors

Categorical predictor indices, specified as a vector of positive integers. CategoricalPredictors
contains index values indicating that the corresponding predictors are categorical. The index values
are between 1 and p, where p is the number of predictors used to train the model. If none of the
predictors are categorical, then this property is empty ([]).

CombineWeights

A character vector describing how the ensemble combines learner predictions.

ExpandedPredictorNames

Expanded predictor names, stored as a cell array of character vectors.

If the model uses encoding for categorical variables, then ExpandedPredictorNames includes the
names that describe the expanded variables. Otherwise, ExpandedPredictorNames is the same as
PredictorNames.

NumTrained

Number of trained learners in the ensemble, a positive scalar.

PredictorNames

A cell array of names for the predictor variables, in the order in which they appear in X.
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ResponseName

A character vector with the name of the response variable Y.

ResponseTransform

Function handle for transforming scores, or character vector representing a built-in transformation
function. 'none' means no transformation; equivalently, 'none' means @(x)x.

Add or change a ResponseTransform function using dot notation:

ens.ResponseTransform = @function

Trained

The trained learners, a cell array of compact regression models.

TrainedWeights

A numeric vector of weights the ensemble assigns to its learners. The ensemble computes predicted
response by aggregating weighted predictions from its learners.

Object Functions
gather Gather properties of Statistics and Machine Learning Toolbox object from

GPU
lime Local interpretable model-agnostic explanations (LIME)
loss Regression error
partialDependence Compute partial dependence
plotPartialDependence Create partial dependence plot (PDP) and individual conditional expectation

(ICE) plots
predict Predict responses using ensemble of regression models
predictorImportance Estimates of predictor importance for regression ensemble
removeLearners Remove members of compact regression ensemble
shapley Shapley values

Copy Semantics
Value. To learn how value classes affect copy operations, see Copying Objects.

Examples

Reduce Size of Regression Ensemble

Create a compact regression ensemble for efficiently making predictions on new data.

Load the carsmall data set. Consider a model that explains a car's fuel economy (MPG) using its
weight (Weight) and number of cylinders (Cylinders).

load carsmall
X = [Weight Cylinders];
Y = MPG;
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Train a boosted ensemble of 100 regression trees using the LSBoost. Specify that Cylinders is a
categorical variable.

Mdl = fitrensemble(X,Y,'PredictorNames',{'W','C'},...
    'CategoricalPredictors',2)

Mdl = 
  RegressionEnsemble
           PredictorNames: {'W'  'C'}
             ResponseName: 'Y'
    CategoricalPredictors: 2
        ResponseTransform: 'none'
          NumObservations: 94
               NumTrained: 100
                   Method: 'LSBoost'
             LearnerNames: {'Tree'}
     ReasonForTermination: 'Terminated normally after completing the requested number of training cycles.'
                  FitInfo: [100x1 double]
       FitInfoDescription: {2x1 cell}
           Regularization: []

  Properties, Methods

Mdl is a RegressionEnsemble model object that contains the training data, among other things.

Create a compact version of Mdl.

CMdl = compact(Mdl)

CMdl = 
  CompactRegressionEnsemble
           PredictorNames: {'W'  'C'}
             ResponseName: 'Y'
    CategoricalPredictors: 2
        ResponseTransform: 'none'
               NumTrained: 100

  Properties, Methods

CMdl is a CompactRegressionEnsemble model object. CMdl is almost the same as Mdl. One
exception is that CMdl does not store the training data.

Compare the amounts of space consumed by Mdl and CMdl.

mdlInfo = whos('Mdl');
cMdlInfo = whos('CMdl');
[mdlInfo.bytes cMdlInfo.bytes]

ans = 1×2

      514824      489348

Mdl consumes more space than CMdl.
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CMdl.Trained stores the trained regression trees (CompactRegresionTree model objects) that
compose Mdl.

Display a graph of the first tree in the compact ensemble.

view(CMdl.Trained{1},'Mode','graph');

By default, fitrensemble grows shallow trees for boosted ensembles of trees.

Predict the fuel economy of a typical car using the compact ensemble.

typicalX = [mean(X(:,1)) mode(X(:,2))];
predMeanX = predict(CMdl,typicalX)

predMeanX = 26.2520
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Tip
For a compact ensemble of regression trees, the Trained property of ens stores a cell vector of
ens.NumTrained CompactRegressionTree model objects. For a textual or graphical display of
tree t in the cell vector, enter

view(ens.Trained{t})

Version History
Introduced in R2011a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• The predict function supports code generation.
• To integrate the prediction of an ensemble into Simulink, you can use the RegressionEnsemble

Predict block in the Statistics and Machine Learning Toolbox library or a MATLAB Function block
with the predict function.

• When you train an ensemble by using fitrensemble, code generation limitations for regression
trees also apply to ensembles of regression trees. For more details, see “Code Generation” on
page 35-985 of the CompactRegressionTree class.

For more information, see “Introduction to Code Generation” on page 34-2.

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

Usage notes and limitations:

• The following object functions fully support GPU arrays:

• gather
• predictorImportance
• removeLearners

• The following object functions offer limited support for GPU arrays:

• loss
• partialDependence
• plotPartialDependence
• predict

• The object functions execute on a GPU if any of the following apply:

• The model was fitted with GPU arrays.
• The predictor data that you pass to the object function is a GPU array.
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• The response data that you pass to the object function is a GPU array.

For more information, see “Run MATLAB Functions on a GPU” (Parallel Computing Toolbox).

See Also
fitrensemble | RegressionEnsemble | predict | compact | templateTree | view

 CompactRegressionEnsemble

35-957



CompactRegressionGAM
Compact generalized additive model (GAM) for regression

Description
CompactRegressionGAM is a compact version of a RegressionGAM model object (GAM for
regression). The compact model does not include the data used for training the model. Therefore, you
cannot perform some tasks, such as cross-validation, using the compact model. Use a compact model
for tasks such as predicting the responses of new data.

Creation
Create a CompactRegressionGAM object from a full RegressionGAM model object by using
compact.

Properties
GAM Properties

Interactions — Interaction term indices
two-column matrix of positive integers | []

This property is read-only.

Interaction term indices, specified as a t-by-2 matrix of positive integers, where t is the number of
interaction terms in the model. Each row of the matrix represents one interaction term and contains
the column indexes of the predictor data X for the interaction term. If the model does not include an
interaction term, then this property is empty ([]).

The software adds interaction terms to the model in the order of importance based on the p-values.
Use this property to check the order of the interaction terms added to the model.
Data Types: double

Intercept — Intercept term of model
numeric scalar

This property is read-only.

Intercept (constant) term of the model, which is the sum of the intercept terms in the predictor trees
and interaction trees, specified as a numeric scalar.
Data Types: single | double

IsStandardDeviationFit — Flag indicating whether standard deviation model is fit
false | true

Flag indicating whether a model for the standard deviation of the response variable is fit, specified as
false or true. Specify the 'FitStandardDeviation' name-value argument of fitrgam as true
to fit the model for the standard deviation.
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If IsStandardDeviationFit is true, then you can evaluate the standard deviation at a new
observation by using predict. This function also returns the prediction intervals of the response
variable, evaluated at given observations.
Data Types: logical

Other Regression Properties

CategoricalPredictors — Categorical predictor indices
vector of positive integers | []

This property is read-only.

Categorical predictor indices, specified as a vector of positive integers. CategoricalPredictors
contains index values indicating that the corresponding predictors are categorical. The index values
are between 1 and p, where p is the number of predictors used to train the model. If none of the
predictors are categorical, then this property is empty ([]).
Data Types: double

ExpandedPredictorNames — Expanded predictor names
cell array of character vectors

This property is read-only.

Expanded predictor names, specified as a cell array of character vectors.

ExpandedPredictorNames is the same as PredictorNames for a generalized additive model.
Data Types: cell

PredictorNames — Predictor variable names
cell array of character vectors

This property is read-only.

Predictor variable names, specified as a cell array of character vectors. The order of the elements of
PredictorNames corresponds to the order in which the predictor names appear in the training data.
Data Types: cell

ResponseName — Response variable name
character vector

This property is read-only.

Response variable name, specified as a character vector.
Data Types: char

ResponseTransform — Response transformation function
'none' | function handle

Response transformation function, specified as 'none' or a function handle. ResponseTransform
describes how the software transforms raw response values.

For a MATLAB function or a function that you define, enter its function handle. For example, you can
enter Mdl.ResponseTransform = @function, where function accepts a numeric vector of the
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original responses and returns a numeric vector of the same size containing the transformed
responses.
Data Types: char | function_handle

Object Functions

Interpret Prediction
lime Local interpretable model-agnostic explanations (LIME)
partialDependence Compute partial dependence
plotLocalEffects Plot local effects of terms in generalized additive model (GAM)
plotPartialDependence Create partial dependence plot (PDP) and individual conditional expectation

(ICE) plots
shapley Shapley values

Assess Predictive Performance on New Observations
predict Predict responses using generalized additive model (GAM)
loss Regression loss for generalized additive model (GAM)

Examples

Reduce Size of Generalized Additive Model

Reduce the size of a full generalized additive model (GAM) for regression by removing the training
data. Full models hold the training data. You can use a compact model to improve memory efficiency.

Load the carbig data set.

load carbig

Specify Acceleration, Displacement, Horsepower, and Weight as the predictor variables (X)
and MPG as the response variable (Y).

X = [Acceleration,Displacement,Horsepower,Weight];
Y = MPG;

Train a GAM using X and Y.

Mdl = fitrgam(X,Y)

Mdl = 
  RegressionGAM
              ResponseName: 'Y'
     CategoricalPredictors: []
         ResponseTransform: 'none'
                 Intercept: 26.9442
    IsStandardDeviationFit: 0
           NumObservations: 398

  Properties, Methods
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Mdl is a RegressionGAM model object.

Reduce the size of the model.

CMdl = compact(Mdl)

CMdl = 
  CompactRegressionGAM
              ResponseName: 'Y'
     CategoricalPredictors: []
         ResponseTransform: 'none'
                 Intercept: 26.9442
    IsStandardDeviationFit: 0

  Properties, Methods

CMdl is a CompactRegressionGAM model object.

Display the amount of memory used by each regression model.

whos('Mdl','CMdl')

  Name      Size             Bytes  Class                                          Attributes

  CMdl      1x1             578163  classreg.learning.regr.CompactRegressionGAM              
  Mdl       1x1             611957  RegressionGAM                                            

The full model (Mdl) is larger than the compact model (CMdl).

To efficiently predict responses for new observations, you can remove Mdl from the MATLAB®
Workspace, and then pass CMdl and new predictor values to predict.

Version History
Introduced in R2021a

See Also
RegressionGAM | compact

Topics
“Train Generalized Additive Model for Regression” on page 12-86
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CompactRegressionGP
Package: classreg.learning.regr

Compact Gaussian process regression model class

Description
CompactRegressionGP is a compact Gaussian process regression (GPR) model. The compact model
consumes less memory than a full model, because it does not include the data used for training the
GPR model.

Because the compact model does not include the training data, you cannot perform some tasks, such
as cross-validation, using the compact model. However, you can use the compact model for making
predictions or calculate regression loss for new data (use predict and loss).

Construction
Create a CompactRegressionGP object from a full RegressionGP model object by using compact.

Properties
Fitting

FitMethod — Method used to estimate the parameters
'none' | 'exact' | 'sd' | 'sr' | 'fic'

Method used to estimate the basis function coefficients, β; noise standard deviation, σ; and kernel
parameters, θ, of the GPR model, stored as a character vector. It can be one of the following.

Fit Method Description
'none' No estimation. fitrgp uses the initial parameter

values as the parameter values.
'exact' Exact Gaussian process regression.
'sd' Subset of data points approximation.
'sr' Subset of regressors approximation.
'fic' Fully independent conditional approximation.

BasisFunction — Explicit basis function
'none' | 'constant' | 'linear' | 'pureQuadratic' | function handle

Explicit basis function used in the GPR model, stored as a character vector or a function handle. It
can be one of the following. If n is the number of observations, the basis function adds the term H*β
to the model, where H is the basis matrix and β is a p-by-1 vector of basis coefficients.

Explicit Basis Basis Matrix
'none' Empty matrix.
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Explicit Basis Basis Matrix
'constant' H = 1

(n-by-1 vector of 1s, where n is the number of
observations)

'linear' H = [1, X]
'pureQuadratic' H = 1, X, X2 ,

where

X2 =

x11
2 x12

2 ⋯ x1d
2

x21
2 x22

2 ⋯ x2d
2

⋮ ⋮ ⋮ ⋮
xn1

2 xn2
2 ⋯ xnd

2

.

Function handle Function handle, hfcn, that fitrgp calls as:

H = hfcn(X),

where X is an n-by-d matrix of predictors and H is
an n-by-p matrix of basis functions.

Data Types: char | function_handle

CategoricalPredictors — Indices of categorical predictors
vector of positive integers | []

Categorical predictor indices, specified as a vector of positive integers. CategoricalPredictors
contains index values indicating that the corresponding predictors are categorical. The index values
are between 1 and p, where p is the number of predictors used to train the model. If none of the
predictors are categorical, then this property is empty ([]).
Data Types: single | double

Beta — Estimated coefficients
vector

Estimated coefficients for the explicit basis functions, stored as a vector. You can define the explicit
basis function by using the BasisFunction name-value pair argument in fitrgp.
Data Types: double

Sigma — Estimated noise standard deviation
scalar value

Estimated noise standard deviation of the GPR model, stored as a scalar value.
Data Types: double

ModelParameters — Parameters used for training
GPParams object

Parameters used for training the GPR model, stored as a GPParams object.
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Kernel Function

KernelFunction — Form of the covariance function
'squaredExponential' | 'matern32' | 'matern52' | 'ardsquaredexponential' |
'ardmatern32' | 'ardmatern52' | function handle

Form of the covariance function used in the GPR model, stored as a character vector containing the
name of the built-in covariance function or a function handle. It can be one of the following.

Function Description
'squaredexponential' Squared exponential kernel.
'matern32' Matern kernel with parameter 3/2.
'matern52' Matern kernel with parameter 5/2.
'ardsquaredexponential' Squared exponential kernel with a separate

length scale per predictor.
'ardmatern32' Matern kernel with parameter 3/2 and a separate

length scale per predictor.
'ardmatern52' Matern kernel with parameter 5/2 and a separate

length scale per predictor.
Function handle A function handle that fitrgp can call like this:

Kmn = kfcn(Xm,Xn,theta)
where Xm is an m-by-d matrix, Xn is an n-by-d
matrix and Kmn is an m-by-n matrix of kernel
products such that Kmn(i,j) is the kernel product
between Xm(i,:) and Xn(j,:).
theta is the r-by-1 unconstrained parameter
vector for kfcn.

Data Types: char | function_handle

KernelInformation — Information about the parameters of the kernel function
structure

Information about the parameters of the kernel function used in the GPR model, stored as a structure
with the following fields.

Field Name Description
Name Name of the kernel function
KernelParameters Vector of the estimated kernel parameters
KernelParameterNames Names associated with the elements of

KernelParameters.

Data Types: struct

Prediction

PredictMethod — Method used to make predictions
'exact' | 'bcd' | 'sd' | 'sr' | 'fic'

Method that predict uses to make predictions from the GPR model, stored as a character vector. It
can be one of the following.
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PredictMethod Description
'exact' Exact Gaussian process regression
'bcd' Block Coordinate Descent
'sd' Subset of Data points approximation
'sr' Subset of Regressors approximation
'fic' Fully Independent Conditional approximation

Alpha — Weights
numeric vector

Weights used to make predictions from the trained GPR model, stored as a numeric vector. predict
computes the predictions for a new predictor matrix Xnew by using the product

K Xnew, A * α .

K Xnew, A  is the matrix of kernel products between Xnew and active set vector A and α is a vector of
weights.
Data Types: double

ResponseTransform — Transformation applied to predicted response
'none' (default)

Transformation applied to the predicted response, stored as a character vector describing how the
response values predicted by the model are transformed. In RegressionGP, ResponseTransform is
'none' by default, and RegressionGP does not use ResponseTransform when making
predictions.

Active Set Selection

ActiveSetVectors — Subset of training data
matrix

Subset of training data used to make predictions from the GPR model, stored as a matrix.

predict computes the predictions for a new predictor matrix Xnew by using the product

K Xnew, A * α .

K Xnew, A  is the matrix of kernel products between Xnew and active set vector A and α is a vector of
weights.

ActiveSetVectors is equal to the training data X for exact GPR fitting and a subset of the training
data X for sparse GPR methods. When there are categorical predictors in the model,
ActiveSetVectors contains dummy variables for the corresponding predictors.
Data Types: double

ActiveSetMethod — Method used to select the active set
'sgma' | 'entropy' | 'likelihood' | 'random'

Method used to select the active set for sparse methods ('sd','sr', or 'fic'), stored as a character
vector. It can be one of the following.
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ActiveSetMethod Description
'sgma' Sparse greedy matrix approximation
'entropy' Differential entropy-based selection
'likelihood' Subset of regressors log likelihood-based

selection
'random' Random selection

The selected active set is used in parameter estimation or prediction, depending on the choice of
FitMethod and PredictMethod in fitrgp.

ActiveSetSize — Size of the active set
integer value

Size of the active set for sparse methods ('sd','sr', or 'fic'), stored as an integer value.
Data Types: double

Object Functions
lime Local interpretable model-agnostic explanations (LIME)
loss Regression error for Gaussian process regression model
partialDependence Compute partial dependence
plotPartialDependence Create partial dependence plot (PDP) and individual conditional expectation

(ICE) plots
predict Predict response of Gaussian process regression model
shapley Shapley values

Examples

Compute Predictions and Regression Loss for Test Data

Generate example training data.

rng(1) % For reproducibility
n = 100000;
X = linspace(0,1,n)';
X = [X,X.^2];
y = 1 + X*[1;2] + sin(20*X*[1;-2]) + 0.2*randn(n,1);

Train a GPR model using the subset of regressors ('sr') approximation method and predict using the
subset of data ('sd') method. Use 50 points in the active set and sparse greedy matrix
approximation ('sgma') method for active set selection. Because the scales of the first and second
predictors are different, it is good practice to standardize the data.

gprMdl = fitrgp(X,y,'KernelFunction','squaredExponential','FitMethod', ...
    'sr','PredictMethod','sd','Basis','none','ActiveSetSize',50, ...
    'ActiveSetMethod','sgma','Standardize',1,'KernelParameters',[1;1]);

fitrgp accepts any combination of fitting, prediction, and active set selection methods. In some
cases it might not be possible to compute the standard deviations of the predicted responses, hence
the prediction intervals. See “Tips” on page 35-5830. And, in some cases, using the exact method
might be expensive because of the size of the training data.
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Create a compact GPR object.

cgprMdl = compact(gprMdl);

Generate the test data.

n = 4000;
Xnew = linspace(0,1,n)';
Xnew = [Xnew,Xnew.^2];
ynew = 1 + Xnew*[1;2] + sin(20*Xnew*[1;-2]) + 0.2*randn(n,1);

Use the compact object to predict the response in test data and the prediction intervals.

[ypred,~,yci] = predict(cgprMdl,Xnew);

Plot the true response, predicted response, and prediction intervals.

figure
plot(ynew,'r')
hold on
plot(ypred,'b')
plot(yci(:,1),'k--')
plot(yci(:,2),'k--')
legend('True responses','GPR predictions','95% prediction limits','Location','Best')
xlabel('x')
ylabel('y')
hold off

Compute the mean squared error loss on the test data using the trained GPR model.
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L = loss(cgprMdl,Xnew,ynew)

L = 0.0497

Copy Semantics
Value. To learn how value classes affect copy operations, see Copying Objects.

Version History
Introduced in R2015b

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• The predict function supports code generation.

For more information, see “Introduction to Code Generation” on page 34-2.

See Also
fitrgp | compact | RegressionGP

Topics
Class Attributes
Property Attributes
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CompactRegressionNeuralNetwork
Compact neural network model for regression

Description
CompactRegresionNeuralNetwork is a compact version of a RegressionNeuralNetwork model
object. The compact model does not include the data used for training the regression model.
Therefore, you cannot perform some tasks, such as cross-validation, using the compact model. Use a
compact model for tasks such as predicting the response values of new data.

Creation
Create a CompactRegressionNeuralNetwork object from a full RegressionNeuralNetwork
model object by using compact.

Properties
Neural Network Properties

LayerSizes — Sizes of fully connected layers
positive integer vector

This property is read-only.

Sizes of the fully connected layers in the neural network model, returned as a positive integer vector.
The ith element of LayerSizes is the number of outputs in the ith fully connected layer of the neural
network model.

LayerSizes does not include the size of the final fully connected layer. This layer always has one
output.
Data Types: single | double

LayerWeights — Learned layer weights
cell array

This property is read-only.

Learned layer weights for fully connected layers, returned as a cell array. The ith entry in the cell
array corresponds to the layer weights for the ith fully connected layer. For example,
Mdl.LayerWeights{1} returns the weights for the first fully connected layer of the model Mdl.

LayerWeights includes the weights for the final fully connected layer.
Data Types: cell

LayerBiases — Learned layer biases
cell array

This property is read-only.
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Learned layer biases for fully connected layers, returned as a cell array. The ith entry in the cell array
corresponds to the layer biases for the ith fully connected layer. For example, Mdl.LayerBiases{1}
returns the biases for the first fully connected layer of the model Mdl.

LayerBiases includes the biases for the final fully connected layer.
Data Types: cell

Activations — Activation functions for fully connected layers
'relu' | 'tanh' | 'sigmoid' | 'none' | cell array of character vectors

This property is read-only.

Activation functions for the fully connected layers of the neural network model, returned as a
character vector or cell array of character vectors with values from this table.

Value Description
'relu' Rectified linear unit (ReLU) function — Performs

a threshold operation on each element of the
input, where any value less than zero is set to
zero, that is,

f x =
x, x ≥ 0
0, x < 0

'tanh' Hyperbolic tangent (tanh) function — Applies the
tanh function to each input element

'sigmoid' Sigmoid function — Performs the following
operation on each input element:

f (x) = 1
1 + e−x

'none' Identity function — Returns each input element
without performing any transformation, that is,
f(x) = x

• If Activations contains only one activation function, then it is the activation function for every
fully connected layer of the neural network model, excluding the final fully connected layer, which
does not have an activation function (OutputLayerActivation).

• If Activations is an array of activation functions, then the ith element is the activation function
for the ith layer of the neural network model.

Data Types: char | cell

OutputLayerActivation — Activation function for final fully connected layer
'none'

This property is read-only.

Activation function for final fully connected layer, returned as 'none'.
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Data Properties

PredictorNames — Predictor variable names
cell array of character vectors

This property is read-only.

Predictor variable names, returned as a cell array of character vectors. The order of the elements of
PredictorNames corresponds to the order in which the predictor names appear in the training data.
Data Types: cell

CategoricalPredictors — Categorical predictor indices
vector of positive integers | []

This property is read-only.

Categorical predictor indices, returned as a vector of positive integers. Assuming that the predictor
data contains observations in rows, CategoricalPredictors contains index values corresponding
to the columns of the predictor data that contain categorical predictors. If none of the predictors are
categorical, then this property is empty ([]).
Data Types: double

ExpandedPredictorNames — Expanded predictor names
cell array of character vectors

This property is read-only.

Expanded predictor names, returned as a cell array of character vectors. If the model uses encoding
for categorical variables, then ExpandedPredictorNames includes the names that describe the
expanded variables. Otherwise, ExpandedPredictorNames is the same as PredictorNames.
Data Types: cell

ResponseName — Response variable name
character vector

This property is read-only.

Response variable name, returned as a character vector.
Data Types: char

ResponseTransform — Response transformation function
'none'

This property is read-only.

Response transformation function, returned as 'none'. The software does not transform the raw
response values.
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Object Functions

Interpret Prediction
lime Local interpretable model-agnostic explanations (LIME)
partialDependence Compute partial dependence
plotPartialDependence Create partial dependence plot (PDP) and individual conditional expectation

(ICE) plots
shapley Shapley values

Assess Predictive Performance on New Observations
loss Loss for regression neural network
predict Predict responses using regression neural network

Examples

Reduce Size of Regression Neural Network Model

Reduce the size of a full regression neural network model by removing the training data from the
model. You can use a compact model to improve memory efficiency.

Load the patients data set. Create a table from the data set. Each row corresponds to one patient,
and each column corresponds to a diagnostic variable. Use the Systolic variable as the response
variable, and the rest of the variables as predictors.

load patients
tbl = table(Age,Diastolic,Gender,Height,Smoker,Weight,Systolic);

Train a regression neural network model using the data. Specify the Systolic column of tblTrain
as the response variable. Specify to standardize the numeric predictors.

Mdl = fitrnet(tbl,"Systolic","Standardize",true)

Mdl = 
  RegressionNeuralNetwork
           PredictorNames: {1x6 cell}
             ResponseName: 'Systolic'
    CategoricalPredictors: [3 5]
        ResponseTransform: 'none'
          NumObservations: 100
               LayerSizes: 10
              Activations: 'relu'
    OutputLayerActivation: 'none'
                   Solver: 'LBFGS'
          ConvergenceInfo: [1x1 struct]
          TrainingHistory: [998x7 table]

  Properties, Methods

Mdl is a full RegressionNeuralNetwork model object.

Reduce the size of the model by using compact.
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compactMdl = compact(Mdl)

compactMdl = 
  CompactRegressionNeuralNetwork
               LayerSizes: 10
              Activations: 'relu'
    OutputLayerActivation: 'none'

  Properties, Methods

compactMdl is a CompactRegressionNeuralNetwork model object. compactMdl contains fewer
properties than the full model Mdl.

Display the amount of memory used by each neural network model.

whos("Mdl","compactMdl")

  Name            Size            Bytes  Class                                                    Attributes

  Mdl             1x1             72710  RegressionNeuralNetwork                                            
  compactMdl      1x1              5991  classreg.learning.regr.CompactRegressionNeuralNetwork              

The full model is larger than the compact model.

Version History
Introduced in R2021a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• The predict object function supports code generation.

For more information, see “Introduction to Code Generation” on page 34-2.

See Also
fitrnet | predict | loss | RegressionPartitionedModel | RegressionNeuralNetwork |
compact

Topics
“Assess Regression Neural Network Performance” on page 19-188
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CompactRegressionSVM
Package: classreg.learning.regr

Compact support vector machine regression model

Description
CompactRegressionSVM is a compact support vector machine (SVM) regression model. It consumes
less memory than a full, trained support vector machine model (RegressionSVM model) because it
does not store the data used to train the model.

Because the compact model does not store the training data, you cannot use it to perform certain
tasks, such as cross validation. However, you can use a compact SVM regression model to predict
responses using new input data.

Construction
compactMdl = compact(mdl) returns a compact SVM regression model compactMdl from a full,
trained SVM regression model, mdl. For more information, see compact.

Input Arguments

mdl — Full, trained SVM regression model
RegressionSVM model

Full, trained SVM regression model, specified as a RegressionSVM model returned by fitrsvm.

Properties
Alpha — Dual problem coefficients
vector of numeric values

Dual problem coefficients, specified as a vector of numeric values. Alpha contains m elements, where
m is the number of support vectors in the trained SVM regression model. The dual problem
introduces two Lagrange multipliers for each support vector. The values of Alpha are the differences
between the two estimated Lagrange multipliers for the support vectors. For more details, see
“Understanding Support Vector Machine Regression” on page 25-2.

If you specified to remove duplicates using RemoveDuplicates, then, for a particular set of
duplicate observations that are support vectors, Alpha contains one coefficient corresponding to the
entire set. That is, MATLAB attributes a nonzero coefficient to one observation from the set of
duplicates and a coefficient of 0 to all other duplicate observations in the set.
Data Types: single | double

Beta — Primal linear problem coefficients
vector of numeric values | '[]'

Primal linear problem coefficients, stored as a numeric vector of length p, where p is the number of
predictors in the SVM regression model.
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The values in Beta are the linear coefficients for the primal optimization problem.

If the model is obtained using a kernel function other than 'linear', this property is empty ('[]').

The predict method computes predicted response values for the model as YFIT = (X/S)×Beta +
Bias, whereS is the value of the kernel scale stored in the KernelParameters.Scale property.
Data Types: double

Bias — Bias term
scalar value

Bias term in the SVM regression model, stored as a scalar value.
Data Types: double

CategoricalPredictors — Indices of categorical predictors
vector of positive integers | []

Categorical predictor indices, specified as a vector of positive integers. CategoricalPredictors
contains index values indicating that the corresponding predictors are categorical. The index values
are between 1 and p, where p is the number of predictors used to train the model. If none of the
predictors are categorical, then this property is empty ([]).
Data Types: single | double

ExpandedPredictorNames — Expanded predictor names
cell array of character vectors

Expanded predictor names, stored as a cell array of character vectors.

If the model uses encoding for categorical variables, then ExpandedPredictorNames includes the
names that describe the expanded variables. Otherwise, ExpandedPredictorNames is the same as
PredictorNames.
Data Types: cell

KernelParameters — Kernel function parameters
structure

Kernel function parameters, stored as a structure with the following fields.

Field Description
Function Kernel function name (a character vector).
Scale Numeric scale factor used to divide predictor

values.

You can specify values for KernelParameters.Function and KernelParameters.Scale by using
the KernelFunction and KernelScale name-value pair arguments in fitrsvm, respectively.
Data Types: struct

Mu — Predictor means
vector of numeric values | '[]'

Predictor means, stored as a vector of numeric values.
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If the training data is standardized, then Mu is a numeric vector of length p, where p is the number of
predictors used to train the model. In this case, the predict method centers predictor matrix X by
subtracting the corresponding element of Mu from each column.

If the training data is not standardized, then Mu is empty ('[]').
Data Types: single | double

PredictorNames — Predictor names
cell array of character vectors

Predictor names, stored as a cell array of character vectors containing the name of each predictor in
the order in which they appear in X. PredictorNames has a length equal to the number of columns
in X.
Data Types: cell

ResponseName — Response variable name
character vector

Response variable name, stored as a character vector.
Data Types: char

ResponseTransform — Response transformation function
'none' | function handle

Response transformation function, specified as 'none' or a function handle. ResponseTransform
describes how the software transforms raw response values.

For a MATLAB function or a function that you define, enter its function handle. For example, you can
enter Mdl.ResponseTransform = @function, where function accepts a numeric vector of the
original responses and returns a numeric vector of the same size containing the transformed
responses.
Data Types: char | function_handle

Sigma — Predictor standard deviations
vector of numeric values | '[]'

Predictor standard deviations, stored as a vector of numeric values.

If the training data is standardized, then Sigma is a numeric vector of length p, where p is the
number of predictors used to train the model. In this case, the predict method scales the predictor
matrix X by dividing each column by the corresponding element of Sigma, after centering each
element using Mu.

If the training data is not standardized, then Sigma is empty ('[]').
Data Types: single | double

SupportVectors — Support vectors
matrix of numeric values

Support vectors, stored as an m-by-p matrix of numeric values. m is the number of support vectors
(sum(Mdl.IsSupportVector)), and p is the number of predictors in X.
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If you specified to remove duplicates using RemoveDuplicates, then for a given set of duplicate
observations that are support vectors, SupportVectors contains one unique support vector.
Data Types: single | double

Object Functions
discardSupportVectors Discard support vectors
incrementalLearner Convert support vector machine (SVM) regression model to incremental

learner
lime Local interpretable model-agnostic explanations (LIME)
loss Regression error for support vector machine regression model
partialDependence Compute partial dependence
plotPartialDependence Create partial dependence plot (PDP) and individual conditional expectation

(ICE) plots
predict Predict responses using support vector machine regression model
shapley Shapley values
update Update model parameters for code generation

Copy Semantics
Value. To learn how value classes affect copy operations, see Copying Objects.

Examples

Compact an SVM Regression Model

This example shows how to reduce the size of a full, trained SVM regression model by discarding the
training data and some information related to the training process.

This example uses the abalone data from the UCI Machine Learning Repository. Download the data
and save it in your current directory with the name 'abalone.data'. Read the data into a table.

tbl = readtable('abalone.data','Filetype','text','ReadVariableNames',false);
rng default  % for reproducibility

The sample data contains 4177 observations. All of the predictor variables are continuous except for
sex, which is a categorical variable with possible values 'M' (for males), 'F' (for females), and 'I'
(for infants). The goal is to predict the number of rings on the abalone, and thereby determine its age,
using physical measurements.

Train an SVM regression model using a Gaussian kernel function and an automatic kernel scale.
Standardize the data.

mdl = fitrsvm(tbl,'Var9','KernelFunction','gaussian','KernelScale','auto','Standardize',true)

mdl = 

  RegressionSVM
           PredictorNames: {1x8 cell}
             ResponseName: 'Var9'
    CategoricalPredictors: 1
        ResponseTransform: 'none'
                    Alpha: [3635x1 double]

 CompactRegressionSVM

35-977



                     Bias: 10.8144
         KernelParameters: [1x1 struct]
                       Mu: [1x10 double]
                    Sigma: [1x10 double]
          NumObservations: 4177
           BoxConstraints: [4177x1 double]
          ConvergenceInfo: [1x1 struct]
          IsSupportVector: [4177x1 logical]
                   Solver: 'SMO'

  Properties, Methods

Compact the model.

compactMdl = compact(mdl)

compactMdl = 

  classreg.learning.regr.CompactRegressionSVM
           PredictorNames: {1x8 cell}
             ResponseName: 'Var9'
    CategoricalPredictors: 1
        ResponseTransform: 'none'
                    Alpha: [3635x1 double]
                     Bias: 10.8144
         KernelParameters: [1x1 struct]
                       Mu: [1x10 double]
                    Sigma: [1x10 double]
           SupportVectors: [3635x10 double]

  Properties, Methods

The compacted model discards the training data and some information related to the training
process.

Compare the size of the full model mdl and the compact model compactMdl.

vars = whos('compactMdl','mdl');
[vars(1).bytes,vars(2).bytes]

ans =

      323793      775968

The compacted model consumes about half the memory of the full model.

Version History
Introduced in R2015b
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Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• The predict and update functions support code generation.

• To integrate the prediction of an SVM regression model into Simulink, you can use the
RegressionSVM Predict block in the Statistics and Machine Learning Toolbox library or a MATLAB
Function block with the predict function.

• When you train an SVM regression model by using fitrsvm, the following restrictions apply.

• The value of the 'ResponseTransform' name-value pair argument must be 'none' (default).
• For fixed-point code generation, the value of the 'KernelFunction' name-value pair

argument must be 'gaussian', 'linear', or 'polynomial'.
• Fixed-point code generation and code generation with a coder configurer do not support

categorical predictors (logical, categorical, char, string, or cell). You cannot use the
'CategoricalPredictors' name-value argument. To include categorical predictors in a
model, preprocess them by using dummyvar before fitting the model.

For more information, see “Introduction to Code Generation” on page 34-2.

See Also
fitrsvm | RegressionSVM | compact | update
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CompactRegressionTree
Package: classreg.learning.regr

Compact regression tree

Description
Compact version of a regression tree (of class RegressionTree). The compact version does not
include the data for training the regression tree. Therefore, you cannot perform some tasks with a
compact regression tree, such as cross validation. Use a compact regression tree for making
predictions (regressions) of new data.

Construction
ctree = compact(tree) constructs a compact decision tree from a full decision tree.

Input Arguments

tree — Full, trained regression tree
RegressionTree object

Full, trained regression tree, specified as a RegressionTree object constructed by fitrtree.

Properties
CategoricalPredictors

Categorical predictor indices, specified as a vector of positive integers. CategoricalPredictors
contains index values indicating that the corresponding predictors are categorical. The index values
are between 1 and p, where p is the number of predictors used to train the model. If none of the
predictors are categorical, then this property is empty ([]).

CategoricalSplit

An n-by-2 cell array, where n is the number of categorical splits in tree. Each row in
CategoricalSplit gives left and right values for a categorical split. For each branch node with
categorical split j based on a categorical predictor variable z, the left child is chosen if z is in
CategoricalSplit(j,1) and the right child is chosen if z is in CategoricalSplit(j,2). The
splits are in the same order as nodes of the tree. Nodes for these splits can be found by running
cuttype and selecting 'categorical' cuts from top to bottom.

Children

An n-by-2 array containing the numbers of the child nodes for each node in tree, where n is the
number of nodes. Leaf nodes have child node 0.

CutCategories

An n-by-2 cell array of the categories used at branches in tree, where n is the number of nodes. For
each branch node i based on a categorical predictor variable x, the left child is chosen if x is among
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the categories listed in CutCategories{i,1}, and the right child is chosen if x is among those
listed in CutCategories{i,2}. Both columns of CutCategories are empty for branch nodes based
on continuous predictors and for leaf nodes.

CutPoint contains the cut points for 'continuous' cuts, and CutCategories contains the set of
categories.

CutPoint

An n-element vector of the values used as cut points in tree, where n is the number of nodes. For
each branch node i based on a continuous predictor variable x, the left child is chosen if
CutPoint<v(i) and the right child is chosen if x>=CutPoint(i). CutPoint is NaN for branch
nodes based on categorical predictors and for leaf nodes.

CutType

An n-element cell array indicating the type of cut at each node in tree, where n is the number of
nodes. For each node i, CutType{i} is:

• 'continuous' — If the cut is defined in the form x < v for a variable x and cut point v.
• 'categorical' — If the cut is defined by whether a variable x takes a value in a set of

categories.
• '' — If i is a leaf node.

CutPoint contains the cut points for 'continuous' cuts, and CutCategories contains the set of
categories.

CutPredictor

An n-element cell array of the names of the variables used for branching in each node in tree, where
n is the number of nodes. These variables are sometimes known as cut variables. For leaf nodes,
CutPredictor contains an empty character vector.

CutPoint contains the cut points for 'continuous' cuts, and CutCategories contains the set of
categories.

CutPredictorIndex

An n-element array of numeric indices for the variables used for branching in each node in tree,
where n is the number of nodes. For more information, see CutPredictor.

ExpandedPredictorNames

Expanded predictor names, stored as a cell array of character vectors.

If the model uses encoding for categorical variables, then ExpandedPredictorNames includes the
names that describe the expanded variables. Otherwise, ExpandedPredictorNames is the same as
PredictorNames.

IsBranchNode

An n-element logical vector ib that is true for each branch node and false for each leaf node of
tree.
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NodeError

An n-element vector e of the errors of the nodes in tree, where n is the number of nodes. e(i) is the
misclassification probability for node i.

NodeMean

An n-element numeric array with mean values in each node of tree, where n is the number of nodes
in the tree. Every element in NodeMean is the average of the true Y values over all observations in
the node.

NodeProbability

An n-element vector p of the probabilities of the nodes in tree, where n is the number of nodes. The
probability of a node is computed as the proportion of observations from the original data that satisfy
the conditions for the node. This proportion is adjusted for any prior probabilities assigned to each
class.

NodeRisk

An n-element vector of the risk of the nodes in the tree, where n is the number of nodes. The risk for
each node is the node error weighted by the node probability.

NodeSize

An n-element vector sizes of the sizes of the nodes in tree, where n is the number of nodes. The
size of a node is defined as the number of observations from the data used to create the tree that
satisfy the conditions for the node.

NumNodes

The number of nodes n in tree.

Parent

An n-element vector p containing the number of the parent node for each node in tree, where n is
the number of nodes. The parent of the root node is 0.

PredictorNames

A cell array of names for the predictor variables, in the order in which they appear in X.

PruneAlpha

Numeric vector with one element per pruning level. If the pruning level ranges from 0 to M, then
PruneAlpha has M + 1 elements sorted in ascending order. PruneAlpha(1) is for pruning level 0
(no pruning), PruneAlpha(2) is for pruning level 1, and so on.

PruneList

An n-element numeric vector with the pruning levels in each node of tree, where n is the number of
nodes. The pruning levels range from 0 (no pruning) to M, where M is the distance between the
deepest leaf and the root node.
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ResponseName

Name of the response variable Y, a character vector.

ResponseTransform

Function handle for transforming the raw response values (mean squared error). The function handle
must accept a matrix of response values and return a matrix of the same size. The default 'none'
means @(x)x, or no transformation.

Add or change a ResponseTransform function using dot notation:

ctree.ResponseTransform = @function

SurrogateCutCategories

An n-element cell array of the categories used for surrogate splits in tree, where n is the number of
nodes in tree. For each node k, SurrogateCutCategories{k} is a cell array. The length of
SurrogateCutCategories{k} is equal to the number of surrogate predictors found at this node.
Every element of SurrogateCutCategories{k} is either an empty character vector for a
continuous surrogate predictor, or is a two-element cell array with categories for a categorical
surrogate predictor. The first element of this two-element cell array lists categories assigned to the
left child by this surrogate split, and the second element of this two-element cell array lists categories
assigned to the right child by this surrogate split. The order of the surrogate split variables at each
node is matched to the order of variables in SurrogateCutPredictor. The optimal-split variable at
this node does not appear. For nonbranch (leaf) nodes, SurrogateCutCategories contains an
empty cell.

SurrogateCutFlip

An n-element cell array of the numeric cut assignments used for surrogate splits in tree, where n is
the number of nodes in tree. For each node k, SurrogateCutFlip{k} is a numeric vector. The
length of SurrogateCutFlip{k} is equal to the number of surrogate predictors found at this node.
Every element of SurrogateCutFlip{k} is either zero for a categorical surrogate predictor, or a
numeric cut assignment for a continuous surrogate predictor. The numeric cut assignment can be
either –1 or +1. For every surrogate split with a numeric cut C based on a continuous predictor
variable Z, the left child is chosen if Z<C and the cut assignment for this surrogate split is +1, or if
Z≥C and the cut assignment for this surrogate split is –1. Similarly, the right child is chosen if Z≥C
and the cut assignment for this surrogate split is +1, or if Z<C and the cut assignment for this
surrogate split is –1. The order of the surrogate split variables at each node is matched to the order of
variables in SurrogateCutPredictor. The optimal-split variable at this node does not appear. For
nonbranch (leaf) nodes, SurrogateCutFlip contains an empty array.

SurrogateCutPoint

An n-element cell array of the numeric values used for surrogate splits in tree, where n is the
number of nodes in tree. For each node k, SurrogateCutPoint{k} is a numeric vector. The length
of SurrogateCutPoint{k} is equal to the number of surrogate predictors found at this node. Every
element of SurrogateCutPoint{k} is either NaN for a categorical surrogate predictor, or a numeric
cut for a continuous surrogate predictor. For every surrogate split with a numeric cut C based on a
continuous predictor variable Z, the left child is chosen if Z<C and SurrogateCutFlip for this
surrogate split is +1, or if Z≥C and SurrogateCutFlip for this surrogate split is –1. Similarly, the
right child is chosen if Z≥C and SurrogateCutFlip for this surrogate split is +1, or if Z<C and
SurrogateCutFlip for this surrogate split is –1. The order of the surrogate split variables at each
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node is matched to the order of variables returned by SurrogateCutVar. The optimal-split variable
at this node does not appear. For nonbranch (leaf) nodes, SurrogateCutPoint contains an empty
cell.

SurrogateCutType

An n-element cell array indicating types of surrogate splits at each node in tree, where n is the
number of nodes in tree. For each node k, SurrogateCutType{k} is a cell array with the types of
the surrogate split variables at this node. The variables are sorted by the predictive measure of
association with the optimal predictor in the descending order, and only variables with the positive
predictive measure are included. The order of the surrogate split variables at each node is matched
to the order of variables in SurrogateCutPredictor. The optimal-split variable at this node does
not appear. For nonbranch (leaf) nodes, SurrogateCutType contains an empty cell. A surrogate split
type can be either 'continuous' if the cut is defined in the form Z<V for a variable Z and cut point
V or 'categorical' if the cut is defined by whether Z takes a value in a set of categories.

SurrogateCutPredictor

An n-element cell array of the names of the variables used for surrogate splits in each node in tree,
where n is the number of nodes in tree. Every element of SurrogateCutPredictor is a cell array
with the names of the surrogate split variables at this node. The variables are sorted by the predictive
measure of association with the optimal predictor in the descending order, and only variables with the
positive predictive measure are included. The optimal-split variable at this node does not appear. For
nonbranch (leaf) nodes, SurrogateCutPredictor contains an empty cell.

SurrogatePredictorAssociation

An n-element cell array of the predictive measures of association for surrogate splits in tree, where
n is the number of nodes in tree. For each node k, SurrogatePredictorAssociation{k} is a
numeric vector. The length of SurrogatePredictorAssociation{k} is equal to the number of
surrogate predictors found at this node. Every element of SurrogatePredictorAssociation{k}
gives the predictive measure of association between the optimal split and this surrogate split. The
order of the surrogate split variables at each node is the order of variables in
SurrogateCutPredictor. The optimal-split variable at this node does not appear. For nonbranch
(leaf) nodes, SurrogatePredictorAssociation contains an empty cell.

Object Functions
gather Gather properties of Statistics and Machine Learning Toolbox object from

GPU
lime Local interpretable model-agnostic explanations (LIME)
loss Regression error
nodeVariableRange Retrieve variable range of decision tree node
partialDependence Compute partial dependence
plotPartialDependence Create partial dependence plot (PDP) and individual conditional expectation

(ICE) plots
predict Predict responses using regression tree
predictorImportance Estimates of predictor importance for regression tree
shapley Shapley values
surrogateAssociation Mean predictive measure of association for surrogate splits in regression

tree
update Update model parameters for code generation
view View regression tree
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Copy Semantics
Value. To learn how value classes affect copy operations, see Copying Objects.

Examples

Construct and Compact a Regression Tree

Load the sample data.

load carsmall

Construct a regression tree for the sample data.

tree = fitrtree([Weight, Cylinders],MPG,...
    'MinParentSize',20,...
    'PredictorNames',{'W','C'});

Make a compact version of the tree.

ctree = compact(tree);

Compare the size of the compact tree to that of the full tree.

t = whos('tree'); % t.bytes = size of tree in bytes
c = whos('ctree'); % c.bytes = size of ctree in bytes
[c.bytes t.bytes]

ans = 1×2

        4311        7558

The compact tree is smaller than the full tree.

Version History
Introduced in R2011a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• The predict and update functions support code generation.
• To integrate the prediction of a regression tree model into Simulink, you can use the

RegressionTree Predict block in the Statistics and Machine Learning Toolbox library or a MATLAB
Function block with the predict function.

• When you train a regression tree model by using fitrtree, the following restrictions apply.
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• The value of the 'ResponseTransform' name-value pair argument must be 'none' (default).
• You cannot use surrogate splits, that is, the value of the 'Surrogate' name-value pair

argument must be 'off'.
• Fixed-point code generation and code generation with a coder configurer do not support

categorical predictors (logical, categorical, char, string, or cell). You cannot use the
'CategoricalPredictors' name-value argument. To include categorical predictors in a
model, preprocess them by using dummyvar before fitting the model.

For more information, see “Introduction to Code Generation” on page 34-2.

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

Usage notes and limitations:

• The following object functions fully support GPU arrays:

• gather
• nodeVariableRange
• predictorImportance
• surrogateAssociation

• The following object functions offer limited support for GPU arrays:

• loss
• partialDependence
• plotPartialDependence
• predict
• view

• The object functions execute on a GPU if any of the following apply:

• The model was fitted with GPU arrays.
• The predictor data that you pass to the object function is a GPU array.
• The response data that you pass to the object function is a GPU array.

For more information, see “Run MATLAB Functions on a GPU” (Parallel Computing Toolbox).

See Also
fitrtree | RegressionTree | compact
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CompactTreeBagger
Compact ensemble of bagged decision trees

Description
CompactTreeBagger is a compact version of the TreeBagger ensemble. The compact ensemble
does not contain the following: information about how the TreeBagger function grows the decision
trees; the input data used for growing trees; or the training parameters (for example, minimal leaf
size, number of variables sampled for each decision split at random, and so on). Use
CompactTreeBagger for tasks such as predicting the response or class labels.

Creation
Create a CompactTreeBagger ensemble object from a full, trained TreeBagger ensemble by using
compact.

Properties
ClassNames — Unique class names
cell array of character vectors

This property is read-only.

Unique class names used in the training model, specified as a cell array of character vectors.

This property is empty ([]) for regression trees.

DefaultYfit — Default prediction value
"" | "MostPopular" | numeric scalar

This property is read-only.

Default prediction value returned by predict, specified as "", "MostPopular", or a numeric scalar.
This property controls the predicted value returned by the predict object function when no
prediction is possible. You can set this property by using the setDefaultYfit function.

• For classification trees, you can set DefaultYfit to either "" or "MostPopular". If you specify
"MostPopular" (default for classification), the property value is the name of the most probable
class in the training data. If you specify "", the in-bag observations are excluded from
computation of the out-of-bag error and margin.

• For regression trees, you can set DefaultYfit to any numeric scalar. The default value for
regression is the mean of the response for the training data. If you set DefaultYfit to NaN, the
in-bag observations are excluded from computation of the out-of-bag error and margin.

Example: CMdl = setDefaultYfit(CMdl,"MostPopular")
Data Types: single | double | char | string
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DeltaCriterionDecisionSplit — Split criterion contributions for each predictor
numeric vector

This property is read-only.

Split criterion contributions for each predictor, specified as a numeric vector. This property is a 1-by-
Nvars vector, where Nvars is the number of changes in the split criterion. The software sums the
changes in the split criterion over splits on each variable, then averages the sums across the entire
ensemble of grown trees.
Data Types: single | double

Method — Type of ensemble
"classification" | "regression"

This property is read-only.

Type of ensemble, specified as "classification" for classification ensembles or "regression"
for regression ensembles.

NumPredictorSplit — Number of decision splits for each predictor
numeric vector

This property is read-only.

Number of decision splits for each predictor, specified as a numeric vector. This property is a 1-by-
Nvars vector, where Nvars is the number of predictor variables. Each element of
NumPredictorSplit represents the number of splits on the predictor summed over all trees.
Data Types: single | double

NumTrees — Number of decision trees
positive integer

This property is read-only.

Number of decision trees in the bagged ensemble, specified as a positive integer.
Data Types: single | double

PredictorNames — Predictor names
cell array of character vectors

This property is read-only.

Predictor names, specified as a cell array of character vectors. The order of the elements in
PredictorNames corresponds to the order in which the predictor names appear in the training data
X.

SurrogateAssociation — Predictive measures of variable association
numeric matrix

This property is read-only.

Predictive measures of variable association, specified as a numeric matrix. This property is an Nvars-
by-Nvars matrix, where Nvars is the number of predictor variables. The property contains the
predictive measures of variable association, averaged across the entire ensemble of grown trees.
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• If you grow the ensemble with the Surrogate name-value argument set to "on", this matrix, for
each tree, is filled with the predictive measures of association averaged over the surrogate splits.

• If you grow the ensemble with the Surrogate name-value argument set to "off", the
SurrogateAssociation property is an identity matrix. By default, Surrogate is set to "off".

Data Types: single | double

Trees — Decision trees in ensemble
cell array

This property is read-only.

Decision trees in the bagged ensemble, specified as a NumTrees-by-1 cell array. Each tree is a
CompactClassificationTree or CompactRegressionTree object.

Object Functions
combine Combine two ensembles
error Error (misclassification probability or MSE)
margin Classification margin
mdsprox Multidimensional scaling of proximity matrix
meanMargin Mean classification margin
outlierMeasure Outlier measure for data in ensemble of decision trees
partialDependence Compute partial dependence
plotPartialDependence Create partial dependence plot (PDP) and individual conditional expectation

(ICE) plots
predict Predict responses using ensemble of bagged decision trees
proximity Proximity matrix for data in ensemble of decision trees
setDefaultYfit Set default value for predict

Examples

Reduce Size of Ensemble of Bagged Trees

Reduce the size of a full ensemble of bagged classification trees by removing the training data and
parameters. Then, use the compact ensemble object to make predictions on new data. Using a
compact ensemble improves memory efficiency.

Load the ionosphere data set.

load ionosphere

Set the random number generator to default for reproducibility.

rng("default")

Train an ensemble of 100 bagged classification trees using the entire data set. By default,
TreeBagger grows deep trees.

Mdl = TreeBagger(100,X,Y,...
    Method="classification");

Mdl is a TreeBagger ensemble for classification trees.
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Create a compact version of Mdl.

CMdl = compact(Mdl)

CMdl = 
  CompactTreeBagger
Ensemble with 100 bagged decision trees:
              Method:       classification
       NumPredictors:                   34
          ClassNames: 'b' 'g'

  Properties, Methods

CMdl is a CompactTreeBagger ensemble for classification trees.

Display the amount of memory used by each ensemble.

whos("Mdl","CMdl")

  Name      Size              Bytes  Class                Attributes

  CMdl      1x1              976936  CompactTreeBagger              
  Mdl       1x1             1115742  TreeBagger                     

Mdl takes up more space than CMdl.

The CMdl.Trees property is a 100-by-1 cell vector that contains the trained classification trees for
the ensemble. Each tree is a CompactClassificationTree object. View the graphical display of
the first trained classification tree.

view(CMdl.Trees{1},Mode="graph");
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Predict the label of the mean of X by using the compact ensemble.

predMeanX = predict(CMdl,mean(X))

predMeanX = 1x1 cell array
    {'g'}

Tip
• For a CompactTreeBagger model CMdl, the Trees property contains a cell vector of

CMdl.NumTrees CompactClassificationTree or CompactRegressionTree objects. View
the graphical display of the t grown tree by entering:

view(CMdl.Trees{t})

Version History
Introduced in R2009a
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See Also
Objects
TreeBagger | ClassificationTree | RegressionTree

Functions
predict | error | view | view | fitctree | fitrtree

Topics
“Bootstrap Aggregation (Bagging) of Regression Trees Using TreeBagger” on page 19-114
“Bootstrap Aggregation (Bagging) of Classification Trees Using TreeBagger” on page 19-125
“Framework for Ensemble Learning” on page 19-33
“Decision Trees” on page 20-2
“Grouping Variables” on page 2-46
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compare
Class: GeneralizedLinearMixedModel

Compare generalized linear mixed-effects models

Syntax
results = compare(glme,altglme)
results = compare(glme,altglme,Name,Value)

Description
results = compare(glme,altglme) returns the results of a likelihood ratio test on page 35-996
that compares the generalized linear mixed-effects models glme and altglme. To conduct a valid
likelihood ratio test, both models must use the same response vector in the fit, and glme must be
nested in altglme. Always input the smaller model first, and the larger model second.

compare tests the following null and alternate hypotheses:

• H0: Observed response vector is generated by glme.
• H1: Observed response vector is generated by model altglme.

results = compare(glme,altglme,Name,Value) returns the results of a likelihood ratio test
using additional options specified by one or more Name,Value pair arguments. For example, you can
check if the first input model, glme, is nested in the second input model, altglme.

Input Arguments
glme — Generalized linear mixed-effects model
GeneralizedLinearMixedModel object

Generalized linear mixed-effects model, specified as a GeneralizedLinearMixedModel object. For
properties and methods of this object, see GeneralizedLinearMixedModel.

You can create a GeneralizedLinearMixedModel object by fitting a generalized linear mixed-
effects model to your sample data using fitglme. To conduct a valid likelihood ratio test on two
models that have response distributions other than normal, you must fit both models using the
'ApproximateLaplace' or 'Laplace' fit method. Models with response distributions other than
normal that are fitted using 'MPL' or 'REMPL' cannot be compared using a likelihood ratio test.

altglme — Alternative generalized linear mixed-effects model
GeneralizedLinearMixedModel object

Alternative generalized linear mixed-effects model, specified as a GeneralizedLinearMixedModel
object. altglme be must fit to the same response vector as glme, but with different model
specifications. glme must be nested in altglme, such that you can obtain glme from altglme by
setting some of the model parameters of altglme to fixed values such as 0.

You can create a GeneralizedLinearMixedModel object by fitting a generalized linear mixed-
effects model to your sample data using fitglme. To conduct a valid likelihood ratio test on two
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models that have response distributions other than normal, you must fit both models using the
'ApproximateLaplace' or 'Laplace' fit method. Models with response distributions other than
normal that are fitted using 'MPL' or 'REMPL' cannot be compared using a likelihood ratio test.

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.

CheckNesting — Indicator to check nesting between two models
true (default) | false

Indicator to check nesting on page 35-997 between two models, specified as the comma-separated
pair consisting of 'CheckNesting' and either true or false. If 'CheckNesting' is true, then
compare checks if the smaller model glme is nested in the larger model altglme. If the nesting
requirements are not satisfied, then compare returns an error. If 'CheckNesting' is false, then
compare does not perform this check.
Example: 'CheckNesting',true

Output Arguments
results — Results of likelihood ratio test
table

Results of the likelihood ratio test, returned as a table with two rows. The first row is for glme, and
the second row is for altglme. The columns of results contain the following.

Column Name Description
Model Name of the model
DF Degrees of freedom
AIC Akaike information criterion for the model
BIC Bayesian information criterion for the model
LogLik Maximized log likelihood for the model
LRStat Likelihood ratio test statistic for comparing

altglme and glme
deltaDF DF for altglme minus DF for glme
pValue p-value for the likelihood ratio test

Examples

Compare Mixed-Effects Models

Load the sample data.

load mfr

35 Functions

35-994



This simulated data is from a manufacturing company that operates 50 factories across the world,
with each factory running a batch process to create a finished product. The company wants to
decrease the number of defects in each batch, so it developed a new manufacturing process. To test
the effectiveness of the new process, the company selected 20 of its factories at random to participate
in an experiment: Ten factories implemented the new process, while the other ten continued to run
the old process. In each of the 20 factories, the company ran five batches (for a total of 100 batches)
and recorded the following data:

• Flag to indicate whether the batch used the new process (newprocess)
• Processing time for each batch, in hours (time)
• Temperature of the batch, in degrees Celsius (temp)
• Categorical variable indicating the supplier of the chemical used in the batch (supplier)
• Number of defects in the batch (defects)

The data also includes time_dev and temp_dev, which represent the absolute deviation of time and
temperature, respectively, from the process standard of 3 hours at 20 degrees Celsius.

Fit a fixed-effects-only model using newprocess, time_dev, temp_dev, and supplier as fixed-
effects predictors. Specify the response distribution as Poisson, the link function as log, and the fit
method as Laplace. Specify the dummy variable encoding as 'effects', so the dummy variable
coefficients sum to 0.

FEglme = fitglme(mfr,'defects ~ 1 + newprocess + time_dev + temp_dev + supplier','Distribution','Poisson','Link','log','FitMethod','Laplace','DummyVarCoding','effects');

Fit a second model that uses the same fixed-effects predictors, response distribution, link function,
and fit method. This time, include a random-effects intercept grouped by factory, to account for
quality differences that might exist due to factory-specific variations.

The number of defects can be modeled using a Poisson distribution

defectsi j ∼ Poisson(μi j)

This corresponds to the generalized linear mixed-effects model

log(μi j) = β0 + β1newprocessi j + β2time_devi j + β3temp_devi j + β4supplier_Ci j + β5supplier_Bi j
+ bi,

where

• defectsi j is the number of defects observed in the batch produced by factory i during batch j.
• μi j is the mean number of defects corresponding to factory i (where i = 1, 2, . . . , 20) during batch

j (where j = 1, 2, . . . , 5).
• newprocessi j, time_devi j, and temp_devi j are the measurements for each variable that correspond

to factory i during batch j. For example, newprocessi j indicates whether the batch produced by
factory i during batch j used the new process.

• supplier_Ci j and supplier_Bi j are dummy variables that use effects (sum-to-zero) coding to indicate
whether company C or B, respectively, supplied the process chemicals for the batch produced by
factory i during batch j.

• bi ∼ N(0, σb
2) is a random-effects intercept for each factory i that accounts for factory-specific

variation in quality.
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glme = fitglme(mfr,'defects ~ 1 + newprocess + time_dev + temp_dev + supplier + (1|factory)','Distribution','Poisson','Link','log','FitMethod','Laplace','DummyVarCoding','effects');

Compare the two models using a theoretical likelihood ratio test. Specify 'CheckNesting' as true,
so compare returns a warning if the nesting requirements are not satisfied.

results = compare(FEglme,glme,'CheckNesting',true)

results = 
    Theoretical Likelihood Ratio Test

    Model     DF    AIC       BIC       LogLik     LRStat    deltaDF
    FEglme    6     431.02    446.65    -209.51                     
    glme      7     416.35    434.58    -201.17    16.672    1      

    pValue    
              
    4.4435e-05

Since compare did not return an error, the nesting requirements are satisfied. The small p-value
indicates that compare rejects the null hypothesis that the observed response vector is generated by
the model FEglme, and instead accepts the alternate model glme. The smaller AIC and BIC values
for glme also support the conclusion that glme provides a better fitting model for the response.

More About
Likelihood Ratio Test

A likelihood ratio test compares the specifications of two nested models by assessing the significance
of restrictions to an extended model with unrestricted parameters. Under the null hypothesis H0, the
likelihood ratio test statistic has an approximate chi-squared reference distribution with degrees of
freedom deltaDF.

When comparing two models, compare computes the p-value for the likelihood ratio test by
comparing the observed likelihood ratio test statistic with this chi-squared reference distribution. A
small p-value leads to a rejection of H0 in favor of H1, and acceptance of the alternate model
altglme. On the other hand, a large p-value indicates that we cannot reject H0, and reflects
insufficient evidence to accept the model altglme.

The p-values obtained using the likelihood ratio test can be conservative when testing for the
presence or absence of random-effects terms, and anti-conservative when testing for the presence or
absence of fixed-effects terms. Instead, use the fixedEffects or coefTest methods to test for
fixed effects.

To conduct a valid likelihood ratio test on GLME models, both models must be fitted using a Laplace
or approximate Laplace fit method. Models fitted using a maximum pseudo likelihood (MPL) or
restricted maximum pseudo likelihood (REMPL) method cannot be compared using a likelihood ratio
test. When comparing models fitted using MPL, the maximized log likelihood of the pseudodata from
the final pseudo likelihood iteration is used in the likelihood ratio test. If you compare models with
non-normal distributions fitted using MPL, then compare gives a warning that the likelihood ratio
test is using maximized log likelihood of pseudodata from the final pseudo likelihood iteration. To use
the true maximized log likelihood in the likelihood ratio test, fit both glme and altglme using
approximate Laplace or Laplace prior to model comparison.

35 Functions

35-996



Nesting Requirements

To conduct a valid likelihood ratio test, glme must be nested in altglme. The
'CheckNesting',true name-value pair argument checks the following requirements, and returns
an error if any are not satisfied:

• You must fit both models (glme and altglme) using the 'ApproximateLaplace' or 'Laplace'
fit method. You cannot compare GLME models fitted using 'MPL' or 'REMPL' using a likelihood
ratio test.

• You must fit both models using the same response vector, response distribution, and link function.
• The smaller model (glme) must be nested within the larger model (altglme), such that you can

obtain glme from altglme by setting some of the model parameters of altglme to fixed values
such as 0.

• The maximized log likelihood of the larger model (altglme) must be greater than or equal to the
maximized log likelihood of the smaller model (glme).

• The weight vectors used to fit glme and altglme must be identical.
• The random-effects design matrix of the larger model (altglme) must contain the random-effects

design matrix of the smaller model (glme).
• The fixed-effects design matrix of the larger model (altglme) must contain the fixed-effects

design matrix of the smaller model (glme).

Akaike and Bayesian Information Criteria

The Akaike information criterion (AIC) is AIC = –2logLM + 2(param).

logLM depends on the method used to fit the model.

• If you use 'Laplace' or 'ApproximateLaplace', then logLM is the maximized log likelihood.
• If you use 'MPL', then logLM is the maximized log likelihood of the pseudo data from the final

pseudo likelihood iteration.
• If you use 'REMPL', then logLM is the maximized restricted log likelihood of the pseudo data from

the final pseudo likelihood iteration.

param is the total number of parameters estimated in the model. For most GLME models, param is
equal to nc + p + 1, where nc is the total number of parameters in the random-effects covariance,
excluding the residual variance, and p is the number of fixed-effects coefficients. However, if the
dispersion parameter is fixed at 1.0 for binomial or Poisson distributions, then param is equal to (nc +
p).

The Bayesian information criterion (BIC) is BIC = –2*logLM + ln(neff)(param).

logLM depends on the method used to fit the model.

• If you use 'Laplace' or 'ApproximateLaplace', then logLM is the maximized log likelihood.
• If you use 'MPL', then logLM is the maximized log likelihood of the pseudo data from the final

pseudo likelihood iteration.
• If you use 'REMPL', then logLM is the maximized restricted log likelihood of the pseudo data from

the final pseudo likelihood iteration.

neff is the effective number of observations.
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• If you use 'MPL', 'Laplace', or 'ApproximateLaplace', then neff = n, where n is the number
of observations.

• If you use 'REMPL', then neff = n – p.

param is the total number of parameters estimated in the model. For most GLME models, param is
equal to nc + p + 1, where nc is the total number of parameters in the random-effects covariance,
excluding the residual variance, and p is the number of fixed-effects coefficients. However, if the
dispersion parameter is fixed at 1.0 for binomial or Poisson distributions, then param is equal to (nc +
p).

A lower value of deviance indicates a better fit. As the value of deviance decreases, both AIC and BIC
tend to decrease. Both AIC and BIC also include penalty terms based on the number of parameters
estimated, p. So, when the number of parameters increase, the values of AIC and BIC tend to
increase as well. When comparing different models, the model with the lowest AIC or BIC value is
considered as the best fitting model.

For models fitted using 'MPL' and 'REMPL', AIC and BIC are based on the log likelihood (or
restricted log likelihood) of pseudo data from the final pseudo likelihood iteration. Therefore, a direct
comparison of AIC and BIC values between models fitted using 'MPL' and 'REMPL' is not
appropriate.

See Also
GeneralizedLinearMixedModel | covarianceParameters | fixedEffects | randomEffects
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compare
Class: LinearMixedModel

Compare linear mixed-effects models

Syntax
results = compare(lme,altlme)
results = compare( ___ ,Name,Value)

[results,siminfo] = compare(lme,altlme,'NSim',nsim)
[results,siminfo] = compare( ___ ,Name,Value)

Description
results = compare(lme,altlme) returns the results of a likelihood ratio test on page 35-1007
that compares the linear mixed-effects models lme and altlme. Both models must use the same
response vector in the fit and lme must be nested in altlme for a valid theoretical likelihood ratio
test. Always input the smaller model first, and the larger model second.

compare tests the following null and alternate hypotheses:

H0: Observed response vector is generated by lme.

H1: Observed response vector is generated by model altlme.

It is recommended that you fit lme and altlme using the maximum likelihood (ML) method prior to
model comparison. If you use the restricted maximum likelihood (REML) method, then both models
must have the same fixed-effects design matrix.

To test for fixed effects, use compare with the simulated likelihood ratio test on page 35-1008 when
lme and altlme are fit using ML or use the fixedEffects, anova, or coefTest methods.

results = compare( ___ ,Name,Value) also returns the results of a likelihood ratio test that
compares linear mixed-effects models lme and altlme with additional options specified by one or
more Name,Value pair arguments.

For example, you can check if the first input model is nested in the second input model.

[results,siminfo] = compare(lme,altlme,'NSim',nsim) returns the results of a simulated
likelihood ratio test that compares linear mixed-effects models lme and altlme.

You can fit lme and altlme using ML or REML. Also, lme does not have to be nested in altlme. If
you use the restricted maximum likelihood (REML) method to fit the models, then both models must
have the same fixed-effects design matrix.

[results,siminfo] = compare( ___ ,Name,Value) also returns the results of a simulated
likelihood ratio test that compares linear mixed-effects models lme and altlme with additional
options specified by one or more Name,Value pair arguments.
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For example, you can change the options for performing the simulated likelihood ratio test, or change
the confidence level of the confidence interval for the p-value.

Input Arguments
lme — Linear mixed-effects model
LinearMixedModel object

Linear mixed-effects model, specified as a LinearMixedModel object constructed using fitlme or
fitlmematrix.

altlme — Alternative linear mixed-effects model
LinearMixedModel object

Alternative linear mixed-effects model fit to the same response vector but with different model
specifications, specified as a LinearMixedModel object. lme must be nested in altlme, that is, lme
should be obtained from altlme by setting some parameters to fixed values, such as 0. You can
create a linear mixed-effects object using fitlme or fitlmematrix.

nsim — Number of replications for simulations
positive integer number

Number of replications for simulations in the simulated likelihood ratio test, specified as a positive
integer number. You must specify nsim to do a simulated likelihood ratio test.
Example: 'NSim',1000
Data Types: double | single

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.

Alpha — Significance level
0.05 (default) | scalar value in the range 0 to 1

Significance level, specified as the comma-separated pair consisting of 'Alpha' and a scalar value in
the range 0 to 1. For a value α, the confidence level is 100*(1–α)%.

For example, for 99% confidence intervals, you can specify the confidence level as follows.
Example: 'Alpha',0.01
Data Types: single | double

Options — Options for performing simulated likelihood ratio test
structure

Options for performing the simulated likelihood ratio test in parallel, specified as the comma-
separated pair consisting of 'Options', and a structure created by
statset('LinearMixedModel').

These options require Parallel Computing Toolbox.
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compare uses the following fields.

'UseParallel' • False for serial computation. Default.
• True for parallel computation.

You need Parallel Computing Toolbox for parallel
computation.

'UseSubstreams' • False for not using a separate substream of
the random number generator for each
iteration. Default.

• True for using a separate substream of the
random number generator for each iteration.
You can only use this option with random
stream types that support substreams.

'Streams' • If 'UseSubstreams' is True, then
'Streams' must be a single random number
stream, or a scalar cell array containing a
single stream.

• If 'UseSubstreams' is False and

• 'UseParallel' is False, then
'Streams' must be a single random
number stream, or a scalar cell array
containing a single stream.

• 'UseParallel' is True, then 'Streams'
must be equal to the number of processors
used. If a parallel pool is open, then the
'Streams' is the same length as the size
of the parallel pool. If 'UseParallel' is
True, a parallel pool might open up for
you. But since 'Streams' must be equal
to the number of processors used, it is best
to open a pool explicitly using the parpool
command, before calling compare with
the'UseParallel','True' option.

For information on parallel statistical computing at the command line, enter

help parallelstats

Data Types: struct

CheckNesting — Indicator to check nesting between two models
false (default) | true

Indicator to check nesting on page 35-1008 between two models, specified as the comma-separated
pair consisting of 'CheckNesting' and one of the following.

false Default. No checks.
true compare checks if the smaller model lme is

nested in the bigger model altlme.
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lme must be nested in the alternate model altlme for a valid theoretical likelihood ratio test on page
35-1007. compare returns an error message if the nesting requirements are not satisfied.

Although valid for both tests, the nesting requirements are weaker for the simulated likelihood ratio
test on page 35-1008.
Example: 'CheckNesting',true
Data Types: single | double

Output Arguments
results — Results of likelihood ratio test or simulated likelihood ratio test
dataset array

Results of the likelihood ratio test or simulated likelihood ratio test, returned as a dataset array with
two rows. The first row is for lme, and the second row is for altlme. The columns of results
depend on whether the test is a likelihood ratio or a simulated likelihood ratio test.

• If you use the likelihood ratio test on page 35-1007, then results contains the following columns.

Model Name of the model
DF Degrees of freedom, that is, the number of

free parameters in the model
AIC Akaike information criterion for the model
BIC Bayesian information criterion for the model
LogLik Maximized log likelihood for the model
LRStat Likelihood ratio test statistic for comparing

altlme versus lme
deltaDF DF for altlme minus DF for lme
pValue p-value for the likelihood ratio test

• If you use the simulated likelihood ratio test on page 35-1008, then results contains the
following columns.

Model Name of the model
DF Degrees of freedom, that is, the number of

free parameters in the model
LogLik Maximized log likelihood for the model
LRStat Likelihood ratio test statistic for comparing

altlme versus lme
pValue p-value for the likelihood ratio test
Lower Lower limit of the confidence interval for

pValue
Upper Upper limit of the confidence interval for

pValue

siminfo — Simulation output
structure
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Simulation output, returned as a structure with the following fields.

nsim Value set for nsim.
alpha Value set for 'Alpha'.
pValueSim Simulation-based p-value.
pValueSimCI Confidence interval for pValueSim. The first

element of the vector is the lower limit and the
second element of the vector contains the upper
limit.

deltaDF The number of free parameters in altlme minus
the number of free parameters in lme. DF for
altlme minus DF for lme.

THO A vector of simulated likelihood ratio test
statistics under the null hypothesis that the model
lme generated the observed response vector y.

Examples

Test for Random Effects

Load the sample data.

load flu

The flu dataset array has a Date variable, and 10 variables containing estimated influenza rates (in
9 different regions, estimated from Google® searches, plus a nationwide estimate from the CDC).

To fit a linear-mixed effects model, your data must be in a properly formatted dataset array. To fit a
linear mixed-effects model with the influenza rates as the responses and region as the predictor
variable, combine the nine columns corresponding to the regions into an array. The new dataset
array, flu2, must have the response variable, FluRate, the nominal variable, Region, that shows
which region each estimate is from, and the grouping variable Date.

flu2 = stack(flu,2:10,'NewDataVarName','FluRate',...
    'IndVarName','Region');
flu2.Date = nominal(flu2.Date);

Fit a linear mixed-effects model, with a varying intercept and varying slope for each region, grouped
by Date.

altlme = fitlme(flu2,'FluRate ~ 1 + Region + (1 + Region|Date)');

Fit a linear mixed-effects model with fixed effects for the region and a random intercept that varies by
Date.

lme = fitlme(flu2,'FluRate ~ 1 + Region + (1|Date)');

Compare the two models. Also check if lme2 is nested in lme.

compare(lme,altlme,'CheckNesting',true)

ans = 
    Theoretical Likelihood Ratio Test
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    Model     DF    AIC        BIC        LogLik     LRStat    deltaDF    pValue
    lme       11     318.71     364.35    -148.36                               
    altlme    55    -305.51    -77.346     207.76    712.22    44         0     

The small p-value of 0 indicates that model altlme is significantly better than the simpler model lme.

Test for Fixed and Random Effects

Load the sample data.

load('fertilizer.mat');

The dataset array includes data from a split-plot experiment, where soil is divided into three blocks
based on the soil type: sandy, silty, and loamy. Each block is divided into five plots, where five
different types of tomato plants (cherry, heirloom, grape, vine, and plum) are randomly assigned to
these plots. The tomato plants in the plots are then divided into subplots, where each subplot is
treated by one of four fertilizers. This is simulated data.

Store the data in a dataset array called ds, for practical purposes, and define Tomato, Soil, and
Fertilizer as categorical variables.

ds = fertilizer;
ds.Tomato = nominal(ds.Tomato);
ds.Soil = nominal(ds.Soil);
ds.Fertilizer = nominal(ds.Fertilizer);

Fit a linear mixed-effects model, where Fertilizer and Tomato are the fixed-effects variables, and
the mean yield varies by the block (soil type) and the plots within blocks (tomato types within soil
types) independently.

lmeBig = fitlme(ds,'Yield ~ Fertilizer * Tomato + (1|Soil) + (1|Soil:Tomato)');

Refit the model after removing the interaction term Tomato:Fertilizer and the random-effects
term (1 | Soil).

lmeSmall = fitlme(ds,'Yield ~ Fertilizer + Tomato + (1|Soil:Tomato)');

Compare the two models using the simulated likelihood ratio test with 1000 replications. You must
use this test to test for both fixed- and random-effect terms. Note that both models are fit using the
default fitting method, ML. That’s why, there is no restriction on the fixed-effects design matrices. If
you use restricted maximum likelihood (REML) method, both models must have identical fixed-effects
design matrices.

[table,siminfo] = compare(lmeSmall,lmeBig,'nsim',1000)

table = 
    Simulated Likelihood Ratio Test: Nsim = 1000, Alpha = 0.05

    Model       DF    AIC       BIC       LogLik     LRStat    pValue 
    lmeSmall    10    511.06       532    -245.53                     
    lmeBig      23    522.57    570.74    -238.29    14.491    0.57343
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    Lower      Upper  
                      
    0.54211    0.60431

siminfo = struct with fields:
           nsim: 1000
          alpha: 0.0500
      pvalueSim: 0.5734
    pvalueSimCI: [0.5421 0.6043]
        deltaDF: 13
            TH0: [1000x1 double]

The high p-value suggests that the larger model, lme is not significantly better than the smaller
model, lme2. The smaller values of “Akaike and Bayesian Information Criteria” on page 35-1009 for
lme2 also support this.

Models with Correlated and Uncorrelated Random Effects

Load the sample data.

load carbig

Fit a linear mixed-effects model for miles per gallon (MPG), with fixed effects for acceleration,
horsepower, and the cylinders, and potentially correlated random effects for intercept and
acceleration grouped by model year.

First, prepare the design matrices.

X = [ones(406,1) Acceleration Horsepower];
Z = [ones(406,1) Acceleration];
Model_Year = nominal(Model_Year);
G = Model_Year;

Now, fit the model using fitlmematrix with the defined design matrices and grouping variables.

lme = fitlmematrix(X,MPG,Z,G,'FixedEffectPredictors',....
{'Intercept','Acceleration','Horsepower'},'RandomEffectPredictors',...
{{'Intercept','Acceleration'}},'RandomEffectGroups',{'Model_Year'});

Refit the model with uncorrelated random effects for intercept and acceleration. First prepare the
random effects design and the random effects grouping variables.

Z = {ones(406,1),Acceleration};
G = {Model_Year,Model_Year};

lme2 = fitlmematrix(X,MPG,Z,G,'FixedEffectPredictors',....
{'Intercept','Acceleration','Horsepower'},'RandomEffectPredictors',...
{{'Intercept'},{'Acceleration'}},'RandomEffectGroups',...
{'Model_Year','Model_Year'});

Compare lme and lme2 using the simulated likelihood ratio test.

compare(lme2,lme,'CheckNesting',true,'NSim',1000)
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ans = 

    SIMULATED LIKELIHOOD RATIO TEST: NSIM = 1000, ALPHA = 0.05

    Model    DF    AIC       BIC       LogLik     LRStat    pValue      Lower   
    lme2     6     2194.5    2218.3    -1091.3                                  
    lme      7     2193.5    2221.3    -1089.7    3.0323    0.094905    0.077462

    Upper  
           
    0.11477

The high -value indicates that lme2 is not a significantly better fit than lme.

Simulated Likelihood Ratio Test Using Parallel Computing

Load the sample data.

load('fertilizer.mat')

The dataset array includes data from a split-plot experiment, where soil is divided into three blocks
based on the soil type: sandy, silty, and loamy. Each block is divided into five plots, where five
different types of tomato plants (cherry, heirloom, grape, vine, and plum) are randomly assigned to
these plots. The tomato plants in the plots are then divided into subplots, where each subplot is
treated by one of four fertilizers. This is simulated data.

Store the data in a table called tbl, and define Tomato, Soil, and Fertilizer as categorical
variables.

tbl = dataset2table(fertilizer);
tbl.Tomato = categorical(tbl.Tomato);
tbl.Soil = categorical(tbl.Soil);
tbl.Fertilizer = categorical(tbl.Fertilizer);

Fit a linear mixed-effects model, where Fertilizer and Tomato are the fixed-effects variables, and
the mean yield varies by the block (soil type), and the plots within blocks (tomato types within soil
types) independently.

lme = fitlme(tbl,'Yield ~ Fertilizer * Tomato + (1|Soil) + (1|Soil:Tomato)');

Refit the model after removing the interaction term Tomato:Fertilizer and the random-effects
term (1|Soil).

lme2 = fitlme(tbl,'Yield ~ Fertilizer + Tomato + (1|Soil:Tomato)');

Create the options structure for LinearMixedModel.

opt = statset('LinearMixedModel')

opt = struct with fields:
          Display: 'off'
      MaxFunEvals: []
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          MaxIter: 10000
           TolBnd: []
           TolFun: 1.0000e-06
       TolTypeFun: []
             TolX: 1.0000e-12
         TolTypeX: []
          GradObj: []
         Jacobian: []
        DerivStep: []
      FunValCheck: []
           Robust: []
     RobustWgtFun: []
           WgtFun: []
             Tune: []
      UseParallel: []
    UseSubstreams: []
          Streams: {}
        OutputFcn: []

Change the options for parallel testing.

opt.UseParallel = true;

Start a parallel environment.

mypool = parpool();

Starting parallel pool (parpool) using the 'local' profile ...
Connected to the parallel pool (number of workers: 6).

Compare lme2 and lme using the simulated likelihood ratio test with 1000 replications and parallel
computing.

compare(lme2,lme,'nsim',1000,'Options',opt)

ans = 
    Simulated Likelihood Ratio Test: Nsim = 1000, Alpha = 0.05

    Model    DF    AIC       BIC       LogLik     LRStat    pValue     Lower    Upper  
    lme2     10    511.06       532    -245.53                                         
    lme      23    522.57    570.74    -238.29    14.491    0.53447    0.503    0.56573

The high p-value suggests that the larger model, lme is not significantly better than the smaller
model, lme2. The smaller values of AIC and BIC for lme2 also support this.

More About
Likelihood Ratio Test

Under the null hypothesis H0, the observed likelihood ratio test statistic has an approximate chi-
squared reference distribution with degrees of freedom deltaDF. When comparing two models,
compare computes the p-value for the likelihood ratio test by comparing the observed likelihood ratio
test statistic with this chi-squared reference distribution.
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The p-values obtained using the likelihood ratio test can be conservative when testing for the
presence or absence of random-effects terms and anticonservative when testing for the presence or
absence of fixed-effects terms. Hence, use the fixedEffects, anova, or coefTest method or the
simulated likelihood ratio test while testing for fixed effects.

Simulated Likelihood Ratio Test

To perform the simulated likelihood ratio test, compare first generates the reference distribution of
the likelihood ratio test statistic under the null hypothesis. Then, it assesses the statistical
significance of the alternate model by comparing the observed likelihood ratio test statistic to this
reference distribution.

compare produces the simulated reference distribution of the likelihood ratio test statistic under the
null hypothesis as follows:

• Generate random data ysim from the fitted model lme.
• Fit the model specified in lme and alternate model altlme to the simulated data ysim.
• Calculate the likelihood ratio test statistic using results from step 2 and store the value.
• Repeat step 1 to 3 nsim times.

Then, compare computes the p-value for the simulated likelihood ratio test by comparing the
observed likelihood ratio test statistic with the simulated reference distribution. The p-value estimate
is the ratio of the number of times the simulated likelihood ratio test statistic is equal to or exceeds
the observed value plus one, to the number of replications plus one.

Suppose the observed likelihood ratio statistic is T, and the simulated reference distribution is stored
in vector TH0

. Then,

p− value =
∑

j = 1

nsim
I TH0 j ≥ T + 1

nsim + 1 .

To account for the uncertainty in the simulated reference distribution, compare computes a 100*(1 –
α)% confidence interval for the true p-value.

You can use the simulated likelihood ratio test to compare arbitrary linear mixed-effects models. That
is, when you are using the simulated likelihood ratio test, lme does not have to be nested within
altlme, and you can fit lme and altlme using either maximum likelihood (ML) or restricted
maximum likelihood (REML) methods. If you use the restricted maximum likelihood (REML) method
to fit the models, then both models must have the same fixed-effects design matrix.

Nesting Requirements

The 'CheckNesting','True' name-value pair argument checks the following requirements.

For a simulated likelihood ratio test:

• You must use the same method to fit both models (lme and altlme). compare cannot compare a
model fit using ML to a model fit using REML.

• You must fit both models to the same response vector.
• If you use REML to fit lme and altlme, then both models must have the same fixed-effects design

matrix.
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• The maximized log likelihood or restricted log likelihood of the bigger model (altlme) must be
greater than or equal to that of the smaller model (lme).

For a theoretical test, 'CheckNesting','True' checks all the requirements listed for a simulated
likelihood ratio test and the following:

• Weight vectors you use to fit lme and altlme must be identical.
• If you use ML to fit lme and altlme, the fixed-effects design matrix of the bigger model (altlme)

must contain that of the smaller model (lme).
• The random-effects design matrix of the bigger model (altlme) must contain that of the smaller

model (lme).

Akaike and Bayesian Information Criteria

Akaike information criterion (AIC) is AIC = –2*logLM + 2*(nc + p + 1), where logLM is the maximized
log likelihood (or maximized restricted log likelihood) of the model, and nc + p + 1 is the number of
parameters estimated in the model. p is the number of fixed-effects coefficients, and nc is the total
number of parameters in the random-effects covariance excluding the residual variance.

Bayesian information criterion (BIC) is BIC = –2*logLM + ln(neff)*(nc + p + 1), where logLM is the
maximized log likelihood (or maximized restricted log likelihood) of the model, neff is the effective
number of observations, and (nc + p + 1) is the number of parameters estimated in the model.

• If the fitting method is maximum likelihood (ML), then neff = n, where n is the number of
observations.

• If the fitting method is restricted maximum likelihood (REML), then neff = n – p.

A lower value of deviance indicates a better fit. As the value of deviance decreases, both AIC and BIC
tend to decrease. Both AIC and BIC also include penalty terms based on the number of parameters
estimated, p. So, when the number of parameters increase, the values of AIC and BIC tend to
increase as well. When comparing different models, the model with the lowest AIC or BIC value is
considered as the best fitting model.

Deviance

LinearMixedModel computes the deviance of model M as minus two times the loglikelihood of that
model. Let LM denote the maximum value of the likelihood function for model M. Then, the deviance
of model M is

−2 * logLM .

A lower value of deviance indicates a better fit. Suppose M1 and M2 are two different models, where
M1 is nested in M2. Then, the fit of the models can be assessed by comparing the deviances Dev1 and
Dev2 of these models. The difference of the deviances is

Dev = Dev1− Dev2 = 2 logLM2− logLM1 .

Usually, the asymptotic distribution of this difference has a chi-square distribution with degrees of
freedom v equal to the number of parameters that are estimated in one model but fixed (typically at
0) in the other. That is, it is equal to the difference in the number of parameters estimated in M1 and
M2. You can get the p-value for this test using 1 – chi2cdf(Dev,V), where Dev = Dev2 – Dev1.
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However, in mixed-effects models, when some variance components fall on the boundary of the
parameter space, the asymptotic distribution of this difference is more complicated. For example,
consider the hypotheses

H0: D =
D11 0
0 0

, D is a q-by-q symmetric positive semidefinite matrix.

H1: D is a (q+1)-by-(q+1) symmetric positive semidefinite matrix.

That is, H1 states that the last row and column of D are different from zero. Here, the bigger model
M2 has q + 1 parameters and the smaller model M1 has q parameters. And Dev has a 50:50 mixture of
χ2

q and χ2
(q + 1) distributions (Stram and Lee, 1994).

References
[1] Hox, J. Multilevel Analysis, Techniques and Applications. Lawrence Erlbaum Associates, Inc.,

2002.

[2] Stram D. O. and J. W. Lee. “Variance components testing in the longitudinal mixed-effects model”.
Biometrics, Vol. 50, 4, 1994, pp. 1171–1177.

Extended Capabilities
Automatic Parallel Support
Accelerate code by automatically running computation in parallel using Parallel Computing Toolbox™.

To run in parallel, specify the 'Options' name-value argument in the call to this function and set the
'UseParallel' field of the options structure to true using statset.

For example: 'Options',statset('UseParallel',true)

For more information about parallel computing, see “Run MATLAB Functions with Automatic Parallel
Support” (Parallel Computing Toolbox).

See Also
LinearMixedModel | fitlme | fitlmematrix | anova | fixedEffects | randomEffects |
covarianceParameters
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compareHoldout
Package: 

Compare accuracies of two classification models using new data

Syntax
h = compareHoldout(C1,C2,T1,T2,ResponseVarName)

h = compareHoldout(C1,C2,T1,T2,Y)
h = compareHoldout(C1,C2,X1,X2,Y)

h = compareHoldout( ___ ,Name,Value)
[h,p,e1,e2] = compareHoldout( ___ )

Description
compareHoldout statistically assesses the accuracies of two classification models. The function first
compares their predicted labels against the true labels, and then it detects whether the difference
between the misclassification rates is statistically significant.

You can determine whether the accuracies of the classification models differ or whether one model
performs better than another. compareHoldout can conduct several McNemar test on page 35-1027
variations, including the asymptotic test, the exact-conditional test, and the mid-p-value test. For cost-
sensitive assessment on page 35-1025, available tests include a chi-square test (requires Optimization
Toolbox) and a likelihood ratio test.

h = compareHoldout(C1,C2,T1,T2,ResponseVarName) returns the test decision from testing
the null hypothesis that the trained classification models C1 and C2 have equal accuracy for
predicting the true class labels in the ResponseVarName variable. The alternative hypothesis is that
the labels have unequal accuracy.

The first classification model C1 uses the predictor data in T1, and the second classification model C2
uses the predictor data in T2. The tables T1 and T2 must contain the same response variable but can
contain different sets of predictors. By default, the software conducts the mid-p-value McNemar test
to compare the accuracies.

h = 1 indicates rejecting the null hypothesis at the 5% significance level. h = 0 indicates not rejecting
the null hypothesis at the 5% level.

The following are examples of tests you can conduct:

• Compare the accuracies of a simple classification model and a model that is more complex by
passing the same set of predictor data (that is, T1 = T2).

• Compare the accuracies of two potentially different models using two potentially different sets of
predictors.

• Perform various types of Feature Selection on page 16-47. For example, you can compare the
accuracy of a model trained using a set of predictors to the accuracy of one trained on a subset or
different set of those predictors. You can choose the set of predictors arbitrarily, or use a feature
selection technique such as PCA or sequential feature selection (see pca and sequentialfs).
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h = compareHoldout(C1,C2,T1,T2,Y) returns the test decision from testing the null hypothesis
that the trained classification models C1 and C2 have equal accuracy for predicting the true class
labels Y. The alternative hypothesis is that the labels have unequal accuracy.

The first classification model C1 uses the predictor data T1, and the second classification model C2
uses the predictor data T2. By default, the software conducts the mid-p-value McNemar test to
compare the accuracies.

h = compareHoldout(C1,C2,X1,X2,Y) returns the test decision from testing the null hypothesis
that the trained classification models C1 and C2 have equal accuracy for predicting the true class
labels Y. The alternative hypothesis is that the labels have unequal accuracy.

The first classification model C1 uses the predictor data X1, and the second classification model C2
uses the predictor data X2. By default, the software conducts the mid-p-value McNemar test to
compare the accuracies.

h = compareHoldout( ___ ,Name,Value) specifies options using one or more name-value pair
arguments in addition to the input argument combinations in previous syntaxes. For example, you can
specify the type of alternative hypothesis, specify the type of test, and supply a cost matrix.

[h,p,e1,e2] = compareHoldout( ___ ) returns the p-value for the hypothesis test (p) and the
respective classification losses on page 35-1029 of each set of predicted class labels (e1 and e2)
using any of the input arguments in the previous syntaxes.

Examples

Compare Accuracies of Full and Reduced Classification Models

Train two k-nearest neighbor classifiers, one using a subset of the predictors used for the other.
Conduct a statistical test comparing the accuracies of the two models on a test set.

Load the carsmall data set.

load carsmall

Create two tables of input data, where the second table excludes the predictor Acceleration.
Specify Model_Year as the response variable.

T1 = table(Acceleration,Displacement,Horsepower,MPG,Model_Year);
T2 = T1(:,2:end);

Create a partition that splits the data into training and test sets. Keep 30% of the data for testing.

rng(1)  % For reproducibility
CVP = cvpartition(Model_Year,'holdout',0.3);
idxTrain = training(CVP);   % Training-set indices
idxTest = test(CVP);    % Test-set indices

CVP is a cross-validation partition object that specifies the training and test sets.

Train the ClassificationKNN models using the T1 and T2 data.

C1 = fitcknn(T1(idxTrain,:),'Model_Year');
C2 = fitcknn(T2(idxTrain,:),'Model_Year');
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C1 and C2 are trained ClassificationKNN models.

Test whether the two models have equal predictive accuracies on the test set.

h = compareHoldout(C1,C2,T1(idxTest,:),T2(idxTest,:),'Model_Year')

h = logical
   0

h = 0 indicates to not reject the null hypothesis that the two models have equal predictive
accuracies.

Compare Accuracies of Two Different Classification Models

Train two classification models using different algorithms. Conduct a statistical test comparing the
misclassification rates of the two models on a test set.

Load the ionosphere data set.

load ionosphere

Create a partition that evenly splits the data into training and test sets.

rng(1)                             % For reproducibility
CVP = cvpartition(Y,'holdout',0.5);
idxTrain = training(CVP);           % Training-set indices 
idxTest = test(CVP);                % Test-set indices

CVP is a cross-validation partition object that specifies the training and test sets.

Train an SVM model and an ensemble of 100 bagged classification trees. For the SVM model, specify
to use the radial basis function kernel and a heuristic procedure to determine the kernel scale.

C1 = fitcsvm(X(idxTrain,:),Y(idxTrain),'Standardize',true, ...
    'KernelFunction','RBF','KernelScale','auto');
t = templateTree('Reproducible',true);  % For reproducibility of random predictor selections
C2 = fitcensemble(X(idxTrain,:),Y(idxTrain),'Method','Bag', ...
    'Learners',t);

C1 is a trained ClassificationSVM model. C2 is a trained ClassificationBaggedEnsemble
model.

Test whether the two models have equal predictive accuracies. Use the same test-set predictor data
for each model.

h = compareHoldout(C1,C2,X(idxTest,:),X(idxTest,:),Y(idxTest))

h = logical
   0

h = 0 indicates to not reject the null hypothesis that the two models have equal predictive
accuracies.
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Compare Classification Model to More Complex Model

Train two classification models using the same algorithm, but adjust a hyperparameter to make the
algorithm more complex. Conduct a statistical test to assess whether the simpler model has better
accuracy on test data than the more complex model.

Load the ionosphere data set.

load ionosphere;

Create a partition that evenly splits the data into training and test sets.

rng(1);                             % For reproducibility
CVP = cvpartition(Y,'holdout',0.5);
idxTrain = training(CVP);           % Training-set indices 
idxTest = test(CVP);                % Test-set indices

CVP is a cross-validation partition object that specifies the training and test sets.

Train two SVM models: one that uses a linear kernel (the default for binary classification) and one
that uses the radial basis function kernel. Use the default kernel scale of 1.

C1 = fitcsvm(X(idxTrain,:),Y(idxTrain),'Standardize',true);
C2 = fitcsvm(X(idxTrain,:),Y(idxTrain),'Standardize',true,...
    'KernelFunction','RBF');

C1 and C2 are trained ClassificationSVM models.

Test the null hypothesis that the simpler model (C1) is at most as accurate as the more complex
model (C2). Because the test-set size is large, conduct the asymptotic McNemar test, and compare
the results with the mid-p-value test (the cost-insensitive testing default). Request to return p-values
and misclassification rates.

Asymp = zeros(4,1); % Preallocation
MidP = zeros(4,1); 

[Asymp(1),Asymp(2),Asymp(3),Asymp(4)] = compareHoldout(C1,C2,...
    X(idxTest,:),X(idxTest,:),Y(idxTest),'Alternative','greater',...
    'Test','asymptotic');
[MidP(1),MidP(2),MidP(3),MidP(4)] = compareHoldout(C1,C2,...
    X(idxTest,:),X(idxTest,:),Y(idxTest),'Alternative','greater');
table(Asymp,MidP,'RowNames',{'h' 'p' 'e1' 'e2'})

ans=4×2 table
            Asymp          MidP   
          __________    __________

    h              1             1
    p     7.2801e-09    2.7649e-10
    e1       0.13714       0.13714
    e2       0.33143       0.33143

The p-value is close to zero for both tests, providing strong evidence to reject the null hypothesis that
the simpler model is less accurate than the more complex model. No matter what test you specify,
compareHoldout returns the same type of misclassification measure for both models.
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Conduct Cost-Sensitive Comparison of Two Classification Models

For data sets with imbalanced class representations, or for data sets with imbalanced false-positive
and false-negative costs, you can statistically compare the predictive performance of two
classification models by including a cost matrix in the analysis.

Load the arrhythmia data set. Determine the class representations in the data.

load arrhythmia;
Y = categorical(Y);
tabulate(Y);

  Value    Count   Percent
      1      245     54.20%
      2       44      9.73%
      3       15      3.32%
      4       15      3.32%
      5       13      2.88%
      6       25      5.53%
      7        3      0.66%
      8        2      0.44%
      9        9      1.99%
     10       50     11.06%
     14        4      0.88%
     15        5      1.11%
     16       22      4.87%

There are 16 classes, however some are not represented in the data set (for example, class 13). Most
observations are classified as not having arrhythmia (class 1). The data set is highly discrete with
imbalanced classes.

Combine all observations with arrhythmia (classes 2 through 15) into one class. Remove those
observations with unknown arrhythmia status (class 16) from the data set.

idx = (Y ~= '16');
Y = Y(idx);
X = X(idx,:);
Y(Y ~= '1') = 'WithArrhythmia';
Y(Y == '1') = 'NoArrhythmia';
Y = removecats(Y);

Create a partition that evenly splits the data into training and test sets.

rng(1);                             % For reproducibility
CVP = cvpartition(Y,'holdout',0.5);
idxTrain = training(CVP);           % Training-set indices 
idxTest = test(CVP);                % Test-set indices

CVP is a cross-validation partition object that specifies the training and test sets.

Create a cost matrix such that misclassifying a patient with arrhythmia into the "no arrhythmia" class
is five times worse than misclassifying a patient without arrhythmia into the arrhythmia class.
Classifying correctly incurs no cost. The rows indicate the true class and the columns indicate the
predicted class. When you conduct a cost-sensitive analysis, a good practice is to specify the order of
the classes.
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cost = [0 1;5 0];
ClassNames = {'NoArrhythmia','WithArrhythmia'};

Train two boosting ensembles of 50 classification trees, one that uses AdaBoostM1 and another that
uses LogitBoost. Because the data set contains missing values, specify to use surrogate splits. Train
the models using the cost matrix.

t = templateTree('Surrogate','on');
numTrees = 50;
C1 = fitcensemble(X(idxTrain,:),Y(idxTrain),'Method','AdaBoostM1', ...
    'NumLearningCycles',numTrees,'Learners',t, ...
    'Cost',cost,'ClassNames',ClassNames);
C2 = fitcensemble(X(idxTrain,:),Y(idxTrain),'Method','LogitBoost', ...
    'NumLearningCycles',numTrees,'Learners',t, ...
    'Cost',cost,'ClassNames',ClassNames);

C1 and C2 are trained ClassificationEnsemble models.

Compute the classification loss for the test data by using the loss function. Specify LossFun as
'classifcost' to compute the misclassification cost.

L1 = loss(C1,X(idxTest,:),Y(idxTest),'LossFun','classifcost')

L1 = 0.6642

L2 = loss(C2,X(idxTest,:),Y(idxTest),'LossFun','classifcost')

L2 = 0.8018

The misclassification cost for the AdaBoostM1 ensemble (C1) is less than the cost for the LogitBoost
ensemble (C2).

Test whether the difference is statistically significant. Conduct the asymptotic, likelihood ratio, cost-
sensitive test (the default when you pass in a cost matrix). Supply the cost matrix, and return the p-
values and misclassification costs.

[h,p,e1,e2] = compareHoldout(C1,C2,X(idxTest,:),X(idxTest,:),Y(idxTest),...
    'Cost',cost,'ClassNames',ClassNames)

h = logical
   0

p = 0.1180

e1 = 0.6698

e2 = 0.8093

h = 0 indicates to not reject the null hypothesis that the two models have equal predictive
accuracies.

The loss function uses observation weights normalized by the prior probabilities (stored in the
Prior property of the trained model), but the compareHoldout function does not use observation
weights and prior probabilities. Therefore, the misclassification cost values (L1 and L2) computed by
the loss function can be different from the values (e1 and e2) computed by the compareHoldout
function.
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Select Features Using Statistical Accuracy Comparison

Reduce classification model complexity by selecting a subset of predictor variables (features) from a
larger set. Then, statistically compare the out-of-sample accuracy between the two models.

Load the ionosphere data set.

load ionosphere;

Create a partition that evenly splits the data into training and test sets.

rng(1);  % For reproducibility
CVP = cvpartition(Y,'holdout',0.5);
idxTrain = training(CVP); % Training-set indices 
idxTest = test(CVP);      % Test-set indices

CVP is a cross-validation partition object that specifies the training and test sets.

Train an ensemble of 100 boosted classification trees using AdaBoostM1 and the entire set of
predictors. Inspect the importance measure for each predictor.

t = templateTree('MaxNumSplits',1); % Weak-learner template tree object
C2 = fitcensemble(X(idxTrain,:),Y(idxTrain),'Method','AdaBoostM1',...
    'Learners',t);
predImp = predictorImportance(C2);

figure;
bar(predImp);
h = gca;
h.XTick = 1:2:h.XLim(2)

h = 
  Axes with properties:

             XLim: [-0.2000 35.2000]
             YLim: [0 0.0090]
           XScale: 'linear'
           YScale: 'linear'
    GridLineStyle: '-'
         Position: [0.1300 0.1100 0.7750 0.8150]
            Units: 'normalized'

  Show all properties

title('Predictor Importance');
xlabel('Predictor');
ylabel('Importance measure');
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Identify the top five predictors in terms of their importance.

[~,idxSort] = sort(predImp,'descend');
idx5 = idxSort(1:5);

Train another ensemble of 100 boosted classification trees using AdaBoostM1 and the five predictors
with the greatest importance.

C1 = fitcensemble(X(idxTrain,idx5),Y(idxTrain),'Method','AdaBoostM1',...
    'Learners',t);

Test whether the two models have equal predictive accuracies. Specify the reduced test-set predictor
data for C1 and the full test-set predictor data for C2.

[h,p,e1,e2] = compareHoldout(C1,C2,X(idxTest,idx5),X(idxTest,:),Y(idxTest))

h = logical
   0

p = 0.7744

e1 = 0.0914

e2 = 0.0857

h = 0 indicates to not reject the null hypothesis that the two models have equal predictive
accuracies. This result favors the simpler ensemble, C1.
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Input Arguments
C1 — First trained classification model
trained classification model object | trained, compact classification model object

First trained classification model, specified as any trained classification model object or compact
classification model object described in this table.

Trained Model Type Model Object Returned By
Classification tree ClassificationTree fitctree
Discriminant analysis ClassificationDiscriminant fitcdiscr
Ensemble of bagged
classification models

ClassificationBaggedEnsemble fitcensemble

Ensemble of classification
models

ClassificationEnsemble fitcensemble

Multiclass, error-correcting
output codes (ECOC)

ClassificationECOC fitcecoc

Generalized additive model
(GAM)

ClassificationGAM fitcgam

kNN ClassificationKNN fitcknn
Naive Bayes ClassificationNaiveBayes fitcnb
Neural network ClassificationNeuralNetwork (with

observations in rows)
fitcnet

Support vector machine
(SVM)

ClassificationSVM fitcsvm

Compact discriminant
analysis

CompactClassificationDiscriminant compact

Compact ECOC CompactClassificationECOC compact
Compact ensemble of
classification models

CompactClassificationEnsemble compact

Compact GAM CompactClassificationGAM compact
Compact naive Bayes CompactClassificationNaiveBayes compact
Compact neural network CompactClassificationNeuralNetwork compact
Compact SVM CompactClassificationSVM compact
Compact classification tree CompactClassificationTree compact

C2 — Second trained classification model
trained classification model object | trained, compact classification model object

Second trained classification model, specified as any trained classification model object or compact
classification model object that is a valid choice for C1.

T1 — Test-set predictor data for first classification model
table
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Test-set predictor data for the first classification model, C1, specified as a table. Each row of T1
corresponds to one observation, and each column corresponds to one predictor variable. Optionally,
T1 can contain an additional column for the response variable. T1 must contain all the predictors
used to train C1. Multicolumn variables and cell arrays other than cell arrays of character vectors are
not allowed.

T1 and T2 must have the same number of rows and the same response values. If T1 and T2 contain
the response variable used to train C1 and C2, then you do not need to specify ResponseVarName or
Y.
Data Types: table

T2 — Test-set predictor data for second classification model
table

Test-set predictor data for the second classification model, C2, specified as a table. Each row of T2
corresponds to one observation, and each column corresponds to one predictor variable. Optionally,
T2 can contain an additional column for the response variable. T2 must contain all the predictors
used to train C2. Multicolumn variables and cell arrays other than cell arrays of character vectors are
not allowed.

T1 and T2 must have the same number of rows and the same response values. If T1 and T2 contain
the response variable used to train C1 and C2, then you do not need to specify ResponseVarName or
Y.
Data Types: table

X1 — Test-set predictor data for first classification model
numeric matrix

Test-set predictor data for the first classification model, C1, specified as a numeric matrix.

Each row of X1 corresponds to one observation (also known as an instance or example), and each
column corresponds to one variable (also known as a predictor or feature). The variables used to train
C1 must compose X1.

The number of rows in X1 and X2 must equal the number of rows in Y.
Data Types: double | single

X2 — Test-set predictor data for second classification model
numeric matrix

Test-set predictor data for the second classification model, C2, specified as a numeric matrix.

Each row of X2 corresponds to one observation (also known as an instance or example), and each
column corresponds to one variable (also known as a predictor or feature). The variables used to train
C2 must compose X2.

The number of rows in X2 and X1 must equal the number of rows in Y.
Data Types: double | single

ResponseVarName — Response variable name
name of a variable in T1 and T2
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Response variable name, specified as the name of a variable in T1 and T2. If T1 and T2 contain the
response variable used to train C1 and C2, then you do not need to specify ResponseVarName.

You must specify ResponseVarName as a character vector or string scalar. For example, if the
response variable is stored as T1.Response, then specify it as 'Response'. Otherwise, the software
treats all columns of T1 and T2, including Response, as predictors.

The response variable must be a categorical, character, or string array, logical or numeric vector, or
cell array of character vectors. If the response variable is a character array, then each element must
correspond to one row of the array.
Data Types: char | string

Y — True class labels
categorical array | character array | string array | logical vector | numeric vector | cell array of
character vectors

True class labels, specified as a categorical, character, or string array, logical or numeric vector, or
cell array of character vectors.

When you specify Y, compareHoldout treats all variables in the matrices X1 and X2 or the tables T1
and T2 as predictor variables.

If Y is a character array, then each element must correspond to one row of the array.

The number of rows in the predictor data must equal the number of rows in Y.
Data Types: categorical | char | string | logical | single | double | cell

Note NaNs, <undefined> values, empty character vectors (''), empty strings (""), and <missing>
values indicate missing values. compareHoldout removes missing values in Y and the corresponding
rows of X1 and X2. Additionally, compareHoldout predicts classes whether X1 and X2 have missing
observations.

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example:
compareHoldout(C1,C2,X1,X2,Y,'Alternative','greater','Test','asymptotic','Cos
t',[0 2;1 0]) tests whether the first set of predicted class labels is more accurate than the second
set, conducts the asymptotic McNemar test, and penalizes misclassifying observations with the true
label ClassNames{1} twice as much as misclassifying observations with the true label
ClassNames{2}.

Alpha — Hypothesis test significance level
0.05 (default) | scalar value in the interval (0,1)

Hypothesis test significance level, specified as the comma-separated pair consisting of 'Alpha' and
a scalar value in the interval (0,1).
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Example: 'Alpha',0.1
Data Types: single | double

Alternative — Alternative hypothesis to assess
'unequal' (default) | 'greater' | 'less'

Alternative hypothesis to assess, specified as the comma-separated pair consisting of
'Alternative' and one of the values listed in this table.

Value Alternative Hypothesis
'unequal' (default) For predicting Y, the set of predictions resulting from C1 applied to X1 and

C2 applied to X2 have unequal accuracies.
'greater' For predicting Y, the set of predictions resulting from C1 applied to X1 is

more accurate than C2 applied to X2.
'less' For predicting Y, the set of predictions resulting from C1 applied to X1 is

less accurate than C2 applied to X2.

Example: 'Alternative','greater'

ClassNames — Class names
categorical array | character array | string array | logical vector | numeric vector | cell array of
character vectors

Class names, specified as the comma-separated pair consisting of 'ClassNames' and a categorical,
character, or string array, logical or numeric vector, or cell array of character vectors. You must set
ClassNames using the data type of Y.

If ClassNames is a character array, then each element must correspond to one row of the array.

Use ClassNames to:

• Specify the order of any input argument dimension that corresponds to class order. For example,
use ClassNames to specify the order of the dimensions of Cost.

• Select a subset of classes for testing. For example, suppose that the set of all distinct class names
in Y is {'a','b','c'}. To train and test models using observations from classes 'a' and 'c'
only, specify 'ClassNames',{'a','c'}.

The default is the set of all distinct class names in Y.
Example: 'ClassNames',{'b','g'}
Data Types: categorical | char | string | logical | single | double | cell

Cost — Misclassification cost
square matrix | structure array

Misclassification cost, specified as the comma-separated pair consisting of 'Cost' and a square
matrix or structure array.

• If you specify the square matrix Cost, then Cost(i,j) is the cost of classifying a point into class
j if its true class is i. That is, the rows correspond to the true class and the columns correspond
to the predicted class. To specify the class order for the corresponding rows and columns of Cost,
additionally specify the ClassNames name-value pair argument.
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• If you specify the structure S, then S must have two fields:

• S.ClassNames, which contains the class names as a variable of the same data type as Y. You
can use this field to specify the order of the classes.

• S.ClassificationCosts, which contains the cost matrix, with rows and columns ordered as
in S.ClassNames.

If you specify Cost, then compareHoldout cannot conduct one-sided, exact, or mid-p tests. You must
also specify 'Alternative','unequal','Test','asymptotic'. For cost-sensitive testing
options, see the CostTest name-value pair argument.

A best practice is to supply the same cost matrix used to train the classification models.

The default is Cost(i,j) = 1 if i ~= j, and Cost(i,j) = 0 if i = j.
Example: 'Cost',[0 1 2 ; 1 0 2; 2 2 0]
Data Types: single | double | struct

CostTest — Cost-sensitive test type
'likelihood' (default) | 'chisquare'

Cost-sensitive test type, specified as the comma-separated pair consisting of 'CostTest' and
'chisquare' or 'likelihood'. If you do not specify a cost matrix using the Cost name-value pair
argument, compareHoldout ignores CostTest.

This table summarizes the available options for cost-sensitive testing.

Value Asymptotic Test Type Requirements
'chisquare' Chi-square test Optimization Toolbox to

implement quadprog
'likelihood' Likelihood ratio test None

For more details, see “Cost-Sensitive Testing” on page 35-1025.
Example: 'CostTest','chisquare'

Test — Test to conduct
'asymptotic' | 'exact' | 'midp'

Test to conduct, specified as the comma-separated pair consisting of 'Test' and 'asymptotic',
'exact', or 'midp'.

This table summarizes the available options for cost-insensitive testing.

Value Description
'asymptotic' Asymptotic McNemar test
'exact' Exact-conditional McNemar test
'midp' (default) Mid-p-value McNemar test

For more details, see “McNemar Tests” on page 35-1027.
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For cost-sensitive testing, Test must be 'asymptotic'. When you specify the Cost name-value pair
argument and choose a cost-sensitive test using the CostTest name-value pair argument,
'asymptotic' is the default.
Example: 'Test','asymptotic'

Output Arguments
h — Hypothesis test result
1 | 0

Hypothesis test result, returned as a logical value.

h = 1 indicates the rejection of the null hypothesis at the Alpha significance level.

h = 0 indicates failure to reject the null hypothesis at the Alpha significance level.
Data Types: logical

p — p-value
scalar in the interval [0,1]

p-value of the test, returned as a scalar in the interval [0,1]. p is the probability that a random test
statistic is at least as extreme as the observed test statistic, given that the null hypothesis is true.

compareHoldout estimates p using the distribution of the test statistic, which varies with the type of
test. For details on test statistics derived from the available variants of the McNemar test, see
“McNemar Tests” on page 35-1027. For details on test statistics derived from cost-sensitive tests, see
“Cost-Sensitive Testing” on page 35-1025.
Data Types: double

e1 — Classification loss
numeric scalar

Classification loss, returned as a numeric scalar. e1 summarizes the accuracy of the first set of class
labels predicting the true class labels (Y). compareHoldout applies the first test-set predictor data
(X1) to the first classification model (C1) to estimate the first set of class labels. Then, the function
compares the estimated labels to Y to obtain the classification loss.

For cost-insensitive testing, e1 is the misclassification rate. That is, e1 is the proportion of
misclassified observations, which is a scalar in the interval [0,1].

For cost-sensitive testing, e1 is the misclassification cost. That is, e1 is the weighted average of the
misclassification costs, in which the weights are the respective estimated proportions of misclassified
observations.

For more information, see “Classification Loss” on page 35-1029.
Data Types: double

e2 — Classification loss
numeric scalar

Classification loss, returned as a numeric scalar. e2 summarizes the accuracy of the second set of
class labels predicting the true class labels (Y). compareHoldout applies the second test-set
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predictor data (X2) to the second classification model (C2) to estimate the second set of class labels.
Then, the function compares the estimated labels to Y to obtain the classification loss.

For cost-insensitive testing, e2 is the misclassification rate. That is, e2 is the proportion of
misclassified observations, which is a scalar in the interval [0,1].

For cost-sensitive testing, e2 is the misclassification cost. That is, e2 is the weighted average of the
misclassification costs, in which the weights are the respective estimated proportions of misclassified
observations.

For more information, see “Classification Loss” on page 35-1029.
Data Types: double

Limitations
• compareHoldout does not compare ECOC models composed of linear or kernel classification

models (that is, ClassificationLinear or ClassificationKernel model objects). To
compare ClassificationECOC models composed of linear or kernel classification models, use
testcholdout instead.

• Similarly, compareHoldout does not compare ClassificationLinear or
ClassificationKernel model objects. To compare these models, use testcholdout instead.

More About
Cost-Sensitive Testing

Conduct cost-sensitive testing when the cost of misclassification is imbalanced. By conducting a cost-
sensitive analysis, you can account for the cost imbalance when you train the classification models
and when you statistically compare them.

If the cost of misclassification is imbalanced, then the misclassification rate tends to be a poorly
performing classification loss. Use misclassification cost instead to compare classification models.

Misclassification costs are often imbalanced in applications. For example, consider classifying
subjects based on a set of predictors into two categories: healthy and sick. Misclassifying a sick
subject as healthy poses a danger to the subject's life. However, misclassifying a healthy subject as
sick typically causes some inconvenience, but does not pose significant danger. In this situation, you
assign misclassification costs such that misclassifying a sick subject as healthy is more costly than
misclassifying a healthy subject as sick.

The definitions that follow summarize the cost-sensitive tests. In the definitions:

• nijk and π i jk are the number and estimated proportion of test-sample observations with the
following characteristics. k is the true class, i is the label assigned by the first classification model,
and j is the label assigned by the second classification model. The unknown true value of π i jk is
πijk. The test-set sample size is ∑

i, j, k
ni jk = ntest . Additionally, ∑

i, j, k
πi jk = ∑

i, j, k
π i jk = 1.

• cij is the relative cost of assigning label j to an observation with true class i. cii = 0, cij ≥ 0, and, for
at least one (i,j) pair, cij > 0.

• All subscripts take on integer values from 1 through K, which is the number of classes.
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• The expected difference in the misclassification costs of the two classification models is

δ = ∑
i = 1

K
∑

j = 1

K ∑
k = 1

K

cki− ck j πi jk .

• The hypothesis test is

H0:δ = 0
H1:δ ≠ 0

.

The available cost-sensitive tests are appropriate for two-tailed testing.

Available asymptotic tests that address imbalanced costs are a chi-square test and a likelihood ratio
test.

• Chi-square test — The chi-square test statistic is based on the Pearson and Neyman chi-square
test statistics, but with a Laplace correction factor to account for any nijk = 0. The test statistic is

tχ2
∗ = ∑

i ≠ j
∑
k

ni jk + 1− ntest + K3 π i jk
(1) 2

ni jk + 1 .

If 1− Fχ2 tχ2
∗ ; 1 < α, then reject H0.

• π i jk
(1) are estimated by minimizing tχ2

∗  under the constraint that δ = 0.

• Fχ2(x; 1) is the χ2 cdf with one degree of freedom evaluated at x.
• Likelihood ratio test — The likelihood ratio test is based on Nijk, which are binomial random

variables with sample size ntest and success probability πijk. The random variables represent the
random number of observations with: true class k, label i assigned by the first classification model,
and label j assigned by the second classification model. Jointly, the distribution of the random
variables is multinomial.

The test statistic is

tLRT
∗ = 2log

P ∩
i, j, k

Ni jk = ni jk; ntest, π i jk = π i jk
(2)

P ∩
i, j, k

Ni jk = ni jk; ntest, π i jk = π i jk
(3) .

If 1− Fχ2 tLRT
∗ ; 1 < α, then reject H0.

•
π i jk

(2) =
ni jk
ntest

 is the unrestricted MLE of πijk.

•
π i jk

(3) =
ni jk

ntest + λ(cki− ck j)
 is the MLE under the null hypothesis that δ = 0. λ is the solution to

∑
i, j, k

ni jk(cki− ck j)
ntest + λ(cki− ck j)

= 0.

• Fχ2(x; 1) is the χ2 cdf with one degree of freedom evaluated at x.
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McNemar Tests

McNemar Tests are hypothesis tests that compare two population proportions while addressing the
issues resulting from two dependent, matched-pair samples.

One way to compare the predictive accuracies of two classification models is:

1 Partition the data into training and test sets.
2 Train both classification models using the training set.
3 Predict class labels using the test set.
4 Summarize the results in a two-by-two table similar to this figure.

nii are the number of concordant pairs, that is, the number of observations that both models
classify the same way (correctly or incorrectly). nij, i ≠ j, are the number of discordant pairs, that
is, the number of observations that models classify differently (correctly or incorrectly).

The misclassification rates for Models 1 and 2 are π 2 • = n2 • /n and π • 2 = n • 2/n, respectively. A
two-sided test for comparing the accuracy of the two models is

H0:π • 2 = π2 •
H1:π • 2 ≠ π2 •

.

The null hypothesis suggests that the population exhibits marginal homogeneity, which reduces the
null hypothesis to H0:π12 = π21 . Also, under the null hypothesis, N12 ~ Binomial(n12 + n21,0.5) [1].

These facts are the basis for the available McNemar test variants: the asymptotic, exact-conditional,
and mid-p-value McNemar tests. The definitions that follow summarize the available variants.

• Asymptotic — The asymptotic McNemar test statistics and rejection regions (for significance level
α) are:

• For one-sided tests, the test statistic is
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ta1
∗ =

n12− n21
n12 + n21

.

If 1− Φ t1∗ < α, where Φ is the standard Gaussian cdf, then reject H0.
• For two-sided tests, the test statistic is

ta2
∗ =

n12− n21
2

n12 + n21
.

If 1− Fχ2 t2∗; m < α, where Fχ2(x; m) is the χm
2 cdf evaluated at x, then reject H0.

The asymptotic test requires large-sample theory, specifically, the Gaussian approximation to the
binomial distribution.

• The total number of discordant pairs, nd = n12 + n21, must be greater than 10 ([1], Ch. 10.1.4).
• In general, asymptotic tests do not guarantee nominal coverage. The observed probability of

falsely rejecting the null hypothesis can exceed α, as suggested in simulation studies in [18].
However, the asymptotic McNemar test performs well in terms of statistical power.

• Exact-Conditional — The exact-conditional McNemar test statistics and rejection regions (for
significance level α) are ([36], [38]):

• For one-sided tests, the test statistic is

t1∗ = n12 .

If FBin t1∗; nd, 0.5 < α, where FBin x; n, p  is the binomial cdf with sample size n and success
probability p evaluated at x, then reject H0.

• For two-sided tests, the test statistic is

t2∗ = min(n12, n21) .

If FBin t2∗; nd, 0.5 < α/2, then reject H0.

The exact-conditional test always attains nominal coverage. Simulation studies in [18] suggest
that the test is conservative, and then show that the test lacks statistical power compared to other
variants. For small or highly discrete test samples, consider using the mid-p-value test ([1], Ch.
3.6.3).

• Mid-p-value test — The mid-p-value McNemar test statistics and rejection regions (for significance
level α) are ([32]):

• For one-sided tests, the test statistic is

t1∗ = n12 .

If FBin t1∗− 1; n12 + n21, 0.5 + 0.5fBin t1∗; n12 + n21, 0.5 < α, where FBin x; n, p  and fBin x; n, p
are the binomial cdf and pdf, respectively, with sample size n and success probability p
evaluated at x, then reject H0.

• For two-sided tests, the test statistic is

t2∗ = min(n12, n21) .
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If FBin t2∗− 1; n12 + n21− 1, 0.5 + 0.5fBin t2∗; n12 + n21, 0.5 < α/2, then reject H0.

The mid-p-value test addresses the over-conservative behavior of the exact-conditional test. The
simulation studies in [18] demonstrate that this test attains nominal coverage, and has good
statistical power.

Classification Loss

Classification losses indicate the accuracy of a classification model or set of predicted labels. Two
classification losses are the misclassification rate and cost.

compareHoldout returns the classification losses (see e1 and e2) under the alternative hypothesis
(that is, the unrestricted classification losses). nijk is the number of test-sample observations with:
true class k, label i assigned by the first classification model, and label j assigned by the second

classification model. The corresponding estimated proportion is π i jk =
ni jk
ntest

. The test-set sample size

is ∑
i, j, k

ni jk = ntest . The indices are taken from 1 through K, the number of classes.

• The misclassification rate, or classification error, is a scalar in the interval [0,1] representing the
proportion of misclassified observations. That is, the misclassification rate for the first
classification model is

e1 = ∑
j = 1

K
∑

k = 1

K
∑

i ≠ k
π i jk .

For the misclassification rate of the second classification model (e2), switch the indices i and j in
the formula.

Classification accuracy decreases as the misclassification rate increases to 1.
• The misclassification cost is a nonnegative scalar that is a measure of classification quality relative

to the values of the specified cost matrix. Its interpretation depends on the specified costs of
misclassification. The misclassification cost is the weighted average of the costs of
misclassification (specified in a cost matrix, C) in which the weights are the respective estimated
proportions of misclassified observations. The misclassification cost for the first classification
model is

e1 = ∑
j = 1

K
∑

k = 1

K
∑

i ≠ k
π i jkcki,

where ckj is the cost of classifying an observation into class j if its true class is k. For the
misclassification cost of the second classification model (e2), switch the indices i and j in the
formula.

In general, for a fixed cost matrix, classification accuracy decreases as the misclassification cost
increases.

Tips
• One way to perform cost-insensitive feature selection is:

1 Train the first classification model (C1) using the full predictor set.
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2 Train the second classification model (C2) using the reduced predictor set.
3 Specify X1 as the full test-set predictor data and X2 as the reduced test-set predictor data.
4 Enter compareHoldout(C1,C2,X1,X2,Y,'Alternative','less'). If compareHoldout

returns 1, then there is enough evidence to suggest that the classification model that uses
fewer predictors performs better than the model that uses the full predictor set.

Alternatively, you can assess whether there is a significant difference between the accuracies of
the two models. To perform this assessment, remove the 'Alternative','less' specification
in step 4. compareHoldout conducts a two-sided test, and h = 0 indicates that there is not
enough evidence to suggest a difference in the accuracy of the two models.

• Cost-sensitive tests perform numerical optimization, which requires additional computational
resources. The likelihood ratio test conducts numerical optimization indirectly by finding the root
of a Lagrange multiplier in an interval. For some data sets, if the root lies close to the boundaries
of the interval, then the method can fail. Therefore, if you have an Optimization Toolbox license,
consider conducting the cost-sensitive chi-square test instead. For more details, see CostTest
and “Cost-Sensitive Testing” on page 35-1025.

Alternative Functionality
To directly compare the accuracy of two sets of class labels in predicting a set of true class labels, use
testcholdout.

Version History
Introduced in R2015a

References
[1] Agresti, A. Categorical Data Analysis, 2nd Ed. John Wiley & Sons, Inc.: Hoboken, NJ, 2002.

[2] Fagerlan, M.W., S. Lydersen, and P. Laake. “The McNemar Test for Binary Matched-Pairs Data:
Mid-p and Asymptotic Are Better Than Exact Conditional.” BMC Medical Research
Methodology. Vol. 13, 2013, pp. 1–8.

[3] Lancaster, H.O. “Significance Tests in Discrete Distributions.” JASA, Vol. 56, Number 294, 1961,
pp. 223–234.

[4] McNemar, Q. “Note on the Sampling Error of the Difference Between Correlated Proportions or
Percentages.” Psychometrika, Vol. 12, Number 2, 1947, pp. 153–157.

[5] Mosteller, F. “Some Statistical Problems in Measuring the Subjective Response to Drugs.”
Biometrics, Vol. 8, Number 3, 1952, pp. 220–226.

Extended Capabilities
GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

Usage notes and limitations:
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• This function supports GPU arrays with limitations for the classification models described in this
table.

Full or Compact Model Object Limitations
ClassificationECOC or
CompactClassificationECOC

• Surrogate splits are not supported for
decision tree learners.

• For KNN learners, you cannot set the
following options to the values shown:

• 'NSMethod','kdtree'
• 'Distance',function handle
• 'IncludeTies',true

ClassificationEnsemble or
CompactClassificationEnsemble

• Surrogate splits are not supported for
decision tree learners.

• For KNN learners, you cannot set the
following options to the values shown:

• 'NSMethod','kdtree'
• 'Distance',function handle
• 'IncludeTies',true

ClassificationKNN You cannot set the following options to the
values shown:

• 'NSMethod','kdtree'
• 'Distance',function handle
• 'IncludeTies',true

ClassificationSVM or
CompactClassificationSVM

One-class classification is not supported.

ClassificationTree or
CompactClassificationTree

Surrogate splits are not supported.

• compareHoldout executes on a GPU in these cases only:

• Either or both of the input arguments X1 and X2 are GPU arrays.
• Either or both of the input arguments T1 and T2 contain gpuArray predictor variables.
• Either or both of the input arguments C1 and C2 were fitted with GPU array input arguments.

C1 and C2 must not be SVM classifiers or use SVM learners.

For more information, see “Run MATLAB Functions on a GPU” (Parallel Computing Toolbox).

See Also
testckfold | testcholdout

Topics
“Hypothesis Tests”
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confusionchart
Create confusion matrix chart for classification problem

Syntax
confusionchart(trueLabels,predictedLabels)
confusionchart(m)
confusionchart(m,classLabels)
confusionchart(parent, ___ )
confusionchart( ___ ,Name,Value)
cm = confusionchart( ___ )

Description
confusionchart(trueLabels,predictedLabels) creates a confusion matrix chart from true
labels trueLabels and predicted labels predictedLabels and returns a ConfusionMatrixChart
object. The rows of the confusion matrix correspond to the true class and the columns correspond to
the predicted class. Diagonal and off-diagonal cells correspond to correctly and incorrectly classified
observations, respectively. Use cm to modify the confusion matrix chart after it is created. For a list of
properties, see ConfusionMatrixChart Properties.

confusionchart(m) creates a confusion matrix chart from the numeric confusion matrix m. Use this
syntax if you already have a numeric confusion matrix in the workspace.

confusionchart(m,classLabels) specifies class labels that appear along the x-axis and y-axis.
Use this syntax if you already have a numeric confusion matrix and class labels in the workspace.

confusionchart(parent, ___ ) creates the confusion chart in the figure, panel, or tab specified
by parent.

confusionchart( ___ ,Name,Value) specifies additional ConfusionMatrixChart properties
using one or more name-value pair arguments. Specify the properties after all other input arguments.
For a list of properties, see ConfusionMatrixChart Properties.

cm = confusionchart( ___ ) returns the ConfusionMatrixChart object. Use cm to modify
properties of the chart after creating it. For a list of properties, see ConfusionMatrixChart Properties.

Examples

Create Confusion Matrix Chart

Load Fisher's iris data set.

load fisheriris
X = meas;
Y = species;

X is a numeric matrix that contains four petal measurements for 150 irises. Y is a cell array of
character vectors that contains the corresponding iris species.
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Train a k-nearest neighbor (KNN) classifier, where the number of nearest neighbors in the predictors
(k) is 5. A good practice is to standardize numeric predictor data.

Mdl = fitcknn(X,Y,'NumNeighbors',5,'Standardize',1);

Predict the labels of the training data.

predictedY = resubPredict(Mdl);

Create a confusion matrix chart from the true labels Y and the predicted labels predictedY.

cm = confusionchart(Y,predictedY);

The confusion matrix displays the total number of observations in each cell. The rows of the confusion
matrix correspond to the true class, and the columns correspond to the predicted class. Diagonal and
off-diagonal cells correspond to correctly and incorrectly classified observations, respectively.

By default, confusionchart sorts the classes into their natural order as defined by sort. In this
example, the class labels are character vectors, so confusionchart sorts the classes alphabetically.
Use sortClasses to sort the classes by a specified order or by the confusion matrix values.

The NormalizedValues property contains the values of the confusion matrix. Display these values
using dot notation.

cm.NormalizedValues

ans = 3×3
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    50     0     0
     0    47     3
     0     4    46

Modify the appearance and behavior of the confusion matrix chart by changing property values. Add
a title.

cm.Title = 'Iris Flower Classification Using KNN';

Add column and row summaries.

cm.RowSummary = 'row-normalized';
cm.ColumnSummary = 'column-normalized';

A row-normalized row summary displays the percentages of correctly and incorrectly classified
observations for each true class. A column-normalized column summary displays the percentages of
correctly and incorrectly classified observations for each predicted class.

Sort Classes by Precision or Recall

Create a confusion matrix chart and sort the classes of the chart according to the class-wise true
positive rate (recall) or the class-wise positive predictive value (precision).

Load and inspect the arrhythmia data set.
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load arrhythmia
isLabels = unique(Y);
nLabels = numel(isLabels)

nLabels = 13

tabulate(categorical(Y))

  Value    Count   Percent
      1      245     54.20%
      2       44      9.73%
      3       15      3.32%
      4       15      3.32%
      5       13      2.88%
      6       25      5.53%
      7        3      0.66%
      8        2      0.44%
      9        9      1.99%
     10       50     11.06%
     14        4      0.88%
     15        5      1.11%
     16       22      4.87%

The data contains 16 distinct labels that describe various degrees of arrhythmia, but the response (Y)
includes only 13 distinct labels.

Train a classification tree and predict the resubstitution response of the tree.

Mdl = fitctree(X,Y);
predictedY = resubPredict(Mdl);

Create a confusion matrix chart from the true labels Y and the predicted labels predictedY. Specify
'RowSummary' as 'row-normalized' to display the true positive rates and false positive rates in
the row summary. Also, specify 'ColumnSummary' as 'column-normalized' to display the positive
predictive values and false discovery rates in the column summary.

fig = figure;
cm = confusionchart(Y,predictedY,'RowSummary','row-normalized','ColumnSummary','column-normalized');

Resize the container of the confusion chart so percentages appear in the row summary.

fig_Position = fig.Position;
fig_Position(3) = fig_Position(3)*1.5;
fig.Position = fig_Position;
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To sort the confusion matrix according to the true positive rate, normalize the cell values across each
row by setting the Normalization property to 'row-normalized' and then use sortClasses.
After sorting, reset the Normalization property back to 'absolute' to display the total number of
observations in each cell.

cm.Normalization = 'row-normalized'; 
sortClasses(cm,'descending-diagonal')
cm.Normalization = 'absolute'; 
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To sort the confusion matrix according to the positive predictive value, normalize the cell values
across each column by setting the Normalization property to 'column-normalized' and then
use sortClasses. After sorting, reset the Normalization property back to 'absolute' to display
the total number of observations in each cell.

cm.Normalization = 'column-normalized';
sortClasses(cm,'descending-diagonal')
cm.Normalization = 'absolute';  
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Confusion Matrix for Classification Using Tall Arrays

Perform classification on a tall array of the Fisher iris data set. Compute a confusion matrix chart for
the known and predicted tall labels by using the confusionchart function.

When you perform calculations on tall arrays, MATLAB® uses either a parallel pool (default if you
have Parallel Computing Toolbox™) or the local MATLAB session. To run the example using the local
MATLAB session when you have Parallel Computing Toolbox, change the global execution
environment by using the mapreducer function.

mapreducer(0)

Load Fisher's iris data set.

load fisheriris

Convert the in-memory arrays meas and species to tall arrays.

tx = tall(meas);
ty = tall(species);

Find the number of observations in the tall array.

numObs = gather(length(ty));   % gather collects tall array into memory

Set the seeds of the random number generators using rng and tallrng for reproducibility, and
randomly select training samples. The results can vary depending on the number of workers and the
execution environment for the tall arrays. For details, see “Control Where Your Code Runs”.

rng('default') 
tallrng('default')
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numTrain = floor(numObs/2);
[txTrain,trIdx] = datasample(tx,numTrain,'Replace',false);
tyTrain = ty(trIdx); 

Fit a decision tree classifier model on the training samples.

mdl = fitctree(txTrain,tyTrain); 

Evaluating tall expression using the Local MATLAB Session:
- Pass 1 of 2: Completed in 1.6 sec
- Pass 2 of 2: Completed in 1.3 sec
Evaluation completed in 4.4 sec
Evaluating tall expression using the Local MATLAB Session:
- Pass 1 of 4: Completed in 0.77 sec
- Pass 2 of 4: Completed in 0.99 sec
- Pass 3 of 4: Completed in 1 sec
- Pass 4 of 4: Completed in 1.4 sec
Evaluation completed in 5.1 sec
Evaluating tall expression using the Local MATLAB Session:
- Pass 1 of 4: Completed in 0.43 sec
- Pass 2 of 4: Completed in 0.38 sec
- Pass 3 of 4: Completed in 0.5 sec
- Pass 4 of 4: Completed in 0.57 sec
Evaluation completed in 2.5 sec
Evaluating tall expression using the Local MATLAB Session:
- Pass 1 of 4: Completed in 0.37 sec
- Pass 2 of 4: Completed in 0.37 sec
- Pass 3 of 4: Completed in 0.48 sec
- Pass 4 of 4: Completed in 0.47 sec
Evaluation completed in 2.2 sec
Evaluating tall expression using the Local MATLAB Session:
- Pass 1 of 4: Completed in 0.38 sec
- Pass 2 of 4: Completed in 0.38 sec
- Pass 3 of 4: Completed in 0.47 sec
- Pass 4 of 4: Completed in 0.48 sec
Evaluation completed in 2.2 sec

Predict labels for the test samples by using the trained model.

txTest = tx(~trIdx,:);
label = predict(mdl,txTest);

Create the confusion matrix chart for the resulting classification.

tyTest = ty(~trIdx);
cm = confusionchart(tyTest,label)

Evaluating tall expression using the Local MATLAB Session:
- Pass 1 of 1: Completed in 0.17 sec
Evaluation completed in 0.45 sec
Evaluating tall expression using the Local MATLAB Session:
- Pass 1 of 1: Completed in 0.52 sec
Evaluation completed in 0.81 sec
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cm = 
  ConfusionMatrixChart with properties:

    NormalizedValues: [3x3 double]
         ClassLabels: {3x1 cell}

  Show all properties

The confusion matrix chart shows that three measurements in the versicolor class are misclassified.
All the measurements belonging to setosa and virginica are classified correctly.

Input Arguments
trueLabels — True labels of classification problem
categorical vector | numeric vector | string vector | character array | cell array of character vectors |
logical vector

True labels of classification problem, specified as a categorical vector, numeric vector, string vector,
character array, cell array of character vectors, or logical vector. If trueLabels is a vector, then
each element corresponds to one observation. If trueLabels is a character array, then it must be
two-dimensional with each row corresponding to the label of one observation.
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predictedLabels — Predicted labels of classification problem
categorical vector | numeric vector | string vector | character array | cell array of character vectors |
logical vector

Predicted labels of classification problem, specified as a categorical vector, numeric vector, string
vector, character array, cell array of character vectors, or logical vector. If predictedLabels is a
vector, then each element corresponds to one observation. If predictedLabels is a character array,
then it must be two-dimensional with each row corresponding to the label of one observation.

m — Confusion matrix
matrix

Confusion matrix, specified as a matrix. m must be square and its elements must be positive integers.
The element m(i,j) is the number of times an observation of the ith true class was predicted to be
of the jth class. Each colored cell of the confusion matrix chart corresponds to one element of the
confusion matrix m.

classLabels — Class labels
categorical vector | numeric vector | string vector | character array | cell array of character vectors |
logical vector

Class labels of the confusion matrix chart, specified as a categorical vector, numeric vector, string
vector, character array, cell array of character vectors, or logical vector. If classLabels is a vector,
then it must have the same number of elements as the confusion matrix has rows and columns. If
classLabels is a character array, then it must be two-dimensional with each row corresponding to
the label of one class.

parent — Parent container
Figure object | Panel object | Tab object | TiledChartLayout object | GridLayout object

Parent container, specified as a Figure, Panel, Tab, TiledChartLayout, or GridLayout object.

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: cm = confusionchart(trueLabels,predictedLabels,'Title','My Title
Text','ColumnSummary','column-normalized')

Note The properties listed here are only a subset. For a complete list, see ConfusionMatrixChart
Properties.

Title — Title
'' (default) | character vector | string scalar

Title of the confusion matrix chart, specified as a character vector or string scalar.
Example: cm = confusionchart(__,'Title','My Title Text')
Example: cm.Title = 'My Title Text'
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ColumnSummary — Column summary
'off' (default) | 'absolute' | 'column-normalized' | 'total-normalized'

Column summary of the confusion matrix chart, specified as one of the following:

Option Description
'off' Do not display a column summary.
'absolute' Display the total number of correctly and

incorrectly classified observations for each
predicted class.

'column-normalized' Display the number of correctly and incorrectly
classified observations for each predicted class as
percentages of the number of observations of the
corresponding predicted class. The percentages
of correctly classified observations can be
thought of as class-wise precisions (or positive
predictive values).

'total-normalized' Display the number of correctly and incorrectly
classified observations for each predicted class as
percentages of the total number of observations.

Example: cm = confusionchart(__,'ColumnSummary','column-normalized')
Example: cm.ColumnSummary = 'column-normalized'

RowSummary — Row summary
'off' (default) | 'absolute' | 'row-normalized' | 'total-normalized'

Row summary of the confusion matrix chart, specified as one of the following:

Option Description
'off' Do not display a row summary.
'absolute' Display the total number of correctly and

incorrectly classified observations for each true
class.

'row-normalized' Display the number of correctly and incorrectly
classified observations for each true class as
percentages of the number of observations of the
corresponding true class. The percentages of
correctly classified observations can be thought
of as class-wise recalls (or true positive rates).

'total-normalized' Display the number of correctly and incorrectly
classified observations for each true class as
percentages of the total number of observations.

Example: cm = confusionchart(__,'RowSummary','row-normalized')
Example: cm.RowSummary = 'row-normalized'

Normalization — Normalization of cell values
'absolute' (default) | 'column-normalized' | 'row-normalized' | 'total-normalized'
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Normalization of cell values, specified as one of the following:

Option Description
'absolute' Display the total number of observations in each

cell.
'column-normalized' Normalize each cell value by the number of

observations that has the same predicted class.
'row-normalized' Normalize each cell value by the number of

observations that has the same true class.
'total-normalized' Normalize each cell value by the total number of

observations.

Modifying the normalization of cell values also affects the colors of the cells.
Example: cm = confusionchart(__,'Normalization','total-normalized')
Example: cm.Normalization = 'total-normalized'

Output Arguments
cm — Confusion matrix chart object
ConfusionMatrixChart object

ConfusionMatrixChart object, which is a standalone visualization on page 35-1043. Use cm to set
properties of the confusion matrix chart after creating it.

Limitations
• MATLAB code generation is not supported for ConfusionMatrixChart objects.

More About
Standalone Visualization

A standalone visualization is a chart designed for a special purpose that works independently from
other charts. Unlike other charts such as plot and surf, a standalone visualization has a
preconfigured axes object built into it, and some customizations are not available. A standalone
visualization also has these characteristics:

• It cannot be combined with other graphics elements, such as lines, patches, or surfaces. Thus, the
hold command is not supported.

• The gca function can return the chart object as the current axes.
• You can pass the chart object to many MATLAB functions that accept an axes object as an input

argument. For example, you can pass the chart object to the title function.

Version History
Introduced in R2018b
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Extended Capabilities
Tall Arrays
Calculate with arrays that have more rows than fit in memory.

This function fully supports tall arrays. For more information, see “Tall Arrays”.

See Also
Functions
categorical | sortClasses | confusionmat | rocmetrics

Properties
ConfusionMatrixChart Properties
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ConfusionMatrixChart Properties
Confusion matrix chart appearance and behavior

Description
ConfusionMatrixChart properties control the appearance and behavior of a
ConfusionMatrixChart object. By changing property values, you can modify certain aspects of the
confusion matrix chart. For example, you can add a title:

cm = confusionchart([1 3 5; 2 4 6; 11 7 3]);
cm.Title = 'My Confusion Matrix Title';

Properties
Labels

Title — Title
'' (default) | character vector | string scalar

Title of the confusion matrix chart, specified as a character vector or string scalar.
Example: cm = confusionchart(__,'Title','My Title Text')
Example: cm.Title = 'My Title Text'

XLabel — Label for x-axis
'Predicted class' (default) | string scalar | character vector

Label for the x-axis, specified as a string scalar or character vector.
Example: cm = confusionchart(__,'XLabel','My Label')
Example: cm.XLabel = 'My Label'

YLabel — Label for y-axis
'True class' (default) | string scalar | character vector

Label for the x-axis, specified as a string scalar or character vector.
Example: cm = confusionchart(__,'YLabel','My Label')
Example: cm.YLabel = 'My Label'

ClassLabels — Class labels
categorical vector | numeric vector | string vector | character array | cell array of character vectors |
logical vector

This property is read-only.

Class labels of the confusion matrix chart, stored as a categorical vector, numeric vector, string
vector, character array, cell array of character vectors, or logical vector.
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Row and Column Summaries

ColumnSummary — Column summary
'off' (default) | 'absolute' | 'column-normalized' | 'total-normalized'

Column summary of the confusion matrix chart, specified as one of the following:

Option Description
'off' Do not display a column summary.
'absolute' Display the total number of correctly and

incorrectly classified observations for each
predicted class.

'column-normalized' Display the number of correctly and incorrectly
classified observations for each predicted class as
percentages of the number of observations of the
corresponding predicted class. The percentages
of correctly classified observations can be
thought of as class-wise precisions (or positive
predictive values).

'total-normalized' Display the number of correctly and incorrectly
classified observations for each predicted class as
percentages of the total number of observations.

Example: cm = confusionchart(__,'ColumnSummary','column-normalized')
Example: cm.ColumnSummary = 'column-normalized'

RowSummary — Row summary
'off' (default) | 'absolute' | 'row-normalized' | 'total-normalized'

Row summary of the confusion matrix chart, specified as one of the following:

Option Description
'off' Do not display a row summary.
'absolute' Display the total number of correctly and

incorrectly classified observations for each true
class.

'row-normalized' Display the number of correctly and incorrectly
classified observations for each true class as
percentages of the number of observations of the
corresponding true class. The percentages of
correctly classified observations can be thought
of as class-wise recalls (or true positive rates).

'total-normalized' Display the number of correctly and incorrectly
classified observations for each true class as
percentages of the total number of observations.

Example: cm = confusionchart(__,'RowSummary','row-normalized')
Example: cm.RowSummary = 'row-normalized'
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Data

NormalizedValues — Values of the confusion matrix
numeric matrix

This property is read-only.

Values of the confusion matrix, stored as a numeric matrix. This property equals the values of the
confusion matrix normalized using the method of the Normalization property. The software
recalculates the normalized values of the confusion matrix each time you modify the Normalization
property.

Normalization — Normalization of cell values
'absolute' (default) | 'column-normalized' | 'row-normalized' | 'total-normalized'

Normalization of cell values, specified as one of the following:

Option Description
'absolute' Display the total number of observations in each

cell.
'column-normalized' Normalize each cell value by the number of

observations that has the same predicted class.
'row-normalized' Normalize each cell value by the number of

observations that has the same true class.
'total-normalized' Normalize each cell value by the total number of

observations.

Modifying the normalization of cell values also affects the colors of the cells.
Example: cm = confusionchart(__,'Normalization','total-normalized')
Example: cm.Normalization = 'total-normalized'

Color and Styling

GridVisible — State of grid visibility
'on' (default) | on/off logical value

State of grid visibility, specified as 'on' or 'off', or as numeric or logical 1 (true) or 0 (false). A
value of 'on' is equivalent to true, and 'off' is equivalent to false. Thus, you can use the value of
this property as a logical value. The value is stored as an on/off logical value of type
matlab.lang.OnOffSwitchState.

• 'on' — Display grid lines between the chart cells.
• 'off' — Do not display grid lines between the chart cells.

Example: cm = confusionchart(__,'GridVisible','off')
Example: cm.GridVisible = 'off'

DiagonalColor — Color for diagonal cells
[0 0.4471 0.7412] (default) | RGB triplet | hexadecimal color code | 'r' | 'g' | 'b' | ...

Color for diagonal cells, specified as an RGB triplet, a hexadecimal color code, a color name, or a
short name. The color of each diagonal cell is proportional to the cell value and the DiagonalColor
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property, normalized to the largest cell value of the confusion matrix chart. Cells with positive values
are colored with a minimum amount of color, proportional to the DiagonalColor property.

RGB triplets and hexadecimal color codes are useful for specifying custom colors.

• An RGB triplet is a three-element row vector whose elements specify the intensities of the red,
green, and blue components of the color. The intensities must be in the range [0,1]; for example,
[0.4 0.6 0.7].

• A hexadecimal color code is a character vector or a string scalar that starts with a hash symbol (#)
followed by three or six hexadecimal digits, which can range from 0 to F. The values are not case
sensitive. Thus, the color codes '#FF8800', '#ff8800', '#F80', and '#f80' are equivalent.

Alternatively, you can specify some common colors by name. This table lists the named color options,
the equivalent RGB triplets, and hexadecimal color codes.

Color Name Short Name RGB Triplet Hexadecimal
Color Code

Appearance

"red" "r" [1 0 0] "#FF0000"
"green" "g" [0 1 0] "#00FF00"
"blue" "b" [0 0 1] "#0000FF"
"cyan" "c" [0 1 1] "#00FFFF"
"magenta" "m" [1 0 1] "#FF00FF"
"yellow" "y" [1 1 0] "#FFFF00"
"black" "k" [0 0 0] "#000000"
"white" "w" [1 1 1] "#FFFFFF"

Here are the RGB triplets and hexadecimal color codes for the default colors MATLAB uses in many
types of plots.

RGB Triplet Hexadecimal Color Code Appearance
[0 0.4470 0.7410] "#0072BD"
[0.8500 0.3250 0.0980] "#D95319"
[0.9290 0.6940 0.1250] "#EDB120"
[0.4940 0.1840 0.5560] "#7E2F8E"
[0.4660 0.6740 0.1880] "#77AC30"
[0.3010 0.7450 0.9330] "#4DBEEE"
[0.6350 0.0780 0.1840] "#A2142F"

The software chooses an appropriate text color for cell labels automatically, depending on the color of
the chart cells.
Example: cm = confusionchart(__,'DiagonalColor','blue')
Example: cm.DiagonalColor = 'blue'

OffDiagonalColor — Color for off-diagonal cells
[0.8510 0.3255 0.0980] (default) | RGB triplet | hexadecimal color code | 'r' | 'g' | 'b' | ...
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Color for off-diagonal cells, specified as an RGB triplet, a hexadecimal color code, a color name, or a
short name. The color of each diagonal cell is proportional to the cell value and the
OffDiagonalColor property, normalized to the largest cell value of the confusion matrix chart.
Cells with positive values are colored with a minimum amount of color, proportional to the
OffDiagonalColor property.

RGB triplets and hexadecimal color codes are useful for specifying custom colors.

• An RGB triplet is a three-element row vector whose elements specify the intensities of the red,
green, and blue components of the color. The intensities must be in the range [0,1]; for example,
[0.4 0.6 0.7].

• A hexadecimal color code is a character vector or a string scalar that starts with a hash symbol (#)
followed by three or six hexadecimal digits, which can range from 0 to F. The values are not case
sensitive. Thus, the color codes '#FF8800', '#ff8800', '#F80', and '#f80' are equivalent.

Alternatively, you can specify some common colors by name. This table lists the named color options,
the equivalent RGB triplets, and hexadecimal color codes.

Color Name Short Name RGB Triplet Hexadecimal
Color Code

Appearance

"red" "r" [1 0 0] "#FF0000"
"green" "g" [0 1 0] "#00FF00"
"blue" "b" [0 0 1] "#0000FF"
"cyan" "c" [0 1 1] "#00FFFF"
"magenta" "m" [1 0 1] "#FF00FF"
"yellow" "y" [1 1 0] "#FFFF00"
"black" "k" [0 0 0] "#000000"
"white" "w" [1 1 1] "#FFFFFF"

Here are the RGB triplets and hexadecimal color codes for the default colors MATLAB uses in many
types of plots.

RGB Triplet Hexadecimal Color Code Appearance
[0 0.4470 0.7410] "#0072BD"
[0.8500 0.3250 0.0980] "#D95319"
[0.9290 0.6940 0.1250] "#EDB120"
[0.4940 0.1840 0.5560] "#7E2F8E"
[0.4660 0.6740 0.1880] "#77AC30"
[0.3010 0.7450 0.9330] "#4DBEEE"
[0.6350 0.0780 0.1840] "#A2142F"

The software chooses an appropriate text color for cell labels automatically, depending on the color of
the chart cells.
Example: cm = confusionchart(__,'OffDiagonalColor','blue')
Example: cm.OffDiagonalColor = 'blue'
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FontColor — Text color for title, axis labels, and class labels
[0.1500 0.1500 0.1500] (default) | RGB triplet | hexadecimal color code | 'r' | 'g' | 'b' | ...

Text color for title, axis labels, and class labels, specified as an RGB triplet, a hexadecimal color code,
a color name, or a short name.

RGB triplets and hexadecimal color codes are useful for specifying custom colors.

• An RGB triplet is a three-element row vector whose elements specify the intensities of the red,
green, and blue components of the color. The intensities must be in the range [0,1]; for example,
[0.4 0.6 0.7].

• A hexadecimal color code is a character vector or a string scalar that starts with a hash symbol (#)
followed by three or six hexadecimal digits, which can range from 0 to F. The values are not case
sensitive. Thus, the color codes '#FF8800', '#ff8800', '#F80', and '#f80' are equivalent.

Alternatively, you can specify some common colors by name. This table lists the named color options,
the equivalent RGB triplets, and hexadecimal color codes.

Color Name Short Name RGB Triplet Hexadecimal
Color Code

Appearance

"red" "r" [1 0 0] "#FF0000"
"green" "g" [0 1 0] "#00FF00"
"blue" "b" [0 0 1] "#0000FF"
"cyan" "c" [0 1 1] "#00FFFF"
"magenta" "m" [1 0 1] "#FF00FF"
"yellow" "y" [1 1 0] "#FFFF00"
"black" "k" [0 0 0] "#000000"
"white" "w" [1 1 1] "#FFFFFF"

Here are the RGB triplets and hexadecimal color codes for the default colors MATLAB uses in many
types of plots.

RGB Triplet Hexadecimal Color Code Appearance
[0 0.4470 0.7410] "#0072BD"
[0.8500 0.3250 0.0980] "#D95319"
[0.9290 0.6940 0.1250] "#EDB120"
[0.4940 0.1840 0.5560] "#7E2F8E"
[0.4660 0.6740 0.1880] "#77AC30"
[0.3010 0.7450 0.9330] "#4DBEEE"
[0.6350 0.0780 0.1840] "#A2142F"

The software chooses an appropriate text color for cell labels automatically, depending on the color of
the chart cells.
Example: cm = confusionchart(__,'FontColor','blue')
Example: cm.FontColor = 'blue'
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Font

FontName — Font name
system supported font name

Font name, specified as a system supported font name. The default font depends on the specific
operating system and locale.
Example: cm = confusionchart(__,'FontName','Cambria')
Example: cm.FontName = 'Cambria'

FontSize — Font size
positive scalar

Font size used for the title, axis labels, class labels, and cell labels, specified as a positive scalar. The
default font depends on the specific operating system and locale.

The title and axis labels use a slightly larger font size (scaled up by 10%). If there is not enough room
to display the cell labels within the cells, then the cell labels use a smaller font size. If the cell labels
become too small, then they are hidden.
Example: cm = confusionchart(__,'FontSize',12)
Example: cm.FontSize = 12

Position

PositionConstraint — Position to hold constant
'outerposition' | 'innerposition'

Position property to hold constant when adding, removing, or changing decorations, specified as one
of the following values:

• 'outerposition' — The OuterPosition property remains constant when you add, remove, or
change decorations such as a title or an axis label. If any positional adjustments are needed,
MATLAB adjusts the InnerPosition property.

• 'innerposition' — The InnerPosition property remains constant when you add, remove, or
change decorations such as a title or an axis label. If any positional adjustments are needed,
MATLAB adjusts the OuterPosition property.

Note Setting this property has no effect when the parent container is a TiledChartLayout.

OuterPosition — Outer size and position
[0 0 1 1] (default) | four-element vector

Outer size and position within the parent container (a figure, panel, or tab), specified as a four-
element vector of the form [left bottom width height]. The outer position includes the title,
axis labels, and class labels.

• The left and bottom elements define the distance from the lower left corner of the container to
the lower left corner of the chart.

• The width and height elements are the chart dimensions, which include the chart cells, plus a
margin for the surrounding text.
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The default value of [0 0 1 1] is the whole interior of the container.

By default, the values are normalized to the container. To change the units, set the Units property.
Example: cm = confusionchart(__,'OuterPosition',[0.1 0.1 0.8 0.8])
Example: cm.OuterPosition = [0.1 0.1 0.8 0.8]

InnerPosition — Inner size and position
[0.1300 0.1100 0.7750 0.8150] (default) | four-element vector

Inner size and position of the chart within the parent container (a figure, panel, or tab) returned as a
four-element vector of the form [left bottom width height]. The inner position does not
include the title, axis labels, or class labels.

• The left and bottom elements define the distance from the lower left corner of the container to
the lower left corner of the chart.

• The width and height elements are the chart dimensions, which include only the chart cells.

Example: cm = confusionchart(__,'InnerPosition',[0.1 0.1 0.8 0.8])
Example: cm.InnerPosition = [0.1 0.1 0.8 0.8]

Position — Inner size and position
four-element vector

Inner size and position of the chart within the parent container (a figure, panel, or tab) returned as a
four-element vector of the form [left bottom width height]. This property is equivalent to the
InnerPosition property.

Units — Position units
'normalized' (default) | 'inches' | 'centimeters' | 'points' | 'pixels' | 'characters'

Position units, specified as one of these values:

Units Description
'normalized' Normalized with respect to the container, which

is typically the figure or a panel. The lower left
corner of the container maps to (0,0), and the
upper right corner maps to (1,1).

'inches' Inches.
'centimeters' Centimeters.
'characters' Based on the default uicontrol font of the

graphics root object:

• Character width = width of letter x.
• Character height = distance between the

baselines of two lines of text.
'points' Typography points. One point equals 1/72 inch.
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Units Description
'pixels' Pixels.

Starting in R2015b, distances in pixels are
independent of your system resolution on
Windows® and Macintosh systems:

• On Windows systems, a pixel is 1/96th of an
inch.

• On Macintosh systems, a pixel is 1/72nd of an
inch.

On Linux® systems, the size of a pixel is
determined by your system resolution.

When specifying the units as a name-value pair during object creation, you must set the Units
property before specifying the properties that you want to use these units for, such as
OuterPosition.

Layout — Layout options
empty LayoutOptions array (default) | TiledChartLayoutOptions object | GridLayoutOptions
object

Layout options, specified as a TiledChartLayoutOptions or GridLayoutOptions object. This
property is useful when the chart is either in a tiled chart layout or a grid layout.

To position the chart within the grid of a tiled chart layout, set the Tile and TileSpan properties on
the TiledChartLayoutOptions object. For example, consider a 3-by-3 tiled chart layout. The
layout has a grid of tiles in the center, and four tiles along the outer edges. In practice, the grid is
invisible and the outer tiles do not take up space until you populate them with axes or charts.

This code places the chart c in the third tile of the grid..

c.Layout.Tile = 3;
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To make the chart span multiple tiles, specify the TileSpan property as a two-element vector. For
example, this chart spans 2 rows and 3 columns of tiles.

c.Layout.TileSpan = [2 3];

To place the chart in one of the surrounding tiles, specify the Tile property as 'north', 'south',
'east', or 'west'. For example, setting the value to 'east' places the chart in the tile to the right
of the grid.

c.Layout.Tile = 'east';

To place the chart into a layout within an app, specify this property as a GridLayoutOptions object.
For more information about working with grid layouts in apps, see uigridlayout.

If the chart is not a child of either a tiled chart layout or a grid layout (for example, if it is a child of a
figure or panel) then this property is empty and has no effect.

Visible — State of visibility
'on' (default) | on/off logical value

State of visibility, specified as 'on' or 'off', or as numeric or logical 1 (true) or 0 (false). A value
of 'on' is equivalent to true, and 'off' is equivalent to false. Thus, you can use the value of this
property as a logical value. The value is stored as an on/off logical value of type
matlab.lang.OnOffSwitchState.

• 'on' — Display the chart.
• 'off' — Hide the chart without deleting it. You still can access the properties of an invisible

chart.

Parent/Child

Parent — Parent container
Figure object | Panel object | Tab object | TiledChartLayout object | GridLayout object

Parent container, specified as a Figure, Panel, Tab, TiledChartLayout, or GridLayout object.

HandleVisibility — Visibility of object handle
'on' (default) | 'off' | 'callback'

Visibility of the chart object handle in the Children property of the parent, specified as one of these
values:

• 'on' — Object handle is always visible.
• 'off' — Object handle is invisible at all times. This option is useful for preventing unintended

changes to the UI by another function. To temporarily hide the handle during the execution of that
function, set the HandleVisibility to 'off'.

• 'callback' — Object handle is visible from within callbacks or functions invoked by callbacks,
but not from within functions invoked from the command line. This option blocks access to the
object at the command line, but allows callback functions to access it.

If the object is not listed in the Children property of the parent, then functions that obtain object
handles by searching the object hierarchy or querying handle properties cannot return it. This
includes get, findobj, gca, gcf, gco, newplot, cla, clf, and close.
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Hidden object handles are still valid. Set the root ShowHiddenHandles property to 'on' to list all
object handles, regardless of their HandleVisibility property setting.

Version History
Introduced in R2018b

See Also
Functions
categorical | confusionchart | sortClasses
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confusionmat
Compute confusion matrix for classification problem

Syntax
C = confusionmat(group,grouphat)
C = confusionmat(group,grouphat,'Order',grouporder)
[C,order] = confusionmat( ___ )

Description
C = confusionmat(group,grouphat) returns the confusion matrix C determined by the known
and predicted groups in group and grouphat, respectively.

C = confusionmat(group,grouphat,'Order',grouporder) uses grouporder to order the
rows and columns of C.

[C,order] = confusionmat( ___ ) also returns the order of the rows and columns of C in the
variable order using any of the input arguments in previous syntaxes.

Examples

Display Confusion Matrix

Display the confusion matrix for data with two misclassifications and one missing classification.

Create vectors for the known groups and the predicted groups.

g1 = [3 2 2 3 1 1]';    % Known groups
g2 = [4 2 3 NaN 1 1]';    % Predicted groups

Return the confusion matrix.

C = confusionmat(g1,g2)

C = 4×4

     2     0     0     0
     0     1     1     0
     0     0     0     1
     0     0     0     0

The indices of the rows and columns of the confusion matrix C are identical and arranged by default
in the sorted order of [g1;g2], that is, (1,2,3,4).

The confusion matrix shows that the two data points known to be in group 1 are classified correctly.
For group 2, one of the data points is misclassified into group 3. Also, one of the data points known to
be in group 3 is misclassified into group 4. confusionmat treats the NaN value in the grouping
variable g2 as a missing value and does not include it in the rows and columns of C.
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Plot the confusion matrix as a confusion matrix chart by using confusionchart.

confusionchart(C)

You do not need to calculate the confusion matrix first and then plot it. Instead, plot a confusion
matrix chart directly from the true and predicted labels by using confusionchart.

cm = confusionchart(g1,g2)
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cm = 
  ConfusionMatrixChart with properties:

    NormalizedValues: [4x4 double]
         ClassLabels: [4x1 double]

  Show all properties

The ConfusionMatrixChart object stores the numeric confusion matrix in the NormalizedValues
property and the classes in the ClassLabels property. Display these properties using dot notation.

cm.NormalizedValues

ans = 4×4

     2     0     0     0
     0     1     1     0
     0     0     0     1
     0     0     0     0

cm.ClassLabels

ans = 4×1

     1
     2
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     3
     4

Specify Group Order of Confusion Matrix

Display the confusion matrix for data with two misclassifications and one missing classification, and
specify the group order.

Create vectors for the known groups and the predicted groups.

g1 = [3 2 2 3 1 1]';    % Known groups
g2 = [4 2 3 NaN 1 1]';    % Predicted groups

Specify the group order and return the confusion matrix.

C = confusionmat(g1,g2,'Order',[4 3 2 1])

C = 4×4

     0     0     0     0
     1     0     0     0
     0     1     1     0
     0     0     0     2

The indices of the rows and columns of the confusion matrix C are identical and arranged in the order
specified by the group order, that is, (4,3,2,1).

The second row of the confusion matrix C shows that one of the data points known to be in group 3 is
misclassified into group 4. The third row of C shows that one of the data points belonging to group 2
is misclassified into group 3, and the fourth row shows that the two data points known to be in group
1 are classified correctly. confusionmat treats the NaN value in the grouping variable g2 as a
missing value and does not include it in the rows and columns of C.

Confusion Matrix for Classification

Perform classification on a sample of the fisheriris data set and display the confusion matrix for
the resulting classification.

Load Fisher's iris data set.

load fisheriris

Randomize the measurements and groups in the data.

rng(0,'twister'); % For reproducibility
numObs = length(species);
p = randperm(numObs);
meas = meas(p,:);
species = species(p);

Train a discriminant analysis classifier by using measurements in the first half of the data.

 confusionmat

35-1059



half = floor(numObs/2);
training = meas(1:half,:);
trainingSpecies = species(1:half);
Mdl = fitcdiscr(training,trainingSpecies);

Predict labels for the measurements in the second half of the data by using the trained classifier.

sample = meas(half+1:end,:);
grouphat = predict(Mdl,sample);

Specify the group order and display the confusion matrix for the resulting classification.

group = species(half+1:end);
[C,order] = confusionmat(group,grouphat,'Order',{'setosa','versicolor','virginica'})

C = 3×3

    29     0     0
     0    22     2
     0     0    22

order = 3x1 cell
    {'setosa'    }
    {'versicolor'}
    {'virginica' }

The confusion matrix shows that the measurements belonging to setosa and virginica are classified
correctly, while two of the measurements belonging to versicolor are misclassified as virginica. The
output order contains the order of the rows and columns of the confusion matrix in the sequence
specified by the group order {'setosa','versicolor','virginica'}.

Confusion Matrix for Classification Using Tall Arrays

Perform classification on a tall array of the fisheriris data set, compute a confusion matrix for the
known and predicted tall labels by using the confusionmat function, and plot the confusion matrix
by using the confusionchart function.

When you perform calculations on tall arrays, MATLAB® uses either a parallel pool (default if you
have Parallel Computing Toolbox™) or the local MATLAB session. If you want to run the example
using the local MATLAB session when you have Parallel Computing Toolbox, you can change the
global execution environment by using the mapreducer function.

Load Fisher's iris data set.

load fisheriris

Convert the in-memory arrays meas and species to tall arrays.

tx = tall(meas);

Starting parallel pool (parpool) using the 'local' profile ...
Connected to the parallel pool (number of workers: 6).

ty = tall(species);
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Find the number of observations in the tall array.

numObs = gather(length(ty));   % gather collects tall array into memory

Set the seeds of the random number generators using rng and tallrng for reproducibility, and
randomly select training samples. The results can vary depending on the number of workers and the
execution environment for the tall arrays. For details, see “Control Where Your Code Runs”.

rng('default') 
tallrng('default')
numTrain = floor(numObs/2);
[txTrain,trIdx] = datasample(tx,numTrain,'Replace',false);
tyTrain = ty(trIdx); 

Fit a decision tree classifier model on the training samples.

mdl = fitctree(txTrain,tyTrain); 

Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 2: Completed in 3.9 sec
- Pass 2 of 2: Completed in 1.5 sec
Evaluation completed in 7.3 sec
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 4: Completed in 0.88 sec
- Pass 2 of 4: Completed in 1.6 sec
- Pass 3 of 4: Completed in 4 sec
- Pass 4 of 4: Completed in 2.7 sec
Evaluation completed in 11 sec
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 4: Completed in 0.54 sec
- Pass 2 of 4: Completed in 1.2 sec
- Pass 3 of 4: Completed in 3 sec
- Pass 4 of 4: Completed in 2 sec
Evaluation completed in 7.6 sec
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 4: Completed in 0.51 sec
- Pass 2 of 4: Completed in 1.3 sec
- Pass 3 of 4: Completed in 3.1 sec
- Pass 4 of 4: Completed in 2.5 sec
Evaluation completed in 8.5 sec
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 4: Completed in 0.42 sec
- Pass 2 of 4: Completed in 1.2 sec
- Pass 3 of 4: Completed in 3 sec
- Pass 4 of 4: Completed in 2.1 sec
Evaluation completed in 7.6 sec

Predict labels for the test samples by using the trained model.

txTest = tx(~trIdx,:);
label = predict(mdl,txTest);

Compute the confusion matrix for the resulting classification.

tyTest = ty(~trIdx);
[C,order] = confusionmat(tyTest,label)

C =
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  M×N×... tall array

    ?    ?    ?    ...
    ?    ?    ?    ...
    ?    ?    ?    ...
    :    :    :
    :    :    :

Preview deferred. Learn more.

order =

  M×N×... tall array

    ?    ?    ?    ...
    ?    ?    ?    ...
    ?    ?    ?    ...
    :    :    :
    :    :    :

Preview deferred. Learn more.

Use the gather function to perform the deferred calculation and return the result of confusionmat
in memory.

gather(C)

Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 1: Completed in 1.9 sec
Evaluation completed in 2.3 sec

ans = 3×3

    20     0     0
     1    30     2
     0     0    22

gather(order)

Evaluating tall expression using the Parallel Pool 'local':
Evaluation completed in 0.032 sec

ans = 3×1 cell
    {'setosa'    }
    {'versicolor'}
    {'virginica' }

The confusion matrix shows that three measurements in the versicolor class are misclassified. All the
measurements belonging to setosa and virginica are classified correctly.

To compute and plot the confusion matrix, use confusionchart instead.

cm = confusionchart(tyTest,label)

Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 1: Completed in 0.34 sec

35 Functions

35-1062



Evaluation completed in 0.6 sec
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 1: Completed in 0.48 sec
Evaluation completed in 0.67 sec

cm = 
  ConfusionMatrixChart with properties:

    NormalizedValues: [3×3 double]
         ClassLabels: {3×1 cell}

  Show all properties

Input Arguments
group — Known groups
numeric vector | logical vector | character array | string array | cell array of character vectors |
categorical vector

Known groups for categorizing observations, specified as a numeric vector, logical vector, character
array, string array, cell array of character vectors, or categorical vector.

group is a grouping variable of the same type as grouphat. The group argument must have the
same number of observations as grouphat, as described in “Grouping Variables” on page 2-46. The
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confusionmat function treats character arrays and string arrays as cell arrays of character vectors.
Additionally, confusionmat treats NaN, empty, and 'undefined' values in group as missing values
and does not count them as distinct groups or categories.
Example: {'Male','Female','Female','Male','Female'}
Data Types: single | double | logical | char | string | cell | categorical

grouphat — Predicted groups
numeric vector | logical vector | character array | string array | cell array of character vectors |
categorical vector

Predicted groups for categorizing observations, specified as a numeric vector, logical vector,
character array, string array, cell array of character vectors, or categorical vector.

grouphat is a grouping variable of the same type as group. The grouphat argument must have the
same number of observations as group, as described in “Grouping Variables” on page 2-46. The
confusionmat function treats character arrays and string arrays as cell arrays of character vectors.
Additionally, confusionmat treats NaN, empty, and 'undefined' values in grouphat as missing
values and does not count them as distinct groups or categories.
Example: [1 0 0 1 0]
Data Types: single | double | logical | char | string | cell | categorical

grouporder — Group order
numeric vector | logical vector | character array | string array | cell array of character vectors |
categorical vector

Group order, specified as a numeric vector, logical vector, character array, string array, cell array of
character vectors, or categorical vector.

grouporder is a grouping variable containing all the distinct elements in group and grouphat.
Specify grouporder to define the order of the rows and columns of C. If grouporder contains
elements that are not in group or grouphat, the corresponding entries in C are 0.

By default, the group order depends on the data type of s = [group;grouphat]:

• For numeric and logical vectors, the order is the sorted order of s.
• For categorical vectors, the order is the order returned by categories(s).
• For other data types, the order is the order of first appearance in s.

Example: 'order',{'setosa','versicolor','virginica'}
Data Types: single | double | logical | char | string | cell | categorical

Output Arguments
C — Confusion matrix
matrix

Confusion matrix, returned as a square matrix with size equal to the total number of distinct elements
in the group and grouphat arguments. C(i,j) is the count of observations known to be in group i
but predicted to be in group j.
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The rows and columns of C have identical ordering of the same group indices. By default, the group
order depends on the data type of s = [group;grouphat]:

• For numeric and logical vectors, the order is the sorted order of s.
• For categorical vectors, the order is the order returned by categories(s).
• For other data types, the order is the order of first appearance in s.

To change the order, specify grouporder,

The confusionmat function treats NaN, empty, and 'undefined' values in the grouping variables
as missing values and does not include them in the rows and columns of C.

order — Order of rows and columns
numeric vector | logical vector | categorical vector | cell array of character vectors

Order of rows and columns in C, returned as a numeric vector, logical vector, categorical vector, or
cell array of character vectors. If group and grouphat are character arrays, string arrays, or cell
arrays of character vectors, then the variable order is a cell array of character vectors. Otherwise,
order is of the same type as group and grouphat.

Alternative Functionality
• Use confusionchart to calculate and plot a confusion matrix. Additionally, confusionchart

displays summary statistics about your data and sorts the classes of the confusion matrix
according to the class-wise precision (positive predictive value), class-wise recall (true positive
rate), or total number of correctly classified observations.

Version History
Introduced in R2008b

Extended Capabilities
Tall Arrays
Calculate with arrays that have more rows than fit in memory.

This function fully supports tall arrays. For more information, see “Tall Arrays”.

See Also
categories | crosstab | confusionchart

Topics
“Grouping Variables” on page 2-46
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controlchart
Shewhart control charts

Syntax
controlchart(X)
controlchart(x,group)
controlchart(X,group)
[stats,plotdata] = controlchart(x,[group])
controlchart(x,group,'name',value)

Description
controlchart(X) produces an xbar chart of the measurements in matrix X. Each row of X is
considered to be a subgroup of measurements containing replicate observations taken at the same
time. The rows should be in time order. If X is a time series object, the time samples should contain
replicate observations.

The chart plots the means of the subgroups in time order, a center line (CL) at the average of the
means, and upper and lower control limits (UCL, LCL) at three standard errors from the center line.
The standard error is the estimated process standard deviation divided by the square root of the
subgroup size. Process standard deviation is estimated from the average of the subgroup standard
deviations. Out of control measurements are marked as violations and drawn with a red circle. Data
cursor mode is enabled, so clicking any data point displays information about that point.

controlchart(x,group) accepts a grouping variable group for a vector of measurements x.
group is a categorical variable, numeric vector, character vector, string array, or cell array of
character vectors the same length as x. Consecutive measurements x(n) sharing the same value of
group(n) for 1 ≤ n ≤ length(x) are defined to be a subgroup. Subgroups can have different
numbers of observations.

controlchart(X,group) accepts a grouping variable group for a matrix of measurements in X. In
this case, group is only used to label the time axis; it does not change the default grouping by rows.

[stats,plotdata] = controlchart(x,[group]) returns a structure stats of subgroup
statistics and parameter estimates, and a structure plotdata of plotted values. plotdata contains
one record for each chart.

The fields in stats and plotdata depend on the chart type.

The fields in stats are selected from the following:

• mean — Subgroup means
• std — Subgroup standard deviations
• range — Subgroup ranges
• n — Subgroup size, or total inspection size or area
• i — Individual data values
• ma — Moving averages
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• mr — Moving ranges
• count — Count of defects or defective items
• mu — Estimated process mean
• sigma — Estimated process standard deviation
• p — Estimated proportion defective
• m — Estimated mean defects per unit

The fields in plotdata are the following:

• pts — Plotted point values
• cl — Center line
• lcl — Lower control limit
• ucl — Upper control limit
• se — Standard error of plotted point
• n — Subgroup size
• ooc — Logical that is true for points that are out of control

controlchart(x,group,'name',value) specifies one or more of the following optional
parameter name/value pairs, with name in single quotes:

• charttype — The name of a chart type chosen from among the following:

• 'xbar' — Xbar or mean
• 's' — Standard deviation
• 'r' — Range
• 'ewma' — Exponentially weighted moving average
• 'i' — Individual observation
• 'mr' — Moving range of individual observations
• 'ma' — Moving average of individual observations
• 'p' — Proportion defective
• 'np' — Number of defectives
• 'u' — Defects per unit
• 'c' — Count of defects

Alternatively, a parameter can be a string array or cell array listing multiple compatible chart
types. There are four sets of compatible types:

• 'xbar', 's', 'r', and 'ewma'
• 'i', 'mr', and 'ma'
• 'p' and 'np'
• 'u' and 'c'

• display — Either 'on' (default) to display the control chart, or 'off' to omit the display
• label — A character vector, string array, or cell array of character vectors, one per subgroup.

This label is displayed as part of the data cursor for a point on the plot.
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• lambda — A parameter between 0 and 1 controlling how much the current prediction is
influenced by past observations in an EWMA plot. Higher values of 'lambda' give less weight to
past observations and more weight to the current observation. The default is 0.4.

• limits — A three-element vector specifying the values of the lower control limit, center line, and
upper control limits. Default is to estimate the center line and to compute control limits based on
the estimated value of sigma. Not permitted if there are multiple chart types.

• mean — Value for the process mean, or an empty value (default) to estimate the mean from X. This
is the p parameter for p and np charts, the mean defects per unit for u and c charts, and the
normal mu parameter for other charts.

• nsigma — The number of sigma multiples from the center line to a control limit. Default is 3.
• parent — The handle of the axes to receive the control chart plot. Default is to create axes in a

new figure. Not permitted if there are multiple chart types.
• rules — The name of a control rule, or a string array or cell array containing multiple control

rule names. These rules, together with the control limits, determine if a point is marked as out of
control. The default is to apply no control rules, and to use only the control limits to decide if a
point is out of control. See controlrules for more information. Control rules are applied to
charts that measure the process level (xbar, i, c, u, p, and np) rather than the variability (r, s),
and they are not applied to charts based on moving statistics (ma, mr, ewma).

• sigma — Either a value for sigma, or a method of estimating sigma chosen from among 'std'
(the default) to use the average within-subgroup standard deviation, 'range' to use the average
subgroup range, and 'variance' to use the square root of the pooled variance. When creating i,
mr, or ma charts for data not in subgroups, the estimate is always based on a moving range.

• specs — A vector specifying specification limits. Typically this is a two-element vector of lower
and upper specification limits. Since specification limits typically apply to individual
measurements, this parameter is primarily suitable for i charts. These limits are not plotted on r,
s, or mr charts.

• unit — The total number of inspected items for p and np charts, and the size of the inspected
unit for u and c charts. In both cases X must be the count of the number of defects or defectives
found. Default is 1 for u and c charts. This argument is required (no default) for p and np charts.

• width — The width of the window used for computing the moving ranges and averages in mr and
ma charts, and for computing the sigma estimate in i, mr, and ma charts. Default is 5.

Examples

XBar and R Charts

Load the sample data.

load parts

Create xbar and r control charts for the data.

st = controlchart(runout,'charttype',{'xbar' 'r'});
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Display the process mean and standard deviation.

fprintf('Parameter estimates:  mu = %g, sigma = %g\n',st.mu,st.sigma);

Parameter estimates:  mu = -0.0863889, sigma = 0.130215

Version History
Introduced in R2006b

See Also
controlrules

Topics
“Grouping Variables” on page 2-46
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controlrules
Western Electric and Nelson control rules

Syntax
R = controlrules('rules',x,cl,se)
[R,RULES] = controlrules('rules',x,cl,se)

Description
R = controlrules('rules',x,cl,se) determines which points in the vector x violate the
control rules in rules. cl is a vector of center-line values. se is a vector of standard errors.
(Typically, control limits on a control chart are at the values cl – 3*se and cl + 3*se.) rules is the
name of a control rule, or a string array or cell array containing multiple control rule names. If x has
n values and rules contains m rules, then R is an n-by-m logical array, with R(i,j) assigned the
value 1 if point i violates rule j, 0 if it does not.

The following are accepted values for rules (specified inside single quotes):

• we1 — 1 point above cl + 3*se
• we2 — 2 of 3 above cl + 2*se
• we3 — 4 of 5 above cl + se
• we4 — 8 of 8 above cl
• we5 — 1 below cl – 3*se
• we6 — 2 of 3 below cl – 2*se
• we7 — 4 of 5 below cl – se
• we8 — 8 of 8 below cl
• we9 — 15 of 15 between cl – se and cl + se
• we10 — 8 of 8 below cl – se or above cl + se
• n1 — 1 point below cl – 3*se or above cl + 3*se
• n2 — 9 of 9 on the same side of cl
• n3 — 6 of 6 increasing or decreasing
• n4 — 14 alternating up/down
• n5 — 2 of 3 below cl – 2*se or above cl + 2*se, same side
• n6 — 4 of 5 below cl – se or above cl + se, same side
• n7 — 15 of 15 between cl – se and cl + se
• n8 — 8 of 8 below cl – se or above cl + se, either side
• we — All Western Electric rules
• n — All Nelson rules

For multi-point rules, a rule violation at point i indicates that the set of points ending at point i
triggered the rule. Point i is considered to have violated the rule only if it is one of the points
violating the rule's condition.
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Any points with NaN as their x, cl, or se values are not considered to have violated rules, and are not
counted in the rules for other points.

Control rules can be specified in the controlchart function as values for the 'rules' parameter.

[R,RULES] = controlrules('rules',x,cl,se) returns a cell array of text RULES listing the
rules applied.

Examples

Use Western Electric Control Rule

Load the sample data.

load parts;

Create an Xbar chart using the we2 rule to mark out of control measurements.

st = controlchart(runout,'rules','we2');
x = st.mean;
cl = st.mu;
se = st.sigma./sqrt(st.n);
hold on
plot(cl+2*se,'m')

You can see the out of control points marked with a red circle.
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Use controlrules to identify the measurements that violate the control rule.

R = controlrules('we2',x,cl,se);
I = find(R)

I = 6×1

    21
    23
    24
    25
    26
    27

Version History
Introduced in R2006b

See Also
controlchart
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cophenet
Cophenetic correlation coefficient

Syntax
c = cophenet(Z,Y)
[c,d] = cophenet(Z,Y)

Description
c = cophenet(Z,Y) computes the cophenetic correlation coefficient for the hierarchical cluster
tree represented by Z. Z is the output of the linkage function. Y contains the distances or
dissimilarities used to construct Z, as output by the pdist function. Z is a matrix of size (m–1)-by-3,
with distance information in the third column. Y is a vector of size m*(m–1)/2.

[c,d] = cophenet(Z,Y) returns the cophenetic distances d in the same lower triangular distance
vector format as Y.

The cophenetic correlation for a cluster tree is defined as the linear correlation coefficient between
the cophenetic distances obtained from the tree, and the original distances (or dissimilarities) used to
construct the tree. Thus, it is a measure of how faithfully the tree represents the dissimilarities
among observations.

The cophenetic distance between two observations is represented in a dendrogram by the height of
the link at which those two observations are first joined. That height is the distance between the two
subclusters that are merged by that link.

The output value, c, is the cophenetic correlation coefficient. The magnitude of this value should be
very close to 1 for a high-quality solution. This measure can be used to compare alternative cluster
solutions obtained using different algorithms.

The cophenetic correlation between Z(:,3) and Y is defined as

c =
∑i < j (Yi j− y)(Zi j− z)

∑i < j (Yi j− y)2∑i < j (Zi j− z)2

where:

• Yij is the distance between objects i and j in Y.
• Zij is the cophenetic distance between objects i and j, from Z(:,3).
• y and z are the average of Y and Z(:,3), respectively.

Examples
X = [rand(10,3); rand(10,3)+1; rand(10,3)+2];
Y = pdist(X);
Z = linkage(Y,'average');

% Compute Spearman's rank correlation between the
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% dissimilarities and the cophenetic distances
[c,D] = cophenet(Z,Y);
r = corr(Y',D','type','spearman')
r =
   0.8279 

Version History
Introduced before R2006a

See Also
cluster | dendrogram | inconsistent | linkage | pdist | squareform
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copulacdf
Copula cumulative distribution function

Syntax
y = copulacdf('Gaussian',u,rho)

y = copulacdf('t',u,rho,nu)

y = copulacdf(family,u,alpha)

Description
y = copulacdf('Gaussian',u,rho) returns the cumulative probability of the Gaussian copula,
with linear correlation parameters rho evaluated at the points in u.

y = copulacdf('t',u,rho,nu) returns the cumulative probability of the t copula, with linear
correlation parameters, rho, and degrees of freedom parameter nu evaluated at the points in u.

y = copulacdf(family,u,alpha) returns the cumulative probability of the bivariate
Archimedean copula of the type specified by family, with scalar parameter alpha evaluated at the
points in u.

Examples

Compute the Clayton Copula cdf

Define two 10-by-10 matrices containing the values at which to compute the cdf.

u = linspace(0,1,10);
[u1,u2] = meshgrid(u,u);

Compute the cdf of a Clayton copula that has an alpha parameter equal to 1, at the values in u.

y = copulacdf('Clayton',[u1(:),u2(:)],1);

Plot the cdf as a surface, and label the axes.

surf(u1,u2,reshape(y,10,10))
xlabel('u1')
ylabel('u2')
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Input Arguments
u — Values at which to evaluate cdf
matrix of scalar values in the range [0,1]

Values at which to evaluate the cdf, specified as a matrix of scalar values in the range [0,1]. If u is an
n-by-p matrix, then its values represent n points in the p-dimensional unit hypercube. If u is an n-by-2
matrix, then its values represent n points in the unit square.

If you specify a bivariate Archimedean copula type ('Clayton', 'Frank', or 'Gumbel'), then u
must be an n-by-2 matrix.
Data Types: single | double

rho — Linear correlation parameters
scalar values | matrix of scalar values

Linear correlation parameters for the copula, specified as a scalar value or matrix of scalar values.

• If u is an n-by-p matrix, then rho is a p-by-p correlation matrix.
• If u is an n-by-2 matrix, then rho can be a scalar correlation coefficient.

Data Types: single | double
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nu — Degrees of freedom
positive integer value

Degrees of freedom for the t copula, specified as a positive integer value.
Data Types: single | double

family — Bivariate Archimedean copula family
'Clayton' | 'Frank' | 'Gumbel'

Bivariate Archimedean copula family, specified as one of the following.

'Clayton' Clayton copula
'Frank' Frank copula
'Gumbel' Gumbel copula

alpha — Bivariate Archimedean copula parameter
scalar value

Bivariate Archimedean copula parameter, specified as a scalar value. Permitted values for alpha
depend on the specified copula family.

Copula Family Permitted Alpha Values
'Clayton' [0,∞)
'Frank' (-∞,∞)
'Gumbel' [1,∞)

Data Types: single | double

Output Arguments
y — Cumulative distribution function
vector of scalar values

Cumulative distribution function of the copula, evaluated at the points in u, returned as a vector of
scalar values.

Version History
Introduced in R2006a

See Also
copulapdf | copulaparam | copulastat | copularnd

Topics
“Generate Correlated Data Using Rank Correlation” on page 5-116
“Copulas: Generate Correlated Samples” on page 5-129
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copulafit
Fit copula to data

Syntax
rhohat = copulafit('Gaussian',u)

[rhohat,nuhat] = copulafit('t',u)
[rhohat,nuhat,nuci] = copulafit('t',u)

paramhat = copulafit(family,u)
[paramhat,paramci] = copulafit(family,u)

___  = copulafit( ___ ,Name,Value)

Description
rhohat = copulafit('Gaussian',u) returns an estimate, rhohat, of the matrix of linear
correlation parameters for a Gaussian copula, given the data in u.

[rhohat,nuhat] = copulafit('t',u) returns an estimate, rhohat, of the matrix of linear
correlation parameters for a t copula, and an estimate of the degrees of freedom parameter, nuhat,
given the data in u.

[rhohat,nuhat,nuci] = copulafit('t',u) also returns an approximate 95% confidence
interval, nuci, for the degrees of freedom estimated in nuhat.

paramhat = copulafit(family,u) returns an estimate, paramhat, of the copula parameter for a
bivariate Archimedean copula of the type specified by family, given the data in u.

[paramhat,paramci] = copulafit(family,u) also returns an approximate 95% confidence
interval, paramci, for the copula parameter estimated in paramhat.

___  = copulafit( ___ ,Name,Value) returns any of the previous syntaxes, with additional
options specified by one or more Name,Value pair arguments. For example, you can specify the
confidence interval to compute, or specify control parameters for the iterative parameter estimation
algorithm using a options structure.

Examples

Fit a t Copula to Data

Load and plot simulated stock return data.

load stockreturns
x = stocks(:,1);
y = stocks(:,2);

figure;
scatterhist(x,y)
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Transform the data to the copula scale (unit square) using a kernel estimator of the cumulative
distribution function.

u = ksdensity(x,x,'function','cdf');
v = ksdensity(y,y,'function','cdf');

figure;
scatterhist(u,v)
xlabel('u')
ylabel('v')
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Fit a t copula to the data.

rng default  % For reproducibility
[Rho,nu] = copulafit('t',[u v],'Method','ApproximateML')

Rho =

    1.0000    0.7220
    0.7220    1.0000

nu =

   3.4516e+06

Generate a random sample from the t copula.

r = copularnd('t',Rho,nu,1000);
u1 = r(:,1);
v1 = r(:,2);

figure;
scatterhist(u1,v1)
xlabel('u')
ylabel('v')
set(get(gca,'children'),'marker','.')
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Transform the random sample back to the original scale of the data.

x1 = ksdensity(x,u1,'function','icdf');
y1 = ksdensity(y,v1,'function','icdf');

figure;
scatterhist(x1,y1)
set(get(gca,'children'),'marker','.')
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Input Arguments
u — Copula values
matrix of scalar values in the range (0,1)

Copula values, specified as a matrix of scalar values in the range (0,1). If u is an n-by-p matrix, then
its values represent n points in the p-dimensional unit hypercube. If u is an n-by-2 matrix, then its
values represent n points in the unit square.

If you specify a bivariate Archimedean copula type ('Clayton', 'Frank', or 'Gumbel'), then u
must be an n-by-2 matrix.
Data Types: single | double

family — Bivariate Archimedean copula family
'Clayton' | 'Frank' | 'Gumbel'

Bivariate Archimedean copula family, specified as one of the following.

'Clayton' Clayton copula
'Frank' Frank copula
'Gumbel' Gumbel copula
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Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: 'Alpha',0.01,'Method','ApproximateML' computes 99% confidence intervals for the
estimated copula parameter and uses an approximation method to fit the copula.

Alpha — Significance level for confidence intervals
0.05 (default) | scalar value in the range (0,1)

Significance level for confidence intervals, specified as the comma-separated pair consisting of
'Alpha' and a scalar value in the range (0,1). copulafit returns approximate 100 × (1–Alpha)%
confidence intervals.
Example: 'Alpha',0.01
Data Types: single | double

Method — Method for fitting t copula
'ML' (default) | 'ApproximateML'

Method for fitting t copula, specified as the comma-separated pair consisting of 'Method' and either
'ML' or 'ApproximateML'.

If you specify 'ApproximateML', then copulafit fits a t copula for large samples by maximizing an
objective function that approximates the profile log likelihood for the degrees of freedom parameter
[1]. This method can be significantly faster than maximum likelihood ('ML'), but the estimates and
confidence limits may not be accurate for small to moderate sample sizes.
Example: 'Method','ApproximateML'

Options — Control parameter specifications
structure

Control parameter specifications, specified as the comma-separated pair consisting of 'Options'
and an options structure created by statset. To see the fields and default values used by
copulafit, type statset('copulafit') at the command prompt.

This name-value pair is not applicable when you specify the copula type as 'Gaussian'.
Data Types: struct

Output Arguments
rhohat — Estimated correlation parameters for the fitted Gaussian copula
matrix of scalar values

Estimated correlation parameters for the fitted Gaussian copula, given the data in u, returned as a
matrix of scalar values.

nuhat — Estimated degrees of freedom parameter for the fitted t copula
scalar value
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Estimated degrees of freedom parameter for the fitted t copula, returned as a scalar value.

nuci — Approximate confidence interval for the degrees of freedom parameter
1-by-2 matrix of scalar values

Approximate confidence interval for the degrees of freedom parameter, returned as a 1-by-2 matrix of
scalar values. The first column contains the lower boundary, and the second column contains the
upper boundary. By default, copulafit returns the approximate 95% confidence interval. You can
specify a different confidence interval using the 'Alpha' name-value pair.

paramhat — Estimated copula parameter for the fitted Archimedean copula
scalar value

Estimated copula parameter for the fitted Archimedean copula, returned as a scalar value.

paramci — Approximate confidence interval for the copula parameter
1-by-2 matrix of scalar values

Approximate confidence interval for the copula parameter, returned as a 1-by-2 matrix of scalar
values. The first column contains the lower boundary, and the second column contains the upper
boundary. By default, copulafit returns the approximate 95% confidence interval. You can specify a
different confidence interval using the 'Alpha' name-value pair.

Algorithms
By default, copulafit uses maximum likelihood to fit a copula to u. When u contains data
transformed to the unit hypercube by parametric estimates of their marginal cumulative distribution
functions, this is known as the Inference Functions for Margins (IFM) method. When u contains data
transformed by the empirical cdf (see ecdf), this is known as Canonical Maximum Likelihood (CML).

Version History
Introduced in R2007b

References
[1] Bouyé, E., V. Durrleman, A. Nikeghbali, G. Riboulet, and T. Roncalli. “Copulas for Finance: A

Reading Guide and Some Applications.” Working Paper. Groupe de Recherche Opérationnelle,
Crédit Lyonnais, Paris, 2000.

See Also
copulacdf | copulapdf | copulaparam | copulastat | copularnd

Topics
“Generate Correlated Data Using Rank Correlation” on page 5-116
“Copulas: Generate Correlated Samples” on page 5-129
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copulaparam
Copula parameters as function of rank correlation

Syntax
rho = copulaparam('Gaussian',r)

rho = copulaparam('t',r,nu)

alpha = copulaparam(family,r)

___  = copulaparam( ___ ,Name,Value)

Description
rho = copulaparam('Gaussian',r) returns the linear correlation parameters, rho, that
correspond to a Gaussian copula with Kendall’s rank correlation, r.

rho = copulaparam('t',r,nu) returns the linear correlation parameters, rho, that correspond
to a t copula with Kendall’s rank correlation, r, and degrees of freedom, nu.

alpha = copulaparam(family,r) returns the copula parameter, alpha, that corresponds to a
bivariate Archimedean copula of the type specified by family, with Kendall’s rank correlation, r.

___  = copulaparam( ___ ,Name,Value) returns the correlation parameter using any of the
previous syntaxes, with additional options specified by one or more Name,Value pair arguments. For
example, you can specify whether the input rank correlation value is Spearman’s rho or Kendall’s tau.

Examples

Generate Correlated Data Using the Inverse cdf

Generate correlated random data from a beta distribution using a bivariate Gaussian copula with
Kendall's tau rank correlation equal to -0.5.

Compute the linear correlation parameter from the rank correlation value.

rng default  % For reproducibility
tau = -0.5;
rho = copulaparam('Gaussian',tau)

rho = -0.7071

Use a Gaussian copula to generate a two-column matrix of dependent random values.

u = copularnd('gaussian',rho,100);

Each column contains 100 random values between 0 and 1, inclusive, sampled from a continuous
uniform distribution.

Create a scatterhist plot to visualize the random numbers generated using the copula.
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figure
scatterhist(u(:,1),u(:,2))

The histograms show that the data in each column of the copula has a marginal uniform distribution.
The scatterplot shows that the data in the two columns is negatively correlated.

Use the inverse cdf function betainv to transform each column of the uniform marginal distributions
into random numbers from a beta distribution. In the first column, the first shape parameter A is
equal to 1, and a second shape parameter B is equal to 2. In the second column, the first shape
parameter A is equal to 1.5, and a second shape parameter B is equal to 2.

b = [betainv(u(:,1),1,2), betainv(u(:,2),1.5,2)];

Create a scatterhist plot to visualize the correlated beta distribution data.

figure
scatterhist(b(:,1),b(:,2))
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The histograms show the marginal beta distributions for each variable. The scatterplot shows the
negative correlation.

Verify that the sample has a rank correlation approximately equal to the initial value for Kendall's tau.

tau_sample = corr(b,'type','kendall')

tau_sample = 2×2

    1.0000   -0.5135
   -0.5135    1.0000

The sample rank correlation of -0.5135 is approximately equal to the -0.5 initial value for tau.

Input Arguments
r — Copula rank correlation
scalar value | matrix of scalar values

Copula rank correlation, returned as a scalar value or matrix of scalar values.

• If r is a scalar correlation coefficient, then rho is a scalar correlation coefficient corresponding to
a bivariate copula.

• If r is a p-by-p correlation matrix, then rho is a p-by-p correlation matrix.

 copulaparam

35-1087



If the copula is specified as one of the bivariate Archimedean copula types ('Clayton', 'Frank', or
'Gumbel'), then r is a scalar value.

nu — Degrees of freedom
positive integer value

Degrees of freedom for the t copula, specified as a positive integer value.
Data Types: single | double

family — Bivariate Archimedean copula family
'Clayton' | 'Frank' | 'Gumbel'

Bivariate Archimedean copula family, specified as one of the following.

'Clayton' Clayton copula
'Frank' Frank copula
'Gumbel' Gumbel copula

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: 'type','Spearman' computes Spearman’s rank correlation.

type — Type of rank correlation
'Kendall' (default) | 'Spearman'

Type of rank correlation, specified as the comma-separated pair consisting of 'type' and one of the
following.

• 'Kendall' — Indicates that the input value for r is a Kendall’s tau correlation value
• 'Spearman' — Indicates that the input value for r is a Spearman’s rho rank correlation value

copulaparam uses an approximation to Spearman’s rank correlation for copula families that do not
have an existing analytic formula. The approximation is based on a smooth fit to values computed at
discrete values of the copula parameters. For a t copula, the approximation is accurate for degrees of
freedom larger than 0.05.
Example: 'type','Spearman'

Output Arguments
rho — Linear correlation parameter
scalar value | matrix of scalar values

Linear correlation parameter, returned as a scalar value or matrix of scalar values.

• If r is a scalar correlation coefficient, then rho is a scalar correlation coefficient corresponding to
a bivariate copula.
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• If r is a p-by-p correlation matrix, then rho is a p-by-p correlation matrix.

alpha — Bivariate Archimedean copula parameter
scalar value

Bivariate Archimedean copula parameter, returned as a scalar value. Permitted values for alpha
depend on the specified copula family.

Copula Family Permitted Alpha Values
'Clayton' [0,∞)
'Frank' (-∞,∞)
'Gumbel' [1,∞)

Data Types: single | double

Version History
Introduced in R2006a

See Also
copulacdf | copulapdf | copulafit | copulastat | copularnd | ecdf

Topics
“Generate Correlated Data Using Rank Correlation” on page 5-116
“Copulas: Generate Correlated Samples” on page 5-129
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copulapdf
Copula probability density function

Syntax
y = copulapdf('Gaussian',u,rho)

y = copulapdf('t',u,rho,nu)

y = copulapdf(family,u,alpha)

Description
y = copulapdf('Gaussian',u,rho) returns the probability density of the Gaussian copula with
linear correlation parameters, rho, evaluated at the points in u.

y = copulapdf('t',u,rho,nu) returns the probability density of the t copula with linear
correlation parameters, rho, and degrees of freedom parameter, nu, evaluated at the points in u.

y = copulapdf(family,u,alpha) returns the probability density of the bivariate Archimedean
copula of the type specified by family, with scalar parameter, alpha, evaluated at the points in u.

Examples

Compute the Clayton Copula pdf

Define two 10-by-10 matrices containing the values at which to compute the pdf.

u = linspace(0,1,10);
[u1,u2] = meshgrid(u,u);

Compute the pdf of a Clayton copula that has an alpha parameter equal to 1, at the values in u.

y = copulapdf('Clayton',[u1(:),u2(:)],1);

Plot the pdf as a surface, and label the axes.

surf(u1,u2,reshape(y,10,10))
xlabel('u1')
ylabel('u2')
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Input Arguments
u — Values at which to evaluate pdf
matrix of scalar values in the range [0,1]

Values at which to evaluate the pdf, specified as a matrix of scalar values in the range [0,1]. If u is an
n-by-p matrix, then its values represent n points in the p-dimensional unit hypercube. If u is an n-by-2
matrix, then its values represent n points in the unit square.

If you specify a bivariate Archimedean copula type ('Clayton', 'Frank', or 'Gumbel'), then u
must be an n-by-2 matrix.
Data Types: single | double

rho — Linear correlation parameters
scalar values | matrix of scalar values

Linear correlation parameters for the copula, specified as a scalar value or matrix of scalar values.

• If u is an n-by-p matrix, then rho is a p-by-p correlation matrix.
• If u is an n-by-2 matrix, then rho can be a scalar correlation coefficient.

Data Types: single | double
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nu — Degrees of freedom
positive integer value

Degrees of freedom for the t copula, specified as a positive integer value.
Data Types: single | double

family — Bivariate Archimedean copula family
'Clayton' | 'Frank' | 'Gumbel'

Bivariate Archimedean copula family, specified as one of the following.

'Clayton' Clayton copula
'Frank' Frank copula
'Gumbel' Gumbel copula

alpha — Bivariate Archimedean copula parameter
scalar value

Bivariate Archimedean copula parameter, specified as a scalar value. Permitted values for alpha
depend on the specified copula family.

Copula Family Permitted Alpha Values
'Clayton' [0,∞)
'Frank' (-∞,∞)
'Gumbel' [1,∞)

Data Types: single | double

Output Arguments
y — Probability density function
vector of scalar values

Probability density function, evaluated at the values in u, returned as a vector of scalar values.

Version History
Introduced in R2006a

See Also
copulacdf | copulaparam | copulastat | copularnd

Topics
“Generate Correlated Data Using Rank Correlation” on page 5-116
“Copulas: Generate Correlated Samples” on page 5-129
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copulastat
Copula rank correlation

Syntax
r = copulastat('Gaussian',rho)

r = copulastat('t',rho,nu)

r = copulastat(family,alpha)

r = copulastat( ___ ,Name,Value)

Description
r = copulastat('Gaussian',rho) returns the Kendall’s rank correlation, r, that corresponds to
a Gaussian copula with linear correlation parameters rho.

r = copulastat('t',rho,nu) returns the Kendall’s rank correlation, r, that corresponds to a t
copula with linear correlation parameters, rho, and degrees of freedom parameter, nu.

r = copulastat(family,alpha) returns the Kendall’s rank correlation, r, that corresponds to a
bivariate Archimedean copula that has the type specified by family and scalar parameter alpha.

r = copulastat( ___ ,Name,Value) returns the copula rank correlation with additional options
specified by one or more Name,Value pair arguments, using any of the previous syntaxes. For
example, you can return Spearman’s rho rank correlation.

Examples

Compute the Gaussian Copula Rank Correlation

Compute the rank correlation for a Gaussian copula with the specified linear correlation parameter
rho.

rho = -.7071;
tau = copulastat('gaussian',rho)

tau = -0.5000

Use the copula to generate dependent random values from a beta distribution that has parameters a
and b equal to 2.

rng default  % For reproducibility
u = copularnd('gaussian',rho,100);
b = betainv(u,2,2);

Verify that the sample has a rank correlation approximately equal to tau.

tau_sample = corr(b,'type','k')
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tau_sample = 2×2

    1.0000   -0.5135
   -0.5135    1.0000

Input Arguments
rho — Linear correlation parameters
scalar values | matrix of scalar values

Linear correlation parameters for the copula, specified as a scalar value or matrix of scalar values.

• If rho is a scalar correlation coefficient, then r is a scalar correlation coefficient corresponding to
a bivariate copula.

• If rho is a p-by-p correlation matrix, then r is a p-by-p correlation matrix.

Data Types: single | double

nu — Degrees of freedom
positive integer value

Degrees of freedom for the t copula, specified as a positive integer value.
Data Types: single | double

family — Bivariate Archimedean copula family
'Clayton' | 'Frank' | 'Gumbel'

Bivariate Archimedean copula family, specified as one of the following.

'Clayton' Clayton copula
'Frank' Frank copula
'Gumbel' Gumbel copula

alpha — Bivariate Archimedean copula parameter
scalar value

Bivariate Archimedean copula parameter, specified as a scalar value. Permitted values for alpha
depend on the specified copula family.

Copula Family Permitted Alpha Values
'Clayton' [0,∞)
'Frank' (-∞,∞)
'Gumbel' [1,∞)

Data Types: single | double
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Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: 'type','Spearman' computes Spearman’s rank correlation.

type — Type of rank correlation
'Kendall' (default) | 'Spearman'

Type of rank correlation, specified as the comma-separated pair consisting of 'type' and one of the
following.

• 'Kendall' — Compute Kendall’s tau.
• 'Spearman' — Compute Spearman’s rho (rank correlation).

copulastat uses an approximation to Spearman’s rank correlation for copula families that do not
have an existing analytic formula. The approximation is based on a smooth fit to values computed at
discrete values of the copula parameters. For a t copula, the approximation is accurate for degrees of
freedom larger than 0.05.
Example: 'type','Spearman'

Output Arguments
r — Copula rank correlation
scalar value | matrix of scalar values

Copula rank correlation, returned as a scalar value or matrix of scalar values.

• If rho is a scalar correlation coefficient, then r is a scalar correlation coefficient corresponding to
a bivariate copula.

• If rho is a p-by-p correlation matrix, then r is a p-by-p correlation matrix.

Version History
Introduced in R2006a

See Also
copulacdf | copulapdf | copulaparam | copularnd

Topics
“Generate Correlated Data Using Rank Correlation” on page 5-116
“Copulas: Generate Correlated Samples” on page 5-129
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copularnd
Copula random numbers

Syntax
u = copularnd('Gaussian',rho,n)

u = copularnd('t',rho,nu,n)

u = copularnd(family,alpha,n)

Description
u = copularnd('Gaussian',rho,n) returns n random vectors generated from a Gaussian copula
with linear correlation parameters rho.

u = copularnd('t',rho,nu,n) returns n random vectors generated from a t copula with linear
correlation parameters rho and degrees of freedom nu.

u = copularnd(family,alpha,n) returns n random vectors generated from a bivariate
Archimedean copula that has the type specified by family and the scalar parameter alpha.

Examples

Generate Correlated Data Using the Inverse cdf

Generate correlated random data from a beta distribution using a bivariate Gaussian copula with
Kendall's tau rank correlation equal to -0.5.

Compute the linear correlation parameter from the rank correlation value.

rng default  % For reproducibility
tau = -0.5;
rho = copulaparam('Gaussian',tau)

rho = -0.7071

Use a Gaussian copula to generate a two-column matrix of dependent random values.

u = copularnd('gaussian',rho,100);

Each column contains 100 random values between 0 and 1, inclusive, sampled from a continuous
uniform distribution.

Create a scatterhist plot to visualize the random numbers generated using the copula.

figure
scatterhist(u(:,1),u(:,2))
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The histograms show that the data in each column of the copula has a marginal uniform distribution.
The scatterplot shows that the data in the two columns is negatively correlated.

Use the inverse cdf function betainv to transform each column of the uniform marginal distributions
into random numbers from a beta distribution. In the first column, the first shape parameter A is
equal to 1, and a second shape parameter B is equal to 2. In the second column, the first shape
parameter A is equal to 1.5, and a second shape parameter B is equal to 2.

b = [betainv(u(:,1),1,2), betainv(u(:,2),1.5,2)];

Create a scatterhist plot to visualize the correlated beta distribution data.

figure
scatterhist(b(:,1),b(:,2))
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The histograms show the marginal beta distributions for each variable. The scatterplot shows the
negative correlation.

Verify that the sample has a rank correlation approximately equal to the initial value for Kendall's tau.

tau_sample = corr(b,'type','kendall')

tau_sample = 2×2

    1.0000   -0.5135
   -0.5135    1.0000

The sample rank correlation of -0.5135 is approximately equal to the -0.5 initial value for tau.

Input Arguments
rho — Linear correlation parameters
scalar values | matrix of scalar values

Linear correlation parameters for the copula, specified as a scalar value or matrix of scalar values.

• If rho is a p-by-p correlation matrix, then the output argument u is an n-by-p matrix.
• If rho is a scalar correlation coefficient, then the output argument u is an n-by-2 matrix.

Data Types: single | double
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n — Number of random vectors to return
positive scalar value

Number of random vectors to return, specified as a positive scalar value.

• If you specify the copula type as 'Gaussian' or 't', and rho is a p-by-p correlation matrix, then
u is an n-by-p matrix.

• If you specify the copula type as 'Gaussian' or 't', and rho is a scalar correlation coefficient,
then u is an n-by-2 matrix.

• If you specify the copula type as 'Clayton', 'Frank', or 'Gumbel', then u is an n-by-2 matrix.

Data Types: single | double

nu — Degrees of freedom
positive integer value

Degrees of freedom for the t copula, specified as a positive integer value.
Data Types: single | double

family — Bivariate Archimedean copula family
'Clayton' | 'Frank' | 'Gumbel'

Bivariate Archimedean copula family, specified as one of the following.

'Clayton' Clayton copula
'Frank' Frank copula
'Gumbel' Gumbel copula

alpha — Bivariate Archimedean copula parameter
scalar value

Bivariate Archimedean copula parameter, specified as a scalar value. Permitted values for alpha
depend on the specified copula family.

Copula Family Permitted Alpha Values
'Clayton' [0,∞)
'Frank' (-∞,∞)
'Gumbel' [1,∞)

Data Types: single | double

Output Arguments
u — Copula random numbers
matrix of scalar values

Copula random numbers, returned as a matrix of scalar values. Each column of u is a sample from a
Uniform(0,1) marginal distribution.

• If you specify the copula type as 'Gaussian' or 't', and rho is a p-by-p correlation matrix, then
u is an n-by-p matrix.
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• If you specify the copula type as 'Gaussian' or 't', and rho is a scalar correlation coefficient,
then u is an n-by-2 matrix.

• If you specify the copula type as 'Clayton', 'Frank', or 'Gumbel', then u is an n-by-2 matrix.

Version History
Introduced in R2006a

See Also
copulacdf | copulapdf | copulaparam | copulastat

Topics
“Generate Correlated Data Using Rank Correlation” on page 5-116
“Copulas: Generate Correlated Samples” on page 5-129
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cordexch
Coordinate exchange

Syntax
dCE = cordexch(nfactors,nruns)
[dCE,X] = cordexch(nfactors,nruns)
[dCE,X] = cordexch(nfactors,nruns,'model')
[dCE,X] = cordexch(...,'name',value)

Description
dCE = cordexch(nfactors,nruns) uses a coordinate-exchange algorithm to generate a D-
optimal design dCE with nruns runs (the rows of dCE) for a linear additive model with nfactors
factors (the columns of dCE). The model includes a constant term.

[dCE,X] = cordexch(nfactors,nruns) also returns the associated design matrix X, whose
columns are the model terms evaluated at each treatment (row) of dCE.

[dCE,X] = cordexch(nfactors,nruns,'model') uses the linear regression model specified in
model. model is one of the following:

• 'linear' — Constant and linear terms. This is the default.
• 'interaction' — Constant, linear, and interaction terms
• 'quadratic' — Constant, linear, interaction, and squared terms
• 'purequadratic' — Constant, linear, and squared terms

The order of the columns of X for a full quadratic model with n terms is:

1 The constant term
2 The linear terms in order 1, 2, ..., n
3 The interaction terms in order (1, 2), (1, 3), ..., (1, n), (2, 3), ..., (n – 1, n)
4 The squared terms in order 1, 2, ..., n

Other models use a subset of these terms, in the same order.

Alternatively, model can be a matrix specifying polynomial terms of arbitrary order. In this case,
model should have one column for each factor and one row for each term in the model. The entries in
any row of model are powers for the factors in the columns. For example, if a model has factors X1,
X2, and X3, then a row [0 1 2] in model specifies the term (X1.^0).*(X2.^1).*(X3.^2). A row
of all zeros in model specifies a constant term, which can be omitted.

[dCE,X] = cordexch(...,'name',value) specifies one or more optional name/value pairs for
the design. Valid parameters and their values are listed in the following table. Specify name inside
single quotes.
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name Value
bounds Lower and upper bounds for each factor, specified as a 2-by-nfactors

matrix. Alternatively, this value can be a cell array containing nfactors
elements, each element specifying the vector of allowable values for the
corresponding factor.

categorical Indices of categorical predictors.
display Either 'on' or 'off' to control display of the iteration counter. The default

is 'on'.
excludefun Handle to a function that excludes undesirable runs. If the function is f, it

must support the syntax b = f(S), where S is a matrix of treatments with
nfactors columns and b is a vector of Boolean values with the same
number of rows as S. b(i) is true if the method should exclude ith row S.

init Initial design as a nruns-by-nfactors matrix. The default is a randomly
selected set of points.

levels Vector of number of levels for each factor. Not used when bounds is
specified as a cell array.

maxiter Maximum number of iterations. The default is 10.
tries Number of times to try to generate a design from a new starting point. The

algorithm uses random points for each try, except possibly the first. The
default is 1.

options A structure that specifies whether to run in parallel, and specifies the
random stream or streams. This option requires Parallel Computing Toolbox.

Create the options structure with statset. Structure fields:

• UseParallel — Set to true to compute in parallel. Default is false.
• UseSubstreams — Set to true to compute in parallel in a reproducible

fashion. Default is false. To compute reproducibly, set Streams to a
type allowing substreams: 'mlfg6331_64' or 'mrg32k3a'.

• Streams — A RandStream object or cell array of such objects. If you do
not specify Streams, cordexch uses the default stream or streams. If
you choose to specify Streams, use a single object except in the case

• UseParallel is true
• UseSubstreams is false

In that case, use a cell array the same size as the Parallel pool.

Examples
Suppose you want a design to estimate the parameters in the following three-factor, seven-term
interaction model:

y = β0 + β1x +1 β2x +2 β3x +3 β12x x1 +2 β13x x1 +3 β23x x2 +3 ε

Use cordexch to generate a D-optimal design with seven runs:

nfactors = 3;
nruns = 7;
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[dCE,X] = cordexch(nfactors,nruns,'interaction','tries',10)
dCE =
    -1     1     1
    -1    -1    -1
     1     1     1
    -1     1    -1
     1    -1     1
     1    -1    -1
    -1    -1     1
X =
     1    -1     1     1    -1    -1     1
     1    -1    -1    -1     1     1     1
     1     1     1     1     1     1     1
     1    -1     1    -1    -1     1    -1
     1     1    -1     1    -1     1    -1
     1     1    -1    -1    -1    -1     1
     1    -1    -1     1     1    -1    -1

Columns of the design matrix X are the model terms evaluated at each row of the design dCE. The
terms appear in order from left to right: constant term, linear terms (1, 2, 3), interaction terms (12,
13, 23). Use X to fit the model, as described in “Linear Regression” on page 11-9, to response data
measured at the design points in dCE.

Algorithms
Both cordexch and rowexch use iterative search algorithms. They operate by incrementally
changing an initial design matrix X to increase D = |XTX| at each step. In both algorithms, there is
randomness built into the selection of the initial design and into the choice of the incremental
changes. As a result, both algorithms may return locally, but not globally, D-optimal designs. Run each
algorithm multiple times and select the best result for your final design. Both functions have a
'tries' parameter that automates this repetition and comparison.

Unlike the row-exchange algorithm used by rowexch, cordexch does not use a candidate set. (Or
rather, the candidate set is the entire design space.) At each step, the coordinate-exchange algorithm
exchanges a single element of X with a new element evaluated at a neighboring point in design space.
The absence of a candidate set reduces demands on memory, but the smaller scale of the search
means that the coordinate-exchange algorithm is more likely to become trapped in a local minimum.

Version History
Introduced before R2006a

Extended Capabilities
Automatic Parallel Support
Accelerate code by automatically running computation in parallel using Parallel Computing Toolbox™.

To run in parallel, specify the 'Options' name-value argument in the call to this function and set the
'UseParallel' field of the options structure to true using statset.

For example: 'Options',statset('UseParallel',true)

For more information about parallel computing, see “Run MATLAB Functions with Automatic Parallel
Support” (Parallel Computing Toolbox).

 cordexch

35-1103



See Also
rowexch | daugment | dcovary

35 Functions

35-1104



corr
Linear or rank correlation

Syntax
rho = corr(X)
rho = corr(X,Y)
[rho,pval] = corr(X,Y)
[rho,pval] = corr( ___ ,Name,Value)

Description
rho = corr(X) returns a matrix of the pairwise linear correlation coefficient between each pair of
columns in the input matrix X.

rho = corr(X,Y) returns a matrix of the pairwise correlation coefficient between each pair of
columns in the input matrices X and Y.

[rho,pval] = corr(X,Y) also returns pval, a matrix of p-values for testing the hypothesis of no
correlation against the alternative hypothesis of a nonzero correlation.

[rho,pval] = corr( ___ ,Name,Value) specifies options using one or more name-value pair
arguments in addition to the input arguments in the previous syntaxes. For example,
'Type','Kendall' specifies computing Kendall's tau correlation coefficient.

Examples

Find Correlation Between Two Matrices

Find the correlation between two matrices and compare it to the correlation between two column
vectors.

Generate sample data.

rng('default')
X = randn(30,4);
Y = randn(30,4);

Introduce correlation between column two of the matrix X and column four of the matrix Y.

Y(:,4) = Y(:,4)+X(:,2);

Calculate the correlation between columns of X and Y.

[rho,pval] = corr(X,Y)

rho = 4×4

   -0.1686   -0.0363    0.2278    0.3245
    0.3022    0.0332   -0.0866    0.7653
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   -0.3632   -0.0987   -0.0200   -0.3693
   -0.1365   -0.1804    0.0853    0.0279

pval = 4×4

    0.3731    0.8489    0.2260    0.0802
    0.1045    0.8619    0.6491    0.0000
    0.0485    0.6039    0.9166    0.0446
    0.4721    0.3400    0.6539    0.8837

As expected, the correlation coefficient between column two of X and column four of Y, rho(2,4), is
the highest, and it represents a high positive correlation between the two columns. The
corresponding p-value, pval(2,4), is zero to the four digits shown. Because the p-value is less than
the significance level of 0.05, it indicates rejection of the hypothesis that no correlation exists
between the two columns.

Calculate the correlation between X and Y using corrcoef.

[r,p] = corrcoef(X,Y)

r = 2×2

    1.0000   -0.0329
   -0.0329    1.0000

p = 2×2

    1.0000    0.7213
    0.7213    1.0000

The MATLAB® function corrcoef, unlike the corr function, converts the input matrices X and Y
into column vectors, X(:) and Y(:), before computing the correlation between them. Therefore, the
introduction of correlation between column two of matrix X and column four of matrix Y no longer
exists, because those two columns are in different sections of the converted column vectors.

The value of the off-diagonal elements of r, which represents the correlation coefficient between X
and Y, is low. This value indicates little to no correlation between X and Y. Likewise, the value of the
off-diagonal elements of p, which represents the p-value, is much higher than the significance level of
0.05. This value indicates that not enough evidence exists to reject the hypothesis of no correlation
between X and Y.

Test Alternative Hypotheses for Correlation

Test alternative hypotheses for positive, negative, and nonzero correlation between the columns of
two matrices. Compare values of the correlation coefficient and p-value in each case.

Generate sample data.

rng('default')
X = randn(50,4);
Y = randn(50,4);
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Introduce positive correlation between column one of the matrix X and column four of the matrix Y.

Y(:,4) = Y(:,4)+0.7*X(:,1);

Introduce negative correlation between column two of X and column two of Y.

Y(:,2) = Y(:,2)-2*X(:,2);

Test the alternative hypothesis that the correlation is greater than zero.

[rho,pval] = corr(X,Y,'Tail','right')

rho = 4×4

    0.0627   -0.1438   -0.0035    0.7060
   -0.1197   -0.8600   -0.0440    0.1984
   -0.1119    0.2210   -0.3433    0.1070
   -0.3526   -0.2224    0.1023    0.0374

pval = 4×4

    0.3327    0.8405    0.5097    0.0000
    0.7962    1.0000    0.6192    0.0836
    0.7803    0.0615    0.9927    0.2298
    0.9940    0.9397    0.2398    0.3982

As expected, the correlation coefficient between column one of X and column four of Y, rho(1,4),
has the highest positive value, representing a high positive correlation between the two columns. The
corresponding p-value, pval(1,4), is zero to the four digits shown, which is lower than the
significance level of 0.05. These results indicate rejection of the null hypothesis that no correlation
exists between the two columns and lead to the conclusion that the correlation is greater than zero.

Test the alternative hypothesis that the correlation is less than zero.

[rho,pval] = corr(X,Y,'Tail','left')

rho = 4×4

    0.0627   -0.1438   -0.0035    0.7060
   -0.1197   -0.8600   -0.0440    0.1984
   -0.1119    0.2210   -0.3433    0.1070
   -0.3526   -0.2224    0.1023    0.0374

pval = 4×4

    0.6673    0.1595    0.4903    1.0000
    0.2038    0.0000    0.3808    0.9164
    0.2197    0.9385    0.0073    0.7702
    0.0060    0.0603    0.7602    0.6018

As expected, the correlation coefficient between column two of X and column two of Y, rho(2,2),
has the negative number with the largest absolute value (-0.86), representing a high negative
correlation between the two columns. The corresponding p-value, pval(2,2), is zero to the four
digits shown, which is lower than the significance level of 0.05. Again, these results indicate
rejection of the null hypothesis and lead to the conclusion that the correlation is less than zero.

 corr

35-1107



Test the alternative hypothesis that the correlation is not zero.

[rho,pval] = corr(X,Y)

rho = 4×4

    0.0627   -0.1438   -0.0035    0.7060
   -0.1197   -0.8600   -0.0440    0.1984
   -0.1119    0.2210   -0.3433    0.1070
   -0.3526   -0.2224    0.1023    0.0374

pval = 4×4

    0.6654    0.3190    0.9807    0.0000
    0.4075    0.0000    0.7615    0.1673
    0.4393    0.1231    0.0147    0.4595
    0.0120    0.1206    0.4797    0.7964

The p-values, pval(1,4) and pval(2,2), are both zero to the four digits shown. Because the p-
values are lower than the significance level of 0.05, the correlation coefficients rho(1,4) and
rho(2,2) are significantly different from zero. Therefore, the null hypothesis is rejected; the
correlation is not zero.

Input Arguments
X — Input matrix
matrix

Input matrix, specified as an n-by-k matrix. The rows of X correspond to observations, and the
columns correspond to variables.
Example: X = randn(10,5)
Data Types: single | double

Y — Input matrix
matrix

Input matrix, specified as an n-by-k2 matrix when X is specified as an n-by-k1 matrix. The rows of Y
correspond to observations, and the columns correspond to variables.
Example: Y = randn(20,7)
Data Types: single | double

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: corr(X,Y,'Type','Kendall','Rows','complete') returns Kendall's tau correlation
coefficient using only the rows that contain no missing values.
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Type — Type of correlation
'Pearson' (default) | 'Kendall' | 'Spearman'

Type of correlation, specified as the comma-separated pair consisting of 'Type' and one of these
values.

Value Description
'Pearson' “Pearson's Linear Correlation Coefficient” on page 35-1110
'Kendall' “Kendall's Tau Coefficient” on page 35-1110
'Spearman' “Spearman's Rho” on page 35-1111

corr computes the p-values for Pearson's correlation using a Student's t distribution for a
transformation of the correlation. This correlation is exact when X and Y come from a normal
distribution. corr computes the p-values for Kendall's tau and Spearman's rho using either the exact
permutation distributions (for small sample sizes) or large-sample approximations.
Example: 'Type','Spearman'

Rows — Rows to use in computation
'all' (default) | 'complete' | 'pairwise'

Rows to use in computation, specified as the comma-separated pair consisting of 'Rows' and one of
these values.

Value Description
'all' Use all rows of the input regardless of missing values (NaNs).
'complete' Use only rows of the input with no missing values.
'pairwise' Compute rho(i,j) using rows with no missing values in column i or

j.

The 'complete' value, unlike the 'pairwise' value, always produces a positive definite or positive
semidefinite rho. Also, the 'complete' value generally uses fewer observations to estimate rho
when rows of the input (X or Y) contain missing values.
Example: 'Rows','pairwise'

Tail — Alternative hypothesis
'both' (default) | 'right' | 'left'

Alternative hypothesis, specified as the comma-separated pair consisting of 'Tail' and one of the
values in the table. 'Tail' specifies the alternative hypothesis against which to compute p-values for
testing the hypothesis of no correlation.

Value Description
'both' Test the alternative hypothesis that the correlation is not 0.
'right' Test the alternative hypothesis that the correlation is greater than 0
'left' Test the alternative hypothesis that the correlation is less than 0.

corr computes the p-values for the two-tailed test by doubling the more significant of the two one-
tailed p-values.
Example: 'Tail','left'
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Output Arguments
rho — Pairwise linear correlation coefficient
matrix

Pairwise linear correlation coefficient, returned as a matrix.

• If you input only a matrix X, rho is a symmetric k-by-k matrix, where k is the number of columns
in X. The entry rho(a,b) is the pairwise linear correlation coefficient between column a and
column b in X.

• If you input matrices X and Y, rho is a k1-by-k2 matrix, where k1 and k2 are the number of columns
in X and Y, respectively. The entry rho(a,b) is the pairwise linear correlation coefficient between
column a in X and column b in Y.

pval — p-values
matrix

p-values, returned as a matrix. Each element of pval is the p-value for the corresponding element of
rho.

If pval(a,b) is small (less than 0.05), then the correlation rho(a,b) is significantly different from
zero.

More About
Pearson's Linear Correlation Coefficient

Pearson's linear correlation coefficient is the most commonly used linear correlation coefficient. For

column Xa in matrix X and column Yb in matrix Y, having means Xa = ∑
i = 1

n
(Xa, i)/n, and

Yb = ∑
j = 1

n
(Xb, j)/n, Pearson's linear correlation coefficient rho(a,b) is defined as:

rho(a, b) =
∑

i = 1

n
(Xa, i− Xa)(Yb, i− Yb)

∑
i = 1

n
(Xa, i− Xa)2 ∑

j = 1

n
(Yb, j− Yb)2

1/2 ,

where n is the length of each column.

Values of the correlation coefficient can range from –1 to +1. A value of –1 indicates perfect negative
correlation, while a value of +1 indicates perfect positive correlation. A value of 0 indicates no
correlation between the columns.

Kendall's Tau Coefficient

Kendall's tau is based on counting the number of (i,j) pairs, for i<j, that are concordant—that is, for
which Xa, i− Xa, j and Yb, i− Yb, j have the same sign. The equation for Kendall's tau includes an
adjustment for ties in the normalizing constant and is often referred to as tau-b.

For column Xa in matrix X and column Yb in matrix Y, Kendall's tau coefficient is defined as:
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τ = 2K
n(n− 1),

where K = ∑
i = 1

n− 1
∑

j = i + 1

n
ξ*(Xa, i, Xa, j, Yb, i, Yb, j), and

ξ*(Xa, i, Xa, j, Yb, i, Yb, j) =
1 if (Xa, i− Xa, j)(Yb, i− Yb, j) > 0
0 if (Xa, i− Xa, j)(Yb, i− Yb, j) = 0
−1 if (Xa, i− Xa, j)(Yb, i− Yb, j) < 0

.

Values of the correlation coefficient can range from –1 to +1. A value of –1 indicates that one column
ranking is the reverse of the other, while a value of +1 indicates that the two rankings are the same. A
value of 0 indicates no relationship between the columns.

Spearman's Rho

Spearman's rho is equivalent to “Pearson's Linear Correlation Coefficient” on page 35-1110 applied
to the rankings of the columns Xa and Yb.

If all the ranks in each column are distinct, the equation simplifies to:

rho(a, b) = 1−
6∑d2

n(n2− 1)
,

where d is the difference between the ranks of the two columns, and n is the length of each column.

Tips
The difference between corr(X,Y) and the MATLAB function corrcoef(X,Y) is that
corrcoef(X,Y) returns a matrix of correlation coefficients for two column vectors X and Y. If X and
Y are not column vectors, corrcoef(X,Y) converts them to column vectors.

Version History
Introduced before R2006a

References
[1] Gibbons, J.D. Nonparametric Statistical Inference. 2nd ed. M. Dekker, 1985.

[2] Hollander, M., and D.A. Wolfe. Nonparametric Statistical Methods. Wiley, 1973.

[3] Kendall, M.G. Rank Correlation Methods. Griffin, 1970.

[4] Best, D.J., and D.E. Roberts. "Algorithm AS 89: The Upper Tail Probabilities of Spearman's rho."
Applied Statistics, 24:377-379.

Extended Capabilities
Tall Arrays
Calculate with arrays that have more rows than fit in memory.

 corr

35-1111



This function supports tall arrays for out-of-memory data with the limitation:

Only the 'Pearson' type is supported.

For more information, see “Tall Arrays for Out-of-Memory Data”.

Thread-Based Environment
Run code in the background using MATLAB® backgroundPool or accelerate code with Parallel
Computing Toolbox™ ThreadPool.

This function fully supports thread-based environments. For more information, see “Run MATLAB
Functions in Thread-Based Environment”.

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

This function fully supports GPU arrays. For more information, see “Run MATLAB Functions on a
GPU” (Parallel Computing Toolbox).

See Also
corrcoef | partialcorr | corrcov | tiedrank
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corrcov
Convert covariance matrix to correlation matrix

Syntax
R = corrcov(C)
[R,sigma] = corrcov(C)

Description
R = corrcov(C) returns the correlation matrix R corresponding to the covariance matrix C.

[R,sigma] = corrcov(C) also returns sigma, a vector of standard deviations.

Examples

Compare Correlation Matrices Obtained by Two Different Methods

Compare the correlation matrix obtained by applying corrcov on a covariance matrix with the
correlation matrix obtained by direct computation using corrcoef on an input matrix.

Load the hospital data set and create a matrix containing the Weight and BloodPressure
measurements. Note that hospital.BloodPressure has two columns of data.

load hospital
X = [hospital.Weight hospital.BloodPressure];

Compute the covariance matrix.

C = cov(X)

C = 3×3

  706.0404   27.7879   41.0202
   27.7879   45.0622   23.8194
   41.0202   23.8194   48.0590

Compute the correlation matrix from the covariance matrix by using corrcov.

R1 = corrcov(C)

R1 = 3×3

    1.0000    0.1558    0.2227
    0.1558    1.0000    0.5118
    0.2227    0.5118    1.0000

Compute the correlation matrix directly by using corrcoef, and then compare R1 with R2.

R2 = corrcoef(X)
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R2 = 3×3

    1.0000    0.1558    0.2227
    0.1558    1.0000    0.5118
    0.2227    0.5118    1.0000

The correlation matrices R1 and R2 are the same.

Find Standard Deviations from Covariance Matrix

Find the vector of standard deviations from the covariance matrix, and show the relationship between
the standard deviations and the covariance matrix.

Load the hospital data set and create a matrix containing the Weight, BloodPressure, and Age
measurements. Note that hospital.BloodPressure has two columns of data.

load hospital
X = [hospital.Weight hospital.BloodPressure hospital.Age];

Compute the covariance matrix of X.

C = cov(X)

C = 4×4

  706.0404   27.7879   41.0202   17.5152
   27.7879   45.0622   23.8194    6.4966
   41.0202   23.8194   48.0590    4.0315
   17.5152    6.4966    4.0315   52.0622

C is square, symmetric, and positive semidefinite. The diagonal elements of C are the variances of the
four variables in X.

Compute the correlation matrix and standard deviations of X from the covariance matrix C.

[R,s1] = corrcov(C)

R = 4×4

    1.0000    0.1558    0.2227    0.0914
    0.1558    1.0000    0.5118    0.1341
    0.2227    0.5118    1.0000    0.0806
    0.0914    0.1341    0.0806    1.0000

s1 = 4×1

   26.5714
    6.7128
    6.9325
    7.2154

Compute the square root of the diagonal elements in C, and then compare s1 with s2.
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s2 = sqrt(diag(C))

s2 = 4×1

   26.5714
    6.7128
    6.9325
    7.2154

s1 and s2 are equal and correspond to the standard deviation of the variables in X.

Input Arguments
C — Covariance matrix
matrix

Covariance on page 35-1115 matrix, specified as a square, symmetric, and positive semidefinite
matrix.

For a matrix X that has N observations (rows) and n random variables (columns), C is an n-by-n
matrix. The n diagonal elements of C are the variances on page 35-1116 of the n random variables in
X, and a zero diagonal element in C indicates a constant variable in X.
Data Types: single | double

Output Arguments
R — Correlation matrix
matrix

Correlation matrix, returned as a matrix that corresponds to the covariance matrix C.
Data Types: single | double

sigma — Standard deviations
vector

Standard deviations, returned as an n-by-1 vector.

The elements of sigma are the standard deviations of the variables in X, the N-by-n matrix that
produces C. Row i in sigma corresponds to the standard deviation of column i in X.
Data Types: single | double

More About
Covariance

For two random variable vectors A and B, the covariance is defined as

cov(A, B) = 1
N − 1 ∑i = 1

N
(Ai− μA)*(Bi− μB)
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where N is the length of each column, μA and μB are the mean values of A and B, respectively, and *
denotes the complex conjugate.

The covariance matrix of two random variables is the matrix of pairwise covariance calculations
between each variable,

C =
cov(A, A) cov(A, B)
cov(B, A) cov(B, B)

.

For a matrix X, in which each column is a random variable composed of observations, the covariance
matrix is the pairwise covariance calculation between each column combination. In other words,
C(i, j) = cov X(: , i), X(: , j) .

Variance

For a random variable vector A composed of N scalar observations, the variance is defined as

V = 1
N − 1 ∑i = 1

N
Ai− μ 2

where μ is the mean of A,

μ = 1
N ∑i = 1

N
Ai .

Some definitions of variance use a normalization factor of N instead of N–1, but the mean always has
the normalization factor N.

Version History
Introduced in R2007b

Extended Capabilities
Thread-Based Environment
Run code in the background using MATLAB® backgroundPool or accelerate code with Parallel
Computing Toolbox™ ThreadPool.

This function fully supports thread-based environments. For more information, see “Run MATLAB
Functions in Thread-Based Environment”.

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

This function fully supports GPU arrays. For more information, see “Run MATLAB Functions on a
GPU” (Parallel Computing Toolbox).

See Also
cov | corrcoef | corr | cholcov
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covarianceParameters
Class: GeneralizedLinearMixedModel

Extract covariance parameters of generalized linear mixed-effects model

Syntax
psi = covarianceParameters(glme)
[psi,dispersion] = covarianceParameters(glme)
[psi,dispersion,stats] = covarianceParameters(glme)
[ ___ ] = covarianceParameters(glme,Name,Value)

Description
psi = covarianceParameters(glme) returns the estimated prior covariance parameters of
random-effects predictors in the generalized linear mixed-effects model glme.

[psi,dispersion] = covarianceParameters(glme) also returns an estimate of the dispersion
parameter.

[psi,dispersion,stats] = covarianceParameters(glme) also returns a cell array stats
containing the covariance parameter estimates and related statistics.

[ ___ ] = covarianceParameters(glme,Name,Value) returns any of the above output
arguments using additional options specified by one or more Name,Value pair arguments. For
example, you can specify the confidence level for the confidence limits of covariance parameters.

Input Arguments
glme — Generalized linear mixed-effects model
GeneralizedLinearMixedModel object

Generalized linear mixed-effects model, specified as a GeneralizedLinearMixedModel object. For
properties and methods of this object, see GeneralizedLinearMixedModel.

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.

Alpha — Significance level
0.05 (default) | scalar value in the range [0,1]

Significance level, specified as the comma-separated pair consisting of 'Alpha' and a scalar value in
the range [0,1]. For a value α, the confidence level is 100 × (1 – α)%.

For example, for 99% confidence intervals, you can specify the confidence level as follows.
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Example: 'Alpha',0.01
Data Types: single | double

Output Arguments
psi — Estimated prior covariance parameters
cell array

Estimated prior covariance parameters for the random-effects predictors, returned as a cell array of
length R, where R is the number of grouping variables used in the model. psi{r} contains the
covariance matrix of random effects associated with grouping variable gr, where r = 1, 2, ..., R, The
order of grouping variables in psi is the same as the order entered when fitting the model. For more
information on grouping variables, see “Grouping Variables” on page 2-46.

dispersion — Dispersion parameter
scalar value

Dispersion parameter, returned as a scalar value.

stats — Covariance parameter estimates and related statistics
cell array

Covariance parameter estimates and related statistics, returned as a cell array of length (R + 1),
where R is the number of grouping variables used in the model. The first R cells of stats each
contain a dataset array with the following columns.

Column Name Description
Group Grouping variable name
Name1 Name of the first predictor variable
Name2 Name of the second predictor variable
Type If Name1 and Name2 are the same, then Type is

std (standard deviation).

If Name1 and Name2 are different, then Type is
corr (correlation).

Estimate If Name1 and Name2 are the same, then
Estimate is the standard deviation of the
random effect associated with predictor Name1 or
Name2.

If Name1 and Name2 are different, then
Estimate is the correlation between the random
effects associated with predictors Name1 and
Name2.

Lower Lower limit of the confidence interval for the
covariance parameter

Upper Upper limit of the confidence interval for the
covariance parameter

Cell R + 1 contains related statistics for the dispersion parameter.
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It is recommended that the presence or absence of covariance parameters in glme be tested using
the compare method, which uses a likelihood ratio test.

When fitting a GLME model using fitglme and one of the maximum likelihood fit methods
('Laplace' or 'ApproximateLaplace'), covarianceParameters derives the confidence
intervals in stats based on a Laplace approximation to the log likelihood of the generalized linear
mixed-effects model.

When fitting a GLME model using fitglme and one of the pseudo likelihood fit methods ('MPL' or
'REMPL'), covarianceParameters derives the confidence intervals in stats based on the fitted
linear mixed-effects model from the final pseudo likelihood iteration.

Examples

Obtain Estimated Covariance Parameters

Load the sample data.

load mfr

This simulated data is from a manufacturing company that operates 50 factories across the world,
with each factory running a batch process to create a finished product. The company wants to
decrease the number of defects in each batch, so it developed a new manufacturing process. To test
the effectiveness of the new process, the company selected 20 of its factories at random to participate
in an experiment: Ten factories implemented the new process, while the other ten continued to run
the old process. In each of the 20 factories, the company ran five batches (for a total of 100 batches)
and recorded the following data:

• Flag to indicate whether the batch used the new process (newprocess)
• Processing time for each batch, in hours (time)
• Temperature of the batch, in degrees Celsius (temp)
• Categorical variable indicating the supplier (A, B, or C) of the chemical used in the batch

(supplier)
• Number of defects in the batch (defects)

The data also includes time_dev and temp_dev, which represent the absolute deviation of time and
temperature, respectively, from the process standard of 3 hours at 20 degrees Celsius.

Fit a generalized linear mixed-effects model using newprocess, time_dev, temp_dev, and
supplier as fixed-effects predictors. Include a random-effects term for intercept grouped by
factory, to account for quality differences that might exist due to factory-specific variations. The
response variable defects has a Poisson distribution, and the appropriate link function for this
model is log. Use the Laplace fit method to estimate the coefficients. Specify the dummy variable
encoding as 'effects', so the dummy variable coefficients sum to 0.

The number of defects can be modeled using a Poisson distribution

defectsi j ∼ Poisson(μi j)

This corresponds to the generalized linear mixed-effects model

 covarianceParameters

35-1119



log(μi j) = β0 + β1newprocessi j + β2time_devi j + β3temp_devi j + β4supplier_Ci j + β5supplier_Bi j
+ bi,

where

• defectsi j is the number of defects observed in the batch produced by factory i during batch j.

• μi j is the mean number of defects corresponding to factory i (where i = 1, 2, . . . , 20) during batch
j (where j = 1, 2, . . . , 5).

• newprocessi j, time_devi j, and temp_devi j are the measurements for each variable that correspond
to factory i during batch j. For example, newprocessi j indicates whether the batch produced by
factory i during batch j used the new process.

• supplier_Ci j and supplier_Bi j are dummy variables that use effects (sum-to-zero) coding to indicate
whether company C or B, respectively, supplied the process chemicals for the batch produced by
factory i during batch j.

• bi ∼ N(0, σb
2) is a random-effects intercept for each factory i that accounts for factory-specific

variation in quality.

glme = fitglme(mfr,'defects ~ 1 + newprocess + time_dev + temp_dev + supplier + (1|factory)','Distribution','Poisson','Link','log','FitMethod','Laplace','DummyVarCoding','effects');

Compute and display the estimate of the prior covariance parameter for the random-effects predictor.

[psi,dispersion,stats] = covarianceParameters(glme);
psi{1}

ans = 0.0985

psi{1} is an estimate of the prior covariance matrix of the first grouping variable. In this example,
there is only one grouping variable (factory), so psi{1} is an estimate of σb

2.

Display the dispersion parameter.

dispersion

dispersion = 1

Display the estimated standard deviation of the random effect associated with the predictor. The first
cell of stats contains statistics for factory, while the second cell contains statistics for the
dispersion parameter.

stats{1}

ans = 
    Covariance Type: Isotropic

    Group      Name1                  Name2                  Type       
    factory    {'(Intercept)'}        {'(Intercept)'}        {'std'}    

    Estimate    Lower      Upper  
    0.31381     0.19253    0.51148
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The estimated standard deviation of the random effect associated with the predictor is 0.31381. The
95% confidence interval is [0.19253 , 0.51148]. Because the confidence interval does not contain 0,
the random intercept is significant at the 5% significance level.

See Also
GeneralizedLinearMixedModel | fitglme | compare | fixedEffects | randomEffects
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covarianceParameters
Class: LinearMixedModel

Extract covariance parameters of linear mixed-effects model

Syntax
psi = covarianceParameters(lme)
[psi,mse] = covarianceParameters(lme)
[psi,mse,stats] = covarianceParameters(lme)
[psi,mse,stats] = covarianceParameters(lme,Name,Value)

Description
psi = covarianceParameters(lme) returns the estimated covariance parameters that
parameterize the prior covariance of random effects.

[psi,mse] = covarianceParameters(lme) also returns an estimate of the residual variance.

[psi,mse,stats] = covarianceParameters(lme) also returns a cell array, stats, containing
the covariance parameters and related statistics.

[psi,mse,stats] = covarianceParameters(lme,Name,Value) returns the covariance
parameters and related statistics in stats with additional options specified by one or more
Name,Value pair arguments.

For example, you can specify the confidence level for the confidence limits of covariance parameters.

Input Arguments
lme — Linear mixed-effects model
LinearMixedModel object

Linear mixed-effects model, specified as a LinearMixedModel object constructed using fitlme or
fitlmematrix.

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.

Alpha — Significance level
0.05 (default) | scalar value in the range 0 to 1

Significance level, specified as the comma-separated pair consisting of 'Alpha' and a scalar value in
the range 0 to 1. For a value α, the confidence level is 100*(1–α)%.

For example, for 99% confidence intervals, you can specify the confidence level as follows.
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Example: 'Alpha',0.01
Data Types: single | double

Output Arguments
psi — Estimate of covariance parameters
cell array

Estimate of covariance parameters that parameterize the prior covariance of the random effects,
returned as a cell array of length R, such that psi{r} contains the covariance matrix of random
effects associated with grouping variable gr, r = 1, 2, ..., R. The order of grouping variables is the
same order you enter when you fit the model.

mse — Residual variance estimate
scalar value

Residual variance estimate, returned as a scalar value.

stats — Covariance parameter estimates and related statistics
cell array

Covariance parameter estimates and related statistics, returned as a cell array of length (R + 1)
containing dataset arrays with the following columns.

Group Grouping variable name
Name1 Name of the first predictor variable
Name2 Name of the second predictor variable
Type std (standard deviation), if Name1 and Name2 are

the same

corr (correlation), if Name1 and Name2 are
different

Estimate Standard deviation of the random effect
associated with predictor Name1 or Name2, if
Name1 and Name2 are the same

Correlation between the random effects
associated with predictors Name1 and Name2, if
Name1 and Name2 are different

Lower Lower limit of a 95% confidence interval for the
covariance parameter

Upper Upper limit of a 95% confidence interval for the
covariance parameter

stats{r} is a dataset array containing statistics on covariance parameters for the rth grouping
variable, r = 1, 2, ..., R. stats{R+1} contains statistics on the residual standard deviation. The
dataset array for the residual error has the fields Group, Name, Estimate, Lower, and Upper.

Examples

 covarianceParameters

35-1123



Two Random-Effects Terms for Intercept

Load the sample data.

load('fertilizer.mat');

The dataset array includes data from a split-plot experiment, where soil is divided into three blocks
based on the soil type: sandy, silty, and loamy. Each block is divided into five plots, where five
different types of tomato plants (cherry, heirloom, grape, vine, and plum) are randomly assigned to
these plots. The tomato plants in the plots are then divided into subplots, where each subplot is
treated by one of four fertilizers. This is simulated data.

Store the data in a dataset array called ds, for practical purposes, and define Tomato, Soil, and
Fertilizer as categorical variables.

ds = fertilizer;
ds.Tomato = nominal(ds.Tomato);
ds.Soil = nominal(ds.Soil);
ds.Fertilizer = nominal(ds.Fertilizer);

Fit a linear mixed-effects model, where Fertilizer is the fixed-effects variable, and the mean yield
varies by the block (soil type), and the plots within blocks (tomato types within soil types)
independently. This model corresponds to

yi jk = β0 + ∑
j = 2

5
β2 jI[T]i j + b0 jk(S * T) jk + ϵi jk,

where i = 1, 2, ..., 60 corresponds to the observations, j = 2, ..., 5 corresponds to the tomato types,
and k = 1, 2, 3 corresponds to the blocks (soil). Sk represents the k th soil type, and (S * T) jk
represents the j th tomato type nested in the k th soil type. I[T]i j is the dummy variable representing
the level j of the tomato type.

The random effects and observation error have the following prior distributions: b0k ∼ N(0, σS
2),

b0 jk ∼ N(0, σS * T
2 ), and ϵi jk ∼ N(0, σ2).

lme = fitlme(ds,'Yield ~ Fertilizer + (1|Soil) + (1|Soil:Tomato)');

Compute the covariance parameter estimates (estimates of σS
2 and σS * T

2 ) of the random-effects terms.

psi = covarianceParameters(lme)

psi=2×1 cell array
    {[3.8000e-17]}
    {[  352.8481]}

Compute the residual variance (σ2).

[~,mse] = covarianceParameters(lme)

mse = 151.9007
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Potentially Correlated Random-Effects Terms

Load the sample data.

load('weight.mat');

weight contains data from a longitudinal study, where 20 subjects are randomly assigned to 4
exercise programs, and their weight loss is recorded over six 2-week time periods. This is simulated
data.

Store the data in a dataset array. Define Subject and Program as categorical variables.

ds = dataset(InitialWeight,Program,Subject,Week,y);
ds.Subject = nominal(ds.Subject);
ds.Program = nominal(ds.Program);

Fit a linear mixed-effects model where the initial weight, type of program, week, and the interaction
between the week and type of program are the fixed effects. The intercept and week vary by subject.

For 'reference' dummy variable coding, fitlme uses Program A as reference and creates the
necessary dummy variables I[ . ]. This model corresponds to

yim = β0 + β1IWi + β2Weeki + β3I[PB]I + β4I[PC]i
+β5I[PD]i + b0m + b1mWeekim + ϵim

where i corresponds to the observation number, i = 1, 2, . . . , 120, and m corresponds to the subject
number, m = 1, 2, . . . , 20. β j are the fixed-effects coefficients, j = 0, 1, . . . , 8, and b0m and b1m are
random effects. IW stands for initial weight and I[ . ] is a dummy variable representing a type of
program. For example, I[PB]i is the dummy variable representing Program B.

The random effects and observation error have the following prior distributions:

b0m
b1m

∼ N 0,
σ0

2 σ0, 1

σ0, 1 σ1
2

and

ϵim ∼ N(0, σ2) .

lme = fitlme(ds,'y ~ InitialWeight + Program + (Week|Subject)');

Compute the estimates of covariance parameters for the random effects.

[psi,mse,stats] = covarianceParameters(lme)

psi = 1x1 cell array
    {2x2 double}

mse = 0.0105

stats=2×1 cell array
    {3x7 classreg.regr.lmeutils.titleddataset}
    {1x5 classreg.regr.lmeutils.titleddataset}
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mse is the estimated residual variance. It is the estimate for σ2.

To see the covariance parameters estimates for the random-effects terms (σ0
2, σ1

2, and σ0, 1), index into
psi.

psi{1}

ans = 2×2

    0.0572    0.0490
    0.0490    0.0624

The estimate of the variance of the random effects term for the intercept, σ0
2, is 0.0572. The estimate

of the variance of the random effects term for week, σ1
2, is 0.0624. The estimate for the covariance of

the random effects terms for the intercept and week, σ0, 1, is 0.0490.

stats is a 2-by-1 cell array. The first cell of stats contains the confidence intervals for the standard
deviation of the random effects and the correlation between the random effects for intercept and
week. To display them, index into stats.

stats{1}

ans = 
    Covariance Type: FullCholesky

    Group      Name1                  Name2                  Type        
    Subject    {'(Intercept)'}        {'(Intercept)'}        {'std' }    
    Subject    {'Week'       }        {'(Intercept)'}        {'corr'}    
    Subject    {'Week'       }        {'Week'       }        {'std' }    

    Estimate    Lower      Upper  
    0.23927     0.14364    0.39854
    0.81971     0.38662    0.95658
     0.2497     0.18303    0.34067

The display shows the name of the grouping parameter (Group), the random-effects variables
(Name1, Name2), the type of the covariance parameters (Type), the estimate (Estimate) for each
parameter, and the 95% confidence intervals for the parameters (Lower, Upper). The estimates in
this table are related to the estimates in psi as follows.

The standard deviation of the random-effects term for intercept is 0.23927 = sqrt(0.0527). Likewise,
the standard deviation of the random effects term for week is 0.2497 = sqrt(0.0624). Finally, the
correlation between the random-effects terms of intercept and week is 0.81971 = 0.0490/
(0.23927*0.2497).

Note that this display also shows which covariance pattern you use when fitting the model. In this
case, the covariance pattern is FullCholesky. To change the covariance pattern for the random-
effects terms, you must use the 'CovariancePattern' name-value pair argument when fitting the
model.

The second cell of stats includes similar statistics for the residual standard deviation. Display the
contents of the second cell.
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stats{2}

ans = 
    Group    Name               Estimate    Lower       Upper  
    Error    {'Res Std'}        0.10261     0.087882    0.11981

The estimate for residual standard deviation is the square root of mse, 0.10261 = sqrt(0.0105).

Two Grouping Variables

Load the sample data.

load carbig

Fit a linear mixed-effects model for miles per gallon (MPG), with fixed effects for acceleration and
weight, a potentially correlated random effect for intercept and acceleration grouped by model year,
and an independent random effect for weight, grouped by the origin of the car. This model
corresponds to

MPGimk = β0 + β1Acci + β2Weighti + b10m + b11mAcci + b21kWeighti + ϵimk

where m = 1, 2, . . . , 13 represents the levels for the variable Model_Year, and k = 1, 2, . . . , 8
represents the levels for the variable Origin. MPGimk is the miles per gallon for the ith observation,|
m| th model year, and|k| th origin that correspond to the ith observation. The random-effects terms
and the observation error have the following prior distributions:

b1m =
b10m
b11m

∼ N 0,
σ10

2 σ10, 11

σ10, 11 σ11
2

,

b2k ∼ N 0, σ2
2 ,

ϵimk ∼ N 0, σ2 .

Here, the random-effects term b1m represents the first random effect at level m of the first grouping
variable. The random-effects term b10m corresponds to the first random effects term (1), for the
intercept (0), at the m th level ( m ) of the first grouping variable. Likewise b11m is the level m for the
first predictor (1) in the first random-effects term (1).

Similarly, b2k stands for the second random effects-term at level k of the second grouping variable.

σ10
2  is the variance of the random-effects term for the intercept, σ11

2  is the variance of the random
effects term for the predictor acceleration, and σ10, 11 is the covariance of the random-effects terms
for the intercept and the predictor acceleration. σ2

2 is the variance of the second random-effects term,
and σ2 is the residual variance.

First, prepare the design matrices for fitting the linear mixed-effects model.

X = [ones(406,1) Acceleration Weight];
Z = {[ones(406,1) Acceleration],[Weight]};
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Model_Year = nominal(Model_Year);
Origin = nominal(Origin);
G = {Model_Year,Origin};

Fit the model using the design matrices.

lme = fitlmematrix(X,MPG,Z,G,'FixedEffectPredictors',....
{'Intercept','Acceleration','Weight'},'RandomEffectPredictors',...
{{'Intercept','Acceleration'},{'Weight'}},'RandomEffectGroups',{'Model_Year','Origin'});

Compute the estimates of covariance parameters for the random effects.

[psi,mse,stats] = covarianceParameters(lme)

psi=2×1 cell array
    {2x2 double  }
    {[6.6765e-08]}

mse = 9.0756

stats=3×1 cell array
    {3x7 classreg.regr.lmeutils.titleddataset}
    {1x7 classreg.regr.lmeutils.titleddataset}
    {1x5 classreg.regr.lmeutils.titleddataset}

The residual variance mse is 9.0755. psi is a 2-by-1 cell array, and stats is a 3-by-1 cell array. To see
the contents, you must index into these cell arrays.

First, index into the first cell of psi.

psi{1}

ans = 2×2

    8.2651   -0.8697
   -0.8697    0.1157

The first cell of psi contains the covariance parameters for the correlated random effects for
intercept σ10

2  as 8.5160, and for acceleration σ11
2  as 0.1087. The estimate for the covariance of the

random-effects terms for the intercept and acceleration σ10, 11 is -0.8387.

Now, index into the second cell of psi.

psi{2}

ans = 6.6765e-08

The second cell of psi contains the estimate for the variance of the random-effects term for weight
σ2

2.

Index into the first cell of stats.

stats{1}

ans = 
    Covariance Type: FullCholesky
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    Group         Name1                   Name2                   Type        
    Model_Year    {'Intercept'   }        {'Intercept'   }        {'std' }    
    Model_Year    {'Acceleration'}        {'Intercept'   }        {'corr'}    
    Model_Year    {'Acceleration'}        {'Acceleration'}        {'std' }    

    Estimate    Lower       Upper   
      2.8749       1.049      7.8792
    -0.88957    -0.98668    -0.32495
     0.34008     0.19354     0.59754

This table shows the standard deviation estimates for the random-effects terms for intercept and
acceleration. Note that the standard deviations estimates are the square roots of the diagonal
elements in the first cell of psi. Specifically, 2.9182 = sqrt(8.5160) and 0.32968 = sqrt(0.1087). The
correlation is a function of the covariance of intercept and acceleration, and the standard deviations
of intercept and acceleration. The covariance of intercept and acceleration is the off-diagonal value in
the first cell of psi, -0.8387. So, the correlation is -.8387/(0.32968*2.92182) = -0.87.

The grouping variable for intercept and acceleration is Model_Year.

Index into the second cell of stats.

stats{2}

ans = 
    Covariance Type: FullCholesky

    Group     Name1             Name2             Type           Estimate  
    Origin    {'Weight'}        {'Weight'}        {'std'}        0.00025839

    Lower         Upper     
    9.0875e-05    0.00073469

The second cell of stats has the standard deviation estimate and the 95% confidence limits for the
standard deviation of the random-effects term for Weight. The grouping variable is Origin.

Index into the third cell of stats.

stats{3}

ans = 
    Group    Name               Estimate    Lower     Upper 
    Error    {'Res Std'}        3.0126      2.8025    3.2384

The third cell of stats contains the estimate for residual standard deviation and the 95% confidence
limits. The estimate for residual standard deviation is the square root of mse, sqrt(9.0755) = 3.0126.

Construct 99% confidence intervals for the covariance parameters.

[~,~,stats] = covarianceParameters(lme,'Alpha',0.01);
stats{1}

ans = 
    Covariance Type: FullCholesky
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    Group         Name1                   Name2                   Type        
    Model_Year    {'Intercept'   }        {'Intercept'   }        {'std' }    
    Model_Year    {'Acceleration'}        {'Intercept'   }        {'corr'}    
    Model_Year    {'Acceleration'}        {'Acceleration'}        {'std' }    

    Estimate    Lower       Upper    
      2.8749     0.76415       10.816
    -0.88957    -0.99323    0.0030371
     0.34008     0.16213      0.71333

stats{2}

ans = 
    Covariance Type: FullCholesky

    Group     Name1             Name2             Type           Estimate  
    Origin    {'Weight'}        {'Weight'}        {'std'}        0.00025839

    Lower        Upper    
    6.544e-05    0.0010203

stats{3}

ans = 
    Group    Name               Estimate    Lower     Upper 
    Error    {'Res Std'}        3.0126      2.7396    3.3128

See Also
LinearMixedModel | compare | fixedEffects | randomEffects
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CoxModel
Cox proportional hazards model

Description
A Cox proportional hazards model relates to lifetime or failure time data. The basic Cox model
includes a hazard function h0(t) and model coefficients b such that, for predictor X, the hazard rate at
time t is

h Xi, t = h0(t)exp ∑
j = 1

p
xi jb j ,

where the b coefficients do not depend on time. The creation function fitcox infers both the model
coefficients b and the hazard rate h0(t), and stores them as properties in the resulting CoxModel
object.

The full Cox model includes extensions to the basic model, such as hazards with respect to different
baselines or the inclusion of stratification variables. See “Extension of Cox Proportional Hazards
Model” on page 15-27.

Creation
Create a CoxModel object using fitcox.

Properties
Baseline — Baseline hazard
mean(X) (default) | real scalar

Baseline hazard specified when model was fitted, specified as a real scalar. The Cox model is a
relative hazard model, so it requires a baseline at which to compare hazards of given data, relative to
the baseline. The default is mean(X) (and the mean within each stratification for stratified models),
so the hazard rate at X is h(t)*exp((X-mean(X))*b). Enter 0 to compute the baseline relative to
0, so the hazard rate at X is h(t)*exp(X*b). Changing the baseline does not affect the coefficients.
Data Types: double

CoefficientCovariance — Covariance matrix for coefficient estimates
square matrix

Covariance matrix for coefficient estimates, specified as a square matrix with the number of rows
equal to the number of predictors.
Data Types: double

Coefficients — Coefficients and related statistics
table

Coefficients and related statistics, specified as a table with four columns:

 CoxModel
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• Beta — Coefficient estimate
• SE — Standard error of the coefficient estimate
• zStat — z statistic
• pValue — p-value for the coefficient (compared to a zero Beta)

Each row of the table corresponds to one predictor.

To obtain any of these columns as a vector, index into the property using dot notation. For example, in
the coxMdl object, the estimated coefficient vector is

beta = coxMdl.Coefficients.Beta

To perform other tests on the coefficients, use linhyptest.
Data Types: table

Formula — Representation of the model used in fit
formula in Wilkinson notation

Representation of the model used in the fit, specified as a formula in Wilkinson notation. See
“Wilkinson Notation” on page 11-93. For example, to include several predictors, use

'X ~ a + b + … + c'

where each of the variables a, b, c represents one predictor. These variables are column names for
the table X.

Hazard — Estimated baseline cumulative hazard
matrix double

Estimated baseline cumulative hazard, specified as a matrix double. The cumulative hazard is
evaluated at time points defined in training.

Hazard has at least two columns. The first column contains the time values, and the rest of the
columns contain the cumulative hazard at each listed time.

• For nonstratified models, Hazard has two columns.
• For stratified models, Hazard has an additional column for each unique combination of the
stratification levels. Distinct time values in Hazard(:,1) for each stratification are separated by
0 entries in Hazard(:,2). A stratified model is a model trained using the 'Stratification'
name-value argument.

Theoretically, the cumulative hazard at time t is –log(1 – cdf(t)). The empirical cumulative hazard is

H0(t) = ∑
ti ≤ t

h0 ti = ∑
ti ≤ t

1
∑

j ∈ Ri
exp β · x j

,

where Ri is the risk set at time ti, meaning the observations that are at risk of failing. See “Partial
Likelihood Function” on page 15-27.
Data Types: double
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LikelihoodRatioTestPValue — P-value indicating model is significant relative to null
model
real scalar

P-value indicating if the model is significant relative to the null model, specified as a real scalar.

This property contains the p-value of performing the likelihood ratio test against the null model, that
is, a model with all coefficients equal to 0.

The likelihood ratio test compares the likelihood function of the data at the coefficient estimates, and
at all the coefficients being 0. The comparison yields a test statistic that can be used to determine if
the trained model is significant, relative to a model with all coefficients equal to 0. The null
hypothesis is that there is no difference between the null model and the trained model, so a
significant p-value implies the trained model is significant.
Data Types: double

LogLikelihood — Log of likelihood function at coefficient estimates
real scalar

Log of the likelihood function at the coefficient estimates, specified as a real scalar.
Data Types: double

NumPredictors — Number of predictors
positive integer

Number of predictors (coefficients) in the model, specified as a positive integer.
Data Types: double

PredictorNames — Names of predictors
cell array of character vectors

Names of the predictors used to fit the model, specified as a cell array of character vectors. If the
model is trained on data in a table, the predictor names are the names of the table columns.
Otherwise, the predictor names are X1, X2, and so on.
Data Types: cell

ProportionalHazardsPValue — P-value indicating covariates satisfies the proportional
hazards assumption
real vector

P-value indicating if each covariate satisfies the proportional hazards assumption, specified as a real
vector, with one entry for each predictor.

The Cox model relies on the assumption of proportional hazards, that is, for any two data points X1
and X2, hazard(X1)/hazard(X2) is constant. This assumption might be violated if the predictors
depend on time. For example, if a predictor corresponds to age, it generally becomes more hazardous
as age increases.

The test of this assumption uses the scaled Schoenfeld residuals and was derived by Grambsch and
Therneau in [1].

The null hypothesis is that each coefficient satisfies the proportional hazards assumption. A
significant p-value implies that a specific coefficient violates the proportional hazards assumption.
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The test is performed on each coefficient, so this property is a vector with as many elements as the
number of coefficients.
Data Types: double

ProportionalHazardsPValueGlobal — P-value indicating model satisfies proportional
hazards assumption
real scalar

P-value indicating if the whole model satisfies the proportional hazards assumption, specified as a
real scalar.

The Cox model relies on the assumption of proportional hazards, that is, for any two data points X1
and X2, hazard(X1)/hazard(X2) is constant. This assumption might be violated if the predictors
depend on time. For example, if a predictor corresponds to age, it generally becomes more hazardous
as age increases.

The test of this assumption uses the scaled Schoenfeld residuals and was derived by Grambsch and
Therneau in [1].

The null hypothesis is that the model, as a whole, satisfies the proportional hazards assumption. A
significant p-value implies the whole model does not satisfy the proportional hazards assumption.
Data Types: double

Residuals — Residuals of various types
table

Residuals of various types, specified as a table with seven columns, one for each residual:

• 'CoxSnell' — The Cox-Snell residuals for an observation X(i) are defined as the cumulative
hazard at time i (cumHazard(i)) multiplied by the hazard of X(i): csres(i) = cumHazard(i)
* exp(X(i) * Beta). Beta is the fitted Beta vector stored in Coefficients.

• 'Deviance' — The deviance residual is defined using the martingale residual as follows: D(i) =
sign(M(i))*sqrt(–2*[M(i) + delta(i)*log(delta(i)–M(i)))], where D(i) is the ith
deviance residual, M(i) is the ith martingale residual, and delta(i) indicates if the data point i
died or not.

• 'Martingale' — The martingale residual for a point X(i) is delta(i) – CoxSnell(i),
where delta(i) indicates if X(i) died, and CoxSnell(i) is the Cox-Snell residual at i. The
martingale residual can be viewed as the difference between the true number of deaths for X(i)
minus the expected number of deaths based on the model.

• 'Schoenfeld' — The Schoenfeld residuals are defined as: scres(i,j) = X(i,j) –
M(Beta,i,j), where X(i,j) is the jth element of observation i, and M(Beta,i,j) is the
expected value of X(i,j), given the number of living observations left at time i. The Schoenfeld
residuals can be viewed as the difference between a true dead observation at time i and how the
model expects a dead observation to look at time i, given the remaining living observations. The
residuals are calculated for each covariate, so they have as many columns as the number of
learned parameters. The residuals are valid only for times and observations at which there were
deaths. For any censored observations, the corresponding residual is NaN.

• 'ScaledSchoenfeld' — The scaled Schoenfeld residuals are the Schoenfeld residuals scaled by
the variance of the learned coefficients. Like the Schoenfeld residuals, the scaled residuals are not
defined for observations and times at which there were no deaths; a residual at such a point is
NaN.
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• 'Score' — The score residuals are defined as: scores(i,t) = integral_{0}^{t}(X(i,u)
– Xbar(u)) dScres(i,u), where Schres(i) is the Schoenfeld residual at observation i, and
Xbar is the mean of the observations still alive at time u. The residuals are calculated for each
covariate, so they have as many columns as the number of learned parameters.

• 'ScaledScore' — The scaled score residuals are the score residuals scaled by the covariance of
the fitted coefficients.

Residuals has the same number of rows as the training data.
Data Types: table

ResponseName — Response variable name
character vector

Response variable name, specified as a character vector. For models where the response value is in a
table, the response variable name is the name of the relevant table column. Otherwise,
ResponseName is 'T'.
Data Types: char

StandardError — Standard errors of coefficient estimates
real vector

Standard errors of coefficient estimates, specified as a real vector. StandardError is the square
root of the diagonal of the CoefficientCovariance matrix.
Data Types: double

Stratification — Array of unique combinations of input stratification
numeric array | string array | cell array of strings | categorical array | cell array

Array of unique combinations of input stratification during training, specified as one of the following
data types.

• Numeric array — All stratification variables are numeric.
• String array — All variables are strings.
• Cell array of strings — All variables are cell strings.
• Categorical array — All variables are categorical.
• Cell array — Variables are mixed types.

Given some data X and T, the following table shows examples of what Stratification contains.

Input Data Example Resulting
Stratification

Double mdl = fitcox(X,T,'Stratification',[1 2; 1 2;
2 2; 2 2]);

[1 2; 2 2]

String mdl = fitcox(X,T,'Stratification',
["cat";"dog";"dog";"bird"]);

["cat"; "dog";
"bird"]

Cell string mdl = fitcox(X,T,'Stratification',
{'cat';'dog';'dog';'bird'});

{'cat';'dog';'bird
'}
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Input Data Example Resulting
Stratification

Categorical mdl =
fitcox(X,T,'Stratification',categorical([1;2
;3;4]));

categorical([1;2;3
;4])

Mixed types data = table(X,T,[1;2;1;3],
{'cat';'cat';'dog';'dog'},'VariableNames',
{'X','T','S1','S2');

mdl = fitcox(data,'T','Stratification',
{'S1','S2'});

{1 'cat'; 2 'cat';
1 'dog'; 3 'dog'}

Data Types: double | char | string | cell | categorical

VariableInfo — Information about fitting data
table

Information about fitting data, specified as a table with four columns:

• Class — The class of the predictor.
• Range — The minimum and maximum of the predictor if it is not categorical, or the list of all the

categories if the predictor is categorical.
• InModel — A logical indicating if the predictor is used in the model. The response variable is not

in the model. Predictor variables used for training are in the model.
• IsCategorical — A logical indicating if the predictor was treated as categorical during training.

If the model has no categorical predictors, and no formula was used to fit the model, the number of
rows of VariableInfo is the number of model predictors. Otherwise, the number of rows is the
same as the number of elements in PredictorNames.
Data Types: table

Object Functions
coefci Confidence interval for Cox proportional hazards model coefficients
discardResiduals Remove residuals from Cox model
hazardratio Estimate Cox model hazard relative to baseline
linhyptest Linear hypothesis tests on Cox model coefficients
plotSurvival Plot survival function of Cox proportional hazards model
survival Calculate survival of Cox proportional hazards model

Examples

Estimate Cox Proportional Hazard Regression

Weibull random variables with the same shape parameter have proportional hazard rates; see
“Weibull Distribution” on page B-177. The hazard rate with scale parameter a and shape parameter
b at time t is

b
ab tb− 1.
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Generate pseudorandom samples from the Weibull distribution with scale parameters 1, 5, and 1/3,
and with the same shape parameter B.

rng default % For reproducibility
B = 2;
A = ones(100,1);
data1 = wblrnd(A,B);
A2 = 5*A;
data2 = wblrnd(A2,B);
A3 = A/3;
data3 = wblrnd(A3,B);

Create a table of data. The predictors are the three variable types, 1, 2, or 3.

predictors = categorical([A;2*A;3*A]);
data = table(predictors,[data1;data2;data3],'VariableNames',["Predictors" "Times"]);

Fit a Cox regression to the data.

mdl = fitcox(data,"Times")

mdl = 
Cox Proportional Hazards regression model

                     Beta        SE        zStat       pValue  
                    _______    _______    _______    __________

    Predictors_2    -3.5834    0.33187    -10.798    3.5299e-27
    Predictors_3     2.1668    0.20802     10.416    2.0899e-25

Log-likelihood: -1197.917

rates = exp(mdl.Coefficients.Beta)

rates = 2×1

    0.0278
    8.7301

Fit Cox Proportional Hazards Model to Lifetime Data

Perform a Cox proportional hazards regression on the lightbulb data set, which contains simulated
lifetimes of light bulbs. The first column of the light bulb data contains the lifetime (in hours) of two
different types of bulbs. The second column contains a binary variable indicating whether the bulb is
fluorescent or incandescent; 0 indicates the bulb is fluorescent, and 1 indicates it is incandescent.
The third column contains the censoring information, where 0 indicates the bulb was observed until
failure, and 1 indicates the observation was censored.

Load the lightbulb data set.

load lightbulb
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Fit a Cox proportional hazards model for the lifetime of the light bulbs, accounting for censoring. The
predictor variable is the type of bulb.

coxMdl = fitcox(lightbulb(:,2),lightbulb(:,1), ...
    'Censoring',lightbulb(:,3))

coxMdl = 
Cox Proportional Hazards regression model

           Beta       SE      zStat       pValue  
          ______    ______    ______    __________

    X1    4.7262    1.0372    4.5568    5.1936e-06

Log-likelihood: -212.638

Find the hazard rate of incandescent bulbs compared to fluorescent bulbs by evaluating exp(Beta).

hr = exp(coxMdl.Coefficients.Beta)

hr = 112.8646

The estimate of the hazard ratio is eBeta = 112.8646, which means that the estimated hazard for the
incandescent bulbs is 112.86 times the hazard for the fluorescent bulbs. The small value of
coxMdl.Coefficients.pValue indicates there is a negligible chance that the two types of light
bulbs have identical hazard rates, which would mean Beta = 0.

Version History
Introduced in R2021a

References
[1] Grambsch, Patricia M., and Terry M. Therneau. Proportional Hazards Tests and Diagnostics Based

on Weighted Residuals. Biometrika, vol. 81, no. 3, 1994, pp. 515–526. JSTOR, https://
www.jstor.org/stable/2337123.

See Also
fitcox

Topics
“Cox Proportional Hazards Model” on page 15-26
“Cox Proportional Hazards Model Object” on page 15-39

35 Functions

35-1138

https://www.jstor.org/stable/2337123
https://www.jstor.org/stable/2337123


coxphfit
Cox proportional hazards regression

Syntax
b = coxphfit(X,T)
b = coxphfit(X,T,Name,Value)
[b,logl,H,stats] = coxphfit( ___ )

Description
b = coxphfit(X,T) returns a p-by-1 vector, b, of coefficient estimates for a Cox proportional
hazards regression on page 35-1146 of the observed responses T on the predictors X, where T is
either an n-by-1 vector or an n-by-2 matrix, and X is an n-by-p matrix.

The model does not include a constant term, and X cannot contain a column of 1s.

b = coxphfit(X,T,Name,Value) returns a vector of coefficient estimates, with additional options
specified by one or more Name,Value pair arguments.

[b,logl,H,stats] = coxphfit( ___ ) also returns the loglikelihood, logl, a structure, stats,
that contains additional statistics, and a two-column matrix, H, that contains the T values in the first
column and the estimated baseline cumulative hazard, in the second column. You can use any of the
input arguments in the previous syntaxes.

Examples

Use Cox Proportional Hazards Regression to Model Lifetime of Light Bulbs

Load the sample data.

load('lightbulb.mat');

The first column of the light bulb data has the lifetime (in hours) of two different types of bulbs. The
second column has the binary variable indicating whether the bulb is fluorescent or incandescent. 0
indicates that the bulb is fluorescent, and 1 indicates that it is incandescent. The third column
contains the censorship information, where 0 indicates the bulb was observed until failure, and 1
indicates the bulb was censored.

Fit a Cox proportional hazards model for the lifetime of the light bulbs, also accounting for censoring.
The predictor variable is the type of bulb.

b = coxphfit(lightbulb(:,2),lightbulb(:,1), ...
'Censoring',lightbulb(:,3))

b = 4.7262

The estimate of the hazard ratio is eb = 112.8646. This means that the hazard for the incandescent
bulbs is 112.86 times the hazard for the fluorescent bulbs.
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Change Algorithm Parameters for Cox Proportional Hazards Model

Load the sample data.

load('lightbulb.mat');

The first column of the data has the lifetime (in hours) of two types of bulbs. The second column has
the binary variable indicating whether the bulb is fluorescent or incandescent. 1 indicates that the
bulb is fluorescent and 0 indicates that it is incandescent. The third column contains the censorship
information, where 0 indicates the bulb is observed until failure, and 1 indicates the item (bulb) is
censored.

Fit a Cox proportional hazards model, also accounting for censoring. The predictor variable is the
type of bulb.

b = coxphfit(lightbulb(:,2),lightbulb(:,1),...
'Censoring',lightbulb(:,3))

b = 4.7262

Display the default control parameters for the algorithm coxphfit uses to estimate the coefficients.

statset('coxphfit')

ans = struct with fields:
          Display: 'off'
      MaxFunEvals: 200
          MaxIter: 100
           TolBnd: []
           TolFun: 1.0000e-08
       TolTypeFun: []
             TolX: 1.0000e-08
         TolTypeX: []
          GradObj: []
         Jacobian: []
        DerivStep: []
      FunValCheck: []
           Robust: []
     RobustWgtFun: []
           WgtFun: []
             Tune: []
      UseParallel: []
    UseSubstreams: []
          Streams: {}
        OutputFcn: []

Save the options under a different name and change how the results will be displayed and the
maximum number of iterations, Display and MaxIter.

coxphopt = statset('coxphfit');
coxphopt.Display = 'final';
coxphopt.MaxIter = 50;

Run coxphfit with the new algorithm parameters.
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b = coxphfit(lightbulb(:,2),lightbulb(:,1),...
'Censoring',lightbulb(:,3),'Options',coxphopt)

Successful convergence: Norm of gradient less than OPTIONS.TolFun

b = 4.7262

coxphfit displays a report on the final iteration. Changing the maximum number of iterations did
not affect the coefficient estimate.

Fit and Compare Cox and Weibull Survivor Functions

Generate Weibull data depending on predictor X.

rng('default') % for reproducibility
X = 4*rand(100,1);
A = 50*exp(-0.5*X); 
B = 2;
y = wblrnd(A,B);

The response values are generated from a Weibull distribution with a scale parameter depending on
the predictor variable X and a shape parameter of 2.

Fit a Cox proportional hazards model.

[b,logL,H,stats] = coxphfit(X,y);
[b logL]

ans = 1×2

    0.9409 -331.1479

The coefficient estimate is 0.9409 and the log likelihood value is –331.1479.

Request the model statistics.

stats

stats = struct with fields:
                    covb: 0.0158
                    beta: 0.9409
                      se: 0.1256
                       z: 7.4889
                       p: 6.9462e-14
                   csres: [100x1 double]
                  devres: [100x1 double]
                 martres: [100x1 double]
                  schres: [100x1 double]
                 sschres: [100x1 double]
                  scores: [100x1 double]
                 sscores: [100x1 double]
    LikelihoodRatioTestP: 6.6613e-16

The covariance matrix of the coefficient estimates, covb, contains only one value, which is equal to
the variance of the coefficient estimate in this example. The coefficient estimate, beta, is the same as
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b and is equal to 0.9409. The standard error of the coefficient estimate, se, is 0.1256, which is the
square root of the variance 0.0158. The z-statistic, z, is beta/se = 0.9409/0.1256 = 7.4880. The p-
value, p, indicates that the effect of X is significant.

Plot the Cox estimate of the baseline survivor function together with the known Weibull function.

stairs(H(:,1),exp(-H(:,2)),'LineWidth',2)
xx = linspace(0,100);
line(xx,1-wblcdf(xx,50*exp(-0.5*mean(X)),B),'color','r','LineWidth',2)
xlim([0,50])
legend('Estimated Survivor Function','Weibull Survivor Function')

The fitted model gives a close estimate to the survivor function of the actual distribution.

Input Arguments
X — Observations on predictor variables
matrix

Observations on predictor variables, specified as an n-by-p matrix of p predictors for each of n
observations.

The model does not include a constant term, thus X cannot contain a column of 1s.

If X, T, or the value of 'Frequency' or 'Strata' contain NaN values, then coxphfit removes rows
with NaN values from all data when fitting a Cox model.
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Data Types: double

T — Time-to-event data
vector | two-column matrix

Time-to-event data, specified as an n-by-1 vector or a two-column matrix.

• When T is an n-by-1 vector, it represents the event time of right-censored time-to-event data.
• When T is an n-by-2 matrix, each row represents the risk interval (start,stop] in the counting

process format for time-dependent covariates. The first column is the start time and the second
column is the stop time. For an example, see “Cox Proportional Hazards Model with Time-
Dependent Covariates” on page 15-35.

If X, T, or the value of 'Frequency' or 'Strata' contain NaN values, then coxphfit removes rows
with NaN values from all data when fitting a Cox model.
Data Types: single | double

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: 'Baseline',0,'Censoring',censoreddata,'Frequency',freq specifies that
coxphfit calculates the baseline hazard rate relative to 0, considering the censoring information in
the vector censoreddata, and the frequency of observations on T and X given in the vector freq.

B0 — Coefficient initial values
0.01/std(X) (default) | numeric vector

Coefficient initial values, specified as the comma-separated value consisting of 'B0' and a numeric
vector.
Data Types: double

Baseline — X values at which to compute the baseline hazard
mean(X) (default) | scalar value

X values at which to compute the baseline hazard, specified as the comma-separated pair consisting
of 'Baseline' and a scalar value.

The default is mean(X), so the hazard rate at X is h(t)*exp((X-mean(X))*b). Enter 0 to compute
the baseline relative to 0, so the hazard rate at X is h(t)*exp(X*b). Changing the baseline does not
affect the coefficient estimates, but the hazard ratio changes.
Example: 'Baseline',0
Data Types: double

Censoring — Indicator for censoring
array of 0s (default) | array of 0s and 1s

Indicator for censoring, specified as the comma-separated pair consisting of 'Censoring' and a
Boolean array of the same size as T. Use 1 for observations that are right censored and 0 for
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observations that are fully observed. The default is all observations are fully observed. For an
example, see “Cox Proportional Hazards Model for Censored Data” on page 15-31.
Example: 'Censoring',cens
Data Types: logical

Frequency — Frequency or weights of observations
array of 1s (default) | vector of nonnegative scalar values

Frequency or weights of observations, specified as the comma-separated pair consisting of
'Frequency' and an array that is the same size as T containing nonnegative scalar values. The array
can contain integer values corresponding to frequencies of observations or nonnegative values
corresponding to observation weights.

If X, T, or the value of 'Frequency' or 'Strata' contain NaN values, then coxphfit removes rows
with NaN values from all data when fitting a Cox model.

The default is 1 per row of X and T.
Example: 'Frequency',w
Data Types: double

Strata — Stratification variables
[] (default) | matrix of real values

Stratification variables, specified as the comma-separated pair consisting of a matrix of real values.
The matrix must have the same number of rows as T, with each row corresponding to an observation.

If X, T, or the value of 'Frequency' or 'Strata' contain NaN values, then coxphfit removes rows
with NaN values from all data when fitting a Cox model.

The default, [], is no stratification variable.
Example: 'Strata',Gender
Data Types: single | double

Ties — Method to handle tied failure times
'breslow' (default) | 'efron'

Method to handle tied failure times, specified as the comma-separated pair consisting of 'Ties' and
either 'breslow' (Breslow's method) or 'efron' (Efron's method).
Example: 'Ties','efron'

Options — Algorithm control parameters
structure

Algorithm control parameters for the iterative algorithm used to estimate b, specified as the comma-
separated pair consisting of 'Options' and a structure. A call to statset creates this argument.
For parameter names and default values, type statset('coxphfit'). You can set the options
under a new name and use that in the name-value pair argument.
Example: 'Options',statset('coxphfit')
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Output Arguments
b — Coefficient estimates
vector

Coefficient estimates for a Cox proportional hazards regression on page 35-1146, returned as a p-by-1
vector.

logl — Loglikelihood
scalar

Loglikelihood of the fitted model, returned as a scalar.

You can use log likelihood values to compare different models and assess the significance of effects of
terms in the model.

H — Estimated baseline cumulative hazard
two-column matrix | (2+k) column matrix

Estimated baseline cumulative hazard rate evaluated at T values, returned as one of the following.

• If the model is unstratified, then H is a two-column matrix. The first column of the matrix contains
T values, and the second column contains cumulative hazard rate estimates.

• If the model is stratified, then H is a (2+k) column matrix, where the last k columns correspond to
the stratification variables using the Strata name-value pair argument.

stats — Coefficient statistics
structure

Coefficient statistics, returned as a structure that contains the following fields.

beta Coefficient estimates (same as b)
se Standard errors of coefficient estimates, b
z z-statistics for b (that is, b divided by standard error)
p p-values for b
covb Estimated covariance matrix for b
csres Cox-Snell residuals
devres Deviance residuals
martres Martingale residuals
schres Schoenfeld residuals
sschres Scaled Schoenfeld residuals
scores Score residuals
sscores Scaled score residuals

coxphfit returns the Cox-Snell, martingale, and deviance residuals as a column vector with one row
per observation. It returns the Schoenfeld, scaled Schoenfeld, score, and scaled score residuals as
matrices of the same size as X. Schoenfeld and scaled Schoenfeld residuals of censored data are
NaNs.
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More About
Cox Proportional Hazards Regression

Cox proportional hazards regression is a semiparametric method for adjusting survival rate estimates
to remove the effect of confounding variables and to quantify the effect of predictor variables. The
method represents the effects of explanatory and confounding variables as a multiplier of a common
baseline hazard function, h0(t).

For a baseline relative to 0, this model corresponds to

h Xi, t = h0(t)exp ∑
j = 1

p
xi jb j ,

where Xi = (xi1, xi2,⋯, xip) is the predictor variable for the ith subject, h(Xi,t) is the hazard rate at time
t for Xi, and h0(t) is the baseline hazard rate function. The baseline hazard function is the
nonparametric part of the Cox proportional hazards regression function, whereas the impact of the
predictor variables is a loglinear regression. The assumption is that the baseline hazard function
depends on time, t, but the predictor variables do not depend on time. See “Cox Proportional Hazards
Model” on page 15-26 for details, including the extensions for stratification and time-dependent
variables, tied events, and observation weights.

Algorithms
• If you want to compute the baseline cumulative hazard rate (H) for a stratum, the input data for

the stratum must contain at least one fully observed observation. Starting in R2022a, if a stratum
has only censored observations, the output H includes a row with NaNs in the first two columns
and the stratum information in the remaining columns. In previous releases, H included a row of
zeros without the stratum information.

Version History
Introduced before R2006a

References
[1] Cox, D.R., and D. Oakes. Analysis of Survival Data. London: Chapman & Hall, 1984.

[2] Lawless, J. F. Statistical Models and Methods for Lifetime Data. Hoboken, NJ: Wiley-Interscience,
2002.

[3] Kleinbaum, D. G., and M. Klein. Survival Analysis. Statistics for Biology and Health. 2nd edition.
Springer, 2005.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:
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• X can be a single- or double-precision matrix and can be variable-size.
• The value of the 'Ties' name-value pair argument must be a compile-time constant. For

example, to use Efron's method to handle tied failure times, include
{coder.Constant('Ties'),coder.Constant('efron')} in the -args value of codegen.

• Names in name-value arguments must be compile-time constants.

For more information on code generation, see “Introduction to Code Generation” on page 34-2 and
“General Code Generation Workflow” on page 34-5.

See Also
ecdf | statset | wblfit

Topics
“Hazard and Survivor Functions for Different Groups” on page 15-16
“Survivor Functions for Two Groups” on page 15-22
“Cox Proportional Hazards Model for Censored Data” on page 15-31
“Cox Proportional Hazards Model with Time-Dependent Covariates” on page 15-35
“What Is Survival Analysis?” on page 15-2
“Kaplan-Meier Method” on page 15-10
“Cox Proportional Hazards Model” on page 15-26
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createns
Create nearest neighbor searcher object

Syntax
NS = createns(X)
NS = createns(X,Name,Value)

Description
NS = createns(X) creates either an ExhaustiveSearcher or KDTreeSearcher model object
using the n-by-K numeric matrix of the training data X.

NS = createns(X,Name,Value) specifies additional options using one or more name-value pair
arguments. For example, you can specify NSMethod to determine which type of object to create.

Examples

Train Default Exhaustive Nearest Neighbor Searcher

Load Fisher's iris data set.

load fisheriris
X = meas;
[n,k] = size(X)

n = 150

k = 4

X has 150 observations and 4 predictors.

Prepare an exhaustive nearest neighbor searcher using the entire data set as training data.

Mdl1 = ExhaustiveSearcher(X)

Mdl1 = 
  ExhaustiveSearcher with properties:

         Distance: 'euclidean'
    DistParameter: []
                X: [150x4 double]

Mdl1 is an ExhaustiveSearcher model object, and its properties appear in the Command Window.
The object contains information about the trained algorithm, such as the distance metric. You can
alter property values using dot notation.

Alternatively, you can prepare an exhaustive nearest neighbor searcher by using createns and
specifying 'exhaustive' as the search method.

Mdl2 = createns(X,'NSMethod','exhaustive')
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Mdl2 = 
  ExhaustiveSearcher with properties:

         Distance: 'euclidean'
    DistParameter: []
                X: [150x4 double]

Mdl2 is also an ExhaustiveSearcher model object, and it is equivalent to Mdl1.

To search X for the nearest neighbors to a batch of query data, pass the ExhaustiveSearcher
model object and the query data to knnsearch or rangesearch.

Grow Default Kd-Tree

Grow a four-dimensional Kd-tree that uses the Euclidean distance.

Load Fisher's iris data set.

load fisheriris
X = meas;
[n,k] = size(X)

n = 150

k = 4

X has 150 observations and 4 predictors.

Grow a four-dimensional Kd-tree using the entire data set as training data.

Mdl1 = KDTreeSearcher(X)

Mdl1 = 
  KDTreeSearcher with properties:

       BucketSize: 50
         Distance: 'euclidean'
    DistParameter: []
                X: [150x4 double]

Mdl1 is a KDTreeSearcher model object, and its properties appear in the Command Window. The
object contains information about the grown four-dimensional Kd-tree, such as the distance metric.
You can alter property values using dot notation.

Alternatively, you can grow a Kd-tree by using createns.

Mdl2 = createns(X)

Mdl2 = 
  KDTreeSearcher with properties:

       BucketSize: 50
         Distance: 'euclidean'
    DistParameter: []
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                X: [150x4 double]

Mdl2 is also a KDTreeSearcher model object, and it is equivalent to Mdl1. Because X has four
columns and the default distance metric is Euclidean, createns creates a KDTreeSearcher model
by default.

To find the nearest neighbors in X to a batch of query data, pass the KDTreeSearcher model object
and the query data to knnsearch or rangesearch.

Grow Kd-Tree Using Minkowski Distance Metric

Grow a Kd-tree that uses the Minkowski distance with an exponent of five.

Load Fisher's iris data set. Create a variable for the petal dimensions.

load fisheriris
X = meas(:,3:4);

Grow a Kd-tree. Specify the Minkowski distance with an exponent of five.

Mdl = createns(X,'Distance','minkowski','P',5)

Mdl = 
  KDTreeSearcher with properties:

       BucketSize: 50
         Distance: 'minkowski'
    DistParameter: 5
                X: [150x2 double]

Because X has two columns and the distance metric is Minkowski, createns creates a
KDTreeSearcher model object by default.

Search for Nearest Neighbors of Query Data Using Mahalanobis Distance

Create an exhaustive searcher object by using the createns function. Pass the object and query data
to the knnsearch function to find k-nearest neighbors.

Load Fisher's iris data set.

load fisheriris

Remove five irises randomly from the predictor data to use as a query set.

rng('default');             % For reproducibility
n = size(meas,1);           % Sample size
qIdx = randsample(n,5);     % Indices of query data
X = meas(~ismember(1:n,qIdx),:);
Y = meas(qIdx,:);

Prepare an exhaustive nearest neighbor searcher using the training data. Specify the Mahalanobis
distance for finding nearest neighbors.
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Mdl = createns(X,'Distance','mahalanobis')

Mdl = 
  ExhaustiveSearcher with properties:

         Distance: 'mahalanobis'
    DistParameter: [4x4 double]
                X: [145x4 double]

Because the distance metric is Mahalanobis, createns creates an ExhaustiveSearcher model
object by default.

The software uses the covariance matrix of the predictors (columns) in the training data for
computing the Mahalanobis distance. To display this value, use Mdl.DistParameter.

Mdl.DistParameter

ans = 4×4

    0.6547   -0.0368    1.2320    0.5026
   -0.0368    0.1914   -0.3227   -0.1193
    1.2320   -0.3227    3.0671    1.2842
    0.5026   -0.1193    1.2842    0.5800

Find the indices of the training data (Mdl.X) that are the two nearest neighbors of each point in the
query data (Y).

IdxNN = knnsearch(Mdl,Y,'K',2)

IdxNN = 5×2

     5     6
    98    95
   104   128
   135    65
   102   115

Each row of IdxNN corresponds to a query data observation. The column order corresponds to the
order of the nearest neighbors with respect to ascending distance. For example, based on the
Mahalanobis metric, the second nearest neighbor of Y(3,:) is X(128,:).

Input Arguments
X — Training data
numeric matrix

Training data, specified as a numeric matrix. X has n rows, each corresponding to an observation
(that is, an instance or example), and K columns, each corresponding to a predictor (that is, a
feature).
Data Types: single | double
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Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: NS = createns(X,'Distance','mahalanobis') creates an ExhaustiveSearcher
model object that uses the Mahalanobis distance metric when searching for nearest neighbors.

For Exhaustive and Kd-Tree Nearest Neighbor Searchers

NSMethod — Nearest neighbor search method
'kdtree' | 'exhaustive'

Nearest neighbor search method used to define the type of object created, specified as the comma-
separated pair consisting of 'NSMethod' and 'kdtree' or 'exhaustive'.

• 'kdtree' — createns creates a KDTreeSearcher model object using the Kd-tree algorithm.
• 'exhaustive' — createns creates an ExhaustiveSearcher model object using the

exhaustive search algorithm.

The default value is 'kdtree' when these three conditions are true:

• The number of columns of X (K) is less than or equal to 10 (that is, K ≤ 10).
• X is not sparse.
• Distance is 'euclidean', 'cityblock', 'chebychev', or 'minkowski'.

Otherwise, the default value is 'exhaustive'.
Example: 'NSMethod','exhaustive'

Distance — Distance metric
'euclidean' (default) | character vector or string scalar of distance metric name | custom distance
function

Distance metric used when you call knnsearch or rangesearch to find nearest neighbors for future
query points, specified as the comma-separated pair consisting of 'Distance' and a character
vector or string scalar of distance metric name or function handle.

For both types of nearest neighbor searchers, createns supports these distance metrics.

Value Description
'chebychev' Chebychev distance (maximum coordinate difference).
'cityblock' City block distance.
'euclidean' Euclidean distance.
'minkowski' Minkowski distance. The default exponent is 2. To specify a different

exponent, use the 'P' name-value pair argument.

If createns uses the exhaustive search algorithm ('NSMethod' is 'exhaustive'), then createns
also supports these distance metrics.
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Value Description
'correlation' One minus the sample linear correlation between

observations (treated as sequences of values)
'cosine' One minus the cosine of the included angle

between observations (treated as row vectors)
'hamming' Hamming distance, which is the percentage of

coordinates that differ
'jaccard' One minus the Jaccard coefficient, which is the

percentage of nonzero coordinates that differ
'mahalanobis' Mahalanobis distance
'seuclidean' Standardized Euclidean distance
'spearman' One minus the sample Spearman's rank

correlation between observations (treated as
sequences of values)

If createns uses the exhaustive search algorithm ('NSMethod' is 'exhaustive'), then you can
also specify a function handle for a custom distance metric by using @ (for example, @distfun). A
custom distance function must:

• Have the form function D2 = distfun(ZI,ZJ).
• Take as arguments:

• A 1-by-K vector ZI containing a single row from X or from the query points Y, where K is the
number of columns in X.

• An m-by-K matrix ZJ containing multiple rows of X or Y, where m is a positive integer.
• Return an m-by-1 vector of distances D2, where D2(j) is the distance between the observations

ZI and ZJ(j,:).

For more details, see “Distance Metrics” on page 19-14.
Example: 'Distance','minkowski'

P — Exponent for Minkowski distance metric
2 (default) | positive scalar

Exponent for the Minkowski distance metric, specified as the comma-separated pair consisting of 'P'
and a positive scalar. This argument is valid only if 'Distance' is 'minkowski'.
Example: 'P',3
Data Types: single | double

For Exhaustive Nearest Neighbor Searchers

Cov — Covariance matrix for Mahalanobis distance metric
cov(X,'omitrows') (default) | positive definite matrix

Covariance matrix for the Mahalanobis distance metric, specified as the comma-separated pair
consisting of 'Cov' and a K-by-K positive definite matrix, where K is the number of columns in X.
This argument is valid only if 'Distance' is 'mahalanobis'.
Example: 'Cov',eye(3)
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Data Types: single | double

Scale — Scale parameter value for standardized Euclidean distance metric
std(X,'omitnan') (default) | nonnegative numeric vector

Scale parameter value for the standardized Euclidean distance metric, specified as the comma-
separated pair consisting of 'Scale' and a nonnegative numeric vector of length K, where K is the
number of columns in X. The software scales each difference between the training and query data
using the corresponding element of Scale. This argument is valid only if 'Distance' is
'seuclidean'.
Example: 'Scale',quantile(X,0.75) - quantile(X,0.25)
Data Types: single | double

For Nearest Neighbor Searchers Using Kd-Tree

BucketSize — Maximum number of data points in each leaf node
50 (default) | positive integer

Maximum number of data points in each leaf node of the Kd-tree, specified as the comma-separated
pair consisting of 'BucketSize' and a positive integer.

This argument is valid only when you create a KDTreeSearcher model object.
Example: 'BucketSize',10
Data Types: single | double

Output Arguments
NS — Nearest neighbor searcher
ExhaustiveSearcher model object | KDTreeSearcher model object

Nearest neighbor searcher, returned as an ExhaustiveSearcher model object or a
KDTreeSearcher model object.

Once you create a nearest neighbor searcher model object, you can find the neighboring points in the
training data to the query data by performing a nearest neighbor search using knnsearch or a
radius search using rangesearch.

Version History
Introduced in R2010a

See Also
knnsearch | rangesearch | KDTreeSearcher | ExhaustiveSearcher

Topics
“k-Nearest Neighbor Search and Radius Search” on page 19-16
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crosstab
Cross-tabulation

Syntax
tbl = crosstab(x1,x2)
tbl = crosstab(x1,...,xn)
[tbl,chi2,p] = crosstab( ___ )
[tbl,chi2,p,labels] = crosstab( ___ )

Description
tbl = crosstab(x1,x2) returns a cross-tabulation, tbl, of two vectors of the same length, x1 and
x2.

tbl = crosstab(x1,...,xn) returns a multi-dimensional cross-tabulation, tbl, of data for
multiple input vectors, x1, x2, ..., xn.

[tbl,chi2,p] = crosstab( ___ ) also returns the chi-square statistic, chi2, and its p-value, p,
for a test that tbl is independent in each dimension. You can use any of the previous syntaxes.

[tbl,chi2,p,labels] = crosstab( ___ ) also returns a cell array, labels, which contains one
column of labels for each input argument, x1 ... xn.

Examples

Cross-Tabulate Two Data Vectors

Create two sample data vectors, containing three and four distinct values, respectively.

x = [1 1 2 3 1];
y = [1 2 5 3 1];

Cross-tabulate x and y.

table = crosstab(x,y)

table = 3×4

     2     1     0     0
     0     0     0     1
     0     0     1     0

The rows in table correspond to the three distinct values in x, and the columns correspond to the
four distinct values in y.
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Cross-Tabulate Independent Data Vectors

Generate two independent vectors, x1 and x2, each containing 50 discrete uniform random numbers
in the range 1:3.

rng default;  % for reproducibility
x1 = unidrnd(3,50,1);
x2 = unidrnd(3,50,1);

Cross-tabulate x1 and x2.

[table,chi2,p] = crosstab(x1,x2)

table = 3×3

     1     6     7
     5     5     2
    11     7     6

chi2 = 7.5449

p = 0.1097

The returned p value of 0.1097 indicates that, at the 5% significance level, crosstab fails to reject
the null hypothesis that table is independent in each dimension.

Cross-Tabulate Grouped Data

Load the sample data, which contains measurements of large model cars during the years 1970-1982.

load carbig

Cross-tabulate the data of four-cylinder cars (cyl4) based on model year (when) and country of origin
(org).

[table,chi2,p,labels] = crosstab(cyl4,when,org);

Use labels to determine the index location in table for the number of four-cylinder cars made in
the USA during the late period of the data.

labels

labels=3×3 cell array
    {'Other'   }    {'Early'}    {'USA'   }
    {'Four'    }    {'Mid'  }    {'Europe'}
    {0x0 double}    {'Late' }    {'Japan' }

The first column of labels corresponds to the data in cyl4, and indicates that row 2 of table
contains data on cars with four cylinders. The second column of labels corresponds to the data in
when, and indicates that column 3 of table contains data on cars made during the late period. The
third column of labels corresponds to the data in org, and indicates that location 1 of the third
dimension of table contains data on cars made in the USA.
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Therefore, table(2,3,1) contains the number of four-cylinder cars made in the USA during the late
period.

table(2,3,1)

ans = 38

The data contains 38 four-cylinder cars made in the USA during the late period.

Generate and Visualize Contingency Table

Create a contingency table from data, and visualize the table in a heatmap chart.

Load the hospital data.

load hospital

The hospital dataset array contains data on 100 hospital patients, including last name, gender, age,
weight, smoking status, and systolic and diastolic blood pressure measurements.

Convert the dataset array to a MATLAB® table.

Tbl = dataset2table(hospital);

Determine whether smoking status is independent of gender by creating a 2-by-2 contingency table of
smokers and nonsmokers, grouped by gender.

[conttbl,chi2,p,labels] = crosstab(Tbl.Sex,Tbl.Smoker)

conttbl = 2×2

    40    13
    26    21

chi2 = 4.5083

p = 0.0337

labels = 2x2 cell
    {'Female'}    {'0'}
    {'Male'  }    {'1'}

The rows of the resulting contingency table conttbl correspond to patient gender, with row 1
containing data for females and row 2 containing data for males. The columns correspond to patient
smoking status, with column 1 containing data for nonsmokers and column 2 containing data for
smokers. The returned result chi2 = 4.5083 is the value of the chi-squared test statistic for a
Pearson's chi-squared test of independence. The p-value for the test p = 0.0337 suggests, at a 5%
level of significance, rejection of the null hypothesis that gender and smoking status are independent.

Visualize the contingency table in a heatmap. Plot smoking status on the x-axis and gender on the y-
axis.

heatmap(Tbl,'Smoker','Sex')
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Input Arguments
x1 — Input vector
vector of grouping variables

Input vector, specified as a vector of grouping variables. All input vectors, including x1, x2, ..., xn,
must be the same length.
Data Types: single | double | char | string | logical | categorical

x2 — Input vector
vector of grouping variables

Input vector, specified as a vector of grouping variables. All input vectors, including x1, x2, ..., xn,
must be the same length.
Data Types: single | double | char | string | logical | categorical

x1,...,xn — Input vectors
vectors of grouping variables

Input vectors, specified as vectors of grouping variables. If you use this syntax to specify more than
two input vectors, then crosstab generates a multi-dimensional cross-tabulation table. All input
vectors, including x1, x2, ..., xn, must be the same length.
Data Types: single | double | char | string | logical | categorical
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Output Arguments
tbl — Cross-tabulation table
matrix of integer values

Cross-tabulation table, returned as a matrix of integer values.

If you specify two input vectors, x1 and x2, then tbl is an m-by-n matrix, where m is the number of
distinct values in x1 and n is the number of distinct values in x2.

If you specify three or more input vectors, then tbl(i,j,...,n) is a count of indices where
grp2idx(x1) is i, grp2idx(x2) is j, grp2idx(x3) is k, and so on.

chi2 — Chi-square statistic
positive scalar value

Chi-square statistic, returned as a positive scalar value. The null hypothesis is that the proportion in
any entry of tbl is the product of the proportions in each dimension.

p — p-Value
scalar value in the range [0,1]

p-value for the chi-square test statistic, returned as a scalar value in the range [0,1]. crosstab
tests that tbl is independent in each dimension.

labels — Data labels
cell array

Data labels, returned as a cell array. The entries in the first column are labels for the rows of tbl, the
entries in the second column are labels for the columns, and so on, for a multi-dimensional tbl.

Algorithms
• crosstab uses grp2idx to assign a positive integer to each distinct value. tbl(i,j) is a count

of indices where grp2idx(x1) is i and grp2idx(x2) is j. The numerical order of grp2idx(x1)
and grp2idx(x2) order rows and columns of tbl, respectively.

In this case, the returned value of tbl(i,j,...,n) is a count of indices where grp2idx(x1) is
i, grp2idx(x2) is j, grp2idx(x3) is k, and so on.

• crosstab computes the p-value of the chi-square test statistic using a formula that is
asymptotically valid for a large sample size. The approximation is less accurate for small samples
or samples with uneven marginal distributions. If your sample includes only two variables and
each has two levels, you can use fishertest instead. This function performs Fisher’s exact test,
which does not depend on large-sample distribution assumptions.

Version History
Introduced before R2006a

Extended Capabilities
Tall Arrays
Calculate with arrays that have more rows than fit in memory.
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This function supports tall arrays for out-of-memory data with the limitation:

The fourth output, labels, is returned as a cell array containing M unevaluated tall cell arrays,
where M is the number of input grouping variables. Each unevaluated tall cell array, labels{j},
contains the labels for one grouping variable.

For more information, see “Tall Arrays for Out-of-Memory Data”.

Thread-Based Environment
Run code in the background using MATLAB® backgroundPool or accelerate code with Parallel
Computing Toolbox™ ThreadPool.

This function fully supports thread-based environments. For more information, see “Run MATLAB
Functions in Thread-Based Environment”.

See Also
grp2idx | tabulate | fishertest | heatmap

Topics
“Grouping Variables” on page 2-46
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crossval
Estimate loss using cross-validation

Syntax
err = crossval(criterion,X,y,'Predfun',predfun)
err = crossval(criterion,X1,...,XN,y,'Predfun',predfun)

values = crossval(fun,X)
values = crossval(fun,X1,...,XN)

___  = crossval( ___ ,Name,Value)

Description
err = crossval(criterion,X,y,'Predfun',predfun) returns a 10-fold cross-validation error
estimate for the function predfun based on the specified criterion, either 'mse' (mean squared
error) or 'mcr' (misclassification rate). The rows of X and y correspond to observations, and the
columns of X correspond to predictor variables.

For more information, see “General Cross-Validation Steps for predfun” on page 35-1176.

err = crossval(criterion,X1,...,XN,y,'Predfun',predfun) returns a 10-fold cross-
validation error estimate for predfun by using the predictor variables X1 through XN and the
response variable y.

values = crossval(fun,X) performs 10-fold cross-validation for the function fun, applied to the
data in X. The rows of X correspond to observations, and the columns of X correspond to variables.

For more information, see “General Cross-Validation Steps for fun” on page 35-1176.

values = crossval(fun,X1,...,XN) performs 10-fold cross-validation for the function fun,
applied to the data in X1,...,XN. Every data set, X1 through XN, must have the same number of
observations and, therefore, the same number of rows.

___  = crossval( ___ ,Name,Value) specifies cross-validation options using one or more name-
value pair arguments in addition to any of the input argument combinations and output arguments in
previous syntaxes. For example, 'KFold',5 specifies to perform 5-fold cross-validation.

Examples

Compute Mean Squared Error Using Cross-Validation

Compute the mean squared error of a regression model by using 10-fold cross-validation.

Load the carsmall data set. Put the acceleration, horsepower, weight, and miles per gallon (MPG)
values into the matrix data. Remove any rows that contain NaN values.
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load carsmall
data = [Acceleration Horsepower Weight MPG];
data(any(isnan(data),2),:) = [];

Specify the last column of data, which corresponds to MPG, as the response variable y. Specify the
other columns of data as the predictor data X. Add a column of ones to X when your regression
function uses regress, as in this example.

Note: regress is useful when you simply need the coefficient estimates or residuals of a regression
model. If you need to investigate a fitted regression model further, create a linear regression model
object by using fitlm. For an example that uses fitlm and crossval, see “Compute Mean Absolute
Error Using Cross-Validation” on page 35-1165.

y = data(:,4);
X = [ones(length(y),1) data(:,1:3)];

Create the custom function regf (shown at the end of this example). This function fits a regression
model to training data and then computes predicted values on a test set.

Note: If you use the live script file for this example, the regf function is already included at the end
of the file. Otherwise, you need to create this function at the end of your .m file or add it as a file on
the MATLAB® path.

Compute the default 10-fold cross-validation mean squared error for the regression model with
predictor data X and response variable y.

rng('default') % For reproducibility
cvMSE = crossval('mse',X,y,'Predfun',@regf)

cvMSE = 17.5399

This code creates the function regf.

function yfit = regf(Xtrain,ytrain,Xtest)
b = regress(ytrain,Xtrain);
yfit = Xtest*b;
end

Compute Misclassification Error Using Logistic Regression Model and Cross-Validation

Compute the misclassification error of a logistic regression model trained on numeric and categorical
predictor data by using 10-fold cross-validation.

Load the patients data set. Specify the numeric variables Diastolic and Systolic and the
categorical variable Gender as predictors, and specify Smoker as the response variable.

load patients
X1 = Diastolic;
X2 = categorical(Gender);
X3 = Systolic;
y = Smoker;

Create the custom function classf (shown at the end of this example). This function fits a logistic
regression model to training data and then classifies test data.
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Note: If you use the live script file for this example, the classf function is already included at the
end of the file. Otherwise, you need to create this function at the end of your .m file or add it as a file
on the MATLAB® path.

Compute the 10-fold cross-validation misclassification error for the model with predictor data X1, X2,
and X3 and response variable y. Specify 'Stratify',y to ensure that training and test sets have
roughly the same proportion of smokers.

rng('default') % For reproducibility
err = crossval('mcr',X1,X2,X3,y,'Predfun',@classf,'Stratify',y)

err = 0.1100

This code creates the function classf.

function pred = classf(X1train,X2train,X3train,ytrain,X1test,X2test,X3test)
Xtrain = table(X1train,X2train,X3train,ytrain, ...
    'VariableNames',{'Diastolic','Gender','Systolic','Smoker'});
Xtest = table(X1test,X2test,X3test, ...
    'VariableNames',{'Diastolic','Gender','Systolic'});
modelspec = 'Smoker ~ Diastolic + Gender + Systolic';
mdl = fitglm(Xtrain,modelspec,'Distribution','binomial');
yfit = predict(mdl,Xtest);
pred = (yfit > 0.5);
end

Determine Number of Clusters Using Cross-Validation

For a given number of clusters, compute the cross-validated sum of squared distances between
observations and their nearest cluster center. Compare the results for one through ten clusters.

Load the fisheriris data set. X is the matrix meas, which contains flower measurements for 150
different flowers.

load fisheriris
X = meas;

Create the custom function clustf (shown at the end of this example). This function performs the
following steps:

1 Standardize the training data.
2 Separate the training data into k clusters.
3 Transform the test data using the training data mean and standard deviation.
4 Compute the distance from each test data point to the nearest cluster center, or centroid.
5 Compute the sum of the squares of the distances.

Note: If you use the live script file for this example, the clustf function is already included at the
end of the file. Otherwise, you need to create the function at the end of your .m file or add it as a file
on the MATLAB® path.

Create a for loop that specifies the number of clusters k for each iteration. For each fixed number of
clusters, pass the corresponding clustf function to crossval. Because crossval performs 10-fold
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cross-validation by default, the software computes 10 sums of squared distances, one for each
partition of training and test data. Take the sum of those values; the result is the cross-validated sum
of squared distances for the given number of clusters.

rng('default') % For reproducibility
cvdist = zeros(5,1);
for k = 1:10
    fun = @(Xtrain,Xtest)clustf(Xtrain,Xtest,k);
    distances = crossval(fun,X);
    cvdist(k) = sum(distances);
end

Plot the cross-validated sum of squared distances for each number of clusters.

plot(cvdist)
xlabel('Number of Clusters')
ylabel('CV Sum of Squared Distances')

In general, when determining how many clusters to use, consider the greatest number of clusters
that corresponds to a significant decrease in the cross-validated sum of squared distances. For this
example, using two or three clusters seems appropriate, but using more than three clusters does not.

This code creates the function clustf.

function distances = clustf(Xtrain,Xtest,k)
[Ztrain,Zmean,Zstd] = zscore(Xtrain);
[~,C] = kmeans(Ztrain,k); % Creates k clusters
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Ztest = (Xtest-Zmean)./Zstd;
d = pdist2(C,Ztest,'euclidean','Smallest',1);
distances = sum(d.^2);
end

Compute Mean Absolute Error Using Cross-Validation

Compute the mean absolute error of a regression model by using 10-fold cross-validation.

Load the carsmall data set. Specify the Acceleration and Displacement variables as predictors
and the Weight variable as the response.

load carsmall
X1 = Acceleration;
X2 = Displacement;
y = Weight;

Create the custom function regf (shown at the end of this example). This function fits a regression
model to training data and then computes predicted car weights on a test set. The function compares
the predicted car weight values to the true values, and then computes the mean absolute error (MAE)
and the MAE adjusted to the range of the test set car weights.

Note: If you use the live script file for this example, the regf function is already included at the end
of the file. Otherwise, you need to create this function at the end of your .m file or add it as a file on
the MATLAB® path.

By default, crossval performs 10-fold cross-validation. For each of the 10 training and test set
partitions of the data in X1, X2, and y, compute the MAE and adjusted MAE values using the regf
function. Find the mean MAE and mean adjusted MAE.

rng('default') % For reproducibility
values = crossval(@regf,X1,X2,y)

values = 10×2

  319.2261    0.1132
  342.3722    0.1240
  214.3735    0.0902
  174.7247    0.1128
  189.4835    0.0832
  249.4359    0.1003
  194.4210    0.0845
  348.7437    0.1700
  283.1761    0.1187
  210.7444    0.1325

mean(values)

ans = 1×2

  252.6701    0.1129

This code creates the function regf.
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function errors = regf(X1train,X2train,ytrain,X1test,X2test,ytest)
tbltrain = table(X1train,X2train,ytrain, ...
    'VariableNames',{'Acceleration','Displacement','Weight'});
tbltest = table(X1test,X2test,ytest, ...
    'VariableNames',{'Acceleration','Displacement','Weight'});
mdl = fitlm(tbltrain,'Weight ~ Acceleration + Displacement');
yfit = predict(mdl,tbltest);
MAE = mean(abs(yfit-tbltest.Weight));
adjMAE = MAE/range(tbltest.Weight);
errors = [MAE adjMAE];
end

Compute Misclassification Error Using PCA and Cross-Validation

Compute the misclassification error of a classification tree by using principal component analysis
(PCA) and 5-fold cross-validation.

Load the fisheriris data set. The meas matrix contains flower measurements for 150 different
flowers. The species variable lists the species for each flower.

load fisheriris

Create the custom function classf (shown at the end of this example). This function fits a
classification tree to training data and then classifies test data. Use PCA inside the function to reduce
the number of predictors used to create the tree model.

Note: If you use the live script file for this example, the classf function is already included at the
end of the file. Otherwise, you need to create this function at the end of your .m file or add it as a file
on the MATLAB® path.

Create a cvpartition object for stratified 5-fold cross-validation. By default, cvpartition ensures
that training and test sets have roughly the same proportions of flower species.

rng('default') % For reproducibility
cvp = cvpartition(species,'KFold',5);

Compute the 5-fold cross-validation misclassification error for the classification tree with predictor
data meas and response variable species.

cvError = crossval('mcr',meas,species,'Predfun',@classf,'Partition',cvp)

cvError = 0.1067

This code creates the function classf.

function yfit = classf(Xtrain,ytrain,Xtest)

% Standardize the training predictor data. Then, find the 
% principal components for the standardized training predictor
% data.
[Ztrain,Zmean,Zstd] = zscore(Xtrain);
[coeff,scoreTrain,~,~,explained,mu] = pca(Ztrain);

% Find the lowest number of principal components that account
% for at least 95% of the variability.
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n = find(cumsum(explained)>=95,1);

% Find the n principal component scores for the standardized
% training predictor data. Train a classification tree model
% using only these scores.
scoreTrain95 = scoreTrain(:,1:n);
mdl = fitctree(scoreTrain95,ytrain);

% Find the n principal component scores for the transformed
% test data. Classify the test data.
Ztest = (Xtest-Zmean)./Zstd;
scoreTest95 = (Ztest-mu)*coeff(:,1:n);
yfit = predict(mdl,scoreTest95);

end

Create Confusion Matrix Using Cross-Validation

Create a confusion matrix from the 10-fold cross-validation results of a discriminant analysis model.

Note: Use classify when training speed is a concern. Otherwise, use fitcdiscr to create a
discriminant analysis model. For an example that shows the same workflow as this example, but uses
fitcdiscr, see “Create Confusion Matrix Using Cross-Validation Predictions” on page 35-3991.

Load the fisheriris data set. X contains flower measurements for 150 different flowers, and y lists
the species for each flower. Create a variable order that specifies the order of the flower species.

load fisheriris
X = meas;
y = species;
order = unique(y)

order = 3x1 cell
    {'setosa'    }
    {'versicolor'}
    {'virginica' }

Create a function handle named func for a function that completes the following steps:

• Take in training data (Xtrain and ytrain) and test data (Xtest and ytest).
• Use the training data to create a discriminant analysis model that classifies new data (Xtest).

Create this model and classify new data by using the classify function.
• Compare the true test data classes (ytest) to the predicted test data values, and create a

confusion matrix of the results by using the confusionmat function. Specify the class order by
using 'Order',order.

func = @(Xtrain,ytrain,Xtest,ytest)confusionmat(ytest, ...
    classify(Xtest,Xtrain,ytrain),'Order',order);

Create a cvpartition object for stratified 10-fold cross-validation. By default, cvpartition
ensures that training and test sets have roughly the same proportions of flower species.
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rng('default') % For reproducibility
cvp = cvpartition(y,'Kfold',10);

Compute the 10 test set confusion matrices for each partition of the predictor data X and response
variable y. Each row of confMat corresponds to the confusion matrix results for one test set.
Aggregate the results and create the final confusion matrix cvMat.

confMat = crossval(func,X,y,'Partition',cvp);
cvMat = reshape(sum(confMat),3,3)

cvMat = 3×3

    50     0     0
     0    48     2
     0     1    49

Plot the confusion matrix as a confusion matrix chart by using confusionchart.

confusionchart(cvMat,order)

Input Arguments
criterion — Type of error estimate
'mse' | 'mcr'

35 Functions

35-1168



Type of error estimate, specified as either 'mse' or 'mcr'.

Value Description
'mse' Mean squared error (MSE) — Appropriate for

regression algorithms only
'mcr' Misclassification rate, or proportion of

misclassified observations — Appropriate for
classification algorithms only

X — Data set
column vector | matrix | array

Data set, specified as a column vector, matrix, or array. The rows of X correspond to observations, and
the columns of X generally correspond to variables. If you pass multiple data sets X1,...,XN to
crossval, then all data sets must have the same number of rows.
Data Types: single | double | logical | char | string | cell | categorical

y — Response data
column vector | character array

Response data, specified as a column vector or character array. The rows of y correspond to
observations, and y must have the same number of rows as the predictor data X or X1,...,XN.
Data Types: single | double | logical | char | string | cell | categorical

predfun — Prediction function
function handle

Prediction function, specified as a function handle. You must create this function as an anonymous
function, a function defined at the end of the .m or .mlx file containing the rest of your code, or a file
on the MATLAB path.

This table describes the required function syntax, given the type of predictor data passed to
crossval.
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Value Predictor Data Function Syntax
@myfunction X function yfit = myfunction(Xtrain,ytrain,Xtest)

% Calculate predicted response
...
end

• Xtrain — Subset of the observations in X
used as training predictor data. The function
uses Xtrain and ytrain to construct a
classification or regression model.

• ytrain — Subset of the responses in y used
as training response data. The rows of ytrain
correspond to the same observations in the
rows of Xtrain. The function uses Xtrain
and ytrain to construct a classification or
regression model.

• Xtest — Subset of the observations in X used
as test predictor data. The function uses
Xtest and the model trained on Xtrain and
ytrain to compute the predicted values
yfit.

• yfit — Set of predicted values for
observations in Xtest. The yfit values form
a column vector with the same number of
rows as Xtest.
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Value Predictor Data Function Syntax
@myfunction X1,...,XN function yfit = myfunction(X1train,...,XNtrain,ytrain,X1test,...,XNtest)

% Calculate predicted response
...
end

• X1train,...,XNtrain — Subsets of the
predictor data in X1,...,XN, respectively,
that are used as training predictor data. The
rows of X1train,...,XNtrain correspond
to the same observations. The function uses
X1train,...,XNtrain and ytrain to
construct a classification or regression model.

• ytrain — Subset of the responses in y used
as training response data. The rows of ytrain
correspond to the same observations in the
rows of X1train,...,XNtrain. The function
uses X1train,...,XNtrain and ytrain to
construct a classification or regression model.

• X1test,...,XNtest — Subsets of the
observations in X1,...,XN, respectively, that
are used as test predictor data. The rows of
X1test,...,XNtest correspond to the same
observations. The function uses
X1test,...,XNtest and the model trained
on X1train,...,XNtrain and ytrain to
compute the predicted values yfit.

• yfit — Set of predicted values for
observations in X1test,...,XNtest. The
yfit values form a column vector with the
same number of rows as
X1test,...,XNtest.

Example: @(Xtrain,ytrain,Xtest)(Xtest*regress(ytrain,Xtrain));
Data Types: function_handle

fun — Function to cross-validate
function handle

Function to cross-validate, specified as a function handle. You must create this function as an
anonymous function, a function defined at the end of the .m or .mlx file containing the rest of your
code, or a file on the MATLAB path.

This table describes the required function syntax, given the type of data passed to crossval.
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Value Data Function Syntax
@myfunction X function value = myfunction(Xtrain,Xtest)

% Calculation of value
...
end

• Xtrain — Subset of the observations in X
used as training data. The function uses
Xtrain to construct a model.

• Xtest — Subset of the observations in X used
as test data. The function uses Xtest and the
model trained on Xtrain to compute value.

• value — Quantity or variable. In most cases,
value is a numeric scalar representing a loss
estimate. value can also be an array,
provided that the array size is the same for
each partition of training and test data. If you
want to return a variable output that can
change size depending on the data partition,
set value to be the cell scalar {output}
instead.

@myfunction X1,...,XN function value = myfunction(X1train,...,XNtrain,X1test,...,XNtest)
% Calculation of value
...
end

• X1train,...,XNtrain — Subsets of the
data in X1,...,XN, respectively, that are
used as training data. The rows of
X1train,...,XNtrain correspond to the
same observations. The function uses
X1train,...,XNtrain to construct a model.

• X1test,...,XNtest — Subsets of the data
in X1,...,XN, respectively, that are used as
test data. The rows of X1test,...,XNtest
correspond to the same observations. The
function uses X1test,...,XNtest and the
model trained on X1train,...,XNtrain to
compute value.

• value — Quantity or variable. In most cases,
value is a numeric scalar representing a loss
estimate. value can also be an array,
provided that the array size is the same for
each partition of training and test data. If you
want to return a variable output that can
change size depending on the data partition,
set value to be the cell scalar {output}
instead.

Data Types: function_handle
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Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example:
crossval('mcr',meas,species,'Predfun',@classf,'KFold',5,'Stratify',species)
specifies to compute the stratified 5-fold cross-validation misclassification rate for the classf
function with predictor data meas and response variable species.

Holdout — Fraction or number of observations used for holdout validation
[] (default) | scalar value in the range (0,1) | positive integer scalar

Fraction or number of observations used for holdout validation, specified as the comma-separated
pair consisting of 'Holdout' and a scalar value in the range (0,1) or a positive integer scalar.

• If the Holdout value p is a scalar in the range (0,1), then crossval randomly selects and
reserves approximately p*100% of the observations as test data.

• If the Holdout value p is a positive integer scalar, then crossval randomly selects and reserves
p observations as test data.

In either case, crossval then trains the model specified by either fun or predfun using the rest of
the data. Finally, the function uses the test data along with the trained model to compute either
values or err.

You can use only one of these four name-value pair arguments: Holdout, KFold, Leaveout, and
Partition.
Example: 'Holdout',0.3
Example: 'Holdout',50
Data Types: single | double

KFold — Number of folds
10 (default) | positive integer scalar greater than 1

Number of folds for k-fold cross-validation, specified as the comma-separated pair consisting of
'KFold' and a positive integer scalar greater than 1.

If you specify 'KFold',k, then crossval randomly partitions the data into k sets. For each set, the
function reserves the set as test data, and trains the model specified by either fun or predfun using
the other k – 1 sets. crossval then uses the test data along with the trained model to compute
either values or err.

You can use only one of these four name-value pair arguments: Holdout, KFold, Leaveout, and
Partition.
Example: 'KFold',5
Data Types: single | double

Leaveout — Leave-one-out cross-validation
[] (default) | 1
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Leave-one-out cross-validation, specified as the comma-separated pair consisting of 'Leaveout' and
1.

If you specify 'Leaveout',1, then for each observation, crossval reserves the observation as test
data, and trains the model specified by either fun or predfun using the other observations. The
function then uses the test observation along with the trained model to compute either values or
err.

You can use only one of these four name-value pair arguments: Holdout, KFold, Leaveout, and
Partition.
Example: 'Leaveout',1
Data Types: single | double

MCReps — Number of Monte Carlo repetitions
1 (default) | positive integer scalar

Number of Monte Carlo repetitions for validation, specified as the comma-separated pair consisting
of 'MCReps' and a positive integer scalar. If the first input of crossval is 'mse' or 'mcr' (see
criterion), then crossval returns the mean MSE or misclassification rate across all Monte Carlo
repetitions. Otherwise, crossval concatenates the values from all Monte Carlo repetitions along the
first dimension.

If you specify both Partition and MCReps, then the first Monte Carlo repetition uses the partition
information in the cvpartition object, and the software calls the repartition object function to
generate new partitions for each of the remaining repetitions.
Example: 'MCReps',5
Data Types: single | double

Partition — Cross-validation partition
[] (default) | cvpartition partition object

Cross-validation partition, specified as the comma-separated pair consisting of 'Partition' and a
cvpartition partition object created by cvpartition. The partition object specifies the type of
cross-validation and the indexing for the training and test sets.

When you use crossval, you cannot specify both Partition and Stratify. Instead, directly
specify a stratified partition when you create the cvpartition partition object.

You can use only one of these four name-value pair arguments: Holdout, KFold, Leaveout, and
Partition.

Stratify — Variable specifying groups used for stratification
column vector

Variable specifying the groups used for stratification, specified as the comma-separated pair
consisting of 'Stratify' and a column vector with the same number of rows as the data X or
X1,...,XN.

When you specify Stratify, both the training and test sets have roughly the same class proportions
as in the Stratify vector. The software treats NaNs, empty character vectors, empty strings,
<missing> values, and <undefined> values in Stratify as missing data values, and ignores the
corresponding rows of the data.
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A good practice is to use stratification when you use cross-validation with classification algorithms.
Otherwise, some test sets might not include observations for all classes.

When you use crossval, you cannot specify both Partition and Stratify. Instead, directly
specify a stratified partition when you create the cvpartition partition object.
Data Types: single | double | logical | string | cell | categorical

Options — Options for running in parallel and setting random streams
structure

Options for running computations in parallel and setting random streams, specified as a structure.
Create the Options structure with statset. This table lists the option fields and their values.

Field Name Value Default
UseParallel Set this value to true to run

computations in parallel.
false

UseSubstreams Set this value to true to run
computations in parallel in a
reproducible manner.

To compute reproducibly, set
Streams to a type that allows
substreams: 'mlfg6331_64' or
'mrg32k3a'.

false

Streams Specify this value as a
RandStream object or a cell
array consisting of one such
object.

If you do not specify Streams,
then crossval uses the default
stream.

Note You need Parallel Computing Toolbox to run computations in parallel.

Example: 'Options',statset('UseParallel',true)
Data Types: struct

Output Arguments
err — Mean squared error or misclassification rate
numeric scalar

Mean squared error or misclassification rate, returned as a numeric scalar. The type of error depends
on the criterion value.

values — Loss values
column vector | matrix

Loss values, returned as a column vector or matrix. Each row of values corresponds to the output of
fun for one partition of training and test data.
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If the output returned by fun is multidimensional, then crossval reshapes the output and fits it into
one row of values. For an example, see “Create Confusion Matrix Using Cross-Validation” on page
35-1167.

Tips
• A good practice is to use stratification (see Stratify) when you use cross-validation with
classification algorithms. Otherwise, some test sets might not include observations for all classes.

Algorithms
General Cross-Validation Steps for predfun

When you use predfun, the crossval function typically performs 10-fold cross-validation as follows:

1 Split the observations in the predictor data X and the response variable y into 10 groups, each of
which has approximately the same number of observations.

2 Use the last nine groups of observations to train a model as specified in predfun. Use the first
group of observations as test data, pass the test predictor data to the trained model, and
compute predicted values as specified in predfun. Compute the error specified by criterion.

3 Use the first group and the last eight groups of observations to train a model as specified in
predfun. Use the second group of observations as test data, pass the test data to the trained
model, and compute predicted values as specified in predfun. Compute the error specified by
criterion.

4 Proceed in a similar manner until each group of observations is used as test data exactly once.
5 Return the mean error estimate as the scalar err.

General Cross-Validation Steps for fun

When you use fun, the crossval function typically performs 10-fold cross-validation as follows:

1 Split the data in X into 10 groups, each of which has approximately the same number of
observations.

2 Use the last nine groups of data to train a model as specified in fun. Use the first group of data
as a test set, pass the test set to the trained model, and compute some value (for example, loss)
as specified in fun.

3 Use the first group and the last eight groups of data to train a model as specified in fun. Use the
second group of data as a test set, pass the test set to the trained model, and compute some
value as specified in fun.

4 Proceed in a similar manner until each group of data is used as a test set exactly once.
5 Return the 10 computed values as the vector values.

Alternative Functionality
Many classification and regression functions allow you to perform cross-validation directly.

• When you use fit functions such as fitcsvm, fitctree, and fitrtree, you can specify cross-
validation options by using name-value pair arguments. Alternatively, you can first create models
with these fit functions and then create a partitioned object by using the crossval object
function. Use the kfoldLoss and kfoldPredict object functions to compute the loss and
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predicted values for the partitioned object. For more information, see
ClassificationPartitionedModel and RegressionPartitionedModel.

• You can also specify cross-validation options when you perform lasso or elastic net regularization
using lasso and lassoglm.

Version History
Introduced in R2008a

Extended Capabilities
Automatic Parallel Support
Accelerate code by automatically running computation in parallel using Parallel Computing Toolbox™.

To run in parallel, specify the 'Options' name-value argument in the call to this function and set the
'UseParallel' field of the options structure to true using statset.

For example: 'Options',statset('UseParallel',true)

For more information about parallel computing, see “Run MATLAB Functions with Automatic Parallel
Support” (Parallel Computing Toolbox).

See Also
cvpartition | pca | regress | classify | kmeans | confusionmat

Topics
“Select Features for Classifying High-Dimensional Data” on page 16-168
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crossval
Cross-validate machine learning model

Syntax
CVMdl = crossval(Mdl)
CVMdl = crossval(Mdl,Name,Value)

Description
CVMdl = crossval(Mdl) returns a cross-validated (partitioned) machine learning model (CVMdl)
from a trained model (Mdl). By default, crossval uses 10-fold cross-validation on the training data.

CVMdl = crossval(Mdl,Name,Value) sets an additional cross-validation option. You can specify
only one name-value argument. For example, you can specify the number of folds or a holdout sample
proportion.

Examples

Cross-Validate SVM Classifier

Load the ionosphere data set. This data set has 34 predictors and 351 binary responses for radar
returns, either bad ('b') or good ('g').

load ionosphere
rng(1); % For reproducibility

Train a support vector machine (SVM) classifier. Standardize the predictor data and specify the order
of the classes.

SVMModel = fitcsvm(X,Y,'Standardize',true,'ClassNames',{'b','g'});

SVMModel is a trained ClassificationSVM classifier. 'b' is the negative class and 'g' is the
positive class.

Cross-validate the classifier using 10-fold cross-validation.

CVSVMModel = crossval(SVMModel)

CVSVMModel = 
  ClassificationPartitionedModel
    CrossValidatedModel: 'SVM'
         PredictorNames: {1x34 cell}
           ResponseName: 'Y'
        NumObservations: 351
                  KFold: 10
              Partition: [1x1 cvpartition]
             ClassNames: {'b'  'g'}
         ScoreTransform: 'none'
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  Properties, Methods

CVSVMModel is a ClassificationPartitionedModel cross-validated classifier. During cross-
validation, the software completes these steps:

1 Randomly partition the data into 10 sets of equal size.
2 Train an SVM classifier on nine of the sets.
3 Repeat steps 1 and 2 k = 10 times. The software leaves out one partition each time and trains on

the other nine partitions.
4 Combine generalization statistics for each fold.

Display the first model in CVSVMModel.Trained.

FirstModel = CVSVMModel.Trained{1}

FirstModel = 
  CompactClassificationSVM
             ResponseName: 'Y'
    CategoricalPredictors: []
               ClassNames: {'b'  'g'}
           ScoreTransform: 'none'
                    Alpha: [78x1 double]
                     Bias: -0.2209
         KernelParameters: [1x1 struct]
                       Mu: [0.8888 0 0.6320 0.0406 0.5931 0.1205 0.5361 ... ]
                    Sigma: [0.3149 0 0.5033 0.4441 0.5255 0.4663 0.4987 ... ]
           SupportVectors: [78x34 double]
      SupportVectorLabels: [78x1 double]

  Properties, Methods

FirstModel is the first of the 10 trained classifiers. It is a CompactClassificationSVM classifier.

You can estimate the generalization error by passing CVSVMModel to kfoldLoss.

Specify Holdout Sample Proportion for Naive Bayes Cross-Validation

Specify a holdout sample proportion for cross-validation. By default, crossval uses 10-fold cross-
validation to cross-validate a naive Bayes classifier. However, you have several other options for
cross-validation. For example, you can specify a different number of folds or a holdout sample
proportion.

Load the ionosphere data set. This data set has 34 predictors and 351 binary responses for radar
returns, either bad ('b') or good ('g').

load ionosphere

Remove the first two predictors for stability.

X = X(:,3:end);
rng('default'); % For reproducibility
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Train a naive Bayes classifier using the predictors X and class labels Y. A recommended practice is to
specify the class names. 'b' is the negative class and 'g' is the positive class. fitcnb assumes that
each predictor is conditionally and normally distributed.

Mdl = fitcnb(X,Y,'ClassNames',{'b','g'});

Mdl is a trained ClassificationNaiveBayes classifier.

Cross-validate the classifier by specifying a 30% holdout sample.

CVMdl = crossval(Mdl,'Holdout',0.3)

CVMdl = 
  ClassificationPartitionedModel
    CrossValidatedModel: 'NaiveBayes'
         PredictorNames: {1x32 cell}
           ResponseName: 'Y'
        NumObservations: 351
                  KFold: 1
              Partition: [1x1 cvpartition]
             ClassNames: {'b'  'g'}
         ScoreTransform: 'none'

  Properties, Methods

CVMdl is a ClassificationPartitionedModel cross-validated, naive Bayes classifier.

Display the properties of the classifier trained using 70% of the data.

TrainedModel = CVMdl.Trained{1}

TrainedModel = 
  CompactClassificationNaiveBayes
              ResponseName: 'Y'
     CategoricalPredictors: []
                ClassNames: {'b'  'g'}
            ScoreTransform: 'none'
         DistributionNames: {1x32 cell}
    DistributionParameters: {2x32 cell}

  Properties, Methods

TrainedModel is a CompactClassificationNaiveBayes classifier.

Estimate the generalization error by passing CVMdl to kfoldloss.

kfoldLoss(CVMdl)

ans = 0.2095

The out-of-sample misclassification error is approximately 21%.

Reduce the generalization error by choosing the five most important predictors.
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idx = fscmrmr(X,Y);
Xnew = X(:,idx(1:5));

Train a naive Bayes classifier for the new predictor.

Mdlnew = fitcnb(Xnew,Y,'ClassNames',{'b','g'});

Cross-validate the new classifier by specifying a 30% holdout sample, and estimate the generalization
error.

CVMdlnew = crossval(Mdlnew,'Holdout',0.3);
kfoldLoss(CVMdlnew)

ans = 0.1429

The out-of-sample misclassification error is reduced from approximately 21% to approximately 14%.

Create Cross-Validated Regression GAM Using crossval

Train a regression generalized additive model (GAM) by using fitrgam, and create a cross-validated
GAM by using crossval and the holdout option. Then, use kfoldPredict to predict responses for
validation-fold observations using a model trained on training-fold observations.

Load the patients data set.

load patients

Create a table that contains the predictor variables (Age, Diastolic, Smoker, Weight, Gender,
SelfAssessedHealthStatus) and the response variable (Systolic).

tbl = table(Age,Diastolic,Smoker,Weight,Gender,SelfAssessedHealthStatus,Systolic);

Train a GAM that contains linear terms for predictors.

Mdl = fitrgam(tbl,'Systolic');

Mdl is a RegressionGAM model object.

Cross-validate the model by specifying a 30% holdout sample.

rng('default') % For reproducibility
CVMdl = crossval(Mdl,'Holdout',0.3)

CVMdl = 
  RegressionPartitionedGAM
       CrossValidatedModel: 'GAM'
            PredictorNames: {1x6 cell}
     CategoricalPredictors: [3 5 6]
              ResponseName: 'Systolic'
           NumObservations: 100
                     KFold: 1
                 Partition: [1x1 cvpartition]
         NumTrainedPerFold: [1x1 struct]
         ResponseTransform: 'none'
    IsStandardDeviationFit: 0
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  Properties, Methods

The crossval function creates a RegressionPartitionedGAM model object CVMdl with the
holdout option. During cross-validation, the software completes these steps:

1 Randomly select and reserve 30% of the data as validation data, and train the model using the
rest of the data.

2 Store the compact, trained model in the Trained property of the cross-validated model object
RegressionPartitionedGAM.

You can choose a different cross-validation setting by using the 'CrossVal', 'CVPartition',
'KFold', or 'Leaveout' name-value argument.

Predict responses for the validation-fold observations by using kfoldPredict. The function predicts
responses for the validation-fold observations by using the model trained on the training-fold
observations. The function assigns NaN to the training-fold observations.

yFit = kfoldPredict(CVMdl);

Find the validation-fold observation indexes, and create a table containing the observation index,
observed response values, and predicted response values. Display the first eight rows of the table.

idx = find(~isnan(yFit));
t = table(idx,tbl.Systolic(idx),yFit(idx), ...
    'VariableNames',{'Obseraction Index','Observed Value','Predicted Value'});
head(t)

    Obseraction Index    Observed Value    Predicted Value
    _________________    ______________    _______________

            1                 124              130.22     
            6                 121              124.38     
            7                 130              125.26     
           12                 115              117.05     
           20                 125              121.82     
           22                 123              116.99     
           23                 114                 107     
           24                 128              122.52     

Compute the regression error (mean squared error) for the validation-fold observations.

L = kfoldLoss(CVMdl)

L = 43.8715

Input Arguments
Mdl — Machine learning model
full regression model object | full classification model object

Machine learning model, specified as a full regression or classification model object, as given in the
following tables of supported models.
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Regression Model Object

Model Full Regression Model Object
Gaussian process regression (GPR) model RegressionGP (If you supply a custom

'ActiveSet' in the call to fitrgp, then you
cannot cross-validate the GPR model.)

Generalized additive model (GAM) RegressionGAM
Neural network model RegressionNeuralNetwork

Classification Model Object

Model Full Classification Model Object
Generalized additive model ClassificationGAM
k-nearest neighbor model ClassificationKNN
Naive Bayes model ClassificationNaiveBayes
Neural network model ClassificationNeuralNetwork
Support vector machine for one-class and binary
classification

ClassificationSVM

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: crossval(Mdl,'KFold',3) specifies using three folds in a cross-validated model.

CVPartition — Cross-validation partition
[] (default) | cvpartition partition object

Cross-validation partition, specified as a cvpartition partition object created by cvpartition.
The partition object specifies the type of cross-validation and the indexing for the training and
validation sets.

You can specify only one of these four name-value arguments: 'CVPartition', 'Holdout',
'KFold', or 'Leaveout'.
Example: Suppose you create a random partition for 5-fold cross-validation on 500 observations by
using cvp = cvpartition(500,'KFold',5). Then, you can specify the cross-validated model by
using 'CVPartition',cvp.

Holdout — Fraction of data for holdout validation
scalar value in the range (0,1)

Fraction of the data used for holdout validation, specified as a scalar value in the range (0,1). If you
specify 'Holdout',p, then the software completes these steps:

1 Randomly select and reserve p*100% of the data as validation data, and train the model using
the rest of the data.
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2 Store the compact, trained model in the Trained property of the cross-validated model. If Mdl
does not have a corresponding compact object, then Trained contains a full object.

You can specify only one of these four name-value arguments: 'CVPartition', 'Holdout',
'KFold', or 'Leaveout'.
Example: 'Holdout',0.1
Data Types: double | single

KFold — Number of folds
10 (default) | positive integer value greater than 1

Number of folds to use in a cross-validated model, specified as a positive integer value greater than 1.
If you specify 'KFold',k, then the software completes these steps:

1 Randomly partition the data into k sets.
2 For each set, reserve the set as validation data, and train the model using the other k – 1 sets.
3 Store the k compact, trained models in a k-by-1 cell vector in the Trained property of the cross-

validated model. If Mdl does not have a corresponding compact object, then Trained contains a
full object.

You can specify only one of these four name-value arguments: 'CVPartition', 'Holdout',
'KFold', or 'Leaveout'.
Example: 'KFold',5
Data Types: single | double

Leaveout — Leave-one-out cross-validation flag
'off' (default) | 'on'

Leave-one-out cross-validation flag, specified as 'on' or 'off'. If you specify 'Leaveout','on',
then for each of the n observations (where n is the number of observations, excluding missing
observations, specified in the NumObservations property of the model), the software completes
these steps:

1 Reserve the one observation as validation data, and train the model using the other n – 1
observations.

2 Store the n compact, trained models in an n-by-1 cell vector in the Trained property of the
cross-validated model. If Mdl does not have a corresponding compact object, then Trained
contains a full object.

You can specify only one of these four name-value arguments: 'CVPartition', 'Holdout',
'KFold', or 'Leaveout'.
Example: 'Leaveout','on'

Output Arguments
CVMdl — Cross-validated machine learning model
cross-validated (partitioned) model object

Cross-validated machine learning model, returned as one of the cross-validated (partitioned) model
objects in the following tables, depending on the input model Mdl.
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Regression Model Object

Model Regression Model (Mdl) Cross-Validated Model
(CVMdl)

Gaussian process regression
model

RegressionGP RegressionPartitionedGP

Generalized additive model RegressionGAM RegressionPartitionedGAM
Neural network model RegressionNeuralNetwork RegressionPartitionedMod

el

Classification Model Object

Model Classification Model (Mdl) Cross-Validated Model
(CVMdl)

Generalized additive model ClassificationGAM ClassificationPartitione
dGAM

k-nearest neighbor model ClassificationKNN ClassificationPartitione
dModel

Naive Bayes model ClassificationNaiveBayes ClassificationPartitione
dModel

Neural network model ClassificationNeuralNetw
ork

ClassificationPartitione
dModel

Support vector machine for one-
class and binary classification

ClassificationSVM ClassificationPartitione
dModel

Tips
• Assess the predictive performance of Mdl on cross-validated data by using the kfold functions and

properties of CVMdl, such as kfoldPredict, kfoldLoss, kfoldMargin, and kfoldEdge for
classification and kfoldPredict and kfoldLoss for regression.

• Return a partitioned classifier with stratified partitioning by using the name-value argument
'KFold' or 'Holdout'.

• Create a cvpartition object cvp using cvp = cvpartition(n,'KFold',k). Return a
partitioned classifier with nonstratified partitioning by using the name-value argument
'CVPartition',cvp.

Alternative Functionality
Instead of training a model and then cross-validating it, you can create a cross-validated model
directly by using a fitting function and specifying one of these name-value argument: 'CrossVal',
'CVPartition', 'Holdout', 'Leaveout', or 'KFold'.

Version History
Introduced in R2012a

A cross-validated Gaussian process regression model is a RegressionPartitionedGP object
Behavior changed in R2022b
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Starting in R2022b, a cross-validated Gaussian process regression (GPR) model is a
RegressionPartitionedGP object. In previous releases, a cross-validated GPR model was a
RegressionPartitionedModel object.

You can create a RegressionPartitionedGP object in two ways:

• Create a cross-validated model from a GPR model object RegressionGP by using the crossval
object function.

• Create a cross-validated model by using the fitrgp function and specifying one of the name-
value arguments CrossVal, CVPartition, Holdout, KFold, or Leaveout.

Regardless of whether you train a full or cross-validated GPR model first, you cannot specify an
ActiveSet value in the call to fitrgp.

Extended Capabilities
GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

Usage notes and limitations:

• This function fully supports GPU arrays for a trained classification model specified as a
ClassificationKNN or ClassificationSVM object.

For more information, see “Run MATLAB Functions on a GPU” (Parallel Computing Toolbox).

See Also
cvpartition
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crossval
Class: ClassificationDiscriminant

Cross-validated discriminant analysis classifier

Syntax
cvmodel = crossval(obj)
cvmodel = crossval(obj,Name,Value)

Description
cvmodel = crossval(obj) creates a partitioned model from obj, a fitted discriminant analysis
classifier. By default, crossval uses 10-fold cross validation on the training data to create cvmodel.

cvmodel = crossval(obj,Name,Value) creates a partitioned model with additional options
specified by one or more Name,Value pair arguments.

Input Arguments
obj

Discriminant analysis classifier, produced using fitcdiscr.

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.

CVPartition

Object of class cvpartition, created by the cvpartition function. crossval splits the data into
subsets with cvpartition.

Use only one of these options at a time: 'CVPartition', 'Holdout', 'KFold', or 'Leaveout'.

Default: []

Holdout

Holdout validation tests the specified fraction of the data, and uses the rest of the data for training.
Specify a numeric scalar from 0 to 1. Use only one of these options at a time: 'CVPartition',
'Holdout', 'KFold', or 'Leaveout'.

KFold

Number of folds to use in a cross-validated classifier, a positive integer value greater than 1.
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Use only one of these options at a time: 'CVPartition', 'Holdout', 'KFold', or 'Leaveout'.

Default: 10

Leaveout

Set to 'on' for leave-one-out cross validation.

Use only one of these options at a time: 'CVPartition', 'Holdout', 'KFold', or 'Leaveout'.

Examples
Create a classification model for the Fisher iris data, and then create a cross-validation model.
Evaluate the quality the model using kfoldLoss.

load fisheriris
obj = fitcdiscr(meas,species);
cvmodel = crossval(obj);
L = kfoldLoss(cvmodel)

L =
    0.0200

Tips
• Assess the predictive performance of obj on cross-validated data using the “kfold” methods and

properties of cvmodel, such as kfoldLoss.

Alternatives
You can create a cross-validation classifier directly from the data, instead of creating a discriminant
analysis classifier followed by a cross-validation classifier. To do so, include one of these options in
fitcdiscr: 'CrossVal', 'CVPartition', 'Holdout', 'KFold', or 'Leaveout'.

See Also
fitcdiscr | crossval | kfoldEdge | kfoldfun | kfoldLoss | kfoldMargin | kfoldPredict

Topics
“Discriminant Analysis Classification” on page 21-2
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crossval
Cross-validate multiclass error-correcting output codes (ECOC) model

Syntax
CVMdl = crossval(Mdl)
CVMdl = crossval(Mdl,Name,Value)

Description
CVMdl = crossval(Mdl) returns a cross-validated (partitioned) multiclass error-correcting output
codes (ECOC) model (CVMdl) from a trained ECOC model (Mdl). By default, crossval uses 10-fold
cross-validation on the training data to create CVMdl, a ClassificationPartitionedECOC model.

CVMdl = crossval(Mdl,Name,Value) returns a partitioned ECOC model with additional options
specified by one or more name-value pair arguments. For example, you can specify the number of
folds or a holdout sample proportion.

Examples

Cross-Validate ECOC Classifier

Cross-validate an ECOC classifier with SVM binary learners, and estimate the generalized
classification error.

Load Fisher's iris data set. Specify the predictor data X and the response data Y.

load fisheriris
X = meas;
Y = species;
rng(1); % For reproducibility

Create an SVM template, and standardize the predictors.

t = templateSVM('Standardize',true)

t = 
Fit template for classification SVM.

                     Alpha: [0x1 double]
             BoxConstraint: []
                 CacheSize: []
             CachingMethod: ''
                ClipAlphas: []
    DeltaGradientTolerance: []
                   Epsilon: []
              GapTolerance: []
              KKTTolerance: []
            IterationLimit: []
            KernelFunction: ''
               KernelScale: []
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              KernelOffset: []
     KernelPolynomialOrder: []
                  NumPrint: []
                        Nu: []
           OutlierFraction: []
          RemoveDuplicates: []
           ShrinkagePeriod: []
                    Solver: ''
           StandardizeData: 1
        SaveSupportVectors: []
            VerbosityLevel: []
                   Version: 2
                    Method: 'SVM'
                      Type: 'classification'

t is an SVM template. Most of the template object properties are empty. When training the ECOC
classifier, the software sets the applicable properties to their default values.

Train the ECOC classifier, and specify the class order.

Mdl = fitcecoc(X,Y,'Learners',t,...
    'ClassNames',{'setosa','versicolor','virginica'});

Mdl is a ClassificationECOC classifier. You can access its properties using dot notation.

Cross-validate Mdl using 10-fold cross-validation.

CVMdl = crossval(Mdl);

CVMdl is a ClassificationPartitionedECOC cross-validated ECOC classifier.

Estimate the generalized classification error.

genError = kfoldLoss(CVMdl)

genError = 0.0400

The generalized classification error is 4%, which indicates that the ECOC classifier generalizes fairly
well.

Cross-Validate ECOC Classifier Using Parallel Computing

Consider the arrhythmia data set. This data set contains 16 classes, 13 of which are represented in
the data. The first class indicates that the subject does not have arrhythmia, and the last class
indicates that the arrhythmia state of the subject is not recorded. The other classes are ordinal levels
indicating the severity of arrhythmia.

Train an ECOC classifier with a custom coding design specified by the description of the classes.

Load the arrhythmia data set. Convert Y to a categorical variable, and determine the number of
classes.
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load arrhythmia
Y = categorical(Y);
K = unique(Y); % Number of distinct classes

Construct a coding matrix that describes the nature of the classes.

OrdMat = designecoc(11,'ordinal');
nOrdMat = size(OrdMat);
class1VSOrd = [1; -ones(11,1); 0];
class1VSClass16 = [1; zeros(11,1); -1];
OrdVSClass16 = [0; ones(11,1); -1];
Coding = [class1VSOrd class1VSClass16 OrdVSClass16,...
    [zeros(1,nOrdMat(2)); OrdMat; zeros(1,nOrdMat(2))]];

Train an ECOC classifier using the custom coding design (Coding) and parallel computing. Specify
an ensemble of 50 classification trees boosted using GentleBoost.

t = templateEnsemble('GentleBoost',50,'Tree');
options = statset('UseParallel',true);
Mdl = fitcecoc(X,Y,'Coding',Coding,'Learners',t,'Options',options);

Starting parallel pool (parpool) using the 'local' profile ...
Connected to the parallel pool (number of workers: 6).

Mdl is a ClassificationECOC model. You can access its properties using dot notation.

Cross-validate Mdl using 8-fold cross-validation and parallel computing.

rng(1); % For reproducibility
CVMdl = crossval(Mdl,'Options',options,'KFold',8);

Warning: One or more folds do not contain points from all the groups.

Because some classes have low relative frequency, some folds do not train using observations from
those classes. CVMdl is a ClassificationPartitionedECOC cross-validated ECOC model.

Estimate the generalization error using parallel computing.

error = kfoldLoss(CVMdl,'Options',options)

error = 0.3208

The cross-validated classification error is 32%, which indicates that this model does not generalize
well. To improve the model, try training using a different boosting method, such as RobustBoost, or a
different algorithm, such as SVM.

Input Arguments
Mdl — Full, trained multiclass ECOC model
ClassificationECOC model

Full, trained multiclass ECOC model, specified as a ClassificationECOC model trained with
fitcecoc.
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Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: crossval(Mdl,'KFold',3) specifies using three folds in a cross-validated model.

CVPartition — Cross-validation partition
[] (default) | cvpartition partition object

Cross-validation partition, specified as a cvpartition partition object created by cvpartition.
The partition object specifies the type of cross-validation and the indexing for the training and
validation sets.

To create a cross-validated model, you can specify only one of these four name-value arguments:
CVPartition, Holdout, KFold, or Leaveout.
Example: Suppose you create a random partition for 5-fold cross-validation on 500 observations by
using cvp = cvpartition(500,'KFold',5). Then, you can specify the cross-validated model by
using 'CVPartition',cvp.

Holdout — Fraction of data for holdout validation
scalar value in the range (0,1)

Fraction of the data used for holdout validation, specified as a scalar value in the range (0,1). If you
specify 'Holdout',p, then the software completes these steps:

1 Randomly select and reserve p*100% of the data as validation data, and train the model using
the rest of the data.

2 Store the compact, trained model in the Trained property of the cross-validated model.

To create a cross-validated model, you can specify only one of these four name-value arguments:
CVPartition, Holdout, KFold, or Leaveout.
Example: 'Holdout',0.1
Data Types: double | single

KFold — Number of folds
10 (default) | positive integer value greater than 1

Number of folds to use in a cross-validated model, specified as a positive integer value greater than 1.
If you specify 'KFold',k, then the software completes these steps:

1 Randomly partition the data into k sets.
2 For each set, reserve the set as validation data, and train the model using the other k – 1 sets.
3 Store the k compact, trained models in a k-by-1 cell vector in the Trained property of the cross-

validated model.

To create a cross-validated model, you can specify only one of these four name-value arguments:
CVPartition, Holdout, KFold, or Leaveout.
Example: 'KFold',5
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Data Types: single | double

Leaveout — Leave-one-out cross-validation flag
'off' (default) | 'on'

Leave-one-out cross-validation flag, specified as 'on' or 'off'. If you specify 'Leaveout','on',
then for each of the n observations (where n is the number of observations, excluding missing
observations, specified in the NumObservations property of the model), the software completes
these steps:

1 Reserve the one observation as validation data, and train the model using the other n – 1
observations.

2 Store the n compact, trained models in an n-by-1 cell vector in the Trained property of the
cross-validated model.

To create a cross-validated model, you can specify only one of these four name-value arguments:
CVPartition, Holdout, KFold, or Leaveout.
Example: 'Leaveout','on'

Options — Estimation options
[] (default) | structure array returned by statset

Estimation options, specified as the comma-separated pair consisting of 'Options' and a structure
array returned by statset.

To invoke parallel computing:

• You need a Parallel Computing Toolbox license.
• Specify 'Options',statset('UseParallel',true).

Tips
• Assess the predictive performance of Mdl on cross-validated data using the "kfold" methods and

properties of CVMdl, such as kfoldLoss.

Alternative Functionality
Instead of training an ECOC model and then cross-validating it, you can create a cross-validated
ECOC model directly by using fitcecoc and specifying one of these name-value pair arguments:
'CrossVal', 'CVPartition', 'Holdout', 'Leaveout', or 'KFold'.

Version History
Introduced in R2014b

Extended Capabilities
Automatic Parallel Support
Accelerate code by automatically running computation in parallel using Parallel Computing Toolbox™.

To run in parallel, specify the 'Options' name-value argument in the call to this function and set the
'UseParallel' field of the options structure to true using statset.
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For example: 'Options',statset('UseParallel',true)

For more information about parallel computing, see “Run MATLAB Functions with Automatic Parallel
Support” (Parallel Computing Toolbox).

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

This function fully supports GPU arrays. For more information, see “Run MATLAB Functions on a
GPU” (Parallel Computing Toolbox).

See Also
ClassificationECOC | CompactClassificationECOC | ClassificationPartitionedECOC |
fitcecoc | statset | cvpartition

Topics
“Quick Start Parallel Computing for Statistics and Machine Learning Toolbox” on page 33-2
“Reproducibility in Parallel Statistical Computations” on page 33-16
“Concepts of Parallel Computing in Statistics and Machine Learning Toolbox” on page 33-6
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crossval
Cross-validate ensemble

Syntax
cvens = crossval(ens)
cvens = crossval(ens,Name,Value)

Description
cvens = crossval(ens) creates a cross-validated ensemble from ens, a classification ensemble.
Default is 10-fold cross validation.

cvens = crossval(ens,Name,Value) creates a cross-validated ensemble with additional options
specified by one or more Name,Value pair arguments. You can specify several name-value pair
arguments in any order as Name1,Value1,…,NameN,ValueN.

Input Arguments
ens

A classification ensemble created with fitcensemble.

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.

cvpartition

A partition of class cvpartition. Sets the partition for cross validation.

Use no more than one of the name-value pairs cvpartition, holdout, kfold, or leaveout.

holdout

Holdout validation tests the specified fraction of the data, and uses the rest of the data for training.
Specify a numeric scalar from 0 to 1. You can only use one of these four options at a time for creating
a cross-validated tree: 'kfold', 'holdout', 'leaveout', or 'cvpartition'.

kfold

Number of folds for cross validation, a numeric positive scalar greater than 1.

Use no more than one of the name-value pairs 'kfold', 'holdout', 'leaveout', or
'cvpartition'.
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leaveout

If 'on', use leave-one-out cross validation.

Use no more than one of the name-value pairs 'kfold', 'holdout', 'leaveout', or
'cvpartition'.

nprint

Printout frequency, a positive integer scalar. Use this parameter to observe the training of cross-
validation folds.

Default: 'off', meaning no printout

Output Arguments
cvens

A cross-validated classification ensemble of class ClassificationPartitionedEnsemble.

Examples
Cross-Validate Classification Ensemble

Create a cross-validated classification model for the Fisher iris data, and assess its quality using the
kfoldLoss method.

Load the Fisher iris data set.

load fisheriris

Train an ensemble of 100 boosted classification trees using AdaBoostM2.

t = templateTree('MaxNumSplits',1); % Weak learner template tree object
ens = fitcensemble(meas,species,'Method','AdaBoostM2','Learners',t);

Create a cross-validated ensemble from ens and find the classification error averaged over all folds.

rng(10,'twister') % For reproducibility
cvens = crossval(ens);
L = kfoldLoss(cvens)

L = 0.0533

Alternatives
You can create a cross-validation ensemble directly from the data, instead of creating an ensemble
followed by a cross-validation ensemble. To do so, include one of these five options in
fitcensemble: 'crossval', 'kfold', 'holdout', 'leaveout', or 'cvpartition'.

Extended Capabilities
GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.
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This function fully supports GPU arrays. For more information, see “Run MATLAB Functions on a
GPU” (Parallel Computing Toolbox).

See Also
ClassificationPartitionedEnsemble | cvpartition
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crossval
Class: ClassificationTree

Cross-validated decision tree

Syntax
cvmodel = crossval(model)
cvmodel = crossval(model,Name,Value)

Description
cvmodel = crossval(model) creates a partitioned model from model, a fitted classification tree.
By default, crossval uses 10-fold cross validation on the training data to create cvmodel.

cvmodel = crossval(model,Name,Value) creates a partitioned model with additional options
specified by one or more Name,Value pair arguments.

Input Arguments
model

A classification model, produced using fitctree.

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.

CVPartition — Cross-validation partition
[] (default) | cvpartition object

Cross-validation partition, specified as the comma-separated pair consisting of 'CVPartition' and
a cvpartition object created by the cvpartition function. crossval splits the data into subsets
with cvpartition.

Use only one of these four options at a time: 'CVPartition', 'Holdout', 'KFold', or
'Leaveout'.

Holdout — Fraction of data for holdout validation
scalar value in the range (0,1)

Fraction of the data used for holdout validation, specified as the comma-separated pair consisting of
'Holdout' and a scalar value in the range (0,1).

Use only one of these four options at a time: 'CVPartition', 'Holdout', 'KFold', or
'Leaveout'.
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Example: 'Holdout',0.3
Data Types: single | double

KFold — Number of folds
10 (default) | positive integer value greater than 1

Number of folds to use in a cross-validated model, specified as the comma-separated pair consisting
of 'KFold' and a positive integer value greater than 1.

Use only one of these four options at a time: 'CVPartition', 'Holdout', 'KFold', or
'Leaveout'.
Example: 'KFold',3
Data Types: single | double

Leaveout — Leave-one-out cross-validation flag
'off' (default) | 'on'

Leave-one-out cross-validation flag, specified as the comma-separated pair consisting of 'Leaveout'
and 'on' or 'off'. Leave-one-out is a special case of 'KFold' in which the number of folds equals
the number of observations.

Use only one of these four options at a time: 'CVPartition', 'Holdout', 'KFold', or
'Leaveout'.
Example: 'Leaveout','on'

Output Arguments
cvmodel — Partitioned model
ClassificationPartionedModel object

Partitioned model, returned as a ClassificationPartitionedModel object.

Examples

Create a Cross-Validation Model

Create a classification model for the ionosphere data, then create a cross-validation model. Evaluate
the quality the model using kfoldLoss.

load ionosphere
tree = fitctree(X,Y);
cvmodel = crossval(tree);
L = kfoldLoss(cvmodel)

L = 0.1083

Tips
• Assess the predictive performance of model on cross-validated data using the “kfold” methods

and properties of cvmodel, such as kfoldLoss.
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Alternatives
You can create a cross-validation tree directly from the data, instead of creating a decision tree
followed by a cross-validation tree. To do so, include one of these five options in fitctree:
'CrossVal', 'KFold', 'Holdout', 'Leaveout', or 'CVPartition'.

Extended Capabilities
GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

This function fully supports GPU arrays. For more information, see “Run MATLAB Functions on a
GPU” (Parallel Computing Toolbox).

See Also
fitctree | crossval
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crossval
Cross validate ensemble

Syntax
cvens = crossval(ens)
cvens = crossval(ens,Name,Value)

Description
cvens = crossval(ens) creates a cross-validated ensemble from ens, a regression ensemble.
Default is 10-fold cross validation.

cvens = crossval(ens,Name,Value) creates a cross-validated ensemble with additional options
specified by one or more Name,Value pair arguments. You can specify several name-value pair
arguments in any order as Name1,Value1,…,NameN,ValueN.

Input Arguments
ens

A regression ensemble created with fitrensemble.

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.

cvpartition

A partition of class cvpartition. Sets the partition for cross validation.

Use no more than one of the name-value pairs cvpartition, holdout, kfold, and leaveout.

holdout

Holdout validation tests the specified fraction of the data, and uses the rest of the data for training.
Specify a numeric scalar from 0 to 1. You can only use one of these four options at a time for creating
a cross-validated tree: 'kfold', 'holdout', 'leaveout', or 'cvpartition'.

kfold

Number of folds for cross validation, a positive integer value greater than 1.

Use no more than one of the name-value pairs 'kfold', 'holdout', 'leaveout', or
'cvpartition'.

 crossval

35-1201



leaveout

If 'on', use leave-one-out cross-validation.

Use no more than one of the name-value pairs 'kfold', 'holdout', 'leaveout', or
'cvpartition'.

nprint

Printout frequency, a positive integer scalar. Use this parameter to observe the training of cross-
validation folds.

Default: 'off', meaning no printout

Output Arguments
cvens

A cross-validated classification ensemble of class RegressionPartitionedEnsemble.

Examples
Create Cross-Validated Regression Model

Create a cross-validated regression model for the carsmall data, and evaluate its quality using the
kfoldLoss method.

Load the carsmall data set and select acceleration, displacement, horsepower, and vehicle weight
as predictors.

load carsmall;
X = [Acceleration Displacement Horsepower Weight];

Train a regression ensemble.

rens = fitrensemble(X,MPG);

Create a cross-validated ensemble from rens and find the cross-validation loss.

rng(10,'twister') % For reproducibility
cvens = crossval(rens);
L = kfoldLoss(cvens)

L = 30.3471

Alternatives
You can create a cross-validation ensemble directly from the data, instead of creating an ensemble
followed by a cross-validation ensemble. To do so, include one of these five options in
fitrensemble: 'crossval', 'kfold', 'holdout', 'leaveout', or 'cvpartition'.
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Extended Capabilities
GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

This function fully supports GPU arrays. For more information, see “Run MATLAB Functions on a
GPU” (Parallel Computing Toolbox).

See Also
cvpartition | kfoldLoss | RegressionPartitionedEnsemble
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crossval
Class: RegressionSVM

Cross-validated support vector machine regression model

Syntax
CVMdl = crossval(mdl)
CVMdl = crossval(mdl,Name,Value)

Description
CVMdl = crossval(mdl) returns a cross-validated (partitioned) support vector machine regression
model, CVMdl, from a trained SVM regression model, mdl.

CVMdl = crossval(mdl,Name,Value) returns a cross-validated model with additional options
specified by one or more Name,Value pair arguments.

Input Arguments
mdl — Full, trained SVM regression model
RegressionSVM model

Full, trained SVM regression model, specified as a RegressionSVM model returned by fitrsvm.

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.

CVPartition — Cross-validation partition
[] (default) | cvpartition partition object

Cross-validation partition, specified as a cvpartition partition object created by cvpartition.
The partition object specifies the type of cross-validation and the indexing for the training and
validation sets.

To create a cross-validated model, you can specify only one of these four name-value arguments:
CVPartition, Holdout, KFold, or Leaveout.
Example: Suppose you create a random partition for 5-fold cross-validation on 500 observations by
using cvp = cvpartition(500,'KFold',5). Then, you can specify the cross-validated model by
using 'CVPartition',cvp.

Holdout — Fraction of data for holdout validation
scalar value in the range (0,1)
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Fraction of the data used for holdout validation, specified as a scalar value in the range (0,1). If you
specify 'Holdout',p, then the software completes these steps:

1 Randomly select and reserve p*100% of the data as validation data, and train the model using
the rest of the data.

2 Store the compact, trained model in the Trained property of the cross-validated model.

To create a cross-validated model, you can specify only one of these four name-value arguments:
CVPartition, Holdout, KFold, or Leaveout.
Example: 'Holdout',0.1
Data Types: double | single

KFold — Number of folds
10 (default) | positive integer value greater than 1

Number of folds to use in a cross-validated model, specified as a positive integer value greater than 1.
If you specify 'KFold',k, then the software completes these steps:

1 Randomly partition the data into k sets.
2 For each set, reserve the set as validation data, and train the model using the other k – 1 sets.
3 Store the k compact, trained models in a k-by-1 cell vector in the Trained property of the cross-

validated model.

To create a cross-validated model, you can specify only one of these four name-value arguments:
CVPartition, Holdout, KFold, or Leaveout.
Example: 'KFold',5
Data Types: single | double

Leaveout — Leave-one-out cross-validation flag
'off' (default) | 'on'

Leave-one-out cross-validation flag, specified as 'on' or 'off'. If you specify 'Leaveout','on',
then for each of the n observations (where n is the number of observations, excluding missing
observations, specified in the NumObservations property of the model), the software completes
these steps:

1 Reserve the one observation as validation data, and train the model using the other n – 1
observations.

2 Store the n compact, trained models in an n-by-1 cell vector in the Trained property of the
cross-validated model.

To create a cross-validated model, you can specify only one of these four name-value arguments:
CVPartition, Holdout, KFold, or Leaveout.
Example: 'Leaveout','on'

Output Arguments
CVMdl — Cross-validated SVM regression model
RegressionPartitionedSVM model
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Cross-validated SVM regression model, returned as a RegressionPartitionedSVM model.

Examples

Train Cross-Validated SVM Regression Model Using crossval

This example shows how to train a cross-validated SVM regression model using crossval.

This example uses the abalone data from the UCI Machine Learning Repository. Download the data
and save it in your current folder with the name 'abalone.data'. Read the data into a table.

tbl = readtable('abalone.data','Filetype','text','ReadVariableNames',false);
rng default  % for reproducibility

The sample data contains 4177 observations. All the predictor variables are continuous except for
sex, which is a categorical variable with possible values 'M' (for males), 'F' (for females), and 'I'
(for infants). The goal is to predict the number of rings on the abalone and determine its age using
physical measurements.

Train an SVM regression model, using a Gaussian kernel function with a kernel scale equal to 2.2.
Standardize the data.

mdl = fitrsvm(tbl,'Var9','KernelFunction','gaussian','KernelScale',2.2,'Standardize',true);

mdl is a trained RegressionSVM regression model.

Cross validate the model using 10-fold cross validation.

CVMdl = crossval(mdl)

CVMdl = 

  classreg.learning.partition.RegressionPartitionedSVM
      CrossValidatedModel: 'SVM'
           PredictorNames: {1x8 cell}
    CategoricalPredictors: 1
             ResponseName: 'Var9'
          NumObservations: 4177
                    KFold: 10
                Partition: [1x1 cvpartition]
        ResponseTransform: 'none'

  Properties, Methods

CVMdl is a RegressionPartitionedSVM cross-validated regression model. The software:

1. Randomly partitions the data into 10 equally sized sets.

2. Trains an SVM regression model on nine of the 10 sets.

3. Repeats steps 1 and 2 k = 10 times. It leaves out one of the partitions each time, and trains on the
other nine partitions.

4. Combines generalization statistics for each fold.
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Calculate the resubstitution loss for the cross-validated model.

loss = kfoldLoss(CVMdl)

loss =

    4.5712

Specify Cross-Validation Holdout Proportion for SVM Regression

This example shows how to specify a holdout proportion for training a cross-validated SVM
regression model.

This example uses the abalone data from the UCI Machine Learning Repository. Download the data
and save it in your current folder with the name 'abalone.data'. Read the data into a table.

tbl = readtable('abalone.data','Filetype','text','ReadVariableNames',false);
rng default  % for reproducibility

The sample data contains 4177 observations. All the predictor variables are continuous except for
sex, which is a categorical variable with possible values 'M' (for males), 'F' (for females), and 'I'
(for infants). The goal is to predict the number of rings on the abalone and determine its age using
physical measurements.

Train an SVM regression model, using a Gaussian kernel function with an automatic kernel scale.
Standardize the data.

mdl = fitrsvm(tbl,'Var9','KernelFunction','gaussian','KernelScale','auto','Standardize',true);

mdl is a trained RegressionSVM regression model.

Cross validate the regression model by specifying a 10% holdout sample.

CVMdl = crossval(mdl,'Holdout',0.1)

CVMdl = 

  classreg.learning.partition.RegressionPartitionedSVM
      CrossValidatedModel: 'SVM'
           PredictorNames: {1x8 cell}
    CategoricalPredictors: 1
             ResponseName: 'Var9'
          NumObservations: 4177
                    KFold: 1
                Partition: [1x1 cvpartition]
        ResponseTransform: 'none'

  Properties, Methods

CVMdl is a RegressionPartitionedSVM model object.

Calculate the resubstitution loss for the cross-validated model.

loss = kfoldLoss(CVMdl)
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loss =

    5.2499

Alternatives
Instead of training an SVM regression model and then cross-validating it, you can create a cross-
validated model directly by using fitrsvm and specifying any of these name-value pair arguments:
'CrossVal', 'CVPartition', 'Holdout', 'Leaveout', or 'KFold'.

Version History
Introduced in R2015b
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See Also
fitrsvm | RegressionPartitionedSVM | RegressionSVM | CompactRegressionSVM |
kfoldLoss | kfoldPredict
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crossval
Class: RegressionTree

Cross-validated decision tree

Syntax
cvmodel = crossval(model)
cvmodel = crossval(model,Name,Value)

Description
cvmodel = crossval(model) creates a partitioned model from model, a fitted regression tree. By
default, crossval uses 10-fold cross validation on the training data to create cvmodel.

cvmodel = crossval(model,Name,Value) creates a partitioned model with additional options
specified by one or more Name,Value pair arguments.

Input Arguments
model

A regression model, produced using fitrtree.

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.

CVPartition

Object of class cvpartition, created by the cvpartition function. crossval splits the data into
subsets with cvpartition.

Use only one of these four options at a time: 'KFold', 'Holdout', 'Leaveout', or
'CVPartition'.

Default: []

Holdout

Holdout validation tests the specified fraction of the data, and uses the rest of the data for training.
Specify a numeric scalar from 0 to 1. You can only use one of these four options at a time for creating
a cross-validated tree: 'KFold', 'Holdout', 'Leaveout', or 'CVPartition'.

KFold

Number of folds to use in a cross-validated tree, a positive integer value greater than 1.
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Use only one of these four options at a time: 'KFold', 'Holdout', 'Leaveout', or
'CVPartition'.

Default: 10

Leaveout

Set to 'on' for leave-one-out cross-validation.

Output Arguments
cvmodel

A partitioned model of class RegressionPartitionedModel.

Examples

Cross-Validate Regression Tree

Load the carsmall data set. Consider Acceleration, Displacement, Horsepower, and Weight
as predictor variables.

load carsmall
X = [Acceleration Displacement Horsepower Weight];

Grow a regression tree using the entire data set.

Mdl = fitrtree(X,MPG);

Mdl is a RegressionTree model.

Cross-validate the regression tree using 10-fold cross-validation.

CVMdl = crossval(Mdl);

CVMdl is a RegressionPartitionedModel cross-validated model. crossval stores the ten
trained, compact regression trees in the Trained property of CVMdl.

Display the compact regression tree that crossval trained using all observations except those in the
first fold.

CVMdl.Trained{1}

ans = 
  CompactRegressionTree
           PredictorNames: {'x1'  'x2'  'x3'  'x4'}
             ResponseName: 'Y'
    CategoricalPredictors: []
        ResponseTransform: 'none'

  Properties, Methods
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Estimate the generalization error of Mdl by computing the 10-fold cross-validated mean-squared
error.

L = kfoldLoss(CVMdl)

L = 23.5706

Tips
• Assess the predictive performance of model on cross-validated data using the “kfold” methods

and properties of cvmodel, such as kfoldLoss.

Alternatives
You can create a cross-validation tree directly from the data, instead of creating a decision tree
followed by a cross-validation tree. To do so, include one of these five options in fitrtree:
'CrossVal', 'KFold', 'Holdout', 'Leaveout', or 'CVPartition'.

Extended Capabilities
GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

This function fully supports GPU arrays. For more information, see “Run MATLAB Functions on a
GPU” (Parallel Computing Toolbox).

See Also
fitrtree | crossval
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cvloss
Class: ClassificationTree

Classification error by cross validation

Syntax
E = cvloss(tree)
[E,SE] = cvloss(tree)
[E,SE,Nleaf] = cvloss(tree)
[E,SE,Nleaf,BestLevel] = cvloss(tree)
[ ___ ] = cvloss(tree,Name,Value)

Description
E = cvloss(tree) returns the cross-validated classification error (loss) for tree, a classification
tree. The cvloss method uses stratified partitioning to create cross-validated sets. That is, for each
fold, each partition of the data has roughly the same class proportions as in the data used to train
tree.

[E,SE] = cvloss(tree) returns the standard error of E.

[E,SE,Nleaf] = cvloss(tree) returns the number of leaves of tree.

[E,SE,Nleaf,BestLevel] = cvloss(tree) returns the optimal pruning level for tree.

[ ___ ] = cvloss(tree,Name,Value) cross validates with additional options specified by one or
more Name,Value pair arguments, using any of the previous syntaxes. You can specify several name-
value pair arguments in any order as Name1,Value1,…,NameN,ValueN.

Input Arguments
tree — Trained classification tree
ClassificationTree model object

Trained classification tree, specified as a ClassificationTree model object produced by
fitctree.

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.

Subtrees — Pruning level
0 (default) | vector of nonnegative integers | 'all'

Pruning level, specified as the comma-separated pair consisting of 'Subtrees' and a vector of
nonnegative integers in ascending order or 'all'.
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If you specify a vector, then all elements must be at least 0 and at most max(tree.PruneList). 0
indicates the full, unpruned tree and max(tree.PruneList) indicates the completely pruned tree
(i.e., just the root node).

If you specify 'all', then cvloss operates on all subtrees (i.e., the entire pruning sequence). This
specification is equivalent to using 0:max(tree.PruneList).

cvloss prunes tree to each level indicated in Subtrees, and then estimates the corresponding
output arguments. The size of Subtrees determines the size of some output arguments.

To invoke Subtrees, the properties PruneList and PruneAlpha of tree must be nonempty. In
other words, grow tree by setting 'Prune','on', or by pruning tree using prune.
Example: 'Subtrees','all'
Data Types: single | double | char | string

TreeSize — Tree size
'se' (default) | 'min'

Tree size, specified as one of the following values:

• 'se' — cvloss uses the smallest tree whose cost is within one standard error of the minimum
cost.

• 'min' — cvloss uses the minimal cost tree.

Example: 'TreeSize','min'

KFold — Number of cross-validation samples
10 (default) | positive integer value greater than 1

Number of cross-validation samples, specified as a positive integer value greater than 1.
Example: 'KFold',8

Output Arguments
E — Cross-validation classification error
numeric vector | scalar value

Cross-validation classification error (loss), returned as a vector or scalar depending on the setting of
the Subtrees name-value pair.

SE — Standard error
numeric vector | scalar value

Standard error of E, returned as a vector or scalar depending on the setting of the Subtrees name-
value pair.

Nleaf — Number of leaf nodes
numeric vector | scalar value

Number of leaf nodes in tree, returned as a vector or scalar depending on the setting of the
Subtrees name-value pair. Leaf nodes are terminal nodes, which give classifications, not splits.
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BestLevel — Best pruning level
scalar value

Best pruning level, returned as a scalar value. By default, a scalar representing the largest pruning
level that achieves a value of E within SE of the minimum error. If you set TreeSize to 'min',
BestLevel is the smallest value in Subtrees.

Examples

Compute the Cross-Validation Error

Compute the cross-validation error for a default classification tree.

Load the ionosphere data set.

load ionosphere

Grow a classification tree using the entire data set.

Mdl = fitctree(X,Y);

Compute the cross-validation error.

rng(1); % For reproducibility
E = cvloss(Mdl)

E = 0.1168

E is the 10-fold misclassification error.

Find the Best Pruning Level Using Cross Validation

Apply k-fold cross validation to find the best level to prune a classification tree for all of its subtrees.

Load the ionosphere data set.

load ionosphere

Grow a classification tree using the entire data set. View the resulting tree.

Mdl = fitctree(X,Y);
view(Mdl,'Mode','graph')
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Compute the 5-fold cross-validation error for each subtree except for the highest pruning level.
Specify to return the best pruning level over all subtrees.

rng(1); % For reproducibility
m = max(Mdl.PruneList) - 1

m = 7

[E,~,~,bestLevel] = cvloss(Mdl,'SubTrees',0:m,'KFold',5)

E = 8×1

    0.1282
    0.1254
    0.1225
    0.1282
    0.1282
    0.1197
    0.0997
    0.1738

bestLevel = 6
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Of the 7 pruning levels, the best pruning level is 6.

Prune the tree to the best level. View the resulting tree.

MdlPrune = prune(Mdl,'Level',bestLevel);
view(MdlPrune,'Mode','graph')

Alternatives
You can construct a cross-validated tree model with crossval, and call kfoldLoss instead of
cvloss. If you are going to examine the cross-validated tree more than once, then the alternative can
save time.

However, unlike cvloss, kfoldLoss does not return SE,Nleaf, or BestLevel. kfoldLoss also
does not allow you to examine any error other than the classification error.
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Extended Capabilities
GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

This function fully supports GPU arrays. For more information, see “Run MATLAB Functions on a
GPU” (Parallel Computing Toolbox).

See Also
fitctree | crossval | loss | kfoldLoss
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cvloss
Class: RegressionTree

Regression error by cross validation

Syntax
E = cvloss(tree)
[E,SE] = cvloss(tree)
[E,SE,Nleaf] = cvloss(tree)
[E,SE,Nleaf,BestLevel] = cvloss(tree)
[E,...] = cvloss(tree,Name,Value)

Description
E = cvloss(tree) returns the cross-validated regression error (loss) for tree, a regression tree.

[E,SE] = cvloss(tree) returns the standard error of E.

[E,SE,Nleaf] = cvloss(tree) returns the number of leaves (terminal nodes) in tree.

[E,SE,Nleaf,BestLevel] = cvloss(tree) returns the optimal pruning level for tree.

[E,...] = cvloss(tree,Name,Value) cross validates with additional options specified by one or
more Name,Value pair arguments. You can specify several name-value pair arguments in any order
as Name1,Value1,…,NameN,ValueN.

Input Arguments
tree — Trained regression tree
RegressionTree object

Trained regression tree, specified as a RegressionTree object constructed using fitrtree.

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.

Subtrees — Pruning level
0 (default) | vector of nonnegative integers | 'all'

Pruning level, specified as the comma-separated pair consisting of 'Subtrees' and a vector of
nonnegative integers in ascending order or 'all'.

If you specify a vector, then all elements must be at least 0 and at most max(tree.PruneList). 0
indicates the full, unpruned tree and max(tree.PruneList) indicates the completely pruned tree
(i.e., just the root node).
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If you specify 'all', then cvloss operates on all subtrees (i.e., the entire pruning sequence). This
specification is equivalent to using 0:max(tree.PruneList).

cvloss prunes tree to each level indicated in Subtrees, and then estimates the corresponding
output arguments. The size of Subtrees determines the size of some output arguments.

To invoke Subtrees, the properties PruneList and PruneAlpha of tree must be nonempty. In
other words, grow tree by setting 'Prune','on', or by pruning tree using prune.
Example: 'Subtrees','all'
Data Types: single | double | char | string

TreeSize — Tree size
'se' (default) | 'min'

Tree size, specified as the comma-separated pair consisting of 'TreeSize' and one of the following:

• 'se' — cvloss uses the smallest tree whose cost is within one standard error of the minimum
cost.

• 'min' — cvloss uses the minimal cost tree.

KFold — Number of folds
10 (default) | positive integer value greater than 1

Number of folds to use in a cross-validated tree, specified as the comma-separated pair consisting of
'KFold' and a positive integer value greater than 1.
Example: 'KFold',8

Output Arguments
E — Mean squared error
scalar value | numeric vector

Cross-validation mean squared error (loss), returned as a vector or scalar depending on the setting of
the Subtrees name-value pair.

SE — Standard error
scalar value | numeric vector

Standard error of E, returned as vector or scalar depending on the setting of the Subtrees name-
value pair.

Nleaf — Number of leaf nodes
vector of integer values

Number of leaf nodes in tree, returned as a vector or scalar depending on the setting of the
Subtrees name-value pair. Leaf nodes are terminal nodes, which give responses, not splits.

BestLevel — Best pruning level
scalar value

Best pruning level as defined in the TreeSize name-value pair, returned as a scalar whose value
depends on TreeSize:
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• If TreeSize is 'se', then BestLevel is the largest pruning level that achieves a value of E
within SE of the minimum error.

• If TreeSize is 'min', then BestLevel is the smallest value in Subtrees.

Examples

Compute the Cross-Validation Error

Compute the cross-validation error for a default regression tree.

Load the carsmall data set. Consider Displacement, Horsepower, and Weight as predictors of
the response MPG.

load carsmall
X = [Displacement Horsepower Weight];

Grow a regression tree using the entire data set.

Mdl = fitrtree(X,MPG);

Compute the cross-validation error.

rng(1); % For reproducibility
E = cvloss(Mdl)

E = 27.6976

E is the 10-fold weighted, average MSE (weighted by number of test observations in the folds).

Find the Best Pruning Level Using Cross Validation

Apply k-fold cross validation to find the best level to prune a regression tree for all of its subtrees.

Load the carsmall data set. Consider Displacement, Horsepower, and Weight as predictors of
the response MPG.

load carsmall
X = [Displacement Horsepower Weight];

Grow a regression tree using the entire data set. View the resulting tree.

Mdl = fitrtree(X,MPG);
view(Mdl,'Mode','graph')
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Compute the 5-fold cross-validation error for each subtree except for the first two lowest and highest
pruning level. Specify to return the best pruning level over all subtrees.

rng(1); % For reproducibility
m = max(Mdl.PruneList) - 1

m = 15

[~,~,~,bestLevel] = cvloss(Mdl,'SubTrees',2:m,'KFold',5)

bestLevel = 14

Of the 15 pruning levels, the best pruning level is 14.

Prune the tree to the best level. View the resulting tree.

MdlPrune = prune(Mdl,'Level',bestLevel);
view(MdlPrune,'Mode','graph')

 cvloss

35-1221



Alternatives
You can construct a cross-validated tree model with crossval, and call kfoldLoss instead of
cvloss. If you are going to examine the cross-validated tree more than once, then the alternative can
save time.

However, unlike cvloss, kfoldLoss does not return SE, Nleaf, or BestLevel.

Extended Capabilities
GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

This function fully supports GPU arrays. For more information, see “Run MATLAB Functions on a
GPU” (Parallel Computing Toolbox).
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See Also
crossval | kfoldLoss | fitrtree | loss
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cvpartition
Partition data for cross-validation

Description
cvpartition defines a random partition on a data set. Use this partition to define training and test
sets for validating a statistical model using cross-validation. Use training to extract the training
indices and test to extract the test indices for cross-validation. Use repartition to define a new
random partition of the same type as a given cvpartition object.

Creation

Syntax
c = cvpartition(n,'KFold',k)
c = cvpartition(n,'Holdout',p)

c = cvpartition(group,'KFold',k)
c = cvpartition(group,'KFold',k,'Stratify',stratifyOption)
c = cvpartition(group,'Holdout',p)
c = cvpartition(group,'Holdout',p,'Stratify',stratifyOption)

c = cvpartition(n,'Leaveout')
c = cvpartition(n,'Resubstitution')

Description

c = cvpartition(n,'KFold',k) returns a cvpartition object c that defines a random
nonstratified partition for k-fold cross-validation on n observations. The partition randomly divides
the observations into k disjoint subsamples, or folds, each of which has approximately the same
number of observations.

c = cvpartition(n,'Holdout',p) creates a random nonstratified partition for holdout
validation on n observations. This partition divides the observations into a training set and a test, or
holdout, set.

c = cvpartition(group,'KFold',k) creates a random partition for stratified k-fold cross-
validation. Each subsample, or fold, has approximately the same number of observations and contains
approximately the same class proportions as in group.

When you specify group as the first input argument, cvpartition discards rows of observations
corresponding to missing values in group.

c = cvpartition(group,'KFold',k,'Stratify',stratifyOption) returns a cvpartition
object c that defines a random partition for k-fold cross-validation. If you specify
'Stratify',false, then cvpartition ignores the class information in group and creates a
nonstratified random partition. Otherwise, the function implements stratification by default.
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c = cvpartition(group,'Holdout',p) randomly partitions observations into a training set and
a test, or holdout, set with stratification, using the class information in group. Both the training and
test sets have approximately the same class proportions as in group.

c = cvpartition(group,'Holdout',p,'Stratify',stratifyOption) returns an object c
that defines a random partition into a training set and a test, or holdout, set. If you specify
'Stratify',false, then cvpartition creates a nonstratified random partition. Otherwise, the
function implements stratification by default.

c = cvpartition(n,'Leaveout') creates a random partition for leave-one-out cross-validation
on n observations. Leave-one-out is a special case of 'KFold' in which the number of folds equals
the number of observations.

c = cvpartition(n,'Resubstitution') creates an object c that does not partition the data.
Both the training set and the test set contain all of the original n observations.

Input Arguments

n — Number of observations
positive integer scalar

Number of observations in the sample data, specified as a positive integer scalar.
Example: 100
Data Types: single | double

k — Number of folds
10 (default) | positive integer scalar

Number of folds in the partition, specified as a positive integer scalar. k must be smaller than the
total number of observations.
Example: 5
Data Types: single | double

p — Fraction or number of observations in test set
0.1 (default) | scalar in the range (0,1) | integer scalar in the range [1,n)

Fraction or number of observations in the test set used for holdout validation, specified as a scalar in
the range (0,1) or an integer scalar in the range [1,n), where n is the total number of observations.

• If p is a scalar in the range (0,1), then cvpartition randomly selects approximately p*n
observations for the test set.

• If p is an integer scalar in the range [1,n), then cvpartition randomly selects p observations for
the test set.

Example: 0.2
Example: 50
Data Types: single | double

group — Grouping variable for stratification
numeric vector | logical vector | categorical array | character array | string array | cell array of
character vectors
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Grouping variable for stratification, specified as a numeric or logical vector, a categorical, character,
or string array, or a cell array of character vectors indicating the class of each observation.
cvpartition creates a partition from the observations in group.
Data Types: single | double | logical | categorical | char | string | cell

stratifyOption — Indicator for stratification
true | false

Indicator for stratification, specified as true or false.

• If the first input argument to cvpartition is group, then cvpartition implements
stratification by default ('Stratify',true). For a nonstratified random partition, specify
'Stratify',false.

• If the first input argument to cvpartition is n, then cvpartition always creates a
nonstratified random partition ('Stratify',false). In this case, you cannot specify
'Stratify',true.

Data Types: logical

Properties
NumObservations — Number of observations
positive integer scalar

This property is read-only.

Number of observations, including observations with missing group values, specified as a positive
integer scalar.
Data Types: double

NumTestSets — Total number of test sets
number of folds | 1

This property is read-only.

Total number of test sets in the partition, specified as the number of folds when the partition type is
'kfold' or 'leaveout', and 1 when the partition type is 'holdout' or 'resubstitution'.
Data Types: double

TestSize — Size of each test set
positive integer vector | positive integer scalar

This property is read-only.

Size of each test set, specified as a positive integer vector when the partition type is 'kfold' or
'leaveout', and a positive integer scalar when the partition type is 'holdout' or
'resubstitution'.
Data Types: double

TrainSize — Size of each training set
positive integer vector | positive integer scalar
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This property is read-only.

Size of each training set, specified as a positive integer vector when the partition type is 'kfold' or
'leaveout', and a positive integer scalar when the partition type is 'holdout' or
'resubstitution'.
Data Types: double

Type — Type of validation partition
'kfold' | 'holdout' | 'leaveout' | 'resubstitution'

This property is read-only.

Type of validation partition, specified as 'kfold', 'holdout', 'leaveout', or
'resubstitution'.

Object Functions
repartition Repartition data for cross-validation
test Test indices for cross-validation
training Training indices for cross-validation

Examples

Estimate Accuracy of Classifying New Data by Using Cross-Validation Error

Use the cross-validation misclassification error to estimate how a model will perform on new data.

Load the ionosphere data set. Create a table containing the predictor data X and the response
variable Y.

load ionosphere
tbl = array2table(X);
tbl.Y = Y;

Use a random nonstratified partition hpartition to split the data into training data (tblTrain) and
a reserved data set (tblNew). Reserve approximately 30 percent of the data.

rng('default') % For reproducibility
n = length(tbl.Y);
hpartition = cvpartition(n,'Holdout',0.3); % Nonstratified partition
idxTrain = training(hpartition);
tblTrain = tbl(idxTrain,:);
idxNew = test(hpartition);
tblNew = tbl(idxNew,:);

Train a support vector machine (SVM) classification model using the training data tblTrain.
Calculate the misclassification error and the classification accuracy on the training data.

Mdl = fitcsvm(tblTrain,'Y');
trainError = resubLoss(Mdl)

trainError = 0.0569

trainAccuracy = 1-trainError
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trainAccuracy = 0.9431

Typically, the misclassification error on the training data is not a good estimate of how a model will
perform on new data because it can underestimate the misclassification rate on new data. A better
estimate is the cross-validation error.

Create a partitioned model cvMdl. Compute the 10-fold cross-validation misclassification error and
classification accuracy. By default, crossval ensures that the class proportions in each fold remain
approximately the same as the class proportions in the response variable tblTrain.Y.

cvMdl = crossval(Mdl); % Performs stratified 10-fold cross-validation
cvtrainError = kfoldLoss(cvMdl)

cvtrainError = 0.1220

cvtrainAccuracy = 1-cvtrainError

cvtrainAccuracy = 0.8780

Notice that the cross-validation error cvtrainError is greater than the resubstitution error
trainError.

Classify the new data in tblNew using the trained SVM model. Compare the classification accuracy
on the new data to the accuracy estimates trainAccuracy and cvtrainAccuracy.

newError = loss(Mdl,tblNew,'Y');
newAccuracy = 1-newError

newAccuracy = 0.8700

The cross-validation error gives a better estimate of the model performance on new data than the
resubstitution error.

Find Misclassification Rates Using K-Fold Cross-Validation

Use the same stratified partition for 5-fold cross-validation to compute the misclassification rates of
two models.

Load the fisheriris data set. The matrix meas contains flower measurements for 150 different
flowers. The variable species lists the species for each flower.

load fisheriris

Create a random partition for stratified 5-fold cross-validation. The training and test sets have
approximately the same proportions of flower species as species.

rng('default') % For reproducibility
c = cvpartition(species,'KFold',5);

Create a partitioned discriminant analysis model and a partitioned classification tree model by using
c.

discrCVModel = fitcdiscr(meas,species,'CVPartition',c);
treeCVModel = fitctree(meas,species,'CVPartition',c);

Compute the misclassification rates of the two partitioned models.
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discrRate = kfoldLoss(discrCVModel)

discrRate = 0.0200

treeRate = kfoldLoss(treeCVModel)

treeRate = 0.0333

The discriminant analysis model has a smaller cross-validation misclassification rate.

Create Nonstratified Partition

Observe the test set (fold) class proportions in a 5-fold nonstratified partition of the fisheriris
data. The class proportions differ across the folds.

Load the fisheriris data set. The species variable contains the species name (class) for each
flower (observation). Convert species to a categorical variable.

load fisheriris
species = categorical(species);

Find the number of observations in each class. Notice that the three classes occur in equal
proportion.

C = categories(species) % Class names

C = 3x1 cell
    {'setosa'    }
    {'versicolor'}
    {'virginica' }

numClasses = size(C,1);
n = countcats(species) % Number of observations in each class

n = 3×1

    50
    50
    50

Create a random nonstratified 5-fold partition.

rng('default') % For reproducibility
cv = cvpartition(species,'KFold',5,'Stratify',false) 

cv = 
K-fold cross validation partition
   NumObservations: 150
       NumTestSets: 5
         TrainSize: 120  120  120  120  120
          TestSize: 30  30  30  30  30

Show that the three classes do not occur in equal proportion in each of the five test sets, or folds. Use
a for-loop to update the nTestData matrix so that each entry nTestData(i,j) corresponds to the
number of observations in test set i and class C(j). Create a bar chart from the data in nTestData.

 cvpartition

35-1229



numFolds = cv.NumTestSets;
nTestData = zeros(numFolds,numClasses);
for i = 1:numFolds
    testClasses = species(cv.test(i));
    nCounts = countcats(testClasses); % Number of test set observations in each class
    nTestData(i,:) = nCounts';
end

bar(nTestData)
xlabel('Test Set (Fold)')
ylabel('Number of Observations')
title('Nonstratified Partition')
legend(C)

Notice that the class proportions vary in some of the test sets. For example, the first test set contains
8 setosa, 13 versicolor, and 9 virginica flowers, rather than 10 flowers per species. Because cv is a
random nonstratified partition of the fisheriris data, the class proportions in each test set (fold)
are not guaranteed to be equal to the class proportions in species. That is, the classes do not always
occur equally in each test set, as they do in species.

Create Nonstratified and Stratified Holdout Partitions for Tall Array

Create a nonstratified holdout partition and a stratified holdout partition for a tall array. For the two
holdout sets, compare the number of observations in each class.
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When you perform calculations on tall arrays, MATLAB® uses either a parallel pool (the default if you
have Parallel Computing Toolbox™) or the local MATLAB session. To run the example using the local
MATLAB session when you have Parallel Computing Toolbox, change the global execution
environment by using the mapreducer function.

mapreducer(0)

Create a numeric vector of two classes, where class 1 and class 2 occur in the ratio 1:10.

group = [ones(20,1);2*ones(200,1)]

group = 220×1

     1
     1
     1
     1
     1
     1
     1
     1
     1
     1
      ⋮

Create a tall array from group.

tgroup = tall(group)

tgroup =

  220x1 tall double column vector

     1
     1
     1
     1
     1
     1
     1
     1
     :
     :

Holdout is the only cvpartition option that is supported for tall arrays. Create a random
nonstratified holdout partition.

CV0 = cvpartition(tgroup,'Holdout',1/4,'Stratify',false)  

CV0 = 
Hold-out cross validation partition
   NumObservations: [1x1 tall]
       NumTestSets: 1
         TrainSize: [1x1 tall]
          TestSize: [1x1 tall]

Return the result of CV0.test to memory by using the gather function.
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testIdx0 = gather(CV0.test);

Evaluating tall expression using the Local MATLAB Session:
- Pass 1 of 1: Completed in 1.1 sec
Evaluation completed in 1.6 sec

Find the number of times each class occurs in the test, or holdout, set.

accumarray(group(testIdx0),1) % Number of observations per class in the holdout set

ans = 2×1

     5
    51

cvpartition produces randomness in the results, so your number of observations in each class can
vary from those shown.

Because CV0 is a nonstratified partition, class 1 observations and class 2 observations in the holdout
set are not guaranteed to occur in the same ratio as in tgroup. However, because of the inherent
randomness in cvpartition, you can sometimes obtain a holdout set in which the classes occur in
the same ratio as in tgroup, even though you specify 'Stratify',false. Because the training set
is the complement of the holdout set, excluding any NaN or missing observations, you can obtain a
similar result for the training set.

Return the result of CV0.training to memory.

trainIdx0 = gather(CV0.training);

Evaluating tall expression using the Local MATLAB Session:
- Pass 1 of 1: Completed in 0.42 sec
Evaluation completed in 0.56 sec

Find the number of times each class occurs in the training set.

accumarray(group(trainIdx0),1) % Number of observations per class in the training set

ans = 2×1

    15
   149

The classes in the nonstratified training set are not guaranteed to occur in the same ratio as in
tgroup.

Create a random stratified holdout partition.

CV1 = cvpartition(tgroup,'Holdout',1/4)  

CV1 = 
Hold-out cross validation partition
   NumObservations: [1x1 tall]
       NumTestSets: 1
         TrainSize: [1x1 tall]
          TestSize: [1x1 tall]

Return the result of CV1.test to memory.
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testIdx1 = gather(CV1.test);

Evaluating tall expression using the Local MATLAB Session:
- Pass 1 of 1: Completed in 0.22 sec
Evaluation completed in 0.3 sec

Find the number of times each class occurs in the test, or holdout, set.

accumarray(group(testIdx1),1) % Number of observations per class in the holdout set

ans = 2×1

     5
    51

In the case of the stratified holdout partition, the class ratio in the holdout set and the class ratio in
tgroup are the same (1:10).

Find Influential Observations Using Leave-One-Out Partition

Create a random partition of data for leave-one-out cross-validation. Compute and compare training
set means. A repetition with a significantly different mean suggests the presence of an influential
observation.

Create a data set X that contains one value that is much greater than the others.

X = [1 2 3 4 5 6 7 8 9 20]';

Create a cvpartition object that has 10 observations and 10 repetitions of training and test data.
For each repetition, cvpartition selects one observation to remove from the training set and
reserve for the test set.

c = cvpartition(10,'Leaveout')

c = 
Leave-one-out cross validation partition
   NumObservations: 10
       NumTestSets: 10
         TrainSize: 9  9  9  9  9  9  9  9  9  9
          TestSize: 1  1  1  1  1  1  1  1  1  1

Apply the leave-one-out partition to X, and take the mean of the training observations for each
repetition by using crossval.

values = crossval(@(Xtrain,Xtest)mean(Xtrain),X,'Partition',c)

values = 10×1

    6.5556
    6.4444
    7.0000
    6.3333
    6.6667
    7.1111
    6.8889
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    6.7778
    6.2222
    5.0000

View the distribution of the training set means using a box chart (or box plot). The plot displays one
outlier.

boxchart(values)

Find the repetition corresponding to the outlier value. For that repetition, find the observation in the
test set.

[~,repetitionIdx] = min(values)

repetitionIdx = 10

observationIdx = test(c,repetitionIdx);
influentialObservation = X(observationIdx)

influentialObservation = 20

Training sets that contain the observation have substantially different means from the mean of the
training set without the observation. This significant change in mean suggests that the value of 20 in
X is an influential observation.
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Tips
• If you specify group as the first input argument to cvpartition, then the function discards rows

of observations corresponding to missing values in group.
• If you specify group as the first input argument to cvpartition, then the function implements
stratification by default. You can specify 'Stratify',false to create a nonstratified random
partition.

• You can specify 'Stratify',true only when the first input argument to cvpartition is
group.

Version History
Introduced in R2008a

Extended Capabilities
Tall Arrays
Calculate with arrays that have more rows than fit in memory.

The cvpartition function supports tall arrays for out-of-memory data with some limitations.

• When you use cvpartition with tall arrays, the first input argument must be a grouping
variable, tGroup. If you specify a tall scalar as the first input argument, cvpartition gives an
error.

• cvpartition supports only Holdout cross-validation for tall arrays; for example, c =
cvpartition(tGroup,'Holdout',p). By default, cvpartition randomly partitions
observations into a training set and a test set with stratification, using the class information in
tGroup. The parameter p is a scalar such that 0 < p < 1.

• To create nonstratified Holdout partitions, specify the value of the 'Stratify' name-value pair
argument as false; for example, c =
cvpartition(tGroup,'Holdout',p,'Stratify',false).

For more information, see “Tall Arrays for Out-of-Memory Data”.

See Also
crossval | repartition | test | training

Topics
“Grouping Variables” on page 2-46
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cvshrink
Class: ClassificationDiscriminant

Cross-validate regularization of linear discriminant

Syntax
err = cvshrink(obj)
[err,gamma] = cvshrink(obj)
[err,gamma,delta] = cvshrink(obj)
[err,gamma,delta,numpred] = cvshrink(obj)
[err,...] = cvshrink(obj,Name,Value)

Description
err = cvshrink(obj) returns a vector of cross-validated classification error values for differing
values of the regularization parameter Gamma.

[err,gamma] = cvshrink(obj) also returns the vector of Gamma values.

[err,gamma,delta] = cvshrink(obj) also returns the vector of Delta values.

[err,gamma,delta,numpred] = cvshrink(obj) returns the vector of number of nonzero
predictors for each setting of the parameters Gamma and Delta.

[err,...] = cvshrink(obj,Name,Value) cross validates with additional options specified by
one or more Name,Value pair arguments.

Input Arguments
obj

Discriminant analysis classifier, produced using fitcdiscr.

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.

delta

• Scalar delta — cvshrink uses this value of delta with every value of gamma for regularization.
• Row vector delta — For each i and j, cvshrink uses delta(j) with gamma(i) for

regularization.
• Matrix delta — The number of rows of delta must equal the number of elements in gamma. For

each i and j, cvshrink uses delta(i,j) with gamma(i) for regularization.
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Default: 0

gamma

Vector of Gamma values for cross-validation.

Default: 0:0.1:1

NumDelta

Number of Delta intervals for cross-validation. For every value of Gamma, cvshrink cross-validates
the discriminant using NumDelta + 1 values of Delta, uniformly spaced from zero to the maximal
Delta at which all predictors are eliminated for this value of Gamma. If you set delta, cvshrink
ignores NumDelta.

Default: 0

NumGamma

Number of Gamma intervals for cross-validation. cvshrink cross-validates the discriminant using
NumGamma + 1 values of Gamma, uniformly spaced from MinGamma to 1. If you set gamma,
cvshrink ignores NumGamma.

Default: 10

verbose

Verbosity level, an integer from 0 to 2. Higher values give more progress messages.

Default: 0

Output Arguments
err

Numeric vector or matrix of errors. err is the misclassification error rate, meaning the average
fraction of misclassified data over all folds.

• If delta is a scalar (default), err(i) is the misclassification error rate for obj regularized with
gamma(i).

• If delta is a vector, err(i,j) is the misclassification error rate for obj regularized with
gamma(i) and delta(j).

• If delta is a matrix, err(i,j) is the misclassification error rate for obj regularized with
gamma(i) and delta(i,j).

gamma

Vector of Gamma values used for regularization. See “Gamma and Delta” on page 35-1239.

delta

Vector or matrix of Delta values used for regularization. See “Gamma and Delta” on page 35-1239.

• If you give a scalar for the delta name-value pair, the output delta is a row vector the same size
as gamma, with entries equal to the input scalar.
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• If you give a row vector for the delta name-value pair, the output delta is a matrix with the
same number of columns as the row vector, and with the number of rows equal to the number of
elements of gamma. The output delta(i,j) is equal to the input delta(j).

• If you give a matrix for the delta name-value pair, the output delta is the same as the input
matrix. The number of rows of delta must equal the number of elements in gamma.

numpred

Numeric vector or matrix containing the number of predictors in the model at various regularizations.
numpred has the same size as err.

• If delta is a scalar (default), numpred(i) is the number of predictors for obj regularized with
gamma(i) and delta.

• If delta is a vector, numpred(i,j) is the number of predictors for obj regularized with
gamma(i) and delta(j).

• If delta is a matrix, numpred(i,j) is the number of predictors for obj regularized with
gamma(i) and delta(i,j).

Examples

Regularize Data with Many Predictors

Regularize a discriminant analysis classifier, and view the tradeoff between the number of predictors
in the model and the classification accuracy.

Create a linear discriminant analysis classifier for the ovariancancer data. Set the SaveMemory
and FillCoeffs options to keep the resulting model reasonably small.

load ovariancancer
obj = fitcdiscr(obs,grp,...
    'SaveMemory','on','FillCoeffs','off');

Use 10 levels of Gamma and 10 levels of Delta to search for good parameters. This search is time-
consuming. Set Verbose to 1 to view the progress.

rng('default') % for reproducibility
[err,gamma,delta,numpred] = cvshrink(obj,...
    'NumGamma',9,'NumDelta',9,'Verbose',1);

Done building cross-validated model.
Processing Gamma step 1 out of 10.
Processing Gamma step 2 out of 10.
Processing Gamma step 3 out of 10.
Processing Gamma step 4 out of 10.
Processing Gamma step 5 out of 10.
Processing Gamma step 6 out of 10.
Processing Gamma step 7 out of 10.
Processing Gamma step 8 out of 10.
Processing Gamma step 9 out of 10.
Processing Gamma step 10 out of 10.

Plot the classification error rate against the number of predictors.
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plot(err,numpred,'k.')
xlabel('Error rate');
ylabel('Number of predictors');

More About
Gamma and Delta

Regularization is the process of finding a small set of predictors that yield an effective predictive
model. For linear discriminant analysis, there are two parameters, γ and δ, that control regularization
as follows. cvshrink helps you select appropriate values of the parameters.

Let Σ represent the covariance matrix of the data X, and let X  be the centered data (the data X minus
the mean by class). Define

D = diag X T * X .

The regularized covariance matrix Σ is

Σ = 1− γ Σ + γD .

Whenever γ ≥ MinGamma, Σ is nonsingular.
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Let μk be the mean vector for those elements of X in class k, and let μ0 be the global mean vector (the
mean of the rows of X). Let C be the correlation matrix of the data X, and let C be the regularized
correlation matrix:

C = 1− γ C + γI,

where I is the identity matrix.

The linear term in the regularized discriminant analysis classifier for a data point x is

x− μ0
TΣ−1 μk− μ0 = x− μ0

TD−1/2 C−1D−1/2 μk− μ0 .

The parameter δ enters into this equation as a threshold on the final term in square brackets. Each
component of the vector C−1D−1/2 μk− μ0  is set to zero if it is smaller in magnitude than the
threshold δ. Therefore, for class k, if component j is thresholded to zero, component j of x does not
enter into the evaluation of the posterior probability.

The DeltaPredictor property is a vector related to this threshold. When
δ ≥ DeltaPredictor(i), all classes k have

C−1D−1/2 μk− μ0 ≤ δ .

Therefore, when δ ≥ DeltaPredictor(i), the regularized classifier does not use predictor i.

Tips
• Examine the err and numpred outputs to see the tradeoff between cross-validated error and

number of predictors. When you find a satisfactory point, set the corresponding gamma and delta
properties in the model using dot notation. For example, if (i,j) is the location of the satisfactory
point, set

obj.Gamma = gamma(i);
obj.Delta = delta(i,j);

See Also
ClassificationDiscriminant | fitcdiscr

Topics
“Regularize Discriminant Analysis Classifier” on page 21-21
“Discriminant Analysis Classification” on page 21-2

35 Functions

35-1240



cvshrink
Cross-validate shrinking (pruning) ensemble

Syntax
vals = cvshrink(ens)
[vals,nlearn] = cvshrink(ens)
[vals,nlearn] = cvshrink(ens,Name,Value)

Description
vals = cvshrink(ens) returns an L-by-T matrix with cross-validated values of the mean squared
error. L is the number of lambda values in the ens.Regularization structure. T is the number of
threshold values on weak learner weights. If ens does not have a Regularization property filled
in by the regularize method, pass a lambda name-value pair.

[vals,nlearn] = cvshrink(ens) returns an L-by-T matrix of the mean number of learners in the
cross-validated ensemble.

[vals,nlearn] = cvshrink(ens,Name,Value) cross validates with additional options specified
by one or more Name,Value pair arguments. You can specify several name-value pair arguments in
any order as Name1,Value1,…,NameN,ValueN.

Input Arguments
ens

A regression ensemble, created with fitrensemble.

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.

cvpartition

A partition created with cvpartition to use in a cross-validated tree. You can only use one of these
four options at a time: 'kfold', 'holdout', 'leaveout', or 'cvpartition'.

holdout

Holdout validation tests the specified fraction of the data, and uses the rest of the data for training.
Specify a numeric scalar from 0 to 1. You can only use one of these four options at a time for creating
a cross-validated tree: 'kfold', 'holdout', 'leaveout', or 'cvpartition'.

 cvshrink

35-1241



kfold

Number of folds to use in a cross-validated tree, a positive integer. If you do not supply a cross-
validation method, cvshrink uses 10-fold cross validation. You can only use one of these four options
at a time: 'kfold', 'holdout', 'leaveout', or 'cvpartition'.

Default: 10

lambda

Vector of nonnegative regularization parameter values for lasso. If empty, cvshrink does not
perform cross validation.

Default: []

leaveout

Use leave-one-out cross validation by setting to 'on'. You can only use one of these four options at a
time: 'kfold', 'holdout', 'leaveout', or 'cvpartition'.

threshold

Numeric vector with lower cutoffs on weights for weak learners. cvshrink discards learners with
weights below threshold in its cross-validation calculation.

Default: 0

Output Arguments
vals

L-by-T matrix with cross-validated values of the mean squared error. L is the number of values of the
regularization parameter 'lambda', and T is the number of 'threshold' values on weak learner
weights.

nlearn

L-by-T matrix with cross-validated values of the mean number of learners in the cross-validated
ensemble.L is the number of values of the regularization parameter 'lambda', and T is the number
of 'threshold' values on weak learner weights.

Examples
Cross-Validate Regression Ensemble

Create a regression ensemble for predicting mileage from the carsmall data. Cross-validate the
ensemble.

Load the carsmall data set and select displacement, horsepower, and vehicle weight as predictors.

load carsmall
X = [Displacement Horsepower Weight];

You can train an ensemble of bagged regression trees.
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ens = fitrensemble(X,Y,'Method','Bag')

fircensemble uses a default template tree object templateTree() as a weak learner when
'Method' is 'Bag'. In this example, for reproducibility, specify 'Reproducible',true when you
create a tree template object, and then use the object as a weak learner.

rng('default') % For reproducibility
t = templateTree('Reproducible',true); % For reproducibiliy of random predictor selections
ens = fitrensemble(X,MPG,'Method','Bag','Learners',t);

Specify values for lambda and threshold. Use these values to cross-validate the ensemble.

[vals,nlearn] = cvshrink(ens,'lambda',[.01 .1 1],'threshold',[0 .01 .1])

vals = 3×3

   18.9150   19.0092  128.5935
   18.9099   18.9504  128.8449
   19.0328   18.9636  116.8500

nlearn = 3×3

   13.7000   11.6000    4.1000
   13.7000   11.7000    4.1000
   13.9000   11.6000    4.1000

Clearly, setting a threshold of 0.1 leads to unacceptable errors, while a threshold of 0.01 gives
similar errors to a threshold of 0. The mean number of learners with a threshold of 0.01 is about
11.4, whereas the mean number is about 13.8 when the threshold is 0.

Extended Capabilities
GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

This function fully supports GPU arrays. For more information, see “Run MATLAB Functions on a
GPU” (Parallel Computing Toolbox).

See Also
regularize | shrink
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datasample
Randomly sample from data, with or without replacement

Syntax
y = datasample(data,k)
y = datasample(data,k,dim)
y = datasample( ___ ,Name,Value)
y = datasample(s, ___ )
[y,idx] = datasample( ___ )

Description
y = datasample(data,k) returns k observations sampled uniformly at random, with replacement,
from the data in data.

y = datasample(data,k,dim) returns a sample taken along dimension dim of data.

y = datasample( ___ ,Name,Value) returns a sample for any of the input arguments in the
previous syntaxes, with additional options specified by one or more name-value pair arguments. For
example, 'Replace',false specifies sampling without replacement.

y = datasample(s, ___ ) uses the random number stream s to generate random numbers. The
option s can precede any of the input arguments in the previous syntaxes.

[y,idx] = datasample( ___ ) also returns an index vector indicating which values datasample
sampled from data using any of the input arguments in the previous syntaxes.

Examples

Sample Unique Values from Vector

Create the random number stream for reproducibility.

s = RandStream('mlfg6331_64'); 

Draw five unique values from the integers 1 to 10.

y = datasample(s,1:10,5,'Replace',false)

y = 1×5

     9     8     3     6     2

Generate Random Characters for Specified Probabilities

Create the random number stream for reproducibility.
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s = RandStream('mlfg6331_64');

Generate 48 random characters from the sequence ACGT per specified probabilities.

seq = datasample(s,'ACGT',48,'Weights',[0.15 0.35 0.35 0.15])

seq = 
'GGCGGCGCAAGGCGCCGGACCTGGCTGCACGCCGTTCCCTGCTACTCG'

Select Random Subset of Matrix Columns

Set the random seed for reproducibility of the results.

rng(10,'twister') 

Generate a matrix with 10 rows and 1000 columns.

X = randn(10,1000);

Create the random number stream for reproducibility within datasample.

s = RandStream('mlfg6331_64');

Randomly select five unique columns from X.

Y = datasample(s,X,5,2,'Replace',false)

Y = 10×5

    0.4317   -0.3327    0.9112   -2.3244    0.9559
    0.6977   -0.7422    0.4578   -1.3745   -0.8634
   -0.8543   -0.3105    0.9836   -0.6434   -0.4457
    0.1686    0.6609   -0.0553   -0.1202   -1.3699
   -1.7649   -1.1607   -0.3513   -1.5533    0.0597
   -0.3821    0.5696   -1.6264   -0.2104   -1.5486
   -1.6844    0.7148   -0.6876   -0.4447   -1.4615
   -0.4170    1.3696    1.1874   -0.9901    0.5875
   -0.2410    1.4703   -2.5003   -1.1321   -1.8451
    0.6212    1.4118   -0.4518    0.8697    0.8093

Create a Bootstrap Replicate Data Set

Resample observations from a dataset array to create a bootstrap replicate data set. See “Bootstrap
Resampling” on page 3-10 for more information about bootstrapping.

Load the sample data set.

load hospital

Create a data set that has the same size as the hospital data set and contains random samples
chosen with replacement from the hospital data set.

y = datasample(hospital,size(hospital,1));
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Sample in Parallel from Two Data Vectors

Select samples from data based on indices of a sample chosen from another vector.

Generate two random vectors.

x1 = randn(100,1);
x2 = randn(100,1);

Select a sample of 10 elements from vector x1, and return the indices of the sample in vector idx.

[y1,idx] = datasample(x1,10);

Select a sample of 10 elements from vector x2 using the indices in vector idx.

y2 = x2(idx);

Input Arguments
data — Input data
vector | matrix | multidimensional array | table | dataset array

Input data from which to sample, specified as a vector, matrix, multidimensional array, table, or
dataset array. By default, datasample samples from the first nonsingleton dimension of data. For
example, if data is a matrix, then datasample samples from the rows. Change this behavior with
the dim input argument.
Data Types: single | double | logical | char | string | table

k — Number of samples
positive integer

Number of samples, specified as a positive integer.
Example: datasample(data,100) returns 100 observations sampled uniformly and at random from
the data in data.
Data Types: single | double

dim — Dimension to sample
1 (default) | positive integer

Dimension to sample, specified as a positive integer. For example, if data is a matrix and dim is 2, y
contains a selection of columns in data. If data is a table or dataset array and dim is 2, y contains a
selection of variables in data. Use dim to ensure sampling along a specific dimension regardless of
whether data is a vector, matrix, or N-dimensional array.
Data Types: single | double

s — Random number stream
global stream (default) | RandStream

Random number stream, specified as the global stream or RandStream. For example, s =
RandStream('mlfg6331_64') creates a random number stream that uses the multiplicative lagged
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Fibonacci generator algorithm. For details, see “Creating and Controlling a Random Number
Stream”.

The rng function provides a simple way to control the global stream. For example, rng(seed) seeds
the random number generator using the nonnegative integer seed. For details, see “Managing the
Global Stream Using RandStream”.

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: 'Replace',false,'Weights',ones(datasize,1) samples without replacement and
with probability proportional to the elements of Weights, where datasize is the size of the
dimension being sampled.

Replace — Indicator for sampling with replacement
true (default) | false

Indicator for sampling with replacement, specified as the comma-separated pair consisting of
'Replace' and either true or false.

Sample with replacement if 'Replace' is true, or without replacement if 'Replace' is false. If
'Replace' is false, then k must not be larger than the size of the dimension being sampled. For
example, if data = [1 3 Inf; 2 4 5] and y = datasample(data,k,'Replace',false),
then k cannot be larger than 2.
Data Types: logical

Weights — Sampling weights
ones(datasize,1) (default) | vector of nonnegative numeric values

Sampling weights, specified as the comma-separated pair consisting of 'Weights' and a vector of
nonnegative numeric values. The vector is of size datasize, where datasize is the size of the
dimension being sampled. The vector must have at least one positive value and cannot contain NaN
values. The datasample function samples with probability proportional to the elements of
'Weights'.
Example: 'Weights',[0.1 0.5 0.35 0.46]
Data Types: single | double

Output Arguments
y — Sample
vector | matrix | multidimensional array | table | dataset array

Sample, returned as a vector, matrix, multidimensional array, table, or dataset array.

• If data is a vector, then y is a vector containing k elements selected from data.
• If data is a matrix and dim = 1, then y is a matrix containing k rows selected from data. Or, if

dim = 2, then y is a matrix containing k columns selected from data.
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• If data is an N-dimensional array and dim = 1, then y is an N-dimensional array of samples taken
along the first nonsingleton dimension of data. Or, if you specify a value for the dim name-value
pair argument, datasample samples along the dimension dim.

• If data is a table and dim = 1, then y is a table containing k rows selected from data. Or, if
dim = 2, then y is a table containing k variables selected from data.

• If data is a dataset array and dim = 1, then y is a dataset array containing k rows selected from
data. Or, if dim = 2, then y is a dataset array containing k variables selected from data.

If the input data contains missing observations that are represented as NaN values, datasample
samples from the entire input, including the NaN values. For example, y = datasample([NaN 6
14],2) can return y = NaN 14.

When the sample is taken with replacement (default), y can contain repeated observations from
data. Set the Replace name-value pair argument to false to sample without replacement.

idx — Indices
vector

Indices, returned as a vector indicating which elements datasample chooses from data to create y.
For example:

• If data is a vector, then y = data(idx).
• If data is a matrix and dim = 1, then y = data(idx,:).
• If data is a matrix and dim = 2, then y = data(:,idx).

Tips
• To sample random integers with replacement from a range, use randi.
• To sample random integers without replacement, use randperm or datasample.
• To randomly sample from data, with or without replacement, use datasample.

Algorithms
datasample uses randperm, rand, or randi to generate random values. Therefore, datasample
changes the state of the MATLAB global random number generator. Control the random number
generator using rng.

For selecting weighted samples without replacement, datasample uses the algorithm of Wong and
Easton [1].

Alternative Functionality
You can use randi or randperm to generate indices for random sampling with or without
replacement, respectively. However, datasample can be more convenient to use because it samples
directly from your data. datasample also allows weighted sampling.

Version History
Introduced in R2011b
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References
[1] Wong, C. K. and M. C. Easton. "An Efficient Method for Weighted Sampling Without Replacement."

SIAM Journal of Computing 9(1), pp. 111–113, 1980.

Extended Capabilities
Tall Arrays
Calculate with arrays that have more rows than fit in memory.

This function supports tall arrays for out-of-memory data with some limitations.

• datasample is useful as a precursor to plotting and fitting a random subset of a large data set.
Sampling a large data set preserves trends in the data without requiring the use of all the data
points. If the sample is small enough to fit in memory, then you can apply plotting and fitting
functions that do not directly support tall arrays.

• datasample supports sampling only along the first dimension of the data.
• For tall arrays, datasample does not support sampling with replacement. You must specify

'Replace',false, for example, datasample(data,k,'Replace',false).
• The value of 'Weights' must be a numeric tall array of the same height as data.
• For the syntax [Y,idx] = datasample(___), the output idx is a tall logical vector of the same

height as data. The vector indicates whether each data point is included in the sample.
• If you specify a random number stream, then the underlying generator must support multiple

streams and substreams. If you do not specify a random number stream, then datasample uses
the stream controlled by tallrng.

For more information, see “Tall Arrays for Out-of-Memory Data”.

See Also
rand | randi | randperm | RandStream | rng | tallrng
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dataset class
(Not Recommended) Arrays for statistical data

Note The dataset data type is not recommended. To work with heterogeneous data, use the
MATLAB® table data type instead. See MATLAB table documentation for more information.

Description
Dataset arrays are used to collect heterogeneous data and metadata including variable and
observation names into a single container variable. Dataset arrays are suitable for storing column-
oriented or tabular data that are often stored as columns in a text file or in a spreadsheet, and can
accommodate variables of different types, sizes, units, etc.

Dataset arrays can contain different kinds of variables, including numeric, logical, character, string,
categorical, and cell. However, a dataset array is a different class than the variables that it contains.
For example, even a dataset array that contains only variables that are double arrays cannot be
operated on as if it were itself a double array. However, using dot subscripting, you can operate on
variable in a dataset array as if it were a workspace variable.

You can subscript dataset arrays using parentheses much like ordinary numeric arrays, but in
addition to numeric and logical indices, you can use variable and observation names as indices.

Construction
Use the dataset constructor to create a dataset array from variables in the MATLAB workspace. You
can also create a dataset array by reading data from a text or spreadsheet file. You can access each
variable in a dataset array much like fields in a structure, using dot subscripting. See the following
section for a list of operations available for dataset arrays.

dataset (Not Recommended) Construct dataset array
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Methods
cat (Not Recommended) Concatenate dataset arrays
cellstr (Not Recommended) Create cell array of character vectors from dataset array
dataset2cell (Not Recommended) Convert dataset array to cell array
dataset2struct (Not Recommended) Convert dataset array to structure
datasetfun (Not Recommended) Apply function to dataset array variables
disp (Not Recommended) Display dataset array
display (Not Recommended) Display dataset array
double (Not Recommended) Convert dataset variables to double array
end (Not Recommended) Last index in indexing expression for dataset array
export (Not Recommended) Write dataset array to file
get (Not Recommended) Access dataset array properties
horzcat (Not Recommended) Horizontal concatenation for dataset arrays
intersect (Not Recommended) Set intersection for dataset array observations
isempty (Not Recommended) True for empty dataset array
ismember (Not Recommended) Dataset array elements that are members of set
ismissing (Not Recommended) Find dataset array elements with missing values
join (Not Recommended) Merge dataset array observations
length (Not Recommended) Length of dataset array
ndims (Not Recommended) Number of dimensions of dataset array
numel (Not Recommended) Number of elements in dataset array
replacedata (Not Recommended) Replace dataset variables
replaceWithMissing (Not Recommended) Insert missing data indicators into a dataset array
set (Not Recommended) Set and display dataset array properties
setdiff (Not Recommended) Set difference for dataset array observations
setxor (Not Recommended) Set exclusive or for dataset array observations
single (Not Recommended) Convert dataset variables to single array
size (Not Recommended) Size of dataset array
sortrows (Not Recommended) Sort rows of dataset array
stack (Not Recommended) Stack dataset array from multiple variables into single

variable
subsasgn (Not Recommended) Subscripted assignment to dataset array
subsref (Not Recommended) Subscripted reference for dataset array
summary (Not Recommended) Print summary of dataset array
union (Not Recommended) Set union for dataset array observations
unique (Not Recommended) Unique observations in dataset array
unstack (Not Recommended) Unstack dataset array from single variable into multiple

variables
vertcat (Not Recommended) Vertical concatenation for dataset arrays
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Properties
A dataset array D has properties that store metadata (information about your data). Access or assign
to a property using P = D.Properties.PropName or D.Properties.PropName = P, where
PropName is one of the following:

Description

Description is a character vector describing the dataset array. The default is an empty character
vector.

DimNames

A two-element cell array of character vectors giving the names of the two dimensions of the dataset
array. The default is {'Observations' 'Variables'}.

ObsNames

A cell array of nonempty, distinct character vectors giving the names of the observations in the
dataset array. This property may be empty, but if not empty, the number of character vectors must
equal the number of observations.

Units

A cell array of character vectors giving the units of the variables in the dataset array. This property
may be empty, but if not empty, the number of character vectors must equal the number of variables.
Any individual character vector may be empty for a variable that does not have units defined. The
default is an empty cell array.

UserData

Any variable containing additional information to be associated with the dataset array. The default is
an empty array.

VarDescription

A cell array of character vectors giving the descriptions of the variables in the dataset array. This
property may be empty, but if not empty, the number of character vectors must equal the number of
variables. Any individual character vector may be empty for a variable that does not have a
description defined. The default is an empty cell array.

VarNames

A cell array of nonempty, distinct character vectors giving the names of the variables in the dataset
array. The number of character vectors must equal the number of variables. The default is the cell
array of names for the variables used to create the data set.

Copy Semantics
Value. To learn how this affects your use of the class, see Comparing Handle and Value Classes in the
MATLAB Object-Oriented Programming documentation.
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Examples
Load a dataset array from a .mat file and create some simple subsets:

load hospital
h1 = hospital(1:10,:)
h2 = hospital(:,{'LastName' 'Age' 'Sex' 'Smoker'})

% Access and modify metadata
hospital.Properties.Description
hospital.Properties.VarNames{4} = 'Wgt'

% Create a new dataset variable from an existing one
hospital.AtRisk = hospital.Smoker | (hospital.Age > 40)

% Use individual variables to explore the data
boxplot(hospital.Age,hospital.Sex)
h3 = hospital(hospital.Age<30,...
   {'LastName' 'Age' 'Sex' 'Smoker'})

% Sort the observations based on two variables
h4 = sortrows(hospital,{'Sex','Age'})

See Also
tdfread | textscan | xlsread

Topics
“Dataset Arrays” on page 2-113
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dataset
Class: dataset

(Not Recommended) Construct dataset array

Note The dataset data type is not recommended. To work with heterogeneous data, use the
MATLAB® table data type instead. See MATLAB table documentation for more information.

Syntax
A = dataset(varspec,'ParamName',Value)
A = dataset('File',filename,'ParamName',Value)
A = dataset('XLSFile',filename,'ParamName',Value)
A = dataset('XPTFile',xptfilename,'ParamName',Value)

Description
A = dataset(varspec,'ParamName',Value) creates dataset array A using the workspace
variable input method varspec and one or more optional name/value pairs (see Parameter Name/
Value Pairs).

The input method varspec can be one or more of the following:

• VAR — a workspace variable. dataset uses the workspace name for the variable name in A. To
include multiple variables, specify VAR_1,VAR_2,...,VAR_N. Variables can be arrays of any size, but
all variables must have the same number of rows. VAR can also be an expression. In this case,
dataset creates a default name automatically.

• {VAR,name} — a workspace variable, VAR and a variable name, name . dataset uses name as the
variable name. To include multiple variables and names, specify {VAR_1,name_1},
{VAR_2,name_2},..., {VAR_N,name_N}.

• {VAR,name_1,...,name_m} — an m-columned workspace variable, VAR. dataset uses the names
name_1, ..., name_m as variable names. You must include a name for every column in VAR. Each
column becomes a separate variable in A.

You can combine these input methods to include as many variables and names as needed. Names
must be valid, unique MATLAB identifiers. For example input combinations, see Examples. For
optional name/value pairs see Inputs.

To convert numeric arrays, cell arrays, structure arrays, or tables to dataset arrays, you can also use
(respectively):

• mat2dataset
• cell2dataset
• struct2dataset
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• table2dataset

Note Dataset arrays may contain built-in types or array objects as variables. Array objects must
implement each of the following:

• Standard MATLAB parenthesis indexing of the form var(i,...), where i is a numeric or logical
vector corresponding to rows of the variable

• A size method with a dim argument
• A vertcat method

A = dataset('File',filename,'ParamName',Value) creates dataset array A from column-
oriented data in the text file specified by filename. Variables in A are of type double if data in the
corresponding column of the file, following the column header, are entirely numeric; otherwise the
variables in A are cell arrays of character vectors. dataset converts empty fields to either NaN (for a
numeric variable) or the empty character vector (for a character-valued variable). dataset ignores
insignificant white space in the file. You cannot specify both a file and workspace variables as input.
See Name/Value Pairs for more information.

A = dataset('XLSFile',filename,'ParamName',Value) creates dataset array A from column-
oriented data in the Excel spreadsheet specified by filename. Variables in A are of type double if
data in the corresponding column of the spreadsheet, following the column header, are entirely
numeric; otherwise the variables in A are cell arrays of character vectors. See Name/Value Pairs for
more information.

A = dataset('XPTFile',xptfilename,'ParamName',Value) creates a dataset array from a
SAS® XPORT format file. Variable names from the XPORT format file are preserved. Numeric data
types in the XPORT format file are preserved but all other data types are converted to cell arrays of
character vectors. The XPORT format allows for 28 missing data types. dataset represents these in
the file by an upper case letter, '.' or '_'. dataset converts all missing data to NaN values in A.
See Name/Value Pairs for more information.

Parameter Name/Value Pairs
Specify one or more of the following name/value pairs when constructing a dataset:

VarNames

A string array or cell array {name_1,...,name_m} naming the m variables in A with the specified
variable names. Names must be valid, unique MATLAB identifiers. The number of names must equal
the number of variables in A. You cannot use the VarNames parameter if you provide names for
individual variables using {VAR,name} pairs. To specify VarNames when using a file as input, set
ReadVarNames to false.

ObsNames

A string array or cell array {name_1,...,name_n} naming the n observations in A with the
specified observation names. The names need not be valid MATLAB identifiers, but must be unique.
The number of names must equal the number of observations (rows) in A. To specify ObsNames when
using a file as input, set ReadObsNames to false.

Name/value pairs available when using text files as inputs:
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Delimiter

A character vector or string scalar indicating the character separating columns in the file. Values are

• '\t' (tab, the default when no format is specified)
• ' ' (space, the default when a format is specified)
• ',' (comma)
• ';' (semicolon)
• '|' (bar)

Format

A format character vector or string scalar, as accepted by textscan. dataset reads the file using
textscan, and creates variables in A according to the conversion specifiers in the format character
vector or string scalar. You may also provide any name/value pairs accepted by textscan. Using the
Format parameter is much faster for large files. If ReadObsNames is true, then format should
include a format specifier for the first column of the file.

HeaderLines

Numeric value indicating the number of lines to skip at the beginning of a file.

Default: 0

TreatAsEmpty

Specifies characters to treat as the empty character vector in a numeric column. Values may be a
character array, a string array, or a cell array of character vectors. The parameter applies only to
numeric columns in the file; dataset does not accept numeric literals such as '-99'.

Name/value pairs available when using text files or Excel spreadsheets as inputs:

ReadVarNames

A logical value indicating whether (true) or not (false) to read variable names from the first row of
the file. The default is true. If ReadVarNames is true, variable names in the column headers of the
file or range (if using an Excel spreadsheet) cannot be empty.

ReadObsNames

A logical value indicating whether (true) or not (false) to read observation names from the first
column of the file or range (if using an Excel spreadsheet). The default is false. If ReadObsNames
and ReadVarNames are both true, dataset saves the header of the first column in the file or range
as the name of the first dimension in A.Properties.DimNames.

When reading from an XPT format file, the ReadObsNames parameter name/value pair determines
whether or not to try to use the first variable in the file as observation names. Specify as a logical
value (default false). If the contents of the first variable are not valid observation names then
dataset reads the variable into a variable of the dataset array and does not set the observation
names.

Name/value pairs available when using Excel spreadsheets as input:
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Sheet

A positive scalar value of type double indicating the sheet number, or a quoted sheet name.

Range

A character vector or string scalar of the form 'C1:C2' where C1 and C2 are the names of cells at
opposing corners of a rectangular region to be read, as for xlsread. By default, the rectangular
region extends to the right-most column containing data. If the spreadsheet contains empty columns
between columns of data, or if the spreadsheet contains figures or other non-tabular information,
specify a range that contains only data.

Examples
Create a dataset array from workspace variables, including observation names:

load cereal
cereal = dataset(Calories,Protein,Fat,Sodium,Fiber,Carbo,...
   Sugars,'ObsNames',Name)
cereal.Properties.VarDescription = Variables(4:10,2);

Create a dataset array from a single, multi-columned workspace variable, designating variable names
for each column:

load cities
categories = cellstr(categories);
cities = dataset({ratings,categories{:}},...
   'ObsNames',cellstr(names))

Load data from a text or spreadsheet file

patients = dataset('File','hospital.dat',...
   'Delimiter',',','ReadObsNames',true)
patients2 = dataset('XLSFile','hospital.xls',...
   'ReadObsNames',true)

1 Load patient data from the CSV file hospital.dat and store the information in a dataset
array with observation names given by the first column in the data (patient identification):

patients = dataset('file','hospital.dat', ...
             'format','%s%s%s%f%f%f%f%f%f%f%f%f', ...
             'Delimiter',',','ReadObsNames',true); 

You can also load the data without specifying a format. dataset will automatically create
dataset variables that are either double arrays or cell arrays of character vectors, depending
on the contents of the file:

patients = dataset('file','hospital.dat',...
                   'delimiter',',',...
                   'ReadObsNames',true);

2 Make the {0,1}-valued variable smoke nominal, and change the labels to 'No' and 'Yes':

patients.smoke = nominal(patients.smoke,{'No','Yes'});
3 Add new levels to smoke as placeholders for more detailed histories of smokers:

patients.smoke = addlevels(patients.smoke,...
                 {'0-5 Years','5-10 Years','LongTerm'});
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4 Assuming the nonsmokers have never smoked, relabel the 'No' level:

patients.smoke = setlabels(patients.smoke,'Never','No');
5 Drop the undifferentiated 'Yes' level from smoke:

patients.smoke = droplevels(patients.smoke,'Yes');

Note that smokers now have an undefined level.
6 Set each smoker to one of the new levels, by observation name:

patients.smoke('YPL-320') = '5-10 Years';

Version History
Introduced in R2007a

See Also
cell2dataset | mat2dataset | struct2dataset | tdfread | textscan | xlsread

Topics
“Create a Dataset Array from Workspace Variables” on page 2-58
“Create a Dataset Array from a File” on page 2-63
“Dataset Arrays in the Variables Editor” on page 2-102
“Dataset Arrays” on page 2-113
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dataset2cell
Class: dataset

(Not Recommended) Convert dataset array to cell array

Note The dataset data type is not recommended. To work with heterogeneous data, use the
MATLAB® table data type instead. See MATLAB table documentation for more information.

Syntax
C = dataset2cell(D)

Description
C = dataset2cell(D) converts the dataset array D to a cell array C. Each variable of D becomes a
column in C. If D is an M-by-N array, then C is (M+1)-by-N, with the variable names of D in the first row.
If D contains observation names, then C is (M+1)-by-(N+1), with the observation names in the first
column.

See Also
dataset | cell2dataset | export

Topics
“Dataset Arrays” on page 2-113
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dataset2struct
Class: dataset

(Not Recommended) Convert dataset array to structure

Note The dataset data type is not recommended. To work with heterogeneous data, use the
MATLAB® table data type instead. See MATLAB table documentation for more information.

Syntax
S = dataset2struct(D)
S = dataset2struct(D,'AsScalar',true)

Description
S = dataset2struct(D) converts a dataset array to a structure array. Each variable of D becomes
a field in S. If D is an M-by-N dataset array, then S is M-by-1 and has N fields. If D contains
observation names, then S contains those names in the additional field ObsNames.

S = dataset2struct(D,'AsScalar',true) converts a dataset array to a scalar structure. Each
variable of D becomes a field in S. If D is an M-by-N dataset array, then S has N fields, each of which
as M rows. If D contains observation names, then S contains those names in the additional field
ObsNames.

Input Arguments
D

M-by-N dataset array.

Output Arguments
S

M-by-1 structure array, with N fields. If the input dataset array contains observation names, then S
has an additional field ObsNames.

If you specify 'AsScalar',true, then S is a scalar structure, with N fields, each with M rows.

Examples

Convert Dataset Array to Structure Array

Load sample dataset array.

load('hospital')
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Create a dataset array, D, that has only a subset of the observations and variables.

D = hospital(1:8,{'LastName','Sex','Age'});
size(D)

ans = 1×2

     8     3

The dataset array D has 8 observations and 3 variables.

Convert D to a structure array.

S = dataset2struct(D)

S=8×1 struct array with fields:
    ObsNames
    LastName
    Sex
    Age

The structure is 8x1, corresponding to the 8 observations in the dataset array. S also has the field
ObsNames, since D had observation names.

Display the field data for the first element of S.

S(1)

ans = struct with fields:
    ObsNames: 'YPL-320'
    LastName: 'SMITH'
         Sex: Male
         Age: 38

This information corresponds to the first observation (row) of the dataset array.

Convert Dataset Array to Scalar Structure

Load sample dataset array.

load('hospital')

Create a dataset array, D, that has only a subset of the observations and variables.

D = hospital(1:8,{'LastName','Sex','Age'});
size(D)

ans = 1×2

     8     3

The dataset array D has 8 observations and 3 variables.
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Convert D to a scalar structure array.

S = dataset2struct(D,'AsScalar',true)

S = struct with fields:
    ObsNames: {8x1 cell}
    LastName: {8x1 cell}
         Sex: [8x1 nominal]
         Age: [8x1 double]

The data in the fields of the scalar structure is 8x1, corresponding to the 8 observations in the
dataset array. S also has the field ObsNames, since D had observation names.

Display the data for the field LastName.

S.LastName

ans = 8x1 cell
    {'SMITH'   }
    {'JOHNSON' }
    {'WILLIAMS'}
    {'JONES'   }
    {'BROWN'   }
    {'DAVIS'   }
    {'MILLER'  }
    {'WILSON'  }

The structure field LastName contains all of the data that was in the original dataset array variable,
LastName.

See Also
dataset | dataset2cell | struct2dataset

Topics
“Dataset Arrays” on page 2-113
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dataset2table
Convert dataset array to table

Syntax
t = dataset2table(ds)

Description
t = dataset2table(ds) converts a dataset array to a table.

Examples

Convert Dataset Array to Table

Load the sample data, which contains nutritional information for 77 cereals.

load cereal;

Create a dataset array containing the calorie, protein, fat, and name data for the first five cereals.
Label the variables.

Calories = Calories(1:5);
Protein = Protein(1:5);
Fat = Fat(1:5);
Name = Name(1:5);

cereal = dataset(Calories,Protein,Fat,'ObsNames',Name)

cereal = 
                                 Calories    Protein    Fat
    100% Bran                     70         4          1  
    100% Natural Bran            120         3          5  
    All-Bran                      70         4          1  
    All-Bran with Extra Fiber     50         4          0  
    Almond Delight               110         2          2  

cereal.Properties.VarDescription = Variables(4:6,2);

Convert the dataset array to a table.

t = dataset2table(cereal)

t=5×3 table
                                 Calories    Protein    Fat
                                 ________    _______    ___

    100% Bran                       70          4        1 
    100% Natural Bran              120          3        5 
    All-Bran                        70          4        1 
    All-Bran with Extra Fiber       50          4        0 
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    Almond Delight                 110          2        2 

Input Arguments
ds — Input dataset array
dataset array

Input dataset array to convert to a table, specified as a dataset array. Each variable in ds becomes a
variable in the output table t.

Output Arguments
t — Output table
table

Output table, returned as a table. The table can store metadata such as descriptions, variable units,
variable names, and row names. For more information, see “Tables”.

Version History
Introduced in R2013b

See Also
table | dataset

Topics
“Dataset Arrays” on page 2-113
“Tables”
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datasetfun
Class: dataset

(Not Recommended) Apply function to dataset array variables

Note The dataset data type is not recommended. To work with heterogeneous data, use the
MATLAB® table data type instead. See MATLAB table documentation for more information.

Syntax
b = datasetfun(fun,A)
[b,c,...] = datasetfun(fun,A)
[b,...] = datasetfun(fun,A,...,'UniformOutput',false)
[b,...] = datasetfun(fun,A,...,'DatasetOutput',true)
[b,...] = datasetfun(fun,A,...,'DataVars',vars)
[b,...] = datasetfun(fun,A,...,'ObsNames',obsnames)
[b,...] = datasetfun(fun,A,...,'ErrorHandler',efun)

Description
b = datasetfun(fun,A) applies the function specified by fun to each variable of the dataset array
A, and returns the results in the vector b. The ith element of b is equal to fun applied to the ith
dataset variable of A. fun is a function handle to a function that takes one input argument and
returns a scalar value. fun must return values of the same class each time it is called, and
datasetfun concatenates them into the vector b. The outputs from fun must be one of the following
types: numeric, logical, character, structure, or cell.

To apply functions that return results that are nonscalar or of different sizes and types, use the
'UniformOutput' or 'DatasetOutput' parameters described below.

Do not rely on the order in which datasetfun computes the elements of b, which is unspecified.

If fun is bound to more than one built-in function or file, (that is, if it represents a set of overloaded
functions), datasetfun follows MATLAB dispatching rules in calling the function. (See “Function
Precedence Order”.)

[b,c,...] = datasetfun(fun,A), where fun is a function handle to a function that returns
multiple outputs, returns vectors b, c, ..., each corresponding to one of the output arguments of fun.
datasetfun calls fun each time with as many outputs as there are in the call to datasetfun. fun
may return output arguments having different classes, but the class of each output must be the same
each time fun is called.

[b,...] = datasetfun(fun,A,...,'UniformOutput',false) allows you to specify a function
fun that returns values of different sizes or types. datasetfun returns a cell array (or multiple cell
arrays), where the ith cell contains the value of fun applied to the ith dataset variable of A. Setting
'UniformOutput' to true is equivalent to the default behavior.

[b,...] = datasetfun(fun,A,...,'DatasetOutput',true) specifies that the output(s) of
fun are returned as variables in a dataset array (or multiple dataset arrays). fun must return values
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with the same number of rows each time it is called, but it may return values of any type. The
variables in the output dataset array(s) have the same names as the variables in the input. Setting
'DatasetOutput' to false (the default) specifies that the type of the output(s) from datasetfun
is determined by 'UniformOutput'.

[b,...] = datasetfun(fun,A,...,'DataVars',vars) allows you to apply fun only to the
dataset variables in A specified by vars. vars is a positive integer, a vector of positive integers, a
character vector, a string array, a cell array of character vectors, or a logical vector.

[b,...] = datasetfun(fun,A,...,'ObsNames',obsnames) specifies observation names for
the dataset output when 'DatasetOutput' is true.

[b,...] = datasetfun(fun,A,...,'ErrorHandler',efun), where efun is a function handle,
specifies the MATLAB function to call if the call to fun fails. The error-handling function is called
with the following input arguments:

• A structure with the fields identifier, message, and index, respectively containing the
identifier of the error that occurred, the text of the error message, and the linear index into the
input array(s) at which the error occurred

• The set of input arguments at which the call to the function failed

The error-handling function should either re-throw an error, or return the same number of outputs as
fun. These outputs are then returned as the outputs of datasetfun. If 'UniformOutput' is true,
the outputs of the error handler must also be scalars of the same type as the outputs of fun. For
example, the following code could be saved in a file as the error-handling function:

function [A,B] = errorFunc(S,varargin)

warning(S.identifier,S.message); 
A = NaN; 
B = NaN;

If an error-handling function is not specified, the error from the call to fun is rethrown.

Examples

Work With Datasets Using Function Handles

Use function handles to compute the mean and plot a histogram of selected variables in a dataset
array.

Load the sample data.

load hospital

Use datasetfun to compute the means of the Weight and BloodPressure variables, and store the
results in a dataset array.

stats = datasetfun(@mean,hospital,...
        'DataVars',{'Weight','BloodPressure'},...
        'UniformOutput',false)

stats=1×2 cell array
    {[154]}    {[122.7800 82.9600]}
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The variable BloodPressure contains two columns: One for the systolic measurement, and one for
the diastolic measurement.

Display the mean of the blood pressure variable.

stats{2}

ans = 1×2

  122.7800   82.9600

Plot a histogram of the blood pressure variable.

datasetfun(@hist,hospital,...
           'DataVars','BloodPressure',...
           'UniformOutput',false);
title('{\bf Blood Pressure}')
legend('Systolic','Diastolic','Location','N')

See Also
grpstats
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35-1267



daugment
D-optimal augmentation

Syntax
dCE2 = daugment(dCE,mruns)
[dCE2,X] = daugment(dCE,mruns)
[dCE2,X] = daugment(dCE,mruns,model)
[dCE2,X] = daugment(...,param1,val1,param2,val2,...)

Description
dCE2 = daugment(dCE,mruns) uses a coordinate-exchange algorithm to D-optimally add mruns
runs to an existing experimental design dCE for a linear additive model.

[dCE2,X] = daugment(dCE,mruns) also returns the design matrix X associated with the
augmented design.

[dCE2,X] = daugment(dCE,mruns,model) uses the linear regression model specified in model.
model is one of the following:

• 'linear' — Constant and linear terms. This is the default.
• 'interaction' — Constant, linear, and interaction terms
• 'quadratic' — Constant, linear, interaction, and squared terms
• 'purequadratic' — Constant, linear, and squared terms

The order of the columns of X for a full quadratic model with n terms is:

1 The constant term
2 The linear terms in order 1, 2, ..., n
3 The interaction terms in order (1, 2), (1, 3), ..., (1, n), (2, 3), ..., (n – 1, n)
4 The squared terms in order 1, 2, ..., n

Other models use a subset of these terms, in the same order.

Alternatively, model can be a matrix specifying polynomial terms of arbitrary order. In this case,
model should have one column for each factor and one row for each term in the model. The entries in
any row of model are powers for the factors in the columns. For example, if a model has factors X1,
X2, and X3, then a row [0 1 2] in model specifies the term (X1.^0).*(X2.^1).*(X3.^2). A row
of all zeros in model specifies a constant term, which can be omitted.

[dCE2,X] = daugment(...,param1,val1,param2,val2,...) specifies additional parameter/
value pairs for the design. Valid parameters and their values are listed in the following table.
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Parameter Value
'bounds' Lower and upper bounds for each factor, specified as a 2-by-nfactors

matrix, where nfactors is the number of factors. Alternatively, this value
can be a cell array containing nfactors elements, each element specifying
the vector of allowable values for the corresponding factor.

'categorical' Indices of categorical predictors.
'display' Either 'on' or 'off' to control display of the iteration counter. The default

is 'on'.
'excludefun' Handle to a function that excludes undesirable runs. If the function is f, it

must support the syntax b = f(S), where S is a matrix of treatments with
nfactors columns, where nfactors is the number of factors, and b is a
vector of Boolean values with the same number of rows as S. b(i) is true if
the ith row S should be excluded.

'init' Initial design as an mruns-by-nfactors matrix, where nfactors is the
number of factors. The default is a randomly selected set of points.

'levels' Vector of number of levels for each factor.
'maxiter' Maximum number of iterations. The default is 10.
'options' The value is a structure that contains options specifying whether to

compute multiple tries in parallel, and specifying how to use random
numbers when generating the starting points for the tries. Create the
options structure with statset. Applicable statset parameters are:

• 'UseParallel' — If true and if Parallel Computing Toolbox is
installed, compute in parallel. If the Parallel Computing Toolbox is not
installed, or 'UseParallel',false, then computation occurs in serial
mode. Default is false, meaning serial computation.

• UseSubstreams — Set to true to compute in parallel in a reproducible
fashion. Default is false. To compute reproducibly, set Streams to a
type allowing substreams: 'mlfg6331_64' or 'mrg32k3a'.

• Streams — A RandStream object or cell array of such objects. If you do
not specify Streams, daugment uses the default stream or streams. If
you choose to specify Streams, use a single object except in the case

• UseParallel is true
• UseSubstreams is false

In that case, use a cell array the same size as the Parallel pool.
'tries' Number of times to try to generate a design from a new starting point. The

algorithm uses random points for each try, except possibly the first. The
default is 1.

Note The daugment function augments an existing design using a coordinate-exchange algorithm;
the 'start' parameter of the candexch function provides the same functionality using a row-
exchange algorithm.
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Examples
The following eight-run design is adequate for estimating main effects in a four-factor model:

dCEmain = cordexch(4,8)
dCEmain =
     1    -1    -1     1
    -1    -1     1     1
    -1     1    -1     1
     1     1     1    -1
     1     1     1     1
    -1     1    -1    -1
     1    -1    -1    -1
    -1    -1     1    -1

To estimate the six interaction terms in the model, augment the design with eight additional runs:

dCEinteraction = daugment(dCEmain,8,'interaction')
dCEinteraction =
     1    -1    -1     1
    -1    -1     1     1
    -1     1    -1     1
     1     1     1    -1
     1     1     1     1
    -1     1    -1    -1
     1    -1    -1    -1
    -1    -1     1    -1
    -1     1     1     1
    -1    -1    -1    -1
     1    -1     1    -1
     1     1    -1     1
    -1     1     1    -1
     1     1    -1    -1
     1    -1     1     1
     1     1     1    -1

The augmented design is full factorial, with the original eight runs in the first eight rows.

Version History
Introduced before R2006a

Extended Capabilities
Automatic Parallel Support
Accelerate code by automatically running computation in parallel using Parallel Computing Toolbox™.

To run in parallel, specify the 'Options' name-value argument in the call to this function and set the
'UseParallel' field of the options structure to true using statset.

For example: 'Options',statset('UseParallel',true)

For more information about parallel computing, see “Run MATLAB Functions with Automatic Parallel
Support” (Parallel Computing Toolbox).
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See Also
dcovary | cordexch | candexch
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dbscan
Density-based spatial clustering of applications with noise (DBSCAN)

Syntax
idx = dbscan(X,epsilon,minpts)
idx = dbscan(X,epsilon,minpts,Name,Value)

idx = dbscan(D,epsilon,minpts,'Distance','precomputed')

[idx,corepts] = dbscan( ___ )

Description
idx = dbscan(X,epsilon,minpts) partitions observations in the n-by-p data matrix X into
clusters using the DBSCAN algorithm (see Algorithms on page 35-1283). dbscan clusters the
observations (or points) based on a threshold for a neighborhood search radius epsilon and a
minimum number of neighbors minpts required to identify a core point. The function returns an n-
by-1 vector (idx) containing cluster indices of each observation.

idx = dbscan(X,epsilon,minpts,Name,Value) specifies additional options using one or more
name-value pair arguments. For example, you can specify 'Distance','minkowski','P',3 to use
the Minkowski distance metric with an exponent of three in the DBSCAN algorithm.

idx = dbscan(D,epsilon,minpts,'Distance','precomputed') returns a vector of cluster
indices for the precomputed pairwise distances D between observations. D can be the output of
pdist or pdist2, or a more general dissimilarity vector or matrix conforming to the output format of
pdist or pdist2, respectively.

[idx,corepts] = dbscan( ___ ) also returns a logical vector corepts that contains the core
points identified by dbscan, using any of the input argument combinations in the previous syntaxes.

Examples

Perform DBSCAN on Input Data

Cluster a 2-D circular data set using DBSCAN with the default Euclidean distance metric. Also,
compare the results of clustering the data set using DBSCAN and k-Means clustering with the
squared Euclidean distance metric.

Generate synthetic data that contains two noisy circles.

rng('default') % For reproducibility

% Parameters for data generation
N = 300;  % Size of each cluster
r1 = 0.5; % Radius of first circle
r2 = 5;   % Radius of second circle
theta = linspace(0,2*pi,N)';
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X1 = r1*[cos(theta),sin(theta)]+ rand(N,1); 
X2 = r2*[cos(theta),sin(theta)]+ rand(N,1);
X = [X1;X2]; % Noisy 2-D circular data set

Visualize the data set.

scatter(X(:,1),X(:,2))

The plot shows that the data set contains two distinct clusters.

Perform DBSCAN clustering on the data. Specify an epsilon value of 1 and a minpts value of 5.

idx = dbscan(X,1,5); % The default distance metric is Euclidean distance

Visualize the clustering.

gscatter(X(:,1),X(:,2),idx);
title('DBSCAN Using Euclidean Distance Metric')
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Using the Euclidean distance metric, DBSCAN correctly identifies the two clusters in the data set.

Perform DBSCAN clustering using the squared Euclidean distance metric. Specify an epsilon value
of 1 and a minpts value of 5.

idx2 = dbscan(X,1,5,'Distance','squaredeuclidean');

Visualize the clustering.

gscatter(X(:,1),X(:,2),idx2);
title('DBSCAN Using Squared Euclidean Distance Metric')
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Using the squared Euclidean distance metric, DBSCAN correctly identifies the two clusters in the
data set.

Perform k-Means clustering using the squared Euclidean distance metric. Specify k = 2 clusters.

kidx = kmeans(X,2); % The default distance metric is squared Euclidean distance

Visualize the clustering.

gscatter(X(:,1),X(:,2),kidx);
title('K-Means Using Squared Euclidean Distance Metric')

 dbscan

35-1275



Using the squared Euclidean distance metric, k-Means clustering fails to correctly identify the two
clusters in the data set.

Perform DBSCAN on Pairwise Distances

Perform DBSCAN clustering using a matrix of pairwise distances between observations as input to
the dbscan function, and find the number of outliers and core points. The data set is a Lidar scan,
stored as a collection of 3-D points, that contains the coordinates of objects surrounding a vehicle.

Load the x, y, z coordinates of the objects.

load('lidar_subset.mat') 
loc = lidar_subset;

To highlight the environment around the vehicle, set the region of interest to span 20 meters to the
left and right of the vehicle, 20 meters in front and back of the vehicle, and the area above the
surface of the road.

xBound = 20; % in meters
yBound = 20; % in meters
zLowerBound = 0; % in meters

Crop the data to contain only points within the specified region.
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indices = loc(:,1) <= xBound & loc(:,1) >= -xBound ...
    & loc(:,2) <= yBound & loc(:,2) >= -yBound ...
    & loc(:,3) > zLowerBound;
loc = loc(indices,:);

Visualize the data as a 2-D scatter plot. Annotate the plot to highlight the vehicle.

scatter(loc(:,1),loc(:,2),'.');
annotation('ellipse',[0.48 0.48 .1 .1],'Color','red')

The center of the set of points (circled in red) contains the roof and hood of the vehicle. All other
points are obstacles.

Precompute a matrix of pairwise distances D between observations by using the pdist2 function.

D = pdist2(loc,loc);

Cluster the data by using dbscan with the pairwise distances. Specify an epsilon value of 2 and a
minpts value of 50.

[idx, corepts] = dbscan(D,2,50,'Distance','precomputed');

Visualize the results and annotate the figure to highlight a specific cluster.

numGroups = length(unique(idx));
gscatter(loc(:,1),loc(:,2),idx,hsv(numGroups));
annotation('ellipse',[0.54 0.41 .07 .07],'Color','red')
grid
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As shown in the scatter plot, dbscan identifies 11 clusters and places the vehicle in a separate
cluster.

dbscan assigns the group of points circled in red (and centered around (3,–4)) to the same cluster
(group 7) as the group of points in the southeast quadrant of the plot. The expectation is that these
groups should be in separate clusters. You can try using a smaller value of epsilon to split up large
clusters and further partition the points.

The function also identifies some outliers (an idx value of –1 ) in the data. Find the number of points
that dbscan identifies as outliers.

sum(idx == -1)

ans = 412

dbscan identifies 412 outliers out of 19,070 observations.

Find the number of points that dbscan identifies as core points. A corepts value of 1 indicates a
core point.

sum(corepts == 1)

ans = 18446

dbscan identifies 18,446 observations as core points.

See “Determine Values for DBSCAN Parameters” on page 17-20 for a more extensive example.
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Input Arguments
X — Input data
numeric matrix

Input data, specified as an n-by-p numeric matrix. The rows of X correspond to observations (or
points), and the columns correspond to variables.
Data Types: single | double

D — Pairwise distances
numeric row vector | numeric square matrix | logical row vector | logical square matrix

Pairwise distances between observations, specified as a numeric row vector that is the output of
pdist, numeric square matrix that is the output of pdist2, logical row vector, or logical square
matrix. D can also be a more general dissimilarity vector or matrix that conforms to the output format
of pdist or pdist2, respectively.

For the aforementioned specifications, the following table describes the formats that D can take,
given an input matrix X that has n observations (rows) and p dimensions (columns).

Specification Format
Numeric row vector (output of
pdist(X))

• A row vector of length n(n – 1)/2, corresponding to pairs of
observations in X

• Distances arranged in the order (2,1), (3,1), ..., (n,1), (3,2), ...,
(n,2), ..., (n,n – 1))

Numeric square matrix (output of
pdist2(X,X))

• An n-by-n matrix, where D(i,j) is the distance between
observations i and j in X

• A symmetric matrix having diagonal elements equal to zero
Logical row vector • A row vector of length n(n – 1)/2, corresponding to pairs of

observations in X
• A logical row vector with elements indicating distances that

are less than or equal to epsilon
• Elements of D arranged in the order (2,1), (3,1), ..., (n,1),

(3,2), ..., (n,2), ..., (n,n – 1))
Logical square matrix • An n-by-n matrix, where D(i,j) indicates the distance

between observations i and j in X that are less than or equal
to epsilon

Note If D is a logical vector or matrix, then the value of epsilon must be empty; for example,
dbscan(D,[],5,'Distance','precomputed').

Data Types: single | double | logical

epsilon — Epsilon neighborhood
numeric scalar | []

 dbscan

35-1279



Epsilon neighborhood of a point, specified as a numeric scalar that defines a neighborhood search
radius around the point. If the epsilon neighborhood of a point contains at least minpts neighbors,
then dbscan identifies the point as a core point.

The value of epsilon must be empty ([]) when D is a logical vector or matrix.
Example: dbscan(X,2.5,10)
Example: dbscan(D,[],5,'Distance','precomputed'), for a logical matrix or vector D
Data Types: single | double

minpts — Minimum number of neighbors required for core point
positive integer

Minimum number of neighbors required for a core point, specified as a positive integer. The epsilon
neighborhood of a core point in a cluster must contain at least minpts neighbors, whereas the
epsilon neighborhood of a border point can contain fewer neighbors than minpts.
Example: dbscan(X,2.5,5)
Data Types: single | double

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: dbscan(D,2.5,5,'Distance','precomputed') specifies DBSCAN clustering using a
precomputed matrix of pairwise distances D between observations, an epsilon neighborhood of 2.5,
and a minimum of 5 neighbors.

Distance — Distance metric
character vector | string scalar | function handle

Distance metric, specified as the comma-separated pair consisting of 'Distance' and a character
vector, string scalar, or function handle, as described in this table.

Value Description
'precomputed' Precomputed distances. You must specify this option if the first input to

dbscan is a vector or matrix of pairwise distances D.
'euclidean' Euclidean distance (default)
'squaredeuclidean' Squared Euclidean distance. (This option is provided for efficiency only.

It does not satisfy the triangle inequality.)
'seuclidean' Standardized Euclidean distance. Each coordinate difference between

observations is scaled by dividing by the corresponding element of the
standard deviation, S = std(X,'omitnan'). Use Scale to specify
another value for S.

'mahalanobis' Mahalanobis distance using the sample covariance of X, C =
cov(X,'omitrows'). Use Cov to specify another value for C, where
the matrix C is symmetric and positive definite.
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Value Description
'cityblock' City block distance
'minkowski' Minkowski distance. The default exponent is 2. Use P to specify a

different exponent, where P is a positive scalar value.
'chebychev' Chebychev distance (maximum coordinate difference)
'cosine' One minus the cosine of the included angle between points (treated as

vectors)
'correlation' One minus the sample correlation between points (treated as

sequences of values)
'hamming' Hamming distance, which is the percentage of coordinates that differ
'jaccard' One minus the Jaccard coefficient, which is the percentage of nonzero

coordinates that differ
'spearman' One minus the sample Spearman's rank correlation between

observations (treated as sequences of values)
@distfun Custom distance function handle. A distance function has the form

function D2 = distfun(ZI,ZJ)
% calculation of distance
...

where

• ZI is a 1-by-n vector containing a single observation.
• ZJ is an m2-by-n matrix containing multiple observations. distfun

must accept a matrix ZJ with an arbitrary number of observations.
• D2 is an m2-by-1 vector of distances, and D2(k) is the distance

between observations ZI and ZJ(k,:).

If your data is not sparse, you can generally compute distance more
quickly by using a built-in distance instead of a function handle.

For definitions, see Distance Metrics on page 35-5388.

When you use the 'seuclidean', 'minkowski', or 'mahalanobis' distance metric, you can
specify the additional name-value pair argument 'Scale', 'P', or 'Cov', respectively, to control the
distance metrics.
Example: dbscan(X,2.5,5,'Distance','minkowski','P',3) specifies an epsilon
neighborhood of 2.5, a minimum of 5 neighbors to grow a cluster, and use of the Minkowski distance
metric with an exponent of 3 when performing the clustering algorithm.

P — Exponent for Minkowski distance metric
2 (default) | positive scalar

Exponent for the Minkowski distance metric, specified as the comma-separated pair consisting of 'P'
and a positive scalar.

This argument is valid only if 'Distance' is 'minkowski'.
Example: 'P',3
Data Types: single | double
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Cov — Covariance matrix for Mahalanobis distance metric
cov(X,'omitrows') (default) | numeric matrix

Covariance matrix for the Mahalanobis distance metric, specified as the comma-separated pair
consisting of 'Cov' and a symmetric, positive definite, numeric matrix.

This argument is valid only if 'Distance' is 'mahalanobis'.
Data Types: single | double

Scale — Scaling factors for standardized Euclidean distance metric
std(X,'omitnan') (default) | numeric vector of positive values

Scaling factors for the standardized Euclidean distance metric, specified as the comma-separated
pair consisting of 'Scale' and a numeric vector of positive values.

Each dimension (column) of X has a corresponding value in 'Scale'; therefore, 'Scale' is of length
p (the number of columns in X). For each dimension of X, dbscan uses the corresponding value in
'Scale' to standardize the difference between X and a query point.

This argument is valid only if 'Distance' is 'seuclidean'.
Data Types: single | double

Output Arguments
idx — Cluster indices
numeric column vector

Cluster indices, returned as a numeric column vector. idx has n rows, and each row of idx indicates
the cluster assignment of the corresponding observation in X. An index equal to –1 indicates an
outlier (or noise point).

Note Cluster assignment using the DBSCAN algorithm is dependent on the order of observations.
Therefore, shuffling the rows of X can lead to different cluster assignments for the observations. For
more details, see Algorithms on page 35-1283.

Data Types: double

corepts — Indicator for core points
logical vector

Indicator for core points, returned as an n-by-1 logical vector indicating the indices of the core points
identified by dbscan. A value of 1 in any row of corepts indicates that the corresponding
observation in X is a core point. Otherwise, corepts has a value of 0 for rows corresponding to
observations that are not core points.
Data Types: logical
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More About
Core Points

Core points in a cluster are points that have at least a minimum number of neighbors (minpts) in
their epsilon neighborhood (epsilon). Each cluster must contain at least one core point.

Border Points

Border points in a cluster are points that have fewer than the required minimum number of neighbors
for a core point (minpts) in their epsilon neighborhood (epsilon). Generally, the epsilon
neighborhood of a border point contains significantly fewer points than the epsilon neighborhood of a
core point.

Noise Points

Noise points are outliers that do not belong to any cluster.

Tips
• For improved speed when iterating over many values of epsilon, consider passing in D as the

input to dbscan. This approach prevents the function from having to compute the distances at
every point of the iteration.

• If you use pdist2 to precompute D, do not specify the 'Smallest' or 'Largest' name-value
pair arguments of pdist2 to select or sort columns of D. Selecting fewer than n distances results
in an error, because dbscan expects D to be a square matrix. Sorting the distances in each column
of D leads to a loss in the interpretation of D and can give meaningless results when used in the
dbscan function.

• For efficient memory usage, consider passing in D as a logical matrix rather than a numeric matrix
to dbscan when D is large. By default, MATLAB stores each value in a numeric matrix using 8
bytes (64 bits), and each value in a logical matrix using 1 byte (8 bits).

• To select a value for minpts, consider a value greater than or equal to the number of dimensions
of the input data plus one [1]. For example, for an n-by-p matrix X, set 'minpts' equal to p+1 or
greater.

• One possible strategy for selecting a value for epsilon is to generate a k-distance graph for X.
For each point in X, find the distance to the kth nearest point, and plot sorted points against this
distance. Generally, the graph contains a knee. The distance that corresponds to the knee is
typically a good choice for epsilon, because it is the region where points start tailing off into
outlier (noise) territory [1].

Algorithms
• DBSCAN is a density-based clustering algorithm that is designed to discover clusters and noise in

data. The algorithm identifies three kinds of points: core points, border points, and noise points
[1]. For specified values of epsilon and minpts, the dbscan function implements the algorithm
as follows:

1 From the input data set X, select the first unlabeled observation x1 as the current point, and
initialize the first cluster label C to 1.

2 Find the set of points within the epsilon neighborhood epsilon of the current point. These
points are the neighbors.
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a If the number of neighbors is less than minpts, then label the current point as a noise
point (or an outlier). Go to step 4.

Note  dbscan can reassign noise points to clusters if the noise points later satisfy the
constraints set by epsilon and minpts from some other point in X. This process of
reassigning points happens for border points of a cluster.

b Otherwise, label the current point as a core point belonging to cluster C.
3 Iterate over each neighbor (new current point) and repeat step 2 until no new neighbors are

found that can be labeled as belonging to the current cluster C.
4 Select the next unlabeled point in X as the current point, and increase the cluster count by 1.
5 Repeat steps 2–4 until all points in X are labeled.

• If two clusters have varying densities and are close to each other, that is, the distance between
two border points (one from each cluster) is less than epsilon, then dbscan can merge the two
clusters into one.

• Every valid cluster might not contain at least minpts observations. For example, dbscan can
identify a border point belonging to two clusters that are close to each other. In such a situation,
the algorithm assigns the border point to the first discovered cluster. As a result, the second
cluster is still a valid cluster, but it can have fewer than minpts observations.

Version History
Introduced in R2019a

References
[1] Ester, M., H.-P. Kriegel, J. Sander, and X. Xiaowei. “A density-based algorithm for discovering

clusters in large spatial databases with noise.” In Proceedings of the Second International
Conference on Knowledge Discovery in Databases and Data Mining, 226-231. Portland, OR:
AAAI Press, 1996.

See Also
clusterdata | kmeans | kmedoids | linkage | pdist | pdist2

Topics
“Introduction to DBSCAN” on page 17-19
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dcovary
D-optimal design with fixed covariates

Syntax
dCV = dcovary(nfactors,fixed)
[dCV,X] = dcovary(nfactors,fixed)
[dCV,X] = dcovary(nfactors,fixed,model)
[dCV,X] = daugment(...,param1,val1,param2,val2,...)

Description
dCV = dcovary(nfactors,fixed) uses a coordinate-exchange algorithm to generate a D-optimal
design for a linear additive model with nfactors factors, subject to the constraint that the model
include the fixed covariate factors in fixed. The number of runs in the design is the number of rows
in fixed. The design dCV augments fixed with initial columns for treatments of the model terms.

[dCV,X] = dcovary(nfactors,fixed) also returns the design matrix X associated with the
design.

[dCV,X] = dcovary(nfactors,fixed,model) uses the linear regression model specified in
model. model is one of the following:

• 'linear' — Constant and linear terms. This is the default.
• 'interaction' — Constant, linear, and interaction terms
• 'quadratic' — Constant, linear, interaction, and squared terms
• 'purequadratic' — Constant, linear, and squared terms

The order of the columns of X for a full quadratic model with n terms is:

1 The constant term
2 The linear terms in order 1, 2, ..., n
3 The interaction terms in order (1, 2), (1, 3), ..., (1, n), (2, 3), ..., (n – 1, n)
4 The squared terms in order 1, 2, ..., n

Other models use a subset of these terms, in the same order.

Alternatively, model can be a matrix specifying polynomial terms of arbitrary order. In this case,
model should have one column for each factor and one row for each term in the model. The entries in
any row of model are powers for the factors in the columns. For example, if a model has factors X1,
X2, and X3, then a row [0 1 2] in model specifies the term (X1.^0).*(X2.^1).*(X3.^2). A row
of all zeros in model specifies a constant term, which can be omitted.

[dCV,X] = daugment(...,param1,val1,param2,val2,...) specifies additional parameter/
value pairs for the design. Valid parameters and their values are listed in the following table.
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Parameter Value
'bounds' Lower and upper bounds for each factor, specified as a 2-by-nfactors

matrix. Alternatively, this value can be a cell array containing nfactors
elements, each element specifying the vector of allowable values for the
corresponding factor.

'categorical' Indices of categorical predictors.
'display' Either 'on' or 'off' to control display of the iteration counter. The default

is 'on'.
'excludefun' Handle to a function that excludes undesirable runs. If the function is f, it

must support the syntax b = f(S), where S is a matrix of treatments with
nfactors columns and b is a vector of Boolean values with the same
number of rows as S. b(i) is true if the ith row S should be excluded.

'init' Initial design as an mruns-by-nfactors matrix. The default is a randomly
selected set of points.

'levels' Vector of number of levels for each factor.
'maxiter' Maximum number of iterations. The default is 10.
'options' The value is a structure that contains options specifying whether to

compute multiple tries in parallel, and specifying how to use random
numbers when generating the starting points for the tries. Create the
options structure with statset. Applicable statset parameters are:

• 'UseParallel' — If true and if Parallel Computing Toolbox is
installed, compute in parallel. If the Parallel Computing Toolbox is not
installed, then computation occurs in serial mode. Default is false,
meaning serial computation.

• UseSubstreams — Set to true to compute in parallel in a reproducible
fashion. Default is false. To compute reproducibly, set Streams to a
type allowing substreams: 'mlfg6331_64' or 'mrg32k3a'.

• Streams — A RandStream object or cell array of such objects. If you do
not specify Streams, dcovary uses the default stream or streams. If
you choose to specify Streams, use a single object except in the case

• UseParallel is true
• UseSubstreams is false

In that case, use a cell array the same size as the Parallel pool.
'tries' Number of times to try to generate a design from a new starting point. The

algorithm uses random points for each try, except possibly the first. The
default is 1.

Examples
Example 1

Suppose you want a design to estimate the parameters in a three-factor linear additive model, with
eight runs that necessarily occur at different times. If the process experiences temporal linear drift,
you may want to include the run time as a variable in the model. Produce the design as follows:
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time = linspace(-1,1,8)';
[dCV1,X] = dcovary(3,time,'linear')
dCV1 =
   -1.0000    1.0000    1.0000   -1.0000
    1.0000   -1.0000   -1.0000   -0.7143
   -1.0000   -1.0000   -1.0000   -0.4286
    1.0000   -1.0000    1.0000   -0.1429
    1.0000    1.0000   -1.0000    0.1429
   -1.0000    1.0000   -1.0000    0.4286
    1.0000    1.0000    1.0000    0.7143
   -1.0000   -1.0000    1.0000    1.0000
X =
    1.0000   -1.0000    1.0000    1.0000   -1.0000
    1.0000    1.0000   -1.0000   -1.0000   -0.7143
    1.0000   -1.0000   -1.0000   -1.0000   -0.4286
    1.0000    1.0000   -1.0000    1.0000   -0.1429
    1.0000    1.0000    1.0000   -1.0000    0.1429
    1.0000   -1.0000    1.0000   -1.0000    0.4286
    1.0000    1.0000    1.0000    1.0000    0.7143
    1.0000   -1.0000   -1.0000    1.0000    1.0000

The column vector time is a fixed factor, normalized to values between ±1. The number of rows in
the fixed factor specifies the number of runs in the design. The resulting design dCV gives factor
settings for the three controlled model factors at each time.

Example 2

The following example uses the dummyvar function to block an eight-run experiment into 4 blocks of
size 2 for estimating a linear additive model with two factors:

fixed = dummyvar([1 1 2 2 3 3 4 4]);
dCV2 = dcovary(2,fixed(:,1:3),'linear')
dCV2 =
   1   1   1   0   0
  -1  -1   1   0   0
  -1   1   0   1   0
   1  -1   0   1   0
   1   1   0   0   1
  -1  -1   0   0   1
  -1   1   0   0   0
   1  -1   0   0   0

The first two columns of dCV2 contain the settings for the two factors; the last three columns are the
dummy variable encodings for the four blocks.

Version History
Introduced before R2006a

Extended Capabilities
Automatic Parallel Support
Accelerate code by automatically running computation in parallel using Parallel Computing Toolbox™.

To run in parallel, specify the 'Options' name-value argument in the call to this function and set the
'UseParallel' field of the options structure to true using statset.

 dcovary
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For example: 'Options',statset('UseParallel',true)

For more information about parallel computing, see “Run MATLAB Functions with Automatic Parallel
Support” (Parallel Computing Toolbox).

See Also
daugment | cordexch | dummyvar
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delete
Class: qrandstream

Delete handle object

Syntax
delete(h)

Description
delete(h) deletes the handle object h, where h is a scalar handle. The delete method deletes a
handle object but does not clear the handle from the workspace. A deleted handle is no longer valid.

See Also
clear | isvalid | qrandstream

 delete
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dendrogram
Dendrogram plot

Syntax
dendrogram(tree)
dendrogram(tree,Name,Value)

dendrogram(tree,P)
dendrogram(tree,P,Name,Value)

dendrogram(ax, ___ )
H = dendrogram( ___ )
[H,T,outperm] = dendrogram( ___ )

Description
dendrogram(tree) generates a dendrogram plot of the hierarchical binary cluster tree. A
dendrogram consists of many U-shaped lines that connect data points in a hierarchical tree. The
height of each U represents the distance between the two data points being connected.

• If there are 30 or fewer data points in the original data set, then each leaf in the dendrogram
corresponds to one data point.

• If there are more than 30 data points, then dendrogram collapses lower branches so that there
are 30 leaf nodes. As a result, some leaves in the plot correspond to more than one data point.

dendrogram(tree,Name,Value) uses additional options specified by one or more name-value pair
arguments.

dendrogram(tree,P) generates a dendrogram plot with no more than P leaf nodes. If there are
more than P data points in the original data set, then dendrogram collapses the lower branches of
the tree. As a result, some leaves in the plot correspond to more than one data point.

dendrogram(tree,P,Name,Value) uses additional options specified by one or more name-value
pair arguments.

dendrogram(ax, ___ ) uses the plot axes specified by the axes object ax. Specify ax as the first
input argument followed by any of the input argument combinations in the previous syntaxes.

H = dendrogram( ___ ) generates a dendrogram plot and returns a vector of line handles. You can
use any of the input arguments from the previous syntaxes.

[H,T,outperm] = dendrogram( ___ ) also returns a vector containing the leaf node number for
each object in the original data set, T, and a vector giving the order of the node labels of the leaves as
shown in the dendrogram, outperm.

• It is useful to return T when the number of leaf nodes, P, is less than the total number of data
points, so that some leaf nodes in the display correspond to multiple data points.

• The order of the node labels given in outperm is from left to right for a horizontal dendrogram,
and from bottom to top for a vertical dendrogram.
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Examples

Plot Dendrogram

Generate sample data.

rng('default') % For reproducibility
X = rand(10,3);

Create a hierarchical binary cluster tree using linkage. Then, plot the dendrogram using the default
options.

tree = linkage(X,'average');

figure()
dendrogram(tree)

Specify Dendrogram Leaf Node Order

Generate sample data.

rng('default') % For reproducibility
X = rand(10,3);

 dendrogram
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Create a hierarchical binary cluster tree using linkage.

tree = linkage(X,'average');

D = pdist(X);
leafOrder = optimalleaforder(tree,D)

leafOrder = 1×10

     3     7     6     1     4     9     5     8    10     2

Plot the dendrogram using an optimal leaf order.

figure()
dendrogram(tree,'Reorder',leafOrder)

The order of the leaf nodes in the dendrogram plot corresponds - from left to right - to the
permutation in leafOrder.

Specify Number of Nodes in Dendrogram Plot

Generate sample data.

rng('default') % For reproducibility
X = rand(100,2);
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There are 100 data points in the original data set, X.

Create a hierarchical binary cluster tree using linkage. Then, plot the dendrogram for the complete
tree (100 leaf nodes) by setting the input argument P equal to 0.

tree = linkage(X,'average');
dendrogram(tree,0)

Now, plot the dendrogram with only 25 leaf nodes. Return the mapping of the original data points to
the leaf nodes shown in the plot.

figure
[~,T] = dendrogram(tree,25);

 dendrogram
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List the original data points that are in leaf node 7 of the dendrogram plot.

find(T==7)

ans = 7×1

     7
    33
    60
    70
    74
    76
    86

Change Dendrogram Orientation and Line Width

Generate sample data.

rng('default') % For reproducibility
X = rand(10,3);

Create a hierarchical binary cluster tree using linkage. Then, plot the dendrogram with a vertical
orientation, using the default color threshold. Return handles to the lines so you can change the
dendrogram line widths.
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tree = linkage(X,'average');
H = dendrogram(tree,'Orientation','left','ColorThreshold','default');
set(H,'LineWidth',2)

Input Arguments
tree — Hierarchical binary cluster tree
matrix returned by linkage

Hierarchical binary cluster tree, specified as an (M – 1)-by-3 matrix that you generate using linkage,
where M is the number of data points in the original data set.

P — Maximum number of leaf nodes
30 (default) | positive integer value

Maximum number of leaf nodes to include in the dendrogram plot, specified as a positive integer
value.

• If there are P or fewer data points in the original data set, then each leaf in the dendrogram
corresponds to one data point.

• If there are more than P data points, then dendrogram collapses lower branches so that there are
P leaf nodes. As a result, some leaves in the plot correspond to more than one data point.

 dendrogram
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If you do not specify P, then dendrogram uses 30 as the maximum number of leaf nodes. To
display the complete tree, set P equal to 0.

Data Types: single | double

ax — Axes for plot
Axes object | UIAxes object

Axes for the plot, specified as an Axes or UIAxes object. If you do not specify ax, then dendrogram
creates the plot using the current axes. For more information on creating an axes object, see axes
and uiaxes.

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: 'Orientation','left','Reorder',myOrder specifies a vertical dendrogram with
leaves in the order specified by myOrder.

Reorder — Order of leaf nodes
vector

Order of leaf nodes in the dendrogram plot, specified as the comma-separated pair consisting of
'Reorder' and a vector giving the order of nodes in the complete tree. The order vector must be a
permutation of the vector 1:M, where M is the number of data points in the original data set. Specify
the order from left to right for horizontal dendrograms, and from bottom to top for vertical
dendrograms.

If M is greater than the number of leaf nodes in the dendrogram plot, P (by default, P is 30), then you
can only specify a permutation vector that does not separate the groups of leaves that correspond to
collapsed nodes.
Data Types: single | double

CheckCrossing — Indicator for whether to check for crossing branches
true (default) | false

Indicator for whether to check for crossing branches in the dendrogram plot, specified as the comma-
separated pair consisting of 'CheckCrossing' and either true or false. This option is only useful
when you specify a value for Reorder.

When CheckCrossing has the value true, dendrogram issues a warning if the order of the leaf
nodes causes crossing branches in the plot. If the dendrogram plot does not show a complete tree
(because the number of data points in the original data set is greater than P), dendrogram only
issues a warning when the order of the leaf nodes causes branch to cross in the dendrogram as
shown in the plot. That is, there is no warning if the order causes crossing branches in the complete
tree but not in the dendrogram as shown in the plot.
Data Types: logical

ColorThreshold — Threshold for unique colors
'default' | scalar value in the range (0,max(tree(:,3)))
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Threshold for unique colors in the dendrogram plot, specified as the comma-separated pair consisting
of 'ColorThreshold' and either 'default' or a scalar value in the range (0,max(tree(:,3))).
If ColorThreshold has the value T, then dendrogram assigns a unique color to each group of
nodes in the dendrogram whose linkage is less than T.

• If ColorThreshold has the value 'default', then the threshold, T, is 70% of the maximum
linkage, 0.7*max(tree(:,3)).

• If you do not specify a value for ColorThreshold, or if you specify a threshold outside the range
(0,max(tree(:,3))), then dendrogram uses only one color for the dendrogram plot.

Orientation — Orientation of dendrogram
'top' (default) | 'bottom' | 'left' | 'right'

Orientation of the dendrogram in the figure window, specified as the comma-separated pair
consisting of 'Orientation' and one of these values:

'top' Top to bottom
'bottom' Bottom to top
'left' Left to right
'right' Right to left

Labels — Label for each data point
character array | string array | cell array of character vectors

Label for each data point in the original data set, specified as the comma-separated pair consisting of
'Labels' and a character array, string array or cell array of character vectors. dendrogram labels
any leaves in the dendrogram plot containing a single data point with that data point’s label.

Parent — Parent container
Figure object | Panel object

Parent container, specified as a Figure or Panel object. For more information on these object
properties, see Figure Properties and Panel Properties.

Output Arguments
H — Handles to lines
vector

Handles to lines in the dendrogram plot, returned as a vector.

T — Leaf node numbers
column vector

Leaf node numbers for each data point in the original data set, returned as a column vector of length
M, where M is the number of data points in the original data set.

When there are fewer than P data points in the original data (P is 30, by default), all data points are
displayed in the dendrogram, with each node containing a single data point. In this case, T is the
identity map, T = (1:M)'.

 dendrogram

35-1297



T is useful when P is less than the total number of data points. That is, when some leaf nodes in the
dendrogram display correspond to multiple data points. For example, to find out which data points
are contained in leaf node k of the dendrogram plot, use find(T==k).

outperm — Permutation of node labels
vector

Permutation of the node labels of the leaves of the dendrogram as shown in the plot, returned as a
row vector. outperm gives the order from left to right for a horizontal dendrogram, and from bottom
to top for a vertical dendrogram. If there are P leaves in the dendrogram plot, outperm is a
permutation of the vector 1:P.

Version History
Introduced before R2006a

See Also
cluster | clusterdata | cophenet | inconsistent | linkage | pdist | silhouette
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describe
Describe generated features

Syntax
describe(Transformer)
describe(Transformer,Index)
Info = describe( ___ )

Description
describe(Transformer) prints the description of the features generated by Transformer. Create
the FeatureTransformer object Transformer by using the gencfeatures or genrfeatures
function.

describe(Transformer,Index) prints the description of the features identified by Index.

Info = describe( ___ ) returns the feature descriptions in a table. Row names of Info
correspond to the names of the features.

Examples

Generate and Inspect Features for Classification Problem

Generate features from a table of predictor data by using gencfeatures. Inspect the generated
features by using the describe object function.

Read power outage data into the workspace as a table. Remove observations with missing values, and
display the first few rows of the table.

outages = readtable("outages.csv");
Tbl = rmmissing(outages);
head(Tbl)

       Region           OutageTime        Loss     Customers     RestorationTime            Cause       
    _____________    ________________    ______    __________    ________________    ___________________

    {'SouthWest'}    2002-02-01 12:18    458.98    1.8202e+06    2002-02-07 16:50    {'winter storm'   }
    {'SouthEast'}    2003-02-07 21:15     289.4    1.4294e+05    2003-02-17 08:14    {'winter storm'   }
    {'West'     }    2004-04-06 05:44    434.81    3.4037e+05    2004-04-06 06:10    {'equipment fault'}
    {'MidWest'  }    2002-03-16 06:18    186.44    2.1275e+05    2002-03-18 23:23    {'severe storm'   }
    {'West'     }    2003-06-18 02:49         0             0    2003-06-18 10:54    {'attack'         }
    {'NorthEast'}    2003-07-16 16:23    239.93         49434    2003-07-17 01:12    {'fire'           }
    {'MidWest'  }    2004-09-27 11:09    286.72         66104    2004-09-27 16:37    {'equipment fault'}
    {'SouthEast'}    2004-09-05 17:48    73.387         36073    2004-09-05 20:46    {'equipment fault'}

Some of the variables, such as OutageTime and RestorationTime, have data types that are not
supported by classifier training functions like fitcensemble.

Generate 25 features from the predictors in Tbl that can be used to train a bagged ensemble. Specify
the Region table variable as the response.

 describe
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Transformer = gencfeatures(Tbl,"Region",25,TargetLearner="bag")

Transformer = 
  FeatureTransformer with properties:

                     Type: 'classification'
            TargetLearner: 'bag'
    NumEngineeredFeatures: 22
      NumOriginalFeatures: 3
         TotalNumFeatures: 25

The Transformer object contains the information about the generated features and the
transformations used to create them.

To better understand the generated features, use the describe object function.

Info = describe(Transformer)

Info=25×4 table
                                     Type        IsOriginal          InputVariables                                                            Transformations                                                 
                                  ___________    __________    ___________________________    _________________________________________________________________________________________________________________

    Loss                          Numeric          true        Loss                           ""                                                                                                               
    Customers                     Numeric          true        Customers                      ""                                                                                                               
    c(Cause)                      Categorical      true        Cause                          "Variable of type categorical converted from a cell data type"                                                   
    RestorationTime-OutageTime    Numeric          false       OutageTime, RestorationTime    "Elapsed time in seconds between OutageTime and RestorationTime"                                                 
    sdn(OutageTime)               Numeric          false       OutageTime                     "Serial date number from 01-Feb-2002 12:18:00"                                                                   
    woe3(c(Cause))                Numeric          false       Cause                          "Variable of type categorical converted from a cell data type -> Weight of Evidence (positive class = SouthEast)"
    doy(OutageTime)               Numeric          false       OutageTime                     "Day of the year"                                                                                                
    year(OutageTime)              Numeric          false       OutageTime                     "Year"                                                                                                           
    kmd1                          Numeric          false       Loss, Customers                "Euclidean distance to centroid 1 (kmeans clustering with k = 10)"                                               
    kmd5                          Numeric          false       Loss, Customers                "Euclidean distance to centroid 5 (kmeans clustering with k = 10)"                                               
    quarter(OutageTime)           Numeric          false       OutageTime                     "Quarter of the year"                                                                                            
    woe2(c(Cause))                Numeric          false       Cause                          "Variable of type categorical converted from a cell data type -> Weight of Evidence (positive class = NorthEast)"
    year(RestorationTime)         Numeric          false       RestorationTime                "Year"                                                                                                           
    month(OutageTime)             Numeric          false       OutageTime                     "Month of the year"                                                                                              
    Loss.*Customers               Numeric          false       Loss, Customers                "Loss .* Customers"                                                                                              
    tods(OutageTime)              Numeric          false       OutageTime                     "Time of the day in seconds"                                                                                     
      ⋮

The Info table indicates the following:

• The first three generated features are original to Tbl, although the software converts the original
Cause variable to a categorical variable c(Cause).

• The OutageTime and RestorationTime variables are not included as generated features
because they are datetime variables, which cannot be used to train a bagged ensemble model.
However, the software derives many of the generated features from these variables, such as the
fourth feature RestorationTime-OutageTime.

• Some generated features are a combination of multiple transformations. For example, the
software generates the sixth feature woe3(c(Cause)) by converting the Cause variable to a
categorical variable and then calculating the Weight of Evidence values for the resulting variable.
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Generate and Inspect Features for Regression Problem

Generate features from a table of predictor data by using genrfeatures. Inspect the generated
features by using the describe object function.

Read power outage data into the workspace as a table. Remove observations with missing values, and
display the first few rows of the table.

outages = readtable("outages.csv");
Tbl = rmmissing(outages);
head(Tbl)

       Region           OutageTime        Loss     Customers     RestorationTime            Cause       
    _____________    ________________    ______    __________    ________________    ___________________

    {'SouthWest'}    2002-02-01 12:18    458.98    1.8202e+06    2002-02-07 16:50    {'winter storm'   }
    {'SouthEast'}    2003-02-07 21:15     289.4    1.4294e+05    2003-02-17 08:14    {'winter storm'   }
    {'West'     }    2004-04-06 05:44    434.81    3.4037e+05    2004-04-06 06:10    {'equipment fault'}
    {'MidWest'  }    2002-03-16 06:18    186.44    2.1275e+05    2002-03-18 23:23    {'severe storm'   }
    {'West'     }    2003-06-18 02:49         0             0    2003-06-18 10:54    {'attack'         }
    {'NorthEast'}    2003-07-16 16:23    239.93         49434    2003-07-17 01:12    {'fire'           }
    {'MidWest'  }    2004-09-27 11:09    286.72         66104    2004-09-27 16:37    {'equipment fault'}
    {'SouthEast'}    2004-09-05 17:48    73.387         36073    2004-09-05 20:46    {'equipment fault'}

Some of the variables, such as OutageTime and RestorationTime, have data types that are not
supported by regression model training functions like fitrensemble.

Generate 25 features from the predictors in Tbl that can be used to train a bagged ensemble. Specify
the Loss table variable as the response.

rng("default") % For reproducibility
Transformer = genrfeatures(Tbl,"Loss",25,TargetLearner="bag")

Transformer = 
  FeatureTransformer with properties:

                     Type: 'regression'
            TargetLearner: 'bag'
    NumEngineeredFeatures: 22
      NumOriginalFeatures: 3
         TotalNumFeatures: 25

The Transformer object contains the information about the generated features and the
transformations used to create them.

To better understand the generated features, use the describe object function.

Info = describe(Transformer)

Info=25×4 table
                                     Type        IsOriginal          InputVariables                                     Transformations                          
                                  ___________    __________    ___________________________    ___________________________________________________________________

    c(Region)                     Categorical      true        Region                         "Variable of type categorical converted from a cell data type"     
    Customers                     Numeric          true        Customers                      ""                                                                 
    c(Cause)                      Categorical      true        Cause                          "Variable of type categorical converted from a cell data type"     
    kmd2                          Numeric          false       Customers                      "Euclidean distance to centroid 2 (kmeans clustering with k = 10)" 
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    kmd1                          Numeric          false       Customers                      "Euclidean distance to centroid 1 (kmeans clustering with k = 10)" 
    kmd4                          Numeric          false       Customers                      "Euclidean distance to centroid 4 (kmeans clustering with k = 10)" 
    kmd5                          Numeric          false       Customers                      "Euclidean distance to centroid 5 (kmeans clustering with k = 10)" 
    kmd9                          Numeric          false       Customers                      "Euclidean distance to centroid 9 (kmeans clustering with k = 10)" 
    cos(Customers)                Numeric          false       Customers                      "cos( )"                                                           
    RestorationTime-OutageTime    Numeric          false       OutageTime, RestorationTime    "Elapsed time in seconds between OutageTime and RestorationTime"   
    kmd6                          Numeric          false       Customers                      "Euclidean distance to centroid 6 (kmeans clustering with k = 10)" 
    kmi                           Categorical      false       Customers                      "Cluster index encoding (kmeans clustering with k = 10)"           
    kmd7                          Numeric          false       Customers                      "Euclidean distance to centroid 7 (kmeans clustering with k = 10)" 
    kmd3                          Numeric          false       Customers                      "Euclidean distance to centroid 3 (kmeans clustering with k = 10)" 
    kmd10                         Numeric          false       Customers                      "Euclidean distance to centroid 10 (kmeans clustering with k = 10)"
    hour(RestorationTime)         Numeric          false       RestorationTime                "Hour of the day"                                                  
      ⋮

The first three generated features are original to Tbl, although the software converts the original
Region and Cause variables to categorical variables.

Info(1:3,:) % describe(Transformer,1:3)

ans=3×4 table
                    Type        IsOriginal    InputVariables                           Transformations                        
                 ___________    __________    ______________    ______________________________________________________________

    c(Region)    Categorical      true          Region          "Variable of type categorical converted from a cell data type"
    Customers    Numeric          true          Customers       ""                                                            
    c(Cause)     Categorical      true          Cause           "Variable of type categorical converted from a cell data type"

The OutageTime and RestorationTime variables are not included as generated features because
they are datetime variables, which cannot be used to train a bagged ensemble model. However, the
software derives some generated features from these variables, such as the tenth feature
RestorationTime-OutageTime.

Info(10,:) % describe(Transformer,10)

ans=1×4 table
                                   Type      IsOriginal          InputVariables                                   Transformations                         
                                  _______    __________    ___________________________    ________________________________________________________________

    RestorationTime-OutageTime    Numeric      false       OutageTime, RestorationTime    "Elapsed time in seconds between OutageTime and RestorationTime"

Some generated features are a combination of multiple transformations. For example, the software
generates the nineteenth feature fenc(c(Cause)) by converting the Cause variable to a categorical
variable with 10 categories and then calculating the frequency of the categories.

Info(19,:) % describe(Transformer,19)

ans=1×4 table
                       Type      IsOriginal    InputVariables                                                  Transformations                                               
                      _______    __________    ______________    ____________________________________________________________________________________________________________

    fenc(c(Cause))    Numeric      false           Cause         "Variable of type categorical converted from a cell data type -> Frequency encoding (number of levels = 10)"
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Input Arguments
Transformer — Feature transformer
FeatureTransformer object

Feature transformer, specified as a FeatureTransformer object.

Index — Features to describe
numeric vector | logical vector | string array | cell array of character vectors

Features to describe, specified as a numeric or logical vector indicating the position of the features,
or a string array or cell array of character vectors indicating the names of the features.
Example: 1:12
Data Types: single | double | logical | string | cell

Output Arguments
Info — Feature descriptions
table

Feature descriptions, returned as a table. Each row corresponds to a generated feature, and each
column provides the following information.

Column Name Description
Type Indicates the data type of the feature, either

numeric or categorical
IsOriginal Indicates whether the feature is an original

feature (true) or an engineered feature (false)
InputVariables Indicates the original features used to generate

the feature
Transformations Describes the transformations used to generate

the feature, in the order they are applied — For
more information, see “Feature Transformations”
on page 35-1303.

Algorithms
Feature Transformations

This table provides additional information on some of the more complex feature transformation
descriptions in Info.Transformations.

Sample Feature Name Sample
Transformation
Description in Info

Additional Information

eb4(Variable) Equal-width
binning (number of
bins = 4)

The software splits the Variable values into 4
bins of equal width. The resulting feature is a
categorical variable.

 describe

35-1303



Sample Feature Name Sample
Transformation
Description in Info

Additional Information

fenc(Variable) Frequency encoding
(number of levels
= 10)

The software calculates the frequency of the 10
categories (or levels) in Variable. In the
resulting feature, the software replaces each
categorical value with the corresponding
category frequency, creating a numeric variable.

kmc1 Centroid encoding
(component #1)
(kmeans clustering
with k = 10)

The software uses k-means clustering to assign
each observation to one of 10 clusters. Each row
in the resulting feature corresponds to an
observation and is the 1st component of the
cluster centroid associated with that observation.
The resulting feature is a numeric variable.

kmd4 Euclidean distance
to centroid 4
(kmeans clustering
with k = 10)

The software uses k-means clustering to assign
each observation to one of 10 clusters. Each row
in the resulting feature is the Euclidean distance
from the corresponding observation to the
centroid of the 4th cluster. The resulting feature
is a numeric variable.

kmi Cluster index
encoding (kmeans
clustering with k
= 10)

The software uses k-means clustering to assign
each observation to one of 10 clusters. Each row
in the resulting feature is the cluster index for the
corresponding observation. The resulting feature
is a categorical variable.

q50(Variable) Equiprobable
binning (number of
bins = 50)

The software splits the Variable values into 50
bins of equal probability. The resulting feature is
a categorical variable.
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Sample Feature Name Sample
Transformation
Description in Info

Additional Information

woe5(Variable) Weight of Evidence
(positive class =
Class5)

This transformation is available for classification
problems only.

The software performs the following steps to
create the resulting feature:

• Calculate how many total observations have
Class5 as a response (a) and how many have
a different response (b).

• Suppose Variable is a nominal categorical
variable. Then, for each category in
Variable, determine how many observations
in that category have Class5 as a response
(c) and how many have a different response
(d).

Suppose Variable is an ordinal categorical
variable instead. Then, for each category in
Variable, find all the observations in that
category or a smaller category, and determine
how many of those observations have Class5
as a response (c) and how many have a
different response (d).

• For each category, compute the Weight of
Evidence (WoE) as

ln c + 0.5 /a
d + 0.5 /b .

• Replace each categorical value with the
corresponding WoE, creating a numeric
variable.

Version History
Introduced in R2021a

See Also
gencfeatures | genrfeatures | FeatureTransformer | transform

Topics
“Automated Feature Engineering for Classification” on page 19-194
“Automated Feature Engineering for Regression” on page 19-201
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designecoc
Coding matrix for reducing error-correcting output code to binary

Syntax
M = designecoc(K,name)
M = designecoc(K,name,Name,Value)

Description
M = designecoc(K,name) returns the coding matrix M that reduces the error-correcting output
code (ECOC) design specified by name and K classes to a binary problem. M has K rows and L
columns, with each row corresponding to a class and each column corresponding to a binary learner.
name and K determine the value of L.

You can view or customize M, and then specify it as the coding matrix for training an ECOC multiclass
classifier using fitcecoc.

M = designecoc(K,name,Name,Value) returns the coding matrix with additional options
specified by one or more Name,Value pair arguments.

For example, you can specify the number of trials when generating a dense or sparse, random coding
matrix.

Examples

Train ECOC Classifiers Using a Custom Coding Design

Consider the arrhythmia data set. There are 16 classes in the study, 13 of which are represented in
the data. The first class indicates that the subject did not have arrhythmia, and the last class
indicates that the subject's arrhythmia state was not recorded. Suppose that the other classes are
ordinal levels indicating the severity of arrhythmia. Train an ECOC classifier using a custom coding
design specified by the description of the classes.

Load the arrhythmia data set.

load arrhythmia
K = 13; % Number of distinct classes

Construct a coding matrix that describes the nature of the classes.

OrdMat = designecoc(11,'ordinal');
nOM = size(OrdMat);
class1VSOrd = [1; -ones(11,1); 0];
class1VSClass16 = [1; zeros(11,1); -1];
OrdVSClass16 = [0; ones(11,1); -1];
Coding = [class1VSOrd class1VSClass16 OrdVSClass16,...
    [zeros(1,nOM(2)); OrdMat; zeros(1,nOM(2))]]

Coding = 13×13
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     1     1     0     0     0     0     0     0     0     0     0     0     0
    -1     0     1    -1    -1    -1    -1    -1    -1    -1    -1    -1    -1
    -1     0     1     1    -1    -1    -1    -1    -1    -1    -1    -1    -1
    -1     0     1     1     1    -1    -1    -1    -1    -1    -1    -1    -1
    -1     0     1     1     1     1    -1    -1    -1    -1    -1    -1    -1
    -1     0     1     1     1     1     1    -1    -1    -1    -1    -1    -1
    -1     0     1     1     1     1     1     1    -1    -1    -1    -1    -1
    -1     0     1     1     1     1     1     1     1    -1    -1    -1    -1
    -1     0     1     1     1     1     1     1     1     1    -1    -1    -1
    -1     0     1     1     1     1     1     1     1     1     1    -1    -1
      ⋮

Train an ECOC classifier using the custom coding design Coding and specify that the binary learners
are decision trees.

Mdl = fitcecoc(X,Y,'Coding',Coding,'Learner','Tree');

Estimate the in-sample classification error.

genErr = resubLoss(Mdl)

genErr = 0.1460

Choose Among Several Random Coding Designs

If you request a random coding matrix by specifying sparserandom or denserandom, then, by
default, designecoc generates 10,000 random matrices. Then, it chooses the matrix with the
largest, minimal, pair-wise row distances based on the Hamming measure. You can specify to
generate more matrices to increase the chance of obtaining a better one, or you can generate several
coding matrices, and then see which performs best.

Load the arrhythmia data set. Reserve the observations classified into class 16 (i.e., those that do
not have an arrhythmia classification) as new data.

load arrhythmia
oosIdx = Y == 16;
isIdx = ~oosIdx;
Y = categorical(Y(isIdx));
tabulate(Y)

  Value    Count   Percent
      1      245     56.98%
      2       44     10.23%
      3       15      3.49%
      4       15      3.49%
      5       13      3.02%
      6       25      5.81%
      7        3      0.70%
      8        2      0.47%
      9        9      2.09%
     10       50     11.63%
     14        4      0.93%
     15        5      1.16%

K = numel(unique(Y));
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Generate four random coding design matrices such that the first two are dense and the second two
are sparse. Specify to find the best out of 20,000 variates.

rng(1); % For reproducibility 

Coding = cell(4,1); % Preallocate for coding matrices
CodingTypes = {'denserandom','denserandom','sparserandom','sparserandom'};
for j = 1:4;
    Coding{j} = designecoc(K,CodingTypes{j},'NumTrials',2e4);
end

Coding is a 4-by-1 cell array, where each cell is a coding design matrix. The matrices have K rows,
but the number of columns (i.e., binary learners) might vary.

Train and cross validate ECOC classifiers using the 15-fold cross validation. Specify that each ECOC
classifier be trained using a classification tree, and the random coding matrix stored in Coding.

Mdl = cell(4,1); % Preallocate for the ECOC classifiers
for j = 1:4;
    Mdl{j} = fitcecoc(X(isIdx,:),Y,'Learners','tree',...
        'Coding',Coding{j},'KFold',15);
end

Warning: One or more of the unique class values in GROUP is not present in one or more folds. For classification problems, either remove this class from the data or use N instead of GROUP to obtain nonstratified partitions. For regression problems with continuous response, use N.

Warning: One or more of the unique class values in GROUP is not present in one or more folds. For classification problems, either remove this class from the data or use N instead of GROUP to obtain nonstratified partitions. For regression problems with continuous response, use N.

Warning: One or more of the unique class values in GROUP is not present in one or more folds. For classification problems, either remove this class from the data or use N instead of GROUP to obtain nonstratified partitions. For regression problems with continuous response, use N.

Warning: One or more of the unique class values in GROUP is not present in one or more folds. For classification problems, either remove this class from the data or use N instead of GROUP to obtain nonstratified partitions. For regression problems with continuous response, use N.

Mdl is a 4-by-1 cell array of ClassificationPartitionedECOC models. Several classes have low
relative frequency in the data, and so there is a chance that, during cross validation, some in-sample
folds will not train using observations from those classes.

Estimate the 15-fold classification error for each classifier.

genErr = nan(4,1);
for j = 1:4;
    genErr(j) = kfoldLoss(Mdl{j});
end

genErr

genErr = 4×1

    0.2233
    0.2116
    0.2186
    0.2209

Though the generalization error is still high, the best performing model, based solely on the out-of-
sample classification error, is the model that used the coding design Coding{3}.

You can try to improve the generalization error by tuning some parameters of the binary learners. For
example, you can specify to use the twoing rule or deviance for the split criterion, rather than the
default Gini's diversity index. You might also specify to use surrogate splits since there are missing
values in the data.
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Input Arguments
K — Number of classes
positive integer

Number of classes, specified as a positive integer.

K specifies the number of rows of the coding matrix M.
Data Types: single | double

name — Coding design name
'binarycomplete' | 'denserandom' | 'onevsall' | 'onevsone' | 'sparserandom' | ...

Coding design name, specified as a value in the following table. The table summarizes the coding
schemes.

Value Number of Binary Learners Description
'allpairs' and 'onevsone' K(K – 1)/2 For each binary learner, one

class is positive, another is
negative, and the software
ignores the rest. This design
exhausts all combinations of
class pair assignments.

'binarycomplete' 2(K − 1)− 1 This design partitions the
classes into all binary
combinations, and does not
ignore any classes. For each
binary learner, all class
assignments are –1 and 1 with
at least one positive class and
one negative class in the
assignment.

'denserandom' Random, but approximately 10
log2K

For each binary learner, the
software randomly assigns
classes into positive or negative
classes, with at least one of
each type. For more details, see
“Random Coding Design
Matrices” on page 35-1312.

'onevsall' K For each binary learner, one
class is positive and the rest are
negative. This design exhausts
all combinations of positive
class assignments.
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Value Number of Binary Learners Description
'ordinal' K – 1 For the first binary learner, the

first class is negative and the
rest are positive. For the second
binary learner, the first two
classes are negative and the
rest are positive, and so on.

'sparserandom' Random, but approximately 15
log2K

For each binary learner, the
software randomly assigns
classes as positive or negative
with probability 0.25 for each,
and ignores classes with
probability 0.5. For more
details, see “Random Coding
Design Matrices” on page 35-
1312.

'ternarycomplete' 3K − 2(K + 1) + 1 /2 This design partitions the
classes into all ternary
combinations. All class
assignments are 0, –1, and 1
with at least one positive class
and one negative class in each
assignment.

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: 'NumTrials',1000 specifies to generate 1000 random matrices.

NumTrials — Number of random coding matrices to generate
10000 (default) | positive integer

Number of random coding matrices to generate, specified as the comma-separated pair consisting of
'NumTrials' and a positive integer.

The software:

• Generates NumTrials matrices, and selects the one with the maximal, pair-wise row distance.
• Ignores NumTrials for all values of name except 'denserandom' and 'sparserandom'.

Example: 'NumTrials',1000
Data Types: single | double

Output Arguments
M — Coding matrix
numeric matrix
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Coding matrix that reduces an ECOC scheme to binary, returned as a numeric matrix. M has K rows
and L columns, where L is the number of binary learners. Each row corresponds to a class and each
column corresponds to a binary learner.

The elements of M are -1, 0, or 1, and the value corresponds to a dichotomous class assignment. This
table describes the meaning of M(i,j), that is, the class that learner j assigns to observations in
class i.

Value Dichotomous Class Assignment
–1 Learner j assigns observations in class i to a negative class.
0 Before training, learner j removes observations in class i from the

data set.
1 Learner j assigns observations in class i to a positive class.

The binary learners for designs denserandom, binarycomplete, and onevsall do not assign 0 to
observations in any class.

Tips
• The number of binary learners grows with the number of classes. For a problem with many

classes, the binarycomplete and ternarycomplete coding designs are not efficient. However:

• If K ≤ 4, then use ternarycomplete coding design rather than sparserandom.
• If K ≤ 5, then use binarycomplete coding design rather than denserandom.

You can display the coding design matrix of a trained ECOC classifier by entering
Mdl.CodingMatrix into the Command Window.

• You should form a coding matrix using intimate knowledge of the application, and taking into
account computational constraints. If you have sufficient computational power and time, then try
several coding matrices and choose the one with the best performance (e.g., check the confusion
matrices for each model using confusionchart).

• Leave-one-out cross-validation (Leaveout) is inefficient for data sets with many observations.
Instead, use k-fold cross-validation (KFold).

Algorithms
Custom Coding Design Matrices

Custom coding matrices must have a certain form. The software validates a custom coding matrix by
ensuring:

• Every element is –1, 0, or 1.
• Every column contains as least one –1 and one 1.
• For all distinct column vectors u and v, u ≠ v and u ≠ –v.
• All row vectors are unique.
• The matrix can separate any two classes. That is, you can move from any row to any other row

following these rules:

• Move vertically from 1 to –1 or –1 to 1.

 designecoc
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• Move horizontally from a nonzero element to another nonzero element.
• Use a column of the matrix for a vertical move only once.

If it is not possible to move from row i to row j using these rules, then classes i and j cannot be
separated by the design. For example, in the coding design

1 0
−1 0
0 1
0 −1

classes 1 and 2 cannot be separated from classes 3 and 4 (that is, you cannot move horizontally
from –1 in row 2 to column 2 because that position contains a 0). Therefore, the software rejects
this coding design.

Random Coding Design Matrices

For a given number of classes K, the software generates random coding design matrices as follows.

1 The software generates one of these matrices:

a Dense random — The software assigns 1 or –1 with equal probability to each element of the
K-by-Ld coding design matrix, where Ld ≈ 10log2K .

b Sparse random — The software assigns 1 to each element of the K-by-Ls coding design
matrix with probability 0.25, –1 with probability 0.25, and 0 with probability 0.5, where
Ls ≈ 15log2K .

2 If a column does not contain at least one 1 and one –1, then the software removes that column.
3 For distinct columns u and v, if u = v or u = –v, then the software removes v from the coding

design matrix.

The software randomly generates 10,000 matrices by default, and retains the matrix with the largest,
minimal, pairwise row distance based on the Hamming measure (“[1] [2]” on page 35-1312) given by

Δ(k1, k2) = 0.5∑
l = 1

L

mk1l mk2l mk1l−mk2l ,

where mkjl is an element of coding design matrix j.

Version History
Introduced in R2014b

References
[1] Escalera, S., O. Pujol, and P. Radeva. “Separability of ternary codes for sparse designs of error-

correcting output codes.” Pattern Recog. Lett., Vol. 30, Issue 3, 2009, pp. 285–297.

[2] Escalera, S., O. Pujol, and P. Radeva. “Separability of ternary codes for sparse designs of error-
correcting output codes.” Pattern Recog. Lett., Vol. 30, Issue 3, 2009, pp. 285–297.
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See Also
fitcecoc | ClassificationECOC
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detectdrift
Detect drifts between baseline and target data using permutation testing

Syntax
DDiagnostics = detectdrift(Baseline,Target)
DDiagnostics = detectdrift(Baseline,Target,Name=Value)

Description
DDiagnostics = detectdrift(Baseline,Target) performs “Permutation Testing” on page 35-
1330 to detect drift for each variable in the Baseline and Target data sets, and returns the results
in DDiagnostics.

DDiagnostics is a DriftDiagnostics object.

DDiagnostics = detectdrift(Baseline,Target,Name=Value) specifies additional options
using one or more of the name-value arguments. For example, you can specify the metrics to use for
the variables or the maximum number of permutations.

Examples

Compare Baseline and Target Data for Potential Drift

Generate baseline and target data with two variables, where the distribution parameters of the
second variable change for the target data.

rng('default') % For reproducibility
baseline = [normrnd(0,1,100,1),wblrnd(1.1,1,100,1)];
target = [normrnd(0,1,100,1),wblrnd(1.2,2,100,1)];

Compare the two data sets for any drift.

DDiagnostics = detectdrift(baseline,target)

DDiagnostics = 
  DriftDiagnostics

              VariableNames: ["x1"    "x2"]
       CategoricalVariables: []
                DriftStatus: ["Stable"    "Drift"]
                    PValues: [0.2850 0.0030]
        ConfidenceIntervals: [2×2 double]
    MultipleTestDriftStatus: "Drift"
             DriftThreshold: 0.0500
           WarningThreshold: 0.1000

  Properties, Methods
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DDiagnostics is a DriftDiagnostics object. detectdrift displays some of the object properties.

Display the confidence intervals for the estimated p-values.

DDiagnostics.ConfidenceIntervals

ans = 2×2

    0.2572    0.0006
    0.3141    0.0087

For the first variable, the lower bound of the confidence interval for the estimated p-value is greater
than the warning threshold value of 0.1. Therefore, detectdrift determines that the target data for
the first variable is stable compared to the baseline data. For the second variable, the upper bound of
the confidence interval for the estimated p-value is smaller than the drift threshold of 0.05. Therefore,
the drift status for this variable is Drift, which indicates that detectdrift detects the shift in the
distribution parameters.

detectdrift uses the default Bonferroni method for testing multiple hypotheses. The function first
divides the warning and drift thresholds by the number of p-values, which in this case is two. Then
the function determines if any p-value is still lower than either threshold. Here, the second p-value is
still lower than the modified drift threshold, so the function sets the MultipleTestDriftStatus to
Drift for the overall data.

Visualize the permutation results for both variables.

tiledlayout(1,2);
ax1 = nexttile;
plotPermutationResults(DDiagnostics,ax1,Variable="x1")
ax2 = nexttile;
plotPermutationResults(DDiagnostics,ax2,Variable="x2")
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Bars to the right of the dashed line show the metric values that are greater than the threshold, which
is the initial metric value detectdrift computes using the baseline and target data for each
variable. The amount of the bars greater than the threshold is much more for variable x1, which
indicates that there is not a significant drift between the baseline and target data for this variable.

Specify Options for Data Drift Detection

Load the sample data.

load humanactivity

For details on the data set, enter Description at the command line.

Assign the first 250 observations as baseline data and next 250 as target data.

baseline = feat(1:250,:);
target = feat(251:500,:);

Test for drift on variables 5 to 10 using a warning threshold of 0.05 and a drift threshold of 0.01. All
variables are continuous, so use the Kolmogorov-Smirnov metric for all variables. Specify the False
Discovery Rate method as the multiple test correction.

DDiagnostics = detectdrift(baseline(:,5:10),target(:,5:10),WarningThreshold=0.05, ...
        DriftThreshold=0.01,ContinuousMetric="ks",MultipleTestCorrection="fdr")
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DDiagnostics = 
  DriftDiagnostics

              VariableNames: ["x1"    "x2"    "x3"    "x4"    "x5"    "x6"]
       CategoricalVariables: []
                DriftStatus: ["Drift"    "Drift"    "Drift"    "Stable"    "Warning"    "Drift"]
                    PValues: [1.0000e-03 1.0000e-03 1.0000e-03 0.8810 0.0110 1.0000e-03]
        ConfidenceIntervals: [2×6 double]
    MultipleTestDriftStatus: "Drift"
             DriftThreshold: 0.0100
           WarningThreshold: 0.0500

  Properties, Methods

Display the confidence intervals for the estimated p-values.

DDiagnostics.ConfidenceIntervals

ans = 2×6

    0.0000    0.0000    0.0000    0.8593    0.0055    0.0000
    0.0056    0.0056    0.0056    0.9004    0.0196    0.0056

The lower confidence bound of the p-value for the 8th variable (variable name x4) is greater than the
warning threshold. Therefore, detectdrift determines that the drift status for this variable is
"Stable". The upper confidence bound of the p-value for the 9th variable (variable name x5) is
greater than the drift threshold, but lower than the warning threshold. Therefore, detectdrift
determines that the drift status for this variable is "Warning". Confidence intervals of all other
variables are smaller than the drift threshold, so they have a drift status of "Drift". Based on the
False Discovery Rate method for multiple test correction, the function determines that the drift status
for the overall data is "Drift".

Visualize the p-values with the confidence intervals and corresponding drift status.

plotDriftStatus(DDiagnostics)
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The plot shows the estimated p-values with the confidence intervals against the warning and drift
thresholds. The estimated p-value for variable x4 and its confidence intervals are higher than the
warning threshold. Therefore, the drift status for this variable is "Stable". The upper confidence
bound of the p-value for x5 is greater than the drift threshold, but lower than the warning threshold.
Therefore, the drift status for this variable is "Warning". Confidence intervals of all other variables
are smaller than the drift threshold, so they have a drift status of "Drift".

Specify Variables and Metrics to Use in Data Drift Detection

Load the data set NYCHousing2015.

load NYCHousing2015

The data set includes 10 variables with information on the sales of properties in New York City in
2015.

Remove outliers and convert the datetime array (SALEDATE) to the month numbers.

idx = isoutlier(NYCHousing2015.SALEPRICE);
NYCHousing2015(idx,:) = [];
NYCHousing2015.SALEDATE = month(NYCHousing2015.SALEDATE);

Define the baseline and target data as information on the sales made in January and July, respectively.
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tbl = NYCHousing2015;
baseline = tbl(tbl.SALEDATE==1,:);
target = tbl(tbl.SALEDATE==7,:);

Shuffle the data.

n = numel(baseline(:,1));
rng(1); % For reproducibility
idx = randsample(n,n);
baseline = baseline(idx,:);
n = numel(target(:,1));
idx = randsample(n,n);
target = target(idx,:);

Test for potential drift between the baseline and target data. Specify the categorical variables and the
metrics to use with each variable.

DDiagnostics = detectdrift(baseline(1:1500,:),target(1:1500,:), ...
    VariableNames=["BOROUGH","BUILDINGCLASSCATEGORY","LANDSQUAREFEET","GROSSSQUAREFEET","SALEPRICE"], ...
    CategoricalVariables=["BOROUGH","BUILDINGCLASSCATEGORY"], ...
    Metrics=["Hellinger","Hellinger","ad","ks","energy"])

DDiagnostics = 
  DriftDiagnostics

              VariableNames: ["BOROUGH"    "BUILDINGCLASSCATEGORY"    "LANDSQUAREFEET"    "GROSSSQUAREFEET"    "SALEPRICE"]
       CategoricalVariables: [1 2]
                DriftStatus: ["Drift"    "Stable"    "Drift"    "Drift"    "Drift"]
                    PValues: [0.0260 0.1440 0.0070 0.0230 0.0110]
        ConfidenceIntervals: [2×5 double]
    MultipleTestDriftStatus: "Drift"
             DriftThreshold: 0.0500
           WarningThreshold: 0.1000

  Properties, Methods

detectdrift identifies drift between the baseline and target data for all variables except
BUILDINGCLASSCATEGORY.

Display the confidence intervals for the estimated p-values.

DDiagnostics.ConfidenceIntervals

ans = 2×5

    0.0171    0.1228    0.0028    0.0146    0.0055
    0.0379    0.1673    0.0144    0.0343    0.0196

Plot a histogram for SALEPRICE.

plotHistogram(DDiagnostics,Variable="SALEPRICE")
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The histogram shows the shift in the sale prices for the month of July compared to January.

Plot the empirical cumulative distribution function for the baseline and target data of SALEPRICE.

plotEmpiricalCDF(DDiagnostics,Variable="SALEPRICE")
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Plot the permutation results for SALEPRICE.

plotPermutationResults(DDiagnostics,Variable="SALEPRICE")
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Compute Metrics Without Estimating p-Values

Generate baseline and target data with three variables, where the distribution parameters of the
second and third variables change for the target data.

rng('default') % For reproducibility
baseline = [normrnd(0,1,100,1),wblrnd(1.1,1,100,1),betarnd(1,2,100,1)];
target = [normrnd(0,1,100,1),wblrnd(1.2,2,100,1),betarnd(1.7,2.8,100,1)];

Compute the initial metrics for all variables between the baseline and target data without estimating
the p-values.

DDiagnostics = detectdrift(baseline,target,EstimatePValues=false)

DDiagnostics = 
  DriftDiagnostics

           VariableNames: ["x1"    "x2"    "x3"]
    CategoricalVariables: []
                 Metrics: ["Wasserstein"    "Wasserstein"    "Wasserstein"]
            MetricValues: [0.2022 0.3468 0.0559]

  Properties, Methods
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detectdrift computes only the initial metric value for each variable using the baseline and target
data. The properties associated with permutation testing and p-value estimation are either empty or
contain NaNs.

summary(DDiagnostics)

          MetricValue       Metric    
          ___________    _____________

    x1      0.20215      "Wasserstein"
    x2      0.34676      "Wasserstein"
    x3     0.055922      "Wasserstein"

summary function displays only the initial metric value and the metric used for each specified
variable.

plotDriftStatus and plotPermutationResults do not produce plots and return warning
messages when you compute metrics without estimating p-values. plotEmpiricalCDF and
plotHistogram plot the ecdf and the histogram, respectively, for the first variable by default. They
both return NaN for the p-value and drift status associated with the variable.

plotEmpiricalCDF(DDiagnostics)

plotHistogram(DDiagnostics)

 detectdrift

35-1323



Input Arguments
Baseline — Baseline data
numeric array | categorical array | table

Baseline data, specified as a numeric array, categorical array, or table. Baseline and Target data
must have the same data type. When the input data is a categorical array, detectdrift treats each
column as an independent categorical variable.
Data Types: single | double | categorical | table

Target — Target data
numeric array | categorical array | table

Target data, specified as a numeric array, categorical array, or table. Baseline and Target data
must have the same data type. When the input data is a categorical array, detectdrift treats each
column as an independent categorical variable.
Data Types: single | double | categorical | table

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.
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Example:
detectdrift(Baseline,Target,WarningThreshold=0.05,DriftThreshold=0.01,Variabl
eNames=["Weight","MPG"],ContinuousMetrics="ad") sets the warning threshold to 0.05 and
drift threshold to 0.01, specifies Weight and MPG as the variables to test for drift detection, and
Anderson-Darling as the metric to use in testing all continuous variables.

VariableNames — Variables to analyze for drift
string | array of unique strings | character vector | cell array of character vectors

Variables to analyze for drift, specified as a string, array of unique strings, character vector, or cell
array of character vectors.
Example: VariableNames=["x1","x3"]
Data Types: string | char | cell

CategoricalVariables — List of categorical variables
"all" | string | array of unique strings | character vector | cell array of unique character vectors |
vector of integer indices | vector of logical indices

List of categorical variables, specified as "all", a string, array of unique strings, character vector,
cell array of unique character vectors, vector of integer indices, or vector of logical indices.

detectdrift treats the following as categorical variables: ordinal or nominal data types, or the
categorical data type with the ordinal indicator set to true as categorical variables.
Example: CategoricalVariables="Zone"
Data Types: single | double | logical | string | cell

DriftThreshold — Threshold for detecting drift
0.05 (default) | scalar value from 0 to 1

Threshold for detecting drift, specified as a scalar value from 0 to 1.

detectdrift uses the drift threshold together with warning threshold to determine the drift status.
The DriftThreshold value must be strictly lower than WarningThreshold value.

If the confidence interval for an estimated p-value is (Lower,Upper), then detectdrift determines
the drift status as follows.

Drift Status Condition
Drift Upper < DriftThreshold
Warning DriftThreshold < Lower < WarningThreshold or DriftThreshold

< Upper < WarningThreshold
Stable Lower > WarningThreshold

Example: DriftThreshold=0.01
Data Types: single | double

WarningThreshold — Threshold for potential drift warning
0.1 (default) | scalar value between 0 and 1

Threshold for potential drift warning, specified as a scalar value between 0 and 1.
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detectdrift uses the warning threshold together with drift threshold to determine the drift status.
The WarningThreshold value must be strictly greater than the DriftThreshold value.

If the confidence interval for an estimated p-value is (Lower,Upper), then detectdrift determines
the drift status as follows.

Drift Status Condition
Drift Upper < DriftThreshold
Warning DriftThreshold < Lower < WarningThreshold or DriftThreshold

< Upper < WarningThreshold
Stable Lower > WarningThreshold

Example: WarningThreshold=0.05
Data Types: single | double

MaxNumPermutations — Maximum number of permutations
1000 (default) | positive integer value

Maximum number of permutations, specified as a positive integer value. detectdrift increases the
number of trials for permutation logarithmically, according to a heuristic algorithm, until it
determines the drift status or reaches MaxNumPermutations. If detectdrift cannot determine the
drift status by the end of the maximum number of permutations, then it sets the drift status to
"Warning".
Example: MaxNumPermutations=1500
Data Types: single | double

Metrics — Metrics used to detect drift for each variable
string | string vector | character vector | cell array of character vectors | function handle | cell array
of function handles | structure

Metrics used to detect drift for each variable, specified as one of the following:

• String, string vector, character vector, or cell array of character vectors representing one or more
of the built-in metrics.

Built-in metrics for continuous variables

Value Definition
"wasserstein" Wasserstein
"energy" Energy
"ks" Kolmogorov-Smirnov
"ad" Anderson-Darling
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Built-in metrics for categorical variables

Value Definition
"tv" Total Variation
"psi" Population Stability Index
"hellinger" Hellinger
"chi2" Chi-Square
"bhattacharyya" Bhattacharyya

• Function handle or a cell array of function handles. If you provide a function handle FUN as a
metric, detectdrift calls it as:

FUN(BaselineVariable,TargetVariable),

where BaselineVariable is the variable in Baseline and TargetVariable is the variable in
Target. The output of FUN must be a scalar representing the metric value.

• Structure or a cell array of structures, where each structure contains a single field whose value is
a function handle. If you pass a structure, detectdrift uses the field name as the metric name.
If the function handle is anonymous, detectdrift names it 'CustomMetric_i', where i is the
position of the variable in Metrics.

Metrics must contain one value for each variable in VariableNames and its size must be equal to
the size of VariableNames.

If you specify metrics using Metrics, you cannot specify them using ContinuousMetric or
CategoricalMetric.
Example: Metrics=["wasserstein","psi","hellinger"]
Data Types: string | cell | function_handle | struct

ContinuousMetric — Metric for drift detection in continuous variables
"wasserstein" (default) | string | character vector | function handle | structure

Metric for drift detection in continuous variables, specified as one of the following:

• String or a character vector representing one or more of the built-in metrics.

Built-in metrics for continuous variables

Value Definition
"wasserstein" Wasserstein
"energy" Energy
"ks" Kolmogorov-Smirnov
"ad" Anderson-Darling

• Function handle called as:

FUN(BaselineVariable,TargetVariable),

where BaselineVariable is the variable in Baseline and TargetVariable is the variable in
Target. The output of FUN must be a scalar representing the metric value.
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If the function handle is not anonymous, detectdrift extracts the metric name from the
provided function handle. If the function handle is not anonymous, then it names the metric
'CustomContinuousMetric'.

• Structure with a single field whose value is a function handle. In this case, detectdrift uses the
field name as the metric name.

If you specify ContinuousMetric, then you cannot specify other metrics using Metrics.
Example: ContinuousMetric="ks"
Data Types: string | char | function_handle | struct

CategoricalMetric — Metric for drift detection in categorical variables
"hellinger" (default) | string | character vector | function handle | structure

Metric for drift detection in categorical variables, specified as one of the following:

• String or a character vector representing one or more of the built-in metrics.

Built-in metrics for categorical variables

Value Definition
"tv" Total Variation
"psi" Population Stability Index
"hellinger" Hellinger
"chi2" Chi-Square
"bhattacharyya" Bhattacharyya

• Function handle called as follows:

FUN(BaselineVariable,TargetVariable),

where BaselineVariable is the variable in Baseline and TargetVariable is the variable in
Target. The output of FUN must be a scalar representing the metric value.

If the function handle is not anonymous, detectdrift extracts the metric name from the
provided function handle. If The function handle is anonymous, then it names the metric
'CustomCategoricalMetric'.

• Structure with a single field whose value is a function handle. In this case, detectdrift uses the
field name as the metric name.

If you specify CategoricalMetric, then you cannot specify other metrics using Metrics.
Example: CategoricalMetric="chi2"
Data Types: string | char | function_handle | struct

MultipleTestCorrection — Correction method for multiple hypothesis tests
"bonferroni" (default) | "fdr"

Correction method for multiple hypothesis tests, specified as one of the following.

• "bonferroni" – Bonferroni correction. If k variables are specified for drift detection,
detectdrift modifies the warning threshold and drift threshold by dividing each by k. Then, the
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function checks if any p-values are smaller than the modified threshold values to determine the
drift status.

• "fdr" – False discovery rate (FDR) method. detectdrift uses the Benjamini-Hochberg
procedure to compute the false discovery rate. If k variables are specified for drift detection, the
FDR method takes these steps:

1 Rank the p-values corresponding to the specified variables.
2 Divide the ranks 1 to k by the number of variables k to obtain Q = [1/k, 2/k, 3/k ,…, k/k].
3 Modify the warning and drift thresholds for each sorted p-value by multiplying the initial

warning and drift threshold values by the corresponding q value. For example, the modified
warning threshold for rank 3 is (WarningThreshold)*3/k.

4 Check if any sorted p-values are smaller than the corresponding modified warning or drift
thresholds to determine the drift status.

The multiple test correction methods provide a conservative estimate of the multivariable drift.
Example: MultipleTestCorrection="fdr"

UseParallel — Flag to run in parallel
false (default) | true

Flag to run in parallel, specified as true or false. If you specify UseParallel=true, the
detectdrift function executes for-loop iterations in parallel by using parfor. This option requires
Parallel Computing Toolbox.
Example: UseParallel=true

EstimatePValues — Indicator to estimate p-values
true (default) | false

Indicator to estimate the p-values during permutation testing, specified as true or false. If you
specify EstimatePValues=false, then detectdrift computes the metrics only.
Example: EstimatePValues=false

Output Arguments
DDiagnostics — Results of permutation testing for drift detection
DriftDiagnostics object

Results of permutation testing for drift detection, returned as a DriftDiagnostics object.
detectdrift displays the following properties.

Property Name Description
VariableNames Variables analyzed for drift detection
CategoricalVariables Indices of categorical variables in the data
DriftStatus Drift status for each variable
PValues Estimated p-value for each variable
ConfidenceIntervals 95% confidence interval bounds for the estimated

p-values
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Property Name Description
MultipleTestDriftStatus Drift status for the overall data
DriftThreshold Threshold to determine the drift status
WarningThreshold Threshold to determine the warning status

For a full list of the properties and their descriptions, see the DriftDiagnostics reference page.

Algorithms
Permutation Testing

detectdrift uses permutation testing to determine the drift status for each variable in the
Baseline data and its counterpart in the Target data. A permutation test is a nonparametric
statistical significance test in which the function obtains distribution of a metric (test statistic) under
the null hypothesis by computing the values of that metric under all possible rearrangements of a
variable in Baseline and Target. Depending on the number of variables and observations, trying all
possible permutations of a variable might be infeasible. Therefore detectdrift performs a
sufficient number of permutations to obtain a good estimate of the metric for the variable.

Under null hypothesis (no drift), many values of the metric recorded during permutation testing can
be as extreme as the initial test statistic. This suggests sufficiently high confidence that the
observations of the specified variable in the baseline and target data come from the same
distribution. Therefore, no evidence of drift is found, and detectdrift fails to reject the null
hypothesis.

If the initial test statistic is identified as an outlier, then detectdrift rejects the null hypothesis.
This suggest sufficiently high confidence that the observations of the specified variable in the
baseline and target data come from different distributions. Therefore, drift is detected.

detectdrift takes these steps in permutation testing:

• For a given variable with m observations in the baseline data and n observations in the target
data, detectdrift computes an initial value of the metric from the original data.

• The function then permutes the observations of the variable in the baseline and target data and
separates them into two vectors with sizes m and n, respectively. Next, the function computes the
same metric value. detectdrift repeats this step for MaxNumPermutations times to obtain a
distribution of the specified metric.

• An estimate of the p-value is p = x/perm, where x is the number of times a metric value obtained
from a permutation is greater than the value of the initial metric value, and perm is the number of
permutations. With the binomial distribution assumption for x, detectdrift estimates the 95%
confidence interval for the p-value by using [~,CI] = binofit(x,perm,0.05).

Given the confidence intervals (Lower, Upper) of the p-values, detectdrift determines the drift
status based on the following conditions.

Drift Status Condition
Drift Upper < DriftThreshold
Warning DriftThreshold < Lower < WarningThreshold or DriftThreshold

< Upper < WarningThreshold
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Drift Status Condition
Stable Lower > WarningThreshold

Metrics

detectdrift uses the following metrics as test statistics in permutation testing for detecting drift
between the baseline and target data.

Metrics for Continuous Variables

The detectdrift function first defines the following:

• Eb x  as the empirical cumulative distribution function (ecdf) of the baseline data over the
common domain

• Et x  as the ecdf of the target data over the common domain
• D x  as the joint ecdf of all data, and w as the difference between the edges of the bins

Next, detectdrift computes the metrics for continuous variables as follows:

• Wasserstein

W = ∑
x

w * Eb x − Et x

• Energy

En = 2 *∑
x

w * Eb x − Et x 2

• Kolmogorov-Smirnov

KS = max Eb x − Et x
• Anderson-Darling

AD = ∑
x

Eb x − Et x
m + n D x * 1− D x

2

m and n are the number of observations in the baseline data and target data, respectively.

Metrics for Categorical Variables

The detectdrift function defines the following:

• Hb x  as the percentage of the baseline data in the bins determined by combining the baseline and
target data (jointly considering them across the same domain)

• Ht x  as the percentage of the baseline data in the bins determined by combining the baseline and
target data

Next, detectdrift computes the metrics for categorical variables as follows:

• Total Variation

TV = 0.5 *∑
x

Hb x − Ht x
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• Population Stability Index

PSI = max 0,∑
x

log
Ht x
Hb x Ht x − Hb x

• Chi-Square

χ2 = ∑
x

Ht x − Hb x 2

Hb x

• Bhattacharyya

B = max 0, − log min 1,∑
x

Hb x * Ht x

• Hellinger

H = max 0, 1− min 1,∑
x

Hb x * Ht x

To handle empty bins (categories), detectdrift adds a 0.5 correction factor to histogram bin counts
for each bin. This is equivalent to the assumption that the parameter p, which is the probability that
the value of the variable is in that category, has the prior distribution Beta(0.5,0.5) (Jeffreys prior
assumption for the distribution parameter).

Version History
Introduced in R2022a

References
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Extended Capabilities
Automatic Parallel Support
Accelerate code by automatically running computation in parallel using Parallel Computing Toolbox™.

To run in parallel, set the UseParallel name-value argument to true in the call to this function.

For more general information about parallel computing, see “Run MATLAB Functions with Automatic
Parallel Support” (Parallel Computing Toolbox).
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See Also
DriftDiagnostics | ecdf | histcounts | plotDriftStatus | plotEmpiricalCDF |
plotHistogram | plotPermutationResults | summary
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detectdrift
Package: incremental.drift

Update drift detector states and drift status with new data

Syntax
IncCDDetector = detectdrift(IncCDDetector,X)
IncCDDetector = detectdrift(IncCDDetector,X,Weights=W)

Description
IncCDDetector = detectdrift(IncCDDetector,X) updates the internal statistics and the drift
status with new data in X and returns the modified detector IncCDDetector.

detectdrift updates the drift status only if the IsWarm property is true (or 1).

IncCDDetector = detectdrift(IncCDDetector,X,Weights=W) updates IncCDDetector also
using the observation weights in W.

You can use the Weights argument for the Drift Detection Method (DDM) only. Specify "DDM" for the
DetectionMethod argument in the call to incrementalConceptDriftDetector.

Examples

Perform Drift Detection on Data Stream

Create a random stream such that the first 1000 observations come from a normal distribution with
mean 2 and standard deviation 0.75 and the next 1000 come from a normal distribution with mean 4
and standard deviation 1. In an incremental drift detection application, access to data stream and
model update would happen consecutively. One would not collect the data first and then feed into the
model. However, for the purpose of clarification, this example demonstrates the simulation of data
separately.

rng(1234) % For reproducibility
numObservations = 3000;
switchPeriod1 = 1000;
X = zeros([numObservations 1]);

for i = 1:numObservations
   if i <= switchPeriod1
      X(i) = normrnd(2,0.75);
   else
      X(i) = normrnd(4,1);
   end
end

Initiate the incremental concept drift detector. Utilize the Hoeffding's bound method with exponential
moving average method (EWMA). Specify the input type as continuous, a warmup of 50 observations,
and an estimation period of 50 observations.
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incCDDetector = incrementalConceptDriftDetector("hddmw",InputType="continuous", ...
          WarmupPeriod=50,EstimationPeriod=50)

incCDDetector = 
  HoeffdingDriftDetectionMethod

        PreviousDriftStatus: 'Stable'
                DriftStatus: 'Stable'
                     IsWarm: 0
    NumTrainingObservations: 0
                Alternative: 'greater'
                  InputType: 'continuous'
                 TestMethod: 'ewma'

  Properties, Methods

incDDetector is a HoeffdingDriftDetectionMethod object. When you first create the object,
properties such as DriftStatus, IsWarm, CutMean, and NumTrainingObservations are at their
initial state. detectdrift updates them as you feed the data incrementally and monitor for drift.

Preallocate the batch size and the variables to record drift status and statistics.

status = zeros([numObservations 1]);
statusname = strings([numObservations 1]);

Simulate the data stream of one observation at a time and perform incremental drift detection. At
each iteration:

• Monitor for drift using the new data with detectdrift.
• Track and record the drift status for visualization purposes.
• When a drift is detected, reset the incremental concept drift detector by using the function reset.

for i = 1:numObservations
    
    incCDDetector = detectdrift(incCDDetector,X(i));
    
    if incCDDetector.DriftDetected
        status(i) = 2;
        statusname(i) = string(incCDDetector.DriftStatus);
        incCDDetector = reset(incCDDetector); % If drift detected, reset the detector
        sprintf("Drift detected at observation #%d. Detector reset.",i)
    elseif incCDDetector.WarningDetected
        status(i) = 1;
        statusname(i) = string(incCDDetector.DriftStatus);
        sprintf("Warning detected at observation #%d.",i)
    else 
        status(i) = 0;
        statusname(i) = string(incCDDetector.DriftStatus);
    end      
end

ans = 
"Warning detected at observation #1019."

ans = 
"Warning detected at observation #1020."
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ans = 
"Warning detected at observation #1021."

ans = 
"Warning detected at observation #1022."

ans = 
"Drift detected at observation #1023. Detector reset."

Plot the drift status versus the data observation number.

gscatter(1:numObservations,status,statusname,'gyr','*',5,'on',"Number of observations","Drift status")

Input Arguments
IncCDDetector — Incremental concept drift detector
DriftDetectionMethod | HoeffdingDriftDetectionMethod

Incremental concept drift detector, specified as either DriftDetectionMethod or
HoeffdingDriftDetectionMethod object. For more information on these objects and their
properties, see the corresponding reference pages.

X — Input data
n-by-1 vector of real numbers | logical vector | vector of 0s and 1s

Input data, specified as an n-by-1 vector of real numbers, where n is the number of observations.
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• If the InputType value in the call to incrementalConceptDriftDetector is "continuous",
then X must be a vector of real-valued numbers.

• If the InputType value in the call to incrementalConceptDriftDetector is "binary", then
X can be a logical vector or vector of 0s and 1s.

Data Types: single | double | logical

W — Observation weights
n-by-1 vector of real numbers

Observation weights, specified as an n-by-1 vector of real numbers, where n is the number of
observations. W must have the same number of elements as X.

You cannot use the Weights argument for the Hoeffding's Bounds Drift Detection Method using
exponentially weighted moving averages (HDDMW). To use observation weights, specify "ddm" or
"hddma" as the DetectionMethod in the call to incrementalConceptDriftDetector.
Data Types: single | double

Version History
Introduced in R2022a

See Also
incrementalConceptDriftDetector | DriftDetectionMethod |
HoeffdingDriftDetectionMethod | reset
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devianceTest
Package: 

Analysis of deviance for generalized linear regression model

Syntax
tbl = devianceTest(mdl)

Description
tbl = devianceTest(mdl) returns an analysis of deviance table for the generalized linear
regression model mdl. The table tbl gives the result of a test that determines whether the model
mdl fits significantly better than a constant model.

Examples

Perform Deviance Test

Perform a deviance test on a generalized linear regression model.

Generate sample data using Poisson random numbers with two underlying predictors X(:,1) and
X(:,2).

rng('default') % For reproducibility
rndvars = randn(100,2);
X = [2 + rndvars(:,1),rndvars(:,2)];
mu = exp(1 + X*[1;2]);
y = poissrnd(mu);

Create a generalized linear regression model of Poisson data.

mdl = fitglm(X,y,'y ~ x1 + x2','Distribution','poisson')

mdl = 
Generalized linear regression model:
    log(y) ~ 1 + x1 + x2
    Distribution = Poisson

Estimated Coefficients:
                   Estimate       SE        tStat     pValue
                   ________    _________    ______    ______

    (Intercept)     1.0405      0.022122    47.034      0   
    x1              0.9968      0.003362    296.49      0   
    x2               1.987     0.0063433    313.24      0   

100 observations, 97 error degrees of freedom
Dispersion: 1
Chi^2-statistic vs. constant model: 2.95e+05, p-value = 0
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Test whether the model differs from a constant in a statistically significant way.

tbl = devianceTest(mdl)

tbl=2×4 table
                             Deviance     DFE     chi2Stat     pValue
                            __________    ___    __________    ______

    log(y) ~ 1              2.9544e+05    99                         
    log(y) ~ 1 + x1 + x2         107.4    97     2.9533e+05       0  

The small p-value indicates that the model significantly differs from a constant. Note that the model
display of mdl includes the statistics shown in the second row of the table.

Input Arguments
mdl — Generalized linear regression model
GeneralizedLinearModel object | CompactGeneralizedLinearModel object

Generalized linear regression model, specified as a GeneralizedLinearModel object created using
fitglm or stepwiseglm, or a CompactGeneralizedLinearModel object created using compact.

Output Arguments
tbl — Analysis of deviance summary statistics
table

Analysis of deviance summary statistics, returned as a table.

tbl contains analysis of deviance statistics for both a constant model and the model mdl. The table
includes these columns for each model.

Column Description
Deviance Deviance is twice the difference between the loglikelihoods of the

corresponding model (mdl or constant) and the saturated model.
For more information, see Deviance on page 35-1340.

DFE Degrees of freedom for the error (residuals), equal to n – p, where
n is the number of observations, and p is the number of estimated
coefficients

chi2Stat F-statistic or chi-squared statistic, depending on whether the
dispersion is estimated (F-statistic) or not (chi-squared statistic)

• F-statistic is the difference between the deviance of the
constant model and the deviance of the full model, divided by
the estimated dispersion.

• Chi-squared statistic is the difference between the deviance of
the constant model and the deviance of the full model.
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Column Description
pValue p-value associated with the test: chi-squared statistic with p – 1

degrees of freedom, or F-statistic with p – 1 numerator degrees of
freedom and DFE denominator degrees of freedom, where p is the
number of estimated coefficients

More About
Deviance

Deviance is a generalization of the residual sum of squares. It measures the goodness of fit compared
to a saturated model.

Deviance of a model M1 is twice the difference between the loglikelihood of the model M1 and the
saturated model Ms. A saturated model is a model with the maximum number of parameters that you
can estimate.

For example, if you have n observations (yi, i = 1, 2, ..., n) with potentially different values for Xi
Tβ,

then you can define a saturated model with n parameters. Let L(b,y) denote the maximum value of
the likelihood function for a model with the parameters b. Then the deviance of the model M1 is

−2 logL b1, y − logL bS, y ,

where b1 and bs contain the estimated parameters for the model M1 and the saturated model,
respectively. The deviance has a chi-square distribution with n – p degrees of freedom, where n is the
number of parameters in the saturated model and p is the number of parameters in the model M1.

Assume you have two different generalized linear regression models M1 and M2, and M1 has a subset
of the terms in M2. You can assess the fit of the models by comparing the deviances D1 and D2 of the
two models. The difference of the deviances is

D = D2− D1 = − 2 logL b2, y − logL bS, y + 2 logL b1, y − logL bS, y
= − 2 logL b2, y − logL b1, y .

Asymptotically, the difference D has a chi-square distribution with degrees of freedom v equal to the
difference in the number of parameters estimated in M1 and M2. You can obtain the p-value for this
test by using 1 – chi2cdf(D,v).

Typically, you examine D using a model M2 with a constant term and no predictors. Therefore, D has a
chi-square distribution with p – 1 degrees of freedom. If the dispersion is estimated, the difference
divided by the estimated dispersion has an F distribution with p – 1 numerator degrees of freedom
and n – p denominator degrees of freedom.

Version History
Introduced in R2012a

Extended Capabilities
GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.
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This function fully supports GPU arrays. For more information, see “Run MATLAB Functions on a
GPU” (Parallel Computing Toolbox).

See Also
GeneralizedLinearModel | CompactGeneralizedLinearModel | coefTest

Topics
“Generalized Linear Models” on page 12-9
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designMatrix
Class: GeneralizedLinearMixedModel

Fixed- and random-effects design matrices

Syntax
D = designMatrix(glme)
D = designMatrix(glme,'Fixed')

D = designMatrix(glme,'Random')
Dsub = designMatrix(glme,'Random',gnumbers)
[Dsub,gnames] = designMatrix(glme,'Random',gnumbers)

Description
D = designMatrix(glme) or D = designMatrix(glme,'Fixed') returns the fixed-effects
design matrix for the generalized linear mixed-effects model glme.

D = designMatrix(glme,'Random') returns the random-effects design matrix for the generalized
linear mixed-effects model glme.

Dsub = designMatrix(glme,'Random',gnumbers) returns a subset of the random-effects
design matrix for the generalized linear mixed-effects model glme that corresponds to the grouping
variables indicated by gnumbers.

[Dsub,gnames] = designMatrix(glme,'Random',gnumbers) also returns the grouping
variable names that correspond to gnumbers.

Input Arguments
glme — Generalized linear mixed-effects model
GeneralizedLinearMixedModel object

Generalized linear mixed-effects model, specified as a GeneralizedLinearMixedModel object. For
properties and methods of this object, see GeneralizedLinearMixedModel.

gnumbers — Grouping variable numbers
array of integer values

Grouping variable numbers, specified as an array of integer values containing elements in the range
[1,R], where R is the length of the cell array that contains the grouping variables for the generalized
linear mixed-effects model glme.

For example, you can specify the grouping variables g1, g3, and gr as [1,3,r].
Data Types: single | double
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Output Arguments
D — Design matrix
matrix

Design matrix of a generalized linear mixed-effects model glme returned as one of the following:

• Fixed-effects design matrix — n-by-p matrix consisting of the fixed-effects design matrix of glme,
where n is the number of observations and p is the number of fixed-effects terms. The order of
fixed-effects terms in D matches the order of terms in the CoefficientNames property of the
GeneralizedLinearMixedModel object glme.

• Random-effects design matrix — n-by-k matrix, consisting of the random-effects design matrix of
glme. Here, k is equal to length(B), where B is the random-effects coefficients vector of
generalized linear mixed-effects model glme. The random-effects design matrix is returned as a
sparse matrix. For more information, see “Sparse Matrices”.

If glme has R grouping variables g1, g2, ..., gR, with levels m1, m2, ..., mR, respectively, and if q1,
q2, ..., qR are the lengths of the random-effects vectors that are associated with g1, g2, ..., gR,
respectively, then B is a column vector of length q1*m1 + q2*m2 + ... + qR*mR.

B is made by concatenating the empirical Bayes predictors of random effects vectors
corresponding to each level of each grouping variable as [g1level1; g1level2; ...;
g1levelm1; g2level1; g2level2; ...; g2levelm2; ...; gRlevel1; gRlevel2; ...;
gRlevelmR]'.

Data Types: single | double

Dsub — Submatrix of random-effects design matrix
matrix

Submatrix of random-effects design matrix that corresponds to the grouping variables specified by
gnumbers, returned as an n-by-k matrix, where k is length of the column vector Bsub.

Bsub contains the concatenated empirical Bayes predictors of random-effects vectors, corresponding
to each level of the grouping variables, specified by gnumbers.

If, for example, gnumbers is [1,3,r], this corresponds to the grouping variables g1, g3, and gr.
Then, Bsub contains the empirical Bayes predictors of random-effects vectors corresponding to each
level of the grouping variables g1, g3, and gr, such as

[g1level1; g1level2; ...; g1levelm1; g3level1; g3level2; ...; g3levelm3; grlevel1;
grlevel2; ...; grlevelmr]'.

Thus, Dsub*Bsub represents the contribution of all random effects corresponding to grouping
variables g1, g3, and gr to the response of glme.

If gnumbers is empty, then Dsub is the full random-effects design matrix.
Data Types: single | double

gnames — Names of grouping variables
k-by-1 cell array
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Names of grouping variables corresponding to the integers in gnumbers if the design type is
'Random', returned as a k-by-1 cell array. If the design type is 'Fixed', then gnames is an empty
matrix [].
Data Types: cell

Examples

Obtain Fixed- and Random-Effects Design Matrices

Load the sample data.

load mfr

This simulated data is from a manufacturing company that operates 50 factories across the world,
with each factory running a batch process to create a finished product. The company wants to
decrease the number of defects in each batch, so it developed a new manufacturing process. To test
the effectiveness of the new process, the company selected 20 of its factories at random to participate
in an experiment: Ten factories implemented the new process, while the other ten continued to run
the old process. In each of the 20 factories, the company ran five batches (for a total of 100 batches)
and recorded the following data:

• Flag to indicate whether the batch used the new process (newprocess)
• Processing time for each batch, in hours (time)
• Temperature of the batch, in degrees Celsius (temp)
• Categorical variable indicating the supplier (A, B, or C) of the chemical used in the batch

(supplier)
• Number of defects in the batch (defects)

The data also includes time_dev and temp_dev, which represent the absolute deviation of time and
temperature, respectively, from the process standard of 3 hours at 20 degrees Celsius.

Fit a generalized linear mixed-effects model using newprocess, time_dev, temp_dev, and
supplier as fixed-effects predictors. Include a random-effects term for intercept grouped by
factory, to account for quality differences that might exist due to factory-specific variations. The
response variable defects has a Poisson distribution, and the appropriate link function for this
model is log. Use the Laplace fit method to estimate the coefficients. Specify the dummy variable
encoding as 'effects', so the dummy variable coefficients sum to 0.

The number of defects can be modeled using a Poisson distribution

defectsi j ∼ Poisson(μi j) .

This corresponds to the generalized linear mixed-effects model

log(μi j) = β0 + β1newprocessi j + β2time_devi j + β3temp_devi j + β4supplier_Ci j + β5supplier_Bi j
+ bi,

where

• defectsi j is the number of defects observed in the batch produced by factory i during batch j.
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• μi j is the mean number of defects corresponding to factory i (where i = 1, 2, . . . , 20) during batch
j (where j = 1, 2, . . . , 5).

• newprocessi j, time_devi j, and temp_devi j are the measurements for each variable that correspond
to factory i during batch j. For example, newprocessi j indicates whether the batch produced by
factory i during batch j used the new process.

• supplier_Ci j and supplier_Bi j are dummy variables that use effects (sum-to-zero) coding to indicate
whether company C or B, respectively, supplied the process chemicals for the batch produced by
factory i during batch j.

• bi ∼ N(0, σb
2) is a random-effects intercept for each factory i that accounts for factory-specific

variation in quality.

glme = fitglme(mfr,'defects ~ 1 + newprocess + time_dev + temp_dev + supplier + (1|factory)','Distribution','Poisson','Link','log','FitMethod','Laplace','DummyVarCoding','effects');

Extract the fixed-effects design matrix and display rows 1 through 10.

Dfe = designMatrix(glme,'Fixed');
disp(Dfe(1:10,:))

    1.0000         0    0.1834    0.2259    1.0000         0
    1.0000         0    0.3035    0.0725         0    1.0000
    1.0000         0    0.0717    0.1630    1.0000         0
    1.0000         0    0.1069    0.0809   -1.0000   -1.0000
    1.0000         0    0.0241    0.0319    1.0000         0
    1.0000         0    0.1214    0.1114         0    1.0000
    1.0000         0    0.0033    0.0553    1.0000         0
    1.0000         0    0.2350    0.0616    1.0000         0
    1.0000         0    0.0488    0.0177         0    1.0000
    1.0000         0    0.1148    0.0105    1.0000         0

Column 1 of the fixed-effects design matrix Dfe contains the constant term. Column 2, 3, and 4
contain the newprocess, time_dev, and temp_dev terms, respectively. Columns 5 and 6 contain
dummy variables for supplier_C and supplier_B, respectively.

Extract the random-effects design matrix and display rows 1 through 10.

Dre = designMatrix(glme,'Random');
disp(Dre(1:10,:))

   (1,1)        1
   (2,1)        1
   (3,1)        1
   (4,1)        1
   (5,1)        1
   (6,2)        1
   (7,2)        1
   (8,2)        1
   (9,2)        1
  (10,2)        1

Convert the sparse matrix Dre to a full matrix and display rows 1 through 10.

full(Dre(1:10,:))

ans = 10×20
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     1     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0
     1     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0
     1     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0
     1     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0
     1     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0
     0     1     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0
     0     1     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0
     0     1     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0
     0     1     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0
     0     1     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0

Each column corresponds to a level of the grouping variable factory.

See Also
GeneralizedLinearMixedModel | fitglme | fitted | residuals | response
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designMatrix
Class: LinearMixedModel

Fixed- and random-effects design matrices

Syntax
D = designMatrix(lme)
D = designMatrix(lme,'Fixed')

D = designMatrix(lme,'Random')
Dsub = designMatrix(lme,'Random',gnumbers)
[Dsub,gnames] = designMatrix(lme,'Random',gnumbers)

Description
D = designMatrix(lme) or D = designMatrix(lme,'Fixed') returns the fixed-effects design
matrix for the linear mixed-effects model lme.

D = designMatrix(lme,'Random') returns the random-effects design matrix for the linear
mixed-effects model lme.

Dsub = designMatrix(lme,'Random',gnumbers) returns a subset of the random-effects design
matrix for the linear mixed-effects model lmecorresponding to the grouping variables indicated by
the integers in gnumbers.

[Dsub,gnames] = designMatrix(lme,'Random',gnumbers) also returns the grouping variable
names corresponding to the integers in gnumbers.

Input Arguments
lme — Linear mixed-effects model
LinearMixedModel object

Linear mixed-effects model, specified as a LinearMixedModel object constructed using fitlme or
fitlmematrix.

gnumbers — Grouping variable numbers
integer array

Grouping variable numbers, specified as an integer array, where R is the length of the cell array that
contains the grouping variables for the linear mixed-effects model lme.

For example, you can specify the grouping variables g1, g3, and gr as follows.
Example: [1,3,r]
Data Types: double | single
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Output Arguments
D — Design matrix
matrix

Design matrix of a linear mixed-effects model lme returned as one of the following:

• Fixed-effects design matrix — n-by-p matrix consisting of the fixed-effects design of lme, where n
is the number of observations and p is the number of fixed-effects terms. The order of fixed-effects
terms in D matches the order of terms in the CoefficientNames property of the
LinearMixedModel object lme.

• Random-effects design matrix — n-by-k matrix, consisting of the random-effects design matrix of
lme. Here, k is equal to length(B), where B is the random-effects coefficients vector of linear
mixed-effects model lme.

If lme has R grouping variables g1, g2, ..., gR, with levels m1, m2, ..., mR, respectively, and if q1,
q2, ..., qR are the lengths of the random-effects vectors that are associated with g1, g2, ..., gR,
respectively, then B is a column vector of length q1*m1 + q2*m2 + ... + qR*mR.

B is made by concatenating the best linear unbiased predictors of random-effects vectors
corresponding to each level of each grouping variable as [g1level1; g1level2; ...;
g1levelm1; g2level1; g2level2; ...; g2levelm2; ...; gRlevel1; gRlevel2; ...;
gRlevelmR]'.

Data Types: single | double

Dsub — Submatrix of random-effects design matrix
matrix

Submatrix of random-effects design matrix corresponding to the grouping variables indicated by the
integers in gnumbers, returned as an n-by-k matrix, where k is length of the column vector Bsub.

Bsub contains the concatenated best linear unbiased predictors (BLUPs) of random-effects vectors,
corresponding to each level of the grouping variables, specified by gnumbers.

If, for example, gnumbers is [1,3,r], this corresponds to the grouping variables g1, g3, and gr.
Then, Bsub contains the concatenated BLUPs of random-effects vectors corresponding to each level
of the grouping variables g1, g3, and gr, such as

[g1level1; g1level2; ...; g1levelm1; g3level1; g3level2; ...; g3levelm3; grlevel1;
grlevel2; ...; grlevelmr]'.

Thus, Dsub*Bsub represents the contribution of all random effects corresponding to grouping
variables g1, g3, and gr to the response of lme.

If gnumbers is empty, then Dsub is the full random-effects design matrix.
Data Types: single | double

gnames — Names of grouping variables
k-by-1 cell array

Names of grouping variables corresponding to the integers in gnumbers if the design type is
'Random', returned as a k-by-1 cell array. If the design type is 'Fixed', then gnames is an empty
matrix [].
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Data Types: cell

Examples

Display Fixed- and Random-Effects Design Matrices

Load the sample data.

load('shift.mat');

The data shows the deviations from the target quality characteristic measured from the products that
5 operators manufacture during three different shifts, morning, evening, and night. This is a
randomized block design, where the operators are the blocks. The experiment is designed to study
the impact of the time of shift on the performance. The performance measure is the deviation of the
quality characteristics from the target value. This is simulated data.

Shift and Operator are nominal variables.

shift.Shift = nominal(shift.Shift);
shift.Operator = nominal(shift.Operator);

Fit a linear mixed-effects model with a random intercept grouped by operator to assess if
performance significantly differs according to the time of the shift.

lme = fitlme(shift,'QCDev ~ Shift + (1|Operator)');

Display the fixed-effects design matrix.

designMatrix(lme)

ans = 15×3

     1     1     0
     1     0     0
     1     0     1
     1     1     0
     1     0     0
     1     0     1
     1     1     0
     1     0     0
     1     0     1
     1     1     0
      ⋮

The column of 1s represents the constant term in the model. fitlme takes the evening shift as the
reference group and creates two dummy variables to represent the morning and night shifts,
respectively.

Display the random-effects design matrix.

designMatrix(lme,'random')

ans = 
   (1,1)        1
   (2,1)        1
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   (3,1)        1
   (4,2)        1
   (5,2)        1
   (6,2)        1
   (7,3)        1
   (8,3)        1
   (9,3)        1
  (10,4)        1
  (11,4)        1
  (12,4)        1
  (13,5)        1
  (14,5)        1
  (15,5)        1

The first number, i, in the (i,|j|) indices corresponds to the observation number, and|j| corresponds to
the level of the grouping variable, Operator, i.e., the operator number.

Show the full display of the random-effects design matrix.

full(designMatrix(lme,'random'))

ans = 15×5

     1     0     0     0     0
     1     0     0     0     0
     1     0     0     0     0
     0     1     0     0     0
     0     1     0     0     0
     0     1     0     0     0
     0     0     1     0     0
     0     0     1     0     0
     0     0     1     0     0
     0     0     0     1     0
      ⋮

Each column corresponds to a level of the grouping variable, Operator.

Random-Effects Design Matrix of Multiple Grouping Variables

Load the sample data.

load('fertilizer.mat');

The dataset array includes data from a split-plot experiment, where soil is divided into three blocks
based on the soil type: sandy, silty, and loamy. Each block is divided into five plots, where five
different types of tomato plants (cherry, heirloom, grape, vine, and plum) are randomly assigned to
these plots. The tomato plants in the plots are then divided into subplots, where each subplot is
treated by one of four fertilizers. This is simulated data.

Store the data in a dataset array called ds, for practical purposes, and define Tomato, Soil, and
Fertilizer as categorical variables.

ds = fertilizer;
ds.Tomato = nominal(ds.Tomato);
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ds.Soil = nominal(ds.Soil);
ds.Fertilizer = nominal(ds.Fertilizer);

Fit a linear mixed-effects model, where Fertilizer and Tomato are the fixed-effects variables, and
the mean yield varies by the block (soil type), and the plots within blocks (tomato types within soil
types) independently.

lme = fitlme(ds,'Yield ~ Fertilizer * Tomato + (1|Soil) + (1|Soil:Tomato)');

Store and examine the full random-effects design matrix.

D = full(designMatrix(lme,'random'));

The first three columns of matrix D contain the indicator variables fitlme creates for the three levels
(Loamy, Silty, Sandy, respectively) of the first grouping variable, Soil. The next 15 columns
contain the indicator variables created for the second grouping variable, Tomato nested under Soil.
These are basically the elementwise products of the dummy variables representing the levels of Soil
(Loamy, Silty, and Sandy, respectively) and the levels of Tomato (Cherry, Grape, Heirloom,
Plum, Vine, respectively).

Subset of the Random-Effects Design Matrix

Load the sample data.

load('fertilizer.mat');

The dataset array includes data from a split-plot experiment, where soil is divided into three blocks
based on the soil type: sandy, silty, and loamy. Each block is divided into five plots, where five
different types of tomato plants (cherry, heirloom, grape, vine, and plum) are randomly assigned to
these plots. The tomato plants in the plots are then divided into subplots, where each subplot is
treated by one of four fertilizers. This is simulated data.

Store the data in a dataset array called ds, for practical purposes, and define Tomato, Soil, and
Fertilizer as categorical variables.

ds = fertilizer;
ds.Tomato = nominal(ds.Tomato);
ds.Soil = nominal(ds.Soil);
ds.Fertilizer = nominal(ds.Fertilizer);

Fit a linear mixed-effects model, where Fertilizer and Tomato are the fixed-effects variables, and
the mean yield varies by the block (soil type), and the plots within blocks (tomato types within soil
types) independently.

lme = fitlme(ds,'Yield ~ Fertilizer * Tomato + (1|Soil) + (1|Soil:Tomato)');

Compute the random-effects design matrix for the second grouping variable, and display the first 12
rows.

[Dsub,gname]  = designMatrix(lme,'random',2);
full(Dsub(1:12,:))

ans = 12×15
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     0     0     0     0     0     0     0     0     1     0     0     0     0     0     0
     0     0     0     0     0     0     0     0     1     0     0     0     0     0     0
     0     0     0     0     0     0     0     0     1     0     0     0     0     0     0
     0     0     0     0     0     0     0     0     1     0     0     0     0     0     0
     0     0     0     0     0     1     0     0     0     0     0     0     0     0     0
     0     0     0     0     0     1     0     0     0     0     0     0     0     0     0
     0     0     0     0     0     1     0     0     0     0     0     0     0     0     0
     0     0     0     0     0     1     0     0     0     0     0     0     0     0     0
     0     0     0     0     0     0     0     1     0     0     0     0     0     0     0
     0     0     0     0     0     0     0     1     0     0     0     0     0     0     0
      ⋮

Dsub contains the dummy variables created for the second grouping variable, that is, tomato nested
under soil. These are the elementwise products of the dummy variables representing the levels of
Soil (Loamy, Silty, Sandy, respectively) and the levels of Tomato (Cherry, Grape, Heirloom,
Plum, Vine, respectively).

Display the name of the grouping variable.

gname

gname = 1x1 cell array
    {'Soil:Tomato'}

See Also
LinearMixedModel | fitted | fitlmematrix
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dfittool
Open Distribution Fitter app

Note The distributionFitter function was introduced in R2017a as a replacement for the
dfittool function. Both functions continue to work to start the Distribution Fitter app.

Syntax
dfittool
dfittool(y)
dfittool(y,cens)
dfittool(y,cens,freq)
dfittool(y,cens,freq,dsname)

Description
This page contains programmatic syntax information for the Distribution Fitter app. For general
usage information, see Distribution Fitter.

dfittool opens the Distribution Fitter app, or brings focus to the app if it is already open.

dfittool(y) opens the Distribution Fitter app populated with the data specified by the vector y.

dfittool(y,cens) uses the vector cens to specify whether each observation in y is censored.

dfittool(y,cens,freq) uses the vector freq to specify the frequency of each element of y.

dfittool(y,cens,freq,dsname) creates a data set with the name dsname, using the data vector,
y, censoring indicator, cens, and frequency vector, freq.

Examples

Open Distribution Fitter App with Existing Data

Load the carsmall sample data.

load carsmall

Open the Distribution Fitter app using the MPG miles per gallon data.

distributionFitter(MPG)
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The Distribution Fitter app opens, populated with the MPG data, and displays the density (PDF) plot.
You can use the app to display different plots and fit distributions to this data.

Open Distribution Fitter App with Censoring Data

Load the sample data.

load lightbulb.mat

The first column of the data contains the lifetime (in hours) of two types of light bulbs. The second
column contains information about the type of light bulb. 1 indicates fluorescent bulbs, and 0
indicates the incandescent bulb. The third column contains censoring information. 1 indicates
censored data, and 0 indicates the exact failure time. This is simulated data.

Open the Distribution Fitter app using the first column of lightbulb as the input data, and the third
column as the censoring data. Name the data lifetime.
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distributionFitter(lightbulb(:,1),lightbulb(:,3),[],'lifetime')

To open the Data dialog box, click Data. In the Manage data sets pane, click to highlight the
lifetime data set row. Finally, to open the View Data Set dialog box, click View. The lifetime data
appears in the second column and the corresponding censoring indicator appears in the third column.
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Input Arguments
y — Input data
array of scalar values | variable representing an array of scalar values

Input data, specified as an array of scalar values or a variable representing an array of such values.
Data Types: single | double

cens — Censoring indicator
zeros(n) (default) | vector of 0 and 1 values

Censoring indicator, specified as a vector of 0 and 1 values. The length of cens must be equal to the
length of y. If y(j) is censored, then (cens(j)==1). If y(j) is not censored, then (cens(j)==0).
If cens is omitted or empty, then no y values are censored.

If you have frequency data (freq) but not censoring data (cens), then you must specify empty
brackets ([]) for cens.
Data Types: single | double

freq — Frequency data
ones(n) (default) | vector of scalar values

Frequency data, specified as a vector of scalar values. The length of freq must be equal to the length
of y. If freq is omitted or empty, then all y values have a frequency of 1.
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If you have frequency data (freq) but not censoring data (cens), then you must specify empty
brackets ([]) for cens.
Data Types: single | double

dsname — Data set name
character vector | string scalar

Data set name, specified as a character vector enclosed in single quotes or a string scalar enclosed in
double quotes.

If you want to specify a data set name, but do not have censoring data (cens) or frequency data
(freq), then you must specify empty brackets ([]) for both freq and cens.
Example: 'MyData'
Data Types: char | string

Version History
Introduced before R2006a

See Also
distributionFitter | fitdist | makedist | Distribution Fitter

Topics
“Fit a Distribution Using the Distribution Fitter App” on page 5-72
“Model Data Using the Distribution Fitter App” on page 5-52
“Working with Probability Distributions” on page 5-3
“Supported Distributions” on page 5-16
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discardResiduals
Remove residuals from Cox model

Syntax
compactCoxMdl = discardResiduals(coxMdl)

Description
compactCoxMdl = discardResiduals(coxMdl) creates a Cox proportional hazards model with
an empty Residuals property. For models trained on many data points, removing the residuals
yields a significantly more compact object.

Examples

Save Memory by Discarding Residuals

Create a Cox proportional hazards model from the lightbulb data set. For details of this data set,
see “Survivor Functions for Two Groups” on page 15-22.

load('lightbulb.mat');
bulbmodel = fitcox(lightbulb(:,2),lightbulb(:,1),...
    'Censoring',lightbulb(:,3));

Examine the memory used by bulbmodel.

S1 = whos('bulbmodel');
disp(S1.bytes)

       13912

Remove the residuals from bulbmodel and examine the memory savings.

bulbmodel = discardResiduals(bulbmodel);
S2 = whos('bulbmodel');
disp(S2.bytes/S1.bytes)

    0.4986

Removing the residuals lowers the memory usage by about half.

Input Arguments
coxMdl — Fitted Cox proportional hazards model
CoxModel object

Fitted Cox proportional hazards model, specified as a CoxModel object. Create coxMdl using
fitcox.
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Output Arguments
compactCoxMdl — Cox proportional hazards model without residuals
CoxModel object

Cox proportional hazards model without residuals, returned as a CoxModel object. Typically, set
compactCoxMdl to the same name as coxMdl to obtain the original object without the residuals:

coxMdl = discardResiduals(coxMdl);

Version History
Introduced in R2022b

See Also
fitcox | CoxModel

Topics
“Cox Proportional Hazards Model Object” on page 15-39
“Analysis of Lifetime Data”
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discardSupportVectors
Package: 

Discard support vectors of linear SVM binary learners in ECOC model

Syntax
Mdl = discardSupportVectors(MdlSV)

Description
Mdl = discardSupportVectors(MdlSV) returns a trained multiclass error-correcting output
codes (ECOC) model (Mdl) from the trained multiclass ECOC model (MdlSV), which contains at least
one linear CompactClassificationSVM binary learner. Both Mdl and MdlSV are objects of the
same type, either ClassificationECOC objects or CompactClassificationECOC objects.

Mdl has these characteristics:

• The Alpha, SupportVectors, and SupportVectorLabels properties of all the linear SVM
binary learners on page 35-1362 are empty ([]).

• If you display any linear SVM binary learners stored in the cell array of trained models
Mdl.BinaryLearners, the software lists the Beta property instead of Alpha.

Examples

Retain and Discard Support Vectors of SVM Binary Learners

When you train an ECOC model with linear SVM binary learners, fitcecoc empties the Alpha,
SupportVectorLabels, and SupportVectors properties of the binary learners by default. You can
choose instead to retain the support vectors and related values, and then discard them from the
model later.

Load Fisher's iris data set.

load fisheriris
rng(1); % For reproducibility

Train an ECOC model using the entire data set. Specify retaining the support vectors by passing in
the appropriate SVM template.

t = templateSVM('SaveSupportVectors',true);
MdlSV = fitcecoc(meas,species,'Learners',t);

MdlSV is a trained ClassificationECOC model with linear SVM binary learners. By default,
fitcecoc implements a one-versus-one coding design, which requires three binary learners for
three-class learning.

Access the estimated α (alpha) values using dot notation.

alpha = cell(3,1);
alpha{1} = MdlSV.BinaryLearners{1}.Alpha;
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alpha{2} = MdlSV.BinaryLearners{2}.Alpha;
alpha{3} = MdlSV.BinaryLearners{3}.Alpha;
alpha

alpha=3×1 cell array
    { 3x1 double}
    { 3x1 double}
    {23x1 double}

alpha is a 3-by-1 cell array that stores the estimated values of α.

Discard the support vectors and related values from the ECOC model.

Mdl = discardSupportVectors(MdlSV);

Mdl is similar to MdlSV, except that the Alpha, SupportVectorLabels, and SupportVectors
properties of all the linear SVM binary learners are empty ([]).

areAllEmpty = @(x)isempty([x.Alpha x.SupportVectors x.SupportVectorLabels]);
cellfun(areAllEmpty,Mdl.BinaryLearners)

ans = 3x1 logical array

   1
   1
   1

Compare the sizes of the two ECOC models.

vars = whos('Mdl','MdlSV');
100*(1 - vars(1).bytes/vars(2).bytes)

ans = 4.7075

Mdl is about 5% smaller than MdlSV.

Reduce your memory usage by compacting Mdl and then clearing Mdl and MdlSV from the
workspace.

CompactMdl = compact(Mdl);
clear Mdl MdlSV;

Predict the label for a random row of the training data using the more efficient SVM model.

idx = randsample(size(meas,1),1)

idx = 63

predictedLabel = predict(CompactMdl,meas(idx,:))

predictedLabel = 1x1 cell array
    {'versicolor'}

trueLabel = species(idx)
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trueLabel = 1x1 cell array
    {'versicolor'}

Input Arguments
MdlSV — Full or compact, trained multiclass ECOC model
ClassificationECOC model | CompactClassificationECOC model

Full or compact, trained multiclass ECOC model containing at least one linear SVM binary learner,
specified as a ClassificationECOC or CompactClassificationECOC model.

More About
Linear SVM Binary Learner

In the context of this page, a linear support vector machine (SVM) binary learner is a binary SVM
classifier created using a linear kernel function. If the jth binary learner in an ECOC model Mdl is a
linear SVM binary learner, then Mdl.BinaryLearners{j} is a CompactClassificationSVM
object, where Mdl.BinaryLearners{j}.KernelParameters.Function is 'linear'.

Tips
• By default and for efficiency, fitcecoc empties the Alpha, SupportVectorLabels, and

SupportVectors properties for all linear SVM binary learners. fitcecoc lists Beta, rather than
Alpha, in the model display.

To store Alpha, SupportVectorLabels, and SupportVectors, pass a linear SVM template that
specifies storing support vectors to fitcecoc. For example, enter:

t = templateSVM('SaveSupportVectors',true)
Mdl = fitcecoc(X,Y,'Learners',t);

You can remove the support vectors and related values by passing the resulting
ClassificationECOC model to discardSupportVectors.

Algorithms
predict and resubPredict estimate SVM scores f(x) for each linear SVM binary learner in an
ECOC model using

f (x) = x′β + b .

β is the Beta property and b is the Bias property of the binary learners. You can access these
properties for each linear SVM binary learner in the cell array Mdl.BinaryLearners. For more
details on the SVM score calculation, see “Support Vector Machines for Binary Classification” on
page 35-2207.

Version History
Introduced in R2015a
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Extended Capabilities
GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

This function fully supports GPU arrays. For more information, see “Run MATLAB Functions on a
GPU” (Parallel Computing Toolbox).

See Also
ClassificationSVM | fitcsvm | fitcecoc | ClassificationECOC |
CompactClassificationECOC | discardSupportVectors | templateSVM
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discardSupportVectors
Package: classreg.learning.classif

Discard support vectors for linear support vector machine (SVM) classifier

Syntax
Mdl = discardSupportVectors(MdlSV)

Description
Mdl = discardSupportVectors(MdlSV) returns the trained, linear support vector machine
(SVM) model Mdl. Both Mdl and the trained, linear SVM model MdlSV are the same type of object.
That is, they both are either ClassificationSVM objects or CompactClassificationSVM objects.
However, Mdl and MdlSV differ in the following ways:

• The Alpha, SupportVectors, and SupportVectorLabels properties are empty ([]) in Mdl.
• If you display Mdl, the software lists the Beta property instead of Alpha.

Examples

Discard Support Vectors

Create a linear SVM model that is more memory-efficient by discarding support vectors and other
related parameters.

Load the ionosphere data set.

load ionosphere

Train a linear SVM model using the entire data set.

MdlSV = fitcsvm(X,Y)

MdlSV = 
  ClassificationSVM
             ResponseName: 'Y'
    CategoricalPredictors: []
               ClassNames: {'b'  'g'}
           ScoreTransform: 'none'
          NumObservations: 351
                    Alpha: [103x1 double]
                     Bias: -3.8828
         KernelParameters: [1x1 struct]
           BoxConstraints: [351x1 double]
          ConvergenceInfo: [1x1 struct]
          IsSupportVector: [351x1 logical]
                   Solver: 'SMO'

35 Functions

35-1364



  Properties, Methods

Display the number of support vectors in MdlSV.

numSV = size(MdlSV.SupportVectors,1)

numSV = 103

Display the number of predictor variables in X.

p = size(X,2)

p = 34

By default, fitcsvm trains a linear SVM model for two-class learning. The software lists Alpha in the
display. The model includes 103 support vectors and 34 predictors. If you discard the support vectors,
the resulting model consumes less memory.

Discard the support vectors and other related parameters.

Mdl = discardSupportVectors(MdlSV)

Mdl = 
  ClassificationSVM
             ResponseName: 'Y'
    CategoricalPredictors: []
               ClassNames: {'b'  'g'}
           ScoreTransform: 'none'
          NumObservations: 351
                     Beta: [34x1 double]
                     Bias: -3.8828
         KernelParameters: [1x1 struct]
           BoxConstraints: [351x1 double]
          ConvergenceInfo: [1x1 struct]
          IsSupportVector: [351x1 logical]
                   Solver: 'SMO'

  Properties, Methods

Display the coefficients in Mdl.

Mdl.Alpha

ans =

     []

Display the support vectors in Mdl.

Mdl.SupportVectors

ans =

     []

Display the support vector class labels in Mdl.
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Mdl.SupportVectorLabels

ans =

     []

The software lists Beta in the display instead of Alpha. The Alpha, SupportVectors, and
SupportVectorLabels properties are empty.

Compare the sizes of the models.

vars = whos('MdlSV','Mdl');
100*(1 - vars(1).bytes/vars(2).bytes)

ans = 20.5503

Mdl is about 20% smaller than MdlSV.

Remove MdlSV from the workspace.

clear MdlSV

Reduce Memory Consumption of SVM Models

Compact an SVM model by discarding the stored support vectors and other related estimates. Predict
the label for a row of the training data by using the compacted model.

Load the ionosphere data set.

load ionosphere
rng(1); % For reproducibility

Train an SVM model using the default options.

MdlSV = fitcsvm(X,Y);

MdlSV is a ClassificationSVM model containing nonempty values for its Alpha,
SupportVectors, and SupportVectorLabels properties.

Reduce the size of the SVM model by discarding the training data, support vectors, and related
estimates.

CMdlSV = compact(MdlSV);               % Discard training data
CMdl = discardSupportVectors(CMdlSV);  % Discard support vectors

CMdl is a CompactClassificationSVM model.

Compare the sizes of the SVM models MdlSV and CMdl.

vars = whos('MdlSV','CMdl');
100*(1 - vars(1).bytes/vars(2).bytes)

ans = 96.8174

The compacted model CMdl consumes much less memory than the full model.
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Predict the label for a random row of the training data by using CMdl. The predict function accepts
compacted SVM models, and, for linear SVM models, does not require the Alpha, SupportVectors,
and SupportVectorLabels properties to predict labels for new observations.

idx = randsample(size(X,1),1)

idx = 147

predictedLabel = predict(CMdl,X(idx,:))

predictedLabel = 1x1 cell array
    {'b'}

trueLabel = Y(idx)

trueLabel = 1x1 cell array
    {'b'}

Input Arguments
MdlSV — Trained, linear SVM model
ClassificationSVM model | CompactClassificationSVM model

Trained, linear SVM model, specified as a ClassificationSVM or CompactClassificationSVM
model.

If the field MdlSV.KernelParameters.Function is not 'linear' (that is, MdlSV is not a linear
SVM model), the software returns an error.

Tips
• For a trained, linear SVM model, the SupportVectors property is an nsv-by-p matrix. nsv is the

number of support vectors (at most the training sample size) and p is the number of predictors, or
features. The Alpha and SupportVectorLabels properties are vectors with nsv elements. These
properties can be large for complex data sets containing many observations or examples. The
Beta property is a vector with p elements.

• If the trained SVM model has many support vectors, use discardSupportVectors to reduce the
amount of space consumed by the trained, linear SVM model. You can display the size of the
support vector matrix by entering size(MdlSV.SupportVectors).

Algorithms
predict and resubPredict estimate SVM scores f(x), and subsequently label and estimate
posterior probabilities using

f (x) = x′β + b .

β is Mdl.Beta and b is Mdl.Bias, that is, the Beta and Bias properties of Mdl, respectively. For
more details, see “Support Vector Machines for Binary Classification” on page 35-2207.
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Version History
Introduced in R2015a

Extended Capabilities
GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

This function fully supports GPU arrays. For more information, see “Run MATLAB Functions on a
GPU” (Parallel Computing Toolbox).

See Also
ClassificationSVM | CompactClassificationSVM | fitcsvm | ClassificationECOC |
discardSupportVectors | templateSVM
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discardSupportVectors
Discard support vectors

Syntax
mdlOut = discardSupportVectors(mdl)

Description
mdlOut = discardSupportVectors(mdl) returns the trained, linear support vector machine
(SVM) regression model mdlOut, which is similar to the trained, linear SVM regression model mdl,
except:

• The Alpha and SupportVectors properties are empty ([]).
• If you display mdlOut, the software lists the Beta property instead of the Alpha property.

Input Arguments
mdl — Trained, linear SVM regression model
RegressionSVM model | CompactRegressionSVM model

Trained, linear SVM regression model, specified as a RegressionSVM or CompactRegressionSVM
model.

If you train the model using a kernel function that is not linear (i.e., if the field
mdl.KernelFunction is something other than 'linear'), the software returns an error. You can
only discard support vectors for linear models.

Output Arguments
mdlOut — Trained, linear SVM regression model
RegressionSVM model | CompactRegressionSVM model

Trained, linear SVM regression model, returned as a RegressionSVM or CompactRegressionSVM
model. mdlOut is the same type as mdl.

After discarding the support vectors, the properties Alpha and SupportVectors are empty ([]).
The software lists the property Beta in its display, and does not list the property Alpha. The
predict and resubPredict methods compute predicted responses using the coefficients stored in
the Beta property.

Examples

Discard Support Vectors for SVM Regression Model

This model shows how to reduce the disk space used by a trained, linear SVM regression model by
discarding the support vectors and other related parameters.
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Load the carsmall data set. Specify Horsepower and Weight as the predictor variables (X), and
MPG as the response variable (Y).

load carsmall
X = [Horsepower,Weight];
Y = MPG;

Train a linear SVM regression model, standardizing the data. Display the number of support vectors.

mdl = fitrsvm(X,Y,'Standardize',true)
numSV = size(mdl.SupportVectors,1)

mdl = 

  RegressionSVM
           PredictorNames: {'x1'  'x2'}
             ResponseName: 'Y'
    CategoricalPredictors: []
        ResponseTransform: 'none'
                    Alpha: [77x1 double]
                     Bias: 22.9131
         KernelParameters: [1x1 struct]
                       Mu: [109.3441 2.9625e+03]
                    Sigma: [45.3545 805.9668]
          NumObservations: 93
           BoxConstraints: [93x1 double]
          ConvergenceInfo: [1x1 struct]
          IsSupportVector: [93x1 logical]
                   Solver: 'SMO'

  Properties, Methods

numSV =

    77

By default, fitrsvm trains a linear SVM regression model. The software lists Alpha in the display.
The model has 77 support vectors.

Note that the predictor and response variables contain several NaN values. When training a model,
fitrsvm will remove rows that contain NaN values from both the predictor and response data. As a
result, the trained model uses only 93 of the 100 total observations contained in the sample data.

Discard the support vectors and other related parameters.

mdlOut = discardSupportVectors(mdl)
mdlOut.Alpha
mdlOut.SupportVectors

mdlOut = 

  RegressionSVM
           PredictorNames: {'x1'  'x2'}
             ResponseName: 'Y'
    CategoricalPredictors: []
        ResponseTransform: 'none'
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                     Beta: [2x1 double]
                     Bias: 22.9131
         KernelParameters: [1x1 struct]
                       Mu: [109.3441 2.9625e+03]
                    Sigma: [45.3545 805.9668]
          NumObservations: 93
           BoxConstraints: [93x1 double]
          ConvergenceInfo: [1x1 struct]
          IsSupportVector: [93x1 logical]
                   Solver: 'SMO'

  Properties, Methods

ans =

     []

ans =

     []

The software lists Beta in the display instead of Alpha. The Alpha and SupportVectors properties
are empty.

Compare the sizes of the models.

vars = whos('mdl','mdlOut');
[vars(1).bytes,vars(2).bytes]

ans =

       15004       13156

mdlOut consumes less memory than mdl because it does not store the support vectors.

Reduce Memory Consumption of SVM Regression Model

This example shows how to reduce the memory consumption of a full, trained SVM regression model
by compacting the model and discarding the support vectors.

Load the carsmall sample data.

load carsmall
rng default  % for reproducibility

Train a linear SVM regression model using Weight as the predictor variable and MPG as the response
variable. Standardize the data.

mdl = fitrsvm(Weight,MPG,'Standardize',true);

Note that MPG contains several NaN values. When training a model, fitrsvm will remove rows that
contain NaN values from both the predictor and response data. As a result, the trained model uses
only 94 of the 100 total observations contained in the sample data.
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Compact the regression model to discard the training data and some information related to the
training process.

compactMdl = compact(mdl);

compactMdl is a CompactRegressionSVM model that has the same parameters, support vectors,
and related estimates as mdl, but no longer stores the training data.

Discard the support vectors and related estimates for the compacted model.

mdlOut = discardSupportVectors(compactMdl);

mdlOut is a CompactRegressionSVM model that has the same parameters as mdl and compactMdl,
but no longer stores the support vectors and related estimates.

Compare the sizes of the three SVM regression models, compactMdl, mdl, and mdlOut.

vars = whos('compactMdl','mdl','mdlOut');
[vars(1).bytes,vars(2).bytes,vars(3).bytes]

ans =

        3601       13727        2305

The compacted model compactMdl consumes 3601 bytes of memory, while the full model mdl
consumes 13727 bytes of memory. The model mdlOut, which also discards the support vectors,
consumes 2305 bytes of memory.

Tips
For a trained, linear SVM regression model, the SupportVectors property is an nsv-by-p matrix. nsv
is the number of support vectors (at most the training sample size) and p is the number of predictor
variables. If any of the predictors are categorical, then p includes the number of dummy variables
necessary to account for all of the categorical predictor levels. The Alpha property is a vector with
nsv elements.

The SupportVectors and Alpha properties can be large for complex data sets that contain many
observations or examples. However, the Beta property is a vector with p elements, which may be
considerably smaller. You can use a trained SVM regression model to predict response values even if
you discard the support vectors because the predict and resubPredict methods use Beta to
compute the predicted responses.

If the trained, linear SVM regression model has many support vectors, use
discardSupportVectors to reduce the amount of disk space that the trained, linear SVM
regression model consumes. You can display the size of the support vector matrix by entering
size(mdlIn.SupportVectors).

Algorithms
The predict and resubPredict estimate response values using the formula

f x = X
S β + β0 ,

where:
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• β is the Beta value, stored as mdl.Beta.
• β0 is the bias value, stored as mdl.Bias.
• X is the training data.
• S is the kernel scale value, stored as mdl.KernelParameters.Scale.

In this way, the software can use the value of mdl.Beta to make predictions even after discarding
the support vectors.

Version History
Introduced in R2015b

See Also
fitrsvm | RegressionSVM | CompactRegressionSVM | predict | resubPredict
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disp
Class: dataset

(Not Recommended) Display dataset array

Note The dataset data type is not recommended. To work with heterogeneous data, use the
MATLAB® table data type instead. See MATLAB table documentation for more information.

Syntax
disp(ds)

Description
disp(ds) prints the dataset array ds, including variable names and observation names (if present),
without printing the dataset name. In all other ways it's the same as leaving the semicolon off an
expression.

For numeric or categorical variables that are 2-D and have three or fewer columns, disp prints the
actual data using either short g, long g, or bank format, depending on the current command line
setting. Otherwise, disp prints the size and type of each dataset element.

For character variables that are 2-D and 10 or fewer characters wide, disp prints quoted text.
Otherwise, disp prints the size and type of each dataset element.

For cell variables that are 2-D and have three or fewer columns, disp prints the contents of each cell
(or its size and type if too large). Otherwise, disp prints the size of each dataset element.

For time series variables, disp prints columns for both the time and the data. If the variable is 2-D
and has three or fewer columns, disp prints the actual data Otherwise, disp prints the size and type
of each dataset element.

For other types of variables, disp prints the size and type of each dataset element.

See Also
dataset | display | format
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disp
Class: GeneralizedLinearMixedModel

Display generalized linear mixed-effects model

Syntax
disp(glme)

Description
disp(glme) displays fitted generalized linear mixed-effects model glme.

Input Arguments
glme — Generalized linear mixed-effects model
GeneralizedLinearMixedModel object

Generalized linear mixed-effects model, specified as a GeneralizedLinearMixedModel object. For
properties and methods of this object, see GeneralizedLinearMixedModel.

Examples

Display a Generalized Linear Mixed-Effects Model

Load the sample data.

load mfr

This simulated data is from a manufacturing company that operates 50 factories across the world,
with each factory running a batch process to create a finished product. The company wants to
decrease the number of defects in each batch, so it developed a new manufacturing process. To test
the effectiveness of the new process, the company selected 20 of its factories at random to participate
in an experiment: Ten factories implemented the new process, while the other ten continued to run
the old process. In each of the 20 factories, the company ran five batches (for a total of 100 batches)
and recorded the following data:

• Flag to indicate whether the batch used the new process (newprocess)
• Processing time for each batch, in hours (time)
• Temperature of the batch, in degrees Celsius (temp)
• Categorical variable indicating the supplier of the chemical used in the batch (supplier)
• Number of defects in the batch (defects)

The data also includes time_dev and temp_dev, which represent the absolute deviation of time and
temperature, respectively, from the process standard of 3 hours at 20 degrees Celsius.

Fit a generalized linear mixed-effects model using newprocess, time_dev, temp_dev, and
supplier as fixed-effects predictors. Include a random-effects term for intercept grouped by
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factory, to account for quality differences that might exist due to factory-specific variations. The
response variable defects has a Poisson distribution, and the appropriate link function for this
model is log. Use the Laplace fit method to estimate the coefficients. Specify the dummy variable
encoding as 'effects', so the dummy variable coefficients sum to 0.

The number of defects can be modeled using a Poisson distribution

defectsi j ∼ Poisson(μi j)

This corresponds to the generalized linear mixed-effects model

log(μi j) = β0 + β1newprocessi j + β2time_devi j + β3temp_devi j + β4supplier_Ci j + β5supplier_Bi j
+ bi,

where

• defectsi j is the number of defects observed in the batch produced by factory i during batch j.
• μi j is the mean number of defects corresponding to factory i (where i = 1, 2, . . . , 20) during batch

j (where j = 1, 2, . . . , 5).
• newprocessi j, time_devi j, and temp_devi j are the measurements for each variable that correspond

to factory i during batch j. For example, newprocessi j indicates whether the batch produced by
factory i during batch j used the new process.

• supplier_Ci j and supplier_Bi j are dummy variables that use effects (sum-to-zero) coding to indicate
whether company C or B, respectively, supplied the process chemicals for the batch produced by
factory i during batch j.

• bi ∼ N(0, σb
2) is a random-effects intercept for each factory i that accounts for factory-specific

variation in quality.

glme = fitglme(mfr,'defects ~ 1 + newprocess + time_dev + temp_dev + supplier + (1|factory)','Distribution','Poisson','Link','log','FitMethod','Laplace','DummyVarCoding','effects');

Display the model.

disp(glme)

Generalized linear mixed-effects model fit by ML

Model information:
    Number of observations             100
    Fixed effects coefficients           6
    Random effects coefficients         20
    Covariance parameters                1
    Distribution                    Poisson
    Link                            Log   
    FitMethod                       Laplace

Formula:
    defects ~ 1 + newprocess + time_dev + temp_dev + supplier + (1 | factory)

Model fit statistics:
    AIC       BIC       LogLikelihood    Deviance
    416.35    434.58    -201.17          402.35  

Fixed effects coefficients (95% CIs):
    Name                   Estimate     SE          tStat       DF    pValue    
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    {'(Intercept)'}           1.4689     0.15988      9.1875    94    9.8194e-15
    {'newprocess' }         -0.36766     0.17755     -2.0708    94      0.041122
    {'time_dev'   }        -0.094521     0.82849    -0.11409    94       0.90941
    {'temp_dev'   }         -0.28317      0.9617    -0.29444    94       0.76907
    {'supplier_C' }        -0.071868    0.078024     -0.9211    94       0.35936
    {'supplier_B' }         0.071072     0.07739     0.91836    94       0.36078

    Lower        Upper    
       1.1515       1.7864
     -0.72019    -0.015134
      -1.7395       1.5505
      -2.1926       1.6263
     -0.22679     0.083051
    -0.082588      0.22473

Random effects covariance parameters:
Group: factory (20 Levels)
    Name1                  Name2                  Type           Estimate
    {'(Intercept)'}        {'(Intercept)'}        {'std'}        0.31381 

Group: Error
    Name                        Estimate
    {'sqrt(Dispersion)'}        1       

The Model information table displays the total number of observations in the sample data (100),
the number of fixed- and random-effects coefficients (6 and 20, respectively), and the number of
covariance parameters (1). It also indicates that the response variable has a Poisson distribution,
the link function is Log, and the fit method is Laplace.

Formula indicates the model specification using Wilkinson's notation.

The Model fit statistics table displays statistics used to assess the goodness of fit of the model.
This includes the Akaike information criterion (AIC), Bayesian information criterion (BIC) values, log
likelihood (LogLikelihood), and deviance (Deviance) values.

The Fixed effects coefficients table indicates that fitglme returned 95% confidence
intervals. It contains one row for each fixed-effects predictor, and each column contains statistics
corresponding to that predictor. Column 1 (Name) contains the name of each fixed-effects coefficient,
column 2 (Estimate) contains its estimated value, and column 3 (SE) contains the standard error of
the coefficient. Column 4 (tStat) contains the t-statistic for a hypothesis test that the coefficient is
equal to 0. Column 5 (DF) and column 6 (pValue) contain the degrees of freedom and p-value that
correspond to the t-statistic, respectively. The last two columns (Lower and Upper) display the lower
and upper limits, respectively, of the 95% confidence interval for each fixed-effects coefficient.

Random effects covariance parameters displays a table for each grouping variable (here, only
factory), including its total number of levels (20), and the type and estimate of the covariance
parameter. Here, std indicates that fitglme returns the standard deviation of the random effect
associated with the factory predictor, which has an estimated value of 0.31381. It also displays a table
containing the error parameter type (here, the square root of the dispersion parameter), and its
estimated value of 1.

The standard display generated by fitglme does not provide confidence intervals for the random-
effects parameters. To compute and display these values, use covarianceParameters.
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More About
Akaike and Bayesian Information Criteria

The Akaike information criterion (AIC) is AIC = –2logLM + 2(param).

logLM depends on the method used to fit the model.

• If you use 'Laplace' or 'ApproximateLaplace', then logLM is the maximized log likelihood.
• If you use 'MPL', then logLM is the maximized log likelihood of the pseudo data from the final

pseudo likelihood iteration.
• If you use 'REMPL', then logLM is the maximized restricted log likelihood of the pseudo data from

the final pseudo likelihood iteration.

param is the total number of parameters estimated in the model. For most GLME models, param is
equal to nc + p + 1, where nc is the total number of parameters in the random-effects covariance,
excluding the residual variance, and p is the number of fixed-effects coefficients. However, if the
dispersion parameter is fixed at 1.0 for binomial or Poisson distributions, then param is equal to (nc +
p).

The Bayesian information criterion (BIC) is BIC = –2*logLM + ln(neff)(param).

logLM depends on the method used to fit the model.

• If you use 'Laplace' or 'ApproximateLaplace', then logLM is the maximized log likelihood.
• If you use 'MPL', then logLM is the maximized log likelihood of the pseudo data from the final

pseudo likelihood iteration.
• If you use 'REMPL', then logLM is the maximized restricted log likelihood of the pseudo data from

the final pseudo likelihood iteration.

neff is the effective number of observations.

• If you use 'MPL', 'Laplace', or 'ApproximateLaplace', then neff = n, where n is the number
of observations.

• If you use 'REMPL', then neff = n – p.

param is the total number of parameters estimated in the model. For most GLME models, param is
equal to nc + p + 1, where nc is the total number of parameters in the random-effects covariance,
excluding the residual variance, and p is the number of fixed-effects coefficients. However, if the
dispersion parameter is fixed at 1.0 for binomial or Poisson distributions, then param is equal to (nc +
p).

A lower value of deviance indicates a better fit. As the value of deviance decreases, both AIC and BIC
tend to decrease. Both AIC and BIC also include penalty terms based on the number of parameters
estimated, p. So, when the number of parameters increase, the values of AIC and BIC tend to
increase as well. When comparing different models, the model with the lowest AIC or BIC value is
considered as the best fitting model.

For models fitted using 'MPL' and 'REMPL', AIC and BIC are based on the log likelihood (or
restricted log likelihood) of pseudo data from the final pseudo likelihood iteration. Therefore, a direct
comparison of AIC and BIC values between models fitted using 'MPL' and 'REMPL' is not
appropriate.
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See Also
GeneralizedLinearMixedModel | fitglme | covarianceParameters
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disp
Class: LinearMixedModel

Display linear mixed-effects model

Syntax
display(lme)

Description
display(lme) displays the fitted linear mixed-effects model lme.

Input Arguments
lme — Linear mixed-effects model
LinearMixedModel object

Linear mixed-effects model, specified as a LinearMixedModel object constructed using fitlme or
fitlmematrix.

Examples

Randomized Block Design

Load the sample data.

load('shift.mat');

The dataset array shows the absolute deviations from the target quality characteristic measured from
the products that five operators manufacture during three shifts, morning, evening, and night. This is
a randomized block design, where the operators are the blocks. The experiment is designed to study
the impact of the time of shift on the performance. The performance measure is the absolute
deviation of the quality characteristics from the target value. This is simulated data.

Shift and Operator are nominal variables.

shift.Shift = nominal(shift.Shift);
shift.Operator = nominal(shift.Operator);

Fit a linear mixed-effects model with a random intercept grouped by operator to assess if
performance significantly differs according to the time of the shift.

lme = fitlme(shift,'QCDev ~ Shift + (1|Operator)');

Display the model.

disp(lme)

Linear mixed-effects model fit by ML
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Model information:
    Number of observations              15
    Fixed effects coefficients           3
    Random effects coefficients          5
    Covariance parameters                2

Formula:
    QCDev ~ 1 + Shift + (1 | Operator)

Model fit statistics:
    AIC       BIC       LogLikelihood    Deviance
    59.012    62.552    -24.506          49.012  

Fixed effects coefficients (95% CIs):
    Name                     Estimate    SE         tStat       DF    pValue   
    {'(Intercept)'  }         3.1196     0.88681      3.5178    12    0.0042407
    {'Shift_Morning'}        -0.3868     0.48344    -0.80009    12      0.43921
    {'Shift_Night'  }         1.9856     0.48344      4.1072    12    0.0014535

    Lower      Upper  
     1.1874     5.0518
    -1.4401    0.66653
    0.93227     3.0389

Random effects covariance parameters (95% CIs):
Group: Operator (5 Levels)
    Name1                  Name2                  Type           Estimate
    {'(Intercept)'}        {'(Intercept)'}        {'std'}        1.8297  

    Lower      Upper 
    0.94915    3.5272

Group: Error
    Name               Estimate    Lower      Upper 
    {'Res Std'}        0.76439     0.49315    1.1848

This display includes the model performance statistics, “Akaike and Bayesian Information Criteria” on
page 35-1382, “Akaike and Bayesian Information Criteria” on page 35-1382, loglikelihood, and
“Deviance” on page 35-1382.

The fixed-effects coefficients table includes the names and estimates of the coefficients in the first
two columns. The third column SE shows the standard errors of the coefficients. The column tStat
includes the t-statistic values that correspond to each coefficient. DF is the residual degrees of
freedom, and the pValue is the p-value that corresponds to the corresponding t-statistic value. The
columns Lower and Upper display the lower and upper limits of a 95% confidence interval for each
fixed-effects coefficient.

The first table for the random effects shows the types and the estimates of the random effects
covariance parameters, with the lower and upper limits of a 95% confidence interval for each
parameter. The display also shows the name of the grouping variable, operator, and the total number
of levels, 5.

The second table for the random effects shows the estimate of the observation error, with the lower
and upper limits of a 95% confidence interval.
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More About
Akaike and Bayesian Information Criteria

Akaike information criterion (AIC) is AIC = –2*logLM + 2*(nc + p + 1), where logLM is the maximized
log likelihood (or maximized restricted log likelihood) of the model, and nc + p + 1 is the number of
parameters estimated in the model. p is the number of fixed-effects coefficients, and nc is the total
number of parameters in the random-effects covariance excluding the residual variance.

Bayesian information criterion (BIC) is BIC = –2*logLM + ln(neff)*(nc + p + 1), where logLM is the
maximized log likelihood (or maximized restricted log likelihood) of the model, neff is the effective
number of observations, and (nc + p + 1) is the number of parameters estimated in the model.

• If the fitting method is maximum likelihood (ML), then neff = n, where n is the number of
observations.

• If the fitting method is restricted maximum likelihood (REML), then neff = n – p.

A lower value of deviance indicates a better fit. As the value of deviance decreases, both AIC and BIC
tend to decrease. Both AIC and BIC also include penalty terms based on the number of parameters
estimated, p. So, when the number of parameters increase, the values of AIC and BIC tend to
increase as well. When comparing different models, the model with the lowest AIC or BIC value is
considered as the best fitting model.

Deviance

LinearMixedModel computes the deviance of model M as minus two times the loglikelihood of that
model. Let LM denote the maximum value of the likelihood function for model M. Then, the deviance
of model M is

−2 * logLM .

A lower value of deviance indicates a better fit. Suppose M1 and M2 are two different models, where
M1 is nested in M2. Then, the fit of the models can be assessed by comparing the deviances Dev1 and
Dev2 of these models. The difference of the deviances is

Dev = Dev1− Dev2 = 2 logLM2− logLM1 .

Usually, the asymptotic distribution of this difference has a chi-square distribution with degrees of
freedom v equal to the number of parameters that are estimated in one model but fixed (typically at
0) in the other. That is, it is equal to the difference in the number of parameters estimated in M1 and
M2. You can get the p-value for this test using 1 – chi2cdf(Dev,V), where Dev = Dev2 – Dev1.

However, in mixed-effects models, when some variance components fall on the boundary of the
parameter space, the asymptotic distribution of this difference is more complicated. For example,
consider the hypotheses

H0: D =
D11 0
0 0

, D is a q-by-q symmetric positive semidefinite matrix.

H1: D is a (q+1)-by-(q+1) symmetric positive semidefinite matrix.

That is, H1 states that the last row and column of D are different from zero. Here, the bigger model
M2 has q + 1 parameters and the smaller model M1 has q parameters. And Dev has a 50:50 mixture of
χ2

q and χ2
(q + 1) distributions (Stram and Lee, 1994).
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See Also
LinearMixedModel | fitlme | fitlmematrix
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disp
Class: NonLinearModel

Display nonlinear regression model

Syntax
disp(mdl)

Description
disp(mdl) displays the mdl nonlinear model at the command line.

Input Arguments
mdl

Nonlinear regression model, constructed by fitnlm.

Examples

Display a Nonlinear Regression Model

Create and display a nonlinear regression model.

Load the reaction data, and specify both a model function and starting values for the iterations.

load reaction
modelfun = 'rate~(b1*x2-x3/b5)/(1+b2*x1+b3*x2+b4*x3)';
beta0 = [1 .05 .02 .1 2];

Create a model of the data.

mdl = fitnlm(reactants,rate,modelfun,beta0);

Display the model.

disp(mdl)

Nonlinear regression model:
    rate ~ (b1*x2 - x3/b5)/(1 + b2*x1 + b3*x2 + b4*x3)

Estimated Coefficients:
          Estimate       SE       tStat     pValue 
          ________    ________    ______    _______

    b1      1.2526     0.86701    1.4447    0.18654
    b2    0.062776    0.043561    1.4411    0.18753
    b3    0.040048    0.030885    1.2967    0.23089
    b4     0.11242    0.075157    1.4957    0.17309
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    b5      1.1914     0.83671    1.4239     0.1923

Number of observations: 13, Error degrees of freedom: 8
Root Mean Squared Error: 0.193
R-Squared: 0.999,  Adjusted R-Squared 0.998
F-statistic vs. zero model: 3.91e+03, p-value = 2.54e-13

Alternatives
Enter mdl at the command line to obtain a display, where mdl is the name of your model.

See Also
NonLinearModel

Topics
“Nonlinear Regression” on page 13-2
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disp
Class: qrandstream

Display qrandstream object

Syntax
disp(q)

Description
disp(q) displays the quasi-random stream q, without printing the variable name. disp prints the
type and number of dimensions in the stream, and follows it with the list of point set properties.

See Also
qrandstream
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disparateImpactRemover
Remove disparate impact of sensitive attribute

Description
To try to create fairness in binary classification, you can use the disparateImpactRemover
function to remove or reduce the disparate impact of a sensitive attribute. Before training your
model, use the sensitive attribute to transform the continuous predictors in the training data set. The
function returns the transformed data set and a disparateImpactRemover object that contains the
transformation. Pass the transformed data set to an appropriate training function, such as fitcsvm,
and pass the object to the transform object function to apply the transformation to a new data set,
such as a test data set.

Note You must transform new data, such as test data, after training a model using
disparateImpactRemover. Otherwise, the predicted results are inaccurate.

Creation

Syntax
remover = disparateImpactRemover(Tbl,AttributeName)
[remover,transformedData] = disparateImpactRemover(Tbl,AttributeName)
[remover,transformedData] = disparateImpactRemover(X,attribute)
[remover,transformedData] = disparateImpactRemover( ___ ,Name=Value)

Description

remover = disparateImpactRemover(Tbl,AttributeName) removes the disparate impact of
the AttributeName sensitive attribute in the table Tbl by transforming the continuous predictors in
the data set Tbl. The returned disparateImpactRemover object (remover) stores the
transformation, which you can apply to new data. For more information, see “Algorithms” on page 35-
1401.

[remover,transformedData] = disparateImpactRemover(Tbl,AttributeName) also
returns the transformed predictor data transformedData, which corresponds to the data in Tbl.

Note that transformedData includes the sensitive attribute in this syntax. After using
disparateImpactRemover, avoid using the sensitive attribute as a separate predictor when
training your model.

[remover,transformedData] = disparateImpactRemover(X,attribute) uses the numeric
predictor data X and the sensitive attribute specified by attribute to transform the predictors.

[remover,transformedData] = disparateImpactRemover( ___ ,Name=Value) specifies
options using one or more name-value arguments in addition to any of the input argument
combinations in previous syntaxes. For example, you can specify the extent of the data transformation
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by using the RepairFraction name-value argument. A value of 1 indicates a full transformation,
and a value of 0 indicates no transformation.

Input Arguments

Tbl — Data set
table

Data set, specified as a table. Each row of Tbl corresponds to one observation, and each column
corresponds to one variable. When you use a table with disparateImpactRemover, the table must
include the sensitive attribute. The table can include additional variables, such as the response
variable. Multicolumn variables and cell arrays other than cell arrays of character vectors are not
allowed.

If Tbl contains numeric variables that you want disparateImpactRemover to ignore (such as
observation weights), you can specify the continuous numeric variables to transform by using the
PredictorNames name-value argument.
Data Types: table

AttributeName — Sensitive attribute name
name of variable in Tbl

Sensitive attribute name, specified as the name of a variable in Tbl. You must specify
AttributeName as a character vector or a string scalar. For example, if the sensitive attribute is
stored as Tbl.Attribute, then specify it as "Attribute".

The sensitive attribute must be a numeric vector, logical vector, character array, string array, cell
array of character vectors, or categorical vector.
Data Types: char | string

X — Predictor data
numeric matrix

Predictor data, specified as a numeric matrix. Each row of X corresponds to one observation, and
each column corresponds to one predictor variable. X and attribute must have the same number of
rows.

To specify the names of the predictors in the order of their appearance in X, use the
PredictorNames name-value argument.
Data Types: single | double

attribute — Sensitive attribute
numeric column vector | logical column vector | character array | string array | cell array of character
vectors | categorical column vector

Sensitive attribute, specified as a numeric column vector, logical column vector, character array,
string array, cell array of character vectors, or categorical column vector.

• If attribute is an array, then each row of the array must correspond to a group in the sensitive
attribute.

• attribute and X must have the same number of rows.

Data Types: single | double | logical | char | string | cell | categorical
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Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.
Example:
disparateImpactRemover(Tbl,"Age",PredictorNames=["Diastolic","Systolic"])
specifies to transform the Diastolic and Systolic variables in the table Tbl by using the Age
sensitive attribute in Tbl.

PredictorNames — Names of predictor variables to transform
string array of unique names | cell array of unique character vectors

Names of the predictor variables to transform, specified as a string array of unique names or cell
array of unique character vectors.

• If you supply Tbl, then you can use PredictorNames to specify which numeric predictor
variables to transform.

• If you supply X, then you can use PredictorNames to assign names to the predictor variables in
X.

Example: PredictorNames=["SepalLength","SepalWidth","PetalLength","PetalWidth"]
Data Types: string | cell

RepairFraction — Fraction of data transformation
1 (default) | numeric scalar in the range [0,1]

Fraction of the data transformation, specified as a numeric scalar in the range [0,1]. A value of 1
indicates a full transformation, and a value of 0 indicates no transformation.

A greater repair fraction can result in a greater loss in model prediction accuracy. For more
information, see [1].
Example: RepairFraction=0.5
Data Types: single | double

Output Arguments

remover — Predictor data transformer
disparateImpactRemover object

Predictor data transformer, returned as a disparateImpactRemover object. remover contains the
transformation of the remover.PredictorNames predictor variables with respect to the
remover.SensitiveAttribute variable.

transformedData — Transformed predictor data
table | numeric matrix

Transformed predictor data corresponding to the data in Tbl or X, returned as a table or numeric
matrix. Note that transformedData can include the sensitive attribute. After you use the
disparateImpactRemover function, avoid using the sensitive attribute as a separate predictor
when training your model.
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Properties
RepairFraction — Fraction of data transformation
numeric scalar in the range [0,1]

This property is read-only.

Fraction of the data transformation, returned as a numeric scalar in the range [0,1]. A value of 1
indicates a full transformation, and a value of 0 indicates no transformation.

If you want to adjust the repair fraction after creating a disparateImpactRemover object, specify
the RepairFraction name-value argument of the transform object function.
Data Types: single | double

PredictorNames — Names of transformed predictor variables
cell array of unique character vectors

This property is read-only.

Names of the transformed predictor variables, returned as a cell array of unique character vectors.
The order of the elements of PredictorNames corresponds to the order in which the predictor
names appear in the Tbl or X data.
Data Types: cell

SensitiveAttribute — Sensitive attribute
variable name | numeric column vector | logical column vector | character array | cell array of
character vectors | categorical column vector

This property is read-only.

Sensitive attribute, returned as a variable name, numeric column vector, logical column vector,
character array, cell array of character vectors, or categorical column vector.

• If you use a table to create the disparateImpactRemover object, then SensitiveAttribute
is the name of the sensitive attribute. The name is stored as a character vector.

• If you use a matrix to create the disparateImpactRemover object, then SensitiveAttribute
has the same size and data type as the sensitive attribute used to create the object. (The software
treats string arrays as cell arrays of character vectors.)

Data Types: single | double | logical | char | cell | categorical

Object Functions
transform Transform new predictor data to remove disparate impact

Examples

Reduce Disparate Impact of Predictions

Train a binary classifier, classify test data using the model, and compute the disparate impact for
each group in the sensitive attribute. To reduce the disparate impact values, use
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disparateImpactRemover, and then retrain the binary classifier. Transform the test data set,
reclassify the observations, and compute the disparate impact values.

Load the sample data census1994, which contains the training data adultdata and the test data
adulttest. The data sets consist of demographic information from the US Census Bureau that can
be used to predict whether an individual makes over $50,000 per year. Preview the first few rows of
the training data set.

load census1994
head(adultdata)

    age       workClass          fnlwgt      education    education_num       marital_status           occupation        relationship     race      sex      capital_gain    capital_loss    hours_per_week    native_country    salary
    ___    ________________    __________    _________    _____________    _____________________    _________________    _____________    _____    ______    ____________    ____________    ______________    ______________    ______

    39     State-gov                77516    Bachelors         13          Never-married            Adm-clerical         Not-in-family    White    Male          2174             0                40          United-States     <=50K 
    50     Self-emp-not-inc         83311    Bachelors         13          Married-civ-spouse       Exec-managerial      Husband          White    Male             0             0                13          United-States     <=50K 
    38     Private             2.1565e+05    HS-grad            9          Divorced                 Handlers-cleaners    Not-in-family    White    Male             0             0                40          United-States     <=50K 
    53     Private             2.3472e+05    11th               7          Married-civ-spouse       Handlers-cleaners    Husband          Black    Male             0             0                40          United-States     <=50K 
    28     Private             3.3841e+05    Bachelors         13          Married-civ-spouse       Prof-specialty       Wife             Black    Female           0             0                40          Cuba              <=50K 
    37     Private             2.8458e+05    Masters           14          Married-civ-spouse       Exec-managerial      Wife             White    Female           0             0                40          United-States     <=50K 
    49     Private             1.6019e+05    9th                5          Married-spouse-absent    Other-service        Not-in-family    Black    Female           0             0                16          Jamaica           <=50K 
    52     Self-emp-not-inc    2.0964e+05    HS-grad            9          Married-civ-spouse       Exec-managerial      Husband          White    Male             0             0                45          United-States     >50K  

Each row contains the demographic information for one adult. The last column salary shows
whether a person has a salary less than or equal to $50,000 per year or greater than $50,000 per
year.

Remove observations from adultdata and adulttest that contain missing values.

adultdata = rmmissing(adultdata);
adulttest = rmmissing(adulttest);

Specify the continuous numeric predictors to use for model training.

predictors = ["age","education_num","capital_gain","capital_loss", ...
    "hours_per_week"];

Train an ensemble classifier using the training set adultdata. Specify salary as the response
variable and fnlwgt as the observation weights. Because the training set is imbalanced, use the
RUSBoost algorithm. After training the model, predict the salary (class label) of the observations in
the test set adulttest.

rng("default") % For reproducibility
mdl = fitcensemble(adultdata,"salary",Weights="fnlwgt", ...
    PredictorNames=predictors,Method="RUSBoost");
labels = predict(mdl,adulttest);

Transform the training set predictors by using the race sensitive attribute.

[remover,newadultdata] = disparateImpactRemover(adultdata, ...
    "race",PredictorNames=predictors);
remover

remover = 
  disparateImpactRemover with properties:

        RepairFraction: 1
        PredictorNames: {1x5 cell}
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    SensitiveAttribute: 'race'

remover is a disparateImpactRemover object, which contains the transformation of the
remover.PredictorNames predictors with respect to the remover.SensitiveAttribute
variable.

Apply the same transformation stored in remover to the test set predictors. Note: You must
transform both the training and test data sets before passing them to a classifier.

newadulttest = transform(remover,adulttest, ...
    PredictorNames=predictors);

Train the same type of ensemble classifier as mdl, but use the transformed predictor data. As before,
predict the salary (class label) of the observations in the test set adulttest.

rng("default") % For reproducibility
newMdl = fitcensemble(newadultdata,"salary",Weights="fnlwgt", ...
    PredictorNames=predictors,Method="RUSBoost");
newLabels = predict(newMdl,newadulttest);

Compare the disparate impact values for the predictions made by the original model (mdl) and the
predictions made by the model trained with the transformed data (newMdl). For each group in the
sensitive attribute, the disparate impact value is the proportion of predictions in that group with a
positive class value (pg + ) divided by the proportion of predictions in the reference group with a
positive class value (pr + ). An ideal classifier makes predictions where, for each group, pg +  is close to
pr +  (that is, where the disparate impact value is close to 1).

Compute the disparate impact values for the mdl predictions made using the original predictor data.
Include the observation weights. You can use the report object function to display bias metrics, such
as disparate impact, that are stored in the evaluator object.

evaluator = fairnessMetrics(adulttest,"salary", ...
    SensitiveAttributeNames="race",Predictions=labels, ...
    Weights="fnlwgt");
evaluator.PositiveClass

ans = categorical
     >50K 

evaluator.ReferenceGroup

ans = 
'White'

report(evaluator,BiasMetrics="DisparateImpact")

ans=5×3 table
    SensitiveAttributeNames          Groups          DisparateImpact
    _______________________    __________________    _______________

             race              Amer-Indian-Eskimo        0.41702    
             race              Asian-Pac-Islander          1.719    
             race              Black                     0.60571    
             race              Other                     0.66958    
             race              White                           1    
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Several of the disparate impact values are below the industry standard of 0.8, and one value is above
1.25. These values indicate bias in the predictions with respect to the positive class >50K and the
sensitive attribute race.

Compute the disparate impact values for the newMdl predictions.

newEvaluator = fairnessMetrics(newadulttest,"salary", ...
    SensitiveAttributeNames="race",Predictions=newLabels, ...
    Weights="fnlwgt");
newEvaluator.PositiveClass

ans = categorical
     >50K 

newEvaluator.ReferenceGroup

ans = 
'White'

report(newEvaluator,BiasMetrics="DisparateImpact")

ans=5×3 table
    SensitiveAttributeNames          Groups          DisparateImpact
    _______________________    __________________    _______________

             race              Amer-Indian-Eskimo        0.92804    
             race              Asian-Pac-Islander         0.9697    
             race              Black                     0.66629    
             race              Other                     0.86039    
             race              White                           1    

The disparate impact values for the newMdl predictions are closer to 1 than the disparate impact
values for the mdl predictions. One value is still below 0.8.

Visually compare the disparate impact values by using a bar graph.

bar([evaluator.BiasMetrics.DisparateImpact, ...
    newEvaluator.BiasMetrics.DisparateImpact])
xticklabels(evaluator.BiasMetrics.Groups)
ylabel("Disparate Impact")
legend(["Original","Transformed"], ...
    Location="eastoutside")
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The disparateImpactRemover function seems to have improved the model predictions on the test
set with respect to the disparate impact metric.

Check whether the transformed predictors negatively affect the accuracy of the model predictions.
Compute the accuracy of the test set predictions for the two models mdl and newMdl.

accuracy = 1-loss(mdl,adulttest,"salary")

accuracy = 0.8024

newAccuracy = 1-loss(newMdl,newadulttest,"salary")

newAccuracy = 0.7955

The model trained using the transformed predictors (newMdl) achieves similar test set accuracy
compared to the model trained with the original predictors (mdl).

Understand and Visualize Disparate Impact Removal

Try to remove the disparate impact of a sensitive attribute by adjusting continuous numeric
predictors. Visualize the difference between the original and adjusted predictor values.

Suppose you want to create a binary classifier that predicts whether a patient is a smoker based on
the patient's diastolic and systolic blood pressure values. Also, you want to remove the disparate
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impact of the patient's gender on model predictions. Before training the model, you can use
disparateImpactRemover to transform the continuous predictor variables in your data set.

Load the patients data set, which contains medical information for 100 patients. Convert the
Gender and Smoker variables to categorical variables. Specify the descriptive category names
Smoker and Nonsmoker rather than 1 and 0.

load patients
Gender = categorical(Gender);
Smoker = categorical(Smoker,logical([1 0]), ...
    ["Smoker","Nonsmoker"]);

Create a matrix containing the continuous predictors Diastolic and Systolic.

X = [Diastolic,Systolic];

Find the observations in the two groups of the sensitive attribute Gender.

femaleIdx = Gender=="Female";
maleIdx = Gender=="Male";
femaleX = X(femaleIdx,:);
maleX = X(maleIdx,:);

Compute the Diastolic and Systolic quantiles for the two groups in the sensitive attribute.
Specify the number of quantiles to be the minimum number of group observations across the groups
in the sensitive attribute, provided that the number is smaller than 100.

t = tabulate(Gender);
t = array2table(t,VariableNames=["Value","Count","Percent"])

t=2×3 table
      Value       Count     Percent
    __________    ______    _______

    {'Female'}    {[53]}    {[53]} 
    {'Male'  }    {[47]}    {[47]} 

numQuantiles = min(100,min(t.Count{:}))

numQuantiles = 47

femaleQuantiles = quantile(femaleX,numQuantiles,1);
maleQuantiles = quantile(maleX,numQuantiles,1);

Compute the median quantiles across the two groups.

Q(:,:,1) = femaleQuantiles;
Q(:,:,2) = maleQuantiles;
medianQuantiles = median(Q,3);

Plot the results. Show the Diastolic quantiles in the left plot and the Systolic quantiles in the
right plot.

tiledlayout(1,2)

nexttile % Diastolic
plot(femaleQuantiles(:,1),1:numQuantiles)
hold on
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plot(maleQuantiles(:,1),1:numQuantiles)
plot(medianQuantiles(:,1),1:numQuantiles)
hold off
xlabel("Diastolic")
ylabel("Quantile")
legend(["Female","Male","Median"],Location="southeast")

nexttile % Systolic
plot(femaleQuantiles(:,2),1:numQuantiles)
hold on
plot(maleQuantiles(:,2),1:numQuantiles)
plot(medianQuantiles(:,2),1:numQuantiles)
hold off
xlabel("Systolic")
ylabel("Quantile")
legend(["Female","Male","Median"],Location="southeast")

For each predictor, the Female and Male quantiles differ. The disparateImpactRemover function
uses the median quantiles to adjust this difference.

Transform the Diastolic and Systolic predictors in X by using the Gender sensitive attribute.

[remover,newX] = disparateImpactRemover(X,Gender);
femaleNewX = newX(femaleIdx,:);
maleNewX = newX(maleIdx,:);
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Visualize the difference in the Diastolic distributions between the original values in X and the
transformed values in newX. Compute and display the probability density estimates by using the
ksdensity function.

tiledlayout(1,2)

nexttile
ksdensity(femaleX(:,1))
hold on
ksdensity(maleX(:,1))
hold off
xlabel("Diastolic")
ylabel("Probability Density Estimate")
title("Original")
legend(["Female","Male"])
ylim([0,0.07])

nexttile
ksdensity(femaleNewX{:,1})
hold on
ksdensity(maleNewX{:,1})
hold off
xlabel("Diastolic")
ylabel("Probability Density Estimate")
title("Transformed")
legend(["Female","Male"])
ylim([0,0.07])
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The disparateImpactRemover function transforms the values in the Diastolic predictor variable
so that the distribution of Female values and the distribution of Male values are similar.

You can now train a binary classifier using the adjusted predictor data. For this example, train a tree
classifier.

tree = fitctree(newX,Smoker)

tree = 
  ClassificationTree
           PredictorNames: {'x1'  'x2'}
             ResponseName: 'Y'
    CategoricalPredictors: []
               ClassNames: [Smoker    Nonsmoker]
           ScoreTransform: 'none'
          NumObservations: 100

  Properties, Methods

Note: You must transform new data sets before passing them to the classifier for prediction.

Randomly sample 10 observations from X. Transform the values using the remover object and the
transform object function. Then, predict the smoker status for the observations.

rng("default") % For reproducibility
testIdx = randsample(size(X,1),10,1);
testX = transform(remover,X(testIdx,:),Gender(testIdx));
label = predict(tree,testX)

label = 10x1 categorical
     Nonsmoker 
     Smoker 
     Nonsmoker 
     Nonsmoker 
     Nonsmoker 
     Nonsmoker 
     Nonsmoker 
     Smoker 
     Smoker 
     Smoker 

Specify Different Repair Fractions

Specify the extent of the transformation of the continuous numeric predictors with respect to a
sensitive attribute. Use the RepairFraction name-value argument of the
disparateImpactRemover function.

Load the patients data set, which contains medical information for 100 patients. Convert the
Gender and Smoker variables to categorical variables. Specify the descriptive category names
Smoker and Nonsmoker rather than 1 and 0.

load patients
Gender = categorical(Gender);
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Smoker = categorical(Smoker,logical([1 0]), ...
    ["Smoker","Nonsmoker"]);

Create a matrix containing the continuous predictors Diastolic and Systolic.

X = [Diastolic,Systolic];

Find the observations in the two groups of the sensitive attribute Gender.

femaleIdx = Gender=="Female";
maleIdx = Gender=="Male";
femaleX = X(femaleIdx,:);
maleX = X(maleIdx,:);

Transform the Diastolic and Systolic predictors in X by using the Gender sensitive attribute.
Specify a repair fraction of 0.5. Note that a value of 1 indicates a full transformation, and a value of 0
indicates no transformation.

[remover,newX50] = disparateImpactRemover(X,Gender, ...
    RepairFraction=0.5);
femaleNewX50 = newX50(femaleIdx,:);
maleNewX50 = newX50(maleIdx,:);

Fully transform the predictor variables by using the transform object function of the remover
object.

newX100 = transform(remover,X,Gender,RepairFraction=1);
femaleNewX100 = newX100(femaleIdx,:);
maleNewX100 = newX100(maleIdx,:);

Visualize the difference in the Diastolic distributions between the original values in X, the partially
repaired values in newX50, and the fully transformed values in newX100. Compute and display the
probability density estimates by using the ksdensity function.

t = tiledlayout(1,3);
title(t,"Diastolic Distributions with Different " + ...
    "Repair Fractions")
xlabel(t,"Diastolic")
ylabel(t,"Density Estimate")

nexttile
ksdensity(femaleX(:,1))
hold on
ksdensity(maleX(:,1))
hold off
title("Fraction=0")
ylim([0,0.07])

nexttile
ksdensity(femaleNewX50{:,1})
hold on
ksdensity(maleNewX50{:,1})
hold off
title("Fraction=0.5")
ylim([0,0.07])

nexttile
ksdensity(femaleNewX100{:,1})
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hold on
ksdensity(maleNewX100{:,1})
hold off
title("Fraction=1")
ylim([0,0.07])
legend(["Female","Male"],Location="eastoutside")

As the repair fraction increases, the disparateImpactRemover function transforms the values in
the Diastolic predictor variable so that the distribution of Female values and the distribution of
Male values become more similar.

More About
Disparate Impact

For each group in the sensitive attribute, the disparate impact value is the proportion of observations
in that group with a positive class value (pg+) divided by the proportion of observations in the
reference group with a positive class value (pr+). Ideally, pg+ is close to pr+—that is, the disparate
impact value is close to 1.

For more information on disparate impact and other bias metrics, see “Bias Metrics” on page 35-
1697.
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Tips
• After using disparateImpactRemover, consider using only continuous and ordinal predictors

for model training. Avoid using the sensitive attribute as a separate predictor when training your
model. For more information, see [1].

• You must transform new data, such as test data, after training a model using
disparateImpactRemover. Otherwise, the predicted results are inaccurate. Use the
transform object function.

Algorithms
disparateImpactRemover transforms a continuous predictor in Tbl or X as follows:

1 The software uses the groups in the sensitive attribute to split the predictor values. For each
group g, the software computes q quantiles of the predictor values by using the quantile
function. The number of quantiles q is either 100 or the minimum number of group observations
across the groups in the sensitive attribute, whichever is smaller. The software creates a
corresponding binning function Fg using the discretize function and the quantile values as bin
edges.

2 The software then finds the median quantile values across all the sensitive attribute groups and
forms the associated quantile function Fm

-1. The software omits missing (NaN) values from this
calculation.

3 Finally, the software transforms the predictor value x in the sensitive attribute group g by using
the transformation λFm

-1(Fg(x)) + (1 – λ)x, where λ is the repair fraction RepairFraction. The
software preserves missing (NaN) values in the predictor.

The function stores the transformation, which you can apply to new predictor data.

For more information, see [1].

Version History
Introduced in R2022b

References
[1] Feldman, Michael, Sorelle A. Friedler, John Moeller, Carlos Scheidegger, and Suresh

Venkatasubramanian. “Certifying and Removing Disparate Impact.” In Proceedings of the
21th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 259–
68. Sydney NSW Australia: ACM, 2015. https://doi.org/10.1145/2783258.2783311.

See Also
transform | fairnessMetrics | fairnessWeights

Topics
“Introduction to Fairness in Binary Classification” on page 26-2
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display
Class: dataset

(Not Recommended) Display dataset array

Note The dataset data type is not recommended. To work with heterogeneous data, use the
MATLAB® table data type instead. See MATLAB table documentation for more information.

Syntax
display(ds)

Description
display(ds) prints the dataset array ds, including variable names and observation names (if
present). dataset callsdisplay when a you do not use a semicolon to terminate a statement

For numeric or categorical variables that are 2-D and have three or fewer columns, display prints
the actual data. Otherwise, display prints the size and type of each dataset element.

For character variables that are 2-D and 10 or fewer characters wide, display prints quoted text.
Otherwise, display prints the size and type of each dataset element.

For cell variables that are 2-D and have three or fewer columns, display prints the contents of each
cell (or its size and type if too large). Otherwise, display prints the size of each dataset element.

For time series variables, display prints columns for both the time and the data. If the variable is 2-
D and has three or fewer columns, display prints the actual data. Otherwise, display prints the
size and type of each dataset element.

For other types of variables, display prints the size and type of each dataset element.

See Also
dataset | display | format
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distributionFitter
Open Distribution Fitter app

Syntax
distributionFitter
distributionFitter(y)
distributionFitter(y,cens)
distributionFitter(y,cens,freq)
distributionFitter(y,cens,freq,dsname)

Description
This page contains programmatic syntax information for the Distribution Fitter app. For general
usage information, see Distribution Fitter.

distributionFitter opens the Distribution Fitter app, or brings focus to the app if it is already
open.

distributionFitter(y) opens the Distribution Fitter app populated with the data specified by the
vector y.

distributionFitter(y,cens) uses the vector cens to specify whether each observation in y is
censored.

distributionFitter(y,cens,freq) uses the vector freq to specify the frequency of each
element of y.

distributionFitter(y,cens,freq,dsname) creates a data set with the name dsname, using
the data vector, y, censoring indicator, cens, and frequency vector, freq.

Examples

Open Distribution Fitter App with Existing Data

Load the carsmall sample data.

load carsmall

Open the Distribution Fitter app using the MPG miles per gallon data.

distributionFitter(MPG)
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The Distribution Fitter app opens, populated with the MPG data, and displays the density (PDF) plot.
You can use the app to display different plots and fit distributions to this data.

Open Distribution Fitter App with Censoring Data

Load the sample data.

load lightbulb.mat

The first column of the data contains the lifetime (in hours) of two types of light bulbs. The second
column contains information about the type of light bulb. 1 indicates fluorescent bulbs, and 0
indicates the incandescent bulb. The third column contains censoring information. 1 indicates
censored data, and 0 indicates the exact failure time. This is simulated data.

Open the Distribution Fitter app using the first column of lightbulb as the input data, and the third
column as the censoring data. Name the data lifetime.
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distributionFitter(lightbulb(:,1),lightbulb(:,3),[],'lifetime')

To open the Data dialog box, click Data. In the Manage data sets pane, click to highlight the
lifetime data set row. Finally, to open the View Data Set dialog box, click View. The lifetime data
appears in the second column and the corresponding censoring indicator appears in the third column.
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Input Arguments
y — Input data
array of scalar values | variable representing an array of scalar values

Input data, specified as an array of scalar values or a variable representing an array of such values.
Data Types: single | double

cens — Censoring indicator
zeros(n) (default) | vector of 0 and 1 values

Censoring indicator, specified as a vector of 0 and 1 values. The length of cens must be equal to the
length of y. If y(j) is censored, then (cens(j)==1). If y(j) is not censored, then (cens(j)==0).
If cens is omitted or empty, then no y values are censored.

If you have frequency data (freq) but not censoring data (cens), then you must specify empty
brackets ([]) for cens.
Data Types: single | double

freq — Frequency data
ones(n) (default) | vector of scalar values

Frequency data, specified as a vector of scalar values. The length of freq must be equal to the length
of y. If freq is omitted or empty, then all y values have a frequency of 1.
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If you have frequency data (freq) but not censoring data (cens), then you must specify empty
brackets ([]) for cens.
Data Types: single | double

dsname — Data set name
character vector | string scalar

Data set name, specified as a character vector enclosed in single quotes or a string scalar enclosed in
double quotes.

If you want to specify a data set name, but do not have censoring data (cens) or frequency data
(freq), then you must specify empty brackets ([]) for both freq and cens.
Example: 'MyData'
Data Types: char | string

Version History
Introduced in R2017a

See Also
fitdist | makedist | Distribution Fitter

Topics
“Fit a Distribution Using the Distribution Fitter App” on page 5-72
“Model Data Using the Distribution Fitter App” on page 5-52
“Working with Probability Distributions” on page 5-3
“Supported Distributions” on page 5-16
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Probability Distribution Function
Interactive density and distribution plots

Description
The Probability Distribution Function user interface creates an interactive plot of the cumulative
distribution function (cdf) or probability density function (pdf) for a probability distribution. Explore
the effects of changing parameter values on the shape of the plot, either by specifying parameter
values or using interactive sliders.

Required Products

• MATLAB
• Statistics and Machine Learning Toolbox

Note: disttool does not provide printing, code generating, or data importing functionality in
MATLAB Online.
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Open the Probability Distribution Function App
• At the command prompt, enter disttool.

Examples

Explore the Probability Distribution Function User Interface

This example shows how to use the Probability Distribution Function user interface to explore the
shape of cdf and pdf plots for different probability distributions and parameter values.

Open the Probability Distribution Function user interface.

disttool

The interface opens with a plot of the cdf of the Normal distribution. The initial parameter settings
are Mu = 0 and Sigma = 1.

Select PDF from the Function type drop-down menu to plot the pdf of the Normal distribution using
the same parameter values.
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Change the value of the location parameter Mu to 1.
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As the parameter values change, the shape of the plot also changes. Also, the value of X remains the
same, but the density value changes because of the new parameter value.

Use the Distribution drop-down menu to change the distribution type from Normal to Weibull.
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The shape of the plot changes, along with the names and values of the parameters.

Parameters
Distribution — Probability distribution
Normal (default) | Exponential | Poisson | Weibull | ...

Specify the probability distribution to explore by selecting a distribution name from the drop-down
list. The drop-down list includes approximately 25 probability distribution options, including Normal,
Exponential, Poisson, Weibull, and more.

Function type — Probability distribution function type
CDF (default) | PDF

Specify the probability distribution function type as CDF (cumulative distribution function) or PDF
(probability density function) by selecting the function name from the drop-down list.

Probability — Cumulative distribution function value
numeric value in the range [0,1]
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Specify the cumulative distribution function (cdf) value of interest as a numeric value in the range
[0,1]. The corresponding random variable value appears in the X field below the plot. Alternatively,
you can specify a value for X, and the Probability value will update automatically.

This option only appears if Function type is CDF. If Function type is PDF, then the probability
density at the specified X value displays to the left of the plot.

X — Random variable
numeric value

Specify the random variable of interest as a numeric value. If the Function type is CDF, then the
corresponding cumulative distribution function (cdf) value appears in the Probability field to the left
of the plot. Alternatively, you can specify a value for Probability, and the X value will update
automatically. If the Function type is PDF, then the corresponding probability density value appears
to the left of the plot.

Parameters — Parameter boundaries and values
numeric value

Specify the parameter boundaries and values as numeric values. Each column contains a field for the
upper bound, value, and lower bound of one parameter. The name and number of available
parameters changes based on the distribution specified in the Distribution drop-down list. For
example, if you select the Normal distribution, then disttool enables two columns: One column for
the Mu parameter and one column for the Sigma parameter. If you select the Exponential
distribution, then disttool enables one column for the Mu parameter.

Tips
To change the value of X (on the y-axis), or Probability or Density (on the x-axis):

• Type the values of interest into the Probability or X fields;
• Click on the point of interest on the plot; or
• Click and drag the reference lines across the plot.

Version History
Introduced before R2006a

See Also
Functions
distributionFitter | fitdist | makedist
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double
Class: dataset

(Not Recommended) Convert dataset variables to double array

Note The dataset data type is not recommended. To work with heterogeneous data, use the
MATLAB® table data type instead. See MATLAB table documentation for more information.

Syntax
b = double(A)
b = double(a,vars)

Description
b = double(A) returns the contents of the dataset A, converted to one double array. The classes of
the variables in the dataset must support the conversion.

b = double(a,vars) returns the contents of the dataset variables specified by vars. vars is a
positive integer, a vector of positive integers, a character vector, a string array, a cell array of
character vectors, or a logical vector.

See Also
dataset | single | replacedata
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DriftDiagnostics
Diagnostics information for batch drift detection

Description
A DriftDiagnostics object stores the diagnostics information returned by the detectdrift
function after it performs permutation testing for batch drift detection.

Creation
Create a DriftDiagnostics object by using detectdrift to test for drift between baseline and
target data sets.

Properties
Baseline — Baseline data set
numeric array | categorical array | table

This property is read-only.

Baseline data set, specified as a numeric array, categorical array, or table.
Data Types: double | categorical | table

CategoricalVariables — Indices of categorical variables in data
numeric array | []

This property is read-only.

Indices of the categorical variables in the data, specified as a numeric array. If the data does not
contain any categorical variables, then this property is empty ([]).
Data Types: double

ConfidenceIntervals — 95% confidence interval bounds for estimated p-values
two-row matrix of positive scalar values from 0 to 1 | NaN

This property is read-only.

95% confidence interval bounds for the estimated p-values of the variables, specified as a 2-by-k
matrix of positive scalar values from 0 to 1, where k is the number of variables. The rows of
ConfidenceIntervals correspond to the lower and upper bounds of the confidence intervals,
respectively.

If you set EstimatePValues to false in the call to detectdrift, then the function does not
compute the confidence interval bounds. In this case, ConfidenceIntervals property contains
NaNs.
Data Types: double

 DriftDiagnostics

35-1415



DriftStatus — Drift status for each variable
string array

This property is read-only.

Drift status for each variable, specified as a string array containing the possible values shown in this
table.

Drift Status Condition
Drift Upper < DriftThreshold
Warning DriftThreshold < Lower < WarningThreshold or DriftThreshold

< Upper < WarningThreshold
Stable Lower > WarningThreshold

Lower and Upper are the lower and upper confidence interval bounds for an estimated p-value.
Data Types: string

DriftThreshold — Threshold to determine drift status
scalar value from 0 to 1

This property is read-only.

Threshold to determine the drift status, specified as a scalar value from 0 to 1. If the upper bound of
the confidence interval for the estimated p-value is below DriftThreshold, then the drift status is
Drift.
Data Types: double

Metrics — List of metrics
string array

This property is read-only.

List of the metrics used by detectdrift to quantify the difference between the baseline and target
data for each variable during permutation testing, specified as a string array.
Data Types: string

MetricValues — Metric values for variables
row vector

This property is read-only.

Metric values for the corresponding variables, specified as a row vector with the number of columns
equal to the number of variables specified for drift detection. The metric corresponding to each
variable is stored in the Metrics property.
Data Types: double

MultipleTestCorrection — Multiple hypothesis testing correction
"Bonferroni" | "FalseDiscoveryRate"

This property is read-only.
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Multiple hypothesis testing correction, specified as either "Bonferroni" or
"FalseDiscoveryRate".

If you set EstimatePValues to false in the call to detectdrift, do not set the
MultipleTestCorrection name-value argument because the function ignores it in this case.
Data Types: string

MultipleTestDriftStatus — Drift status for overall data
"Drift" | "Warning" | "Stable"

This property is read-only.

Drift status for the overall data estimated by detectdrift using the multiple test correction method
in MultipleTestCorrection, specified as "Drift", "Warning", or "Stable". Multiple test
corrections provide a conservative estimate of the drift status when multiple variables are tested.

If you set EstimatePValues to false in the call to detectdrift, then the function does not
populate MultipleTestDriftStatus.
Data Types: string

NumPermutations — Number of permutation tests performed for each variable
array of integer values

This property is read-only.

Number of permutation tests performed by detectdrift for each variable to determine the drift
status for that variable, specified as an array of integer values.

If you set EstimatePValues to false in the call to detectdrift, then NumPermutations is a row
vector of ones corresponding to the baseline and target data provided. The metric values are the
initial computations that use the baseline and target data for each variable.
Data Types: double

PermutationResults — Permutation testing results for each variable
table

This property is read-only.

Permutation testing results for each variable, specified as a k-by-1 table, where k is the number of
variables. Each row corresponds to one variable and contains a 1-by-1 cell array of the metric values
in a vector whose size is equal to the number of permutations for that variable. To access the metric
values for the second variable, for example, use DDiagnostics.PermutationResults{2,1}
{1,1}.

If you set EstimatePValues to false in the call to detectdrift, then PermutationResults
contains only the initial metric values for each variable.

You can visualize the test results using plotPermutationResults.
Data Types: table

PValues — Estimated p-value for each variable
vector of scalar values from 0 to 1
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This property is read-only.

Estimated p-value for each variable, specified as a vector of scalar values from 0 to 1.

If you set EstimatePValues to false in the call to detectdrift, then PValues is a vector of
NaNs.
Data Types: double

Target — Target data set
numeric array | categorical array | table

This property is read-only.

Target data set, specified as a numeric array, categorical array, or table.
Data Types: single | double | categorical | table

VariableNames — Variables specified for drift detection
string array

This property is read-only.

Variables specified for drift detection in the call to detectdrift, specified as a string array.
Data Types: string

WarningThreshold — Threshold to determine warning status
scalar value from 0 to 1

This property is read-only.

Threshold to determine the warning status, specified as a scalar value from 0 to 1.
Data Types: double

Object Functions
ecdf Compute empirical cumulative distribution function (ecdf) for baseline and

target data specified for data drift detection
histcounts Compute histogram bin counts for specified variables in baseline and target

data for drift detection
plotDriftStatus Plot p-values and confidence intervals for variables tested for data drift
plotEmpiricalCDF Plot empirical cumulative distribution function (ecdf) of a variable specified

for data drift detection
plotHistogram Plot histogram of a variable specified for data drift detection
plotPermutationResults Plot histogram of permutation results for a variable specified for data drift

detection
summary Summary table for DriftDiagnostics object

Examples

Test and Examine Drift Status

Load the sample data.
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load humanactivity

For details on the data set, enter Description at the command line.

Assign the first 250 observations as baseline data and the next 250 as target data for variables 1 to
15.

baseline = feat(1:250,1:15);
target = feat(251:500,1:15);

Test for drift on all variables.

DDiagnostics = detectdrift(baseline,target);

Display a summary of the test results.

summary(DDiagnostics)

    Multiple Test Correction Drift Status: Drift

           DriftStatus    PValue       ConfidenceInterval   
           ___________    ______    ________________________

    x1      "Drift"       0.001     2.5317e-05     0.0055589
    x2      "Drift"       0.001     2.5317e-05     0.0055589
    x3      "Drift"       0.001     2.5317e-05     0.0055589
    x4      "Drift"       0.001     2.5317e-05     0.0055589
    x5      "Drift"       0.001     2.5317e-05     0.0055589
    x6      "Drift"       0.001     2.5317e-05     0.0055589
    x7      "Drift"       0.001     2.5317e-05     0.0055589
    x8      "Stable"      0.863        0.84012       0.88372
    x9      "Stable"      0.726        0.69722       0.75344
    x10     "Drift"       0.001     2.5317e-05     0.0055589
    x11     "Stable"      0.496        0.46456       0.52746
    x12     "Stable"      0.249        0.22247       0.27702
    x13     "Drift"       0.001     2.5317e-05     0.0055589
    x14     "Stable"      0.574        0.54267       0.60489
    x15     "Warning"     0.094       0.076629        0.1138

The summary table shows the drift status and estimated p-value for each variable tested for drift
detection. You can also see the 95% confidence interval bounds for the p-values.

Plot drift status for variables x10 to x15.

plotDriftStatus(DDiagnostics,Variables=(10:15))
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Compute the ecdf values for variables x13 and x15.

E = ecdf(DDiagnostics,Variables=["x13","x15"])

E=2×3 table
                 x             F_Baseline         F_Target   
           ______________    ______________    ______________

    x13    {501×1 double}    {501×1 double}    {501×1 double}
    x15    {501×1 double}    {501×1 double}    {501×1 double}

x contains the common domain over which ecdf computes the empirical cumulative distribution
function for the baseline and target data of a variable. Access the common domain for x13.

E.x{1}

ans = 501×1

    0.0420
    0.0420
    0.0423
    0.0424
    0.0424
    0.0425
    0.0425
    0.0426
    0.0426
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    0.0426
      ⋮

Access the ecdf values for x15 in the baseline data.

E.F_Baseline{2}

ans = 501×1

         0
         0
    0.0040
    0.0080
    0.0080
    0.0080
    0.0080
    0.0080
    0.0120
    0.0120
      ⋮

Plot the ecdf values for variables x13 and x15.

tiledlayout(1,2)
ax1 = nexttile;
plotEmpiricalCDF(DDiagnostics,ax1,Variable="x13")
ax2= nexttile;
plotEmpiricalCDF(DDiagnostics,ax2,Variable="x15")
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You can also visualize the permutation test results for a variable. Plot the permutation results for
variable x13.

figure 
plotPermutationResults(DDiagnostics,Variable="x13")
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The plot also shows the metric threshold value with a straight line. Based on the histogram of metric
values obtained during permutation testing, the probability that a metric value being greater than the
threshold value if the baseline and target data for variable x13 have the same distribution is very
small. The plot also displays the estimated p-value, 0.001, and the drift status, Drift, below the plot
title.

Compute Metrics Without Estimating p-Values

Generate baseline and target data with three variables, where the distribution parameters of the
second and third variables change for the target data.

rng('default') % For reproducibility
baseline = [normrnd(0,1,100,1),wblrnd(1.1,1,100,1),betarnd(1,2,100,1)];
target = [normrnd(0,1,100,1),wblrnd(1.2,2,100,1),betarnd(1.7,2.8,100,1)];

Compute the initial metrics for all variables between the baseline and target data without estimating
the p-values.

DDiagnostics = detectdrift(baseline,target,EstimatePValues=false)

DDiagnostics = 
  DriftDiagnostics

           VariableNames: ["x1"    "x2"    "x3"]
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    CategoricalVariables: []
                 Metrics: ["Wasserstein"    "Wasserstein"    "Wasserstein"]
            MetricValues: [0.2022 0.3468 0.0559]

  Properties, Methods

detectdrift computes only the initial metric value for each variable using the baseline and target
data. The properties associated with permutation testing and p-value estimation are either empty or
contain NaNs.

summary(DDiagnostics)

          MetricValue       Metric    
          ___________    _____________

    x1      0.20215      "Wasserstein"
    x2      0.34676      "Wasserstein"
    x3     0.055922      "Wasserstein"

summary function displays only the initial metric value and the metric used for each specified
variable.

plotDriftStatus and plotPermutationResults do not produce plots and return warning
messages when you compute metrics without estimating p-values. plotEmpiricalCDF and
plotHistogram plot the ecdf and the histogram, respectively, for the first variable by default. They
both return NaN for the p-value and drift status associated with the variable.

plotEmpiricalCDF(DDiagnostics)
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plotHistogram(DDiagnostics)
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Version History
Introduced in R2022a

See Also
detectdrift | ecdf | histcounts | plotDriftStatus | plotEmpiricalCDF | plotHistogram |
plotPermutationResults | summary
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ecdf
Compute empirical cumulative distribution function (ecdf) for baseline and target data specified for
data drift detection

Syntax
E = ecdf(DDiagnostics)
E = ecdf(DDiagnostics,Variables=variables)

Description
E = ecdf(DDiagnostics) returns the table E, which stores the ecdf values for all the variables
specified for drift detection in the call to the detectdrift function.

ecdf returns NaN values for categorical variables.

E = ecdf(DDiagnostics,Variables=variables) returns the table E for the variables specified
by variables.

Examples

Compute ECDF for All Variables

Generate baseline and target data with two variables, where the distribution parameters of the
second variable change for the target data.

rng('default') % For reproducibility
baseline = [normrnd(0,1,100,1),wblrnd(1.1,1,100,1)];
target = [normrnd(0,1,100,1),wblrnd(1.2,2,100,1)];

Perform permutation testing for any drift between the baseline and target data.

DDiagnostics = detectdrift(baseline,target)

DDiagnostics = 
  DriftDiagnostics

              VariableNames: ["x1"    "x2"]
       CategoricalVariables: []
                DriftStatus: ["Stable"    "Drift"]
                    PValues: [0.2850 0.0030]
        ConfidenceIntervals: [2×2 double]
    MultipleTestDriftStatus: "Drift"
             DriftThreshold: 0.0500
           WarningThreshold: 0.1000

  Properties, Methods

Compute the ecdf values for all variables.
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E = ecdf(DDiagnostics)

E=2×3 table
                x             F_Baseline         F_Target   
          ______________    ______________    ______________

    x1    {201×1 double}    {201×1 double}    {201×1 double}
    x2    {201×1 double}    {201×1 double}    {201×1 double}

E is a table with two rows and three columns. The two rows correspond to the two variables, x1 and
x2. For each variable, ecdf computes the ecdf values over a common domain for the baseline and
target data. The function stores the common domain for each variable in the column x, the ecdf
values for the baseline data in the column F_Baseline, and the ecdf values for the target data in the
column F_Target.

Access the ecdf values for variable 2 in the baseline data.

E.F_Baseline{2}

ans = 201×1

         0
    0.0100
    0.0100
    0.0200
    0.0300
    0.0400
    0.0500
    0.0600
    0.0700
    0.0800
      ⋮

Plot the ecdf values of the baseline and target data for variable x2.

stairs(E.x{2},E.F_Baseline{2},LineWidth=1.5)
hold on
stairs(E.x{2},E.F_Target{2},LineWidth=1.5)
title('ECDF for x2')
xlabel('x2')
ylabel('Empirical CDF')
legend('Baseline','Target',Location='east')
hold off
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The plot of the ecdf values also shows the drift in the distribution of the target data.

Compute ECDF Values for Specified Variables

Load the sample data.

load humanactivity

For details on the data set, enter Description at the command line.

Assign the first 1000 observations as baseline data and the next 1000 as target data.

baseline = feat(1:1000,:);
target = feat(1001:2000,:);

Test for drift on all variables.

DDiagnostics = detectdrift(baseline,target);

Compute the ecdf values for only the first five variables.

E = ecdf(DDiagnostics,Variables=[1:5])

E=5×3 table
                 x             F_Baseline          F_Target    
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          _______________    _______________    _______________

    x1    {2001×1 double}    {2001×1 double}    {2001×1 double}
    x2    {2001×1 double}    {2001×1 double}    {2001×1 double}
    x3    {2001×1 double}    {2001×1 double}    {2001×1 double}
    x4    {2001×1 double}    {2001×1 double}    {2001×1 double}
    x5    {2001×1 double}    {2001×1 double}    {2001×1 double}

Access the ecdf values for the third variable in the baseline data.

E.F_Baseline{3}

ans = 2001×1

         0
         0
         0
         0
         0
         0
    0.0010
    0.0020
    0.0030
    0.0040
      ⋮

Plot the ecdf values of the baseline and target data for variable x3.

stairs(E.x{3},E.F_Baseline{3},LineWidth=1.5)
hold on
stairs(E.x{3},E.F_Target{3},LineWidth=1.5)
title('ECDF for x3')
xlabel('x3')
ylabel('Empirical CDF')
legend('Baseline','Target',Location = 'southeast')
hold off
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The ecdf plot shows the drift in the target data for variable x3.

Input Arguments
DDiagnostics — Diagnostics of permutation testing for drift detection
DriftDiagnostics object

Diagnostics of the permutation testing for drift detection, specified as a DriftDiagnostics object
returned by detectdrift.

variables — List of variables
string array | cell array of character vectors | integer indices

List of variables for which to compute the ecdf values, specified as a string array, cell array of
character vectors, or list of integer indices.
Example: Variables=["x1","x3"]
Example: Variables=(1,3)
Data Types: single | double | char | string

Output Arguments
E — ecdf values
table
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ecdf values for all variables specified for drift detection in the call to detectdrift, returned as a
table with the following columns.

Column Name Description
x Common domain over which to evaluate the

empirical cdf
F_Baseline ecdf values for the baseline data
F_Target ecdf values for the target data

For each variable in E, the columns store x and the ecdf values in cell arrays. To access the values,
you can index into the table; for example, to obtain the ecdf values for the second variable in the
baseline data, use E.F_Baseline{2,1}.

Version History
Introduced in R2022a

See Also
detectdrift | DriftDiagnostics | plotDriftStatus | plotEmpiricalCDF | plotHistogram
| plotPermutationResults | summary | histcounts
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histcounts
Compute histogram bin counts for specified variables in baseline and target data for drift detection

Syntax
H = histcounts(DDiagnostics)
H = histcounts(DDiagnostics,Variables=variables)

Description
H = histcounts(DDiagnostics) returns the histogram bin counts in the table H for all variables
specified for drift detection in the call to the detectdrift function.

H = histcounts(DDiagnostics,Variables=variables) returns the bin counts for the
variables specified by variables.

Examples

Compute Histogram Bin Counts for All Variables

Generate baseline and target data with two variables, where the distribution parameters of the
second variable change for target data.

rng('default') % For reproducibility
baseline = [normrnd(0,1,100,1),wblrnd(1.1,1,100,1)];
target = [normrnd(0,1,100,1),wblrnd(1.2,2,100,1)];

Perform permutation testing for any drift between the baseline and target data.

DDiagnostics = detectdrift(baseline,target);

Compute the histogram bin counts for all variables.

H = histcounts(DDiagnostics)

H=2×3 table
                                                 Bins                                                         Counts_Baseline                                 Counts_Target               
          __________________________________________________________________________________    ____________________________________________    __________________________________________

    x1    {[-3.5000 -3 -2.5000 -2 -1.5000 -1 -0.5000 0 0.5000 1 1.5000 2 2.5000 3 3.5000 4]}    {[0 1 1 3 14.0000 11 17 17 15 11 5 1 2 1 1]}    {[1 0 2 6 7.0000 13 22 24 11 8 4 2 0 0 0]}
    x2    {[                       0 0.5000 1 1.5000 2 2.5000 3 3.5000 4 4.5000 5 5.5000 6]}    {[        33 23 14.0000 11 8 6 3 0 0 1 0 1]}    {[      13 32 29.0000 20 6 0 0 0 0 0 0 0]}

H is a table with three columns. histcounts divides the data into bins and computes the histogram
bin counts for a variable in the baseline and target data over the common bins. The first and second
rows contain the bins and counts for variables x1 and x2, respectively.

Access the histogram bin counts in the baseline data for the first variable.

H.Counts_Baseline{1}
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ans = 1×15

         0    1.0000    1.0000    3.0000   14.0000   11.0000   17.0000   17.0000   15.0000   11.0000    5.0000    1.0000    2.0000    1.0000    1.0000

Plot the probability density function (pdf) estimate (percent of the data in each bin) of the baseline
data for variable 1.

histogram(BinEdges=H.Bins{1},BinCounts=H.Counts_Baseline{1},Normalization='probability')

You can also plot the histogram of the baseline and target data for variable 1 using the
plotHistogram function.

plotHistogram(DDiagnostics,Variable=1)
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Compute Histogram Bin Counts for Specific Variables

Load the sample data.

load humanactivity

For details on the data set, enter Description at the command line.

Assign the first 1000 observations as baseline data and the next 1000 as target data.

baseline = feat(1:1000,:);
target = feat(1001:2000,:);

Test for drift on all variables.

DDiagnostics = detectdrift(baseline,target);

Compute the histogram bin counts for only the first five variables.

H = histcounts(DDiagnostics,Variables=(1:5))

H=5×3 table
                                                                                Bins                                                                                                      Counts_Baseline                                                                           Counts_Target                                            
          _________________________________________________________________________________________________________________________________________________    ______________________________________________________________________    ____________________________________________________________________________________________________

 histcounts

35-1435



    x1    {[                                                             -0.2000 -0.1000 0 0.1000 0.2000 0.3000 0.4000 0.5000 0.6000 0.7000 0.8000 0.9000]}    {[                                 0 0 0 0 0 0 0 0 0 85.9000 14.1000]}    {[                                 12.4000 76.6000 2.1000 0 0 0 0.1000 0.1000 0.1000 0.1000 8.5000]}
    x2    {[                                            -0.3000 -0.2000 -0.1000 0 0.1000 0.2000 0.3000 0.4000 0.5000 0.6000 0.7000 0.8000 0.9000 1 1.1000]}    {[                      0 0 0 0 0 9.9000 24 0.3000 65.8000 0 0 0 0 0]}    {[                           0.1000 0 0.1000 0.1000 0.1000 8.2000 0.3000 0 0 0 0 0 53.8000 37.3000]}
    x3    {[         -0.6000 -0.5500 -0.5000 -0.4500 -0.4000 -0.3500 -0.3000 -0.2500 -0.2000 -0.1500 -0.1000 -0.0500 0 0.0500 0.1000 0.1500 0.2000 0.2500]}    {[0 19.9000 13.6000 0.3000 0.3000 0.2000 65.7000 0 0 0 0 0 0 0 0 0 0]}    {[0.1000 0.4000 8.4000 0 0 0 0 0 12.9000 4.1000 0.3000 0.2000 0.4000 8.5000 49.1000 2.7000 12.9000]}
    x4    {[0 0.0100 0.0200 0.0300 0.0400 0.0500 0.0600 0.0700 0.0800 0.0900 0.1000 0.1100 0.1200 0.1300 0.1400 0.1500 0.1600 0.1700 0.1800 0.1900 0.2000]}    {[     0 0 0 0 0 0 0 0 0 0 65.6000 33.9000 0.4000 0.1000 0 0 0 0 0 0]}    {[     34.5000 55.7000 0.9000 0 0 0 0 0 0 0 0 7.4000 0.5000 0.2000 0.3000 0 0.1000 0.3000 0 0.1000]}
    x5    {[                                     0.0300 0.0400 0.0500 0.0600 0.0700 0.0800 0.0900 0.1000 0.1100 0.1200 0.1300 0.1400 0.1500 0.1600 0.1700]}    {[                 0.3000 33.1000 0 0 0.3000 66 0.3000 0 0 0 0 0 0 0]}    {[                       0 7.5000 0.5000 0.1000 0 0 0 0.1000 0.1000 0 0.2000 91.1000 0.2000 0.2000]}

Access the histogram bin counts for the second variable in the target data.

H.Counts_Target{2}

ans = 1×14

    0.1000         0    0.1000    0.1000    0.1000    8.2000    0.3000         0         0         0         0         0   53.8000   37.3000

Input Arguments
DDiagnostics — Diagnostics of permutation testing for drift detection
DriftDiagnostics object

Diagnostics of the permutation testing for drift detection, specified as a DriftDiagnostics object
returned by detectdrift.

variables — List of variables
string array | cell array of character vectors | integer indices

List of variables for which to compute the histogram bin counts, specified as a string array, cell array
of character vectors, or list of integer indices.
Example: Variables=["x1","x3"]
Example: Variables=(1,3)
Data Types: single | double | char | string

Output Arguments
H — Histogram bin counts
table

Histogram bin counts, returned as a table with the following columns.

Column Name Description
Bins Common domain over which to evaluate the

histogram bin counts for a variable.

• For categorical variables, Bins contains the
categories.

• For continuous variables, Bins contains the
bin edges.

Counts_Baseline Histogram bin counts for the corresponding
variables in the baseline data
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Column Name Description
Counts_Target Histogram bin counts for the corresponding

variables in the target data

For each variable in H, the columns contain the bins and counts in cell arrays. To access the counts,
you can index into the table; for example, to obtain the histogram bin counts for the second variable
in the baseline data, use H.Counts_Baseline{2,1}.

Algorithms
• For categorical data, detectdrift adds a 0.5 correction factor to the histogram bin counts for

each bin to handle empty bins (categories). This is equivalent to the assumption that the
parameter p, probability that value of the variable would be in that category, has the prior
distribution Beta(0.5,0.5), (Jeffreys prior assumption for the distribution parameter).

• histcounts treats a variable as ordinal for visualization purposes in these cases:

• The variable is ordinal in either the baseline data or the target data, and the categories from
both the baseline data and the target data are the same.

• The variable is ordinal in either the baseline data or the target data, and the categories of the
other data set are a subset of the ordinal data.

• The variable is ordinal in both the baseline data and the target data, and categories from either
data set are a subset of the other.

• If a variable is ordinal, histcounts preserves the order of the bin names.

Version History
Introduced in R2022a

See Also
detectdrift | DriftDiagnostics | plotDriftStatus | plotEmpiricalCDF | plotHistogram
| plotPermutationResults | ecdf | summary
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plotDriftStatus
Plot p-values and confidence intervals for variables tested for data drift

Syntax
plotDriftStatus(DDiagnostics)
plotDriftStatus(DDiagnostics,Variables=variables)

plotDriftStatus(ax, ___ )

EB = plotDriftStatus( ___ )
[EB,CL] = plotDriftStatus( ___ )

Description
plotDriftStatus(DDiagnostics) plots the estimated p-value of the permutation test for each
variable specified for drift detection in the call to detectdrift, as well as the confidence interval for
each estimated p-value, using error bars. The function also plots the warning and drift thresholds as
well and color-codes the p-values with their confidence intervals according to their drift status.

If you set the value of EstimatePValues to false in the call to detectdrift, then
plotDriftStatus does not generate a plot and, instead, returns a warning.

plotDriftStatus(DDiagnostics,Variables=variables) plots the drift status for the
variables specified by variables.

plotDriftStatus(ax, ___ ) plots on the axes ax instead of gca, using any of the input argument
combinations in the previous syntaxes.

EB = plotDriftStatus( ___ ) creates an error bar plot and returns an array of ErrorBar objects
EB. Use EB to inspect and modify the properties of the error bars. To learn more, see ErrorBar
Properties.

[EB,CL] = plotDriftStatus( ___ ) additionally returns an array of ConstantLine objects CL
for the drift and warning threshold values. Use CL is an array of ConstantLine objects. Use CL to
inspect and modify the properties of the lines. For more information, see ConstantLine Properties.

Examples

Plot Drift Status for All Variables

Generate baseline and target data with three variables, where the distribution parameters of the
second and third variables change for target data.

rng('default') % For reproducibility
baseline = [normrnd(0,1,100,1),wblrnd(1.1,1,100,1),betarnd(1,2,100,1)];
target = [normrnd(0,1,100,1),wblrnd(1.2,2,100,1),betarnd(1.7,2.8,100,1)];

Perform permutation testing for all variables to check for any drift between the baseline and target
data.
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DDiagnostics = detectdrift(baseline,target)

DDiagnostics = 
  DriftDiagnostics

              VariableNames: ["x1"    "x2"    "x3"]
       CategoricalVariables: []
                DriftStatus: ["Stable"    "Drift"    "Warning"]
                    PValues: [0.3850 0.0050 0.0910]
        ConfidenceIntervals: [2×3 double]
    MultipleTestDriftStatus: "Drift"
             DriftThreshold: 0.0500
           WarningThreshold: 0.1000

  Properties, Methods

Display the 95% confidence intervals for the estimated p-values.

DDiagnostics.ConfidenceIntervals

ans = 2×3

    0.3547    0.0016    0.0739
    0.4160    0.0116    0.1106

Plot the drift status for all three variables.

plotDriftStatus(DDiagnostics)
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plotDriftStatus plots the confidence intervals for the estimated p-values, using error bars. The
function also compares the confidence bounds against the drift and warning thresholds, and indicates
the drift status of each variable using different colors. The lower confidence bound of the p-value for
the first variable is higher than the warning threshold. Therefore, the drift status for the first variable
is Stable, indicated by the color blue. The lower confidence bound of the p-value for the third
variable is lower than the warning threshold, but higher than the drift threshold. Therefore, the drift
status for the third variable is Warning, and is indicated by the color yellow. The upper confidence
bound of the p-value for the second variable is lower than the drift threshold. Therefore, the drift
status for the third variable is Drift and is indicated by the color orange.

Plot Drift Status for Specified Variables

Load the sample data.

load humanactivity

For details on the data set, enter Description at the command line.

Assign the first 250 observations as baseline data and the next 250 as target data for the first 15
variables.

baseline = feat(1:250,1:15);
target = feat(251:500,1:15);
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Test for drift on all variables.

DDiagnostics = detectdrift(baseline,target)

DDiagnostics = 
  DriftDiagnostics

              VariableNames: ["x1"    "x2"    "x3"    "x4"    "x5"    "x6"    "x7"    "x8"    "x9"    "x10"    "x11"    "x12"    "x13"    "x14"    "x15"]
       CategoricalVariables: []
                DriftStatus: ["Drift"    "Drift"    "Drift"    "Drift"    "Drift"    "Drift"    "Drift"    "Stable"    "Stable"    "Drift"    "Stable"    "Stable"    "Drift"    "Stable"    "Warning"]
                    PValues: [1.0000e-03 1.0000e-03 1.0000e-03 1.0000e-03 1.0000e-03 1.0000e-03 1.0000e-03 0.8630 0.7260 1.0000e-03 0.4960 0.2490 1.0000e-03 0.5740 0.0940]
        ConfidenceIntervals: [2×15 double]
    MultipleTestDriftStatus: "Drift"
             DriftThreshold: 0.0500
           WarningThreshold: 0.1000

  Properties, Methods

Display the 95% confidence intervals of the p-values for variables 10 to 15.

DDiagnostics.ConfidenceIntervals(:,10:15)

ans = 2×6

    0.0000    0.4646    0.2225    0.0000    0.5427    0.0766
    0.0056    0.5275    0.2770    0.0056    0.6049    0.1138

Plot the drift status for variables 10 to 15.

plotDriftStatus(DDiagnostics,Variables=(10:15))
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Change Error Bar Color on Drift Status Plot

Load the sample data.

load humanactivity

For details on the data set, enter Description at the command line.

Assign the first 250 observations as baseline data and the next 250 as target data for the first 15
variables.

baseline = feat(1:250,1:15);
target = feat(251:500,1:15);

Test for drift on all variables.

DDiagnostics = detectdrift(baseline,target);

Plot the drift status for all variables and return the ErrorBar and ConstantLine objects.

[EB,CL] = plotDriftStatus(DDiagnostics)
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EB = 
  3×1 ErrorBar array:

  ErrorBar    (Stable)
  ErrorBar    (Warning)
  ErrorBar    (Drift)

CL = 
  2×1 ConstantLine array:

  ConstantLine
  ConstantLine

EB is an array of ErrorBar objects and CL is an array of ConstantLine objects. You can change the
appearance of the plot by accessing the properties of these objects. Change the color of the error
bars and markers for status Stable to green. Change the color of the drift threshold line, error bars,
and markers for the status Drift to magenta.

EB(1).Color = [0 1 0];
EB(1).MarkerFaceColor = [0 1 0];
EB(1).MarkerEdgeColor = [0 1 0];
EB(3).Color = [1 0 1];
EB(3).MarkerFaceColor = [1 0 1];
EB(3).MarkerEdgeColor = [1 0 1];
CL(2).Color = [1 0 1];
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You can also access and modify properties by double-clicking EB or CL in the Workspace to open and
use the Property Inspector.

Input Arguments
DDiagnostics — Diagnostics of permutation testing for drift detection
DriftDiagnostics object

Diagnostics of the permutation testing for drift detection, specified as a DriftDiagnostics object
returned by detectdrift.

variables — List of variables
string array | cell array of character vectors | integer indices

List of variables for which to plot the drift status, specified as a string array, a cell array of character
vectors, or a list of integer indices.
Example: Variables=["x1","x3"]
Example: Variables=(1,3)
Data Types: single | double | char | string

ax — Axes to plot into
Axes object | UIAxes object
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Axes for plotDriftStatus to plot into, specified as an Axes or UIAxes object. If you do not specify
ax, then plotDriftStatus creates the plot using the current axes. For more information on
creating an axes object, see axes and uiaxes.

Output Arguments
EB — Error bars showing the confidence intervals
3-by-1 array of ErrorBar objects

Error bars showing the confidence intervals for the estimated p-values in the plot, returned as a 3-
by-1 array of ErrorBar objects. Use EB to inspect and adjust the properties of the error bars. To
learn more about the properties of the ErrorBar object, see ErrorBar Properties.

CL — Lines showing the threshold values
2-by-1 array of ConstantLine objects

Lines showing the drift and warning threshold values in the plot, returned as a 2-by-1 array of
ConstantLine objects. Use CL to inspect and adjust the properties of the error bars.

Version History
Introduced in R2022a

See Also
detectdrift | DriftDiagnostics | plotEmpiricalCDF | plotHistogram |
plotPermutationResults | ecdf | summary | histcounts
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plotEmpiricalCDF
Plot empirical cumulative distribution function (ecdf) of a variable specified for data drift detection

Syntax
plotEmpiricalCDF(DDiagnostics)
plotEmpiricalCDF(DDiagnostics,Variable=variable)

plotEmpiricalCDF(ax, ___ )

St = plotEmpiricalCDF( ___ )

Description
plotEmpiricalCDF(DDiagnostics) plots the ecdf values of the baseline and target data for the
continuous variable with the lowest p-value. If the data does not contain any continuous variables,
then plotEmpiricalCDF does not generate a plot and, instead, returns a warning.

If you set the value of EstimatePValues to false in the call to detectdrift, then
plotEmpiricalCDF displays NaN for the p-value and the drift status.

plotEmpiricalCDF(DDiagnostics,Variable=variable) plots the ecdf for the variable
specified by variable.

plotEmpiricalCDF(ax, ___ ) plots on the axes ax instead of gca, using any of the input argument
combinations in the previous syntaxes.

St = plotEmpiricalCDF( ___ ) plots the ecdf and returns an array of Stair objects St. Use this
to inspect and modify the properties of the object. To learn more, see Stair Properties.

Examples

Plot ECDF for Variable with Lowest p-Value

Generate baseline and target data with three variables, where the distribution parameters of the
second and third variables change for the target data.

rng('default') % For reproducibility
baseline = [normrnd(0,1,100,1),wblrnd(1.1,1,100,1),betarnd(1,2,100,1)];
target = [normrnd(0,1,100,1),wblrnd(1.2,2,100,1),betarnd(1.7,2.8,100,1)];

Perform permutation testing for all variables to check for any drift between the baseline and target
data.

DDiagnostics = detectdrift(baseline,target)

DDiagnostics = 
  DriftDiagnostics

              VariableNames: ["x1"    "x2"    "x3"]
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       CategoricalVariables: []
                DriftStatus: ["Stable"    "Drift"    "Warning"]
                    PValues: [0.3850 0.0050 0.0910]
        ConfidenceIntervals: [2×3 double]
    MultipleTestDriftStatus: "Drift"
             DriftThreshold: 0.0500
           WarningThreshold: 0.1000

  Properties, Methods

Plot the ecdf for the variable with the lowest p-value.

plotEmpiricalCDF(DDiagnostics)

By default, plotEmpiricalCDF plots the ecdf of the baseline and target data for the variable with
the lowest p-value, which is x2 in this case. You can see the difference between the two empirical
cumulative distribution functions. The plot also displays the p-value and the drift status for variable
x2.

Plot ECDF for Specified Variable

Generate baseline and target data with three variables, where the distribution parameters of the
second and third variables change for the target data.

 plotEmpiricalCDF

35-1447



rng('default') % For reproducibility
baseline = [normrnd(0,1,100,1),wblrnd(1.1,1,100,1),betarnd(1,2,100,1)];
target = [normrnd(0,1,100,1),wblrnd(1.2,2,100,1),betarnd(1.7,2.8,100,1)];

Perform permutation testing for all variables to check for any drift between the baseline and target
data.

DDiagnostics = detectdrift(baseline,target)

DDiagnostics = 
  DriftDiagnostics

              VariableNames: ["x1"    "x2"    "x3"]
       CategoricalVariables: []
                DriftStatus: ["Stable"    "Drift"    "Warning"]
                    PValues: [0.3850 0.0050 0.0910]
        ConfidenceIntervals: [2×3 double]
    MultipleTestDriftStatus: "Drift"
             DriftThreshold: 0.0500
           WarningThreshold: 0.1000

  Properties, Methods

Plot the ecdf for the third variable.

plotEmpiricalCDF(DDiagnostics,Variable="x3")
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plotEmpiricalCDF plots the ecdf for the baseline and target data. The function also displays the
estimated p-value and the drift status for the specified variable.

Plot ECDF for Variables in Tiled Layout

Load the sample data.

load humanactivity

For details on the data set, enter Description at the command line.

Assign the first 250 observations as baseline data and the next 250 as target data for columns 10 to
15.

baseline = feat(1:250,10:15);
target = feat(251:500,10:15);

Test for drift on all variables.

DDiagnostics = detectdrift(baseline,target)

DDiagnostics = 
  DriftDiagnostics

              VariableNames: ["x1"    "x2"    "x3"    "x4"    "x5"    "x6"]
       CategoricalVariables: []
                DriftStatus: ["Drift"    "Stable"    "Stable"    "Drift"    "Stable"    "Warning"]
                    PValues: [1.0000e-03 0.5080 0.2370 1.0000e-03 0.5370 0.0820]
        ConfidenceIntervals: [2×6 double]
    MultipleTestDriftStatus: "Drift"
             DriftThreshold: 0.0500
           WarningThreshold: 0.1000

  Properties, Methods

The drift status for variables x4 and x6 is Drift and Warning, respectively. Plot the ecdf values for
x4 and x6 in a tiled layout.

tiledlayout(1,2);
ax1 = nexttile;
plotEmpiricalCDF(DDiagnostics,ax1,Variable="x4")
ax2= nexttile;
plotEmpiricalCDF(DDiagnostics,ax2,Variable="x6")
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There is a greater difference between the ecdf of the baseline and target data for variable x4. The
detectdrift function detects the shift for variable x4.

Input Arguments
DDiagnostics — Diagnostics of permutation testing for drift detection
DriftDiagnostics object

Diagnostics of the permutation testing for drift detection, specified as a DriftDiagnostics object
returned by detectdrift.

variable — Variable for which to visualize ecdf
string | character vector | integer index

Variable for which to plot the ecdf, specified as a string, character vector, or integer index.
Example: Variable="x3"
Example: Variable=3
Data Types: single | double | char | string

ax — Axes to plot into
Axes object | UIAxes object
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Axes on which to plot, specified as an Axes or UIAxes object. If you do not specify ax, then
plotEmpiricalCDF creates the plot using the current axes. For more information on creating an
axes object, see axes and uiaxes.

Version History
Introduced in R2022a

See Also
detectdrift | DriftDiagnostics | plotDriftStatus | plotHistogram |
plotPermutationResults | ecdf | summary | histcounts
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plotHistogram
Plot histogram of a variable specified for data drift detection

Syntax
plotHistogram(DDiagnostics)
plotHistogram(DDiagnostics,Variable=variable)

plotHistogram(ax, ___ )

H = plotHistogram( ___ )

Description
plotHistogram(DDiagnostics) plots a histogram of the baseline and target data for the variable
with the lowest p-value computed by the detectdrift function.

If you set the value of EstimatePValues to false in the call to detectdrift, then
plotHistogram displays NaN for the p-value and the drift status.

plotHistogram(DDiagnostics,Variable=variable) plots the histogram of the baseline and
target data for the variable specified by variable.

plotHistogram(ax, ___ ) plots on the axes ax instead of gca, using any of the input argument
combinations in the previous syntaxes.

H = plotHistogram( ___ ) plots the histogram and returns an array of Histogram objects in H.
Use H to inspect and modify the properties of the histogram. For more information, see Histogram
Properties.

Examples

Plot Histogram for Variable with Lowest p-Value

Generate baseline and target data with three variables, where the distribution parameters of the
second and third variables change for the target data.

rng('default') % For reproducibility
baseline = [normrnd(0,1,100,1),wblrnd(1.1,1,100,1),betarnd(1,2,100,1)];
target = [normrnd(0,1,100,1),wblrnd(1.2,2,100,1),betarnd(1.7,2.8,100,1)];

Perform permutation testing for all variables to check for any drift between the baseline and target
data.

DDiagnostics = detectdrift(baseline,target)

DDiagnostics = 
  DriftDiagnostics

              VariableNames: ["x1"    "x2"    "x3"]
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       CategoricalVariables: []
                DriftStatus: ["Stable"    "Drift"    "Warning"]
                    PValues: [0.3850 0.0050 0.0910]
        ConfidenceIntervals: [2×3 double]
    MultipleTestDriftStatus: "Drift"
             DriftThreshold: 0.0500
           WarningThreshold: 0.1000

  Properties, Methods

Plot the histogram for the default variable.

plotHistogram(DDiagnostics)

By default, plotHistogram plots a histogram of the baseline and target data for the variable with
the lowest p-value. The function also displays the p-value and the drift status for the variable.

Plot Histogram of All Variables in Tiled Layout

Generate baseline and target data with three variables, where the distribution parameters of the
second and third variables change for the target data.
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rng('default') % For reproducibility
baseline = [normrnd(0,1,100,1),wblrnd(1.1,1,100,1),betarnd(1,2,100,1)];
target = [normrnd(0,1,100,1),wblrnd(1.2,2,100,1),betarnd(1.7,2.8,100,1)];

Perform permutation testing for all variables to check for any drift between the baseline and target
data. Use the Energy statistic as the metric.

DDiagnostics = detectdrift(baseline,target,ContinuousMetric="energy")

DDiagnostics = 
  DriftDiagnostics

              VariableNames: ["x1"    "x2"    "x3"]
       CategoricalVariables: []
                DriftStatus: ["Stable"    "Drift"    "Warning"]
                    PValues: [0.3790 0.0110 0.0820]
        ConfidenceIntervals: [2×3 double]
    MultipleTestDriftStatus: "Drift"
             DriftThreshold: 0.0500
           WarningThreshold: 0.1000

  Properties, Methods

Plot the histograms for all three variables in a tiled layout.

tiledlayout(3,1);
ax1 = nexttile;
plotHistogram(DDiagnostics,ax1,Variable="x1")
ax2 = nexttile;
plotHistogram(DDiagnostics,ax2,Variable="x2")
ax3 = nexttile;
plotHistogram(DDiagnostics,ax3,Variable="x3")
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Plot Histogram for Drift Detection and Change Bar Color

Generate baseline and target data with three variables, where the distribution parameters of the
second and third variables change for the target data.

rng('default') % For reproducibility
baseline = [normrnd(0,1,100,1),wblrnd(1.1,1,100,1),betarnd(1,2,100,1)];
target = [normrnd(0,1,100,1),wblrnd(1.2,2,100,1),betarnd(1.7,2.8,100,1)];

Perform permutation testing for all variables to check for any drift between the baseline and target
data.

DDiagnostics = detectdrift(baseline,target)

DDiagnostics = 
  DriftDiagnostics

              VariableNames: ["x1"    "x2"    "x3"]
       CategoricalVariables: []
                DriftStatus: ["Stable"    "Drift"    "Warning"]
                    PValues: [0.3850 0.0050 0.0910]
        ConfidenceIntervals: [2×3 double]
    MultipleTestDriftStatus: "Drift"
             DriftThreshold: 0.0500
           WarningThreshold: 0.1000
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  Properties, Methods

Plot the histogram for the first variable and return the Histogram object.

H = plotHistogram(DDiagnostics,Variable=1)

H = 
  2×1 Bar array:

  Bar    (Baseline)
  Bar    (Target)

Change the color of the histogram bars for the baseline data.

H(1).FaceColor = [1 0 1];
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Input Arguments
DDiagnostics — Diagnostics of permutation testing for drift detection
DriftDiagnostics object

Diagnostics of the permutation testing for drift detection, specified as a DriftDiagnostics object
returned by detectdrift.

variable — Variable for which to plot histogram
string | character vector | integer index

Variable for which to plot the histogram, specified as a string, a character vector, or an integer index.
Example: Variable="x2"
Example: Variable=2
Data Types: single | double | char | string

ax — Axes to plot into
Axes object | UIAxes object

Axes for plotHistogram to plot into, specified as an Axes or UIAxes object. If you do not specify
ax, then plotHistogram creates the plot using the current axes. For more information on creating
an axes object, see axes and uiaxes.
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Algorithms
• For categorical data, detectdrift adds a 0.5 correction factor to the histogram bin counts for

each bin to handle empty bins (categories). This is equivalent to the assumption that the
parameter p, probability that value of the variable would be in that category, has the prior
distribution Beta(0.5,0.5), (Jeffreys prior assumption for the distribution parameter).

• plotHistogram treats a variable as ordinal for visualization purposes in these cases:

• The variable is ordinal in either the baseline data or the target data, and the categories from
both the baseline data and the target data are the same.

• The variable is ordinal in either the baseline data or the target data, and the categories of the
other data set are a subset of the ordinal data.

• The variable is ordinal in both the baseline data and the target data, and categories from either
data set are a subset of the other.

• If a variable is ordinal, plotHistogram preserves the order of the bin names.

Version History
Introduced in R2022a

See Also
detectdrift | DriftDiagnostics | plotDriftStatus | plotEmpiricalCDF |
plotPermutationResults | ecdf | summary | histcounts
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plotPermutationResults
Plot histogram of permutation results for a variable specified for data drift detection

Syntax
plotPermutationResults(DDiagnostics)
plotPermutationResults(DDiagnostics,Variable=variable)

plotPermutationResults(ax, ___ )

H = plotPermutationResults( ___ )
[H,CL] = plotPermutationResults( ___ )

Description
plotPermutationResults(DDiagnostics) plots the histogram of metric values computed by the
driftdetect function during permutation testing for the variable with the lowest p-value.

If you set the value of EstimatePValues to false in the call to detectdrift, then
plotPermutationResults does not generate a plot and, instead, returns a warning.

plotPermutationResults(DDiagnostics,Variable=variable) plots the histogram for the
variable specified by variable.

plotPermutationResults(ax, ___ ) plots on the axes ax instead of gca using any of the previous
input argument combinations in the previous syntaxes.

H = plotPermutationResults( ___ ) plots the histogram and returns an array of Histogram
objects H for the metric values computed during permutation testing. Use H to inspect and modify the
properties of the histogram. For more information, see Histogram Properties.

[H,CL] = plotPermutationResults( ___ ) additionally returns a ConstantLine object CL for
the metric threshold value. Use CL to inspect and modify the properties of the line. For more
information, see ConstantLine Properties.

Examples

Plot Permutation Results for Variable with Lowest p-Value

Generate baseline and target data with three variables, where the distribution parameters of the
second and third variables change for the target data.

rng('default') % For reproducibility
baseline = [normrnd(0,1,100,1),wblrnd(1.1,1,100,1),betarnd(1,2,100,1)];
target = [normrnd(0,1,100,1),wblrnd(1.2,2,100,1),betarnd(1.7,2.8,100,1)];

Perform permutation testing for all variables to check for any drift between the baseline and target
data.

DDiagnostics = detectdrift(baseline,target)
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DDiagnostics = 
  DriftDiagnostics

              VariableNames: ["x1"    "x2"    "x3"]
       CategoricalVariables: []
                DriftStatus: ["Stable"    "Drift"    "Warning"]
                    PValues: [0.3850 0.0050 0.0910]
        ConfidenceIntervals: [2×3 double]
    MultipleTestDriftStatus: "Drift"
             DriftThreshold: 0.0500
           WarningThreshold: 0.1000

  Properties, Methods

Plot the permutation results for the default variable.

plotPermutationResults(DDiagnostics)

By default, plotPermutationResults plots a histogram of the metric values computed in
permutation testing for the variable with the lowest p-value, which is x2 in this case. The function
includes the metric threshold value (the initial metric value computed by detectdrift using the
baseline and target data) on the histogram, so you can see the values that are greater than or equal
to the threshold. plotPermutationResults also displays the p-value and the drift status for the
variable, and the metric that you specify to use for permutation testing in the call to detectdrift.
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In this example, no metric is specified, so detectdrift uses the default metric (Wasserstein) for
continuous variables.

Plot Permutation Results for Specified Variable

Generate baseline and target data with three variables, where the distribution parameters of the
second and third variables change for the target data.

rng('default') % For reproducibility
baseline = [normrnd(0,1,100,1),wblrnd(1.1,1,100,1),betarnd(1,2,100,1)];
target = [normrnd(0,1,100,1),wblrnd(1.2,2,100,1),betarnd(1.7,2.8,100,1)];

Perform permutation testing for all variables to check for any drift between the baseline and target
data. Use the Energy metric for all variables.

DDiagnostics = detectdrift(baseline,target,ContinuousMetric="energy")

DDiagnostics = 
  DriftDiagnostics

              VariableNames: ["x1"    "x2"    "x3"]
       CategoricalVariables: []
                DriftStatus: ["Stable"    "Drift"    "Warning"]
                    PValues: [0.3790 0.0110 0.0820]
        ConfidenceIntervals: [2×3 double]
    MultipleTestDriftStatus: "Drift"
             DriftThreshold: 0.0500
           WarningThreshold: 0.1000

  Properties, Methods

Display the 95% confidence bounds for the p-values.

DDiagnostics.ConfidenceIntervals

ans = 2×3

    0.3488    0.0055    0.0657
    0.4099    0.0196    0.1008

Plot the permutation results for the third variable.

plotPermutationResults(DDiagnostics,Variable=3)
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Plot Permutation Results for Multiple Variables in Tiled Layout

Generate baseline and target data with three variables, where the distribution parameters of the
second and third variables change for the target data.

rng('default') % For reproducibility
baseline = [normrnd(0,1,100,1),wblrnd(1.1,1,100,1),betarnd(1,2,100,1)];
target = [normrnd(0,1,100,1),wblrnd(1.2,2,100,1),betarnd(1.7,2.8,100,1)];

Perform permutation testing for all variables to check for any drift between the baseline and target
data. Use the Energy metric for all variables.

DDiagnostics = detectdrift(baseline,target,ContinuousMetric="energy")

DDiagnostics = 
  DriftDiagnostics

              VariableNames: ["x1"    "x2"    "x3"]
       CategoricalVariables: []
                DriftStatus: ["Stable"    "Drift"    "Warning"]
                    PValues: [0.3790 0.0110 0.0820]
        ConfidenceIntervals: [2x3 double]
    MultipleTestDriftStatus: "Drift"
             DriftThreshold: 0.0500
           WarningThreshold: 0.1000
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  Properties, Methods

Plot the permutation results for variables x1 and x2 in a tiled layout.

tiledlayout(2,1);
ax1 = nexttile;
plotPermutationResults(DDiagnostics,ax1,Variable="x1")
ax2 = nexttile;
plotPermutationResults(DDiagnostics,ax2,Variable="x2")

Plot the permutation results for variables x1 and x3 in a tiled layout.

tiledlayout(2,1);
ax1 = nexttile;
plotPermutationResults(DDiagnostics,ax1,Variable="x1")
ax3= nexttile;
plotPermutationResults(DDiagnostics,ax3,Variable="x3")
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Adjust Colors on Permutation Results Plot

Generate baseline and target data with three variables, where the distribution parameters of the
second and third variables change for the target data.

rng('default') % For reproducibility
baseline = [normrnd(0,1,100,1),wblrnd(1.1,1,100,1),betarnd(1,2,100,1)];
target = [normrnd(0,1,100,1),wblrnd(1.2,2,100,1),betarnd(1.7,2.8,100,1)];

Perform permutation testing for all variables to check for any drift between the baseline and target
data. Use the Energy distance as the metric.

DDiagnostics = detectdrift(baseline,target,ContinuousMetric="energy")

DDiagnostics = 
  DriftDiagnostics

              VariableNames: ["x1"    "x2"    "x3"]
       CategoricalVariables: []
                DriftStatus: ["Stable"    "Drift"    "Warning"]
                    PValues: [0.3790 0.0110 0.0820]
        ConfidenceIntervals: [2×3 double]
    MultipleTestDriftStatus: "Drift"
             DriftThreshold: 0.0500
           WarningThreshold: 0.1000
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  Properties, Methods

Plot the permutation results for the third variable.

[H,CL] = plotPermutationResults(DDiagnostics,Variable=3)

H = 
  2×1 Histogram array:

  Histogram
  Histogram

CL = 
  ConstantLine with properties:

    InterceptAxis: 'x'
            Value: 0.1012
            Color: [0.1500 0.1500 0.1500]
        LineStyle: ':'
        LineWidth: 3
            Label: ''
      DisplayName: ''
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  Show all properties

Change the histogram bar colors to blue and the threshold line color to red.

H(1).FaceColor = "b";
CL.Color = "r";

You can also access and modify properties by double-clicking H or CL in the Workspace to open and
use the Property Inspector.

Input Arguments
DDiagnostics — Diagnostics of permutation testing for drift detection
DriftDiagnostics object

Diagnostics of the permutation testing for drift detection, specified as a DriftDiagnostics object
returned by detectdrift.

variable — Variable for which to plot permutation results
string | character vector | integer index

Variable for which to plot the permutation results, specified as a string, character vector, or integer
index.
Example: Variable="x2"
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Example: Variable=2
Data Types: single | double | char | string

ax — Axes on which to plot
Axes object | UIAxes object

Axes on which to plot, specified as an Axes or UIAxes object. If you do not specify ax, then
plotPermutationResults creates the plot using the current axes. For more information on
creating an axes object, see axes and uiaxes.

Output Arguments
H — Histogram of metric values
2-by-1 array of Histogram objects

Histogram of metric values computed during permutation testing, returned as a 2-by-1 array of
Histogram objects. Use H to inspect and adjust the properties of the histogram. For more
information on the Histogram object properties, see Histogram Properties.

CL — Line showing the metric threshold value
ConstantLine object

Line showing the metric threshold value in the plot, returned as a ConstantLine object. Use CL to
inspect and modify the properties of the line.

Version History
Introduced in R2022a

See Also
detectdrift | DriftDiagnostics | plotDriftStatus | plotEmpiricalCDF | plotHistogram
| ecdf | summary | histcounts
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summary
Summary table for DriftDiagnostics object

Syntax
summary(DDiagnostics)
S = summary(DDiagnostics)

Description
summary(DDiagnostics) displays the multiple test correction drift status and the summary of the
drift diagnostics returned by the detectdrift function.

S = summary(DDiagnostics) returns the table S containing the summary of the drift diagnostic
results.

Examples

Display Summary of Drift Diagnostics

Generate baseline and target data with two variables, where the distribution parameters of the
second variable change for target data.

rng('default') % For reproducibility
baseline = [normrnd(0,1,100,1),wblrnd(1.1,1,100,1)];
target = [normrnd(0,1,100,1),wblrnd(1.2,2,100,1)];

Perform permutation testing for any drift between the baseline and the target data.

DDiagnostics = detectdrift(baseline,target);

Display the summary of the drift diagnostics.

summary(DDiagnostics)

    Multiple Test Correction Drift Status: Drift

          DriftStatus    PValue      ConfidenceInterval  
          ___________    ______    ______________________

    x1     "Stable"      0.285       0.25719      0.31408
    x2     "Drift"       0.003     0.0006191     0.008742

summary displays the multiple test correction drift status above the summary table. detectdrift
uses the default multiple test correction method, Bonferroni, which determines that the drift status
for the overall data is Drift. The summary table has two rows, one for each variable, and three
columns containing the drift status, estimated p-value, and 95% confidence bounds for the estimated
p-values. detectdrift identifies the drift status as stable for the first variable, and detects the drift
in the distribution for the second variable. The upper confidence bound for the second variable is
lower than the default drift threshold of 0.05, so the drift status for this variable is Drift.
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Save Summary of Drift Diagnostics

Generate baseline and target data with two variables, where the distribution parameters of the
second variable change for the target data.

rng('default') % For reproducibility
baseline = [normrnd(0,1,100,1),wblrnd(1.1,1,100,1)];
target = [normrnd(0,1,100,1),wblrnd(1.2,2,100,1)];

Perform permutation testing for any drift between the baseline and target data.

DDiagnostics = detectdrift(baseline,target);

Save the summary of the drift diagnostics in the table S.

S = summary(DDiagnostics)

S=3×3 table
                    DriftStatus    PValue      ConfidenceInterval  
                    ___________    ______    ______________________

    x1               "Stable"      0.285       0.25719      0.31408
    x2               "Drift"       0.003     0.0006191     0.008742
    MultipleTest     "Drift"         NaN           NaN          NaN

When you save the results in a table, summary stores the multiple test correction drift status in a row
MultipleTest below the variables. The multiple test correction has no p-value or confidence
interval, so the function stores NaNs.

If you set EstimatePValues to false in the call to detectdrift, the software does not perform any
estimation or confidence interval computation. In this case, S stores the name and initial value of the
metric you specify for each variable in the call to detectdrift.

DDiagnostics = detectdrift(baseline,target,EstimatePValues=false);
S = summary(DDiagnostics)

S=2×2 table
          MetricValue       Metric    
          ___________    _____________

    x1      0.22381      "Wasserstein"
    x2      0.36879      "Wasserstein"

Input Arguments
DDiagnostics — Diagnostics of permutation testing for drift detection
DriftDiagnostics object

Diagnostics of the permutation testing for drift detection, specified as a DriftDiagnostics object
returned by detectdrift.
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Output Arguments
S — Summary of drift diagnostic results
table

Summary of the drift diagnostic results, returned as a table. By default, S includes a row for each
variable specified for drift detection in the call to detectdrift, and a row for the multiple test drift
status, MultipleTest. In this case, S has the following columns.

Column Name Description
DriftStatus Drift status at the end of the permutation testing:

Drift, Warning, or Stable
PValue Estimated p-values
ConfidenceInterval Confidence intervals for the estimated p-values

If you set the value of EstimatePValues to false in the call to detectdrift, then S does not have
the row MultipleTest, and the number of rows in S is equal to the number of variables specified for
drift detection. In this case, S has the following columns.

Column Name Description
MetricValue Value of the metric used in permutation testing
Metric Metric used in permutation testing

Version History
Introduced in R2022a

See Also
detectdrift | DriftDiagnostics | plotDriftStatus | plotEmpiricalCDF |
plotPermutationResults | plotHistogram | ecdf | summary | histcounts
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DriftDetectionMethod
Incremental drift detector that utilizes Drift Detection Method (DDM)

Description
DriftDetectionMethod model object represents an incremental concept drift detector that uses
the Drift Detection Method [1]. After creating the object, you can use the detectdrift object
function to update the statistics and check for any drift in the concept data (for example, failure rate,
regression loss, and so on).

DriftDetectionMethod is suitable for incremental concept drift detection. For drift detection on
raw data, see detectdrift for batch drift detection.

Creation
You can create DriftDetectionMethod by specifying the DetectionMethod argument as "ddm"
in the call to incrementalConceptDriftDetector.

Properties
Alternative — Type of alternative hypothesis
'greater' (default) | 'less'

Type of alternative hypothesis for determining the drift status, specified as either 'greater' or
'less'.
Data Types: char

DriftDetected — Flag indicating whether software detects drift
1 | 0

This property is read-only.

Flag indicating whether software detects drift or not, specified as either 1 or 0. Value of 1 means
DriftStatus is 'Drift'.
Data Types: logical

DriftStatus — Current drift status
'Stable' | 'Warning' | 'Drift'

This property is read-only.

Current drift status, specified as 'Stable', 'Warning', or 'Drift'. You can see the transition in
the drift status by comparing DriftStatus and PreviousDriftStaus.
Data Types: char

DriftThreshold — Number of standard deviations for drift limit
nonnegative scalar value
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This property is read-only.

Number of standard deviations for drift limit, specified as a nonnegative scalar value. This is the
number of standard deviations the overall test statistic can be away from the optimal test statistic
before the software sets DriftStatus to 'Drift'.
Data Types: double

InputType — Type of input data
'binary' (default) | 'continuous'

This property is read-only.

Type of input data, specified as either 'binary' or 'continuous'.
Data Types: char

IsWarm — Flag indicating whether warmup period is over
1 | 0

This property is read-only.

Flag indicating whether the warmup period is over or not, specified as 1 (true) or 0(false).
Data Types: logical

Mean — Weighted average of all input data
numeric value

This property is read-only.

Weighted average of all input data used for training the drift detector, specified as a numeric value.
Data Types: double

NumTrainingObservations — Number of observations used for training
nonnegative integer value

This property is read-only.

Number of observations used for training the drift detector, specified as a nonnegative integer value.
Data Types: double

OptimalMean — Optimal weighted average
numeric value

Optimal weighted average detectdrift observes up to the most current data point, specified as a
numeric value.

detectdrift updates the OptimalMean and OptimalStandardDeviation under any of these
conditions:

• When Alternative is 'greater' and Mean + StandardDeviation is less than or equal to
OptimalMean + OptimalStandardDeviation.

• When Alternative is 'less' and Mean - StandardDeviation is greater than or equal to
OptimalMean - OptimalStandardDeviation.
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Data Types: double

OptimalStandardDeviation — Optimal weighted standard deviation
numeric value

This property is read-only.

Optimal weighted standard deviation detectdrift observes up to the most current data point,
specified as a numeric value.

detectdrift updates the OptimalMean and OptimalStandardDeviation under any of these
conditions:

• When Alternative is 'greater' and Mean + StandardDeviation is less than or equal to
OptimalMean + OptimalStandardDeviation.

• When Alternative is 'less' and Mean - StandardDeviation is greater than or equal to
OptimalMean - OptimalStandardDeviation.

Data Types: double

PreviousDriftStatus — Drift status prior to the latest training
'Stable' | 'Warning' | 'Drift'

This property is read-only.

Drift status prior to the latest training using the most recent batch of data, specified as 'Stable',
'Warning', or 'Drift'. You can see the transition in the drift status by comparing DriftStatus
and PreviousDriftStaus.
Data Types: char

StandardDeviation — Weighted standard deviation of all input data
numeric value

This property is read-only.

Weighted standard deviation of all input data used for training the drift detector, specified as a
numeric value.
Data Types: double

WarmupPeriod — Number of observations for drift detector warmup
nonnegative integer value

This property is read-only.

Number of observations for drift detector warmup, specified as a nonnegative integer.
Data Types: double

WarningDetected — Flag indicating whether there is warning
1 | 0

This property is read-only.

Flag indicating whether there is warning or not, specified as either 1 or 0. Value of 1 means
DriftStatus is 'Warning'.
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Data Types: logical

WarningThreshold — Number of standard deviations for warning limit
nonnegative scalar value

This property is read-only.

Number of standard deviations for warning limit, specified as a nonnegative scalar value. This is the
number of standard deviations the overall test statistic can be away from the optimal test statistic
before the software sets DriftStatus to 'Warning'.
Data Types: double

Object Functions
detectdrift Update drift detector states and drift status with new data
reset Reset incremental concept drift detector

Examples

Monitor Data Stream for Potential Drift

Initiate the concept drift detector using the Drift Detection Method (DDM).

incCDDetector = incrementalConceptDriftDetector("ddm");

Create a random stream such that for the first 1000 observations, failure rate is 0.1 and after 1000
observations, failure rate increases to 0.6.

rng(1234)  % For reproducibility
numObservations = 3000;
switchPeriod = 1000;

for i = 1:numObservations
    if i <= switchPeriod
       failurerate = 0.1;
    else
       failurerate = 0.6;
    end
       X(i) = rand()<failurerate; % Value 1 represents failure
end

Preallocate variables for tracking drift status.

status = zeros(numObservations,1);
statusname = strings(numObservations,1);

Continuously feed the data to the drift detector and perform incremental drift detection. At each
iteration:

• Update statistics of the drift detector and monitor for drift using the new data point with
detectdrift. (Note: detectdrift checks for drift after the warmup period.)

• Track and record the drift status for visualization purposes.
• When a drift is detected, reset the incremental concept drift detector by using reset.

35 Functions

35-1474



for i = 1:numObservations     
    
    incCDDetector = detectdrift(incCDDetector,X(i));
    statusname(i) = string(incCDDetector.DriftStatus);
          
    if incCDDetector.DriftDetected
       status(i) = 2;
       incCDDetector = reset(incCDDetector); % If drift detected, reset the detector
       sprintf("Drift detected at Observation #%d. Detector reset.",i)
    elseif incCDDetector.WarningDetected
       status(i) = 1;
    else 
       status(i) = 0;
    end   
end

ans = 
"Drift detected at Observation #1078. Detector reset."

After the change in the failure rate at observation number 1000, detectdrift detects the shift at
observation number 1078.

Plot the drift status versus the observation number.

gscatter(1:numObservations,status,statusname,'gyr','*',4,'on',"Observation number","Drift status")

 DriftDetectionMethod

35-1475



Monitor Data Stream for Decrease in Failure Rate

Initiate the concept drift detector using the Drift Detection Method (DDM).

incCDDetector = incrementalConceptDriftDetector("ddm",Alternative="less",WarmupPeriod=100);

Create a random stream such that for the first 1000 observations, failure rate is 0.4 and after 1000
failure rate decreases to 0.1.

rng(1234)  % For reproducibility
numObservations = 3000;
switchPeriod = 1000;
for i = 1:numObservations
    if i <= switchPeriod
       failurerate = 0.4;
    else
       failurerate = 0.125;
    end
       X(i) = rand()<failurerate; % Value 1 represents failure
end

Preallocate variables for tracking drift status and the optimal mean and optimal standard deviation
value.

optmean = zeros(numObservations,1);
optstddev = zeros(numObservations,1);
status = zeros(numObservations,1);
statusname = strings(numObservations,1);

Continuously feed the data to the drift detector and monitor for any potential change. Record the
drift status for visualization purposes.

for i = 1:numObservations     
    
    incCDDetector = detectdrift(incCDDetector,X(i)); 

    statusname(i) = string(incCDDetector.DriftStatus);
    optmean(i) = incCDDetector.OptimalMean;
    optstddev(i) = incCDDetector.OptimalStandardDeviation;

    if incCDDetector.DriftDetected
       status(i) = 2;
       incCDDetector = reset(incCDDetector); % If drift detected, reset the detector
       sprintf("Drift detected at Observation #%d. Detector reset.",i)
    elseif incCDDetector.WarningDetected
       status(i) = 1;
    else 
       status(i) = 0;
    end   
end

ans = 
"Drift detected at Observation #1107. Detector reset."

After the change in the failure rate at observation number 1000, detectdrift detects the shift at
observation number 1096.

Plot the change in the optimal mean and optimal standard deviation.
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tiledlayout(2,1);
ax1 = nexttile;
plot(ax1,1:numObservations,optmean)
ax2 = nexttile;
plot(ax2,1:numObservations,optstddev)

Plot the drift status versus the observation number.

figure();
gscatter(1:numObservations,status,statusname,'gyr','*',4,'on',"Observation number","Drift status")
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detectdrift concludes on a warning status for multiple observations before it decides on a drift.

Version History
Introduced in R2022a

References
[1] Gama, Joao, Pedro Medas, Gladys Castillo, and Pedro P. Rodrigues. “Learning with drift detection.

“ In Brazilian symposium on artificial intelligence, pp. 286-295. Berlin, Heidelberg: Springer.
2004, September.

See Also
incrementalConceptDriftDetector | HoeffdingDriftDetectionMethod | reset |
detectdrift
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droplevels
(Not Recommended) Drop levels from a nominal or ordinal array

Note The nominal and ordinal array data types are not recommended. To represent ordered and
unordered discrete, nonnumeric data, use the “Categorical Arrays” data type instead.

Syntax
B = droplevels(A)
B = droplevels(A,oldlevels)

Description
B = droplevels(A) drops unused levels from the nominal or ordinal array A. The array B has the
same size, type, and values as A, but has a list of potential levels that includes only those present in
some element of A.

B = droplevels(A,oldlevels) removes the specified levels oldlevels from A.

droplevels removes levels, but does not remove elements. Elements of B that correspond to
elements of A having levels in oldlevels all have an undefined level.

Examples

Drop Levels From an Ordinal Array

Bin patient ages into ordinal levels corresponding to 10-year intervals.

load hospital
edges = 0:10:100;
labels = strcat(num2str((0:10:90)','%d'),{'s'});
A = ordinal(hospital.Age,labels,[],edges);
getlabels(A)

ans = 1x10 cell
  Columns 1 through 7

    {'0s'}    {'10s'}    {'20s'}    {'30s'}    {'40s'}    {'50s'}    {'60s'}

  Columns 8 through 10

    {'70s'}    {'80s'}    {'90s'}

Drop any levels that have no patients in them.

A = droplevels(A);
getlabels(A)
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ans = 1x4 cell
    {'20s'}    {'30s'}    {'40s'}    {'50s'}

Input Arguments
A — Nominal or ordinal array
nominal array | ordinal array

Nominal or ordinal array, specified as a nominal or ordinal array object created with nominal or
ordinal.

oldlevels — Levels to remove
string array | cell array of character vectors | 2-D character matrix

Levels to remove from the nominal or ordinal array, specified as a string array, a cell array of
character vectors, or a 2-D character matrix.
Data Types: char | string | cell

Output Arguments
B — Nominal or ordinal array
nominal array | ordinal array

Nominal or ordinal array, returned as a nominal or ordinal array object.

Version History
Introduced in R2007a

See Also
addlevels | mergelevels | reorderlevels | nominal | ordinal

Topics
“Add and Drop Category Levels” on page 2-18
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dummyvar
Create dummy variables

Syntax
D = dummyvar(group)

Description
D = dummyvar(group) returns a matrix D containing zeros and ones, whose columns are dummy
variables for the grouping variables on page 2-46 in group. Each column of group is a single
grouping variable, with values indicating category levels. The rows of group represent observations
across all variables.

Examples

Create Dummy Variables from Categorical Grouping Variable

Create a column vector of categorical data specifying color types.

Colors = {'Red';'Blue';'Green';'Red';'Green';'Blue'};
Colors = categorical(Colors);

Create dummy variables for each color type.

D = dummyvar(Colors)

D = 6×3

     0     0     1
     1     0     0
     0     1     0
     0     0     1
     0     1     0
     1     0     0

The columns in D correspond to the levels in Colors. For example, the first column of dummyvar
corresponds to the first level, 'Blue', in Colors.

Display the category levels of Colors.

categories(Colors)

ans = 3x1 cell
    {'Blue' }
    {'Green'}
    {'Red'  }
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Create Dummy Variables from Numeric Grouping Variables

Create a matrix group of data containing the effects of two machines and three operators on a
process.

machine = [1 1 1 1 2 2 2 2]';
operator = [1 2 3 1 2 3 1 2]';
group = [machine operator]

group = 8×2

     1     1
     1     2
     1     3
     1     1
     2     2
     2     3
     2     1
     2     2

Create dummy variables of the data in group.

D = dummyvar(group)

D = 8×5

     1     0     1     0     0
     1     0     0     1     0
     1     0     0     0     1
     1     0     1     0     0
     0     1     0     1     0
     0     1     0     0     1
     0     1     1     0     0
     0     1     0     1     0

The first two columns of D represent observations of machine 1 and machine 2, respectively. The
remaining columns represent observations of the three operators.

Create Dummy Variables from Multiple Grouping Variables

Create a cell array of phone types and a numeric vector of area codes.

phone = {'mobile';'landline';'mobile';'mobile';'mobile';'landline';'landline'};
codes = [802 802 603 603 802 603 802]';

Because the area code data has two levels (rather than 802 levels corresponding to the integers
1:802), convert codes to a categorical vector.

newcodes = categorical(codes);

Combine the phone and newcodes grouping variables into the cell array group.

group = {phone,newcodes};
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Create dummy variables for the groups in group.

D = dummyvar(group)

D = 7×4

     1     0     0     1
     0     1     0     1
     1     0     1     0
     1     0     1     0
     1     0     0     1
     0     1     1     0
     0     1     0     1

The first two columns of D correspond to the phone types, and the last two columns correspond to the
area codes.

One-Hot Decode Dummy Variables

Create dummy variables, and then decode them back into the original data.

Create a column vector of categorical data specifying color types.

colorsOriginal = ["red";"blue";"red";"green";"yellow";"blue"];
colorsOriginal = categorical(colorsOriginal)

colorsOriginal = 6x1 categorical
     red 
     blue 
     red 
     green 
     yellow 
     blue 

Determine the classes in the categorical vector.

classes = categories(colorsOriginal);

Create dummy variables for each color type by using the dummyvar function.

dummyColors = dummyvar(colorsOriginal)

dummyColors = 6×4

     0     0     1     0
     1     0     0     0
     0     0     1     0
     0     1     0     0
     0     0     0     1
     1     0     0     0

Decode the dummy variables in the second dimension by using the onehotdecode function.

colorsDecoded = onehotdecode(dummyColors,classes,2)
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colorsDecoded = 6x1 categorical
     red 
     blue 
     red 
     green 
     yellow 
     blue 

The decoded variables match the original color types.

Input Arguments
group — Grouping variables
positive integer vector | categorical column vector | cell array | positive integer matrix

Grouping variables, specified as a positive integer vector or categorical column vector representing
levels within a single variable, a cell array containing one or more grouping variables on page 2-46,
or a positive integer matrix representing levels within multiple variables.

If group is a categorical vector, then the groups and their order match the output of the categories
function applied to group. If group is a numeric vector, then dummyvar assumes that the groups and
their order are 1:max(group). In this respect, dummyvar treats a numeric grouping variable
differently from grp2idx. For information on the order of groups within grouping variables, see
“Grouping Variables” on page 2-46.
Example: [2 1 1 1 2 3 3 2]'
Example: {Origin,Cylinders}
Data Types: single | double | categorical | cell

Output Arguments
D — Dummy variables
numeric matrix

Dummy variables, returned as an n-by-s numeric matrix, where n is the number of rows of group and
s is the sum of the number of levels in each column of group. From left to right, the columns of D are
dummy variables created from the first column of group, followed by dummy variables created from
the second column of group, and so on.
Data Types: single | double

Tips
• Use dummy variables in regression analysis and ANOVA to indicate values of categorical

predictors.
• dummyvar treats NaN values and undefined categorical levels in group as missing data and

returns NaN values in D.
• If a column of ones is introduced in the matrix D, then the resulting matrix X =

[ones(size(D,1),1) D] is rank deficient. If group has multiple columns, then the matrix D
itself is rank deficient because dummy variables produced from any column of group always sum
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to a column of ones. Regression and ANOVA calculations often address this issue by eliminating
one dummy variable (implicitly setting the coefficients for dropped columns to zero) from each
group of dummy variables produced by a column of group.

• If group is a numeric vector with levels that do not correspond exactly to the integers
1:max(group), first convert the data to a categorical vector by using categorical. You can
then pass the result to dummyvar. For an example, see “Create Dummy Variables from Multiple
Grouping Variables” on page 35-1482.

Alternative Functionality
Alternatively, use onehotencode to encode data labels. Consider using onehotencode instead of
dummyvar in these cases:

• To encode a table of categorical data labels
• To specify the dimension to expand for encoding the data labels

Version History
Introduced before R2006a

Extended Capabilities
Tall Arrays
Calculate with arrays that have more rows than fit in memory.

This function fully supports tall arrays. For more information, see “Tall Arrays”.

See Also
regress | anova1 | grp2idx | categories | onehotencode | onehotdecode

Topics
“Grouping Variables” on page 2-46
“Dummy Variables” on page 2-49
“Linear Regression with Categorical Covariates” on page 2-53
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dwtest
Durbin-Watson test with residual inputs

Syntax
p = dwtest(r,x)
p = dwtest(r,x,Name,Value)
[p,d] = dwtest( ___ )

Description
p = dwtest(r,x) returns the p-value for the Durbin-Watson test on page 35-1488 of the null
hypothesis that the residuals from a linear regression are uncorrelated. The alternative hypothesis is
that there is autocorrelation among the residuals.

p = dwtest(r,x,Name,Value) returns the p-value for the Durbin-Watson test with additional
options specified by one or more name-value pair arguments. For example, you can conduct a one-
sided test or calculate the p-value using a normal approximation.

[p,d] = dwtest( ___ ) also returns the Durbin-Watson test statistic, d, using any of the input
arguments from the previous syntaxes.

Examples

Test Residuals For Correlation

Load the sample census data.

load census

Create a design matrix using the census date (cdate) as the predictor. Add a column of 1 values to
include a constant term.

n = length(cdate);
x = [ones(n,1),cdate];

Fit a linear regression to the data.

[b,bint,r] = regress(pop,x);

Test the null hypothesis that there is no autocorrelation among the residuals, r.

[p,d] = dwtest(r,x)

p = 3.6190e-15

d = 0.1308

The returned value p = 3.6190e-15 indicates rejection of the null hypothesis at the 5% significance
level.
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One-Sided Hypothesis Test

Load the sample census data.

load census

Create a design matrix using the census date (cdate) as the predictor. Add a column of 1 values to
include a constant term.

n = length(cdate);
x = [ones(n,1),cdate];

Fit a linear regression to the data.

[b,bint,r] = regress(pop,x);

Test the null hypothesis that there is no autocorrelation among regression residuals, against the
alternative hypothesis that the autocorrelation is greater than zero.

[p,d] = dwtest(r,x,'Tail','right')

p = 1.8095e-15

d = 0.1308

The returned value p = 1.8095e-15 indicates rejection of the null hypothesis at the 5% significance
level, in favor of the alternative hypothesis that the autocorrelation among residuals is greater than
zero.

Input Arguments
x — Design matrix
matrix

Design matrix for a linear regression, specified as a matrix. Include a column of 1 values in the design
matrix so the model contains a constant term.
Data Types: single | double

r — Regression residuals
vector

Regression residuals, specified as a vector. Obtain r by performing a linear regression using a
function such as regress, or by using the backslash operator.
Data Types: single | double

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
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Example: 'Tail','right','Method','approximate' specifies a right-tailed hypothesis test and
calculates the p-value using a normal approximation.

Method — Algorithm for computing p-value
'exact' | 'approximate'

Algorithm for computing the p-value, specified as the comma-separated pair consisting of 'Method'
and one of these values:

'exact' Calculate an exact p-value using the Pan algorithm [2]. This is the default if the
sample size is less than 400.

'approximate' Calculate the p-value using a normal approximation [1]. This is the default if
the sample size is 400 or larger.

Example: 'Method','exact'

Tail — Type of alternative hypothesis
'both' (default) | 'right' | 'left'

Type of alternative hypothesis to evaluate, specified as the comma-separated pair consisting of
'Tail' and one of the following.

'both' Test the alternate hypothesis that autocorrelation among the residuals is not
zero.

'right' Test the alternative hypothesis that autocorrelation among the residuals is
greater than zero.

'left' Test the alternative hypothesis that autocorrelation among the residuals is less
than zero.

Example: 'Tail','right'

Output Arguments
p — p-value
scalar value in the range [0,1]

p-value of the test, returned as a scalar value in the range [0,1]. p is the probability of observing a
test statistic as extreme as, or more extreme than, the observed value under the null hypothesis.
Small values of p cast doubt on the validity of the null hypothesis.

d — Test statistic
nonnegative scalar value

Test statistic of the hypothesis test, returned as a nonnegative scalar value.

More About
Durbin-Watson Test

The Durbin-Watson test tests the null hypothesis that linear regression residuals of time series data
are uncorrelated, against the alternative hypothesis that autocorrelation exists.

The test statistic for the Durbin-Watson test is
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DW =
∑

i = 1

n− 1
ri + 1− ri

2

∑
i = 1

n
ri

2
,

where ri is the ith raw residual, and n is the number of observations.

The p-value of the Durbin-Watson test is the probability of observing a test statistic as extreme as, or
more extreme than, the observed value under the null hypothesis. A significantly small p-value casts
doubt on the validity of the null hypothesis and indicates autocorrelation among residuals.

Alternative Functionality
• You can create a linear regression model object by using fitlm or stepwiselm and use the

object function dwtest to perform the Durbin-Watson test.

A LinearModel object provides the object properties and the object functions to investigate a
fitted linear regression model. The object properties include information about coefficient
estimates, summary statistics, fitting method, and input data. Use the object functions to predict
responses and to modify, evaluate, and visualize the linear regression model.

Version History
Introduced in R2006a

References
[1] Durbin, J., and G. S. Watson. "Testing for Serial Correlation in Least Squares Regression I."

Biometrika 37, pp. 409–428, 1950.

[2] Farebrother, R. W. Pan's "Procedure for the Tail Probabilities of the Durbin-Watson Statistic."
Applied Statistics 29, pp. 224–227, 1980.

See Also
regress | fitlm | dwtest
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dwtest
Durbin-Watson test with linear regression model object

Syntax
p = dwtest(mdl)
p = dwtest(mdl,method)
p = dwtest(mdl,method,tail)
[p,DW] = dwtest( ___ )

Description
p = dwtest(mdl) returns the p-value of the “Durbin-Watson Test” on page 35-1491 on the residuals
of the linear regression model mdl. The null hypothesis is that the residuals are uncorrelated, and the
alternative hypothesis is that the residuals are autocorrelated.

p = dwtest(mdl,method) specifies the algorithm for computing the p-value.

p = dwtest(mdl,method,tail) specifies the alternative hypothesis.

[p,DW] = dwtest( ___ ) also returns the Durbin-Watson statistic using any of the input argument
combinations in the previous syntaxes.

Examples

Test Residuals for Autocorrelation

Determine whether a fitted linear regression model has autocorrelated residuals.

Load the census data set and create a linear regression model.

load census
mdl = fitlm(cdate,pop);

Find the p-value of the Durbin-Watson autocorrelation test.

p = dwtest(mdl)

p = 3.6190e-15

The small p-value indicates that the residuals are autocorrelated.

Input Arguments
mdl — Linear regression model
LinearModel object

Linear regression model, specified as a LinearModel object created using fitlm or stepwiselm.
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method — Algorithm for computing p-value
'exact' | 'approximate'

Algorithm for computing the p-value, specified as one of these values:

• 'exact' — Calculate an exact p-value using Pan’s algorithm [2].
• 'approximate' — Calculate the p-value using a normal approximation [1].

The default is 'exact' when the sample size is less than 400, and 'approximate' otherwise.

tail — Type of alternative hypothesis
'both' (default) | 'right' | 'left'

Type of alternative hypothesis to test, specified as one of these values:

Value Alternative Hypothesis
'both' Serial correlation is not 0.
'right' Serial correlation is greater than 0 (right-tailed test).
'left' Serial correlation is less than 0 (left-tailed test).

dwtest tests whether mdl has no serial correlation, against the specified alternative hypothesis.

Output Arguments
p — p-value of test
numeric value

p-value of the test, returned as a numeric value. dwtest tests whether the residuals are
uncorrelated, against the alternative that autocorrelation exists among the residuals. A small p-value
indicates that the residuals are autocorrelated.

DW — Durbin-Watson statistic
nonnegative numeric value

Durbin-Watson statistic value, returned as a nonnegative numeric value.

More About
Durbin-Watson Test

The Durbin-Watson test tests the null hypothesis that linear regression residuals of time series data
are uncorrelated, against the alternative hypothesis that autocorrelation exists.

The test statistic for the Durbin-Watson test is

DW =
∑

i = 1

n− 1
ri + 1− ri

2

∑
i = 1

n
ri

2
,

where ri is the ith raw residual, and n is the number of observations.
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The p-value of the Durbin-Watson test is the probability of observing a test statistic as extreme as, or
more extreme than, the observed value under the null hypothesis. A significantly small p-value casts
doubt on the validity of the null hypothesis and indicates autocorrelation among residuals.

Version History
Introduced in R2012a

References
[1] Durbin, J., and G. S. Watson. "Testing for Serial Correlation in Least Squares Regression I."

Biometrika 37, pp. 409–428, 1950.

[2] Farebrother, R. W. Pan's "Procedure for the Tail Probabilities of the Durbin-Watson Statistic."
Applied Statistics 29, pp. 224–227, 1980.

Extended Capabilities
GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

This function fully supports GPU arrays. For more information, see “Run MATLAB Functions on a
GPU” (Parallel Computing Toolbox).

See Also
LinearModel | anova | coefCI | coefTest

Topics
“Durbin-Watson Test” on page 11-72
“Linear Regression Workflow” on page 11-35
“Interpret Linear Regression Results” on page 11-52
“Linear Regression” on page 11-9
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ecdf
Empirical cumulative distribution function

Syntax
[f,x] = ecdf(y)
[f,x] = ecdf(y,Name,Value)
[f,x,flo,fup] = ecdf( ___ )

ecdf( ___ )
ecdf(ax, ___ )

Description
[f,x] = ecdf(y) returns the empirical cumulative distribution function f, evaluated at x, using
the data in y.

[f,x] = ecdf(y,Name,Value) specifies additional options using one or more name-value
arguments. For example, 'Function','survivor' specifies the type of function for f as a survivor
function.

[f,x,flo,fup] = ecdf( ___ ) also returns the lower and upper confidence bounds for the
evaluated function values, using any of the input argument combinations in the previous syntaxes.
This syntax is not valid for interval-censored data.

ecdf( ___ ) produces a stairstep graph of the evaluated function. The function visualizes interval
estimates for interval-censored data using shaded rectangles. You can specify 'Bounds','on' to
include the confidence bounds in the graph for fully observed, left-censored, right-censored, and
double-censored data.

ecdf(ax, ___ ) plots on the axes specified by ax instead of the current axes (gca).

Examples

Compute Empirical cdf

Compute the Kaplan-Meier estimate of the empirical cumulative distribution function (cdf) for
simulated survival data.

Generate survival data from a Weibull distribution with parameters 3 and 1.

rng('default')  % For reproducibility
failuretime = random('wbl',3,1,15,1);

Compute the Kaplan-Meier estimate of the empirical cdf for survival data.

[f,x] = ecdf(failuretime);
[f,x]

ans = 16×2
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         0    0.0895
    0.0667    0.0895
    0.1333    0.1072
    0.2000    0.1303
    0.2667    0.1313
    0.3333    0.2718
    0.4000    0.2968
    0.4667    0.6147
    0.5333    0.6684
    0.6000    1.3749
      ⋮

Plot the estimated empirical cdf.

ecdf(failuretime)

Compare Empirical cdf with Known cdf

Generate right-censored survival data and compare the empirical cumulative distribution function
(cdf) with the known cdf.

Generate failure times from an exponential distribution with a mean failure time of 15.
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rng('default')  % For reproducibility
y = exprnd(15,75,1);

Generate drop-out times from an exponential distribution with a mean failure time of 30.

d = exprnd(30,75,1);

Generate the observed failure times, that is, the minimum of the generated failure times and the
drop-out times.

t = min(y,d);

Create a logical array containing generated failure times that are larger than the drop-out times. The
data for which this condition is true is censored.

censored = (y>d);

Compute the empirical cdf and confidence bounds.

[f,x,flo,fup] = ecdf(t,'Censoring',censored);

Plot the empirical cdf and confidence bounds.

ecdf(t,'Censoring',censored,'Bounds','on')
hold on

Superimpose a plot of the known population cdf.
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xx = 0:.1:max(t);
yy = 1-exp(-xx/15);
plot(xx,yy,'g-','LineWidth',2)
axis([0 max(t) 0 1])
legend('Empirical cdf','Lower confidence bound', ...
    'Upper confidence bound','Known population cdf', ...
    'Location','southeast')
hold off

Plot Empirical Survivor Function with Confidence Bounds

Generate survival data and plot the empirical survivor function with 99% confidence bounds.

Generate lifetime data from a Weibull distribution with parameters 100 and 2.

rng('default')  % For reproducibility
R = wblrnd(100,2,100,1);

Plot the empirical survivor function for the data with 99% confidence bounds.

ecdf(R,'Function','survivor','Alpha',0.01,'Bounds','on')
hold on
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Superimpose a plot of the Weibull survivor function.

x = 1:1:250;
wblsurv = 1-cdf('weibull',x,100,2);
plot(x,wblsurv,'g-','LineWidth',2)
legend('Empirical survivor function','Lower confidence bound', ...
    'Upper confidence bound','Weibull survivor function', ...
    'Location','northeast')
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The Weibull survivor function based on the actual distribution is within the confidence bounds.

Empirical Cumulative Hazard Function of Double-Censored Data

Compute and plot the cumulative hazard function of simulated double-censored survival data.

Generate failure times from a Birnbaum-Saunders distribution.

rng('default')  % For reproducibility
failuretime = random('BirnbaumSaunders',0.3,1,[100,1]);

Assume that the study starts at time 0.1 and the ends at time 0.9. The assumption implies that failure
times less than 0.1 are left censored, and failure times greater than 0.9 are right censored.

Create a vector in which each element indicates the censorship status of the corresponding
observation in failuretime. Use –1, 1, and 0 to indicate left-censored, right-censored, and fully
observed observations, respectively.

L = 0.1;
U = 0.9;
left_censored = (failuretime<L);
right_censored = (failuretime>U);
c = right_censored - left_censored;

Plot the empirical cumulative hazard function for the data with 95% confidence bounds.

35 Functions

35-1498



ecdf(failuretime,'Function','cumulative hazard', ...
    'Censoring',c,'Bounds','on')

Empirical cdf of Interval-Censored Data

Compute and plot the empirical cdf of interval-censored data.

Load the cities data set. The data includes ratings for nine different indicators of the quality of life
in 329 US cities: climate, housing, health, crime, transportation, education, arts, recreation, and
economics. For each indicator, a higher rating is better.

load cities

Select the first indicator (climate) as sample data.

Y = ratings(:,1);

Assume that the indicators in Y are the values rounded to the nearest integer. Then, you can treat
values in Y as interval-censored observations. An observation y in Y indicates that the actual rating is
between y–0.5 and y+0.5.

Create a matrix in which each row represents the interval surrounding each integer in Y.

intervalY = [Y-0.5, Y+0.5];
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Compute the empirical cdf values.

[f,x] = ecdf(intervalY);

Plot the empirical cdf values.

figure
ecdf(intervalY)

Zoom into a smaller region to see the interval estimates.

idx_roi = 21:30;
xlim([x(idx_roi(1),1) x(idx_roi(end),2)])
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Display the corresponding x and f values.

table(idx_roi',x(idx_roi,:),f(idx_roi,:), ...
    'VariableNames',{'Index','x','Empirical cdf F(x)'})

ans=10×3 table
    Index          x           Empirical cdf F(x)
    _____    ______________    __________________

     21      377.5    378.5         0.069909     
     22      382.5    383.5         0.075988     
     23      384.5    385.5         0.079027     
     24      390.5    391.5         0.082067     
     25      395.5    396.5         0.085106     
     26      397.5    398.5         0.091185     
     27      400.5    401.5         0.094225     
     28      401.5    402.5         0.097264     
     29      403.5    404.5          0.10334     
     30      409.5    410.5          0.10638     

The shaded rectangles indicate the change of empirical cdf values F(x) within the corresponding
intervals. For example, the second shaded rectangle from the left in the zoomed plot corresponds to
the interval (382.5,383.5]. F(382.5) is 0.075988, F(383.5) is 0.079027, and the change from 0.075988
to 0.079027 occurs in the interval (382.5,383.5]. The exact timing of the change is uncertain.

You can plot the interval estimates in different ways. If you assume that the probability change occurs
at the start of each interval, you can plot the F(x) values using the first column of x.
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figure
stairs(x(:,1),f)
title('Probability changes at the start')
xlabel('x')
ylabel('F(x)')
xlim([x(idx_roi(1),1) x(idx_roi(end),2)])

Alternatively, you can plot the F(x) values using the second column of x with the assumption that the
probability change occurs at the end of each interval.

figure
stairs(x(:,2),f)
title('Probability changes at the end')
xlabel('x')
ylabel('F(x)')
xlim([x(idx_roi(1),1) x(idx_roi(end),2)])
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Combine the previous two plots to visualize the intervals.

figure
stairs(x(:,1),f)
hold on
stairs(x(:,2),f)
title('Probability changes in the interval')
xlabel('x')
ylabel('F(x)')
xlim([x(idx_roi(1),1) x(idx_roi(end),2)])
hold off
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Create Piecewise Linear Distribution Object from Empirical cdf

Compute the empirical cumulative distribution function (cdf) for data, and create a piecewise linear
distribution object using an approximation to the empirical cdf.

Load the sample data. Visualize the patient weight data using a histogram.

load patients
histogram(Weight(strcmp(Gender,'Female')))
hold on
histogram(Weight(strcmp(Gender,'Male')))
legend('Female','Male')
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The histogram shows that the data has two modes, one for female patients and one for male patients.

Compute the empirical cdf for the data.

[f,x] = ecdf(Weight);

Construct a piecewise linear approximation to the empirical cdf by taking a value every five points.

f = f(1:5:end);
x = x(1:5:end);

Plot the empirical cdf and the approximation.

figure
ecdf(Weight)
hold on
plot(x,f,'ko-','MarkerFace','r') 
legend('Empirical cdf','Piecewise linear approximation', ...
    'Location','best')
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Create a piecewise linear probability distribution object using the piecewise approximation of the
empirical cdf.

pd = makedist('PiecewiseLinear','x',x,'Fx',f)

pd = 
  PiecewiseLinearDistribution

F(111) = 0
F(118) = 0.05
F(124) = 0.13
F(130) = 0.25
F(135) = 0.37
F(142) = 0.5
F(163) = 0.55
F(171) = 0.61
F(178) = 0.7
F(183) = 0.82
F(189) = 0.94
F(202) = 1

Generate 100 random numbers from the distribution.

rng('default') % For reproducibility
rw = random(pd,[100,1]);

Plot the random numbers to visually compare their distribution to the original data.
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figure
histogram(Weight)
hold on
histogram(rw)
legend('Original data','Generated data')

The random numbers generated from the piecewise linear distribution have the same bimodal
distribution as the original data.

Input Arguments
y — Sample data and censorship information
vector | two-column matrix

Sample data and censorship information, specified as a vector of sample data or a two-column matrix
of sample data and censorship information.

You can specify the censorship information for the sample data by using either the y argument or the
Censoring name-value argument. ecdf ignores the Censoring argument value if y is a two-column
matrix.

Specify y as a vector or a two-column matrix depending on the censorship types of the observations
in y.

• Fully observed data — Specify y as a vector of sample data.

 ecdf

35-1507



• Data that contains fully observed, left-censored, or right-censored observations — Specify y as a
vector of sample data, and specify the Censoring name-value argument as a vector that contains
the censorship information for each observation. The Censoring vector can contain 0, –1, and 1,
which refer to fully observed, left-censored, and right-censored observations, respectively.

• Data that includes interval-censored observations — Specify y as a two-column matrix of sample
data and censorship information. Each row of y specifies the range of possible survival or failure
times for each observation, and can have one of these values.

• [t,t] — Fully observed at t
• [–Inf,t] — Left-censored at t
• [t,Inf] — Right-censored at t
• [t1,t2] — Interval-censored between [t1,t2], where t1 < t2

ecdf ignores NaN values in y. Additionally, any NaN values in the censoring vector (Censoring) or
frequency vector (Frequency) cause ecdf to ignore the corresponding rows in y.
Data Types: single | double

ax — Target axes
Axes object

Target axes for the figure to which ecdf plots, specified as an Axes object.

For instance, if h is a target Axes object for a figure, then ecdf can plot to that figure as shown in
the following example.
Example: ecdf(h,x)

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: 'Censoring',c,'Function','cumulative
hazard','Alpha',0.025,'Bounds','on' instructs ecdf to return the cumulative hazard
function and the 97.5% confidence bounds, accounting for the censored data specified by vector c.

Function — Type of function returned
'cdf' (default) | 'survivor' | 'cumulative hazard'

Type of function returned by ecdf, specified as one of these values.

Value Description
'cdf' (default) Cumulative distribution function (cdf)
'survivor' “Survivor Function” on page 35-1512
'cumulative hazard' “Cumulative Hazard Function” on page 35-1512

Example: 'Function','cumulative hazard'

Censoring — Indicator of censored data
vector of 0s (default) | vector consisting of 0, –1, and 1
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Indicator of censored data, specified as a vector consisting of 0, –1, and 1, which indicate fully
observed, left-censored, and right-censored observations, respectively. Each element of the
Censoring value indicates the censorship status of the corresponding observation in y. The
Censoring value must have the same size as y. The default is a vector of 0s, indicating all
observations are fully observed.

You cannot specify interval-censored observations using this argument. If the sample data includes
interval-censored observations, specify y using a two-column matrix. ecdf ignores the Censoring
value if y is a two-column matrix.

ecdf ignores any NaN values in the censoring vector. Additionally, any NaN values in y or the
frequency vector (Frequency) cause ecdf to ignore the corresponding values in the censoring
vector.
Example: 'Censoring',censored, where censored is a vector that contains censorship
information.
Data Types: logical | single | double

Frequency — Frequency of observations
vector of 1s (default) | vector of nonnegative scalars

Frequency of observations, specified as a vector of nonnegative integer counts that has the same
number of rows as y. The jth element of the Frequency value gives the number of times the jth row
of y was observed. The default is a vector of 1s, indicating one observation per row of y.

ecdf ignores any NaN values in this frequency vector. Additionally, any NaN values in y or the
censoring vector (Censoring) cause ecdf to ignore the corresponding values in the frequency
vector.
Example: 'Frequency',freq, where freq is a vector that contains the observation frequencies.
Data Types: single | double

IterationLimit — Maximum number of iterations
1e7 (default) | positive integer

Maximum number of iterations, specified as a positive integer. This argument is valid only for double-
censored data and interval-censored data.
Example: 'IterationLimit',1e5
Data Types: single | double

Tolerance — Termination tolerance on function value
1e-7 (default) | positive scalar

Termination tolerance on the function value f, specified as a positive scalar. This argument is valid
only for double-censored data and interval-censored data.
Example: 'Tolerance',1e-5
Data Types: single | double

ICMFrequency — Frequency of ICM step
10 (default) | positive integer

Frequency of the iterative convex minorant (ICM) step, specified as a positive integer. This argument
is valid only for interval-censored data.
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ecdf uses the expectation-maximization iterative convex minorant (EMICM) algorithm [5] to compute
the output f for interval-censored data. The EMICM algorithm uses either the EM algorithm or the
ICM algorithm at each iteration. ecdf runs the ICM step every specified number of iterations. For
example, by default, ecdf iterates the EM step nine times, runs the ICM step once, and then goes
back to the EM step.
Example: 'ICMFrequency',1
Data Types: single | double

Alpha — Significance level
0.05 (default) | scalar in the range (0,1)

Significance level for the confidence interval of the evaluated function, specified as a scalar in the
range (0,1). The default is 0.05 for 95% confidence. For a given value alpha, the confidence level is
100(1 – Alpha)%.

This argument is not valid for interval-censored data.
Example: 'Alpha',0.01 specifies the confidence level as 99%.
Data Types: single | double

Bounds — Indicator for including confidence bounds in plot
'off' (default) | 'on'

Indicator for including the confidence bounds in the plot, specified as one of these values.

Value Description
'off' (default) Omit the confidence bounds.
'on' Include the confidence bounds.

This argument is not valid for interval-censored data.

Note This argument is valid only for plotting.

Example: 'Bounds','on'

Output Arguments
f — Function values
column vector

Function values evaluated at the points or intervals in x, returned as a column vector.

• The point estimate indicates that the function value at x(i) is f(i).
• The interval estimate indicates that the function value changes from f(i–1) to f(i) within the

interval (x(i,1),x(i,2)]. The exact timing of the change is uncertain. For an example, see
“Empirical cdf of Interval-Censored Data” on page 35-1499.

The function type of f can be the cdf (default), “Survivor Function” on page 35-1512, or “Cumulative
Hazard Function” on page 35-1512, as specified by the Function name-value argument.
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x — Evaluation points or intervals
column vector | two-column matrix

Evaluation points or intervals, specified as a column vector or a two-column matrix, respectively.

• ecdf returns a column vector for fully observed, left-censored, right-censored, and double-
censored data.

• For fully observed, left-censored, and right-censored data, ecdf removes values for censored
observations from y, sorts the remaining values, removes duplicate values in the sorted values,
and saves the results to the output x.

• For double-censored data, ecdf determines which values of y correspond to the event times,
sorts the values, removes duplicate values in the sorted values, and saves the results to the
output x.

The output x includes the minimum value of y as its first two values. These two values are useful
for plotting the outputs of ecdf using the stairs function.

• ecdf returns a two-column matrix for interval-censored data. ecdf evaluates the function values
f at intervals called Turnbull intervals. For details, see “Algorithms” on page 35-1512.

flo — Lower confidence bound
column vector

Lower confidence bound for the evaluated function, returned as a column vector. ecdf computes the
bound for each observation. flo is not a simultaneous bound for the curve.

This argument is not valid for interval-censored data.

fup — Upper confidence bound
column vector

Upper confidence bound for the evaluated function, returned as a column vector. ecdf computes the
bound for each observation. fup is not a simultaneous bound for the curve.

This argument is not valid for interval-censored data.

More About
Censorship Types

ecdf supports left-censored, right-censored, and interval-censored observations.

• Left-censored observation at time t — The event occurred before time t, and the exact event time
is unknown.

• Right-censored observation at time t — The event occurred after time t, and the exact event time
is unknown.

• Interval-censored observation within the interval [t1,t2] — The event occurred after time t1 and
before time t2, and the exact event time is unknown.

Double-censored data includes both left-censored and right-censored observations.

 ecdf

35-1511



Survivor Function

The survival function is the probability of survival as a function of time. It is also called the survivor
function.

The survival function gives the probability that the survival time of an individual exceeds a certain
value. Because the cumulative distribution function F(t) is the probability that the survival time is less
than or equal to a given point t in time, the survival function for a continuous distribution S(t) is the
complement of the cumulative distribution function: S(t) = 1 – F(t).

Cumulative Hazard Function

The hazard function h(t) is the instantaneous failure rate of an individual conditioned on the fact that
the individual survived until a given time. The cumulative hazard function H(t) is the cumulative
hazard up to time t.

h(t) = lim
Δt 0

P t ≤ T < t + Δt T ≥ t
Δt ,

H(t) =∫0 t
h(u)du .

The hazard function always takes a positive value. However, these values do not correspond to
probabilities and can be greater than 1.

You can obtain the cumulative hazard function values from the “Survivor Function” on page 35-1512
S(t) using the relation S(t) = exp(–H(t)).

Algorithms
ecdf computes the function values (f) and the confidence bounds (flo and fup) using different
algorithms, depending on the censorship information. The function type of f can be the cdf (default),
“Survivor Function” on page 35-1512, or “Cumulative Hazard Function” on page 35-1512, as
specified by the Function name-value argument.
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Censorship Type Algorithm for f Algorithm for flo and fup
Right-censored
data, which
contains fully
observed or right-
censored
observations

• Use the Kaplan-Meier estimator for
the cdf and survivor function values.

The Kaplan-Meier estimator S (t) is
given by

S t = ∏
ti < t

ri− di
ri

,

where ri is the number of
observations at risk at time ti, and di
is the number of failures at time ti.
For more details, see “Kaplan-Meier
Method” on page 15-10.

• Use the Nelson-Aalen estimator for
the cumulative hazard function
values.

The Nelson-Aalen estimator is given
by

H t = ∑
ti < t

di
ri

.

Use Greenwood’s formula, which is an
approximation for the variance of the
Kaplan-Meier estimator.

The variance estimate is given by

V S t = S 2 t ∑
ti < t

di
ri ri− di

.

Left-censored data,
which contains
fully observed or
left-censored
observations

Use the Kaplan-Meier estimator. Use Greenwood's formula.

Double-censored
data, which
includes both
right-censored and
left-censored
observations

Use Turnbull's algorithm [3][4]. You
can specify the maximum number of
iterations (IterationLimit) and the
termination tolerance on the function
value (Tolerance) for the algorithm.

Use the Fisher information matrix.
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Censorship Type Algorithm for f Algorithm for flo and fup
Interval-censored
data, which
includes interval-
censored
observations

• Use the expectation-maximization
iterative convex minorant (EMICM)
algorithm [5]. The EMICM
algorithm uses either the EM
algorithm or the ICM algorithm at
each iteration. The ICMFrequency
name-value argument determines
the frequency of the ICM algorithm.
ecdf runs the ICM step every
specified number of iterations. By
default, ecdf iterates the EM step
nine times, runs the ICM step once,
and then goes back to the EM step.
You can specify the maximum
number of iterations
(IterationLimit) and the
termination tolerance on the
function value (Tolerance) for the
algorithm.

• ecdf constructs mutually disjoint
intervals, called Turnbull intervals,
from the two-column matrix data y,
and returns the Turnbull intervals
(x) and the estimates (f) at the
intervals. The left bounds of the
intervals are from the first column
of y, and the right bounds of the
intervals are from the second
column of y. For a fully observed
observation (for the row with two of
the same values [t t]), the
function converts [t t] to [t–
eps(t) t] to create an interval
with nonzero length before
constructing the Turnbull intervals.

Not supported

Version History
Introduced before R2006a
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Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• If you disable nonfinite support for code generation, and you want to specify left-censored or
right-censored data using y in the form of a two-column matrix, use a value less than
min(y(~isinf(y))) and a value greater than max(y(~isinf(y))) instead of –Inf and Inf,
respectively.

• Plotting is not supported for code generation.
• Names in name-value arguments must be compile-time constants.
• The value of the 'Function' name-value argument must be compile-time constants. For example,

to use the 'Function','survivor' name-value argument in the generated code, include
{coder.Constant('Function'),coder.Constant('survivor')} in the -args value of
codegen.

For more information on code generation, see “Introduction to Code Generation” on page 34-2 and
“General Code Generation Workflow” on page 34-5.

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

This function fully supports GPU arrays. For more information, see “Run MATLAB Functions on a
GPU” (Parallel Computing Toolbox).

See Also
cdfplot | ecdfhist

Topics
“Hazard and Survivor Functions for Different Groups” on page 15-16
“Survivor Functions for Two Groups” on page 15-22
“What Is Survival Analysis?” on page 15-2
“Kaplan-Meier Method” on page 15-10
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ecdfhist
Histogram based on empirical cumulative distribution function

Syntax
[n,c] = ecdfhist(f,x)
[n,c] = ecdfhist(f,x,m)

n = ecdfhist(f,x,centers)

ecdfhist( ___ )

Description
[n,c] = ecdfhist(f,x) returns the heights, n, of histogram bars for 10 equally spaced bins and
the position of the bin centers, c.

ecdfhist computes the bar heights from the increases in the empirical cumulative distribution
function, f, at evaluation points, x. It normalizes the bar heights so that the area of the histogram is
equal to 1. In contrast, histogram produces bars with heights representing bin counts.

[n,c] = ecdfhist(f,x,m) returns the histogram bars using m bins.

n = ecdfhist(f,x,centers) returns the heights of the histogram bars with bin centers specified
by centers.

ecdfhist( ___ ) plots the histogram bars.

Examples

Return Histogram Bar Heights and Bin Centers

Compute the histogram bar heights based on the empirical cumulative distribution function.

Generate failure times from a Birnbaum-Saunders distribution.

rng('default') % for reproducibility
failuretime = random('birnbaumsaunders',0.3,1,100,1);

Assuming that the end of the study is at time 0.9, mark the generated failure times that are larger
than 0.9 as censored data and store that information in a vector.

T = 0.9;
cens = (failuretime>T);

Compute the empirical cumulative distribution function for the data.

[f,x] = ecdf(failuretime,'censoring',cens);

Now, find the bar heights of the histogram using the cumulative distribution function estimate.
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[n,c] = ecdfhist(f,x);
[n' c']

ans = 10×2

    2.3529    0.0715
    1.7647    0.1565
    1.4117    0.2415
    1.5294    0.3265
    1.0588    0.4115
    0.4706    0.4965
    0.4706    0.5815
    0.9412    0.6665
    0.2353    0.7515
    0.2353    0.8365

Return Bar Heights and Bin Centers for a Given Number of Bins

Compute the bar heights for six bins using the empirical cumulative distribution function and also
return the bin centers.

Generate failure times from a Birnbaum-Saunders distribution.

rng('default') % for reproducibility
failuretime = random('birnbaumsaunders',0.3,1,100,1);

Assuming that the end of the study is at time 0.9, mark the generated failure times that are larger
than 0.9 as censored data and store that information in a vector.

T = 0.9;
cens = (failuretime>T);

First, compute the empirical cumulative distribution function for the data.

[f,x] = ecdf(failuretime,'censoring',cens);

Now, estimate the histogram with six bins using the cumulative distribution function estimate.

[n,c] = ecdfhist(f,x,6);
[n' c']

ans = 6×2

    1.9764    0.0998
    1.7647    0.2415
    1.1294    0.3831
    0.4235    0.5248
    0.7764    0.6665
    0.2118    0.8081
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Draw Histogram for Given Bin Centers

Draw the histogram of the empirical cumulative distribution histogram for specified bin centers.

Generate failure times from a Birnbaum-Saunders distribution.

rng default;  % For reproducibility
failuretime = random('birnbaumsaunders',0.3,1,100,1);

Assuming that the end of the study is at time 0.9, mark the generated failure times that are larger
than 0.9 as censored data and store that information in a vector.

T = 0.9;
cens = (failuretime>T);

Define bin centers.

centers = 0.1:0.1:1;

Compute the empirical cumulative distribution function for the data and draw the histogram for
specified bin centers.

[f,x] = ecdf(failuretime,'censoring',cens);
ecdfhist(f,x,centers)
axis([0 1 0 2.5])
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Compare Histogram with Known Probability Distribution Function

Generate right-censored survival data and compare the histogram from cumulative distribution
function with the known probability distribution function.

Generate failure times from an exponential distribution with mean failure time of 15.

rng default; % For reproducibility
y = exprnd(15,75,1);

Generate drop-out times from an exponential distribution with mean failure time of 30.

d = exprnd(30,75,1);

Record the minimum of these times as the observed failure times.

t = min(y,d);

Generate censoring by finding the generated failure times that are greater than the drop-out times.

censored = (y>d);

Calculate the empirical cdf and plot a histogram using the empirical cumulative distribution function.

[f,x] = ecdf(t,'censoring',censored);
ecdfhist(f,x)
h = findobj(gca,'Type','patch');
h.FaceColor = [.8 .8 1];
hold on
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Superimpose a plot of the known population pdf.

xx = 0:.1:max(t);
yy = exp(-xx/15)/15;
plot(xx,yy,'r-','LineWidth',2)
hold off

Input Arguments
f — Empirical cdf values
vector

Empirical cdf values at given evaluation points, x, specified as a vector.

For instance, you can use ecdf to obtain the empirical cdf values and enter them in ecdfhist as
follows.
Example: [f,x] = ecdf(failure); ecdfhist(f,x);
Data Types: single | double

x — Evaluation points
vector

Evaluation points at which empirical cdf values, f, are calculated, specified as a vector.
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For instance, you can use ecdf to obtain the empirical cdf values and enter them in ecdfhist as
follows.
Example: [f,x] = ecdf(failure); ecdfhist(f,x);
Data Types: single | double

m — Number of bins
scalar

Number of bins, specified as a scalar.

For instance, you can draw a histogram with 8 bins as follows.
Example: ecdfhist(f,x,8)
Data Types: single | double

centers — Center points of bins
vector

Center points of bins, specified as a vector.
Example: centers = 2:2:10; ecdfhist(f,x,centers);
Data Types: single | double

Output Arguments
n — Heights of histogram bars
row vector

Heights of histogram bars ecdfhist calculates based on the empirical cdf values, returned as a row
vector.

c — Position of bin centers
row vector

Position of bin centers, returned as a row vector.

Version History
Introduced before R2006a

See Also
ecdf | histogram | histc

Topics
“Nonparametric and Empirical Probability Distributions” on page 5-31
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edge
Package: 

Classification edge for generalized additive model (GAM)

Syntax
e = edge(Mdl,Tbl,ResponseVarName)
e = edge(Mdl,Tbl,Y)
e = edge(Mdl,X,Y)
e = edge( ___ ,Name,Value)

Description
e = edge(Mdl,Tbl,ResponseVarName) returns the “Classification Edge” on page 35-1529 (e) for
the generalized additive model Mdl using the predictor data in Tbl and the true class labels in
Tbl.ResponseVarName.

e = edge(Mdl,Tbl,Y) uses the predictor data in table Tbl and the true class labels in Y.

e = edge(Mdl,X,Y) uses the predictor data in matrix X and the true class labels in Y.

e = edge( ___ ,Name,Value) specifies options using one or more name-value arguments in
addition to any of the input argument combinations in previous syntaxes. For example, you can
specify observation weights and whether to include interaction terms in computations.

Examples

Estimate Test Sample Classification Margins and Edge

Estimate the test sample classification margins and edge of a generalized additive model. The test
sample margins are the observed true class scores minus the false class scores, and the test sample
edge is the mean of the margins.

Load the fisheriris data set. Create X as a numeric matrix that contains two sepal and two petal
measurements for versicolor and virginica irises. Create Y as a cell array of character vectors that
contains the corresponding iris species.

load fisheriris
inds = strcmp(species,'versicolor') | strcmp(species,'virginica');
X = meas(inds,:);
Y = species(inds,:);

Randomly partition observations into a training set and a test set with stratification, using the class
information in Y. Specify a 30% holdout sample for testing.

rng('default') % For reproducibility
cv = cvpartition(Y,'HoldOut',0.30);

Extract the training and test indices.
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trainInds = training(cv);
testInds = test(cv);

Specify the training and test data sets.

XTrain = X(trainInds,:);
YTrain = Y(trainInds);
XTest = X(testInds,:);
YTest = Y(testInds);

Train a GAM using the predictors XTrain and class labels YTrain. A recommended practice is to
specify the class names.

Mdl = fitcgam(XTrain,YTrain,'ClassNames',{'versicolor','virginica'});

Mdl is a ClassificationGAM model object.

Estimate the test sample classification margins and edge.

m = margin(Mdl,XTest,YTest);
e = edge(Mdl,XTest,YTest)

e = 0.8000

Display the histogram of the test sample classification margins.

histogram(m,length(unique(m)),'Normalization','probability')
xlabel('Test Sample Margins')
ylabel('Probability')
title('Probability Distribution of the Test Sample Margins')
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Estimate Test Sample Weighted Edge

Estimate the test sample weighted edge (the weighted average of margins) of a generalized additive
model.

Load the fisheriris data set. Create X as a numeric matrix that contains two sepal and two petal
measurements for versicolor and virginica irises. Create Y as a cell array of character vectors that
contains the corresponding iris species.

load fisheriris
idx1 = strcmp(species,'versicolor') | strcmp(species,'virginica');
X = meas(idx1,:);
Y = species(idx1,:);

Suppose that the quality of some measurements is lower because they were measured with older
technology. To simulate this effect, add noise to a random subset of 20 measurements.

rng('default') % For reproducibility
idx2 = randperm(size(X,1),20);
X(idx2,:) = X(idx2,:) + 2*randn(20,size(X,2));

Randomly partition observations into a training set and a test set with stratification, using the class
information in Y. Specify a 30% holdout sample for testing.

cv = cvpartition(Y,'HoldOut',0.30);
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Extract the training and test indices.

trainInds = training(cv);
testInds = test(cv);

Specify the training and test data sets.

XTrain = X(trainInds,:);
YTrain = Y(trainInds);
XTest = X(testInds,:);
YTest = Y(testInds);

Train a GAM using the predictors XTrain and class labels YTrain. A recommended practice is to
specify the class names.

Mdl = fitcgam(XTrain,YTrain,'ClassNames',{'versicolor','virginica'});

Mdl is a ClassificationGAM model object.

Estimate the test sample edge.

e = edge(Mdl,XTest,YTest)

e = 0.8000

The average margin is approximately 0.80.

One way to reduce the effect of the noisy measurements is to assign them less weight than the other
observations. Define a weight vector that gives the higher quality observations twice the weight of
the other observations.

n = size(X,1);
weights = ones(size(X,1),1);
weights(idx2) = 0.5;
weightsTrain = weights(trainInds);
weightsTest = weights(testInds);

Train a GAM using the predictors XTrain, class labels YTrain, and weights weightsTrain.

Mdl_W = fitcgam(XTrain,YTrain,'Weights',weightsTrain,...
    'ClassNames',{'versicolor','virginica'});

Estimate the test sample weighted edge using the weighting scheme.

e_W = edge(Mdl_W,XTest,YTest,'Weights',weightsTest)

e_W = 0.8770

The weighted average margin is approximately 0.88. This result indicates that, on average, the labels
from weighted classifier labels have higher confidence.

Compare GAMs by Examining Test Sample Margins and Edge

Compare a GAM with linear terms to a GAM with both linear and interaction terms by examining the
test sample margins and edge. Based solely on this comparison, the classifier with the highest
margins and edge is the best model.
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Load the ionosphere data set. This data set has 34 predictors and 351 binary responses for radar
returns, either bad ('b') or good ('g').

load ionosphere

Randomly partition observations into a training set and a test set with stratification, using the class
information in Y. Specify a 30% holdout sample for testing.

rng('default') % For reproducibility
cv = cvpartition(Y,'Holdout',0.30);

Extract the training and test indices.

trainInds = training(cv);
testInds = test(cv);

Specify the training and test data sets.

XTrain = X(trainInds,:);
YTrain = Y(trainInds);
XTest = X(testInds,:);
YTest = Y(testInds);

Train a GAM that contains both linear and interaction terms for predictors. Specify to include all
available interaction terms whose p-values are not greater than 0.05.

Mdl = fitcgam(XTrain,YTrain,'Interactions','all','MaxPValue',0.05)

Mdl = 
  ClassificationGAM
             ResponseName: 'Y'
    CategoricalPredictors: []
               ClassNames: {'b'  'g'}
           ScoreTransform: 'logit'
                Intercept: 3.0398
             Interactions: [561x2 double]
          NumObservations: 246

  Properties, Methods

Mdl is a ClassificationGAM model object. Mdl includes all available interaction terms.

Estimate the test sample margins and edge for Mdl.

M = margin(Mdl,XTest,YTest);
E = edge(Mdl,XTest,YTest)

E = 0.7848

Estimate the test sample margins and edge for Mdl without including interaction terms.

M_nointeractions = margin(Mdl,XTest,YTest,'IncludeInteractions',false);
E_nointeractions = edge(Mdl,XTest,YTest,'IncludeInteractions',false)

E_nointeractions = 0.7871

Display the distributions of the margins using box plots.
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boxplot([M M_nointeractions],'Labels',{'Linear and Interaction Terms','Linear Terms Only'})
title('Box Plots of Test Sample Margins')

The margins M and M_nointeractions have a similar distribution, but the test sample edge of the
classifier with only linear terms is larger. Classifiers that yield relatively large margins are preferred.

Input Arguments
Mdl — Generalized additive model
ClassificationGAM model object | CompactClassificationGAM model object

Generalized additive model, specified as a ClassificationGAM or CompactClassificationGAM
model object.

• If you trained Mdl using sample data contained in a table, then the input data for edge must also
be in a table (Tbl).

• If you trained Mdl using sample data contained in a matrix, then the input data for edge must also
be in a matrix (X).

Tbl — Sample data
table

Sample data, specified as a table. Each row of Tbl corresponds to one observation, and each column
corresponds to one predictor variable. Multicolumn variables and cell arrays other than cell arrays of
character vectors are not allowed.
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Tbl must contain all the predictors used to train Mdl. Optionally, Tbl can contain a column for the
response variable and a column for the observation weights.

• The response variable must have the same data type as Mdl.Y. (The software treats string arrays
as cell arrays of character vectors.) If the response variable in Tbl has the same name as the
response variable used to train Mdl, then you do not need to specify ResponseVarName.

• The weight values must be a numeric vector. You must specify the observation weights in Tbl by
using 'Weights'.

If you trained Mdl using sample data contained in a table, then the input data for edge must also be
in a table.
Data Types: table

ResponseVarName — Response variable name
name of variable in Tbl

Response variable name, specified as a character vector or string scalar containing the name of the
response variable in Tbl. For example, if the response variable Y is stored in Tbl.Y, then specify it as
'Y'.
Data Types: char | string

Y — Class labels
categorical array | character array | string array | logical vector | numeric vector | cell array of
character vectors

Class labels, specified as a categorical, character, or string array, a logical or numeric vector, or a cell
array of character vectors. Each row of Y represents the classification of the corresponding row of X
or Tbl.

Y must have the same data type as Mdl.Y. (The software treats string arrays as cell arrays of
character vectors.)
Data Types: single | double | categorical | logical | char | string | cell

X — Predictor data
numeric matrix

Predictor data, specified as a numeric matrix. Each row of X corresponds to one observation, and
each column corresponds to one predictor variable.

If you trained Mdl using sample data contained in a matrix, then the input data for edge must also be
in a matrix.
Data Types: single | double

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: 'IncludeInteractions',false,'Weights',w specifies to exclude interaction terms
from the model and to use the observation weights w.
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IncludeInteractions — Flag to include interaction terms
true | false

Flag to include interaction terms of the model, specified as true or false.

The default 'IncludeInteractions' value is true if Mdl contains interaction terms. The value
must be false if the model does not contain interaction terms.
Example: 'IncludeInteractions',false
Data Types: logical

Weights — Observation weights
ones(size(X,1),1) (default) | vector of scalar values | name of variable in Tbl

Observation weights, specified as a vector of scalar values or the name of a variable in Tbl. The
software weights the observations in each row of X or Tbl with the corresponding value in Weights.
The size of Weights must equal the number of rows in X or Tbl.

If you specify the input data as a table Tbl, then Weights can be the name of a variable in Tbl that
contains a numeric vector. In this case, you must specify Weights as a character vector or string
scalar. For example, if the weights vector W is stored in Tbl.W, then specify it as 'W'.

edge normalizes the weights in each class to add up to the value of the prior probability of the
respective class.
Data Types: single | double | char | string

More About
Classification Edge

The classification edge is the weighted mean of the classification margins.

One way to choose among multiple classifiers, for example to perform feature selection, is to choose
the classifier that yields the greatest edge.

Classification Margin

The classification margin for binary classification is, for each observation, the difference between the
classification score for the true class and the classification score for the false class.

If the margins are on the same scale (that is, the score values are based on the same score
transformation), then they serve as a classification confidence measure. Among multiple classifiers,
those that yield greater margins are better.

Version History
Introduced in R2021a

See Also
predict | loss | margin | resubEdge
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Topics
“Train Generalized Additive Model for Binary Classification” on page 12-77
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edge
Edge of k-nearest neighbor classifier

Syntax
E = edge(mdl,Tbl,ResponseVarName)
E = edge(mdl,Tbl,Y)
E = edge(mdl,X,Y)
E = edge( ___ ,'Weights',weights)

Description
E = edge(mdl,Tbl,ResponseVarName) returns the classification edge for mdl with data Tbl and
classification Tbl.ResponseVarName. If Tbl contains the response variable used to train mdl, then
you do not need to specify ResponseVarName.

The classification edge (E) is a scalar value that represents the mean of the classification margins on
page 35-1533.

E = edge(mdl,Tbl,Y) returns the classification edge for mdl with data Tbl and classification Y.

E = edge(mdl,X,Y) returns the classification edge for mdl with data X and classification Y.

E = edge( ___ ,'Weights',weights) computes the edge with additional observation weights
weights, using any of the input arguments in the previous syntaxes.

Note If the predictor data X or the predictor variables in Tbl contain any missing values, the edge
function can return NaN. For more details, see “edge can return NaN for predictor data with missing
values” on page 35-1533.

Examples

Edge Calculation

Create a k-nearest neighbor classifier for the Fisher iris data, where k = 5.

Load the Fisher iris data set.

load fisheriris
X = meas;
Y = species;

Create a classifier for five nearest neighbors.

mdl = fitcknn(X,Y,'NumNeighbors',5);

Examine the edge of the classifier for minimum, mean, and maximum observations classified as
'setosa', 'versicolor', and 'virginica', respectively.
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NewX = [min(X);mean(X);max(X)];
Y = {'setosa';'versicolor';'virginica'};
E = edge(mdl,NewX,Y)

E = 1

All five nearest neighbors of each NewX point classify as the corresponding Y entry.

Input Arguments
mdl — k-nearest neighbor classifier model
ClassificationKNN object

k-nearest neighbor classifier model, specified as a ClassificationKNN object.

Tbl — Sample data
table

Sample data used to train the model, specified as a table. Each row of Tbl corresponds to one
observation, and each column corresponds to one predictor variable. Optionally, Tbl can contain one
additional column for the response variable. Multicolumn variables and cell arrays other than cell
arrays of character vectors are not allowed.

If Tbl contains the response variable used to train mdl, then you do not need to specify
ResponseVarName or Y.

If you train mdl using sample data contained in a table, then the input data for edge must also be in a
table.
Data Types: table

ResponseVarName — Response variable name
name of a variable in Tbl

Response variable name, specified as the name of a variable in Tbl. If Tbl contains the response
variable used to train mdl, then you do not need to specify ResponseVarName.

You must specify ResponseVarName as a character vector or string scalar. For example, if the
response variable is stored as Tbl.response, then specify it as 'response'. Otherwise, the
software treats all columns of Tbl, including Tbl.response, as predictors.

The response variable must be a categorical, character, or string array, logical or numeric vector, or
cell array of character vectors. If the response variable is a character array, then each element must
correspond to one row of the array.
Data Types: char | string

X — Predictor data
numeric matrix

Predictor data, specified as a numeric matrix. Each row of X represents one observation, and each
column represents one variable.
Data Types: single | double
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Y — Class labels
categorical array | character array | string array | logical vector | numeric vector | cell array of
character vectors

Class labels, specified as a categorical, character, or string array, logical or numeric vector, or cell
array of character vectors. Each row of Y represents the classification of the corresponding row of X.
Data Types: categorical | char | string | logical | single | double | cell

weights — Observation weights
ones(size(X,1),1) (default) | numeric vector | name of variable in Tbl

Observation weights, specified as a numeric vector or the name of a variable in Tbl.

If you specify weights as a numeric vector, then the size of weights must be equal to the number of
rows in X or Tbl.

If you specify weights as the name of a variable in Tbl, then the name must be a character vector or
string scalar. For example, if the weights are stored as Tbl.w, then specify weights as 'w'.
Otherwise, the software treats all columns of Tbl, including Tbl.w, as predictors.

If you specify weights, then the edge function weights the observation in each row of X or Tbl with
the corresponding weight in weights.
Example: 'Weights','w'
Data Types: single | double | char | string

More About
Margin

The classification margin for each observation is the difference between the classification score for
the true class and the maximal classification score for the false classes.

The classification margins form a column vector with the same number of rows as X or Tbl.

Score

The score of a classification is the posterior probability of the classification. The posterior probability
is the number of neighbors with that classification divided by the number of neighbors. For a more
detailed definition that includes weights and prior probabilities, see “Posterior Probability” on page
35-5727.

Version History
Introduced in R2012a

edge can return NaN for predictor data with missing values
Behavior changed in R2022a

The edge function no longer omits an observation with a NaN score when computing the weighted
mean of the classification margins. Therefore, edge can now return NaN when the predictor data X
or the predictor variables in Tbl contain any missing values. In most cases, if the test set
observations do not contain missing predictors, the edge function does not return NaN.
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This change improves the automatic selection of a classification model when you use fitcauto.
Before this change, the software might select a model (expected to best classify new data) with few
non-NaN predictors.

If edge in your code returns NaN, you can update your code to avoid this result. Remove or replace
the missing values by using rmmissing or fillmissing, respectively.

The following table shows the classification models for which the edge object function might return
NaN. For more details, see the Compatibility Considerations for each edge function.

Model Type Full or Compact Model Object edge Object Function
Discriminant analysis
classification model

ClassificationDiscrimina
nt,
CompactClassificationDis
criminant

edge

Ensemble of learners for
classification

ClassificationEnsemble,
CompactClassificationEns
emble

edge

Gaussian kernel classification
model

ClassificationKernel edge

k-nearest neighbor classification
model

ClassificationKNN edge

Linear classification model ClassificationLinear edge
Neural network classification
model

ClassificationNeuralNetw
ork,
CompactClassificationNeu
ralNetwork

edge

Support vector machine (SVM)
classification model

ClassificationSVM,
CompactClassificationSVM

edge

Extended Capabilities
Tall Arrays
Calculate with arrays that have more rows than fit in memory.

This function fully supports tall arrays. For more information, see “Tall Arrays”.

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

Usage notes and limitations:

• edge does not support GPU arrays for ClassificationKNN models with the following
specifications:

• The 'NSMethod' property is specified as 'kdtree'.
• The 'Distance' property is specified as a function handle.
• The 'IncludeTies' property is specified as true.

For more information, see “Run MATLAB Functions on a GPU” (Parallel Computing Toolbox).
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See Also
ClassificationKNN | fitcknn | loss | margin

Topics
“Classification Using Nearest Neighbors” on page 19-14
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edge
Class: ClassificationLinear

Classification edge for linear classification models

Syntax
e = edge(Mdl,X,Y)

e = edge(Mdl,Tbl,ResponseVarName)
e = edge(Mdl,Tbl,Y)

e = edge( ___ ,Name,Value)

Description
e = edge(Mdl,X,Y) returns the classification edges on page 35-1543 for the binary, linear
classification model Mdl using predictor data in X and corresponding class labels in Y. e contains a
classification edge for each regularization strength in Mdl.

e = edge(Mdl,Tbl,ResponseVarName) returns the classification edges for the trained linear
classifier Mdl using the predictor data in Tbl and the class labels in Tbl.ResponseVarName.

e = edge(Mdl,Tbl,Y) returns the classification edges for the classifier Mdl using the predictor
data in table Tbl and the class labels in vector Y.

e = edge( ___ ,Name,Value) specifies options using one or more name-value pair arguments in
addition to any of the input argument combinations in previous syntaxes. For example, you can
specify that columns in the predictor data correspond to observations or supply observation weights.

Note If the predictor data X or the predictor variables in Tbl contain any missing values, the edge
function can return NaN. For more details, see “edge can return NaN for predictor data with missing
values” on page 35-1544.

Input Arguments
Mdl — Binary, linear classification model
ClassificationLinear model object

Binary, linear classification model, specified as a ClassificationLinear model object. You can
create a ClassificationLinear model object using fitclinear.

X — Predictor data
full matrix | sparse matrix

Predictor data, specified as an n-by-p full or sparse matrix. This orientation of X indicates that rows
correspond to individual observations, and columns correspond to individual predictor variables.
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Note If you orient your predictor matrix so that observations correspond to columns and specify
'ObservationsIn','columns', then you might experience a significant reduction in computation
time.

The length of Y and the number of observations in X must be equal.
Data Types: single | double

Y — Class labels
categorical array | character array | string array | logical vector | numeric vector | cell array of
character vectors

Class labels, specified as a categorical, character, or string array; logical or numeric vector; or cell
array of character vectors.

• The data type of Y must be the same as the data type of Mdl.ClassNames. (The software treats
string arrays as cell arrays of character vectors.)

• The distinct classes in Y must be a subset of Mdl.ClassNames.
• If Y is a character array, then each element must correspond to one row of the array.
• The length of Y must be equal to the number of observations in X or Tbl.

Data Types: categorical | char | string | logical | single | double | cell

Tbl — Sample data
table

Sample data used to train the model, specified as a table. Each row of Tbl corresponds to one
observation, and each column corresponds to one predictor variable. Optionally, Tbl can contain
additional columns for the response variable and observation weights. Tbl must contain all the
predictors used to train Mdl. Multicolumn variables and cell arrays other than cell arrays of character
vectors are not allowed.

If Tbl contains the response variable used to train Mdl, then you do not need to specify
ResponseVarName or Y.

If you train Mdl using sample data contained in a table, then the input data for edge must also be in a
table.

ResponseVarName — Response variable name
name of variable in Tbl

Response variable name, specified as the name of a variable in Tbl. If Tbl contains the response
variable used to train Mdl, then you do not need to specify ResponseVarName.

If you specify ResponseVarName, then you must specify it as a character vector or string scalar. For
example, if the response variable is stored as Tbl.Y, then specify ResponseVarName as 'Y'.
Otherwise, the software treats all columns of Tbl, including Tbl.Y, as predictors.

The response variable must be a categorical, character, or string array; a logical or numeric vector;
or a cell array of character vectors. If the response variable is a character array, then each element
must correspond to one row of the array.
Data Types: char | string
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Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.

ObservationsIn — Predictor data observation dimension
'rows' (default) | 'columns'

Predictor data observation dimension, specified as 'rows' or 'columns'.

Note If you orient your predictor matrix so that observations correspond to columns and specify
'ObservationsIn','columns', then you might experience a significant reduction in computation
time. You cannot specify 'ObservationsIn','columns' for predictor data in a table.

Data Types: char | string

Weights — Observation weights
ones(size(X,1),1) (default) | numeric vector | name of variable in Tbl

Observation weights, specified as the comma-separated pair consisting of 'Weights' and a numeric
vector or the name of a variable in Tbl.

• If you specify Weights as a numeric vector, then the size of Weights must be equal to the
number of observations in X or Tbl.

• If you specify Weights as the name of a variable in Tbl, then the name must be a character
vector or string scalar. For example, if the weights are stored as Tbl.W, then specify Weights as
'W'. Otherwise, the software treats all columns of Tbl, including Tbl.W, as predictors.

If you supply weights, then for each regularization strength, edge computes the weighted
classification edge on page 35-1543 and normalizes weights to sum up to the value of the prior
probability in the respective class.
Data Types: double | single

Output Arguments
e — Classification edges
numeric scalar | numeric row vector

Classification edges on page 35-1543, returned as a numeric scalar or row vector.

e is the same size as Mdl.Lambda. e(j) is the classification edge of the linear classification model
trained using the regularization strength Mdl.Lambda(j).

Examples

Estimate Test-Sample Edge

Load the NLP data set.
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load nlpdata

X is a sparse matrix of predictor data, and Y is a categorical vector of class labels. There are more
than two classes in the data.

The models should identify whether the word counts in a web page are from the Statistics and
Machine Learning Toolbox™ documentation. So, identify the labels that correspond to the Statistics
and Machine Learning Toolbox™ documentation web pages.

Ystats = Y == 'stats';

Train a binary, linear classification model that can identify whether the word counts in a
documentation web page are from the Statistics and Machine Learning Toolbox™ documentation.
Specify to holdout 30% of the observations. Optimize the objective function using SpaRSA.

rng(1); % For reproducibility 
CVMdl = fitclinear(X,Ystats,'Solver','sparsa','Holdout',0.30);
CMdl = CVMdl.Trained{1};

CVMdl is a ClassificationPartitionedLinear model. It contains the property Trained, which
is a 1-by-1 cell array holding a ClassificationLinear model that the software trained using the
training set.

Extract the training and test data from the partition definition.

trainIdx = training(CVMdl.Partition);
testIdx = test(CVMdl.Partition);

Estimate the training- and test-sample edges.

eTrain = edge(CMdl,X(trainIdx,:),Ystats(trainIdx))

eTrain = 15.6660

eTest = edge(CMdl,X(testIdx,:),Ystats(testIdx))

eTest = 15.4767

Feature Selection Using Test-Sample Edges

One way to perform feature selection is to compare test-sample edges from multiple models. Based
solely on this criterion, the classifier with the highest edge is the best classifier.

Load the NLP data set.

load nlpdata

X is a sparse matrix of predictor data, and Y is a categorical vector of class labels. There are more
than two classes in the data.

The models should identify whether the word counts in a web page are from the Statistics and
Machine Learning Toolbox™ documentation. So, identify the labels that correspond to the Statistics
and Machine Learning Toolbox™ documentation web pages. For quicker execution time, orient the
predictor data so that individual observations correspond to columns.
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Ystats = Y == 'stats';
X = X';
rng(1); % For reproducibility

Create a data partition which holds out 30% of the observations for testing.

Partition = cvpartition(Ystats,'Holdout',0.30);
testIdx = test(Partition); % Test-set indices
XTest = X(:,testIdx);     
YTest = Ystats(testIdx);

Partition is a cvpartition object that defines the data set partition.

Randomly choose half of the predictor variables.

p = size(X,1); % Number of predictors
idxPart = randsample(p,ceil(0.5*p));

Train two binary, linear classification models: one that uses the all of the predictors and one that uses
half of the predictors. Optimize the objective function using SpaRSA, and indicate that observations
correspond to columns.

CVMdl = fitclinear(X,Ystats,'CVPartition',Partition,'Solver','sparsa',...
    'ObservationsIn','columns');
PCVMdl = fitclinear(X(idxPart,:),Ystats,'CVPartition',Partition,'Solver','sparsa',...
    'ObservationsIn','columns');

CVMdl and PCVMdl are ClassificationPartitionedLinear models.

Extract the trained ClassificationLinear models from the cross-validated models.

CMdl = CVMdl.Trained{1};
PCMdl = PCVMdl.Trained{1};

Estimate the test sample edge for each classifier.

fullEdge = edge(CMdl,XTest,YTest,'ObservationsIn','columns')

fullEdge = 15.4767

partEdge = edge(PCMdl,XTest(idxPart,:),YTest,'ObservationsIn','columns')

partEdge = 13.4458

Based on the test-sample edges, the classifier that uses all of the predictors is the better model.

Find Good Lasso Penalty Using Edge

To determine a good lasso-penalty strength for a linear classification model that uses a logistic
regression learner, compare test-sample edges.

Load the NLP data set. Preprocess the data as in “Feature Selection Using Test-Sample Edges” on
page 35-1539.

load nlpdata
Ystats = Y == 'stats';
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X = X'; 

Partition = cvpartition(Ystats,'Holdout',0.30);
testIdx = test(Partition);
XTest = X(:,testIdx);
YTest = Ystats(testIdx);

Create a set of 11 logarithmically-spaced regularization strengths from 10−8 through 101.

Lambda = logspace(-8,1,11);

Train binary, linear classification models that use each of the regularization strengths. Optimize the
objective function using SpaRSA. Lower the tolerance on the gradient of the objective function to
1e-8.

rng(10); % For reproducibility
CVMdl = fitclinear(X,Ystats,'ObservationsIn','columns',...
    'CVPartition',Partition,'Learner','logistic','Solver','sparsa',...
    'Regularization','lasso','Lambda',Lambda,'GradientTolerance',1e-8)

CVMdl = 
  ClassificationPartitionedLinear
    CrossValidatedModel: 'Linear'
           ResponseName: 'Y'
        NumObservations: 31572
                  KFold: 1
              Partition: [1x1 cvpartition]
             ClassNames: [0 1]
         ScoreTransform: 'none'

  Properties, Methods

Extract the trained linear classification model.

Mdl = CVMdl.Trained{1}

Mdl = 
  ClassificationLinear
      ResponseName: 'Y'
        ClassNames: [0 1]
    ScoreTransform: 'logit'
              Beta: [34023x11 double]
              Bias: [-11.2211 -11.2211 -11.2211 -11.2211 -11.2211 ... ]
            Lambda: [1.0000e-08 7.9433e-08 6.3096e-07 5.0119e-06 ... ]
           Learner: 'logistic'

  Properties, Methods

Mdl is a ClassificationLinear model object. Because Lambda is a sequence of regularization
strengths, you can think of Mdl as 11 models, one for each regularization strength in Lambda.

Estimate the test-sample edges.

e = edge(Mdl,X(:,testIdx),Ystats(testIdx),'ObservationsIn','columns')
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e = 1×11

    0.9986    0.9986    0.9986    0.9986    0.9986    0.9932    0.9765    0.9208    0.8332    0.8128    0.8128

Because there are 11 regularization strengths, e is a 1-by-11 vector of edges.

Plot the test-sample edges for each regularization strength. Identify the regularization strength that
maximizes the edges over the grid.

figure;
plot(log10(Lambda),log10(e),'-o')
[~, maxEIdx] = max(e);
maxLambda = Lambda(maxEIdx);
hold on
plot(log10(maxLambda),log10(e(maxEIdx)),'ro');
ylabel('log_{10} test-sample edge')
xlabel('log_{10} Lambda')
legend('Edge','Max edge')
hold off

Several values of Lambda yield similarly high edges. Higher values of lambda lead to predictor
variable sparsity, which is a good quality of a classifier.

Choose the regularization strength that occurs just before the edge starts decreasing.

LambdaFinal = Lambda(5);
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Train a linear classification model using the entire data set and specify the regularization strength
yielding the maximal edge.

MdlFinal = fitclinear(X,Ystats,'ObservationsIn','columns',...
    'Learner','logistic','Solver','sparsa','Regularization','lasso',...
    'Lambda',LambdaFinal);

To estimate labels for new observations, pass MdlFinal and the new data to predict.

More About
Classification Edge

The classification edge is the weighted mean of the classification margins.

One way to choose among multiple classifiers, for example to perform feature selection, is to choose
the classifier that yields the greatest edge.

Classification Margin

The classification margin for binary classification is, for each observation, the difference between the
classification score for the true class and the classification score for the false class.

The software defines the classification margin for binary classification as

m = 2yf x .

x is an observation. If the true label of x is the positive class, then y is 1, and –1 otherwise. f(x) is the
positive-class classification score for the observation x. The classification margin is commonly defined
as m = yf(x).

If the margins are on the same scale, then they serve as a classification confidence measure. Among
multiple classifiers, those that yield greater margins are better.

Classification Score

For linear classification models, the raw classification score for classifying the observation x, a row
vector, into the positive class is defined by

f j(x) = xβ j + b j .

For the model with regularization strength j, β j is the estimated column vector of coefficients (the
model property Beta(:,j)) and b j is the estimated, scalar bias (the model property Bias(j)).

The raw classification score for classifying x into the negative class is –f(x). The software classifies
observations into the class that yields the positive score.

If the linear classification model consists of logistic regression learners, then the software applies the
'logit' score transformation to the raw classification scores (see ScoreTransform).
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Algorithms
By default, observation weights are prior class probabilities. If you supply weights using Weights,
then the software normalizes them to sum to the prior probabilities in the respective classes. The
software uses the normalized weights to estimate the weighted edge.

Version History
Introduced in R2016a

edge returns a different value for a model with a nondefault cost matrix
Behavior changed in R2022a

If you specify a nondefault cost matrix when you train the input model object, the edge function
returns a different value compared to previous releases.

The edge function uses the prior probabilities stored in the Prior property to normalize the
observation weights of the input data. The way the function uses the Prior property value has not
changed. However, the property value stored in the input model object has changed for a model with
a nondefault cost matrix, so the function can return a different value.

For details about the property value change, see “Cost property stores the user-specified cost matrix”
on page 35-488.

If you want the software to handle the cost matrix, prior probabilities, and observation weights as in
previous releases, adjust the prior probabilities and observation weights for the nondefault cost
matrix, as described in “Adjust Prior Probabilities and Observation Weights for Misclassification Cost
Matrix” on page 19-9. Then, when you train a classification model, specify the adjusted prior
probabilities and observation weights by using the Prior and Weights name-value arguments,
respectively, and use the default cost matrix.

edge can return NaN for predictor data with missing values
Behavior changed in R2022a

The edge function no longer omits an observation with a NaN score when computing the weighted
mean of the classification margins. Therefore, edge can now return NaN when the predictor data X
or the predictor variables in Tbl contain any missing values. In most cases, if the test set
observations do not contain missing predictors, the edge function does not return NaN.

This change improves the automatic selection of a classification model when you use fitcauto.
Before this change, the software might select a model (expected to best classify new data) with few
non-NaN predictors.

If edge in your code returns NaN, you can update your code to avoid this result. Remove or replace
the missing values by using rmmissing or fillmissing, respectively.

The following table shows the classification models for which the edge object function might return
NaN. For more details, see the Compatibility Considerations for each edge function.
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Model Type Full or Compact Model Object edge Object Function
Discriminant analysis
classification model

ClassificationDiscrimina
nt,
CompactClassificationDis
criminant

edge

Ensemble of learners for
classification

ClassificationEnsemble,
CompactClassificationEns
emble

edge

Gaussian kernel classification
model

ClassificationKernel edge

k-nearest neighbor classification
model

ClassificationKNN edge

Linear classification model ClassificationLinear edge
Neural network classification
model

ClassificationNeuralNetw
ork,
CompactClassificationNeu
ralNetwork

edge

Support vector machine (SVM)
classification model

ClassificationSVM,
CompactClassificationSVM

edge

Extended Capabilities
Tall Arrays
Calculate with arrays that have more rows than fit in memory.

Usage notes and limitations:

• edge does not support tall table data.

For more information, see “Tall Arrays”.

See Also
ClassificationLinear | margin | predict | fitclinear

 edge

35-1545



edge
Classification edge

Syntax
E = edge(obj,X,Y)
E = edge(obj,X,Y,Name,Value)

Description
E = edge(obj,X,Y) returns the classification edge for obj with data X and classification Y.

E = edge(obj,X,Y,Name,Value) computes the edge with additional options specified by one or
more Name,Value pair arguments.

Note If the predictor data X contains any missing values, the edge function can return NaN. For
more details, see “edge can return NaN for predictor data with missing values” on page 35-1548.

Input Arguments
obj

Discriminant analysis classifier of class ClassificationDiscriminant or
CompactClassificationDiscriminant, typically constructed with fitcdiscr.

X

Matrix where each row represents an observation, and each column represents a predictor. The
number of columns in X must equal the number of predictors in obj.

Y

Class labels, with the same data type as exists in obj. The number of elements of Y must equal the
number of rows of X.

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.

weights

Observation weights, a numeric vector of length size(X,1). If you supply weights, edge computes
the weighted classification edge.

Default: ones(size(X,1),1)
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Output Arguments
E

Edge, a scalar representing the weighted average value of the margin.

Examples
Compute the classification edge and margin for the Fisher iris data, trained on its first two columns of
data, and view the last 10 entries:

load fisheriris
X = meas(:,1:2);
obj = fitcdiscr(X,species);
E = edge(obj,X,species)

E =
    0.4980

M = margin(obj,X,species);
M(end-10:end)

ans =
    0.6551
    0.4838
    0.6551
   -0.5127
    0.5659
    0.4611
    0.4949
    0.1024
    0.2787
   -0.1439
   -0.4444

The classifier trained on all the data is better:

obj = fitcdiscr(meas,species);
E = edge(obj,meas,species)

E =
    0.9454

M = margin(obj,meas,species);
M(end-10:end)

ans =
    0.9983
    1.0000
    0.9991
    0.9978
    1.0000
    1.0000
    0.9999
    0.9882
    0.9937
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    1.0000
    0.9649

More About
Edge

The edge is the weighted mean value of the classification margin. The weights are class prior
probabilities. If you supply additional weights, those weights are normalized to sum to the prior
probabilities in the respective classes, and are then used to compute the weighted average.

Margin

The classification margin is the difference between the classification score for the true class and
maximal classification score for the false classes.

The classification margin is a column vector with the same number of rows as in the matrix X. A high
value of margin indicates a more reliable prediction than a low value.

Score (discriminant analysis)

For discriminant analysis, the score of a classification is the posterior probability of the classification.
For the definition of posterior probability in discriminant analysis, see “Posterior Probability” on page
21-6.

Version History
edge can return NaN for predictor data with missing values
Behavior changed in R2022a

The edge function no longer omits an observation with a NaN score when computing the weighted
mean of the classification margins. Therefore, edge can now return NaN when the predictor data X
contains any missing values. In most cases, if the test set observations do not contain missing
predictors, the edge function does not return NaN.

This change improves the automatic selection of a classification model when you use fitcauto.
Before this change, the software might select a model (expected to best classify new data) with few
non-NaN predictors.

If edge in your code returns NaN, you can update your code to avoid this result. Remove or replace
the missing values by using rmmissing or fillmissing, respectively.

The following table shows the classification models for which the edge object function might return
NaN. For more details, see the Compatibility Considerations for each edge function.

Model Type Full or Compact Model Object edge Object Function
Discriminant analysis
classification model

ClassificationDiscrimina
nt,
CompactClassificationDis
criminant

edge
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Model Type Full or Compact Model Object edge Object Function
Ensemble of learners for
classification

ClassificationEnsemble,
CompactClassificationEns
emble

edge

Gaussian kernel classification
model

ClassificationKernel edge

k-nearest neighbor classification
model

ClassificationKNN edge

Linear classification model ClassificationLinear edge
Neural network classification
model

ClassificationNeuralNetw
ork,
CompactClassificationNeu
ralNetwork

edge

Support vector machine (SVM)
classification model

ClassificationSVM,
CompactClassificationSVM

edge

Extended Capabilities
Tall Arrays
Calculate with arrays that have more rows than fit in memory.

This function fully supports tall arrays. For more information, see “Tall Arrays”.

See Also
ClassificationDiscriminant | fitcdiscr | loss | margin | predict

Topics
“Discriminant Analysis Classification” on page 21-2
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edge
Package: 

Classification edge for multiclass error-correcting output codes (ECOC) model

Syntax
e = edge(Mdl,tbl,ResponseVarName)
e = edge(Mdl,tbl,Y)

e = edge(Mdl,X,Y)

e = edge( ___ ,Name,Value)

Description
e = edge(Mdl,tbl,ResponseVarName) returns the classification edge on page 35-1557 (e) for
the trained multiclass error-correcting output codes (ECOC) classifier Mdl using the predictor data in
table tbl and the class labels in tbl.ResponseVarName.

e = edge(Mdl,tbl,Y) returns the classification edge for the classifier Mdl using the predictor data
in table tbl and the class labels in vector Y.

e = edge(Mdl,X,Y) returns the classification edge (e) for the classifier Mdl using the predictor
data in matrix X and the class labels in vector Y.

e = edge( ___ ,Name,Value) specifies options using one or more name-value pair arguments in
addition to any of the input argument combinations in previous syntaxes. For example, you can
specify a decoding scheme, binary learner loss function, and verbosity level.

Examples

Test-Sample Edge of ECOC Model

Compute the test-sample classification edge of an ECOC model with SVM binary classifiers.

Load Fisher's iris data set. Specify the predictor data X, the response data Y, and the order of the
classes in Y.

load fisheriris
X = meas;
Y = categorical(species);
classOrder = unique(Y); % Class order
rng(1); % For reproducibility

Train an ECOC model using SVM binary classifiers. Specify a 30% holdout sample for testing,
standardize the predictors using an SVM template, and specify the class order.
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t = templateSVM('Standardize',true);
PMdl = fitcecoc(X,Y,'Holdout',0.30,'Learners',t,'ClassNames',classOrder);
Mdl = PMdl.Trained{1};           % Extract trained, compact classifier

PMdl is a ClassificationPartitionedECOC model. It has the property Trained, a 1-by-1 cell
array containing the CompactClassificationECOC model that the software trained using the
training data.

Compute the test-sample edge.

testInds = test(PMdl.Partition);  % Extract the test indices
XTest = X(testInds,:);
YTest = Y(testInds,:);
e = edge(Mdl,XTest,YTest)

e = 0.6860

The average of the test-sample margins is approximately 0.46.

Mean of Test-Sample Weighted Margins of ECOC Model

Compute the mean of the test-sample weighted margins of an ECOC model.

Suppose that the observations in a data set are measured sequentially, and that the last 75
observations have better quality due to a technology upgrade. Incorporate this advancement by
giving the better quality observations more weight than the other observations.

Load Fisher's iris data set. Specify the predictor data X, the response data Y, and the order of the
classes in Y.

load fisheriris
X = meas;
Y = categorical(species);
classOrder = unique(Y); % Class order
rng(1); % For reproducibility

Define a weight vector that assigns twice as much weight to the better quality observations.

n = size(X,1);
weights = [ones(n-75,1);2*ones(75,1)];

Train an ECOC model using SVM binary classifiers. Specify a 30% holdout sample and the weighting
scheme. Standardize the predictors using an SVM template, and specify the class order.

t = templateSVM('Standardize',true);
PMdl = fitcecoc(X,Y,'Holdout',0.30,'Weights',weights,...
    'Learners',t,'ClassNames',classOrder);
Mdl = PMdl.Trained{1};           % Extract trained, compact classifier

PMdl is a trained ClassificationPartitionedECOC model. It has the property Trained, a 1-by-1
cell array containing the CompactClassificationECOC classifier that the software trained using
the training data.

Compute the test-sample weighted edge using the weighting scheme.
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testInds = test(PMdl.Partition);  % Extract the test indices
XTest = X(testInds,:);
YTest = Y(testInds,:);
wTest = weights(testInds,:);
e = edge(Mdl,XTest,YTest,'Weights',wTest)

e = 0.7197

The average weighted margin of the test sample is approximately 0.48.

Select ECOC Model Features by Comparing Test-Sample Edges

Perform feature selection by comparing test-sample edges from multiple models. Based solely on this
comparison, the classifier with the greatest edge is the best classifier.

Load Fisher's iris data set. Specify the predictor data X, the response data Y, and the order of the
classes in Y.

load fisheriris
X = meas;
Y = categorical(species);
classOrder = unique(Y); % Class order
rng(1); % For reproducibility

Partition the data set into training and test sets. Specify a 30% holdout sample for testing.

Partition = cvpartition(Y,'Holdout',0.30);
testInds = test(Partition); % Indices for the test set
XTest = X(testInds,:);
YTest = Y(testInds,:);

Partition defines the data set partition.

Define these two data sets:

• fullX contains all predictors.
• partX contains the petal dimensions only.

fullX = X;
partX = X(:,3:4);

Train an ECOC model using SVM binary classifiers for each predictor set. Specify the partition
definition, standardize the predictors using an SVM template, and specify the class order.

t = templateSVM('Standardize',true);
fullPMdl = fitcecoc(fullX,Y,'CVPartition',Partition,'Learners',t,...
    'ClassNames',classOrder);
partPMdl = fitcecoc(partX,Y,'CVPartition',Partition,'Learners',t,...
    'ClassNames',classOrder);
fullMdl = fullPMdl.Trained{1};
partMdl = partPMdl.Trained{1};

fullPMdl and partPMdl are ClassificationPartitionedECOC models. Each model has the
property Trained, a 1-by-1 cell array containing the CompactClassificationECOC model that the
software trained using the corresponding training set.
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Calculate the test-sample edge for each classifier.

fullEdge = edge(fullMdl,XTest,YTest)

fullEdge = 0.6860

partEdge = edge(partMdl,XTest(:,3:4),YTest)

partEdge = 0.7259

partMdl yields an edge value comparable to the value for the more complex model fullMdl.

Input Arguments
Mdl — Full or compact multiclass ECOC model
ClassificationECOC model object | CompactClassificationECOC model object

Full or compact multiclass ECOC model, specified as a ClassificationECOC or
CompactClassificationECOC model object.

To create a full or compact ECOC model, see ClassificationECOC or
CompactClassificationECOC.

tbl — Sample data
table

Sample data, specified as a table. Each row of tbl corresponds to one observation, and each column
corresponds to one predictor variable. Optionally, tbl can contain additional columns for the
response variable and observation weights. tbl must contain all the predictors used to train Mdl.
Multicolumn variables and cell arrays other than cell arrays of character vectors are not allowed.

If you train Mdl using sample data contained in a table, then the input data for edge must also be in
a table.

When training Mdl, assume that you set 'Standardize',true for a template object specified in the
'Learners' name-value pair argument of fitcecoc. In this case, for the corresponding binary
learner j, the software standardizes the columns of the new predictor data using the corresponding
means in Mdl.BinaryLearner{j}.Mu and standard deviations in
Mdl.BinaryLearner{j}.Sigma.
Data Types: table

ResponseVarName — Response variable name
name of variable in tbl

Response variable name, specified as the name of a variable in tbl. If tbl contains the response
variable used to train Mdl, then you do not need to specify ResponseVarName.

If you specify ResponseVarName, then you must do so as a character vector or string scalar. For
example, if the response variable is stored as tbl.y, then specify ResponseVarName as 'y'.
Otherwise, the software treats all columns of tbl, including tbl.y, as predictors.

The response variable must be a categorical, character, or string array, a logical or numeric vector, or
a cell array of character vectors. If the response variable is a character array, then each element must
correspond to one row of the array.
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Data Types: char | string

X — Predictor data
numeric matrix

Predictor data, specified as a numeric matrix.

Each row of X corresponds to one observation, and each column corresponds to one variable. The
variables in the columns of X must be the same as the variables that trained the classifier Mdl.

The number of rows in X must equal the number of rows in Y.

When training Mdl, assume that you set 'Standardize',true for a template object specified in the
'Learners' name-value pair argument of fitcecoc. In this case, for the corresponding binary
learner j, the software standardizes the columns of the new predictor data using the corresponding
means in Mdl.BinaryLearner{j}.Mu and standard deviations in
Mdl.BinaryLearner{j}.Sigma.
Data Types: double | single

Y — Class labels
categorical array | character array | string array | logical vector | numeric vector | cell array of
character vectors

Class labels, specified as a categorical, character, or string array, a logical or numeric vector, or a cell
array of character vectors. Y must have the same data type as Mdl.ClassNames. (The software
treats string arrays as cell arrays of character vectors.)

The number of rows in Y must equal the number of rows in tbl or X.
Data Types: categorical | char | string | logical | single | double | cell

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: edge(Mdl,X,Y,'BinaryLoss','exponential','Decoding','lossbased') specifies
an exponential binary learner loss function and a loss-based decoding scheme for aggregating the
binary losses.

BinaryLoss — Binary learner loss function
'hamming' | 'linear' | 'logit' | 'exponential' | 'binodeviance' | 'hinge' | 'quadratic'
| function handle

Binary learner loss function, specified as the comma-separated pair consisting of 'BinaryLoss' and
a built-in loss function name or function handle.

• This table describes the built-in functions, where yj is the class label for a particular binary learner
(in the set {–1,1,0}), sj is the score for observation j, and g(yj,sj) is the binary loss formula.
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Value Description Score Domain g(yj,sj)
'binodeviance' Binomial deviance (–∞,∞) log[1 + exp(–2yjsj)]/

[2log(2)]
'exponential' Exponential (–∞,∞) exp(–yjsj)/2
'hamming' Hamming [0,1] or (–∞,∞) [1 – sign(yjsj)]/2
'hinge' Hinge (–∞,∞) max(0,1 – yjsj)/2
'linear' Linear (–∞,∞) (1 – yjsj)/2
'logit' Logistic (–∞,∞) log[1 + exp(–yjsj)]/

[2log(2)]
'quadratic' Quadratic [0,1] [1 – yj(2sj – 1)]2/2

The software normalizes binary losses so that the loss is 0.5 when yj = 0. Also, the software
calculates the mean binary loss for each class.

• For a custom binary loss function, for example customFunction, specify its function handle
'BinaryLoss',@customFunction.

customFunction has this form:

bLoss = customFunction(M,s)

• M is the K-by-B coding matrix stored in Mdl.CodingMatrix.
• s is the 1-by-B row vector of classification scores.
• bLoss is the classification loss. This scalar aggregates the binary losses for every learner in a

particular class. For example, you can use the mean binary loss to aggregate the loss over the
learners for each class.

• K is the number of classes.
• B is the number of binary learners.

For an example of passing a custom binary loss function, see “Predict Test-Sample Labels of ECOC
Model Using Custom Binary Loss Function” on page 35-5751.

The default BinaryLoss value depends on the score ranges returned by the binary learners. This
table identifies what some default BinaryLoss values are when you use the default score transform
(ScoreTransform property of the model is 'none').

Assumption Default Value
All binary learners are any of the following:

• Classification decision trees
• Discriminant analysis models
• k-nearest neighbor models
• Linear or kernel classification models of logistic regression

learners
• Naive Bayes models

'quadratic'

All binary learners are SVMs or linear or kernel classification
models of SVM learners.

'hinge'
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Assumption Default Value
All binary learners are ensembles trained by AdaboostM1 or
GentleBoost.

'exponential'

All binary learners are ensembles trained by LogitBoost. 'binodeviance'
You specify to predict class posterior probabilities by setting
'FitPosterior',true in fitcecoc.

'quadratic'

Binary learners are heterogeneous and use different loss functions. 'hamming'

To check the default value, use dot notation to display the BinaryLoss property of the trained model
at the command line.
Example: 'BinaryLoss','binodeviance'
Data Types: char | string | function_handle

Decoding — Decoding scheme
'lossweighted' (default) | 'lossbased'

Decoding scheme that aggregates the binary losses, specified as the comma-separated pair consisting
of 'Decoding' and 'lossweighted' or 'lossbased'. For more information, see “Binary Loss” on
page 35-1558.
Example: 'Decoding','lossbased'

ObservationsIn — Predictor data observation dimension
'rows' (default) | 'columns'

Predictor data observation dimension, specified as the comma-separated pair consisting of
'ObservationsIn' and 'columns' or 'rows'. Mdl.BinaryLearners must contain
ClassificationLinear models.

Note If you orient your predictor matrix so that observations correspond to columns and specify
'ObservationsIn','columns', you can experience a significant reduction in execution time. You
cannot specify 'ObservationsIn','columns' for predictor data in a table.

Options — Estimation options
[] (default) | structure array returned by statset

Estimation options, specified as the comma-separated pair consisting of 'Options' and a structure
array returned by statset.

To invoke parallel computing:

• You need a Parallel Computing Toolbox license.
• Specify 'Options',statset('UseParallel',true).

Verbose — Verbosity level
0 (default) | 1

Verbosity level, specified as the comma-separated pair consisting of 'Verbose' and 0 or 1. Verbose
controls the number of diagnostic messages that the software displays in the Command Window.
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If Verbose is 0, then the software does not display diagnostic messages. Otherwise, the software
displays diagnostic messages.
Example: 'Verbose',1
Data Types: single | double

Weights — Observation weights
ones(size(X,1),1) (default) | numeric vector | name of variable in tbl

Observation weights, specified as the comma-separated pair consisting of 'Weights' and a numeric
vector or the name of a variable in tbl. If you supply weights, edge computes the weighted
classification edge on page 35-1557.

If you specify Weights as a numeric vector, then the size of Weights must be equal to the number of
observations in X or tbl. The software normalizes Weights to sum up to the value of the prior
probability in the respective class.

If you specify Weights as the name of a variable in tbl, you must do so as a character vector or
string scalar. For example, if the weights are stored as tbl.w, then specify Weights as 'w'.
Otherwise, the software treats all columns of tbl, including tbl.w, as predictors.
Data Types: single | double | char | string

Output Arguments
e — Classification edge
numeric scalar | numeric vector

Classification edge on page 35-1557, returned as a numeric scalar or vector. e represents the
weighted mean of the classification margins on page 35-1557.

If Mdl.BinaryLearners contains ClassificationLinear models, then e is a 1-by-L vector, where
L is the number of regularization strengths in the linear classification models
(numel(Mdl.BinaryLearners{1}.Lambda)). The value e(j) is the edge for the model trained
using regularization strength Mdl.BinaryLearners{1}.Lambda(j).

Otherwise, e is a scalar value.

More About
Classification Edge

The classification edge is the weighted mean of the classification margins.

One way to choose among multiple classifiers, for example to perform feature selection, is to choose
the classifier that yields the greatest edge.

Classification Margin

The classification margin is, for each observation, the difference between the negative loss for the
true class and the maximal negative loss among the false classes. If the margins are on the same
scale, then they serve as a classification confidence measure. Among multiple classifiers, those that
yield greater margins are better.
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Binary Loss

The binary loss is a function of the class and classification score that determines how well a binary
learner classifies an observation into the class.

Suppose the following:

• mkj is element (k,j) of the coding design matrix M—that is, the code corresponding to class k of
binary learner j. M is a K-by-B matrix, where K is the number of classes, and B is the number of
binary learners.

• sj is the score of binary learner j for an observation.
• g is the binary loss function.
• k  is the predicted class for the observation.

The decoding scheme of an ECOC model specifies how the software aggregates the binary losses and
determines the predicted class for each observation. The software supports two decoding schemes:

• Loss-based decoding [2] (Decoding is 'lossbased') — The predicted class of an observation
corresponds to the class that produces the minimum average of the binary losses over all binary
learners.

k = argmin
k

1
B ∑j = 1

B
mk j g(mk j, s j) .

• Loss-weighted decoding [3] (Decoding is 'lossweighted') — The predicted class of an
observation corresponds to the class that produces the minimum average of the binary losses over
the binary learners for the corresponding class.

k = argmin
k

∑
j = 1

B
mk j g(mk j, s j)

∑ j = 1

B

mk j

.

The denominator corresponds to the number of binary learners for class k. [1] suggests that loss-
weighted decoding improves classification accuracy by keeping loss values for all classes in the
same dynamic range.

The predict, resubPredict, and kfoldPredict functions return the negated value of the
objective function of argmin as the second output argument (NegLoss) for each observation and
class.

This table summarizes the supported binary loss functions, where yj is a class label for a particular
binary learner (in the set {–1,1,0}), sj is the score for observation j, and g(yj,sj) is the binary loss
function.

Value Description Score Domain g(yj,sj)
"binodeviance" Binomial deviance (–∞,∞) log[1 + exp(–2yjsj)]/

[2log(2)]
"exponential" Exponential (–∞,∞) exp(–yjsj)/2
"hamming" Hamming [0,1] or (–∞,∞) [1 – sign(yjsj)]/2
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Value Description Score Domain g(yj,sj)
"hinge" Hinge (–∞,∞) max(0,1 – yjsj)/2
"linear" Linear (–∞,∞) (1 – yjsj)/2
"logit" Logistic (–∞,∞) log[1 + exp(–yjsj)]/

[2log(2)]
"quadratic" Quadratic [0,1] [1 – yj(2sj – 1)]2/2

The software normalizes binary losses so that the loss is 0.5 when yj = 0, and aggregates using the
average of the binary learners.

Do not confuse the binary loss with the overall classification loss (specified by the LossFun name-
value argument of the loss and predict object functions), which measures how well an ECOC
classifier performs as a whole.

Tips
• To compare the margins or edges of several ECOC classifiers, use template objects to specify a

common score transform function among the classifiers during training.

Version History
Introduced in R2014b

References
[1] Allwein, E., R. Schapire, and Y. Singer. “Reducing multiclass to binary: A unifying approach for

margin classifiers.” Journal of Machine Learning Research. Vol. 1, 2000, pp. 113–141.

[2] Escalera, S., O. Pujol, and P. Radeva. “Separability of ternary codes for sparse designs of error-
correcting output codes.” Pattern Recog. Lett., Vol. 30, Issue 3, 2009, pp. 285–297.

[3] Escalera, S., O. Pujol, and P. Radeva. “On the decoding process in ternary error-correcting output
codes.” IEEE Transactions on Pattern Analysis and Machine Intelligence. Vol. 32, Issue 7,
2010, pp. 120–134.

Extended Capabilities
Tall Arrays
Calculate with arrays that have more rows than fit in memory.

Usage notes and limitations:

• edge does not support tall table data when Mdl contains kernel or linear binary learners.

For more information, see “Tall Arrays”.

Automatic Parallel Support
Accelerate code by automatically running computation in parallel using Parallel Computing Toolbox™.

To run in parallel, specify the 'Options' name-value argument in the call to this function and set the
'UseParallel' field of the options structure to true using statset.

 edge

35-1559



For example: 'Options',statset('UseParallel',true)

For more information about parallel computing, see “Run MATLAB Functions with Automatic Parallel
Support” (Parallel Computing Toolbox).

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

Usage notes and limitations:

• The edge function does not support models trained using decision tree learners with surrogate
splits.

• The edge function does not support models trained using SVM learners.

For more information, see “Run MATLAB Functions on a GPU” (Parallel Computing Toolbox).

See Also
ClassificationECOC | CompactClassificationECOC | margin | resubEdge | predict |
fitcecoc | loss

Topics
“Quick Start Parallel Computing for Statistics and Machine Learning Toolbox” on page 33-2
“Reproducibility in Parallel Statistical Computations” on page 33-16
“Concepts of Parallel Computing in Statistics and Machine Learning Toolbox” on page 33-6
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edge
Classification edge

Syntax
E = edge(ens,tbl,ResponseVarName)
E = edge(ens,tbl,Y)
E = edge(ens,X,Y)
E = edge( ___ ,Name,Value)

Description
E = edge(ens,tbl,ResponseVarName) returns the classification edge for ens with data tbl and
classification tbl.ResponseVarName.

E = edge(ens,tbl,Y) returns the classification edge for ens with data tbl and classification Y.

E = edge(ens,X,Y) returns the classification edge for ens with data X and classification Y.

E = edge( ___ ,Name,Value) computes the edge with additional options specified by one or more
Name,Value pair arguments, using any of the previous syntaxes.

Note If the predictor data X or the predictor variables in tbl contain any missing values, the edge
function can return NaN. For more details, see “edge can return NaN for predictor data with missing
values” on page 35-1564.

Input Arguments
ens

A classification ensemble constructed with fitcensemble, or a compact classification ensemble
constructed with compact.

tbl

Sample data, specified as a table. Each row of tbl corresponds to one observation, and each column
corresponds to one predictor variable. tbl must contain all of the predictors used to train the model.
Multicolumn variables and cell arrays other than cell arrays of character vectors are not allowed.

If you trained ens using sample data contained in a table, then the input data for this method must
also be in a table.

ResponseVarName

Response variable name, specified as the name of a variable in tbl.

You must specify ResponseVarName as a character vector or string scalar. For example, if the
response variable Y is stored as tbl.Y, then specify it as 'Y'. Otherwise, the software treats all
columns of tbl, including Y, as predictors when training the model.
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X

A matrix where each row represents an observation, and each column represents a predictor. The
number of columns in X must equal the number of predictors in ens.

If you trained ens using sample data contained in a matrix, then the input data for this method must
also be in a matrix.

Y

Class labels of observations in tbl or X. Y should be of the same type as the classification used to
train ens, and its number of elements should equal the number of rows of tbl or X.

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.

learners

Indices of weak learners in the ensemble ranging from 1 to ens.NumTrained. edge uses only these
learners for calculating loss.

Default: 1:NumTrained

mode

Meaning of the output E:

• 'ensemble' — E is a scalar value, the edge for the entire ensemble.
• 'individual' — E is a vector with one element per trained learner.
• 'cumulative' — E is a vector in which element J is obtained by using learners 1:J from the

input list of learners.

Default: 'ensemble'

UseObsForLearner

A logical matrix of size N-by-T, where:

• N is the number of rows of X.
• T is the number of weak learners in ens.

When UseObsForLearner(i,j) is true, learner j is used in predicting the class of row i of X.

Default: true(N,T)

UseParallel

Indication to perform inference in parallel, specified as false (compute serially) or true (compute in
parallel). Parallel computation requires Parallel Computing Toolbox. Parallel inference can be faster
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than serial inference, especially for large datasets. Parallel computation is supported only for tree
learners.

Default: false

weights

Observation weights, a numeric vector of length size(X,1). If you supply weights, edge computes
weighted classification edge.

Default: ones(size(X,1),1)

Output Arguments
E

The classification edge, a vector or scalar depending on the setting of the mode name-value pair.
Classification edge is weighted average classification margin.

Examples
Find Classification Edge of Training Data

Find the classification edge for some of the data used to train a boosted ensemble classifier.

Load the ionosphere data set.

load ionosphere

Train an ensemble of 100 boosted classification trees using AdaBoostM1.

t = templateTree('MaxNumSplits',1); % Weak learner template tree object
ens = fitcensemble(X,Y,'Method','AdaBoostM1','Learners',t);

Find the classification edge for the last few rows.

E = edge(ens,X(end-10:end,:),Y(end-10:end))

E = 8.3310

More About
Margin

The classification margin is the difference between the classification score for the true class and
maximal classification score for the false classes. Margin is a column vector with the same number of
rows as in the matrix X.

Score (ensemble)

For ensembles, a classification score represents the confidence of a classification into a class. The
higher the score, the higher the confidence.
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Different ensemble algorithms have different definitions for their scores. Furthermore, the range of
scores depends on ensemble type. For example:

• AdaBoostM1 scores range from –∞ to ∞.
• Bag scores range from 0 to 1.

Edge

The edge is the weighted mean value of the classification margin. The weights are the class
probabilities in ens.Prior. If you supply weights in the weights name-value pair, those weights are
used instead of class probabilities.

Version History
edge returns a different value for a model with a nondefault cost matrix
Behavior changed in R2022a

If you specify a nondefault cost matrix when you train the input model object, the edge function
returns a different value compared to previous releases.

The edge function uses the prior probabilities stored in the Prior property to normalize the
observation weights of the input data. The way the function uses the Prior property value has not
changed. However, the property value stored in the input model object has changed for a model with
a nondefault cost matrix, so the function can return a different value.

For details about the property value change, see “Cost property stores the user-specified cost matrix”
on page 35-442.

If you want the software to handle the cost matrix, prior probabilities, and observation weights as in
previous releases, adjust the prior probabilities and observation weights for the nondefault cost
matrix, as described in “Adjust Prior Probabilities and Observation Weights for Misclassification Cost
Matrix” on page 19-9. Then, when you train a classification model, specify the adjusted prior
probabilities and observation weights by using the Prior and Weights name-value arguments,
respectively, and use the default cost matrix.

edge can return NaN for predictor data with missing values
Behavior changed in R2022a

The edge function no longer omits an observation with a NaN score when computing the weighted
mean of the classification margins. Therefore, edge can now return NaN when the predictor data X
or the predictor variables in tbl contain any missing values. In most cases, if the test set
observations do not contain missing predictors, the edge function does not return NaN.

This change improves the automatic selection of a classification model when you use fitcauto.
Before this change, the software might select a model (expected to best classify new data) with few
non-NaN predictors.

If edge in your code returns NaN, you can update your code to avoid this result. Remove or replace
the missing values by using rmmissing or fillmissing, respectively.

The following table shows the classification models for which the edge object function might return
NaN. For more details, see the Compatibility Considerations for each edge function.

35 Functions

35-1564



Model Type Full or Compact Model Object edge Object Function
Discriminant analysis
classification model

ClassificationDiscrimina
nt,
CompactClassificationDis
criminant

edge

Ensemble of learners for
classification

ClassificationEnsemble,
CompactClassificationEns
emble

edge

Gaussian kernel classification
model

ClassificationKernel edge

k-nearest neighbor classification
model

ClassificationKNN edge

Linear classification model ClassificationLinear edge
Neural network classification
model

ClassificationNeuralNetw
ork,
CompactClassificationNeu
ralNetwork

edge

Support vector machine (SVM)
classification model

ClassificationSVM,
CompactClassificationSVM

edge

Extended Capabilities
Tall Arrays
Calculate with arrays that have more rows than fit in memory.

Usage notes and limitations:

• You cannot use UseParallel with tall arrays.

For more information, see “Tall Arrays”.

Automatic Parallel Support
Accelerate code by automatically running computation in parallel using Parallel Computing Toolbox™.

To run in parallel, set the UseParallel name-value argument to true in the call to this function.

For more general information about parallel computing, see “Run MATLAB Functions with Automatic
Parallel Support” (Parallel Computing Toolbox).

You cannot use UseParallel with tall or GPU arrays.

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

Usage notes and limitations:

• The edge function does not support ensembles trained using decision tree learners with surrogate
splits.

For more information, see “Run MATLAB Functions on a GPU” (Parallel Computing Toolbox).
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See Also
margin | edge
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edge
Classification edge for naive Bayes classifier

Syntax
e = edge(Mdl,tbl,ResponseVarName)
e = edge(Mdl,tbl,Y)

e = edge(Mdl,X,Y)

e = edge( ___ ,'Weights',Weights)

Description
e = edge(Mdl,tbl,ResponseVarName) returns the “Classification Edge” on page 35-1572 (e) for
the naive Bayes classifier Mdl using the predictor data in table tbl and the class labels in
tbl.ResponseVarName.

The classification edge (e) is a scalar value that represents the weighted mean of the “Classification
Margins” on page 35-1572.

e = edge(Mdl,tbl,Y) returns the classification edge for Mdl using the predictor data in table tbl
and the class labels in vector Y.

e = edge(Mdl,X,Y) returns the classification edge for Mdl using the predictor data in matrix X and
the class labels in Y.

e = edge( ___ ,'Weights',Weights) returns the classification edge with additional observation
weights supplied in Weights using any of the input argument combinations in the previous syntaxes.

Examples

Estimate Test Sample Edge of Naive Bayes Classifier

Estimate the test sample edge (the classification margin average) of a naive Bayes classifier. The test
sample edge is the average test sample difference between the estimated posterior probability for the
predicted class and the posterior probability for the class with the next lowest posterior probability.

Load the fisheriris data set. Create X as a numeric matrix that contains four petal measurements
for 150 irises. Create Y as a cell array of character vectors that contains the corresponding iris
species.

load fisheriris
X = meas;
Y = species;
rng('default')  % for reproducibility

Randomly partition observations into a training set and a test set with stratification, using the class
information in Y. Specify a 30% holdout sample for testing.
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cv = cvpartition(Y,'HoldOut',0.30);

Extract the training and test indices.

trainInds = training(cv);
testInds = test(cv);

Specify the training and test data sets.

XTrain = X(trainInds,:);
YTrain = Y(trainInds);
XTest = X(testInds,:);
YTest = Y(testInds);

Train a naive Bayes classifier using the predictors XTrain and class labels YTrain. A recommended
practice is to specify the class names. fitcnb assumes that each predictor is conditionally and
normally distributed.

Mdl = fitcnb(XTrain,YTrain,'ClassNames',{'setosa','versicolor','virginica'})

Mdl = 
  ClassificationNaiveBayes
              ResponseName: 'Y'
     CategoricalPredictors: []
                ClassNames: {'setosa'  'versicolor'  'virginica'}
            ScoreTransform: 'none'
           NumObservations: 105
         DistributionNames: {'normal'  'normal'  'normal'  'normal'}
    DistributionParameters: {3x4 cell}

  Properties, Methods

Mdl is a trained ClassificationNaiveBayes classifier.

Estimate the test sample edge.

e = edge(Mdl,XTest,YTest)

e = 0.8658

The margin average is approximately 0.87. This result suggests that the classifier labels predictors
with high confidence.

Estimate Test Sample Weighted Edge of Naive Bayes Classifier

Estimate the test sample weighted edge (the weighted margin average) of a naive Bayes classifier.
The test sample edge is the average test sample difference between the estimated posterior
probability for the predicted class and the posterior probability for the class with the next lowest
posterior probability. The weighted sample edge estimates the margin average when the software
assigns a weight to each observation.

Load the fisheriris data set. Create X as a numeric matrix that contains four petal measurements
for 150 irises. Create Y as a cell array of character vectors that contains the corresponding iris
species.

35 Functions

35-1568



load fisheriris
X = meas;
Y = species;
rng('default')  % for reproducibility

Suppose that some of the measurements are lower quality because they were measured with older
technology. To simulate this effect, add noise to a random subset of 20 measurements.

idx = randperm(size(X,1),20);
X(idx,:) = X(idx,:) + 2*randn(20,size(X,2));

Randomly partition observations into a training set and a test set with stratification, using the class
information in Y. Specify a 30% holdout sample for testing.

cv = cvpartition(Y,'HoldOut',0.30);

Extract the training and test indices.

trainInds = training(cv);
testInds = test(cv);

Specify the training and test data sets.

XTrain = X(trainInds,:);
YTrain = Y(trainInds);
XTest = X(testInds,:);
YTest = Y(testInds);

Train a naive Bayes classifier using the predictors XTrain and class labels YTrain. A recommended
practice is to specify the class names. fitcnb assumes that each predictor is conditionally and
normally distributed.

Mdl = fitcnb(XTrain,YTrain,'ClassNames',{'setosa','versicolor','virginica'});

Mdl is a trained ClassificationNaiveBayes classifier.

Estimate the test sample edge.

e = edge(Mdl,XTest,YTest)

e = 0.5920

The average margin is approximately 0.59.

One way to reduce the effect of the noisy measurements is to assign them less weight than the other
observations. Define a weight vector that gives the better quality observations twice the weight of the
other observations.

n = size(X,1);
weights = ones(size(X,1),1);
weights(idx) = 0.5;
weightsTrain = weights(trainInds);
weightsTest = weights(testInds);

Train a naive Bayes classifier using the predictors XTrain, class labels YTrain, and weights
weightsTrain.

Mdl_W = fitcnb(XTrain,YTrain,'Weights',weightsTrain,...
    'ClassNames',{'setosa','versicolor','virginica'});
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Mdl_W is a trained ClassificationNaiveBayes classifier.

Estimate the test sample weighted edge using the weighting scheme.

e_W = edge(Mdl_W,XTest,YTest,'Weights',weightsTest)

e_W = 0.6816

The weighted average margin is approximately 0.69. This result indicates that, on average, the
weighted classifier labels predictors with higher confidence than the noise corrupted predictors.

Select Naive Bayes Classifier Features by Comparing Test Sample Edges

The classifier edge measures the average of the classifier margins. One way to perform feature
selection is to compare test sample edges from multiple models. Based solely on this criterion, the
classifier with the highest edge is the best classifier.

Load the ionosphere data set. Remove the first two predictors for stability.

load ionosphere
X = X(:,3:end);
rng('default')  % for reproducibility

Randomly partition observations into a training set and a test set with stratification, using the class
information in Y. Specify a 30% holdout sample for testing.

cv = cvpartition(Y,'Holdout',0.30);

Extract the training and test indices.

trainInds = training(cv);
testInds = test(cv);

Specify the training and test data sets.

XTrain = X(trainInds,:);
YTrain = Y(trainInds);
XTest = X(testInds,:);
YTest = Y(testInds);

Define these two training data sets:

• fullXTrain contains all predictors.
• partXTrain contains the 10 most important predictors.

fullXTrain = XTrain;
idx = fscmrmr(XTrain,YTrain);
partXTrain = XTrain(:,idx(1:10));

Train a naive Bayes classifier for each predictor set.

fullMdl = fitcnb(fullXTrain,YTrain);
partMdl = fitcnb(partXTrain,YTrain);

fullMdl and partMdl are trained ClassificationNaiveBayes classifiers.
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Estimate the test sample edge for each classifier.

fullEdge = edge(fullMdl,XTest,YTest)

fullEdge = 0.5831

partEdge = edge(partMdl,XTest(:,idx(1:10)),YTest)

partEdge = 0.7593

The test sample edge of the classifier using the 10 most important predictors is larger.

Input Arguments
Mdl — Naive Bayes classification model
ClassificationNaiveBayes model object | CompactClassificationNaiveBayes model object

Naive Bayes classification model, specified as a ClassificationNaiveBayes model object or
CompactClassificationNaiveBayes model object returned by fitcnb or compact, respectively.

tbl — Sample data
table

Sample data used to train the model, specified as a table. Each row of tbl corresponds to one
observation, and each column corresponds to one predictor variable. tbl must contain all the
predictors used to train Mdl. Multicolumn variables and cell arrays other than cell arrays of character
vectors are not allowed. Optionally, tbl can contain additional columns for the response variable and
observation weights.

If you train Mdl using sample data contained in a table, then the input data for edge must also be in a
table.

ResponseVarName — Response variable name
name of a variable in tbl

Response variable name, specified as the name of a variable in tbl.

You must specify ResponseVarName as a character vector or string scalar. For example, if the
response variable y is stored as tbl.y, then specify it as 'y'. Otherwise, the software treats all
columns of tbl, including y, as predictors.

If tbl contains the response variable used to train Mdl, then you do not need to specify
ResponseVarName.

The response variable must be a categorical, character, or string array, logical or numeric vector, or
cell array of character vectors. If the response variable is a character array, then each element must
correspond to one row of the array.
Data Types: char | string

X — Predictor data
numeric matrix

Predictor data, specified as a numeric matrix.
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Each row of X corresponds to one observation (also known as an instance or example), and each
column corresponds to one variable (also known as a feature). The variables in the columns of X must
be the same as the variables that trained the Mdl classifier.

The length of Y and the number of rows of X must be equal.
Data Types: double | single

Y — Class labels
categorical array | character array | string array | logical vector | numeric vector | cell array of
character vectors

Class labels, specified as a categorical, character, or string array, logical or numeric vector, or cell
array of character vectors. Y must have the same data type as Mdl.ClassNames. (The software
treats string arrays as cell arrays of character vectors.)

The length of Y must be equal to the number of rows of tbl or X.
Data Types: categorical | char | string | logical | single | double | cell

Weights — Observation weights
ones(size(X,1),1) (default) | numeric vector | name of a variable in tbl

Observation weights, specified as a numeric vector or the name of a variable in tbl. The software
weighs the observations in each row of X or tbl with the corresponding weights in Weights.

If you specify Weights as a numeric vector, then the size of Weights must be equal to the number of
rows of X or tbl.

If you specify Weights as the name of a variable in tbl, then the name must be a character vector or
string scalar. For example, if the weights are stored as tbl.w, then specify Weights as 'w'.
Otherwise, the software treats all columns of tbl, including tbl.w, as predictors.
Data Types: double | char | string

More About
Classification Edge

The classification edge is the weighted mean of the classification margins.

If you supply weights, then the software normalizes them to sum to the prior probability of their
respective class. The software uses the normalized weights to compute the weighted mean.

When choosing among multiple classifiers to perform a task such as feature section, choose the
classifier that yields the highest edge.

Classification Margins

The classification margin for each observation is the difference between the score for the true class
and the maximal score for the false classes. Margins provide a classification confidence measure;
among multiple classifiers, those that yield larger margins (on the same scale) are better.
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Posterior Probability

The posterior probability is the probability that an observation belongs in a particular class, given the
data.

For naive Bayes, the posterior probability that a classification is k for a given observation (x1,...,xP) is

P Y = k x1, .., xP =
P X1, ..., XP y = k π Y = k

P X1, ..., XP
,

where:

• P X1, ..., XP y = k  is the conditional joint density of the predictors given they are in class k.
Mdl.DistributionNames stores the distribution names of the predictors.

• π(Y = k) is the class prior probability distribution. Mdl.Prior stores the prior distribution.
• P X1, .., XP  is the joint density of the predictors. The classes are discrete, so

P(X1, ..., XP) = ∑
k = 1

K
P(X1, ..., XP y = k)π(Y = k) .

Prior Probability

The prior probability of a class is the assumed relative frequency with which observations from that
class occur in a population.

Classification Score

The naive Bayes score is the class posterior probability given the observation.

Version History
Introduced in R2014b

Extended Capabilities
Tall Arrays
Calculate with arrays that have more rows than fit in memory.

This function fully supports tall arrays. For more information, see “Tall Arrays”.

See Also
ClassificationNaiveBayes | CompactClassificationNaiveBayes | predict | fitcnb |
loss | resubLoss | margin | resubEdge

Topics
“Naive Bayes Classification” on page 22-2
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edge
Package: 

Classification edge for neural network classifier

Syntax
e = edge(Mdl,Tbl,ResponseVarName)
e = edge(Mdl,Tbl,Y)

e = edge(Mdl,X,Y)

e = edge( ___ ,Name,Value)

Description
e = edge(Mdl,Tbl,ResponseVarName) returns the classification edge on page 35-1581 for the
trained neural network classifier Mdl using the predictor data in table Tbl and the class labels in the
ResponseVarName table variable.

e is returned as a scalar value that represents the mean of the classification margins.

e = edge(Mdl,Tbl,Y) returns the classification edge for the classifier Mdl using the predictor data
in table Tbl and the class labels in vector Y.

e = edge(Mdl,X,Y) returns the classification edge for the trained neural network classifier Mdl
using the predictor data X and the corresponding class labels in Y.

e = edge( ___ ,Name,Value) specifies options using one or more name-value arguments in
addition to any of the input argument combinations in previous syntaxes. For example, you can
specify that columns in the predictor data correspond to observations or supply observation weights.

Note If the predictor data X or the predictor variables in Tbl contain any missing values, the edge
function can return NaN. For more details, see “edge can return NaN for predictor data with missing
values” on page 35-1582.

Examples

Test Set Classification Edge of Neural Network

Calculate the test set classification edge of a neural network classifier.

Load the patients data set. Create a table from the data set. Each row corresponds to one patient,
and each column corresponds to a diagnostic variable. Use the Smoker variable as the response
variable, and the rest of the variables as predictors.

load patients
tbl = table(Diastolic,Systolic,Gender,Height,Weight,Age,Smoker);
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Separate the data into a training set tblTrain and a test set tblTest by using a stratified holdout
partition. The software reserves approximately 30% of the observations for the test data set and uses
the rest of the observations for the training data set.

rng("default") % For reproducibility of the partition
c = cvpartition(tbl.Smoker,"Holdout",0.30);
trainingIndices = training(c);
testIndices = test(c);
tblTrain = tbl(trainingIndices,:);
tblTest = tbl(testIndices,:);

Train a neural network classifier using the training set. Specify the Smoker column of tblTrain as
the response variable. Specify to standardize the numeric predictors.

Mdl = fitcnet(tblTrain,"Smoker", ...
    "Standardize",true);

Calculate the test set classification edge.

e = edge(Mdl,tblTest,"Smoker")

e = 0.8657

The mean of the classification margins is close to 1, which indicates that the model performs well
overall.

Select Features to Include in Neural Network Classifier

Perform feature selection by comparing test set classification margins, edges, errors, and predictions.
Compare the test set metrics for a model trained using all the predictors to the test set metrics for a
model trained using only a subset of the predictors.

Load the sample file fisheriris.csv, which contains iris data including sepal length, sepal width,
petal length, petal width, and species type. Read the file into a table.

fishertable = readtable('fisheriris.csv');

Separate the data into a training set trainTbl and a test set testTbl by using a stratified holdout
partition. The software reserves approximately 30% of the observations for the test data set and uses
the rest of the observations for the training data set.

rng("default")
c = cvpartition(fishertable.Species,"Holdout",0.3);
trainTbl = fishertable(training(c),:);
testTbl = fishertable(test(c),:);

Train one neural network classifier using all the predictors in the training set, and train another
classifier using all the predictors except PetalWidth. For both models, specify Species as the
response variable, and standardize the predictors.

allMdl = fitcnet(trainTbl,"Species","Standardize",true);
subsetMdl = fitcnet(trainTbl,"Species ~ SepalLength + SepalWidth + PetalLength", ...
    "Standardize",true);
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Calculate the test set classification margins for the two models. Because the test set includes only 45
observations, display the margins using bar graphs.

For each observation, the classification margin is the difference between the classification score for
the true class and the maximal score for the false classes. Because neural network classifiers return
classification scores that are posterior probabilities, margin values close to 1 indicate confident
classifications and negative margin values indicate misclassifications.

tiledlayout(2,1)

% Top axes
ax1 = nexttile;
allMargins = margin(allMdl,testTbl);
bar(ax1,allMargins)
xlabel(ax1,"Observation")
ylabel(ax1,"Margin")
title(ax1,"All Predictors")

% Bottom axes
ax2 = nexttile;
subsetMargins = margin(subsetMdl,testTbl);
bar(ax2,subsetMargins)
xlabel(ax2,"Observation")
ylabel(ax2,"Margin")
title(ax2,"Subset of Predictors")

Compare the test set classification edge, or mean of the classification margins, of the two models.
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allEdge = edge(allMdl,testTbl)

allEdge = 0.8198

subsetEdge = edge(subsetMdl,testTbl)

subsetEdge = 0.9556

Based on the test set classification margins and edges, the model trained on a subset of the
predictors seems to outperform the model trained on all the predictors.

Compare the test set classification error of the two models.

allError = loss(allMdl,testTbl);
allAccuracy = 1-allError

allAccuracy = 0.9111

subsetError = loss(subsetMdl,testTbl);
subsetAccuracy = 1-subsetError

subsetAccuracy = 0.9778

Again, the model trained using only a subset of the predictors seems to perform better than the
model trained using all the predictors.

Visualize the test set classification results using confusion matrices.

allLabels = predict(allMdl,testTbl);
figure
confusionchart(testTbl.Species,allLabels)
title("All Predictors")
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subsetLabels = predict(subsetMdl,testTbl);
figure
confusionchart(testTbl.Species,subsetLabels)
title("Subset of Predictors")
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The model trained using all the predictors misclassifies four of the test set observations. The model
trained using a subset of the predictors misclassifies only one of the test set observations.

Given the test set performance of the two models, consider using the model trained using all the
predictors except PetalWidth.

Input Arguments
Mdl — Trained neural network classifier
ClassificationNeuralNetwork model object | CompactClassificationNeuralNetwork
model object

Trained neural network classifier, specified as a ClassificationNeuralNetwork model object or
CompactClassificationNeuralNetwork model object returned by fitcnet or compact,
respectively.

Tbl — Sample data
table

Sample data, specified as a table. Each row of Tbl corresponds to one observation, and each column
corresponds to one predictor variable. Optionally, Tbl can contain an additional column for the
response variable. Tbl must contain all of the predictors used to train Mdl. Multicolumn variables
and cell arrays other than cell arrays of character vectors are not allowed.
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• If Tbl contains the response variable used to train Mdl, then you do not need to specify
ResponseVarName or Y.

• If you trained Mdl using sample data contained in a table, then the input data for edge must also
be in a table.

• If you set 'Standardize',true in fitcnet when training Mdl, then the software standardizes
the numeric columns of the predictor data using the corresponding means and standard
deviations.

Data Types: table

ResponseVarName — Response variable name
name of variable in Tbl

Response variable name, specified as the name of a variable in Tbl. If Tbl contains the response
variable used to train Mdl, then you do not need to specify ResponseVarName.

If you specify ResponseVarName, then you must specify it as a character vector or string scalar. For
example, if the response variable is stored as Tbl.Y, then specify ResponseVarName as 'Y'.
Otherwise, the software treats all columns of Tbl, including Tbl.Y, as predictors.

The response variable must be a categorical, character, or string array; a logical or numeric vector;
or a cell array of character vectors. If the response variable is a character array, then each element
must correspond to one row of the array.
Data Types: char | string

Y — Class labels
categorical array | character array | string array | logical vector | numeric vector | cell array of
character vectors

Class labels, specified as a categorical, character, or string array; logical or numeric vector; or cell
array of character vectors.

• The data type of Y must be the same as the data type of Mdl.ClassNames. (The software treats
string arrays as cell arrays of character vectors.)

• The distinct classes in Y must be a subset of Mdl.ClassNames.
• If Y is a character array, then each element must correspond to one row of the array.
• The length of Y must be equal to the number of observations in X or Tbl.

Data Types: categorical | char | string | logical | single | double | cell

X — Predictor data
numeric matrix

Predictor data, specified as a numeric matrix. By default, edge assumes that each row of X
corresponds to one observation, and each column corresponds to one predictor variable.

Note If you orient your predictor matrix so that observations correspond to columns and specify
'ObservationsIn','columns', then you might experience a significant reduction in computation
time.

The length of Y and the number of observations in X must be equal.
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If you set 'Standardize',true in fitcnet when training Mdl, then the software standardizes the
numeric columns of the predictor data using the corresponding means and standard deviations.
Data Types: single | double

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: edge(Mdl,Tbl,"Response","Weights","W") specifies to use the Response and W
variables in the table Tbl as the class labels and observation weights, respectively.

ObservationsIn — Predictor data observation dimension
'rows' (default) | 'columns'

Predictor data observation dimension, specified as 'rows' or 'columns'.

Note If you orient your predictor matrix so that observations correspond to columns and specify
'ObservationsIn','columns', then you might experience a significant reduction in computation
time. You cannot specify 'ObservationsIn','columns' for predictor data in a table.

Data Types: char | string

Weights — Observation weights
nonnegative numeric vector | name of variable in Tbl

Observation weights, specified as a nonnegative numeric vector or the name of a variable in Tbl. The
software weights each observation in X or Tbl with the corresponding value in Weights. The length
of Weights must equal the number of observations in X or Tbl.

If you specify the input data as a table Tbl, then Weights can be the name of a variable in Tbl that
contains a numeric vector. In this case, you must specify Weights as a character vector or string
scalar. For example, if the weights vector W is stored as Tbl.W, then specify it as 'W'.

By default, Weights is ones(n,1), where n is the number of observations in X or Tbl.

If you supply weights, then edge computes the weighted classification edge and normalizes weights
to sum to the value of the prior probability in the respective class.
Data Types: single | double | char | string

More About
Classification Edge

The classification edge is the mean of the classification margins, or the weighted mean of the
classification margins when you specify Weights.

One way to choose among multiple classifiers, for example to perform feature selection, is to choose
the classifier that yields the greatest edge.
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Classification Margin

The classification margin for binary classification is, for each observation, the difference between the
classification score for the true class and the classification score for the false class. The classification
margin for multiclass classification is the difference between the classification score for the true class
and the maximal score for the false classes.

If the margins are on the same scale (that is, the score values are based on the same score
transformation), then they serve as a classification confidence measure. Among multiple classifiers,
those that yield greater margins are better.

Version History
Introduced in R2021a

edge can return NaN for predictor data with missing values
Behavior changed in R2022a

The edge function no longer omits an observation with a NaN score when computing the weighted
mean of the classification margins. Therefore, edge can now return NaN when the predictor data X
or the predictor variables in Tbl contain any missing values. In most cases, if the test set
observations do not contain missing predictors, the edge function does not return NaN.

This change improves the automatic selection of a classification model when you use fitcauto.
Before this change, the software might select a model (expected to best classify new data) with few
non-NaN predictors.

If edge in your code returns NaN, you can update your code to avoid this result. Remove or replace
the missing values by using rmmissing or fillmissing, respectively.

The following table shows the classification models for which the edge object function might return
NaN. For more details, see the Compatibility Considerations for each edge function.

Model Type Full or Compact Model Object edge Object Function
Discriminant analysis
classification model

ClassificationDiscrimina
nt,
CompactClassificationDis
criminant

edge

Ensemble of learners for
classification

ClassificationEnsemble,
CompactClassificationEns
emble

edge

Gaussian kernel classification
model

ClassificationKernel edge

k-nearest neighbor classification
model

ClassificationKNN edge

Linear classification model ClassificationLinear edge
Neural network classification
model

ClassificationNeuralNetw
ork,
CompactClassificationNeu
ralNetwork

edge
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Model Type Full or Compact Model Object edge Object Function
Support vector machine (SVM)
classification model

ClassificationSVM,
CompactClassificationSVM

edge

See Also
fitcnet | ClassificationNeuralNetwork | CompactClassificationNeuralNetwork |
margin | loss | predict

Topics
“Assess Neural Network Classifier Performance” on page 19-181
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edge
Package: classreg.learning.classif

Find classification edge for support vector machine (SVM) classifier

Syntax
e = edge(SVMModel,Tbl,ResponseVarName)
e = edge(SVMModel,Tbl,Y)

e = edge(SVMModel,X,Y)

e = edge( ___ ,'Weights',weights)

Description
e = edge(SVMModel,Tbl,ResponseVarName) returns the classification edge on page 35-1588 (e)
for the support vector machine (SVM) classifier SVMModel using the predictor data in table Tbl and
the class labels in Tbl.ResponseVarName.

The classification edge (e) is a scalar value that represents the weighted mean of the classification
margins on page 35-1588.

e = edge(SVMModel,Tbl,Y) returns the classification edge on page 35-1588 (e) for the SVM
classifier SVMModel using the predictor data in table Tbl and the class labels in Y.

e = edge(SVMModel,X,Y) returns the classification edge for SVMModel using the predictor data in
matrix X and the class labels in Y.

e = edge( ___ ,'Weights',weights) computes the classification edge for the observation
weights supplied in weights using any of the input arguments in the previous syntaxes.

Note If the predictor data X or the predictor variables in Tbl contain any missing values, the edge
function can return NaN. For more details, see “edge can return NaN for predictor data with missing
values” on page 35-1590.

Examples

Estimate Test Sample Edge of SVM Classifiers

Load the ionosphere data set.

load ionosphere
rng(1); % For reproducibility

Train an SVM classifier. Specify a 15% holdout sample for testing, standardize the data, and specify
that 'g' is the positive class.
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CVSVMModel = fitcsvm(X,Y,'Holdout',0.15,'ClassNames',{'b','g'},...
    'Standardize',true);
CompactSVMModel = CVSVMModel.Trained{1}; % Extract trained, compact classifier
testInds = test(CVSVMModel.Partition);   % Extract the test indices
XTest = X(testInds,:);
YTest = Y(testInds,:);

CVSVMModel is a ClassificationPartitionedModel classifier. It contains the property Trained,
which is a 1-by-1 cell array holding a CompactClassificationSVM classifier that the software
trained using the training set.

Estimate the test sample edge.

e = edge(CompactSVMModel,XTest,YTest)

e = 5.0765

The margin average of the test sample is approximately 5.

Estimate Test Sample Weighted Margin Mean of SVM Classifiers

Suppose that the observations in a data set are measured sequentially, and that the last 150
observations have better quality due to a technology upgrade. Incorporate this advancement by
weighing the better quality observations more than the other observations.

Load the ionosphere data set.

load ionosphere
rng(1); % For reproducibility

Define a weight vector that weighs the better quality observations two times the other observations.

n = size(X,1);
weights = [ones(n-150,1);2*ones(150,1)];

Train an SVM classifier. Specify the weighting scheme and a 15% holdout sample for testing. Also,
standardize the data and specify that 'g' is the positive class.

CVSVMModel = fitcsvm(X,Y,'Weights',weights,'Holdout',0.15,...
    'ClassNames',{'b','g'},'Standardize',true);
CompactSVMModel = CVSVMModel.Trained{1};
testInds = test(CVSVMModel.Partition);   % Extract the test indices
XTest = X(testInds,:);
YTest = Y(testInds,:);
wTest = weights(testInds,:);

CVSVMModel is a trained ClassificationPartitionedModel classifier. It contains the property
Trained, which is a 1-by-1 cell array holding a CompactClassificationSVM classifier that the
software trained using the training set.

Estimate the test sample weighted edge using the weighting scheme.

e = edge(CompactSVMModel,XTest,YTest,'Weights',wTest)

e = 4.8341
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The weighted average margin of the test sample is approximately 5.

Select SVM Classifier Features by Comparing Test Sample Edges

Perform feature selection by comparing test sample edges from multiple models. Based solely on this
comparison, the classifier with the highest edge is the best classifier.

Load the ionosphere data set.

load ionosphere
rng(1); % For reproducibility

Partition the data set into training and test sets. Specify a 15% holdout sample for testing.

Partition = cvpartition(Y,'Holdout',0.15);
testInds = test(Partition); % Indices for the test set
XTest = X(testInds,:);
YTest = Y(testInds,:);

Partition defines the data set partition.

Define these two data sets:

• fullX contains all predictors (except the removed column of 0s).
• partX contains the last 20 predictors.

fullX = X;
partX = X(:,end-20:end);

Train SVM classifiers for each predictor set. Specify the partition definition.

FullCVSVMModel = fitcsvm(fullX,Y,'CVPartition',Partition);
PartCVSVMModel = fitcsvm(partX,Y,'CVPartition',Partition);
FCSVMModel = FullCVSVMModel.Trained{1};
PCSVMModel = PartCVSVMModel.Trained{1};

FullCVSVMModel and PartCVSVMModel are ClassificationPartitionedModel classifiers.
They contain the property Trained, which is a 1-by-1 cell array holding a
CompactClassificationSVM classifier that the software trained using the training set.

Estimate the test sample edge for each classifier.

fullEdge = edge(FCSVMModel,XTest,YTest)

fullEdge = 2.8321

partEdge = edge(PCSVMModel,XTest(:,end-20:end),YTest)

partEdge = 1.5541

The edge for the classifier trained on the complete data set is greater, suggesting that the classifier
trained with all the predictors is better.
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Input Arguments
SVMModel — SVM classification model
ClassificationSVM model object | CompactClassificationSVM model object

SVM classification model, specified as a ClassificationSVM model object or
CompactClassificationSVM model object returned by fitcsvm or compact, respectively.

Tbl — Sample data
table

Sample data used to train the model, specified as a table. Each row of Tbl corresponds to one
observation, and each column corresponds to one predictor variable. Optionally, Tbl can contain
additional columns for the response variable and observation weights. Tbl must contain all of the
predictors used to train SVMModel. Multicolumn variables and cell arrays other than cell arrays of
character vectors are not allowed.

If Tbl contains the response variable used to train SVMModel, then you do not need to specify
ResponseVarName or Y.

If you trained SVMModel using sample data contained in a table, then the input data for edge must
also be in a table.

If you set 'Standardize',true in fitcsvm when training SVMModel, then the software
standardizes the columns of the predictor data using the corresponding means in SVMModel.Mu and
the standard deviations in SVMModel.Sigma.
Data Types: table

X — Predictor data
numeric matrix

Predictor data, specified as a numeric matrix.

Each row of X corresponds to one observation (also known as an instance or example), and each
column corresponds to one variable (also known as a feature). The variables in the columns of X must
be the same as the variables that trained the SVMModel classifier.

The length of Y and the number of rows in X must be equal.

If you set 'Standardize',true in fitcsvm to train SVMModel, then the software standardizes the
columns of X using the corresponding means in SVMModel.Mu and the standard deviations in
SVMModel.Sigma.
Data Types: double | single

ResponseVarName — Response variable name
name of variable in Tbl

Response variable name, specified as the name of a variable in Tbl. If Tbl contains the response
variable used to train SVMModel, then you do not need to specify ResponseVarName.

If you specify ResponseVarName, then you must do so as a character vector or string scalar. For
example, if the response variable is stored as Tbl.Response, then specify ResponseVarName as
'Response'. Otherwise, the software treats all columns of Tbl, including Tbl.Response, as
predictors.
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The response variable must be a categorical, character, or string array, logical or numeric vector, or
cell array of character vectors. If the response variable is a character array, then each element must
correspond to one row of the array.
Data Types: char | string

Y — Class labels
categorical array | character array | string array | logical vector | numeric vector | cell array of
character vectors

Class labels, specified as a categorical, character, or string array, logical or numeric vector, or cell
array of character vectors. Y must be the same as the data type of SVMModel.ClassNames. (The
software treats string arrays as cell arrays of character vectors.)

The length of Y must equal the number of rows in Tbl or the number of rows in X.

weights — Observation weights
ones(size(X,1),1) (default) | numeric vector | name of variable in Tbl

Observation weights, specified as a numeric vector or the name of a variable in Tbl.

If you specify weights as a numeric vector, then the size of weights must be equal to the number of
rows in X or Tbl.

If you specify weights as the name of a variable in Tbl, you must do so as a character vector or
string scalar. For example, if the weights are stored as Tbl.W, then specify weights as 'W'.
Otherwise, the software treats all columns of Tbl, including Tbl.W, as predictors.

If you supply weights, edge computes the weighted classification edge on page 35-1588. The
software weights the observations in each row of X or Tbl with the corresponding weight in
weights.
Example: 'Weights','W'
Data Types: single | double | char | string

More About
Classification Edge

The edge is the weighted mean of the classification margins.

The weights are the prior class probabilities. If you supply weights, then the software normalizes
them to sum to the prior probabilities in the respective classes. The software uses the renormalized
weights to compute the weighted mean.

One way to choose among multiple classifiers, for example, to perform feature selection, is to choose
the classifier that yields the highest edge.

Classification Margin

The classification margin for binary classification is, for each observation, the difference between the
classification score for the true class and the classification score for the false class.

The software defines the classification margin for binary classification as
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m = 2yf x .

x is an observation. If the true label of x is the positive class, then y is 1, and –1 otherwise. f(x) is the
positive-class classification score for the observation x. The classification margin is commonly defined
as m = yf(x).

If the margins are on the same scale, then they serve as a classification confidence measure. Among
multiple classifiers, those that yield greater margins are better.

Classification Score

The SVM classification score for classifying observation x is the signed distance from x to the decision
boundary ranging from -∞ to +∞. A positive score for a class indicates that x is predicted to be in that
class. A negative score indicates otherwise.

The positive class classification score f (x) is the trained SVM classification function. f (x) is also the
numerical predicted response for x, or the score for predicting x into the positive class.

f (x) = ∑
j = 1

n
α jy jG(x j, x) + b,

where (α1, ..., αn, b) are the estimated SVM parameters, G(x j, x) is the dot product in the predictor
space between x and the support vectors, and the sum includes the training set observations. The
negative class classification score for x, or the score for predicting x into the negative class, is –f(x).

If G(xj,x) = xj′x (the linear kernel), then the score function reduces to

f x = x/s ′β + b .

s is the kernel scale and β is the vector of fitted linear coefficients.

For more details, see “Understanding Support Vector Machines” on page 19-151.

Algorithms
For binary classification, the software defines the margin for observation j, mj, as

m j = 2y jf (x j),

where yj ∊ {-1,1}, and f(xj) is the predicted score of observation j for the positive class. However, mj =
yjf(xj) is commonly used to define the margin.

Version History
Introduced in R2014a

edge returns a different value for a model with a nondefault cost matrix
Behavior changed in R2022a

If you specify a nondefault cost matrix when you train the input model object, the edge function
returns a different value compared to previous releases.

The edge function uses the prior probabilities stored in the Prior property to normalize the
observation weights of the input data. The way the function uses the Prior property value has not
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changed. However, the property value stored in the input model object has changed for a model with
a nondefault cost matrix, so the function can return a different value.

For details about the property value change, see “Cost property stores the user-specified cost matrix”
on page 35-634.

If you want the software to handle the cost matrix, prior probabilities, and observation weights as in
previous releases, adjust the prior probabilities and observation weights for the nondefault cost
matrix, as described in “Adjust Prior Probabilities and Observation Weights for Misclassification Cost
Matrix” on page 19-9. Then, when you train a classification model, specify the adjusted prior
probabilities and observation weights by using the Prior and Weights name-value arguments,
respectively, and use the default cost matrix.

edge can return NaN for predictor data with missing values
Behavior changed in R2022a

The edge function no longer omits an observation with a NaN score when computing the weighted
mean of the classification margins. Therefore, edge can now return NaN when the predictor data X
or the predictor variables in Tbl contain any missing values. In most cases, if the test set
observations do not contain missing predictors, the edge function does not return NaN.

This change improves the automatic selection of a classification model when you use fitcauto.
Before this change, the software might select a model (expected to best classify new data) with few
non-NaN predictors.

If edge in your code returns NaN, you can update your code to avoid this result. Remove or replace
the missing values by using rmmissing or fillmissing, respectively.

The following table shows the classification models for which the edge object function might return
NaN. For more details, see the Compatibility Considerations for each edge function.

Model Type Full or Compact Model Object edge Object Function
Discriminant analysis
classification model

ClassificationDiscrimina
nt,
CompactClassificationDis
criminant

edge

Ensemble of learners for
classification

ClassificationEnsemble,
CompactClassificationEns
emble

edge

Gaussian kernel classification
model

ClassificationKernel edge

k-nearest neighbor classification
model

ClassificationKNN edge

Linear classification model ClassificationLinear edge
Neural network classification
model

ClassificationNeuralNetw
ork,
CompactClassificationNeu
ralNetwork

edge

Support vector machine (SVM)
classification model

ClassificationSVM,
CompactClassificationSVM

edge
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[1] Christianini, N., and J. C. Shawe-Taylor. An Introduction to Support Vector Machines and Other

Kernel-Based Learning Methods. Cambridge, UK: Cambridge University Press, 2000.

Extended Capabilities
Tall Arrays
Calculate with arrays that have more rows than fit in memory.

This function fully supports tall arrays. For more information, see “Tall Arrays”.

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

Usage notes and limitations:

• The edge function does not support one-class classification models.

For more information, see “Run MATLAB Functions on a GPU” (Parallel Computing Toolbox).

See Also
ClassificationSVM | CompactClassificationSVM | loss | predict | margin | resubEdge |
kfoldEdge | fitcsvm
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edge
Classification edge

Syntax
E = edge(tree,TBL,ResponseVarName)
E = edge(tree,X,Y)
E = edge( ___ ,Name,Value)

Description
E = edge(tree,TBL,ResponseVarName) returns the classification edge for tree with data TBL
and classification TBL.ResponseVarName.

E = edge(tree,X,Y) returns the classification edge for tree with data X and classification Y.

E = edge( ___ ,Name,Value) computes the edge with additional options specified by one or more
Name,Value pair arguments, using any of the previous syntaxes. For example, you can specify
observation weights.

Input Arguments
tree — Trained classification tree
ClassificationTree model object | CompactClassificationTree model object

Trained classification tree, specified as a ClassificationTree or CompactClassificationTree
model object. That is, tree is a trained classification model returned by fitctree or compact.

TBL — Sample data
table

Sample data, specified as a table. Each row of TBL corresponds to one observation, and each column
corresponds to one predictor variable. Optionally, TBL can contain additional columns for the
response variable and observation weights. TBL must contain all the predictors used to train tree.
Multicolumn variables and cell arrays other than cell arrays of character vectors are not allowed.

If TBL contains the response variable used to train tree, then you do not need to specify
ResponseVarName or Y.

If you train tree using sample data contained in a table, then the input data for this method must
also be in a table.
Data Types: table

X — Data to classify
numeric matrix

Data to classify, specified as a numeric matrix. Each row of X represents one observation, and each
column represents one predictor. X must have the same number of columns as the data used to train
tree. X must have the same number of rows as the number of elements in Y.
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Data Types: single | double

ResponseVarName — Response variable name
name of a variable in TBL

Response variable name, specified as the name of a variable in TBL. If TBL contains the response
variable used to train tree, then you do not need to specify ResponseVarName.

If you specify ResponseVarName, then you must do so as a character vector or string scalar. For
example, if the response variable is stored as TBL.Response, then specify it as 'Response'.
Otherwise, the software treats all columns of TBL, including TBL.ResponseVarName, as predictors.

The response variable must be a categorical, character, or string array, logical or numeric vector, or
cell array of character vectors. If the response variable is a character array, then each element must
correspond to one row of the array.
Data Types: char | string

Y — Class labels
categorical array | character array | string array | logical vector | numeric vector | cell array of
character vectors

Class labels, specified as a categorical, character, or string array, a logical or numeric vector, or a cell
array of character vectors. Y must be of the same type as the classification used to train tree, and its
number of elements must equal the number of rows of X.
Data Types: categorical | char | string | logical | single | double | cell

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.

Weights — Observation weights
ones(size(X,1),1) (default) | name of a variable in TBL | numeric vector

Observation weights, specified as the comma-separated pair consisting of 'Weights' and a numeric
vector or the name of a variable in TBL.

If you specify Weights as a numeric vector, then the size of Weights must be equal to the number of
rows in X or TBL.

If you specify Weights as the name of a variable in TBL, you must do so as a character vector or
string scalar. For example, if the weights are stored as TBL.W, then specify it as 'W'. Otherwise, the
software treats all columns of TBL, including TBL.W, as predictors.

If you supply weights, edge computes the weighted classification edge on page 35-1588. The
software weights the observations in each row of X or TBL with the corresponding weight in
Weights.
Data Types: single | double | char | string
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Output Arguments
E — Classification edge
scalar value

Classification edge, returned as a scalar representing the weighted average value of the margin.

Examples
Compute the classification margin and edge for the Fisher iris data, trained on its first two columns of
data, and view the last 10 entries:

load fisheriris
X = meas(:,1:2);
tree = fitctree(X,species);
E = edge(tree,X,species)

E =
    0.6299

M = margin(tree,X,species);
M(end-10:end)

ans =
    0.1111
    0.1111
    0.1111
   -0.2857
    0.6364
    0.6364
    0.1111
    0.7500
    1.0000
    0.6364
    0.2000

The classification tree trained on all the data is better.

tree = fitctree(meas,species);
E = edge(tree,meas,species)

E =
    0.9384

M = margin(tree,meas,species);
M(end-10:end)

ans =
    0.9565
    0.9565
    0.9565
    0.9565
    0.9565
    0.9565
    0.9565
    0.9565
    0.9565
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    0.9565
    0.9565

More About
Margin

The classification margin is the difference between the classification score for the true class and
maximal classification score for the false classes. Margin is a column vector with the same number of
rows as the matrix X.

Score (tree)

For trees, the score of a classification of a leaf node is the posterior probability of the classification at
that node. The posterior probability of the classification at a node is the number of training sequences
that lead to that node with the classification, divided by the number of training sequences that lead to
that node.

For an example, see “Posterior Probability Definition for Classification Tree” on page 35-6715.

Edge

The edge is the weighted mean value of the classification margin. The weights are the class
probabilities in tree.Prior. If you supply weights in the weights name-value pair, those weights
are normalized to sum to the prior probabilities in the respective classes, and are then used to
compute the weighted average.

Extended Capabilities
Tall Arrays
Calculate with arrays that have more rows than fit in memory.

This function fully supports tall arrays. For more information, see “Tall Arrays”.

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

Usage notes and limitations:

• The edge function does not support decision tree models trained with surrogate splits.

For more information, see “Run MATLAB Functions on a GPU” (Parallel Computing Toolbox).

See Also
margin | loss | predict | fitctree
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end
Class: dataset

(Not Recommended) Last index in indexing expression for dataset array

Note The dataset data type is not recommended. To work with heterogeneous data, use the
MATLAB® table data type instead. See MATLAB table documentation for more information.

Syntax
end(A,k,n)

Description
end(A,k,n) is called for indexing expressions involving the dataset A when end is part of the k-th
index out of n indices. For example, the expression A(end-1,:) calls A's end method with
end(A,1,2).

See Also
size
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epsilon
Class: RepeatedMeasuresModel

Epsilon adjustment for repeated measures anova

Syntax
tbl = epsilon(rm)
tbl = epsilon(rm,C)

Description
tbl = epsilon(rm) returns the epsilon adjustment factors for repeated measures model rm.

tbl = epsilon(rm,C) returns the epsilon adjustment factors for the test based on the contrast
matrix C.

Input Arguments
rm — Repeated measures model
RepeatedMeasuresModel object

Repeated measures model, returned as a RepeatedMeasuresModel object.

For properties and methods of this object, see RepeatedMeasuresModel.

C — Contrasts
matrix

Contrasts, specified as a matrix. The default value of C is the Q factor in a QR decomposition of the
matrix M, where M is defined so that Y*M is the difference between all successive pairs of columns of
the repeated measures matrix Y.
Data Types: single | double

Output Arguments
tbl — Epsilon adjustment factors
table

Epsilon adjustment factors for the repeated measures model rm, returned as a table. tbl contains
four different adjustments for epsilon.

Correction Definition
Uncorrected No adjustments, epsilon = 1
Greenhouse-Geisser Greenhouse-Geisser approximation
Huynh-Feldt Huynh-Feldt approximation
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Correction Definition
Lower bound Lower bound on the p-value

For details, see “Compound Symmetry Assumption and Epsilon Corrections” on page 9-55.
Data Types: table

Examples

Epsilon Corrections for Repeated Measures ANOVA

Load the sample data.

load fisheriris

The column vector, species consists of iris flowers of three different species: setosa, versicolor,
virginica. The double matrix meas consists of four types of measurements on the flowers: the length
and width of sepals and petals in centimeters, respectively.

Store the data in a table array.

t = table(species,meas(:,1),meas(:,2),meas(:,3),meas(:,4),...
'VariableNames',{'species','meas1','meas2','meas3','meas4'});
Meas = dataset([1 2 3 4]','VarNames',{'Measurements'});

Fit a repeated measures model, where the measurements are the responses and the species is the
predictor variable.

rm = fitrm(t,'meas1-meas4~species','WithinDesign',Meas);

Perform repeated measures analysis of variance.

ranovatbl = ranova(rm)

ranovatbl=3×8 table
                                SumSq     DF      MeanSq       F         pValue        pValueGG       pValueHF       pValueLB  
                                ______    ___    ________    ______    ___________    ___________    ___________    ___________

    (Intercept):Measurements    1656.3      3      552.09    6873.3              0    9.4491e-279    2.9213e-283    2.5871e-125
    species:Measurements        282.47      6      47.078     586.1    1.4271e-206    4.9313e-156    1.5406e-158     9.0151e-71
    Error(Measurements)         35.423    441    0.080324                                                                      

ranova computes the last three p-values using Greenhouse-Geisser, Huynh-Feldt, and lower bound
corrections, respectively.

Display the epsilon correction values.

epsilon(rm)

ans=1×4 table
    Uncorrected    GreenhouseGeisser    HuynhFeldt    LowerBound
    ___________    _________________    __________    __________

         1              0.75179          0.76409       0.33333  
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You can check the compound symmetry (sphericity) assumption using the mauchly method.

Tips
• The mauchly method tests for sphericity.
• The ranova method contains p-values based on each epsilon value.

Algorithms
ranova computes the regular p-value (in the pValue column of the rmanova table) using the F-
statistic cumulative distribution function:

p-value = 1 – fcdf(F,v1,v2).

When the compound symmetry assumption is not satisfied, ranova uses a correction factor epsilon,
ε, to compute the corrected p-values as follows:

p-value_corrected = 1 – fcdf(F,ε*v1,ε*v2).

The epsilon method returns the epsilon adjustment values.

See Also
fitrm | ranova | mauchly

Topics
“Compound Symmetry Assumption and Epsilon Corrections” on page 9-55
“Mauchly’s Test of Sphericity” on page 9-57
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evcdf
Extreme value cumulative distribution function

Syntax
p = evcdf(x,mu,sigma)
[p,plo,pup] = evcdf(x,mu,sigma,pcov,alpha)
[p,plo,pup] = evcdf( ___ ,'upper')

Description
p = evcdf(x,mu,sigma) returns the cumulative distribution function (cdf) for the type 1 extreme
value distribution, with location parameter mu and scale parameter sigma, at each of the values in x.
x, mu, and sigma can be vectors, matrices, or multidimensional arrays that all have the same size. A
scalar input is expanded to a constant array of the same size as the other inputs. The default values
for mu and sigma are 0 and 1, respectively.

[p,plo,pup] = evcdf(x,mu,sigma,pcov,alpha) returns confidence bounds for p when the
input parameters mu and sigma are estimates. pcov is a 2-by-2 covariance matrix of the estimated
parameters. alpha has a default value of 0.05, and specifies 100(1 - alpha)% confidence bounds.
plo and pup are arrays of the same size as p, containing the lower and upper confidence bounds.

[p,plo,pup] = evcdf( ___ ,'upper') returns the complement of the type 1 extreme value
distribution cdf at each value in x, using an algorithm that more accurately computes the extreme
upper tail probabilities. You can use the 'upper' argument with any of the previous syntaxes.

The function evcdf computes confidence bounds for P using a normal approximation to the
distribution of the estimate

X − μ
σ

and then transforming those bounds to the scale of the output P. The computed bounds give
approximately the desired confidence level when you estimate mu, sigma, and pcov from large
samples, but in smaller samples other methods of computing the confidence bounds might be more
accurate.

The type 1 extreme value distribution is also known as the Gumbel distribution. The version used
here is suitable for modeling minima; the mirror image of this distribution can be used to model
maxima by negating X and subtracting the resulting distribution values from 1. See “Extreme Value
Distribution” on page B-41 for more details. If x has a Weibull distribution, then X = log(x) has the
type 1 extreme value distribution.

Version History
Introduced before R2006a
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Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

This function fully supports GPU arrays. For more information, see “Run MATLAB Functions on a
GPU” (Parallel Computing Toolbox).

See Also
cdf | evpdf | evinv | evstat | evfit | evlike | evrnd

Topics
“Extreme Value Distribution” on page B-41
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evfit
Extreme value parameter estimates

Syntax
parmhat = evfit(data)
[parmhat,parmci] = evfit(data)
[parmhat,parmci] = evfit(data,alpha)
[...] = evfit(data,alpha,censoring)
[...] = evfit(data,alpha,censoring,freq)
[...] = evfit(data,alpha,censoring,freq,options)

Description
parmhat = evfit(data) returns maximum likelihood estimates of the parameters of the type 1
extreme value distribution given the sample data in data. The sample data data must be a double-
precision vector. parmhat(1) is the location parameter µ, and parmhat(2) is the scale parameter σ.

[parmhat,parmci] = evfit(data) returns 95% confidence intervals for the parameter estimates
on the µ and σ parameters in the 2-by-2 matrix parmci. The first column of the matrix of the extreme
value fit contains the lower and upper confidence bounds for the parameter µ, and the second column
contains the confidence bounds for the parameter σ.

[parmhat,parmci] = evfit(data,alpha) returns 100(1 - alpha)% confidence intervals for the
parameter estimates, where alpha is a value in the range [0 1] specifying the width of the
confidence intervals. By default, alpha is 0.05, which corresponds to 95% confidence intervals.

[...] = evfit(data,alpha,censoring) accepts a Boolean vector, censoring, of the same size
as data, which is 1 for observations that are right-censored and 0 for observations that are observed
exactly.

[...] = evfit(data,alpha,censoring,freq) accepts a frequency vector, freq of the same
size as data. Typically, freq contains integer frequencies for the corresponding elements in data,
but can contain any nonnegative values. Pass in [] for alpha, censoring, or freq to use their
default values.

[...] = evfit(data,alpha,censoring,freq,options) accepts a structure, options, that
specifies control parameters for the iterative algorithm the function uses to compute maximum
likelihood estimates. You can create options using the function statset. Enter
statset('evfit') to see the names and default values of the parameters that evfit accepts in
the options structure. See the reference page for statset for more information about these
options.

The type 1 extreme value distribution is also known as the Gumbel distribution. The version used
here is suitable for modeling minima; the mirror image of this distribution can be used to model
maxima by negating X. See “Extreme Value Distribution” on page B-41 for more details. If x has a
Weibull distribution, then X = log(x) has the type 1 extreme value distribution.
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Version History
Introduced before R2006a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

This function fully supports GPU arrays. For more information, see “Run MATLAB Functions on a
GPU” (Parallel Computing Toolbox).

See Also
mle | evlike | evpdf | evcdf | evinv | evstat | evrnd

Topics
“Extreme Value Distribution” on page B-41

 evfit

35-1603



evinv
Extreme value inverse cumulative distribution function

Syntax
X = evinv(P,mu,sigma)
[X,XLO,XUP] = evinv(P,mu,sigma,pcov,alpha)

Description
X = evinv(P,mu,sigma) returns the inverse cumulative distribution function (cdf) for a type 1
extreme value distribution with location parameter mu and scale parameter sigma, evaluated at the
values in P. P, mu, and sigma can be vectors, matrices, or multidimensional arrays that all have the
same size. A scalar input is expanded to a constant array of the same size as the other inputs. The
default values for mu and sigma are 0 and 1, respectively.

[X,XLO,XUP] = evinv(P,mu,sigma,pcov,alpha) produces confidence bounds for X when the
input parameters mu and sigma are estimates. pcov is the covariance matrix of the estimated
parameters. alpha is a scalar that specifies 100(1 – alpha)% confidence bounds for the estimated
parameters, and has a default value of 0.05. XLO and XUP are arrays of the same size as X containing
the lower and upper confidence bounds.

The function evinv computes confidence bounds for P using a normal approximation to the
distribution of the estimate

μ + σ q

where q is the Pth quantile from an extreme value distribution with parameters μ = 0 and σ = 1. The
computed bounds give approximately the desired confidence level when you estimate mu, sigma, and
pcov from large samples, but in smaller samples other methods of computing the confidence bounds
might be more accurate.

The type 1 extreme value distribution is also known as the Gumbel distribution. The version used
here is suitable for modeling minima; the mirror image of this distribution can be used to model
maxima by negating X. See “Extreme Value Distribution” on page B-41 for more details. If x has a
Weibull distribution, then X = log(x) has the type 1 extreme value distribution.

Version History
Introduced before R2006a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.
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This function fully supports GPU arrays. For more information, see “Run MATLAB Functions on a
GPU” (Parallel Computing Toolbox).

See Also
icdf | evcdf | evpdf | evstat | evfit | evlike | evrnd
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eq
Class: qrandstream

Test handle equality

Syntax
h1 == h2
tf = eq(h1, h2)

Description
h1 == h2 performs element-wise comparisons between handle arrays h1 and h2. h1 and h2 must be
of the same dimensions unless one is a scalar. The result is a logical array of the same dimensions,
where each element is an element-wise equality result. If one of h1 or h2 is scalar, scalar expansion is
performed and the result will match the dimensions of the array that is not scalar.

tf = eq(h1, h2) stores the result in a logical array of the same dimensions.

See Also
qrandstream | ge | gt | le | lt | ne
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error
Error (misclassification probability or MSE)

Syntax
err = error(B,TBLnew,Ynew)
err = error(B,Xnew,Ynew)
err = error(B,TBLnew,Ynew,'param1',val1,'param2',val2,...)
err = error(B,Xnew,Ynew,'param1',val1,'param2',val2,...)

Description
err = error(B,TBLnew,Ynew) computes the misclassification probability for classification trees
or mean squared error (MSE) for regression trees for each tree, for the predictors contained in the
table TBLnew given true response Ynew. You can omit Ynew if TBLnew contains the response variable.
If you trained B using sample data contained in a table, then the input data for this method must also
be in a table.

err = error(B,Xnew,Ynew) computes the misclassification probability for classification trees or
mean squared error (MSE) for regression trees for each tree, the for predictors contained in the
matrix Xnew given true response Ynew. If you trained B using sample data contained in a matrix, then
the input data for this method must also be in a matrix.

For classification, Ynew can be a numeric vector, character matrix, string array, cell array of
character vectors, categorical vector, or logical vector. For regression, Y must be a numeric vector.
err is a vector with one error measure for each of the NTrees trees in the ensemble B.

err = error(B,TBLnew,Ynew,'param1',val1,'param2',val2,...) or err =
error(B,Xnew,Ynew,'param1',val1,'param2',val2,...) specifies optional parameter name-
value pairs:

'Mode' Character vector or string scalar indicating how the method computes errors.
If set to 'cumulative' (default), error computes cumulative errors and err
is a vector of length NTrees, where the first element gives error from
trees(1), second element gives error fromtrees(1:2) etc., up to
trees(1:NTrees). If set to 'individual', err is a vector of length
NTrees, where each element is an error from each tree in the ensemble. If set
to 'ensemble', err is a scalar showing the cumulative error for the entire
ensemble.

'Weights' Vector of observation weights to use for error averaging. By default the
weight of every observation is 1. The length of this vector must be equal to
the number of rows in X.
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'Trees' Vector of indices indicating what trees to include in this calculation. By
default, this argument is set to 'all' and the method uses all trees. If
'Trees' is a numeric vector, the method returns a vector of length NTrees
for 'cumulative' and 'individual' modes, where NTrees is the number
of elements in the input vector, and a scalar for 'ensemble' mode. For
example, in the 'cumulative' mode, the first element gives error from
trees(1), the second element gives error from trees(1:2) etc.

'TreeWeights' Vector of tree weights. This vector must have the same length as the 'Trees'
vector. The method uses these weights to combine output from the specified
trees by taking a weighted average instead of the simple non-weighted
majority vote. You cannot use this argument in the 'individual' mode.

'UseInstanceForT
ree'

Logical matrix of size Nobs-by-NTrees indicating which trees should be used
to make predictions for each observation. By default the method uses all trees
for all observations.

Algorithms
When estimating the ensemble error:

• Using the 'Mode' name-value pair argument, you can specify to return the error any of these
three ways:

• The error for individual trees in the ensemble
• The cumulative error over all trees
• The error for the entire ensemble

• Using the 'Trees' name-value pair argument, you can specify which trees to use in the ensemble
error calculations.

• Using the 'UseInstanceForTree' name-value pair argument, you can specify which
observations in the input data (X and Y) to use in the ensemble error calculation for each selected
tree.

• Using the 'Weights' name-value pair argument, you can attribute each observation with a
weight. For the formulae that follow, wj is the weight of observation j.

• Using the 'TreeWeights' name-value pair argument, you can attribute each tree with a weight.

For regression problems, error estimates the weighted MSE of the ensemble of bagged regression
trees for predicting Y given X using selected trees and observations.

1 error predicts responses for selected observations in X using the selected regression trees in
the ensemble.

2 The MSE estimate depends on the value of 'Mode'.

• If you specify 'Mode','Individual', then the weighted MSE for tree t is

MSEt = 1

∑
j = 1

n
w j

∑
j = 1

n
w j y j− y t j

2 .
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y t j is the predicted response of observation j from selected regression tree t. error sets any
unselected observations within a selected tree to the weighted sample average of the
observed, training data responses.

• If you specify 'Mode','Cumulative', then the weighted MSE is a vector of size T*

containing cumulative, weighted MSEs over the T* ≤ T selected trees. error follows these
steps to estimate MSEt

*, the cumulative, weighted MSE using the first t selected trees.

a For selected observation j, j = 1,...,n, error estimates y bag, t j, the weighted average of
the predictions among the first t selected trees (for details, see predict). For this
computation, error uses the tree weights.

b error estimates the cumulative, weighted MSE through tree t.

MSEt
∗ = 1

∑
j = 1

n
w j

∑
j = 1

n
w j y j− y bag, t j

2 .

error sets observations that are unselected for all selected trees to the weighted sample
average of the observed, training data responses.

• If you specify 'Mode','Ensemble', then the weighted MSE is the last element of the
cumulative, weighted MSE vector.

For classification problems, error estimates the weighted misclassification rate of the ensemble of
bagged classification trees for predicting Y given X using selected trees and observations.

• If you specify 'Mode','Individual', then the weighted misclassification rate for tree t is

et = 1

∑
j = 1

n
w j

∑
j = 1

n
w jI y j ≠ y t j .

y t j is the predicted class for selected observation j using from selected classification tree t. error
sets any unselected observations within a selected tree to the predicted, weighted, most popular
class over all training responses. If there are multiple most popular classes, error considers the
one listed first in the ClassNames property of the TreeBagger model the most popular.

• If you specify 'Mode','Cumulative' then the weighted misclassification rate is a vector of size
T* containing cumulative, weighted misclassification rates over the T* ≤ T selected trees. error
follows these steps to estimate et

*, the cumulative, weighted misclassification rate using the first t
selected trees.

1 For selected observation j, j = 1,...,n, error estimates y bag, t j, the weighted, most popular
class among the first t selected trees (for details, see predict). For this computation, error
uses the tree weights.

2 error estimates the cumulative, weighted misclassification rate through tree t.

et
∗ = 1

∑
j = 1

n
w j

∑
j = 1

n
w jI y j ≠ y bag, t j .

error sets any observations that are unselected for all selected trees to the predicted,
weighted, most popular class over all training responses. If there are multiple most popular
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classes, error considers the one listed first in the ClassNames property of the TreeBagger
model the most popular.

• If you specify 'Mode','Ensemble', then the weighted misclassification rate is the last element
of the cumulative, weighted misclassification rate vector.

See Also
CompactTreeBagger | predict

Topics
“Bootstrap Aggregation (Bagging) of Regression Trees Using TreeBagger” on page 19-114
“Bootstrap Aggregation (Bagging) of Classification Trees Using TreeBagger” on page 19-125
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error
Error (misclassification probability or MSE)

Syntax
err = error(B,TBLnew,Ynew)
err = error(B,Xnew,Ynew)
err = error(B,TBLnew,Ynew,'param1',val1,'param2',val2,...)
err = error(B,Xnew,Ynew,'param1',val1,'param2',val2,...)

Description
err = error(B,TBLnew,Ynew) computes the misclassification probability for classification trees
or mean squared error (MSE) for regression trees for each tree, for the predictors contained in the
table TBLnew given true response Ynew. You can omit Ynew if TBLnew contains the response variable.
If you trained B using sample data contained in a table, then the input data for this method must also
be in a table.

err = error(B,Xnew,Ynew) computes the misclassification probability for classification trees or
mean squared error (MSE) for regression trees for each tree, the for predictors contained in the
matrix Xnew given true response Ynew. If you trained B using sample data contained in a matrix, then
the input data for this method must also be in a matrix.

For classification, Ynew can be a numeric vector, character matrix, string array, cell array of
character vectors, categorical vector or logical vector. For regression, Y must be a numeric vector.
err is a vector with one error measure for each of the NTrees trees in the ensemble B.

err = error(B,TBLnew,Ynew,'param1',val1,'param2',val2,...) or err =
error(B,Xnew,Ynew,'param1',val1,'param2',val2,...) specifies optional parameter name-
value pairs:

'Mode' Character vector or string scalar indicating how the method computes errors.
If set to 'cumulative' (default), error computes cumulative errors and err
is a vector of length NTrees, where the first element gives error from
trees(1), second element gives error fromtrees(1:2) etc., up to
trees(1:NTrees). If set to 'individual', err is a vector of length
NTrees, where each element is an error from each tree in the ensemble. If set
to 'ensemble', err is a scalar showing the cumulative error for the entire
ensemble.

'Weights' Vector of observation weights to use for error averaging. By default the
weight of every observation is 1. The length of this vector must be equal to
the number of rows in X.
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'Trees' Vector of indices indicating what trees to include in this calculation. By
default, this argument is set to 'all' and the method uses all trees. If
'Trees' is a numeric vector, the method returns a vector of length NTrees
for 'cumulative' and 'individual' modes, where NTrees is the number
of elements in the input vector, and a scalar for 'ensemble' mode. For
example, in the 'cumulative' mode, the first element gives error from
trees(1), the second element gives error from trees(1:2) etc.

'TreeWeights' Vector of tree weights. This vector must have the same length as the 'Trees'
vector. The method uses these weights to combine output from the specified
trees by taking a weighted average instead of the simple non-weighted
majority vote. You cannot use this argument in the 'individual' mode.

'UseInstanceForT
ree'

Logical matrix of size Nobs-by-NTrees indicating which trees should be used
to make predictions for each observation. By default the method uses all trees
for all observations.

Algorithms
When estimating the ensemble error:

• Using the 'Mode' name-value pair argument, you can specify to return the error any of these
three ways:

• The error for individual trees in the ensemble
• The cumulative error over all trees
• The error for the entire ensemble

• Using the 'Trees' name-value pair argument, you can specify which trees to use in the ensemble
error calculations.

• Using the 'UseInstanceForTree' name-value pair argument, you can specify which
observations in the input data (X and Y) to use in the ensemble error calculation for each selected
tree.

• Using the 'Weights' name-value pair argument, you can attribute each observation with a
weight. For the formulae that follow, wj is the weight of observation j.

• Using the 'TreeWeights' name-value pair argument, you can attribute each tree with a weight.

For regression problems, error estimates the weighted MSE of the ensemble of bagged regression
trees for predicting Y given X using selected trees and observations.

1 error predicts responses for selected observations in X using the selected regression trees in
the ensemble.

2 The MSE estimate depends on the value of 'Mode'.

• If you specify 'Mode','Individual', then the weighted MSE for tree t is

MSEt = 1

∑
j = 1

n
w j

∑
j = 1

n
w j y j− y t j

2 .
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y t j is the predicted response of observation j from selected regression tree t. error sets any
unselected observations within a selected tree to the weighted sample average of the
observed, training data responses.

• If you specify 'Mode','Cumulative', then the weighted MSE is a vector of size T*

containing cumulative, weighted MSEs over the T* ≤ T selected trees. error follows these
steps to estimate MSEt

*, the cumulative, weighted MSE using the first t selected trees.

a For selected observation j, j = 1,...,n, error estimates y bag, t j, the weighted average of
the predictions among the first t selected trees (for details, see predict). For this
computation, error uses the tree weights.

b error estimates the cumulative, weighted MSE through tree t.

MSEt
∗ = 1

∑
j = 1

n
w j

∑
j = 1

n
w j y j− y bag, t j

2 .

error sets observations that are unselected for all selected trees to the weighted sample
average of the observed, training data responses.

• If you specify 'Mode','Ensemble', then the weighted MSE is the last element of the
cumulative, weighted MSE vector.

For classification problems, error estimates the weighted misclassification rate of the ensemble of
bagged classification trees for predicting Y given X using selected trees and observations.

• If you specify 'Mode','Individual', then the weighted misclassification rate for tree t is

et = 1

∑
j = 1

n
w j

∑
j = 1

n
w jI y j ≠ y t j .

y t j is the predicted class for selected observation j using from selected classification tree t. error
sets any unselected observations within a selected tree to the predicted, weighted, most popular
class over all training responses. If there are multiple most popular classes, error considers the
one listed first in the ClassNames property of the TreeBagger model the most popular.

• If you specify 'Mode','Cumulative' then the weighted misclassification rate is a vector of size
T* containing cumulative, weighted misclassification rates over the T* ≤ T selected trees. error
follows these steps to estimate et

*, the cumulative, weighted misclassification rate using the first t
selected trees.

1 For selected observation j, j = 1,...,n, error estimates y bag, t j, the weighted, most popular
class among the first t selected trees (for details, see predict). For this computation, error
uses the tree weights.

2 error estimates the cumulative, weighted misclassification rate through tree t.

et
∗ = 1

∑
j = 1

n
w j

∑
j = 1

n
w jI y j ≠ y bag, t j .

error sets any observations that are unselected for all selected trees to the predicted,
weighted, most popular class over all training responses. If there are multiple most popular
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classes, error considers the one listed first in the ClassNames property of the TreeBagger
model the most popular.

• If you specify 'Mode','Ensemble', then the weighted misclassification rate is the last element
of the cumulative, weighted misclassification rate vector.

See Also
error | oobError | quantileError | predict | oobPredict | compact | TreeBagger

Topics
“Bootstrap Aggregation (Bagging) of Regression Trees Using TreeBagger” on page 19-114
“Bootstrap Aggregation (Bagging) of Classification Trees Using TreeBagger” on page 19-125
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evalclusters
Evaluate clustering solutions

Syntax
eva = evalclusters(x,clust,criterion)
eva = evalclusters(x,clust,criterion,Name,Value)

Description
eva = evalclusters(x,clust,criterion) creates a clustering evaluation object containing
data used to evaluate the optimal number of data clusters.

eva = evalclusters(x,clust,criterion,Name,Value) creates a clustering evaluation object
using additional options specified by one or more name-value pair arguments.

Examples

Evaluate Clustering Solution Using Calinski-Harabasz Criterion

Evaluate the optimal number of clusters using the Calinski-Harabasz clustering evaluation criterion.

Load the sample data.

load fisheriris

The data contains length and width measurements from the sepals and petals of three species of iris
flowers.

Evaluate the optimal number of clusters using the Calinski-Harabasz criterion. Cluster the data using
kmeans.

rng('default') % For reproducibility
eva = evalclusters(meas,'kmeans','CalinskiHarabasz','KList',1:6)

eva = 
  CalinskiHarabaszEvaluation with properties:

    NumObservations: 150
         InspectedK: [1 2 3 4 5 6]
    CriterionValues: [NaN 513.9245 561.6278 530.4871 456.1279 469.5068]
           OptimalK: 3

The OptimalK value indicates that, based on the Calinski-Harabasz criterion, the optimal number of
clusters is three.
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Evaluate a Matrix of Clustering Solutions

Use an input matrix of proposed clustering solutions to evaluate the optimal number of clusters.

Load the sample data.

load fisheriris;

The data contains length and width measurements from the sepals and petals of three species of iris
flowers.

Use kmeans to create an input matrix of proposed clustering solutions for the sepal length
measurements, using 1, 2, 3, 4, 5, and 6 clusters.

clust = zeros(size(meas,1),6);
for i=1:6
clust(:,i) = kmeans(meas,i,'emptyaction','singleton',...
        'replicate',5);
end

Each row of clust corresponds to one sepal length measurement. Each of the six columns
corresponds to a clustering solution containing 1 to 6 clusters.

Evaluate the optimal number of clusters using the Calinski-Harabasz criterion.

eva = evalclusters(meas,clust,'CalinskiHarabasz')

eva = 
  CalinskiHarabaszEvaluation with properties:

    NumObservations: 150
         InspectedK: [1 2 3 4 5 6]
    CriterionValues: [NaN 513.9245 561.6278 530.4871 456.1279 469.5068]
           OptimalK: 3

The OptimalK value indicates that, based on the Calinski-Harabasz criterion, the optimal number of
clusters is three.

Specify Clustering Algorithm with a Function Handle

Use a function handle to specify the clustering algorithm, then evaluate the optimal number of
clusters.

Load the sample data.

load fisheriris;

The data contains length and width measurements from the sepals and petals of three species of iris
flowers.

Use a function handle to specify the clustering algorithm.

myfunc = @(X,K)(kmeans(X, K, 'emptyaction','singleton',...
    'replicate',5));
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Evaluate the optimal number of clusters for the sepal length data using the Calinski-Harabasz
criterion.

eva = evalclusters(meas,myfunc,'CalinskiHarabasz',...
    'klist',[1:6])

eva = 
  CalinskiHarabaszEvaluation with properties:

    NumObservations: 150
         InspectedK: [1 2 3 4 5 6]
    CriterionValues: [NaN 513.9245 561.6278 530.4871 456.1279 469.5068]
           OptimalK: 3

The OptimalK value indicates that, based on the Calinski-Harabasz criterion, the optimal number of
clusters is three.

Input Arguments
x — Input data
matrix

Input data, specified as an N-by-P matrix. N is the number of observations, and P is the number of
variables.
Data Types: single | double

clust — Clustering algorithm
'kmeans' | 'linkage' | 'gmdistribution' | matrix of clustering solutions | function handle

Clustering algorithm, specified as one of the following.

'kmeans' Cluster the data in x using the kmeans clustering algorithm, with
'EmptyAction' set to 'singleton' and 'Replicates' set to
5.

'linkage' Cluster the data in x using the clusterdata agglomerative
clustering algorithm, with 'Linkage' set to 'ward'.

'gmdistribution' Cluster the data in x using the gmdistribution Gaussian
mixture distribution algorithm, with 'SharedCov' set to true and
'Replicates' set to 5.

If criterion is 'CalinskiHarabasz', 'DaviesBouldin', or 'silhouette', you can specify a
clustering algorithm using a function handle. The function must be of the form C =
clustfun(DATA,K), where DATA is the data to be clustered, and K is the number of clusters. The
output of clustfun must be one of the following:

• A vector of integers representing the cluster index for each observation in DATA. There must be K
unique values in this vector.

• A numeric n-by-K matrix of score for n observations and K classes. In this case, the cluster index
for each observation is determined by taking the largest score value in each row.

If criterion is 'CalinskiHarabasz', 'DaviesBouldin', or 'silhouette', you can also
specify clust as a n-by-K matrix containing the proposed clustering solutions. n is the number of
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observations in the sample data, and K is the number of proposed clustering solutions. Column j
contains the cluster indices for each of the N points in the jth clustering solution.
Data Types: single | double | char | string | function_handle

criterion — Clustering evaluation criterion
'CalinskiHarabasz' | 'DaviesBouldin' | 'gap' | 'silhouette'

Clustering evaluation criterion, specified as one of the following.

'CalinskiHarabasz' Create a CalinskiHarabaszEvaluation
clustering evaluation object containing Calinski-
Harabasz index values. For more information, see
“Calinski-Harabasz Criterion” on page 35-295.

'DaviesBouldin' Create a DaviesBouldinEvaluation cluster
evaluation object containing Davies-Bouldin index
values. For more information, see “Davies-Bouldin
Criterion” on page 35-323.

'gap' Create a GapEvaluation cluster evaluation
object containing gap criterion values. For more
information, see “Gap Value” on page 35-3116.

'silhouette' Create a SilhouetteEvaluation cluster
evaluation object containing silhouette values.
For more information, see “Silhouette Value and
Criterion” on page 35-7004.

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: 'KList',[1:5],'Distance','cityblock' specifies to test 1, 2, 3, 4, and 5 clusters
using the city block distance metric.

For All Criteria

KList — List of number of clusters to evaluate
vector

List of number of clusters to evaluate, specified as the comma-separated pair consisting of 'KList'
and a vector of positive integer values. You must specify KList when clust is a clustering algorithm
name or a function handle. When criterion is 'gap', clust must be a character vector, a string
scalar, or a function handle, and you must specify KList.
Example: 'KList',[1:6]
Data Types: single | double

For Silhouette and Gap

Distance — Distance metric
'sqEuclidean' (default) | 'Euclidean' | 'cityblock' | vector | function | ...
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Distance metric used for computing the criterion values, specified as the comma-separated pair
consisting of 'Distance' and one of the following.

'sqEuclidean' Squared Euclidean distance
'Euclidean' Euclidean distance. This option is not valid for the kmeans

clustering algorithm.
'cityblock' Sum of absolute differences
'cosine' One minus the cosine of the included angle between points

(treated as vectors)
'correlation' One minus the sample correlation between points (treated as

sequences of values)
'Hamming' Percentage of coordinates that differ. This option is only valid for

the Silhouette criterion.
'Jaccard' Percentage of nonzero coordinates that differ. This option is only

valid for the Silhouette criterion.

For detailed information about each distance metric, see pdist.

You can also specify a function for the distance metric using a function handle. The distance function
must be of the form d2 = distfun(XI,XJ), where XI is a 1-by-n vector corresponding to a single
row of the input matrix X, and XJ is an m2-by-n matrix corresponding to multiple rows of X. distfun
must return an m2-by-1 vector of distances d2, whose kth element is the distance between XI and
XJ(k,:).

Distance only accepts a function handle if the clustering algorithm clust accepts a function handle
as the distance metric. For example, the kmeans clustering algorithm does not accept a function
handle as the distance metric. Therefore, if you use the kmeans algorithm and then specify a function
handle for Distance, the software errors.

• If criterion is 'silhouette', you can also specify Distance as the output vector created by
the function pdist.

• When clust is 'kmeans' or 'gmdistribution', evalclusters uses the distance metric
specified for Distance to cluster the data.

• If clust is 'linkage', and Distance is either 'sqEuclidean' or 'Euclidean', then the
clustering algorithm uses the Euclidean distance and Ward linkage.

• If clust is 'linkage' and Distance is any other metric, then the clustering algorithm uses the
specified distance metric and average linkage.

• In all other cases, the distance metric specified for Distance must match the distance metric
used in the clustering algorithm to obtain meaningful results.

Example: 'Distance','Euclidean'
Data Types: single | double | char | string | function_handle

For Silhouette Only

ClusterPriors — Prior probabilities for each cluster
'empirical' (default) | 'equal'

Prior probabilities for each cluster, specified as the comma-separated pair consisting of
'ClusterPriors' and one of the following.
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'empirical' Compute the overall silhouette value for the clustering solution by
averaging the silhouette values for all points. Each cluster
contributes to the overall silhouette value proportionally to its size.

'equal' Compute the overall silhouette value for the clustering solution by
averaging the silhouette values for all points within each cluster,
and then averaging those values across all clusters. Each cluster
contributes equally to the overall silhouette value, regardless of its
size.

Example: 'ClusterPriors','empirical'

For Gap Only

B — Number of reference data sets
100 (default) | positive integer value

Number of reference data sets generated from the reference distribution ReferenceDistribution,
specified as the comma-separated pair consisting of 'B' and a positive integer value.
Example: 'B',150
Data Types: single | double

ReferenceDistribution — Reference data generation method
'PCA' (default) | 'uniform'

Reference data generation method, specified as the comma-separated pair consisting of
'ReferenceDistributions' and one of the following.

'PCA' Generate reference data from a uniform distribution over a box
aligned with the principal components of the data matrix x.

'uniform' Generate reference data uniformly over the range of each feature
in the data matrix x.

Example: 'ReferenceDistribution','uniform'

SearchMethod — Method for selecting optimal number of clusters
'globalMaxSE' (default) | 'firstMaxSE'

Method for selecting the optimal number of clusters, specified as the comma-separated pair
consisting of 'SearchMethod' and one of the following.

'globalMaxSE' Evaluate each proposed number of clusters in KList and select
the smallest number of clusters satisfying

Gap K ≥ GAPMAX − SE(GAPMAX),

where K is the number of clusters, Gap(K) is the gap value for the
clustering solution with K clusters, GAPMAX is the largest gap
value, and SE(GAPMAX) is the standard error corresponding to the
largest gap value.
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'firstMaxSE' Evaluate each proposed number of clusters in KList and select
the smallest number of clusters satisfying

Gap(K) ≥ Gap(K + 1)− SE(K + 1),

where K is the number of clusters, Gap(K) is the gap value for the
clustering solution with K clusters, and SE(K + 1) is the standard
error of the clustering solution with K + 1 clusters.

Example: 'SearchMethod','globalMaxSE'

Output Arguments
eva — Clustering evaluation data
clustering evaluation object

Clustering evaluation data, returned as a clustering evaluation object.

Version History
Introduced in R2013b

See Also
CalinskiHarabaszEvaluation | SilhouetteEvaluation | GapEvaluation |
DaviesBouldinEvaluation

Topics
“Cluster Using Gaussian Mixture Model” on page 17-39
“k-Means Clustering” on page 17-33
“Hierarchical Clustering” on page 17-6
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evlike
Extreme value negative log-likelihood

Syntax
nlogL = evlike(params,data)
[nlogL,AVAR] = evlike(params,data)
[...] = evlike(params,data,censoring)
[...] = evlike(params,data,censoring,freq)

Description
nlogL = evlike(params,data) returns the negative of the log-likelihood for the type 1 extreme
value distribution. params(1) is the tail location parameter, mu, and params(2) is the scale
parameter, sigma. nlogL is a scalar.

[nlogL,AVAR] = evlike(params,data) returns the inverse of Fisher's information matrix, AVAR.
If the input parameter values in params are the maximum likelihood estimates, the diagonal
elements of AVAR are their asymptotic variances. AVAR is based on the observed Fisher's information,
not the expected information.

[...] = evlike(params,data,censoring) accepts a Boolean vector of the same size as data,
which is 1 for observations that are right-censored and 0 for observations that are observed exactly.

[...] = evlike(params,data,censoring,freq) accepts a frequency vector of the same size
as data. freq typically contains integer frequencies for the corresponding elements in data, but can
contain any nonnegative values. Pass in [] for censoring to use its default value.

The type 1 extreme value distribution is also known as the Gumbel distribution. The version used
here is suitable for modeling minima; the mirror image of this distribution can be used to model
maxima by negating data. See “Extreme Value Distribution” on page B-41 for more details. If x has
a Weibull distribution, then X = log(x) has the type 1 extreme value distribution.

Version History
Introduced before R2006a

Extended Capabilities
GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

This function fully supports GPU arrays. For more information, see “Run MATLAB Functions on a
GPU” (Parallel Computing Toolbox).

See Also
evfit | evpdf | evcdf | evinv | evstat | evrnd
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Topics
“Extreme Value Distribution” on page B-41

 evlike

35-1623



evpdf
Extreme value probability density function

Syntax
Y = evpdf(X,mu,sigma)

Description
Y = evpdf(X,mu,sigma) returns the pdf of the type 1 extreme value distribution with location
parameter mu and scale parameter sigma, evaluated at the values in X. X, mu, and sigma can be
vectors, matrices, or multidimensional arrays that all have the same size. A scalar input is expanded
to a constant array of the same size as the other inputs. The default values for mu and sigma are 0
and 1, respectively.

The type 1 extreme value distribution is also known as the Gumbel distribution. The version used
here is suitable for modeling minima; the mirror image of this distribution can be used to model
maxima by negating X. See “Extreme Value Distribution” on page B-41 for more details. If x has a
Weibull distribution, then X = log(x) has the type 1 extreme value distribution.

Version History
Introduced before R2006a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

This function fully supports GPU arrays. For more information, see “Run MATLAB Functions on a
GPU” (Parallel Computing Toolbox).

See Also
pdf | evcdf | evinv | evstat | evfit | evlike | evrnd

Topics
“Extreme Value Distribution” on page B-41
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evrnd
Extreme value random numbers

Syntax
R = evrnd(mu,sigma)
R = evrnd(mu,sigma,m,n,...)
R = evrnd(mu,sigma,[m,n,...])

Description
R = evrnd(mu,sigma) generates random numbers from the extreme value distribution with
parameters specified by location parameter mu and scale parameter sigma. mu and sigma can be
vectors, matrices, or multidimensional arrays that have the same size, which is also the size of R. A
scalar input for mu or sigma is expanded to a constant array with the same dimensions as the other
input.

R = evrnd(mu,sigma,m,n,...) or R = evrnd(mu,sigma,[m,n,...]) generates an m-by-n-
by-... array containing random numbers from the extreme value distribution with parameters mu and
sigma. mu and sigma can each be scalars or arrays of the same size as R.

The type 1 extreme value distribution is also known as the Gumbel distribution. The version used
here is suitable for modeling minima; the mirror image of this distribution can be used to model
maxima by negating R. See “Extreme Value Distribution” on page B-41 for more details. If x has a
Weibull distribution, then X = log(x) has the type 1 extreme value distribution.

Version History
Introduced before R2006a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

The generated code can return a different sequence of numbers than MATLAB if either of the
following is true:

• The output is nonscalar.
• An input parameter is invalid for the distribution.

For more information on code generation, see “Introduction to Code Generation” on page 34-2 and
“General Code Generation Workflow” on page 34-5.

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.
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This function fully supports GPU arrays. For more information, see “Run MATLAB Functions on a
GPU” (Parallel Computing Toolbox).

See Also
random | evpdf | evcdf | evinv | evstat | evfit | evlike

Topics
“Extreme Value Distribution” on page B-41
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evstat
Extreme value mean and variance

Syntax
[M,V] = evstat(mu,sigma)

Description
[M,V] = evstat(mu,sigma) returns the mean of and variance for the type 1 extreme value
distribution with location parameter mu and scale parameter sigma. mu and sigma can be vectors,
matrices, or multidimensional arrays that all have the same size. A scalar input is expanded to a
constant array of the same size as the other input. The default values for mu and sigma are 0 and 1,
respectively.

The type 1 extreme value distribution is also known as the Gumbel distribution. The version used
here is suitable for modeling minima; the mirror image of this distribution can be used to model
maxima. See “Extreme Value Distribution” on page B-41 for more details. If x has a Weibull
distribution, then X = log(x) has the type 1 extreme value distribution.

Version History
Introduced before R2006a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

This function fully supports GPU arrays. For more information, see “Run MATLAB Functions on a
GPU” (Parallel Computing Toolbox).

See Also
evpdf | evcdf | evinv | evfit | evlike | evrnd

Topics
“Extreme Value Distribution” on page B-41
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expcdf
Exponential cumulative distribution function

Syntax
p = expcdf(x)
p = expcdf(x,mu)

[p,pLo,pUp] = expcdf(x,mu,pCov)
[p,pLo,pUp] = expcdf(x,mu,pCov,alpha)

___  = expcdf( ___ ,'upper')

Description
p = expcdf(x) returns the cumulative distribution function (cdf) of the standard exponential
distribution, evaluated at the values in x.

p = expcdf(x,mu) returns the cdf of the exponential distribution with mean mu, evaluated at the
values in x.

[p,pLo,pUp] = expcdf(x,mu,pCov) also returns the 95% confidence interval [pLo,pUp] of p
when mu is an estimate with variance pCov.

[p,pLo,pUp] = expcdf(x,mu,pCov,alpha) specifies the confidence level for the confidence
interval [pLo pUp] to be 100(1–alpha)%.

___  = expcdf( ___ ,'upper') returns the complement of the cdf, evaluated at the values in x,
using an algorithm that more accurately computes the extreme upper-tail probabilities than
subtracting the lower tail value from 1. 'upper' can follow any of the input argument combinations
in the previous syntaxes.

Examples

Standard Exponential Distribution cdf

Compute the probability that an observation in the standard exponential distribution falls in the
interval [1 2].

p = expcdf([1 2]);
p(2) - p(1)

ans = 0.2325

Compute Exponential cdf

The median of the exponential distribution is µ*log(2).
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Confirm the median by computing the cdf of µ*log(2) for several different choices of µ.

mu = 10:10:60; 
p = expcdf(log(2)*mu,mu)

p = 1×6

    0.5000    0.5000    0.5000    0.5000    0.5000    0.5000

The cdf of the mean is always equal to 1-1/e (~0.6321).

Confirm the result by computing the exponential cdf of the mean for means one through six.

mu = 1:6;
x = mu;
p = expcdf(x,mu)

p = 1×6

    0.6321    0.6321    0.6321    0.6321    0.6321    0.6321

Confidence Interval of Exponential cdf Value

Find a confidence interval estimating the probability that an observation is in the interval [0 1]
using exponentially distributed data.

Generate a sample of 1000 random numbers drawn from the exponential distribution with mean 5.

rng('default') % For reproducibility
x = exprnd(5,1000,1);

Estimate the mean with a confidence interval.

[muhat,muci] = expfit(x)

muhat = 5.0129

muci = 2×1

    4.7161
    5.3387

Estimate the variance of the mean estimate.

[~,nCov] = explike(muhat,x)

nCov = 0.0251

Create the confidence interval estimating the probability an observation is in the interval [0 1].

[p,pLo,pUp] = expcdf(1,muhat,nCov);
pCi = [pLo; pUp]

pCi = 2×1
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    0.1710
    0.1912

expcdf calculates the confidence interval using a normal approximation for the distribution of the
log estimate of the mean. Compute a more accurate confidence interval for p by evaluating expcdf
on the confidence interval muci.

pCi2 = expcdf(1,muci)

pCi2 = 2×1

    0.1911
    0.1708

The bounds pCi2 are reversed because a lower mean makes the event more likely and a higher mean
makes the event less likely.

Complementary cdf (Tail Distribution)

Determine the probability that an observation from the exponential distribution with mean 1 is in the
interval [50 Inf].

p1 = 1 - expcdf(50,1)

p1 = 0

expcdf(50,1) is nearly 1, so p1 becomes 0. Specify 'upper' so that expcdf computes the extreme
upper-tail probabilities more accurately.

p2 = expcdf(50,1,'upper')

p2 = 1.9287e-22

Input Arguments
x — Values at which to evaluate cdf
nonnegative scalar value | array of nonnegative scalar values

Values at which to evaluate the cdf, specified as a nonnegative scalar value or an array of nonnegative
scalar values.

• To evaluate the cdf at multiple values, specify x using an array.
• To evaluate the cdfs of multiple distributions, specify mu using an array.

If either or both of the input arguments x and mu are arrays, then the array sizes must be the same.
In this case, expcdf expands each scalar input into a constant array of the same size as the array
inputs. Each element in p is the cdf value of the distribution specified by the corresponding element
in mu, evaluated at the corresponding element in x.
Example: [3 4 7 9]
Data Types: single | double
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mu — Mean
1 (default) | positive scalar value | array of positive scalar values

Mean of the exponential distribution, specified as a positive scalar value or an array of positive scalar
values.

• To evaluate the cdf at multiple values, specify x using an array.
• To evaluate the cdfs of multiple distributions, specify mu using an array.

If either or both of the input arguments x and mu are arrays, then the array sizes must be the same.
In this case, expcdf expands each scalar input into a constant array of the same size as the array
inputs. Each element in p is the cdf value of the distribution specified by the corresponding element
in mu, evaluated at the corresponding element in x.
Example: [1 2 3 5]
Data Types: single | double

pCov — Variance of Mean Estimate
positive scalar value

Variance of the estimate of mu, specified as a positive scalar value.

You can estimate mu from data by using expfit or mle. You can then estimate the variance of mu by
using explike. The resulting confidence interval bounds are based on a normal approximation for
the distribution of the log of the mu estimate. You can get a more accurate set of bounds by applying
expcdf to the confidence interval returned by expfit. For an example, see “Confidence Interval of
Exponential cdf Value” on page 35-1629.
Example: 0.10
Data Types: single | double

alpha — Significance level
0.05 (default) | scalar in the range (0,1)

Significance level for the confidence interval, specified as a scalar in the range (0,1). The confidence
level is 100(1–alpha)%, where alpha is the probability that the confidence interval does not
contain the true value.
Example: 0.01
Data Types: single | double

Output Arguments
p — cdf values
scalar value | array of scalar values

cdf values evaluated at x, returned as a scalar value or an array of scalar values. p is the same size as
x and mu after any necessary scalar expansion. Each element in p is the cdf value of the distribution
specified by the corresponding element in mu, evaluated at the corresponding element in x.

pLo — Lower confidence bound for p
scalar value | array of scalar values
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Lower confidence bound for p, returned as a scalar value or an array of scalar values. pLo has the
same size as p.

pUp — Upper confidence bound for p
scalar value | array of scalar values

Upper confidence bound for p, returned as a scalar value or an array of scalar values. pUp has the
same size as p.

More About
Exponential cdf

The exponential distribution is a one-parameter family of curves. The parameter μ is the mean.

The cdf of the exponential distribution is

p = F(x u) = ∫
0

x
1
μe

−t
μ dt = 1− e

−x
μ .

The result p is the probability that a single observation from the exponential distribution with mean μ
falls in the interval [0, x]. A common alternative parameterization of the exponential distribution is to
use λ defined as the mean number of events in an interval as opposed to μ, which is the mean wait
time for an event to occur. λ and μ are reciprocals.

For more information, see “Exponential Distribution” on page B-34.

Alternative Functionality
• expcdf is a function specific to the exponential distribution. Statistics and Machine Learning

Toolbox also offers the generic function cdf, which supports various probability distributions. To
use cdf, create an ExponentialDistribution probability distribution object and pass the
object as an input argument or specify the probability distribution name and its parameters. Note
that the distribution-specific function expcdf is faster than the generic function cdf.

• Use the Probability Distribution Function app to create an interactive plot of the cumulative
distribution function (cdf) or probability density function (pdf) for a probability distribution.

Version History
Introduced before R2006a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

This function fully supports GPU arrays. For more information, see “Run MATLAB Functions on a
GPU” (Parallel Computing Toolbox).
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See Also
ExponentialDistribution | cdf | exppdf | expinv | expstat | expfit | explike | exprnd

Topics
“Exponential Distribution” on page B-34
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expfit
Exponential parameter estimates

Syntax
muhat = expfit(data)
[muhat,muci] = expfit(data)
[muhat,muci] = expfit(data,alpha)
[...] = expfit(data,alpha,censoring)
[...] = expfit(data,alpha,censoring,freq)

Description
muhat = expfit(data) estimates the mean of exponentially distributed sample data in the vector
data.

[muhat,muci] = expfit(data) also returns the 95% confidence interval for the mean parameter
estimates in muci. The first row of muci is the lower bound of the confidence interval, and the second
row is the upper bound.

[muhat,muci] = expfit(data,alpha) returns the 100(1–alpha)% confidence interval for the
parameter estimate muhat, where alpha is a value in the range [0 1] specifying the width of the
confidence interval. By default, alpha is 0.05, which corresponds to the 95% confidence interval.

[...] = expfit(data,alpha,censoring) accepts a Boolean vector, censoring, of the same
size as data, which is 1 for observations that are right-censored and 0 for observations that are
observed exactly. data must be a vector in order to pass in the argument censoring.

[...] = expfit(data,alpha,censoring,freq) accepts a frequency vector, freq of the same
size as data. Typically, freq contains integer frequencies for the corresponding elements in data,
but can contain any nonnegative values. Pass in [] for alpha, censoring, or freq to use their
default values.

Examples
The following estimates the mean mu of exponentially distributed data, and returns a 95% confidence
interval for the estimate:

mu = 3;
data = exprnd(mu,100,1); % Simulated data

[muhat,muci] = expfit(data)
muhat =
    2.7511
muci =
    2.2826
    3.3813
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Version History
Introduced before R2006a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

This function fully supports GPU arrays. For more information, see “Run MATLAB Functions on a
GPU” (Parallel Computing Toolbox).

See Also
mle | explike | exppdf | expcdf | expinv | expstat | exprnd
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ExhaustiveSearcher
Create exhaustive nearest neighbor searcher

Description
ExhaustiveSearcher model objects store the training data, distance metric, and parameter values
of the distance metric for an exhaustive nearest neighbor search. The exhaustive search algorithm
finds the distance from each query observation to all n observations in the training data, which is an
n-by-K numeric matrix.

Once you create an ExhaustiveSearcher model object, find neighboring points in the training data
to the query data by performing a nearest neighbor search using knnsearch or a radius search using
rangesearch. The exhaustive search algorithm is more efficient than the Kd-tree algorithm when K
is large (that is, K > 10), and it is more flexible than the Kd-tree algorithm with respect to distance
metric choices. The ExhaustiveSearcher model object also supports sparse data.

Creation
Use either the createns function or the ExhaustiveSearcher function (described here) to create
an ExhaustiveSearcher object. Both functions use the same syntax except that the createns
function has the 'NSMethod' name-value pair argument, which you use to choose the nearest
neighbor search method. The createns function also creates a KDTreeSearcher object. Specify
'NSMethod','exhaustive' to create an ExhaustiveSearcher object. The default is
'exhaustive' if K > 10, the training data is sparse, or the distance metric is not the Euclidean, city
block, Chebychev, or Minkowski.

Syntax
Mdl = ExhaustiveSearcher(X)
Mdl = ExhaustiveSearcher(X,Name,Value)

Description

Mdl = ExhaustiveSearcher(X) creates an exhaustive nearest neighbor searcher object (Mdl)
using the n-by-K numeric matrix of training data (X).

Mdl = ExhaustiveSearcher(X,Name,Value) specifies additional options using one or more
name-value pair arguments. You can specify the distance metric and set the distance metric
parameter (DistParameter) property. For example,
ExhaustiveSearcher(X,'Distance','chebychev') creates an exhaustive nearest neighbor
searcher object that uses the Chebychev distance. To specify DistParameter, use the Cov, P, or
Scale name-value pair argument.

Input Arguments

X — Training data
numeric matrix
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Training data that prepares the exhaustive searcher algorithm, specified as a numeric matrix. X has n
rows, each corresponding to an observation (that is, an instance or example), and K columns, each
corresponding to a predictor (that is, a feature).
Data Types: single | double

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: 'Distance','mahalanobis','Cov',eye(3) specifies to use the Mahalanobis distance
when searching for nearest neighbors and a 3-by-3 identity matrix for the covariance matrix in the
Mahalanobis distance metric.

Distance — Distance metric
'euclidean' (default) | character vector | string scalar | custom distance function

Distance metric used when you call knnsearch or rangesearch to find nearest neighbors for future
query points, specified as the comma-separated pair consisting of 'Distance' and a character
vector, string scalar, or function handle.

This table describes the supported distance metrics specified as character vectors or string scalars.

Value Description
'chebychev' Chebychev distance (maximum coordinate difference).
'cityblock' City block distance.
'correlation' One minus the sample linear correlation between observations (treated as

sequences of values).
'cosine' One minus the cosine of the included angle between observations (treated

as row vectors).
'euclidean' Euclidean distance.
'hamming' Hamming distance, which is the percentage of coordinates that differ.
'jaccard' One minus the Jaccard coefficient, which is the percentage of nonzero

coordinates that differ.
'minkowski' Minkowski distance. The default exponent is 2. To specify a different

exponent, use the 'P' name-value pair argument.
'mahalanobis' Mahalanobis distance, computed using a positive definite covariance

matrix. To change the value of the covariance matrix, use the 'Cov' name-
value pair argument.

'seuclidean' Standardized Euclidean distance. Each coordinate difference between rows
in Mdl.X and the query matrix is scaled by dividing by the corresponding
element of the standard deviation computed from Mdl.X. To specify
another scaling, use the 'Scale' name-value pair argument.

'spearman' One minus the sample Spearman's rank correlation between observations
(treated as sequences of values).

For more details, see “Distance Metrics” on page 19-14.
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You can specify a function handle for a custom distance metric by using @ (for example, @distfun). A
custom distance function must:

• Have the form function D2 = distfun(ZI, ZJ).
• Take as arguments:

• A 1-by-K vector ZI containing a single row from X or from the query points Y, where K is the
number of columns in X.

• An m-by-K matrix ZJ containing multiple rows of X or Y, where m is a positive integer.
• Return an m-by-1 vector of distance D2, where D2(j) is the distance between the observations ZI

and ZJ(j,:).

The software does not use the distance metric for creating an ExhaustiveSearcher model object,
so you can alter the distance metric by using dot notation after creating the object.
Example: 'Distance','mahalanobis'

Cov — Covariance matrix for Mahalanobis distance metric
cov(X,'omitrows') (default) | positive definite matrix

Covariance matrix for the Mahalanobis distance metric, specified as the comma-separated pair
consisting of 'Cov' and a K-by-K positive definite matrix, where K is the number of columns in X.
This argument is valid only if 'Distance' is 'mahalanobis'.
Example: 'Cov',eye(3)
Data Types: single | double

P — Exponent for Minkowski distance metric
2 (default) | positive scalar

Exponent for the Minkowski distance metric, specified as the comma-separated pair consisting of 'P'
and a positive scalar. This argument is valid only if 'Distance' is 'minkowski'.
Example: 'P',3
Data Types: single | double

Scale — Scale parameter value for standardized Euclidean distance metric
std(X,'omitnan') (default) | nonnegative numeric vector

Scale parameter value for the standardized Euclidean distance metric, specified as the comma-
separated pair consisting of 'Scale' and a nonnegative numeric vector of length K, where K is the
number of columns in X. The software scales each difference between the training and query data
using the corresponding element of Scale. This argument is valid only if 'Distance' is
'seuclidean'.
Example: 'Scale',quantile(X,0.75) - quantile(X,0.25)
Data Types: single | double

Properties
X — Training data
numeric matrix

This property is read-only.
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Training data that prepares the exhaustive searcher algorithm, specified as a numeric matrix. X has n
rows, each corresponding to an observation (that is, an instance or example), and K columns, each
corresponding to a predictor (that is, a feature).

The input argument X of createns or ExhaustiveSearcher sets this property.
Data Types: single | double

Distance — Distance metric
character vector | string scalar | custom distance function

Distance metric used when you call knnsearch or rangesearch to find nearest neighbors for future
query points, specified as a character vector or string scalar ('chebychev', 'cityblock',
'correlation', 'cosine', 'euclidean', 'hamming', 'jaccard', 'minkowski',
'mahalanobis', 'seuclidean', or 'spearman'), or a function handle.

The 'Distance' name-value pair argument of createns or ExhaustiveSearcher sets this
property.

The software does not use the distance metric for creating an ExhaustiveSearcher model object,
so you can alter it by using dot notation.

DistParameter — Distance metric parameter values
[] | positive scalar

Distance metric parameter values, specified as empty ([]) or a positive scalar.

This table describes the distance parameters of the supported distance metrics.

Distance Metric Parameter Description
'mahalanobis' A positive definite matrix representing the covariance matrix used for

computing the Mahalanobis distance. By default, the software sets the
covariance using cov(Mdl.X,'omitrows').

The 'Cov' name-value pair argument of createns or
ExhaustiveSearcher sets this property.

You can alter DistParameter by using dot notation, for example,
Mdl.DistParameter = CovNew, where CovNew is a K-by-K positive
definite numeric matrix.

'minkowski' A positive scalar indicating the exponent of the Minkowski distance. By
default, the exponent is 2.

The 'P' name-value pair argument of createns or
ExhaustiveSearcher sets this property.

You can alter DistParameter by using dot notation, for example,
Mdl.DistParameter = PNew, where PNew is a positive scalar.
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Distance Metric Parameter Description
'seuclidean' A positive numeric vector indicating the values used by the software to

scale the predictors when computing the standardized Euclidean distance.
By default, the software:

1 Estimates the standard deviation of each predictor (column) of X using
scale = std(Mdl.X,'omitnan')

2 Scales each coordinate difference between the rows in X and the query
matrix by dividing by the corresponding element of scale

The 'Scale' name-value pair argument of createns or
ExhaustiveSearcher sets this property.

You can alter DistParameter by using dot notation, for example,
Mdl.DistParameter = sNew, where sNew is a K-dimensional positive
numeric vector.

If Mdl.Distance is not one of the parameters listed in this table, then Mdl.DistParameter is [],
which means that the specified distance metric formula has no parameters.
Data Types: single | double

Object Functions
knnsearch Find k-nearest neighbors using searcher object
rangesearch Find all neighbors within specified distance using searcher object

Examples

Train Default Exhaustive Nearest Neighbor Searcher

Load Fisher's iris data set.

load fisheriris
X = meas;
[n,k] = size(X)

n = 150

k = 4

X has 150 observations and 4 predictors.

Prepare an exhaustive nearest neighbor searcher using the entire data set as training data.

Mdl1 = ExhaustiveSearcher(X)

Mdl1 = 
  ExhaustiveSearcher with properties:

         Distance: 'euclidean'
    DistParameter: []
                X: [150x4 double]
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Mdl1 is an ExhaustiveSearcher model object, and its properties appear in the Command Window.
The object contains information about the trained algorithm, such as the distance metric. You can
alter property values using dot notation.

Alternatively, you can prepare an exhaustive nearest neighbor searcher by using createns and
specifying 'exhaustive' as the search method.

Mdl2 = createns(X,'NSMethod','exhaustive')

Mdl2 = 
  ExhaustiveSearcher with properties:

         Distance: 'euclidean'
    DistParameter: []
                X: [150x4 double]

Mdl2 is also an ExhaustiveSearcher model object, and it is equivalent to Mdl1.

To search X for the nearest neighbors to a batch of query data, pass the ExhaustiveSearcher
model object and the query data to knnsearch or rangesearch.

Specify the Mahalanobis Distance for Nearest Neighbor Search

Load Fisher's iris data set. Focus on the petal dimensions.

load fisheriris
X = meas(:,[3 4]); % Predictors

Prepare an exhaustive nearest neighbor searcher. Specify the Mahalanobis distance metric.

Mdl = createns(X,'Distance','mahalanobis')

Mdl = 
  ExhaustiveSearcher with properties:

         Distance: 'mahalanobis'
    DistParameter: [2x2 double]
                X: [150x2 double]

Because the distance metric is Mahalanobis, createns creates an ExhaustiveSearcher model
object by default.

Access properties of Mdl by using dot notation. For example, use Mdl.DistParameter to access the
Mahalanobis covariance parameter.

Mdl.DistParameter

ans = 2×2

    3.1163    1.2956
    1.2956    0.5810

You can pass query data and Mdl to:
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• knnsearch to find indices and distances of nearest neighbors
• rangesearch to find indices of all nearest neighbors within a distance that you specify

Alter Properties of ExhaustiveSearcher Model

Create an ExhaustiveSearcher model object and alter the Distance property by using dot
notation.

Load Fisher's iris data set.

load fisheriris
X = meas;

Train a default exhaustive searcher algorithm using the entire data set as training data.

Mdl = ExhaustiveSearcher(X)

Mdl = 
  ExhaustiveSearcher with properties:

         Distance: 'euclidean'
    DistParameter: []
                X: [150x4 double]

Specify that the neighbor searcher use the Mahalanobis metric to compute the distances between the
training and query data.

Mdl.Distance = 'mahalanobis'

Mdl = 
  ExhaustiveSearcher with properties:

         Distance: 'mahalanobis'
    DistParameter: [4x4 double]
                X: [150x4 double]

You can pass Mdl and the query data to either knnsearch or rangesearch to find the nearest
neighbors to the points in the query data based on the Mahalanobis distance.

Search for Nearest Neighbors of Query Data Using Mahalanobis Distance

Create an exhaustive searcher object by using the createns function. Pass the object and query data
to the knnsearch function to find k-nearest neighbors.

Load Fisher's iris data set.

load fisheriris

Remove five irises randomly from the predictor data to use as a query set.
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rng('default');             % For reproducibility
n = size(meas,1);           % Sample size
qIdx = randsample(n,5);     % Indices of query data
X = meas(~ismember(1:n,qIdx),:);
Y = meas(qIdx,:);

Prepare an exhaustive nearest neighbor searcher using the training data. Specify the Mahalanobis
distance for finding nearest neighbors.

Mdl = createns(X,'Distance','mahalanobis')

Mdl = 
  ExhaustiveSearcher with properties:

         Distance: 'mahalanobis'
    DistParameter: [4x4 double]
                X: [145x4 double]

Because the distance metric is Mahalanobis, createns creates an ExhaustiveSearcher model
object by default.

The software uses the covariance matrix of the predictors (columns) in the training data for
computing the Mahalanobis distance. To display this value, use Mdl.DistParameter.

Mdl.DistParameter

ans = 4×4

    0.6547   -0.0368    1.2320    0.5026
   -0.0368    0.1914   -0.3227   -0.1193
    1.2320   -0.3227    3.0671    1.2842
    0.5026   -0.1193    1.2842    0.5800

Find the indices of the training data (Mdl.X) that are the two nearest neighbors of each point in the
query data (Y).

IdxNN = knnsearch(Mdl,Y,'K',2)

IdxNN = 5×2

     5     6
    98    95
   104   128
   135    65
   102   115

Each row of IdxNN corresponds to a query data observation. The column order corresponds to the
order of the nearest neighbors with respect to ascending distance. For example, based on the
Mahalanobis metric, the second nearest neighbor of Y(3,:) is X(128,:).

Version History
Introduced in R2010a
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Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• The knnsearch and rangesearch functions support code generation.
• When you train an ExhaustiveSearcher model object, the value of the 'Distance' name-value

pair argument cannot be a custom distance function.

For more information, see “Introduction to Code Generation” on page 34-2 and “Code Generation for
Nearest Neighbor Searcher” on page 34-20.

See Also
KDTreeSearcher | createns

Topics
“k-Nearest Neighbor Search and Radius Search” on page 19-16
“Distance Metrics” on page 19-14
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expinv
Exponential inverse cumulative distribution function

Syntax
x = expinv(p)
x = expinv(p,mu)

[x,xLo,xUp] = expinv(p,mu,pCov)
[x,xLo,xUp] = expinv(p,mu,pCov,alpha)

Description
x = expinv(p) returns the inverse cumulative distribution function (icdf) of the standard
exponential distribution, evaluated at the values in p.

x = expinv(p,mu) returns the icdf of the exponential distribution with mean mu, evaluated at the
values in p.

[x,xLo,xUp] = expinv(p,mu,pCov) also returns the 95% confidence interval [xLo,xUp] of x
when mu is an estimate with variance pCov.

[x,xLo,xUp] = expinv(p,mu,pCov,alpha) specifies the confidence level for the confidence
interval [xLo xUp] to be 100(1–alpha)%.

Examples

Compute Exponential icdf

Assume that the lifetime of light bulbs are exponentially distributed with a mean of 700 hours. Find
the median lifetime using expinv.

expinv(0.50,700)

ans = 485.2030

Half of the light bulbs will burn out within the first 485 hours of use.

Confidence Interval of Exponential icdf Value

Find a confidence interval estimating the median using exponentially distributed data.

Generate a sample of 1000 exponentially distributed random numbers with mean 5.

rng('default') % For reproducibility
x = exprnd(5,100,1);

Estimate the mean with a confidence interval.
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[muhat,muci] = expfit(x)

muhat = 4.5852

muci = 2×1

    3.8043
    5.6355

Estimate the variance of the mean estimate.

[~,pCov] = explike(muhat,x)

pCov = 0.2102

Create a confidence interval for the median.

[x,xLo,xUp] = expinv(0.5,muhat,pCov);
xCi = [xLo; xUp]

xCi = 2×1

    2.6126
    3.8664

Alternatively, compute a more accurate confidence interval for x by evaluating expinv on the
confidence interval muci.

xCi2 = expinv(0.5,muci)

xCi2 = 2×1

    2.6369
    3.9062

Input Arguments
p — Probability values at which to evaluate icdf
scalar value in [0,1] | array of scalar values

Probability values at which to evaluate the icdf, specified as a scalar value or an array of scalar
values, where each element is in the range [0,1].

• To evaluate the icdf at multiple values, specify p using an array.
• To evaluate the icdfs of multiple distributions, specify mu using an array.

If either or both of the input arguments p and mu are arrays, then the array sizes must be the same.
In this case, expinv expands each scalar input into a constant array of the same size as the array
inputs. Each element in x is the icdf value of the distribution specified by the corresponding element
in mu, evaluated at the corresponding element in p.
Example: [0.1,0.5,0.9]
Data Types: single | double
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mu — Mean
1 (default) | positive scalar value | array of positive scalar values

Mean of the exponential distribution, specified as a positive scalar value or an array of positive scalar
values.

• To evaluate the icdf at multiple values, specify p using an array.
• To evaluate the icdfs of multiple distributions, specify mu using an array.

If either or both of the input arguments p and mu are arrays, then the array sizes must be the same.
In this case, expinv expands each scalar input into a constant array of the same size as the array
inputs. Each element in x is the icdf value of the distribution specified by the corresponding element
in mu, evaluated at the corresponding element in p.
Example: [1 2 3 5]
Data Types: single | double

pCov — Variance of mean estimate
positive scalar value

Variance of the estimate of mu, specified as a positive scalar.

You can estimate mu from data by using expfit. You can then estimate the variance of mu by using
explike. The resulting confidence interval bounds are based on a normal approximation for the
distribution of the log of the mu estimate. You can get a more accurate set of bounds by applying
expinv to the confidence interval returned by expfit. For an example, see “Confidence Interval of
Exponential icdf Value” on page 35-1645.
Example: 0.10
Data Types: single | double

alpha — Significance level
0.05 (default) | scalar in the range (0,1)

Significance level for the confidence interval, specified as a scalar in the range (0,1). The confidence
level is 100(1–alpha)%, where alpha is the probability that the confidence interval does not
contain the true value.
Example: 0.01
Data Types: single | double

Output Arguments
x — icdf values
scalar value | array of scalar values

icdf values evaluated at the probability values in p, returned as a scalar value or an array of scalar
values. x is the same size as p and mu after any necessary scalar expansion. Each element in x is the
icdf value of the distribution specified by the corresponding element in mu, evaluated at the
corresponding element in p.

xLo — Lower confidence bound for x
scalar value | array of scalar values
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Lower confidence bound for x, returned as a scalar value or an array of scalar values. xLo has the
same size as x.

xUp — Upper confidence bound for x
scalar value | array of scalar values

Upper confidence bound for x, returned as a scalar value or an array of scalar values. xUp has the
same size as x.

More About
Exponential icdf

The exponential distribution is a one-parameter family of curves. The parameter μ is the mean.

The icdf of the exponential distribution is

x = F−1(p μ) = − μln(1− p) .

The result x is the value such that an observation from an exponential distribution with parameter µ
will falls in the range [0,x] with probability p. A common alternative parameterization of the
exponential distribution is to use λ defined as the mean number of events in an interval as opposed to
μ, which is the mean wait time for an event to occur. λ and μ are reciprocals.

For more information, see “Exponential Distribution” on page B-34.

Alternative Functionality
• expinv is a function specific to the exponential distribution. Statistics and Machine Learning

Toolbox also offers the generic function icdf, which supports various probability distributions. To
use icdf, create an ExponentialDistribution probability distribution object and pass the
object as an input argument or specify the probability distribution name and its parameters. Note
that the distribution-specific function expinv is faster than the generic function icdf.

Version History
Introduced before R2006a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

This function fully supports GPU arrays. For more information, see “Run MATLAB Functions on a
GPU” (Parallel Computing Toolbox).

See Also
ExponentialDistribution | icdf | expcdf | exppdf | expstat | expfit | explike | exprnd
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Topics
“Exponential Distribution” on page B-34
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explike
Exponential negative log-likelihood

Syntax
nlogL = explike(param,data)
[nlogL,avar] = explike(param,data)
[...] = explike(param,data,censoring)
[...] = explike(param,data,censoring,freq)

Description
nlogL = explike(param,data) returns the negative of the log-likelihood for the exponential
distribution. param is the mean parameter, mu. nlogL is a scalar.

[nlogL,avar] = explike(param,data) returns the inverse of Fisher's information, avar, a
scalar. If the input parameter value in param is the maximum likelihood estimate, avar is its
asymptotic variance. avar is based on the observed Fisher's information, not the expected
information.

[...] = explike(param,data,censoring) accepts a Boolean vector, censoring, of the same
size as data, which is 1 for observations that are right-censored and 0 for observations that are
observed exactly.

[...] = explike(param,data,censoring,freq) accepts a frequency vector, freq, of the same
size as data. The vector freq typically contains integer frequencies for the corresponding elements
in data, but can contain any nonnegative values. Pass in [] for censoring to use its default value.

Version History
Introduced before R2006a

Extended Capabilities
GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

This function fully supports GPU arrays. For more information, see “Run MATLAB Functions on a
GPU” (Parallel Computing Toolbox).

See Also
expcdf | exppdf | expstat | expfit | expinv | exprnd

Topics
“Exponential Distribution” on page B-34
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export
Class: dataset

(Not Recommended) Write dataset array to file

Note The dataset data type is not recommended. To work with heterogeneous data, use the
MATLAB® table data type instead. See MATLAB table documentation for more information.

Syntax
export(DS,'file',filename)
export(DS)
export(DS,'file',filename,'Delimiter',delim)
export(DS,'XLSfile',filename)
export(DS,'XPTFile',filename)
export(DS,...,'WriteVarNames',false)
export(DS,...,'WriteObsNames',false)

Description
export(DS,'file',filename) writes the dataset array DS to a tab-delimited text file, including
variable names and observation names, if present. If the observation names exist, the name in the
first column of the first line of the file is the first dimension name for the dataset (by default,
'Observations'). export overwrites any existing file named filename.

export(DS) writes to a text file whose default name is the name of the dataset array DS appended
by '.txt'. If export cannot construct the file name from the dataset array input, it writes to the file
'dataset.txt'. export overwrites any existing file.

export(DS,'file',filename,'Delimiter',delim) writes the dataset array DS to a text file
using the delimiter delim. delim must be one of the following:

• ' ' or 'space'
• '\t' or 'tab'
• ',' or 'comma'
• ';' or 'semi'
• '|' or 'bar'

export(DS,'XLSfile',filename) writes the dataset array DS to a Microsoft® Excel spreadsheet
file, including variable names and observation names (if present). You can specify the 'Sheet' and
'Range' parameter name/value pairs, with parameter values as accepted by the xlsread function.
Since export uses the xlswrite function internally, this syntax is only compatible with Microsoft
Excel for Windows, and does not work on a Mac. For more information, see xlswrite.

export(DS,'XPTFile',filename) writes the dataset array DS to a SAS XPORT format file. When
writing to an XPORT format file, variables must be scalar valued. export saves observation names to
a variable called obsnames, unless the WriteObsNames parameter described below is false. The
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XPORT format restricts the length of variable names to eight characters; longer variable names are
truncated.

export(DS,...,'WriteVarNames',false) does not write the variable names to the text file.
export(DS,...,'WriteVarNames',true) is the default, writing the names as column headings in
the first line of the file.

export(DS,...,'WriteObsNames',false) does not write the observation names to the text file.
export(DS,...,'WriteObsNames',true) is the default, writing the names as the first column of
the file.

In some cases, export creates a text file that does not represent A exactly, as described below. If you
use dataset to read the file back into MATLAB, the new dataset array may not have exactly the
same contents as the original dataset array. Save A as a MAT-file if you need to import it again as a
dataset array.

export writes out numeric variables using long g format, and categorical or character variables
as unquoted text.

For non-character variables with more than one column, export writes out multiple delimiter-
separated fields on each line, and constructs suitable column headings for the first line of the file.

export writes out variables that have more than two dimensions as a single empty field in each line
of the file.

For cell-valued variables, export writes out the contents of each cell only when the cell contains a
single row, and writes out a single empty field otherwise.

In some cases, export creates a file that cannot be read back into MATLAB using dataset. Writing
a dataset array that contains a cell-valued variable whose cell contents are not scalars results in a
mismatch in the file between the number of fields on each line and the number of column headings on
the first line. Writing a dataset array that contains a cell-valued variable whose cell contents are not
all the same length results in a different number of fields on each line in the file. Therefore, if you
might need to import a dataset array again, save it as a .mat file.

Examples
Move data between external text files and dataset arrays in the MATLAB workspace:

A = dataset('file','sat2.dat','delimiter',',')
A = 
    Test                  Gender          Score
    'Verbal'              'Male'          470  
    'Verbal'              'Female'        530  
    'Quantitative'        'Male'          520  
    'Quantitative'        'Female'        480  

export(A(A.Score > 500,:),'file','HighScores.txt')

B = dataset('file','HighScores.txt','delimiter','\t')
B = 
    Test                  Gender          Score
    'Verbal'              'Female'        530  
    'Quantitative'        'Male'          520 
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See Also
dataset
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exppdf
Exponential probability density function

Syntax
y = exppdf(x)
y = exppdf(x,mu)

Description
y = exppdf(x) returns the probability density function (pdf) of the standard exponential
distribution, evaluated at the values in x.

y = exppdf(x,mu) returns the pdf of the exponential distribution with mean mu, evaluated at the
values in x.

Examples

Compute Exponential pdf

Compute the density of the observed value 5 in the standard exponential distribution.

y1 = exppdf(5) 

y1 = 0.0067

Compute the density of the observed value 5 in the exponential distributions specified by means 1
through 5.

y2 = exppdf(5,1:5)

y2 = 1×5

    0.0067    0.0410    0.0630    0.0716    0.0736

Compute the density of the observed values 1 through 5 in the exponential distributions specified by
means 1 through 5, respectively.

y3 = exppdf(1:5,1:5)

y3 = 1×5

    0.3679    0.1839    0.1226    0.0920    0.0736

Input Arguments
x — Values at which to evaluate pdf
nonnegative scalar value | array of nonnegative scalar values
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Values at which to evaluate the pdf, specified as a nonnegative scalar value or an array of
nonnegative scalar values.

• To evaluate the pdf at multiple values, specify x using an array.
• To evaluate the pdfs of multiple distributions, specify mu using an array.

If either or both of the input arguments x and mu are arrays, then the array sizes must be the same.
In this case, exppdf expands each scalar input into a constant array of the same size as the array
inputs. Each element in y is the pdf value of the distribution specified by the corresponding element
in mu, evaluated at the corresponding element in x.
Example: [3 4 7 9]
Data Types: single | double

mu — mean
1 (default) | positive scalar value | array of positive scalar values

Mean of the exponential distribution, specified as a positive scalar value or an array of positive scalar
values.

• To evaluate the pdf at multiple values, specify x using an array.
• To evaluate the pdfs of multiple distributions, specify mu using an array.

If either or both of the input arguments x and mu are arrays, then the array sizes must be the same.
In this case, exppdf expands each scalar input into a constant array of the same size as the array
inputs. Each element in y is the pdf value of the distribution specified by the corresponding element
in mu, evaluated at the corresponding element in x.
Example: [1 2 3 5]
Data Types: single | double

Output Arguments
y — pdf values
scalar value | array of scalar values

pdf values evaluated at the values in x, returned as a scalar value or an array of scalar values. y is the
same size as x and mu after any necessary scalar expansion. Each element in y is the pdf value of the
distribution specified by the corresponding element in mu, evaluated at the corresponding element in
x.

More About
Exponential pdf

The exponential distribution is a one-parameter family of curves. The parameter μ is the mean.

The pdf of the exponential distribution is

y = f (x μ) = 1
μe

−x
μ .
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A common alternative parameterization of the exponential distribution is to use λ defined as the mean
number of events in an interval as opposed to μ, which is the mean wait time for an event to occur. λ
and μ are reciprocals.

For more information, see “Exponential Distribution” on page B-34.

Alternative Functionality
• exppdf is a function specific to the exponential distribution. Statistics and Machine Learning

Toolbox also offers the generic function pdf, which supports various probability distributions. To
use pdf, create an ExponentialDistribution probability distribution object and pass the
object as an input argument or specify the probability distribution name and its parameters. Note
that the distribution-specific function exppdf is faster than the generic function pdf.

• Use the Probability Distribution Function app to create an interactive plot of the cumulative
distribution function (cdf) or probability density function (pdf) for a probability distribution.

Version History
Introduced before R2006a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

This function fully supports GPU arrays. For more information, see “Run MATLAB Functions on a
GPU” (Parallel Computing Toolbox).

See Also
ExponentialDistribution | pdf | expcdf | expinv | expstat | expfit | explike | exprnd

Topics
“Exponential Distribution” on page B-34
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exprnd
Exponential random numbers

Syntax
r = exprnd(mu)
r = exprnd(mu,sz1,...,szN)
r = exprnd(mu,sz)

Description
r = exprnd(mu) generates a random number from the exponential distribution with mean mu.

r = exprnd(mu,sz1,...,szN) generates an array of random numbers from the exponential
distribution, where sz1,...,szN indicates the size of each dimension.

r = exprnd(mu,sz) generates an array of random numbers from the exponential distribution,
where vector sz specifies size(r).

Examples

Generate Exponential Random Number

Generate a single random number from the exponential distribution with mean 5.

r = exprnd(5)

r = 1.0245

Generate Array of Exponential Random Numbers

Generate a 1-by-6 array of exponential random numbers with unit mean.

mu1 = ones(1,6); % 1-by-6 array of ones
r1 = exprnd(mu1)

r1 = 1×6

    0.2049    0.0989    2.0637    0.0906    0.4583    2.3275

By default, exprnd generates an array that is the same size as mu.

If you specify mu as a scalar, then exprnd expands it into a constant array with dimensions specified
by sz1,...,szn.

Generate a 2-by-6 array of exponential random numbers with mean 3.

 exprnd
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mu2 = 3;
sz1 = 2;
sz2 = 6;
r2 = exprnd(mu2,sz1,sz2)

r2 = 2×6

    3.8350    0.1303    5.5428    0.1313    0.6684    2.5899
    1.8106    0.1072    0.0895    2.1685    5.8582    0.2641

If you specify both mu and sz1,...,szn as arrays, then the dimensions specified by sz1,...,szn
must match the dimension of mu.

Generate a 1-by-6 array of exponential random numbers with means 5 through 10.

mu3 = 5:10;
sz = [1 6];
r3 = exprnd(mu3,sz)

r3 = 1×6

    1.1647    0.2481    2.9539   26.6582    1.4719    0.6829

Input Arguments
mu — mean
1 (default) | positive scalar value | array of positive scalar values

Mean of the exponential distribution, specified as a positive scalar value or an array of positive scalar
values.

To generate random numbers from multiple distributions, specify mu using an array. Each element in
r is the random number generated from the distribution specified by the corresponding element in
mu.
Example: [1 2 3 5]
Data Types: single | double

sz1,...,szN — Size of each dimension (as separate arguments)
integers

Size of each dimension, specified as separate arguments of integers.

If mu is an array, then the specified dimensions sz1,...,szN must match the dimensions of mu. The
default values of sz1,...,szN are the dimensions of mu.

• If you specify a single value sz1, then r is a square matrix of size sz1-by-sz1.
• If the size of any dimension is 0 or negative, then r is an empty array.
• Beyond the second dimension, exprnd ignores trailing dimensions with a size of 1. For example,

exprnd(4,3,1,1,1) produces a 3-by-1 vector of random numbers from the distribution with
mean 4.

Example: 2,4
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Data Types: single | double

sz — Size of each dimension (as a row vector)
row vector of integers

Size of each dimension, specified as a row vector of integers.

If mu is an array, then the specified dimensions sz must match the dimensions of mu. The default
values of sz are the dimensions of mu.

• If you specify a single value [sz1], then r is a square matrix of size sz1-by-sz1.
• If the size of any dimension is 0 or negative, then r is an empty array.
• Beyond the second dimension, exprnd ignores trailing dimensions with a size of 1. For example,

exprnd(4,[3 1 1 1]) produces a 3-by-1 vector of random numbers from the distribution with
mean 4.

Example: [2 4]
Data Types: single | double

Output Arguments
r — Exponential random numbers
nonnegative scalar value | array of nonnegative scalar values

Exponential random numbers, returned as a nonnegative scalar value or an array of nonnegative
scalar values with the dimensions specified by sz1,...,szN or sz. Each element in r is the random
number generated from the distribution specified by the corresponding element in mu.

Alternative Functionality
• exprnd is a function specific to the exponential distribution. Statistics and Machine Learning

Toolbox also offers the generic function random, which supports various probability distributions.
To use random, create an ExponentialDistribution probability distribution object and pass
the object as an input argument or specify the probability distribution name and its parameters.
Note that the distribution-specific function exprnd is faster than the generic function random.

• To generate random numbers interactively, use randtool, a user interface for random number
generation.

Version History
Introduced before R2006a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

The generated code can return a different sequence of numbers from the sequence returned by
MATLAB if either of the following is true:
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• The output is nonscalar.
• An input parameter is invalid for the distribution.

For more information on code generation, see “Introduction to Code Generation” on page 34-2 and
“General Code Generation Workflow” on page 34-5.

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

This function fully supports GPU arrays. For more information, see “Run MATLAB Functions on a
GPU” (Parallel Computing Toolbox).

See Also
ExponentialDistribution | random | expcdf | exppdf | expstat | expfit | explike | expinv

Topics
“Exponential Distribution” on page B-34
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expstat
Exponential mean and variance

Syntax
[m,v] = expstat(mu)

Description
[m,v] = expstat(mu) returns the mean of and variance for the exponential distribution with
parameters mu. mu can be a vectors, matrix, or multidimensional array. The mean of the exponential
distribution is µ, and the variance is µ2.

Examples
[m,v] = expstat([1 10 100 1000])
m =
      1     10     100     1000
v =
      1     100    10000   1000000

Version History
Introduced before R2006a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

This function fully supports GPU arrays. For more information, see “Run MATLAB Functions on a
GPU” (Parallel Computing Toolbox).

See Also
expinv | expcdf | exppdf | expstat | expfit | explike | exprnd

Topics
“Exponential Distribution” on page B-34
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factoran
Factor analysis

Syntax
lambda = factoran(X,m)
[lambda,psi] = factoran(X,m)
[lambda,psi,T] = factoran(X,m)
[lambda,psi,T,stats] = factoran(X,m)
[lambda,psi,T,stats,F] = factoran(X,m)
___  = factoran(X,m,Name,Value)

Description
factoran computes the maximum likelihood estimate (MLE) of the factor loadings matrix Λ in the
factor analysis model

x = μ + Λf + e

where x is a vector of observed variables, μ is a constant vector of means, Λ is a constant d-by-m
matrix of factor loadings, f is a vector of independent, standardized common factors, and e is a vector
of independent specific factors. x, μ, and e each has length d. f has length m.

Alternatively, the factor analysis model can be specified as

cov(x) = ΛΛT + Ψ

where Ψ = cov(e) is a d-by-d diagonal matrix of specific variances.

For the uses of factoran and its relation to pca, see “Perform Factor Analysis on Exam Grades” on
page 16-177.

lambda = factoran(X,m) returns the factor loadings matrix lambda for the data matrix X with m
common factors.

[lambda,psi] = factoran(X,m) also returns maximum likelihood estimates of the specific
variances.

[lambda,psi,T] = factoran(X,m) also returns the m-by-m factor loadings rotation matrix T.

[lambda,psi,T,stats] = factoran(X,m) also returns the structure stats containing
information relating to the null hypothesis H0 that the number of common factors is m.

[lambda,psi,T,stats,F] = factoran(X,m) also returns predictions of the common factors
(factor scores).

___  = factoran(X,m,Name,Value) modifies the model fit and outputs using one or more name-
value pair arguments, for any output arguments in the previous syntaxes. For example, you can
specify that the X data is a covariance matrix.
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Examples

Factor Analysis of Artificial Data

Create some pseudorandom raw data.

rng default % For reproducibility
n = 100;
X1 = 5 + 3*rand(n,1); % Factor 1
X2 = 20 - 5*rand(n,1); % Factor 2

Create six data vectors from the raw data, and add random noise.

Y1 = 2*X1 + 3*X2 + randn(n,1);
Y2 = 4*X1 + X2 + 2*randn(n,1);
Y3 = X1 - X2 + 3*randn(n,1);
Y4 = -2*X1 + 4*X2 + 4*randn(n,1);
Y5 = 3*(X1 + X2) + 5*randn(n,1);
Y6 = X1 - X2/2 + 6*randn(n,1);

Create a data matrix from the data vectors.

X = [Y1,Y2,Y3,Y4,Y5,Y6];

Extract the two factors from the noisy data matrix X using factoran. Display the outputs.

m = 2;
[lambda,psi,T,stats,F] = factoran(X,m);
disp(lambda)

    0.8666    0.4828
    0.8688   -0.0998
   -0.0131   -0.5412
    0.2150    0.8458
    0.7040    0.2678
   -0.0806   -0.2883

disp(psi)

    0.0159
    0.2352
    0.7070
    0.2385
    0.4327
    0.9104

disp(T)

    0.8728    0.4880
    0.4880   -0.8728

disp(stats)

    loglike: -0.0531
        dfe: 4
      chisq: 5.0335
          p: 0.2839

disp(F(1:10,:))
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    1.8845   -0.6568
   -0.1714   -0.8113
   -1.0534    2.0743
    1.0390   -1.1784
    0.4309    0.9907
   -1.1823    0.6570
   -0.2129    1.1898
   -0.0844   -0.7421
    0.5854   -1.1379
    0.8279   -1.9624

View the correlation matrix of the data.

corrX = corr(X)

corrX = 6×6

    1.0000    0.7047   -0.2710    0.5947    0.7391   -0.2126
    0.7047    1.0000    0.0203    0.1032    0.5876    0.0289
   -0.2710    0.0203    1.0000   -0.4793   -0.1495    0.1450
    0.5947    0.1032   -0.4793    1.0000    0.3752   -0.2134
    0.7391    0.5876   -0.1495    0.3752    1.0000   -0.2030
   -0.2126    0.0289    0.1450   -0.2134   -0.2030    1.0000

Compare corrX to its corresponding values returned by factoran, lambda*lambda' +
diag(psi).

C0 = lambda*lambda' + diag(psi)

C0 = 6×6

    1.0000    0.7047   -0.2726    0.5946    0.7394   -0.2091
    0.7047    1.0000    0.0426    0.1023    0.5849   -0.0413
   -0.2726    0.0426    1.0000   -0.4605   -0.1542    0.1571
    0.5946    0.1023   -0.4605    1.0000    0.3779   -0.2611
    0.7394    0.5849   -0.1542    0.3779    1.0000   -0.1340
   -0.2091   -0.0413    0.1571   -0.2611   -0.1340    1.0000

factoran obtains lambda and psi that correspond closely to the correlation matrix of the original
data.

View the results without using rotation.

[lambda,psi,T,stats,F] = factoran(X,m,'Rotate','none');
disp(lambda)

    0.9920    0.0015
    0.7096    0.5111
   -0.2755    0.4659
    0.6004   -0.6333
    0.7452    0.1098
   -0.2111    0.2123

disp(psi)

    0.0159
    0.2352
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    0.7070
    0.2385
    0.4327
    0.9104

disp(T)

     1     0
     0     1

disp(stats)

    loglike: -0.0531
        dfe: 4
      chisq: 5.0335
          p: 0.2839

disp(F(1:10,:))

    1.3243    1.4929
   -0.5456    0.6245
    0.0928   -2.3246
    0.3318    1.5356
    0.8596   -0.6544
   -0.7114   -1.1504
    0.3947   -1.1424
   -0.4358    0.6065
   -0.0444    1.2789
   -0.2350    2.1169

Compute the factors using only the covariance matrix of X.

X2 = cov(X);
[lambda2,psi2,T2,stats2] = factoran(X2,m,'Xtype','covariance','Nobs',n)

lambda2 = 6×2

    0.8666    0.4828
    0.8688   -0.0998
   -0.0131   -0.5412
    0.2150    0.8458
    0.7040    0.2678
   -0.0806   -0.2883

psi2 = 6×1

    0.0159
    0.2352
    0.7070
    0.2385
    0.4327
    0.9104

T2 = 2×2

    0.8728    0.4880
    0.4880   -0.8728
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stats2 = struct with fields:
    loglike: -0.0531
        dfe: 4
      chisq: 5.0335
          p: 0.2839

The results are the same as with the raw data, except factoran cannot compute the factor scores
matrix F for covariance data.

Estimate and Plot Factor Loadings

Load the sample data.

load carbig

Define the variable matrix.

X = [Acceleration Displacement Horsepower MPG Weight]; 
X = X(all(~isnan(X),2),:);

Estimate the factor loadings using a minimum mean squared error prediction for a factor analysis
with two common factors.

[Lambda,Psi,T,stats,F] = factoran(X,2,'Scores','regression');
inv(T'*T);   % Estimated correlation matrix of F, == eye(2)
Lambda*Lambda' + diag(Psi); % Estimated correlation matrix
Lambda*inv(T);              % Unrotate the loadings
F*T';                       % Unrotate the factor scores

Create a biplot of two factors.

biplot(Lambda,'LineWidth',2,'MarkerSize',20)
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Estimate the factor loadings using the covariance (or correlation) matrix.

[Lambda,Psi,T] = factoran(cov(X),2,'Xtype','covariance')

Lambda = 5×2

   -0.2432   -0.8500
    0.8773    0.3871
    0.7618    0.5930
   -0.7978   -0.2786
    0.9692    0.2129

Psi = 5×1

    0.2184
    0.0804
    0.0680
    0.2859
    0.0152

T = 2×2

    0.9476    0.3195
    0.3195   -0.9476
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(You could instead use corrcoef(X) instead of cov(X) to create the data for factoran.) Although
the estimates are the same, the use of a covariance matrix rather than raw data prevents you from
requesting the scores or significance level.

Use promax rotation.

[Lambda,Psi,T,stats,F] = factoran(X,2,'Rotate','promax','power',4);
inv(T'*T)                            % Estimated correlation of F, no longer eye(2)

ans = 2×2

    1.0000   -0.6391
   -0.6391    1.0000

Lambda*inv(T'*T)*Lambda'+diag(Psi)   % Estimated correlation of X

ans = 5×5

    1.0000   -0.5424   -0.6893    0.4309   -0.4167
   -0.5424    1.0000    0.8979   -0.8078    0.9328
   -0.6893    0.8979    1.0000   -0.7730    0.8647
    0.4309   -0.8078   -0.7730    1.0000   -0.8326
   -0.4167    0.9328    0.8647   -0.8326    1.0000

Plot the unrotated variables with oblique axes superimposed.

invT = inv(T);
Lambda0 = Lambda*invT;
figure()
line([-invT(1,1) invT(1,1) NaN -invT(2,1) invT(2,1)], ...
     [-invT(1,2) invT(1,2) NaN -invT(2,2) invT(2,2)], ...
     'Color','r','LineWidth',2)
grid on
hold on
biplot(Lambda0,'LineWidth',2,'MarkerSize',20)       
xlabel('Loadings for unrotated Factor 1')
ylabel('Loadings for unrotated Factor 2')
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Plot the rotated variables against the oblique axes.

figure()
biplot(Lambda,'LineWidth',2,'MarkerSize',20)
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Input Arguments
X — Data
matrix

Data, specified as an n-by-d matrix, where each row is an observation of d variables.
Data Types: double

m — Number of common factors
positive integer

Number of common factors, specified as a positive integer.
Example: 3
Data Types: double

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
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Example: lambda = factoran(X,m,'Start',10,'Scores','Thomson') specifies to use a
starting point for specific variances of 10 and the Thomson method for predicting factor scores.

Xtype — Input data type
'data' (default) | 'covariance'

Input data type of X, specified as the comma-separated pair consisting of 'Xtype' and one of the
following:

• 'data' — X is raw data.
• 'covariance' — X is a positive definite covariance or correlation matrix.

Example: 'Xtype','covariance'
Data Types: char | string

Scores — Method for predicting factor scores
'wls' or the equivalent 'Bartlett' (default) | 'regression' or the equivalent 'Thomson'

Method for predicting factor scores, specified as the comma-separated pair consisting of 'Scores'
and one of the following:

• 'wls' or the equivalent 'Bartlett' — Weighted least-squares estimate treating F as fixed
• 'regression' or the equivalent 'Thomson' — Minimum mean squared error prediction that is

equivalent to a ridge regression

Example: 'Scores','regression'
Data Types: char | string

Start — Starting point for specific variances psi in maximum likelihood optimization
'Rsquared' (default) | 'random' | positive integer | matrix with d rows

Starting point for the specific variances psi in the maximum likelihood optimization, specified as the
comma-separated pair consisting of 'Start' and one of the following:

• 'Rsquared' — Chooses the starting vector as a scale factor times diag(inv(corrcoef(X)))
(default). For examples, see Jöreskog [2].

• 'random' — Chooses d uniformly distributed values on the interval [0,1].
• Positive integer — Performs the given number of maximum likelihood fits, each initialized in the

same way as 'random'. factoran returns the fit with the highest likelihood.
• Matrix with d rows — Performs one maximum likelihood fit for each column of the specified

matrix. factoran initializes the ith optimization with the values from the ith column.

Example: 'Start',5
Data Types: double | char | string

Rotate — Method used to rotate factor loadings and scores
'varimax' (default) | 'none' | 'quartimax' | 'equamax' | 'parsimax' | 'orthomax' |
'promax' | 'procrustes' | 'pattern' | function handle

Method used to rotate factor loadings and scores, specified as the comma-separated pair consisting of
'Rotate' and one of the values in the following table. You can control the rotation by specifying
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additional name-value pair arguments of the rotatefactors function, as described in the table. For
details, see rotatefactors.

Value Description
'none' Performs no rotation
'equamax' Special case of the 'orthomax' rotation. Use the 'normalize',

'reltol', and 'maxit' arguments to control the details of the
rotation.

'orthomax' Orthogonal rotation that maximizes a criterion based on the
variance of the loadings. Use the 'coeff', 'normalize',
'reltol', and 'maxit' arguments to control the details of the
rotation.

'parsimax' Special case of the orthomax rotation. Use the 'normalize',
'reltol', and 'maxit' arguments to control the details of the
rotation.

'pattern' Performs either an oblique rotation (the default) or an orthogonal
rotation to best match a specified pattern matrix. Use the 'type'
argument to choose the type of rotation. Use the 'target'
argument to specify the pattern matrix.

'procrustes' Performs either an oblique rotation (the default) or an orthogonal
rotation to best match a specified target matrix in the least-squares
sense. Use the 'type' argument to choose the type of rotation. Use
the 'target' argument to specify the target matrix.

'promax' Performs an oblique procrustes rotation to a target matrix
determined by factoran as a function of an orthomax solution. Use
the 'power' argument to specify the exponent for creating the
target matrix. Because 'promax' uses 'orthomax' internally, you
can also specify the arguments that apply to 'orthomax'.

'quartimax' Special case of the 'orthomax' rotation. Use the 'normalize',
'reltol', and 'maxit' arguments to control the details of the
rotation.

'varimax' Special case of the 'orthomax' rotation (default). Use the
'normalize', 'reltol', and 'maxit' arguments to control the
details of the rotation.

function handle Function handle to a rotation function of the form

[B,T] = myrotation(A,...)

where A is a d-by-m matrix of unrotated factor loadings, B is a d-by-m
matrix of rotated loadings, and T is the corresponding m-by-m
rotation matrix.

Use the factoran argument 'UserArgs' to pass additional
arguments to this rotation function. See “User-Defined Rotation
Function” on page 35-1675.

Example: [lambda,psi,T] = factoran(X,m,'Rotate','promax','power',5,'maxit',100)
Data Types: char | string | function_handle

35 Functions

35-1672



Delta — Lower bound for psi during maximum likelihood optimization
0.005 (default) | scalar between 0 and 1

Lower bound for the psi argument during maximum likelihood optimization, specified as the comma-
separated pair consisting of 'Delta' and a scalar value between 0 and 1 (0 < Delta < 1).
Example: 0.02
Data Types: double

OptimOpts — Options for maximum likelihood optimization
[] (default) | structure created by statset

Options for the maximum likelihood optimization, specified as the comma-separated pair consisting of
'OptimOpts' and a structure created by statset. You can enter statset('factoran') for the
list of options, which are also described in the following table.

Field Name (statset
argument)

Meaning Value {default}

'Display' Amount of information displayed
by the algorithm

• {'off'} — Displays no
information

• 'final' — Displays the
final output

• 'iter' — Displays iterative
output to the command
window for some functions;
otherwise displays the final
output

MaxFunEvals Maximum number of objective
function evaluations allowed

Positive integer, {400}

MaxIter Maximum number of iterations
allowed

Positive integer, {100}

TolFun Termination tolerance for the
objective function value. The
solver stops when successive
function values are less than
TolFun apart.

Positive scalar, {1e-8}

TolX Termination tolerance for the
parameters. The solver stops
when successive parameter
values are less than TolX apart.

Positive scalar, {1e-8}

Example: statset('Display','iter')
Data Types: struct

Nobs — Number of observations used to estimate X
positive integer

Number of observations used to estimate X, specified as the comma-separated pair consisting of
'Nobs' and a positive integer. Nobs applies only when Xtype is 'covariance'. Specifying 'Nobs'
enables you to obtain the stats output structure fields chisq and p.
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Example: 50
Data Types: double

Output Arguments
lambda — Factor loadings
matrix

Factor loadings, returned as a d-by-m matrix. d is the number of columns of the data matrix X, and m
is the second input argument of factoran.

The (i,j)th element of lambda is the coefficient, or loading, of the jth factor for the ith variable.
By default, factoran calls the function rotatefactors to rotate the estimated factor loadings
using the 'varimax' option. For information about rotation, see “Rotation of Factor Loadings and
Scores” on page 35-1675.

psi — Specific variances
vector

Specific variances, returned as a d-by-1 vector. d is the number of columns of the data matrix X. The
entries of psi are maximum likelihood estimates.

T — Factor loadings rotation
matrix

Factor loadings rotation, returned as an m-by-m matrix. m is the second input argument of factoran.
For information about rotation, see “Rotation of Factor Loadings and Scores” on page 35-1675.

stats — Information about common factors
structure

Information about the common factors, returned as a structure. stats contains information relating
to the null hypothesis H0 that the number of common factors is m.

stats contains the following fields.

Field Description
loglike Maximized loglikelihood value
dfe Error degrees of freedom = ((d-m)^2 - (d+m))/2
chisq Approximate chi-squared statistic for the null hypothesis
p Right-tail significance level for the null hypothesis

factoran does not compute the chisq and p fields unless dfe is positive and all the specific
variance estimates in psi are positive (see “Heywood Case” on page 35-1675). If X is a covariance
matrix and you want factoran to compute the chisq and p fields, then you must also specify the
'Nobs' name-value pair argument.

F — Factor scores
matrix

Factor scores, also called predictions of the common factors, returned as an n-by-m matrix. n is the
number of rows in the data matrix X, and m is the second input argument of factoran.
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Note If X is a covariance matrix (Xtype = 'covariance'), factoran cannot compute F.

factoran rotates F using the same criterion as for lambda. For information about rotation, see
“Rotation of Factor Loadings and Scores” on page 35-1675.

More About
Heywood Case

If elements of psi are equal to the value of the Delta parameter (that is, they are essentially zero),
the fit is known as a Heywood case, and interpretation of the resulting estimates is problematic. In
particular, there can be multiple local maxima of the likelihood, each with different estimates of the
loadings and the specific variances. Heywood cases can indicate overfitting (m is too large), but can
also be the result of underfitting.

Rotation of Factor Loadings and Scores

Unless you explicitly specify no rotation using the 'Rotate' name-value pair argument, factoran
rotates the estimated factor loadings lambda and the factor scores F. The output matrix T is used to
rotate the loadings, that is, lambda = lambda0*T, where lambda0 is the initial (unrotated) MLE of
the loadings. T is an orthogonal matrix for orthogonal rotations, and the identity matrix for no
rotation. The inverse of T is known as the primary axis rotation matrix, whereas T itself is related to
the reference axis rotation matrix. For orthogonal rotations, the two are identical.

factoran computes factor scores that have been rotated by inv(T'), that is, F = F0 * inv(T'),
where F0 contains the unrotated predictions. The estimated covariance of F is inv(T'*T), which is
the identity matrix for orthogonal or no rotation. Rotation of factor loadings and scores is an attempt
to create a structure that is easier to interpret in the loadings matrix after maximum likelihood
estimation.

User-Defined Rotation Function

The syntax for passing additional arguments to a user-defined rotation function is:

[Lambda,Psi,T] = ...
     factoran(X,2,'Rotate',@myrotation,'UserArgs',1,'two');

Version History
Introduced before R2006a

References
[1] Harman, Harry Horace. Modern Factor Analysis. 3rd Ed. Chicago: University of Chicago Press,

1976.

[2] Jöreskog, K. G. “Some Contributions to Maximum Likelihood Factor Analysis.” Psychometrika 32,
no. 4 (December 1967): 443–82. https://doi.org/10.1007/BF02289658

[3] Lawley, D. N., and A. E. Maxwell. Factor Analysis as a Statistical Method. 2nd Ed. New York:
American Elsevier Publishing Co., 1971.
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Extended Capabilities
Tall Arrays
Calculate with arrays that have more rows than fit in memory.

pcacov and factoran do not work directly on tall arrays. Instead, use C = gather(cov(X)) to
compute the covariance matrix of a tall array. Then, you can use pcacov or factoran to work on the
in-memory covariance matrix. Alternatively, you can use pca directly on a tall array.

For more information, see “Tall Arrays for Out-of-Memory Data”.

See Also
biplot | pca | procrustes | pcacov | rotatefactors | statset

Topics
“Perform Factor Analysis on Exam Grades” on page 16-177
“Analyze Stock Prices Using Factor Analysis” on page 16-77
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fairnessMetrics
Bias and group metrics for a data set or classification model

Description
fairnessMetrics computes fairness metrics (bias and group metrics) for a data set or binary
classification model with respect to sensitive attributes. The data-level evaluation examines binary,
true labels of the data. The model-level evaluation examines the predicted labels returned by the
binary classification model, using both true labels and predicted labels.

Bias metrics measure differences across groups, and group metrics contain information within the
group. You can use the metrics to determine if your data or model contains bias toward a group
within each sensitive attribute.

After creating a fairnessMetrics object, use the report function to generate a fairness metrics
report or use the plot function to create a bar graph of the metrics.

Creation

Syntax
evaluator = fairnessMetrics(SensitiveAttributes,Y)
evaluator = fairnessMetrics(Tbl,Y)
evaluator = fairnessMetrics(Tbl,ResponseName)
evaluator = fairnessMetrics( ___ ,SensitiveAttributeNames=
sensitiveAttributeNames)
evaluator = fairnessMetrics( ___ ,Predictions=predictions)
evaluator = fairnessMetrics( ___ ,Name=Value)

Description

evaluator = fairnessMetrics(SensitiveAttributes,Y) computes fairness metrics for the
true, binary class labels in the vector Y with respect to the sensitive attributes in the
SensitiveAttributes matrix. The fairnessMetrics function returns the fairnessMetrics
object evaluator, which stores bias metrics and group metrics in the BiasMetrics and
GroupMetrics properties, respectively.

evaluator = fairnessMetrics(Tbl,Y) computes fairness metrics using the sensitive attributes
in the table Tbl and the class labels in the vector Y.

evaluator = fairnessMetrics(Tbl,ResponseName) computes fairness metrics using the
sensitive attributes and response variable in the table Tbl. The input argument ResponseName
specifies the name of the variable in Tbl that contains the class labels.

evaluator = fairnessMetrics( ___ ,SensitiveAttributeNames=
sensitiveAttributeNames) specifies a subset of the variables in Tbl (whose names correspond to
sensitiveAttributeNames) as sensitive attributes, or assigns names to the sensitive attributes in
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sensitiveAttributeNames. You can specify this argument in addition to any of the input argument
combinations in the previous syntaxes.

evaluator = fairnessMetrics( ___ ,Predictions=predictions) computes fairness metrics
for a binary classification model if you specify predicted labels by using the predictions argument.
fairnessMetrics uses both true labels and predicted labels for the model-level evaluation.

evaluator = fairnessMetrics( ___ ,Name=Value) specifies additional options using one or
more name-value arguments. For example, specify
SensitiveAttributeNames="age",ReferenceGroup=30 to compute bias metrics for each group
in the age variable with respect to the reference age group 30.

Input Arguments

SensitiveAttributes — Sensitive attributes
vector | matrix

Sensitive attributes, specified as a vector or matrix. If you specify SensitiveAttributes as a
matrix, each row of SensitiveAttributes corresponds to one observation, and each column
corresponds to one sensitive attribute.

You can use the sensitiveAttributeNames argument to assign names to the variables in
SensitiveAttributes.
Data Types: single | double | logical | char | string | categorical

Y — True, binary class labels
categorical array | character array | string array | logical vector | numeric vector | cell array of
character vectors

True, binary class labels, specified as a categorical, character, or string array; a logical or numeric
vector; or a cell array of character vectors.

• fairnessMetrics supports only binary classification. Y must contain exactly two distinct
classes.

• You can specify one of the two classes as a positive class by using the PositiveClass name-
value argument.

• The length of Y must be equal to the number of observations in SensitiveAttributes or Tbl.
• If Y is a character array, then each label must correspond to one row of the array.

Data Types: single | double | logical | char | string | cell | categorical

Tbl — Sample data
table

Sample data, specified as a table. Each row of Tbl corresponds to one observation, and each column
corresponds to one sensitive attribute. Multicolumn variables and cell arrays other than cell arrays of
character vectors are not allowed.

Optionally, Tbl can contain columns for the true class labels, predicted class labels, and observation
weights.

• You must specify the true class label variable using ResponseName, the predicted class label
variable using Predictions, and the observation weight variable using Weights.
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fairnessMetrics uses the remaining variables as sensitive attributes. To use a subset of the
remaining variables in Tbl as sensitive attributes, specify the variables by using
sensitiveAttributeNames.

• The true class label variable must be a categorical, character, or string array, a logical or numeric
vector, or a cell array of character vectors.

• fairnessMetrics supports only binary classification. The true class label variable must
contain exactly two distinct classes.

• You can specify one of the two classes as a positive class by using the PositiveClass name-
value argument.

• The column for the weights must be a numeric vector.

If Tbl does not contain the true class label variable, then specify the variable by using Y. The length
of the response variable Y and the number of rows in Tbl must be equal. To use a subset of the
variables in Tbl as sensitive attributes, specify the variables by using sensitiveAttributeNames.
Data Types: table

ResponseName — Name of true class label variable
name of variable in Tbl

Name of the true class label variable, specified as a character vector or string scalar containing the
name of the response variable in Tbl.
Example: "trueLabel" indicates that the trueLabel variable in Tbl (Tbl.trueLabel) is the true
class label variable.
Data Types: char | string

sensitiveAttributeNames — Names of sensitive attribute variables
string array of unique names | cell array of unique character vectors

Names of the sensitive attribute variables, specified as a string array of unique names or cell array of
unique character vectors. The functionality of sensitiveAttributeNames depends on the way you
supply the sample data.

• If you supply SensitiveAttributes and Y, then you can use sensitiveAttributeNames to
assign names to the variables in SensitiveAttributes.

• The order of the names in sensitiveAttributeNames must correspond to the column order
of SensitiveAttributes. That is, sensitiveAttributeNames{1} is the name of
SensitiveAttributes(:,1), sensitiveAttributeNames{2} is the name of
SensitiveAttributes(:,2), and so on. Also, size(SensitiveAttributes,2) and
numel(sensitiveAttributeNames) must be equal.

• By default, sensitiveAttributeNames is {'x1','x2',...}.
• If you supply Tbl, then you can use sensitiveAttributeNames to specify the variables to use

as sensitive attributes. That is, fairnessMetrics uses only the variables in
sensitiveAttributeNames to compute fairness metrics.

• sensitiveAttributeNames must be a subset of Tbl.Properties.VariableNames and
cannot include the name of a class label variable or observation weight variable.

• By default, sensitiveAttributeNames is a set of all variable names in Tbl, except the
variables specified by ResponseName, Predictions, and Weights.
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Example: SensitiveAttributeNames=["age","marital_status"]
Data Types: string | cell

predictions — Predicted class labels
[] (default) | name of variable in Tbl | vector

Predicted class labels (model predictions), specified as [], a vector, or the name of a variable in Tbl.

• [] — fairnessMetrics computes fairness metrics for the true class label variable (Y or the
ResponseName variable in Tbl).

• Name of a variable in Tbl — If you specify the input data as a table Tbl, then predictions can
be the name of a variable in Tbl that contains predicted class labels. In this case, you must
specify predictions as a character vector or string scalar. For example, if the class label vector
Prediction is stored in Tbl.Pred, then specify predictions as "Pred".

• Vector — The values in predictions must be members of the true class label variable, and
predictions must have the same data type as the true class label variable. The length of
predictions must be equal to the number of samples in Y or Tbl.

Note If you specify predicted labels, fairnessMetrics computes fairness metrics for the binary
classification model that returned the predicted labels.

Example: Predictions="Pred"
Data Types: single | double | logical | char | string | cell | categorical

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.
Example: Predictions="P",Weights="W" specifies the variables P and W in the table Tbl as the
model predictions and observation weights, respectively.

PositiveClass — Label of positive class
scalar

Label of the positive class, specified as a scalar. PositiveClass must have the same data type as
the true class label variable.

The default PositiveClass value is the second class of the binary labels, according to the order
returned by the unique function with the "sorted" option specified for the true class label variable.
Example: PositiveClass=categorical(">50K")
Data Types: categorical | char | string | logical | single | double | cell

ReferenceGroup — Reference group
vector containing mode of each sensitive attribute (default) | numeric vector | string array | cell array

Reference group for each sensitive attribute, specified as a numeric vector, string array, or cell array.
Each element in the ReferenceGroup value must have the same data type as the corresponding
sensitive attribute. If the sensitive attributes have mixed types, specify ReferenceGroup as a cell
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array. The number of elements in the ReferenceGroup value must match the number of sensitive
attributes.

The default ReferenceGroup value is a vector containing the mode of each sensitive attribute. The
mode is the most frequently occurring value without taking into account observation weights.
Example: ReferenceGroup={30,categorical("Married-civ-spouse")}
Data Types: single | double | string | cell

Weights — Observation weights
vector of 1s (default) | vector of scalar values | name of variable in Tbl

Observation weights, specified as a vector of scalar values or the name of a variable in Tbl. The
software weights the observations in each row of SensitiveAttributes or Tbl with the
corresponding value in Weights. The size of Weights must equal the number of rows in
SensitiveAttributes or Tbl.

If you specify the input data as a table Tbl, then Weights can be the name of a variable in Tbl that
contains a numeric vector. In this case, you must specify Weights as a character vector or string
scalar. For example, if the weights vector W is stored in Tbl.W, then specify Weights as "W".
Example: Weights="W"
Data Types: single | double | char | string

Properties
BiasMetrics — Bias metrics
table

This property is read-only.

Bias metrics, specified as a table.

fairnessMetrics computes the bias metrics for each group in each sensitive attribute, compared
to the reference group of the attribute.

Each row of BiasMetrics contains the bias metrics for a group in a sensitive attribute. The first and
second variables in BiasMetrics correspond to the sensitive attribute name
(SensitiveAttributeNames column) and the group name (Groups column), respectively. The rest
of the variables correspond to the bias metrics in this table.

Metric Name Description Evaluation Type
StatisticalParityDiffere
nce

Statistical parity difference
(SPD)

Data-level or model-level
evaluation

DisparateImpact Disparate impact (DI) Data-level or model-level
evaluation

EqualOpportunityDifferen
ce

Equal opportunity difference
(EOD)

Model-level evaluation

AverageAbsoluteOddsDiffe
rence

Average absolute odds
difference (AAOD)

Model-level evaluation
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The supported bias metrics depend on whether you specify predicted labels by using the
Predictions argument when you create a fairnessMetrics object.

• Data-level evaluation — If you specify true labels and do not specify predicted labels, the
BiasMetrics property contains only StatisticalParityDifference and
DisparateImpact.

• Model-level evaluation — If you specify both true labels and predicted labels, the BiasMetrics
property contains all metrics listed in the table.

For definitions of the bias metrics, see “Bias Metrics” on page 35-1697.
Data Types: table

GroupMetrics — Group metrics
table

This property is read-only.

Group metrics, specified as a table.

The fairnessMetrics function computes the group metrics for each group in each sensitive
attribute. Note that the function does not use the observation weights (specified by the Weights
name-value argument) to count the number of samples in each group (GroupCount value). The
function uses Weights to compute the other metrics.

Each row of GroupMetrics contains the group metrics for a group in a sensitive attribute. The first
and second variables in GroupMetrics correspond to the sensitive attribute name
(SensitiveAttributeNames column) and the group name (Groups column), respectively. The rest
of the variables correspond to the group metrics in this table.

Metric Name Description Evaluation Type
GroupCount Group count, or number of

samples in the group
Data-level or model-level
evaluation

GroupSizeRatio Group count divided by the total
number of samples

Data-level or model-level
evaluation

TruePositives Number of true positives (TP) Model-level evaluation
TrueNegatives Number of true negatives (TN) Model-level evaluation
FalsePositives Number of false positives (FP) Model-level evaluation
FalseNegatives Number of false negatives (FN) Model-level evaluation
TruePositiveRate True positive rate (TPR), also

known as recall or sensitivity,
TP/(TP+FN)

Model-level evaluation

TrueNegativeRate True negative rate (TNR), or
specificity, TN/(TN+FP)

Model-level evaluation

FalsePositiveRate False positive rate (FPR), also
known as fallout or 1-specificity,
FP/(TN+FP)

Model-level evaluation

FalseNegativeRate False negative rate (FNR), or
miss rate, FN/(TP+FN)

Model-level evaluation
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Metric Name Description Evaluation Type
FalseDiscoveryRate False discovery rate (FDR),

FP/(TP+FP)
Model-level evaluation

FalseOmissionRate False omission rate (FOR),
FN/(TN+FN)

Model-level evaluation

PositivePredictiveValue Positive predictive value (PPV),
or precision, TP/(TP+FP)

Model-level evaluation

NegativePredictiveValue Negative predictive value
(NPV), TN/(TN+FN)

Model-level evaluation

RateOfPositivePrediction
s

Rate of positive predictions
(RPP), (TP+FP)/(TP+FN+FP
+TN)

Model-level evaluation

RateOfNegativePrediction
s

Rate of negative predictions
(RNP), (TN+FN)/(TP+FN+FP
+TN)

Model-level evaluation

Accuracy Accuracy, (TP+TN)/(TP+FN+FP
+TN)

Model-level evaluation

The supported group metrics depend on whether you specify predicted labels by using the
Predictions argument when you create a fairnessMetrics object.

• Data-level evaluation — If you specify true labels and do not specify predicted labels, the
GroupMetrics property contains only GroupCount and GroupSizeRatio.

• Model-level evaluation — If you specify both true labels and predicted labels, the GroupMetrics
property contains all metrics listed in the table.

Data Types: table

PositiveClass — Label of positive class
scalar

This property is read-only.

Label of the positive class, specified as a scalar. (The software treats a string scalar as a character
vector.)

The PositiveClass name-value argument sets this property.
Data Types: categorical | char | logical | single | double | cell

ReferenceGroup — Reference group
numeric vector | cell array

This property is read-only.

Reference group, specified as a numeric vector or cell array. (The software treats string arrays as cell
arrays of character vectors.)

The ReferenceGroup name-value argument sets this property.
Data Types: single | double | cell
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ResponseName — Name of true class label variable
character vector

This property is read-only.

Name of the true class label variable, specified as a character vector containing the name of the
response variable. (The software treats a string scalar as a character vector.)

• If you specify the ResponseName argument, then the specified value determines this property.
• If you specify Y, then the property value is 'Y'.

Data Types: char

SensitiveAttributeNames — Names of sensitive attribute variables
cell array of unique character vectors

This property is read-only.

Names of the sensitive attribute variables, specified as a cell array of unique character vectors. (The
software treats string arrays as cell arrays of character vectors.)

The sensitiveAttributeNames argument sets this property.
Data Types: cell

Object Functions
report Generate fairness metrics report
plot Plot bar graph of fairness metric

Examples

Evaluate Fairness of Data

Compute fairness metrics for true labels with respect to sensitive attributes by creating a
fairnessMetrics object. Then, create a table of fairness metrics by using the report function, and
plot bar graphs of the metrics by using the plot function.

Load the sample data census1994, which contains the training data adultdata and the test data
adulttest. The data sets consist of demographic information from the US Census Bureau that can
be used to predict whether an individual makes over $50,000 per year. Preview the first few rows of
the training data set.

load census1994
head(adultdata)

    age       workClass          fnlwgt      education    education_num       marital_status           occupation        relationship     race      sex      capital_gain    capital_loss    hours_per_week    native_country    salary
    ___    ________________    __________    _________    _____________    _____________________    _________________    _____________    _____    ______    ____________    ____________    ______________    ______________    ______

    39     State-gov                77516    Bachelors         13          Never-married            Adm-clerical         Not-in-family    White    Male          2174             0                40          United-States     <=50K 
    50     Self-emp-not-inc         83311    Bachelors         13          Married-civ-spouse       Exec-managerial      Husband          White    Male             0             0                13          United-States     <=50K 
    38     Private             2.1565e+05    HS-grad            9          Divorced                 Handlers-cleaners    Not-in-family    White    Male             0             0                40          United-States     <=50K 
    53     Private             2.3472e+05    11th               7          Married-civ-spouse       Handlers-cleaners    Husband          Black    Male             0             0                40          United-States     <=50K 
    28     Private             3.3841e+05    Bachelors         13          Married-civ-spouse       Prof-specialty       Wife             Black    Female           0             0                40          Cuba              <=50K 
    37     Private             2.8458e+05    Masters           14          Married-civ-spouse       Exec-managerial      Wife             White    Female           0             0                40          United-States     <=50K 
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    49     Private             1.6019e+05    9th                5          Married-spouse-absent    Other-service        Not-in-family    Black    Female           0             0                16          Jamaica           <=50K 
    52     Self-emp-not-inc    2.0964e+05    HS-grad            9          Married-civ-spouse       Exec-managerial      Husband          White    Male             0             0                45          United-States     >50K  

Each row contains the demographic information for one adult. The information includes sensitive
attributes, such as age, marital_status, relationship, race, and sex. The third column
flnwgt contains observation weights, and the last column salary shows whether a person has a
salary less than or equal to $50,000 per year (<=50K) or greater than $50,000 per year (>50K).

This example evaluates the fairness of the salary variable with respect to age. Group the age
variable into four bins.

ageGroups = ["Age<30","30<=Age<45","45<=Age<60","Age>=60"];
adultdata.age_group = discretize(adultdata.age, ...
    [min(adultdata.age) 30 45 60 max(adultdata.age)], ...
    categorical=ageGroups);

Plot the counts of individuals in each class (<=50K and >50K) by age.

figure
gc = groupcounts(adultdata,["age_group","salary"]);
bar([gc.GroupCount(1:2:end),gc.GroupCount(2:2:end)])
xticklabels(ageGroups)
xlabel("Age Group")
ylabel("Group Count")
legend(["<=50K",">50K"])
grid on
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Compute fairness metrics for the salary variable with respect to the age_group variable by using
fairnessMetrics.

evaluator = fairnessMetrics(adultdata,"salary", ...
    SensitiveAttributeNames="age_group",Weights="fnlwgt")

evaluator = 
  fairnessMetrics with properties:

    SensitiveAttributeNames: 'age_group'
             ReferenceGroup: '30<=Age<45'
               ResponseName: 'salary'
              PositiveClass: >50K
                BiasMetrics: [4x4 table]
               GroupMetrics: [4x4 table]

evaluator is a fairnessMetrics object. By default, the fairnessMetrics function selects the
majority group of the sensitive attribute (group with the largest number of individuals) as the
reference group for the attribute. Also, the fairnessMetrics function orders the labels by using
the unique function with the "sorted" option, and specifies the second class of the labels as the
positive class. In this data set, the reference group of age_group is the group 30<=Age<45, and the
positive class is >50K. evaluator stores bias metrics and group metrics in the BiasMetrics and
GroupMetrics properties, respectively. Display the properties.

evaluator.BiasMetrics

ans=4×4 table
    SensitiveAttributeNames      Groups      StatisticalParityDifference    DisparateImpact
    _______________________    __________    ___________________________    _______________

           age_group           Age<30                 -0.24365                  0.17661    
           age_group           30<=Age<45                    0                        1    
           age_group           45<=Age<60             0.098497                   1.3329    
           age_group           Age>=60                -0.05041                  0.82965    

evaluator.GroupMetrics

ans=4×4 table
    SensitiveAttributeNames      Groups      GroupCount    GroupSizeRatio
    _______________________    __________    __________    ______________

           age_group           Age<30           9711           0.29824   
           age_group           30<=Age<45      12489           0.38356   
           age_group           45<=Age<60       7717             0.237   
           age_group           Age>=60          2644          0.081201   

According to the bias metrics, the salary variable is biased toward the age group 45 to 60 years and
biased against the age group less than 30 years, compared to the reference group (30<=Age<45).

You can create a table that contains both bias metrics and group metrics by using the report
function. Specify GroupMetrics as "all" to include all group metrics. You do not have to specify
the BiasMetrics name-value argument because its default value is "all".

metricsTbl = report(evaluator,GroupMetrics="all")
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metricsTbl=4×6 table
    SensitiveAttributeNames      Groups      StatisticalParityDifference    DisparateImpact    GroupCount    GroupSizeRatio
    _______________________    __________    ___________________________    _______________    __________    ______________

           age_group           Age<30                 -0.24365                  0.17661           9711           0.29824   
           age_group           30<=Age<45                    0                        1          12489           0.38356   
           age_group           45<=Age<60             0.098497                   1.3329           7717             0.237   
           age_group           Age>=60                -0.05041                  0.82965           2644          0.081201   

Visualize the bias metrics by using the plot function.

figure
t = tiledlayout(2,1);
nexttile
plot(evaluator,"spd")
xlabel("")
ylabel("")
nexttile
plot(evaluator,"di")
xlabel("")
ylabel("")
xlabel(t,"Fairness Metric Value")
ylabel(t,"Age Group")

The vertical line in each plot (x = 0 for statistical parity difference and x = 1 for disparate impact)
indicates the metric value for the reference group. If the labels do not have a bias for a target group
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compared to the reference group, the metric value for the target group is the same as the metric
value for the reference group.

Evaluate Fairness of Classifier

Compute fairness metrics for predicted labels with respect to sensitive attributes by creating a
fairnessMetrics object. Then, create a table of fairness metrics by using the report function, and
plot bar graphs of the metrics by using the plot function.

Load the sample data census1994, which contains the training data adultdata and the test data
adulttest. The data sets consist of demographic information from the US Census Bureau that can
be used to predict whether an individual makes over $50,000 per year. Preview the first few rows of
the training data set.

load census1994
head(adultdata)

    age       workClass          fnlwgt      education    education_num       marital_status           occupation        relationship     race      sex      capital_gain    capital_loss    hours_per_week    native_country    salary
    ___    ________________    __________    _________    _____________    _____________________    _________________    _____________    _____    ______    ____________    ____________    ______________    ______________    ______

    39     State-gov                77516    Bachelors         13          Never-married            Adm-clerical         Not-in-family    White    Male          2174             0                40          United-States     <=50K 
    50     Self-emp-not-inc         83311    Bachelors         13          Married-civ-spouse       Exec-managerial      Husband          White    Male             0             0                13          United-States     <=50K 
    38     Private             2.1565e+05    HS-grad            9          Divorced                 Handlers-cleaners    Not-in-family    White    Male             0             0                40          United-States     <=50K 
    53     Private             2.3472e+05    11th               7          Married-civ-spouse       Handlers-cleaners    Husband          Black    Male             0             0                40          United-States     <=50K 
    28     Private             3.3841e+05    Bachelors         13          Married-civ-spouse       Prof-specialty       Wife             Black    Female           0             0                40          Cuba              <=50K 
    37     Private             2.8458e+05    Masters           14          Married-civ-spouse       Exec-managerial      Wife             White    Female           0             0                40          United-States     <=50K 
    49     Private             1.6019e+05    9th                5          Married-spouse-absent    Other-service        Not-in-family    Black    Female           0             0                16          Jamaica           <=50K 
    52     Self-emp-not-inc    2.0964e+05    HS-grad            9          Married-civ-spouse       Exec-managerial      Husband          White    Male             0             0                45          United-States     >50K  

Each row contains the demographic information for one adult. The information includes sensitive
attributes, such as age, marital_status, relationship, race, and sex. The third column
flnwgt contains observation weights, and the last column salary shows whether a person has a
salary less than or equal to $50,000 per year (<=50K) or greater than $50,000 per year (>50K).

Train a classification tree using the training data set adultdata. Specify the response variable,
predictor variables, and observation weights by using the variable names in the adultdata table.

predictorNames = ["capital_gain","capital_loss","education", ...
    "education_num","hours_per_week","occupation","workClass"];
Mdl = fitctree(adultdata,"salary", ...
    PredictorNames=predictorNames,Weights="fnlwgt");

Predict the test sample labels by using the trained tree Mdl.

labels = predict(Mdl,adulttest);

This example evaluates the fairness of the predicted labels with respect to age and marital status.
Group the age variable into four bins.

ageGroups = ["Age<30","30<=Age<45","45<=Age<60","Age>=60"];
adulttest.age_group = discretize(adulttest.age, ...
    [min(adulttest.age) 30 45 60 max(adulttest.age)], ...
    categorical=ageGroups);

Plot the counts of individuals in each predicted class (<=50K and >50K) by age.
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figure
gs_age = groupcounts({adulttest.age_group,labels});
b_age = bar([gs_age(1:2:end),gs_age(2:2:end)]);
xticklabels(ageGroups)
xlabel("Age Group")
ylabel("Group Count")
legend(["<=50K",">50K"])
grid minor

Plot the counts of individuals by marital status. Display the count values near the tips of the bars if
the values are smaller than 100.

figure
gs_status = groupcounts({adulttest.marital_status,labels});
b_status = bar([gs_status(1:2:end),gs_status(2:2:end)]);
xticklabels(unique(adulttest.marital_status))
xlabel("Marital Status")
ylabel("Group Count")
legend(["<=50K",">50K"])
grid minor

xtips1 = b_status(1).XEndPoints;
ytips1 = b_status(1).YEndPoints;
labels1 = string(b_status(1).YData);
ind1 = ytips1 < 100;
text(xtips1(ind1),ytips1(ind1),labels1(ind1), ...
    HorizontalAlignment="center",VerticalAlignment="bottom", ...
    Color=b_status(1).FaceColor)
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xtips2 = b_status(2).XEndPoints;
ytips2 = b_status(2).YEndPoints;
labels2 = string(b_status(2).YData);
ind2 = ytips2 < 100;
text(xtips2(ind2),ytips2(ind2),labels2(ind2), ...
    HorizontalAlignment="center",VerticalAlignment="bottom", ...
    Color=b_status(2).FaceColor)

Compute fairness metrics for the predictions (labels) with respect to the age_group and
marital_status variables by using fairnessMetrics.

MdlEvaluator = fairnessMetrics(adulttest,"salary", ...
    SensitiveAttributeNames=["age_group","marital_status"], ...
    Predictions=labels,Weights="fnlwgt")

MdlEvaluator = 
  fairnessMetrics with properties:

    SensitiveAttributeNames: {'age_group'  'marital_status'}
             ReferenceGroup: {'30<=Age<45'  'Married-civ-spouse'}
               ResponseName: 'salary'
              PositiveClass: >50K
                BiasMetrics: [11x6 table]
               GroupMetrics: [11x19 table]

MdlEvaluator is a fairnessMetrics object. By default, the fairnessMetrics function selects
the majority group of each sensitive attribute (group with the largest number of individuals) as the
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reference group for the attribute. Also, the fairnessMetrics function orders the labels by using
the unique function with the "sorted" option, and specifies the second class of the labels as the
positive class. In this data set, the reference groups of age_group and marital_status are the
groups 30<=Age<45 and Married-civ-spouse, respectively, and the positive class is >50K.
MdlEvaluator stores bias metrics and group metrics in the BiasMetrics and GroupMetrics
properties, respectively.

Create a table with fairness metrics by using the report function. Specify BiasMetrics as
["eod","aaod"] to include the equal opportunity difference (EOD) and average absolute odds
difference (AAOD) metrics in the report table. The fairnessMetrics function computes the two
metrics by using the true positive rates (TPR) and false positive rates (FPR). Specify GroupMetrics
as ["tpr","fpr"] to include TPR and FPR values in the table.

metricsTbl = report(MdlEvaluator, ...
    BiasMetrics=["eod","aaod"],GroupMetrics=["tpr","fpr"])

metricsTbl=11×6 table
    SensitiveAttributeNames           Groups            EqualOpportunityDifference    AverageAbsoluteOddsDifference    TruePositiveRate    FalsePositiveRate
    _______________________    _____________________    __________________________    _____________________________    ________________    _________________

        age_group              Age<30                           -0.041586                        0.044576                  0.41333             0.041053     
        age_group              30<=Age<45                               0                               0                  0.45491             0.088618     
        age_group              45<=Age<60                        0.061227                        0.031446                  0.51614             0.086954     
        age_group              Age>=60                           0.001949                       0.0099106                  0.45686             0.070746     
        marital_status         Divorced                          0.078378                        0.043429                  0.54262             0.075653     
        marital_status         Married-AF-spouse                 0.073013                        0.078573                  0.53726                    0     
        marital_status         Married-civ-spouse                       0                               0                  0.46424             0.084133     
        marital_status         Married-spouse-absent             -0.06725                        0.048036                  0.39699             0.055311     
        marital_status         Never-married                     0.083467                        0.054954                  0.54771             0.057692     
        marital_status         Separated                         0.027103                        0.026543                  0.49135             0.058151     
        marital_status         Widowed                            0.12427                        0.079864                  0.58851             0.048675     

Plot the EOD and AAOD values for the sensitive attribute age_group. Because age_group is the
first element in the SensitiveAttributeNames property of MdlEvaluator, it is the default value
for the property. Therefore, you do not have to specify the SensitiveAttributeName argument of
the plot function.

figure
t = tiledlayout(1,2);
nexttile
plot(MdlEvaluator,"eod")
title("EOD")
xlabel("")
ylabel("")
nexttile
plot(MdlEvaluator,"aaod")
title("AAOD")
xlabel("")
ylabel("")
yticklabels("")
xlabel(t,"Fairness Metric Value")
ylabel(t,"Age Group")
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The vertical line at x = 0 indicates the metric value for the reference group (30<=Age<45). If the
labels do not have a bias for a target group compared to the reference group, the metric value for the
target group is the same as the metric value for the reference group. According to the EOD values
(differences in TPR), the predictions for the salary variable are most biased toward the group
45<=Age<60 compared to the reference group. According to the AAOD values (averaged differences
in TPR and FPR), the predictions are most biased toward the group Age<30.

Plot the EOD and AAOD values for the sensitive attribute marital_status by specifying the
SensitiveAttributeName argument of the plot function as marital_status.

figure
t = tiledlayout(1,2);
nexttile
plot(MdlEvaluator,"eod",SensitiveAttributeName="marital_status")
title("EOD")
xlabel("")
ylabel("")
nexttile
plot(MdlEvaluator,"aaod",SensitiveAttributeName="marital_status")
title("AAOD")
xlabel("")
ylabel("")
yticklabels("")
xlabel(t,"Fairness Metric Value")
ylabel(t,"Marital Status")
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The vertical line at x = 0 indicates the metric value for the reference group (Married-civ-spouse).
According to the EOD values, the predictions for the salary variable are most biased toward the
group Widowed compared to the reference group. According to the AAOD values, the predictions are
similarly biased toward the groups Widowed and Married-AF-spouse.

Compare Predictions Using Fairness Metrics

Train two classification models, and compare the model predictions by using fairness metrics.

Read the sample file CreditRating_Historical.dat into a table. The predictor data consists of
financial ratios and industry sector information for a list of corporate customers. The response
variable consists of credit ratings assigned by a rating agency.

creditrating = readtable("CreditRating_Historical.dat");

Because each value in the ID variable is a unique customer ID—that is,
length(unique(creditrating.ID)) is equal to the number of observations in creditrating—
the ID variable is a poor predictor. Remove the ID variable from the table, and convert the Industry
variable to a categorical variable.

creditrating.ID = [];
creditrating.Industry = categorical(creditrating.Industry);

 fairnessMetrics

35-1693



In the Rating response variable, combine the AAA, AA, A, and BBB ratings into a category of "good"
ratings, and the BB, B, and CCC ratings into a category of "poor" ratings.

Rating = categorical(creditrating.Rating);
Rating = mergecats(Rating,["AAA","AA","A","BBB"],"good");
Rating = mergecats(Rating,["BB","B","CCC"],"poor");
creditrating.Rating = Rating;

Train a support vector machine (SVM) model on the creditrating data. For better results,
standardize the predictors before fitting the model. Use the trained model to predict labels and
compute the misclassification rate for the training data set.

predictorNames = ["WC_TA","RE_TA","EBIT_TA","MVE_BVTD","S_TA"];
SVMMdl = fitcsvm(creditrating,"Rating", ...
    PredictorNames=predictorNames,Standardize=true);
SVMPredictions = resubPredict(SVMMdl);
resubLoss(SVMMdl)

ans = 0.0872

Train a generalized additive model (GAM).

GAMMdl = fitcgam(creditrating,"Rating", ...
    PredictorNames=predictorNames);
GAMPredictions = resubPredict(GAMMdl);
resubLoss(GAMMdl)

ans = 0.0542

GAMMdl achieves better accuracy on the training data set.

Compute fairness metrics with respect to the sensitive attribute Industry by using the model
predictions for both models.

SVMEvaluator = fairnessMetrics(creditrating,"Rating", ...
    SensitiveAttributeNames="Industry",Predictions=SVMPredictions);
GAMEvaluator = fairnessMetrics(creditrating,"Rating", ...
    SensitiveAttributeNames="Industry",Predictions=GAMPredictions);

Display the bias metrics by using the report function.

report(SVMEvaluator)

ans=12×6 table
    SensitiveAttributeNames    Groups    StatisticalParityDifference    DisparateImpact    EqualOpportunityDifference    AverageAbsoluteOddsDifference
    _______________________    ______    ___________________________    _______________    __________________________    _____________________________

           Industry              1                -0.028441                 0.92261                 -0.094905                      0.094505           
           Industry              2                 -0.04014                 0.89078                  -0.16287                       0.11858           
           Industry              3                        0                       1                         0                             0           
           Industry              4                 -0.04905                 0.86654                  -0.17921                       0.13518           
           Industry              5                -0.015615                 0.95751                 -0.071714                      0.065046           
           Industry              6                 -0.03818                 0.89611                 -0.024637                      0.025143           
           Industry              7                 -0.01514                  0.9588                 -0.032729                      0.028961           
           Industry              8                0.0078632                  1.0214                 -0.082943                      0.054485           
           Industry              9                -0.013863                 0.96228                  -0.18214                       0.13879           
           Industry              10               0.0090218                  1.0245                  -0.15659                       0.11502           
           Industry              11               -0.004188                  0.9886                -0.0038408                      0.010149           
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           Industry              12               -0.041572                 0.88689                 -0.088521                      0.072354           

report(GAMEvaluator)

ans=12×6 table
    SensitiveAttributeNames    Groups    StatisticalParityDifference    DisparateImpact    EqualOpportunityDifference    AverageAbsoluteOddsDifference
    _______________________    ______    ___________________________    _______________    __________________________    _____________________________

           Industry              1                0.0058208                   1.017                -0.083315                        0.068815          
           Industry              2                0.0063339                  1.0185                -0.094291                        0.071588          
           Industry              3                        0                       1                        0                               0          
           Industry              4               -0.0043007                 0.98742                 -0.14862                        0.097716          
           Industry              5                0.0041607                  1.0122                -0.049115                        0.047334          
           Industry              6                -0.024515                 0.92829                -0.011797                        0.011068          
           Industry              7                 0.007326                  1.0214                -0.021219                        0.011016          
           Industry              8                 0.036581                   1.107                -0.033395                         0.02428          
           Industry              9                 0.042266                  1.1236                 -0.11705                         0.08944          
           Industry              10                0.050095                  1.1465                 -0.10458                        0.080427          
           Industry              11                0.001453                  1.0042                -0.012269                       0.0089321          
           Industry              12               -0.028589                 0.91638                -0.078527                        0.061535          

Among the bias metrics, compare the equal opportunity difference (EOD) values. Create bar graphs
of the EOD values by using the plot function.

figure
t = tiledlayout(2,1);
ax1 = nexttile;
plot(SVMEvaluator,"eod")
xlabel("")
ylabel("")
title("SVM")

ax2 = nexttile;
plot(GAMEvaluator,"eod")
xlabel("")
ylabel("")
title("GAM")

linkaxes([ax1 ax2],"x")
xlabel(t,"Equal Opportunity Difference")
ylabel(t,"Industry")
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To better understand the distributions of EOD values, plot the values using box plots.

figure
boxchart([SVMEvaluator.BiasMetrics.EqualOpportunityDifference ...
    GAMEvaluator.BiasMetrics.EqualOpportunityDifference])
xticklabels(["SVM","GAM"])
ylabel("Equal Opportunity Difference")
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The EOD values for GAM are closer to 0 compared to the values for SVM.

More About
Bias Metrics

The fairnessMetrics object supports four bias metrics: statistical parity difference (SPD),
disparate impact (DI), equal opportunity difference (EOD), and average absolute odds difference
(AAOD). The object supports EOD and AAOD only for evaluating model predictions.

A fairnessMetrics object computes bias metrics for each group in each sensitive attribute with
respect to the reference group of the attribute.

• Statistical parity (or demographic parity) difference (SPD)

The SPD value of the ith sensitive attribute (Si) for the group sij with respect to the reference
group sir is defined by

SPDi j = P Y = + Si = si j − P Y = + Si = sir .

The SPD value is the difference between the probability of being in the positive class when the
sensitive attribute value is sij and the probability of being in the positive class when the sensitive
attribute value is sir (reference group). This metric assumes that the two probabilities (statistical
parities) are equal if the labels are unbiased with respect to the sensitive attribute.
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If you specify the Predictions argument, the software computes SPD for the probabilities of the
model predictions Y  instead of the true labels Y.

• Disparate impact (DI)

The DI value of the ith sensitive attribute (Si) for the group sij with respect to the reference group
sir is defined by

DIi j =
P Y = + Si = si j
P Y = + Si = sir

.

The DI value is the ratio of the probability of being in the positive class when the sensitive
attribute value is sij to the probability of being in the positive class when the sensitive attribute
value is sir (reference group). This metric assumes that the two probabilities are equal if the labels
are unbiased with respect to the sensitive attribute. In general, a DI value less than 0.8 or
greater than 1.25 indicates bias with respect to the reference group [2].

If you specify the Predictions argument, the software computes DI for the probabilities of the
model predictions Y  instead of the true labels Y.

• Equal opportunity difference (EOD)

The EOD value of the ith sensitive attribute (Si) for the group sij with respect to the reference
group sir is defined by

EODi j = TPR Si = si j − TPR Si = sir

= P Y = + Y = + , Si = si j − P Y = + Y = + , Si = sir .

The EOD value is the difference in the true positive rate (TPR) between the group sij and the
reference group sir. This metric assumes that the two rates are equal if the predicted labels are
unbiased with respect to the sensitive attribute.

• Average absolute odds difference (AAOD)

The AAOD value of the ith sensitive attribute (Si) for the group sij with respect to the reference
group sir is defined by

AAODi j = 1
2 FPR Si = si j − FPR Si = sir + TPR Si = si j − TPR Si = sir .

The AAOD value represents the difference in the true positive rates (TPR) and false positive rates
(FPR) between the group sij and the reference group sir. This metric assumes no difference in TPR
and FPR if the predicted labels are unbiased with respect to the sensitive attribute.

Algorithms
fairnessMetrics considers NaN, '' (empty character vector), "" (empty string), <missing>, and
<undefined> values in Tbl, Y, and SensitiveAttributes to be missing values.
fairnessMetrics does not use observations with missing values.

Version History
Introduced in R2022b
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fairnessWeights
Reweight observations for fairness in binary classification

Syntax
weights = fairnessWeights(Tbl,AttributeName,ResponseVarName)
weights = fairnessWeights(Tbl,AttributeName,Y)
weights = fairnessWeights(attribute,Y)
weights = fairnessWeights( ___ ,Weights=initialWeights)

Description
weights = fairnessWeights(Tbl,AttributeName,ResponseVarName) reweights
observations using the AttributeName sensitive attribute and the ResponseVarName response
variable in the data set Tbl. For every combination of a group in the sensitive attribute and a class
label in the response variable, the software computes a weight value. The function then assigns each
observation in Tbl its corresponding weight. The returned weights vector introduces fairness
across the sensitive attribute groups. For more information, see “Algorithms” on page 35-1709.

weights = fairnessWeights(Tbl,AttributeName,Y) computes fairness weights using the
class labels in the response variable Y.

weights = fairnessWeights(attribute,Y) computes fairness weights using the sensitive
attribute specified by attribute and the response variable Y.

weights = fairnessWeights( ___ ,Weights=initialWeights) specifies to use the
observation weights initialWeights before computing the fairness weights, using any of the input
argument combinations in previous syntaxes. These initial weights are typically used to capture some
aspect of the data set that is unrelated to the sensitive attribute, such as expected class distributions.

Examples

Understand and Visualize Fairness Weights

Compute fairness weights. Then, compare the fairness weights to the default observation weights
using grouped scatter plots.

Suppose you want to create a binary classifier that predicts whether a patient is a smoker based on
the patient's diastolic and systolic blood pressure values. Furthermore, you want the model
predictions to be independent of the gender of the patient. Before training the model, you can use
fairness weights to try to reduce the effects of gender status on the smoker status predictions.

Load the patients data set, which contains medical information for 100 patients. Convert the
Gender and Smoker variables to categorical variables. Specify the descriptive category names
Smoker and Nonsmoker rather than 1 and 0.

load patients
Gender = categorical(Gender);
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Smoker = categorical(Smoker,logical([1 0]), ...
    ["Smoker","Nonsmoker"]);

Create a table using the Gender and Smoker variables in addition to the Diastolic and Systolic
variables.

tbl = table(Diastolic,Gender,Smoker,Systolic)

tbl=100×4 table
    Diastolic    Gender     Smoker      Systolic
    _________    ______    _________    ________

       93        Male      Smoker         124   
       77        Male      Nonsmoker      109   
       83        Female    Nonsmoker      125   
       75        Female    Nonsmoker      117   
       80        Female    Nonsmoker      122   
       70        Female    Nonsmoker      121   
       88        Female    Smoker         130   
       82        Male      Nonsmoker      115   
       78        Male      Nonsmoker      115   
       86        Female    Nonsmoker      118   
       77        Female    Nonsmoker      114   
       68        Female    Nonsmoker      115   
       74        Male      Nonsmoker      127   
       95        Male      Smoker         130   
       79        Female    Nonsmoker      114   
       92        Male      Smoker         130   
      ⋮

Compute fairness weights with respect to the sensitive attribute Gender and the binary response
variable Smoker, and add the fairness weights to tbl.

fairWeights = fairnessWeights(tbl,"Gender","Smoker");
tbl.Weights = fairWeights;

Display the fairness weight for each combination of gender and smoker status.

tblstats = grpstats(tbl,["Gender","Smoker"],@(x)unique(x), ...
    DataVars="Weights", ...
    VarNames=["Gender","Smoker","NumObservations","FairnessWeight"])

tblstats=4×4 table
                        Gender     Smoker      NumObservations    FairnessWeight
                        ______    _________    _______________    ______________

    Female_Smoker       Female    Smoker             13               1.3862    
    Female_Nonsmoker    Female    Nonsmoker          40               0.8745    
    Male_Smoker         Male      Smoker             21              0.76095    
    Male_Nonsmoker      Male      Nonsmoker          26               1.1931    

You can replicate the fairness weight computation by using the tblstats output. For example,
compute the fairness weight directly for the group of female smokers.

numSmoker = sum(tblstats.NumObservations([1 3]));
numTotal = sum(tblstats.NumObservations);
numFemale = sum(tblstats.NumObservations([1 2]));
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numFemaleSmoker = tblstats.NumObservations(1);

pIdealFemaleSmoker = (numSmoker/numTotal)*(numFemale/numTotal)

pIdealFemaleSmoker = 0.1802

pObservedFemaleSmoker = numFemaleSmoker/numTotal

pObservedFemaleSmoker = 0.1300

weightFemaleSmoker = pIdealFemaleSmoker/pObservedFemaleSmoker

weightFemaleSmoker = 1.3862

For this group, the ideal probability pIdealFemaleSmoker is greater than the observed probability
pObservedFemaleSmoker. This result indicates bias against the smoker class for female patients in
the original data set.

Visualize the fairness weights using grouped scatter plots. Without the fairness weights, all
observations have the same weight by default.

markSize = 20;

tiledlayout(1,2)
nexttile
gscatter(Diastolic,Systolic,Gender.*Smoker,[],[], ...
    markSize)
legend(Location="southoutside")
title("Original Observations")
nexttile
gscatter(Diastolic,Systolic,Gender.*Smoker,[],[], ...
    markSize*tblstats.FairnessWeight)
legend(Location="southoutside")
title("Weighted Observations")

35 Functions

35-1702



In the weighted scheme, the female smoker and male nonsmoker observations have more weight than
in the original scheme.

To understand how fairness weights affect the observations, find the statistical parity difference
(SPD) for each group in Gender after applying the fairness weights. Use the fairnessMetrics
function, which computes bias and group metrics for a data set or binary classification model with
respect to sensitive attributes.

metrics = fairnessMetrics(tbl,"Smoker", ...
    SensitiveAttributeNames="Gender",Weights="Weights");
metrics.PositiveClass

ans = categorical
     Nonsmoker 

report(metrics,BiasMetrics="StatisticalParityDifference")

ans=2×3 table
    SensitiveAttributeNames    Groups    StatisticalParityDifference
    _______________________    ______    ___________________________

            Gender             Female                      0        
            Gender             Male              -6.6613e-16        
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The SPD for each group in the sensitive attribute is approximately 0. This result indicates that, with
the fairness weights, the proportion of female nonsmokers to female patients is the same as the
proportion of male nonsmokers to male patients.

You can now use the fairness weights to train a binary classifier. For example, train a tree classifier.

tree = fitctree(tbl,"Smoker",Weights="Weights")

tree = 
  ClassificationTree
           PredictorNames: {'Diastolic'  'Gender'  'Systolic'}
             ResponseName: 'Smoker'
    CategoricalPredictors: 2
               ClassNames: [Smoker    Nonsmoker]
           ScoreTransform: 'none'
          NumObservations: 100

  Properties, Methods

Compare Predictions with Fairness Weights

See how predictions change when you train a binary classifier with fairness weights. In particular,
compare the disparate impact and accuracy of the predictions.

Load the sample data census1994, which contains the training data adultdata and the test data
adulttest. The data sets consist of demographic information from the US Census Bureau that can
be used to predict whether an individual makes over $50,000 per year. Preview the first few rows of
the training data set.

load census1994
head(adultdata)

    age       workClass          fnlwgt      education    education_num       marital_status           occupation        relationship     race      sex      capital_gain    capital_loss    hours_per_week    native_country    salary
    ___    ________________    __________    _________    _____________    _____________________    _________________    _____________    _____    ______    ____________    ____________    ______________    ______________    ______

    39     State-gov                77516    Bachelors         13          Never-married            Adm-clerical         Not-in-family    White    Male          2174             0                40          United-States     <=50K 
    50     Self-emp-not-inc         83311    Bachelors         13          Married-civ-spouse       Exec-managerial      Husband          White    Male             0             0                13          United-States     <=50K 
    38     Private             2.1565e+05    HS-grad            9          Divorced                 Handlers-cleaners    Not-in-family    White    Male             0             0                40          United-States     <=50K 
    53     Private             2.3472e+05    11th               7          Married-civ-spouse       Handlers-cleaners    Husband          Black    Male             0             0                40          United-States     <=50K 
    28     Private             3.3841e+05    Bachelors         13          Married-civ-spouse       Prof-specialty       Wife             Black    Female           0             0                40          Cuba              <=50K 
    37     Private             2.8458e+05    Masters           14          Married-civ-spouse       Exec-managerial      Wife             White    Female           0             0                40          United-States     <=50K 
    49     Private             1.6019e+05    9th                5          Married-spouse-absent    Other-service        Not-in-family    Black    Female           0             0                16          Jamaica           <=50K 
    52     Self-emp-not-inc    2.0964e+05    HS-grad            9          Married-civ-spouse       Exec-managerial      Husband          White    Male             0             0                45          United-States     >50K  

Each row contains the demographic information for one adult. The last column, salary, shows
whether a person has a salary less than or equal to $50,000 per year or greater than $50,000 per
year.

Remove observations from adultdata and adulttest that contain missing values.

adultdata = rmmissing(adultdata);
adulttest = rmmissing(adulttest);
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Train a neural network classifier using the training set adultdata. Specify salary as the response
variable and fnlwgt as the observation weights. Standardize the predictor variables before training
the model. After training the model, predict the salary (class label) of the observations in the test set
adulttest.

rng("default") % For reproducibility
mdl = fitcnet(adultdata,"salary",Weights="fnlwgt", ...
    Standardize=true);
labels = predict(mdl,adulttest);

Compute the fairness weights with respect to the sensitive attribute race. Use the initial observation
weights fnlwgt to adjust the fairness weight computation. Create a new table newadultdata that
contains the adjusted fairness weights rather than the initial observation weights.

fw = fairnessWeights(adultdata,"race","salary", ...
    Weights="fnlwgt");
newadultdata = adultdata;
newadultdata.fnlwgt = fw;

Train the same type of neural network classifier as mdl, but use the adjusted fairness weights. As
before, predict the salary (class label) of the observations in the test set adulttest.

rng("default") % For reproducibility
newMdl = fitcnet(newadultdata,"salary",Weights="fnlwgt", ...
    Standardize=true);
newLabels = predict(newMdl,adulttest);

Compare the disparate impact values for the predictions made by the original model (mdl) to the
predictions made by the model trained with fairness weights (newMdl). For each group in the
sensitive attribute, the disparate impact is the proportion of predictions in that group with a positive
class value (pg + ) divided by the proportion of predictions in the reference group with a positive class
value (pr + ). An ideal classifier makes predictions so that, for each group, pg +  is close to pr +  (that is,
the disparate impact value is close to 1).

Compute the disparate impact values for the mdl predictions by using the fairnessMetrics
function. Specify to include observation weights. You can use the report object function to display
bias metrics, such as disparate impact, that are stored in the evaluator object.

evaluator = fairnessMetrics(adulttest,"salary", ...
    SensitiveAttributeNames="race",Predictions=labels, ...
    Weights="fnlwgt");
evaluator.PositiveClass

ans = categorical
     >50K 

evaluator.ReferenceGroup

ans = 
'White'

report(evaluator,BiasMetrics="DisparateImpact")

ans=5×3 table
    SensitiveAttributeNames          Groups          DisparateImpact
    _______________________    __________________    _______________
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             race              Amer-Indian-Eskimo        0.18853    
             race              Asian-Pac-Islander         1.1868    
             race              Black                     0.47874    
             race              Other                     0.56647    
             race              White                           1    

Several of the disparate impact values are well below 1, which indicates bias in the predictions with
respect to the positive class >50K and the sensitive attribute race.

Similarly, compute the disparate impact values for the newMdl predictions.

newEvaluator = fairnessMetrics(adulttest,"salary", ...
    SensitiveAttributeNames="race",Predictions=newLabels, ...
    Weights="fnlwgt");
newEvaluator.PositiveClass

ans = categorical
     >50K 

newEvaluator.ReferenceGroup

ans = 
'White'

report(newEvaluator,BiasMetrics="DisparateImpact")

ans=5×3 table
    SensitiveAttributeNames          Groups          DisparateImpact
    _______________________    __________________    _______________

             race              Amer-Indian-Eskimo        0.51279    
             race              Asian-Pac-Islander         1.2656    
             race              Black                     0.68889    
             race              Other                      0.8373    
             race              White                           1    

Compared to the disparate impact values for the mdl predictions, most of the disparate impact values
for the newMdl predictions are closer to 1.

Visually compare the disparate impact values by using a bar graph.

bar([evaluator.BiasMetrics.DisparateImpact, ...
    newEvaluator.BiasMetrics.DisparateImpact])
xticklabels(evaluator.BiasMetrics.Groups)
ylabel("Disparate Impact")
legend(["Without Fairness Weights","With Fairness Weights"], ...
    Location="eastoutside")
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The fairness weights seem to improve the model predictions on the test set with respect to the
disparate impact metric.

Check whether the fairness weights have negatively affected the accuracy of the model predictions.
Compute the accuracy of the test set predictions for the two models mdl and newMdl.

accuracy = 1-loss(mdl,adulttest,"salary")

accuracy = 0.8442

newAccuracy = 1-loss(newMdl,adulttest,"salary")

newAccuracy = 0.8433

The model trained using fairness weights (newMdl) achieves similar test set accuracy compared to
the model trained without fairness weights (mdl).

Input Arguments
Tbl — Data set
table

Data set, specified as a table. Each row of Tbl corresponds to one observation, and each column
corresponds to one variable. If you use a table with the fairnessWeights function, then the table
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must include the sensitive attribute. The table can include additional variables, such as those
containing class labels (ResponseVarName) and observation weights (initialWeights).
Multicolumn variables and cell arrays other than cell arrays of character vectors are not allowed.
Data Types: table

AttributeName — Sensitive attribute name
name of variable in Tbl

Sensitive attribute name, specified as the name of a variable in Tbl. You must specify
AttributeName as a character vector or a string scalar. For example, if the sensitive attribute is
stored as Tbl.Attribute, then specify it as "Attribute".

The sensitive attribute must be a numeric vector, logical vector, character array, string array, cell
array of character vectors, or categorical vector.
Data Types: char | string

ResponseVarName — Response variable name
name of variable in Tbl

Response variable name, specified as the name of a variable in Tbl. You must specify
ResponseVarName as a character vector or a string scalar. For example, if the response variable is
stored as Tbl.Y, then specify it as "Y".

The response variable must be a numeric vector, logical vector, character array, string array, cell
array of character vectors, or categorical vector.
Data Types: char | string

Y — Response variable
numeric vector | logical vector | character array | string array | cell array of character vectors |
categorical vector

Response variable, specified as a numeric vector, logical vector, character array, string array, cell
array of character vectors, or categorical vector.

• If Y is a character array, then each row of the array must correspond to a class label.
• The length of Y must be equal to the number of rows in Tbl or the length of attribute.

Data Types: single | double | logical | char | string | cell | categorical

attribute — Sensitive attribute
numeric column vector | logical column vector | character array | string array | cell array of character
vectors | categorical column vector

Sensitive attribute, specified as a numeric column vector, logical column vector, character array,
string array, cell array of character vectors, or categorical column vector.

• If attribute is an array, then each row of the array must correspond to a group in the sensitive
attribute.

• attribute and Y must have the same length.

Data Types: single | double | logical | char | string | cell | categorical
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initialWeights — Observation weights
nonnegative column vector | name of variable in Tbl

Observation weights, specified as a nonnegative column vector or the name of a variable in Tbl. The
length of initialWeights must be equal to the number of observations in Tbl or attribute.

If you use a data set Tbl, then initialWeights can be the name of a variable in Tbl that contains a
numeric vector. In this case, you must specify initialWeights as a character vector or a string
scalar. For example, if the initial weights vector W is stored as Tbl.W, then specify it as "W".

The software uses initial weights to adjust fairness weights. For more information, see “Algorithms”
on page 35-1709.
Data Types: single | double | char | string

Output Arguments
weights — Fairness weights
nonnegative column vector

Fairness weights, returned as a nonnegative column vector, where each row corresponds to an
observation. You can pass the weights to an appropriate training function by using the Weights
name-value argument. For an example, see “Understand and Visualize Fairness Weights” on page 35-
1700.

The software returns a fairness weight of 0 for any observation with a missing sensitive attribute,
class label, or initial weight. The software treats NaN, empty character vector (''), empty string (""),
<missing>, and <undefined> elements as missing values.

For information on how the software computes fairness weights, see “Algorithms” on page 35-1709.

Algorithms
Assume x is an observation in class k with sensitive attribute g. If you do not specify initial weights
(initialWeights), then the fairnessWeights function assigns the following fairness weight to

the observation: fw(x) =
pgk
p gk

=
ng
ngk

⋅
nk
n .

• ng is the number of observations with sensitive attribute g.
• nk is the number of observations in class k.
• ngk is the number of observations in class k with sensitive attribute g.
• n is the total number of observations.
•

pgk =
ng
n ⋅

nk
n  is the ideal probability of an observation having sensitive attribute g and being in

class k—that is, the product of the probability of an observation having sensitive attribute g and
the probability of an observation being in class k. Note that this equation holds for the true
probability if the sensitive attribute and the response variable are independent.

•
p gk =

ngk
n  is the observed probability of an observation having sensitive attribute g and being in

class k.
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For more information, see [1].

If you specify initial weights, then the function computes fw(x) using the sum of the initial weights
rather than the number of observations. For example, instead of using ng, the function uses the sum
of the initial weights of the observations with sensitive attribute g.

Version History
Introduced in R2022b

References
[1] Kamiran, Faisal, and Toon Calders. “Data Preprocessing Techniques for Classification without

Discrimination.” Knowledge and Information Systems 33, no. 1 (October 2012): 1–33. https://
doi.org/10.1007/s10115-011-0463-8.

See Also
fairnessMetrics | disparateImpactRemover | transform

Topics
“Introduction to Fairness in Binary Classification” on page 26-2
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fcdf
F cumulative distribution function

Syntax
p = fcdf(x,v1,v2)
p = fcdf(x,v1,v2,'upper')

Description
p = fcdf(x,v1,v2) computes the F cdf at each of the values in x using the corresponding
numerator degrees of freedom v1 and denominator degrees of freedom v2. x, v1, and v2 can be
vectors, matrices, or multidimensional arrays that are all the same size. A scalar input is expanded to
a constant matrix with the same dimensions as the other inputs. v1 and v2 parameters must contain
real positive values, and the values in x must lie on the interval [0 Inf].

p = fcdf(x,v1,v2,'upper') returns the complement of the F cdf at each value in x, using an
algorithm that more accurately computes the extreme upper tail probabilities.

The F cdf is

p = F(x ν1, ν2) =∫0 x Γ
(ν1 + ν2)

2

Γ
ν1
2 Γ

ν2
2

ν1
ν2

ν1
2 t

ν1− 2
2

1 +
ν1
ν2

t
ν1 + ν2

2

dt

The result, p, is the probability that a single observation from an F distribution with parameters ν1
and ν2 will fall in the interval [0 x].

Examples

Compute F Distribution CDF

The following illustrates a useful mathematical identity for the F distribution.

nu1 = 1:5;
nu2 = 6:10;
x = 2:6;

F1 = fcdf(x,nu1,nu2)

F1 = 1×5

    0.7930    0.8854    0.9481    0.9788    0.9919

F2 = 1 - fcdf(1./x,nu2,nu1)

F2 = 1×5
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    0.7930    0.8854    0.9481    0.9788    0.9919

Version History
Introduced before R2006a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

This function fully supports GPU arrays. For more information, see “Run MATLAB Functions on a
GPU” (Parallel Computing Toolbox).

See Also
cdf | fpdf | finv | fstat | frnd

Topics
“F Distribution” on page B-46
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FeatureTransformer
Generated feature transformations

Description
A FeatureTransformer object contains information about the feature transformations generated
from a training data set. To better understand the generated features, you can use the describe
object function. To apply the same training set feature transformations to a test set, you can use the
transform object function.

Creation
Create a FeatureTransformer object by using the gencfeatures or genrfeatures function.

Properties
Type — Type of model
'classification' | 'regression'

This property is read-only.

Type of model, returned as 'classification' or 'regression'.

TargetLearner — Expected learner type
'linear' | 'bag' | 'gaussian-svm'

This property is read-only.

Expected learner type, returned as 'linear', 'bag', or 'gaussian-svm'. The software creates
and selects new features assuming that they will be used to train a linear model, a bagged ensemble,
or a support vector machine (SVM) model with a Gaussian kernel, respectively.

NumEngineeredFeatures — Number of engineered features
nonnegative scalar

This property is read-only.

Number of engineered features stored in FeatureTransformer, returned as a nonnegative scalar.
Data Types: double

NumOriginalFeatures — Number of original features
nonnegative scalar

This property is read-only.

Number of original features stored in FeatureTransformer, returned as a nonnegative scalar.
Data Types: double
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TotalNumFeatures — Total number of features
nonnegative scalar

This property is read-only.

Total number of features stored in FeatureTransformer, returned as a nonnegative scalar.
TotalNumFeatures equals the sum of NumEngineeredFeatures and NumOriginalFeatures.
Data Types: double

Object Functions
describe Describe generated features
transform Transform new data using generated features

Examples

Generate and Inspect Features for Regression Problem

Generate features from a table of predictor data by using genrfeatures. Inspect the generated
features by using the describe object function.

Read power outage data into the workspace as a table. Remove observations with missing values, and
display the first few rows of the table.

outages = readtable("outages.csv");
Tbl = rmmissing(outages);
head(Tbl)

       Region           OutageTime        Loss     Customers     RestorationTime            Cause       
    _____________    ________________    ______    __________    ________________    ___________________

    {'SouthWest'}    2002-02-01 12:18    458.98    1.8202e+06    2002-02-07 16:50    {'winter storm'   }
    {'SouthEast'}    2003-02-07 21:15     289.4    1.4294e+05    2003-02-17 08:14    {'winter storm'   }
    {'West'     }    2004-04-06 05:44    434.81    3.4037e+05    2004-04-06 06:10    {'equipment fault'}
    {'MidWest'  }    2002-03-16 06:18    186.44    2.1275e+05    2002-03-18 23:23    {'severe storm'   }
    {'West'     }    2003-06-18 02:49         0             0    2003-06-18 10:54    {'attack'         }
    {'NorthEast'}    2003-07-16 16:23    239.93         49434    2003-07-17 01:12    {'fire'           }
    {'MidWest'  }    2004-09-27 11:09    286.72         66104    2004-09-27 16:37    {'equipment fault'}
    {'SouthEast'}    2004-09-05 17:48    73.387         36073    2004-09-05 20:46    {'equipment fault'}

Some of the variables, such as OutageTime and RestorationTime, have data types that are not
supported by regression model training functions like fitrensemble.

Generate 25 features from the predictors in Tbl that can be used to train a bagged ensemble. Specify
the Loss table variable as the response.

rng("default") % For reproducibility
Transformer = genrfeatures(Tbl,"Loss",25,TargetLearner="bag")

Transformer = 
  FeatureTransformer with properties:

                     Type: 'regression'
            TargetLearner: 'bag'
    NumEngineeredFeatures: 22
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      NumOriginalFeatures: 3
         TotalNumFeatures: 25

The Transformer object contains the information about the generated features and the
transformations used to create them.

To better understand the generated features, use the describe object function.

Info = describe(Transformer)

Info=25×4 table
                                     Type        IsOriginal          InputVariables                                     Transformations                          
                                  ___________    __________    ___________________________    ___________________________________________________________________

    c(Region)                     Categorical      true        Region                         "Variable of type categorical converted from a cell data type"     
    Customers                     Numeric          true        Customers                      ""                                                                 
    c(Cause)                      Categorical      true        Cause                          "Variable of type categorical converted from a cell data type"     
    kmd2                          Numeric          false       Customers                      "Euclidean distance to centroid 2 (kmeans clustering with k = 10)" 
    kmd1                          Numeric          false       Customers                      "Euclidean distance to centroid 1 (kmeans clustering with k = 10)" 
    kmd4                          Numeric          false       Customers                      "Euclidean distance to centroid 4 (kmeans clustering with k = 10)" 
    kmd5                          Numeric          false       Customers                      "Euclidean distance to centroid 5 (kmeans clustering with k = 10)" 
    kmd9                          Numeric          false       Customers                      "Euclidean distance to centroid 9 (kmeans clustering with k = 10)" 
    cos(Customers)                Numeric          false       Customers                      "cos( )"                                                           
    RestorationTime-OutageTime    Numeric          false       OutageTime, RestorationTime    "Elapsed time in seconds between OutageTime and RestorationTime"   
    kmd6                          Numeric          false       Customers                      "Euclidean distance to centroid 6 (kmeans clustering with k = 10)" 
    kmi                           Categorical      false       Customers                      "Cluster index encoding (kmeans clustering with k = 10)"           
    kmd7                          Numeric          false       Customers                      "Euclidean distance to centroid 7 (kmeans clustering with k = 10)" 
    kmd3                          Numeric          false       Customers                      "Euclidean distance to centroid 3 (kmeans clustering with k = 10)" 
    kmd10                         Numeric          false       Customers                      "Euclidean distance to centroid 10 (kmeans clustering with k = 10)"
    hour(RestorationTime)         Numeric          false       RestorationTime                "Hour of the day"                                                  
      ⋮

The first three generated features are original to Tbl, although the software converts the original
Region and Cause variables to categorical variables.

Info(1:3,:) % describe(Transformer,1:3)

ans=3×4 table
                    Type        IsOriginal    InputVariables                           Transformations                        
                 ___________    __________    ______________    ______________________________________________________________

    c(Region)    Categorical      true          Region          "Variable of type categorical converted from a cell data type"
    Customers    Numeric          true          Customers       ""                                                            
    c(Cause)     Categorical      true          Cause           "Variable of type categorical converted from a cell data type"

The OutageTime and RestorationTime variables are not included as generated features because
they are datetime variables, which cannot be used to train a bagged ensemble model. However, the
software derives some generated features from these variables, such as the tenth feature
RestorationTime-OutageTime.

Info(10,:) % describe(Transformer,10)

ans=1×4 table
                                   Type      IsOriginal          InputVariables                                   Transformations                         
                                  _______    __________    ___________________________    ________________________________________________________________
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    RestorationTime-OutageTime    Numeric      false       OutageTime, RestorationTime    "Elapsed time in seconds between OutageTime and RestorationTime"

Some generated features are a combination of multiple transformations. For example, the software
generates the nineteenth feature fenc(c(Cause)) by converting the Cause variable to a categorical
variable with 10 categories and then calculating the frequency of the categories.

Info(19,:) % describe(Transformer,19)

ans=1×4 table
                       Type      IsOriginal    InputVariables                                                  Transformations                                               
                      _______    __________    ______________    ____________________________________________________________________________________________________________

    fenc(c(Cause))    Numeric      false           Cause         "Variable of type categorical converted from a cell data type -> Frequency encoding (number of levels = 10)"

Train Model Using Subset of Generated Features

Train a linear classifier using only the numeric generated features returned by gencfeatures.

Load the patients data set. Create a table from a subset of the variables.

load patients
Tbl = table(Age,Diastolic,Height,SelfAssessedHealthStatus, ...
    Smoker,Systolic,Weight,Gender);

Partition the data into training and test sets. Use approximately 70% of the observations as training
data, and 30% of the observations as test data. Partition the data using cvpartition.

rng("default")
c = cvpartition(Tbl.Gender,Holdout=0.30);
TrainTbl = Tbl(training(c),:);
TestTbl = Tbl(test(c),:);

Use the training data to generate 25 new features. Specify the minimum redundancy maximum
relevance (MRMR) feature selection method for selecting new features.

Transformer = gencfeatures(TrainTbl,"Gender",25, ...
    FeatureSelectionMethod="mrmr")

Transformer = 
  FeatureTransformer with properties:

                     Type: 'classification'
            TargetLearner: 'linear'
    NumEngineeredFeatures: 23
      NumOriginalFeatures: 2
         TotalNumFeatures: 25

Inspect the generated features.

Info = describe(Transformer)

Info=25×4 table
                                      Type        IsOriginal         InputVariables                                              Transformations                                      
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                                   ___________    __________    ________________________    __________________________________________________________________________________________

    zsc(Weight)                    Numeric          true        Weight                      "Standardization with z-score (mean = 153.1571, std = 26.8229)"                           
    eb5(Weight)                    Categorical      false       Weight                      "Equal-width binning (number of bins = 5)"                                                
    c(SelfAssessedHealthStatus)    Categorical      true        SelfAssessedHealthStatus    "Variable of type categorical converted from a cell data type"                            
    zsc(sqrt(Systolic))            Numeric          false       Systolic                    "sqrt( ) -> Standardization with z-score (mean = 11.086, std = 0.29694)"                  
    zsc(sin(Systolic))             Numeric          false       Systolic                    "sin( ) -> Standardization with z-score (mean = -0.1303, std = 0.72575)"                  
    zsc(Systolic./Weight)          Numeric          false       Systolic, Weight            "Systolic ./ Weight -> Standardization with z-score (mean = 0.82662, std = 0.14555)"      
    zsc(Age+Weight)                Numeric          false       Age, Weight                 "Age + Weight -> Standardization with z-score (mean = 191.1143, std = 28.6976)"           
    zsc(Age./Weight)               Numeric          false       Age, Weight                 "Age ./ Weight -> Standardization with z-score (mean = 0.25424, std = 0.062486)"          
    zsc(Diastolic.*Weight)         Numeric          false       Diastolic, Weight           "Diastolic .* Weight -> Standardization with z-score (mean = 12864.6857, std = 2731.1613)"
    q6(Height)                     Categorical      false       Height                      "Equiprobable binning (number of bins = 6)"                                               
    zsc(Systolic+Weight)           Numeric          false       Systolic, Weight            "Systolic + Weight -> Standardization with z-score (mean = 276.1429, std = 28.7111)"      
    zsc(Diastolic-Weight)          Numeric          false       Diastolic, Weight           "Diastolic - Weight -> Standardization with z-score (mean = -69.4286, std = 26.2411)"     
    zsc(Age-Weight)                Numeric          false       Age, Weight                 "Age - Weight -> Standardization with z-score (mean = -115.2, std = 27.0113)"             
    zsc(Height./Weight)            Numeric          false       Height, Weight              "Height ./ Weight -> Standardization with z-score (mean = 0.44797, std = 0.067992)"       
    zsc(Height.*Weight)            Numeric          false       Height, Weight              "Height .* Weight -> Standardization with z-score (mean = 10291.0714, std = 2111.9071)"   
    zsc(Diastolic+Weight)          Numeric          false       Diastolic, Weight           "Diastolic + Weight -> Standardization with z-score (mean = 236.8857, std = 29.2439)"     
      ⋮

Transform the training and test sets, but retain only the numeric predictors.

numericIdx = (Info.Type == "Numeric");
NewTrainTbl = transform(Transformer,TrainTbl,numericIdx);
NewTestTbl = transform(Transformer,TestTbl,numericIdx);

Train a linear model using the transformed training data. Visualize the accuracy of the model's test
set predictions by using a confusion matrix.

Mdl = fitclinear(NewTrainTbl,TrainTbl.Gender);
testLabels = predict(Mdl,NewTestTbl);
confusionchart(TestTbl.Gender,testLabels)
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Version History
Introduced in R2021a

See Also
gencfeatures | genrfeatures | describe | transform | fitclinear | fitrlinear |
fitcensemble | fitrensemble | fitcsvm | fitrsvm

Topics
“Automated Feature Engineering for Classification” on page 19-194
“Automated Feature Engineering for Regression” on page 19-201
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feval
Package: 

Predict responses of generalized linear regression model using one input for each predictor

Syntax
ypred = feval(mdl,Xnew1,Xnew2,...,Xnewn)

Description
ypred = feval(mdl,Xnew1,Xnew2,...,Xnewn) returns the predicted response of mdl to the
new input predictors Xnew1,Xnew2,...,Xnewn.

Examples

Predict Response Values

Create a generalized linear regression model, and plot its responses to a range of input data.

Generate sample data using Poisson random numbers with two underlying predictors X(:,1) and
X(:,2).

rng('default') % For reproducibility
rndvars = randn(100,2);
X = [2 + rndvars(:,1),rndvars(:,2)];
mu = exp(1 + X*[1;2]);
y = poissrnd(mu);

Create a generalized linear regression model of Poisson data.

mdl = fitglm(X,y,'y ~ x1 + x2','Distribution','poisson');

Generate a range of values for X(:,1) and X(:,2), and plot the predictions at the values.

[Xtest1,Xtest2] = meshgrid(min(X(:,1)):.5:max(X(:,1)),min(X(:,2)):.5:max(X(:,2)));
Z = feval(mdl,Xtest1,Xtest2);
surf(Xtest1,Xtest2,Z)
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Input Arguments
mdl — Generalized linear regression model
GeneralizedLinearModel object | CompactGeneralizedLinearModel object

Generalized linear regression model, specified as a GeneralizedLinearModel object created using
fitglm or stepwiseglm, or a CompactGeneralizedLinearModel object created using compact.

Xnew1,Xnew2,...,Xnewn — New predictor input values
vector | matrix | table | dataset array

New predictor values, specified as a vector, matrix, table, or dataset array.

• If you pass multiple inputs Xnew1,Xnew2,...,Xnewn and each includes observations for one
predictor variable, then each input must be a vector. Each vector must have the same size. If you
specify a predictor variable as a scalar, then feval expands the scalar argument into a constant
vector of the same size as the other arguments.

• If you pass a single input Xnew1, then Xnew1 must be a table, dataset array, or matrix.

• If Xnew1 is a table or dataset array, it must contain predictors that have the same predictor
names as in the PredictorNames property of mdl.

• If Xnew1 is a matrix, it must have the same number of variables (columns) in the same order as
the predictor input used to create mdl. Note that Xnew1 must also contain any predictor
variables that are not used as predictors in the fitted model. Also, all variables used in creating
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mdl must be numeric. To treat numerical predictors as categorical, identify the predictors
using the 'CategoricalVars' name-value pair argument when you create mdl.

Data Types: single | double | table

Output Arguments
ypred — Predicted response values
numeric vector

Predicted response values at Xnew1,Xnew2,...,Xnewn, returned as a numeric vector.

For a binomial model, feval uses 1 as the BinomialSize parameter, so the values in ypred are
predicted probabilities. To return the numbers of successes in the trials, use the predict function
and specify the number of trials by using the 'BinomialSize' name-value pair argument.

For a model with an offset, feval uses 0 as the offset value. To specify the offset value used when
you fit a model, use the predict function and the 'Offset' name-value pair argument.

Tips
• A regression object is, mathematically, a function that estimates the relationship between the

response and predictors. The feval function enables an object to behave like a function in
MATLAB. You can pass feval to another function that accepts a function input, such as
fminsearch and integral.

• feval can be simpler to use with a model created from a table or dataset array. When you have
new predictor data, you can pass it to feval without creating a table or matrix.

Alternative Functionality
• predict gives the same predictions as feval if you use the default values for the 'Offset' and

'BinomialSize' name-value pair arguments of predict. The prediction values can be different
if you specify other values for these arguments. The predict function also returns confidence
intervals on its predictions. Note that the predict function accepts a single input argument
containing all predictor variables, rather than multiple input arguments with one input for each
predictor variable.

• random predicts responses with added noise.

Version History
Introduced in R2012a

Extended Capabilities
GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

This function fully supports GPU arrays. For more information, see “Run MATLAB Functions on a
GPU” (Parallel Computing Toolbox).
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See Also
GeneralizedLinearModel | CompactGeneralizedLinearModel | predict | random

Topics
“feval” on page 12-24
“Generalized Linear Models” on page 12-9

35 Functions

35-1722



feval
Package: 

Predict responses of linear regression model using one input for each predictor

Syntax
ypred = feval(mdl,Xnew1,Xnew2,...,Xnewn)

Description
ypred = feval(mdl,Xnew1,Xnew2,...,Xnewn) returns the predicted response of mdl to the
new input predictors Xnew1,Xnew2,...,Xnewn.

Examples

Plot Different Categorical Levels

Fit a mileage model to the carsmall data set, including the Year categorical predictor. Superimpose
fitted curves on a scatter plot of the data.

Load the data set and fit the model.

load carsmall
tbl = table(MPG,Weight);
tbl.Year = categorical(Model_Year);
mdl = fitlm(tbl,'MPG ~ Year + Weight^2');

Create a scatter plot of MPG versus Weight, grouped by Year.

gscatter(tbl.Weight,tbl.MPG,tbl.Year,'rgb');
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Plot curves of the model predictions for the various years and weights by using feval.

w = linspace(min(tbl.Weight),max(tbl.Weight))';
line(w,feval(mdl,w,'70'),'Color','r')
line(w,feval(mdl,w,'76'),'Color','g')
line(w,feval(mdl,w,'82'),'Color','b')
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Input Arguments
mdl — Linear regression model object
LinearModel object | CompactLinearModel object

Linear regression model object, specified as a LinearModel object created by using fitlm or
stepwiselm, or a CompactLinearModel object created by using compact.

Xnew1,Xnew2,...,Xnewn — New predictor input values
vector | matrix | table | dataset array

New predictor values, specified as a vector, matrix, table, or dataset array.

• If you pass multiple inputs Xnew1,Xnew2,...,Xnewn and each includes observations for one
predictor variable, then each input must be a vector. Each vector must have the same size. If you
specify a predictor variable as a scalar, then feval expands the scalar argument into a constant
vector of the same size as the other arguments.

• If you pass a single input Xnew1, then Xnew1 must be a table, dataset array, or matrix.

• If Xnew1 is a table or dataset array, it must contain predictors that have the same predictor
names as in the PredictorNames property of mdl.

• If Xnew1 is a matrix, it must have the same number of variables (columns) in the same order as
the predictor input used to create mdl. Note that Xnew1 must also contain any predictor
variables that are not used as predictors in the fitted model. Also, all variables used in creating
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mdl must be numeric. To treat numerical predictors as categorical, identify the predictors
using the 'CategoricalVars' name-value pair argument when you create mdl.

Data Types: single | double | table

Output Arguments
ypred — Predicted response values
numeric vector

Predicted response values at Xnew1,Xnew2,...,Xnewn, returned as a numeric vector.

Tips
• A regression object is, mathematically, a function that estimates the relationship between the

response and predictors. The feval function enables an object to behave like a function in
MATLAB. You can pass feval to another function that accepts a function input, such as
fminsearch and integral.

• feval can be simpler to use with a model created from a table or dataset array. When you have
new predictor data, you can pass it to feval without creating a table or matrix.

Alternative Functionality
• predict gives the same predictions as feval by using a single input argument containing all

predictor variables, rather than multiple input arguments with one input for each predictor
variable. predict also gives confidence intervals on its predictions.

• random predicts responses with added noise.

Version History
Introduced in R2012a

Extended Capabilities
GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

This function fully supports GPU arrays. For more information, see “Run MATLAB Functions on a
GPU” (Parallel Computing Toolbox).

See Also
CompactLinearModel | LinearModel | predict | random

Topics
“Predict or Simulate Responses to New Data” on page 11-31
“Linear Regression Workflow” on page 11-35
“Interpret Linear Regression Results” on page 11-52
“Linear Regression” on page 11-9
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feval
Class: NonLinearModel

Evaluate nonlinear regression model prediction

Syntax
ypred = feval(mdl,Xnew1,Xnew2,...,Xnewn)

Description
ypred = feval(mdl,Xnew1,Xnew2,...,Xnewn) returns the predicted response of mdl to the
input [Xnew1,Xnew2,...,Xnewn].

Input Arguments
mdl

Nonlinear regression model, constructed by fitnlm.

Xnew1,Xnew2,...,Xnewn

Predictor components. Xnewi can be one of:

• Scalar
• Vector
• Array

Each nonscalar component must have the same size (number of elements in each dimension).

If you pass just one Xnew array, Xnew can be a table, dataset array, or an array of doubles, where
each column of the array represents one predictor.

Output Arguments
ypred

Predicted mean values at Xnew. ypred is the same size as each component of Xnew.

Examples

Predict a Nonlinear Model from a Table

Create a nonlinear model for auto mileage based on the carbig data. Predict the mileage of an
average car.

Load the data and create a nonlinear model.
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load carbig
tbl = table(Horsepower,Weight,MPG);
modelfun = @(b,x)b(1) + b(2)*x(:,1).^b(3) + ...
    b(4)*x(:,2).^b(5);
beta0 = [-50 500 -1 500 -1];
mdl = fitnlm(tbl,modelfun,beta0);

Find the predicted mileage of an average car. The data contains some missing (NaN) observations, so
compute the mean using mean with the 'omitnan' option.

Xnew = mean([Horsepower Weight],'omitnan');
MPGnew = feval(mdl,Xnew)

MPGnew = 21.8073

Alternatives
predict gives the same predictions, but uses a single input array with one observation in each row,
rather than one component in each input argument. predict also gives confidence intervals on its
predictions.

random predicts with added noise.

See Also
NonLinearModel | predict | random

Topics
“Predict or Simulate Responses Using a Nonlinear Model” on page 13-9
“Nonlinear Regression” on page 13-2
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ff2n
Two-level full factorial design

Syntax
dFF2 = ff2n(n)

Description
dFF2 = ff2n(n) gives factor settings dFF2 for a two-level full factorial design with n factors. dFF2
is m-by-n, where m is the number of treatments in the full-factorial design. Each row of dFF2
corresponds to a single treatment. Each column contains the settings for a single factor, with values
of 0 and 1 for the two levels.

Examples
dFF2 = ff2n(3)
dFF2 =
   0   0   0
   0   0   1
   0   1   0
   0   1   1
   1   0   0
   1   0   1
   1   1   0
   1   1   1

Version History
Introduced before R2006a

See Also
fullfact

 ff2n

35-1729



fillprox
Proximity matrix for training data

Syntax
B = fillprox(B)
B = fillprox(B,'param1',val1,'param2',val2,...)

Description
B = fillprox(B) computes a proximity matrix for the training data and stores it in the Properties
field of B.

B = fillprox(B,'param1',val1,'param2',val2,...) specifies optional parameter name/
value pairs:

'Trees' Either 'all' or a vector of indices of the trees in the ensemble to be used in
computing the proximity matrix. Default is 'all'.

'NumPrint' Number of training cycles (grown trees) after which TreeBagger displays a
diagnostic message showing training progress. Default is no diagnostic
messages.

See Also
outlierMeasure | proximity
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findobj
Class: qrandstream

Find objects matching specified conditions

Syntax
hm = findobj(h, 'conditions')

Description
The findobj method of the handle class follows the same syntax as the MATLAB findobj
command, except that the first argument must be an array of handles to objects.

hm = findobj(h, 'conditions') searches the handle object array h and returns an array of
handle objects matching the specified conditions. Only the public members of the objects of h are
considered when evaluating the conditions.

See Also
findobj | qrandstream
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findprop
Class: qrandstream

Find property of MATLAB handle object

Syntax
p = findprop(h,'propname')

Description
p = findprop(h,'propname') finds and returns the meta.property object associated with
property name propname of scalar handle object h. propname must be a character vector. It can be
the name of a property defined by the class of h or a dynamic property added to scalar object h.

If no property named propname exists for object h, an empty meta.property array is returned.

See Also
dynamicprops | findobj | meta.property | qrandstream

35 Functions

35-1732



finv
F inverse cumulative distribution function

Syntax
X = finv(P,V1,V2)

Description
X = finv(P,V1,V2) computes the inverse of the F cdf with numerator degrees of freedom V1 and
denominator degrees of freedom V2 for the corresponding probabilities in P. P, V1, and V2 can be
vectors, matrices, or multidimensional arrays that all have the same size. A scalar input is expanded
to a constant array with the same dimensions as the other inputs. V1 and V2 parameters must contain
real positive values, and the values in P must lie on the interval [0 1].

The F inverse function is defined in terms of the F cdf as

x = F−1 p ν1, ν2 = x:F x ν1, ν2 = p

where

p = F(x ν1, ν2) = ∫
0

x Γ
(ν1 + ν2)

2

Γ
ν1
2 Γ

ν2
2

ν1
ν2

ν1
2 t

ν1− 2
2

1 +
ν1
ν2

t
ν1 + ν2

2

dt

Examples
Find a value that should exceed 95% of the samples from an F distribution with 5 degrees of freedom
in the numerator and 10 degrees of freedom in the denominator.

x = finv(0.95,5,10)
x =
  3.3258

You would observe values greater than 3.3258 only 5% of the time by chance.

Version History
Introduced before R2006a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.
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This function fully supports GPU arrays. For more information, see “Run MATLAB Functions on a
GPU” (Parallel Computing Toolbox).

See Also
icdf | fcdf | fpdf | fstat | frnd

Topics
“F Distribution” on page B-46
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fishertest
Fisher’s exact test

Syntax
h = fishertest(x)
[h,p,stats] = fishertest(x)
[ ___ ] = fishertest(x,Name,Value)

Description
h = fishertest(x) returns a test decision for Fisher’s exact test of the null hypothesis that there
are no nonrandom associations between the two categorical variables in x, against the alternative
that there is a nonrandom association. The result h is 1 if the test rejects the null hypothesis at the
5% significance level, or 0 otherwise.

[h,p,stats] = fishertest(x) also returns the significance level p of the test and a structure
stats containing additional test results, including the odds ratio and its asymptotic confidence
interval.

[ ___ ] = fishertest(x,Name,Value) returns a test decision using additional options specified
by one or more name-value pair arguments. For example, you can change the significance level of the
test or conduct a one-sided test.

Examples

Conduct Fisher's Exact Test

In a small survey, a researcher asked 17 individuals if they received a flu shot this year, and whether
they caught the flu this winter. The results indicate that, of the nine people who did not receive a flu
shot, three got the flu and six did not. Of the eight people who received a flu shot, one got the flu and
seven did not.

Create a 2-by-2 contingency table containing the survey data. Row 1 contains data for the individuals
who did not receive a flu shot, and row 2 contains data for the individuals who received a flu shot.
Column 1 contains the number of individuals who got the flu, and column 2 contains the number of
individuals who did not.

x = table([3;1],[6;7],'VariableNames',{'Flu','NoFlu'},'RowNames',{'NoShot','Shot'})

x=2×2 table
              Flu    NoFlu
              ___    _____

    NoShot     3       6  
    Shot       1       7  

Use Fisher's exact test to determine if there is a nonrandom association between receiving a flu shot
and getting the flu.
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h = fishertest(x)

h = logical
   0

The returned test decision h = 0 indicates that fishertest does not reject the null hypothesis of
no nonrandom association between the categorical variables at the default 5% significance level.
Therefore, based on the test results, individuals who do not get a flu shot do not have different odds
of getting the flu than those who got the flu shot.

Conduct a One-Sided Fisher's Exact Test

In a small survey, a researcher asked 17 individuals if they received a flu shot this year, and whether
they caught the flu. The results indicate that, of the nine people who did not receive a flu shot, three
got the flu and six did not. Of the eight people who received a flu shot, one got the flu and seven did
not.

x = [3,6;1,7];

Use a right-tailed Fisher's exact test to determine if the odds of getting the flu is higher for
individuals who did not receive a flu shot than for individuals who did. Conduct the test at the 1%
significance level.

[h,p,stats] = fishertest(x,'Tail','right','Alpha',0.01)

h = logical
   0

p = 0.3353

stats = struct with fields:
             OddsRatio: 3.5000
    ConfidenceInterval: [0.1289 95.0408]

The returned test decision h = 0 indicates that fishertest does not reject the null hypothesis of
no nonrandom association between the categorical variables at the 1% significance level. Since this is
a right-tailed hypothesis test, the conclusion is that individuals who do not get a flu shot do not have
greater odds of getting the flu than those who got the flu shot.

Generate a Contingency Table Using crosstab

Load the hospital data.

load hospital

The hospital dataset array contains data on 100 hospital patients, including last name, gender, age,
weight, smoking status, and systolic and diastolic blood pressure measurements.
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To determine if smoking status is independent of gender, use crosstab to create a 2-by-2
contingency table of smokers and nonsmokers, grouped by gender.

[tbl,chi2,p,labels] = crosstab(hospital.Sex,hospital.Smoker)

tbl = 2×2

    40    13
    26    21

chi2 = 4.5083

p = 0.0337

labels = 2x2 cell
    {'Female'}    {'0'}
    {'Male'  }    {'1'}

The rows of the resulting contingency table tbl correspond to the patient's gender, with row 1
containing data for females and row 2 containing data for males. The columns correspond to the
patient's smoking status, with column 1 containing data for nonsmokers and column 2 containing
data for smokers. The returned result chi2 = 4.5083 is the value of the chi-squared test statistic
for a chi-squared test of independence. The returned value p = 0.0337 is an approximate p-value
based on the chi-squared distribution.

Use the contingency table generated by crosstab to perform Fisher's exact test on the data.

[h,p,stats] = fishertest(tbl)

h = logical
   1

p = 0.0375

stats = struct with fields:
             OddsRatio: 2.4852
    ConfidenceInterval: [1.0624 5.8135]

The result h = 1 indicates that fishertest rejects the null hypothesis of nonassociation between
smoking status and gender at the 5% significance level. In other words, there is an association
between gender and smoking status. The odds ratio indicates that the male patients have about 2.5
times greater odds of being smokers than the female patients.

The returned p-value of the test, p = 0.0375, is close to, but not exactly the same as, the result
obtained by crosstab. This is because fishertest computes an exact p-value using the sample
data, while crosstab uses a chi-squared approximation to compute the p-value.

Input Arguments
x — Contingency table
2-by-2 matrix of nonnegative integer values | 2-by-2 table of nonnegative integer values
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Contingency table, specified as a 2-by-2 matrix or table containing nonnegative integer values. A
contingency table contains the frequency distribution of the variables in the sample data. You can use
crosstab to generate a contingency table from sample data.
Example: [4,0;0,4]
Data Types: single | double

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: 'Alpha',0.01,'Tail','right' specifies a right-tailed hypothesis test at the 1%
significance level.

Alpha — Significance level
0.05 (default) | scalar value in the range (0,1)

Significance level of the hypothesis test, specified as the comma-separated pair consisting of
'Alpha' and a scalar value in the range (0,1).
Example: 'Alpha',0.01
Data Types: single | double

Tail — Type of alternative hypothesis
'both' (default) | 'right' | 'left'

Type of alternative hypothesis, specified as the comma-separated pair consisting of 'Tail' and one
of the following.

'both' Two-tailed test. The alternative hypothesis is that
there is a nonrandom association between the
two variables in x, and the odds ratio is not equal
to 1.

'right' Right-tailed test. The alternative hypothesis is
that the odds ratio is greater than 1.

'left' Left-tailed test. The alternative hypothesis is that
the odds ratio is less than 1.

Example: 'Tail','right'

Output Arguments
h — Hypothesis test result
1 | 0

Hypothesis test result, returned as a logical value.

• If h is 1, then fishertest rejects the null hypothesis at the Alpha significance level.
• If h is 0, then fishertest fails to reject the null hypothesis at the Alpha significance level.
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p — p-value
scalar value in the range [0,1]

p-value of the test, returned as a scalar value in the range [0,1]. p is the probability of observing a
test statistic as extreme as, or more extreme than, the observed value under the null hypothesis.
Small values of p cast doubt on the validity of the null hypothesis.

stats — Test data
structure

Test data, returned as a structure with the following fields:

• OddsRatio — A measure of association between the two variables.
• ConfidenceInterval — Asymptotic confidence interval for the odds ratio. If any of the cell

frequencies in x are 0, then fishertest does not compute a confidence interval and instead
displays [-Inf Inf].

More About
Fisher’s Exact Test

Fisher’s exact test is a nonparametric statistical test used to test the null hypothesis that no
nonrandom associations exist between two categorical variables, against the alternative that there is
a nonrandom association between the variables.

Fisher’s exact test provides an alternative to the chi-squared test for small samples, or samples with
very uneven marginal distributions. Unlike the chi-squared test, Fisher’s exact test does not depend
on large-sample distribution assumptions, and instead calculates an exact p-value based on the
sample data. Although Fisher’s exact test is valid for samples of any size, it is not recommended for
large samples because it is computationally intensive. If all of the frequency counts in the
contingency table are greater than or equal to 1e7, then fishertest errors. For contingency tables
that contain large count values or are well-balanced, use crosstab or chi2gof instead.

fishertest accepts a 2-by-2 contingency table as input, and computes the p-value of the test as
follows:

1 Calculate the sums for each row, column, and total number of observations in the contingency
table.

2 Using a multivariate generalization of the hypergeometric probability function, calculate the
conditional probability of observing the exact result in the contingency table if the null
hypothesis were true, given its row and column sums. The conditional probability is

Pcutof f =
R1!R2! C1!C2!

N!∏i, jni j!
,

where R1 and R2 are the row sums, C1 and C2 are the column sums, N is the total number of
observations in the contingency table, and nij is the value in the ith row and jth column of the
table.

3 Find all possible matrices of nonnegative integers consistent with the row and column sums. For
each matrix, calculate the associated conditional probability using the equation for Pcutoff.

4 Use these values to calculate the p-value of the test, based on the alternative hypothesis of
interest.
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• For a two-sided test, sum all of the conditional probabilities less than or equal to Pcutoff for the
observed contingency table. This represents the probability of observing a result as extreme
as, or more extreme than, the actual outcome if the null hypothesis were true. Small p-values
cast doubt on the validity of the null hypothesis, in favor of the alternative hypothesis of
association between the variables.

• For a left-sided test, sum the conditional probabilities of all the matrices with a (1,1) cell
frequency less than or equal to n11.

• For a right-sided test, sum the conditional probabilities of all the matrices with a (1,1) cell
frequency greater than or equal to n11 in the observed contingency table.

The odds ratio is

OR =
n11n22
n21n12

.

The null hypothesis of conditional independence is equivalent to the hypothesis that the odds ratio
equals 1. The left-sided alternative is equivalent to an odds ratio less than 1, and the right-sided
alternative is equivalent to an odds ratio greater than 1.

The asymptotic 100(1 – α)% confidence interval for the odds ratio is

CI = exp L− Φ−1 1− α
2 SE , exp L + Φ−1 1− α

2 SE ,

where L is the log odds ratio, Φ-1( • ) is the inverse of the normal inverse cumulative distribution
function, and SE is the standard error for the log odds ratio. If the 100(1 – α)% confidence interval
does not contain the value 1, then the association is significant at the α significance level. If any of
the four cell frequencies are 0, then fishertest does not compute the confidence interval and
instead displays [-Inf Inf].

fishertest only accepts 2-by-2 contingency tables as input. To test the independence of categorical
variables with more than two levels, use the chi-squared test provided by crosstab.

Version History
Introduced in R2014b

See Also
crosstab | chi2gof
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fit
Fit simple model of local interpretable model-agnostic explanations (LIME)

Syntax
newresults = fit(results,queryPoint,numImportantPredictors)
newresults = fit(results,queryPoint,numImportantPredictors,Name,Value)

Description
newresults = fit(results,queryPoint,numImportantPredictors) fits a new simple model
for the specified query point (queryPoint) by using the specified number or predictors
(numImportantPredictors). The function returns a lime object newresults that contains the
new simple model.

fit uses the simple model options that you specify when you create the lime object results. You
can change the options using the name-value pair arguments of the fit function.

newresults = fit(results,queryPoint,numImportantPredictors,Name,Value) specifies
additional options using one or more name-value pair arguments. For example, you can specify
'SimpleModelType','tree' to fit a decision tree model.

Examples

Explain Prediction with Linear Simple Model

Train a regression model and create a lime object that uses a linear simple model. When you create
a lime object, if you do not specify a query point and the number of important predictors, then the
software generates samples of a synthetic data set but does not fit a simple model. Use the object
function fit to fit a simple model for a query point. Then display the coefficients of the fitted linear
simple model by using the object function plot.

Load the carbig data set, which contains measurements of cars made in the 1970s and early 1980s.

load carbig

Create a table containing the predictor variables Acceleration, Cylinders, and so on, as well as
the response variable MPG.

tbl = table(Acceleration,Cylinders,Displacement,Horsepower,Model_Year,Weight,MPG);

Removing missing values in a training set can help reduce memory consumption and speed up
training for the fitrkernel function. Remove missing values in tbl.

tbl = rmmissing(tbl);

Create a table of predictor variables by removing the response variable from tbl.

tblX = removevars(tbl,'MPG');
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Train a blackbox model of MPG by using the fitrkernel function.

rng('default') % For reproducibility
mdl = fitrkernel(tblX,tbl.MPG,'CategoricalPredictors',[2 5]);

Create a lime object. Specify a predictor data set because mdl does not contain predictor data.

results = lime(mdl,tblX)

results = 
  lime with properties:

             BlackboxModel: [1x1 RegressionKernel]
              DataLocality: 'global'
     CategoricalPredictors: [2 5]
                      Type: 'regression'
                         X: [392x6 table]
                QueryPoint: []
    NumImportantPredictors: []
          NumSyntheticData: 5000
             SyntheticData: [5000x6 table]
                    Fitted: [5000x1 double]
               SimpleModel: []
       ImportantPredictors: []
            BlackboxFitted: []
         SimpleModelFitted: []

results contains the generated synthetic data set. The SimpleModel property is empty ([]).

Fit a linear simple model for the first observation in tblX. Specify the number of important
predictors to find as 3.

queryPoint = tblX(1,:)

queryPoint=1×6 table
    Acceleration    Cylinders    Displacement    Horsepower    Model_Year    Weight
    ____________    _________    ____________    __________    __________    ______

         12             8            307            130            70         3504 

results = fit(results,queryPoint,3);

Plot the lime object results by using the object function plot. To display an existing underscore in
any predictor name, change the TickLabelInterpreter value of the axes to 'none'.

f = plot(results);
f.CurrentAxes.TickLabelInterpreter = 'none';
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The plot displays two predictions for the query point, which correspond to the “BlackboxFitted” on
page 35-0  property and the “SimpleModelFitted” on page 35-0  property of results.

The horizontal bar graph shows the coefficient values of the simple model, sorted by their absolute
values. LIME finds Horsepower, Model_Year, and Cylinders as important predictors for the query
point.

Model_Year and Cylinders are categorical predictors that have multiple categories. For a linear
simple model, the software creates one less dummy variable than the number of categories for each
categorical predictor. The bar graph displays only the most important dummy variable. You can check
the coefficients of the other dummy variables using the SimpleModel property of results. Display
the sorted coefficient values, including all categorical dummy variables.

[~,I] = sort(abs(results.SimpleModel.Beta),'descend');
table(results.SimpleModel.ExpandedPredictorNames(I)',results.SimpleModel.Beta(I), ...
    'VariableNames',{'Exteded Predictor Name','Coefficient'})

ans=17×2 table
      Exteded Predictor Name      Coefficient
    __________________________    ___________

    {'Horsepower'            }    -3.4485e-05
    {'Model_Year (74 vs. 70)'}    -6.1279e-07
    {'Model_Year (80 vs. 70)'}     -4.015e-07
    {'Model_Year (81 vs. 70)'}     3.4176e-07
    {'Model_Year (82 vs. 70)'}    -2.2483e-07
    {'Cylinders (6 vs. 8)'   }    -1.9024e-07
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    {'Model_Year (76 vs. 70)'}     1.8136e-07
    {'Cylinders (5 vs. 8)'   }     1.7461e-07
    {'Model_Year (71 vs. 70)'}      1.558e-07
    {'Model_Year (75 vs. 70)'}     1.5456e-07
    {'Model_Year (77 vs. 70)'}      1.521e-07
    {'Model_Year (78 vs. 70)'}     1.4272e-07
    {'Model_Year (72 vs. 70)'}     6.7001e-08
    {'Model_Year (73 vs. 70)'}     4.7214e-08
    {'Cylinders (4 vs. 8)'   }     4.5118e-08
    {'Model_Year (79 vs. 70)'}    -2.2598e-08
      ⋮

Fit Simple Models for Multiple Query Points

Train a classification model and create a lime object that uses a decision tree simple model. Fit
multiple models for multiple query points.

Load the CreditRating_Historical data set. The data set contains customer IDs and their
financial ratios, industry labels, and credit ratings.

tbl = readtable('CreditRating_Historical.dat');

Create a table of predictor variables by removing the columns of customer IDs and ratings from tbl.

tblX = removevars(tbl,["ID","Rating"]);

Train a blackbox model of credit ratings by using the fitcecoc function.

blackbox = fitcecoc(tblX,tbl.Rating,'CategoricalPredictors','Industry')

blackbox = 
  ClassificationECOC
           PredictorNames: {1x6 cell}
             ResponseName: 'Y'
    CategoricalPredictors: 6
               ClassNames: {'A'  'AA'  'AAA'  'B'  'BB'  'BBB'  'CCC'}
           ScoreTransform: 'none'
           BinaryLearners: {21x1 cell}
               CodingName: 'onevsone'

  Properties, Methods

Create a lime object with the blackbox model.

rng('default') % For reproducibility
results = lime(blackbox);

Find two query points whose true rating values are AAA and B, respectively.

queryPoint(1,:) = tblX(find(strcmp(tbl.Rating,'AAA'),1),:);
queryPoint(2,:) = tblX(find(strcmp(tbl.Rating,'B'),1),:)

queryPoint=2×6 table
    WC_TA    RE_TA    EBIT_TA    MVE_BVTD    S_TA     Industry
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    _____    _____    _______    ________    _____    ________

    0.121    0.413     0.057      3.647      0.466       12   
    0.019    0.009     0.042      0.257      0.119        1   

Fit a linear simple model for the first query point. Set the number of important predictors to 4.

newresults1 = fit(results,queryPoint(1,:),4);

Plot the LIME results newresults1 for the first query point. To display an existing underscore in any
predictor name, change the TickLabelInterpreter value of the axes to 'none'.

f1 = plot(newresults1);
f1.CurrentAxes.TickLabelInterpreter = 'none';

Fit a linear decision tree model for the first query point.

newresults2 = fit(results,queryPoint(1,:),6,'SimpleModelType','tree');
f2 = plot(newresults2);
f2.CurrentAxes.TickLabelInterpreter = 'none';

 fit

35-1745



The simple models in newresults1 and newresults2 both find MVE_BVTD and RE_TA as important
predictors.

Fit a linear simple model for the second query point, and plot the LIME results for the second query
point.

newresults3 = fit(results,queryPoint(2,:),4);
f3 = plot(newresults3);
f3.CurrentAxes.TickLabelInterpreter = 'none';
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The prediction from the blackbox model is B, but the prediction from the simple model is not B.
When the two predictions are not the same, you can specify a smaller 'KernelWidth' value. The
software fits a simple model using weights that are more focused on the samples near the query
point. If a query point is an outlier or is located near a decision boundary, then the two prediction
values can be different, even if you specify a small 'KernelWidth' value. In such a case, you can
change other name-value pair arguments. For example, you can generate a local synthetic data set
(specify 'DataLocality' of lime as 'local') for the query point and increase the number of
samples ('NumSyntheticData' of lime or fit) in the synthetic data set. You can also use a
different distance metric ('Distance' of lime or fit).

Fit a linear simple model with a small 'KernelWidth' value.

newresults4 = fit(results,queryPoint(2,:),4,'KernelWidth',0.01);
f4 = plot(newresults4);
f4.CurrentAxes.TickLabelInterpreter = 'none';
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The credit ratings for the first and second query points are AAA and B, respectively. The simple
models in newresults1 and newresults4 both find MVE_BVTD, RE_TA, and WC_TA as important
predictors. However, their coefficient values are different. The plots show that these predictors act
differently depending on the credit ratings.

Input Arguments
results — LIME results
lime object

LIME results, specified as a lime object.

queryPoint — Query point
row vector of numeric values | single-row table

Query point around which the fit function fits the simple model, specified as a row vector of
numeric values or a single-row table. The queryPoint value must have the same data type and the
same number of columns as the predictor data (results.X or results.SyntheticData) in the
lime object results.

queryPoint must not contain missing values.
Data Types: single | double | table
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numImportantPredictors — Number of important predictors to use in simple model
positive integer scalar value

Number of important predictors to use in the simple model, specified as a positive integer scalar
value.

• If 'SimpleModelType' is 'linear', then the software selects the specified number of
important predictors and fits a linear model of the selected predictors.

• If 'SimpleModelType' is 'tree', then the software specifies the maximum number of decision
splits (or branch nodes) as the number of important predictors so that the fitted decision tree uses
at most the specified number of predictors.

The default value of the numImportantPredictors argument is the NumImportantPredictors
property value of the lime object results. If you do not specify the property value when creating
results, then the property value is empty ([]) and you must specify this argument.
Data Types: single | double

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: 'NumSyntheticData',2000,'SimpleModelType','tree' sets the number of samples
to generate for the synthetic data set to 2000 and specifies the simple model type as a decision tree.

Cov — Covariance matrix for Mahalanobis distance metric
positive definite matrix

Covariance matrix for the Mahalanobis distance metric, specified as the comma-separated pair
consisting of 'Cov' and a K-by-K positive definite matrix, where K is the number of predictors.

This argument is valid only if 'Distance' is 'mahalanobis'.

The default value is the 'Cov' value that you specify when creating the lime object results. The
default 'Cov' value of lime is cov(PD,'omitrows'), where PD is the predictor data or synthetic
predictor data. If you do not specify the 'Cov' value, then the software uses different covariance
matrices when computing the distances for both the predictor data and the synthetic predictor data.
Example: 'Cov',eye(3)
Data Types: single | double

Distance — Distance metric
character vector | string scalar | function handle

Distance metric, specified as the comma-separated pair consisting of 'Distance' and a character
vector, string scalar, or function handle.

• If the predictor data includes only continuous variables, then fit supports these distance metrics.

 fit
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Value Description
'euclidean' Euclidean distance.
'seuclidean' Standardized Euclidean distance. Each coordinate difference between

observations is scaled by dividing by the corresponding element of the
standard deviation, S = std(PD,'omitnan'), where PD is the
predictor data or synthetic predictor data. To specify different scaling,
use the 'Scale' name-value argument.

'mahalanobis' Mahalanobis distance using the sample covariance of PD, C =
cov(PD,'omitrows'). To change the value of the covariance matrix,
use the 'Cov' name-value argument.

'cityblock' City block distance.
'minkowski' Minkowski distance. The default exponent is 2. To specify a different

exponent, use the 'P' name-value argument.
'chebychev' Chebychev distance (maximum coordinate difference).
'cosine' One minus the cosine of the included angle between points (treated as

vectors).
'correlation' One minus the sample correlation between points (treated as

sequences of values).
'spearman' One minus the sample Spearman's rank correlation between

observations (treated as sequences of values).
@distfun Custom distance function handle. A distance function has the form

function D2 = distfun(ZI,ZJ)
% calculation of distance
...

where

• ZI is a 1-by-t vector containing a single observation.
• ZJ is an s-by-t matrix containing multiple observations. distfun

must accept a matrix ZJ with an arbitrary number of observations.
• D2 is an s-by-1 vector of distances, and D2(k) is the distance

between observations ZI and ZJ(k,:).

If your data is not sparse, you can generally compute distance more
quickly by using a built-in distance metric instead of a function
handle.

• If the predictor data includes both continuous and categorical variables, then fit supports these
distance metrics.

Value Description
'goodall3' Modified Goodall distance
'ofd' Occurrence frequency distance

For definitions, see “Distance Metrics” on page 35-1753.

The default value is the 'Distance' value that you specify when creating the lime object results.
The default 'Distance' value of lime is 'euclidean' if the predictor data includes only
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continuous variables, or 'goodall3' if the predictor data includes both continuous and categorical
variables.
Example: 'Distance','ofd'
Data Types: char | string | function_handle

KernelWidth — Kernel width
numeric scalar value

Kernel width of the squared exponential (or Gaussian) kernel function, specified as the comma-
separated pair consisting of 'KernelWidth' and a numeric scalar value.

The fit function computes distances between the query point and the samples in the synthetic
predictor data set, and then converts the distances to weights by using the squared exponential
kernel function. If you lower the 'KernelWidth' value, then fit uses weights that are more
focused on the samples near the query point. For details, see “LIME” on page 35-1755.

The default value is the 'KernelWidth' value that you specify when creating the lime object
results. The default 'KernelWidth' value of lime is 0.75.
Example: 'KernelWidth',0.5
Data Types: single | double

NumNeighbors — Number of neighbors of query point
positive integer scalar value

Number of neighbors of the query point, specified as the comma-separated pair consisting of
'NumNeighbors' and a positive integer scalar value. This argument is valid only when the
DataLocality property of results is 'local'.

The fit function estimates the distribution parameters of the predictor data using the specified
number of nearest neighbors of the query point. Then the function generates synthetic predictor data
using the estimated distribution.

If you specify a value larger than the number of observations in the predictor data set (results.X)
in the lime object results, then fit uses all observations.

The default value is the 'NumNeighbors' value that you specify when creating the lime object
results. The default 'NumNeighbors' value of lime is 1500.
Example: 'NumNeighbors',2000
Data Types: single | double

NumSyntheticData — Number of samples to generate for synthetic data set
results.NumSyntheticData (default) | positive integer scalar value

Number of samples to generate for the synthetic data set, specified as the comma-separated pair
consisting of 'NumSyntheticData' and a positive integer scalar value.

The default value is the NumSyntheticData property value of the lime object results. If you
provide a custom synthetic data set when creating results, then the property value is the number of
samples in the data set. Otherwise, the 'NumSyntheticData' value that you specify when creating
results sets the property. The default 'NumSyntheticData' value of lime is 5000.
Example: 'NumSyntheticData',2500
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Data Types: single | double

P — Exponent for Minkowski distance metric
positive scalar

Exponent for the Minkowski distance metric, specified as the comma-separated pair consisting of 'P'
and a positive scalar.

This argument is valid only if 'Distance' is 'minkowski'.

The default value is the 'P' value that you specify when creating the lime object results. The
default 'P' value of lime is 2.
Example: 'P',3
Data Types: single | double

Scale — Scale parameter value for standardized Euclidean distance metric
nonnegative numeric vector

Scale parameter value for the standardized Euclidean distance metric, specified as the comma-
separated pair consisting of 'Scale' and a nonnegative numeric vector of length K, where K is the
number of predictors.

This argument is valid only if 'Distance' is 'seuclidean'.

The default value is the 'Scale' value that you specify when creating the lime object results. The
default 'Scale' value of lime is std(PD,'omitnan'), where PD is the predictor data or synthetic
predictor data. If you do not specify the 'Scale' value, then the software uses different scale
parameters when computing the distances for both the predictor data and the synthetic predictor
data.
Example: 'Scale',quantile(X,0.75) - quantile(X,0.25)
Data Types: single | double

SimpleModelType — Type of simple model
'linear' | 'tree'

Type of the simple model, specified as the comma-separated pair consisting of 'SimpleModelType'
and 'linear' or 'tree'.

• 'linear' — The software fits a linear model by using fitrlinear for regression or
fitclinear for classification.

• 'tree' — The software fits a decision tree model by using fitrtree for regression or fitctree
for classification.

The default value is the 'SimpleModelType' value that you specify when creating the lime object
results. The default 'SimpleModelType' value of lime is 'linear'.
Example: 'SimpleModelType','tree'
Data Types: char | string
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Output Arguments
newresults — LIME results
lime object

LIME results, returned as a lime object. newresults contains the new simple model.

To overwrite the input argument results, assign the output of fit to results:

results = fit(results,queryPoint,numImportantPredictors);

More About
Distance Metrics

A distance metric is a function that defines a distance between two observations. fit supports
various distance metrics for continuous variables and a mix of continuous and categorical variables.

• Distance metrics for continuous variables

Given an mx-by-n data matrix X, which is treated as mx (1-by-n) row vectors x1, x2, ..., xmx, and an
my-by-n data matrix Y, which is treated as my (1-by-n) row vectors y1, y2, ...,ymy, the various
distances between the vector xs and yt are defined as follows:

• Euclidean distance

dst
2 = (xs− yt)(xs− yt)′ .

The Euclidean distance is a special case of the Minkowski distance, where p = 2.
• Standardized Euclidean distance

dst
2 = (xs− yt)V−1(xs− yt)′,

where V is the n-by-n diagonal matrix whose jth diagonal element is (S(j))2, where S is a vector
of scaling factors for each dimension.

• Mahalanobis distance

dst
2 = (xs− yt)C−1(xs− yt)′,

where C is the covariance matrix.
• City block distance

dst = ∑
j = 1

n
xs j− yt j .

The city block distance is a special case of the Minkowski distance, where p = 1.
• Minkowski distance

dst = ∑
j = 1

n
xs j− yt j

pp .
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For the special case of p = 1, the Minkowski distance gives the city block distance. For the
special case of p = 2, the Minkowski distance gives the Euclidean distance. For the special
case of p = ∞, the Minkowski distance gives the Chebychev distance.

• Chebychev distance

dst = max j xs j− yt j .

The Chebychev distance is a special case of the Minkowski distance, where p = ∞.
• Cosine distance

dst = 1−
xsy′t

xsx′s yty′t
.

• Correlation distance

dst = 1−
xs− xs yt− yt ′

xs− xs xs− xs ′ yt − yt yt − yt ′ ,

where

xs = 1
n∑j xs j

and

yt = 1
n∑j yt j .

• Spearman distance

dst = 1−
rs− r s rt − r t ′

rs− r s rs− r s ′ rt − r t rt− r t ′ ,

where

• rsj is the rank of xsj taken over x1j, x2j, ...xmx,j, as computed by tiedrank.
• rtj is the rank of ytj taken over y1j, y2j, ...ymy,j, as computed by tiedrank.
• rs and rt are the coordinate-wise rank vectors of xs and yt, that is, rs = (rs1, rs2, ... rsn) and rt

= (rt1, rt2, ... rtn).
• r s = 1

n∑j rs j = n + 1
2 .

• r t = 1
n∑j rt j = n + 1

2 .

• Distance metrics for a mix of continuous and categorical variables

• Modified Goodall distance

This distance is a variant of the Goodall distance, which assigns a small distance if the
matching values are infrequent regardless of the frequencies of the other values. For
mismatches, the distance contribution of the predictor is 1/(number of variables).

• Occurrence frequency distance
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For a match, the occurrence frequency distance assigns zero distance. For a mismatch, the
occurrence frequency distance assigns a higher distance on a less frequent value and a lower
distance on a more frequent value.

Algorithms
LIME

To explain a prediction of a machine learning model using LIME [1], the software generates a
synthetic data set and fits a simple interpretable model to the synthetic data set by using lime and
fit, as described in steps 1–5.

• If you specify the queryPoint and numImportantPredictors values of lime, then the lime
function performs all steps.

• If you do not specify queryPoint and numImportantPredictors and specify 'DataLocality'
as 'global' (default), then the lime function generates a synthetic data set (steps 1–2), and the
fit function fits a simple model (steps 3–5).

• If you do not specify queryPoint and numImportantPredictors and specify 'DataLocality'
as 'local', then the fit function performs all steps.

The lime and fit functions perform these steps:

1 Generate a synthetic predictor data set Xs using a multivariate normal distribution for continuous
variables and a multinomial distribution for each categorical variable. You can specify the
number of samples to generate by using the 'NumSyntheticData' name-value argument.

• If 'DataLocality' is 'global' (default), then the software estimates the distribution
parameters from the whole predictor data set (X or predictor data in blackbox).

• If 'DataLocality' is 'local', then the software estimates the distribution parameters
using the k-nearest neighbors of the query point, where k is the 'NumNeighbors' value. You
can specify a distance metric to find the nearest neighbors by using the 'Distance' name-
value argument.

The software ignores missing values in the predictor data set when estimating the distribution
parameters.

Alternatively, you can provide a pregenerated, custom synthetic predictor data set by using the
customSyntheticData input argument of lime.

2 Compute the predictions Ys for the synthetic data set Xs. The predictions are predicted responses
for regression or classified labels for classification. The software uses the predict function of
the blackbox model to compute the predictions. If you specify blackbox as a function handle,
then the software computes the predictions by using the function handle.

3 Compute the distances d between the query point and the samples in the synthetic predictor data
set using the distance metric specified by 'Distance'.

4 Compute the weight values wq of the samples in the synthetic predictor data set with respect to
the query point q using the squared exponential (or Gaussian) kernel function

wq(xs) = exp −1
2

d(xs, q)
pσ

2
.

• xs is a sample in the synthetic predictor data set Xs.
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• d(xs,q) is the distance between the sample xs and the query point q.
• p is the number of predictors in Xs.
• σ is the kernel width, which you can specify by using the 'KernelWidth' name-value

argument. The default 'KernelWidth' value is 0.75.

The weight value at the query point is 1, and then it converges to zero as the distance value
increases. The 'KernelWidth' value controls how fast the weight value converges to zero. The
lower the 'KernelWidth' value, the faster the weight value converges to zero. Therefore, the
algorithm gives more weight to samples near the query point. Because this algorithm uses such
weight values, the selected important predictors and fitted simple model effectively explain the
predictions for the synthetic data locally, around the query point.

5 Fit a simple model.

• If 'SimpleModelType' is 'linear' (default), then the software selects important
predictors and fits a linear model of the selected important predictors.

• Select n important predictors (Xs) by using the group orthogonal matching pursuit (OMP)
algorithm [2][3], where n is the numImportantPredictors value. This algorithm uses
the synthetic predictor data set (Xs), predictions (Ys), and weight values (wq).

• Fit a linear model of the selected important predictors (Xs) to the predictions (Ys) using the
weight values (wq). The software uses fitrlinear for regression or fitclinear for
classification. For a multiclass model, the software uses the one-versus-all scheme to
construct a binary classification problem. The positive class is the predicted class for the
query point from the blackbox model, and the negative class refers to the other classes.

• If 'SimpleModelType' is 'tree', then the software fits a decision tree model by using
fitrtree for regression or fitctree for classification. The software specifies the maximum
number of decision splits (or branch nodes) as the number of important predictors so that the
fitted decision tree uses at most the specified number of predictors.

Version History
Introduced in R2020b
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See Also
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Topics
“Interpret Machine Learning Models” on page 27-2
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fit
Train drift-aware learner for incremental learning with new data

Syntax
Mdl = fit(Mdl,X,Y)
Mdl = fit(Mdl,X,Y,Name=Value)

Description
Mdl = fit(Mdl,X,Y) returns an incremental drift-aware learning model Mdl, which represents the
input incremental drift-aware learning model Mdl trained using the predictor and response data, X
and Y, respectively.

fit does not update Mdl.Metrics.

Mdl = fit(Mdl,X,Y,Name=Value) uses additional options specified by one or more name-value
arguments. For example, you can specify that the columns of the predictor data matrix correspond to
observations, and set observation weights.

Examples

Incrementally Train Model

Load the human activity dataset. Randomly shuffle the data.

load humanactivity;
n = numel(actid);
rng(1) % For reproducibility
idx = randsample(n,n);

For details on the data set, enter Description at the command line.

Define the predictor and response variables.

X = feat(idx,:);
Y = actid(idx);

Responses can be one of five classes: Sitting, Standing, Walking, Running, or Dancing.

Dichotomize the response by identifying whether the subject is moving (actid > 2).

Y = Y > 2;

Flip labels for the second half of the dataset to simulate drift.

Y(floor(numel(Y)/2):end,:) = ~Y(floor(numel(Y)/2):end,:);

Initiate a default incremental drift-aware model for classification as follows:
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1 Create an incremental linear SVM model for binary classification. Specify an estimation period of
5000 observations and the SGD solver.

2 Initiate a default incremental drift-aware model using the incremental linear SVM model as the
base learner.

baseMdl = incrementalClassificationLinear(EstimationPeriod=5000,Solver="sgd");
idaMdl = incrementalDriftAwareLearner(baseMdl);

idaMdl is an incrementalDriftAwareLearner model. All its properties are read-only. By default,
incrementalDriftAwareLearner uses the Hoeffding's Bound drift detection method based on
moving averages ("hddma").

idaMdl must be fit to data before you can use it to perform any other operations.

Fit the incremental drift-aware model to the training data, in chunks of 50 observations at a time, by
using the fit function. At each iteration:

1 Simulate a data stream by processing 50 observations.
2 Overwrite the previous incremental model with a new one fitted to the incoming observations.
3 Store the number of training observations, and the prior probability of whether the subject

moved (Y = true) to see how they evolve during incremental training.

% Preallocation
numObsPerChunk = 50;
nchunk = floor(n/numObsPerChunk);
beta1 = zeros(nchunk,1);    
numtrainobs = zeros(nchunk,1);
dstatus = zeros(nchunk,1);
statusname = strings(nchunk,1);
driftTimes = [];
ce = array2table(zeros(nchunk,2),VariableNames=["Cumulative" "Window"]);

% Incremental fitting
for j = 1:nchunk
    ibegin = min(n,numObsPerChunk*(j-1) + 1);
    iend   = min(n,numObsPerChunk*j);
    idx = ibegin:iend;    

    idaMdl = fit(idaMdl,X(idx,:),Y(idx));
    idaMdl = updateMetrics(idaMdl,X(idx,:),Y(idx));
    beta1(j) = idaMdl.BaseLearner.Beta(1);
    
    % Record drift status and classification error
    statusname(j) = string(idaMdl.DriftStatus); 
    ce{j,:} = idaMdl.Metrics{"ClassificationError",:};
    numtrainobs(j) = idaMdl.NumTrainingObservations; 

    if idaMdl.DriftDetected
       dstatus(j) = 2;  
       driftTimes(end+1) = j; 
    elseif idaMdl.WarningDetected
       dstatus(j) = 1;
    else 
       dstatus(j) = 0;
    end   
 
end
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idaMdl is an incrementalDriftAwareLearner model object trained on all the data in the stream.

To see how the parameters evolve during incremental learning, plot them on separate tiles.

tiledlayout(2,1)
nexttile
plot(beta1)
ylabel("\beta_1")
xline(idaMdl.BaseLearner.EstimationPeriod/numObsPerChunk,"r-.","EstimationPeriod")
xline(idaMdl.BaseLearner.EstimationPeriod/numObsPerChunk + driftTimes,"r-.")
xlabel('Iteration')
xline(idaMdl.TrainingPeriod/numObsPerChunk,"b-.","Training Period",LabelVerticalAlignment="middle",LineWidth= 1.5)
xline(floor(numel(Y)/2)/numObsPerChunk,"m--","Drift",LabelVerticalAlignment="middle",LineWidth= 1.5)
axis tight

nexttile
plot(numtrainobs)
ylabel("Number of Training Observations")
xline(idaMdl.BaseLearner.EstimationPeriod/numObsPerChunk,"r-.","EstimationPeriod")
xline(idaMdl.BaseLearner.EstimationPeriod/numObsPerChunk + driftTimes,"r-.")
xlabel("Iteration")
xline(idaMdl.TrainingPeriod/numObsPerChunk,"b-.","Training Period",LabelVerticalAlignment="middle")
xline(floor(numel(Y)/2)/numObsPerChunk,"m--","Drift",LabelVerticalAlignment="middle")
axis tight
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The plot suggests that fit does not fit the model to the data or update the parameters until after the
estimation period. After a drift is detected, the function waits for another
Mdl.BaseLearner.EstimationPeriod number of observations to fit the new model to data.

Plot the cumulative and per window classification error. Mark the warmup and training periods, and
where the drift was introduced.

figure()
h = plot(ce.Variables);

xlim([0 nchunk])
ylabel("Classification Error")
xlabel("Iteration")

xline((idaMdl.BaseLearner.EstimationPeriod+idaMdl.MetricsWarmupPeriod)/numObsPerChunk,"g-.","Estimation + Warmup Period",LineWidth=1.5)
xline((idaMdl.BaseLearner.EstimationPeriod+idaMdl.MetricsWarmupPeriod)/numObsPerChunk+driftTimes,"g-.","Estimation + Warmup Period",LineWidth=1.5)
xline(idaMdl.TrainingPeriod/numObsPerChunk,"b-.","Training Period",LabelVerticalAlignment="middle",LineWidth=1.5)
xline(driftTimes,"m--","Drift",LabelVerticalAlignment="middle",LineWidth=1.5)

legend(h,ce.Properties.VariableNames)
legend(h,Location="best")

Plot the drift status versus the iteration number.

gscatter(1:nchunk,dstatus,statusname,"gbr","o",5,"on","Iteration","Drift Status","filled")
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Predict labels for the second half of the data and check the accuracy of the model updated after the
drift.

n = floor(numel(Y)/2);
yhat = predict(idaMdl,X(n:end,:));
accuracy = sum(Y(n:end)==yhat)/n

accuracy = 0.9903

Specify Observation Orientation

Load the robotarm data set. Obtain the sample size n and the number of predictor variables p.

load robotarm
n = numel(ytrain);
p = size(Xtrain,2);

For details on the data set, enter Description at the command line.

Introduce an artificial drift to the response variable between observations 2500 and 5000.

Y=ytrain;
j=1.25;
for i=2500:1250:5000
    idx=min(i+1250,5000);
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    Y(i:idx)=ytrain(i:idx)*j;
    j=j+0.25;
end

Initiate an incremental drift-aware model for regression as follows:

1 Create an incremental linear SVM model for regression. Specify an estimation period of 500
observations and the SGD solver.

2 Create an incremental drift detector for continuous data.
3 Initiate an incremental drift-aware model using the incremental linear SVM model as the base

learner and the drift detector you created. Specify a training period of 2000.

baseMdl = incrementalRegressionLinear(EstimationPeriod=500,Solver="sgd",MetricsWarmUpPeriod=750);
ddetector = incrementalConceptDriftDetector("hddma",InputType="continuous",Alternative="greater");
idaMdl = incrementalDriftAwareLearner(baseMdl,DriftDetector=ddetector,TrainingPeriod=2000);

idaMdl is an incrementalDriftAwareLearner model. All its properties are read-only.

Preallocate the number of variables in each chunk and number of iterations for creating a stream of
data.

numObsPerChunk = 10;
nchunk = floor(n/numObsPerChunk);

Preallocate the variables for tracking the drift status and drift time, and storing the regression error
and number of training observations.

dstatus = zeros(nchunk,1);
statusname = strings(nchunk,1);
driftTimes = [];

ei = array2table(nan(nchunk,2),VariableNames=["Cumulative","Window"]);
numtrainobs = zeros(nchunk,1);

Perform incremental learning on the rest of the data by using the updateMetrics and fit
functions. At each iteration:

1 Simulate a data stream by processing 10 observations at a time.
2 Call updateMetrics to update the cumulative and window classification error of the model

given the incoming chunk of observations. Overwrite the previous incremental model to update
the losses in the Metrics property. Note that the function does not fit the model to the chunk of
new data. Specify the observation orientation.

3 Call fit to fit the model to the incoming chunk of observations. Overwrite the previous
incremental model to update the model parameters. Specify the observation orientation.

4 Store the regression error and number of training observations.

rng(123) % For reproducibility
for j = 1:nchunk

    ibegin = min(n,numObsPerChunk*(j-1) + 1);
    iend   = min(n,numObsPerChunk*j);
    idx = ibegin:iend;

    idaMdl = updateMetrics(idaMdl,Xtrain(idx,:),Y(idx),ObservationsIn="rows");
    ei{j,:} = idaMdl.Metrics{"EpsilonInsensitiveLoss",:};
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    idaMdl = fit(idaMdl,Xtrain(idx,:),Y(idx),ObservationsIn="rows");
    numtrainobs(j) = idaMdl.NumTrainingObservations;

    statusname(j) = string(idaMdl.DriftStatus);
    if idaMdl.DriftDetected
       dstatus(j) = 2;
       driftTimes(end+1) = j;
    elseif idaMdl.WarningDetected
       dstatus(j) = 1;
    else 
       dstatus(j) = 0;
    end   
   
end

idaMdl is an incrementalDriftAwareModel object trained on all the data in the stream.

Plot a trace plot of the number of training observations and the performance metrics. Mark the times
for estimation period, warm up metric period, and training period.

t = tiledlayout(2,1);
nexttile
plot(numtrainobs)
xline(idaMdl.BaseLearner.EstimationPeriod/numObsPerChunk,"g-.","Estimation Period")
xline((idaMdl.BaseLearner.EstimationPeriod+idaMdl.MetricsWarmupPeriod)/numObsPerChunk,"m-.","Warmup Period")
xline((idaMdl.BaseLearner.EstimationPeriod+idaMdl.TrainingPeriod)/numObsPerChunk,"b--","Training Period")

xline(idaMdl.BaseLearner.EstimationPeriod/numObsPerChunk+driftTimes,"g-.")
xline((idaMdl.BaseLearner.EstimationPeriod+idaMdl.MetricsWarmupPeriod)/numObsPerChunk+driftTimes,"m-.")
xline((idaMdl.BaseLearner.EstimationPeriod+idaMdl.TrainingPeriod)/numObsPerChunk+driftTimes,"b--")
xline(driftTimes,"r","Drift",LabelVerticalAlignment="middle",LineWidth=1.5)
xlim([0 nchunk])
ylabel("Number of Training Observations")

nexttile
plot(ei.Variables)
xline(idaMdl.BaseLearner.EstimationPeriod/numObsPerChunk,"g-.","Estimation Period")
xline((idaMdl.MetricsWarmupPeriod+idaMdl.BaseLearner.EstimationPeriod)/numObsPerChunk,"m-.","Warmup Period")
xline((idaMdl.BaseLearner.EstimationPeriod+idaMdl.TrainingPeriod)/numObsPerChunk,"b--","Training Period")

xline(idaMdl.BaseLearner.EstimationPeriod/numObsPerChunk+driftTimes,"g-.")
xline((idaMdl.BaseLearner.EstimationPeriod+idaMdl.MetricsWarmupPeriod)/numObsPerChunk+driftTimes,"m-.")
xline((idaMdl.BaseLearner.EstimationPeriod+idaMdl.TrainingPeriod)/numObsPerChunk+driftTimes,"b--")
xline(driftTimes,"r","Drift",LabelVerticalAlignment="middle",LineWidth=1.5)
xlim([0 nchunk])
legend(ei.Properties.VariableNames,Location="northeast")
ylabel("Regression Error")
xlabel(t,"Iteration")
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Plot the drift status versus the iteration number.

figure()
gscatter(1:nchunk,dstatus,statusname,'gmr','*',5,'on',"Iteration","Drift Status")

 fit
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Input Arguments
Mdl — Incremental drift-aware learning model
incrementalDriftAwareLearner model object

Incremental drift-aware learning model fit to streaming data, specified as an
incrementalDriftAwareLearner model object. You can create Mdl using the
incrementalDriftAwareLearner function. For more details, see the object reference page.

X — Chunk of predictor data
floating-point matrix

Chunk of predictor data to which the model is fit, specified as a floating-point matrix of n
observations and Mdl.BaseLearner.NumPredictors predictor variables.

When Mdl.BaseLearner accepts the ObservationsIn name-value argument, the value of
ObservationsIn determines the orientation of the variables and observations. The default
ObservationsIn value is "rows", which indicates that observations in the predictor data are
oriented along the rows of X.

The length of the observation responses (or labels) Y and the number of observations in X must be
equal; Y(j) is the response (or label) of observation j (row or column) in X.

Note
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• If Mdl.BaseLearner.NumPredictors = 0, fit infers the number of predictors from X, and sets
the corresponding property of the output model. Otherwise, if the number of predictor variables in
the streaming data changes from Mdl.BaseLearner.NumPredictors, fit issues an error.

• fit supports only floating-point input predictor data. If your input data includes categorical data,
you must prepare an encoded version of the categorical data. Use dummyvar to convert each
categorical variable to a numeric matrix of dummy variables. Then, concatenate all dummy
variable matrices and any other numeric predictors. For more details, see “Dummy Variables” on
page 2-49.

Data Types: single | double

Y — Chunk of observed responses (or labels)
floating-point vector | categorical array | character array | string array | logical vector | cell array of
character vectors

Chunk of responses (or labels) to which the model is fit, specified as one of the following:

• Floating-point vector of n elements for regression models, where n is the number of rows in X.
• Categorical, character, or string array, logical vector, or cell array of character vectors for
classification models. If Y is a character array, it must have one class label per row. Otherwise, Y
must be a vector with n elements.

The length of Y and the number of observations in X must be equal; Y(j) is the response (or label) of
observation j (row or column) in X.

For classification problems:

• When Mdl.BaseLearner.ClassNames is nonempty, the following conditions apply:

• If Y contains a label that is not a member of Mdl.BaseLearner.ClassNames, fit issues an
error.

• The data type of Y and Mdl.BaseLearner.ClassNames must be the same.
• When Mdl.BaseLearner.ClassNames is empty, fit infers Mdl.BaseLearner.ClassNames

from data.

Data Types: single | double | categorical | char | string | logical | cell

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.
Example: ObservationsIn="columns",Weights=W specifies that the columns of the predictor
matrix correspond to observations, and the vector W contains observation weights to apply during
incremental learning.

ObservationsIn — Orientation of data in X
"rows" (default) | "columns"

Predictor data observation dimension, specified as "columns" or "rows".
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fit supports ObservationsIn only if Mdl.BaseLearner supports the ObservationsIn name-
value argument.
Example: ObservationsIn="columns"
Data Types: char | string

Weights — Chunk of observation weights
floating-point vector of positive values

Chunk of observation weights, specified as a floating-point vector of positive values. fit weighs the
observations in X with the corresponding values in Weights. The size of Weights must equal n,
which is the number of observations in X.

By default, Weights is ones(n,1).
Example: Weights=w
Data Types: double | single

Output Arguments
Mdl — Updated incremental drift-aware learning model
incrementalDriftAwareLearner model object

Updated incremental drift-aware learning model, returned as an incremental drift-aware learning
model object of the same data type as the input model Mdl, incrementalDriftAwareLearner.

If Mdl.BaseLearner.EstimationPeriod > 0, the incremental fitting functions
updateMetricsAndFit and fit estimate hyperparameters using the first
Mdl.BaseLearner.EstimationPeriod observations passed to either function; they do not train
the input model to the data. However, if an incoming chunk of n observations is greater than or equal
to the number of observations remaining in the estimation period m, fit estimates hyperparameters
using the first n – m observations, and fits the input model to the remaining m observations.

For classification problems, if the ClassNames property of the input model Mdl.BaseLearner is an
empty array, fit sets the ClassNames property of the output model Mdl.BaseLearner to
unique(Y).

Algorithms
Incremental Drift-Aware Learning

Incremental learning, or online learning, is a branch of machine learning concerned with processing
incoming data from a data stream, possibly given little to no knowledge of the distribution of the
predictor variables, aspects of the prediction or objective function (including tuning parameter
values), or whether the observations are labeled. Incremental learning differs from traditional
machine learning, where enough labeled data is available to fit to a model, perform cross-validation
to tune hyperparameters, and infer the predictor distribution. For more details, see “Incremental
Learning Overview” on page 28-2.

Unlike other incremental learning functionality offered by Statistics and Machine Learning Toolbox,
fit model object combines incremental learning and concept drift detection.

After creating an incrementalDriftAwareLearner object, use updateMetrics to update model
performance metrics and fit to fit the base model to incoming chunk of data, check for potential
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drift in the model performance (concept drift), and update or reset the incremental drift-aware
learner, if necessary. You can also use updateMetricsAndFit. The fit function implements the
Reactive Drift Detection Method (RDDM) [1] as follows:

• After Mdl.BaseLearner.EstimationPeriod (if necessary) and MetricsWarmupPeriod, the
function trains the incremental drift-aware model up to NumTrainingObservations
observations until it reaches TrainingPeriod. (If the TrainingPeriod value is smaller than
the Mdl.BaseLearner.MetricsWarmupPeriod value, then
incrementalDriftAwareLearner sets the TrainingPeriod value as
Mdl.BaseLearner.MetricsWarmupPeriod.)

• When NumTrainingObservations > TrainingPeriod, the software starts tracking the model
loss. The software computes the per observation loss using the perObservationLoss function.
While computing the per observation loss, the software uses the "classiferror" loss metric for
classification models and "squarederror" for regression models. The function then appends the
loss values computed using the last chunk of data to the existing buffer loss values.

• Next, the software checks to see if any concept drift occurred by using the detectdrift function
and updates DriftStatus accordingly.

Based on the drift status, fit performs the following procedure:

• DriftStatus is 'Warning' – The software first increases the consecutive 'Warning' status
count by 1.

• If the consecutive 'Warning' status count is less than the WarningCountLimit value and
the PreviousDriftStatus value is Stable, then the software trains a temporary
incremental learner (if one does not exist) and sets it (or the existing one) to BaseLearner.

Then the software resets the temporary incremental learner using the learner's reset
function.

• If the consecutive 'Warning' status count is less than the WarningCountLimit value and
the PreviousDriftStatus value is 'Warning', then the software trains the existing
temporary incremental model using the latest chunk of data.

• If the consecutive 'Warning' status count is more than the WarningCountLimit value, then
the software sets the DriftStatus value to 'Drift'.

• DriftStatus is 'Drift' – The software performs the following steps.

• Sets the consecutive 'Warning' status count to 0.
• Resets DriftDetector using the reset function.
• Empties the buffer loss values and appends the loss values for the latest chunk of data to buffer

loss values.
• If the temporary incremental model is not empty, then the software sets the current

BaseLearner value to the temporary incremental model and empties the temporary
incremental model.

• If the temporary incremental model is empty, then the software resets the BaseLearner value
by using the learner's reset function.

• DriftStatus is 'Stable' – The software first increases the consecutive 'Stable' status count
by 1.

• If the consecutive 'Stable' status count is less than the StableCountLimit and the
PreviousDriftStatus value is 'Warning', then the software sets the number of warnings
to zero and empties the temporary model.

 fit
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• If the consecutive 'Stable' status count is more than the StableCountLimit value, then
the software resets the DriftDetector using the reset function. Then the software tests all
of the saved loss values in the buffer for concept drift by using the detectdrift function.

Once DriftStatus is set to 'Drift', and the BaseLearner and DriftDetector are reset, the
software waits until Mdl.BaseLearner.EstimationPeriod +
Mdl.BaseLearner.MetricsWarmupPeriod before it starts computing the performance metrics.

Observation Weights

For classification problems, if the prior class probability distribution is known (in other words, the
prior distribution is not empirical), fit normalizes observation weights to sum to the prior class
probabilities in the respective classes. This action implies that observation weights are the respective
prior class probabilities by default.

For regression problems or if the prior class probability distribution is empirical, the software
normalizes the specified observation weights to sum to 1 each time you call fit.

Version History
Introduced in R2022b
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fit
Train ECOC classification model for incremental learning

Syntax
Mdl = fit(Mdl,X,Y)
Mdl = fit(Mdl,X,Y,Name=Value)

Description
The fit function fits a configured multiclass error-correcting output codes (ECOC) classification
model for incremental learning (incrementalClassificationECOC object) to streaming data. To
additionally track performance metrics using the data as it arrives, use updateMetricsAndFit
instead.

To fit or cross-validate an ECOC classification model to an entire batch of data at once, see
fitcecoc.

Mdl = fit(Mdl,X,Y) returns an incremental learning model Mdl, which represents the input
incremental learning model Mdl trained using the predictor and response data, X and Y respectively.
Specifically, fit fits the model to the incoming data and stores the updated binary learners and
configurations in the output model Mdl.

Mdl = fit(Mdl,X,Y,Name=Value) uses additional options specified by one or more name-value
arguments. For example, you can specify that the columns of the predictor data matrix correspond to
observations, and set observation weights.

Examples

Incrementally Train Model with Little Prior Information

Fit an incremental ECOC learner when you know only the expected maximum number of classes in
the data.

Create an incremental ECOC model. Specify that the maximum number of expected classes is 5.

Mdl = incrementalClassificationECOC(MaxNumClasses=5)

Mdl = 
  incrementalClassificationECOC

            IsWarm: 0
           Metrics: [1x2 table]
        ClassNames: [1x0 double]
    ScoreTransform: 'none'
    BinaryLearners: {10x1 cell}
        CodingName: 'onevsone'
          Decoding: 'lossweighted'

 fit
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  Properties, Methods

Mdl is an incrementalClassificationECOC model. All its properties are read-only. Mdl can
process at most 5 unique classes. By default, the prior class distribution Mdl.Prior is empirical,
which means the software updates the prior distribution as it encounters labels.

Mdl must be fit to data before you can use it to perform any other operations.

Load the human activity data set. Randomly shuffle the data.

load humanactivity
n = numel(actid);
rng(1) % For reproducibility
idx = randsample(n,n);
X = feat(idx,:);
Y = actid(idx);

For details on the data set, enter Description at the command line.

Fit the incremental model to the training data, in chunks of 50 observations at a time, by using the
fit function. At each iteration:

• Simulate a data stream by processing 50 observations.
• Overwrite the previous incremental model with a new one fitted to the incoming observations.
• Store the first model coefficient of the first binary learner β11 and the prior probability that the

subject is moving (Y > 2) to see how these parameters evolve during incremental learning.

% Preallocation
numObsPerChunk = 50;
nchunk = floor(n/numObsPerChunk);
beta11 = zeros(nchunk,1);    
priormoved = zeros(nchunk,1);

% Incremental fitting
for j = 1:nchunk
    ibegin = min(n,numObsPerChunk*(j-1) + 1);
    iend   = min(n,numObsPerChunk*j);
    idx = ibegin:iend;    
    Mdl = fit(Mdl,X(idx,:),Y(idx));
    beta11(j) = Mdl.BinaryLearners{1}.Beta(1);
    priormoved(j) = sum(Mdl.Prior(Mdl.ClassNames > 2));
end

Mdl is an incrementalClassificationECOC model object trained on all the data in the stream.

To see how the parameters evolve during incremental learning, plot them on separate tiles.

t = tiledlayout(2,1);
nexttile
plot(beta11)
xlim([0 nchunk])
ylabel("\beta_{11}")
nexttile
plot(priormoved)
xlim([0 nchunk])
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ylabel("\pi(Subject Is Moving)")
xlabel(t,"Iteration")

fit updates the coefficient as it processes each chunk. Because the prior class distribution is
empirical, π(subject is moving) changes as fit processes each chunk.

Specify All Class Names Before Fitting

Fit an incremental ECOC learner when you know all the class names in the data.

Consider training a device to predict whether a subject is sitting, standing, walking, running, or
dancing based on biometric data measured on the subject. The class names map 1 through 5 to an
activity. Also, suppose that the researchers plan to expose the device to each class uniformly.

Create an incremental ECOC model for multiclass learning. Specify the class names and the uniform
prior class distribution.

classnames = 1:5;
Mdl = incrementalClassificationECOC(ClassNames=classnames,Prior="uniform")

Mdl = 
  incrementalClassificationECOC

            IsWarm: 0
           Metrics: [1x2 table]

 fit
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        ClassNames: [1 2 3 4 5]
    ScoreTransform: 'none'
    BinaryLearners: {10x1 cell}
        CodingName: 'onevsone'
          Decoding: 'lossweighted'

  Properties, Methods

Mdl is an incrementalClassificationECOC model object. All its properties are read-only. During
training, observed labels must be in Mdl.ClassNames.

Mdl must be fit to data before you can use it to perform any other operations.

Load the human activity data set. Randomly shuffle the data.

load humanactivity
n = numel(actid);
rng(1) % For reproducibility
idx = randsample(n,n);
X = feat(idx,:);
Y = actid(idx);

For details on the data set, enter Description at the command line.

Fit the incremental model to the training data by using the fit function. Simulate a data stream by
processing chunks of 50 observations at a time. At each iteration:

• Process 50 observations.
• Overwrite the previous incremental model with a new one fitted to the incoming observations.
• Store the first model coefficient of the first binary learner β11 and the prior probability that the

subject is moving (Y > 2) to see how these parameters evolve during incremental learning.

% Preallocation
numObsPerChunk = 50;
nchunk = floor(n/numObsPerChunk);
beta11 = zeros(nchunk,1);  
priormoved = zeros(nchunk,1);

% Incremental fitting
for j = 1:nchunk
    ibegin = min(n,numObsPerChunk*(j-1) + 1);
    iend   = min(n,numObsPerChunk*j);
    idx = ibegin:iend;    
    Mdl = fit(Mdl,X(idx,:),Y(idx));
    beta11(j) = Mdl.BinaryLearners{1}.Beta(1);
    priormoved(j) = sum(Mdl.Prior(Mdl.ClassNames > 2));
end

Mdl is an incrementalClassificationECOC model object trained on all the data in the stream.

To see how the parameters evolve during incremental learning, plot them on separate tiles.

t = tiledlayout(2,1);
nexttile
plot(beta11)
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xlim([0 nchunk])
ylabel("\beta_{11}")
nexttile
plot(priormoved)
xlim([0 nchunk])
ylabel("\pi(Subject Is Moving)")
xlabel(t,"Iteration")

fit updates the posterior mean of the predictor distribution as it processes each chunk. Because the
prior class distribution is specified as uniform, π(subject is moving) = 0.6 and does not change as fit
processes each chunk.

Specify Orientation of Observations and Observation Weights

Train an ECOC classification model by using fitcecoc, convert it to an incremental learner, track its
performance on streaming data, and then fit the model to the data. For incremental learning
functions, orient the observations in columns, and specify observation weights.

Load and Preprocess Data

Load the human activity data set. Randomly shuffle the data.

load humanactivity
rng(1); % For reproducibility

 fit

35-1775



n = numel(actid);
idx = randsample(n,n);
X = feat(idx,:);
Y = actid(idx);

For details on the data set, enter Description at the command line.

Suppose that the data from a stationary subject (Y <= 2) has double the quality of the data from a
moving subject. Create a weight variable that assigns a weight of 2 to observations from a stationary
subject and 1 to a moving subject.

W = ones(n,1) + (Y <=2);

Train ECOC Classification Model

Fit an ECOC classification model to a random sample of half the data. Specify observation weights.

idxtt = randsample([true false],n,true);
TTMdl = fitcecoc(X(idxtt,:),Y(idxtt),Weights=W(idxtt))

TTMdl = 
  ClassificationECOC
             ResponseName: 'Y'
    CategoricalPredictors: []
               ClassNames: [1 2 3 4 5]
           ScoreTransform: 'none'
           BinaryLearners: {10x1 cell}
               CodingName: 'onevsone'

  Properties, Methods

TTMdl is a ClassificationECOC model object representing a traditionally trained ECOC
classification model.

Convert Trained Model

Convert the traditionally trained model to a model for incremental learning.

IncrementalMdl = incrementalLearner(TTMdl)

IncrementalMdl = 
  incrementalClassificationECOC

            IsWarm: 1
           Metrics: [1x2 table]
        ClassNames: [1 2 3 4 5]
    ScoreTransform: 'none'
    BinaryLearners: {10x1 cell}
        CodingName: 'onevsone'
          Decoding: 'lossweighted'

  Properties, Methods
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IncrementalMdl is an incrementalClassificationECOC model. Because class names are
specified in IncrementalMdl.ClassNames, labels encountered during incremental learning must
be in IncrementalMdl.ClassNames.

Separately Track Performance Metrics and Fit Model

Perform incremental learning on the rest of the data by using the updateMetrics and fit
functions. For incremental learning, orient the observations of the predictor data in columns. At each
iteration:

1 Simulate a data stream by processing 50 observations at a time.
2 Call updateMetrics to update the cumulative and window classification error of the model

given the incoming chunk of observations. Overwrite the previous incremental model to update
the losses in the Metrics property. Note that the function does not fit the model to the chunk of
data—the chunk is "new" data for the model. Specify that the observations are oriented in
columns, and specify the observation weights.

3 Store the classification error.
4 Call fit to fit the model to the incoming chunk of observations. Overwrite the previous

incremental model to update the model parameters. Specify that the observations are oriented in
columns, and specify the observation weights.

% Preallocation
idxil = ~idxtt;
nil = sum(idxil);
numObsPerChunk = 50;
nchunk = floor(nil/numObsPerChunk);
mc = array2table(zeros(nchunk,2),VariableNames=["Cumulative","Window"]);
Xil = X(idxil,:)';
Yil = Y(idxil);
Wil = W(idxil);

% Incremental fitting
for j = 1:nchunk
    ibegin = min(nil,numObsPerChunk*(j-1) + 1);
    iend   = min(nil,numObsPerChunk*j);
    idx = ibegin:iend;
    IncrementalMdl = updateMetrics(IncrementalMdl,Xil(:,idx),Yil(idx), ...
        Weights=Wil(idx),ObservationsIn="columns");
    mc{j,:} = IncrementalMdl.Metrics{"ClassificationError",:};
    IncrementalMdl = fit(IncrementalMdl,Xil(:,idx),Yil(idx), ...
        Weights=Wil(idx),ObservationsIn="columns");
end

IncrementalMdl is an incrementalClassificationECOC model object trained on all the data in
the stream.

Alternatively, you can use updateMetricsAndFit to update performance metrics of the model given
a new chunk of data, and then fit the model to the data.

Plot a trace plot of the performance metrics.

plot(mc.Variables)
xlim([0 nchunk])
legend(mc.Properties.VariableNames)
ylabel("Classification Error")
xlabel("Iteration")

 fit
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The cumulative loss gradually stabilizes, whereas the window loss jumps throughout the training.

Perform Conditional Training

Incrementally train an ECOC classification model only when its performance degrades.

Load the human activity data set. Randomly shuffle the data.

load humanactivity
n = numel(actid);
rng(1) % For reproducibility
idx = randsample(n,n);
X = feat(idx,:);
Y = actid(idx);

For details on the data set, enter Description at the command line.

Configure an ECOC classification model for incremental learning so that the maximum number of
expected classes is 5, and the metrics window size is 1000. Prepare the model for updateMetrics
by fitting the model to the first 1000 observations.

Mdl = incrementalClassificationECOC(MaxNumClasses=5,MetricsWindowSize=1000);
initobs = 1000;
Mdl = fit(Mdl,X(1:initobs,:),Y(1:initobs));

Mdl is an incrementalClassificationECOC model object.
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Determine whether the model is warm by querying the model property.

isWarm = Mdl.IsWarm

isWarm = logical
   1

Mdl.IsWarm is 1; therefore, Mdl is warm.

Perform incremental learning, with conditional fitting, by following this procedure for each iteration:

• Simulate a data stream by processing a chunk of 100 observations at a time.
• Update the model performance on the incoming chunk of data.
• Fit the model to the chunk of data only when the misclassification error rate is greater than 0.05.
• When tracking performance and fitting, overwrite the previous incremental model.
• Store the misclassification error rate and the first model coefficient of the first binary learner β11

to see how they evolve during training.
• Track when fit trains the model.

% Preallocation
numObsPerChunk = 100;
nchunk = floor((n - initobs)/numObsPerChunk);
beta11 = zeros(nchunk,1);
ce = array2table(nan(nchunk,2),VariableNames=["Cumulative","Window"]);
trained = false(nchunk,1);

% Incremental fitting
for j = 1:nchunk
    ibegin = min(n,numObsPerChunk*(j-1) + 1 + initobs);
    iend = min(n,numObsPerChunk*j + initobs);
    idx = ibegin:iend;
    Mdl = updateMetrics(Mdl,X(idx,:),Y(idx));
    ce{j,:} = Mdl.Metrics{"ClassificationError",:};
    if ce{j,2} > 0.05
        Mdl = fit(Mdl,X(idx,:),Y(idx));
        trained(j) = true;
    end    
    beta11(j) = Mdl.BinaryLearners{1}.Beta(1);
end

Mdl is an incrementalClassificationECOC model object trained on all the data in the stream.

To see how the model performance and β11 evolve during training, plot them on separate tiles.

t = tiledlayout(2,1);
nexttile
plot(beta11)
hold on
plot(find(trained),beta11(trained),"r.")
xlim([0 nchunk])
ylabel("\beta_{11}")
legend("\beta_{11}","Training occurs",Location="best")
hold off
nexttile
plot(ce.Variables)
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yline(0.05,"--")
xlim([0 nchunk])
ylabel("Misclassification Error Rate")
legend(ce.Properties.VariableNames,Location="best")
xlabel(t,"Iteration")

The trace plot of β11 shows periods of constant values, during which the loss within the previous
observation window is at most 0.05.

Input Arguments
Mdl — Incremental learning model
incrementalClassificationECOC model object

Incremental learning model to fit to streaming data, specified as an
incrementalClassificationECOC model object. You can create Mdl by calling
incrementalClassificationECOC directly, or by converting a supported, traditionally trained
machine learning model using the incrementalLearner function.

X — Chunk of predictor data
floating-point matrix

Chunk of predictor data, specified as a floating-point matrix of n observations and
Mdl.NumPredictors predictor variables. The value of the ObservationsIn name-value argument
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determines the orientation of the variables and observations. The default ObservationsIn value is
"rows", which indicates that observations in the predictor data are oriented along the rows of X.

The length of the observation labels Y and the number of observations in X must be equal; Y(j) is the
label of observation j (row or column) in X.

Note

• If Mdl.NumPredictors = 0, fit infers the number of predictors from X, and sets the
corresponding property of the output model. Otherwise, if the number of predictor variables in the
streaming data changes from Mdl.NumPredictors, fit issues an error.

• fit supports only floating-point input predictor data. If your input data includes categorical data,
you must prepare an encoded version of the categorical data. Use dummyvar to convert each
categorical variable to a numeric matrix of dummy variables. Then, concatenate all dummy
variable matrices and any other numeric predictors. For more details, see “Dummy Variables” on
page 2-49.

Data Types: single | double

Y — Chunk of labels
categorical array | character array | string array | logical vector | floating-point vector | cell array of
character vectors

Chunk of labels, specified as a categorical, character, or string array, a logical or floating-point vector,
or a cell array of character vectors.

The length of the observation labels Y and the number of observations in X must be equal; Y(j) is the
label of observation j (row or column) in X.

fit issues an error when one or both of these conditions are met:

• Y contains a new label and the maximum number of classes has already been reached (see the
MaxNumClasses and ClassNames arguments of incrementalClassificationECOC).

• The ClassNames property of the input model Mdl is nonempty, and the data types of Y and
Mdl.ClassNames are different.

Data Types: char | string | cell | categorical | logical | single | double

Note

If an observation (predictor or label) or weight contains at least one missing (NaN) value, fit ignores
the observation. Consequently, fit uses fewer than n observations to create an updated model,
where n is the number of observations in X.

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

 fit
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Example: ObservationsIn="columns",Weights=W specifies that the columns of the predictor
matrix correspond to observations, and the vector W contains observation weights to apply during
incremental learning.

ObservationsIn — Predictor data observation dimension
"rows" (default) | "columns"

Predictor data observation dimension, specified as "rows" or "columns".
Example: ObservationsIn="columns"
Data Types: char | string

Weights — Chunk of observation weights
floating-point vector of positive values

Chunk of observation weights, specified as a floating-point vector of positive values. fit weighs the
observations in X with the corresponding values in Weights. The size of Weights must equal n,
which is the number of observations in X.

By default, Weights is ones(n,1).

For more details, including normalization schemes, see “Observation Weights” on page 35-1783.
Example: Weights=W specifies the observation weights as the vector W.
Data Types: double | single

Output Arguments
Mdl — Updated ECOC classification model for incremental learning
incrementalClassificationECOC model object

Updated ECOC classification model for incremental learning, returned as an incremental learning
model object of the same data type as the input model Mdl, an incrementalClassificationECOC
object.

If you do not specify all expected classes by using the ClassNames name-value argument when you
create the input model Mdl using incrementalClassificationECOC, and Y contains expected, but
unprocessed, classes, then fit performs the following actions:

1 Append any new labels in Y to the tail of Mdl.ClassNames.
2 Expand Mdl.Prior to a length c vector of an updated empirical class distribution, where c is the

number of classes in Mdl.ClassNames.

Tips
• Unlike traditional training, incremental learning might not have a separate test (holdout) set.

Therefore, to treat each incoming chunk of data as a test set, pass the incremental model and
each incoming chunk to updateMetrics before training the model on the same data.
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Algorithms
Observation Weights

If the prior class probability distribution is known (in other words, the prior distribution is not
empirical), fit normalizes observation weights to sum to the prior class probabilities in the
respective classes. This action implies that the default observation weights are the respective prior
class probabilities.

If the prior class probability distribution is empirical, the software normalizes the specified
observation weights to sum to 1 each time you call fit.

Version History
Introduced in R2022a

See Also
Functions
updateMetrics | updateMetricsAndFit | predict | loss

Objects
incrementalClassificationECOC

Topics
“Incremental Learning Overview” on page 28-2
“Implement Incremental Learning for Classification Using Flexible Workflow” on page 28-29
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fit
Train kernel model for incremental learning

Syntax
Mdl = fit(Mdl,X,Y)
Mdl = fit(Mdl,X,Y,Weights=weights)

Description
The fit function fits a configured incremental learning model for kernel regression
(incrementalRegressionKernel object) or binary kernel classification
(incrementalClassificationKernel object) to streaming data. To additionally track
performance metrics using the data as it arrives, use updateMetricsAndFit instead.

To fit or cross-validate a kernel regression or classification model to an entire batch of data at once,
see fitrkernel or fitckernel, respectively.

Mdl = fit(Mdl,X,Y) returns an incremental learning model Mdl, which represents the input
incremental learning model Mdl trained using the predictor and response data, X and Y respectively.
Specifically, fit implements the following procedure:

1 Initialize the solver with the model parameters and configurations of the input incremental
learning model Mdl.

2 Fit the model to the data, and store the updated model parameters and configurations in the
output model Mdl.

The input and output models have the same data type.

Mdl = fit(Mdl,X,Y,Weights=weights) also sets observation weights.

Examples

Incrementally Train Model

Configure incremental learning options for an incrementalClassificationKernel model object
when you call the incrementalClassificationKernel function. Fit the model to incoming
observations.

Create an incremental kernel model for binary classification. Specify an estimation period of 5000
observations and the stochastic gradient descent (SGD) solver.

Mdl = incrementalClassificationKernel(EstimationPeriod=5000,Solver="sgd")

Mdl = 
  incrementalClassificationKernel

                    IsWarm: 0
                   Metrics: [1x2 table]
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                ClassNames: [1x0 double]
            ScoreTransform: 'none'
    NumExpansionDimensions: 0
               KernelScale: 1

  Properties, Methods

Mdl is an incrementalClassificationKernel model. All its properties are read-only.

Mdl must be fit to data before you can use it to perform any other operations.

Load the human activity data set. Randomly shuffle the data.

load humanactivity
n = numel(actid);
rng(1) % For reproducibility
idx = randsample(n,n);
X = feat(idx,:);
Y = actid(idx);

For details on the data set, enter Description at the command line.

Responses can be one of five classes: Sitting, Standing, Walking, Running, or Dancing. Dichotomize
the response by identifying whether the subject is moving (actid > 2).

Y = Y > 2;

Fit the incremental model to the training data, in chunks of 50 observations at a time, by using the
fit function. At each iteration:

• Simulate a data stream by processing 50 observations.
• Overwrite the previous incremental model with a new one fitted to the incoming observations.
• Store the number of training observations and the prior probability of whether the subject moved

(Y = true) to see how they evolve during incremental training.

% Preallocation
numObsPerChunk = 50;
nchunk = floor(n/numObsPerChunk);  
numtrainobs = zeros(nchunk,1);
priormoved = zeros(nchunk,1);

% Incremental fitting
for j = 1:nchunk
    ibegin = min(n,numObsPerChunk*(j-1) + 1);
    iend   = min(n,numObsPerChunk*j);
    idx = ibegin:iend;    
    Mdl = fit(Mdl,X(idx,:),Y(idx));
    numtrainobs(j) = Mdl.NumTrainingObservations; 
    priormoved(j) = Mdl.Prior(Mdl.ClassNames == true);
end

Mdl is an incrementalClassificationKernel model object trained on all the data in the stream.

To see how the parameters evolve during incremental learning, plot them on separate tiles.
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t = tiledlayout(2,1);
nexttile
plot(numtrainobs)
xlim([0 nchunk])
ylabel("Number of Training Observations")
xline(Mdl.EstimationPeriod/numObsPerChunk,"-.")
nexttile
plot(priormoved)
xlim([0 nchunk])
ylabel("\pi(Subject Is Moving)")
xline(Mdl.EstimationPeriod/numObsPerChunk,"-.")
xlabel(t,"Iteration")

The plot suggests that fit does not fit the model to the data or update the parameters until after the
estimation period.

Specify Observation Weights

Train a kernel model for binary classification by using fitckernel, and convert it to an incremental
learner by using incrementalLearner. Track the model performance and fit the model to
streaming data. Specify the observation weights when you call fitckernel and incremental
learning functions.
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Load and Preprocess Data

Load the human activity data set. Randomly shuffle the data.

load humanactivity
rng(1) % For reproducibility
n = numel(actid);
idx = randsample(n,n);
X = feat(idx,:);
Y = actid(idx);

For details on the data set, enter Description at the command line.

Responses can be one of five classes: Sitting, Standing, Walking, Running, or Dancing. Dichotomize
the response by identifying whether the subject is moving (actid > 2).

Y = Y > 2;

Suppose that the data collected when the subject was not moving (Y = false) has double the quality
than when the subject was moving. Create a weight variable that attributes 2 to observations
collected from a stationary subject, and 1 to a moving subject.

W = ones(n,1) + ~Y;

Train Kernel Model for Binary Classification

Fit a kernel model for binary classification to a random sample of half the data.

idxtt = randsample([true false],n,true);
TTMdl = fitckernel(X(idxtt,:),Y(idxtt),Weights=W(idxtt))

TTMdl = 
  ClassificationKernel
              ResponseName: 'Y'
                ClassNames: [0 1]
                   Learner: 'svm'
    NumExpansionDimensions: 2048
               KernelScale: 1
                    Lambda: 8.2967e-05
             BoxConstraint: 1

  Properties, Methods

TTMdl is a ClassificationKernel model object representing a traditionally trained kernel model
for binary classification.

Convert Trained Model

Convert the traditionally trained classification model to a model for incremental learning.

IncrementalMdl = incrementalLearner(TTMdl)

IncrementalMdl = 
  incrementalClassificationKernel

                    IsWarm: 1
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                   Metrics: [1x2 table]
                ClassNames: [0 1]
            ScoreTransform: 'none'
    NumExpansionDimensions: 2048
               KernelScale: 1

  Properties, Methods

IncrementalMdl is an incrementalClassificationKernel model. All its properties are read-
only.

Separately Track Performance Metrics and Fit Model

Perform incremental learning on the rest of the data by using the updateMetrics and fit
functions. At each iteration:

1 Simulate a data stream by processing 50 observations at a time.
2 Call updateMetrics to update the cumulative and window classification error of the model

given the incoming chunk of observations. Overwrite the previous incremental model to update
the losses in the Metrics property. Note that the function does not fit the model to the chunk of
data—the chunk is "new" data for the model. Specify the observation weights.

3 Call fit to fit the model to the incoming chunk of observations. Overwrite the previous
incremental model to update the model parameters. Specify the observation weights.

4 Store the classification error and number of training observations.

% Preallocation
idxil = ~idxtt;
nil = sum(idxil);
numObsPerChunk = 50;
nchunk = floor(nil/numObsPerChunk);
ce = array2table(zeros(nchunk,2),VariableNames=["Cumulative","Window"]);
numtrainobs = [zeros(nchunk,1)];
Xil = X(idxil,:);
Yil = Y(idxil);
Wil = W(idxil);

% Incremental fitting
for j = 1:nchunk
    ibegin = min(nil,numObsPerChunk*(j-1) + 1);
    iend   = min(nil,numObsPerChunk*j);
    idx = ibegin:iend;
    IncrementalMdl = updateMetrics(IncrementalMdl,Xil(idx,:),Yil(idx), ...
        Weights=Wil(idx));
    ce{j,:} = IncrementalMdl.Metrics{"ClassificationError",:};
    IncrementalMdl = fit(IncrementalMdl,Xil(idx,:),Yil(idx), ...
        Weights=Wil(idx));
    numtrainobs(j) = IncrementalMdl.NumTrainingObservations;
end

IncrementalMdl is an incrementalClassificationKernel model object trained on all the data
in the stream.

Alternatively, you can use updateMetricsAndFit to update performance metrics of the model given
a new chunk of data, and then fit the model to the data.
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Plot a trace plot of the number of training observations and the performance metrics.

t = tiledlayout(2,1);
nexttile
plot(numtrainobs)
xlim([0 nchunk])
ylabel("Number of Training Observations")
nexttile
plot(ce.Variables)
xlim([0 nchunk])
legend(ce.Properties.VariableNames)
ylabel("Classification Error")
xlabel(t,"Iteration")

The plot suggests that the fit function fits the model during all incremental learning iterations. The
cumulative loss is stable and gradually decreases, whereas the window loss jumps.

Perform Conditional Training

Incrementally train a kernel regression model only when its performance degrades.

Load and shuffle the 2015 NYC housing data set. For more details on the data, see NYC Open Data.

load NYCHousing2015

rng(1) % For reproducibility

 fit
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n = size(NYCHousing2015,1);
shuffidx = randsample(n,n);
NYCHousing2015 = NYCHousing2015(shuffidx,:);

Extract the response variable SALEPRICE from the table. For numerical stability, scale SALEPRICE by
1e6.

Y = NYCHousing2015.SALEPRICE/1e6;
NYCHousing2015.SALEPRICE = [];

To reduce computational cost for this example, remove the NEIGHBORHOOD column, which contains a
categorical variable with 254 categories.

NYCHousing2015.NEIGHBORHOOD = [];

Create dummy variable matrices from the other categorical predictors.

catvars = ["BOROUGH","BUILDINGCLASSCATEGORY"];
dumvarstbl = varfun(@(x)dummyvar(categorical(x)),NYCHousing2015, ...
    InputVariables=catvars);
dumvarmat = table2array(dumvarstbl);
NYCHousing2015(:,catvars) = [];

Treat all other numeric variables in the table as predictors of sales price. Concatenate the matrix of
dummy variables to the rest of the predictor data.

idxnum = varfun(@isnumeric,NYCHousing2015,OutputFormat="uniform");
X = [dumvarmat NYCHousing2015{:,idxnum}];

Configure a kernel regression model for incremental learning so that it does not have an estimation
or metrics warm-up period. Specify a metrics window size of 1000. Prepare the model for
updateMetrics by fitting it to the first 100 observations.

Mdl = incrementalRegressionKernel(EstimationPeriod=0, ...
    MetricsWarmupPeriod=0,MetricsWindowSize=1000);
initobs = 100;
Mdl = fit(Mdl,X(1:initobs,:),Y(1:initobs));

Mdl is an incrementalRegressionKernel model object.

Perform incremental learning, with conditional fitting, by following this procedure for each iteration:

• Simulate a data stream by processing a chunk of 100 observations at a time.
• Update the model performance by computing the epsilon insensitive loss, within a 200 observation

window.
• Fit the model to the chunk of data only when the loss more than doubles from the minimum loss

experienced.
• When tracking performance and fitting, overwrite the previous incremental model.
• Store the epsilon insensitive loss and number of training observations to see how they evolve

during training.
• Track when fit trains the model.

% Preallocation
numObsPerChunk = 100;
nchunk = floor((n - initobs)/numObsPerChunk);
ei = array2table(nan(nchunk,2),VariableNames=["Cumulative","Window"]);
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numtrainobs = zeros(nchunk,1);
trained = false(nchunk,1);

% Incremental fitting
for j = 1:nchunk
    ibegin = min(n,numObsPerChunk*(j-1) + 1 + initobs);
    iend   = min(n,numObsPerChunk*j + initobs);
    idx = ibegin:iend;
    Mdl = updateMetrics(Mdl,X(idx,:),Y(idx));
    ei{j,:} = Mdl.Metrics{"EpsilonInsensitiveLoss",:};
    minei = min(ei{:,2});
    pdiffloss = (ei{j,2} - minei)/minei*100;
    if pdiffloss > 100
        Mdl = fit(Mdl,X(idx,:),Y(idx));
        trained(j) = true;
    end    
    numtrainobs(j) = Mdl.NumTrainingObservations;
end

Mdl is an incrementalRegressionKernel model object trained on all the data in the stream.

To see how the number of training observations and model performance evolve during training, plot
them on separate tiles.

t = tiledlayout(2,1);
nexttile
plot(numtrainobs)
hold on
plot(find(trained),numtrainobs(trained),"r.")
xlim([0 nchunk])
ylabel("Number of Training Observations")
legend("Number of Training Observations","Training occurs",Location="best")
hold off
nexttile
plot(ei.Variables)
xlim([0 nchunk])
ylabel("Epsilon Insensitive Loss")
legend(ei.Properties.VariableNames)
xlabel(t,"Iteration")
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The trace plot of the number of training observations shows periods of constant values, during which
the loss does not double from the minimum experienced.

Input Arguments
Mdl — Incremental learning model
incrementalClassificationKernel model object | incrementalRegressionKernel model
object

Incremental learning model to fit to streaming data, specified as an
incrementalClassificationKernel or incrementalRegressionKernel model object. You can
create Mdl directly or by converting a supported, traditionally trained machine learning model using
the incrementalLearner function. For more details, see the corresponding reference page.

X — Chunk of predictor data
floating-point matrix

Chunk of predictor data, specified as a floating-point matrix of n observations and
Mdl.NumPredictors predictor variables.

The length of the observation labels Y and the number of observations in X must be equal; Y(j) is the
label of observation j (row) in X.

Note
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• If Mdl.NumPredictors = 0, fit infers the number of predictors from X, and sets the
corresponding property of the output model. Otherwise, if the number of predictor variables in the
streaming data changes from Mdl.NumPredictors, fit issues an error.

• fit supports only floating-point input predictor data. If your input data includes categorical data,
you must prepare an encoded version of the categorical data. Use dummyvar to convert each
categorical variable to a numeric matrix of dummy variables. Then, concatenate all dummy
variable matrices and any other numeric predictors. For more details, see “Dummy Variables” on
page 2-49.

Data Types: single | double

Y — Chunk of responses (labels)
categorical array | character array | string array | logical vector | floating-point vector | cell array of
character vectors

Chunk of responses (labels), specified as a categorical, character, or string array, a logical or floating-
point vector, or a cell array of character vectors for classification problems; or a floating-point vector
for regression problems.

The length of the observation labels Y and the number of observations in X must be equal; Y(j) is the
label of observation j (row) in X.

For classification problems:

• fit supports binary classification only.
• When the ClassNames property of the input model Mdl is nonempty, the following conditions

apply:

• If Y contains a label that is not a member of Mdl.ClassNames, fit issues an error.
• The data type of Y and Mdl.ClassNames must be the same.

Data Types: char | string | cell | categorical | logical | single | double

weights — Chunk of observation weights
floating-point vector of positive values

Chunk of observation weights, specified as a floating-point vector of positive values. fit weighs the
observations in X with the corresponding values in weights. The size of weights must equal n, the
number of observations in X.

By default, weights is ones(n,1).

For more details, including normalization schemes, see “Observation Weights” on page 35-1794.
Data Types: double | single

Note

• If an observation (predictor or label) or weight contains at least one missing (NaN) value, fit
ignores the observation. Consequently, fit uses fewer than n observations to create an updated
model, where n is the number of observations in X.
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• The chunk size n and the stochastic gradient descent (SGD) hyperparameter mini-batch size
(Mdl.SolverOptions.BatchSize) can be different values, and n does not have to be an exact
multiple of the mini-batch size. fit uses the BatchSize observations when it applies SGD for
each learning cycle. The number of observations in the last mini-batch for the last learning cycle
can be less than or equal to Mdl.SolverOptions.BatchSize.

Output Arguments
Mdl — Updated incremental learning model
incrementalClassificationKernel model object | incrementalRegressionKernel model
object

Updated incremental learning model, returned as an incremental learning model object of the same
data type as the input model Mdl, either incrementalClassificationKernel or
incrementalRegressionKernel.

If Mdl.EstimationPeriod > 0, fit estimates hyperparameters using the first
Mdl.EstimationPeriod observations passed to it; the function does not train the input model using
that data. However, if an incoming chunk of n observations is greater than or equal to the number of
observations remaining in the estimation period m, fit estimates hyperparameters using the first n –
m observations, and fits the input model to the remaining m observations. Consequently, the software
updates model parameters, hyperparameter properties, and recordkeeping properties such as
NumTrainingObservations.

For classification problems, if the ClassNames property of the input model Mdl is an empty array,
fit sets the ClassNames property of the output model Mdl to unique(Y).

Tips
• Unlike traditional training, incremental learning might not have a separate test (holdout) set.

Therefore, to treat each incoming chunk of data as a test set, pass the incremental model and
each incoming chunk to updateMetrics before training the model on the same data.

Algorithms
Observation Weights

For classification problems, if the prior class probability distribution is known (in other words, the
prior distribution is not empirical), fit normalizes observation weights to sum to the prior class
probabilities in the respective classes. This action implies that observation weights are the respective
prior class probabilities by default.

For regression problems or if the prior class probability distribution is empirical, the software
normalizes the specified observation weights to sum to 1 each time you call fit.

Version History
Introduced in R2022a
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See Also
Objects
incrementalClassificationKernel | incrementalRegressionKernel

Functions
updateMetrics | updateMetricsAndFit | predict | loss

Topics
“Incremental Learning Overview” on page 28-2
“Implement Incremental Learning for Classification Using Flexible Workflow” on page 28-29
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fit
Train linear model for incremental learning

Syntax
Mdl = fit(Mdl,X,Y)
Mdl = fit(Mdl,X,Y,Name,Value)

Description
The fit function fits a configured incremental learning model for linear regression
(incrementalRegressionLinear object) or linear binary classification
(incrementalClassificationLinear object) to streaming data. To additionally track
performance metrics using the data as it arrives, use updateMetricsAndFit instead.

To fit or cross-validate a regression or classification model to an entire batch of data at once, see the
other machine learning models in “Regression” or “Classification”.

Mdl = fit(Mdl,X,Y) returns an incremental learning model Mdl, which represents the input
incremental learning model Mdl trained using the predictor and response data, X and Y respectively.
Specifically, fit implements the following procedure:

1 Initialize the solver with the configurations and linear model coefficient and bias estimates of the
input incremental learning model Mdl.

2 Fit the model to the data, and store the updated coefficient estimates and configurations in the
output model Mdl.

The input and output models have the same data type.

Mdl = fit(Mdl,X,Y,Name,Value) uses additional options specified by one or more name-value
pair arguments. For example, you can specify that the columns of the predictor data matrix
correspond to observations, and set observation weights.

Examples

Incrementally Train Model

Create a default incremental linear SVM model for binary classification. Specify an estimation period
of 5000 observations and the SGD solver.

Mdl = incrementalClassificationLinear('EstimationPeriod',5000,'Solver','sgd')

Mdl = 
  incrementalClassificationLinear

            IsWarm: 0
           Metrics: [1x2 table]
        ClassNames: [1x0 double]
    ScoreTransform: 'none'
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              Beta: [0x1 double]
              Bias: 0
           Learner: 'svm'

  Properties, Methods

Mdl is an incrementalClassificationLinear model. All its properties are read-only.

Mdl must be fit to data before you can use it to perform any other operations.

Load the human activity data set. Randomly shuffle the data.

load humanactivity
n = numel(actid);
rng(1) % For reproducibility
idx = randsample(n,n);
X = feat(idx,:);
Y = actid(idx);

For details on the data set, enter Description at the command line.

Responses can be one of five classes: Sitting, Standing, Walking, Running, or Dancing. Dichotomize
the response by identifying whether the subject is moving (actid > 2).

Y = Y > 2;

Fit the incremental model to the training data, in chunks of 50 observations at a time, by using the
fit function. At each iteration:

• Simulate a data stream by processing 50 observations.
• Overwrite the previous incremental model with a new one fitted to the incoming observations.
• Store β1, the number of training observations, and the prior probability of whether the subject

moved (Y = true) to see how they evolve during incremental training.

% Preallocation
numObsPerChunk = 50;
nchunk = floor(n/numObsPerChunk);
beta1 = zeros(nchunk,1);    
numtrainobs = zeros(nchunk,1);
priormoved = zeros(nchunk,1);

% Incremental fitting
for j = 1:nchunk
    ibegin = min(n,numObsPerChunk*(j-1) + 1);
    iend   = min(n,numObsPerChunk*j);
    idx = ibegin:iend;    
    Mdl = fit(Mdl,X(idx,:),Y(idx));
    beta1(j) = Mdl.Beta(1);
    numtrainobs(j) = Mdl.NumTrainingObservations; 
    priormoved(j) = Mdl.Prior(Mdl.ClassNames == true);
end

Mdl is an incrementalClassificationLinear model object trained on all the data in the stream.

To see how the parameters evolve during incremental learning, plot them on separate tiles.
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tiledlayout(2,2)
nexttile
plot(beta1)
ylabel('\beta_1')
xline(Mdl.EstimationPeriod/numObsPerChunk,'r-.')
xlabel('Iteration')
axis tight
nexttile
plot(numtrainobs)
ylabel('Number of Training Observations')
xline(Mdl.EstimationPeriod/numObsPerChunk,'r-.')
xlabel('Iteration')
axis tight
nexttile
plot(priormoved)
ylabel('\pi(Subject Is Moving)')
xline(Mdl.EstimationPeriod/numObsPerChunk,'r-.')
xlabel('Iteration')
axis tight

The plot suggests that fit does not fit the model to the data or update the parameters until after the
estimation period.
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Specify Orientation of Observations and Observation Weights

Train a linear model for binary classification by using fitclinear, convert it to an incremental
learner, track its performance, and fit it to streaming data. Orient the observations in columns, and
specify observation weights.

Load and Preprocess Data

Load the human activity data set. Randomly shuffle the data. Orient the observations of the predictor
data in columns.

load humanactivity
rng(1); % For reproducibility
n = numel(actid);
idx = randsample(n,n);
X = feat(idx,:)';
Y = actid(idx);

For details on the data set, enter Description at the command line.

Responses can be one of five classes: Sitting, Standing, Walking, Running, or Dancing. Dichotomize
the response by identifying whether the subject is moving (actid > 2).

Y = Y > 2;

Suppose that the data collected when the subject was not moving (Y = false) has double the quality
than when the subject was moving. Create a weight variable that attributes 2 to observations
collected from a still subject, and 1 to a moving subject.

W = ones(n,1) + ~Y;

Train Linear Model for Binary Classification

Fit a linear model for binary classification to a random sample of half the data.

idxtt = randsample([true false],n,true);
TTMdl = fitclinear(X(:,idxtt),Y(idxtt),'ObservationsIn','columns', ...
    'Weights',W(idxtt))

TTMdl = 
  ClassificationLinear
      ResponseName: 'Y'
        ClassNames: [0 1]
    ScoreTransform: 'none'
              Beta: [60x1 double]
              Bias: -0.1107
            Lambda: 8.2967e-05
           Learner: 'svm'

  Properties, Methods

TTMdl is a ClassificationLinear model object representing a traditionally trained linear model
for binary classification.
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Convert Trained Model

Convert the traditionally trained classification model to a binary classification linear model for
incremental learning.

IncrementalMdl = incrementalLearner(TTMdl)

IncrementalMdl = 
  incrementalClassificationLinear

            IsWarm: 1
           Metrics: [1x2 table]
        ClassNames: [0 1]
    ScoreTransform: 'none'
              Beta: [60x1 double]
              Bias: -0.1107
           Learner: 'svm'

  Properties, Methods

Separately Track Performance Metrics and Fit Model

Perform incremental learning on the rest of the data by using the updateMetrics and fit
functions. At each iteration:

1 Simulate a data stream by processing 50 observations at a time.
2 Call updateMetrics to update the cumulative and window classification error of the model

given the incoming chunk of observations. Overwrite the previous incremental model to update
the losses in the Metrics property. Note that the function does not fit the model to the chunk of
data—the chunk is "new" data for the model. Specify that the observations are oriented in
columns, and specify the observation weights.

3 Call fit to fit the model to the incoming chunk of observations. Overwrite the previous
incremental model to update the model parameters. Specify that the observations are oriented in
columns, and specify the observation weights.

4 Store the classification error and first estimated coefficient β1.

% Preallocation
idxil = ~idxtt;
nil = sum(idxil);
numObsPerChunk = 50;
nchunk = floor(nil/numObsPerChunk);
ce = array2table(zeros(nchunk,2),'VariableNames',["Cumulative" "Window"]);
beta1 = [IncrementalMdl.Beta(1); zeros(nchunk,1)];
Xil = X(:,idxil);
Yil = Y(idxil);
Wil = W(idxil);

% Incremental fitting
for j = 1:nchunk
    ibegin = min(nil,numObsPerChunk*(j-1) + 1);
    iend   = min(nil,numObsPerChunk*j);
    idx = ibegin:iend;
    IncrementalMdl = updateMetrics(IncrementalMdl,Xil(:,idx),Yil(idx), ...
        'ObservationsIn','columns','Weights',Wil(idx));
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    ce{j,:} = IncrementalMdl.Metrics{"ClassificationError",:};
    IncrementalMdl = fit(IncrementalMdl,Xil(:,idx),Yil(idx),'ObservationsIn','columns', ...
        'Weights',Wil(idx));
    beta1(j + 1) = IncrementalMdl.Beta(1);
end

IncrementalMdl is an incrementalClassificationLinear model object trained on all the data
in the stream.

Alternatively, you can use updateMetricsAndFit to update performance metrics of the model given
a new chunk of data, and then fit the model to the data.

Plot a trace plot of the performance metrics and estimated coefficient β1.

t = tiledlayout(2,1);
nexttile
h = plot(ce.Variables);
xlim([0 nchunk])
ylabel('Classification Error')
legend(h,ce.Properties.VariableNames)
nexttile
plot(beta1)
ylabel('\beta_1')
xlim([0 nchunk])
xlabel(t,'Iteration')

The cumulative loss is stable and gradually decreases, whereas the window loss jumps.
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β1 changes gradually, then levels off, as fit processes more chunks.

Perform Conditional Training

Incrementally train a linear regression model only when its performance degrades.

Load and shuffle the 2015 NYC housing data set. For more details on the data, see NYC Open Data.

load NYCHousing2015

rng(1) % For reproducibility
n = size(NYCHousing2015,1);
shuffidx = randsample(n,n);
NYCHousing2015 = NYCHousing2015(shuffidx,:);

Extract the response variable SALEPRICE from the table. For numerical stability, scale SALEPRICE by
1e6.

Y = NYCHousing2015.SALEPRICE/1e6;
NYCHousing2015.SALEPRICE = [];

Create dummy variable matrices from the categorical predictors.

catvars = ["BOROUGH" "BUILDINGCLASSCATEGORY" "NEIGHBORHOOD"];
dumvarstbl = varfun(@(x)dummyvar(categorical(x)),NYCHousing2015, ...
    'InputVariables',catvars);
dumvarmat = table2array(dumvarstbl);
NYCHousing2015(:,catvars) = [];

Treat all other numeric variables in the table as linear predictors of sales price. Concatenate the
matrix of dummy variables to the rest of the predictor data.

idxnum = varfun(@isnumeric,NYCHousing2015,'OutputFormat','uniform');
X = [dumvarmat NYCHousing2015{:,idxnum}];

Configure a linear regression model for incremental learning so that it does not have an estimation or
metrics warm-up period. Specify a metrics window size of 1000. Fit the configured model to the first
100 observations.

Mdl = incrementalRegressionLinear('EstimationPeriod',0, ...
    'MetricsWarmupPeriod',0,'MetricsWindowSize',1000);
numObsPerChunk = 100;
Mdl = fit(Mdl,X(1:numObsPerChunk,:),Y(1:numObsPerChunk));

Mdl is an incrementalRegressionLinear model object.

Perform incremental learning, with conditional fitting, by following this procedure for each iteration:

• Simulate a data stream by processing a chunk of 100 observations at a time.
• Update the model performance by computing the epsilon insensitive loss, within a 200 observation

window.
• Fit the model to the chunk of data only when the loss more than doubles from the minimum loss

experienced.
• When tracking performance and fitting, overwrite the previous incremental model.
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• Store the epsilon insensitive loss and β313 to see how the loss and coefficient evolve during
training.

• Track when fit trains the model.

% Preallocation
n = numel(Y) - numObsPerChunk;
nchunk = floor(n/numObsPerChunk);
beta313 = zeros(nchunk,1);
ei = array2table(nan(nchunk,2),'VariableNames',["Cumulative" "Window"]);
trained = false(nchunk,1);

% Incremental fitting
for j = 2:nchunk
    ibegin = min(n,numObsPerChunk*(j-1) + 1);
    iend   = min(n,numObsPerChunk*j);
    idx = ibegin:iend;
    Mdl = updateMetrics(Mdl,X(idx,:),Y(idx));
    ei{j,:} = Mdl.Metrics{"EpsilonInsensitiveLoss",:};
    minei = min(ei{:,2});
    pdiffloss = (ei{j,2} - minei)/minei*100;
    if pdiffloss > 100
        Mdl = fit(Mdl,X(idx,:),Y(idx));
        trained(j) = true;
    end    
    beta313(j) = Mdl.Beta(end);
end

Mdl is an incrementalRegressionLinear model object trained on all the data in the stream.

To see how the model performance and β313 evolve during training, plot them on separate tiles.

t = tiledlayout(2,1);
nexttile
plot(beta313)
hold on
plot(find(trained),beta313(trained),'r.')
xlim([0 nchunk])
ylabel('\beta_{313}')
xline(Mdl.EstimationPeriod/numObsPerChunk,'r-.')
legend('\beta_{313}','Training occurs','Location','southeast')
hold off
nexttile
plot(ei.Variables)
xlim([0 nchunk])
ylabel('Epsilon Insensitive Loss')
xline(Mdl.EstimationPeriod/numObsPerChunk,'r-.')
legend(ei.Properties.VariableNames)
xlabel(t,'Iteration')
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The trace plot of β313 shows periods of constant values, during which the loss did not double from the
minimum experienced.

Input Arguments
Mdl — Incremental learning model
incrementalClassificationLinear model object | incrementalRegressionLinear model
object

Incremental learning model to fit to streaming data, specified as an
incrementalClassificationLinear or incrementalRegressionLinear model object. You can
create Mdl directly or by converting a supported, traditionally trained machine learning model using
the incrementalLearner function. For more details, see the corresponding reference page.

X — Chunk of predictor data
floating-point matrix

Chunk of predictor data to which the model is fit, specified as a floating-point matrix of n
observations and Mdl.NumPredictors predictor variables. The value of the ObservationsIn
name-value argument determines the orientation of the variables and observations. The default
ObservationsIn value is "rows", which indicates that observations in the predictor data are
oriented along the rows of X.

The length of the observation labels Y and the number of observations in X must be equal; Y(j) is the
label of observation j (row or column) in X.
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Note

• If Mdl.NumPredictors = 0, fit infers the number of predictors from X, and sets the
corresponding property of the output model. Otherwise, if the number of predictor variables in the
streaming data changes from Mdl.NumPredictors, fit issues an error.

• fit supports only floating-point input predictor data. If your input data includes categorical data,
you must prepare an encoded version of the categorical data. Use dummyvar to convert each
categorical variable to a numeric matrix of dummy variables. Then, concatenate all dummy
variable matrices and any other numeric predictors. For more details, see “Dummy Variables” on
page 2-49.

Data Types: single | double

Y — Chunk of responses (labels)
categorical array | character array | string array | logical vector | floating-point vector | cell array of
character vectors

Chunk of responses (labels) to which the model is fit, specified as a categorical, character, or string
array, logical or floating-point vector, or cell array of character vectors for classification problems; or
a floating-point vector for regression problems.

The length of the observation labels Y and the number of observations in X must be equal; Y(j) is the
label of observation j (row or column) in X.

For classification problems:

• fit supports binary classification only.
• When the ClassNames property of the input model Mdl is nonempty, the following conditions

apply:

• If Y contains a label that is not a member of Mdl.ClassNames, fit issues an error.
• The data type of Y and Mdl.ClassNames must be the same.

Data Types: char | string | cell | categorical | logical | single | double

Note

• If an observation (predictor or label) or weight contains at least one missing (NaN) value, fit
ignores the observation. Consequently, fit uses fewer than n observations to create an updated
model, where n is the number of observations in X.

• The chunk size n and the stochastic gradient descent (SGD) hyperparameter mini-batch size
(Mdl.BatchSize) can be different values, and n does not have to be an exact multiple of the mini-
batch size. If n < Mdl.BatchSize, fit uses the n available observations when it applies SGD. If
n > Mdl.BatchSize, the function updates the model with a mini-batch of the specified size
multiple times, and then uses the rest of the observations for the last mini-batch. The number of
observations for the last mini-batch can be smaller than Mdl.BatchSize.

 fit
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Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: 'ObservationsIn','columns','Weights',W specifies that the columns of the
predictor matrix correspond to observations, and the vector W contains observation weights to apply
during incremental learning.

ObservationsIn — Predictor data observation dimension
'rows' (default) | 'columns'

Predictor data observation dimension, specified as the comma-separated pair consisting of
'ObservationsIn' and 'columns' or 'rows'.
Data Types: char | string

Weights — Chunk of observation weights
floating-point vector of positive values

Chunk of observation weights, specified as the comma-separated pair consisting of 'Weights' and a
floating-point vector of positive values. fit weighs the observations in X with the corresponding
values in Weights. The size of Weights must equal n, which is the number of observations in X.

By default, Weights is ones(n,1).

For more details, including normalization schemes, see “Observation Weights” on page 35-1807.
Data Types: double | single

Output Arguments
Mdl — Updated incremental learning model
incrementalClassificationLinear model object | incrementalRegressionLinear model
object

Updated incremental learning model, returned as an incremental learning model object of the same
data type as the input model Mdl, either incrementalClassificationLinear or
incrementalRegressionLinear.

If Mdl.EstimationPeriod > 0, the incremental fitting functions updateMetricsAndFit and fit
estimate hyperparameters using the first Mdl.EstimationPeriod observations passed to either
function; they do not train the input model to that data. However, if an incoming chunk of n
observations is greater than or equal to the number of observations remaining in the estimation
period m, fit estimates hyperparameters using the first n – m observations, and fits the input model
to the remaining m observations. Consequently, the software updates the Beta and Bias properties,
hyperparameter properties, and recordkeeping properties such as NumTrainingObservations.

For classification problems, if the ClassNames property of the input model Mdl is an empty array,
fit sets the ClassNames property of the output model Mdl to unique(Y).

35 Functions

35-1806



Tips
• Unlike traditional training, incremental learning might not have a separate test (holdout) set.

Therefore, to treat each incoming chunk of data as a test set, pass the incremental model and
each incoming chunk to updateMetrics before training the model on the same data.

Algorithms
Observation Weights

For classification problems, if the prior class probability distribution is known (in other words, the
prior distribution is not empirical), fit normalizes observation weights to sum to the prior class
probabilities in the respective classes. This action implies that observation weights are the respective
prior class probabilities by default.

For regression problems or if the prior class probability distribution is empirical, the software
normalizes the specified observation weights to sum to 1 each time you call fit.

Version History
Introduced in R2020b

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• Use saveLearnerForCoder, loadLearnerForCoder, and codegen to generate code for the
fit function. Save a trained model by using saveLearnerForCoder. Define an entry-point
function that loads the saved model by using loadLearnerForCoder and calls the fit function.
Then use codegen to generate code for the entry-point function.

• To generate single-precision C/C++ code for fit, specify the name-value argument
"DataType","single" when you call the loadLearnerForCoder function.

• This table contains notes about the arguments of fit. Arguments not included in this table are
fully supported.

Argument Notes and Limitations
Mdl For usage notes and limitations of the model

object, see
incrementalClassificationLinear or
incrementalRegressionLinear.

X • Batch-to-batch, the number of observations
can be a variable size, but must equal the
number of observations in Y.

• The number of predictor variables must
equal to Mdl.NumPredictors.

• X must be single or double.

 fit
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Argument Notes and Limitations
Y • Batch-to-batch, the number of observations

can be a variable size, but must equal the
number of observations in X.

• For classification problems, all labels in Y
must be represented in Mdl.ClassNames.

• Y and Mdl.ClassNames must have the
same data type.

• The following restrictions apply:

• If you configure Mdl to shuffle data (Mdl.Shuffle is true, or Mdl.Solver is 'sgd' or
'asgd'), the fit function randomly shuffles each incoming batch of observations before it fits
the model to the batch. The order of the shuffled observations might not match the order
generated by MATLAB. Therefore, the fitted coefficients computed in MATLAB and the
generated code might not be equal.

• Use a homogeneous data type for all floating-point input arguments and object properties,
specifically, either single or double.

For more information, see “Introduction to Code Generation” on page 34-2.

See Also
Objects
incrementalClassificationLinear | incrementalRegressionLinear

Functions
predict | updateMetricsAndFit | updateMetrics

Topics
“Incremental Learning Overview” on page 28-2
“Implement Incremental Learning for Classification Using Flexible Workflow” on page 28-29
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fit
Train naive Bayes classification model for incremental learning

Syntax
Mdl = fit(Mdl,X,Y)
Mdl = fit(Mdl,X,Y,'Weights',Weights)

Description
The fit function fits a configured naive Bayes classification model for incremental learning
(incrementalClassificationNaiveBayes object) to streaming data. To additionally track
performance metrics using the data as it arrives, use updateMetricsAndFit instead.

To fit or cross-validate a naive Bayes classification model to an entire batch of data at once, see
fitcnb.

Mdl = fit(Mdl,X,Y) returns a naive Bayes classification model for incremental learning Mdl,
which represents the input naive Bayes classification model for incremental learning Mdl trained
using the predictor and response data, X and Y respectively. Specifically, fit updates the conditional
posterior distribution of the predictor variables given the data.

Mdl = fit(Mdl,X,Y,'Weights',Weights) also sets observation weights Weights.

Examples

Incrementally Train Model with Little Prior Information

Fit an incremental naive Bayes learner when you know only the expected maximum number of
classes in the data.

Create an incremental naive Bayes model. Specify that the maximum number of expected classes is 5.

Mdl = incrementalClassificationNaiveBayes('MaxNumClasses',5)

Mdl = 
  incrementalClassificationNaiveBayes

                    IsWarm: 0
                   Metrics: [1x2 table]
                ClassNames: [1x0 double]
            ScoreTransform: 'none'
         DistributionNames: 'normal'
    DistributionParameters: {}

  Properties, Methods

 fit
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Mdl is an incrementalClassificationNaiveBayes model. All its properties are read-only. Mdl
can process at most 5 unique classes. By default, the prior class distribution Mdl.Prior is empirical,
which means the software updates the prior distribution as it encounters labels.

Mdl must be fit to data before you can use it to perform any other operations.

Load the human activity data set. Randomly shuffle the data.

load humanactivity
n = numel(actid);
rng(1) % For reproducibility
idx = randsample(n,n);
X = feat(idx,:);
Y = actid(idx);

For details on the data set, enter Description at the command line.

Fit the incremental model to the training data, in chunks of 50 observations at a time, by using the
fit function. At each iteration:

• Simulate a data stream by processing 50 observations.
• Overwrite the previous incremental model with a new one fitted to the incoming observations.
• Store the mean of the first predictor in the first class μ11 and the prior probability that the subject

is moving (Y > 2) to see how these parameters evolve during incremental learning.

% Preallocation
numObsPerChunk = 50;
nchunk = floor(n/numObsPerChunk);
mu11 = zeros(nchunk,1);    
priormoved = zeros(nchunk,1);

% Incremental fitting
for j = 1:nchunk
    ibegin = min(n,numObsPerChunk*(j-1) + 1);
    iend   = min(n,numObsPerChunk*j);
    idx = ibegin:iend;    
    Mdl = fit(Mdl,X(idx,:),Y(idx));
    mu11(j) = Mdl.DistributionParameters{1,1}(1);
    priormoved(j) = sum(Mdl.Prior(Mdl.ClassNames > 2));
end

Mdl is an incrementalClassificationNaiveBayes model object trained on all the data in the
stream.

To see how the parameters evolve during incremental learning, plot them on separate tiles.

t = tiledlayout(2,1);
nexttile
plot(mu11)
ylabel('\mu_{11}')
xlabel('Iteration')
axis tight
nexttile
plot(priormoved)
ylabel('\pi(Subject Is Moving)')
xlabel(t,'Iteration')
axis tight
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fit updates the posterior mean of the predictor distribution as it processes each chunk. Because the
prior class distribution is empirical, π(subject is moving) changes as fit processes each chunk.

Specify All Class Names Before Fitting

Fit an incremental naive Bayes learner when you know all the class names in the data.

Consider training a device to predict whether a subject is sitting, standing, walking, running, or
dancing based on biometric data measured on the subject. The class names map 1 through 5 to an
activity. Also, suppose that the researchers plan to expose the device to each class uniformly.

Create an incremental naive Bayes model for multiclass learning. Specify the class names and the
uniform prior class distribution.

classnames = 1:5;
Mdl = incrementalClassificationNaiveBayes('ClassNames',classnames,'Prior','uniform')

Mdl = 
  incrementalClassificationNaiveBayes

                    IsWarm: 0
                   Metrics: [1x2 table]
                ClassNames: [1 2 3 4 5]
            ScoreTransform: 'none'

 fit
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         DistributionNames: 'normal'
    DistributionParameters: {5x0 cell}

  Properties, Methods

Mdl is an incrementalClassificationNaiveBayes model object. All its properties are read-only.
During training, observed labels must be in Mdl.ClassNames.

Mdl must be fit to data before you can use it to perform any other operations.

Load the human activity data set. Randomly shuffle the data.

load humanactivity
n = numel(actid);
rng(1); % For reproducibility
idx = randsample(n,n);
X = feat(idx,:);
Y = actid(idx);

For details on the data set, enter Description at the command line.

Fit the incremental model to the training data by using the fit function. Simulate a data stream by
processing chunks of 50 observations at a time. At each iteration:

• Process 50 observations.
• Overwrite the previous incremental model with a new one fitted to the incoming observations.
• Store the mean of the first predictor in the first class μ11 and the prior probability that the subject

is moving (Y > 2) to see how these parameters evolve during incremental learning.

% Preallocation
numObsPerChunk = 50;
nchunk = floor(n/numObsPerChunk);
mu11 = zeros(nchunk,1);    
priormoved = zeros(nchunk,1);

% Incremental fitting
for j = 1:nchunk
    ibegin = min(n,numObsPerChunk*(j-1) + 1);
    iend   = min(n,numObsPerChunk*j);
    idx = ibegin:iend;    
    Mdl = fit(Mdl,X(idx,:),Y(idx));
    mu11(j) = Mdl.DistributionParameters{1,1}(1);
    priormoved(j) = sum(Mdl.Prior(Mdl.ClassNames > 2));
end

Mdl is an incrementalClassificationNaiveBayes model object trained on all the data in the
stream.

To see how the parameters evolve during incremental learning, plot them on separate tiles.

t = tiledlayout(2,1);
nexttile
plot(mu11)
ylabel('\mu_{11}')
xlabel('Iteration')
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axis tight
nexttile
plot(priormoved)
ylabel('\pi(Subject Is Moving)')
xlabel(t,'Iteration')
axis tight

fit updates the posterior mean of the predictor distribution as it processes each chunk. Because the
prior class distribution is specified as uniform, π(subject is moving) = 0.6 and does not change as fit
processes each chunk.

Specify Observation Weights

Train a naive Bayes classification model by using fitcnb, convert it to an incremental learner, track
its performance on streaming data, and then fit the model to the data. Specify observation weights.

Load and Preprocess Data

Load the human activity data set. Randomly shuffle the data.

load humanactivity
rng(1); % For reproducibility
n = numel(actid);
idx = randsample(n,n);

 fit
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X = feat(idx,:);
Y = actid(idx);

For details on the data set, enter Description at the command line.

Suppose that the data from a stationary subject (Y <= 2) has double the quality of the data from a
moving subject. Create a weight variable that assigns a weight of 2 to observations from a stationary
subject and 1 to a moving subject.

W = ones(n,1) + (Y <=2);

Train Naive Bayes Classification Model

Fit a naive Bayes classification model to a random sample of half the data.

idxtt = randsample([true false],n,true);
TTMdl = fitcnb(X(idxtt,:),Y(idxtt),'Weights',W(idxtt))

TTMdl = 
  ClassificationNaiveBayes
              ResponseName: 'Y'
     CategoricalPredictors: []
                ClassNames: [1 2 3 4 5]
            ScoreTransform: 'none'
           NumObservations: 12053
         DistributionNames: {1x60 cell}
    DistributionParameters: {5x60 cell}

  Properties, Methods

TTMdl is a ClassificationNaiveBayes model object representing a traditionally trained naive
Bayes classification model.

Convert Trained Model

Convert the traditionally trained model to a naive Bayes classification model for incremental learning.

IncrementalMdl = incrementalLearner(TTMdl)

IncrementalMdl = 
  incrementalClassificationNaiveBayes

                    IsWarm: 1
                   Metrics: [1x2 table]
                ClassNames: [1 2 3 4 5]
            ScoreTransform: 'none'
         DistributionNames: {1x60 cell}
    DistributionParameters: {5x60 cell}

  Properties, Methods

IncrementalMdl is an incrementalClassificationNaiveBayes model. Because class names
are specified in IncrementalMdl.ClassNames, labels encountered during incremental learning
must be in IncrementalMdl.ClassNames.
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Separately Track Performance Metrics and Fit Model

Perform incremental learning on the rest of the data by using the updateMetrics and fit
functions. At each iteration:

1 Simulate a data stream by processing 50 observations at a time.
2 Call updateMetrics to update the cumulative and window minimal cost of the model given the

incoming chunk of observations. Overwrite the previous incremental model to update the losses
in the Metrics property. Note that the function does not fit the model to the chunk of data—the
chunk is "new" data for the model. Specify the observation weights.

3 Store the minimal cost.
4 Call fit to fit the model to the incoming chunk of observations. Overwrite the previous

incremental model to update the model parameters. Specify the observation weights.

% Preallocation
idxil = ~idxtt;
nil = sum(idxil);
numObsPerChunk = 50;
nchunk = floor(nil/numObsPerChunk);
mc = array2table(zeros(nchunk,2),'VariableNames',["Cumulative" "Window"]);
Xil = X(idxil,:);
Yil = Y(idxil);
Wil = W(idxil);

% Incremental fitting
for j = 1:nchunk
    ibegin = min(nil,numObsPerChunk*(j-1) + 1);
    iend   = min(nil,numObsPerChunk*j);
    idx = ibegin:iend;
    IncrementalMdl = updateMetrics(IncrementalMdl,Xil(idx,:),Yil(idx), ...
        'Weights',Wil(idx));
    mc{j,:} = IncrementalMdl.Metrics{"MinimalCost",:};
    IncrementalMdl = fit(IncrementalMdl,Xil(idx,:),Yil(idx),'Weights',Wil(idx));
end

IncrementalMdl is an incrementalClassificationNaiveBayes model object trained on all the
data in the stream.

Alternatively, you can use updateMetricsAndFit to update performance metrics of the model given
a new chunk of data, and then fit the model to the data.

Plot a trace plot of the performance metrics.

h = plot(mc.Variables);
xlim([0 nchunk])
ylabel('Minimal Cost')
legend(h,mc.Properties.VariableNames)
xlabel('Iteration')
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The cumulative loss gradually stabilizes, whereas the window loss jumps throughout the training.

Perform Conditional Training

Incrementally train a naive Bayes classification model only when its performance degrades.

Load the human activity data set. Randomly shuffle the data.

load humanactivity
n = numel(actid);
rng(1) % For reproducibility
idx = randsample(n,n);
X = feat(idx,:);
Y = actid(idx);

For details on the data set, enter Description at the command line.

Configure a naive Bayes classification model for incremental learning so that the maximum number of
expected classes is 5, the tracked performance metric includes the misclassification error rate, and
the metrics window size is 1000. Fit the configured model to the first 1000 observations.

Mdl = incrementalClassificationNaiveBayes('MaxNumClasses',5,'MetricsWindowSize',1000, ...
    'Metrics','classiferror');
initobs = 1000;
Mdl = fit(Mdl,X(1:initobs,:),Y(1:initobs));

35 Functions

35-1816



Mdl is an incrementalClassificationNaiveBayes model object.

Perform incremental learning, with conditional fitting, by following this procedure for each iteration:

• Simulate a data stream by processing a chunk of 100 observations at a time.
• Update the model performance on the incoming chunk of data.
• Fit the model to the chunk of data only when the misclassification error rate is greater than 0.05.
• When tracking performance and fitting, overwrite the previous incremental model.
• Store the misclassification error rate and the mean of the first predictor in the second class μ21 to

see how they evolve during training.
• Track when fit trains the model.

% Preallocation
numObsPerChunk = 100;
nchunk = floor((n - initobs)/numObsPerChunk);
mu21 = zeros(nchunk,1);
ce = array2table(nan(nchunk,2),'VariableNames',["Cumulative" "Window"]);
trained = false(nchunk,1);

% Incremental fitting
for j = 1:nchunk
    ibegin = min(n,numObsPerChunk*(j-1) + 1 + initobs);
    iend = min(n,numObsPerChunk*j + initobs);
    idx = ibegin:iend;
    Mdl = updateMetrics(Mdl,X(idx,:),Y(idx));
    ce{j,:} = Mdl.Metrics{"ClassificationError",:};
    if ce{j,2} > 0.05
        Mdl = fit(Mdl,X(idx,:),Y(idx));
        trained(j) = true;
    end    
    mu21(j) = Mdl.DistributionParameters{2,1}(1);
end

Mdl is an incrementalClassificationNaiveBayes model object trained on all the data in the
stream.

To see how the model performance and μ21 evolve during training, plot them on separate tiles.

t = tiledlayout(2,1);
nexttile
plot(mu21)
hold on
plot(find(trained),mu21(trained),'r.')
xlim([0 nchunk])
ylabel('\mu_{21}')
legend('\mu_{21}','Training occurs','Location','best')
hold off
nexttile
plot(ce.Variables)
xlim([0 nchunk])
ylabel('Misclassification Error Rate')
legend(ce.Properties.VariableNames,'Location','best')
xlabel(t,'Iteration')
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The trace plot of μ21 shows periods of constant values, during which the loss within the previous
observation window is at most 0.05.

Input Arguments
Mdl — Naive Bayes classification model for incremental learning
incrementalClassificationNaiveBayes model object

Naive Bayes classification model for incremental learning to fit to streaming data, specified as an
incrementalClassificationNaiveBayes model object. You can create Mdl directly or by
converting a supported, traditionally trained machine learning model using the
incrementalLearner function. For more details, see the corresponding reference page.

X — Chunk of predictor data
floating-point matrix

Chunk of predictor data to which the model is fit, specified as an n-by-Mdl.NumPredictors floating-
point matrix.

The length of the observation labels Y and the number of observations in X must be equal; Y(j) is the
label of observation j (row) in X.
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Note If Mdl.NumPredictors = 0, fit infers the number of predictors from X, and sets the
corresponding property of the output model. Otherwise, if the number of predictor variables in the
streaming data changes from Mdl.NumPredictors, fit issues an error.

Data Types: single | double

Y — Chunk of labels
categorical array | character array | string array | logical vector | floating-point vector | cell array of
character vectors

Chunk of labels to which the model is fit, specified as a categorical, character, or string array, logical
or floating-point vector, or cell array of character vectors.

The length of the observation labels Y and the number of observations in X must be equal; Y(j) is the
label of observation j (row) in X.

fit issues an error when one or both of these conditions are met:

• Y contains a new label and the maximum number of classes has already been reached (see the
MaxNumClasses and ClassNames arguments of incrementalClassificationNaiveBayes).

• The ClassNames property of the input model Mdl is nonempty, and the data types of Y and
Mdl.ClassNames are different.

Data Types: char | string | cell | categorical | logical | single | double

Weights — Chunk of observation weights
floating-point vector of positive values

Chunk of observation weights, specified as a floating-point vector of positive values. fit weighs the
observations in X with the corresponding values in Weights. The size of Weights must equal n, the
number of observations in X.

By default, Weights is ones(n,1).

For more details, including normalization schemes, see “Observation Weights” on page 35-1822.
Data Types: double | single

Note

If an observation (predictor or label) or weight contains at least one missing (NaN) value, fit ignores
the observation. Consequently, fit uses fewer than n observations to create an updated model,
where n is the number of observations in X.

Output Arguments
Mdl — Updated naive Bayes classification model for incremental learning
incrementalClassificationNaiveBayes model object

Updated naive Bayes classification model for incremental learning, returned as an incremental
learning model object of the same data type as the input model Mdl, an
incrementalClassificationNaiveBayes object.

 fit
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In addition to updating distribution model parameters, fit performs the following actions when Y
contains expected, but unprocessed, classes:

• If you do not specify all expected classes by using the ClassNames name-value argument when
you create the input model Mdl using incrementalClassificationNaiveBayes, fit:

1 Appends any new labels in Y to the tail of Mdl.ClassNames.
2 Expands Mdl.Cost to a c-by-c matrix, where c is the number of classes in Mdl.ClassNames.

The resulting misclassification cost matrix is balanced.
3 Expands Mdl.Prior to a length c vector of an updated empirical class distribution.

• If you specify all expected classes when you create the input model Mdl or convert a traditionally
trained naive Bayes model using incrementalLearner, but you do not specify a
misclassification cost matrix (Mdl.Cost), fit sets misclassification costs of processed classes to
1 and unprocessed classes to NaN. For example, if fit processes the first two classes of a possible
three classes, Mdl.Cost is [0 1 NaN; 1 0 NaN; 1 1 0].

More About
Bag-of-Tokens Model

In the bag-of-tokens model, the value of predictor j is the nonnegative number of occurrences of
token j in the observation. The number of categories (bins) in the multinomial model is the number of
distinct tokens (number of predictors).

Tips
• Unlike traditional training, incremental learning might not have a separate test (holdout) set.

Therefore, to treat each incoming chunk of data as a test set, pass the incremental model and
each incoming chunk to updateMetrics before training the model on the same data.

Algorithms
Normal Distribution Estimators

If predictor variable j has a conditional normal distribution (see the DistributionNames property),
the software fits the distribution to the data by computing the class-specific weighted mean and the
biased (maximum likelihood) estimate of the weighted standard deviation. For each class k:

• The weighted mean of predictor j is

x j k =
∑

i: yi = k
wixi j

∑
i: yi = k

wi
,

where wi is the weight for observation i. The software normalizes weights within a class such that
they sum to the prior probability for that class.

• The unbiased estimator of the weighted standard deviation of predictor j is
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s j k =
∑

i: yi = k
wi xi j− x j k

2

∑
i: yi = k

wi

1/2

.

Estimated Probability for Multinomial Distribution

If all predictor variables compose a conditional multinomial distribution (see the
DistributionNames property), the software fits the distribution using the “Bag-of-Tokens Model”
on page 35-1820. The software stores the probability that token j appears in class k in the property
DistributionParameters{k,j}. With additive smoothing [1], the estimated probability is

P(token  j class k) =
1 + c j k
P + ck

,

where:

•

c j k = nk

∑
i: yi = k

xi jwi

∑
i: yi = k

wi
, which is the weighted number of occurrences of token j in class k.

• nk is the number of observations in class k.
• wi is the weight for observation i. The software normalizes weights within a class so that they sum

to the prior probability for that class.
•

ck = ∑
j = 1

P
c j k, which is the total weighted number of occurrences of all tokens in class k.

Estimated Probability for Multivariate Multinomial Distribution

If predictor variable j has a conditional multivariate multinomial distribution (see the
DistributionNames property), the software follows this procedure:

1 The software collects a list of the unique levels, stores the sorted list in CategoricalLevels,
and considers each level a bin. Each combination of predictor and class is a separate,
independent multinomial random variable.

2 For each class k, the software counts instances of each categorical level using the list stored in
CategoricalLevels{j}.

3 The software stores the probability that predictor j in class k has level L in the property
DistributionParameters{k,j}, for all levels in CategoricalLevels{j}. With additive
smoothing [1], the estimated probability is

P predictor  j = L class k =
1 + m j k(L)

m j + mk
,

where:

•

m j k(L) = nk

∑
i: yi = k

I xi j = L wi

∑
i: yi = k

wi
, which is the weighted number of observations for which

predictor j equals L in class k.
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• nk is the number of observations in class k.
• I xi j = L = 1 if xij = L, and 0 otherwise.

• wi is the weight for observation i. The software normalizes weights within a class so that they
sum to the prior probability for that class.

• mj is the number of distinct levels in predictor j.
• mk is the weighted number of observations in class k.

Observation Weights

For each conditional predictor distribution, fit computes the weighted average and standard
deviation.

If the prior class probability distribution is known (in other words, the prior distribution is not
empirical), fit normalizes observation weights to sum to the prior class probabilities in the
respective classes. This action implies that the default observation weights are the respective prior
class probabilities.

If the prior class probability distribution is empirical, the software normalizes the specified
observation weights to sum to 1 each time you call fit.

Version History
Introduced in R2021a

Naive Bayes incremental fitting functions compute biased (maximum likelihood) standard
deviations for conditionally normal predictor variables
Behavior changed in R2021b

Starting in R2021b, naive Bayes incremental fitting functions fit and updateMetricsAndFit
compute biased (maximum likelihood) estimates of the weighted standard deviations for conditionally
normal predictor variables during training. In other words, for each class k, incremental fitting
functions normalize the sum of square weighted deviations of the conditionally normal predictor xj by
the sum of the weights in class k. Before R2021b, naive Bayes incremental fitting functions computed
the unbiased standard deviation, like fitcnb. The currently returned weighted standard deviation
estimates differ from those computed before R2021b by a factor of

1−
∑

i: yi = k
wi2

∑
i: yi = k

wi

2 .

The factor approaches 1 as the sample size increases.

References
[1] Manning, Christopher D., Prabhakar Raghavan, and Hinrich Schütze. Introduction to Information

Retrieval, NY: Cambridge University Press, 2008.
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See Also
Objects
incrementalClassificationNaiveBayes

Functions
predict | updateMetricsAndFit | updateMetrics

Topics
“Incremental Learning Overview” on page 28-2
“Implement Incremental Learning for Classification Using Flexible Workflow” on page 28-29
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fit
Compute Shapley values for query point

Syntax
newExplainer = fit(explainer,queryPoint)
newExplainer = fit(explainer,queryPoint,Name,Value)

Description
newExplainer = fit(explainer,queryPoint) computes the Shapley values for the specified
query point (queryPoint) and stores the computed Shapley values in the ShapleyValues property
of newExplainer. The shapley object explainer contains a machine learning model and the
options for computing Shapley values.

fit uses the Shapley value computation options that you specify when you create explainer. You
can change the options using the name-value arguments of the fit function. The function returns a
shapley object newExplainer that contains the newly computed Shapley values.

newExplainer = fit(explainer,queryPoint,Name,Value) specifies additional options using
one or more name-value arguments. For example, specify 'UseParallel',true to compute Shapley
values in parallel.

Examples

Create shapley Object and Compute Shapley Values Using fit

Train a regression model and create a shapley object. When you create a shapley object, if you do
not specify a query point, then the software does not compute Shapley values. Use the object function
fit to compute the Shapley values for the specified query point. Then create a bar graph of the
Shapley values by using the object function plot.

Load the carbig data set, which contains measurements of cars made in the 1970s and early 1980s.

load carbig

Create a table containing the predictor variables Acceleration, Cylinders, and so on, as well as
the response variable MPG.

tbl = table(Acceleration,Cylinders,Displacement,Horsepower,Model_Year,Weight,MPG);

Removing missing values in a training set can help reduce memory consumption and speed up
training for the fitrkernel function. Remove missing values in tbl.

tbl = rmmissing(tbl);

Train a blackbox model of MPG by using the fitrkernel function

rng('default') % For reproducibility
mdl = fitrkernel(tbl,'MPG','CategoricalPredictors',[2 5]);
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Create a shapley object. Specify the data set tbl, because mdl does not contain training data.

explainer = shapley(mdl,tbl)

explainer = 
  shapley with properties:

            BlackboxModel: [1x1 RegressionKernel]
               QueryPoint: []
           BlackboxFitted: []
            ShapleyValues: []
               NumSubsets: 64
                        X: [392x7 table]
    CategoricalPredictors: [2 5]
                   Method: 'interventional-kernel'
                Intercept: 22.6202

explainer stores the training data tbl in the X property.

Compute the Shapley values of all predictor variables for the first observation in tbl.

queryPoint = tbl(1,:)

queryPoint=1×7 table
    Acceleration    Cylinders    Displacement    Horsepower    Model_Year    Weight    MPG
    ____________    _________    ____________    __________    __________    ______    ___

         12             8            307            130            70         3504     18 

explainer = fit(explainer,queryPoint);

For a regression model, shapley computes Shapley values using the predicted response, and stores
them in the ShapleyValues property. Display the values in the ShapleyValues property.

explainer.ShapleyValues

ans=6×2 table
      Predictor       ShapleyValue
    ______________    ____________

    "Acceleration"       -0.1561  
    "Cylinders"         -0.18306  
    "Displacement"      -0.34203  
    "Horsepower"        -0.27291  
    "Model_Year"         -0.2926  
    "Weight"            -0.32402  

Plot the Shapley values for the query point by using the plot function.

plot(explainer)
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The horizontal bar graph shows the Shapley values for all variables, sorted by their absolute values.
Each Shapley value explains the deviation of the prediction for the query point from the average, due
to the corresponding variable.

Compute Shapley Values for Multiple Query Points

Train a classification model and create a shapley object. Then compute the Shapley values for
multiple query points.

Load the CreditRating_Historical data set. The data set contains customer IDs and their
financial ratios, industry labels, and credit ratings.

tbl = readtable('CreditRating_Historical.dat');

Train a blackbox model of credit ratings by using the fitcecoc function. Use the variables from the
second through seventh columns in tbl as the predictor variables.

blackbox = fitcecoc(tbl,'Rating', ...
    'PredictorNames',tbl.Properties.VariableNames(2:7), ...
    'CategoricalPredictors','Industry');

Create a shapley object with the blackbox model. For faster computation, subsample 25% of the
observations from tbl with stratification and use the samples to compute the Shapley values. Specify
to use the extension to the kernelSHAP algorithm.
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rng('default') % For reproducibility
c = cvpartition(tbl.Rating,'Holdout',0.25);
tbl_s = tbl(test(c),:);
explainer = shapley(blackbox,tbl_s,'Method','conditional-kernel');

Find two query points whose true rating values are AAA and B, respectively.

queryPoint(1,:) = tbl_s(find(strcmp(tbl_s.Rating,'AAA'),1),:);
queryPoint(2,:) = tbl_s(find(strcmp(tbl_s.Rating,'B'),1),:)

queryPoint=2×8 table
     ID      WC_TA     RE_TA     EBIT_TA    MVE_BVTD    S_TA     Industry    Rating 
    _____    ______    ______    _______    ________    _____    ________    _______

    58258     0.511     0.869     0.106      8.538      0.732       2        {'AAA'}
    82367    -0.078    -0.042     0.011      0.262      0.167       7        {'B'  }

Compute and plot the Shapley values for the first query point.

explainer1 = fit(explainer,queryPoint(1,:));
plot(explainer1)

Compute and plot the Shapley values for the second query point.

explainer2 = fit(explainer,queryPoint(2,:));
plot(explainer2)
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The true rating for the second query point is B, but the predicted rating is BB. The plot shows the
Shapley values for the predicted rating.

explainer1 and explainer2 include the Shapley values for the first query point and second query
point, respectively.

Input Arguments
explainer — Object explaining blackbox model
shapley object

Object explaining the blackbox model, specified as a shapley object.

queryPoint — Query point
row vector of numeric values | single-row table

Query point at which fit explains a prediction, specified as a row vector of numeric values or a
single-row table.

• For a row vector of numeric values:

• The variables that makes up the columns of queryPoint must have the same order as the
predictor data X in explainer.

• If the predictor data explainer.X is a table, then queryPoint can be a numeric vector if the
table contains all numeric variables.
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• For a single-row table:

• If the predictor data explainer.X is a table, then all predictor variables in queryPoint must
have the same variable names and data types as those in explainer.X. However, the column
order of queryPoint does not need to correspond to the column order of explainer.X.

• If the predictor data explainer.X is a numeric matrix, then the predictor names in
explainer.BlackboxModel.PredictorNames and the corresponding predictor variable
names in queryPoint must be the same. To specify predictor names during training, use the
'PredictorNames' name-value argument. All predictor variables in queryPoint must be
numeric vectors.

• queryPoint can contain additional variables (response variables, observation weights, and so
on), but fit ignores them.

• fit does not support multicolumn variables or cell arrays other than cell arrays of character
vectors.

If queryPoint contains NaNs for continuous predictors and 'Method' is 'conditional-kernel',
then the Shapley values (ShapleyValues) in the returned object are NaNs. Otherwise, fit handles
NaN values in the same way as explainer.BlackboxModel (the predict object function of
explainer.BlackboxModel or a function handle specified by blackbox).
Example: explainer.X(1,:) specifies the query point as the first observation of the predictor data
X in explainer.
Data Types: single | double | table

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: fit(explainer,q,'Method','conditional-kernel','UseParallel',true)
computes the Shapley values for the query point q using the extension to the kernelSHAP algorithm,
and executes the computation in parallel.

MaxNumSubsets — Maximum number of predictor subsets
explainer.NumSubsets (default) | positive integer

Maximum number of predictor subsets to use for Shapley value computation, specified as a positive
integer.

For details on how fit chooses the subsets to use, see “Computational Cost” on page 27-23.
Example: 'MaxNumSubsets',100
Data Types: single | double

Method — Shapley value computation algorithm
explainer.Method (default) | 'interventional-kernel' | 'conditional-kernel'

Shapley value computation algorithm, specified as 'interventional-kernel' or 'conditional-
kernel'.
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• 'interventional-kernel' — fit uses the kernelSHAP algorithm [1] with an interventional
value function.

• 'conditional-kernel' — fit uses the extension to the kernelSHAP algorithm [2] with a
conditional value function.

For details about these algorithms, see “Algorithms” on page 27-18.
Example: 'Method','conditional-kernel'
Data Types: char | string

UseParallel — Flag to run in parallel
false (default) | true

Flag to run in parallel, specified as true or false. If you specify 'UseParallel',true, the fit
function executes for-loop iterations in parallel by using parfor. This option requires Parallel
Computing Toolbox.
Example: 'UseParallel',true
Data Types: logical

Output Arguments
newExplainer — Object explaining blackbox model
shapley object

Object explaining the blackbox model, returned as a shapley object. The ShapleyValues property
of the object contains the computed Shapley values.

To overwrite the input argument explainer, assign the output of fit to explainer:

explainer = fit(explainer,queryPoint);

More About
Shapley Values

In game theory, the Shapley value of a player is the average marginal contribution of the player in a
cooperative game. In the context of machine learning prediction, the Shapley value of a feature for a
query point explains the contribution of the feature to a prediction (response for regression or score
of each class for classification) at the specified query point.

The Shapley value of a feature for a query point is the contribution of the feature to the deviation
from the average prediction. For a query point, the sum of the Shapley values for all features
corresponds to the total deviation of the prediction from the average. That is, the sum of the average
prediction and the Shapley values for all features corresponds to the prediction for the query point.

For more details, see “Shapley Values for Machine Learning Model” on page 27-18.

Version History
Introduced in R2021a
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References
[1] Lundberg, Scott M., and S. Lee. "A Unified Approach to Interpreting Model Predictions." Advances

in Neural Information Processing Systems 30 (2017): 4765–774.

[2] Aas, Kjersti, Martin. Jullum, and Anders Løland. "Explaining Individual Predictions When Features
Are Dependent: More Accurate Approximations to Shapley Values." arXiv:1903.10464 (2019).

Extended Capabilities
Automatic Parallel Support
Accelerate code by automatically running computation in parallel using Parallel Computing Toolbox™.

To run in parallel, set the UseParallel name-value argument to true in the call to this function.

For more general information about parallel computing, see “Run MATLAB Functions with Automatic
Parallel Support” (Parallel Computing Toolbox).

See Also
shapley | plot

Topics
“Shapley Values for Machine Learning Model” on page 27-18
“Interpret Machine Learning Models” on page 27-2
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fitcauto
Automatically select classification model with optimized hyperparameters

Syntax
Mdl = fitcauto(Tbl,ResponseVarName)
Mdl = fitcauto(Tbl,formula)
Mdl = fitcauto(Tbl,Y)

Mdl = fitcauto(X,Y)

Mdl = fitcauto( ___ ,Name,Value)
[Mdl,OptimizationResults] = fitcauto( ___ )

Description
Given predictor and response data, fitcauto automatically tries a selection of classification model
types with different hyperparameter values. By default, the function uses Bayesian optimization to
select models and their hyperparameter values, and computes the cross-validation classification error
for each model. After the optimization is complete, fitcauto returns the model, trained on the
entire data set, that is expected to best classify new data. You can use the predict and loss object
functions of the returned model to classify new data and compute the test set classification error,
respectively.

Use fitcauto when you are uncertain which classifier types best suit your data. For information on
alternative methods for tuning hyperparameters of classification models, see “Alternative
Functionality” on page 35-1883.

If your data contains over 10,000 observations, consider using an asynchronous successive halving
algorithm (ASHA) instead of Bayesian optimization when you run fitcauto. ASHA optimization often
finds good solutions faster than Bayesian optimization for data sets with many observations.

Mdl = fitcauto(Tbl,ResponseVarName) returns a classification model Mdl with tuned
hyperparameters. The table Tbl contains the predictor variables and the response variable, where
ResponseVarName is the name of the response variable.

Mdl = fitcauto(Tbl,formula) uses formula to specify the response variable and the predictor
variables to consider among the variables in Tbl.

Mdl = fitcauto(Tbl,Y) uses the predictor variables in table Tbl and the class labels in vector Y.

Mdl = fitcauto(X,Y) uses the predictor variables in matrix X and the class labels in vector Y.

Mdl = fitcauto( ___ ,Name,Value) specifies options using one or more name-value arguments
in addition to any of the input argument combinations in previous syntaxes. For example, use the
HyperparameterOptimizationOptions name-value argument to specify whether to use Bayesian
optimization (default) or an asynchronous successive halving algorithm (ASHA). To use ASHA
optimization, specify
"HyperparameterOptimizationOptions",struct("Optimizer","asha"). You can include
additional fields in the structure to control other aspects of the optimization.
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[Mdl,OptimizationResults] = fitcauto( ___ ) also returns OptimizationResults, which
contains the results of the model selection and hyperparameter tuning process. This output is a
BayesianOptimization object when you use Bayesian optimization, and a table when you use
ASHA optimization.

Examples

Automatically Select Classifier Using Table Data

Use fitcauto to automatically select a classification model with optimized hyperparameters, given
predictor and response data stored in a table.

Load Data

Load the carbig data set, which contains measurements of cars made in the 1970s and early 1980s.

load carbig

Categorize the cars based on whether they were made in the USA.

Origin = categorical(cellstr(Origin));
Origin = mergecats(Origin,["France","Japan","Germany", ...
    "Sweden","Italy","England"],"NotUSA");

Create a table containing the predictor variables Acceleration, Displacement, and so on, as well
as the response variable Origin.

cars = table(Acceleration,Displacement,Horsepower, ...
    Model_Year,MPG,Weight,Origin);

Partition Data

Partition the data into training and test sets. Use approximately 80% of the observations for the
model selection and hyperparameter tuning process, and 20% of the observations to test the
performance of the final model returned by fitcauto. Use cvpartition to partition the data.

rng("default") % For reproducibility of the data partition
c = cvpartition(Origin,"Holdout",0.2);
trainingIdx = training(c); % Training set indices
carsTrain = cars(trainingIdx,:);
testIdx = test(c); % Test set indices
carsTest = cars(testIdx,:);

Run fitcauto

Pass the training data to fitcauto. By default, fitcauto determines appropriate model types to try,
uses Bayesian optimization to find good hyperparameter values, and returns a trained model Mdl
with the best expected performance. Additionally, fitcauto provides a plot of the optimization and
an iterative display of the optimization results. For more information on how to interpret these
results, see “Verbose Display” on page 35-1878.

Expect this process to take some time. To speed up the optimization process, consider specifying to
run the optimization in parallel, if you have a Parallel Computing Toolbox™ license. To do so, pass
"HyperparameterOptimizationOptions",struct("UseParallel",true) to fitcauto as a
name-value argument.

 fitcauto

35-1833



Mdl = fitcauto(carsTrain,"Origin");

Warning: It is recommended that you first standardize all numeric predictors when optimizing the Naive Bayes 'Width' parameter. Ignore this warning if you have done that.

Learner types to explore: ensemble, knn, nb, net, svm, tree
Total iterations (MaxObjectiveEvaluations): 180
Total time (MaxTime): Inf

|=============================================================================================================================================|
| Iter | Eval   | Validation | Time for training | Observed min    | Estimated min   | Learner      | Hyperparameter:                 Value   |
|      | result | loss       | & validation (sec)| validation loss | validation loss |              |                                         |
|=============================================================================================================================================|
|    1 | Best   |    0.37179 |           0.62903 |         0.37179 |         0.37179 |          svm | BoxConstraint:                  0.11704 |
|      |        |            |                   |                 |                 |              | KernelScale:                   0.004903 |
|    2 | Best   |    0.22769 |           0.42586 |         0.22769 |         0.22769 |           nb | DistributionNames:               normal |
|      |        |            |                   |                 |                 |              | Width:                              NaN |
|    3 | Best   |    0.19231 |           0.42729 |         0.19231 |         0.19231 |          knn | NumNeighbors:                         3 |
|    4 | Accept |    0.22769 |            0.1005 |         0.19231 |         0.19231 |           nb | DistributionNames:               normal |
|      |        |            |                   |                 |                 |              | Width:                              NaN |
|    5 | Best   |     0.1891 |           0.13361 |          0.1891 |         0.19096 |          knn | NumNeighbors:                        12 |
|    6 | Best   |    0.10154 |           0.28324 |         0.10154 |         0.10154 |         tree | MinLeafSize:                          5 |
|    7 | Accept |    0.16026 |            7.2743 |         0.10154 |         0.10154 |          net | Activations:                       tanh |
|      |        |            |                   |                 |                 |              | Standardize:                       true |
|      |        |            |                   |                 |                 |              | Lambda:                        0.025856 |
|      |        |            |                   |                 |                 |              | LayerSizes:           [ 286   51    3 ] |
|    8 | Accept |    0.37179 |          0.096727 |         0.10154 |         0.10154 |          svm | BoxConstraint:                   1.2607 |
|      |        |            |                   |                 |                 |              | KernelScale:                      97.75 |
|    9 | Accept |    0.37179 |           0.25096 |         0.10154 |         0.10154 |          net | Activations:                       relu |
|      |        |            |                   |                 |                 |              | Standardize:                       true |
|      |        |            |                   |                 |                 |              | Lambda:                          211.47 |
|      |        |            |                   |                 |                 |              | LayerSizes:                [ 102  222 ] |
|   10 | Accept |    0.19231 |          0.070249 |         0.10154 |         0.10154 |          knn | NumNeighbors:                        15 |
|   11 | Accept |    0.22769 |          0.067816 |         0.10154 |         0.10154 |           nb | DistributionNames:               normal |
|      |        |            |                   |                 |                 |              | Width:                              NaN |
|   12 | Accept |    0.15077 |            9.2891 |         0.10154 |         0.10154 |     ensemble | Method:                             Bag |
|      |        |            |                   |                 |                 |              | NumLearningCycles:                  249 |
|      |        |            |                   |                 |                 |              | MinLeafSize:                         25 |
|   13 | Accept |    0.22769 |          0.063862 |         0.10154 |         0.10154 |           nb | DistributionNames:               normal |
|      |        |            |                   |                 |                 |              | Width:                              NaN |
|   14 | Accept |    0.37179 |          0.092315 |         0.10154 |         0.10154 |          svm | BoxConstraint:                   9.3148 |
|      |        |            |                   |                 |                 |              | KernelScale:                  0.0017736 |
|   15 | Accept |    0.24615 |           0.64539 |         0.10154 |         0.10154 |           nb | DistributionNames:               kernel |
|      |        |            |                   |                 |                 |              | Width:                           1.2125 |
|   16 | Accept |    0.12615 |          0.074982 |         0.10154 |         0.11409 |         tree | MinLeafSize:                          7 |
|   17 | Accept |    0.16308 |            9.4331 |         0.10154 |         0.11409 |     ensemble | Method:                             Bag |
|      |        |            |                   |                 |                 |              | NumLearningCycles:                  284 |
|      |        |            |                   |                 |                 |              | MinLeafSize:                         89 |
|   18 | Accept |    0.16923 |          0.062929 |         0.10154 |         0.13272 |         tree | MinLeafSize:                         81 |
|   19 | Accept |    0.37179 |          0.096521 |         0.10154 |         0.13272 |          svm | BoxConstraint:                   1.6219 |
|      |        |            |                   |                 |                 |              | KernelScale:                  0.0011185 |
|   20 | Accept |    0.25321 |          0.069954 |         0.10154 |         0.13272 |          knn | NumNeighbors:                       124 |
|=============================================================================================================================================|
| Iter | Eval   | Validation | Time for training | Observed min    | Estimated min   | Learner      | Hyperparameter:                 Value   |
|      | result | loss       | & validation (sec)| validation loss | validation loss |              |                                         |
|=============================================================================================================================================|
|   21 | Accept |    0.37179 |          0.081257 |         0.10154 |         0.13272 |          svm | BoxConstraint:                0.0011787 |
|      |        |            |                   |                 |                 |              | KernelScale:                     1.1427 |
|   22 | Accept |    0.22769 |          0.062348 |         0.10154 |         0.13272 |           nb | DistributionNames:               normal |
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|      |        |            |                   |                 |                 |              | Width:                              NaN |
|   23 | Accept |    0.13846 |            9.7413 |         0.10154 |         0.13272 |     ensemble | Method:                             Bag |
|      |        |            |                   |                 |                 |              | NumLearningCycles:                  279 |
|      |        |            |                   |                 |                 |              | MinLeafSize:                          2 |
|   24 | Accept |    0.25231 |           0.19127 |         0.10154 |         0.13272 |           nb | DistributionNames:               kernel |
|      |        |            |                   |                 |                 |              | Width:                           1.6084 |
|   25 | Accept |    0.22769 |          0.062537 |         0.10154 |         0.13272 |           nb | DistributionNames:               normal |
|      |        |            |                   |                 |                 |              | Width:                              NaN |
|   26 | Accept |    0.19872 |          0.079713 |         0.10154 |         0.13272 |          knn | NumNeighbors:                         1 |
|   27 | Accept |    0.23397 |             3.666 |         0.10154 |         0.13272 |          net | Activations:                       tanh |
|      |        |            |                   |                 |                 |              | Standardize:                      false |
|      |        |            |                   |                 |                 |              | Lambda:                      1.1283e-06 |
|      |        |            |                   |                 |                 |              | LayerSizes:                [ 102    1 ] |
|   28 | Accept |    0.13538 |          0.070656 |         0.10154 |          0.1338 |         tree | MinLeafSize:                         19 |
|   29 | Accept |    0.19551 |          0.064085 |         0.10154 |          0.1338 |          knn | NumNeighbors:                        26 |
|   30 | Accept |    0.37179 |           0.09049 |         0.10154 |          0.1338 |          svm | BoxConstraint:                    3.391 |
|      |        |            |                   |                 |                 |              | KernelScale:                   0.021864 |
|   31 | Accept |     0.1891 |             2.712 |         0.10154 |          0.1338 |          net | Activations:                    sigmoid |
|      |        |            |                   |                 |                 |              | Standardize:                       true |
|      |        |            |                   |                 |                 |              | Lambda:                      1.0513e-06 |
|      |        |            |                   |                 |                 |              | LayerSizes:                    [ 2  2 ] |
|   32 | Accept |    0.21154 |          0.063578 |         0.10154 |          0.1338 |          knn | NumNeighbors:                         2 |
|   33 | Accept |    0.10154 |          0.070667 |         0.10154 |         0.12751 |         tree | MinLeafSize:                          5 |
|   34 | Accept |    0.37179 |          0.096094 |         0.10154 |         0.12751 |          svm | BoxConstraint:                    469.1 |
|      |        |            |                   |                 |                 |              | KernelScale:                  0.0089806 |
|   35 | Accept |    0.14462 |            8.4121 |         0.10154 |         0.12751 |     ensemble | Method:                             Bag |
|      |        |            |                   |                 |                 |              | NumLearningCycles:                  241 |
|      |        |            |                   |                 |                 |              | MinLeafSize:                          1 |
|   36 | Accept |    0.11385 |          0.066814 |         0.10154 |         0.11727 |         tree | MinLeafSize:                         11 |
|   37 | Best   |   0.098462 |            5.7806 |        0.098462 |         0.11727 |     ensemble | Method:                      LogitBoost |
|      |        |            |                   |                 |                 |              | NumLearningCycles:                  218 |
|      |        |            |                   |                 |                 |              | MinLeafSize:                         48 |
|   38 | Accept |    0.22769 |          0.061168 |        0.098462 |         0.11727 |           nb | DistributionNames:               normal |
|      |        |            |                   |                 |                 |              | Width:                              NaN |
|   39 | Accept |    0.37179 |           0.44849 |        0.098462 |         0.11727 |          net | Activations:                       tanh |
|      |        |            |                   |                 |                 |              | Standardize:                      false |
|      |        |            |                   |                 |                 |              | Lambda:                          29.705 |
|      |        |            |                   |                 |                 |              | LayerSizes:                         118 |
|   40 | Accept |    0.24923 |           0.19982 |        0.098462 |         0.11727 |           nb | DistributionNames:               kernel |
|      |        |            |                   |                 |                 |              | Width:                           3.9774 |
|=============================================================================================================================================|
| Iter | Eval   | Validation | Time for training | Observed min    | Estimated min   | Learner      | Hyperparameter:                 Value   |
|      | result | loss       | & validation (sec)| validation loss | validation loss |              |                                         |
|=============================================================================================================================================|
|   41 | Accept |    0.18769 |          0.063134 |        0.098462 |         0.11494 |         tree | MinLeafSize:                        112 |
|   42 | Accept |    0.10769 |            5.1672 |        0.098462 |         0.11494 |     ensemble | Method:                      LogitBoost |
|      |        |            |                   |                 |                 |              | NumLearningCycles:                  213 |
|      |        |            |                   |                 |                 |              | MinLeafSize:                          6 |
|   43 | Accept |    0.17628 |          0.064608 |        0.098462 |         0.11494 |          knn | NumNeighbors:                        41 |
|   44 | Accept |    0.37231 |          0.065944 |        0.098462 |         0.11788 |         tree | MinLeafSize:                        152 |
|   45 | Accept |    0.22769 |          0.055901 |        0.098462 |         0.11788 |           nb | DistributionNames:               normal |
|      |        |            |                   |                 |                 |              | Width:                              NaN |
|   46 | Accept |    0.37179 |          0.070447 |        0.098462 |         0.11788 |          svm | BoxConstraint:                 0.017639 |
|      |        |            |                   |                 |                 |              | KernelScale:                     1.8123 |
|   47 | Accept |    0.37179 |           0.22159 |        0.098462 |         0.11788 |          net | Activations:                    sigmoid |
|      |        |            |                   |                 |                 |              | Standardize:                       true |
|      |        |            |                   |                 |                 |              | Lambda:                          2.6201 |
|      |        |            |                   |                 |                 |              | LayerSizes:           [ 134   10  240 ] |
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|   48 | Accept |    0.37179 |           0.16389 |        0.098462 |         0.11788 |          net | Activations:                    sigmoid |
|      |        |            |                   |                 |                 |              | Standardize:                       true |
|      |        |            |                   |                 |                 |              | Lambda:                         0.12107 |
|      |        |            |                   |                 |                 |              | LayerSizes:                [ 253    1 ] |
|   49 | Accept |    0.13141 |          0.077293 |        0.098462 |         0.11788 |          svm | BoxConstraint:                   31.426 |
|      |        |            |                   |                 |                 |              | KernelScale:                     1.6379 |
|   50 | Accept |    0.22769 |          0.055984 |        0.098462 |         0.11788 |           nb | DistributionNames:               normal |
|      |        |            |                   |                 |                 |              | Width:                              NaN |
|   51 | Accept |    0.14769 |            9.3995 |        0.098462 |         0.11788 |     ensemble | Method:                             Bag |
|      |        |            |                   |                 |                 |              | NumLearningCycles:                  272 |
|      |        |            |                   |                 |                 |              | MinLeafSize:                          1 |
|   52 | Accept |    0.12923 |          0.063907 |        0.098462 |         0.11796 |         tree | MinLeafSize:                          3 |
|   53 | Accept |    0.37179 |           0.10353 |        0.098462 |         0.11796 |          svm | BoxConstraint:                   20.907 |
|      |        |            |                   |                 |                 |              | KernelScale:                  0.0030163 |
|   54 | Accept |    0.15385 |            8.3016 |        0.098462 |         0.11796 |     ensemble | Method:                             Bag |
|      |        |            |                   |                 |                 |              | NumLearningCycles:                  243 |
|      |        |            |                   |                 |                 |              | MinLeafSize:                         18 |
|   55 | Accept |    0.17628 |          0.061456 |        0.098462 |         0.11796 |          knn | NumNeighbors:                        41 |
|   56 | Accept |    0.16667 |            0.7857 |        0.098462 |         0.11796 |          net | Activations:                       tanh |
|      |        |            |                   |                 |                 |              | Standardize:                       true |
|      |        |            |                   |                 |                 |              | Lambda:                      0.00041104 |
|      |        |            |                   |                 |                 |              | LayerSizes:                           2 |
|   57 | Accept |    0.22769 |          0.058204 |        0.098462 |         0.11796 |           nb | DistributionNames:               normal |
|      |        |            |                   |                 |                 |              | Width:                              NaN |
|   58 | Accept |    0.17949 |            4.0585 |        0.098462 |         0.11796 |          net | Activations:                    sigmoid |
|      |        |            |                   |                 |                 |              | Standardize:                      false |
|      |        |            |                   |                 |                 |              | Lambda:                      3.7419e-06 |
|      |        |            |                   |                 |                 |              | LayerSizes:                   [ 8  37 ] |
|   59 | Accept |    0.23385 |           0.22143 |        0.098462 |         0.11796 |           nb | DistributionNames:               kernel |
|      |        |            |                   |                 |                 |              | Width:                           561.16 |
|   60 | Accept |    0.19551 |           0.06451 |        0.098462 |         0.11796 |          knn | NumNeighbors:                        26 |
|=============================================================================================================================================|
| Iter | Eval   | Validation | Time for training | Observed min    | Estimated min   | Learner      | Hyperparameter:                 Value   |
|      | result | loss       | & validation (sec)| validation loss | validation loss |              |                                         |
|=============================================================================================================================================|
|   61 | Accept |    0.37231 |            6.2084 |        0.098462 |         0.11796 |     ensemble | Method:                      LogitBoost |
|      |        |            |                   |                 |                 |              | NumLearningCycles:                  272 |
|      |        |            |                   |                 |                 |              | MinLeafSize:                        161 |
|   62 | Accept |    0.37179 |          0.090047 |        0.098462 |         0.11796 |          svm | BoxConstraint:                   29.741 |
|      |        |            |                   |                 |                 |              | KernelScale:                   0.045927 |
|   63 | Accept |    0.20513 |            6.8138 |        0.098462 |         0.11796 |          net | Activations:                    sigmoid |
|      |        |            |                   |                 |                 |              | Standardize:                      false |
|      |        |            |                   |                 |                 |              | Lambda:                      5.1269e-08 |
|      |        |            |                   |                 |                 |              | LayerSizes:           [ 175    2    4 ] |
|   64 | Accept |     0.1891 |           0.05843 |        0.098462 |         0.11796 |          knn | NumNeighbors:                         9 |
|   65 | Accept |    0.19231 |          0.067392 |        0.098462 |         0.11796 |          knn | NumNeighbors:                        15 |
|   66 | Accept |    0.12923 |          0.075809 |        0.098462 |         0.11512 |         tree | MinLeafSize:                          3 |
|   67 | Accept |    0.37179 |          0.073588 |        0.098462 |         0.11512 |          svm | BoxConstraint:                 0.018753 |
|      |        |            |                   |                 |                 |              | KernelScale:                    0.38262 |
|   68 | Accept |    0.17308 |           0.06212 |        0.098462 |         0.11512 |          knn | NumNeighbors:                         4 |
|   69 | Accept |    0.14769 |          0.074561 |        0.098462 |         0.11688 |         tree | MinLeafSize:                          2 |
|   70 | Accept |    0.13538 |            7.9953 |        0.098462 |         0.11674 |     ensemble | Method:                             Bag |
|      |        |            |                   |                 |                 |              | NumLearningCycles:                  222 |
|      |        |            |                   |                 |                 |              | MinLeafSize:                          1 |
|   71 | Accept |    0.13538 |          0.062477 |        0.098462 |         0.11674 |         tree | MinLeafSize:                         19 |
|   72 | Accept |    0.12923 |          0.063529 |        0.098462 |         0.11674 |         tree | MinLeafSize:                          8 |
|   73 | Accept |    0.15064 |            1.8048 |        0.098462 |         0.11674 |          net | Activations:                    sigmoid |
|      |        |            |                   |                 |                 |              | Standardize:                       true |
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|      |        |            |                   |                 |                 |              | Lambda:                      0.00059411 |
|      |        |            |                   |                 |                 |              | LayerSizes:                    [ 5  4 ] |
|   74 | Accept |    0.22769 |          0.058621 |        0.098462 |         0.11674 |           nb | DistributionNames:               normal |
|      |        |            |                   |                 |                 |              | Width:                              NaN |
|   75 | Accept |    0.16987 |            5.3533 |        0.098462 |         0.11674 |          net | Activations:                       tanh |
|      |        |            |                   |                 |                 |              | Standardize:                       true |
|      |        |            |                   |                 |                 |              | Lambda:                      0.00022289 |
|      |        |            |                   |                 |                 |              | LayerSizes:                  [ 81   9 ] |
|   76 | Accept |    0.14154 |            7.4446 |        0.098462 |         0.11813 |     ensemble | Method:                             Bag |
|      |        |            |                   |                 |                 |              | NumLearningCycles:                  214 |
|      |        |            |                   |                 |                 |              | MinLeafSize:                          7 |
|   77 | Accept |    0.33846 |          0.059384 |        0.098462 |          0.1167 |         tree | MinLeafSize:                        130 |
|   78 | Accept |    0.13231 |            4.9246 |        0.098462 |          0.1167 |     ensemble | Method:                      LogitBoost |
|      |        |            |                   |                 |                 |              | NumLearningCycles:                  212 |
|      |        |            |                   |                 |                 |              | MinLeafSize:                         64 |
|   79 | Accept |    0.37179 |           0.12859 |        0.098462 |          0.1167 |          net | Activations:                       tanh |
|      |        |            |                   |                 |                 |              | Standardize:                       true |
|      |        |            |                   |                 |                 |              | Lambda:                          5.8307 |
|      |        |            |                   |                 |                 |              | LayerSizes:                  [ 20   1 ] |
|   80 | Accept |    0.14154 |            7.5942 |        0.098462 |          0.1167 |     ensemble | Method:                             Bag |
|      |        |            |                   |                 |                 |              | NumLearningCycles:                  219 |
|      |        |            |                   |                 |                 |              | MinLeafSize:                          7 |
|=============================================================================================================================================|
| Iter | Eval   | Validation | Time for training | Observed min    | Estimated min   | Learner      | Hyperparameter:                 Value   |
|      | result | loss       | & validation (sec)| validation loss | validation loss |              |                                         |
|=============================================================================================================================================|
|   81 | Accept |    0.19872 |          0.063107 |        0.098462 |          0.1167 |          knn | NumNeighbors:                         1 |
|   82 | Accept |    0.37179 |           0.14405 |        0.098462 |          0.1167 |          net | Activations:                       tanh |
|      |        |            |                   |                 |                 |              | Standardize:                       true |
|      |        |            |                   |                 |                 |              | Lambda:                          15.587 |
|      |        |            |                   |                 |                 |              | LayerSizes:                [ 182    4 ] |
|   83 | Accept |    0.37179 |            0.3951 |        0.098462 |          0.1167 |          net | Activations:                       none |
|      |        |            |                   |                 |                 |              | Standardize:                      false |
|      |        |            |                   |                 |                 |              | Lambda:                      0.00026401 |
|      |        |            |                   |                 |                 |              | LayerSizes:                   [ 1  79 ] |
|   84 | Accept |    0.14154 |            6.1198 |        0.098462 |          0.1167 |     ensemble | Method:                      LogitBoost |
|      |        |            |                   |                 |                 |              | NumLearningCycles:                  266 |
|      |        |            |                   |                 |                 |              | MinLeafSize:                        110 |
|   85 | Accept |    0.14423 |           0.10373 |        0.098462 |          0.1167 |          svm | BoxConstraint:                   322.43 |
|      |        |            |                   |                 |                 |              | KernelScale:                     1.7393 |
|   86 | Accept |       0.12 |          0.073943 |        0.098462 |         0.11425 |         tree | MinLeafSize:                          4 |
|   87 | Accept |    0.37179 |          0.089384 |        0.098462 |         0.11425 |          svm | BoxConstraint:                0.0026322 |
|      |        |            |                   |                 |                 |              | KernelScale:                   0.004006 |
|   88 | Accept |    0.14154 |            9.5099 |        0.098462 |         0.11425 |     ensemble | Method:                             Bag |
|      |        |            |                   |                 |                 |              | NumLearningCycles:                  276 |
|      |        |            |                   |                 |                 |              | MinLeafSize:                          2 |
|   89 | Accept |    0.37179 |          0.088251 |        0.098462 |         0.11425 |          svm | BoxConstraint:                   25.201 |
|      |        |            |                   |                 |                 |              | KernelScale:                   0.019423 |
|   90 | Accept |     0.1891 |          0.072839 |        0.098462 |         0.11425 |          knn | NumNeighbors:                        13 |
|   91 | Accept |    0.12615 |            4.8775 |        0.098462 |         0.11425 |     ensemble | Method:                      LogitBoost |
|      |        |            |                   |                 |                 |              | NumLearningCycles:                  211 |
|      |        |            |                   |                 |                 |              | MinLeafSize:                         75 |
|   92 | Accept |    0.14154 |            4.9062 |        0.098462 |         0.11425 |     ensemble | Method:                      LogitBoost |
|      |        |            |                   |                 |                 |              | NumLearningCycles:                  213 |
|      |        |            |                   |                 |                 |              | MinLeafSize:                         96 |
|   93 | Accept |    0.11077 |            6.4978 |        0.098462 |         0.11425 |     ensemble | Method:                      LogitBoost |
|      |        |            |                   |                 |                 |              | NumLearningCycles:                  277 |
|      |        |            |                   |                 |                 |              | MinLeafSize:                          4 |
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|   94 | Accept |    0.10154 |            6.4944 |        0.098462 |         0.11048 |     ensemble | Method:                      LogitBoost |
|      |        |            |                   |                 |                 |              | NumLearningCycles:                  274 |
|      |        |            |                   |                 |                 |              | MinLeafSize:                         16 |
|   95 | Accept |    0.12615 |            6.6536 |        0.098462 |         0.11217 |     ensemble | Method:                      LogitBoost |
|      |        |            |                   |                 |                 |              | NumLearningCycles:                  289 |
|      |        |            |                   |                 |                 |              | MinLeafSize:                         53 |
|   96 | Accept |    0.14462 |            4.5605 |        0.098462 |          0.1093 |     ensemble | Method:                      LogitBoost |
|      |        |            |                   |                 |                 |              | NumLearningCycles:                  201 |
|      |        |            |                   |                 |                 |              | MinLeafSize:                         91 |
|   97 | Best   |   0.089231 |            5.7135 |        0.089231 |         0.10371 |     ensemble | Method:                      LogitBoost |
|      |        |            |                   |                 |                 |              | NumLearningCycles:                  242 |
|      |        |            |                   |                 |                 |              | MinLeafSize:                         13 |
|   98 | Accept |    0.10769 |            5.5323 |        0.089231 |         0.10353 |     ensemble | Method:                      LogitBoost |
|      |        |            |                   |                 |                 |              | NumLearningCycles:                  233 |
|      |        |            |                   |                 |                 |              | MinLeafSize:                         10 |
|   99 | Accept |       0.12 |            5.9044 |        0.089231 |         0.10351 |     ensemble | Method:                      LogitBoost |
|      |        |            |                   |                 |                 |              | NumLearningCycles:                  253 |
|      |        |            |                   |                 |                 |              | MinLeafSize:                         26 |
|  100 | Accept |    0.10154 |            6.4575 |        0.089231 |         0.10122 |     ensemble | Method:                      LogitBoost |
|      |        |            |                   |                 |                 |              | NumLearningCycles:                  272 |
|      |        |            |                   |                 |                 |              | MinLeafSize:                         13 |
|=============================================================================================================================================|
| Iter | Eval   | Validation | Time for training | Observed min    | Estimated min   | Learner      | Hyperparameter:                 Value   |
|      | result | loss       | & validation (sec)| validation loss | validation loss |              |                                         |
|=============================================================================================================================================|
|  101 | Accept |    0.16026 |            7.4685 |        0.089231 |         0.10122 |          net | Activations:                       tanh |
|      |        |            |                   |                 |                 |              | Standardize:                       true |
|      |        |            |                   |                 |                 |              | Lambda:                        0.020619 |
|      |        |            |                   |                 |                 |              | LayerSizes:           [ 117  160    2 ] |
|  102 | Accept |    0.20513 |            3.5845 |        0.089231 |         0.10122 |          net | Activations:                       tanh |
|      |        |            |                   |                 |                 |              | Standardize:                       true |
|      |        |            |                   |                 |                 |              | Lambda:                        0.052211 |
|      |        |            |                   |                 |                 |              | LayerSizes:            [ 18  182  163 ] |
|  103 | Best   |   0.086154 |            4.9401 |        0.086154 |        0.095252 |     ensemble | Method:                      LogitBoost |
|      |        |            |                   |                 |                 |              | NumLearningCycles:                  208 |
|      |        |            |                   |                 |                 |              | MinLeafSize:                         15 |
|  104 | Accept |   0.095385 |            6.4925 |        0.086154 |        0.096118 |     ensemble | Method:                      LogitBoost |
|      |        |            |                   |                 |                 |              | NumLearningCycles:                  274 |
|      |        |            |                   |                 |                 |              | MinLeafSize:                         14 |
|  105 | Accept |   0.092308 |            4.8125 |        0.086154 |        0.093255 |     ensemble | Method:                      LogitBoost |
|      |        |            |                   |                 |                 |              | NumLearningCycles:                  201 |
|      |        |            |                   |                 |                 |              | MinLeafSize:                         14 |
|  106 | Accept |    0.37231 |            4.7781 |        0.086154 |        0.092615 |     ensemble | Method:                      LogitBoost |
|      |        |            |                   |                 |                 |              | NumLearningCycles:                  207 |
|      |        |            |                   |                 |                 |              | MinLeafSize:                        134 |
|  107 | Accept |    0.14462 |            4.7742 |        0.086154 |        0.097454 |     ensemble | Method:                      LogitBoost |
|      |        |            |                   |                 |                 |              | NumLearningCycles:                  206 |
|      |        |            |                   |                 |                 |              | MinLeafSize:                         93 |
|  108 | Accept |   0.092308 |            4.9755 |        0.086154 |        0.092405 |     ensemble | Method:                      LogitBoost |
|      |        |            |                   |                 |                 |              | NumLearningCycles:                  206 |
|      |        |            |                   |                 |                 |              | MinLeafSize:                         14 |
|  109 | Accept |   0.092308 |            4.9658 |        0.086154 |        0.091949 |     ensemble | Method:                      LogitBoost |
|      |        |            |                   |                 |                 |              | NumLearningCycles:                  208 |
|      |        |            |                   |                 |                 |              | MinLeafSize:                         20 |
|  110 | Accept |    0.10154 |            5.0332 |        0.086154 |        0.092013 |     ensemble | Method:                      LogitBoost |
|      |        |            |                   |                 |                 |              | NumLearningCycles:                  207 |
|      |        |            |                   |                 |                 |              | MinLeafSize:                         16 |
|  111 | Accept |    0.17846 |            4.6286 |        0.086154 |        0.092219 |     ensemble | Method:                      LogitBoost |
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|      |        |            |                   |                 |                 |              | NumLearningCycles:                  201 |
|      |        |            |                   |                 |                 |              | MinLeafSize:                        120 |
|  112 | Accept |    0.18462 |            5.3291 |        0.086154 |        0.092663 |     ensemble | Method:                      LogitBoost |
|      |        |            |                   |                 |                 |              | NumLearningCycles:                  234 |
|      |        |            |                   |                 |                 |              | MinLeafSize:                        114 |
|  113 | Accept |    0.10154 |            4.9436 |        0.086154 |        0.091972 |     ensemble | Method:                      LogitBoost |
|      |        |            |                   |                 |                 |              | NumLearningCycles:                  210 |
|      |        |            |                   |                 |                 |              | MinLeafSize:                         21 |
|  114 | Accept |    0.10154 |            4.8767 |        0.086154 |        0.092793 |     ensemble | Method:                      LogitBoost |
|      |        |            |                   |                 |                 |              | NumLearningCycles:                  208 |
|      |        |            |                   |                 |                 |              | MinLeafSize:                         23 |
|  115 | Accept |    0.10769 |            4.8384 |        0.086154 |         0.09189 |     ensemble | Method:                      LogitBoost |
|      |        |            |                   |                 |                 |              | NumLearningCycles:                  203 |
|      |        |            |                   |                 |                 |              | MinLeafSize:                         27 |
|  116 | Accept |   0.089231 |            5.1892 |        0.086154 |        0.091881 |     ensemble | Method:                      LogitBoost |
|      |        |            |                   |                 |                 |              | NumLearningCycles:                  216 |
|      |        |            |                   |                 |                 |              | MinLeafSize:                         18 |
|  117 | Accept |   0.095385 |            5.2157 |        0.086154 |        0.092387 |     ensemble | Method:                      LogitBoost |
|      |        |            |                   |                 |                 |              | NumLearningCycles:                  220 |
|      |        |            |                   |                 |                 |              | MinLeafSize:                         15 |
|  118 | Accept |   0.095385 |            5.0879 |        0.086154 |        0.092544 |     ensemble | Method:                      LogitBoost |
|      |        |            |                   |                 |                 |              | NumLearningCycles:                  213 |
|      |        |            |                   |                 |                 |              | MinLeafSize:                         15 |
|  119 | Accept |    0.10154 |            5.6188 |        0.086154 |        0.092332 |     ensemble | Method:                      LogitBoost |
|      |        |            |                   |                 |                 |              | NumLearningCycles:                  235 |
|      |        |            |                   |                 |                 |              | MinLeafSize:                         17 |
|  120 | Accept |    0.37179 |             0.197 |        0.086154 |        0.092332 |          net | Activations:                    sigmoid |
|      |        |            |                   |                 |                 |              | Standardize:                       true |
|      |        |            |                   |                 |                 |              | Lambda:                        0.063953 |
|      |        |            |                   |                 |                 |              | LayerSizes:                [ 220    3 ] |
|=============================================================================================================================================|
| Iter | Eval   | Validation | Time for training | Observed min    | Estimated min   | Learner      | Hyperparameter:                 Value   |
|      | result | loss       | & validation (sec)| validation loss | validation loss |              |                                         |
|=============================================================================================================================================|
|  121 | Accept |    0.37179 |            0.1961 |        0.086154 |        0.092332 |          net | Activations:                    sigmoid |
|      |        |            |                   |                 |                 |              | Standardize:                       true |
|      |        |            |                   |                 |                 |              | Lambda:                        0.055033 |
|      |        |            |                   |                 |                 |              | LayerSizes:                  [ 97  13 ] |
|  122 | Accept |    0.14103 |            1.4229 |        0.086154 |        0.092332 |          net | Activations:                       none |
|      |        |            |                   |                 |                 |              | Standardize:                       true |
|      |        |            |                   |                 |                 |              | Lambda:                      0.00085152 |
|      |        |            |                   |                 |                 |              | LayerSizes:           [ 197   20    2 ] |
|  123 | Accept |    0.37179 |           0.22892 |        0.086154 |        0.092332 |          net | Activations:                    sigmoid |
|      |        |            |                   |                 |                 |              | Standardize:                       true |
|      |        |            |                   |                 |                 |              | Lambda:                        0.051445 |
|      |        |            |                   |                 |                 |              | LayerSizes:                [ 247    6 ] |
|  124 | Accept |    0.13782 |           0.38245 |        0.086154 |        0.092332 |          net | Activations:                       none |
|      |        |            |                   |                 |                 |              | Standardize:                       true |
|      |        |            |                   |                 |                 |              | Lambda:                       0.0087893 |
|      |        |            |                   |                 |                 |              | LayerSizes:                [ 199    2 ] |
|  125 | Accept |    0.26282 |            1.0954 |        0.086154 |        0.092332 |          net | Activations:                    sigmoid |
|      |        |            |                   |                 |                 |              | Standardize:                       true |
|      |        |            |                   |                 |                 |              | Lambda:                        0.016624 |
|      |        |            |                   |                 |                 |              | LayerSizes:                [ 115   10 ] |
|  126 | Accept |    0.18269 |           0.24182 |        0.086154 |        0.092332 |          net | Activations:                       none |
|      |        |            |                   |                 |                 |              | Standardize:                       true |
|      |        |            |                   |                 |                 |              | Lambda:                        0.035571 |
|      |        |            |                   |                 |                 |              | LayerSizes:                [ 224    9 ] |
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|  127 | Accept |   0.095385 |            5.0171 |        0.086154 |        0.091895 |     ensemble | Method:                      LogitBoost |
|      |        |            |                   |                 |                 |              | NumLearningCycles:                  208 |
|      |        |            |                   |                 |                 |              | MinLeafSize:                          2 |
|  128 | Accept |    0.37179 |           0.13063 |        0.086154 |        0.091895 |          net | Activations:                    sigmoid |
|      |        |            |                   |                 |                 |              | Standardize:                       true |
|      |        |            |                   |                 |                 |              | Lambda:                          0.0424 |
|      |        |            |                   |                 |                 |              | LayerSizes:                 [ 4  2  3 ] |
|  129 | Accept |    0.14103 |            2.0229 |        0.086154 |        0.091895 |          net | Activations:                       tanh |
|      |        |            |                   |                 |                 |              | Standardize:                       true |
|      |        |            |                   |                 |                 |              | Lambda:                       0.0028328 |
|      |        |            |                   |                 |                 |              | LayerSizes:                 [ 1  8  1 ] |
|  130 | Accept |    0.18269 |            1.0404 |        0.086154 |        0.091895 |          net | Activations:                       tanh |
|      |        |            |                   |                 |                 |              | Standardize:                       true |
|      |        |            |                   |                 |                 |              | Lambda:                        0.037003 |
|      |        |            |                   |                 |                 |              | LayerSizes:                [ 153    3 ] |
|  131 | Accept |    0.14423 |            2.7718 |        0.086154 |        0.091895 |          net | Activations:                       tanh |
|      |        |            |                   |                 |                 |              | Standardize:                       true |
|      |        |            |                   |                 |                 |              | Lambda:                       0.0058072 |
|      |        |            |                   |                 |                 |              | LayerSizes:                   [ 1  72 ] |
|  132 | Accept |    0.14103 |            9.7891 |        0.086154 |        0.091895 |          net | Activations:                       tanh |
|      |        |            |                   |                 |                 |              | Standardize:                       true |
|      |        |            |                   |                 |                 |              | Lambda:                       0.0040232 |
|      |        |            |                   |                 |                 |              | LayerSizes:               [ 1  88  57 ] |
|  133 | Accept |    0.14103 |           0.44563 |        0.086154 |        0.091895 |          net | Activations:                       none |
|      |        |            |                   |                 |                 |              | Standardize:                       true |
|      |        |            |                   |                 |                 |              | Lambda:                       0.0020791 |
|      |        |            |                   |                 |                 |              | LayerSizes:                 [ 3  5  2 ] |
|  134 | Accept |    0.37179 |           0.13512 |        0.086154 |        0.091895 |          net | Activations:                       relu |
|      |        |            |                   |                 |                 |              | Standardize:                      false |
|      |        |            |                   |                 |                 |              | Lambda:                        0.027533 |
|      |        |            |                   |                 |                 |              | LayerSizes:                 [ 2  2  1 ] |
|  135 | Accept |    0.18269 |            1.6723 |        0.086154 |        0.091895 |          net | Activations:                       relu |
|      |        |            |                   |                 |                 |              | Standardize:                       true |
|      |        |            |                   |                 |                 |              | Lambda:                       0.0042357 |
|      |        |            |                   |                 |                 |              | LayerSizes:                 [ 5  3  1 ] |
|  136 | Accept |    0.23397 |            3.4642 |        0.086154 |        0.091895 |          net | Activations:                       tanh |
|      |        |            |                   |                 |                 |              | Standardize:                      false |
|      |        |            |                   |                 |                 |              | Lambda:                      0.00033175 |
|      |        |            |                   |                 |                 |              | LayerSizes:               [ 1  26   1 ] |
|  137 | Accept |    0.21154 |            3.0298 |        0.086154 |        0.091895 |          net | Activations:                       tanh |
|      |        |            |                   |                 |                 |              | Standardize:                       true |
|      |        |            |                   |                 |                 |              | Lambda:                        0.030788 |
|      |        |            |                   |                 |                 |              | LayerSizes:             [ 1  130   48 ] |
|  138 | Accept |   0.086154 |             5.109 |        0.086154 |        0.091384 |     ensemble | Method:                      LogitBoost |
|      |        |            |                   |                 |                 |              | NumLearningCycles:                  210 |
|      |        |            |                   |                 |                 |              | MinLeafSize:                         15 |
|  139 | Accept |    0.14103 |            5.9512 |        0.086154 |        0.091384 |          net | Activations:                       tanh |
|      |        |            |                   |                 |                 |              | Standardize:                       true |
|      |        |            |                   |                 |                 |              | Lambda:                       0.0029983 |
|      |        |            |                   |                 |                 |              | LayerSizes:             [ 1   11  104 ] |
|  140 | Accept |    0.14744 |            3.0068 |        0.086154 |        0.091384 |          net | Activations:                       relu |
|      |        |            |                   |                 |                 |              | Standardize:                       true |
|      |        |            |                   |                 |                 |              | Lambda:                        0.007429 |
|      |        |            |                   |                 |                 |              | LayerSizes:             [ 1  102   25 ] |
|=============================================================================================================================================|
| Iter | Eval   | Validation | Time for training | Observed min    | Estimated min   | Learner      | Hyperparameter:                 Value   |
|      | result | loss       | & validation (sec)| validation loss | validation loss |              |                                         |
|=============================================================================================================================================|
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|  141 | Accept |    0.22436 |            2.6641 |        0.086154 |        0.091384 |          net | Activations:                       none |
|      |        |            |                   |                 |                 |              | Standardize:                      false |
|      |        |            |                   |                 |                 |              | Lambda:                        0.001718 |
|      |        |            |                   |                 |                 |              | LayerSizes:             [ 3    7  125 ] |
|  142 | Accept |   0.089231 |            5.0047 |        0.086154 |        0.089265 |     ensemble | Method:                      LogitBoost |
|      |        |            |                   |                 |                 |              | NumLearningCycles:                  209 |
|      |        |            |                   |                 |                 |              | MinLeafSize:                         15 |
|  143 | Accept |    0.14154 |            5.1754 |        0.086154 |          0.0895 |     ensemble | Method:                      LogitBoost |
|      |        |            |                   |                 |                 |              | NumLearningCycles:                  213 |
|      |        |            |                   |                 |                 |              | MinLeafSize:                        100 |
|  144 | Accept |    0.37179 |            0.1594 |        0.086154 |          0.0895 |          net | Activations:                    sigmoid |
|      |        |            |                   |                 |                 |              | Standardize:                       true |
|      |        |            |                   |                 |                 |              | Lambda:                        0.011755 |
|      |        |            |                   |                 |                 |              | LayerSizes:                 [ 5  1  2 ] |
|  145 | Accept |    0.37179 |           0.37807 |        0.086154 |          0.0895 |          net | Activations:                    sigmoid |
|      |        |            |                   |                 |                 |              | Standardize:                       true |
|      |        |            |                   |                 |                 |              | Lambda:                       0.0033755 |
|      |        |            |                   |                 |                 |              | Lay...

__________________________________________________________
Optimization completed.
Total iterations: 180
Total elapsed time: 699.614 seconds
Total time for training and validation: 493.3351 seconds

Best observed learner is an ensemble model with:
    Learner:              ensemble
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    Method:             LogitBoost
    NumLearningCycles:         208
    MinLeafSize:                15
Observed validation loss: 0.086154
Time for training and validation: 4.9401 seconds

Best estimated learner (returned model) is an ensemble model with:
    Learner:              ensemble
    Method:             LogitBoost
    NumLearningCycles:         209
    MinLeafSize:                15
Estimated validation loss: 0.089192
Estimated time for training and validation: 5.0288 seconds

Documentation for fitcauto display

The final model returned by fitcauto corresponds to the best estimated learner. Before returning
the model, the function retrains it using the entire training data (carsTrain), the listed Learner (or
model) type, and the displayed hyperparameter values.

Evaluate Test Set Performance

Evaluate the performance of the model on the test set.

testAccuracy = 1 - loss(Mdl,carsTest,"Origin")

testAccuracy = 0.9263

confusionchart(carsTest.Origin,predict(Mdl,carsTest))
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Automatically Select Classifier Using Matrix Data

Use fitcauto to automatically select a classification model with optimized hyperparameters, given
predictor and response data stored in separate variables.

Load Data

Load the humanactivity data set. This data set contains 24,075 observations of five physical human
activities: Sitting (1), Standing (2), Walking (3), Running (4), and Dancing (5). Each observation has
60 features extracted from acceleration data measured by smartphone accelerometer sensors. The
variable feat contains the predictor data matrix of the 60 features for the 24,075 observations, and
the response variable actid contains the activity IDs for the observations as integers.

load humanactivity

Partition Data

Partition the data into training and test sets. Use 90% of the observations to select a model, and 10%
of the observations to validate the final model returned by fitcauto. Use cvpartition to reserve
10% of the observations for testing.

rng("default") % For reproducibility of the partition
c = cvpartition(actid,"Holdout",0.10);
trainingIndices = training(c); % Indices for the training set
XTrain = feat(trainingIndices,:);
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YTrain = actid(trainingIndices);
testIndices = test(c); % Indices for the test set
XTest = feat(testIndices,:);
YTest = actid(testIndices);

Run fitcauto

Pass the training data to fitcauto. Because the training data XTrain has more than 10,000
observations, use ASHA optimization rather than Bayesian optimization. The fitcauto function
randomly selects appropriate model (or learner) types with different hyperparameter values, trains
the models on a small subset of the training data, promotes the models that perform well, and
retrains the promoted models on progressively larger sets of training data. The function returns the
model with the best cross-validation performance, retrained on all the training data, and a table that
contains the details of the optimization. Specify to run the optimization in parallel (requires Parallel
Computing Toolbox™).

By default, fitcauto provides a plot of the optimization and an iterative display of the optimization
results. For more information on how to interpret these results, see “Verbose Display” on page 35-
1878.

options = struct("Optimizer","asha","UseParallel",true);
[Mdl,OptimizationResults] = fitcauto(XTrain,YTrain,"HyperparameterOptimizationOptions",options);

Warning: It is recommended that you first standardize all numeric predictors when optimizing the Naive Bayes 'Width' parameter. Ignore this warning if you have done that.

Starting parallel pool (parpool) using the 'local' profile ...
Connected to the parallel pool (number of workers: 8).
Copying objective function to workers...
Done copying objective function to workers.
Learner types to explore: ensemble, knn, nb, net, svm, tree
Total iterations (MaxObjectiveEvaluations): 595
Total time (MaxTime): Inf

|====================================================================================================================================================|
| Iter | Active  | Eval   | Validation | Time for training | Observed min    | Training set | Learner      | Hyperparameter:                 Value   |
|      | workers | result | loss       | & validation (sec)| validation loss | size         |              |                                         |
|====================================================================================================================================================|
|    1 |       8 | Best   |    0.74165 |            2.2322 |         0.74165 |          271 |         tree | MinLeafSize:                        945 |
|    2 |       7 | Accept |    0.74165 |            9.0692 |        0.049289 |          271 |          knn | NumNeighbors:                      1726 |
|    3 |       7 | Best   |   0.049289 |            3.3616 |        0.049289 |          271 |           nb | DistributionNames:               normal |
|      |         |        |            |                   |                 |              |              | Width:                              NaN |
|    4 |       7 | Accept |    0.74165 |            9.2877 |        0.049289 |          271 |          knn | NumNeighbors:                      3072 |
|    5 |       8 | Best   |   0.046566 |           0.81486 |        0.046566 |         1084 |           nb | DistributionNames:               normal |
|      |         |        |            |                   |                 |              |              | Width:                              NaN |
|    6 |       8 | Accept |    0.13379 |            3.0947 |        0.046566 |          271 |          knn | NumNeighbors:                        46 |
|    7 |       8 | Accept |   0.066457 |            13.692 |        0.046566 |          271 |          net | Activations:                    sigmoid |
|      |         |        |            |                   |                 |              |              | Standardize:                      false |
|      |         |        |            |                   |                 |              |              | Lambda:                       1.927e-08 |
|      |         |        |            |                   |                 |              |              | LayerSizes:              [ 10  56  28 ] |
|    8 |       8 | Accept |   0.096225 |             3.801 |        0.046566 |          271 |          svm | Coding:                        onevsone |
|      |         |        |            |                   |                 |              |              | BoxConstraint:                   8.8825 |
|      |         |        |            |                   |                 |              |              | KernelScale:                      73.89 |
|    9 |       7 | Accept |    0.73962 |            14.971 |        0.046566 |          271 |          svm | Coding:                        onevsall |
|      |         |        |            |                   |                 |              |              | BoxConstraint:                   17.562 |
|      |         |        |            |                   |                 |              |              | KernelScale:                  0.0082394 |
|   10 |       7 | Accept |    0.73925 |             14.98 |        0.046566 |          271 |          svm | Coding:                        onevsall |
|      |         |        |            |                   |                 |              |              | BoxConstraint:                   1.3419 |
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|      |         |        |            |                   |                 |              |              | KernelScale:                   0.027033 |
|   11 |       8 | Accept |    0.74165 |            5.7328 |        0.046566 |          271 |          svm | Coding:                        onevsone |
|      |         |        |            |                   |                 |              |              | BoxConstraint:                 0.040932 |
|      |         |        |            |                   |                 |              |              | KernelScale:                     949.09 |
|   12 |       8 | Best   |    0.04472 |            3.1496 |         0.04472 |          271 |          knn | NumNeighbors:                         2 |
|   13 |       8 | Accept |    0.74165 |            6.4341 |         0.04472 |          271 |          knn | NumNeighbors:                      1240 |
|   14 |       8 | Best   |   0.041536 |            2.2078 |        0.041536 |          271 |          knn | NumNeighbors:                         3 |
|   15 |       8 | Accept |   0.051828 |             2.211 |        0.041536 |          271 |           nb | DistributionNames:               normal |
|      |         |        |            |                   |                 |              |              | Width:                              NaN |
|   16 |       8 | Accept |    0.74165 |            12.471 |        0.041536 |          271 |          svm | Coding:                        onevsone |
|      |         |        |            |                   |                 |              |              | BoxConstraint:                0.0079065 |
|      |         |        |            |                   |                 |              |              | KernelScale:                   0.039442 |
|   17 |       8 | Accept |    0.74165 |           0.88796 |        0.041536 |          271 |         tree | MinLeafSize:                        252 |
|   18 |       8 | Best   |   0.029629 |            6.9518 |        0.029629 |         1084 |          knn | NumNeighbors:                         2 |
|   19 |       8 | Accept |   0.030044 |            6.2852 |        0.029629 |         1084 |          knn | NumNeighbors:                         3 |
|   20 |       8 | Accept |    0.74165 |            6.2132 |        0.029629 |          271 |          knn | NumNeighbors:                      8117 |
|====================================================================================================================================================|
| Iter | Active  | Eval   | Validation | Time for training | Observed min    | Training set | Learner      | Hyperparameter:                 Value   |
|      | workers | result | loss       | & validation (sec)| validation loss | size         |              |                                         |
|====================================================================================================================================================|
|   21 |       8 | Accept |     0.1811 |            2.2815 |        0.029629 |          271 |          svm | Coding:                        onevsall |
|      |         |        |            |                   |                 |              |              | BoxConstraint:                0.0052814 |
|      |         |        |            |                   |                 |              |              | KernelScale:                     546.04 |
|   22 |       8 | Accept |    0.34996 |            4.8703 |        0.029629 |          271 |          svm | Coding:                        onevsone |
|      |         |        |            |                   |                 |              |              | BoxConstraint:                   1.0486 |
|      |         |        |            |                   |                 |              |              | KernelScale:                      2.323 |
|   23 |       8 | Accept |    0.74165 |            5.7248 |        0.029629 |          271 |          knn | NumNeighbors:                       524 |
|   24 |       8 | Accept |   0.046243 |            1.9627 |        0.029629 |         1084 |           nb | DistributionNames:               normal |
|      |         |        |            |                   |                 |              |              | Width:                              NaN |
|   25 |       7 | Accept |    0.73057 |            53.598 |        0.029629 |          271 |           nb | DistributionNames:               kernel |
|      |         |        |            |                   |                 |              |              | Width:                       1.0633e-13 |
|   26 |       7 | Accept |    0.04209 |             38.18 |        0.029629 |         1084 |          net | Activations:                    sigmoid |
|      |         |        |            |                   |                 |              |              | Standardize:                      false |
|      |         |        |            |                   |                 |              |              | Lambda:                       1.927e-08 |
|      |         |        |            |                   |                 |              |              | LayerSizes:              [ 10  56  28 ] |
|   27 |       8 | Accept |   0.035998 |            31.431 |        0.029629 |          271 |          net | Activations:                       tanh |
|      |         |        |            |                   |                 |              |              | Standardize:                      false |
|      |         |        |            |                   |                 |              |              | Lambda:                      1.4417e-06 |
|      |         |        |            |                   |                 |              |              | LayerSizes:                [ 202   11 ] |
|   28 |       8 | Accept |   0.082103 |            2.5818 |        0.029629 |          271 |          svm | Coding:                        onevsall |
|      |         |        |            |                   |                 |              |              | BoxConstraint:                   1.0839 |
|      |         |        |            |                   |                 |              |              | KernelScale:                     39.504 |
|   29 |       8 | Accept |   0.032721 |            20.812 |        0.029629 |          271 |     ensemble | Method:                             Bag |
|      |         |        |            |                   |                 |              |              | NumLearningCycles:                  257 |
|      |         |        |            |                   |                 |              |              | MinLeafSize:                          4 |
|      |         |        |            |                   |                 |              |              | MaxNumSplits:                        13 |
|   30 |       8 | Accept |    0.74165 |            7.0246 |        0.029629 |          271 |          knn | NumNeighbors:                       384 |
|   31 |       8 | Accept |    0.73034 |            49.099 |        0.029629 |          271 |           nb | DistributionNames:               kernel |
|      |         |        |            |                   |                 |              |              | Width:                       2.0942e-12 |
|   32 |       8 | Accept |   0.052843 |            1.4947 |        0.029629 |          271 |           nb | DistributionNames:               normal |
|      |         |        |            |                   |                 |              |              | Width:                              NaN |
|   33 |       8 | Best   |   0.019522 |            19.771 |        0.019522 |         4334 |          knn | NumNeighbors:                         2 |
|   34 |       8 | Accept |    0.74072 |             10.11 |        0.019522 |          271 |          svm | Coding:                        onevsone |
|      |         |        |            |                   |                 |              |              | BoxConstraint:                  0.44626 |
|      |         |        |            |                   |                 |              |              | KernelScale:                   0.089894 |
|   35 |       8 | Accept |    0.10218 |            4.6984 |        0.019522 |          271 |          svm | Coding:                        onevsall |
|      |         |        |            |                   |                 |              |              | BoxConstraint:                   2.8638 |
|      |         |        |            |                   |                 |              |              | KernelScale:                     201.68 |
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|   36 |       8 | Accept |    0.71774 |            68.103 |        0.019522 |          271 |           nb | DistributionNames:               kernel |
|      |         |        |            |                   |                 |              |              | Width:                       0.00032006 |
|   37 |       8 | Accept |     0.6913 |            5.0575 |        0.019522 |          271 |          knn | NumNeighbors:                       184 |
|   38 |       8 | Accept |    0.10689 |            2.2859 |        0.019522 |          271 |          svm | Coding:                        onevsall |
|      |         |        |            |                   |                 |              |              | BoxConstraint:                 0.036995 |
|      |         |        |            |                   |                 |              |              | KernelScale:                     13.878 |
|   39 |       8 | Accept |    0.72983 |            56.397 |        0.019522 |          271 |           nb | DistributionNames:               kernel |
|      |         |        |            |                   |                 |              |              | Width:                       2.3638e-05 |
|   40 |       8 | Accept |   0.035121 |            5.8369 |        0.019522 |          271 |          net | Activations:                       tanh |
|      |         |        |            |                   |                 |              |              | Standardize:                       true |
|      |         |        |            |                   |                 |              |              | Lambda:                      2.7559e-07 |
|      |         |        |            |                   |                 |              |              | LayerSizes:                  [ 32  93 ] |
|====================================================================================================================================================|
| Iter | Active  | Eval   | Validation | Time for training | Observed min    | Training set | Learner      | Hyperparameter:                 Value   |
|      | workers | result | loss       | & validation (sec)| validation loss | size         |              |                                         |
|====================================================================================================================================================|
|   41 |       8 | Accept |   0.048459 |           0.72565 |        0.019522 |         1084 |           nb | DistributionNames:               normal |
|      |         |        |            |                   |                 |              |              | Width:                              NaN |
|   42 |       8 | Accept |   0.045136 |           0.89703 |        0.019522 |          271 |         tree | MinLeafSize:                          6 |
|   43 |       8 | Accept |    0.11427 |            20.922 |        0.019522 |          271 |     ensemble | Method:                             Bag |
|      |         |        |            |                   |                 |              |              | NumLearningCycles:                  240 |
|      |         |        |            |                   |                 |              |              | MinLeafSize:                         49 |
|      |         |        |            |                   |                 |              |              | MaxNumSplits:                        97 |
|   44 |       8 | Accept |   0.041674 |            2.8829 |        0.019522 |          271 |          knn | NumNeighbors:                         2 |
|   45 |       8 | Accept |    0.74165 |             5.746 |        0.019522 |          271 |          knn | NumNeighbors:                      4410 |
|   46 |       8 | Accept |   0.019799 |            3.4571 |        0.019522 |         1084 |          net | Activations:                       tanh |
|      |         |        |            |                   |                 |              |              | Standardize:                       true |
|      |         |        |            |                   |                 |              |              | Lambda:                      2.7559e-07 |
|      |         |        |            |                   |                 |              |              | LayerSizes:                  [ 32  93 ] |
|   47 |       8 | Accept |   0.030414 |            23.366 |        0.019522 |         1084 |     ensemble | Method:                             Bag |
|      |         |        |            |                   |                 |              |              | NumLearningCycles:                  257 |
|      |         |        |            |                   |                 |              |              | MinLeafSize:                          4 |
|      |         |        |            |                   |                 |              |              | MaxNumSplits:                        13 |
|   48 |       8 | Accept |   0.049243 |            2.1016 |        0.019522 |          271 |           nb | DistributionNames:               normal |
|      |         |        |            |                   |                 |              |              | Width:                              NaN |
|   49 |       8 | Accept |   0.041767 |           0.83736 |        0.019522 |          271 |         tree | MinLeafSize:                          3 |
|   50 |       8 | Accept |   0.032813 |            4.5548 |        0.019522 |          271 |     ensemble | Method:                      AdaBoostM2 |
|      |         |        |            |                   |                 |              |              | NumLearningCycles:                  223 |
|      |         |        |            |                   |                 |              |              | MinLeafSize:                          1 |
|      |         |        |            |                   |                 |              |              | MaxNumSplits:                        75 |
|   51 |       8 | Accept |     0.7362 |            11.413 |        0.019522 |          271 |          svm | Coding:                        onevsone |
|      |         |        |            |                   |                 |              |              | BoxConstraint:                   760.57 |
|      |         |        |            |                   |                 |              |              | KernelScale:                    0.34067 |
|   52 |       8 | Accept |   0.055843 |            0.7704 |        0.019522 |          271 |           nb | DistributionNames:               normal |
|      |         |        |            |                   |                 |              |              | Width:                              NaN |
|   53 |       8 | Accept |   0.028937 |             6.754 |        0.019522 |         1084 |          knn | NumNeighbors:                         2 |
|   54 |       8 | Accept |    0.74165 |            5.6993 |        0.019522 |          271 |          knn | NumNeighbors:                      9124 |
|   55 |       8 | Accept |   0.054689 |           0.75579 |        0.019522 |          271 |           nb | DistributionNames:               normal |
|      |         |        |            |                   |                 |              |              | Width:                              NaN |
|   56 |       8 | Accept |   0.019799 |            8.4671 |        0.019522 |         1084 |     ensemble | Method:                      AdaBoostM2 |
|      |         |        |            |                   |                 |              |              | NumLearningCycles:                  223 |
|      |         |        |            |                   |                 |              |              | MinLeafSize:                          1 |
|      |         |        |            |                   |                 |              |              | MaxNumSplits:                        75 |
|   57 |       8 | Best   |   0.010338 |            22.501 |        0.010338 |         4334 |          net | Activations:                       tanh |
|      |         |        |            |                   |                 |              |              | Standardize:                       true |
|      |         |        |            |                   |                 |              |              | Lambda:                      2.7559e-07 |
|      |         |        |            |                   |                 |              |              | LayerSizes:                  [ 32  93 ] |
|   58 |       8 | Accept |    0.12599 |            2.4672 |        0.010338 |          271 |          svm | Coding:                        onevsall |
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|      |         |        |            |                   |                 |              |              | BoxConstraint:                  0.41895 |
|      |         |        |            |                   |                 |              |              | KernelScale:                     96.491 |
|   59 |       8 | Accept |    0.70357 |             60.43 |        0.010338 |          271 |           nb | DistributionNames:               kernel |
|      |         |        |            |                   |                 |              |              | Width:                       0.00045097 |
|   60 |       8 | Accept |     0.5737 |            73.531 |        0.010338 |          271 |           nb | DistributionNames:               kernel |
|      |         |        |            |                   |                 |              |              | Width:                        0.0018132 |
|====================================================================================================================================================|
| Iter | Active  | Eval   | Validation | Time for training | Observed min    | Training set | Learner      | Hyperparameter:                 Value   |
|      | workers | result | loss       | & validation (sec)| validation loss | size         |              |                                         |
|====================================================================================================================================================|
|   61 |       8 | Accept |    0.74165 |            2.1874 |        0.010338 |          271 |          net | Activations:                    sigmoid |
|      |         |        |            |                   |                 |              |              | Standardize:                       true |
|      |         |        |            |                   |                 |              |              | Lambda:                        0.019205 |
|      |         |        |            |                   |                 |              |              | LayerSizes:                    [ 3  3 ] |
|   62 |       8 | Accept |   0.050212 |            1.0089 |        0.010338 |          271 |           nb | DistributionNames:               normal |
|      |         |        |            |                   |                 |              |              | Width:                              NaN |
|   63 |       8 | Accept |   0.027506 |            77.499 |        0.010338 |         1084 |          net | Activations:                       tanh |
|      |         |        |            |                   |                 |              |              | Standardize:                      false |
|      |         |        |            |                   |                 |              |              | Lambda:                      1.4417e-06 |
|      |         |        |            |                   |                 |              |              | LayerSizes:                [ 202   11 ] |
|   64 |       8 | Accept |   0.030137 |            2.1967 |        0.010338 |         1084 |         tree | MinLeafSize:                          3 |
|   65 |       8 | Accept |    0.74165 |            6.9907 |        0.010338 |          271 |          knn | NumNeighbors:                      7694 |
|   66 |       8 | Accept |    0.73025 |            46.328 |        0.010338 |          271 |           nb | DistributionNames:               kernel |
|      |         |        |            |                   |                 |              |              | Width:                        7.594e-10 |
|   67 |       8 | Accept |    0.71742 |             63.01 |        0.010338 |          271 |           nb | DistributionNames:               kernel |
|      |         |        |            |                   |                 |              |              | Width:                       0.00036683 |
|   68 |       8 | Accept |   0.029906 |            1.3903 |        0.010338 |         1084 |         tree | MinLeafSize:                          6 |
|   69 |       8 | Accept |   0.090502 |            5.9339 |        0.010338 |          271 |          net | Activations:                       tanh |
|      |         |        |            |                   |                 |              |              | Standardize:                      false |
|      |         |        |            |                   |                 |              |              | Lambda:                      2.6095e-08 |
|      |         |        |            |                   |                 |              |              | LayerSizes:               [ 3  16   4 ] |
|   70 |       8 | Accept |   0.061381 |            2.8978 |        0.010338 |          271 |          svm | Coding:                        onevsone |
|      |         |        |            |                   |                 |              |              | BoxConstraint:                  0.66386 |
|      |         |        |            |                   |                 |              |              | KernelScale:                      11.66 |
|   71 |       8 | Accept |   0.037705 |            19.775 |        0.010338 |          271 |     ensemble | Method:                             Bag |
|      |         |        |            |                   |                 |              |              | NumLearningCycles:                  258 |
|      |         |        |            |                   |                 |              |              | MinLeafSize:                         11 |
|      |         |        |            |                   |                 |              |              | MaxNumSplits:                        10 |
|   72 |       8 | Accept |    0.03849 |            19.504 |        0.010338 |          271 |          net | Activations:                       tanh |
|      |         |        |            |                   |                 |              |              | Standardize:                      false |
|      |         |        |            |                   |                 |              |              | Lambda:                      6.8643e-05 |
|      |         |        |            |                   |                 |              |              | LayerSizes:            [ 24  101   14 ] |
|   73 |       8 | Accept |   0.037152 |            20.796 |        0.010338 |          271 |     ensemble | Method:                             Bag |
|      |         |        |            |                   |                 |              |              | NumLearningCycles:                  275 |
|      |         |        |            |                   |                 |              |              | MinLeafSize:                          2 |
|      |         |        |            |                   |                 |              |              | MaxNumSplits:                        27 |
|   74 |       8 | Accept |   0.048689 |            2.1741 |        0.010338 |          271 |          knn | NumNeighbors:                         4 |
|   75 |       8 | Accept |    0.55335 |            4.3695 |        0.010338 |          271 |          svm | Coding:                        onevsall |
|      |         |        |            |                   |                 |              |              | BoxConstraint:                 0.011209 |
|      |         |        |            |                   |                 |              |              | KernelScale:                     1.0514 |
|   76 |       8 | Accept |   0.032352 |             22.88 |        0.010338 |         1084 |     ensemble | Method:                             Bag |
|      |         |        |            |                   |                 |              |              | NumLearningCycles:                  258 |
|      |         |        |            |                   |                 |              |              | MinLeafSize:                         11 |
|      |         |        |            |                   |                 |              |              | MaxNumSplits:                        10 |
|   77 |       8 | Best   |   0.010061 |            42.264 |        0.010061 |         4334 |     ensemble | Method:                      AdaBoostM2 |
|      |         |        |            |                   |                 |              |              | NumLearningCycles:                  223 |
|      |         |        |            |                   |                 |              |              | MinLeafSize:                          1 |
|      |         |        |            |                   |                 |              |              | MaxNumSplits:                        75 |
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|   78 |       8 | Accept |    0.13125 |            5.0693 |        0.010061 |          271 |          net | Activations:                       tanh |
|      |         |        |            |                   |                 |              |              | Standardize:                      false |
|      |         |        |            |                   |                 |              |              | Lambda:                      1.5998e-06 |
|      |         |        |            |                   |                 |              |              | LayerSizes:                    [ 1  3 ] |
|   79 |       8 | Accept |    0.74165 |            14.599 |        0.010061 |          271 |     ensemble | Method:                             Bag |
|      |         |        |            |                   |                 |              |              | NumLearningCycles:                  216 |
|      |         |        |            |                   |                 |              |              | MinLeafSize:                        421 |
|      |         |        |            |                   |                 |              |              | MaxNumSplits:                        59 |
|   80 |       8 | Accept |    0.73131 |            46.536 |        0.010061 |          271 |           nb | DistributionNames:               kernel |
|      |         |        |            |                   |                 |              |              | Width:                       1.0852e-11 |
|====================================================================================================================================================|
| Iter | Active  | Eval   | Validation | Time for training | Observed min    | Training set | Learner      | Hyperparameter:                 Value   |
|      | workers | result | loss       | & validation (sec)| validation loss | size         |              |                                         |
|====================================================================================================================================================|
|   81 |       8 | Accept |   0.026121 |            27.416 |        0.010061 |         1084 |     ensemble | Method:                             Bag |
|      |         |        |            |                   |                 |              |              | NumLearningCycles:                  275 |
|      |         |        |            |                   |                 |              |              | MinLeafSize:                          2 |
|      |         |        |            |                   |                 |              |              | MaxNumSplits:                        27 |
|   82 |       8 | Accept |    0.07818 |            2.9308 |        0.010061 |          271 |          knn | NumNeighbors:                        15 |
|   83 |       8 | Accept |    0.64501 |             150.1 |        0.010061 |          271 |           nb | DistributionNames:               kernel |
|      |         |        |            |                   |                 |              |              | Width:                           422.98 |
|   84 |       8 | Accept |   0.048966 |           0.97418 |        0.010061 |          271 |           nb | DistributionNames:               normal |
|      |         |        |            |                   |                 |              |              | Width:                              NaN |
|   85 |       8 | Accept |    0.74165 |            5.9347 |        0.010061 |          271 |          knn | NumNeighbors:                      2792 |
|   86 |       8 | Accept |   0.050858 |           0.89733 |        0.010061 |          271 |           nb | DistributionNames:               normal |
|      |         |        |            |                   |                 |              |              | Width:                              NaN |
|   87 |       8 | Accept |   0.035444 |            5.8934 |        0.010061 |         1084 |          knn | NumNeighbors:                         4 |
|   88 |       8 | Accept |    0.74165 |            156.96 |        0.010061 |          271 |           nb | DistributionNames:               kernel |
|      |         |        |            |                   |                 |              |              | Width:                           1679.5 |
|   89 |       8 | Accept |   0.043982 |            1.8291 |        0.010061 |          271 |         tree | MinLeafSize:                          3 |
|   90 |       8 | Accept |   0.080857 |            144.55 |        0.010061 |          271 |           nb | DistributionNames:               kernel |
|      |         |        |            |                   |                 |              |              | Width:                          0.87308 |
|   91 |       8 | Accept |    0.72956 |            47.076 |        0.010061 |          271 |           nb | DistributionNames:               kernel |
|      |         |        |            |                   |                 |              |              | Width:                       2.7893e-08 |
|   92 |       8 | Accept |   0.029721 |            1.4922 |        0.010061 |         1084 |         tree | MinLeafSize:                          3 |
|   93 |       8 | Accept |    0.74165 |           0.12917 |        0.010061 |          271 |         tree | MinLeafSize:                       7511 |
|   94 |       7 | Accept |    0.74165 |            6.1437 |        0.010061 |          271 |          knn | NumNeighbors:                      9834 |
|   95 |       7 | Accept |    0.59359 |            73.466 |        0.010061 |          271 |           nb | DistributionNames:               kernel |
|      |         |        |            |                   |                 |              |              | Width:                        0.0015851 |
|   96 |       8 | Accept |   0.040336 |           0.69244 |        0.010061 |          271 |         tree | MinLeafSize:                          1 |
|   97 |       7 | Accept |   0.042874 |            2.1452 |        0.010061 |          271 |          net | Activations:                       relu |
|      |         |        |            |                   |                 |              |              | Standardize:                       true |
|      |         |        |            |                   |                 |              |              | Lambda:                      3.2315e-08 |
|      |         |        |            |                   |                 |              |              | LayerSizes:                           3 |
|   98 |       7 | Accept |    0.74165 |            1.2052 |        0.010061 |          271 |          net | Activations:                       tanh |
|      |         |        |            |                   |                 |              |              | Standardize:                       true |
|      |         |        |            |                   |                 |              |              | Lambda:                          0.3822 |
|      |         |        |            |                   |                 |              |              | LayerSizes:                  [ 27   9 ] |
|   99 |       8 | Accept |   0.026121 |            1.2028 |        0.010061 |         1084 |         tree | MinLeafSize:                          1 |
|  100 |       8 | Accept |    0.74165 |           0.66984 |        0.010061 |          271 |         tree | MinLeafSize:                       1551 |
|====================================================================================================================================================|
| Iter | Active  | Eval   | Validation | Time for training | Observed min    | Training set | Learner      | Hyperparameter:                 Value   |
|      | workers | result | loss       | & validation (sec)| validation loss | size         |              |                                         |
|====================================================================================================================================================|
|  101 |       8 | Accept |    0.74165 |            10.343 |        0.010061 |          271 |     ensemble | Method:                      AdaBoostM2 |
|      |         |        |            |                   |                 |              |              | NumLearningCycles:                  223 |
|      |         |        |            |                   |                 |              |              | MinLeafSize:                       9461 |
|      |         |        |            |                   |                 |              |              | MaxNumSplits:                        11 |
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|  102 |       8 | Accept |   0.051505 |           0.82579 |        0.010061 |          271 |           nb | DistributionNames:               normal |
|      |         |        |            |                   |                 |              |              | Width:                              NaN |
|  103 |       8 | Accept |   0.028244 |            46.019 |        0.010061 |         1084 |          net | Activations:                       tanh |
|      |         |        |            |                   |                 |              |              | Standardize:                      false |
|      |         |        |            |                   |                 |              |              | Lambda:                      6.8643e-05 |
|      |         |        |            |                   |                 |              |              | LayerSizes:            [ 24  101   14 ] |
|  104 |       8 | Accept |    0.05612 |            1.9299 |        0.010061 |          271 |          knn | NumNeighbors:                         5 |
|  105 |       8 | Accept |    0.73006 |            44.245 |        0.010061 |          271 |           nb | DistributionNames:               kernel |
|      |         |        |            |                   |                 |              |              | Width:                        1.203e-13 |
|  106 |       7 | Accept |    0.74165 |            6.0627 |        0.010061 |          271 |          knn | NumNeighbors:                       323 |
|  107 |       7 | Accept |   0.041167 |            3.0942 |        0.010061 |          271 |          net | Activations:                       tanh |
|      |         |        |            |                   |                 |              |              | Standardize:                       true |
|      |         |        |            |                   |                 |              |              | Lambda:                      7.2382e-05 |
|      |         |        |            |                   |                 |              |              | LayerSizes:                    [ 3  2 ] |
|  108 |       8 | Accept |    0.66841 |            4.8715 |        0.010061 |          271 |          svm | Coding:                        onevsall |
|      |         |        |            |                   |                 |              |              | BoxConstraint:                   8.4445 |
|      |         |        |            |                   |                 |              |              | KernelScale:                    0.70923 |
|  109 |       8 | Accept |   0.027321 |            5.5757 |        0.010061 |         1084 |          net | Activations:                       relu |
|      |         |        |            |                   |                 |              |              | Standardize:                       true |
|      |         |        |            |                   |                 |              |              | Lambda:                      3.2315e-08 |
|      |         |        |            |                   |                 |              |              | LayerSizes:                           3 |
|  110 |       8 | Accept |     0.1343 |            4.1806 |        0.010061 |          271 |          svm | Coding:                        onevsone |
|      |         |        |            |                   |                 |              |              | BoxConstraint:                   2.4202 |
|      |         |        |            |                   |                 |              |              | KernelScale:                     3.4213 |
|  111 |       8 | Accept |   0.055612 |           0.90595 |        0.010061 |          271 |           nb | DistributionNames:               normal |
|      |         |        |            |                   |                 |              |              | Width:                              NaN |
|  112 |       8 | Accept |   0.019153 |            1.3107 |        0.010061 |         4334 |         tree | MinLeafSize:                          1 |
|  113 |       8 | Accept |   0.048597 |           0.70833 |        0.010061 |         1084 |           nb | DistributionNames:               normal |
|      |         |        |            |                   |                 |              |              | Width:                              NaN |
|  114 |       8 | Accept |    0.59175 |           0.84241 |        0.010061 |          271 |          net | Activations:                    sigmoid |
|      |         |        |            |                   |                 |              |              | Standardize:                      false |
|      |         |        |            |                   |                 |              |              | Lambda:                          1.0815 |
|      |         |        |            |                   |                 |              |              | LayerSizes:                         150 |
|  115 |       8 | Accept |    0.54006 |              4.17 |        0.010061 |          271 |          svm | Coding:                        onevsall |
|      |         |        |            |                   |                 |              |              | BoxConstraint:                 0.029391 |
|      |         |        |            |                   |                 |              |              | KernelScale:                      1.121 |
|  116 |       8 | Accept |    0.74165 |            6.5172 |        0.010061 |          271 |          knn | NumNeighbors:                      2873 |
|  117 |       8 | Accept |   0.024091 |            7.1168 |        0.010061 |         1084 |          net | Activations:                       tanh |
|      |         |        |            |                   |                 |              |              | Standardize:                       true |
|      |         |        |            |                   |                 |              |              | Lambda:                      7.2382e-05 |
|      |         |        |            |                   |                 |              |              | LayerSizes:                    [ 3  2 ] |
|  118 |       8 | Accept |   0.027368 |            10.135 |        0.010061 |          271 |     ensemble | Method:                      AdaBoostM2 |
|      |         |        |            |                   |                 |              |              | NumLearningCycles:                  216 |
|      |         |        |            |                   |                 |              |              | MinLeafSize:                          2 |
|      |         |        |            |                   |                 |              |              | MaxNumSplits:                        42 |
|  119 |       8 | Accept |   0.027598 |            46.175 |        0.010061 |         4334 |     ensemble | Method:                             Bag |
|      |         |        |            |                   |                 |              |              | NumLearningCycles:                  275 |
|      |         |        |            |                   |                 |              |              | MinLeafSize:                          2 |
|      |         |        |            |                   |                 |              |              | MaxNumSplits:                        27 |
|  120 |       8 | Accept |    0.12701 |            3.4389 |        0.010061 |          271 |          svm | Coding:                        onevsall |
|      |         |        |            |                   |                 |              |              | BoxConstraint:                   19.581 |
|      |         |        |            |                   |                 |              |              | KernelScale:                     2.5698 |
|====================================================================================================================================================|
| Iter | Active  | Eval   | Validation | Time for training | Observed min    | Training set | Learner      | Hyperparameter:                 Value   |
|      | workers | result | loss       | & validation (sec)| validation loss | size         |              |                                         |
|====================================================================================================================================================|
|  121 |       8 | Accept |    0.74165 |            5.7497 |        0.010061 |          271 |          knn | NumNeighbors:                      3004 |
|  122 |       8 | Accept |   0.051551 |           0.98458 |        0.010061 |          271 |           nb | DistributionNames:               normal |
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|      |         |        |            |                   |                 |              |              | Width:                              NaN |
|  123 |       8 | Accept |    0.73934 |            10.379 |        0.010061 |          271 |          svm | Coding:                        onevsone |
|      |         |        |            |                   |                 |              |              | BoxConstraint:                     6.66 |
|      |         |        |            |                   |                 |              |              | KernelScale:                  0.0075876 |
|  124 |       8 | Accept |    0.74165 |            6.0464 |        0.010061 |          271 |          knn | NumNeighbors:                       538 |
|  125 |       8 | Accept |   0.051643 |           0.94588 |        0.010061 |         1084 |           nb | DistributionNames:               normal |
|      |         |        |            |                   |                 |              |              | Width:                              NaN |
|  126 |       8 | Accept |   0.050074 |           0.66389 |        0.010061 |          271 |         tree | MinLeafSize:                          8 |
|  127 |       8 | Accept |    0.51948 |            11.015 |        0.010061 |          271 |     ensemble | Method:                      AdaBoostM2 |
|      |         |        |            |                   |                 |              |              | NumLearningCycles:                  245 |
|      |         |        |            |                   |                 |              |              | MinLeafSize:                        103 |
|      |         |        |            |                   |                 |              |              | MaxNumSplits:                        30 |
|  128 |       8 | Accept |   0.054966 |           0.59455 |        0.010061 |          271 |         tree | MinLeafSize:                         19 |
|  129 |       8 | Accept |   0.068765 |            2.1334 |        0.010061 |          271 |          knn | NumNeighbors:                        12 |
|  130 |       8 | Accept |   0.031613 |            1.5598 |        0.010061 |         1084 |         tree | MinLeafSize:                          8 |
|  131 |       8 | Accept |   0.018414 |            20.732 |        0.010061 |         1084 |     ensemble | Method:                      AdaBoostM2 |
|      |         |        |            |                   |                 |              |              | NumLearningCycles:                  216 |
|      |         |        |            |                   |                 |              |              | MinLeafSize:                          2 |
|      |         |        |            |                   |                 |              |              | MaxNumSplits:                        42 |
|  132 |       8 | Accept |    0.73874 |             9.856 |        0.010061 |          271 |          svm | Coding:                        onevsall |
|      |         |        |            |                   |                 |              |              | BoxConstraint:                  0.37029 |
|      |         |        |            |                   |                 |              |              | KernelScale:                    0.28264 |
|  133 |       8 | Accept |   0.044813 |            1.4812 |        0.010061 |          271 |          svm | Coding:                        onevsall |
|      |         |        |            |                   |                 |              |              | BoxConstraint:                   187.62 |
|      |         |        |            |                   |                 |              |              | KernelScale:                     55.462 |
|  134 |       8 | Accept |    0.74165 |           0.39159 |        0.010061 |          271 |          net | Activations:                       tanh |
|      |         |        |            |                   |                 |              |              | Standardize:                      false |
|      |         |        |            |                   |                 |              |              | Lambda:                          1.3833 |
|      |         |        |            |                   |                 |              |              | LayerSizes:                    [ 7  3 ] |
|  135 |       8 | Accept |    0.69134 |            7.5927 |        0.010061 |          271 |          svm | Coding:                        onevsone |
|      |         |        |            |                   |                 |              |              | BoxConstraint:                  0.90862 |
|      |         |        |            |                   |                 |              |              | KernelScale:                     1.0317 |
|  136 |       8 | Accept |   0.022568 |            2.2974 |        0.010061 |         1084 |          svm | Coding:                        onevsall |
|      |         |        |            |                   |                 |              |              | BoxConstraint:                   187.62 |
|      |         |        |            |                   |                 |              |              | KernelScale:                     55.462 |
|  137 |       8 | Accept |   0.029352 |            19.821 |        0.010061 |          271 |     ensemble | Method:                             Bag |
|      |         |        |            |                   |                 |              |              | NumLearningCycles:                  268 |
|      |         |        |            |                   |                 |              |              | MinLeafSize:                          1 |
|      |         |        |            |                   |                 |              |              | MaxNumSplits:                        79 |
|  138 |       8 | Accept |    0.74165 |            5.6724 |        0.010061 |          271 |          knn | NumNeighbors:                      4444 |
|  139 |       8 | Accept |   0.056443 |            0.6542 |        0.010061 |          271 |           nb | DistributionNames:               normal |
|      |         |        |            |                   |                 |              |              | Width:                              NaN |
|  140 |       8 | Accept |    0.74165 |            8.0385 |        0.010061 |          271 |          svm | Coding:                        onevsone |
|      |         |        |            |                   |                 |              |              | BoxConstraint:                0.0043989 |
|      |         |        |            |                   |                 |              |              | KernelScale:                    0.36557 |
|====================================================================================================================================================|
| Iter | Active  | Eval   | Validation | Time for training | Observed min    | Training set | Learner      | Hyperparameter:                 Value   |
|      | workers | result | loss       | & validation (sec)| validation loss | size         |              |                                         |
|====================================================================================================================================================|
|  141 |       8 | Accept |    0.73066 |            46.903 |        0.010061 |          271 |           nb | DistributionNames:               kernel |
|      |         |        |            |                   |                 |              |              | Width:                       1.1477e-12 |
|  142 |       8 | Accept |   0.015784 |            31.487 |        0.010061 |         4334 |          net | Activations:                       tanh |
|      |         |        |            |                   |                 |              |              | Standardize:                       true |
|      |         |        |            |                   |                 |              |              | Lambda:                      7.2382e-05 |
|      |         |        |            |                   |                 |              |              | LayerSizes:                    [ 3  2 ] |
|  143 |       8 | Accept |   0.028567 |            13.713 |        0.010061 |          271 |     ensemble | Method:                      AdaBoostM2 |
|      |         |        |            |                   |                 |              |              | NumLearningCycles:                  213 |
|      |         |        |            |                   |                 |              |              | MinLeafSize:                          7 |
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|      |         |        |            |                   |                 |              |              | MaxNumSplits:                        82 |
|  144 |       8 | Accept |    0.62622 |            3.8393 |        0.010061 |          271 |          svm | Coding:                        onevsall |
|      |         |        |            |                   |                 |              |              | BoxConstraint:                0.0037069 |
|      |         |        |            |                   |                 |              |              | KernelScale:                    0.81773 |
|  145 |       8 | Accept |   0.025014 |            27.536 |        0.010061 |         1084 |     ensemble | Method:                             Bag |
|      |         |        |            |                   |                 |              |              | NumLearningCycles:                  268 |
|      |         |        |            |                   |                 |              |              | MinLeafSize:                          1 |
|      |         |        |            |                   |                 |              |              | MaxNumSplits:                        79 |
|  146 |       8 | Best   |  0.0038767 |            74.175 |       0.0038767 |        17335 |     ensemble | Method:                      AdaBoostM2 |
|      |         |        |            |                   |                 |              |              | NumLearningCycles:                  223 |
|      |         |        |            |                   |                 |              |              | MinLeafSize:                          1 |
|      |         |        |            |                   |                 |              |              | MaxNumSplits:                        75 |
|  147 |       8 | Accept |    0.74165 |            4.4671 |       0.0038767 |          271 |          svm | Coding:                        onevsone |
|      |         |        |            |                   |                 |              |              | BoxConstraint:                 0.052342 |
|      |         |        |            |                   |                 |              |              | KernelScale:                     305.83 |
|  148 |       8 | Accept |   0.082795 |            2.2053 |       0.0038767 |          271 |          knn | NumNeighbors:                        20 |
|  149 |       8 | Accept |    0.57647 |            153.17 |       0.0038767 |          271 |           nb | DistributionNames:               kernel |
|      |         |        |            |                   |                 |              |              | Width:                           200.41 |
|  150 |       8 | Accept |   0.041767 |              7.58 |       0.0038767 |          271 |          net | Activations:                       tanh |
|      |         |        |            |                   |                 |              |              | Standardize:                      false |
|      |         |        |            |                   |                 |              |              | Lambda:                       0.0095919 |
|      |         |        |            |                   |                 |              |              | LayerSizes:                  [ 89   3 ] |
|  151 |       8 | Accept |   0.018276 |            18.316 |       0.0038767 |         1084 |     ensemble | Method:                      AdaBoostM2 |
|      |         ...

__________________________________________________________
Optimization completed.

 fitcauto

35-1851



Total iterations: 595
Total elapsed time: 1276.4375 seconds
Total time for training and validation: 9777.0453 seconds

Best observed learner is an ensemble model with:
    Learner:              ensemble
    Method:             AdaBoostM2
    NumLearningCycles:         223
    MinLeafSize:                 1
    MaxNumSplits:               75
Observed validation loss: 0.0038767
Time for training and validation: 74.175 seconds

Documentation for fitcauto display

The final model returned by fitcauto corresponds to the best observed learner. Before returning
the model, the function retrains it using all the training data (XTrain and YTrain), the listed
Learner (or model) type, and the displayed hyperparameter values.

Evaluate Test Set Performance

Evaluate the final model performance on the test data set.

testAccuracy = 1 - loss(Mdl,XTest,YTest)

testAccuracy = 0.9958

The final model correctly classifies over 99% of the observations.

Combine Feature Selection and Automated Classifier Selection

Use fitcauto to automatically select a classification model with optimized hyperparameters, given
predictor and response data stored in a table. Before passing data to fitcauto, perform feature
selection to remove unimportant predictors from the data set.

Load and Partition Data

Read the sample file CreditRating_Historical.dat into a table. The predictor data consists of
financial ratios and industry sector information for a list of corporate customers. The response
variable consists of credit ratings assigned by a rating agency. Preview the first few rows of the data
set.

creditrating = readtable("CreditRating_Historical.dat");
head(creditrating)

ans=8×8 table
     ID      WC_TA     RE_TA     EBIT_TA    MVE_BVTD    S_TA     Industry    Rating 
    _____    ______    ______    _______    ________    _____    ________    _______

    62394     0.013     0.104     0.036      0.447      0.142        3       {'BB' }
    48608     0.232     0.335     0.062      1.969      0.281        8       {'A'  }
    42444     0.311     0.367     0.074      1.935      0.366        1       {'A'  }
    48631     0.194     0.263     0.062      1.017      0.228        4       {'BBB'}
    43768     0.121     0.413     0.057      3.647      0.466       12       {'AAA'}
    39255    -0.117    -0.799      0.01      0.179      0.082        4       {'CCC'}
    62236     0.087     0.158     0.049      0.816      0.324        2       {'BBB'}
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    39354     0.005     0.181     0.034      2.597      0.388        7       {'AA' }

Because each value in the ID variable is a unique customer ID, that is,
length(unique(creditrating.ID)) is equal to the number of observations in creditrating,
the ID variable is a poor predictor. Remove the ID variable from the table, and convert the Industry
variable to a categorical variable.

creditrating = removevars(creditrating,"ID");
creditrating.Industry = categorical(creditrating.Industry);

Partition the data into training and test sets. Use approximately 85% of the observations for the
model selection and hyperparameter tuning process, and 15% of the observations to test the
performance of the final model returned by fitcauto on new data. Use cvpartition to partition
the data.

rng("default") % For reproducibility of the partition
c = cvpartition(creditrating.Rating,"Holdout",0.15);
trainingIndices = training(c); % Indices for the training set
testIndices = test(c); % Indices for the test set
creditTrain = creditrating(trainingIndices,:);
creditTest = creditrating(testIndices,:);

Perform Feature Selection

Before passing the training data to fitcauto, find the important predictors by using the fscchi2
function. Visualize the predictor scores by using the bar function. Because some scores can be Inf,
and bar discards Inf values, plot the finite scores first and then plot a finite representation of the
Inf scores in a different color.

[idx,scores] = fscchi2(creditTrain,"Rating");
bar(scores(idx)) % Represents finite scores
hold on
veryImportant = isinf(scores);
finiteMax = max(scores(~veryImportant));
bar(finiteMax*veryImportant(idx)) % Represents Inf scores
hold off
xticklabels(strrep(creditTrain.Properties.VariableNames(idx),"_","\_"))
xtickangle(45)
legend(["Finite Scores","Inf Scores"])
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Notice that the Industry predictor has a low score corresponding to a p-value that is greater than
0.05, which indicates that Industry might not be an important feature. Remove the Industry
feature from the training and test data sets.

creditTrain = removevars(creditTrain,'Industry');
creditTest = removevars(creditTest,'Industry');

Run fitcauto

Pass the training data to fitcauto. The function uses Bayesian optimization to select models and
their hyperparameter values, and returns a trained model Mdl with the best expected performance.
Specify to try all available learner types and run the optimization in parallel (requires Parallel
Computing Toolbox™). Return a second output Results that contains the details of the Bayesian
optimization.

Expect this process to take some time. By default, fitcauto provides a plot of the optimization and
an iterative display of the optimization results. For more information on how to interpret these
results, see “Verbose Display” on page 35-1878.

options = struct("UseParallel",true);
[Mdl,Results] = fitcauto(creditTrain,"Rating", ...
    "Learners","all","HyperparameterOptimizationOptions",options);

Warning: It is recommended that you first standardize all numeric predictors when optimizing the Naive Bayes 'Width' parameter. Ignore this warning if you have done that.

Copying objective function to workers...

Warning: Files that have already been attached are being ignored. To see which files are attached see the 'AttachedFiles' property of the parallel pool.
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Done copying objective function to workers.
Learner types to explore: discr, ensemble, kernel, knn, linear, nb, net, svm, tree
Total iterations (MaxObjectiveEvaluations): 270
Total time (MaxTime): Inf

|=======================================================================================================================================================|
| Iter | Active  | Eval   | Validation | Time for training | Observed min    | Estimated min   | Learner      | Hyperparameter:                 Value   |
|      | workers | result | loss       | & validation (sec)| validation loss | validation loss |              |                                         |
|=======================================================================================================================================================|
|    1 |       7 | Best   |    0.31798 |           0.78014 |         0.31798 |         0.31798 |         tree | MinLeafSize:                          1 |
|    2 |       7 | Accept |    0.47622 |           0.76358 |         0.31798 |         0.31798 |          knn | NumNeighbors:                        63 |
|      |         |        |            |                   |                 |                 |              | Distance:                   correlation |
|    3 |       3 | Accept |    0.42896 |           0.95281 |         0.31798 |         0.31798 |        discr | Delta:                       1.5003e-06 |
|      |         |        |            |                   |                 |                 |              | Gamma:                          0.47392 |
|    4 |       3 | Accept |    0.74185 |           0.99139 |         0.31798 |         0.31798 |        discr | Delta:                           389.85 |
|      |         |        |            |                   |                 |                 |              | Gamma:                          0.29596 |
|    5 |       3 | Accept |     0.7236 |            1.0177 |         0.31798 |         0.31798 |          knn | NumNeighbors:                       599 |
|      |         |        |            |                   |                 |                 |              | Distance:                       hamming |
|    6 |       3 | Accept |     0.5848 |             2.195 |         0.31798 |         0.31798 |          svm | Coding:                        onevsone |
|      |         |        |            |                   |                 |                 |              | BoxConstraint:                  0.84619 |
|      |         |        |            |                   |                 |                 |              | KernelScale:                     19.346 |
|    7 |       3 | Accept |    0.74185 |            2.3486 |         0.31798 |         0.31798 |          svm | Coding:                        onevsone |
|      |         |        |            |                   |                 |                 |              | BoxConstraint:                0.0052084 |
|      |         |        |            |                   |                 |                 |              | KernelScale:                     128.61 |
|    8 |       8 | Best   |    0.28059 |           0.30573 |         0.28059 |         0.28059 |           nb | DistributionNames:               normal |
|      |         |        |            |                   |                 |                 |              | Width:                              NaN |
|    9 |       6 | Accept |    0.74215 |            6.4474 |         0.28059 |         0.28059 |       kernel | Coding:                        onevsone |
|      |         |        |            |                   |                 |                 |              | KernelScale:                   0.028123 |
|      |         |        |            |                   |                 |                 |              | Lambda:                        0.016312 |
|   10 |       6 | Accept |    0.74185 |            1.0242 |         0.28059 |         0.28059 |          knn | NumNeighbors:                      1052 |
|      |         |        |            |                   |                 |                 |              | Distance:                       jaccard |
|   11 |       6 | Accept |    0.38618 |            1.1643 |         0.28059 |         0.28059 |          knn | NumNeighbors:                         8 |
|      |         |        |            |                   |                 |                 |              | Distance:                   mahalanobis |
|   12 |       5 | Accept |    0.76967 |            1.9214 |         0.28059 |         0.29713 |     ensemble | Method:                        RUSBoost |
|      |         |        |            |                   |                 |                 |              | NumLearningCycles:                   14 |
|      |         |        |            |                   |                 |                 |              | LearnRate:                    0.0069636 |
|      |         |        |            |                   |                 |                 |              | MinLeafSize:                        230 |
|   13 |       5 | Accept |     0.3096 |            2.4447 |         0.28059 |         0.29713 |           nb | DistributionNames:               kernel |
|      |         |        |            |                   |                 |                 |              | Width:                          0.45485 |
|   14 |       8 | Accept |    0.40532 |            1.6213 |         0.28059 |         0.29713 |       linear | Coding:                        onevsall |
|      |         |        |            |                   |                 |                 |              | Lambda:                      0.00047099 |
|      |         |        |            |                   |                 |                 |              | Learner:                       logistic |
|   15 |       7 | Accept |    0.74185 |            4.2042 |         0.28059 |         0.29713 |       kernel | Coding:                        onevsall |
|      |         |        |            |                   |                 |                 |              | KernelScale:                      20.46 |
|      |         |        |            |                   |                 |                 |              | Lambda:                        0.081223 |
|   16 |       7 | Accept |    0.48011 |           0.83491 |         0.28059 |         0.29713 |       linear | Coding:                        onevsall |
|      |         |        |            |                   |                 |                 |              | Lambda:                       0.0012929 |
|      |         |        |            |                   |                 |                 |              | Learner:                            svm |
|   17 |       4 | Accept |      0.379 |            7.0624 |         0.24978 |         0.31798 |       kernel | Coding:                        onevsone |
|      |         |        |            |                   |                 |                 |              | KernelScale:                     156.99 |
|      |         |        |            |                   |                 |                 |              | Lambda:                       7.336e-06 |
|   18 |       4 | Best   |    0.24978 |            2.7256 |         0.24978 |         0.31798 |       linear | Coding:                        onevsone |
|      |         |        |            |                   |                 |                 |              | Lambda:                      1.3809e-08 |
|      |         |        |            |                   |                 |                 |              | Learner:                       logistic |
|   19 |       4 | Accept |    0.25067 |            1.5777 |         0.24978 |         0.31798 |          svm | Coding:                        onevsone |
|      |         |        |            |                   |                 |                 |              | BoxConstraint:                   80.452 |
|      |         |        |            |                   |                 |                 |              | KernelScale:                     20.931 |
|   20 |       4 | Accept |    0.68112 |             2.197 |         0.24978 |         0.31798 |           nb | DistributionNames:               kernel |
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|      |         |        |            |                   |                 |                 |              | Width:                           3.3045 |
|=======================================================================================================================================================|
| Iter | Active  | Eval   | Validation | Time for training | Observed min    | Estimated min   | Learner      | Hyperparameter:                 Value   |
|      | workers | result | loss       | & validation (sec)| validation loss | validation loss |              |                                         |
|=======================================================================================================================================================|
|   21 |       8 | Best   |    0.24319 |            2.5177 |         0.24319 |         0.31798 |       linear | Coding:                        onevsone |
|      |         |        |            |                   |                 |                 |              | Lambda:                      7.4269e-05 |
|      |         |        |            |                   |                 |                 |              | Learner:                            svm |
|   22 |       5 | Accept |    0.24559 |            2.5222 |         0.24319 |         0.31798 |       linear | Coding:                        onevsone |
|      |         |        |            |                   |                 |                 |              | Lambda:                      9.6858e-06 |
|      |         |        |            |                   |                 |                 |              | Learner:                            svm |
|   23 |       5 | Accept |    0.26653 |           0.28511 |         0.24319 |         0.31798 |         tree | MinLeafSize:                         61 |
|   24 |       5 | Accept |    0.66647 |           0.40489 |         0.24319 |         0.31798 |          knn | NumNeighbors:                        81 |
|      |         |        |            |                   |                 |                 |              | Distance:                       hamming |
|   25 |       5 | Accept |    0.28059 |           0.19167 |         0.24319 |         0.31798 |           nb | DistributionNames:               normal |
|      |         |        |            |                   |                 |                 |              | Width:                              NaN |
|   26 |       7 | Accept |    0.24499 |            2.1437 |         0.24319 |         0.31798 |       linear | Coding:                        onevsone |
|      |         |        |            |                   |                 |                 |              | Lambda:                       0.0014257 |
|      |         |        |            |                   |                 |                 |              | Learner:                            svm |
|   27 |       7 | Accept |    0.28059 |           0.19273 |         0.24319 |         0.31798 |           nb | DistributionNames:               normal |
|      |         |        |            |                   |                 |                 |              | Width:                              NaN |
|   28 |       6 | Accept |    0.26503 |           0.31492 |         0.24319 |         0.31798 |         tree | MinLeafSize:                         41 |
|   29 |       6 | Accept |    0.74185 |           0.86991 |         0.24319 |         0.31798 |          net | Activations:                       relu |
|      |         |        |            |                   |                 |                 |              | Standardize:                      false |
|      |         |        |            |                   |                 |                 |              | Lambda:                          19.947 |
|      |         |        |            |                   |                 |                 |              | LayerSizes:            [ 12    9  162 ] |
|   30 |       6 | Accept |    0.71523 |            1.7617 |         0.24319 |         0.27687 |       linear | Coding:                        onevsone |
|      |         |        |            |                   |                 |                 |              | Lambda:                          7.8161 |
|      |         |        |            |                   |                 |                 |              | Learner:                            svm |
|   31 |       7 | Accept |    0.31289 |           0.29991 |         0.24319 |         0.27687 |          knn | NumNeighbors:                        12 |
|      |         |        |            |                   |                 |                 |              | Distance:                    seuclidean |
|   32 |       7 | Accept |    0.31289 |           0.23823 |         0.24319 |         0.27687 |          knn | NumNeighbors:                        12 |
|      |         |        |            |                   |                 |                 |              | Distance:                    seuclidean |
|   33 |       6 | Accept |    0.77984 |            11.017 |         0.24319 |         0.27687 |       kernel | Coding:                        onevsone |
|      |         |        |            |                   |                 |                 |              | KernelScale:                  0.0048668 |
|      |         |        |            |                   |                 |                 |              | Lambda:                      6.1392e-06 |
|   34 |       6 | Accept |    0.31289 |           0.18884 |         0.24319 |         0.27687 |          knn | NumNeighbors:                        12 |
|      |         |        |            |                   |                 |                 |              | Distance:                    seuclidean |
|   35 |       5 | Accept |    0.78612 |             3.896 |         0.24319 |         0.27687 |       kernel | Coding:                        onevsall |
|      |         |        |            |                   |                 |                 |              | KernelScale:                  0.0016754 |
|      |         |        |            |                   |                 |                 |              | Lambda:                      6.6323e-06 |
|   36 |       5 | Accept |    0.74185 |           0.47636 |         0.24319 |         0.27687 |        discr | Delta:                           30.053 |
|      |         |        |            |                   |                 |                 |              | Gamma:                          0.73742 |
|   37 |       8 | Accept |    0.26443 |           0.12865 |         0.24319 |         0.27532 |         tree | MinLeafSize:                         33 |
|   38 |       5 | Accept |    0.32276 |           0.13117 |         0.24319 |         0.27532 |         tree | MinLeafSize:                        328 |
|   39 |       5 | Accept |    0.28059 |           0.17681 |         0.24319 |         0.27532 |           nb | DistributionNames:               normal |
|      |         |        |            |                   |                 |                 |              | Width:                              NaN |
|   40 |       5 | Accept |    0.71702 |           0.44235 |         0.24319 |         0.27532 |        discr | Delta:                           4.3736 |
|      |         |        |            |                   |                 |                 |              | Gamma:                         0.086011 |
|=======================================================================================================================================================|
| Iter | Active  | Eval   | Validation | Time for training | Observed min    | Estimated min   | Learner      | Hyperparameter:                 Value   |
|      | workers | result | loss       | & validation (sec)| validation loss | validation loss |              |                                         |
|=======================================================================================================================================================|
|   41 |       5 | Accept |    0.25755 |           0.30003 |         0.24319 |         0.27532 |          knn | NumNeighbors:                        17 |
|      |         |        |            |                   |                 |                 |              | Distance:                     cityblock |
|   42 |       8 | Accept |    0.58989 |            1.8892 |         0.24319 |         0.27532 |       kernel | Coding:                        onevsall |
|      |         |        |            |                   |                 |                 |              | KernelScale:                     2.3154 |
|      |         |        |            |                   |                 |                 |              | Lambda:                         0.17755 |
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|   43 |       8 | Best   |    0.23961 |            1.8068 |         0.23961 |         0.27532 |          svm | Coding:                        onevsone |
|      |         |        |            |                   |                 |                 |              | BoxConstraint:                   1.6804 |
|      |         |        |            |                   |                 |                 |              | KernelScale:                    0.69915 |
|   44 |       8 | Accept |    0.52019 |            3.4078 |         0.23961 |         0.27532 |          svm | Coding:                        onevsall |
|      |         |        |            |                   |                 |                 |              | BoxConstraint:                0.0020203 |
|      |         |        |            |                   |                 |                 |              | KernelScale:                     4.9323 |
|   45 |       8 | Accept |    0.39844 |            1.2275 |         0.23961 |         0.27532 |       linear | Coding:                        onevsall |
|      |         |        |            |                   |                 |                 |              | Lambda:                        0.000245 |
|      |         |        |            |                   |                 |                 |              | Learner:                       logistic |
|   46 |       7 | Accept |    0.29345 |            3.2203 |         0.23961 |         0.28001 |     ensemble | Method:                        RUSBoost |
|      |         |        |            |                   |                 |                 |              | NumLearningCycles:                   11 |
|      |         |        |            |                   |                 |                 |              | LearnRate:                    0.0037912 |
|      |         |        |            |                   |                 |                 |              | MinLeafSize:                          3 |
|   47 |       7 | Accept |    0.28597 |           0.24422 |         0.23961 |         0.28001 |         tree | MinLeafSize:                         10 |
|   48 |       8 | Accept |    0.24828 |            2.1892 |         0.23961 |         0.26397 |       linear | Coding:                        onevsone |
|      |         |        |            |                   |                 |                 |              | Lambda:                      3.0856e-06 |
|      |         |        |            |                   |                 |                 |              | Learner:                       logistic |
|   49 |       7 | Accept |    0.42776 |           0.87452 |         0.23961 |         0.26397 |        discr | Delta:                       0.00024246 |
|      |         |        |            |                   |                 |                 |              | Gamma:                          0.94088 |
|   50 |       7 | Accept |    0.42776 |           0.73959 |         0.23961 |         0.26397 |        discr | Delta:                       0.00024246 |
|      |         |        |            |                   |                 |                 |              | Gamma:                          0.94088 |
|   51 |       6 | Accept |    0.85372 |            22.106 |         0.23961 |         0.26397 |     ensemble | Method:                        RUSBoost |
|      |         |        |            |                   |                 |                 |              | NumLearningCycles:                  335 |
|      |         |        |            |                   |                 |                 |              | LearnRate:                    0.0029421 |
|      |         |        |            |                   |                 |                 |              | MinLeafSize:                        418 |
|   52 |       6 | Accept |    0.26982 |           0.13679 |         0.23961 |         0.26397 |         tree | MinLeafSize:                         17 |
|   53 |       6 | Accept |    0.74185 |           0.39262 |         0.23961 |         0.26397 |          net | Activations:                    sigmoid |
|      |         |        |            |                   |                 |                 |              | Standardize:                       true |
|      |         |        |            |                   |                 |                 |              | Lambda:                           18.22 |
|      |         |        |            |                   |                 |                 |              | LayerSizes:                  [ 18   7 ] |
|   54 |       7 | Accept |    0.28059 |           0.16664 |         0.23961 |         0.26397 |           nb | DistributionNames:               normal |
|      |         |        |            |                   |                 |                 |              | Width:                              NaN |
|   55 |       7 | Accept |    0.28059 |           0.12859 |         0.23961 |         0.26397 |           nb | DistributionNames:               normal |
|      |         |        |            |                   |                 |                 |              | Width:                              NaN |
|   56 |       7 | Accept |    0.28059 |           0.11931 |         0.23961 |         0.26397 |           nb | DistributionNames:               normal |
|      |         |        |            |                   |                 |                 |              | Width:                              NaN |
|   57 |       7 | Accept |    0.43703 |           0.12446 |         0.23961 |         0.26397 |        discr | Delta:                          0.38801 |
|      |         |        |            |                   |                 |                 |              | Gamma:                          0.19442 |
|   58 |       6 | Accept |    0.49028 |            18.139 |         0.23961 |         0.26397 |          svm | Coding:                        onevsall |
|      |         |        |            |                   |                 |                 |              | BoxConstraint:                   1.0284 |
|      |         |        |            |                   |                 |                 |              | KernelScale:                   0.066897 |
|   59 |       6 | Accept |    0.74185 |           0.41221 |         0.23961 |         0.26397 |          net | Activations:                       tanh |
|      |         |        |            |                   |                 |                 |              | Standardize:                      false |
|      |         |        |            |                   |                 |                 |              | Lambda:                          1.1378 |
|      |         |        |            |                   |                 |                 |              | LayerSizes:                  [ 58   2 ] |
|   60 |       6 | Accept |    0.49447 |           0.84836 |         0.23961 |         0.27351 |       linear | Coding:                        onevsall |
|      |         |        |            |                   |                 |                 |              | Lambda:                      3.1837e-07 |
|      |         |        |            |                   |                 |                 |              | Learner:                            svm |
|=======================================================================================================================================================|
| Iter | Active  | Eval   | Validation | Time for training | Observed min    | Estimated min   | Learner      | Hyperparameter:                 Value   |
|      | workers | result | loss       | & validation (sec)| validation loss | validation loss |              |                                         |
|=======================================================================================================================================================|
|   61 |       7 | Accept |    0.70117 |           0.17095 |         0.23961 |         0.27351 |          knn | NumNeighbors:                         1 |
|      |         |        |            |                   |                 |                 |              | Distance:                       hamming |
|   62 |       7 | Accept |    0.70117 |           0.17044 |         0.23961 |         0.27351 |          knn | NumNeighbors:                         1 |
|      |         |        |            |                   |                 |                 |              | Distance:                       hamming |
|   63 |       7 | Accept |     0.4819 |           0.16752 |         0.23961 |         0.27351 |          knn | NumNeighbors:                        15 |
|      |         |        |            |                   |                 |                 |              | Distance:                   correlation |

 fitcauto

35-1857



|   64 |       8 | Accept |    0.24469 |            2.4156 |         0.23961 |         0.26436 |       linear | Coding:                        onevsone |
|      |         |        |            |                   |                 |                 |              | Lambda:                      1.0606e-06 |
|      |         |        |            |                   |                 |                 |              | Learner:                            svm |
|   65 |       7 | Accept |    0.27251 |            1.4945 |         0.23961 |         0.26436 |           nb | DistributionNames:               kernel |
|      |         |        |            |                   |                 |                 |              | Width:                         0.016406 |
|   66 |       7 | Accept |    0.27251 |            1.5369 |         0.23961 |         0.26436 |           nb | DistributionNames:               kernel |
|      |         |        |            |                   |                 |                 |              | Width:                         0.016406 |
|   67 |       8 | Accept |     0.3102 |            1.6327 |         0.23961 |         0.26436 |          svm | Coding:                        onevsone |
|      |         |        |            |                   |                 |                 |              | BoxConstraint:                  0.66555 |
|      |         |        |            |                   |                 |                 |              | KernelScale:                     7.7425 |
|   68 |       7 | Accept |    0.31798 |           0.31217 |         0.23961 |         0.26436 |         tree | MinLeafSize:                          1 |
|   69 |       7 | Accept |    0.31798 |            0.1989 |         0.23961 |         0.26436 |         tree | MinLeafSize:                          1 |
|   70 |       8 | Accept |     0.7239 |            2.2998 |         0.23961 |         0.26436 |           nb | DistributionNames:               kernel |
|      |         |        |            |                   |                 |                 |              | Width:                            7.994 |
|   71 |       8 | Accept |    0.26982 |           0.16298 |         0.23961 |         0.26436 |         tree | MinLeafSize:                         17 |
|   72 |       7 | Accept |     0.4843 |            2.8168 |         0.23961 |         0.26436 |          svm | Coding:                        onevsall |
|      |         |        |            |                   |                 |                 |              | BoxConstraint:                 0.033141 |
|      |         |        |            |                   |                 |                 |              | KernelScale:                    0.28115 |
|   73 |       7 | Accept |     0.4843 |            2.8684 |         0.23961 |         0.26436 |          svm | Coding:                        onevsall |
|      |         |        |            |                   |                 |                 |              | BoxConstraint:                 0.033141 |
|      |         |        |            |                   |                 |                 |              | KernelScale:                    0.28115 |
|   74 |       8 | Accept |    0.25157 |            17.917 |         0.23961 |         0.26436 |          net | Activations:                       tanh |
|      |         |        |            |                   |                 |                 |              | Standardize:                      false |
|      |         |        |            |                   |                 |                 |              | Lambda:                      1.7369e-06 |
|      |         |        |            |                   |                 |                 |              | LayerSizes:                           8 |
|   75 |       8 | Accept |    0.28059 |           0.14319 |         0.23961 |         0.26436 |           nb | DistributionNames:               normal |
|      |         |        |            |                   |                 |                 |              | Width:                              NaN |
|   76 |       8 | Accept |    0.27401 |            5.2171 |         0.23961 |         0.26436 |       kernel | Coding:                        onevsone |
|      |         |        |            |                   |                 |                 |              | KernelScale:                     6.8476 |
|      |         |        |            |                   |                 |                 |              | Lambda:                      0.00036546 |
|   77 |       8 | Accept |    0.24678 |            5.4758 |         0.23961 |         0.26436 |       kernel | Coding:                        onevsone |
|      |         |        |            |                   |                 |                 |              | KernelScale:                     1.6458 |
|      |         |        |            |                   |                 |                 |              | Lambda:                      0.00029076 |
|   78 |       8 | Accept |    0.24768 |            15.469 |         0.23961 |         0.26436 |       kernel | Coding:                        onevsone |
|      |         |        |            |                   |                 |                 |              | KernelScale:                     1.6458 |
|      |         |        |            |                   |                 |                 |              | Lambda:                      0.00029076 |
|   79 |       8 | Accept |    0.74185 |            2.8161 |         0.23961 |         0.26436 |           nb | DistributionNames:               kernel |
|      |         |        |            |                   |                 |                 |              | Width:                           57.408 |
|   80 |       8 | Accept |    0.26683 |            16.599 |         0.23961 |         0.26436 |     ensemble | Method:                      AdaBoostM2 |
|      |         |        |            |                   |                 |                 |              | NumLearningCycles:                  356 |
|      |         |        |            |                   |                 |                 |              | LearnRate:                       0.4849 |
|      |         |        |            |                   |                 |                 |              | MinLeafSize:                        190 |
|=======================================================================================================================================================|
| Iter | Active  | Eval   | Validation | Time for training | Observed min    | Estimated min   | Learner      | Hyperparameter:                 Value   |
|      | workers | result | loss       | & validation (sec)| validation loss | validation loss |              |                                         |
|=======================================================================================================================================================|
|   81 |       8 | Accept |    0.43045 |           0.14072 |         0.23961 |         0.26436 |        discr | Delta:                       5.5966e-05 |
|      |         |        |            |                   |                 |                 |              | Gamma:                          0.72927 |
|   82 |       8 | Accept |    0.42806 |           0.11498 |         0.23961 |         0.26436 |        discr | Delta:                         0.014062 |
|      |         |        |            |                   |                 |                 |              | Gamma:                          0.11412 |
|   83 |       7 | Accept |    0.34699 |            17.983 |         0.23961 |         0.26436 |       kernel | Coding:                        onevsall |
|      |         |        |            |                   |                 |                 |              | KernelScale:                    0.15793 |
|      |         |        |            |                   |                 |                 |              | Lambda:                      3.4157e-07 |
|   84 |       7 | Accept |    0.26713 |           0.14254 |         0.23961 |         0.26436 |         tree | MinLeafSize:                         37 |
|   85 |       8 | Accept |    0.25067 |           0.34385 |         0.23961 |         0.26436 |          knn | NumNeighbors:                       107 |
|      |         |        |            |                   |                 |                 |              | Distance:                     euclidean |
|   86 |       8 | Accept |    0.25067 |            0.3674 |         0.23961 |         0.26436 |          knn | NumNeighbors:                       107 |
|      |         |        |            |                   |                 |                 |              | Distance:                     euclidean |
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|   87 |       8 | Accept |    0.25456 |           0.12393 |         0.23961 |         0.26436 |          knn | NumNeighbors:                        21 |
|      |         |        |            |                   |                 |                 |              | Distance:                     euclidean |
|   88 |       8 | Accept |    0.42866 |           0.16366 |         0.23961 |         0.26436 |        discr | Delta:                         0.010446 |
|      |         |        |            |                   |                 |                 |              | Gamma:                          0.45787 |
|   89 |       8 | Accept |    0.42746 |             7.739 |         0.23961 |         0.26436 |          net | Activations:                       none |
|      |         |        |            |                   |                 |                 |              | Standardize:                       true |
|      |         |        |            |                   |                 |                 |              | Lambda:                        0.012033 |
|      |         |        |            |                   |                 |                 |              | LayerSizes:            [ 36   71  224 ] |
|   90 |       8 | Accept |    0.42148 |            0.1231 |         0.23961 |         0.26436 |        discr | Delta:                       6.5069e-06 |
|      |         |        |            |                   |                 |                 |              | Gamma:                         0.035196 |
|   91 |       8 | Accept |     0.2402 |             4.845 |         0.23961 |         0.26436 |          net | Activations:                       none |
|      |         |        |            |                   |                 |                 |              | Standardize:                      false |
|      |         |        |            |                   |                 |                 |              | Lambda:                      0.00031695 |
|      |         |        |            |                   |                 |                 |              | LayerSizes:                 [ 1  1  4 ] |
|   92 |       7 | Accept |    0.25337 |            4.0368 |         0.23961 |         0.26436 |     ensemble | Method:                      AdaBoostM2 |
|      |         |        |            |                   |                 |                 |              | NumLearningCycles:                   87 |
|      |         |        |            |                   |                 |                 |              | LearnRate:                      0.72655 |
|      |         |        |            |                   |                 |                 |              | MinLeafSize:                          8 |
|   93 |       7 | Accept |    0.29076 |             1.476 |         0.23961 |         0.26436 |          svm | Coding:                        onevsone |
|      |         |        |            |                   |                 |                 |              | BoxConstraint:                   6.1463 |
|      |         |        |            |                   |                 |                 |              | KernelScale:                     11.586 |
|   94 |       8 | Accept |    0.24858 |            2.4734 |         0.23961 |         0.25191 |       linear | Coding:                        onevsone |
|      |         |        |            |                   |                 |                 |              | Lambda:                      5.8564e-07 |
|      |         |        |            |                   |                 |                 |              | Learner:                       logistic |
|   95 |       8 | Accept |    0.75381 |            2.7208 |         0.23961 |         0.25191 |       kernel | Coding:                        onevsall |
|      |         |        |            |                   |                 |                 |              | KernelScale:                  0.0011931 |
|      |         |        |            |                   |                 |                 |              | Lambda:                       0.0021196 |
|   96 |       8 | Accept |    0.74514 |            2.5576 |         0.23961 |         0.25191 |       kernel | Coding:                        onevsall |
|      |         |        |            |                   |                 |                 |              | KernelScale:                  0.0011931 |
|      |         |        |            |                   |                 |                 |              | Lambda:                       0.0021196 |
|   97 |       8 | Accept |     0.2423 |            1.4238 |         0.23961 |         0.25191 |          svm | Coding:                        onevsone |
|      |         |        |            |                   |                 |                 |              | BoxConstraint:                 0.037756 |
|      |         |        |            |                   |                 |                 |              | KernelScale:                   0.054479 |
|   98 |       7 | Accept |    0.24529 |            72.651 |         0.23961 |         0.25191 |          svm | Coding:                        onevsone |
|      |         |        |            |                   |                 |                 |              | BoxConstraint:                 0.092471 |
|      |         |        |            |                   |                 |                 |              | KernelScale:                  0.0035999 |
|   99 |       7 | Accept |    0.32605 |            1.0318 |         0.23961 |         0.25191 |           nb | DistributionNames:               kernel |
|      |         |        |            |                   |                 |                 |              | Width:                         0.002311 |
|  100 |       7 | Accept |    0.26683 |           0.11759 |         0.23961 |         0.25191 |         tree | MinLeafSize:                         60 |
|=======================================================================================================================================================|
| Iter | Active  | Eval   | Validation | Time for training | Observed min    | Estimated min   | Learner      | Hyperparameter:                 Value   |
|      | workers | result | loss       | & validation (sec)| validation loss | validation loss |              |                                         |
|=======================================================================================================================================================|
|  101 |       7 | Accept |    0.31738 |           0.73567 |         0.23961 |         0.25191 |          knn | NumNeighbors:                       440 |
|      |         |        |            |                   |                 |                 |              | Distance:                     minkowski |
|  102 |       8 | Accept |    0.24619 |            2.8761 |         0.23961 |         0.25191 |          svm | Coding:                        onevsone |
|      |         |        |            |                   |                 |                 |              | BoxConstraint:                 0.051313 |
|      |         |        |            |                   |                 |                 |              | KernelScale:                   0.018609 |
|  103 |       8 | Accept |    0.24619 |            2.8825 |         0.23961 |         0.25191 |          svm | Coding:                        onevsone |
|      |         |        |            |                   |                 |                 |              | BoxConstraint:                 0.051313 |
|      |         |        |            |                   |                 |                 |              | KernelScale:                   0.018609 |
|  104 |       8 | Accept |    0.31798 |           0.18993 |         0.23961 |         0.25191 |          knn | NumNeighbors:                        30 |
|      |         |        |            |                   |                 |                 |              | Distance:                    seuclidean |
|  105 |       8 | Accept |    0.27251 |            7.5016 |         0.23961 |         0.25191 |       kernel | Coding:                        onevsall |
|      |         |        |            |                   |                 |                 |              | KernelScale:                     2.0044 |
|      |         |        |            |                   |                 |                 |              | Lambda:                      0.00044252 |
|  106 |       8 | Accept |    0.25606 |            2.4574 |         0.23961 |         0.25191 |     ensemble | Method:                      AdaBoostM2 |
|      |         |        |            |                   |                 |                 |              | NumLearningCycles:                   47 |
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|      |         |        |            |                   |                 |                 |              | LearnRate:                      0.37809 |
|      |         |        |            |                   |                 |                 |              | MinLeafSize:                         56 |
|  107 |       8 | Accept |    0.71702 |           0.11134 |         0.23961 |         0.25191 |        discr | Delta:                           4.4097 |
|      |         |        |            |                   |                 |                 |              | Gamma:                           0.8883 |
|  108 |       8 | Accept |    0.43195 |           0.10201 |         0.23961 |         0.25191 |        discr | Delta:                       3.4149e-06 |
|      |         |        |            |                   |                 |                 |              | Gamma:                          0.66863 |
|  109 |       8 | Accept |     0.5851 |           0.16296 |         0.23961 |         0.25191 |          knn | NumNeighbors:                         1 |
|      |         |        |            |                   |                 |                 |              | Distance:                   correlation |
|  110 |       8 | Accept |     0.3102 |            120.87 |         0.23961 |         0.25191 |          net | Activations:                       tanh |
|      |         |        |            |                   |                 |                 |              | Standardize:                       true |
|      |         |        |            |                   |                 |                 |              | Lambda:                      1.2141e-07 |
|      |         |        |            |                   |                 |                 |              | LayerSizes:                         157 |
|  111 |       7 | Accept |    0.79958 |            4.0886 |         0.23961 |         0.25431 |       kernel | Coding:                        onevsall |
|      |         |        |            |                   |                 |                 |              | KernelScale:                   0.005193 |
|      |         |        |            |                   |                 |                 |              | Lambda:                      8.7114e-07 |
|  112 |       7 | Accept |    0.48998 |            1.3636 |         0.23961 |         0.25431 |       linear | Coding:                        onevsall |
|      |         |        |            |                   |                 |                 |              | Lambda:                      1.0966e-07 |
|      |         |        |            |                   |                 |                 |              | Learner:                            svm |
|  113 |       8 | Accept |    0.36464 |             126.9 |         0.23961 |         0.25431 |          net | Activations:                       tanh |
|      |         |        |            |                   |                 |                 |              | Standardize:                       true |
|      |         |        |            |                   |                 |                 |              | Lambda:                       7.078e-08 |
|      |         |        |            |                   |                 |                 |              | LayerSizes:                  [ 85  74 ] |
|  114 |       8 | Accept |    0.45319 |            139.01 |         0.23961 |         0.25431 |          svm | Coding:                        onevsall |
|      |         |        |            |                   |                 |                 |              | BoxConstraint:                 0.049562 |
|      |         |        |            |                   |                 |                 |              | KernelScale:                   0.019349 |
|  115 |       7 | Accept |    0.24379 |            18.913 |         0.23961 |         0.25431 |          net | Activations:                    sigmoid |
|      |         |        |            |                   |                 |                 |              | Standardize:                      false |
|      |         |        |            |                   |                 |                 |              | Lambda:                      5.0497e-07 |
|      |         |        |            |                   |                 |                 |              | LayerSizes:                 [ 1  4  5 ] |
|  116 |       7 | Accept |    0.42836 |             1.076 |         0.23961 |         0.25431 |        discr | Delta:                        0.0016971 |
|      |         |        |            |                   |                 |                 |              | Gamma:                          0.35943 |
|  117 |       6 | Accept |    0.24319 |            20.917 |         0.23961 |         0.25622 |          net | Activations:                    sigmoid |
|      |         |        |            |                   |                 |                 |              | Standardize:                      false |
|      |         |        |            |                   |                 |                 |              | Lambda:                      5.0497e-07 |
|      |         |        |            |                   |                 |                 |              | LayerSizes:                 [ 1  4  5 ] |
|  118 |       6 | Accept |    0.46814 |            1.0997 |         0.23961 |         0.25622 |       linear | Coding:                        onevsall |
|      |         |        |            |                   |                 |                 |              | Lambda:                      7.5025e-05 |
|      |         |        |            |                   |                 |                 |              | Learner:                            svm |
|  119 |       8 | Accept |    0.74065 |            2.2714 |         0.23961 |         0.25622 |           nb | DistributionNames:               kernel |
|      |         |        |            |                   |                 |                 |              | Width:                           19.139 |
|  120 |       8 | Accept |    0.30302 |           0.17067 |         0.23961 |         0.25622 |         tree | MinLeafSize:                        191 |
|=======================================================================================================================================================|
| Iter | Active  | Eval   | Validation | Time for training | Observed min    | Estimated min   | Learner      | Hyperparameter:                 Value   |
|      | workers | result | loss       | & validation (sec)| validation loss | validation loss |              |                                         |
|=======================================================================================================================================================|
|  121 |       8 | Accept |    0.26593 |           0.11582 |         0.23961 |         0.25622 |         tree | MinLeafSize:                         40 |
|  122 |       8 | Accept |    0.47712 |           0.68686 |         0.23961 |         0.25178 |       linear | Coding:                        onevsall |
|      |         |        |            |                   |                 |                 |              | Lambda:                          0.2622 |
|      |         |        |            |                   |                 |                 |              | Learner:                            svm |
|  123 |       8 | Accept |    0.24798 |            8.1465 |         0.23961 |         0.25178 |     ensemble | Method:                             Bag |
|      |         |        |            |                   |                 |                 |              | NumLearningCycles:                   85 |
|      |         |        |            |                   |                 |                 |              | LearnRate:                          NaN |
|      |         |        |            |                   |                 |                 |              | MinLeafSize:                         14 |
|  124 |       6 | Accept |    0.29554 |            48.462 |         0.23961 |         0.25178 |          net | Activations:                       relu |
|      |         |        |            |                   |                 |                 |              | Standardize:                       true |
|      |         |        |            |                   |                 |                 |              | Lambda:                      5.8633e-09 |
|      |         |        |            |                   |                 |                 |              | LayerSizes:                         115 |
|  125 |       6 | Accept |    0.24978 |            8.4739 |         0.23961 |         0.25178 |     ensemble | Method:                             Bag |
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|      |         |        |            |                   |                 |                 |              | NumLearningCycles:                   85 |
|      |         |        |            |                   |                 |                 |              | LearnRate:                          NaN |
|      |         |        |            |                   |                 |                 |              | MinLeafSize:                         14 |
|  126 |       6 | Accept |    0.25157 |             8.422 |         0.23961 |         0.25178 |     ensemble | Method:                             Bag |
|      |         |        |            |                   |                 |                 |              | NumLearningCycles:                   85 |
|      |         |        |            |                   |                 |                 |              | LearnRate:                          NaN |
|      |         |        |            |                   |                 |                 |              | MinLeafSize:                         14 |
|  127 |       6 | Accept |    0.25815 |            1.9238 |         0.23961 |         0.25178 |           nb | DistributionNames:               kernel |
|      |         |        |            |                   |                 |                 |              | Width:                         0.062941 |
|  128 |       6 | Accept |    0.24948 |             2.291 |         0.23961 |         0.25148 |       linear | Coding:                        onevsone |
|      |         |        |            |                   |                 |                 |              | Lambda:                      1.2391e-07 |
|      |         |        |            |                   |                 |                 |              | Learner:                       logistic |
|  129 |       8 | Accept |    0.28118 |            5.9878 |         0.23961 |         0.25148 |     ensemble | Method:                             Bag |
|      |         |        |            |                   |                 |                 |              | NumLearningCycles:                   82 |
|      |         |        |            |                   |                 |                 |              | LearnRate:                          NaN |
|      |         |        |            |                   |                 |                 |              | MinLeafSize:                        153 |
|  130 |       8 | Accept |    0.29644 |            8.8037 |         0.23961 |         0.25148 |     ensemble | Method:                        RUSBoost |
|      |         |        |            |                   |                 |                 |              | NumLearningCycles:                   85 |
|      |         |        |            |                   |                 |                 |              | LearnRate:                      0.56002 |
|      |         |        |            |                   |                 |                 |              | MinLeafSize:                          8 |
|  131 |       7 | Accept |    0.39785 |            8.9125 |         0.23961 |         0.25148 |       kernel | Coding:                        onevsone |
|      |         |        |            |                   |                 |                 |              | KernelScale:                    0.10138 |
|      |         |        |            |                   |                 |                 |              | Lambda:                      0.00010013 |
|  132 |       7 | Accept |    0.28298 |            6.7573 |         0.23961 |         0.25148 |     ensemble | Method:                             Bag |
|      |         |        |            |                   |                 |                 |              | NumLearningCycles:                   81 |
|      |         |        |            |                   |                 |                 |              | LearnRate:                          NaN |
|      |         |        |            |                   |                 |                 |              | MinLeafSize:                        151 |
|  133 |       8 | Accept |    0.27371 |            6.3282 |         0.23961 |         0.25148 |     ensemble | Method:                             Bag |
|      |         |        |            |                   |                 |                 |              | NumLearningCycles:                   84 |
|      |         |        |            |                   |                 |                 |              | LearnRate:                          NaN |
|      |         |        |            |                   |                 |                 |              | MinLeafSize:                        129 |
|  134 |       8 | Accept |    0.24559 |            76.492 |         0.23961 |         0.25148 |          net | Activations:                    sigmoid |
|      |         |        |            |                   |                 |                 |              | Standardize:                      false |
|      |         |        |            |                   |                 |                 |              | Lambda:                      2.4405e-07 |
|      |         |        |            |                   |                 |                 |              | LayerSizes:              [ 33  17  82 ] |
|  135 |       7 | Accept |    0.34819 |            16.667 |         0.23961 |         0.25148 |       kernel | Coding:                        onevsone |
|      |         |        |            |                   |                 |                 |              | KernelScale:                    0.12039 |
|      |         |        |            |                   |                 |                 |              | Lambda:                      0.00010483 |
|  136 |       7 | Accept |    0.42477 |            8.2081 |         0.23961 |         0.25148 |       kernel | Coding:                        onevsone |
|      |         |        |            |                   |                 |                 |              | KernelScale:                   0.095799 |
|      |         |        |            |                   |                 |                 |              | Lambda:                      8.6717e-05 |
|  137 |       6 | Accept |    0.25007 |            4.8241 |         0.23961 |         0.25148 |       kernel | Coding:                        onevsone |
|      |         |        |            |                   |                 |                 |              | KernelScale:                    0.54593 |
|      |         |        |            |                   |                 |                 |              | Lambda:                       0.0017131 |
|  138 |       6 | Accept |    0.74185 |           0.75998 |         0.23961 |         0.25148 |          net | Activations:                    sigmoid |
|      |         |        |            |      ...
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__________________________________________________________
Optimization completed.
Total iterations: 271
Total elapsed time: 907.7117 seconds
Total time for training and validation: 5400.9893 seconds

Best observed learner is a net model with:
    Learner:                   net
    Activations:              relu
    Standardize:             false
    Lambda:              0.0004658
    LayerSizes:        [1  31  23]
Observed validation loss: 0.23811
Time for training and validation: 21.2958 seconds

Best estimated learner (returned model) is a net model with:
    Learner:                   net
    Activations:              none
    Standardize:             false
    Lambda:             0.00036647
    LayerSizes:        [1   6  10]
Estimated validation loss: 0.24112
Estimated time for training and validation: 5.894 seconds

Documentation for fitcauto display
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The final model returned by fitcauto corresponds to the best estimated learner. Before returning
the model, the function retrains it using the entire training data (creditTrain), the listed Learner
(or model) type, and the displayed hyperparameter values.

Evaluate Test Set Performance

The model Mdl corresponds to the best point in the Bayesian optimization according to the "min-
visited-mean" criterion. To gauge how the model will perform on new data, look at the observed
cross-validation accuracy of the model (cvAccuracy) and its general estimated performance based
on the Bayesian optimization (estimatedAccuracy).

[x,~,iteration] = bestPoint(Results,"Criterion","min-visited-mean");

cvError = Results.ObjectiveTrace(iteration);
cvAccuracy = 1 - cvError

cvAccuracy = 0.7595

estimatedError = predictObjective(Results,x);
estimatedAccuracy = 1 - estimatedError

estimatedAccuracy = 0.7589

Evaluate the performance of the model on the test set. Create a confusion matrix from the results,
and specify the order of the classes in the confusion matrix.

testAccuracy = 1 - loss(Mdl,creditTest,"Rating")

testAccuracy = 0.7437

cm = confusionchart(creditTest.Rating,predict(Mdl,creditTest));
sortClasses(cm,["AAA","AA","A","BBB","BB","B","CCC"])
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Input Arguments
Tbl — Sample data
table

Sample data, specified as a table. Each row of Tbl corresponds to one observation, and each column
corresponds to one predictor. Optionally, Tbl can contain one additional column for the response
variable. Multicolumn variables and cell arrays other than cell arrays of character vectors are not
accepted.

If Tbl contains the response variable, and you want to use all remaining variables in Tbl as
predictors, specify the response variable using ResponseVarName.

If Tbl contains the response variable, and you want to use only a subset of the remaining variables in
Tbl as predictors, specify a formula using formula.

If Tbl does not contain the response variable, specify a response variable using Y. The length of the
response variable and the number of rows in Tbl must be equal.
Data Types: table

ResponseVarName — Response variable name
name of variable in Tbl

Response variable name, specified as the name of a variable in Tbl.
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You must specify ResponseVarName as a character vector or string scalar. For example, if the
response variable Y is stored as Tbl.Y, then specify it as "Y". Otherwise, the software treats all
columns of Tbl, including Y, as predictors when training the model.

The response variable must be a categorical, character, or string array; a logical or numeric vector;
or a cell array of character vectors. If Y is a character array, then each element of the response
variable must correspond to one row of the array.

A good practice is to specify the order of the classes by using the ClassNames name-value argument.
Data Types: char | string

formula — Explanatory model of response variable and subset of predictor variables
character vector | string scalar

Explanatory model of the response variable and a subset of the predictor variables, specified as a
character vector or string scalar in the form "Y~x1+x2+x3". In this form, Y represents the response
variable, and x1, x2, and x3 represent the predictor variables.

To specify a subset of variables in Tbl as predictors for training the model, use a formula. If you
specify a formula, then the software does not use any variables in Tbl that do not appear in
formula.

The variable names in the formula must be both variable names in Tbl
(Tbl.Properties.VariableNames) and valid MATLAB identifiers. You can verify the variable
names in Tbl by using the isvarname function. If the variable names are not valid, then you can
convert them by using the matlab.lang.makeValidName function.
Data Types: char | string

Y — Class labels
numeric vector | categorical vector | logical vector | character array | string array | cell array of
character vectors

Class labels, specified as a numeric, categorical, or logical vector, a character or string array, or a cell
array of character vectors.

• If Y is a character array, then each element of the class labels must correspond to one row of the
array.

• The length of Y must be equal to the number of rows in Tbl or X.
• A good practice is to specify the class order by using the ClassNames name-value argument.

Data Types: single | double | categorical | logical | char | string | cell

X — Predictor data
numeric matrix

Predictor data, specified as a numeric matrix.

Each row of X corresponds to one observation, and each column corresponds to one predictor.

The length of Y and the number of rows in X must be equal.

To specify the names of the predictors in the order of their appearance in X, use the
PredictorNames name-value argument.
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Data Types: single | double

Note The software treats NaN, empty character vector (''), empty string (""), <missing>, and
<undefined> elements as missing data. The software removes rows of data corresponding to
missing values in the response variable. However, the treatment of missing values in the predictor
data X or Tbl varies among models (or learners).

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example:
"HyperparameterOptimizationOptions",struct("MaxObjectiveEvaluations",200,"Ver
bose",2) specifies to run 200 iterations of the optimization process (that is, try 200 model
hyperparameter combinations), and to display information in the Command Window about the next
model hyperparameter combination to be evaluated.

Optimization Options

Learners — Types of classification models
"auto" (default) | "all" | "all-linear" | "all-nonlinear" | one or more learner names

Types of classification models to try during the optimization, specified as a value in the first table
below or one or more learner names in the second table. Specify multiple learner names as a string
or cell array.

Value Description
"auto" fitcauto automatically selects a subset of learners,

suitable for the given predictor and response data. The
learners can have model hyperparameter values that
differ from the default. For more information, see
“Automatic Selection of Learners” on page 35-1881.

Note To provide the best hyperparameter optimization
experience, the automatic selection of learners behavior
is subject to frequent changes. For a more consistent
selection of learners across software releases, explicitly
specify the models you want to include.

"all" fitcauto selects all possible learners.
"all-linear" fitcauto selects linear learners: "discr" (with a

linear discriminant type) and "linear".
"all-nonlinear" fitcauto selects all nonlinear learners: "discr" (with

a quadratic discriminant type), "ensemble", "kernel",
"knn", "nb", "net", "svm" (with a Gaussian or
polynomial kernel), and "tree".
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Note For greater efficiency, fitcauto does not select the following combinations of models when
you specify one of the previous values.

• "kernel" and "svm" (with a Gaussian kernel) — fitcauto chooses the first when the predictor
data has more than 11,000 observations, and the second otherwise.

• "linear" and "svm" (with a linear kernel) — fitcauto chooses the first.

Learner Name Description
"discr" Discriminant analysis classifier
"ensemble" Ensemble classification model
"kernel" Kernel classification model
"knn" k-nearest neighbor model
"linear" Linear classification model
"nb" Naive Bayes classifier
"net" Neural network classifier
"svm" Support vector machine classifier
"tree" Binary decision classification tree

Example: "Learners","all"
Example: "Learners","ensemble"
Example: "Learners",["svm","tree"]
Data Types: char | string | cell

OptimizeHyperparameters — Hyperparameters to optimize
"auto" (default) | "all"

Hyperparameters to optimize, specified as "auto" or "all". The optimizable hyperparameters
depend on the model (or learner), as described in this table.
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Learner Name Hyperparameters for
"auto"

Additional
Hyperparameters for
"all"

Notes

"discr" Delta, Gamma DiscrimType • When the Learners
value is "all-
linear", the
fitcauto function
chooses among the
DiscrimType values
of "linear",
"diaglinear", and
"pseudolinear",
regardless of the
OptimizeHyperpara
meters value.

• When the Learners
value is "all-
nonlinear", the
fitcauto function
chooses among the
DiscrimType values
of "quadratic",
"diagquadratic",
and
"pseudoquadratic",
regardless of the
OptimizeHyperpara
meters value.

For more information,
including hyperparameter
search ranges, see
OptimizeHyperparamet
ers. Note that you cannot
change hyperparameter
search ranges when you
use fitcauto.

"ensemble" Method,
NumLearningCycles,
LearnRate,
MinLeafSize

MaxNumSplits,
NumVariablesToSample
, SplitCriterion

When the ensemble
Method value is a
boosting method, the
ensemble NumBins value
is 50.

For more information,
including hyperparameter
search ranges, see
OptimizeHyperparamet
ers. Note that you cannot
change hyperparameter
search ranges when you
use fitcauto.
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Learner Name Hyperparameters for
"auto"

Additional
Hyperparameters for
"all"

Notes

"kernel" KernelScale, Lambda,
Coding (for three or more
classes only)

Learner,
NumExpansionDimensio
ns

For more information,
including hyperparameter
search ranges, see
OptimizeHyperparamet
ers and
OptimizeHyperparamet
ers (for three or more
classes only). Note that
you cannot change
hyperparameter search
ranges when you use
fitcauto.

"knn" Distance,
NumNeighbors

DistanceWeight,
Exponent, Standardize

For more information,
including hyperparameter
search ranges, see
OptimizeHyperparamet
ers. Note that you cannot
change hyperparameter
search ranges when you
use fitcauto.

"linear" Lambda, Learner,
Coding (for three or more
classes only)

Regularization For more information,
including hyperparameter
search ranges, see
OptimizeHyperparamet
ers and
OptimizeHyperparamet
ers (for three or more
classes only). Note that
you cannot change
hyperparameter search
ranges when you use
fitcauto.

"nb" DistributionNames,
Width

Kernel For more information,
including hyperparameter
search ranges, see
OptimizeHyperparamet
ers. Note that you cannot
change hyperparameter
search ranges when you
use fitcauto.
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Learner Name Hyperparameters for
"auto"

Additional
Hyperparameters for
"all"

Notes

"net" Activations, Lambda,
LayerSizes,
Standardize

LayerBiasesInitializ
er,
LayerWeightsInitiali
zer

For more information,
including hyperparameter
search ranges, see
OptimizeHyperparamet
ers. Note that you cannot
change hyperparameter
search ranges when you
use fitcauto.

"svm" BoxConstraint,
KernelScale, Coding
(for three or more classes
only)

KernelFunction,
PolynomialOrder,
Standardize

When the Learners
value is "all-
nonlinear", the
fitcauto function
chooses among the
KernelFunction values
of "gaussian" and
"polynomial",
regardless of the
OptimizeHyperparamet
ers value.

For more information,
including hyperparameter
search ranges, see
OptimizeHyperparamet
ers and
OptimizeHyperparamet
ers (for three or more
classes only). Note that
you cannot change
hyperparameter search
ranges when you use
fitcauto.

"tree" MinLeafSize MaxNumSplits,
SplitCriterion

For more information,
including hyperparameter
search ranges, see
OptimizeHyperparamet
ers. Note that you cannot
change hyperparameter
search ranges when you
use fitcauto.

Note When Learners is set to a value other than "auto", the default values for the model
hyperparameters not being optimized match the default fit function values, unless otherwise
indicated in the table notes. When Learners is set to "auto", the optimized hyperparameter search
ranges and nonoptimized hyperparameter values can vary, depending on the characteristics of the
training data. For more information, see “Automatic Selection of Learners” on page 35-1881.
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Example: "OptimizeHyperparameters","all"

HyperparameterOptimizationOptions — Options for optimization

structure

Options for the optimization, specified as a structure. All fields in the structure are optional.

Field Name Values Default
Optimizer • "bayesopt" — Uses Bayesian

optimization. For more details, see
“Bayesian Optimization” on page 35-
1882.

• "asha" — Uses ASHA optimization.
For more details, see “ASHA
Optimization” on page 35-1882.

"bayesopt"

MaxObjectiveEvaluatio
ns

Maximum number of iterations (objective
function evaluations), specified as a
positive integer

30*L, where L is the
number of learners (see
Learners)

• This value is the default
when the Optimizer
field is set to
"bayesopt".

• For the default value
when the Optimizer
field is set to "asha",
see “Number of ASHA
Iterations” on page 35-
1883.

MaxTime Time limit, specified as a positive real
number. The time limit is in seconds, as
measured by tic and toc. Run time can
exceed MaxTime because MaxTime does
not interrupt function evaluations.

Inf

ShowPlots Logical value indicating whether to show a
plot of the optimization progress. If true,
this field plots the observed minimum
validation loss against the iteration
number. When you use Bayesian
optimization, the plot also shows the
estimated minimum validation loss.

true

SaveIntermediateResul
ts

Logical value indicating whether to save
results. If true, this field overwrites a
workspace variable at each iteration. The
variable is a BayesianOptimization
object named BayesoptResults if you
use Bayesian optimization, and a table
named ASHAResults if you use ASHA
optimization.

false
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Field Name Values Default
Verbose Display at the command line:

• 0 — No iterative display
• 1 — Iterative display
• 2 — Iterative display with additional

information about the next point to be
evaluated

1

UseParallel Logical value indicating whether to run
the optimization in parallel, which
requires Parallel Computing Toolbox. Due
to the nonreproducibility of parallel
timing, parallel optimization does not
necessarily yield reproducible results.

false

Repartition Logical value indicating whether to
repartition the cross-validation at every
iteration. If false, the optimizer uses a
single partition for the optimization.

true usually gives the most robust results
because this setting takes partitioning
noise into account. However, for good
results, true requires at least twice as
many function evaluations.

false

MaxTrainingSetSize Maximum number of observations in each
training set, specified as a positive integer.
This value matches the largest training set
size.

Note If you want to specify this value, the
Optimizer field must be set to "asha".

Largest available training
partition size

• When the optimization
uses k-fold cross-
validation, this value is
(k – 1)*n/k, where n
is the total number of
observations.

• When the optimization
uses a cvpartition
object cvp, this value is
max(cvp.TrainSize).

• When the optimization
uses a holdout fraction
p, this value is (1 –
p)*n, where n is the
total number of
observations.
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Field Name Values Default
MinTrainingSetSize Minimum number of observations in each

training set, specified as a positive integer.
This value is a lower bound for the
smallest training set size.

Note If you want to specify this value, the
Optimizer field must be set to "asha".

100

Specify only one of the following three options.
CVPartition cvpartition object, created by

cvpartition
"Kfold",5 if you do not
specify any cross-validation
fieldHoldout Scalar in the range (0,1) representing

the holdout fraction
Kfold Integer greater than 1

Example: "HyperparameterOptimizationOptions",struct("UseParallel",true)
Data Types: struct

Classification Options

CategoricalPredictors — Categorical predictors list
vector of positive integers | logical vector | character matrix | string array | cell array of character
vectors | "all"

Categorical predictors list, specified as one of the values in this table.

Value Description
Vector of positive
integers

Each entry in the vector is an index value indicating that the corresponding
predictor is categorical. The index values are between 1 and p, where p is
the number of predictors used to train the model.

If fitcauto uses a subset of input variables as predictors, then the
function indexes the predictors using only the subset. The
CategoricalPredictors values do not count the response variable,
observation weights variable, or any other variables that the function does
not use.

Logical vector A true entry means that the corresponding predictor is categorical. The
length of the vector is p.

Character matrix Each row of the matrix is the name of a predictor variable. The names must
match the entries in PredictorNames. Pad the names with extra blanks
so each row of the character matrix has the same length.

String array or cell
array of character
vectors

Each element in the array is the name of a predictor variable. The names
must match the entries in PredictorNames.

"all" All predictors are categorical.

By default, if the predictor data is in a table (Tbl), fitcauto assumes that a variable is categorical if
it is a logical vector, categorical vector, character array, string array, or cell array of character
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vectors. However, learners that use decision trees assume that mathematically ordered categorical
vectors are continuous variables. If the predictor data is a matrix (X), fitcauto assumes that all
predictors are continuous. To identify any other predictors as categorical predictors, specify them by
using the CategoricalPredictors name-value argument.

For more information on how fitting functions treat categorical predictors, see “Automatic Creation of
Dummy Variables” on page 2-50.

Note

• fitcauto does not support categorical predictors for discriminant analysis classifiers. That is, if
you want Learners to include "discr" models, you cannot specify the
CategoricalPredictors name-value argument or use a table of sample data (Tbl) containing
categorical predictors.

• fitcauto does not support a mix of numeric and categorical predictors for k-nearest neighbor
models. That is, if you want Learners to include "knn" models, you must specify the
CategoricalPredictors value as "all" or [].

Example: "CategoricalPredictors","all"
Data Types: single | double | logical | char | string | cell

ClassNames — Names of classes to use for training
categorical array | character array | string array | logical vector | numeric vector | cell array of
character vectors

Names of classes to use for training, specified as a categorical, character, or string array; a logical or
numeric vector; or a cell array of character vectors. ClassNames must have the same data type as
the response variable in Tbl or Y.

If ClassNames is a character array, then each element must correspond to one row of the array.

Use ClassNames to:

• Specify the order of the classes during training.
• Specify the order of any input or output argument dimension that corresponds to the class order.

For example, use ClassNames to specify the order of the dimensions of Cost or the column order
of classification scores returned by predict.

• Select a subset of classes for training. For example, suppose that the set of all distinct class names
in Y is ["a","b","c"]. To train the model using observations from classes "a" and "c" only,
specify "ClassNames",["a","c"].

The default value for ClassNames is the set of all distinct class names in the response variable in
Tbl or Y.
Example: "ClassNames",["b","g"]
Data Types: categorical | char | string | logical | single | double | cell

Cost — Misclassification cost
square matrix | structure array

Misclassification cost, specified as a square matrix or structure array.
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• If you specify a square matrix Cost and the true class of an observation is i, then Cost(i,j) is
the cost of classifying a point into class j. That is, rows correspond to the true classes and
columns correspond to the predicted classes. To specify the class order for the corresponding
rows and columns of Cost, also specify the ClassNames name-value argument.

• If you specify a structure S, then it must have two fields:

• S.ClassNames, which contains the class names as a variable of the same data type as Y
• S.ClassificationCosts, which contains the cost matrix with rows and columns ordered as

in S.ClassNames

Misclassification costs are used differently by the various models in Learners. However, fitcauto
computes the same mean misclassification cost to compare the models during the optimization
process. For more information, see “Mean Misclassification Cost” on page 35-1883.

fitcauto does not support misclassification costs for neural network classifiers. That is, if you want
Learners to include "net" models, then you cannot specify the Cost name-value argument.

The default value for Cost is ones(K) – eye(K), where K is the number of distinct classes.
Example: "Cost",[0 1; 2 0]
Data Types: single | double | struct

PredictorNames — Predictor variable names
string array of unique names | cell array of unique character vectors

Predictor variable names, specified as a string array of unique names or cell array of unique
character vectors. The functionality of PredictorNames depends on the way you supply the training
data.

• If you supply X and Y, then you can use PredictorNames to assign names to the predictor
variables in X.

• The order of the names in PredictorNames must correspond to the column order of X. That
is, PredictorNames{1} is the name of X(:,1), PredictorNames{2} is the name of
X(:,2), and so on. Also, size(X,2) and numel(PredictorNames) must be equal.

• By default, PredictorNames is {'x1','x2',...}.
• If you supply Tbl, then you can use PredictorNames to choose which predictor variables to use

in training. That is, fitcauto uses only the predictor variables in PredictorNames and the
response variable during training.

• PredictorNames must be a subset of Tbl.Properties.VariableNames and cannot include
the name of the response variable.

• By default, PredictorNames contains the names of all predictor variables.
• A good practice is to specify the predictors for training using either PredictorNames or

formula, but not both.

Example: "PredictorNames",
["SepalLength","SepalWidth","PetalLength","PetalWidth"]

Data Types: string | cell

Prior — Prior probabilities
"empirical" (default) | "uniform" | numeric vector | structure array
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Prior probabilities for each class, specified as a value in this table.

Value Description
"empirical" The class prior probabilities are the class relative frequencies in Y.
"uniform" All class prior probabilities are equal to 1/K, where K is the number of

classes.
numeric vector Each element is a class prior probability. Order the elements according to

Mdl.ClassNames or specify the order using the ClassNames name-value
argument. The software normalizes the elements to sum to 1.

structure A structure S with two fields:

• S.ClassNames contains the class names as a variable of the same type
as Y.

• S.ClassProbs contains a vector of corresponding prior probabilities.
The software normalizes the elements to sum to 1.

fitcauto does not support prior probabilities for neural network classifiers. That is, if you want
Learners to include "net" models, then you cannot specify the Prior name-value argument.
Example: "Prior",struct("ClassNames",["b","g"],"ClassProbs",1:2)
Data Types: single | double | char | string | struct

ResponseName — Response variable name
"Y" (default) | character vector | string scalar

Response variable name, specified as a character vector or string scalar.

• If you supply Y, then you can use ResponseName to specify a name for the response variable.
• If you supply ResponseVarName or formula, then you cannot use ResponseName.

Example: "ResponseName","response"
Data Types: char | string

ScoreTransform — Score transformation
"none" (default) | "doublelogit" | "invlogit" | "ismax" | "logit" | function handle | ...

Score transformation, specified as a character vector, string scalar, or function handle.

This table summarizes the available character vectors and string scalars.

Value Description
"doublelogit" 1/(1 + e–2x)
"invlogit" log(x / (1 – x))
"ismax" Sets the score for the class with the largest score to 1,

and sets the scores for all other classes to 0
"logit" 1/(1 + e–x)
"none" or "identity" x (no transformation)
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Value Description
"sign" –1 for x < 0

0 for x = 0
1 for x > 0

"symmetric" 2x – 1
"symmetricismax" Sets the score for the class with the largest score to 1,

and sets the scores for all other classes to –1
"symmetriclogit" 2/(1 + e–x) – 1

For a MATLAB function or a function you define, use its function handle for the score transform. The
function handle must accept a matrix (the original scores) and return a matrix of the same size (the
transformed scores).
Example: "ScoreTransform","logit"
Data Types: char | string | function_handle

Weights — Observation weights
positive numeric vector | name of variable in Tbl

Observation weights, specified as a positive numeric vector or the name of a variable in Tbl. The
software weights each observation in X or Tbl with the corresponding value in Weights. The length
of Weights must equal the number of rows in X or Tbl.

If you specify the input data as a table Tbl, then Weights can be the name of a variable in Tbl that
contains a numeric vector. In this case, you must specify Weights as a character vector or string
scalar. For example, if the weights vector W is stored as Tbl.W, then specify it as "W". Otherwise, the
software treats all columns of Tbl, including W, as predictors or the response variable when training
the model.

By default, Weights is ones(n,1), where n is the number of observations in X or Tbl.

The software normalizes Weights to sum to the value of the prior probability in the respective class.
Data Types: single | double | char | string

Output Arguments
Mdl — Trained classification model
classification model object

Trained classification model, returned as one of the classification model objects in this table.

Learner Name Returned Model Object
"discr" CompactClassificationDiscriminant
"ensemble" CompactClassificationEnsemble
"kernel" • ClassificationKernel for binary classification

• CompactClassificationECOC for multiclass
classification

"knn" ClassificationKNN
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Learner Name Returned Model Object
"linear" • ClassificationLinear for binary classification

• CompactClassificationECOC for multiclass
classification

"nb" CompactClassificationNaiveBayes
"net" CompactClassificationNeuralNetwork
"svm" • CompactClassificationSVM for binary

classification
• CompactClassificationECOC for multiclass
classification

"tree" CompactClassificationTree

OptimizationResults — Optimization results
BayesianOptimization object | table

Optimization results, returned as a BayesianOptimization object if you use Bayesian optimization
or a table if you use ASHA optimization. For more information, see “Bayesian Optimization” on page
35-1882 and “ASHA Optimization” on page 35-1882.

More About
Verbose Display

When you set the Verbose field of the HyperparameterOptimizationOptions name-value
argument to 1 or 2, the fitcauto function provides an iterative display of the optimization results.

The following table describes the columns in the display and their entries.

Column Name Description
Iter Iteration number — You can set a limit to the

number of iterations by using the
MaxObjectiveEvaluations field of the
HyperparameterOptimizationOptions
name-value argument.

Active workers Number of active parallel workers — This column
appears only when you run the optimization in
parallel by setting the UseParallel field of the
HyperparameterOptimizationOptions
name-value argument to true.
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Column Name Description
Eval result One of the following evaluation results:

• Best — The learner and hyperparameter
values at this iteration give the minimum
observed validation loss computed so far. That
is, the Validation loss value is the
smallest computed so far.

• Accept — The learner and hyperparameter
values at this iteration give meaningful (for
example, non-NaN) validation loss values.

• Error — The learner and hyperparameter
values at this iteration result in an error (for
example, a Validation loss value of NaN).

Validation loss Validation loss computed for the learner and
hyperparameter values at this iteration — In
particular, fitcauto computes the cross-
validation classification error by default. If you
specify misclassification costs by using the Cost
name-value argument, fitcauto computes the
mean misclassification cost instead. For more
information, see “Mean Misclassification Cost” on
page 35-1883.

You can change the validation scheme by using
the CVPartition, Holdout, or Kfold field of
the HyperparameterOptimizationOptions
name-value argument.

Time for training & validation (sec) Time taken to train and compute the validation
loss for the model with the learner and
hyperparameter values at this iteration (in
seconds) — When you use Bayesian optimization,
this value excludes the time required to update
the objective function model maintained by the
Bayesian optimization process. For more details,
see “Bayesian Optimization” on page 35-1882.

Observed min validation loss Observed minimum validation loss computed so
far — This value corresponds to the smallest
Validation loss value computed so far in the
optimization process.

By default, fitcauto returns a plot of the
optimization that displays dark blue points for the
observed minimum validation loss values. This
plot does not appear when the ShowPlots field
of the HyperparameterOptimizationOptions
name-value argument is set to false.
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Column Name Description
Estimated min validation loss Estimated minimum validation loss — When you

use Bayesian optimization, fitcauto updates, at
each iteration, an objective function model
maintained by the Bayesian optimization process,
and uses this model to estimate the minimum
validation loss. For more details, see “Bayesian
Optimization” on page 35-1882.

By default, fitcauto returns a plot of the
optimization that displays light blue points for the
estimated minimum validation loss values. This
plot does not appear when the ShowPlots field
of the HyperparameterOptimizationOptions
name-value argument is set to false.

Note This column appears only when you use
Bayesian optimization, that is, when the
Optimizer field of the
HyperparameterOptimizationOptions
name-value argument is set to "bayesopt".

Training set size Number of observations used in each training set
at this iteration — Use the
MaxTrainingSetSize and
MinTrainingSetSize fields of the
HyperparameterOptimizationOptions
name-value argument to specify bounds for the
training set size. For more details, see “ASHA
Optimization” on page 35-1882.

Note This column appears only when you use
ASHA optimization, that is, when the Optimizer
field of the
HyperparameterOptimizationOptions
name-value argument is set to "asha".

Learner Model type evaluated at this iteration — Specify
the learners used in the optimization by using the
Learners name-value argument.

Hyperparameter: Value Hyperparameter values at this iteration —
Specify the hyperparameters used in the
optimization by using the
OptimizeHyperparameters name-value
argument.

The display also includes these model descriptions:

• Best observed learner — This model, with the listed learner type and hyperparameter values,
yields the final observed minimum validation loss. When you use ASHA optimization, fitcauto
retrains the model on the entire training data set and returns it as the Mdl output.
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• Best estimated learner — This model, with the listed learner type and hyperparameter
values, yields the final estimated minimum validation loss when you use Bayesian optimization. In
this case, fitcauto retrains the model on the entire training data set and returns it as the Mdl
output.

Note The Best estimated learner model appears only when you use Bayesian optimization,
that is, when the Optimizer field of the HyperparameterOptimizationOptions name-value
argument is set to "bayesopt".

Tips
• Depending on the size of your data set, the number of learners you specify, and the optimization

method you choose, fitcauto can take some time to run.

• If you have a Parallel Computing Toolbox license, you can speed up computations by running
the optimization in parallel. To do so, specify
"HyperparameterOptimizationOptions",struct("UseParallel",true). You can
include additional fields in the structure to control other aspects of the optimization. See
HyperparameterOptimizationOptions.

• If fitcauto with Bayesian optimization takes a long time to run because of the number of
observations in your training set (for example, over 10,000), consider using fitcauto with
ASHA optimization instead. ASHA optimization often finds good solutions faster than Bayesian
optimization for data sets with many observations. To use ASHA optimization, specify
"HyperparameterOptimizationOptions",struct("Optimizer","asha"). You can
include additional fields in the structure to control other aspects of the optimization. In
particular, if you have a time constraint, specify the MaxTime field of the
HyperparameterOptimizationOptions structure to limit the number of seconds fitcauto
runs.

Algorithms
Automatic Selection of Learners

When you specify "Learners","auto", the fitcauto function analyzes the predictor and response
data in order to choose appropriate learners. The function considers whether the data set has any of
these characteristics:

• Categorical predictors
• Missing values for more than 5% of the data
• Imbalanced data, where the ratio of the number of observations in the largest class to the number

of observations in the smallest class is greater than 5
• More than 100 observations in the smallest class
• Wide data, where the number of predictors is greater than or equal to the number of observations
• High-dimensional data, where the number of predictors is greater than 100
• Large data, where the number of observations is greater than 50,000
• Binary response variable
• Ordinal response variable
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The selected learners are always a subset of those listed in the Learners table. However, the
associated models tried during the optimization process can have different default values for
hyperparameters not being optimized, as well as different search ranges for hyperparameters being
optimized.

Bayesian Optimization

The goal of Bayesian optimization, and optimization in general, is to find a point that minimizes an
objective function. In the context of fitcauto, a point is a learner type together with a set of
hyperparameter values for the learner (see Learners and OptimizeHyperparameters), and the
objective function is the cross-validation classification error, by default. The Bayesian optimization
implemented in fitcauto internally maintains a multi-TreeBagger model of the objective function.
That is, the objective function model splits along the learner type and, for a given learner, the model
is a TreeBagger ensemble for regression. (This underlying model differs from the Gaussian process
model employed by other Statistics and Machine Learning Toolbox functions that use Bayesian
optimization.) Bayesian optimization trains the underlying model by using objective function
evaluations, and determines the next point to evaluate by using an acquisition function ("expected-
improvement"). For more information, see “Expected Improvement” on page 10-4. The acquisition
function balances between sampling at points with low modeled objective function values and
exploring areas that are not well modeled yet. At the end of the optimization, fitcauto chooses the
point with the minimum objective function model value, among the points evaluated during the
optimization. For more information, see the "Criterion","min-visited-mean" name-value
argument of bestPoint.

ASHA Optimization

The asynchronous successive halving algorithm (ASHA) in fitcauto randomly chooses several
models with different hyperparameter values (see Learners and OptimizeHyperparameters) and
trains them on a small subset of the training data. If the performance of a particular model is
promising, the model is promoted and trained on a larger amount of the training data. This process
repeats, and successful models are trained on progressively larger amounts of data. By default, at the
end of the optimization, fitcauto chooses the model that has the lowest cross-validation
classification error.

At each iteration, ASHA either chooses a previously trained model and promotes it (that is, retrains
the model using more training data), or selects a new model (learner type and hyperparameter
values) using random search. ASHA promotes models as follows:

• The algorithm searches for the group of models with the largest training set size for which this
condition does not hold: floor(g/4) of the models have been promoted, where g is the number
of models in the group.

• Among the group of models, ASHA chooses the model with the lowest cross-validation
classification error and retrains that model with 4*(Training Set Size) observations.

• If no such group of models exists, then ASHA selects a new model instead of promoting an old
one, and trains the new model using the smallest training set size.

When a model is trained on a subset of the training data, ASHA computes the cross-validation
classification error as follows:

• For each training fold, the algorithm selects a random sample of the observations (of size
Training set size) using stratified sampling, and then trains a model on that subset of data.

• The algorithm then tests the fitted model on the test fold (that is, the observations not in the
training fold) and computes the classification error.
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• Finally, the algorithm averages the results across all folds.

For more information on ASHA, see [1].

Number of ASHA Iterations

When you use ASHA optimization, the default number of iterations depends on the number of
observations in the data, the number of learner types, the use of parallel processing, and the type of
cross-validation. The algorithm selects the number of iterations such that, for L learner types (see
Learners), fitcauto trains L models on the largest training set size.

This table describes the default number of iterations based on the given specifications when you use
5-fold cross-validation. Note that n represents the number of observations and L represents the
number of learner types.

Number of Observations

n

Default Number of Iterations

(run in serial)

Default Number of Iterations

(run in parallel)
n < 500 30*L — n is too small to

implement ASHA optimization,
and fitcauto implements
random search to find and
assess models instead.

30*L — n is too small to
implement ASHA optimization,
and fitcauto implements
random search to find and
assess models instead.

500 ≤ n < 2000 5*L 5*(L + 1)
2000 ≤ n < 8000 21*L 21*(L + 1)
8000 ≤ n < 32,000 85*L 85*(L + 1)
32,000 ≤ n 341*L 341*(L + 1)

Mean Misclassification Cost

If you specify the Cost name-value argument, then fitcauto minimizes the mean misclassification
cost rather than the misclassification error as part of the optimization process. The mean
misclassification cost is defined as

L =
∑

j = 1

n
C k j, k j ⋅ I y j ≠ y j

n

where

• C is the misclassification cost matrix as specified by the Cost name-value argument, and I is the
indicator function.

• yj is the true class label for observation j, and yj belongs to class kj.
• y j is the class label with the maximal predicted score for observation j, and y j belongs to class k j.
• n is the number of observations in the validation set.

Alternative Functionality
• If you are unsure which models work best for your data set, you can alternatively use the
Classification Learner app. Using the app, you can perform hyperparameter tuning for different
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models, and choose the optimized model that performs best. Although you must select a specific
model before you can tune the model hyperparameters, Classification Learner provides greater
flexibility for selecting optimizable hyperparameters and setting hyperparameter values. However,
you cannot optimize in parallel, optimize "linear" or "kernel" learners, specify observation
weights, specify prior probabilities, or use ASHA optimization in the app. For more information,
see “Hyperparameter Optimization in Classification Learner App” on page 23-54.

• If you know which models might suit your data, you can alternatively use the corresponding model
fit functions and specify the OptimizeHyperparameters name-value argument to tune
hyperparameters. You can compare the results across the models to select the best classifier. For
an example of this process, see “Moving Towards Automating Model Selection Using Bayesian
Optimization” on page 19-208.

Version History
Introduced in R2020a

Learners include neural network models
Behavior changed in R2022a

Starting in R2022a, the list of available learners includes neural network models. When you specify
"all" or "all-nonlinear" for the Learners name-value argument, fitcauto includes neural
network models as part of the model selection and hyperparameter tuning process. The function also
considers neural network models when you specify Learners as "auto", depending on the
characteristics of your data set.

To omit neural network models from the model selection process, you can explicitly specify the
models you want to include. For example, to use tree and ensemble models only, specify
"Learners",["tree","ensemble"].

Automatic selection of learners includes linear models when data is wide after categorical
expansion
Behavior changed in R2022a

Starting in R2022a, if you specify Learners as "auto" and the data has more predictors than
observations after the expansion of the categorical predictors (see “Automatic Creation of Dummy
Variables” on page 2-50), then fitcauto includes linear learners ("linear") along with other
models during the hyperparameter optimization. In previous releases, linear learners were not
considered.

Regularization method determines the linear learner solver used during the optimization
process for multiclass classification
Behavior changed in R2022a

Starting in R2022a, when you specify to try a linear learner ("linear") for multiclass classification,
fitcauto uses either a Limited-memory BFGS (LBFGS) solver or a Sparse Reconstruction by
Separable Approximation (SpaRSA) solver, depending on the regularization type selected during that
iteration of the optimization process.

• When Regularization is 'ridge', the function sets the Solver value to 'lbfgs' by default.
• When Regularization is 'lasso', the function sets the Solver value to 'sparsa' by default.
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In previous releases, the default solver selection during the optimization process depended on various
factors, including the regularization type, learner type, and number of predictors. For more
information, see Solver.

Regularization method determines the linear learner solver used during the optimization
process for binary classification
Behavior changed in R2021a

Starting in R2021a, when you specify to try a linear learner ("linear") for binary classification,
fitcauto uses either a Limited-memory BFGS (LBFGS) solver or a Sparse Reconstruction by
Separable Approximation (SpaRSA) solver, depending on the regularization type selected during that
iteration of the optimization process.

• When Regularization is 'ridge', the function sets the Solver value to 'lbfgs' by default.
• When Regularization is 'lasso', the function sets the Solver value to 'sparsa' by default.

In previous releases, the default solver selection during the optimization process depended on various
factors, including the regularization type, learner type, and number of predictors. For more
information, see Solver.
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Extended Capabilities
Automatic Parallel Support
Accelerate code by automatically running computation in parallel using Parallel Computing Toolbox™.

To perform parallel hyperparameter optimization, use the
"HyperparameterOptimizationOptions",struct("UseParallel",true) name-value
argument in the call to this function.

For more general information about parallel computing, see “Run MATLAB Functions with Automatic
Parallel Support” (Parallel Computing Toolbox).

See Also
fitcdiscr | fitcecoc | fitcensemble | fitcknn | fitclinear | fitcnb | fitcnet | fitcsvm |
fitctree | fitckernel

Topics
“Automated Classifier Selection with Bayesian and ASHA Optimization” on page 19-216
“Hyperparameter Optimization in Classification Learner App” on page 23-54
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fitcdiscr
Fit discriminant analysis classifier

Syntax
Mdl = fitcdiscr(Tbl,ResponseVarName)
Mdl = fitcdiscr(Tbl,formula)
Mdl = fitcdiscr(Tbl,Y)

Mdl = fitcdiscr(X,Y)

Mdl = fitcdiscr( ___ ,Name,Value)

Description
Mdl = fitcdiscr(Tbl,ResponseVarName) returns a fitted discriminant analysis model based on
the input variables (also known as predictors, features, or attributes) contained in the table Tbl and
output (response or labels) contained in ResponseVarName.

Mdl = fitcdiscr(Tbl,formula) returns a fitted discriminant analysis model based on the input
variables contained in the table Tbl. formula is an explanatory model of the response and a subset
of predictor variables in Tbl used to fit Mdl.

Mdl = fitcdiscr(Tbl,Y) returns a fitted discriminant analysis model based on the input variables
contained in the table Tbl and response Y.

Mdl = fitcdiscr(X,Y) returns a discriminant analysis classifier based on the input variables X
and response Y.

Mdl = fitcdiscr( ___ ,Name,Value) fits a classifier with additional options specified by one or
more name-value pair arguments, using any of the previous syntaxes. For example, you can optimize
hyperparameters to minimize the model’s cross-validation loss, or specify the cost of
misclassification, the prior probabilities for each class, or the observation weights.

Examples

Train Discriminant Analysis Model

Load Fisher's iris data set.

load fisheriris

Train a discriminant analysis model using the entire data set.

Mdl = fitcdiscr(meas,species)

Mdl = 
  ClassificationDiscriminant
             ResponseName: 'Y'
    CategoricalPredictors: []
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               ClassNames: {'setosa'  'versicolor'  'virginica'}
           ScoreTransform: 'none'
          NumObservations: 150
              DiscrimType: 'linear'
                       Mu: [3x4 double]
                   Coeffs: [3x3 struct]

  Properties, Methods

Mdl is a ClassificationDiscriminant model. To access its properties, use dot notation. For
example, display the group means for each predictor.

Mdl.Mu

ans = 3×4

    5.0060    3.4280    1.4620    0.2460
    5.9360    2.7700    4.2600    1.3260
    6.5880    2.9740    5.5520    2.0260

To predict labels for new observations, pass Mdl and predictor data to predict.

Optimize Discriminant Analysis Model

This example shows how to optimize hyperparameters automatically using fitcdiscr. The example
uses Fisher's iris data.

Load the data.

load fisheriris

Find hyperparameters that minimize five-fold cross-validation loss by using automatic
hyperparameter optimization.

For reproducibility, set the random seed and use the 'expected-improvement-plus' acquisition
function.

rng(1)
Mdl = fitcdiscr(meas,species,'OptimizeHyperparameters','auto',...
    'HyperparameterOptimizationOptions',...
    struct('AcquisitionFunctionName','expected-improvement-plus'))

|=====================================================================================================|
| Iter | Eval   | Objective   | Objective   | BestSoFar   | BestSoFar   |        Delta |        Gamma |
|      | result |             | runtime     | (observed)  | (estim.)    |              |              |
|=====================================================================================================|
|    1 | Best   |     0.66667 |       1.196 |     0.66667 |     0.66667 |       13.261 |      0.25218 |
|    2 | Best   |        0.02 |      2.3632 |        0.02 |    0.064227 |   2.7404e-05 |     0.073264 |
|    3 | Accept |        0.04 |      1.3109 |        0.02 |    0.020084 |   3.2455e-06 |      0.46974 |
|    4 | Accept |     0.66667 |      1.2347 |        0.02 |    0.020118 |       14.879 |      0.98622 |
|    5 | Accept |    0.046667 |      1.7461 |        0.02 |    0.019907 |   0.00031449 |      0.97362 |
|    6 | Accept |        0.04 |      1.9057 |        0.02 |    0.028438 |   4.5092e-05 |      0.43616 |
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|    7 | Accept |    0.046667 |     0.83152 |        0.02 |    0.031424 |   2.0973e-05 |       0.9942 |
|    8 | Accept |        0.02 |        1.09 |        0.02 |    0.022424 |   1.0554e-06 |    0.0024286 |
|    9 | Accept |        0.02 |     0.36451 |        0.02 |    0.021105 |   1.1232e-06 |   0.00014039 |
|   10 | Accept |        0.02 |     0.65491 |        0.02 |    0.020948 |   0.00011837 |    0.0032994 |
|   11 | Accept |        0.02 |      0.5207 |        0.02 |    0.020172 |   1.0292e-06 |     0.027725 |
|   12 | Accept |        0.02 |     0.33879 |        0.02 |    0.020105 |   9.7792e-05 |    0.0022817 |
|   13 | Accept |        0.02 |     0.30359 |        0.02 |    0.020038 |   0.00036014 |    0.0015136 |
|   14 | Accept |        0.02 |     0.32156 |        0.02 |    0.019597 |   0.00021059 |    0.0044789 |
|   15 | Accept |        0.02 |     0.38373 |        0.02 |    0.019461 |   1.1911e-05 |    0.0010135 |
|   16 | Accept |        0.02 |     0.25575 |        0.02 |     0.01993 |    0.0017896 |   0.00071115 |
|   17 | Accept |        0.02 |     0.47661 |        0.02 |    0.019551 |   0.00073745 |    0.0066899 |
|   18 | Accept |        0.02 |     0.22285 |        0.02 |    0.019776 |   0.00079304 |   0.00011509 |
|   19 | Accept |        0.02 |     0.42877 |        0.02 |    0.019678 |     0.007292 |    0.0007911 |
|   20 | Accept |    0.046667 |     0.46322 |        0.02 |    0.019785 |    0.0074408 |      0.99945 |
|=====================================================================================================|
| Iter | Eval   | Objective   | Objective   | BestSoFar   | BestSoFar   |        Delta |        Gamma |
|      | result |             | runtime     | (observed)  | (estim.)    |              |              |
|=====================================================================================================|
|   21 | Accept |        0.02 |     0.34147 |        0.02 |    0.019043 |    0.0036004 |    0.0024547 |
|   22 | Accept |        0.02 |     0.39613 |        0.02 |    0.019755 |   2.5238e-05 |    0.0015542 |
|   23 | Accept |        0.02 |      0.3808 |        0.02 |      0.0191 |   1.5478e-05 |    0.0026899 |
|   24 | Accept |        0.02 |     0.28532 |        0.02 |    0.019081 |    0.0040557 |   0.00046815 |
|   25 | Accept |        0.02 |      0.3438 |        0.02 |    0.019333 |    2.959e-05 |    0.0011358 |
|   26 | Accept |        0.02 |     0.66954 |        0.02 |    0.019369 |   2.3111e-06 |    0.0029205 |
|   27 | Accept |        0.02 |     0.42652 |        0.02 |    0.019455 |   3.8898e-05 |    0.0011665 |
|   28 | Accept |        0.02 |     0.41201 |        0.02 |    0.019449 |    0.0035925 |    0.0020278 |
|   29 | Accept |     0.66667 |     0.30144 |        0.02 |    0.019479 |       998.93 |     0.064276 |
|   30 | Accept |        0.02 |     0.28249 |        0.02 |     0.01947 |   8.1557e-06 |    0.0008004 |
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__________________________________________________________
Optimization completed.
MaxObjectiveEvaluations of 30 reached.
Total function evaluations: 30
Total elapsed time: 69.2003 seconds
Total objective function evaluation time: 20.2527

Best observed feasible point:
      Delta        Gamma  
    __________    ________

    2.7404e-05    0.073264

Observed objective function value = 0.02
Estimated objective function value = 0.022693
Function evaluation time = 2.3632

Best estimated feasible point (according to models):
      Delta         Gamma  
    __________    _________
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    2.5238e-05    0.0015542

Estimated objective function value = 0.01947
Estimated function evaluation time = 0.3794

Mdl = 
  ClassificationDiscriminant
                         ResponseName: 'Y'
                CategoricalPredictors: []
                           ClassNames: {'setosa'  'versicolor'  'virginica'}
                       ScoreTransform: 'none'
                      NumObservations: 150
    HyperparameterOptimizationResults: [1x1 BayesianOptimization]
                          DiscrimType: 'linear'
                                   Mu: [3x4 double]
                               Coeffs: [3x3 struct]

  Properties, Methods

The fit achieves about 2% loss for the default 5-fold cross validation.

Optimize Discriminant Analysis Model on Tall Array

This example shows how to optimize hyperparameters of a discriminant analysis model automatically
using a tall array. The sample data set airlinesmall.csv is a large data set that contains a tabular
file of airline flight data. This example creates a tall table containing the data and uses it to run the
optimization procedure.

When you perform calculations on tall arrays, MATLAB® uses either a parallel pool (default if you
have Parallel Computing Toolbox™) or the local MATLAB session. If you want to run the example
using the local MATLAB session when you have Parallel Computing Toolbox, you can change the
global execution environment by using the mapreducer function.

Create a datastore that references the folder location with the data. Select a subset of the variables
to work with, and treat 'NA' values as missing data so that datastore replaces them with NaN
values. Create a tall table that contains the data in the datastore.

ds = datastore('airlinesmall.csv');
ds.SelectedVariableNames = {'Month','DayofMonth','DayOfWeek',...
                            'DepTime','ArrDelay','Distance','DepDelay'};
ds.TreatAsMissing = 'NA';
tt  = tall(ds) % Tall table

Starting parallel pool (parpool) using the 'local' profile ...
Connected to the parallel pool (number of workers: 6).

tt =

  M×7 tall table

    Month    DayofMonth    DayOfWeek    DepTime    ArrDelay    Distance    DepDelay
    _____    __________    _________    _______    ________    ________    ________
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     10          21            3          642          8         308          12   
     10          26            1         1021          8         296           1   
     10          23            5         2055         21         480          20   
     10          23            5         1332         13         296          12   
     10          22            4          629          4         373          -1   
     10          28            3         1446         59         308          63   
     10           8            4          928          3         447          -2   
     10          10            6          859         11         954          -1   
      :          :             :           :          :           :           :
      :          :             :           :          :           :           :

Determine the flights that are late by 10 minutes or more by defining a logical variable that is true for
a late flight. This variable contains the class labels. A preview of this variable includes the first few
rows.

Y = tt.DepDelay > 10 % Class labels

Y =

  M×1 tall logical array

   1
   0
   1
   1
   0
   1
   0
   0
   :
   :

Create a tall array for the predictor data.

X = tt{:,1:end-1} % Predictor data

X =

  M×6 tall double matrix

          10          21           3         642           8         308
          10          26           1        1021           8         296
          10          23           5        2055          21         480
          10          23           5        1332          13         296
          10          22           4         629           4         373
          10          28           3        1446          59         308
          10           8           4         928           3         447
          10          10           6         859          11         954
          :           :            :          :           :           :
          :           :            :          :           :           :

Remove rows in X and Y that contain missing data.

R = rmmissing([X Y]); % Data with missing entries removed
X = R(:,1:end-1); 
Y = R(:,end); 

Standardize the predictor variables.
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Z = zscore(X);

Optimize hyperparameters automatically using the 'OptimizeHyperparameters' name-value pair
argument. Find the optimal 'DiscrimType' value that minimizes holdout cross-validation loss.
(Specifying 'auto' uses 'DiscrimType'.) For reproducibility, use the 'expected-improvement-
plus' acquisition function and set the seeds of the random number generators using rng and
tallrng. The results can vary depending on the number of workers and the execution environment
for the tall arrays. For details, see “Control Where Your Code Runs”.

rng('default') 
tallrng('default')
[Mdl,FitInfo,HyperparameterOptimizationResults] = fitcdiscr(Z,Y,...
    'OptimizeHyperparameters','auto',...
    'HyperparameterOptimizationOptions',struct('Holdout',0.3,...
    'AcquisitionFunctionName','expected-improvement-plus'))

Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 2: Completed in 5.7 sec
- Pass 2 of 2: Completed in 4.3 sec
Evaluation completed in 16 sec
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 1: Completed in 2.5 sec
Evaluation completed in 2.8 sec
|======================================================================================|
| Iter | Eval   | Objective   | Objective   | BestSoFar   | BestSoFar   |  DiscrimType |
|      | result |             | runtime     | (observed)  | (estim.)    |              |
|======================================================================================|
|    1 | Best   |     0.11354 |      25.315 |     0.11354 |     0.11354 |    quadratic |

Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 1: Completed in 1.5 sec
Evaluation completed in 2.7 sec
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 1: Completed in 1.4 sec
Evaluation completed in 1.6 sec
|    2 | Accept |     0.11354 |      7.9367 |     0.11354 |     0.11354 | pseudoQuadra |

Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 1: Completed in 0.87 sec
Evaluation completed in 2 sec
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 1: Completed in 0.78 sec
Evaluation completed in 0.91 sec
|    3 | Accept |     0.12869 |      6.5057 |     0.11354 |     0.11859 | pseudoLinear |

Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 1: Completed in 0.9 sec
Evaluation completed in 1.7 sec
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 1: Completed in 1.3 sec
Evaluation completed in 1.4 sec
|    4 | Accept |     0.12745 |      6.4167 |     0.11354 |      0.1208 |   diagLinear |

Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 1: Completed in 0.85 sec
Evaluation completed in 1.7 sec
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 1: Completed in 0.8 sec
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Evaluation completed in 0.93 sec
|    5 | Accept |     0.12869 |      6.1236 |     0.11354 |     0.12238 |       linear |

Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 1: Completed in 0.85 sec
Evaluation completed in 1.5 sec
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 1: Completed in 0.75 sec
Evaluation completed in 0.9 sec
|    6 | Best   |     0.11301 |      5.4147 |     0.11301 |     0.12082 | diagQuadrati |

Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 1: Completed in 0.82 sec
Evaluation completed in 1.5 sec
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 1: Completed in 0.77 sec
Evaluation completed in 0.89 sec
|    7 | Accept |     0.11301 |       5.297 |     0.11301 |     0.11301 | diagQuadrati |

Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 1: Completed in 0.84 sec
Evaluation completed in 1.5 sec
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 1: Completed in 0.8 sec
Evaluation completed in 0.93 sec
|    8 | Accept |     0.11301 |      5.6152 |     0.11301 |     0.11301 | diagQuadrati |

Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 1: Completed in 1.3 sec
Evaluation completed in 2.1 sec
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 1: Completed in 0.75 sec
Evaluation completed in 0.88 sec
|    9 | Accept |     0.11301 |      5.9147 |     0.11301 |     0.11301 | diagQuadrati |

Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 1: Completed in 0.88 sec
Evaluation completed in 1.6 sec
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 1: Completed in 1.3 sec
Evaluation completed in 1.4 sec
|   10 | Accept |     0.11301 |      6.0504 |     0.11301 |     0.11301 | diagQuadrati |

Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 1: Completed in 0.82 sec
Evaluation completed in 1.5 sec
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 1: Completed in 1.3 sec
Evaluation completed in 1.4 sec
|   11 | Accept |     0.11301 |      5.9595 |     0.11301 |     0.11301 | diagQuadrati |

Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 1: Completed in 0.86 sec
Evaluation completed in 1.6 sec
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 1: Completed in 0.76 sec
Evaluation completed in 0.91 sec
|   12 | Accept |     0.11301 |      5.4266 |     0.11301 |     0.11301 | diagQuadrati |
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Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 1: Completed in 0.88 sec
Evaluation completed in 1.6 sec
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 1: Completed in 0.75 sec
Evaluation completed in 0.87 sec
|   13 | Accept |     0.11301 |      5.3869 |     0.11301 |     0.11301 | diagQuadrati |

Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 1: Completed in 0.83 sec
Evaluation completed in 1.5 sec
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 1: Completed in 0.8 sec
Evaluation completed in 0.97 sec
|   14 | Accept |     0.11301 |      5.4876 |     0.11301 |     0.11301 | diagQuadrati |

Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 1: Completed in 0.85 sec
Evaluation completed in 1.5 sec
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 1: Completed in 0.73 sec
Evaluation completed in 0.85 sec
|   15 | Accept |     0.11301 |      5.4052 |     0.11301 |     0.11301 | diagQuadrati |

Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 1: Completed in 0.87 sec
Evaluation completed in 1.5 sec
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 1: Completed in 0.78 sec
Evaluation completed in 0.9 sec
|   16 | Accept |     0.11301 |      5.4434 |     0.11301 |     0.11301 | diagQuadrati |

Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 1: Completed in 0.89 sec
Evaluation completed in 1.6 sec
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 1: Completed in 0.8 sec
Evaluation completed in 0.93 sec
|   17 | Accept |     0.11301 |      5.5804 |     0.11301 |     0.11301 | diagQuadrati |

Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 1: Completed in 0.94 sec
Evaluation completed in 1.6 sec
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 1: Completed in 0.79 sec
Evaluation completed in 0.92 sec
|   18 | Accept |     0.11354 |       5.616 |     0.11301 |     0.11301 | pseudoQuadra |

Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 1: Completed in 0.85 sec
Evaluation completed in 1.5 sec
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 1: Completed in 0.76 sec
Evaluation completed in 0.88 sec
|   19 | Accept |     0.11301 |      5.4031 |     0.11301 |     0.11301 | diagQuadrati |

Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 1: Completed in 0.76 sec
Evaluation completed in 1.4 sec
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Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 1: Completed in 0.75 sec
Evaluation completed in 0.88 sec
|   20 | Accept |     0.11301 |      5.1974 |     0.11301 |     0.11301 | diagQuadrati |

Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 1: Completed in 0.77 sec
Evaluation completed in 1.4 sec
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 1: Completed in 0.75 sec
Evaluation completed in 0.87 sec
|======================================================================================|
| Iter | Eval   | Objective   | Objective   | BestSoFar   | BestSoFar   |  DiscrimType |
|      | result |             | runtime     | (observed)  | (estim.)    |              |
|======================================================================================|
|   21 | Accept |     0.11301 |      5.1418 |     0.11301 |     0.11301 | diagQuadrati |

Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 1: Completed in 1.3 sec
Evaluation completed in 2 sec
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 1: Completed in 0.73 sec
Evaluation completed in 0.86 sec
|   22 | Accept |     0.11301 |      5.9864 |     0.11301 |     0.11301 | diagQuadrati |

Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 1: Completed in 0.88 sec
Evaluation completed in 1.6 sec
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 1: Completed in 0.78 sec
Evaluation completed in 0.91 sec
|   23 | Accept |     0.11354 |      5.5656 |     0.11301 |     0.11301 |    quadratic |

Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 1: Completed in 0.82 sec
Evaluation completed in 1.5 sec
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 1: Completed in 0.77 sec
Evaluation completed in 0.9 sec
|   24 | Accept |     0.11354 |      5.3012 |     0.11301 |     0.11301 | pseudoQuadra |

Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 1: Completed in 1.4 sec
Evaluation completed in 2.1 sec
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 1: Completed in 0.77 sec
Evaluation completed in 0.9 sec
|   25 | Accept |     0.11301 |      6.2276 |     0.11301 |     0.11301 | diagQuadrati |

Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 1: Completed in 0.86 sec
Evaluation completed in 1.6 sec
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 1: Completed in 0.77 sec
Evaluation completed in 0.89 sec
|   26 | Accept |     0.11301 |      5.5308 |     0.11301 |     0.11301 | diagQuadrati |

Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 1: Completed in 0.92 sec
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Evaluation completed in 1.6 sec
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 1: Completed in 0.88 sec
Evaluation completed in 1 sec
|   27 | Accept |     0.11301 |      5.7396 |     0.11301 |     0.11301 | diagQuadrati |

Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 1: Completed in 0.83 sec
Evaluation completed in 1.5 sec
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 1: Completed in 0.78 sec
Evaluation completed in 0.9 sec
|   28 | Accept |     0.11354 |      5.4403 |     0.11301 |     0.11301 |    quadratic |

Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 1: Completed in 0.86 sec
Evaluation completed in 1.5 sec
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 1: Completed in 0.81 sec
Evaluation completed in 0.93 sec
|   29 | Accept |     0.11301 |      5.3572 |     0.11301 |     0.11301 | diagQuadrati |

Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 1: Completed in 0.89 sec
Evaluation completed in 1.6 sec
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 1: Completed in 0.74 sec
Evaluation completed in 0.85 sec
|   30 | Accept |     0.11354 |      5.2718 |     0.11301 |     0.11301 |    quadratic |

 fitcdiscr

35-1897



35 Functions

35-1898



__________________________________________________________
Optimization completed.
MaxObjectiveEvaluations of 30 reached.
Total function evaluations: 30
Total elapsed time: 229.5689 seconds.
Total objective function evaluation time: 191.058

Best observed feasible point:
     DiscrimType 
    _____________

    diagQuadratic

Observed objective function value = 0.11301
Estimated objective function value = 0.11301
Function evaluation time = 5.4147

Best estimated feasible point (according to models):
     DiscrimType 
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    _____________

    diagQuadratic

Estimated objective function value = 0.11301
Estimated function evaluation time = 5.784

Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 1: Completed in 0.76 sec
Evaluation completed in 1.4 sec

Mdl = 
  CompactClassificationDiscriminant
           PredictorNames: {'x1'  'x2'  'x3'  'x4'  'x5'  'x6'}
             ResponseName: 'Y'
    CategoricalPredictors: []
               ClassNames: [0 1]
           ScoreTransform: 'none'
              DiscrimType: 'diagQuadratic'
                       Mu: [2×6 double]
                   Coeffs: [2×2 struct]

  Properties, Methods

FitInfo = struct with no fields.

HyperparameterOptimizationResults = 
  BayesianOptimization with properties:

                      ObjectiveFcn: @createObjFcn/tallObjFcn
              VariableDescriptions: [1×1 optimizableVariable]
                           Options: [1×1 struct]
                      MinObjective: 0.1130
                   XAtMinObjective: [1×1 table]
             MinEstimatedObjective: 0.1130
          XAtMinEstimatedObjective: [1×1 table]
           NumObjectiveEvaluations: 30
                  TotalElapsedTime: 229.5689
                         NextPoint: [1×1 table]
                            XTrace: [30×1 table]
                    ObjectiveTrace: [30×1 double]
                  ConstraintsTrace: []
                     UserDataTrace: {30×1 cell}
      ObjectiveEvaluationTimeTrace: [30×1 double]
                IterationTimeTrace: [30×1 double]
                        ErrorTrace: [30×1 double]
                  FeasibilityTrace: [30×1 logical]
       FeasibilityProbabilityTrace: [30×1 double]
               IndexOfMinimumTrace: [30×1 double]
             ObjectiveMinimumTrace: [30×1 double]
    EstimatedObjectiveMinimumTrace: [30×1 double]
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Input Arguments
Tbl — Sample data
table

Sample data used to train the model, specified as a table. Each row of Tbl corresponds to one
observation, and each column corresponds to one predictor variable. Optionally, Tbl can contain one
additional column for the response variable. Multicolumn variables and cell arrays other than cell
arrays of character vectors are not allowed.

• If Tbl contains the response variable, and you want to use all remaining variables in Tbl as
predictors, then specify the response variable by using ResponseVarName.

• If Tbl contains the response variable, and you want to use only a subset of the remaining
variables in Tbl as predictors, then specify a formula by using formula.

• If Tbl does not contain the response variable, then specify a response variable by using Y. The
length of the response variable and the number of rows in Tbl must be equal.

ResponseVarName — Response variable name
name of variable in Tbl

Response variable name, specified as the name of a variable in Tbl.

You must specify ResponseVarName as a character vector or string scalar. For example, if the
response variable Y is stored as Tbl.Y, then specify it as "Y". Otherwise, the software treats all
columns of Tbl, including Y, as predictors when training the model.

The response variable must be a categorical, character, or string array; a logical or numeric vector;
or a cell array of character vectors. If Y is a character array, then each element of the response
variable must correspond to one row of the array.

A good practice is to specify the order of the classes by using the ClassNames name-value argument.
Data Types: char | string

formula — Explanatory model of response variable and subset of predictor variables
character vector | string scalar

Explanatory model of the response variable and a subset of the predictor variables, specified as a
character vector or string scalar in the form "Y~x1+x2+x3". In this form, Y represents the response
variable, and x1, x2, and x3 represent the predictor variables.

To specify a subset of variables in Tbl as predictors for training the model, use a formula. If you
specify a formula, then the software does not use any variables in Tbl that do not appear in
formula.

The variable names in the formula must be both variable names in Tbl
(Tbl.Properties.VariableNames) and valid MATLAB identifiers. You can verify the variable
names in Tbl by using the isvarname function. If the variable names are not valid, then you can
convert them by using the matlab.lang.makeValidName function.
Data Types: char | string

Y — Class labels
categorical array | character array | string array | logical vector | numeric vector | cell array of
character vectors
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Class labels, specified as a categorical, character, or string array, a logical or numeric vector, or a cell
array of character vectors. Each row of Y represents the classification of the corresponding row of X.

The software considers NaN, '' (empty character vector), "" (empty string), <missing>, and
<undefined> values in Y to be missing values. Consequently, the software does not train using
observations with a missing response.
Data Types: categorical | char | string | logical | single | double | cell

X — Predictor data
numeric matrix

Predictor values, specified as a numeric matrix. Each column of X represents one variable, and each
row represents one observation.

fitcdiscr considers NaN values in X as missing values. fitcdiscr does not use observations with
missing values for X in the fit.
Data Types: single | double

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.

Note You cannot use any cross-validation name-value argument together with the
'OptimizeHyperparameters' name-value argument. You can modify the cross-validation for
'OptimizeHyperparameters' only by using the 'HyperparameterOptimizationOptions'
name-value argument.

Example: 'DiscrimType','quadratic','SaveMemory','on' specifies a quadratic discriminant
classifier and does not store the covariance matrix in the output object.

Model Parameters

ClassNames — Names of classes to use for training
categorical array | character array | string array | logical vector | numeric vector | cell array of
character vectors

Names of classes to use for training, specified as a categorical, character, or string array; a logical or
numeric vector; or a cell array of character vectors. ClassNames must have the same data type as
the response variable in Tbl or Y.

If ClassNames is a character array, then each element must correspond to one row of the array.

Use ClassNames to:

• Specify the order of the classes during training.
• Specify the order of any input or output argument dimension that corresponds to the class order.

For example, use ClassNames to specify the order of the dimensions of Cost or the column order
of classification scores returned by predict.
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• Select a subset of classes for training. For example, suppose that the set of all distinct class names
in Y is ["a","b","c"]. To train the model using observations from classes "a" and "c" only,
specify "ClassNames",["a","c"].

The default value for ClassNames is the set of all distinct class names in the response variable in
Tbl or Y.
Example: "ClassNames",["b","g"]
Data Types: categorical | char | string | logical | single | double | cell

Cost — Cost of misclassification
square matrix | structure

Cost of misclassification of a point, specified as the comma-separated pair consisting of 'Cost' and
one of the following:

• Square matrix, where Cost(i,j) is the cost of classifying a point into class j if its true class is i
(i.e., the rows correspond to the true class and the columns correspond to the predicted class). To
specify the class order for the corresponding rows and columns of Cost, additionally specify the
ClassNames name-value pair argument.

• Structure S having two fields: S.ClassNames containing the group names as a variable of the
same type as Y, and S.ClassificationCosts containing the cost matrix.

The default is Cost(i,j)=1 if i~=j, and Cost(i,j)=0 if i=j.
Data Types: single | double | struct

Delta — Linear coefficient threshold
0 (default) | nonnegative scalar value

Linear coefficient threshold, specified as the comma-separated pair consisting of 'Delta' and a
nonnegative scalar value. If a coefficient of Mdl has magnitude smaller than Delta, Mdl sets this
coefficient to 0, and you can eliminate the corresponding predictor from the model. Set Delta to a
higher value to eliminate more predictors.

Delta must be 0 for quadratic discriminant models.
Data Types: single | double

DiscrimType — Discriminant type
'linear' (default) | 'quadratic' | 'diaglinear' | 'diagquadratic' | 'pseudolinear' |
'pseudoquadratic'

Discriminant type, specified as the comma-separated pair consisting of 'DiscrimType' and a
character vector or string scalar in this table.
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Value Description Predictor Covariance
Treatment

'linear' Regularized linear discriminant
analysis (LDA)

• All classes have the same
covariance matrix.

• Σ γ = 1− γ Σ + γdiag Σ .

Σ  is the empirical, pooled
covariance matrix and γ is
the amount of regularization.

'diaglinear' LDA All classes have the same,
diagonal covariance matrix.

'pseudolinear' LDA All classes have the same
covariance matrix. The software
inverts the covariance matrix
using the pseudo inverse.

'quadratic' Quadratic discriminant analysis
(QDA)

The covariance matrices can
vary among classes.

'diagquadratic' QDA The covariance matrices are
diagonal and can vary among
classes.

'pseudoquadratic' QDA The covariance matrices can
vary among classes. The
software inverts the covariance
matrix using the pseudo inverse.

Note To use regularization, you must specify 'linear'. To specify the amount of regularization, use
the Gamma name-value pair argument.

Example: 'DiscrimType','quadratic'

FillCoeffs — Coeffs property flag
'on' | 'off'

Coeffs property flag, specified as the comma-separated pair consisting of 'FillCoeffs' and 'on'
or 'off'. Setting the flag to 'on' populates the Coeffs property in the classifier object. This can be
computationally intensive, especially when cross-validating. The default is 'on', unless you specify a
cross-validation name-value pair, in which case the flag is set to 'off' by default.
Example: 'FillCoeffs','off'

Gamma — Amount of regularization
scalar value in the interval [0,1]

Amount of regularization to apply when estimating the covariance matrix of the predictors, specified
as the comma-separated pair consisting of 'Gamma' and a scalar value in the interval [0,1]. Gamma
provides finer control over the covariance matrix structure than DiscrimType.

• If you specify 0, then the software does not use regularization to adjust the covariance matrix.
That is, the software estimates and uses the unrestricted, empirical covariance matrix.
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• For linear discriminant analysis, if the empirical covariance matrix is singular, then the
software automatically applies the minimal regularization required to invert the covariance
matrix. You can display the chosen regularization amount by entering Mdl.Gamma at the
command line.

• For quadratic discriminant analysis, if at least one class has an empirical covariance matrix
that is singular, then the software throws an error.

• If you specify a value in the interval (0,1), then you must implement linear discriminant analysis,
otherwise the software throws an error. Consequently, the software sets DiscrimType to
'linear'.

• If you specify 1, then the software uses maximum regularization for covariance matrix estimation.
That is, the software restricts the covariance matrix to be diagonal. Alternatively, you can set
DiscrimType to 'diagLinear' or 'diagQuadratic' for diagonal covariance matrices.

Example: 'Gamma',1
Data Types: single | double

PredictorNames — Predictor variable names
string array of unique names | cell array of unique character vectors

Predictor variable names, specified as a string array of unique names or cell array of unique
character vectors. The functionality of PredictorNames depends on the way you supply the training
data.

• If you supply X and Y, then you can use PredictorNames to assign names to the predictor
variables in X.

• The order of the names in PredictorNames must correspond to the column order of X. That
is, PredictorNames{1} is the name of X(:,1), PredictorNames{2} is the name of
X(:,2), and so on. Also, size(X,2) and numel(PredictorNames) must be equal.

• By default, PredictorNames is {'x1','x2',...}.
• If you supply Tbl, then you can use PredictorNames to choose which predictor variables to use

in training. That is, fitcdiscr uses only the predictor variables in PredictorNames and the
response variable during training.

• PredictorNames must be a subset of Tbl.Properties.VariableNames and cannot include
the name of the response variable.

• By default, PredictorNames contains the names of all predictor variables.
• A good practice is to specify the predictors for training using either PredictorNames or

formula, but not both.

Example: "PredictorNames",
["SepalLength","SepalWidth","PetalLength","PetalWidth"]

Data Types: string | cell

Prior — Prior probabilities
'empirical' (default) | 'uniform' | vector of scalar values | structure

Prior probabilities for each class, specified as the comma-separated pair consisting of 'Prior' and a
value in this table.
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Value Description
'empirical' The class prior probabilities are the class relative

frequencies in Y.
'uniform' All class prior probabilities are equal to 1/K,

where K is the number of classes.
numeric vector Each element is a class prior probability. Order

the elements according to Mdl.ClassNames or
specify the order using the ClassNames name-
value pair argument. The software normalizes the
elements such that they sum to 1.

structure A structure S with two fields:

• S.ClassNames contains the class names as a
variable of the same type as Y.

• S.ClassProbs contains a vector of
corresponding prior probabilities. The
software normalizes the elements such that
they sum to 1.

If you set values for both Weights and Prior, the weights are renormalized to add up to the value of
the prior probability in the respective class.
Example: 'Prior','uniform'
Data Types: char | string | single | double | struct

ResponseName — Response variable name
"Y" (default) | character vector | string scalar

Response variable name, specified as a character vector or string scalar.

• If you supply Y, then you can use ResponseName to specify a name for the response variable.
• If you supply ResponseVarName or formula, then you cannot use ResponseName.

Example: "ResponseName","response"
Data Types: char | string

SaveMemory — Flag to save covariance matrix
'off' (default) | 'on'

Flag to save covariance matrix, specified as the comma-separated pair consisting of 'SaveMemory'
and either 'on' or 'off'. If you specify 'on', then fitcdiscr does not store the full covariance
matrix, but instead stores enough information to compute the matrix. The predict method computes
the full covariance matrix for prediction, and does not store the matrix. If you specify 'off', then
fitcdiscr computes and stores the full covariance matrix in Mdl.

Specify SaveMemory as 'on' when the input matrix contains thousands of predictors.
Example: 'SaveMemory','on'

ScoreTransform — Score transformation
"none" (default) | "doublelogit" | "invlogit" | "ismax" | "logit" | function handle | ...
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Score transformation, specified as a character vector, string scalar, or function handle.

This table summarizes the available character vectors and string scalars.

Value Description
"doublelogit" 1/(1 + e–2x)
"invlogit" log(x / (1 – x))
"ismax" Sets the score for the class with the largest score to 1,

and sets the scores for all other classes to 0
"logit" 1/(1 + e–x)
"none" or "identity" x (no transformation)
"sign" –1 for x < 0

0 for x = 0
1 for x > 0

"symmetric" 2x – 1
"symmetricismax" Sets the score for the class with the largest score to 1,

and sets the scores for all other classes to –1
"symmetriclogit" 2/(1 + e–x) – 1

For a MATLAB function or a function you define, use its function handle for the score transform. The
function handle must accept a matrix (the original scores) and return a matrix of the same size (the
transformed scores).
Example: "ScoreTransform","logit"
Data Types: char | string | function_handle

Weights — Observation weights
numeric vector of positive values | name of variable in Tbl

Observation weights, specified as the comma-separated pair consisting of 'Weights' and a numeric
vector of positive values or name of a variable in Tbl. The software weighs the observations in each
row of X or Tbl with the corresponding value in Weights. The size of Weights must equal the
number of rows of X or Tbl.

If you specify the input data as a table Tbl, then Weights can be the name of a variable in Tbl that
contains a numeric vector. In this case, you must specify Weights as a character vector or string
scalar. For example, if the weights vector W is stored as Tbl.W, then specify it as 'W'. Otherwise, the
software treats all columns of Tbl, including W, as predictors or the response when training the
model.

The software normalizes Weights to sum up to the value of the prior probability in the respective
class.

By default, Weights is ones(n,1), where n is the number of observations in X or Tbl.
Data Types: double | single | char | string

Cross-Validation Options

CrossVal — Cross-validation flag
'off' (default) | 'on'
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Cross-validation flag, specified as the comma-separated pair consisting of 'Crossval' and 'on' or
'off'.

If you specify 'on', then the software implements 10-fold cross-validation.

To override this cross-validation setting, use one of these name-value pair arguments: CVPartition,
Holdout, KFold, or Leaveout. To create a cross-validated model, you can use one cross-validation
name-value pair argument at a time only.

Alternatively, cross-validate later by passing Mdl to crossval.
Example: 'CrossVal','on'

CVPartition — Cross-validation partition
[] (default) | cvpartition partition object

Cross-validation partition, specified as a cvpartition partition object created by cvpartition.
The partition object specifies the type of cross-validation and the indexing for the training and
validation sets.

To create a cross-validated model, you can specify only one of these four name-value arguments:
CVPartition, Holdout, KFold, or Leaveout.
Example: Suppose you create a random partition for 5-fold cross-validation on 500 observations by
using cvp = cvpartition(500,'KFold',5). Then, you can specify the cross-validated model by
using 'CVPartition',cvp.

Holdout — Fraction of data for holdout validation
scalar value in the range (0,1)

Fraction of the data used for holdout validation, specified as a scalar value in the range (0,1). If you
specify 'Holdout',p, then the software completes these steps:

1 Randomly select and reserve p*100% of the data as validation data, and train the model using
the rest of the data.

2 Store the compact, trained model in the Trained property of the cross-validated model.

To create a cross-validated model, you can specify only one of these four name-value arguments:
CVPartition, Holdout, KFold, or Leaveout.
Example: 'Holdout',0.1
Data Types: double | single

KFold — Number of folds
10 (default) | positive integer value greater than 1

Number of folds to use in a cross-validated model, specified as a positive integer value greater than 1.
If you specify 'KFold',k, then the software completes these steps:

1 Randomly partition the data into k sets.
2 For each set, reserve the set as validation data, and train the model using the other k – 1 sets.
3 Store the k compact, trained models in a k-by-1 cell vector in the Trained property of the cross-

validated model.
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To create a cross-validated model, you can specify only one of these four name-value arguments:
CVPartition, Holdout, KFold, or Leaveout.
Example: 'KFold',5
Data Types: single | double

Leaveout — Leave-one-out cross-validation flag
'off' (default) | 'on'

Leave-one-out cross-validation flag, specified as 'on' or 'off'. If you specify 'Leaveout','on',
then for each of the n observations (where n is the number of observations, excluding missing
observations, specified in the NumObservations property of the model), the software completes
these steps:

1 Reserve the one observation as validation data, and train the model using the other n – 1
observations.

2 Store the n compact, trained models in an n-by-1 cell vector in the Trained property of the
cross-validated model.

To create a cross-validated model, you can specify only one of these four name-value arguments:
CVPartition, Holdout, KFold, or Leaveout.
Example: 'Leaveout','on'

Hyperparameter Optimization Options

OptimizeHyperparameters — Parameters to optimize
'none' (default) | 'auto' | 'all' | string array or cell array of eligible parameter names | vector of
optimizableVariable objects

Parameters to optimize, specified as the comma-separated pair consisting of
'OptimizeHyperparameters' and one of the following:

• 'none' — Do not optimize.
• 'auto' — Use {'Delta','Gamma'}.
• 'all' — Optimize all eligible parameters.
• String array or cell array of eligible parameter names.
• Vector of optimizableVariable objects, typically the output of hyperparameters.

The optimization attempts to minimize the cross-validation loss (error) for fitcdiscr by varying the
parameters. For information about cross-validation loss (albeit in a different context), see
“Classification Loss” on page 35-3870. To control the cross-validation type and other aspects of the
optimization, use the HyperparameterOptimizationOptions name-value pair.

Note The values of 'OptimizeHyperparameters' override any values you specify using other
name-value arguments. For example, setting 'OptimizeHyperparameters' to 'auto' causes
fitcdiscr to optimize hyperparameters corresponding to the 'auto' option and to ignore any
specified values for the hyperparameters.

The eligible parameters for fitcdiscr are:
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• Delta — fitcdiscr searches among positive values, by default log-scaled in the range
[1e-6,1e3].

• DiscrimType — fitcdiscr searches among 'linear', 'quadratic', 'diagLinear',
'diagQuadratic', 'pseudoLinear', and 'pseudoQuadratic'.

• Gamma — fitcdiscr searches among real values in the range [0,1].

Set nondefault parameters by passing a vector of optimizableVariable objects that have
nondefault values. For example,

load fisheriris
params = hyperparameters('fitcdiscr',meas,species);
params(1).Range = [1e-4,1e6];

Pass params as the value of OptimizeHyperparameters.

By default, the iterative display appears at the command line, and plots appear according to the
number of hyperparameters in the optimization. For the optimization and plots, the objective function
is the misclassification rate. To control the iterative display, set the Verbose field of the
'HyperparameterOptimizationOptions' name-value argument. To control the plots, set the
ShowPlots field of the 'HyperparameterOptimizationOptions' name-value argument.

For an example, see “Optimize Discriminant Analysis Model” on page 35-1887.
Example: 'auto'

HyperparameterOptimizationOptions — Options for optimization
structure

Options for optimization, specified as a structure. This argument modifies the effect of the
OptimizeHyperparameters name-value argument. All fields in the structure are optional.

Field Name Values Default
Optimizer • 'bayesopt' — Use Bayesian optimization.

Internally, this setting calls bayesopt.
• 'gridsearch' — Use grid search with

NumGridDivisions values per dimension.
• 'randomsearch' — Search at random among

MaxObjectiveEvaluations points.

'gridsearch' searches in a random order, using
uniform sampling without replacement from the
grid. After optimization, you can get a table in grid
order by using the command
sortrows(Mdl.HyperparameterOptimizatio
nResults).

'bayesopt'
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Field Name Values Default
AcquisitionFunct
ionName

• 'expected-improvement-per-second-
plus'

• 'expected-improvement'
• 'expected-improvement-plus'
• 'expected-improvement-per-second'
• 'lower-confidence-bound'
• 'probability-of-improvement'

Acquisition functions whose names include per-
second do not yield reproducible results because
the optimization depends on the runtime of the
objective function. Acquisition functions whose
names include plus modify their behavior when
they are overexploiting an area. For more details,
see “Acquisition Function Types” on page 10-3.

'expected-
improvement-per-
second-plus'

MaxObjectiveEval
uations

Maximum number of objective function
evaluations.

30 for 'bayesopt' and
'randomsearch', and
the entire grid for
'gridsearch'

MaxTime Time limit, specified as a positive real scalar. The
time limit is in seconds, as measured by tic and
toc. The run time can exceed MaxTime because
MaxTime does not interrupt function evaluations.

Inf

NumGridDivisions For 'gridsearch', the number of values in each
dimension. The value can be a vector of positive
integers giving the number of values for each
dimension, or a scalar that applies to all
dimensions. This field is ignored for categorical
variables.

10

ShowPlots Logical value indicating whether to show plots. If
true, this field plots the best observed objective
function value against the iteration number. If you
use Bayesian optimization (Optimizer is
'bayesopt'), then this field also plots the best
estimated objective function value. The best
observed objective function values and best
estimated objective function values correspond to
the values in the BestSoFar (observed) and
BestSoFar (estim.) columns of the iterative
display, respectively. You can find these values in
the properties ObjectiveMinimumTrace and
EstimatedObjectiveMinimumTrace of
Mdl.HyperparameterOptimizationResults.
If the problem includes one or two optimization
parameters for Bayesian optimization, then
ShowPlots also plots a model of the objective
function against the parameters.

true
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Field Name Values Default
SaveIntermediate
Results

Logical value indicating whether to save results
when Optimizer is 'bayesopt'. If true, this
field overwrites a workspace variable named
'BayesoptResults' at each iteration. The
variable is a BayesianOptimization object.

false

Verbose Display at the command line:

• 0 — No iterative display
• 1 — Iterative display
• 2 — Iterative display with extra information

For details, see the bayesopt Verbose name-
value argument and the example “Optimize
Classifier Fit Using Bayesian Optimization” on
page 10-56.

1

UseParallel Logical value indicating whether to run Bayesian
optimization in parallel, which requires Parallel
Computing Toolbox. Due to the nonreproducibility
of parallel timing, parallel Bayesian optimization
does not necessarily yield reproducible results. For
details, see “Parallel Bayesian Optimization” on
page 10-7.

false

Repartition Logical value indicating whether to repartition the
cross-validation at every iteration. If this field is
false, the optimizer uses a single partition for
the optimization.

The setting true usually gives the most robust
results because it takes partitioning noise into
account. However, for good results, true requires
at least twice as many function evaluations.

false

Use no more than one of the following three options.
CVPartition A cvpartition object, as created by

cvpartition
'Kfold',5 if you do not
specify a cross-validation
fieldHoldout A scalar in the range (0,1) representing the

holdout fraction
Kfold An integer greater than 1

Example:
'HyperparameterOptimizationOptions',struct('MaxObjectiveEvaluations',60)

Data Types: struct

Output Arguments
Mdl — Trained discriminant analysis classification model
ClassificationDiscriminant model object | ClassificationPartitionedModel cross-
validated model object
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Trained discriminant analysis classification model, returned as a ClassificationDiscriminant
model object or a ClassificationPartitionedModel cross-validated model object.

If you set any of the name-value pair arguments KFold, Holdout, CrossVal, or CVPartition, then
Mdl is a ClassificationPartitionedModel cross-validated model object. Otherwise, Mdl is a
ClassificationDiscriminant model object.

To reference properties of Mdl, use dot notation. For example, to display the estimated component
means at the Command Window, enter Mdl.Mu.

More About
Discriminant Classification

The model for discriminant analysis is:

• Each class (Y) generates data (X) using a multivariate normal distribution. That is, the model
assumes X has a Gaussian mixture distribution (gmdistribution).

• For linear discriminant analysis, the model has the same covariance matrix for each class, only
the means vary.

• For quadratic discriminant analysis, both means and covariances of each class vary.

predict classifies so as to minimize the expected classification cost:

y = argmin
y = 1, ..., K

∑
k = 1

K
P k x C y k ,

where

• y  is the predicted classification.
• K is the number of classes.
• P k x  is the posterior probability on page 21-6 of class k for observation x.
• C y k  is the cost on page 21-7 of classifying an observation as y when its true class is k.

For details, see “Prediction Using Discriminant Analysis Models” on page 21-6.

Tips
After training a model, you can generate C/C++ code that predicts labels for new data. Generating
C/C++ code requires MATLAB Coder. For details, see “Introduction to Code Generation” on page 34-
2.

Algorithms
• If you specify the Cost, Prior, and Weights name-value arguments, the output model object

stores the specified values in the Cost, Prior, and W properties, respectively. The Cost property
stores the user-specified cost matrix (C) as is. The Prior and W properties store the prior
probabilities and observation weights, respectively, after normalization. For details, see
“Misclassification Cost Matrix, Prior Probabilities, and Observation Weights” on page 19-8.
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• The software uses the Cost property for prediction, but not training. Therefore, Cost is not read-
only; you can change the property value by using dot notation after creating the trained model.

Alternative Functionality
Functions

The classify function also performs discriminant analysis. classify is usually more awkward to
use.

• classify requires you to fit the classifier every time you make a new prediction.
• classify does not perform cross-validation or hyperparameter optimization.
• classify requires you to fit the classifier when changing prior probabilities.

Version History
Introduced in R2014a

Extended Capabilities
Tall Arrays
Calculate with arrays that have more rows than fit in memory.

Usage notes and limitations:

• Supported syntaxes are:

• Mdl = fitcdiscr(Tbl,Y)
• Mdl = fitcdiscr(X,Y)
• Mdl = fitcdiscr(___,Name,Value)
• [Mdl,FitInfo,HyperparameterOptimizationResults] =

fitcdiscr(___,Name,Value) — fitcdiscr returns the additional output arguments
FitInfo and HyperparameterOptimizationResults when you specify the
'OptimizeHyperparameters' name-value pair argument.

• The FitInfo output argument is an empty structure array currently reserved for possible future
use.

• The HyperparameterOptimizationResults output argument is a BayesianOptimization
object or a table of hyperparameters with associated values that describe the cross-validation
optimization of hyperparameters.

'HyperparameterOptimizationResults' is nonempty when the
'OptimizeHyperparameters' name-value pair argument is nonempty at the time you create
the model. The values in 'HyperparameterOptimizationResults' depend on the value you
specify for the 'HyperparameterOptimizationOptions' name-value pair argument when you
create the model.

• If you specify 'bayesopt' (default), then HyperparameterOptimizationResults is an
object of class BayesianOptimization.

• If you specify 'gridsearch' or 'randomsearch', then
HyperparameterOptimizationResults is a table of the hyperparameters used, observed
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objective function values (cross-validation loss), and rank of observations from lowest (best) to
highest (worst).

• Supported name-value pair arguments, and any differences, are:

• 'ClassNames'
• 'Cost'
• 'DiscrimType'
• 'HyperparameterOptimizationOptions' — For cross-validation, tall optimization

supports only 'Holdout' validation. By default, the software selects and reserves 20% of the
data as holdout validation data, and trains the model using the rest of the data. You can specify
a different value for the holdout fraction by using this argument. For example, specify
'HyperparameterOptimizationOptions',struct('Holdout',0.3) to reserve 30% of
the data as validation data.

• 'OptimizeHyperparameters' — The only eligible parameter to optimize is
'DiscrimType'. Specifying 'auto' uses 'DiscrimType'.

• 'PredictorNames'
• 'Prior'
• 'ResponseName'
• 'ScoreTransform'
• 'Weights'

• For tall arrays and tall tables, fitcdiscr returns a CompactClassificationDiscriminant
object, which contains most of the same properties as a ClassificationDiscriminant object.
The main difference is that the compact object is sensitive to memory requirements. The compact
object does not include properties that include the data, or that include an array of the same size
as the data. The compact object does not contain these ClassificationDiscriminant
properties:

• ModelParameters
• NumObservations
• HyperparameterOptimizationResults
• RowsUsed
• XCentered
• W
• X
• Y

Additionally, the compact object does not support these ClassificationDiscriminant
methods:

• compact
• crossval
• cvshrink
• resubEdge
• resubLoss
• resubMargin
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• resubPredict

For more information, see “Tall Arrays”.

Automatic Parallel Support
Accelerate code by automatically running computation in parallel using Parallel Computing Toolbox™.

To perform parallel hyperparameter optimization, use the
'HyperparameterOptimizationOptions', struct('UseParallel',true) name-value
argument in the call to the fitcdiscr function.

For more information on parallel hyperparameter optimization, see “Parallel Bayesian Optimization”
on page 10-7.

For general information about parallel computing, see “Run MATLAB Functions with Automatic
Parallel Support” (Parallel Computing Toolbox).

See Also
ClassificationDiscriminant | ClassificationPartitionedModel | predict | crossval |
classify

Topics
“Discriminant Analysis Classification” on page 21-2
“Improving Discriminant Analysis Models” on page 21-15
“Regularize Discriminant Analysis Classifier” on page 21-21
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fitcecoc
Fit multiclass models for support vector machines or other classifiers

Syntax
Mdl = fitcecoc(Tbl,ResponseVarName)
Mdl = fitcecoc(Tbl,formula)
Mdl = fitcecoc(Tbl,Y)

Mdl = fitcecoc(X,Y)

Mdl = fitcecoc( ___ ,Name,Value)
[Mdl,HyperparameterOptimizationResults] = fitcecoc( ___ ,Name,Value)

Description
Mdl = fitcecoc(Tbl,ResponseVarName) returns a full, trained, multiclass, error-correcting
output codes (ECOC) model on page 35-1953 using the predictors in table Tbl and the class labels in
Tbl.ResponseVarName. fitcecoc uses K(K – 1)/2 binary support vector machine (SVM) models
using the one-versus-one coding design on page 35-1953, where K is the number of unique class
labels (levels). Mdl is a ClassificationECOC model.

Mdl = fitcecoc(Tbl,formula) returns an ECOC model using the predictors in table Tbl and the
class labels. formula is an explanatory model of the response and a subset of predictor variables in
Tbl used for training.

Mdl = fitcecoc(Tbl,Y) returns an ECOC model using the predictors in table Tbl and the class
labels in vector Y.

Mdl = fitcecoc(X,Y) returns a trained ECOC model using the predictors X and the class labels Y.

Mdl = fitcecoc( ___ ,Name,Value) returns an ECOC model with additional options specified by
one or more Name,Value pair arguments, using any of the previous syntaxes.

For example, specify different binary learners, a different coding design, or to cross-validate. It is
good practice to cross-validate using the Kfold Name,Value pair argument. The cross-validation
results determine how well the model generalizes.

[Mdl,HyperparameterOptimizationResults] = fitcecoc( ___ ,Name,Value) also returns
hyperparameter optimization details when you specify the OptimizeHyperparameters name-value
pair argument and use linear or kernel binary learners. For other Learners, the
HyperparameterOptimizationResults property of Mdl contains the results.

Examples

Train Multiclass Model Using SVM Learners

Train a multiclass error-correcting output codes (ECOC) model using support vector machine (SVM)
binary learners.
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Load Fisher's iris data set. Specify the predictor data X and the response data Y.

load fisheriris
X = meas;
Y = species;

Train a multiclass ECOC model using the default options.

Mdl = fitcecoc(X,Y)

Mdl = 
  ClassificationECOC
             ResponseName: 'Y'
    CategoricalPredictors: []
               ClassNames: {'setosa'  'versicolor'  'virginica'}
           ScoreTransform: 'none'
           BinaryLearners: {3x1 cell}
               CodingName: 'onevsone'

  Properties, Methods

Mdl is a ClassificationECOC model. By default, fitcecoc uses SVM binary learners and a one-
versus-one coding design. You can access Mdl properties using dot notation.

Display the class names and the coding design matrix.

Mdl.ClassNames

ans = 3x1 cell
    {'setosa'    }
    {'versicolor'}
    {'virginica' }

CodingMat = Mdl.CodingMatrix

CodingMat = 3×3

     1     1     0
    -1     0     1
     0    -1    -1

A one-versus-one coding design for three classes yields three binary learners. The columns of
CodingMat correspond to the learners, and the rows correspond to the classes. The class order is the
same as the order in Mdl.ClassNames. For example, CodingMat(:,1) is [1; –1; 0] and
indicates that the software trains the first SVM binary learner using all observations classified as
'setosa' and 'versicolor'. Because 'setosa' corresponds to 1, it is the positive class;
'versicolor' corresponds to –1, so it is the negative class.

You can access each binary learner using cell indexing and dot notation.

Mdl.BinaryLearners{1}   % The first binary learner

ans = 
  CompactClassificationSVM
             ResponseName: 'Y'
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    CategoricalPredictors: []
               ClassNames: [-1 1]
           ScoreTransform: 'none'
                     Beta: [4x1 double]
                     Bias: 1.4505
         KernelParameters: [1x1 struct]

  Properties, Methods

Compute the resubstitution classification error.

error = resubLoss(Mdl)

error = 0.0067

The classification error on the training data is small, but the classifier might be an overfitted model.
You can cross-validate the classifier using crossval and compute the cross-validation classification
error instead.

Train Multiclass Linear Classification Model

Train an ECOC model composed of multiple binary, linear classification models.

Load the NLP data set.

load nlpdata

X is a sparse matrix of predictor data, and Y is a categorical vector of class labels. There are more
than two classes in the data.

Create a default linear-classification-model template.

t = templateLinear();

To adjust the default values, see the “Name-Value Pair Arguments” on page 35-7241 on
templateLinear page.

Train an ECOC model composed of multiple binary, linear classification models that can identify the
product given the frequency distribution of words on a documentation web page. For faster training
time, transpose the predictor data, and specify that observations correspond to columns.

X = X';
rng(1); % For reproducibility 
Mdl = fitcecoc(X,Y,'Learners',t,'ObservationsIn','columns')

Mdl = 
  CompactClassificationECOC
      ResponseName: 'Y'
        ClassNames: [comm    dsp    ecoder    fixedpoint    ...    ]
    ScoreTransform: 'none'
    BinaryLearners: {78x1 cell}
      CodingMatrix: [13x78 double]
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  Properties, Methods

Alternatively, you can train an ECOC model composed of default linear classification models using
'Learners','Linear'.

To conserve memory, fitcecoc returns trained ECOC models composed of linear classification
learners in CompactClassificationECOC model objects.

Cross-Validate ECOC Classifier

Cross-validate an ECOC classifier with SVM binary learners, and estimate the generalized
classification error.

Load Fisher's iris data set. Specify the predictor data X and the response data Y.

load fisheriris
X = meas;
Y = species;
rng(1); % For reproducibility

Create an SVM template, and standardize the predictors.

t = templateSVM('Standardize',true)

t = 
Fit template for classification SVM.

                     Alpha: [0x1 double]
             BoxConstraint: []
                 CacheSize: []
             CachingMethod: ''
                ClipAlphas: []
    DeltaGradientTolerance: []
                   Epsilon: []
              GapTolerance: []
              KKTTolerance: []
            IterationLimit: []
            KernelFunction: ''
               KernelScale: []
              KernelOffset: []
     KernelPolynomialOrder: []
                  NumPrint: []
                        Nu: []
           OutlierFraction: []
          RemoveDuplicates: []
           ShrinkagePeriod: []
                    Solver: ''
           StandardizeData: 1
        SaveSupportVectors: []
            VerbosityLevel: []
                   Version: 2
                    Method: 'SVM'
                      Type: 'classification'

35 Functions

35-1920



t is an SVM template. Most of the template object properties are empty. When training the ECOC
classifier, the software sets the applicable properties to their default values.

Train the ECOC classifier, and specify the class order.

Mdl = fitcecoc(X,Y,'Learners',t,...
    'ClassNames',{'setosa','versicolor','virginica'});

Mdl is a ClassificationECOC classifier. You can access its properties using dot notation.

Cross-validate Mdl using 10-fold cross-validation.

CVMdl = crossval(Mdl);

CVMdl is a ClassificationPartitionedECOC cross-validated ECOC classifier.

Estimate the generalized classification error.

genError = kfoldLoss(CVMdl)

genError = 0.0400

The generalized classification error is 4%, which indicates that the ECOC classifier generalizes fairly
well.

Estimate Posterior Probabilities Using ECOC Classifier

Train an ECOC classifier using SVM binary learners. First predict the training-sample labels and class
posterior probabilities. Then predict the maximum class posterior probability at each point in a grid.
Visualize the results.

Load Fisher's iris data set. Specify the petal dimensions as the predictors and the species names as
the response.

load fisheriris
X = meas(:,3:4);
Y = species;
rng(1); % For reproducibility

Create an SVM template. Standardize the predictors, and specify the Gaussian kernel.

t = templateSVM('Standardize',true,'KernelFunction','gaussian');

t is an SVM template. Most of its properties are empty. When the software trains the ECOC classifier,
it sets the applicable properties to their default values.

Train the ECOC classifier using the SVM template. Transform classification scores to class posterior
probabilities (which are returned by predict or resubPredict) using the 'FitPosterior' name-
value pair argument. Specify the class order using the 'ClassNames' name-value pair argument.
Display diagnostic messages during training by using the 'Verbose' name-value pair argument.

Mdl = fitcecoc(X,Y,'Learners',t,'FitPosterior',true,...
    'ClassNames',{'setosa','versicolor','virginica'},...
    'Verbose',2);
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Training binary learner 1 (SVM) out of 3 with 50 negative and 50 positive observations.
Negative class indices: 2
Positive class indices: 1

Fitting posterior probabilities for learner 1 (SVM).
Training binary learner 2 (SVM) out of 3 with 50 negative and 50 positive observations.
Negative class indices: 3
Positive class indices: 1

Fitting posterior probabilities for learner 2 (SVM).
Training binary learner 3 (SVM) out of 3 with 50 negative and 50 positive observations.
Negative class indices: 3
Positive class indices: 2

Fitting posterior probabilities for learner 3 (SVM).

Mdl is a ClassificationECOC model. The same SVM template applies to each binary learner, but
you can adjust options for each binary learner by passing in a cell vector of templates.

Predict the training-sample labels and class posterior probabilities. Display diagnostic messages
during the computation of labels and class posterior probabilities by using the 'Verbose' name-
value pair argument.

[label,~,~,Posterior] = resubPredict(Mdl,'Verbose',1);

Predictions from all learners have been computed.
Loss for all observations has been computed.
Computing posterior probabilities...

Mdl.BinaryLoss

ans = 
'quadratic'

The software assigns an observation to the class that yields the smallest average binary loss. Because
all binary learners are computing posterior probabilities, the binary loss function is quadratic.

Display a random set of results.

idx = randsample(size(X,1),10,1);
Mdl.ClassNames

ans = 3x1 cell
    {'setosa'    }
    {'versicolor'}
    {'virginica' }

table(Y(idx),label(idx),Posterior(idx,:),...
    'VariableNames',{'TrueLabel','PredLabel','Posterior'})

ans=10×3 table
      TrueLabel         PredLabel                     Posterior               
    ______________    ______________    ______________________________________

    {'virginica' }    {'virginica' }     0.0039319     0.0039866       0.99208
    {'virginica' }    {'virginica' }      0.017066      0.018262       0.96467
    {'virginica' }    {'virginica' }      0.014947      0.015855        0.9692
    {'versicolor'}    {'versicolor'}    2.2197e-14       0.87318       0.12682
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    {'setosa'    }    {'setosa'    }         0.999    0.00025091    0.00074639
    {'versicolor'}    {'virginica' }    2.2195e-14      0.059427       0.94057
    {'versicolor'}    {'versicolor'}    2.2194e-14       0.97002      0.029984
    {'setosa'    }    {'setosa'    }         0.999     0.0002499    0.00074741
    {'versicolor'}    {'versicolor'}     0.0085638       0.98259     0.0088482
    {'setosa'    }    {'setosa'    }         0.999    0.00025013    0.00074718

The columns of Posterior correspond to the class order of Mdl.ClassNames.

Define a grid of values in the observed predictor space. Predict the posterior probabilities for each
instance in the grid.

xMax = max(X);
xMin = min(X);

x1Pts = linspace(xMin(1),xMax(1));
x2Pts = linspace(xMin(2),xMax(2));
[x1Grid,x2Grid] = meshgrid(x1Pts,x2Pts);

[~,~,~,PosteriorRegion] = predict(Mdl,[x1Grid(:),x2Grid(:)]);

For each coordinate on the grid, plot the maximum class posterior probability among all classes.

contourf(x1Grid,x2Grid,...
        reshape(max(PosteriorRegion,[],2),size(x1Grid,1),size(x1Grid,2)));
h = colorbar;
h.YLabel.String = 'Maximum posterior';
h.YLabel.FontSize = 15;

hold on
gh = gscatter(X(:,1),X(:,2),Y,'krk','*xd',8);
gh(2).LineWidth = 2;
gh(3).LineWidth = 2;

title('Iris Petal Measurements and Maximum Posterior')
xlabel('Petal length (cm)')
ylabel('Petal width (cm)')
axis tight
legend(gh,'Location','NorthWest')
hold off
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Speed Up Training ECOC Classifiers Using Binning and Parallel Computing

Train a one-versus-all ECOC classifier using a GentleBoost ensemble of decision trees with
surrogate splits. To speed up training, bin numeric predictors and use parallel computing. Binning is
valid only when fitcecoc uses a tree learner. After training, estimate the classification error using
10-fold cross-validation. Note that parallel computing requires Parallel Computing Toolbox™.

Load Sample Data

Load and inspect the arrhythmia data set.

load arrhythmia
[n,p] = size(X)

n = 452

p = 279

isLabels = unique(Y);
nLabels = numel(isLabels)

nLabels = 13

tabulate(categorical(Y))
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  Value    Count   Percent
      1      245     54.20%
      2       44      9.73%
      3       15      3.32%
      4       15      3.32%
      5       13      2.88%
      6       25      5.53%
      7        3      0.66%
      8        2      0.44%
      9        9      1.99%
     10       50     11.06%
     14        4      0.88%
     15        5      1.11%
     16       22      4.87%

The data set contains 279 predictors, and the sample size of 452 is relatively small. Of the 16 distinct
labels, only 13 are represented in the response (Y). Each label describes various degrees of
arrhythmia, and 54.20% of the observations are in class 1.

Train One-Versus-All ECOC Classifier

Create an ensemble template. You must specify at least three arguments: a method, a number of
learners, and the type of learner. For this example, specify 'GentleBoost' for the method, 100 for
the number of learners, and a decision tree template that uses surrogate splits because there are
missing observations.

tTree = templateTree('surrogate','on');
tEnsemble = templateEnsemble('GentleBoost',100,tTree);

tEnsemble is a template object. Most of its properties are empty, but the software fills them with
their default values during training.

Train a one-versus-all ECOC classifier using the ensembles of decision trees as binary learners. To
speed up training, use binning and parallel computing.

• Binning ('NumBins',50) — When you have a large training data set, you can speed up training (a
potential decrease in accuracy) by using the 'NumBins' name-value pair argument. This
argument is valid only when fitcecoc uses a tree learner. If you specify the 'NumBins' value,
then the software bins every numeric predictor into a specified number of equiprobable bins, and
then grows trees on the bin indices instead of the original data. You can try 'NumBins',50 first,
and then change the 'NumBins' value depending on the accuracy and training speed.

• Parallel computing ('Options',statset('UseParallel',true)) — With a Parallel
Computing Toolbox license, you can speed up the computation by using parallel computing, which
sends each binary learner to a worker in the pool. The number of workers depends on your system
configuration. When you use decision trees for binary learners, fitcecoc parallelizes training
using Intel® Threading Building Blocks (TBB) for dual-core systems and above. Therefore,
specifying the 'UseParallel' option is not helpful on a single computer. Use this option on a
cluster.

Additionally, specify that the prior probabilities are 1/K, where K = 13 is the number of distinct
classes.

options = statset('UseParallel',true);
Mdl = fitcecoc(X,Y,'Coding','onevsall','Learners',tEnsemble,...
                'Prior','uniform','NumBins',50,'Options',options);
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Starting parallel pool (parpool) using the 'local' profile ...
Connected to the parallel pool (number of workers: 6).

Mdl is a ClassificationECOC model.

Cross-Validation

Cross-validate the ECOC classifier using 10-fold cross-validation.

CVMdl = crossval(Mdl,'Options',options);

Warning: One or more folds do not contain points from all the groups.

CVMdl is a ClassificationPartitionedECOC model. The warning indicates that some classes are
not represented while the software trains at least one fold. Therefore, those folds cannot predict
labels for the missing classes. You can inspect the results of a fold using cell indexing and dot
notation. For example, access the results of the first fold by entering CVMdl.Trained{1}.

Use the cross-validated ECOC classifier to predict validation-fold labels. You can compute the
confusion matrix by using confusionchart. Move and resize the chart by changing the inner
position property to ensure that the percentages appear in the row summary.

oofLabel = kfoldPredict(CVMdl,'Options',options);
ConfMat = confusionchart(Y,oofLabel,'RowSummary','total-normalized');
ConfMat.InnerPosition = [0.10 0.12 0.85 0.85];
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Reproduce Binned Data

Reproduce binned predictor data by using the BinEdges property of the trained model and the
discretize function.

X = Mdl.X; % Predictor data
Xbinned = zeros(size(X));
edges = Mdl.BinEdges;
% Find indices of binned predictors.
idxNumeric = find(~cellfun(@isempty,edges));
if iscolumn(idxNumeric)
    idxNumeric = idxNumeric';
end
for j = idxNumeric 
    x = X(:,j);
    % Convert x to array if x is a table.
    if istable(x)
        x = table2array(x);
    end
    % Group x into bins by using the discretize function.
    xbinned = discretize(x,[-inf; edges{j}; inf]);
    Xbinned(:,j) = xbinned;
end

Xbinned contains the bin indices, ranging from 1 to the number of bins, for numeric predictors.
Xbinned values are 0 for categorical predictors. If X contains NaNs, then the corresponding Xbinned
values are NaNs.

Optimize ECOC Classifier

Optimize hyperparameters automatically using fitcecoc.

Load the fisheriris data set.

load fisheriris
X = meas;
Y = species;

Find hyperparameters that minimize five-fold cross-validation loss by using automatic
hyperparameter optimization. For reproducibility, set the random seed and use the 'expected-
improvement-plus' acquisition function.

rng default
Mdl = fitcecoc(X,Y,'OptimizeHyperparameters','auto',...
    'HyperparameterOptimizationOptions',struct('AcquisitionFunctionName',...
    'expected-improvement-plus'))

|====================================================================================================================|
| Iter | Eval   | Objective   | Objective   | BestSoFar   | BestSoFar   |       Coding | BoxConstraint|  KernelScale |
|      | result |             | runtime     | (observed)  | (estim.)    |              |              |              |
|====================================================================================================================|
|    1 | Best   |     0.10667 |      2.2771 |     0.10667 |     0.10667 |     onevsone |       5.6939 |       200.36 |
|    2 | Best   |    0.086667 |      6.2468 |    0.086667 |    0.087701 |     onevsone |       94.849 |    0.0032549 |
|    3 | Best   |        0.08 |     0.69131 |        0.08 |    0.080044 |     onevsall |      0.01378 |     0.076021 |
|    4 | Accept |        0.08 |     0.52827 |        0.08 |    0.080001 |     onevsall |          889 |       38.798 |
|    5 | Accept |        0.38 |      23.713 |        0.08 |    0.086871 |     onevsall |       49.222 |    0.0010006 |
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|    6 | Accept |        0.08 |     0.61506 |        0.08 |    0.079988 |     onevsall |     0.013195 |     0.085897 |
|    7 | Best   |    0.046667 |      7.0176 |    0.046667 |    0.046675 |     onevsall |    0.0016445 |    0.0010297 |
|    8 | Accept |    0.046667 |      3.5115 |    0.046667 |    0.046674 |     onevsone |      0.59541 |    0.0014402 |
|    9 | Accept |    0.046667 |     0.65362 |    0.046667 |    0.046671 |     onevsone |     0.012477 |     0.020799 |
|   10 | Best   |        0.04 |      0.6231 |        0.04 |    0.040005 |     onevsone |    0.0010343 |    0.0010156 |
|   11 | Accept |     0.33333 |      0.6248 |        0.04 |    0.040007 |     onevsall |       5.5672 |       993.65 |
|   12 | Accept |     0.10667 |      0.6116 |        0.04 |    0.040003 |     onevsone |      0.10391 |       112.23 |
|   13 | Accept |    0.046667 |     0.59844 |        0.04 |    0.040015 |     onevsone |    0.0035442 |     0.014124 |
|   14 | Accept |     0.33333 |     0.64765 |        0.04 |    0.040008 |     onevsall |     0.001044 |       895.38 |
|   15 | Accept |    0.053333 |     0.61214 |        0.04 |    0.040008 |     onevsall |    0.0010035 |    0.0076228 |
|   16 | Accept |        0.04 |     0.67144 |        0.04 |    0.040005 |     onevsone |       969.72 |       1.4122 |
|   17 | Accept |    0.046667 |     0.59803 |        0.04 |    0.040004 |     onevsone |       6.0465 |      0.66038 |
|   18 | Accept |        0.04 |      1.0084 |        0.04 |    0.040003 |     onevsall |       994.88 |       2.7554 |
|   19 | Accept |     0.10667 |     0.67328 |        0.04 |        0.04 |     onevsone |    0.0010402 |        1.015 |
|   20 | Accept |    0.046667 |     0.89309 |        0.04 |    0.039998 |     onevsone |       931.74 |      0.18807 |
|====================================================================================================================|
| Iter | Eval   | Objective   | Objective   | BestSoFar   | BestSoFar   |       Coding | BoxConstraint|  KernelScale |
|      | result |             | runtime     | (observed)  | (estim.)    |              |              |              |
|====================================================================================================================|
|   21 | Accept |        0.04 |     0.63919 |        0.04 |    0.039932 |     onevsone |      0.01704 |    0.0018939 |
|   22 | Accept |        0.08 |     0.60912 |        0.04 |    0.039935 |     onevsall |       33.665 |       3.1384 |
|   23 | Accept |        0.04 |     0.66902 |        0.04 |    0.039933 |     onevsone |       2.3165 |     0.034697 |
|   24 | Accept |        0.04 |     0.56186 |        0.04 |     0.03992 |     onevsone |       110.94 |      0.42176 |
|   25 | Accept |        0.04 |     0.68164 |        0.04 |    0.039922 |     onevsone |      0.20786 |    0.0072747 |
|   26 | Accept |    0.046667 |     0.63292 |        0.04 |     0.03994 |     onevsall |        981.5 |       5.8263 |
|   27 | Accept |    0.046667 |      5.5657 |        0.04 |    0.039975 |     onevsall |    0.0010347 |    0.0011123 |
|   28 | Accept |     0.10667 |     0.60423 |        0.04 |    0.039976 |     onevsone |       986.05 |       973.48 |
|   29 | Accept |     0.10667 |     0.63594 |        0.04 |    0.039967 |     onevsone |    0.0010206 |       959.92 |
|   30 | Accept |        0.04 |     0.61875 |        0.04 |    0.039974 |     onevsone |        11.45 |      0.13371 |

35 Functions

35-1928



__________________________________________________________
Optimization completed.
MaxObjectiveEvaluations of 30 reached.
Total function evaluations: 30
Total elapsed time: 90.4431 seconds
Total objective function evaluation time: 64.0346

Best observed feasible point:
     Coding     BoxConstraint    KernelScale
    ________    _____________    ___________

    onevsone      0.0010343       0.0010156 

Observed objective function value = 0.04
Estimated objective function value = 0.040009
Function evaluation time = 0.6231

Best estimated feasible point (according to models):
     Coding     BoxConstraint    KernelScale
    ________    _____________    ___________

    onevsone       0.20786        0.0072747 

Estimated objective function value = 0.039974
Estimated function evaluation time = 0.68737

Mdl = 
  ClassificationECOC
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                         ResponseName: 'Y'
                CategoricalPredictors: []
                           ClassNames: {'setosa'  'versicolor'  'virginica'}
                       ScoreTransform: 'none'
                       BinaryLearners: {3x1 cell}
                           CodingName: 'onevsone'
    HyperparameterOptimizationResults: [1x1 BayesianOptimization]

  Properties, Methods

Train Multiclass ECOC Model with SVMs and Tall Arrays

Create two multiclass ECOC models trained on tall data. Use linear binary learners for one of the
models and kernel binary learners for the other. Compare the resubstitution classification error of the
two models.

In general, you can perform multiclass classification of tall data by using fitcecoc with linear or
kernel binary learners. When you use fitcecoc to train a model on tall arrays, you cannot use SVM
binary learners directly. However, you can use either linear or kernel binary classification models that
use SVMs.

When you perform calculations on tall arrays, MATLAB® uses either a parallel pool (default if you
have Parallel Computing Toolbox™) or the local MATLAB session. If you want to run the example
using the local MATLAB session when you have Parallel Computing Toolbox, you can change the
global execution environment by using the mapreducer function.

Create a datastore that references the folder containing Fisher's iris data set. Specify 'NA' values as
missing data so that datastore replaces them with NaN values. Create tall versions of the predictor
and response data.

ds = datastore('fisheriris.csv','TreatAsMissing','NA');
t = tall(ds);

Starting parallel pool (parpool) using the 'local' profile ...
Connected to the parallel pool (number of workers: 6).

X = [t.SepalLength t.SepalWidth t.PetalLength t.PetalWidth];
Y = t.Species;

Standardize the predictor data.

Z = zscore(X);

Train a multiclass ECOC model that uses tall data and linear binary learners. By default, when you
pass tall arrays to fitcecoc, the software trains linear binary learners that use SVMs. Because the
response data contains only three unique classes, change the coding scheme from one-versus-all
(which is the default when you use tall data) to one-versus-one (which is the default when you use in-
memory data).

For reproducibility, set the seeds of the random number generators using rng and tallrng. The
results can vary depending on the number of workers and the execution environment for the tall
arrays. For details, see “Control Where Your Code Runs”.
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rng('default') 
tallrng('default')
mdlLinear = fitcecoc(Z,Y,'Coding','onevsone')

Training binary learner 1 (Linear) out of 3.
Training binary learner 2 (Linear) out of 3.
Training binary learner 3 (Linear) out of 3.

mdlLinear = 
  CompactClassificationECOC
      ResponseName: 'Y'
        ClassNames: {'setosa'  'versicolor'  'virginica'}
    ScoreTransform: 'none'
    BinaryLearners: {3×1 cell}
      CodingMatrix: [3×3 double]

  Properties, Methods

mdlLinear is a CompactClassificationECOC model composed of three binary learners.

Train a multiclass ECOC model that uses tall data and kernel binary learners. First, create a
templateKernel object to specify the properties of the kernel binary learners; in particular,
increase the number of expansion dimensions to 216.

tKernel = templateKernel('NumExpansionDimensions',2^16)

tKernel = 
Fit template for classification Kernel.

             BetaTolerance: []
                 BlockSize: []
             BoxConstraint: []
                   Epsilon: []
    NumExpansionDimensions: 65536
         GradientTolerance: []
        HessianHistorySize: []
            IterationLimit: []
               KernelScale: []
                    Lambda: []
                   Learner: 'svm'
              LossFunction: []
                    Stream: []
            VerbosityLevel: []
                   Version: 1
                    Method: 'Kernel'
                      Type: 'classification'

By default, the kernel binary learners use SVMs.

Pass the templateKernel object to fitcecoc and change the coding scheme to one-versus-one.

mdlKernel = fitcecoc(Z,Y,'Learners',tKernel,'Coding','onevsone')

Training binary learner 1 (Kernel) out of 3.
Training binary learner 2 (Kernel) out of 3.
Training binary learner 3 (Kernel) out of 3.
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mdlKernel = 
  CompactClassificationECOC
      ResponseName: 'Y'
        ClassNames: {'setosa'  'versicolor'  'virginica'}
    ScoreTransform: 'none'
    BinaryLearners: {3×1 cell}
      CodingMatrix: [3×3 double]

  Properties, Methods

mdlKernel is also a CompactClassificationECOC model composed of three binary learners.

Compare the resubstitution classification error of the two models.

errorLinear = gather(loss(mdlLinear,Z,Y))

Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 1: Completed in 1.4 sec
Evaluation completed in 1.6 sec

errorLinear = 0.0333

errorKernel = gather(loss(mdlKernel,Z,Y))

Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 1: Completed in 15 sec
Evaluation completed in 16 sec

errorKernel = 0.0067

mdlKernel misclassifies a smaller percentage of the training data than mdlLinear.

Input Arguments
Tbl — Sample data
table

Sample data, specified as a table. Each row of Tbl corresponds to one observation, and each column
corresponds to one predictor. Optionally, Tbl can contain one additional column for the response
variable. Multicolumn variables and cell arrays other than cell arrays of character vectors are not
accepted.

If Tbl contains the response variable, and you want to use all remaining variables in Tbl as
predictors, then specify the response variable using ResponseVarName.

If Tbl contains the response variable, and you want to use only a subset of the remaining variables in
Tbl as predictors, specify a formula using formula.

If Tbl does not contain the response variable, specify a response variable using Y. The length of
response variable and the number of Tbl rows must be equal.
Data Types: table

ResponseVarName — Response variable name
name of variable in Tbl
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Response variable name, specified as the name of a variable in Tbl.

You must specify ResponseVarName as a character vector or string scalar. For example, if the
response variable Y is stored as Tbl.Y, then specify it as "Y". Otherwise, the software treats all
columns of Tbl, including Y, as predictors when training the model.

The response variable must be a categorical, character, or string array; a logical or numeric vector;
or a cell array of character vectors. If Y is a character array, then each element of the response
variable must correspond to one row of the array.

A good practice is to specify the order of the classes by using the ClassNames name-value argument.
Data Types: char | string

formula — Explanatory model of response variable and subset of predictor variables
character vector | string scalar

Explanatory model of the response variable and a subset of the predictor variables, specified as a
character vector or string scalar in the form "Y~x1+x2+x3". In this form, Y represents the response
variable, and x1, x2, and x3 represent the predictor variables.

To specify a subset of variables in Tbl as predictors for training the model, use a formula. If you
specify a formula, then the software does not use any variables in Tbl that do not appear in
formula.

The variable names in the formula must be both variable names in Tbl
(Tbl.Properties.VariableNames) and valid MATLAB identifiers. You can verify the variable
names in Tbl by using the isvarname function. If the variable names are not valid, then you can
convert them by using the matlab.lang.makeValidName function.
Data Types: char | string

Y — Class labels
categorical array | character array | string array | logical vector | numeric vector | cell array of
character vectors

Class labels to which the ECOC model is trained, specified as a categorical, character, or string array,
logical or numeric vector, or cell array of character vectors.

If Y is a character array, then each element must correspond to one row of the array.

The length of Y and the number of rows of Tbl or X must be equal.

It is good practice to specify the class order using the ClassNames name-value pair argument.
Data Types: categorical | char | string | logical | single | double | cell

X — Predictor data
full matrix | sparse matrix

Predictor data, specified as a full or sparse matrix.

The length of Y and the number of observations in X must be equal.

To specify the names of the predictors in the order of their appearance in X, use the
PredictorNames name-value pair argument.
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Note

• For linear classification learners, if you orient X so that observations correspond to columns and
specify 'ObservationsIn','columns', then you can experience a significant reduction in
optimization-execution time.

• For all other learners, orient X so that observations correspond to rows.
• fitcecoc supports sparse matrices for training linear classification models only.

Data Types: double | single

Note The software treats NaN, empty character vector (''), empty string (""), <missing>, and
<undefined> elements as missing data. The software removes rows of X corresponding to missing
values in Y. However, the treatment of missing values in X varies among binary learners. For details,
see the training functions for your binary learners: fitcdiscr, fitckernel, fitcknn,
fitclinear, fitcnb, fitcsvm, fitctree, or fitcensemble. Removing observations decreases
the effective training or cross-validation sample size.

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.

Note You cannot use any cross-validation name-value argument together with the
'OptimizeHyperparameters' name-value argument. You can modify the cross-validation for
'OptimizeHyperparameters' only by using the 'HyperparameterOptimizationOptions'
name-value argument.

Example: 'Learners','tree','Coding','onevsone','CrossVal','on' specifies to use
decision trees for all binary learners, a one-versus-one coding design, and to implement 10-fold cross-
validation.

ECOC Classifier Options

Coding — Coding design
'onevsone' (default) | 'allpairs' | 'binarycomplete' | 'denserandom' | 'onevsall' |
'ordinal' | 'sparserandom' | 'ternarycomplete' | numeric matrix

Coding design name, specified as the comma-separated pair consisting of 'Coding' and a numeric
matrix or a value in this table.
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Value Number of Binary Learners Description
'allpairs' and 'onevsone' K(K – 1)/2 For each binary learner, one

class is positive, another is
negative, and the software
ignores the rest. This design
exhausts all combinations of
class pair assignments.

'binarycomplete' 2(K − 1)− 1 This design partitions the
classes into all binary
combinations, and does not
ignore any classes. For each
binary learner, all class
assignments are –1 and 1 with
at least one positive class and
one negative class in the
assignment.

'denserandom' Random, but approximately 10
log2K

For each binary learner, the
software randomly assigns
classes into positive or negative
classes, with at least one of
each type. For more details, see
“Random Coding Design
Matrices” on page 35-1958.

'onevsall' K For each binary learner, one
class is positive and the rest are
negative. This design exhausts
all combinations of positive
class assignments.

'ordinal' K – 1 For the first binary learner, the
first class is negative and the
rest are positive. For the second
binary learner, the first two
classes are negative and the
rest are positive, and so on.

'sparserandom' Random, but approximately 15
log2K

For each binary learner, the
software randomly assigns
classes as positive or negative
with probability 0.25 for each,
and ignores classes with
probability 0.5. For more
details, see “Random Coding
Design Matrices” on page 35-
1958.
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Value Number of Binary Learners Description
'ternarycomplete' 3K − 2(K + 1) + 1 /2 This design partitions the

classes into all ternary
combinations. All class
assignments are 0, –1, and 1
with at least one positive class
and one negative class in each
assignment.

You can also specify a coding design using a custom coding matrix, which is a K-by-L matrix. Each
row corresponds to a class and each column corresponds to a binary learner. The class order (rows)
corresponds to the order in ClassNames. Create the matrix by following these guidelines:

• Every element of the custom coding matrix must be –1, 0, or 1, and the value must correspond to
a dichotomous class assignment. Consider Coding(i,j), the class that learner j assigns to
observations in class i.

Value Dichotomous Class Assignment
–1 Learner j assigns observations in class i to a negative class.
0 Before training, learner j removes observations in class i

from the data set.
1 Learner j assigns observations in class i to a positive class.

• Every column must contain at least one –1 and one 1.
• For all column indices i,j where i ≠ j, Coding(:,i) cannot equal Coding(:,j), and

Coding(:,i) cannot equal –Coding(:,j).
• All rows of the custom coding matrix must be different.

For more details on the form of custom coding design matrices, see “Custom Coding Design
Matrices” on page 35-1957.
Example: 'Coding','ternarycomplete'
Data Types: char | string | double | single | int16 | int32 | int64 | int8

FitPosterior — Flag indicating whether to transform scores to posterior probabilities
false or 0 (default) | true or 1

Flag indicating whether to transform scores to posterior probabilities, specified as the comma-
separated pair consisting of 'FitPosterior' and a true (1) or false (0).

If FitPosterior is true, then the software transforms binary-learner classification scores to
posterior probabilities. You can obtain posterior probabilities by using kfoldPredict, predict, or
resubPredict.

fitcecoc does not support fitting posterior probabilities if:

• The ensemble method is AdaBoostM2, LPBoost, RUSBoost, RobustBoost, or TotalBoost.
• The binary learners (Learners) are linear or kernel classification models that implement SVM. To

obtain posterior probabilities for linear or kernel classification models, implement logistic
regression instead.

Example: 'FitPosterior',true
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Data Types: logical

Learners — Binary learner templates
'svm' (default) | 'discriminant' | 'kernel' | 'knn' | 'linear' | 'naivebayes' | 'tree' |
template object | cell vector of template objects

Binary learner templates, specified as the comma-separated pair consisting of 'Learners' and a
character vector, string scalar, template object, or cell vector of template objects. Specifically, you can
specify binary classifiers such as SVM, and the ensembles that use GentleBoost, LogitBoost, and
RobustBoost, to solve multiclass problems. However, fitcecoc also supports multiclass models as
binary classifiers.

• If Learners is a character vector or string scalar, then the software trains each binary learner
using the default values of the specified algorithm. This table summarizes the available
algorithms.

Value Description
'discriminant' Discriminant analysis. For default options, see

templateDiscriminant.
'kernel' Kernel classification model. For default

options, see templateKernel.
'knn' k-nearest neighbors. For default options, see

templateKNN.
'linear' Linear classification model. For default

options, see templateLinear.
'naivebayes' Naive Bayes. For default options, see

templateNaiveBayes.
'svm' SVM. For default options, see templateSVM.
'tree' Classification trees. For default options, see

templateTree.
• If Learners is a template object, then each binary learner trains according to the stored options.

You can create a template object using:

• templateDiscriminant, for discriminant analysis.
• templateEnsemble, for ensemble learning. You must at least specify the learning method

(Method), the number of learners (NLearn), and the type of learner (Learners). You cannot
use the AdaBoostM2 ensemble method for binary learning.

• templateKernel, for kernel classification.
• templateKNN, for k-nearest neighbors.
• templateLinear, for linear classification.
• templateNaiveBayes, for naive Bayes.
• templateSVM, for SVM.
• templateTree, for classification trees.

• If Learners is a cell vector of template objects, then:

• Cell j corresponds to binary learner j (in other words, column j of the coding design matrix),
and the cell vector must have length L. L is the number of columns in the coding design matrix.
For details, see Coding.
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• To use one of the built-in loss functions for prediction, then all binary learners must return a
score in the same range. For example, you cannot include default SVM binary learners with
default naive Bayes binary learners. The former returns a score in the range (-∞,∞), and the
latter returns a posterior probability as a score. Otherwise, you must provide a custom loss as
a function handle to functions such as predict and loss.

• You cannot specify linear classification model learner templates with any other template.
• Similarly, you cannot specify kernel classification model learner templates with any other

template.

By default, the software trains learners using default SVM templates.
Example: 'Learners','tree'

NumBins — Number of bins for numeric predictors
[](empty) (default) | positive integer scalar

Number of bins for numeric predictors, specified as the comma-separated pair consisting of
'NumBins' and a positive integer scalar. This argument is valid only when fitcecoc uses a tree
learner, that is, 'Learners' is either 'tree' or a template object created by using templateTree,
or a template object created by using templateEnsemble with tree weak learners.

• If the 'NumBins' value is empty (default), then fitcecoc does not bin any predictors.
• If you specify the 'NumBins' value as a positive integer scalar (numBins), then fitcecoc bins

every numeric predictor into at most numBins equiprobable bins, and then grows trees on the bin
indices instead of the original data.

• The number of bins can be less than numBins if a predictor has fewer than numBins unique
values.

• fitcecoc does not bin categorical predictors.

When you use a large training data set, this binning option speeds up training but might cause a
potential decrease in accuracy. You can try 'NumBins',50 first, and then change the value
depending on the accuracy and training speed.

A trained model stores the bin edges in the BinEdges property.
Example: 'NumBins',50
Data Types: single | double

NumConcurrent — Number of binary learners concurrently trained
1 (default) | positive integer scalar

Number of binary learners concurrently trained, specified as the comma-separated pair consisting of
'NumConcurrent' and a positive integer scalar. The default value is 1, which means fitcecoc
trains the binary learners sequentially.

Note This option applies only when you use fitcecoc on tall arrays. See “Tall Arrays” on page 35-
1960 for more information.

Data Types: single | double
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ObservationsIn — Predictor data observation dimension
'rows' (default) | 'columns'

Predictor data observation dimension, specified as the comma-separated pair consisting of
'ObservationsIn' and 'columns' or 'rows'.

Note

• For linear classification learners, if you orient X so that observations correspond to columns and
specify 'ObservationsIn','columns', then you can experience a significant reduction in
optimization-execution time.

• For all other learners, orient X so that observations correspond to rows.

Example: 'ObservationsIn','columns'

Verbose — Verbosity level
0 (default) | 1 | 2

Verbosity level, specified as the comma-separated pair consisting of 'Verbose' and 0, 1, or 2.
Verbose controls the amount of diagnostic information per binary learner that the software displays
in the Command Window.

This table summarizes the available verbosity level options.

Value Description
0 The software does not display diagnostic

information.
1 The software displays diagnostic messages every

time it trains a new binary learner.
2 The software displays extra diagnostic messages

every time it trains a new binary learner.

Each binary learner has its own verbosity level that is independent of this name-value pair argument.
To change the verbosity level of a binary learner, create a template object and specify the 'Verbose'
name-value pair argument. Then, pass the template object to fitcecoc by using the 'Learners'
name-value pair argument.
Example: 'Verbose',1
Data Types: double | single

Cross-Validation Options

CrossVal — Flag to train cross-validated classifier
'off' (default) | 'on'

Flag to train a cross-validated classifier, specified as the comma-separated pair consisting of
'Crossval' and 'on' or 'off'.

If you specify 'on', then the software trains a cross-validated classifier with 10 folds.
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You can override this cross-validation setting using one of the CVPartition, Holdout, KFold, or
Leaveout name-value pair arguments. You can only use one cross-validation name-value pair
argument at a time to create a cross-validated model.

Alternatively, cross-validate later by passing Mdl to crossval.
Example: 'Crossval','on'

CVPartition — Cross-validation partition
[] (default) | cvpartition partition object

Cross-validation partition, specified as a cvpartition partition object created by cvpartition.
The partition object specifies the type of cross-validation and the indexing for the training and
validation sets.

To create a cross-validated model, you can specify only one of these four name-value arguments:
CVPartition, Holdout, KFold, or Leaveout.
Example: Suppose you create a random partition for 5-fold cross-validation on 500 observations by
using cvp = cvpartition(500,'KFold',5). Then, you can specify the cross-validated model by
using 'CVPartition',cvp.

Holdout — Fraction of data for holdout validation
scalar value in the range (0,1)

Fraction of the data used for holdout validation, specified as a scalar value in the range (0,1). If you
specify 'Holdout',p, then the software completes these steps:

1 Randomly select and reserve p*100% of the data as validation data, and train the model using
the rest of the data.

2 Store the compact, trained model in the Trained property of the cross-validated model.

To create a cross-validated model, you can specify only one of these four name-value arguments:
CVPartition, Holdout, KFold, or Leaveout.
Example: 'Holdout',0.1
Data Types: double | single

KFold — Number of folds
10 (default) | positive integer value greater than 1

Number of folds to use in a cross-validated model, specified as a positive integer value greater than 1.
If you specify 'KFold',k, then the software completes these steps:

1 Randomly partition the data into k sets.
2 For each set, reserve the set as validation data, and train the model using the other k – 1 sets.
3 Store the k compact, trained models in a k-by-1 cell vector in the Trained property of the cross-

validated model.

To create a cross-validated model, you can specify only one of these four name-value arguments:
CVPartition, Holdout, KFold, or Leaveout.
Example: 'KFold',5
Data Types: single | double
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Leaveout — Leave-one-out cross-validation flag
'off' (default) | 'on'

Leave-one-out cross-validation flag, specified as the comma-separated pair consisting of 'Leaveout'
and 'on' or 'off'. If you specify 'Leaveout','on', then, for each of the n observations, where n
is size(Mdl.X,1), the software:

1 Reserves the observation as validation data, and trains the model using the other n – 1
observations

2 Stores the n compact, trained models in the cells of a n-by-1 cell vector in the Trained property
of the cross-validated model.

To create a cross-validated model, you can use one of these four options only: CVPartition,
Holdout, KFold, or Leaveout.

Note Leave-one-out is not recommended for cross-validating ECOC models composed of linear or
kernel classification model learners.

Example: 'Leaveout','on'

Other Classification Options

CategoricalPredictors — Categorical predictors list
vector of positive integers | logical vector | character matrix | string array | cell array of character
vectors | 'all'

Categorical predictors list, specified as one of the values in this table.

Value Description
Vector of positive
integers

Each entry in the vector is an index value indicating that the corresponding
predictor is categorical. The index values are between 1 and p, where p is
the number of predictors used to train the model.

If fitcecoc uses a subset of input variables as predictors, then the
function indexes the predictors using only the subset. The
CategoricalPredictors values do not count the response variable,
observation weights variable, or any other variables that the function does
not use.

Logical vector A true entry means that the corresponding predictor is categorical. The
length of the vector is p.

Character matrix Each row of the matrix is the name of a predictor variable. The names must
match the entries in PredictorNames. Pad the names with extra blanks
so each row of the character matrix has the same length.

String array or cell
array of character
vectors

Each element in the array is the name of a predictor variable. The names
must match the entries in PredictorNames.

"all" All predictors are categorical.

Specification of 'CategoricalPredictors' is appropriate if:
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• At least one predictor is categorical and all binary learners are classification trees, naive Bayes
learners, SVMs, linear learners, kernel learners, or ensembles of classification trees.

• All predictors are categorical and at least one binary learner is kNN.

If you specify 'CategoricalPredictors' for any other learner, then the software warns that it
cannot train that binary learner. For example, the software cannot train discriminant analysis
classifiers using categorical predictors.

Each learner identifies and treats categorical predictors in the same way as the fitting function
corresponding to the learner. See 'CategoricalPredictors' of fitckernel for kernel learners,
'CategoricalPredictors' of fitcknn for k-nearest learners, 'CategoricalPredictors' of
fitclinear for linear learners, 'CategoricalPredictors' of fitcnb for naive Bayes learners,
'CategoricalPredictors' of fitcsvm for SVM learners, and 'CategoricalPredictors' of
fitctree for tree learners.
Example: 'CategoricalPredictors','all'
Data Types: single | double | logical | char | string | cell

ClassNames — Names of classes to use for training
categorical array | character array | string array | logical vector | numeric vector | cell array of
character vectors

Names of classes to use for training, specified as a categorical, character, or string array; a logical or
numeric vector; or a cell array of character vectors. ClassNames must have the same data type as
the response variable in Tbl or Y.

If ClassNames is a character array, then each element must correspond to one row of the array.

Use ClassNames to:

• Specify the order of the classes during training.
• Specify the order of any input or output argument dimension that corresponds to the class order.

For example, use ClassNames to specify the order of the dimensions of Cost or the column order
of classification scores returned by predict.

• Select a subset of classes for training. For example, suppose that the set of all distinct class names
in Y is ["a","b","c"]. To train the model using observations from classes "a" and "c" only,
specify "ClassNames",["a","c"].

The default value for ClassNames is the set of all distinct class names in the response variable in
Tbl or Y.
Example: "ClassNames",["b","g"]
Data Types: categorical | char | string | logical | single | double | cell

Cost — Misclassification cost
square matrix | structure array

Misclassification cost, specified as the comma-separated pair consisting of 'Cost' and a square
matrix or structure. If you specify:

• The square matrix Cost, then Cost(i,j) is the cost of classifying a point into class j if its true
class is i. That is, the rows correspond to the true class and the columns correspond to the
predicted class. To specify the class order for the corresponding rows and columns of Cost,
additionally specify the ClassNames name-value pair argument.
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• The structure S, then it must have two fields:

• S.ClassNames, which contains the class names as a variable of the same data type as Y
• S.ClassificationCosts, which contains the cost matrix with rows and columns ordered as

in S.ClassNames

The default is ones(K) - eye(K), where K is the number of distinct classes.
Example: 'Cost',[0 1 2 ; 1 0 2; 2 2 0]
Data Types: double | single | struct

Options — Parallel computing options
[] (default) | structure array returned by statset

Parallel computing options, specified as the comma-separated pair consisting of 'Options' and a
structure array returned by statset. These options require Parallel Computing Toolbox. fitcecoc
uses 'Streams', 'UseParallel', and 'UseSubtreams' fields.

This table summarizes the available options.

Option Description
'Streams' A RandStream object or cell array of such

objects. If you do not specify Streams, the
software uses the default stream or streams. If
you specify Streams, use a single object except
when the following are true:

• You have an open parallel pool.
• UseParallel is true.
• UseSubstreams is false.

In that case, use a cell array of the same size as
the parallel pool. If a parallel pool is not open,
then the software tries to open one (depending on
your preferences), and Streams must supply a
single random number stream.

'UseParallel' If you have Parallel Computing Toolbox, then you
can invoke a pool of workers by setting
'UseParallel',true. The fitcecoc function
sends each binary learner to a worker in the pool.

When you use decision trees for binary learners,
fitcecoc parallelizes training using Intel
Threading Building Blocks (TBB) for dual-core
systems and above. Therefore, specifying the
'UseParallel' option is not helpful on a single
computer. Use this option on a cluster. For details
on Intel TBB, see https://www.intel.com/
content/www/us/en/developer/tools/oneapi/
onetbb.html.
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Option Description
'UseSubstreams' Set to true to compute in parallel using the

stream specified by 'Streams'. Default is
false. For example, set Streams to a type
allowing substreams, such as'mlfg6331_64' or
'mrg32k3a'.

A best practice to ensure more predictable results is to use parpool and explicitly create a parallel
pool before you invoke parallel computing using fitcecoc.
Example: 'Options',statset('UseParallel',true)
Data Types: struct

PredictorNames — Predictor variable names
string array of unique names | cell array of unique character vectors

Predictor variable names, specified as a string array of unique names or cell array of unique
character vectors. The functionality of PredictorNames depends on the way you supply the training
data.

• If you supply X and Y, then you can use PredictorNames to assign names to the predictor
variables in X.

• The order of the names in PredictorNames must correspond to the column order of X. That
is, PredictorNames{1} is the name of X(:,1), PredictorNames{2} is the name of
X(:,2), and so on. Also, size(X,2) and numel(PredictorNames) must be equal.

• By default, PredictorNames is {'x1','x2',...}.
• If you supply Tbl, then you can use PredictorNames to choose which predictor variables to use

in training. That is, fitcecoc uses only the predictor variables in PredictorNames and the
response variable during training.

• PredictorNames must be a subset of Tbl.Properties.VariableNames and cannot include
the name of the response variable.

• By default, PredictorNames contains the names of all predictor variables.
• A good practice is to specify the predictors for training using either PredictorNames or

formula, but not both.

Example: "PredictorNames",
["SepalLength","SepalWidth","PetalLength","PetalWidth"]

Data Types: string | cell

Prior — Prior probabilities
'empirical' (default) | 'uniform' | numeric vector | structure array

Prior probabilities for each class, specified as the comma-separated pair consisting of 'Prior' and a
value in this table.

Value Description
'empirical' The class prior probabilities are the class relative

frequencies in Y.
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Value Description
'uniform' All class prior probabilities are equal to 1/K,

where K is the number of classes.
numeric vector Each element is a class prior probability. Order

the elements according to Mdl.ClassNames or
specify the order using the ClassNames name-
value pair argument. The software normalizes the
elements such that they sum to 1.

structure A structure S with two fields:

• S.ClassNames contains the class names as a
variable of the same type as Y.

• S.ClassProbs contains a vector of
corresponding prior probabilities. The
software normalizes the elements such that
they sum to 1.

For more details on how the software incorporates class prior probabilities, see “Prior Probabilities
and Misclassification Cost” on page 35-1957.
Example: struct('ClassNames',
{{'setosa','versicolor','virginica'}},'ClassProbs',1:3)

Data Types: single | double | char | string | struct

ResponseName — Response variable name
"Y" (default) | character vector | string scalar

Response variable name, specified as a character vector or string scalar.

• If you supply Y, then you can use ResponseName to specify a name for the response variable.
• If you supply ResponseVarName or formula, then you cannot use ResponseName.

Example: "ResponseName","response"
Data Types: char | string

ScoreTransform — Score transformation
"none" (default) | "doublelogit" | "invlogit" | "ismax" | "logit" | function handle | ...

Score transformation, specified as a character vector, string scalar, or function handle.

This table summarizes the available character vectors and string scalars.

Value Description
"doublelogit" 1/(1 + e–2x)
"invlogit" log(x / (1 – x))
"ismax" Sets the score for the class with the largest score to 1,

and sets the scores for all other classes to 0
"logit" 1/(1 + e–x)
"none" or "identity" x (no transformation)
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Value Description
"sign" –1 for x < 0

0 for x = 0
1 for x > 0

"symmetric" 2x – 1
"symmetricismax" Sets the score for the class with the largest score to 1,

and sets the scores for all other classes to –1
"symmetriclogit" 2/(1 + e–x) – 1

For a MATLAB function or a function you define, use its function handle for the score transform. The
function handle must accept a matrix (the original scores) and return a matrix of the same size (the
transformed scores).
Example: "ScoreTransform","logit"
Data Types: char | string | function_handle

Weights — Observation weights
numeric vector of positive values | name of variable in Tbl

Observation weights, specified as the comma-separated pair consisting of 'Weights' and a numeric
vector of positive values or name of a variable in Tbl. The software weighs the observations in each
row of X or Tbl with the corresponding value in Weights. The size of Weights must equal the
number of rows of X or Tbl.

If you specify the input data as a table Tbl, then Weights can be the name of a variable in Tbl that
contains a numeric vector. In this case, you must specify Weights as a character vector or string
scalar. For example, if the weights vector W is stored as Tbl.W, then specify it as 'W'. Otherwise, the
software treats all columns of Tbl, including W, as predictors or the response when training the
model.

The software normalizes Weights to sum up to the value of the prior probability in the respective
class.

By default, Weights is ones(n,1), where n is the number of observations in X or Tbl.
Data Types: double | single | char | string

Hyperparameter Optimization

OptimizeHyperparameters — Parameters to optimize
'none' (default) | 'auto' | 'all' | string array or cell array of eligible parameter names | vector of
optimizableVariable objects

Parameters to optimize, specified as the comma-separated pair consisting of
'OptimizeHyperparameters' and one of the following:

• 'none' — Do not optimize.
• 'auto' — Use {'Coding'} along with the default parameters for the specified Learners:

• Learners = 'svm' (default) — {'BoxConstraint','KernelScale'}

35 Functions

35-1946



• Learners = 'discriminant' — {'Delta','Gamma'}
• Learners = 'kernel' — {'KernelScale','Lambda'}
• Learners = 'knn' — {'Distance','NumNeighbors'}
• Learners = 'linear' — {'Lambda','Learner'}
• Learners = 'tree' — {'MinLeafSize'}

• 'all' — Optimize all eligible parameters.
• String array or cell array of eligible parameter names
• Vector of optimizableVariable objects, typically the output of hyperparameters

The optimization attempts to minimize the cross-validation loss (error) for fitcecoc by varying the
parameters. For information about cross-validation loss in a different context, see “Classification
Loss” on page 35-3870. To control the cross-validation type and other aspects of the optimization, use
the HyperparameterOptimizationOptions name-value pair.

Note The values of 'OptimizeHyperparameters' override any values you specify using other
name-value arguments. For example, setting 'OptimizeHyperparameters' to 'auto' causes
fitcecoc to optimize hyperparameters corresponding to the 'auto' option and to ignore any
specified values for the hyperparameters.

The eligible parameters for fitcecoc are:

• Coding — fitcecoc searches among 'onevsall' and 'onevsone'.
• The eligible hyperparameters for the chosen Learners, as specified in this table.

Learners Eligible Hyperparameters
(Bold = Default)

Default Range

'discriminant
'

Delta Log-scaled in the range [1e-6,1e3]
DiscrimType 'linear', 'quadratic',

'diagLinear', 'diagQuadratic',
'pseudoLinear', and
'pseudoQuadratic'

Gamma Real values in [0,1]
'kernel' Lambda Positive values log-scaled in the range

[1e-3/NumObservations,1e3/
NumObservations]

KernelScale Positive values log-scaled in the range
[1e-3,1e3]

Learner 'svm' and 'logistic'
NumExpansionDimensions Integers log-scaled in the range

[100,10000]
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Learners Eligible Hyperparameters
(Bold = Default)

Default Range

'knn' Distance 'cityblock', 'chebychev',
'correlation', 'cosine',
'euclidean', 'hamming',
'jaccard', 'mahalanobis',
'minkowski', 'seuclidean', and
'spearman'

DistanceWeight 'equal', 'inverse', and
'squaredinverse'

Exponent Positive values in [0.5,3]
NumNeighbors Positive integer values log-scaled in the

range [1,
max(2,round(NumObservations/
2))]

Standardize 'true' and 'false'
'linear' Lambda Positive values log-scaled in the range

[1e-5/NumObservations,1e5/
NumObservations]

Learner 'svm' and 'logistic'
Regularization 'ridge' and 'lasso'

• When Regularization is 'ridge',
the function uses a Limited-memory
BFGS (LBFGS) solver by default.

• When Regularization is 'lasso',
the function uses a Sparse
Reconstruction by Separable
Approximation (SpaRSA) solver by
default.

'svm' BoxConstraint Positive values log-scaled in the range
[1e-3,1e3]

KernelScale Positive values log-scaled in the range
[1e-3,1e3]

KernelFunction 'gaussian', 'linear', and
'polynomial'

PolynomialOrder Integers in the range [2,4]
Standardize 'true' and 'false'

'tree' MaxNumSplits Integers log-scaled in the range
[1,max(2,NumObservations-1)]

MinLeafSize Integers log-scaled in the range
[1,max(2,floor(NumObservations/
2))]

NumVariablesToSample Integers in the range
[1,max(2,NumPredictors)]
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Learners Eligible Hyperparameters
(Bold = Default)

Default Range

SplitCriterion 'gdi', 'deviance', and 'twoing'

Alternatively, use hyperparameters with your chosen Learners, such as

load fisheriris % hyperparameters requires data and learner
params = hyperparameters('fitcecoc',meas,species,'svm');

To see the eligible and default hyperparameters, examine params.

Set nondefault parameters by passing a vector of optimizableVariable objects that have
nondefault values. For example,

load fisheriris
params = hyperparameters('fitcecoc',meas,species,'svm');
params(2).Range = [1e-4,1e6];

Pass params as the value of OptimizeHyperparameters.

By default, the iterative display appears at the command line, and plots appear according to the
number of hyperparameters in the optimization. For the optimization and plots, the objective function
is the misclassification rate. To control the iterative display, set the Verbose field of the
'HyperparameterOptimizationOptions' name-value argument. To control the plots, set the
ShowPlots field of the 'HyperparameterOptimizationOptions' name-value argument.

For an example, see “Optimize ECOC Classifier” on page 35-1927.
Example: 'auto'

HyperparameterOptimizationOptions — Options for optimization
structure

Options for optimization, specified as a structure. This argument modifies the effect of the
OptimizeHyperparameters name-value argument. All fields in the structure are optional.

Field Name Values Default
Optimizer • 'bayesopt' — Use Bayesian optimization.

Internally, this setting calls bayesopt.
• 'gridsearch' — Use grid search with

NumGridDivisions values per dimension.
• 'randomsearch' — Search at random among

MaxObjectiveEvaluations points.

'gridsearch' searches in a random order, using
uniform sampling without replacement from the
grid. After optimization, you can get a table in grid
order by using the command
sortrows(Mdl.HyperparameterOptimizatio
nResults).

'bayesopt'
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Field Name Values Default
AcquisitionFunct
ionName

• 'expected-improvement-per-second-
plus'

• 'expected-improvement'
• 'expected-improvement-plus'
• 'expected-improvement-per-second'
• 'lower-confidence-bound'
• 'probability-of-improvement'

Acquisition functions whose names include per-
second do not yield reproducible results because
the optimization depends on the runtime of the
objective function. Acquisition functions whose
names include plus modify their behavior when
they are overexploiting an area. For more details,
see “Acquisition Function Types” on page 10-3.

'expected-
improvement-per-
second-plus'

MaxObjectiveEval
uations

Maximum number of objective function
evaluations.

30 for 'bayesopt' and
'randomsearch', and
the entire grid for
'gridsearch'

MaxTime Time limit, specified as a positive real scalar. The
time limit is in seconds, as measured by tic and
toc. The run time can exceed MaxTime because
MaxTime does not interrupt function evaluations.

Inf

NumGridDivisions For 'gridsearch', the number of values in each
dimension. The value can be a vector of positive
integers giving the number of values for each
dimension, or a scalar that applies to all
dimensions. This field is ignored for categorical
variables.

10

ShowPlots Logical value indicating whether to show plots. If
true, this field plots the best observed objective
function value against the iteration number. If you
use Bayesian optimization (Optimizer is
'bayesopt'), then this field also plots the best
estimated objective function value. The best
observed objective function values and best
estimated objective function values correspond to
the values in the BestSoFar (observed) and
BestSoFar (estim.) columns of the iterative
display, respectively. You can find these values in
the properties ObjectiveMinimumTrace and
EstimatedObjectiveMinimumTrace of
Mdl.HyperparameterOptimizationResults.
If the problem includes one or two optimization
parameters for Bayesian optimization, then
ShowPlots also plots a model of the objective
function against the parameters.

true
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Field Name Values Default
SaveIntermediate
Results

Logical value indicating whether to save results
when Optimizer is 'bayesopt'. If true, this
field overwrites a workspace variable named
'BayesoptResults' at each iteration. The
variable is a BayesianOptimization object.

false

Verbose Display at the command line:

• 0 — No iterative display
• 1 — Iterative display
• 2 — Iterative display with extra information

For details, see the bayesopt Verbose name-
value argument and the example “Optimize
Classifier Fit Using Bayesian Optimization” on
page 10-56.

1

UseParallel Logical value indicating whether to run Bayesian
optimization in parallel, which requires Parallel
Computing Toolbox. Due to the nonreproducibility
of parallel timing, parallel Bayesian optimization
does not necessarily yield reproducible results. For
details, see “Parallel Bayesian Optimization” on
page 10-7.

false

Repartition Logical value indicating whether to repartition the
cross-validation at every iteration. If this field is
false, the optimizer uses a single partition for
the optimization.

The setting true usually gives the most robust
results because it takes partitioning noise into
account. However, for good results, true requires
at least twice as many function evaluations.

false

Use no more than one of the following three options.
CVPartition A cvpartition object, as created by

cvpartition
'Kfold',5 if you do not
specify a cross-validation
fieldHoldout A scalar in the range (0,1) representing the

holdout fraction
Kfold An integer greater than 1

Example:
'HyperparameterOptimizationOptions',struct('MaxObjectiveEvaluations',60)

Data Types: struct

Output Arguments
Mdl — Trained ECOC model
ClassificationECOC model object | CompactClassificationECOC model object |
ClassificationPartitionedECOC cross-validated model object |
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ClassificationPartitionedLinearECOC cross-validated model object |
ClassificationPartitionedKernelECOC cross-validated model object

Trained ECOC classifier, returned as a ClassificationECOC or CompactClassificationECOC
model object, or a ClassificationPartitionedECOC,
ClassificationPartitionedLinearECOC, or ClassificationPartitionedKernelECOC
cross-validated model object.

This table shows how the types of model objects returned by fitcecoc depend on the type of binary
learners you specify and whether you perform cross-validation.

Linear Classification
Model Learners

Kernel Classification
Model Learners

Cross-Validation Returned Model
Object

No No No ClassificationECOC
No No Yes ClassificationPart

itionedECOC
Yes No No CompactClassificat

ionECOC
Yes No Yes ClassificationPart

itionedLinearECOC
No Yes No CompactClassificat

ionECOC
No Yes Yes ClassificationPart

itionedKernelECOC

HyperparameterOptimizationResults — Description of cross-validation optimization of
hyperparameters
BayesianOptimization object | table of hyperparameters and associated values

Description of the cross-validation optimization of hyperparameters, returned as a
BayesianOptimization object or a table of hyperparameters and associated values.
HyperparameterOptimizationResults is nonempty when the OptimizeHyperparameters
name-value pair argument is nonempty and the Learners name-value pair argument designates
linear or kernel binary learners. The value depends on the setting of the
HyperparameterOptimizationOptions name-value pair argument:

• 'bayesopt' (default) — Object of class BayesianOptimization
• 'gridsearch' or 'randomsearch' — Table of hyperparameters used, observed objective

function values (cross-validation loss), and rank of observation from smallest (best) to highest
(worst)

Data Types: table

Limitations
• fitcecoc supports sparse matrices for training linear classification models only. For all other

models, supply a full matrix of predictor data instead.
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More About
Error-Correcting Output Codes Model

An error-correcting output codes (ECOC) model reduces the problem of classification with three or
more classes to a set of binary classification problems.

ECOC classification requires a coding design, which determines the classes that the binary learners
train on, and a decoding scheme, which determines how the results (predictions) of the binary
classifiers are aggregated.

Assume the following:

• The classification problem has three classes.
• The coding design is one-versus-one. For three classes, this coding design is

Learner 1 Learner 2 Learner 3
Class 1 1 1 0
Class 2 −1 0 1
Class 3 0 −1 −1

You can specify a different coding design by using the Coding name-value argument when you
create a classification model.

• The model determines the predicted class by using the loss-weighted decoding scheme with the
binary loss function g. The software also supports the loss-based decoding scheme. You can
specify the decoding scheme and binary loss function by using the Decoding and BinaryLoss
name-value arguments, respectively, when you call object functions, such as predict, loss,
margin, edge, and so on.

The ECOC algorithm follows these steps.

1 Learner 1 trains on observations in Class 1 or Class 2, and treats Class 1 as the positive class and
Class 2 as the negative class. The other learners are trained similarly.

2 Let M be the coding design matrix with elements mkl, and sl be the predicted classification score
for the positive class of learner l. The algorithm assigns a new observation to the class (k ) that
minimizes the aggregation of the losses for the B binary learners.

k = argmin
k

∑l = 1

B

mkl g mkl, sl

∑l = 1

B

mkl

.

ECOC models can improve classification accuracy, compared to other multiclass models [2].

Coding Design

The coding design is a matrix whose elements direct which classes are trained by each binary learner,
that is, how the multiclass problem is reduced to a series of binary problems.

Each row of the coding design corresponds to a distinct class, and each column corresponds to a
binary learner. In a ternary coding design, for a particular column (or binary learner):
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• A row containing 1 directs the binary learner to group all observations in the corresponding class
into a positive class.

• A row containing –1 directs the binary learner to group all observations in the corresponding class
into a negative class.

• A row containing 0 directs the binary learner to ignore all observations in the corresponding class.

Coding design matrices with large, minimal, pairwise row distances based on the Hamming measure
are optimal. For details on the pairwise row distance, see “Random Coding Design Matrices” on page
35-1958 and [3].

This table describes popular coding designs.

Coding Design Description Number of Learners Minimal Pairwise Row
Distance

one-versus-all (OVA) For each binary learner,
one class is positive and
the rest are negative.
This design exhausts all
combinations of positive
class assignments.

K 2

one-versus-one (OVO) For each binary learner,
one class is positive,
one class is negative,
and the rest are
ignored. This design
exhausts all
combinations of class
pair assignments.

K(K – 1)/2 1

binary complete This design partitions
the classes into all
binary combinations,
and does not ignore any
classes. That is, all class
assignments are –1 and
1 with at least one
positive class and one
negative class in the
assignment for each
binary learner.

2K – 1 – 1 2K – 2

ternary complete This design partitions
the classes into all
ternary combinations.
That is, all class
assignments are 0, –1,
and 1 with at least one
positive class and one
negative class in the
assignment for each
binary learner.

(3K – 2K + 1 + 1)/2 3K – 2
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Coding Design Description Number of Learners Minimal Pairwise Row
Distance

ordinal For the first binary
learner, the first class is
negative and the rest
are positive. For the
second binary learner,
the first two classes are
negative and the rest
are positive, and so on.

K – 1 1

dense random For each binary learner,
the software randomly
assigns classes into
positive or negative
classes, with at least
one of each type. For
more details, see
“Random Coding Design
Matrices” on page 35-
1958.

Random, but
approximately 10 log2K

Variable

sparse random For each binary learner,
the software randomly
assigns classes as
positive or negative
with probability 0.25 for
each, and ignores
classes with probability
0.5. For more details,
see “Random Coding
Design Matrices” on
page 35-1958.

Random, but
approximately 15 log2K

Variable

This plot compares the number of binary learners for the coding designs with increasing K.
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Tips
• The number of binary learners grows with the number of classes. For a problem with many

classes, the binarycomplete and ternarycomplete coding designs are not efficient. However:

• If K ≤ 4, then use ternarycomplete coding design rather than sparserandom.
• If K ≤ 5, then use binarycomplete coding design rather than denserandom.

You can display the coding design matrix of a trained ECOC classifier by entering
Mdl.CodingMatrix into the Command Window.

• You should form a coding matrix using intimate knowledge of the application, and taking into
account computational constraints. If you have sufficient computational power and time, then try
several coding matrices and choose the one with the best performance (e.g., check the confusion
matrices for each model using confusionchart).

• Leave-one-out cross-validation (Leaveout) is inefficient for data sets with many observations.
Instead, use k-fold cross-validation (KFold).

• After training a model, you can generate C/C++ code that predicts labels for new data.
Generating C/C++ code requires MATLAB Coder. For details, see “Introduction to Code
Generation” on page 34-2.
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Algorithms
Custom Coding Design Matrices

Custom coding matrices must have a certain form. The software validates a custom coding matrix by
ensuring:

• Every element is –1, 0, or 1.
• Every column contains as least one –1 and one 1.
• For all distinct column vectors u and v, u ≠ v and u ≠ –v.
• All row vectors are unique.
• The matrix can separate any two classes. That is, you can move from any row to any other row

following these rules:

• Move vertically from 1 to –1 or –1 to 1.
• Move horizontally from a nonzero element to another nonzero element.
• Use a column of the matrix for a vertical move only once.

If it is not possible to move from row i to row j using these rules, then classes i and j cannot be
separated by the design. For example, in the coding design

1 0
−1 0
0 1
0 −1

classes 1 and 2 cannot be separated from classes 3 and 4 (that is, you cannot move horizontally
from –1 in row 2 to column 2 because that position contains a 0). Therefore, the software rejects
this coding design.

Parallel Computing

If you use parallel computing (see Options), then fitcecoc trains binary learners in parallel.

Prior Probabilities and Misclassification Cost

If you specify the Cost, Prior, and Weights name-value arguments, the output model object stores
the specified values in the Cost, Prior, and W properties, respectively. The Cost property stores the
user-specified cost matrix (C) as is. The Prior and W properties store the prior probabilities and
observation weights, respectively, after normalization. For details, see “Misclassification Cost Matrix,
Prior Probabilities, and Observation Weights” on page 19-8.

For each binary learner, the software normalizes the prior probabilities into a vector of two elements,
and normalizes the cost matrix into a 2-by-2 matrix. Then, the software adjusts the prior probability
vector by incorporating the penalties described in the 2-by-2 cost matrix, and sets the cost matrix to
the default cost matrix. The Cost and Prior properties of the binary learners in Mdl
(Mdl.BinaryLearners) store the adjusted values. Specifically, the software completes these steps:

1 The software normalizes the specified class prior probabilities (Prior) for each binary learner.
Let M be the coding design matrix and I(A,c) be an indicator matrix. The indicator matrix has the
same dimensions as A. If the corresponding element of A is c, then the indicator matrix has
elements equaling one, and zero otherwise. Let M+1 and M-1 be K-by-L matrices such that:
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• M+1 = M○I(M,1), where ○ is element-wise multiplication (that is, Mplus = M.*(M == 1)).
Also, let ml

( + 1) be column vector l of M+1.

• M-1 = -M○I(M,-1) (that is, Mminus = -M.*(M == -1)). Also, let ml
(− 1) be column vector l of

M-1.

Let πl
+1 = ml

( + 1)°π and πl
−1 = ml

(− 1)°π, where π is the vector of specified, class prior
probabilities (Prior).

Then, the positive and negative, scalar class prior probabilities for binary learner l are

π l
( j) =

πl
( j)

1

πl
( + 1)

1 + πl
(− 1)

1
,

where j = {-1,1} and a 1 is the one-norm of a.
2 The software normalizes the K-by-K cost matrix C (Cost) for each binary learner. For binary

learner l, the cost of classifying a negative-class observation into the positive class is

cl
− + = πl

(− 1) ⊤Cπl
( + 1) .

Similarly, the cost of classifying a positive-class observation into the negative class is

cl
+ − = πl

( + 1) ⊤Cπl
(− 1) .

The cost matrix for binary learner l is

Cl =
0 cl

− +

cl
+ − 0

.

3 ECOC models accommodate misclassification costs by incorporating them with class prior
probabilities. The software adjusts the class prior probabilities and sets the cost matrix to the
default cost matrix for binary learners as follows:

πl
−1 =

cl
− + π l

−1

cl
− + π l

−1 + c+ − π l
+1 ,

πl
+1 =

cl
+ − π l

+1

cl
− + π l

−1 + c+ − π l
+1 ,

Cl =
0 1
1 0

.

Random Coding Design Matrices

For a given number of classes K, the software generates random coding design matrices as follows.

1 The software generates one of these matrices:

a Dense random — The software assigns 1 or –1 with equal probability to each element of the
K-by-Ld coding design matrix, where Ld ≈ 10log2K .
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b Sparse random — The software assigns 1 to each element of the K-by-Ls coding design
matrix with probability 0.25, –1 with probability 0.25, and 0 with probability 0.5, where
Ls ≈ 15log2K .

2 If a column does not contain at least one 1 and one –1, then the software removes that column.
3 For distinct columns u and v, if u = v or u = –v, then the software removes v from the coding

design matrix.

The software randomly generates 10,000 matrices by default, and retains the matrix with the largest,
minimal, pairwise row distance based on the Hamming measure ([3]) given by

Δ(k1, k2) = 0.5∑
l = 1

L

mk1l mk2l mk1l−mk2l ,

where mkjl is an element of coding design matrix j.

Support Vector Storage

By default and for efficiency, fitcecoc empties the Alpha, SupportVectorLabels, and
SupportVectors properties for all linear SVM binary learners. fitcecoc lists Beta, rather than
Alpha, in the model display.

To store Alpha, SupportVectorLabels, and SupportVectors, pass a linear SVM template that
specifies storing support vectors to fitcecoc. For example, enter:

t = templateSVM('SaveSupportVectors',true)
Mdl = fitcecoc(X,Y,'Learners',t);

You can remove the support vectors and related values by passing the resulting
ClassificationECOC model to discardSupportVectors.

Version History
Introduced in R2014b

Regularization method determines the linear learner solver used during hyperparameter
optimization
Behavior changed in R2022a

Starting in R2022a, when you specify to optimize hyperparameters for an ECOC model with linear
binary learners ('linear' or templateLinear) and do not specify to use a particular solver,
fitcecoc uses either a Limited-memory BFGS (LBFGS) solver or a Sparse Reconstruction by
Separable Approximation (SpaRSA) solver, depending on the regularization type selected during each
iteration of the hyperparameter optimization.

• When Regularization is 'ridge', the function sets the Solver value to 'lbfgs' by default.
• When Regularization is 'lasso', the function sets the Solver value to 'sparsa' by default.

In previous releases, the default solver selection during hyperparameter optimization depended on
various factors, including the regularization type, learner type, and number of predictors. For more
information, see Solver.

 fitcecoc

35-1959



References
[1] Allwein, E., R. Schapire, and Y. Singer. “Reducing multiclass to binary: A unifying approach for

margin classifiers.” Journal of Machine Learning Research. Vol. 1, 2000, pp. 113–141.

[2] Fürnkranz, Johannes. “Round Robin Classification.” J. Mach. Learn. Res., Vol. 2, 2002, pp. 721–
747.

[3] Escalera, S., O. Pujol, and P. Radeva. “Separability of ternary codes for sparse designs of error-
correcting output codes.” Pattern Recog. Lett., Vol. 30, Issue 3, 2009, pp. 285–297.

[4] Escalera, S., O. Pujol, and P. Radeva. “On the decoding process in ternary error-correcting output
codes.” IEEE Transactions on Pattern Analysis and Machine Intelligence. Vol. 32, Issue 7,
2010, pp. 120–134.

Extended Capabilities
Tall Arrays
Calculate with arrays that have more rows than fit in memory.

Usage notes and limitations:

• Supported syntaxes are:

• Mdl = fitcecoc(X,Y)
• Mdl = fitcecoc(X,Y,Name,Value)
• [Mdl,FitInfo,HyperparameterOptimizationResults] =

fitcecoc(X,Y,Name,Value) — fitcecoc returns the additional output arguments
FitInfo and HyperparameterOptimizationResults when you specify the
'OptimizeHyperparameters' name-value pair argument.

• The FitInfo output argument is an empty structure array currently reserved for possible future
use.

• Options related to cross-validation are not supported. The supported name-value pair arguments
are:

• 'ClassNames'
• 'Cost'
• 'Coding' — Default value is 'onevsall'.
• 'HyperparameterOptimizationOptions' — For cross-validation, tall optimization

supports only 'Holdout' validation. By default, the software selects and reserves 20% of the
data as holdout validation data, and trains the model using the rest of the data. You can specify
a different value for the holdout fraction by using this argument. For example, specify
'HyperparameterOptimizationOptions',struct('Holdout',0.3) to reserve 30% of
the data as validation data.

• 'Learners' — Default value is 'linear'. You can specify 'linear','kernel', a
templateLinear or templateKernel object, or a cell array of such objects.

• 'OptimizeHyperparameters' — When you use linear binary learners, the value of the
'Regularization' hyperparameter must be 'ridge'.

• 'Prior'
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• 'Verbose' — Default value is 1.
• 'Weights'

• This additional name-value pair argument is specific to tall arrays:

• 'NumConcurrent' — A positive integer scalar specifying the number of binary learners that
are trained concurrently by combining file I/O operations. The default value for
'NumConcurrent' is 1, which means fitcecoc trains the binary learners sequentially.
'NumConcurrent' is most beneficial when the input arrays cannot fit into the distributed
cluster memory. Otherwise, the input arrays can be cached and speedup is negligible.

If you run your code on Apache Spark™, NumConcurrent is upper bounded by the memory
available for communications. Check the 'spark.executor.memory' and
'spark.driver.memory' properties in your Apache Spark configuration. See
parallel.cluster.Hadoop (Parallel Computing Toolbox) for more details. For more
information on Apache Spark and other execution environments that control where your code
runs, see “Extend Tall Arrays with Other Products”.

For more information, see “Tall Arrays”.

Automatic Parallel Support
Accelerate code by automatically running computation in parallel using Parallel Computing Toolbox™.

To run in parallel, set the 'UseParallel' option to true in one of these ways:

• Set the 'UseParallel' field of the options structure to true using statset and specify the
'Options' name-value pair argument in the call to fitceoc.

For example: 'Options',statset('UseParallel',true)

For more information, see the 'Options' name-value pair argument.
• Perform parallel hyperparameter optimization by using the

'HyperparameterOptions',struct('UseParallel',true) name-value pair argument in
the call to fitceoc.

For more information on parallel hyperparameter optimization, see “Parallel Bayesian
Optimization” on page 10-7.

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

Usage notes and limitations:

• You can specify the name-value argument 'Learners' only as one of the learners specified in this
table.

Learner Learner Name Template Object
Creation Function

Information About
gpuArray Support

support vector
machine

'svm' templateSVM “GPU Arrays” on page
35-2213 for fitcsvm

k-nearest neighbors 'knn' templateKNN “GPU Arrays” on page
35-2057 for fitcknn
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Learner Learner Name Template Object
Creation Function

Information About
gpuArray Support

classification tree 'tree' templateTree “GPU Arrays” on page
35-2277 for fitctree

For more information, see “Run MATLAB Functions on a GPU” (Parallel Computing Toolbox).

See Also
ClassificationECOC | CompactClassificationECOC | ClassificationPartitionedECOC |
loss | predict | designecoc | statset | ClassificationPartitionedLinearECOC |
ClassificationPartitionedKernelECOC

Topics
“Quick Start Parallel Computing for Statistics and Machine Learning Toolbox” on page 33-2
“Reproducibility in Parallel Statistical Computations” on page 33-16
“Concepts of Parallel Computing in Statistics and Machine Learning Toolbox” on page 33-6
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fitcensemble
Fit ensemble of learners for classification

Syntax
Mdl = fitcensemble(Tbl,ResponseVarName)
Mdl = fitcensemble(Tbl,formula)
Mdl = fitcensemble(Tbl,Y)

Mdl = fitcensemble(X,Y)

Mdl = fitcensemble( ___ ,Name,Value)

Description
Mdl = fitcensemble(Tbl,ResponseVarName) returns the trained classification ensemble model
object (Mdl) that contains the results of boosting 100 classification trees and the predictor and
response data in the table Tbl. ResponseVarName is the name of the response variable in Tbl. By
default, fitcensemble uses LogitBoost for binary classification and AdaBoostM2 for multiclass
classification.

Mdl = fitcensemble(Tbl,formula) applies formula to fit the model to the predictor and
response data in the table Tbl. formula is an explanatory model of the response and a subset of
predictor variables in Tbl used to fit Mdl. For example, 'Y~X1+X2+X3' fits the response variable
Tbl.Y as a function of the predictor variables Tbl.X1, Tbl.X2, and Tbl.X3.

Mdl = fitcensemble(Tbl,Y) treats all variables in the table Tbl as predictor variables. Y is the
array of class labels that is not in Tbl.

Mdl = fitcensemble(X,Y) uses the predictor data in the matrix X and the array of class labels in
Y.

Mdl = fitcensemble( ___ ,Name,Value) uses additional options specified by one or more
Name,Value pair arguments and any of the input arguments in the previous syntaxes. For example,
you can specify the number of learning cycles, the ensemble aggregation method, or to implement 10-
fold cross-validation.

Examples

Train Classification Ensemble

Create a predictive classification ensemble using all available predictor variables in the data. Then,
train another ensemble using fewer predictors. Compare the in-sample predictive accuracies of the
ensembles.

Load the census1994 data set.

load census1994

Train an ensemble of classification models using the entire data set and default options.

 fitcensemble

35-1963



Mdl1 = fitcensemble(adultdata,'salary')

Mdl1 = 
  ClassificationEnsemble
           PredictorNames: {1x14 cell}
             ResponseName: 'salary'
    CategoricalPredictors: [2 4 6 7 8 9 10 14]
               ClassNames: [<=50K    >50K]
           ScoreTransform: 'none'
          NumObservations: 32561
               NumTrained: 100
                   Method: 'LogitBoost'
             LearnerNames: {'Tree'}
     ReasonForTermination: 'Terminated normally after completing the requested number of training cycles.'
                  FitInfo: [100x1 double]
       FitInfoDescription: {2x1 cell}

  Properties, Methods

Mdl is a ClassificationEnsemble model. Some notable characteristics of Mdl are:

• Because two classes are represented in the data, LogitBoost is the ensemble aggregation
algorithm.

• Because the ensemble aggregation method is a boosting algorithm, classification trees that allow
a maximum of 10 splits compose the ensemble.

• One hundred trees compose the ensemble.

Use the classification ensemble to predict the labels of a random set of five observations from the
data. Compare the predicted labels with their true values.

rng(1) % For reproducibility
[pX,pIdx] = datasample(adultdata,5);
label = predict(Mdl1,pX);
table(label,adultdata.salary(pIdx),'VariableNames',{'Predicted','Truth'})

ans=5×2 table
    Predicted    Truth
    _________    _____

      <=50K      <=50K
      <=50K      <=50K
      <=50K      <=50K
      <=50K      <=50K
      <=50K      <=50K

Train a new ensemble using age and education only.

Mdl2 = fitcensemble(adultdata,'salary ~ age + education');

Compare the resubstitution losses between Mdl1 and Mdl2.

rsLoss1 = resubLoss(Mdl1)

rsLoss1 = 0.1058
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rsLoss2 = resubLoss(Mdl2)

rsLoss2 = 0.2037

The in-sample misclassification rate for the ensemble that uses all predictors is lower.

Speed Up Training by Binning Numeric Predictor Values

Train an ensemble of boosted classification trees by using fitcensemble. Reduce training time by
specifying the 'NumBins' name-value pair argument to bin numeric predictors. This argument is
valid only when fitcensemble uses a tree learner. After training, you can reproduce binned
predictor data by using the BinEdges property of the trained model and the discretize function.

Generate a sample data set.

rng('default') % For reproducibility
N = 1e6;
X = [mvnrnd([-1 -1],eye(2),N); mvnrnd([1 1],eye(2),N)];
y = [zeros(N,1); ones(N,1)];

Visualize the data set.

figure
scatter(X(1:N,1),X(1:N,2),'Marker','.','MarkerEdgeAlpha',0.01)
hold on
scatter(X(N+1:2*N,1),X(N+1:2*N,2),'Marker','.','MarkerEdgeAlpha',0.01)
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Train an ensemble of boosted classification trees using adaptive logistic regression (LogitBoost, the
default for binary classification). Time the function for comparison purposes.

tic
Mdl1 = fitcensemble(X,y);
toc

Elapsed time is 478.988422 seconds.

Speed up training by using the 'NumBins' name-value pair argument. If you specify the 'NumBins'
value as a positive integer scalar, then the software bins every numeric predictor into a specified
number of equiprobable bins, and then grows trees on the bin indices instead of the original data.
The software does not bin categorical predictors.

tic
Mdl2 = fitcensemble(X,y,'NumBins',50);
toc

Elapsed time is 165.598434 seconds.

The process is about three times faster when you use binned data instead of the original data. Note
that the elapsed time can vary depending on your operating system.

Compare the classification errors by resubstitution.

rsLoss1 = resubLoss(Mdl1)

rsLoss1 = 0.0788

rsLoss2 = resubLoss(Mdl2)

rsLoss2 = 0.0788

In this example, binning predictor values reduces training time without loss of accuracy. In general,
when you have a large data set like the one in this example, using the binning option speeds up
training but causes a potential decrease in accuracy. If you want to reduce training time further,
specify a smaller number of bins.

Reproduce binned predictor data by using the BinEdges property of the trained model and the
discretize function.

X = Mdl2.X; % Predictor data
Xbinned = zeros(size(X));
edges = Mdl2.BinEdges;
% Find indices of binned predictors.
idxNumeric = find(~cellfun(@isempty,edges));
if iscolumn(idxNumeric)
    idxNumeric = idxNumeric';
end
for j = idxNumeric 
    x = X(:,j);
    % Convert x to array if x is a table.
    if istable(x)
        x = table2array(x);
    end
    % Group x into bins by using the discretize function.
    xbinned = discretize(x,[-inf; edges{j}; inf]);
    Xbinned(:,j) = xbinned;
end
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Xbinned contains the bin indices, ranging from 1 to the number of bins, for numeric predictors.
Xbinned values are 0 for categorical predictors. If X contains NaNs, then the corresponding Xbinned
values are NaNs.

Estimate Generalization Error of Boosting Ensemble

Estimate the generalization error of ensemble of boosted classification trees.

Load the ionosphere data set.

load ionosphere

Cross-validate an ensemble of classification trees using AdaBoostM1 and 10-fold cross-validation.
Specify that each tree should be split a maximum of five times using a decision tree template.

rng(5); % For reproducibility
t = templateTree('MaxNumSplits',5);
Mdl = fitcensemble(X,Y,'Method','AdaBoostM1','Learners',t,'CrossVal','on');

Mdl is a ClassificationPartitionedEnsemble model.

Plot the cumulative, 10-fold cross-validated, misclassification rate. Display the estimated
generalization error of the ensemble.

kflc = kfoldLoss(Mdl,'Mode','cumulative');
figure;
plot(kflc);
ylabel('10-fold Misclassification rate');
xlabel('Learning cycle');
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estGenError = kflc(end)

estGenError = 0.0769

kfoldLoss returns the generalization error by default. However, plotting the cumulative loss allows
you to monitor how the loss changes as weak learners accumulate in the ensemble.

The ensemble achieves a misclassification rate of around 0.06 after accumulating about 50 weak
learners. Then, the misclassification rate increase slightly as more weak learners enter the ensemble.

If you are satisfied with the generalization error of the ensemble, then, to create a predictive model,
train the ensemble again using all of the settings except cross-validation. However, it is good practice
to tune hyperparameters, such as the maximum number of decision splits per tree and the number of
learning cycles.

Optimize Classification Ensemble

Optimize hyperparameters automatically using fitcensemble.

Load the ionosphere data set.

load ionosphere
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You can find hyperparameters that minimize five-fold cross-validation loss by using automatic
hyperparameter optimization.

Mdl = fitcensemble(X,Y,'OptimizeHyperparameters','auto')

In this example, for reproducibility, set the random seed and use the 'expected-improvement-
plus' acquisition function. Also, for reproducibility of random forest algorithm, specify the
'Reproducible' name-value pair argument as true for tree learners.

rng('default')
t = templateTree('Reproducible',true);
Mdl = fitcensemble(X,Y,'OptimizeHyperparameters','auto','Learners',t, ...
    'HyperparameterOptimizationOptions',struct('AcquisitionFunctionName','expected-improvement-plus'))

|===================================================================================================================================|
| Iter | Eval   | Objective   | Objective   | BestSoFar   | BestSoFar   |       Method | NumLearningC-|    LearnRate |  MinLeafSize |
|      | result |             | runtime     | (observed)  | (estim.)    |              | ycles        |              |              |
|===================================================================================================================================|
|    1 | Best   |     0.10256 |      2.8201 |     0.10256 |     0.10256 |     RUSBoost |           11 |     0.010199 |           17 |
|    2 | Best   |    0.082621 |      6.3089 |    0.082621 |    0.083414 |   LogitBoost |          206 |      0.96537 |           33 |
|    3 | Accept |    0.099715 |      4.0004 |    0.082621 |    0.082624 |   AdaBoostM1 |          130 |    0.0072814 |            2 |
|    4 | Best   |    0.068376 |      1.5887 |    0.068376 |    0.068395 |          Bag |           25 |            - |            5 |
|    5 | Best   |    0.059829 |      1.7618 |    0.059829 |    0.062829 |   LogitBoost |           58 |      0.19016 |            5 |
|    6 | Accept |    0.068376 |      1.6662 |    0.059829 |    0.065561 |   LogitBoost |           58 |      0.10005 |            5 |
|    7 | Accept |    0.088319 |       13.07 |    0.059829 |    0.065786 |   LogitBoost |          494 |     0.014474 |            3 |
|    8 | Accept |    0.065527 |     0.79673 |    0.059829 |    0.065894 |   LogitBoost |           26 |      0.75515 |            8 |
|    9 | Accept |     0.15385 |     0.93354 |    0.059829 |    0.061156 |   LogitBoost |           32 |    0.0010037 |           59 |
|   10 | Accept |    0.059829 |      3.8828 |    0.059829 |    0.059731 |   LogitBoost |          143 |      0.44428 |            1 |
|   11 | Accept |     0.35897 |      2.3272 |    0.059829 |    0.059826 |          Bag |           54 |            - |          175 |
|   12 | Accept |    0.068376 |     0.53634 |    0.059829 |    0.059825 |          Bag |           10 |            - |            1 |
|   13 | Accept |     0.12251 |      9.5155 |    0.059829 |    0.059826 |   AdaBoostM1 |          442 |      0.57897 |          102 |
|   14 | Accept |     0.11966 |      4.9323 |    0.059829 |    0.059827 |     RUSBoost |           95 |      0.80822 |            1 |
|   15 | Accept |    0.062678 |      4.2429 |    0.059829 |    0.059826 |  GentleBoost |          156 |      0.99502 |            1 |
|   16 | Accept |    0.065527 |      3.0688 |    0.059829 |    0.059824 |  GentleBoost |          115 |      0.99693 |           13 |
|   17 | Best   |     0.05698 |       1.659 |     0.05698 |    0.056997 |  GentleBoost |           60 |    0.0010045 |            3 |
|   18 | Accept |     0.13675 |      2.0647 |     0.05698 |    0.057002 |  GentleBoost |           86 |    0.0010263 |          108 |
|   19 | Accept |    0.062678 |      2.4037 |     0.05698 |     0.05703 |  GentleBoost |           88 |       0.6344 |            4 |
|   20 | Accept |    0.065527 |       1.029 |     0.05698 |    0.057228 |  GentleBoost |           35 |    0.0010155 |            1 |
|===================================================================================================================================|
| Iter | Eval   | Objective   | Objective   | BestSoFar   | BestSoFar   |       Method | NumLearningC-|    LearnRate |  MinLeafSize |
|      | result |             | runtime     | (observed)  | (estim.)    |              | ycles        |              |              |
|===================================================================================================================================|
|   21 | Accept |    0.079772 |     0.44308 |     0.05698 |    0.057214 |   LogitBoost |           11 |       0.9796 |            2 |
|   22 | Accept |    0.065527 |      21.191 |     0.05698 |    0.057523 |          Bag |          499 |            - |            1 |
|   23 | Accept |    0.068376 |      20.294 |     0.05698 |    0.057671 |          Bag |          494 |            - |            2 |
|   24 | Accept |     0.64103 |      1.2793 |     0.05698 |    0.057468 |     RUSBoost |           30 |     0.088421 |          174 |
|   25 | Accept |    0.088319 |     0.53606 |     0.05698 |    0.057456 |     RUSBoost |           10 |     0.010292 |            5 |
|   26 | Accept |    0.074074 |     0.36802 |     0.05698 |     0.05753 |   AdaBoostM1 |           11 |      0.14192 |           13 |
|   27 | Accept |    0.099715 |      12.133 |     0.05698 |    0.057646 |   AdaBoostM1 |          498 |    0.0010096 |            6 |
|   28 | Accept |    0.079772 |      10.877 |     0.05698 |    0.057886 |   AdaBoostM1 |          474 |     0.030547 |           31 |
|   29 | Accept |    0.068376 |      12.326 |     0.05698 |    0.061326 |  GentleBoost |          493 |      0.36142 |            2 |
|   30 | Accept |    0.065527 |      0.3945 |     0.05698 |    0.061165 |   LogitBoost |           11 |      0.71408 |           16 |
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__________________________________________________________
Optimization completed.
MaxObjectiveEvaluations of 30 reached.
Total function evaluations: 30
Total elapsed time: 165.9329 seconds
Total objective function evaluation time: 148.4504

Best observed feasible point:
      Method       NumLearningCycles    LearnRate    MinLeafSize
    ___________    _________________    _________    ___________

    GentleBoost           60            0.0010045         3     

Observed objective function value = 0.05698
Estimated objective function value = 0.061165
Function evaluation time = 1.659

Best estimated feasible point (according to models):
      Method       NumLearningCycles    LearnRate    MinLeafSize
    ___________    _________________    _________    ___________

    GentleBoost           60            0.0010045         3     

Estimated objective function value = 0.061165
Estimated function evaluation time = 1.6503

Mdl = 
  ClassificationEnsemble

35 Functions

35-1970



                         ResponseName: 'Y'
                CategoricalPredictors: []
                           ClassNames: {'b'  'g'}
                       ScoreTransform: 'none'
                      NumObservations: 351
    HyperparameterOptimizationResults: [1×1 BayesianOptimization]
                           NumTrained: 60
                               Method: 'GentleBoost'
                         LearnerNames: {'Tree'}
                 ReasonForTermination: 'Terminated normally after completing the requested number of training cycles.'
                              FitInfo: [60×1 double]
                   FitInfoDescription: {2×1 cell}

  Properties, Methods

The optimization searched over the ensemble aggregation methods for binary classification, over
NumLearningCycles, over the LearnRate for applicable methods, and over the tree learner
MinLeafSize. The output is the ensemble classifier with the minimum estimated cross-validation
loss.

Optimize Classification Ensemble Using Cross-Validation

One way to create an ensemble of boosted classification trees that has satisfactory predictive
performance is by tuning the decision tree complexity level using cross-validation. While searching
for an optimal complexity level, tune the learning rate to minimize the number of learning cycles.

This example manually finds optimal parameters by using the cross-validation option (the 'KFold'
name-value pair argument) and the kfoldLoss function. Alternatively, you can use the
'OptimizeHyperparameters' name-value pair argument to optimize hyperparameters
automatically. See “Optimize Classification Ensemble” on page 35-1968.

Load the ionosphere data set.

load ionosphere

To search for the optimal tree-complexity level:

1 Cross-validate a set of ensembles. Exponentially increase the tree-complexity level for
subsequent ensembles from decision stump (one split) to at most n - 1 splits. n is the sample size.
Also, vary the learning rate for each ensemble between 0.1 to 1.

2 Estimate the cross-validated misclassification rate of each ensemble.
3 For tree-complexity level j, j = 1 . . . J, compare the cumulative, cross-validated misclassification

rate of the ensembles by plotting them against number of learning cycles. Plot separate curves
for each learning rate on the same figure.

4 Choose the curve that achieves the minimal misclassification rate, and note the corresponding
learning cycle and learning rate.

Cross-validate a deep classification tree and a stump. These classification trees serve as benchmarks.

rng(1) % For reproducibility
MdlDeep = fitctree(X,Y,'CrossVal','on','MergeLeaves','off', ...

 fitcensemble

35-1971



    'MinParentSize',1);
MdlStump = fitctree(X,Y,'MaxNumSplits',1,'CrossVal','on');

Cross-validate an ensemble of 150 boosted classification trees using 5-fold cross-validation. Using a
tree template, vary the maximum number of splits using the values in the sequence {30, 31, . . . , 3m}.
m is such that 3m is no greater than n - 1. For each variant, adjust the learning rate using each value
in the set {0.1, 0.25, 0.5, 1};

n = size(X,1);
m = floor(log(n - 1)/log(3));
learnRate = [0.1 0.25 0.5 1];
numLR = numel(learnRate);
maxNumSplits = 3.^(0:m);
numMNS = numel(maxNumSplits);
numTrees = 150;
Mdl = cell(numMNS,numLR);

for k = 1:numLR
    for j = 1:numMNS
        t = templateTree('MaxNumSplits',maxNumSplits(j));
        Mdl{j,k} = fitcensemble(X,Y,'NumLearningCycles',numTrees,...
            'Learners',t,'KFold',5,'LearnRate',learnRate(k));
    end
end

Estimate the cumulative, cross-validated misclassification rate for each ensemble and the
classification trees serving as benchmarks.

kflAll = @(x)kfoldLoss(x,'Mode','cumulative');
errorCell = cellfun(kflAll,Mdl,'Uniform',false);
error = reshape(cell2mat(errorCell),[numTrees numel(maxNumSplits) numel(learnRate)]);
errorDeep = kfoldLoss(MdlDeep);
errorStump = kfoldLoss(MdlStump);

Plot how the cross-validated misclassification rate behaves as the number of trees in the ensemble
increases. Plot the curves with respect to learning rate on the same plot, and plot separate plots for
varying tree-complexity levels. Choose a subset of tree complexity levels to plot.

mnsPlot = [1 round(numel(maxNumSplits)/2) numel(maxNumSplits)];
figure
for k = 1:3
    subplot(2,2,k)
    plot(squeeze(error(:,mnsPlot(k),:)),'LineWidth',2)
    axis tight
    hold on
    h = gca;
    plot(h.XLim,[errorDeep errorDeep],'-.b','LineWidth',2)
    plot(h.XLim,[errorStump errorStump],'-.r','LineWidth',2)
    plot(h.XLim,min(min(error(:,mnsPlot(k),:))).*[1 1],'--k')
    h.YLim = [0 0.2];    
    xlabel('Number of trees')
    ylabel('Cross-validated misclass. rate')
    title(sprintf('MaxNumSplits = %0.3g', maxNumSplits(mnsPlot(k))))
    hold off
end
hL = legend([cellstr(num2str(learnRate','Learning Rate = %0.2f')); ...
        'Deep Tree';'Stump';'Min. misclass. rate']);
hL.Position(1) = 0.6;
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Each curve contains a minimum cross-validated misclassification rate occurring at the optimal
number of trees in the ensemble.

Identify the maximum number of splits, number of trees, and learning rate that yields the lowest
misclassification rate overall.

[minErr,minErrIdxLin] = min(error(:));
[idxNumTrees,idxMNS,idxLR] = ind2sub(size(error),minErrIdxLin);

fprintf('\nMin. misclass. rate = %0.5f',minErr)

Min. misclass. rate = 0.05128

fprintf('\nOptimal Parameter Values:\nNum. Trees = %d',idxNumTrees);

Optimal Parameter Values:
Num. Trees = 130

fprintf('\nMaxNumSplits = %d\nLearning Rate = %0.2f\n',...
    maxNumSplits(idxMNS),learnRate(idxLR))

MaxNumSplits = 9
Learning Rate = 1.00

Create a predictive ensemble based on the optimal hyperparameters and the entire training set.

tFinal = templateTree('MaxNumSplits',maxNumSplits(idxMNS));
MdlFinal = fitcensemble(X,Y,'NumLearningCycles',idxNumTrees,...
    'Learners',tFinal,'LearnRate',learnRate(idxLR))
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MdlFinal = 
  ClassificationEnsemble
             ResponseName: 'Y'
    CategoricalPredictors: []
               ClassNames: {'b'  'g'}
           ScoreTransform: 'none'
          NumObservations: 351
               NumTrained: 130
                   Method: 'LogitBoost'
             LearnerNames: {'Tree'}
     ReasonForTermination: 'Terminated normally after completing the requested number of training cycles.'
                  FitInfo: [130×1 double]
       FitInfoDescription: {2×1 cell}

  Properties, Methods

MdlFinal is a ClassificationEnsemble. To predict whether a radar return is good given
predictor data, you can pass the predictor data and MdlFinal to predict.

Instead of searching optimal values manually by using the cross-validation option ('KFold') and the
kfoldLoss function, you can use the 'OptimizeHyperparameters' name-value pair argument.
When you specify 'OptimizeHyperparameters', the software finds optimal parameters
automatically using Bayesian optimization. The optimal values obtained by using
'OptimizeHyperparameters' can be different from those obtained using manual search.

mdl = fitcensemble(X,Y,'OptimizeHyperparameters',{'NumLearningCycles','LearnRate','MaxNumSplits'})

|====================================================================================================================|
| Iter | Eval   | Objective   | Objective   | BestSoFar   | BestSoFar   | NumLearningC-|    LearnRate | MaxNumSplits |
|      | result |             | runtime     | (observed)  | (estim.)    | ycles        |              |              |
|====================================================================================================================|
|    1 | Best   |    0.094017 |      3.7194 |    0.094017 |    0.094017 |          137 |     0.001364 |            3 |
|    2 | Accept |     0.12251 |     0.66511 |    0.094017 |    0.095735 |           15 |     0.013089 |          144 |

|    3 | Best   |    0.065527 |     0.90035 |    0.065527 |    0.067815 |           31 |      0.47201 |            2 |
|    4 | Accept |     0.19943 |      8.6107 |    0.065527 |    0.070015 |          340 |      0.92167 |            7 |
|    5 | Accept |    0.071225 |     0.90081 |    0.065527 |    0.065583 |           32 |      0.14422 |            2 |
|    6 | Accept |    0.099715 |       0.688 |    0.065527 |    0.065573 |           23 |    0.0010566 |            2 |
|    7 | Accept |     0.11681 |     0.90799 |    0.065527 |    0.065565 |           28 |    0.0010156 |          259 |
|    8 | Accept |     0.17379 |     0.82143 |    0.065527 |    0.065559 |           29 |    0.0013435 |            1 |
|    9 | Best   |    0.059829 |     0.59677 |    0.059829 |    0.059844 |           18 |      0.87865 |            3 |
|   10 | Accept |     0.11111 |     0.40132 |    0.059829 |    0.059843 |           10 |    0.0012112 |           48 |
|   11 | Accept |     0.08547 |     0.41121 |    0.059829 |    0.059842 |           10 |      0.62108 |           25 |
|   12 | Accept |     0.11681 |     0.41538 |    0.059829 |    0.059841 |           10 |    0.0012154 |           20 |
|   13 | Accept |    0.082621 |     0.46504 |    0.059829 |    0.059842 |           10 |      0.55351 |           35 |
|   14 | Accept |    0.079772 |     0.46297 |    0.059829 |     0.05984 |           11 |      0.74109 |           74 |
|   15 | Accept |    0.088319 |     0.69297 |    0.059829 |     0.05984 |           19 |      0.91106 |          347 |
|   16 | Accept |    0.062678 |      0.3637 |    0.059829 |    0.059886 |           10 |      0.97239 |            3 |
|   17 | Accept |    0.065527 |      1.9404 |    0.059829 |    0.059887 |           78 |      0.97069 |            3 |
|   18 | Accept |    0.065527 |     0.39816 |    0.059829 |    0.062228 |           11 |      0.75051 |            2 |
|   19 | Best   |    0.054131 |     0.36381 |    0.054131 |    0.059083 |           10 |      0.69072 |            3 |
|   20 | Accept |    0.065527 |     0.38429 |    0.054131 |    0.060938 |           10 |      0.64403 |            3 |
|====================================================================================================================|
| Iter | Eval   | Objective   | Objective   | BestSoFar   | BestSoFar   | NumLearningC-|    LearnRate | MaxNumSplits |
|      | result |             | runtime     | (observed)  | (estim.)    | ycles        |              |              |
|====================================================================================================================|
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|   21 | Accept |    0.079772 |     0.40405 |    0.054131 |    0.060161 |           10 |      0.80548 |           13 |
|   22 | Accept |     0.05698 |     0.37983 |    0.054131 |    0.059658 |           10 |      0.56949 |            5 |
|   23 | Accept |     0.10826 |     0.36128 |    0.054131 |    0.059244 |           10 |    0.0055133 |            5 |
|   24 | Accept |    0.074074 |     0.38056 |    0.054131 |     0.05933 |           10 |      0.92056 |            6 |
|   25 | Accept |     0.11966 |     0.35336 |    0.054131 |    0.059132 |           10 |      0.27254 |            1 |
|   26 | Accept |    0.065527 |     0.77041 |    0.054131 |    0.059859 |           26 |      0.97412 |            3 |
|   27 | Accept |    0.068376 |     0.38116 |    0.054131 |    0.060205 |           10 |      0.82146 |            4 |
|   28 | Accept |    0.062678 |     0.47015 |    0.054131 |    0.060713 |           14 |      0.99445 |            3 |
|   29 | Accept |     0.11966 |     0.41033 |    0.054131 |    0.060826 |           10 |    0.0012621 |          344 |
|   30 | Accept |     0.08547 |     0.45352 |    0.054131 |    0.060771 |           10 |      0.93676 |          187 |

__________________________________________________________
Optimization completed.
MaxObjectiveEvaluations of 30 reached.
Total function evaluations: 30
Total elapsed time: 41.5854 seconds
Total objective function evaluation time: 28.4744

Best observed feasible point:
    NumLearningCycles    LearnRate    MaxNumSplits
    _________________    _________    ____________

           10             0.69072          3      

Observed objective function value = 0.054131
Estimated objective function value = 0.061741
Function evaluation time = 0.36381
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Best estimated feasible point (according to models):
    NumLearningCycles    LearnRate    MaxNumSplits
    _________________    _________    ____________

           14             0.99445          3      

Estimated objective function value = 0.060771
Estimated function evaluation time = 0.48009

mdl = 
  ClassificationEnsemble
                         ResponseName: 'Y'
                CategoricalPredictors: []
                           ClassNames: {'b'  'g'}
                       ScoreTransform: 'none'
                      NumObservations: 351
    HyperparameterOptimizationResults: [1×1 BayesianOptimization]
                           NumTrained: 14
                               Method: 'LogitBoost'
                         LearnerNames: {'Tree'}
                 ReasonForTermination: 'Terminated normally after completing the requested number of training cycles.'
                              FitInfo: [14×1 double]
                   FitInfoDescription: {2×1 cell}

  Properties, Methods

Input Arguments
Tbl — Sample data
table

Sample data used to train the model, specified as a table. Each row of Tbl corresponds to one
observation, and each column corresponds to one predictor variable. Tbl can contain one additional
column for the response variable. Multicolumn variables and cell arrays other than cell arrays of
character vectors are not allowed.

• If Tbl contains the response variable and you want to use all remaining variables as predictors,
then specify the response variable using ResponseVarName.

• If Tbl contains the response variable, and you want to use a subset of the remaining variables
only as predictors, then specify a formula using formula.

• If Tbl does not contain the response variable, then specify the response data using Y. The length
of response variable and the number of rows of Tbl must be equal.

Note To save memory and execution time, supply X and Y instead of Tbl.

Data Types: table

ResponseVarName — Response variable name
name of response variable in Tbl
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Response variable name, specified as the name of the response variable in Tbl.

You must specify ResponseVarName as a character vector or string scalar. For example, if Tbl.Y is
the response variable, then specify ResponseVarName as 'Y'. Otherwise, fitcensemble treats all
columns of Tbl as predictor variables.

The response variable must be a categorical, character, or string array, logical or numeric vector, or
cell array of character vectors. If the response variable is a character array, then each element must
correspond to one row of the array.

For classification, you can specify the order of the classes using the ClassNames name-value pair
argument. Otherwise, fitcensemble determines the class order, and stores it in the
Mdl.ClassNames.
Data Types: char | string

formula — Explanatory model of response variable and subset of predictor variables
character vector | string scalar

Explanatory model of the response variable and a subset of the predictor variables, specified as a
character vector or string scalar in the form "Y~x1+x2+x3". In this form, Y represents the response
variable, and x1, x2, and x3 represent the predictor variables.

To specify a subset of variables in Tbl as predictors for training the model, use a formula. If you
specify a formula, then the software does not use any variables in Tbl that do not appear in
formula.

The variable names in the formula must be both variable names in Tbl
(Tbl.Properties.VariableNames) and valid MATLAB identifiers. You can verify the variable
names in Tbl by using the isvarname function. If the variable names are not valid, then you can
convert them by using the matlab.lang.makeValidName function.
Data Types: char | string

X — Predictor data
numeric matrix

Predictor data, specified as numeric matrix.

Each row corresponds to one observation, and each column corresponds to one predictor variable.

The length of Y and the number of rows of X must be equal.

To specify the names of the predictors in the order of their appearance in X, use the
PredictorNames name-value pair argument.
Data Types: single | double

Y — Response data
categorical array | character array | string array | logical vector | numeric vector | cell array of
character vectors

Response data, specified as a categorical, character, or string array, logical or numeric vector, or cell
array of character vectors. Each entry in Y is the response to or label for the observation in the
corresponding row of X or Tbl. The length of Y and the number of rows of X or Tbl must be equal. If
the response variable is a character array, then each element must correspond to one row of the
array.
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You can specify the order of the classes using the ClassNames name-value pair argument. Otherwise,
fitcensemble determines the class order, and stores it in the Mdl.ClassNames.
Data Types: categorical | char | string | logical | single | double | cell

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.

Note You cannot use any cross-validation name-value argument together with the
'OptimizeHyperparameters' name-value argument. You can modify the cross-validation for
'OptimizeHyperparameters' only by using the 'HyperparameterOptimizationOptions'
name-value argument.

Example: 'CrossVal','on','LearnRate',0.05 specifies to implement 10-fold cross-validation
and to use 0.05 as the learning rate.

General Ensemble Options

Method — Ensemble aggregation method
'Bag' | 'Subspace' | 'AdaBoostM1' | 'AdaBoostM2' | 'GentleBoost' | 'LogitBoost' |
'LPBoost' | 'RobustBoost' | 'RUSBoost' | 'TotalBoost'

Ensemble aggregation method, specified as the comma-separated pair consisting of 'Method' and
one of the following values.

Value Method Classification
Problem
Support

Related Name-Value Pair
Arguments

'Bag' Bootstrap aggregation (bagging,
for example, random forest[2])
— If 'Method' is 'Bag', then
fitcensemble uses bagging
with random predictor
selections at each split (random
forest) by default. To use
bagging without the random
selections, use tree learners
whose
'NumVariablesToSample'
value is 'all' or use
discriminant analysis learners.

Binary and
multiclass

N/A

'Subspace' Random subspace Binary and
multiclass

NPredToSample

'AdaBoostM1' Adaptive boosting Binary only LearnRate
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Value Method Classification
Problem
Support

Related Name-Value Pair
Arguments

'AdaBoostM2' Adaptive boosting Multiclass only LearnRate
'GentleBoost
'

Gentle adaptive boosting Binary only LearnRate

'LogitBoost' Adaptive logistic regression Binary only LearnRate
'LPBoost' Linear programming boosting —

Requires Optimization Toolbox
Binary and
multiclass

MarginPrecision

'RobustBoost
'

Robust boosting — Requires
Optimization Toolbox

Binary only RobustErrorGoal,
RobustMarginSigma,
RobustMaxMargin

'RUSBoost' Random undersampling
boosting

Binary and
multiclass

LearnRate,
RatioToSmallest

'TotalBoost' Totally corrective boosting —
Requires Optimization Toolbox

Binary and
multiclass

MarginPrecision

You can specify sampling options (FResample, Replace, Resample) for training data when you use
bagging ('Bag') or boosting ('TotalBoost', 'RUSBoost', 'AdaBoostM1', 'AdaBoostM2',
'GentleBoost', 'LogitBoost', 'RobustBoost', or 'LPBoost').

The defaults are:

• 'LogitBoost' for binary problems and 'AdaBoostM2' for multiclass problems if 'Learners'
includes only tree learners

• 'AdaBoostM1' for binary problems and 'AdaBoostM2' for multiclass problems if 'Learners'
includes both tree and discriminant analysis learners

• 'Subspace' if 'Learners' does not include tree learners

For details about ensemble aggregation algorithms and examples, see “Algorithms” on page 35-1998,
“Tips” on page 35-1997, “Ensemble Algorithms” on page 19-41, and “Choose an Applicable Ensemble
Aggregation Method” on page 19-34.
Example: 'Method','Bag'

NumLearningCycles — Number of ensemble learning cycles
100 (default) | positive integer | 'AllPredictorCombinations'

Number of ensemble learning cycles, specified as the comma-separated pair consisting of
'NumLearningCycles' and a positive integer or 'AllPredictorCombinations'.

• If you specify a positive integer, then, at every learning cycle, the software trains one weak learner
for every template object in Learners. Consequently, the software trains
NumLearningCycles*numel(Learners) learners.

• If you specify 'AllPredictorCombinations', then set Method to 'Subspace' and specify one
learner only for Learners. With these settings, the software trains learners for all possible
combinations of predictors taken NPredToSample at a time. Consequently, the software trains
nchoosek(size(X,2),NPredToSample) learners.

The software composes the ensemble using all trained learners and stores them in Mdl.Trained.
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For more details, see “Tips” on page 35-1997.
Example: 'NumLearningCycles',500
Data Types: single | double | char | string

Learners — Weak learners to use in ensemble
'discriminant' | 'knn' | 'tree' | weak-learner template object | cell vector of weak-learner
template objects

Weak learners to use in the ensemble, specified as the comma-separated pair consisting of
'Learners' and a weak-learner name, weak-learner template object, or cell vector of weak-learner
template objects.

Weak Learner Weak-Learner Name Template Object
Creation Function

Method Setting

Discriminant analysis 'discriminant' templateDiscrimina
nt

Recommended for
'Subspace'

k-nearest neighbors 'knn' templateKNN For 'Subspace' only
Decision tree 'tree' templateTree All methods except

'Subspace'

• Weak-learner name ('discriminant', 'knn', or 'tree') — fitcensemble uses weak learners
created by a template object creation function with default settings. For example, specifying
'Learners','discriminant' is the same as specifying
'Learners',templateDiscriminant(). See the template object creation function pages for
the default settings of a weak learner.

• Weak-learner template object — fitcensemble uses the weak learners created by a template
object creation function. Use the name-value pair arguments of the template object creation
function to specify the settings of the weak learners.

• Cell vector of m weak-learner template objects — fitcensemble grows m learners per learning
cycle (see NumLearningCycles). For example, for an ensemble composed of two types of
classification trees, supply {t1 t2}, where t1 and t2 are classification tree template objects
returned by templateTree.

The default 'Learners' value is 'knn' if 'Method' is 'Subspace'.

The default 'Learners' value is 'tree' if 'Method' is 'Bag' or any boosting method. The default
values of templateTree() depend on the value of 'Method'.

• For bagged decision trees, the maximum number of decision splits ('MaxNumSplits') is n–1,
where n is the number of observations. The number of predictors to select at random for each
split ('NumVariablesToSample') is the square root of the number of predictors. Therefore,
fitcensemble grows deep decision trees. You can grow shallower trees to reduce model
complexity or computation time.

• For boosted decision trees, 'MaxNumSplits' is 10 and 'NumVariablesToSample' is 'all'.
Therefore, fitcensemble grows shallow decision trees. You can grow deeper trees for better
accuracy.

See templateTree for the default settings of a weak learner. To obtain reproducible results, you
must specify the 'Reproducible' name-value pair argument of templateTree as true if
'NumVariablesToSample' is not 'all'.
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For details on the number of learners to train, see NumLearningCycles and “Tips” on page 35-1997.
Example: 'Learners',templateTree('MaxNumSplits',5)

NPrint — Printout frequency
'off' (default) | positive integer

Printout frequency, specified as the comma-separated pair consisting of 'NPrint' and a positive
integer or 'off'.

To track the number of weak learners or folds that fitcensemble trained so far, specify a positive
integer. That is, if you specify the positive integer m:

• Without also specifying any cross-validation option (for example, CrossVal), then fitcensemble
displays a message to the command line every time it completes training m weak learners.

• And a cross-validation option, then fitcensemble displays a message to the command line every
time it finishes training m folds.

If you specify 'off', then fitcensemble does not display a message when it completes training
weak learners.

Tip For fastest training of some boosted decision trees, set NPrint to the default value 'off'. This
tip holds when the classification Method is 'AdaBoostM1', 'AdaBoostM2', 'GentleBoost', or
'LogitBoost', or when the regression Method is 'LSBoost'.

Example: 'NPrint',5
Data Types: single | double | char | string

NumBins — Number of bins for numeric predictors
[](empty) (default) | positive integer scalar

Number of bins for numeric predictors, specified as the comma-separated pair consisting of
'NumBins' and a positive integer scalar. This argument is valid only when fitcensemble uses a
tree learner, that is, 'Learners' is either 'tree' or a template object created by using
templateTree.

• If the 'NumBins' value is empty (default), then fitcensemble does not bin any predictors.
• If you specify the 'NumBins' value as a positive integer scalar (numBins), then fitcensemble

bins every numeric predictor into at most numBins equiprobable bins, and then grows trees on
the bin indices instead of the original data.

• The number of bins can be less than numBins if a predictor has fewer than numBins unique
values.

• fitcensemble does not bin categorical predictors.

When you use a large training data set, this binning option speeds up training but might cause a
potential decrease in accuracy. You can try 'NumBins',50 first, and then change the value
depending on the accuracy and training speed.

A trained model stores the bin edges in the BinEdges property.
Example: 'NumBins',50
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Data Types: single | double

CategoricalPredictors — Categorical predictors list
vector of positive integers | logical vector | character matrix | string array | cell array of character
vectors | 'all'

Categorical predictors list, specified as one of the values in this table.

Value Description
Vector of positive
integers

Each entry in the vector is an index value indicating that the corresponding
predictor is categorical. The index values are between 1 and p, where p is
the number of predictors used to train the model.

If fitcensemble uses a subset of input variables as predictors, then the
function indexes the predictors using only the subset. The
CategoricalPredictors values do not count the response variable,
observation weights variable, or any other variables that the function does
not use.

Logical vector A true entry means that the corresponding predictor is categorical. The
length of the vector is p.

Character matrix Each row of the matrix is the name of a predictor variable. The names must
match the entries in PredictorNames. Pad the names with extra blanks
so each row of the character matrix has the same length.

String array or cell
array of character
vectors

Each element in the array is the name of a predictor variable. The names
must match the entries in PredictorNames.

"all" All predictors are categorical.

Specification of 'CategoricalPredictors' is appropriate if:

• 'Learners' specifies tree learners.
• 'Learners' specifies k-nearest learners where all predictors are categorical.

Each learner identifies and treats categorical predictors in the same way as the fitting function
corresponding to the learner. See 'CategoricalPredictors' of fitcknn for k-nearest learners
and 'CategoricalPredictors' of fitctree for tree learners.
Example: 'CategoricalPredictors','all'
Data Types: single | double | logical | char | string | cell

PredictorNames — Predictor variable names
string array of unique names | cell array of unique character vectors

Predictor variable names, specified as a string array of unique names or cell array of unique
character vectors. The functionality of PredictorNames depends on the way you supply the training
data.

• If you supply X and Y, then you can use PredictorNames to assign names to the predictor
variables in X.
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• The order of the names in PredictorNames must correspond to the column order of X. That
is, PredictorNames{1} is the name of X(:,1), PredictorNames{2} is the name of
X(:,2), and so on. Also, size(X,2) and numel(PredictorNames) must be equal.

• By default, PredictorNames is {'x1','x2',...}.
• If you supply Tbl, then you can use PredictorNames to choose which predictor variables to use

in training. That is, fitcensemble uses only the predictor variables in PredictorNames and the
response variable during training.

• PredictorNames must be a subset of Tbl.Properties.VariableNames and cannot include
the name of the response variable.

• By default, PredictorNames contains the names of all predictor variables.
• A good practice is to specify the predictors for training using either PredictorNames or

formula, but not both.

Example: "PredictorNames",
["SepalLength","SepalWidth","PetalLength","PetalWidth"]

Data Types: string | cell

ResponseName — Response variable name
"Y" (default) | character vector | string scalar

Response variable name, specified as a character vector or string scalar.

• If you supply Y, then you can use ResponseName to specify a name for the response variable.
• If you supply ResponseVarName or formula, then you cannot use ResponseName.

Example: "ResponseName","response"
Data Types: char | string

Parallel Options

Options — Options for computing in parallel and setting random numbers
structure

Options for computing in parallel and setting random numbers, specified as a structure. Create the
Options structure with statset.

Note You need Parallel Computing Toolbox to compute in parallel.

This table lists the option fields and their values.
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Field Name Value Default
UseParallel Set this value to true to

compute in parallel. Parallel
ensemble training requires you
to set the 'Method' name-value
argument to 'Bag'. Parallel
training is available only for tree
learners, the default type for
'Bag'.

false

UseSubstreams Set this value to true to run
computations in parallel in a
reproducible manner.

To compute reproducibly, set
Streams to a type that allows
substreams: 'mlfg6331_64' or
'mrg32k3a'. Also, use a tree
template with the
'Reproducible' name-value
argument set to true. See
“Reproducibility in Parallel
Statistical Computations” on
page 33-16.

false

Streams Specify this value as a
RandStream object or cell array
of such objects. Use a single
object except when the
UseParallel value is true
and the UseSubstreams value
is false. In that case, use a cell
array that has the same size as
the parallel pool.

If you do not specify Streams,
then fitcensemble uses the
default stream or streams.

For an example using reproducible parallel training, see “Train Classification Ensemble in Parallel”
on page 19-110.

For dual-core systems and above, fitcensemble parallelizes training using Intel Threading Building
Blocks (TBB). Therefore, specifying the UseParallel option as true might not provide a significant
speedup on a single computer. For details on Intel TBB, see https://www.intel.com/
content/www/us/en/developer/tools/oneapi/onetbb.html.
Example: 'Options',statset('UseParallel',true)
Data Types: struct

Cross-Validation Options

CrossVal — Cross-validation flag
'off' (default) | 'on'
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Cross-validation flag, specified as the comma-separated pair consisting of 'Crossval' and 'on' or
'off'.

If you specify 'on', then the software implements 10-fold cross-validation.

To override this cross-validation setting, use one of these name-value pair arguments: CVPartition,
Holdout, KFold, or Leaveout. To create a cross-validated model, you can use one cross-validation
name-value pair argument at a time only.

Alternatively, cross-validate later by passing Mdl to crossval or crossval.
Example: 'Crossval','on'

CVPartition — Cross-validation partition
[] (default) | cvpartition partition object

Cross-validation partition, specified as a cvpartition partition object created by cvpartition.
The partition object specifies the type of cross-validation and the indexing for the training and
validation sets.

To create a cross-validated model, you can specify only one of these four name-value arguments:
CVPartition, Holdout, KFold, or Leaveout.
Example: Suppose you create a random partition for 5-fold cross-validation on 500 observations by
using cvp = cvpartition(500,'KFold',5). Then, you can specify the cross-validated model by
using 'CVPartition',cvp.

Holdout — Fraction of data for holdout validation
scalar value in the range (0,1)

Fraction of the data used for holdout validation, specified as a scalar value in the range (0,1). If you
specify 'Holdout',p, then the software completes these steps:

1 Randomly select and reserve p*100% of the data as validation data, and train the model using
the rest of the data.

2 Store the compact, trained model in the Trained property of the cross-validated model.

To create a cross-validated model, you can specify only one of these four name-value arguments:
CVPartition, Holdout, KFold, or Leaveout.
Example: 'Holdout',0.1
Data Types: double | single

KFold — Number of folds
10 (default) | positive integer value greater than 1

Number of folds to use in a cross-validated model, specified as a positive integer value greater than 1.
If you specify 'KFold',k, then the software completes these steps:

1 Randomly partition the data into k sets.
2 For each set, reserve the set as validation data, and train the model using the other k – 1 sets.
3 Store the k compact, trained models in a k-by-1 cell vector in the Trained property of the cross-

validated model.
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To create a cross-validated model, you can specify only one of these four name-value arguments:
CVPartition, Holdout, KFold, or Leaveout.
Example: 'KFold',5
Data Types: single | double

Leaveout — Leave-one-out cross-validation flag
'off' (default) | 'on'

Leave-one-out cross-validation flag, specified as 'on' or 'off'. If you specify 'Leaveout','on',
then for each of the n observations (where n is the number of observations, excluding missing
observations, specified in the NumObservations property of the model), the software completes
these steps:

1 Reserve the one observation as validation data, and train the model using the other n – 1
observations.

2 Store the n compact, trained models in an n-by-1 cell vector in the Trained property of the
cross-validated model.

To create a cross-validated model, you can specify only one of these four name-value arguments:
CVPartition, Holdout, KFold, or Leaveout.
Example: 'Leaveout','on'

Other Classification Options

ClassNames — Names of classes to use for training
categorical array | character array | string array | logical vector | numeric vector | cell array of
character vectors

Names of classes to use for training, specified as a categorical, character, or string array; a logical or
numeric vector; or a cell array of character vectors. ClassNames must have the same data type as
the response variable in Tbl or Y.

If ClassNames is a character array, then each element must correspond to one row of the array.

Use ClassNames to:

• Specify the order of the classes during training.
• Specify the order of any input or output argument dimension that corresponds to the class order.

For example, use ClassNames to specify the order of the dimensions of Cost or the column order
of classification scores returned by predict.

• Select a subset of classes for training. For example, suppose that the set of all distinct class names
in Y is ["a","b","c"]. To train the model using observations from classes "a" and "c" only,
specify "ClassNames",["a","c"].

The default value for ClassNames is the set of all distinct class names in the response variable in
Tbl or Y.
Example: "ClassNames",["b","g"]
Data Types: categorical | char | string | logical | single | double | cell
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Cost — Misclassification cost
square matrix | structure array

Misclassification cost, specified as the comma-separated pair consisting of 'Cost' and a square
matrix or structure. If you specify:

• The square matrix Cost, then Cost(i,j) is the cost of classifying a point into class j if its true
class is i. That is, the rows correspond to the true class and the columns correspond to the
predicted class. To specify the class order for the corresponding rows and columns of Cost, also
specify the ClassNames name-value pair argument.

• The structure S, then it must have two fields:

• S.ClassNames, which contains the class names as a variable of the same data type as Y
• S.ClassificationCosts, which contains the cost matrix with rows and columns ordered as

in S.ClassNames

The default is ones(K) - eye(K), where K is the number of distinct classes.

fitcensemble uses Cost to adjust the prior class probabilities specified in Prior. Then,
fitcensemble uses the adjusted prior probabilities for training.
Example: 'Cost',[0 1 2 ; 1 0 2; 2 2 0]
Data Types: double | single | struct

Prior — Prior probabilities
'empirical' (default) | 'uniform' | numeric vector | structure array

Prior probabilities for each class, specified as the comma-separated pair consisting of 'Prior' and a
value in this table.

Value Description
'empirical' The class prior probabilities are the class relative

frequencies in Y.
'uniform' All class prior probabilities are equal to 1/K,

where K is the number of classes.
numeric vector Each element is a class prior probability. Order

the elements according to Mdl.ClassNames or
specify the order using the ClassNames name-
value pair argument. The software normalizes the
elements such that they sum to 1.

structure array A structure S with two fields:

• S.ClassNames contains the class names as a
variable of the same type as Y.

• S.ClassProbs contains a vector of
corresponding prior probabilities. The
software normalizes the elements such that
they sum to 1.

fitcensemble normalizes the prior probabilities in Prior to sum to 1.
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Example: struct('ClassNames',
{{'setosa','versicolor','virginica'}},'ClassProbs',1:3)

Data Types: char | string | double | single | struct

ScoreTransform — Score transformation
"none" (default) | "doublelogit" | "invlogit" | "ismax" | "logit" | function handle | ...

Score transformation, specified as a character vector, string scalar, or function handle.

This table summarizes the available character vectors and string scalars.

Value Description
"doublelogit" 1/(1 + e–2x)
"invlogit" log(x / (1 – x))
"ismax" Sets the score for the class with the largest score to 1,

and sets the scores for all other classes to 0
"logit" 1/(1 + e–x)
"none" or "identity" x (no transformation)
"sign" –1 for x < 0

0 for x = 0
1 for x > 0

"symmetric" 2x – 1
"symmetricismax" Sets the score for the class with the largest score to 1,

and sets the scores for all other classes to –1
"symmetriclogit" 2/(1 + e–x) – 1

For a MATLAB function or a function you define, use its function handle for the score transform. The
function handle must accept a matrix (the original scores) and return a matrix of the same size (the
transformed scores).
Example: "ScoreTransform","logit"
Data Types: char | string | function_handle

Weights — Observation weights
numeric vector of positive values | name of variable in Tbl

Observation weights, specified as the comma-separated pair consisting of 'Weights' and a numeric
vector of positive values or name of a variable in Tbl. The software weighs the observations in each
row of X or Tbl with the corresponding value in Weights. The size of Weights must equal the
number of rows of X or Tbl.

If you specify the input data as a table Tbl, then Weights can be the name of a variable in Tbl that
contains a numeric vector. In this case, you must specify Weights as a character vector or string
scalar. For example, if the weights vector W is stored as Tbl.W, then specify it as 'W'. Otherwise, the
software treats all columns of Tbl, including W, as predictors or the response when training the
model.

The software normalizes Weights to sum up to the value of the prior probability in the respective
class.
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By default, Weights is ones(n,1), where n is the number of observations in X or Tbl.
Data Types: double | single | char | string

Sampling Options for Boosting Methods and Bagging

FResample — Fraction of training set to resample
1 (default) | positive scalar in (0,1]

Fraction of the training set to resample for every weak learner, specified as a positive scalar in (0,1].
To use 'FResample', set Resample to 'on'.
Example: 'FResample',0.75
Data Types: single | double

Replace — Flag indicating to sample with replacement
'on' (default) | 'off'

Flag indicating sampling with replacement, specified as the comma-separated pair consisting of
'Replace' and 'off' or 'on'.

• For 'on', the software samples the training observations with replacement.
• For 'off', the software samples the training observations without replacement. If you set

Resample to 'on', then the software samples training observations assuming uniform weights. If
you also specify a boosting method, then the software boosts by reweighting observations.

Unless you set Method to 'bag' or set Resample to 'on', Replace has no effect.
Example: 'Replace','off'

Resample — Flag indicating to resample
'off' | 'on'

Flag indicating to resample, specified as the comma-separated pair consisting of 'Resample' and
'off' or 'on'.

• If Method is a boosting method, then:

• 'Resample','on' specifies to sample training observations using updated weights as the
multinomial sampling probabilities.

• 'Resample','off'(default) specifies to reweight observations at every learning iteration.
• If Method is 'bag', then 'Resample' must be 'on'. The software resamples a fraction of the

training observations (see FResample) with or without replacement (see Replace).

If you specify to resample using Resample, then it is good practice to resample to entire data set.
That is, use the default setting of 1 for FResample.

AdaBoostM1, AdaBoostM2, LogitBoost, and GentleBoost Method Options

LearnRate — Learning rate for shrinkage
1 (default) | numeric scalar in (0,1]
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Learning rate for shrinkage, specified as the comma-separated pair consisting of 'LearnRate' and a
numeric scalar in the interval (0,1].

To train an ensemble using shrinkage, set LearnRate to a value less than 1, for example, 0.1 is a
popular choice. Training an ensemble using shrinkage requires more learning iterations, but often
achieves better accuracy.
Example: 'LearnRate',0.1
Data Types: single | double

RUSBoost Method Options

LearnRate — Learning rate for shrinkage
1 (default) | numeric scalar in (0,1]

Learning rate for shrinkage, specified as the comma-separated pair consisting of 'LearnRate' and a
numeric scalar in the interval (0,1].

To train an ensemble using shrinkage, set LearnRate to a value less than 1, for example, 0.1 is a
popular choice. Training an ensemble using shrinkage requires more learning iterations, but often
achieves better accuracy.
Example: 'LearnRate',0.1
Data Types: single | double

RatioToSmallest — Sampling proportion with respect to lowest-represented class
positive numeric scalar | numeric vector of positive values

Sampling proportion with respect to the lowest-represented class, specified as the comma-separated
pair consisting of 'RatioToSmallest' and a numeric scalar or numeric vector of positive values
with length equal to the number of distinct classes in the training data.

Suppose that there are K classes in the training data and the lowest-represented class has m
observations in the training data.

• If you specify the positive numeric scalar s, then fitcensemble samples s*m observations from
each class, that is, it uses the same sampling proportion for each class. For more details, see
“Algorithms” on page 35-2653.

• If you specify the numeric vector [s1,s2,...,sK], then fitcensemble samples si*m
observations from class i, i = 1,...,K. The elements of RatioToSmallest correspond to the order
of the class names specified using ClassNames (see “Tips” on page 35-2652).

The default value is ones(K,1), which specifies to sample m observations from each class.
Example: 'RatioToSmallest',[2,1]
Data Types: single | double

LPBoost and TotalBoost Method Options

MarginPrecision — Margin precision to control convergence speed
0.1 (default) | numeric scalar in [0,1]
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Margin precision to control convergence speed, specified as the comma-separated pair consisting of
'MarginPrecision' and a numeric scalar in the interval [0,1]. MarginPrecision affects the
number of boosting iterations required for convergence.

Tip To train an ensemble using many learners, specify a small value for MarginPrecision. For
training using a few learners, specify a large value.

Example: 'MarginPrecision',0.5
Data Types: single | double

RobustBoost Method Options

RobustErrorGoal — Target classification error
0.1 (default) | nonnegative numeric scalar

Target classification error, specified as the comma-separated pair consisting of 'RobustErrorGoal'
and a nonnegative numeric scalar. The upper bound on possible values depends on the values of
RobustMarginSigma and RobustMaxMargin. However, the upper bound cannot exceed 1.

Tip For a particular training set, usually there is an optimal range for RobustErrorGoal. If you set
it too low or too high, then the software can produce a model with poor classification accuracy. Try
cross-validating to search for the appropriate value.

Example: 'RobustErrorGoal',0.05
Data Types: single | double

RobustMarginSigma — Classification margin distribution spread
0.1 (default) | positive numeric scalar

Classification margin distribution spread over the training data, specified as the comma-separated
pair consisting of 'RobustMarginSigma' and a positive numeric scalar. Before specifying
RobustMarginSigma, consult the literature on RobustBoost, for example, [19].
Example: 'RobustMarginSigma',0.5
Data Types: single | double

RobustMaxMargin — Maximal classification margin
0 (default) | nonnegative numeric scalar

Maximal classification margin in the training data, specified as the comma-separated pair consisting
of 'RobustMaxMargin' and a nonnegative numeric scalar. The software minimizes the number of
observations in the training data having classification margins below RobustMaxMargin.
Example: 'RobustMaxMargin',1
Data Types: single | double

 fitcensemble

35-1991



Random Subspace Method Options

NPredToSample — Number of predictors to sample
1 (default) | positive integer

Number of predictors to sample for each random subspace learner, specified as the comma-separated
pair consisting of 'NPredToSample' and a positive integer in the interval 1,...,p, where p is the
number of predictor variables (size(X,2) or size(Tbl,2)).
Data Types: single | double

Hyperparameter Optimization Options

OptimizeHyperparameters — Parameters to optimize
'none' (default) | 'auto' | 'all' | string array or cell array of eligible parameter names | vector of
optimizableVariable objects

Parameters to optimize, specified as the comma-separated pair consisting of
'OptimizeHyperparameters' and one of the following:

• 'none' — Do not optimize.
• 'auto' — Use {'Method','NumLearningCycles','LearnRate'} along with the default

parameters for the specified Learners:

• Learners = 'tree' (default) — {'MinLeafSize'}
• Learners = 'discriminant' — {'Delta','Gamma'}
• Learners = 'knn' — {'Distance','NumNeighbors'}

Note For hyperparameter optimization, Learners must be a single argument, not a string array
or cell array.

• 'all' — Optimize all eligible parameters.
• String array or cell array of eligible parameter names
• Vector of optimizableVariable objects, typically the output of hyperparameters

The optimization attempts to minimize the cross-validation loss (error) for fitcensemble by varying
the parameters. For information about cross-validation loss (albeit in a different context), see
“Classification Loss” on page 35-3870. To control the cross-validation type and other aspects of the
optimization, use the HyperparameterOptimizationOptions name-value pair.

Note The values of 'OptimizeHyperparameters' override any values you specify using other
name-value arguments. For example, setting 'OptimizeHyperparameters' to 'auto' causes
fitcensemble to optimize hyperparameters corresponding to the 'auto' option and to ignore any
specified values for the hyperparameters.

The eligible parameters for fitcensemble are:

• Method — Depends on the number of classes.

• Two classes — Eligible methods are 'Bag', 'GentleBoost', 'LogitBoost',
'AdaBoostM1', and 'RUSBoost'.
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• Three or more classes — Eligible methods are 'Bag', 'AdaBoostM2', and 'RUSBoost'.
• NumLearningCycles — fitcensemble searches among positive integers, by default log-scaled

with range [10,500].
• LearnRate — fitcensemble searches among positive reals, by default log-scaled with range

[1e-3,1].
• The eligible hyperparameters for the chosen Learners:

Learners Eligible Hyperparameters
Bold = Used By Default

Default Range

'discriminant
'

Delta Log-scaled in the range [1e-6,1e3]
DiscrimType 'linear', 'quadratic',

'diagLinear', 'diagQuadratic',
'pseudoLinear', and
'pseudoQuadratic'

Gamma Real values in [0,1]
'knn' Distance 'cityblock', 'chebychev',

'correlation', 'cosine',
'euclidean', 'hamming',
'jaccard', 'mahalanobis',
'minkowski', 'seuclidean', and
'spearman'

DistanceWeight 'equal', 'inverse', and
'squaredinverse'

Exponent Positive values in [0.5,3]
NumNeighbors Positive integer values log-scaled in the

range [1,
max(2,round(NumObservations/
2))]

Standardize 'true' and 'false'
'tree' MaxNumSplits Integers log-scaled in the range

[1,max(2,NumObservations-1)]
MinLeafSize Integers log-scaled in the range

[1,max(2,floor(NumObservations/
2))]

NumVariablesToSample Integers in the range
[1,max(2,NumPredictors)]

SplitCriterion 'gdi', 'deviance', and 'twoing'

Alternatively, use hyperparameters with your chosen Learners. Note that you must specify the
predictor data and response when creating an optimizableVariable object.

load fisheriris
params = hyperparameters('fitcensemble',meas,species,'Tree');

To see the eligible and default hyperparameters, examine params.

Set nondefault parameters by passing a vector of optimizableVariable objects that have
nondefault values. For example,
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load fisheriris
params = hyperparameters('fitcensemble',meas,species,'Tree');
params(4).Range = [1,30];

Pass params as the value of OptimizeHyperparameters.

By default, the iterative display appears at the command line, and plots appear according to the
number of hyperparameters in the optimization. For the optimization and plots, the objective function
is the misclassification rate. To control the iterative display, set the Verbose field of the
'HyperparameterOptimizationOptions' name-value argument. To control the plots, set the
ShowPlots field of the 'HyperparameterOptimizationOptions' name-value argument.

For an example, see “Optimize Classification Ensemble” on page 35-1968.
Example: 'OptimizeHyperparameters',
{'Method','NumLearningCycles','LearnRate','MinLeafSize','MaxNumSplits'}

HyperparameterOptimizationOptions — Options for optimization
structure

Options for optimization, specified as a structure. This argument modifies the effect of the
OptimizeHyperparameters name-value argument. All fields in the structure are optional.

Field Name Values Default
Optimizer • 'bayesopt' — Use Bayesian optimization.

Internally, this setting calls bayesopt.
• 'gridsearch' — Use grid search with

NumGridDivisions values per dimension.
• 'randomsearch' — Search at random among

MaxObjectiveEvaluations points.

'gridsearch' searches in a random order, using
uniform sampling without replacement from the
grid. After optimization, you can get a table in grid
order by using the command
sortrows(Mdl.HyperparameterOptimizatio
nResults).

'bayesopt'
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Field Name Values Default
AcquisitionFunct
ionName

• 'expected-improvement-per-second-
plus'

• 'expected-improvement'
• 'expected-improvement-plus'
• 'expected-improvement-per-second'
• 'lower-confidence-bound'
• 'probability-of-improvement'

Acquisition functions whose names include per-
second do not yield reproducible results because
the optimization depends on the runtime of the
objective function. Acquisition functions whose
names include plus modify their behavior when
they are overexploiting an area. For more details,
see “Acquisition Function Types” on page 10-3.

'expected-
improvement-per-
second-plus'

MaxObjectiveEval
uations

Maximum number of objective function
evaluations.

30 for 'bayesopt' and
'randomsearch', and
the entire grid for
'gridsearch'

MaxTime Time limit, specified as a positive real scalar. The
time limit is in seconds, as measured by tic and
toc. The run time can exceed MaxTime because
MaxTime does not interrupt function evaluations.

Inf

NumGridDivisions For 'gridsearch', the number of values in each
dimension. The value can be a vector of positive
integers giving the number of values for each
dimension, or a scalar that applies to all
dimensions. This field is ignored for categorical
variables.

10

ShowPlots Logical value indicating whether to show plots. If
true, this field plots the best observed objective
function value against the iteration number. If you
use Bayesian optimization (Optimizer is
'bayesopt'), then this field also plots the best
estimated objective function value. The best
observed objective function values and best
estimated objective function values correspond to
the values in the BestSoFar (observed) and
BestSoFar (estim.) columns of the iterative
display, respectively. You can find these values in
the properties ObjectiveMinimumTrace and
EstimatedObjectiveMinimumTrace of
Mdl.HyperparameterOptimizationResults.
If the problem includes one or two optimization
parameters for Bayesian optimization, then
ShowPlots also plots a model of the objective
function against the parameters.

true
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Field Name Values Default
SaveIntermediate
Results

Logical value indicating whether to save results
when Optimizer is 'bayesopt'. If true, this
field overwrites a workspace variable named
'BayesoptResults' at each iteration. The
variable is a BayesianOptimization object.

false

Verbose Display at the command line:

• 0 — No iterative display
• 1 — Iterative display
• 2 — Iterative display with extra information

For details, see the bayesopt Verbose name-
value argument and the example “Optimize
Classifier Fit Using Bayesian Optimization” on
page 10-56.

1

UseParallel Logical value indicating whether to run Bayesian
optimization in parallel, which requires Parallel
Computing Toolbox. Due to the nonreproducibility
of parallel timing, parallel Bayesian optimization
does not necessarily yield reproducible results. For
details, see “Parallel Bayesian Optimization” on
page 10-7.

false

Repartition Logical value indicating whether to repartition the
cross-validation at every iteration. If this field is
false, the optimizer uses a single partition for
the optimization.

The setting true usually gives the most robust
results because it takes partitioning noise into
account. However, for good results, true requires
at least twice as many function evaluations.

false

Use no more than one of the following three options.
CVPartition A cvpartition object, as created by

cvpartition
'Kfold',5 if you do not
specify a cross-validation
fieldHoldout A scalar in the range (0,1) representing the

holdout fraction
Kfold An integer greater than 1

Example:
'HyperparameterOptimizationOptions',struct('MaxObjectiveEvaluations',60)

Data Types: struct

Output Arguments
Mdl — Trained classification ensemble model
ClassificationBaggedEnsemble model object | ClassificationEnsemble model object |
ClassificationPartitionedEnsemble cross-validated model object
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Trained ensemble model, returned as one of the model objects in this table.

Model Object Specify Any Cross-
Validation Options?

Method Setting Resample Setting

ClassificationBagged
Ensemble

No 'Bag' 'on'

ClassificationEnsemb
le

No Any ensemble aggregation
method for classification

'off'

ClassificationPartit
ionedEnsemble

Yes Any ensemble aggregation
method for classification

'off' or 'on'

The name-value pair arguments that control cross-validation are CrossVal, Holdout, KFold,
Leaveout, and CVPartition.

To reference properties of Mdl, use dot notation. For example, to access or display the cell vector of
weak learner model objects for an ensemble that has not been cross-validated, enter Mdl.Trained at
the command line.

Tips
• NumLearningCycles can vary from a few dozen to a few thousand. Usually, an ensemble with

good predictive power requires from a few hundred to a few thousand weak learners. However,
you do not have to train an ensemble for that many cycles at once. You can start by growing a few
dozen learners, inspect the ensemble performance and then, if necessary, train more weak
learners using resume for classification problems.

• Ensemble performance depends on the ensemble setting and the setting of the weak learners.
That is, if you specify weak learners with default parameters, then the ensemble can perform
poorly. Therefore, like ensemble settings, it is good practice to adjust the parameters of the weak
learners using templates, and to choose values that minimize generalization error.

• If you specify to resample using Resample, then it is good practice to resample to entire data set.
That is, use the default setting of 1 for FResample.

• If the ensemble aggregation method (Method) is 'bag' and:

• The misclassification cost (Cost) is highly imbalanced, then, for in-bag samples, the software
oversamples unique observations from the class that has a large penalty.

• The class prior probabilities (Prior) are highly skewed, the software oversamples unique
observations from the class that has a large prior probability.

For smaller sample sizes, these combinations can result in a low relative frequency of out-of-bag
observations from the class that has a large penalty or prior probability. Consequently, the
estimated out-of-bag error is highly variable and it can be difficult to interpret. To avoid large
estimated out-of-bag error variances, particularly for small sample sizes, set a more balanced
misclassification cost matrix using Cost or a less skewed prior probability vector using Prior.

• Because the order of some input and output arguments correspond to the distinct classes in the
training data, it is good practice to specify the class order using the ClassNames name-value pair
argument.

• To determine the class order quickly, remove all observations from the training data that are
unclassified (that is, have a missing label), obtain and display an array of all the distinct
classes, and then specify the array for ClassNames. For example, suppose the response
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variable (Y) is a cell array of labels. This code specifies the class order in the variable
classNames.

Ycat = categorical(Y);
classNames = categories(Ycat)

categorical assigns <undefined> to unclassified observations and categories excludes
<undefined> from its output. Therefore, if you use this code for cell arrays of labels or similar
code for categorical arrays, then you do not have to remove observations with missing labels to
obtain a list of the distinct classes.

• To specify that the class order from lowest-represented label to most-represented, then quickly
determine the class order (as in the previous bullet), but arrange the classes in the list by
frequency before passing the list to ClassNames. Following from the previous example, this
code specifies the class order from lowest- to most-represented in classNamesLH.

Ycat = categorical(Y);
classNames = categories(Ycat);
freq = countcats(Ycat);
[~,idx] = sort(freq);
classNamesLH = classNames(idx);

• After training a model, you can generate C/C++ code that predicts labels for new data.
Generating C/C++ code requires MATLAB Coder. For details, see “Introduction to Code
Generation” on page 34-2.

Algorithms
• For details of ensemble aggregation algorithms, see “Ensemble Algorithms” on page 19-41.
• If you set Method to be a boosting algorithm and Learners to be decision trees, then the

software grows shallow decision trees by default. You can adjust tree depth by specifying the
MaxNumSplits, MinLeafSize, and MinParentSize name-value pair arguments using
templateTree.

• If you specify the Cost, Prior, and Weights name-value arguments, the output model object
stores the specified values in the Cost, Prior, and W properties, respectively. The Cost property
stores the user-specified cost matrix (C) without modification. The Prior and W properties store
the prior probabilities and observation weights, respectively, after normalization. For model
training, the software updates the prior probabilities and observation weights to incorporate the
penalties described in the cost matrix. For details, see “Misclassification Cost Matrix, Prior
Probabilities, and Observation Weights” on page 19-8.

• For bagging ('Method','Bag'), fitcensemble generates in-bag samples by oversampling
classes with large misclassification costs and undersampling classes with small misclassification
costs. Consequently, out-of-bag samples have fewer observations from classes with large
misclassification costs and more observations from classes with small misclassification costs. If
you train a classification ensemble using a small data set and a highly skewed cost matrix, then
the number of out-of-bag observations per class can be low. Therefore, the estimated out-of-bag
error can have a large variance and can be difficult to interpret. The same phenomenon can occur
for classes with large prior probabilities.

• For the RUSBoost ensemble aggregation method ('Method','RUSBoost'), the name-value pair
argument RatioToSmallest specifies the sampling proportion for each class with respect to the
lowest-represented class. For example, suppose that there are two classes in the training data: A
and B. A has 100 observations and B has 10 observations. Suppose also that the lowest-
represented class has m observations in the training data.
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• If you set 'RatioToSmallest',2, then s*m = 2*10 = 20. Consequently, fitcensemble
trains every learner using 20 observations from class A and 20 observations from class B. If
you set 'RatioToSmallest',[2 2], then you obtain the same result.

• If you set 'RatioToSmallest',[2,1], then s1*m = 2*10 = 20 and s2*m = 1*10 = 10.
Consequently, fitcensemble trains every learner using 20 observations from class A and 10
observations from class B.

• For dual-core systems and above, fitcensemble parallelizes training using Intel Threading
Building Blocks (TBB). For details on Intel TBB, see https://www.intel.com/content/www/us/en/
developer/tools/oneapi/onetbb.html.

Version History
Introduced in R2016b
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Extended Capabilities
Automatic Parallel Support
Accelerate code by automatically running computation in parallel using Parallel Computing Toolbox™.
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fitcensemble supports parallel training using the 'Options' name-value argument. Create
options using statset, such as options = statset('UseParallel',true). Parallel ensemble
training requires you to set the 'Method' name-value argument to 'Bag'. Parallel training is
available only for tree learners, the default type for 'Bag'.

To perform parallel hyperparameter optimization, use the
'HyperparameterOptimizationOptions', struct('UseParallel',true) name-value
argument in the call to the fitcensemble function.

For more information on parallel hyperparameter optimization, see “Parallel Bayesian Optimization”
on page 10-7.

For general information about parallel computing, see “Run MATLAB Functions with Automatic
Parallel Support” (Parallel Computing Toolbox).

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

Usage notes and limitations:

• fitcensemble supports only decision tree learners. You can specify the name-value argument
Learners only as "tree", a learner template object or cell vector of learner template objects
created by templateTree. If you use templateTree, you can specify the name-value arguments
Surrogate and PredictorSelection only as "off" and "allsplits", respectively.

• You can specify the name-value argument Method only as "AdaBoostM1", "AdaBoostM2",
"GentleBoost", "LogitBoost", or "RUSBoost".

• You cannot specify the name-value argument NPredToSample.
• If you use templateTree and the data contains categorical predictors, the following apply:

• For multiclass classification, fitcensemble supports only the OVAbyClass algorithm for
finding the best split.

• You can specify the name-value argument NumVariablesToSample only as "all".
• fitcensemble fits the model on a GPU if either of the following apply:

• The input argument X is a gpuArray object.
• The input argument Tbl contains gpuArray predictor variables.

• If you use templateTree to specify MaxNumSplits, note that fitcensemble might not execute
faster on a GPU than a CPU for deeper decision trees.

See Also
ClassificationEnsemble | ClassificationBaggedEnsemble |
ClassificationPartitionedEnsemble | templateDiscriminant | templateKNN |
templateTree | predict

Topics
“Supervised Learning Workflow and Algorithms” on page 19-2
“Framework for Ensemble Learning” on page 19-33
“Ensemble Algorithms” on page 19-41
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fitcgam
Fit generalized additive model (GAM) for binary classification

Syntax
Mdl = fitcgam(Tbl,ResponseVarName)
Mdl = fitcgam(Tbl,formula)
Mdl = fitcgam(Tbl,Y)
Mdl = fitcgam(X,Y)
Mdl = fitcgam( ___ ,Name,Value)

Description
Mdl = fitcgam(Tbl,ResponseVarName) returns a generalized additive model on page 35-2031
Mdl trained using the sample data contained in the table Tbl. The input argument
ResponseVarName is the name of the variable in Tbl that contains the class labels for binary
classification.

Mdl = fitcgam(Tbl,formula) uses the model specification argument formula to specify the
class labels and predictor variables in Tbl. You can specify a subset of predictor variables and
interaction terms for predictor variables by using formula.

Mdl = fitcgam(Tbl,Y) uses the predictor variables in the table Tbl and the class labels in the
vector Y.

Mdl = fitcgam(X,Y) uses the predictors in the matrix X and the class labels in the vector Y.

Mdl = fitcgam( ___ ,Name,Value) specifies options using one or more name-value arguments in
addition to any of the input argument combinations in the previous syntaxes. For example,
'Interactions',5 specifies to include five interaction terms in the model. You can also specify a
list of interaction terms using the Interactions name-value argument.

Examples

Train Generalized Additive Model

Train a univariate generalized additive model, which contains linear terms for predictors. Then,
interpret the prediction for a specified data instance by using the plotLocalEffects function.

Load the ionosphere data set. This data set has 34 predictors and 351 binary responses for radar
returns, either bad ('b') or good ('g').

load ionosphere

Train a univariate GAM that identifies whether the radar return is bad ('b') or good ('g').

Mdl = fitcgam(X,Y)

Mdl = 
  ClassificationGAM
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             ResponseName: 'Y'
    CategoricalPredictors: []
               ClassNames: {'b'  'g'}
           ScoreTransform: 'logit'
                Intercept: 2.2715
          NumObservations: 351

  Properties, Methods

Mdl is a ClassificationGAM model object. The model display shows a partial list of the model
properties. To view the full list of properties, double-click the variable name Mdl in the Workspace.
The Variables editor opens for Mdl. Alternatively, you can display the properties in the Command
Window by using dot notation. For example, display the class order of Mdl.

classOrder = Mdl.ClassNames

classOrder = 2x1 cell
    {'b'}
    {'g'}

Classify the first observation of the training data, and plot the local effects of the terms in Mdl on the
prediction.

label = predict(Mdl,X(1,:))

label = 1x1 cell array
    {'g'}

plotLocalEffects(Mdl,X(1,:))
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The predict function classifies the first observation X(1,:) as 'g'. The plotLocalEffects
function creates a horizontal bar graph that shows the local effects of the 10 most important terms on
the prediction. Each local effect value shows the contribution of each term to the classification score
for 'g', which is the logit of the posterior probability that the classification is 'g' for the
observation.

Train GAM with Interaction Terms

Train a generalized additive model that contains linear and interaction terms for predictors in three
different ways:

• Specify the interaction terms using the formula input argument.
• Specify the 'Interactions' name-value argument.
• Build a model with linear terms first and add interaction terms to the model by using the

addInteractions function.

Load Fisher's iris data set. Create a table that contains observations for versicolor and virginica.

load fisheriris
inds = strcmp(species,'versicolor') | strcmp(species,'virginica');
tbl = array2table(meas(inds,:),'VariableNames',["x1","x2","x3","x4"]);
tbl.Y = species(inds,:);
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Specify formula

Train a GAM that contains the four linear terms (x1, x2, x3, and x4) and two interaction terms
(x1*x2 and x2*x3). Specify the terms using a formula in the form 'Y ~ terms'.

Mdl1 = fitcgam(tbl,'Y ~ x1 + x2 + x3 + x4 + x1:x2 + x2:x3');

The function adds interaction terms to the model in the order of importance. You can use the
Interactions property to check the interaction terms in the model and the order in which fitcgam
adds them to the model. Display the Interactions property.

Mdl1.Interactions

ans = 2×2

     2     3
     1     2

Each row of Interactions represents one interaction term and contains the column indexes of the
predictor variables for the interaction term.

Specify 'Interactions'

Pass the training data (tbl) and the name of the response variable in tbl to fitcgam, so that the
function includes the linear terms for all the other variables as predictors. Specify the
'Interactions' name-value argument using a logical matrix to include the two interaction terms,
x1*x2 and x2*x3.

Mdl2 = fitcgam(tbl,'Y','Interactions',logical([1 1 0 0; 0 1 1 0]));
Mdl2.Interactions

ans = 2×2

     2     3
     1     2

You can also specify 'Interactions' as the number of interaction terms or as 'all' to include all
available interaction terms. Among the specified interaction terms, fitcgam identifies those whose p-
values are not greater than the 'MaxPValue' value and adds them to the model. The default
'MaxPValue' is 1 so that the function adds all specified interaction terms to the model.

Specify 'Interactions','all' and set the 'MaxPValue' name-value argument to 0.01.

Mdl3 = fitcgam(tbl,'Y','Interactions','all','MaxPValue',0.01);
Mdl3.Interactions

ans = 5×2

     3     4
     2     4
     1     4
     2     3
     1     3

Mdl3 includes five of the six available pairs of interaction terms.
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Use addInteractions Function

Train a univariate GAM that contains linear terms for predictors, and then add interaction terms to
the trained model by using the addInteractions function. Specify the second input argument of
addInteractions in the same way you specify the 'Interactions' name-value argument of
fitcgam. You can specify the list of interaction terms using a logical matrix, the number of
interaction terms, or 'all'.

Specify the number of interaction terms as 5 to add the five most important interaction terms to the
trained model.

Mdl4 = fitcgam(tbl,'Y');
UpdatedMdl4 = addInteractions(Mdl4,5);
UpdatedMdl4.Interactions

ans = 5×2

     3     4
     2     4
     1     4
     2     3
     1     3

Mdl4 is a univariate GAM, and UpdatedMdl4 is an updated GAM that contains all the terms in Mdl4
and five additional interaction terms.

Create Cross-Validated GAM Using fitcgam

Train a cross-validated GAM with 10 folds, which is the default cross-validation option, by using
fitcgam. Then, use kfoldPredict to predict class labels for validation-fold observations using a
model trained on training-fold observations.

Load the ionosphere data set. This data set has 34 predictors and 351 binary responses for radar
returns, either bad ('b') or good ('g').

load ionosphere

Create a cross-validated GAM by using the default cross-validation option. Specify the 'CrossVal'
name-value argument as 'on'.

rng('default') % For reproducibility
CVMdl = fitcgam(X,Y,'CrossVal','on')

CVMdl = 
  ClassificationPartitionedGAM
    CrossValidatedModel: 'GAM'
         PredictorNames: {1x34 cell}
           ResponseName: 'Y'
        NumObservations: 351
                  KFold: 10
              Partition: [1x1 cvpartition]
      NumTrainedPerFold: [1x1 struct]
             ClassNames: {'b'  'g'}
         ScoreTransform: 'logit'
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  Properties, Methods

The fitcgam function creates a ClassificationPartitionedGAM model object CVMdl with 10
folds. During cross-validation, the software completes these steps:

1 Randomly partition the data into 10 sets.
2 For each set, reserve the set as validation data, and train the model using the other 9 sets.
3 Store the 10 compact, trained models in a 10-by-1 cell vector in the Trained property of the

cross-validated model object ClassificationPartitionedGAM.

You can override the default cross-validation setting by using the 'CVPartition', 'Holdout',
'KFold', or 'Leaveout' name-value argument.

Classify the observations in X by using kfoldPredict. The function predicts class labels for every
observation using the model trained without that observation.

label = kfoldPredict(CVMdl);

Create a confusion matrix to compare the true classes of the observations to their predicted labels.

C = confusionchart(Y,label);

Compute the classification error.
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L = kfoldLoss(CVMdl)

L = 0.0712

The average misclassification rate over 10 folds is about 7%.

Optimize GAM Using OptimizeHyperparameters

Optimize the hyperparameters of a GAM with respect to cross-validation loss by using the
“OptimizeHyperparameters” on page 35-0  name-value argument.

Load the 1994 census data stored in census1994.mat. The data set consists of demographic data
from the US Census Bureau to predict whether an individual makes over $50,000 per year. The
classification task is to fit a model that predicts the salary category of people given their age, working
class, education level, marital status, race, and so on.

load census1994

census1994 contains the training data set adultdata and the test data set adulttest. To reduce
the running time for this example, subsample 500 training observations and 500 test observations by
using the datasample function.

rng('default')
NumSamples = 5e2;
adultdata = datasample(adultdata,NumSamples,'Replace',false);
adulttest = datasample(adulttest,NumSamples,'Replace',false);

Train a GAM classifier by passing the training data adultdata to the fitcgam function, and include
the OptimizeHyperparameters argument. Specify OptimizeHyperparameters as 'auto' so
that fitcgam finds optimal values of InitialLearnRateForPredictors,
NumTreesPerPredictor, Interactions, InitialLearnRateForInteractions, and
NumTreesPerInteraction. For reproducibility, choose the 'expected-improvement-plus'
acquisition function. The default acquisition function depends on run time and, therefore, can give
varying results.

Mdl = fitcgam(adultdata,'salary','OptimizeHyperparameters','auto', ...
    'HyperparameterOptimizationOptions', ...
    struct('AcquisitionFunctionName','expected-improvement-plus'))

|==========================================================================================================================================================|
| Iter | Eval   | Objective   | Objective   | BestSoFar   | BestSoFar   | InitialLearnRate-| NumTreesPerP-| Interactions | InitialLearnRate-| NumTreesPerI-|
|      | result |             | runtime     | (observed)  | (estim.)    | ForPredictors    | redictor     |              | ForInteractions  | nteraction   |
|==========================================================================================================================================================|
|    1 | Best   |       0.148 |      11.721 |       0.148 |       0.148 |         0.001555 |          356 |            5 |         0.068117 |           16 |
|    2 | Accept |       0.182 |     0.88258 |       0.148 |     0.14977 |          0.94993 |           25 |            0 |                - |            - |
|    3 | Accept |       0.174 |      0.5938 |       0.148 |       0.148 |         0.016784 |           11 |            3 |          0.12025 |           12 |
|    4 | Accept |       0.176 |      10.466 |       0.148 |       0.148 |          0.14207 |          179 |           71 |        0.0020629 |           22 |
|    5 | Accept |       0.176 |      9.6859 |       0.148 |      0.1502 |        0.0010025 |          104 |           12 |        0.0052651 |          178 |
|    6 | Accept |       0.152 |       9.212 |       0.148 |     0.15035 |        0.0017566 |          323 |            4 |         0.079281 |           16 |
|    7 | Accept |       0.166 |      16.319 |       0.148 |     0.14801 |        0.0011656 |          497 |           10 |          0.17479 |           92 |
|    8 | Accept |       0.172 |       10.99 |       0.148 |     0.14914 |        0.0014435 |          397 |            0 |                - |            - |
|    9 | Accept |        0.16 |        11.9 |       0.148 |     0.14801 |        0.0016398 |          432 |            2 |         0.045129 |           11 |
|   10 | Accept |       0.172 |       4.414 |       0.148 |     0.14855 |        0.0013589 |          146 |            9 |         0.065204 |           12 |
|   11 | Accept |       0.156 |      10.724 |       0.148 |     0.14911 |         0.002082 |          368 |            7 |        0.0011513 |           12 |
|   12 | Accept |       0.178 |      11.031 |       0.148 |     0.14801 |          0.13309 |          360 |            6 |          0.67104 |           13 |
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|   13 | Accept |       0.154 |      11.475 |       0.148 |     0.15192 |        0.0014287 |          380 |            5 |         0.027919 |           18 |
|   14 | Accept |       0.164 |      10.497 |       0.148 |     0.15151 |        0.0015368 |          318 |            5 |         0.022401 |           93 |
|   15 | Best   |       0.144 |      9.6966 |       0.144 |     0.14515 |        0.0020403 |          331 |            8 |          0.12167 |           11 |
|   16 | Accept |       0.168 |      9.6039 |       0.144 |     0.14401 |        0.0016201 |          329 |           10 |          0.74319 |           12 |
|   17 | Accept |        0.16 |      9.0822 |       0.144 |      0.1526 |         0.002317 |          313 |            9 |         0.093554 |           18 |
|   18 | Accept |       0.158 |      9.8266 |       0.144 |     0.15425 |        0.0016865 |          331 |            5 |         0.023535 |           11 |
|   19 | Accept |       0.146 |      11.464 |       0.144 |     0.15096 |        0.0019238 |          386 |            6 |         0.043578 |           14 |
|   20 | Accept |       0.156 |      11.165 |       0.144 |     0.15234 |        0.0023502 |          385 |            6 |         0.063029 |           11 |
|==========================================================================================================================================================|
| Iter | Eval   | Objective   | Objective   | BestSoFar   | BestSoFar   | InitialLearnRate-| NumTreesPerP-| Interactions | InitialLearnRate-| NumTreesPerI-|
|      | result |             | runtime     | (observed)  | (estim.)    | ForPredictors    | redictor     |              | ForInteractions  | nteraction   |
|==========================================================================================================================================================|
|   21 | Accept |       0.146 |      11.203 |       0.144 |     0.15105 |        0.0023381 |          383 |            6 |         0.042149 |           21 |
|   22 | Best   |       0.142 |      11.922 |       0.142 |     0.14959 |        0.0024173 |          400 |            7 |         0.022884 |           18 |
|   23 | Accept |       0.152 |      13.325 |       0.142 |     0.14972 |        0.0017718 |          443 |            8 |         0.022974 |           18 |
|   24 | Best   |        0.14 |      12.785 |        0.14 |     0.14681 |        0.0032302 |          417 |            7 |          0.01295 |           23 |
|   25 | Accept |       0.148 |      11.121 |        0.14 |     0.14672 |        0.0043102 |          371 |            6 |         0.016624 |           27 |
|   26 | Accept |        0.14 |      11.871 |        0.14 |     0.14433 |        0.0029528 |          410 |            6 |         0.011766 |           25 |
|   27 | Accept |        0.15 |      13.058 |        0.14 |     0.14441 |        0.0038288 |          455 |            6 |         0.038686 |           14 |
|   28 | Accept |       0.144 |      13.992 |        0.14 |     0.14374 |        0.0030969 |          471 |            7 |        0.0093565 |           39 |
|   29 | Accept |       0.144 |      14.149 |        0.14 |     0.14331 |        0.0033063 |          487 |            5 |        0.0033831 |           26 |
|   30 | Best   |       0.138 |      12.442 |       0.138 |     0.14213 |        0.0031221 |          420 |            5 |        0.0035267 |           26 |

__________________________________________________________
Optimization completed.
MaxObjectiveEvaluations of 30 reached.
Total function evaluations: 30
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Total elapsed time: 326.2596 seconds
Total objective function evaluation time: 316.6185

Best observed feasible point:
    InitialLearnRateForPredictors    NumTreesPerPredictor    Interactions    InitialLearnRateForInteractions    NumTreesPerInteraction
    _____________________________    ____________________    ____________    _______________________________    ______________________

              0.0031221                      420                  5                     0.0035267                         26          

Observed objective function value = 0.138
Estimated objective function value = 0.14267
Function evaluation time = 12.4417

Best estimated feasible point (according to models):
    InitialLearnRateForPredictors    NumTreesPerPredictor    Interactions    InitialLearnRateForInteractions    NumTreesPerInteraction
    _____________________________    ____________________    ____________    _______________________________    ______________________

              0.0029528                      410                  6                     0.011766                          25          

Estimated objective function value = 0.14213
Estimated function evaluation time = 12.2594

Mdl = 
  ClassificationGAM
                       PredictorNames: {'age'  'workClass'  'fnlwgt'  'education'  'education_num'  'marital_status'  'occupation'  'relationship'  'race'  'sex'  'capital_gain'  'capital_loss'  'hours_per_week'  'native_country'}
                         ResponseName: 'salary'
                CategoricalPredictors: [2 4 6 7 8 9 10 14]
                           ClassNames: [<=50K    >50K]
                       ScoreTransform: 'logit'
                            Intercept: -1.3924
                         Interactions: [6×2 double]
                      NumObservations: 500
    HyperparameterOptimizationResults: [1×1 BayesianOptimization]

  Properties, Methods

fitcgam returns a ClassificationGAM model object that uses the best estimated feasible point.
The best estimated feasible point is the set of hyperparameters that minimizes the upper confidence
bound of the cross-validation loss based on the underlying Gaussian process model of the Bayesian
optimization process.

The Bayesian optimization process internally maintains a Gaussian process model of the objective
function. The objective function is the cross-validated misclassification rate for classification. For
each iteration, the optimization process updates the Gaussian process model and uses the model to
find a new set of hyperparameters. Each line of the iterative display shows the new set of
hyperparameters and these column values:

• Objective — Objective function value computed at the new set of hyperparameters.
• Objective runtime — Objective function evaluation time.
• Eval result — Result report, specified as Accept, Best, or Error. Accept indicates that the

objective function returns a finite value, and Error indicates that the objective function returns a
value that is not a finite real scalar. Best indicates that the objective function returns a finite
value that is lower than previously computed objective function values.
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• BestSoFar(observed) — The minimum objective function value computed so far. This value is
either the objective function value of the current iteration (if the Eval result value for the
current iteration is Best) or the value of the previous Best iteration.

• BestSoFar(estim.) — At each iteration, the software estimates the upper confidence bounds of
the objective function values, using the updated Gaussian process model, at all the sets of
hyperparameters tried so far. Then the software chooses the point with the minimum upper
confidence bound. The BestSoFar(estim.) value is the objective function value returned by the
predictObjective function at the minimum point.

The plot below the iterative display shows the BestSoFar(observed) and BestSoFar(estim.)
values in blue and green, respectively.

The returned object Mdl uses the best estimated feasible point, that is, the set of hyperparameters
that produces the BestSoFar(estim.) value in the final iteration based on the final Gaussian
process model.

Obtain the best estimated feasible point from Mdl in the HyperparameterOptimizationResults
property.

Mdl.HyperparameterOptimizationResults.XAtMinEstimatedObjective

ans=1×5 table
    InitialLearnRateForPredictors    NumTreesPerPredictor    Interactions    InitialLearnRateForInteractions    NumTreesPerInteraction
    _____________________________    ____________________    ____________    _______________________________    ______________________

              0.0029528                      410                  6                     0.011766                          25          

Alternatively, you can use the bestPoint function. By default, the bestPoint function uses the
'min-visited-upper-confidence-interval' criterion.

[x,CriterionValue,iteration] = bestPoint(Mdl.HyperparameterOptimizationResults)

x=1×5 table
    InitialLearnRateForPredictors    NumTreesPerPredictor    Interactions    InitialLearnRateForInteractions    NumTreesPerInteraction
    _____________________________    ____________________    ____________    _______________________________    ______________________

              0.0029528                      410                  6                     0.011766                          25          

CriterionValue = 0.1464

iteration = 26

The 'min-visited-upper-confidence-interval' criterion chooses the hyperparameters
obtained from the 26th iteration as the best point. CriterionValue is the upper bound of the cross-
validated loss computed by the final Gaussian process model.

You can also extract the best observed feasible point (that is, the last Best point in the iterative
display) from the HyperparameterOptimizationResults property or by specifying Criterion as
'min-observed'.

Mdl.HyperparameterOptimizationResults.XAtMinObjective

ans=1×5 table
    InitialLearnRateForPredictors    NumTreesPerPredictor    Interactions    InitialLearnRateForInteractions    NumTreesPerInteraction
    _____________________________    ____________________    ____________    _______________________________    ______________________
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              0.0031221                      420                  5                     0.0035267                         26          

[x_observed,CriterionValue_observed,iteration_observed] = bestPoint(Mdl.HyperparameterOptimizationResults,'Criterion','min-observed')

x_observed=1×5 table
    InitialLearnRateForPredictors    NumTreesPerPredictor    Interactions    InitialLearnRateForInteractions    NumTreesPerInteraction
    _____________________________    ____________________    ____________    _______________________________    ______________________

              0.0031221                      420                  5                     0.0035267                         26          

CriterionValue_observed = 0.1380

iteration_observed = 30

The 'min-observed' criterion chooses the hyperparameters obtained from the 30th iteration as the
best point. CriterionValue_observed is the actual cross-validated loss computed using the
selected hyperparameters. For more information, see the “Criterion” on page 35-0  name-value
argument of bestPoint.

Evaluate the performance of the classifier on the test set by computing the test set classification
error.

L = loss(Mdl,adulttest,'salary')

L = 0.1564

Optimize Cross-Validated GAM Using bayesopt

Optimize the parameters of a GAM with respect to cross-validation by using the bayesopt function.

Alternatively, you can find optimal values of fitcgam name-value arguments by using the
“OptimizeHyperparameters” on page 35-0  name-value argument. For an example, see “Optimize
GAM Using OptimizeHyperparameters” on page 35-2007.

Load the 1994 census data stored in census1994.mat. The data set consists of demographic data
from the US Census Bureau to predict whether an individual makes over $50,000 per year. The
classification task is to fit a model that predicts the salary category of people given their age, working
class, education level, marital status, race, and so on.

load census1994

census1994 contains the training data set adultdata and the test data set adulttest. To reduce
the running time for this example, subsample 500 training observations from adultdata by using
the datasample function.

rng('default')
NumSamples = 5e2;
adultdata = datasample(adultdata,NumSamples,'Replace',false);

Set up a partition for cross-validation. This step fixes the cross-validation sets that the optimization
uses at each step.

c = cvpartition(adultdata.salary,'KFold',5);
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Prepare optimizableVariable objects for the name-value arguments that you want to optimize
using Bayesian optimization. This example finds optimal values for the
MaxNumSplitsPerPredictor and NumTreesPerPredictor arguments of fitcgam.

maxNumSplits = optimizableVariable('maxNumSplits',[1,10],'Type','integer');
numTrees = optimizableVariable('numTrees',[1,500],'Type','integer');

Create an objective function that takes an input z = [maxNumSplits,numTrees] and returns the
cross-validated loss value of z.

minfun = @(z)kfoldLoss(fitcgam(adultdata,'salary','CVPartition',c, ...
    'MaxNumSplitsPerPredictor',z.maxNumSplits, ...
    'NumTreesPerPredictor',z.numTrees)); 

If you specify a cross-validation option, then the fitcgam function returns a cross-validated model
object ClassificationPartitionedGAM. The kfoldLoss function returns the classification loss
obtained by the cross-validated model. Therefore, the function handle minfun computes the cross-
validation loss at the parameters in z.

Search for the best parameters [maxNumSplits,numTrees] using bayesopt. For reproducibility,
choose the 'expected-improvement-plus' acquisition function. The default acquisition function
depends on run time and, therefore, can give varying results.

results = bayesopt(minfun,[maxNumSplits,numTrees],'Verbose',0, ...
    'IsObjectiveDeterministic',true, ...
    'AcquisitionFunctionName','expected-improvement-plus');
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Obtain the best point from results.

zbest = bestPoint(results)

zbest=1×2 table
    maxNumSplits    numTrees
    ____________    ________

         1             5    

Train an optimized GAM using the zbest values.

Mdl = fitcgam(adultdata,'salary', ...
    'MaxNumSplitsPerPredictor',zbest.maxNumSplits, ...
    'NumTreesPerPredictor',zbest.numTrees);

Input Arguments
Tbl — Sample data
table

Sample data used to train the model, specified as a table. Each row of Tbl corresponds to one
observation, and each column corresponds to one predictor variable. Multicolumn variables and cell
arrays other than cell arrays of character vectors are not allowed.
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Optionally, Tbl can contain a column for the response variable and a column for the observation
weights.

• The response variable must be a categorical, character, or string array, a logical or numeric vector,
or a cell array of character vectors.

• fitcgam supports only binary classification. Either the response variable must contain exactly
two distinct classes, or you must specify two classes for training by using the ClassNames
name-value argument.

• A good practice is to specify the order of the classes in the response variable by using the
ClassNames name-value argument.

• The column for the weights must be a numeric vector.
• You must specify the response variable in Tbl by using ResponseVarName or formula and

specify the observation weights in Tbl by using Weights.

• Specify the response variable by using ResponseVarName — fitcgam uses the remaining
variables as predictors. To use a subset of the remaining variables in Tbl as predictors, specify
predictor variables by using PredictorNames.

• Define a model specification by using formula — fitcgam uses a subset of the variables in
Tbl as predictor variables and the response variable, as specified in formula.

If Tbl does not contain the response variable, then specify a response variable by using Y. The length
of the response variable Y and the number of rows in Tbl must be equal. To use a subset of the
variables in Tbl as predictors, specify predictor variables by using PredictorNames.

fitcgam considers NaN, '' (empty character vector), "" (empty string), <missing>, and
<undefined> values in Tbl to be missing values.

• fitcgam does not use observations with all missing values in the fit.
• fitcgam does not use observations with missing response values in the fit.
• fitcgam uses observations with some missing values for predictors to find splits on variables for

which these observations have valid values.

Data Types: table

ResponseVarName — Response variable name
name of variable in Tbl

Response variable name, specified as a character vector or string scalar containing the name of the
response variable in Tbl. For example, if the response variable Y is stored in Tbl.Y, then specify it as
'Y'.
Data Types: char | string

formula — Model specification
character vector | string scalar

Model specification, specified as a character vector or string scalar in the form 'Y ~ terms'. The
formula argument specifies a response variable and linear and interaction terms for predictor
variables. Use formula to specify a subset of variables in Tbl as predictors for training the model. If
you specify a formula, then the software does not use any variables in Tbl that do not appear in
formula.
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For example, specify 'Y~x1+x2+x3+x1:x2'. In this form, Y represents the response variable, and
x1, x2, and x3 represent the linear terms for the predictor variables. x1:x2 represents the
interaction term for x1 and x2.

The variable names in the formula must be both variable names in Tbl
(Tbl.Properties.VariableNames) and valid MATLAB identifiers. You can verify the variable
names in Tbl by using the isvarname function. If the variable names are not valid, then you can
convert them by using the matlab.lang.makeValidName function.

Alternatively, you can specify a response variable and linear terms for predictors using formula, and
specify interaction terms for predictors using 'Interactions'.

fitcgam builds a set of interaction trees using only the terms whose p-values are not greater than
the 'MaxPValue' value.
Example: 'Y~x1+x2+x3+x1:x2'
Data Types: char | string

Y — Class labels
categorical array | character array | string array | logical vector | numeric vector | cell array of
character vectors

Class labels, specified as a categorical, character, or string array, a logical or numeric vector, or a cell
array of character vectors.

• fitcgam supports only binary classification. Either Y must contain exactly two distinct classes, or
you must specify two classes for training by using the ClassNames name-value argument.

• The length of Y must be equal to the number of observations in X or Tbl.
• If Y is a character array, then each label must correspond to one row of the array.
• A good practice is to specify the class order using the ClassNames name-value pair argument.
• fitcgam considers NaN, '' (empty character vector), "" (empty string), <missing>, and

<undefined> values in Y to be missing values. fitcgam does not use observations with missing
response values in the fit.

Data Types: single | double | categorical | logical | char | string | cell

X — Predictor data
numeric matrix

Predictor data, specified as a numeric matrix. Each row of X corresponds to one observation, and
each column corresponds to one predictor variable.

fitcgam considers NaN values in X as missing values. The function does not use observations with all
missing values in the fit. fitcgam uses observations with some missing values for X to find splits on
variables for which these observations have valid values.
Data Types: single | double

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.
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Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: 'Interactions','all','MaxPValue',0.05 specifies to include all available
interaction terms whose p-values are not greater than 0.05.

GAM Options

InitialLearnRateForInteractions — Initial learning rate of gradient boosting for
interaction terms
1 (default) | numeric scalar in (0,1]

Initial learning rate of gradient boosting for interaction terms, specified as a numeric scalar in the
interval (0,1].

For each boosting iteration for interaction trees, fitcgam starts fitting with the initial learning rate.
The function halves the learning rate until it finds a rate that improves the model fit.

Training a model using a small learning rate requires more learning iterations, but often achieves
better accuracy.

For more details about gradient boosting, see “Gradient Boosting Algorithm” on page 35-2032.
Example: 'InitialLearnRateForInteractions',0.1
Data Types: single | double

InitialLearnRateForPredictors — Initial learning rate of gradient boosting for linear
terms
1 (default) | numeric scalar in (0,1]

Initial learning rate of gradient boosting for linear terms, specified as a numeric scalar in the interval
(0,1].

For each boosting iteration for predictor trees, fitcgam starts fitting with the initial learning rate.
The function halves the learning rate until it finds a rate that improves the model fit.

Training a model using a small learning rate requires more learning iterations, but often achieves
better accuracy.

For more details about gradient boosting, see “Gradient Boosting Algorithm” on page 35-2032.
Example: 'InitialLearnRateForPredictors',0.1
Data Types: single | double

Interactions — Number or list of interaction terms
0 (default) | nonnegative integer scalar | logical matrix | 'all'

Number or list of interaction terms to include in the candidate set S, specified as a nonnegative
integer scalar, a logical matrix, or 'all'.

• Number of interaction terms, specified as a nonnegative integer — S includes the specified
number of important interaction terms, selected based on the p-values of the terms.

• List of interaction terms, specified as a logical matrix — S includes the terms specified by a t-by-p
logical matrix, where t is the number of interaction terms, and p is the number of predictors used
to train the model. For example, logical([1 1 0; 0 1 1]) represents two pairs of interaction
terms: a pair of the first and second predictors, and a pair of the second and third predictors.
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If fitcgam uses a subset of input variables as predictors, then the function indexes the predictors
using only the subset. That is, the column indexes of the logical matrix do not count the response
and observation weight variables. The indexes also do not count any variables not used by the
function.

• 'all' — S includes all possible pairs of interaction terms, which is p*(p – 1)/2 number of
terms in total.

Among the interaction terms in S, the fitcgam function identifies those whose p-values are not
greater than the 'MaxPValue' value and uses them to build a set of interaction trees. Use the
default value ('MaxPValue',1) to build interaction trees using all terms in S.
Example: 'Interactions','all'
Data Types: single | double | logical | char | string

MaxNumSplitsPerInteraction — Maximum number of decision splits per interaction tree
4 (default) | positive integer scalar

Maximum number of decision splits (or branch nodes) for each interaction tree (boosted tree for an
interaction term), specified as a positive integer scalar.
Example: 'MaxNumSplitsPerInteraction',5
Data Types: single | double

MaxNumSplitsPerPredictor — Maximum number of decision splits per predictor tree
1 (default) | positive integer scalar

Maximum number of decision splits (or branch nodes) for each predictor tree (boosted tree for a
linear term), specified as a positive integer scalar. By default, fitcgam uses a tree stump for a
predictor tree.
Example: 'MaxNumSplitsPerPredictor',5
Data Types: single | double

MaxPValue — Maximum p-value for detecting interaction terms
1 (default) | numeric scalar in [0,1]

Maximum p-value for detecting interaction terms, specified as a numeric scalar in the interval [0,1].

fitcgam first finds the candidate set S of interaction terms from formula or 'Interactions'.
Then the function identifies the interaction terms whose p-values are not greater than the
'MaxPValue' value and uses them to build a set of interaction trees.

The default value ('MaxPValue',1) builds interaction trees for all interaction terms in the candidate
set S.

For more details about detecting interaction terms, see “Interaction Term Detection” on page 35-
2032.
Example: 'MaxPValue',0.05
Data Types: single | double

NumBins — Number of bins for numeric predictors
256 (default) | positive integer scalar | [] (empty)
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Number of bins for numeric predictors, specified as a positive integer scalar or [] (empty).

• If you specify the 'NumBins' value as a positive integer scalar (numBins), then fitcgam bins
every numeric predictor into at most numBins equiprobable bins, and then grows trees on the bin
indices instead of the original data.

• The number of bins can be less than numBins if a predictor has fewer than numBins unique
values.

• fitcgam does not bin categorical predictors.
• If the 'NumBins' value is empty ([]), then fitcgam does not bin any predictors.

When you use a large training data set, this binning option speeds up training but might cause a
decrease in accuracy. You can first use the default value of 'NumBins', and then change the value
depending on the accuracy and training speed.

The trained model Mdl stores the bin edges in the BinEdges property.
Example: 'NumBins',50
Data Types: single | double

NumTreesPerInteraction — Number of trees per interaction term
100 (default) | positive integer scalar

Number of trees per interaction term, specified as a positive integer scalar.

The 'NumTreesPerInteraction' value is equivalent to the number of gradient boosting iterations
for the interaction terms for predictors. For each iteration, fitcgam adds a set of interaction trees to
the model, one tree for each interaction term. To learn about the gradient boosting algorithm, see
“Gradient Boosting Algorithm” on page 35-2032.

You can determine whether the fitted model has the specified number of trees by viewing the
diagnostic message displayed when 'Verbose' is 1 or 2, or by checking the
ReasonForTermination property value of the model Mdl.
Example: 'NumTreesPerInteraction',500
Data Types: single | double

NumTreesPerPredictor — Number of trees per linear term
300 (default) | positive integer scalar

Number of trees per linear term, specified as a positive integer scalar.

The 'NumTreesPerPredictor' value is equivalent to the number of gradient boosting iterations for
the linear terms for predictors. For each iteration, fitcgam adds a set of predictor trees to the
model, one tree for each predictor. To learn about the gradient boosting algorithm, see “Gradient
Boosting Algorithm” on page 35-2032.

You can determine whether the fitted model has the specified number of trees by viewing the
diagnostic message displayed when 'Verbose' is 1 or 2, or by checking the
ReasonForTermination property value of the model Mdl.
Example: 'NumTreesPerPredictor',500
Data Types: single | double
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Other Classification Options

CategoricalPredictors — Categorical predictors list
vector of positive integers | logical vector | character matrix | string array | cell array of character
vectors | 'all'

Categorical predictors list, specified as one of the values in this table.

Value Description
Vector of positive
integers

Each entry in the vector is an index value indicating that the corresponding
predictor is categorical. The index values are between 1 and p, where p is
the number of predictors used to train the model.

If fitcgam uses a subset of input variables as predictors, then the function
indexes the predictors using only the subset. The
CategoricalPredictors values do not count the response variable,
observation weights variable, or any other variables that the function does
not use.

Logical vector A true entry means that the corresponding predictor is categorical. The
length of the vector is p.

Character matrix Each row of the matrix is the name of a predictor variable. The names must
match the entries in PredictorNames. Pad the names with extra blanks
so each row of the character matrix has the same length.

String array or cell
array of character
vectors

Each element in the array is the name of a predictor variable. The names
must match the entries in PredictorNames.

"all" All predictors are categorical.

By default, if the predictor data is in a table (Tbl), fitcgam assumes that a variable is categorical if
it is a logical vector, unordered categorical vector, character array, string array, or cell array of
character vectors. If the predictor data is a matrix (X), fitcgam assumes that all predictors are
continuous. To identify any other predictors as categorical predictors, specify them by using the
CategoricalPredictors name-value argument.
Example: 'CategoricalPredictors','all'
Data Types: single | double | logical | char | string | cell

ClassNames — Names of classes to use for training
categorical array | character array | string array | logical vector | numeric vector | cell array of
character vectors

Names of classes to use for training, specified as a categorical, character, or string array; a logical or
numeric vector; or a cell array of character vectors. ClassNames must have the same data type as
the response variable in Tbl or Y.

If ClassNames is a character array, then each element must correspond to one row of the array.

Use ClassNames to:

• Specify the order of the classes during training.
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• Specify the order of any input or output argument dimension that corresponds to the class order.
For example, use ClassNames to specify the order of the dimensions of Cost or the column order
of classification scores returned by predict.

• Select a subset of classes for training. For example, suppose that the set of all distinct class names
in Y is ["a","b","c"]. To train the model using observations from classes "a" and "c" only,
specify "ClassNames",["a","c"].

The default value for ClassNames is the set of all distinct class names in the response variable in
Tbl or Y.
Example: "ClassNames",["b","g"]
Data Types: categorical | char | string | logical | single | double | cell

Cost — Misclassification cost
[0 1; 1 0] (default) | 2-by-2 numeric matrix | structure

Misclassification cost of a point, specified as one of the following:

• 2-by-2 numeric matrix, where Cost(i,j) is the cost of classifying a point into class j if its true
class is i (that is, the rows correspond to the true class and the columns correspond to the
predicted class). To specify the class order for the corresponding rows and columns of Cost, set
the 'ClassNames' name-value argument.

• Structure S with two fields: S.ClassNames, which contains the group names as a variable of the
same data type as the response variable in Tbl or Y; and S.ClassificationCosts, which
contains the cost matrix.

Example: 'Cost',[0 2; 1 0]
Data Types: single | double | struct

NumPrint — Number of iterations between diagnostic message printouts
10 (default) | nonnegative integer scalar

Number of iterations between diagnostic message printouts, specified as a nonnegative integer
scalar. This argument is valid only when you specify 'Verbose' as 1.

If you specify 'Verbose',1 and 'NumPrint',numPrint, then the software displays diagnostic
messages every numPrint iterations in the Command Window.
Example: 'NumPrint',500
Data Types: single | double

PredictorNames — Predictor variable names
string array of unique names | cell array of unique character vectors

Predictor variable names, specified as a string array of unique names or cell array of unique
character vectors. The functionality of PredictorNames depends on the way you supply the training
data.

• If you supply X and Y, then you can use PredictorNames to assign names to the predictor
variables in X.

• The order of the names in PredictorNames must correspond to the column order of X. That
is, PredictorNames{1} is the name of X(:,1), PredictorNames{2} is the name of
X(:,2), and so on. Also, size(X,2) and numel(PredictorNames) must be equal.
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• By default, PredictorNames is {'x1','x2',...}.
• If you supply Tbl, then you can use PredictorNames to choose which predictor variables to use

in training. That is, fitcgam uses only the predictor variables in PredictorNames and the
response variable during training.

• PredictorNames must be a subset of Tbl.Properties.VariableNames and cannot include
the name of the response variable.

• By default, PredictorNames contains the names of all predictor variables.
• A good practice is to specify the predictors for training using either PredictorNames or

formula, but not both.

Example: "PredictorNames",
["SepalLength","SepalWidth","PetalLength","PetalWidth"]

Data Types: string | cell

Prior — Prior probabilities
'empirical' (default) | 'uniform' | vector of scalar values | structure

Prior probabilities for each class, specified as one of the following:

• Character vector or string scalar.

• 'empirical' determines class probabilities from class frequencies in the response variable in
Y or Tbl. If you pass observation weights, fitcgam uses the weights to compute the class
probabilities.

• 'uniform' sets all class probabilities to be equal.
• Vector (one scalar value for each class). To specify the class order for the corresponding elements

of 'Prior', set the 'ClassNames' name-value argument.
• Structure S with two fields.

• S.ClassNames contains the class names as a variable of the same type as the response
variable in Y or Tbl.

• S.ClassProbs contains a vector of corresponding probabilities.

fitcgam normalizes the weights in each class ('Weights') to add up to the value of the prior
probability of the respective class.
Example: 'Prior','uniform'
Data Types: char | string | single | double | struct

ResponseName — Response variable name
"Y" (default) | character vector | string scalar

Response variable name, specified as a character vector or string scalar.

• If you supply Y, then you can use ResponseName to specify a name for the response variable.
• If you supply ResponseVarName or formula, then you cannot use ResponseName.

Example: "ResponseName","response"
Data Types: char | string

35 Functions

35-2022



ScoreTransform — Score transformation
'logit' (default) | 'none' | function handle | ...

Score transformation, specified as a built-in transformation function name or function handle.

This table summarizes the available score transformations. Specify one using its corresponding
character vector or string scalar.

Value Description
"doublelogit" 1/(1 + e–2x)
"invlogit" log(x / (1 – x))
"ismax" Sets the score for the class with the largest score to 1,

and sets the scores for all other classes to 0
"logit" 1/(1 + e–x)
"none" or "identity" x (no transformation)
"sign" –1 for x < 0

0 for x = 0
1 for x > 0

"symmetric" 2x – 1
"symmetricismax" Sets the score for the class with the largest score to 1,

and sets the scores for all other classes to –1
"symmetriclogit" 2/(1 + e–x) – 1

For a MATLAB function or a function you define, use its function handle for the score transform. The
function handle must accept a matrix (the original scores) and return a matrix of the same size (the
transformed scores).

This argument determines the output score computation for object functions such as predict,
margin, and edge. Use 'logit' (default) to compute posterior probabilities, and use 'none' to
compute the logit of posterior probabilities.
Example: 'ScoreTransform','none'
Data Types: char | string | function_handle

Verbose — Verbosity level
0 (default) | 1 | 2

Verbosity level, specified as 0, 1, or 2. The Verbose value controls the amount of information that the
software displays in the Command Window.

This table summarizes the available verbosity level options.

Value Description
0 The software displays no information.
1 The software displays diagnostic messages every numPrint iterations,

where numPrint is the 'NumPrint' value.
2 The software displays diagnostic messages at every iteration.
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Each line of the diagnostic messages shows the information about each boosting iteration and
includes the following columns:

• Type — Type of trained trees, 1D (predictor trees, or boosted trees for linear terms for predictors)
or 2D (interaction trees, or boosted trees for interaction terms for predictors)

• NumTrees — Number of trees per linear term or interaction term that fitcgam added to the
model so far

• Deviance — “Deviance” on page 35-2031 of the model
• RelTol — Relative change of model predictions: y k− y k− 1 ′ y k− y k− 1 /y k′y k, where y k is a

column vector of model predictions at iteration k
• LearnRate — Learning rate used for the current iteration

Example: 'Verbose',1
Data Types: single | double

Weights — Observation weights
ones(size(X,1),1) (default) | vector of scalar values | name of variable in Tbl

Observation weights, specified as a vector of scalar values or the name of a variable in Tbl. The
software weights the observations in each row of X or Tbl with the corresponding value in Weights.
The size of Weights must equal the number of rows in X or Tbl.

If you specify the input data as a table Tbl, then Weights can be the name of a variable in Tbl that
contains a numeric vector. In this case, you must specify Weights as a character vector or string
scalar. For example, if the weights vector W is stored in Tbl.W, then specify it as 'W'.

fitcgam normalizes the weights in each class to add up to the value of the prior probability of the
respective class.
Data Types: single | double | char | string

Note You cannot use any cross-validation name-value argument together with the
'OptimizeHyperparameters' name-value argument. You can modify the cross-validation for
'OptimizeHyperparameters' only by using the 'HyperparameterOptimizationOptions'
name-value argument.

Cross-Validation Options

CrossVal — Flag to train cross-validated model
'off' (default) | 'on'

Flag to train a cross-validated model, specified as 'on' or 'off'.

If you specify 'on', then the software trains a cross-validated model with 10 folds.

You can override this cross-validation setting using the 'CVPartition', 'Holdout', 'KFold', or
'Leaveout' name-value argument. You can use only one cross-validation name-value argument at a
time to create a cross-validated model.

Alternatively, cross-validate after creating a model by passing Mdl to crossval.
Example: 'Crossval','on'
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CVPartition — Cross-validation partition
[] (default) | cvpartition partition object

Cross-validation partition, specified as a cvpartition partition object created by cvpartition.
The partition object specifies the type of cross-validation and the indexing for the training and
validation sets.

To create a cross-validated model, you can specify only one of these four name-value arguments:
CVPartition, Holdout, KFold, or Leaveout.
Example: Suppose you create a random partition for 5-fold cross-validation on 500 observations by
using cvp = cvpartition(500,'KFold',5). Then, you can specify the cross-validated model by
using 'CVPartition',cvp.

Holdout — Fraction of data for holdout validation
scalar value in the range (0,1)

Fraction of the data used for holdout validation, specified as a scalar value in the range (0,1). If you
specify 'Holdout',p, then the software completes these steps:

1 Randomly select and reserve p*100% of the data as validation data, and train the model using
the rest of the data.

2 Store the compact, trained model in the Trained property of the cross-validated model.

To create a cross-validated model, you can specify only one of these four name-value arguments:
CVPartition, Holdout, KFold, or Leaveout.
Example: 'Holdout',0.1
Data Types: double | single

KFold — Number of folds
10 (default) | positive integer value greater than 1

Number of folds to use in a cross-validated model, specified as a positive integer value greater than 1.
If you specify 'KFold',k, then the software completes these steps:

1 Randomly partition the data into k sets.
2 For each set, reserve the set as validation data, and train the model using the other k – 1 sets.
3 Store the k compact, trained models in a k-by-1 cell vector in the Trained property of the cross-

validated model.

To create a cross-validated model, you can specify only one of these four name-value arguments:
CVPartition, Holdout, KFold, or Leaveout.
Example: 'KFold',5
Data Types: single | double

Leaveout — Leave-one-out cross-validation flag
'off' (default) | 'on'

Leave-one-out cross-validation flag, specified as 'on' or 'off'. If you specify 'Leaveout','on',
then for each of the n observations (where n is the number of observations, excluding missing
observations, specified in the NumObservations property of the model), the software completes
these steps:
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1 Reserve the one observation as validation data, and train the model using the other n – 1
observations.

2 Store the n compact, trained models in an n-by-1 cell vector in the Trained property of the
cross-validated model.

To create a cross-validated model, you can specify only one of these four name-value arguments:
CVPartition, Holdout, KFold, or Leaveout.
Example: 'Leaveout','on'

Hyperparameter Optimization Options

OptimizeHyperparameters — Parameters to optimize
'none' (default) | 'auto' | 'auto-univariate' | 'auto-bivariate' | 'all' | 'all-
univariate' | 'all-bivariate' | string array or cell array of eligible parameter names | vector of
optimizableVariable objects

Parameters to optimize, specified as one of these values:

• 'none' — Do not optimize.
• 'auto' — Optimize InitialLearnRateForPredictors, NumTreesPerPredictor,

Interactions, InitialLearnRateForInteractions, and NumTreesPerInteraction.
• 'auto-univariate' — Optimize InitialLearnRateForPredictors and

NumTreesPerPredictor.
• 'auto-bivariate' — Optimize Interactions, InitialLearnRateForInteractions, and

NumTreesPerInteraction.
• 'all' — Optimize all eligible parameters.
• 'all-univariate' — Optimize all eligible univariate parameters.
• 'all-bivariate' — Optimize all eligible bivariate parameters.
• String array or cell array of eligible parameter names.
• Vector of optimizableVariable objects, typically the output of hyperparameters.

The eligible parameters for fitcgam are:

• Univariate hyperparameters

• InitialLearnRateForPredictors — fitcgam searches among real values, log-scaled in
the range [1e-3,1].

• MaxNumSplitsPerPredictor — fitcgam searches among integers in the range
[1,maxNumSplits], where maxNumSplits is min(30,max(2,NumObservations–1)).
NumObservations is the number of observations, excluding missing observations, stored in
the NumObservations property of the returned model Mdl.

• NumTreesPerPredictor — fitcgam searches among integers, log-scaled in the range
[10,500].

• Bivariate hyperparameters

• Interactions — fitcgam searches among integers, log-scaled in the range
[0,MaxNumInteractions]t, where MaxNumInteractions is
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NumPredictors*(NumPredictors – 1)/2, and NumPredictors is the number of
predictors used to train the model.

• InitialLearnRateForInteractions — fitcgam searches among real values, log-scaled in
the range [1e-3,1].

• MaxNumSplitsPerInteraction — fitcgam searches among integers in the range
[1,maxNumSplits].

• NumTreesPerInteraction — fitcgam searches among integers, log-scaled in the range
[10,500].

Use 'auto' or 'all' to find optimal hyperparameter values for both univariate and bivariate
parameters. Alternatively, you can find optimal values for univariate parameters using 'auto-
univariate' or 'all-univariate' and then find optimal values for bivariate parameters using
'auto-bivariate' or 'all-bivariate'. For examples, see “Optimize GAM Using
OptimizeHyperparameters” on page 35-2007 and “Train Generalized Additive Model for Binary
Classification” on page 12-77.

The optimization attempts to minimize the cross-validation loss (error) for fitcgam by varying the
parameters. To control the cross-validation type and other aspects of the optimization, use the
HyperparameterOptimizationOptions name-value argument.

Note The values of 'OptimizeHyperparameters' override any values you specify using other
name-value arguments. For example, setting 'OptimizeHyperparameters' to 'auto' causes
fitcgam to optimize hyperparameters corresponding to the 'auto' option and to ignore any
specified values for the hyperparameters.

Set nondefault parameters by passing a vector of optimizableVariable objects that have
nondefault values. For example:

load fisheriris
params = hyperparameters('fitcgam',meas,species);
params(1).Range = [1e-4,1e6];

Pass params as the value of OptimizeHyperparameters.

By default, the iterative display appears at the command line, and plots appear according to the
number of hyperparameters in the optimization. For the optimization and plots, the objective function
is the misclassification rate. To control the iterative display, set the Verbose field of the
'HyperparameterOptimizationOptions' name-value argument. To control the plots, set the
ShowPlots field of the 'HyperparameterOptimizationOptions' name-value argument.
Example: 'OptimizeHyperparameters','auto'

HyperparameterOptimizationOptions — Options for optimization
structure

Options for optimization, specified as a structure. This argument modifies the effect of the
OptimizeHyperparameters name-value argument. All fields in the structure are optional.
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Field Name Values Default
Optimizer • 'bayesopt' — Use Bayesian optimization.

Internally, this setting calls bayesopt.
• 'gridsearch' — Use grid search with

NumGridDivisions values per dimension.
• 'randomsearch' — Search at random among

MaxObjectiveEvaluations points.

'gridsearch' searches in a random order, using
uniform sampling without replacement from the
grid. After optimization, you can get a table in grid
order by using the command
sortrows(Mdl.HyperparameterOptimizatio
nResults).

'bayesopt'

AcquisitionFunct
ionName

• 'expected-improvement-per-second-
plus'

• 'expected-improvement'
• 'expected-improvement-plus'
• 'expected-improvement-per-second'
• 'lower-confidence-bound'
• 'probability-of-improvement'

Acquisition functions whose names include per-
second do not yield reproducible results because
the optimization depends on the runtime of the
objective function. Acquisition functions whose
names include plus modify their behavior when
they are overexploiting an area. For more details,
see “Acquisition Function Types” on page 10-3.

'expected-
improvement-per-
second-plus'

MaxObjectiveEval
uations

Maximum number of objective function
evaluations.

30 for 'bayesopt' and
'randomsearch', and
the entire grid for
'gridsearch'

MaxTime Time limit, specified as a positive real scalar. The
time limit is in seconds, as measured by tic and
toc. The run time can exceed MaxTime because
MaxTime does not interrupt function evaluations.

Inf

NumGridDivisions For 'gridsearch', the number of values in each
dimension. The value can be a vector of positive
integers giving the number of values for each
dimension, or a scalar that applies to all
dimensions. This field is ignored for categorical
variables.

10
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Field Name Values Default
ShowPlots Logical value indicating whether to show plots. If

true, this field plots the best observed objective
function value against the iteration number. If you
use Bayesian optimization (Optimizer is
'bayesopt'), then this field also plots the best
estimated objective function value. The best
observed objective function values and best
estimated objective function values correspond to
the values in the BestSoFar (observed) and
BestSoFar (estim.) columns of the iterative
display, respectively. You can find these values in
the properties ObjectiveMinimumTrace and
EstimatedObjectiveMinimumTrace of
Mdl.HyperparameterOptimizationResults.
If the problem includes one or two optimization
parameters for Bayesian optimization, then
ShowPlots also plots a model of the objective
function against the parameters.

true

SaveIntermediate
Results

Logical value indicating whether to save results
when Optimizer is 'bayesopt'. If true, this
field overwrites a workspace variable named
'BayesoptResults' at each iteration. The
variable is a BayesianOptimization object.

false

Verbose Display at the command line:

• 0 — No iterative display
• 1 — Iterative display
• 2 — Iterative display with extra information

For details, see the bayesopt Verbose name-
value argument and the example “Optimize
Classifier Fit Using Bayesian Optimization” on
page 10-56.

1

UseParallel Logical value indicating whether to run Bayesian
optimization in parallel, which requires Parallel
Computing Toolbox. Due to the nonreproducibility
of parallel timing, parallel Bayesian optimization
does not necessarily yield reproducible results. For
details, see “Parallel Bayesian Optimization” on
page 10-7.

false
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Field Name Values Default
Repartition Logical value indicating whether to repartition the

cross-validation at every iteration. If this field is
false, the optimizer uses a single partition for
the optimization.

The setting true usually gives the most robust
results because it takes partitioning noise into
account. However, for good results, true requires
at least twice as many function evaluations.

false

Use no more than one of the following three options.
CVPartition A cvpartition object, as created by

cvpartition
'Kfold',5 if you do not
specify a cross-validation
fieldHoldout A scalar in the range (0,1) representing the

holdout fraction
Kfold An integer greater than 1

Example:
'HyperparameterOptimizationOptions',struct('MaxObjectiveEvaluations',60)

Data Types: struct

Output Arguments
Mdl — Trained generalized additive model
ClassificationGAM model object | ClassificationPartitionedGAM cross-validated model
object

Trained generalized additive model, returned as one of the model objects in this table.

Model Object Cross-Validation Options to
Train Model Object

Ways to Classify
Observations Using Model
Object

ClassificationGAM None Use predict to classify new
observations, and use
resubPredict to classify
training observations.

ClassificationPartitione
dGAM

Specify KFold, Holdout,
Leaveout, CrossVal, or
CVPartition

Use kfoldPredict to classify
observations that fitcgam
holds out during training.
kfoldPredict predicts a class
label for every observation by
using the model trained without
that observation.

To reference properties of Mdl, use dot notation. For example, enter Mdl.Interactions in the
Command Window to display the interaction terms in Mdl.
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More About
Generalized Additive Model (GAM) for Binary Classification

A generalized additive model (GAM) is an interpretable model that explains class scores (the logit of
class probabilities) using a sum of univariate and bivariate shape functions of predictors.

fitcgam uses a boosted tree as a shape function for each predictor and, optionally, each pair of
predictors; therefore, the function can capture a nonlinear relation between a predictor and the
response variable. Because contributions of individual shape functions to the prediction (classification
score) are well separated, the model is easy to interpret.

The standard GAM uses a univariate shape function for each predictor.

y Binomial(n, μ)

g(μ) = log μ
1− μ = c + f1(x1) + f2(x2) +⋯+ fp(xp),

where y is a response variable that follows the binomial distribution with the probability of success
(probability of positive class) μ in n observations. g(μ) is a logit link function, and c is an intercept
(constant) term. fi(xi) is a univariate shape function for the ith predictor, which is a boosted tree for a
linear term for the predictor (predictor tree).

You can include interactions between predictors in a model by adding bivariate shape functions of
important interaction terms to the model.

g(μ) = c + f1(x1) + f2(x2) +⋯+ fp(xp) + ∑
i, j ∈ 1, 2,⋯, p

f i j(xix j),

where fij(xixj) is a bivariate shape function for the ith and jth predictors, which is a boosted tree for an
interaction term for the predictors (interaction tree).

fitcgam finds important interaction terms based on the p-values of F-tests. For details, see
“Interaction Term Detection” on page 35-2032.

Deviance

Deviance is a generalization of the residual sum of squares. It measures the goodness of fit compared
to the saturated model.

The deviance of a fitted model is twice the difference between the loglikelihoods of the model and the
saturated model:

-2(logL - logLs),
where L and Ls are the likelihoods of the fitted model and the saturated model, respectively. The
saturated model is the model with the maximum number of parameters that you can estimate.

fitcgam uses the deviance to measure the goodness of model fit and finds a learning rate that
reduces the deviance at each iteration. Specify 'Verbose' as 1 or 2 to display the deviance and
learning rate in the Command Window.
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Algorithms
Gradient Boosting Algorithm

fitcgam fits a generalized additive model using a gradient boosting algorithm (“Adaptive Logistic
Regression” on page 19-50).

fitcgam first builds sets of predictor trees (boosted trees for linear terms for predictors) and then
builds sets of interaction trees (boosted trees for interaction terms for predictors). The boosting
algorithm iterates for at most 'NumTreesPerPredictor' times for predictor trees, and then
iterates for at most 'NumTreesPerInteraction' times for interaction trees.

For each boosting iteration, fitcgam builds a set of predictor trees with the initial learning rate
'InitialLearnRateForPredictors', or builds a set of interaction trees with the initial learning
rate 'InitialLearnRateForInteractions'.

• When building a set of trees, the function trains one tree at a time. It fits a tree to the residual
that is the difference between the response and the aggregated prediction from all trees grown
previously. To control the boosting learning speed, the function shrinks the tree by the learning
rate and then adds the tree to the model and updates the residual.

• Updated model = current model + (learning rate)·(new tree)
• Updated residual = current residual – (learning rate)·(response explained by new tree)

• If adding the set of trees improves the model fit (that is, reduces the deviance of the fit by a value
larger than a tolerance), then fitcgam moves to the next iteration.

• Otherwise, fitcgam halves the learning rate and uses it to update the model and residual. The
function continues to halve the learning rate until it finds a rate that improves the model fit.

• If the function cannot find such a learning rate when training predictor trees, then it stops
boosting iterations for linear terms and starts boosting iterations for interaction terms.

• If the function cannot find such a learning rate when training interaction trees, then it
terminates the model fitting.

You can determine why training stopped by checking the ReasonForTermination property of
the trained model.

Interaction Term Detection

For each pairwise interaction term xixj (specified by formula or 'Interactions'), the software
performs an F-test to examine whether the term is statistically significant.

To speed up the process, fitcgam bins numeric predictors into at most 8 equiprobable bins. The
number of bins can be less than 8 if a predictor has fewer than 8 unique values. The F-test examines
the null hypothesis that the bins created by xi and xj have equal responses versus the alternative that
at least one bin has a different response value from the others. A small p-value indicates that
differences are significant, which implies that the corresponding interaction term is significant and,
therefore, including the term can improve the model fit.

fitcgam builds a set of interaction trees using the terms whose p-values are not greater than the
'MaxPValue' value. You can use the default 'MaxPValue' value 1 to build interaction trees using
all terms specified by formula or 'Interactions'.
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fitcgam adds interaction terms to the model in the order of importance based on the p-values. Use
the Interactions property of the returned model to check the order of the interaction terms added
to the model.

Cost, Prior, and Weights

• If you specify the Cost, Prior, and Weights name-value arguments, the output model object
stores the specified values in the Cost, Prior, and W properties, respectively. The Cost property
stores the user-specified cost matrix (C) as is. The Prior and W properties store the prior
probabilities and observation weights, respectively, after normalization. For details, see
“Misclassification Cost Matrix, Prior Probabilities, and Observation Weights” on page 19-8.

• The software uses the Cost property for prediction, but not training. Therefore, Cost is not read-
only; you can change the property value by using dot notation after creating the trained model.

Version History
Introduced in R2021a

References
[1] Lou, Yin, Rich Caruana, and Johannes Gehrke. "Intelligible Models for Classification and

Regression." Proceedings of the 18th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining (KDD ’12). Beijing, China: ACM Press, 2012, pp. 150–158.

[2] Lou, Yin, Rich Caruana, Johannes Gehrke, and Giles Hooker. "Accurate Intelligible Models with
Pairwise Interactions." Proceedings of the 19th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining (KDD ’13) Chicago, Illinois, USA: ACM Press, 2013,
pp. 623–631.

Extended Capabilities
Automatic Parallel Support
Accelerate code by automatically running computation in parallel using Parallel Computing Toolbox™.

To perform parallel hyperparameter optimization, use the
'HyperparameterOptimizationOptions', struct('UseParallel',true) name-value
argument in the call to the fitcgam function.

For more information on parallel hyperparameter optimization, see “Parallel Bayesian Optimization”
on page 10-7.

For general information about parallel computing, see “Run MATLAB Functions with Automatic
Parallel Support” (Parallel Computing Toolbox).

See Also
predict | addInteractions | resume | ClassificationGAM |
ClassificationPartitionedGAM

Topics
“Train Generalized Additive Model for Binary Classification” on page 12-77
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fitcknn
Fit k-nearest neighbor classifier

Syntax
Mdl = fitcknn(Tbl,ResponseVarName)
Mdl = fitcknn(Tbl,formula)
Mdl = fitcknn(Tbl,Y)

Mdl = fitcknn(X,Y)

Mdl = fitcknn( ___ ,Name,Value)

Description
Mdl = fitcknn(Tbl,ResponseVarName) returns a k-nearest neighbor classification model based
on the input variables (also known as predictors, features, or attributes) in the table Tbl and output
(response) Tbl.ResponseVarName.

Mdl = fitcknn(Tbl,formula) returns a k-nearest neighbor classification model based on the
input variables in the table Tbl. formula is an explanatory model of the response and a subset of
predictor variables in Tbl.

Mdl = fitcknn(Tbl,Y) returns a k-nearest neighbor classification model based on the predictor
variables in the table Tbl and response array Y.

Mdl = fitcknn(X,Y) returns a k-nearest neighbor classification model based on the predictor data
X and response Y.

Mdl = fitcknn( ___ ,Name,Value) fits a model with additional options specified by one or more
name-value pair arguments, using any of the previous syntaxes. For example, you can specify the tie-
breaking algorithm, distance metric, or observation weights.

Examples

Train k-Nearest Neighbor Classifier

Train a k-nearest neighbor classifier for Fisher's iris data, where k, the number of nearest neighbors
in the predictors, is 5.

Load Fisher's iris data.

load fisheriris
X = meas;
Y = species;

X is a numeric matrix that contains four petal measurements for 150 irises. Y is a cell array of
character vectors that contains the corresponding iris species.

Train a 5-nearest neighbor classifier. Standardize the noncategorical predictor data.

35 Functions

35-2034



Mdl = fitcknn(X,Y,'NumNeighbors',5,'Standardize',1)

Mdl = 
  ClassificationKNN
             ResponseName: 'Y'
    CategoricalPredictors: []
               ClassNames: {'setosa'  'versicolor'  'virginica'}
           ScoreTransform: 'none'
          NumObservations: 150
                 Distance: 'euclidean'
             NumNeighbors: 5

  Properties, Methods

Mdl is a trained ClassificationKNN classifier, and some of its properties appear in the Command
Window.

To access the properties of Mdl, use dot notation.

Mdl.ClassNames

ans = 3x1 cell
    {'setosa'    }
    {'versicolor'}
    {'virginica' }

Mdl.Prior

ans = 1×3

    0.3333    0.3333    0.3333

Mdl.Prior contains the class prior probabilities, which you can specify using the 'Prior' name-
value pair argument in fitcknn. The order of the class prior probabilities corresponds to the order
of the classes in Mdl.ClassNames. By default, the prior probabilities are the respective relative
frequencies of the classes in the data.

You can also reset the prior probabilities after training. For example, set the prior probabilities to 0.5,
0.2, and 0.3, respectively.

Mdl.Prior = [0.5 0.2 0.3];

You can pass Mdl to predict to label new measurements or crossval to cross-validate the
classifier.

Train a k-Nearest Neighbor Classifier Using the Minkowski Metric

Load Fisher's iris data set.

load fisheriris
X = meas;
Y = species;
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X is a numeric matrix that contains four petal measurements for 150 irises. Y is a cell array of
character vectors that contains the corresponding iris species.

Train a 3-nearest neighbors classifier using the Minkowski metric. To use the Minkowski metric, you
must use an exhaustive searcher. It is good practice to standardize noncategorical predictor data.

Mdl = fitcknn(X,Y,'NumNeighbors',3,...
    'NSMethod','exhaustive','Distance','minkowski',...
    'Standardize',1);

Mdl is a ClassificationKNN classifier.

You can examine the properties of Mdl by double-clicking Mdl in the Workspace window. This opens
the Variable Editor.

Train k-Nearest Neighbor Classifier Using Custom Distance Metric

Train a k-nearest neighbor classifier using the chi-square distance.
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Load Fisher's iris data set.

load fisheriris
X = meas;    % Predictors
Y = species; % Response

The chi-square distance between j-dimensional points x and z is

χ(x, z) = ∑
j = 1

J
w j x j− z j

2,

where w j is a weight associated with dimension j.

Specify the chi-square distance function. The distance function must:

• Take one row of X, e.g., x, and the matrix Z.
• Compare x to each row of Z.
• Return a vector D of length nz, where nz is the number of rows of Z. Each element of D is the

distance between the observation corresponding to x and the observations corresponding to each
row of Z.

chiSqrDist = @(x,Z,wt)sqrt((bsxfun(@minus,x,Z).^2)*wt);

This example uses arbitrary weights for illustration.

Train a 3-nearest neighbor classifier. It is good practice to standardize noncategorical predictor data.

k = 3;
w = [0.3; 0.3; 0.2; 0.2];
KNNMdl = fitcknn(X,Y,'Distance',@(x,Z)chiSqrDist(x,Z,w),...
    'NumNeighbors',k,'Standardize',1);

KNNMdl is a ClassificationKNN classifier.

Cross validate the KNN classifier using the default 10-fold cross validation. Examine the classification
error.

rng(1); % For reproducibility
CVKNNMdl = crossval(KNNMdl);
classError = kfoldLoss(CVKNNMdl)

classError = 0.0600

CVKNNMdl is a ClassificationPartitionedModel classifier.

Compare the classifier with one that uses a different weighting scheme.

w2 = [0.2; 0.2; 0.3; 0.3];
CVKNNMdl2 = fitcknn(X,Y,'Distance',@(x,Z)chiSqrDist(x,Z,w2),...
    'NumNeighbors',k,'KFold',10,'Standardize',1);
classError2 = kfoldLoss(CVKNNMdl2)

classError2 = 0.0400

The second weighting scheme yields a classifier that has better out-of-sample performance.
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Optimize Fitted KNN Classifier

This example shows how to optimize hyperparameters automatically using fitcknn. The example
uses the Fisher iris data.

Load the data.

load fisheriris
X = meas;
Y = species;

Find hyperparameters that minimize five-fold cross-validation loss by using automatic
hyperparameter optimization.

For reproducibility, set the random seed and use the 'expected-improvement-plus' acquisition
function.

rng(1)
Mdl = fitcknn(X,Y,'OptimizeHyperparameters','auto',...
    'HyperparameterOptimizationOptions',...
    struct('AcquisitionFunctionName','expected-improvement-plus'))

|=====================================================================================================|
| Iter | Eval   | Objective   | Objective   | BestSoFar   | BestSoFar   | NumNeighbors |     Distance |
|      | result |             | runtime     | (observed)  | (estim.)    |              |              |
|=====================================================================================================|
|    1 | Best   |    0.026667 |     0.45586 |    0.026667 |    0.026667 |           30 |       cosine |
|    2 | Accept |        0.04 |     0.23414 |    0.026667 |    0.027197 |            2 |    chebychev |
|    3 | Accept |     0.19333 |     0.22599 |    0.026667 |    0.030324 |            1 |      hamming |
|    4 | Accept |     0.33333 |     0.32951 |    0.026667 |    0.033313 |           31 |     spearman |
|    5 | Best   |        0.02 |      0.2133 |        0.02 |    0.020648 |            6 |       cosine |
|    6 | Accept |    0.073333 |     0.23895 |        0.02 |    0.023082 |            1 |  correlation |
|    7 | Accept |        0.06 |     0.20341 |        0.02 |    0.020875 |            2 |    cityblock |
|    8 | Accept |        0.04 |     0.22883 |        0.02 |    0.020622 |            1 |    euclidean |
|    9 | Accept |        0.24 |     0.38561 |        0.02 |    0.020562 |           74 |  mahalanobis |
|   10 | Accept |        0.04 |      0.3308 |        0.02 |    0.020649 |            1 |    minkowski |
|   11 | Accept |    0.053333 |     0.36432 |        0.02 |    0.020722 |            1 |   seuclidean |
|   12 | Accept |     0.19333 |     0.27829 |        0.02 |    0.020701 |            1 |      jaccard |
|   13 | Accept |        0.04 |     0.20174 |        0.02 |    0.029203 |            1 |       cosine |
|   14 | Accept |        0.04 |     0.28873 |        0.02 |    0.031888 |           75 |       cosine |
|   15 | Accept |        0.04 |     0.23265 |        0.02 |    0.020076 |            1 |       cosine |
|   16 | Accept |    0.093333 |      0.2344 |        0.02 |    0.020073 |           75 |    euclidean |
|   17 | Accept |    0.093333 |     0.22723 |        0.02 |     0.02007 |           75 |    minkowski |
|   18 | Accept |         0.1 |     0.31603 |        0.02 |    0.020061 |           75 |    chebychev |
|   19 | Accept |     0.15333 |     0.20247 |        0.02 |    0.020044 |           75 |   seuclidean |
|   20 | Accept |         0.1 |     0.32101 |        0.02 |    0.020044 |           75 |    cityblock |
|=====================================================================================================|
| Iter | Eval   | Objective   | Objective   | BestSoFar   | BestSoFar   | NumNeighbors |     Distance |
|      | result |             | runtime     | (observed)  | (estim.)    |              |              |
|=====================================================================================================|
|   21 | Accept |    0.033333 |     0.18521 |        0.02 |    0.020046 |           75 |  correlation |
|   22 | Accept |    0.033333 |     0.25678 |        0.02 |     0.02656 |            9 |       cosine |
|   23 | Accept |    0.033333 |     0.16428 |        0.02 |     0.02854 |            9 |       cosine |
|   24 | Accept |        0.02 |     0.24062 |        0.02 |    0.028607 |            1 |    chebychev |
|   25 | Accept |        0.02 |     0.19208 |        0.02 |    0.022264 |            1 |    chebychev |
|   26 | Accept |        0.02 |     0.17814 |        0.02 |    0.021439 |            1 |    chebychev |
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|   27 | Accept |        0.02 |     0.17006 |        0.02 |    0.020999 |            1 |    chebychev |
|   28 | Accept |     0.66667 |     0.20742 |        0.02 |    0.020008 |           75 |      hamming |
|   29 | Accept |        0.04 |     0.18743 |        0.02 |    0.020008 |           12 |  correlation |
|   30 | Best   |    0.013333 |      0.2703 |    0.013333 |    0.013351 |            6 |    euclidean |
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__________________________________________________________
Optimization completed.
MaxObjectiveEvaluations of 30 reached.
Total function evaluations: 30
Total elapsed time: 60.2212 seconds
Total objective function evaluation time: 7.5656

Best observed feasible point:
    NumNeighbors    Distance 
    ____________    _________

         6          euclidean

Observed objective function value = 0.013333
Estimated objective function value = 0.013351
Function evaluation time = 0.2703

Best estimated feasible point (according to models):
    NumNeighbors    Distance 
    ____________    _________
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         6          euclidean

Estimated objective function value = 0.013351
Estimated function evaluation time = 0.26092

Mdl = 
  ClassificationKNN
                         ResponseName: 'Y'
                CategoricalPredictors: []
                           ClassNames: {'setosa'  'versicolor'  'virginica'}
                       ScoreTransform: 'none'
                      NumObservations: 150
    HyperparameterOptimizationResults: [1x1 BayesianOptimization]
                             Distance: 'euclidean'
                         NumNeighbors: 6

  Properties, Methods

Input Arguments
Tbl — Sample data
table

Sample data used to train the model, specified as a table. Each row of Tbl corresponds to one
observation, and each column corresponds to one predictor variable. Optionally, Tbl can contain one
additional column for the response variable. Multicolumn variables and cell arrays other than cell
arrays of character vectors are not allowed.

• If Tbl contains the response variable, and you want to use all remaining variables in Tbl as
predictors, then specify the response variable by using ResponseVarName.

• If Tbl contains the response variable, and you want to use only a subset of the remaining
variables in Tbl as predictors, then specify a formula by using formula.

• If Tbl does not contain the response variable, then specify a response variable by using Y. The
length of the response variable and the number of rows in Tbl must be equal.

ResponseVarName — Response variable name
name of variable in Tbl

Response variable name, specified as the name of a variable in Tbl.

You must specify ResponseVarName as a character vector or string scalar. For example, if the
response variable Y is stored as Tbl.Y, then specify it as "Y". Otherwise, the software treats all
columns of Tbl, including Y, as predictors when training the model.

The response variable must be a categorical, character, or string array; a logical or numeric vector;
or a cell array of character vectors. If Y is a character array, then each element of the response
variable must correspond to one row of the array.

A good practice is to specify the order of the classes by using the ClassNames name-value argument.
Data Types: char | string
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formula — Explanatory model of response variable and subset of predictor variables
character vector | string scalar

Explanatory model of the response variable and a subset of the predictor variables, specified as a
character vector or string scalar in the form "Y~x1+x2+x3". In this form, Y represents the response
variable, and x1, x2, and x3 represent the predictor variables.

To specify a subset of variables in Tbl as predictors for training the model, use a formula. If you
specify a formula, then the software does not use any variables in Tbl that do not appear in
formula.

The variable names in the formula must be both variable names in Tbl
(Tbl.Properties.VariableNames) and valid MATLAB identifiers. You can verify the variable
names in Tbl by using the isvarname function. If the variable names are not valid, then you can
convert them by using the matlab.lang.makeValidName function.
Data Types: char | string

Y — Class labels
categorical array | character array | string array | logical vector | numeric vector | cell array of
character vectors

Class labels, specified as a categorical, character, or string array, a logical or numeric vector, or a cell
array of character vectors. Each row of Y represents the classification of the corresponding row of X.

The software considers NaN, '' (empty character vector), "" (empty string), <missing>, and
<undefined> values in Y to be missing values. Consequently, the software does not train using
observations with a missing response.
Data Types: categorical | char | string | logical | single | double | cell

X — Predictor data
numeric matrix

Predictor data, specified as numeric matrix.

Each row corresponds to one observation (also known as an instance or example), and each column
corresponds to one predictor variable (also known as a feature).

The length of Y and the number of rows of X must be equal.

To specify the names of the predictors in the order of their appearance in X, use the
PredictorNames name-value pair argument.
Data Types: double | single

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.

Note You cannot use any cross-validation name-value argument together with the
'OptimizeHyperparameters' name-value argument. You can modify the cross-validation for
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'OptimizeHyperparameters' only by using the 'HyperparameterOptimizationOptions'
name-value argument.

Example: 'NumNeighbors',3,'NSMethod','exhaustive','Distance','minkowski' specifies
a classifier for three-nearest neighbors using the nearest neighbor search method and the Minkowski
metric.

Model Parameters

BreakTies — Tie-breaking algorithm
'smallest' (default) | 'nearest' | 'random'

Tie-breaking algorithm used by the predict method if multiple classes have the same smallest cost,
specified as the comma-separated pair consisting of 'BreakTies' and one of the following:

• 'smallest' — Use the smallest index among tied groups.
• 'nearest' — Use the class with the nearest neighbor among tied groups.
• 'random' — Use a random tiebreaker among tied groups.

By default, ties occur when multiple classes have the same number of nearest points among the k
nearest neighbors.
Example: 'BreakTies','nearest'

BucketSize — Maximum data points in node
50 (default) | positive integer value

Maximum number of data points in the leaf node of the Kd-tree, specified as the comma-separated
pair consisting of 'BucketSize' and a positive integer value. This argument is meaningful only
when NSMethod is 'kdtree'.
Example: 'BucketSize',40
Data Types: single | double

CategoricalPredictors — Categorical predictor flag
[] | 'all'

Categorical predictor flag, specified as the comma-separated pair consisting of
'CategoricalPredictors' and one of the following:

• 'all' — All predictors are categorical.
• [] — No predictors are categorical.

The predictor data for fitcknn must be either all continuous or all categorical.

• If the predictor data is in a table (Tbl), fitcknn assumes that a variable is categorical if it is a
logical vector, categorical vector, character array, string array, or cell array of character vectors. If
Tbl includes both continuous and categorical values, then you must specify the value of
'CategoricalPredictors' so that fitcknn can determine how to treat all predictors, as
either continuous or categorical variables.

• If the predictor data is a matrix (X), fitcknn assumes that all predictors are continuous. To
identify all predictors in X as categorical, specify 'CategoricalPredictors' as 'all'.

When you set CategoricalPredictors to 'all', the default Distance is 'hamming'.
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Example: 'CategoricalPredictors','all'

ClassNames — Names of classes to use for training
categorical array | character array | string array | logical vector | numeric vector | cell array of
character vectors

Names of classes to use for training, specified as a categorical, character, or string array; a logical or
numeric vector; or a cell array of character vectors. ClassNames must have the same data type as
the response variable in Tbl or Y.

If ClassNames is a character array, then each element must correspond to one row of the array.

Use ClassNames to:

• Specify the order of the classes during training.
• Specify the order of any input or output argument dimension that corresponds to the class order.

For example, use ClassNames to specify the order of the dimensions of Cost or the column order
of classification scores returned by predict.

• Select a subset of classes for training. For example, suppose that the set of all distinct class names
in Y is ["a","b","c"]. To train the model using observations from classes "a" and "c" only,
specify "ClassNames",["a","c"].

The default value for ClassNames is the set of all distinct class names in the response variable in
Tbl or Y.
Example: "ClassNames",["b","g"]
Data Types: categorical | char | string | logical | single | double | cell

Cost — Cost of misclassification
square matrix | structure

Cost of misclassification of a point, specified as the comma-separated pair consisting of 'Cost' and
one of the following:

• Square matrix, where Cost(i,j) is the cost of classifying a point into class j if its true class is i
(i.e., the rows correspond to the true class and the columns correspond to the predicted class). To
specify the class order for the corresponding rows and columns of Cost, additionally specify the
ClassNames name-value pair argument.

• Structure S having two fields: S.ClassNames containing the group names as a variable of the
same type as Y, and S.ClassificationCosts containing the cost matrix.

The default is Cost(i,j)=1 if i~=j, and Cost(i,j)=0 if i=j.
Data Types: single | double | struct

Cov — Covariance matrix
cov(X,'omitrows') (default) | positive definite matrix of scalar values

Covariance matrix, specified as the comma-separated pair consisting of 'Cov' and a positive definite
matrix of scalar values representing the covariance matrix when computing the Mahalanobis
distance. This argument is only valid when 'Distance' is 'mahalanobis'.

You cannot simultaneously specify 'Standardize' and either of 'Scale' or 'Cov'.
Data Types: single | double
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Distance — Distance metric
'cityblock' | 'chebychev' | 'correlation' | 'cosine' | 'euclidean' | 'hamming' |
function handle | ...

Distance metric, specified as the comma-separated pair consisting of 'Distance' and a valid
distance metric name or function handle. The allowable distance metric names depend on your choice
of a neighbor-searcher method (see NSMethod).

NSMethod Distance Metric Names
exhaustive Any distance metric of ExhaustiveSearcher
kdtree 'cityblock', 'chebychev', 'euclidean', or 'minkowski'

This table includes valid distance metrics of ExhaustiveSearcher.

Distance Metric Names Description
'cityblock' City block distance.
'chebychev' Chebychev distance (maximum coordinate difference).
'correlation' One minus the sample linear correlation between observations

(treated as sequences of values).
'cosine' One minus the cosine of the included angle between observations

(treated as vectors).
'euclidean' Euclidean distance.
'hamming' Hamming distance, percentage of coordinates that differ.
'jaccard' One minus the Jaccard coefficient, the percentage of nonzero

coordinates that differ.
'mahalanobis' Mahalanobis distance, computed using a positive definite

covariance matrix C. The default value of C is the sample covariance
matrix of X, as computed by cov(X,'omitrows'). To specify a
different value for C, use the 'Cov' name-value pair argument.

'minkowski' Minkowski distance. The default exponent is 2. To specify a
different exponent, use the 'Exponent' name-value pair argument.

'seuclidean' Standardized Euclidean distance. Each coordinate difference
between X and a query point is scaled, meaning divided by a scale
value S. The default value of S is the standard deviation computed
from X, S = std(X,'omitnan'). To specify another value for S,
use the Scale name-value pair argument.

'spearman' One minus the sample Spearman's rank correlation between
observations (treated as sequences of values).
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Distance Metric Names Description
@distfun Distance function handle. distfun has the form

function D2 = distfun(ZI,ZJ)
% calculation of  distance
...

where

• ZI is a 1-by-N vector containing one row of X or Y.
• ZJ is an M2-by-N matrix containing multiple rows of X or Y.
• D2 is an M2-by-1 vector of distances, and D2(k) is the distance

between observations ZI and ZJ(k,:).

If you specify CategoricalPredictors as 'all', then the default distance metric is 'hamming'.
Otherwise, the default distance metric is 'euclidean'.

For definitions, see “Distance Metrics” on page 19-14.
Example: 'Distance','minkowski'
Data Types: char | string | function_handle

DistanceWeight — Distance weighting function
'equal' (default) | 'inverse' | 'squaredinverse' | function handle

Distance weighting function, specified as the comma-separated pair consisting of
'DistanceWeight' and either a function handle or one of the values in this table.

Value Description
'equal' No weighting
'inverse' Weight is 1/distance
'squaredinverse' Weight is 1/distance2

@fcn fcn is a function that accepts a matrix of nonnegative distances,
and returns a matrix the same size containing nonnegative distance
weights. For example, 'squaredinverse' is equivalent to
@(d)d.^(-2).

Example: 'DistanceWeight','inverse'
Data Types: char | string | function_handle

Exponent — Minkowski distance exponent
2 (default) | positive scalar value

Minkowski distance exponent, specified as the comma-separated pair consisting of 'Exponent' and
a positive scalar value. This argument is only valid when 'Distance' is 'minkowski'.
Example: 'Exponent',3
Data Types: single | double

IncludeTies — Tie inclusion flag
false (default) | true

35 Functions

35-2046



Tie inclusion flag, specified as the comma-separated pair consisting of 'IncludeTies' and a logical
value indicating whether predict includes all the neighbors whose distance values are equal to the
kth smallest distance. If IncludeTies is true, predict includes all these neighbors. Otherwise,
predict uses exactly k neighbors.
Example: 'IncludeTies',true
Data Types: logical

NSMethod — Nearest neighbor search method
'kdtree' | 'exhaustive'

Nearest neighbor search method, specified as the comma-separated pair consisting of 'NSMethod'
and 'kdtree' or 'exhaustive'.

• 'kdtree' — Creates and uses a Kd-tree to find nearest neighbors. 'kdtree' is valid when the
distance metric is one of the following:

• 'euclidean'
• 'cityblock'
• 'minkowski'
• 'chebychev'

• 'exhaustive' — Uses the exhaustive search algorithm. When predicting the class of a new point
xnew, the software computes the distance values from all points in X to xnew to find nearest
neighbors.

The default is 'kdtree' when X has 10 or fewer columns, X is not sparse or a gpuArray, and the
distance metric is a 'kdtree' type; otherwise, 'exhaustive'.
Example: 'NSMethod','exhaustive'

NumNeighbors — Number of nearest neighbors to find
1 (default) | positive integer value

Number of nearest neighbors in X to find for classifying each point when predicting, specified as the
comma-separated pair consisting of 'NumNeighbors' and a positive integer value.
Example: 'NumNeighbors',3
Data Types: single | double

PredictorNames — Predictor variable names
string array of unique names | cell array of unique character vectors

Predictor variable names, specified as a string array of unique names or cell array of unique
character vectors. The functionality of PredictorNames depends on the way you supply the training
data.

• If you supply X and Y, then you can use PredictorNames to assign names to the predictor
variables in X.

• The order of the names in PredictorNames must correspond to the column order of X. That
is, PredictorNames{1} is the name of X(:,1), PredictorNames{2} is the name of
X(:,2), and so on. Also, size(X,2) and numel(PredictorNames) must be equal.

• By default, PredictorNames is {'x1','x2',...}.
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• If you supply Tbl, then you can use PredictorNames to choose which predictor variables to use
in training. That is, fitcknn uses only the predictor variables in PredictorNames and the
response variable during training.

• PredictorNames must be a subset of Tbl.Properties.VariableNames and cannot include
the name of the response variable.

• By default, PredictorNames contains the names of all predictor variables.
• A good practice is to specify the predictors for training using either PredictorNames or

formula, but not both.

Example: "PredictorNames",
["SepalLength","SepalWidth","PetalLength","PetalWidth"]

Data Types: string | cell

Prior — Prior probabilities
'empirical' (default) | 'uniform' | vector of scalar values | structure

Prior probabilities for each class, specified as the comma-separated pair consisting of 'Prior' and a
value in this table.

Value Description
'empirical' The class prior probabilities are the class relative

frequencies in Y.
'uniform' All class prior probabilities are equal to 1/K,

where K is the number of classes.
numeric vector Each element is a class prior probability. Order

the elements according to Mdl.ClassNames or
specify the order using the ClassNames name-
value pair argument. The software normalizes the
elements such that they sum to 1.

structure A structure S with two fields:

• S.ClassNames contains the class names as a
variable of the same type as Y.

• S.ClassProbs contains a vector of
corresponding prior probabilities. The
software normalizes the elements such that
they sum to 1.

If you set values for both Weights and Prior, the weights are renormalized to add up to the value of
the prior probability in the respective class.
Example: 'Prior','uniform'
Data Types: char | string | single | double | struct

ResponseName — Response variable name
"Y" (default) | character vector | string scalar

Response variable name, specified as a character vector or string scalar.
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• If you supply Y, then you can use ResponseName to specify a name for the response variable.
• If you supply ResponseVarName or formula, then you cannot use ResponseName.

Example: "ResponseName","response"
Data Types: char | string

Scale — Distance scale
std(X,'omitnan') (default) | vector of nonnegative scalar values

Distance scale, specified as the comma-separated pair consisting of 'Scale' and a vector containing
nonnegative scalar values with length equal to the number of columns in X. Each coordinate
difference between X and a query point is scaled by the corresponding element of Scale. This
argument is only valid when 'Distance' is 'seuclidean'.

You cannot simultaneously specify 'Standardize' and either of 'Scale' or 'Cov'.
Data Types: single | double

ScoreTransform — Score transformation
"none" (default) | "doublelogit" | "invlogit" | "ismax" | "logit" | function handle | ...

Score transformation, specified as a character vector, string scalar, or function handle.

This table summarizes the available character vectors and string scalars.

Value Description
"doublelogit" 1/(1 + e–2x)
"invlogit" log(x / (1 – x))
"ismax" Sets the score for the class with the largest score to 1,

and sets the scores for all other classes to 0
"logit" 1/(1 + e–x)
"none" or "identity" x (no transformation)
"sign" –1 for x < 0

0 for x = 0
1 for x > 0

"symmetric" 2x – 1
"symmetricismax" Sets the score for the class with the largest score to 1,

and sets the scores for all other classes to –1
"symmetriclogit" 2/(1 + e–x) – 1

For a MATLAB function or a function you define, use its function handle for the score transform. The
function handle must accept a matrix (the original scores) and return a matrix of the same size (the
transformed scores).
Example: "ScoreTransform","logit"
Data Types: char | string | function_handle

Standardize — Flag to standardize predictors
false (default) | true
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Flag to standardize the predictors, specified as the comma-separated pair consisting of
'Standardize' and true (1) or false (0).

If you set 'Standardize',true, then the software centers and scales each column of the predictor
data (X) by the column mean and standard deviation, respectively.

The software does not standardize categorical predictors, and throws an error if all predictors are
categorical.

You cannot simultaneously specify 'Standardize',1 and either of 'Scale' or 'Cov'.

It is good practice to standardize the predictor data.
Example: 'Standardize',true
Data Types: logical

Weights — Observation weights
numeric vector of positive values | name of variable in Tbl

Observation weights, specified as the comma-separated pair consisting of 'Weights' and a numeric
vector of positive values or name of a variable in Tbl. The software weighs the observations in each
row of X or Tbl with the corresponding value in Weights. The size of Weights must equal the
number of rows of X or Tbl.

If you specify the input data as a table Tbl, then Weights can be the name of a variable in Tbl that
contains a numeric vector. In this case, you must specify Weights as a character vector or string
scalar. For example, if the weights vector W is stored as Tbl.W, then specify it as 'W'. Otherwise, the
software treats all columns of Tbl, including W, as predictors or the response when training the
model.

The software normalizes Weights to sum up to the value of the prior probability in the respective
class.

By default, Weights is ones(n,1), where n is the number of observations in X or Tbl.
Data Types: double | single | char | string

Cross Validation Options

CrossVal — Cross-validation flag
'off' (default) | 'on'

Cross-validation flag, specified as the comma-separated pair consisting of 'Crossval' and 'on' or
'off'.

If you specify 'on', then the software implements 10-fold cross-validation.

To override this cross-validation setting, use one of these name-value pair arguments: CVPartition,
Holdout, KFold, or Leaveout. To create a cross-validated model, you can use one cross-validation
name-value pair argument at a time only.

Alternatively, cross validate Mdl later using the crossval method.
Example: 'Crossval','on'

CVPartition — Cross-validation partition
[] (default) | cvpartition partition object
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Cross-validation partition, specified as a cvpartition partition object created by cvpartition.
The partition object specifies the type of cross-validation and the indexing for the training and
validation sets.

To create a cross-validated model, you can specify only one of these four name-value arguments:
CVPartition, Holdout, KFold, or Leaveout.
Example: Suppose you create a random partition for 5-fold cross-validation on 500 observations by
using cvp = cvpartition(500,'KFold',5). Then, you can specify the cross-validated model by
using 'CVPartition',cvp.

Holdout — Fraction of data for holdout validation
scalar value in the range (0,1)

Fraction of the data used for holdout validation, specified as a scalar value in the range (0,1). If you
specify 'Holdout',p, then the software completes these steps:

1 Randomly select and reserve p*100% of the data as validation data, and train the model using
the rest of the data.

2 Store the compact, trained model in the Trained property of the cross-validated model.

To create a cross-validated model, you can specify only one of these four name-value arguments:
CVPartition, Holdout, KFold, or Leaveout.
Example: 'Holdout',0.1
Data Types: double | single

KFold — Number of folds
10 (default) | positive integer value greater than 1

Number of folds to use in a cross-validated model, specified as a positive integer value greater than 1.
If you specify 'KFold',k, then the software completes these steps:

1 Randomly partition the data into k sets.
2 For each set, reserve the set as validation data, and train the model using the other k – 1 sets.
3 Store the k compact, trained models in a k-by-1 cell vector in the Trained property of the cross-

validated model.

To create a cross-validated model, you can specify only one of these four name-value arguments:
CVPartition, Holdout, KFold, or Leaveout.
Example: 'KFold',5
Data Types: single | double

Leaveout — Leave-one-out cross-validation flag
'off' (default) | 'on'

Leave-one-out cross-validation flag, specified as 'on' or 'off'. If you specify 'Leaveout','on',
then for each of the n observations (where n is the number of observations, excluding missing
observations, specified in the NumObservations property of the model), the software completes
these steps:

1 Reserve the one observation as validation data, and train the model using the other n – 1
observations.
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2 Store the n compact, trained models in an n-by-1 cell vector in the Trained property of the
cross-validated model.

To create a cross-validated model, you can specify only one of these four name-value arguments:
CVPartition, Holdout, KFold, or Leaveout.
Example: 'Leaveout','on'

Hyperparameter Optimization Options

OptimizeHyperparameters — Parameters to optimize
'none' (default) | 'auto' | 'all' | string array or cell array of eligible parameter names | vector of
optimizableVariable objects

Parameters to optimize, specified as the comma-separated pair consisting of
'OptimizeHyperparameters' and one of the following:

• 'none' — Do not optimize.
• 'auto' — Use {'Distance','NumNeighbors'}.
• 'all' — Optimize all eligible parameters.
• String array or cell array of eligible parameter names.
• Vector of optimizableVariable objects, typically the output of hyperparameters.

The optimization attempts to minimize the cross-validation loss (error) for fitcknn by varying the
parameters. For information about cross-validation loss (albeit in a different context), see
“Classification Loss” on page 35-3870. To control the cross-validation type and other aspects of the
optimization, use the HyperparameterOptimizationOptions name-value pair.

Note The values of 'OptimizeHyperparameters' override any values you specify using other
name-value arguments. For example, setting 'OptimizeHyperparameters' to 'auto' causes
fitcknn to optimize hyperparameters corresponding to the 'auto' option and to ignore any
specified values for the hyperparameters.

The eligible parameters for fitcknn are:

• Distance — fitcknn searches among 'cityblock', 'chebychev', 'correlation',
'cosine', 'euclidean', 'hamming', 'jaccard', 'mahalanobis', 'minkowski',
'seuclidean', and 'spearman'.

• DistanceWeight — fitcknn searches among 'equal', 'inverse', and 'squaredinverse'.
• Exponent — fitcknn searches among positive real values, by default in the range [0.5,3].
• NumNeighbors — fitcknn searches among positive integer values, by default log-scaled in the

range [1, max(2,round(NumObservations/2))].
• Standardize — fitcknn searches among the values 'true' and 'false'.

Set nondefault parameters by passing a vector of optimizableVariable objects that have
nondefault values. For example,

load fisheriris
params = hyperparameters('fitcknn',meas,species);
params(1).Range = [1,20];
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Pass params as the value of OptimizeHyperparameters.

By default, the iterative display appears at the command line, and plots appear according to the
number of hyperparameters in the optimization. For the optimization and plots, the objective function
is the misclassification rate. To control the iterative display, set the Verbose field of the
'HyperparameterOptimizationOptions' name-value argument. To control the plots, set the
ShowPlots field of the 'HyperparameterOptimizationOptions' name-value argument.

For an example, see “Optimize Fitted KNN Classifier” on page 35-2038.
Example: 'auto'

HyperparameterOptimizationOptions — Options for optimization
structure

Options for optimization, specified as a structure. This argument modifies the effect of the
OptimizeHyperparameters name-value argument. All fields in the structure are optional.

Field Name Values Default
Optimizer • 'bayesopt' — Use Bayesian optimization.

Internally, this setting calls bayesopt.
• 'gridsearch' — Use grid search with

NumGridDivisions values per dimension.
• 'randomsearch' — Search at random among

MaxObjectiveEvaluations points.

'gridsearch' searches in a random order, using
uniform sampling without replacement from the
grid. After optimization, you can get a table in grid
order by using the command
sortrows(Mdl.HyperparameterOptimizatio
nResults).

'bayesopt'

AcquisitionFunct
ionName

• 'expected-improvement-per-second-
plus'

• 'expected-improvement'
• 'expected-improvement-plus'
• 'expected-improvement-per-second'
• 'lower-confidence-bound'
• 'probability-of-improvement'

Acquisition functions whose names include per-
second do not yield reproducible results because
the optimization depends on the runtime of the
objective function. Acquisition functions whose
names include plus modify their behavior when
they are overexploiting an area. For more details,
see “Acquisition Function Types” on page 10-3.

'expected-
improvement-per-
second-plus'
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Field Name Values Default
MaxObjectiveEval
uations

Maximum number of objective function
evaluations.

30 for 'bayesopt' and
'randomsearch', and
the entire grid for
'gridsearch'

MaxTime Time limit, specified as a positive real scalar. The
time limit is in seconds, as measured by tic and
toc. The run time can exceed MaxTime because
MaxTime does not interrupt function evaluations.

Inf

NumGridDivisions For 'gridsearch', the number of values in each
dimension. The value can be a vector of positive
integers giving the number of values for each
dimension, or a scalar that applies to all
dimensions. This field is ignored for categorical
variables.

10

ShowPlots Logical value indicating whether to show plots. If
true, this field plots the best observed objective
function value against the iteration number. If you
use Bayesian optimization (Optimizer is
'bayesopt'), then this field also plots the best
estimated objective function value. The best
observed objective function values and best
estimated objective function values correspond to
the values in the BestSoFar (observed) and
BestSoFar (estim.) columns of the iterative
display, respectively. You can find these values in
the properties ObjectiveMinimumTrace and
EstimatedObjectiveMinimumTrace of
Mdl.HyperparameterOptimizationResults.
If the problem includes one or two optimization
parameters for Bayesian optimization, then
ShowPlots also plots a model of the objective
function against the parameters.

true

SaveIntermediate
Results

Logical value indicating whether to save results
when Optimizer is 'bayesopt'. If true, this
field overwrites a workspace variable named
'BayesoptResults' at each iteration. The
variable is a BayesianOptimization object.

false

Verbose Display at the command line:

• 0 — No iterative display
• 1 — Iterative display
• 2 — Iterative display with extra information

For details, see the bayesopt Verbose name-
value argument and the example “Optimize
Classifier Fit Using Bayesian Optimization” on
page 10-56.

1
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Field Name Values Default
UseParallel Logical value indicating whether to run Bayesian

optimization in parallel, which requires Parallel
Computing Toolbox. Due to the nonreproducibility
of parallel timing, parallel Bayesian optimization
does not necessarily yield reproducible results. For
details, see “Parallel Bayesian Optimization” on
page 10-7.

false

Repartition Logical value indicating whether to repartition the
cross-validation at every iteration. If this field is
false, the optimizer uses a single partition for
the optimization.

The setting true usually gives the most robust
results because it takes partitioning noise into
account. However, for good results, true requires
at least twice as many function evaluations.

false

Use no more than one of the following three options.
CVPartition A cvpartition object, as created by

cvpartition
'Kfold',5 if you do not
specify a cross-validation
fieldHoldout A scalar in the range (0,1) representing the

holdout fraction
Kfold An integer greater than 1

Example:
'HyperparameterOptimizationOptions',struct('MaxObjectiveEvaluations',60)

Data Types: struct

Output Arguments
Mdl — Trained k-nearest neighbor classification model
ClassificationKNN model object | ClassificationPartitionedModel cross-validated model
object

Trained k-nearest neighbor classification model, returned as a ClassificationKNN model object or
a ClassificationPartitionedModel cross-validated model object.

If you set any of the name-value pair arguments KFold, Holdout, CrossVal, or CVPartition, then
Mdl is a ClassificationPartitionedModel cross-validated model object. Otherwise, Mdl is a
ClassificationKNN model object.

To reference properties of Mdl, use dot notation. For example, to display the distance metric at the
Command Window, enter Mdl.Distance.

More About
Prediction

ClassificationKNN predicts the classification of a point xnew using a procedure equivalent to this:
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1 Find the NumNeighbors points in the training set X that are nearest to xnew.
2 Find the NumNeighbors response values Y to those nearest points.
3 Assign the classification label ynew that has the largest posterior probability among the values in

Y.

For details, see “Posterior Probability” on page 35-5727 in the predict documentation.

Tips
After training a model, you can generate C/C++ code that predicts labels for new data. Generating
C/C++ code requires MATLAB Coder. For details, see “Introduction to Code Generation” on page 34-
2.

Algorithms
• NaNs or <undefined>s indicate missing observations. The following describes the behavior of

fitcknn when the data set or weights contain missing observations.

• If any value of Y or any weight is missing, then fitcknn removes those values from Y, the
weights, and the corresponding rows of X from the data. The software renormalizes the
weights to sum to 1.

• If you specify to standardize predictors ('Standardize',1) or the standardized Euclidean
distance ('Distance','seuclidean') without a scale, then fitcknn removes missing
observations from individual predictors before computing the mean and standard deviation. In
other words, the software implements mean and std with the 'omitnan' option on each
predictor.

• If you specify the Mahalanobis distance ('Distance','mahalanbois') without its
covariance matrix, then fitcknn removes rows of X that contain at least one missing value. In
other words, the software implements cov with the 'omitrows' option on the predictor
matrix X.

• If you specify the Cost, Prior, and Weights name-value arguments, the output model object
stores the specified values in the Cost, Prior, and W properties, respectively. The Cost property
stores the user-specified cost matrix (C) as is. The Prior and W properties store the prior
probabilities and observation weights, respectively, after normalization. For details, see
“Misclassification Cost Matrix, Prior Probabilities, and Observation Weights” on page 19-8.

• The software uses the Cost property for prediction, but not training. Therefore, Cost is not read-
only; you can change the property value by using dot notation after creating the trained model.

• Suppose that you set 'Standardize',true.

• If you also specify the Prior or Weights name-value pair argument, then fitcknn
standardizes the predictors using their corresponding weighted means and weighted standard
deviations. Specifically, fitcknn standardizes the predictor j using

•
x j
∗ =

x j− μ j
∗

σ j
∗ .

μ j
∗ = 1
∑
k

wk
∑
k

wkx jk .
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xjk is observation k (row) of predictor j (column).

σ j
∗ 2 =

∑
k

wk

∑
k

wk
2
− ∑

k
wk

2
∑
k

wk x jk− μ j
∗ 2 .

• If you also set 'Distance','mahalanobis' or 'Distance','seuclidean', then you
cannot specify Scale or Cov. Instead, the software:

1 Computes the means and standard deviations of each predictor.
2 Standardizes the data using the results of step 1.
3 Computes the distance parameter values using their respective default.

• If you specify Scale and either of Prior or Weights, then the software scales observed
distances by the weighted standard deviations.

• If you specify Cov and either of Prior or Weights, then the software applies the weighted
covariance matrix to the distances. In other words,

Cov =
∑
k

wk

∑
k

wk
2
− ∑

k
wk

2
∑
j
∑

k

wk x jk− μ j* ′ x j− μ j* .

Alternatives
Although fitcknn can train a multiclass KNN classifier, you can reduce a multiclass learning
problem to a series of KNN binary learners using fitcecoc.

Version History
Introduced in R2014a

Extended Capabilities
Automatic Parallel Support
Accelerate code by automatically running computation in parallel using Parallel Computing Toolbox™.

To perform parallel hyperparameter optimization, use the
'HyperparameterOptimizationOptions', struct('UseParallel',true) name-value
argument in the call to the fitcknn function.

For more information on parallel hyperparameter optimization, see “Parallel Bayesian Optimization”
on page 10-7.

For general information about parallel computing, see “Run MATLAB Functions with Automatic
Parallel Support” (Parallel Computing Toolbox).

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

Usage notes and limitations:
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• By default, fitcknn uses the exhaustive nearest neighbor search algorithm for gpuArray input
arguments.

• You cannot specify the name-value argument 'NSMethod' as 'kdtree'.
• You cannot specify the name-value argument 'Distance' as a function handle.
• You cannot specify the name-value argument 'IncludeTies' as true.
• fitcknn fits the model on a GPU if either of the following apply:

• The input argument X is a gpuArray object.
• The input argument Tbl contains gpuArray predictor variables.

For more information, see “Run MATLAB Functions on a GPU” (Parallel Computing Toolbox).

See Also
ClassificationKNN | ClassificationPartitionedModel | predict | templateKNN |
fitcensemble | fitcecoc

Topics
“Construct KNN Classifier” on page 19-30
“Modify KNN Classifier” on page 19-31
“Classification Using Nearest Neighbors” on page 19-14
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fitclinear
Fit binary linear classifier to high-dimensional data

Syntax
Mdl = fitclinear(X,Y)

Mdl = fitclinear(Tbl,ResponseVarName)
Mdl = fitclinear(Tbl,formula)
Mdl = fitclinear(Tbl,Y)

Mdl = fitclinear(X,Y,Name,Value)
[Mdl,FitInfo] = fitclinear( ___ )
[Mdl,FitInfo,HyperparameterOptimizationResults] = fitclinear( ___ )

Description
fitclinear trains linear classification models for two-class (binary) learning with high-dimensional,
full or sparse predictor data. Available linear classification models include regularized support vector
machines (SVM) and logistic regression models. fitclinear minimizes the objective function using
techniques that reduce computing time (e.g., stochastic gradient descent).

For reduced computation time on a high-dimensional data set that includes many predictor variables,
train a linear classification model by using fitclinear. For low- through medium-dimensional
predictor data sets, see “Alternatives for Lower-Dimensional Data” on page 35-2093.

To train a linear classification model for multiclass learning by combining SVM or logistic regression
binary classifiers using error-correcting output codes, see fitcecoc.

Mdl = fitclinear(X,Y) returns a trained linear classification model object Mdl that contains the
results of fitting a binary support vector machine to the predictors X and class labels Y.

Mdl = fitclinear(Tbl,ResponseVarName) returns a linear classification model using the
predictor variables in the table Tbl and the class labels in Tbl.ResponseVarName.

Mdl = fitclinear(Tbl,formula) returns a linear classification model using the sample data in
the table Tbl. The input argument formula is an explanatory model of the response and a subset of
predictor variables in Tbl used to fit Mdl.

Mdl = fitclinear(Tbl,Y) returns a linear classification model using the predictor variables in
the table Tbl and the class labels in vector Y.

Mdl = fitclinear(X,Y,Name,Value) specifies options using one or more name-value pair
arguments in addition to any of the input argument combinations in previous syntaxes. For example,
you can specify that the columns of the predictor matrix correspond to observations, implement
logistic regression, or specify to cross-validate. A good practice is to cross-validate using the
'Kfold' name-value pair argument. The cross-validation results determine how well the model
generalizes.

[Mdl,FitInfo] = fitclinear( ___ ) also returns optimization details using any of the previous
syntaxes. You cannot request FitInfo for cross-validated models.
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[Mdl,FitInfo,HyperparameterOptimizationResults] = fitclinear( ___ ) also returns
hyperparameter optimization details when you pass an OptimizeHyperparameters name-value
pair.

Examples

Train Linear Classification Model

Train a binary, linear classification model using support vector machines, dual SGD, and ridge
regularization.

Load the NLP data set.

load nlpdata

X is a sparse matrix of predictor data, and Y is a categorical vector of class labels. There are more
than two classes in the data.

Identify the labels that correspond to the Statistics and Machine Learning Toolbox™ documentation
web pages.

Ystats = Y == 'stats';

Train a binary, linear classification model that can identify whether the word counts in a
documentation web page are from the Statistics and Machine Learning Toolbox™ documentation.
Train the model using the entire data set. Determine how well the optimization algorithm fit the
model to the data by extracting a fit summary.

rng(1); % For reproducibility 
[Mdl,FitInfo] = fitclinear(X,Ystats)

Mdl = 
  ClassificationLinear
      ResponseName: 'Y'
        ClassNames: [0 1]
    ScoreTransform: 'none'
              Beta: [34023x1 double]
              Bias: -1.0059
            Lambda: 3.1674e-05
           Learner: 'svm'

  Properties, Methods

FitInfo = struct with fields:
                    Lambda: 3.1674e-05
                 Objective: 5.3783e-04
                 PassLimit: 10
                 NumPasses: 10
                BatchLimit: []
             NumIterations: 238561
              GradientNorm: NaN
         GradientTolerance: 0
      RelativeChangeInBeta: 0.0562
             BetaTolerance: 1.0000e-04
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             DeltaGradient: 1.4582
    DeltaGradientTolerance: 1
           TerminationCode: 0
         TerminationStatus: {'Iteration limit exceeded.'}
                     Alpha: [31572x1 double]
                   History: []
                   FitTime: 0.3471
                    Solver: {'dual'}

Mdl is a ClassificationLinear model. You can pass Mdl and the training or new data to loss to
inspect the in-sample classification error. Or, you can pass Mdl and new predictor data to predict to
predict class labels for new observations.

FitInfo is a structure array containing, among other things, the termination status
(TerminationStatus) and how long the solver took to fit the model to the data (FitTime). It is
good practice to use FitInfo to determine whether optimization-termination measurements are
satisfactory. Because training time is small, you can try to retrain the model, but increase the number
of passes through the data. This can improve measures like DeltaGradient.

Find Good Lasso Penalty Using Cross-Validation

To determine a good lasso-penalty strength for a linear classification model that uses a logistic
regression learner, implement 5-fold cross-validation.

Load the NLP data set.

load nlpdata

X is a sparse matrix of predictor data, and Y is a categorical vector of class labels. There are more
than two classes in the data.

The models should identify whether the word counts in a web page are from the Statistics and
Machine Learning Toolbox™ documentation. So, identify the labels that correspond to the Statistics
and Machine Learning Toolbox™ documentation web pages.

Ystats = Y == 'stats';

Create a set of 11 logarithmically-spaced regularization strengths from 10−6 through 10−0 . 5.

Lambda = logspace(-6,-0.5,11);

Cross-validate the models. To increase execution speed, transpose the predictor data and specify that
the observations are in columns. Estimate the coefficients using SpaRSA. Lower the tolerance on the
gradient of the objective function to 1e-8.

X = X'; 
rng(10); % For reproducibility
CVMdl = fitclinear(X,Ystats,'ObservationsIn','columns','KFold',5,...
    'Learner','logistic','Solver','sparsa','Regularization','lasso',...
    'Lambda',Lambda,'GradientTolerance',1e-8)

CVMdl = 
  ClassificationPartitionedLinear
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    CrossValidatedModel: 'Linear'
           ResponseName: 'Y'
        NumObservations: 31572
                  KFold: 5
              Partition: [1x1 cvpartition]
             ClassNames: [0 1]
         ScoreTransform: 'none'

  Properties, Methods

numCLModels = numel(CVMdl.Trained)

numCLModels = 5

CVMdl is a ClassificationPartitionedLinear model. Because fitclinear implements 5-fold
cross-validation, CVMdl contains 5 ClassificationLinear models that the software trains on each
fold.

Display the first trained linear classification model.

Mdl1 = CVMdl.Trained{1}

Mdl1 = 
  ClassificationLinear
      ResponseName: 'Y'
        ClassNames: [0 1]
    ScoreTransform: 'logit'
              Beta: [34023x11 double]
              Bias: [-13.1654 -13.1654 -13.1654 -13.1654 -9.2347 -7.0908 ... ]
            Lambda: [1.0000e-06 3.5481e-06 1.2589e-05 4.4668e-05 ... ]
           Learner: 'logistic'

  Properties, Methods

Mdl1 is a ClassificationLinear model object. fitclinear constructed Mdl1 by training on the
first four folds. Because Lambda is a sequence of regularization strengths, you can think of Mdl1 as
11 models, one for each regularization strength in Lambda.

Estimate the cross-validated classification error.

ce = kfoldLoss(CVMdl);

Because there are 11 regularization strengths, ce is a 1-by-11 vector of classification error rates.

Higher values of Lambda lead to predictor variable sparsity, which is a good quality of a classifier. For
each regularization strength, train a linear classification model using the entire data set and the same
options as when you cross-validated the models. Determine the number of nonzero coefficients per
model.

Mdl = fitclinear(X,Ystats,'ObservationsIn','columns',...
    'Learner','logistic','Solver','sparsa','Regularization','lasso',...
    'Lambda',Lambda,'GradientTolerance',1e-8);
numNZCoeff = sum(Mdl.Beta~=0);
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In the same figure, plot the cross-validated, classification error rates and frequency of nonzero
coefficients for each regularization strength. Plot all variables on the log scale.

figure;
[h,hL1,hL2] = plotyy(log10(Lambda),log10(ce),...
    log10(Lambda),log10(numNZCoeff)); 
hL1.Marker = 'o';
hL2.Marker = 'o';
ylabel(h(1),'log_{10} classification error')
ylabel(h(2),'log_{10} nonzero-coefficient frequency')
xlabel('log_{10} Lambda')
title('Test-Sample Statistics')
hold off

Choose the index of the regularization strength that balances predictor variable sparsity and low
classification error. In this case, a value between 10−4 to 10−1 should suffice.

idxFinal = 7;

Select the model from Mdl with the chosen regularization strength.

MdlFinal = selectModels(Mdl,idxFinal);

MdlFinal is a ClassificationLinear model containing one regularization strength. To estimate
labels for new observations, pass MdlFinal and the new data to predict.
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Optimize Linear Classifier

This example shows how to minimize the cross-validation error in a linear classifier using
fitclinear. The example uses the NLP data set.

Load the NLP data set.

load nlpdata

X is a sparse matrix of predictor data, and Y is a categorical vector of class labels. There are more
than two classes in the data.

The models should identify whether the word counts in a web page are from the Statistics and
Machine Learning Toolbox™ documentation. Identify the relevant labels.

X = X';
Ystats = Y == 'stats';

Optimize the classification using the 'auto' parameters.

For reproducibility, set the random seed and use the 'expected-improvement-plus' acquisition
function.

rng default
Mdl = fitclinear(X,Ystats,'ObservationsIn','columns','Solver','sparsa',...
    'OptimizeHyperparameters','auto','HyperparameterOptimizationOptions',...
    struct('AcquisitionFunctionName','expected-improvement-plus'))

|=====================================================================================================|
| Iter | Eval   | Objective   | Objective   | BestSoFar   | BestSoFar   |       Lambda |      Learner |
|      | result |             | runtime     | (observed)  | (estim.)    |              |              |
|=====================================================================================================|
|    1 | Best   |    0.041619 |      27.269 |    0.041619 |    0.041619 |     0.077903 |     logistic |
|    2 | Best   |  0.00079184 |       17.65 |  0.00079184 |   0.0029367 |   2.1405e-09 |     logistic |
|    3 | Accept |    0.049221 |      17.234 |  0.00079184 |  0.00082068 |      0.72101 |          svm |
|    4 | Accept |  0.00079184 |      31.655 |  0.00079184 |    0.000815 |   3.4734e-07 |          svm |
|    5 | Accept |  0.00079184 |       23.99 |  0.00079184 |  0.00079162 |   6.3377e-08 |          svm |
|    6 | Best   |  0.00076017 |      17.839 |  0.00076017 |  0.00075995 |   3.1802e-10 |     logistic |
|    7 | Accept |  0.00088686 |       19.39 |  0.00076017 |  0.00075831 |   3.1843e-10 |          svm |
|    8 | Best   |  0.00072849 |      37.795 |  0.00072849 |  0.00073699 |   1.9789e-07 |     logistic |
|    9 | Accept |  0.00076017 |      27.247 |  0.00072849 |  0.00072636 |   3.3537e-08 |     logistic |
|   10 | Accept |  0.00085519 |      24.611 |  0.00072849 |   0.0007172 |   2.6448e-09 |          svm |
|   11 | Best   |  0.00066515 |      31.616 |  0.00066515 |  0.00066179 |   7.9888e-08 |     logistic |
|   12 | Accept |  0.00066515 |       33.13 |  0.00066515 |  0.00066317 |   8.1387e-08 |     logistic |
|   13 | Accept |  0.00079184 |      26.385 |  0.00066515 |   0.0006637 |   1.3317e-07 |          svm |
|   14 | Accept |  0.00066515 |      23.238 |  0.00066515 |   0.0006641 |   8.4494e-08 |     logistic |
|   15 | Accept |   0.0012036 |      29.031 |  0.00066515 |  0.00066285 |   0.00073223 |          svm |
|   16 | Accept |  0.00091854 |      26.848 |  0.00066515 |  0.00066215 |   4.6412e-05 |          svm |
|   17 | Accept |  0.00091854 |      15.682 |  0.00066515 |  0.00066258 |   0.00020879 |          svm |
|   18 | Accept |  0.00091854 |       30.26 |  0.00066515 |  0.00066347 |   3.6513e-06 |          svm |
|   19 | Accept |   0.0010769 |      73.959 |  0.00066515 |  0.00068522 |    4.481e-06 |     logistic |
|   20 | Accept |  0.00095021 |      90.789 |  0.00066515 |  0.00067707 |    1.054e-06 |     logistic |
|=====================================================================================================|
| Iter | Eval   | Objective   | Objective   | BestSoFar   | BestSoFar   |       Lambda |      Learner |
|      | result |             | runtime     | (observed)  | (estim.)    |              |              |
|=====================================================================================================|
|   21 | Accept |  0.00076017 |      21.419 |  0.00066515 |   0.0006778 |   1.3635e-08 |          svm |
|   22 | Accept |  0.00076017 |      25.821 |  0.00066515 |  0.00067827 |   7.3179e-10 |     logistic |
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|   23 | Accept |  0.00069682 |       45.91 |  0.00066515 |  0.00068079 |   9.8933e-09 |     logistic |
|   24 | Accept |  0.00072849 |      35.968 |  0.00066515 |  0.00068629 |   4.6677e-08 |     logistic |
|   25 | Accept |  0.00072849 |      21.284 |  0.00066515 |  0.00069269 |   1.0921e-07 |     logistic |
|   26 | Accept |  0.00076017 |      20.619 |  0.00066515 |  0.00069218 |   8.6669e-09 |     logistic |
|   27 | Accept |    0.049221 |      1.7301 |  0.00066515 |  0.00069226 |       3.1639 |     logistic |
|   28 | Accept |  0.00085519 |      23.243 |  0.00066515 |   0.0006924 |   8.7032e-10 |          svm |
|   29 | Accept |  0.00076017 |      20.602 |  0.00066515 |  0.00069247 |   8.8067e-07 |          svm |
|   30 | Accept |  0.00072849 |      18.164 |  0.00066515 |  0.00069235 |   3.1946e-10 |     logistic |
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__________________________________________________________
Optimization completed.
MaxObjectiveEvaluations of 30 reached.
Total function evaluations: 30
Total elapsed time: 905.3706 seconds
Total objective function evaluation time: 860.3763

Best observed feasible point:
      Lambda      Learner 
    __________    ________

    7.9888e-08    logistic

Observed objective function value = 0.00066515
Estimated objective function value = 0.00069235
Function evaluation time = 31.6161

Best estimated feasible point (according to models):
      Lambda      Learner 
    __________    ________
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    7.9888e-08    logistic

Estimated objective function value = 0.00069235
Estimated function evaluation time = 29.6047

Mdl = 
  ClassificationLinear
      ResponseName: 'Y'
        ClassNames: [0 1]
    ScoreTransform: 'logit'
              Beta: [34023x1 double]
              Bias: -10.2012
            Lambda: 7.9888e-08
           Learner: 'logistic'

  Properties, Methods

Input Arguments
X — Predictor data
full matrix | sparse matrix

Predictor data, specified as an n-by-p full or sparse matrix.

The length of Y and the number of observations in X must be equal.

Note If you orient your predictor matrix so that observations correspond to columns and specify
'ObservationsIn','columns', then you might experience a significant reduction in optimization
execution time.

Data Types: single | double

Y — Class labels
categorical array | character array | string array | logical vector | numeric vector | cell array of
character vectors

Class labels to which the classification model is trained, specified as a categorical, character, or
string array, logical or numeric vector, or cell array of character vectors.

• fitclinear supports only binary classification. Either Y must contain exactly two distinct
classes, or you must specify two classes for training by using the 'ClassNames' name-value pair
argument. For multiclass learning, see fitcecoc.

• The length of Y must be equal to the number of observations in X or Tbl.
• If Y is a character array, then each label must correspond to one row of the array.
• A good practice is to specify the class order using the ClassNames name-value pair argument.

Data Types: char | string | cell | categorical | logical | single | double

Tbl — Sample data
table
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Sample data used to train the model, specified as a table. Each row of Tbl corresponds to one
observation, and each column corresponds to one predictor variable. Multicolumn variables and cell
arrays other than cell arrays of character vectors are not allowed.

Optionally, Tbl can contain a column for the response variable and a column for the observation
weights.

• The response variable must be a categorical, character, or string array, a logical or numeric vector,
or a cell array of character vectors.

• fitclinear supports only binary classification. Either the response variable must contain
exactly two distinct classes, or you must specify two classes for training by using the
ClassNames name-value argument. For multiclass learning, see fitcecoc.

• A good practice is to specify the order of the classes in the response variable by using the
ClassNames name-value argument.

• The column for the weights must be a numeric vector.
• You must specify the response variable in Tbl by using ResponseVarName or formula and

specify the observation weights in Tbl by using Weights.

• Specify the response variable by using ResponseVarName — fitclinear uses the remaining
variables as predictors. To use a subset of the remaining variables in Tbl as predictors, specify
predictor variables by using PredictorNames.

• Define a model specification by using formula — fitclinear uses a subset of the variables
in Tbl as predictor variables and the response variable, as specified in formula.

If Tbl does not contain the response variable, then specify a response variable by using Y. The length
of the response variable Y and the number of rows in Tbl must be equal. To use a subset of the
variables in Tbl as predictors, specify predictor variables by using PredictorNames.
Data Types: table

ResponseVarName — Response variable name
name of variable in Tbl

Response variable name, specified as the name of a variable in Tbl.

You must specify ResponseVarName as a character vector or string scalar. For example, if the
response variable Y is stored as Tbl.Y, then specify it as "Y". Otherwise, the software treats all
columns of Tbl, including Y, as predictors when training the model.

The response variable must be a categorical, character, or string array; a logical or numeric vector;
or a cell array of character vectors. If Y is a character array, then each element of the response
variable must correspond to one row of the array.

A good practice is to specify the order of the classes by using the ClassNames name-value argument.
Data Types: char | string

formula — Explanatory model of response variable and subset of predictor variables
character vector | string scalar

Explanatory model of the response variable and a subset of the predictor variables, specified as a
character vector or string scalar in the form "Y~x1+x2+x3". In this form, Y represents the response
variable, and x1, x2, and x3 represent the predictor variables.
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To specify a subset of variables in Tbl as predictors for training the model, use a formula. If you
specify a formula, then the software does not use any variables in Tbl that do not appear in
formula.

The variable names in the formula must be both variable names in Tbl
(Tbl.Properties.VariableNames) and valid MATLAB identifiers. You can verify the variable
names in Tbl by using the isvarname function. If the variable names are not valid, then you can
convert them by using the matlab.lang.makeValidName function.
Data Types: char | string

Note The software treats NaN, empty character vector (''), empty string (""), <missing>, and
<undefined> elements as missing values, and removes observations with any of these
characteristics:

• Missing value in the response variable (for example, Y or ValidationData{2})
• At least one missing value in a predictor observation (for example, row in X or

ValidationData{1})
• NaN value or 0 weight (for example, value in Weights or ValidationData{3})

For memory-usage economy, it is best practice to remove observations containing missing values from
your training data manually before training.

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.

Note You cannot use any cross-validation name-value argument together with the
'OptimizeHyperparameters' name-value argument. You can modify the cross-validation for
'OptimizeHyperparameters' only by using the 'HyperparameterOptimizationOptions'
name-value argument.

Example: 'ObservationsIn','columns','Learner','logistic','CrossVal','on' specifies
that the columns of the predictor matrix corresponds to observations, to implement logistic
regression, to implement 10-fold cross-validation.

Linear Classification Options

Lambda — Regularization term strength
'auto' (default) | nonnegative scalar | vector of nonnegative values

Regularization term strength, specified as the comma-separated pair consisting of 'Lambda' and
'auto', a nonnegative scalar, or a vector of nonnegative values.

• For 'auto', Lambda = 1/n.
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• If you specify a cross-validation, name-value pair argument (e.g., CrossVal), then n is the
number of in-fold observations.

• Otherwise, n is the training sample size.
• For a vector of nonnegative values, fitclinear sequentially optimizes the objective function for

each distinct value in Lambda in ascending order.

• If Solver is 'sgd' or 'asgd' and Regularization is 'lasso', fitclinear does not use
the previous coefficient estimates as a warm start on page 35-2093 for the next optimization
iteration. Otherwise, fitclinear uses warm starts.

• If Regularization is 'lasso', then any coefficient estimate of 0 retains its value when
fitclinear optimizes using subsequent values in Lambda.

• fitclinear returns coefficient estimates for each specified regularization strength.

Example: 'Lambda',10.^(-(10:-2:2))
Data Types: char | string | double | single

Learner — Linear classification model type
'svm' (default) | 'logistic'

Linear classification model type, specified as the comma-separated pair consisting of 'Learner' and
'svm' or 'logistic'.

In this table, f x = xβ + b .

• β is a vector of p coefficients.
• x is an observation from p predictor variables.
• b is the scalar bias.

Value Algorithm Response Range Loss Function
'svm' Support vector machine y ∊ {–1,1}; 1 for the

positive class and –1
otherwise

Hinge: ℓ y, f x = max
0, 1− yf x

'logistic' Logistic regression Same as 'svm' Deviance (logistic):
ℓ y, f x = log

1 + exp −yf x

Example: 'Learner','logistic'

ObservationsIn — Predictor data observation dimension
'rows' (default) | 'columns'

Predictor data observation dimension, specified as 'rows' or 'columns'.

Note If you orient your predictor matrix so that observations correspond to columns and specify
'ObservationsIn','columns', then you might experience a significant reduction in computation
time. You cannot specify 'ObservationsIn','columns' for predictor data in a table.

Example: 'ObservationsIn','columns'
Data Types: char | string
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Regularization — Complexity penalty type
'lasso' | 'ridge'

Complexity penalty type, specified as the comma-separated pair consisting of 'Regularization'
and 'lasso' or 'ridge'.

The software composes the objective function for minimization from the sum of the average loss
function (see Learner) and the regularization term in this table.

Value Description
'lasso'

Lasso (L1) penalty: λ ∑
j = 1

p
β j

'ridge'
Ridge (L2) penalty: λ2 ∑j = 1

p
β j

2

To specify the regularization term strength, which is λ in the expressions, use Lambda.

The software excludes the bias term (β0) from the regularization penalty.

If Solver is 'sparsa', then the default value of Regularization is 'lasso'. Otherwise, the
default is 'ridge'.

Tip

• For predictor variable selection, specify 'lasso'. For more on variable selection, see
“Introduction to Feature Selection” on page 16-47.

• For optimization accuracy, specify 'ridge'.

Example: 'Regularization','lasso'

Solver — Objective function minimization technique
'sgd' | 'asgd' | 'dual' | 'bfgs' | 'lbfgs' | 'sparsa' | string array | cell array of character
vectors

Objective function minimization technique, specified as the comma-separated pair consisting of
'Solver' and a character vector or string scalar, a string array, or a cell array of character vectors
with values from this table.

Value Description Restrictions
'sgd' Stochastic gradient descent

(SGD) [4][2]
 

'asgd' Average stochastic gradient
descent (ASGD) [7]

 

'dual' Dual SGD for SVM [1][6] Regularization must be
'ridge' and Learner must be
'svm'.
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Value Description Restrictions
'bfgs' Broyden-Fletcher-Goldfarb-

Shanno quasi-Newton algorithm
(BFGS) [3]

Inefficient if X is very high-
dimensional.

'lbfgs' Limited-memory BFGS (LBFGS)
[3]

Regularization must be
'ridge'.

'sparsa' Sparse Reconstruction by
Separable Approximation
(SpaRSA) [5]

Regularization must be
'lasso'.

If you specify:

• A ridge penalty (see Regularization) and X contains 100 or fewer predictor variables, then the
default solver is 'bfgs'.

• An SVM model (see Learner), a ridge penalty, and X contains more than 100 predictor variables,
then the default solver is 'dual'.

• A lasso penalty and X contains 100 or fewer predictor variables, then the default solver is
'sparsa'.

Otherwise, the default solver is 'sgd'. Note that the default solver can change when you perform
hyperparameter optimization. For more information, see “Regularization method determines the
solver used during hyperparameter optimization” on page 35-2095.

If you specify a string array or cell array of solver names, then, for each value in Lambda, the
software uses the solutions of solver j as a warm start for solver j + 1.
Example: {'sgd' 'lbfgs'} applies SGD to solve the objective, and uses the solution as a warm
start for LBFGS.

Tip

• SGD and ASGD can solve the objective function more quickly than other solvers, whereas LBFGS
and SpaRSA can yield more accurate solutions than other solvers. Solver combinations like
{'sgd' 'lbfgs'} and {'sgd' 'sparsa'} can balance optimization speed and accuracy.

• When choosing between SGD and ASGD, consider that:

• SGD takes less time per iteration, but requires more iterations to converge.
• ASGD requires fewer iterations to converge, but takes more time per iteration.

• If the predictor data is high dimensional and Regularization is 'ridge', set Solver to any of
these combinations:

• 'sgd'
• 'asgd'
• 'dual' if Learner is 'svm'
• 'lbfgs'
• {'sgd','lbfgs'}
• {'asgd','lbfgs'}
• {'dual','lbfgs'} if Learner is 'svm'
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Although you can set other combinations, they often lead to solutions with poor accuracy.
• If the predictor data is moderate through low dimensional and Regularization is 'ridge', set

Solver to 'bfgs'.
• If Regularization is 'lasso', set Solver to any of these combinations:

• 'sgd'
• 'asgd'
• 'sparsa'
• {'sgd','sparsa'}
• {'asgd','sparsa'}

Example: 'Solver',{'sgd','lbfgs'}

Beta — Initial linear coefficient estimates
zeros(p,1) (default) | numeric vector | numeric matrix

Initial linear coefficient estimates (β), specified as the comma-separated pair consisting of 'Beta'
and a p-dimensional numeric vector or a p-by-L numeric matrix. p is the number of predictor
variables in X and L is the number of regularization-strength values (for more details, see Lambda).

• If you specify a p-dimensional vector, then the software optimizes the objective function L times
using this process.

1 The software optimizes using Beta as the initial value and the minimum value of Lambda as
the regularization strength.

2 The software optimizes again using the resulting estimate from the previous optimization as a
warm start on page 35-2093, and the next smallest value in Lambda as the regularization
strength.

3 The software implements step 2 until it exhausts all values in Lambda.
• If you specify a p-by-L matrix, then the software optimizes the objective function L times. At

iteration j, the software uses Beta(:,j) as the initial value and, after it sorts Lambda in
ascending order, uses Lambda(j) as the regularization strength.

If you set 'Solver','dual', then the software ignores Beta.
Data Types: single | double

Bias — Initial intercept estimate
numeric scalar | numeric vector

Initial intercept estimate (b), specified as the comma-separated pair consisting of 'Bias' and a
numeric scalar or an L-dimensional numeric vector. L is the number of regularization-strength values
(for more details, see Lambda).

• If you specify a scalar, then the software optimizes the objective function L times using this
process.

1 The software optimizes using Bias as the initial value and the minimum value of Lambda as
the regularization strength.
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2 The uses the resulting estimate as a warm start to the next optimization iteration, and uses
the next smallest value in Lambda as the regularization strength.

3 The software implements step 2 until it exhausts all values in Lambda.
• If you specify an L-dimensional vector, then the software optimizes the objective function L times.

At iteration j, the software uses Bias(j) as the initial value and, after it sorts Lambda in
ascending order, uses Lambda(j) as the regularization strength.

• By default:

• If Learner is 'logistic', then let gj be 1 if Y(j) is the positive class, and -1 otherwise.
Bias is the weighted average of the g for training or, for cross-validation, in-fold observations.

• If Learner is 'svm', then Bias is 0.

Data Types: single | double

FitBias — Linear model intercept inclusion flag
true (default) | false

Linear model intercept inclusion flag, specified as the comma-separated pair consisting of
'FitBias' and true or false.

Value Description
true The software includes the bias term b in the

linear model, and then estimates it.
false The software sets b = 0 during estimation.

Example: 'FitBias',false
Data Types: logical

PostFitBias — Flag to fit linear model intercept after optimization
false (default) | true

Flag to fit the linear model intercept after optimization, specified as the comma-separated pair
consisting of 'PostFitBias' and true or false.

Value Description
false The software estimates the bias term b and the

coefficients β during optimization.
true To estimate b, the software:

1 Estimates β and b using the model
2 Estimates classification scores
3 Refits b by placing the threshold on the

classification scores that attains maximum
accuracy

If you specify true, then FitBias must be true.
Example: 'PostFitBias',true
Data Types: logical
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Verbose — Verbosity level
0 (default) | nonnegative integer

Verbosity level, specified as the comma-separated pair consisting of 'Verbose' and a nonnegative
integer. Verbose controls the amount of diagnostic information fitclinear displays at the
command line.

Value Description
0 fitclinear does not display diagnostic

information.
1 fitclinear periodically displays and stores the

value of the objective function, gradient
magnitude, and other diagnostic information.
FitInfo.History contains the diagnostic
information.

Any other positive integer fitclinear displays and stores diagnostic
information at each optimization iteration.
FitInfo.History contains the diagnostic
information.

Example: 'Verbose',1
Data Types: double | single

SGD and ASGD Solver Options

BatchSize — Mini-batch size
positive integer

Mini-batch size, specified as the comma-separated pair consisting of 'BatchSize' and a positive
integer. At each iteration, the software estimates the subgradient using BatchSize observations
from the training data.

• If X is a numeric matrix, then the default value is 10.
• If X is a sparse matrix, then the default value is max([10,ceil(sqrt(ff))]), where ff =

numel(X)/nnz(X) (the fullness factor of X).

Example: 'BatchSize',100
Data Types: single | double

LearnRate — Learning rate
positive scalar

Learning rate, specified as the comma-separated pair consisting of 'LearnRate' and a positive
scalar. LearnRate controls the optimization step size by scaling the subgradient.

• If Regularization is 'ridge', then LearnRate specifies the initial learning rate γ0.
fitclinear determines the learning rate for iteration t, γt, using

γt =
γ0

1 + λγ0t c .
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• λ is the value of Lambda.
• If Solver is 'sgd', then c = 1.
• If Solver is 'asgd', then c is 0.75 [7].

• If Regularization is 'lasso', then, for all iterations, LearnRate is constant.

By default, LearnRate is 1/sqrt(1+max((sum(X.^2,obsDim)))), where obsDim is 1 if the
observations compose the columns of the predictor data X, and 2 otherwise.
Example: 'LearnRate',0.01
Data Types: single | double

OptimizeLearnRate — Flag to decrease learning rate
true (default) | false

Flag to decrease the learning rate when the software detects divergence (that is, over-stepping the
minimum), specified as the comma-separated pair consisting of 'OptimizeLearnRate' and true or
false.

If OptimizeLearnRate is 'true', then:

1 For the few optimization iterations, the software starts optimization using LearnRate as the
learning rate.

2 If the value of the objective function increases, then the software restarts and uses half of the
current value of the learning rate.

3 The software iterates step 2 until the objective function decreases.

Example: 'OptimizeLearnRate',true
Data Types: logical

TruncationPeriod — Number of mini-batches between lasso truncation runs
10 (default) | positive integer

Number of mini-batches between lasso truncation runs, specified as the comma-separated pair
consisting of 'TruncationPeriod' and a positive integer.

After a truncation run, the software applies a soft threshold to the linear coefficients. That is, after
processing k = TruncationPeriod mini-batches, the software truncates the estimated coefficient j
using

β j
∗ =

β j− ut if β j > ut,

0 if β j ≤ ut,

β j + ut if β j < − ut .

• For SGD, β j is the estimate of coefficient j after processing k mini-batches. ut = kγtλ . γt is the
learning rate at iteration t. λ is the value of Lambda.

• For ASGD, β j is the averaged estimate coefficient j after processing k mini-batches, ut = kλ .

If Regularization is 'ridge', then the software ignores TruncationPeriod.
Example: 'TruncationPeriod',100
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Data Types: single | double

Other Classification Options

CategoricalPredictors — Categorical predictors list
vector of positive integers | logical vector | character matrix | string array | cell array of character
vectors | 'all'

Categorical predictors list, specified as one of the values in this table. The descriptions assume that
the predictor data has observations in rows and predictors in columns.

Value Description
Vector of positive
integers

Each entry in the vector is an index value indicating that the corresponding
predictor is categorical. The index values are between 1 and p, where p is
the number of predictors used to train the model.

If fitclinear uses a subset of input variables as predictors, then the
function indexes the predictors using only the subset. The
CategoricalPredictors values do not count the response variable,
observation weights variable, or any other variables that the function does
not use.

Logical vector A true entry means that the corresponding predictor is categorical. The
length of the vector is p.

Character matrix Each row of the matrix is the name of a predictor variable. The names must
match the entries in PredictorNames. Pad the names with extra blanks
so each row of the character matrix has the same length.

String array or cell
array of character
vectors

Each element in the array is the name of a predictor variable. The names
must match the entries in PredictorNames.

"all" All predictors are categorical.

By default, if the predictor data is in a table (Tbl), fitclinear assumes that a variable is
categorical if it is a logical vector, categorical vector, character array, string array, or cell array of
character vectors. If the predictor data is a matrix (X), fitclinear assumes that all predictors are
continuous. To identify any other predictors as categorical predictors, specify them by using the
CategoricalPredictors name-value argument.

For the identified categorical predictors, fitclinear creates dummy variables using two different
schemes, depending on whether a categorical variable is unordered or ordered. For an unordered
categorical variable, fitclinear creates one dummy variable for each level of the categorical
variable. For an ordered categorical variable, fitclinear creates one less dummy variable than the
number of categories. For details, see “Automatic Creation of Dummy Variables” on page 2-50.
Example: 'CategoricalPredictors','all'
Data Types: single | double | logical | char | string | cell

ClassNames — Names of classes to use for training
categorical array | character array | string array | logical vector | numeric vector | cell array of
character vectors
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Names of classes to use for training, specified as a categorical, character, or string array; a logical or
numeric vector; or a cell array of character vectors. ClassNames must have the same data type as
the response variable in Tbl or Y.

If ClassNames is a character array, then each element must correspond to one row of the array.

Use ClassNames to:

• Specify the order of the classes during training.
• Specify the order of any input or output argument dimension that corresponds to the class order.

For example, use ClassNames to specify the order of the dimensions of Cost or the column order
of classification scores returned by predict.

• Select a subset of classes for training. For example, suppose that the set of all distinct class names
in Y is ["a","b","c"]. To train the model using observations from classes "a" and "c" only,
specify "ClassNames",["a","c"].

The default value for ClassNames is the set of all distinct class names in the response variable in
Tbl or Y.
Example: "ClassNames",["b","g"]
Data Types: categorical | char | string | logical | single | double | cell

Cost — Misclassification cost
square matrix | structure array

Misclassification cost, specified as the comma-separated pair consisting of 'Cost' and a square
matrix or structure.

• If you specify the square matrix cost ('Cost',cost), then cost(i,j) is the cost of classifying a
point into class j if its true class is i. That is, the rows correspond to the true class, and the
columns correspond to the predicted class. To specify the class order for the corresponding rows
and columns of cost, use the ClassNames name-value pair argument.

• If you specify the structure S ('Cost',S), then it must have two fields:

• S.ClassNames, which contains the class names as a variable of the same data type as Y
• S.ClassificationCosts, which contains the cost matrix with rows and columns ordered as

in S.ClassNames

The default value for Cost is ones(K) – eye(K), where K is the number of distinct classes.

fitclinear uses Cost to adjust the prior class probabilities specified in Prior. Then, fitclinear
uses the adjusted prior probabilities for training.
Example: 'Cost',[0 2; 1 0]
Data Types: single | double | struct

PredictorNames — Predictor variable names
string array of unique names | cell array of unique character vectors

Predictor variable names, specified as a string array of unique names or cell array of unique
character vectors. The functionality of 'PredictorNames' depends on the way you supply the
training data.
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• If you supply X and Y, then you can use 'PredictorNames' to assign names to the predictor
variables in X.

• The order of the names in PredictorNames must correspond to the predictor order in X.
Assuming that X has the default orientation, with observations in rows and predictors in
columns, PredictorNames{1} is the name of X(:,1), PredictorNames{2} is the name of
X(:,2), and so on. Also, size(X,2) and numel(PredictorNames) must be equal.

• By default, PredictorNames is {'x1','x2',...}.
• If you supply Tbl, then you can use 'PredictorNames' to choose which predictor variables to

use in training. That is, fitclinear uses only the predictor variables in PredictorNames and
the response variable during training.

• PredictorNames must be a subset of Tbl.Properties.VariableNames and cannot include
the name of the response variable.

• By default, PredictorNames contains the names of all predictor variables.
• A good practice is to specify the predictors for training using either 'PredictorNames' or

formula, but not both.

Example: 'PredictorNames',
{'SepalLength','SepalWidth','PetalLength','PetalWidth'}

Data Types: string | cell

Prior — Prior probabilities
'empirical' (default) | 'uniform' | numeric vector | structure array

Prior probabilities for each class, specified as the comma-separated pair consisting of 'Prior' and
'empirical', 'uniform', a numeric vector, or a structure array.

This table summarizes the available options for setting prior probabilities.

Value Description
'empirical' The class prior probabilities are the class relative

frequencies in Y.
'uniform' All class prior probabilities are equal to 1/K,

where K is the number of classes.
numeric vector Each element is a class prior probability. Order

the elements according to their order in Y. If you
specify the order using the 'ClassNames' name-
value pair argument, then order the elements
accordingly.

structure array A structure S with two fields:

• S.ClassNames contains the class names as a
variable of the same type as Y.

• S.ClassProbs contains a vector of
corresponding prior probabilities.

fitclinear normalizes the prior probabilities in Prior to sum to 1.
Example: 'Prior',struct('ClassNames',
{{'setosa','versicolor'}},'ClassProbs',1:2)

 fitclinear

35-2079



Data Types: char | string | double | single | struct

ResponseName — Response variable name
"Y" (default) | character vector | string scalar

Response variable name, specified as a character vector or string scalar.

• If you supply Y, then you can use ResponseName to specify a name for the response variable.
• If you supply ResponseVarName or formula, then you cannot use ResponseName.

Example: "ResponseName","response"
Data Types: char | string

ScoreTransform — Score transformation
"none" (default) | "doublelogit" | "invlogit" | "ismax" | "logit" | function handle | ...

Score transformation, specified as a character vector, string scalar, or function handle.

This table summarizes the available character vectors and string scalars.

Value Description
"doublelogit" 1/(1 + e–2x)
"invlogit" log(x / (1 – x))
"ismax" Sets the score for the class with the largest score to 1,

and sets the scores for all other classes to 0
"logit" 1/(1 + e–x)
"none" or "identity" x (no transformation)
"sign" –1 for x < 0

0 for x = 0
1 for x > 0

"symmetric" 2x – 1
"symmetricismax" Sets the score for the class with the largest score to 1,

and sets the scores for all other classes to –1
"symmetriclogit" 2/(1 + e–x) – 1

For a MATLAB function or a function you define, use its function handle for the score transform. The
function handle must accept a matrix (the original scores) and return a matrix of the same size (the
transformed scores).
Example: "ScoreTransform","logit"
Data Types: char | string | function_handle

Weights — Observation weights
nonnegative numeric vector | name of variable in Tbl

Observation weights, specified as a nonnegative numeric vector or the name of a variable in Tbl. The
software weights each observation in X or Tbl with the corresponding value in Weights. The length
of Weights must equal the number of observations in X or Tbl.

If you specify the input data as a table Tbl, then Weights can be the name of a variable in Tbl that
contains a numeric vector. In this case, you must specify Weights as a character vector or string
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scalar. For example, if the weights vector W is stored as Tbl.W, then specify it as 'W'. Otherwise, the
software treats all columns of Tbl, including W, as predictors or the response variable when training
the model.

By default, Weights is ones(n,1), where n is the number of observations in X or Tbl.

The software normalizes Weights to sum to the value of the prior probability in the respective class.
Data Types: single | double | char | string

Cross-Validation Options

CrossVal — Cross-validation flag
'off' (default) | 'on'

Cross-validation flag, specified as the comma-separated pair consisting of 'Crossval' and 'on' or
'off'.

If you specify 'on', then the software implements 10-fold cross-validation.

To override this cross-validation setting, use one of these name-value pair arguments: CVPartition,
Holdout, or KFold. To create a cross-validated model, you can use one cross-validation name-value
pair argument at a time only.
Example: 'Crossval','on'

CVPartition — Cross-validation partition
[] (default) | cvpartition partition object

Cross-validation partition, specified as the comma-separated pair consisting of 'CVPartition' and
a cvpartition partition object as created by cvpartition. The partition object specifies the type
of cross-validation, and also the indexing for training and validation sets.

To create a cross-validated model, you can use one of these four options only: 'CVPartition',
'Holdout', or 'KFold'.

Holdout — Fraction of data for holdout validation
scalar value in the range (0,1)

Fraction of data used for holdout validation, specified as the comma-separated pair consisting of
'Holdout' and a scalar value in the range (0,1). If you specify 'Holdout',p, then the software:

1 Randomly reserves p*100% of the data as validation data, and trains the model using the rest of
the data

2 Stores the compact, trained model in the Trained property of the cross-validated model.

To create a cross-validated model, you can use one of these four options only: 'CVPartition',
'Holdout', or 'KFold'.
Example: 'Holdout',0.1
Data Types: double | single

KFold — Number of folds
10 (default) | positive integer value greater than 1

 fitclinear

35-2081



Number of folds to use in a cross-validated classifier, specified as the comma-separated pair
consisting of 'KFold' and a positive integer value greater than 1. If you specify, e.g., 'KFold',k,
then the software:

1 Randomly partitions the data into k sets
2 For each set, reserves the set as validation data, and trains the model using the other k – 1 sets
3 Stores the k compact, trained models in the cells of a k-by-1 cell vector in the Trained property

of the cross-validated model.

To create a cross-validated model, you can use one of these four options only: 'CVPartition',
'Holdout', or 'KFold'.
Example: 'KFold',8
Data Types: single | double

SGD and ASGD Convergence Controls

BatchLimit — Maximal number of batches
positive integer

Maximal number of batches to process, specified as the comma-separated pair consisting of
'BatchLimit' and a positive integer. When the software processes BatchLimit batches, it
terminates optimization.

• By default:

• The software passes through the data PassLimit times.
• If you specify multiple solvers, and use (A)SGD to get an initial approximation for the next

solver, then the default value is ceil(1e6/BatchSize). BatchSize is the value of the
'BatchSize' name-value pair argument.

• If you specify BatchLimit, then fitclinear uses the argument that results in processing the
fewest observations, either BatchLimit or PassLimit.

Example: 'BatchLimit',100
Data Types: single | double

BetaTolerance — Relative tolerance on linear coefficients and bias term
1e-4 (default) | nonnegative scalar

Relative tolerance on the linear coefficients and the bias term (intercept), specified as the comma-
separated pair consisting of 'BetaTolerance' and a nonnegative scalar.

Let Bt = βt′ bt , that is, the vector of the coefficients and the bias term at optimization iteration t. If
Bt − Bt − 1

Bt 2
< BetaTolerance, then optimization terminates.

If the software converges for the last solver specified in Solver, then optimization terminates.
Otherwise, the software uses the next solver specified in Solver.
Example: 'BetaTolerance',1e-6
Data Types: single | double
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NumCheckConvergence — Number of batches to process before next convergence check
positive integer

Number of batches to process before next convergence check, specified as the comma-separated pair
consisting of 'NumCheckConvergence' and a positive integer.

To specify the batch size, see BatchSize.

The software checks for convergence about 10 times per pass through the entire data set by default.
Example: 'NumCheckConvergence',100
Data Types: single | double

PassLimit — Maximal number of passes
1 (default) | positive integer

Maximal number of passes through the data, specified as the comma-separated pair consisting of
'PassLimit' and a positive integer.

fitclinear processes all observations when it completes one pass through the data.

When fitclinear passes through the data PassLimit times, it terminates optimization.

If you specify BatchLimit, then fitclinear uses the argument that results in processing the
fewest observations, either BatchLimit or PassLimit.
Example: 'PassLimit',5
Data Types: single | double

ValidationData — Validation data for optimization convergence detection
cell array | table

Validation data for optimization convergence detection, specified as the comma-separated pair
consisting of 'ValidationData' and a cell array or table.

During optimization, the software periodically estimates the loss of ValidationData. If the
validation-data loss increases, then the software terminates optimization. For more details, see
“Algorithms” on page 35-2094. To optimize hyperparameters using cross-validation, see cross-
validation options such as CrossVal.

You can specify ValidationData as a table if you use a table Tbl of predictor data that contains the
response variable. In this case, ValidationData must contain the same predictors and response
contained in Tbl. The software does not apply weights to observations, even if Tbl contains a vector
of weights. To specify weights, you must specify ValidationData as a cell array.

If you specify ValidationData as a cell array, then it must have the following format:

• ValidationData{1} must have the same data type and orientation as the predictor data. That
is, if you use a predictor matrix X, then ValidationData{1} must be an m-by-p or p-by-m full or
sparse matrix of predictor data that has the same orientation as X. The predictor variables in the
training data X and ValidationData{1} must correspond. Similarly, if you use a predictor table
Tbl of predictor data, then ValidationData{1} must be a table containing the same predictor
variables contained in Tbl. The number of observations in ValidationData{1} and the
predictor data can vary.
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• ValidationData{2} must match the data type and format of the response variable, either Y or
ResponseVarName. If ValidationData{2} is an array of class labels, then it must have the
same number of elements as the number of observations in ValidationData{1}. The set of all
distinct labels of ValidationData{2} must be a subset of all distinct labels of Y. If
ValidationData{1} is a table, then ValidationData{2} can be the name of the response
variable in the table. If you want to use the same ResponseVarName or formula, you can specify
ValidationData{2} as [].

• Optionally, you can specify ValidationData{3} as an m-dimensional numeric vector of
observation weights or the name of a variable in the table ValidationData{1} that contains
observation weights. The software normalizes the weights with the validation data so that they
sum to 1.

If you specify ValidationData and want to display the validation loss at the command line, specify
a value larger than 0 for Verbose.

If the software converges for the last solver specified in Solver, then optimization terminates.
Otherwise, the software uses the next solver specified in Solver.

By default, the software does not detect convergence by monitoring validation-data loss.

Dual SGD Convergence Controls

BetaTolerance — Relative tolerance on linear coefficients and bias term
1e-4 (default) | nonnegative scalar

Relative tolerance on the linear coefficients and the bias term (intercept), specified as the comma-
separated pair consisting of 'BetaTolerance' and a nonnegative scalar.

Let Bt = βt′ bt , that is, the vector of the coefficients and the bias term at optimization iteration t. If
Bt − Bt − 1

Bt 2
< BetaTolerance, then optimization terminates.

If you also specify DeltaGradientTolerance, then optimization terminates when the software
satisfies either stopping criterion.

If the software converges for the last solver specified in Solver, then optimization terminates.
Otherwise, the software uses the next solver specified in Solver.
Example: 'BetaTolerance',1e-6
Data Types: single | double

DeltaGradientTolerance — Gradient-difference tolerance
1 (default) | nonnegative scalar

Gradient-difference tolerance between upper and lower pool Karush-Kuhn-Tucker (KKT)
complementarity conditions on page 35-2206 violators, specified as the comma-separated pair
consisting of 'DeltaGradientTolerance' and a nonnegative scalar.

• If the magnitude of the KKT violators is less than DeltaGradientTolerance, then the software
terminates optimization.

• If the software converges for the last solver specified in Solver, then optimization terminates.
Otherwise, the software uses the next solver specified in Solver.
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Example: 'DeltaGapTolerance',1e-2
Data Types: double | single

NumCheckConvergence — Number of passes through entire data set to process before next
convergence check
5 (default) | positive integer

Number of passes through entire data set to process before next convergence check, specified as the
comma-separated pair consisting of 'NumCheckConvergence' and a positive integer.
Example: 'NumCheckConvergence',100
Data Types: single | double

PassLimit — Maximal number of passes
10 (default) | positive integer

Maximal number of passes through the data, specified as the comma-separated pair consisting of
'PassLimit' and a positive integer.

When the software completes one pass through the data, it has processed all observations.

When the software passes through the data PassLimit times, it terminates optimization.
Example: 'PassLimit',5
Data Types: single | double

ValidationData — Validation data for optimization convergence detection
cell array | table

Validation data for optimization convergence detection, specified as the comma-separated pair
consisting of 'ValidationData' and a cell array or table.

During optimization, the software periodically estimates the loss of ValidationData. If the
validation-data loss increases, then the software terminates optimization. For more details, see
“Algorithms” on page 35-2094. To optimize hyperparameters using cross-validation, see cross-
validation options such as CrossVal.

You can specify ValidationData as a table if you use a table Tbl of predictor data that contains the
response variable. In this case, ValidationData must contain the same predictors and response
contained in Tbl. The software does not apply weights to observations, even if Tbl contains a vector
of weights. To specify weights, you must specify ValidationData as a cell array.

If you specify ValidationData as a cell array, then it must have the following format:

• ValidationData{1} must have the same data type and orientation as the predictor data. That
is, if you use a predictor matrix X, then ValidationData{1} must be an m-by-p or p-by-m full or
sparse matrix of predictor data that has the same orientation as X. The predictor variables in the
training data X and ValidationData{1} must correspond. Similarly, if you use a predictor table
Tbl of predictor data, then ValidationData{1} must be a table containing the same predictor
variables contained in Tbl. The number of observations in ValidationData{1} and the
predictor data can vary.

• ValidationData{2} must match the data type and format of the response variable, either Y or
ResponseVarName. If ValidationData{2} is an array of class labels, then it must have the

 fitclinear

35-2085



same number of elements as the number of observations in ValidationData{1}. The set of all
distinct labels of ValidationData{2} must be a subset of all distinct labels of Y. If
ValidationData{1} is a table, then ValidationData{2} can be the name of the response
variable in the table. If you want to use the same ResponseVarName or formula, you can specify
ValidationData{2} as [].

• Optionally, you can specify ValidationData{3} as an m-dimensional numeric vector of
observation weights or the name of a variable in the table ValidationData{1} that contains
observation weights. The software normalizes the weights with the validation data so that they
sum to 1.

If you specify ValidationData and want to display the validation loss at the command line, specify
a value larger than 0 for Verbose.

If the software converges for the last solver specified in Solver, then optimization terminates.
Otherwise, the software uses the next solver specified in Solver.

By default, the software does not detect convergence by monitoring validation-data loss.

BFGS, LBFGS, and SpaRSA Convergence Controls

BetaTolerance — Relative tolerance on linear coefficients and bias term
1e-4 (default) | nonnegative scalar

Relative tolerance on the linear coefficients and the bias term (intercept), specified as a nonnegative
scalar.

Let Bt = βt′ bt , that is, the vector of the coefficients and the bias term at optimization iteration t. If
Bt − Bt − 1

Bt 2
< BetaTolerance, then optimization terminates.

If you also specify GradientTolerance, then optimization terminates when the software satisfies
either stopping criterion.

If the software converges for the last solver specified in Solver, then optimization terminates.
Otherwise, the software uses the next solver specified in Solver.
Example: 'BetaTolerance',1e-6
Data Types: single | double

GradientTolerance — Absolute gradient tolerance
1e-6 (default) | nonnegative scalar

Absolute gradient tolerance, specified as a nonnegative scalar.

Let ∇ℒ t be the gradient vector of the objective function with respect to the coefficients and bias term
at optimization iteration t. If ∇ℒ t ∞ = max ∇ℒ t < GradientTolerance, then optimization terminates.

If you also specify BetaTolerance, then optimization terminates when the software satisfies either
stopping criterion.

If the software converges for the last solver specified in the software, then optimization terminates.
Otherwise, the software uses the next solver specified in Solver.
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Example: 'GradientTolerance',1e-5
Data Types: single | double

HessianHistorySize — Size of history buffer for Hessian approximation
15 (default) | positive integer

Size of history buffer for Hessian approximation, specified as the comma-separated pair consisting of
'HessianHistorySize' and a positive integer. That is, at each iteration, the software composes the
Hessian using statistics from the latest HessianHistorySize iterations.

The software does not support 'HessianHistorySize' for SpaRSA.
Example: 'HessianHistorySize',10
Data Types: single | double

IterationLimit — Maximal number of optimization iterations
1000 (default) | positive integer

Maximal number of optimization iterations, specified as the comma-separated pair consisting of
'IterationLimit' and a positive integer. IterationLimit applies to these values of Solver:
'bfgs', 'lbfgs', and 'sparsa'.
Example: 'IterationLimit',500
Data Types: single | double

ValidationData — Validation data for optimization convergence detection
cell array | table

Validation data for optimization convergence detection, specified as the comma-separated pair
consisting of 'ValidationData' and a cell array or table.

During optimization, the software periodically estimates the loss of ValidationData. If the
validation-data loss increases, then the software terminates optimization. For more details, see
“Algorithms” on page 35-2094. To optimize hyperparameters using cross-validation, see cross-
validation options such as CrossVal.

You can specify ValidationData as a table if you use a table Tbl of predictor data that contains the
response variable. In this case, ValidationData must contain the same predictors and response
contained in Tbl. The software does not apply weights to observations, even if Tbl contains a vector
of weights. To specify weights, you must specify ValidationData as a cell array.

If you specify ValidationData as a cell array, then it must have the following format:

• ValidationData{1} must have the same data type and orientation as the predictor data. That
is, if you use a predictor matrix X, then ValidationData{1} must be an m-by-p or p-by-m full or
sparse matrix of predictor data that has the same orientation as X. The predictor variables in the
training data X and ValidationData{1} must correspond. Similarly, if you use a predictor table
Tbl of predictor data, then ValidationData{1} must be a table containing the same predictor
variables contained in Tbl. The number of observations in ValidationData{1} and the
predictor data can vary.

• ValidationData{2} must match the data type and format of the response variable, either Y or
ResponseVarName. If ValidationData{2} is an array of class labels, then it must have the
same number of elements as the number of observations in ValidationData{1}. The set of all
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distinct labels of ValidationData{2} must be a subset of all distinct labels of Y. If
ValidationData{1} is a table, then ValidationData{2} can be the name of the response
variable in the table. If you want to use the same ResponseVarName or formula, you can specify
ValidationData{2} as [].

• Optionally, you can specify ValidationData{3} as an m-dimensional numeric vector of
observation weights or the name of a variable in the table ValidationData{1} that contains
observation weights. The software normalizes the weights with the validation data so that they
sum to 1.

If you specify ValidationData and want to display the validation loss at the command line, specify
a value larger than 0 for Verbose.

If the software converges for the last solver specified in Solver, then optimization terminates.
Otherwise, the software uses the next solver specified in Solver.

By default, the software does not detect convergence by monitoring validation-data loss.

Hyperparameter Optimization

OptimizeHyperparameters — Parameters to optimize
'none' (default) | 'auto' | 'all' | string array or cell array of eligible parameter names | vector of
optimizableVariable objects

Parameters to optimize, specified as the comma-separated pair consisting of
'OptimizeHyperparameters' and one of the following:

• 'none' — Do not optimize.
• 'auto' — Use {'Lambda','Learner'}.
• 'all' — Optimize all eligible parameters.
• String array or cell array of eligible parameter names.
• Vector of optimizableVariable objects, typically the output of hyperparameters.

The optimization attempts to minimize the cross-validation loss (error) for fitclinear by varying
the parameters. For information about cross-validation loss (albeit in a different context), see
“Classification Loss” on page 35-3870. To control the cross-validation type and other aspects of the
optimization, use the HyperparameterOptimizationOptions name-value pair.

Note The values of 'OptimizeHyperparameters' override any values you specify using other
name-value arguments. For example, setting 'OptimizeHyperparameters' to 'auto' causes
fitclinear to optimize hyperparameters corresponding to the 'auto' option and to ignore any
specified values for the hyperparameters.

The eligible parameters for fitclinear are:

• Lambda — fitclinear searches among positive values, by default log-scaled in the range
[1e-5/NumObservations,1e5/NumObservations].

• Learner — fitclinear searches among 'svm' and 'logistic'.
• Regularization — fitclinear searches among 'ridge' and 'lasso'.
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• When Regularization is 'ridge', the function sets the Solver value to 'lbfgs' by
default.

• When Regularization is 'lasso', the function sets the Solver value to 'sparsa' by
default.

Set nondefault parameters by passing a vector of optimizableVariable objects that have
nondefault values. For example,

load fisheriris
params = hyperparameters('fitclinear',meas,species);
params(1).Range = [1e-4,1e6];

Pass params as the value of OptimizeHyperparameters.

By default, the iterative display appears at the command line, and plots appear according to the
number of hyperparameters in the optimization. For the optimization and plots, the objective function
is the misclassification rate. To control the iterative display, set the Verbose field of the
'HyperparameterOptimizationOptions' name-value argument. To control the plots, set the
ShowPlots field of the 'HyperparameterOptimizationOptions' name-value argument.

For an example, see “Optimize Linear Classifier” on page 35-2063.
Example: 'OptimizeHyperparameters','auto'

HyperparameterOptimizationOptions — Options for optimization
structure

Options for optimization, specified as a structure. This argument modifies the effect of the
OptimizeHyperparameters name-value argument. All fields in the structure are optional.

Field Name Values Default
Optimizer • 'bayesopt' — Use Bayesian optimization.

Internally, this setting calls bayesopt.
• 'gridsearch' — Use grid search with

NumGridDivisions values per dimension.
• 'randomsearch' — Search at random among

MaxObjectiveEvaluations points.

'gridsearch' searches in a random order, using
uniform sampling without replacement from the
grid. After optimization, you can get a table in grid
order by using the command
sortrows(Mdl.HyperparameterOptimizatio
nResults).

'bayesopt'
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Field Name Values Default
AcquisitionFunct
ionName

• 'expected-improvement-per-second-
plus'

• 'expected-improvement'
• 'expected-improvement-plus'
• 'expected-improvement-per-second'
• 'lower-confidence-bound'
• 'probability-of-improvement'

Acquisition functions whose names include per-
second do not yield reproducible results because
the optimization depends on the runtime of the
objective function. Acquisition functions whose
names include plus modify their behavior when
they are overexploiting an area. For more details,
see “Acquisition Function Types” on page 10-3.

'expected-
improvement-per-
second-plus'

MaxObjectiveEval
uations

Maximum number of objective function
evaluations.

30 for 'bayesopt' and
'randomsearch', and
the entire grid for
'gridsearch'

MaxTime Time limit, specified as a positive real scalar. The
time limit is in seconds, as measured by tic and
toc. The run time can exceed MaxTime because
MaxTime does not interrupt function evaluations.

Inf

NumGridDivisions For 'gridsearch', the number of values in each
dimension. The value can be a vector of positive
integers giving the number of values for each
dimension, or a scalar that applies to all
dimensions. This field is ignored for categorical
variables.

10

ShowPlots Logical value indicating whether to show plots. If
true, this field plots the best observed objective
function value against the iteration number. If you
use Bayesian optimization (Optimizer is
'bayesopt'), then this field also plots the best
estimated objective function value. The best
observed objective function values and best
estimated objective function values correspond to
the values in the BestSoFar (observed) and
BestSoFar (estim.) columns of the iterative
display, respectively. You can find these values in
the properties ObjectiveMinimumTrace and
EstimatedObjectiveMinimumTrace of
Mdl.HyperparameterOptimizationResults.
If the problem includes one or two optimization
parameters for Bayesian optimization, then
ShowPlots also plots a model of the objective
function against the parameters.

true
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Field Name Values Default
SaveIntermediate
Results

Logical value indicating whether to save results
when Optimizer is 'bayesopt'. If true, this
field overwrites a workspace variable named
'BayesoptResults' at each iteration. The
variable is a BayesianOptimization object.

false

Verbose Display at the command line:

• 0 — No iterative display
• 1 — Iterative display
• 2 — Iterative display with extra information

For details, see the bayesopt Verbose name-
value argument and the example “Optimize
Classifier Fit Using Bayesian Optimization” on
page 10-56.

1

UseParallel Logical value indicating whether to run Bayesian
optimization in parallel, which requires Parallel
Computing Toolbox. Due to the nonreproducibility
of parallel timing, parallel Bayesian optimization
does not necessarily yield reproducible results. For
details, see “Parallel Bayesian Optimization” on
page 10-7.

false

Repartition Logical value indicating whether to repartition the
cross-validation at every iteration. If this field is
false, the optimizer uses a single partition for
the optimization.

The setting true usually gives the most robust
results because it takes partitioning noise into
account. However, for good results, true requires
at least twice as many function evaluations.

false

Use no more than one of the following three options.
CVPartition A cvpartition object, as created by

cvpartition
'Kfold',5 if you do not
specify a cross-validation
fieldHoldout A scalar in the range (0,1) representing the

holdout fraction
Kfold An integer greater than 1

Example:
'HyperparameterOptimizationOptions',struct('MaxObjectiveEvaluations',60)

Data Types: struct

Output Arguments
Mdl — Trained linear classification model
ClassificationLinear model object | ClassificationPartitionedLinear cross-validated
model object
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Trained linear classification model, returned as a ClassificationLinear model object or
ClassificationPartitionedLinear cross-validated model object.

If you set any of the name-value pair arguments KFold, Holdout, CrossVal, or CVPartition, then
Mdl is a ClassificationPartitionedLinear cross-validated model object. Otherwise, Mdl is a
ClassificationLinear model object.

To reference properties of Mdl, use dot notation. For example, enter Mdl.Beta in the Command
Window to display the vector or matrix of estimated coefficients.

Note Unlike other classification models, and for economical memory usage,
ClassificationLinear and ClassificationPartitionedLinear model objects do not store
the training data or training process details (for example, convergence history).

FitInfo — Optimization details
structure array

Optimization details, returned as a structure array.

Fields specify final values or name-value pair argument specifications, for example, Objective is the
value of the objective function when optimization terminates. Rows of multidimensional fields
correspond to values of Lambda and columns correspond to values of Solver.

This table describes some notable fields.

Field Description
TerminationStatus • Reason for optimization termination

• Corresponds to a value in TerminationCode
FitTime Elapsed, wall-clock time in seconds
History A structure array of optimization information for

each iteration. The field Solver stores solver
types using integer coding.

Integer Solver
1 SGD
2 ASGD
3 Dual SGD for SVM
4 LBFGS
5 BFGS
6 SpaRSA

To access fields, use dot notation. For example, to access the vector of objective function values for
each iteration, enter FitInfo.History.Objective.

It is good practice to examine FitInfo to assess whether convergence is satisfactory.

HyperparameterOptimizationResults — Cross-validation optimization of hyperparameters
BayesianOptimization object | table of hyperparameters and associated values

35 Functions

35-2092



Cross-validation optimization of hyperparameters, returned as a BayesianOptimization object or
a table of hyperparameters and associated values. The output is nonempty when the value of
'OptimizeHyperparameters' is not 'none'. The output value depends on the Optimizer field
value of the 'HyperparameterOptimizationOptions' name-value pair argument:

Value of Optimizer Field Value of
HyperparameterOptimizationResults

'bayesopt' (default) Object of class BayesianOptimization
'gridsearch' or 'randomsearch' Table of hyperparameters used, observed

objective function values (cross-validation loss),
and rank of observations from lowest (best) to
highest (worst)

More About
Warm Start

A warm start is initial estimates of the beta coefficients and bias term supplied to an optimization
routine for quicker convergence.

Alternatives for Lower-Dimensional Data

fitclinear and fitrlinear minimize objective functions relatively quickly for a high-dimensional
linear model at the cost of some accuracy and with the restriction that the model must be linear with
respect to the parameters. If your predictor data set is low- to medium-dimensional, you can use an
alternative classification or regression fitting function. To help you decide which fitting function is
appropriate for your data set, use this table.

Model to Fit Function Notable Algorithmic Differences
SVM • Binary classification:

fitcsvm
• Multiclass classification:

fitcecoc
• Regression: fitrsvm

• Computes the Gram matrix of the predictor
variables, which is convenient for nonlinear
kernel transformations.

• Solves dual problem using SMO, ISDA, or L1
minimization via quadratic programming
using quadprog.

Linear regression • Least-squares without
regularization: fitlm

• Regularized least-squares
using a lasso penalty:
lasso

• Ridge regression: ridge
or lasso

• lasso implements cyclic coordinate
descent.

Logistic regression • Logistic regression
without regularization:
fitglm.

• Regularized logistic
regression using a lasso
penalty: lassoglm

• fitglm implements iteratively reweighted
least squares.

• lassoglm implements cyclic coordinate
descent.
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Tips
• It is a best practice to orient your predictor matrix so that observations correspond to columns

and to specify 'ObservationsIn','columns'. As a result, you can experience a significant
reduction in optimization-execution time.

• If your predictor data has few observations but many predictor variables, then:

• Specify 'PostFitBias',true.
• For SGD or ASGD solvers, set PassLimit to a positive integer that is greater than 1, for

example, 5 or 10. This setting often results in better accuracy.
• For SGD and ASGD solvers, BatchSize affects the rate of convergence.

• If BatchSize is too small, then fitclinear achieves the minimum in many iterations, but
computes the gradient per iteration quickly.

• If BatchSize is too large, then fitclinear achieves the minimum in fewer iterations, but
computes the gradient per iteration slowly.

• Large learning rates (see LearnRate) speed up convergence to the minimum, but can lead to
divergence (that is, over-stepping the minimum). Small learning rates ensure convergence to the
minimum, but can lead to slow termination.

• When using lasso penalties, experiment with various values of TruncationPeriod. For example,
set TruncationPeriod to 1, 10, and then 100.

• For efficiency, fitclinear does not standardize predictor data. To standardize X, enter

X = bsxfun(@rdivide,bsxfun(@minus,X,mean(X,2)),std(X,0,2));

The code requires that you orient the predictors and observations as the rows and columns of X,
respectively. Also, for memory-usage economy, the code replaces the original predictor data the
standardized data.

• After training a model, you can generate C/C++ code that predicts labels for new data.
Generating C/C++ code requires MATLAB Coder. For details, see “Introduction to Code
Generation” on page 34-2.

Algorithms
• If you specify ValidationData, then, during objective-function optimization:

• fitclinear estimates the validation loss of ValidationData periodically using the current
model, and tracks the minimal estimate.

• When fitclinear estimates a validation loss, it compares the estimate to the minimal
estimate.

• When subsequent, validation loss estimates exceed the minimal estimate five times,
fitclinear terminates optimization.

• If you specify ValidationData and to implement a cross-validation routine (CrossVal,
CVPartition, Holdout, or KFold), then:

1 fitclinear randomly partitions X and Y (or Tbl) according to the cross-validation routine
that you choose.
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2 fitclinear trains the model using the training-data partition. During objective-function
optimization, fitclinear uses ValidationData as another possible way to terminate
optimization (for details, see the previous bullet).

3 Once fitclinear satisfies a stopping criterion, it constructs a trained model based on the
optimized linear coefficients and intercept.

a If you implement k-fold cross-validation, and fitclinear has not exhausted all training-
set folds, then fitclinear returns to Step 2 to train using the next training-set fold.

b Otherwise, fitclinear terminates training, and then returns the cross-validated model.
4 You can determine the quality of the cross-validated model. For example:

• To determine the validation loss using the holdout or out-of-fold data from step 1, pass the
cross-validated model to kfoldLoss.

• To predict observations on the holdout or out-of-fold data from step 1, pass the cross-
validated model to kfoldPredict.

• If you specify the Cost, Prior, and Weights name-value arguments, the output model object
stores the specified values in the Cost, Prior, and W properties, respectively. The Cost property
stores the user-specified cost matrix (C) without modification. The Prior and W properties store
the prior probabilities and observation weights, respectively, after normalization. For model
training, the software updates the prior probabilities and observation weights to incorporate the
penalties described in the cost matrix. For details, see “Misclassification Cost Matrix, Prior
Probabilities, and Observation Weights” on page 19-8.

Version History
Introduced in R2016a

Regularization method determines the solver used during hyperparameter optimization
Behavior changed in R2022a

Starting in R2022a, when you specify to optimize hyperparameters and do not specify a Solver
value, fitclinear uses either a Limited-memory BFGS (LBFGS) solver or a Sparse Reconstruction
by Separable Approximation (SpaRSA) solver, depending on the regularization type selected during
each iteration of the hyperparameter optimization.

• When Regularization is 'ridge', the function sets the Solver value to 'lbfgs' by default.
• When Regularization is 'lasso', the function sets the Solver value to 'sparsa' by default.

In previous releases, the default solver selection during hyperparameter optimization depended on
various factors, including the regularization type, learner type, and number of predictors. For more
information, see Solver.

References
[1] Hsieh, C. J., K. W. Chang, C. J. Lin, S. S. Keerthi, and S. Sundararajan. “A Dual Coordinate Descent

Method for Large-Scale Linear SVM.” Proceedings of the 25th International Conference on
Machine Learning, ICML ’08, 2001, pp. 408–415.

[2] Langford, J., L. Li, and T. Zhang. “Sparse Online Learning Via Truncated Gradient.” J. Mach.
Learn. Res., Vol. 10, 2009, pp. 777–801.

 fitclinear

35-2095



[3] Nocedal, J. and S. J. Wright. Numerical Optimization, 2nd ed., New York: Springer, 2006.

[4] Shalev-Shwartz, S., Y. Singer, and N. Srebro. “Pegasos: Primal Estimated Sub-Gradient Solver for
SVM.” Proceedings of the 24th International Conference on Machine Learning, ICML ’07,
2007, pp. 807–814.

[5] Wright, S. J., R. D. Nowak, and M. A. T. Figueiredo. “Sparse Reconstruction by Separable
Approximation.” Trans. Sig. Proc., Vol. 57, No 7, 2009, pp. 2479–2493.

[6] Xiao, Lin. “Dual Averaging Methods for Regularized Stochastic Learning and Online
Optimization.” J. Mach. Learn. Res., Vol. 11, 2010, pp. 2543–2596.

[7] Xu, Wei. “Towards Optimal One Pass Large Scale Learning with Averaged Stochastic Gradient
Descent.” CoRR, abs/1107.2490, 2011.

Extended Capabilities
Tall Arrays
Calculate with arrays that have more rows than fit in memory.

Usage notes and limitations:

• fitclinear does not support tall table data.
• Some name-value pair arguments have different defaults compared to the default values for the in-

memory fitclinear function. Supported name-value pair arguments, and any differences, are:

• 'ObservationsIn' — Supports only 'rows'.
• 'Lambda' — Can be 'auto' (default) or a scalar.
• 'Learner'
• 'Regularization' — Supports only 'ridge'.
• 'Solver' — Supports only 'lbfgs'.
• 'FitBias' — Supports only true.
• 'Verbose' — Default value is 1.
• 'Beta'
• 'Bias'
• 'ClassNames'
• 'Cost'
• 'Prior'
• 'Weights' — Value must be a tall array.
• 'HessianHistorySize'
• 'BetaTolerance' — Default value is relaxed to 1e–3.
• 'GradientTolerance' — Default value is relaxed to 1e–3.
• 'IterationLimit' — Default value is relaxed to 20.
• 'OptimizeHyperparameters' — Value of 'Regularization' parameter must be

'ridge'.
• 'HyperparameterOptimizationOptions' — For cross-validation, tall optimization

supports only 'Holdout' validation. By default, the software selects and reserves 20% of the
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data as holdout validation data, and trains the model using the rest of the data. You can specify
a different value for the holdout fraction by using this argument. For example, specify
'HyperparameterOptimizationOptions',struct('Holdout',0.3) to reserve 30% of
the data as validation data.

• For tall arrays, fitclinear implements LBFGS by distributing the calculation of the loss and
gradient among different parts of the tall array at each iteration. Other solvers are not available
for tall arrays.

When initial values for Beta and Bias are not given, fitclinear refines the initial estimates of
the parameters by fitting the model locally to parts of the data and combining the coefficients by
averaging.

For more information, see “Tall Arrays”.

Automatic Parallel Support
Accelerate code by automatically running computation in parallel using Parallel Computing Toolbox™.

To perform parallel hyperparameter optimization, use the
'HyperparameterOptimizationOptions', struct('UseParallel',true) name-value
argument in the call to the fitclinear function.

For more information on parallel hyperparameter optimization, see “Parallel Bayesian Optimization”
on page 10-7.

For general information about parallel computing, see “Run MATLAB Functions with Automatic
Parallel Support” (Parallel Computing Toolbox).

See Also
fitcsvm | fitckernel | fitcecoc | fitglm | lassoglm | testcholdout | fitrlinear |
templateLinear | predict | kfoldPredict | kfoldLoss | ClassificationLinear |
ClassificationPartitionedLinear
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fitcnb
Train multiclass naive Bayes model

Syntax
Mdl = fitcnb(Tbl,ResponseVarName)
Mdl = fitcnb(Tbl,formula)
Mdl = fitcnb(Tbl,Y)

Mdl = fitcnb(X,Y)

Mdl = fitcnb( ___ ,Name,Value)

Description
Mdl = fitcnb(Tbl,ResponseVarName) returns a multiclass naive Bayes model (Mdl), trained by
the predictors in table Tbl and class labels in the variable Tbl.ResponseVarName.

Mdl = fitcnb(Tbl,formula) returns a multiclass naive Bayes model (Mdl), trained by the
predictors in table Tbl. formula is an explanatory model of the response and a subset of predictor
variables in Tbl used to fit Mdl.

Mdl = fitcnb(Tbl,Y) returns a multiclass naive Bayes model (Mdl), trained by the predictors in
the table Tbl and class labels in the array Y.

Mdl = fitcnb(X,Y) returns a multiclass naive Bayes model (Mdl), trained by predictors X and
class labels Y.

Mdl = fitcnb( ___ ,Name,Value) returns a naive Bayes classifier with additional options
specified by one or more Name,Value pair arguments, using any of the previous syntaxes. For
example, you can specify a distribution to model the data, prior probabilities for the classes, or the
kernel smoothing window bandwidth.

Examples

Train a Naive Bayes Classifier

Load Fisher's iris data set.

load fisheriris
X = meas(:,3:4);
Y = species;
tabulate(Y)

       Value    Count   Percent
      setosa       50     33.33%
  versicolor       50     33.33%
   virginica       50     33.33%

The software can classify data with more than two classes using naive Bayes methods.
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Train a naive Bayes classifier. It is good practice to specify the class order.

Mdl = fitcnb(X,Y,'ClassNames',{'setosa','versicolor','virginica'})

Mdl = 
  ClassificationNaiveBayes
              ResponseName: 'Y'
     CategoricalPredictors: []
                ClassNames: {'setosa'  'versicolor'  'virginica'}
            ScoreTransform: 'none'
           NumObservations: 150
         DistributionNames: {'normal'  'normal'}
    DistributionParameters: {3x2 cell}

  Properties, Methods

Mdl is a trained ClassificationNaiveBayes classifier.

By default, the software models the predictor distribution within each class using a Gaussian
distribution having some mean and standard deviation. Use dot notation to display the parameters of
a particular Gaussian fit, e.g., display the fit for the first feature within setosa.

setosaIndex = strcmp(Mdl.ClassNames,'setosa');
estimates = Mdl.DistributionParameters{setosaIndex,1}

estimates = 2×1

    1.4620
    0.1737

The mean is 1.4620 and the standard deviation is 0.1737.

Plot the Gaussian contours.

figure
gscatter(X(:,1),X(:,2),Y);
h = gca;
cxlim = h.XLim;
cylim = h.YLim;
hold on
Params = cell2mat(Mdl.DistributionParameters); 
Mu = Params(2*(1:3)-1,1:2); % Extract the means
Sigma = zeros(2,2,3);
for j = 1:3
    Sigma(:,:,j) = diag(Params(2*j,:)).^2; % Create diagonal covariance matrix
    xlim = Mu(j,1) + 4*[-1 1]*sqrt(Sigma(1,1,j));
    ylim = Mu(j,2) + 4*[-1 1]*sqrt(Sigma(2,2,j));
    f = @(x,y) arrayfun(@(x0,y0) mvnpdf([x0 y0],Mu(j,:),Sigma(:,:,j)),x,y);
    fcontour(f,[xlim ylim]) % Draw contours for the multivariate normal distributions 
end
h.XLim = cxlim;
h.YLim = cylim;
title('Naive Bayes Classifier -- Fisher''s Iris Data')
xlabel('Petal Length (cm)')
ylabel('Petal Width (cm)')
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legend('setosa','versicolor','virginica')
hold off

You can change the default distribution using the name-value pair argument
'DistributionNames'. For example, if some predictors are categorical, then you can specify that
they are multivariate, multinomial random variables using 'DistributionNames','mvmn'.

Specify Prior Probabilities When Training Naive Bayes Classifiers

Construct a naive Bayes classifier for Fisher's iris data set. Also, specify prior probabilities during
training.

Load Fisher's iris data set.

load fisheriris
X = meas;
Y = species;
classNames = {'setosa','versicolor','virginica'}; % Class order

X is a numeric matrix that contains four petal measurements for 150 irises. Y is a cell array of
character vectors that contains the corresponding iris species.

By default, the prior class probability distribution is the relative frequency distribution of the classes
in the data set. In this case the prior probability is 33% for each species. However, suppose you know
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that in the population 50% of the irises are setosa, 20% are versicolor, and 30% are virginica. You can
incorporate this information by specifying this distribution as a prior probability during training.

Train a naive Bayes classifier. Specify the class order and prior class probability distribution.

prior = [0.5 0.2 0.3];
Mdl = fitcnb(X,Y,'ClassNames',classNames,'Prior',prior)

Mdl = 
  ClassificationNaiveBayes
              ResponseName: 'Y'
     CategoricalPredictors: []
                ClassNames: {'setosa'  'versicolor'  'virginica'}
            ScoreTransform: 'none'
           NumObservations: 150
         DistributionNames: {'normal'  'normal'  'normal'  'normal'}
    DistributionParameters: {3x4 cell}

  Properties, Methods

Mdl is a trained ClassificationNaiveBayes classifier, and some of its properties appear in the
Command Window. The software treats the predictors as independent given a class, and, by default,
fits them using normal distributions.

The naive Bayes algorithm does not use the prior class probabilities during training. Therefore, you
can specify prior class probabilities after training using dot notation. For example, suppose that you
want to see the difference in performance between a model that uses the default prior class
probabilities and a model that uses different prior.

Create a new naive Bayes model based on Mdl, and specify that the prior class probability
distribution is an empirical class distribution.

defaultPriorMdl = Mdl;
FreqDist = cell2table(tabulate(Y));
defaultPriorMdl.Prior = FreqDist{:,3};

The software normalizes the prior class probabilities to sum to 1.

Estimate the cross-validation error for both models using 10-fold cross-validation.

rng(1); % For reproducibility
defaultCVMdl = crossval(defaultPriorMdl);
defaultLoss = kfoldLoss(defaultCVMdl)

defaultLoss = 0.0533

CVMdl = crossval(Mdl);
Loss = kfoldLoss(CVMdl)

Loss = 0.0340

Mdl performs better than defaultPriorMdl.
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Specify Predictor Distributions for Naive Bayes Classifiers

Load Fisher's iris data set.

load fisheriris
X = meas;
Y = species;

Train a naive Bayes classifier using every predictor. It is good practice to specify the class order.

Mdl1 = fitcnb(X,Y,...
    'ClassNames',{'setosa','versicolor','virginica'})

Mdl1 = 
  ClassificationNaiveBayes
              ResponseName: 'Y'
     CategoricalPredictors: []
                ClassNames: {'setosa'  'versicolor'  'virginica'}
            ScoreTransform: 'none'
           NumObservations: 150
         DistributionNames: {'normal'  'normal'  'normal'  'normal'}
    DistributionParameters: {3x4 cell}

  Properties, Methods

Mdl1.DistributionParameters

ans=3×4 cell array
    {2x1 double}    {2x1 double}    {2x1 double}    {2x1 double}
    {2x1 double}    {2x1 double}    {2x1 double}    {2x1 double}
    {2x1 double}    {2x1 double}    {2x1 double}    {2x1 double}

Mdl1.DistributionParameters{1,2}

ans = 2×1

    3.4280
    0.3791

By default, the software models the predictor distribution within each class as a Gaussian with some
mean and standard deviation. There are four predictors and three class levels. Each cell in
Mdl1.DistributionParameters corresponds to a numeric vector containing the mean and
standard deviation of each distribution, e.g., the mean and standard deviation for setosa iris sepal
widths are 3.4280 and 0.3791, respectively.

Estimate the confusion matrix for Mdl1.

isLabels1 = resubPredict(Mdl1);
ConfusionMat1 = confusionchart(Y,isLabels1);
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Element (j, k) of the confusion matrix chart represents the number of observations that the software
classifies as k, but are truly in class j according to the data.

Retrain the classifier using the Gaussian distribution for predictors 1 and 2 (the sepal lengths and
widths), and the default normal kernel density for predictors 3 and 4 (the petal lengths and widths).

Mdl2 = fitcnb(X,Y,...
    'DistributionNames',{'normal','normal','kernel','kernel'},...
    'ClassNames',{'setosa','versicolor','virginica'});
Mdl2.DistributionParameters{1,2}

ans = 2×1

    3.4280
    0.3791

The software does not train parameters to the kernel density. Rather, the software chooses an optimal
width. However, you can specify a width using the 'Width' name-value pair argument.

Estimate the confusion matrix for Mdl2.

isLabels2 = resubPredict(Mdl2);
ConfusionMat2 = confusionchart(Y,isLabels2);
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Based on the confusion matrices, the two classifiers perform similarly in the training sample.

Compare Classifiers Using Cross-Validation

Load Fisher's iris data set.

load fisheriris
X = meas;
Y = species;
rng(1); % For reproducibility

Train and cross-validate a naive Bayes classifier using the default options and k-fold cross-validation.
It is good practice to specify the class order.

CVMdl1 = fitcnb(X,Y,...
    'ClassNames',{'setosa','versicolor','virginica'},...
    'CrossVal','on');

By default, the software models the predictor distribution within each class as a Gaussian with some
mean and standard deviation. CVMdl1 is a ClassificationPartitionedModel model.

Create a default naive Bayes binary classifier template, and train an error-correcting, output codes
multiclass model.
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t = templateNaiveBayes();
CVMdl2 = fitcecoc(X,Y,'CrossVal','on','Learners',t);

CVMdl2 is a ClassificationPartitionedECOC model. You can specify options for the naive Bayes
binary learners using the same name-value pair arguments as for fitcnb.

Compare the out-of-sample k-fold classification error (proportion of misclassified observations).

classErr1 = kfoldLoss(CVMdl1,'LossFun','ClassifErr')

classErr1 = 0.0533

classErr2 = kfoldLoss(CVMdl2,'LossFun','ClassifErr')

classErr2 = 0.0467

Mdl2 has a lower generalization error.

Train Naive Bayes Classifiers Using Multinomial Predictors

Some spam filters classify an incoming email as spam based on how many times a word or
punctuation (called tokens) occurs in an email. The predictors are the frequencies of particular words
or punctuations in an email. Therefore, the predictors compose multinomial random variables.

This example illustrates classification using naive Bayes and multinomial predictors.

Create Training Data

Suppose you observed 1000 emails and classified them as spam or not spam. Do this by randomly
assigning -1 or 1 to y for each email.

n = 1000;                       % Sample size
rng(1);                         % For reproducibility
Y = randsample([-1 1],n,true);  % Random labels

To build the predictor data, suppose that there are five tokens in the vocabulary, and 20 observed
tokens per email. Generate predictor data from the five tokens by drawing random, multinomial
deviates. The relative frequencies for tokens corresponding to spam emails should differ from emails
that are not spam.

tokenProbs = [0.2 0.3 0.1 0.15 0.25;...
    0.4 0.1 0.3 0.05 0.15];             % Token relative frequencies  
tokensPerEmail = 20;                    % Fixed for convenience
X = zeros(n,5);
X(Y == 1,:) = mnrnd(tokensPerEmail,tokenProbs(1,:),sum(Y == 1));
X(Y == -1,:) = mnrnd(tokensPerEmail,tokenProbs(2,:),sum(Y == -1));

Train the Classifier

Train a naive Bayes classifier. Specify that the predictors are multinomial.

Mdl = fitcnb(X,Y,'DistributionNames','mn');

Mdl is a trained ClassificationNaiveBayes classifier.

Assess the in-sample performance of Mdl by estimating the misclassification error.
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isGenRate = resubLoss(Mdl,'LossFun','ClassifErr')

isGenRate = 0.0200

The in-sample misclassification rate is 2%.

Create New Data

Randomly generate deviates that represent a new batch of emails.

newN = 500;
newY = randsample([-1 1],newN,true);
newX = zeros(newN,5);
newX(newY == 1,:) = mnrnd(tokensPerEmail,tokenProbs(1,:),...
    sum(newY == 1));
newX(newY == -1,:) = mnrnd(tokensPerEmail,tokenProbs(2,:),...
    sum(newY == -1));

Assess Classifier Performance

Classify the new emails using the trained naive Bayes classifier Mdl, and determine whether the
algorithm generalizes.

oosGenRate = loss(Mdl,newX,newY)

oosGenRate = 0.0261

The out-of-sample misclassification rate is 2.6% indicating that the classifier generalizes fairly well.

Optimize Naive Bayes Classifier

This example shows how to use the OptimizeHyperparameters name-value pair to minimize cross-
validation loss in a naive Bayes classifier using fitcnb. The example uses Fisher's iris data.

Load Fisher's iris data.

load fisheriris
X = meas;
Y = species;
classNames = {'setosa','versicolor','virginica'};

Optimize the classification using the 'auto' parameters.

For reproducibility, set the random seed and use the 'expected-improvement-plus' acquisition
function.

rng default
Mdl = fitcnb(X,Y,'ClassNames',classNames,'OptimizeHyperparameters','auto',...
    'HyperparameterOptimizationOptions',struct('AcquisitionFunctionName',...
    'expected-improvement-plus'))

Warning: It is recommended that you first standardize all numeric predictors when optimizing the Naive Bayes 'Width' parameter. Ignore this warning if you have done that.

|=====================================================================================================|
| Iter | Eval   | Objective   | Objective   | BestSoFar   | BestSoFar   | Distribution-|        Width |
|      | result |             | runtime     | (observed)  | (estim.)    | Names        |              |
|=====================================================================================================|

35 Functions

35-2106



|    1 | Best   |    0.053333 |      1.0099 |    0.053333 |    0.053333 |       normal |            - |
|    2 | Best   |    0.046667 |      1.2812 |    0.046667 |    0.049998 |       kernel |      0.11903 |
|    3 | Accept |    0.053333 |       0.265 |    0.046667 |    0.046667 |       normal |            - |
|    4 | Accept |    0.086667 |     0.81096 |    0.046667 |    0.046668 |       kernel |       2.4506 |
|    5 | Accept |    0.046667 |      0.8189 |    0.046667 |    0.046663 |       kernel |      0.10449 |
|    6 | Accept |    0.073333 |     0.82877 |    0.046667 |    0.046665 |       kernel |     0.025044 |
|    7 | Accept |    0.046667 |      0.8645 |    0.046667 |    0.046655 |       kernel |      0.27647 |
|    8 | Accept |    0.046667 |     0.81751 |    0.046667 |    0.046647 |       kernel |       0.2031 |
|    9 | Accept |        0.06 |     0.78849 |    0.046667 |    0.046658 |       kernel |      0.44271 |
|   10 | Accept |    0.046667 |     0.71138 |    0.046667 |    0.046618 |       kernel |       0.2412 |
|   11 | Accept |    0.046667 |     0.89664 |    0.046667 |    0.046619 |       kernel |     0.071925 |
|   12 | Accept |    0.046667 |      0.8622 |    0.046667 |    0.046612 |       kernel |     0.083459 |
|   13 | Accept |    0.046667 |     0.88212 |    0.046667 |    0.046603 |       kernel |      0.15661 |
|   14 | Accept |    0.046667 |     0.81696 |    0.046667 |    0.046607 |       kernel |      0.25613 |
|   15 | Accept |    0.046667 |     0.80615 |    0.046667 |    0.046606 |       kernel |      0.17776 |
|   16 | Accept |    0.046667 |     0.80777 |    0.046667 |    0.046606 |       kernel |      0.13632 |
|   17 | Accept |    0.046667 |     0.81333 |    0.046667 |    0.046606 |       kernel |     0.077598 |
|   18 | Accept |    0.046667 |     0.85869 |    0.046667 |    0.046626 |       kernel |      0.25646 |
|   19 | Accept |    0.046667 |     0.90192 |    0.046667 |    0.046626 |       kernel |     0.093584 |
|   20 | Accept |    0.046667 |      0.8499 |    0.046667 |    0.046627 |       kernel |     0.061602 |
|=====================================================================================================|
| Iter | Eval   | Objective   | Objective   | BestSoFar   | BestSoFar   | Distribution-|        Width |
|      | result |             | runtime     | (observed)  | (estim.)    | Names        |              |
|=====================================================================================================|
|   21 | Accept |    0.046667 |     0.82602 |    0.046667 |    0.046627 |       kernel |     0.066532 |
|   22 | Accept |    0.093333 |     0.88646 |    0.046667 |    0.046618 |       kernel |       5.8968 |
|   23 | Accept |    0.046667 |      1.0577 |    0.046667 |    0.046619 |       kernel |     0.067045 |
|   24 | Accept |    0.046667 |      0.7349 |    0.046667 |     0.04663 |       kernel |      0.25281 |
|   25 | Accept |    0.046667 |     0.77407 |    0.046667 |     0.04663 |       kernel |       0.1473 |
|   26 | Accept |    0.046667 |     0.76343 |    0.046667 |    0.046631 |       kernel |      0.17211 |
|   27 | Accept |    0.046667 |     0.79079 |    0.046667 |    0.046631 |       kernel |      0.12457 |
|   28 | Accept |    0.046667 |       0.881 |    0.046667 |    0.046631 |       kernel |     0.066659 |
|   29 | Accept |    0.046667 |     0.71662 |    0.046667 |    0.046631 |       kernel |       0.1081 |
|   30 | Accept |        0.08 |     0.68908 |    0.046667 |    0.046628 |       kernel |       1.1048 |
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__________________________________________________________
Optimization completed.
MaxObjectiveEvaluations of 30 reached.
Total function evaluations: 30
Total elapsed time: 72.5207 seconds
Total objective function evaluation time: 24.8124

Best observed feasible point:
    DistributionNames     Width 
    _________________    _______

         kernel          0.11903

Observed objective function value = 0.046667
Estimated objective function value = 0.046667
Function evaluation time = 1.2812

Best estimated feasible point (according to models):
    DistributionNames     Width 
    _________________    _______
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         kernel          0.25613

Estimated objective function value = 0.046628
Estimated function evaluation time = 0.82843

Mdl = 
  ClassificationNaiveBayes
                         ResponseName: 'Y'
                CategoricalPredictors: []
                           ClassNames: {'setosa'  'versicolor'  'virginica'}
                       ScoreTransform: 'none'
                      NumObservations: 150
    HyperparameterOptimizationResults: [1x1 BayesianOptimization]
                    DistributionNames: {1x4 cell}
               DistributionParameters: {3x4 cell}
                               Kernel: {1x4 cell}
                              Support: {1x4 cell}
                                Width: [3x4 double]

  Properties, Methods

Input Arguments
Tbl — Sample data
table

Sample data used to train the model, specified as a table. Each row of Tbl corresponds to one
observation, and each column corresponds to one predictor variable. Optionally, Tbl can contain one
additional column for the response variable. Multicolumn variables and cell arrays other than cell
arrays of character vectors are not allowed.

• If Tbl contains the response variable, and you want to use all remaining variables in Tbl as
predictors, then specify the response variable by using ResponseVarName.

• If Tbl contains the response variable, and you want to use only a subset of the remaining
variables in Tbl as predictors, then specify a formula by using formula.

• If Tbl does not contain the response variable, then specify a response variable by using Y. The
length of the response variable and the number of rows in Tbl must be equal.

ResponseVarName — Response variable name
name of variable in Tbl

Response variable name, specified as the name of a variable in Tbl.

You must specify ResponseVarName as a character vector or string scalar. For example, if the
response variable Y is stored as Tbl.Y, then specify it as "Y". Otherwise, the software treats all
columns of Tbl, including Y, as predictors when training the model.

The response variable must be a categorical, character, or string array; a logical or numeric vector;
or a cell array of character vectors. If Y is a character array, then each element of the response
variable must correspond to one row of the array.

A good practice is to specify the order of the classes by using the ClassNames name-value argument.
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Data Types: char | string

formula — Explanatory model of response variable and subset of predictor variables
character vector | string scalar

Explanatory model of the response variable and a subset of the predictor variables, specified as a
character vector or string scalar in the form "Y~x1+x2+x3". In this form, Y represents the response
variable, and x1, x2, and x3 represent the predictor variables.

To specify a subset of variables in Tbl as predictors for training the model, use a formula. If you
specify a formula, then the software does not use any variables in Tbl that do not appear in
formula.

The variable names in the formula must be both variable names in Tbl
(Tbl.Properties.VariableNames) and valid MATLAB identifiers. You can verify the variable
names in Tbl by using the isvarname function. If the variable names are not valid, then you can
convert them by using the matlab.lang.makeValidName function.
Data Types: char | string

Y — Class labels
categorical array | character array | string array | logical vector | numeric vector | cell array of
character vectors

Class labels to which the naive Bayes classifier is trained, specified as a categorical, character, or
string array, a logical or numeric vector, or a cell array of character vectors. Each element of Y
defines the class membership of the corresponding row of X. Y supports K class levels.

If Y is a character array, then each row must correspond to one class label.

The length of Y and the number of rows of X must be equivalent.
Data Types: categorical | char | string | logical | single | double | cell

X — Predictor data
numeric matrix

Predictor data, specified as a numeric matrix.

Each row of X corresponds to one observation (also known as an instance or example), and each
column corresponds to one variable (also known as a feature).

The length of Y and the number of rows of X must be equivalent.
Data Types: double

Note: The software treats NaN, empty character vector (''), empty string (""), <missing>, and
<undefined> elements as missing data values.

• If Y contains missing values, then the software removes them and the corresponding rows of X.
• If X contains any rows composed entirely of missing values, then the software removes those rows

and the corresponding elements of Y.
• If X contains missing values and you set 'DistributionNames','mn', then the software

removes those rows of X and the corresponding elements of Y.
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• If a predictor is not represented in a class, that is, if all of its values are NaN within a class, then
the software returns an error.

Removing rows of X and corresponding elements of Y decreases the effective training or cross-
validation sample size.

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.

Note You cannot use any cross-validation name-value argument together with the
'OptimizeHyperparameters' name-value argument. You can modify the cross-validation for
'OptimizeHyperparameters' only by using the 'HyperparameterOptimizationOptions'
name-value argument.

Example: 'DistributionNames','mn','Prior','uniform','KSWidth',0.5 specifies that the
data distribution is multinomial, the prior probabilities for all classes are equal, and the kernel
smoothing window bandwidth for all classes is 0.5 units.

Naive Bayes Options

DistributionNames — Data distributions
'kernel' | 'mn' | 'mvmn' | 'normal' | string array | cell array of character vectors

Data distributions fitcnb uses to model the data, specified as the comma-separated pair consisting
of 'DistributionNames' and a character vector or string scalar, a string array, or a cell array of
character vectors with values from this table.

Value Description
'kernel' Kernel smoothing density estimate.
'mn' Multinomial distribution. If you specify mn, then

all features are components of a multinomial
distribution. Therefore, you cannot include 'mn'
as an element of a string array or a cell array of
character vectors. For details, see “Algorithms”
on page 35-2125.

'mvmn' Multivariate multinomial distribution. For details,
see “Algorithms” on page 35-2125.

'normal' Normal (Gaussian) distribution.

If you specify a character vector or string scalar, then the software models all the features using that
distribution. If you specify a 1-by-P string array or cell array of character vectors, then the software
models feature j using the distribution in element j of the array.

By default, the software sets all predictors specified as categorical predictors (using the
CategoricalPredictors name-value pair argument) to 'mvmn'. Otherwise, the default
distribution is 'normal'.
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You must specify that at least one predictor has distribution 'kernel' to additionally specify
Kernel, Support, or Width.
Example: 'DistributionNames','mn'
Example: 'DistributionNames',{'kernel','normal','kernel'}

Kernel — Kernel smoother type
'normal' (default) | 'box' | 'epanechnikov' | 'triangle' | string array | cell array of character
vectors

Kernel smoother type, specified as the comma-separated pair consisting of 'Kernel' and a character
vector or string scalar, a string array, or a cell array of character vectors.

This table summarizes the available options for setting the kernel smoothing density region. Let I{u}
denote the indicator function.

Value Kernel Formula
'box' Box (uniform) f (x) = 0.5I x ≤ 1
'epanechnik
ov'

Epanechnikov f (x) = 0.75 1− x2 I x ≤ 1

'normal' Gaussian f (x) = 1
2πexp −0.5x2

'triangle' Triangular f (x) = 1− x I x ≤ 1

If you specify a 1-by-P string array or cell array, with each element of the array containing any value
in the table, then the software trains the classifier using the kernel smoother type in element j for
feature j in X. The software ignores elements of Kernel not corresponding to a predictor whose
distribution is 'kernel'.

You must specify that at least one predictor has distribution 'kernel' to additionally specify
Kernel, Support, or Width.
Example: 'Kernel',{'epanechnikov','normal'}

Support — Kernel smoothing density support
'unbounded' (default) | 'positive' | string array | cell array | numeric row vector

Kernel smoothing density support, specified as the comma-separated pair consisting of 'Support'
and 'positive', 'unbounded', a string array, a cell array, or a numeric row vector. The software
applies the kernel smoothing density to the specified region.

This table summarizes the available options for setting the kernel smoothing density region.

Value Description
1-by-2 numeric row vector For example, [L,U], where L and U are the finite lower and upper

bounds, respectively, for the density support.
'positive' The density support is all positive real values.
'unbounded' The density support is all real values.

If you specify a 1-by-P string array or cell array, with each element in the string array containing any
text value in the table and each element in the cell array containing any value in the table, then the
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software trains the classifier using the kernel support in element j for feature j in X. The software
ignores elements of Kernel not corresponding to a predictor whose distribution is 'kernel'.

You must specify that at least one predictor has distribution 'kernel' to additionally specify
Kernel, Support, or Width.
Example: 'KSSupport',{[-10,20],'unbounded'}
Data Types: char | string | cell | double

Width — Kernel smoothing window width
matrix of numeric values | numeric column vector | numeric row vector | scalar

Kernel smoothing window width, specified as the comma-separated pair consisting of 'Width' and a
matrix of numeric values, numeric column vector, numeric row vector, or scalar.

Suppose there are K class levels and P predictors. This table summarizes the available options for
setting the kernel smoothing window width.

Value Description
K-by-P matrix of numeric values Element (k,j) specifies the width for predictor j in class k.
K-by-1 numeric column vector Element k specifies the width for all predictors in class k.
1-by-P numeric row vector Element j specifies the width in all class levels for

predictor j.
scalar Specifies the bandwidth for all features in all classes.

By default, the software selects a default width automatically for each combination of predictor and
class by using a value that is optimal for a Gaussian distribution. If you specify Width and it contains
NaNs, then the software selects widths for the elements containing NaNs.

You must specify that at least one predictor has distribution 'kernel' to additionally specify
Kernel, Support, or Width.
Example: 'Width',[NaN NaN]
Data Types: double | struct

Cross-Validation Options

CrossVal — Cross-validation flag
'off' (default) | 'on'

Cross-validation flag, specified as the comma-separated pair consisting of 'Crossval' and 'on' or
'off'.

If you specify 'on', then the software implements 10-fold cross-validation.

To override this cross-validation setting, use one of these name-value pair arguments: CVPartition,
Holdout, KFold, or Leaveout. To create a cross-validated model, you can use one cross-validation
name-value pair argument at a time only.

Alternatively, cross-validate later by passing Mdl to crossval.
Example: 'CrossVal','on'
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CVPartition — Cross-validation partition
[] (default) | cvpartition partition object

Cross-validation partition, specified as a cvpartition partition object created by cvpartition.
The partition object specifies the type of cross-validation and the indexing for the training and
validation sets.

To create a cross-validated model, you can specify only one of these four name-value arguments:
CVPartition, Holdout, KFold, or Leaveout.
Example: Suppose you create a random partition for 5-fold cross-validation on 500 observations by
using cvp = cvpartition(500,'KFold',5). Then, you can specify the cross-validated model by
using 'CVPartition',cvp.

Holdout — Fraction of data for holdout validation
scalar value in the range (0,1)

Fraction of the data used for holdout validation, specified as a scalar value in the range (0,1). If you
specify 'Holdout',p, then the software completes these steps:

1 Randomly select and reserve p*100% of the data as validation data, and train the model using
the rest of the data.

2 Store the compact, trained model in the Trained property of the cross-validated model.

To create a cross-validated model, you can specify only one of these four name-value arguments:
CVPartition, Holdout, KFold, or Leaveout.
Example: 'Holdout',0.1
Data Types: double | single

KFold — Number of folds
10 (default) | positive integer value greater than 1

Number of folds to use in a cross-validated model, specified as a positive integer value greater than 1.
If you specify 'KFold',k, then the software completes these steps:

1 Randomly partition the data into k sets.
2 For each set, reserve the set as validation data, and train the model using the other k – 1 sets.
3 Store the k compact, trained models in a k-by-1 cell vector in the Trained property of the cross-

validated model.

To create a cross-validated model, you can specify only one of these four name-value arguments:
CVPartition, Holdout, KFold, or Leaveout.
Example: 'KFold',5
Data Types: single | double

Leaveout — Leave-one-out cross-validation flag
'off' (default) | 'on'

Leave-one-out cross-validation flag, specified as 'on' or 'off'. If you specify 'Leaveout','on',
then for each of the n observations (where n is the number of observations, excluding missing
observations, specified in the NumObservations property of the model), the software completes
these steps:
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1 Reserve the one observation as validation data, and train the model using the other n – 1
observations.

2 Store the n compact, trained models in an n-by-1 cell vector in the Trained property of the
cross-validated model.

To create a cross-validated model, you can specify only one of these four name-value arguments:
CVPartition, Holdout, KFold, or Leaveout.
Example: 'Leaveout','on'

Other Classification Options

CategoricalPredictors — Categorical predictors list
vector of positive integers | logical vector | character matrix | string array | cell array of character
vectors | 'all'

Categorical predictors list, specified as one of the values in this table.

Value Description
Vector of positive
integers

Each entry in the vector is an index value indicating that the corresponding
predictor is categorical. The index values are between 1 and p, where p is
the number of predictors used to train the model.

If fitcnb uses a subset of input variables as predictors, then the function
indexes the predictors using only the subset. The
CategoricalPredictors values do not count the response variable,
observation weights variable, or any other variables that the function does
not use.

Logical vector A true entry means that the corresponding predictor is categorical. The
length of the vector is p.

Character matrix Each row of the matrix is the name of a predictor variable. The names must
match the entries in PredictorNames. Pad the names with extra blanks
so each row of the character matrix has the same length.

String array or cell
array of character
vectors

Each element in the array is the name of a predictor variable. The names
must match the entries in PredictorNames.

"all" All predictors are categorical.

By default, if the predictor data is in a table (Tbl), fitcnb assumes that a variable is categorical if it
is a logical vector, categorical vector, character array, string array, or cell array of character vectors.
If the predictor data is a matrix (X), fitcnb assumes that all predictors are continuous. To identify
any other predictors as categorical predictors, specify them by using the CategoricalPredictors
name-value argument.

For the identified categorical predictors, fitcnb uses multivariate multinomial distributions. For
details, see DistributionNames and “Algorithms” on page 35-2125.
Example: 'CategoricalPredictors','all'
Data Types: single | double | logical | char | string | cell
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ClassNames — Names of classes to use for training
categorical array | character array | string array | logical vector | numeric vector | cell array of
character vectors

Names of classes to use for training, specified as a categorical, character, or string array; a logical or
numeric vector; or a cell array of character vectors. ClassNames must have the same data type as
the response variable in Tbl or Y.

If ClassNames is a character array, then each element must correspond to one row of the array.

Use ClassNames to:

• Specify the order of the classes during training.
• Specify the order of any input or output argument dimension that corresponds to the class order.

For example, use ClassNames to specify the order of the dimensions of Cost or the column order
of classification scores returned by predict.

• Select a subset of classes for training. For example, suppose that the set of all distinct class names
in Y is ["a","b","c"]. To train the model using observations from classes "a" and "c" only,
specify "ClassNames",["a","c"].

The default value for ClassNames is the set of all distinct class names in the response variable in
Tbl or Y.
Example: "ClassNames",["b","g"]
Data Types: categorical | char | string | logical | single | double | cell

Cost — Cost of misclassification
square matrix | structure

Cost of misclassification of a point, specified as the comma-separated pair consisting of 'Cost' and
one of the following:

• Square matrix, where Cost(i,j) is the cost of classifying a point into class j if its true class is i
(i.e., the rows correspond to the true class and the columns correspond to the predicted class). To
specify the class order for the corresponding rows and columns of Cost, additionally specify the
ClassNames name-value pair argument.

• Structure S having two fields: S.ClassNames containing the group names as a variable of the
same type as Y, and S.ClassificationCosts containing the cost matrix.

The default is Cost(i,j)=1 if i~=j, and Cost(i,j)=0 if i=j.
Example: 'Cost',struct('ClassNames',{{'b','g'}},'ClassificationCosts',[0 0.5; 1
0])

Data Types: single | double | struct

PredictorNames — Predictor variable names
string array of unique names | cell array of unique character vectors

Predictor variable names, specified as a string array of unique names or cell array of unique
character vectors. The functionality of PredictorNames depends on the way you supply the training
data.

• If you supply X and Y, then you can use PredictorNames to assign names to the predictor
variables in X.
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• The order of the names in PredictorNames must correspond to the column order of X. That
is, PredictorNames{1} is the name of X(:,1), PredictorNames{2} is the name of
X(:,2), and so on. Also, size(X,2) and numel(PredictorNames) must be equal.

• By default, PredictorNames is {'x1','x2',...}.
• If you supply Tbl, then you can use PredictorNames to choose which predictor variables to use

in training. That is, fitcnb uses only the predictor variables in PredictorNames and the
response variable during training.

• PredictorNames must be a subset of Tbl.Properties.VariableNames and cannot include
the name of the response variable.

• By default, PredictorNames contains the names of all predictor variables.
• A good practice is to specify the predictors for training using either PredictorNames or

formula, but not both.

Example: "PredictorNames",
["SepalLength","SepalWidth","PetalLength","PetalWidth"]

Data Types: string | cell

Prior — Prior probabilities
'empirical' (default) | 'uniform' | vector of scalar values | structure

Prior probabilities for each class, specified as the comma-separated pair consisting of 'Prior' and a
value in this table.

Value Description
'empirical' The class prior probabilities are the class relative

frequencies in Y.
'uniform' All class prior probabilities are equal to 1/K,

where K is the number of classes.
numeric vector Each element is a class prior probability. Order

the elements according to Mdl.ClassNames or
specify the order using the ClassNames name-
value pair argument. The software normalizes the
elements such that they sum to 1.

structure A structure S with two fields:

• S.ClassNames contains the class names as a
variable of the same type as Y.

• S.ClassProbs contains a vector of
corresponding prior probabilities. The
software normalizes the elements such that
they sum to 1.

If you set values for both Weights and Prior, the weights are renormalized to add up to the value of
the prior probability in the respective class.
Example: 'Prior','uniform'
Data Types: char | string | single | double | struct
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ResponseName — Response variable name
"Y" (default) | character vector | string scalar

Response variable name, specified as a character vector or string scalar.

• If you supply Y, then you can use ResponseName to specify a name for the response variable.
• If you supply ResponseVarName or formula, then you cannot use ResponseName.

Example: "ResponseName","response"
Data Types: char | string

ScoreTransform — Score transformation
"none" (default) | "doublelogit" | "invlogit" | "ismax" | "logit" | function handle | ...

Score transformation, specified as a character vector, string scalar, or function handle.

This table summarizes the available character vectors and string scalars.

Value Description
"doublelogit" 1/(1 + e–2x)
"invlogit" log(x / (1 – x))
"ismax" Sets the score for the class with the largest score to 1,

and sets the scores for all other classes to 0
"logit" 1/(1 + e–x)
"none" or "identity" x (no transformation)
"sign" –1 for x < 0

0 for x = 0
1 for x > 0

"symmetric" 2x – 1
"symmetricismax" Sets the score for the class with the largest score to 1,

and sets the scores for all other classes to –1
"symmetriclogit" 2/(1 + e–x) – 1

For a MATLAB function or a function you define, use its function handle for the score transform. The
function handle must accept a matrix (the original scores) and return a matrix of the same size (the
transformed scores).
Example: "ScoreTransform","logit"
Data Types: char | string | function_handle

Weights — Observation weights
numeric vector of positive values | name of variable in Tbl

Observation weights, specified as the comma-separated pair consisting of 'Weights' and a numeric
vector of positive values or name of a variable in Tbl. The software weighs the observations in each
row of X or Tbl with the corresponding value in Weights. The size of Weights must equal the
number of rows of X or Tbl.

If you specify the input data as a table Tbl, then Weights can be the name of a variable in Tbl that
contains a numeric vector. In this case, you must specify Weights as a character vector or string
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scalar. For example, if the weights vector W is stored as Tbl.W, then specify it as 'W'. Otherwise, the
software treats all columns of Tbl, including W, as predictors or the response when training the
model.

The software normalizes Weights to sum up to the value of the prior probability in the respective
class.

By default, Weights is ones(n,1), where n is the number of observations in X or Tbl.
Data Types: double | single | char | string

Hyperparameter Optimization

OptimizeHyperparameters — Parameters to optimize
'none' (default) | 'auto' | 'all' | string array or cell array of eligible parameter names | vector of
optimizableVariable objects

Parameters to optimize, specified as the comma-separated pair consisting of
'OptimizeHyperparameters' and one of the following:

• 'none' — Do not optimize.
• 'auto' — Use {'DistributionNames','Width'}.
• 'all' — Optimize all eligible parameters.
• String array or cell array of eligible parameter names.
• Vector of optimizableVariable objects, typically the output of hyperparameters.

The optimization attempts to minimize the cross-validation loss (error) for fitcnb by varying the
parameters. For information about cross-validation loss (albeit in a different context), see
“Classification Loss” on page 35-3870. To control the cross-validation type and other aspects of the
optimization, use the HyperparameterOptimizationOptions name-value pair.

Note The values of 'OptimizeHyperparameters' override any values you specify using other
name-value arguments. For example, setting 'OptimizeHyperparameters' to 'auto' causes
fitcnb to optimize hyperparameters corresponding to the 'auto' option and to ignore any specified
values for the hyperparameters.

The eligible parameters for fitcnb are:

• DistributionNames — fitcnb searches among 'normal' and 'kernel'.
• Width — fitcnb searches among real values, by default log-scaled in the range

[MinPredictorDiff/4,max(MaxPredictorRange,MinPredictorDiff)].
• Kernel — fitcnb searches among 'normal', 'box', 'epanechnikov', and 'triangle'.

Set nondefault parameters by passing a vector of optimizableVariable objects that have
nondefault values. For example,

load fisheriris
params = hyperparameters('fitcnb',meas,species);
params(2).Range = [1e-2,1e2];

Pass params as the value of OptimizeHyperparameters.
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By default, the iterative display appears at the command line, and plots appear according to the
number of hyperparameters in the optimization. For the optimization and plots, the objective function
is the misclassification rate. To control the iterative display, set the Verbose field of the
'HyperparameterOptimizationOptions' name-value argument. To control the plots, set the
ShowPlots field of the 'HyperparameterOptimizationOptions' name-value argument.

For an example, see “Optimize Naive Bayes Classifier” on page 35-2106.
Example: 'auto'

HyperparameterOptimizationOptions — Options for optimization
structure

Options for optimization, specified as a structure. This argument modifies the effect of the
OptimizeHyperparameters name-value argument. All fields in the structure are optional.

Field Name Values Default
Optimizer • 'bayesopt' — Use Bayesian optimization.

Internally, this setting calls bayesopt.
• 'gridsearch' — Use grid search with

NumGridDivisions values per dimension.
• 'randomsearch' — Search at random among

MaxObjectiveEvaluations points.

'gridsearch' searches in a random order, using
uniform sampling without replacement from the
grid. After optimization, you can get a table in grid
order by using the command
sortrows(Mdl.HyperparameterOptimizatio
nResults).

'bayesopt'

AcquisitionFunct
ionName

• 'expected-improvement-per-second-
plus'

• 'expected-improvement'
• 'expected-improvement-plus'
• 'expected-improvement-per-second'
• 'lower-confidence-bound'
• 'probability-of-improvement'

Acquisition functions whose names include per-
second do not yield reproducible results because
the optimization depends on the runtime of the
objective function. Acquisition functions whose
names include plus modify their behavior when
they are overexploiting an area. For more details,
see “Acquisition Function Types” on page 10-3.

'expected-
improvement-per-
second-plus'

MaxObjectiveEval
uations

Maximum number of objective function
evaluations.

30 for 'bayesopt' and
'randomsearch', and
the entire grid for
'gridsearch'
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Field Name Values Default
MaxTime Time limit, specified as a positive real scalar. The

time limit is in seconds, as measured by tic and
toc. The run time can exceed MaxTime because
MaxTime does not interrupt function evaluations.

Inf

NumGridDivisions For 'gridsearch', the number of values in each
dimension. The value can be a vector of positive
integers giving the number of values for each
dimension, or a scalar that applies to all
dimensions. This field is ignored for categorical
variables.

10

ShowPlots Logical value indicating whether to show plots. If
true, this field plots the best observed objective
function value against the iteration number. If you
use Bayesian optimization (Optimizer is
'bayesopt'), then this field also plots the best
estimated objective function value. The best
observed objective function values and best
estimated objective function values correspond to
the values in the BestSoFar (observed) and
BestSoFar (estim.) columns of the iterative
display, respectively. You can find these values in
the properties ObjectiveMinimumTrace and
EstimatedObjectiveMinimumTrace of
Mdl.HyperparameterOptimizationResults.
If the problem includes one or two optimization
parameters for Bayesian optimization, then
ShowPlots also plots a model of the objective
function against the parameters.

true

SaveIntermediate
Results

Logical value indicating whether to save results
when Optimizer is 'bayesopt'. If true, this
field overwrites a workspace variable named
'BayesoptResults' at each iteration. The
variable is a BayesianOptimization object.

false

Verbose Display at the command line:

• 0 — No iterative display
• 1 — Iterative display
• 2 — Iterative display with extra information

For details, see the bayesopt Verbose name-
value argument and the example “Optimize
Classifier Fit Using Bayesian Optimization” on
page 10-56.

1
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Field Name Values Default
UseParallel Logical value indicating whether to run Bayesian

optimization in parallel, which requires Parallel
Computing Toolbox. Due to the nonreproducibility
of parallel timing, parallel Bayesian optimization
does not necessarily yield reproducible results. For
details, see “Parallel Bayesian Optimization” on
page 10-7.

false

Repartition Logical value indicating whether to repartition the
cross-validation at every iteration. If this field is
false, the optimizer uses a single partition for
the optimization.

The setting true usually gives the most robust
results because it takes partitioning noise into
account. However, for good results, true requires
at least twice as many function evaluations.

false

Use no more than one of the following three options.
CVPartition A cvpartition object, as created by

cvpartition
'Kfold',5 if you do not
specify a cross-validation
fieldHoldout A scalar in the range (0,1) representing the

holdout fraction
Kfold An integer greater than 1

Example:
'HyperparameterOptimizationOptions',struct('MaxObjectiveEvaluations',60)

Data Types: struct

Output Arguments
Mdl — Trained naive Bayes classification model
ClassificationNaiveBayes model object | ClassificationPartitionedModel cross-validated
model object

Trained naive Bayes classification model, returned as a ClassificationNaiveBayes model object
or a ClassificationPartitionedModel cross-validated model object.

If you set any of the name-value pair arguments KFold, Holdout, CrossVal, or CVPartition, then
Mdl is a ClassificationPartitionedModel cross-validated model object. Otherwise, Mdl is a
ClassificationNaiveBayes model object.

To reference properties of Mdl, use dot notation. For example, to access the estimated distribution
parameters, enter Mdl.DistributionParameters.
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More About
Bag-of-Tokens Model

In the bag-of-tokens model, the value of predictor j is the nonnegative number of occurrences of
token j in the observation. The number of categories (bins) in the multinomial model is the number of
distinct tokens (number of predictors).

Naive Bayes

Naive Bayes is a classification algorithm that applies density estimation to the data.

The algorithm leverages Bayes theorem, and (naively) assumes that the predictors are conditionally
independent, given the class. Although the assumption is usually violated in practice, naive Bayes
classifiers tend to yield posterior distributions that are robust to biased class density estimates,
particularly where the posterior is 0.5 (the decision boundary) [1].

Naive Bayes classifiers assign observations to the most probable class (in other words, the maximum
a posteriori decision rule). Explicitly, the algorithm takes these steps:

1 Estimate the densities of the predictors within each class.
2 Model posterior probabilities according to Bayes rule. That is, for all k = 1,...,K,

P Y = k X1, .., XP =
π Y = k ∏

j = 1

P
P X j Y = k

∑k = 1

K

π Y = k ∏
j = 1

P
P X j Y = k

,

where:

• Y is the random variable corresponding to the class index of an observation.
• X1,...,XP are the random predictors of an observation.
• π Y = k  is the prior probability that a class index is k.

3 Classify an observation by estimating the posterior probability for each class, and then assign the
observation to the class yielding the maximum posterior probability.

If the predictors compose a multinomial distribution, then the posterior probability
P Y = k X1, .., XP ∝ π Y = k Pmn X1, ..., XP Y = k , where Pmn X1, ..., XP Y = k  is the probability
mass function of a multinomial distribution.

Tips
• For classifying count-based data, such as the bag-of-tokens model on page 35-2124, use the

multinomial distribution (e.g., set 'DistributionNames','mn').
• After training a model, you can generate C/C++ code that predicts labels for new data.

Generating C/C++ code requires MATLAB Coder. For details, see “Introduction to Code
Generation” on page 34-2.
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Algorithms
• If predictor variable j has a conditional normal distribution (see the DistributionNames name-

value argument), the software fits the distribution to the data by computing the class-specific
weighted mean and the unbiased estimate of the weighted standard deviation. For each class k:

• The weighted mean of predictor j is

x j k =
∑

i: yi = k
wixi j

∑
i: yi = k

wi
,

where wi is the weight for observation i. The software normalizes weights within a class such
that they sum to the prior probability for that class.

• The unbiased estimator of the weighted standard deviation of predictor j is

s j k =
∑

i: yi = k
wi xi j− x j k

2

z1 k−
z2 k
z1 k

1/2

,

where z1|k is the sum of the weights within class k and z2|k is the sum of the squared weights
within class k.

• If all predictor variables compose a conditional multinomial distribution (you specify
'DistributionNames','mn'), the software fits the distribution using the bag-of-tokens model
on page 35-2124. The software stores the probability that token j appears in class k in the
property DistributionParameters{k,j}. Using additive smoothing [2], the estimated
probability is

P(token  j class k) =
1 + c j k
P + ck

,

where:

•

c j k = nk

∑
i: yi = k

xi jwi

∑
i: yi = k

wi
, which is the weighted number of occurrences of token j in class k.

• nk is the number of observations in class k.
• wi is the weight for observation i. The software normalizes weights within a class such that

they sum to the prior probability for that class.
•

ck = ∑
j = 1

P
c j k, which is the total weighted number of occurrences of all tokens in class k.

• If predictor variable j has a conditional multivariate multinomial distribution:

1 The software collects a list of the unique levels, stores the sorted list in
CategoricalLevels, and considers each level a bin. Each predictor/class combination is a
separate, independent multinomial random variable.
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2 For each class k, the software counts instances of each categorical level using the list stored
in CategoricalLevels{j}.

3 The software stores the probability that predictor j, in class k, has level L in the property
DistributionParameters{k,j}, for all levels in CategoricalLevels{j}. Using additive
smoothing [2], the estimated probability is

P predictor  j = L class k =
1 + m j k(L)

m j + mk
,

where:

•

m j k(L) = nk

∑
i: yi = k

I xi j = L wi

∑
i: yi = k

wi
, which is the weighted number of observations for which

predictor j equals L in class k.
• nk is the number of observations in class k.
• I xi j = L = 1 if xij = L, 0 otherwise.
• wi is the weight for observation i. The software normalizes weights within a class such that

they sum to the prior probability for that class.
• mj is the number of distinct levels in predictor j.
• mk is the weighted number of observations in class k.

• If you specify the Cost, Prior, and Weights name-value arguments, the output model object
stores the specified values in the Cost, Prior, and W properties, respectively. The Cost property
stores the user-specified cost matrix (C) as is. The Prior and W properties store the prior
probabilities and observation weights, respectively, after normalization. For details, see
“Misclassification Cost Matrix, Prior Probabilities, and Observation Weights” on page 19-8.

• The software uses the Cost property for prediction, but not training. Therefore, Cost is not read-
only; you can change the property value by using dot notation after creating the trained model.

Version History
Introduced in R2014b

References
[1] Hastie, T., R. Tibshirani, and J. Friedman. The Elements of Statistical Learning, Second Edition.

NY: Springer, 2008.

[2] Manning, Christopher D., Prabhakar Raghavan, and Hinrich Schütze. Introduction to Information
Retrieval, NY: Cambridge University Press, 2008.

Extended Capabilities
Tall Arrays
Calculate with arrays that have more rows than fit in memory.

This function supports tall arrays with the limitations:
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• Supported syntaxes are:

• Mdl = fitcnb(Tbl,Y)
• Mdl = fitcnb(X,Y)
• Mdl = fitcnb(___,Name,Value)

• Options related to kernel densities, cross-validation, and hyperparameter optimization are not
supported. The supported name-value pair arguments are:

• 'DistributionNames' — 'kernel' value is not supported.
• 'CategoricalPredictors'
• 'Cost'
• 'PredictorNames'
• 'Prior'
• 'ResponseName'
• 'ScoreTransform'
• 'Weights' — Value must be a tall array.

For more information, see “Tall Arrays for Out-of-Memory Data”.

Automatic Parallel Support
Accelerate code by automatically running computation in parallel using Parallel Computing Toolbox™.

To perform parallel hyperparameter optimization, use the
'HyperparameterOptimizationOptions', struct('UseParallel',true) name-value
argument in the call to the fitcnb function.

For more information on parallel hyperparameter optimization, see “Parallel Bayesian Optimization”
on page 10-7.

For general information about parallel computing, see “Run MATLAB Functions with Automatic
Parallel Support” (Parallel Computing Toolbox).

See Also
ClassificationNaiveBayes | predict | ClassificationPartitionedModel |
templateNaiveBayes

Topics
“Naive Bayes Classification” on page 22-2
“Grouping Variables” on page 2-46
“Incremental Learning with Naive Bayes and Heterogeneous Data” on page 28-52
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fitcnet
Train neural network classification model

Syntax
Mdl = fitcnet(Tbl,ResponseVarName)
Mdl = fitcnet(Tbl,formula)
Mdl = fitcnet(Tbl,Y)

Mdl = fitcnet(X,Y)

Mdl = fitcnet( ___ ,Name,Value)

Description
Use fitcnet to train a feedforward, fully connected neural network for classification. The first fully
connected layer of the neural network has a connection from the network input (predictor data), and
each subsequent layer has a connection from the previous layer. Each fully connected layer multiplies
the input by a weight matrix and then adds a bias vector. An activation function follows each fully
connected layer. The final fully connected layer and the subsequent softmax activation function
produce the network's output, namely classification scores (posterior probabilities) and predicted
labels. For more information, see “Neural Network Structure” on page 35-2167.

Mdl = fitcnet(Tbl,ResponseVarName) returns a neural network classification model Mdl
trained using the predictors in the table Tbl and the class labels in the ResponseVarName table
variable.

Mdl = fitcnet(Tbl,formula) returns a neural network classification model trained using the
sample data in the table Tbl. The input argument formula is an explanatory model of the response
and a subset of the predictor variables in Tbl used to fit Mdl.

Mdl = fitcnet(Tbl,Y) returns a neural network classification model using the predictor variables
in the table Tbl and the class labels in vector Y.

Mdl = fitcnet(X,Y) returns a neural network classification model trained using the predictors in
the matrix X and the class labels in vector Y.

Mdl = fitcnet( ___ ,Name,Value) specifies options using one or more name-value arguments in
addition to any of the input argument combinations in previous syntaxes. For example, you can adjust
the number of outputs and the activation functions for the fully connected layers by specifying the
LayerSizes and Activations name-value arguments.

Examples

Train Neural Network Classifier

Train a neural network classifier, and assess the performance of the classifier on a test set.

Read the sample file CreditRating_Historical.dat into a table. The predictor data consists of
financial ratios and industry sector information for a list of corporate customers. The response
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variable consists of credit ratings assigned by a rating agency. Preview the first few rows of the data
set.

creditrating = readtable("CreditRating_Historical.dat");
head(creditrating)

     ID      WC_TA     RE_TA     EBIT_TA    MVE_BVTD    S_TA     Industry    Rating 
    _____    ______    ______    _______    ________    _____    ________    _______

    62394     0.013     0.104     0.036      0.447      0.142        3       {'BB' }
    48608     0.232     0.335     0.062      1.969      0.281        8       {'A'  }
    42444     0.311     0.367     0.074      1.935      0.366        1       {'A'  }
    48631     0.194     0.263     0.062      1.017      0.228        4       {'BBB'}
    43768     0.121     0.413     0.057      3.647      0.466       12       {'AAA'}
    39255    -0.117    -0.799      0.01      0.179      0.082        4       {'CCC'}
    62236     0.087     0.158     0.049      0.816      0.324        2       {'BBB'}
    39354     0.005     0.181     0.034      2.597      0.388        7       {'AA' }

Because each value in the ID variable is a unique customer ID, that is,
length(unique(creditrating.ID)) is equal to the number of observations in creditrating,
the ID variable is a poor predictor. Remove the ID variable from the table, and convert the Industry
variable to a categorical variable.

creditrating = removevars(creditrating,"ID");
creditrating.Industry = categorical(creditrating.Industry);

Convert the Rating response variable to an ordinal categorical variable.

creditrating.Rating = categorical(creditrating.Rating, ...
    ["AAA","AA","A","BBB","BB","B","CCC"],"Ordinal",true);

Partition the data into training and test sets. Use approximately 80% of the observations to train a
neural network model, and 20% of the observations to test the performance of the trained model on
new data. Use cvpartition to partition the data.

rng("default") % For reproducibility of the partition
c = cvpartition(creditrating.Rating,"Holdout",0.20);
trainingIndices = training(c); % Indices for the training set
testIndices = test(c); % Indices for the test set
creditTrain = creditrating(trainingIndices,:);
creditTest = creditrating(testIndices,:);

Train a neural network classifier by passing the training data creditTrain to the fitcnet function.

Mdl = fitcnet(creditTrain,"Rating")

Mdl = 
  ClassificationNeuralNetwork
           PredictorNames: {1x6 cell}
             ResponseName: 'Rating'
    CategoricalPredictors: 6
               ClassNames: [AAA    AA    A    BBB    BB    B    CCC]
           ScoreTransform: 'none'
          NumObservations: 3146
               LayerSizes: 10
              Activations: 'relu'
    OutputLayerActivation: 'softmax'
                   Solver: 'LBFGS'
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          ConvergenceInfo: [1x1 struct]
          TrainingHistory: [1000x7 table]

  Properties, Methods

Mdl is a trained ClassificationNeuralNetwork classifier. You can use dot notation to access the
properties of Mdl. For example, you can specify Mdl.TrainingHistory to get more information
about the training history of the neural network model.

Evaluate the performance of the classifier on the test set by computing the test set classification
error. Visualize the results by using a confusion matrix.

testAccuracy = 1 - loss(Mdl,creditTest,"Rating", ...
    "LossFun","classiferror")

testAccuracy = 0.7964

confusionchart(creditTest.Rating,predict(Mdl,creditTest))

Specify Neural Network Classifier Architecture

Specify the structure of a neural network classifier, including the size of the fully connected layers.
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Load the ionosphere data set, which includes radar signal data. X contains the predictor data, and Y
is the response variable, whose values represent either good ("g") or bad ("b") radar signals.

load ionosphere

Separate the data into training data (XTrain and YTrain) and test data (XTest and YTest) by using
a stratified holdout partition. Reserve approximately 30% of the observations for testing, and use the
rest of the observations for training.

rng("default") % For reproducibility of the partition
cvp = cvpartition(Y,"Holdout",0.3);
XTrain = X(training(cvp),:);
YTrain = Y(training(cvp));
XTest = X(test(cvp),:);
YTest = Y(test(cvp));

Train a neural network classifier. Specify to have 35 outputs in the first fully connected layer and 20
outputs in the second fully connected layer. By default, both layers use a rectified linear unit (ReLU)
activation function. You can change the activation functions for the fully connected layers by using
the Activations name-value argument.

Mdl = fitcnet(XTrain,YTrain, ...
    "LayerSizes",[35 20])

Mdl = 
  ClassificationNeuralNetwork
             ResponseName: 'Y'
    CategoricalPredictors: []
               ClassNames: {'b'  'g'}
           ScoreTransform: 'none'
          NumObservations: 246
               LayerSizes: [35 20]
              Activations: 'relu'
    OutputLayerActivation: 'softmax'
                   Solver: 'LBFGS'
          ConvergenceInfo: [1x1 struct]
          TrainingHistory: [47x7 table]

  Properties, Methods

Access the weights and biases for the fully connected layers of the trained classifier by using the
LayerWeights and LayerBiases properties of Mdl. The first two elements of each property
correspond to the values for the first two fully connected layers, and the third element corresponds to
the values for the final fully connected layer with a softmax activation function for classification. For
example, display the weights and biases for the second fully connected layer.

Mdl.LayerWeights{2}

ans = 20×35

    0.0481    0.2501   -0.1535   -0.0934    0.0760   -0.0579   -0.2465    1.0411    0.3712   -1.2007    1.1162    0.4296    0.4045    0.5005    0.8839    0.4624   -0.3154    0.3454   -0.0487    0.2648    0.0732    0.5773    0.4286    0.0881    0.9468    0.2981    0.5534    1.0518   -0.0224    0.6894    0.5527    0.7045   -0.6124    0.2145   -0.0790
   -0.9489   -1.8343    0.5510   -0.5751   -0.8726    0.8815    0.0203   -1.6379    2.0315    1.7599   -1.4153   -1.4335   -1.1638   -0.1715    1.1439   -0.7661    1.1230   -1.1982   -0.5409   -0.5821   -0.0627   -0.7038   -0.0817   -1.5773   -1.4671    0.2053   -0.7931   -1.6201   -0.1737   -0.7762   -0.3063   -0.8771    1.5134   -0.4611   -0.0649
   -0.1910    0.0246   -0.3511    0.0097    0.3160   -0.0693    0.2270   -0.0783   -0.1626   -0.3478    0.2765    0.4179    0.0727   -0.0314   -0.1798   -0.0583    0.1375   -0.1876    0.2518    0.2137    0.1497    0.0395    0.2859   -0.0905    0.4325   -0.2012    0.0388   -0.1441   -0.1431   -0.0249   -0.2200    0.0860   -0.2076    0.0132    0.1737
   -0.0415   -0.0059   -0.0753   -0.1477   -0.1621   -0.1762    0.2164    0.1710   -0.0610   -0.1402    0.1452    0.2890    0.2872   -0.2616   -0.4204   -0.2831   -0.1901    0.0036    0.0781   -0.0826    0.1588   -0.2782    0.2510   -0.1069   -0.2692    0.2306    0.2521    0.0306    0.2524   -0.4218    0.2478    0.2343   -0.1031    0.1037    0.1598
    1.1848    1.6142   -0.1352    0.5774    0.5491    0.0103    0.0209    0.7219   -0.8643   -0.5578    1.3595    1.5385    1.0015    0.7416   -0.4342    0.2279    0.5667    1.1589    0.7100    0.1823    0.4171    0.7051    0.0794    1.3267    1.2659    0.3197    0.3947    0.3436   -0.1415    0.6607    1.0071    0.7726   -0.2840    0.8801    0.0848
    0.2486   -0.2920   -0.0004    0.2806    0.2987   -0.2709    0.1473   -0.2580   -0.0499   -0.0755    0.2000    0.1535   -0.0285   -0.0520   -0.2523   -0.2505   -0.0437   -0.2323    0.2023    0.2061   -0.1365    0.0744    0.0344   -0.2891    0.2341   -0.1556    0.1459    0.2533   -0.0583    0.0243   -0.2949   -0.1530    0.1546   -0.0340   -0.1562
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   -0.0516    0.0640    0.1824   -0.0675   -0.2065   -0.0052   -0.1682   -0.1520    0.0060    0.0450    0.0813   -0.0234    0.0657    0.3219   -0.1871    0.0658   -0.2103    0.0060   -0.2831   -0.1811   -0.0988    0.2378   -0.0761    0.1714   -0.1596   -0.0011    0.0609    0.4003    0.3687   -0.2879    0.0910    0.0604   -0.2222   -0.2735   -0.1155
   -0.6192   -0.7804   -0.0506   -0.4205   -0.2584   -0.2020   -0.0008    0.0534    1.0185   -0.0307   -0.0539   -0.2020    0.0368   -0.1847    0.0886   -0.4086   -0.4648   -0.3785    0.1542   -0.5176   -0.3207    0.1893   -0.0313   -0.5297   -0.1261   -0.2749   -0.6152   -0.5914   -0.3089    0.2432   -0.3955   -0.1711    0.1710   -0.4477    0.0718
    0.5049   -0.1362   -0.2218    0.1637   -0.1282   -0.1008    0.1445    0.4527   -0.4887    0.0503    0.1453    0.1316   -0.3311   -0.1081   -0.7699    0.4062   -0.1105   -0.0855    0.0630   -0.1469   -0.2533    0.3976    0.0418    0.5294    0.3982    0.1027   -0.0973   -0.1282    0.2491    0.0425    0.0533    0.1578   -0.8403   -0.0535   -0.0048
    1.1109   -0.0466    0.4044    0.6366    0.1863    0.5660    0.2839    0.8793   -0.5497    0.0057    0.3468    0.0980    0.3364    0.4669    0.1466    0.7883   -0.1743    0.4444    0.4535    0.1521    0.7476    0.2246    0.4473    0.2829    0.8881    0.4666    0.6334    0.3105    0.9571    0.2808    0.6483    0.1180   -0.4558    1.2486    0.2453
      ⋮

Mdl.LayerBiases{2}

ans = 20×1

    0.6147
    0.1891
   -0.2767
   -0.2977
    1.3655
    0.0347
    0.1509
   -0.4839
   -0.3960
    0.9248
      ⋮

The final fully connected layer has two outputs, one for each class in the response variable. The
number of layer outputs corresponds to the first dimension of the layer weights and layer biases.

size(Mdl.LayerWeights{end})

ans = 1×2

     2    20

size(Mdl.LayerBiases{end})

ans = 1×2

     2     1

To estimate the performance of the trained classifier, compute the test set classification error for Mdl.

testError = loss(Mdl,XTest,YTest, ...
    "LossFun","classiferror")

testError = 0.0774

accuracy = 1 - testError

accuracy = 0.9226

Mdl accurately classifies approximately 92% of the observations in the test set.
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Stop Neural Network Training Early Using Validation Data

At each iteration of the training process, compute the validation loss of the neural network. Stop the
training process early if the validation loss reaches a reasonable minimum.

Load the patients data set. Create a table from the data set. Each row corresponds to one patient,
and each column corresponds to a diagnostic variable. Use the Smoker variable as the response
variable, and the rest of the variables as predictors.

load patients
tbl = table(Diastolic,Systolic,Gender,Height,Weight,Age,Smoker);

Separate the data into a training set tblTrain and a validation set tblValidation by using a
stratified holdout partition. The software reserves approximately 30% of the observations for the
validation data set and uses the rest of the observations for the training data set.

rng("default") % For reproducibility of the partition
c = cvpartition(tbl.Smoker,"Holdout",0.30);
trainingIndices = training(c);
validationIndices = test(c);
tblTrain = tbl(trainingIndices,:);
tblValidation = tbl(validationIndices,:);

Train a neural network classifier by using the training set. Specify the Smoker column of tblTrain
as the response variable. Evaluate the model at each iteration by using the validation set. Specify to
display the training information at each iteration by using the Verbose name-value argument. By
default, the training process ends early if the validation cross-entropy loss is greater than or equal to
the minimum validation cross-entropy loss computed so far, six times in a row. To change the number
of times the validation loss is allowed to be greater than or equal to the minimum, specify the
ValidationPatience name-value argument.

Mdl = fitcnet(tblTrain,"Smoker", ...
    "ValidationData",tblValidation, ...
    "Verbose",1);

|==========================================================================================|
| Iteration  | Train Loss | Gradient   | Step       | Iteration  | Validation | Validation |
|            |            |            |            | Time (sec) | Loss       | Checks     |
|==========================================================================================|
|           1|    2.602935|   26.866935|    0.262009|    0.129994|    2.793048|           0|
|           2|    1.470816|   42.594723|    0.058323|    0.014772|    1.247046|           0|
|           3|    1.299292|   25.854432|    0.034910|    0.010082|    1.507857|           1|
|           4|    0.710465|   11.629107|    0.013616|    0.009871|    0.889157|           0|
|           5|    0.647783|    2.561740|    0.005753|    0.026179|    0.766728|           0|
|           6|    0.645541|    0.681579|    0.001000|    0.002758|    0.776072|           1|
|           7|    0.639611|    1.544692|    0.007013|    0.004396|    0.776320|           2|
|           8|    0.604189|    5.045676|    0.064190|    0.001669|    0.744919|           0|
|           9|    0.565364|    5.851552|    0.068845|    0.001738|    0.694226|           0|
|          10|    0.391994|    8.377717|    0.560480|    0.001458|    0.425466|           0|
|==========================================================================================|
| Iteration  | Train Loss | Gradient   | Step       | Iteration  | Validation | Validation |
|            |            |            |            | Time (sec) | Loss       | Checks     |
|==========================================================================================|
|          11|    0.383843|    0.630246|    0.110270|    0.003422|    0.428487|           1|
|          12|    0.369289|    2.404750|    0.084395|    0.002264|    0.405728|           0|
|          13|    0.357839|    6.220679|    0.199197|    0.001998|    0.378480|           0|
|          14|    0.344974|    2.752717|    0.029013|    0.002135|    0.367279|           0|
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|          15|    0.333747|    0.711398|    0.074513|    0.006136|    0.348499|           0|
|          16|    0.327763|    0.804818|    0.122178|    0.001843|    0.330237|           0|
|          17|    0.327702|    0.778169|    0.009810|    0.002737|    0.329095|           0|
|          18|    0.327277|    0.020615|    0.004377|    0.001528|    0.329141|           1|
|          19|    0.327273|    0.010018|    0.003313|    0.002052|    0.328773|           0|
|          20|    0.327268|    0.019497|    0.000805|    0.002149|    0.328831|           1|
|==========================================================================================|
| Iteration  | Train Loss | Gradient   | Step       | Iteration  | Validation | Validation |
|            |            |            |            | Time (sec) | Loss       | Checks     |
|==========================================================================================|
|          21|    0.327228|    0.113983|    0.005397|    0.001544|    0.329085|           2|
|          22|    0.327138|    0.240166|    0.012159|    0.001398|    0.329406|           3|
|          23|    0.326865|    0.428912|    0.036841|    0.001342|    0.329952|           4|
|          24|    0.325797|    0.255227|    0.139585|    0.001935|    0.331246|           5|
|          25|    0.325181|    0.758050|    0.135868|    0.004656|    0.332035|           6|
|==========================================================================================|

Create a plot that compares the training cross-entropy loss and the validation cross-entropy loss at
each iteration. By default, fitcnet stores the loss information inside the TrainingHistory
property of the object Mdl. You can access this information by using dot notation.

iteration = Mdl.TrainingHistory.Iteration;
trainLosses = Mdl.TrainingHistory.TrainingLoss;
valLosses = Mdl.TrainingHistory.ValidationLoss;

plot(iteration,trainLosses,iteration,valLosses)
legend(["Training","Validation"])
xlabel("Iteration")
ylabel("Cross-Entropy Loss")
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Check the iteration that corresponds to the minimum validation loss. The final returned model Mdl is
the model trained at this iteration.

[~,minIdx] = min(valLosses);
iteration(minIdx)

ans = 19

Find Good Regularization Strength for Neural Network Using Cross-Validation

Assess the cross-validation loss of neural network models with different regularization strengths, and
choose the regularization strength corresponding to the best performing model.

Read the sample file CreditRating_Historical.dat into a table. The predictor data consists of
financial ratios and industry sector information for a list of corporate customers. The response
variable consists of credit ratings assigned by a rating agency. Preview the first few rows of the data
set.

creditrating = readtable("CreditRating_Historical.dat");
head(creditrating)

     ID      WC_TA     RE_TA     EBIT_TA    MVE_BVTD    S_TA     Industry    Rating 
    _____    ______    ______    _______    ________    _____    ________    _______

    62394     0.013     0.104     0.036      0.447      0.142        3       {'BB' }
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    48608     0.232     0.335     0.062      1.969      0.281        8       {'A'  }
    42444     0.311     0.367     0.074      1.935      0.366        1       {'A'  }
    48631     0.194     0.263     0.062      1.017      0.228        4       {'BBB'}
    43768     0.121     0.413     0.057      3.647      0.466       12       {'AAA'}
    39255    -0.117    -0.799      0.01      0.179      0.082        4       {'CCC'}
    62236     0.087     0.158     0.049      0.816      0.324        2       {'BBB'}
    39354     0.005     0.181     0.034      2.597      0.388        7       {'AA' }

Because each value in the ID variable is a unique customer ID, that is,
length(unique(creditrating.ID)) is equal to the number of observations in creditrating,
the ID variable is a poor predictor. Remove the ID variable from the table, and convert the Industry
variable to a categorical variable.

creditrating = removevars(creditrating,"ID");
creditrating.Industry = categorical(creditrating.Industry);

Convert the Rating response variable to an ordinal categorical variable.

creditrating.Rating = categorical(creditrating.Rating, ...
    ["AAA","AA","A","BBB","BB","B","CCC"],"Ordinal",true);

Create a cvpartition object for stratified 5-fold cross-validation. cvp partitions the data into five
folds, where each fold has roughly the same proportions of different credit ratings. Set the random
seed to the default value for reproducibility of the partition.

rng("default")
cvp = cvpartition(creditrating.Rating,"KFold",5);

Compute the cross-validation classification error for neural network classifiers with different
regularization strengths. Try regularization strengths on the order of 1/n, where n is the number of
observations. Specify to standardize the data before training the neural network models.

1/size(creditrating,1)

ans = 2.5432e-04

lambda = (0:0.5:5)*1e-4;
cvloss = zeros(length(lambda),1);

for i = 1:length(lambda)
    cvMdl = fitcnet(creditrating,"Rating","Lambda",lambda(i), ...
        "CVPartition",cvp,"Standardize",true);
    cvloss(i) = kfoldLoss(cvMdl,"LossFun","classiferror");
end

Plot the results. Find the regularization strength corresponding to the lowest cross-validation
classification error.

plot(lambda,cvloss)
xlabel("Regularization Strength")
ylabel("Cross-Validation Loss")
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[~,idx] = min(cvloss);
bestLambda = lambda(idx)

bestLambda = 1.0000e-04

Train a neural network classifier using the bestLambda regularization strength.

Mdl = fitcnet(creditrating,"Rating","Lambda",bestLambda, ...
    "Standardize",true)

Mdl = 
  ClassificationNeuralNetwork
           PredictorNames: {1x6 cell}
             ResponseName: 'Rating'
    CategoricalPredictors: 6
               ClassNames: [AAA    AA    A    BBB    BB    B    CCC]
           ScoreTransform: 'none'
          NumObservations: 3932
               LayerSizes: 10
              Activations: 'relu'
    OutputLayerActivation: 'softmax'
                   Solver: 'LBFGS'
          ConvergenceInfo: [1x1 struct]
          TrainingHistory: [1000x7 table]

  Properties, Methods
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Improve Neural Network Classifier Using OptimizeHyperparameters

Train a neural network classifier using the OptimizeHyperparameters argument to improve the
resulting classifier. Using this argument causes fitcnet to minimize cross-validation loss over some
problem hyperparameters using Bayesian optimization.

Read the sample file CreditRating_Historical.dat into a table. The predictor data consists of
financial ratios and industry sector information for a list of corporate customers. The response
variable consists of credit ratings assigned by a rating agency. Preview the first few rows of the data
set.

creditrating = readtable("CreditRating_Historical.dat");
head(creditrating)

ans=8×8 table
     ID      WC_TA     RE_TA     EBIT_TA    MVE_BVTD    S_TA     Industry    Rating 
    _____    ______    ______    _______    ________    _____    ________    _______

    62394     0.013     0.104     0.036      0.447      0.142        3       {'BB' }
    48608     0.232     0.335     0.062      1.969      0.281        8       {'A'  }
    42444     0.311     0.367     0.074      1.935      0.366        1       {'A'  }
    48631     0.194     0.263     0.062      1.017      0.228        4       {'BBB'}
    43768     0.121     0.413     0.057      3.647      0.466       12       {'AAA'}
    39255    -0.117    -0.799      0.01      0.179      0.082        4       {'CCC'}
    62236     0.087     0.158     0.049      0.816      0.324        2       {'BBB'}
    39354     0.005     0.181     0.034      2.597      0.388        7       {'AA' }

Because each value in the ID variable is a unique customer ID, that is,
length(unique(creditrating.ID)) is equal to the number of observations in creditrating,
the ID variable is a poor predictor. Remove the ID variable from the table, and convert the Industry
variable to a categorical variable.

creditrating = removevars(creditrating,"ID");
creditrating.Industry = categorical(creditrating.Industry);

Convert the Rating response variable to an ordinal categorical variable.

creditrating.Rating = categorical(creditrating.Rating, ...
    ["AAA","AA","A","BBB","BB","B","CCC"],"Ordinal",true);

Partition the data into training and test sets. Use approximately 80% of the observations to train a
neural network model, and 20% of the observations to test the performance of the trained model on
new data. Use cvpartition to partition the data.

rng("default") % For reproducibility of the partition
c = cvpartition(creditrating.Rating,"Holdout",0.20);
trainingIndices = training(c); % Indices for the training set
testIndices = test(c); % Indices for the test set
creditTrain = creditrating(trainingIndices,:);
creditTest = creditrating(testIndices,:);

Train a neural network classifier by passing the training data creditTrain to the fitcnet function,
and include the OptimizeHyperparameters argument. For reproducibility, set the
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AcquisitionFunctionName to "expected-improvement-plus" in a
HyperparameterOptimizationOptions structure. To attempt to get a better solution, set the
number of optimization steps to 100 instead of the default 30. fitcnet performs Bayesian
optimization by default. To use grid search or random search, set the Optimizer field in
HyperparameterOptimizationOptions.

rng("default") % For reproducibility
Mdl = fitcnet(creditTrain,"Rating","OptimizeHyperparameters","auto", ...
    "HyperparameterOptimizationOptions", ...
    struct("AcquisitionFunctionName","expected-improvement-plus", ...
    "MaxObjectiveEvaluations",100))

|============================================================================================================================================|
| Iter | Eval   | Objective   | Objective   | BestSoFar   | BestSoFar   |  Activations |  Standardize |       Lambda |            LayerSizes |
|      | result |             | runtime     | (observed)  | (estim.)    |              |              |              |                       |
|============================================================================================================================================|
|    1 | Best   |     0.55944 |     0.85659 |     0.55944 |     0.55944 |         none |         true |      0.05834 |  3                    |
|    2 | Best   |     0.21488 |       10.56 |     0.21488 |     0.22858 |         relu |         true |   5.0811e-08 | [  1  25]             |
|    3 | Accept |     0.74189 |     0.38301 |     0.21488 |     0.21522 |      sigmoid |         true |      0.57986 |  126                  |
|    4 | Accept |      0.4501 |     0.55193 |     0.21488 |     0.21509 |         tanh |        false |     0.018683 |  10                   |
|    5 | Accept |     0.43071 |      6.8079 |     0.21488 |     0.21508 |         relu |         true |   3.3991e-06 | [  2   1   4]         |
|    6 | Accept |     0.21678 |      30.867 |     0.21488 |     0.21585 |         relu |         true |   6.8351e-09 | [  2 179]             |
|    7 | Accept |     0.27686 |      22.333 |     0.21488 |     0.21584 |         relu |         true |   1.3422e-06 | [ 78   4   2]         |
|    8 | Accept |     0.24571 |       13.56 |     0.21488 |     0.21583 |         tanh |        false |   1.8747e-06 | [ 10   3  19]         |
|    9 | Best   |     0.21297 |      39.621 |     0.21297 |     0.21299 |         tanh |        false |      0.00052 | [  1  61  64]         |
|   10 | Accept |     0.74189 |     0.82366 |     0.21297 |     0.21299 |         tanh |        false |      0.15325 | [ 47 148 271]         |
|   11 | Accept |     0.74189 |     0.28355 |     0.21297 |     0.21302 |         relu |        false |     0.091971 | [  3   2  64]         |
|   12 | Accept |     0.22123 |      29.531 |     0.21297 |     0.21307 |         tanh |        false |   1.7719e-06 | [  3  64  38]         |
|   13 | Accept |     0.74189 |     0.52092 |     0.21297 |       0.213 |         tanh |        false |      0.51268 | [233 146   6]         |
|   14 | Accept |     0.30197 |      46.694 |     0.21297 |       0.213 |         relu |         true |   3.4968e-08 | [295  17]             |
|   15 | Accept |      0.2136 |      21.808 |     0.21297 |     0.21302 |         tanh |        false |   4.2565e-05 | [  1  61]             |
|   16 | Accept |     0.21519 |      27.504 |     0.21297 |     0.21378 |         tanh |        false |    3.562e-05 | [  1   2  91]         |
|   17 | Accept |      0.2136 |      7.4304 |     0.21297 |     0.21379 |         relu |         true |   3.1901e-09 |  1                    |
|   18 | Accept |     0.22028 |      31.251 |     0.21297 |     0.21296 |         tanh |        false |   6.7097e-05 | [  3 144]             |
|   19 | Accept |     0.21615 |      36.667 |     0.21297 |     0.21399 |         tanh |        false |   7.8065e-08 | [  1 197   4]         |
|   20 | Accept |      0.2651 |      27.152 |     0.21297 |     0.21401 |         tanh |        false |   3.3248e-09 | [  6 112]             |
|============================================================================================================================================|
| Iter | Eval   | Objective   | Objective   | BestSoFar   | BestSoFar   |  Activations |  Standardize |       Lambda |            LayerSizes |
|      | result |             | runtime     | (observed)  | (estim.)    |              |              |              |                       |
|============================================================================================================================================|
|   21 | Accept |     0.29339 |      19.958 |     0.21297 |     0.21399 |         relu |         true |   4.2341e-09 | [ 27  10  54]         |
|   22 | Accept |     0.25556 |      115.66 |     0.21297 |     0.21295 |         tanh |        false |   3.3922e-09 | [277 228   2]         |
|   23 | Accept |      0.2136 |      7.7187 |     0.21297 |     0.21294 |         tanh |        false |   3.9912e-07 |  1                    |
|   24 | Accept |      0.2918 |      47.115 |     0.21297 |     0.21294 |         tanh |        false |   3.9317e-08 | [154  20  55]         |
|   25 | Accept |     0.22123 |      40.451 |     0.21297 |     0.21293 |         tanh |        false |   0.00066511 | [273   7]             |
|   26 | Accept |     0.21456 |      8.1443 |     0.21297 |     0.21294 |         tanh |         true |    1.745e-08 | [  1   2]             |
|   27 | Accept |     0.28417 |      121.37 |     0.21297 |     0.21294 |         tanh |         true |   3.3445e-07 | [271 239 132]         |
|   28 | Accept |     0.31882 |      34.873 |     0.21297 |     0.21294 |         tanh |         true |   3.2546e-09 |  259                  |
|   29 | Accept |     0.21329 |       7.056 |     0.21297 |     0.21294 |         tanh |         true |   1.4764e-07 |  1                    |
|   30 | Accept |     0.21488 |      7.9763 |     0.21297 |     0.21293 |         tanh |         true |   4.2304e-05 | [  1   3]             |
|   31 | Accept |     0.28862 |        36.1 |     0.21297 |     0.21293 |         tanh |         true |    0.0026476 | [  1  12 193]         |
|   32 | Accept |     0.23872 |      43.329 |     0.21297 |     0.21293 |         tanh |         true |   0.00012483 |  291                  |
|   33 | Accept |     0.21551 |      9.2561 |     0.21297 |     0.21293 |         tanh |         true |   3.5356e-06 | [  1   9]             |
|   34 | Accept |     0.74189 |     0.38512 |     0.21297 |     0.21293 |         tanh |         true |        5.226 |  284                  |
|   35 | Accept |      0.2136 |      7.8087 |     0.21297 |     0.21293 |      sigmoid |        false |    2.953e-08 |  1                    |
|   36 | Accept |     0.21742 |      6.1235 |     0.21297 |     0.21293 |      sigmoid |        false |   1.2958e-06 |  2                    |
|   37 | Accept |      0.2918 |      72.069 |     0.21297 |     0.21303 |      sigmoid |        false |   1.2858e-07 | [298 128]             |
|   38 | Accept |     0.74189 |      4.0814 |     0.21297 |     0.21293 |      sigmoid |        false |   0.00049631 | [  1  56 285]         |
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|   39 | Accept |     0.21424 |      8.8157 |     0.21297 |     0.21293 |      sigmoid |        false |   2.3823e-07 | [  1   2]             |
|   40 | Accept |     0.21488 |      11.584 |     0.21297 |     0.21293 |      sigmoid |        false |    3.231e-09 | [  1  34]             |
|============================================================================================================================================|
| Iter | Eval   | Objective   | Objective   | BestSoFar   | BestSoFar   |  Activations |  Standardize |       Lambda |            LayerSizes |
|      | result |             | runtime     | (observed)  | (estim.)    |              |              |              |                       |
|============================================================================================================================================|
|   41 | Accept |     0.21488 |      8.5467 |     0.21297 |     0.21293 |         none |        false |   3.9919e-09 | [  1   1]             |
|   42 | Accept |      0.2206 |      17.637 |     0.21297 |     0.21301 |         none |        false |   1.4528e-07 |  103                  |
|   43 | Accept |     0.21964 |       49.16 |     0.21297 |     0.21293 |         none |        false |   4.0062e-09 | [289  77]             |
|   44 | Accept |     0.21551 |      8.4409 |     0.21297 |     0.21293 |         none |        false |   1.8166e-05 | [  1   7   2]         |
|   45 | Accept |     0.25302 |      6.8665 |     0.21297 |     0.21293 |         none |        false |   0.00093672 | [273   5   1]         |
|   46 | Accept |     0.21901 |       70.44 |     0.21297 |     0.21293 |         none |        false |   1.0943e-05 | [285 133  97]         |
|   47 | Accept |     0.74189 |     0.19575 |     0.21297 |       0.213 |         none |        false |      0.33807 | [  1  93]             |
|   48 | Accept |     0.21615 |      33.742 |     0.21297 |     0.21292 |         none |        false |   3.1207e-08 | [  2   3 290]         |
|   49 | Accept |     0.21837 |      21.618 |     0.21297 |       0.213 |         none |        false |   0.00010795 | [239   5]             |
|   50 | Accept |     0.21519 |      5.9516 |     0.21297 |     0.21292 |         none |        false |   1.0462e-06 |  1                    |
|   51 | Accept |     0.21488 |      13.421 |     0.21297 |     0.21292 |         none |         true |   3.2351e-09 | [ 66   1]             |
|   52 | Accept |     0.21519 |      7.0643 |     0.21297 |     0.21292 |         none |         true |   1.3037e-07 | [  1   2]             |
|   53 | Accept |     0.22028 |      33.638 |     0.21297 |       0.213 |         none |         true |   4.9681e-08 | [272  17   4]         |
|   54 | Accept |     0.21488 |      2.7953 |     0.21297 |     0.21292 |         none |         true |   1.1517e-08 | [  1  18   2]         |
|   55 | Accept |      0.2206 |      33.822 |     0.21297 |     0.21292 |         none |         true |   5.4074e-06 | [287   4  11]         |
|   56 | Accept |     0.22441 |      28.892 |     0.21297 |       0.213 |      sigmoid |         true |   3.1871e-09 | [  1 141   5]         |
|   57 | Accept |     0.28544 |      49.046 |     0.21297 |       0.213 |      sigmoid |         true |   1.5445e-07 | [271   8  47]         |
|   58 | Accept |     0.31151 |      42.681 |     0.21297 |       0.213 |      sigmoid |         true |   3.1992e-09 |  269                  |
|   59 | Accept |     0.29371 |       58.27 |     0.21297 |       0.213 |         relu |        false |   3.3691e-09 | [241  91]             |
|   60 | Accept |     0.74189 |      0.4131 |     0.21297 |     0.21301 |         relu |         true |       30.931 | [232   6]             |
|============================================================================================================================================|
| Iter | Eval   | Objective   | Objective   | BestSoFar   | BestSoFar   |  Activations |  Standardize |       Lambda |            LayerSizes |
|      | result |             | runtime     | (observed)  | (estim.)    |              |              |              |                       |
|============================================================================================================================================|
|   61 | Accept |     0.24348 |      9.6687 |     0.21297 |     0.21291 |      sigmoid |         true |   5.2088e-08 | [  1   4   1]         |
|   62 | Accept |     0.64844 |      2.7232 |     0.21297 |     0.21301 |         relu |        false |   3.6858e-07 | [  1  21   1]         |
|   63 | Accept |     0.21456 |       32.99 |     0.21297 |     0.21291 |         none |         true |   3.6582e-06 | [  1  80 188]         |
|   64 | Best   |     0.21265 |       18.62 |     0.21265 |     0.21267 |      sigmoid |         true |   9.6673e-06 | [  1  75]             |
|   65 | Accept |       0.226 |      11.419 |     0.21265 |     0.21268 |      sigmoid |         true |   1.5077e-06 | [  1  24   1]         |
|   66 | Accept |     0.23331 |      102.48 |     0.21265 |     0.21268 |      sigmoid |         true |   1.5026e-05 | [287 214  74]         |
|   67 | Accept |      0.2206 |      30.992 |     0.21265 |     0.21267 |         none |         true |   7.5629e-07 | [ 34   2 264]         |
|   68 | Accept |     0.21869 |      4.3461 |     0.21265 |     0.21268 |         none |         true |    6.758e-05 | [  1   1   1]         |
|   69 | Accept |     0.21869 |      51.008 |     0.21265 |     0.21268 |         none |         true |   6.1541e-05 | [175  23 253]         |
|   70 | Accept |     0.21519 |      46.352 |     0.21265 |     0.21267 |      sigmoid |        false |   5.8406e-07 | [  1  12 288]         |
|   71 | Accept |     0.74189 |     0.35284 |     0.21265 |     0.21268 |      sigmoid |        false |         31.7 | [151  36]             |
|   72 | Accept |     0.29625 |      5.4205 |     0.21265 |     0.21268 |      sigmoid |         true |   0.00015423 | [  1  35]             |
|   73 | Accept |     0.21647 |      2.6142 |     0.21265 |     0.21268 |         none |        false |   0.00024113 | [  1  35]             |
|   74 | Accept |     0.21901 |      76.616 |     0.21265 |      0.2127 |         none |         true |   2.0906e-05 | [  6 235 284]         |
|   75 | Accept |      0.2171 |      32.606 |     0.21265 |     0.21268 |         none |        false |   0.00010157 | [  6   5 298]         |
|   76 | Accept |     0.21996 |      9.2912 |     0.21265 |     0.21268 |         tanh |         true |   0.00023083 | [  1  13]             |
|   77 | Accept |     0.74189 |     0.32671 |     0.21265 |     0.21269 |         none |         true |       31.208 |  222                  |
|   78 | Accept |     0.21519 |      35.616 |     0.21265 |     0.21269 |         tanh |        false |   4.4635e-06 | [  1   7 151]         |
|   79 | Accept |     0.21392 |      9.7813 |     0.21265 |     0.21269 |         relu |         true |   1.5577e-08 | [  1  21]             |
|   80 | Accept |     0.21488 |      21.138 |     0.21265 |     0.21269 |         none |        false |   2.1706e-07 | [  1 185]             |
|============================================================================================================================================|
| Iter | Eval   | Objective   | Objective   | BestSoFar   | BestSoFar   |  Activations |  Standardize |       Lambda |            LayerSizes |
|      | result |             | runtime     | (observed)  | (estim.)    |              |              |              |                       |
|============================================================================================================================================|
|   81 | Accept |     0.21424 |      69.272 |     0.21265 |     0.21118 |         tanh |        false |   5.8903e-07 | [  1 230 101]         |
|   82 | Accept |     0.21488 |       27.59 |     0.21265 |     0.21113 |         none |         true |   9.4233e-09 | [222   2]             |
|   83 | Accept |     0.21933 |      52.768 |     0.21265 |     0.21112 |         none |        false |   1.0916e-06 | [274  12 211]         |
|   84 | Accept |     0.21456 |      43.454 |     0.21265 |     0.21106 |         tanh |         true |   4.2988e-08 | [  1   4 247]         |
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|   85 | Accept |     0.21488 |      9.6532 |     0.21265 |     0.21103 |         tanh |         true |   3.2433e-09 | [  1   4   2]         |
|   86 | Accept |     0.21424 |      7.4065 |     0.21265 |     0.21104 |         tanh |         true |   6.8749e-07 |  1                    |
|   87 | Accept |     0.25366 |      47.819 |     0.21265 |     0.21106 |      sigmoid |        false |   3.6866e-09 | [292  20]             |
|   88 | Accept |      0.2225 |      13.107 |     0.21265 |     0.21108 |         none |         true |   0.00035663 | [235  12]             |
|   89 | Accept |     0.21805 |      1.9952 |     0.21265 |     0.21114 |         none |         true |   0.00036004 | [  1   2]             |
|   90 | Accept |     0.74189 |     0.96416 |     0.21265 |     0.21112 |         relu |        false |        30.55 | [275 169 155]         |
|   91 | Accept |     0.21488 |      5.7708 |     0.21265 |     0.21119 |         none |         true |   3.2456e-09 | [  1 238  31]         |
|   92 | Accept |     0.21392 |      31.018 |     0.21265 |     0.21122 |      sigmoid |        false |   9.3344e-09 | [  1 185]             |
|   93 | Accept |     0.21488 |      8.0701 |     0.21265 |     0.21236 |         relu |         true |   6.5865e-09 |  1                    |
|   94 | Accept |     0.34298 |      1.3016 |     0.21265 |     0.21267 |         tanh |        false |   0.00020571 |  1                    |
|   95 | Accept |     0.29784 |      87.985 |     0.21265 |     0.21269 |         tanh |        false |   2.0857e-05 | [ 15 297 124]         |
|   96 | Accept |     0.33153 |      30.766 |     0.21265 |     0.21302 |         tanh |        false |   0.00021639 | [  4 135   1]         |
|   97 | Accept |     0.21519 |      20.949 |     0.21265 |     0.21299 |         tanh |         true |   2.1898e-05 | [  1   9  57]         |
|   98 | Accept |     0.21996 |      51.698 |     0.21265 |     0.21389 |         none |        false |   3.8536e-05 | [270 139]             |
|   99 | Best   |     0.21202 |      49.605 |     0.21202 |     0.21386 |         none |        false |   1.7719e-08 | [280  59   2]         |
|  100 | Accept |     0.21488 |      3.0963 |     0.21202 |     0.21383 |         none |        false |   1.9173e-08 |  1                    |

__________________________________________________________
Optimization completed.
MaxObjectiveEvaluations of 100 reached.
Total function evaluations: 100
Total elapsed time: 2577.3756 seconds
Total objective function evaluation time: 2526.3743

Best observed feasible point:
    Activations    Standardize      Lambda         LayerSizes    
    ___________    ___________    __________    _________________
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       none           false       1.7719e-08    280     59      2

Observed objective function value = 0.21202
Estimated objective function value = 0.21541
Function evaluation time = 49.6049

Best estimated feasible point (according to models):
    Activations    Standardize      Lambda        LayerSizes   
    ___________    ___________    __________    _______________

       none           false       0.00010157    6      5    298

Estimated objective function value = 0.21383
Estimated function evaluation time = 32.5882

Mdl = 
  ClassificationNeuralNetwork
                       PredictorNames: {'WC_TA'  'RE_TA'  'EBIT_TA'  'MVE_BVTD'  'S_TA'  'Industry'}
                         ResponseName: 'Rating'
                CategoricalPredictors: 6
                           ClassNames: [AAA    AA    A    BBB    BB    B    CCC]
                       ScoreTransform: 'none'
                      NumObservations: 3146
    HyperparameterOptimizationResults: [1×1 BayesianOptimization]
                           LayerSizes: [6 5 298]
                          Activations: 'none'
                OutputLayerActivation: 'softmax'
                               Solver: 'LBFGS'
                      ConvergenceInfo: [1×1 struct]
                      TrainingHistory: [1000×7 table]

  Properties, Methods

Mdl is a trained ClassificationNeuralNetwork classifier. The model corresponds to the best
estimated feasible point, as opposed to the best observed feasible point. (For details on this
distinction, see bestPoint.) You can use dot notation to access the properties of Mdl. For example,
you can specify Mdl.HyperparameterOptimizationResults to get more information about the
optimization of the neural network model.

Find the classification accuracy of the model on the test data set. Visualize the results by using a
confusion matrix.

modelAccuracy = 1 - loss(Mdl,creditTest,"Rating", ...
    "LossFun","classiferror")

modelAccuracy = 0.8041

confusionchart(creditTest.Rating,predict(Mdl,creditTest))
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The model has all predicted classes within one unit of the true classes, meaning all predictions are off
by no more than one rating.

Customize Neural Network Classifier Optimization

Train a neural network classifier using the OptimizeHyperparameters argument to improve the
resulting classification accuracy. Use the hyperparameters function to specify larger-than-default
values for the number of layers used and the layer size range.

Read the sample file CreditRating_Historical.dat into a table. The predictor data consists of
financial ratios and industry sector information for a list of corporate customers. The response
variable consists of credit ratings assigned by a rating agency.

creditrating = readtable("CreditRating_Historical.dat");

Because each value in the ID variable is a unique customer ID, that is,
length(unique(creditrating.ID)) is equal to the number of observations in creditrating,
the ID variable is a poor predictor. Remove the ID variable from the table, and convert the Industry
variable to a categorical variable.

creditrating = removevars(creditrating,"ID");
creditrating.Industry = categorical(creditrating.Industry);

Convert the Rating response variable to an ordinal categorical variable.
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creditrating.Rating = categorical(creditrating.Rating, ...
    ["AAA","AA","A","BBB","BB","B","CCC"],"Ordinal",true);

Partition the data into training and test sets. Use approximately 80% of the observations to train a
neural network model, and 20% of the observations to test the performance of the trained model on
new data. Use cvpartition to partition the data.

rng("default") % For reproducibility of the partition
c = cvpartition(creditrating.Rating,"Holdout",0.20);
trainingIndices = training(c); % Indices for the training set
testIndices = test(c); % Indices for the test set
creditTrain = creditrating(trainingIndices,:);
creditTest = creditrating(testIndices,:);

List the hyperparameters available for this problem of fitting the Rating response.

params = hyperparameters("fitcnet",creditTrain,"Rating");
for ii = 1:length(params)
    disp(ii);disp(params(ii))
end

     1

  optimizableVariable with properties:

         Name: 'NumLayers'
        Range: [1 3]
         Type: 'integer'
    Transform: 'none'
     Optimize: 1

     2

  optimizableVariable with properties:

         Name: 'Activations'
        Range: {'relu'  'tanh'  'sigmoid'  'none'}
         Type: 'categorical'
    Transform: 'none'
     Optimize: 1

     3

  optimizableVariable with properties:

         Name: 'Standardize'
        Range: {'true'  'false'}
         Type: 'categorical'
    Transform: 'none'
     Optimize: 1

     4

  optimizableVariable with properties:

         Name: 'Lambda'
        Range: [3.1786e-09 31.7864]
         Type: 'real'
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    Transform: 'log'
     Optimize: 1

     5

  optimizableVariable with properties:

         Name: 'LayerWeightsInitializer'
        Range: {'glorot'  'he'}
         Type: 'categorical'
    Transform: 'none'
     Optimize: 0

     6

  optimizableVariable with properties:

         Name: 'LayerBiasesInitializer'
        Range: {'zeros'  'ones'}
         Type: 'categorical'
    Transform: 'none'
     Optimize: 0

     7

  optimizableVariable with properties:

         Name: 'Layer_1_Size'
        Range: [1 300]
         Type: 'integer'
    Transform: 'log'
     Optimize: 1

     8

  optimizableVariable with properties:

         Name: 'Layer_2_Size'
        Range: [1 300]
         Type: 'integer'
    Transform: 'log'
     Optimize: 1

     9

  optimizableVariable with properties:

         Name: 'Layer_3_Size'
        Range: [1 300]
         Type: 'integer'
    Transform: 'log'
     Optimize: 1

    10

  optimizableVariable with properties:

         Name: 'Layer_4_Size'
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        Range: [1 300]
         Type: 'integer'
    Transform: 'log'
     Optimize: 0

    11

  optimizableVariable with properties:

         Name: 'Layer_5_Size'
        Range: [1 300]
         Type: 'integer'
    Transform: 'log'
     Optimize: 0

To try more layers than the default of 1 through 3, set the range of NumLayers (optimizable variable
1) to its maximum allowable size, [1 5]. Also, set Layer_4_Size and Layer_5_Size (optimizable
variables 10 and 11, respectively) to be optimized.

params(1).Range = [1 5];
params(10).Optimize = true;
params(11).Optimize = true;

Set the range of all layer sizes (optimizable variables 7 through 11) to [1 400] instead of the default
[1 300].

for ii = 7:11
    params(ii).Range = [1 400];
end

Train a neural network classifier by passing the training data creditTrain to the fitcnet function,
and include the OptimizeHyperparameters argument set to params. For reproducibility, set the
AcquisitionFunctionName to "expected-improvement-plus" in a
HyperparameterOptimizationOptions structure. To attempt to get a better solution, set the
number of optimization steps to 100 instead of the default 30.

rng("default") % For reproducibility
Mdl = fitcnet(creditTrain,"Rating","OptimizeHyperparameters",params, ...
    "HyperparameterOptimizationOptions", ...
    struct("AcquisitionFunctionName","expected-improvement-plus", ...
    "MaxObjectiveEvaluations",100))

|============================================================================================================================================|
| Iter | Eval   | Objective   | Objective   | BestSoFar   | BestSoFar   |  Activations |  Standardize |       Lambda |            LayerSizes |
|      | result |             | runtime     | (observed)  | (estim.)    |              |              |              |                       |
|============================================================================================================================================|
|    1 | Best   |     0.74189 |      2.2062 |     0.74189 |     0.74189 |      sigmoid |         true |      0.68961 | [104   1   5   3   1] |
|    2 | Best   |      0.2225 |      70.081 |      0.2225 |     0.24316 |         relu |         true |   0.00058564 | [ 38 208 162]         |
|    3 | Accept |     0.63891 |      13.086 |      0.2225 |     0.22698 |      sigmoid |         true |   1.9768e-06 | [  1  25   1 287   7] |
|    4 | Best   |     0.21933 |      33.886 |     0.21933 |     0.22307 |         none |        false |   1.3353e-06 |  320                  |
|    5 | Accept |     0.74189 |     0.27024 |     0.21933 |     0.21936 |         relu |         true |       2.7056 | [  1   2   1]         |
|    6 | Accept |     0.29148 |      96.764 |     0.21933 |     0.21936 |         relu |         true |   1.0503e-06 | [301  31 400]         |
|    7 | Accept |      0.6869 |      4.2153 |     0.21933 |     0.21936 |         relu |         true |       0.0113 | [ 97   5  56]         |
|    8 | Accept |     0.74189 |     0.28736 |     0.21933 |     0.21936 |         relu |         true |     0.053563 | [  2  92   1]         |
|    9 | Accept |     0.25238 |      74.737 |     0.21933 |      0.2221 |         relu |         true |   0.00010812 | [  8 137 232]         |
|   10 | Accept |     0.29784 |      213.19 |     0.21933 |     0.21936 |         relu |         true |   2.3488e-07 | [ 30 397 364]         |
|   11 | Accept |     0.74189 |     0.27991 |     0.21933 |     0.21936 |         none |         true |        10.18 |  204                  |
|   12 | Best   |     0.21392 |      35.925 |     0.21392 |     0.21395 |         none |        false |   3.4691e-06 | [  7 355   2]         |
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|   13 | Accept |     0.74189 |     0.82149 |     0.21392 |     0.21395 |         none |        false |       31.657 | [193  53   5  90 355] |
|   14 | Accept |     0.21488 |      45.397 |     0.21392 |     0.21443 |         none |        false |    8.607e-06 | [126  80   2  86   2] |
|   15 | Accept |      0.2349 |      60.527 |     0.21392 |     0.21443 |         relu |        false |   9.4208e-06 | [ 38   6 379   4]     |
|   16 | Accept |     0.21901 |      46.638 |     0.21392 |     0.21443 |         relu |        false |    0.0018197 | [  6  20 205  30  51] |
|   17 | Accept |     0.22282 |       68.41 |     0.21392 |     0.21443 |         relu |        false |   1.2196e-07 | [  5   3  91  45 163] |
|   18 | Accept |     0.74189 |      1.5076 |     0.21392 |     0.21387 |         relu |        false |       10.565 | [394 397  39]         |
|   19 | Accept |     0.24348 |       57.89 |     0.21392 |     0.21442 |         relu |        false |   2.7033e-08 | [ 52  49 195  11   2] |
|   20 | Accept |     0.21933 |      54.865 |     0.21392 |     0.21411 |         relu |        false |   5.3281e-09 | [  4  26 276   4]     |
|============================================================================================================================================|
| Iter | Eval   | Objective   | Objective   | BestSoFar   | BestSoFar   |  Activations |  Standardize |       Lambda |            LayerSizes |
|      | result |             | runtime     | (observed)  | (estim.)    |              |              |              |                       |
|============================================================================================================================================|
|   21 | Accept |     0.21583 |      101.52 |     0.21392 |     0.21413 |         relu |        false |   0.00095213 | [ 98  25 120  70 321] |
|   22 | Accept |     0.74189 |      1.1203 |     0.21392 |     0.21413 |         tanh |        false |       10.324 | [  5  19 325 100 286] |
|   23 | Accept |      0.2225 |      76.344 |     0.21392 |     0.21413 |         tanh |         true |   3.1717e-07 | [  4   3 400]         |
|   24 | Accept |     0.21996 |      39.348 |     0.21392 |     0.21412 |         tanh |         true |   6.0973e-06 | [  6   3 202   2]     |
|   25 | Accept |     0.74189 |     0.70734 |     0.21392 |     0.21389 |         tanh |         true |      0.47944 | [ 91  21 276  10 202] |
|   26 | Accept |      0.6424 |      7.8651 |     0.21392 |     0.21391 |         relu |         true |    4.153e-06 | [ 27   1 208   1  20] |
|   27 | Accept |     0.23808 |      124.09 |     0.21392 |     0.21391 |         relu |        false |   4.7143e-07 | [116 111 327   4   9] |
|   28 | Accept |     0.21869 |      59.477 |     0.21392 |     0.21394 |         none |        false |   0.00020517 | [213 245   1  45   6] |
|   29 | Accept |     0.74189 |     0.84795 |     0.21392 |     0.21394 |         tanh |         true |     0.066046 | [  2 222  63]         |
|   30 | Accept |     0.23013 |      44.975 |     0.21392 |     0.21394 |         tanh |         true |   1.6445e-07 | [184   1  32  21]     |
|   31 | Accept |     0.21583 |      30.499 |     0.21392 |       0.214 |         none |        false |   8.3607e-09 | [172  13   1]         |
|   32 | Accept |     0.29021 |      162.91 |     0.21392 |      0.2114 |         relu |         true |    0.0054118 | [ 79 385 325]         |
|   33 | Accept |     0.22028 |      7.3966 |     0.21392 |     0.21435 |         none |        false |   6.2688e-07 | [  5  13]             |
|   34 | Accept |     0.21488 |       4.797 |     0.21392 |     0.21359 |         none |        false |   2.5162e-08 | [  1   1  17]         |
|   35 | Accept |     0.21805 |      10.065 |     0.21392 |     0.21515 |         relu |        false |   3.3182e-05 | [  6   5   3  13]     |
|   36 | Accept |     0.23268 |      9.1618 |     0.21392 |     0.21493 |         relu |        false |   3.9676e-09 | [ 36   4]             |
|   37 | Accept |     0.21519 |      44.065 |     0.21392 |     0.21394 |         none |        false |   2.1955e-07 | [ 16  34 350   4  31] |
|   38 | Accept |     0.33249 |      26.542 |     0.21392 |     0.21231 |         relu |        false |    0.0010092 | [ 24   1 207]         |
|   39 | Accept |     0.21583 |      21.537 |     0.21392 |     0.21394 |         relu |        false |   2.5221e-05 | [  1  95]             |
|   40 | Accept |     0.22123 |      89.369 |     0.21392 |     0.21394 |         relu |         true |    0.0002332 | [  5 392 160]         |
|============================================================================================================================================|
| Iter | Eval   | Objective   | Objective   | BestSoFar   | BestSoFar   |  Activations |  Standardize |       Lambda |            LayerSizes |
|      | result |             | runtime     | (observed)  | (estim.)    |              |              |              |                       |
|============================================================================================================================================|
|   41 | Accept |     0.28894 |      229.82 |     0.21392 |     0.21393 |         relu |         true |   5.2515e-05 | [153 394 315]         |
|   42 | Accept |     0.22123 |       166.4 |     0.21392 |     0.21393 |         none |        false |   4.1509e-09 | [235 399  62 148]     |
|   43 | Accept |     0.27654 |      19.776 |     0.21392 |     0.21392 |         relu |        false |   1.1969e-06 | [ 75  18]             |
|   44 | Accept |      0.2705 |       91.89 |     0.21392 |     0.21393 |         relu |        false |   3.9338e-09 | [ 78 387  42  65]     |
|   45 | Accept |     0.21678 |      159.34 |     0.21392 |     0.21396 |         none |        false |   3.3979e-05 | [  2 350 376   2]     |
|   46 | Accept |     0.21678 |      5.3698 |     0.21392 |     0.21396 |         none |        false |   0.00019489 | [ 10   4]             |
|   47 | Best   |      0.2136 |      40.323 |      0.2136 |     0.21359 |         none |        false |   5.8608e-08 | [ 21 382   2]         |
|   48 | Accept |     0.22918 |      18.359 |      0.2136 |     0.21359 |         relu |         true |   3.1819e-09 | [  3  71]             |
|   49 | Accept |     0.27591 |      81.573 |      0.2136 |     0.21359 |         relu |        false |   8.1967e-06 | [ 55 388  56]         |
|   50 | Accept |     0.29593 |      10.722 |      0.2136 |     0.21359 |         tanh |         true |   2.5573e-06 |  28                   |
|   51 | Accept |     0.31532 |      81.712 |      0.2136 |     0.21361 |         tanh |         true |   1.7419e-06 | [216  24  25  62  94] |
|   52 | Accept |     0.21869 |      46.876 |      0.2136 |     0.21361 |         relu |        false |   3.3288e-09 | [ 25   1 310]         |
|   53 | Accept |     0.21837 |      44.823 |      0.2136 |     0.21359 |         none |        false |   1.3416e-05 | [  2   2 386  33]     |
|   54 | Accept |     0.23872 |      86.465 |      0.2136 |     0.21359 |         tanh |         true |   3.1991e-09 | [  9   2 233  13 297] |
|   55 | Accept |     0.21742 |       22.42 |      0.2136 |     0.21359 |         none |        false |   0.00017978 | [346  36]             |
|   56 | Accept |      0.3506 |      53.374 |      0.2136 |      0.2136 |         relu |        false |   8.9375e-08 | [213   1  22 222]     |
|   57 | Accept |     0.21583 |      47.939 |      0.2136 |      0.2136 |         relu |        false |   4.0858e-09 | [  1  20  75   7 160] |
|   58 | Accept |     0.25048 |      63.899 |      0.2136 |      0.2136 |         relu |        false |   1.8367e-05 | [133  18   5   8 265] |
|   59 | Accept |     0.21392 |      24.587 |      0.2136 |      0.2136 |         relu |        false |   0.00025743 | [  4  49  78]         |
|   60 | Accept |     0.21996 |      57.638 |      0.2136 |     0.21361 |         none |        false |    6.077e-09 | [ 18   2 199  34 291] |
|============================================================================================================================================|
| Iter | Eval   | Objective   | Objective   | BestSoFar   | BestSoFar   |  Activations |  Standardize |       Lambda |            LayerSizes |
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|      | result |             | runtime     | (observed)  | (estim.)    |              |              |              |                       |
|============================================================================================================================================|
|   61 | Accept |     0.21837 |      52.847 |      0.2136 |     0.21359 |         none |        false |   4.7921e-05 | [ 53   3   5  33 388] |
|   62 | Accept |     0.22028 |       46.08 |      0.2136 |     0.21359 |         none |        false |   4.2742e-09 | [206  87   9  20  39] |
|   63 | Accept |     0.21774 |      15.034 |      0.2136 |     0.21359 |         none |        false |   1.0053e-07 | [ 68   3]             |
|   64 | Accept |     0.23554 |      68.289 |      0.2136 |     0.21359 |         relu |         true |   3.3518e-09 | [  3 389  60]         |
|   65 | Accept |     0.22759 |      2.6688 |      0.2136 |      0.2136 |         none |        false |   0.00079006 |  64                   |
|   66 | Accept |     0.22187 |       55.67 |      0.2136 |      0.2136 |         relu |        false |   4.3532e-07 | [  1  11 383]         |
|   67 | Accept |     0.21805 |      113.63 |      0.2136 |     0.21359 |         relu |        false |   3.3578e-09 | [  4   4 384 244]     |
|   68 | Accept |     0.21742 |      39.749 |      0.2136 |     0.21359 |         relu |        false |   0.00042226 | [ 27   7  13 237]     |
|   69 | Accept |     0.29911 |      22.327 |      0.2136 |      0.2136 |      sigmoid |        false |   3.1977e-09 | [ 66  31]             |
|   70 | Accept |     0.28544 |      17.354 |      0.2136 |     0.21359 |      sigmoid |        false |   2.1618e-07 |  59                   |
|   71 | Accept |      0.4342 |      17.862 |      0.2136 |      0.2136 |      sigmoid |        false |   1.1526e-05 | [ 53  28   9  27   2] |
|   72 | Accept |     0.24793 |      41.903 |      0.2136 |     0.21359 |      sigmoid |        false |   3.2532e-09 |  280                  |
|   73 | Accept |     0.74189 |     0.24831 |      0.2136 |     0.21359 |      sigmoid |        false |       29.321 | [ 58   1   5   3]     |
|   74 | Accept |     0.21805 |      11.378 |      0.2136 |     0.21359 |         relu |        false |   5.0967e-08 | [  1   5  42]         |
|   75 | Accept |     0.21964 |      16.802 |      0.2136 |      0.2136 |         none |         true |   3.3747e-09 | [ 56 273]             |
|   76 | Accept |     0.21488 |      1.4504 |      0.2136 |     0.21359 |         none |         true |   3.6101e-09 | [  1  19]             |
|   77 | Accept |     0.21456 |      9.5126 |      0.2136 |      0.2136 |         none |         true |   1.8426e-07 | [  1  76   2]         |
|   78 | Accept |     0.21488 |      25.866 |      0.2136 |     0.21359 |         none |         true |   1.9217e-07 | [  1   3 322   5]     |
|   79 | Accept |     0.21996 |      7.2836 |      0.2136 |     0.20963 |         none |         true |   3.5146e-09 |  182                  |
|   80 | Accept |     0.21996 |       26.22 |      0.2136 |     0.20986 |         none |         true |   1.9249e-08 | [ 51  79 345]         |
|============================================================================================================================================|
| Iter | Eval   | Objective   | Objective   | BestSoFar   | BestSoFar   |  Activations |  Standardize |       Lambda |            LayerSizes |
|      | result |             | runtime     | (observed)  | (estim.)    |              |              |              |                       |
|============================================================================================================================================|
|   81 | Accept |     0.21996 |       16.72 |      0.2136 |     0.20976 |         none |         true |   5.6038e-08 | [269   6]             |
|   82 | Accept |     0.21837 |      67.424 |      0.2136 |     0.21359 |         none |         true |   2.2486e-05 | [ 15 334 161]         |
|   83 | Accept |     0.21901 |      52.193 |      0.2136 |      0.2136 |         none |         true |    2.325e-07 | [ 43 397  22   5   4] |
|   84 | Accept |      0.2136 |      25.949 |      0.2136 |     0.20893 |         none |         true |   1.4375e-05 | [  3  23 161]         |
|   85 | Accept |     0.22568 |      9.2788 |      0.2136 |     0.21359 |         relu |        false |   0.00036954 | [  1  25]             |
|   86 | Accept |     0.22123 |      9.0294 |      0.2136 |      0.2139 |         none |         true |   8.9433e-06 |  63                   |
|   87 | Accept |     0.21551 |      73.231 |      0.2136 |     0.20857 |         relu |        false |   0.00013186 | [  1  10 235  79  56] |
|   88 | Accept |     0.21996 |      45.161 |      0.2136 |     0.21359 |         none |         true |   4.6415e-06 | [274  61]             |
|   89 | Accept |     0.24253 |      35.809 |      0.2136 |     0.21359 |         none |         true |    0.0043392 | [105 351   3   2 244] |
|   90 | Accept |     0.21392 |      26.066 |      0.2136 |     0.21359 |         none |         true |    0.0004037 | [ 68  57   5 189]     |
|   91 | Accept |     0.24634 |      8.1577 |      0.2136 |     0.21359 |         tanh |        false |   3.2373e-09 |  11                   |
|   92 | Accept |     0.23713 |       60.74 |      0.2136 |      0.2136 |         tanh |        false |   3.2168e-09 | [  7  32 316   6]     |
|   93 | Accept |     0.23331 |      46.265 |      0.2136 |      0.2136 |         tanh |        false |   2.7471e-07 | [  7   6   6 255]     |
|   94 | Accept |     0.22791 |      238.99 |      0.2136 |      0.2136 |         tanh |        false |   2.4117e-07 | [  2 386 364  66]     |
|   95 | Accept |     0.30769 |      66.556 |      0.2136 |      0.2136 |         relu |         true |   3.2605e-09 | [380  72]             |
|   96 | Accept |     0.30038 |      70.252 |      0.2136 |      0.2136 |         tanh |        false |    9.629e-08 | [346  55]             |
|   97 | Accept |      0.2136 |      240.45 |      0.2136 |     0.21358 |         tanh |        false |   3.0728e-08 | [  1   9 319 337 168] |
|   98 | Accept |     0.21488 |      8.1832 |      0.2136 |     0.21358 |         none |        false |   4.8562e-09 | [  1 108]             |
|   99 | Accept |     0.31945 |      33.121 |      0.2136 |     0.20612 |         relu |        false |    5.058e-07 | [  1 214   6   2  13] |
|  100 | Accept |     0.23299 |      79.247 |      0.2136 |      0.2058 |         tanh |        false |   1.4126e-07 | [204   1 298   3]     |
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__________________________________________________________
Optimization completed.
MaxObjectiveEvaluations of 100 reached.
Total function evaluations: 100
Total elapsed time: 4964.939 seconds
Total objective function evaluation time: 4901.9365

Best observed feasible point:
    Activations    Standardize      Lambda         LayerSizes   
    ___________    ___________    __________    ________________

       none           false       5.8608e-08    21    382      2

Observed objective function value = 0.2136
Estimated objective function value = 0.21443
Function evaluation time = 40.3226

Best estimated feasible point (according to models):
    Activations    Standardize      Lambda       LayerSizes  
    ___________    ___________    __________    _____________

       relu           false       0.00025743    4    49    78

Estimated objective function value = 0.2058
Estimated function evaluation time = 25.2207

Mdl = 
  ClassificationNeuralNetwork
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                       PredictorNames: {'WC_TA'  'RE_TA'  'EBIT_TA'  'MVE_BVTD'  'S_TA'  'Industry'}
                         ResponseName: 'Rating'
                CategoricalPredictors: 6
                           ClassNames: [AAA    AA    A    BBB    BB    B    CCC]
                       ScoreTransform: 'none'
                      NumObservations: 3146
    HyperparameterOptimizationResults: [1×1 BayesianOptimization]
                           LayerSizes: [4 49 78]
                          Activations: 'relu'
                OutputLayerActivation: 'softmax'
                               Solver: 'LBFGS'
                      ConvergenceInfo: [1×1 struct]
                      TrainingHistory: [1000×7 table]

  Properties, Methods

Find the classification accuracy of the model on the test data set. Visualize the results by using a
confusion matrix.

testAccuracy = 1 - loss(Mdl,creditTest,"Rating", ...
    "LossFun","classiferror")

testAccuracy = 0.8117

confusionchart(creditTest.Rating,predict(Mdl,creditTest))
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The model has all predicted classes within one unit of the true classes, meaning all predictions are off
by no more than one rating.

Input Arguments
Tbl — Sample data
table

Sample data used to train the model, specified as a table. Each row of Tbl corresponds to one
observation, and each column corresponds to one predictor variable. Optionally, Tbl can contain one
additional column for the response variable. Multicolumn variables and cell arrays other than cell
arrays of character vectors are not allowed.

• If Tbl contains the response variable, and you want to use all remaining variables in Tbl as
predictors, then specify the response variable by using ResponseVarName.

• If Tbl contains the response variable, and you want to use only a subset of the remaining
variables in Tbl as predictors, then specify a formula by using formula.

• If Tbl does not contain the response variable, then specify a response variable by using Y. The
length of the response variable and the number of rows in Tbl must be equal.

ResponseVarName — Response variable name
name of variable in Tbl

Response variable name, specified as the name of a variable in Tbl.

You must specify ResponseVarName as a character vector or string scalar. For example, if the
response variable Y is stored as Tbl.Y, then specify it as "Y". Otherwise, the software treats all
columns of Tbl, including Y, as predictors when training the model.

The response variable must be a categorical, character, or string array; a logical or numeric vector;
or a cell array of character vectors. If Y is a character array, then each element of the response
variable must correspond to one row of the array.

A good practice is to specify the order of the classes by using the ClassNames name-value argument.
Data Types: char | string

formula — Explanatory model of response variable and subset of predictor variables
character vector | string scalar

Explanatory model of the response variable and a subset of the predictor variables, specified as a
character vector or string scalar in the form "Y~x1+x2+x3". In this form, Y represents the response
variable, and x1, x2, and x3 represent the predictor variables.

To specify a subset of variables in Tbl as predictors for training the model, use a formula. If you
specify a formula, then the software does not use any variables in Tbl that do not appear in
formula.

The variable names in the formula must be both variable names in Tbl
(Tbl.Properties.VariableNames) and valid MATLAB identifiers. You can verify the variable
names in Tbl by using the isvarname function. If the variable names are not valid, then you can
convert them by using the matlab.lang.makeValidName function.
Data Types: char | string
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Y — Class labels
numeric vector | categorical vector | logical vector | character array | string array | cell array of
character vectors

Class labels used to train the model, specified as a numeric, categorical, or logical vector; a character
or string array; or a cell array of character vectors.

• If Y is a character array, then each element of the class labels must correspond to one row of the
array.

• The length of Y must be equal to the number of rows in Tbl or X.
• A good practice is to specify the class order by using the ClassNames name-value argument.

Data Types: single | double | categorical | logical | char | string | cell

X — Predictor data
numeric matrix

Predictor data used to train the model, specified as a numeric matrix.

By default, the software treats each row of X as one observation, and each column as one predictor.

The length of Y and the number of observations in X must be equal.

To specify the names of the predictors in the order of their appearance in X, use the
PredictorNames name-value argument.

Note If you orient your predictor matrix so that observations correspond to columns and specify
'ObservationsIn','columns', then you might experience a significant reduction in computation
time.

Data Types: single | double

Note The software treats NaN, empty character vector (''), empty string (""), <missing>, and
<undefined> elements as missing values, and removes observations with any of these
characteristics:

• Missing value in the response variable (for example, Y or ValidationData{2})
• At least one missing value in a predictor observation (for example, row in X or

ValidationData{1})
• NaN value or 0 weight (for example, value in Weights or ValidationData{3})

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: fitcnet(X,Y,'LayerSizes',[10 10],'Activations',["relu","tanh"]) specifies
to create a neural network with two fully connected layers, each with 10 outputs. The first layer uses
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a rectified linear unit (ReLU) activation function, and the second uses a hyperbolic tangent activation
function.

Neural Network Options

LayerSizes — Sizes of fully connected layers
10 (default) | positive integer vector

Sizes of the fully connected layers in the neural network model, specified as a positive integer vector.
The ith element of LayerSizes is the number of outputs in the ith fully connected layer of the neural
network model.

LayerSizes does not include the size of the final fully connected layer that uses a softmax activation
function. For more information, see “Neural Network Structure” on page 35-2167.
Example: 'LayerSizes',[100 25 10]

Activations — Activation functions for fully connected layers
'relu' (default) | 'tanh' | 'sigmoid' | 'none' | string array | cell array of character vectors

Activation functions for the fully connected layers of the neural network model, specified as a
character vector, string scalar, string array, or cell array of character vectors with values from this
table.

Value Description
'relu' Rectified linear unit (ReLU) function — Performs

a threshold operation on each element of the
input, where any value less than zero is set to
zero, that is,

f x =
x, x ≥ 0
0, x < 0

'tanh' Hyperbolic tangent (tanh) function — Applies the
tanh function to each input element

'sigmoid' Sigmoid function — Performs the following
operation on each input element:

f (x) = 1
1 + e−x

'none' Identity function — Returns each input element
without performing any transformation, that is,
f(x) = x

• If you specify one activation function only, then Activations is the activation function for every
fully connected layer of the neural network model, excluding the final fully connected layer. The
activation function for the final fully connected layer is always softmax (see “Neural Network
Structure” on page 35-2167).

• If you specify an array of activation functions, then the ith element of Activations is the
activation function for the ith layer of the neural network model.

Example: 'Activations','sigmoid'
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LayerWeightsInitializer — Function to initialize fully connected layer weights
'glorot' (default) | 'he'

Function to initialize the fully connected layer weights, specified as 'glorot' or 'he'.

Value Description
'glorot' Initialize the weights with the Glorot initializer

[1] (also known as the Xavier initializer). For each
layer, the Glorot initializer independently samples
from a uniform distribution with zero mean and
variable 2/(I+O), where I is the input size and O
is the output size for the layer.

'he' Initialize the weights with the He initializer [2].
For each layer, the He initializer samples from a
normal distribution with zero mean and variance
2/I, where I is the input size for the layer.

Example: 'LayerWeightsInitializer','he'

LayerBiasesInitializer — Type of initial fully connected layer biases
'zeros' (default) | 'ones'

Type of initial fully connected layer biases, specified as 'zeros' or 'ones'.

• If you specify the value 'zeros', then each fully connected layer has an initial bias of 0.
• If you specify the value 'ones', then each fully connected layer has an initial bias of 1.

Example: 'LayerBiasesInitializer','ones'
Data Types: char | string

ObservationsIn — Predictor data observation dimension
'rows' (default) | 'columns'

Predictor data observation dimension, specified as 'rows' or 'columns'.

Note If you orient your predictor matrix so that observations correspond to columns and specify
'ObservationsIn','columns', then you might experience a significant reduction in computation
time. You cannot specify 'ObservationsIn','columns' for predictor data in a table.

Example: 'ObservationsIn','columns'
Data Types: char | string

Lambda — Regularization term strength
0 (default) | nonnegative scalar

Regularization term strength, specified as a nonnegative scalar. The software composes the objective
function for minimization from the cross-entropy loss function and the ridge (L2) penalty term.
Example: 'Lambda',1e-4
Data Types: single | double
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Standardize — Flag to standardize predictor data
false or 0 (default) | true or 1

Flag to standardize the predictor data, specified as a numeric or logical 0 (false) or 1 (true). If you
set Standardize to true, then the software centers and scales each numeric predictor variable by
the corresponding column mean and standard deviation. The software does not standardize the
categorical predictors.
Example: 'Standardize',true
Data Types: single | double | logical

Convergence Control Options

Verbose — Verbosity level
0 (default) | 1

Verbosity level, specified as 0 or 1. The 'Verbose' name-value argument controls the amount of
diagnostic information that fitcnet displays at the command line.

Value Description
0 fitcnet does not display diagnostic information.
1 fitcnet periodically displays diagnostic

information.

By default, StoreHistory is set to true and fitcnet stores the diagnostic information inside of
Mdl. Use Mdl.TrainingHistory to access the diagnostic information.
Example: 'Verbose',1
Data Types: single | double

VerboseFrequency — Frequency of verbose printing
1 (default) | positive integer scalar

Frequency of verbose printing, which is the number of iterations between printing to the command
window, specified as a positive integer scalar. A value of 1 indicates to print diagnostic information at
every iteration.

Note To use this name-value argument, set Verbose to 1.

Example: 'VerboseFrequency',5
Data Types: single | double

StoreHistory — Flag to store training history
true or 1 (default) | false or 0

Flag to store the training history, specified as a numeric or logical 0 (false) or 1 (true). If
StoreHistory is set to true, then the software stores diagnostic information inside of Mdl, which
you can access by using Mdl.TrainingHistory.
Example: 'StoreHistory',false
Data Types: single | double | logical
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InitialStepSize — Initial step size
[] (default) | positive scalar | 'auto'

Initial step size, specified as a positive scalar or 'auto'. By default, fitcnet does not use the initial
step size to determine the initial Hessian approximation used in training the model (see “Training
Solver” on page 35-2168). However, if you specify an initial step size s0 ∞, then the initial inverse-

Hessian approximation is 
s0 ∞
∇ℒ0 ∞

I. ∇ℒ0 is the initial gradient vector, and I is the identity matrix.

To have fitcnet determine an initial step size automatically, specify the value as 'auto' . In this
case, the function determines the initial step size by using s0 ∞ = 0.5 η0 ∞ + 0.1. s0 is the initial step
vector, and η0 is the vector of unconstrained initial weights and biases.

Example: 'InitialStepSize','auto'
Data Types: single | double | char | string

IterationLimit — Maximum number of training iterations
1e3 (default) | positive integer scalar

Maximum number of training iterations, specified as a positive integer scalar.

The software returns a trained model regardless of whether the training routine successfully
converges. Mdl.ConvergenceInfo contains convergence information.
Example: 'IterationLimit',1e8
Data Types: single | double

GradientTolerance — Relative gradient tolerance
1e-6 (default) | nonnegative scalar

Relative gradient tolerance, specified as a nonnegative scalar.

Let ℒ t be the loss function at training iteration t, ∇ℒ t be the gradient of the loss function with respect
to the weights and biases at iteration t, and ∇ℒ0 be the gradient of the loss function at an initial
point. If max ∇ℒ t ≤ a ⋅ GradientTolerance, where a = max 1, min ℒ t , max ∇ℒ0 , then the training
process terminates.
Example: 'GradientTolerance',1e-5
Data Types: single | double

LossTolerance — Loss tolerance
1e-6 (default) | nonnegative scalar

Loss tolerance, specified as a nonnegative scalar.

If the function loss at some iteration is smaller than LossTolerance, then the training process
terminates.
Example: 'LossTolerance',1e-8
Data Types: single | double

StepTolerance — Step size tolerance
1e-6 (default) | nonnegative scalar
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Step size tolerance, specified as a nonnegative scalar.

If the step size at some iteration is smaller than StepTolerance, then the training process
terminates.
Example: 'StepTolerance',1e-4
Data Types: single | double

ValidationData — Validation data for training convergence detection
cell array | table

Validation data for training convergence detection, specified as a cell array or table.

During the training process, the software periodically estimates the validation loss by using
ValidationData. If the validation loss increases more than ValidationPatience times in a row,
then the software terminates the training.

You can specify ValidationData as a table if you use a table Tbl of predictor data that contains the
response variable. In this case, ValidationData must contain the same predictors and response
contained in Tbl. The software does not apply weights to observations, even if Tbl contains a vector
of weights. To specify weights, you must specify ValidationData as a cell array.

If you specify ValidationData as a cell array, then it must have the following format:

• ValidationData{1} must have the same data type and orientation as the predictor data. That
is, if you use a predictor matrix X, then ValidationData{1} must be an m-by-p or p-by-m matrix
of predictor data that has the same orientation as X. The predictor variables in the training data X
and ValidationData{1} must correspond. Similarly, if you use a predictor table Tbl of
predictor data, then ValidationData{1} must be a table containing the same predictor
variables contained in Tbl. The number of observations in ValidationData{1} and the
predictor data can vary.

• ValidationData{2} must match the data type and format of the response variable, either Y or
ResponseVarName. If ValidationData{2} is an array of class labels, then it must have the
same number of elements as the number of observations in ValidationData{1}. The set of all
distinct labels of ValidationData{2} must be a subset of all distinct labels of Y. If
ValidationData{1} is a table, then ValidationData{2} can be the name of the response
variable in the table. If you want to use the same ResponseVarName or formula, you can specify
ValidationData{2} as [].

• Optionally, you can specify ValidationData{3} as an m-dimensional numeric vector of
observation weights or the name of a variable in the table ValidationData{1} that contains
observation weights. The software normalizes the weights with the validation data so that they
sum to 1.

If you specify ValidationData and want to display the validation loss at the command line, set
Verbose to 1.

ValidationFrequency — Number of iterations between validation evaluations
1 (default) | positive integer scalar

Number of iterations between validation evaluations, specified as a positive integer scalar. A value of
1 indicates to evaluate validation metrics at every iteration.

Note To use this name-value argument, you must specify ValidationData.
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Example: 'ValidationFrequency',5
Data Types: single | double

ValidationPatience — Stopping condition for validation evaluations
6 (default) | nonnegative integer scalar

Stopping condition for validation evaluations, specified as a nonnegative integer scalar. The training
process stops if the validation loss is greater than or equal to the minimum validation loss computed
so far, ValidationPatience times in a row. You can check the Mdl.TrainingHistory table to see
the running total of times that the validation loss is greater than or equal to the minimum
(Validation Checks).
Example: 'ValidationPatience',10
Data Types: single | double

Other Classification Options

CategoricalPredictors — Categorical predictors list
vector of positive integers | logical vector | character matrix | string array | cell array of character
vectors | 'all'

Categorical predictors list, specified as one of the values in this table. The descriptions assume that
the predictor data has observations in rows and predictors in columns.

Value Description
Vector of positive
integers

Each entry in the vector is an index value indicating that the corresponding
predictor is categorical. The index values are between 1 and p, where p is
the number of predictors used to train the model.

If fitcnet uses a subset of input variables as predictors, then the function
indexes the predictors using only the subset. The
CategoricalPredictors values do not count the response variable,
observation weights variable, or any other variables that the function does
not use.

Logical vector A true entry means that the corresponding predictor is categorical. The
length of the vector is p.

Character matrix Each row of the matrix is the name of a predictor variable. The names must
match the entries in PredictorNames. Pad the names with extra blanks
so each row of the character matrix has the same length.

String array or cell
array of character
vectors

Each element in the array is the name of a predictor variable. The names
must match the entries in PredictorNames.

"all" All predictors are categorical.

By default, if the predictor data is in a table (Tbl), fitcnet assumes that a variable is categorical if
it is a logical vector, categorical vector, character array, string array, or cell array of character
vectors. If the predictor data is a matrix (X), fitcnet assumes that all predictors are continuous. To
identify any other predictors as categorical predictors, specify them by using the
CategoricalPredictors name-value argument.

For the identified categorical predictors, fitcnet creates dummy variables using two different
schemes, depending on whether a categorical variable is unordered or ordered. For an unordered
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categorical variable, fitcnet creates one dummy variable for each level of the categorical variable.
For an ordered categorical variable, fitcnet creates one less dummy variable than the number of
categories. For details, see “Automatic Creation of Dummy Variables” on page 2-50.
Example: 'CategoricalPredictors','all'
Data Types: single | double | logical | char | string | cell

ClassNames — Names of classes to use for training
categorical array | character array | string array | logical vector | numeric vector | cell array of
character vectors

Names of classes to use for training, specified as a categorical, character, or string array; a logical or
numeric vector; or a cell array of character vectors. ClassNames must have the same data type as
the response variable in Tbl or Y.

If ClassNames is a character array, then each element must correspond to one row of the array.

Use ClassNames to:

• Specify the order of the classes during training.
• Specify the order of any input or output argument dimension that corresponds to the class order.

For example, use ClassNames to specify the column order of classification scores returned by
predict.

• Select a subset of classes for training. For example, suppose that the set of all distinct class names
in Y is ["a","b","c"]. To train the model using observations from classes "a" and "c" only,
specify "ClassNames",["a","c"].

The default value for ClassNames is the set of all distinct class names in the response variable in
Tbl or Y.
Example: "ClassNames",["b","g"]
Data Types: categorical | char | string | logical | single | double | cell

PredictorNames — Predictor variable names
string array of unique names | cell array of unique character vectors

Predictor variable names, specified as a string array of unique names or cell array of unique
character vectors. The functionality of 'PredictorNames' depends on the way you supply the
training data.

• If you supply X and Y, then you can use 'PredictorNames' to assign names to the predictor
variables in X.

• The order of the names in PredictorNames must correspond to the predictor order in X.
Assuming that X has the default orientation, with observations in rows and predictors in
columns, PredictorNames{1} is the name of X(:,1), PredictorNames{2} is the name of
X(:,2), and so on. Also, size(X,2) and numel(PredictorNames) must be equal.

• By default, PredictorNames is {'x1','x2',...}.
• If you supply Tbl, then you can use 'PredictorNames' to choose which predictor variables to

use in training. That is, fitcnet uses only the predictor variables in PredictorNames and the
response variable during training.

• PredictorNames must be a subset of Tbl.Properties.VariableNames and cannot include
the name of the response variable.

 fitcnet

35-2159



• By default, PredictorNames contains the names of all predictor variables.
• A good practice is to specify the predictors for training using either 'PredictorNames' or

formula, but not both.

Example: 'PredictorNames',
{'SepalLength','SepalWidth','PetalLength','PetalWidth'}

Data Types: string | cell

ResponseName — Response variable name
"Y" (default) | character vector | string scalar

Response variable name, specified as a character vector or string scalar.

• If you supply Y, then you can use ResponseName to specify a name for the response variable.
• If you supply ResponseVarName or formula, then you cannot use ResponseName.

Example: "ResponseName","response"
Data Types: char | string

ScoreTransform — Score transformation
"none" (default) | "doublelogit" | "invlogit" | "ismax" | "logit" | function handle | ...

Score transformation, specified as a character vector, string scalar, or function handle.

This table summarizes the available character vectors and string scalars.

Value Description
"doublelogit" 1/(1 + e–2x)
"invlogit" log(x / (1 – x))
"ismax" Sets the score for the class with the largest score to 1,

and sets the scores for all other classes to 0
"logit" 1/(1 + e–x)
"none" or "identity" x (no transformation)
"sign" –1 for x < 0

0 for x = 0
1 for x > 0

"symmetric" 2x – 1
"symmetricismax" Sets the score for the class with the largest score to 1,

and sets the scores for all other classes to –1
"symmetriclogit" 2/(1 + e–x) – 1

For a MATLAB function or a function you define, use its function handle for the score transform. The
function handle must accept a matrix (the original scores) and return a matrix of the same size (the
transformed scores).
Example: "ScoreTransform","logit"
Data Types: char | string | function_handle

35 Functions

35-2160



Weights — Observation weights
nonnegative numeric vector | name of variable in Tbl

Observation weights, specified as a nonnegative numeric vector or the name of a variable in Tbl. The
software weights each observation in X or Tbl with the corresponding value in Weights. The length
of Weights must equal the number of observations in X or Tbl.

If you specify the input data as a table Tbl, then Weights can be the name of a variable in Tbl that
contains a numeric vector. In this case, you must specify Weights as a character vector or string
scalar. For example, if the weights vector W is stored as Tbl.W, then specify it as 'W'. Otherwise, the
software treats all columns of Tbl, including W, as predictors or the response variable when training
the model.

By default, Weights is ones(n,1), where n is the number of observations in X or Tbl.

The software normalizes Weights to sum to the value of the prior probability in the respective class.
Data Types: single | double | char | string

Note You cannot use any cross-validation name-value argument together with the
'OptimizeHyperparameters' name-value argument. You can modify the cross-validation for
'OptimizeHyperparameters' only by using the 'HyperparameterOptimizationOptions'
name-value argument.

Cross-Validation Options

CrossVal — Flag to train cross-validated classifier
'off' (default) | 'on'

Flag to train a cross-validated classifier, specified as 'on' or 'off'.

If you specify 'on', then the software trains a cross-validated classifier with 10 folds.

You can override this cross-validation setting using the CVPartition, Holdout, KFold, or
Leaveout name-value argument. You can use only one cross-validation name-value argument at a
time to create a cross-validated model.

Alternatively, cross-validate later by passing Mdl to crossval.
Example: 'Crossval','on'
Data Types: char | string

CVPartition — Cross-validation partition
[] (default) | cvpartition partition object

Cross-validation partition, specified as a cvpartition partition object created by cvpartition.
The partition object specifies the type of cross-validation and the indexing for the training and
validation sets.

To create a cross-validated model, you can specify only one of these four name-value arguments:
CVPartition, Holdout, KFold, or Leaveout.
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Example: Suppose you create a random partition for 5-fold cross-validation on 500 observations by
using cvp = cvpartition(500,'KFold',5). Then, you can specify the cross-validated model by
using 'CVPartition',cvp.

Holdout — Fraction of data for holdout validation
scalar value in the range (0,1)

Fraction of the data used for holdout validation, specified as a scalar value in the range (0,1). If you
specify 'Holdout',p, then the software completes these steps:

1 Randomly select and reserve p*100% of the data as validation data, and train the model using
the rest of the data.

2 Store the compact, trained model in the Trained property of the cross-validated model.

To create a cross-validated model, you can specify only one of these four name-value arguments:
CVPartition, Holdout, KFold, or Leaveout.
Example: 'Holdout',0.1
Data Types: double | single

KFold — Number of folds
10 (default) | positive integer value greater than 1

Number of folds to use in a cross-validated model, specified as a positive integer value greater than 1.
If you specify 'KFold',k, then the software completes these steps:

1 Randomly partition the data into k sets.
2 For each set, reserve the set as validation data, and train the model using the other k – 1 sets.
3 Store the k compact, trained models in a k-by-1 cell vector in the Trained property of the cross-

validated model.

To create a cross-validated model, you can specify only one of these four name-value arguments:
CVPartition, Holdout, KFold, or Leaveout.
Example: 'KFold',5
Data Types: single | double

Leaveout — Leave-one-out cross-validation flag
'off' (default) | 'on'

Leave-one-out cross-validation flag, specified as 'on' or 'off'. If you specify 'Leaveout','on',
then for each of the n observations (where n is the number of observations, excluding missing
observations, specified in the NumObservations property of the model), the software completes
these steps:

1 Reserve the one observation as validation data, and train the model using the other n – 1
observations.

2 Store the n compact, trained models in an n-by-1 cell vector in the Trained property of the
cross-validated model.

To create a cross-validated model, you can specify only one of these four name-value arguments:
CVPartition, Holdout, KFold, or Leaveout.
Example: 'Leaveout','on'
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Hyperparameter Optimization Options

OptimizeHyperparameters — Parameters to optimize
'none' (default) | 'auto' | 'all' | string array or cell array of eligible parameter names | vector of
optimizableVariable objects

Parameters to optimize, specified as one of the following:

• 'none' — Do not optimize.
• 'auto' — Use {'Activations','Lambda','LayerSizes','Standardize'}.
• 'all' — Optimize all eligible parameters.
• String array or cell array of eligible parameter names.
• Vector of optimizableVariable objects, typically the output of hyperparameters.

The optimization attempts to minimize the cross-validation loss (error) for fitcnet by varying the
parameters. For information about cross-validation loss (although in a different context), see
“Classification Loss” on page 35-3870. To control the cross-validation type and other aspects of the
optimization, use the HyperparameterOptimizationOptions name-value argument.

Note The values of 'OptimizeHyperparameters' override any values you specify using other
name-value arguments. For example, setting 'OptimizeHyperparameters' to 'auto' causes
fitcnet to optimize hyperparameters corresponding to the 'auto' option and to ignore any
specified values for the hyperparameters.

The eligible parameters for fitcnet are:

• Activations — fitcnet optimizes Activations over the set
{'relu','tanh','sigmoid','none'}.

• Lambda — fitcnet optimizes Lambda over continuous values in the range [1e-5,1e5]/
NumObservations, where the value is chosen uniformly in the log transformed range.

• LayerBiasesInitializer — fitcnet optimizes LayerBiasesInitializer over the two
values {'zeros','ones'}.

• LayerWeightsInitializer — fitcnet optimizes LayerWeightsInitializer over the two
values {'glorot','he'}.

• LayerSizes — fitcnet optimizes over the three values 1, 2, and 3 fully connected layers,
excluding the final fully connected layer. fitcnet optimizes each fully connected layer separately
over 1 through 300 sizes in the layer, sampled on a logarithmic scale.

Note When you use the LayerSizes argument, the iterative display shows the size of each
relevant layer. For example, if the current number of fully connected layers is 3, and the three
layers are of sizes 10, 79, and 44 respectively, the iterative display shows LayerSizes for that
iteration as [10 79 44].

Note To access up to five fully connected layers or a different range of sizes in a layer, use
hyperparameters to select the optimizable parameters and ranges.

• Standardize — fitcnet optimizes Standardize over the two values {true,false}.
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Set nondefault parameters by passing a vector of optimizableVariable objects that have
nondefault values. As an example, this code sets the range of NumLayers to [1 5] and optimizes
Layer_4_Size and Layer_5_Size:

load fisheriris
params = hyperparameters('fitcnet',meas,species);
params(1).Range = [1 5];
params(10).Optimize = true;
params(11).Optimize = true;

Pass params as the value of OptimizeHyperparameters. For an example using nondefault
parameters, see “Customize Neural Network Classifier Optimization” on page 35-2143.

By default, the iterative display appears at the command line, and plots appear according to the
number of hyperparameters in the optimization. For the optimization and plots, the objective function
is the misclassification rate. To control the iterative display, set the Verbose field of the
'HyperparameterOptimizationOptions' name-value argument. To control the plots, set the
ShowPlots field of the 'HyperparameterOptimizationOptions' name-value argument.

For an example, see “Improve Neural Network Classifier Using OptimizeHyperparameters” on page
35-2138.
Example: 'OptimizeHyperparameters','auto'

HyperparameterOptimizationOptions — Options for optimization
structure

Options for optimization, specified as a structure. This argument modifies the effect of the
OptimizeHyperparameters name-value argument. All fields in the structure are optional.

Field Name Values Default
Optimizer • 'bayesopt' — Use Bayesian optimization.

Internally, this setting calls bayesopt.
• 'gridsearch' — Use grid search with

NumGridDivisions values per dimension.
• 'randomsearch' — Search at random among

MaxObjectiveEvaluations points.

'gridsearch' searches in a random order, using
uniform sampling without replacement from the
grid. After optimization, you can get a table in grid
order by using the command
sortrows(Mdl.HyperparameterOptimizatio
nResults).

'bayesopt'
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Field Name Values Default
AcquisitionFunct
ionName

• 'expected-improvement-per-second-
plus'

• 'expected-improvement'
• 'expected-improvement-plus'
• 'expected-improvement-per-second'
• 'lower-confidence-bound'
• 'probability-of-improvement'

Acquisition functions whose names include per-
second do not yield reproducible results because
the optimization depends on the runtime of the
objective function. Acquisition functions whose
names include plus modify their behavior when
they are overexploiting an area. For more details,
see “Acquisition Function Types” on page 10-3.

'expected-
improvement-per-
second-plus'

MaxObjectiveEval
uations

Maximum number of objective function
evaluations.

30 for 'bayesopt' and
'randomsearch', and
the entire grid for
'gridsearch'

MaxTime Time limit, specified as a positive real scalar. The
time limit is in seconds, as measured by tic and
toc. The run time can exceed MaxTime because
MaxTime does not interrupt function evaluations.

Inf

NumGridDivisions For 'gridsearch', the number of values in each
dimension. The value can be a vector of positive
integers giving the number of values for each
dimension, or a scalar that applies to all
dimensions. This field is ignored for categorical
variables.

10

ShowPlots Logical value indicating whether to show plots. If
true, this field plots the best observed objective
function value against the iteration number. If you
use Bayesian optimization (Optimizer is
'bayesopt'), then this field also plots the best
estimated objective function value. The best
observed objective function values and best
estimated objective function values correspond to
the values in the BestSoFar (observed) and
BestSoFar (estim.) columns of the iterative
display, respectively. You can find these values in
the properties ObjectiveMinimumTrace and
EstimatedObjectiveMinimumTrace of
Mdl.HyperparameterOptimizationResults.
If the problem includes one or two optimization
parameters for Bayesian optimization, then
ShowPlots also plots a model of the objective
function against the parameters.

true
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Field Name Values Default
SaveIntermediate
Results

Logical value indicating whether to save results
when Optimizer is 'bayesopt'. If true, this
field overwrites a workspace variable named
'BayesoptResults' at each iteration. The
variable is a BayesianOptimization object.

false

Verbose Display at the command line:

• 0 — No iterative display
• 1 — Iterative display
• 2 — Iterative display with extra information

For details, see the bayesopt Verbose name-
value argument and the example “Optimize
Classifier Fit Using Bayesian Optimization” on
page 10-56.

1

UseParallel Logical value indicating whether to run Bayesian
optimization in parallel, which requires Parallel
Computing Toolbox. Due to the nonreproducibility
of parallel timing, parallel Bayesian optimization
does not necessarily yield reproducible results. For
details, see “Parallel Bayesian Optimization” on
page 10-7.

false

Repartition Logical value indicating whether to repartition the
cross-validation at every iteration. If this field is
false, the optimizer uses a single partition for
the optimization.

The setting true usually gives the most robust
results because it takes partitioning noise into
account. However, for good results, true requires
at least twice as many function evaluations.

false

Use no more than one of the following three options.
CVPartition A cvpartition object, as created by

cvpartition
'Kfold',5 if you do not
specify a cross-validation
fieldHoldout A scalar in the range (0,1) representing the

holdout fraction
Kfold An integer greater than 1

Example:
'HyperparameterOptimizationOptions',struct('MaxObjectiveEvaluations',60)

Data Types: struct

Output Arguments
Mdl — Trained neural network classifier
ClassificationNeuralNetwork object | ClassificationPartitionedModel object
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Trained neural network classifier, returned as a ClassificationNeuralNetwork or
ClassificationPartitionedModel object.

If you set any of the name-value arguments CrossVal, CVPartition, Holdout, KFold, or
Leaveout, then Mdl is a ClassificationPartitionedModel object. Otherwise, Mdl is a
ClassificationNeuralNetwork model.

To reference properties of Mdl, use dot notation.

More About
Neural Network Structure

The default neural network classifier has the following layer structure.

Structure Description
Input — This layer corresponds to the predictor data in Tbl or X.
First fully connected layer — This layer has 10 outputs by default.

• You can widen the layer or add more fully connected layers to
the network by specifying the LayerSizes name-value
argument.

• You can find the weights and biases for this layer in the
Mdl.LayerWeights{1} and Mdl.LayerBiases{1}
properties of Mdl, respectively.

ReLU activation function — fitcnet applies this activation
function to the first fully connected layer.

• You can change the activation function by specifying the
Activations name-value argument.

Final fully connected layer — This layer has K outputs, where K is
the number of classes in the response variable.

• You can find the weights and biases for this layer in the
Mdl.LayerWeights{end} and Mdl.LayerBiases{end}
properties of Mdl, respectively.

Softmax function (for both binary and multiclass classification) —
fitcnet applies this activation function to the final fully
connected layer. The function takes each input xi and returns the
following, where K is the number of classes in the response
variable:

f (xi) =
exp(xi)

∑
j = 1

K
exp(x j)

.

The results correspond to the predicted classification scores (or
posterior probabilities).
Output — This layer corresponds to the predicted class labels.
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For an example that shows how a neural network classifier with this layer structure returns
predictions, see “Predict Using Layer Structure of Neural Network Classifier” on page 35-5795.

Tips
• Always try to standardize the numeric predictors (see Standardize). Standardization makes

predictors insensitive to the scales on which they are measured.
• After training a model, you can generate C/C++ code that predicts labels for new data.

Generating C/C++ code requires MATLAB Coder. For details, see “Introduction to Code
Generation” on page 34-2.

Algorithms
Training Solver

fitcnet uses a limited-memory Broyden-Fletcher-Goldfarb-Shanno quasi-Newton algorithm (LBFGS)
[3] as its loss function minimization technique, where the software minimizes the cross-entropy loss.
The LBFGS solver uses a standard line-search method with an approximation to the Hessian.

Prior Probabilities and Observation Weights

fitcnet determines class prior probabilities from class frequencies in the response variable and
observation weights. The prior probability of the class k is the sum of observation weights for the
observations in class k:

pk = ∑
∀ j ∈ Class k

w j .

wj is the observation weight for observation j. The function normalizes the prior probabilities to sum
to 1 and normalizes observation weights to sum up to the value of the prior probability in the
respective class:

pk =
pk

∑
k = 1

K
pk

,

w j =
w j
∑

∀ j ∈ Class k
w j

pk .

Version History
Introduced in R2021a
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Extended Capabilities
Automatic Parallel Support
Accelerate code by automatically running computation in parallel using Parallel Computing Toolbox™.

To perform parallel hyperparameter optimization, use the
'HyperparameterOptimizationOptions', struct('UseParallel',true) name-value
argument in the call to the fitcnet function.

For more information on parallel hyperparameter optimization, see “Parallel Bayesian Optimization”
on page 10-7.

For general information about parallel computing, see “Run MATLAB Functions with Automatic
Parallel Support” (Parallel Computing Toolbox).

See Also
ClassificationNeuralNetwork | predict | loss | hyperparameters | margin | edge |
ClassificationPartitionedModel | CompactClassificationNeuralNetwork

Topics
“Assess Neural Network Classifier Performance” on page 19-181
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fitcox
Create Cox proportional hazards model

Syntax
coxMdl = fitcox(X,T)
coxMdl = fitcox(X,T,Name,Value)

Description
The fitcox function creates a Cox proportional hazards model for lifetime data. The basic Cox model
includes a hazard function h0(t) and model coefficients b such that, for predictor X, the hazard rate at
time t is

h Xi, t = h0(t)exp ∑
j = 1

p
xi jb j ,

where the b coefficients do not depend on time. fitcox infers both the model coefficients b and the
hazard rate h0(t), and stores them as properties in the resulting CoxModel object.

The full Cox model includes extensions to the basic model, such as hazards with respect to different
baselines or the inclusion of stratification variables. See “Extension of Cox Proportional Hazards
Model” on page 15-27.

coxMdl = fitcox(X,T) returns a Cox proportional hazards model object coxMdl using the
predictor values X and event times T.

coxMdl = fitcox(X,T,Name,Value) modifies the fit using one or more Name,Value arguments.
For example, when the data includes censoring (values that are not observed), the Censoring
argument specifies the censored data.

Examples

Estimate Cox Proportional Hazard Regression

Weibull random variables with the same shape parameter have proportional hazard rates; see
“Weibull Distribution” on page B-177. The hazard rate with scale parameter a and shape parameter
b at time t is

b
ab tb− 1.

Generate pseudorandom samples from the Weibull distribution with scale parameters 1, 5, and 1/3,
and with the same shape parameter B.

rng default % For reproducibility
B = 2;
A = ones(100,1);
data1 = wblrnd(A,B);
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A2 = 5*A;
data2 = wblrnd(A2,B);
A3 = A/3;
data3 = wblrnd(A3,B);

Create a table of data. The predictors are the three variable types, 1, 2, or 3.

predictors = categorical([A;2*A;3*A]);
data = table(predictors,[data1;data2;data3],'VariableNames',["Predictors" "Times"]);

Fit a Cox regression to the data.

mdl = fitcox(data,"Times")

mdl = 
Cox Proportional Hazards regression model

                     Beta        SE        zStat       pValue  
                    _______    _______    _______    __________

    Predictors_2    -3.5834    0.33187    -10.798    3.5299e-27
    Predictors_3     2.1668    0.20802     10.416    2.0899e-25

Log-likelihood: -1197.917

rates = exp(mdl.Coefficients.Beta)

rates = 2×1

    0.0278
    8.7301

Fit Cox Proportional Hazards Model to Lifetime Data

Perform a Cox proportional hazards regression on the lightbulb data set, which contains simulated
lifetimes of light bulbs. The first column of the light bulb data contains the lifetime (in hours) of two
different types of bulbs. The second column contains a binary variable indicating whether the bulb is
fluorescent or incandescent; 0 indicates the bulb is fluorescent, and 1 indicates it is incandescent.
The third column contains the censoring information, where 0 indicates the bulb was observed until
failure, and 1 indicates the observation was censored.

Load the lightbulb data set.

load lightbulb

Fit a Cox proportional hazards model for the lifetime of the light bulbs, accounting for censoring. The
predictor variable is the type of bulb.

coxMdl = fitcox(lightbulb(:,2),lightbulb(:,1), ...
    'Censoring',lightbulb(:,3))

coxMdl = 
Cox Proportional Hazards regression model
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           Beta       SE      zStat       pValue  
          ______    ______    ______    __________

    X1    4.7262    1.0372    4.5568    5.1936e-06

Log-likelihood: -212.638

Find the hazard rate of incandescent bulbs compared to fluorescent bulbs by evaluating exp(Beta).

hr = exp(coxMdl.Coefficients.Beta)

hr = 112.8646

The estimate of the hazard ratio is eBeta = 112.8646, which means that the estimated hazard for the
incandescent bulbs is 112.86 times the hazard for the fluorescent bulbs. The small value of
coxMdl.Coefficients.pValue indicates there is a negligible chance that the two types of light
bulbs have identical hazard rates, which would mean Beta = 0.

Input Arguments
X — Predictor values
matrix | table

Predictor values, specified as a matrix or table.

• A matrix contains one column for each predictor and one row for each observation.
• A table contains one row for each observation. A table can also contain the time data as well as

the predictors.

By default, if the predictor data is in a table, fitcox assumes that a variable is categorical if it is a
logical vector, categorical vector, character array, string array, or cell array of character vectors. If
the predictor data is a matrix, fitcox assumes that all predictors are continuous. To identify any
other predictors as categorical predictors, specify them by using the CategoricalPredictors
name-value argument.

If X, T, the value of 'Frequency', or the value of 'Stratification' contains NaN values, then
fitcox removes rows with NaN values from all data when fitting a Cox model.
Data Types: double | table | categorical

T — Event times
real column vector | real matrix with two columns | name of column in table X | formula in Wilkinson
notation for table X

Event times, specified as one of the following:

• Real column vector.
• Real matrix with two columns representing the start and stop times.
• Name of a column in the table X.
• Formula in Wilkinson notation for the table X. For example, to specify that the table columns 'x'

and 'y' are in the model, use
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'T ~ x + y'

See “Wilkinson Notation” on page 11-93.

For vector or matrix entries, the number of rows of T must be the same as the number of rows of X.

Use the two-column form of T to fit a model with time-varying coefficients. See “Cox Proportional
Hazards Model with Time-Dependent Covariates” on page 15-35.
Data Types: single | double | char | string

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: To fit data with censored values cens, specify 'Censoring',cens.

Baseline — X values at which to compute baseline hazard
mean(X), the default for continuous predictors | 0, the default for categorical predictors | real scalar
| real row vector

X values at which to compute the baseline hazard, specified as a real scalar or row vector. If
Baseline is a row vector, its length is the number of predictors, so there is one baseline for each
predictor.

The default baseline for continuous predictors is mean(X), so the default hazard rate at X for these
predictors is h(t)*exp((X – mean(X))*b). The default baseline for categorical predictors is 0.
Enter 0 to compute the baseline for all predictors relative to 0, so the hazard rate at X is
h(t)*exp(X*b). Changing the baseline changes the hazard ratio, but does not affect the coefficient
estimates.

For the identified categorical predictors, fitcox creates dummy variables. fitcox creates one less
dummy variable than the number of categories. For details, see “Automatic Creation of Dummy
Variables” on page 2-50.
Example: 'Baseline',0
Data Types: double

Beta — Coefficient initial values
0.01/std(X) (default) | numeric vector

Coefficient initial values, specified as a numeric vector of coefficient values. These values initiate the
likelihood maximization iterations performed by fitcox.
Data Types: double

CategoricalPredictors — Categorical predictors list
vector of positive integers | logical vector | character matrix | string array | cell array of character
vectors | 'all'

Categorical predictors list, specified as one of the values in this table.
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Value Description
Vector of positive
integers

Each entry in the vector is an index value corresponding to the column of
the predictor data (X) that contains a categorical variable.

Logical vector A true entry means that the corresponding column of predictor data (X) is
a categorical variable.

Character matrix Each row of the matrix is the name of a predictor variable in the table X.
The names must match the entries in PredictorNames. Pad the names
with extra blanks so each row of the character matrix has the same length.

String array or cell
array of character
vectors

Each element in the array is the name of a predictor variable in the table X.
The names must match the entries in PredictorNames.

'all' All predictors are categorical.

By default, if the predictor data is in a table, fitcox assumes that a variable is categorical if it is a
logical vector, categorical vector, character array, string array, or cell array of character vectors. If
the predictor data is a matrix, fitcox assumes that all predictors are continuous. To identify any
other predictors as categorical predictors, specify them by using the 'CategoricalPredictors'
name-value argument.

For the identified categorical predictors, fitcox creates dummy variables. fitcox creates one less
dummy variable than the number of categories. For details, see “Automatic Creation of Dummy
Variables” on page 2-50.
Example: 'CategoricalPredictors','all'
Data Types: single | double | logical | char | string | cell

Censoring — Indicator for censoring
array of 0s (default) | array of 0s and 1s | name of a column in table X

Indicator for censoring, specified as a Boolean vector with the same number of rows as X or the name
of a column in the table X. Use 1 for observations that are right censored and 0 for observations that
are fully observed. By default, all observations are fully observed. For an example, see “Cox
Proportional Hazards Model for Censored Data” on page 15-31.
Example: 'Censoring',cens
Data Types: logical

Frequency — Frequency or weights of observations
array of 1s (default) | vector of nonnegative scalar values

Frequency or weights of observations, specified as an array the same size as T containing
nonnegative scalar values. The array can contain integer values corresponding to frequencies of
observations or nonnegative values corresponding to observation weights.

The default is 1 per row of X and T.

If X, T, the value of 'Frequency', or the value of 'Stratification' contains NaN values, then
fitcox removes rows with NaN values from all data when fitting a Cox model.
Example: 'Frequency',w
Data Types: double
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OptimizationOptions — Algorithm control parameters
structure

Algorithm control parameters for the iterative algorithm fitcox uses to estimate the solution,
specified as a structure. Create this structure using statset. For parameter names and default
values, see the following table or enter statset('fitcox').

In the table, "termination tolerance" means that if the internal iterations cause a change in the stated
value less than the tolerance, the iterations stop.

Field in Structure Description Values
Display Amount of information returned to the

command line
• 'off' — None

(default)
• 'final' — Final

output
• 'iter' — Output at

each iteration
MaxFunEvals Maximum number of function evaluations Positive integer; default

is 200
MaxIter Maximum number of iterations Positive integer; default

is 100
TolFun Termination tolerance on change in likelihood;

see “Cox Proportional Hazards Model” on page
15-26

Positive scalar; default is
1e-8

TolX Termination tolerance for parameter (predictor
estimate) change

Positive scalar; default is
1e-8

Example: 'OptimizationOptions',statset('TolX',1e-6,'MaxIter',200)

PredictorNames — Predictor variable names
string array of unique names | cell array of unique character vectors

Predictor variable names, specified as a string array of unique names or cell array of unique
character vectors. The functionality of 'PredictorNames' depends on how you supply the training
data.

• If you supply X as a numeric array, then you can use 'PredictorNames' to assign names to the
predictor variables in X.

• The order of the names in PredictorNames must correspond to the column order of X. That
is, PredictorNames{1} is the name of X(:,1), PredictorNames{2} is the name of
X(:,2), and so on. Also, size(X,2) and numel(PredictorNames) must be equal.

• By default, PredictorNames is {'X1','X2',...}.
• If you supply X as a table, then you can use 'PredictorNames' to choose which predictor

variables to use in training. That is, fitcox uses only the predictor variables in PredictorNames
and the time variable during training.

• PredictorNames must be a subset of X.Properties.VariableNames and cannot include
the name of the time variable T.

• By default, PredictorNames contains the names of all predictor variables.
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• Specify the predictors for training using either 'PredictorNames' or a formula in Wilkinson
notation, but not both.

Example: 'PredictorNames',{'Sex','Age','Weight','Smoker'}
Data Types: string | cell

Stratification — Stratification variables
[] (default) | matrix of real values | name of column in table X | array of categorical variables

Stratification variables, specified as a matrix of real values, the name of a column in table X, or an
array of categorical variables. The matrix must have the same number of rows as T, with each row
corresponding to an observation.

The default [] is no stratification variable.

If X, T, the value of 'Frequency', or the value of 'Stratification' contains NaN values, then
fitcox removes rows with NaN values from all data when fitting a Cox model.
Example: 'Stratification',Gender
Data Types: single | double | char | string | categorical

TieBreakMethod — Method to handle tied failure times
'breslow' (default) | 'efron'

Method to handle tied failure times, specified as 'breslow' (Breslow's method) or 'efron' (Efron's
method). See “Partial Likelihood Function for Tied Events” on page 15-28.
Example: 'TieBreakMethod','efron'
Data Types: char | string

Version History
Introduced in R2021a

See Also
CoxModel | hazardratio | survival | plotSurvival | linhyptest | coefci | coxphfit

Topics
“Cox Proportional Hazards Model Object” on page 15-39
“What Is Survival Analysis?” on page 15-2
“Cox Proportional Hazards Model” on page 15-26
“Cox Proportional Hazards Model for Censored Data” on page 15-31
“Cox Proportional Hazards Model with Time-Dependent Covariates” on page 15-35
“Analyzing Survival or Reliability Data” on page 15-47
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fitcsvm
Train support vector machine (SVM) classifier for one-class and binary classification

Syntax
Mdl = fitcsvm(Tbl,ResponseVarName)
Mdl = fitcsvm(Tbl,formula)
Mdl = fitcsvm(Tbl,Y)

Mdl = fitcsvm(X,Y)

Mdl = fitcsvm( ___ ,Name,Value)

Description
fitcsvm trains or cross-validates a support vector machine (SVM) model for one-class and two-class
(binary) classification on a low-dimensional or moderate-dimensional predictor data set. fitcsvm
supports mapping the predictor data using kernel functions, and supports sequential minimal
optimization (SMO), iterative single data algorithm (ISDA), or L1 soft-margin minimization via
quadratic programming for objective-function minimization.

To train a linear SVM model for binary classification on a high-dimensional data set, that is, a data set
that includes many predictor variables, use fitclinear instead.

For multiclass learning with combined binary SVM models, use error-correcting output codes
(ECOC). For more details, see fitcecoc.

To train an SVM regression model, see fitrsvm for low-dimensional and moderate-dimensional
predictor data sets, or fitrlinear for high-dimensional data sets.

Mdl = fitcsvm(Tbl,ResponseVarName) returns a support vector machine (SVM) classifier on
page 35-2207 Mdl trained using the sample data contained in the table Tbl. ResponseVarName is
the name of the variable in Tbl that contains the class labels for one-class or two-class classification.

If the class label variable contains only one class (for example, a vector of ones), fitcsvm trains a
model for one-class classification. Otherwise, the function trains a model for two-class classification.

Mdl = fitcsvm(Tbl,formula) returns an SVM classifier trained using the sample data contained
in the table Tbl. formula is an explanatory model of the response and a subset of the predictor
variables in Tbl used to fit Mdl.

Mdl = fitcsvm(Tbl,Y) returns an SVM classifier trained using the predictor variables in the table
Tbl and the class labels in vector Y.

Mdl = fitcsvm(X,Y) returns an SVM classifier trained using the predictors in the matrix X and the
class labels in vector Y for one-class or two-class classification.

Mdl = fitcsvm( ___ ,Name,Value) specifies options using one or more name-value pair
arguments in addition to the input arguments in previous syntaxes. For example, you can specify the
type of cross-validation, the cost for misclassification, and the type of score transformation function.
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Examples

Train SVM Classifier

Load Fisher's iris data set. Remove the sepal lengths and widths and all observed setosa irises.

load fisheriris
inds = ~strcmp(species,'setosa');
X = meas(inds,3:4);
y = species(inds);

Train an SVM classifier using the processed data set.

SVMModel = fitcsvm(X,y)

SVMModel = 
  ClassificationSVM
             ResponseName: 'Y'
    CategoricalPredictors: []
               ClassNames: {'versicolor'  'virginica'}
           ScoreTransform: 'none'
          NumObservations: 100
                    Alpha: [24x1 double]
                     Bias: -14.4149
         KernelParameters: [1x1 struct]
           BoxConstraints: [100x1 double]
          ConvergenceInfo: [1x1 struct]
          IsSupportVector: [100x1 logical]
                   Solver: 'SMO'

  Properties, Methods

SVMModel is a trained ClassificationSVM classifier. Display the properties of SVMModel. For
example, to determine the class order, use dot notation.

classOrder = SVMModel.ClassNames

classOrder = 2x1 cell
    {'versicolor'}
    {'virginica' }

The first class ('versicolor') is the negative class, and the second ('virginica') is the positive
class. You can change the class order during training by using the 'ClassNames' name-value pair
argument.

Plot a scatter diagram of the data and circle the support vectors.

sv = SVMModel.SupportVectors;
figure
gscatter(X(:,1),X(:,2),y)
hold on
plot(sv(:,1),sv(:,2),'ko','MarkerSize',10)
legend('versicolor','virginica','Support Vector')
hold off
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The support vectors are observations that occur on or beyond their estimated class boundaries.

You can adjust the boundaries (and, therefore, the number of support vectors) by setting a box
constraint during training using the 'BoxConstraint' name-value pair argument.

Train and Cross-Validate SVM Classifier

Load the ionosphere data set.

load ionosphere
rng(1); % For reproducibility

Train an SVM classifier using the radial basis kernel. Let the software find a scale value for the kernel
function. Standardize the predictors.

SVMModel = fitcsvm(X,Y,'Standardize',true,'KernelFunction','RBF',...
    'KernelScale','auto');

SVMModel is a trained ClassificationSVM classifier.

Cross-validate the SVM classifier. By default, the software uses 10-fold cross-validation.

CVSVMModel = crossval(SVMModel);

CVSVMModel is a ClassificationPartitionedModel cross-validated classifier.
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Estimate the out-of-sample misclassification rate.

classLoss = kfoldLoss(CVSVMModel)

classLoss = 0.0484

The generalization rate is approximately 5%.

Detect Outliers Using SVM and One-Class Learning

Modify Fisher's iris data set by assigning all the irises to the same class. Detect outliers in the
modified data set, and confirm the expected proportion of the observations that are outliers.

Load Fisher's iris data set. Remove the petal lengths and widths. Treat all irises as coming from the
same class.

load fisheriris
X = meas(:,1:2);
y = ones(size(X,1),1);

Train an SVM classifier using the modified data set. Assume that 5% of the observations are outliers.
Standardize the predictors.

rng(1);
SVMModel = fitcsvm(X,y,'KernelScale','auto','Standardize',true,...
    'OutlierFraction',0.05);

SVMModel is a trained ClassificationSVM classifier. By default, the software uses the Gaussian
kernel for one-class learning.

Plot the observations and the decision boundary. Flag the support vectors and potential outliers.

svInd = SVMModel.IsSupportVector;
h = 0.02; % Mesh grid step size
[X1,X2] = meshgrid(min(X(:,1)):h:max(X(:,1)),...
    min(X(:,2)):h:max(X(:,2)));
[~,score] = predict(SVMModel,[X1(:),X2(:)]);
scoreGrid = reshape(score,size(X1,1),size(X2,2));

figure
plot(X(:,1),X(:,2),'k.')
hold on
plot(X(svInd,1),X(svInd,2),'ro','MarkerSize',10)
contour(X1,X2,scoreGrid)
colorbar;
title('{\bf Iris Outlier Detection via One-Class SVM}')
xlabel('Sepal Length (cm)')
ylabel('Sepal Width (cm)')
legend('Observation','Support Vector')
hold off

35 Functions

35-2180



The boundary separating the outliers from the rest of the data occurs where the contour value is 0.

Verify that the fraction of observations with negative scores in the cross-validated data is close to 5%.

CVSVMModel = crossval(SVMModel);
[~,scorePred] = kfoldPredict(CVSVMModel);
outlierRate = mean(scorePred<0)

outlierRate = 0.0467

Find Multiple Class Boundaries Using Binary SVM

Create a scatter plot of the fisheriris data set. Treat coordinates of a grid within the plot as new
observations from the distribution of the data set, and find class boundaries by assigning the
coordinates to one of the three classes in the data set.

Load Fisher's iris data set. Use the petal lengths and widths as the predictors.

load fisheriris
X = meas(:,3:4);
Y = species;

Examine a scatter plot of the data.

figure
gscatter(X(:,1),X(:,2),Y);
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h = gca;
lims = [h.XLim h.YLim]; % Extract the x and y axis limits
title('{\bf Scatter Diagram of Iris Measurements}');
xlabel('Petal Length (cm)');
ylabel('Petal Width (cm)');
legend('Location','Northwest');

The data contains three classes, one of which is linearly separable from the others.

For each class:

1 Create a logical vector (indx) indicating whether an observation is a member of the class.
2 Train an SVM classifier using the predictor data and indx.
3 Store the classifier in a cell of a cell array.

Define the class order.

SVMModels = cell(3,1);
classes = unique(Y);
rng(1); % For reproducibility

for j = 1:numel(classes)
    indx = strcmp(Y,classes(j)); % Create binary classes for each classifier
    SVMModels{j} = fitcsvm(X,indx,'ClassNames',[false true],'Standardize',true,...
        'KernelFunction','rbf','BoxConstraint',1);
end
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SVMModels is a 3-by-1 cell array, with each cell containing a ClassificationSVM classifier. For
each cell, the positive class is setosa, versicolor, and virginica, respectively.

Define a fine grid within the plot, and treat the coordinates as new observations from the distribution
of the training data. Estimate the score of the new observations using each classifier.

d = 0.02;
[x1Grid,x2Grid] = meshgrid(min(X(:,1)):d:max(X(:,1)),...
    min(X(:,2)):d:max(X(:,2)));
xGrid = [x1Grid(:),x2Grid(:)];
N = size(xGrid,1);
Scores = zeros(N,numel(classes));

for j = 1:numel(classes)
    [~,score] = predict(SVMModels{j},xGrid);
    Scores(:,j) = score(:,2); % Second column contains positive-class scores
end

Each row of Scores contains three scores. The index of the element with the largest score is the
index of the class to which the new class observation most likely belongs.

Associate each new observation with the classifier that gives it the maximum score.

[~,maxScore] = max(Scores,[],2);

Color in the regions of the plot based on the class to which the corresponding new observation
belongs.

figure
h(1:3) = gscatter(xGrid(:,1),xGrid(:,2),maxScore,...
    [0.1 0.5 0.5; 0.5 0.1 0.5; 0.5 0.5 0.1]);
hold on
h(4:6) = gscatter(X(:,1),X(:,2),Y);
title('{\bf Iris Classification Regions}');
xlabel('Petal Length (cm)');
ylabel('Petal Width (cm)');
legend(h,{'setosa region','versicolor region','virginica region',...
    'observed setosa','observed versicolor','observed virginica'},...
    'Location','Northwest');
axis tight
hold off
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Optimize SVM Classifier

Optimize hyperparameters automatically using fitcsvm.

Load the ionosphere data set.

load ionosphere

Find hyperparameters that minimize five-fold cross-validation loss by using automatic
hyperparameter optimization. For reproducibility, set the random seed and use the 'expected-
improvement-plus' acquisition function.

rng default
Mdl = fitcsvm(X,Y,'OptimizeHyperparameters','auto', ...
    'HyperparameterOptimizationOptions',struct('AcquisitionFunctionName', ...
    'expected-improvement-plus'))

|=====================================================================================================|
| Iter | Eval   | Objective   | Objective   | BestSoFar   | BestSoFar   | BoxConstraint|  KernelScale |
|      | result |             | runtime     | (observed)  | (estim.)    |              |              |
|=====================================================================================================|
|    1 | Best   |     0.21937 |      32.757 |     0.21937 |     0.21937 |       64.836 |    0.0015729 |
|    2 | Accept |     0.35897 |     0.70747 |     0.21937 |     0.22807 |     0.036335 |       5.5755 |
|    3 | Best   |     0.13105 |      9.8198 |     0.13105 |     0.14149 |    0.0022147 |    0.0023957 |
|    4 | Accept |     0.35897 |     0.34509 |     0.13105 |     0.13108 |       5.1259 |        98.62 |
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|    5 | Accept |      0.1339 |      20.907 |     0.13105 |     0.13111 |    0.0011147 |    0.0010089 |
|    6 | Accept |     0.13105 |      1.0808 |     0.13105 |     0.13106 |    0.0010151 |    0.0045756 |
|    7 | Best   |     0.12821 |      13.057 |     0.12821 |      0.1282 |    0.0010563 |    0.0022307 |
|    8 | Accept |      0.1339 |      15.661 |     0.12821 |     0.13014 |    0.0010113 |    0.0026572 |
|    9 | Accept |     0.12821 |       9.679 |     0.12821 |     0.12978 |    0.0010934 |    0.0022461 |
|   10 | Accept |     0.12821 |      6.6741 |     0.12821 |     0.12934 |    0.0010315 |    0.0023551 |
|   11 | Accept |     0.13675 |      28.101 |     0.12821 |     0.12955 |       994.04 |      0.22432 |
|   12 | Accept |     0.23647 |      31.185 |     0.12821 |     0.12778 |       959.35 |     0.059028 |
|   13 | Accept |     0.13105 |     0.37321 |     0.12821 |     0.12784 |    0.0010239 |     0.012063 |
|   14 | Best   |     0.11681 |     0.29649 |     0.11681 |     0.11682 |      0.11417 |      0.26314 |
|   15 | Accept |     0.13105 |      2.6556 |     0.11681 |     0.11683 |       11.334 |      0.42684 |
|   16 | Accept |      0.1396 |     0.23533 |     0.11681 |     0.11684 |    0.0010029 |      0.13516 |
|   17 | Accept |     0.16239 |     0.20194 |     0.11681 |     0.11689 |    0.0011338 |      0.34138 |
|   18 | Accept |     0.13105 |      1.2919 |     0.11681 |     0.11758 |       2.2742 |      0.21644 |
|   19 | Accept |     0.13675 |      24.202 |     0.11681 |     0.11772 |       970.79 |      0.61826 |
|   20 | Accept |     0.11681 |     0.34633 |     0.11681 |     0.11711 |     0.047986 |      0.17883 |
|=====================================================================================================|
| Iter | Eval   | Objective   | Objective   | BestSoFar   | BestSoFar   | BoxConstraint|  KernelScale |
|      | result |             | runtime     | (observed)  | (estim.)    |              |              |
|=====================================================================================================|
|   21 | Accept |     0.12536 |     0.30238 |     0.11681 |     0.11681 |    0.0082154 |     0.050472 |
|   22 | Accept |     0.11681 |     0.29646 |     0.11681 |     0.11659 |     0.063229 |      0.19633 |
|   23 | Accept |     0.12251 |     0.31081 |     0.11681 |     0.11829 |     0.080255 |      0.21171 |
|   24 | Accept |     0.12251 |     0.42861 |     0.11681 |     0.11842 |     0.031721 |      0.13295 |
|   25 | Accept |      0.1339 |     0.33638 |     0.11681 |     0.11848 |    0.0010942 |     0.036194 |
|   26 | Accept |     0.11966 |     0.33097 |     0.11681 |     0.11869 |      0.09066 |      0.22826 |
|   27 | Accept |     0.35897 |     0.19677 |     0.11681 |     0.11869 |    0.0010392 |       997.93 |
|   28 | Accept |     0.35897 |     0.27866 |     0.11681 |     0.11869 |       951.93 |       998.36 |
|   29 | Accept |     0.12536 |     0.44649 |     0.11681 |     0.11862 |       995.77 |       13.309 |
|   30 | Accept |      0.1339 |      1.2378 |     0.11681 |     0.11862 |       991.43 |       5.3999 |
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__________________________________________________________
Optimization completed.
MaxObjectiveEvaluations of 30 reached.
Total function evaluations: 30
Total elapsed time: 276.4485 seconds
Total objective function evaluation time: 203.7435

Best observed feasible point:
    BoxConstraint    KernelScale
    _____________    ___________

       0.11417         0.26314  

Observed objective function value = 0.11681
Estimated objective function value = 0.11926
Function evaluation time = 0.29649

Best estimated feasible point (according to models):
    BoxConstraint    KernelScale
    _____________    ___________
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      0.080255         0.21171  

Estimated objective function value = 0.11862
Estimated function evaluation time = 0.34011

Mdl = 
  ClassificationSVM
                         ResponseName: 'Y'
                CategoricalPredictors: []
                           ClassNames: {'b'  'g'}
                       ScoreTransform: 'none'
                      NumObservations: 351
    HyperparameterOptimizationResults: [1x1 BayesianOptimization]
                                Alpha: [98x1 double]
                                 Bias: -4.8344
                     KernelParameters: [1x1 struct]
                       BoxConstraints: [351x1 double]
                      ConvergenceInfo: [1x1 struct]
                      IsSupportVector: [351x1 logical]
                               Solver: 'SMO'

  Properties, Methods

Input Arguments
Tbl — Sample data
table

Sample data used to train the model, specified as a table. Each row of Tbl corresponds to one
observation, and each column corresponds to one predictor variable. Multicolumn variables and cell
arrays other than cell arrays of character vectors are not allowed.

Optionally, Tbl can contain a column for the response variable and a column for the observation
weights.

• The response variable must be a categorical, character, or string array, a logical or numeric vector,
or a cell array of character vectors.

• fitcsvm supports only one-class and two-class (binary) classification. Either the response
variable must contain at most two distinct classes, or you must specify one or two classes for
training by using the ClassNames name-value argument. For multiclass learning, see
fitcecoc.

• A good practice is to specify the order of the classes in the response variable by using the
ClassNames name-value argument.

• The column for the weights must be a numeric vector.
• You must specify the response variable in Tbl by using ResponseVarName or formula and

specify the observation weights in Tbl by using Weights.

• Specify the response variable by using ResponseVarName — fitcsvm uses the remaining
variables as predictors. To use a subset of the remaining variables in Tbl as predictors, specify
predictor variables by using PredictorNames.
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• Define a model specification by using formula — fitcsvm uses a subset of the variables in
Tbl as predictor variables and the response variable, as specified in formula.

If Tbl does not contain the response variable, then specify a response variable by using Y. The length
of the response variable Y and the number of rows in Tbl must be equal. To use a subset of the
variables in Tbl as predictors, specify predictor variables by using PredictorNames.
Data Types: table

ResponseVarName — Response variable name
name of variable in Tbl

Response variable name, specified as the name of a variable in Tbl.

You must specify ResponseVarName as a character vector or string scalar. For example, if the
response variable Y is stored as Tbl.Y, then specify it as "Y". Otherwise, the software treats all
columns of Tbl, including Y, as predictors when training the model.

The response variable must be a categorical, character, or string array; a logical or numeric vector;
or a cell array of character vectors. If Y is a character array, then each element of the response
variable must correspond to one row of the array.

A good practice is to specify the order of the classes by using the ClassNames name-value argument.
Data Types: char | string

formula — Explanatory model of response variable and subset of predictor variables
character vector | string scalar

Explanatory model of the response variable and a subset of the predictor variables, specified as a
character vector or string scalar in the form "Y~x1+x2+x3". In this form, Y represents the response
variable, and x1, x2, and x3 represent the predictor variables.

To specify a subset of variables in Tbl as predictors for training the model, use a formula. If you
specify a formula, then the software does not use any variables in Tbl that do not appear in
formula.

The variable names in the formula must be both variable names in Tbl
(Tbl.Properties.VariableNames) and valid MATLAB identifiers. You can verify the variable
names in Tbl by using the isvarname function. If the variable names are not valid, then you can
convert them by using the matlab.lang.makeValidName function.
Data Types: char | string

Y — Class labels
categorical array | character array | string array | logical vector | numeric vector | cell array of
character vectors

Class labels to which the SVM model is trained, specified as a categorical, character, or string array,
logical or numeric vector, or cell array of character vectors.

• fitcsvm supports only one-class and two-class (binary) classification. Either Y must contain at
most two distinct classes, or you must specify one or two classes for training by using the
ClassNames name-value argument. For multiclass learning, see fitcecoc.

• The length of Y and the number of rows in Tbl or X must be equal.
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• If Y is a character array, then each label must correspond to one row of the array.
• It is a good practice to specify the class order by using the ClassNames name-value pair

argument.

Data Types: categorical | char | string | logical | single | double | cell

X — Predictor data
matrix of numeric values

Predictor data to which the SVM classifier is trained, specified as a matrix of numeric values.

Each row of X corresponds to one observation (also known as an instance or example), and each
column corresponds to one predictor (also known as a feature).

The length of Y and the number of rows in X must be equal.

To specify the names of the predictors in the order of their appearance in X, use the
'PredictorNames' name-value pair argument.
Data Types: double | single

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: fitcsvm(X,Y,'KFold',10,'Cost',[0 2;1 0],'ScoreTransform','sign')
performs 10-fold cross-validation, applies double the penalty to false positives compared to false
negatives, and transforms scores using the sign function.

SVM Options

BoxConstraint — Box constraint
1 (default) | positive scalar

Box constraint on page 35-2206, specified as the comma-separated pair consisting of
'BoxConstraint' and a positive scalar.

For one-class learning, the software always sets the box constraint to 1.

For more details on the relationships and algorithmic behavior of BoxConstraint, Cost, Prior,
Standardize, and Weights, see “Algorithms” on page 35-2209.
Example: 'BoxConstraint',100
Data Types: double | single

KernelFunction — Kernel function
'linear' | 'gaussian' | 'rbf' | 'polynomial' | function name

Kernel function used to compute the elements of the Gram matrix on page 35-2206, specified as the
comma-separated pair consisting of 'KernelFunction' and a kernel function name. Suppose
G(xj,xk) is element (j,k) of the Gram matrix, where xj and xk are p-dimensional vectors representing
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observations j and k in X. This table describes supported kernel function names and their functional
forms.

Kernel Function Name Description Formula
'gaussian' or 'rbf' Gaussian or Radial Basis

Function (RBF) kernel, default
for one-class learning

G x j, xk = exp − x j− xk
2

'linear' Linear kernel, default for two-
class learning

G(x j, xk) = x j′xk

'polynomial' Polynomial kernel. Use
'PolynomialOrder',q to
specify a polynomial kernel of
order q.

G(x j, xk) = (1 + x j′xk)q

You can set your own kernel function, for example, kernel, by setting
'KernelFunction','kernel'. The value kernel must have this form.

function G = kernel(U,V)

where:

• U is an m-by-p matrix. Columns correspond to predictor variables, and rows correspond to
observations.

• V is an n-by-p matrix. Columns correspond to predictor variables, and rows correspond to
observations.

• G is an m-by-n Gram matrix on page 35-2206 of the rows of U and V.

kernel.m must be on the MATLAB path.

It is a good practice to avoid using generic names for kernel functions. For example, call a sigmoid
kernel function 'mysigmoid' rather than 'sigmoid'.
Example: 'KernelFunction','gaussian'
Data Types: char | string

KernelScale — Kernel scale parameter
1 (default) | 'auto' | positive scalar

Kernel scale parameter, specified as the comma-separated pair consisting of 'KernelScale' and
'auto' or a positive scalar. The software divides all elements of the predictor matrix X by the value
of KernelScale. Then, the software applies the appropriate kernel norm to compute the Gram
matrix.

• If you specify 'auto', then the software selects an appropriate scale factor using a heuristic
procedure. This heuristic procedure uses subsampling, so estimates can vary from one call to
another. Therefore, to reproduce results, set a random number seed using rng before training.

• If you specify KernelScale and your own kernel function, for example,
'KernelFunction','kernel', then the software throws an error. You must apply scaling within
kernel.

Example: 'KernelScale','auto'
Data Types: double | single | char | string
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PolynomialOrder — Polynomial kernel function order
3 (default) | positive integer

Polynomial kernel function order, specified as the comma-separated pair consisting of
'PolynomialOrder' and a positive integer.

If you set 'PolynomialOrder' and KernelFunction is not 'polynomial', then the software
throws an error.
Example: 'PolynomialOrder',2
Data Types: double | single

KernelOffset — Kernel offset parameter
nonnegative scalar

Kernel offset parameter, specified as the comma-separated pair consisting of 'KernelOffset' and a
nonnegative scalar.

The software adds KernelOffset to each element of the Gram matrix.

The defaults are:

• 0 if the solver is SMO (that is, you set 'Solver','SMO')
• 0.1 if the solver is ISDA (that is, you set 'Solver','ISDA')

Example: 'KernelOffset',0
Data Types: double | single

Standardize — Flag to standardize predictor data
false (default) | true

Flag to standardize the predictor data, specified as the comma-separated pair consisting of
'Standardize' and true (1) or false (0).

If you set 'Standardize',true:

• The software centers and scales each predictor variable (X or Tbl) by the corresponding weighted
column mean and standard deviation. For details on weighted standardizing, see “Algorithms” on
page 35-2209. MATLAB does not standardize the data contained in the dummy variable columns
generated for categorical predictors.

• The software trains the classifier using the standardized predictors, but stores the unstandardized
predictors as a matrix or table in the classifier property X.

Example: 'Standardize',true
Data Types: logical

Solver — Optimization routine
'ISDA' | 'L1QP' | 'SMO'

Optimization routine, specified as the comma-separated pair consisting of 'Solver' and a value in
this table.
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Value Description
'ISDA' Iterative Single Data Algorithm (see [30])
'L1QP' Uses quadprog to implement L1 soft-margin minimization by

quadratic programming. This option requires an Optimization Toolbox
license. For more details, see “Quadratic Programming Definition”
(Optimization Toolbox).

'SMO' Sequential Minimal Optimization (see [17])

The default value is 'ISDA' if you set 'OutlierFraction' to a positive value for two-class
learning, and 'SMO' otherwise.
Example: 'Solver','ISDA'

Alpha — Initial estimates of alpha coefficients
numeric vector of nonnegative values

Initial estimates of alpha coefficients, specified as the comma-separated pair consisting of 'Alpha'
and a numeric vector of nonnegative values. The length of Alpha must be equal to the number of
rows in X.

• Each element of 'Alpha' corresponds to an observation in X.
• 'Alpha' cannot contain any NaNs.
• If you specify 'Alpha' and any one of the cross-validation name-value pair arguments

('CrossVal', 'CVPartition', 'Holdout', 'KFold', or 'Leaveout'), then the software
returns an error.

If Y contains any missing values, then remove all rows of Y, X, and 'Alpha' that correspond to the
missing values. That is, enter:

idx = ~isundefined(categorical(Y));
Y = Y(idx,:);
X = X(idx,:);
alpha = alpha(idx);

Then pass Y, X, and alpha as the response, predictors, and initial alpha estimates, respectively.

The default values are:

• 0.5*ones(size(X,1),1) for one-class learning
• zeros(size(X,1),1) for two-class learning

Example: 'Alpha',0.1*ones(size(X,1),1)
Data Types: double | single

CacheSize — Cache size
1000 (default) | 'maximal' | positive scalar

Cache size, specified as the comma-separated pair consisting of 'CacheSize' and 'maximal' or a
positive scalar.

If CacheSize is 'maximal', then the software reserves enough memory to hold the entire n-by-n
Gram matrix on page 35-2206.
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If CacheSize is a positive scalar, then the software reserves CacheSize megabytes of memory for
training the model.
Example: 'CacheSize','maximal'
Data Types: double | single | char | string

ClipAlphas — Flag to clip alpha coefficients
true (default) | false

Flag to clip alpha coefficients, specified as the comma-separated pair consisting of 'ClipAlphas'
and either true or false.

Suppose that the alpha coefficient for observation j is αj and the box constraint of observation j is Cj, j
= 1,...,n, where n is the training sample size.

Value Description
true At each iteration, if αj is near 0 or near Cj, then MATLAB sets αj to 0 or to Cj,

respectively.
false MATLAB does not change the alpha coefficients during optimization.

MATLAB stores the final values of α in the Alpha property of the trained SVM model object.

ClipAlphas can affect SMO and ISDA convergence.
Example: 'ClipAlphas',false
Data Types: logical

Nu — ν parameter for one-class learning
0.5 (default) | positive scalar

ν parameter for “One-Class Learning” on page 35-2207, specified as the comma-separated pair
consisting of 'Nu' and a positive scalar. Nu must be greater than 0 and at most 1.

Set Nu to control the tradeoff between ensuring that most training examples are in the positive class
and minimizing the weights in the score function.
Example: 'Nu',0.25
Data Types: double | single

NumPrint — Number of iterations between optimization diagnostic message output
1000 (default) | nonnegative integer

Number of iterations between optimization diagnostic message output, specified as the comma-
separated pair consisting of 'NumPrint' and a nonnegative integer.

If you specify 'Verbose',1 and 'NumPrint',numprint, then the software displays all optimization
diagnostic messages from SMO and ISDA every numprint iterations in the Command Window.
Example: 'NumPrint',500
Data Types: double | single

OutlierFraction — Expected proportion of outliers in training data
0 (default) | numeric scalar in the interval [0,1)
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Expected proportion of outliers in the training data, specified as the comma-separated pair consisting
of 'OutlierFraction' and a numeric scalar in the interval [0,1).

Suppose that you set 'OutlierFraction',outlierfraction, where outlierfraction is a
value greater than 0.

• For two-class learning, the software implements robust learning. In other words, the software
attempts to remove 100*outlierfraction% of the observations when the optimization
algorithm converges. The removed observations correspond to gradients that are large in
magnitude.

• For one-class learning, the software finds an appropriate bias term such that outlierfraction
of the observations in the training set have negative scores.

Example: 'OutlierFraction',0.01
Data Types: double | single

RemoveDuplicates — Flag to replace duplicate observations with single observations
false (default) | true

Flag to replace duplicate observations with single observations in the training data, specified as the
comma-separated pair consisting of 'RemoveDuplicates' and true or false.

If RemoveDuplicates is true, then fitcsvm replaces duplicate observations in the training data
with a single observation of the same value. The weight of the single observation is equal to the sum
of the weights of the corresponding removed duplicates (see Weights).

Tip If your data set contains many duplicate observations, then specifying
'RemoveDuplicates',true can decrease convergence time considerably.

Data Types: logical

Verbose — Verbosity level
0 (default) | 1 | 2

Verbosity level, specified as the comma-separated pair consisting of 'Verbose' and 0, 1, or 2. The
value of Verbose controls the amount of optimization information that the software displays in the
Command Window and saves the information as a structure to Mdl.ConvergenceInfo.History.

This table summarizes the available verbosity level options.

Value Description
0 The software does not display or save convergence information.
1 The software displays diagnostic messages and saves convergence criteria

every numprint iterations, where numprint is the value of the name-value
pair argument 'NumPrint'.

2 The software displays diagnostic messages and saves convergence criteria
at every iteration.

Example: 'Verbose',1
Data Types: double | single
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Other Classification Options

CategoricalPredictors — Categorical predictors list
vector of positive integers | logical vector | character matrix | string array | cell array of character
vectors | 'all'

Categorical predictors list, specified as one of the values in this table.

Value Description
Vector of positive
integers

Each entry in the vector is an index value indicating that the corresponding
predictor is categorical. The index values are between 1 and p, where p is
the number of predictors used to train the model.

If fitcsvm uses a subset of input variables as predictors, then the function
indexes the predictors using only the subset. The
CategoricalPredictors values do not count the response variable,
observation weights variable, or any other variables that the function does
not use.

Logical vector A true entry means that the corresponding predictor is categorical. The
length of the vector is p.

Character matrix Each row of the matrix is the name of a predictor variable. The names must
match the entries in PredictorNames. Pad the names with extra blanks
so each row of the character matrix has the same length.

String array or cell
array of character
vectors

Each element in the array is the name of a predictor variable. The names
must match the entries in PredictorNames.

"all" All predictors are categorical.

By default, if the predictor data is in a table (Tbl), fitcsvm assumes that a variable is categorical if
it is a logical vector, categorical vector, character array, string array, or cell array of character
vectors. If the predictor data is a matrix (X), fitcsvm assumes that all predictors are continuous. To
identify any other predictors as categorical predictors, specify them by using the
CategoricalPredictors name-value argument.

For the identified categorical predictors, fitcsvm creates dummy variables using two different
schemes, depending on whether a categorical variable is unordered or ordered. For an unordered
categorical variable, fitcsvm creates one dummy variable for each level of the categorical variable.
For an ordered categorical variable, fitcsvm creates one less dummy variable than the number of
categories. For details, see “Automatic Creation of Dummy Variables” on page 2-50.
Example: 'CategoricalPredictors','all'
Data Types: single | double | logical | char | string | cell

ClassNames — Names of classes to use for two-class learning
categorical array | character array | string array | logical vector | numeric vector | cell array of
character vectors

Names of classes to use for two-class learning, specified as a categorical, character, or string array; a
logical or numeric vector; or a cell array of character vectors. ClassNames must have the same data
type as the response variable in Tbl or Y.

If ClassNames is a character array, then each element must correspond to one row of the array.
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Use ClassNames to:

• Specify the order of the classes during training.
• Specify the order of any input or output argument dimension that corresponds to the class order.

For example, use ClassNames to specify the order of the dimensions of Cost or the column order
of classification scores returned by predict.

• Select a subset of classes for training. For example, suppose that the set of all distinct class names
in Y is ["a","b","c"]. To train the model using observations from classes "a" and "c" only,
specify "ClassNames",["a","c"].

The default value for ClassNames is the set of all distinct class names in the response variable in
Tbl or Y.

This argument is valid only for two-class learning.
Example: "ClassNames",["b","g"]
Data Types: categorical | char | string | logical | single | double | cell

Cost — Misclassification cost for two-class learning
[0 1; 1 0] (default) | square matrix | structure array

Misclassification cost for two-class learning, specified as the comma-separated pair consisting of
'Cost' and a square matrix or structure array.

• If you specify the square matrix Cost and the true class of an observation is i, then Cost(i,j) is
the cost of classifying a point into class j. That is, rows correspond to the true classes and
columns correspond to predicted classes. To specify the class order for the corresponding rows
and columns of Cost, also specify the ClassNames name-value pair argument.

• If you specify the structure S, then it must have two fields:

• S.ClassNames, which contains the class names as a variable of the same data type as Y
• S.ClassificationCosts, which contains the cost matrix with rows and columns ordered as

in S.ClassNames

If you specify a cost matrix, then the software updates the prior probabilities by incorporating the
penalties described in the cost matrix for training, and stores the user-specified value in the Cost
property of the trained SVM model object. For more details on the relationships and algorithmic
behavior of BoxConstraint, Cost, Prior, Standardize, and Weights, see “Algorithms” on page
35-2209.

This argument is valid only for two-class learning.
Example: 'Cost',[0,1;2,0]
Data Types: double | single | struct

PredictorNames — Predictor variable names
string array of unique names | cell array of unique character vectors

Predictor variable names, specified as a string array of unique names or cell array of unique
character vectors. The functionality of PredictorNames depends on the way you supply the training
data.

• If you supply X and Y, then you can use PredictorNames to assign names to the predictor
variables in X.
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• The order of the names in PredictorNames must correspond to the column order of X. That
is, PredictorNames{1} is the name of X(:,1), PredictorNames{2} is the name of
X(:,2), and so on. Also, size(X,2) and numel(PredictorNames) must be equal.

• By default, PredictorNames is {'x1','x2',...}.
• If you supply Tbl, then you can use PredictorNames to choose which predictor variables to use

in training. That is, fitcsvm uses only the predictor variables in PredictorNames and the
response variable during training.

• PredictorNames must be a subset of Tbl.Properties.VariableNames and cannot include
the name of the response variable.

• By default, PredictorNames contains the names of all predictor variables.
• A good practice is to specify the predictors for training using either PredictorNames or

formula, but not both.

Example: "PredictorNames",
["SepalLength","SepalWidth","PetalLength","PetalWidth"]

Data Types: string | cell

Prior — Prior probability for each class for two-class learning
'empirical' (default) | 'uniform' | numeric vector | structure array

Prior probability for each class for two-class learning, specified as the comma-separated pair
consisting of 'Prior' and a value in this table.

Value Description
'empirical' The class prior probabilities are the class relative frequencies in Y.
'uniform' All class prior probabilities are equal to 1/K, where K is the number of

classes.
numeric vector Each element in the vector is a class prior probability. Order the

elements according to Mdl.ClassNames or specify the order using
the ClassNames name-value pair argument. The software normalizes
the elements to sum to 1.

structure A structure S with two fields:

• S.ClassNames contains the class names as a variable of the same
type as Y.

• S.ClassProbs contains a vector of corresponding prior
probabilities. The software normalizes the elements of the vector
to sum to 1.

If you specify a cost matrix, then the software updates the prior probabilities by incorporating the
penalties described in the cost matrix for training. The software stores the user-specified prior
probabilities in the Prior property of the trained model object after normalizing the probabilities to
sum to 1. For more details on the relationships and algorithmic behavior of BoxConstraint, Cost,
Prior, Standardize, and Weights, see “Algorithms” on page 35-2209.

This argument is valid only for two-class learning.
Example: struct('ClassNames',
{{'setosa','versicolor','virginica'}},'ClassProbs',1:3)
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Data Types: char | string | double | single | struct

ResponseName — Response variable name
"Y" (default) | character vector | string scalar

Response variable name, specified as a character vector or string scalar.

• If you supply Y, then you can use ResponseName to specify a name for the response variable.
• If you supply ResponseVarName or formula, then you cannot use ResponseName.

Example: "ResponseName","response"
Data Types: char | string

ScoreTransform — Score transformation
"none" (default) | "doublelogit" | "invlogit" | "ismax" | "logit" | function handle | ...

Score transformation, specified as a character vector, string scalar, or function handle.

This table summarizes the available character vectors and string scalars.

Value Description
"doublelogit" 1/(1 + e–2x)
"invlogit" log(x / (1 – x))
"ismax" Sets the score for the class with the largest score to 1,

and sets the scores for all other classes to 0
"logit" 1/(1 + e–x)
"none" or "identity" x (no transformation)
"sign" –1 for x < 0

0 for x = 0
1 for x > 0

"symmetric" 2x – 1
"symmetricismax" Sets the score for the class with the largest score to 1,

and sets the scores for all other classes to –1
"symmetriclogit" 2/(1 + e–x) – 1

For a MATLAB function or a function you define, use its function handle for the score transform. The
function handle must accept a matrix (the original scores) and return a matrix of the same size (the
transformed scores).
Example: "ScoreTransform","logit"
Data Types: char | string | function_handle

Weights — Observation weights
numeric vector | name of variable in Tbl

Observation weights, specified as the comma-separated pair consisting of 'Weights' and a numeric
vector of positive values or the name of a variable in Tbl. The software weighs the observations in
each row of X or Tbl with the corresponding value in Weights. The size of Weights must equal the
number of rows in X or Tbl.
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If you specify the input data as a table Tbl, then Weights can be the name of a variable in Tbl that
contains a numeric vector. In this case, you must specify Weights as a character vector or string
scalar. For example, if the weights vector W is stored as Tbl.W, then specify it as 'W'. Otherwise, the
software treats all columns of Tbl, including W, as predictors or the response variable when training
the model.

By default, Weights is ones(n,1), where n is the number of observations in X or Tbl.

The software normalizes Weights to sum up to the value of the prior probability in the respective
class. For more details on the relationships and algorithmic behavior of BoxConstraint, Cost,
Prior, Standardize, and Weights, see “Algorithms” on page 35-2209.
Data Types: double | single | char | string

Note You cannot use any cross-validation name-value argument together with the
'OptimizeHyperparameters' name-value argument. You can modify the cross-validation for
'OptimizeHyperparameters' only by using the 'HyperparameterOptimizationOptions'
name-value argument.

Cross-Validation Options

CrossVal — Flag to train cross-validated classifier
'off' (default) | 'on'

Flag to train a cross-validated classifier, specified as the comma-separated pair consisting of
'Crossval' and 'on' or 'off'.

If you specify 'on', then the software trains a cross-validated classifier with 10 folds.

You can override this cross-validation setting using the CVPartition, Holdout, KFold, or
Leaveout name-value pair argument. You can use only one cross-validation name-value pair
argument at a time to create a cross-validated model.

Alternatively, cross-validate later by passing Mdl to crossval.
Example: 'Crossval','on'

CVPartition — Cross-validation partition
[] (default) | cvpartition partition object

Cross-validation partition, specified as a cvpartition partition object created by cvpartition.
The partition object specifies the type of cross-validation and the indexing for the training and
validation sets.

To create a cross-validated model, you can specify only one of these four name-value arguments:
CVPartition, Holdout, KFold, or Leaveout.
Example: Suppose you create a random partition for 5-fold cross-validation on 500 observations by
using cvp = cvpartition(500,'KFold',5). Then, you can specify the cross-validated model by
using 'CVPartition',cvp.

Holdout — Fraction of data for holdout validation
scalar value in the range (0,1)
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Fraction of the data used for holdout validation, specified as a scalar value in the range (0,1). If you
specify 'Holdout',p, then the software completes these steps:

1 Randomly select and reserve p*100% of the data as validation data, and train the model using
the rest of the data.

2 Store the compact, trained model in the Trained property of the cross-validated model.

To create a cross-validated model, you can specify only one of these four name-value arguments:
CVPartition, Holdout, KFold, or Leaveout.
Example: 'Holdout',0.1
Data Types: double | single

KFold — Number of folds
10 (default) | positive integer value greater than 1

Number of folds to use in a cross-validated model, specified as a positive integer value greater than 1.
If you specify 'KFold',k, then the software completes these steps:

1 Randomly partition the data into k sets.
2 For each set, reserve the set as validation data, and train the model using the other k – 1 sets.
3 Store the k compact, trained models in a k-by-1 cell vector in the Trained property of the cross-

validated model.

To create a cross-validated model, you can specify only one of these four name-value arguments:
CVPartition, Holdout, KFold, or Leaveout.
Example: 'KFold',5
Data Types: single | double

Leaveout — Leave-one-out cross-validation flag
'off' (default) | 'on'

Leave-one-out cross-validation flag, specified as 'on' or 'off'. If you specify 'Leaveout','on',
then for each of the n observations (where n is the number of observations, excluding missing
observations, specified in the NumObservations property of the model), the software completes
these steps:

1 Reserve the one observation as validation data, and train the model using the other n – 1
observations.

2 Store the n compact, trained models in an n-by-1 cell vector in the Trained property of the
cross-validated model.

To create a cross-validated model, you can specify only one of these four name-value arguments:
CVPartition, Holdout, KFold, or Leaveout.
Example: 'Leaveout','on'

Convergence Control Options

DeltaGradientTolerance — Tolerance for gradient difference
nonnegative scalar
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Tolerance for the gradient difference between upper and lower violators obtained by Sequential
Minimal Optimization (SMO) or Iterative Single Data Algorithm (ISDA), specified as the comma-
separated pair consisting of 'DeltaGradientTolerance' and a nonnegative scalar.

If DeltaGradientTolerance is 0, then the software does not use the tolerance for the gradient
difference to check for optimization convergence.

The default values are:

• 1e-3 if the solver is SMO (for example, you set 'Solver','SMO')
• 0 if the solver is ISDA (for example, you set 'Solver','ISDA')

Example: 'DeltaGradientTolerance',1e-2
Data Types: double | single

GapTolerance — Feasibility gap tolerance
0 (default) | nonnegative scalar

Feasibility gap tolerance obtained by SMO or ISDA, specified as the comma-separated pair consisting
of 'GapTolerance' and a nonnegative scalar.

If GapTolerance is 0, then the software does not use the feasibility gap tolerance to check for
optimization convergence.
Example: 'GapTolerance',1e-2
Data Types: double | single

IterationLimit — Maximal number of numerical optimization iterations
1e6 (default) | positive integer

Maximal number of numerical optimization iterations, specified as the comma-separated pair
consisting of 'IterationLimit' and a positive integer.

The software returns a trained model regardless of whether the optimization routine successfully
converges. Mdl.ConvergenceInfo contains convergence information.
Example: 'IterationLimit',1e8
Data Types: double | single

KKTTolerance — Karush-Kuhn-Tucker complementarity conditions violation tolerance
nonnegative scalar

Karush-Kuhn-Tucker (KKT) complementarity conditions on page 35-2206 violation tolerance, specified
as the comma-separated pair consisting of 'KKTTolerance' and a nonnegative scalar.

If KKTTolerance is 0, then the software does not use the KKT complementarity conditions violation
tolerance to check for optimization convergence.

The default values are:

• 0 if the solver is SMO (for example, you set 'Solver','SMO')
• 1e-3 if the solver is ISDA (for example, you set 'Solver','ISDA')

Example: 'KKTTolerance',1e-2
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Data Types: double | single

ShrinkagePeriod — Number of iterations between reductions of active set
0 (default) | nonnegative integer

Number of iterations between reductions of the active set, specified as the comma-separated pair
consisting of 'ShrinkagePeriod' and a nonnegative integer.

If you set 'ShrinkagePeriod',0, then the software does not shrink the active set.
Example: 'ShrinkagePeriod',1000
Data Types: double | single

Hyperparameter Optimization Options

OptimizeHyperparameters — Parameters to optimize for two-class learning
'none' (default) | 'auto' | 'all' | string array or cell array of eligible parameter names | vector of
optimizableVariable objects

Parameters to optimize for two-class learning, specified as the comma-separated pair consisting of
'OptimizeHyperparameters' and one of these values:

• 'none' — Do not optimize.
• 'auto' — Use {'BoxConstraint','KernelScale'}.
• 'all' — Optimize all eligible parameters.
• String array or cell array of eligible parameter names.
• Vector of optimizableVariable objects, typically the output of hyperparameters.

The optimization attempts to minimize the cross-validation loss (error) for fitcsvm by varying the
parameters. For information about cross-validation loss see “Classification Loss” on page 35-3870. To
control the cross-validation type and other aspects of the optimization, use the
HyperparameterOptimizationOptions name-value pair argument.

Note The values of 'OptimizeHyperparameters' override any values you specify using other
name-value arguments. For example, setting 'OptimizeHyperparameters' to 'auto' causes
fitcsvm to optimize hyperparameters corresponding to the 'auto' option and to ignore any
specified values for the hyperparameters.

The eligible parameters for fitcsvm are:

• BoxConstraint — fitcsvm searches among positive values, by default log-scaled in the range
[1e-3,1e3].

• KernelScale — fitcsvm searches among positive values, by default log-scaled in the range
[1e-3,1e3].

• KernelFunction — fitcsvm searches among 'gaussian', 'linear', and 'polynomial'.
• PolynomialOrder — fitcsvm searches among integers in the range [2,4].
• Standardize — fitcsvm searches among 'true' and 'false'.
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Set nondefault parameters by passing a vector of optimizableVariable objects that have
nondefault values. For example:

load fisheriris
params = hyperparameters('fitcsvm',meas,species);
params(1).Range = [1e-4,1e6];

Pass params as the value of OptimizeHyperparameters.

By default, the iterative display appears at the command line, and plots appear according to the
number of hyperparameters in the optimization. For the optimization and plots, the objective function
is the misclassification rate. To control the iterative display, set the Verbose field of the
'HyperparameterOptimizationOptions' name-value argument. To control the plots, set the
ShowPlots field of the 'HyperparameterOptimizationOptions' name-value argument.

For an example, see “Optimize SVM Classifier” on page 35-2184.

This argument is valid only for two-class learning.
Example: 'OptimizeHyperparameters','auto'

HyperparameterOptimizationOptions — Optimization options for two-class learning
structure

Optimization options for two-class learning, specified as a structure. This argument modifies the
effect of the OptimizeHyperparameters name-value argument. All fields in the structure are
optional.

Field Name Values Default
Optimizer • 'bayesopt' — Use Bayesian optimization.

Internally, this setting calls bayesopt.
• 'gridsearch' — Use grid search with

NumGridDivisions values per dimension.
• 'randomsearch' — Search at random among

MaxObjectiveEvaluations points.

'gridsearch' searches in a random order, using
uniform sampling without replacement from the
grid. After optimization, you can get a table in grid
order by using the command
sortrows(Mdl.HyperparameterOptimizatio
nResults).

'bayesopt'
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Field Name Values Default
AcquisitionFunct
ionName

• 'expected-improvement-per-second-
plus'

• 'expected-improvement'
• 'expected-improvement-plus'
• 'expected-improvement-per-second'
• 'lower-confidence-bound'
• 'probability-of-improvement'

Acquisition functions whose names include per-
second do not yield reproducible results because
the optimization depends on the runtime of the
objective function. Acquisition functions whose
names include plus modify their behavior when
they are overexploiting an area. For more details,
see “Acquisition Function Types” on page 10-3.

'expected-
improvement-per-
second-plus'

MaxObjectiveEval
uations

Maximum number of objective function
evaluations.

30 for 'bayesopt' and
'randomsearch', and
the entire grid for
'gridsearch'

MaxTime Time limit, specified as a positive real scalar. The
time limit is in seconds, as measured by tic and
toc. The run time can exceed MaxTime because
MaxTime does not interrupt function evaluations.

Inf

NumGridDivisions For 'gridsearch', the number of values in each
dimension. The value can be a vector of positive
integers giving the number of values for each
dimension, or a scalar that applies to all
dimensions. This field is ignored for categorical
variables.

10

ShowPlots Logical value indicating whether to show plots. If
true, this field plots the best observed objective
function value against the iteration number. If you
use Bayesian optimization (Optimizer is
'bayesopt'), then this field also plots the best
estimated objective function value. The best
observed objective function values and best
estimated objective function values correspond to
the values in the BestSoFar (observed) and
BestSoFar (estim.) columns of the iterative
display, respectively. You can find these values in
the properties ObjectiveMinimumTrace and
EstimatedObjectiveMinimumTrace of
Mdl.HyperparameterOptimizationResults.
If the problem includes one or two optimization
parameters for Bayesian optimization, then
ShowPlots also plots a model of the objective
function against the parameters.

true
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Field Name Values Default
SaveIntermediate
Results

Logical value indicating whether to save results
when Optimizer is 'bayesopt'. If true, this
field overwrites a workspace variable named
'BayesoptResults' at each iteration. The
variable is a BayesianOptimization object.

false

Verbose Display at the command line:

• 0 — No iterative display
• 1 — Iterative display
• 2 — Iterative display with extra information

For details, see the bayesopt Verbose name-
value argument and the example “Optimize
Classifier Fit Using Bayesian Optimization” on
page 10-56.

1

UseParallel Logical value indicating whether to run Bayesian
optimization in parallel, which requires Parallel
Computing Toolbox. Due to the nonreproducibility
of parallel timing, parallel Bayesian optimization
does not necessarily yield reproducible results. For
details, see “Parallel Bayesian Optimization” on
page 10-7.

false

Repartition Logical value indicating whether to repartition the
cross-validation at every iteration. If this field is
false, the optimizer uses a single partition for
the optimization.

The setting true usually gives the most robust
results because it takes partitioning noise into
account. However, for good results, true requires
at least twice as many function evaluations.

false

Use no more than one of the following three options.
CVPartition A cvpartition object, as created by

cvpartition
'Kfold',5 if you do not
specify a cross-validation
fieldHoldout A scalar in the range (0,1) representing the

holdout fraction
Kfold An integer greater than 1

This argument is valid only for two-class learning.
Example:
'HyperparameterOptimizationOptions',struct('MaxObjectiveEvaluations',60)

Data Types: struct
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Output Arguments
Mdl — Trained SVM classification model
ClassificationSVM model object | ClassificationPartitionedModel cross-validated model
object

Trained SVM classification model, returned as a ClassificationSVM model object or
ClassificationPartitionedModel cross-validated model object.

If you set any of the name-value pair arguments KFold, Holdout, Leaveout, CrossVal, or
CVPartition, then Mdl is a ClassificationPartitionedModel cross-validated classifier.
Otherwise, Mdl is a ClassificationSVM classifier.

To reference properties of Mdl, use dot notation. For example, enter Mdl.Alpha in the Command
Window to display the trained Lagrange multipliers.

Limitations
• fitcsvm trains SVM classifiers for one-class or two-class learning applications. To train SVM
classifiers using data with more than two classes, use fitcecoc.

• fitcsvm supports low-dimensional and moderate-dimensional data sets. For high-dimensional
data sets, use fitclinear instead.

More About
Box Constraint

A box constraint is a parameter that controls the maximum penalty imposed on margin-violating
observations, which helps to prevent overfitting (regularization).

If you increase the box constraint, then the SVM classifier assigns fewer support vectors. However,
increasing the box constraint can lead to longer training times.

Gram Matrix

The Gram matrix of a set of n vectors {x1,..,xn; xj ∊ Rp} is an n-by-n matrix with element (j,k) defined
as G(xj,xk) = <ϕ(xj),ϕ(xk)>, an inner product of the transformed predictors using the kernel function
ϕ.

For nonlinear SVM, the algorithm forms a Gram matrix using the rows of the predictor data X. The
dual formalization replaces the inner product of the observations in X with corresponding elements of
the resulting Gram matrix (called the “kernel trick”). Consequently, nonlinear SVM operates in the
transformed predictor space to find a separating hyperplane.

Karush-Kuhn-Tucker (KKT) Complementarity Conditions

KKT complementarity conditions are optimization constraints required for optimal nonlinear
programming solutions.

In SVM, the KKT complementarity conditions are

α j y jf x j − 1 + ξ j = 0
ξ j C− α j = 0
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for all j = 1,...,n, where f x j = ϕ x j ′β + b, ϕ is a kernel function (see Gram matrix on page 35-2206),
and ξj is a slack variable. If the classes are perfectly separable, then ξj = 0 for all j = 1,...,n.

One-Class Learning

One-class learning, or unsupervised SVM, aims to separate data from the origin in the high-
dimensional predictor space (not the original predictor space), and is an algorithm used for outlier
detection.

The algorithm resembles that of SVM for binary classification on page 35-2207. The objective is to
minimize the dual expression

0.5∑
jk

α jαkG(x j, xk)

with respect to α1, ..., αn, subject to

∑α j = nν

and 0 ≤ α j ≤ 1 for all j = 1,...,n. The value of G(xj,xk) is in element (j,k) of the Gram matrix on page 35-
2206.

A small value of ν leads to fewer support vectors and, therefore, a smooth, crude decision boundary. A
large value of ν leads to more support vectors and, therefore, a curvy, flexible decision boundary. The
optimal value of ν should be large enough to capture the data complexity and small enough to avoid
overtraining. Also, 0 < ν ≤ 1.

For more details, see [5].

Support Vector

Support vectors are observations corresponding to strictly positive estimates of α1,...,αn.

SVM classifiers that yield fewer support vectors for a given training set are preferred.

Support Vector Machines for Binary Classification

The SVM binary classification algorithm searches for an optimal hyperplane that separates the data
into two classes. For separable classes, the optimal hyperplane maximizes a margin (space that does
not contain any observations) surrounding itself, which creates boundaries for the positive and
negative classes. For inseparable classes, the objective is the same, but the algorithm imposes a
penalty on the length of the margin for every observation that is on the wrong side of its class
boundary.

The linear SVM score function is

f (x) = x′β + b,

where:

• x is an observation (corresponding to a row of X).
• The vector β contains the coefficients that define an orthogonal vector to the hyperplane

(corresponding to Mdl.Beta). For separable data, the optimal margin length is 2/ β .
• b is the bias term (corresponding to Mdl.Bias).

 fitcsvm

35-2207



The root of f(x) for particular coefficients defines a hyperplane. For a particular hyperplane, f(z) is the
distance from point z to the hyperplane.

The algorithm searches for the maximum margin length, while keeping observations in the positive (y
= 1) and negative (y = –1) classes separate.

• For separable classes, the objective is to minimize β  with respect to the β and b subject to yjf(xj)
≥ 1, for all j = 1,..,n. This is the primal formalization for separable classes.

• For inseparable classes, the algorithm uses slack variables (ξj) to penalize the objective function
for observations that cross the margin boundary for their class. ξj = 0 for observations that do not
cross the margin boundary for their class, otherwise ξj ≥ 0.

The objective is to minimize 0.5 β 2 + C∑ξ j with respect to the β, b, and ξj subject to
y jf (x j) ≥ 1− ξ j and ξ j ≥ 0 for all j = 1,..,n, and for a positive scalar box constraint on page 35-
2206 C. This is the primal formalization for inseparable classes.

The algorithm uses the Lagrange multipliers method to optimize the objective, which introduces n
coefficients α1,...,αn (corresponding to Mdl.Alpha). The dual formalizations for linear SVM are as
follows:

• For separable classes, minimize

0.5 ∑
j = 1

n ∑
k = 1

n

α jαky jykx j′xk−∑
j = 1

n

α j

with respect to α1,...,αn, subject to ∑α jy j = 0, αj ≥ 0 for all j = 1,...,n, and Karush-Kuhn-Tucker
(KKT) complementarity conditions on page 35-2206.

• For inseparable classes, the objective is the same as for separable classes, except for the
additional condition 0 ≤ α j ≤ C for all j = 1,..,n.

The resulting score function is

f (x) = ∑
j = 1

n
α jy jx′x j + b .

b  is the estimate of the bias and α j is the jth estimate of the vector α , j = 1,...,n. Written this way, the
score function is free of the estimate of β as a result of the primal formalization.

The SVM algorithm classifies a new observation z using sign f z .

In some cases, a nonlinear boundary separates the classes. Nonlinear SVM works in a transformed
predictor space to find an optimal, separating hyperplane.

The dual formalization for nonlinear SVM is

0.5 ∑
j = 1

n
∑

k = 1

n
α jαky jykG(x j, xk)− ∑

j = 1

n
α j

35 Functions

35-2208



with respect to α1,...,αn, subject to ∑α jy j = 0, 0 ≤ α j ≤ C for all j = 1,..,n, and the KKT
complementarity conditions. G(xk,xj) are elements of the Gram matrix on page 35-2206. The resulting
score function is

f (x) = ∑
j = 1

n
α jy jG(x, x j) + b .

For more details, see Understanding Support Vector Machines on page 19-151, [1], and [3].

Tips
• Unless your data set is large, always try to standardize the predictors (see Standardize).

Standardization makes predictors insensitive to the scales on which they are measured.
• It is a good practice to cross-validate using the KFold name-value pair argument. The cross-

validation results determine how well the SVM classifier generalizes.
• For one-class learning:

• The default setting for the name-value pair argument Alpha can lead to long training times. To
speed up training, set Alpha to a vector mostly composed of 0s.

• Set the name-value pair argument Nu to a value closer to 0 to yield fewer support vectors and,
therefore, a smoother but crude decision boundary.

• Sparsity in support vectors is a desirable property of an SVM classifier. To decrease the number of
support vectors, set BoxConstraint to a large value. This action increases the training time.

• For optimal training time, set CacheSize as high as the memory limit your computer allows.
• If you expect many fewer support vectors than observations in the training set, then you can
significantly speed up convergence by shrinking the active set using the name-value pair
argument 'ShrinkagePeriod'. It is a good practice to specify 'ShrinkagePeriod',1000.

• Duplicate observations that are far from the decision boundary do not affect convergence.
However, just a few duplicate observations that occur near the decision boundary can slow down
convergence considerably. To speed up convergence, specify 'RemoveDuplicates',true if:

• Your data set contains many duplicate observations.
• You suspect that a few duplicate observations fall near the decision boundary.

To maintain the original data set during training, fitcsvm must temporarily store separate data
sets: the original and one without the duplicate observations. Therefore, if you specify true for
data sets containing few duplicates, then fitcsvm consumes close to double the memory of the
original data.

• After training a model, you can generate C/C++ code that predicts labels for new data.
Generating C/C++ code requires MATLAB Coder. For details, see “Introduction to Code
Generation” on page 34-2.

Algorithms
• For the mathematical formulation of the SVM binary classification algorithm, see “Support Vector

Machines for Binary Classification” on page 35-2207 and “Understanding Support Vector
Machines” on page 19-151.

• NaN, <undefined>, empty character vector (''), empty string (""), and <missing> values
indicate missing values. fitcsvm removes entire rows of data corresponding to a missing

 fitcsvm

35-2209



response. When computing total weights (see the next bullets), fitcsvm ignores any weight
corresponding to an observation with at least one missing predictor. This action can lead to
unbalanced prior probabilities in balanced-class problems. Consequently, observation box
constraints might not equal BoxConstraint.

• If you specify the Cost, Prior, and Weights name-value arguments, the output model object
stores the specified values in the Cost, Prior, and W properties, respectively. The Cost property
stores the user-specified cost matrix (C) without modification. The Prior and W properties store
the prior probabilities and observation weights, respectively, after normalization. For model
training, the software updates the prior probabilities and observation weights to incorporate the
penalties described in the cost matrix. For details, see “Misclassification Cost Matrix, Prior
Probabilities, and Observation Weights” on page 19-8.

Note that the Cost and Prior name-value arguments are used for two-class learning. For one-
class learning, the Cost and Prior properties store 0 and 1, respectively.

• For two-class learning, fitcsvm assigns a box constraint to each observation in the training data.
The formula for the box constraint of observation j is

C j = nC0w j
∗,

where C0 is the initial box constraint (see the BoxConstraint name-value argument), and wj
* is

the observation weight adjusted by Cost and Prior for observation j. For details about the
observation weights, see “Adjust Prior Probabilities and Observation Weights for Misclassification
Cost Matrix” on page 19-9.

• If you specify Standardize as true and set the Cost, Prior, or Weights name-value argument,
then fitcsvm standardizes the predictors using their corresponding weighted means and
weighted standard deviations. That is, fitcsvm standardizes predictor j (xj) using

x j
∗ =

x j− μ j
∗

σ j
∗ ,

where xjk is observation k (row) of predictor j (column), and

μ j
∗ = 1
∑
k

wk*
∑
k

wk*x jk,

σ j
∗ 2 =

v1
v1

2− v2
∑
k

wk* x jk− μ j
∗ 2,

v1 = ∑
j

w j*,

v2 = ∑
j

w j*
2 .

• Assume that p is the proportion of outliers that you expect in the training data, and that you set
'OutlierFraction',p.

• For one-class learning, the software trains the bias term such that 100p% of the observations
in the training data have negative scores.

• The software implements robust learning for two-class learning. In other words, the software
attempts to remove 100p% of the observations when the optimization algorithm converges.
The removed observations correspond to gradients that are large in magnitude.
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• If your predictor data contains categorical variables, then the software generally uses full dummy
encoding for these variables. The software creates one dummy variable for each level of each
categorical variable.

• The PredictorNames property stores one element for each of the original predictor variable
names. For example, assume that there are three predictors, one of which is a categorical
variable with three levels. Then PredictorNames is a 1-by-3 cell array of character vectors
containing the original names of the predictor variables.

• The ExpandedPredictorNames property stores one element for each of the predictor
variables, including the dummy variables. For example, assume that there are three predictors,
one of which is a categorical variable with three levels. Then ExpandedPredictorNames is a
1-by-5 cell array of character vectors containing the names of the predictor variables and the
new dummy variables.

• Similarly, the Beta property stores one beta coefficient for each predictor, including the
dummy variables.

• The SupportVectors property stores the predictor values for the support vectors, including
the dummy variables. For example, assume that there are m support vectors and three
predictors, one of which is a categorical variable with three levels. Then SupportVectors is
an n-by-5 matrix.

• The X property stores the training data as originally input and does not include the dummy
variables. When the input is a table, X contains only the columns used as predictors.

• For predictors specified in a table, if any of the variables contain ordered (ordinal) categories, the
software uses ordinal encoding for these variables.

• For a variable with k ordered levels, the software creates k – 1 dummy variables. The jth
dummy variable is –1 for levels up to j, and +1 for levels j + 1 through k.

• The names of the dummy variables stored in the ExpandedPredictorNames property indicate
the first level with the value +1. The software stores k – 1 additional predictor names for the
dummy variables, including the names of levels 2, 3, ..., k.

• All solvers implement L1 soft-margin minimization.
• For one-class learning, the software estimates the Lagrange multipliers, α1,...,αn, such that

∑
j = 1

n
α j = nν .

Alternative Functionality
You can also use the ocsvm function to train a one-class SVM model for anomaly detection.

• The ocsvm function provides a simpler and preferred workflow for anomaly detection than the
fitcsvm function.

• The ocsvm function returns a OneClassSVM object, anomaly indicators, and anomaly scores.
You can use the outputs to identify anomalies in training data. To find anomalies in new data,
you can use the isanomaly object function of OneClassSVM. The isanomaly function returns
anomaly indicators and scores for the new data.

• The fitcsvm function supports both one-class and binary classification. If the class label
variable contains only one class (for example, a vector of ones), fitcsvm trains a model for
one-class classification and returns a ClassificationSVM object. To identify anomalies, you
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must first compute anomaly scores by using the resubPredict or predict object function of
ClassificationSVM, and then identify anomalies by finding observations that have negative
scores.

• Note that a large positive anomaly score indicates an anomaly in ocsvm, whereas a negative
score indicates an anomaly in predict of ClassificationSVM.

• The ocsvm function finds the decision boundary based on the primal form of SVM, whereas the
fitcsvm function finds the decision boundary based on the dual form of SVM.

• The solver in ocsvm is computationally less expensive than the solver in fitcsvm for a large data
set (large n). Unlike solvers in fitcsvm, which require computation of the n-by-n Gram matrix,
the solver in ocsvm only needs to form a matrix of size n-by-m. Here, m is the number of
dimensions of expanded space, which is typically much less than n for big data.

Version History
Introduced in R2014a
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Extended Capabilities
Automatic Parallel Support
Accelerate code by automatically running computation in parallel using Parallel Computing Toolbox™.

To perform parallel hyperparameter optimization, use the
'HyperparameterOptimizationOptions', struct('UseParallel',true) name-value
argument in the call to the fitcsvm function.

For more information on parallel hyperparameter optimization, see “Parallel Bayesian Optimization”
on page 10-7.
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For general information about parallel computing, see “Run MATLAB Functions with Automatic
Parallel Support” (Parallel Computing Toolbox).

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

Usage notes and limitations:

• One-class classification is not supported. The labels must contain two different classes.
• You cannot specify the KernelFunction name-value argument as a function handle.
• You can specify the Solver name-value argument only as "SMO".
• You cannot specify the OutlierFraction or ShrinkagePeriod name-value argument.
• The Alpha name-value argument must specify a feasible starting point.
• The predictor data cannot contain infinite values.
• fitcsvm fits the model on a GPU if either of the following apply:

• The input argument X is a gpuArray object.
• The input argument Tbl contains gpuArray predictor variables.

For more information, see “Run MATLAB Functions on a GPU” (Parallel Computing Toolbox).

See Also
ClassificationSVM | CompactClassificationSVM | ClassificationPartitionedModel |
predict | fitSVMPosterior | rng | quadprog | fitcecoc | fitclinear | IsolationForest

Topics
“Train SVM Classifiers Using a Gaussian Kernel” on page 19-157
“Train SVM Classifier Using Custom Kernel” on page 19-160
“Optimize Cross-Validated Classifier Using bayesopt” on page 10-46
“Optimize Classifier Fit Using Bayesian Optimization” on page 10-56
“Understanding Support Vector Machines” on page 19-151
“Unsupervised Anomaly Detection” on page 17-91
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fitctree
Fit binary decision tree for multiclass classification

Syntax
tree = fitctree(Tbl,ResponseVarName)
tree = fitctree(Tbl,formula)
tree = fitctree(Tbl,Y)

tree = fitctree(X,Y)

tree = fitctree( ___ ,Name,Value)

Description
tree = fitctree(Tbl,ResponseVarName) returns a fitted binary classification decision tree
based on the input variables (also known as predictors, features, or attributes) contained in the table
Tbl and output (response or labels) contained in Tbl.ResponseVarName. The returned binary tree
splits branching nodes based on the values of a column of Tbl.

tree = fitctree(Tbl,formula) returns a fitted binary classification decision tree based on the
input variables contained in the table Tbl. formula is an explanatory model of the response and a
subset of predictor variables in Tbl used to fit tree.

tree = fitctree(Tbl,Y) returns a fitted binary classification decision tree based on the input
variables contained in the table Tbl and output in vector Y.

tree = fitctree(X,Y) returns a fitted binary classification decision tree based on the input
variables contained in matrix X and output Y. The returned binary tree splits branching nodes based
on the values of a column of X.

tree = fitctree( ___ ,Name,Value) fits a tree with additional options specified by one or more
name-value pair arguments, using any of the previous syntaxes. For example, you can specify the
algorithm used to find the best split on a categorical predictor, grow a cross-validated tree, or hold
out a fraction of the input data for validation.

Examples

Grow a Classification Tree

Grow a classification tree using the ionosphere data set.

load ionosphere
tc = fitctree(X,Y)

tc = 
  ClassificationTree
             ResponseName: 'Y'
    CategoricalPredictors: []
               ClassNames: {'b'  'g'}
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           ScoreTransform: 'none'
          NumObservations: 351

  Properties, Methods

Control Tree Depth

You can control the depth of the trees using the MaxNumSplits, MinLeafSize, or MinParentSize
name-value pair parameters. fitctree grows deep decision trees by default. You can grow shallower
trees to reduce model complexity or computation time.

Load the ionosphere data set.

load ionosphere

The default values of the tree depth controllers for growing classification trees are:

• n - 1 for MaxNumSplits. n is the training sample size.
• 1 for MinLeafSize.
• 10 for MinParentSize.

These default values tend to grow deep trees for large training sample sizes.

Train a classification tree using the default values for tree depth control. Cross-validate the model by
using 10-fold cross-validation.

rng(1); % For reproducibility
MdlDefault = fitctree(X,Y,'CrossVal','on');

Draw a histogram of the number of imposed splits on the trees. Also, view one of the trees.

numBranches = @(x)sum(x.IsBranch);
mdlDefaultNumSplits = cellfun(numBranches, MdlDefault.Trained);

figure;
histogram(mdlDefaultNumSplits)
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view(MdlDefault.Trained{1},'Mode','graph')
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The average number of splits is around 15.

Suppose that you want a classification tree that is not as complex (deep) as the ones trained using the
default number of splits. Train another classification tree, but set the maximum number of splits at 7,
which is about half the mean number of splits from the default classification tree. Cross-validate the
model by using 10-fold cross-validation.

Mdl7 = fitctree(X,Y,'MaxNumSplits',7,'CrossVal','on');
view(Mdl7.Trained{1},'Mode','graph')
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Compare the cross-validation classification errors of the models.

classErrorDefault = kfoldLoss(MdlDefault)

classErrorDefault = 0.1168

classError7 = kfoldLoss(Mdl7)

classError7 = 0.1311

Mdl7 is much less complex and performs only slightly worse than MdlDefault.

Optimize Classification Tree

This example shows how to optimize hyperparameters automatically using fitctree. The example
uses Fisher's iris data.

Load Fisher's iris data.

load fisheriris
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Optimize the cross-validation loss of the classifier, using the data in meas to predict the response in
species.

X = meas;
Y = species;
Mdl = fitctree(X,Y,'OptimizeHyperparameters','auto')

|======================================================================================|
| Iter | Eval   | Objective   | Objective   | BestSoFar   | BestSoFar   |  MinLeafSize |
|      | result |             | runtime     | (observed)  | (estim.)    |              |
|======================================================================================|
|    1 | Best   |    0.066667 |      1.0847 |    0.066667 |    0.066667 |           31 |
|    2 | Accept |    0.066667 |     0.34935 |    0.066667 |    0.066667 |           12 |
|    3 | Best   |        0.04 |     0.35644 |        0.04 |    0.040003 |            2 |
|    4 | Accept |     0.66667 |     0.24566 |        0.04 |     0.15796 |           73 |
|    5 | Accept |        0.04 |     0.23208 |        0.04 |    0.040009 |            2 |
|    6 | Accept |        0.04 |      0.1841 |        0.04 |    0.040007 |            3 |
|    7 | Accept |        0.04 |     0.22103 |        0.04 |    0.040009 |            4 |
|    8 | Best   |    0.033333 |     0.18761 |    0.033333 |    0.033343 |            1 |
|    9 | Accept |    0.066667 |     0.18941 |    0.033333 |    0.033343 |           20 |
|   10 | Accept |    0.066667 |     0.18816 |    0.033333 |    0.033341 |            7 |
|   11 | Accept |    0.033333 |     0.18365 |    0.033333 |    0.033337 |            1 |
|   12 | Accept |    0.033333 |     0.19285 |    0.033333 |    0.033335 |            1 |
|   13 | Accept |    0.033333 |     0.19794 |    0.033333 |    0.033335 |            1 |
|   14 | Accept |        0.34 |     0.19466 |    0.033333 |    0.033335 |           45 |
|   15 | Accept |    0.066667 |     0.19632 |    0.033333 |    0.033335 |           26 |
|   16 | Accept |    0.046667 |     0.20265 |    0.033333 |    0.033335 |            5 |
|   17 | Accept |    0.066667 |     0.19415 |    0.033333 |    0.033335 |           15 |
|   18 | Accept |    0.066667 |     0.22097 |    0.033333 |    0.033335 |            9 |
|   19 | Accept |    0.066667 |     0.21341 |    0.033333 |    0.033335 |            6 |
|   20 | Accept |    0.066667 |      0.1765 |    0.033333 |    0.033335 |           36 |
|======================================================================================|
| Iter | Eval   | Objective   | Objective   | BestSoFar   | BestSoFar   |  MinLeafSize |
|      | result |             | runtime     | (observed)  | (estim.)    |              |
|======================================================================================|
|   21 | Accept |     0.33333 |      0.2085 |    0.033333 |    0.034481 |           58 |
|   22 | Accept |        0.04 |     0.22747 |    0.033333 |    0.034431 |            2 |
|   23 | Accept |        0.04 |     0.19862 |    0.033333 |    0.034365 |            3 |
|   24 | Accept |        0.04 |     0.20951 |    0.033333 |    0.034316 |            4 |
|   25 | Accept |    0.066667 |     0.18959 |    0.033333 |    0.034253 |           17 |
|   26 | Accept |    0.066667 |     0.19929 |    0.033333 |    0.034203 |           10 |
|   27 | Accept |    0.066667 |     0.19043 |    0.033333 |    0.034164 |           23 |
|   28 | Accept |    0.066667 |     0.19129 |    0.033333 |    0.033335 |            8 |
|   29 | Accept |        0.34 |     0.20439 |    0.033333 |      0.0341 |           51 |
|   30 | Accept |    0.066667 |     0.21101 |    0.033333 |    0.033335 |           13 |
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__________________________________________________________
Optimization completed.
MaxObjectiveEvaluations of 30 reached.
Total function evaluations: 30
Total elapsed time: 50.3544 seconds
Total objective function evaluation time: 7.2417

Best observed feasible point:
    MinLeafSize
    ___________

         1     

Observed objective function value = 0.033333
Estimated objective function value = 0.033335
Function evaluation time = 0.18761

Best estimated feasible point (according to models):
    MinLeafSize
    ___________
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         1     

Estimated objective function value = 0.033335
Estimated function evaluation time = 0.22102

Mdl = 
  ClassificationTree
                         ResponseName: 'Y'
                CategoricalPredictors: []
                           ClassNames: {'setosa'  'versicolor'  'virginica'}
                       ScoreTransform: 'none'
                      NumObservations: 150
    HyperparameterOptimizationResults: [1x1 BayesianOptimization]

  Properties, Methods

Unbiased Predictor Importance Estimates

Load the census1994 data set. Consider a model that predicts a person's salary category given their
age, working class, education level, martial status, race, sex, capital gain and loss, and number of
working hours per week.

load census1994
X = adultdata(:,{'age','workClass','education_num','marital_status','race',...
    'sex','capital_gain','capital_loss','hours_per_week','salary'});

Display the number of categories represented in the categorical variables using summary.

summary(X)

Variables:

    age: 32561x1 double

        Values:

            Min          17   
            Median       37   
            Max          90   

    workClass: 32561x1 categorical

        Values:

            Federal-gov            960  
            Local-gov             2093  
            Never-worked             7  
            Private              22696  
            Self-emp-inc          1116  
            Self-emp-not-inc      2541  
            State-gov             1298  
            Without-pay             14  
            NumMissing            1836  

35 Functions

35-2222



    education_num: 32561x1 double

        Values:

            Min           1   
            Median       10   
            Max          16   

    marital_status: 32561x1 categorical

        Values:

            Divorced                   4443  
            Married-AF-spouse            23  
            Married-civ-spouse        14976  
            Married-spouse-absent       418  
            Never-married             10683  
            Separated                  1025  
            Widowed                     993  

    race: 32561x1 categorical

        Values:

            Amer-Indian-Eskimo       311  
            Asian-Pac-Islander      1039  
            Black                   3124  
            Other                    271  
            White                  27816  

    sex: 32561x1 categorical

        Values:

            Female     10771  
            Male       21790  

    capital_gain: 32561x1 double

        Values:

            Min            0  
            Median         0  
            Max        99999  

    capital_loss: 32561x1 double

        Values:

            Min            0  
            Median         0  
            Max         4356  

    hours_per_week: 32561x1 double

        Values:

            Min           1   
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            Median       40   
            Max          99   

    salary: 32561x1 categorical

        Values:

            <=50K     24720  
            >50K       7841  

Because there are few categories represented in the categorical variables compared to levels in the
continuous variables, the standard CART, predictor-splitting algorithm prefers splitting a continuous
predictor over the categorical variables.

Train a classification tree using the entire data set. To grow unbiased trees, specify usage of the
curvature test for splitting predictors. Because there are missing observations in the data, specify
usage of surrogate splits.

Mdl = fitctree(X,'salary','PredictorSelection','curvature',...
    'Surrogate','on');

Estimate predictor importance values by summing changes in the risk due to splits on every predictor
and dividing the sum by the number of branch nodes. Compare the estimates using a bar graph.

imp = predictorImportance(Mdl);

figure;
bar(imp);
title('Predictor Importance Estimates');
ylabel('Estimates');
xlabel('Predictors');
h = gca;
h.XTickLabel = Mdl.PredictorNames;
h.XTickLabelRotation = 45;
h.TickLabelInterpreter = 'none';
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In this case, capital_gain is the most important predictor, followed by education_num.

Optimize Classification Tree on Tall Array

This example shows how to optimize hyperparameters of a classification tree automatically using a
tall array. The sample data set airlinesmall.csv is a large data set that contains a tabular file of
airline flight data. This example creates a tall table containing the data and uses it to run the
optimization procedure.

When you perform calculations on tall arrays, MATLAB® uses either a parallel pool (default if you
have Parallel Computing Toolbox™) or the local MATLAB session. If you want to run the example
using the local MATLAB session when you have Parallel Computing Toolbox, you can change the
global execution environment by using the mapreducer function.

Create a datastore that references the folder location with the data. Select a subset of the variables
to work with, and treat 'NA' values as missing data so that datastore replaces them with NaN
values. Create a tall table that contains the data in the datastore.

ds = datastore('airlinesmall.csv');
ds.SelectedVariableNames = {'Month','DayofMonth','DayOfWeek',...
                            'DepTime','ArrDelay','Distance','DepDelay'};
ds.TreatAsMissing = 'NA';
tt  = tall(ds) % Tall table
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Starting parallel pool (parpool) using the 'local' profile ...
Connected to the parallel pool (number of workers: 6).

tt =

  M×7 tall table

    Month    DayofMonth    DayOfWeek    DepTime    ArrDelay    Distance    DepDelay
    _____    __________    _________    _______    ________    ________    ________

     10          21            3          642          8         308          12   
     10          26            1         1021          8         296           1   
     10          23            5         2055         21         480          20   
     10          23            5         1332         13         296          12   
     10          22            4          629          4         373          -1   
     10          28            3         1446         59         308          63   
     10           8            4          928          3         447          -2   
     10          10            6          859         11         954          -1   
      :          :             :           :          :           :           :
      :          :             :           :          :           :           :

Determine the flights that are late by 10 minutes or more by defining a logical variable that is true for
a late flight. This variable contains the class labels. A preview of this variable includes the first few
rows.

Y = tt.DepDelay > 10 % Class labels

Y =

  M×1 tall logical array

   1
   0
   1
   1
   0
   1
   0
   0
   :
   :

Create a tall array for the predictor data.

X = tt{:,1:end-1} % Predictor data

X =

  M×6 tall double matrix

          10          21           3         642           8         308
          10          26           1        1021           8         296
          10          23           5        2055          21         480
          10          23           5        1332          13         296
          10          22           4         629           4         373
          10          28           3        1446          59         308
          10           8           4         928           3         447
          10          10           6         859          11         954
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          :           :            :          :           :           :
          :           :            :          :           :           :

Remove rows in X and Y that contain missing data.

R = rmmissing([X Y]); % Data with missing entries removed
X = R(:,1:end-1); 
Y = R(:,end); 

Standardize the predictor variables.

Z = zscore(X);

Optimize hyperparameters automatically using the 'OptimizeHyperparameters' name-value pair
argument. Find the optimal 'MinLeafSize' value that minimizes holdout cross-validation loss.
(Specifying 'auto' uses 'MinLeafSize'.) For reproducibility, use the 'expected-improvement-
plus' acquisition function and set the seeds of the random number generators using rng and
tallrng. The results can vary depending on the number of workers and the execution environment
for the tall arrays. For details, see “Control Where Your Code Runs”.

rng('default') 
tallrng('default')
[Mdl,FitInfo,HyperparameterOptimizationResults] = fitctree(Z,Y,...
    'OptimizeHyperparameters','auto',...
    'HyperparameterOptimizationOptions',struct('Holdout',0.3,...
    'AcquisitionFunctionName','expected-improvement-plus'))

Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 3: Completed in 5.6 sec
- Pass 2 of 3: Completed in 2.1 sec
- Pass 3 of 3: Completed in 3.4 sec
Evaluation completed in 13 sec
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 1: Completed in 0.73 sec
Evaluation completed in 0.9 sec
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 1: Completed in 1.2 sec
Evaluation completed in 1.5 sec
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 4: Completed in 0.64 sec
- Pass 2 of 4: Completed in 1.1 sec
- Pass 3 of 4: Completed in 0.72 sec
- Pass 4 of 4: Completed in 1.1 sec
Evaluation completed in 5.9 sec
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 4: Completed in 0.53 sec
- Pass 2 of 4: Completed in 0.73 sec
- Pass 3 of 4: Completed in 0.58 sec
- Pass 4 of 4: Completed in 0.8 sec
Evaluation completed in 3.5 sec
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 4: Completed in 0.54 sec
- Pass 2 of 4: Completed in 0.72 sec
- Pass 3 of 4: Completed in 0.54 sec
- Pass 4 of 4: Completed in 0.79 sec
Evaluation completed in 3.5 sec
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 4: Completed in 0.51 sec

 fitctree

35-2227



- Pass 2 of 4: Completed in 0.72 sec
- Pass 3 of 4: Completed in 0.59 sec
- Pass 4 of 4: Completed in 0.87 sec
Evaluation completed in 3.3 sec
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 4: Completed in 0.56 sec
- Pass 2 of 4: Completed in 0.8 sec
- Pass 3 of 4: Completed in 0.54 sec
- Pass 4 of 4: Completed in 0.89 sec
Evaluation completed in 3.4 sec
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 4: Completed in 0.57 sec
- Pass 2 of 4: Completed in 0.74 sec
- Pass 3 of 4: Completed in 0.58 sec
- Pass 4 of 4: Completed in 1 sec
Evaluation completed in 3.5 sec
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 4: Completed in 0.54 sec
- Pass 2 of 4: Completed in 1.3 sec
- Pass 3 of 4: Completed in 0.68 sec
- Pass 4 of 4: Completed in 1.3 sec
Evaluation completed in 4.3 sec
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 4: Completed in 0.65 sec
- Pass 2 of 4: Completed in 0.73 sec
- Pass 3 of 4: Completed in 0.65 sec
- Pass 4 of 4: Completed in 1.7 sec
Evaluation completed in 4.4 sec
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 4: Completed in 0.63 sec
- Pass 2 of 4: Completed in 0.85 sec
- Pass 3 of 4: Completed in 0.58 sec
- Pass 4 of 4: Completed in 2.2 sec
Evaluation completed in 4.9 sec
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 4: Completed in 1.2 sec
- Pass 2 of 4: Completed in 0.88 sec
- Pass 3 of 4: Completed in 0.58 sec
- Pass 4 of 4: Completed in 3 sec
Evaluation completed in 6.9 sec
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 4: Completed in 0.72 sec
- Pass 2 of 4: Completed in 0.96 sec
- Pass 3 of 4: Completed in 0.59 sec
- Pass 4 of 4: Completed in 4.2 sec
Evaluation completed in 7.2 sec
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 4: Completed in 0.77 sec
- Pass 2 of 4: Completed in 0.95 sec
- Pass 3 of 4: Completed in 0.65 sec
- Pass 4 of 4: Completed in 4.8 sec
Evaluation completed in 7.9 sec
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 4: Completed in 0.79 sec
- Pass 2 of 4: Completed in 1 sec
- Pass 3 of 4: Completed in 0.61 sec
- Pass 4 of 4: Completed in 5.1 sec
Evaluation completed in 8.4 sec
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Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 4: Completed in 0.89 sec
- Pass 2 of 4: Completed in 1.1 sec
- Pass 3 of 4: Completed in 0.59 sec
- Pass 4 of 4: Completed in 5.8 sec
Evaluation completed in 9.3 sec
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 4: Completed in 1 sec
- Pass 2 of 4: Completed in 1.2 sec
- Pass 3 of 4: Completed in 0.63 sec
- Pass 4 of 4: Completed in 5.2 sec
Evaluation completed in 8.9 sec
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 4: Completed in 1.6 sec
- Pass 2 of 4: Completed in 1.3 sec
- Pass 3 of 4: Completed in 0.74 sec
- Pass 4 of 4: Completed in 4.8 sec
Evaluation completed in 9.2 sec
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 4: Completed in 1 sec
- Pass 2 of 4: Completed in 1.3 sec
- Pass 3 of 4: Completed in 0.68 sec
- Pass 4 of 4: Completed in 3.9 sec
Evaluation completed in 7.7 sec
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 4: Completed in 1.6 sec
- Pass 2 of 4: Completed in 1.3 sec
- Pass 3 of 4: Completed in 0.7 sec
- Pass 4 of 4: Completed in 3 sec
Evaluation completed in 7.3 sec
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 4: Completed in 1.1 sec
- Pass 2 of 4: Completed in 1.3 sec
- Pass 3 of 4: Completed in 0.66 sec
- Pass 4 of 4: Completed in 2.5 sec
Evaluation completed in 6.1 sec
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 4: Completed in 1.1 sec
- Pass 2 of 4: Completed in 1.3 sec
- Pass 3 of 4: Completed in 0.66 sec
- Pass 4 of 4: Completed in 2.2 sec
Evaluation completed in 5.9 sec
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 4: Completed in 1.1 sec
- Pass 2 of 4: Completed in 1.3 sec
- Pass 3 of 4: Completed in 0.69 sec
- Pass 4 of 4: Completed in 1.9 sec
Evaluation completed in 5.5 sec
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 4: Completed in 1.2 sec
- Pass 2 of 4: Completed in 1.4 sec
- Pass 3 of 4: Completed in 0.67 sec
- Pass 4 of 4: Completed in 1.6 sec
Evaluation completed in 5.5 sec
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 4: Completed in 1.3 sec
- Pass 2 of 4: Completed in 1.4 sec
- Pass 3 of 4: Completed in 0.65 sec
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- Pass 4 of 4: Completed in 1.5 sec
Evaluation completed in 5.4 sec
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 4: Completed in 1.1 sec
- Pass 2 of 4: Completed in 1.3 sec
- Pass 3 of 4: Completed in 0.67 sec
- Pass 4 of 4: Completed in 1.3 sec
Evaluation completed in 5 sec
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 4: Completed in 1.2 sec
- Pass 2 of 4: Completed in 1.3 sec
- Pass 3 of 4: Completed in 0.73 sec
- Pass 4 of 4: Completed in 1.3 sec
Evaluation completed in 5.1 sec
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 4: Completed in 1.1 sec
- Pass 2 of 4: Completed in 1.3 sec
- Pass 3 of 4: Completed in 0.65 sec
- Pass 4 of 4: Completed in 1.4 sec
Evaluation completed in 5.1 sec
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 1: Completed in 2.4 sec
Evaluation completed in 2.6 sec
|======================================================================================|
| Iter | Eval   | Objective   | Objective   | BestSoFar   | BestSoFar   |  MinLeafSize |
|      | result |             | runtime     | (observed)  | (estim.)    |              |
|======================================================================================|
|    1 | Best   |     0.11572 |      197.12 |     0.11572 |     0.11572 |           10 |
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 1: Completed in 0.4 sec
Evaluation completed in 0.56 sec
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 1: Completed in 0.93 sec
Evaluation completed in 1.1 sec
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 4: Completed in 0.5 sec
- Pass 2 of 4: Completed in 0.7 sec
- Pass 3 of 4: Completed in 1.1 sec
- Pass 4 of 4: Completed in 0.84 sec
Evaluation completed in 3.7 sec
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 1: Completed in 1.4 sec
Evaluation completed in 1.6 sec
|    2 | Accept |     0.19635 |      10.496 |     0.11572 |     0.12008 |        48298 |
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 1: Completed in 0.33 sec
Evaluation completed in 0.47 sec
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 1: Completed in 0.83 sec
Evaluation completed in 0.99 sec
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 4: Completed in 0.49 sec
- Pass 2 of 4: Completed in 0.68 sec
- Pass 3 of 4: Completed in 0.52 sec
- Pass 4 of 4: Completed in 0.74 sec
Evaluation completed in 3 sec
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 4: Completed in 0.48 sec
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- Pass 2 of 4: Completed in 0.69 sec
- Pass 3 of 4: Completed in 0.51 sec
- Pass 4 of 4: Completed in 0.73 sec
Evaluation completed in 3 sec
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 4: Completed in 0.51 sec
- Pass 2 of 4: Completed in 0.71 sec
- Pass 3 of 4: Completed in 0.68 sec
- Pass 4 of 4: Completed in 0.77 sec
Evaluation completed in 3.2 sec
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 4: Completed in 0.48 sec
- Pass 2 of 4: Completed in 0.7 sec
- Pass 3 of 4: Completed in 0.55 sec
- Pass 4 of 4: Completed in 0.86 sec
Evaluation completed in 3.1 sec
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 4: Completed in 0.5 sec
- Pass 2 of 4: Completed in 0.69 sec
- Pass 3 of 4: Completed in 0.55 sec
- Pass 4 of 4: Completed in 0.76 sec
Evaluation completed in 3.1 sec
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 4: Completed in 0.52 sec
- Pass 2 of 4: Completed in 0.7 sec
- Pass 3 of 4: Completed in 0.5 sec
- Pass 4 of 4: Completed in 0.76 sec
Evaluation completed in 3 sec
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 4: Completed in 0.54 sec
- Pass 2 of 4: Completed in 0.75 sec
- Pass 3 of 4: Completed in 0.55 sec
- Pass 4 of 4: Completed in 1.3 sec
Evaluation completed in 4 sec
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 4: Completed in 0.53 sec
- Pass 2 of 4: Completed in 0.74 sec
- Pass 3 of 4: Completed in 0.55 sec
- Pass 4 of 4: Completed in 0.78 sec
Evaluation completed in 3.1 sec
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 4: Completed in 0.56 sec
- Pass 2 of 4: Completed in 0.76 sec
- Pass 3 of 4: Completed in 0.56 sec
- Pass 4 of 4: Completed in 0.78 sec
Evaluation completed in 3.2 sec
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 1: Completed in 0.75 sec
Evaluation completed in 0.87 sec
|    3 | Best   |      0.1048 |      44.614 |      0.1048 |     0.11431 |         3166 |
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 1: Completed in 0.3 sec
Evaluation completed in 0.45 sec
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 1: Completed in 0.83 sec
Evaluation completed in 0.97 sec
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 4: Completed in 0.99 sec
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- Pass 2 of 4: Completed in 0.68 sec
- Pass 3 of 4: Completed in 0.52 sec
- Pass 4 of 4: Completed in 0.73 sec
Evaluation completed in 3.5 sec
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 4: Completed in 0.47 sec
- Pass 2 of 4: Completed in 0.76 sec
- Pass 3 of 4: Completed in 0.54 sec
- Pass 4 of 4: Completed in 0.82 sec
Evaluation completed in 3.2 sec
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 4: Completed in 0.52 sec
- Pass 2 of 4: Completed in 0.74 sec
- Pass 3 of 4: Completed in 0.54 sec
- Pass 4 of 4: Completed in 0.81 sec
Evaluation completed in 3.2 sec
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 4: Completed in 0.55 sec
- Pass 2 of 4: Completed in 0.7 sec
- Pass 3 of 4: Completed in 0.53 sec
- Pass 4 of 4: Completed in 0.81 sec
Evaluation completed in 3.1 sec
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 4: Completed in 0.52 sec
- Pass 2 of 4: Completed in 0.77 sec
- Pass 3 of 4: Completed in 0.58 sec
- Pass 4 of 4: Completed in 0.89 sec
Evaluation completed in 3.3 sec
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 4: Completed in 0.51 sec
- Pass 2 of 4: Completed in 0.74 sec
- Pass 3 of 4: Completed in 0.6 sec
- Pass 4 of 4: Completed in 1.5 sec
Evaluation completed in 3.9 sec
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 4: Completed in 1 sec
- Pass 2 of 4: Completed in 0.75 sec
- Pass 3 of 4: Completed in 0.55 sec
- Pass 4 of 4: Completed in 1.1 sec
Evaluation completed in 4.1 sec
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 4: Completed in 0.52 sec
- Pass 2 of 4: Completed in 0.78 sec
- Pass 3 of 4: Completed in 0.5 sec
- Pass 4 of 4: Completed in 1.3 sec
Evaluation completed in 3.6 sec
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 4: Completed in 0.63 sec
- Pass 2 of 4: Completed in 1.3 sec
- Pass 3 of 4: Completed in 0.61 sec
- Pass 4 of 4: Completed in 1.4 sec
Evaluation completed in 4.5 sec
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 4: Completed in 0.59 sec
- Pass 2 of 4: Completed in 0.8 sec
- Pass 3 of 4: Completed in 0.57 sec
- Pass 4 of 4: Completed in 1.5 sec
Evaluation completed in 4.1 sec
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Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 4: Completed in 0.66 sec
- Pass 2 of 4: Completed in 0.81 sec
- Pass 3 of 4: Completed in 0.52 sec
- Pass 4 of 4: Completed in 1.5 sec
Evaluation completed in 4.2 sec
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 4: Completed in 0.62 sec
- Pass 2 of 4: Completed in 0.75 sec
- Pass 3 of 4: Completed in 0.61 sec
- Pass 4 of 4: Completed in 1.4 sec
Evaluation completed in 3.9 sec
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 4: Completed in 0.61 sec
- Pass 2 of 4: Completed in 0.78 sec
- Pass 3 of 4: Completed in 1.1 sec
- Pass 4 of 4: Completed in 1.6 sec
Evaluation completed in 4.7 sec
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 4: Completed in 0.6 sec
- Pass 2 of 4: Completed in 0.81 sec
- Pass 3 of 4: Completed in 0.55 sec
- Pass 4 of 4: Completed in 1.5 sec
Evaluation completed in 4 sec
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 4: Completed in 0.61 sec
- Pass 2 of 4: Completed in 0.78 sec
- Pass 3 of 4: Completed in 0.55 sec
- Pass 4 of 4: Completed in 0.9 sec
Evaluation completed in 3.4 sec
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 4: Completed in 0.59 sec
- Pass 2 of 4: Completed in 0.81 sec
- Pass 3 of 4: Completed in 0.53 sec
- Pass 4 of 4: Completed in 0.81 sec
Evaluation completed in 3.3 sec
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 4: Completed in 0.59 sec
- Pass 2 of 4: Completed in 0.78 sec
- Pass 3 of 4: Completed in 1 sec
- Pass 4 of 4: Completed in 1.3 sec
Evaluation completed in 4.3 sec
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 1: Completed in 0.8 sec
Evaluation completed in 0.94 sec
|    4 | Best   |     0.10094 |      91.723 |     0.10094 |     0.10574 |          180 |
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 1: Completed in 0.3 sec
Evaluation completed in 0.42 sec
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 1: Completed in 0.93 sec
Evaluation completed in 1.1 sec
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 4: Completed in 0.55 sec
- Pass 2 of 4: Completed in 0.66 sec
- Pass 3 of 4: Completed in 0.55 sec
- Pass 4 of 4: Completed in 0.83 sec
Evaluation completed in 3.1 sec
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Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 4: Completed in 0.49 sec
- Pass 2 of 4: Completed in 0.71 sec
- Pass 3 of 4: Completed in 0.54 sec
- Pass 4 of 4: Completed in 0.76 sec
Evaluation completed in 3.1 sec
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 4: Completed in 0.5 sec
- Pass 2 of 4: Completed in 0.7 sec
- Pass 3 of 4: Completed in 0.56 sec
- Pass 4 of 4: Completed in 0.78 sec
Evaluation completed in 3.1 sec
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 4: Completed in 0.56 sec
- Pass 2 of 4: Completed in 0.72 sec
- Pass 3 of 4: Completed in 0.51 sec
- Pass 4 of 4: Completed in 0.81 sec
Evaluation completed in 3.2 sec
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 4: Completed in 0.52 sec
- Pass 2 of 4: Completed in 1.3 sec
- Pass 3 of 4: Completed in 1.1 sec
- Pass 4 of 4: Completed in 0.88 sec
Evaluation completed in 4.3 sec
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 4: Completed in 0.52 sec
- Pass 2 of 4: Completed in 0.7 sec
- Pass 3 of 4: Completed in 0.5 sec
- Pass 4 of 4: Completed in 0.98 sec
Evaluation completed in 3.3 sec
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 4: Completed in 0.56 sec
- Pass 2 of 4: Completed in 0.74 sec
- Pass 3 of 4: Completed in 0.5 sec
- Pass 4 of 4: Completed in 1.1 sec
Evaluation completed in 3.5 sec
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 4: Completed in 0.61 sec
- Pass 2 of 4: Completed in 0.81 sec
- Pass 3 of 4: Completed in 0.56 sec
- Pass 4 of 4: Completed in 1.2 sec
Evaluation completed in 3.8 sec
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 4: Completed in 0.59 sec
- Pass 2 of 4: Completed in 0.81 sec
- Pass 3 of 4: Completed in 0.7 sec
- Pass 4 of 4: Completed in 1.4 sec
Evaluation completed in 4.1 sec
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 4: Completed in 0.56 sec
- Pass 2 of 4: Completed in 0.73 sec
- Pass 3 of 4: Completed in 0.59 sec
- Pass 4 of 4: Completed in 1.4 sec
Evaluation completed in 3.8 sec
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 4: Completed in 0.58 sec
- Pass 2 of 4: Completed in 0.8 sec
- Pass 3 of 4: Completed in 0.52 sec
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- Pass 4 of 4: Completed in 1.2 sec
Evaluation completed in 3.7 sec
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 4: Completed in 0.64 sec
- Pass 2 of 4: Completed in 0.79 sec
- Pass 3 of 4: Completed in 0.54 sec
- Pass 4 of 4: Completed in 1.1 sec
Evaluation completed in 3.6 sec
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 4: Completed in 0.57 sec
- Pass 2 of 4: Completed in 0.78 sec
- Pass 3 of 4: Completed in 0.56 sec
- Pass 4 of 4: Completed in 0.97 sec
Evaluation completed in 3.5 sec
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 4: Completed in 0.55 sec
- Pass 2 of 4: Completed in 0.75 sec
- Pass 3 of 4: Completed in 0.55 sec
- Pass 4 of 4: Completed in 0.89 sec
Evaluation completed in 3.3 sec
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 4: Completed in 0.6 sec
- Pass 2 of 4: Completed in 1.3 sec
- Pass 3 of 4: Completed in 0.61 sec
- Pass 4 of 4: Completed in 0.85 sec
Evaluation completed in 3.9 sec
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 4: Completed in 0.6 sec
- Pass 2 of 4: Completed in 0.82 sec
- Pass 3 of 4: Completed in 0.56 sec
- Pass 4 of 4: Completed in 0.79 sec
Evaluation completed in 3.4 sec
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 1: Completed in 1.3 sec
Evaluation completed in 1.4 sec
|    5 | Best   |     0.10087 |       82.84 |     0.10087 |     0.10085 |          219 |
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 1: Completed in 0.32 sec
Evaluation completed in 0.45 sec
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 1: Completed in 0.87 sec
Evaluation completed in 1 sec
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 4: Completed in 0.5 sec
- Pass 2 of 4: Completed in 0.7 sec
- Pass 3 of 4: Completed in 0.56 sec
- Pass 4 of 4: Completed in 0.76 sec
Evaluation completed in 3.1 sec
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 4: Completed in 0.53 sec
- Pass 2 of 4: Completed in 0.74 sec
- Pass 3 of 4: Completed in 0.54 sec
- Pass 4 of 4: Completed in 0.79 sec
Evaluation completed in 3.2 sec
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 4: Completed in 0.49 sec
- Pass 2 of 4: Completed in 0.66 sec
- Pass 3 of 4: Completed in 0.5 sec
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- Pass 4 of 4: Completed in 0.78 sec
Evaluation completed in 3 sec
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 4: Completed in 0.49 sec
- Pass 2 of 4: Completed in 0.68 sec
- Pass 3 of 4: Completed in 0.51 sec
- Pass 4 of 4: Completed in 0.81 sec
Evaluation completed in 3.1 sec
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 4: Completed in 0.55 sec
- Pass 2 of 4: Completed in 0.68 sec
- Pass 3 of 4: Completed in 0.54 sec
- Pass 4 of 4: Completed in 0.86 sec
Evaluation completed in 3.2 sec
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 4: Completed in 0.51 sec
- Pass 2 of 4: Completed in 0.71 sec
- Pass 3 of 4: Completed in 0.53 sec
- Pass 4 of 4: Completed in 1 sec
Evaluation completed in 3.4 sec
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 4: Completed in 0.59 sec
- Pass 2 of 4: Completed in 1.2 sec
- Pass 3 of 4: Completed in 0.55 sec
- Pass 4 of 4: Completed in 0.85 sec
Evaluation completed in 3.8 sec
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 4: Completed in 0.6 sec
- Pass 2 of 4: Completed in 0.74 sec
- Pass 3 of 4: Completed in 0.6 sec
- Pass 4 of 4: Completed in 0.84 sec
Evaluation completed in 3.3 sec
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 4: Completed in 0.51 sec
- Pass 2 of 4: Completed in 0.77 sec
- Pass 3 of 4: Completed in 0.58 sec
- Pass 4 of 4: Completed in 0.87 sec
Evaluation completed in 3.3 sec
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 4: Completed in 0.53 sec
- Pass 2 of 4: Completed in 0.78 sec
- Pass 3 of 4: Completed in 1.1 sec
- Pass 4 of 4: Completed in 0.92 sec
Evaluation completed in 3.9 sec
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 4: Completed in 0.54 sec
- Pass 2 of 4: Completed in 0.81 sec
- Pass 3 of 4: Completed in 0.59 sec
- Pass 4 of 4: Completed in 0.77 sec
Evaluation completed in 3.2 sec
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 4: Completed in 0.53 sec
- Pass 2 of 4: Completed in 1.2 sec
- Pass 3 of 4: Completed in 0.68 sec
- Pass 4 of 4: Completed in 0.86 sec
Evaluation completed in 3.9 sec
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 1: Completed in 0.77 sec
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Evaluation completed in 0.93 sec
|    6 | Accept |     0.10155 |      61.043 |     0.10087 |     0.10089 |         1089 |
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 1: Completed in 0.33 sec
Evaluation completed in 0.46 sec
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 1: Completed in 0.89 sec
Evaluation completed in 1 sec
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 4: Completed in 0.56 sec
- Pass 2 of 4: Completed in 0.72 sec
- Pass 3 of 4: Completed in 0.56 sec
- Pass 4 of 4: Completed in 0.8 sec
Evaluation completed in 3.2 sec
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 4: Completed in 0.53 sec
- Pass 2 of 4: Completed in 0.69 sec
- Pass 3 of 4: Completed in 0.54 sec
- Pass 4 of 4: Completed in 0.85 sec
Evaluation completed in 3.1 sec
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 4: Completed in 0.51 sec
- Pass 2 of 4: Completed in 1.2 sec
- Pass 3 of 4: Completed in 0.59 sec
- Pass 4 of 4: Completed in 0.83 sec
Evaluation completed in 3.8 sec
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 4: Completed in 1 sec
- Pass 2 of 4: Completed in 0.76 sec
- Pass 3 of 4: Completed in 0.56 sec
- Pass 4 of 4: Completed in 0.87 sec
Evaluation completed in 4 sec
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 4: Completed in 1 sec
- Pass 2 of 4: Completed in 0.77 sec
- Pass 3 of 4: Completed in 0.53 sec
- Pass 4 of 4: Completed in 0.9 sec
Evaluation completed in 3.8 sec
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 4: Completed in 1 sec
- Pass 2 of 4: Completed in 0.77 sec
- Pass 3 of 4: Completed in 0.51 sec
- Pass 4 of 4: Completed in 0.98 sec
Evaluation completed in 3.9 sec
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 4: Completed in 1 sec
- Pass 2 of 4: Completed in 0.78 sec
- Pass 3 of 4: Completed in 0.62 sec
- Pass 4 of 4: Completed in 1.1 sec
Evaluation completed in 4.2 sec
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 4: Completed in 0.52 sec
- Pass 2 of 4: Completed in 0.71 sec
- Pass 3 of 4: Completed in 0.53 sec
- Pass 4 of 4: Completed in 1.5 sec
Evaluation completed in 3.9 sec
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 4: Completed in 0.59 sec
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- Pass 2 of 4: Completed in 0.72 sec
- Pass 3 of 4: Completed in 0.59 sec
- Pass 4 of 4: Completed in 2 sec
Evaluation completed in 4.5 sec
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 4: Completed in 0.59 sec
- Pass 2 of 4: Completed in 0.81 sec
- Pass 3 of 4: Completed in 0.57 sec
- Pass 4 of 4: Completed in 2.7 sec
Evaluation completed in 5.4 sec
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 4: Completed in 0.64 sec
- Pass 2 of 4: Completed in 0.87 sec
- Pass 3 of 4: Completed in 1.2 sec
- Pass 4 of 4: Completed in 3.7 sec
Evaluation completed in 7.1 sec
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 4: Completed in 0.73 sec
- Pass 2 of 4: Completed in 0.92 sec
- Pass 3 of 4: Completed in 0.6 sec
- Pass 4 of 4: Completed in 4.4 sec
Evaluation completed in 7.3 sec
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 4: Completed in 0.86 sec
- Pass 2 of 4: Completed in 1.5 sec
- Pass 3 of 4: Completed in 0.64 sec
- Pass 4 of 4: Completed in 4.8 sec
Evaluation completed in 8.6 sec
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 4: Completed in 0.9 sec
- Pass 2 of 4: Completed in 1.1 sec
- Pass 3 of 4: Completed in 0.65 sec
- Pass 4 of 4: Completed in 5.2 sec
Evaluation completed in 8.5 sec
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 4: Completed in 1 sec
- Pass 2 of 4: Completed in 1.3 sec
- Pass 3 of 4: Completed in 0.73 sec
- Pass 4 of 4: Completed in 5.6 sec
Evaluation completed in 9.4 sec
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 4: Completed in 1.5 sec
- Pass 2 of 4: Completed in 1.6 sec
- Pass 3 of 4: Completed in 0.75 sec
- Pass 4 of 4: Completed in 5.8 sec
Evaluation completed in 10 sec
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 4: Completed in 1.3 sec
- Pass 2 of 4: Completed in 1.4 sec
- Pass 3 of 4: Completed in 1.2 sec
- Pass 4 of 4: Completed in 5.1 sec
Evaluation completed in 9.9 sec
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 4: Completed in 1.4 sec
- Pass 2 of 4: Completed in 1.5 sec
- Pass 3 of 4: Completed in 0.7 sec
- Pass 4 of 4: Completed in 4.1 sec
Evaluation completed in 8.5 sec
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Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 4: Completed in 1.4 sec
- Pass 2 of 4: Completed in 1.6 sec
- Pass 3 of 4: Completed in 0.71 sec
- Pass 4 of 4: Completed in 3.6 sec
Evaluation completed in 7.9 sec
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 4: Completed in 1.5 sec
- Pass 2 of 4: Completed in 1.8 sec
- Pass 3 of 4: Completed in 0.74 sec
- Pass 4 of 4: Completed in 3.2 sec
Evaluation completed in 7.9 sec
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 4: Completed in 1.4 sec
- Pass 2 of 4: Completed in 1.7 sec
- Pass 3 of 4: Completed in 0.73 sec
- Pass 4 of 4: Completed in 2.8 sec
Evaluation completed in 7.3 sec
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 4: Completed in 1.5 sec
- Pass 2 of 4: Completed in 1.7 sec
- Pass 3 of 4: Completed in 0.82 sec
- Pass 4 of 4: Completed in 2.4 sec
Evaluation completed in 7 sec
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 4: Completed in 2 sec
- Pass 2 of 4: Completed in 1.9 sec
- Pass 3 of 4: Completed in 0.79 sec
- Pass 4 of 4: Completed in 2.3 sec
Evaluation completed in 7.6 sec
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 4: Completed in 1.6 sec
- Pass 2 of 4: Completed in 1.8 sec
- Pass 3 of 4: Completed in 0.73 sec
- Pass 4 of 4: Completed in 2.2 sec
Evaluation completed in 6.9 sec
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 4: Completed in 1.6 sec
- Pass 2 of 4: Completed in 1.7 sec
- Pass 3 of 4: Completed in 0.79 sec
- Pass 4 of 4: Completed in 2.3 sec
Evaluation completed in 7 sec
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 4: Completed in 1.7 sec
- Pass 2 of 4: Completed in 1.9 sec
- Pass 3 of 4: Completed in 0.8 sec
- Pass 4 of 4: Completed in 1.8 sec
Evaluation completed in 6.8 sec
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 4: Completed in 1.7 sec
- Pass 2 of 4: Completed in 1.8 sec
- Pass 3 of 4: Completed in 0.77 sec
- Pass 4 of 4: Completed in 1.8 sec
Evaluation completed in 6.6 sec
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 4: Completed in 1.4 sec
- Pass 2 of 4: Completed in 1.6 sec
- Pass 3 of 4: Completed in 0.73 sec
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- Pass 4 of 4: Completed in 1.8 sec
Evaluation completed in 6.1 sec
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 4: Completed in 1.5 sec
- Pass 2 of 4: Completed in 1.7 sec
- Pass 3 of 4: Completed in 1.3 sec
- Pass 4 of 4: Completed in 1.7 sec
Evaluation completed in 6.7 sec
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 4: Completed in 1.5 sec
- Pass 2 of 4: Completed in 1.7 sec
- Pass 3 of 4: Completed in 0.73 sec
- Pass 4 of 4: Completed in 1.8 sec
Evaluation completed in 6.3 sec
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 1: Completed in 1.3 sec
Evaluation completed in 1.5 sec
|    7 | Accept |     0.13495 |      241.76 |     0.10087 |     0.10089 |            1 |
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 1: Completed in 0.31 sec
Evaluation completed in 0.44 sec
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 1: Completed in 0.87 sec
Evaluation completed in 1 sec
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 4: Completed in 0.47 sec
- Pass 2 of 4: Completed in 0.67 sec
- Pass 3 of 4: Completed in 0.54 sec
- Pass 4 of 4: Completed in 0.74 sec
Evaluation completed in 3 sec
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 4: Completed in 0.51 sec
- Pass 2 of 4: Completed in 0.79 sec
- Pass 3 of 4: Completed in 0.56 sec
- Pass 4 of 4: Completed in 0.76 sec
Evaluation completed in 3.2 sec
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 4: Completed in 0.49 sec
- Pass 2 of 4: Completed in 0.69 sec
- Pass 3 of 4: Completed in 1.1 sec
- Pass 4 of 4: Completed in 0.78 sec
Evaluation completed in 3.6 sec
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 4: Completed in 1 sec
- Pass 2 of 4: Completed in 0.78 sec
- Pass 3 of 4: Completed in 0.53 sec
- Pass 4 of 4: Completed in 0.85 sec
Evaluation completed in 3.8 sec
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 4: Completed in 0.54 sec
- Pass 2 of 4: Completed in 0.77 sec
- Pass 3 of 4: Completed in 0.52 sec
- Pass 4 of 4: Completed in 0.89 sec
Evaluation completed in 3.3 sec
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 4: Completed in 0.51 sec
- Pass 2 of 4: Completed in 0.73 sec
- Pass 3 of 4: Completed in 0.6 sec
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- Pass 4 of 4: Completed in 1.1 sec
Evaluation completed in 3.5 sec
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 4: Completed in 0.53 sec
- Pass 2 of 4: Completed in 0.77 sec
- Pass 3 of 4: Completed in 0.54 sec
- Pass 4 of 4: Completed in 1.3 sec
Evaluation completed in 3.7 sec
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 4: Completed in 0.62 sec
- Pass 2 of 4: Completed in 0.8 sec
- Pass 3 of 4: Completed in 0.61 sec
- Pass 4 of 4: Completed in 1.6 sec
Evaluation completed in 4.4 sec
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 4: Completed in 1.2 sec
- Pass 2 of 4: Completed in 1.5 sec
- Pass 3 of 4: Completed in 1.1 sec
- Pass 4 of 4: Completed in 1.9 sec
Evaluation completed in 6.3 sec
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 4: Completed in 0.69 sec
- Pass 2 of 4: Completed in 0.88 sec
- Pass 3 of 4: Completed in 0.75 sec
- Pass 4 of 4: Completed in 2.1 sec
Evaluation completed in 5.1 sec
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 4: Completed in 0.61 sec
- Pass 2 of 4: Completed in 0.79 sec
- Pass 3 of 4: Completed in 0.54 sec
- Pass 4 of 4: Completed in 2.2 sec
Evaluation completed in 4.8 sec
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 4: Completed in 0.61 sec
- Pass 2 of 4: Completed in 0.84 sec
- Pass 3 of 4: Completed in 0.58 sec
- Pass 4 of 4: Completed in 2.2 sec
Evaluation completed in 4.9 sec
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 4: Completed in 0.68 sec
- Pass 2 of 4: Completed in 0.85 sec
- Pass 3 of 4: Completed in 0.59 sec
- Pass 4 of 4: Completed in 2.2 sec
Evaluation completed in 4.9 sec
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 4: Completed in 0.68 sec
- Pass 2 of 4: Completed in 0.91 sec
- Pass 3 of 4: Completed in 0.58 sec
- Pass 4 of 4: Completed in 2.4 sec
Evaluation completed in 5.3 sec
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 4: Completed in 0.92 sec
- Pass 2 of 4: Completed in 0.86 sec
- Pass 3 of 4: Completed in 0.57 sec
- Pass 4 of 4: Completed in 1.6 sec
Evaluation completed in 4.7 sec
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 4: Completed in 0.69 sec
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- Pass 2 of 4: Completed in 0.91 sec
- Pass 3 of 4: Completed in 0.63 sec
- Pass 4 of 4: Completed in 1.3 sec
Evaluation completed in 4.1 sec
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 4: Completed in 0.67 sec
- Pass 2 of 4: Completed in 0.86 sec
- Pass 3 of 4: Completed in 0.56 sec
- Pass 4 of 4: Completed in 0.99 sec
Evaluation completed in 3.6 sec
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 4: Completed in 1.2 sec
- Pass 2 of 4: Completed in 0.9 sec
- Pass 3 of 4: Completed in 0.57 sec
- Pass 4 of 4: Completed in 0.95 sec
Evaluation completed in 4.2 sec
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 4: Completed in 0.73 sec
- Pass 2 of 4: Completed in 0.91 sec
- Pass 3 of 4: Completed in 0.57 sec
- Pass 4 of 4: Completed in 0.91 sec
Evaluation completed in 3.7 sec
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 4: Completed in 0.76 sec
- Pass 2 of 4: Completed in 0.93 sec
- Pass 3 of 4: Completed in 0.57 sec
- Pass 4 of 4: Completed in 0.9 sec
Evaluation completed in 3.7 sec
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 1: Completed in 0.91 sec
Evaluation completed in 1.1 sec
|    8 | Accept |     0.10246 |      115.31 |     0.10087 |     0.10089 |           58 |
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 1: Completed in 0.34 sec
Evaluation completed in 0.49 sec
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 1: Completed in 0.87 sec
Evaluation completed in 1 sec
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 4: Completed in 0.55 sec
- Pass 2 of 4: Completed in 0.72 sec
- Pass 3 of 4: Completed in 0.57 sec
- Pass 4 of 4: Completed in 0.8 sec
Evaluation completed in 3.2 sec
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 4: Completed in 0.48 sec
- Pass 2 of 4: Completed in 0.7 sec
- Pass 3 of 4: Completed in 0.52 sec
- Pass 4 of 4: Completed in 0.76 sec
Evaluation completed in 3 sec
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 4: Completed in 0.51 sec
- Pass 2 of 4: Completed in 0.69 sec
- Pass 3 of 4: Completed in 0.54 sec
- Pass 4 of 4: Completed in 0.79 sec
Evaluation completed in 3.1 sec
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 4: Completed in 0.53 sec
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- Pass 2 of 4: Completed in 0.72 sec
- Pass 3 of 4: Completed in 0.56 sec
- Pass 4 of 4: Completed in 0.81 sec
Evaluation completed in 3.2 sec
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 4: Completed in 1 sec
- Pass 2 of 4: Completed in 0.75 sec
- Pass 3 of 4: Completed in 0.56 sec
- Pass 4 of 4: Completed in 1.4 sec
Evaluation completed in 4.3 sec
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 4: Completed in 0.55 sec
- Pass 2 of 4: Completed in 0.77 sec
- Pass 3 of 4: Completed in 0.6 sec
- Pass 4 of 4: Completed in 0.9 sec
Evaluation completed in 3.3 sec
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 4: Completed in 0.5 sec
- Pass 2 of 4: Completed in 0.73 sec
- Pass 3 of 4: Completed in 1.1 sec
- Pass 4 of 4: Completed in 1.1 sec
Evaluation completed in 4 sec
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 4: Completed in 0.56 sec
- Pass 2 of 4: Completed in 0.75 sec
- Pass 3 of 4: Completed in 0.53 sec
- Pass 4 of 4: Completed in 1.2 sec
Evaluation completed in 3.5 sec
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 4: Completed in 0.61 sec
- Pass 2 of 4: Completed in 0.76 sec
- Pass 3 of 4: Completed in 1.1 sec
- Pass 4 of 4: Completed in 1.1 sec
Evaluation completed in 4.1 sec
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 4: Completed in 0.6 sec
- Pass 2 of 4: Completed in 0.74 sec
- Pass 3 of 4: Completed in 0.53 sec
- Pass 4 of 4: Completed in 0.95 sec
Evaluation completed in 3.4 sec
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 4: Completed in 0.55 sec
- Pass 2 of 4: Completed in 0.76 sec
- Pass 3 of 4: Completed in 0.57 sec
- Pass 4 of 4: Completed in 0.94 sec
Evaluation completed in 3.4 sec
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 4: Completed in 0.58 sec
- Pass 2 of 4: Completed in 0.77 sec
- Pass 3 of 4: Completed in 0.54 sec
- Pass 4 of 4: Completed in 0.83 sec
Evaluation completed in 3.3 sec
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 4: Completed in 0.59 sec
- Pass 2 of 4: Completed in 0.78 sec
- Pass 3 of 4: Completed in 0.57 sec
- Pass 4 of 4: Completed in 0.83 sec
Evaluation completed in 3.4 sec
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Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 4: Completed in 0.6 sec
- Pass 2 of 4: Completed in 0.76 sec
- Pass 3 of 4: Completed in 0.55 sec
- Pass 4 of 4: Completed in 0.77 sec
Evaluation completed in 3.3 sec
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 4: Completed in 0.72 sec
- Pass 2 of 4: Completed in 0.81 sec
- Pass 3 of 4: Completed in 0.6 sec
- Pass 4 of 4: Completed in 0.76 sec
Evaluation completed in 3.6 sec
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 1: Completed in 1.3 sec
Evaluation completed in 1.4 sec
|    9 | Accept |     0.10173 |      77.229 |     0.10087 |     0.10086 |          418 |
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 1: Completed in 0.32 sec
Evaluation completed in 0.46 sec
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 1: Completed in 0.84 sec
Evaluation completed in 1 sec
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 4: Completed in 0.5 sec
- Pass 2 of 4: Completed in 0.72 sec
- Pass 3 of 4: Completed in 0.57 sec
- Pass 4 of 4: Completed in 0.75 sec
Evaluation completed in 3.1 sec
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 4: Completed in 0.49 sec
- Pass 2 of 4: Completed in 0.68 sec
- Pass 3 of 4: Completed in 0.55 sec
- Pass 4 of 4: Completed in 0.76 sec
Evaluation completed in 3 sec
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 4: Completed in 0.52 sec
- Pass 2 of 4: Completed in 0.71 sec
- Pass 3 of 4: Completed in 0.54 sec
- Pass 4 of 4: Completed in 0.91 sec
Evaluation completed in 3.3 sec
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 4: Completed in 0.53 sec
- Pass 2 of 4: Completed in 0.69 sec
- Pass 3 of 4: Completed in 0.52 sec
- Pass 4 of 4: Completed in 0.82 sec
Evaluation completed in 3.1 sec
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 4: Completed in 0.51 sec
- Pass 2 of 4: Completed in 0.7 sec
- Pass 3 of 4: Completed in 0.61 sec
- Pass 4 of 4: Completed in 0.82 sec
Evaluation completed in 3.2 sec
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 4: Completed in 1.1 sec
- Pass 2 of 4: Completed in 0.78 sec
- Pass 3 of 4: Completed in 0.54 sec
- Pass 4 of 4: Completed in 0.95 sec
Evaluation completed in 3.9 sec
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Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 4: Completed in 0.55 sec
- Pass 2 of 4: Completed in 0.71 sec
- Pass 3 of 4: Completed in 0.53 sec
- Pass 4 of 4: Completed in 1.1 sec
Evaluation completed in 3.5 sec
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 4: Completed in 0.54 sec
- Pass 2 of 4: Completed in 0.7 sec
- Pass 3 of 4: Completed in 0.58 sec
- Pass 4 of 4: Completed in 1.3 sec
Evaluation completed in 3.7 sec
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 4: Completed in 0.55 sec
- Pass 2 of 4: Completed in 0.73 sec
- Pass 3 of 4: Completed in 0.59 sec
- Pass 4 of 4: Completed in 1.7 sec
Evaluation completed in 4.2 sec
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 4: Completed in 0.58 sec
- Pass 2 of 4: Completed in 0.79 sec
- Pass 3 of 4: Completed in 0.56 sec
- Pass 4 of 4: Completed in 1.7 sec
Evaluation completed in 4.2 sec
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 4: Completed in 0.71 sec
- Pass 2 of 4: Completed in 1.7 sec
- Pass 3 of 4: Completed in 0.59 sec
- Pass 4 of 4: Completed in 1.7 sec
Evaluation completed in 5.2 sec
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 4: Completed in 0.65 sec
- Pass 2 of 4: Completed in 0.83 sec
- Pass 3 of 4: Completed in 0.61 sec
- Pass 4 of 4: Completed in 1.4 sec
Evaluation completed in 4.1 sec
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 4: Completed in 0.67 sec
- Pass 2 of 4: Completed in 0.87 sec
- Pass 3 of 4: Completed in 0.58 sec
- Pass 4 of 4: Completed in 1.4 sec
Evaluation completed in 4.1 sec
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 4: Completed in 0.61 sec
- Pass 2 of 4: Completed in 0.82 sec
- Pass 3 of 4: Completed in 0.55 sec
- Pass 4 of 4: Completed in 1.1 sec
Evaluation completed in 3.7 sec
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 4: Completed in 0.65 sec
- Pass 2 of 4: Completed in 0.84 sec
- Pass 3 of 4: Completed in 0.62 sec
- Pass 4 of 4: Completed in 0.89 sec
Evaluation completed in 3.6 sec
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 4: Completed in 0.64 sec
- Pass 2 of 4: Completed in 0.81 sec
- Pass 3 of 4: Completed in 0.56 sec
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- Pass 4 of 4: Completed in 0.88 sec
Evaluation completed in 3.6 sec
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 4: Completed in 0.62 sec
- Pass 2 of 4: Completed in 0.9 sec
- Pass 3 of 4: Completed in 0.55 sec
- Pass 4 of 4: Completed in 0.86 sec
Evaluation completed in 3.5 sec
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 4: Completed in 0.65 sec
- Pass 2 of 4: Completed in 0.81 sec
- Pass 3 of 4: Completed in 0.56 sec
- Pass 4 of 4: Completed in 0.8 sec
Evaluation completed in 3.3 sec
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 1: Completed in 0.77 sec
Evaluation completed in 0.89 sec
|   10 | Accept |     0.10114 |      94.532 |     0.10087 |     0.10091 |          123 |
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 1: Completed in 0.86 sec
Evaluation completed in 1 sec
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 1: Completed in 0.83 sec
Evaluation completed in 0.99 sec
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 4: Completed in 0.48 sec
- Pass 2 of 4: Completed in 0.7 sec
- Pass 3 of 4: Completed in 0.54 sec
- Pass 4 of 4: Completed in 0.8 sec
Evaluation completed in 3 sec
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 4: Completed in 0.5 sec
- Pass 2 of 4: Completed in 0.72 sec
- Pass 3 of 4: Completed in 0.53 sec
- Pass 4 of 4: Completed in 0.79 sec
Evaluation completed in 3.1 sec
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 4: Completed in 0.56 sec
- Pass 2 of 4: Completed in 0.73 sec
- Pass 3 of 4: Completed in 0.54 sec
- Pass 4 of 4: Completed in 0.85 sec
Evaluation completed in 3.3 sec
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 4: Completed in 0.5 sec
- Pass 2 of 4: Completed in 0.69 sec
- Pass 3 of 4: Completed in 0.55 sec
- Pass 4 of 4: Completed in 0.81 sec
Evaluation completed in 3.2 sec
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 4: Completed in 0.55 sec
- Pass 2 of 4: Completed in 0.82 sec
- Pass 3 of 4: Completed in 0.64 sec
- Pass 4 of 4: Completed in 0.94 sec
Evaluation completed in 3.5 sec
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 4: Completed in 0.49 sec
- Pass 2 of 4: Completed in 0.77 sec
- Pass 3 of 4: Completed in 0.53 sec
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- Pass 4 of 4: Completed in 0.97 sec
Evaluation completed in 3.3 sec
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 4: Completed in 0.56 sec
- Pass 2 of 4: Completed in 0.78 sec
- Pass 3 of 4: Completed in 0.58 sec
- Pass 4 of 4: Completed in 1.3 sec
Evaluation completed in 3.8 sec
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 4: Completed in 0.55 sec
- Pass 2 of 4: Completed in 0.81 sec
- Pass 3 of 4: Completed in 0.56 sec
- Pass 4 of 4: Completed in 1.3 sec
Evaluation completed in 3.8 sec
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 4: Completed in 0.55 sec
- Pass 2 of 4: Completed in 0.76 sec
- Pass 3 of 4: Completed in 0.56 sec
- Pass 4 of 4: Completed in 1.5 sec
Evaluation completed in 3.9 sec
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 4: Completed in 0.59 sec
- Pass 2 of 4: Completed in 0.76 sec
- Pass 3 of 4: Completed in 0.55 sec
- Pass 4 of 4: Completed in 1.5 sec
Evaluation completed in 4 sec
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 4: Completed in 0.59 sec
- Pass 2 of 4: Completed in 0.8 sec
- Pass 3 of 4: Completed in 0.59 sec
- Pass 4 of 4: Completed in 1.4 sec
Evaluation completed in 3.9 sec
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 4: Completed in 0.59 sec
- Pass 2 of 4: Completed in 0.77 sec
- Pass 3 of 4: Completed in 0.55 sec
- Pass 4 of 4: Completed in 1.2 sec
Evaluation completed in 3.7 sec
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 4: Completed in 1.1 sec
- Pass 2 of 4: Completed in 0.8 sec
- Pass 3 of 4: Completed in 0.58 sec
- Pass 4 of 4: Completed in 1.1 sec
Evaluation completed in 4.2 sec
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 4: Completed in 0.65 sec
- Pass 2 of 4: Completed in 0.84 sec
- Pass 3 of 4: Completed in 1.1 sec
- Pass 4 of 4: Completed in 1 sec
Evaluation completed in 4.3 sec
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 4: Completed in 0.63 sec
- Pass 2 of 4: Completed in 0.84 sec
- Pass 3 of 4: Completed in 0.59 sec
- Pass 4 of 4: Completed in 0.9 sec
Evaluation completed in 3.5 sec
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 4: Completed in 1.2 sec
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- Pass 2 of 4: Completed in 0.83 sec
- Pass 3 of 4: Completed in 0.56 sec
- Pass 4 of 4: Completed in 0.81 sec
Evaluation completed in 4 sec
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 4: Completed in 0.65 sec
- Pass 2 of 4: Completed in 0.79 sec
- Pass 3 of 4: Completed in 0.59 sec
- Pass 4 of 4: Completed in 0.8 sec
Evaluation completed in 3.4 sec
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 1: Completed in 0.77 sec
Evaluation completed in 0.89 sec
|   11 | Best   |      0.1008 |      90.637 |      0.1008 |     0.10088 |          178 |
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 1: Completed in 0.38 sec
Evaluation completed in 0.52 sec
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 1: Completed in 0.88 sec
Evaluation completed in 1 sec
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 4: Completed in 0.49 sec
- Pass 2 of 4: Completed in 0.69 sec
- Pass 3 of 4: Completed in 0.51 sec
- Pass 4 of 4: Completed in 0.78 sec
Evaluation completed in 3 sec
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 4: Completed in 0.59 sec
- Pass 2 of 4: Completed in 0.72 sec
- Pass 3 of 4: Completed in 0.53 sec
- Pass 4 of 4: Completed in 0.79 sec
Evaluation completed in 3.1 sec
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 4: Completed in 0.58 sec
- Pass 2 of 4: Completed in 0.74 sec
- Pass 3 of 4: Completed in 0.55 sec
- Pass 4 of 4: Completed in 0.93 sec
Evaluation completed in 3.4 sec
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 4: Completed in 0.57 sec
- Pass 2 of 4: Completed in 0.79 sec
- Pass 3 of 4: Completed in 0.58 sec
- Pass 4 of 4: Completed in 0.83 sec
Evaluation completed in 3.3 sec
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 4: Completed in 0.53 sec
- Pass 2 of 4: Completed in 1.2 sec
- Pass 3 of 4: Completed in 0.59 sec
- Pass 4 of 4: Completed in 0.91 sec
Evaluation completed in 3.8 sec
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 4: Completed in 0.58 sec
- Pass 2 of 4: Completed in 0.85 sec
- Pass 3 of 4: Completed in 0.58 sec
- Pass 4 of 4: Completed in 1 sec
Evaluation completed in 3.6 sec
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 4: Completed in 0.56 sec

35 Functions

35-2248



- Pass 2 of 4: Completed in 0.77 sec
- Pass 3 of 4: Completed in 0.55 sec
- Pass 4 of 4: Completed in 1.2 sec
Evaluation completed in 3.6 sec
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 4: Completed in 1.1 sec
- Pass 2 of 4: Completed in 0.81 sec
- Pass 3 of 4: Completed in 0.52 sec
- Pass 4 of 4: Completed in 1.4 sec
Evaluation completed in 4.4 sec
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 4: Completed in 0.54 sec
- Pass 2 of 4: Completed in 0.74 sec
- Pass 3 of 4: Completed in 0.54 sec
- Pass 4 of 4: Completed in 1.5 sec
Evaluation completed in 3.9 sec
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 4: Completed in 0.61 sec
- Pass 2 of 4: Completed in 0.79 sec
- Pass 3 of 4: Completed in 0.58 sec
- Pass 4 of 4: Completed in 1.5 sec
Evaluation completed in 4 sec
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 4: Completed in 0.61 sec
- Pass 2 of 4: Completed in 0.82 sec
- Pass 3 of 4: Completed in 0.61 sec
- Pass 4 of 4: Completed in 1.4 sec
Evaluation completed in 4 sec
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 4: Completed in 0.66 sec
- Pass 2 of 4: Completed in 0.77 sec
- Pass 3 of 4: Completed in 0.54 sec
- Pass 4 of 4: Completed in 1.2 sec
Evaluation completed in 3.8 sec
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 4: Completed in 0.61 sec
- Pass 2 of 4: Completed in 0.79 sec
- Pass 3 of 4: Completed in 0.56 sec
- Pass 4 of 4: Completed in 1.2 sec
Evaluation completed in 3.7 sec
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 4: Completed in 0.62 sec
- Pass 2 of 4: Completed in 0.85 sec
- Pass 3 of 4: Completed in 0.56 sec
- Pass 4 of 4: Completed in 1 sec
Evaluation completed in 3.6 sec
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 4: Completed in 0.61 sec
- Pass 2 of 4: Completed in 0.86 sec
- Pass 3 of 4: Completed in 1.1 sec
- Pass 4 of 4: Completed in 0.96 sec
Evaluation completed in 4.1 sec
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 4: Completed in 0.65 sec
- Pass 2 of 4: Completed in 0.8 sec
- Pass 3 of 4: Completed in 0.59 sec
- Pass 4 of 4: Completed in 0.86 sec
Evaluation completed in 3.5 sec
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Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 4: Completed in 0.69 sec
- Pass 2 of 4: Completed in 0.84 sec
- Pass 3 of 4: Completed in 0.53 sec
- Pass 4 of 4: Completed in 0.83 sec
Evaluation completed in 3.5 sec
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 1: Completed in 0.76 sec
Evaluation completed in 0.89 sec
|   12 | Accept |      0.1008 |      90.267 |      0.1008 |     0.10086 |          179 |
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 1: Completed in 0.32 sec
Evaluation completed in 0.45 sec
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 1: Completed in 0.9 sec
Evaluation completed in 1.1 sec
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 4: Completed in 0.58 sec
- Pass 2 of 4: Completed in 0.71 sec
- Pass 3 of 4: Completed in 0.53 sec
- Pass 4 of 4: Completed in 0.77 sec
Evaluation completed in 3.2 sec
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 4: Completed in 0.49 sec
- Pass 2 of 4: Completed in 0.69 sec
- Pass 3 of 4: Completed in 0.58 sec
- Pass 4 of 4: Completed in 0.77 sec
Evaluation completed in 3.1 sec
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 4: Completed in 0.52 sec
- Pass 2 of 4: Completed in 0.71 sec
- Pass 3 of 4: Completed in 0.51 sec
- Pass 4 of 4: Completed in 0.78 sec
Evaluation completed in 3.1 sec
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 4: Completed in 0.54 sec
- Pass 2 of 4: Completed in 0.7 sec
- Pass 3 of 4: Completed in 0.54 sec
- Pass 4 of 4: Completed in 0.72 sec
Evaluation completed in 3.1 sec
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 4: Completed in 0.54 sec
- Pass 2 of 4: Completed in 0.74 sec
- Pass 3 of 4: Completed in 0.51 sec
- Pass 4 of 4: Completed in 1.3 sec
Evaluation completed in 3.6 sec
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 4: Completed in 0.54 sec
- Pass 2 of 4: Completed in 0.78 sec
- Pass 3 of 4: Completed in 0.59 sec
- Pass 4 of 4: Completed in 0.74 sec
Evaluation completed in 3.2 sec
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 1: Completed in 0.83 sec
Evaluation completed in 0.97 sec
|   13 | Accept |     0.11126 |      32.134 |      0.1008 |     0.10084 |        10251 |
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 1: Completed in 0.32 sec
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Evaluation completed in 0.45 sec
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 1: Completed in 0.85 sec
Evaluation completed in 0.99 sec
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 4: Completed in 0.51 sec
- Pass 2 of 4: Completed in 0.75 sec
- Pass 3 of 4: Completed in 0.55 sec
- Pass 4 of 4: Completed in 0.74 sec
Evaluation completed in 3.1 sec
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 4: Completed in 0.5 sec
- Pass 2 of 4: Completed in 0.7 sec
- Pass 3 of 4: Completed in 0.57 sec
- Pass 4 of 4: Completed in 0.78 sec
Evaluation completed in 3.1 sec
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 4: Completed in 0.5 sec
- Pass 2 of 4: Completed in 0.68 sec
- Pass 3 of 4: Completed in 0.53 sec
- Pass 4 of 4: Completed in 0.79 sec
Evaluation completed in 3 sec
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 4: Completed in 0.5 sec
- Pass 2 of 4: Completed in 1.3 sec
- Pass 3 of 4: Completed in 0.54 sec
- Pass 4 of 4: Completed in 0.91 sec
Evaluation completed in 3.7 sec
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 4: Completed in 0.53 sec
- Pass 2 of 4: Completed in 1.2 sec
- Pass 3 of 4: Completed in 0.59 sec
- Pass 4 of 4: Completed in 0.86 sec
Evaluation completed in 3.7 sec
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 4: Completed in 0.51 sec
- Pass 2 of 4: Completed in 0.71 sec
- Pass 3 of 4: Completed in 0.59 sec
- Pass 4 of 4: Completed in 1 sec
Evaluation completed in 3.4 sec
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 4: Completed in 0.56 sec
- Pass 2 of 4: Completed in 0.71 sec
- Pass 3 of 4: Completed in 0.64 sec
- Pass 4 of 4: Completed in 0.99 sec
Evaluation completed in 3.4 sec
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 4: Completed in 0.54 sec
- Pass 2 of 4: Completed in 1.2 sec
- Pass 3 of 4: Completed in 0.58 sec
- Pass 4 of 4: Completed in 0.94 sec
Evaluation completed in 3.8 sec
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 4: Completed in 0.51 sec
- Pass 2 of 4: Completed in 0.77 sec
- Pass 3 of 4: Completed in 0.59 sec
- Pass 4 of 4: Completed in 0.9 sec
Evaluation completed in 3.3 sec
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Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 4: Completed in 0.56 sec
- Pass 2 of 4: Completed in 0.78 sec
- Pass 3 of 4: Completed in 0.56 sec
- Pass 4 of 4: Completed in 0.9 sec
Evaluation completed in 3.3 sec
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 4: Completed in 0.55 sec
- Pass 2 of 4: Completed in 0.72 sec
- Pass 3 of 4: Completed in 0.52 sec
- Pass 4 of 4: Completed in 0.89 sec
Evaluation completed in 3.2 sec
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 4: Completed in 0.58 sec
- Pass 2 of 4: Completed in 0.76 sec
- Pass 3 of 4: Completed in 0.54 sec
- Pass 4 of 4: Completed in 0.8 sec
Evaluation completed in 3.3 sec
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 4: Completed in 0.56 sec
- Pass 2 of 4: Completed in 1.3 sec
- Pass 3 of 4: Completed in 0.61 sec
- Pass 4 of 4: Completed in 0.76 sec
Evaluation completed in 3.8 sec
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 1: Completed in 0.83 sec
Evaluation completed in 0.97 sec
|   14 | Accept |     0.10154 |      66.262 |      0.1008 |     0.10085 |          736 |
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 1: Completed in 0.36 sec
Evaluation completed in 0.5 sec
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 1: Completed in 0.89 sec
Evaluation completed in 1 sec
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 4: Completed in 0.53 sec
- Pass 2 of 4: Completed in 0.69 sec
- Pass 3 of 4: Completed in 0.56 sec
- Pass 4 of 4: Completed in 0.74 sec
Evaluation completed in 3.1 sec
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 4: Completed in 0.5 sec
- Pass 2 of 4: Completed in 0.67 sec
- Pass 3 of 4: Completed in 0.56 sec
- Pass 4 of 4: Completed in 0.78 sec
Evaluation completed in 3.1 sec
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 4: Completed in 0.52 sec
- Pass 2 of 4: Completed in 0.69 sec
- Pass 3 of 4: Completed in 0.54 sec
- Pass 4 of 4: Completed in 0.84 sec
Evaluation completed in 3.1 sec
Evaluating tall expression using the Parallel Pool 'local':
Evaluation 0% ...

Mdl = 
  CompactClassificationTree
             ResponseName: 'Y'
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    CategoricalPredictors: []
               ClassNames: [0 1]
           ScoreTransform: 'none'

  Properties, Methods

FitInfo = struct with no fields.

HyperparameterOptimizationResults = 
  BayesianOptimization with properties:

                      ObjectiveFcn: @createObjFcn/tallObjFcn
              VariableDescriptions: [4×1 optimizableVariable]
                           Options: [1×1 struct]
                      MinObjective: 0.1004
                   XAtMinObjective: [1×1 table]
             MinEstimatedObjective: 0.1008
          XAtMinEstimatedObjective: [1×1 table]
           NumObjectiveEvaluations: 30
                  TotalElapsedTime: 3.0367e+03
                         NextPoint: [1×1 table]
                            XTrace: [30×1 table]
                    ObjectiveTrace: [30×1 double]
                  ConstraintsTrace: []
                     UserDataTrace: {30×1 cell}
      ObjectiveEvaluationTimeTrace: [30×1 double]
                IterationTimeTrace: [30×1 double]
                        ErrorTrace: [30×1 double]
                  FeasibilityTrace: [30×1 logical]
       FeasibilityProbabilityTrace: [30×1 double]
               IndexOfMinimumTrace: [30×1 double]
             ObjectiveMinimumTrace: [30×1 double]
    EstimatedObjectiveMinimumTrace: [30×1 double]

Input Arguments
Tbl — Sample data
table

Sample data used to train the model, specified as a table. Each row of Tbl corresponds to one
observation, and each column corresponds to one predictor variable. Optionally, Tbl can contain one
additional column for the response variable. Multicolumn variables and cell arrays other than cell
arrays of character vectors are not allowed.

• If Tbl contains the response variable, and you want to use all remaining variables in Tbl as
predictors, then specify the response variable by using ResponseVarName.

• If Tbl contains the response variable, and you want to use only a subset of the remaining
variables in Tbl as predictors, then specify a formula by using formula.

• If Tbl does not contain the response variable, then specify a response variable by using Y. The
length of the response variable and the number of rows in Tbl must be equal.
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ResponseVarName — Response variable name
name of variable in Tbl

Response variable name, specified as the name of a variable in Tbl.

You must specify ResponseVarName as a character vector or string scalar. For example, if the
response variable Y is stored as Tbl.Y, then specify it as "Y". Otherwise, the software treats all
columns of Tbl, including Y, as predictors when training the model.

The response variable must be a categorical, character, or string array; a logical or numeric vector;
or a cell array of character vectors. If Y is a character array, then each element of the response
variable must correspond to one row of the array.

A good practice is to specify the order of the classes by using the ClassNames name-value argument.
Data Types: char | string

formula — Explanatory model of response variable and subset of predictor variables
character vector | string scalar

Explanatory model of the response variable and a subset of the predictor variables, specified as a
character vector or string scalar in the form "Y~x1+x2+x3". In this form, Y represents the response
variable, and x1, x2, and x3 represent the predictor variables.

To specify a subset of variables in Tbl as predictors for training the model, use a formula. If you
specify a formula, then the software does not use any variables in Tbl that do not appear in
formula.

The variable names in the formula must be both variable names in Tbl
(Tbl.Properties.VariableNames) and valid MATLAB identifiers. You can verify the variable
names in Tbl by using the isvarname function. If the variable names are not valid, then you can
convert them by using the matlab.lang.makeValidName function.
Data Types: char | string

Y — Class labels
numeric vector | categorical vector | logical vector | character array | string array | cell array of
character vectors

Class labels, specified as a numeric vector, categorical vector, logical vector, character array, string
array, or cell array of character vectors. Each row of Y represents the classification of the
corresponding row of X.

When fitting the tree, fitctree considers NaN, '' (empty character vector), "" (empty string),
<missing>, and <undefined> values in Y to be missing values. fitctree does not use
observations with missing values for Y in the fit.

For numeric Y, consider fitting a regression tree using fitrtree instead.
Data Types: single | double | categorical | logical | char | string | cell

X — Predictor data
numeric matrix

Predictor data, specified as a numeric matrix. Each row of X corresponds to one observation, and
each column corresponds to one predictor variable.
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fitctree considers NaN values in X as missing values. fitctree does not use observations with all
missing values for X in the fit. fitctree uses observations with some missing values for X to find
splits on variables for which these observations have valid values.
Data Types: single | double

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.

Note You cannot use any cross-validation name-value argument together with the
'OptimizeHyperparameters' name-value argument. You can modify the cross-validation for
'OptimizeHyperparameters' only by using the 'HyperparameterOptimizationOptions'
name-value argument.

Example: 'CrossVal','on','MinLeafSize',40 specifies a cross-validated classification tree with
a minimum of 40 observations per leaf.

Model Parameters

AlgorithmForCategorical — Algorithm for best categorical predictor split
'Exact' | 'PullLeft' | 'PCA' | 'OVAbyClass'

Algorithm to find the best split on a categorical predictor with C categories for data and K ≥ 3
classes, specified as the comma-separated pair consisting of 'AlgorithmForCategorical' and one
of the following values.

Value Description
'Exact' Consider all 2C–1 – 1 combinations.
'PullLeft' Start with all C categories on the right branch.

Consider moving each category to the left branch
as it achieves the minimum impurity for the K
classes among the remaining categories. From
this sequence, choose the split that has the
lowest impurity.

'PCA' Compute a score for each category using the
inner product between the first principal
component of a weighted covariance matrix (of
the centered class probability matrix) and the
vector of class probabilities for that category.
Sort the scores in ascending order, and consider
all C – 1 splits.
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Value Description
'OVAbyClass' Start with all C categories on the right branch.

For each class, order the categories based on
their probability for that class. For the first class,
consider moving each category to the left branch
in order, recording the impurity criterion at each
move. Repeat for the remaining classes. From
this sequence, choose the split that has the
minimum impurity.

fitctree automatically selects the optimal subset of algorithms for each split using the known
number of classes and levels of a categorical predictor. For K = 2 classes, fitctree always performs
the exact search. To specify a particular algorithm, use the 'AlgorithmForCategorical' name-
value pair argument.

For more details, see “Splitting Categorical Predictors in Classification Trees” on page 20-25.
Example: 'AlgorithmForCategorical','PCA'

CategoricalPredictors — Categorical predictors list
vector of positive integers | logical vector | character matrix | string array | cell array of character
vectors | 'all'

Categorical predictors list, specified as one of the values in this table.

Value Description
Vector of positive
integers

Each entry in the vector is an index value indicating that the corresponding
predictor is categorical. The index values are between 1 and p, where p is
the number of predictors used to train the model.

If fitctree uses a subset of input variables as predictors, then the
function indexes the predictors using only the subset. The
CategoricalPredictors values do not count the response variable,
observation weights variable, or any other variables that the function does
not use.

Logical vector A true entry means that the corresponding predictor is categorical. The
length of the vector is p.

Character matrix Each row of the matrix is the name of a predictor variable. The names must
match the entries in PredictorNames. Pad the names with extra blanks
so each row of the character matrix has the same length.

String array or cell
array of character
vectors

Each element in the array is the name of a predictor variable. The names
must match the entries in PredictorNames.

"all" All predictors are categorical.

By default, if the predictor data is in a table (Tbl), fitctree assumes that a variable is categorical if
it is a logical vector, unordered categorical vector, character array, string array, or cell array of
character vectors. If the predictor data is a matrix (X), fitctree assumes that all predictors are
continuous. To identify any other predictors as categorical predictors, specify them by using the
CategoricalPredictors name-value argument.
Example: 'CategoricalPredictors','all'
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Data Types: single | double | logical | char | string | cell

ClassNames — Names of classes to use for training
categorical array | character array | string array | logical vector | numeric vector | cell array of
character vectors

Names of classes to use for training, specified as a categorical, character, or string array; a logical or
numeric vector; or a cell array of character vectors. ClassNames must have the same data type as
the response variable in Tbl or Y.

If ClassNames is a character array, then each element must correspond to one row of the array.

Use ClassNames to:

• Specify the order of the classes during training.
• Specify the order of any input or output argument dimension that corresponds to the class order.

For example, use ClassNames to specify the order of the dimensions of Cost or the column order
of classification scores returned by predict.

• Select a subset of classes for training. For example, suppose that the set of all distinct class names
in Y is ["a","b","c"]. To train the model using observations from classes "a" and "c" only,
specify "ClassNames",["a","c"].

The default value for ClassNames is the set of all distinct class names in the response variable in
Tbl or Y.
Example: "ClassNames",["b","g"]
Data Types: categorical | char | string | logical | single | double | cell

Cost — Cost of misclassification
square matrix | structure

Cost of misclassification of a point, specified as the comma-separated pair consisting of 'Cost' and
one of the following:

• Square matrix, where Cost(i,j) is the cost of classifying a point into class j if its true class is i
(i.e., the rows correspond to the true class and the columns correspond to the predicted class). To
specify the class order for the corresponding rows and columns of Cost, also specify the
ClassNames name-value pair argument.

• Structure S having two fields: S.ClassNames containing the group names as a variable of the
same data type as Y, and S.ClassificationCosts containing the cost matrix.

The default is Cost(i,j)=1 if i~=j, and Cost(i,j)=0 if i=j.
Data Types: single | double | struct

MaxDepth — Maximum tree depth
positive integer

Maximum tree depth, specified as the comma-separated pair consisting of 'MaxDepth' and a
positive integer. Specify a value for this argument to return a tree that has fewer levels and requires
fewer passes through the tall array to compute. Generally, the algorithm of fitctree takes one pass
through the data and an additional pass for each tree level. The function does not set a maximum tree
depth, by default.
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Note This option applies only when you use fitctree on tall arrays. See Tall Arrays on page 35-
2276 for more information.

MaxNumCategories — Maximum category levels
10 (default) | nonnegative scalar value

Maximum category levels, specified as the comma-separated pair consisting of
'MaxNumCategories' and a nonnegative scalar value. fitctree splits a categorical predictor
using the exact search algorithm if the predictor has at most MaxNumCategories levels in the split
node. Otherwise, fitctree finds the best categorical split using one of the inexact algorithms.

Passing a small value can lead to loss of accuracy and passing a large value can increase computation
time and memory overload.
Example: 'MaxNumCategories',8

MaxNumSplits — Maximal number of decision splits
size(X,1) - 1 (default) | positive integer

Maximal number of decision splits (or branch nodes), specified as the comma-separated pair
consisting of 'MaxNumSplits' and a positive integer. fitctree splits MaxNumSplits or fewer
branch nodes. For more details on splitting behavior, see Algorithms on page 35-2272.
Example: 'MaxNumSplits',5
Data Types: single | double

MergeLeaves — Leaf merge flag
'on' (default) | 'off'

Leaf merge flag, specified as the comma-separated pair consisting of 'MergeLeaves' and 'on' or
'off'.

If MergeLeaves is 'on', then fitctree:

• Merges leaves that originate from the same parent node, and that yields a sum of risk values
greater or equal to the risk associated with the parent node

• Estimates the optimal sequence of pruned subtrees, but does not prune the classification tree

Otherwise, fitctree does not merge leaves.
Example: 'MergeLeaves','off'

MinLeafSize — Minimum number of leaf node observations
1 (default) | positive integer value

Minimum number of leaf node observations, specified as the comma-separated pair consisting of
'MinLeafSize' and a positive integer value. Each leaf has at least MinLeafSize observations per
tree leaf. If you supply both MinParentSize and MinLeafSize, fitctree uses the setting that
gives larger leaves: MinParentSize = max(MinParentSize,2*MinLeafSize).
Example: 'MinLeafSize',3
Data Types: single | double

MinParentSize — Minimum number of branch node observations
10 (default) | positive integer value
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Minimum number of branch node observations, specified as the comma-separated pair consisting of
'MinParentSize' and a positive integer value. Each branch node in the tree has at least
MinParentSize observations. If you supply both MinParentSize and MinLeafSize, fitctree
uses the setting that gives larger leaves: MinParentSize =
max(MinParentSize,2*MinLeafSize).
Example: 'MinParentSize',8
Data Types: single | double

NumBins — Number of bins for numeric predictors
[](empty) (default) | positive integer scalar

Number of bins for numeric predictors, specified as the comma-separated pair consisting of
'NumBins' and a positive integer scalar.

• If the 'NumBins' value is empty (default), then fitctree does not bin any predictors.
• If you specify the 'NumBins' value as a positive integer scalar (numBins), then fitctree bins

every numeric predictor into at most numBins equiprobable bins, and then grows trees on the bin
indices instead of the original data.

• The number of bins can be less than numBins if a predictor has fewer than numBins unique
values.

• fitctree does not bin categorical predictors.

When you use a large training data set, this binning option speeds up training but might cause a
potential decrease in accuracy. You can try 'NumBins',50 first, and then change the value
depending on the accuracy and training speed.

A trained model stores the bin edges in the BinEdges property.
Example: 'NumBins',50
Data Types: single | double

NumVariablesToSample — Number of predictors to select at random for each split
'all' (default) | positive integer value

Number of predictors to select at random for each split, specified as the comma-separated pair
consisting of 'NumVariablesToSample' and a positive integer value. Alternatively, you can specify
'all' to use all available predictors.

If the training data includes many predictors and you want to analyze predictor importance, then
specify 'NumVariablesToSample' as 'all'. Otherwise, the software might not select some
predictors, underestimating their importance.

To reproduce the random selections, you must set the seed of the random number generator by using
rng and specify 'Reproducible',true.
Example: 'NumVariablesToSample',3
Data Types: char | string | single | double

PredictorNames — Predictor variable names
string array of unique names | cell array of unique character vectors
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Predictor variable names, specified as a string array of unique names or cell array of unique
character vectors. The functionality of PredictorNames depends on the way you supply the training
data.

• If you supply X and Y, then you can use PredictorNames to assign names to the predictor
variables in X.

• The order of the names in PredictorNames must correspond to the column order of X. That
is, PredictorNames{1} is the name of X(:,1), PredictorNames{2} is the name of
X(:,2), and so on. Also, size(X,2) and numel(PredictorNames) must be equal.

• By default, PredictorNames is {'x1','x2',...}.
• If you supply Tbl, then you can use PredictorNames to choose which predictor variables to use

in training. That is, fitctree uses only the predictor variables in PredictorNames and the
response variable during training.

• PredictorNames must be a subset of Tbl.Properties.VariableNames and cannot include
the name of the response variable.

• By default, PredictorNames contains the names of all predictor variables.
• A good practice is to specify the predictors for training using either PredictorNames or

formula, but not both.

Example: "PredictorNames",
["SepalLength","SepalWidth","PetalLength","PetalWidth"]

Data Types: string | cell

PredictorSelection — Algorithm used to select the best split predictor
'allsplits' (default) | 'curvature' | 'interaction-curvature'

Algorithm used to select the best split predictor at each node, specified as the comma-separated pair
consisting of 'PredictorSelection' and a value in this table.

Value Description
'allsplits' Standard CART — Selects the split predictor that maximizes the split-

criterion gain over all possible splits of all predictors [1].
'curvature' Curvature test on page 35-2269 — Selects the split predictor that

minimizes the p-value of chi-square tests of independence between
each predictor and the response [4]. Training speed is similar to
standard CART.

'interaction-
curvature'

Interaction test on page 35-2271 — Chooses the split predictor that
minimizes the p-value of chi-square tests of independence between
each predictor and the response, and that minimizes the p-value of a
chi-square test of independence between each pair of predictors and
response [3]. Training speed can be slower than standard CART.

For 'curvature' and 'interaction-curvature', if all tests yield p-values greater than 0.05,
then fitctree stops splitting nodes.

Tip
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• Standard CART tends to select split predictors containing many distinct values, e.g., continuous
variables, over those containing few distinct values, e.g., categorical variables [4]. Consider
specifying the curvature or interaction test if any of the following are true:

• If there are predictors that have relatively fewer distinct values than other predictors, for
example, if the predictor data set is heterogeneous.

• If an analysis of predictor importance is your goal. For more on predictor importance
estimation, see predictorImportance and “Introduction to Feature Selection” on page 16-
47.

• Trees grown using standard CART are not sensitive to predictor variable interactions. Also, such
trees are less likely to identify important variables in the presence of many irrelevant predictors
than the application of the interaction test. Therefore, to account for predictor interactions and
identify importance variables in the presence of many irrelevant variables, specify the interaction
test [3].

• Prediction speed is unaffected by the value of 'PredictorSelection'.

For details on how fitctree selects split predictors, see “Node Splitting Rules” on page 35-2272
and “Choose Split Predictor Selection Technique” on page 20-14.
Example: 'PredictorSelection','curvature'

Prior — Prior probabilities
'empirical' (default) | 'uniform' | vector of scalar values | structure

Prior probabilities for each class, specified as one of the following:

• Character vector or string scalar.

• 'empirical' determines class probabilities from class frequencies in the response variable in
Y or Tbl. If you pass observation weights, fitctree uses the weights to compute the class
probabilities.

• 'uniform' sets all class probabilities to be equal.
• Vector (one scalar value for each class). To specify the class order for the corresponding elements

of 'Prior', set the 'ClassNames' name-value argument.
• Structure S with two fields.

• S.ClassNames contains the class names as a variable of the same type as the response
variable in Y or Tbl.

• S.ClassProbs contains a vector of corresponding probabilities.

fitctree normalizes the weights in each class ('Weights') to add up to the value of the prior
probability of the respective class.
Example: 'Prior','uniform'
Data Types: char | string | single | double | struct

Prune — Flag to estimate optimal sequence of pruned subtrees
'on' (default) | 'off'

Flag to estimate the optimal sequence of pruned subtrees, specified as the comma-separated pair
consisting of 'Prune' and 'on' or 'off'.
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If Prune is 'on', then fitctree grows the classification tree without pruning it, but estimates the
optimal sequence of pruned subtrees. Otherwise, fitctree grows the classification tree without
estimating the optimal sequence of pruned subtrees.

To prune a trained ClassificationTree model, pass it to prune.
Example: 'Prune','off'

PruneCriterion — Pruning criterion
'error' (default) | 'impurity'

Pruning criterion, specified as the comma-separated pair consisting of 'PruneCriterion' and
'error' or 'impurity'.

If you specify 'impurity', then fitctree uses the impurity measure specified by the
'SplitCriterion' name-value pair argument.

For details, see “Impurity and Node Error” on page 35-2270.
Example: 'PruneCriterion','impurity'

Reproducible — Flag to enforce reproducibility
false (logical 0) (default) | true (logical 1)

Flag to enforce reproducibility over repeated runs of training a model, specified as the comma-
separated pair consisting of 'Reproducible' and either false or true.

If 'NumVariablesToSample' is not 'all', then the software selects predictors at random for each
split. To reproduce the random selections, you must specify 'Reproducible',true and set the seed
of the random number generator by using rng. Note that setting 'Reproducible' to true can slow
down training.
Example: 'Reproducible',true
Data Types: logical

ResponseName — Response variable name
'Y' (default) | character vector | string scalar

Response variable name, specified as the comma-separated pair consisting of 'ResponseName' and
a character vector or string scalar representing the name of the response variable.

This name-value pair is not valid when using the ResponseVarName or formula input arguments.
Example: 'ResponseName','IrisType'
Data Types: char | string

ScoreTransform — Score transformation
"none" (default) | "doublelogit" | "invlogit" | "ismax" | "logit" | function handle | ...

Score transformation, specified as a character vector, string scalar, or function handle.

This table summarizes the available character vectors and string scalars.

Value Description
"doublelogit" 1/(1 + e–2x)
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Value Description
"invlogit" log(x / (1 – x))
"ismax" Sets the score for the class with the largest score to 1,

and sets the scores for all other classes to 0
"logit" 1/(1 + e–x)
"none" or "identity" x (no transformation)
"sign" –1 for x < 0

0 for x = 0
1 for x > 0

"symmetric" 2x – 1
"symmetricismax" Sets the score for the class with the largest score to 1,

and sets the scores for all other classes to –1
"symmetriclogit" 2/(1 + e–x) – 1

For a MATLAB function or a function you define, use its function handle for the score transform. The
function handle must accept a matrix (the original scores) and return a matrix of the same size (the
transformed scores).
Example: "ScoreTransform","logit"
Data Types: char | string | function_handle

SplitCriterion — Split criterion
'gdi' (default) | 'twoing' | 'deviance'

Split criterion, specified as the comma-separated pair consisting of 'SplitCriterion' and 'gdi'
(Gini's diversity index), 'twoing' for the twoing rule, or 'deviance' for maximum deviance
reduction (also known as cross entropy).

For details, see “Impurity and Node Error” on page 35-2270.
Example: 'SplitCriterion','deviance'

Surrogate — Surrogate decision splits flag
'off' (default) | 'on' | 'all' | positive integer value

Surrogate decision splits on page 35-2272 flag, specified as the comma-separated pair consisting of
'Surrogate' and 'on', 'off', 'all', or a positive integer value.

• When set to 'on', fitctree finds at most 10 surrogate splits at each branch node.
• When set to 'all', fitctree finds all surrogate splits at each branch node. The 'all' setting

can use considerable time and memory.
• When set to a positive integer value, fitctree finds at most the specified number of surrogate

splits at each branch node.

Use surrogate splits to improve the accuracy of predictions for data with missing values. The setting
also lets you compute measures of predictive association between predictors. For more details, see
“Node Splitting Rules” on page 35-2272.
Example: 'Surrogate','on'
Data Types: single | double | char | string
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Weights — Observation weights
ones(size(X,1),1) (default) | vector of scalar values | name of variable in Tbl

Observation weights, specified as the comma-separated pair consisting of 'Weights' and a vector of
scalar values or the name of a variable in Tbl. The software weights the observations in each row of
X or Tbl with the corresponding value in Weights. The size of Weights must equal the number of
rows in X or Tbl.

If you specify the input data as a table Tbl, then Weights can be the name of a variable in Tbl that
contains a numeric vector. In this case, you must specify Weights as a character vector or string
scalar. For example, if the weights vector W is stored as Tbl.W, then specify it as 'W'. Otherwise, the
software treats all columns of Tbl, including W, as predictors when training the model.

fitctree normalizes the weights in each class to add up to the value of the prior probability of the
respective class.
Data Types: single | double | char | string

Cross-Validation Options

CrossVal — Flag to grow cross-validated decision tree
'off' (default) | 'on'

Flag to grow a cross-validated decision tree, specified as the comma-separated pair consisting of
'CrossVal' and 'on' or 'off'.

If 'on', fitctree grows a cross-validated decision tree with 10 folds. You can override this cross-
validation setting using one of the 'KFold', 'Holdout', 'Leaveout', or 'CVPartition' name-
value pair arguments. You can only use one of these four arguments at a time when creating a cross-
validated tree.

Alternatively, cross-validate tree later using the crossval method.
Example: 'CrossVal','on'

CVPartition — Partition for cross-validated tree
cvpartition object

Partition to use in a cross-validated tree, specified as the comma-separated pair consisting of
'CVPartition' and an object created using cvpartition.

If you use 'CVPartition', you cannot use any of the 'KFold', 'Holdout', or 'Leaveout' name-
value pair arguments.

Holdout — Fraction of data for holdout validation
0 (default) | scalar value in the range [0,1]

Fraction of data used for holdout validation, specified as the comma-separated pair consisting of
'Holdout' and a scalar value in the range [0,1]. Holdout validation tests the specified fraction of
the data, and uses the rest of the data for training.

If you use 'Holdout', you cannot use any of the 'CVPartition', 'KFold', or 'Leaveout' name-
value pair arguments.
Example: 'Holdout',0.1
Data Types: single | double
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KFold — Number of folds
10 (default) | positive integer value greater than 1

Number of folds to use in a cross-validated classifier, specified as the comma-separated pair
consisting of 'KFold' and a positive integer value greater than 1. If you specify, e.g., 'KFold',k,
then the software:

1 Randomly partitions the data into k sets
2 For each set, reserves the set as validation data, and trains the model using the other k – 1 sets
3 Stores the k compact, trained models in the cells of a k-by-1 cell vector in the Trained property

of the cross-validated model.

To create a cross-validated model, you can use one of these four options only: CVPartition,
Holdout, KFold, or Leaveout.
Example: 'KFold',8
Data Types: single | double

Leaveout — Leave-one-out cross-validation flag
'off' (default) | 'on'

Leave-one-out cross-validation flag, specified as the comma-separated pair consisting of 'Leaveout'
and 'on' or 'off'. Specify 'on' to use leave-one-out cross-validation.

If you use 'Leaveout', you cannot use any of the 'CVPartition', 'Holdout', or 'KFold' name-
value pair arguments.
Example: 'Leaveout','on'

Hyperparameter Optimization Options

OptimizeHyperparameters — Parameters to optimize
'none' (default) | 'auto' | 'all' | string array or cell array of eligible parameter names | vector of
optimizableVariable objects

Parameters to optimize, specified as the comma-separated pair consisting of
'OptimizeHyperparameters' and one of the following:

• 'none' — Do not optimize.
• 'auto' — Use {'MinLeafSize'}
• 'all' — Optimize all eligible parameters.
• String array or cell array of eligible parameter names
• Vector of optimizableVariable objects, typically the output of hyperparameters

The optimization attempts to minimize the cross-validation loss (error) for fitctree by varying the
parameters. For information about cross-validation loss (albeit in a different context), see
“Classification Loss” on page 35-3870. To control the cross-validation type and other aspects of the
optimization, use the HyperparameterOptimizationOptions name-value pair.

Note The values of 'OptimizeHyperparameters' override any values you specify using other
name-value arguments. For example, setting 'OptimizeHyperparameters' to 'auto' causes
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fitctree to optimize hyperparameters corresponding to the 'auto' option and to ignore any
specified values for the hyperparameters.

The eligible parameters for fitctree are:

• MaxNumSplits — fitctree searches among integers, by default log-scaled in the range
[1,max(2,NumObservations-1)].

• MinLeafSize — fitctree searches among integers, by default log-scaled in the range
[1,max(2,floor(NumObservations/2))].

• SplitCriterion — For two classes, fitctree searches among 'gdi' and 'deviance'. For
three or more classes, fitctree also searches among 'twoing'.

• NumVariablesToSample — fitctree does not optimize over this hyperparameter. If you pass
NumVariablesToSample as a parameter name, fitctree simply uses the full number of
predictors. However, fitcensemble does optimize over this hyperparameter.

Set nondefault parameters by passing a vector of optimizableVariable objects that have
nondefault values. For example,

load fisheriris
params = hyperparameters('fitctree',meas,species);
params(1).Range = [1,30];

Pass params as the value of OptimizeHyperparameters.

By default, the iterative display appears at the command line, and plots appear according to the
number of hyperparameters in the optimization. For the optimization and plots, the objective function
is the misclassification rate. To control the iterative display, set the Verbose field of the
'HyperparameterOptimizationOptions' name-value argument. To control the plots, set the
ShowPlots field of the 'HyperparameterOptimizationOptions' name-value argument.

For an example, see “Optimize Classification Tree” on page 35-2218.
Example: 'auto'

HyperparameterOptimizationOptions — Options for optimization
structure

Options for optimization, specified as a structure. This argument modifies the effect of the
OptimizeHyperparameters name-value argument. All fields in the structure are optional.
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Field Name Values Default
Optimizer • 'bayesopt' — Use Bayesian optimization.

Internally, this setting calls bayesopt.
• 'gridsearch' — Use grid search with

NumGridDivisions values per dimension.
• 'randomsearch' — Search at random among

MaxObjectiveEvaluations points.

'gridsearch' searches in a random order, using
uniform sampling without replacement from the
grid. After optimization, you can get a table in grid
order by using the command
sortrows(Mdl.HyperparameterOptimizatio
nResults).

'bayesopt'

AcquisitionFunct
ionName

• 'expected-improvement-per-second-
plus'

• 'expected-improvement'
• 'expected-improvement-plus'
• 'expected-improvement-per-second'
• 'lower-confidence-bound'
• 'probability-of-improvement'

Acquisition functions whose names include per-
second do not yield reproducible results because
the optimization depends on the runtime of the
objective function. Acquisition functions whose
names include plus modify their behavior when
they are overexploiting an area. For more details,
see “Acquisition Function Types” on page 10-3.

'expected-
improvement-per-
second-plus'

MaxObjectiveEval
uations

Maximum number of objective function
evaluations.

30 for 'bayesopt' and
'randomsearch', and
the entire grid for
'gridsearch'

MaxTime Time limit, specified as a positive real scalar. The
time limit is in seconds, as measured by tic and
toc. The run time can exceed MaxTime because
MaxTime does not interrupt function evaluations.

Inf

NumGridDivisions For 'gridsearch', the number of values in each
dimension. The value can be a vector of positive
integers giving the number of values for each
dimension, or a scalar that applies to all
dimensions. This field is ignored for categorical
variables.

10
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Field Name Values Default
ShowPlots Logical value indicating whether to show plots. If

true, this field plots the best observed objective
function value against the iteration number. If you
use Bayesian optimization (Optimizer is
'bayesopt'), then this field also plots the best
estimated objective function value. The best
observed objective function values and best
estimated objective function values correspond to
the values in the BestSoFar (observed) and
BestSoFar (estim.) columns of the iterative
display, respectively. You can find these values in
the properties ObjectiveMinimumTrace and
EstimatedObjectiveMinimumTrace of
Mdl.HyperparameterOptimizationResults.
If the problem includes one or two optimization
parameters for Bayesian optimization, then
ShowPlots also plots a model of the objective
function against the parameters.

true

SaveIntermediate
Results

Logical value indicating whether to save results
when Optimizer is 'bayesopt'. If true, this
field overwrites a workspace variable named
'BayesoptResults' at each iteration. The
variable is a BayesianOptimization object.

false

Verbose Display at the command line:

• 0 — No iterative display
• 1 — Iterative display
• 2 — Iterative display with extra information

For details, see the bayesopt Verbose name-
value argument and the example “Optimize
Classifier Fit Using Bayesian Optimization” on
page 10-56.

1

UseParallel Logical value indicating whether to run Bayesian
optimization in parallel, which requires Parallel
Computing Toolbox. Due to the nonreproducibility
of parallel timing, parallel Bayesian optimization
does not necessarily yield reproducible results. For
details, see “Parallel Bayesian Optimization” on
page 10-7.

false

35 Functions

35-2268



Field Name Values Default
Repartition Logical value indicating whether to repartition the

cross-validation at every iteration. If this field is
false, the optimizer uses a single partition for
the optimization.

The setting true usually gives the most robust
results because it takes partitioning noise into
account. However, for good results, true requires
at least twice as many function evaluations.

false

Use no more than one of the following three options.
CVPartition A cvpartition object, as created by

cvpartition
'Kfold',5 if you do not
specify a cross-validation
fieldHoldout A scalar in the range (0,1) representing the

holdout fraction
Kfold An integer greater than 1

Example:
'HyperparameterOptimizationOptions',struct('MaxObjectiveEvaluations',60)

Data Types: struct

Output Arguments
tree — Classification tree
classification tree object

Classification tree, returned as a classification tree object.

Using the 'CrossVal', 'KFold', 'Holdout', 'Leaveout', or 'CVPartition' options results in a
tree of class ClassificationPartitionedModel. You cannot use a partitioned tree for prediction,
so this kind of tree does not have a predict method. Instead, use kfoldPredict to predict
responses for observations not used for training.

Otherwise, tree is of class ClassificationTree, and you can use the predict method to make
predictions.

More About
Curvature Test

The curvature test is a statistical test assessing the null hypothesis that two variables are
unassociated.

The curvature test between predictor variable x and y is conducted using this process.

1 If x is continuous, then partition it into its quartiles. Create a nominal variable that bins
observations according to which section of the partition they occupy. If there are missing values,
then create an extra bin for them.

2 For each level in the partitioned predictor j = 1...J and class in the response k = 1,...,K, compute
the weighted proportion of observations in class k
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π jk = ∑
i = 1

n
I yi = k wi .

wi is the weight of observation i, ∑wi = 1, I is the indicator function, and n is the sample size. If

all observations have the same weight, then π jk =
n jk
n , where njk is the number of observations in

level j of the predictor that are in class k.
3 Compute the test statistic

t = n ∑
k = 1

K
∑

j = 1

J π jk− π j + π +k
2

π j + π +k

π j + = ∑
k

π jk, that is, the marginal probability of observing the predictor at level j. π +k = ∑
j

π jk,

that is the marginal probability of observing class k. If n is large enough, then t is distributed as a
χ2 with (K – 1)(J – 1) degrees of freedom.

4 If the p-value for the test is less than 0.05, then reject the null hypothesis that there is no
association between x and y.

When determining the best split predictor at each node, the standard CART algorithm prefers to
select continuous predictors that have many levels. Sometimes, such a selection can be spurious and
can also mask more important predictors that have fewer levels, such as categorical predictors.

The curvature test can be applied instead of standard CART to determine the best split predictor at
each node. In that case, the best split predictor variable is the one that minimizes the significant p-
values (those less than 0.05) of curvature tests between each predictor and the response variable.
Such a selection is robust to the number of levels in individual predictors.

Note If levels of a predictor are pure for a particular class, then fitctree merges those levels.
Therefore, in step 3 of the algorithm, J can be less than the actual number of levels in the predictor.
For example, if x has 4 levels, and all observations in bins 1 and 2 belong to class 1, then those levels
are pure for class 1. Consequently, fitctree merges the observations in bins 1 and 2, and J reduces
to 3.

For more details on how the curvature test applies to growing classification trees, see “Node Splitting
Rules” on page 35-2272 and [4].

Impurity and Node Error

A decision tree splits nodes based on either impurity or node error.

Impurity means one of several things, depending on your choice of the SplitCriterion name-value
pair argument:

• Gini's Diversity Index (gdi) — The Gini index of a node is

1− ∑
i

p2(i),
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where the sum is over the classes i at the node, and p(i) is the observed fraction of classes with
class i that reach the node. A node with just one class (a pure node) has Gini index 0; otherwise
the Gini index is positive. So the Gini index is a measure of node impurity.

• Deviance ('deviance') — With p(i) defined the same as for the Gini index, the deviance of a node
is

−∑
i

p(i)log2p(i) .

A pure node has deviance 0; otherwise, the deviance is positive.
• Twoing rule ('twoing') — Twoing is not a purity measure of a node, but is a different measure

for deciding how to split a node. Let L(i) denote the fraction of members of class i in the left child
node after a split, and R(i) denote the fraction of members of class i in the right child node after a
split. Choose the split criterion to maximize

P(L)P(R) ∑
i

L(i)− R(i)
2
,

where P(L) and P(R) are the fractions of observations that split to the left and right respectively. If
the expression is large, the split made each child node purer. Similarly, if the expression is small,
the split made each child node similar to each other, and therefore similar to the parent node. The
split did not increase node purity.

• Node error — The node error is the fraction of misclassified classes at a node. If j is the class with
the largest number of training samples at a node, the node error is

1 – p(j).

Interaction Test

The interaction test is a statistical test that assesses the null hypothesis that there is no interaction
between a pair of predictor variables and the response variable.

The interaction test assessing the association between predictor variables x1 and x2 with respect to y
is conducted using this process.

1 If x1 or x2 is continuous, then partition that variable into its quartiles. Create a nominal variable
that bins observations according to which section of the partition they occupy. If there are
missing values, then create an extra bin for them.

2 Create the nominal variable z with J = J1J2 levels that assigns an index to observation i according
to which levels of x1 and x2 it belongs. Remove any levels of z that do not correspond to any
observations.

3 Conduct a curvature test on page 35-2269 between z and y.

When growing decision trees, if there are important interactions between pairs of predictors, but
there are also many other less important predictors in the data, then standard CART tends to miss the
important interactions. However, conducting curvature and interaction tests for predictor selection
instead can improve detection of important interactions, which can yield more accurate decision
trees.

For more details on how the interaction test applies to growing decision trees, see “Curvature Test”
on page 35-2269, “Node Splitting Rules” on page 35-2272 and [3].
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Predictive Measure of Association

The predictive measure of association is a value that indicates the similarity between decision rules
that split observations. Among all possible decision splits that are compared to the optimal split
(found by growing the tree), the best surrogate decision split on page 35-2272 yields the maximum
predictive measure of association. The second-best surrogate split has the second-largest predictive
measure of association.

Suppose xj and xk are predictor variables j and k, respectively, and j ≠ k. At node t, the predictive
measure of association between the optimal split xj < u and a surrogate split xk < v is

λ jk =
min PL, PR − 1− PLjLk− PRjRk

min PL, PR
.

• PL is the proportion of observations in node t, such that xj < u. The subscript L stands for the left
child of node t.

• PR is the proportion of observations in node t, such that xj ≥ u. The subscript R stands for the right
child of node t.

• PLjLk is the proportion of observations at node t, such that xj < u and xk < v.

• PRjRk is the proportion of observations at node t, such that xj ≥ u and xk ≥ v.

• Observations with missing values for xj or xk do not contribute to the proportion calculations.

λjk is a value in (–∞,1]. If λjk > 0, then xk < v is a worthwhile surrogate split for xj < u.

Surrogate Decision Splits

A surrogate decision split is an alternative to the optimal decision split at a given node in a decision
tree. The optimal split is found by growing the tree; the surrogate split uses a similar or correlated
predictor variable and split criterion.

When the value of the optimal split predictor for an observation is missing, the observation is sent to
the left or right child node using the best surrogate predictor. When the value of the best surrogate
split predictor for the observation is also missing, the observation is sent to the left or right child
node using the second-best surrogate predictor, and so on. Candidate splits are sorted in descending
order by their predictive measure of association on page 35-2794.

Tip
• By default, Prune is 'on'. However, this specification does not prune the classification tree. To

prune a trained classification tree, pass the classification tree to prune.
• After training a model, you can generate C/C++ code that predicts labels for new data.

Generating C/C++ code requires MATLAB Coder. For details, see “Introduction to Code
Generation” on page 34-2.

Algorithms
Node Splitting Rules

fitctree uses these processes to determine how to split node t.
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• For standard CART (that is, if PredictorSelection is 'allpairs') and for all predictors xi, i =
1,...,p:

1 fitctree computes the weighted impurity of node t, it. For supported impurity measures,
see SplitCriterion.

2 fitctree estimates the probability that an observation is in node t using

P T = ∑
j ∈ T

w j .

wj is the weight of observation j, and T is the set of all observation indices in node t. If you do
not specify Prior or Weights, then wj = 1/n, where n is the sample size.

3 fitctree sorts xi in ascending order. Each element of the sorted predictor is a splitting
candidate or cut point. fitctree stores any indices corresponding to missing values in the
set TU, which is the unsplit set.

4 fitctree determines the best way to split node t using xi by maximizing the impurity gain
(ΔI) over all splitting candidates. That is, for all splitting candidates in xi:

a fitctree splits the observations in node t into left and right child nodes (tL and tR,
respectively).

b fitctree computes ΔI. Suppose that for a particular splitting candidate, tL and tR
contain observation indices in the sets TL and TR, respectively.

• If xi does not contain any missing values, then the impurity gain for the current
splitting candidate is

ΔI = P T it − P TL itL− P TR itR .

• If xi contains missing values then, assuming that the observations are missing at
random, the impurity gain is

ΔIU = P T − TU it − P TL itL− P TR itR .

T – TU is the set of all observation indices in node t that are not missing.
• If you use surrogate decision splits on page 35-2272, then:

i fitctree computes the predictive measures of association on page 35-2272
between the decision split xj < u and all possible decision splits xk < v, j ≠ k.

ii fitctree sorts the possible alternative decision splits in descending order by
their predictive measure of association with the optimal split. The surrogate split
is the decision split yielding the largest measure.

iii fitctree decides the child node assignments for observations with a missing
value for xi using the surrogate split. If the surrogate predictor also contains a
missing value, then fitctree uses the decision split with the second largest
measure, and so on, until there are no other surrogates. It is possible for
fitctree to split two different observations at node t using two different
surrogate splits. For example, suppose the predictors x1 and x2 are the best and
second best surrogates, respectively, for the predictor xi, i ∉ {1,2}, at node t. If
observation m of predictor xi is missing (i.e., xmi is missing), but xm1 is not missing,
then x1 is the surrogate predictor for observation xmi. If observations x(m + 1),i and
x(m + 1),1 are missing, but x(m + 1),2 is not missing, then x2 is the surrogate
predictor for observation m + 1.
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iv fitctree uses the appropriate impurity gain formula. That is, if fitctree fails
to assign all missing observations in node t to children nodes using surrogate
splits, then the impurity gain is ΔIU. Otherwise, fitctree uses ΔI for the
impurity gain.

c fitctree chooses the candidate that yields the largest impurity gain.

fitctree splits the predictor variable at the cut point that maximizes the impurity gain.
• For the curvature test (that is, if PredictorSelection is 'curvature'):

1 fitctree conducts curvature tests on page 35-2269 between each predictor and the
response for observations in node t.

• If all p-values are at least 0.05, then fitctree does not split node t.
• If there is a minimal p-value, then fitctree chooses the corresponding predictor to split

node t.
• If more than one p-value is zero due to underflow, then fitctree applies standard CART

to the corresponding predictors to choose the split predictor.
2 If fitctree chooses a split predictor, then it uses standard CART to choose the cut point (see

step 4 in the standard CART process).
• For the interaction test (that is, if PredictorSelection is 'interaction-curvature' ):

1 For observations in node t, fitctree conducts curvature tests on page 35-2269 between
each predictor and the response and interaction tests on page 35-2271 between each pair of
predictors and the response.

• If all p-values are at least 0.05, then fitctree does not split node t.
• If there is a minimal p-value and it is the result of a curvature test, then fitctree

chooses the corresponding predictor to split node t.
• If there is a minimal p-value and it is the result of an interaction test, then fitctree

chooses the split predictor using standard CART on the corresponding pair of predictors.
• If more than one p-value is zero due to underflow, then fitctree applies standard CART

to the corresponding predictors to choose the split predictor.
2 If fitctree chooses a split predictor, then it uses standard CART to choose the cut point (see

step 4 in the standard CART process).

Tree Depth Control

• If MergeLeaves is 'on' and PruneCriterion is 'error' (which are the default values for
these name-value pair arguments), then the software applies pruning only to the leaves and by
using classification error. This specification amounts to merging leaves that share the most
popular class per leaf.

• To accommodate MaxNumSplits, fitctree splits all nodes in the current layer, and then counts
the number of branch nodes. A layer is the set of nodes that are equidistant from the root node. If
the number of branch nodes exceeds MaxNumSplits, fitctree follows this procedure:

1 Determine how many branch nodes in the current layer must be unsplit so that there are at
most MaxNumSplits branch nodes.

2 Sort the branch nodes by their impurity gains.
3 Unsplit the number of least successful branches.
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4 Return the decision tree grown so far.

This procedure produces maximally balanced trees.
• The software splits branch nodes layer by layer until at least one of these events occurs:

• There are MaxNumSplits branch nodes.
• A proposed split causes the number of observations in at least one branch node to be fewer

than MinParentSize.
• A proposed split causes the number of observations in at least one leaf node to be fewer than

MinLeafSize.
• The algorithm cannot find a good split within a layer (i.e., the pruning criterion (see

PruneCriterion), does not improve for all proposed splits in a layer). A special case is when
all nodes are pure (i.e., all observations in the node have the same class).

• For values 'curvature' or 'interaction-curvature' of PredictorSelection, all tests
yield p-values greater than 0.05.

MaxNumSplits and MinLeafSize do not affect splitting at their default values. Therefore, if you
set 'MaxNumSplits', splitting might stop due to the value of MinParentSize, before
MaxNumSplits splits occur.

Parallelization

For dual-core systems and above, fitctree parallelizes training decision trees using Intel Threading
Building Blocks (TBB). For details on Intel TBB, see https://www.intel.com/content/www/us/en/
developer/tools/oneapi/onetbb.html.

Cost, Prior, and Weights

If you specify the Cost, Prior, and Weights name-value arguments, the output model object stores
the specified values in the Cost, Prior, and W properties, respectively. The Cost property stores the
user-specified cost matrix (C) as is. The Prior and W properties store the prior probabilities and
observation weights, respectively, after normalization. For details, see “Misclassification Cost Matrix,
Prior Probabilities, and Observation Weights” on page 19-8.

Version History
Introduced in R2014a
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Extended Capabilities
Tall Arrays
Calculate with arrays that have more rows than fit in memory.

Usage notes and limitations:

• Supported syntaxes are:

• tree = fitctree(Tbl,Y)
• tree = fitctree(X,Y)
• tree = fitctree(___,Name,Value)
• [tree,FitInfo,HyperparameterOptimizationResults] =

fitctree(___,Name,Value) — fitctree returns the additional output arguments
FitInfo and HyperparameterOptimizationResults when you specify the
'OptimizeHyperparameters' name-value pair argument.

• The FitInfo output argument is an empty structure array currently reserved for possible future
use.

• The HyperparameterOptimizationResults output argument is a BayesianOptimization
object or a table of hyperparameters with associated values that describe the cross-validation
optimization of hyperparameters.

'HyperparameterOptimizationResults' is nonempty when the
'OptimizeHyperparameters' name-value pair argument is nonempty at the time you create
the model. The values in 'HyperparameterOptimizationResults' depend on the value you
specify for the 'HyperparameterOptimizationOptions' name-value pair argument when you
create the model.

• If you specify 'bayesopt' (default), then HyperparameterOptimizationResults is an
object of class BayesianOptimization.

• If you specify 'gridsearch' or 'randomsearch', then
HyperparameterOptimizationResults is a table of the hyperparameters used, observed
objective function values (cross-validation loss), and rank of observations from lowest (best) to
highest (worst).

• Supported name-value pair arguments, and any differences, are:

• 'AlgorithmForCategorical'
• 'CategoricalPredictors'
• 'ClassNames'
• 'Cost'
• 'HyperparameterOptimizationOptions' — For cross-validation, tall optimization

supports only 'Holdout' validation. By default, the software selects and reserves 20% of the
data as holdout validation data, and trains the model using the rest of the data. You can specify
a different value for the holdout fraction by using this argument. For example, specify
'HyperparameterOptimizationOptions',struct('Holdout',0.3) to reserve 30% of
the data as validation data.

• 'MaxNumCategories'
• 'MaxNumSplits'— for tall optimization, fitctree searches among integers, by default log-

scaled in the range [1,max(2,min(10000,NumObservations-1))].
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• 'MergeLeaves'
• 'MinLeafSize'
• 'MinParentSize'
• 'NumVariablesToSample'
• 'OptimizeHyperparameters'
• 'PredictorNames'
• 'Prior'
• 'ResponseName'
• 'ScoreTransform'
• 'SplitCriterion'
• 'Weights'

• This additional name-value pair argument is specific to tall arrays:

• 'MaxDepth' — A positive integer specifying the maximum depth of the output tree. Specify a
value for this argument to return a tree that has fewer levels and requires fewer passes
through the tall array to compute. Generally, the algorithm of fitctree takes one pass
through the data and an additional pass for each tree level. The function does not set a
maximum tree depth, by default.

For more information, see “Tall Arrays”.

Automatic Parallel Support
Accelerate code by automatically running computation in parallel using Parallel Computing Toolbox™.

To perform parallel hyperparameter optimization, use the
'HyperparameterOptimizationOptions', struct('UseParallel',true) name-value
argument in the call to the fitctree function.

For more information on parallel hyperparameter optimization, see “Parallel Bayesian Optimization”
on page 10-7.

For general information about parallel computing, see “Run MATLAB Functions with Automatic
Parallel Support” (Parallel Computing Toolbox).

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

Usage notes and limitations:

• fitctree does not support surrogate splits. You can specify the name-value argument
Surrogate only as "off".

• For data with categorical predictors, the following apply:

• For multiclass classification, fitctree supports only the OVAbyClass algorithm for finding
the best split.

• You can specify the name-value argument NumVariablesToSample only as "all".
• You can specify the name-value argument PredictorSelection only as "allsplits".
• fitctree fits the model on a GPU if either of the following apply:
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• The input argument X is a gpuArray object.
• The input argument Tbl contains gpuArray predictor variables.

• Note that fitctree might not execute faster on a GPU than a CPU for deeper decision trees.

For more information, see “Run MATLAB Functions on a GPU” (Parallel Computing Toolbox).

See Also
kfoldPredict | predict | ClassificationTree | ClassificationPartitionedModel |
prune

Topics
“Splitting Categorical Predictors in Classification Trees” on page 20-25
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fitglm
Create generalized linear regression model

Syntax
mdl = fitglm(tbl)
mdl = fitglm(X,y)
mdl = fitglm( ___ ,modelspec)
mdl = fitglm( ___ ,Name,Value)

Description
mdl = fitglm(tbl) returns a generalized linear model fit to variables in the table or dataset array
tbl. By default, fitglm takes the last variable as the response variable.

mdl = fitglm(X,y) returns a generalized linear model of the responses y, fit to the data matrix X.

mdl = fitglm( ___ ,modelspec) returns a generalized linear model of the type you specify in
modelspec.

mdl = fitglm( ___ ,Name,Value) returns a generalized linear model with additional options
specified by one or more Name,Value pair arguments.

For example, you can specify which variables are categorical, the distribution of the response
variable, and the link function to use.

Examples

Fit a Logistic Regression Model

Make a logistic binomial model of the probability of smoking as a function of age, weight, and sex,
using a two-way interactions model.

Load the hospital dataset array.

load hospital
dsa = hospital;

Specify the model using a formula that allows up to two-way interactions between the variables age,
weight, and sex. Smoker is the response variable.

modelspec = 'Smoker ~ Age*Weight*Sex - Age:Weight:Sex';

Fit a logistic binomial model.

mdl = fitglm(dsa,modelspec,'Distribution','binomial')

mdl = 
Generalized linear regression model:
    logit(Smoker) ~ 1 + Sex*Age + Sex*Weight + Age*Weight
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    Distribution = Binomial

Estimated Coefficients:
                        Estimate         SE         tStat      pValue 
                       ___________    _________    ________    _______

    (Intercept)            -6.0492       19.749     -0.3063    0.75938
    Sex_Male               -2.2859       12.424    -0.18399    0.85402
    Age                    0.11691      0.50977     0.22934    0.81861
    Weight                0.031109      0.15208     0.20455    0.83792
    Sex_Male:Age          0.020734      0.20681     0.10025    0.92014
    Sex_Male:Weight        0.01216     0.053168     0.22871     0.8191
    Age:Weight         -0.00071959    0.0038964    -0.18468    0.85348

100 observations, 93 error degrees of freedom
Dispersion: 1
Chi^2-statistic vs. constant model: 5.07, p-value = 0.535

All of the p-values (under pValue) are large. This means none of the coefficients are significant. The
large p-value for the test of the model, 0.535, indicates that this model might not differ statistically
from a constant model.

GLM for Poisson Response

Create sample data with 20 predictors, and Poisson response using just three of the predictors, plus a
constant.

rng('default') % for reproducibility
X = randn(100,7);
mu = exp(X(:,[1 3 6])*[.4;.2;.3] + 1);
y = poissrnd(mu);

Fit a generalized linear model using the Poisson distribution.

mdl =  fitglm(X,y,'linear','Distribution','poisson')

mdl = 
Generalized linear regression model:
    log(y) ~ 1 + x1 + x2 + x3 + x4 + x5 + x6 + x7
    Distribution = Poisson

Estimated Coefficients:
                   Estimate        SE        tStat        pValue  
                   _________    ________    ________    __________

    (Intercept)      0.88723    0.070969      12.502    7.3149e-36
    x1               0.44413    0.052337      8.4858    2.1416e-17
    x2             0.0083388    0.056527     0.14752       0.88272
    x3               0.21518    0.063416      3.3932    0.00069087
    x4             -0.058386    0.065503    -0.89135       0.37274
    x5             -0.060824    0.073441     -0.8282       0.40756
    x6               0.34267    0.056778      6.0352    1.5878e-09
    x7               0.04316     0.06146     0.70225       0.48252
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100 observations, 92 error degrees of freedom
Dispersion: 1
Chi^2-statistic vs. constant model: 119, p-value = 1.55e-22

The p-values of 2.14e-17, 0.00069, and 1.58e-09 indicate that the coefficients of the variables x1, x3,
and x6 are statistically significant.

Input Arguments
tbl — Input data
table | dataset array

Input data including predictor and response variables, specified as a table or dataset array. The
predictor variables and response variable can be numeric, logical, categorical, character, or string.
The response variable can have a data type other than numeric only if 'Distribution' is
'binomial'.

• By default, fitglm takes the last variable as the response variable and the others as the predictor
variables.

• To set a different column as the response variable, use the ResponseVar name-value pair
argument.

• To use a subset of the columns as predictors, use the PredictorVars name-value pair argument.
• To define a model specification, set the modelspec argument using a formula or terms matrix.

The formula or terms matrix specifies which columns to use as the predictor or response
variables.

The variable names in a table do not have to be valid MATLAB identifiers, but the names must not
contain leading or trailing blanks. If the names are not valid, you cannot use a formula when you fit or
adjust a model; for example:

• You cannot specify modelspec using a formula.
• You cannot use a formula to specify the terms to add or remove when you use the addTerms

function or the removeTerms function, respectively.
• You cannot use a formula to specify the lower and upper bounds of the model when you use the

step or stepwiseglm function with the name-value pair arguments 'Lower' and 'Upper',
respectively.

You can verify the variable names in tbl by using the isvarname function. If the variable names are
not valid, then you can convert them by using the matlab.lang.makeValidName function.

X — Predictor variables
matrix

Predictor variables, specified as an n-by-p matrix, where n is the number of observations and p is the
number of predictor variables. Each column of X represents one variable, and each row represents
one observation.

By default, there is a constant term in the model, unless you explicitly remove it, so do not include a
column of 1s in X.
Data Types: single | double
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y — Response variable
vector | matrix

Response variable, specified as a vector or matrix.

• If 'Distribution' is not 'binomial', then y must be an n-by-1 vector, where n is the number
of observations. Each entry in y is the response for the corresponding row of X. The data type
must be single or double.

• If 'Distribution' is 'binomial', then y can be an n-by-1 vector or n-by-2 matrix with counts
in column 1 and BinomialSize in column 2.

Data Types: single | double | logical | categorical

modelspec — Model specification
'linear' (default) | character vector or string scalar naming the model | t-by-(p + 1) terms matrix |
character vector or string scalar formula in the form 'y ~ terms'

Model specification, specified as one of these values.

• A character vector or string scalar naming the model.

Value Model Type
'constant' Model contains only a constant (intercept) term.
'linear' Model contains an intercept and linear term for each

predictor.
'interactions' Model contains an intercept, linear term for each predictor,

and all products of pairs of distinct predictors (no squared
terms).

'purequadratic' Model contains an intercept term and linear and squared
terms for each predictor.

'quadratic' Model contains an intercept term, linear and squared terms
for each predictor, and all products of pairs of distinct
predictors.

'polyijk' Model is a polynomial with all terms up to degree i in the
first predictor, degree j in the second predictor, and so on.
Specify the maximum degree for each predictor by using
numerals 0 though 9. The model contains interaction terms,
but the degree of each interaction term does not exceed the
maximum value of the specified degrees. For example,
'poly13' has an intercept and x1, x2, x2

2, x2
3, x1*x2, and

x1*x2
2 terms, where x1 and x2 are the first and second

predictors, respectively.

• A t-by-(p + 1) matrix, or a “Terms Matrix” on page 35-2288, specifying terms in the model, where t
is the number of terms and p is the number of predictor variables, and +1 accounts for the
response variable. A terms matrix is convenient when the number of predictors is large and you
want to generate the terms programmatically.

• A character vector or string scalar “Formula” on page 35-2288 in the form
'y ~ terms',
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where the terms are in “Wilkinson Notation” on page 35-2289. The variable names in the formula
must be variable names in tbl or variable names specified by Varnames. Also, the variable names
must be valid MATLAB identifiers.

The software determines the order of terms in a fitted model by using the order of terms in tbl or
X. Therefore, the order of terms in the model can be different from the order of terms in the
specified formula.

Example: 'quadratic'

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: 'Distribution','normal','link','probit','Exclude',[23,59] specifies that
the distribution of the response is normal, and instructs fitglm to use the probit link function and
exclude the 23rd and 59th observations from the fit.

BinomialSize — Number of trials for binomial distribution
1 (default) | numeric scalar | numeric vector | character vector | string scalar

Number of trials for binomial distribution, that is the sample size, specified as the comma-separated
pair consisting of 'BinomialSize' and the variable name in tbl, a numeric scalar, or a numeric
vector of the same length as the response. This is the parameter n for the fitted binomial distribution.
BinomialSize applies only when the Distribution parameter is 'binomial'.

If BinomialSize is a scalar value, that means all observations have the same number of trials.

As an alternative to BinomialSize, you can specify the response as a two-column matrix with counts
in column 1 and BinomialSize in column 2.
Data Types: single | double | char | string

B0 — Initial values for coefficient estimates
numeric vector

Initial values for the coefficient estimates, specified as a numeric vector. The default values are initial
fitted values derived from the input data.
Data Types: single | double

CategoricalVars — Categorical variable list
string array | cell array of character vectors | logical or numeric index vector

Categorical variable list, specified as the comma-separated pair consisting of 'CategoricalVars'
and either a string array or cell array of character vectors containing categorical variable names in
the table or dataset array tbl, or a logical or numeric index vector indicating which columns are
categorical.

• If data is in a table or dataset array tbl, then, by default, fitglm treats all categorical values,
logical values, character arrays, string arrays, and cell arrays of character vectors as categorical
variables.
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• If data is in matrix X, then the default value of 'CategoricalVars' is an empty matrix []. That
is, no variable is categorical unless you specify it as categorical.

For example, you can specify the second and third variables out of six as categorical using either of
the following:
Example: 'CategoricalVars',[2,3]
Example: 'CategoricalVars',logical([0 1 1 0 0 0])
Data Types: single | double | logical | string | cell

DispersionFlag — Indicator to compute dispersion parameter
false for 'binomial' and 'poisson' distributions (default) | true

Indicator to compute dispersion parameter for 'binomial' and 'poisson' distributions, specified
as the comma-separated pair consisting of 'DispersionFlag' and one of the following.

true Estimate a dispersion parameter when computing standard errors. The
estimated dispersion parameter value is the sum of squared Pearson
residuals divided by the degrees of freedom for error (DFE).

false Default. Use the theoretical value of 1 when computing standard errors.

The fitting function always estimates the dispersion for other distributions.
Example: 'DispersionFlag',true

Distribution — Distribution of the response variable
'normal' (default) | 'binomial' | 'poisson' | 'gamma' | 'inverse gaussian'

Distribution of the response variable, specified as the comma-separated pair consisting of
'Distribution' and one of the following.

'normal' Normal distribution
'binomial' Binomial distribution
'poisson' Poisson distribution
'gamma' Gamma distribution
'inverse gaussian' Inverse Gaussian distribution

Example: 'Distribution','gamma'

Exclude — Observations to exclude
logical or numeric index vector

Observations to exclude from the fit, specified as the comma-separated pair consisting of 'Exclude'
and a logical or numeric index vector indicating which observations to exclude from the fit.

For example, you can exclude observations 2 and 3 out of 6 using either of the following examples.
Example: 'Exclude',[2,3]
Example: 'Exclude',logical([0 1 1 0 0 0])
Data Types: single | double | logical
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Intercept — Indicator for constant term
true (default) | false

Indicator for the constant term (intercept) in the fit, specified as the comma-separated pair consisting
of 'Intercept' and either true to include or false to remove the constant term from the model.

Use 'Intercept' only when specifying the model using a character vector or string scalar, not a
formula or matrix.
Example: 'Intercept',false

Link — Link function
canonical link function (default) | scalar value | structure

Link function to use in place of the canonical link function, specified as the comma-separated pair
consisting of 'Link' and one of the following.

Link Function Name Link Function Mean (Inverse) Function
'identity' f(μ) = μ μ = Xb
'log' f(μ) = log(μ) μ = exp(Xb)
'logit' f(μ) = log(μ/(1–μ)) μ = exp(Xb) / (1 + exp(Xb))
'probit' f(μ) = Φ–1(μ), where Φ is the

cumulative distribution function of
the standard normal distribution.

μ = Φ(Xb)

'comploglog' f(μ) = log(–log(1 – μ)) μ = 1 – exp(–exp(Xb))
'reciprocal' f(μ) = 1/μ μ = 1/(Xb)
p (a number) f(μ) = μp μ = Xb1/p

S (a structure)
with three fields. Each field
holds a function handle that
accepts a vector of inputs and
returns a vector of the same
size:

• S.Link — The link function
• S.Inverse — The inverse

link function
• S.Derivative — The

derivative of the link
function

f(μ) = S.Link(μ) μ = S.Inverse(Xb)

The link function defines the relationship f(μ) = X*b between the mean response μ and the linear
combination of predictors X*b.

For more information on the canonical link functions, see “Canonical Link Function” on page 35-
2289.
Example: 'Link','probit'
Data Types: char | string | single | double | struct
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Options — Optimization options
statset('fitglm') (default) | structure

Optimization options, specified as a structure. This argument determines the control parameters for
the iterative algorithm that fitglm uses.

Create the 'Options' value by using the function statset or by creating a structure array
containing the fields and values described in this table.

Field Name Value Default Value
Display Amount of information displayed by the algorithm

• 'off' — Displays no information
• 'final' — Displays the final output

'off'

MaxIter Maximum number of iterations allowed, specified
as a positive integer

100

TolX Termination tolerance for the parameters,
specified as a positive scalar

1e-6

You can also enter statset('fitglm') in the Command Window to see the names and default
values of the fields that fitglm accepts in the 'Options' name-value argument.
Example: 'Options',statset('Display','final','MaxIter',1000) specifies to display the
final information of the iterative algorithm results, and change the maximum number of iterations
allowed to 1000.
Data Types: struct

Offset — Offset variable
[ ] (default) | numeric vector | character vector | string scalar

Offset variable in the fit, specified as the comma-separated pair consisting of 'Offset' and the
variable name in tbl or a numeric vector with the same length as the response.

fitglm uses Offset as an additional predictor with a coefficient value fixed at 1. In other words, the
formula for fitting is

f(μ) = Offset + X*b,
where f is the link function, μ is the mean response, and X*b is the linear combination of predictors X.
The Offset predictor has coefficient 1.

For example, consider a Poisson regression model. Suppose the number of counts is known for
theoretical reasons to be proportional to a predictor A. By using the log link function and by
specifying log(A) as an offset, you can force the model to satisfy this theoretical constraint.
Data Types: single | double | char | string

PredictorVars — Predictor variables
string array | cell array of character vectors | logical or numeric index vector

Predictor variables to use in the fit, specified as the comma-separated pair consisting of
'PredictorVars' and either a string array or cell array of character vectors of the variable names
in the table or dataset array tbl, or a logical or numeric index vector indicating which columns are
predictor variables.
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The string values or character vectors should be among the names in tbl, or the names you specify
using the 'VarNames' name-value pair argument.

The default is all variables in X, or all variables in tbl except for ResponseVar.

For example, you can specify the second and third variables as the predictor variables using either of
the following examples.
Example: 'PredictorVars',[2,3]
Example: 'PredictorVars',logical([0 1 1 0 0 0])
Data Types: single | double | logical | string | cell

ResponseVar — Response variable
last column in tbl (default) | character vector or string scalar containing variable name | logical or
numeric index vector

Response variable to use in the fit, specified as the comma-separated pair consisting of
'ResponseVar' and either a character vector or string scalar containing the variable name in the
table or dataset array tbl, or a logical or numeric index vector indicating which column is the
response variable. You typically need to use 'ResponseVar' when fitting a table or dataset array
tbl.

For example, you can specify the fourth variable, say yield, as the response out of six variables, in
one of the following ways.
Example: 'ResponseVar','yield'
Example: 'ResponseVar',[4]
Example: 'ResponseVar',logical([0 0 0 1 0 0])
Data Types: single | double | logical | char | string

VarNames — Names of variables
{'x1','x2',...,'xn','y'} (default) | string array | cell array of character vectors

Names of variables, specified as the comma-separated pair consisting of 'VarNames' and a string
array or cell array of character vectors including the names for the columns of X first, and the name
for the response variable y last.

'VarNames' is not applicable to variables in a table or dataset array, because those variables already
have names.

The variable names do not have to be valid MATLAB identifiers, but the names must not contain
leading or trailing blanks. If the names are not valid, you cannot use a formula when you fit or adjust
a model; for example:

• You cannot use a formula to specify the terms to add or remove when you use the addTerms
function or the removeTerms function, respectively.

• You cannot use a formula to specify the lower and upper bounds of the model when you use the
step or stepwiseglm function with the name-value pair arguments 'Lower' and 'Upper',
respectively.

Before specifying 'VarNames',varNames, you can verify the variable names in varNames by using
the isvarname function. If the variable names are not valid, then you can convert them by using the
matlab.lang.makeValidName function.
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Example: 'VarNames',{'Horsepower','Acceleration','Model_Year','MPG'}
Data Types: string | cell

Weights — Observation weights
ones(n,1) (default) | n-by-1 vector of nonnegative scalar values

Observation weights, specified as the comma-separated pair consisting of 'Weights' and an n-by-1
vector of nonnegative scalar values, where n is the number of observations.
Data Types: single | double

Output Arguments
mdl — Generalized linear regression model
GeneralizedLinearModel object

Generalized linear regression model, specified as a GeneralizedLinearModel object created using
fitglm or stepwiseglm.

More About
Terms Matrix

A terms matrix T is a t-by-(p + 1) matrix specifying terms in a model, where t is the number of terms,
p is the number of predictor variables, and +1 accounts for the response variable. The value of
T(i,j) is the exponent of variable j in term i.

For example, suppose that an input includes three predictor variables x1, x2, and x3 and the
response variable y in the order x1, x2, x3, and y. Each row of T represents one term:

• [0 0 0 0] — Constant term or intercept
• [0 1 0 0] — x2; equivalently, x1^0 * x2^1 * x3^0
• [1 0 1 0] — x1*x3
• [2 0 0 0] — x1^2
• [0 1 2 0] — x2*(x3^2)

The 0 at the end of each term represents the response variable. In general, a column vector of zeros
in a terms matrix represents the position of the response variable. If you have the predictor and
response variables in a matrix and column vector, then you must include 0 for the response variable
in the last column of each row.

Formula

A formula for model specification is a character vector or string scalar of the form 'y ~ terms'.

• y is the response name.
• terms represents the predictor terms in a model using Wilkinson notation.

To represent predictor and response variables, use the variable names of the table input tbl or the
variable names specified by using VarNames. The default value of VarNames is
{'x1','x2',...,'xn','y'}.
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For example:

• 'y ~ x1 + x2 + x3' specifies a three-variable linear model with intercept.
• 'y ~ x1 + x2 + x3 – 1' specifies a three-variable linear model without intercept. Note that

formulas include a constant (intercept) term by default. To exclude a constant term from the
model, you must include –1 in the formula.

A formula includes a constant term unless you explicitly remove the term using –1.

Wilkinson Notation

Wilkinson notation describes the terms present in a model. The notation relates to the terms present
in a model, not to the multipliers (coefficients) of those terms.

Wilkinson notation uses these symbols:

• + means include the next variable.
• – means do not include the next variable.
• : defines an interaction, which is a product of terms.
• * defines an interaction and all lower-order terms.
• ^ raises the predictor to a power, exactly as in * repeated, so ^ includes lower-order terms as well.
• () groups terms.

This table shows typical examples of Wilkinson notation.

Wilkinson Notation Terms in Standard Notation
1 Constant (intercept) term
x1^k, where k is a positive integer x1, x12, ..., x1k

x1 + x2 x1, x2
x1*x2 x1, x2, x1*x2
x1:x2 x1*x2 only
–x2 Do not include x2
x1*x2 + x3 x1, x2, x3, x1*x2
x1 + x2 + x3 + x1:x2 x1, x2, x3, x1*x2
x1*x2*x3 – x1:x2:x3 x1, x2, x3, x1*x2, x1*x3, x2*x3
x1*(x2 + x3) x1, x2, x3, x1*x2, x1*x3

For more details, see “Wilkinson Notation” on page 11-93.

Canonical Link Function

The default link function for a generalized linear model is the canonical link function.

Distribution Canonical Link
Function Name

Link Function Mean (Inverse)
Function

'normal' 'identity' f(μ) = μ μ = Xb
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Distribution Canonical Link
Function Name

Link Function Mean (Inverse)
Function

'binomial' 'logit' f(μ) = log(μ/(1 – μ)) μ = exp(Xb) / (1 +
exp(Xb))

'poisson' 'log' f(μ) = log(μ) μ = exp(Xb)
'gamma' -1 f(μ) = 1/μ μ = 1/(Xb)
'inverse gaussian' -2 f(μ) = 1/μ2 μ = (Xb)–1/2

Tips
• The generalized linear model mdl is a standard linear model unless you specify otherwise with the

Distribution name-value pair.
• For methods such as plotResiduals or devianceTest, or properties of the

GeneralizedLinearModel object, see GeneralizedLinearModel.
• After training a model, you can generate C/C++ code that predicts responses for new data.

Generating C/C++ code requires MATLAB Coder. For details, see “Introduction to Code
Generation” on page 34-2.

Algorithms
• fitglm treats a categorical predictor as follows:

• A model with a categorical predictor that has L levels (categories) includes L – 1 indicator
variables. The model uses the first category as a reference level, so it does not include the
indicator variable for the reference level. If the data type of the categorical predictor is
categorical, then you can check the order of categories by using categories and reorder
the categories by using reordercats to customize the reference level. For more details about
creating indicator variables, see “Automatic Creation of Dummy Variables” on page 2-50.

• fitglm treats the group of L – 1 indicator variables as a single variable. If you want to treat
the indicator variables as distinct predictor variables, create indicator variables manually by
using dummyvar. Then use the indicator variables, except the one corresponding to the
reference level of the categorical variable, when you fit a model. For the categorical predictor
X, if you specify all columns of dummyvar(X) and an intercept term as predictors, then the
design matrix becomes rank deficient.

• Interaction terms between a continuous predictor and a categorical predictor with L levels
consist of the element-wise product of the L – 1 indicator variables with the continuous
predictor.

• Interaction terms between two categorical predictors with L and M levels consist of the (L –
 1)*(M – 1) indicator variables to include all possible combinations of the two categorical
predictor levels.

• You cannot specify higher-order terms for a categorical predictor because the square of an
indicator is equal to itself.

• fitglm considers NaN, '' (empty character vector), "" (empty string), <missing>, and
<undefined> values in tbl, X, and Y to be missing values. fitglm does not use observations
with missing values in the fit. The ObservationInfo property of a fitted model indicates whether
or not fitglm uses each observation in the fit.
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Alternative Functionality
• Use stepwiseglm to select a model specification automatically. Use step, addTerms, or

removeTerms to adjust a fitted model.

Version History
Introduced in R2013b

References
[1] Collett, D. Modeling Binary Data. New York: Chapman & Hall, 2002.

[2] Dobson, A. J. An Introduction to Generalized Linear Models. New York: Chapman & Hall, 1990.

[3] McCullagh, P., and J. A. Nelder. Generalized Linear Models. New York: Chapman & Hall, 1990.

Extended Capabilities
Tall Arrays
Calculate with arrays that have more rows than fit in memory.

This function supports tall arrays for out-of-memory data with some limitations.

• If any input argument to fitglm is a tall array, then all of the other inputs must be tall arrays as
well. This includes nonempty variables supplied with the 'Weights', 'Exclude', 'Offset', and
'BinomialSize' name-value pairs.

• The default number of iterations is 5. You can change the number of iterations using the
'Options' name-value pair to pass in an options structure. Create an options structure using
statset to specify a different value for MaxIter.

• For tall data, fitglm returns a CompactGeneralizedLinearModel object that contains most of
the same properties as a GeneralizedLinearModel object. The main difference is that the
compact object is sensitive to memory requirements. The compact object does not include
properties that include the data, or that include an array of the same size as the data. The
compact object does not contain these GeneralizedLinearModel properties:

• Diagnostics
• Fitted
• Offset
• ObservationInfo
• ObservationNames
• Residuals
• Steps
• Variables

You can compute the residuals directly from the compact object returned by GLM =
fitglm(X,Y) using
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RES = Y - predict(GLM,X);
S = sqrt(GLM.SSE/GLM.DFE);
histogram(RES,linspace(-3*S,3*S,51))

For more information, see “Tall Arrays for Out-of-Memory Data”.

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

This function fully supports GPU arrays. For more information, see “Run MATLAB Functions on a
GPU” (Parallel Computing Toolbox).

See Also
GeneralizedLinearModel | stepwiseglm | predict | glmfit

Topics
“Generalized Linear Model Workflow” on page 12-28
“Generalized Linear Models” on page 12-9
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fitglme
Fit generalized linear mixed-effects model

Syntax
glme = fitglme(tbl,formula)
glme = fitglme(tbl,formula,Name,Value)

Description
glme = fitglme(tbl,formula) returns a generalized linear mixed-effects model, glme. The
model is specified by formula and fitted to the predictor variables in the table or dataset array, tbl.

glme = fitglme(tbl,formula,Name,Value) returns a generalized linear mixed-effects model
using additional options specified by one or more Name,Value pair arguments. For example, you can
specify the distribution of the response, the link function, or the covariance pattern of the random-
effects terms.

Examples

Fit a Generalized Linear Mixed-Effects Model

Load the sample data.

load mfr

This simulated data is from a manufacturing company that operates 50 factories across the world,
with each factory running a batch process to create a finished product. The company wants to
decrease the number of defects in each batch, so it developed a new manufacturing process. To test
the effectiveness of the new process, the company selected 20 of its factories at random to participate
in an experiment: Ten factories implemented the new process, while the other ten continued to run
the old process. In each of the 20 factories, the company ran five batches (for a total of 100 batches)
and recorded the following data:

• Flag to indicate whether the batch used the new process (newprocess)
• Processing time for each batch, in hours (time)
• Temperature of the batch, in degrees Celsius (temp)
• Categorical variable indicating the supplier of the chemical used in the batch (supplier)
• Number of defects in the batch (defects)

The data also includes time_dev and temp_dev, which represent the absolute deviation of time and
temperature, respectively, from the process standard of 3 hours at 20 degrees Celsius.

Fit a generalized linear mixed-effects model using newprocess, time_dev, temp_dev, and
supplier as fixed-effects predictors. Include a random-effects term for intercept grouped by
factory, to account for quality differences that might exist due to factory-specific variations. The
response variable defects has a Poisson distribution, and the appropriate link function for this
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model is log. Use the Laplace fit method to estimate the coefficients. Specify the dummy variable
encoding as 'effects', so the dummy variable coefficients sum to 0.

The number of defects can be modeled using a Poisson distribution

defectsi j ∼ Poisson μi j .

This corresponds to the generalized linear mixed-effects model

log μi j = β0 + β1newprocessi j + β2time_devi j + β3temp_devi j + β4supplier_Ci j + β5supplier_Bi j
+ bi,

where

• defectsi j is the number of defects observed in the batch produced by factory i during batch j.
• μi j is the mean number of defects corresponding to factory i (where i = 1, 2, . . . , 20) during batch

j (where j = 1, 2, . . . , 5).
• newprocessi j, time_devi j, and temp_devi j are the measurements for each variable that correspond

to factory i during batch j. For example, newprocessi j indicates whether the batch produced by
factory i during batch j used the new process.

• supplier_Ci j and supplier_Bi j are dummy variables that use effects (sum-to-zero) coding to indicate
whether company C or B, respectively, supplied the process chemicals for the batch produced by
factory i during batch j.

• bi ∼ N(0, σb
2) is a random-effects intercept for each factory i that accounts for factory-specific

variation in quality.

glme = fitglme(mfr,'defects ~ 1 + newprocess + time_dev + temp_dev + supplier + (1|factory)', ...
    'Distribution','Poisson','Link','log','FitMethod','Laplace', ...
    'DummyVarCoding','effects');

Display the model.

disp(glme)

Generalized linear mixed-effects model fit by ML

Model information:
    Number of observations             100
    Fixed effects coefficients           6
    Random effects coefficients         20
    Covariance parameters                1
    Distribution                    Poisson
    Link                            Log   
    FitMethod                       Laplace

Formula:
    defects ~ 1 + newprocess + time_dev + temp_dev + supplier + (1 | factory)

Model fit statistics:
    AIC       BIC       LogLikelihood    Deviance
    416.35    434.58    -201.17          402.35  

Fixed effects coefficients (95% CIs):
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    Name                   Estimate     SE          tStat       DF    pValue    
    {'(Intercept)'}           1.4689     0.15988      9.1875    94    9.8194e-15
    {'newprocess' }         -0.36766     0.17755     -2.0708    94      0.041122
    {'time_dev'   }        -0.094521     0.82849    -0.11409    94       0.90941
    {'temp_dev'   }         -0.28317      0.9617    -0.29444    94       0.76907
    {'supplier_C' }        -0.071868    0.078024     -0.9211    94       0.35936
    {'supplier_B' }         0.071072     0.07739     0.91836    94       0.36078

    Lower        Upper    
       1.1515       1.7864
     -0.72019    -0.015134
      -1.7395       1.5505
      -2.1926       1.6263
     -0.22679     0.083051
    -0.082588      0.22473

Random effects covariance parameters:
Group: factory (20 Levels)
    Name1                  Name2                  Type           Estimate
    {'(Intercept)'}        {'(Intercept)'}        {'std'}        0.31381 

Group: Error
    Name                        Estimate
    {'sqrt(Dispersion)'}        1       

The Model information table displays the total number of observations in the sample data (100),
the number of fixed- and random-effects coefficients (6 and 20, respectively), and the number of
covariance parameters (1). It also indicates that the response variable has a Poisson distribution,
the link function is Log, and the fit method is Laplace.

Formula indicates the model specification using Wilkinson’s notation.

The Model fit statistics table displays statistics used to assess the goodness of fit of the model.
This includes the Akaike information criterion (AIC), Bayesian information criterion (BIC) values, log
likelihood (LogLikelihood), and deviance (Deviance) values.

The Fixed effects coefficients table indicates that fitglme returned 95% confidence
intervals. It contains one row for each fixed-effects predictor, and each column contains statistics
corresponding to that predictor. Column 1 (Name) contains the name of each fixed-effects coefficient,
column 2 (Estimate) contains its estimated value, and column 3 (SE) contains the standard error of
the coefficient. Column 4 (tStat) contains the t-statistic for a hypothesis test that the coefficient is
equal to 0. Column 5 (DF) and column 6 (pValue) contain the degrees of freedom and p-value that
correspond to the t-statistic, respectively. The last two columns (Lower and Upper) display the lower
and upper limits, respectively, of the 95% confidence interval for each fixed-effects coefficient.

Random effects covariance parameters displays a table for each grouping variable (here, only
factory), including its total number of levels (20), and the type and estimate of the covariance
parameter. Here, std indicates that fitglme returns the standard deviation of the random effect
associated with the factory predictor, which has an estimated value of 0.31381. It also displays a table
containing the error parameter type (here, the square root of the dispersion parameter), and its
estimated value of 1.

The standard display generated by fitglme does not provide confidence intervals for the random-
effects parameters. To compute and display these values, use covarianceParameters.
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Input Arguments
tbl — Input data
table | dataset array

Input data, which includes the response variable, predictor variables, and grouping variables,
specified as a table or dataset array. The predictor variables can be continuous or grouping variables
(see “Grouping Variables” on page 2-46). You must specify the model for the variables using
formula.

formula — Formula for model specification
character vector or string scalar of the form 'y ~ fixed + (random1|grouping1) + ... +
(randomR|groupingR)'

Formula for model specification, specified as a character vector or string scalar of the form 'y ~
fixed + (random1|grouping1) + ... + (randomR|groupingR)'. The formula is case
sensitive. For a full description, see “Formula” on page 35-2306.
Example: 'y ~ treatment + (1|block)'

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example:
'Distribution','Poisson','Link','log','FitMethod','Laplace','DummyVarCoding',
'effects' specifies the response variable distribution as Poisson, the link function as log, the fit
method as Laplace, and dummy variable coding where the coefficients sum to 0.

BinomialSize — Number of trials for binomial distribution
1 (default) | scalar value | vector | variable name

Number of trials for binomial distribution, that is the sample size, specified as the comma-separated
pair consisting of a scalar value, a vector of the same length as the response, or the name of a
variable in the input table. If you specify the name of a variable, then the variable must be of the
same length as the response. BinomialSize applies only when the Distribution parameter is
'binomial'.

If BinomialSize is a scalar value, that means all observations have the same number of trials.
Data Types: single | double

CheckHessian — Indicator to check positive definiteness of Hessian
false (default) | true

Indicator to check the positive definiteness of the Hessian of the objective function with respect to
unconstrained parameters at convergence, specified as the comma-separated pair consisting of
'CheckHessian' and either false or true. Default is false.

Specify 'CheckHessian' as true to verify optimality of the solution or to determine if the model is
overparameterized in the number of covariance parameters.
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If you specify 'FitMethod' as 'MPL' or 'REMPL', then the covariance of the fixed effects and the
covariance parameters is based on the fitted linear mixed-effects model from the final pseudo
likelihood iteration.
Example: 'CheckHessian',true

CovarianceMethod — Method to compute covariance of estimated parameters
'conditional' (default) | 'JointHessian'

Method to compute covariance of estimated parameters, specified as the comma-separated pair
consisting of 'CovarianceMethod' and either 'conditional' or 'JointHessian'. If you specify
'conditional', then fitglme computes a fast approximation to the covariance of fixed effects
given the estimated covariance parameters. It does not compute the covariance of covariance
parameters. If you specify 'JointHessian', then fitglme computes the joint covariance of fixed
effects and covariance parameters via the observed information matrix using the Laplacian
loglikelihood.

If you specify 'FitMethod' as 'MPL' or 'REMPL', then the covariance of the fixed effects and the
covariance parameters is based on the fitted linear mixed-effects model from the final pseudo
likelihood iteration.
Example: 'CovarianceMethod','JointHessian'

CovariancePattern — Pattern of covariance matrix
'FullCholesky' | 'Isotropic' | 'Full' | 'Diagonal' | 'CompSymm' | square symmetric logical
matrix | string array | cell array of character vectors or logical matrices

Pattern of the covariance matrix of the random effects, specified as the comma-separated pair
consisting of 'CovariancePattern' and 'FullCholesky', 'Isotropic', 'Full', 'Diagonal',
'CompSymm', a square symmetric logical matrix, a string array, or a cell array containing character
vectors or logical matrices.

If there are R random-effects terms, then the value of 'CovariancePattern' must be a string array
or cell array of length R, where each element r of the array specifies the pattern of the covariance
matrix of the random-effects vector associated with the rth random-effects term. The options for each
element follow.

Value Description
'FullCholesky' Full covariance matrix using the Cholesky

parameterization. fitglme estimates all
elements of the covariance matrix.
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Value Description
'Isotropic' Diagonal covariance matrix with equal variances.

That is, off-diagonal elements of the covariance
matrix are constrained to be 0, and the diagonal
elements are constrained to be equal. For
example, if there are three random-effects terms
with an isotropic covariance structure, this
covariance matrix looks like

σb
2 0 0

0 σb
2 0

0 0 σb
2

where σ2
1 is the common variance of the random-

effects terms.
'Full' Full covariance matrix, using the log-Cholesky

parameterization. fitlme estimates all elements
of the covariance matrix.

'Diagonal' Diagonal covariance matrix. That is, off-diagonal
elements of the covariance matrix are
constrained to be 0.

σb1
2 0 0

0 σb2
2 0

0 0 σb3
2

'CompSymm' Compound symmetry structure. That is, common
variance along diagonals and equal correlation
between all random effects. For example, if there
are three random-effects terms with a covariance
matrix having a compound symmetry structure,
this covariance matrix looks like

σb1
2 σb1, b2 σb1, b2

σb1, b2 σb1
2 σb1, b2

σb1, b2 σb1, b2 σb1
2

where σ2
b1 is the common variance of the

random-effects terms and σb1,b2 is the common
covariance between any two random-effects
term .

PAT Square symmetric logical matrix. If
'CovariancePattern' is defined by the matrix
PAT, and if PAT(a,b) = false, then the (a,b)
element of the corresponding covariance matrix
is constrained to be 0.
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For scalar random-effects terms, the default is 'Isotropic'. Otherwise, the default is
'FullCholesky'.
Example: 'CovariancePattern','Diagonal'
Example: 'CovariancePattern',{'Full','Diagonal'}
Data Types: char | string | logical | cell

DispersionFlag — Indicator to compute dispersion parameter
false for 'binomial' and 'poisson' distributions (default) | true

Indicator to compute dispersion parameter for 'binomial' and 'poisson' distributions, specified
as the comma-separated pair consisting of 'DispersionFlag' and one of the following.

Value Description
true Estimate a dispersion parameter when computing

standard errors
false Use the theoretical value of 1.0 when computing

standard errors

'DispersionFlag' only applies if 'FitMethod' is 'MPL' or 'REMPL'.

The fitting function always estimates the dispersion for other distributions.
Example: 'DispersionFlag',true

Distribution — Distribution of the response variable
'Normal' (default) | 'Binomial' | 'Poisson' | 'Gamma' | 'InverseGaussian'

Distribution of the response variable, specified as the comma-separated pair consisting of
'Distribution' and one of the following.

Value Description
'Normal' Normal distribution
'Binomial' Binomial distribution
'Poisson' Poisson distribution
'Gamma' Gamma distribution
'InverseGaussian' Inverse Gaussian distribution

Example: 'Distribution','Binomial'

DummyVarCoding — Coding to use for dummy variables
'reference' (default) | 'effects' | 'full'

Coding to use for dummy variables created from the categorical variables, specified as the comma-
separated pair consisting of 'DummyVarCoding' and one of the variables in this table.
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Value Description
'reference' (default) fitglme creates dummy variables with a

reference group. This scheme treats the first
category as a reference group and creates one
less dummy variables than the number of
categories. You can check the category order of a
categorical variable by using the categories
function, and change the order by using the
reordercats function.

'effects' fitglme creates dummy variables using effects
coding. This scheme uses –1 to represent the last
category. This scheme creates one less dummy
variables than the number of categories.

'full' fitglme creates full dummy variables. This
scheme creates one dummy variable for each
category.

For more details about creating dummy variables, see “Automatic Creation of Dummy Variables” on
page 2-50.
Example: 'DummyVarCoding','effects'

EBMethod — Method used to approximate empirical Bayes estimates of random effects
'Auto' (default) | 'LineSearchNewton' | 'TrustRegion2D' | 'fsolve'

Method used to approximate empirical Bayes estimates of random effects, specified as the comma-
separated pair consisting of 'EBMethod' and one of the following.

• 'Auto'
• 'LineSearchNewton'
• 'TrustRegion2D'
• 'fsolve'

'Auto' is similar to 'LineSearchNewton' but uses a different convergence criterion and does not
display iterative progress. 'Auto' and 'LineSearchNewton' may fail for non-canonical link
functions. For non-canonical link functions, 'TrustRegion2D' or 'fsolve' are recommended. You
must have Optimization Toolbox to use 'fsolve'.
Example: 'EBMethod','LineSearchNewton'

EBOptions — Options for empirical Bayes optimization
structure

Options for empirical Bayes optimization, specified as the comma-separated pair consisting of
'EBOptions' and a structure containing the following.

Value Description
'TolFun' Relative tolerance on the gradient norm. Default

is 1e-6.
'TolX' Absolute tolerance on the step size. Default is

1e-8.
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Value Description
'MaxIter' Maximum number of iterations. Default is 100.
'Display' 'off', 'iter', or 'final'. Default is 'off'.

If EBMethod is 'Auto' and 'FitMethod' is 'Laplace', TolFun is the relative tolerance on the
linear predictor of the model, and the 'Display' option does not apply.

If 'EBMethod' is 'fsolve', then 'EBOptions' must be specified as an object created by
optimoptions('fsolve').
Data Types: struct

Exclude — Indices for rows to exclude
use all rows without NaNs (default) | vector of integer or logical values

Indices for rows to exclude from the generalized linear mixed-effects model in the data, specified as
the comma-separated pair consisting of 'Exclude' and a vector of integer or logical values.

For example, you can exclude the 13th and 67th rows from the fit as follows.
Example: 'Exclude',[13,67]
Data Types: single | double | logical

FitMethod — Method for estimating model parameters
'MPL' (default) | 'REMPL' | 'Laplace' | 'ApproximateLaplace

Method for estimating model parameters, specified as the comma-separated pair consisting of
'FitMethod' and one of the following.

• 'MPL' — Maximum pseudo likelihood
• 'REMPL' — Restricted maximum pseudo likelihood
• 'Laplace' — Maximum likelihood using Laplace approximation
• 'ApproximateLaplace' — Maximum likelihood using approximate Laplace approximation with
fixed effects profiled out

Example: 'FitMethod','REMPL'

InitPLIterations — Initial number of pseudo likelihood iterations
10 (default) | integer value in the range [1,∞)

Initial number of pseudo likelihood iterations used to initialize parameters for ApproximateLaplace
and Laplace fit methods, specified as the comma-separated pair consisting of
'InitPLIterations' and an integer value greater than or equal to 1.
Data Types: single | double

Link — Link function
'identity' | 'log' | 'logit' | 'probit' | 'comploglog' | 'reciprocal' | scalar value |
structure

Link function, specified as the comma-separated pair consisting of 'Link' and one of the following.
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Value Description
'identity' g(mu) = mu

This is the default for the normal distribution.
'log' g(mu) = log(mu)

This is the default for the Poisson distribution.
'logit' g(mu) = log(mu/(1-mu))

This is the default for the binomial distribution.
'loglog' g(mu) = log(-log(mu))
'probit' g(mu) = norminv(mu)
'comploglog' g(mu) = log(-log(1-mu))
'reciprocal' g(mu) = mu.^(-1)
Scalar value P g(mu) = mu.^P
Structure S A structure containing four fields whose values

are function handles with the following names:

• S.Link — Link function
• S.Derivative — Derivative
• S.SecondDerivative — Second derivative
• S.Inverse — Inverse of link

Specification of S.SecondDerivative can be
omitted if FitMethod is MPL or REMPL, or if S is
the canonical link for the specified distribution.

The default link function used by fitglme is the canonical link that depends on the distribution of
the response.

Response Distribution Canonical Link Function
'Normal' 'identity'
'Binomial' 'logit'
'Poisson' 'log'
'Gamma' -1
'InverseGaussian' -2

Example: 'Link','log'
Data Types: char | string | single | double | struct

MuStart — Starting value for conditional mean
scalar value

Starting value for conditional mean, specified as the comma-separated pair consisting of 'MuStart'
and a scalar value. Valid values are as follows.
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Response Distribution Valid Values
'Normal' (-Inf,Inf)
'Binomial' (0,1)
'Poisson' (0,Inf)
'Gamma' (0,Inf)
'InverseGaussian' (0,Inf)

Data Types: single | double

Offset — Offset
zeros(n,1) (default) | n-by-1 vector of scalar values

Offset, specified as the comma-separated pair consisting of 'Offset' and an n-by-1 vector of scalar
values, where n is the length of the response vector. You can also specify the variable name of an n-
by-1 vector of scalar values. 'Offset' is used as an additional predictor that has a coefficient value
fixed at 1.0.
Data Types: single | double

Optimizer — Optimization algorithm
'quasinewton' (default) | 'fminsearch' | 'fminunc'

Optimization algorithm, specified as the comma-separated pair consisting of 'Optimizer' and
either of the following.

Value Description
'quasinewton' Uses a trust region based quasi-Newton

optimizer. You can change the options of the
algorithm using statset('fitglme'). If you do
not specify the options, then fitglme uses the
default options of statset('fitglme').

'fminsearch' Uses a derivative-free Nelder-Mead method. You
can change the options of the algorithm using
optimset('fminsearch'). If you do not
specify the options, then fitglme uses the
default options of optimset('fminsearch').

'fminunc' Uses a line search-based quasi-Newton method.
You must have Optimization Toolbox to specify
this option. You can change the options of the
algorithm using optimoptions('fminunc'). If
you do not specify the options, then fitglme
uses the default options of
optimoptions('fminunc') with
'Algorithm' set to 'quasi-newton'.

Example: 'Optimizer','fminsearch'

OptimizerOptions — Options for optimization algorithm
structure returned by statset | structure returned by optimset | object returned by
optimoptions
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Options for the optimization algorithm, specified as the comma-separated pair consisting of
'OptimizerOptions' and a structure returned by statset('fitglme'), a structure created by
optimset('fminsearch'), or an object returned by optimoptions('fminunc').

• If 'Optimizer' is 'fminsearch', then use optimset('fminsearch') to change the options
of the algorithm. If 'Optimizer' is 'fminsearch' and you do not supply
'OptimizerOptions', then the defaults used in fitglme are the default options created by
optimset('fminsearch').

• If 'Optimizer' is 'fminunc', then use optimoptions('fminunc') to change the options of
the optimization algorithm. See optimoptions for the options 'fminunc' uses. If 'Optimizer'
is 'fminunc' and you do not supply 'OptimizerOptions', then the defaults used in fitglme
are the default options created by optimoptions('fminunc') with 'Algorithm' set to
'quasi-newton'.

• If 'Optimizer' is 'quasinewton', then use statset('fitglme') to change the optimization
parameters. If 'Optimizer' is 'quasinewton' and you do not change the optimization
parameters using statset, then fitglme uses the default options created by
statset('fitglme').

The 'quasinewton' optimizer uses the following fields in the structure created by
statset('fitglme').

TolFun — Relative tolerance on gradient of objective function
1e-6 (default) | positive scalar value

Relative tolerance on the gradient of the objective function, specified as a positive scalar value.

TolX — Absolute tolerance on step size
1e-12 (default) | positive scalar value

Absolute tolerance on the step size, specified as a positive scalar value.

MaxIter — Maximum number of iterations allowed
10000 (default) | positive scalar value

Maximum number of iterations allowed, specified as a positive scalar value.

Display — Level of display
'off' (default) | 'iter' | 'final'

Level of display, specified as one of 'off', 'iter', or 'final'.

PLIterations — Maximum number of pseudo likelihood iterations
100 (default) | positive integer value

Maximum number of pseudo likelihood (PL) iterations, specified as the comma-separated pair
consisting of 'PLIterations' and a positive integer value. PL is used for fitting the model if
'FitMethod' is 'MPL' or 'REMPL'. For other 'FitMethod' values, PL iterations are used to
initialize parameters for subsequent optimization.
Example: 'PLIterations',200
Data Types: single | double

PLTolerance — Relative tolerance factor for pseudo likelihood iterations
1e–08 (default) | positive scalar value

35 Functions

35-2304



Relative tolerance factor for pseudo likelihood iterations, specified as the comma-separated pair
consisting of 'PLTolerance' and a positive scalar value.
Example: 'PLTolerance',1e-06
Data Types: single | double

StartMethod — Method to start iterative optimization
'default' (default) | 'random'

Method to start iterative optimization, specified as the comma-separated pair consisting of
'StartMethod' and either of the following.

Value Description
'default' An internally defined default value
'random' A random initial value

Example: 'StartMethod','random'

UseSequentialFitting — Initial fitting type
false (default) | true

, specified as the comma-separated pair consisting of 'UseSequentialFitting' and either false
or true. If 'UseSequentialFitting' is false, all maximum likelihood methods are initialized
using one or more pseudo likelihood iterations. If 'UseSequentialFitting' is true, the initial
values from pseudo likelihood iterations are refined using 'ApproximateLaplace' for 'Laplace'
fitting.
Example: 'UseSequentialFitting',true

Verbose — Indicator to display optimization process on screen
0 (default) | 1 | 2

Indicator to display the optimization process on screen, specified as the comma-separated pair
consisting of 'Verbose' and 0, 1, or 2. If 'Verbose' is specified as 1 or 2, then fitglme displays
the progress of the iterative model-fitting process. Specifying 'Verbose' as 2 displays iterative
optimization information from the individual pseudo likelihood iterations. Specifying 'Verbose' as 1
omits this display.

The setting for 'Verbose' overrides the field 'Display' in 'OptimizerOptions'.
Example: 'Verbose',1

Weights — Observation weights
vector of nonnegative scalar values

Observation weights, specified as the comma-separated pair consisting of 'Weights' and an n-by-1
vector of nonnegative scalar values, where n is the number of observations. If the response
distribution is binomial or Poisson, then 'Weights' must be a vector of positive integers.
Data Types: single | double

Output Arguments
glme — Generalized linear mixed-effects model
GeneralizedLinearMixedModel object
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Generalized linear mixed-effects model, specified as a GeneralizedLinearMixedModel object. For
properties and methods of this object, see GeneralizedLinearMixedModel.

More About
Formula

In general, a formula for model specification is a character vector or string scalar of the form 'y ~
terms'. For the generalized linear mixed-effects models, this formula is in the form 'y ~ fixed +
(random1|grouping1) + ... + (randomR|groupingR)', where fixed and random contain
the fixed-effects and the random-effects terms.

Suppose a table tbl contains the following:

• A response variable, y
• Predictor variables, Xj, which can be continuous or grouping variables
• Grouping variables, g1, g2, ..., gR,

where the grouping variables in Xj and gr can be categorical, logical, character arrays, string arrays,
or cell arrays of character vectors.

Then, in a formula of the form, 'y ~ fixed + (random1|g1) + ... + (randomR|gR)', the term
fixed corresponds to a specification of the fixed-effects design matrix X, random1 is a specification
of the random-effects design matrix Z1 corresponding to grouping variable g1, and similarly randomR
is a specification of the random-effects design matrix ZR corresponding to grouping variable gR. You
can express the fixed and random terms using Wilkinson notation.

Wilkinson notation describes the factors present in models. The notation relates to factors present in
models, not to the multipliers (coefficients) of those factors.

Wilkinson Notation Factors in Standard Notation
1 Constant (intercept) term
X^k, where k is a positive integer X, X2, ..., Xk

X1 + X2 X1, X2
X1*X2 X1, X2, X1.*X2 (elementwise

multiplication of X1 and X2)
X1:X2 X1.*X2 only
- X2 Do not include X2
X1*X2 + X3 X1, X2, X3, X1*X2
X1 + X2 + X3 + X1:X2 X1, X2, X3, X1*X2
X1*X2*X3 - X1:X2:X3 X1, X2, X3, X1*X2, X1*X3, X2*X3
X1*(X2 + X3) X1, X2, X3, X1*X2, X1*X3

Statistics and Machine Learning Toolbox notation always includes a constant term unless you
explicitly remove the term using -1. Here are some examples for generalized linear mixed-effects
model specification.

Examples:
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Formula Description
'y ~ X1 + X2' Fixed effects for the intercept, X1 and X2. This is

equivalent to 'y ~ 1 + X1 + X2'.
'y ~ -1 + X1 + X2' No intercept and fixed effects for X1 and X2. The

implicit intercept term is suppressed by including
-1.

'y ~ 1 + (1 | g1)' Fixed effects for the intercept plus random effect
for the intercept for each level of the grouping
variable g1.

'y ~ X1 + (1 | g1)' Random intercept model with a fixed slope.
'y ~ X1 + (X1 | g1)' Random intercept and slope, with possible

correlation between them. This is equivalent to
'y ~ 1 + X1 + (1 + X1|g1)'.

'y ~ X1 + (1 | g1) + (-1 + X1 | g1)' Independent random effects terms for intercept
and slope.

'y ~ 1 + (1 | g1) + (1 | g2) + (1 |
g1:g2)'

Random intercept model with independent main
effects for g1 and g2, plus an independent
interaction effect.

Version History
Introduced in R2014b

See Also
GeneralizedLinearMixedModel

Topics
“Fit a Generalized Linear Mixed-Effects Model” on page 12-57
“Generalized Linear Mixed-Effects Models” on page 12-48
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fitgmdist
Fit Gaussian mixture model to data

Syntax
GMModel = fitgmdist(X,k)
GMModel = fitgmdist(X,k,Name,Value)

Description
GMModel = fitgmdist(X,k) returns a Gaussian mixture distribution model (GMModel) with k
components fitted to data (X).

GMModel = fitgmdist(X,k,Name,Value) returns a Gaussian mixture distribution model with
additional options specified by one or more Name,Value pair arguments.

For example, you can specify a regularization value or the covariance type.

Examples

Cluster Data Using a Gaussian Mixture Model

Generate data from a mixture of two bivariate Gaussian distributions.

mu1 = [1 2];
Sigma1 = [2 0; 0 0.5];
mu2 = [-3 -5];
Sigma2 = [1 0;0 1];
rng(1); % For reproducibility
X = [mvnrnd(mu1,Sigma1,1000); mvnrnd(mu2,Sigma2,1000)];

Fit a Gaussian mixture model. Specify that there are two components.

GMModel = fitgmdist(X,2);

Plot the data over the fitted Gaussian mixture model contours.

figure
y = [zeros(1000,1);ones(1000,1)];
h = gscatter(X(:,1),X(:,2),y);
hold on
gmPDF = @(x,y) arrayfun(@(x0,y0) pdf(GMModel,[x0 y0]),x,y);
g = gca;
fcontour(gmPDF,[g.XLim g.YLim])
title('{\bf Scatter Plot and Fitted Gaussian Mixture Contours}')
legend(h,'Model 0','Model1')
hold off
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Regularize Gaussian Mixture Model Estimation

Generate data from a mixture of two bivariate Gaussian distributions. Create a third predictor that is
the sum of the first and second predictors.

mu1 = [1 2];
Sigma1 = [1 0; 0 1];
mu2 = [3 4];
Sigma2 = [0.5 0; 0 0.5];
rng(3); % For reproducibility
X1 = [mvnrnd(mu1,Sigma1,100);mvnrnd(mu2,Sigma2,100)];
X = [X1,X1(:,1)+X1(:,2)];

The columns of X are linearly dependent. This can cause ill-conditioned covariance estimates.

Fit a Gaussian mixture model to the data. You can use try / catch statements to help manage error
messages.

rng(1); % Reset seed for common start values
try
    GMModel = fitgmdist(X,2)
catch exception
    disp('There was an error fitting the Gaussian mixture model')
    error = exception.message
end
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There was an error fitting the Gaussian mixture model

error = 
'Ill-conditioned covariance created at iteration 2.'

The covariance estimates are ill-conditioned. Consequently, optimization stops and an error appears.

Fit a Gaussian mixture model again, but use regularization.

rng(3); % Reset seed for common start values
GMModel = fitgmdist(X,2,'RegularizationValue',0.1)

GMModel = 

Gaussian mixture distribution with 2 components in 3 dimensions
Component 1:
Mixing proportion: 0.536725
Mean:    2.8831    3.9506    6.8338

Component 2:
Mixing proportion: 0.463275
Mean:    0.8813    1.9758    2.8571

In this case, the algorithm converges to a solution due to regularization.

Select the Number of Gaussian Mixture Model Components Using PCA

Gaussian mixture models require that you specify a number of components before being fit to data.
For many applications, it might be difficult to know the appropriate number of components. This
example shows how to explore the data, and try to get an initial guess at the number of components
using principal component analysis.

Load Fisher's iris data set.

load fisheriris
classes = unique(species)

classes = 3x1 cell
    {'setosa'    }
    {'versicolor'}
    {'virginica' }

The data set contains three classes of iris species. The analysis proceeds as if this is unknown.

Use principal component analysis to reduce the dimension of the data to two dimensions for
visualization.

[~,score] = pca(meas,'NumComponents',2);

Fit three Gaussian mixture models to the data by specifying 1, 2, and 3 components. Increase the
number of optimization iterations to 1000. Use dot notation to store the final parameter estimates. By
default, the software fits full and different covariances for each component.

GMModels = cell(3,1); % Preallocation
options = statset('MaxIter',1000);
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rng(1); % For reproducibility

for j = 1:3
    GMModels{j} = fitgmdist(score,j,'Options',options);
    fprintf('\n GM Mean for %i Component(s)\n',j)
    Mu = GMModels{j}.mu
end

 GM Mean for 1 Component(s)

Mu = 1×2
10-14 ×

    0.1017   -0.0444

 GM Mean for 2 Component(s)

Mu = 2×2

    1.3212   -0.0954
   -2.6424    0.1909

 GM Mean for 3 Component(s)

Mu = 3×2

    0.4856   -0.1287
    1.4484   -0.0904
   -2.6424    0.1909

GMModels is a cell array containing three, fitted gmdistribution models. The means in the three
component models are different, suggesting that the model distinguishes among the three iris
species.

Plot the scores over the fitted Gaussian mixture model contours. Since the data set includes labels,
use gscatter to distinguish between the true number of components.

figure
for j = 1:3
    subplot(2,2,j)
    h1 = gscatter(score(:,1),score(:,2),species);
    h = gca;
    hold on
    gmPDF = @(x,y) arrayfun(@(x0,y0) pdf(GMModels{j},[x0 y0]),x,y);
    fcontour(gmPDF,[h.XLim h.YLim],'MeshDensity',100)
    title(sprintf('GM Model - %i Component(s)',j));
    xlabel('1st principal component');
    ylabel('2nd principal component');
    if(j ~= 3)
        legend off;
    end
    hold off
end
g = legend(h1);
g.Position = [0.7 0.25 0.1 0.1];
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The three-component Gaussian mixture model, in conjunction with PCA, looks like it distinguishes
between the three iris species.

There are other options you can use to help select the appropriate number of components for a
Gaussian mixture model. For example,

• Compare multiple models with varying numbers of components using information criteria, e.g.,
AIC or BIC.

• Estimate the number of clusters using evalclusters, which supports, the Calinski-Harabasz
criterion and the gap statistic, or other criteria.

Determine the Best Gaussian Mixture Fit Using AIC

Gaussian mixture models require that you specify a number of components before being fit to data.
For many applications, it might be difficult to know the appropriate number of components. This
example uses the AIC fit statistic to help you choose the best fitting Gaussian mixture model over
varying numbers of components.

Generate data from a mixture of two bivariate Gaussian distributions.

mu1 = [1 1];
Sigma1 = [0.5 0; 0 0.5];
mu2 = [2 4];
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Sigma2 = [0.2 0; 0 0.2];
rng(1);
X = [mvnrnd(mu1,Sigma1,1000);mvnrnd(mu2,Sigma2,1000)];

plot(X(:,1),X(:,2),'ko')
title('Scatter Plot')
xlim([min(X(:)) max(X(:))]) % Make axes have the same scale
ylim([min(X(:)) max(X(:))])

Supposing that you do not know the underlying parameter values, the scatter plots suggests:

• There are two components.
• The variances between the clusters are different.
• The variance within the clusters is the same.
• There is no covariance within the clusters.

Fit a two-component Gaussian mixture model. Based on the scatter plot inspection, specify that the
covariance matrices are diagonal. Print the final iteration and loglikelihood statistic to the Command
Window by passing a statset structure as the value of the Options name-value pair argument.

options = statset('Display','final');
GMModel = fitgmdist(X,2,'CovarianceType','diagonal','Options',options);

11 iterations, log-likelihood = -4787.38

GMModel is a fitted gmdistribution model.
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Examine the AIC over varying numbers of components.

AIC = zeros(1,4);
GMModels = cell(1,4);
options = statset('MaxIter',500);
for k = 1:4
    GMModels{k} = fitgmdist(X,k,'Options',options,'CovarianceType','diagonal');
    AIC(k)= GMModels{k}.AIC;
end

[minAIC,numComponents] = min(AIC);
numComponents

numComponents = 2

BestModel = GMModels{numComponents}

BestModel = 

Gaussian mixture distribution with 2 components in 2 dimensions
Component 1:
Mixing proportion: 0.501719
Mean:    1.9824    4.0013

Component 2:
Mixing proportion: 0.498281
Mean:    0.9880    1.0511

The smallest AIC occurs when the software fits the two-component Gaussian mixture model.

Set Initial Values When Fitting Gaussian Mixture Models

Gaussian mixture model parameter estimates might vary with different initial values. This example
shows how to control initial values when you fit Gaussian mixture models using fitgmdist.

Load Fisher's iris data set. Use the petal lengths and widths as predictors.

load fisheriris
X = meas(:,3:4);

Fit a Gaussian mixture model to the data using default initial values. There are three iris species, so
specify k = 3 components.

rng(10); % For reproducibility
GMModel1 = fitgmdist(X,3);

By default, the software:

1 Implements the “k-means++ Algorithm for Initialization” on page 35-2321 to choose k = 3 initial
cluster centers.

2 Sets the initial covariance matrices as diagonal, where element (j, j) is the variance of X(:,j).
3 Treats the initial mixing proportions as uniform.

Fit a Gaussian mixture model by connecting each observation to its label.
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y = ones(size(X,1),1);
y(strcmp(species,'setosa')) = 2;
y(strcmp(species,'virginica')) = 3;

GMModel2 = fitgmdist(X,3,'Start',y);

Fit a Gaussian mixture model by explicitly specifying the initial means, covariance matrices, and
mixing proportions.

Mu = [1 1; 2 2; 3 3];
Sigma(:,:,1) = [1 1; 1 2];
Sigma(:,:,2) = 2*[1 1; 1 2];
Sigma(:,:,3) = 3*[1 1; 1 2];
PComponents = [1/2,1/4,1/4];
S = struct('mu',Mu,'Sigma',Sigma,'ComponentProportion',PComponents);

GMModel3 = fitgmdist(X,3,'Start',S);

Use gscatter to plot a scatter diagram that distinguishes between the iris species. For each model,
plot the fitted Gaussian mixture model contours.

figure
subplot(2,2,1)
h = gscatter(X(:,1),X(:,2),species,[],'o',4);
haxis = gca;
xlim = haxis.XLim;
ylim = haxis.YLim;
d = (max([xlim ylim])-min([xlim ylim]))/1000;
[X1Grid,X2Grid] = meshgrid(xlim(1):d:xlim(2),ylim(1):d:ylim(2));
hold on
contour(X1Grid,X2Grid,reshape(pdf(GMModel1,[X1Grid(:) X2Grid(:)]),...
    size(X1Grid,1),size(X1Grid,2)),20)
uistack(h,'top')
title('{\bf Random Initial Values}');
xlabel('Sepal length');
ylabel('Sepal width');
legend off;
hold off
subplot(2,2,2)
h = gscatter(X(:,1),X(:,2),species,[],'o',4);
hold on
contour(X1Grid,X2Grid,reshape(pdf(GMModel2,[X1Grid(:) X2Grid(:)]),...
    size(X1Grid,1),size(X1Grid,2)),20)
uistack(h,'top')
title('{\bf Initial Values from Labels}');
xlabel('Sepal length');
ylabel('Sepal width');
legend off
hold off
subplot(2,2,3)
h = gscatter(X(:,1),X(:,2),species,[],'o',4);
hold on
contour(X1Grid,X2Grid,reshape(pdf(GMModel3,[X1Grid(:) X2Grid(:)]),...
    size(X1Grid,1),size(X1Grid,2)),20)
uistack(h,'top')
title('{\bf Initial Values from the Structure}');
xlabel('Sepal length');
ylabel('Sepal width');
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legend('Location',[0.7,0.25,0.1,0.1]);
hold off

According to the contours, GMModel2 seems to suggest a slight trimodality, while the others suggest
bimodal distributions.

Display the estimated component means.

table(GMModel1.mu,GMModel2.mu,GMModel3.mu,'VariableNames',...
    {'Model1','Model2','Model3'})

ans=3×3 table
         Model1               Model2              Model3     
    _________________    ________________    ________________

    5.2115     2.0119    4.2857    1.3339    1.4604    0.2429
     1.461    0.24423     1.462     0.246    4.7509    1.4629
    4.6829     1.4429    5.5507    2.0316    5.0158    1.8592

GMModel2 seems to distinguish between the iris species the best.

Input Arguments
X — Data
numeric matrix
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Data to which the Gaussian mixture model is fit, specified as a numeric matrix.

The rows of X correspond to observations, and the columns of X correspond to variables. The number
of observations must be larger than each of the following: the number of variables and the number of
components.

NaNs indicate missing values. The software removes rows of X containing at least one NaN before
fitting, which decreases the effective sample size.
Data Types: single | double

k — Number of components
positive integer

Number of components to use when fitting Gaussian mixture model, specified as a positive integer.
For example, if you specify k = 3, then the software fits a Gaussian mixture model with three distinct
means, covariances matrices, and component proportions to the data (X).
Data Types: single | double

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: 'RegularizationValue',0.1,'CovarianceType','diagonal' specifies a
regularization parameter value of 0.1 and to fit diagonal covariance matrices.

CovarianceType — Type of covariance matrix
'full' (default) | 'diagonal'

Type of covariance matrix to fit to the data, specified as the comma-separated pair consisting of
'CovarianceType' and either 'diagonal' or 'full'.

If you set 'diagonal', then the software fits diagonal covariance matrices. In this case, the software
estimates k*d covariance parameters, where d is the number of columns in X (i.e., d = size(X,2)).

Otherwise, the software fits full covariance matrices. In this case, the software estimates k*d*(d
+1)/2 covariance parameters.
Example: 'CovarianceType','diagonal'

Options — Iterative EM algorithm optimization options
statset options structure

Iterative EM algorithm optimization options, specified as the comma-separated pair consisting of
'Options' and a statset options structure.

This table describes the available name-value pair arguments.
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Name Value
'Display' 'final': Display the final output.

'iter': Display iterative output to the Command
Window for some functions; otherwise display the
final output.

'off': Do not display optimization information.
'MaxIter' Positive integer indicating the maximum number

of iterations allowed. The default is 100
'TolFun' Positive scalar indicating the termination

tolerance for the loglikelihood function value. The
default is 1e-6.

Example: 'Options',statset('Display','final','MaxIter',1500,'TolFun',1e-5)

ProbabilityTolerance — Tolerance for posterior probabilities
1e-8 (default) | nonnegative scalar value in range [0,1e-6]

Tolerance for posterior probabilities, specified as the comma-separated pair consisting of
ProbabilityTolerance and a nonnegative scalar value in the range [0,1e-6].

In each iteration, after the estimation of posterior probabilities, fitgmdist sets any posterior
probability that is not larger than the tolerance value to zero. Using a nonzero tolerance might speed
up fitgmdist.
Example: 'ProbabilityTolerance',0.0000025
Data Types: single | double

RegularizationValue — Regularization parameter value
0 (default) | nonnegative scalar

Regularization parameter value, specified as the comma-separated pair consisting of
'RegularizationValue' and a nonnegative scalar.

Set RegularizationValue to a small positive scalar to ensure that the estimated covariance
matrices are positive definite.
Example: 'RegularizationValue',0.01
Data Types: single | double

Replicates — Number of times to repeat EM algorithm
1 (default) | positive integer

Number of times to repeat the EM algorithm using a new set of initial values, specified as the comma-
separated pair consisting of 'Replicates' and a positive integer.

If Replicates is greater than 1, then:

• The name-value pair argument Start must be plus (the default) or randSample.
• GMModel is the fit with the largest loglikelihood.

Example: 'Replicates',10
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Data Types: single | double

SharedCovariance — Flag indicating whether all covariance matrices are identical
logical false (default) | logical true

Flag indicating whether all covariance matrices are identical (i.e., fit a pooled estimate), specified as
the comma-separated pair consisting of 'SharedCovariance' and either logical value false or
true.

If SharedCovariance is true, then all k covariance matrices are equal, and the number of
covariance parameters is scaled down by a factor of k.

Start — Initial value setting method
'plus' (default) | 'randSample' | vector of integers | structure array

Initial value setting method, specified as the comma-separated pair consisting of 'Start' and
'randSample', 'plus', a vector of integers, or a structure array.

The value of Start determines the initial values required by the optimization routine for each
Gaussian component parameter — mean, covariance, and mixing proportion. This table summarizes
the available options.

Value Description
'randSample' The software selects k observations from X at random as initial component means.

The mixing proportions are uniform. The initial covariance matrices for all
components are diagonal, where the element j on the diagonal is the variance of
X(:,j).

'plus' The software selects k observations from X using the k-means++ algorithm on
page 35-2321. The initial mixing proportions are uniform. The initial covariance
matrices for all components are diagonal, where the element j on the diagonal is
the variance of X(:,j).

Vector of
integers

A vector of length n (the number of observations) containing an initial guess of the
component index for each point. That is, each element is an integer from 1 to k,
which corresponds to a component. The software collects all observations
corresponding to the same component, computes means, covariances, and mixing
proportions for each, and sets the initial values to these statistics.
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Value Description
Structure array Suppose that there are d variables (i.e., d = size(X,2)). The structure array,

e.g., S, must have three fields:

• S.mu: A k-by-d matrix specifying the initial mean of each component
• S.Sigma: A numeric array specifying the covariance matrix of each component.

Sigma is one of the following:

• A d-by-d-by-k array. Sigma(:,:,j) is the initial covariance matrix of
component j.

• A 1-by-d-by-k array. diag(Sigma(:,:,j)) is the initial covariance matrix
of component j.

• A d-by-d matrix. Sigma is the initial covariance matrix for all components.
• A 1-by-d vector. diag(Sigma) is the initial covariance matrix for all

components.
• S.ComponentProportion: A 1-by-k vector of scalars specifying the initial

mixing proportions of each component. The default is uniform.

Example: 'Start',ones(n,1)
Data Types: single | double | char | string | struct

Output Arguments
GMModel — Fitted Gaussian mixture model
gmdistribution model

Fitted Gaussian mixture model, returned as a gmdistribution model.

Access properties of GMModel using dot notation. For example, display the AIC by entering
GMModel.AIC.

Tips
fitgmdist might:

• Converge to a solution where one or more of the components has an ill-conditioned or singular
covariance matrix.

The following issues might result in an ill-conditioned covariance matrix:

• The number of dimensions of your data is relatively high and there are not enough
observations.

• Some of the predictors (variables) of your data are highly correlated.
• Some or all the features are discrete.
• You tried to fit the data to too many components.

In general, you can avoid getting ill-conditioned covariance matrices by using one of the following
precautions:
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• Preprocess your data to remove correlated features.
• Set 'SharedCovariance' to true to use an equal covariance matrix for every component.
• Set 'CovarianceType' to 'diagonal'.
• Use 'RegularizationValue' to add a very small positive number to the diagonal of every

covariance matrix.
• Try another set of initial values.

• Pass through an intermediate step where one or more of the components has an ill-conditioned
covariance matrix. Try another set of initial values to avoid this issue without altering your data or
model.

Algorithms
Gaussian Mixture Model Likelihood Optimization

The software optimizes the Gaussian mixture model likelihood using the iterative Expectation-
Maximization (EM) algorithm.

fitgmdist fits GMMs to data using the iterative Expectation-Maximization (EM) algorithm. Using
initial values for component means, covariance matrices, and mixing proportions, the EM algorithm
proceeds using these steps.

1 For each observation, the algorithm computes posterior probabilities of component memberships.
You can think of the result as an n-by-k matrix, where element (i,j) contains the posterior
probability that observation i is from component j. This is the E-step of the EM algorithm.

2 Using the component-membership posterior probabilities as weights, the algorithm estimates the
component means, covariance matrices, and mixing proportions by applying maximum likelihood.
This is the M-step of the EM algorithm.

The algorithm iterates over these steps until convergence. The likelihood surface is complex, and the
algorithm might converge to a local optimum. Also, the resulting local optimum might depend on the
initial conditions. fitgmdist has several options for choosing initial conditions, including random
component assignments for the observations and the k-means ++ algorithm.

k-means++ Algorithm for Initialization

The k-means++ algorithm uses an heuristic to find centroid seeds for k-means clustering.
fitgmdist can apply the same principle to initialize the EM algorithm by using the k-means++
algorithm to select the initial parameter values for a fitted Gaussian mixture model.

The k-means++ algorithm assumes the number of clusters is k and chooses the initial parameter
values as follows.

1 Select the component mixture probability to be the uniform probability pi = 1
k , where i = 1, ..., k.

2 Select the covariance matrices to be diagonal and identical, where σi = diag a1, a2, …, ak  and
a j = var X j .

3 Select the first initial component center μ1 uniformly from all data points in X.
4 To choose center j:

a Compute the Mahalanobis distances from each observation to each centroid, and assign each
observation to its closest centroid.
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b For m = 1,...,n and p = 1,...,j – 1, select centroid j at random from X with probability

d2 xm, μp

∑
h; xh ∈ Μp

d2 xh, μp

where d xm, μp  is the distance between observation m and μp, and Mp is the set of all
observations closest to centroid μp and xm belongs to Mp.

That is, select each subsequent center with a probability proportional to the distance from
itself to the closest center that you already chose.

5 Repeat step 4 until k centroids are chosen.

Version History
Introduced in R2014a

References
[1] McLachlan, G., and D. Peel. Finite Mixture Models. Hoboken, NJ: John Wiley & Sons, Inc., 2000.

See Also
gmdistribution | cluster

Topics
“Tune Gaussian Mixture Models” on page 17-57
“Cluster Using Gaussian Mixture Model” on page 17-39
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fitlm
Fit linear regression model

Syntax
mdl = fitlm(tbl)
mdl = fitlm(X,y)
mdl = fitlm( ___ ,modelspec)
mdl = fitlm( ___ ,Name,Value)

Description
mdl = fitlm(tbl) returns a linear regression model fit to variables in the table or dataset array
tbl. By default, fitlm takes the last variable as the response variable.

mdl = fitlm(X,y) returns a linear regression model of the responses y, fit to the data matrix X.

mdl = fitlm( ___ ,modelspec) defines the model specification using any of the input argument
combinations in the previous syntaxes.

mdl = fitlm( ___ ,Name,Value) specifies additional options using one or more name-value pair
arguments. For example, you can specify which variables are categorical, perform robust regression,
or use observation weights.

Examples

Fit Linear Regression Using Data in Matrix

Fit a linear regression model using a matrix input data set.

Load the carsmall data set, a matrix input data set.

load carsmall
X = [Weight,Horsepower,Acceleration];

Fit a linear regression model by using fitlm.

mdl = fitlm(X,MPG)

mdl = 
Linear regression model:
    y ~ 1 + x1 + x2 + x3

Estimated Coefficients:
                    Estimate        SE          tStat        pValue  
                   __________    _________    _________    __________

    (Intercept)        47.977       3.8785        12.37    4.8957e-21
    x1             -0.0065416    0.0011274      -5.8023    9.8742e-08
    x2              -0.042943     0.024313      -1.7663       0.08078
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    x3              -0.011583      0.19333    -0.059913       0.95236

Number of observations: 93, Error degrees of freedom: 89
Root Mean Squared Error: 4.09
R-squared: 0.752,  Adjusted R-Squared: 0.744
F-statistic vs. constant model: 90, p-value = 7.38e-27

The model display includes the model formula, estimated coefficients, and model summary statistics.

The model formula in the display, y ~ 1 + x1 + x2 + x3, corresponds to
y = β0 + β1X1 + β2X2 + β3X3 + ϵ.

The model display also shows the estimated coefficient information, which is stored in the
Coefficients property. Display the Coefficients property.

mdl.Coefficients

ans=4×4 table
                    Estimate        SE          tStat        pValue  
                   __________    _________    _________    __________

    (Intercept)        47.977       3.8785        12.37    4.8957e-21
    x1             -0.0065416    0.0011274      -5.8023    9.8742e-08
    x2              -0.042943     0.024313      -1.7663       0.08078
    x3              -0.011583      0.19333    -0.059913       0.95236

The Coefficient property includes these columns:

• Estimate — Coefficient estimates for each corresponding term in the model. For example, the
estimate for the constant term (intercept) is 47.977.

• SE — Standard error of the coefficients.
• tStat — t-statistic for each coefficient to test the null hypothesis that the corresponding
coefficient is zero against the alternative that it is different from zero, given the other predictors
in the model. Note that tStat = Estimate/SE. For example, the t-statistic for the intercept is
47.977/3.8785 = 12.37.

• pValue — p-value for the t-statistic of the two-sided hypothesis test. For example, the p-value of
the t-statistic for x2 is greater than 0.05, so this term is not significant at the 5% significance level
given the other terms in the model.

The summary statistics of the model are:

• Number of observations — Number of rows without any NaN values. For example, Number of
observations is 93 because the MPG data vector has six NaN values and the Horsepower data
vector has one NaN value for a different observation, where the number of rows in X and MPG is
100.

• Error degrees of freedom — n – p, where n is the number of observations, and p is the
number of coefficients in the model, including the intercept. For example, the model has four
predictors, so the Error degrees of freedom is 93 – 4 = 89.

• Root mean squared error — Square root of the mean squared error, which estimates the
standard deviation of the error distribution.
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• R-squared and Adjusted R-squared — Coefficient of determination and adjusted coefficient of
determination, respectively. For example, the R-squared value suggests that the model explains
approximately 75% of the variability in the response variable MPG.

• F-statistic vs. constant model — Test statistic for the F-test on the regression model,
which tests whether the model fits significantly better than a degenerate model consisting of only
a constant term.

• p-value — p-value for the F-test on the model. For example, the model is significant with a p-
value of 7.3816e-27.

You can find these statistics in the model properties (NumObservations, DFE, RMSE, and Rsquared)
and by using the anova function.

anova(mdl,'summary')

ans=3×5 table
                SumSq     DF    MeanSq      F         pValue  
                ______    __    ______    ______    __________

    Total       6004.8    92    65.269                        
    Model         4516     3    1505.3    89.987    7.3816e-27
    Residual    1488.8    89    16.728                        

Use plot to create an added variable plot (partial regression leverage plot) for the whole model
except the constant (intercept) term.

plot(mdl)
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Fit Linear Regression Using Data in Table

Load the sample data.

load carsmall

Store the variables in a table.

tbl = table(Weight,Acceleration,MPG,'VariableNames',{'Weight','Acceleration','MPG'});

Display the first five rows of the table.

tbl(1:5,:)

ans=5×3 table
    Weight    Acceleration    MPG
    ______    ____________    ___

     3504           12        18 
     3693         11.5        15 
     3436           11        18 
     3433           12        16 
     3449         10.5        17 

Fit a linear regression model for miles per gallon (MPG). Specify the model formula by using
Wilkinson notation.

lm = fitlm(tbl,'MPG~Weight+Acceleration')

lm = 
Linear regression model:
    MPG ~ 1 + Weight + Acceleration

Estimated Coefficients:
                     Estimate         SE         tStat       pValue  
                    __________    __________    _______    __________

    (Intercept)         45.155        3.4659     13.028    1.6266e-22
    Weight          -0.0082475    0.00059836    -13.783    5.3165e-24
    Acceleration       0.19694       0.14743     1.3359       0.18493

Number of observations: 94, Error degrees of freedom: 91
Root Mean Squared Error: 4.12
R-squared: 0.743,  Adjusted R-Squared: 0.738
F-statistic vs. constant model: 132, p-value = 1.38e-27

The model 'MPG~Weight+Acceleration' in this example is equivalent to set the model
specification as 'linear'. For example,

lm2 = fitlm(tbl,'linear');

If you use a character vector for model specification and you do not specify the response variable,
then fitlm accepts the last variable in tbl as the response variable and the other variables as the
predictor variables.
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Fit Linear Regression Using Specified Model Formula

Fit a linear regression model using a model formula specified by Wilkinson notation.

Load the sample data.

load carsmall

Store the variables in a table.

tbl = table(Weight,Acceleration,Model_Year,MPG,'VariableNames',{'Weight','Acceleration','Model_Year','MPG'});

Fit a linear regression model for miles per gallon (MPG) with weight and acceleration as the
predictor variables.

lm = fitlm(tbl,'MPG~Weight+Acceleration')

lm = 
Linear regression model:
    MPG ~ 1 + Weight + Acceleration

Estimated Coefficients:
                     Estimate         SE         tStat       pValue  
                    __________    __________    _______    __________

    (Intercept)         45.155        3.4659     13.028    1.6266e-22
    Weight          -0.0082475    0.00059836    -13.783    5.3165e-24
    Acceleration       0.19694       0.14743     1.3359       0.18493

Number of observations: 94, Error degrees of freedom: 91
Root Mean Squared Error: 4.12
R-squared: 0.743,  Adjusted R-Squared: 0.738
F-statistic vs. constant model: 132, p-value = 1.38e-27

The p-value of 0.18493 indicates that Acceleration does not have a significant impact on MPG.

Remove Acceleration from the model, and try improving the model by adding the predictor
variable Model_Year. First define Model_Year as a categorical variable.

tbl.Model_Year = categorical(tbl.Model_Year);
lm = fitlm(tbl,'MPG~Weight+Model_Year')

lm = 
Linear regression model:
    MPG ~ 1 + Weight + Model_Year

Estimated Coefficients:
                      Estimate         SE         tStat       pValue  
                     __________    __________    _______    __________

    (Intercept)           40.11        1.5418     26.016    1.2024e-43
    Weight           -0.0066475    0.00042802    -15.531    3.3639e-27
    Model_Year_76        1.9291       0.74761     2.5804      0.011488
    Model_Year_82        7.9093       0.84975     9.3078    7.8681e-15
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Number of observations: 94, Error degrees of freedom: 90
Root Mean Squared Error: 2.92
R-squared: 0.873,  Adjusted R-Squared: 0.868
F-statistic vs. constant model: 206, p-value = 3.83e-40

Specifying modelspec using Wilkinson notation enables you to update the model without having to
change the design matrix. fitlm uses only the variables that are specified in the formula. It also
creates the necessary two dummy indicator variables for the categorical variable Model_Year.

Fit Linear Regression Using Terms Matrix

Fit a linear regression model using a terms matrix.

Terms Matrix for Table Input

If the model variables are in a table, then a column of 0s in a terms matrix represents the position of
the response variable.

Load the hospital data set.

load hospital

Store the variables in a table.

t = table(hospital.Sex,hospital.BloodPressure(:,1),hospital.Age,hospital.Smoker, ...
    'VariableNames',{'Sex','BloodPressure','Age','Smoker'});

Represent the linear model 'BloodPressure ~ 1 + Sex + Age + Smoker' using a terms
matrix. The response variable is in the second column of the table, so the second column of the terms
matrix must be a column of 0s for the response variable.

T = [0 0 0 0;1 0 0 0;0 0 1 0;0 0 0 1]

T = 4×4

     0     0     0     0
     1     0     0     0
     0     0     1     0
     0     0     0     1

Fit a linear model.

mdl1 = fitlm(t,T)

mdl1 = 
Linear regression model:
    BloodPressure ~ 1 + Sex + Age + Smoker

Estimated Coefficients:
                   Estimate       SE        tStat        pValue  
                   ________    ________    ________    __________

    (Intercept)      116.14      2.6107      44.485    7.1287e-66
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    Sex_Male       0.050106     0.98364    0.050939       0.95948
    Age            0.085276    0.066945      1.2738        0.2058
    Smoker_1           9.87      1.0346      9.5395    1.4516e-15

Number of observations: 100, Error degrees of freedom: 96
Root Mean Squared Error: 4.78
R-squared: 0.507,  Adjusted R-Squared: 0.492
F-statistic vs. constant model: 33, p-value = 9.91e-15

Terms Matrix for Matrix Input

If the predictor and response variables are in a matrix and column vector, then you must include 0 for
the response variable at the end of each row in a terms matrix.

Load the carsmall data set and define the matrix of predictors.

load carsmall
X = [Acceleration,Weight];

Specify the model 'MPG ~ Acceleration + Weight + Acceleration:Weight + Weight^2'
using a terms matrix. This model includes the main effect and two-way interaction terms for the
variables Acceleration and Weight, and a second-order term for the variable Weight.

T = [0 0 0;1 0 0;0 1 0;1 1 0;0 2 0]

T = 5×3

     0     0     0
     1     0     0
     0     1     0
     1     1     0
     0     2     0

Fit a linear model.

mdl2 = fitlm(X,MPG,T)

mdl2 = 
Linear regression model:
    y ~ 1 + x1*x2 + x2^2

Estimated Coefficients:
                    Estimate          SE         tStat       pValue  
                   ___________    __________    _______    __________

    (Intercept)         48.906        12.589     3.8847    0.00019665
    x1                 0.54418       0.57125    0.95261       0.34337
    x2               -0.012781     0.0060312    -2.1192      0.036857
    x1:x2          -0.00010892    0.00017925    -0.6076         0.545
    x2^2            9.7518e-07    7.5389e-07     1.2935       0.19917

Number of observations: 94, Error degrees of freedom: 89
Root Mean Squared Error: 4.1
R-squared: 0.751,  Adjusted R-Squared: 0.739
F-statistic vs. constant model: 67, p-value = 4.99e-26
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Only the intercept and x2 term, which corresponds to the Weight variable, are significant at the 5%
significance level.

Linear Regression with Categorical Predictor

Fit a linear regression model that contains a categorical predictor. Reorder the categories of the
categorical predictor to control the reference level in the model. Then, use anova to test the
significance of the categorical variable.

Model with Categorical Predictor

Load the carsmall data set and create a linear regression model of MPG as a function of
Model_Year. To treat the numeric vector Model_Year as a categorical variable, identify the
predictor using the 'CategoricalVars' name-value pair argument.

load carsmall
mdl = fitlm(Model_Year,MPG,'CategoricalVars',1,'VarNames',{'Model_Year','MPG'})

mdl = 
Linear regression model:
    MPG ~ 1 + Model_Year

Estimated Coefficients:
                     Estimate      SE      tStat       pValue  
                     ________    ______    ______    __________

    (Intercept)        17.69     1.0328    17.127    3.2371e-30
    Model_Year_76     3.8839     1.4059    2.7625     0.0069402
    Model_Year_82      14.02     1.4369    9.7571    8.2164e-16

Number of observations: 94, Error degrees of freedom: 91
Root Mean Squared Error: 5.56
R-squared: 0.531,  Adjusted R-Squared: 0.521
F-statistic vs. constant model: 51.6, p-value = 1.07e-15

The model formula in the display, MPG ~ 1 + Model_Year, corresponds to

MPG = β0 + β1ΙYear = 76 + β2ΙYear = 82 + ϵ,

where ΙYear = 76 and ΙYear = 82 are indicator variables whose value is one if the value of Model_Year is
76 and 82, respectively. The Model_Year variable includes three distinct values, which you can
check by using the unique function.

unique(Model_Year)

ans = 3×1

    70
    76
    82

fitlm chooses the smallest value in Model_Year as a reference level ('70') and creates two
indicator variables ΙYear = 76 and ΙYear = 82. The model includes only two indicator variables because
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the design matrix becomes rank deficient if the model includes three indicator variables (one for each
level) and an intercept term.

Model with Full Indicator Variables

You can interpret the model formula of mdl as a model that has three indicator variables without an
intercept term:

y = β0Ιx1 = 70 + β0 + β1 Ιx1 = 76 + β0 + β2 Ιx2 = 82 + ϵ.

Alternatively, you can create a model that has three indicator variables without an intercept term by
manually creating indicator variables and specifying the model formula.

temp_Year = dummyvar(categorical(Model_Year));
Model_Year_70 = temp_Year(:,1);
Model_Year_76 = temp_Year(:,2);
Model_Year_82 = temp_Year(:,3);
tbl = table(Model_Year_70,Model_Year_76,Model_Year_82,MPG);
mdl = fitlm(tbl,'MPG ~ Model_Year_70 + Model_Year_76 + Model_Year_82 - 1')

mdl = 
Linear regression model:
    MPG ~ Model_Year_70 + Model_Year_76 + Model_Year_82

Estimated Coefficients:
                     Estimate      SE       tStat       pValue  
                     ________    _______    ______    __________

    Model_Year_70      17.69      1.0328    17.127    3.2371e-30
    Model_Year_76     21.574     0.95387    22.617    4.0156e-39
    Model_Year_82      31.71     0.99896    31.743    5.2234e-51

Number of observations: 94, Error degrees of freedom: 91
Root Mean Squared Error: 5.56

Choose Reference Level in Model

You can choose a reference level by modifying the order of categories in a categorical variable. First,
create a categorical variable Year.

Year = categorical(Model_Year);

Check the order of categories by using the categories function.

categories(Year)

ans = 3x1 cell
    {'70'}
    {'76'}
    {'82'}

If you use Year as a predictor variable, then fitlm chooses the first category '70' as a reference
level. Reorder Year by using the reordercats function.

Year_reordered = reordercats(Year,{'76','70','82'});
categories(Year_reordered)
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ans = 3x1 cell
    {'76'}
    {'70'}
    {'82'}

The first category of Year_reordered is '76'. Create a linear regression model of MPG as a function
of Year_reordered.

mdl2 = fitlm(Year_reordered,MPG,'VarNames',{'Model_Year','MPG'})

mdl2 = 
Linear regression model:
    MPG ~ 1 + Model_Year

Estimated Coefficients:
                     Estimate      SE        tStat       pValue  
                     ________    _______    _______    __________

    (Intercept)       21.574     0.95387     22.617    4.0156e-39
    Model_Year_70    -3.8839      1.4059    -2.7625     0.0069402
    Model_Year_82     10.136      1.3812     7.3385    8.7634e-11

Number of observations: 94, Error degrees of freedom: 91
Root Mean Squared Error: 5.56
R-squared: 0.531,  Adjusted R-Squared: 0.521
F-statistic vs. constant model: 51.6, p-value = 1.07e-15

mdl2 uses '76' as a reference level and includes two indicator variables ΙYear = 70 and ΙYear = 82.

Evaluate Categorical Predictor

The model display of mdl2 includes a p-value of each term to test whether or not the corresponding
coefficient is equal to zero. Each p-value examines each indicator variable. To examine the categorical
variable Model_Year as a group of indicator variables, use anova. Use the 'components'(default)
option to return a component ANOVA table that includes ANOVA statistics for each variable in the
model except the constant term.

anova(mdl2,'components')

ans=2×5 table
                  SumSq     DF    MeanSq      F        pValue  
                  ______    __    ______    _____    __________

    Model_Year    3190.1     2    1595.1    51.56    1.0694e-15
    Error         2815.2    91    30.936                       

The component ANOVA table includes the p-value of the Model_Year variable, which is smaller than
the p-values of the indicator variables.

Specify Response and Predictor Variables for Linear Model

Fit a linear regression model to sample data. Specify the response and predictor variables, and
include only pairwise interaction terms in the model.
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Load sample data.

load hospital

Fit a linear model with interaction terms to the data. Specify weight as the response variable, and
sex, age, and smoking status as the predictor variables. Also, specify that sex and smoking status are
categorical variables.

mdl = fitlm(hospital,'interactions','ResponseVar','Weight',...
    'PredictorVars',{'Sex','Age','Smoker'},...
    'CategoricalVar',{'Sex','Smoker'})

mdl = 
Linear regression model:
    Weight ~ 1 + Sex*Age + Sex*Smoker + Age*Smoker

Estimated Coefficients:
                         Estimate      SE        tStat        pValue  
                         ________    _______    ________    __________

    (Intercept)             118.7     7.0718      16.785     6.821e-30
    Sex_Male               68.336     9.7153      7.0339    3.3386e-10
    Age                   0.31068    0.18531      1.6765      0.096991
    Smoker_1               3.0425     10.446     0.29127       0.77149
    Sex_Male:Age         -0.49094    0.24764     -1.9825      0.050377
    Sex_Male:Smoker_1      0.9509     3.8031     0.25003       0.80312
    Age:Smoker_1         -0.07288    0.26275    -0.27737       0.78211

Number of observations: 100, Error degrees of freedom: 93
Root Mean Squared Error: 8.75
R-squared: 0.898,  Adjusted R-Squared: 0.892
F-statistic vs. constant model: 137, p-value = 6.91e-44

The weight of the patients do not seem to differ significantly according to age, or the status of
smoking, or interaction of these factors with patient sex at the 5% significance level.

Fit Robust Linear Regression Model

Load the hald data set, which measures the effect of cement composition on its hardening heat.

load hald

This data set includes the variables ingredients and heat. The matrix ingredients contains the
percent composition of four chemicals present in the cement. The vector heat contains the values for
the heat hardening after 180 days for each cement sample.

Fit a robust linear regression model to the data.

mdl = fitlm(ingredients,heat,'RobustOpts','on')

mdl = 
Linear regression model (robust fit):
    y ~ 1 + x1 + x2 + x3 + x4
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Estimated Coefficients:
                   Estimate      SE        tStat       pValue 
                   ________    _______    ________    ________

    (Intercept)       60.09     75.818     0.79256      0.4509
    x1               1.5753    0.80585      1.9548    0.086346
    x2               0.5322    0.78315     0.67957     0.51596
    x3              0.13346     0.8166     0.16343     0.87424
    x4             -0.12052     0.7672    -0.15709     0.87906

Number of observations: 13, Error degrees of freedom: 8
Root Mean Squared Error: 2.65
R-squared: 0.979,  Adjusted R-Squared: 0.969
F-statistic vs. constant model: 94.6, p-value = 9.03e-07

For more details, see the topic “Reduce Outlier Effects Using Robust Regression” on page 11-106,
which compares the results of a robust fit to a standard least-squares fit.

Compute Mean Absolute Error Using Cross-Validation

Compute the mean absolute error of a regression model by using 10-fold cross-validation.

Load the carsmall data set. Specify the Acceleration and Displacement variables as predictors
and the Weight variable as the response.

load carsmall
X1 = Acceleration;
X2 = Displacement;
y = Weight;

Create the custom function regf (shown at the end of this example). This function fits a regression
model to training data and then computes predicted car weights on a test set. The function compares
the predicted car weight values to the true values, and then computes the mean absolute error (MAE)
and the MAE adjusted to the range of the test set car weights.

Note: If you use the live script file for this example, the regf function is already included at the end
of the file. Otherwise, you need to create this function at the end of your .m file or add it as a file on
the MATLAB® path.

By default, crossval performs 10-fold cross-validation. For each of the 10 training and test set
partitions of the data in X1, X2, and y, compute the MAE and adjusted MAE values using the regf
function. Find the mean MAE and mean adjusted MAE.

rng('default') % For reproducibility
values = crossval(@regf,X1,X2,y)

values = 10×2

  319.2261    0.1132
  342.3722    0.1240
  214.3735    0.0902
  174.7247    0.1128
  189.4835    0.0832
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  249.4359    0.1003
  194.4210    0.0845
  348.7437    0.1700
  283.1761    0.1187
  210.7444    0.1325

mean(values)

ans = 1×2

  252.6701    0.1129

This code creates the function regf.

function errors = regf(X1train,X2train,ytrain,X1test,X2test,ytest)
tbltrain = table(X1train,X2train,ytrain, ...
    'VariableNames',{'Acceleration','Displacement','Weight'});
tbltest = table(X1test,X2test,ytest, ...
    'VariableNames',{'Acceleration','Displacement','Weight'});
mdl = fitlm(tbltrain,'Weight ~ Acceleration + Displacement');
yfit = predict(mdl,tbltest);
MAE = mean(abs(yfit-tbltest.Weight));
adjMAE = MAE/range(tbltest.Weight);
errors = [MAE adjMAE];
end

Input Arguments
tbl — Input data
table | dataset array

Input data including predictor and response variables, specified as a table or dataset array. The
predictor variables can be numeric, logical, categorical, character, or string. The response variable
must be numeric or logical.

• By default, fitlm takes the last variable as the response variable and the others as the predictor
variables.

• To set a different column as the response variable, use the ResponseVar name-value pair
argument.

• To use a subset of the columns as predictors, use the PredictorVars name-value pair argument.
• To define a model specification, set the modelspec argument using a formula or terms matrix.

The formula or terms matrix specifies which columns to use as the predictor or response
variables.

The variable names in a table do not have to be valid MATLAB identifiers, but the names must not
contain leading or trailing blanks. If the names are not valid, you cannot use a formula when you fit or
adjust a model; for example:

• You cannot specify modelspec using a formula.
• You cannot use a formula to specify the terms to add or remove when you use the addTerms

function or the removeTerms function, respectively.
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• You cannot use a formula to specify the lower and upper bounds of the model when you use the
step or stepwiselm function with the name-value pair arguments 'Lower' and 'Upper',
respectively.

You can verify the variable names in tbl by using the isvarname function. If the variable names are
not valid, then you can convert them by using the matlab.lang.makeValidName function.

X — Predictor variables
matrix

Predictor variables, specified as an n-by-p matrix, where n is the number of observations and p is the
number of predictor variables. Each column of X represents one variable, and each row represents
one observation.

By default, there is a constant term in the model, unless you explicitly remove it, so do not include a
column of 1s in X.
Data Types: single | double

y — Response variable
vector

Response variable, specified as an n-by-1 vector, where n is the number of observations. Each entry in
y is the response for the corresponding row of X.
Data Types: single | double | logical

modelspec — Model specification
'linear' (default) | character vector or string scalar naming the model | t-by-(p + 1) terms matrix |
character vector or string scalar formula in the form 'y ~ terms'

Model specification, specified as one of these values.

• A character vector or string scalar naming the model.

Value Model Type
'constant' Model contains only a constant (intercept) term.
'linear' Model contains an intercept and linear term for each

predictor.
'interactions' Model contains an intercept, linear term for each predictor,

and all products of pairs of distinct predictors (no squared
terms).

'purequadratic' Model contains an intercept term and linear and squared
terms for each predictor.

'quadratic' Model contains an intercept term, linear and squared terms
for each predictor, and all products of pairs of distinct
predictors.
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Value Model Type
'polyijk' Model is a polynomial with all terms up to degree i in the

first predictor, degree j in the second predictor, and so on.
Specify the maximum degree for each predictor by using
numerals 0 though 9. The model contains interaction terms,
but the degree of each interaction term does not exceed the
maximum value of the specified degrees. For example,
'poly13' has an intercept and x1, x2, x2

2, x2
3, x1*x2, and

x1*x2
2 terms, where x1 and x2 are the first and second

predictors, respectively.

• A t-by-(p + 1) matrix, or a “Terms Matrix” on page 35-2341, specifying terms in the model, where t
is the number of terms and p is the number of predictor variables, and +1 accounts for the
response variable. A terms matrix is convenient when the number of predictors is large and you
want to generate the terms programmatically.

• A character vector or string scalar “Formula” on page 35-2341 in the form
'y ~ terms',

where the terms are in “Wilkinson Notation” on page 35-2342. The variable names in the formula
must be variable names in tbl or variable names specified by Varnames. Also, the variable names
must be valid MATLAB identifiers.

The software determines the order of terms in a fitted model by using the order of terms in tbl or
X. Therefore, the order of terms in the model can be different from the order of terms in the
specified formula.

Example: 'quadratic'
Example: 'y ~ x1 + x2^2 + x1:x2'
Data Types: single | double | char | string

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: 'Intercept',false,'PredictorVars',
[1,3],'ResponseVar',5,'RobustOpts','logistic' specifies a robust regression model with
no constant term, where the algorithm uses the logistic weighting function with the default tuning
constant, first and third variables are the predictor variables, and fifth variable is the response
variable.

CategoricalVars — Categorical variable list
string array | cell array of character vectors | logical or numeric index vector

Categorical variable list, specified as the comma-separated pair consisting of 'CategoricalVars'
and either a string array or cell array of character vectors containing categorical variable names in
the table or dataset array tbl, or a logical or numeric index vector indicating which columns are
categorical.
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• If data is in a table or dataset array tbl, then, by default, fitlm treats all categorical values,
logical values, character arrays, string arrays, and cell arrays of character vectors as categorical
variables.

• If data is in matrix X, then the default value of 'CategoricalVars' is an empty matrix []. That
is, no variable is categorical unless you specify it as categorical.

For example, you can specify the second and third variables out of six as categorical using either of
the following:
Example: 'CategoricalVars',[2,3]
Example: 'CategoricalVars',logical([0 1 1 0 0 0])
Data Types: single | double | logical | string | cell

Exclude — Observations to exclude
logical or numeric index vector

Observations to exclude from the fit, specified as the comma-separated pair consisting of 'Exclude'
and a logical or numeric index vector indicating which observations to exclude from the fit.

For example, you can exclude observations 2 and 3 out of 6 using either of the following examples.
Example: 'Exclude',[2,3]
Example: 'Exclude',logical([0 1 1 0 0 0])
Data Types: single | double | logical

Intercept — Indicator for constant term
true (default) | false

Indicator for the constant term (intercept) in the fit, specified as the comma-separated pair consisting
of 'Intercept' and either true to include or false to remove the constant term from the model.

Use 'Intercept' only when specifying the model using a character vector or string scalar, not a
formula or matrix.
Example: 'Intercept',false

PredictorVars — Predictor variables
string array | cell array of character vectors | logical or numeric index vector

Predictor variables to use in the fit, specified as the comma-separated pair consisting of
'PredictorVars' and either a string array or cell array of character vectors of the variable names
in the table or dataset array tbl, or a logical or numeric index vector indicating which columns are
predictor variables.

The string values or character vectors should be among the names in tbl, or the names you specify
using the 'VarNames' name-value pair argument.

The default is all variables in X, or all variables in tbl except for ResponseVar.

For example, you can specify the second and third variables as the predictor variables using either of
the following examples.
Example: 'PredictorVars',[2,3]
Example: 'PredictorVars',logical([0 1 1 0 0 0])
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Data Types: single | double | logical | string | cell

ResponseVar — Response variable
last column in tbl (default) | character vector or string scalar containing variable name | logical or
numeric index vector

Response variable to use in the fit, specified as the comma-separated pair consisting of
'ResponseVar' and either a character vector or string scalar containing the variable name in the
table or dataset array tbl, or a logical or numeric index vector indicating which column is the
response variable. You typically need to use 'ResponseVar' when fitting a table or dataset array
tbl.

For example, you can specify the fourth variable, say yield, as the response out of six variables, in
one of the following ways.
Example: 'ResponseVar','yield'
Example: 'ResponseVar',[4]
Example: 'ResponseVar',logical([0 0 0 1 0 0])
Data Types: single | double | logical | char | string

RobustOpts — Indicator of robust fitting type
'off' (default) | 'on' | character vector | string scalar | structure

Indicator of the robust fitting type to use, specified as the comma-separated pair consisting of
'RobustOpts' and one of these values.

• 'off' — No robust fitting. fitlm uses ordinary least squares.
• 'on' — Robust fitting using the 'bisquare' weight function with the default tuning constant.
• Character vector or string scalar — Name of a robust fitting weight function from the following

table. fitlm uses the corresponding default tuning constant specified in the table.
• Structure with the two fields RobustWgtFun and Tune.

• The RobustWgtFun field contains the name of a robust fitting weight function from the
following table or a function handle of a custom weight function.

• The Tune field contains a tuning constant. If you do not set the Tune field, fitlm uses the
corresponding default tuning constant.

Weight Function Description Default Tuning
Constant

'andrews' w = (abs(r)<pi) .* sin(r) ./ r 1.339
'bisquare' w = (abs(r)<1) .* (1 - r.^2).^2 (also

called biweight)
4.685

'cauchy' w = 1 ./ (1 + r.^2) 2.385
'fair' w = 1 ./ (1 + abs(r)) 1.400
'huber' w = 1 ./ max(1, abs(r)) 1.345
'logistic' w = tanh(r) ./ r 1.205
'ols' Ordinary least squares (no weighting function) None
'talwar' w = 1 * (abs(r)<1) 2.795
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Weight Function Description Default Tuning
Constant

'welsch' w = exp(-(r.^2)) 2.985
function handle Custom weight function that accepts a vector r

of scaled residuals, and returns a vector of
weights the same size as r

1

• The default tuning constants of built-in weight functions give coefficient estimates that are
approximately 95% as statistically efficient as the ordinary least-squares estimates, provided
the response has a normal distribution with no outliers. Decreasing the tuning constant
increases the downweight assigned to large residuals; increasing the tuning constant
decreases the downweight assigned to large residuals.

• The value r in the weight functions is

r = resid/(tune*s*sqrt(1–h)),

where resid is the vector of residuals from the previous iteration, tune is the tuning
constant, h is the vector of leverage values from a least-squares fit, and s is an estimate of the
standard deviation of the error term given by

s = MAD/0.6745.

MAD is the median absolute deviation of the residuals from their median. The constant 0.6745
makes the estimate unbiased for the normal distribution. If X has p columns, the software
excludes the smallest p absolute deviations when computing the median.

For robust fitting, fitlm uses M-estimation to formulate estimating equations and solves them using
the method of “Iteratively Reweighted Least Squares” on page 11-106 (IRLS).
Example: 'RobustOpts','andrews'

VarNames — Names of variables
{'x1','x2',...,'xn','y'} (default) | string array | cell array of character vectors

Names of variables, specified as the comma-separated pair consisting of 'VarNames' and a string
array or cell array of character vectors including the names for the columns of X first, and the name
for the response variable y last.

'VarNames' is not applicable to variables in a table or dataset array, because those variables already
have names.

The variable names do not have to be valid MATLAB identifiers, but the names must not contain
leading or trailing blanks. If the names are not valid, you cannot use a formula when you fit or adjust
a model; for example:

• You cannot use a formula to specify the terms to add or remove when you use the addTerms
function or the removeTerms function, respectively.

• You cannot use a formula to specify the lower and upper bounds of the model when you use the
step or stepwiselm function with the name-value pair arguments 'Lower' and 'Upper',
respectively.

Before specifying 'VarNames',varNames, you can verify the variable names in varNames by using
the isvarname function. If the variable names are not valid, then you can convert them by using the
matlab.lang.makeValidName function.
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Example: 'VarNames',{'Horsepower','Acceleration','Model_Year','MPG'}
Data Types: string | cell

Weights — Observation weights
ones(n,1) (default) | n-by-1 vector of nonnegative scalar values

Observation weights, specified as the comma-separated pair consisting of 'Weights' and an n-by-1
vector of nonnegative scalar values, where n is the number of observations.
Data Types: single | double

Output Arguments
mdl — Linear model
LinearModel object

Linear model representing a least-squares fit of the response to the data, returned as a LinearModel
object.

If the value of the 'RobustOpts' name-value pair is not [] or 'ols', the model is not a least-
squares fit, but uses the robust fitting function.

More About
Terms Matrix

A terms matrix T is a t-by-(p + 1) matrix specifying terms in a model, where t is the number of terms,
p is the number of predictor variables, and +1 accounts for the response variable. The value of
T(i,j) is the exponent of variable j in term i.

For example, suppose that an input includes three predictor variables x1, x2, and x3 and the
response variable y in the order x1, x2, x3, and y. Each row of T represents one term:

• [0 0 0 0] — Constant term or intercept
• [0 1 0 0] — x2; equivalently, x1^0 * x2^1 * x3^0
• [1 0 1 0] — x1*x3
• [2 0 0 0] — x1^2
• [0 1 2 0] — x2*(x3^2)

The 0 at the end of each term represents the response variable. In general, a column vector of zeros
in a terms matrix represents the position of the response variable. If you have the predictor and
response variables in a matrix and column vector, then you must include 0 for the response variable
in the last column of each row.

Formula

A formula for model specification is a character vector or string scalar of the form 'y ~ terms'.

• y is the response name.
• terms represents the predictor terms in a model using Wilkinson notation.
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To represent predictor and response variables, use the variable names of the table input tbl or the
variable names specified by using VarNames. The default value of VarNames is
{'x1','x2',...,'xn','y'}.

For example:

• 'y ~ x1 + x2 + x3' specifies a three-variable linear model with intercept.
• 'y ~ x1 + x2 + x3 – 1' specifies a three-variable linear model without intercept. Note that

formulas include a constant (intercept) term by default. To exclude a constant term from the
model, you must include –1 in the formula.

A formula includes a constant term unless you explicitly remove the term using –1.

Wilkinson Notation

Wilkinson notation describes the terms present in a model. The notation relates to the terms present
in a model, not to the multipliers (coefficients) of those terms.

Wilkinson notation uses these symbols:

• + means include the next variable.
• – means do not include the next variable.
• : defines an interaction, which is a product of terms.
• * defines an interaction and all lower-order terms.
• ^ raises the predictor to a power, exactly as in * repeated, so ^ includes lower-order terms as well.
• () groups terms.

This table shows typical examples of Wilkinson notation.

Wilkinson Notation Terms in Standard Notation
1 Constant (intercept) term
x1^k, where k is a positive integer x1, x12, ..., x1k

x1 + x2 x1, x2
x1*x2 x1, x2, x1*x2
x1:x2 x1*x2 only
–x2 Do not include x2
x1*x2 + x3 x1, x2, x3, x1*x2
x1 + x2 + x3 + x1:x2 x1, x2, x3, x1*x2
x1*x2*x3 – x1:x2:x3 x1, x2, x3, x1*x2, x1*x3, x2*x3
x1*(x2 + x3) x1, x2, x3, x1*x2, x1*x3

For more details, see “Wilkinson Notation” on page 11-93.

Tips
• To access the model properties of the LinearModel object mdl, you can use dot notation. For

example, mdl.Residuals returns a table of the raw, Pearson, Studentized, and standardized
residual values for the model.
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• After training a model, you can generate C/C++ code that predicts responses for new data.
Generating C/C++ code requires MATLAB Coder. For details, see “Introduction to Code
Generation” on page 34-2.

Algorithms
• The main fitting algorithm is QR decomposition. For robust fitting, fitlm uses M-estimation to

formulate estimating equations and solves them using the method of “Iteratively Reweighted
Least Squares” on page 11-106 (IRLS).

• fitlm treats a categorical predictor as follows:

• A model with a categorical predictor that has L levels (categories) includes L – 1 indicator
variables. The model uses the first category as a reference level, so it does not include the
indicator variable for the reference level. If the data type of the categorical predictor is
categorical, then you can check the order of categories by using categories and reorder
the categories by using reordercats to customize the reference level. For more details about
creating indicator variables, see “Automatic Creation of Dummy Variables” on page 2-50.

• fitlm treats the group of L – 1 indicator variables as a single variable. If you want to treat the
indicator variables as distinct predictor variables, create indicator variables manually by using
dummyvar. Then use the indicator variables, except the one corresponding to the reference
level of the categorical variable, when you fit a model. For the categorical predictor X, if you
specify all columns of dummyvar(X) and an intercept term as predictors, then the design
matrix becomes rank deficient.

• Interaction terms between a continuous predictor and a categorical predictor with L levels
consist of the element-wise product of the L – 1 indicator variables with the continuous
predictor.

• Interaction terms between two categorical predictors with L and M levels consist of the (L –
 1)*(M – 1) indicator variables to include all possible combinations of the two categorical
predictor levels.

• You cannot specify higher-order terms for a categorical predictor because the square of an
indicator is equal to itself.

• fitlm considers NaN, '' (empty character vector), "" (empty string), <missing>, and
<undefined> values in tbl, X, and Y to be missing values. fitlm does not use observations with
missing values in the fit. The ObservationInfo property of a fitted model indicates whether or
not fitlm uses each observation in the fit.

Alternative Functionality
• For reduced computation time on high-dimensional data sets, fit a linear regression model using

the fitrlinear function.
• To regularize a regression, use fitrlinear, lasso, ridge, or plsregress.

• fitrlinear regularizes a regression for high-dimensional data sets using lasso or ridge
regression.

• lasso removes redundant predictors in linear regression using lasso or elastic net.
• ridge regularizes a regression with correlated terms using ridge regression.
• plsregress regularizes a regression with correlated terms using partial least squares.
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Extended Capabilities
Tall Arrays
Calculate with arrays that have more rows than fit in memory.

This function supports tall arrays for out-of-memory data with some limitations.

• If any input argument to fitlm is a tall array, then all of the other inputs must be tall arrays as
well. This includes nonempty variables supplied with the 'Weights' and 'Exclude' name-value
pairs.

• The 'RobustOpts' name-value pair is not supported with tall arrays.
• For tall data, fitlm returns a CompactLinearModel object that contains most of the same

properties as a LinearModel object. The main difference is that the compact object is sensitive to
memory requirements. The compact object does not include properties that include the data, or
that include an array of the same size as the data. The compact object does not contain these
LinearModel properties:

• Diagnostics
• Fitted
• ObservationInfo
• ObservationNames
• Residuals
• Steps
• Variables

You can compute the residuals directly from the compact object returned by LM = fitlm(X,Y)
using

RES = Y - predict(LM,X);
S = LM.RMSE;
histogram(RES,linspace(-3*S,3*S,51))

• If the CompactLinearModel object is missing lower order terms that include categorical factors:
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• The plotEffects and plotInteraction methods are not supported.
• The anova method with the 'components' option is not supported.

For more information, see “Tall Arrays for Out-of-Memory Data”.

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

This function fully supports GPU arrays. For more information, see “Run MATLAB Functions on a
GPU” (Parallel Computing Toolbox).

See Also
LinearModel | predict | stepwiselm | fitrlinear

Topics
“What Is a Linear Regression Model?” on page 11-6
“Linear Regression” on page 11-9
“Linear Regression Workflow” on page 11-35
“Train Linear Regression Model” on page 11-163
“Predict or Simulate Responses to New Data” on page 11-31
“Examine Quality and Adjust Fitted Model” on page 11-14
“Linear Regression with Categorical Covariates” on page 2-53
“Reduce Outlier Effects Using Robust Regression” on page 11-106
“Stepwise Regression” on page 11-101
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fitlme
Fit linear mixed-effects model

Syntax
lme = fitlme(tbl,formula)
lme = fitlme(tbl,formula,Name,Value)

Description
lme = fitlme(tbl,formula) returns a linear mixed-effects model, specified by formula, fitted to
the variables in the table or dataset array tbl.

lme = fitlme(tbl,formula,Name,Value) returns a linear mixed-effects model with additional
options specified by one or more Name,Value pair arguments.

For example, you can specify the covariance pattern of the random-effects terms, the method to use
in estimating the parameters, or options for the optimization algorithm.

Examples

Fit Linear Mixed-Effects Model

Load the sample data.

load imports-85

Store the variables in a table.

tbl = table(X(:,12),X(:,14),X(:,24),'VariableNames',{'Horsepower','CityMPG','EngineType'});

Display the first five rows of the table.

tbl(1:5,:)

ans=5×3 table
    Horsepower    CityMPG    EngineType
    __________    _______    __________

       111          21           13    
       111          21           13    
       154          19           37    
       102          24           35    
       115          18           35    

Fit a linear mixed-effects model for miles per gallon in the city, with fixed effects for horsepower, and
uncorrelated random effect for intercept and horsepower grouped by the engine type.

lme = fitlme(tbl,'CityMPG~Horsepower+(1|EngineType)+(Horsepower-1|EngineType)');
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In this model, CityMPG is the response variable, horsepower is the predictor variable, and engine
type is the grouping variable. The fixed-effects portion of the model corresponds to 1 +
Horsepower, because the intercept is included by default.

Since the random-effect terms for intercept and horsepower are uncorrelated, these terms are
specified separately. Because the second random-effect term is only for horsepower, you must include
a –1 to eliminate the intercept from the second random-effect term.

Display the model.

lme

lme = 
Linear mixed-effects model fit by ML

Model information:
    Number of observations             203
    Fixed effects coefficients           2
    Random effects coefficients         14
    Covariance parameters                3

Formula:
    CityMPG ~ 1 + Horsepower + (1 | EngineType) + (Horsepower | EngineType)

Model fit statistics:
    AIC       BIC     LogLikelihood    Deviance
    1099.5    1116    -544.73          1089.5  

Fixed effects coefficients (95% CIs):
    Name                   Estimate    SE         tStat     DF     pValue    
    {'(Intercept)'}          37.276     2.8556    13.054    201    1.3147e-28
    {'Horsepower' }        -0.12631    0.02284     -5.53    201    9.8848e-08

    Lower       Upper    
      31.645       42.906
    -0.17134    -0.081269

Random effects covariance parameters (95% CIs):
Group: EngineType (7 Levels)
    Name1                  Name2                  Type           Estimate
    {'(Intercept)'}        {'(Intercept)'}        {'std'}        5.7338  

    Lower     Upper 
    2.3773    13.829

Group: EngineType (7 Levels)
    Name1                 Name2                 Type           Estimate
    {'Horsepower'}        {'Horsepower'}        {'std'}        0.050357

    Lower      Upper  
    0.02307    0.10992

Group: Error
    Name               Estimate    Lower     Upper 
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    {'Res Std'}        3.226       2.9078    3.5789

Note that the random-effects covariance parameters for intercept and horsepower are separate in the
display.

Now, fit a linear mixed-effects model for miles per gallon in the city, with the same fixed-effects term
and potentially correlated random effect for intercept and horsepower grouped by the engine type.

lme2 = fitlme(tbl,'CityMPG~Horsepower+(Horsepower|EngineType)');

Because the random-effect term includes the intercept by default, you do not have to add 1, the
random effect term is equivalent to (1 + Horsepower|EngineType).

Display the model.

lme2

lme2 = 
Linear mixed-effects model fit by ML

Model information:
    Number of observations             203
    Fixed effects coefficients           2
    Random effects coefficients         14
    Covariance parameters                4

Formula:
    CityMPG ~ 1 + Horsepower + (1 + Horsepower | EngineType)

Model fit statistics:
    AIC     BIC       LogLikelihood    Deviance
    1089    1108.9    -538.52          1077    

Fixed effects coefficients (95% CIs):
    Name                   Estimate    SE          tStat      DF     pValue    
    {'(Intercept)'}         33.824       4.0181     8.4178    201    7.1678e-15
    {'Horsepower' }        -0.1087     0.032912    -3.3029    201     0.0011328

    Lower      Upper    
     25.901       41.747
    -0.1736    -0.043806

Random effects covariance parameters (95% CIs):
Group: EngineType (7 Levels)
    Name1                  Name2                  Type            Estimate
    {'(Intercept)'}        {'(Intercept)'}        {'std' }          9.4952
    {'Horsepower' }        {'(Intercept)'}        {'corr'}        -0.96843
    {'Horsepower' }        {'Horsepower' }        {'std' }        0.078874

    Lower       Upper   
      4.7022      19.174
    -0.99568    -0.78738
    0.039917     0.15585

Group: Error
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    Name               Estimate    Lower     Upper 
    {'Res Std'}        3.1845      2.8774    3.5243

Note that the random effects covariance parameters for intercept and horsepower are together in the
display, and it includes the correlation ('corr') between the intercept and horsepower.

Fit Random Intercept LME Model

Load the sample data.

load flu

The flu dataset array has a Date variable, and 10 variables containing estimated influenza rates (in
9 different regions, estimated from Google® searches, plus a nationwide estimate from the Centers
for Disease Control and Prevention, CDC).

To fit a linear-mixed effects model, your data must be in a properly formatted dataset array. To fit a
linear mixed-effects model with the influenza rates as the responses, combine the nine columns
corresponding to the regions into an array. The new dataset array, flu2, must have the new response
variable FluRate, the nominal variable Region that shows which region each estimate is from, the
nationwide estimate WtdILI, and the grouping variable Date.

flu2 = stack(flu,2:10,'NewDataVarName','FluRate', ...
    'IndVarName','Region');
flu2.Date = nominal(flu2.Date);

Display the first six rows of flu2.

flu2(1:6,:)

ans = 
    Date         WtdILI    Region       FluRate
    10/9/2005    1.182     NE            0.97  
    10/9/2005    1.182     MidAtl       1.025  
    10/9/2005    1.182     ENCentral    1.232  
    10/9/2005    1.182     WNCentral    1.286  
    10/9/2005    1.182     SAtl         1.082  
    10/9/2005    1.182     ESCentral    1.457  

Fit a linear mixed-effects model with a fixed-effects term for the nationwide estimate, WtdILI, and a
random intercept that varies by Date. The model corresponds to

yim = β0 + β1WtdILIim + b0m + εim, i = 1, 2, . . . , 468, m = 1, 2, . . . , 52,

where yim is the observation i for level m of grouping variable Date, b0m is the random effect for level
m of the grouping variable Date, and εim is the observation error for observation i. The random effect
has the prior distribution,

b0m ∼ N(0, σb
2),

and the error term has the distribution,
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εim ∼ N(0, σ2) .

lme = fitlme(flu2,'FluRate ~ 1 + WtdILI + (1|Date)')

lme = 
Linear mixed-effects model fit by ML

Model information:
    Number of observations             468
    Fixed effects coefficients           2
    Random effects coefficients         52
    Covariance parameters                2

Formula:
    FluRate ~ 1 + WtdILI + (1 | Date)

Model fit statistics:
    AIC       BIC       LogLikelihood    Deviance
    286.24    302.83    -139.12          278.24  

Fixed effects coefficients (95% CIs):
    Name                   Estimate    SE          tStat     DF     pValue    
    {'(Intercept)'}        0.16385     0.057525    2.8484    466     0.0045885
    {'WtdILI'     }         0.7236     0.032219    22.459    466    3.0502e-76

    Lower       Upper  
    0.050813    0.27689
     0.66028    0.78691

Random effects covariance parameters (95% CIs):
Group: Date (52 Levels)
    Name1                  Name2                  Type           Estimate
    {'(Intercept)'}        {'(Intercept)'}        {'std'}        0.17146 

    Lower      Upper  
    0.13227    0.22226

Group: Error
    Name               Estimate    Lower      Upper  
    {'Res Std'}        0.30201     0.28217    0.32324

Estimated covariance parameters are displayed in the section titled "Random effects covariance
parameters". The estimated value of σb is 0.17146 and its 95% confidence interval is [0.13227,
0.22226]. Since this interval does not include 0, the random-effects term is significant. You can
formally test the significance of any random-effects term using a likelihood ratio test via the compare
method.

The estimated response at an observation is the sum of the fixed effects and the random-effect value
at the grouping variable level corresponding to that observation. For example, the estimated flu rate
for observation 28 is
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y28 = β0 + β1WtdILI28 + b10/30/2005

= 0 . 1639 + 0 . 7236 * (1 . 343) + 0 . 3318
= 1 . 46749,

where b is the estimated best linear unbiased predictor (BLUP) of the random effects for the
intercept. You can compute this value as follows.

beta = fixedEffects(lme);
[~,~,STATS] = randomEffects(lme); % Compute the random-effects statistics (STATS)
STATS.Level = nominal(STATS.Level);
y_hat = beta(1) + beta(2)*flu2.WtdILI(28) + STATS.Estimate(STATS.Level=='10/30/2005')

y_hat = 1.4674

You can display the fitted value using the fitted method.

F = fitted(lme);
F(28)

ans = 1.4674

LME Model for Randomized Block Design

Load the sample data.

load('shift.mat')

The data shows the absolute deviations from the target quality characteristic measured from the
products each of five operators manufacture during three shifts: morning, evening, and night. This is
a randomized block design, where the operators are the blocks. The experiment is designed to study
the impact of the time of shift on the performance. The performance measure is the absolute
deviations of the quality characteristics from the target value. This is simulated data.

Fit a linear mixed-effects model with a random intercept grouped by operator to assess if
performance significantly differs according to the time of the shift. Use the restricted maximum
likelihood method and 'effects' contrasts.

'effects' contrasts mean that the coefficients sum to 0, and fitlme creates a matrix called a fixed
effects design matrix to describe the effect of shift. This matrix has two columns, Shift_Evening and
Shift_Morning, where

Shift_Evening =
0, if Morning
1, if Evening
−1, if Night

Shift_Morning =
1, if Morning
0, if Evening
−1, if Night

The model corresponds to
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Morning Shift:  QCDevim = β0 + β2Shift_Morningi + b0m + ϵim,
Evening Shift:  QCDevim = β0 + β1Shift_Eveningi + b0m + ϵim,
Night Shift:  QCDevim = β0− β1Shift_Eveningi− β2Shift_Morningi + b0m + ϵim,

where i represents the observations, and m represents the operators, i = 1, 2, ..., 15, and m = 1, 2, ...,
5. The random effects and the observation error have the following distributions:

b0m ∼ N(0, σb
2)

and

εim ∼ N(0, σ2) .

lme = fitlme(shift,'QCDev ~ Shift + (1|Operator)',...
'FitMethod','REML','DummyVarCoding','effects')

lme = 
Linear mixed-effects model fit by REML

Model information:
    Number of observations              15
    Fixed effects coefficients           3
    Random effects coefficients          5
    Covariance parameters                2

Formula:
    QCDev ~ 1 + Shift + (1 | Operator)

Model fit statistics:
    AIC       BIC       LogLikelihood    Deviance
    58.913    61.337    -24.456          48.913  

Fixed effects coefficients (95% CIs):
    Name                     Estimate    SE         tStat      DF    pValue   
    {'(Intercept)'  }          3.6525    0.94109     3.8812    12    0.0021832
    {'Shift_Evening'}        -0.53293    0.31206    -1.7078    12      0.11339
    {'Shift_Morning'}        -0.91973    0.31206    -2.9473    12     0.012206

    Lower      Upper   
     1.6021       5.703
    -1.2129     0.14699
    -1.5997    -0.23981

Random effects covariance parameters (95% CIs):
Group: Operator (5 Levels)
    Name1                  Name2                  Type           Estimate
    {'(Intercept)'}        {'(Intercept)'}        {'std'}        2.0457  

    Lower      Upper 
    0.98207    4.2612

Group: Error
    Name               Estimate    Lower      Upper
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    {'Res Std'}        0.85462     0.52357    1.395

Compute the best linear unbiased predictor (BLUP) estimates of random effects.

B = randomEffects(lme)

B = 5×1

    0.5775
    1.1757
   -2.1715
    2.3655
   -1.9472

The estimated absolute deviation from the target quality characteristics for the third operator
working the evening shift is

yEvening, Operator3 = β0 + β1Shift_Evening + b03

= 3 . 6525− 0 . 53293− 2 . 1715
= 0 . 94807 .

You can also display this value as follows.

F = fitted(lme);
F(shift.Shift=='Evening' & shift.Operator=='3')

ans = 0.9481

Similarly, you can calculate the estimated absolute deviation from the target quality characteristics
for the third operator working the morning shift as

yMorning, Operator3 = β0 + β2Shift_Morning + b03

= 3 . 6525− 0 . 91973− 2 . 1715
= 0 . 56127 .

You can also display this value as follows.

F(shift.Shift=='Morning' & shift.Operator=='3')

ans = 0.5613

The operator tends to make a smaller magnitude of error during the morning shift.

LME Model for Split-Plot Experiment

Load the sample data.

load('fertilizer.mat')

The dataset array includes data from a split-plot experiment, where soil is divided into three blocks
based on the soil type: sandy, silty, and loamy. Each block is divided into five plots, where five types of
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tomato plants (cherry, heirloom, grape, vine, and plum) are randomly assigned to these plots. The
tomato plants in the plots are then divided into subplots, where each subplot is treated by one of four
fertilizers. This is simulated data.

Store the data in a dataset array called ds, and define Tomato, Soil, and Fertilizer as
categorical variables.

ds = fertilizer;
ds.Tomato = nominal(ds.Tomato);
ds.Soil = nominal(ds.Soil);
ds.Fertilizer = nominal(ds.Fertilizer);

Fit a linear mixed-effects model, where Fertilizer and Tomato are the fixed-effects variables, and
the mean yield varies by the block (soil type) and the plots within blocks (tomato types within soil
types) independently.

This model corresponds to

yim jk = β0 + ∑
m = 2

4
β1mI F im + ∑

j = 2

5
β2 jI T i j + ∑

j = 2

5
∑

m = 2

4
β3m jI F imI T i j

+b0kSk + b0 jk(S * T) jk + εim jk,

where i = 1, 2, ..., 60, index m corresponds to the fertilizer types, j corresponds to the tomato types,
and k = 1, 2, 3 corresponds to the blocks (soil). Sk represents the k th soil type, and (S * T) jk
represents the j th tomato type nested in the k th soil type. I[F]im is the dummy variable representing
level m of the fertilizer. Similarly, I[T]i j is the dummy variable representing level j of the tomato type.

The random effects and observation error have these prior distributions: b0k~N(0, σS
2 ), b0 jk~N(0,

σS * T
2  ), and ϵim jk ~ N(0, σ2 ).

lme = fitlme(ds,'Yield ~ Fertilizer * Tomato + (1|Soil) + (1|Soil:Tomato)')

lme = 
Linear mixed-effects model fit by ML

Model information:
    Number of observations              60
    Fixed effects coefficients          20
    Random effects coefficients         18
    Covariance parameters                3

Formula:
    Yield ~ 1 + Tomato*Fertilizer + (1 | Soil) + (1 | Soil:Tomato)

Model fit statistics:
    AIC       BIC       LogLikelihood    Deviance
    522.57    570.74    -238.29          476.57  

Fixed effects coefficients (95% CIs):
    Name                                    Estimate    SE        tStat       DF
    {'(Intercept)'                 }             77     8.5836      8.9706    40
    {'Tomato_Grape'                }            -16     11.966     -1.3371    40
    {'Tomato_Heirloom'             }        -6.6667     11.966    -0.55714    40
    {'Tomato_Plum'                 }         32.333     11.966      2.7022    40
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    {'Tomato_Vine'                 }            -13     11.966     -1.0864    40
    {'Fertilizer_2'                }         34.667      8.572      4.0442    40
    {'Fertilizer_3'                }         33.667      8.572      3.9275    40
    {'Fertilizer_4'                }         47.667      8.572      5.5607    40
    {'Tomato_Grape:Fertilizer_2'   }        -2.6667     12.123    -0.21997    40
    {'Tomato_Heirloom:Fertilizer_2'}             -8     12.123    -0.65992    40
    {'Tomato_Plum:Fertilizer_2'    }            -15     12.123     -1.2374    40
    {'Tomato_Vine:Fertilizer_2'    }            -16     12.123     -1.3198    40
    {'Tomato_Grape:Fertilizer_3'   }         16.667     12.123      1.3748    40
    {'Tomato_Heirloom:Fertilizer_3'}         3.3333     12.123     0.27497    40
    {'Tomato_Plum:Fertilizer_3'    }         3.6667     12.123     0.30246    40
    {'Tomato_Vine:Fertilizer_3'    }              3     12.123     0.24747    40
    {'Tomato_Grape:Fertilizer_4'   }         13.333     12.123      1.0999    40
    {'Tomato_Heirloom:Fertilizer_4'}            -19     12.123     -1.5673    40
    {'Tomato_Plum:Fertilizer_4'    }        -2.6667     12.123    -0.21997    40
    {'Tomato_Vine:Fertilizer_4'    }         8.6667     12.123     0.71492    40

    pValue        Lower      Upper 
    4.0206e-11     59.652    94.348
       0.18873    -40.184    8.1837
       0.58053     -30.85    17.517
      0.010059     8.1496    56.517
       0.28379    -37.184    11.184
    0.00023272     17.342    51.991
    0.00033057     16.342    50.991
    1.9567e-06     30.342    64.991
       0.82701    -27.167    21.834
       0.51309    -32.501    16.501
       0.22317    -39.501    9.5007
       0.19439    -40.501    8.5007
       0.17683    -7.8341    41.167
       0.78476    -21.167    27.834
       0.76387    -20.834    28.167
       0.80581    -21.501    27.501
       0.27796    -11.167    37.834
       0.12492    -43.501    5.5007
       0.82701    -27.167    21.834
       0.47881    -15.834    33.167

Random effects covariance parameters (95% CIs):
Group: Soil (3 Levels)
    Name1                  Name2                  Type           Estimate
    {'(Intercept)'}        {'(Intercept)'}        {'std'}        2.5028  

    Lower      Upper 
    0.02771    226.05

Group: Soil:Tomato (15 Levels)
    Name1                  Name2                  Type           Estimate
    {'(Intercept)'}        {'(Intercept)'}        {'std'}        10.225  

    Lower     Upper 
    6.1497    17.001

Group: Error
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    Name               Estimate    Lower     Upper 
    {'Res Std'}        10.499      8.5389    12.908

The p-values corresponding to the last 12 rows in the fixed-effects coefficients display (0.82701 to
0.47881) indicate that interaction coefficients between the tomato and fertilizer types are not
significant. To test for the overall interaction between tomato and fertilizer, use the anova method
after refitting the model using 'effects' contrasts.

The confidence interval for the standard deviations of the random-effects terms ( σS
2 ), where the

intercept is grouped by soil, is very large. This term does not appear significant.

Refit the model after removing the interaction term Tomato:Fertilizer and the random-effects
term (1 | Soil).

lme = fitlme(ds,'Yield ~ Fertilizer + Tomato + (1|Soil:Tomato)')

lme = 
Linear mixed-effects model fit by ML

Model information:
    Number of observations              60
    Fixed effects coefficients           8
    Random effects coefficients         15
    Covariance parameters                2

Formula:
    Yield ~ 1 + Tomato + Fertilizer + (1 | Soil:Tomato)

Model fit statistics:
    AIC       BIC    LogLikelihood    Deviance
    511.06    532    -245.53          491.06  

Fixed effects coefficients (95% CIs):
    Name                       Estimate    SE        tStat       DF
    {'(Intercept)'    }         77.733     7.3293      10.606    52
    {'Tomato_Grape'   }        -9.1667     9.6045    -0.95441    52
    {'Tomato_Heirloom'}        -12.583     9.6045     -1.3102    52
    {'Tomato_Plum'    }         28.833     9.6045      3.0021    52
    {'Tomato_Vine'    }        -14.083     9.6045     -1.4663    52
    {'Fertilizer_2'   }         26.333     4.5004      5.8514    52
    {'Fertilizer_3'   }             39     4.5004      8.6659    52
    {'Fertilizer_4'   }         47.733     4.5004      10.607    52

    pValue        Lower      Upper 
    1.3108e-14     63.026    92.441
       0.34429    -28.439    10.106
        0.1959    -31.856    6.6895
     0.0041138     9.5605    48.106
       0.14858    -33.356    5.1895
    3.3024e-07     17.303    35.364
    1.1459e-11     29.969    48.031
     1.308e-14     38.703    56.764

Random effects covariance parameters (95% CIs):
Group: Soil:Tomato (15 Levels)
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    Name1                  Name2                  Type           Estimate
    {'(Intercept)'}        {'(Intercept)'}        {'std'}        10.02   

    Lower     Upper 
    6.0812    16.509

Group: Error
    Name               Estimate    Lower     Upper 
    {'Res Std'}        12.325      10.024    15.153

You can compare the two models using the compare method with the simulated likelihood ratio test
since both a fixed-effect and a random-effect term are tested.

Longitudinal Study with a Covariate

Load the sample data.

load('weight.mat')

weight contains data from a longitudinal study, where 20 subjects are randomly assigned to 4
exercise programs (A, B, C, D), and their weight loss is recorded over six 2-week time periods. This is
simulated data.

Store the data in a table. Define Subject and Program as categorical variables.

tbl = table(InitialWeight,Program,Subject,Week,y);
tbl.Subject = nominal(tbl.Subject);
tbl.Program = nominal(tbl.Program);

Fit a linear mixed-effects model where the initial weight, type of program, week, and the interaction
between the week and type of program are the fixed effects. The intercept and week vary by subject.

fitlme uses program A as a reference and creates the necessary dummy variables I[.]. Since the
model already has an intercept, fitlme only creates dummy variables for programs B, C, and D. This
is also known as the 'reference' method of coding dummy variables.

This model corresponds to

yim = β0 + β1IWi + β2Weeki + β3I PB i + β4I PC i + β5I PD i
+β6 Weeki * I PB i + β7 Weeki * I PC i + β8 Weeki * I PD i
+b0m + b1mWeekim + εim,

where i = 1, 2, ..., 120, and m = 1, 2, ..., 20. β j are the fixed-effects coefficients, j = 0, 1, ..., 8, and
b0m and b1m are random effects. IW stands for initial weight and I[ ⋅ ] is a dummy variable
representing a type of program. For example, I[PB]i is the dummy variable representing program
type B. The random effects and observation error have the following prior distributions:

b0m ∼ N(0, σ0
2)

b1m ∼ N(0, σ1
2)
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εim ∼ N(0, σ2) .

lme = fitlme(tbl,'y ~ InitialWeight + Program*Week + (Week|Subject)')

lme = 
Linear mixed-effects model fit by ML

Model information:
    Number of observations             120
    Fixed effects coefficients           9
    Random effects coefficients         40
    Covariance parameters                4

Formula:
    y ~ 1 + InitialWeight + Program*Week + (1 + Week | Subject)

Model fit statistics:
    AIC        BIC       LogLikelihood    Deviance
    -22.981    13.257    24.49            -48.981 

Fixed effects coefficients (95% CIs):
    Name                      Estimate     SE           tStat       DF 
    {'(Intercept)'   }          0.66105      0.25892      2.5531    111
    {'InitialWeight' }        0.0031879    0.0013814      2.3078    111
    {'Program_B'     }          0.36079      0.13139       2.746    111
    {'Program_C'     }        -0.033263      0.13117    -0.25358    111
    {'Program_D'     }          0.11317      0.13132     0.86175    111
    {'Week'          }           0.1732     0.067454      2.5677    111
    {'Program_B:Week'}         0.038771     0.095394     0.40644    111
    {'Program_C:Week'}         0.030543     0.095394     0.32018    111
    {'Program_D:Week'}         0.033114     0.095394     0.34713    111

    pValue       Lower         Upper    
     0.012034       0.14798       1.1741
     0.022863    0.00045067    0.0059252
    0.0070394       0.10044      0.62113
      0.80029      -0.29319      0.22666
      0.39068      -0.14706       0.3734
     0.011567      0.039536      0.30686
      0.68521      -0.15026       0.2278
      0.74944      -0.15849      0.21957
      0.72915      -0.15592      0.22214

Random effects covariance parameters (95% CIs):
Group: Subject (20 Levels)
    Name1                  Name2                  Type            Estimate
    {'(Intercept)'}        {'(Intercept)'}        {'std' }        0.18407 
    {'Week'       }        {'(Intercept)'}        {'corr'}        0.66841 
    {'Week'       }        {'Week'       }        {'std' }        0.15033 

    Lower      Upper  
    0.12281    0.27587
    0.21076    0.88573
    0.11004    0.20537

Group: Error
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    Name               Estimate    Lower       Upper  
    {'Res Std'}        0.10261     0.087882    0.11981

The p-values 0.022863 and 0.011567 indicate significant effects of subject initial weights and time in
the amount of weight lost. The weight loss of subjects who are in program B is significantly different
relative to the weight loss of subjects who are in program A. The lower and upper limits of the
covariance parameters for the random effects do not include 0, thus they are significant. You can also
test the significance of the random effects using the compare method.

Input Arguments
tbl — Input data
table | dataset array

Input data, which includes the response variable, predictor variables, and grouping variables,
specified as a table or dataset array. The predictor variables can be continuous or grouping
variables (see “Grouping Variables” on page 2-46). You must specify the model for the variables using
formula.
Data Types: table

formula — Formula for model specification
character vector or string scalar of the form 'y ~ fixed + (random1|grouping1) + ... +
(randomR|groupingR)'

Formula for model specification, specified as a character vector or string scalar of the form 'y ~
fixed + (random1|grouping1) + ... + (randomR|groupingR)'. The formula is case
sensitive. For a full description, see “Formula” on page 35-2364.
Example: 'y ~ treatment + (1|block)'

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example:
'CovariancePattern','Diagonal','Optimizer','fminunc','OptimizerOptions',opt
specifies a model, where the random-effects terms have a diagonal covariance matrix structure, and
fitlme uses the fminunc optimization algorithm with the custom optimization parameters defined
in variable opt.

CovariancePattern — Pattern of covariance matrix
'FullCholesky' (default) | character vector | string scalar | square symmetric logical matrix |
string array | cell array of character vectors or logical matrices

Pattern of the covariance matrix of the random effects, specified as the comma-separated pair
consisting of 'CovariancePattern' and a character vector, a string scalar, a square symmetric
logical matrix, a string array, or a cell array of character vectors or logical matrices.
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If there are R random-effects terms, then the value of 'CovariancePattern' must be a string array
or cell array of length R, where each element r of the array specifies the pattern of the covariance
matrix of the random-effects vector associated with the rth random-effects term. The options for each
element follow.

'FullCholesky' Default. Full covariance matrix using the
Cholesky parameterization. fitlme estimates all
elements of the covariance matrix.

'Full' Full covariance matrix, using the log-Cholesky
parameterization. fitlme estimates all elements
of the covariance matrix.

'Diagonal' Diagonal covariance matrix. That is, off-diagonal
elements of the covariance matrix are
constrained to be 0.

σb1
2 0 0

0 σb2
2 0

0 0 σb3
2

'Isotropic' Diagonal covariance matrix with equal variances.
That is, off-diagonal elements of the covariance
matrix are constrained to be 0, and the diagonal
elements are constrained to be equal. For
example, if there are three random-effects terms
with an isotropic covariance structure, this
covariance matrix looks like

σb
2 0 0

0 σb
2 0

0 0 σb
2

where σ2
b is the common variance of the random-

effects terms.

35 Functions

35-2360



'CompSymm' Compound symmetry structure. That is, common
variance along diagonals and equal correlation
between all random effects. For example, if there
are three random-effects terms with a covariance
matrix having a compound symmetry structure,
this covariance matrix looks like

σb1
2 σb1, b2 σb1, b2

σb1, b2 σb1
2 σb1, b2

σb1, b2 σb1, b2 σb1
2

where σ2
b1 is the common variance of the

random-effects terms and σb1,b2 is the common
covariance between any two random-effects
term .

PAT Square symmetric logical matrix. If
'CovariancePattern' is defined by the matrix
PAT, and if PAT(a,b) = false, then the (a,b)
element of the corresponding covariance matrix
is constrained to be 0.

Example: 'CovariancePattern','Diagonal'
Example: 'CovariancePattern',{'Full','Diagonal'}
Data Types: char | string | logical | cell

FitMethod — Method for estimating parameters
'ML' (default) | 'REML'

Method for estimating parameters of the linear mixed-effects model, specified as the comma-
separated pair consisting of 'FitMethod' and either of the following.

'ML' Default. Maximum likelihood estimation
'REML' Restricted maximum likelihood estimation

Example: 'FitMethod','REML'

Weights — Observation weights
vector of scalar values

Observation weights, specified as the comma-separated pair consisting of 'Weights' and a vector of
length n, where n is the number of observations.
Data Types: single | double

Exclude — Indices for rows to exclude
use all rows without NaNs (default) | vector of integer or logical values

Indices for rows to exclude from the linear mixed-effects model in the data, specified as the comma-
separated pair consisting of 'Exclude' and a vector of integer or logical values.

For example, you can exclude the 13th and 67th rows from the fit as follows.
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Example: 'Exclude',[13,67]
Data Types: single | double | logical

DummyVarCoding — Coding to use for dummy variables
'reference' (default) | 'effects' | 'full'

Coding to use for dummy variables created from the categorical variables, specified as the comma-
separated pair consisting of 'DummyVarCoding' and one of the variables in this table.

Value Description
'reference' (default) fitlme creates dummy variables with a

reference group. This scheme treats the first
category as a reference group and creates one
less dummy variables than the number of
categories. You can check the category order of a
categorical variable by using the categories
function, and change the order by using the
reordercats function.

'effects' fitlme creates dummy variables using effects
coding. This scheme uses –1 to represent the last
category. This scheme creates one less dummy
variables than the number of categories.

'full' fitlme creates full dummy variables. This
scheme creates one dummy variable for each
category.

For more details about creating dummy variables, see “Automatic Creation of Dummy Variables” on
page 2-50.
Example: 'DummyVarCoding','effects'

Optimizer — Optimization algorithm
'quasinewton' (default) | 'fminunc'

Optimization algorithm, specified as the comma-separated pair consisting of 'Optimizer' and
either of the following.

'quasinewton' Default. Uses a trust region based quasi-Newton
optimizer. Change the options of the algorithm
using statset('LinearMixedModel'). If you
don’t specify the options, then
LinearMixedModel uses the default options of
statset('LinearMixedModel').

'fminunc' You must have Optimization Toolbox to specify
this option. Change the options of the algorithm
using optimoptions('fminunc'). If you don’t
specify the options, then LinearMixedModel
uses the default options of
optimoptions('fminunc') with
'Algorithm' set to 'quasi-newton'.

Example: 'Optimizer','fminunc'
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OptimizerOptions — Options for optimization algorithm
structure returned by statset | object returned by optimoptions

Options for the optimization algorithm, specified as the comma-separated pair consisting of
'OptimizerOptions' and a structure returned by statset('LinearMixedModel') or an object
returned by optimoptions('fminunc').

• If 'Optimizer' is 'fminunc', then use optimoptions('fminunc') to change the options of
the optimization algorithm. See optimoptions for the options 'fminunc' uses. If 'Optimizer'
is 'fminunc' and you do not supply 'OptimizerOptions', then the default for
LinearMixedModel is the default options created by optimoptions('fminunc') with
'Algorithm' set to 'quasi-newton'.

• If 'Optimizer' is 'quasinewton', then use statset('LinearMixedModel') to change the
optimization parameters. If you don’t change the optimization parameters, then
LinearMixedModel uses the default options created by statset('LinearMixedModel'):

The 'quasinewton' optimizer uses the following fields in the structure created by
statset('LinearMixedModel').

TolFun — Relative tolerance on gradient of objective function
1e-6 (default) | positive scalar value

Relative tolerance on the gradient of the objective function, specified as a positive scalar value.

TolX — Absolute tolerance on step size
1e-12 (default) | positive scalar value

Absolute tolerance on the step size, specified as a positive scalar value.

MaxIter — Maximum number of iterations allowed
10000 (default) | positive scalar value

Maximum number of iterations allowed, specified as a positive scalar value.

Display — Level of display
'off' (default) | 'iter' | 'final'

Level of display, specified as one of 'off', 'iter', or 'final'.

StartMethod — Method to start iterative optimization
'default' (default) | 'random'

Method to start iterative optimization, specified as the comma-separated pair consisting of
'StartMethod' and either of the following.

Value Description
'default' An internally defined default value
'random' A random initial value

Example: 'StartMethod','random'

Verbose — Indicator to display optimization process on screen
false (default) | true
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Indicator to display the optimization process on screen, specified as the comma-separated pair
consisting of 'Verbose' and either false or true. Default is false.

The setting for 'Verbose' overrides the field 'Display' in 'OptimizerOptions'.
Example: 'Verbose',true

CheckHessian — Indicator to check positive definiteness of Hessian
false (default) | true

Indicator to check the positive definiteness of the Hessian of the objective function with respect to
unconstrained parameters at convergence, specified as the comma-separated pair consisting of
'CheckHessian' and either false or true. Default is false.

Specify 'CheckHessian' as true to verify optimality of the solution or to determine if the model is
overparameterized in the number of covariance parameters.
Example: 'CheckHessian',true

Output Arguments
lme — Linear mixed-effects model
LinearMixedModel object

Linear mixed-effects model, returned as a LinearMixedModel object.

More About
Formula

In general, a formula for model specification is a character vector or string scalar of the form 'y ~
terms'. For the linear mixed-effects models, this formula is in the form 'y ~ fixed + (random1|
grouping1) + ... + (randomR|groupingR)', where fixed and random contain the fixed-
effects and the random-effects terms.

Suppose a table tbl contains the following:

• A response variable, y
• Predictor variables, Xj, which can be continuous or grouping variables
• Grouping variables, g1, g2, ..., gR,

where the grouping variables in Xj and gr can be categorical, logical, character arrays, string arrays,
or cell arrays of character vectors.

Then, in a formula of the form, 'y ~ fixed + (random1|g1) + ... + (randomR|gR)', the term
fixed corresponds to a specification of the fixed-effects design matrix X, random1 is a specification
of the random-effects design matrix Z1 corresponding to grouping variable g1, and similarly randomR
is a specification of the random-effects design matrix ZR corresponding to grouping variable gR. You
can express the fixed and random terms using Wilkinson notation.

Wilkinson notation describes the factors present in models. The notation relates to factors present in
models, not to the multipliers (coefficients) of those factors.
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Wilkinson Notation Factors in Standard Notation
1 Constant (intercept) term
X^k, where k is a positive integer X, X2, ..., Xk

X1 + X2 X1, X2
X1*X2 X1, X2, X1.*X2 (elementwise

multiplication of X1 and X2)
X1:X2 X1.*X2 only
- X2 Do not include X2
X1*X2 + X3 X1, X2, X3, X1*X2
X1 + X2 + X3 + X1:X2 X1, X2, X3, X1*X2
X1*X2*X3 - X1:X2:X3 X1, X2, X3, X1*X2, X1*X3, X2*X3
X1*(X2 + X3) X1, X2, X3, X1*X2, X1*X3

Statistics and Machine Learning Toolbox notation always includes a constant term unless you
explicitly remove the term using -1. Here are some examples for linear mixed-effects model
specification.

Examples:

Formula Description
'y ~ X1 + X2' Fixed effects for the intercept, X1 and X2. This is

equivalent to 'y ~ 1 + X1 + X2'.
'y ~ -1 + X1 + X2' No intercept and fixed effects for X1 and X2. The

implicit intercept term is suppressed by including
-1.

'y ~ 1 + (1 | g1)' Fixed effects for the intercept plus random effect
for the intercept for each level of the grouping
variable g1.

'y ~ X1 + (1 | g1)' Random intercept model with a fixed slope.
'y ~ X1 + (X1 | g1)' Random intercept and slope, with possible

correlation between them. This is equivalent to
'y ~ 1 + X1 + (1 + X1|g1)'.

'y ~ X1 + (1 | g1) + (-1 + X1 | g1)' Independent random effects terms for intercept
and slope.

'y ~ 1 + (1 | g1) + (1 | g2) + (1 |
g1:g2)'

Random intercept model with independent main
effects for g1 and g2, plus an independent
interaction effect.

Cholesky Parameterization

One of the assumptions of linear mixed-effects models is that the random effects have the following
prior distribution.

b N 0, σ2D θ ,

where D is a q-by-q symmetric and positive semidefinite matrix, parameterized by a variance
component vector θ, q is the number of variables in the random-effects term, and σ2 is the
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observation error variance. Since the covariance matrix of the random effects, D, is symmetric, it has
q(q+1)/2 free parameters. Suppose L is the lower triangular Cholesky factor of D(θ) such that

D θ = L θ L θ T,

then the q*(q+1)/2-by-1 unconstrained parameter vector θ is formed from elements in the lower
triangular part of L.

For example, if

L =
L11 0 0
L21 L22 0
L31 L32 L33

,

then

θ =

L11
L21
L31
L22
L32
L33

.

Log-Cholesky Parameterization

When the diagonal elements of L in Cholesky parameterization are constrained to be positive, then
the solution for L is unique. Log-Cholesky parameterization is the same as Cholesky parameterization
except that the logarithm of the diagonal elements of L are used to guarantee unique
parameterization.

For example, for the 3-by-3 example in Cholesky parameterization, enforcing Lii ≥ 0,

θ =

log L11
L21
L31

log L22
L32

log L33

.

Alternatives
If your model is not easily described using a formula, you can create matrices to define the fixed and
random effects, and fit the model using fitlmematrix(X,y,Z,G).

Version History
Introduced in R2013b
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See Also
LinearMixedModel | fitlmematrix

Topics
“Relationship Between Formula and Design Matrices” on page 11-140
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fitlmematrix
Fit linear mixed-effects model

Syntax
lme = fitlmematrix(X,y,Z,[])
lme = fitlmematrix(X,y,Z,G)
lme = fitlmematrix( ___ ,Name,Value)

Description
lme = fitlmematrix(X,y,Z,[]) creates a linear mixed-effects model of the responses y using
the fixed-effects design matrix X and random-effects design matrix or matrices in Z.

[] implies that there is one group. That is, the grouping variable G is ones(n,1), where n is the
number of observations. Using fitlmematrix(X,Y,Z,[]) without a specified covariance pattern
most likely results in a nonidentifiable model. This syntax is recommended only if you build the
grouping information into the random effects design Z and specify a covariance pattern for the
random effects using the 'CovariancePattern' name-value pair argument.

lme = fitlmematrix(X,y,Z,G) creates a linear mixed-effects model of the responses y using the
fixed-effects design matrix X and random-effects design matrix Z or matrices in Z, and the grouping
variable or variables in G.

lme = fitlmematrix( ___ ,Name,Value) also creates a linear mixed-effects model with
additional options specified by one or more Name,Value pair arguments, using any of the previous
input arguments.

For example, you can specify the names of the response, predictor, and grouping variables. You can
also specify the covariance pattern, fitting method, or the optimization algorithm.

Examples

No Grouping Variable Specified

Load the sample data.

load carsmall

Fit a linear mixed-effects model, where miles per gallon (MPG) is the response, weight is the
predictor variable, and the intercept varies by model year. First, define the design matrices. Then, fit
the model using the specified design matrices.

y = MPG;
X = [ones(size(Weight)), Weight];
Z = ones(size(y));
lme = fitlmematrix(X,y,Z,Model_Year)

lme = 
Linear mixed-effects model fit by ML
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Model information:
    Number of observations              94
    Fixed effects coefficients           2
    Random effects coefficients          3
    Covariance parameters                2

Formula:
    y ~ x1 + x2 + (z11 | g1)

Model fit statistics:
    AIC       BIC       LogLikelihood    Deviance
    486.09    496.26    -239.04          478.09  

Fixed effects coefficients (95% CIs):
    Name          Estimate      SE           tStat      DF    pValue    
    {'x1'}            43.575       2.3038     18.915    92    1.8371e-33
    {'x2'}        -0.0067097    0.0004242    -15.817    92    5.5373e-28

    Lower         Upper     
            39        48.151
    -0.0075522    -0.0058672

Random effects covariance parameters (95% CIs):
Group: g1 (3 Levels)
    Name1          Name2          Type           Estimate    Lower     Upper 
    {'z11'}        {'z11'}        {'std'}        3.301       1.4448    7.5421

Group: Error
    Name               Estimate    Lower     Upper 
    {'Res Std'}        2.8997      2.5075    3.3532

Now, fit the same model by building the grouping into the Z matrix.

Z = double([Model_Year==70, Model_Year==76, Model_Year==82]);
lme = fitlmematrix(X,y,Z,[],'Covariancepattern','Isotropic')

lme = 
Linear mixed-effects model fit by ML

Model information:
    Number of observations              94
    Fixed effects coefficients           2
    Random effects coefficients          3
    Covariance parameters                2

Formula:
    y ~ x1 + x2 + (z11 + z12 + z13 | g1)

Model fit statistics:
    AIC       BIC       LogLikelihood    Deviance
    486.09    496.26    -239.04          478.09  

Fixed effects coefficients (95% CIs):
    Name          Estimate      SE           tStat      DF    pValue    
    {'x1'}            43.575       2.3038     18.915    92    1.8371e-33
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    {'x2'}        -0.0067097    0.0004242    -15.817    92    5.5373e-28

    Lower         Upper     
            39        48.151
    -0.0075522    -0.0058672

Random effects covariance parameters (95% CIs):
Group: g1 (1 Levels)
    Name1          Name2          Type           Estimate    Lower     Upper 
    {'z11'}        {'z11'}        {'std'}        3.301       1.4448    7.5421

Group: Error
    Name               Estimate    Lower     Upper 
    {'Res Std'}        2.8997      2.5075    3.3532

Longitudinal Study with a Covariate

Load the sample data.

load('weight.mat');

weight contains data from a longitudinal study, where 20 subjects are randomly assigned 4 exercise
programs (A, B, C, D) and their weight loss is recorded over six 2-week time periods. This is
simulated data.

Define Subject and Program as categorical variables. Create the design matrices for a linear mixed-
effects model, with the initial weight, type of program, week, and the interaction between the week
and type of program as the fixed effects. The intercept and coefficient of week vary by subject.

This model corresponds to

yim = β0 + β1IWi + β2Weeki + β3I PB i + β4I PC i + β5I PD i
+β6 Weeki * I PB i + β7 Weeki * I PC i + β8 Weeki * I PD i
+b0m + b1mWeekim + εim,

where i = 1, 2, ..., 120, and m = 1, 2, ..., 20. β j are the fixed-effects coefficients, j = 0, 1, ..., 8, and
b0m and b1m are random effects. IW stands for initial weight and I[ ⋅ ] is a dummy variable
representing a type of program. For example, I[PB]i is the dummy variable representing program
type B. The random effects and observation error have the following prior distributions:

b0m ∼ N(0, σ0
2)

b1m ∼ N(0, σ1
2)

εim ∼ N(0, σ2) .

Subject = nominal(Subject);
Program = nominal(Program);
D = dummyvar(Program); % Create dummy variables for Program
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X = [ones(120,1), InitialWeight, D(:,2:4), Week,...
         D(:,2).*Week, D(:,3).*Week, D(:,4).*Week];
Z = [ones(120,1), Week];
G = Subject;

Since the model has an intercept, you only need the dummy variables for programs B, C, and D. This
is also known as the 'reference' method of coding dummy variables.

Fit the model using fitlmematrix with the defined design matrices and grouping variables.

lme = fitlmematrix(X,y,Z,G,'FixedEffectPredictors',...
{'Intercept','InitWeight','PrgB','PrgC','PrgD','Week','Week_PrgB','Week_PrgC','Week_PrgD'},...
'RandomEffectPredictors',{{'Intercept','Week'}},'RandomEffectGroups',{'Subject'})

lme = 
Linear mixed-effects model fit by ML

Model information:
    Number of observations             120
    Fixed effects coefficients           9
    Random effects coefficients         40
    Covariance parameters                4

Formula:
    Linear Mixed Formula with 10 predictors.

Model fit statistics:
    AIC        BIC       LogLikelihood    Deviance
    -22.981    13.257    24.49            -48.981 

Fixed effects coefficients (95% CIs):
    Name                  Estimate     SE           tStat       DF     pValue   
    {'Intercept' }          0.66105      0.25892      2.5531    111     0.012034
    {'InitWeight'}        0.0031879    0.0013814      2.3078    111     0.022863
    {'PrgB'      }          0.36079      0.13139       2.746    111    0.0070394
    {'PrgC'      }        -0.033263      0.13117    -0.25358    111      0.80029
    {'PrgD'      }          0.11317      0.13132     0.86175    111      0.39068
    {'Week'      }           0.1732     0.067454      2.5677    111     0.011567
    {'Week_PrgB' }         0.038771     0.095394     0.40644    111      0.68521
    {'Week_PrgC' }         0.030543     0.095394     0.32018    111      0.74944
    {'Week_PrgD' }         0.033114     0.095394     0.34713    111      0.72915

    Lower         Upper    
       0.14798       1.1741
    0.00045067    0.0059252
       0.10044      0.62113
      -0.29319      0.22666
      -0.14706       0.3734
      0.039536      0.30686
      -0.15026       0.2278
      -0.15849      0.21957
      -0.15592      0.22214

Random effects covariance parameters (95% CIs):
Group: Subject (20 Levels)
    Name1                Name2                Type            Estimate
    {'Intercept'}        {'Intercept'}        {'std' }        0.18407 
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    {'Week'     }        {'Intercept'}        {'corr'}        0.66841 
    {'Week'     }        {'Week'     }        {'std' }        0.15033 

    Lower      Upper  
    0.12281    0.27587
    0.21076    0.88573
    0.11004    0.20537

Group: Error
    Name               Estimate    Lower       Upper  
    {'Res Std'}        0.10261     0.087882    0.11981

Examine the fixed effects coefficients table. The row labeled 'InitWeight' has a p-value of 0.0228,
and the row labeled 'Week' has a p-value of 0.0115. These p-values indicate significant effects of the
initial weights of the subjects and the time factor in the amount of weight lost. The weight loss of
subjects who are in program B is significantly different relative to the weight loss of subjects who are
in program A. The lower and upper limits of the covariance parameters for the random effects do not
include zero, thus they seem significant. You can also test the significance of the random-effects using
the compare method.

Random Intercept Model

Load the sample data.

load flu

The flu dataset array has a Date variable, and 10 variables for estimated influenza rates (in 9
different regions, estimated from Google® searches, plus a nationwide estimate from the Centers for
Disease Control and Prevention, CDC).

To fit a linear-mixed effects model, where the influenza rates are the responses, combine the nine
columns corresponding to the regions into an array that has a single response variable, FluRate, and
a nominal variable, Region, the nationwide estimate WtdILI, that shows which region each estimate
is from, and the grouping variable Date.

flu2 = stack(flu,2:10,'NewDataVarName','FluRate',...
    'IndVarName','Region');
flu2.Date = nominal(flu2.Date);

Define the design matrices for a random-intercept linear mixed-effects model, where the intercept
varies by Date. The corresponding model is

yim = β0 + β1WtdILIim + b0m + εim, i = 1, 2, . . . , 468, m = 1, 2, . . . , 52,

where yim is the observation i for level m of grouping variable Date, b0m is the random effect for level
m of the grouping variable Date, and εim is the observation error for observation i. The random effect
has the prior distribution,

b0m ∼ N(0, σb
2),

and the error term has the distribution,
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εim ∼ N(0, σ2) .

y = flu2.FluRate;
X = [ones(468,1) flu2.WtdILI];
Z = [ones(468,1)];
G = flu2.Date;

Fit the linear mixed-effects model.

lme = fitlmematrix(X,y,Z,G,'FixedEffectPredictors',{'Intercept','NationalRate'},...
'RandomEffectPredictors',{{'Intercept'}},'RandomEffectGroups',{'Date'})

lme = 
Linear mixed-effects model fit by ML

Model information:
    Number of observations             468
    Fixed effects coefficients           2
    Random effects coefficients         52
    Covariance parameters                2

Formula:
    y ~ Intercept + NationalRate + (Intercept | Date)

Model fit statistics:
    AIC       BIC       LogLikelihood    Deviance
    286.24    302.83    -139.12          278.24  

Fixed effects coefficients (95% CIs):
    Name                    Estimate    SE          tStat     DF     pValue    
    {'Intercept'   }        0.16385     0.057525    2.8484    466     0.0045885
    {'NationalRate'}         0.7236     0.032219    22.459    466    3.0502e-76

    Lower       Upper  
    0.050813    0.27689
     0.66028    0.78691

Random effects covariance parameters (95% CIs):
Group: Date (52 Levels)
    Name1                Name2                Type           Estimate    Lower  
    {'Intercept'}        {'Intercept'}        {'std'}        0.17146     0.13227

    Upper  
    0.22226

Group: Error
    Name               Estimate    Lower      Upper  
    {'Res Std'}        0.30201     0.28217    0.32324

The confidence limits of the standard deviation of the random-effects term σb, do not include zero
(0.13227, 0.22226), which indicates that the random-effects term is significant. You can also test the
significance of the random-effects using compare method.
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The estimated value of an observation is the sum of the fixed-effects values and value of the random
effect at the grouping variable level corresponding to that observation. For example, the estimated flu
rate for observation 28

y28 = β0 + β1WtdILI28 + b10/30/2005

= 0 . 1639 + 0 . 7236 * (1 . 343) + 0 . 3318
= 1 . 46749,

where b is the best linear unbiased predictor (BLUP) of the random effects for the intercept. You can
compute this value as follows.

beta = fixedEffects(lme);
[~,~,STATS] = randomEffects(lme); % compute the random effects statistics STATS
STATS.Level = nominal(STATS.Level);
y_hat = beta(1) + beta(2)*flu2.WtdILI(28) + STATS.Estimate(STATS.Level=='10/30/2005')

y_hat = 1.4674

You can simply display the fitted value using the fitted(lme) method.

F = fitted(lme);
F(28)

ans = 1.4674

Randomized Block Design

Load the sample data.

load('shift.mat');

The data shows the deviations from the target quality characteristic measured from the products that
five operators manufacture during three shifts: morning, evening, and night. This is a randomized
block design, where the operators are the blocks. The experiment is designed to study the impact of
the time of shift on the performance. The performance measure is the deviations of the quality
characteristics from the target value. This is simulated data.

Define the design matrices for a linear mixed-effects model with a random intercept grouped by
operator, and shift as the fixed effects. Use the 'effects' contrasts. 'effects' contrasts mean
that the coefficients sum to 0. You need to create two contrast coded variables in the fixed-effects
design matrix, X1 and X2, where

Shift_Evening =
0, if Morning
1, if Evening
−1, if Night

Shift_Morning =
1, if Morning
0, if Evening
−1, if Night

The model corresponds to
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Morning Shift:  QCDevim = β0 + β2Shift_Morningi + b0m + ϵim,
Evening Shift:  QCDevim = β0 + β1Shift_Eveningi + b0m + ϵim,
Night Shift:  QCDevim = β0− β1Shift_Eveningi− β2Shift_Morningi + b0m + ϵim,

where i represents the observations, and m represents the operators, i = 1, 2, ..., 15, and m = 1, 2, ...,
5. The random effects and the observation error have the following distributions:

b0m ∼ N(0, σb
2)

and

εim ∼ N(0, σ2) .

S = shift.Shift;
X1 = (S=='Morning') - (S=='Night');
X2 = (S=='Evening') - (S=='Night');
X = [ones(15,1), X1, X2];
y = shift.QCDev;
Z = ones(15,1);
G = shift.Operator;

Fit a linear mixed-effects model using the specified design matrices and restricted maximum
likelihood method.

lme = fitlmematrix(X,y,Z,G,'FitMethod','REML','FixedEffectPredictors',....
{'Intercept','S_Morning','S_Evening'},'RandomEffectPredictors',{{'Intercept'}},...
'RandomEffectGroups',{'Operator'},'DummyVarCoding','effects')

lme = 
Linear mixed-effects model fit by REML

Model information:
    Number of observations              15
    Fixed effects coefficients           3
    Random effects coefficients          5
    Covariance parameters                2

Formula:
    y ~ Intercept + S_Morning + S_Evening + (Intercept | Operator)

Model fit statistics:
    AIC       BIC       LogLikelihood    Deviance
    58.913    61.337    -24.456          48.913  

Fixed effects coefficients (95% CIs):
    Name                 Estimate    SE         tStat      DF    pValue   
    {'Intercept'}          3.6525    0.94109     3.8812    12    0.0021832
    {'S_Morning'}        -0.91973    0.31206    -2.9473    12     0.012206
    {'S_Evening'}        -0.53293    0.31206    -1.7078    12      0.11339

    Lower      Upper   
     1.6021       5.703
    -1.5997    -0.23981
    -1.2129     0.14699

 fitlmematrix

35-2375



Random effects covariance parameters (95% CIs):
Group: Operator (5 Levels)
    Name1                Name2                Type           Estimate    Lower  
    {'Intercept'}        {'Intercept'}        {'std'}        2.0457      0.98207

    Upper 
    4.2612

Group: Error
    Name               Estimate    Lower      Upper
    {'Res Std'}        0.85462     0.52357    1.395

Compute the best linear unbiased predictor (BLUP) estimates of random effects.

B = randomEffects(lme)

B = 5×1

    0.5775
    1.1757
   -2.1715
    2.3655
   -1.9472

The estimated deviation from the target quality characteristics for the third operator working the
evening shift is

yEvening, Operator3 = β0 + β1Shift_Evening + b03

= 3 . 6525− 0 . 53293− 2 . 1715
= 0 . 94807 .

You can also display this value as follows.

F = fitted(lme);
F(shift.Shift=='Evening' & shift.Operator=='3')

ans = 0.9481

Correlated and Uncorrelated Random-Effects Terms

Load the sample data.

load carbig

Fit a linear mixed-effects model for miles per gallon (MPG), with fixed effects for acceleration and
horsepower, and uncorrelated random effect for intercept and acceleration grouped by the model
year. This model corresponds to

MPGim = β0 + β1Acci + β2HP + b0m + b1mAccim + εim, m = 1, 2, 3,

with the random-effects terms having the following prior distributions:
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b0m ∼ N(0, σ0
2),

b1m ∼ N(0, σ1
2),

where m represents the model year.

First, prepare the design matrices for fitting the linear mixed-effects model.

X = [ones(406,1) Acceleration Horsepower];
Z = {ones(406,1),Acceleration};
G = {Model_Year,Model_Year};
Model_Year = nominal(Model_Year);

Now, fit the model using fitlmematrix with the defined design matrices and grouping variables.

lme = fitlmematrix(X,MPG,Z,G,'FixedEffectPredictors',....
{'Intercept','Acceleration','Horsepower'},'RandomEffectPredictors',...
{{'Intercept'},{'Acceleration'}},'RandomEffectGroups',{'Model_Year','Model_Year'})

lme = 
Linear mixed-effects model fit by ML

Model information:
    Number of observations             392
    Fixed effects coefficients           3
    Random effects coefficients         26
    Covariance parameters                3

Formula:
    Linear Mixed Formula with 4 predictors.

Model fit statistics:
    AIC       BIC       LogLikelihood    Deviance
    2194.5    2218.3    -1091.3          2182.5  

Fixed effects coefficients (95% CIs):
    Name                    Estimate    SE           tStat      DF 
    {'Intercept'   }          49.839       2.0518     24.291    389
    {'Acceleration'}        -0.58565      0.10846    -5.3995    389
    {'Horsepower'  }        -0.16534    0.0071227    -23.213    389

    pValue        Lower       Upper   
    5.6168e-80      45.806      53.873
    1.1652e-07     -0.7989     -0.3724
    1.9755e-75    -0.17934    -0.15133

Random effects covariance parameters (95% CIs):
Group: Model_Year (13 Levels)
    Name1                Name2                Type           Estimate      Lower
    {'Intercept'}        {'Intercept'}        {'std'}        8.9928e-07    NaN  

    Upper
    NaN  

Group: Model_Year (13 Levels)
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    Name1                   Name2                   Type           Estimate
    {'Acceleration'}        {'Acceleration'}        {'std'}        0.18783 

    Lower      Upper  
    0.18783    0.18783

Group: Error
    Name               Estimate    Lower     Upper 
    {'Res Std'}        3.7258      3.4698    4.0007

Note that the random effects covariance parameters for intercept and acceleration are separate in
the display. The standard deviation of the random effect for the intercept does not seem significant.

Refit the model with potentially correlated random effects for intercept and acceleration. In this case,
the random-effects terms has this prior distribution

bm =
b0m
b1m

∼ N 0,
σ0

2 σ0, 1

σ0, 1 σ1
2

,

where m represents the model year.

First, prepare the random-effects design matrix and grouping variable.

Z = [ones(406,1) Acceleration];
G = Model_Year;

lme = fitlmematrix(X,MPG,Z,G,'FixedEffectPredictors',....
{'Intercept','Acceleration','Horsepower'},'RandomEffectPredictors',...
{{'Intercept','Acceleration'}},'RandomEffectGroups',{'Model_Year'})

lme = 
Linear mixed-effects model fit by ML

Model information:
    Number of observations             392
    Fixed effects coefficients           3
    Random effects coefficients         26
    Covariance parameters                4

Formula:
    Linear Mixed Formula with 4 predictors.

Model fit statistics:
    AIC       BIC       LogLikelihood    Deviance
    2193.5    2221.3    -1089.7          2179.5  

Fixed effects coefficients (95% CIs):
    Name                    Estimate    SE           tStat      DF 
    {'Intercept'   }          50.133       2.2652     22.132    389
    {'Acceleration'}        -0.58327      0.13394    -4.3545    389
    {'Horsepower'  }        -0.16954    0.0072609     -23.35    389

    pValue        Lower       Upper   
    7.7727e-71      45.679      54.586
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    1.7075e-05    -0.84661    -0.31992
     5.188e-76    -0.18382    -0.15527

Random effects covariance parameters (95% CIs):
Group: Model_Year (13 Levels)
    Name1                   Name2                   Type            Estimate
    {'Intercept'   }        {'Intercept'   }        {'std' }          3.3475
    {'Acceleration'}        {'Intercept'   }        {'corr'}        -0.87971
    {'Acceleration'}        {'Acceleration'}        {'std' }         0.33789

    Lower       Upper   
      1.2862      8.7119
    -0.98501    -0.29675
      0.1825     0.62558

Group: Error
    Name               Estimate    Lower     Upper 
    {'Res Std'}        3.6874      3.4298    3.9644

Note that the random effects covariance parameters for intercept and acceleration are together in
the display, with an addition of the correlation between the intercept and acceleration. The
confidence intervals for the standard deviations and the correlation between the random effects for
intercept and acceleration do not include 0s, hence they seem significant. You can compare these two
models using the compare method.

Specify the Covariance Pattern

Load the sample data.

load('weight.mat');

weight contains data from a longitudinal study, where 20 subjects are randomly assigned 4 exercise
programs, and their weight loss is recorded over six 2-week time periods. This is simulated data.

Define Subject and Program as categorical variables.

Subject = nominal(Subject);
Program = nominal(Program);

Create the design matrices for a linear mixed-effects model, with the initial weight, type of program,
and week as the fixed effects.

D = dummyvar(Program);
X = [ones(120,1), InitialWeight, D(:,2:4), Week];
Z = [ones(120,1) Week];
G = Subject;

This model corresponds to

yim = β0 + β1IWi + β2Weeki + β3I PB i + β4I PC i + β5I PD i
+b0m + b1mWeek2im + b2mWeek4im + b3mWeek6im + b4mWeek8im
+b5mWeek10im + b6mWeek12im + εim,
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where i = 1, 2, ..., 120, and m = 1, 2, ..., 20.

β j are the fixed-effects coefficients, j = 0, 1, ...,8, and b0m and b1m are random effects. IW stands for
initial weight and I[ . ] is a dummy variable representing a type of program. For example, I[PB]i is the
dummy variable representing program type B. The random effects and observation error have the
following prior distributions:

b0m ∼ N(0, σ0
2)

b1m ∼ N(0, σ1
2)

εim ∼ N(0, σ2) .

Fit the model using fitlmematrix with the defined design matrices and grouping variables. Assume
the repeated observations collected on a subject have common variance along diagonals.

lme = fitlmematrix(X,y,Z,G,'FixedEffectPredictors',...
{'Intercept','InitWeight','PrgB','PrgC','PrgD','Week'},...
'RandomEffectPredictors',{{'Intercept','Week'}},...
'RandomEffectGroups',{'Subject'},'CovariancePattern','Isotropic')

lme = 
Linear mixed-effects model fit by ML

Model information:
    Number of observations             120
    Fixed effects coefficients           6
    Random effects coefficients         40
    Covariance parameters                2

Formula:
    Linear Mixed Formula with 7 predictors.

Model fit statistics:
    AIC        BIC       LogLikelihood    Deviance
    -24.783    -2.483    20.391           -40.783 

Fixed effects coefficients (95% CIs):
    Name                  Estimate     SE           tStat       DF 
    {'Intercept' }           0.4208      0.28169      1.4938    114
    {'InitWeight'}        0.0045552    0.0015338      2.9699    114
    {'PrgB'      }          0.36993      0.12119      3.0525    114
    {'PrgC'      }        -0.034009       0.1209    -0.28129    114
    {'PrgD'      }            0.121      0.12111     0.99911    114
    {'Week'      }          0.19881     0.037134      5.3538    114

    pValue        Lower        Upper    
       0.13799     -0.13723      0.97883
     0.0036324    0.0015168    0.0075935
     0.0028242      0.12986         0.61
       0.77899     -0.27351       0.2055
       0.31986     -0.11891      0.36091
    4.5191e-07      0.12525      0.27237

Random effects covariance parameters (95% CIs):
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Group: Subject (20 Levels)
    Name1                Name2                Type           Estimate    Lower  
    {'Intercept'}        {'Intercept'}        {'std'}        0.16561     0.12896

    Upper  
    0.21269

Group: Error
    Name               Estimate    Lower       Upper  
    {'Res Std'}        0.10272     0.088014    0.11987

Input Arguments
X — Fixed-effects design matrix
n-by-p matrix

Fixed-effects design matrix, specified as an n-by-p matrix, where n is the number of observations, and
p is the number of fixed-effects predictor variables. Each row of X corresponds to one observation,
and each column of X corresponds to one variable.
Data Types: single | double

y — Response values
n-by-1 vector

Response values, specified as an n-by-1 vector, where n is the number of observations.
Data Types: single | double

Z — Random-effects design
n-by-q matrix | cell array of R n-by-q(r) matrices, r = 1, 2, ..., R

Random-effects design, specified as either of the following.

• If there is one random-effects term in the model, then Z must be an n-by-q matrix, where n is the
number of observations and q is the number of variables in the random-effects term.

• If there are R random-effects terms, then Z must be a cell array of length R. Each cell of Z
contains an n-by-q(r) design matrix Z{r}, r = 1, 2, ..., R, corresponding to each random-effects
term. Here, q(r) is the number of random effects term in the rth random effects design matrix,
Z{r}.

Data Types: single | double | cell

G — Grouping variable or variables
n-by-1 vector | cell array of R n-by-1 vectors

Grouping variable or variables on page 2-46, specified as either of the following.

• If there is one random-effects term, then G must be an n-by-1 vector corresponding to a single
grouping variable with M levels or groups.

G can be a categorical vector, logical vector, numeric vector, character array, string array, or cell
array of character vectors.
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• If there are multiple random-effects terms, then G must be a cell array of length R. Each cell of G
contains a grouping variable G{r}, r = 1, 2, ..., R, with M(r) levels.

G{r} can be a categorical vector, logical vector, numeric vector, character array, string array, or
cell array of character vectors.

Data Types: categorical | logical | single | double | char | string | cell

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example:
'CovariancePattern','Diagonal','DummyVarCoding','full','Optimizer','fminunc'
specifies a random-effects covariance pattern with zero off-diagonal elements, creates a dummy
variable for each level of a categorical variable, and uses the fminunc optimization algorithm.

FixedEffectPredictors — Names of columns in fixed-effects design matrix
{'x1','x2',...,'xP'} (default) | string array or cell array of length p

Names of columns in the fixed-effects design matrix X, specified as the comma-separated pair
consisting of 'FixedEffectPredictors' and a string array or cell array of length p.

For example, if you have a constant term and two predictors, say TimeSpent and Gender, where
Female is the reference level for Gender, as the fixed effects, then you can specify the names of your
fixed effects in the following way. Gender_Male represents the dummy variable you must create for
category Male. You can choose different names for these variables.
Example: 'FixedEffectPredictors',{'Intercept','TimeSpent','Gender_Male'},
Data Types: string | cell

RandomEffectPredictors — Names of columns in random-effects design matrix or cell
array
string array or cell array of length q | cell array of length R with elements of length q(r), r = 1, 2, ...,
R

Names of columns in the random-effects design matrix or cell array Z, specified as the comma-
separated pair consisting of 'RandomEffectPredictors' and either of the following:

• A string array or cell array of length q when Z is an n-by-q design matrix. In this case, the default
is {'z1','z2',...,'zQ'}.

• A cell array of length R, when Z is a cell array of length R with each element Z{r} of length q(r), r
= 1, 2, ..., R. In this case, the default is {'z11','z12',...,'z1Q(1)'},...,
{'zr1','zr2',...,'zrQ(r)'}.

For example, suppose you have correlated random effects for intercept and a variable named
Acceleration. Then, you can specify the random-effects predictor names as follows.
Example: 'RandomEffectPredictors',{'Intercept','Acceleration'}
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If you have two random effects terms, one for the intercept and the variable Acceleration grouped
by variable g1, and the second for the intercept, grouped by the variable g2, then you specify the
random-effects predictor names as follows.
Example: 'RandomEffectPredictors',{{'Intercept','Acceleration'},{'Intercept'}}
Data Types: string | cell

ResponseVarName — Name of response variable
'y' (default) | character vector | string scalar

Name of response variable, specified as the comma-separated pair consisting of
'ResponseVarName' and a character vector or string scalar.

For example, if your response variable name is score, then you can specify it as follows.
Example: 'ResponseVarName','score'
Data Types: char | string

RandomEffectGroups — Names of random effects grouping variables
'g' or {'g1','g2',...,'gR'} (default) | character vector | string scalar | string array | cell array
of character vectors

Names of random effects grouping variables, specified as the comma-separated pair
'RandomEffectGroups' and either of the following:

• Character vector or string scalar — If there is only one random-effects term, that is, if G is a
vector, then the value of 'RandomEffectGroups' is the name for the grouping variable G. The
default is 'g'.

• String array or cell array of character vectors — If there are multiple random-effects terms, that
is, if G is a cell array of length R, then the value of 'RandomEffectGroups' is a string array or
cell array of length R, where each element is the name for the grouping variable G{r}. The default
is {'g1','g2',...,'gR'}.

For example, if you have two random-effects terms, z1 and z2, grouped by the grouping variables
sex and subject, then you can specify the names of your grouping variables as follows.
Example: 'RandomEffectGroups',{'sex','subject'}
Data Types: char | string | cell

CovariancePattern — Pattern of covariance matrix
'FullCholesky' (default) | character vector | string scalar | square symmetric logical matrix |
string array | cell array of character vectors or logical matrices

Pattern of the covariance matrix of the random effects, specified as the comma-separated pair
consisting of 'CovariancePattern' and a character vector, a string scalar, a square symmetric
logical matrix, a string array, or a cell array of character vectors or logical matrices.

If there are R random-effects terms, then the value of 'CovariancePattern' must be a string array
or cell array of length R, where each element r of the array specifies the pattern of the covariance
matrix of the random-effects vector associated with the rth random-effects term. The options for each
element follow.
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'FullCholesky' Default. Full covariance matrix using the
Cholesky parameterization. fitlme estimates all
elements of the covariance matrix.

'Full' Full covariance matrix, using the log-Cholesky
parameterization. fitlme estimates all elements
of the covariance matrix.

'Diagonal' Diagonal covariance matrix. That is, off-diagonal
elements of the covariance matrix are
constrained to be 0.

σb1
2 0 0

0 σb2
2 0

0 0 σb3
2

'Isotropic' Diagonal covariance matrix with equal variances.
That is, off-diagonal elements of the covariance
matrix are constrained to be 0, and the diagonal
elements are constrained to be equal. For
example, if there are three random-effects terms
with an isotropic covariance structure, this
covariance matrix looks like

σb
2 0 0

0 σb
2 0

0 0 σb
2

where σ2
b is the common variance of the random-

effects terms.
'CompSymm' Compound symmetry structure. That is, common

variance along diagonals and equal correlation
between all random effects. For example, if there
are three random-effects terms with a covariance
matrix having a compound symmetry structure,
this covariance matrix looks like

σb1
2 σb1, b2 σb1, b2

σb1, b2 σb1
2 σb1, b2

σb1, b2 σb1, b2 σb1
2

where σ2
b1 is the common variance of the

random-effects terms and σb1,b2 is the common
covariance between any two random-effects
term .
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PAT Square symmetric logical matrix. If
'CovariancePattern' is defined by the matrix
PAT, and if PAT(a,b) = false, then the (a,b)
element of the corresponding covariance matrix
is constrained to be 0.

Example: 'CovariancePattern','Diagonal'
Example: 'CovariancePattern',{'Full','Diagonal'}
Data Types: char | string | logical | cell

FitMethod — Method for estimating parameters
'ML' (default) | 'REML'

Method for estimating parameters of the linear mixed-effects model, specified as the comma-
separated pair consisting of 'FitMethod' and either of the following.

'ML' Default. Maximum likelihood estimation
'REML' Restricted maximum likelihood estimation

Example: 'FitMethod','REML'

Weights — Observation weights
vector of scalar values

Observation weights, specified as the comma-separated pair consisting of 'Weights' and a vector of
length n, where n is the number of observations.
Data Types: single | double

Exclude — Indices for rows to exclude
use all rows without NaNs (default) | vector of integer or logical values

Indices for rows to exclude from the linear mixed-effects model in the data, specified as the comma-
separated pair consisting of 'Exclude' and a vector of integer or logical values.

For example, you can exclude the 13th and 67th rows from the fit as follows.
Example: 'Exclude',[13,67]
Data Types: single | double | logical

DummyVarCoding — Coding to use for dummy variables
'reference' (default) | 'effects' | 'full'

Coding to use for dummy variables created from the categorical variables, specified as the comma-
separated pair consisting of 'DummyVarCoding' and one of the variables in this table.
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Value Description
'reference' (default) fitlmematrix creates dummy variables with a

reference group. This scheme treats the first
category as a reference group and creates one
less dummy variables than the number of
categories. You can check the category order of a
categorical variable by using the categories
function, and change the order by using the
reordercats function.

'effects' fitlmematrix creates dummy variables using
effects coding. This scheme uses –1 to represent
the last category. This scheme creates one less
dummy variables than the number of categories.

'full' fitlmematrix creates full dummy variables.
This scheme creates one dummy variable for each
category.

For more details about creating dummy variables, see “Automatic Creation of Dummy Variables” on
page 2-50.
Example: 'DummyVarCoding','effects'

Optimizer — Optimization algorithm
'quasinewton' (default) | 'fminunc'

Optimization algorithm, specified as the comma-separated pair consisting of 'Optimizer' and
either of the following.

'quasinewton' Default. Uses a trust region based quasi-Newton
optimizer. Change the options of the algorithm
using statset('LinearMixedModel'). If you
don’t specify the options, then
LinearMixedModel uses the default options of
statset('LinearMixedModel').

'fminunc' You must have Optimization Toolbox to specify
this option. Change the options of the algorithm
using optimoptions('fminunc'). If you don’t
specify the options, then LinearMixedModel
uses the default options of
optimoptions('fminunc') with
'Algorithm' set to 'quasi-newton'.

Example: 'Optimizer','fminunc'

OptimizerOptions — Options for optimization algorithm
structure returned by statset | object returned by optimoptions

Options for the optimization algorithm, specified as the comma-separated pair consisting of
'OptimizerOptions' and a structure returned by statset('LinearMixedModel') or an object
returned by optimoptions('fminunc').

• If 'Optimizer' is 'fminunc', then use optimoptions('fminunc') to change the options of
the optimization algorithm. See optimoptions for the options 'fminunc' uses. If 'Optimizer'
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is 'fminunc' and you do not supply 'OptimizerOptions', then the default for
LinearMixedModel is the default options created by optimoptions('fminunc') with
'Algorithm' set to 'quasi-newton'.

• If 'Optimizer' is 'quasinewton', then use statset('LinearMixedModel') to change the
optimization parameters. If you don’t change the optimization parameters, then
LinearMixedModel uses the default options created by statset('LinearMixedModel'):

The 'quasinewton' optimizer uses the following fields in the structure created by
statset('LinearMixedModel').

TolFun — Relative tolerance on gradient of objective function
1e-6 (default) | positive scalar value

Relative tolerance on the gradient of the objective function, specified as a positive scalar value.

TolX — Absolute tolerance on step size
1e-12 (default) | positive scalar value

Absolute tolerance on the step size, specified as a positive scalar value.

MaxIter — Maximum number of iterations allowed
10000 (default) | positive scalar value

Maximum number of iterations allowed, specified as a positive scalar value.

Display — Level of display
'off' (default) | 'iter' | 'final'

Level of display, specified as one of 'off', 'iter', or 'final'.

StartMethod — Method to start iterative optimization
'default' (default) | 'random'

Method to start iterative optimization, specified as the comma-separated pair consisting of
'StartMethod' and either of the following.

Value Description
'default' An internally defined default value
'random' A random initial value

Example: 'StartMethod','random'

Verbose — Indicator to display optimization process on screen
false (default) | true

Indicator to display the optimization process on screen, specified as the comma-separated pair
consisting of 'Verbose' and either false or true. Default is false.

The setting for 'Verbose' overrides the field 'Display' in 'OptimizerOptions'.
Example: 'Verbose',true

CheckHessian — Indicator to check positive definiteness of Hessian
false (default) | true
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Indicator to check the positive definiteness of the Hessian of the objective function with respect to
unconstrained parameters at convergence, specified as the comma-separated pair consisting of
'CheckHessian' and either false or true. Default is false.

Specify 'CheckHessian' as true to verify optimality of the solution or to determine if the model is
overparameterized in the number of covariance parameters.
Example: 'CheckHessian',true

Output Arguments
lme — Linear mixed-effects model
LinearMixedModel object

Linear mixed-effects model, returned as a LinearMixedModel object.

More About
Cholesky Parameterization

One of the assumptions of linear mixed-effects models is that the random effects have the following
prior distribution.

b N 0, σ2D θ ,

where D is a q-by-q symmetric and positive semidefinite matrix, parameterized by a variance
component vector θ, q is the number of variables in the random-effects term, and σ2 is the
observation error variance. Since the covariance matrix of the random effects, D, is symmetric, it has
q(q+1)/2 free parameters. Suppose L is the lower triangular Cholesky factor of D(θ) such that

D θ = L θ L θ T,

then the q*(q+1)/2-by-1 unconstrained parameter vector θ is formed from elements in the lower
triangular part of L.

For example, if

L =
L11 0 0
L21 L22 0
L31 L32 L33

,

then

θ =

L11
L21
L31
L22
L32
L33

.
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Log-Cholesky Parameterization

When the diagonal elements of L in Cholesky parameterization are constrained to be positive, then
the solution for L is unique. Log-Cholesky parameterization is the same as Cholesky parameterization
except that the logarithm of the diagonal elements of L are used to guarantee unique
parameterization.

For example, for the 3-by-3 example in Cholesky parameterization, enforcing Lii ≥ 0,

θ =

log L11
L21
L31

log L22
L32

log L33

.

Alternative Functionality
You can also fit a linear mixed-effects model using fitlme(tbl,formula), where tbl is a table or
dataset array containing the response y, the predictor variables X, and the grouping variables, and
formula is of the form 'y ~ fixed + (random1|g1) + ... + (randomR|gR)'.

Version History
Introduced in R2013b

See Also
fitlme | LinearMixedModel | compare
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fitsemigraph
Label data using semi-supervised graph-based method

Syntax
Mdl = fitsemigraph(Tbl,ResponseVarName,UnlabeledTbl)
Mdl = fitsemigraph(Tbl,formula,UnlabeledTbl)
Mdl = fitsemigraph(Tbl,Y,UnlabeledTbl)

Mdl = fitsemigraph(X,Y,UnlabeledX)

Mdl = fitsemigraph( ___ ,Name,Value)

Description
fitsemigraph creates a semi-supervised graph-based model given labeled data, labels, and
unlabeled data. The returned model contains the fitted labels for the unlabeled data and the
corresponding scores. This model can also predict labels for unseen data using the predict object
function. For more information on the different labeling algorithms, see “Algorithms” on page 35-
2408.

Mdl = fitsemigraph(Tbl,ResponseVarName,UnlabeledTbl) uses the labeled data in Tbl,
where Tbl.ResponseVarName contains the labels for the labeled data, and returns fitted labels for
the unlabeled data in UnlabeledTbl. The function stores the fitted labels and the corresponding
scores in the FittedLabels and LabelScores properties of the object Mdl, respectively.

Mdl = fitsemigraph(Tbl,formula,UnlabeledTbl) uses formula to specify the response
variable (vector of labels) and the predictor variables to use among the variables in Tbl. The function
uses these variables to label the data in UnlabeledTbl.

Mdl = fitsemigraph(Tbl,Y,UnlabeledTbl) uses the predictor data in Tbl and the labels in Y
to label the data in UnlabeledTbl.

Mdl = fitsemigraph(X,Y,UnlabeledX) uses the predictor data in X and the labels in Y to label
the data in UnlabeledX.

Mdl = fitsemigraph( ___ ,Name,Value) specifies options using one or more name-value pair
arguments in addition to any of the input argument combinations in previous syntaxes. For example,
you can specify the labeling method, number of iterations, and score threshold to use in the labeling
algorithm.

Examples

Fit Labels to Unlabeled Data

Fit labels to unlabeled data by using a semi-supervised graph-based method.

Randomly generate 60 observations of labeled data, with 20 observations in each of three classes.
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rng('default') % For reproducibility

labeledX = [randn(20,2)*0.25 + ones(20,2);
            randn(20,2)*0.25 - ones(20,2);
            randn(20,2)*0.5];
Y = [ones(20,1); ones(20,1)*2; ones(20,1)*3];

Visualize the labeled data by using a scatter plot. Observations in the same class have the same color.
Notice that the data is split into three clusters with very little overlap.

scatter(labeledX(:,1),labeledX(:,2),[],Y,'filled')
title('Labeled Data')

Randomly generate 300 additional observations of unlabeled data, with 100 observations per class.
For the purposes of validation, keep track of the true labels for the unlabeled data.

unlabeledX = [randn(100,2)*0.25 + ones(100,2);
              randn(100,2)*0.25 - ones(100,2);
              randn(100,2)*0.5];
trueLabels = [ones(100,1); ones(100,1)*2; ones(100,1)*3];

Fit labels to the unlabeled data by using a semi-supervised graph-based method. The function
fitsemigraph returns a SemiSupervisedGraphModel object whose FittedLabels property
contains the fitted labels for the unlabeled data and whose LabelScores property contains the
associated label scores.

Mdl = fitsemigraph(labeledX,Y,unlabeledX)
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Mdl = 
  SemiSupervisedGraphModel with properties:

             FittedLabels: [300x1 double]
              LabelScores: [300x3 double]
               ClassNames: [1 2 3]
             ResponseName: 'Y'
    CategoricalPredictors: []
                   Method: 'labelpropagation'

  Properties, Methods

Visualize the fitted label results by using a scatter plot. Use the fitted labels to set the color of the
observations, and use the maximum label scores to set the transparency of the observations.
Observations with less transparency are labeled with greater confidence. Notice that observations
that lie closer to the cluster boundaries are labeled with more uncertainty.

maxLabelScores = max(Mdl.LabelScores,[],2);
rescaledScores = rescale(maxLabelScores,0.05,0.95);
scatter(unlabeledX(:,1),unlabeledX(:,2),[],Mdl.FittedLabels,'filled', ...
    'MarkerFaceAlpha','flat','AlphaData',rescaledScores);
title('Fitted Labels for Unlabeled Data')

Determine the accuracy of the labeling by using the true labels for the unlabeled data.
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numWrongLabels = sum(trueLabels ~= Mdl.FittedLabels)

numWrongLabels = 10

Only 10 of the 300 observations in unlabeledX are mislabeled.

Specify Graph Type Used to Fit Labels

Fit labels to unlabeled data by using a semi-supervised graph-based method. Specify the type of
nearest neighbor graph.

Load the patients data set. Create a table from the variables Distolic, Gender, and so on. For
each observation, or row in the table, treat the Smoker value as the label for that observation.

load patients
Tbl = table(Diastolic,Gender,Height,Systolic,Weight,Smoker);

Suppose only 20% of the observations are labeled. To recreate this scenario, randomly sample 20
labeled observations and store them in the table unlabeledTbl. Remove the label from the rest of
the observations and store them in the table unlabeledTbl. To verify the accuracy of the label
fitting at the end of the example, retain the true labels for the unlabeled data in the variable
trueLabels.

rng('default') % For reproducibility of the sampling
[labeledTbl,Idx] = datasample(Tbl,20,'Replace',false);

unlabeledTbl = Tbl;
unlabeledTbl(Idx,:) = [];
trueLabels = unlabeledTbl.Smoker;
unlabeledTbl.Smoker = [];

Fit labels to the unlabeled data by using a semi-supervised graph-based method. Use a mutual type of
nearest neighbor graph, where two points are connected when they are nearest neighbors of each
other. Specify to standardize the numeric predictors. The function fitsemigraph returns an object
whose FittedLabels property contains the fitted labels for the unlabeled data.

Mdl = fitsemigraph(labeledTbl,'Smoker',unlabeledTbl,'KNNGraphType','mutual', ...
    'Standardize',true);
fittedLabels = Mdl.FittedLabels;

Identify the observations that are incorrectly labeled by comparing the stored true labels for the
unlabeled data to the fitted labels returned by the semi-supervised graph-based method.

wrongIdx = (trueLabels ~= fittedLabels);
wrongTbl = unlabeledTbl(wrongIdx,:);

Visualize the fitted label results for the unlabeled data. Mislabeled observations are circled in the
plot.

gscatter(unlabeledTbl.Diastolic,unlabeledTbl.Systolic, ...
    fittedLabels)
hold on
plot(wrongTbl.Diastolic,wrongTbl.Systolic, ...
    'ko','MarkerSize',8)
xlabel('Diastolic')
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ylabel('Systolic')
legend('Nonsmoker','Smoker','Mislabeled')
title('Fitted Labels for Unlabeled Data')

Input Arguments
Tbl — Labeled sample data
table

Labeled sample data, specified as a table. Each row of Tbl corresponds to one observation, and each
column corresponds to one predictor. Optionally, Tbl can contain one additional column for the
response variable (vector of labels). Multicolumn variables, cell arrays other than cell arrays of
character vectors, and ordinal categorical variables are not supported.

If Tbl contains the response variable, and you want to use all remaining variables in Tbl as
predictors, then specify the response variable using ResponseVarName.

If Tbl contains the response variable, and you want to use only a subset of the remaining variables in
Tbl as predictors, specify a formula using formula.

If Tbl does not contain the response variable, specify a response variable using Y. The length of the
response variable and the number of rows in Tbl must be equal.
Data Types: table
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UnlabeledTbl — Unlabeled sample data
table

Unlabeled sample data, specified as a table. Each row of UnlabeledTbl corresponds to one
observation, and each column corresponds to one predictor. UnlabeledTbl must contain the same
predictors as those contained in Tbl.
Data Types: table

ResponseVarName — Response variable name
name of variable in Tbl

Response variable name, specified as the name of a variable in Tbl. The response variable contains
the class labels for the sample data in Tbl.

You must specify ResponseVarName as a character vector or string scalar. For example, if the
response variable Y is stored as Tbl.Y, then specify it as 'Y'. Otherwise, the software treats all
columns of Tbl, including Y, as predictors.

The response variable must be a categorical, character, or string array, a logical or numeric vector, or
a cell array of character vectors. If Y is a character array, then each element of the response variable
must correspond to one row of the array.

A good practice is to specify the order of the classes by using the ClassNames name-value pair
argument.
Data Types: char | string

formula — Explanatory model of response variable and subset of predictor variables
character vector | string scalar

Explanatory model of the response variable and a subset of the predictor variables, specified as a
character vector or string scalar in the form 'Y~X1+X2+X3'. In this form, Y represents the response
variable, and X1, X2, and X3 represent the predictor variables.

To specify a subset of variables in Tbl as predictors, use a formula. If you specify a formula, then the
software does not use any variables in Tbl that do not appear in formula.

The variable names in the formula must be both variable names in Tbl
(Tbl.Properties.VariableNames) and valid MATLAB identifiers. You can verify the variable
names in Tbl by using the isvarname function. If the variable names are not valid, then you can
convert them by using the matlab.lang.makeValidName function.
Data Types: char | string

Y — Class labels
numeric vector | categorical vector | logical vector | character array | string array | cell array of
character vectors

Class labels, specified as a numeric, categorical, or logical vector, a character or string array, or a cell
array of character vectors.

• If Y is a character array, then each element of the class labels must correspond to one row of the
array.

• The length of Y must be equal to the number of rows in Tbl or X.
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• A good practice is to specify the class order by using the ClassNames name-value pair argument.

Data Types: single | double | categorical | logical | char | string | cell

X — Labeled predictor data
numeric matrix

Labeled predictor data, specified as a numeric matrix.

Each row of X corresponds to one observation, and each column corresponds to one predictor.

The length of Y and the number of rows in X must be equal.

To specify the names of the predictors in the order of their appearance in X, use the
PredictorNames name-value pair argument.
Data Types: single | double

UnlabeledX — Unlabeled predictor data
numeric matrix

Unlabeled predictor data, specified as a numeric matrix. Each row of UnlabeledX corresponds to
one observation, and each column corresponds to one predictor. UnlabeledX must have the same
predictors as X, in the same order.
Data Types: single | double

Note The software treats NaN, empty character vector (''), empty string (""), <missing>, and
<undefined> elements as missing data. The software removes rows of the predictor data
(observations) with missing values.

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example:
fitsemigraph(Tbl,'Y',UnlabeledTbl,'Method','labelspreading','IterationLimit',
2e3) specifies to use a label spreading labeling technique and run a maximum of 2000 iterations.

Labeling Algorithm Options

Method — Labeling technique
'labelpropagation' (default) | 'labelpropagationexact' | 'labelspreading' |
'labelspreadingexact'

Labeling technique, specified as the comma-separated pair consisting of 'Method' and one of these
values.
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Value Description Method-Specific Name-Value
Pair Arguments

'labelpropagation' Iteratively propagate labels
across the nodes in the
similarity graph. For more
information, see “Label
Propagation” on page 35-2408.

'IterationLimit' —
Maximum number of iterations

'Tolerance' — Tolerance for
the score absolute difference in
subsequent iterations

'labelpropagationexact' Use an exact formula to
propagate labels. For more
information, see “Label
Propagation” on page 35-2408.

None

'labelspreading' Iteratively spread labels across
the nodes in the similarity
graph. For more information,
see “Label Spreading” on page
35-2409.

'Alpha' — Relative weight of
neighboring labels to the initial
label

'IterationLimit' —
Maximum number of iterations

'Tolerance' — Tolerance for
the score absolute difference in
subsequent iterations

'labelspreadingexact' Use an exact formula to spread
labels. For more information,
see “Label Spreading” on page
35-2409.

'Alpha' — Relative weight of
neighboring labels to the initial
label

Example: 'Method','labelspreading'
Data Types: char | string

Alpha — Relative weight of neighboring labels to initial label
0.01 (default) | scalar value in the range (0,1)

Relative weight of neighboring labels to the initial label for labeled observations in X or Tbl, specified
as the comma-separated pair consisting of 'Alpha' and a scalar value in the range (0,1). A value
close to 0 indicates that fitsemigraph treats labels of initially labeled observations almost like
ground truth. A value close to 1 indicates that fitsemigraph treats labels of initially labeled
observations almost like noise.

Note This argument is valid only when the Method value is 'labelspreading' or
'labelspreadingexact'.

Example: 'Alpha',0.05
Data Types: single | double

IterationLimit — Maximum number of iterations
1e3 (default) | positive integer scalar

Maximum number of iterations, specified as the comma-separated pair consisting of
'IterationLimit' and a positive integer scalar. The fitsemigraph function returns Mdl, which
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contains the fitted labels and scores, when this limit is reached, even if the algorithm does not
converge.

Note This argument is valid only when the Method value is 'labelpropagation' or
'labelspreading'.

Example: 'IterationLimit',2e3
Data Types: single | double

Tolerance — Tolerance for score absolute difference in subsequent iterations
1e-3 (default) | nonnegative scalar

Tolerance for score absolute difference in subsequent iterations, specified as the comma-separated
pair consisting of 'Tolerance' and a nonnegative scalar.

Note This argument is valid only when the Method value is 'labelpropagation' or
'labelspreading'.

Example: 'Tolerance',1e-4
Data Types: single | double

Classification Options

CategoricalPredictors — Categorical predictors list
vector of positive integers | logical vector | character matrix | string array | cell array of character
vectors | 'all'

Categorical predictors list, specified as one of the values in this table.

Value Description
Vector of positive
integers

Each entry in the vector is an index value indicating that the corresponding
predictor is categorical. The index values are between 1 and p, where p is
the number of predictors used to train the model.

If fitsemigraph uses a subset of input variables as predictors, then the
function indexes the predictors using only the subset. The
CategoricalPredictors values do not count the response variable,
observation weights variable, or any other variables that the function does
not use.

Logical vector A true entry means that the corresponding predictor is categorical. The
length of the vector is p.

Character matrix Each row of the matrix is the name of a predictor variable. The names must
match the entries in PredictorNames. Pad the names with extra blanks
so each row of the character matrix has the same length.

String array or cell
array of character
vectors

Each element in the array is the name of a predictor variable. The names
must match the entries in PredictorNames.
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Value Description
"all" All predictors are categorical.

By default, if the predictor data is in a table, fitsemigraph assumes that a variable is categorical if
it is a logical vector, categorical vector, character array, string array, or cell array of character
vectors. Ordinal categorical variables are not supported. If the predictor data is a matrix,
fitsemigraph assumes that all predictors are continuous. To identify any other predictors as
categorical predictors, specify them by using the 'CategoricalPredictors' name-value pair
argument.

fitsemigraph encodes categorical variables as numeric variables by assigning a positive integer
value to each category. When you use categorical predictors, ensure that you use an appropriate
distance metric (Distance).
Example: 'CategoricalPredictors','all'
Data Types: single | double | logical | char | string | cell

ClassNames — Names of classes to use for labeling
categorical array | character array | string array | logical vector | numeric vector | cell array of
character vectors

Names of the classes to use for labeling, specified as the comma-separated pair consisting of
'ClassNames' and a categorical, character, or string array, a logical or numeric vector, or a cell
array of character vectors. ClassNames must have the same data type as Y.

If ClassNames is a character array, then each element must correspond to one row of the array.

Use 'ClassNames' to:

• Order the classes.
• Specify the order of any input or output argument dimension that corresponds to the class order.

For example, use 'ClassNames' to specify the column order of classification scores in
Mdl.LabelScores.

• Select a subset of classes for labeling. For example, suppose that the set of all distinct class names
in Y is {'a','b','c'}. To use observations from classes 'a' and 'c' only, specify
'ClassNames',{'a','c'}.

The default value for ClassNames is the set of all distinct class names in Y.
Example: 'ClassNames',{'b','g'}
Data Types: categorical | char | string | logical | single | double | cell

PredictorNames — Predictor variable names
string array of unique names | cell array of unique character vectors

Predictor variable names, specified as the comma-separated pair consisting of 'PredictorNames'
and a string array of unique names or cell array of unique character vectors. The functionality of
'PredictorNames' depends on the way you supply the predictor data.

• If you supply X, Y, and UnlabeledX, then you can use 'PredictorNames' to assign names to
the predictor variables in X and UnlabeledX.
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• The order of the names in PredictorNames must correspond to the column order of X. That
is, PredictorNames{1} is the name of X(:,1), PredictorNames{2} is the name of
X(:,2), and so on. Also, size(X,2) and numel(PredictorNames) must be equal.

• By default, PredictorNames is {'x1','x2',...}.
• If you supply Tbl and UnlabeledTbl, then you can use 'PredictorNames' to choose which

predictor variables to use. That is, fitsemigraph uses only the predictor variables in
PredictorNames and the response variable to label the unlabeled data.

• PredictorNames must be a subset of Tbl.Properties.VariableNames and cannot include
the name of the response variable.

• By default, PredictorNames contains the names of all predictor variables.
• A good practice is to specify the predictors using either 'PredictorNames' or formula, but

not both.

Example: 'PredictorNames',
{'SepalLength','SepalWidth','PetalLength','PetalWidth'}

Data Types: string | cell

ResponseName — Response variable name
'Y' (default) | character vector | string scalar

Response variable name, specified as the comma-separated pair consisting of 'ResponseName' and
a character vector or string scalar.

• If you supply Y, then you can use 'ResponseName' to specify a name for the response variable.
• If you supply ResponseVarName or formula, then you cannot use 'ResponseName'.

Example: 'ResponseName','response'
Data Types: char | string

Standardize — Flag to standardize predictor data
false or 0 (default) | true or 1

Flag to standardize the predictor data, specified as the comma-separated pair consisting of
'Standardize' and a numeric or logical 0 (false) or 1 (true). If you set 'Standardize',true,
the software combines the labeled and unlabeled predictor data, and then centers and scales each
numeric predictor variable by the corresponding column mean and standard deviation. The software
does not standardize the categorical predictors.
Example: 'Standardize',true
Data Types: double | logical

Distance Metric Options

Distance — Distance metric
character vector | string scalar

Distance metric, specified as the comma-separated pair consisting of 'Distance' and a character
vector or string scalar.

• If all the predictor variables are continuous (numeric) variables, then you can specify one of these
distance metrics.
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Value Description
'euclidean' Euclidean distance
'seuclidean' Standardized Euclidean distance — Each coordinate difference

between observations is scaled by dividing by the corresponding
element of the standard deviation S = std(PD,'omitnan'), where
PD is the predictor data, both labeled and unlabeled. To specify
another scale parameter, use the 'Scale' name-value pair argument.

'mahalanobis' Mahalanobis distance — By default, the distance is computed using C
= cov(PD,'omitrows'), the covariance of PD. To change the value
of the covariance matrix, use the 'Cov' name-value pair argument.

'minkowski' Minkowski distance — The default exponent is 2. To specify a different
exponent, use the 'P' name-value pair argument.

'chebychev' Chebychev distance (maximum coordinate difference)
'cityblock' City block distance
'correlation' One minus the sample correlation between observations (treated as

sequences of values)
'cosine' One minus the cosine of the included angle between observations

(treated as vectors)
'spearman' One minus the sample Spearman's rank correlation between

observations (treated as sequences of values)

Note If you specify one of these distance metrics and the predictor data includes categorical
predictors, then the software treats each categorical predictor as a numeric variable for the
distance computation, with each category represented by a positive integer. The Distance value
does not affect the CategoricalPredictors property of the trained model.

• If all the predictor variables are categorical variables, then you can specify one of these distance
metrics.

Value Description
'hamming' Hamming distance, which is the percentage of coordinates that differ
'jaccard' One minus the Jaccard coefficient, which is the percentage of nonzero

coordinates that differ

Note If you specify one of these distance metrics and the predictor data includes continuous
(numeric) predictors, then the software treats each continuous predictor as a categorical variable
for the distance computation. The Distance value does not affect the CategoricalPredictors
property of the trained model.

• If the predictor variables are a mix of continuous (numeric) and categorical variables, then you
can specify one of these distance metrics.

Value Description
'goodall3' Modified Goodall distance
'ofd' Occurrence frequency distance
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The default value is 'euclidean' if all the predictor variables are continuous, and 'goodall3' if
any of the predictor variables are categorical. For more information on the various distance metrics,
see “Distance Metrics” on page 35-2405.
Example: 'Distance','ofd'
Data Types: char | string

Scale — Scale parameter for standardized Euclidean distance metric
nonnegative vector

Scale parameter for the standardized Euclidean distance metric, specified as the comma-separated
pair consisting of 'Scale' and a nonnegative vector. The length of Scale is equal to the number of
predictors. Each coordinate difference between two observations is scaled by the corresponding
element of Scale.

The default scale parameter is std(PD,'omitnan'), where PD is the predictor data, both labeled
and unlabeled.

Note This argument is valid only if Distance is 'seuclidean'.

Example: 'Scale',iqr(X)
Data Types: single | double

Cov — Covariance matrix for Mahalanobis distance metric
positive definite matrix

Covariance matrix for the Mahalanobis distance metric, specified as the comma-separated pair
consisting of 'Cov' and a p-by-p positive definite matrix, where p is the number of predictors.

The default covariance matrix is cov(PD,'omitrows'), where PD is the predictor data, both labeled
and unlabeled.

Note This argument is valid only if Distance is 'mahalanobis'.

Example: 'Cov',eye(3)
Data Types: single | double

P — Exponent for Minkowski distance metric
2 (default) | positive scalar

Exponent for the Minkowski distance metric, specified as the comma-separated pair consisting of 'P'
and a positive scalar.

Note This argument is valid only if Distance is 'minkowski'.

Example: 'P',3
Data Types: single | double
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Graph Options

SimilarityGraph — Type of similarity graph
'knn' (default) | 'epsilon'

Type of similarity graph used in the labeling algorithm, specified as the comma-separated pair
consisting of 'SimilarityGraph' and one of these values.

Value Description Graph-Specific Name-Value
Pair Arguments

'knn' Construct the graph using
nearest neighbors.

'NumNeighbors' — Number of
nearest neighbors used to
construct the similarity graph

'KNNGraphType' — Type of
nearest neighbor graph

'epsilon' Construct the graph by using
radius search. You must specify
a value for Radius if you use
this option.

'Radius' — Search radius for
the nearest neighbors used to
construct the similarity graph

For more information, see “Similarity Graph” on page 35-2407.
Example: 'SimilarityGraph','epsilon','Radius',2
Data Types: char | string

NumNeighbors — Number of nearest neighbors
positive integer scalar

Number of nearest neighbors used to construct the similarity graph, specified as the comma-
separated pair consisting of 'NumNeighbors' and a positive integer scalar.

The default number of neighbors is log(n), where n is the number of observations in the predictor
data, both labeled and unlabeled.

Note This argument is valid only if SimilarityGraph is 'knn'.

Example: 'NumNeighbors',10
Data Types: single | double

KNNGraphType — Type of nearest neighbor graph
'complete' (default) | 'mutual'

Type of nearest neighbor graph, specified as the comma-separated pair consisting of
'KNNGraphType' and one of these values.
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Value Description
'complete' Connects two points i and j, when either i is a

nearest neighbor of j or j is a nearest neighbor of
i.

This option leads to a denser representation of
the similarity matrix.

'mutual' Connects two points i and j, when i is a nearest
neighbor of j and j is a nearest neighbor of i.

This option leads to a sparser representation of
the similarity matrix.

Note This argument is valid only if SimilarityGraph is 'knn'.

Example: 'KNNGraphType','mutual'
Data Types: char | string

Radius — Search radius
nonnegative scalar

Search radius for the nearest neighbors used to construct the similarity graph, specified as the
comma-separated pair consisting of 'Radius' and a nonnegative scalar.

Note You must specify this argument if SimilarityGraph is 'epsilon'.

Example: 'Radius',5
Data Types: single | double

KernelScale — Scale factor
1 (default) | 'auto' | positive scalar

Scale factor for the kernel, specified as the comma-separated pair consisting of 'KernelScale' and
'auto' or a positive scalar. The software uses the scale factor to transform distances to similarity
measures.

• The 'auto' option is supported only for the 'euclidean' and 'seuclidean' distance metrics.
• If you specify 'auto', then the software selects an appropriate scale factor using a heuristic

procedure. This heuristic procedure uses subsampling, so estimates can vary from one call to
another. To reproduce results, set a random number seed using rng before calling
fitsemigraph.

Example: 'KernelScale','auto'
Data Types: single | double | char | string
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Output Arguments
Mdl — Semi-supervised graph-based classifier
SemiSupervisedGraphModel object

Semi-supervised graph-based classifier, returned as a SemiSupervisedGraphModel object. Use dot
notation to access the object properties. For example, to get the fitted labels for the unlabeled data
and their corresponding scores, enter Mdl.FittedLabels and Mdl.LabelScores, respectively.

More About
Distance Metrics

A distance metric is a function that defines a distance between two observations. fitsemigraph
supports various distance metrics for continuous (numeric) predictors, categorical predictors, and a
mix of continuous and categorical predictors.

Given an mx-by-n data matrix X, which is treated as mx (1-by-n) row vectors x1, x2, ..., xmx, and an my-
by-n data matrix Y, which is treated as my (1-by-n) row vectors y1, y2, ...,ymy, the various distances
between the vector xs and yt are defined as follows:

• Distance metrics for continuous (numeric) variables

• Euclidean distance

dst
2 = (xs− yt)(xs− yt)′ .

The Euclidean distance is a special case of the Minkowski distance, where p = 2.
• Standardized Euclidean distance

dst
2 = (xs− yt)V−1(xs− yt)′,

where V is the n-by-n diagonal matrix whose jth diagonal element is (S(j))2, where S is a vector
of scaling factors for each dimension.

• Mahalanobis distance

dst
2 = (xs− yt)C−1(xs− yt)′,

where C is the covariance matrix.
• Minkowski distance

dst = ∑
j = 1

n
xs j− yt j

pp .

For the special case of p = 1, the Minkowski distance gives the city block distance. For the
special case of p = 2, the Minkowski distance gives the Euclidean distance. For the special
case of p = ∞, the Minkowski distance gives the Chebychev distance.

• Chebychev distance

dst = max j xs j− yt j .

The Chebychev distance is a special case of the Minkowski distance, where p = ∞.
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• City block distance

dst = ∑
j = 1

n
xs j− yt j .

The city block distance is a special case of the Minkowski distance, where p = 1.
• Correlation distance

dst = 1−
xs− xs yt− yt ′

xs− xs xs− xs ′ yt − yt yt − yt ′ ,

where

xs = 1
n∑j xs j

and

yt = 1
n∑j yt j .

• Cosine distance

dst = 1−
xsy′t

xsx′s yty′t
.

• Spearman distance

dst = 1−
rs− r s rt − r t ′

rs− r s rs− r s ′ rt − r t rt− r t ′ ,

where

• rsj is the rank of xsj taken over x1j, x2j, ...xmx,j, as computed by tiedrank.
• rtj is the rank of ytj taken over y1j, y2j, ...ymy,j, as computed by tiedrank.
• rs and rt are the coordinate-wise rank vectors of xs and yt, that is, rs = (rs1, rs2, ... rsn) and rt

= (rt1, rt2, ... rtn).
• r s = 1

n∑j rs j = n + 1
2 .

• r t = 1
n∑j rt j = n + 1

2 .

• Distance metrics for categorical variables

• Hamming distance

dst = ( # (xs j ≠ yt j)/n) .
• Jaccard distance

dst =
# xs j ≠ yt j ∩ xs j ≠ 0 ∪ yt j ≠ 0

# xs j ≠ 0 ∪ yt j ≠ 0
.
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• Distance metrics for a mix of continuous (numeric) and categorical variables

• Modified Goodall distance

This distance is a variant of the Goodall distance, which assigns a small distance if the
matching values are infrequent regardless of the frequencies of the other values. For
mismatches, the distance contribution of the predictor is 1/(number of variables).

• Occurrence frequency distance

For a match, the occurrence frequency distance assigns zero distance. For a mismatch, the
occurrence frequency distance assigns a higher distance on a less frequent value and a lower
distance on a more frequent value.

Similarity Graph

A similarity graph models the local neighborhood relationships between observations in the predictor
data, both labeled and unlabeled, as an undirected graph. The nodes in the graph represent
observations, and the edges, which are directionless, represent the connections between the
observations.

If the pairwise distance Disti,j between any two nodes i and j is positive (or larger than a certain
threshold), then the similarity graph connects the two nodes using an edge. The edge between the

two nodes is weighted by the pairwise similarity Si,j, where Si, j = exp −
Disti, j

σ
2

, for a specified

kernel scale σ value.

fitsemigraph supports these two methods of constructing a similarity graph:

• Nearest neighbor method (if SimilarityGraph is 'knn' (default)): fitsemigraph connects
observations in the predictor data, both labeled and unlabeled, that are nearest neighbors.

• Use the 'NumNeighbors' name-value pair argument to specify the number of nearest
neighbors.

• Use the 'KNNGraphType' name-value pair argument to specify whether to make a
'complete' or 'mutual' connection of points.

• Radius search method (if SimilarityGraph is 'epsilon'): fitsemigraph connects
observations whose pairwise distances are smaller than the specified search radius. You must
specify the search radius for nearest neighbors used to construct the similarity graph by using the
'Radius' name-value pair argument.

Similarity Matrix

A similarity matrix is a matrix representation of a similarity graph on page 35-2407. The n-by-n
matrix S = (Si, j)i, j = 1, …, n contains pairwise similarity values between connected nodes in the
similarity graph. The similarity matrix of a graph is also called an adjacency matrix.

The similarity matrix is symmetric because the edges of the similarity graph are directionless. A value
of Si,j = 0 means that nodes i and j of the similarity graph are not connected.
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Algorithms
The software constructs a similarity graph (SimilarityGraph) with both labeled and unlabeled
observations as nodes, and distributes label information from labeled observations to unlabeled
observations by using either label propagation or label spreading.

Label Propagation

To propagate labels across the nodes in the similarity graph, the iterative label propagation algorithm
(where Method is 'labelpropagation') follows these steps:

1 Initialize an n-by-K matrix F(0), where n is the number of nodes (or observations) and K is the
number of classes.

• The first l rows correspond to labeled observations. Each row contains a 1 in the column
corresponding to the true class label for that observation, and a 0 in every other column.

• The last u rows correspond to the unlabeled observations, and contain a 0 in all columns.
2 At iteration t (starting with t = 1), update the F matrix by using the probabilistic transition matrix

P, so that F(t) = PF(t − 1), where Pi, j =
Si, j

∑
k = 1

n
Si, k

.

• Pi,j is the probability of transmitting label information from node i to node j.
• Si,j is the weight of the edge between node i and node j. For the definition of Si,j, see

“Similarity Graph” on page 35-2407.
3 To complete iteration t, clamp the labels for the labeled observations. That is, keep the first l

rows of F(t) equal to their initial values in F(0).
4 Repeat the second and third steps until the F values converge. You can use the IterationLimit

and Tolerance values to control the convergence.

The final F matrix corresponds to the scores for the labeled data and the unlabeled data
(LabelScores). For each observation, or row in F, the column with the maximum score
corresponds to the fitted class label (FittedLabels).

For more details, see [2].

Instead of using an iterative label propagation algorithm, you can use an exact method for label
propagation (where Method is 'labelpropagationexact'). In this case, the u-by-K matrix of label
information for the unlabeled data is FU = (I – PUU)-1PULFL where:

• I is the identity matrix.
•

PUU and PUL are the labeled (L) and unlabeled (U) submatrices of P such that P =
PLL PLU
PUL PUU

.

• FL is the l-by-K matrix of label information for the labeled data. Each row contains a 1 in the
column corresponding to the true class label for that observation, and a 0 in every other column.

The FU matrix corresponds to the scores for the unlabeled data (LabelScores). For each
observation, or row in FU, the column with the maximum score corresponds to the fitted class label
(FittedLabels). For more details, see [3].
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Label Spreading

To spread labels across the nodes in the similarity graph, the iterative spreading propagation
algorithm (where Method is 'labelspreading') follows these steps:

1 Create an n-by-K matrix Y, where n is the number of nodes (or observations) and K is the number
of classes.

• The first l rows correspond to labeled observations. Each row contains a 1 in the column
corresponding to the true class label for that observation, and a 0 in every other column.

• The last u rows correspond to the unlabeled observations, and contain a 0 in all columns.
2 Create a matrix A that is a normalized version of the n-by-n similarity matrix on page 35-2407 S,

with pairwise similarity values Si,j as defined in “Similarity Graph” on page 35-2407. Let A =

D-1/2SD-1/2, where D is the n-by-n diagonal matrix D =

∑
j = 1

n
S1, n ⋯ 0

⋮ ⋱ ⋮

0 … ∑
j = 1

n
Sn, n

.

3 At iteration t (starting with t = 1), update the F matrix by using the matrix A and the neighboring
label weight parameter α (Alpha), so that F(t) = αAF(t – 1) + (1 – α)Y. Let F(0) equal Y.

4 Repeat the third step until the F values converge. You can use the IterationLimit and
Tolerance values to control the convergence.

5 Take the limit of the sequence F(t) t = 1, .., T. This final matrix corresponds to the scores for the
labeled data and the unlabeled data (LabelScores). For each observation, or row in the matrix,
the column with the maximum score corresponds to the fitted class label (FittedLabels).

Instead of using an iterative label spreading algorithm, you can use an exact method for label
spreading (where Method is 'labelspreadingexact'). In this case, the n-by-K matrix of label
information for the labeled and unlabeled data is F = (I – αA)-1Y, where I is the identity matrix. The F
matrix corresponds to the scores for the labeled data and the unlabeled data (LabelScores). For
each observation, or row in F, the column with the maximum score corresponds to the fitted class
label (FittedLabels).

For more details, see [1].

Version History
Introduced in R2020b
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See Also
SemiSupervisedGraphModel | predict | fitsemiself

Topics
“Label Data Using Semi-Supervised Learning Techniques” on page 19-279
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fitsemiself
Label data using semi-supervised self-training method

Syntax
Mdl = fitsemiself(Tbl,ResponseVarName,UnlabeledTbl)
Mdl = fitsemiself(Tbl,formula,UnlabeledTbl)
Mdl = fitsemiself(Tbl,Y,UnlabeledTbl)

Mdl = fitsemiself(X,Y,UnlabeledX)

Mdl = fitsemiself( ___ ,Name,Value)

Description
fitsemiself creates a semi-supervised self-training model given labeled data, labels, and unlabeled
data. The returned model contains the fitted labels for the unlabeled data and the corresponding
scores. This model can also predict labels for unseen data using the predict object function. For
more information on the labeling algorithm, see “Algorithms” on page 35-2422.

Mdl = fitsemiself(Tbl,ResponseVarName,UnlabeledTbl) uses the labeled data in Tbl,
where Tbl.ResponseVarName contains the labels for the labeled data, and returns fitted labels for
the unlabeled data in UnlabeledTbl. The function stores the fitted labels and the corresponding
scores in the FittedLabels and LabelScores properties of the object Mdl, respectively.

Mdl = fitsemiself(Tbl,formula,UnlabeledTbl) uses formula to specify the response
variable (vector of labels) and the predictor variables to use among the variables in Tbl. The function
uses these variables to label the data in UnlabeledTbl.

Mdl = fitsemiself(Tbl,Y,UnlabeledTbl) uses the predictor data in Tbl and the labels in Y to
label the data in UnlabeledTbl.

Mdl = fitsemiself(X,Y,UnlabeledX) uses the predictor data in X and the labels in Y to label
the data in UnlabeledX.

Mdl = fitsemiself( ___ ,Name,Value) specifies options using one or more name-value pair
arguments in addition to any of the input argument combinations in previous syntaxes. For example,
you can specify the type of learner, number of iterations, and score threshold to use in the labeling
algorithm.

Examples

Fit Labels to Unlabeled Data

Fit labels to unlabeled data by using a semi-supervised self-training method.

Randomly generate 60 observations of labeled data, with 20 observations in each of three classes.

rng('default') % For reproducibility
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labeledX = [randn(20,2)*0.25 + ones(20,2);
            randn(20,2)*0.25 - ones(20,2);
            randn(20,2)*0.5];
Y = [ones(20,1); ones(20,1)*2; ones(20,1)*3];

Visualize the labeled data by using a scatter plot. Observations in the same class have the same color.
Notice that the data is split into three clusters with very little overlap.

scatter(labeledX(:,1),labeledX(:,2),[],Y,'filled')
title('Labeled Data')

Randomly generate 300 additional observations of unlabeled data, with 100 observations per class.
For the purposes of validation, keep track of the true labels for the unlabeled data.

unlabeledX = [randn(100,2)*0.25 + ones(100,2);
              randn(100,2)*0.25 - ones(100,2);
              randn(100,2)*0.5];
trueLabels = [ones(100,1); ones(100,1)*2; ones(100,1)*3];

Fit labels to the unlabeled data by using a semi-supervised self-training method. The function
fitsemiself returns a SemiSupervisedSelfTrainingModel object whose FittedLabels
property contains the fitted labels for the unlabeled data and whose LabelScores property contains
the associated label scores.

Mdl = fitsemiself(labeledX,Y,unlabeledX)

Mdl = 
  SemiSupervisedSelfTrainingModel with properties:
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             FittedLabels: [300x1 double]
              LabelScores: [300x3 double]
               ClassNames: [1 2 3]
             ResponseName: 'Y'
    CategoricalPredictors: []
                  Learner: [1x1 classreg.learning.classif.CompactClassificationECOC]

  Properties, Methods

Visualize the fitted label results by using a scatter plot. Use the fitted labels to set the color of the
observations, and use the maximum label scores to set the transparency of the observations.
Observations with less transparency are labeled with greater confidence. Notice that observations
that lie closer to the cluster boundaries are labeled with more uncertainty.

maxLabelScores = max(Mdl.LabelScores,[],2);
rescaledScores = rescale(maxLabelScores,0.05,0.95);
scatter(unlabeledX(:,1),unlabeledX(:,2),[],Mdl.FittedLabels,'filled', ...
    'MarkerFaceAlpha','flat','AlphaData',rescaledScores);
title('Fitted Labels for Unlabeled Data')

Determine the accuracy of the labeling by using the true labels for the unlabeled data.

numWrongLabels = sum(trueLabels ~= Mdl.FittedLabels)
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numWrongLabels = 7

Only 8 of the 300 observations in unlabeledX are mislabeled.

Specify Learner Used to Fit Labels

Fit labels to unlabeled data by using a semi-supervised self-training method. Specify the type of
learner used to fit the labels.

Load the carsmall data set. Create a table from the variables Acceleration, Displacement, and
so on. For each observation, or row in the table, treat the Cylinders value as the label for that
observation.

load carsmall
Tbl = table(Acceleration,Displacement,Horsepower,Weight,Cylinders);

Suppose only 20% of the observations are labeled. To recreate this scenario, randomly sample 20
labeled observations and store them in the table unlabeledTbl. Remove the label from the rest of
the observations and store them in the table unlabeledTbl. To verify the accuracy of the label
fitting at the end of the example, retain the true labels for the unlabeled data in the variable
trueLabels.

rng('default') % For reproducibility of the sampling
[labeledTbl,Idx] = datasample(Tbl,20,'Replace',false);

unlabeledTbl = Tbl;
unlabeledTbl(Idx,:) = [];
trueLabels = unlabeledTbl.Cylinders;
unlabeledTbl.Cylinders = [];

Fit labels to the unlabeled data by using a semi-supervised self-training method. Use a multiclass
SVM (ECOC) model to iteratively label the unlabeled observations. Specify to standardize the
numeric predictors and use a linear kernel function for the SVM binary learners. The function
fitsemiself returns an object whose FittedLabels property contains the fitted labels for the
unlabeled data.

Mdl = fitsemiself(labeledTbl,'Cylinders',unlabeledTbl, ...
    'Learner',templateECOC('Learner',templateSVM('Standardize',true, ...
    'KernelFunction','linear')));
fittedLabels = Mdl.FittedLabels;

Identify the observations that are incorrectly labeled by comparing the stored true labels for the
unlabeled data to the fitted labels returned by the semi-supervised self-training method.

wrongIdx = (trueLabels ~= fittedLabels);
wrongTbl = unlabeledTbl(wrongIdx,:);

Visualize the fitted label results for the unlabeled data. Mislabeled observations are circled in the
plot.

gscatter(unlabeledTbl.Displacement,unlabeledTbl.Weight, ...
    fittedLabels)
hold on
plot(wrongTbl.Displacement,wrongTbl.Weight, ...
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    'ko','MarkerSize',8)
xlabel('Displacement')
ylabel('Weight')
legend('4 cylinders','6 cylinders','8 cylinders')
title('Fitted Labels for Unlabeled Data')
hold off

Input Arguments
Tbl — Labeled sample data
table

Labeled sample data, specified as a table. Each row of Tbl corresponds to one observation, and each
column corresponds to one predictor. Optionally, Tbl can contain one additional column for the
response variable (vector of labels). Multicolumn variables and cell arrays other than cell arrays of
character vectors are not supported.

If Tbl contains the response variable, and you want to use all remaining variables in Tbl as
predictors, then specify the response variable using ResponseVarName.

If Tbl contains the response variable, and you want to use only a subset of the remaining variables in
Tbl as predictors, specify a formula using formula.

If Tbl does not contain the response variable, specify a response variable using Y. The length of the
response variable and the number of rows in Tbl must be equal.
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Data Types: table

UnlabeledTbl — Unlabeled sample data
table

Unlabeled sample data, specified as a table. Each row of UnlabeledTbl corresponds to one
observation, and each column corresponds to one predictor. UnlabeledTbl must contain the same
predictors as those contained in Tbl.
Data Types: table

ResponseVarName — Response variable name
name of variable in Tbl

Response variable name, specified as the name of a variable in Tbl. The response variable contains
the class labels for the sample data in Tbl.

You must specify ResponseVarName as a character vector or string scalar. For example, if the
response variable Y is stored as Tbl.Y, then specify it as 'Y'. Otherwise, the software treats all
columns of Tbl, including Y, as predictors.

The response variable must be a categorical, character, or string array, a logical or numeric vector, or
a cell array of character vectors. If Y is a character array, then each element of the response variable
must correspond to one row of the array.

A good practice is to specify the order of the classes by using the ClassNames name-value pair
argument.
Data Types: char | string

formula — Explanatory model of response variable and subset of predictor variables
character vector | string scalar

Explanatory model of the response variable and a subset of the predictor variables, specified as a
character vector or string scalar in the form 'Y~X1+X2+X3'. In this form, Y represents the response
variable, and X1, X2, and X3 represent the predictor variables.

To specify a subset of variables in Tbl as predictors, use a formula. If you specify a formula, then the
software does not use any variables in Tbl that do not appear in formula.

The variable names in the formula must be both variable names in Tbl
(Tbl.Properties.VariableNames) and valid MATLAB identifiers. You can verify the variable
names in Tbl by using the isvarname function. If the variable names are not valid, then you can
convert them by using the matlab.lang.makeValidName function.
Data Types: char | string

Y — Class labels
numeric vector | categorical vector | logical vector | character array | string array | cell array of
character vectors

Class labels, specified as a numeric, categorical, or logical vector, a character or string array, or a cell
array of character vectors.

• If Y is a character array, then each element of the class labels must correspond to one row of the
array.
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• The length of Y must be equal to the number of rows in Tbl or X.
• A good practice is to specify the class order by using the ClassNames name-value pair argument.

Data Types: single | double | categorical | logical | char | string | cell

X — Labeled predictor data
numeric matrix

Labeled predictor data, specified as a numeric matrix.

By default, each row of X corresponds to one observation, and each column corresponds to one
predictor.

The length of Y and the number of observations in X must be equal.

To specify the names of the predictors in the order of their appearance in X, use the
PredictorNames name-value pair argument.
Data Types: single | double

UnlabeledX — Unlabeled predictor data
numeric matrix

Unlabeled predictor data, specified as a numeric matrix. By default, each row of UnlabeledX
corresponds to one observation, and each column corresponds to one predictor. UnlabeledX must
have the same predictors as X, in the same order.
Data Types: single | double

Note The software treats NaN, empty character vector (''), empty string (""), <missing>, and
<undefined> elements as missing data. Whether the software removes observations with missing
values depends on the underlying classifier type (Learner).

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example:
fitsemiself(Tbl,'Y',UnlabeledTbl,'Learner',templateSVM('Standardize',true),'I
terationLimit',2e3) specifies to use a binary support vector machine (SVM) learner, standardize
the numeric predictors, and run a maximum of 2000 iterations.

Learner — Underlying classifier type
'svm' | 'discriminant' | 'kernel' | 'knn' | 'linear' | 'naivebayes' | 'tree' | ...

Underlying classifier type, specified as the comma-separated pair consisting of 'Learner' and one
of the values in this table.
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Value Description
'discriminant' or templateDiscriminant
object

Discriminant analysis classifier

templateECOC object Multiclass error-correcting output codes (ECOC)
model —
templateECOC('Learners',templateSVM('K
ernelFunction','gaussian')) is the default
for multiclass classification.

templateEnsemble object Ensemble classification model
'kernel' or templateKernel object Kernel classification model (for binary

classification only)
'knn' or templateKNN object k-nearest neighbor model
'linear' or templateLinear object Linear classification model (for binary

classification only)
'svm' or templateSVM object Support vector machine (SVM) classifier (for

binary classification only) —
templateSVM('KernelFunction','gaussian
') is the default for binary classification.

'tree' or templateTree object Binary decision classification tree

Example: 'Learner','tree'
Example: 'Learner',templateEnsemble('AdaBoostM1',100,'tree')

IterationLimit — Maximum number of self-training iterations
1e3 (default) | positive integer scalar

Maximum number of self-training iterations, specified as the comma-separated pair consisting of
'IterationLimit' and a positive integer scalar. The fitsemiself function returns Mdl, which
contains the fitted labels and scores, when this limit is reached, even if the algorithm does not
converge.
Example: 'IterationLimit',2e3
Data Types: single | double

ScoreThreshold — Score threshold for fitted labels
numeric scalar

Score threshold for fitted labels, specified as the comma-separated pair consisting of
'ScoreThreshold' and a numeric scalar. At each iteration of the algorithm, the software makes
label predictions for the unlabeled observations by using the specified Learner, and calculates
scores for these predictions. Unlabeled observations with prediction scores greater than or equal to
the score threshold are treated as labeled observations in the next iteration, where the label is the
predicted label. By default, ScoreThreshold is 0.1 for binary classification and –0.1 for multiclass
classification.
Example: 'ScoreThreshold',0.2
Data Types: single | double
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CategoricalPredictors — Categorical predictors list
vector of positive integers | logical vector | character matrix | string array | cell array of character
vectors | 'all'

Categorical predictors list, specified as one of the values in this table. The descriptions assume that
the predictor data has observations in rows and predictors in columns.

Value Description
Vector of positive
integers

Each entry in the vector is an index value indicating that the corresponding
predictor is categorical. The index values are between 1 and p, where p is
the number of predictors used to train the model.

If fitsemiself uses a subset of input variables as predictors, then the
function indexes the predictors using only the subset. The
CategoricalPredictors values do not count the response variable,
observation weights variable, or any other variables that the function does
not use.

Logical vector A true entry means that the corresponding predictor is categorical. The
length of the vector is p.

Character matrix Each row of the matrix is the name of a predictor variable. The names must
match the entries in PredictorNames. Pad the names with extra blanks
so each row of the character matrix has the same length.

String array or cell
array of character
vectors

Each element in the array is the name of a predictor variable. The names
must match the entries in PredictorNames.

"all" All predictors are categorical.

By default, if the predictor data is in a table, fitsemiself assumes that a variable is categorical if it
is a logical vector, categorical vector, character array, string array, or cell array of character vectors.
However, learners that use decision trees assume that mathematically ordered categorical vectors
are continuous variables. If the predictor data is a matrix, fitsemiself assumes that all predictors
are continuous. To identify any other predictors as categorical predictors, specify them by using the
'CategoricalPredictors' name-value pair argument.

For more information on how different fitting functions and, therefore, different learners treat
categorical predictors, see “Automatic Creation of Dummy Variables” on page 2-50.
Example: 'CategoricalPredictors','all'
Data Types: single | double | logical | char | string | cell

ClassNames — Names of classes to use for labeling
categorical array | character array | string array | logical vector | numeric vector | cell array of
character vectors

Names of the classes to use for labeling, specified as the comma-separated pair consisting of
'ClassNames' and a categorical, character, or string array, a logical or numeric vector, or a cell
array of character vectors. ClassNames must have the same data type as Y.

If ClassNames is a character array, then each element must correspond to one row of the array.

Use 'ClassNames' to:
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• Order the classes.
• Specify the order of any input or output argument dimension that corresponds to the class order.

For example, use 'ClassNames' to specify the column order of classification scores in
Mdl.LabelScores.

• Select a subset of classes for labeling. For example, suppose that the set of all distinct class names
in Y is {'a','b','c'}. To train the underlying classifier Learner using observations from
classes 'a' and 'c' only, specify 'ClassNames',{'a','c'}.

The default value for ClassNames is the set of all distinct class names in Y.
Example: 'ClassNames',{'b','g'}
Data Types: categorical | char | string | logical | single | double | cell

PredictorNames — Predictor variable names
string array of unique names | cell array of unique character vectors

Predictor variable names, specified as the comma-separated pair consisting of 'PredictorNames'
and a string array of unique names or cell array of unique character vectors. The functionality of
'PredictorNames' depends on the way you supply predictor data.

• If you supply X, Y, and UnlabeledX, then you can use 'PredictorNames' to assign names to
the predictor variables in X and UnlabeledX.

• The order of the names in PredictorNames must correspond to the column order of X.
Assuming that X has the default orientation, with observations in rows and predictors in
columns, PredictorNames{1} is the name of X(:,1), PredictorNames{2} is the name of
X(:,2), and so on. Also, size(X,2) and numel(PredictorNames) must be equal.

• By default, PredictorNames is {'x1','x2',...}.
• If you supply Tbl and UnlabeledTbl, then you can use 'PredictorNames' to choose which

predictor variables to use. That is, fitsemiself uses only the predictor variables in
PredictorNames and the response variable to label the unlabeled data.

• PredictorNames must be a subset of Tbl.Properties.VariableNames and cannot include
the name of the response variable.

• By default, PredictorNames contains the names of all predictor variables.
• A good practice is to specify the predictors using either 'PredictorNames' or formula, but

not both.

Example: 'PredictorNames',
{'SepalLength','SepalWidth','PetalLength','PetalWidth'}

Data Types: string | cell

ResponseName — Response variable name
'Y' (default) | character vector | string scalar

Response variable name, specified as the comma-separated pair consisting of 'ResponseName' and
a character vector or string scalar.

• If you supply Y, then you can use 'ResponseName' to specify a name for the response variable.
• If you supply ResponseVarName or formula, then you cannot use 'ResponseName'.

Example: 'ResponseName','response'
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Data Types: char | string

NumBins — Number of bins for numeric predictors
[] (default) | positive integer scalar

Number of bins for the numeric predictors, specified as the comma-separated pair consisting of
'NumBins' and a positive integer scalar.

• If the 'NumBins' value is empty (default), then the software does not bin any predictors.
• If you specify the 'NumBins' value as a positive integer scalar, then the software bins every

numeric predictor into a specified number of equiprobable bins, and then grows trees on the bin
indices instead of the original data.

• If the 'NumBins' value exceeds the number (u) of unique values for a predictor, then
fitsemiself bins the predictor into u bins.

• fitsemiself does not bin categorical predictors.

When you use a large data set, this binning option speeds up classifier training, but causes a
potential decrease in accuracy. You can try 'NumBins',50 first, and then change the 'NumBins'
value depending on the accuracy and training speed.

Note This argument is valid only when the Learner value is a templateECOC or
templateEnsemble object that uses tree learners.

Example: 'NumBins',50
Data Types: single | double

ObservationsIn — Observation dimension for predictor data X and UnlabeledX
'rows' (default) | 'columns'

Observation dimension for the predictor data X and UnlabeledX, specified as the comma-separated
pair consisting of 'ObservationsIn' and 'rows' or 'columns'. For linear classification models, if
you orient X and UnlabeledX so that observations correspond to columns and specify
'ObservationsIn','columns', then you can experience a reduction in execution time.

Note The 'columns' value is valid only when the Learner value is a binary linear classification
model ('linear' or templateLinear) or an ECOC model with linear binary learners (for example,
templateECOC('Learners','linear').

Example: 'ObservationsIn','columns'
Data Types: char | string

Output Arguments
Mdl — Semi-supervised self-training classifier
SemiSupervisedSelfTrainingModel object

Semi-supervised self-training classifier, returned as a SemiSupervisedSelfTrainingModel object.
Use dot notation to access the object properties. For example, to get the fitted labels for the
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unlabeled data and their corresponding scores, enter Mdl.FittedLabels and Mdl.LabelScores,
respectively.

Algorithms
The algorithm begins by training a user-specified classifier (Learner), first trained on the labeled
data alone, and then uses that classifier to make label predictions for the unlabeled data. Next, the
algorithm provides scores for the predictions, and then treats the predictions as true labels for the
next training cycle of the classifier if the scores are above a threshold (ScoreThreshold). This
process repeats until the label predictions converge or the iteration limit (IterationLimit) is
reached.

Version History
Introduced in R2020b

References
[1] Abney, Steven. “Understanding the Yarowsky Algorithm.” Computational Linguistics 30, no. 3

(September 2004): 365–95. https://doi.org/10.1162/0891201041850876.

[2] Yarowsky, David. “Unsupervised Word Sense Disambiguation Rivaling Supervised Methods.”
Proceedings of the 33rd Annual Meeting of the Association for Computational Linguistics,
189–96. Cambridge, Massachusetts: Association for Computational Linguistics, 1995. https://
doi.org/10.3115/981658.981684.

See Also
SemiSupervisedSelfTrainingModel | predict | templateDiscriminant | templateECOC |
templateEnsemble | templateKernel | templateKNN | templateLinear | templateSVM |
templateTree | fitsemigraph

Topics
“Label Data Using Semi-Supervised Learning Techniques” on page 19-279
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fitrauto
Automatically select regression model with optimized hyperparameters

Syntax
Mdl = fitrauto(Tbl,ResponseVarName)
Mdl = fitrauto(Tbl,formula)
Mdl = fitrauto(Tbl,Y)

Mdl = fitrauto(X,Y)

Mdl = fitrauto( ___ ,Name,Value)
[Mdl,OptimizationResults] = fitrauto( ___ )

Description
Given predictor and response data, fitrauto automatically tries a selection of regression model
types with different hyperparameter values. By default, the function uses Bayesian optimization to
select models and their hyperparameter values, and computes the following for each model:
log(1 + valLoss), where valLoss is the cross-validation mean squared error (MSE). After the
optimization is complete, fitrauto returns the model, trained on the entire data set, that is
expected to best predict the responses for new data. You can use the predict and loss object
functions of the returned model to predict on new data and compute the test set MSE, respectively.

Use fitrauto when you are uncertain which model types best suit your data. For information on
alternative methods for tuning hyperparameters of regression models, see “Alternative Functionality”
on page 35-2461.

If your data contains over 10,000 observations, consider using an asynchronous successive halving
algorithm (ASHA) instead of Bayesian optimization when you run fitrauto. ASHA optimization often
finds good solutions faster than Bayesian optimization for data sets with many observations.

Mdl = fitrauto(Tbl,ResponseVarName) returns a regression model Mdl with tuned
hyperparameters. The table Tbl contains the predictor variables and the response variable, where
ResponseVarName is the name of the response variable.

Mdl = fitrauto(Tbl,formula) uses formula to specify the response variable and the predictor
variables to consider among the variables in Tbl.

Mdl = fitrauto(Tbl,Y) uses the predictor variables in table Tbl and the response values in
vector Y.

Mdl = fitrauto(X,Y) uses the predictor variables in matrix X and the response values in vector Y.

Mdl = fitrauto( ___ ,Name,Value) specifies options using one or more name-value arguments
in addition to any of the input argument combinations in previous syntaxes. For example, use the
HyperparameterOptimizationOptions name-value argument to specify whether to use Bayesian
optimization (default) or an asynchronous successive halving algorithm (ASHA). To use ASHA
optimization, specify
"HyperparameterOptimizationOptions",struct("Optimizer","asha"). You can include
additional fields in the structure to control other aspects of the optimization.
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[Mdl,OptimizationResults] = fitrauto( ___ ) also returns OptimizationResults, which
contains the results of the model selection and hyperparameter tuning process. This output is a
BayesianOptimization object when you use Bayesian optimization, and a table when you use
ASHA optimization.

Examples

Automatically Select Regression Model Using Table Data

Use fitrauto to automatically select a regression model with optimized hyperparameters, given
predictor and response data stored in a table.

Load Data

Load the carbig data set, which contains measurements of cars made in the 1970s and early 1980s.

load carbig

Create a table containing the predictor variables Acceleration, Displacement, and so on, as well
as the response variable MPG.

cars = table(Acceleration,Displacement,Horsepower, ...
    Model_Year,Origin,Weight,MPG);

Remove rows of cars where the table has missing values.

cars = rmmissing(cars);

Categorize the cars based on whether they were made in the USA.

cars.Origin = categorical(cellstr(cars.Origin));
cars.Origin = mergecats(cars.Origin,["France","Japan",...
    "Germany","Sweden","Italy","England"],"NotUSA");

Partition Data

Partition the data into training and test sets. Use approximately 80% of the observations for the
model selection and hyperparameter tuning process, and 20% of the observations to test the
performance of the final model returned by fitrauto. Use cvpartition to partition the data.

rng("default") % For reproducibility of the data partition
c = cvpartition(height(cars),"Holdout",0.2);
trainingIdx = training(c); % Training set indices
carsTrain = cars(trainingIdx,:);
testIdx = test(c); % Test set indices
carsTest = cars(testIdx,:);

Run fitrauto

Pass the training data to fitrauto. By default, fitrauto determines appropriate model types to try,
uses Bayesian optimization to find good hyperparameter values, and returns a trained model Mdl
with the best expected performance. Additionally, fitrauto provides a plot of the optimization and
an iterative display of the optimization results. For more information on how to interpret these
results, see “Verbose Display” on page 35-2456.
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Expect this process to take some time. To speed up the optimization process, consider running the
optimization in parallel, if you have a Parallel Computing Toolbox™ license. To do so, pass
"HyperparameterOptimizationOptions",struct("UseParallel",true) to fitrauto as a
name-value argument.

Mdl = fitrauto(carsTrain,"MPG");

Learner types to explore: ensemble, svm, tree
Total iterations (MaxObjectiveEvaluations): 90
Total time (MaxTime): Inf

|================================================================================================================================================|
| Iter | Eval   | log(1+valLoss)| Time for training | Observed min    | Estimated min   | Learner      | Hyperparameter:                 Value   |
|      | result |               | & validation (sec)| validation loss | validation loss |              |                                         |
|================================================================================================================================================|
|    1 | Best   |        3.3416 |            1.2897 |          3.3416 |          3.3416 |         tree | MinLeafSize:                        118 |
|    2 | Accept |        4.1303 |           0.62208 |          3.3416 |          3.3416 |          svm | BoxConstraint:                   16.579 |
|      |        |               |                   |                 |                 |              | KernelScale:                  0.0045538 |
|      |        |               |                   |                 |                 |              | Epsilon:                         657.79 |
|    3 | Best   |        2.5197 |           0.18007 |          2.5197 |          2.6121 |         tree | MinLeafSize:                          2 |
|    4 | Best   |        2.3335 |             5.719 |          2.3335 |          2.3335 |     ensemble | Method:                             Bag |
|      |        |               |                   |                 |                 |              | NumLearningCycles:                  291 |
|      |        |               |                   |                 |                 |              | MinLeafSize:                          9 |
|    5 | Accept |        2.3398 |            3.7552 |          2.3335 |          2.3366 |     ensemble | Method:                             Bag |
|      |        |               |                   |                 |                 |              | NumLearningCycles:                  206 |
|      |        |               |                   |                 |                 |              | MinLeafSize:                         13 |
|    6 | Best   |         2.204 |            5.1042 |           2.204 |          2.2049 |     ensemble | Method:                         LSBoost |
|      |        |               |                   |                 |                 |              | NumLearningCycles:                  256 |
|      |        |               |                   |                 |                 |              | MinLeafSize:                         12 |
|    7 | Accept |        4.1303 |          0.098853 |           2.204 |          2.2049 |          svm | BoxConstraint:                0.0048178 |
|      |        |               |                   |                 |                 |              | KernelScale:                   0.011576 |
|      |        |               |                   |                 |                 |              | Epsilon:                         441.39 |
|    8 | Accept |        2.4787 |          0.074041 |           2.204 |          2.2049 |         tree | MinLeafSize:                          9 |
|    9 | Accept |        4.1303 |          0.070297 |           2.204 |          2.2049 |          svm | BoxConstraint:                    8.581 |
|      |        |               |                   |                 |                 |              | KernelScale:                     61.095 |
|      |        |               |                   |                 |                 |              | Epsilon:                         296.69 |
|   10 | Accept |        4.1303 |          0.053978 |           2.204 |          2.2049 |          svm | BoxConstraint:                   140.96 |
|      |        |               |                   |                 |                 |              | KernelScale:                   0.012197 |
|      |        |               |                   |                 |                 |              | Epsilon:                         69.002 |
|   11 | Accept |        2.9157 |          0.045178 |           2.204 |          2.2049 |         tree | MinLeafSize:                         32 |
|   12 | Accept |        3.2199 |          0.050483 |           2.204 |          2.2049 |         tree | MinLeafSize:                         64 |
|   13 | Accept |        2.4157 |          0.048328 |           2.204 |          2.2049 |         tree | MinLeafSize:                          4 |
|   14 | Accept |        4.1303 |          0.076781 |           2.204 |          2.2049 |          svm | BoxConstraint:                   1.3859 |
|      |        |               |                   |                 |                 |              | KernelScale:                     71.061 |
|      |        |               |                   |                 |                 |              | Epsilon:                         181.44 |
|   15 | Accept |        3.4156 |          0.037288 |           2.204 |          2.2049 |         tree | MinLeafSize:                        102 |
|   16 | Accept |        2.5197 |          0.054567 |           2.204 |          2.2049 |         tree | MinLeafSize:                          2 |
|   17 | Accept |        5.4306 |            31.526 |           2.204 |          2.2049 |          svm | BoxConstraint:                0.0018102 |
|      |        |               |                   |                 |                 |              | KernelScale:                   0.016815 |
|      |        |               |                   |                 |                 |              | Epsilon:                         8.1687 |
|   18 | Accept |        3.1121 |             4.403 |           2.204 |          2.2042 |     ensemble | Method:                             Bag |
|      |        |               |                   |                 |                 |              | NumLearningCycles:                  288 |
|      |        |               |                   |                 |                 |              | MinLeafSize:                        106 |
|   19 | Best   |        2.1971 |            4.0613 |          2.1971 |          2.1972 |     ensemble | Method:                         LSBoost |
|      |        |               |                   |                 |                 |              | NumLearningCycles:                  227 |
|      |        |               |                   |                 |                 |              | MinLeafSize:                          2 |
|   20 | Best   |        2.1971 |             3.985 |          2.1971 |          2.1972 |     ensemble | Method:                         LSBoost |
|      |        |               |                   |                 |                 |              | NumLearningCycles:                  223 |
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|      |        |               |                   |                 |                 |              | MinLeafSize:                          2 |
|================================================================================================================================================|
| Iter | Eval   | log(1+valLoss)| Time for training | Observed min    | Estimated min   | Learner      | Hyperparameter:                 Value   |
|      | result |               | & validation (sec)| validation loss | validation loss |              |                                         |
|================================================================================================================================================|
|   21 | Accept |        2.2314 |             4.723 |          2.1971 |          2.1972 |     ensemble | Method:                         LSBoost |
|      |        |               |                   |                 |                 |              | NumLearningCycles:                  262 |
|      |        |               |                   |                 |                 |              | MinLeafSize:                          5 |
|   22 | Accept |        2.5925 |            4.6352 |          2.1971 |          2.1972 |     ensemble | Method:                             Bag |
|      |        |               |                   |                 |                 |              | NumLearningCycles:                  283 |
|      |        |               |                   |                 |                 |              | MinLeafSize:                         39 |
|   23 | Accept |        2.1971 |            5.0225 |          2.1971 |          2.1972 |     ensemble | Method:                         LSBoost |
|      |        |               |                   |                 |                 |              | NumLearningCycles:                  285 |
|      |        |               |                   |                 |                 |              | MinLeafSize:                          2 |
|   24 | Accept |        2.3345 |            2.9953 |          2.1971 |          2.1972 |          svm | BoxConstraint:                   2.2648 |
|      |        |               |                   |                 |                 |              | KernelScale:                    0.92531 |
|      |        |               |                   |                 |                 |              | Epsilon:                        0.51865 |
|   25 | Accept |        2.9882 |             3.887 |          2.1971 |          2.1971 |     ensemble | Method:                             Bag |
|      |        |               |                   |                 |                 |              | NumLearningCycles:                  247 |
|      |        |               |                   |                 |                 |              | MinLeafSize:                         73 |
|   26 | Accept |        2.3583 |            4.2468 |          2.1971 |          2.1971 |     ensemble | Method:                             Bag |
|      |        |               |                   |                 |                 |              | NumLearningCycles:                  255 |
|      |        |               |                   |                 |                 |              | MinLeafSize:                         12 |
|   27 | Accept |        2.6476 |          0.042392 |          2.1971 |          2.1971 |         tree | MinLeafSize:                         28 |
|   28 | Accept |        2.4016 |          0.044492 |          2.1971 |          2.1971 |         tree | MinLeafSize:                          6 |
|   29 | Accept |        3.7573 |          0.065073 |          2.1971 |          2.1971 |          svm | BoxConstraint:                   9.4057 |
|      |        |               |                   |                 |                 |              | KernelScale:                     100.66 |
|      |        |               |                   |                 |                 |              | Epsilon:                        0.24447 |
|   30 | Accept |        2.6046 |          0.039155 |          2.1971 |          2.1971 |         tree | MinLeafSize:                         24 |
|   31 | Accept |        2.4157 |          0.045287 |          2.1971 |          2.1971 |         tree | MinLeafSize:                          4 |
|   32 | Accept |        4.1303 |          0.050301 |          2.1971 |          2.1971 |          svm | BoxConstraint:                   303.85 |
|      |        |               |                   |                 |                 |              | KernelScale:                  0.0083624 |
|      |        |               |                   |                 |                 |              | Epsilon:                          39.54 |
|   33 | Accept |         4.146 |          0.056571 |          2.1971 |          2.1971 |          svm | BoxConstraint:                  0.16546 |
|      |        |               |                   |                 |                 |              | KernelScale:                     248.79 |
|      |        |               |                   |                 |                 |              | Epsilon:                         1.1182 |
|   34 | Accept |        3.0466 |          0.038386 |          2.1971 |          2.1971 |         tree | MinLeafSize:                         46 |
|   35 | Accept |        2.3417 |            4.1224 |          2.1971 |          2.1971 |     ensemble | Method:                             Bag |
|      |        |               |                   |                 |                 |              | NumLearningCycles:                  246 |
|      |        |               |                   |                 |                 |              | MinLeafSize:                         12 |
|   36 | Accept |        2.7264 |             4.748 |          2.1971 |          2.1972 |     ensemble | Method:                         LSBoost |
|      |        |               |                   |                 |                 |              | NumLearningCycles:                  274 |
|      |        |               |                   |                 |                 |              | MinLeafSize:                        105 |
|   37 | Accept |        2.5457 |            4.1701 |          2.1971 |          2.1972 |     ensemble | Method:                             Bag |
|      |        |               |                   |                 |                 |              | NumLearningCycles:                  257 |
|      |        |               |                   |                 |                 |              | MinLeafSize:                         33 |
|   38 | Accept |        2.6603 |          0.055123 |          2.1971 |          2.1972 |         tree | MinLeafSize:                          1 |
|   39 | Accept |          2.36 |            5.3754 |          2.1971 |          2.1972 |          svm | BoxConstraint:                   56.509 |
|      |        |               |                   |                 |                 |              | KernelScale:                      1.509 |
|      |        |               |                   |                 |                 |              | Epsilon:                         0.5604 |
|   40 | Accept |        4.1303 |          0.048283 |          2.1971 |          2.1972 |          svm | BoxConstraint:                 0.001484 |
|      |        |               |                   |                 |                 |              | KernelScale:                  0.0032176 |
|      |        |               |                   |                 |                 |              | Epsilon:                         22.445 |
|================================================================================================================================================|
| Iter | Eval   | log(1+valLoss)| Time for training | Observed min    | Estimated min   | Learner      | Hyperparameter:                 Value   |
|      | result |               | & validation (sec)| validation loss | validation loss |              |                                         |
|================================================================================================================================================|
|   41 | Accept |        2.5507 |          0.040831 |          2.1971 |          2.1972 |         tree | MinLeafSize:                         15 |
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|   42 | Best   |        2.1945 |            5.1078 |          2.1945 |          2.1966 |     ensemble | Method:                         LSBoost |
|      |        |               |                   |                 |                 |              | NumLearningCycles:                  289 |
|      |        |               |                   |                 |                 |              | MinLeafSize:                          6 |
|   43 | Accept |        3.9873 |          0.056392 |          2.1945 |          2.1966 |          svm | BoxConstraint:                   31.423 |
|      |        |               |                   |                 |                 |              | KernelScale:                    0.16609 |
|      |        |               |                   |                 |                 |              | Epsilon:                         14.619 |
|   44 | Accept |        4.0639 |          0.058227 |          2.1945 |          2.1966 |          svm | BoxConstraint:                   42.958 |
|      |        |               |                   |                 |                 |              | KernelScale:                     459.03 |
|      |        |               |                   |                 |                 |              | Epsilon:                        0.98679 |
|   45 | Accept |        2.5389 |          0.055917 |          2.1945 |          2.1966 |          svm | BoxConstraint:                   32.844 |
|      |        |               |                   |                 |                 |              | KernelScale:                     24.244 |
|      |        |               |                   |                 |                 |              | Epsilon:                         2.8938 |
|   46 | Accept |        4.1222 |          0.055003 |          2.1945 |          2.1966 |          svm | BoxConstraint:                 0.001348 |
|      |        |               |                   |                 |                 |              | KernelScale:                     5.1158 |
|      |        |               |                   |                 |                 |              | Epsilon:                         2.4534 |
|   47 | Best   |        2.1533 |          0.074854 |          2.1533 |          2.1534 |          svm | BoxConstraint:                   161.96 |
|      |        |               |                   |                 |                 |              | KernelScale:                     7.1682 |
|      |        |               |                   |                 |                 |              | Epsilon:                         1.6972 |
|   48 | Best   |        2.1044 |          0.058537 |          2.1044 |          2.1045 |          svm | BoxConstraint:                   10.597 |
|      |        |               |                   |                 |                 |              | KernelScale:                     4.8052 |
|      |        |               |                   |                 |                 |              | Epsilon:                        0.68924 |
|   49 | Accept |        2.1323 |          0.063815 |          2.1044 |          2.1045 |          svm | BoxConstraint:                   12.625 |
|      |        |               |                   |                 |                 |              | KernelScale:                     3.7951 |
|      |        |               |                   |                 |                 |              | Epsilon:                         1.9243 |
|   50 | Accept |        2.1143 |           0.10138 |          2.1044 |          2.1042 |          svm | BoxConstraint:                   2.9811 |
|      |        |               |                   |                 |                 |              | KernelScale:                     2.2304 |
|      |        |               |                   |                 |                 |              | Epsilon:                        0.11742 |
|   51 | Accept |        2.1121 |          0.097271 |          2.1044 |          2.1044 |          svm | BoxConstraint:                   4.6122 |
|      |        |               |                   |                 |                 |              | KernelScale:                     2.5002 |
|      |        |               |                   |                 |                 |              | Epsilon:                        0.24122 |
|   52 | Accept |        2.3152 |            4.2279 |          2.1044 |          2.1044 |          svm | BoxConstraint:                   13.002 |
|      |        |               |                   |                 |                 |              | KernelScale:                     1.2194 |
|      |        |               |                   |                 |                 |              | Epsilon:                      0.0097793 |
|   53 | Accept |        2.1474 |           0.11001 |          2.1044 |          2.1041 |          svm | BoxConstraint:                   113.51 |
|      |        |               |                   |                 |                 |              | KernelScale:                      5.567 |
|      |        |               |                   |                 |                 |              | Epsilon:                       0.052251 |
|   54 | Accept |        2.1274 |          0.064355 |          2.1044 |          2.1045 |          svm | BoxConstraint:                    51.97 |
|      |        |               |                   |                 |                 |              | KernelScale:                     7.9449 |
|      |        |               |                   |                 |                 |              | Epsilon:                        0.31232 |
|   55 | Accept |        2.1313 |           0.10387 |          2.1044 |          2.1046 |          svm | BoxConstraint:                   17.469 |
|      |        |               |                   |                 |                 |              | KernelScale:                     3.3438 |
|      |        |               |                   |                 |                 |              | Epsilon:                       0.050142 |
|   56 | Accept |        2.2052 |            5.3754 |          2.1044 |          2.1046 |     ensemble | Method:                         LSBoost |
|      |        |               |                   |                 |                 |              | NumLearningCycles:                  299 |
|      |        |               |                   |                 |                 |              | MinLeafSize:                          1 |
|   57 | Accept |        2.1125 |          0.090322 |          2.1044 |          2.1047 |          svm | BoxConstraint:                   50.684 |
|      |        |               |                   |                 |                 |              | KernelScale:                      4.764 |
|      |        |               |                   |                 |                 |              | Epsilon:                        0.45053 |
|   58 | Accept |        2.3465 |            3.4461 |          2.1044 |          2.1047 |     ensemble | Method:                             Bag |
|      |        |               |                   |                 |                 |              | NumLearningCycles:                  201 |
|      |        |               |                   |                 |                 |              | MinLeafSize:                          1 |
|   59 | Accept |        2.1222 |           0.11319 |          2.1044 |           2.105 |          svm | BoxConstraint:                   859.14 |
|      |        |               |                   |                 |                 |              | KernelScale:                     12.367 |
|      |        |               |                   |                 |                 |              | Epsilon:                         0.2022 |
|   60 | Accept |        2.1461 |           0.19386 |          2.1044 |           2.105 |          svm | BoxConstraint:                   968.32 |
|      |        |               |                   |                 |                 |              | KernelScale:                     8.9428 |
|      |        |               |                   |                 |                 |              | Epsilon:                        0.01767 |
|================================================================================================================================================|
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| Iter | Eval   | log(1+valLoss)| Time for training | Observed min    | Estimated min   | Learner      | Hyperparameter:                 Value   |
|      | result |               | & validation (sec)| validation loss | validation loss |              |                                         |
|================================================================================================================================================|
|   61 | Accept |        2.1407 |           0.22769 |          2.1044 |          2.1051 |          svm | BoxConstraint:                   971.76 |
|      |        |               |                   |                 |                 |              | KernelScale:                     8.0121 |
|      |        |               |                   |                 |                 |              | Epsilon:                        0.27594 |
|   62 | Accept |         2.132 |          0.063274 |          2.1044 |          2.1051 |          svm | BoxConstraint:                   7.3349 |
|      |        |               |                   |                 |                 |              | KernelScale:                     4.5654 |
|      |        |               |                   |                 |                 |              | Epsilon:                       0.010146 |
|   63 | Accept |        2.1457 |          0.068571 |          2.1044 |          2.1054 |          svm | BoxConstraint:                   182.05 |
|      |        |               |                   |                 |                 |              | KernelScale:                     13.913 |
|      |        |               |                   |                 |                 |              | Epsilon:                       0.010813 |
|   64 | Accept |        2.1195 |          0.068772 |          2.1044 |          2.1069 |          svm | BoxConstraint:                    7.653 |
|      |        |               |                   |                 |                 |              | KernelScale:                     4.1874 |
|      |        |               |                   |                 |                 |              | Epsilon:                        0.13638 |
|   65 | Accept |        2.1127 |           0.09654 |          2.1044 |          2.1075 |          svm | BoxConstraint:                   1.8061 |
|      |        |               |                   |                 |                 |              | KernelScale:                     2.0447 |
|      |        |               |                   |                 |                 |              | Epsilon:                       0.010408 |
|   66 | Accept |        2.1374 |          0.093402 |          2.1044 |          2.1076 |          svm | BoxConstraint:                   984.16 |
|      |        |               |                   |                 |                 |              | KernelScale:                     17.924 |
|      |        |               |                   |                 |                 |              | Epsilon:                       0.013101 |
|   67 | Accept |        2.3467 |            3.4222 |          2.1044 |          2.1076 |     ensemble | Method:                             Bag |
|      |        |               |                   |                 |                 |              | NumLearningCycles:                  201 |
|      |        |               |                   |                 |                 |              | MinLeafSize:                          3 |
|   68 | Accept |        2.1251 |          0.084559 |          2.1044 |          2.1078 |          svm | BoxConstraint:                   4.8829 |
|      |        |               |                   |                 |                 |              | KernelScale:                     2.7157 |
|      |        |               |                   |                 |                 |              | Epsilon:                       0.011329 |
|   69 | Accept |        4.1303 |          0.048665 |          2.1044 |          2.1045 |          svm | BoxConstraint:                   981.43 |
|      |        |               |                   |                 |                 |              | KernelScale:                     3.7956 |
|      |        |               |                   |                 |                 |              | Epsilon:                         524.32 |
|   70 | Best   |        2.0946 |          0.078617 |          2.0946 |          2.0958 |          svm | BoxConstraint:                   9.3796 |
|      |        |               |                   |                 |                 |              | KernelScale:                     3.6153 |
|      |        |               |                   |                 |                 |              | Epsilon:                        0.64581 |
|   71 | Accept |        2.1625 |          0.059021 |          2.0946 |          2.0957 |          svm | BoxConstraint:                  0.14003 |
|      |        |               |                   |                 |                 |              | KernelScale:                     2.3859 |
|      |        |               |                   |                 |                 |              | Epsilon:                      0.0096989 |
|   72 | Accept |        2.1254 |          0.062282 |          2.0946 |          2.0957 |          svm | BoxConstraint:                   1.0541 |
|      |        |               |                   |                 |                 |              | KernelScale:                     2.8873 |
|      |        |               |                   |                 |                 |              | Epsilon:                       0.016892 |
|   73 | Accept |        2.2047 |           0.42757 |          2.0946 |          2.0957 |          svm | BoxConstraint:                  0.20258 |
|      |        |               |                   |                 |                 |              | KernelScale:                    0.89876 |
|      |        |               |                   |                 |                 |              | Epsilon:                      0.0094548 |
|   74 | Accept |        4.1303 |          0.056501 |          2.0946 |          2.0957 |          svm | BoxConstraint:                   705.97 |
|      |        |               |                   |                 |                 |              | KernelScale:                  0.0010614 |
|      |        |               |                   |                 |                 |              | Epsilon:                       0.011029 |
|   75 | Accept |        2.1076 |          0.093847 |          2.0946 |          2.0956 |          svm | BoxConstraint:                  0.57149 |
|      |        |               |                   |                 |                 |              | KernelScale:                     1.6966 |
|      |        |               |                   |                 |                 |              | Epsilon:                       0.028341 |
|   76 | Accept |        2.1051 |          0.074496 |          2.0946 |          2.0972 |          svm | BoxConstraint:                   17.713 |
|      |        |               |                   |                 |                 |              | KernelScale:                     4.1474 |
|      |        |               |                   |                 |                 |              | Epsilon:                        0.46742 |
|   77 | Accept |        2.0999 |          0.072478 |          2.0946 |          2.0977 |          svm | BoxConstraint:                   16.834 |
|      |        |               |                   |                 |                 |              | KernelScale:                      4.194 |
|      |        |               |                   |                 |                 |              | Epsilon:                         0.7058 |
|   78 | Accept |         2.117 |          0.073675 |          2.0946 |          2.0976 |          svm | BoxConstraint:                  0.80221 |
|      |        |               |                   |                 |                 |              | KernelScale:                     2.1521 |
|      |        |               |                   |                 |                 |              | Epsilon:                       0.009312 |
|   79 | Accept |        2.1063 |          0.071597 |          2.0946 |          2.0998 |          svm | BoxConstraint:                   11.766 |
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|      |        |               |                   |                 |                 |              | KernelScale:                     4.0434 |
|      |        |               |                   |                 |                 |              | Epsilon:                        0.77028 |
|   80 | Accept |         2.131 |           0.11884 |          2.0946 |          2.0997 |          svm | BoxConstraint:                   639.99 |
|      |        |               |                   |                 |                 |              | KernelScale:                     11.976 |
|      |        |               |                   |                 |                 |              | Epsilon:                       0.045587 |
|================================================================================================================================================|
| Iter | Eval   | log(1+valLoss)| Time for training | Observed min    | Estimated min   | Learner      | Hyperparameter:                 Value   |
|      | result |               | & validation (sec)| validation loss | validation loss |              |                                         |
|================================================================================================================================================|
|   81 | Accept |        2.1353 |           0.12266 |          2.0946 |          2.0998 |          svm | BoxConstraint:                   833.03 |
|      |        |               |                   |                 |                 |              | KernelScale:                     12.286 |
|      |        |               |                   |                 |                 |              | Epsilon:                       0.009267 |
|   82 | Accept |        2.1002 |          0.075115 |          2.0946 |          2.0995 |          svm | BoxConstraint:                   28.193 |
|      |        |               |                   |                 |                 |              | KernelScale:                     5.1564 |
|      |        |               |                   |                 |                 |              | Epsilon:                        0.54563 |
|   83 | Accept |        2.1087 |          0.083842 |          2.0946 |          2.0993 |          svm | BoxConstraint:                    22.81 |
|      |        |               |                   |                 |                 |              | KernelScale:                     4.8839 |
|      |        |               |                   |                 |                 |              | Epsilon:                        0.81407 |
|   84 | Accept |        2.1047 |           0.08404 |          2.0946 |          2.0998 |          svm | BoxConstraint:                     11.5 |
|      |        |               |                   |                 |                 |              | KernelScale:                     3.7878 |
|      |        |               |                   |                 |                 |              | Epsilon:                        0.38006 |
|   85 | Accept |        2.0999 |          0.076743 |          2.0946 |          2.0996 |          svm | BoxConstraint:                   7.9463 |
|      |        |               |                   |                 |                 |              | KernelScale:                     3.3494 |
|      |        |               |                   |                 |                 |              | Epsilon:                        0.56823 |
|   86 | Accept |         2.121 |           0.12711 |          2.0946 |          2.0996 |          svm | BoxConstraint:                   1.4247 |
|      |        |               |                   |                 |                 |              | KernelScale:                     1.7405 |
|      |        |               |                   |                 |                 |              | Epsilon:                       0.030609 |
|   87 | Accept |        4.1303 |          0.056272 |          2.0946 |          2.0995 |          svm | BoxConstraint:                0.0020273 |
|      |        |               |                   |                 |                 |              | KernelScale:                   0.001035 |
|      |        |               |                   |                 |                 |              | Epsilon:                         832.86 |
|   88 | Accept |         2.114 |          0.070002 |          2.0946 |          2.1014 |          svm | BoxConstraint:                   10.323 |
|      |        |               |                   |                 |                 |              | KernelScale:                     3.9111 |
|      |        |               |                   |                 |                 |              | Epsilon:                        0.90254 |
|   89 | Accept |        2.1042 |          0.073487 |          2.0946 |          2.1015 |          svm | BoxConstraint:                   6.5035 |
|      |        |               |                   |                 |                 |              | KernelScale:                     3.1694 |
|      |        |               |                   |                 |                 |              | Epsilon:                        0.63488 |
|   90 | Accept |         2.102 |          0.072913 |          2.0946 |          2.1015 |          svm | BoxConstraint:                   23.367 |
|      |        |               |                   |                 |                 |              | KernelScale:                     4.8485 |
|      |        |               |                   |                 |                 |              | Epsilon:                        0.51211 |
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__________________________________________________________
Optimization completed.
Total iterations: 90
Total elapsed time: 172.6365 seconds
Total time for training and validation: 131.3656 seconds

Best observed learner is an svm model with:
    Learner:                   svm
    BoxConstraint:          9.3796
    KernelScale:            3.6153
    Epsilon:               0.64581
Observed log(1 + valLoss): 2.0946
Time for training and validation: 0.078617 seconds

Best estimated learner (returned model) is an svm model with:
    Learner:                   svm
    BoxConstraint:          9.3796
    KernelScale:            3.6153
    Epsilon:               0.64581
Estimated log(1 + valLoss): 2.1015
Estimated time for training and validation: 0.076063 seconds

Documentation for fitrauto display

The final model returned by fitrauto corresponds to the best estimated learner. Before returning
the model, the function retrains it using the entire training data (carsTrain), the listed Learner (or
model) type, and the displayed hyperparameter values.
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Evaluate Test Set Performance

Evaluate the performance of the model on the test set. testError is based on the test set mean
squared error (MSE). Smaller MSE values indicate better performance.

testMSE = loss(Mdl,carsTest,"MPG");
testError = log(1 + testMSE)

testError = 2.1805

Automatically Select Regression Model Using Matrix Data

Use fitrauto to automatically select a regression model with optimized hyperparameters, given
predictor and response data stored in separate variables.

Load Data

Load the carbig data set, which contains measurements of cars made in the 1970s and early 1980s.

load carbig

Create a matrix X containing the predictor variables Acceleration, Cylinders, and so on. Store
the response variable MPG in the variable Y.

X = [Acceleration Cylinders Displacement Weight];
Y = MPG;

Delete rows of X and Y where either array has missing values.

R = rmmissing([X Y]);
X = R(:,1:end-1);
Y = R(:,end);

Create a variable indicating which predictors are categorical. Cylinders is the only categorical
variable in X.

categoricalVars = [false true false false];

Partition Data

Partition the data into training and test sets. Use approximately 80% of the observations for the
model selection and hyperparameter tuning process, and 20% of the observations to test the
performance of the final model returned by fitrauto. Use cvpartition to partition the data.

rng("default") % For reproducibility of the partition
c = cvpartition(length(Y),"Holdout",0.20);
trainingIdx = training(c); % Indices for the training set
XTrain = X(trainingIdx,:);
YTrain = Y(trainingIdx);
testIdx = test(c); % Indices for the test set
XTest = X(testIdx,:);
YTest = Y(testIdx);

Run fitrauto

Pass the training data to fitrauto. By default, fitrauto determines appropriate model (or learner)
types to try, uses Bayesian optimization to find good hyperparameter values for those models, and

 fitrauto

35-2431



returns a trained model Mdl with the best expected performance. Specify the categorical predictors,
and run the optimization in parallel (requires Parallel Computing Toolbox™). Return a second output
OptimizationResults that contains the details of the Bayesian optimization.

Expect this process to take some time. By default, fitrauto provides a plot of the optimization and
an iterative display of the optimization results. For more information on how to interpret these
results, see “Verbose Display” on page 35-2456.

options = struct("UseParallel",true);
[Mdl,OptimizationResults] = fitrauto(XTrain,YTrain, ...
    "CategoricalPredictors",categoricalVars, ...
    "HyperparameterOptimizationOptions",options);

Starting parallel pool (parpool) using the 'local' profile ...
Connected to the parallel pool (number of workers: 8).
Copying objective function to workers...
Done copying objective function to workers.
Learner types to explore: ensemble, svm, tree
Total iterations (MaxObjectiveEvaluations): 90
Total time (MaxTime): Inf

|==========================================================================================================================================================|
| Iter | Active  | Eval   | log(1+valLoss)| Time for training | Observed min    | Estimated min   | Learner      | Hyperparameter:                 Value   |
|      | workers | result |               | & validation (sec)| validation loss | validation loss |              |                                         |
|==========================================================================================================================================================|
|    1 |       5 | Best   |        3.1329 |            1.9087 |          3.1329 |          3.1399 |         tree | MinLeafSize:                          5 |
|    2 |       5 | Accept |        3.1329 |            1.9094 |          3.1329 |          3.1399 |         tree | MinLeafSize:                          5 |
|    3 |       5 | Accept |        4.1701 |            1.9944 |          3.1329 |          3.1399 |          svm | BoxConstraint:                 0.033502 |
|      |         |        |               |                   |                 |                 |              | KernelScale:                     153.38 |
|      |         |        |               |                   |                 |                 |              | Epsilon:                       0.095234 |
|    4 |       5 | Accept |        3.1539 |            1.9051 |          3.1329 |          3.1399 |         tree | MinLeafSize:                          9 |
|    5 |       7 | Best   |        3.0917 |           0.20244 |          3.0917 |          3.0919 |         tree | MinLeafSize:                         14 |
|    6 |       7 | Accept |        4.1645 |           0.20868 |          3.0917 |          3.0919 |         tree | MinLeafSize:                        158 |
|    7 |       8 | Accept |        3.2871 |           0.14105 |          3.0917 |          3.0919 |         tree | MinLeafSize:                          2 |
|    8 |       8 | Accept |        3.2871 |           0.12338 |          3.0917 |          3.0919 |         tree | MinLeafSize:                          2 |
|    9 |       8 | Accept |        4.1645 |            1.3189 |          3.0917 |          3.0919 |          svm | BoxConstraint:                 0.003952 |
|      |         |        |               |                   |                 |                 |              | KernelScale:                  0.0015586 |
|      |         |        |               |                   |                 |                 |              | Epsilon:                         31.184 |
|   10 |       8 | Accept |        3.2871 |           0.19579 |          3.0917 |          3.0919 |         tree | MinLeafSize:                          2 |
|   11 |       8 | Accept |        4.1646 |            8.3996 |          3.0917 |          3.0919 |     ensemble | Method:                             Bag |
|      |         |        |               |                   |                 |                 |              | NumLearningCycles:                  257 |
|      |         |        |               |                   |                 |                 |              | MinLeafSize:                        154 |
|   12 |       8 | Best   |        2.9469 |            8.7243 |          2.9469 |           2.968 |     ensemble | Method:                         LSBoost |
|      |         |        |               |                   |                 |                 |              | NumLearningCycles:                  287 |
|      |         |        |               |                   |                 |                 |              | MinLeafSize:                          1 |
|   13 |       8 | Best   |        2.9388 |            9.9614 |          2.9388 |           2.942 |     ensemble | Method:                         LSBoost |
|      |         |        |               |                   |                 |                 |              | NumLearningCycles:                  288 |
|      |         |        |               |                   |                 |                 |              | MinLeafSize:                          3 |
|   14 |       7 | Accept |        4.1645 |            1.9698 |          2.9388 |          2.9411 |          svm | BoxConstraint:                   159.44 |
|      |         |        |               |                   |                 |                 |              | KernelScale:                     34.732 |
|      |         |        |               |                   |                 |                 |              | Epsilon:                          412.2 |
|   15 |       7 | Accept |        2.9581 |            8.4974 |          2.9388 |          2.9411 |     ensemble | Method:                         LSBoost |
|      |         |        |               |                   |                 |                 |              | NumLearningCycles:                  287 |
|      |         |        |               |                   |                 |                 |              | MinLeafSize:                         62 |
|   16 |       7 | Accept |        3.1637 |           0.98081 |          2.9388 |          2.9411 |         tree | MinLeafSize:                          6 |
|   17 |       7 | Accept |        3.1539 |           0.58494 |          2.9388 |          2.9411 |         tree | MinLeafSize:                          9 |
|   18 |       5 | Accept |        2.9287 |            9.2877 |          2.9287 |          2.9411 |     ensemble | Method:                         LSBoost |
|      |         |        |               |                   |                 |                 |              | NumLearningCycles:                  283 |
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|      |         |        |               |                   |                 |                 |              | MinLeafSize:                         16 |
|   19 |       5 | Best   |        2.9287 |            8.4297 |          2.9287 |          2.9411 |     ensemble | Method:                         LSBoost |
|      |         |        |               |                   |                 |                 |              | NumLearningCycles:                  262 |
|      |         |        |               |                   |                 |                 |              | MinLeafSize:                          5 |
|   20 |       5 | Accept |        3.9011 |           0.19628 |          2.9287 |          2.9411 |          svm | BoxConstraint:                   9.4057 |
|      |         |        |               |                   |                 |                 |              | KernelScale:                     100.66 |
|      |         |        |               |                   |                 |                 |              | Epsilon:                         0.2386 |
|==========================================================================================================================================================|
| Iter | Active  | Eval   | log(1+valLoss)| Time for training | Observed min    | Estimated min   | Learner      | Hyperparameter:                 Value   |
|      | workers | result |               | & validation (sec)| validation loss | validation loss |              |                                         |
|==========================================================================================================================================================|
|   21 |       8 | Accept |        4.1862 |           0.23729 |          2.9287 |          2.9411 |          svm | BoxConstraint:                    7.487 |
|      |         |        |               |                   |                 |                 |              | KernelScale:                     81.753 |
|      |         |        |               |                   |                 |                 |              | Epsilon:                         12.782 |
|   22 |       5 | Accept |        3.1593 |           0.12638 |          2.9287 |          2.9411 |         tree | MinLeafSize:                          8 |
|   23 |       5 | Accept |        3.1163 |            0.2154 |          2.9287 |          2.9411 |         tree | MinLeafSize:                         42 |
|   24 |       5 | Accept |        4.1645 |           0.13652 |          2.9287 |          2.9411 |          svm | BoxConstraint:                   760.95 |
|      |         |        |               |                   |                 |                 |              | KernelScale:                     1.8573 |
|      |         |        |               |                   |                 |                 |              | Epsilon:                         83.037 |
|   25 |       5 | Accept |        3.0374 |              0.14 |          2.9287 |          2.9411 |         tree | MinLeafSize:                         16 |
|   26 |       8 | Accept |        3.1014 |          0.066518 |          2.9287 |          2.9411 |         tree | MinLeafSize:                         13 |
|   27 |       7 | Accept |        2.9493 |           0.57729 |          2.9287 |          2.9411 |          svm | BoxConstraint:                   574.43 |
|      |         |        |               |                   |                 |                 |              | KernelScale:                     7.3229 |
|      |         |        |               |                   |                 |                 |              | Epsilon:                          3.991 |
|   28 |       7 | Accept |        3.3681 |           0.19666 |          2.9287 |          2.9411 |         tree | MinLeafSize:                         69 |
|   29 |       5 | Accept |        3.1815 |            7.8877 |          2.9287 |          2.9411 |     ensemble | Method:                             Bag |
|      |         |        |               |                   |                 |                 |              | NumLearningCycles:                  247 |
|      |         |        |               |                   |                 |                 |              | MinLeafSize:                         74 |
|   30 |       5 | Accept |        4.1645 |            1.2207 |          2.9287 |          2.9411 |          svm | BoxConstraint:                   5.2634 |
|      |         |        |               |                   |                 |                 |              | KernelScale:                   0.058706 |
|      |         |        |               |                   |                 |                 |              | Epsilon:                         105.48 |
|   31 |       5 | Accept |        3.6021 |          0.091822 |          2.9287 |          2.9411 |         tree | MinLeafSize:                          1 |
|   32 |       8 | Accept |        3.1539 |           0.23324 |          2.9287 |          2.9411 |         tree | MinLeafSize:                          9 |
|   33 |       6 | Accept |        2.9351 |            12.312 |          2.9197 |          2.9198 |     ensemble | Method:                         LSBoost |
|      |         |        |               |                   |                 |                 |              | NumLearningCycles:                  282 |
|      |         |        |               |                   |                 |                 |              | MinLeafSize:                          2 |
|   34 |       6 | Accept |        4.2521 |            0.1172 |          2.9197 |          2.9198 |          svm | BoxConstraint:                   449.81 |
|      |         |        |               |                   |                 |                 |              | KernelScale:                     19.912 |
|      |         |        |               |                   |                 |                 |              | Epsilon:                         17.095 |
|   35 |       6 | Best   |        2.9197 |          0.085188 |          2.9197 |          2.9198 |          svm | BoxConstraint:                   1.0008 |
|      |         |        |               |                   |                 |                 |              | KernelScale:                     2.1267 |
|      |         |        |               |                   |                 |                 |              | Epsilon:                       0.034964 |
|   36 |       7 | Accept |        4.1091 |          0.081418 |          2.9197 |          2.9411 |          svm | BoxConstraint:                   42.958 |
|      |         |        |               |                   |                 |                 |              | KernelScale:                     459.03 |
|      |         |        |               |                   |                 |                 |              | Epsilon:                        0.96311 |
|   37 |       7 | Accept |        4.1091 |          0.064642 |          2.9197 |          2.9198 |          svm | BoxConstraint:                   42.958 |
|      |         |        |               |                   |                 |                 |              | KernelScale:                     459.03 |
|      |         |        |               |                   |                 |                 |              | Epsilon:                        0.96311 |
|   38 |       7 | Accept |        2.9423 |            4.1841 |          2.9197 |          2.9198 |     ensemble | Method:                         LSBoost |
|      |         |        |               |                   |                 |                 |              | NumLearningCycles:                  202 |
|      |         |        |               |                   |                 |                 |              | MinLeafSize:                         50 |
|   39 |       7 | Accept |        3.1132 |          0.066762 |          2.9197 |          2.9198 |         tree | MinLeafSize:                         38 |
|   40 |       7 | Accept |        9.5074 |            20.851 |          2.9197 |          2.9198 |          svm | BoxConstraint:                   336.91 |
|      |         |        |               |                   |                 |                 |              | KernelScale:                  0.0018275 |
|      |         |        |               |                   |                 |                 |              | Epsilon:                        0.10919 |
|==========================================================================================================================================================|
| Iter | Active  | Eval   | log(1+valLoss)| Time for training | Observed min    | Estimated min   | Learner      | Hyperparameter:                 Value   |
|      | workers | result |               | & validation (sec)| validation loss | validation loss |              |                                         |
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|==========================================================================================================================================================|
|   41 |       7 | Accept |        4.1645 |           0.31377 |          2.9197 |          2.9198 |          svm | BoxConstraint:                   582.79 |
|      |         |        |               |                   |                 |                 |              | KernelScale:                     7.6869 |
|      |         |        |               |                   |                 |                 |              | Epsilon:                         74.905 |
|   42 |       7 | Accept |        4.1645 |            4.6708 |          2.9197 |          2.9198 |     ensemble | Method:                         LSBoost |
|      |         |        |               |                   |                 |                 |              | NumLearningCycles:                  233 |
|      |         |        |               |                   |                 |                 |              | MinLeafSize:                        134 |
|   43 |       7 | Accept |         2.935 |            5.2719 |          2.9197 |          2.9198 |     ensemble | Method:                             Bag |
|      |         |        |               |                   |                 |                 |              | NumLearningCycles:                  280 |
|      |         |        |               |                   |                 |                 |              | MinLeafSize:                         45 |
|   44 |       7 | Accept |        3.1177 |           0.88837 |          2.9197 |          2.9198 |          svm | BoxConstraint:                   127.48 |
|      |         |        |               |                   |                 |                 |              | KernelScale:                        105 |
|      |         |        |               |                   |                 |                 |              | Epsilon:                        0.58941 |
|   45 |       8 | Accept |        3.1329 |           0.10668 |          2.9197 |          2.9198 |         tree | MinLeafSize:                          5 |
|   46 |       8 | Best   |        2.8874 |            7.2754 |          2.8874 |          2.8877 |     ensemble | Method:                             Bag |
|      |         |        |               |                   |                 |                 |              | NumLearningCycles:                  271 |
|      |         |        |               |                   |                 |                 |              | MinLeafSize:                          1 |
|   47 |       8 | Accept |        3.9204 |            0.2276 |          2.8874 |          2.8877 |          svm | BoxConstraint:                 0.014973 |
|      |         |        |               |                   |                 |                 |              | KernelScale:                      4.398 |
|      |         |        |               |                   |                 |                 |              | Epsilon:                       0.055595 |
|   48 |       8 | Accept |        2.8964 |            5.3009 |          2.8874 |          2.8877 |     ensemble | Method:                             Bag |
|      |         |        |               |                   |                 |                 |              | NumLearningCycles:                  233 |
|      |         |        |               |                   |                 |                 |              | MinLeafSize:                         20 |
|   49 |       8 | Accept |        2.8941 |            10.022 |          2.8874 |          2.8908 |     ensemble | Method:                             Bag |
|      |         |        |               |                   |                 |                 |              | NumLearningCycles:                  300 |
|      |         |        |               |                   |                 |                 |              | MinLeafSize:                          1 |
|   50 |       8 | Accept |        2.9227 |            8.3714 |          2.8874 |          2.8908 |     ensemble | Method:                         LSBoost |
|      |         |        |               |                   |                 |                 |              | NumLearningCycles:                  360 |
|      |         |        |               |                   |                 |                 |              | MinLeafSize:                          9 |
|   51 |       8 | Accept |        3.0945 |           0.10022 |          2.8874 |          2.8908 |         tree | MinLeafSize:                         11 |
|   52 |       8 | Accept |        2.9326 |            7.3667 |          2.8874 |          2.8908 |     ensemble | Method:                         LSBoost |
|      |         |        |               |                   |                 |                 |              | NumLearningCycles:                  316 |
|      |         |        |               |                   |                 |                 |              | MinLeafSize:                         51 |
|   53 |       8 | Accept |        2.9223 |            6.3741 |          2.8874 |          2.8908 |     ensemble | Method:                             Bag |
|      |         |        |               |                   |                 |                 |              | NumLearningCycles:                  234 |
|      |         |        |               |                   |                 |                 |              | MinLeafSize:                         35 |
|   54 |       6 | Best   |        2.8833 |            12.385 |          2.8833 |          2.8875 |     ensemble | Method:                             Bag |
|      |         |        |               |                   |                 |                 |              | NumLearningCycles:                  300 |
|      |         |        |               |                   |                 |                 |              | MinLeafSize:                          1 |
|   55 |       6 | Accept |        4.1645 |             6.146 |          2.8833 |          2.8875 |          svm | BoxConstraint:                    1.246 |
|      |         |        |               |                   |                 |                 |              | KernelScale:                   0.048145 |
|      |         |        |               |                   |                 |                 |              | Epsilon:                         337.42 |
|   56 |       6 | Accept |        3.5019 |            4.3292 |          2.8833 |          2.8875 |     ensemble | Method:                             Bag |
|      |         |        |               |                   |                 |                 |              | NumLearningCycles:                  219 |
|      |         |        |               |                   |                 |                 |              | MinLeafSize:                        126 |
|   57 |       6 | Best   |        2.8758 |            4.1728 |          2.8758 |          2.8875 |     ensemble | Method:                             Bag |
|      |         |        |               |                   |                 |                 |              | NumLearningCycles:                  201 |
|      |         |        |               |                   |                 |                 |              | MinLeafSize:                          4 |
|   58 |       6 | Accept |         3.978 |           0.12062 |          2.8758 |          2.8875 |          svm | BoxConstraint:                 0.015506 |
|      |         |        |               |                   |                 |                 |              | KernelScale:                     4.6409 |
|      |         |        |               |                   |                 |                 |              | Epsilon:                         2.9763 |
|   59 |       7 | Accept |        3.4183 |          0.049204 |          2.8758 |          2.8875 |         tree | MinLeafSize:                         93 |
|   60 |       7 | Accept |        2.9269 |            4.8518 |          2.8758 |          2.8759 |     ensemble | Method:                         LSBoost |
|      |         |        |               |                   |                 |                 |              | NumLearningCycles:                  236 |
|      |         |        |               |                   |                 |                 |              | MinLeafSize:                         19 |
|==========================================================================================================================================================|
| Iter | Active  | Eval   | log(1+valLoss)| Time for training | Observed min    | Estimated min   | Learner      | Hyperparameter:                 Value   |
|      | workers | result |               | & validation (sec)| validation loss | validation loss |              |                                         |
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|==========================================================================================================================================================|
|   61 |       7 | Accept |        3.0652 |          0.088667 |          2.8758 |          2.8759 |          svm | BoxConstraint:                   862.71 |
|      |         |        |               |                   |                 |                 |              | KernelScale:                     216.51 |
|      |         |        |               |                   |                 |                 |              | Epsilon:                         1.9551 |
|   62 |       7 | Accept |        2.8816 |            4.0609 |          2.8758 |          2.8767 |     ensemble | Method:                             Bag |
|      |         |        |               |                   |                 |                 |              | NumLearningCycles:                  205 |
|      |         |        |               |                   |                 |                 |              | MinLeafSize:                          4 |
|   63 |       7 | Accept |        4.1645 |            0.1847 |          2.8758 |          2.8767 |          svm | BoxConstraint:                    654.1 |
|      |         |        |               |                   |                 |                 |              | KernelScale:                  0.0009277 |
|      |         |        |               |                   |                 |                 |              | Epsilon:                        0.67992 |
|   64 |       8 | Accept |        4.1645 |           0.04689 |          2.8758 |          2.8767 |          svm | BoxConstraint:                0.0022454 |
|      |         |        |               |                   |                 |                 |              | KernelScale:                     1.2218 |
|      |         |        |               |                   |                 |                 |              | Epsilon:                         1223.3 |
|   65 |       8 | Accept |        2.8789 |               5.3 |          2.8758 |          2.8788 |     ensemble | Method:                             Bag |
|      |         |        |               |                   |                 |                 |              | NumLearningCycles:                  279 |
|      |         |        |               |                   |                 |                 |              | MinLeafSize:                          4 |
|   66 |       8 | Accept |        3.1637 |          0.099659 |          2.8758 |          2.8788 |         tree | MinLeafSize:                          6 |
|   67 |       8 | Accept |        2.8772 |            5.6605 |          2.8758 |          2.8784 |     ensemble | Method:                             Bag |
|      |         |        |               |                   |                 |                 |              | NumLearningCycles:                  280 |
|      |         |        |               |                   |                 |                 |              | MinLeafSize:                          4 |
|   68 |       8 | Accept |        3.2871 |          0.074658 |          2.8758 |          2.8784 |         tree | MinLeafSize:                          2 |
|   69 |       8 | Best   |        2.8743 |            6.7691 |          2.8743 |          2.8744 |     ensemble | Method:                             Bag |
|      |         |        |               |                   |                 |                 |              | NumLearningCycles:                  296 |
|      |         |        |               |                   |                 |                 |              | MinLeafSize:                          7 |
|   70 |       8 | Accept |        4.8948 |            28.692 |          2.8743 |          2.8744 |          svm | BoxConstraint:                 0.093799 |
|      |         |        |               |                   |                 |                 |              | KernelScale:                  0.0053728 |
|      |         |        |               |                   |                 |                 |              | Epsilon:                         17.621 |
|   71 |       7 | Accept |        2.8767 |            6.4563 |          2.8743 |          2.8743 |     ensemble | Method:                             Bag |
|      |         |        |               |                   |                 |                 |              | NumLearningCycles:                  298 |
|      |         |        |               |                   |                 |                 |              | MinLeafSize:                          9 |
|   72 |       7 | Accept |          2.88 |            5.7962 |          2.8743 |          2.8743 |     ensemble | Method:                             Bag |
|      |         |        |               |                   |                 |                 |              | NumLearningCycles:                  299 |
|      |         |        |               |                   |                 |                 |              | MinLeafSize:                          9 |
|   73 |       7 | Accept |        2.8843 |            4.9403 |          2.8743 |          2.8743 |     ensemble | Method:                             Bag |
|      |         |        |               |                   |                 |                 |              | NumLearningCycles:                  207 |
|      |         |        |               |                   |                 |                 |              | MinLeafSize:                          2 |
|   74 |       7 | Accept |        4.1645 |          0.087433 |          2.8743 |          2.8743 |          svm | BoxConstraint:                   10.694 |
|      |         |        |               |                   |                 |                 |              | KernelScale:                     42.019 |
|      |         |        |               |                   |                 |                 |              | Epsilon:                          58.68 |
|   75 |       8 | Accept |        3.1608 |          0.045498 |          2.8743 |          2.8743 |         tree | MinLeafSize:                          3 |
|   76 |       8 | Accept |        2.8845 |            5.7044 |          2.8743 |          2.8743 |     ensemble | Method:                             Bag |
|      |         |        |               |                   |                 |                 |              | NumLearningCycles:                  298 |
|      |         |        |               |                   |                 |                 |              | MinLeafSize:                          2 |
|   77 |       8 | Accept |        2.9155 |            5.6911 |          2.8743 |          2.8743 |     ensemble | Method:                         LSBoost |
|      |         |        |               |                   |                 |                 |              | NumLearningCycles:                  268 |
|      |         |        |               |                   |                 |                 |              | MinLeafSize:                         27 |
|   78 |       8 | Accept |        4.1132 |           0.10111 |          2.8743 |          2.8743 |          svm | BoxConstraint:                0.0012611 |
|      |         |        |               |                   |                 |                 |              | KernelScale:                     2.8609 |
|      |         |        |               |                   |                 |                 |              | Epsilon:                       0.037899 |
|   79 |       8 | Accept |        3.2869 |          0.080313 |          2.8743 |          2.8743 |         tree | MinLeafSize:                         66 |
|   80 |       8 | Accept |        3.4233 |            6.4584 |          2.8743 |          2.8745 |     ensemble | Method:                         LSBoost |
|      |         |        |               |                   |                 |                 |              | NumLearningCycles:                  301 |
|      |         |        |               |                   |                 |                 |              | MinLeafSize:                        119 |
|==========================================================================================================================================================|
| Iter | Active  | Eval   | log(1+valLoss)| Time for training | Observed min    | Estimated min   | Learner      | Hyperparameter:                 Value   |
|      | workers | result |               | & validation (sec)| validation loss | validation loss |              |                                         |
|==========================================================================================================================================================|
|   81 |       6 | Accept |        3.2102 |            6.5686 |          2.8743 |          2.8744 |     ensemble | Method:                             Bag |
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|      |         |        |               |                   |                 |                 |              | NumLearningCycles:                  360 |
|      |         |        |               |                   |                 |                 |              | MinLeafSize:                        102 |
|   82 |       6 | Accept |        2.8842 |            5.6027 |          2.8743 |          2.8744 |     ensemble | Method:                             Bag |
|      |         |        |               |                   |                 |                 |              | NumLearningCycles:                  274 |
|      |         |        |               |                   |                 |                 |              | MinLeafSize:                         14 |
|   83 |       6 | Accept |        2.8763 |            4.6428 |          2.8743 |          2.8744 |     ensemble | Method:                             Bag |
|      |         |        |               |                   |                 |                 |              | NumLearningCycles:                  205 |
|      |         |        |               |                   |                 |                 |              | MinLeafSize:                         14 |
|   84 |       7 | Accept |        2.8807 |            4.3081 |          2.8743 |          2.8744 |     ensemble | Method:                             Bag |
|      |         |        |               |                   |                 |                 |              | NumLearningCycles:                  202 |
|      |         |        |               |                   |                 |                 |              | MinLeafSize:                         14 |
|   85 |       8 | Accept |        3.0046 |          0.078152 |          2.8743 |          2.8744 |         tree | MinLeafSize:                         27 |
|   86 |       8 | Accept |        3.1256 |            6.3616 |          2.8743 |          2.8744 |     ensemble | Method:                             Bag |
|      |         |        |               |                   |                 |                 |              | NumLearningCycles:                  314 |
|      |         |        |               |                   |                 |                 |              | MinLeafSize:                         70 |
|   87 |       8 | Best   |        2.8718 |            5.9613 |          2.8718 |          2.8719 |     ensemble | Method:                             Bag |
|      |         |        |               |                   |                 |                 |              | NumLearningCycles:                  300 |
|      |         |        |               |                   |                 |                 |              | MinLeafSize:                          5 |
|   88 |       8 | Accept |        3.0843 |          0.048367 |          2.8718 |          2.8719 |         tree | MinLeafSize:                         47 |
|   89 |       8 | Accept |        2.8808 |            5.6249 |          2.8718 |          2.8743 |     ensemble | Method:                             Bag |
|      |         |        |               |                   |                 |                 |              | NumLearningCycles:                  298 |
|      |         |        |               |                   |                 |                 |              | MinLeafSize:                          5 |
|   90 |       7 | Accept |        2.9088 |            7.3928 |          2.8718 |          2.8743 |     ensemble | Method:                         LSBoost |
|      |         |        |               |                   |                 |                 |              | NumLearningCycles:                  367 |
|      |         |        |               |                   |                 |                 |              | MinLeafSize:                          7 |
|   91 |       7 | Accept |        3.0105 |          0.039942 |          2.8718 |          2.8743 |         tree | MinLeafSize:                         26 |
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__________________________________________________________
Optimization completed.
Total iterations: 91
Total elapsed time: 65.6875 seconds
Total time for training and validation: 337.1441 seconds

Best observed learner is an ensemble model with:
    Learner:              ensemble
    Method:                    Bag
    NumLearningCycles:         300
    MinLeafSize:                 5
Observed log(1 + valLoss): 2.8718
Time for training and validation: 5.9613 seconds

Best estimated learner (returned model) is an ensemble model with:
    Learner:              ensemble
    Method:                    Bag
    NumLearningCycles:         296
    MinLeafSize:                 7
Estimated log(1 + valLoss): 2.8743
Estimated time for training and validation: 6.2667 seconds

Documentation for fitrauto display

The final model returned by fitrauto corresponds to the best estimated learner. Before returning
the model, the function retrains it using the entire training data (XTrain and YTrain), the listed
Learner (or model) type, and the displayed hyperparameter values.

Evaluate Test Set Performance

Evaluate the performance of the model on the test set. testError is based on the test set mean
squared error (MSE). Smaller MSE values indicate better performance.

testMSE = loss(Mdl,XTest,YTest);
testError = log(1 + testMSE)

testError = 2.6519

Compare Optimized and Simple Linear Regression Model

Use fitrauto to automatically select a regression model with optimized hyperparameters, given
predictor and response data stored in a table. Compare the performance of the resulting regression
model to the performance of a simple linear regression model created with fitlm.

Load and Partition Data

Load the carbig data set, which contains measurements of cars made in the 1970s and early 1980s.
Convert the Cylinders variable to a categorical variable. Create a table containing the predictor
variables Acceleration, Cylinders, Displacement, and so on, as well as the response variable
MPG.

load carbig
Cylinders = categorical(Cylinders);
cars = table(Acceleration,Cylinders,Displacement, ...
    Horsepower,Model_Year,Origin,Weight,MPG);
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Delete rows of cars where the table has missing values.

cars = rmmissing(cars);

Categorize the cars based on whether they were made in the USA.

cars.Origin = categorical(cellstr(cars.Origin));
cars.Origin = mergecats(cars.Origin,["France","Japan",...
    "Germany","Sweden","Italy","England"],"NotUSA");

Partition the data into training and test sets. Use approximately 80% of the observations for training,
and 20% of the observations for testing. Use cvpartition to partition the data.

rng("default") % For reproducibility of the data partition
c = cvpartition(height(cars),"Holdout",0.2);
trainingIdx = training(c); % Training set indices
carsTrain = cars(trainingIdx,:);
testIdx = test(c); % Test set indices
carsTest = cars(testIdx,:);

Run fitrauto

Pass the training data to fitrauto. By default, fitrauto determines appropriate model types to try,
uses Bayesian optimization to find good hyperparameter values, and returns a trained model
autoMdl with the best expected performance. Specify to optimize over all optimizable
hyperparameters and run the optimization in parallel (requires Parallel Computing Toolbox™).

Expect this process to take some time. By default, fitrauto provides a plot of the optimization and
an iterative display of the optimization results. For more information on how to interpret these
results, see “Verbose Display” on page 35-2456.

options = struct("UseParallel",true);
autoMdl = fitrauto(carsTrain,"MPG","OptimizeHyperparameters","all", ...
    "HyperparameterOptimizationOptions",options);

Copying objective function to workers...

Warning: Files that have already been attached are being ignored. To see which files are attached see the 'AttachedFiles' property of the parallel pool.

Done copying objective function to workers.
Learner types to explore: ensemble, svm, tree
Total iterations (MaxObjectiveEvaluations): 90
Total time (MaxTime): Inf

|==========================================================================================================================================================|
| Iter | Active  | Eval   | log(1+valLoss)| Time for training | Observed min    | Estimated min   | Learner      | Hyperparameter:                 Value   |
|      | workers | result |               | & validation (sec)| validation loss | validation loss |              |                                         |
|==========================================================================================================================================================|
|    1 |       6 | Best   |        3.1155 |             0.593 |          3.1155 |          3.1155 |         tree | MinLeafSize:                          5 |
|      |         |        |               |                   |                 |                 |              | MaxNumSplits:                         2 |
|      |         |        |               |                   |                 |                 |              | NumVariablesToSample:                 3 |
|    2 |       6 | Accept |        4.1303 |           0.57793 |          3.1155 |          3.1155 |          svm | BoxConstraint:                  0.73976 |
|      |         |        |               |                   |                 |                 |              | KernelScale:                     2.7037 |
|      |         |        |               |                   |                 |                 |              | Epsilon:                         38.421 |
|    3 |       6 | Accept |        4.1303 |           0.65317 |          3.1155 |          3.1155 |          svm | BoxConstraint:                0.0010671 |
|      |         |        |               |                   |                 |                 |              | KernelScale:                     19.242 |
|      |         |        |               |                   |                 |                 |              | Epsilon:                         44.847 |
|    4 |       6 | Accept |        4.1338 |           0.68024 |          3.1155 |          3.1155 |          svm | BoxConstraint:                 0.095204 |
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|      |         |        |               |                   |                 |                 |              | KernelScale:                     63.457 |
|      |         |        |               |                   |                 |                 |              | Epsilon:                       0.055423 |
|    5 |       6 | Accept |        4.1303 |           0.23392 |          3.1155 |          3.1155 |          svm | BoxConstraint:                  0.01028 |
|      |         |        |               |                   |                 |                 |              | KernelScale:                  0.0032203 |
|      |         |        |               |                   |                 |                 |              | Epsilon:                         36.299 |
|    6 |       6 | Best   |        2.5852 |           0.17018 |          2.5852 |          2.7155 |         tree | MinLeafSize:                          2 |
|      |         |        |               |                   |                 |                 |              | MaxNumSplits:                       120 |
|      |         |        |               |                   |                 |                 |              | NumVariablesToSample:                 7 |
|    7 |       8 | Accept |        4.5891 |            4.8163 |          2.5852 |          2.7155 |     ensemble | Method:                         LSBoost |
|      |         |        |               |                   |                 |                 |              | LearnRate:                    0.0051188 |
|      |         |        |               |                   |                 |                 |              | MinLeafSize:                         83 |
|      |         |        |               |                   |                 |                 |              | NumVariablesToSample:               NaN |
|    8 |       8 | Accept |        4.7998 |            6.0958 |          2.5852 |          2.7155 |     ensemble | Method:                         LSBoost |
|      |         |        |               |                   |                 |                 |              | LearnRate:                    0.0042702 |
|      |         |        |               |                   |                 |                 |              | MinLeafSize:                         31 |
|      |         |        |               |                   |                 |                 |              | NumVariablesToSample:               NaN |
|    9 |       8 | Accept |        2.6407 |            5.1761 |          2.5852 |          2.6533 |     ensemble | Method:                             Bag |
|      |         |        |               |                   |                 |                 |              | LearnRate:                          NaN |
|      |         |        |               |                   |                 |                 |              | MinLeafSize:                         45 |
|      |         |        |               |                   |                 |                 |              | NumVariablesToSample:                 6 |
|   10 |       8 | Accept |         5.749 |            5.7541 |          2.5852 |          2.6407 |     ensemble | Method:                         LSBoost |
|      |         |        |               |                   |                 |                 |              | LearnRate:                    0.0017397 |
|      |         |        |               |                   |                 |                 |              | MinLeafSize:                         22 |
|      |         |        |               |                   |                 |                 |              | NumVariablesToSample:               NaN |
|   11 |       8 | Accept |         5.749 |            5.8128 |          2.5852 |          2.6408 |     ensemble | Method:                         LSBoost |
|      |         |        |               |                   |                 |                 |              | LearnRate:                    0.0017397 |
|      |         |        |               |                   |                 |                 |              | MinLeafSize:                         22 |
|      |         |        |               |                   |                 |                 |              | NumVariablesToSample:               NaN |
|   12 |       8 | Accept |         5.749 |            6.3666 |          2.5852 |          2.6408 |     ensemble | Method:                         LSBoost |
|      |         |        |               |                   |                 |                 |              | LearnRate:                    0.0017397 |
|      |         |        |               |                   |                 |                 |              | MinLeafSize:                         22 |
|      |         |        |               |                   |                 |                 |              | NumVariablesToSample:               NaN |
|   13 |       7 | Accept |        2.8653 |            3.1249 |          2.5852 |          2.6408 |         tree | MinLeafSize:                          5 |
|      |         |        |               |                   |                 |                 |              | MaxNumSplits:                        61 |
|      |         |        |               |                   |                 |                 |              | NumVariablesToSample:                 2 |
|   14 |       7 | Accept |        4.1303 |           0.21536 |          2.5852 |          2.6408 |          svm | BoxConstraint:                   27.717 |
|      |         |        |               |                   |                 |                 |              | KernelScale:                     21.172 |
|      |         |        |               |                   |                 |                 |              | Epsilon:                         390.93 |
|   15 |       5 | Accept |        4.6825 |            10.638 |          2.3273 |          2.6408 |     ensemble | Method:                         LSBoost |
|      |         |        |               |                   |                 |                 |              | LearnRate:                    0.0045559 |
|      |         |        |               |                   |                 |                 |              | MinLeafSize:                          1 |
|      |         |        |               |                   |                 |                 |              | NumVariablesToSample:               NaN |
|   16 |       5 | Best   |        2.3273 |            4.6997 |          2.3273 |          2.6408 |     ensemble | Method:                             Bag |
|      |         |        |               |                   |                 |                 |              | LearnRate:                          NaN |
|      |         |        |               |                   |                 |                 |              | MinLeafSize:                          1 |
|      |         |        |               |                   |                 |                 |              | NumVariablesToSample:                 3 |
|   17 |       5 | Accept |        2.8316 |           0.35817 |          2.3273 |          2.6408 |          svm | BoxConstraint:                 0.038615 |
|      |         |        |               |                   |                 |                 |              | KernelScale:                    0.26266 |
|      |         |        |               |                   |                 |                 |              | Epsilon:                         5.8807 |
|   18 |       8 | Accept |        3.1542 |          0.091401 |          2.3273 |          2.6408 |         tree | MinLeafSize:                          2 |
|      |         |        |               |                   |                 |                 |              | MaxNumSplits:                         2 |
|      |         |        |               |                   |                 |                 |              | NumVariablesToSample:                 5 |
|   19 |       8 | Accept |        2.6177 |          0.097231 |          2.3273 |          2.6179 |          svm | BoxConstraint:                     38.6 |
|      |         |        |               |                   |                 |                 |              | KernelScale:                     50.168 |
|      |         |        |               |                   |                 |                 |              | Epsilon:                         2.0294 |
|   20 |       7 | Accept |        4.1551 |            4.3963 |          2.3273 |          2.5864 |     ensemble | Method:                         LSBoost |
|      |         |        |               |                   |                 |                 |              | LearnRate:                     0.014547 |
|      |         |        |               |                   |                 |                 |              | MinLeafSize:                        145 |
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|      |         |        |               |                   |                 |                 |              | NumVariablesToSample:               NaN |
|==========================================================================================================================================================|
| Iter | Active  | Eval   | log(1+valLoss)| Time for training | Observed min    | Estimated min   | Learner      | Hyperparameter:                 Value   |
|      | workers | result |               | & validation (sec)| validation loss | validation loss |              |                                         |
|==========================================================================================================================================================|
|   21 |       7 | Accept |        2.6846 |           0.20978 |          2.3273 |          2.5864 |         tree | MinLeafSize:                          1 |
|      |         |        |               |                   |                 |                 |              | MaxNumSplits:                       248 |
|      |         |        |               |                   |                 |                 |              | NumVariablesToSample:                 7 |
|   22 |       7 | Accept |        4.1303 |          0.086412 |          2.3273 |          2.5864 |          svm | BoxConstraint:                   117.04 |
|      |         |        |               |                   |                 |                 |              | KernelScale:                     629.41 |
|      |         |        |               |                   |                 |                 |              | Epsilon:                         729.47 |
|   23 |       7 | Accept |        2.8059 |          0.051613 |          2.3273 |           2.586 |         tree | MinLeafSize:                          2 |
|      |         |        |               |                   |                 |                 |              | MaxNumSplits:                         4 |
|      |         |        |               |                   |                 |                 |              | NumVariablesToSample:                 4 |
|   24 |       8 | Accept |         2.496 |            4.9911 |          2.3273 |          2.3286 |     ensemble | Method:                             Bag |
|      |         |        |               |                   |                 |                 |              | LearnRate:                          NaN |
|      |         |        |               |                   |                 |                 |              | MinLeafSize:                         29 |
|      |         |        |               |                   |                 |                 |              | NumVariablesToSample:                 3 |
|   25 |       8 | Best   |        2.3255 |             5.025 |          2.3255 |          2.3426 |     ensemble | Method:                             Bag |
|      |         |        |               |                   |                 |                 |              | LearnRate:                          NaN |
|      |         |        |               |                   |                 |                 |              | MinLeafSize:                         11 |
|      |         |        |               |                   |                 |                 |              | NumVariablesToSample:                 3 |
|   26 |       8 | Accept |         2.504 |            0.1041 |          2.3255 |          2.3426 |         tree | MinLeafSize:                          9 |
|      |         |        |               |                   |                 |                 |              | MaxNumSplits:                       157 |
|      |         |        |               |                   |                 |                 |              | NumVariablesToSample:                 6 |
|   27 |       6 | Accept |        2.3265 |            5.0488 |          2.3255 |          2.3426 |     ensemble | Method:                         LSBoost |
|      |         |        |               |                   |                 |                 |              | LearnRate:                      0.11482 |
|      |         |        |               |                   |                 |                 |              | MinLeafSize:                         54 |
|      |         |        |               |                   |                 |                 |              | NumVariablesToSample:               NaN |
|   28 |       6 | Accept |        2.6931 |           0.12749 |          2.3255 |          2.3426 |          svm | BoxConstraint:                   8.3226 |
|      |         |        |               |                   |                 |                 |              | KernelScale:                     22.717 |
|      |         |        |               |                   |                 |                 |              | Epsilon:                         3.2417 |
|   29 |       6 | Accept |        4.1303 |           0.05622 |          2.3255 |          2.3426 |          svm | BoxConstraint:                0.0011506 |
|      |         |        |               |                   |                 |                 |              | KernelScale:                     352.85 |
|      |         |        |               |                   |                 |                 |              | Epsilon:                         163.49 |
|   30 |       7 | Accept |        2.5184 |            5.2768 |          2.3255 |          2.3299 |     ensemble | Method:                             Bag |
|      |         |        |               |                   |                 |                 |              | LearnRate:                          NaN |
|      |         |        |               |                   |                 |                 |              | MinLeafSize:                         11 |
|      |         |        |               |                   |                 |                 |              | NumVariablesToSample:                 1 |
|   31 |       6 | Accept |        2.5058 |            5.8769 |          2.2734 |          2.2739 |     ensemble | Method:                             Bag |
|      |         |        |               |                   |                 |                 |              | LearnRate:                          NaN |
|      |         |        |               |                   |                 |                 |              | MinLeafSize:                         11 |
|      |         |        |               |                   |                 |                 |              | NumVariablesToSample:                 1 |
|   32 |       6 | Best   |        2.2734 |           0.74899 |          2.2734 |          2.2739 |          svm | BoxConstraint:                   344.75 |
|      |         |        |               |                   |                 |                 |              | KernelScale:                     3.7441 |
|      |         |        |               |                   |                 |                 |              | Epsilon:                        0.20094 |
|   33 |       5 | Accept |        2.2734 |            1.1325 |          2.2734 |          2.2739 |          svm | BoxConstraint:                   344.75 |
|      |         |        |               |                   |                 |                 |              | KernelScale:                     3.7441 |
|      |         |        |               |                   |                 |                 |              | Epsilon:                        0.20094 |
|   34 |       5 | Accept |        2.6958 |           0.05227 |          2.2734 |          2.2739 |         tree | MinLeafSize:                          4 |
|      |         |        |               |                   |                 |                 |              | MaxNumSplits:                         5 |
|      |         |        |               |                   |                 |                 |              | NumVariablesToSample:                 6 |
|   35 |       8 | Accept |        4.1448 |          0.085799 |          2.2734 |          2.2735 |          svm | BoxConstraint:                   1.8227 |
|      |         |        |               |                   |                 |                 |              | KernelScale:                      977.3 |
|      |         |        |               |                   |                 |                 |              | Epsilon:                         2.0809 |
|   36 |       6 | Accept |        2.9801 |          0.064816 |          2.2734 |          2.2735 |         tree | MinLeafSize:                          3 |
|      |         |        |               |                   |                 |                 |              | MaxNumSplits:                        72 |
|      |         |        |               |                   |                 |                 |              | NumVariablesToSample:                 1 |
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|   37 |       6 | Accept |        2.6751 |           0.27642 |          2.2734 |          2.2735 |         tree | MinLeafSize:                          7 |
|      |         |        |               |                   |                 |                 |              | MaxNumSplits:                        31 |
|      |         |        |               |                   |                 |                 |              | NumVariablesToSample:                 3 |
|   38 |       6 | Accept |        4.1303 |           0.11917 |          2.2734 |          2.2735 |          svm | BoxConstraint:                 0.032336 |
|      |         |        |               |                   |                 |                 |              | KernelScale:                    0.34645 |
|      |         |        |               |                   |                 |                 |              | Epsilon:                         382.33 |
|   39 |       6 | Best   |        2.1806 |            0.3992 |          2.1806 |          2.1809 |          svm | BoxConstraint:                   197.52 |
|      |         |        |               |                   |                 |                 |              | KernelScale:                     4.7757 |
|      |         |        |               |                   |                 |                 |              | Epsilon:                       0.029282 |
|   40 |       7 | Accept |        2.6007 |          0.052877 |          2.1806 |          2.1809 |         tree | MinLeafSize:                         14 |
|      |         |        |               |                   |                 |                 |              | MaxNumSplits:                       311 |
|      |         |        |               |                   |                 |                 |              | NumVariablesToSample:                 4 |
|==========================================================================================================================================================|
| Iter | Active  | Eval   | log(1+valLoss)| Time for training | Observed min    | Estimated min   | Learner      | Hyperparameter:                 Value   |
|      | workers | result |               | & validation (sec)| validation loss | validation loss |              |                                         |
|==========================================================================================================================================================|
|   41 |       8 | Accept |        2.4301 |          0.064636 |          2.1806 |          2.1809 |         tree | MinLeafSize:                          7 |
|      |         |        |               |                   |                 |                 |              | MaxNumSplits:                        16 |
|      |         |        |               |                   |                 |                 |              | NumVariablesToSample:                 7 |
|   42 |       8 | Accept |        2.3683 |            4.1134 |          2.1806 |          2.1809 |     ensemble | Method:                         LSBoost |
|      |         |        |               |                   |                 |                 |              | LearnRate:                      0.52017 |
|      |         |        |               |                   |                 |                 |              | MinLeafSize:                          3 |
|      |         |        |               |                   |                 |                 |              | NumVariablesToSample:               NaN |
|   43 |       8 | Accept |        4.1303 |          0.077599 |          2.1806 |          2.1809 |          svm | BoxConstraint:                   188.58 |
|      |         |        |               |                   |                 |                 |              | KernelScale:                   0.009867 |
|      |         |        |               |                   |                 |                 |              | Epsilon:                         27.186 |
|   44 |       8 | Accept |        2.2817 |            4.1073 |          2.1806 |          2.1809 |     ensemble | Method:                         LSBoost |
|      |         |        |               |                   |                 |                 |              | LearnRate:                      0.39343 |
|      |         |        |               |                   |                 |                 |              | MinLeafSize:                          1 |
|      |         |        |               |                   |                 |                 |              | NumVariablesToSample:               NaN |
|   45 |       8 | Accept |        2.2905 |           0.33312 |          2.1806 |           2.181 |          svm | BoxConstraint:                   3.1495 |
|      |         |        |               |                   |                 |                 |              | KernelScale:                     1.5767 |
|      |         |        |               |                   |                 |                 |              | Epsilon:                       0.015324 |
|   46 |       8 | Accept |        2.1862 |            4.5949 |          2.1806 |           2.181 |     ensemble | Method:                         LSBoost |
|      |         |        |               |                   |                 |                 |              | LearnRate:                      0.39847 |
|      |         |        |               |                   |                 |                 |              | MinLeafSize:                          4 |
|      |         |        |               |                   |                 |                 |              | NumVariablesToSample:               NaN |
|   47 |       8 | Accept |        4.0238 |            0.1936 |          2.1806 |           2.181 |          svm | BoxConstraint:                   47.384 |
|      |         |        |               |                   |                 |                 |              | KernelScale:                      407.1 |
|      |         |        |               |                   |                 |                 |              | Epsilon:                          5.789 |
|   48 |       8 | Accept |        2.3271 |             5.613 |          2.1806 |           2.181 |     ensemble | Method:                             Bag |
|      |         |        |               |                   |                 |                 |              | LearnRate:                          NaN |
|      |         |        |               |                   |                 |                 |              | MinLeafSize:                         22 |
|      |         |        |               |                   |                 |                 |              | NumVariablesToSample:                 6 |
|   49 |       8 | Accept |        4.1303 |            4.2256 |          2.1806 |           2.181 |     ensemble | Method:                         LSBoost |
|      |         |        |               |                   |                 |                 |              | LearnRate:                      0.21695 |
|      |         |        |               |                   |                 |                 |              | MinLeafSize:                        156 |
|      |         |        |               |                   |                 |                 |              | NumVariablesToSample:               NaN |
|   50 |       8 | Accept |        4.1303 |            3.9433 |          2.1806 |           2.181 |     ensemble | Method:                         LSBoost |
|      |         |        |               |                   |                 |                 |              | LearnRate:                      0.24031 |
|      |         |        |               |                   |                 |                 |              | MinLeafSize:                        156 |
|      |         |        |               |                   |                 |                 |              | NumVariablesToSample:               NaN |
|   51 |       8 | Accept |        5.9837 |            25.376 |          2.1806 |          2.1808 |          svm | BoxConstraint:                   3.3336 |
|      |         |        |               |                   |                 |                 |              | KernelScale:                    0.20068 |
|      |         |        |               |                   |                 |                 |              | Epsilon:                         1.2333 |
|   52 |       8 | Best   |        2.1775 |            4.8819 |          2.1775 |          2.1775 |     ensemble | Method:                         LSBoost |
|      |         |        |               |                   |                 |                 |              | LearnRate:                      0.13486 |
|      |         |        |               |                   |                 |                 |              | MinLeafSize:                          2 |
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|      |         |        |               |                   |                 |                 |              | NumVariablesToSample:               NaN |
|   53 |       8 | Accept |        4.1472 |          0.098786 |          2.1775 |          2.1775 |          svm | BoxConstraint:                 0.024211 |
|      |         |        |               |                   |                 |                 |              | KernelScale:                     234.23 |
|      |         |        |               |                   |                 |                 |              | Epsilon:                        0.65694 |
|   54 |       7 | Accept |        16.058 |            30.775 |          2.1775 |          2.1774 |          svm | BoxConstraint:                  0.87942 |
|      |         |        |               |                   |                 |                 |              | KernelScale:                   0.042698 |
|      |         |        |               |                   |                 |                 |              | Epsilon:                         4.1252 |
|   55 |       7 | Accept |        4.1295 |            3.4872 |          2.1775 |          2.1774 |     ensemble | Method:                             Bag |
|      |         |        |               |                   |                 |                 |              | LearnRate:                          NaN |
|      |         |        |               |                   |                 |                 |              | MinLeafSize:                        165 |
|      |         |        |               |                   |                 |                 |              | NumVariablesToSample:                 5 |
|   56 |       7 | Accept |        4.1303 |          0.064431 |          2.1775 |          2.1774 |          svm | BoxConstraint:                0.0077264 |
|      |         |        |               |                   |                 |                 |              | KernelScale:                     11.935 |
|      |         |        |               |                   |                 |                 |              | Epsilon:                         22.619 |
|   57 |       6 | Accept |        5.2259 |            40.653 |          2.1775 |          2.1773 |          svm | BoxConstraint:                  0.95481 |
|      |         |        |               |                   |                 |                 |              | KernelScale:                  0.0033698 |
|      |         |        |               |                   |                 |                 |              | Epsilon:                       0.060804 |
|   58 |       6 | Accept |        4.5815 |            6.4959 |          2.1775 |          2.1773 |     ensemble | Method:                         LSBoost |
|      |         |        |               |                   |                 |                 |              | LearnRate:                    0.0048265 |
|      |         |        |               |                   |                 |                 |              | MinLeafSize:                          7 |
|      |         |        |               |                   |                 |                 |              | NumVariablesToSample:               NaN |
|   59 |       5 | Accept |        5.8709 |            9.4038 |          2.1775 |          2.1773 |          svm | BoxConstraint:                 0.046968 |
|      |         |        |               |                   |                 |                 |              | KernelScale:                  0.0027305 |
|      |         |        |               |                   |                 |                 |              | Epsilon:                         1.2478 |
|   60 |       5 | Accept |        4.1489 |          0.059253 |          2.1775 |          2.1773 |          svm | BoxConstraint:                0.0029753 |
|      |         |        |               |                   |                 |                 |              | KernelScale:                     357.77 |
|      |         |        |               |                   |                 |                 |              | Epsilon:                         1.3007 |
|==========================================================================================================================================================|
| Iter | Active  | Eval   | log(1+valLoss)| Time for training | Observed min    | Estimated min   | Learner      | Hyperparameter:                 Value   |
|      | workers | result |               | & validation (sec)| validation loss | validation loss |              |                                         |
|==========================================================================================================================================================|
|   61 |       8 | Accept |        2.1923 |            4.9912 |          2.1775 |           2.177 |     ensemble | Method:                         LSBoost |
|      |         |        |               |                   |                 |                 |              | LearnRate:                     0.027552 |
|      |         |        |               |                   |                 |                 |              | MinLeafSize:                         15 |
|      |         |        |               |                   |                 |                 |              | NumVariablesToSample:               NaN |
|   62 |       6 | Accept |        2.3235 |           0.13508 |          2.1775 |           2.177 |          svm | BoxConstraint:                 0.060693 |
|      |         |        |               |                   |                 |                 |              | KernelScale:                     1.9336 |
|      |         |        |               |                   |                 |                 |              | Epsilon:                         2.9377 |
|   63 |       6 | Accept |        4.1303 |           0.10264 |          2.1775 |           2.177 |          svm | BoxConstraint:                   283.72 |
|      |         |        |               |                   |                 |                 |              | KernelScale:                    0.66147 |
|      |         |        |               |                   |                 |                 |              | Epsilon:                         800.44 |
|   64 |       6 | Accept |        3.2671 |          0.056364 |          2.1775 |           2.177 |         tree | MinLeafSize:                          3 |
|      |         |        |               |                   |                 |                 |              | MaxNumSplits:                         2 |
|      |         |        |               |                   |                 |                 |              | NumVariablesToSample:                 2 |
|   65 |       7 | Accept |        4.1303 |          0.072693 |          2.1775 |           2.177 |          svm | BoxConstraint:                   958.92 |
|      |         |        |               |                   |                 |                 |              | KernelScale:                    0.70563 |
|      |         |        |               |                   |                 |                 |              | Epsilon:                         537.94 |
|   66 |       7 | Accept |        2.1872 |            4.1631 |          2.1775 |          2.1772 |     ensemble | Method:                         LSBoost |
|      |         |        |               |                   |                 |                 |              | LearnRate:                      0.12361 |
|      |         |        |               |                   |                 |                 |              | MinLeafSize:                         15 |
|      |         |        |               |                   |                 |                 |              | NumVariablesToSample:               NaN |
|   67 |       7 | Accept |        4.1303 |           0.18462 |          2.1775 |          2.1772 |         tree | MinLeafSize:                        140 |
|      |         |        |               |                   |                 |                 |              | MaxNumSplits:                         5 |
|      |         |        |               |                   |                 |                 |              | NumVariablesToSample:                 2 |
|   68 |       6 | Accept |         6.622 |             24.87 |          2.1775 |          1.4529 |          svm | BoxConstraint:                   154.74 |
|      |         |        |               |                   |                 |                 |              | KernelScale:                    0.43817 |
|      |         |        |               |                   |                 |                 |              | Epsilon:                       0.069304 |
|   69 |       6 | Accept |        2.2017 |            4.3959 |          2.1775 |          1.4529 |     ensemble | Method:                         LSBoost |
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|      |         |        |               |                   |                 |                 |              | LearnRate:                      0.10067 |
|      |         |        |               |                   |                 |                 |              | MinLeafSize:                         13 |
|      |         |        |               |                   |                 |                 |              | NumVariablesToSample:               NaN |
|   70 |       5 | Accept |        2.2891 |            4.5089 |          2.1775 |          2.1774 |     ensemble | Method:                         LSBoost |
|      |         |        |               |                   |                 |                 |              | LearnRate:                     0.024227 |
|      |         |        |               |                   |                 |                 |              | MinLeafSize:                         35 |
|      |         |        |               |                   |                 |                 |              | NumVariablesToSample:               NaN |
|   71 |       5 | Accept |        4.1303 |          0.062327 |          2.1775 |          2.1774 |          svm | BoxConstraint:                   1246.2 |
|      |         |        |               |                   |                 |                 |              | KernelScale:                   0.053143 |
|      |         |        |               |                   |                 |                 |              | Epsilon:                         53.963 |
|   72 |       8 | Accept |        2.2118 |            4.6015 |          2.1775 |          2.1774 |     ensemble | Method:                         LSBoost |
|      |         |        |               |                   |                 |                 |              | LearnRate:                      0.11646 |
|      |         |        |               |                   |                 |                 |              | MinLeafSize:                         14 |
|      |         |        |               |                   |                 |                 |              | NumVariablesToSample:               NaN |
|   73 |       6 | Accept |        2.1969 |            4.3467 |          2.1775 |          2.1774 |     ensemble | Method:                         LSBoost |
|      |         |        |               |                   |                 |                 |              | LearnRate:                      0.12319 |
|      |         |        |               |                   |                 |                 |              | MinLeafSize:                         14 |
|      |         |        |               |                   |                 |                 |              | NumVariablesToSample:               NaN |
|   74 |       6 | Accept |        4.1303 |           0.10057 |          2.1775 |          2.1774 |          svm | BoxConstraint:                  0.50824 |
|      |         |        |               |                   |                 |                 |              | KernelScale:                   0.015015 |
|      |         |        |               |                   |                 |                 |              | Epsilon:                         96.096 |
|   75 |       6 | Accept |         2.932 |          0.057265 |          2.1775 |          2.1774 |         tree | MinLeafSize:                          7 |
|      |         |        |               |                   |                 |                 |              | MaxNumSplits:                        22 |
|      |         |        |               |                   |                 |                 |              | NumVariablesToSample:                 1 |
|   76 |       7 | Accept |        2.7649 |           0.12548 |          2.1775 |          2.1774 |         tree | MinLeafSize:                         16 |
|      |         |        |               |                   |                 |                 |              | MaxNumSplits:                        43 |
|      |         |        |               |                   |                 |                 |              | NumVariablesToSample:                 3 |
|   77 |       7 | Accept |        2.1913 |            4.8165 |          2.1775 |          2.1761 |     ensemble | Method:                         LSBoost |
|      |         |        |               |                   |                 |                 |              | LearnRate:                     0.057539 |
|      |         |        |               |                   |                 |                 |              | MinLeafSize:                          3 |
|      |         |        |               |                   |                 |                 |              | NumVariablesToSample:               NaN |
|   78 |       7 | Accept |        2.4788 |            4.6057 |          2.1775 |          2.1774 |     ensemble | Method:                         LSBoost |
|      |         |        |               |                   |                 |                 |              | LearnRate:                      0.99513 |
|      |         |        |               |                   |                 |                 |              | MinLeafSize:                         19 |
|      |         |        |               |                   |                 |                 |              | NumVariablesToSample:               NaN |
|   79 |       8 | Accept |        6.1274 |            5.0102 |          2.1775 |          2.1759 |     ensemble | Method:                         LSBoost |
|      |         |        |               |                   |                 |                 |              | LearnRate:                     0.000767 |
|      |         |        |               |                   |                 |                 |              | MinLeafSize:                         37 |
|      |         |        |               |                   |                 |                 |              | NumVariablesToSample:               NaN |
|   80 |       8 | Accept |          4.13 |            3.7349 |          2.1775 |           2.176 |     ensemble | Method:                             Bag |
|      |         |        |               |                   |                 |                 |              | LearnRate:                          NaN |
|      |         |        |               |                   |                 |                 |              | MinLeafSize:                        171 |
|      |         |        |               |                   |                 |                 |              | NumVariablesToSample:                 5 |
|==========================================================================================================================================================|
| Iter | Active  | Eval   | log(1+valLoss)| Time for training | Observed min    | Estimated min   | Learner      | Hyperparameter:                 Value   |
|      | workers | result |               | & validation (sec)| validation loss | validation loss |              |                                         |
|==========================================================================================================================================================|
|   81 |       8 | Accept |        2.2406 |             6.658 |          2.1775 |           2.176 |     ensemble | Method:                             Bag |
|      |         |        |               |                   |                 |                 |              | LearnRate:                          NaN |
|      |         |        |               |                   |                 |                 |              | MinLeafSize:                          3 |
|      |         |        |               |                   |                 |                 |              | NumVariablesToSample:                 7 |
|   82 |       8 | Accept |        2.6476 |          0.054688 |          2.1775 |           2.176 |         tree | MinLeafSize:                         28 |
|      |         |        |               |                   |                 |                 |              | MaxNumSplits:                       129 |
|      |         |        |               |                   |                 |                 |              | NumVariablesToSample:                 7 |
|   83 |       8 | Accept |         2.255 |            6.6774 |          2.1775 |           2.176 |     ensemble | Method:                             Bag |
|      |         |        |               |                   |                 |                 |              | LearnRate:                          NaN |
|      |         |        |               |                   |                 |                 |              | MinLeafSize:                          3 |
|      |         |        |               |                   |                 |                 |              | NumVariablesToSample:                 7 |
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|   84 |       7 | Accept |        2.6645 |            10.337 |          2.1775 |           2.176 |          svm | BoxConstraint:                   334.64 |
|      |         |        |               |                   |                 |                 |              | KernelScale:                     2.0733 |
|      |         |        |               |                   |                 |                 |              | Epsilon:                       0.039959 |
|   85 |       7 | Accept |        4.1303 |          0.062936 |          2.1775 |           2.176 |          svm | BoxConstraint:                   88.122 |
|      |         |        |               |                   |                 |                 |              | KernelScale:                 0.00080559 |
|      |         |        |               |                   |                 |                 |              | Epsilon:                         80.763 |
|   86 |       7 | Accept |        2.2384 |            5.8157 |          2.1775 |          2.1761 |     ensemble | Method:                             Bag |
|      |         |        |               |                   |                 |                 |              | LearnRate:                          NaN |
|      |         |        |               |                   |                 |                 |              | MinLeafSize:                          1 |
|      |         |        |               |                   |                 |                 |              | NumVariablesToSample:                 6 |
|   87 |       7 | Accept |        6.0666 |            6.0896 |          2.1775 |          2.1759 |     ensemble | Method:                         LSBoost |
|      |         |        |               |                   |                 |                 |              | LearnRate:                   0.00091284 |
|      |         |        |               |                   |                 |                 |              | MinLeafSize:                          1 |
|      |         |        |               |                   |                 |                 |              | NumVariablesToSample:               NaN |
|   88 |       7 | Accept |        3.2269 |          0.045413 |          2.1775 |          2.1759 |         tree | MinLeafSize:                         14 |
|      |         |        |               |                   |                 |                 |              | MaxNumSplits:                         6 |
|      |         |        |               |                   |                 |                 |              | NumVariablesToSample:                 1 |
|   89 |       8 | Accept |        2.2427 |            6.3348 |          2.1775 |           2.176 |     ensemble | Method:                             Bag |
|      |         |        |               |                   |                 |                 |              | LearnRate:                          NaN |
|      |         |        |               |                   |                 |                 |              | MinLeafSize:                          3 |
|      |         |        |               |                   |                 |                 |              | NumVariablesToSample:                 7 |
|   90 |       6 | Accept |        4.5354 |            8.5876 |          2.1775 |          2.1768 |          svm | BoxConstraint:                 0.022073 |
|      |         |        |               |                   |                 |                 |              | KernelScale:                  0.0034124 |
|      |         |        |               |                   |                 |                 |              | Epsilon:                         2.9088 |
|   91 |       6 | Accept |        2.2072 |            4.8166 |          2.1775 |          2.1768 |     ensemble | Method:                         LSBoost |
|      |         |        |               |                   |                 |                 |              | LearnRate:                     0.067559 |
|      |         |        |               |                   |                 |                 |              | MinLeafSize:                          1 |
|      |         |        |               |                   |                 |                 |              | NumVariablesToSample:               NaN |
|   92 |       6 | Accept |        3.0936 |            4.1763 |          2.1775 |          2.1768 |     ensemble | Method:                         LSBoost |
|      |         |        |               |                   |                 |                 |              | LearnRate:                     0.011017 |
|      |         |        |               |                   |                 |                 |              | MinLeafSize:                         76 |
|      |         |        |               |                   |                 |                 |              | NumVariablesToSample:               NaN |
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__________________________________________________________
Optimization completed.
Total iterations: 92
Total elapsed time: 65.349 seconds
Total time for training and validation: 369.4973 seconds

Best observed learner is an ensemble model with:
    Learner:              ensemble
    Method:                LSBoost
    LearnRate:             0.13486
    MinLeafSize:                 2
    NumVariablesToSample:      NaN
Observed log(1 + valLoss): 2.1775
Time for training and validation: 4.8819 seconds

Best estimated learner (returned model) is an ensemble model with:
    Learner:              ensemble
    Method:                LSBoost
    LearnRate:             0.13486
    MinLeafSize:                 2
    NumVariablesToSample:      NaN
Estimated log(1 + valLoss): 2.1768
Estimated time for training and validation: 4.7705 seconds

Documentation for fitrauto display
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The final model returned by fitrauto corresponds to the best estimated learner. Before returning
the model, the function retrains it using the entire training data (carsTrain), the listed Learner (or
model) type, and the displayed hyperparameter values.

Create Simple Model

Create a simple linear regression model linearMdl by using the fitlm function.

linearMdl = fitlm(carsTrain);

Although the linearMdl object does not have the exact same properties and methods as the
autoMdl object, you can use both models to predict response values for new data by using the
predict object function.

Compare Test Set Performance of Models

Compare the performance of the linearMdl and autoMdl models on the test data set. For each
model, compute the test set mean squared error (MSE). Smaller MSE values indicate better
performance.

ypred = predict(linearMdl,carsTest);
linearMSE = mean((carsTest.MPG-ypred).^2,"omitnan")

linearMSE = 10.0558

autoMSE = loss(autoMdl,carsTest,"MPG")

autoMSE = 7.2140

The autoMdl model seems to outperform the linearMdl model.

Input Arguments
Tbl — Sample data
table

Sample data, specified as a table. Each row of Tbl corresponds to one observation, and each column
corresponds to one predictor. Optionally, Tbl can contain one additional column for the response
variable. Multicolumn variables and cell arrays other than cell arrays of character vectors are not
accepted.

If Tbl contains the response variable, and you want to use all remaining variables in Tbl as
predictors, specify the response variable using ResponseVarName.

If Tbl contains the response variable, and you want to use only a subset of the remaining variables in
Tbl as predictors, specify a formula using formula.

If Tbl does not contain the response variable, specify a response variable using Y. The length of the
response variable and the number of rows in Tbl must be equal.
Data Types: table

ResponseVarName — Response variable name
name of variable in Tbl

Response variable name, specified as the name of a variable in Tbl. The response variable must be a
numeric vector.
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You must specify ResponseVarName as a character vector or string scalar. For example, if the
response variable Y is stored as Tbl.Y, then specify it as "Y". Otherwise, the software treats all
columns of Tbl, including Y, as predictors when training a model.
Data Types: char | string

formula — Explanatory model of response variable and subset of predictor variables
character vector | string scalar

Explanatory model of the response variable and a subset of the predictor variables, specified as a
character vector or string scalar in the form "Y~x1+x2+x3". In this form, Y represents the response
variable, and x1, x2, and x3 represent the predictor variables.

To specify a subset of variables in Tbl as predictors for training the model, use a formula. If you
specify a formula, then the software does not use any variables in Tbl that do not appear in
formula.

The variable names in the formula must be both variable names in Tbl
(Tbl.Properties.VariableNames) and valid MATLAB identifiers. You can verify the variable
names in Tbl by using the isvarname function. If the variable names are not valid, then you can
convert them by using the matlab.lang.makeValidName function.
Data Types: char | string

Y — Response data
numeric vector

Response data, specified as a numeric vector. The length of Y must be equal to the number of rows in
Tbl or X.

To specify the response variable name, use the ResponseName name-value argument.
Data Types: single | double

X — Predictor data
numeric matrix

Predictor data, specified as a numeric matrix.

Each row of X corresponds to one observation, and each column corresponds to one predictor.

The length of Y and the number of rows in X must be equal.

To specify the names of the predictors in the order of their appearance in X, use the
PredictorNames name-value argument.
Data Types: single | double

Note The software treats NaN, empty character vector (''), empty string (""), <missing>, and
<undefined> elements as missing data. The software removes rows of data corresponding to
missing values in the response variable. However, the treatment of missing values in the predictor
data X or Tbl varies among models (or learners).
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Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example:
"HyperparameterOptimizationOptions",struct("MaxObjectiveEvaluations",200,"Ver
bose",2) specifies to run 200 iterations of the optimization process (that is, try 200 model
hyperparameter combinations), and to display information in the Command Window about the next
model hyperparameter combination to be evaluated.

Optimizer Options

Learners — Types of regression models
"auto" (default) | "all" | "all-linear" | "all-nonlinear" | one or more learner names

Types of regression models to try during the optimization, specified as a value in the first table below
or one or more learner names in the second table. Specify multiple learner names as a string or cell
array.

Value Description
"auto" fitrauto automatically selects a subset of learners,

suitable for the given predictor and response data. The
learners can have model hyperparameter values that
differ from the default. For more information, see
“Automatic Selection of Learners” on page 35-2460.

Note To provide the best hyperparameter optimization
experience, the automatic selection of learners behavior
is subject to frequent changes. For a more consistent
selection of learners across software releases, explicitly
specify the models you want to include.

"all" fitrauto selects all possible learners.
"all-linear" fitrauto selects linear ("linear") learners.
"all-nonlinear" fitrauto selects all nonlinear learners: "ensemble",

"gp", "kernel", "net", "svm" (with a Gaussian or
polynomial kernel), and "tree".

Note For greater efficiency, fitrauto does not select the following combinations of models when
you specify one of the previous values.

• "kernel" and "svm" (with a Gaussian kernel) — fitrauto chooses the first when the predictor
data has more than 11,000 observations, and the second otherwise.

• "linear" and "svm" (with a linear kernel) — fitrauto chooses the first.
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Learner Name Description
"ensemble" Ensemble regression model
"gp" Gaussian process regression model
"kernel" Kernel regression model
"linear" Linear regression model for high-dimensional data
"net" Neural network regression model
"svm" Support vector machine regression model
"tree" Binary decision regression tree

Example: "Learners","all"
Example: "Learners","ensemble"
Example: "Learners",["gp","svm"]

OptimizeHyperparameters — Hyperparameters to optimize
"auto" (default) | "all"

Hyperparameters to optimize, specified as "auto" or "all". The optimizable hyperparameters
depend on the model (or learner), as described in this table.

Learner Name Hyperparameters for
"auto"

Additional
Hyperparameters for
"all"

Notes

"ensemble" Method,
NumLearningCycles,
LearnRate,
MinLeafSize

MaxNumSplits,
NumVariablesToSample

When the ensemble
Method value is a
boosting method, the
ensemble NumBins value
is 50.

For more information,
including hyperparameter
search ranges, see
OptimizeHyperparamet
ers. Note that you cannot
change hyperparameter
search ranges when you
use fitrauto.
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Learner Name Hyperparameters for
"auto"

Additional
Hyperparameters for
"all"

Notes

"gp" Sigma BasisFunction,
KernelFunction,
KernelScale
(KernelParameters),
Standardize

The fitrauto function
ignores all ARD kernel
options and, therefore,
chooses among the
KernelFunction values
of "exponential",
"matern32",
"matern52",
"rationalquadratic",
and
"squaredexponential"
when the
OptimizeHyperparamet
ers value is "all".

For more information,
including hyperparameter
search ranges, see
OptimizeHyperparamet
ers. Note that you cannot
change hyperparameter
search ranges when you
use fitrauto.

"kernel" Epsilon, KernelScale,
Lambda

Learner,
NumExpansionDimensio
ns

For more information,
including hyperparameter
search ranges, see
OptimizeHyperparamet
ers. Note that you cannot
change hyperparameter
search ranges when you
use fitrauto.

"linear" Lambda, Learner Regularization For more information,
including hyperparameter
search ranges, see
OptimizeHyperparamet
ers. Note that you cannot
change hyperparameter
search ranges when you
use fitrauto.

"net" Activations, Lambda,
LayerSizes,
Standardize

LayerBiasesInitializ
er,
LayerWeightsInitiali
zer

For more information,
including hyperparameter
search ranges, see
OptimizeHyperparamet
ers. Note that you cannot
change hyperparameter
search ranges when you
use fitrauto.
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Learner Name Hyperparameters for
"auto"

Additional
Hyperparameters for
"all"

Notes

"svm" BoxConstraint,
Epsilon, KernelScale

KernelFunction,
PolynomialOrder,
Standardize

When the Learners
value is "all-
nonlinear", the
fitrauto function
chooses among the
KernelFunction values
of "gaussian" and
"polynomial",
regardless of the
OptimizeHyperparamet
ers value.

For more information,
including hyperparameter
search ranges, see
OptimizeHyperparamet
ers. Note that you cannot
change hyperparameter
search ranges when you
use fitrauto.

"tree" MinLeafSize MaxNumSplits For more information,
including hyperparameter
search ranges, see
OptimizeHyperparamet
ers. Note that you cannot
change hyperparameter
search ranges when you
use fitrauto.

Note When Learners is set to a value other than "auto", the default values for the model
hyperparameters not being optimized match the default fit function values, unless otherwise
indicated in the table notes. When Learners is set to "auto", the optimized hyperparameter search
ranges and nonoptimized hyperparameter values can vary, depending on the characteristics of the
training data. For more information, see “Automatic Selection of Learners” on page 35-2460.

Example: "OptimizeHyperparameters","all"

HyperparameterOptimizationOptions — Options for optimization

structure

Options for the optimization, specified as a structure. All fields in the structure are optional.
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Field Name Values Default
Optimizer • "bayesopt" — Uses Bayesian

optimization. For more details, see
“Bayesian Optimization” on page 35-
2460.

• "asha" — Uses ASHA optimization.
For more details, see “ASHA
Optimization” on page 35-2460.

"bayesopt"

MaxObjectiveEvaluatio
ns

Maximum number of iterations (objective
function evaluations), specified as a
positive integer

30*L, where L is the
number of learners (see
Learners)

• This value is the default
when the Optimizer
field is set to
"bayesopt".

• For the default value
when the Optimizer
field is set to "asha",
see “Number of ASHA
Iterations” on page 35-
2461.

MaxTime Time limit, specified as a positive real
number. The time limit is in seconds, as
measured by tic and toc. Run time can
exceed MaxTime because MaxTime does
not interrupt function evaluations.

Inf

ShowPlots Logical value indicating whether to show a
plot of the optimization progress. If true,
this field plots the observed minimum
validation loss against the iteration
number. When you use Bayesian
optimization, the plot also shows the
estimated minimum validation loss.

true

SaveIntermediateResul
ts

Logical value indicating whether to save
results. If true, this field overwrites a
workspace variable at each iteration. The
variable is a BayesianOptimization
object named BayesoptResults if you
use Bayesian optimization, and a table
named ASHAResults if you use ASHA
optimization.

false
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Field Name Values Default
Verbose Display at the command line:

• 0 — No iterative display
• 1 — Iterative display
• 2 — Iterative display with additional

information about the next point to be
evaluated

1

UseParallel Logical value indicating whether to run
the optimization in parallel, which
requires Parallel Computing Toolbox. Due
to the nonreproducibility of parallel
timing, parallel optimization does not
necessarily yield reproducible results.

false

Repartition Logical value indicating whether to
repartition the cross-validation at every
iteration. If false, the optimizer uses a
single partition for the optimization.

true usually gives the most robust results
because this setting takes partitioning
noise into account. However, for good
results, true requires at least twice as
many function evaluations.

false

MaxTrainingSetSize Maximum number of observations in each
training set for ASHA optimization,
specified as a positive integer. This value
matches the largest training set size.

Note If you want to specify this value, the
Optimizer field must be set to "asha".

Largest available training
partition size

• When the optimization
uses k-fold cross-
validation, this value is
(k – 1)*n/k, where n
is the total number of
observations.

• When the optimization
uses a cvpartition
object cvp, this value is
max(cvp.TrainSize).

• When the optimization
uses a holdout fraction
p, this value is (1 –
p)*n, where n is the
total number of
observations.
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Field Name Values Default
MinTrainingSetSize Minimum number of observations in each

training set for ASHA optimization,
specified as a positive integer. This value
is a lower bound for the smallest training
set size.

Note If you want to specify this value, the
Optimizer field must be set to "asha".

100

Specify only one of the following three options.
CVPartition cvpartition object, created by

cvpartition
"Kfold",5 if you do not
specify any cross-validation
fieldHoldout Scalar in the range (0,1) representing

the holdout fraction
Kfold Integer greater than 1

Example: "HyperparameterOptimizationOptions",struct("UseParallel",true)

Regression Options

CategoricalPredictors — Categorical predictors list
vector of positive integers | logical vector | character matrix | string array | cell array of character
vectors | "all"

Categorical predictors list, specified as one of the values in this table.

Value Description
Vector of positive
integers

Each entry in the vector is an index value indicating that the corresponding
predictor is categorical. The index values are between 1 and p, where p is
the number of predictors used to train the model.

If fitrauto uses a subset of input variables as predictors, then the
function indexes the predictors using only the subset. The
CategoricalPredictors values do not count the response variable,
observation weights variable, or any other variables that the function does
not use.

Logical vector A true entry means that the corresponding predictor is categorical. The
length of the vector is p.

Character matrix Each row of the matrix is the name of a predictor variable. The names must
match the entries in PredictorNames. Pad the names with extra blanks
so each row of the character matrix has the same length.

String array or cell
array of character
vectors

Each element in the array is the name of a predictor variable. The names
must match the entries in PredictorNames.

"all" All predictors are categorical.

By default, if the predictor data is in a table (Tbl), fitrauto assumes that a variable is categorical if
it is a logical vector, categorical vector, character array, string array, or cell array of character
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vectors. However, learners that use decision trees assume that mathematically ordered categorical
vectors are continuous variables. If the predictor data is a matrix (X), fitrauto assumes that all
predictors are continuous. To identify any other predictors as categorical predictors, specify them by
using the CategoricalPredictors name-value argument.

For more information on how fitting functions treat categorical predictors, see “Automatic Creation of
Dummy Variables” on page 2-50.
Example: "CategoricalPredictors","all"
Data Types: single | double | logical | char | string | cell

PredictorNames — Predictor variable names
string array of unique names | cell array of unique character vectors

Predictor variable names, specified as a string array of unique names or cell array of unique
character vectors. The functionality of PredictorNames depends on the way you supply the training
data.

• If you supply X and Y, then you can use PredictorNames to assign names to the predictor
variables in X.

• The order of the names in PredictorNames must correspond to the column order of X. That
is, PredictorNames{1} is the name of X(:,1), PredictorNames{2} is the name of
X(:,2), and so on. Also, size(X,2) and numel(PredictorNames) must be equal.

• By default, PredictorNames is {'x1','x2',...}.
• If you supply Tbl, then you can use PredictorNames to choose which predictor variables to use

in training. That is, fitrauto uses only the predictor variables in PredictorNames and the
response variable during training.

• PredictorNames must be a subset of Tbl.Properties.VariableNames and cannot include
the name of the response variable.

• By default, PredictorNames contains the names of all predictor variables.
• A good practice is to specify the predictors for training using either PredictorNames or

formula, but not both.

Example: "PredictorNames",
["SepalLength","SepalWidth","PetalLength","PetalWidth"]

Data Types: string | cell

ResponseName — Response variable name
"Y" (default) | character vector | string scalar

Response variable name, specified as a character vector or string scalar.

• If you supply Y, then you can use ResponseName to specify a name for the response variable.
• If you supply ResponseVarName or formula, then you cannot use ResponseName.

Example: "ResponseName","response"
Data Types: char | string

Weights — Observation weights
positive numeric vector | name of variable in Tbl
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Observation weights, specified as a positive numeric vector or the name of a variable in Tbl. The
software weights each observation in X or Tbl with the corresponding value in Weights. The length
of Weights must equal the number of rows in X or Tbl.

If you specify the input data as a table Tbl, then Weights can be the name of a variable in Tbl that
contains a numeric vector. In this case, you must specify Weights as a character vector or string
scalar. For example, if the weights vector W is stored as Tbl.W, then specify it as "W". Otherwise, the
software treats all columns of Tbl, including W, as predictors or the response variable when training
the model.

fitrauto ignores observation weights for Gaussian process regression models. That is, when
Learners includes "gp" models, the function ignores the Weights name-value argument for those
models.

By default, Weights is ones(n,1), where n is the number of observations in X or Tbl.

The software normalizes Weights to sum to 1.
Data Types: single | double | char | string

Output Arguments
Mdl — Trained regression model
regression model object

Trained regression model, returned as one of the regression model objects in this table.

Learner Name Returned Model Object
"ensemble" CompactRegressionEnsemble
"gp" CompactRegressionGP
"kernel" RegressionKernel
"linear" RegressionLinear
"net" CompactRegressionNeuralNetwork
"svm" CompactRegressionSVM
"tree" CompactRegressionTree

OptimizationResults — Optimization results
BayesianOptimization object | table

Optimization results, returned as a BayesianOptimization object if you use Bayesian optimization
or a table if you use ASHA optimization. For more information, see “Bayesian Optimization” on page
35-2460 and “ASHA Optimization” on page 35-2460.

More About
Verbose Display

When you set the Verbose field of the HyperparameterOptimizationOptions name-value
argument to 1 or 2, the fitrauto function provides an iterative display of the optimization results.

The following table describes the columns in the display and their entries.
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Column Name Description
Iter Iteration number — You can set a limit to the

number of iterations by using the
MaxObjectiveEvaluations field of the
HyperparameterOptimizationOptions
name-value argument.

Active workers Number of active parallel workers — This column
appears only when you run the optimization in
parallel by setting the UseParallel field of the
HyperparameterOptimizationOptions
name-value argument to true.

Eval result One of the following evaluation results:

• Best — The learner and hyperparameter
values at this iteration give the minimum
observed validation loss computed so far. That
is, the log(1 + valLoss) value is the
smallest computed so far.

• Accept — The learner and hyperparameter
values at this iteration give meaningful (for
example, non-NaN) validation loss values.

• Error — The learner and hyperparameter
values at this iteration result in an error (for
example, a log(1 + valLoss) value of
NaN).

log(1 + valLoss) Log-transformed validation loss computed for the
learner and hyperparameter values at this
iteration — In particular, fitrauto computes
log(1 + valLoss), where valLoss is the cross-
validation mean squared error (MSE) by default.
You can change the validation scheme by using
the CVPartition, Holdout, or Kfold field of
the 'HyperparameterOptimizationOptions'
name-value argument.

Time for training & validation (sec) Time taken to train and compute the validation
loss for the model with the learner and
hyperparameter values at this iteration (in
seconds) — When you use Bayesian optimization,
this value excludes the time required to update
the objective function model maintained by the
Bayesian optimization process. For more details,
see “Bayesian Optimization” on page 35-2460.
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Column Name Description
Observed min log(1 + valLoss) Observed minimum log-transformed validation

loss computed so far — This value corresponds to
the smallest log(1 + valLoss) value
computed so far in the optimization process.

By default, fitrauto returns a plot of the
optimization that displays dark blue points for the
observed minimum log-transformed validation
loss values. This plot does not appear when the
ShowPlots field of the
HyperparameterOptimizationOptions
name-value argument is set to false.

Estimated min log(1 + valLoss) Estimated minimum log-transformed validation
loss — When you use Bayesian optimization,
fitrauto updates, at each iteration, an objective
function model maintained by the Bayesian
optimization process, and uses this model to
estimate the minimum log-transformed validation
loss. For more details, see “Bayesian
Optimization” on page 35-2460.

By default, fitrauto returns a plot of the
optimization that displays light blue points for the
estimated minimum log-transformed validation
loss values. This plot does not appear when the
ShowPlots field of the
HyperparameterOptimizationOptions
name-value argument is set to false.

Note This column appears only when you use
Bayesian optimization, that is, when the
Optimizer field of the
HyperparameterOptimizationOptions
name-value argument is set to "bayesopt".

Training set size Number of observations used in each training set
at this iteration — Use the
MaxTrainingSetSize and
MinTrainingSetSize fields of the
HyperparameterOptimizationOptions
name-value argument to specify bounds for the
training set size. For more details, see “ASHA
Optimization” on page 35-2460.

Note This column appears only when you use
ASHA optimization, that is, when the Optimizer
field of the
HyperparameterOptimizationOptions
name-value argument is set to "asha".
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Column Name Description
Learner Model type evaluated at this iteration — Specify

the learners used in the optimization by using the
Learners name-value argument.

Hyperparameter: Value Hyperparameter values at this iteration —
Specify the hyperparameters used in the
optimization by using the
OptimizeHyperparameters name-value
argument.

The display also includes these model descriptions:

• Best observed learner — This model, with the listed learner type and hyperparameter values,
yields the final observed minimum validation loss (log-transformed). When you use ASHA
optimization, fitrauto retrains the model on the entire training data set and returns it as the
Mdl output.

• Best estimated learner — This model, with the listed learner type and hyperparameter
values, yields the final estimated minimum validation loss (log-transformed) when you use
Bayesian optimization. In this case, fitrauto retrains the model on the entire training data set
and returns it as the Mdl output.

Note The Best estimated learner model appears only when you use Bayesian optimization,
that is, when the Optimizer field of the HyperparameterOptimizationOptions name-value
argument is set to "bayesopt".

Tips
• Depending on the size of your data set, the number of learners you specify, and the optimization

method you choose, fitrauto can take some time to run.

• If you have a Parallel Computing Toolbox license, you can speed up computations by running
the optimization in parallel. To do so, specify
"HyperparameterOptimizationOptions",struct("UseParallel",true). You can
include additional fields in the structure to control other aspects of the optimization. See
HyperparameterOptimizationOptions.

• If fitrauto with Bayesian optimization takes a long time to run because of the number of
observations in your training set (for example, over 10,000), consider using fitrauto with
ASHA optimization instead. ASHA optimization often finds good solutions faster than Bayesian
optimization for data sets with many observations. To use ASHA optimization, specify
"HyperparameterOptimizationOptions",struct("Optimizer","asha"). You can
include additional fields in the structure to control additional aspects of the optimization. In
particular, if you have a time constraint, specify the MaxTime field of the
HyperparameterOptimizationOptions structure to limit the number of seconds fitrauto
runs.
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Algorithms
Automatic Selection of Learners

When you specify "Learners","auto", the fitrauto function analyzes the predictor and response
data in order to choose appropriate learners. The function considers whether the data set has any of
these characteristics:

• Categorical predictors
• Missing values for more than 5% of the data
• Wide data, where the number of predictors is greater than or equal to the number of observations
• High-dimensional data, where the number of predictors is greater than 100
• Large data, where the number of observations is greater than 50,000

The selected learners are always a subset of those listed in the Learners table. However, the
associated models tried during the optimization process can have different default values for
hyperparameters not being optimized, as well as different search ranges for hyperparameters being
optimized.

Bayesian Optimization

The goal of Bayesian optimization, and optimization in general, is to find a point that minimizes an
objective function. In the context of fitrauto, a point is a learner type together with a set of
hyperparameter values for the learner (see Learners and OptimizeHyperparameters), and the
objective function is log(1 + valLoss), where valLoss is the cross-validation mean squared error
(MSE), by default. The Bayesian optimization implemented in fitrauto internally maintains a multi-
RegressionGP model of the objective function. That is, the objective function model splits along the
learner type and, for a given learner, the model is a Gaussian process regression (GPR) model. (This
underlying model differs from the single GPR model employed by other Statistics and Machine
Learning Toolbox functions that use Bayesian optimization.) Bayesian optimization trains the
underlying model by using objective function evaluations, and determines the next point to evaluate
by using an acquisition function ("expected-improvement"). For more information, see “Expected
Improvement” on page 10-4. The acquisition function balances between sampling at points with low
modeled objective function values and exploring areas that are not well modeled yet. At the end of
the optimization, fitrauto chooses the point with the minimum objective function model value,
among the points evaluated during the optimization. For more information, see the
"Criterion","min-visited-mean" name-value argument of bestPoint.

ASHA Optimization

The asynchronous successive halving algorithm (ASHA) in fitrauto randomly chooses several
models with different hyperparameter values (see Learners and OptimizeHyperparameters) and
trains them on a small subset of the training data. If the performance of a particular model is
promising, the model is promoted and trained on a larger amount of the training data. This process
repeats, and successful models are trained on progressively larger amounts of data. By default, at the
end of the optimization, fitrauto chooses the model that has the lowest log(1 + valLoss) value,
where valLoss is the cross-validation mean squared error (MSE).

At each iteration, ASHA either chooses a previously trained model and promotes it (that is, retrains
the model using more training data), or selects a new model (learner type and hyperparameter
values) using random search. ASHA promotes models as follows:
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• The algorithm searches for the group of models with the largest training set size for which this
condition does not hold: floor(g/4) of the models have been promoted, where g is the number
of models in the group.

• Among the group of models, ASHA chooses the model with the lowest log(1 + valLoss) value and
retrains that model with 4*(Training Set Size) observations.

• If no such group of models exists, then ASHA selects a new model instead of promoting an old
one, and trains the new model using the smallest training set size.

When a model is trained on a subset of the training data, ASHA computes the cross-validation MSE in
the as follows:

• For each training fold, the algorithm selects a random sample of the observations (of size
Training set size) using nonstratified sampling, and then trains a model on that subset of
data.

• The algorithm then tests the fitted model on the test fold (that is, the observations not in the
training fold) and computes the MSE.

• Finally, the algorithm averages the results across all folds.

For more information on ASHA, see [1].

Number of ASHA Iterations

When you use ASHA optimization, the default number of iterations depends on the number of
observations in the data, the number of learner types, the use of parallel processing, and the type of
cross-validation. The algorithm selects the number of iterations such that, for L learner types (see
Learners), fitrauto trains L models on the largest training set size.

This table describes the default number of iterations based on the given specifications when you use
5-fold cross-validation. Note that n represents the number of observations and L represents the
number of learner types.

Number of Observations

n

Default Number of Iterations

(run in serial)

Default Number of Iterations

(run in parallel)
n < 500 30*L — n is too small to

implement ASHA optimization,
and fitrauto implements
random search to find and
assess models instead.

30*L — n is too small to
implement ASHA optimization,
and fitrauto implements
random search to find and
assess models instead.

500 ≤ n < 2000 5*L 5*(L + 1)
2000 ≤ n < 8000 21*L 21*(L + 1)
8000 ≤ n < 32,000 85*L 85*(L + 1)
32,000 ≤ n 341*L 341*(L + 1)

Alternative Functionality
• If you are unsure which models work best for your data set, you can alternatively use the

Regression Learner app. Using the app, you can perform hyperparameter tuning for different
models, and choose the optimized model that performs best. Although you must select a specific
model before you can tune the model hyperparameters, Regression Learner provides greater
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flexibility for selecting optimizable hyperparameters and setting hyperparameter values. The app
also allows you to train a variety of linear regression models (see “Linear Regression Models” on
page 24-16). However, you cannot optimize in parallel, optimize "linear" or "kernel" learners,
specify observation weights, or use ASHA optimization in the app. For more information, see
“Hyperparameter Optimization in Regression Learner App” on page 24-35.

• If you know which models might suit your data, you can alternatively use the corresponding model
fit functions and specify the OptimizeHyperparameters name-value argument to tune
hyperparameters. You can compare the results across the models to select the best regression
model. For an example of this process applied to classification models, see “Moving Towards
Automating Model Selection Using Bayesian Optimization” on page 19-208.

Version History
Introduced in R2020b

Learners include neural network models
Behavior changed in R2022a

Starting in R2022a, the list of available learners includes neural network models. When you specify
"all" or "all-nonlinear" for the Learners name-value argument, fitrauto includes neural
network models as part of the model selection and hyperparameter tuning process. The function also
considers neural network models when you specify Learners as "auto", depending on the
characteristics of your data set.

To omit neural network models from the model selection process, you can explicitly specify the
models you want to include. For example, to use tree and ensemble models only, specify
"Learners",["tree","ensemble"].

Automatic selection of learners includes linear models when data is wide after categorical
expansion
Behavior changed in R2022a

Starting in R2022a, if you specify Learners as "auto" and the data has more predictors than
observations after the expansion of the categorical predictors (see “Automatic Creation of Dummy
Variables” on page 2-50), then fitrauto includes linear learners ("linear") along with other
models during the hyperparameter optimization. In previous releases, linear learners were not
considered.

Regularization method determines the linear learner solver used during the optimization
process
Behavior changed in R2021a

Starting in R2021a, when you specify to try a linear learner ("linear"), fitrauto uses either a
Limited-memory BFGS (LBFGS) solver or a Sparse Reconstruction by Separable Approximation
(SpaRSA) solver, depending on the regularization type selected during that iteration of the
optimization process.

• When Regularization is 'ridge', the function sets the Solver value to 'lbfgs' by default.
• When Regularization is 'lasso', the function sets the Solver value to 'sparsa' by default.

In previous releases, the default solver selection during the optimization process depended on various
factors, including the regularization type, learner type, and number of predictors. For more
information, see Solver.
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Extended Capabilities
Automatic Parallel Support
Accelerate code by automatically running computation in parallel using Parallel Computing Toolbox™.

To perform parallel hyperparameter optimization, use the
"HyperparameterOptimizationOptions",struct("UseParallel",true) name-value
argument in the call to this function.

For more general information about parallel computing, see “Run MATLAB Functions with Automatic
Parallel Support” (Parallel Computing Toolbox).

See Also
fitrensemble | fitrgp | fitrkernel | fitrlinear | fitrnet | fitrsvm | fitrtree

Topics
“Automated Regression Model Selection with Bayesian and ASHA Optimization” on page 19-235
“Hyperparameter Optimization in Regression Learner App” on page 24-35
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fitrgam
Fit generalized additive model (GAM) for regression

Syntax
Mdl = fitrgam(Tbl,ResponseVarName)
Mdl = fitrgam(Tbl,formula)
Mdl = fitrgam(Tbl,Y)
Mdl = fitrgam(X,Y)
Mdl = fitrgam( ___ ,Name,Value)

Description
Mdl = fitrgam(Tbl,ResponseVarName) returns a generalized additive model on page 35-2492
Mdl trained using the sample data contained in the table Tbl. The input argument
ResponseVarName is the name of the variable in Tbl that contains the response values for
regression.

Mdl = fitrgam(Tbl,formula) uses the model specification argument formula to specify the
response variable and predictor variables in Tbl. You can specify a subset of predictor variables and
interaction terms for predictor variables by using formula.

Mdl = fitrgam(Tbl,Y) uses the predictor variables in the table Tbl and the response values in
the vector Y.

Mdl = fitrgam(X,Y) uses the predictors in the matrix X and the response values in the vector Y.

Mdl = fitrgam( ___ ,Name,Value) specifies options using one or more name-value arguments in
addition to any of the input argument combinations in the previous syntaxes. For example,
'Interactions',5 specifies to include five interaction terms in the model. You can also specify a
list of interaction terms using the 'Interactions' name-value argument.

Examples

Train Generalized Additive Model

Train a univariate GAM, which contains linear terms for predictors. Then, interpret the prediction for
a specified data instance by using the plotLocalEffects function.

Load the data set NYCHousing2015.

load NYCHousing2015

The data set includes 10 variables with information on the sales of properties in New York City in
2015. This example uses these variables to analyze the sale prices (SALEPRICE).

Preprocess the data set. Remove outliers, convert the datetime array (SALEDATE) to the month
numbers, and move the response variable (SALEPRICE) to the last column.
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idx = isoutlier(NYCHousing2015.SALEPRICE);
NYCHousing2015(idx,:) = [];
NYCHousing2015.SALEDATE = month(NYCHousing2015.SALEDATE);
NYCHousing2015 = movevars(NYCHousing2015,'SALEPRICE','After','SALEDATE');

Display the first three rows of the table.

head(NYCHousing2015,3)

    BOROUGH    NEIGHBORHOOD       BUILDINGCLASSCATEGORY        RESIDENTIALUNITS    COMMERCIALUNITS    LANDSQUAREFEET    GROSSSQUAREFEET    YEARBUILT    SALEDATE    SALEPRICE
    _______    ____________    ____________________________    ________________    _______________    ______________    _______________    _________    ________    _________

       2       {'BATHGATE'}    {'01  ONE FAMILY DWELLINGS'}           1                   0                4750              2619            1899           8           0    
       2       {'BATHGATE'}    {'01  ONE FAMILY DWELLINGS'}           1                   0                4750              2619            1899           8           0    
       2       {'BATHGATE'}    {'01  ONE FAMILY DWELLINGS'}           1                   1                1287              2528            1899          12           0    

Train a univariate GAM for the sale prices. Specify the variables for BOROUGH, NEIGHBORHOOD,
BUILDINGCLASSCATEGORY, and SALEDATE as categorical predictors.

Mdl = fitrgam(NYCHousing2015,'SALEPRICE','CategoricalPredictors',[1 2 3 9])

Mdl = 
  RegressionGAM
            PredictorNames: {1x9 cell}
              ResponseName: 'SALEPRICE'
     CategoricalPredictors: [1 2 3 9]
         ResponseTransform: 'none'
                 Intercept: 3.7518e+05
    IsStandardDeviationFit: 0
           NumObservations: 83517

  Properties, Methods

Mdl is a RegressionGAM model object. The model display shows a partial list of the model
properties. To view the full list of properties, double-click the variable name Mdl in the Workspace.
The Variables editor opens for Mdl. Alternatively, you can display the properties in the Command
Window by using dot notation. For example, display the estimated intercept (constant) term of Mdl.

Mdl.Intercept

ans = 3.7518e+05

Predict the sale price for the first observation of the training data, and plot the local effects of the
terms in Mdl on the prediction.

yFit = predict(Mdl,NYCHousing2015(1,:))

yFit = 4.4421e+05

plotLocalEffects(Mdl,NYCHousing2015(1,:))
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The predict function predicts the sale price for the first observation as 4.4421e5. The
plotLocalEffects function creates a horizontal bar graph that shows the local effects of the terms
in Mdl on the prediction. Each local effect value shows the contribution of each term to the predicted
sale price.

Train GAM with Interaction Terms

Train a generalized additive model that contains linear and interaction terms for predictors in three
different ways:

• Specify the interaction terms using the formula input argument.
• Specify the 'Interactions' name-value argument.
• Build a model with linear terms first and add interaction terms to the model by using the

addInteractions function.

Load the carbig data set, which contains measurements of cars made in the 1970s and early 1980s.

load carbig

Create a table that contains the predictor variables (Acceleration, Displacement, Horsepower,
and Weight) and the response variable (MPG).

tbl = table(Acceleration,Displacement,Horsepower,Weight,MPG);
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Specify formula

Train a GAM that contains the four linear terms (Acceleration, Displacement, Horsepower, and
Weight) and two interaction terms (Acceleration*Displacement and
Displacement*Horsepower). Specify the terms using a formula in the form 'Y ~ terms'.

Mdl1 = fitrgam(tbl,'MPG ~ Acceleration + Displacement + Horsepower + Weight + Acceleration:Displacement + Displacement:Horsepower');

The function adds interaction terms to the model in the order of importance. You can use the
Interactions property to check the interaction terms in the model and the order in which fitrgam
adds them to the model. Display the Interactions property.

Mdl1.Interactions

ans = 2×2

     2     3
     1     2

Each row of Interactions represents one interaction term and contains the column indexes of the
predictor variables for the interaction term.

Specify 'Interactions'

Pass the training data (tbl) and the name of the response variable in tbl to fitrgam, so that the
function includes the linear terms for all the other variables as predictors. Specify the
'Interactions' name-value argument using a logical matrix to include the two interaction terms,
x1*x2 and x2*x3.

Mdl2 = fitrgam(tbl,'MPG','Interactions',logical([1 1 0 0; 0 1 1 0]));
Mdl2.Interactions

ans = 2×2

     2     3
     1     2

You can also specify 'Interactions' as the number of interaction terms or as 'all' to include all
available interaction terms. Among the specified interaction terms, fitrgam identifies those whose p-
values are not greater than the 'MaxPValue' value and adds them to the model. The default
'MaxPValue' is 1 so that the function adds all specified interaction terms to the model.

Specify 'Interactions','all' and set the 'MaxPValue' name-value argument to 0.05.

Mdl3 = fitrgam(tbl,'MPG','Interactions','all','MaxPValue',0.05);

Warning: Model does not include interaction terms because all interaction terms have p-values greater than the 'MaxPValue' value, or the software was unable to improve the model fit.

Mdl3.Interactions

ans =

  0x2 empty double matrix

Mdl3 includes no interaction terms, which implies one of the following: all interaction terms have p-
values greater than 0.05, or adding the interaction terms does not improve the model fit.
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Use addInteractions Function

Train a univariate GAM that contains linear terms for predictors, and then add interaction terms to
the trained model by using the addInteractions function. Specify the second input argument of
addInteractions in the same way you specify the 'Interactions' name-value argument of
fitrgam. You can specify the list of interaction terms using a logical matrix, the number of
interaction terms, or 'all'.

Specify the number of interaction terms as 3 to add the three most important interaction terms to the
trained model.

Mdl4 = fitrgam(tbl,'MPG');
UpdatedMdl4 = addInteractions(Mdl4,3);
UpdatedMdl4.Interactions

ans = 3×2

     2     3
     1     2
     3     4

Mdl4 is a univariate GAM, and UpdatedMdl4 is an updated GAM that contains all the terms in Mdl4
and three additional interaction terms.

Create Cross-Validated GAM Using fitrgam

Train a cross-validated GAM with 10 folds, which is the default cross-validation option, by using
fitrgam. Then, use kfoldPredict to predict responses for validation-fold observations using a
model trained on training-fold observations.

Load the carbig data set, which contains measurements of cars made in the 1970s and early 1980s.

load carbig

Create a table that contains the predictor variables (Acceleration, Displacement, Horsepower,
and Weight) and the response variable (MPG).

tbl = table(Acceleration,Displacement,Horsepower,Weight,MPG);

Create a cross-validated GAM by using the default cross-validation option. Specify the 'CrossVal'
name-value argument as 'on'.

rng('default') % For reproducibility
CVMdl = fitrgam(tbl,'MPG','CrossVal','on')

CVMdl = 
  RegressionPartitionedGAM
       CrossValidatedModel: 'GAM'
            PredictorNames: {1x4 cell}
              ResponseName: 'MPG'
           NumObservations: 398
                     KFold: 10
                 Partition: [1x1 cvpartition]
         NumTrainedPerFold: [1x1 struct]
         ResponseTransform: 'none'
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    IsStandardDeviationFit: 0

  Properties, Methods

The fitrgam function creates a RegressionPartitionedGAM model object CVMdl with 10 folds.
During cross-validation, the software completes these steps:

1 Randomly partition the data into 10 sets.
2 For each set, reserve the set as validation data, and train the model using the other 9 sets.
3 Store the 10 compact, trained models a in a 10-by-1 cell vector in the Trained property of the

cross-validated model object RegressionPartitionedGAM.

You can override the default cross-validation setting by using the 'CVPartition', 'Holdout',
'KFold', or 'Leaveout' name-value argument.

Predict responses for the observations in tbl by using kfoldPredict. The function predicts
responses for every observation using the model trained without that observation.

yHat = kfoldPredict(CVMdl);

yHat is a numeric vector. Display the first five predicted responses.

yHat(1:5)

ans = 5×1

   19.4848
   15.7203
   15.5742
   15.3185
   17.8223

Compute the regression loss (mean squared error).

L = kfoldLoss(CVMdl)

L = 17.7248

kfoldLoss returns the average mean squared error over 10 folds.

Optimize GAM Using OptimizeHyperparameters

Optimize the hyperparameters of a GAM with respect to cross-validation by using the
“OptimizeHyperparameters” on page 35-0  name-value argument.

Load the carbig data set, which contains measurements of cars made in the 1970s and early 1980s.

load carbig

Specify Acceleration, Displacement, Horsepower, and Weight as the predictor variables (X)
and MPG as the response variable (Y).
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X = [Acceleration,Displacement,Horsepower,Weight];
Y = MPG;

Partition the data into training and test sets. Use approximately 80% of the observations to train a
model, and 20% of the observations to test the performance of the trained model on new data. Use
cvpartition to partition the data.

rng('default') % For reproducibility
cvp = cvpartition(length(MPG),'Holdout',0.20);
XTrain = X(training(cvp),:);
YTrain = Y(training(cvp));
XTest = X(test(cvp),:);
YTest = Y(test(cvp));

Train a GAM for regression by passing the training data to the fitrgam function, and include the
OptimizeHyperparameters argument. Specify 'OptimizeHyperparameters' as 'auto' so that
fitrgam finds optimal values of InitialLearnRateForPredictors, NumTreesPerPredictor,
Interactions, InitialLearnRateForInteractions, and NumTreesPerInteraction. For
reproducibility, choose the 'expected-improvement-plus' acquisition function. The default
acquisition function depends on run time and, therefore, can give varying results.

rng('default')
Mdl = fitrgam(XTrain,YTrain,'OptimizeHyperparameters','auto', ...
    'HyperparameterOptimizationOptions', ...
    struct('AcquisitionFunctionName','expected-improvement-plus'))

|==========================================================================================================================================================|
| Iter | Eval   | Objective:  | Objective   | BestSoFar   | BestSoFar   | InitialLearnRate-| NumTreesPerP-| Interactions | InitialLearnRate-| NumTreesPerI-|
|      | result | log(1+loss) | runtime     | (observed)  | (estim.)    | ForPredictors    | redictor     |              | ForInteractions  | nteraction   |
|==========================================================================================================================================================|
|    1 | Best   |       2.874 |      4.6069 |       2.874 |       2.874 |          0.21533 |          500 |            1 |          0.35042 |           13 |
|    2 | Accept |        2.89 |     0.20809 |       2.874 |      2.8748 |         0.062841 |           14 |            1 |         0.014907 |           10 |
|    3 | Accept |      3.3298 |       1.796 |       2.874 |      2.8746 |         0.001387 |          222 |            0 |                - |            - |
|    4 | Best   |      2.8562 |      5.8182 |      2.8562 |      2.8564 |          0.08216 |          434 |            4 |          0.14875 |          283 |
|    5 | Accept |       2.976 |      1.8052 |      2.8562 |      2.8564 |          0.99942 |          217 |            1 |        0.0017491 |           34 |
|    6 | Best   |      2.8195 |       1.382 |      2.8195 |      2.8198 |          0.13778 |          152 |            6 |         0.012566 |           13 |
|    7 | Best   |      2.7519 |     0.90985 |      2.7519 |       2.752 |          0.12531 |           42 |            4 |          0.27647 |           53 |
|    8 | Best   |      2.7301 |       3.565 |      2.7301 |      2.7301 |          0.18671 |           10 |            3 |        0.0063418 |          487 |
|    9 | Best   |      2.7196 |     0.46532 |      2.7196 |      2.7196 |          0.13792 |           10 |            5 |           0.1663 |           27 |
|   10 | Accept |      2.8281 |      2.9027 |      2.7196 |      2.7196 |          0.23324 |           10 |            4 |          0.75904 |          314 |
|   11 | Accept |      2.7864 |     0.25131 |      2.7196 |      2.7196 |          0.13035 |           10 |            1 |          0.30171 |          476 |
|   12 | Accept |      2.7993 |     0.61803 |      2.7196 |      2.7647 |          0.16476 |           10 |            6 |         0.015498 |           32 |
|   13 | Accept |      2.7847 |      4.5171 |      2.7196 |      2.7197 |        0.0090953 |          499 |            5 |         0.027878 |           40 |
|   14 | Accept |      3.5847 |     0.27508 |      2.7196 |      2.7592 |        0.0035123 |           11 |            3 |         0.011127 |           11 |
|   15 | Accept |      2.7237 |      4.9018 |      2.7196 |       2.759 |         0.015848 |          498 |            3 |          0.14359 |          238 |
|   16 | Accept |       2.779 |       1.569 |      2.7196 |      2.7588 |         0.012829 |           10 |            3 |         0.028814 |          217 |
|   17 | Accept |      2.7761 |      4.7776 |      2.7196 |      2.7272 |         0.023165 |          488 |            1 |          0.32642 |          302 |
|   18 | Accept |      2.8604 |      4.1417 |      2.7196 |      2.7677 |         0.013548 |          495 |            2 |          0.97963 |          141 |
|   19 | Accept |      3.5466 |     0.12735 |      2.7196 |      2.7196 |         0.019794 |           10 |            0 |                - |            - |
|   20 | Accept |      2.7513 |      7.3431 |      2.7196 |      2.7196 |          0.02408 |           62 |            6 |         0.023502 |          490 |
|==========================================================================================================================================================|
| Iter | Eval   | Objective:  | Objective   | BestSoFar   | BestSoFar   | InitialLearnRate-| NumTreesPerP-| Interactions | InitialLearnRate-| NumTreesPerI-|
|      | result | log(1+loss) | runtime     | (observed)  | (estim.)    | ForPredictors    | redictor     |              | ForInteractions  | nteraction   |
|==========================================================================================================================================================|
|   21 | Accept |      2.7243 |     0.92354 |      2.7196 |      2.7196 |         0.040761 |           11 |            3 |          0.10556 |          120 |
|   22 | Best   |      2.6969 |      5.0161 |      2.6969 |       2.697 |        0.0032557 |          494 |            2 |         0.039381 |          487 |
|   23 | Accept |      2.8184 |      3.8034 |      2.6969 |       2.697 |        0.0072249 |           19 |            3 |          0.27653 |          494 |
|   24 | Accept |      2.7788 |      4.3989 |      2.6969 |       2.697 |        0.0064015 |          482 |            1 |         0.013479 |          479 |
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|   25 | Accept |      2.7646 |      4.4343 |      2.6969 |      2.6971 |        0.0013222 |          473 |            2 |          0.17272 |          436 |
|   26 | Accept |      2.8368 |     0.28304 |      2.6969 |      2.6971 |          0.93418 |           11 |            5 |          0.16983 |           11 |
|   27 | Accept |      2.7724 |      1.7205 |      2.6969 |      2.6971 |         0.039216 |           11 |            2 |         0.037865 |          480 |
|   28 | Accept |      2.8795 |     0.87918 |      2.6969 |      2.6971 |          0.73103 |           11 |            1 |         0.014567 |          480 |
|   29 | Accept |       2.782 |      4.0221 |      2.6969 |      2.7267 |        0.0047632 |          493 |            1 |         0.069346 |          247 |
|   30 | Accept |      2.7734 |     0.98578 |      2.6969 |      2.7297 |         0.038679 |          103 |            1 |         0.052986 |           68 |

__________________________________________________________
Optimization completed.
MaxObjectiveEvaluations of 30 reached.
Total function evaluations: 30
Total elapsed time: 88.0979 seconds
Total objective function evaluation time: 78.4482

Best observed feasible point:
    InitialLearnRateForPredictors    NumTreesPerPredictor    Interactions    InitialLearnRateForInteractions    NumTreesPerInteraction
    _____________________________    ____________________    ____________    _______________________________    ______________________

              0.0032557                      494                  2                     0.039381                         487          

Observed objective function value = 2.6969
Estimated objective function value = 2.7297
Function evaluation time = 5.0161

Best estimated feasible point (according to models):
    InitialLearnRateForPredictors    NumTreesPerPredictor    Interactions    InitialLearnRateForInteractions    NumTreesPerInteraction
    _____________________________    ____________________    ____________    _______________________________    ______________________
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              0.0032557                      494                  2                     0.039381                         487          

Estimated objective function value = 2.7297
Estimated function evaluation time = 5.009

Mdl = 
  RegressionGAM
                         ResponseName: 'Y'
                CategoricalPredictors: []
                    ResponseTransform: 'none'
                            Intercept: 23.7405
                         Interactions: [2×2 double]
               IsStandardDeviationFit: 0
                      NumObservations: 318
    HyperparameterOptimizationResults: [1×1 BayesianOptimization]

  Properties, Methods

fitrgam returns a RegressionGAM model object that uses the best estimated feasible point. The
best estimated feasible point is the set of hyperparameters that minimizes the upper confidence
bound of the cross-validation loss (mean squared error, MSE) based on the underlying Gaussian
process model of the Bayesian optimization process.

The Bayesian optimization process internally maintains a Gaussian process model of the objective
function. The objective function is log(1 + cross-validation MSE) for regression. For each iteration,
the optimization process updates the Gaussian process model and uses the model to find a new set of
hyperparameters. Each line of the iterative display shows the new set of hyperparameters and these
column values:

• Objective — Objective function value computed at the new set of hyperparameters.
• Objective runtime — Objective function evaluation time.
• Eval result — Result report, specified as Accept, Best, or Error. Accept indicates that the

objective function returns a finite value, and Error indicates that the objective function returns a
value that is not a finite real scalar. Best indicates that the objective function returns a finite
value that is lower than previously computed objective function values.

• BestSoFar(observed) — The minimum objective function value computed so far. This value is
either the objective function value of the current iteration (if the Eval result value for the
current iteration is Best) or the value of the previous Best iteration.

• BestSoFar(estim.) — At each iteration, the software estimates the upper confidence bounds of
the objective function values, using the updated Gaussian process model, at all the sets of
hyperparameters tried so far. Then the software chooses the point with the minimum upper
confidence bound. The BestSoFar(estim.) value is the objective function value returned by the
predictObjective function at the minimum point.

The plot below the iterative display shows the BestSoFar(observed) and BestSoFar(estim.)
values in blue and green, respectively.

The returned object Mdl uses the best estimated feasible point, that is, the set of hyperparameters
that produces the BestSoFar(estim.) value in the final iteration based on the final Gaussian
process model.
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Obtain the best estimated feasible point from Mdl in the HyperparameterOptimizationResults
property.

Mdl.HyperparameterOptimizationResults.XAtMinEstimatedObjective

ans=1×5 table
    InitialLearnRateForPredictors    NumTreesPerPredictor    Interactions    InitialLearnRateForInteractions    NumTreesPerInteraction
    _____________________________    ____________________    ____________    _______________________________    ______________________

              0.0032557                      494                  2                     0.039381                         487          

Alternatively, you can use the bestPoint function. By default, the bestPoint function uses the
'min-visited-upper-confidence-interval' criterion.

[x,CriterionValue,iteration] = bestPoint(Mdl.HyperparameterOptimizationResults)

x=1×5 table
    InitialLearnRateForPredictors    NumTreesPerPredictor    Interactions    InitialLearnRateForInteractions    NumTreesPerInteraction
    _____________________________    ____________________    ____________    _______________________________    ______________________

              0.0032557                      494                  2                     0.039381                         487          

CriterionValue = 2.7908

iteration = 22

You can also extract the best observed feasible point (that is, the last Best point in the iterative
display) from the HyperparameterOptimizationResults property or by specifying Criterion as
'min-observed'.

Mdl.HyperparameterOptimizationResults.XAtMinObjective

ans=1×5 table
    InitialLearnRateForPredictors    NumTreesPerPredictor    Interactions    InitialLearnRateForInteractions    NumTreesPerInteraction
    _____________________________    ____________________    ____________    _______________________________    ______________________

              0.0032557                      494                  2                     0.039381                         487          

[x_observed,CriterionValue_observed,iteration_observed] = bestPoint(Mdl.HyperparameterOptimizationResults,'Criterion','min-observed')

x_observed=1×5 table
    InitialLearnRateForPredictors    NumTreesPerPredictor    Interactions    InitialLearnRateForInteractions    NumTreesPerInteraction
    _____________________________    ____________________    ____________    _______________________________    ______________________

              0.0032557                      494                  2                     0.039381                         487          

CriterionValue_observed = 2.6969

iteration_observed = 22

In this example, the two criteria choose the same set (22nd iteration) of hyperparameters as the best
point. The criterion value of each is different because CriterionValue is the upper bound of the
objective function value computed by the final Gaussian process model, and
CriterionValue_observed is the actual objective function value computed using the selected
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hyperparameters. For more information, see the “Criterion” on page 35-0  name-value argument
of bestPoint.

Evaluate the performance of the regression model on the training set and test set by computing the
mean squared errors (MSEs). Smaller MSE values indicate better performance.

LTraining = resubLoss(Mdl)

LTraining = 6.2224

LTest = loss(Mdl,XTest,YTest)

LTest = 18.5724

Optimize Cross-Validated GAM Using bayesopt

Optimize the parameters of a GAM with respect to cross-validation by using the bayesopt function.

Alternatively, you can find optimal values of fitrgam name-value arguments by using the
“OptimizeHyperparameters” on page 35-0  name-value argument. For an example, see “Optimize
GAM Using OptimizeHyperparameters” on page 35-2469.

Load the carbig data set, which contains measurements of cars made in the 1970s and early 1980s.

load carbig

Specify Acceleration, Displacement, Horsepower, and Weight as the predictor variables (X)
and MPG as the response variable (Y).

X = [Acceleration,Displacement,Horsepower,Weight];
Y = MPG;

You must remove the observations with missing response values to fix the cross-validation sets for the
optimization process. Remove missing values from the response variable, and remove the
corresponding observations in the predictor variables.

[Y,TF] = rmmissing(Y);
X = X(~TF);

Set up a partition for cross-validation. This step fixes the cross-validation sets that the optimization
uses at each step.

c = cvpartition(length(Y),'KFold',5);

Prepare optimizableVariable objects for the name-value arguments that you want to optimize
using Bayesian optimization. This example finds optimal values for the
MaxNumSplitsPerPredictor and NumTreesPerPredictor arguments of fitrgam.

maxNumSplits = optimizableVariable('maxNumSplits',[1,10],'Type','integer');
numTrees = optimizableVariable('numTrees',[1,500],'Type','integer');

Create an objective function that takes an input z = [maxNumSplits,numTrees] and returns the
cross-validated loss value of z.
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minfun = @(z)kfoldLoss(fitrgam(X,Y,'CVPartition',c, ...
    'MaxNumSplitsPerPredictor',z.maxNumSplits, ...
    'NumTreesPerPredictor',z.numTrees)); 

If you specify a cross-validation option, then the fitrgam function returns a cross-validated model
object RegressionPartitionedGAM. The kfoldLoss function returns the regression loss (mean
squared error) obtained by the cross-validated model. Therefore, the function handle minfun
computes the cross-validation loss at the parameters in z.

Search for the best parameters [maxNumSplits,numTrees] using bayesopt. For reproducibility,
choose the 'expected-improvement-plus' acquisition function. The default acquisition function
depends on run time and, therefore, can give varying results.

rng('default')
results = bayesopt(minfun,[maxNumSplits,numTrees],'Verbose',0, ...
    'IsObjectiveDeterministic',true, ...
    'AcquisitionFunctionName','expected-improvement-plus');
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Obtain the best point from results.

zbest = bestPoint(results)

zbest=1×2 table
    maxNumSplits    numTrees
    ____________    ________

         1             8    

Train an optimized GAM using the zbest values.

Mdl = fitrgam(X,Y, ...
    'MaxNumSplitsPerPredictor',zbest.maxNumSplits, ...
    'NumTreesPerPredictor',zbest.numTrees);

Input Arguments
Tbl — Sample data
table

Sample data used to train the model, specified as a table. Each row of Tbl corresponds to one
observation, and each column corresponds to one predictor variable. Multicolumn variables and cell
arrays other than cell arrays of character vectors are not allowed.
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• Optionally, Tbl can contain a column for the response variable and a column for the observation
weights. The response variable and the weight values must be numeric vectors.

You must specify the response variable in Tbl by using ResponseVarName or formula and
specify the observation weights in Tbl by using 'Weights'.

• Specify the response variable by using ResponseVarName — fitrgam uses the remaining
variables as predictors. To use a subset of the remaining variables in Tbl as predictors, specify
predictor variables by using 'PredictorNames'.

• Define a model specification by using formula — fitrgam uses a subset of the variables in
Tbl as predictor variables and the response variable, as specified in formula.

• If Tbl does not contain the response variable, then specify a response variable by using Y. The
length of the response variable Y and the number of rows in Tbl must be equal. To use a subset of
the variables in Tbl as predictors, specify predictor variables by using 'PredictorNames'.

fitrgam considers NaN, '' (empty character vector), "" (empty string), <missing>, and
<undefined> values in Tbl to be missing values.

• fitrgam does not use observations with all missing values in the fit.
• fitrgam does not use observations with missing response values in the fit.
• fitrgam uses observations with some missing values for predictors to find splits on variables for

which these observations have valid values.

Data Types: table

ResponseVarName — Response variable name
name of variable in Tbl

Response variable name, specified as a character vector or string scalar containing the name of the
response variable in Tbl. For example, if the response variable Y is stored in Tbl.Y, then specify it as
'Y'.
Data Types: char | string

formula — Model specification
character vector | string scalar

Model specification, specified as a character vector or string scalar in the form 'Y ~ terms'. The
formula argument specifies a response variable and linear and interaction terms for predictor
variables. Use formula to specify a subset of variables in Tbl as predictors for training the model. If
you specify a formula, then the software does not use any variables in Tbl that do not appear in
formula.

For example, specify 'Y~x1+x2+x3+x1:x2'. In this form, Y represents the response variable, and
x1, x2, and x3 represent the linear terms for the predictor variables. x1:x2 represents the
interaction term for x1 and x2.

The variable names in the formula must be both variable names in Tbl
(Tbl.Properties.VariableNames) and valid MATLAB identifiers. You can verify the variable
names in Tbl by using the isvarname function. If the variable names are not valid, then you can
convert them by using the matlab.lang.makeValidName function.

Alternatively, you can specify a response variable and linear terms for predictors using formula, and
specify interaction terms for predictors using 'Interactions'.
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fitrgam builds a set of interaction trees using only the terms whose p-values are not greater than
the 'MaxPValue' value.
Example: 'Y~x1+x2+x3+x1:x2'
Data Types: char | string

Y — Response data
numeric column vector

Response data, specified as a numeric column vector. Each entry in Y is the response to the data in
the corresponding row of X or Tbl.

The software considers NaN values in Y to be missing values. fitrgam does not use observations with
missing response values in the fit.
Data Types: single | double

X — Predictor data
numeric matrix

Predictor data, specified as a numeric matrix. Each row of X corresponds to one observation, and
each column corresponds to one predictor variable.

fitrgam considers NaN values in X as missing values. The function does not use observations with all
missing values in the fit. fitrgam uses observations with some missing values for X to find splits on
variables for which these observations have valid values.
Data Types: single | double

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: 'Interactions','all','MaxPValue',0.05 specifies to include all available
interaction terms whose p-values are not greater than 0.05.

GAM Options

FitStandardDeviation — Flag to fit model for standard deviation
false or 0 (default) | true or 1

Flag to fit a model for the standard deviation of the response variable, specified as logical 0 (false)
or 1 (true).

If you specify 'FitStandardDeviation' as true, then fitrgam trains an additional model for the
standard deviation of the response variable, and sets the IsStandardDeviationFit property of the
output GAM object Mdl to true.

To compute the standard deviation values for given observations, use predict, resubPredict, or
kfoldPredict. These functions also return the prediction intervals of the response variable.

A recommended practice is to use optimal hyperparameters when you fit the standard deviation
model for the accuracy of the standard deviation estimates. Specify OptimizeHyperparameters as
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'all-univariate' (for a univariate GAM) or 'all' (for a bivariate GAM) together with
'FitStandardDeviation',true.
Example: 'FitStandardDeviation',true
Data Types: logical

InitialLearnRateForInteractions — Learning rate of gradient boosting for interaction
terms
1 (default) | numeric scalar in (0,1]

Learning rate of the gradient boosting for interaction terms, specified as a numeric scalar in the
interval (0,1]. fitrgam uses this rate throughout the training for interaction terms.

Training a model using a small learning rate requires more learning iterations, but often achieves
better accuracy.

For more details about gradient boosting, see “Gradient Boosting Algorithm” on page 35-2493.
Example: 'InitialLearnRateForInteractions',0.1
Data Types: single | double

InitialLearnRateForPredictors — Learning rate of gradient boosting for linear terms
1 (default) | numeric scalar in (0,1]

Learning rate of the gradient boosting for linear terms, specified as a numeric scalar in the interval
(0,1]. fitrgam uses this rate throughout the training for linear terms.

Training a model using a small learning rate requires more learning iterations, but often achieves
better accuracy.

For more details about gradient boosting, see “Gradient Boosting Algorithm” on page 35-2493.
Example: 'InitialLearnRateForPredictors',0.1
Data Types: single | double

Interactions — Number or list of interaction terms
0 (default) | nonnegative integer scalar | logical matrix | 'all'

Number or list of interaction terms to include in the candidate set S, specified as a nonnegative
integer scalar, a logical matrix, or 'all'.

• Number of interaction terms, specified as a nonnegative integer — S includes the specified
number of important interaction terms, selected based on the p-values of the terms.

• List of interaction terms, specified as a logical matrix — S includes the terms specified by a t-by-p
logical matrix, where t is the number of interaction terms, and p is the number of predictors used
to train the model. For example, logical([1 1 0; 0 1 1]) represents two pairs of interaction
terms: a pair of the first and second predictors, and a pair of the second and third predictors.

If fitrgam uses a subset of input variables as predictors, then the function indexes the predictors
using only the subset. That is, the column indexes of the logical matrix do not count the response
and observation weight variables. The indexes also do not count any variables not used by the
function.

• 'all' — S includes all possible pairs of interaction terms, which is p*(p – 1)/2 number of
terms in total.
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Among the interaction terms in S, the fitrgam function identifies those whose p-values are not
greater than the 'MaxPValue' value and uses them to build a set of interaction trees. Use the
default value ('MaxPValue',1) to build interaction trees using all terms in S.
Example: 'Interactions','all'
Data Types: single | double | logical | char | string

MaxNumSplitsPerInteraction — Maximum number of decision splits per interaction tree
4 (default) | positive integer scalar

Maximum number of decision splits (or branch nodes) for each interaction tree (boosted tree for an
interaction term), specified as a positive integer scalar.
Example: 'MaxNumSplitsPerInteraction',5
Data Types: single | double

MaxNumSplitsPerPredictor — Maximum number of decision splits per predictor tree
1 (default) | positive integer scalar

Maximum number of decision splits (or branch nodes) for each predictor tree (boosted tree for a
linear term), specified as a positive integer scalar. By default, fitrgam uses a tree stump for a
predictor tree.
Example: 'MaxNumSplitsPerPredictor',5
Data Types: single | double

MaxPValue — Maximum p-value for detecting interaction terms
1 (default) | numeric scalar in [0,1]

Maximum p-value for detecting interaction terms, specified as a numeric scalar in the interval [0,1].

fitrgam first finds the candidate set S of interaction terms from formula or 'Interactions'.
Then the function identifies the interaction terms whose p-values are not greater than the
'MaxPValue' value and uses them to build a set of interaction trees.

The default value ('MaxPValue',1) builds interaction trees for all interaction terms in the candidate
set S.

For more details about detecting interaction terms, see “Interaction Term Detection” on page 35-
2493.
Example: 'MaxPValue',0.05
Data Types: single | double

NumBins — Number of bins for numeric predictors
256 (default) | positive integer scalar | [] (empty)

Number of bins for numeric predictors, specified as a positive integer scalar or [] (empty).

• If you specify the 'NumBins' value as a positive integer scalar (numBins), then fitrgam bins
every numeric predictor into at most numBins equiprobable bins, and then grows trees on the bin
indices instead of the original data.

• The number of bins can be less than numBins if a predictor has fewer than numBins unique
values.
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• fitrgam does not bin categorical predictors.
• If the 'NumBins' value is empty ([]), then fitrgam does not bin any predictors.

When you use a large training data set, this binning option speeds up training but might cause a
decrease in accuracy. You can first use the default value of 'NumBins', and then change the value
depending on the accuracy and training speed.

The trained model Mdl stores the bin edges in the BinEdges property.
Example: 'NumBins',50
Data Types: single | double

NumTreesPerInteraction — Number of trees per interaction term
100 (default) | positive integer scalar

Number of trees per interaction term, specified as a positive integer scalar.

The 'NumTreesPerInteraction' value is equivalent to the number of gradient boosting iterations
for the interaction terms for predictors. For each iteration, fitrgam adds a set of interaction trees to
the model, one tree for each interaction term. To learn about the gradient boosting algorithm, see
“Gradient Boosting Algorithm” on page 35-2493.

You can determine whether the fitted model has the specified number of trees by viewing the
diagnostic message displayed when 'Verbose' is 1 or 2, or by checking the
ReasonForTermination property value of the model Mdl.
Example: 'NumTreesPerInteraction',500
Data Types: single | double

NumTreesPerPredictor — Number of trees per linear term
300 (default) | positive integer scalar

Number of trees per linear term, specified as a positive integer scalar.

The 'NumTreesPerPredictor' value is equivalent to the number of gradient boosting iterations for
the linear terms for predictors. For each iteration, fitrgam adds a set of predictor trees to the
model, one tree for each predictor. To learn about the gradient boosting algorithm, see “Gradient
Boosting Algorithm” on page 35-2493.

You can determine whether the fitted model has the specified number of trees by viewing the
diagnostic message displayed when 'Verbose' is 1 or 2, or by checking the
ReasonForTermination property value of the model Mdl.
Example: 'NumTreesPerPredictor',500
Data Types: single | double

Other Regression Options

CategoricalPredictors — Categorical predictors list
vector of positive integers | logical vector | character matrix | string array | cell array of character
vectors | 'all'

Categorical predictors list, specified as one of the values in this table.
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Value Description
Vector of positive
integers

Each entry in the vector is an index value indicating that the corresponding
predictor is categorical. The index values are between 1 and p, where p is
the number of predictors used to train the model.

If fitrgam uses a subset of input variables as predictors, then the function
indexes the predictors using only the subset. The
CategoricalPredictors values do not count the response variable,
observation weights variable, or any other variables that the function does
not use.

Logical vector A true entry means that the corresponding predictor is categorical. The
length of the vector is p.

Character matrix Each row of the matrix is the name of a predictor variable. The names must
match the entries in PredictorNames. Pad the names with extra blanks
so each row of the character matrix has the same length.

String array or cell
array of character
vectors

Each element in the array is the name of a predictor variable. The names
must match the entries in PredictorNames.

"all" All predictors are categorical.

By default, if the predictor data is in a table (Tbl), fitrgam assumes that a variable is categorical if
it is a logical vector, unordered categorical vector, character array, string array, or cell array of
character vectors. If the predictor data is a matrix (X), fitrgam assumes that all predictors are
continuous. To identify any other predictors as categorical predictors, specify them by using the
CategoricalPredictors name-value argument.
Example: 'CategoricalPredictors','all'
Data Types: single | double | logical | char | string | cell

NumPrint — Number of iterations between diagnostic message printouts
10 (default) | nonnegative integer scalar

Number of iterations between diagnostic message printouts, specified as a nonnegative integer
scalar. This argument is valid only when you specify 'Verbose' as 1.

If you specify 'Verbose',1 and 'NumPrint',numPrint, then the software displays diagnostic
messages every numPrint iterations in the Command Window.
Example: 'NumPrint',500
Data Types: single | double

PredictorNames — Predictor variable names
string array of unique names | cell array of unique character vectors

Predictor variable names, specified as a string array of unique names or cell array of unique
character vectors. The functionality of PredictorNames depends on the way you supply the training
data.

• If you supply X and Y, then you can use PredictorNames to assign names to the predictor
variables in X.
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• The order of the names in PredictorNames must correspond to the column order of X. That
is, PredictorNames{1} is the name of X(:,1), PredictorNames{2} is the name of
X(:,2), and so on. Also, size(X,2) and numel(PredictorNames) must be equal.

• By default, PredictorNames is {'x1','x2',...}.
• If you supply Tbl, then you can use PredictorNames to choose which predictor variables to use

in training. That is, fitrgam uses only the predictor variables in PredictorNames and the
response variable during training.

• PredictorNames must be a subset of Tbl.Properties.VariableNames and cannot include
the name of the response variable.

• By default, PredictorNames contains the names of all predictor variables.
• A good practice is to specify the predictors for training using either PredictorNames or

formula, but not both.

Example: "PredictorNames",
["SepalLength","SepalWidth","PetalLength","PetalWidth"]

Data Types: string | cell

ResponseName — Response variable name
"Y" (default) | character vector | string scalar

Response variable name, specified as a character vector or string scalar.

• If you supply Y, then you can use ResponseName to specify a name for the response variable.
• If you supply ResponseVarName or formula, then you cannot use ResponseName.

Example: "ResponseName","response"
Data Types: char | string

ResponseTransform — Response transformation
'none' (default) | function handle

Response transformation, specified as either 'none' or a function handle. The default is 'none',
which means @(y)y, or no transformation. For a MATLAB function or a function you define, use its
function handle for the response transformation. The function handle must accept a vector (the
original response values) and return a vector of the same size (the transformed response values).
Example: Suppose you create a function handle that applies an exponential transformation to an
input vector by using myfunction = @(y)exp(y). Then, you can specify the response
transformation as 'ResponseTransform',myfunction.
Data Types: char | string | function_handle

Verbose — Verbosity level
0 (default) | 1 | 2

Verbosity level, specified as 0, 1, or 2. The Verbose value controls the amount of information that the
software displays in the Command Window.

This table summarizes the available verbosity level options.
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Value Description
0 The software displays no information.
1 The software displays diagnostic messages every numPrint iterations,

where numPrint is the 'NumPrint' value.
2 The software displays diagnostic messages at every iteration.

Each line of the diagnostic messages shows the information about each boosting iteration and
includes the following columns:

• Type — Type of trained trees, 1D (predictor trees, or boosted trees for linear terms for predictors)
or 2D (interaction trees, or boosted trees for interaction terms for predictors)

• NumTrees — Number of trees per linear term or interaction term that fitrgam added to the
model so far

• Deviance — “Deviance” on page 35-2492 of the model
• RelTol — Relative change of model predictions: y k− y k− 1 ′ y k− y k− 1 /y k′y k, where y k is a

column vector of model predictions at iteration k
• LearnRate — Learning rate used for the current iteration

Example: 'Verbose',1
Data Types: single | double

Weights — Observation weights
ones(size(X,1),1) (default) | vector of scalar values | name of variable in Tbl

Observation weights, specified as a vector of scalar values or the name of a variable in Tbl. The
software weights the observations in each row of X or Tbl with the corresponding value in Weights.
The size of Weights must equal the number of rows in X or Tbl.

If you specify the input data as a table Tbl, then Weights can be the name of a variable in Tbl that
contains a numeric vector. In this case, you must specify Weights as a character vector or string
scalar. For example, if weights vector W is stored as Tbl.W, then specify it as 'W'.

fitrgam normalizes the values of Weights to sum to 1.
Data Types: single | double | char | string

Note You cannot use any cross-validation name-value argument together with the
'OptimizeHyperparameters' name-value argument. You can modify the cross-validation for
'OptimizeHyperparameters' only by using the 'HyperparameterOptimizationOptions'
name-value argument.

Cross-Validation Options

CrossVal — Flag to train cross-validated model
'off' (default) | 'on'

Flag to train a cross-validated model, specified as 'on' or 'off'.

If you specify 'on', then the software trains a cross-validated model with 10 folds.
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You can override this cross-validation setting using the 'CVPartition', 'Holdout', 'KFold', or
'Leaveout' name-value argument. You can use only one cross-validation name-value argument at a
time to create a cross-validated model.

Alternatively, cross-validate after creating a model by passing Mdl to crossval.
Example: 'Crossval','on'

CVPartition — Cross-validation partition
[] (default) | cvpartition partition object

Cross-validation partition, specified as a cvpartition partition object created by cvpartition.
The partition object specifies the type of cross-validation and the indexing for the training and
validation sets.

To create a cross-validated model, you can specify only one of these four name-value arguments:
CVPartition, Holdout, KFold, or Leaveout.
Example: Suppose you create a random partition for 5-fold cross-validation on 500 observations by
using cvp = cvpartition(500,'KFold',5). Then, you can specify the cross-validated model by
using 'CVPartition',cvp.

Holdout — Fraction of data for holdout validation
scalar value in the range (0,1)

Fraction of the data used for holdout validation, specified as a scalar value in the range (0,1). If you
specify 'Holdout',p, then the software completes these steps:

1 Randomly select and reserve p*100% of the data as validation data, and train the model using
the rest of the data.

2 Store the compact, trained model in the Trained property of the cross-validated model.

To create a cross-validated model, you can specify only one of these four name-value arguments:
CVPartition, Holdout, KFold, or Leaveout.
Example: 'Holdout',0.1
Data Types: double | single

KFold — Number of folds
10 (default) | positive integer value greater than 1

Number of folds to use in a cross-validated model, specified as a positive integer value greater than 1.
If you specify 'KFold',k, then the software completes these steps:

1 Randomly partition the data into k sets.
2 For each set, reserve the set as validation data, and train the model using the other k – 1 sets.
3 Store the k compact, trained models in a k-by-1 cell vector in the Trained property of the cross-

validated model.

To create a cross-validated model, you can specify only one of these four name-value arguments:
CVPartition, Holdout, KFold, or Leaveout.
Example: 'KFold',5
Data Types: single | double
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Leaveout — Leave-one-out cross-validation flag
'off' (default) | 'on'

Leave-one-out cross-validation flag, specified as 'on' or 'off'. If you specify 'Leaveout','on',
then for each of the n observations (where n is the number of observations, excluding missing
observations, specified in the NumObservations property of the model), the software completes
these steps:

1 Reserve the one observation as validation data, and train the model using the other n – 1
observations.

2 Store the n compact, trained models in an n-by-1 cell vector in the Trained property of the
cross-validated model.

To create a cross-validated model, you can specify only one of these four name-value arguments:
CVPartition, Holdout, KFold, or Leaveout.
Example: 'Leaveout','on'

Hyperparameter Optimization Options

OptimizeHyperparameters — Parameters to optimize
'none' (default) | 'auto' | 'auto-univariate' | 'auto-bivariate' | 'all' | 'all-
univariate' | 'all-bivariate' | string array or cell array of eligible parameter names | vector of
optimizableVariable objects

Parameters to optimize, specified as one of these values:

• 'none' — Do not optimize.
• 'auto' — Optimize InitialLearnRateForPredictors, NumTreesPerPredictor,

Interactions, InitialLearnRateForInteractions, and NumTreesPerInteraction.
• 'auto-univariate' — Optimize InitialLearnRateForPredictors and

NumTreesPerPredictor.
• 'auto-bivariate' — Optimize Interactions, InitialLearnRateForInteractions, and

NumTreesPerInteraction.
• 'all' — Optimize all eligible parameters.
• 'all-univariate' — Optimize all eligible univariate parameters.
• 'all-bivariate' — Optimize all eligible bivariate parameters.
• String array or cell array of eligible parameter names.
• Vector of optimizableVariable objects, typically the output of hyperparameters.

The eligible parameters for fitrgam are:

• Univariate hyperparameters

• InitialLearnRateForPredictors — fitrgam searches among real values, log-scaled in
the range [1e-3,1].

• MaxNumSplitsPerPredictor — fitrgam searches among integers in the range
[1,maxNumSplits], where maxNumSplits is min(30,max(2,NumObservations–1)).
NumObservations is the number of observations, excluding missing observations, stored in
the NumObservations property of the returned model Mdl.
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• NumTreesPerPredictor — fitrgam searches among integers, log-scaled in the range
[10,500].

• Bivariate hyperparameters

• Interactions — fitrgam searches among integers, log-scaled in the range
[0,MaxNumInteractions]t, where MaxNumInteractions is
NumPredictors*(NumPredictors – 1)/2, and NumPredictors is the number of
predictors used to train the model.

• InitialLearnRateForInteractions — fitrgam searches among real values, log-scaled in
the range [1e-3,1].

• MaxNumSplitsPerInteraction — fitrgam searches among integers in the range
[1,maxNumSplits].

• NumTreesPerInteraction — fitrgam searches among integers, log-scaled in the range
[10,500].

Use 'auto' or 'all' to find optimal hyperparameter values for both univariate and bivariate
parameters. Alternatively, you can find optimal values for univariate parameters using 'auto-
univariate' or 'all-univariate' and then find optimal values for bivariate parameters using
'auto-bivariate' or 'all-bivariate'. For examples, see “Optimize GAM Using
OptimizeHyperparameters” on page 35-2469 and “Train Generalized Additive Model for Regression”
on page 12-86.

The optimization attempts to minimize the cross-validation loss (error) for fitrgam by varying the
parameters. To control the cross-validation type and other aspects of the optimization, use the
HyperparameterOptimizationOptions name-value argument.

Note The values of 'OptimizeHyperparameters' override any values you specify using other
name-value arguments. For example, setting 'OptimizeHyperparameters' to 'auto' causes
fitrgam to optimize hyperparameters corresponding to the 'auto' option and to ignore any
specified values for the hyperparameters.

Set nondefault parameters by passing a vector of optimizableVariable objects that have
nondefault values. For example:

load carsmall
params = hyperparameters('fitrgam',[Horsepower,Weight],MPG);
params(1).Range = [1e-4,1e6];

Pass params as the value of OptimizeHyperparameters.

By default, the iterative display appears at the command line, and plots appear according to the
number of hyperparameters in the optimization. For the optimization and plots, the objective function
is log(1 + cross-validation loss). To control the iterative display, set the Verbose field of the
'HyperparameterOptimizationOptions' name-value argument. To control the plots, set the
ShowPlots field of the 'HyperparameterOptimizationOptions' name-value argument.
Example: 'OptimizeHyperparameters','auto'

HyperparameterOptimizationOptions — Options for optimization
structure
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Options for optimization, specified as a structure. This argument modifies the effect of the
OptimizeHyperparameters name-value argument. All fields in the structure are optional.

Field Name Values Default
Optimizer • 'bayesopt' — Use Bayesian optimization.

Internally, this setting calls bayesopt.
• 'gridsearch' — Use grid search with

NumGridDivisions values per dimension.
• 'randomsearch' — Search at random among

MaxObjectiveEvaluations points.

'gridsearch' searches in a random order, using
uniform sampling without replacement from the
grid. After optimization, you can get a table in grid
order by using the command
sortrows(Mdl.HyperparameterOptimizatio
nResults).

'bayesopt'

AcquisitionFunct
ionName

• 'expected-improvement-per-second-
plus'

• 'expected-improvement'
• 'expected-improvement-plus'
• 'expected-improvement-per-second'
• 'lower-confidence-bound'
• 'probability-of-improvement'

Acquisition functions whose names include per-
second do not yield reproducible results because
the optimization depends on the runtime of the
objective function. Acquisition functions whose
names include plus modify their behavior when
they are overexploiting an area. For more details,
see “Acquisition Function Types” on page 10-3.

'expected-
improvement-per-
second-plus'

MaxObjectiveEval
uations

Maximum number of objective function
evaluations.

30 for 'bayesopt' and
'randomsearch', and
the entire grid for
'gridsearch'

MaxTime Time limit, specified as a positive real scalar. The
time limit is in seconds, as measured by tic and
toc. The run time can exceed MaxTime because
MaxTime does not interrupt function evaluations.

Inf

NumGridDivisions For 'gridsearch', the number of values in each
dimension. The value can be a vector of positive
integers giving the number of values for each
dimension, or a scalar that applies to all
dimensions. This field is ignored for categorical
variables.

10
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Field Name Values Default
ShowPlots Logical value indicating whether to show plots. If

true, this field plots the best observed objective
function value against the iteration number. If you
use Bayesian optimization (Optimizer is
'bayesopt'), then this field also plots the best
estimated objective function value. The best
observed objective function values and best
estimated objective function values correspond to
the values in the BestSoFar (observed) and
BestSoFar (estim.) columns of the iterative
display, respectively. You can find these values in
the properties ObjectiveMinimumTrace and
EstimatedObjectiveMinimumTrace of
Mdl.HyperparameterOptimizationResults.
If the problem includes one or two optimization
parameters for Bayesian optimization, then
ShowPlots also plots a model of the objective
function against the parameters.

true

SaveIntermediate
Results

Logical value indicating whether to save results
when Optimizer is 'bayesopt'. If true, this
field overwrites a workspace variable named
'BayesoptResults' at each iteration. The
variable is a BayesianOptimization object.

false

Verbose Display at the command line:

• 0 — No iterative display
• 1 — Iterative display
• 2 — Iterative display with extra information

For details, see the bayesopt Verbose name-
value argument and the example “Optimize
Classifier Fit Using Bayesian Optimization” on
page 10-56.

1

UseParallel Logical value indicating whether to run Bayesian
optimization in parallel, which requires Parallel
Computing Toolbox. Due to the nonreproducibility
of parallel timing, parallel Bayesian optimization
does not necessarily yield reproducible results. For
details, see “Parallel Bayesian Optimization” on
page 10-7.

false
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Field Name Values Default
Repartition Logical value indicating whether to repartition the

cross-validation at every iteration. If this field is
false, the optimizer uses a single partition for
the optimization.

The setting true usually gives the most robust
results because it takes partitioning noise into
account. However, for good results, true requires
at least twice as many function evaluations.

false

Use no more than one of the following three options.
CVPartition A cvpartition object, as created by

cvpartition
'Kfold',5 if you do not
specify a cross-validation
fieldHoldout A scalar in the range (0,1) representing the

holdout fraction
Kfold An integer greater than 1

Example:
'HyperparameterOptimizationOptions',struct('MaxObjectiveEvaluations',60)

Data Types: struct

Output Arguments
Mdl — Trained generalized additive model
RegressionGAM model object | RegressionPartitionedGAM cross-validated model object

Trained generalized additive model, returned as one of the model objects in this table.

Model Object Cross-Validation Options to
Train Model Object

Ways to Predict Responses
Using Model Object

RegressionGAM None Use predict to predict
responses for new observations,
and use resubPredict to
predict responses for training
observations.

RegressionPartitionedGAM Specify the name-value
argument KFold, Holdout,
Leaveout, CrossVal, or
CVPartition

Use kfoldPredict to predict
responses for observations that
fitrgam holds out during
training. kfoldPredict
predicts a response for every
observation by using the model
trained without that
observation.

To reference properties of Mdl, use dot notation. For example, enter Mdl.Interactions in the
Command Window to display the interaction terms in Mdl.
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More About
Generalized Additive Model (GAM) for Regression

A generalized additive model (GAM) is an interpretable model that explains a response variable using
a sum of univariate and bivariate shape functions of predictors.

fitrgam uses a boosted tree as a shape function for each predictor and, optionally, each pair of
predictors; therefore, the function can capture a nonlinear relation between a predictor and the
response variable. Because contributions of individual shape functions to the prediction (response
value) are well separated, the model is easy to interpret.

The standard GAM uses a univariate shape function for each predictor.

y N μ, σ2

g(μ) = μ = c + f1(x1) + f2(x2) +⋯+ fp(xp),

where y is a response variable that follows the normal distribution with mean μ and standard
deviation σ. g(μ) is an identity link function, and c is an intercept (constant) term. fi(xi) is a univariate
shape function for the ith predictor, which is a boosted tree for a linear term for the predictor
(predictor tree).

You can include interactions between predictors in a model by adding bivariate shape functions of
important interaction terms to the model.

μ = c + f1(x1) + f2(x2) +⋯+ fp(xp) + ∑
i, j ∈ 1, 2,⋯, p

f i j(xix j),

where fij(xixj) is a bivariate shape function for the ith and jth predictors, which is a boosted tree for an
interaction term for the predictors (interaction tree).

fitrgam finds important interaction terms based on the p-values of F-tests. For details, see
“Interaction Term Detection” on page 35-2493.

If you specify 'FitStandardDeviation' of fitrgam as false (default), then fitrgam trains a
model for the mean μ. If you specify 'FitStandardDeviation' as true, then fitrgam trains an
additional model for the standard deviation σ and sets the IsStandardDeviationFit property of
the GAM object to true.

Deviance

Deviance is a generalization of the residual sum of squares. It measures the goodness of fit compared
to the saturated model.

The deviance of a fitted model is twice the difference between the loglikelihoods of the model and the
saturated model:

-2(logL - logLs),
where L and Ls are the likelihoods of the fitted model and the saturated model, respectively. The
saturated model is the model with the maximum number of parameters that you can estimate.

fitrgam uses the deviance to measure the goodness of model fit and finds a learning rate that
reduces the deviance at each iteration. Specify 'Verbose' as 1 or 2 to display the deviance and
learning rate in the Command Window.
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Algorithms
Gradient Boosting Algorithm

fitrgam fits a generalized additive model using a gradient boosting algorithm (“Least-Squares
Boosting” on page 19-52).

fitrgam first builds sets of predictor trees (boosted trees for linear terms for predictors) and then
builds sets of interaction trees (boosted trees for interaction terms for predictors). The boosting
algorithm iterates for at most 'NumTreesPerPredictor' times for predictor trees, and then
iterates for at most 'NumTreesPerInteraction' times for interaction trees.

For each boosting iteration, fitrgam builds a set of predictor trees with the learning rate
'InitialLearnRateForPredictors', or builds a set of interaction trees with the learning rate
'InitialLearnRateForInteractions'.

• When building a set of trees, the function trains one tree at a time. It fits a tree to the residual
that is the difference between the response and the aggregated prediction from all trees grown
previously. To control the boosting learning speed, the function shrinks the tree by the learning
rate and then adds the tree to the model and updates the residual.

• Updated model = current model + (learning rate)·(new tree)
• Updated residual = current residual – (learning rate)·(response explained by new tree)

• If adding the set of trees improves the model fit (that is, reduces the deviance of the fit by a value
larger than the tolerance), then fitrgam moves to the next iteration.

• If adding the set of trees does not improve the model fit when fitrgam trains linear terms, then
the function stops boosting iterations for linear terms and starts boosting iterations for interaction
terms. If the model fit is not improved when the function trains interaction terms, then the
function terminates the model fitting.

You can determine why training stopped by checking the ReasonForTermination property of
the trained model.

Interaction Term Detection

For each pairwise interaction term xixj (specified by formula or 'Interactions'), the software
performs an F-test to examine whether the term is statistically significant.

To speed up the process, fitrgam bins numeric predictors into at most 8 equiprobable bins. The
number of bins can be less than 8 if a predictor has fewer than 8 unique values. The F-test examines
the null hypothesis that the bins created by xi and xj have equal responses versus the alternative that
at least one bin has a different response value from the others. A small p-value indicates that
differences are significant, which implies that the corresponding interaction term is significant and,
therefore, including the term can improve the model fit.

fitrgam builds a set of interaction trees using the terms whose p-values are not greater than the
'MaxPValue' value. You can use the default 'MaxPValue' value 1 to build interaction trees using
all terms specified by formula or 'Interactions'.

fitrgam adds interaction terms to the model in the order of importance based on the p-values. Use
the Interactions property of the returned model to check the order of the interaction terms added
to the model.
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Version History
Introduced in R2021a
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Extended Capabilities
Automatic Parallel Support
Accelerate code by automatically running computation in parallel using Parallel Computing Toolbox™.

To perform parallel hyperparameter optimization, use the
'HyperparameterOptimizationOptions', struct('UseParallel',true) name-value
argument in the call to the fitrgam function.

For more information on parallel hyperparameter optimization, see “Parallel Bayesian Optimization”
on page 10-7.

For general information about parallel computing, see “Run MATLAB Functions with Automatic
Parallel Support” (Parallel Computing Toolbox).

See Also
predict | resume | addInteractions | RegressionGAM | RegressionPartitionedGAM

Topics
“Train Generalized Additive Model for Regression” on page 12-86
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fitrgp
Fit a Gaussian process regression (GPR) model

Syntax
gprMdl = fitrgp(Tbl,ResponseVarName)
gprMdl = fitrgp(Tbl,formula)
gprMdl = fitrgp(Tbl,y)

gprMdl = fitrgp(X,y)

gprMdl = fitrgp( ___ ,Name,Value)

Description
gprMdl = fitrgp(Tbl,ResponseVarName) returns a Gaussian process regression (GPR) model
trained using the sample data in Tbl, where ResponseVarName is the name of the response variable
in Tbl.

gprMdl = fitrgp(Tbl,formula) returns a Gaussian process regression (GPR) model, trained
using the sample data in Tbl, for the predictor variables and response variables identified by
formula.

gprMdl = fitrgp(Tbl,y) returns a GPR model for the predictors in table Tbl and continuous
response vector y.

gprMdl = fitrgp(X,y) returns a GPR model for predictors X and continuous response vector y.

gprMdl = fitrgp( ___ ,Name,Value) returns a GPR model for any of the input arguments in the
previous syntaxes, with additional options specified by one or more Name,Value pair arguments.

For example, you can specify the fitting method, the prediction method, the covariance function, or
the active set selection method. You can also train a cross-validated model.

gprMdl is a RegressionGP object. For object functions and properties of this object, see
RegressionGP.

If you train a cross-validated model, then gprMdl is a RegressionPartitionedGP object. For
further analysis on the cross-validated object, use the object functions of the
RegressionPartitionedGP object.

Examples

Train GPR Model Using Data in Table

This example uses the abalone data [1], [2], from the UCI Machine Learning Repository [3] .
Download the data and save it in your current folder with the name abalone.data.

Store the data into a table. Display the first seven rows.
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tbl = readtable('abalone.data','Filetype','text',...
     'ReadVariableNames',false);
tbl.Properties.VariableNames = {'Sex','Length','Diameter','Height',...
     'WWeight','SWeight','VWeight','ShWeight','NoShellRings'};
tbl(1:7,:)

ans = 

    Sex    Length    Diameter    Height    WWeight    SWeight    VWeight    ShWeight    NoShellRings
    ___    ______    ________    ______    _______    _______    _______    ________    ____________

    'M'    0.455     0.365       0.095      0.514     0.2245      0.101      0.15       15          
    'M'     0.35     0.265        0.09     0.2255     0.0995     0.0485      0.07        7          
    'F'     0.53      0.42       0.135      0.677     0.2565     0.1415      0.21        9          
    'M'     0.44     0.365       0.125      0.516     0.2155      0.114     0.155       10          
    'I'     0.33     0.255        0.08      0.205     0.0895     0.0395     0.055        7          
    'I'    0.425       0.3       0.095     0.3515      0.141     0.0775      0.12        8          
    'F'     0.53     0.415        0.15     0.7775      0.237     0.1415      0.33       20

The dataset has 4177 observations. The goal is to predict the age of abalone from eight physical
measurements. The last variable, number of shell rings shows the age of the abalone. The first
predictor is a categorical variable. The last variable in the table is the response variable.

Fit a GPR model using the subset of regressors method for parameter estimation and fully
independent conditional method for prediction. Standardize the predictors.

gprMdl = fitrgp(tbl,'NoShellRings','KernelFunction','ardsquaredexponential',...
      'FitMethod','sr','PredictMethod','fic','Standardize',1)

grMdl = 

  RegressionGP
       PredictorNames: {1x8 cell}
         ResponseName: 'Var9'
    ResponseTransform: 'none'
      NumObservations: 4177
       KernelFunction: 'ARDSquaredExponential'
    KernelInformation: [1x1 struct]
        BasisFunction: 'Constant'
                 Beta: 10.9148
                Sigma: 2.0243
    PredictorLocation: [10x1 double]
       PredictorScale: [10x1 double]
                Alpha: [1000x1 double]
     ActiveSetVectors: [1000x10 double]
        PredictMethod: 'FIC'
        ActiveSetSize: 1000
            FitMethod: 'SR'
      ActiveSetMethod: 'Random'
    IsActiveSetVector: [4177x1 logical]
        LogLikelihood: -9.0013e+03
     ActiveSetHistory: [1x1 struct]
       BCDInformation: []

Predict the responses using the trained model.

ypred = resubPredict(gprMdl);
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Plot the true response and the predicted responses.

figure();
plot(tbl.NoShellRings,'r.');
hold on
plot(ypred,'b');
xlabel('x');
ylabel('y');
legend({'data','predictions'},'Location','Best');
axis([0 4300 0 30]);
hold off;

Compute the regression loss on the training data (resubstitution loss) for the trained model.

L = resubLoss(gprMdl)

L =

    4.0064

Train GPR Model and Plot Predictions

Generate sample data.

rng(0,'twister'); % For reproducibility
n = 1000;
x = linspace(-10,10,n)';
y = 1 + x*5e-2 + sin(x)./x + 0.2*randn(n,1);
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Fit a GPR model using a linear basis function and the exact fitting method to estimate the
parameters. Also use the exact prediction method.

gprMdl = fitrgp(x,y,'Basis','linear',...
      'FitMethod','exact','PredictMethod','exact');

Predict the response corresponding to the rows of x (resubstitution predictions) using the trained
model.

ypred = resubPredict(gprMdl);

Plot the true response with the predicted values.

plot(x,y,'b.');
hold on;
plot(x,ypred,'r','LineWidth',1.5);
xlabel('x');
ylabel('y');
legend('Data','GPR predictions');
hold off

Impact of Specifying Initial Kernel Parameter Values

Load the sample data.
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load('gprdata2.mat')

The data has one predictor variable and continuous response. This is simulated data.

Fit a GPR model using the squared exponential kernel function with default kernel parameters.

gprMdl1 = fitrgp(x,y,'KernelFunction','squaredexponential');

Now, fit a second model, where you specify the initial values for the kernel parameters.

sigma0 = 0.2;
kparams0 = [3.5, 6.2];
gprMdl2 = fitrgp(x,y,'KernelFunction','squaredexponential',...
     'KernelParameters',kparams0,'Sigma',sigma0);

Compute the resubstitution predictions from both models.

ypred1 = resubPredict(gprMdl1);
ypred2 = resubPredict(gprMdl2);

Plot the response predictions from both models and the responses in training data.

figure();
plot(x,y,'r.');
hold on
plot(x,ypred1,'b');
plot(x,ypred2,'g');
xlabel('x');
ylabel('y');
legend({'data','default kernel parameters',...
'kparams0 = [3.5,6.2], sigma0 = 0.2'},...
'Location','Best');
title('Impact of initial kernel parameter values');
hold off
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The marginal log likelihood that fitrgp maximizes to estimate GPR parameters has multiple local
solutions; the solution that it converges to depends on the initial point. Each local solution
corresponds to a particular interpretation of the data. In this example, the solution with the default
initial kernel parameters corresponds to a low frequency signal with high noise whereas the second
solution with custom initial kernel parameters corresponds to a high frequency signal with low noise.

Use Separate Length Scales for Predictors

Load the sample data.

load('gprdata.mat')

There are six continuous predictor variables. There are 500 observations in the training data set and
100 observations in the test data set. This is simulated data.

Fit a GPR model using the squared exponential kernel function with a separate length scale for each
predictor. This covariance function is defined as:

k(xi, x j |θ) = σf
2exp −1

2 ∑m = 1

d (xim− x jm)2

σm
2 .

where σm represents the length scale for predictor m, m = 1, 2, ..., d and σf  is the signal standard
deviation. The unconstrained parametrization θ is
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θm = logσm, for m = 1, 2, . . . , d
θd + 1 = logσf .

Initialize length scales of the kernel function at 10 and signal and noise standard deviations at the
standard deviation of the response.

sigma0 = std(ytrain);
sigmaF0 = sigma0;
d = size(Xtrain,2);
sigmaM0 = 10*ones(d,1);

Fit the GPR model using the initial kernel parameter values. Standardize the predictors in the
training data. Use the exact fitting and prediction methods.

gprMdl = fitrgp(Xtrain,ytrain,'Basis','constant','FitMethod','exact',...
'PredictMethod','exact','KernelFunction','ardsquaredexponential',...
'KernelParameters',[sigmaM0;sigmaF0],'Sigma',sigma0,'Standardize',1);

Compute the regression loss on the test data.

L = loss(gprMdl,Xtest,ytest)

L = 0.6919

Access the kernel information.

gprMdl.KernelInformation

ans = struct with fields:
                    Name: 'ARDSquaredExponential'
        KernelParameters: [7x1 double]
    KernelParameterNames: {7x1 cell}

Display the kernel parameter names.

gprMdl.KernelInformation.KernelParameterNames

ans = 7x1 cell
    {'LengthScale1'}
    {'LengthScale2'}
    {'LengthScale3'}
    {'LengthScale4'}
    {'LengthScale5'}
    {'LengthScale6'}
    {'SigmaF'      }

Display the kernel parameters.

sigmaM = gprMdl.KernelInformation.KernelParameters(1:end-1,1)

sigmaM = 6×1
104 ×

    0.0004
    0.0007
    0.0004
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    5.2701
    0.1018
    0.0056

sigmaF = gprMdl.KernelInformation.KernelParameters(end)

sigmaF = 28.1721

sigma  = gprMdl.Sigma

sigma = 0.8162

Plot the log of learned length scales.

figure()
plot((1:d)',log(sigmaM),'ro-');
xlabel('Length scale number');
ylabel('Log of length scale');

The log of length scale for the 4th and 5th predictor variables are high relative to the others. These
predictor variables do not seem to be as influential on the response as the other predictor variables.

Fit the GPR model without using the 4th and 5th variables as the predictor variables.

X = [Xtrain(:,1:3) Xtrain(:,6)];
sigma0 = std(ytrain);
sigmaF0 = sigma0;
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d = size(X,2);
sigmaM0 = 10*ones(d,1);

gprMdl = fitrgp(X,ytrain,'Basis','constant','FitMethod','exact',...
'PredictMethod','exact','KernelFunction','ardsquaredexponential',...
'KernelParameters',[sigmaM0;sigmaF0],'Sigma',sigma0,'Standardize',1);

Compute the regression error on the test data.

xtest = [Xtest(:,1:3) Xtest(:,6)];
L = loss(gprMdl,xtest,ytest)

L = 0.6928

The loss is similar to the one when all variables are used as predictor variables.

Compute the predicted response for the test data.

 ypred = predict(gprMdl,xtest);

Plot the original response along with the fitted values.

figure;
plot(ytest,'r');
hold on;
plot(ypred,'b');
legend('True response','GPR predicted values','Location','Best');
hold off
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Optimize GPR Regression

This example shows how to optimize hyperparameters automatically using fitrgp. The example uses
the gprdata2 data that ships with your software.

Load the data.

load('gprdata2.mat')

The data has one predictor variable and continuous response. This is simulated data.

Fit a GPR model using the squared exponential kernel function with default kernel parameters.

gprMdl1 = fitrgp(x,y,'KernelFunction','squaredexponential');

Find hyperparameters that minimize five-fold cross-validation loss by using automatic
hyperparameter optimization.

For reproducibility, set the random seed and use the 'expected-improvement-plus' acquisition
function.

rng default
gprMdl2 = fitrgp(x,y,'KernelFunction','squaredexponential',...
    'OptimizeHyperparameters','auto','HyperparameterOptimizationOptions',...
    struct('AcquisitionFunctionName','expected-improvement-plus'));

|======================================================================================|
| Iter | Eval   | Objective:  | Objective   | BestSoFar   | BestSoFar   |        Sigma |
|      | result | log(1+loss) | runtime     | (observed)  | (estim.)    |              |
|======================================================================================|
|    1 | Best   |     0.29417 |      15.708 |     0.29417 |     0.29417 |    0.0015045 |
|    2 | Best   |    0.037898 |      24.466 |    0.037898 |    0.060792 |      0.14147 |
|    3 | Accept |      1.5693 |      6.8801 |    0.037898 |    0.040633 |       25.279 |
|    4 | Accept |     0.29417 |      12.413 |    0.037898 |    0.037984 |    0.0001091 |
|    5 | Accept |     0.29393 |      11.443 |    0.037898 |    0.038029 |     0.029932 |
|    6 | Accept |     0.13152 |      11.825 |    0.037898 |    0.038127 |      0.37127 |
|    7 | Best   |    0.037785 |      11.272 |    0.037785 |    0.037728 |      0.18116 |
|    8 | Accept |     0.03783 |       12.58 |    0.037785 |    0.036524 |      0.16251 |
|    9 | Accept |    0.037833 |      5.9985 |    0.037785 |    0.036854 |      0.16159 |
|   10 | Accept |    0.037835 |      20.228 |    0.037785 |    0.037052 |      0.16072 |
|   11 | Accept |     0.29417 |      10.601 |    0.037785 |     0.03705 |   0.00038214 |
|   12 | Accept |     0.42256 |      9.0418 |    0.037785 |     0.03696 |       3.2067 |
|   13 | Accept |     0.03786 |      8.6334 |    0.037785 |    0.037087 |      0.15245 |
|   14 | Accept |     0.29417 |      8.8253 |    0.037785 |    0.037043 |    0.0063584 |
|   15 | Accept |     0.42302 |      6.7951 |    0.037785 |     0.03725 |       1.2221 |
|   16 | Accept |    0.039486 |      8.7717 |    0.037785 |    0.037672 |      0.10069 |
|   17 | Accept |    0.038591 |      9.0906 |    0.037785 |    0.037687 |      0.12077 |
|   18 | Accept |    0.038513 |      14.089 |    0.037785 |    0.037696 |       0.1227 |
|   19 | Best   |    0.037757 |      21.151 |    0.037757 |    0.037572 |      0.19621 |
|   20 | Accept |    0.037787 |       9.959 |    0.037757 |    0.037601 |      0.18068 |
|======================================================================================|
| Iter | Eval   | Objective:  | Objective   | BestSoFar   | BestSoFar   |        Sigma |
|      | result | log(1+loss) | runtime     | (observed)  | (estim.)    |              |
|======================================================================================|
|   21 | Accept |     0.44917 |      10.012 |    0.037757 |     0.03766 |       8.7818 |
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|   22 | Accept |    0.040201 |      8.2119 |    0.037757 |    0.037601 |     0.075414 |
|   23 | Accept |    0.040142 |      10.081 |    0.037757 |    0.037607 |     0.087198 |
|   24 | Accept |     0.29417 |      15.816 |    0.037757 |     0.03758 |    0.0031018 |
|   25 | Accept |     0.29417 |      18.856 |    0.037757 |    0.037555 |   0.00019545 |
|   26 | Accept |     0.29417 |      11.987 |    0.037757 |    0.037582 |     0.013608 |
|   27 | Accept |     0.29417 |       11.13 |    0.037757 |    0.037556 |   0.00076147 |
|   28 | Accept |     0.42162 |      11.166 |    0.037757 |    0.037854 |       0.6791 |
|   29 | Best   |    0.037704 |      12.464 |    0.037704 |    0.037908 |       0.2367 |
|   30 | Accept |    0.037725 |      6.7404 |    0.037704 |    0.037881 |      0.21743 |

 fitrgp

35-2505



__________________________________________________________
Optimization completed.
MaxObjectiveEvaluations of 30 reached.
Total function evaluations: 30
Total elapsed time: 396.8348 seconds
Total objective function evaluation time: 356.2368

Best observed feasible point:
    Sigma 
    ______

    0.2367

Observed objective function value = 0.037704
Estimated objective function value = 0.038223
Function evaluation time = 12.4639

Best estimated feasible point (according to models):
     Sigma 
    _______
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    0.16159

Estimated objective function value = 0.037881
Estimated function evaluation time = 11.1716

Compare the pre- and post-optimization fits.

ypred1 = resubPredict(gprMdl1);
ypred2 = resubPredict(gprMdl2);

figure();
plot(x,y,'r.');
hold on
plot(x,ypred1,'b');
plot(x,ypred2,'k','LineWidth',2);
xlabel('x');
ylabel('y');
legend({'data','Initial Fit','Optimized Fit'},'Location','Best');
title('Impact of Optimization');
hold off

Train GPR Model Using Cross-Validation

This example uses the abalone data [1], [2], from the UCI Machine Learning Repository [3]. Download
the data and save it in your current folder with the name abalone.data.
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Store the data into a table. Display the first seven rows.

tbl = readtable('abalone.data','Filetype','text','ReadVariableNames',false);
tbl.Properties.VariableNames = {'Sex','Length','Diameter','Height','WWeight','SWeight','VWeight','ShWeight','NoShellRings'};
tbl(1:7,:)

ans = 

    Sex    Length    Diameter    Height    WWeight    SWeight    VWeight    ShWeight    NoShellRings
    ___    ______    ________    ______    _______    _______    _______    ________    ____________

    'M'    0.455     0.365       0.095      0.514     0.2245      0.101      0.15       15          
    'M'     0.35     0.265        0.09     0.2255     0.0995     0.0485      0.07        7          
    'F'     0.53      0.42       0.135      0.677     0.2565     0.1415      0.21        9          
    'M'     0.44     0.365       0.125      0.516     0.2155      0.114     0.155       10          
    'I'     0.33     0.255        0.08      0.205     0.0895     0.0395     0.055        7          
    'I'    0.425       0.3       0.095     0.3515      0.141     0.0775      0.12        8          
    'F'     0.53     0.415        0.15     0.7775      0.237     0.1415      0.33       20

The dataset has 4177 observations. The goal is to predict the age of abalone from eight physical
measurements. The last variable, number of shell rings shows the age of the abalone. The first
predictor is a categorical variable. The last variable in the table is the response variable.

Train a cross-validated GPR model using the 25% of the data for validation.

rng('default') % For reproducibility
cvgprMdl = fitrgp(tbl,'NoShellRings','Standardize',1,'Holdout',0.25);

Compute the average loss on folds using models trained on out-of-fold observations.

kfoldLoss(cvgprMdl)

ans =
   4.6409

Predict the responses for out-of-fold data.

ypred = kfoldPredict(cvgprMdl);

Plot the true responses used for testing and the predictions.

figure();
plot(ypred(cvgprMdl.Partition.test));
hold on;
y = table2array(tbl(:,end));
plot(y(cvgprMdl.Partition.test),'r.');
axis([0 1050 0 30]);
xlabel('x')
ylabel('y')
hold off;
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Fit GPR Model Using Custom Kernel Function

Generate the sample data.

rng(0,'twister'); % For reproducibility
n = 1000;
x = linspace(-10,10,n)';
y = 1 + x*5e-2 + sin(x)./x + 0.2*randn(n,1);

Define the squared exponential kernel function as a custom kernel function.

You can compute the squared exponential kernel function as

k(xi, x j |θ) = σf
2exp − 1

2
(xi− x j)T(xi− x j)

σl
2 ,

where σf  is the signal standard deviation, σl is the length scale. Both σf  and σl must be greater than
zero. This condition can be enforced by the unconstrained parametrization, σl = exp(θ(1)) and
σf = exp(θ(2)), for some unconstrained parametrization vector θ.

Hence, you can define the squared exponential kernel function as a custom kernel function as follows:

kfcn = @(XN,XM,theta) (exp(theta(2))^2)*exp(-(pdist2(XN,XM).^2)/(2*exp(theta(1))^2));
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Here pdist2(XN,XM).^2 computes the distance matrix.

Fit a GPR model using the custom kernel function, kfcn. Specify the initial values of the kernel
parameters (Because you use a custom kernel function, you must provide initial values for the
unconstrained parametrization vector, theta).

theta0 = [1.5,0.2];
gprMdl = fitrgp(x,y,'KernelFunction',kfcn,'KernelParameters',theta0);

fitrgp uses analytical derivatives to estimate parameters when using a built-in kernel function,
whereas when using a custom kernel function it uses numerical derivatives.

Compute the resubstitution loss for this model.

L = resubLoss(gprMdl)

L = 0.0391

Fit the GPR model using the built-in squared exponential kernel function option. Specify the initial
values of the kernel parameters (Because you use the built-in custom kernel function and specifying
initial parameter values, you must provide the initial values for the signal standard deviation and
length scale(s) directly).

sigmaL0 = exp(1.5);
sigmaF0 = exp(0.2);
gprMdl2 = fitrgp(x,y,'KernelFunction','squaredexponential','KernelParameters',[sigmaL0,sigmaF0]);

Compute the resubstitution loss for this model.

L2 = resubLoss(gprMdl2)

L2 = 0.0391

The two loss values are the same as expected.

Specify Initial Step Size for LBFGS Optimization

Train a GPR model on generated data with many predictors. Specify the initial step size for the
LBFGS optimizer.

Set the seed and type of the random number generator for reproducibility of the results.

rng(0,'twister'); % For reproducibility 

Generate sample data with 300 observations and 3000 predictors, where the response variable
depends on the 4th, 7th, and 13th predictors.

N = 300;
P = 3000;
X = rand(N,P);
y = cos(X(:,7)) + sin(X(:,4).*X(:,13)) + 0.1*randn(N,1);

Set initial values for the kernel parameters.

sigmaL0 = sqrt(P)*ones(P,1); % Length scale for predictors
sigmaF0 = 1; % Signal standard deviation
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Set initial noise standard deviation to 1.

sigmaN0 = 1;

Specify 1e-2 as the termination tolerance for the relative gradient norm.

opts = statset('fitrgp');
opts.TolFun = 1e-2;

Fit a GPR model using the initial kernel parameter values, initial noise standard deviation, and an
automatic relevance determination (ARD) squared exponential kernel function.

Specify the initial step size as 1 for determining the initial Hessian approximation for an LBFGS
optimizer.

gpr = fitrgp(X,y,'KernelFunction','ardsquaredexponential','Verbose',1, ...
    'Optimizer','lbfgs','OptimizerOptions',opts, ...
    'KernelParameters',[sigmaL0;sigmaF0],'Sigma',sigmaN0,'InitialStepSize',1);

o Parameter estimation: FitMethod = Exact, Optimizer = lbfgs

 o Solver = LBFGS, HessianHistorySize = 15, LineSearchMethod = weakwolfe

|====================================================================================================|
|   ITER   |   FUN VALUE   |  NORM GRAD  |  NORM STEP  |  CURV  |    GAMMA    |    ALPHA    | ACCEPT |
|====================================================================================================|
|        0 |  3.004966e+02 |   2.569e+02 |   0.000e+00 |        |   3.893e-03 |   0.000e+00 |   YES  |
|        1 |  9.525779e+01 |   1.281e+02 |   1.003e+00 |    OK  |   6.913e-03 |   1.000e+00 |   YES  |
|        2 |  3.972026e+01 |   1.647e+01 |   7.639e-01 |    OK  |   4.718e-03 |   5.000e-01 |   YES  |
|        3 |  3.893873e+01 |   1.073e+01 |   1.057e-01 |    OK  |   3.243e-03 |   1.000e+00 |   YES  |
|        4 |  3.859904e+01 |   5.659e+00 |   3.282e-02 |    OK  |   3.346e-03 |   1.000e+00 |   YES  |
|        5 |  3.748912e+01 |   1.030e+01 |   1.395e-01 |    OK  |   1.460e-03 |   1.000e+00 |   YES  |
|        6 |  2.028104e+01 |   1.380e+02 |   2.010e+00 |    OK  |   2.326e-03 |   1.000e+00 |   YES  |
|        7 |  2.001849e+01 |   1.510e+01 |   9.685e-01 |    OK  |   2.344e-03 |   1.000e+00 |   YES  |
|        8 | -7.706109e+00 |   8.340e+01 |   1.125e+00 |    OK  |   5.771e-04 |   1.000e+00 |   YES  |
|        9 | -1.786074e+01 |   2.323e+02 |   2.647e+00 |    OK  |   4.217e-03 |   1.250e-01 |   YES  |
|       10 | -4.058422e+01 |   1.972e+02 |   6.796e-01 |    OK  |   7.035e-03 |   1.000e+00 |   YES  |
|       11 | -7.850209e+01 |   4.432e+01 |   8.335e-01 |    OK  |   3.099e-03 |   1.000e+00 |   YES  |
|       12 | -1.312162e+02 |   3.334e+01 |   1.277e+00 |    OK  |   5.432e-02 |   1.000e+00 |   YES  |
|       13 | -2.005064e+02 |   9.519e+01 |   2.828e+00 |    OK  |   5.292e-03 |   1.000e+00 |   YES  |
|       14 | -2.070150e+02 |   1.898e+01 |   1.641e+00 |    OK  |   6.817e-03 |   1.000e+00 |   YES  |
|       15 | -2.108086e+02 |   3.793e+01 |   7.685e-01 |    OK  |   3.479e-03 |   1.000e+00 |   YES  |
|       16 | -2.122920e+02 |   7.057e+00 |   1.591e-01 |    OK  |   2.055e-03 |   1.000e+00 |   YES  |
|       17 | -2.125610e+02 |   4.337e+00 |   4.818e-02 |    OK  |   1.974e-03 |   1.000e+00 |   YES  |
|       18 | -2.130162e+02 |   1.178e+01 |   8.891e-02 |    OK  |   2.856e-03 |   1.000e+00 |   YES  |
|       19 | -2.139378e+02 |   1.933e+01 |   2.371e-01 |    OK  |   1.029e-02 |   1.000e+00 |   YES  |

|====================================================================================================|
|   ITER   |   FUN VALUE   |  NORM GRAD  |  NORM STEP  |  CURV  |    GAMMA    |    ALPHA    | ACCEPT |
|====================================================================================================|
|       20 | -2.151111e+02 |   1.550e+01 |   3.015e-01 |    OK  |   2.765e-02 |   1.000e+00 |   YES  |
|       21 | -2.173046e+02 |   5.856e+00 |   6.537e-01 |    OK  |   1.414e-02 |   1.000e+00 |   YES  |
|       22 | -2.201781e+02 |   8.918e+00 |   8.484e-01 |    OK  |   6.381e-03 |   1.000e+00 |   YES  |
|       23 | -2.288858e+02 |   4.846e+01 |   2.311e+00 |    OK  |   2.661e-03 |   1.000e+00 |   YES  |
|       24 | -2.392171e+02 |   1.190e+02 |   6.283e+00 |    OK  |   8.113e-03 |   1.000e+00 |   YES  |
|       25 | -2.511145e+02 |   1.008e+02 |   1.198e+00 |    OK  |   1.605e-02 |   1.000e+00 |   YES  |
|       26 | -2.742547e+02 |   2.207e+01 |   1.231e+00 |    OK  |   3.191e-03 |   1.000e+00 |   YES  |
|       27 | -2.849931e+02 |   5.067e+01 |   3.660e+00 |    OK  |   5.184e-03 |   1.000e+00 |   YES  |

 fitrgp

35-2511



|       28 | -2.899797e+02 |   2.068e+01 |   1.162e+00 |    OK  |   6.270e-03 |   1.000e+00 |   YES  |
|       29 | -2.916723e+02 |   1.816e+01 |   3.213e-01 |    OK  |   1.415e-02 |   1.000e+00 |   YES  |
|       30 | -2.947674e+02 |   6.965e+00 |   1.126e+00 |    OK  |   6.339e-03 |   1.000e+00 |   YES  |
|       31 | -2.962491e+02 |   1.349e+01 |   2.352e-01 |    OK  |   8.999e-03 |   1.000e+00 |   YES  |
|       32 | -3.004921e+02 |   1.586e+01 |   9.880e-01 |    OK  |   3.940e-02 |   1.000e+00 |   YES  |
|       33 | -3.118906e+02 |   1.889e+01 |   3.318e+00 |    OK  |   1.213e-01 |   1.000e+00 |   YES  |
|       34 | -3.189215e+02 |   7.086e+01 |   3.070e+00 |    OK  |   8.095e-03 |   1.000e+00 |   YES  |
|       35 | -3.245557e+02 |   4.366e+00 |   1.397e+00 |    OK  |   2.718e-03 |   1.000e+00 |   YES  |
|       36 | -3.254613e+02 |   3.751e+00 |   6.546e-01 |    OK  |   1.004e-02 |   1.000e+00 |   YES  |
|       37 | -3.262823e+02 |   4.011e+00 |   2.026e-01 |    OK  |   2.441e-02 |   1.000e+00 |   YES  |
|       38 | -3.325606e+02 |   1.773e+01 |   2.427e+00 |    OK  |   5.234e-02 |   1.000e+00 |   YES  |
|       39 | -3.350374e+02 |   1.201e+01 |   1.603e+00 |    OK  |   2.674e-02 |   1.000e+00 |   YES  |

|====================================================================================================|
|   ITER   |   FUN VALUE   |  NORM GRAD  |  NORM STEP  |  CURV  |    GAMMA    |    ALPHA    | ACCEPT |
|====================================================================================================|
|       40 | -3.379112e+02 |   5.280e+00 |   1.393e+00 |    OK  |   1.177e-02 |   1.000e+00 |   YES  |
|       41 | -3.389136e+02 |   3.061e+00 |   7.121e-01 |    OK  |   2.935e-02 |   1.000e+00 |   YES  |
|       42 | -3.401070e+02 |   4.094e+00 |   6.224e-01 |    OK  |   3.399e-02 |   1.000e+00 |   YES  |
|       43 | -3.436291e+02 |   8.833e+00 |   1.707e+00 |    OK  |   5.231e-02 |   1.000e+00 |   YES  |
|       44 | -3.456295e+02 |   5.891e+00 |   1.424e+00 |    OK  |   3.772e-02 |   1.000e+00 |   YES  |
|       45 | -3.460069e+02 |   1.126e+01 |   2.580e+00 |    OK  |   3.907e-02 |   1.000e+00 |   YES  |
|       46 | -3.481756e+02 |   1.546e+00 |   8.142e-01 |    OK  |   1.565e-02 |   1.000e+00 |   YES  |

         Infinity norm of the final gradient = 1.546e+00
              Two norm of the final step     = 8.142e-01, TolX   = 1.000e-12
Relative infinity norm of the final gradient = 6.016e-03, TolFun = 1.000e-02
EXIT: Local minimum found.

o Alpha estimation: PredictMethod = Exact

Because the GPR model uses an ARD kernel with many predictors, using an LBFGS approximation to
the Hessian is more memory efficient than storing the full Hessian matrix. Also, using the initial step
size to determine the initial Hessian approximation may help speed up optimization.

Find the predictor weights by taking the exponential of the negative learned length scales. Normalize
the weights.

sigmaL = gpr.KernelInformation.KernelParameters(1:end-1); % Learned length scales
weights = exp(-sigmaL); % Predictor weights
weights = weights/sum(weights); % Normalized predictor weights

Plot the normalized predictor weights.

figure;
semilogx(weights,'ro');
xlabel('Predictor index');
ylabel('Predictor weight');
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The trained GPR model assigns the largest weights to the 4th, 7th, and 13th predictors. The
irrelevant predictors have weights close to zero.

Input Arguments
Tbl — Sample data
table

Sample data used to train the model, specified as a table. Each row of Tbl corresponds to one
observation, and each column corresponds to one variable. Tbl contains the predictor variables, and
optionally it can also contain one column for the response variable. Multicolumn variables and cell
arrays other than cell arrays of character vectors are not allowed.

• If Tbl contains the response variable, and you want to use all the remaining variables as
predictors, then specify the response variable using ResponseVarName.

• If Tbl contains the response variable, and you want to use only a subset of the predictors in
training the model, then specify the response variable and the predictor variables using formula.

• If Tbl does not contain the response variable, then specify a response variable using y. The length
of the response variable and the number of rows in Tbl must be equal.

For more information on the table data type, see table.

If your predictor data contains categorical variables, then fitrgp creates dummy variables. For
details, see CategoricalPredictors.
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Data Types: table

ResponseVarName — Response variable name
name of a variable in Tbl

Response variable name, specified as the name of a variable in Tbl. You must specify
ResponseVarName as a character vector or string scalar. For example, if the response variable y is
stored in Tbl (as Tbl.y), then specify it as 'y'. Otherwise, the software treats all the columns of
Tbl, including y, as predictors when training the model.
Data Types: char | string

formula — Response and predictor variables to use in model training
character vector or string scalar in the form of 'y~x1+x2+x3'

Response and predictor variables to use in model training, specified as a character vector or string
scalar in the form of 'y~x1+x2+x3'. In this form, y represents the response variable; x1, x2, x3
represent the predictor variables to use in training the model.

Use a formula if you want to specify a subset of variables in Tbl as predictors to use when training
the model. If you specify a formula, then any variables that do not appear in formula are not used to
train the model.

The variable names in the formula must be both variable names in Tbl
(Tbl.Properties.VariableNames) and valid MATLAB identifiers. You can verify the variable
names in Tbl by using the isvarname function. If the variable names are not valid, then you can
convert them by using the matlab.lang.makeValidName function.

The formula does not indicate the form of the BasisFunction.
Example: 'PetalLength~PetalWidth+Species' identifies the variable PetalLength as the
response variable, and PetalWidth and Species as the predictor variables.
Data Types: char | string

X — Predictor data for the GPR model
n-by-d matrix

Predictor data for the GPR model, specified as an n-by-d matrix. n is the number of observations
(rows), and d is the number of predictors (columns).

The length of y and the number of rows of X must be equal.

To specify the names of the predictors in the order of their appearance in X, use the
PredictorNames name-value pair argument.
Data Types: double

y — Response data for the GPR model
n-by-1 vector

Response data for the GPR model, specified as an n-by-1 vector. You can omit y if you provide the Tbl
training data that also includes y. In that case, use ResponseVarName to identify the response
variable or use formula to identify the response and predictor variables.
Data Types: double
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Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.

Note You cannot use any cross-validation name-value argument together with the
'OptimizeHyperparameters' name-value argument. You can modify the cross-validation for
'OptimizeHyperparameters' only by using the 'HyperparameterOptimizationOptions'
name-value argument.

Example:
'FitMethod','sr','BasisFunction','linear','ActiveSetMethod','sgma','PredictMe
thod','fic' trains the GPR model using the subset of regressors approximation method for
parameter estimation, uses a linear basis function, uses sparse greedy matrix approximation for
active selection, and fully independent conditional approximation method for prediction.

Fitting

FitMethod — Method to estimate parameters of the GPR model
'none' | 'exact' | 'sd' | 'sr' | 'fic'

Method to estimate parameters of the GPR model, specified as one of the following.

Fit Method Description
'none' No estimation, use the initial parameter values as

the known parameter values.
'exact' Exact Gaussian process regression. Default if n ≤

2000, where n is the number of observations.
'sd' Subset of data points approximation. Default if n

> 2000, where n is the number of observations.
'sr' Subset of regressors approximation.
'fic' Fully independent conditional approximation.

Example: 'FitMethod','fic'

BasisFunction — Explicit basis in the GPR model
'constant' (default) | 'none' | 'linear' | 'pureQuadratic' | function handle

Explicit basis in the GPR model, specified as one of the following. If n is the number of observations,
the basis function adds the term H*β to the model, where H is the basis matrix and β is a p-by-1
vector of basis coefficients.

Explicit Basis Basis Matrix
'none' Empty matrix.
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Explicit Basis Basis Matrix
'constant' H = 1

(n-by-1 vector of 1s, where n is the number of
observations)

'linear' H = [1, X]
'pureQuadratic' H = 1, X, X2 ,

where

X2 =

x11
2 x12

2 ⋯ x1d
2

x21
2 x22

2 ⋯ x2d
2

⋮ ⋮ ⋮ ⋮
xn1

2 xn2
2 ⋯ xnd

2

.

Function handle Function handle, hfcn, that fitrgp calls as:

H = hfcn(X),

where X is an n-by-d matrix of predictors and H is
an n-by-p matrix of basis functions.

Example: 'BasisFunction','pureQuadratic'
Data Types: char | string | function_handle

Beta — Initial value of the coefficients
p-by-1 vector

Initial value of the coefficients for the explicit basis, specified as a p-by-1 vector, where p is the
number of columns in the basis matrix H.

The basis matrix depends on the choice of the explicit basis function as follows (also see
BasisFunction).

fitrgp uses the coefficient initial values as the known coefficient values, only when FitMethod is
'none'.
Data Types: double

Sigma — Initial value for the noise standard deviation of the Gaussian process model
std(y)/sqrt(2) (default) | positive scalar value

Initial value for the noise standard deviation of the Gaussian process model, specified as a positive
scalar value.

fitrgp parameterizes the noise standard deviation as the sum of SigmaLowerBound and exp(η),
where η is an unconstrained value. Therefore, Sigma must be larger than SigmaLowerBound by a
small tolerance so that the function can initialize η to a finite value. Otherwise, the function resets
Sigma to a compatible value.
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The tolerance is 1e-3 when ConstantSigma is false (default) and 1e-6 otherwise. If the tolerance
is not small enough relative to the scale of the response variable, you can scale up the response
variable so that the tolerance value can be considered small for the response variable.
Example: 'Sigma',2
Data Types: double

ConstantSigma — Constant value of Sigma for the noise standard deviation of the Gaussian
process model
false (default) | true

Constant value of Sigma for the noise standard deviation of the Gaussian process model, specified as
a logical scalar. When ConstantSigma is true, fitrgp does not optimize the value of Sigma, but
instead takes the initial value as the value throughout its computations.
Example: 'ConstantSigma',true
Data Types: logical

SigmaLowerBound — Lower bound on the noise standard deviation
1e-2*std(y) (default) | positive scalar value

Lower bound on the noise standard deviation (Sigma), specified as a positive scalar value.

Sigma must be larger than SigmaLowerBound by a small tolerance. For details, see Sigma.
Example: 'SigmaLowerBound',0.02
Data Types: double

CategoricalPredictors — Categorical predictors list
vector of positive integers | logical vector | character matrix | string array | cell array of character
vectors | 'all'

Categorical predictors list, specified as one of the values in this table.

Value Description
Vector of positive
integers

Each entry in the vector is an index value indicating that the corresponding
predictor is categorical. The index values are between 1 and p, where p is
the number of predictors used to train the model.

If fitrgp uses a subset of input variables as predictors, then the function
indexes the predictors using only the subset. The
CategoricalPredictors values do not count the response variable,
observation weights variable, or any other variables that the function does
not use.

Logical vector A true entry means that the corresponding predictor is categorical. The
length of the vector is p.

Character matrix Each row of the matrix is the name of a predictor variable. The names must
match the entries in PredictorNames. Pad the names with extra blanks
so each row of the character matrix has the same length.
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Value Description
String array or cell
array of character
vectors

Each element in the array is the name of a predictor variable. The names
must match the entries in PredictorNames.

"all" All predictors are categorical.

By default, if the predictor data is in a table (Tbl), fitrgp assumes that a variable is categorical if it
is a logical vector, categorical vector, character array, string array, or cell array of character vectors.
If the predictor data is a matrix (X), fitrgp assumes that all predictors are continuous. To identify
any other predictors as categorical predictors, specify them by using the CategoricalPredictors
name-value argument.

For the identified categorical predictors, fitrgp creates dummy variables using two different
schemes, depending on whether a categorical variable is unordered or ordered. For an unordered
categorical variable, fitrgp creates one dummy variable for each level of the categorical variable.
For an ordered categorical variable, fitrgp creates one less dummy variable than the number of
categories. For details, see “Automatic Creation of Dummy Variables” on page 2-50.
Example: 'CategoricalPredictors','all'
Data Types: single | double | logical | char | string | cell

Standardize — Indicator to standardize data
0 (false) (default) | logical value

Indicator to standardize data, specified as a logical value.

If you set 'Standardize',1, then the software centers and scales each column of the predictor
data, by the column mean and standard deviation, respectively. The software does not standardize the
data contained in the dummy variable columns that it generates for categorical predictors.
Example: 'Standardize',1
Example: 'Standardize',true
Data Types: logical

Regularization — Regularization standard deviation
1e-2*std(y) (default) | positive scalar value

Regularization standard deviation for sparse methods subset of regressors ('sr') and fully
independent conditional ('fic'), specified as a positive scalar value.
Example: 'Regularization',0.2
Data Types: double

ComputationMethod — Method for computing log likelihood and gradient
'qr' (default) | 'v'

Method for computing the log likelihood and gradient for parameter estimation using subset of
regressors ('sr') and fully independent conditional ('fic') approximation methods, specified as
one of the following.

• 'qr' — Use QR factorization based approach, this option provides better accuracy.
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• 'v' — Use V-method-based approach. This option provides faster computation of log likelihood
gradients.

Example: 'ComputationMethod','v'

Kernel (Covariance) Function

KernelFunction — Form of the covariance function
'squaredexponential' (default) | 'exponential' | 'matern32' | 'matern52' |
'rationalquadratic' | 'ardsquaredexponential' | 'ardexponential' | 'ardmatern32' |
'ardmatern52' | 'ardrationalquadratic' | function handle

Form of the covariance function, specified as one of the following.

Function Description
'exponential' Exponential kernel.
'squaredexponential' Squared exponential kernel.
'matern32' Matern kernel with parameter 3/2.
'matern52' Matern kernel with parameter 5/2.
'rationalquadratic' Rational quadratic kernel.
'ardexponential' Exponential kernel with a separate length scale

per predictor.
'ardsquaredexponential' Squared exponential kernel with a separate

length scale per predictor.
'ardmatern32' Matern kernel with parameter 3/2 and a separate

length scale per predictor.
'ardmatern52' Matern kernel with parameter 5/2 and a separate

length scale per predictor.
'ardrationalquadratic' Rational quadratic kernel with a separate length

scale per predictor.
Function handle A function handle that can be called like this:

Kmn = kfcn(Xm,Xn,theta)
where Xm is an m-by-d matrix, Xn is an n-by-d
matrix and Kmn is an m-by-n matrix of kernel
products such that Kmn(i,j) is the kernel product
between Xm(i,:) and Xn(j,:).
theta is the r-by-1 unconstrained parameter
vector for kfcn.

For more information on the kernel functions, see “Kernel (Covariance) Function Options” on page 6-
6.
Example: 'KernelFunction','matern32'
Data Types: char | string | function_handle

KernelParameters — Initial values for the kernel parameters
vector
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Initial values for the kernel parameters, specified as a vector. The size of the vector and the values
depend on the form of the covariance function, specified by the KernelFunction name-value pair
argument.

'KernelFunction' 'KernelParameters'
'exponential', 'squaredexponential',
'matern32', or 'matern52'

2-by-1 vector phi, where phi(1) contains the
length scale and phi(2) contains the signal
standard deviation.
Default initial value of the length scale parameter
is the mean of standard deviations of the
predictors, and the signal standard deviation is
the standard deviation of the responses divided
by square root of 2. That is,
phi = [mean(std(X));std(y)/sqrt(2)]

'rationalquadratic' 3-by-1 vector phi, where phi(1) contains the
length scale, phi(2) contains the scale-mixture
parameter, and phi(3) contains the signal
standard deviation.
Default initial value of the length scale parameter
is the mean of standard deviations of the
predictors, and the signal standard deviation is
the standard deviation of the responses divided
by square root of 2. Default initial value for the
scale-mixture parameter is 1. That is,
phi = [mean(std(X));1;std(y)/sqrt(2)]

'ardexponential',
'ardsquaredexponential', 'ardmatern32',
or 'ardmatern52'

(d+1)-by-1 vector phi, where phi(i) contains
the length scale for predictor i, and phi(d+1)
contains the signal standard deviation. d is the
number of predictor variables after dummy
variables are created for categorical variables.
For details about creating dummy variables, see
CategoricalPredictors.
Default initial value of the length scale
parameters are the standard deviations of the
predictors and the signal standard deviation is
the standard deviation of the responses divided
by square root of 2. That is,
phi = [std(X)';std(y)/sqrt(2)]

'ardrationalquadratic' (d+2)-by-1 vector phi, where phi(i) contains
the length scale for predictor i, phi(d+1)
contains the scale-mixture parameter, and phi(d
+2) contains signal standard deviation.
Default initial value of the length scale
parameters are the standard deviations of the
predictors and the signal standard deviation is
the standard deviation of the responses divided
by square root of 2. Default initial value for the
scale-mixture parameter is 1. That is,
phi = [std(X)';1;std(y)/sqrt(2)]
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'KernelFunction' 'KernelParameters'
Function handle r-by-1 vector as the initial value of the

unconstrained parameter vector phi for the
custom kernel function kfcn.
When KernelFunction is a function handle, you
must supply initial values for the kernel
parameters.

For more information on the kernel functions, see “Kernel (Covariance) Function Options” on page 6-
6.
Example: 'KernelParameters',theta
Data Types: double

DistanceMethod — Method for computing inter-point distances
'fast' (default) | 'accurate'

Method for computing inter-point distances to evaluate built-in kernel functions, specified as either
'fast' or 'accurate'. fitrgp computes x− y 2 as x2 + y2− 2 * x * y when you choose the fast
option and as x− y 2 when you choose the accurate option.
Example: 'DistanceMethod','accurate'

Active Set Selection

ActiveSet — Observations in the active set
[] (default) | m-by-1 vector of integers ranging from 1 to n (m ≤ n) | logical vector of length n

Observations in the active set, specified as an m-by-1 vector of integers ranging from 1 to n (m ≤ n)
or a logical vector of length n with at least one true element. n is the total number of observations in
the training data.

fitrgp uses the observations indicated by ActiveSet to train the GPR model. The active set cannot
have duplicate elements.

If you supply ActiveSet, then:

• fitrgp does not use ActiveSetSize and ActiveSetMethod.
• You cannot perform cross-validation on this model.

Data Types: double | logical

ActiveSetSize — Size of the active set for sparse methods
an integer m (1 ≤ m ≤ n)

Size of the active set for sparse methods ('sd', 'sr', 'fic'), specified as an integer m, 1 ≤ m ≤ n,
where n is the number of observations.

Default is min(1000,n) when FitMethod is 'sr' or 'fic', and min(2000,n), otherwise.
Example: 'ActiveSetSize',100
Data Types: double
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ActiveSetMethod — Active set selection method
'random' (default) | 'sgma' | 'entropy' | 'likelihood'

Active set selection method, specified as one of the following.

Method Description
'random' Random selection
'sgma' Sparse greedy matrix approximation
'entropy' Differential entropy-based selection
'likelihood' Subset of regressors log likelihood-based selection

All active set selection methods (except 'random') require the storage of an n-by-m matrix, where m
is the size of the active set and n is the number of observations.
Example: 'ActiveSetMethod','entropy'

RandomSearchSetSize — Random search set size
59 (default) | integer value

Random search set size per greedy inclusion for active set selection, specified as an integer value.
Example: 'RandomSearchSetSize',30
Data Types: double

ToleranceActiveSet — Relative tolerance for terminating active set selection
1e-06 (default) | positive scalar

Relative tolerance for terminating active set selection, specified as a positive scalar value.
Example: 'ToleranceActiveset',0.0002
Data Types: double

NumActiveSetRepeats — Number of repetitions
3 (default) | integer value

Number of repetitions for interleaved active set selection and parameter estimation on page 35-2531
when ActiveSetMethod is not 'random', specified as an integer value.
Example: 'NumActiveSetRepeats',5
Data Types: double

Prediction

PredictMethod — Method used to make predictions
'exact' | 'bcd' | 'sd' | 'sr' | 'fic'

Method used to make predictions from a Gaussian process model given the parameters, specified as
one of the following.

Method Description
'exact' Exact Gaussian process regression method.

Default, if n ≤ 10000.
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Method Description
'bcd' Block coordinate descent. Default, if n > 10000.
'sd' Subset of data points approximation.
'sr' Subset of regressors approximation.
'fic' Fully independent conditional approximation.

Example: 'PredictMethod','bcd'

BlockSizeBCD — Block size
minimum of 1000 or n (default) | integer in the range from 1 to n

Block size for block coordinate descent method ('bcd'), specified as an integer in the range from 1
to n, where n is the number of observations.
Example: 'BlockSizeBCD',1500
Data Types: double

NumGreedyBCD — Number of greedy selections
minimum of 100 and BlockSizeBCD (default) | integer value in the range from 1 to BlockSizeBCD

Number of greedy selections for block coordinate descent method ('bcd'), specified as an integer in
the range from 1 to BlockSizeBCD.
Example: 'NumGreedyBCD',150
Data Types: double

ToleranceBCD — Relative tolerance on gradient norm
1e-3 (default) | positive scalar

Relative tolerance on gradient norm for terminating block coordinate descent method ('bcd')
iterations, specified as a positive scalar.
Example: 'ToleranceBCD',0.002
Data Types: double

StepToleranceBCD — Absolute tolerance on step size
1e-3 (default) | positive scalar

Absolute tolerance on step size for terminating block coordinate descent method ('bcd') iterations,
specified as a positive scalar.
Example: 'StepToleranceBCD',0.002
Data Types: double

IterationLimitBCD — Maximum number of BCD iterations
1000000 (default) | integer value

Maximum number of block coordinate descent method ('bcd') iterations, specified as an integer
value.
Example: 'IterationLimitBCD',10000
Data Types: double
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Optimization

Optimizer — Optimizer to use for parameter estimation
'quasinewton' (default) | 'lbfgs' | 'fminsearch' | 'fminunc' | 'fmincon'

Optimizer to use for parameter estimation, specified as one of the values in this table.

Value Description
'quasinewton' Dense, symmetric rank-1-based, quasi-Newton approximation to

the Hessian
'lbfgs' LBFGS-based quasi-Newton approximation to the Hessian
'fminsearch' Unconstrained nonlinear optimization using the simplex search

method of Lagarias et al. [5]
'fminunc' Unconstrained nonlinear optimization (requires an Optimization

Toolbox license)
'fmincon' Constrained nonlinear optimization (requires an Optimization

Toolbox license)

For more information on the optimizers, see Algorithms on page 35-2532.
Example: 'Optimizer','fmincon'

OptimizerOptions — Options for the optimizer
structure | object

Options for the optimizer you choose using the Optimizer name-value pair argument, specified as a
structure or object created by optimset, statset('fitrgp'), or optimoptions.

Optimizer Create Optimizer Options Using
'fminsearch' optimset (structure)
'quasinewton' or 'lbfgs' statset('fitrgp') (structure)
'fminunc' or 'fmincon' optimoptions (object)

The default options depend on the type of optimizer.
Example: 'OptimizerOptions',opt

InitialStepSize — Initial step size
[] (default) | real positive scalar | 'auto'

Initial step size, specified as a real positive scalar or 'auto'.

'InitialStepSize' is the approximate maximum absolute value of the first optimization step when
the optimizer is 'quasinewton' or 'lbfgs'. The initial step size can determine the initial Hessian
approximation during optimization.

By default, fitrgp does not use the initial step size to determine the initial Hessian approximation.
To use the initial step size, set a value for the 'InitialStepSize' name-value pair argument, or
specify 'InitialStepSize','auto' to have fitrgp determine a value automatically. For more
information on 'auto', see Algorithms on page 35-2532.
Example: 'InitialStepSize','auto'
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Cross-Validation

CrossVal — Indicator for cross-validation
'off' (default) | 'on'

Indicator for cross-validation, specified as either 'off' or 'on'. If it is 'on', then fitrgp returns a
GPR model cross-validated with 10 folds.

You can use one of the KFold, Holdout, Leaveout or CVPartition name-value pair arguments to
change the default cross-validation settings. You can use only one of these name-value pairs at a time.

As an alternative, you can use the crossval method for your model.
Example: 'CrossVal','on'

CVPartition — Random partition for a stratified k-fold cross-validation
cvpartition object

Random partition for a stratified k-fold cross-validation, specified as a cvpartition object.
Example: 'CVPartition',cvp uses the random partition defined by cvp.

If you specify CVPartition, then you cannot specify Holdout, KFold, or Leaveout.

Holdout — Fraction of data to use for testing
scalar value in the range from 0 to 1

Fraction of the data to use for testing in holdout validation, specified as a scalar value in the range
from 0 to 1. If you specify 'Holdout',p, then the software:
1. Randomly reserves around p*100% of the data as validation data, and trains the model using the
rest of the data
2. Stores the compact, trained model in cvgprMdl.Trained.
Example: 'Holdout', 0.3 uses 30% of the data for testing and 70% of the data for training.

If you specify Holdout, then you cannot specify CVPartition, KFold, or Leaveout.
Data Types: double

KFold — Number of folds
10 (default) | positive integer value

Number of folds to use in cross-validated GPR model, specified as a positive integer value. KFold
must be greater than 1. If you specify 'KFold',k then the software:
1. Randomly partitions the data into k sets.
2. For each set, reserves the set as test data, and trains the model using the other k – 1 sets.
3. Stores the k compact, trained models in the cells of a k-by-1 cell array in cvgprMdl.Trained.
Example: 'KFold',5 uses 5 folds in cross-validation. That is, for each fold, uses that fold as test
data, and trains the model on the remaining 4 folds.

If you specify KFold, then you cannot specify CVPartition, Holdout, or Leaveout.
Data Types: double

Leaveout — Indicator for leave-one-out cross-validation
'off' (default) | 'on'
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Indicator for leave-one-out cross-validation, specified as either 'off' or 'on'.

If you specify 'Leaveout','on', then, for each of the n observations, the software:
1. Reserves the observation as test data, and trains the model using the other n – 1 observations.
2. Stores the compact, trained model in a cell in the n-by-1 cell array cvgprMdl.Trained.
Example: 'Leaveout','on'

If you specify Leaveout, then you cannot specify CVPartition, Holdout, or KFold.

Hyperparameter Optimization

OptimizeHyperparameters — Parameters to optimize
'none' (default) | 'auto' | 'all' | string array or cell array of eligible parameter names | vector of
optimizableVariable objects

Parameters to optimize, specified as one of the following:

• 'none' — Do not optimize.
• 'auto' — Use {'Sigma'}.
• 'all' — Optimize all eligible parameters, equivalent

to{'BasisFunction','KernelFunction','KernelScale','Sigma','Standardize'}.
• String array or cell array of eligible parameter names.
• Vector of optimizableVariable objects, typically the output of hyperparameters.

The optimization attempts to minimize the cross-validation loss (error) for fitrgp by varying the
parameters. To control the cross-validation type and other aspects of the optimization, use the
HyperparameterOptimizationOptions name-value pair.

Note The values of 'OptimizeHyperparameters' override any values you specify using other
name-value arguments. For example, setting 'OptimizeHyperparameters' to 'auto' causes
fitrgp to optimize hyperparameters corresponding to the 'auto' option and to ignore any specified
values for the hyperparameters.

The eligible parameters for fitrgp are:

• BasisFunction — fitrgp searches among 'constant', 'none', 'linear', and
'pureQuadratic'.

• KernelFunction — fitrgp searches among 'ardexponential', 'ardmatern32',
'ardmatern52', 'ardrationalquadratic', 'ardsquaredexponential', 'exponential',
'matern32', 'matern52', 'rationalquadratic', and 'squaredexponential'.

• KernelScale — fitrgp uses the KernelParameters argument to specify the value of the
kernel scale parameter, which is held constant during fitting. In this case, all input dimensions are
constrained to have the same KernelScale value. fitrgp searches among real value in the
range [1e-3*MaxPredictorRange,MaxPredictorRange], where

MaxPredictorRange = max(max(X) - min(X)).

KernelScale cannot be optimized for any of the ARD kernels.
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• Sigma — fitrgp searches among real value in the range [1e-4,
max(1e-3,10*ResponseStd)], where

ResponseStd = std(y).

Internally, fitrgp sets the ConstantSigma name-value pair to true so the value of Sigma is
constant during the fitting.

• Standardize — fitrgp searches among true and false.

Set nondefault parameters by passing a vector of optimizableVariable objects that have
nondefault values. For example,

load fisheriris
params = hyperparameters('fitrgp',meas,species);
params(1).Range = [1e-4,1e6];

Pass params as the value of OptimizeHyperparameters.

By default, the iterative display appears at the command line, and plots appear according to the
number of hyperparameters in the optimization. For the optimization and plots, the objective function
is log(1 + cross-validation loss). To control the iterative display, set the Verbose field of the
'HyperparameterOptimizationOptions' name-value argument. To control the plots, set the
ShowPlots field of the 'HyperparameterOptimizationOptions' name-value argument.

For an example, see “Optimize GPR Regression” on page 35-2504.
Example: 'auto'

HyperparameterOptimizationOptions — Options for optimization
structure

Options for optimization, specified as a structure. This argument modifies the effect of the
OptimizeHyperparameters name-value argument. All fields in the structure are optional.

Field Name Values Default
Optimizer • 'bayesopt' — Use Bayesian optimization.

Internally, this setting calls bayesopt.
• 'gridsearch' — Use grid search with

NumGridDivisions values per dimension.
• 'randomsearch' — Search at random among

MaxObjectiveEvaluations points.

'gridsearch' searches in a random order, using
uniform sampling without replacement from the
grid. After optimization, you can get a table in grid
order by using the command
sortrows(Mdl.HyperparameterOptimizatio
nResults).

'bayesopt'
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Field Name Values Default
AcquisitionFunct
ionName

• 'expected-improvement-per-second-
plus'

• 'expected-improvement'
• 'expected-improvement-plus'
• 'expected-improvement-per-second'
• 'lower-confidence-bound'
• 'probability-of-improvement'

Acquisition functions whose names include per-
second do not yield reproducible results because
the optimization depends on the runtime of the
objective function. Acquisition functions whose
names include plus modify their behavior when
they are overexploiting an area. For more details,
see “Acquisition Function Types” on page 10-3.

'expected-
improvement-per-
second-plus'

MaxObjectiveEval
uations

Maximum number of objective function
evaluations.

30 for 'bayesopt' and
'randomsearch', and
the entire grid for
'gridsearch'

MaxTime Time limit, specified as a positive real scalar. The
time limit is in seconds, as measured by tic and
toc. The run time can exceed MaxTime because
MaxTime does not interrupt function evaluations.

Inf

NumGridDivisions For 'gridsearch', the number of values in each
dimension. The value can be a vector of positive
integers giving the number of values for each
dimension, or a scalar that applies to all
dimensions. This field is ignored for categorical
variables.

10

ShowPlots Logical value indicating whether to show plots. If
true, this field plots the best observed objective
function value against the iteration number. If you
use Bayesian optimization (Optimizer is
'bayesopt'), then this field also plots the best
estimated objective function value. The best
observed objective function values and best
estimated objective function values correspond to
the values in the BestSoFar (observed) and
BestSoFar (estim.) columns of the iterative
display, respectively. You can find these values in
the properties ObjectiveMinimumTrace and
EstimatedObjectiveMinimumTrace of
Mdl.HyperparameterOptimizationResults.
If the problem includes one or two optimization
parameters for Bayesian optimization, then
ShowPlots also plots a model of the objective
function against the parameters.

true
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Field Name Values Default
SaveIntermediate
Results

Logical value indicating whether to save results
when Optimizer is 'bayesopt'. If true, this
field overwrites a workspace variable named
'BayesoptResults' at each iteration. The
variable is a BayesianOptimization object.

false

Verbose Display at the command line:

• 0 — No iterative display
• 1 — Iterative display
• 2 — Iterative display with extra information

For details, see the bayesopt Verbose name-
value argument and the example “Optimize
Classifier Fit Using Bayesian Optimization” on
page 10-56.

1

UseParallel Logical value indicating whether to run Bayesian
optimization in parallel, which requires Parallel
Computing Toolbox. Due to the nonreproducibility
of parallel timing, parallel Bayesian optimization
does not necessarily yield reproducible results. For
details, see “Parallel Bayesian Optimization” on
page 10-7.

false

Repartition Logical value indicating whether to repartition the
cross-validation at every iteration. If this field is
false, the optimizer uses a single partition for
the optimization.

The setting true usually gives the most robust
results because it takes partitioning noise into
account. However, for good results, true requires
at least twice as many function evaluations.

false

Use no more than one of the following three options.
CVPartition A cvpartition object, as created by

cvpartition
'Kfold',5 if you do not
specify a cross-validation
fieldHoldout A scalar in the range (0,1) representing the

holdout fraction
Kfold An integer greater than 1

Example:
'HyperparameterOptimizationOptions',struct('MaxObjectiveEvaluations',60)

Data Types: struct

Other

PredictorNames — Predictor variable names
string array of unique names | cell array of unique character vectors
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Predictor variable names, specified as a string array of unique names or a cell array of unique
character vectors. The functionality of 'PredictorNames' depends on the way you supply the
training data.

• If you supply X and y, then you can use 'PredictorNames' to give the predictor variables in X
names.

• The order of the names in PredictorNames must correspond to the column order of X. That
is, PredictorNames{1} is the name of X(:,1), PredictorNames{2} is the name of
X(:,2), and so on. Also, size(X,2) and numel(PredictorNames) must be equal.

• By default, PredictorNames is {'x1','x2',...}.
• If you supply Tbl, then you can use 'PredictorNames' to choose which predictor variables to

use in training. That is, fitrgp uses the predictor variables in PredictorNames and the
response only in training.

• PredictorNames must be a subset of Tbl.Properties.VariableNames and cannot include
the name of the response variable.

• By default, PredictorNames contains the names of all predictor variables.
• It good practice to specify the predictors for training using one of 'PredictorNames' or

formula only.

Example: 'PredictorNames',{'PedalLength','PedalWidth'}
Data Types: string | cell

ResponseName — Response variable name
"Y" (default) | character vector | string scalar

Response variable name, specified as a character vector or string scalar.

• If you supply Y, then you can use ResponseName to specify a name for the response variable.
• If you supply ResponseVarName or formula, then you cannot use ResponseName.

Example: "ResponseName","response"
Data Types: char | string

Verbose — Verbosity level
0 (default) | 1

Verbosity level, specified as one of the following.

• 0 — fitrgp suppresses diagnostic messages related to active set selection and block coordinate
descent but displays the messages related to parameter estimation, depending on the value of
'Display' in OptimizerOptions.

• 1 — fitrgp displays the iterative diagnostic messages related to parameter estimation, active set
selection, and block coordinate descent.

Example: 'Verbose',1

CacheSize — Cache size in megabytes
1000 MB (default) | positive scalar

Cache size in megabytes (MB), specified as a positive scalar. Cache size is the extra memory that is
available in addition to that required for fitting and active set selection. fitrgp uses CacheSize to:
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• Decide whether interpoint distances should be cached when estimating parameters.
• Decide how matrix vector products should be computed for block coordinate descent method and

for making predictions.

Example: 'CacheSize',2000
Data Types: double

Output Arguments
gprMdl — Gaussian process regression model
RegressionGP object | RegressionPartitionedGP object

Gaussian process regression model, returned as a RegressionGP or RegressionPartitionedGP
object.

• If you cross-validate, that is, if you use one of the 'Crossval', 'KFold', 'Holdout',
'Leaveout', or 'CVPartition' name-value arguments, then gprMdl is a
RegressionPartitionedGP object. You can use kfoldPredict to predict responses for
observations that fitrgp holds out during training. kfoldPredict predicts a response for every
observation by using the model trained without that observation. You cannot compute the
prediction intervals for a cross-validated model.

• If you do not cross-validate, then gprMdl is a RegressionGP object. You can use predict to
predict responses for new observations, and use resubPredict to predict responses for training
observations. You can also compute the prediction intervals by using predict and
resubPredict.

More About
Active Set Selection and Parameter Estimation

For subset of data, subset of regressors, or fully independent conditional approximation fitting
methods (FitMethod equal to 'sd', 'sr', or 'fic'), if you do not provide the active set (or
inducing input set), fitrgp selects the active set and computes the parameter estimates in a series
of iterations.

In the first iteration, the software uses the initial parameter values in vector η0 = [β0,σ0,θ0] to select
an active set A1. It maximizes the GPR marginal log likelihood or its approximation using η0 as the
initial values and A1 to compute the new parameter estimates η1. Next, it computes the new log
likelihood L1 using η1 and A1.

In the second iteration, the software selects the active set A2 using the parameter values in η1. Then,
using η1 as the initial values and A2, it maximizes the GPR marginal log likelihood or its
approximation and estimates the new parameter values η2. Then using η2 and A2, computes the new
log likelihood value L2.

The following table summarizes the iterations and what is computed at each iteration.

Iteration Number Active Set Parameter Vector Log Likelihood
1 A1 η1 L1

2 A2 η2 L2
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Iteration Number Active Set Parameter Vector Log Likelihood
3 A3 η3 L3

… … … …

The software iterates similarly for a specified number of repetitions. You can specify the number of
replications for active set selection using the NumActiveSetRepeats name-value pair argument.

Tips
• fitrgp accepts any combination of fitting, prediction, and active set selection methods. In some

cases it might not be possible to compute the standard deviations of the predicted responses,
hence the prediction intervals. See predict. And in some cases, using the exact method might be
expensive due to the size of the training data.

• The PredictorNames property stores one element for each of the original predictor variable
names. For example, if there are three predictors, one of which is a categorical variable with three
levels, PredictorNames is a 1-by-3 cell array of character vectors.

• The ExpandedPredictorNames property stores one element for each of the predictor variables,
including the dummy variables. For example, if there are three predictors, one of which is a
categorical variable with three levels, then ExpandedPredictorNames is a 1-by-5 cell array of
character vectors.

• Similarly, the Beta property stores one beta coefficient for each predictor, including the dummy
variables.

• The X property stores the training data as originally input. It does not include the dummy
variables.

• The default approach to initializing the Hessian approximation in fitrgp can be slow when you
have a GPR model with many kernel parameters, such as when using an ARD kernel with many
predictors. In this case, consider specifying 'auto' or a value for the initial step size.

You can set 'Verbose',1 for display of iterative diagnostic messages, and begin training a GPR
model using an LBFGS or quasi-Newton optimizer with the default fitrgp optimization. If the
iterative diagnostic messages are not displayed after a few seconds, it is possible that initialization
of the Hessian approximation is taking too long. In this case, consider restarting training and
using the initial step size to speed up optimization.

• After training a model, you can generate C/C++ code that predicts responses for new data.
Generating C/C++ code requires MATLAB Coder. For details, see “Introduction to Code
Generation” on page 34-2..

Algorithms
• Fitting a GPR model involves estimating the following model parameters from the data:

• Covariance function k xi, x j θ  parameterized in terms of kernel parameters in vector θ (see
“Kernel (Covariance) Function Options” on page 6-6)

• Noise variance, σ2

• Coefficient vector of fixed basis functions, β

The value of the 'KernelParameters' name-value pair argument is a vector that consists of
initial values for the signal standard deviation σf  and the characteristic length scales σl. The
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fitrgp function uses these values to determine the kernel parameters. Similarly, the 'Sigma'
name-value pair argument contains the initial value for the noise standard deviation σ.

• During optimization, fitrgp creates a vector of unconstrained initial parameter values η0 by
using the initial values for the noise standard deviation and the kernel parameters.

• fitrgp analytically determines the explicit basis coefficients β, specified by the 'Beta' name-
value pair argument, from estimated values of θ and σ2. Therefore, β does not appear in the η0
vector when fitrgp initializes numerical optimization.

Note If you specify no estimation of parameters for the GPR model, fitrgp uses the value of the
'Beta' name-value pair argument and other initial parameter values as the known GPR
parameter values (see Beta). In all other cases, the value of the 'Beta' argument is optimized
analytically from the objective function.

• The quasi-Newton optimizer uses a trust-region method with a dense, symmetric rank-1-based
(SR1), quasi-Newton approximation to the Hessian, while the LBFGS optimizer uses a standard
line-search method with a limited-memory Broyden-Fletcher-Goldfarb-Shanno (LBFGS) quasi-
Newton approximation to the Hessian. See Nocedal and Wright [6].

• If you set the 'InitialStepSize' name-value pair argument to 'auto', fitrgp determines
the initial step size, s0 ∞, by using s0 ∞ = 0.5 η0 ∞ + 0.1.

s0 is the initial step vector, and η0 is the vector of unconstrained initial parameter values.

• During optimization, fitrgp uses the initial step size, s0 ∞, as follows:

If you use 'Optimizer','quasinewton' with the initial step size, then the initial Hessian

approximation is 
g0 ∞
s0 ∞

I.

If you use 'Optimizer','lbfgs' with the initial step size, then the initial inverse-Hessian

approximation is 
s0 ∞
g0 ∞

I.

g0 is the initial gradient vector, and I is the identity matrix.

Version History
Introduced in R2015b

A cross-validated Gaussian process regression model is a RegressionPartitionedGP object
Behavior changed in R2022b

Starting in R2022b, a cross-validated Gaussian process regression (GPR) model is a
RegressionPartitionedGP object. In previous releases, a cross-validated GPR model was a
RegressionPartitionedModel object.

You can create a RegressionPartitionedGP object in two ways:

• Create a cross-validated model from a GPR model object RegressionGP by using the crossval
object function.
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• Create a cross-validated model by using the fitrgp function and specifying one of the name-
value arguments CrossVal, CVPartition, Holdout, KFold, or Leaveout.

Regardless of whether you train a full or cross-validated GPR model first, you cannot specify an
ActiveSet value in the call to fitrgp.
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Extended Capabilities
Automatic Parallel Support
Accelerate code by automatically running computation in parallel using Parallel Computing Toolbox™.

To perform parallel hyperparameter optimization, use the
'HyperparameterOptimizationOptions', struct('UseParallel',true) name-value
argument in the call to the fitrgp function.

For more information on parallel hyperparameter optimization, see “Parallel Bayesian Optimization”
on page 10-7.

For general information about parallel computing, see “Run MATLAB Functions with Automatic
Parallel Support” (Parallel Computing Toolbox).

See Also
RegressionGP | predict | compact

Topics
“Gaussian Process Regression Models” on page 6-2
“Kernel (Covariance) Function Options” on page 6-6
“Introduction to Feature Selection” on page 16-47

35 Functions

35-2534



fitrlinear
Fit linear regression model to high-dimensional data

Syntax
Mdl = fitrlinear(X,Y)

Mdl = fitrlinear(Tbl,ResponseVarName)
Mdl = fitrlinear(Tbl,formula)
Mdl = fitrlinear(Tbl,Y)

Mdl = fitrlinear(X,Y,Name,Value)
[Mdl,FitInfo] = fitrlinear( ___ )
[Mdl,FitInfo,HyperparameterOptimizationResults] = fitrlinear( ___ )

Description
fitrlinear efficiently trains linear regression models with high-dimensional, full or sparse
predictor data. Available linear regression models include regularized support vector machines (SVM)
and least-squares regression methods. fitrlinear minimizes the objective function using
techniques that reduce computing time (e.g., stochastic gradient descent).

For reduced computation time on a high-dimensional data set that includes many predictor variables,
train a linear regression model by using fitrlinear. For low- through medium-dimensional
predictor data sets, see “Alternatives for Lower-Dimensional Data” on page 35-2569.

Mdl = fitrlinear(X,Y) returns a trained regression model object Mdl that contains the results of
fitting a support vector machine regression model to the predictors X and response Y.

Mdl = fitrlinear(Tbl,ResponseVarName) returns a linear regression model using the
predictor variables in the table Tbl and the response values in Tbl.ResponseVarName.

Mdl = fitrlinear(Tbl,formula) returns a linear regression model using the sample data in the
table Tbl. The input argument formula is an explanatory model of the response and a subset of
predictor variables in Tbl used to fit Mdl.

Mdl = fitrlinear(Tbl,Y) returns a linear regression model using the predictor variables in the
table Tbl and the response values in vector Y.

Mdl = fitrlinear(X,Y,Name,Value) specifies options using one or more name-value pair
arguments in addition to any of the input argument combinations in previous syntaxes. For example,
you can specify to cross-validate, implement least-squares regression, or specify the type of
regularization. A good practice is to cross-validate using the 'Kfold' name-value pair argument. The
cross-validation results determine how well the model generalizes.

[Mdl,FitInfo] = fitrlinear( ___ ) also returns optimization details using any of the previous
syntaxes. You cannot request FitInfo for cross-validated models.

[Mdl,FitInfo,HyperparameterOptimizationResults] = fitrlinear( ___ ) also returns
hyperparameter optimization details when you pass an OptimizeHyperparameters name-value
pair.
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Examples

Train Linear Regression Model

Train a linear regression model using SVM, dual SGD, and ridge regularization.

Simulate 10000 observations from this model

y = x100 + 2x200 + e .

• X = x1, . . . , x1000 is a 10000-by-1000 sparse matrix with 10% nonzero standard normal elements.
• e is random normal error with mean 0 and standard deviation 0.3.

rng(1) % For reproducibility
n = 1e4;
d = 1e3;
nz = 0.1;
X = sprandn(n,d,nz);
Y = X(:,100) + 2*X(:,200) + 0.3*randn(n,1);

Train a linear regression model. By default, fitrlinear uses support vector machines with a ridge
penalty, and optimizes using dual SGD for SVM. Determine how well the optimization algorithm fit
the model to the data by extracting a fit summary.

[Mdl,FitInfo] = fitrlinear(X,Y)

Mdl = 
  RegressionLinear
         ResponseName: 'Y'
    ResponseTransform: 'none'
                 Beta: [1000x1 double]
                 Bias: -0.0056
               Lambda: 1.0000e-04
              Learner: 'svm'

  Properties, Methods

FitInfo = struct with fields:
                    Lambda: 1.0000e-04
                 Objective: 0.2725
                 PassLimit: 10
                 NumPasses: 10
                BatchLimit: []
             NumIterations: 100000
              GradientNorm: NaN
         GradientTolerance: 0
      RelativeChangeInBeta: 0.4907
             BetaTolerance: 1.0000e-04
             DeltaGradient: 1.5816
    DeltaGradientTolerance: 0.1000
           TerminationCode: 0
         TerminationStatus: {'Iteration limit exceeded.'}
                     Alpha: [10000x1 double]
                   History: []
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                   FitTime: 0.1097
                    Solver: {'dual'}

Mdl is a RegressionLinear model. You can pass Mdl and the training or new data to loss to
inspect the in-sample mean-squared error. Or, you can pass Mdl and new predictor data to predict
to predict responses for new observations.

FitInfo is a structure array containing, among other things, the termination status
(TerminationStatus) and how long the solver took to fit the model to the data (FitTime). It is
good practice to use FitInfo to determine whether optimization-termination measurements are
satisfactory. In this case, fitrlinear reached the maximum number of iterations. Because training
time is fast, you can retrain the model, but increase the number of passes through the data. Or, try
another solver, such as LBFGS.

Find Good Lasso Penalty Using Cross-Validation

To determine a good lasso-penalty strength for a linear regression model that uses least squares,
implement 5-fold cross-validation.

Simulate 10000 observations from this model

y = x100 + 2x200 + e .

• X = {x1, . . . , x1000} is a 10000-by-1000 sparse matrix with 10% nonzero standard normal
elements.

• e is random normal error with mean 0 and standard deviation 0.3.

rng(1) % For reproducibility
n = 1e4;
d = 1e3;
nz = 0.1;
X = sprandn(n,d,nz);
Y = X(:,100) + 2*X(:,200) + 0.3*randn(n,1);

Create a set of 15 logarithmically-spaced regularization strengths from 10−5 through 10−1.

Lambda = logspace(-5,-1,15);

Cross-validate the models. To increase execution speed, transpose the predictor data and specify that
the observations are in columns. Optimize the objective function using SpaRSA.

X = X'; 
CVMdl = fitrlinear(X,Y,'ObservationsIn','columns','KFold',5,'Lambda',Lambda,...
    'Learner','leastsquares','Solver','sparsa','Regularization','lasso');

numCLModels = numel(CVMdl.Trained)

numCLModels = 5

CVMdl is a RegressionPartitionedLinear model. Because fitrlinear implements 5-fold cross-
validation, CVMdl contains 5 RegressionLinear models that the software trains on each fold.

Display the first trained linear regression model.
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Mdl1 = CVMdl.Trained{1}

Mdl1 = 
  RegressionLinear
         ResponseName: 'Y'
    ResponseTransform: 'none'
                 Beta: [1000x15 double]
                 Bias: [-0.0049 -0.0049 -0.0049 -0.0049 -0.0049 -0.0048 ... ]
               Lambda: [1.0000e-05 1.9307e-05 3.7276e-05 7.1969e-05 ... ]
              Learner: 'leastsquares'

  Properties, Methods

Mdl1 is a RegressionLinear model object. fitrlinear constructed Mdl1 by training on the first
four folds. Because Lambda is a sequence of regularization strengths, you can think of Mdl1 as 15
models, one for each regularization strength in Lambda.

Estimate the cross-validated MSE.

mse = kfoldLoss(CVMdl);

Higher values of Lambda lead to predictor variable sparsity, which is a good quality of a regression
model. For each regularization strength, train a linear regression model using the entire data set and
the same options as when you cross-validated the models. Determine the number of nonzero
coefficients per model.

Mdl = fitrlinear(X,Y,'ObservationsIn','columns','Lambda',Lambda,...
    'Learner','leastsquares','Solver','sparsa','Regularization','lasso');
numNZCoeff = sum(Mdl.Beta~=0);

In the same figure, plot the cross-validated MSE and frequency of nonzero coefficients for each
regularization strength. Plot all variables on the log scale.

figure
[h,hL1,hL2] = plotyy(log10(Lambda),log10(mse),...
    log10(Lambda),log10(numNZCoeff)); 
hL1.Marker = 'o';
hL2.Marker = 'o';
ylabel(h(1),'log_{10} MSE')
ylabel(h(2),'log_{10} nonzero-coefficient frequency')
xlabel('log_{10} Lambda')
hold off
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Choose the index of the regularization strength that balances predictor variable sparsity and low
MSE (for example, Lambda(10)).

idxFinal = 10;

Extract the model with corresponding to the minimal MSE.

MdlFinal = selectModels(Mdl,idxFinal)

MdlFinal = 
  RegressionLinear
         ResponseName: 'Y'
    ResponseTransform: 'none'
                 Beta: [1000x1 double]
                 Bias: -0.0050
               Lambda: 0.0037
              Learner: 'leastsquares'

  Properties, Methods

idxNZCoeff = find(MdlFinal.Beta~=0)

idxNZCoeff = 2×1

   100
   200
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EstCoeff = Mdl.Beta(idxNZCoeff)

EstCoeff = 2×1

    1.0051
    1.9965

MdlFinal is a RegressionLinear model with one regularization strength. The nonzero coefficients
EstCoeff are close to the coefficients that simulated the data.

Optimize a Linear Regression

This example shows how to optimize hyperparameters automatically using fitrlinear. The example
uses artificial (simulated) data for the model

y = x100 + 2x200 + e .

• X = {x1, . . . , x1000} is a 10000-by-1000 sparse matrix with 10% nonzero standard normal
elements.

• e is random normal error with mean 0 and standard deviation 0.3.

rng(1) % For reproducibility
n = 1e4;
d = 1e3;
nz = 0.1;
X = sprandn(n,d,nz);
Y = X(:,100) + 2*X(:,200) + 0.3*randn(n,1);

Find hyperparameters that minimize five-fold cross validation loss by using automatic
hyperparameter optimization.

For reproducibility, use the 'expected-improvement-plus' acquisition function.

hyperopts = struct('AcquisitionFunctionName','expected-improvement-plus');
[Mdl,FitInfo,HyperparameterOptimizationResults] = fitrlinear(X,Y,...
    'OptimizeHyperparameters','auto',...
    'HyperparameterOptimizationOptions',hyperopts)

|=====================================================================================================|
| Iter | Eval   | Objective:  | Objective   | BestSoFar   | BestSoFar   |       Lambda |      Learner |
|      | result | log(1+loss) | runtime     | (observed)  | (estim.)    |              |              |
|=====================================================================================================|
|    1 | Best   |     0.10584 |      3.7078 |     0.10584 |     0.10584 |   2.4206e-09 |          svm |
|    2 | Best   |     0.10558 |      2.8462 |     0.10558 |      0.1057 |     0.001807 |          svm |
|    3 | Best   |     0.10091 |      1.0876 |     0.10091 |     0.10092 |   2.4681e-09 | leastsquares |
|    4 | Accept |     0.11397 |     0.83387 |     0.10091 |     0.10095 |     0.021027 | leastsquares |
|    5 | Best   |     0.10091 |     0.99648 |     0.10091 |     0.10091 |   2.9697e-09 | leastsquares |
|    6 | Accept |     0.45312 |      1.3909 |     0.10091 |     0.10091 |       9.8803 |          svm |
|    7 | Accept |     0.10578 |      3.2148 |     0.10091 |     0.10091 |   9.6873e-06 |          svm |
|    8 | Best   |      0.1009 |     0.83081 |      0.1009 |     0.10087 |   1.7286e-05 | leastsquares |
|    9 | Accept |     0.44998 |     0.55921 |      0.1009 |     0.10089 |       9.9615 | leastsquares |
|   10 | Best   |     0.10068 |     0.92966 |     0.10068 |     0.10066 |   0.00081737 | leastsquares |
|   11 | Accept |     0.10582 |      2.9536 |     0.10068 |     0.10065 |   9.7512e-08 |          svm |
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|   12 | Accept |     0.10091 |     0.81158 |     0.10068 |     0.10084 |   3.4449e-07 | leastsquares |
|   13 | Accept |     0.10575 |       2.795 |     0.10068 |     0.10085 |   0.00019667 |          svm |
|   14 | Best   |     0.10063 |      0.7404 |     0.10063 |     0.10044 |    0.0038216 | leastsquares |
|   15 | Accept |     0.10091 |     0.73345 |     0.10063 |     0.10086 |   2.7403e-08 | leastsquares |
|   16 | Accept |     0.10091 |     0.80254 |     0.10063 |     0.10088 |   1.0017e-09 | leastsquares |
|   17 | Accept |     0.10091 |      0.8967 |     0.10063 |     0.10089 |   2.6319e-06 | leastsquares |
|   18 | Accept |     0.10584 |      2.5999 |     0.10063 |     0.10089 |   1.0049e-09 |          svm |
|   19 | Accept |     0.10087 |      1.0265 |     0.10063 |     0.10089 |   0.00010789 | leastsquares |
|   20 | Accept |     0.10578 |      2.8731 |     0.10063 |     0.10089 |   1.0008e-06 |          svm |
|=====================================================================================================|
| Iter | Eval   | Objective:  | Objective   | BestSoFar   | BestSoFar   |       Lambda |      Learner |
|      | result | log(1+loss) | runtime     | (observed)  | (estim.)    |              |              |
|=====================================================================================================|
|   21 | Best   |     0.10052 |     0.86048 |     0.10052 |     0.10024 |    0.0021701 | leastsquares |
|   22 | Accept |     0.10091 |     0.73006 |     0.10052 |     0.10024 |   9.8207e-08 | leastsquares |
|   23 | Accept |     0.10052 |     0.81027 |     0.10052 |     0.10033 |    0.0021352 | leastsquares |
|   24 | Accept |     0.10091 |     0.86693 |     0.10052 |     0.10033 |   9.8774e-09 | leastsquares |
|   25 | Accept |     0.10052 |     0.79833 |     0.10052 |     0.10038 |    0.0021099 | leastsquares |
|   26 | Accept |     0.10091 |      0.9402 |     0.10052 |     0.10038 |    9.351e-07 | leastsquares |
|   27 | Accept |     0.31614 |      2.5799 |     0.10052 |     0.10045 |      0.16873 |          svm |
|   28 | Accept |      0.1057 |      2.5259 |     0.10052 |     0.10047 |   0.00071833 |          svm |
|   29 | Accept |     0.10081 |      0.9677 |     0.10052 |     0.10047 |   0.00030307 | leastsquares |
|   30 | Accept |     0.10091 |     0.79084 |     0.10052 |     0.10047 |   6.6735e-06 | leastsquares |
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__________________________________________________________
Optimization completed.
MaxObjectiveEvaluations of 30 reached.
Total function evaluations: 30
Total elapsed time: 85.4697 seconds
Total objective function evaluation time: 44.5007

Best observed feasible point:
     Lambda        Learner   
    _________    ____________

    0.0021701    leastsquares

Observed objective function value = 0.10052
Estimated objective function value = 0.10047
Function evaluation time = 0.86048

Best estimated feasible point (according to models):
     Lambda        Learner   
    _________    ____________
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    0.0021701    leastsquares

Estimated objective function value = 0.10047
Estimated function evaluation time = 0.83764

Mdl = 
  RegressionLinear
         ResponseName: 'Y'
    ResponseTransform: 'none'
                 Beta: [1000x1 double]
                 Bias: -0.0071
               Lambda: 0.0022
              Learner: 'leastsquares'

  Properties, Methods

FitInfo = struct with fields:
                    Lambda: 0.0022
                 Objective: 0.0473
            IterationLimit: 1000
             NumIterations: 15
              GradientNorm: 2.4329e-06
         GradientTolerance: 1.0000e-06
      RelativeChangeInBeta: 3.3727e-05
             BetaTolerance: 1.0000e-04
             DeltaGradient: []
    DeltaGradientTolerance: []
           TerminationCode: 1
         TerminationStatus: {'Tolerance on coefficients satisfied.'}
                   History: []
                   FitTime: 0.0937
                    Solver: {'lbfgs'}

HyperparameterOptimizationResults = 
  BayesianOptimization with properties:

                      ObjectiveFcn: @createObjFcn/inMemoryObjFcn
              VariableDescriptions: [3x1 optimizableVariable]
                           Options: [1x1 struct]
                      MinObjective: 0.1005
                   XAtMinObjective: [1x2 table]
             MinEstimatedObjective: 0.1005
          XAtMinEstimatedObjective: [1x2 table]
           NumObjectiveEvaluations: 30
                  TotalElapsedTime: 85.4697
                         NextPoint: [1x2 table]
                            XTrace: [30x2 table]
                    ObjectiveTrace: [30x1 double]
                  ConstraintsTrace: []
                     UserDataTrace: {30x1 cell}
      ObjectiveEvaluationTimeTrace: [30x1 double]
                IterationTimeTrace: [30x1 double]
                        ErrorTrace: [30x1 double]
                  FeasibilityTrace: [30x1 logical]
       FeasibilityProbabilityTrace: [30x1 double]
               IndexOfMinimumTrace: [30x1 double]
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             ObjectiveMinimumTrace: [30x1 double]
    EstimatedObjectiveMinimumTrace: [30x1 double]

This optimization technique is simpler than that shown in “Find Good Lasso Penalty Using Cross-
Validation” on page 35-2537, but does not allow you to trade off model complexity and cross-
validation loss.

Input Arguments
X — Predictor data
full matrix | sparse matrix

Predictor data, specified as an n-by-p full or sparse matrix.

The length of Y and the number of observations in X must be equal.

Note If you orient your predictor matrix so that observations correspond to columns and specify
'ObservationsIn','columns', then you might experience a significant reduction in optimization
execution time.

Data Types: single | double

Y — Response data
numeric vector

Response data, specified as an n-dimensional numeric vector. The length of Y must be equal to the
number of observations in X or Tbl.
Data Types: single | double

Tbl — Sample data
table

Sample data used to train the model, specified as a table. Each row of Tbl corresponds to one
observation, and each column corresponds to one predictor variable. Optionally, Tbl can contain one
additional column for the response variable. Multicolumn variables and cell arrays other than cell
arrays of character vectors are not allowed.

• If Tbl contains the response variable, and you want to use all remaining variables in Tbl as
predictors, then specify the response variable by using ResponseVarName.

• If Tbl contains the response variable, and you want to use only a subset of the remaining
variables in Tbl as predictors, then specify a formula by using formula.

• If Tbl does not contain the response variable, then specify a response variable by using Y. The
length of the response variable and the number of rows in Tbl must be equal.

ResponseVarName — Response variable name
name of variable in Tbl

Response variable name, specified as the name of a variable in Tbl. The response variable must be a
numeric vector.
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You must specify ResponseVarName as a character vector or string scalar. For example, if Tbl stores
the response variable Y as Tbl.Y, then specify it as 'Y'. Otherwise, the software treats all columns
of Tbl, including Y, as predictors when training the model.
Data Types: char | string

formula — Explanatory model of response variable and subset of predictor variables
character vector | string scalar

Explanatory model of the response variable and a subset of the predictor variables, specified as a
character vector or string scalar in the form "Y~x1+x2+x3". In this form, Y represents the response
variable, and x1, x2, and x3 represent the predictor variables.

To specify a subset of variables in Tbl as predictors for training the model, use a formula. If you
specify a formula, then the software does not use any variables in Tbl that do not appear in
formula.

The variable names in the formula must be both variable names in Tbl
(Tbl.Properties.VariableNames) and valid MATLAB identifiers. You can verify the variable
names in Tbl by using the isvarname function. If the variable names are not valid, then you can
convert them by using the matlab.lang.makeValidName function.
Data Types: char | string

Note The software treats NaN, empty character vector (''), empty string (""), <missing>, and
<undefined> elements as missing values, and removes observations with any of these
characteristics:

• Missing value in the response (for example, Y or ValidationData{2})
• At least one missing value in a predictor observation (for example, row in X or

ValidationData{1})
• NaN value or 0 weight (for example, value in Weights or ValidationData{3})

For memory-usage economy, it is best practice to remove observations containing missing values from
your training data manually before training.

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.

Note You cannot use any cross-validation name-value argument together with the
'OptimizeHyperparameters' name-value argument. You can modify the cross-validation for
'OptimizeHyperparameters' only by using the 'HyperparameterOptimizationOptions'
name-value argument.

Example: Mdl =
fitrlinear(X,Y,'Learner','leastsquares','CrossVal','on','Regularization','las
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so') specifies to implement least-squares regression, implement 10-fold cross-validation, and
specifies to include a lasso regularization term.

Linear Regression Options

Epsilon — Half the width of epsilon-insensitive band
iqr(Y)/13.49 (default) | nonnegative scalar value

Half the width of the epsilon-insensitive band, specified as the comma-separated pair consisting of
'Epsilon' and a nonnegative scalar value. 'Epsilon' applies to SVM learners only.

The default Epsilon value is iqr(Y)/13.49, which is an estimate of standard deviation using the
interquartile range of the response variable Y. If iqr(Y) is equal to zero, then the default Epsilon
value is 0.1.
Example: 'Epsilon',0.3
Data Types: single | double

Lambda — Regularization term strength
'auto' (default) | nonnegative scalar | vector of nonnegative values

Regularization term strength, specified as the comma-separated pair consisting of 'Lambda' and
'auto', a nonnegative scalar, or a vector of nonnegative values.

• For 'auto', Lambda = 1/n.

• If you specify a cross-validation, name-value pair argument (e.g., CrossVal), then n is the
number of in-fold observations.

• Otherwise, n is the training sample size.
• For a vector of nonnegative values, fitrlinear sequentially optimizes the objective function for

each distinct value in Lambda in ascending order.

• If Solver is 'sgd' or 'asgd' and Regularization is 'lasso', fitrlinear does not use
the previous coefficient estimates as a warm start on page 35-2093 for the next optimization
iteration. Otherwise, fitrlinear uses warm starts.

• If Regularization is 'lasso', then any coefficient estimate of 0 retains its value when
fitrlinear optimizes using subsequent values in Lambda.

• fitrlinear returns coefficient estimates for each specified regularization strength.

Example: 'Lambda',10.^(-(10:-2:2))
Data Types: char | string | double | single

Learner — Linear regression model type
'svm' (default) | 'leastsquares'

Linear regression model type, specified as the comma-separated pair consisting of 'Learner' and
'svm' or 'leastsquares'.

In this table, f x = xβ + b .

• β is a vector of p coefficients.
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• x is an observation from p predictor variables.
• b is the scalar bias.

Value Algorithm Response range Loss function
'leastsquares' Linear regression via

ordinary least squares
y ∊ (-∞,∞) Mean squared error

(MSE):
ℓ y, f x = 1

2 y − f x 2

'svm' Support vector machine
regression

Same as
'leastsquares'

Epsilon-insensitive:
ℓ y, f x = max
0, y − f x − ε

Example: 'Learner','leastsquares'

ObservationsIn — Predictor data observation dimension
'rows' (default) | 'columns'

Predictor data observation dimension, specified as 'rows' or 'columns'.

Note If you orient your predictor matrix so that observations correspond to columns and specify
'ObservationsIn','columns', then you might experience a significant reduction in computation
time. You cannot specify 'ObservationsIn','columns' for predictor data in a table.

Example: 'ObservationsIn','columns'
Data Types: char | string

Regularization — Complexity penalty type
'lasso' | 'ridge'

Complexity penalty type, specified as the comma-separated pair consisting of 'Regularization'
and 'lasso' or 'ridge'.

The software composes the objective function for minimization from the sum of the average loss
function (see Learner) and the regularization term in this table.

Value Description
'lasso'

Lasso (L1) penalty: λ ∑
j = 1

p
β j

'ridge'
Ridge (L2) penalty: λ2 ∑j = 1

p
β j

2

To specify the regularization term strength, which is λ in the expressions, use Lambda.

The software excludes the bias term (β0) from the regularization penalty.

If Solver is 'sparsa', then the default value of Regularization is 'lasso'. Otherwise, the
default is 'ridge'.

Tip
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• For predictor variable selection, specify 'lasso'. For more on variable selection, see
“Introduction to Feature Selection” on page 16-47.

• For optimization accuracy, specify 'ridge'.

Example: 'Regularization','lasso'

Solver — Objective function minimization technique
'sgd' | 'asgd' | 'dual' | 'bfgs' | 'lbfgs' | 'sparsa' | string array | cell array of character
vectors

Objective function minimization technique, specified as the comma-separated pair consisting of
'Solver' and a character vector or string scalar, a string array, or a cell array of character vectors
with values from this table.

Value Description Restrictions
'sgd' Stochastic gradient descent

(SGD) [5][3]
 

'asgd' Average stochastic gradient
descent (ASGD) [8]

 

'dual' Dual SGD for SVM [2][7] Regularization must be
'ridge' and Learner must be
'svm'.

'bfgs' Broyden-Fletcher-Goldfarb-
Shanno quasi-Newton algorithm
(BFGS) [4]

Inefficient if X is very high-
dimensional.

'lbfgs' Limited-memory BFGS (LBFGS)
[4]

Regularization must be
'ridge'.

'sparsa' Sparse Reconstruction by
Separable Approximation
(SpaRSA) [6]

Regularization must be
'lasso'.

If you specify:

• A ridge penalty (see Regularization) and size(X,1) <= 100 (100 or fewer predictor
variables), then the default solver is 'bfgs'.

• An SVM regression model (see Learner), a ridge penalty, and size(X,1) > 100 (more than 100
predictor variables), then the default solver is 'dual'.

• A lasso penalty and X contains 100 or fewer predictor variables, then the default solver is
'sparsa'.

Otherwise, the default solver is 'sgd'. Note that the default solver can change when you perform
hyperparameter optimization. For more information, see “Regularization method determines the
solver used during hyperparameter optimization” on page 35-2571.

If you specify a string array or cell array of solver names, then, for each value in Lambda, the
software uses the solutions of solver j as a warm start for solver j + 1.
Example: {'sgd' 'lbfgs'} applies SGD to solve the objective, and uses the solution as a warm
start for LBFGS.
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Tip

• SGD and ASGD can solve the objective function more quickly than other solvers, whereas LBFGS
and SpaRSA can yield more accurate solutions than other solvers. Solver combinations like
{'sgd' 'lbfgs'} and {'sgd' 'sparsa'} can balance optimization speed and accuracy.

• When choosing between SGD and ASGD, consider that:

• SGD takes less time per iteration, but requires more iterations to converge.
• ASGD requires fewer iterations to converge, but takes more time per iteration.

• If the predictor data is high dimensional and Regularization is 'ridge', set Solver to any of
these combinations:

• 'sgd'
• 'asgd'
• 'dual' if Learner is 'svm'
• 'lbfgs'
• {'sgd','lbfgs'}
• {'asgd','lbfgs'}
• {'dual','lbfgs'} if Learner is 'svm'

Although you can set other combinations, they often lead to solutions with poor accuracy.
• If the predictor data is moderate through low dimensional and Regularization is 'ridge', set

Solver to 'bfgs'.
• If Regularization is 'lasso', set Solver to any of these combinations:

• 'sgd'
• 'asgd'
• 'sparsa'
• {'sgd','sparsa'}
• {'asgd','sparsa'}

Example: 'Solver',{'sgd','lbfgs'}

Beta — Initial linear coefficient estimates
zeros(p,1) (default) | numeric vector | numeric matrix

Initial linear coefficient estimates (β), specified as the comma-separated pair consisting of 'Beta'
and a p-dimensional numeric vector or a p-by-L numeric matrix. p is the number of predictor
variables in X and L is the number of regularization-strength values (for more details, see Lambda).

• If you specify a p-dimensional vector, then the software optimizes the objective function L times
using this process.

1 The software optimizes using Beta as the initial value and the minimum value of Lambda as
the regularization strength.

2 The software optimizes again using the resulting estimate from the previous optimization as a
warm start on page 35-2093, and the next smallest value in Lambda as the regularization
strength.
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3 The software implements step 2 until it exhausts all values in Lambda.
• If you specify a p-by-L matrix, then the software optimizes the objective function L times. At

iteration j, the software uses Beta(:,j) as the initial value and, after it sorts Lambda in
ascending order, uses Lambda(j) as the regularization strength.

If you set 'Solver','dual', then the software ignores Beta.
Data Types: single | double

Bias — Initial intercept estimate
numeric scalar | numeric vector

Initial intercept estimate (b), specified as the comma-separated pair consisting of 'Bias' and a
numeric scalar or an L-dimensional numeric vector. L is the number of regularization-strength values
(for more details, see Lambda).

• If you specify a scalar, then the software optimizes the objective function L times using this
process.

1 The software optimizes using Bias as the initial value and the minimum value of Lambda as
the regularization strength.

2 The uses the resulting estimate as a warm start on page 35-2569 to the next optimization
iteration, and uses the next smallest value in Lambda as the regularization strength.

3 The software implements step 2 until it exhausts all values in Lambda.
• If you specify an L-dimensional vector, then the software optimizes the objective function L times.

At iteration j, the software uses Bias(j) as the initial value and, after it sorts Lambda in
ascending order, uses Lambda(j) as the regularization strength.

• By default:

• If Learner is 'leastsquares', then Bias is the weighted average of Y for training or, for
cross-validation, in-fold responses.

• If Learner is 'svm', then Bias is the weighted median of Y for all training or, for cross-
validation, in-fold observations that are greater than Epsilon.

Data Types: single | double

FitBias — Linear model intercept inclusion flag
true (default) | false

Linear model intercept inclusion flag, specified as the comma-separated pair consisting of
'FitBias' and true or false.

Value Description
true The software includes the bias term b in the

linear model, and then estimates it.
false The software sets b = 0 during estimation.

Example: 'FitBias',false
Data Types: logical

PostFitBias — Flag to fit linear model intercept after optimization
false (default) | true
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Flag to fit the linear model intercept after optimization, specified as the comma-separated pair
consisting of 'PostFitBias' and true or false.

Value Description
false The software estimates the bias term b and the

coefficients β during optimization.
true To estimate b, the software:

1 Estimates β and b using the model.
2 Computes residuals.
3 Refits b. For least squares, b is the weighted

average of the residuals. For SVM
regression, b is the weighted median
between all residuals with magnitude greater
than Epsilon.

If you specify true, then FitBias must be true.
Example: 'PostFitBias',true
Data Types: logical

Verbose — Verbosity level
0 (default) | nonnegative integer

Verbosity level, specified as the comma-separated pair consisting of 'Verbose' and a nonnegative
integer. Verbose controls the amount of diagnostic information fitrlinear displays at the
command line.

Value Description
0 fitrlinear does not display diagnostic

information.
1 fitrlinear periodically displays and stores the

value of the objective function, gradient
magnitude, and other diagnostic information.
FitInfo.History contains the diagnostic
information.

Any other positive integer fitrlinear displays and stores diagnostic
information at each optimization iteration.
FitInfo.History contains the diagnostic
information.

Example: 'Verbose',1
Data Types: double | single

SGD and ASGD Solver Options

BatchSize — Mini-batch size
positive integer
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Mini-batch size, specified as the comma-separated pair consisting of 'BatchSize' and a positive
integer. At each iteration, the software estimates the subgradient using BatchSize observations
from the training data.

• If X is a numeric matrix, then the default value is 10.
• If X is a sparse matrix, then the default value is max([10,ceil(sqrt(ff))]), where ff =

numel(X)/nnz(X) (the fullness factor of X).

Example: 'BatchSize',100
Data Types: single | double

LearnRate — Learning rate
positive scalar

Learning rate, specified as the comma-separated pair consisting of 'LearnRate' and a positive
scalar. LearnRate specifies how many steps to take per iteration. At each iteration, the gradient
specifies the direction and magnitude of each step.

• If Regularization is 'ridge', then LearnRate specifies the initial learning rate γ0. The
software determines the learning rate for iteration t, γt, using

γt =
γ0

1 + λγ0t c .

• λ is the value of Lambda.
• If Solver is 'sgd', c = 1.
• If Solver is 'asgd':

• c = 2/3 if Learner is 'leastsquares'
• c = 3/4 if Learner is 'svm' [8]

• If Regularization is 'lasso', then, for all iterations, LearnRate is constant.

By default, LearnRate is 1/sqrt(1+max((sum(X.^2,obsDim)))), where obsDim is 1 if the
observations compose the columns of X, and 2 otherwise.
Example: 'LearnRate',0.01
Data Types: single | double

OptimizeLearnRate — Flag to decrease learning rate
true (default) | false

Flag to decrease the learning rate when the software detects divergence (that is, over-stepping the
minimum), specified as the comma-separated pair consisting of 'OptimizeLearnRate' and true or
false.

If OptimizeLearnRate is 'true', then:

1 For the few optimization iterations, the software starts optimization using LearnRate as the
learning rate.

2 If the value of the objective function increases, then the software restarts and uses half of the
current value of the learning rate.
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3 The software iterates step 2 until the objective function decreases.

Example: 'OptimizeLearnRate',true
Data Types: logical

TruncationPeriod — Number of mini-batches between lasso truncation runs
10 (default) | positive integer

Number of mini-batches between lasso truncation runs, specified as the comma-separated pair
consisting of 'TruncationPeriod' and a positive integer.

After a truncation run, the software applies a soft threshold to the linear coefficients. That is, after
processing k = TruncationPeriod mini-batches, the software truncates the estimated coefficient j
using

β j
∗ =

β j− ut if β j > ut,

0 if β j ≤ ut,

β j + ut if β j < − ut .

• For SGD, β j is the estimate of coefficient j after processing k mini-batches. ut = kγtλ . γt is the
learning rate at iteration t. λ is the value of Lambda.

• For ASGD, β j is the averaged estimate coefficient j after processing k mini-batches, ut = kλ .

If Regularization is 'ridge', then the software ignores TruncationPeriod.
Example: 'TruncationPeriod',100
Data Types: single | double

Other Regression Options

CategoricalPredictors — Categorical predictors list
vector of positive integers | logical vector | character matrix | string array | cell array of character
vectors | 'all'

Categorical predictors list, specified as one of the values in this table. The descriptions assume that
the predictor data has observations in rows and predictors in columns.

Value Description
Vector of positive
integers

Each entry in the vector is an index value indicating that the corresponding
predictor is categorical. The index values are between 1 and p, where p is
the number of predictors used to train the model.

If fitrlinear uses a subset of input variables as predictors, then the
function indexes the predictors using only the subset. The
CategoricalPredictors values do not count the response variable,
observation weights variable, or any other variables that the function does
not use.
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Value Description
Logical vector A true entry means that the corresponding predictor is categorical. The

length of the vector is p.
Character matrix Each row of the matrix is the name of a predictor variable. The names must

match the entries in PredictorNames. Pad the names with extra blanks
so each row of the character matrix has the same length.

String array or cell
array of character
vectors

Each element in the array is the name of a predictor variable. The names
must match the entries in PredictorNames.

"all" All predictors are categorical.

By default, if the predictor data is in a table (Tbl), fitrlinear assumes that a variable is
categorical if it is a logical vector, categorical vector, character array, string array, or cell array of
character vectors. If the predictor data is a matrix (X), fitrlinear assumes that all predictors are
continuous. To identify any other predictors as categorical predictors, specify them by using the
CategoricalPredictors name-value argument.

For the identified categorical predictors, fitrlinear creates dummy variables using two different
schemes, depending on whether a categorical variable is unordered or ordered. For an unordered
categorical variable, fitrlinear creates one dummy variable for each level of the categorical
variable. For an ordered categorical variable, fitrlinear creates one less dummy variable than the
number of categories. For details, see “Automatic Creation of Dummy Variables” on page 2-50.
Example: 'CategoricalPredictors','all'
Data Types: single | double | logical | char | string | cell

PredictorNames — Predictor variable names
string array of unique names | cell array of unique character vectors

Predictor variable names, specified as a string array of unique names or cell array of unique
character vectors. The functionality of 'PredictorNames' depends on the way you supply the
training data.

• If you supply X and Y, then you can use 'PredictorNames' to assign names to the predictor
variables in X.

• The order of the names in PredictorNames must correspond to the predictor order in X.
Assuming that X has the default orientation, with observations in rows and predictors in
columns, PredictorNames{1} is the name of X(:,1), PredictorNames{2} is the name of
X(:,2), and so on. Also, size(X,2) and numel(PredictorNames) must be equal.

• By default, PredictorNames is {'x1','x2',...}.
• If you supply Tbl, then you can use 'PredictorNames' to choose which predictor variables to

use in training. That is, fitrlinear uses only the predictor variables in PredictorNames and
the response variable during training.

• PredictorNames must be a subset of Tbl.Properties.VariableNames and cannot include
the name of the response variable.

• By default, PredictorNames contains the names of all predictor variables.
• A good practice is to specify the predictors for training using either 'PredictorNames' or

formula, but not both.
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Example: 'PredictorNames',
{'SepalLength','SepalWidth','PetalLength','PetalWidth'}

Data Types: string | cell

ResponseName — Response variable name
"Y" (default) | character vector | string scalar

Response variable name, specified as a character vector or string scalar.

• If you supply Y, then you can use ResponseName to specify a name for the response variable.
• If you supply ResponseVarName or formula, then you cannot use ResponseName.

Example: "ResponseName","response"
Data Types: char | string

ResponseTransform — Response transformation
'none' (default) | function handle

Response transformation, specified as either 'none' or a function handle. The default is 'none',
which means @(y)y, or no transformation. For a MATLAB function or a function you define, use its
function handle for the response transformation. The function handle must accept a vector (the
original response values) and return a vector of the same size (the transformed response values).
Example: Suppose you create a function handle that applies an exponential transformation to an
input vector by using myfunction = @(y)exp(y). Then, you can specify the response
transformation as 'ResponseTransform',myfunction.
Data Types: char | string | function_handle

Weights — Observation weights
positive numeric vector | name of variable in Tbl

Observation weights, specified as the comma-separated pair consisting of 'Weights' and a positive
numeric vector or the name of a variable in Tbl. The software weights each observation in X or Tbl
with the corresponding value in Weights. The length of Weights must equal the number of
observations in X or Tbl.

If you specify the input data as a table Tbl, then Weights can be the name of a variable in Tbl that
contains a numeric vector. In this case, you must specify Weights as a character vector or string
scalar. For example, if weights vector W is stored as Tbl.W, then specify it as 'W'. Otherwise, the
software treats all columns of Tbl, including W, as predictors when training the model.

By default, Weights is ones(n,1), where n is the number of observations in X or Tbl.

fitrlinear normalizes the weights to sum to 1.
Data Types: single | double | char | string

Cross-Validation Options

CrossVal — Cross-validation flag
'off' (default) | 'on'
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Cross-validation flag, specified as the comma-separated pair consisting of 'Crossval' and 'on' or
'off'.

If you specify 'on', then the software implements 10-fold cross-validation.

To override this cross-validation setting, use one of these name-value pair arguments: CVPartition,
Holdout, or KFold. To create a cross-validated model, you can use one cross-validation name-value
pair argument at a time only.
Example: 'Crossval','on'

CVPartition — Cross-validation partition
[] (default) | cvpartition partition object

Cross-validation partition, specified as the comma-separated pair consisting of 'CVPartition' and
a cvpartition partition object as created by cvpartition. The partition object specifies the type
of cross-validation, and also the indexing for training and validation sets.

To create a cross-validated model, you can use one of these four options only: 'CVPartition',
'Holdout', or 'KFold'.

Holdout — Fraction of data for holdout validation
scalar value in the range (0,1)

Fraction of data used for holdout validation, specified as the comma-separated pair consisting of
'Holdout' and a scalar value in the range (0,1). If you specify 'Holdout',p, then the software:

1 Randomly reserves p*100% of the data as validation data, and trains the model using the rest of
the data

2 Stores the compact, trained model in the Trained property of the cross-validated model.

To create a cross-validated model, you can use one of these four options only: 'CVPartition',
'Holdout', or 'KFold'.
Example: 'Holdout',0.1
Data Types: double | single

KFold — Number of folds
10 (default) | positive integer value greater than 1

Number of folds to use in a cross-validated classifier, specified as the comma-separated pair
consisting of 'KFold' and a positive integer value greater than 1. If you specify, e.g., 'KFold',k,
then the software:

1 Randomly partitions the data into k sets
2 For each set, reserves the set as validation data, and trains the model using the other k – 1 sets
3 Stores the k compact, trained models in the cells of a k-by-1 cell vector in the Trained property

of the cross-validated model.

To create a cross-validated model, you can use one of these four options only: 'CVPartition',
'Holdout', or 'KFold'.
Example: 'KFold',8
Data Types: single | double
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SGD and ASGD Convergence Controls

BatchLimit — Maximal number of batches
positive integer

Maximal number of batches to process, specified as the comma-separated pair consisting of
'BatchLimit' and a positive integer. When the software processes BatchLimit batches, it
terminates optimization.

• By default:

• The software passes through the data PassLimit times.
• If you specify multiple solvers, and use (A)SGD to get an initial approximation for the next

solver, then the default value is ceil(1e6/BatchSize). BatchSize is the value of the
'BatchSize' name-value pair argument.

• If you specify BatchLimit, then fitrlinear uses the argument that results in processing the
fewest observations, either BatchLimit or PassLimit.

Example: 'BatchLimit',100
Data Types: single | double

BetaTolerance — Relative tolerance on linear coefficients and bias term
1e-4 (default) | nonnegative scalar

Relative tolerance on the linear coefficients and the bias term (intercept), specified as the comma-
separated pair consisting of 'BetaTolerance' and a nonnegative scalar.

Let Bt = βt′ bt , that is, the vector of the coefficients and the bias term at optimization iteration t. If
Bt − Bt − 1

Bt 2
< BetaTolerance, then optimization terminates.

If the software converges for the last solver specified in Solver, then optimization terminates.
Otherwise, the software uses the next solver specified in Solver.
Example: 'BetaTolerance',1e-6
Data Types: single | double

NumCheckConvergence — Number of batches to process before next convergence check
positive integer

Number of batches to process before next convergence check, specified as the comma-separated pair
consisting of 'NumCheckConvergence' and a positive integer.

To specify the batch size, see BatchSize.

The software checks for convergence about 10 times per pass through the entire data set by default.
Example: 'NumCheckConvergence',100
Data Types: single | double

PassLimit — Maximal number of passes
1 (default) | positive integer
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Maximal number of passes through the data, specified as the comma-separated pair consisting of
'PassLimit' and a positive integer.

fitrlinear processes all observations when it completes one pass through the data.

When fitrlinear passes through the data PassLimit times, it terminates optimization.

If you specify BatchLimit, then fitrlinear uses the argument that results in processing the
fewest observations, either BatchLimit or PassLimit. For more details, see “Algorithms” on page
35-2570.
Example: 'PassLimit',5
Data Types: single | double

ValidationData — Validation data for optimization convergence detection
cell array | table

Validation data for optimization convergence detection, specified as the comma-separated pair
consisting of 'ValidationData' and a cell array or table.

During optimization, the software periodically estimates the loss of ValidationData. If the
validation-data loss increases, then the software terminates optimization. For more details, see
“Algorithms” on page 35-2570. To optimize hyperparameters using cross-validation, see cross-
validation options such as CrossVal.

You can specify ValidationData as a table if you use a table Tbl of predictor data that contains the
response variable. In this case, ValidationData must contain the same predictors and response
contained in Tbl. The software does not apply weights to observations, even if Tbl contains a vector
of weights. To specify weights, you must specify ValidationData as a cell array.

If you specify ValidationData as a cell array, then it must have the following format:

• ValidationData{1} must have the same data type and orientation as the predictor data. That
is, if you use a predictor matrix X, then ValidationData{1} must be an m-by-p or p-by-m full or
sparse matrix of predictor data that has the same orientation as X. The predictor variables in the
training data X and ValidationData{1} must correspond. Similarly, if you use a predictor table
Tbl of predictor data, then ValidationData{1} must be a table containing the same predictor
variables contained in Tbl. The number of observations in ValidationData{1} and the
predictor data can vary.

• ValidationData{2} must match the data type and format of the response variable, either Y or
ResponseVarName. If ValidationData{2} is an array of responses, then it must have the same
number of elements as the number of observations in ValidationData{1}. If
ValidationData{1} is a table, then ValidationData{2} can be the name of the response
variable in the table. If you want to use the same ResponseVarName or formula, you can specify
ValidationData{2} as [].

• Optionally, you can specify ValidationData{3} as an m-dimensional numeric vector of
observation weights or the name of a variable in the table ValidationData{1} that contains
observation weights. The software normalizes the weights with the validation data so that they
sum to 1.

If you specify ValidationData and want to display the validation loss at the command line, specify
a value larger than 0 for Verbose.
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If the software converges for the last solver specified in Solver, then optimization terminates.
Otherwise, the software uses the next solver specified in Solver.

By default, the software does not detect convergence by monitoring validation-data loss.

GradientTolerance — Absolute gradient tolerance
1e-6 (default) | nonnegative scalar

Absolute gradient tolerance, specified as the comma-separated pair consisting of
'GradientTolerance' and a nonnegative scalar. GradientTolerance applies to these values of
Solver: 'bfgs', 'lbfgs', and 'sparsa'.

Let ∇ℒ t be the gradient vector of the objective function with respect to the coefficients and bias term
at optimization iteration t. If ∇ℒ t ∞ = max ∇ℒ t < GradientTolerance, then optimization terminates.

If you also specify BetaTolerance, then optimization terminates when fitrlinear satisfies either
stopping criterion.

If fitrlinear converges for the last solver specified in Solver, then optimization terminates.
Otherwise, fitrlinear uses the next solver specified in Solver.
Example: 'GradientTolerance',eps
Data Types: single | double

IterationLimit — Maximal number of optimization iterations
1000 (default) | positive integer

Maximal number of optimization iterations, specified as the comma-separated pair consisting of
'IterationLimit' and a positive integer. IterationLimit applies to these values of Solver:
'bfgs', 'lbfgs', and 'sparsa'.
Example: 'IterationLimit',1e7
Data Types: single | double

Dual SGD Optimization Convergence Controls

BetaTolerance — Relative tolerance on linear coefficients and bias term
1e-4 (default) | nonnegative scalar

Relative tolerance on the linear coefficients and the bias term (intercept), specified as the comma-
separated pair consisting of 'BetaTolerance' and a nonnegative scalar.

Let Bt = βt′ bt , that is, the vector of the coefficients and the bias term at optimization iteration t. If
Bt − Bt − 1

Bt 2
< BetaTolerance, then optimization terminates.

If you also specify DeltaGradientTolerance, then optimization terminates when the software
satisfies either stopping criterion.

If the software converges for the last solver specified in Solver, then optimization terminates.
Otherwise, the software uses the next solver specified in Solver.
Example: 'BetaTolerance',1e-6
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Data Types: single | double

DeltaGradientTolerance — Gradient-difference tolerance
0.1 (default) | nonnegative scalar

Gradient-difference tolerance between upper and lower pool Karush-Kuhn-Tucker (KKT)
complementarity conditions on page 35-2206 violators, specified as the comma-separated pair
consisting of 'DeltaGradientTolerance' and a nonnegative scalar. DeltaGradientTolerance
applies to the 'dual' value of Solver only.

• If the magnitude of the KKT violators is less than DeltaGradientTolerance, then fitrlinear
terminates optimization.

• If fitrlinear converges for the last solver specified in Solver, then optimization terminates.
Otherwise, fitrlinear uses the next solver specified in Solver.

Example: 'DeltaGapTolerance',1e-2
Data Types: double | single

NumCheckConvergence — Number of passes through entire data set to process before next
convergence check
5 (default) | positive integer

Number of passes through entire data set to process before next convergence check, specified as the
comma-separated pair consisting of 'NumCheckConvergence' and a positive integer.
Example: 'NumCheckConvergence',100
Data Types: single | double

PassLimit — Maximal number of passes
10 (default) | positive integer

Maximal number of passes through the data, specified as the comma-separated pair consisting of
'PassLimit' and a positive integer.

When the software completes one pass through the data, it has processed all observations.

When the software passes through the data PassLimit times, it terminates optimization.
Example: 'PassLimit',5
Data Types: single | double

ValidationData — Validation data for optimization convergence detection
cell array | table

Validation data for optimization convergence detection, specified as the comma-separated pair
consisting of 'ValidationData' and a cell array or table.

During optimization, the software periodically estimates the loss of ValidationData. If the
validation-data loss increases, then the software terminates optimization. For more details, see
“Algorithms” on page 35-2570. To optimize hyperparameters using cross-validation, see cross-
validation options such as CrossVal.

You can specify ValidationData as a table if you use a table Tbl of predictor data that contains the
response variable. In this case, ValidationData must contain the same predictors and response
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contained in Tbl. The software does not apply weights to observations, even if Tbl contains a vector
of weights. To specify weights, you must specify ValidationData as a cell array.

If you specify ValidationData as a cell array, then it must have the following format:

• ValidationData{1} must have the same data type and orientation as the predictor data. That
is, if you use a predictor matrix X, then ValidationData{1} must be an m-by-p or p-by-m full or
sparse matrix of predictor data that has the same orientation as X. The predictor variables in the
training data X and ValidationData{1} must correspond. Similarly, if you use a predictor table
Tbl of predictor data, then ValidationData{1} must be a table containing the same predictor
variables contained in Tbl. The number of observations in ValidationData{1} and the
predictor data can vary.

• ValidationData{2} must match the data type and format of the response variable, either Y or
ResponseVarName. If ValidationData{2} is an array of responses, then it must have the same
number of elements as the number of observations in ValidationData{1}. If
ValidationData{1} is a table, then ValidationData{2} can be the name of the response
variable in the table. If you want to use the same ResponseVarName or formula, you can specify
ValidationData{2} as [].

• Optionally, you can specify ValidationData{3} as an m-dimensional numeric vector of
observation weights or the name of a variable in the table ValidationData{1} that contains
observation weights. The software normalizes the weights with the validation data so that they
sum to 1.

If you specify ValidationData and want to display the validation loss at the command line, specify
a value larger than 0 for Verbose.

If the software converges for the last solver specified in Solver, then optimization terminates.
Otherwise, the software uses the next solver specified in Solver.

By default, the software does not detect convergence by monitoring validation-data loss.

BFGS, LBFGS, and SpaRSA Convergence Controls

BetaTolerance — Relative tolerance on linear coefficients and bias term
1e-4 (default) | nonnegative scalar

Relative tolerance on the linear coefficients and the bias term (intercept), specified as a nonnegative
scalar.

Let Bt = βt′ bt , that is, the vector of the coefficients and the bias term at optimization iteration t. If
Bt − Bt − 1

Bt 2
< BetaTolerance, then optimization terminates.

If you also specify GradientTolerance, then optimization terminates when the software satisfies
either stopping criterion.

If the software converges for the last solver specified in Solver, then optimization terminates.
Otherwise, the software uses the next solver specified in Solver.
Example: 'BetaTolerance',1e-6
Data Types: single | double
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GradientTolerance — Absolute gradient tolerance
1e-6 (default) | nonnegative scalar

Absolute gradient tolerance, specified as a nonnegative scalar.

Let ∇ℒ t be the gradient vector of the objective function with respect to the coefficients and bias term
at optimization iteration t. If ∇ℒ t ∞ = max ∇ℒ t < GradientTolerance, then optimization terminates.

If you also specify BetaTolerance, then optimization terminates when the software satisfies either
stopping criterion.

If the software converges for the last solver specified in the software, then optimization terminates.
Otherwise, the software uses the next solver specified in Solver.
Example: 'GradientTolerance',1e-5
Data Types: single | double

HessianHistorySize — Size of history buffer for Hessian approximation
15 (default) | positive integer

Size of history buffer for Hessian approximation, specified as the comma-separated pair consisting of
'HessianHistorySize' and a positive integer. That is, at each iteration, the software composes the
Hessian using statistics from the latest HessianHistorySize iterations.

The software does not support 'HessianHistorySize' for SpaRSA.
Example: 'HessianHistorySize',10
Data Types: single | double

IterationLimit — Maximal number of optimization iterations
1000 (default) | positive integer

Maximal number of optimization iterations, specified as the comma-separated pair consisting of
'IterationLimit' and a positive integer. IterationLimit applies to these values of Solver:
'bfgs', 'lbfgs', and 'sparsa'.
Example: 'IterationLimit',500
Data Types: single | double

ValidationData — Validation data for optimization convergence detection
cell array | table

Validation data for optimization convergence detection, specified as the comma-separated pair
consisting of 'ValidationData' and a cell array or table.

During optimization, the software periodically estimates the loss of ValidationData. If the
validation-data loss increases, then the software terminates optimization. For more details, see
“Algorithms” on page 35-2570. To optimize hyperparameters using cross-validation, see cross-
validation options such as CrossVal.

You can specify ValidationData as a table if you use a table Tbl of predictor data that contains the
response variable. In this case, ValidationData must contain the same predictors and response
contained in Tbl. The software does not apply weights to observations, even if Tbl contains a vector
of weights. To specify weights, you must specify ValidationData as a cell array.

35 Functions

35-2562



If you specify ValidationData as a cell array, then it must have the following format:

• ValidationData{1} must have the same data type and orientation as the predictor data. That
is, if you use a predictor matrix X, then ValidationData{1} must be an m-by-p or p-by-m full or
sparse matrix of predictor data that has the same orientation as X. The predictor variables in the
training data X and ValidationData{1} must correspond. Similarly, if you use a predictor table
Tbl of predictor data, then ValidationData{1} must be a table containing the same predictor
variables contained in Tbl. The number of observations in ValidationData{1} and the
predictor data can vary.

• ValidationData{2} must match the data type and format of the response variable, either Y or
ResponseVarName. If ValidationData{2} is an array of responses, then it must have the same
number of elements as the number of observations in ValidationData{1}. If
ValidationData{1} is a table, then ValidationData{2} can be the name of the response
variable in the table. If you want to use the same ResponseVarName or formula, you can specify
ValidationData{2} as [].

• Optionally, you can specify ValidationData{3} as an m-dimensional numeric vector of
observation weights or the name of a variable in the table ValidationData{1} that contains
observation weights. The software normalizes the weights with the validation data so that they
sum to 1.

If you specify ValidationData and want to display the validation loss at the command line, specify
a value larger than 0 for Verbose.

If the software converges for the last solver specified in Solver, then optimization terminates.
Otherwise, the software uses the next solver specified in Solver.

By default, the software does not detect convergence by monitoring validation-data loss.

Hyperparameter Optimization

OptimizeHyperparameters — Parameters to optimize
'none' (default) | 'auto' | 'all' | string array or cell array of eligible parameter names | vector of
optimizableVariable objects

Parameters to optimize, specified as the comma-separated pair consisting of
'OptimizeHyperparameters' and one of the following:

• 'none' — Do not optimize.
• 'auto' — Use {'Lambda','Learner'}.
• 'all' — Optimize all eligible parameters.
• String array or cell array of eligible parameter names.
• Vector of optimizableVariable objects, typically the output of hyperparameters.

The optimization attempts to minimize the cross-validation loss (error) for fitrlinear by varying
the parameters. To control the cross-validation type and other aspects of the optimization, use the
HyperparameterOptimizationOptions name-value pair.

Note The values of 'OptimizeHyperparameters' override any values you specify using other
name-value arguments. For example, setting 'OptimizeHyperparameters' to 'auto' causes
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fitrlinear to optimize hyperparameters corresponding to the 'auto' option and to ignore any
specified values for the hyperparameters.

The eligible parameters for fitrlinear are:

• Lambda — fitrlinear searches among positive values, by default log-scaled in the range
[1e-5/NumObservations,1e5/NumObservations].

• Learner — fitrlinear searches among 'svm' and 'leastsquares'.
• Regularization — fitrlinear searches among 'ridge' and 'lasso'.

• When Regularization is 'ridge', the function sets the Solver value to 'lbfgs' by
default.

• When Regularization is 'lasso', the function sets the Solver value to 'sparsa' by
default.

Set nondefault parameters by passing a vector of optimizableVariable objects that have
nondefault values. For example,

load carsmall
params = hyperparameters('fitrlinear',[Horsepower,Weight],MPG);
params(1).Range = [1e-3,2e4];

Pass params as the value of OptimizeHyperparameters.

By default, the iterative display appears at the command line, and plots appear according to the
number of hyperparameters in the optimization. For the optimization and plots, the objective function
is log(1 + cross-validation loss). To control the iterative display, set the Verbose field of the
'HyperparameterOptimizationOptions' name-value argument. To control the plots, set the
ShowPlots field of the 'HyperparameterOptimizationOptions' name-value argument.

For an example, see “Optimize a Linear Regression” on page 35-2540.
Example: 'OptimizeHyperparameters','auto'

HyperparameterOptimizationOptions — Options for optimization
structure

Options for optimization, specified as a structure. This argument modifies the effect of the
OptimizeHyperparameters name-value argument. All fields in the structure are optional.
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Field Name Values Default
Optimizer • 'bayesopt' — Use Bayesian optimization.

Internally, this setting calls bayesopt.
• 'gridsearch' — Use grid search with

NumGridDivisions values per dimension.
• 'randomsearch' — Search at random among

MaxObjectiveEvaluations points.

'gridsearch' searches in a random order, using
uniform sampling without replacement from the
grid. After optimization, you can get a table in grid
order by using the command
sortrows(Mdl.HyperparameterOptimizatio
nResults).

'bayesopt'

AcquisitionFunct
ionName

• 'expected-improvement-per-second-
plus'

• 'expected-improvement'
• 'expected-improvement-plus'
• 'expected-improvement-per-second'
• 'lower-confidence-bound'
• 'probability-of-improvement'

Acquisition functions whose names include per-
second do not yield reproducible results because
the optimization depends on the runtime of the
objective function. Acquisition functions whose
names include plus modify their behavior when
they are overexploiting an area. For more details,
see “Acquisition Function Types” on page 10-3.

'expected-
improvement-per-
second-plus'

MaxObjectiveEval
uations

Maximum number of objective function
evaluations.

30 for 'bayesopt' and
'randomsearch', and
the entire grid for
'gridsearch'

MaxTime Time limit, specified as a positive real scalar. The
time limit is in seconds, as measured by tic and
toc. The run time can exceed MaxTime because
MaxTime does not interrupt function evaluations.

Inf

NumGridDivisions For 'gridsearch', the number of values in each
dimension. The value can be a vector of positive
integers giving the number of values for each
dimension, or a scalar that applies to all
dimensions. This field is ignored for categorical
variables.

10
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Field Name Values Default
ShowPlots Logical value indicating whether to show plots. If

true, this field plots the best observed objective
function value against the iteration number. If you
use Bayesian optimization (Optimizer is
'bayesopt'), then this field also plots the best
estimated objective function value. The best
observed objective function values and best
estimated objective function values correspond to
the values in the BestSoFar (observed) and
BestSoFar (estim.) columns of the iterative
display, respectively. You can find these values in
the properties ObjectiveMinimumTrace and
EstimatedObjectiveMinimumTrace of
Mdl.HyperparameterOptimizationResults.
If the problem includes one or two optimization
parameters for Bayesian optimization, then
ShowPlots also plots a model of the objective
function against the parameters.

true

SaveIntermediate
Results

Logical value indicating whether to save results
when Optimizer is 'bayesopt'. If true, this
field overwrites a workspace variable named
'BayesoptResults' at each iteration. The
variable is a BayesianOptimization object.

false

Verbose Display at the command line:

• 0 — No iterative display
• 1 — Iterative display
• 2 — Iterative display with extra information

For details, see the bayesopt Verbose name-
value argument and the example “Optimize
Classifier Fit Using Bayesian Optimization” on
page 10-56.

1

UseParallel Logical value indicating whether to run Bayesian
optimization in parallel, which requires Parallel
Computing Toolbox. Due to the nonreproducibility
of parallel timing, parallel Bayesian optimization
does not necessarily yield reproducible results. For
details, see “Parallel Bayesian Optimization” on
page 10-7.

false
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Field Name Values Default
Repartition Logical value indicating whether to repartition the

cross-validation at every iteration. If this field is
false, the optimizer uses a single partition for
the optimization.

The setting true usually gives the most robust
results because it takes partitioning noise into
account. However, for good results, true requires
at least twice as many function evaluations.

false

Use no more than one of the following three options.
CVPartition A cvpartition object, as created by

cvpartition
'Kfold',5 if you do not
specify a cross-validation
fieldHoldout A scalar in the range (0,1) representing the

holdout fraction
Kfold An integer greater than 1

Example:
'HyperparameterOptimizationOptions',struct('MaxObjectiveEvaluations',60)

Data Types: struct

Output Arguments
Mdl — Trained linear regression model
RegressionLinear model object | RegressionPartitionedLinear cross-validated model object

Trained linear regression model, returned as a RegressionLinear model object or
RegressionPartitionedLinear cross-validated model object.

If you set any of the name-value pair arguments KFold, Holdout, CrossVal, or CVPartition, then
Mdl is a RegressionPartitionedLinear cross-validated model object. Otherwise, Mdl is a
RegressionLinear model object.

To reference properties of Mdl, use dot notation. For example, enter Mdl.Beta in the Command
Window to display the vector or matrix of estimated coefficients.

Note Unlike other regression models, and for economical memory usage, RegressionLinear and
RegressionPartitionedLinear model objects do not store the training data or optimization
details (for example, convergence history).

FitInfo — Optimization details
structure array

Optimization details, returned as a structure array.

Fields specify final values or name-value pair argument specifications, for example, Objective is the
value of the objective function when optimization terminates. Rows of multidimensional fields
correspond to values of Lambda and columns correspond to values of Solver.
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This table describes some notable fields.

Field Description
TerminationStatus • Reason for optimization termination

• Corresponds to a value in TerminationCode
FitTime Elapsed, wall-clock time in seconds
History A structure array of optimization information for

each iteration. The field Solver stores solver
types using integer coding.

Integer Solver
1 SGD
2 ASGD
3 Dual SGD for SVM
4 LBFGS
5 BFGS
6 SpaRSA

To access fields, use dot notation. For example, to access the vector of objective function values for
each iteration, enter FitInfo.History.Objective.

It is good practice to examine FitInfo to assess whether convergence is satisfactory.

HyperparameterOptimizationResults — Cross-validation optimization of hyperparameters
BayesianOptimization object | table of hyperparameters and associated values

Cross-validation optimization of hyperparameters, returned as a BayesianOptimization object or
a table of hyperparameters and associated values. The output is nonempty when the value of
'OptimizeHyperparameters' is not 'none'. The output value depends on the Optimizer field
value of the 'HyperparameterOptimizationOptions' name-value pair argument:

Value of Optimizer Field Value of
HyperparameterOptimizationResults

'bayesopt' (default) Object of class BayesianOptimization
'gridsearch' or 'randomsearch' Table of hyperparameters used, observed

objective function values (cross-validation loss),
and rank of observations from lowest (best) to
highest (worst)

Note If Learner is 'leastsquares', then the loss term in the objective function is half of the
MSE. loss returns the MSE by default. Therefore, if you use loss to check the resubstitution, or
training, error then there is a discrepancy between the MSE returned by loss and optimization
results in FitInfo or returned to the command line by setting a positive verbosity level using
Verbose.
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More About
Warm Start

A warm start is initial estimates of the beta coefficients and bias term supplied to an optimization
routine for quicker convergence.

Alternatives for Lower-Dimensional Data

fitclinear and fitrlinear minimize objective functions relatively quickly for a high-dimensional
linear model at the cost of some accuracy and with the restriction that the model must be linear with
respect to the parameters. If your predictor data set is low- to medium-dimensional, you can use an
alternative classification or regression fitting function. To help you decide which fitting function is
appropriate for your data set, use this table.

Model to Fit Function Notable Algorithmic Differences
SVM • Binary classification:

fitcsvm
• Multiclass classification:

fitcecoc
• Regression: fitrsvm

• Computes the Gram matrix of the predictor
variables, which is convenient for nonlinear
kernel transformations.

• Solves dual problem using SMO, ISDA, or L1
minimization via quadratic programming
using quadprog.

Linear regression • Least-squares without
regularization: fitlm

• Regularized least-squares
using a lasso penalty:
lasso

• Ridge regression: ridge
or lasso

• lasso implements cyclic coordinate
descent.

Logistic regression • Logistic regression
without regularization:
fitglm.

• Regularized logistic
regression using a lasso
penalty: lassoglm

• fitglm implements iteratively reweighted
least squares.

• lassoglm implements cyclic coordinate
descent.

Tips
• It is a best practice to orient your predictor matrix so that observations correspond to columns

and to specify 'ObservationsIn','columns'. As a result, you can experience a significant
reduction in optimization-execution time.

• If your predictor data has few observations but many predictor variables, then:

• Specify 'PostFitBias',true.
• For SGD or ASGD solvers, set PassLimit to a positive integer that is greater than 1, for

example, 5 or 10. This setting often results in better accuracy.
• For SGD and ASGD solvers, BatchSize affects the rate of convergence.

• If BatchSize is too small, then fitrlinear achieves the minimum in many iterations, but
computes the gradient per iteration quickly.
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• If BatchSize is too large, then fitrlinear achieves the minimum in fewer iterations, but
computes the gradient per iteration slowly.

• Large learning rates (see LearnRate) speed up convergence to the minimum, but can lead to
divergence (that is, over-stepping the minimum). Small learning rates ensure convergence to the
minimum, but can lead to slow termination.

• When using lasso penalties, experiment with various values of TruncationPeriod. For example,
set TruncationPeriod to 1, 10, and then 100.

• For efficiency, fitrlinear does not standardize predictor data. To standardize X, enter

X = bsxfun(@rdivide,bsxfun(@minus,X,mean(X,2)),std(X,0,2));

The code requires that you orient the predictors and observations as the rows and columns of X,
respectively. Also, for memory-usage economy, the code replaces the original predictor data the
standardized data.

• After training a model, you can generate C/C++ code that predicts responses for new data.
Generating C/C++ code requires MATLAB Coder. For details, see “Introduction to Code
Generation” on page 34-2.

Algorithms
• If you specify ValidationData, then, during objective-function optimization:

• fitrlinear estimates the validation loss of ValidationData periodically using the current
model, and tracks the minimal estimate.

• When fitrlinear estimates a validation loss, it compares the estimate to the minimal
estimate.

• When subsequent, validation loss estimates exceed the minimal estimate five times,
fitrlinear terminates optimization.

• If you specify ValidationData and to implement a cross-validation routine (CrossVal,
CVPartition, Holdout, or KFold), then:

1 fitrlinear randomly partitions X and Y (or Tbl) according to the cross-validation routine
that you choose.

2 fitrlinear trains the model using the training-data partition. During objective-function
optimization, fitrlinear uses ValidationData as another possible way to terminate
optimization (for details, see the previous bullet).

3 Once fitrlinear satisfies a stopping criterion, it constructs a trained model based on the
optimized linear coefficients and intercept.

a If you implement k-fold cross-validation, and fitrlinear has not exhausted all training-
set folds, then fitrlinear returns to Step 2 to train using the next training-set fold.

b Otherwise, fitrlinear terminates training, and then returns the cross-validated model.
4 You can determine the quality of the cross-validated model. For example:

• To determine the validation loss using the holdout or out-of-fold data from step 1, pass the
cross-validated model to kfoldLoss.

• To predict observations on the holdout or out-of-fold data from step 1, pass the cross-
validated model to kfoldPredict.
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Version History
Introduced in R2016a

Regularization method determines the solver used during hyperparameter optimization
Behavior changed in R2022a

Starting in R2022a, when you specify to optimize hyperparameters and do not specify a Solver
value, fitrlinear uses either a Limited-memory BFGS (LBFGS) solver or a Sparse Reconstruction
by Separable Approximation (SpaRSA) solver, depending on the regularization type selected during
each iteration of the hyperparameter optimization.

• When Regularization is 'ridge', the function sets the Solver value to 'lbfgs' by default.
• When Regularization is 'lasso', the function sets the Solver value to 'sparsa' by default.

In previous releases, the default solver selection during hyperparameter optimization depended on
various factors, including the regularization type, learner type, and number of predictors. For more
information, see Solver.
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Extended Capabilities
Tall Arrays
Calculate with arrays that have more rows than fit in memory.

Usage notes and limitations:
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• fitrlinear does not support tall table data.
• Some name-value pair arguments have different defaults and values compared to the in-memory

fitrlinear function. Supported name-value pair arguments, and any differences, are:

• 'Epsilon'
• 'ObservationsIn' — Supports only 'rows'.
• 'Lambda' — Can be 'auto' (default) or a scalar.
• 'Learner'
• 'Regularization' — Supports only 'ridge'.
• 'Solver' — Supports only 'lbfgs'.
• 'Verbose' — Default value is 1
• 'Beta'
• 'Bias'
• 'FitBias' — Supports only true.
• 'Weights' — Value must be a tall array.
• 'HessianHistorySize'
• 'BetaTolerance' — Default value is relaxed to 1e-3.
• 'GradientTolerance' — Default value is relaxed to 1e-3.
• 'IterationLimit' — Default value is relaxed to 20.
• 'OptimizeHyperparameters' — Value of 'Regularization' parameter must be

'ridge'.
• 'HyperparameterOptimizationOptions' — For cross-validation, tall optimization

supports only 'Holdout' validation. By default, the software selects and reserves 20% of the
data as holdout validation data, and trains the model using the rest of the data. You can specify
a different value for the holdout fraction by using this argument. For example, specify
'HyperparameterOptimizationOptions',struct('Holdout',0.3) to reserve 30% of
the data as validation data.

• For tall arrays fitrlinear implements LBFGS by distributing the calculation of the loss and the
gradient among different parts of the tall array at each iteration. Other solvers are not available
for tall arrays.

When initial values for Beta and Bias are not given, fitrlinear first refines the initial
estimates of the parameters by fitting the model locally to parts of the data and combining the
coefficients by averaging.

For more information, see “Tall Arrays”.

Automatic Parallel Support
Accelerate code by automatically running computation in parallel using Parallel Computing Toolbox™.

To perform parallel hyperparameter optimization, use the
'HyperparameterOptimizationOptions', struct('UseParallel',true) name-value
argument in the call to the fitrlinear function.

For more information on parallel hyperparameter optimization, see “Parallel Bayesian Optimization”
on page 10-7.

35 Functions

35-2572



For general information about parallel computing, see “Run MATLAB Functions with Automatic
Parallel Support” (Parallel Computing Toolbox).

See Also
fitrsvm | fitlm | lasso | ridge | fitclinear | predict | kfoldPredict | kfoldLoss |
RegressionLinear | RegressionPartitionedLinear
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fitrm
Fit repeated measures model

Syntax
rm = fitrm(t,modelspec)
rm = fitrm(t,modelspec,Name,Value)

Description
rm = fitrm(t,modelspec) returns a repeated measures model, specified by modelspec, fitted to
the variables in the table or dataset array t.

rm = fitrm(t,modelspec,Name,Value) returns a repeated measures model, with additional
options specified by one or more Name,Value pair arguments.

For example, you can specify the hypothesis for the within-subject factors.

Examples

Fit a Repeated Measures Model

Load the sample data.

load fisheriris

The column vector species consists of iris flowers of three different species: setosa, versicolor, and
virginica. The double matrix meas consists of four types of measurements on the flowers: the length
and width of sepals and petals in centimeters, respectively.

Store the data in a table array.

t = table(species,meas(:,1),meas(:,2),meas(:,3),meas(:,4),...
'VariableNames',{'species','meas1','meas2','meas3','meas4'});
Meas = table([1 2 3 4]','VariableNames',{'Measurements'});

Fit a repeated measures model, where the measurements are the responses and the species is the
predictor variable.

rm = fitrm(t,'meas1-meas4~species','WithinDesign',Meas)

rm = 
  RepeatedMeasuresModel with properties:

   Between Subjects:
         BetweenDesign: [150x5 table]
         ResponseNames: {'meas1'  'meas2'  'meas3'  'meas4'}
    BetweenFactorNames: {'species'}
          BetweenModel: '1 + species'

   Within Subjects:
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          WithinDesign: [4x1 table]
     WithinFactorNames: {'Measurements'}
           WithinModel: 'separatemeans'

   Estimates:
          Coefficients: [3x4 table]
            Covariance: [4x4 table]

Display the coefficients.

rm.Coefficients

ans=3×4 table
                           meas1       meas2      meas3      meas4  
                          ________    ________    ______    ________

    (Intercept)             5.8433      3.0573     3.758      1.1993
    species_setosa        -0.83733     0.37067    -2.296    -0.95333
    species_versicolor    0.092667    -0.28733     0.502     0.12667

fitrm uses the 'effects' contrasts which means that the coefficients sum to 0. The
rm.DesignMatrix has one column of 1s for the intercept, and two other columns species_setosa
and species_versicolor, which are as follows:

species_setosa =
1 if setosa
0 if versicolor
−1 if virginica

and species_versicolor =
0 if setosa
1 if versicolor
−1 if virginica

Display the covariance matrix.

rm.Covariance

ans=4×4 table
              meas1       meas2       meas3       meas4  
             ________    ________    ________    ________

    meas1     0.26501    0.092721     0.16751    0.038401
    meas2    0.092721     0.11539    0.055244     0.03271
    meas3     0.16751    0.055244     0.18519    0.042665
    meas4    0.038401     0.03271    0.042665    0.041882

Specify the Within-Subject Hypothesis

Load the sample data.

load('longitudinalData.mat');

The matrix Y contains response data for 16 individuals. The response is the blood level of a drug
measured at five time points (time = 0, 2, 4, 6, and 8). Each row of Y corresponds to an individual,
and each column corresponds to a time point. The first eight subjects are female, and the second
eight subjects are male. This is simulated data.
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Define a variable that stores gender information.

Gender = ['F' 'F' 'F' 'F' 'F' 'F' 'F' 'F' 'M' 'M' 'M' 'M' 'M' 'M' 'M' 'M']';

Store the data in a proper table array format to conduct repeated measures analysis.

t = table(Gender,Y(:,1),Y(:,2),Y(:,3),Y(:,4),Y(:,5),...
'VariableNames',{'Gender','t0','t2','t4','t6','t8'});

Define the within-subjects variable.

Time = [0 2 4 6 8]';

Fit a repeated measures model, where blood levels are the responses and gender is the predictor
variable. Also define the hypothesis for within-subject factors.

rm = fitrm(t,'t0-t8 ~ Gender','WithinDesign',Time,'WithinModel','orthogonalcontrasts')

rm = 
  RepeatedMeasuresModel with properties:

   Between Subjects:
         BetweenDesign: [16x6 table]
         ResponseNames: {'t0'  't2'  't4'  't6'  't8'}
    BetweenFactorNames: {'Gender'}
          BetweenModel: '1 + Gender'

   Within Subjects:
          WithinDesign: [5x1 table]
     WithinFactorNames: {'Time'}
           WithinModel: 'orthogonalcontrasts'

   Estimates:
          Coefficients: [2x5 table]
            Covariance: [5x5 table]

Fit a Model with Covariates

Load the sample data.

load repeatedmeas

The table between includes the eight repeated measurements, y1 through y8, as responses and the
between-subject factors Group, Gender, IQ, and Age. IQ and Age as continuous variables. The table
within includes the within-subject factors w1 and w2.

Fit a repeated measures model, where age, IQ, group, and gender are the predictor variables, and the
model includes the interaction effect of group and gender. Also define the within-subject factors.

rm = fitrm(between,'y1-y8 ~ Group*Gender+Age+IQ','WithinDesign',within)

rm = 
  RepeatedMeasuresModel with properties:

   Between Subjects:
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         BetweenDesign: [30x12 table]
         ResponseNames: {'y1'  'y2'  'y3'  'y4'  'y5'  'y6'  'y7'  'y8'}
    BetweenFactorNames: {'Age'  'IQ'  'Group'  'Gender'}
          BetweenModel: '1 + Age + IQ + Group*Gender'

   Within Subjects:
          WithinDesign: [8x2 table]
     WithinFactorNames: {'w1'  'w2'}
           WithinModel: 'separatemeans'

   Estimates:
          Coefficients: [8x8 table]
            Covariance: [8x8 table]

Display the coefficients.

rm.Coefficients

ans=8×8 table
                                y1         y2         y3         y4          y5           y6         y7          y8   
                             ________    _______    _______    _______    _________    ________    _______    ________

    (Intercept)                141.38     195.25     9.8663    -49.154       157.77     0.23762    -42.462      76.111
    Age                       0.32042    -4.7672    -1.2748     0.6216      -1.0621     0.89927     1.2569    -0.38328
    IQ                        -1.2671    -1.1653    0.05862     0.4288      -1.4518    -0.25501    0.22867    -0.72548
    Group_A                   -1.2195    -9.6186     22.532     15.303       12.602      12.886     10.911      11.487
    Group_B                    2.5186      1.417    -2.2501    0.50181       8.0907      3.1957     11.591      9.9188
    Gender_Female              5.3957    -3.9719     8.5225     9.3403       6.0909       1.642    -2.1212      4.8063
    Group_A:Gender_Female      4.1046     10.064    -7.3053    -3.3085       4.6751      2.4907     -4.325     -4.6057
    Group_B:Gender_Female    -0.48486    -2.9202     1.1222    0.69715    -0.065945    0.079468     3.1832      6.5733

The display shows the coefficients for fitting the repeated measures as a function of the terms in the
between-subjects model.

Input Arguments
t — Input data
table

Input data, which includes the values of the response variables and the between-subject factors to
use as predictors in the repeated measures model, specified as a table.

The variable names in t must be valid MATLAB identifiers. You can verify the variable names by using
the isvarname function. If the variable names are not valid, then you can convert them by using the
matlab.lang.makeValidName function.
Data Types: table

modelspec — Formula for model specification
character vector or string scalar of the form 'y1-yk ~ terms'

Formula for model specification, specified as a character vector or string scalar of the form 'y1-yk
~ terms'. The responses and terms are specified using Wilkinson notation on page 35-2579. fitrm
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treats the variables used in model terms as categorical if they are categorical (nominal or ordinal),
logical, character arrays, string arrays, or cell arrays of character vectors.

For example, if you have four repeated measures as responses and the factors x1, x2, and x3 as the
predictor variables, then you can define a repeated measures model as follows.
Example: 'y1-y4 ~ x1 + x2 * x3'

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: 'WithinDesign','W','WithinModel','w1+w2' specifies the matrix w as the design
matrix for within-subject factors, and the model for within-subject factors w1 and w2 is 'w1+w2'.

WithinDesign — Design for within-subject factors
numeric vector of length r (default) | r-by-k numeric matrix | r-by-k table

Design for within-subject factors, specified as the comma-separated pair consisting of
'WithinDesign' and one of the following:

• Numeric vector of length r, where r is the number of repeated measures.

In this case, fitrm treats the values in the vector as continuous, and these are typically time
values.

• r-by-k numeric matrix of the values of the k within-subject factors, w1, w2, ..., wk.

In this case,fitrm treats all k variables as continuous.
• r-by-k table that contains the values of the k within-subject factors.

In this case, fitrm treats all numeric variables as continuous, and all categorical variables as
categorical.

For example, if the table weeks contains the values of the within-subject factors, then you can define
the design table as follows.
Example: 'WithinDesign',weeks
Data Types: single | double | table

WithinModel — Model specifying within-subject hypothesis test
'separatemeans' (default) | 'orthogonalcontrasts' | character vector or string scalar that
defines a model

Model specifying the within-subject hypothesis test, specified as the comma-separated pair consisting
of 'WithinModel' and one of the following:

• 'separatemeans' — Compute a separate mean for each group.
• 'orthogonalcontrasts' — This is valid only when the within-subject model has a single

numeric factor T. Responses are the average, the slope of centered T, and, in general, all
orthogonal contrasts for a polynomial up to T^(p – 1), where p is the number if rows in the within-
subject model.
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• A character vector or string scalar that defines a model specification in the within-subject factors.
You can define the model based on the rules for the terms in modelspec.

For example, if there are three within-subject factors w1, w2, and w3, then you can specify a model for
the within-subject factors as follows.
Example: 'WithinModel','w1+w2+w2*w3'
Data Types: char | string

Output Arguments
rm — Repeated measures model
RepeatedMeasuresModel object

Repeated measures model, returned as a RepeatedMeasuresModel object.

For properties and methods of this object, see RepeatedMeasuresModel.

More About
Model Specification Using Wilkinson Notation

Wilkinson notation describes the factors present in models. It does not describe the multipliers
(coefficients) of those factors.

The following rules specify the responses in modelspec.

Wilkinson Notation Meaning
Y1,Y2,Y3 Specific list of variables
Y1-Y5 All table variables from Y1 through Y5

The following rules specify terms in modelspec.

Wilkinson notation Factors in Standard Notation
1 Constant (intercept) term
X^k, where k is a positive integer X, X2, ..., Xk

X1 + X2 X1, X2
X1*X2 X1, X2, X1*X2
X1:X2 X1*X2 only
-X2 Do not include X2
X1*X2 + X3 X1, X2, X3, X1*X2
X1 + X2 + X3 + X1:X2 X1, X2, X3, X1*X2
X1*X2*X3 - X1:X2:X3 X1, X2, X3, X1*X2, X1*X3, X2*X3
X1*(X2 + X3) X1, X2, X3, X1*X2, X1*X3

Statistics and Machine Learning Toolbox notation always includes a constant term unless you
explicitly remove the term using -1.

 fitrm

35-2579



Version History
Introduced in R2014a

See Also
RepeatedMeasuresModel
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fitrnet
Train neural network regression model

Syntax
Mdl = fitrnet(Tbl,ResponseVarName)
Mdl = fitrnet(Tbl,formula)
Mdl = fitrnet(Tbl,Y)

Mdl = fitrnet(X,Y)

Mdl = fitrnet( ___ ,Name,Value)

Description
Use fitrnet to train a feedforward, fully connected neural network for regression. The first fully
connected layer of the neural network has a connection from the network input (predictor data), and
each subsequent layer has a connection from the previous layer. Each fully connected layer multiplies
the input by a weight matrix and then adds a bias vector. An activation function follows each fully
connected layer, excluding the last. The final fully connected layer produces the network's output,
namely predicted response values. For more information, see “Neural Network Structure” on page
35-2614.

Mdl = fitrnet(Tbl,ResponseVarName) returns a neural network regression model Mdl trained
using the predictors in the table Tbl and the response values in the ResponseVarName table
variable.

Mdl = fitrnet(Tbl,formula) returns a neural network regression model trained using the
sample data in the table Tbl. The input argument formula is an explanatory model of the response
and a subset of the predictor variables in Tbl used to fit Mdl.

Mdl = fitrnet(Tbl,Y) returns a neural network regression model using the predictor variables in
the table Tbl and the response values in vector Y.

Mdl = fitrnet(X,Y) returns a neural network regression model trained using the predictors in
the matrix X and the response values in vector Y.

Mdl = fitrnet( ___ ,Name,Value) specifies options using one or more name-value arguments in
addition to any of the input argument combinations in previous syntaxes. For example, you can adjust
the number of outputs and the activation functions for the fully connected layers by specifying the
LayerSizes and Activations name-value arguments.

Examples

Train Neural Network Regression Model

Train a neural network regression model, and assess the performance of the model on a test set.
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Load the carbig data set, which contains measurements of cars made in the 1970s and early 1980s.
Create a table containing the predictor variables Acceleration, Displacement, and so on, as well
as the response variable MPG.

load carbig
cars = table(Acceleration,Displacement,Horsepower, ...
    Model_Year,Origin,Weight,MPG);

Remove rows of cars where the table has missing values.

cars = rmmissing(cars);

Categorize the cars based on whether they were made in the USA.

cars.Origin = categorical(cellstr(cars.Origin));
cars.Origin = mergecats(cars.Origin,["France","Japan",...
    "Germany","Sweden","Italy","England"],"NotUSA");

Partition the data into training and test sets. Use approximately 80% of the observations to train a
neural network model, and 20% of the observations to test the performance of the trained model on
new data. Use cvpartition to partition the data.

rng("default") % For reproducibility of the data partition
c = cvpartition(height(cars),"Holdout",0.20);
trainingIdx = training(c); % Training set indices
carsTrain = cars(trainingIdx,:);
testIdx = test(c); % Test set indices
carsTest = cars(testIdx,:);

Train a neural network regression model by passing the carsTrain training data to the fitrnet
function. For better results, specify to standardize the predictor data.

Mdl = fitrnet(carsTrain,"MPG","Standardize",true)

Mdl = 
  RegressionNeuralNetwork
           PredictorNames: {1x6 cell}
             ResponseName: 'MPG'
    CategoricalPredictors: 5
        ResponseTransform: 'none'
          NumObservations: 314
               LayerSizes: 10
              Activations: 'relu'
    OutputLayerActivation: 'none'
                   Solver: 'LBFGS'
          ConvergenceInfo: [1x1 struct]
          TrainingHistory: [1000x7 table]

  Properties, Methods

Mdl is a trained RegressionNeuralNetwork model. You can use dot notation to access the
properties of Mdl. For example, you can specify Mdl.TrainingHistory to get more information
about the training history of the neural network model.

Evaluate the performance of the regression model on the test set by computing the test mean
squared error (MSE). Smaller MSE values indicate better performance.
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testMSE = loss(Mdl,carsTest,"MPG")

testMSE = 6.9047

Specify Neural Network Regression Model Architecture

Specify the structure of the neural network regression model, including the size of the fully
connected layers.

Load the carbig data set, which contains measurements of cars made in the 1970s and early 1980s.
Create a matrix X containing the predictor variables Acceleration, Cylinders, and so on. Store
the response variable MPG in the variable Y.

load carbig
X = [Acceleration Cylinders Displacement Weight];
Y = MPG;

Delete rows of X and Y where either array has missing values.

R = rmmissing([X Y]);
X = R(:,1:end-1);
Y = R(:,end);

Partition the data into training data (XTrain and YTrain) and test data (XTest and YTest). Reserve
approximately 20% of the observations for testing, and use the rest of the observations for training.

rng("default") % For reproducibility of the partition
c = cvpartition(length(Y),"Holdout",0.20);
trainingIdx = training(c); % Indices for the training set
XTrain = X(trainingIdx,:);
YTrain = Y(trainingIdx);
testIdx = test(c); % Indices for the test set
XTest = X(testIdx,:);
YTest = Y(testIdx);

Train a neural network regression model. Specify to standardize the predictor data, and to have 30
outputs in the first fully connected layer and 10 outputs in the second fully connected layer. By
default, both layers use a rectified linear unit (ReLU) activation function. You can change the
activation functions for the fully connected layers by using the Activations name-value argument.

Mdl = fitrnet(XTrain,YTrain,"Standardize",true, ...
    "LayerSizes",[30 10])

Mdl = 
  RegressionNeuralNetwork
             ResponseName: 'Y'
    CategoricalPredictors: []
        ResponseTransform: 'none'
          NumObservations: 319
               LayerSizes: [30 10]
              Activations: 'relu'
    OutputLayerActivation: 'none'
                   Solver: 'LBFGS'
          ConvergenceInfo: [1x1 struct]
          TrainingHistory: [1000x7 table]
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  Properties, Methods

Access the weights and biases for the fully connected layers of the trained model by using the
LayerWeights and LayerBiases properties of Mdl. The first two elements of each property
correspond to the values for the first two fully connected layers, and the third element corresponds to
the values for the final fully connected layer for regression. For example, display the weights and
biases for the first fully connected layer.

Mdl.LayerWeights{1}

ans = 30×4

    0.0124    0.0115   -0.0095    0.1173
   -0.4389   -0.9227   -0.5970   -2.2574
    0.7602    0.0472   -2.0497   -0.0335
   -3.1052   -3.0258   -1.2699   -1.7047
    0.6316    1.8326    1.3469    0.5265
   -0.1678    1.7469   -2.0219   -1.1101
    1.0289   -0.1726   -0.3063   -0.5306
    1.9924   -0.0611   -1.4048    0.7963
   -0.8603   -0.8336    0.3769    1.4827
   -0.0033   -2.2616    1.1424    1.5113
      ⋮

Mdl.LayerBiases{1}

ans = 30×1

   -0.4451
   -0.8453
   -0.6520
   -1.2144
    0.3787
   -1.5853
    2.0479
    1.3661
   -1.3556
    0.1510
      ⋮

The final fully connected layer has one output. The number of layer outputs corresponds to the first
dimension of the layer weights and layer biases.

size(Mdl.LayerWeights{end})

ans = 1×2

     1    10

size(Mdl.LayerBiases{end})

ans = 1×2
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     1     1

To estimate the performance of the trained model, compute the test set mean squared error (MSE)
for Mdl. Smaller MSE values indicate better performance.

testMSE = loss(Mdl,XTest,YTest)

testMSE = 17.3486

Compare the predicted test set response values to the true response values. Plot the predicted miles
per gallon (MPG) along the vertical axis and the true MPG along the horizontal axis. Points on the
reference line indicate correct predictions. A good model produces predictions that are scattered
near the line.

testPredictions = predict(Mdl,XTest);
plot(YTest,testPredictions,".")
hold on
plot(YTest,YTest)
hold off
xlabel("True MPG")
ylabel("Predicted MPG")
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Stop Neural Network Training Early Using Validation Data

At each iteration of the training process, compute the validation loss of the neural network. Stop the
training process early if the validation loss reaches a reasonable minimum.

Load the patients data set. Create a table from the data set. Each row corresponds to one patient,
and each column corresponds to a diagnostic variable. Use the Systolic variable as the response
variable, and the rest of the variables as predictors.

load patients
tbl = table(Age,Diastolic,Gender,Height,Smoker,Weight,Systolic);

Separate the data into a training set tblTrain and a validation set tblValidation. The software
reserves approximately 30% of the observations for the validation data set and uses the rest of the
observations for the training data set.

rng("default") % For reproducibility of the partition
c = cvpartition(size(tbl,1),"Holdout",0.30);
trainingIndices = training(c);
validationIndices = test(c);
tblTrain = tbl(trainingIndices,:);
tblValidation = tbl(validationIndices,:);

Train a neural network regression model by using the training set. Specify the Systolic column of
tblTrain as the response variable. Evaluate the model at each iteration by using the validation set.
Specify to display the training information at each iteration by using the Verbose name-value
argument. By default, the training process ends early if the validation loss is greater than or equal to
the minimum validation loss computed so far, six times in a row. To change the number of times the
validation loss is allowed to be greater than or equal to the minimum, specify the
ValidationPatience name-value argument.

Mdl = fitrnet(tblTrain,"Systolic", ...
    "ValidationData",tblValidation, ...
    "Verbose",1);

|==========================================================================================|
| Iteration  | Train Loss | Gradient   | Step       | Iteration  | Validation | Validation |
|            |            |            |            | Time (sec) | Loss       | Checks     |
|==========================================================================================|
|           1|  516.021993| 3220.880047|    0.644473|    0.033502|  568.289202|           0|
|           2|  313.056754|  229.931405|    0.067026|    0.014822|  304.023695|           0|
|           3|  308.461807|  277.166516|    0.011122|    0.005420|  296.935608|           0|
|           4|  262.492770|  844.627934|    0.143022|    0.001468|  240.559640|           0|
|           5|  169.558740| 1131.714363|    0.336463|    0.001313|  152.531663|           0|
|           6|   89.134368|  362.084104|    0.382677|    0.002565|   83.147478|           0|
|           7|   83.309729|  994.830303|    0.199923|    0.001472|   76.634122|           0|
|           8|   70.731524|  327.637362|    0.041366|    0.001488|   66.421750|           0|
|           9|   66.650091|  124.369963|    0.125232|    0.001333|   65.914063|           0|
|          10|   66.404753|   36.699328|    0.016768|    0.001333|   65.357335|           0|
|==========================================================================================|
| Iteration  | Train Loss | Gradient   | Step       | Iteration  | Validation | Validation |
|            |            |            |            | Time (sec) | Loss       | Checks     |
|==========================================================================================|
|          11|   66.357143|   46.712988|    0.009405|    0.005169|   65.306106|           0|
|          12|   66.268225|   54.079264|    0.007953|    0.001894|   65.234391|           0|
|          13|   65.788550|   99.453225|    0.030942|    0.001327|   64.869708|           0|
|          14|   64.821095|  186.344649|    0.048078|    0.001316|   64.191533|           0|
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|          15|   62.353896|  319.273873|    0.107160|    0.001203|   62.618374|           0|
|          16|   57.836593|  447.826470|    0.184985|    0.001345|   60.087065|           0|
|          17|   51.188884|  524.631067|    0.253062|    0.001419|   56.646294|           0|
|          18|   41.755601|  189.072516|    0.318515|    0.001438|   49.046823|           0|
|          19|   37.539854|   78.602559|    0.382284|    0.001438|   44.633562|           0|
|          20|   36.845322|  151.837884|    0.211286|    0.001220|   47.291367|           1|
|==========================================================================================|
| Iteration  | Train Loss | Gradient   | Step       | Iteration  | Validation | Validation |
|            |            |            |            | Time (sec) | Loss       | Checks     |
|==========================================================================================|
|          21|   36.218289|   62.826818|    0.142748|    0.001142|   46.139104|           2|
|          22|   35.776921|   53.606315|    0.215188|    0.001075|   46.170460|           3|
|          23|   35.729085|   24.400342|    0.060096|    0.003807|   45.318023|           4|
|          24|   35.622031|    9.602277|    0.121153|    0.001936|   45.791861|           5|
|          25|   35.573317|   10.735070|    0.126854|    0.001549|   46.062826|           6|
|==========================================================================================|

Create a plot that compares the training mean squared error (MSE) and the validation MSE at each
iteration. By default, fitrnet stores the loss information inside the TrainingHistory property of
the object Mdl. You can access this information by using dot notation.

iteration = Mdl.TrainingHistory.Iteration;
trainLosses = Mdl.TrainingHistory.TrainingLoss;
valLosses = Mdl.TrainingHistory.ValidationLoss;
plot(iteration,trainLosses,iteration,valLosses)
legend(["Training","Validation"])
xlabel("Iteration")
ylabel("Mean Squared Error")
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Check the iteration that corresponds to the minimum validation MSE. The final returned model Mdl is
the model trained at this iteration.

[~,minIdx] = min(valLosses);
iteration(minIdx)

ans = 19

Find Good Regularization Strength for Neural Network Using Cross-Validation

Assess the cross-validation loss of neural network models with different regularization strengths, and
choose the regularization strength corresponding to the best performing model.

Load the carbig data set, which contains measurements of cars made in the 1970s and early 1980s.
Create a table containing the predictor variables Acceleration, Displacement, and so on, as well
as the response variable MPG.

load carbig
cars = table(Acceleration,Displacement,Horsepower, ...
    Model_Year,Origin,Weight,MPG);

Delete rows of cars where the table has missing values.

cars = rmmissing(cars);
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Categorize the cars based on whether they were made in the USA.

cars.Origin = categorical(cellstr(cars.Origin));
cars.Origin = mergecats(cars.Origin,["France","Japan", ...
    "Germany","Sweden","Italy","England"],"NotUSA");

Create a cvpartition object for 5-fold cross-validation. cvp partitions the data into five folds,
where each fold has roughly the same number of observations. Set the random seed to the default
value for reproducibility of the partition.

rng("default")
n = size(cars,1);
cvp = cvpartition(n,"KFold",5);

Compute the cross-validation mean squared error (MSE) for neural network regression models with
different regularization strengths. Try regularization strengths on the order of 1/n, where n is the
number of observations. Specify to standardize the data before training the neural network models.

1/n

ans = 0.0026

lambda = (0:0.5:5)*1e-3;
cvloss = zeros(length(lambda),1);
for i = 1:length(lambda)
    cvMdl = fitrnet(cars,"MPG","Lambda",lambda(i), ...
        "CVPartition",cvp,"Standardize",true);
    cvloss(i) = kfoldLoss(cvMdl);
end

Plot the results. Find the regularization strength corresponding to the lowest cross-validation MSE.

plot(lambda,cvloss)
xlabel("Regularization Strength")
ylabel("Cross-Validation Loss")
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[~,idx] = min(cvloss);
bestLambda = lambda(idx)

bestLambda = 0.0040

Train a neural network regression model using the bestLambda regularization strength.

Mdl = fitrnet(cars,"MPG","Lambda",bestLambda, ...
    "Standardize",true)

Mdl = 
  RegressionNeuralNetwork
           PredictorNames: {1x6 cell}
             ResponseName: 'MPG'
    CategoricalPredictors: 5
        ResponseTransform: 'none'
          NumObservations: 392
               LayerSizes: 10
              Activations: 'relu'
    OutputLayerActivation: 'none'
                   Solver: 'LBFGS'
          ConvergenceInfo: [1x1 struct]
          TrainingHistory: [1000x7 table]

  Properties, Methods
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Minimize Cross-Validation Error in Neural Network

Create a neural network with low error by using the OptimizeHyperparameters argument. This
argument causes fitrnet to minimize cross-validation loss over some problem hyperparameters by
using Bayesian optimization.

Load the carbig data set, which contains measurements of cars made in the 1970s and early 1980s.
Create a table containing the predictor variables Acceleration, Displacement, and so on, as well
as the response variable MPG.

load carbig
cars = table(Acceleration,Displacement,Horsepower, ...
    Model_Year,Origin,Weight,MPG);

Delete rows of cars where the table has missing values.

cars = rmmissing(cars);

Categorize the cars based on whether they were made in the USA.

cars.Origin = categorical(cellstr(cars.Origin));
cars.Origin = mergecats(cars.Origin,["France","Japan",...
    "Germany","Sweden","Italy","England"],"NotUSA");

Partition the data into training and test sets. Use approximately 80% of the observations to train a
neural network model, and 20% of the observations to test the performance of the trained model on
new data. Use cvpartition to partition the data.

rng("default") % For reproducibility of the data partition
c = cvpartition(height(cars),"Holdout",0.20);
trainingIdx = training(c); % Training set indices
carsTrain = cars(trainingIdx,:);
testIdx = test(c); % Test set indices
carsTest = cars(testIdx,:);

Train a regression neural network using the OptimizeHyperparameters argument set to "auto".
For reproducibility, set the AcquisitionFunctionName to "expected-improvement-plus" in a
HyperparameterOptimizationOptions structure. fitrnet performs Bayesian optimization by
default. To use grid search or random search, set the Optimizer field in
HyperparameterOptimizationOptions.

rng("default") % For reproducibility
Mdl = fitrnet(carsTrain,"MPG","OptimizeHyperparameters","auto", ...
    "HyperparameterOptimizationOptions",struct("AcquisitionFunctionName","expected-improvement-plus"))

|============================================================================================================================================|
| Iter | Eval   | Objective:  | Objective   | BestSoFar   | BestSoFar   |  Activations |  Standardize |       Lambda |            LayerSizes |
|      | result | log(1+loss) | runtime     | (observed)  | (estim.)    |              |              |              |                       |
|============================================================================================================================================|
|    1 | Best   |       2.223 |      7.9465 |       2.223 |       2.223 |         relu |         true |        3.841 | [101  47  15]         |
|    2 | Accept |      3.0455 |      6.4993 |       2.223 |      2.2557 |      sigmoid |        false |   7.5401e-07 | [100  17]             |
|    3 | Best   |      2.0961 |      2.4177 |      2.0961 |      2.1112 |         relu |         true |      0.01569 |  15                   |
|    4 | Accept |      2.5142 |      3.7521 |      2.0961 |      2.1127 |         none |         true |   0.00016461 | [  2 145   8]         |
|    5 | Accept |      3.0292 |     0.61682 |      2.0961 |      2.0961 |         relu |         true |   5.4264e-08 |  1                    |
|    6 | Accept |      3.1026 |     0.91408 |      2.0961 |      2.1494 |         relu |         true |       0.1155 | [  4   1]             |
|    7 | Accept |        2.22 |      2.4772 |      2.0961 |      2.0971 |         relu |         true |     0.010391 |  17                   |
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|    8 | Best   |      2.0925 |      2.7919 |      2.0925 |      2.0993 |         relu |         true |     0.046371 |  18                   |
|    9 | Accept |      2.2307 |      1.6333 |      2.0925 |      2.1656 |         relu |         true |      0.97415 |  17                   |
|   10 | Accept |      2.2964 |      2.2352 |      2.0925 |      2.1672 |         relu |         true |   4.2374e-08 |  10                   |
|   11 | Accept |      2.8992 |      2.6264 |      2.0925 |      2.1694 |         relu |         true |   5.1161e-08 |  44                   |
|   12 | Accept |       3.275 |      6.4128 |      2.0925 |      2.1694 |         relu |         true |   3.5229e-06 | [149  16  16]         |
|   13 | Accept |      3.2788 |      8.5362 |      2.0925 |      2.1089 |         relu |         true |   0.00059803 | [104  44   3]         |
|   14 | Accept |      2.0983 |       2.003 |      2.0925 |      2.0967 |         relu |         true |     0.082165 |  11                   |
|   15 | Accept |      6.4083 |     0.13663 |      2.0925 |      2.1519 |         relu |         true |       228.14 | [ 88   1   2]         |
|   16 | Accept |      2.2574 |      8.3444 |      2.0925 |      2.1518 |         relu |         true |       5.1643 | [ 64 133  45]         |
|   17 | Best   |      2.0755 |      18.847 |      2.0755 |      2.0979 |         relu |         true |      0.38848 | [263  79  62]         |
|   18 | Accept |      2.0918 |       13.53 |      2.0755 |      2.0954 |         relu |         true |      0.25108 | [ 63  41 225]         |
|   19 | Accept |      2.5142 |     0.17006 |      2.0755 |      2.0954 |         none |         true |   4.0253e-07 | [  6  14   5]         |
|   20 | Accept |      2.5142 |      3.9872 |      2.0755 |      2.0928 |         none |         true |   1.4175e-06 | [ 49  71  49]         |
|============================================================================================================================================|
| Iter | Eval   | Objective:  | Objective   | BestSoFar   | BestSoFar   |  Activations |  Standardize |       Lambda |            LayerSizes |
|      | result | log(1+loss) | runtime     | (observed)  | (estim.)    |              |              |              |                       |
|============================================================================================================================================|
|   21 | Accept |      2.5141 |      9.7279 |      2.0755 |      2.0919 |         none |         true |   1.6685e-05 | [  1  26 262]         |
|   22 | Accept |      6.4076 |     0.14882 |      2.0755 |      2.0954 |         none |         true |       217.93 | [ 84   5 219]         |
|   23 | Accept |      2.5138 |     0.47751 |      2.0755 |      2.0961 |         none |         true |      0.96622 | [  2  39   4]         |
|   24 | Accept |      2.5142 |     0.87751 |      2.0755 |       2.094 |         none |         true |   9.0804e-07 | [  3 175 248]         |
|   25 | Accept |      2.5142 |      0.5026 |      2.0755 |      2.1354 |         none |         true |   5.0142e-08 | [ 56 191   2]         |
|   26 | Accept |      2.5142 |     0.33674 |      2.0755 |      2.0926 |         none |         true |   4.9375e-08 | [  5  55  24]         |
|   27 | Accept |      2.5133 |      2.6878 |      2.0755 |      2.0913 |         none |         true |      0.67351 | [ 22 290  40]         |
|   28 | Accept |      6.4103 |     0.25932 |      2.0755 |      2.1512 |         relu |         true |       261.52 | [  1  49 138]         |
|   29 | Accept |      2.5187 |      1.8487 |      2.0755 |      2.1511 |         none |         true |   3.6616e-07 | [  1   2   5]         |
|   30 | Accept |      3.3174 |      4.1796 |      2.0755 |      2.1509 |      sigmoid |        false |      0.38429 | [  2 109]             |
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__________________________________________________________
Optimization completed.
MaxObjectiveEvaluations of 30 reached.
Total function evaluations: 30
Total elapsed time: 135.0068 seconds
Total objective function evaluation time: 116.9241

Best observed feasible point:
    Activations    Standardize    Lambda        LayerSizes    
    ___________    ___________    _______    _________________

       relu           true        0.38848    263     79     62

Observed objective function value = 2.0755
Estimated objective function value = 2.0714
Function evaluation time = 18.8465

Best estimated feasible point (according to models):
    Activations    Standardize    Lambda     LayerSizes
    ___________    ___________    _______    __________

       relu           true        0.01569        15    

Estimated objective function value = 2.1509
Estimated function evaluation time = 2.2528

Mdl = 
  RegressionNeuralNetwork
                       PredictorNames: {'Acceleration'  'Displacement'  'Horsepower'  'Model_Year'  'Origin'  'Weight'}
                         ResponseName: 'MPG'
                CategoricalPredictors: 5
                    ResponseTransform: 'none'
                      NumObservations: 314
    HyperparameterOptimizationResults: [1×1 BayesianOptimization]
                           LayerSizes: 15
                          Activations: 'relu'
                OutputLayerActivation: 'none'
                               Solver: 'LBFGS'
                      ConvergenceInfo: [1×1 struct]
                      TrainingHistory: [1000×7 table]

  Properties, Methods

Find the mean squared error of the resulting model on the test data set.

testMSE = loss(Mdl,carsTest,"MPG")

testMSE = 8.2362

Custom Hyperparameter Optimization in Neural Network

Create a neural network with low error by using the OptimizeHyperparameters argument. This
argument causes fitrnet to search for hyperparameters that give a model with low cross-validation
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error. Use the hyperparameters function to specify larger-than-default values for the number of
layers used and the layer size range.

Load the carbig data set, which contains measurements of cars made in the 1970s and early 1980s.
Create a table containing the predictor variables Acceleration, Displacement, and so on, as well
as the response variable MPG.

load carbig
cars = table(Acceleration,Displacement,Horsepower, ...
    Model_Year,Origin,Weight,MPG);

Delete rows of cars where the table has missing values.

cars = rmmissing(cars);

Categorize the cars based on whether they were made in the USA.

cars.Origin = categorical(cellstr(cars.Origin));
cars.Origin = mergecats(cars.Origin,["France","Japan",...
    "Germany","Sweden","Italy","England"],"NotUSA");

Partition the data into training and test sets. Use approximately 80% of the observations to train a
neural network model, and 20% of the observations to test the performance of the trained model on
new data. Use cvpartition to partition the data.

rng("default") % For reproducibility of the data partition
c = cvpartition(height(cars),"Holdout",0.20);
trainingIdx = training(c); % Training set indices
carsTrain = cars(trainingIdx,:);
testIdx = test(c); % Test set indices
carsTest = cars(testIdx,:);

List the hyperparameters available for this problem of fitting the MPG response.

params = hyperparameters("fitrnet",carsTrain,"MPG");
for ii = 1:length(params)
    disp(ii);disp(params(ii))
end

     1

  optimizableVariable with properties:

         Name: 'NumLayers'
        Range: [1 3]
         Type: 'integer'
    Transform: 'none'
     Optimize: 1

     2

  optimizableVariable with properties:

         Name: 'Activations'
        Range: {'relu'  'tanh'  'sigmoid'  'none'}
         Type: 'categorical'
    Transform: 'none'
     Optimize: 1
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     3

  optimizableVariable with properties:

         Name: 'Standardize'
        Range: {'true'  'false'}
         Type: 'categorical'
    Transform: 'none'
     Optimize: 1

     4

  optimizableVariable with properties:

         Name: 'Lambda'
        Range: [3.1847e-08 318.4713]
         Type: 'real'
    Transform: 'log'
     Optimize: 1

     5

  optimizableVariable with properties:

         Name: 'LayerWeightsInitializer'
        Range: {'glorot'  'he'}
         Type: 'categorical'
    Transform: 'none'
     Optimize: 0

     6

  optimizableVariable with properties:

         Name: 'LayerBiasesInitializer'
        Range: {'zeros'  'ones'}
         Type: 'categorical'
    Transform: 'none'
     Optimize: 0

     7

  optimizableVariable with properties:

         Name: 'Layer_1_Size'
        Range: [1 300]
         Type: 'integer'
    Transform: 'log'
     Optimize: 1

     8

  optimizableVariable with properties:

         Name: 'Layer_2_Size'
        Range: [1 300]
         Type: 'integer'
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    Transform: 'log'
     Optimize: 1

     9

  optimizableVariable with properties:

         Name: 'Layer_3_Size'
        Range: [1 300]
         Type: 'integer'
    Transform: 'log'
     Optimize: 1

    10

  optimizableVariable with properties:

         Name: 'Layer_4_Size'
        Range: [1 300]
         Type: 'integer'
    Transform: 'log'
     Optimize: 0

    11

  optimizableVariable with properties:

         Name: 'Layer_5_Size'
        Range: [1 300]
         Type: 'integer'
    Transform: 'log'
     Optimize: 0

To try more layers than the default of 1 through 3, set the range of NumLayers (optimizable variable
1) to its maximum allowable size, [1 5]. Also, set Layer_4_Size and Layer_5_Size (optimizable
variables 10 and 11, respectively) to be optimized.

params(1).Range = [1 5];
params(10).Optimize = true;
params(11).Optimize = true;

Set the range of all layer sizes (optimizable variables 7 through 11) to [1 400] instead of the default
[1 300].

for ii = 7:11
    params(ii).Range = [1 400];
end

Train a regression neural network using the OptimizeHyperparameters argument set to params.
For reproducibility, set the AcquisitionFunctionName to "expected-improvement-plus" in a
HyperparameterOptimizationOptions structure. To attempt to get a better solution, set the
number of optimization steps to 60 instead of the default 30.

rng("default") % For reproducibility
Mdl = fitrnet(carsTrain,"MPG","OptimizeHyperparameters",params, ...
    "HyperparameterOptimizationOptions", ...
    struct("AcquisitionFunctionName","expected-improvement-plus", ...
    "MaxObjectiveEvaluations",60))
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|============================================================================================================================================|
| Iter | Eval   | Objective:  | Objective   | BestSoFar   | BestSoFar   |  Activations |  Standardize |       Lambda |            LayerSizes |
|      | result | log(1+loss) | runtime     | (observed)  | (estim.)    |              |              |              |                       |
|============================================================================================================================================|
|    1 | Best   |      4.9294 |     0.37573 |      4.9294 |      4.9294 |      sigmoid |        false |       70.242 | [  3  22 223]         |
|    2 | Best   |      2.2088 |       3.236 |      2.2088 |       2.317 |         relu |         true |     0.089397 | [  2  95]             |
|    3 | Accept |      2.8283 |      24.682 |      2.2088 |       2.293 |      sigmoid |        false |   2.5899e-07 | [303  60  59]         |
|    4 | Accept |      3.5251 |      3.0859 |      2.2088 |      2.2879 |         relu |        false |   5.1748e-05 | [102   5  15   1]     |
|    5 | Accept |      2.2299 |      2.5145 |      2.2088 |       2.215 |         relu |         true |     0.095678 | [  2  68]             |
|    6 | Accept |      2.2385 |      3.1034 |      2.2088 |      2.2141 |         relu |         true |    0.0011241 | [  2  70]             |
|    7 | Best   |      2.2064 |      5.1877 |      2.2064 |      2.2061 |         relu |         true |    0.0024416 | [  2 142   3]         |
|    8 | Best   |      2.1881 |      12.327 |      2.1881 |      2.1866 |         relu |         true |      0.12839 | [  2 391  13   9   5] |
|    9 | Accept |      2.5199 |       35.72 |      2.1881 |      2.1864 |      sigmoid |        false |     0.075565 | [359  37 180 237]     |
|   10 | Accept |      2.2575 |      1.9543 |      2.1881 |      2.1878 |         relu |         true |       4.6653 | [  3 379  15]         |
|   11 | Accept |       2.318 |      24.503 |      2.1881 |      2.1878 |         relu |         true |       8.2075 | [395 319   2]         |
|   12 | Best   |      2.1367 |      5.7994 |      2.1367 |      2.1367 |         tanh |         true |      0.26306 | [  7 387]             |
|   13 | Best   |      2.1278 |      32.184 |      2.1278 |      2.1278 |         tanh |         true |      0.11523 | [188 384]             |
|   14 | Accept |      3.6718 |       2.192 |      2.1278 |       2.128 |         tanh |         true |   6.9356e-08 | [ 36   1   8   7   2] |
|   15 | Accept |      3.8085 |      3.8516 |      2.1278 |       2.128 |         relu |         true |   3.7844e-08 | [  6  36 125   9   3] |
|   16 | Accept |      3.9831 |     0.70135 |      2.1278 |      2.1284 |         tanh |         true |   4.4955e-08 | [  1   1   2]         |
|   17 | Accept |      2.4223 |      7.5687 |      2.1278 |      2.1283 |         tanh |         true |      0.32753 | [  1 304   1  14]     |
|   18 | Accept |      2.5724 |      46.844 |      2.1278 |      2.1283 |      sigmoid |        false |    1.279e-05 | [163  18 153 397  54] |
|   19 | Accept |      2.4896 |     0.44247 |      2.1278 |      2.1283 |         tanh |         true |      0.17448 |  4                    |
|   20 | Accept |      6.3945 |     0.47977 |      2.1278 |      2.1301 |         relu |         true |       120.84 | [ 31 290   2 353   6] |
|============================================================================================================================================|
| Iter | Eval   | Objective:  | Objective   | BestSoFar   | BestSoFar   |  Activations |  Standardize |       Lambda |            LayerSizes |
|      | result | log(1+loss) | runtime     | (observed)  | (estim.)    |              |              |              |                       |
|============================================================================================================================================|
|   21 | Accept |      2.3364 |      8.1685 |      2.1278 |      2.1299 |         tanh |         true |   7.6591e-07 | [  2 106  18  14]     |
|   22 | Accept |      2.6024 |      0.6812 |      2.1278 |      2.1298 |         relu |         true |       25.566 | [ 21   4  43   9]     |
|   23 | Accept |      2.5118 |      11.301 |      2.1278 |      2.1295 |         relu |         true |     0.035722 | [ 23   3 252   9 139] |
|   24 | Accept |      3.1632 |      16.476 |      2.1278 |      2.1294 |         relu |         true |   3.5669e-08 | [ 51 384   3]         |
|   25 | Accept |      3.7306 |      9.7752 |      2.1278 |      2.1294 |         tanh |        false |   0.00033652 | [  2 342  22  14]     |
|   26 | Accept |      2.5837 |       103.6 |      2.1278 |      2.1292 |         tanh |         true |   3.4317e-06 | [321 398   1  48]     |
|   27 | Accept |      3.0652 |      11.356 |      2.1278 |      2.1288 |         tanh |         true |       3.3367 | [397   2   4  48]     |
|   28 | Accept |       2.164 |      7.5118 |      2.1278 |      2.1287 |         relu |         true |       2.1131 | [  6 377  41   3]     |
|   29 | Accept |      2.9281 |      24.125 |      2.1278 |      2.1295 |         tanh |         true |    0.0012995 | [ 49 378   2   5  34] |
|   30 | Accept |      3.0625 |      41.892 |      2.1278 |      2.1294 |      sigmoid |        false |   1.1774e-07 | [383  98  11  62]     |
|   31 | Accept |      2.2319 |      16.882 |      2.1278 |      2.1296 |         tanh |         true |   4.8403e-05 | [  2 370   2  21]     |
|   32 | Accept |      3.1019 |       18.47 |      2.1278 |      2.1289 |         relu |         true |    0.0078827 | [ 45 236  43   2  32] |
|   33 | Accept |      2.3527 |      28.175 |      2.1278 |      2.1289 |         tanh |         true |      0.13475 | [ 78 398  33   3]     |
|   34 | Accept |      5.0888 |     0.67564 |      2.1278 |      2.1286 |      sigmoid |        false |       68.173 | [  2   2 241 277  86] |
|   35 | Accept |      4.1318 |     0.24724 |      2.1278 |      2.1278 |      sigmoid |        false |   2.0176e-05 | [  4 322  24 389]     |
|   36 | Accept |      6.4115 |     0.16916 |      2.1278 |       2.128 |         tanh |         true |       287.01 | [ 37  96]             |
|   37 | Accept |      2.3624 |      5.6031 |      2.1278 |      2.1281 |         relu |         true |     0.011705 | [  5   4  64  22   3] |
|   38 | Accept |      2.8284 |      33.494 |      2.1278 |      2.1281 |         tanh |         true |   0.00087091 | [181 372]             |
|   39 | Accept |      2.6526 |       17.28 |      2.1278 |      2.1282 |         tanh |         true |    8.183e-06 | [ 65 166   2   5]     |
|   40 | Accept |      2.1757 |      15.176 |      2.1278 |      2.1283 |         relu |         true |       0.1285 | [  5 317  19 103   2] |
|============================================================================================================================================|
| Iter | Eval   | Objective:  | Objective   | BestSoFar   | BestSoFar   |  Activations |  Standardize |       Lambda |            LayerSizes |
|      | result | log(1+loss) | runtime     | (observed)  | (estim.)    |              |              |              |                       |
|============================================================================================================================================|
|   41 | Accept |      2.8841 |      153.56 |      2.1278 |      2.1282 |         tanh |         true |   6.6894e-05 | [307 397 133 371   5] |
|   42 | Accept |      2.3161 |      47.177 |      2.1278 |      2.1282 |         tanh |         true |     0.087382 | [207 371  79   5   7] |
|   43 | Accept |      4.1315 |     0.47072 |      2.1278 |      2.1282 |      sigmoid |        false |   3.6353e-07 | [  7   3   2  29  41] |
|   44 | Accept |      3.7069 |      17.063 |      2.1278 |       2.128 |      sigmoid |        false |   0.00026719 | [  3 139   5 166 130] |
|   45 | Accept |       2.287 |      1.2637 |      2.1278 |      2.1283 |         relu |         true |       4.0693 | [ 90   5]             |
|   46 | Accept |      3.7154 |      11.965 |      2.1278 |      2.1283 |         relu |         true |   2.5591e-05 | [ 16 325 126   2]     |
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|   47 | Accept |      2.1667 |      2.2913 |      2.1278 |      2.1283 |         relu |         true |     0.011687 |  13                   |
|   48 | Accept |      2.1653 |      31.795 |      2.1278 |      2.1283 |         tanh |         true |      0.24716 | [ 40 319 133  24  58] |
|   49 | Accept |      2.6663 |       38.88 |      2.1278 |      2.1283 |         tanh |         true |     0.064217 | [191 323  10  61 235] |
|   50 | Accept |      2.6362 |      117.99 |      2.1278 |      2.1283 |         tanh |         true |     0.049467 | [236 390 170  44  34] |
|   51 | Accept |      2.4353 |      31.025 |      2.1278 |      2.1283 |         tanh |         true |       2.6302 | [  6 367  24 319 164] |
|   52 | Accept |      2.4374 |      97.848 |      2.1278 |      2.1283 |         tanh |         true |      0.57638 | [ 12 383 327   4  16] |
|   53 | Accept |      3.2495 |      26.383 |      2.1278 |      2.1283 |         relu |         true |     0.021542 | [195 390   3 300   1] |
|   54 | Accept |      2.2173 |       1.597 |      2.1278 |      2.1283 |         relu |         true |    0.0024904 |  3                    |
|   55 | Best   |      2.0862 |      14.871 |      2.0862 |      2.0862 |         relu |         true |      0.44677 | [ 50 299   3]         |
|   56 | Accept |       2.225 |      15.368 |      2.0862 |      2.0866 |         tanh |         true |       0.2768 | [391  26]             |
|   57 | Best   |      2.0835 |      33.089 |      2.0835 |      2.0839 |         relu |         true |      0.34249 | [139  75 354 148]     |
|   58 | Best   |      2.0617 |      9.1899 |      2.0617 |      2.0625 |         relu |         true |      0.30028 | [ 32 156   7  21]     |
|   59 | Accept |      3.3891 |      22.179 |      2.0617 |      2.0618 |         relu |         true |     0.018025 | [143 122 339   1   3] |
|   60 | Accept |      2.4109 |      47.063 |      2.0617 |      2.0617 |         tanh |         true |   3.4447e-06 | [  1 334 262  96  14] |

__________________________________________________________
Optimization completed.
MaxObjectiveEvaluations of 60 reached.
Total function evaluations: 60
Total elapsed time: 1350.397 seconds
Total objective function evaluation time: 1308.8923

Best observed feasible point:
    Activations    Standardize    Lambda           LayerSizes       
    ___________    ___________    _______    _______________________

       relu           true        0.30028    32    156      7     21
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Observed objective function value = 2.0617
Estimated objective function value = 2.0617
Function evaluation time = 9.1899

Best estimated feasible point (according to models):
    Activations    Standardize    Lambda           LayerSizes       
    ___________    ___________    _______    _______________________

       relu           true        0.30028    32    156      7     21

Estimated objective function value = 2.0617
Estimated function evaluation time = 10.7649

Mdl = 
  RegressionNeuralNetwork
                       PredictorNames: {'Acceleration'  'Displacement'  'Horsepower'  'Model_Year'  'Origin'  'Weight'}
                         ResponseName: 'MPG'
                CategoricalPredictors: 5
                    ResponseTransform: 'none'
                      NumObservations: 314
    HyperparameterOptimizationResults: [1×1 BayesianOptimization]
                           LayerSizes: [32 156 7 21]
                          Activations: 'relu'
                OutputLayerActivation: 'none'
                               Solver: 'LBFGS'
                      ConvergenceInfo: [1×1 struct]
                      TrainingHistory: [1000×7 table]

  Properties, Methods

Find the mean squared error of the resulting model on the test data set.

testMSE = loss(Mdl,carsTest,"MPG")

testMSE = 7.0740

Input Arguments
Tbl — Sample data
table

Sample data used to train the model, specified as a table. Each row of Tbl corresponds to one
observation, and each column corresponds to one predictor variable. Optionally, Tbl can contain one
additional column for the response variable. Multicolumn variables and cell arrays other than cell
arrays of character vectors are not allowed.

• If Tbl contains the response variable, and you want to use all remaining variables in Tbl as
predictors, then specify the response variable by using ResponseVarName.

• If Tbl contains the response variable, and you want to use only a subset of the remaining
variables in Tbl as predictors, then specify a formula by using formula.

• If Tbl does not contain the response variable, then specify a response variable by using Y. The
length of the response variable and the number of rows in Tbl must be equal.
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ResponseVarName — Response variable name
name of variable in Tbl

Response variable name, specified as the name of a variable in Tbl. The response variable must be a
numeric vector.

You must specify ResponseVarName as a character vector or string scalar. For example, if Tbl stores
the response variable Y as Tbl.Y, then specify it as 'Y'. Otherwise, the software treats all columns
of Tbl, including Y, as predictors when training the model.
Data Types: char | string

formula — Explanatory model of response variable and subset of predictor variables
character vector | string scalar

Explanatory model of the response variable and a subset of the predictor variables, specified as a
character vector or string scalar in the form "Y~x1+x2+x3". In this form, Y represents the response
variable, and x1, x2, and x3 represent the predictor variables.

To specify a subset of variables in Tbl as predictors for training the model, use a formula. If you
specify a formula, then the software does not use any variables in Tbl that do not appear in
formula.

The variable names in the formula must be both variable names in Tbl
(Tbl.Properties.VariableNames) and valid MATLAB identifiers. You can verify the variable
names in Tbl by using the isvarname function. If the variable names are not valid, then you can
convert them by using the matlab.lang.makeValidName function.
Data Types: char | string

Y — Response data
numeric vector

Response data, specified as a numeric vector. The length of Y must be equal to the number of
observations in X or Tbl.
Data Types: single | double

X — Predictor data
numeric matrix

Predictor data used to train the model, specified as a numeric matrix.

By default, the software treats each row of X as one observation, and each column as one predictor.

The length of Y and the number of observations in X must be equal.

To specify the names of the predictors in the order of their appearance in X, use the
PredictorNames name-value argument.

Note If you orient your predictor matrix so that observations correspond to columns and specify
'ObservationsIn','columns', then you might experience a significant reduction in computation
time.

Data Types: single | double
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Note The software treats NaN, empty character vector (''), empty string (""), <missing>, and
<undefined> elements as missing values, and removes observations with any of these
characteristics:

• Missing value in the response (for example, Y or ValidationData{2})
• At least one missing value in a predictor observation (for example, row in X or

ValidationData{1})
• NaN value or 0 weight (for example, value in Weights or ValidationData{3})

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: fitrnet(X,Y,'LayerSizes',[10 10],'Activations',["relu","tanh"]) specifies
to create a neural network with two fully connected layers, each with 10 outputs. The first layer uses
a rectified linear unit (ReLU) activation function, and the second uses a hyperbolic tangent activation
function.

Neural Network Options

LayerSizes — Sizes of fully connected layers
10 (default) | positive integer vector

Sizes of the fully connected layers in the neural network model, specified as a positive integer vector.
The ith element of LayerSizes is the number of outputs in the ith fully connected layer of the neural
network model.

LayerSizes does not include the size of the final fully connected layer. For more information, see
“Neural Network Structure” on page 35-2614.
Example: 'LayerSizes',[100 25 10]

Activations — Activation functions for fully connected layers
'relu' (default) | 'tanh' | 'sigmoid' | 'none' | string array | cell array of character vectors

Activation functions for the fully connected layers of the neural network model, specified as a
character vector, string scalar, string array, or cell array of character vectors with values from this
table.

Value Description
'relu' Rectified linear unit (ReLU) function — Performs

a threshold operation on each element of the
input, where any value less than zero is set to
zero, that is,

f x =
x, x ≥ 0
0, x < 0
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Value Description
'tanh' Hyperbolic tangent (tanh) function — Applies the

tanh function to each input element
'sigmoid' Sigmoid function — Performs the following

operation on each input element:

f (x) = 1
1 + e−x

'none' Identity function — Returns each input element
without performing any transformation, that is,
f(x) = x

• If you specify one activation function only, then Activations is the activation function for every
fully connected layer of the neural network model, excluding the final fully connected layer (see
“Neural Network Structure” on page 35-2614).

• If you specify an array of activation functions, then the ith element of Activations is the
activation function for the ith layer of the neural network model.

Example: 'Activations','sigmoid'

LayerWeightsInitializer — Function to initialize fully connected layer weights
'glorot' (default) | 'he'

Function to initialize the fully connected layer weights, specified as 'glorot' or 'he'.

Value Description
'glorot' Initialize the weights with the Glorot initializer

[1] (also known as the Xavier initializer). For each
layer, the Glorot initializer independently samples
from a uniform distribution with zero mean and
variable 2/(I+O), where I is the input size and O
is the output size for the layer.

'he' Initialize the weights with the He initializer [2].
For each layer, the He initializer samples from a
normal distribution with zero mean and variance
2/I, where I is the input size for the layer.

Example: 'LayerWeightsInitializer','he'

LayerBiasesInitializer — Type of initial fully connected layer biases
'zeros' (default) | 'ones'

Type of initial fully connected layer biases, specified as 'zeros' or 'ones'.

• If you specify the value 'zeros', then each fully connected layer has an initial bias of 0.
• If you specify the value 'ones', then each fully connected layer has an initial bias of 1.

Example: 'LayerBiasesInitializer','ones'
Data Types: char | string
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ObservationsIn — Predictor data observation dimension
'rows' (default) | 'columns'

Predictor data observation dimension, specified as 'rows' or 'columns'.

Note If you orient your predictor matrix so that observations correspond to columns and specify
'ObservationsIn','columns', then you might experience a significant reduction in computation
time. You cannot specify 'ObservationsIn','columns' for predictor data in a table.

Example: 'ObservationsIn','columns'
Data Types: char | string

Lambda — Regularization term strength
0 (default) | nonnegative scalar

Regularization term strength, specified as a nonnegative scalar. The software composes the objective
function for minimization from the mean squared error (MSE) loss function and the ridge (L2) penalty
term.
Example: 'Lambda',1e-4
Data Types: single | double

Standardize — Flag to standardize predictor data
false or 0 (default) | true or 1

Flag to standardize the predictor data, specified as a numeric or logical 0 (false) or 1 (true). If you
set Standardize to true, then the software centers and scales each numeric predictor variable by
the corresponding column mean and standard deviation. The software does not standardize the
categorical predictors.
Example: 'Standardize',true
Data Types: single | double | logical

Convergence Control Options

Verbose — Verbosity level
0 (default) | 1

Verbosity level, specified as 0 or 1. The 'Verbose' name-value argument controls the amount of
diagnostic information that fitrnet displays at the command line.

Value Description
0 fitrnet does not display diagnostic information.
1 fitrnet periodically displays diagnostic

information.

By default, StoreHistory is set to true and fitrnet stores the diagnostic information inside of
Mdl. Use Mdl.TrainingHistory to access the diagnostic information.
Example: 'Verbose',1
Data Types: single | double
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VerboseFrequency — Frequency of verbose printing
1 (default) | positive integer scalar

Frequency of verbose printing, which is the number of iterations between printing to the command
window, specified as a positive integer scalar. A value of 1 indicates to print diagnostic information at
every iteration.

Note To use this name-value argument, set Verbose to 1.

Example: 'VerboseFrequency',5
Data Types: single | double

StoreHistory — Flag to store training history
true or 1 (default) | false or 0

Flag to store the training history, specified as a numeric or logical 0 (false) or 1 (true). If
StoreHistory is set to true, then the software stores diagnostic information inside of Mdl, which
you can access by using Mdl.TrainingHistory.
Example: 'StoreHistory',false
Data Types: single | double | logical

InitialStepSize — Initial step size
[] (default) | positive scalar | 'auto'

Initial step size, specified as a positive scalar or 'auto'. By default, fitrnet does not use the initial
step size to determine the initial Hessian approximation used in training the model (see “Training
Solver” on page 35-2615). However, if you specify an initial step size s0 ∞, then the initial inverse-

Hessian approximation is 
s0 ∞
∇ℒ0 ∞

I. ∇ℒ0 is the initial gradient vector, and I is the identity matrix.

To have fitrnet determine an initial step size automatically, specify the value as 'auto' . In this
case, the function determines the initial step size by using s0 ∞ = 0.5 η0 ∞ + 0.1. s0 is the initial step
vector, and η0 is the vector of unconstrained initial weights and biases.

Example: 'InitialStepSize','auto'
Data Types: single | double | char | string

IterationLimit — Maximum number of training iterations
1e3 (default) | positive integer scalar

Maximum number of training iterations, specified as a positive integer scalar.

The software returns a trained model regardless of whether the training routine successfully
converges. Mdl.ConvergenceInfo contains convergence information.
Example: 'IterationLimit',1e8
Data Types: single | double

GradientTolerance — Relative gradient tolerance
1e-6 (default) | nonnegative scalar
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Relative gradient tolerance, specified as a nonnegative scalar.

Let ℒ t be the loss function at training iteration t, ∇ℒ t be the gradient of the loss function with respect
to the weights and biases at iteration t, and ∇ℒ0 be the gradient of the loss function at an initial
point. If max ∇ℒ t ≤ a ⋅ GradientTolerance, where a = max 1, min ℒ t , max ∇ℒ0 , then the training
process terminates.
Example: 'GradientTolerance',1e-5
Data Types: single | double

LossTolerance — Loss tolerance
1e-6 (default) | nonnegative scalar

Loss tolerance, specified as a nonnegative scalar.

If the function loss at some iteration is smaller than LossTolerance, then the training process
terminates.
Example: 'LossTolerance',1e-8
Data Types: single | double

StepTolerance — Step size tolerance
1e-6 (default) | nonnegative scalar

Step size tolerance, specified as a nonnegative scalar.

If the step size at some iteration is smaller than StepTolerance, then the training process
terminates.
Example: 'StepTolerance',1e-4
Data Types: single | double

ValidationData — Validation data for training convergence detection
cell array | table

Validation data for training convergence detection, specified as a cell array or table.

During the training process, the software periodically estimates the validation loss by using
ValidationData. If the validation loss increases more than ValidationPatience times in a row,
then the software terminates the training.

You can specify ValidationData as a table if you use a table Tbl of predictor data that contains the
response variable. In this case, ValidationData must contain the same predictors and response
contained in Tbl. The software does not apply weights to observations, even if Tbl contains a vector
of weights. To specify weights, you must specify ValidationData as a cell array.

If you specify ValidationData as a cell array, then it must have the following format:

• ValidationData{1} must have the same data type and orientation as the predictor data. That
is, if you use a predictor matrix X, then ValidationData{1} must be an m-by-p or p-by-m matrix
of predictor data that has the same orientation as X. The predictor variables in the training data X
and ValidationData{1} must correspond. Similarly, if you use a predictor table Tbl of
predictor data, then ValidationData{1} must be a table containing the same predictor
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variables contained in Tbl. The number of observations in ValidationData{1} and the
predictor data can vary.

• ValidationData{2} must match the data type and format of the response variable, either Y or
ResponseVarName. If ValidationData{2} is an array of responses, then it must have the same
number of elements as the number of observations in ValidationData{1}. If
ValidationData{1} is a table, then ValidationData{2} can be the name of the response
variable in the table. If you want to use the same ResponseVarName or formula, you can specify
ValidationData{2} as [].

• Optionally, you can specify ValidationData{3} as an m-dimensional numeric vector of
observation weights or the name of a variable in the table ValidationData{1} that contains
observation weights. The software normalizes the weights with the validation data so that they
sum to 1.

If you specify ValidationData and want to display the validation loss at the command line, set
Verbose to 1.

ValidationFrequency — Number of iterations between validation evaluations
1 (default) | positive integer scalar

Number of iterations between validation evaluations, specified as a positive integer scalar. A value of
1 indicates to evaluate validation metrics at every iteration.

Note To use this name-value argument, you must specify ValidationData.

Example: 'ValidationFrequency',5
Data Types: single | double

ValidationPatience — Stopping condition for validation evaluations
6 (default) | nonnegative integer scalar

Stopping condition for validation evaluations, specified as a nonnegative integer scalar. Training
stops if the validation loss is greater than or equal to the minimum validation loss computed so far,
ValidationPatience times in a row. You can check the Mdl.TrainingHistory table to see the
running total of times that the validation loss is greater than or equal to the minimum (Validation
Checks).
Example: 'ValidationPatience',10
Data Types: single | double

Other Regression Options

CategoricalPredictors — Categorical predictors list
vector of positive integers | logical vector | character matrix | string array | cell array of character
vectors | 'all'

Categorical predictors list, specified as one of the values in this table. The descriptions assume that
the predictor data has observations in rows and predictors in columns.
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Value Description
Vector of positive
integers

Each entry in the vector is an index value indicating that the corresponding
predictor is categorical. The index values are between 1 and p, where p is
the number of predictors used to train the model.

If fitrnet uses a subset of input variables as predictors, then the function
indexes the predictors using only the subset. The
CategoricalPredictors values do not count the response variable,
observation weights variable, or any other variables that the function does
not use.

Logical vector A true entry means that the corresponding predictor is categorical. The
length of the vector is p.

Character matrix Each row of the matrix is the name of a predictor variable. The names must
match the entries in PredictorNames. Pad the names with extra blanks
so each row of the character matrix has the same length.

String array or cell
array of character
vectors

Each element in the array is the name of a predictor variable. The names
must match the entries in PredictorNames.

"all" All predictors are categorical.

By default, if the predictor data is in a table (Tbl), fitrnet assumes that a variable is categorical if
it is a logical vector, categorical vector, character array, string array, or cell array of character
vectors. If the predictor data is a matrix (X), fitrnet assumes that all predictors are continuous. To
identify any other predictors as categorical predictors, specify them by using the
CategoricalPredictors name-value argument.

For the identified categorical predictors, fitrnet creates dummy variables using two different
schemes, depending on whether a categorical variable is unordered or ordered. For an unordered
categorical variable, fitrnet creates one dummy variable for each level of the categorical variable.
For an ordered categorical variable, fitrnet creates one less dummy variable than the number of
categories. For details, see “Automatic Creation of Dummy Variables” on page 2-50.
Example: 'CategoricalPredictors','all'
Data Types: single | double | logical | char | string | cell

PredictorNames — Predictor variable names
string array of unique names | cell array of unique character vectors

Predictor variable names, specified as a string array of unique names or cell array of unique
character vectors. The functionality of 'PredictorNames' depends on the way you supply the
training data.

• If you supply X and Y, then you can use 'PredictorNames' to assign names to the predictor
variables in X.

• The order of the names in PredictorNames must correspond to the predictor order in X.
Assuming that X has the default orientation, with observations in rows and predictors in
columns, PredictorNames{1} is the name of X(:,1), PredictorNames{2} is the name of
X(:,2), and so on. Also, size(X,2) and numel(PredictorNames) must be equal.

• By default, PredictorNames is {'x1','x2',...}.
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• If you supply Tbl, then you can use 'PredictorNames' to choose which predictor variables to
use in training. That is, fitrnet uses only the predictor variables in PredictorNames and the
response variable during training.

• PredictorNames must be a subset of Tbl.Properties.VariableNames and cannot include
the name of the response variable.

• By default, PredictorNames contains the names of all predictor variables.
• A good practice is to specify the predictors for training using either 'PredictorNames' or

formula, but not both.

Example: 'PredictorNames',
{'SepalLength','SepalWidth','PetalLength','PetalWidth'}

Data Types: string | cell

ResponseName — Response variable name
"Y" (default) | character vector | string scalar

Response variable name, specified as a character vector or string scalar.

• If you supply Y, then you can use ResponseName to specify a name for the response variable.
• If you supply ResponseVarName or formula, then you cannot use ResponseName.

Example: "ResponseName","response"
Data Types: char | string

Weights — Observation weights
nonnegative numeric vector | name of variable in Tbl

Observation weights, specified as a nonnegative numeric vector or the name of a variable in Tbl. The
software weights each observation in X or Tbl with the corresponding value in Weights. The length
of Weights must equal the number of observations in X or Tbl.

If you specify the input data as a table Tbl, then Weights can be the name of a variable in Tbl that
contains a numeric vector. In this case, you must specify Weights as a character vector or string
scalar. For example, if weights vector W is stored as Tbl.W, then specify it as 'W'. Otherwise, the
software treats all columns of Tbl, including W, as predictors when training the model.

By default, Weights is ones(n,1), where n is the number of observations in X or Tbl.

fitrnet normalizes the weights to sum to 1.
Data Types: single | double | char | string

Note You cannot use any cross-validation name-value argument together with the
'OptimizeHyperparameters' name-value argument. You can modify the cross-validation for
'OptimizeHyperparameters' only by using the 'HyperparameterOptimizationOptions'
name-value argument.

Cross-Validation Options

CrossVal — Flag to train cross-validated model
'off' (default) | 'on'
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Flag to train a cross-validated model, specified as 'on' or 'off'.

If you specify 'on', then the software trains a cross-validated model with 10 folds.

You can override this cross-validation setting using the CVPartition, Holdout, KFold, or
Leaveout name-value argument. You can use only one cross-validation name-value argument at a
time to create a cross-validated model.

Alternatively, cross-validate later by passing Mdl to crossval.
Example: 'Crossval','on'
Data Types: char | string

CVPartition — Cross-validation partition
[] (default) | cvpartition partition object

Cross-validation partition, specified as a cvpartition partition object created by cvpartition.
The partition object specifies the type of cross-validation and the indexing for the training and
validation sets.

To create a cross-validated model, you can specify only one of these four name-value arguments:
CVPartition, Holdout, KFold, or Leaveout.
Example: Suppose you create a random partition for 5-fold cross-validation on 500 observations by
using cvp = cvpartition(500,'KFold',5). Then, you can specify the cross-validated model by
using 'CVPartition',cvp.

Holdout — Fraction of data for holdout validation
scalar value in the range (0,1)

Fraction of the data used for holdout validation, specified as a scalar value in the range (0,1). If you
specify 'Holdout',p, then the software completes these steps:

1 Randomly select and reserve p*100% of the data as validation data, and train the model using
the rest of the data.

2 Store the compact, trained model in the Trained property of the cross-validated model.

To create a cross-validated model, you can specify only one of these four name-value arguments:
CVPartition, Holdout, KFold, or Leaveout.
Example: 'Holdout',0.1
Data Types: double | single

KFold — Number of folds
10 (default) | positive integer value greater than 1

Number of folds to use in a cross-validated model, specified as a positive integer value greater than 1.
If you specify 'KFold',k, then the software completes these steps:

1 Randomly partition the data into k sets.
2 For each set, reserve the set as validation data, and train the model using the other k – 1 sets.
3 Store the k compact, trained models in a k-by-1 cell vector in the Trained property of the cross-

validated model.
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To create a cross-validated model, you can specify only one of these four name-value arguments:
CVPartition, Holdout, KFold, or Leaveout.
Example: 'KFold',5
Data Types: single | double

Leaveout — Leave-one-out cross-validation flag
'off' (default) | 'on'

Leave-one-out cross-validation flag, specified as 'on' or 'off'. If you specify 'Leaveout','on',
then for each of the n observations (where n is the number of observations, excluding missing
observations, specified in the NumObservations property of the model), the software completes
these steps:

1 Reserve the one observation as validation data, and train the model using the other n – 1
observations.

2 Store the n compact, trained models in an n-by-1 cell vector in the Trained property of the
cross-validated model.

To create a cross-validated model, you can specify only one of these four name-value arguments:
CVPartition, Holdout, KFold, or Leaveout.
Example: 'Leaveout','on'

Hyperparameter Optimization Options

OptimizeHyperparameters — Parameters to optimize
'none' (default) | 'auto' | 'all' | string array or cell array of eligible parameter names | vector of
optimizableVariable objects

Parameters to optimize, specified as one of the following:

• 'none' — Do not optimize.
• 'auto' — Use {'Activations','Lambda','LayerSizes','Standardize'}.
• 'all' — Optimize all eligible parameters.
• String array or cell array of eligible parameter names.
• Vector of optimizableVariable objects, typically the output of hyperparameters.

The optimization attempts to minimize the cross-validation loss (error) for fitrnet by varying the
parameters. To control the cross-validation type and other aspects of the optimization, use the
HyperparameterOptimizationOptions name-value argument.

Note The values of 'OptimizeHyperparameters' override any values you specify using other
name-value arguments. For example, setting 'OptimizeHyperparameters' to 'auto' causes
fitrnet to optimize hyperparameters corresponding to the 'auto' option and to ignore any
specified values for the hyperparameters.

The eligible parameters for fitrnet are:

• Activations — fitrnet optimizes Activations over the set
{'relu','tanh','sigmoid','none'}.
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• Lambda — fitrnet optimizes Lambda over continuous values in the range [1e-5,1e5]/
NumObservations, where the value is chosen uniformly in the log transformed range.

• LayerBiasesInitializer — fitrnet optimizes LayerBiasesInitializer over the two
values {'zeros','ones'}.

• LayerWeightsInitializer — fitrnet optimizes LayerWeightsInitializer over the two
values {'glorot','he'}.

• LayerSizes — fitrnet optimizes over the three values 1, 2, and 3 fully connected layers,
excluding the final fully connected layer. fitrnet optimizes each fully connected layer separately
over 1 through 300 sizes in the layer, sampled on a logarithmic scale.

Note When you use the LayerSizes argument, the iterative display shows the size of each
relevant layer. For example, if the current number of fully connected layers is 3, and the three
layers are of sizes 10, 79, and 44 respectively, the iterative display shows LayerSizes for that
iteration as [10 79 44].

Note To access up to five fully connected layers or a different range of sizes in a layer, use
hyperparameters to select the optimizable parameters and ranges.

• Standardize — fitrnet optimizes Standardize over the two values {true,false}.

Set nondefault parameters by passing a vector of optimizableVariable objects that have
nondefault values. As an example, this code sets the range of NumLayers to [1 5] and optimizes
Layer_4_Size and Layer_5_Size:

load carsmall
params = hyperparameters('fitrtree',[Horsepower,Weight],MPG);
params(1).Range = [1 5];
params(10).Optimize = true;
params(11).Optimize = true;

Pass params as the value of OptimizeHyperparameters. For an example, see “Custom
Hyperparameter Optimization in Neural Network” on page 35-2593.

By default, the iterative display appears at the command line, and plots appear according to the
number of hyperparameters in the optimization. For the optimization and plots, the objective function
is log(1 + cross-validation loss). To control the iterative display, set the Verbose field of the
'HyperparameterOptimizationOptions' name-value argument. To control the plots, set the
ShowPlots field of the 'HyperparameterOptimizationOptions' name-value argument.

For an example, see “Minimize Cross-Validation Error in Neural Network” on page 35-2591.
Example: 'OptimizeHyperparameters','auto'

HyperparameterOptimizationOptions — Options for optimization
structure

Options for optimization, specified as a structure. This argument modifies the effect of the
OptimizeHyperparameters name-value argument. All fields in the structure are optional.
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Field Name Values Default
Optimizer • 'bayesopt' — Use Bayesian optimization.

Internally, this setting calls bayesopt.
• 'gridsearch' — Use grid search with

NumGridDivisions values per dimension.
• 'randomsearch' — Search at random among

MaxObjectiveEvaluations points.

'gridsearch' searches in a random order, using
uniform sampling without replacement from the
grid. After optimization, you can get a table in grid
order by using the command
sortrows(Mdl.HyperparameterOptimizatio
nResults).

'bayesopt'

AcquisitionFunct
ionName

• 'expected-improvement-per-second-
plus'

• 'expected-improvement'
• 'expected-improvement-plus'
• 'expected-improvement-per-second'
• 'lower-confidence-bound'
• 'probability-of-improvement'

Acquisition functions whose names include per-
second do not yield reproducible results because
the optimization depends on the runtime of the
objective function. Acquisition functions whose
names include plus modify their behavior when
they are overexploiting an area. For more details,
see “Acquisition Function Types” on page 10-3.

'expected-
improvement-per-
second-plus'

MaxObjectiveEval
uations

Maximum number of objective function
evaluations.

30 for 'bayesopt' and
'randomsearch', and
the entire grid for
'gridsearch'

MaxTime Time limit, specified as a positive real scalar. The
time limit is in seconds, as measured by tic and
toc. The run time can exceed MaxTime because
MaxTime does not interrupt function evaluations.

Inf

NumGridDivisions For 'gridsearch', the number of values in each
dimension. The value can be a vector of positive
integers giving the number of values for each
dimension, or a scalar that applies to all
dimensions. This field is ignored for categorical
variables.

10
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Field Name Values Default
ShowPlots Logical value indicating whether to show plots. If

true, this field plots the best observed objective
function value against the iteration number. If you
use Bayesian optimization (Optimizer is
'bayesopt'), then this field also plots the best
estimated objective function value. The best
observed objective function values and best
estimated objective function values correspond to
the values in the BestSoFar (observed) and
BestSoFar (estim.) columns of the iterative
display, respectively. You can find these values in
the properties ObjectiveMinimumTrace and
EstimatedObjectiveMinimumTrace of
Mdl.HyperparameterOptimizationResults.
If the problem includes one or two optimization
parameters for Bayesian optimization, then
ShowPlots also plots a model of the objective
function against the parameters.

true

SaveIntermediate
Results

Logical value indicating whether to save results
when Optimizer is 'bayesopt'. If true, this
field overwrites a workspace variable named
'BayesoptResults' at each iteration. The
variable is a BayesianOptimization object.

false

Verbose Display at the command line:

• 0 — No iterative display
• 1 — Iterative display
• 2 — Iterative display with extra information

For details, see the bayesopt Verbose name-
value argument and the example “Optimize
Classifier Fit Using Bayesian Optimization” on
page 10-56.

1

UseParallel Logical value indicating whether to run Bayesian
optimization in parallel, which requires Parallel
Computing Toolbox. Due to the nonreproducibility
of parallel timing, parallel Bayesian optimization
does not necessarily yield reproducible results. For
details, see “Parallel Bayesian Optimization” on
page 10-7.

false
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Field Name Values Default
Repartition Logical value indicating whether to repartition the

cross-validation at every iteration. If this field is
false, the optimizer uses a single partition for
the optimization.

The setting true usually gives the most robust
results because it takes partitioning noise into
account. However, for good results, true requires
at least twice as many function evaluations.

false

Use no more than one of the following three options.
CVPartition A cvpartition object, as created by

cvpartition
'Kfold',5 if you do not
specify a cross-validation
fieldHoldout A scalar in the range (0,1) representing the

holdout fraction
Kfold An integer greater than 1

Example:
'HyperparameterOptimizationOptions',struct('MaxObjectiveEvaluations',60)

Data Types: struct

Output Arguments
Mdl — Trained neural network regression model
RegressionNeuralNetwork object | RegressionPartitionedModel object

Trained neural network regression model, returned as a RegressionNeuralNetwork or
RegressionPartitionedModelobject.

If you set any of the name-value arguments CrossVal, CVPartition, Holdout, KFold, or
Leaveout, then Mdl is a RegressionPartitionedModel object. Otherwise, Mdl is a
RegressionNeuralNetwork model.

To reference properties of Mdl, use dot notation.

More About
Neural Network Structure

The default neural network regression model has the following layer structure.
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Structure Description
Input — This layer corresponds to the predictor data in Tbl or X.
First fully connected layer — This layer has 10 outputs by default.

• You can widen the layer or add more fully connected layers to
the network by specifying the LayerSizes name-value
argument.

• You can find the weights and biases for this layer in the
Mdl.LayerWeights{1} and Mdl.LayerBiases{1}
properties of Mdl, respectively.

ReLU activation function — fitrnet applies this activation
function to the first fully connected layer.

• You can change the activation function by specifying the
Activations name-value argument.

Final fully connected layer — This layer has one output.

• You can find the weights and biases for this layer in the
Mdl.LayerWeights{end} and Mdl.LayerBiases{end}
properties of Mdl, respectively.

Output — This layer corresponds to the predicted response values.

For an example that shows how a regression neural network model with this layer structure returns
predictions, see “Predict Using Layer Structure of Regression Neural Network Model” on page 35-
5836.

Tips
• Always try to standardize the numeric predictors (see Standardize). Standardization makes

predictors insensitive to the scales on which they are measured.
• After training a model, you can generate C/C++ code that predicts responses for new data.

Generating C/C++ code requires MATLAB Coder. For details, see “Introduction to Code
Generation” on page 34-2.

Algorithms
Training Solver

fitrnet uses a limited-memory Broyden-Fletcher-Goldfarb-Shanno quasi-Newton algorithm (LBFGS)
[3] as its loss function minimization technique, where the software minimizes the mean squared error
(MSE). The LBFGS solver uses a standard line-search method with an approximation to the Hessian.

Version History
Introduced in R2021a
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Extended Capabilities
Automatic Parallel Support
Accelerate code by automatically running computation in parallel using Parallel Computing Toolbox™.

To perform parallel hyperparameter optimization, use the
'HyperparameterOptimizationOptions', struct('UseParallel',true) name-value
argument in the call to the fitrnet function.

For more information on parallel hyperparameter optimization, see “Parallel Bayesian Optimization”
on page 10-7.

For general information about parallel computing, see “Run MATLAB Functions with Automatic
Parallel Support” (Parallel Computing Toolbox).

See Also
RegressionNeuralNetwork | predict | loss | hyperparameters |
RegressionPartitionedModel | CompactRegressionNeuralNetwork

Topics
“Assess Regression Neural Network Performance” on page 19-188
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fitdist
Fit probability distribution object to data

Syntax
pd = fitdist(x,distname)
pd = fitdist(x,distname,Name,Value)

[pdca,gn,gl] = fitdist(x,distname,'By',groupvar)
[pdca,gn,gl] = fitdist(x,distname,'By',groupvar,Name,Value)

Description
pd = fitdist(x,distname) creates a probability distribution object by fitting the distribution
specified by distname to the data in column vector x.

pd = fitdist(x,distname,Name,Value) creates the probability distribution object with
additional options specified by one or more name-value pair arguments. For example, you can
indicate censored data or specify control parameters for the iterative fitting algorithm.

[pdca,gn,gl] = fitdist(x,distname,'By',groupvar) creates probability distribution
objects by fitting the distribution specified by distname to the data in x based on the grouping
variable groupvar. It returns a cell array of fitted probability distribution objects, pdca, a cell array
of group labels, gn, and a cell array of grouping variable levels, gl.

[pdca,gn,gl] = fitdist(x,distname,'By',groupvar,Name,Value) returns the above
output arguments using additional options specified by one or more name-value pair arguments. For
example, you can indicate censored data or specify control parameters for the iterative fitting
algorithm.

Examples

Fit Normal Distribution to Data

Fit a normal distribution to sample data, and examine the fit by using a histogram and a quantile-
quantile plot.

Load patient weights from the data file patients.mat.

load patients
x = Weight;

Create a normal distribution object by fitting it to the data.

pd = fitdist(x,'Normal')

pd = 
  NormalDistribution

  Normal distribution
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       mu =     154   [148.728, 159.272]
    sigma = 26.5714   [23.3299, 30.8674]

The distribution object display includes the parameter estimates for the mean (mu) and standard
deviation (sigma), and the 95% confidence intervals for the parameters.

You can use the object functions of pd to evaluate the distribution and generate random numbers.
Display the supported object functions.

methods(pd)

Methods for class prob.NormalDistribution:

cdf        iqr        negloglik  plot       std        
gather     mean       paramci    proflik    truncate   
icdf       median     pdf        random     var        

For example, obtain the 95% confidence intervals by using the paramci function.

ci95 = paramci(pd)

ci95 = 2×2

  148.7277   23.3299
  159.2723   30.8674

Specify the significance level (Alpha) to obtain confidence intervals with a different confidence level.
Compute the 99% confidence intervals.

ci99 = paramci(pd,'Alpha',.01)

ci99 = 2×2

  147.0213   22.4257
  160.9787   32.4182

Evaluate and plot the pdf values of the distribution.

x_values = 50:1:250;
y = pdf(pd,x_values);
plot(x_values,y)
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Create a histogram with the normal distribution fit by using the histfit function. histfit uses
fitdist to fit a distribution to data.

histfit(x)
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The histogram shows that the data has two modes, and that the mode of the normal distribution fit is
between those two modes.

Use qqplot to create a quantile-quantile plot of the quantiles of the sample data x versus the
theoretical quantile values of the fitted distribution.

qqplot(x,pd)
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The plot is not a straight line, suggesting that the data does not follow a normal distribution.

Fit Kernel Distribution to Data

Load patient weights from the data file patients.mat.

load patients
x = Weight;

Create a kernel distribution object by fitting it to the data. Use the Epanechnikov kernel function.

pd = fitdist(x,'Kernel','Kernel','epanechnikov')

pd = 
  KernelDistribution

    Kernel = epanechnikov
    Bandwidth = 14.3792
    Support = unbounded

Plot the pdf of the distribution.

x_values = 50:1:250;
y = pdf(pd,x_values);
plot(x_values,y)
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Fit Normal Distributions to Grouped Data

Load patient weights and genders from the data file patients.mat.

load patients
x = Weight;

Create normal distribution objects by fitting them to the data, grouped by patient gender.

[pdca,gn,gl] = fitdist(x,'Normal','By',Gender)

pdca=1×2 cell array
    {1x1 prob.NormalDistribution}    {1x1 prob.NormalDistribution}

gn = 2x1 cell
    {'Male'  }
    {'Female'}

gl = 2x1 cell
    {'Male'  }
    {'Female'}
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The cell array pdca contains two probability distribution objects, one for each gender group. The cell
array gn contains two group labels. The cell array gl contains two group levels.

View each distribution in the cell array pdca to compare the mean, mu, and the standard deviation,
sigma, grouped by patient gender.

female = pdca{1}  % Distribution for females

female = 
  NormalDistribution

  Normal distribution
       mu = 180.532   [177.833, 183.231]
    sigma = 9.19322   [7.63933, 11.5466]

male = pdca{2}  % Distribution for males

male = 
  NormalDistribution

  Normal distribution
       mu = 130.472   [128.183, 132.76]
    sigma = 8.30339   [6.96947, 10.2736]

Compute the pdf of each distribution.

x_values = 50:1:250;
femalepdf = pdf(female,x_values);
malepdf = pdf(male,x_values);

Plot the pdfs for a visual comparison of weight distribution by gender.

figure
plot(x_values,femalepdf,'LineWidth',2)
hold on
plot(x_values,malepdf,'Color','r','LineStyle',':','LineWidth',2)
legend(gn,'Location','NorthEast')
hold off
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Fit Kernel Distributions to Grouped Data

Load patient weights and genders from the data file patients.mat.

load patients
x = Weight;

Create kernel distribution objects by fitting them to the data, grouped by patient gender. Use a
triangular kernel function.

[pdca,gn,gl] = fitdist(x,'Kernel','By',Gender,'Kernel','triangle');

View each distribution in the cell array pdca to see the kernel distributions for each gender.

female = pdca{1}  % Distribution for females

female = 
  KernelDistribution

    Kernel = triangle
    Bandwidth = 5.08961
    Support = unbounded

male = pdca{2}  % Distribution for males
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male = 
  KernelDistribution

    Kernel = triangle
    Bandwidth = 4.25894
    Support = unbounded

Compute the pdf of each distribution.

x_values = 50:1:250;
femalepdf = pdf(female,x_values);
malepdf = pdf(male,x_values);

Plot the pdfs for a visual comparison of weight distribution by gender.

figure
plot(x_values,femalepdf,'LineWidth',2)
hold on
plot(x_values,malepdf,'Color','r','LineStyle',':','LineWidth',2)
legend(gn,'Location','NorthEast')
hold off

Input Arguments
x — Input data
column vector
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Input data, specified as a column vector. fitdist ignores NaN values in x. Additionally, any NaN
values in the censoring vector or frequency vector cause fitdist to ignore the corresponding values
in x.
Data Types: double

distname — Distribution name
character vector | string scalar

Distribution name, specified as one of the following character vectors or string scalars. The
distribution specified by distname determines the type of the returned probability distribution
object.

Distribution Name Description Distribution Object
'Beta' Beta distribution BetaDistribution
'Binomial' Binomial distribution BinomialDistribution
'BirnbaumSaunders' Birnbaum-Saunders distribution BirnbaumSaundersDistribu

tion
'Burr' Burr distribution BurrDistribution
'Exponential' Exponential distribution ExponentialDistribution
'Extreme Value' or 'ev' Extreme Value distribution ExtremeValueDistribution
'Gamma' Gamma distribution GammaDistribution
'Generalized Extreme
Value' or 'gev'

Generalized Extreme Value
distribution

GeneralizedExtremeValueD
istribution

'Generalized Pareto' or
'gp'

Generalized Pareto distribution GeneralizedParetoDistrib
ution

'Half Normal' or 'hn' Half-normal distribution HalfNormalDistribution
'InverseGaussian' Inverse Gaussian distribution InverseGaussianDistribut

ion
'Kernel' Kernel distribution KernelDistribution
'Logistic' Logistic distribution LogisticDistribution
'Loglogistic' Loglogistic distribution LoglogisticDistribution
'Lognormal' Lognormal distribution LognormalDistribution
'Nakagami' Nakagami distribution NakagamiDistribution
'Negative Binomial' or
'nbin'

Negative Binomial distribution NegativeBinomialDistribu
tion

'Normal' Normal distribution NormalDistribution
'Poisson' Poisson distribution PoissonDistribution
'Rayleigh' Rayleigh distribution RayleighDistribution
'Rician' Rician distribution RicianDistribution
'Stable' Stable distribution StableDistribution
'tLocationScale' t Location-Scale distribution tLocationScaleDistributi

on
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Distribution Name Description Distribution Object
'Weibull' or 'wbl' Weibull distribution WeibullDistribution

groupvar — Grouping variable
categorical array | logical or numeric vector | character array | string array | cell array of character
vectors

Grouping variable, specified as a categorical array, logical or numeric vector, character array, string
array, or cell array of character vectors. Each unique value in a grouping variable defines a group.

For example, if Gender is a cell array of character vectors with values 'Male' and 'Female', you
can use Gender as a grouping variable to fit a distribution to your data by gender.

More than one grouping variable can be used by specifying a cell array of grouping variables.
Observations are placed in the same group if they have common values of all specified grouping
variables.

For example, if Smoker is a logical vector with values 0 for nonsmokers and 1 for smokers, then
specifying the cell array {Gender,Smoker} divides observations into four groups: Male Smoker,
Male Nonsmoker, Female Smoker, and Female Nonsmoker.
Example: {Gender,Smoker}
Data Types: categorical | logical | single | double | char | string | cell

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: fitdist(x,'Kernel','Kernel','triangle') fits a kernel distribution object to the
data in x using a triangular kernel function.

Censoring — Logical flag for censored data
0 (default) | vector of logical values

Logical flag for censored data, specified as a vector of logical values that is the same size as input
vector x. The value is 1 when the corresponding element in x is a right-censored observation and 0
when the corresponding element is an exact observation. The default is a vector of 0s, indicating that
all observations are exact.

fitdist ignores any NaN values in this censoring vector. Additionally, any NaN values in x or the
frequency vector cause fitdist to ignore the corresponding values in the censoring vector.

This argument is valid only if distname is 'BirnbaumSaunders', 'Burr', 'Exponential',
'ExtremeValue', 'Gamma', 'InverseGaussian', 'Kernel', 'Logistic', 'Loglogistic',
'Lognormal', 'Nakagami', 'Normal', 'Rician', 'tLocationScale', or 'Weibull'.
Data Types: logical

Frequency — Observation frequency
1 (default) | vector of nonnegative integer values
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Observation frequency, specified as a vector of nonnegative integer values that is the same size as
input vector x. Each element of the frequency vector specifies the frequencies for the corresponding
elements in x. The default is a vector of 1s, indicating that each value in x only appears once.

fitdist ignores any NaN values in this frequency vector. Additionally, any NaN values in x or the
censoring vector cause fitdist to ignore the corresponding values in the frequency vector.
Data Types: single | double

Options — Control parameters
structure

Control parameters for the iterative fitting algorithm, specified as a structure you create using
statset.
Data Types: struct

NTrials — Number of trials for binomial distribution
1 (default) | positive integer value

Number of trials for the binomial distribution, specified as a positive integer value.

This argument is valid only when distname is 'Binomial' (binomial distribution).
Example: 'Ntrials',10
Data Types: single | double

theta — Location (threshold) parameter for generalized Pareto distribution
scalar value

Location (threshold) parameter for the generalized Pareto distribution, specified as a scalar.

This argument is valid only when distname is 'Generalized Pareto' (generalized Pareto
distribution).

The default value is 0 when the sample data x includes only nonnegative values. You must specify
theta if x includes negative values.
Example: 'theta',1
Data Types: single | double

mu — Location parameter for half-normal distribution
scalar value

Location parameter for the half-normal distribution, specified as a scalar.

This argument is valid only when distname is 'Half Normal' (half-normal distribution).

The default value is 0 when the sample data x includes only nonnegative values. You must specify mu
if x includes negative values.
Example: 'mu',1
Data Types: single | double

Kernel — Kernel smoother type for kernel distribution
'normal' (default) | 'box' | 'triangle' | 'epanechnikov'
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Kernel smoother type for the kernel distribution, specified as one of the following:

• 'normal'
• 'box'
• 'triangle'
• 'epanechnikov'

You must specify distname as 'Kernel' to use this option.

Support — Kernel density support for kernel distribution
'unbounded' (default) | 'positive' | two-element vector

Kernel density support for the kernel distribution, specified as 'unbounded', 'positive', or a two-
element vector.

Value Description
'unbounded' Density can extend over the whole real line.
'positive' Density is restricted to positive values.

Alternatively, you can specify a two-element vector giving finite lower and upper limits for the support
of the density.

You must specify distname as 'Kernel' to use this option.
Data Types: single | double | char | string

Width — Bandwidth of kernel smoothing window for kernel distribution
scalar value

Bandwidth of the kernel smoothing window for the kernel distribution, specified as a scalar value.
The default value used by fitdist is optimal for estimating normal densities, but you might want to
choose a smaller value to reveal features such as multiple modes. You must specify distname as
'Kernel' to use this option.
Data Types: single | double

Output Arguments
pd — Probability distribution
probability distribution object

Probability distribution, returned as a probability distribution object. The distribution specified by
distname determines the class type of the returned probability distribution object. For the list of
distname values and corresponding probability distribution objects, see distname.

pdca — Probability distribution objects
cell array

Probability distribution objects of the type specified by distname, returned as a cell array. For the
list of distname values and corresponding probability distribution objects, see distname.

gn — Group labels
cell array of character vectors
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Group labels, returned as a cell array of character vectors.

gl — Grouping variable levels
cell array of character vectors

Grouping variable levels, returned as a cell array of character vectors containing one column for each
grouping variable.

Algorithms
The fitdist function fits most distributions using maximum likelihood estimation. Two exceptions
are the normal and lognormal distributions with uncensored data.

• For the uncensored normal distribution, the estimated value of the sigma parameter is the square
root of the unbiased estimate of the variance.

• For the uncensored lognormal distribution, the estimated value of the sigma parameter is the
square root of the unbiased estimate of the variance of the log of the data.

Alternative Functionality
• The Distribution Fitter app opens a graphical user interface for you to import data from the

workspace and interactively fit a probability distribution to that data. You can then save the
distribution to the workspace as a probability distribution object. Open the Distribution Fitter app
using distributionFitter, or click Distribution Fitter on the Apps tab.

• To fit a distribution to left-censored, double-censored, or interval-censored data, use mle. You can
find the maximum likelihood estimates by using the mle function, and create a probability
distribution object by using the makedist function. For an example, see “Find MLEs for Double-
Censored Data” on page 35-4765.

Version History
Introduced in R2009a

References
[1] Johnson, N. L., S. Kotz, and N. Balakrishnan. Continuous Univariate Distributions. Vol. 1, Hoboken,

NJ: Wiley-Interscience, 1993.

[2] Johnson, N. L., S. Kotz, and N. Balakrishnan. Continuous Univariate Distributions. Vol. 2, Hoboken,
NJ: Wiley-Interscience, 1994.

[3] Bowman, A. W., and A. Azzalini. Applied Smoothing Techniques for Data Analysis. New York:
Oxford University Press, 1997.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:
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• Supported syntaxes are:

pd = fitdist(x,distname)
pd = fitdist(x,distname,Name,Value)

Code generation does not support the syntaxes that include the grouping variable
'By',groupvar and the related output arguments pdca, gn, and gl.

• fitdist supports code generation for beta, exponential, extreme value, lognormal, normal, and
Weibull distributions.

• The value of distname can be 'Beta', 'Exponential', 'ExtremeValue', 'Lognormal',
'Normal' or 'Weibull'.

• The value of distname must be a compile-time constant.
• The values of x, 'Censoring', and 'Frequency' must not contain NaN values.
• Code generation ignores the 'Frequency' value for the beta distribution. Instead of specifying

the 'Frequency' value, manually add duplicated values to x so that the values in x have the
frequency you want.

• Code generation does not support these input arguments: groupvar, NTrials, Theta, mu,
Kernel, Support, and Width.

• Names in name-value pair arguments must be compile-time constants.
• These object functions of pd support code generation: cdf, icdf, iqr, mean, median, pdf, std,

truncate, and var.

For more information on code generation, see “Introduction to Code Generation” on page 34-2 and
“Code Generation for Probability Distribution Objects” on page 34-94.

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

Usage notes and limitations:

• You cannot specify the input argument distname as 'Rician' or 'Stable'.

For more information, see “Run MATLAB Functions on a GPU” (Parallel Computing Toolbox).

See Also
makedist | distributionFitter | paramci | histfit | mle | qqplot

Topics
“Working with Probability Distributions” on page 5-3
“Supported Distributions” on page 5-16

 fitdist

35-2631



fitensemble
Fit ensemble of learners for classification and regression

Syntax
Mdl = fitensemble(Tbl,ResponseVarName,Method,NLearn,Learners)
Mdl = fitensemble(Tbl,formula,Method,NLearn,Learners)
Mdl = fitensemble(Tbl,Y,Method,NLearn,Learners)

Mdl = fitensemble(X,Y,Method,NLearn,Learners)

Mdl = fitensemble( ___ ,Name,Value)

Description
fitensemble can boost or bag decision tree learners or discriminant analysis classifiers. The
function can also train random subspace ensembles of KNN or discriminant analysis classifiers.

For simpler interfaces that fit classification and regression ensembles, instead use fitcensemble
and fitrensemble, respectively. Also, fitcensemble and fitrensemble provide options for
Bayesian optimization.

Mdl = fitensemble(Tbl,ResponseVarName,Method,NLearn,Learners) returns a trained
ensemble model object that contains the results of fitting an ensemble of NLearn classification or
regression learners (Learners) to all variables in the table Tbl. ResponseVarName is the name of
the response variable in Tbl. Method is the ensemble-aggregation method.

Mdl = fitensemble(Tbl,formula,Method,NLearn,Learners) fits the model specified by
formula.

Mdl = fitensemble(Tbl,Y,Method,NLearn,Learners) treats all variables in Tbl as predictor
variables. Y is the response variable that is not in Tbl.

Mdl = fitensemble(X,Y,Method,NLearn,Learners) trains an ensemble using the predictor
data in X and response data in Y.

Mdl = fitensemble( ___ ,Name,Value) trains an ensemble using additional options specified by
one or more Name,Value pair arguments and any of the previous syntaxes. For example, you can
specify the class order, to implement 10–fold cross-validation, or the learning rate.

Examples

Estimate the Resubstitution Loss of a Boosting Ensemble

Estimate the resubstitution loss of a trained, boosting classification ensemble of decision trees.

Load the ionosphere data set.

load ionosphere;
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Train a decision tree ensemble using AdaBoost, 100 learning cycles, and the entire data set.

ClassTreeEns = fitensemble(X,Y,'AdaBoostM1',100,'Tree');

ClassTreeEns is a trained ClassificationEnsemble ensemble classifier.

Determine the cumulative resubstitution losses (i.e., the cumulative misclassification error of the
labels in the training data).

rsLoss = resubLoss(ClassTreeEns,'Mode','Cumulative');

rsLoss is a 100-by-1 vector, where element k contains the resubstitution loss after the first k
learning cycles.

Plot the cumulative resubstitution loss over the number of learning cycles.

plot(rsLoss);
xlabel('Number of Learning Cycles');
ylabel('Resubstitution Loss');

In general, as the number of decision trees in the trained classification ensemble increases, the
resubstitution loss decreases.

A decrease in resubstitution loss might indicate that the software trained the ensemble sensibly.
However, you cannot infer the predictive power of the ensemble by this decrease. To measure the
predictive power of an ensemble, estimate the generalization error by:
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1 Randomly partitioning the data into training and cross-validation sets. Do this by specifying
'holdout',holdoutProportion when you train the ensemble using fitensemble.

2 Passing the trained ensemble to kfoldLoss, which estimates the generalization error.

Train Regression Ensemble

Use a trained, boosted regression tree ensemble to predict the fuel economy of a car. Choose the
number of cylinders, volume displaced by the cylinders, horsepower, and weight as predictors. Then,
train an ensemble using fewer predictors and compare its in-sample predictive accuracy against the
first ensemble.

Load the carsmall data set. Store the training data in a table.

load carsmall
Tbl = table(Cylinders,Displacement,Horsepower,Weight,MPG);

Specify a regression tree template that uses surrogate splits to improve predictive accuracy in the
presence of NaN values.

t = templateTree('Surrogate','On');

Train the regression tree ensemble using LSBoost and 100 learning cycles.

Mdl1 = fitensemble(Tbl,'MPG','LSBoost',100,t);

Mdl1 is a trained RegressionEnsemble regression ensemble. Because MPG is a variable in the
MATLAB® Workspace, you can obtain the same result by entering

Mdl1 = fitensemble(Tbl,MPG,'LSBoost',100,t);

Use the trained regression ensemble to predict the fuel economy for a four-cylinder car with a 200-
cubic inch displacement, 150 horsepower, and weighing 3000 lbs.

predMPG = predict(Mdl1,[4 200 150 3000])

predMPG = 22.8462

The average fuel economy of a car with these specifications is 21.78 mpg.

Train a new ensemble using all predictors in Tbl except Displacement.

formula = 'MPG ~ Cylinders + Horsepower + Weight';
Mdl2 = fitensemble(Tbl,formula,'LSBoost',100,t);

Compare the resubstitution MSEs between Mdl1 and Mdl2.

mse1 = resubLoss(Mdl1)

mse1 = 6.4721

mse2 = resubLoss(Mdl2)

mse2 = 7.8599

The in-sample MSE for the ensemble that trains on all predictors is lower.
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Estimate the Generalization Error of a Boosting Ensemble

Estimate the generalization error of a trained, boosting classification ensemble of decision trees.

Load the ionosphere data set.

load ionosphere;

Train a decision tree ensemble using AdaBoostM1, 100 learning cycles, and half of the data chosen
randomly. The software validates the algorithm using the remaining half.

rng(2); % For reproducibility
ClassTreeEns = fitensemble(X,Y,'AdaBoostM1',100,'Tree',...
    'Holdout',0.5);

ClassTreeEns is a trained ClassificationEnsemble ensemble classifier.

Determine the cumulative generalization error, i.e., the cumulative misclassification error of the
labels in the validation data).

genError = kfoldLoss(ClassTreeEns,'Mode','Cumulative');

genError is a 100-by-1 vector, where element k contains the generalization error after the first k
learning cycles.

Plot the generalization error over the number of learning cycles.

plot(genError);
xlabel('Number of Learning Cycles');
ylabel('Generalization Error');
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The cumulative generalization error decreases to approximately 7% when 25 weak learners compose
the ensemble classifier.

Find the Optimal Number of Splits and Trees for an Ensemble

You can control the depth of the trees in an ensemble of decision trees. You can also control the tree
depth in an ECOC model containing decision tree binary learners using the MaxNumSplits,
MinLeafSize, or MinParentSize name-value pair parameters.

• When bagging decision trees, fitensemble grows deep decision trees by default. You can grow
shallower trees to reduce model complexity or computation time.

• When boosting decision trees, fitensemble grows stumps (a tree with one split) by default. You
can grow deeper trees for better accuracy.

Load the carsmall data set. Specify the variables Acceleration, Displacement, Horsepower,
and Weight as predictors, and MPG as the response.

load carsmall
X = [Acceleration Displacement Horsepower Weight];
Y = MPG;

The default values of the tree depth controllers for boosting regression trees are:
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• 1 for MaxNumSplits. This option grows stumps.
• 5 for MinLeafSize
• 10 for MinParentSize

To search for the optimal number of splits:

1 Train a set of ensembles. Exponentially increase the maximum number of splits for subsequent
ensembles from stump to at most n - 1 splits, where n is the training sample size. Also, decrease
the learning rate for each ensemble from 1 to 0.1.

2 Cross validate the ensembles.
3 Estimate the cross-validated mean-squared error (MSE) for each ensemble.
4 Compare the cross-validated MSEs. The ensemble with the lowest one performs the best, and

indicates the optimal maximum number of splits, number of trees, and learning rate for the data
set.

Grow and cross validate a deep regression tree and a stump. Specify to use surrogate splits because
the data contains missing values. These serve as benchmarks.

MdlDeep = fitrtree(X,Y,'CrossVal','on','MergeLeaves','off',...
    'MinParentSize',1,'Surrogate','on');
MdlStump = fitrtree(X,Y,'MaxNumSplits',1,'CrossVal','on','Surrogate','on');

Train the boosting ensembles using 150 regression trees. Cross validate the ensemble using 5-fold
cross validation. Vary the maximum number of splits using the values in the sequence
{20, 21, . . . , 2m}, where m is such that 2m is no greater than n - 1, where n is the training sample
size. For each variant, adjust the learning rate to each value in the set {0.1, 0.25, 0.5, 1};

n = size(X,1);
m = floor(log2(n - 1));
lr = [0.1 0.25 0.5 1];
maxNumSplits = 2.^(0:m);
numTrees = 150;
Mdl = cell(numel(maxNumSplits),numel(lr));
rng(1); % For reproducibility
for k = 1:numel(lr);
    for j = 1:numel(maxNumSplits);
        t = templateTree('MaxNumSplits',maxNumSplits(j),'Surrogate','on');
        Mdl{j,k} = fitensemble(X,Y,'LSBoost',numTrees,t,...
            'Type','regression','KFold',5,'LearnRate',lr(k));
    end;
end;

Compute the cross-validated MSE for each ensemble.

kflAll = @(x)kfoldLoss(x,'Mode','cumulative');
errorCell = cellfun(kflAll,Mdl,'Uniform',false);
error = reshape(cell2mat(errorCell),[numTrees numel(maxNumSplits) numel(lr)]);
errorDeep = kfoldLoss(MdlDeep);
errorStump = kfoldLoss(MdlStump);

Plot how the cross-validated MSE behaves as the number of trees in the ensemble increases for a few
of the ensembles, the deep tree, and the stump. Plot the curves with respect to learning rate in the
same plot, and plot separate plots for varying tree complexities. Choose a subset of tree complexity
levels.
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mnsPlot = [1 round(numel(maxNumSplits)/2) numel(maxNumSplits)];
figure;
for k = 1:3;
    subplot(2,2,k);
    plot(squeeze(error(:,mnsPlot(k),:)),'LineWidth',2);
    axis tight;
    hold on;
    h = gca;
    plot(h.XLim,[errorDeep errorDeep],'-.b','LineWidth',2);
    plot(h.XLim,[errorStump errorStump],'-.r','LineWidth',2);
    plot(h.XLim,min(min(error(:,mnsPlot(k),:))).*[1 1],'--k');
    h.YLim = [10 50];    
    xlabel 'Number of trees';
    ylabel 'Cross-validated MSE';
    title(sprintf('MaxNumSplits = %0.3g', maxNumSplits(mnsPlot(k))));
    hold off;
end;
hL = legend([cellstr(num2str(lr','Learning Rate = %0.2f'));...
        'Deep Tree';'Stump';'Min. MSE']);
hL.Position(1) = 0.6;

Each curve contains a minimum cross-validated MSE occurring at the optimal number of trees in the
ensemble.

Identify the maximum number of splits, number of trees, and learning rate that yields the lowest MSE
overall.
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[minErr,minErrIdxLin] = min(error(:));
[idxNumTrees,idxMNS,idxLR] = ind2sub(size(error),minErrIdxLin);

fprintf('\nMin. MSE = %0.5f',minErr)

Min. MSE = 18.42979

fprintf('\nOptimal Parameter Values:\nNum. Trees = %d',idxNumTrees);

Optimal Parameter Values:
Num. Trees = 1

fprintf('\nMaxNumSplits = %d\nLearning Rate = %0.2f\n',...
    maxNumSplits(idxMNS),lr(idxLR))

MaxNumSplits = 4
Learning Rate = 1.00

For a different approach to optimizing this ensemble, see “Optimize a Boosted Regression Ensemble”
on page 10-67.

Input Arguments
Tbl — Sample data
table

Sample data used to train the model, specified as a table. Each row of Tbl corresponds to one
observation, and each column corresponds to one predictor variable. Tbl can contain one additional
column for the response variable. Multicolumn variables and cell arrays other than cell arrays of
character vectors are not allowed.

• If Tbl contains the response variable and you want to use all remaining variables as predictors,
then specify the response variable using ResponseVarName.

• If Tbl contains the response variable, and you want to use a subset of the remaining variables
only as predictors, then specify a formula using formula.

• If Tbl does not contain the response variable, then specify the response data using Y. The length
of response variable and the number of rows of Tbl must be equal.

Note To save memory and execution time, supply X and Y instead of Tbl.

Data Types: table

ResponseVarName — Response variable name
name of response variable in Tbl

Response variable name, specified as the name of the response variable in Tbl.

You must specify ResponseVarName as a character vector or string scalar. For example, if Tbl.Y is
the response variable, then specify ResponseVarName as 'Y'. Otherwise, fitensemble treats all
columns of Tbl as predictor variables.
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The response variable must be a categorical, character, or string array, logical or numeric vector, or
cell array of character vectors. If the response variable is a character array, then each element must
correspond to one row of the array.

For classification, you can specify the order of the classes using the ClassNames name-value pair
argument. Otherwise, fitensemble determines the class order, and stores it in the
Mdl.ClassNames.
Data Types: char | string

formula — Explanatory model of response variable and subset of predictor variables
character vector | string scalar

Explanatory model of the response variable and a subset of the predictor variables, specified as a
character vector or string scalar in the form "Y~x1+x2+x3". In this form, Y represents the response
variable, and x1, x2, and x3 represent the predictor variables.

To specify a subset of variables in Tbl as predictors for training the model, use a formula. If you
specify a formula, then the software does not use any variables in Tbl that do not appear in
formula.

The variable names in the formula must be both variable names in Tbl
(Tbl.Properties.VariableNames) and valid MATLAB identifiers. You can verify the variable
names in Tbl by using the isvarname function. If the variable names are not valid, then you can
convert them by using the matlab.lang.makeValidName function.
Data Types: char | string

X — Predictor data
numeric matrix

Predictor data, specified as numeric matrix.

Each row corresponds to one observation, and each column corresponds to one predictor variable.

The length of Y and the number of rows of X must be equal.

To specify the names of the predictors in the order of their appearance in X, use the
PredictorNames name-value pair argument.
Data Types: single | double

Y — Response data
categorical array | character array | string array | logical vector | numeric vector | cell array of
character vectors

Response data, specified as a categorical, character, or string array, a logical or numeric vector, or a
cell array of character vectors. Each entry in Y is the response to or label for the observation in the
corresponding row of X or Tbl. The length of Y and the number of rows of X or Tbl must be equal. If
the response variable is a character array, then each element must correspond to one row of the
array.

• For classification, Y can be any of the supported data types. You can specify the order of the
classes using the ClassNames name-value pair argument. Otherwise, fitensemble determines
the class order, and stores it in the Mdl.ClassNames.
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• For regression, Y must be a numeric column vector.

Data Types: categorical | char | string | logical | single | double | cell

Method — Ensemble aggregation method
'AdaBoostM1' | 'LogitBoost' | 'GentleBoost' | 'RUSBoost' | 'Subspace' | 'Bag' |
'AdaBoostM2' | 'LSBoost' | ...

Ensemble aggregation method, specified as one of the method names in this list.

• For classification with two classes:

• 'AdaBoostM1'
• 'LogitBoost'
• 'GentleBoost'
• 'RobustBoost' (requires Optimization Toolbox)
• 'LPBoost' (requires Optimization Toolbox)
• 'TotalBoost' (requires Optimization Toolbox)
• 'RUSBoost'
• 'Subspace'
• 'Bag'

• For classification with three or more classes:

• 'AdaBoostM2'
• 'LPBoost' (requires Optimization Toolbox)
• 'TotalBoost' (requires Optimization Toolbox)
• 'RUSBoost'
• 'Subspace'
• 'Bag'

• For regression:

• 'LSBoost'
• 'Bag'

If you specify 'Method','Bag', then specify the problem type using the Type name-value pair
argument, because you can specify 'Bag' for classification and regression problems.

For details about ensemble aggregation algorithms and examples, see “Ensemble Algorithms” on
page 19-41 and “Choose an Applicable Ensemble Aggregation Method” on page 19-34.

NLearn — Number of ensemble learning cycles
positive integer | 'AllPredictorCombinations'

Number of ensemble learning cycles, specified as a positive integer or
'AllPredictorCombinations'.

• If you specify a positive integer, then, at every learning cycle, the software trains one weak learner
for every template object in Learners. Consequently, the software trains
NLearn*numel(Learners) learners.
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• If you specify 'AllPredictorCombinations', then set Method to 'Subspace' and specify one
learner only in Learners. With these settings, the software trains learners for all possible
combinations of predictors taken NPredToSample at a time. Consequently, the software trains
nchoosek(size(X,2),NPredToSample) learners.

The software composes the ensemble using all trained learners and stores them in Mdl.Trained.

For more details, see “Tips” on page 35-2652.
Data Types: single | double | char | string

Learners — Weak learners to use in ensemble
weak-learner name | weak-learner template object | cell vector of weak-learner template objects

Weak learners to use in the ensemble, specified as a weak-learner name, weak-learner template
object, or cell array of weak-learner template objects.

Weak Learner Weak-Learner Name Template Object
Creation Function

Method Settings

Discriminant analysis 'Discriminant' templateDiscrimina
nt

Recommended for
'Subspace'

k nearest neighbors 'KNN' templateKNN For 'Subspace' only
Decision tree 'Tree' templateTree All methods except

'Subspace'

For more details, see NLearn and “Tips” on page 35-2652.
Example: For an ensemble composed of two types of classification trees, supply {t1 t2}, where t1
and t2 are classification tree templates.

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: 'CrossVal','on','LearnRate',0.05 specifies to implement 10-fold cross-validation
and to use 0.05 as the learning rate.

General Ensemble Options

CategoricalPredictors — Categorical predictors list
vector of positive integers | logical vector | character matrix | string array | cell array of character
vectors | 'all'

Categorical predictors list, specified as one of the values in this table.
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Value Description
Vector of positive
integers

Each entry in the vector is an index value indicating that the corresponding
predictor is categorical. The index values are between 1 and p, where p is
the number of predictors used to train the model.

If fitensemble uses a subset of input variables as predictors, then the
function indexes the predictors using only the subset. The
CategoricalPredictors values do not count the response variable,
observation weights variable, or any other variables that the function does
not use.

Logical vector A true entry means that the corresponding predictor is categorical. The
length of the vector is p.

Character matrix Each row of the matrix is the name of a predictor variable. The names must
match the entries in PredictorNames. Pad the names with extra blanks
so each row of the character matrix has the same length.

String array or cell
array of character
vectors

Each element in the array is the name of a predictor variable. The names
must match the entries in PredictorNames.

"all" All predictors are categorical.

Specification of 'CategoricalPredictors' is appropriate if:

• 'Learners' specifies tree learners.
• 'Learners' specifies k-nearest learners where all predictors are categorical.

Each learner identifies and treats categorical predictors in the same way as the fitting function
corresponding to the learner. See 'CategoricalPredictors' of fitcknn for k-nearest learners
and 'CategoricalPredictors' of fitctree for tree learners.
Example: 'CategoricalPredictors','all'
Data Types: single | double | logical | char | string | cell

NPrint — Printout frequency
'off' (default) | positive integer

Printout frequency, specified as the comma-separated pair consisting of 'NPrint' and a positive
integer or 'off'.

To track the number of weak learners or folds that fitensemble trained so far, specify a positive
integer. That is, if you specify the positive integer m:

• Without also specifying any cross-validation option (for example, CrossVal), then fitensemble
displays a message to the command line every time it completes training m weak learners.

• And a cross-validation option, then fitensemble displays a message to the command line every
time it finishes training m folds.

If you specify 'off', then fitensemble does not display a message when it completes training
weak learners.
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Tip For fastest training of some boosted decision trees, set NPrint to the default value 'off'. This
tip holds when the classification Method is 'AdaBoostM1', 'AdaBoostM2', 'GentleBoost', or
'LogitBoost', or when the regression Method is 'LSBoost'.

Example: 'NPrint',5
Data Types: single | double | char | string

PredictorNames — Predictor variable names
string array of unique names | cell array of unique character vectors

Predictor variable names, specified as a string array of unique names or cell array of unique
character vectors. The functionality of PredictorNames depends on the way you supply the training
data.

• If you supply X and Y, then you can use PredictorNames to assign names to the predictor
variables in X.

• The order of the names in PredictorNames must correspond to the column order of X. That
is, PredictorNames{1} is the name of X(:,1), PredictorNames{2} is the name of
X(:,2), and so on. Also, size(X,2) and numel(PredictorNames) must be equal.

• By default, PredictorNames is {'x1','x2',...}.
• If you supply Tbl, then you can use PredictorNames to choose which predictor variables to use

in training. That is, fitensemble uses only the predictor variables in PredictorNames and the
response variable during training.

• PredictorNames must be a subset of Tbl.Properties.VariableNames and cannot include
the name of the response variable.

• By default, PredictorNames contains the names of all predictor variables.
• A good practice is to specify the predictors for training using either PredictorNames or

formula, but not both.

Example: "PredictorNames",
["SepalLength","SepalWidth","PetalLength","PetalWidth"]

Data Types: string | cell

ResponseName — Response variable name
"Y" (default) | character vector | string scalar

Response variable name, specified as a character vector or string scalar.

• If you supply Y, then you can use ResponseName to specify a name for the response variable.
• If you supply ResponseVarName or formula, then you cannot use ResponseName.

Example: "ResponseName","response"
Data Types: char | string

Type — Supervised learning type
'classification' | 'regression'

Supervised learning type, specified as the comma-separated pair consisting of 'Type' and
'classification' or 'regression'.

35 Functions

35-2644



• If Method is 'bag', then the supervised learning type is ambiguous. Therefore, specify Type
when bagging.

• Otherwise, the value of Method determines the supervised learning type.

Example: 'Type','classification'

Cross-Validation Options

CrossVal — Cross-validation flag
'off' (default) | 'on'

Cross-validation flag, specified as the comma-separated pair consisting of 'Crossval' and 'on' or
'off'.

If you specify 'on', then the software implements 10-fold cross-validation.

To override this cross-validation setting, use one of these name-value pair arguments: CVPartition,
Holdout, KFold, or Leaveout. To create a cross-validated model, you can use one cross-validation
name-value pair argument at a time only.

Alternatively, cross-validate later by passing Mdl to crossval or crossval.
Example: 'Crossval','on'

CVPartition — Cross-validation partition
[] (default) | cvpartition partition object

Cross-validation partition, specified as a cvpartition partition object created by cvpartition.
The partition object specifies the type of cross-validation and the indexing for the training and
validation sets.

To create a cross-validated model, you can specify only one of these four name-value arguments:
CVPartition, Holdout, KFold, or Leaveout.
Example: Suppose you create a random partition for 5-fold cross-validation on 500 observations by
using cvp = cvpartition(500,'KFold',5). Then, you can specify the cross-validated model by
using 'CVPartition',cvp.

Holdout — Fraction of data for holdout validation
scalar value in the range (0,1)

Fraction of the data used for holdout validation, specified as a scalar value in the range (0,1). If you
specify 'Holdout',p, then the software completes these steps:

1 Randomly select and reserve p*100% of the data as validation data, and train the model using
the rest of the data.

2 Store the compact, trained model in the Trained property of the cross-validated model.

To create a cross-validated model, you can specify only one of these four name-value arguments:
CVPartition, Holdout, KFold, or Leaveout.
Example: 'Holdout',0.1
Data Types: double | single

KFold — Number of folds
10 (default) | positive integer value greater than 1
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Number of folds to use in a cross-validated model, specified as a positive integer value greater than 1.
If you specify 'KFold',k, then the software completes these steps:

1 Randomly partition the data into k sets.
2 For each set, reserve the set as validation data, and train the model using the other k – 1 sets.
3 Store the k compact, trained models in a k-by-1 cell vector in the Trained property of the cross-

validated model.

To create a cross-validated model, you can specify only one of these four name-value arguments:
CVPartition, Holdout, KFold, or Leaveout.
Example: 'KFold',5
Data Types: single | double

Leaveout — Leave-one-out cross-validation flag
'off' (default) | 'on'

Leave-one-out cross-validation flag, specified as 'on' or 'off'. If you specify 'Leaveout','on',
then for each of the n observations (where n is the number of observations, excluding missing
observations, specified in the NumObservations property of the model), the software completes
these steps:

1 Reserve the one observation as validation data, and train the model using the other n – 1
observations.

2 Store the n compact, trained models in an n-by-1 cell vector in the Trained property of the
cross-validated model.

To create a cross-validated model, you can specify only one of these four name-value arguments:
CVPartition, Holdout, KFold, or Leaveout.
Example: 'Leaveout','on'

Other Classification or Regression Options

ClassNames — Names of classes to use for training
categorical array | character array | string array | logical vector | numeric vector | cell array of
character vectors

Names of classes to use for training, specified as a categorical, character, or string array; a logical or
numeric vector; or a cell array of character vectors. ClassNames must have the same data type as
the response variable in Tbl or Y.

If ClassNames is a character array, then each element must correspond to one row of the array.

Use ClassNames to:

• Specify the order of the classes during training.
• Specify the order of any input or output argument dimension that corresponds to the class order.

For example, use ClassNames to specify the order of the dimensions of Cost or the column order
of classification scores returned by predict.

• Select a subset of classes for training. For example, suppose that the set of all distinct class names
in Y is ["a","b","c"]. To train the model using observations from classes "a" and "c" only,
specify "ClassNames",["a","c"].
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The default value for ClassNames is the set of all distinct class names in the response variable in
Tbl or Y.
Example: "ClassNames",["b","g"]
Data Types: categorical | char | string | logical | single | double | cell

Cost — Misclassification cost
square matrix | structure array

Misclassification cost, specified as the comma-separated pair consisting of 'Cost' and a square
matrix or structure. If you specify:

• The square matrix Cost, then Cost(i,j) is the cost of classifying a point into class j if its true
class is i. That is, the rows correspond to the true class and the columns correspond to the
predicted class. To specify the class order for the corresponding rows and columns of Cost, also
specify the ClassNames name-value pair argument.

• The structure S, then it must have two fields:

• S.ClassNames, which contains the class names as a variable of the same data type as Y
• S.ClassificationCosts, which contains the cost matrix with rows and columns ordered as

in S.ClassNames

The default is ones(K) - eye(K), where K is the number of distinct classes.

fitensemble uses Cost to adjust the prior class probabilities specified in Prior. Then,
fitensemble uses the adjusted prior probabilities for training.
Example: 'Cost',[0 1 2 ; 1 0 2; 2 2 0]
Data Types: double | single | struct

Prior — Prior probabilities
'empirical' (default) | 'uniform' | numeric vector | structure array

Prior probabilities for each class, specified as the comma-separated pair consisting of 'Prior' and a
value in this table.

Value Description
'empirical' The class prior probabilities are the class relative

frequencies in Y.
'uniform' All class prior probabilities are equal to 1/K,

where K is the number of classes.
numeric vector Each element is a class prior probability. Order

the elements according to Mdl.ClassNames or
specify the order using the ClassNames name-
value pair argument. The software normalizes the
elements such that they sum to 1.

 fitensemble

35-2647



Value Description
structure array A structure S with two fields:

• S.ClassNames contains the class names as a
variable of the same type as Y.

• S.ClassProbs contains a vector of
corresponding prior probabilities. The
software normalizes the elements such that
they sum to 1.

fitensemble normalizes the prior probabilities in Prior to sum to 1.
Example: struct('ClassNames',
{{'setosa','versicolor','virginica'}},'ClassProbs',1:3)

Data Types: char | string | double | single | struct

Weights — Observation weights
numeric vector of positive values | name of variable in Tbl

Observation weights, specified as the comma-separated pair consisting of 'Weights' and a numeric
vector of positive values or name of a variable in Tbl. The software weighs the observations in each
row of X or Tbl with the corresponding value in Weights. The size of Weights must equal the
number of rows of X or Tbl.

If you specify the input data as a table Tbl, then Weights can be the name of a variable in Tbl that
contains a numeric vector. In this case, you must specify Weights as a character vector or string
scalar. For example, if the weights vector W is stored as Tbl.W, then specify it as 'W'. Otherwise, the
software treats all columns of Tbl, including W, as predictors or the response when training the
model.

The software normalizes Weights to sum up to the value of the prior probability in the respective
class.

By default, Weights is ones(n,1), where n is the number of observations in X or Tbl.
Data Types: double | single | char | string

Sampling Options for Boosting Methods and Bagging

FResample — Fraction of training set to resample
1 (default) | positive scalar in (0,1]

Fraction of the training set to resample for every weak learner, specified as a positive scalar in (0,1].
To use 'FResample', set Resample to 'on'.
Example: 'FResample',0.75
Data Types: single | double

Replace — Flag indicating to sample with replacement
'on' (default) | 'off'

Flag indicating sampling with replacement, specified as the comma-separated pair consisting of
'Replace' and 'off' or 'on'.
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• For 'on', the software samples the training observations with replacement.
• For 'off', the software samples the training observations without replacement. If you set

Resample to 'on', then the software samples training observations assuming uniform weights. If
you also specify a boosting method, then the software boosts by reweighting observations.

Unless you set Method to 'bag' or set Resample to 'on', Replace has no effect.
Example: 'Replace','off'

Resample — Flag indicating to resample
'off' | 'on'

Flag indicating to resample, specified as the comma-separated pair consisting of 'Resample' and
'off' or 'on'.

• If Method is a boosting method, then:

• 'Resample','on' specifies to sample training observations using updated weights as the
multinomial sampling probabilities.

• 'Resample','off'(default) specifies to reweight observations at every learning iteration.
• If Method is 'bag', then 'Resample' must be 'on'. The software resamples a fraction of the

training observations (see FResample) with or without replacement (see Replace).

If you specify to resample using Resample, then it is good practice to resample to entire data set.
That is, use the default setting of 1 for FResample.

AdaBoostM1, AdaBoostM2, LogitBoost, GentleBoost, and LSBoost Method Options

LearnRate — Learning rate for shrinkage
1 (default) | numeric scalar in (0,1]

Learning rate for shrinkage, specified as the comma-separated pair consisting of 'LearnRate' and a
numeric scalar in the interval (0,1].

To train an ensemble using shrinkage, set LearnRate to a value less than 1, for example, 0.1 is a
popular choice. Training an ensemble using shrinkage requires more learning iterations, but often
achieves better accuracy.
Example: 'LearnRate',0.1
Data Types: single | double

RUSBoost Method Options

LearnRate — Learning rate for shrinkage
1 (default) | numeric scalar in (0,1]

Learning rate for shrinkage, specified as the comma-separated pair consisting of 'LearnRate' and a
numeric scalar in the interval (0,1].

To train an ensemble using shrinkage, set LearnRate to a value less than 1, for example, 0.1 is a
popular choice. Training an ensemble using shrinkage requires more learning iterations, but often
achieves better accuracy.
Example: 'LearnRate',0.1
Data Types: single | double
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RatioToSmallest — Sampling proportion with respect to lowest-represented class
positive numeric scalar | numeric vector of positive values

Sampling proportion with respect to the lowest-represented class, specified as the comma-separated
pair consisting of 'RatioToSmallest' and a numeric scalar or numeric vector of positive values
with length equal to the number of distinct classes in the training data.

Suppose that there are K classes in the training data and the lowest-represented class has m
observations in the training data.

• If you specify the positive numeric scalar s, then fitensemble samples s*m observations from
each class, that is, it uses the same sampling proportion for each class. For more details, see
“Algorithms” on page 35-2653.

• If you specify the numeric vector [s1,s2,...,sK], then fitensemble samples si*m
observations from class i, i = 1,...,K. The elements of RatioToSmallest correspond to the order
of the class names specified using ClassNames (see “Tips” on page 35-2652).

The default value is ones(K,1), which specifies to sample m observations from each class.
Example: 'RatioToSmallest',[2,1]
Data Types: single | double

LPBoost and TotalBoost Method Options

MarginPrecision — Margin precision to control convergence speed
0.1 (default) | numeric scalar in [0,1]

Margin precision to control convergence speed, specified as the comma-separated pair consisting of
'MarginPrecision' and a numeric scalar in the interval [0,1]. MarginPrecision affects the
number of boosting iterations required for convergence.

Tip To train an ensemble using many learners, specify a small value for MarginPrecision. For
training using a few learners, specify a large value.

Example: 'MarginPrecision',0.5
Data Types: single | double

RobustBoost Method Options

RobustErrorGoal — Target classification error
0.1 (default) | nonnegative numeric scalar

Target classification error, specified as the comma-separated pair consisting of 'RobustErrorGoal'
and a nonnegative numeric scalar. The upper bound on possible values depends on the values of
RobustMarginSigma and RobustMaxMargin. However, the upper bound cannot exceed 1.

Tip For a particular training set, usually there is an optimal range for RobustErrorGoal. If you set
it too low or too high, then the software can produce a model with poor classification accuracy. Try
cross-validating to search for the appropriate value.

Example: 'RobustErrorGoal',0.05
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Data Types: single | double

RobustMarginSigma — Classification margin distribution spread
0.1 (default) | positive numeric scalar

Classification margin distribution spread over the training data, specified as the comma-separated
pair consisting of 'RobustMarginSigma' and a positive numeric scalar. Before specifying
RobustMarginSigma, consult the literature on RobustBoost, for example, [19].
Example: 'RobustMarginSigma',0.5
Data Types: single | double

RobustMaxMargin — Maximal classification margin
0 (default) | nonnegative numeric scalar

Maximal classification margin in the training data, specified as the comma-separated pair consisting
of 'RobustMaxMargin' and a nonnegative numeric scalar. The software minimizes the number of
observations in the training data having classification margins below RobustMaxMargin.
Example: 'RobustMaxMargin',1
Data Types: single | double

Random Subspace Method Options

NPredToSample — Number of predictors to sample
1 (default) | positive integer

Number of predictors to sample for each random subspace learner, specified as the comma-separated
pair consisting of 'NPredToSample' and a positive integer in the interval 1,...,p, where p is the
number of predictor variables (size(X,2) or size(Tbl,2)).
Data Types: single | double

Output Arguments
Mdl — Trained ensemble model
ClassificationBaggedEnsemble model object | ClassificationEnsemble model object |
ClassificationPartitionedEnsemble cross-validated model object |
RegressionBaggedEnsemble model object | RegressionEnsemble model object |
RegressionPartitionedEnsemble cross-validated model object

Trained ensemble model, returned as one of the model objects in this table.

Model Object Type Setting Specify Any Cross-
Validation
Options?

Method Setting Resample Setting

ClassificationBa
ggedEnsemble

'classification' No 'Bag' 'on'

ClassificationEn
semble

'classification' No Any ensemble-
aggregation method
for classification

'off'

 fitensemble

35-2651



Model Object Type Setting Specify Any Cross-
Validation
Options?

Method Setting Resample Setting

ClassificationPa
rtitionedEnsembl
e

'classification' Yes Any classification
ensemble-
aggregation method

'off' or 'on'

RegressionBagged
Ensemble

'regression' No 'Bag' 'on'

RegressionEnsemb
le

'regression' No 'LSBoost' 'off'

RegressionPartit
ionedEnsemble

'regression' Yes 'LSBoost' or
'Bag'

'off' or 'on'

The name-value pair arguments that control cross-validation are CrossVal, Holdout, KFold,
Leaveout, and CVPartition.

To reference properties of Mdl, use dot notation. For example, to access or display the cell vector of
weak learner model objects for an ensemble that has not been cross-validated, enter Mdl.Trained at
the command line.

Tips
• NLearn can vary from a few dozen to a few thousand. Usually, an ensemble with good predictive

power requires from a few hundred to a few thousand weak learners. However, you do not have to
train an ensemble for that many cycles at once. You can start by growing a few dozen learners,
inspect the ensemble performance and then, if necessary, train more weak learners using resume
for classification problems, or resume for regression problems.

• Ensemble performance depends on the ensemble setting and the setting of the weak learners.
That is, if you specify weak learners with default parameters, then the ensemble can perform
poorly. Therefore, like ensemble settings, it is good practice to adjust the parameters of the weak
learners using templates, and to choose values that minimize generalization error.

• If you specify to resample using Resample, then it is good practice to resample to entire data set.
That is, use the default setting of 1 for FResample.

• In classification problems (that is, Type is 'classification'):

• If the ensemble-aggregation method (Method) is 'bag' and:

• The misclassification cost (Cost) is highly imbalanced, then, for in-bag samples, the
software oversamples unique observations from the class that has a large penalty.

• The class prior probabilities (Prior) are highly skewed, the software oversamples unique
observations from the class that has a large prior probability.

For smaller sample sizes, these combinations can result in a low relative frequency of out-of-
bag observations from the class that has a large penalty or prior probability. Consequently, the
estimated out-of-bag error is highly variable and it can be difficult to interpret. To avoid large
estimated out-of-bag error variances, particularly for small sample sizes, set a more balanced
misclassification cost matrix using Cost or a less skewed prior probability vector using Prior.

• Because the order of some input and output arguments correspond to the distinct classes in
the training data, it is good practice to specify the class order using the ClassNames name-
value pair argument.
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• To determine the class order quickly, remove all observations from the training data that
are unclassified (that is, have a missing label), obtain and display an array of all the distinct
classes, and then specify the array for ClassNames. For example, suppose the response
variable (Y) is a cell array of labels. This code specifies the class order in the variable
classNames.

Ycat = categorical(Y);
classNames = categories(Ycat)

categorical assigns <undefined> to unclassified observations and categories
excludes <undefined> from its output. Therefore, if you use this code for cell arrays of
labels or similar code for categorical arrays, then you do not have to remove observations
with missing labels to obtain a list of the distinct classes.

• To specify that the class order from lowest-represented label to most-represented, then
quickly determine the class order (as in the previous bullet), but arrange the classes in the
list by frequency before passing the list to ClassNames. Following from the previous
example, this code specifies the class order from lowest- to most-represented in
classNamesLH.

Ycat = categorical(Y);
classNames = categories(Ycat);
freq = countcats(Ycat);
[~,idx] = sort(freq);
classNamesLH = classNames(idx);

Algorithms
• For details of ensemble-aggregation algorithms, see “Ensemble Algorithms” on page 19-41.
• If you specify Method to be a boosting algorithm and Learners to be decision trees, then the

software grows stumps by default. A decision stump is one root node connected to two terminal,
leaf nodes. You can adjust tree depth by specifying the MaxNumSplits, MinLeafSize, and
MinParentSize name-value pair arguments using templateTree.

• fitensemble generates in-bag samples by oversampling classes with large misclassification
costs and undersampling classes with small misclassification costs. Consequently, out-of-bag
samples have fewer observations from classes with large misclassification costs and more
observations from classes with small misclassification costs. If you train a classification ensemble
using a small data set and a highly skewed cost matrix, then the number of out-of-bag
observations per class can be low. Therefore, the estimated out-of-bag error can have a large
variance and can be difficult to interpret. The same phenomenon can occur for classes with large
prior probabilities.

• For the RUSBoost ensemble-aggregation method (Method), the name-value pair argument
RatioToSmallest specifies the sampling proportion for each class with respect to the lowest-
represented class. For example, suppose that there are two classes in the training data: A and B. A
have 100 observations and B have 10 observations. Also, suppose that the lowest-represented
class has m observations in the training data.

• If you set 'RatioToSmallest',2, then s*m = 2*10 = 20. Consequently, fitensemble trains
every learner using 20 observations from class A and 20 observations from class B. If you set
'RatioToSmallest',[2 2], then you obtain the same result.

• If you set 'RatioToSmallest',[2,1], then s1*m = 2*10 = 20 and s2*m = 1*10 = 10.
Consequently, fitensemble trains every learner using 20 observations from class A and 10
observations from class B.
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• For ensembles of decision trees, and for dual-core systems and above, fitensemble parallelizes
training using Intel Threading Building Blocks (TBB). For details on Intel TBB, see https://
www.intel.com/content/www/us/en/developer/tools/oneapi/onetbb.html.

Version History
Introduced in R2011a
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Extended Capabilities
GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

Usage notes and limitations:

• You cannot specify the name-value argument Method as "Bag", "LPBoost", "RobustBoost",
"Subspace", or "TotalBoost".

• fitensemble supports only decision tree learners. You can specify the name-value argument
Learners only as "tree", a learner template object or cell vector of learner template objects
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created by templateTree. If you use templateTree, you can specify the name-value arguments
Surrogate and PredictorSelection only as "off" and "allsplits", respectively.

• If you use templateTree and the data contains categorical predictors, the following apply:

• For multiclass classification, fitensemble supports only the OVAbyClass algorithm for
finding the best split.

• You can specify the name-value argument NumVariablesToSample only as "all".
• fitensemble fits the classification model on a GPU if any of the following apply:

• The input argument X is a gpuArray object.
• The input argument Tbl contains gpuArray predictor variables.

• fitensemble fits the regression model on a GPU if any of the following apply:

• The input argument X is a gpuArray object.
• The input argument Y is a gpuArray object.
• The input argument Tbl contains gpuArray variables.

• If you use templateTree to specify MaxNumSplits, note that fitensemble might not execute
faster on a GPU than a CPU for deeper decision trees.

For more information, see “Run MATLAB Functions on a GPU” (Parallel Computing Toolbox).

See Also
ClassificationEnsemble | RegressionEnsemble | ClassificationBaggedEnsemble |
RegressionBaggedEnsemble | ClassificationPartitionedEnsemble |
RegressionPartitionedEnsemble | templateDiscriminant | templateKNN | templateTree

Topics
“Supervised Learning Workflow and Algorithms” on page 19-2
“Framework for Ensemble Learning” on page 19-33
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fitnlm
Fit nonlinear regression model

Syntax
mdl = fitnlm(tbl,modelfun,beta0)
mdl = fitnlm(X,y,modelfun,beta0)
mdl = fitnlm( ___ ,modelfun,beta0,Name,Value)

Description
mdl = fitnlm(tbl,modelfun,beta0) fits the model specified by modelfun to variables in the
table or dataset array tbl, and returns the nonlinear model mdl.

fitnlm estimates model coefficients using an iterative procedure starting from the initial values in
beta0.

mdl = fitnlm(X,y,modelfun,beta0) fits a nonlinear regression model using the column vector
y as a response variable and the columns of the matrix X as predictor variables.

mdl = fitnlm( ___ ,modelfun,beta0,Name,Value) fits a nonlinear regression model with
additional options specified by one or more Name,Value pair arguments.

Examples

Nonlinear Model from Table

Create a nonlinear model for auto mileage based on the carbig data.

Load the data and create a nonlinear model.

load carbig
tbl = table(Horsepower,Weight,MPG);
modelfun = @(b,x)b(1) + b(2)*x(:,1).^b(3) + ...
    b(4)*x(:,2).^b(5);
beta0 = [-50 500 -1 500 -1];
mdl = fitnlm(tbl,modelfun,beta0)

mdl = 
Nonlinear regression model:
    MPG ~ b1 + b2*Horsepower^b3 + b4*Weight^b5

Estimated Coefficients:
          Estimate      SE        tStat       pValue 
          ________    _______    ________    ________

    b1     -49.383     119.97    -0.41164     0.68083
    b2      376.43     567.05     0.66384     0.50719
    b3    -0.78193    0.47168     -1.6578    0.098177
    b4      422.37     776.02     0.54428     0.58656
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    b5    -0.24127    0.48325    -0.49926     0.61788

Number of observations: 392, Error degrees of freedom: 387
Root Mean Squared Error: 3.96
R-Squared: 0.745,  Adjusted R-Squared 0.743
F-statistic vs. constant model: 283, p-value = 1.79e-113

Nonlinear Model from Matrix Data

Create a nonlinear model for auto mileage based on the carbig data.

Load the data and create a nonlinear model.

load carbig
X = [Horsepower,Weight];
y = MPG;
modelfun = @(b,x)b(1) + b(2)*x(:,1).^b(3) + ...
    b(4)*x(:,2).^b(5);
beta0 = [-50 500 -1 500 -1];
mdl = fitnlm(X,y,modelfun,beta0)

mdl = 
Nonlinear regression model:
    y ~ b1 + b2*x1^b3 + b4*x2^b5

Estimated Coefficients:
          Estimate      SE        tStat       pValue 
          ________    _______    ________    ________

    b1     -49.383     119.97    -0.41164     0.68083
    b2      376.43     567.05     0.66384     0.50719
    b3    -0.78193    0.47168     -1.6578    0.098177
    b4      422.37     776.02     0.54428     0.58656
    b5    -0.24127    0.48325    -0.49926     0.61788

Number of observations: 392, Error degrees of freedom: 387
Root Mean Squared Error: 3.96
R-Squared: 0.745,  Adjusted R-Squared 0.743
F-statistic vs. constant model: 283, p-value = 1.79e-113

Adjust Fitting Options in Nonlinear Model

Create a nonlinear model for auto mileage based on the carbig data. Strive for more accuracy by
lowering the TolFun option, and observe the iterations by setting the Display option.

Load the data and create a nonlinear model.

load carbig
X = [Horsepower,Weight];
y = MPG;
modelfun = @(b,x)b(1) + b(2)*x(:,1).^b(3) + ...
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    b(4)*x(:,2).^b(5);
beta0 = [-50 500 -1 500 -1];

Create options to lower TolFun and to report iterative display, and create a model using the options.

opts = statset('Display','iter','TolFun',1e-10);
mdl = fitnlm(X,y,modelfun,beta0,'Options',opts);

 
                                     Norm of         Norm of
   Iteration             SSE        Gradient           Step 
  -----------------------------------------------------------
           0     1.82248e+06
           1          678600          788810         1691.07
           2          616716     6.12739e+06         45.4738
           3          249831      3.9532e+06         293.557
           4           17675          361544         369.284
           5         11746.6         69670.5         169.079
           6         7242.22          343738         394.822
           7         6250.32          159719         452.941
           8         6172.87         91622.9         268.674
           9            6077         6957.44         100.208
          10         6076.34          6370.4         88.1905
          11         6075.75         5199.08         77.9694
          12          6075.3         4646.61          69.764
          13         6074.91         4235.96         62.9114
          14         6074.55         3885.28         57.0647
          15         6074.23          3571.1         52.0036
          16         6073.93         3286.48         47.5795
          17         6073.66         3028.34         43.6844
          18          6073.4         2794.31         40.2352
          19         6073.17         2582.15         37.1663
          20         6072.95         2389.68         34.4243
          21         6072.74         2214.84          31.965
          22         6072.55         2055.78         29.7516
          23         6072.37         1910.83          27.753
          24         6072.21         1778.51         25.9428
          25         6072.05          1657.5         24.2986
          26          6071.9         1546.65         22.8011
          27         6071.76         1444.93         21.4338
          28         6071.63         1351.44         20.1822
          29         6071.51         1265.39         19.0339
          30         6071.39         1186.06          17.978
          31         6071.28         1112.83         17.0052
          32         6071.17         1045.13          16.107
          33         6071.07         982.465         15.2762
          34         6070.98         924.389         14.5063
          35         6070.89         870.498         13.7916
          36          6070.8         820.434          13.127
          37         6070.72         773.872         12.5081
          38         6070.64         730.521         11.9307
          39         6070.57         690.117         11.3914
          40          6070.5         652.422          10.887
          41         6070.43         617.219         10.4144
          42         6070.37         584.315         9.97114
          43         6070.31          553.53         9.55489
          44         6070.25         524.703          9.1635
          45         6070.19         497.686         8.79506

35 Functions

35-2658



          46         6070.14         472.345         8.44785
          47         6070.08         448.557         8.12028
          48         6070.03          426.21         7.81092
          49         6069.99         405.201         7.51845
          50         6069.94         385.435          7.2417
          51          6069.9         366.825         6.97956
          52         6069.85         349.293         6.73104
          53         6069.81         332.764         6.49523
          54         6069.77         317.171         6.27127
          55         6069.74         302.452          6.0584
          56          6069.7          288.55         5.85591
          57         6069.66         275.411         5.66315
          58         6069.63         262.986         5.47949
          59          6069.6          251.23          5.3044
          60         6069.57           240.1         5.13734
          61         6069.54         229.558         4.97784
          62         6069.51         219.567         4.82545
          63         6069.48         210.094         4.67977
          64         6069.45         201.108          4.5404
          65         6069.43         192.578           4.407
          66          6069.4         184.479         4.27923
          67         6069.38         176.785         4.15678
          68         6069.35         169.472         4.03935
          69         6069.33         162.518          3.9267
          70         6069.31         155.903         3.81855
          71         6069.29         149.608         3.71468
          72         6069.26         143.615         3.61486
          73         6069.24         137.907         3.51889
          74         6069.22         132.468         3.42658
          75         6069.21         127.283         3.33774
          76         6069.19         122.339         3.25221
          77         6069.17         117.623         3.16981
          78         6069.15         113.123         3.09041
          79         6069.14         108.827         3.01386
          80         6069.12         104.725         2.94002
          81          6069.1         100.806         2.86877
          82         6069.09         97.0611             2.8
          83         6069.07         93.4814         2.73358
          84         6069.06         90.0584         2.66942
          85         6069.05         86.7842         2.60741
          86         6069.03         83.6513         2.54745
          87         6069.02         80.6528         2.48947
          88         6069.01         77.7821         2.43338
          89         6068.99         75.0327         2.37908
          90         6068.98          72.399         2.32652
          91         6068.97         69.8752         2.27561
          92         6068.96         67.4561         2.22629
          93         6068.95         65.1367         2.17849
          94         6068.94         62.9123         2.13216
          95         6068.93         60.7784         2.08723
          96         6068.92         58.7308         2.04364
          97         6068.91         56.7655         2.00135
          98          6068.9         54.8787          1.9603
          99         6068.89         4349.28         18.1917
         100         6068.77         2416.27         14.4439
         101         6068.71         1721.26         12.1305
         102         6068.66         1228.78          10.289
         103         6068.63         884.002         8.82019
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         104          6068.6         639.615         7.62745
         105         6068.58          464.84         6.64627
         106         6068.56         338.878         5.82964
         107         6068.55         247.508         5.14297
         108         6068.54         180.879         4.56032
         109         6068.53         132.084         4.06194
         110         6068.52         96.2342         3.63255
         111         6068.51         69.8363          3.2602
         112         6068.51         50.3734         2.93541
         113          6068.5         36.0206         2.65062
         114          6068.5         25.4451         2.39969
         115         6068.49         17.6692         2.17764
         116         6068.49         1027.39         14.0164
         117         6068.48         544.039         5.31369
         118         6068.48         94.0567         2.86662
         119         6068.48         113.636         3.73504
         120         6068.48         0.51821         1.37054
         121         6068.48         4.59524        0.912906
         122         6068.48         1.56406         0.62935
         123         6068.48         1.13837         0.43259
         124         6068.48        0.296041        0.297545
Iterations terminated: relative change in SSE less than OPTIONS.TolFun

Specify Nonlinear Regression Using Model Name Syntax

Specify a nonlinear regression model for estimation using a function handle or model syntax.

Load sample data.

S = load('reaction');
X = S.reactants;
y = S.rate;
beta0 = S.beta;

Use a function handle to specify the Hougen-Watson model for the rate data.

mdl = fitnlm(X,y,@hougen,beta0)

mdl = 
Nonlinear regression model:
    y ~ hougen(b,X)

Estimated Coefficients:
          Estimate       SE       tStat     pValue 
          ________    ________    ______    _______

    b1      1.2526     0.86701    1.4447    0.18654
    b2    0.062776    0.043561    1.4411    0.18753
    b3    0.040048    0.030885    1.2967    0.23089
    b4     0.11242    0.075157    1.4957    0.17309
    b5      1.1914     0.83671    1.4239     0.1923

Number of observations: 13, Error degrees of freedom: 8
Root Mean Squared Error: 0.193
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R-Squared: 0.999,  Adjusted R-Squared 0.998
F-statistic vs. zero model: 3.91e+03, p-value = 2.54e-13

Alternatively, you can use an expression to specify the Hougen-Watson model for the rate data.

myfun = 'y~(b1*x2-x3/b5)/(1+b2*x1+b3*x2+b4*x3)';
mdl2 = fitnlm(X,y,myfun,beta0)

mdl2 = 
Nonlinear regression model:
    y ~ (b1*x2 - x3/b5)/(1 + b2*x1 + b3*x2 + b4*x3)

Estimated Coefficients:
          Estimate       SE       tStat     pValue 
          ________    ________    ______    _______

    b1      1.2526     0.86701    1.4447    0.18654
    b2    0.062776    0.043561    1.4411    0.18753
    b3    0.040048    0.030885    1.2967    0.23089
    b4     0.11242    0.075157    1.4957    0.17309
    b5      1.1914     0.83671    1.4239     0.1923

Number of observations: 13, Error degrees of freedom: 8
Root Mean Squared Error: 0.193
R-Squared: 0.999,  Adjusted R-Squared 0.998
F-statistic vs. zero model: 3.91e+03, p-value = 2.54e-13

Estimate Nonlinear Regression Using Robust Fitting Options

Generate sample data from the nonlinear regression model

y = b1 + b2exp(− b3x) + ε,

where b1, b2, and b3 are coefficients, and the error term is normally distributed with mean 0 and
standard deviation 0.5.

modelfun = @(b,x)(b(1)+b(2)*exp(-b(3)*x));

rng('default') % for reproducibility
b = [1;3;2];
x = exprnd(2,100,1);
y = modelfun(b,x) + normrnd(0,0.5,100,1);

Set robust fitting options.

opts = statset('nlinfit');
opts.RobustWgtFun = 'bisquare';

Fit the nonlinear model using the robust fitting options. Here, use an expression to specify the model.

b0 = [2;2;2];
modelstr = 'y ~ b1 + b2*exp(-b3*x)';

mdl = fitnlm(x,y,modelstr,b0,'Options',opts)
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mdl = 
Nonlinear regression model (robust fit):
    y ~ b1 + b2*exp( - b3*x)

Estimated Coefficients:
          Estimate      SE       tStat       pValue  
          ________    _______    ______    __________

    b1     1.0218     0.07202    14.188    2.1344e-25
    b2     3.6619     0.25429    14.401     7.974e-26
    b3     2.9732     0.38496    7.7232    1.0346e-11

Number of observations: 100, Error degrees of freedom: 97
Root Mean Squared Error: 0.501
R-Squared: 0.807,  Adjusted R-Squared 0.803
F-statistic vs. constant model: 203, p-value = 2.34e-35

Fit Nonlinear Regression Model Using Weights Function Handle

Load sample data.

S = load('reaction');
X = S.reactants;
y = S.rate;
beta0 = S.beta;

Specify a function handle for observation weights. The function accepts the model fitted values as
input, and returns a vector of weights.

 a = 1; b = 1;
 weights = @(yhat) 1./((a + b*abs(yhat)).^2);

Fit the Hougen-Watson model to the rate data using the specified observation weights function.

mdl = fitnlm(X,y,@hougen,beta0,'Weights',weights)

mdl = 
Nonlinear regression model:
    y ~ hougen(b,X)

Estimated Coefficients:
          Estimate       SE       tStat     pValue 
          ________    ________    ______    _______

    b1     0.83085     0.58224     1.427    0.19142
    b2     0.04095    0.029663    1.3805    0.20477
    b3    0.025063    0.019673     1.274    0.23842
    b4    0.080053    0.057812    1.3847    0.20353
    b5      1.8261       1.281    1.4256    0.19183

Number of observations: 13, Error degrees of freedom: 8
Root Mean Squared Error: 0.037
R-Squared: 0.998,  Adjusted R-Squared 0.998
F-statistic vs. zero model: 1.14e+03, p-value = 3.49e-11
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Nonlinear Regression Model Using Nonconstant Error Model

Load sample data.

S = load('reaction');
X = S.reactants;
y = S.rate;
beta0 = S.beta;

Fit the Hougen-Watson model to the rate data using the combined error variance model.

mdl = fitnlm(X,y,@hougen,beta0,'ErrorModel','combined')

mdl = 
Nonlinear regression model:
    y ~ hougen(b,X)

Estimated Coefficients:
          Estimate       SE       tStat     pValue 
          ________    ________    ______    _______

    b1      1.2526     0.86702    1.4447    0.18654
    b2    0.062776    0.043561    1.4411    0.18753
    b3    0.040048    0.030885    1.2967    0.23089
    b4     0.11242    0.075158    1.4957    0.17309
    b5      1.1914     0.83671    1.4239     0.1923

Number of observations: 13, Error degrees of freedom: 8
Root Mean Squared Error: 1.27
R-Squared: 0.999,  Adjusted R-Squared 0.998
F-statistic vs. zero model: 3.91e+03, p-value = 2.54e-13

Input Arguments
tbl — Input data
table | dataset array

Input data including predictor and response variables, specified as a table or dataset array. The
predictor variables and response variable must be numeric.

• If you specify modelfun using a formula, the model specification in the formula specifies the
predictor and response variables.

• If you specify modelfun using a function handle, the last variable is the response variable and the
others are the predictor variables, by default. You can set a different column as the response
variable by using the ResponseVar name-value pair argument. To select a subset of the columns
as predictors, use the PredictorVars name-value pair argument.

The variable names in a table do not have to be valid MATLAB identifiers, but the names must not
contain leading or trailing blanks. If the names are not valid, you cannot specify modelfun using a
formula.
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You can verify the variable names in tbl by using the isvarname function. If the variable names are
not valid, then you can convert them by using the matlab.lang.makeValidName function.
Data Types: table

X — Predictor variables
matrix

Predictor variables, specified as an n-by-p matrix, where n is the number of observations and p is the
number of predictor variables. Each column of X represents one variable, and each row represents
one observation.
Data Types: single | double

y — Response variable
vector

Response variable, specified as an n-by-1 vector, where n is the number of observations. Each entry in
y is the response for the corresponding row of X.
Data Types: single | double

modelfun — Functional form of the model
function handle | character vector or string scalar formula in the form 'y ~
f(b1,b2,...,bj,x1,x2,...,xk)'

Functional form of the model, specified as either of the following.

• Function handle @modelfun or @(b,x)modelfun, where

• b is a coefficient vector with the same number of elements as beta0.
• x is a matrix with the same number of columns as X or the number of predictor variable

columns of tbl.

modelfun(b,x) returns a column vector that contains the same number of rows as x. Each row
of the vector is the result of evaluating modelfun on the corresponding row of x. In other words,
modelfun is a vectorized function, one that operates on all data rows and returns all evaluations
in one function call. modelfun should return real numbers to obtain meaningful coefficients.

• Character vector or string scalar formula in the form 'y ~ f(b1,b2,...,bj,x1,x2,...,xk)',
where f represents a scalar function of the scalar coefficient variables b1,...,bj and the scalar
data variables x1,...,xk. The variable names in the formula must be valid MATLAB identifiers.

Data Types: function_handle | char | string

beta0 — Coefficients
numeric vector

Coefficients for the nonlinear model, specified as a numeric vector. NonLinearModel starts its
search for optimal coefficients from beta0.
Data Types: single | double

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

35 Functions

35-2664



Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: 'ErrorModel','combined','Exclude',2,'Options',opt specifies the error model
as the combined model, excludes the second observation from the fit, and uses the options defined in
the structure opt to control the iterative fitting procedure.

CoefficientNames — Names of the model coefficients
{'b1','b2',...,'bk'} (default) | string array | cell array of character vectors

Names of the model coefficients, specified as a string array or cell array of character vectors.
Data Types: string | cell

ErrorModel — Form of the error variance model
'constant' (default) | 'proportional' | 'combined'

Form of the error variance model, specified as one of the following. Each model defines the error
using a standard mean-zero and unit-variance variable e in combination with independent
components: the function value f, and one or two parameters a and b

'constant' (default) y = f + ae
'proportional' y = f + bfe
'combined' y = f + a + b f e

The only allowed error model when using Weights is 'constant'.

Note options.RobustWgtFun must have value [] when using an error model other than
'constant'.

Example: 'ErrorModel','proportional'

ErrorParameters — Initial estimates of the error model parameters
numeric array

Initial estimates of the error model parameters for the chosen ErrorModel, specified as a numeric
array.

Error Model Parameters Default Values
'constant' a 1
'proportional' b 1
'combined' a, b [1,1]

You can only use the 'constant' error model when using Weights.

Note options.RobustWgtFun must have value [] when using an error model other than
'constant'.

For example, if 'ErrorModel' has the value 'combined', you can specify the starting value 1 for a
and the starting value 2 for b as follows.
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Example: 'ErrorParameters',[1,2]
Data Types: single | double

Exclude — Observations to exclude
logical or numeric index vector

Observations to exclude from the fit, specified as the comma-separated pair consisting of 'Exclude'
and a logical or numeric index vector indicating which observations to exclude from the fit.

For example, you can exclude observations 2 and 3 out of 6 using either of the following examples.
Example: 'Exclude',[2,3]
Example: 'Exclude',logical([0 1 1 0 0 0])
Data Types: single | double | logical

Options — Options for controlling the iterative fitting procedure
[ ] (default) | structure

Options for controlling the iterative fitting procedure, specified as a structure created by statset.
The relevant fields are the nonempty fields in the structure returned by the call
statset('fitnlm').

Option Meaning Default
DerivStep Relative difference used in finite difference derivative

calculations. A positive scalar, or a vector of positive
scalars the same size as the vector of parameters
estimated by the Statistics and Machine Learning
Toolbox function using the options structure.

eps^(1/3)

Display Amount of information displayed by the fitting algorithm.

• 'off' — Displays no information.
• 'final' — Displays the final output.
• 'iter' — Displays iterative output to the Command

Window.

'off'

FunValCheck Character vector or string scalar indicating to check for
invalid values, such as NaN or Inf, from the model
function.

'on'

MaxIter Maximum number of iterations allowed. Positive integer. 200
RobustWgtFun Weight function for robust fitting. Can also be a function

handle that accepts a normalized residual as input and
returns the robust weights as output. If you use a
function handle, give a Tune constant. See “Robust
Options” on page 35-2668

[]

Tune Tuning constant used in robust fitting to normalize the
residuals before applying the weight function. A positive
scalar. Required if the weight function is specified as a
function handle.

See “Robust Options” on
page 35-2668 for the
default, which depends
on RobustWgtFun.
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Option Meaning Default
TolFun Termination tolerance for the objective function value.

Positive scalar.
1e-8

TolX Termination tolerance for the parameters. Positive scalar. 1e-8

Data Types: struct

PredictorVars — Predictor variables
string array | cell array of character vectors | logical or numeric index vector

Predictor variables to use in the fit, specified as the comma-separated pair consisting of
'PredictorVars' and either a string array or cell array of character vectors of the variable names
in the table or dataset array tbl, or a logical or numeric index vector indicating which columns are
predictor variables.

The string values or character vectors should be among the names in tbl, or the names you specify
using the 'VarNames' name-value pair argument.

The default is all variables in X, or all variables in tbl except for ResponseVar.

For example, you can specify the second and third variables as the predictor variables using either of
the following examples.
Example: 'PredictorVars',[2,3]
Example: 'PredictorVars',logical([0 1 1 0 0 0])
Data Types: single | double | logical | string | cell

ResponseVar — Response variable
last column of tbl (default) | variable name | logical or numeric index vector

Response variable to use in the fit, specified as the comma-separated pair consisting of
'ResponseVar' and either a variable name in the table or dataset array tbl, or a logical or numeric
index vector indicating which column is the response variable.

If you specify a model, it specifies the response variable. Otherwise, when fitting a table or dataset
array, 'ResponseVar' indicates which variable fitnlm should use as the response.

For example, you can specify the fourth variable, say yield, as the response out of six variables, in
one of the following ways.
Example: 'ResponseVar','yield'
Example: 'ResponseVar',[4]
Example: 'ResponseVar',logical([0 0 0 1 0 0])
Data Types: single | double | logical | char | string

VarNames — Names of variables
{'x1','x2',...,'xn','y'} (default) | string array | cell array of character vectors

Names of variables, specified as the comma-separated pair consisting of 'VarNames' and a string
array or cell array of character vectors including the names for the columns of X first, and the name
for the response variable y last.
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'VarNames' is not applicable to variables in a table or dataset array, because those variables already
have names.
Example: 'VarNames',{'Horsepower','Acceleration','Model_Year','MPG'}
Data Types: string | cell

Weights — Observation weights
ones(n,1) (default) | vector of nonnegative scalar values | function handle

Observation weights, specified as a vector of nonnegative scalar values or function handle.

• If you specify a vector, then it must have n elements, where n is the number of rows in tbl or y.
• If you specify a function handle, then the function must accept a vector of predicted response

values as input, and return a vector of real positive weights as output.

Given weights, W, NonLinearModel estimates the error variance at observation i by MSE*(1/
W(i)), where MSE is the mean squared error.
Data Types: single | double | function_handle

Output Arguments
mdl — Nonlinear model
NonLinearModel object

Nonlinear model representing a least-squares fit of the response to the data, returned as a
NonLinearModel object.

If the Options structure contains a nonempty RobustWgtFun field, the model is not a least-squares
fit, but uses the RobustWgtFun robust fitting function.

For properties and methods of the nonlinear model object, mdl, see the NonLinearModel class page.

More About
Robust Options

Weight Function Equation Default Tuning
Constant

'andrews' w = (abs(r)<pi) .* sin(r) ./ r 1.339
'bisquare'
(default)

w = (abs(r)<1) .* (1 - r.^2).^2 4.685

'cauchy' w = 1 ./ (1 + r.^2) 2.385
'fair' w = 1 ./ (1 + abs(r)) 1.400
'huber' w = 1 ./ max(1, abs(r)) 1.345
'logistic' w = tanh(r) ./ r 1.205
'talwar' w = 1 * (abs(r)<1) 2.795
'welsch' w = exp(-(r.^2)) 2.985
[] No robust fitting —
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Algorithms
• fitnlm uses the same fitting algorithm as nlinfit.
• fitnlm considers NaN values in tbl, X, and y to be missing values. When fitting a model, fitnlm

does not use observations with missing values or observations at which modelfun returns NaN
values. The ObservationInfo property of a fitted model contains information regarding whether
or not fitnlm uses each observation in the fit.

Version History
Introduced in R2013b

References
[1] Seber, G. A. F., and C. J. Wild. Nonlinear Regression. Hoboken, NJ: Wiley-Interscience, 2003.

[2] DuMouchel, W. H., and F. L. O'Brien. “Integrating a Robust Option into a Multiple Regression
Computing Environment.” Computer Science and Statistics: Proceedings of the 21st
Symposium on the Interface. Alexandria, VA: American Statistical Association, 1989.

[3] Holland, P. W., and R. E. Welsch. “Robust Regression Using Iteratively Reweighted Least-Squares.”
Communications in Statistics: Theory and Methods, A6, 1977, pp. 813–827.

See Also
NonLinearModel | nlinfit

Topics
“Examine Quality and Adjust the Fitted Nonlinear Model” on page 13-6
“Predict or Simulate Responses Using a Nonlinear Model” on page 13-9
“Nonlinear Regression Workflow” on page 13-13
“Nonlinear Regression” on page 13-2
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fitPosterior
Fit posterior probabilities for support vector machine (SVM) classifier

Syntax
ScoreSVMModel = fitPosterior(SVMModel)
[ScoreSVMModel,ScoreTransform] = fitPosterior(SVMModel)
[ScoreSVMModel,ScoreTransform] = fitPosterior(SVMModel,Name,Value)

Description
ScoreSVMModel = fitPosterior(SVMModel) returns a trained support vector machine (SVM)
classifier ScoreSVMModel containing the optimal score-to-posterior-probability transformation
function for two-class learning. For more details, see “Algorithms” on page 35-2678.

[ScoreSVMModel,ScoreTransform] = fitPosterior(SVMModel) additionally returns the
optimal score-to-posterior-probability transformation function parameters.

[ScoreSVMModel,ScoreTransform] = fitPosterior(SVMModel,Name,Value) uses
additional options specified by one or more name-value pair arguments. For example, you can specify
the number of folds or the holdout sample proportion.

Examples

Estimate In-Sample Posterior Probabilities of SVM Classifier

Load the ionosphere data set. This data set has 34 predictors and 351 binary responses for radar
returns, either bad ('b') or good ('g').

load ionosphere

Train a support vector machine (SVM) classifier. Standardize the data and specify that 'g' is the
positive class.

SVMModel = fitcsvm(X,Y,'ClassNames',{'b','g'},'Standardize',true);

SVMModel is a ClassificationSVM classifier.

Fit the optimal score-to-posterior-probability transformation function.

rng(1); % For reproducibility
ScoreSVMModel = fitPosterior(SVMModel)

ScoreSVMModel = 
  ClassificationSVM
             ResponseName: 'Y'
    CategoricalPredictors: []
               ClassNames: {'b'  'g'}
           ScoreTransform: '@(S)sigmoid(S,-9.481840e-01,-1.218721e-01)'
          NumObservations: 351

35 Functions

35-2670



                    Alpha: [90x1 double]
                     Bias: -0.1343
         KernelParameters: [1x1 struct]
                       Mu: [0.8917 0 0.6413 0.0444 0.6011 0.1159 0.5501 ... ]
                    Sigma: [0.3112 0 0.4977 0.4414 0.5199 0.4608 0.4927 ... ]
           BoxConstraints: [351x1 double]
          ConvergenceInfo: [1x1 struct]
          IsSupportVector: [351x1 logical]
                   Solver: 'SMO'

  Properties, Methods

Because the classes are inseparable, the score transformation function
(ScoreSVMModel.ScoreTransform) is the sigmoid function.

Estimate scores and positive class posterior probabilities for the training data. Display the results for
the first 10 observations.

[label,scores] = resubPredict(SVMModel);
[~,postProbs] = resubPredict(ScoreSVMModel);
table(Y(1:10),label(1:10),scores(1:10,2),postProbs(1:10,2),'VariableNames',...
    {'TrueLabel','PredictedLabel','Score','PosteriorProbability'})

ans=10×4 table
    TrueLabel    PredictedLabel     Score     PosteriorProbability
    _________    ______________    _______    ____________________

      {'g'}          {'g'}          1.4861           0.82215      
      {'b'}          {'b'}         -1.0002           0.30439      
      {'g'}          {'g'}          1.8686           0.86917      
      {'b'}          {'b'}         -2.6456          0.084197      
      {'g'}          {'g'}          1.2806           0.79185      
      {'b'}          {'b'}         -1.4617           0.22026      
      {'g'}          {'g'}          2.1671           0.89814      
      {'b'}          {'b'}         -5.7089         0.0050106      
      {'g'}          {'g'}          2.4796           0.92223      
      {'b'}          {'b'}         -2.7812          0.074801      

Plot Posterior Probability Contours for Multiple Classes

Train a multiclass SVM classifier through the process of one-versus-all (OVA) classification, and then
plot probability contours for each class. To implement OVA directly, see fitcecoc.

Load Fisher's iris data set. Use the petal lengths and widths as the predictor data.

load fisheriris
X = meas(:,3:4);
Y = species;

Examine a scatter plot of the data.

figure
gscatter(X(:,1),X(:,2),Y);
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title('{\bf Scatter Diagram of Iris Measurements}');
xlabel('Petal length');
ylabel('Petal width');
legend('Location','Northwest'); 
axis tight

Train three binary SVM classifiers that separate each type of iris from the others. Assume that a
radial basis function is an appropriate kernel for each, and allow the algorithm to choose a kernel
scale. Define the class order.

classNames = {'setosa'; 'virginica'; 'versicolor'};
numClasses = size(classNames,1);
inds = cell(3,1); % Preallocation
SVMModel = cell(3,1);

rng(1); % For reproducibility
for j = 1:numClasses
    inds{j} = strcmp(Y,classNames{j});  % OVA classification
    SVMModel{j} = fitcsvm(X,inds{j},'ClassNames',[false true],...
        'Standardize',true,'KernelFunction','rbf','KernelScale','auto');
end

fitcsvm uses a heuristic procedure that involves subsampling to compute the value of the kernel
scale.

Fit the optimal score-to-posterior-probability transformation function for each classifier.
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for j = 1:numClasses
    SVMModel{j} = fitPosterior(SVMModel{j});
end

Warning: Classes are perfectly separated. The optimal score-to-posterior transformation is a step function.

Define a grid to plot the posterior probability contours. Estimate the posterior probabilities over the
grid for each classifier.

d = 0.02;
[x1Grid,x2Grid] = meshgrid(min(X(:,1)):d:max(X(:,1)),...
    min(X(:,2)):d:max(X(:,2)));
xGrid = [x1Grid(:),x2Grid(:)];

posterior = cell(3,1); 
for j = 1:numClasses
    [~,posterior{j}] = predict(SVMModel{j},xGrid);
end

For each SVM classifier, plot the posterior probability contour under the scatter plot of the data.

figure
h = zeros(numClasses + 1,1); % Preallocation for graphics handles
for j = 1:numClasses
subplot(2,2,j)
contourf(x1Grid,x2Grid,reshape(posterior{j}(:,2),size(x1Grid,1),size(x1Grid,2)));
hold on
h(1:numClasses) = gscatter(X(:,1),X(:,2),Y);
title(sprintf('Posteriors for %s Class',classNames{j}));
xlabel('Petal length');
ylabel('Petal width');
legend off
axis tight
hold off
end
h(numClasses + 1) = colorbar('Location','EastOutside',...
    'Position',[[0.8,0.1,0.05,0.4]]);
set(get(h(numClasses + 1),'YLabel'),'String','Posterior','FontSize',16);
legend(h(1:numClasses),'Location',[0.6,0.2,0.1,0.1]);
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Fit Optimal Posterior Probability Function Using Holdout Cross-Validation

Estimate the score-to-posterior-probability transformation function after training an SVM classifier.
Use cross-validation during the estimation to reduce bias, and compare the run times for 10-fold
cross-validation and holdout cross-validation.

Load the ionosphere data set.

load ionosphere

Train an SVM classifier. Standardize the data and specify that 'g' is the positive class.

SVMModel = fitcsvm(X,Y,'ClassNames',{'b','g'},'Standardize',true);

SVMModel is a ClassificationSVM classifier.

Fit the optimal score-to-posterior-probability transformation function. Compare the run times from
using 10-fold cross-validation (the default) and a 10% holdout test sample.

rng(1); % For reproducibility
tic;    % Start the stopwatch
SVMModel_10FCV = fitPosterior(SVMModel);
toc     % Stop the stopwatch and display the run time

Elapsed time is 4.083290 seconds.
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tic;
SVMModel_HO = fitPosterior(SVMModel,'Holdout',0.10);
toc

Elapsed time is 0.426626 seconds.

Although both run times are short because the data set is relatively small, SVMModel_HO fits the
score transformation function much faster than SVMModel_10FCV. You can specify holdout cross-
validation (instead of the default 10-fold cross validation) to reduce run time for larger data sets.

Input Arguments
SVMModel — Full, trained SVM classifier
ClassificationSVM classifier

Full, trained SVM classifier, specified as a ClassificationSVM model trained with fitcsvm.

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: fitPosterior(SVMModel,'KFold',5) uses five folds in a cross-validated model.

CVPartition — Cross-validation partition
[] (default) | cvpartition partition

Cross-validation partition used to compute the transformation function, specified as the comma-
separated pair consisting of 'CVPartition' and a cvpartition partition object as created by
cvpartition. You can use only one of these four options at a time for creating a cross-validated
model: 'KFold', 'Holdout', 'Leaveout', or 'CVPartition'.

The crossval name-value pair argument of fitcsvm splits the data into subsets using
cvpartition.
Example: Suppose you create a random partition for 5-fold cross-validation on 500 observations by
using cvp = cvpartition(500,'KFold',5). Then, you can specify the cross-validated model by
using 'CVPartition',cvp.

Holdout — Fraction of data for holdout validation
scalar value in the range (0,1)

Fraction of the data for holdout validation used to compute the transformation function, specified as
the comma-separated pair consisting of 'Holdout' and a scalar value in the range (0,1). Holdout
validation tests the specified fraction of the data and uses the remaining data for training.

You can use only one of these four options at a time for creating a cross-validated model: 'KFold',
'Holdout', 'Leaveout', or 'CVPartition'.
Example: 'Holdout',0.1
Data Types: double | single
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KFold — Number of folds
10 (default) | positive integer value greater than 1

Number of folds to use when computing the transformation function, specified as the comma-
separated pair consisting of 'KFold' and a positive integer value greater than 1.

You can use only one of these four options at a time for creating a cross-validated model: 'KFold',
'Holdout', 'Leaveout', or 'CVPartition'.
Example: 'KFold',8
Data Types: single | double

Leaveout — Leave-one-out cross-validation flag
'off' (default) | 'on'

Leave-one-out cross-validation flag indicating whether to use leave-one-out cross-validation to
compute the transformation function, specified as the comma-separated pair consisting of
'Leaveout' and 'on' or 'off'. Use leave-one-out cross-validation by specifying
'Leaveout','on'.

You can use only one of these four options at a time for creating a cross-validated model: 'KFold',
'Holdout', 'Leaveout', or 'CVPartition'.
Example: 'Leaveout','on'

Output Arguments
ScoreSVMModel — Trained SVM classifier
ClassificationSVM classifier

Trained SVM classifier, returned as a ClassificationSVM classifier. The trained classifier contains
the estimated score-to-posterior-probability transformation function.

To estimate posterior probabilities for the training set observations, pass ScoreSVMModel to
resubPredict.

To estimate posterior probabilities for new observations, pass the new observations and
ScoreSVMModel to predict.

ScoreTransform — Optimal score-to-posterior-probability transformation function
parameters
structure array

Optimal score-to-posterior-probability transformation function parameters, returned as a structure
array.

• If the value of the Type field of ScoreTransform is sigmoid, then ScoreTransform also has
these fields:

• Slope: The value of A in the sigmoid function on page 35-2686
• Intercept: The value of B in the sigmoid function

• If the value of the Type field of ScoreTransform is step, then ScoreTransform also has these
fields:
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• PositiveClassProbability: The value of π in the step function on page 35-2686. This
value represents the probability that an observation is in the positive class or the posterior
probability that an observation is in the positive class given that its score is in the interval
(LowerBound,UpperBound).

• LowerBound: The value max
yn = − 1

sn in the step function. This value represents the lower bound

of the score interval that assigns observations with scores in the interval the posterior
probability of being in the positive class PositiveClassProbability. Any observation with
a score less than LowerBound has the posterior probability of being in the positive class equal
to 0.

• UpperBound: The value min
yn = + 1

sn in the step function. This value represents the upper bound

of the score interval that assigns observations with scores in the interval the posterior
probability of being in the positive class PositiveClassProbability. Any observation with
a score greater than UpperBound has the posterior probability of being in the positive class
equal to 1.

• If the value of the Type field of ScoreTransform is constant, then
ScoreTransform.PredictedClass contains the name of the class prediction.

This result is the same as SVMModel.ClassNames. The posterior probability of an observation
being in ScoreTransform.PredictedClass is always 1.

More About
Sigmoid Function

The sigmoid function that maps score sj corresponding to observation j to the positive class posterior
probability is

P(s j) = 1
1 + exp(As j + B) .

If the value of the Type field of ScoreTransform is sigmoid, then parameters A and B correspond
to the fields Scale and Intercept of ScoreTransform, respectively.

Step Function

The step function that maps score sj corresponding to observation j to the positive class posterior
probability is

P s j =

0; s < max
yk = − 1

sk

π; max
yk = − 1

sk ≤ s j ≤ min
yk = + 1

sk

1; s j > min
yk = + 1

sk

,

where:

• sj is the score of observation j.
• +1 and –1 denote the positive and negative classes, respectively.
• π is the prior probability that an observation is in the positive class.
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If the value of the Type field of ScoreTransform is step, then the quantities max
yk = − 1

sk and min
yk = + 1

sk

correspond to the fields LowerBound and UpperBound of ScoreTransform, respectively.

Constant Function

The constant function maps all scores in a sample to posterior probabilities 1 or 0.

If all observations have posterior probability 1, then they are expected to come from the positive
class.

If all observations have posterior probability 0, then they are not expected to come from the positive
class.

Tips
• This process describes one way to predict positive class posterior probabilities.

1 Train an SVM classifier by passing the data to fitcsvm. The result is a trained SVM classifier,
such as SVMModel, that stores the data. The software sets the score transformation function
property (SVMModel.ScoreTransformation) to none.

2 Pass the trained SVM classifier SVMModel to fitSVMPosterior or fitPosterior. The
result, such as, ScoreSVMModel, is the same trained SVM classifier as SVMModel, except the
software sets ScoreSVMModel.ScoreTransformation to the optimal score transformation
function.

3 Pass the predictor data matrix and the trained SVM classifier containing the optimal score
transformation function (ScoreSVMModel) to predict. The second column in the second
output argument of predict stores the positive class posterior probabilities corresponding to
each row of the predictor data matrix.

If you skip step 2, then predict returns the positive class score rather than the positive class
posterior probability.

• After fitting posterior probabilities, you can generate C/C++ code that predicts labels for new
data. Generating C/C++ code requires MATLAB Coder. For details, see “Introduction to Code
Generation” on page 34-2.

Algorithms
The software fits the appropriate score-to-posterior-probability transformation function by using the
SVM classifier SVMModel and by conducting 10-fold cross-validation using the stored predictor data
(SVMModel.X) and the class labels (SVMModel.Y), as outlined in [1]. The transformation function
computes the posterior probability that an observation is classified into the positive class
(SVMModel.Classnames(2)).

• If the classes are inseparable, then the transformation function is the sigmoid function on page 35-
2686.

• If the classes are perfectly separable, then the transformation function is the step function on
page 35-2686.

• In two-class learning, if one of the two classes has a relative frequency of 0, then the
transformation function is the constant function on page 35-2810. The fitPosterior function is
not appropriate for one-class learning.
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• The software stores the optimal score-to-posterior-probability transformation function in
ScoreSVMModel.ScoreTransform.

If you re-estimate the score-to-posterior-probability transformation function, that is, if you pass an
SVM classifier to fitPosterior or fitSVMPosterior and its ScoreTransform property is not
none, then the software:

• Displays a warning
• Resets the original transformation function to 'none' before estimating the new one

Alternative Functionality
You can also fit the posterior probability function by using fitSVMPosterior. This function is
similar to fitPosterior, except it is more broad because it accepts a wider range of SVM classifier
types.

Version History
Introduced in R2014a

References
[1] Platt, J. “Probabilistic outputs for support vector machines and comparisons to regularized

likelihood methods.” Advances in Large Margin Classifiers. Cambridge, MA: The MIT Press,
2000, pp. 61–74.

Extended Capabilities
GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

This function fully supports GPU arrays. For more information, see “Run MATLAB Functions on a
GPU” (Parallel Computing Toolbox).

See Also
ClassificationSVM | predict | fitSVMPosterior | fitcsvm
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fitPosterior
Package: classreg.learning.classif

Fit posterior probabilities for compact support vector machine (SVM) classifier

Syntax
ScoreSVMModel = fitPosterior(SVMModel,TBL,Y)
ScoreSVMModel = fitPosterior(SVMModel,X,Y)
[ScoreSVMModel,ScoreTransform] = fitPosterior( ___ )

Description
ScoreSVMModel = fitPosterior(SVMModel,TBL,Y) returns a trained support vector machine
(SVM) classifier ScoreSVMModel containing the optimal score-to-posterior-probability
transformation function for two-class learning. For more details, see “Algorithms” on page 35-2687. If
you train SVMModel using a table, then you must use a table as input for fitPosterior.

ScoreSVMModel = fitPosterior(SVMModel,X,Y) returns a trained SVM classifier
ScoreSVMModel containing the optimal score-to-posterior-probability transformation function for
two-class learning. If you train SVMModel using a matrix, then you must use a matrix as input for
fitPosterior.

[ScoreSVMModel,ScoreTransform] = fitPosterior( ___ ) additionally returns the optimal
score-to-posterior-probability transformation function parameters (ScoreTransform) for any of the
input argument combinations in the previous syntaxes.

Examples

Estimate Posterior Probabilities for Data with Inseparable Classes

Load the ionosphere data set. Reserve 20 random observations of the data, and consider this set
new data.

load ionosphere
n = size(X,1);
rng(1);  % For reproducibility

indx = ~ismember([1:n],randsample(n,20)); % Indices for the training data

The classes of this data set are inseparable.

Train an SVM classifier using the training data. Standardize the data and specify that 'g' is the
positive class.

SVMModel = fitcsvm(X(indx,:),Y(indx),'ClassNames',{'b','g'},...
    'Standardize',true);

SVMModel is a ClassificationSVM classifier.
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Use the new data set to estimate the optimal score-to-posterior-probability transformation function
for mapping scores to the posterior probability of an observation being classified as g. For efficiency,
make a compact version of SVMModel, and pass it and the new data to fitPosterior.

CompactSVMModel = compact(SVMModel);
[ScoreCSVMModel,ScoreParameters] = fitPosterior(CompactSVMModel,...
    X(~indx,:),Y(~indx));

ScoreTransform = ScoreCSVMModel.ScoreTransform

ScoreTransform = 
'@(S)sigmoid(S,-1.099032e+00,4.521358e-01)'

ScoreParameters

ScoreParameters = struct with fields:
         Type: 'sigmoid'
        Slope: -1.0990
    Intercept: 0.4521

ScoreTransform is the optimal score transformation function. ScoreParameters is a structure
array with three fields: the score transformation function name (Type), the sigmoid slope (Slope),
and the sigmoid intercept estimates (Intercept).

Alternatively, you can pass SVMModel and the new data to fitSVMPosterior, but this process is not
as efficient.

Estimate the posterior probabilities that the observations in the new data are in class g.

[labels,postProbs] = predict(ScoreCSVMModel,X(~indx,:));
table(Y(~indx),labels,postProbs(:,2),...
    'VariableNames',{'TrueLabel','PredictedLabel','PosteriorProbability'})

ans=20×3 table
    TrueLabel    PredictedLabel    PosteriorProbability
    _________    ______________    ____________________

      {'g'}          {'g'}                 0.78441     
      {'b'}          {'b'}                0.024573     
      {'g'}          {'g'}                 0.82404     
      {'b'}          {'b'}               0.0061609     
      {'b'}          {'b'}              3.6018e-06     
      {'b'}          {'b'}                 0.15688     
      {'b'}          {'g'}                 0.96219     
      {'b'}          {'b'}              6.1253e-09     
      {'b'}          {'b'}               0.0019635     
      {'g'}          {'g'}                 0.72509     
      {'g'}          {'g'}                 0.70264     
      {'b'}          {'b'}                0.075291     
      {'g'}          {'g'}                 0.90693     
      {'g'}          {'g'}                  0.8285     
      {'b'}          {'b'}                0.051175     
      {'g'}          {'g'}                 0.95333     
      ⋮
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Estimate Posterior Probabilities for Data with Separable Classes

Load Fisher's iris data set. Use the petal lengths and widths as the predictor data, and remove the
virginica species from the data. Reserve 10 random observations of the data, and consider this set
new data.

load fisheriris
classKeep = ~strcmp(species,'virginica');
X = meas(classKeep,3:4);
Y = species(classKeep);

rng(1);  % For reproducibility 
indx1 = 1:numel(species);
indx2 = indx1(classKeep);
indx = ~ismember(indx2,randsample(indx2,10)); % Indices for the training data

gscatter(X(indx,1),X(indx,2),Y(indx));
title('Scatter Diagram of Iris Measurements')
xlabel('Petal length')
ylabel('Petal width')
legend('Setosa','Versicolor')

The classes are perfectly separable. Therefore, the score-to-posterior-probability transformation
function is a step function.

Train an SVM classifier. Standardize the data and specify that versicolor is the positive class.
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SVMModel = fitcsvm(X(indx,:),Y(indx),...
    'ClassNames',{'setosa','versicolor'},'Standardize',true);

SVMModel is a ClassificationSVM classifier.

Use the new data set to estimate the optimal score-to-posterior-probability transformation function
for mapping scores to the posterior probability of an observation being classified as versicolor. For
efficiency, make a compact version SVMModel, and pass it and the new data to fitPosterior.

CompactSVMModel = compact(SVMModel);
[ScoreCSVMModel,ScoreParameters] = fitPosterior(CompactSVMModel,...
    X(~indx,:),Y(~indx));

Warning: Classes are perfectly separated. The optimal score-to-posterior transformation is a step function.

ScoreTransform = ScoreCSVMModel.ScoreTransform

ScoreTransform = 
'@(S)step(S,-1.338450e+00,2.012495e+00,5.333333e-01)'

fitPosterior displays a warning whenever the classes are separable, and stores the step function
in ScoreSVMModel.ScoreTransform.

Display the score function type and its estimated values.

ScoreParameters

ScoreParameters = struct with fields:
                        Type: 'step'
                  LowerBound: -1.3385
                  UpperBound: 2.0125
    PositiveClassProbability: 0.5333

ScoreParameters is a structure array with four fields:

• Score transformation function type (Type)
• Score corresponding to the negative class boundary (LowerBound)
• Score corresponding to the positive class boundary (UpperBound)
• Positive class probability (PositiveClassProbability)

Alternatively, you can pass SVMModel and the new data to fitSVMPosterior, but this process is not
as efficient.

Estimate the posterior probabilities that the observations in the new data are versicolor irises.

[labels,postProbs] = predict(ScoreCSVMModel,X(~indx,:));
table(Y(~indx),labels,postProbs(:,2),...
    'VariableNames',{'TrueLabel','PredictedLabel','PosteriorProbability'})

ans=10×3 table
      TrueLabel       PredictedLabel    PosteriorProbability
    ______________    ______________    ____________________

    {'setosa'    }    {'setosa'    }             0          
    {'setosa'    }    {'setosa'    }             0          
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    {'setosa'    }    {'setosa'    }             0          
    {'setosa'    }    {'setosa'    }             0          
    {'setosa'    }    {'setosa'    }             0          
    {'setosa'    }    {'setosa'    }             0          
    {'setosa'    }    {'setosa'    }             0          
    {'setosa'    }    {'setosa'    }             0          
    {'versicolor'}    {'versicolor'}             1          
    {'versicolor'}    {'versicolor'}             1          

Because the classes are separable, the step function transforms the positive-class score to:

• 0 if the score is less than ScoreParameters.LowerBound
• 1 if the score is greater than ScoreParameters.UpperBound
• ScoreParameters.PositiveClassProbability if the score is in the interval

[ ScoreParameters.LowerBound , ScoreParameters.LowerBound]

Input Arguments
SVMModel — Trained, compact SVM classifier
CompactClassificationSVM classifier

Trained, compact SVM classifier, specified as a CompactClassificationSVM model returned by
compact.

TBL — Sample data
table

Sample data, specified as a table. Each row of TBL corresponds to one observation, and each column
corresponds to one predictor variable. TBL must contain all of the predictors used to train SVMModel.
Optionally, TBL can contain an additional column for the response variable. Multicolumn variables
and cell arrays other than cell arrays of character vectors are not allowed.

If TBL contains the response variable used to train SVMModel, then you do not need to specify Y. If
TBL does not include the response variable, then the length of Y must be equal to the number of rows
in TBL.

If the sample data used to train SVMModel is a table, then you must specify the input data for
fitPosterior as a table.

If you set 'Standardize',true in fitcsvm when training SVMModel, then the software fits the
transformation function parameter estimates using standardized data.
Data Types: table

X — Predictor data
matrix

Predictor data used to estimate the score-to-posterior-probability transformation function, specified
as a matrix.

Each row of X corresponds to one observation (also known as an instance or example), and each
column corresponds to one variable (also known as a feature).
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The length of Y and the number of rows in X must be equal.

If you set 'Standardize',true in fitcsvm when training SVMModel, then the software fits the
transformation function parameter estimates using standardized data.
Data Types: double | single

Y — Class labels
categorical array | character array | string array | logical vector | numeric vector | cell array of
character vectors

Class labels used to estimate the score-to-posterior-probability transformation function, specified as a
categorical, character, or string array, a logical or numeric vector, or a cell array of character vectors.

If Y is a character array, then each element must correspond to one class label.

The length of Y and the number of rows in X must be equal.
Data Types: categorical | char | string | logical | single | double | cell

Output Arguments
ScoreSVMModel — Trained, compact SVM classifier
CompactClassificationSVM classifier

Trained, compact SVM classifier containing the estimated score-to-posterior-probability
transformation function, returned as a CompactClassificationSVM classifier.

To estimate posterior probabilities for new observations, pass ScoreSVMModel and the new
observations to predict.

ScoreTransform — Optimal score-to-posterior-probability transformation function
parameters
structure array

Optimal score-to-posterior-probability transformation function parameters, returned as a structure
array.

• If the value of the Type field of ScoreTransform is sigmoid, then ScoreTransform also has
these fields:

• Slope: The value of A in the sigmoid function on page 35-2686
• Intercept: The value of B in the sigmoid function

• If the value of the Type field of ScoreTransform is step, then ScoreTransform also has these
fields:

• PositiveClassProbability: The value of π in the step function on page 35-2686. This
value represents the probability that an observation is in the positive class or the posterior
probability that an observation is in the positive class given that its score is in the interval
(LowerBound,UpperBound).

• LowerBound: The value max
yn = − 1

sn in the step function. This value represents the lower bound

of the score interval that assigns observations with scores in the interval the posterior
probability of being in the positive class PositiveClassProbability. Any observation with
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a score less than LowerBound has the posterior probability of being in the positive class equal
to 0.

• UpperBound: The value min
yn = + 1

sn in the step function. This value represents the upper bound

of the score interval that assigns observations with scores in the interval the posterior
probability of being in the positive class PositiveClassProbability. Any observation with
a score greater than UpperBound has the posterior probability of being in the positive class
equal to 1.

• If the value of the Type field of ScoreTransform is constant, then
ScoreTransform.PredictedClass contains the name of the class prediction.

This result is the same as SVMModel.ClassNames. The posterior probability of an observation
being in ScoreTransform.PredictedClass is always 1.

More About
Sigmoid Function

The sigmoid function that maps score sj corresponding to observation j to the positive class posterior
probability is

P(s j) = 1
1 + exp(As j + B) .

If the value of the Type field of ScoreTransform is sigmoid, then parameters A and B correspond
to the fields Scale and Intercept of ScoreTransform, respectively.

Step Function

The step function that maps score sj corresponding to observation j to the positive class posterior
probability is

P s j =

0; s < max
yk = − 1

sk

π; max
yk = − 1

sk ≤ s j ≤ min
yk = + 1

sk

1; s j > min
yk = + 1

sk

,

where:

• sj is the score of observation j.
• +1 and –1 denote the positive and negative classes, respectively.
• π is the prior probability that an observation is in the positive class.

If the value of the Type field of ScoreTransform is step, then the quantities max
yk = − 1

sk and min
yk = + 1

sk

correspond to the fields LowerBound and UpperBound of ScoreTransform, respectively.

Constant Function

The constant function maps all scores in a sample to posterior probabilities 1 or 0.
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If all observations have posterior probability 1, then they are expected to come from the positive
class.

If all observations have posterior probability 0, then they are not expected to come from the positive
class.

Tips
• This process describes one way to predict positive class posterior probabilities.

1 Train an SVM classifier by passing the data to fitcsvm. The result is a trained SVM classifier,
such as SVMModel, that stores the data. The software sets the score transformation function
property (SVMModel.ScoreTransformation) to none.

2 Pass the trained SVM classifier SVMModel to fitSVMPosterior or fitPosterior. The
result, such as, ScoreSVMModel, is the same trained SVM classifier as SVMModel, except the
software sets ScoreSVMModel.ScoreTransformation to the optimal score transformation
function.

3 Pass the predictor data matrix and the trained SVM classifier containing the optimal score
transformation function (ScoreSVMModel) to predict. The second column in the second
output argument of predict stores the positive class posterior probabilities corresponding to
each row of the predictor data matrix.

If you skip step 2, then predict returns the positive class score rather than the positive class
posterior probability.

• After fitting posterior probabilities, you can generate C/C++ code that predicts labels for new
data. Generating C/C++ code requires MATLAB Coder. For details, see “Introduction to Code
Generation” on page 34-2.

Algorithms
The software fits the appropriate score-to-posterior-probability transformation function by using the
SVM classifier SVMModel and by conducting 10-fold cross-validation using the stored predictor data
(SVMModel.X) and the class labels (SVMModel.Y), as outlined in [1]. The transformation function
computes the posterior probability that an observation is classified into the positive class
(SVMModel.Classnames(2)).

• If the classes are inseparable, then the transformation function is the sigmoid function on page 35-
2686.

• If the classes are perfectly separable, then the transformation function is the step function on
page 35-2686.

• In two-class learning, if one of the two classes has a relative frequency of 0, then the
transformation function is the constant function on page 35-2810. The fitPosterior function is
not appropriate for one-class learning.

• The software stores the optimal score-to-posterior-probability transformation function in
ScoreSVMModel.ScoreTransform.

If you re-estimate the score-to-posterior-probability transformation function, that is, if you pass an
SVM classifier to fitPosterior or fitSVMPosterior and its ScoreTransform property is not
none, then the software:
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• Displays a warning
• Resets the original transformation function to 'none' before estimating the new one

Alternative Functionality
You can also fit the optimal score-to-posterior-probability function by using fitSVMPosterior. This
function is similar to fitPosterior, except it is more broad because it accepts a wider range of
SVM classifier types.

Version History
Introduced in R2014a

References
[1] Platt, J. “Probabilistic outputs for support vector machines and comparisons to regularized

likelihood methods.” Advances in Large Margin Classifiers. Cambridge, MA: The MIT Press,
2000, pp. 61–74.

See Also
CompactClassificationSVM | fitcsvm | fitSVMPosterior | predict
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fitrensemble
Fit ensemble of learners for regression

Syntax
Mdl = fitrensemble(Tbl,ResponseVarName)
Mdl = fitrensemble(Tbl,formula)
Mdl = fitrensemble(Tbl,Y)

Mdl = fitrensemble(X,Y)

Mdl = fitrensemble( ___ ,Name,Value)

Description
Mdl = fitrensemble(Tbl,ResponseVarName) returns the trained regression ensemble model
object (Mdl) that contains the results of boosting 100 regression trees using LSBoost and the
predictor and response data in the table Tbl. ResponseVarName is the name of the response
variable in Tbl.

Mdl = fitrensemble(Tbl,formula) applies formula to fit the model to the predictor and
response data in the table Tbl. formula is an explanatory model of the response and a subset of
predictor variables in Tbl used to fit Mdl. For example, 'Y~X1+X2+X3' fits the response variable
Tbl.Y as a function of the predictor variables Tbl.X1, Tbl.X2, and Tbl.X3.

Mdl = fitrensemble(Tbl,Y) treats all variables in the table Tbl as predictor variables. Y is the
vector of responses that is not in Tbl.

Mdl = fitrensemble(X,Y) uses the predictor data in the matrix X and response data in the vector
Y.

Mdl = fitrensemble( ___ ,Name,Value) uses additional options specified by one or more
Name,Value pair arguments and any of the input arguments in the previous syntaxes. For example,
you can specify the number of learning cycles, the ensemble aggregation method, or to implement 10-
fold cross-validation.

Examples

Train Regression Ensemble

Create a regression ensemble that predicts the fuel economy of a car given the number of cylinders,
volume displaced by the cylinders, horsepower, and weight. Then, train another ensemble using fewer
predictors. Compare the in-sample predictive accuracies of the ensembles.

Load the carsmall data set. Store the variables to be used in training in a table.

load carsmall
Tbl = table(Cylinders,Displacement,Horsepower,Weight,MPG);

Train a regression ensemble.
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Mdl1 = fitrensemble(Tbl,'MPG');

Mdl1 is a RegressionEnsemble model. Some notable characteristics of Mdl1 are:

• The ensemble aggregation algorithm is 'LSBoost'.
• Because the ensemble aggregation method is a boosting algorithm, regression trees that allow a

maximum of 10 splits compose the ensemble.
• One hundred trees compose the ensemble.

Because MPG is a variable in the MATLAB® Workspace, you can obtain the same result by entering

Mdl1 = fitrensemble(Tbl,MPG);

Use the trained regression ensemble to predict the fuel economy for a four-cylinder car with a 200-
cubic inch displacement, 150 horsepower, and weighing 3000 lbs.

pMPG = predict(Mdl1,[4 200 150 3000])

pMPG = 25.6467

Train a new ensemble using all predictors in Tbl except Displacement.

formula = 'MPG ~ Cylinders + Horsepower + Weight';
Mdl2 = fitrensemble(Tbl,formula);

Compare the resubstitution MSEs between Mdl1 and Mdl2.

mse1 = resubLoss(Mdl1)

mse1 = 0.3096

mse2 = resubLoss(Mdl2)

mse2 = 0.5861

The in-sample MSE for the ensemble that trains on all predictors is lower.

Speed Up Training by Binning Numeric Predictor Values

Train an ensemble of boosted regression trees by using fitrensemble. Reduce training time by
specifying the 'NumBins' name-value pair argument to bin numeric predictors. After training, you
can reproduce binned predictor data by using the BinEdges property of the trained model and the
discretize function.

Generate a sample data set.

rng('default') % For reproducibility
N = 1e6;
X1 = randi([-1,5],[N,1]);
X2 = randi([5,10],[N,1]);
X3 = randi([0,5],[N,1]);
X4 = randi([1,10],[N,1]);
X = [X1 X2 X3 X4];
y = X1 + X2 + X3 + X4 + normrnd(0,1,[N,1]);
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Train an ensemble of boosted regression trees using least-squares boosting (LSBoost, the default
value). Time the function for comparison purposes.

tic
Mdl1 = fitrensemble(X,y);
toc

Elapsed time is 78.662954 seconds.

Speed up training by using the 'NumBins' name-value pair argument. If you specify the 'NumBins'
value as a positive integer scalar, then the software bins every numeric predictor into a specified
number of equiprobable bins, and then grows trees on the bin indices instead of the original data.
The software does not bin categorical predictors.

tic
Mdl2 = fitrensemble(X,y,'NumBins',50);
toc

Elapsed time is 43.353208 seconds.

The process is about two times faster when you use binned data instead of the original data. Note
that the elapsed time can vary depending on your operating system.

Compare the regression errors by resubstitution.

rsLoss = resubLoss(Mdl1)

rsLoss = 1.0134

rsLoss2 = resubLoss(Mdl2)

rsLoss2 = 1.0133

In this example, binning predictor values reduces training time without a significant loss of accuracy.
In general, when you have a large data set like the one in this example, using the binning option
speeds up training but causes a potential decrease in accuracy. If you want to reduce training time
further, specify a smaller number of bins.

Reproduce binned predictor data by using the BinEdges property of the trained model and the
discretize function.

X = Mdl2.X; % Predictor data
Xbinned = zeros(size(X));
edges = Mdl2.BinEdges;
% Find indices of binned predictors.
idxNumeric = find(~cellfun(@isempty,edges));
if iscolumn(idxNumeric)
    idxNumeric = idxNumeric';
end
for j = idxNumeric 
    x = X(:,j);
    % Convert x to array if x is a table.
    if istable(x)
        x = table2array(x);
    end
    % Group x into bins by using the discretize function.
    xbinned = discretize(x,[-inf; edges{j}; inf]);
    Xbinned(:,j) = xbinned;
end
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Xbinned contains the bin indices, ranging from 1 to the number of bins, for numeric predictors.
Xbinned values are 0 for categorical predictors. If X contains NaNs, then the corresponding Xbinned
values are NaNs.

Estimate Generalization Error of Boosting Ensemble

Estimate the generalization error of an ensemble of boosted regression trees.

Load the carsmall data set. Choose the number of cylinders, volume displaced by the cylinders,
horsepower, and weight as predictors of fuel economy.

load carsmall
X = [Cylinders Displacement Horsepower Weight];

Cross-validate an ensemble of regression trees using 10-fold cross-validation. Using a decision tree
template, specify that each tree should be a split once only.

rng(1); % For reproducibility
t = templateTree('MaxNumSplits',1);
Mdl = fitrensemble(X,MPG,'Learners',t,'CrossVal','on');

Mdl is a RegressionPartitionedEnsemble model.

Plot the cumulative, 10-fold cross-validated, mean-squared error (MSE). Display the estimated
generalization error of the ensemble.

kflc = kfoldLoss(Mdl,'Mode','cumulative');
figure;
plot(kflc);
ylabel('10-fold cross-validated MSE');
xlabel('Learning cycle');
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estGenError = kflc(end)

estGenError = 26.2356

kfoldLoss returns the generalization error by default. However, plotting the cumulative loss allows
you to monitor how the loss changes as weak learners accumulate in the ensemble.

The ensemble achieves an MSE of around 23.5 after accumulating about 30 weak learners.

If you are satisfied with the generalization error of the ensemble, then, to create a predictive model,
train the ensemble again using all of the settings except cross-validation. However, it is good practice
to tune hyperparameters such as the maximum number of decision splits per tree and the number of
learning cycles..

Optimize Regression Ensemble

This example shows how to optimize hyperparameters automatically using fitrensemble. The
example uses the carsmall data.

Load the data.

load carsmall
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You can find hyperparameters that minimize five-fold cross-validation loss by using automatic
hyperparameter optimization.

Mdl = fitrensemble([Horsepower,Weight],MPG,'OptimizeHyperparameters','auto')

In this example, for reproducibility, set the random seed and use the 'expected-improvement-
plus' acquisition function. Also, for reproducibility of random forest algorithm, specify the
'Reproducible' name-value pair argument as true for tree learners.

rng('default')
t = templateTree('Reproducible',true);
Mdl = fitrensemble([Horsepower,Weight],MPG,'OptimizeHyperparameters','auto','Learners',t, ...
    'HyperparameterOptimizationOptions',struct('AcquisitionFunctionName','expected-improvement-plus'))

|===================================================================================================================================|
| Iter | Eval   | Objective:  | Objective   | BestSoFar   | BestSoFar   |       Method | NumLearningC-|    LearnRate |  MinLeafSize |
|      | result | log(1+loss) | runtime     | (observed)  | (estim.)    |              | ycles        |              |              |
|===================================================================================================================================|
|    1 | Best   |      2.9726 |      33.778 |      2.9726 |      2.9726 |          Bag |          413 |            - |            1 |
|    2 | Accept |      6.2619 |      4.6084 |      2.9726 |      3.6133 |      LSBoost |           57 |    0.0016067 |            6 |
|    3 | Accept |      2.9975 |      2.6533 |      2.9726 |      2.9852 |          Bag |           32 |            - |            2 |
|    4 | Accept |      4.1897 |      4.3011 |      2.9726 |       2.972 |          Bag |           55 |            - |           40 |
|    5 | Accept |      6.3321 |      4.9536 |      2.9726 |      2.9715 |      LSBoost |           55 |     0.001005 |            2 |
|    6 | Best   |      2.9714 |      3.4869 |      2.9714 |      2.9715 |          Bag |           39 |            - |            1 |
|    7 | Best   |      2.9615 |      4.5921 |      2.9615 |      2.9681 |          Bag |           55 |            - |            1 |
|    8 | Accept |      3.0611 |      1.0302 |      2.9615 |      2.9899 |          Bag |           11 |            - |            1 |
|    9 | Best   |       2.936 |      38.263 |       2.936 |      2.9469 |          Bag |          499 |            - |            2 |
|   10 | Best   |      2.9202 |      39.485 |      2.9202 |      2.9294 |          Bag |          499 |            - |            2 |
|   11 | Accept |      2.9604 |      17.827 |      2.9202 |      2.9373 |          Bag |          229 |            - |            2 |
|   12 | Accept |      2.9373 |      37.782 |      2.9202 |      2.9369 |          Bag |          500 |            - |            2 |
|   13 | Accept |      2.9306 |      36.331 |      2.9202 |      2.9345 |          Bag |          499 |            - |            2 |
|   14 | Accept |      5.4673 |       35.91 |      2.9202 |      2.9346 |      LSBoost |          456 |     0.001301 |           50 |
|   15 | Accept |       6.394 |       1.257 |      2.9202 |      2.9339 |      LSBoost |           10 |    0.0026646 |           50 |
|   16 | Accept |      4.1886 |      39.863 |      2.9202 |      2.9352 |          Bag |          500 |            - |           50 |
|   17 | Accept |      3.7357 |      29.228 |      2.9202 |      2.9349 |      LSBoost |          361 |      0.99201 |            1 |
|   18 | Accept |      4.1881 |      1.8245 |      2.9202 |      2.9349 |      LSBoost |           19 |      0.79791 |           49 |
|   19 | Accept |      3.5071 |      38.597 |      2.9202 |      2.9344 |      LSBoost |          456 |      0.19058 |            1 |
|   20 | Accept |      4.1881 |       36.68 |      2.9202 |      2.9337 |      LSBoost |          486 |      0.13554 |           50 |
|===================================================================================================================================|
| Iter | Eval   | Objective:  | Objective   | BestSoFar   | BestSoFar   |       Method | NumLearningC-|    LearnRate |  MinLeafSize |
|      | result | log(1+loss) | runtime     | (observed)  | (estim.)    |              | ycles        |              |              |
|===================================================================================================================================|
|   21 | Accept |       3.331 |      1.0309 |      2.9202 |       2.934 |      LSBoost |           11 |      0.37641 |            1 |
|   22 | Accept |      6.0274 |      1.0322 |      2.9202 |      2.9352 |      LSBoost |           11 |     0.019037 |            1 |
|   23 | Accept |      3.5601 |      37.357 |      2.9202 |      2.9354 |      LSBoost |          500 |       0.3593 |            5 |
|   24 | Accept |      4.1881 |       38.93 |      2.9202 |      2.9342 |      LSBoost |          470 |     0.018864 |           50 |
|   25 | Accept |      3.2653 |      41.271 |      2.9202 |       2.934 |      LSBoost |          485 |    0.0052787 |            1 |
|   26 | Accept |      3.5043 |      34.119 |      2.9202 |      2.9339 |      LSBoost |          413 |      0.55943 |            1 |
|   27 | Accept |      3.0935 |      39.073 |      2.9202 |       2.934 |      LSBoost |          478 |    0.0070689 |            4 |
|   28 | Accept |      3.2539 |      36.755 |      2.9202 |       2.934 |      LSBoost |          462 |    0.0070987 |            1 |
|   29 | Accept |      4.1904 |      37.004 |      2.9202 |      2.9314 |      LSBoost |          467 |    0.0085905 |           49 |
|   30 | Accept |      3.6386 |      1.0851 |      2.9202 |      2.9314 |      LSBoost |           10 |      0.90603 |            1 |
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__________________________________________________________
Optimization completed.
MaxObjectiveEvaluations of 30 reached.
Total function evaluations: 30
Total elapsed time: 718.3139 seconds
Total objective function evaluation time: 680.1092

Best observed feasible point:
    Method    NumLearningCycles    LearnRate    MinLeafSize
    ______    _________________    _________    ___________

     Bag             499              NaN            2     

Observed objective function value = 2.9202
Estimated objective function value = 2.9315
Function evaluation time = 39.4851

Best estimated feasible point (according to models):
    Method    NumLearningCycles    LearnRate    MinLeafSize
    ______    _________________    _________    ___________

     Bag             500              NaN            2     

Estimated objective function value = 2.9314
Estimated function evaluation time = 38.5542

Mdl = 
  RegressionBaggedEnsemble

 fitrensemble
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                         ResponseName: 'Y'
                CategoricalPredictors: []
                    ResponseTransform: 'none'
                      NumObservations: 94
    HyperparameterOptimizationResults: [1x1 BayesianOptimization]
                           NumTrained: 500
                               Method: 'Bag'
                         LearnerNames: {'Tree'}
                 ReasonForTermination: 'Terminated normally after completing the requested number of training cycles.'
                              FitInfo: []
                   FitInfoDescription: 'None'
                       Regularization: []
                            FResample: 1
                              Replace: 1
                     UseObsForLearner: [94x500 logical]

  Properties, Methods

The optimization searched over the methods for regression (Bag and LSBoost), over
NumLearningCycles, over the LearnRate for LSBoost, and over the tree learner MinLeafSize.
The output is the ensemble regression with the minimum estimated cross-validation loss.

Optimize Regression Ensemble Using Cross-Validation

One way to create an ensemble of boosted regression trees that has satisfactory predictive
performance is to tune the decision tree complexity level using cross-validation. While searching for
an optimal complexity level, tune the learning rate to minimize the number of learning cycles as well.

This example manually finds optimal parameters by using the cross-validation option (the 'KFold'
name-value pair argument) and the kfoldLoss function. Alternatively, you can use the
'OptimizeHyperparameters' name-value pair argument to optimize hyperparameters
automatically. See “Optimize Regression Ensemble” on page 35-2693.

Load the carsmall data set. Choose the number of cylinders, volume displaced by the cylinders,
horsepower, and weight as predictors of fuel economy.

load carsmall
Tbl = table(Cylinders,Displacement,Horsepower,Weight,MPG);

The default values of the tree depth controllers for boosting regression trees are:

• 10 for MaxNumSplits.
• 5 for MinLeafSize
• 10 for MinParentSize

To search for the optimal tree-complexity level:

1 Cross-validate a set of ensembles. Exponentially increase the tree-complexity level for
subsequent ensembles from decision stump (one split) to at most n - 1 splits. n is the sample size.
Also, vary the learning rate for each ensemble between 0.1 to 1.
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2 Estimate the cross-validated mean-squared error (MSE) for each ensemble.
3 For tree-complexity level j, j = 1 . . . J, compare the cumulative, cross-validated MSE of the

ensembles by plotting them against number of learning cycles. Plot separate curves for each
learning rate on the same figure.

4 Choose the curve that achieves the minimal MSE, and note the corresponding learning cycle and
learning rate.

Cross-validate a deep regression tree and a stump. Because the data contain missing values, use
surrogate splits. These regression trees serve as benchmarks.

rng(1) % For reproducibility
MdlDeep = fitrtree(Tbl,'MPG','CrossVal','on','MergeLeaves','off', ...
    'MinParentSize',1,'Surrogate','on');
MdlStump = fitrtree(Tbl,'MPG','MaxNumSplits',1,'CrossVal','on', ...
    'Surrogate','on');

Cross-validate an ensemble of 150 boosted regression trees using 5-fold cross-validation. Using a tree
template:

• Vary the maximum number of splits using the values in the sequence {20, 21, . . . , 2m}. m is such
that 2m is no greater than n - 1.

• Turn on surrogate splits.

For each variant, adjust the learning rate using each value in the set {0.1, 0.25, 0.5, 1}.

n = size(Tbl,1);
m = floor(log2(n - 1));
learnRate = [0.1 0.25 0.5 1];
numLR = numel(learnRate);
maxNumSplits = 2.^(0:m);
numMNS = numel(maxNumSplits);
numTrees = 150;
Mdl = cell(numMNS,numLR);

for k = 1:numLR
    for j = 1:numMNS
        t = templateTree('MaxNumSplits',maxNumSplits(j),'Surrogate','on');
        Mdl{j,k} = fitrensemble(Tbl,'MPG','NumLearningCycles',numTrees, ...
            'Learners',t,'KFold',5,'LearnRate',learnRate(k));
    end
end

Estimate the cumulative, cross-validated MSE of each ensemble.

kflAll = @(x)kfoldLoss(x,'Mode','cumulative');
errorCell = cellfun(kflAll,Mdl,'Uniform',false);
error = reshape(cell2mat(errorCell),[numTrees numel(maxNumSplits) numel(learnRate)]);
errorDeep = kfoldLoss(MdlDeep);
errorStump = kfoldLoss(MdlStump);

Plot how the cross-validated MSE behaves as the number of trees in the ensemble increases. Plot the
curves with respect to learning rate on the same plot, and plot separate plots for varying tree-
complexity levels. Choose a subset of tree complexity levels to plot.

mnsPlot = [1 round(numel(maxNumSplits)/2) numel(maxNumSplits)];
figure;
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for k = 1:3
    subplot(2,2,k)
    plot(squeeze(error(:,mnsPlot(k),:)),'LineWidth',2)
    axis tight
    hold on
    h = gca;
    plot(h.XLim,[errorDeep errorDeep],'-.b','LineWidth',2)
    plot(h.XLim,[errorStump errorStump],'-.r','LineWidth',2)
    plot(h.XLim,min(min(error(:,mnsPlot(k),:))).*[1 1],'--k')
    h.YLim = [10 50];    
    xlabel('Number of trees')
    ylabel('Cross-validated MSE')
    title(sprintf('MaxNumSplits = %0.3g', maxNumSplits(mnsPlot(k))))
    hold off
end
hL = legend([cellstr(num2str(learnRate','Learning Rate = %0.2f')); ...
        'Deep Tree';'Stump';'Min. MSE']);
hL.Position(1) = 0.6;

Each curve contains a minimum cross-validated MSE occurring at the optimal number of trees in the
ensemble.

Identify the maximum number of splits, number of trees, and learning rate that yields the lowest MSE
overall.

[minErr,minErrIdxLin] = min(error(:));
[idxNumTrees,idxMNS,idxLR] = ind2sub(size(error),minErrIdxLin);
fprintf('\nMin. MSE = %0.5f',minErr)
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Min. MSE = 16.77593

fprintf('\nOptimal Parameter Values:\nNum. Trees = %d',idxNumTrees);

Optimal Parameter Values:
Num. Trees = 78

fprintf('\nMaxNumSplits = %d\nLearning Rate = %0.2f\n',...
    maxNumSplits(idxMNS),learnRate(idxLR))

MaxNumSplits = 1
Learning Rate = 0.25

Create a predictive ensemble based on the optimal hyperparameters and the entire training set.

tFinal = templateTree('MaxNumSplits',maxNumSplits(idxMNS),'Surrogate','on');
MdlFinal = fitrensemble(Tbl,'MPG','NumLearningCycles',idxNumTrees, ...
    'Learners',tFinal,'LearnRate',learnRate(idxLR))

MdlFinal = 
  RegressionEnsemble
           PredictorNames: {1x4 cell}
             ResponseName: 'MPG'
    CategoricalPredictors: []
        ResponseTransform: 'none'
          NumObservations: 94
               NumTrained: 78
                   Method: 'LSBoost'
             LearnerNames: {'Tree'}
     ReasonForTermination: 'Terminated normally after completing the requested number of training cycles.'
                  FitInfo: [78x1 double]
       FitInfoDescription: {2x1 cell}
           Regularization: []

  Properties, Methods

MdlFinal is a RegressionEnsemble. To predict the fuel economy of a car given its number of
cylinders, volume displaced by the cylinders, horsepower, and weight, you can pass the predictor data
and MdlFinal to predict.

Instead of searching optimal values manually by using the cross-validation option ('KFold') and the
kfoldLoss function, you can use the 'OptimizeHyperparameters' name-value pair argument.
When you specify 'OptimizeHyperparameters', the software finds optimal parameters
automatically using Bayesian optimization. The optimal values obtained by using
'OptimizeHyperparameters' can be different from those obtained using manual search.

t = templateTree('Surrogate','on');
mdl = fitrensemble(Tbl,'MPG','Learners',t, ...
    'OptimizeHyperparameters',{'NumLearningCycles','LearnRate','MaxNumSplits'})

|====================================================================================================================|
| Iter | Eval   | Objective:  | Objective   | BestSoFar   | BestSoFar   | NumLearningC-|    LearnRate | MaxNumSplits |
|      | result | log(1+loss) | runtime     | (observed)  | (estim.)    | ycles        |              |              |
|====================================================================================================================|
|    1 | Best   |      3.3955 |        2.62 |      3.3955 |      3.3955 |           26 |     0.072054 |            3 |
|    2 | Accept |      6.0976 |      14.246 |      3.3955 |      3.5549 |          170 |    0.0010295 |           70 |
|    3 | Best   |      3.2914 |      24.916 |      3.2914 |      3.2917 |          273 |      0.61026 |            6 |

 fitrensemble

35-2699



|    4 | Accept |      6.1839 |      7.1427 |      3.2914 |      3.2915 |           80 |    0.0016871 |            1 |
|    5 | Best   |      3.0379 |      1.8021 |      3.0379 |      3.0384 |           18 |      0.21288 |           31 |
|    6 | Accept |      3.3628 |      1.0069 |      3.0379 |      3.1888 |           10 |      0.17826 |            5 |
|    7 | Best   |      2.9646 |      1.2483 |      2.9646 |      3.1158 |           10 |      0.27613 |            4 |
|    8 | Accept |      3.0507 |      1.4507 |      2.9646 |      3.0963 |           10 |      0.28394 |           35 |
|    9 | Accept |      3.0492 |      1.2735 |      2.9646 |      2.9676 |           10 |      0.28898 |           42 |
|   10 | Accept |      3.1033 |        1.12 |      2.9646 |      3.0285 |           10 |      0.90615 |            1 |
|   11 | Accept |      3.1706 |      1.9626 |      2.9646 |      3.0819 |           22 |      0.43444 |           38 |
|   12 | Accept |      6.1123 |      1.1782 |      2.9646 |      2.9682 |           10 |     0.016627 |           31 |
|   13 | Best   |       2.921 |      5.8571 |       2.921 |       2.918 |           77 |      0.25641 |            1 |
|   14 | Accept |      5.5198 |       1.162 |       2.921 |      2.9209 |           10 |     0.046377 |           16 |
|   15 | Accept |      2.9214 |      4.1562 |       2.921 |       2.921 |           55 |      0.10477 |            1 |
|   16 | Best   |       2.913 |      1.0265 |       2.913 |      2.9111 |           10 |      0.43228 |            1 |
|   17 | Accept |      2.9208 |      3.1964 |       2.913 |      2.9113 |           34 |      0.17785 |            1 |
|   18 | Accept |      2.9303 |      1.3202 |       2.913 |      2.9121 |           13 |      0.31211 |            1 |
|   19 | Accept |      3.0504 |       4.967 |       2.913 |      2.9126 |           53 |      0.15089 |           92 |
|   20 | Best   |      2.8955 |      1.0525 |      2.8955 |       2.893 |           10 |      0.34746 |            1 |
|====================================================================================================================|
| Iter | Eval   | Objective:  | Objective   | BestSoFar   | BestSoFar   | NumLearningC-|    LearnRate | MaxNumSplits |
|      | result | log(1+loss) | runtime     | (observed)  | (estim.)    | ycles        |              |              |
|====================================================================================================================|
|   21 | Accept |      3.0349 |       6.471 |      2.8955 |      2.8978 |           65 |      0.91977 |            1 |
|   22 | Accept |      2.9002 |      21.484 |      2.8955 |      2.8928 |          209 |     0.087708 |            1 |
|   23 | Accept |       2.926 |      9.1464 |      2.8955 |      2.8927 |           94 |     0.046573 |            1 |
|   24 | Accept |      2.9225 |      10.655 |      2.8955 |      2.9083 |          107 |     0.081223 |            1 |
|   25 | Accept |      2.9392 |      1.2238 |      2.8955 |      2.9084 |           10 |      0.35846 |            2 |
|   26 | Accept |      3.5435 |      1.3068 |      2.8955 |      2.9082 |           10 |       0.1637 |            2 |
|   27 | Accept |      2.9246 |      27.437 |      2.8955 |      2.9083 |          228 |     0.036407 |            1 |
|   28 | Accept |      2.9231 |      11.581 |      2.8955 |      2.9086 |           90 |      0.46932 |            1 |
|   29 | Best   |      2.8947 |      54.049 |      2.8947 |      2.9082 |          497 |     0.066831 |            1 |
|   30 | Accept |      2.9182 |      18.329 |      2.8947 |      2.9084 |          206 |     0.057805 |            1 |
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__________________________________________________________
Optimization completed.
MaxObjectiveEvaluations of 30 reached.
Total function evaluations: 30
Total elapsed time: 280.141 seconds
Total objective function evaluation time: 244.3885

Best observed feasible point:
    NumLearningCycles    LearnRate    MaxNumSplits
    _________________    _________    ____________

           497           0.066831          1      

Observed objective function value = 2.8947
Estimated objective function value = 2.8955
Function evaluation time = 54.0488

Best estimated feasible point (according to models):
    NumLearningCycles    LearnRate    MaxNumSplits
    _________________    _________    ____________

           10             0.34746          1      

Estimated objective function value = 2.9084
Estimated function evaluation time = 1.1711

mdl = 
  RegressionEnsemble
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                       PredictorNames: {1x4 cell}
                         ResponseName: 'MPG'
                CategoricalPredictors: []
                    ResponseTransform: 'none'
                      NumObservations: 94
    HyperparameterOptimizationResults: [1x1 BayesianOptimization]
                           NumTrained: 10
                               Method: 'LSBoost'
                         LearnerNames: {'Tree'}
                 ReasonForTermination: 'Terminated normally after completing the requested number of training cycles.'
                              FitInfo: [10x1 double]
                   FitInfoDescription: {2x1 cell}
                       Regularization: []

  Properties, Methods

Input Arguments
Tbl — Sample data
table

Sample data used to train the model, specified as a table. Each row of Tbl corresponds to one
observation, and each column corresponds to one predictor variable. Tbl can contain one additional
column for the response variable. Multicolumn variables and cell arrays other than cell arrays of
character vectors are not allowed.

• If Tbl contains the response variable and you want to use all remaining variables as predictors,
then specify the response variable using ResponseVarName.

• If Tbl contains the response variable, and you want to use a subset of the remaining variables
only as predictors, then specify a formula using formula.

• If Tbl does not contain the response variable, then specify the response data using Y. The length
of response variable and the number of rows of Tbl must be equal.

Note To save memory and execution time, supply X and Y instead of Tbl.

Data Types: table

ResponseVarName — Response variable name
name of response variable in Tbl

Response variable name, specified as the name of the response variable in Tbl.

You must specify ResponseVarName as a character vector or string scalar. For example, if Tbl.Y is
the response variable, then specify ResponseVarName as 'Y'. Otherwise, fitrensemble treats all
columns of Tbl as predictor variables.
Data Types: char | string

formula — Explanatory model of response variable and subset of predictor variables
character vector | string scalar
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Explanatory model of the response variable and a subset of the predictor variables, specified as a
character vector or string scalar in the form "Y~x1+x2+x3". In this form, Y represents the response
variable, and x1, x2, and x3 represent the predictor variables.

To specify a subset of variables in Tbl as predictors for training the model, use a formula. If you
specify a formula, then the software does not use any variables in Tbl that do not appear in
formula.

The variable names in the formula must be both variable names in Tbl
(Tbl.Properties.VariableNames) and valid MATLAB identifiers. You can verify the variable
names in Tbl by using the isvarname function. If the variable names are not valid, then you can
convert them by using the matlab.lang.makeValidName function.
Data Types: char | string

X — Predictor data
numeric matrix

Predictor data, specified as numeric matrix.

Each row corresponds to one observation, and each column corresponds to one predictor variable.

The length of Y and the number of rows of X must be equal.

To specify the names of the predictors in the order of their appearance in X, use the
PredictorNames name-value pair argument.
Data Types: single | double

Y — Response
numeric vector

Response, specified as a numeric vector. Each element in Y is the response to the observation in the
corresponding row of X or Tbl. The length of Y and the number of rows of X or Tbl must be equal.
Data Types: single | double

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.

Note You cannot use any cross-validation name-value argument together with the
'OptimizeHyperparameters' name-value argument. You can modify the cross-validation for
'OptimizeHyperparameters' only by using the 'HyperparameterOptimizationOptions'
name-value argument.

Example:
'NumLearningCycles',500,'Method','Bag','Learners',templateTree(),'CrossVal','
on' cross-validates an ensemble of 500 bagged regression trees using 10-fold cross-validation.
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General Ensemble Options

Method — Ensemble aggregation method
'LSBoost' (default) | 'Bag'

Ensemble aggregation method, specified as the comma-separated pair consisting of 'Method' and
'LSBoost' or 'Bag'.

Value Method Notes
'LSBoost' Least-squares boosting

(LSBoost)
You can specify the learning
rate for shrinkage by using the
'LearnRate' name-value pair
argument.

'Bag' Bootstrap aggregation (bagging,
for example, random forest[2])

fitrensemble uses bagging
with random predictor
selections at each split (random
forest) by default. To use
bagging without the random
selections, use tree learners
whose
'NumVariablesToSample'
value is 'all'.

For details about ensemble aggregation algorithms and examples, see “Algorithms” on page 35-2716,
“Ensemble Algorithms” on page 19-41, and “Choose an Applicable Ensemble Aggregation Method” on
page 19-34.
Example: 'Method','Bag'

NumLearningCycles — Number of ensemble learning cycles
100 (default) | positive integer

Number of ensemble learning cycles, specified as the comma-separated pair consisting of
'NumLearningCycles' and a positive integer. At every learning cycle, the software trains one weak
learner for every template object in Learners. Consequently, the software trains
NumLearningCycles*numel(Learners) learners.

The software composes the ensemble using all trained learners and stores them in Mdl.Trained.

For more details, see “Tips” on page 35-2716.
Example: 'NumLearningCycles',500
Data Types: single | double

Learners — Weak learners to use in ensemble
'tree' (default) | tree template object | cell vector of tree template objects

Weak learners to use in the ensemble, specified as the comma-separated pair consisting of
'Learners' and 'tree', a tree template object, or a cell vector of tree template objects.

• 'tree' (default) — fitrensemble uses default regression tree learners, which is the same as
using templateTree(). The default values of templateTree() depend on the value of
'Method'.
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• For bagged decision trees, the maximum number of decision splits ('MaxNumSplits') is n–1,
where n is the number of observations. The number of predictors to select at random for each
split ('NumVariablesToSample') is one third of the number of predictors. Therefore,
fitrensemble grows deep decision trees. You can grow shallower trees to reduce model
complexity or computation time.

• For boosted decision trees, 'MaxNumSplits' is 10 and 'NumVariablesToSample' is 'all'.
Therefore, fitrensemble grows shallow decision trees. You can grow deeper trees for better
accuracy.

See templateTree for the default settings of a weak learner.
• Tree template object — fitrensemble uses the tree template object created by templateTree.

Use the name-value pair arguments of templateTree to specify settings of the tree learners.
• Cell vector of m tree template objects — fitrensemble grows m regression trees per learning

cycle (see NumLearningCycles). For example, for an ensemble composed of two types of
regression trees, supply {t1 t2}, where t1 and t2 are regression tree template objects returned
by templateTree.

To obtain reproducible results, you must specify the 'Reproducible' name-value pair argument of
templateTree as true if 'NumVariablesToSample' is not 'all'.

For details on the number of learners to train, see NumLearningCycles and “Tips” on page 35-2716.
Example: 'Learners',templateTree('MaxNumSplits',5)

NPrint — Printout frequency
'off' (default) | positive integer

Printout frequency, specified as the comma-separated pair consisting of 'NPrint' and a positive
integer or 'off'.

To track the number of weak learners or folds that fitrensemble trained so far, specify a positive
integer. That is, if you specify the positive integer m:

• Without also specifying any cross-validation option (for example, CrossVal), then fitrensemble
displays a message to the command line every time it completes training m weak learners.

• And a cross-validation option, then fitrensemble displays a message to the command line every
time it finishes training m folds.

If you specify 'off', then fitrensemble does not display a message when it completes training
weak learners.

Tip For fastest training of some boosted decision trees, set NPrint to the default value 'off'. This
tip holds when the classification Method is 'AdaBoostM1', 'AdaBoostM2', 'GentleBoost', or
'LogitBoost', or when the regression Method is 'LSBoost'.

Example: 'NPrint',5
Data Types: single | double | char | string

NumBins — Number of bins for numeric predictors
[](empty) (default) | positive integer scalar
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Number of bins for numeric predictors, specified as the comma-separated pair consisting of
'NumBins' and a positive integer scalar.

• If the 'NumBins' value is empty (default), then fitrensemble does not bin any predictors.
• If you specify the 'NumBins' value as a positive integer scalar (numBins), then fitrensemble

bins every numeric predictor into at most numBins equiprobable bins, and then grows trees on
the bin indices instead of the original data.

• The number of bins can be less than numBins if a predictor has fewer than numBins unique
values.

• fitrensemble does not bin categorical predictors.

When you use a large training data set, this binning option speeds up training but might cause a
potential decrease in accuracy. You can try 'NumBins',50 first, and then change the value
depending on the accuracy and training speed.

A trained model stores the bin edges in the BinEdges property.
Example: 'NumBins',50
Data Types: single | double

CategoricalPredictors — Categorical predictors list
vector of positive integers | logical vector | character matrix | string array | cell array of character
vectors | 'all'

Categorical predictors list, specified as one of the values in this table.

Value Description
Vector of positive
integers

Each entry in the vector is an index value indicating that the corresponding
predictor is categorical. The index values are between 1 and p, where p is
the number of predictors used to train the model.

If fitrensemble uses a subset of input variables as predictors, then the
function indexes the predictors using only the subset. The
CategoricalPredictors values do not count the response variable,
observation weights variable, or any other variables that the function does
not use.

Logical vector A true entry means that the corresponding predictor is categorical. The
length of the vector is p.

Character matrix Each row of the matrix is the name of a predictor variable. The names must
match the entries in PredictorNames. Pad the names with extra blanks
so each row of the character matrix has the same length.

String array or cell
array of character
vectors

Each element in the array is the name of a predictor variable. The names
must match the entries in PredictorNames.

"all" All predictors are categorical.

By default, if the predictor data is in a table (Tbl), fitrensemble assumes that a variable is
categorical if it is a logical vector, unordered categorical vector, character array, string array, or cell
array of character vectors. If the predictor data is a matrix (X), fitrensemble assumes that all
predictors are continuous. To identify any other predictors as categorical predictors, specify them by
using the CategoricalPredictors name-value argument.
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Example: 'CategoricalPredictors','all'
Data Types: single | double | logical | char | string | cell

PredictorNames — Predictor variable names
string array of unique names | cell array of unique character vectors

Predictor variable names, specified as a string array of unique names or cell array of unique
character vectors. The functionality of PredictorNames depends on the way you supply the training
data.

• If you supply X and Y, then you can use PredictorNames to assign names to the predictor
variables in X.

• The order of the names in PredictorNames must correspond to the column order of X. That
is, PredictorNames{1} is the name of X(:,1), PredictorNames{2} is the name of
X(:,2), and so on. Also, size(X,2) and numel(PredictorNames) must be equal.

• By default, PredictorNames is {'x1','x2',...}.
• If you supply Tbl, then you can use PredictorNames to choose which predictor variables to use

in training. That is, fitrensemble uses only the predictor variables in PredictorNames and the
response variable during training.

• PredictorNames must be a subset of Tbl.Properties.VariableNames and cannot include
the name of the response variable.

• By default, PredictorNames contains the names of all predictor variables.
• A good practice is to specify the predictors for training using either PredictorNames or

formula, but not both.

Example: "PredictorNames",
["SepalLength","SepalWidth","PetalLength","PetalWidth"]

Data Types: string | cell

ResponseName — Response variable name
"Y" (default) | character vector | string scalar

Response variable name, specified as a character vector or string scalar.

• If you supply Y, then you can use ResponseName to specify a name for the response variable.
• If you supply ResponseVarName or formula, then you cannot use ResponseName.

Example: "ResponseName","response"
Data Types: char | string

ResponseTransform — Response transformation
'none' (default) | function handle

Response transformation, specified as either 'none' or a function handle. The default is 'none',
which means @(y)y, or no transformation. For a MATLAB function or a function you define, use its
function handle for the response transformation. The function handle must accept a vector (the
original response values) and return a vector of the same size (the transformed response values).
Example: Suppose you create a function handle that applies an exponential transformation to an
input vector by using myfunction = @(y)exp(y). Then, you can specify the response
transformation as 'ResponseTransform',myfunction.
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Data Types: char | string | function_handle

Parallel Options

Options — Options for computing in parallel and setting random numbers
structure

Options for computing in parallel and setting random numbers, specified as a structure. Create the
Options structure with statset.

Note You need Parallel Computing Toolbox to compute in parallel.

This table lists the option fields and their values.

Field Name Value Default
UseParallel Set this value to true to

compute in parallel. Parallel
ensemble training requires you
to set the 'Method' name-value
argument to 'Bag'. Parallel
training is available only for tree
learners, the default type for
'Bag'.

false

UseSubstreams Set this value to true to run
computations in parallel in a
reproducible manner.

To compute reproducibly, set
Streams to a type that allows
substreams: 'mlfg6331_64' or
'mrg32k3a'. Also, use a tree
template with the
'Reproducible' name-value
argument set to true. See
“Reproducibility in Parallel
Statistical Computations” on
page 33-16.

false

Streams Specify this value as a
RandStream object or cell array
of such objects. Use a single
object except when the
UseParallel value is true
and the UseSubstreams value
is false. In that case, use a cell
array that has the same size as
the parallel pool.

If you do not specify Streams,
then fitrensemble uses the
default stream or streams.

For an example using reproducible parallel training, see “Train Classification Ensemble in Parallel”
on page 19-110.
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For dual-core systems and above, fitrensemble parallelizes training using Intel Threading Building
Blocks (TBB). Therefore, specifying the UseParallel option as true might not provide a significant
speedup on a single computer. For details on Intel TBB, see https://www.intel.com/
content/www/us/en/developer/tools/oneapi/onetbb.html.
Example: 'Options',statset('UseParallel',true)
Data Types: struct

Cross-Validation Options

CrossVal — Cross-validation flag
'off' (default) | 'on'

Cross-validation flag, specified as the comma-separated pair consisting of 'Crossval' and 'on' or
'off'.

If you specify 'on', then the software implements 10-fold cross-validation.

To override this cross-validation setting, use one of these name-value pair arguments: CVPartition,
Holdout, KFold, or Leaveout. To create a cross-validated model, you can use one cross-validation
name-value pair argument at a time only.

Alternatively, cross-validate later by passing Mdl to crossval or crossval.
Example: 'Crossval','on'

CVPartition — Cross-validation partition
[] (default) | cvpartition partition object

Cross-validation partition, specified as a cvpartition partition object created by cvpartition.
The partition object specifies the type of cross-validation and the indexing for the training and
validation sets.

To create a cross-validated model, you can specify only one of these four name-value arguments:
CVPartition, Holdout, KFold, or Leaveout.
Example: Suppose you create a random partition for 5-fold cross-validation on 500 observations by
using cvp = cvpartition(500,'KFold',5). Then, you can specify the cross-validated model by
using 'CVPartition',cvp.

Holdout — Fraction of data for holdout validation
scalar value in the range (0,1)

Fraction of the data used for holdout validation, specified as a scalar value in the range (0,1). If you
specify 'Holdout',p, then the software completes these steps:

1 Randomly select and reserve p*100% of the data as validation data, and train the model using
the rest of the data.

2 Store the compact, trained model in the Trained property of the cross-validated model.

To create a cross-validated model, you can specify only one of these four name-value arguments:
CVPartition, Holdout, KFold, or Leaveout.
Example: 'Holdout',0.1
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Data Types: double | single

KFold — Number of folds
10 (default) | positive integer value greater than 1

Number of folds to use in a cross-validated model, specified as a positive integer value greater than 1.
If you specify 'KFold',k, then the software completes these steps:

1 Randomly partition the data into k sets.
2 For each set, reserve the set as validation data, and train the model using the other k – 1 sets.
3 Store the k compact, trained models in a k-by-1 cell vector in the Trained property of the cross-

validated model.

To create a cross-validated model, you can specify only one of these four name-value arguments:
CVPartition, Holdout, KFold, or Leaveout.
Example: 'KFold',5
Data Types: single | double

Leaveout — Leave-one-out cross-validation flag
'off' (default) | 'on'

Leave-one-out cross-validation flag, specified as 'on' or 'off'. If you specify 'Leaveout','on',
then for each of the n observations (where n is the number of observations, excluding missing
observations, specified in the NumObservations property of the model), the software completes
these steps:

1 Reserve the one observation as validation data, and train the model using the other n – 1
observations.

2 Store the n compact, trained models in an n-by-1 cell vector in the Trained property of the
cross-validated model.

To create a cross-validated model, you can specify only one of these four name-value arguments:
CVPartition, Holdout, KFold, or Leaveout.
Example: 'Leaveout','on'

Other Regression Options

Weights — Observation weights
numeric vector of positive values | name of variable in Tbl

Observation weights, specified as the comma-separated pair consisting of 'Weights' and a numeric
vector of positive values or name of a variable in Tbl. The software weighs the observations in each
row of X or Tbl with the corresponding value in Weights. The size of Weights must equal the
number of rows of X or Tbl.

If you specify the input data as a table Tbl, then Weights can be the name of a variable in Tbl that
contains a numeric vector. In this case, you must specify Weights as a character vector or string
scalar. For example, if the weights vector W is stored as Tbl.W, then specify it as 'W'. Otherwise, the
software treats all columns of Tbl, including W, as predictors or the response when training the
model.
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The software normalizes the values of Weights to sum to 1.

By default, Weights is ones(n,1), where n is the number of observations in X or Tbl.
Data Types: double | single | char | string

Sampling Options

FResample — Fraction of training set to resample
1 (default) | positive scalar in (0,1]

Fraction of the training set to resample for every weak learner, specified as a positive scalar in (0,1].
To use 'FResample', set Resample to 'on'.
Example: 'FResample',0.75
Data Types: single | double

Replace — Flag indicating to sample with replacement
'on' (default) | 'off'

Flag indicating sampling with replacement, specified as the comma-separated pair consisting of
'Replace' and 'off' or 'on'.

• For 'on', the software samples the training observations with replacement.
• For 'off', the software samples the training observations without replacement. If you set

Resample to 'on', then the software samples training observations assuming uniform weights. If
you also specify a boosting method, then the software boosts by reweighting observations.

Unless you set Method to 'bag' or set Resample to 'on', Replace has no effect.
Example: 'Replace','off'

Resample — Flag indicating to resample
'off' | 'on'

Flag indicating to resample, specified as the comma-separated pair consisting of 'Resample' and
'off' or 'on'.

• If Method is a boosting method, then:

• 'Resample','on' specifies to sample training observations using updated weights as the
multinomial sampling probabilities.

• 'Resample','off'(default) specifies to reweight observations at every learning iteration.
• If Method is 'bag', then 'Resample' must be 'on'. The software resamples a fraction of the

training observations (see FResample) with or without replacement (see Replace).

If you specify to resample using Resample, then it is good practice to resample to entire data set.
That is, use the default setting of 1 for FResample.
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LSBoost Method Options

LearnRate — Learning rate for shrinkage
1 (default) | numeric scalar in (0,1]

Learning rate for shrinkage, specified as the comma-separated pair consisting of 'LearnRate' and a
numeric scalar in the interval (0,1].

To train an ensemble using shrinkage, set LearnRate to a value less than 1, for example, 0.1 is a
popular choice. Training an ensemble using shrinkage requires more learning iterations, but often
achieves better accuracy.
Example: 'LearnRate',0.1
Data Types: single | double

Hyperparameter Optimization Options

OptimizeHyperparameters — Parameters to optimize
'none' (default) | 'auto' | 'all' | string array or cell array of eligible parameter names | vector of
optimizableVariable objects

Parameters to optimize, specified as the comma-separated pair consisting of
'OptimizeHyperparameters' and one of the following:

• 'none' — Do not optimize.
• 'auto' — Use {'Method','NumLearningCycles','LearnRate'} along with the default

parameters for the specified Learners:

• Learners = 'tree' (default) — {'MinLeafSize'}

Note For hyperparameter optimization, Learners must be a single argument, not a string array
or cell array.

• 'all' — Optimize all eligible parameters.
• String array or cell array of eligible parameter names
• Vector of optimizableVariable objects, typically the output of hyperparameters

The optimization attempts to minimize the cross-validation loss (error) for fitrensemble by varying
the parameters. To control the cross-validation type and other aspects of the optimization, use the
HyperparameterOptimizationOptions name-value pair.

Note The values of 'OptimizeHyperparameters' override any values you specify using other
name-value arguments. For example, setting 'OptimizeHyperparameters' to 'auto' causes
fitrensemble to optimize hyperparameters corresponding to the 'auto' option and to ignore any
specified values for the hyperparameters.

The eligible parameters for fitrensemble are:

• Method — Eligible methods are 'Bag' or 'LSBoost'.
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• NumLearningCycles — fitrensemble searches among positive integers, by default log-scaled
with range [10,500].

• LearnRate — fitrensemble searches among positive reals, by default log-scaled with range
[1e-3,1].

• MinLeafSize — fitrensemble searches among integers log-scaled in the range
[1,max(2,floor(NumObservations/2))].

• MaxNumSplits — fitrensemble searches among integers log-scaled in the range
[1,max(2,NumObservations-1)].

• NumVariablesToSample — fitrensemble searches among integers in the range
[1,max(2,NumPredictors)].

Set nondefault parameters by passing a vector of optimizableVariable objects that have
nondefault values. For example,

load carsmall
params = hyperparameters('fitrensemble',[Horsepower,Weight],MPG,'Tree');
params(4).Range = [1,20];

Pass params as the value of OptimizeHyperparameters.

By default, the iterative display appears at the command line, and plots appear according to the
number of hyperparameters in the optimization. For the optimization and plots, the objective function
is log(1 + cross-validation loss). To control the iterative display, set the Verbose field of the
'HyperparameterOptimizationOptions' name-value argument. To control the plots, set the
ShowPlots field of the 'HyperparameterOptimizationOptions' name-value argument.

For an example, see “Optimize Regression Ensemble” on page 35-2693.
Example: 'OptimizeHyperparameters',
{'Method','NumLearningCycles','LearnRate','MinLeafSize','MaxNumSplits'}

HyperparameterOptimizationOptions — Options for optimization
structure

Options for optimization, specified as a structure. This argument modifies the effect of the
OptimizeHyperparameters name-value argument. All fields in the structure are optional.

Field Name Values Default
Optimizer • 'bayesopt' — Use Bayesian optimization.

Internally, this setting calls bayesopt.
• 'gridsearch' — Use grid search with

NumGridDivisions values per dimension.
• 'randomsearch' — Search at random among

MaxObjectiveEvaluations points.

'gridsearch' searches in a random order, using
uniform sampling without replacement from the
grid. After optimization, you can get a table in grid
order by using the command
sortrows(Mdl.HyperparameterOptimizatio
nResults).

'bayesopt'
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Field Name Values Default
AcquisitionFunct
ionName

• 'expected-improvement-per-second-
plus'

• 'expected-improvement'
• 'expected-improvement-plus'
• 'expected-improvement-per-second'
• 'lower-confidence-bound'
• 'probability-of-improvement'

Acquisition functions whose names include per-
second do not yield reproducible results because
the optimization depends on the runtime of the
objective function. Acquisition functions whose
names include plus modify their behavior when
they are overexploiting an area. For more details,
see “Acquisition Function Types” on page 10-3.

'expected-
improvement-per-
second-plus'

MaxObjectiveEval
uations

Maximum number of objective function
evaluations.

30 for 'bayesopt' and
'randomsearch', and
the entire grid for
'gridsearch'

MaxTime Time limit, specified as a positive real scalar. The
time limit is in seconds, as measured by tic and
toc. The run time can exceed MaxTime because
MaxTime does not interrupt function evaluations.

Inf

NumGridDivisions For 'gridsearch', the number of values in each
dimension. The value can be a vector of positive
integers giving the number of values for each
dimension, or a scalar that applies to all
dimensions. This field is ignored for categorical
variables.

10

ShowPlots Logical value indicating whether to show plots. If
true, this field plots the best observed objective
function value against the iteration number. If you
use Bayesian optimization (Optimizer is
'bayesopt'), then this field also plots the best
estimated objective function value. The best
observed objective function values and best
estimated objective function values correspond to
the values in the BestSoFar (observed) and
BestSoFar (estim.) columns of the iterative
display, respectively. You can find these values in
the properties ObjectiveMinimumTrace and
EstimatedObjectiveMinimumTrace of
Mdl.HyperparameterOptimizationResults.
If the problem includes one or two optimization
parameters for Bayesian optimization, then
ShowPlots also plots a model of the objective
function against the parameters.

true
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Field Name Values Default
SaveIntermediate
Results

Logical value indicating whether to save results
when Optimizer is 'bayesopt'. If true, this
field overwrites a workspace variable named
'BayesoptResults' at each iteration. The
variable is a BayesianOptimization object.

false

Verbose Display at the command line:

• 0 — No iterative display
• 1 — Iterative display
• 2 — Iterative display with extra information

For details, see the bayesopt Verbose name-
value argument and the example “Optimize
Classifier Fit Using Bayesian Optimization” on
page 10-56.

1

UseParallel Logical value indicating whether to run Bayesian
optimization in parallel, which requires Parallel
Computing Toolbox. Due to the nonreproducibility
of parallel timing, parallel Bayesian optimization
does not necessarily yield reproducible results. For
details, see “Parallel Bayesian Optimization” on
page 10-7.

false

Repartition Logical value indicating whether to repartition the
cross-validation at every iteration. If this field is
false, the optimizer uses a single partition for
the optimization.

The setting true usually gives the most robust
results because it takes partitioning noise into
account. However, for good results, true requires
at least twice as many function evaluations.

false

Use no more than one of the following three options.
CVPartition A cvpartition object, as created by

cvpartition
'Kfold',5 if you do not
specify a cross-validation
fieldHoldout A scalar in the range (0,1) representing the

holdout fraction
Kfold An integer greater than 1

Example:
'HyperparameterOptimizationOptions',struct('MaxObjectiveEvaluations',60)

Data Types: struct

Output Arguments
Mdl — Trained regression ensemble model
RegressionBaggedEnsemble model object | RegressionEnsemble model object |
RegressionPartitionedEnsemble cross-validated model object
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Trained ensemble model, returned as one of the model objects in this table.

Model Object Specify Any Cross-
Validation Options?

Method Setting Resample Setting

RegressionBaggedEnse
mble

No 'Bag' 'on'

RegressionEnsemble No 'LSBoost' 'off'
RegressionPartitione
dEnsemble

Yes 'LSBoost' or 'Bag' 'off' or 'on'

The name-value pair arguments that control cross-validation are CrossVal, Holdout, KFold,
Leaveout, and CVPartition.

To reference properties of Mdl, use dot notation. For example, to access or display the cell vector of
weak learner model objects for an ensemble that has not been cross-validated, enter Mdl.Trained at
the command line.

Tips
• NumLearningCycles can vary from a few dozen to a few thousand. Usually, an ensemble with

good predictive power requires from a few hundred to a few thousand weak learners. However,
you do not have to train an ensemble for that many cycles at once. You can start by growing a few
dozen learners, inspect the ensemble performance and then, if necessary, train more weak
learners using resume.

• Ensemble performance depends on the ensemble setting and the setting of the weak learners.
That is, if you specify weak learners with default parameters, then the ensemble can perform
poorly. Therefore, like ensemble settings, it is good practice to adjust the parameters of the weak
learners using templates, and to choose values that minimize generalization error.

• If you specify to resample using Resample, then it is good practice to resample to entire data set.
That is, use the default setting of 1 for FResample.

• After training a model, you can generate C/C++ code that predicts responses for new data.
Generating C/C++ code requires MATLAB Coder. For details, see “Introduction to Code
Generation” on page 34-2.

Algorithms
• For details of ensemble aggregation algorithms, see “Ensemble Algorithms” on page 19-41.
• If you specify 'Method','LSBoost', then the software grows shallow decision trees by default.

You can adjust tree depth by specifying the MaxNumSplits, MinLeafSize, and MinParentSize
name-value pair arguments using templateTree.

• For dual-core systems and above, fitrensemble parallelizes training using Intel Threading
Building Blocks (TBB). For details on Intel TBB, see https://www.intel.com/content/www/us/en/
developer/tools/oneapi/onetbb.html.

Version History
Introduced in R2016b
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Extended Capabilities
Automatic Parallel Support
Accelerate code by automatically running computation in parallel using Parallel Computing Toolbox™.

fitrensemble supports parallel training using the 'Options' name-value argument. Create
options using statset, such as options = statset('UseParallel',true). Parallel ensemble
training requires you to set the 'Method' name-value argument to 'Bag'. Parallel training is
available only for tree learners, the default type for 'Bag'.

To perform parallel hyperparameter optimization, use the
'HyperparameterOptimizationOptions', struct('UseParallel',true) name-value
argument in the call to the fitrensemble function.

For more information on parallel hyperparameter optimization, see “Parallel Bayesian Optimization”
on page 10-7.

For general information about parallel computing, see “Run MATLAB Functions with Automatic
Parallel Support” (Parallel Computing Toolbox).

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

Usage notes and limitations:

• fitrensemble does not support bootstrap aggregation. You can specify the name-value
argument Method only as "LSBoost".

• If you use templateTree to create a learner template object or cell vector of learner template
objects, you can specify the name-value arguments Surrogate and PredictorSelection only
as "off" and "allsplits", respectively.

• If you use templateTree and the data contains categorical predictors, you can specify the name-
value argument NumVariablesToSample only as "all".

• fitrensemble fits the model on a GPU if any of the following apply:

• The input argument X is a gpuArray object.
• The input argument Y is a gpuArray object.
• The input argument Tbl contains gpuArray variables.
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• If you use templateTree to specify MaxNumSplits, note that fitrensemble might not execute
faster on a GPU than a CPU for deeper decision trees.

For more information, see “Run MATLAB Functions on a GPU” (Parallel Computing Toolbox).

See Also
RegressionEnsemble | RegressionBaggedEnsemble | RegressionPartitionedEnsemble |
templateTree | predict

Topics
“Supervised Learning Workflow and Algorithms” on page 19-2
“Framework for Ensemble Learning” on page 19-33
“Ensemble Algorithms” on page 19-41
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fitrsvm
Fit a support vector machine regression model

Syntax
Mdl = fitrsvm(Tbl,ResponseVarName)
Mdl = fitrsvm(Tbl,formula)
Mdl = fitrsvm(Tbl,Y)

Mdl = fitrsvm(X,Y)

Mdl = fitrsvm( ___ ,Name,Value)

Description
fitrsvm trains or cross-validates a support vector machine (SVM) regression model on a low-
through moderate-dimensional predictor data set. fitrsvm supports mapping the predictor data
using kernel functions, and supports SMO, ISDA, or L1 soft-margin minimization via quadratic
programming for objective-function minimization.

To train a linear SVM regression model on a high-dimensional data set, that is, data sets that include
many predictor variables, use fitrlinear instead.

To train an SVM model for binary classification, see fitcsvm for low- through moderate-dimensional
predictor data sets, or fitclinear for high-dimensional data sets.

Mdl = fitrsvm(Tbl,ResponseVarName) returns a full, trained support vector machine (SVM)
regression model Mdl trained using the predictors values in the table Tbl and the response values in
Tbl.ResponseVarName.

Mdl = fitrsvm(Tbl,formula) returns a full SVM regression model trained using the predictors
values in the table Tbl. formula is an explanatory model of the response and a subset of predictor
variables in Tbl used to fit Mdl.

Mdl = fitrsvm(Tbl,Y) returns a full, trained SVM regression model trained using the predictors
values in the table Tbl and the response values in the vector Y.

Mdl = fitrsvm(X,Y) returns a full, trained SVM regression model trained using the predictors
values in the matrix X and the response values in the vector Y.

Mdl = fitrsvm( ___ ,Name,Value) returns an SVM regression model with additional options
specified by one or more name-value pair arguments, using any of the previous syntaxes. For
example, you can specify the kernel function or train a cross-validated model.

Examples

Train Linear Support Vector Machine Regression Model

Train a support vector machine (SVM) regression model using sample data stored in matrices.
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Load the carsmall data set.

load carsmall
rng 'default'  % For reproducibility

Specify Horsepower and Weight as the predictor variables (X) and MPG as the response variable (Y).

X = [Horsepower,Weight];
Y = MPG;

Train a default SVM regression model.

Mdl = fitrsvm(X,Y)

Mdl = 
  RegressionSVM
             ResponseName: 'Y'
    CategoricalPredictors: []
        ResponseTransform: 'none'
                    Alpha: [75x1 double]
                     Bias: 57.3800
         KernelParameters: [1x1 struct]
          NumObservations: 93
           BoxConstraints: [93x1 double]
          ConvergenceInfo: [1x1 struct]
          IsSupportVector: [93x1 logical]
                   Solver: 'SMO'

  Properties, Methods

Mdl is a trained RegressionSVM model.

Check the model for convergence.

Mdl.ConvergenceInfo.Converged

ans = logical
   0

0 indicates that the model did not converge.

Retrain the model using standardized data.

MdlStd = fitrsvm(X,Y,'Standardize',true)

MdlStd = 
  RegressionSVM
             ResponseName: 'Y'
    CategoricalPredictors: []
        ResponseTransform: 'none'
                    Alpha: [77x1 double]
                     Bias: 22.9131
         KernelParameters: [1x1 struct]
                       Mu: [109.3441 2.9625e+03]
                    Sigma: [45.3545 805.9668]
          NumObservations: 93
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           BoxConstraints: [93x1 double]
          ConvergenceInfo: [1x1 struct]
          IsSupportVector: [93x1 logical]
                   Solver: 'SMO'

  Properties, Methods

Check the model for convergence.

MdlStd.ConvergenceInfo.Converged

ans = logical
   1

1 indicates that the model did converge.

Compute the resubstitution (in-sample) mean-squared error for the new model.

lStd = resubLoss(MdlStd)

lStd = 17.0256

Train Support Vector Machine Regression Model

Train a support vector machine regression model using the abalone data from the UCI Machine
Learning Repository.

Download the data and save it in your current folder with the name 'abalone.csv'.

url = 'https://archive.ics.uci.edu/ml/machine-learning-databases/abalone/abalone.data';
websave('abalone.csv',url);

Read the data into a table. Specify the variable names.

varnames = {'Sex'; 'Length'; 'Diameter'; 'Height'; 'Whole_weight';...
    'Shucked_weight'; 'Viscera_weight'; 'Shell_weight'; 'Rings'};
Tbl = readtable('abalone.csv','Filetype','text','ReadVariableNames',false);
Tbl.Properties.VariableNames = varnames;

The sample data contains 4177 observations. All the predictor variables are continuous except for
Sex, which is a categorical variable with possible values 'M' (for males), 'F' (for females), and 'I'
(for infants). The goal is to predict the number of rings (stored in Rings) on the abalone and
determine its age using physical measurements.

Train an SVM regression model, using a Gaussian kernel function with an automatic kernel scale.
Standardize the data.

rng default  % For reproducibility
Mdl = fitrsvm(Tbl,'Rings','KernelFunction','gaussian','KernelScale','auto',...
    'Standardize',true)

Mdl = 
  RegressionSVM

 fitrsvm

35-2721



           PredictorNames: {'Sex'  'Length'  'Diameter'  'Height'  'Whole_weight'  'Shucked_weight'  'Viscera_weight'  'Shell_weight'}
             ResponseName: 'Rings'
    CategoricalPredictors: 1
        ResponseTransform: 'none'
                    Alpha: [3635×1 double]
                     Bias: 10.8144
         KernelParameters: [1×1 struct]
                       Mu: [0 0 0 0.5240 0.4079 0.1395 0.8287 0.3594 0.1806 0.2388]
                    Sigma: [1 1 1 0.1201 0.0992 0.0418 0.4904 0.2220 0.1096 0.1392]
          NumObservations: 4177
           BoxConstraints: [4177×1 double]
          ConvergenceInfo: [1×1 struct]
          IsSupportVector: [4177×1 logical]
                   Solver: 'SMO'

  Properties, Methods

The Command Window shows that Mdl is a trained RegressionSVM model and displays a property
list.

Display the properties of Mdl using dot notation. For example, check to confirm whether the model
converged and how many iterations it completed.

conv = Mdl.ConvergenceInfo.Converged

conv = logical
   1

iter = Mdl.NumIterations

iter = 2759

The returned results indicate that the model converged after 2759 iterations.

Cross-Validate SVM Regression Model

Load the carsmall data set.

load carsmall
rng 'default'  % For reproducibility

Specify Horsepower and Weight as the predictor variables (X) and MPG as the response variable (Y).

X = [Horsepower Weight];
Y = MPG;

Cross-validate two SVM regression models using 5-fold cross-validation. For both models, specify to
standardize the predictors. For one of the models, specify to train using the default linear kernel, and
the Gaussian kernel for the other model.

MdlLin = fitrsvm(X,Y,'Standardize',true,'KFold',5)

MdlLin = 
  RegressionPartitionedSVM
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    CrossValidatedModel: 'SVM'
         PredictorNames: {'x1'  'x2'}
           ResponseName: 'Y'
        NumObservations: 94
                  KFold: 5
              Partition: [1x1 cvpartition]
      ResponseTransform: 'none'

  Properties, Methods

MdlGau = fitrsvm(X,Y,'Standardize',true,'KFold',5,'KernelFunction','gaussian')

MdlGau = 
  RegressionPartitionedSVM
    CrossValidatedModel: 'SVM'
         PredictorNames: {'x1'  'x2'}
           ResponseName: 'Y'
        NumObservations: 94
                  KFold: 5
              Partition: [1x1 cvpartition]
      ResponseTransform: 'none'

  Properties, Methods

MdlLin.Trained

ans=5×1 cell array
    {1x1 classreg.learning.regr.CompactRegressionSVM}
    {1x1 classreg.learning.regr.CompactRegressionSVM}
    {1x1 classreg.learning.regr.CompactRegressionSVM}
    {1x1 classreg.learning.regr.CompactRegressionSVM}
    {1x1 classreg.learning.regr.CompactRegressionSVM}

MdlLin and MdlGau are RegressionPartitionedSVM cross-validated models. The Trained
property of each model is a 5-by-1 cell array of CompactRegressionSVM models. The models in the
cell store the results of training on 4 folds of observations, and leaving one fold of observations out.

Compare the generalization error of the models. In this case, the generalization error is the out-of-
sample mean-squared error.

mseLin = kfoldLoss(MdlLin)

mseLin = 17.4417

mseGau = kfoldLoss(MdlGau)

mseGau = 16.7333

The SVM regression model using the Gaussian kernel performs better than the one using the linear
kernel.

Create a model suitable for making predictions by passing the entire data set to fitrsvm, and
specify all name-value pair arguments that yielded the better-performing model. However, do not
specify any cross-validation options.
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MdlGau = fitrsvm(X,Y,'Standardize',true,'KernelFunction','gaussian');

To predict the MPG of a set of cars, pass Mdl and a table containing the horsepower and weight
measurements of the cars to predict.

Optimize SVM Regression

This example shows how to optimize hyperparameters automatically using fitrsvm. The example
uses the carsmall data.

Load the carsmall data set.

load carsmall

Specify Horsepower and Weight as the predictor variables (X) and MPG as the response variable (Y).

X = [Horsepower Weight];
Y = MPG;

Delete rows of X and Y where either array has missing values.

R = rmmissing([X Y]);
X = R(:,1:end-1);
Y = R(:,end);

Find hyperparameters that minimize five-fold cross-validation loss by using automatic
hyperparameter optimization.

For reproducibility, set the random seed and use the 'expected-improvement-plus' acquisition
function.

rng default
Mdl = fitrsvm(X,Y,'OptimizeHyperparameters','auto',...
    'HyperparameterOptimizationOptions',struct('AcquisitionFunctionName',...
    'expected-improvement-plus'))

|====================================================================================================================|
| Iter | Eval   | Objective:  | Objective   | BestSoFar   | BestSoFar   | BoxConstraint|  KernelScale |      Epsilon |
|      | result | log(1+loss) | runtime     | (observed)  | (estim.)    |              |              |              |
|====================================================================================================================|
|    1 | Best   |      2.9062 |      1.1461 |      2.9062 |      2.9062 |       28.362 |       911.02 |     0.016304 |
|    2 | Accept |      4.8145 |      20.224 |      2.9062 |      3.0131 |     0.036953 |     0.053504 |     0.034503 |
|    3 | Accept |      4.1988 |     0.26218 |      2.9062 |      2.9063 |    0.0062352 |    0.0013479 |       81.308 |
|    4 | Accept |      4.1988 |     0.20864 |      2.9062 |      2.9064 |        680.3 |       293.54 |       162.86 |
|    5 | Accept |      4.1988 |      24.105 |      2.9062 |      2.9063 |       14.353 |    0.0066547 |       14.742 |
|    6 | Accept |      2.9472 |     0.47187 |      2.9062 |      2.9063 |       201.23 |       226.68 |    0.0093069 |
|    7 | Accept |      2.9475 |     0.83744 |      2.9062 |      2.9062 |       978.06 |       358.58 |      0.07677 |
|    8 | Accept |      3.0499 |      0.1743 |      2.9062 |      2.9064 |      0.15671 |       483.82 |     0.021596 |
|    9 | Accept |      2.9337 |      0.2757 |      2.9062 |      2.9072 |       996.09 |        983.8 |    0.0099789 |
|   10 | Accept |      2.9362 |     0.26562 |      2.9062 |      2.9143 |       360.93 |       550.72 |     0.023869 |
|   11 | Accept |      2.9413 |     0.24563 |      2.9062 |       2.921 |       888.36 |       934.77 |     0.036325 |
|   12 | Accept |      2.9062 |     0.19761 |      2.9062 |      2.9054 |       37.889 |       898.03 |    0.0093655 |
|   13 | Accept |      2.9667 |      16.855 |      2.9062 |      2.9058 |       938.39 |       53.595 |     0.047829 |
|   14 | Accept |      2.9165 |      0.1754 |      2.9062 |      2.9084 |       9.5569 |       989.62 |    0.0094747 |
|   15 | Accept |      2.9228 |     0.15765 |      2.9062 |      2.9069 |       2.4944 |       999.79 |      0.16938 |
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|   16 | Accept |      2.9076 |       0.185 |      2.9062 |       2.907 |       38.894 |       964.99 |       0.1529 |
|   17 | Accept |      2.9165 |     0.15037 |      2.9062 |      2.9076 |       13.319 |       996.12 |     0.052038 |
|   18 | Accept |      2.9071 |     0.28351 |      2.9062 |      2.9067 |       15.421 |       162.57 |      0.31775 |
|   19 | Accept |      2.9254 |     0.19399 |      2.9062 |      2.9075 |       21.241 |       253.09 |      0.15932 |
|   20 | Accept |      2.9261 |      9.7262 |      2.9062 |      2.9075 |        736.2 |       84.688 |      0.45521 |
|====================================================================================================================|
| Iter | Eval   | Objective:  | Objective   | BestSoFar   | BestSoFar   | BoxConstraint|  KernelScale |      Epsilon |
|      | result | log(1+loss) | runtime     | (observed)  | (estim.)    |              |              |              |
|====================================================================================================================|
|   21 | Best   |      2.9028 |     0.16022 |      2.9028 |      2.9032 |       29.769 |       318.09 |      0.59257 |
|   22 | Accept |      2.9117 |     0.28098 |      2.9028 |      2.9073 |       74.946 |       275.31 |      0.38162 |
|   23 | Accept |      2.9091 |     0.28564 |      2.9028 |      2.9045 |       2.8513 |       120.39 |      0.94096 |
|   24 | Accept |      4.1986 |     0.24316 |      2.9028 |      2.9029 |    0.0013149 |       948.36 |       5.0271 |
|   25 | Best   |      2.9011 |      2.5571 |      2.9011 |      2.9012 |       23.373 |       34.479 |        1.232 |
|   26 | Accept |      2.9064 |     0.73148 |      2.9011 |      2.9022 |       25.394 |       83.156 |      0.81016 |
|   27 | Accept |      5.0666 |      18.732 |      2.9011 |      2.9015 |       834.39 |       7.2639 |      0.54851 |
|   28 | Accept |       3.089 |     0.13349 |      2.9011 |      2.9017 |    0.0010403 |        50.88 |      0.63866 |
|   29 | Accept |      3.3449 |     0.12889 |      2.9011 |      2.9019 |       117.61 |         45.2 |       10.071 |
|   30 | Accept |      2.9363 |      1.1115 |      2.9011 |       2.902 |       19.897 |       46.938 |      0.32841 |

__________________________________________________________
Optimization completed.
MaxObjectiveEvaluations of 30 reached.
Total function evaluations: 30
Total elapsed time: 129.5687 seconds
Total objective function evaluation time: 100.5062
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Best observed feasible point:
    BoxConstraint    KernelScale    Epsilon
    _____________    ___________    _______

       23.373          34.479        1.232 

Observed objective function value = 2.9011
Estimated objective function value = 2.902
Function evaluation time = 2.5571

Best estimated feasible point (according to models):
    BoxConstraint    KernelScale    Epsilon
    _____________    ___________    _______

       23.373          34.479        1.232 

Estimated objective function value = 2.902
Estimated function evaluation time = 1.4125

Mdl = 
  RegressionSVM
                         ResponseName: 'Y'
                CategoricalPredictors: []
                    ResponseTransform: 'none'
                                Alpha: [70x1 double]
                                 Bias: 45.5390
                     KernelParameters: [1x1 struct]
                      NumObservations: 93
    HyperparameterOptimizationResults: [1x1 BayesianOptimization]
                       BoxConstraints: [93x1 double]
                      ConvergenceInfo: [1x1 struct]
                      IsSupportVector: [93x1 logical]
                               Solver: 'SMO'

  Properties, Methods

The optimization searched over BoxConstraint, KernelScale, and Epsilon. The output is the
regression with the minimum estimated cross-validation loss.

Input Arguments
Tbl — Predictor data
table

Sample data used to train the model, specified as a table. Each row of Tbl corresponds to one
observation, and each column corresponds to one predictor variable. Optionally, Tbl can contain one
additional column for the response variable. Multicolumn variables and cell arrays other than cell
arrays of character vectors are not allowed.

If Tbl contains the response variable, and you want to use all remaining variables in Tbl as
predictors, then specify the response variable using ResponseVarName.

If Tbl contains the response variable, and you want to use only a subset of the remaining variables in
Tbl as predictors, then specify a formula using formula.
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If Tbl does not contain the response variable, then specify a response variable using Y. The length of
response variable and the number of rows of Tbl must be equal.

If a row of Tbl or an element of Y contains at least one NaN, then fitrsvm removes those rows and
elements from both arguments when training the model.

To specify the names of the predictors in the order of their appearance in Tbl, use the
PredictorNames name-value pair argument.
Data Types: table

ResponseVarName — Response variable name
name of variable in Tbl

Response variable name, specified as the name of a variable in Tbl. The response variable must be a
numeric vector.

You must specify ResponseVarName as a character vector or string scalar. For example, if Tbl stores
the response variable Y as Tbl.Y, then specify it as 'Y'. Otherwise, the software treats all columns
of Tbl, including Y, as predictors when training the model.
Data Types: char | string

formula — Explanatory model of response variable and subset of predictor variables
character vector | string scalar

Explanatory model of the response variable and a subset of the predictor variables, specified as a
character vector or string scalar in the form "Y~x1+x2+x3". In this form, Y represents the response
variable, and x1, x2, and x3 represent the predictor variables.

To specify a subset of variables in Tbl as predictors for training the model, use a formula. If you
specify a formula, then the software does not use any variables in Tbl that do not appear in
formula.

The variable names in the formula must be both variable names in Tbl
(Tbl.Properties.VariableNames) and valid MATLAB identifiers. You can verify the variable
names in Tbl by using the isvarname function. If the variable names are not valid, then you can
convert them by using the matlab.lang.makeValidName function.
Data Types: char | string

Y — Response data
numeric vector

Response data, specified as an n-by-1 numeric vector. The length of Y and the number of rows of Tbl
or X must be equal.

If a row of Tbl or X, or an element of Y, contains at least one NaN, then fitrsvm removes those rows
and elements from both arguments when training the model.

To specify the response variable name, use the ResponseName name-value pair argument.
Data Types: single | double

X — Predictor data
numeric matrix
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Predictor data to which the SVM regression model is fit, specified as an n-by-p numeric matrix. n is
the number of observations and p is the number of predictor variables.

The length of Y and the number of rows of X must be equal.

If a row of X or an element of Y contains at least one NaN, then fitrsvm removes those rows and
elements from both arguments.

To specify the names of the predictors in the order of their appearance in X, use the
PredictorNames name-value pair argument.
Data Types: single | double

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.

Note You cannot use any cross-validation name-value argument together with the
'OptimizeHyperparameters' name-value argument. You can modify the cross-validation for
'OptimizeHyperparameters' only by using the 'HyperparameterOptimizationOptions'
name-value argument.

Example: 'KernelFunction','gaussian','Standardize',true,'CrossVal','on' trains a
10-fold cross-validated SVM regression model using a Gaussian kernel and standardized training
data.

Support Vector Machine Options

BoxConstraint — Box constraint
positive scalar value

Box constraint for the alpha coefficients, specified as the comma-separated pair consisting of
'BoxConstraint' and a positive scalar value.

The absolute value of the Alpha coefficients cannot exceed the value of BoxConstraint.

The default BoxConstraint value for the 'gaussian' or 'rbf' kernel function is iqr(Y)/1.349,
where iqr(Y) is the interquartile range of response variable Y. For all other kernels, the default
BoxConstraint value is 1.
Example: BoxConstraint,10
Data Types: single | double

KernelFunction — Kernel function
'linear' (default) | 'gaussian' | 'rbf' | 'polynomial' | function name

Kernel function used to compute the Gram matrix on page 35-2206, specified as the comma-separated
pair consisting of 'KernelFunction' and a value in this table.
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Value Description Formula
'gaussian' or 'rbf' Gaussian or Radial Basis

Function (RBF) kernel
G x j, xk = exp − x j− xk

2

'linear' Linear kernel G(x j, xk) = x j′xk

'polynomial' Polynomial kernel. Use
'PolynomialOrder',q to
specify a polynomial kernel of
order q.

G(x j, xk) = (1 + x j′xk)q

You can set your own kernel function, for example, kernel, by setting
'KernelFunction','kernel'. kernel must have the following form:

function G = kernel(U,V)

where:

• U is an m-by-p matrix.
• V is an n-by-p matrix.
• G is an m-by-n Gram matrix of the rows of U and V.

And kernel.m must be on the MATLAB path.

It is good practice to avoid using generic names for kernel functions. For example, call a sigmoid
kernel function 'mysigmoid' rather than 'sigmoid'.
Example: 'KernelFunction','gaussian'
Data Types: char | string

KernelScale — Kernel scale parameter
1 (default) | 'auto' | positive scalar

Kernel scale parameter, specified as the comma-separated pair consisting of 'KernelScale' and
'auto' or a positive scalar. The software divides all elements of the predictor matrix X by the value
of KernelScale. Then, the software applies the appropriate kernel norm to compute the Gram
matrix.

• If you specify 'auto', then the software selects an appropriate scale factor using a heuristic
procedure. This heuristic procedure uses subsampling, so estimates can vary from one call to
another. Therefore, to reproduce results, set a random number seed using rng before training.

• If you specify KernelScale and your own kernel function, for example,
'KernelFunction','kernel', then the software throws an error. You must apply scaling within
kernel.

Example: 'KernelScale','auto'
Data Types: double | single | char | string

PolynomialOrder — Polynomial kernel function order
3 (default) | positive integer

Polynomial kernel function order, specified as the comma-separated pair consisting of
'PolynomialOrder' and a positive integer.
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If you set 'PolynomialOrder' and KernelFunction is not 'polynomial', then the software
throws an error.
Example: 'PolynomialOrder',2
Data Types: double | single

KernelOffset — Kernel offset parameter
nonnegative scalar

Kernel offset parameter, specified as the comma-separated pair consisting of 'KernelOffset' and a
nonnegative scalar.

The software adds KernelOffset to each element of the Gram matrix.

The defaults are:

• 0 if the solver is SMO (that is, you set 'Solver','SMO')
• 0.1 if the solver is ISDA (that is, you set 'Solver','ISDA')

Example: 'KernelOffset',0
Data Types: double | single

Epsilon — Half the width of epsilon-insensitive band
iqr(Y)/13.49 (default) | nonnegative scalar value

Half the width of the epsilon-insensitive band, specified as the comma-separated pair consisting of
'Epsilon' and a nonnegative scalar value.

The default Epsilon value is iqr(Y)/13.49, which is an estimate of a tenth of the standard
deviation using the interquartile range of the response variable Y. If iqr(Y) is equal to zero, then the
default Epsilon value is 0.1.
Example: 'Epsilon',0.3
Data Types: single | double

Standardize — Flag to standardize predictor data
false (default) | true

Flag to standardize the predictor data, specified as the comma-separated pair consisting of
'Standardize' and true (1) or false (0).

If you set 'Standardize',true:

• The software centers and scales each column of the predictor data (X) by the weighted column
mean and standard deviation, respectively (for details on weighted standardizing, see
“Algorithms” on page 35-2742). MATLAB does not standardize the data contained in the dummy
variable columns generated for categorical predictors.

• The software trains the model using the standardized predictor matrix, but stores the
unstandardized data in the model property X.

Example: 'Standardize',true
Data Types: logical
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Solver — Optimization routine
'ISDA' | 'L1QP' | 'SMO'

Optimization routine, specified as the comma-separated pair consisting of 'Solver' and a value in
this table.

Value Description
'ISDA' Iterative Single Data Algorithm (see [30])
'L1QP' Uses quadprog to implement L1 soft-margin

minimization by quadratic programming. This
option requires an Optimization Toolbox license.
For more details, see “Quadratic Programming
Definition” (Optimization Toolbox).

'SMO' Sequential Minimal Optimization (see [17])

The defaults are:

• 'ISDA' if you set 'OutlierFraction' to a positive value
• 'SMO' otherwise

Example: 'Solver','ISDA'

Alpha — Initial estimates of alpha coefficients
numeric vector

Initial estimates of alpha coefficients, specified as the comma-separated pair consisting of 'Alpha'
and a numeric vector. The length of Alpha must be equal to the number of rows of X.

• Each element of Alpha corresponds to an observation in X.
• Alpha cannot contain any NaNs.
• If you specify Alpha and any one of the cross-validation name-value pair arguments

('CrossVal', 'CVPartition', 'Holdout', 'KFold', or 'Leaveout'), then the software
returns an error.

If Y contains any missing values, then remove all rows of Y, X, and Alpha that correspond to the
missing values. That is, enter:

idx = ~isnan(Y);
Y = Y(idx);
X = X(idx,:);
alpha = alpha(idx);

Then, pass Y, X, and alpha as the response, predictors, and initial alpha estimates, respectively.

The default is zeros(size(Y,1)).
Example: 'Alpha',0.1*ones(size(X,1),1)
Data Types: single | double

CacheSize — Cache size
1000 (default) | 'maximal' | positive scalar
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Cache size, specified as the comma-separated pair consisting of 'CacheSize' and 'maximal' or a
positive scalar.

If CacheSize is 'maximal', then the software reserves enough memory to hold the entire n-by-n
Gram matrix on page 35-2206.

If CacheSize is a positive scalar, then the software reserves CacheSize megabytes of memory for
training the model.
Example: 'CacheSize','maximal'
Data Types: double | single | char | string

ClipAlphas — Flag to clip alpha coefficients
true (default) | false

Flag to clip alpha coefficients, specified as the comma-separated pair consisting of 'ClipAlphas'
and either true or false.

Suppose that the alpha coefficient for observation j is αj and the box constraint of observation j is Cj, j
= 1,...,n, where n is the training sample size.

Value Description
true At each iteration, if αj is near 0 or near Cj, then MATLAB sets αj to 0 or to Cj,

respectively.
false MATLAB does not change the alpha coefficients during optimization.

MATLAB stores the final values of α in the Alpha property of the trained SVM model object.

ClipAlphas can affect SMO and ISDA convergence.
Example: 'ClipAlphas',false
Data Types: logical

NumPrint — Number of iterations between optimization diagnostic message output
1000 (default) | nonnegative integer

Number of iterations between optimization diagnostic message output, specified as the comma-
separated pair consisting of 'NumPrint' and a nonnegative integer.

If you specify 'Verbose',1 and 'NumPrint',numprint, then the software displays all optimization
diagnostic messages from SMO and ISDA every numprint iterations in the Command Window.
Example: 'NumPrint',500
Data Types: double | single

OutlierFraction — Expected proportion of outliers in training data
0 (default) | numeric scalar in the interval [0,1)

Expected proportion of outliers in training data, specified as the comma-separated pair consisting of
'OutlierFraction' and a numeric scalar in the interval [0,1). fitrsvm removes observations with
large gradients, ensuring that fitrsvm removes the fraction of observations specified by
OutlierFraction by the time convergence is reached. This name-value pair is only valid when
'Solver' is 'ISDA'.

35 Functions

35-2732



Example: 'OutlierFraction',0.1
Data Types: single | double

RemoveDuplicates — Flag to replace duplicate observations with single observations
false (default) | true

Flag to replace duplicate observations with single observations in the training data, specified as the
comma-separated pair consisting of 'RemoveDuplicates' and true or false.

If RemoveDuplicates is true, then fitrsvm replaces duplicate observations in the training data
with a single observation of the same value. The weight of the single observation is equal to the sum
of the weights of the corresponding removed duplicates (see Weights).

Tip If your data set contains many duplicate observations, then specifying
'RemoveDuplicates',true can decrease convergence time considerably.

Data Types: logical

Verbose — Verbosity level
0 (default) | 1 | 2

Verbosity level, specified as the comma-separated pair consisting of 'Verbose' and 0, 1, or 2. The
value of Verbose controls the amount of optimization information that the software displays in the
Command Window and saves the information as a structure to Mdl.ConvergenceInfo.History.

This table summarizes the available verbosity level options.

Value Description
0 The software does not display or save convergence information.
1 The software displays diagnostic messages and saves convergence criteria

every numprint iterations, where numprint is the value of the name-value
pair argument 'NumPrint'.

2 The software displays diagnostic messages and saves convergence criteria
at every iteration.

Example: 'Verbose',1
Data Types: double | single

Other Regression Options

CategoricalPredictors — Categorical predictors list
vector of positive integers | logical vector | character matrix | string array | cell array of character
vectors | 'all'

Categorical predictors list, specified as one of the values in this table.
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Value Description
Vector of positive
integers

Each entry in the vector is an index value indicating that the corresponding
predictor is categorical. The index values are between 1 and p, where p is
the number of predictors used to train the model.

If fitrsvm uses a subset of input variables as predictors, then the function
indexes the predictors using only the subset. The
CategoricalPredictors values do not count the response variable,
observation weights variable, or any other variables that the function does
not use.

Logical vector A true entry means that the corresponding predictor is categorical. The
length of the vector is p.

Character matrix Each row of the matrix is the name of a predictor variable. The names must
match the entries in PredictorNames. Pad the names with extra blanks
so each row of the character matrix has the same length.

String array or cell
array of character
vectors

Each element in the array is the name of a predictor variable. The names
must match the entries in PredictorNames.

"all" All predictors are categorical.

By default, if the predictor data is in a table (Tbl), fitrsvm assumes that a variable is categorical if
it is a logical vector, categorical vector, character array, string array, or cell array of character
vectors. If the predictor data is a matrix (X), fitrsvm assumes that all predictors are continuous. To
identify any other predictors as categorical predictors, specify them by using the
CategoricalPredictors name-value argument.

For the identified categorical predictors, fitrsvm creates dummy variables using two different
schemes, depending on whether a categorical variable is unordered or ordered. For an unordered
categorical variable, fitrsvm creates one dummy variable for each level of the categorical variable.
For an ordered categorical variable, fitrsvm creates one less dummy variable than the number of
categories. For details, see “Automatic Creation of Dummy Variables” on page 2-50.
Example: 'CategoricalPredictors','all'
Data Types: single | double | logical | char | string | cell

PredictorNames — Predictor variable names
string array of unique names | cell array of unique character vectors

Predictor variable names, specified as a string array of unique names or cell array of unique
character vectors. The functionality of PredictorNames depends on the way you supply the training
data.

• If you supply X and Y, then you can use PredictorNames to assign names to the predictor
variables in X.

• The order of the names in PredictorNames must correspond to the column order of X. That
is, PredictorNames{1} is the name of X(:,1), PredictorNames{2} is the name of
X(:,2), and so on. Also, size(X,2) and numel(PredictorNames) must be equal.

• By default, PredictorNames is {'x1','x2',...}.
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• If you supply Tbl, then you can use PredictorNames to choose which predictor variables to use
in training. That is, fitrsvm uses only the predictor variables in PredictorNames and the
response variable during training.

• PredictorNames must be a subset of Tbl.Properties.VariableNames and cannot include
the name of the response variable.

• By default, PredictorNames contains the names of all predictor variables.
• A good practice is to specify the predictors for training using either PredictorNames or

formula, but not both.

Example: "PredictorNames",
["SepalLength","SepalWidth","PetalLength","PetalWidth"]

Data Types: string | cell

ResponseName — Response variable name
"Y" (default) | character vector | string scalar

Response variable name, specified as a character vector or string scalar.

• If you supply Y, then you can use ResponseName to specify a name for the response variable.
• If you supply ResponseVarName or formula, then you cannot use ResponseName.

Example: "ResponseName","response"
Data Types: char | string

ResponseTransform — Response transformation
'none' (default) | function handle

Response transformation, specified as either 'none' or a function handle. The default is 'none',
which means @(y)y, or no transformation. For a MATLAB function or a function you define, use its
function handle for the response transformation. The function handle must accept a vector (the
original response values) and return a vector of the same size (the transformed response values).
Example: Suppose you create a function handle that applies an exponential transformation to an
input vector by using myfunction = @(y)exp(y). Then, you can specify the response
transformation as 'ResponseTransform',myfunction.
Data Types: char | string | function_handle

Weights — Observation weights
ones(size(X,1),1) (default) | vector of numeric values

Observation weights, specified as the comma-separated pair consisting of 'Weights' and a vector of
numeric values. The size of Weights must equal the number of rows in X. fitrsvm normalizes the
values of Weights to sum to 1.
Data Types: single | double

Cross-Validation Options

CrossVal — Cross-validation flag
'off' (default) | 'on'

Cross-validation flag, specified as the comma-separated pair consisting of 'CrossVal' and either
'on' or 'off'.
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If you specify 'on', then the software implements 10-fold cross-validation.

To override this cross-validation setting, use one of these name-value pair arguments: CVPartition,
Holdout, KFold, or Leaveout. To create a cross-validated model, you can use one cross-validation
name-value pair argument at a time only.

Alternatively, you can cross-validate the model later using the crossval method.
Example: 'CrossVal','on'

CVPartition — Cross-validation partition
[] (default) | cvpartition partition object

Cross-validation partition, specified as a cvpartition partition object created by cvpartition.
The partition object specifies the type of cross-validation and the indexing for the training and
validation sets.

To create a cross-validated model, you can specify only one of these four name-value arguments:
CVPartition, Holdout, KFold, or Leaveout.
Example: Suppose you create a random partition for 5-fold cross-validation on 500 observations by
using cvp = cvpartition(500,'KFold',5). Then, you can specify the cross-validated model by
using 'CVPartition',cvp.

Holdout — Fraction of data for holdout validation
scalar value in the range (0,1)

Fraction of the data used for holdout validation, specified as a scalar value in the range (0,1). If you
specify 'Holdout',p, then the software completes these steps:

1 Randomly select and reserve p*100% of the data as validation data, and train the model using
the rest of the data.

2 Store the compact, trained model in the Trained property of the cross-validated model.

To create a cross-validated model, you can specify only one of these four name-value arguments:
CVPartition, Holdout, KFold, or Leaveout.
Example: 'Holdout',0.1
Data Types: double | single

KFold — Number of folds
10 (default) | positive integer value greater than 1

Number of folds to use in a cross-validated model, specified as a positive integer value greater than 1.
If you specify 'KFold',k, then the software completes these steps:

1 Randomly partition the data into k sets.
2 For each set, reserve the set as validation data, and train the model using the other k – 1 sets.
3 Store the k compact, trained models in a k-by-1 cell vector in the Trained property of the cross-

validated model.

To create a cross-validated model, you can specify only one of these four name-value arguments:
CVPartition, Holdout, KFold, or Leaveout.
Example: 'KFold',5
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Data Types: single | double

Leaveout — Leave-one-out cross-validation flag
'off' (default) | 'on'

Leave-one-out cross-validation flag, specified as 'on' or 'off'. If you specify 'Leaveout','on',
then for each of the n observations (where n is the number of observations, excluding missing
observations, specified in the NumObservations property of the model), the software completes
these steps:

1 Reserve the one observation as validation data, and train the model using the other n – 1
observations.

2 Store the n compact, trained models in an n-by-1 cell vector in the Trained property of the
cross-validated model.

To create a cross-validated model, you can specify only one of these four name-value arguments:
CVPartition, Holdout, KFold, or Leaveout.
Example: 'Leaveout','on'

Convergence Controls

DeltaGradientTolerance — Tolerance for gradient difference
0 (default) | nonnegative scalar

Tolerance for gradient difference between upper and lower violators obtained by SMO or ISDA,
specified as the comma-separated pair consisting of 'DeltaGradientTolerance' and a
nonnegative scalar.
Example: 'DeltaGradientTolerance',1e-4
Data Types: single | double

GapTolerance — Feasibility gap tolerance
1e-3 (default) | nonnegative scalar

Feasibility gap tolerance obtained by SMO or ISDA, specified as the comma-separated pair consisting
of 'GapTolerance' and a nonnegative scalar.

If GapTolerance is 0, then fitrsvm does not use this parameter to check convergence.
Example: 'GapTolerance',1e-4
Data Types: single | double

IterationLimit — Maximal number of numerical optimization iterations
1e6 (default) | positive integer

Maximal number of numerical optimization iterations, specified as the comma-separated pair
consisting of 'IterationLimit' and a positive integer.

The software returns a trained model regardless of whether the optimization routine successfully
converges. Mdl.ConvergenceInfo contains convergence information.
Example: 'IterationLimit',1e8
Data Types: double | single
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KKTTolerance — Tolerance for KKT violation
0 | nonnegative scalar value

Tolerance for Karush-Kuhn-Tucker (KKT) violation, specified as the comma-separated pair consisting
of 'KKTTolerance' and a nonnegative scalar value.

This name-value pair applies only if 'Solver' is 'SMO' or 'ISDA'.

If KKTTolerance is 0, then fitrsvm does not use this parameter to check convergence.
Example: 'KKTTolerance',1e-4
Data Types: single | double

ShrinkagePeriod — Number of iterations between reductions of active set
0 (default) | nonnegative integer

Number of iterations between reductions of the active set, specified as the comma-separated pair
consisting of 'ShrinkagePeriod' and a nonnegative integer.

If you set 'ShrinkagePeriod',0, then the software does not shrink the active set.
Example: 'ShrinkagePeriod',1000
Data Types: double | single

Hyperparameter Optimization

OptimizeHyperparameters — Parameters to optimize
'none' (default) | 'auto' | 'all' | string array or cell array of eligible parameter names | vector of
optimizableVariable objects

Parameters to optimize, specified as the comma-separated pair consisting of
'OptimizeHyperparameters' and one of the following:

• 'none' — Do not optimize.
• 'auto' — Use {'BoxConstraint','KernelScale','Epsilon'}.
• 'all' — Optimize all eligible parameters.
• String array or cell array of eligible parameter names.
• Vector of optimizableVariable objects, typically the output of hyperparameters.

The optimization attempts to minimize the cross-validation loss (error) for fitrsvm by varying the
parameters. To control the cross-validation type and other aspects of the optimization, use the
HyperparameterOptimizationOptions name-value pair.

Note The values of 'OptimizeHyperparameters' override any values you specify using other
name-value arguments. For example, setting 'OptimizeHyperparameters' to 'auto' causes
fitrsvm to optimize hyperparameters corresponding to the 'auto' option and to ignore any
specified values for the hyperparameters.

The eligible parameters for fitrsvm are:
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• BoxConstraint — fitrsvm searches among positive values, by default log-scaled in the range
[1e-3,1e3].

• KernelScale — fitrsvm searches among positive values, by default log-scaled in the range
[1e-3,1e3].

• Epsilon — fitrsvm searches among positive values, by default log-scaled in the range
[1e-3,1e2]*iqr(Y)/1.349.

• KernelFunction — fitrsvm searches among 'gaussian', 'linear', and 'polynomial'.
• PolynomialOrder — fitrsvm searches among integers in the range [2,4].
• Standardize — fitrsvm searches among 'true' and 'false'.

Set nondefault parameters by passing a vector of optimizableVariable objects that have
nondefault values. For example,

load carsmall
params = hyperparameters('fitrsvm',[Horsepower,Weight],MPG);
params(1).Range = [1e-4,1e6];

Pass params as the value of OptimizeHyperparameters.

By default, the iterative display appears at the command line, and plots appear according to the
number of hyperparameters in the optimization. For the optimization and plots, the objective function
is log(1 + cross-validation loss). To control the iterative display, set the Verbose field of the
'HyperparameterOptimizationOptions' name-value argument. To control the plots, set the
ShowPlots field of the 'HyperparameterOptimizationOptions' name-value argument.

For an example, see “Optimize SVM Regression” on page 35-2724.
Example: 'OptimizeHyperparameters','auto'

HyperparameterOptimizationOptions — Options for optimization
structure

Options for optimization, specified as a structure. This argument modifies the effect of the
OptimizeHyperparameters name-value argument. All fields in the structure are optional.

Field Name Values Default
Optimizer • 'bayesopt' — Use Bayesian optimization.

Internally, this setting calls bayesopt.
• 'gridsearch' — Use grid search with

NumGridDivisions values per dimension.
• 'randomsearch' — Search at random among

MaxObjectiveEvaluations points.

'gridsearch' searches in a random order, using
uniform sampling without replacement from the
grid. After optimization, you can get a table in grid
order by using the command
sortrows(Mdl.HyperparameterOptimizatio
nResults).

'bayesopt'
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Field Name Values Default
AcquisitionFunct
ionName

• 'expected-improvement-per-second-
plus'

• 'expected-improvement'
• 'expected-improvement-plus'
• 'expected-improvement-per-second'
• 'lower-confidence-bound'
• 'probability-of-improvement'

Acquisition functions whose names include per-
second do not yield reproducible results because
the optimization depends on the runtime of the
objective function. Acquisition functions whose
names include plus modify their behavior when
they are overexploiting an area. For more details,
see “Acquisition Function Types” on page 10-3.

'expected-
improvement-per-
second-plus'

MaxObjectiveEval
uations

Maximum number of objective function
evaluations.

30 for 'bayesopt' and
'randomsearch', and
the entire grid for
'gridsearch'

MaxTime Time limit, specified as a positive real scalar. The
time limit is in seconds, as measured by tic and
toc. The run time can exceed MaxTime because
MaxTime does not interrupt function evaluations.

Inf

NumGridDivisions For 'gridsearch', the number of values in each
dimension. The value can be a vector of positive
integers giving the number of values for each
dimension, or a scalar that applies to all
dimensions. This field is ignored for categorical
variables.

10

ShowPlots Logical value indicating whether to show plots. If
true, this field plots the best observed objective
function value against the iteration number. If you
use Bayesian optimization (Optimizer is
'bayesopt'), then this field also plots the best
estimated objective function value. The best
observed objective function values and best
estimated objective function values correspond to
the values in the BestSoFar (observed) and
BestSoFar (estim.) columns of the iterative
display, respectively. You can find these values in
the properties ObjectiveMinimumTrace and
EstimatedObjectiveMinimumTrace of
Mdl.HyperparameterOptimizationResults.
If the problem includes one or two optimization
parameters for Bayesian optimization, then
ShowPlots also plots a model of the objective
function against the parameters.

true
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Field Name Values Default
SaveIntermediate
Results

Logical value indicating whether to save results
when Optimizer is 'bayesopt'. If true, this
field overwrites a workspace variable named
'BayesoptResults' at each iteration. The
variable is a BayesianOptimization object.

false

Verbose Display at the command line:

• 0 — No iterative display
• 1 — Iterative display
• 2 — Iterative display with extra information

For details, see the bayesopt Verbose name-
value argument and the example “Optimize
Classifier Fit Using Bayesian Optimization” on
page 10-56.

1

UseParallel Logical value indicating whether to run Bayesian
optimization in parallel, which requires Parallel
Computing Toolbox. Due to the nonreproducibility
of parallel timing, parallel Bayesian optimization
does not necessarily yield reproducible results. For
details, see “Parallel Bayesian Optimization” on
page 10-7.

false

Repartition Logical value indicating whether to repartition the
cross-validation at every iteration. If this field is
false, the optimizer uses a single partition for
the optimization.

The setting true usually gives the most robust
results because it takes partitioning noise into
account. However, for good results, true requires
at least twice as many function evaluations.

false

Use no more than one of the following three options.
CVPartition A cvpartition object, as created by

cvpartition
'Kfold',5 if you do not
specify a cross-validation
fieldHoldout A scalar in the range (0,1) representing the

holdout fraction
Kfold An integer greater than 1

Example:
'HyperparameterOptimizationOptions',struct('MaxObjectiveEvaluations',60)

Data Types: struct

Output Arguments
Mdl — Trained SVM regression model
RegressionSVM model | RegressionPartitionedSVM cross-validated model
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Trained SVM regression model, returned as a RegressionSVM model or
RegressionPartitionedSVM cross-validated model.

If you set any of the name-value pair arguments KFold, Holdout, Leaveout, CrossVal, or
CVPartition, then Mdl is a RegressionPartitionedSVM cross-validated model. Otherwise, Mdl
is a RegressionSVM model.

Limitations
fitrsvm supports low- through moderate-dimensional data sets. For high-dimensional data set, use
fitrlinear instead.

Tips
• Unless your data set is large, always try to standardize the predictors (see Standardize).

Standardization makes predictors insensitive to the scales on which they are measured.
• It is good practice to cross-validate using the KFold name-value pair argument. The cross-

validation results determine how well the SVM model generalizes.
• Sparsity in support vectors is a desirable property of an SVM model. To decrease the number of

support vectors, set the BoxConstraint name-value pair argument to a large value. This action
also increases the training time.

• For optimal training time, set CacheSize as high as the memory limit on your computer allows.
• If you expect many fewer support vectors than observations in the training set, then you can
significantly speed up convergence by shrinking the active-set using the name-value pair
argument 'ShrinkagePeriod'. It is good practice to use 'ShrinkagePeriod',1000.

• Duplicate observations that are far from the regression line do not affect convergence. However,
just a few duplicate observations that occur near the regression line can slow down convergence
considerably. To speed up convergence, specify 'RemoveDuplicates',true if:

• Your data set contains many duplicate observations.
• You suspect that a few duplicate observations can fall near the regression line.

However, to maintain the original data set during training, fitrsvm must temporarily store
separate data sets: the original and one without the duplicate observations. Therefore, if you
specify true for data sets containing few duplicates, then fitrsvm consumes close to double the
memory of the original data.

• After training a model, you can generate C/C++ code that predicts responses for new data.
Generating C/C++ code requires MATLAB Coder. For details, see “Introduction to Code
Generation” on page 34-2.

Algorithms
• For the mathematical formulation of linear and nonlinear SVM regression problems and the solver

algorithms, see “Understanding Support Vector Machine Regression” on page 25-2.
• NaN, <undefined>, empty character vector (''), empty string (""), and <missing> values

indicate missing data values. fitrsvm removes entire rows of data corresponding to a missing
response. When normalizing weights, fitrsvm ignores any weight corresponding to an
observation with at least one missing predictor. Consequently, observation box constraints might
not equal BoxConstraint.
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• fitrsvm removes observations that have zero weight.
• If you set 'Standardize',true and 'Weights', then fitrsvm standardizes the predictors

using their corresponding weighted means and weighted standard deviations. That is, fitrsvm
standardizes predictor j (xj) using

x j
∗ =

x j− μ j
∗

σ j
∗ .

• μ j
∗ = 1
∑
k

wk
∑
k

wkx jk .

• xjk is observation k (row) of predictor j (column).
•

σ j
∗ 2 =

v1
v1

2− v2
∑
k

wk x jk− μ j
∗ 2 .

• v1 = ∑
j

w j .

• v2 = ∑
j

w j
2 .

• If your predictor data contains categorical variables, then the software generally uses full dummy
encoding for these variables. The software creates one dummy variable for each level of each
categorical variable.

• The PredictorNames property stores one element for each of the original predictor variable
names. For example, assume that there are three predictors, one of which is a categorical
variable with three levels. Then PredictorNames is a 1-by-3 cell array of character vectors
containing the original names of the predictor variables.

• The ExpandedPredictorNames property stores one element for each of the predictor
variables, including the dummy variables. For example, assume that there are three predictors,
one of which is a categorical variable with three levels. Then ExpandedPredictorNames is a
1-by-5 cell array of character vectors containing the names of the predictor variables and the
new dummy variables.

• Similarly, the Beta property stores one beta coefficient for each predictor, including the
dummy variables.

• The SupportVectors property stores the predictor values for the support vectors, including
the dummy variables. For example, assume that there are m support vectors and three
predictors, one of which is a categorical variable with three levels. Then SupportVectors is
an m-by-5 matrix.

• The X property stores the training data as originally input. It does not include the dummy
variables. When the input is a table, X contains only the columns used as predictors.

• For predictors specified in a table, if any of the variables contain ordered (ordinal) categories, the
software uses ordinal encoding for these variables.

• For a variable having k ordered levels, the software creates k – 1 dummy variables. The jth
dummy variable is -1 for levels up to j, and +1 for levels j + 1 through k.

• The names of the dummy variables stored in the ExpandedPredictorNames property indicate
the first level with the value +1. The software stores k – 1 additional predictor names for the
dummy variables, including the names of levels 2, 3, ..., k.
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• All solvers implement L1 soft-margin minimization.
• Let p be the proportion of outliers that you expect in the training data. If you set

'OutlierFraction',p, then the software implements robust learning. In other words, the
software attempts to remove 100p% of the observations when the optimization algorithm
converges. The removed observations correspond to gradients that are large in magnitude.

Version History
Introduced in R2015b
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Extended Capabilities
Automatic Parallel Support
Accelerate code by automatically running computation in parallel using Parallel Computing Toolbox™.

To perform parallel hyperparameter optimization, use the
'HyperparameterOptimizationOptions', struct('UseParallel',true) name-value
argument in the call to the fitrsvm function.

For more information on parallel hyperparameter optimization, see “Parallel Bayesian Optimization”
on page 10-7.

For general information about parallel computing, see “Run MATLAB Functions with Automatic
Parallel Support” (Parallel Computing Toolbox).

See Also
RegressionSVM | CompactRegressionSVM | RegressionPartitionedSVM | predict
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Topics
“Understanding Support Vector Machine Regression” on page 25-2
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fitrtree
Fit binary decision tree for regression

Syntax
tree = fitrtree(Tbl,ResponseVarName)
tree = fitrtree(Tbl,formula)
tree = fitrtree(Tbl,Y)

tree = fitrtree(X,Y)

tree = fitrtree( ___ ,Name,Value)

Description
tree = fitrtree(Tbl,ResponseVarName) returns a regression tree based on the input variables
(also known as predictors, features, or attributes) in the table Tbl and the output (response)
contained in Tbl.ResponseVarName. The returned tree is a binary tree where each branching
node is split based on the values of a column of Tbl.

tree = fitrtree(Tbl,formula) returns a regression tree based on the input variables contained
in the table Tbl. The input formula is an explanatory model of the response and a subset of
predictor variables in Tbl used to fit tree.

tree = fitrtree(Tbl,Y) returns a regression tree based on the input variables contained in the
table Tbl and the output in vector Y.

tree = fitrtree(X,Y) returns a regression tree based on the input variables X and the output Y.
The returned tree is a binary tree where each branching node is split based on the values of a
column of X.

tree = fitrtree( ___ ,Name,Value) specifies options using one or more name-value pair
arguments in addition to any of the input argument combinations in previous syntaxes. For example,
you can specify observation weights or train a cross-validated model.

Examples

Construct Regression Tree

Load the sample data.

load carsmall

Construct a regression tree using the sample data. The response variable is miles per gallon, MPG.

tree = fitrtree([Weight, Cylinders],MPG,...
                'CategoricalPredictors',2,'MinParentSize',20,...
                'PredictorNames',{'W','C'})

tree = 
  RegressionTree
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           PredictorNames: {'W'  'C'}
             ResponseName: 'Y'
    CategoricalPredictors: 2
        ResponseTransform: 'none'
          NumObservations: 94

  Properties, Methods

Predict the mileage of 4,000-pound cars with 4, 6, and 8 cylinders.

MPG4Kpred = predict(tree,[4000 4; 4000 6; 4000 8])

MPG4Kpred = 3×1

   19.2778
   19.2778
   14.3889

Control Regression Tree Depth

fitrtree grows deep decision trees by default. You can grow shallower trees to reduce model
complexity or computation time. To control the depth of trees, use the 'MaxNumSplits',
'MinLeafSize', or 'MinParentSize' name-value pair arguments.

Load the carsmall data set. Consider Displacement, Horsepower, and Weight as predictors of
the response MPG.

load carsmall
X = [Displacement Horsepower Weight];

The default values of the tree-depth controllers for growing regression trees are:

• n - 1 for MaxNumSplits. n is the training sample size.
• 1 for MinLeafSize.
• 10 for MinParentSize.

These default values tend to grow deep trees for large training sample sizes.

Train a regression tree using the default values for tree-depth control. Cross-validate the model using
10-fold cross-validation.

rng(1); % For reproducibility
MdlDefault = fitrtree(X,MPG,'CrossVal','on');

Draw a histogram of the number of imposed splits on the trees. The number of imposed splits is one
less than the number of leaves. Also, view one of the trees.

numBranches = @(x)sum(x.IsBranch);
mdlDefaultNumSplits = cellfun(numBranches, MdlDefault.Trained);

figure;
histogram(mdlDefaultNumSplits)
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view(MdlDefault.Trained{1},'Mode','graph')
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The average number of splits is between 14 and 15.

Suppose that you want a regression tree that is not as complex (deep) as the ones trained using the
default number of splits. Train another regression tree, but set the maximum number of splits at 7,
which is about half the mean number of splits from the default regression tree. Cross-validate the
model using 10-fold cross-validation.

Mdl7 = fitrtree(X,MPG,'MaxNumSplits',7,'CrossVal','on');
view(Mdl7.Trained{1},'Mode','graph')

 fitrtree

35-2749



Compare the cross-validation mean squared errors (MSEs) of the models.

mseDefault = kfoldLoss(MdlDefault)

mseDefault = 25.7383

mse7 = kfoldLoss(Mdl7)

mse7 = 26.5748

Mdl7 is much less complex and performs only slightly worse than MdlDefault.

Optimize Regression Tree

Optimize hyperparameters automatically using fitrtree.

Load the carsmall data set.

load carsmall
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Use Weight and Horsepower as predictors for MPG. Find hyperparameters that minimize five-fold
cross-validation loss by using automatic hyperparameter optimization.

For reproducibility, set the random seed and use the 'expected-improvement-plus' acquisition
function.

X = [Weight,Horsepower];
Y = MPG;
rng default
Mdl = fitrtree(X,Y,'OptimizeHyperparameters','auto',...
    'HyperparameterOptimizationOptions',struct('AcquisitionFunctionName',...
    'expected-improvement-plus'))

|======================================================================================|
| Iter | Eval   | Objective:  | Objective   | BestSoFar   | BestSoFar   |  MinLeafSize |
|      | result | log(1+loss) | runtime     | (observed)  | (estim.)    |              |
|======================================================================================|
|    1 | Best   |      3.2818 |     0.29898 |      3.2818 |      3.2818 |           28 |
|    2 | Accept |      3.4183 |     0.14141 |      3.2818 |      3.2888 |            1 |
|    3 | Best   |      3.1457 |     0.13934 |      3.1457 |      3.1628 |            4 |
|    4 | Best   |      2.9885 |      0.1446 |      2.9885 |      2.9885 |            9 |
|    5 | Accept |      2.9978 |     0.13005 |      2.9885 |      2.9885 |            7 |
|    6 | Accept |      3.0203 |     0.12781 |      2.9885 |      3.0013 |            8 |
|    7 | Accept |      2.9885 |     0.14046 |      2.9885 |      2.9981 |            9 |
|    8 | Best   |      2.9589 |     0.15162 |      2.9589 |      2.9589 |           10 |
|    9 | Accept |       3.078 |     0.13553 |      2.9589 |      2.9888 |           13 |
|   10 | Accept |      4.1881 |     0.14081 |      2.9589 |      2.9592 |           50 |
|   11 | Accept |      3.4182 |      0.1176 |      2.9589 |      2.9592 |            2 |
|   12 | Accept |      3.0376 |     0.14212 |      2.9589 |      2.9591 |            6 |
|   13 | Accept |      3.1453 |     0.14429 |      2.9589 |      2.9591 |           20 |
|   14 | Accept |      2.9589 |     0.15906 |      2.9589 |       2.959 |           10 |
|   15 | Accept |      3.0123 |     0.11083 |      2.9589 |      2.9728 |           11 |
|   16 | Accept |      2.9589 |     0.12554 |      2.9589 |      2.9593 |           10 |
|   17 | Accept |      3.3055 |     0.11124 |      2.9589 |      2.9593 |            3 |
|   18 | Accept |      2.9589 |     0.12053 |      2.9589 |      2.9592 |           10 |
|   19 | Accept |      3.4577 |     0.11579 |      2.9589 |      2.9591 |           37 |
|   20 | Accept |      3.2166 |      0.1035 |      2.9589 |       2.959 |           16 |
|======================================================================================|
| Iter | Eval   | Objective:  | Objective   | BestSoFar   | BestSoFar   |  MinLeafSize |
|      | result | log(1+loss) | runtime     | (observed)  | (estim.)    |              |
|======================================================================================|
|   21 | Accept |       3.107 |      0.1043 |      2.9589 |      2.9591 |            5 |
|   22 | Accept |      3.2818 |     0.12879 |      2.9589 |       2.959 |           24 |
|   23 | Accept |      3.3226 |     0.12062 |      2.9589 |       2.959 |           32 |
|   24 | Accept |      4.1881 |     0.10466 |      2.9589 |      2.9589 |           43 |
|   25 | Accept |      3.1789 |     0.12085 |      2.9589 |      2.9589 |           18 |
|   26 | Accept |      3.0992 |     0.13559 |      2.9589 |      2.9589 |           14 |
|   27 | Accept |      3.0556 |     0.11664 |      2.9589 |      2.9589 |           22 |
|   28 | Accept |      3.0459 |     0.11141 |      2.9589 |      2.9589 |           12 |
|   29 | Accept |      3.2818 |     0.11081 |      2.9589 |      2.9589 |           26 |
|   30 | Accept |      3.4361 |     0.12731 |      2.9589 |      2.9589 |           34 |
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__________________________________________________________
Optimization completed.
MaxObjectiveEvaluations of 30 reached.
Total function evaluations: 30
Total elapsed time: 45.5521 seconds
Total objective function evaluation time: 3.9821

Best observed feasible point:
    MinLeafSize
    ___________

        10     

Observed objective function value = 2.9589
Estimated objective function value = 2.9589
Function evaluation time = 0.15162

Best estimated feasible point (according to models):
    MinLeafSize
    ___________
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        10     

Estimated objective function value = 2.9589
Estimated function evaluation time = 0.12982

Mdl = 
  RegressionTree
                         ResponseName: 'Y'
                CategoricalPredictors: []
                    ResponseTransform: 'none'
                      NumObservations: 94
    HyperparameterOptimizationResults: [1x1 BayesianOptimization]

  Properties, Methods

Unbiased Predictor Importance Estimates

Load the carsmall data set. Consider a model that predicts the mean fuel economy of a car given its
acceleration, number of cylinders, engine displacement, horsepower, manufacturer, model year, and
weight. Consider Cylinders, Mfg, and Model_Year as categorical variables.

load carsmall
Cylinders = categorical(Cylinders);
Mfg = categorical(cellstr(Mfg));
Model_Year = categorical(Model_Year);
X = table(Acceleration,Cylinders,Displacement,Horsepower,Mfg,...
    Model_Year,Weight,MPG);

Display the number of categories represented in the categorical variables.

numCylinders = numel(categories(Cylinders))

numCylinders = 3

numMfg = numel(categories(Mfg))

numMfg = 28

numModelYear = numel(categories(Model_Year))

numModelYear = 3

Because there are 3 categories only in Cylinders and Model_Year, the standard CART, predictor-
splitting algorithm prefers splitting a continuous predictor over these two variables.

Train a regression tree using the entire data set. To grow unbiased trees, specify usage of the
curvature test for splitting predictors. Because there are missing values in the data, specify usage of
surrogate splits.

Mdl = fitrtree(X,'MPG','PredictorSelection','curvature','Surrogate','on');

Estimate predictor importance values by summing changes in the risk due to splits on every predictor
and dividing the sum by the number of branch nodes. Compare the estimates using a bar graph.
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imp = predictorImportance(Mdl);

figure;
bar(imp);
title('Predictor Importance Estimates');
ylabel('Estimates');
xlabel('Predictors');
h = gca;
h.XTickLabel = Mdl.PredictorNames;
h.XTickLabelRotation = 45;
h.TickLabelInterpreter = 'none';

In this case, Displacement is the most important predictor, followed by Horsepower.

Control Maximum Tree Depth on Tall Array

fitrtree grows deep decision trees by default. Build a shallower tree that requires fewer passes
through a tall array. Use the 'MaxDepth' name-value pair argument to control the maximum tree
depth.

When you perform calculations on tall arrays, MATLAB® uses either a parallel pool (default if you
have Parallel Computing Toolbox™) or the local MATLAB session. If you want to run the example
using the local MATLAB session when you have Parallel Computing Toolbox, you can change the
global execution environment by using the mapreducer function.
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Load the carsmall data set. Consider Displacement, Horsepower, and Weight as predictors of
the response MPG.

load carsmall
X = [Displacement Horsepower Weight];

Convert the in-memory arrays X and MPG to tall arrays.

tx = tall(X);

Starting parallel pool (parpool) using the 'local' profile ...
Connected to the parallel pool (number of workers: 6).

ty = tall(MPG);

Grow a regression tree using all observations. Allow the tree to grow to the maximum possible depth.

For reproducibility, set the seeds of the random number generators using rng and tallrng. The
results can vary depending on the number of workers and the execution environment for the tall
arrays. For details, see “Control Where Your Code Runs”.

rng('default') 
tallrng('default')
Mdl = fitrtree(tx,ty);

Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 2: Completed in 4.1 sec
- Pass 2 of 2: Completed in 0.71 sec
Evaluation completed in 6.7 sec
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 7: Completed in 1.4 sec
- Pass 2 of 7: Completed in 0.29 sec
- Pass 3 of 7: Completed in 1.5 sec
- Pass 4 of 7: Completed in 3.3 sec
- Pass 5 of 7: Completed in 0.63 sec
- Pass 6 of 7: Completed in 1.2 sec
- Pass 7 of 7: Completed in 2.6 sec
Evaluation completed in 12 sec
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 7: Completed in 0.36 sec
- Pass 2 of 7: Completed in 0.27 sec
- Pass 3 of 7: Completed in 0.85 sec
- Pass 4 of 7: Completed in 2 sec
- Pass 5 of 7: Completed in 0.55 sec
- Pass 6 of 7: Completed in 0.92 sec
- Pass 7 of 7: Completed in 1.6 sec
Evaluation completed in 7.4 sec
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 7: Completed in 0.32 sec
- Pass 2 of 7: Completed in 0.29 sec
- Pass 3 of 7: Completed in 0.89 sec
- Pass 4 of 7: Completed in 1.9 sec
- Pass 5 of 7: Completed in 0.83 sec
- Pass 6 of 7: Completed in 1.2 sec
- Pass 7 of 7: Completed in 2.4 sec
Evaluation completed in 9 sec
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 7: Completed in 0.33 sec
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- Pass 2 of 7: Completed in 0.28 sec
- Pass 3 of 7: Completed in 0.89 sec
- Pass 4 of 7: Completed in 2.4 sec
- Pass 5 of 7: Completed in 0.76 sec
- Pass 6 of 7: Completed in 1 sec
- Pass 7 of 7: Completed in 1.7 sec
Evaluation completed in 8.3 sec
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 7: Completed in 0.34 sec
- Pass 2 of 7: Completed in 0.26 sec
- Pass 3 of 7: Completed in 0.81 sec
- Pass 4 of 7: Completed in 1.7 sec
- Pass 5 of 7: Completed in 0.56 sec
- Pass 6 of 7: Completed in 1 sec
- Pass 7 of 7: Completed in 1.9 sec
Evaluation completed in 7.4 sec
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 7: Completed in 0.35 sec
- Pass 2 of 7: Completed in 0.28 sec
- Pass 3 of 7: Completed in 0.81 sec
- Pass 4 of 7: Completed in 1.8 sec
- Pass 5 of 7: Completed in 0.76 sec
- Pass 6 of 7: Completed in 0.96 sec
- Pass 7 of 7: Completed in 2.2 sec
Evaluation completed in 8 sec
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 7: Completed in 0.35 sec
- Pass 2 of 7: Completed in 0.32 sec
- Pass 3 of 7: Completed in 0.92 sec
- Pass 4 of 7: Completed in 1.9 sec
- Pass 5 of 7: Completed in 1 sec
- Pass 6 of 7: Completed in 1.5 sec
- Pass 7 of 7: Completed in 2.1 sec
Evaluation completed in 9.2 sec
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 7: Completed in 0.33 sec
- Pass 2 of 7: Completed in 0.28 sec
- Pass 3 of 7: Completed in 0.82 sec
- Pass 4 of 7: Completed in 1.4 sec
- Pass 5 of 7: Completed in 0.61 sec
- Pass 6 of 7: Completed in 0.93 sec
- Pass 7 of 7: Completed in 1.5 sec
Evaluation completed in 6.6 sec

View the trained tree Mdl.

view(Mdl,'Mode','graph')
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Mdl is a tree of depth 8.

Estimate the in-sample mean squared error.

MSE_Mdl = gather(loss(Mdl,tx,ty))

Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 1: Completed in 1.6 sec
Evaluation completed in 1.9 sec

MSE_Mdl = 4.9078

Grow a regression tree using all observations. Limit the tree depth by specifying a maximum tree
depth of 4.

Mdl2 = fitrtree(tx,ty,'MaxDepth',4);

Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 2: Completed in 0.27 sec
- Pass 2 of 2: Completed in 0.28 sec
Evaluation completed in 0.84 sec
Evaluating tall expression using the Parallel Pool 'local':
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- Pass 1 of 7: Completed in 0.36 sec
- Pass 2 of 7: Completed in 0.3 sec
- Pass 3 of 7: Completed in 0.95 sec
- Pass 4 of 7: Completed in 1.6 sec
- Pass 5 of 7: Completed in 0.55 sec
- Pass 6 of 7: Completed in 0.93 sec
- Pass 7 of 7: Completed in 1.5 sec
Evaluation completed in 7 sec
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 7: Completed in 0.34 sec
- Pass 2 of 7: Completed in 0.3 sec
- Pass 3 of 7: Completed in 0.95 sec
- Pass 4 of 7: Completed in 1.7 sec
- Pass 5 of 7: Completed in 0.57 sec
- Pass 6 of 7: Completed in 0.94 sec
- Pass 7 of 7: Completed in 1.8 sec
Evaluation completed in 7.7 sec
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 7: Completed in 0.34 sec
- Pass 2 of 7: Completed in 0.3 sec
- Pass 3 of 7: Completed in 0.87 sec
- Pass 4 of 7: Completed in 1.5 sec
- Pass 5 of 7: Completed in 0.57 sec
- Pass 6 of 7: Completed in 0.81 sec
- Pass 7 of 7: Completed in 1.7 sec
Evaluation completed in 6.9 sec
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 7: Completed in 0.32 sec
- Pass 2 of 7: Completed in 0.27 sec
- Pass 3 of 7: Completed in 0.85 sec
- Pass 4 of 7: Completed in 1.6 sec
- Pass 5 of 7: Completed in 0.63 sec
- Pass 6 of 7: Completed in 0.9 sec
- Pass 7 of 7: Completed in 1.6 sec
Evaluation completed in 7 sec

View the trained tree Mdl2.

view(Mdl2,'Mode','graph')
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Estimate the in-sample mean squared error.

MSE_Mdl2 = gather(loss(Mdl2,tx,ty))

Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 1: Completed in 0.73 sec
Evaluation completed in 1 sec

MSE_Mdl2 = 9.3903

Mdl2 is a less complex tree with a depth of 4 and an in-sample mean squared error that is higher
than the mean squared error of Mdl.

Optimize Regression Tree on Tall Array

Optimize hyperparameters of a regression tree automatically using a tall array. The sample data set is
the carsmall data set. This example converts the data set to a tall array and uses it to run the
optimization procedure.

35 Functions

35-2760



When you perform calculations on tall arrays, MATLAB® uses either a parallel pool (default if you
have Parallel Computing Toolbox™) or the local MATLAB session. If you want to run the example
using the local MATLAB session when you have Parallel Computing Toolbox, you can change the
global execution environment by using the mapreducer function.

Load the carsmall data set. Consider Displacement, Horsepower, and Weight as predictors of
the response MPG.

load carsmall
X = [Displacement Horsepower Weight];

Convert the in-memory arrays X and MPG to tall arrays.

tx = tall(X);

Starting parallel pool (parpool) using the 'local' profile ...
Connected to the parallel pool (number of workers: 6).

ty = tall(MPG);

Optimize hyperparameters automatically using the 'OptimizeHyperparameters' name-value pair
argument. Find the optimal 'MinLeafSize' value that minimizes holdout cross-validation loss.
(Specifying 'auto' uses 'MinLeafSize'.) For reproducibility, use the 'expected-improvement-
plus' acquisition function and set the seeds of the random number generators using rng and
tallrng. The results can vary depending on the number of workers and the execution environment
for the tall arrays. For details, see “Control Where Your Code Runs”.

rng('default') 
tallrng('default')
[Mdl,FitInfo,HyperparameterOptimizationResults] = fitrtree(tx,ty,...
    'OptimizeHyperparameters','auto',...
    'HyperparameterOptimizationOptions',struct('Holdout',0.3,...
    'AcquisitionFunctionName','expected-improvement-plus'))

Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 1: Completed in 4.4 sec
Evaluation completed in 6.2 sec
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 4: Completed in 0.97 sec
- Pass 2 of 4: Completed in 1.6 sec
- Pass 3 of 4: Completed in 3.6 sec
- Pass 4 of 4: Completed in 2.4 sec
Evaluation completed in 9.8 sec
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 4: Completed in 0.55 sec
- Pass 2 of 4: Completed in 1.3 sec
- Pass 3 of 4: Completed in 2.7 sec
- Pass 4 of 4: Completed in 1.9 sec
Evaluation completed in 7.3 sec
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 4: Completed in 0.52 sec
- Pass 2 of 4: Completed in 1.3 sec
- Pass 3 of 4: Completed in 3 sec
- Pass 4 of 4: Completed in 2 sec
Evaluation completed in 8.1 sec
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 4: Completed in 0.55 sec
- Pass 2 of 4: Completed in 1.4 sec
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- Pass 3 of 4: Completed in 2.6 sec
- Pass 4 of 4: Completed in 2 sec
Evaluation completed in 7.3 sec
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 4: Completed in 0.61 sec
- Pass 2 of 4: Completed in 1.2 sec
- Pass 3 of 4: Completed in 2.1 sec
- Pass 4 of 4: Completed in 1.7 sec
Evaluation completed in 6.5 sec
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 4: Completed in 0.53 sec
- Pass 2 of 4: Completed in 1.2 sec
- Pass 3 of 4: Completed in 2.4 sec
- Pass 4 of 4: Completed in 1.6 sec
Evaluation completed in 6.6 sec
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 1: Completed in 1.4 sec
Evaluation completed in 1.7 sec
|======================================================================================|
| Iter | Eval   | Objective:  | Objective   | BestSoFar   | BestSoFar   |  MinLeafSize |
|      | result | log(1+loss) | runtime     | (observed)  | (estim.)    |              |
|======================================================================================|
|    1 | Best   |      3.2007 |      69.013 |      3.2007 |      3.2007 |            2 |

Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 1: Completed in 0.52 sec
Evaluation completed in 0.83 sec
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 4: Completed in 0.65 sec
- Pass 2 of 4: Completed in 1.2 sec
- Pass 3 of 4: Completed in 3 sec
- Pass 4 of 4: Completed in 2 sec
Evaluation completed in 8.3 sec
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 1: Completed in 0.79 sec
Evaluation completed in 1 sec
|    2 | Error  |         NaN |      13.772 |         NaN |      3.2007 |           46 |

Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 1: Completed in 0.52 sec
Evaluation completed in 0.81 sec
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 4: Completed in 0.57 sec
- Pass 2 of 4: Completed in 1.3 sec
- Pass 3 of 4: Completed in 2.2 sec
- Pass 4 of 4: Completed in 1.7 sec
Evaluation completed in 6.6 sec
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 4: Completed in 0.5 sec
- Pass 2 of 4: Completed in 1.2 sec
- Pass 3 of 4: Completed in 2.7 sec
- Pass 4 of 4: Completed in 1.7 sec
Evaluation completed in 6.9 sec
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 4: Completed in 0.47 sec
- Pass 2 of 4: Completed in 1.1 sec
- Pass 3 of 4: Completed in 2.1 sec
- Pass 4 of 4: Completed in 1.9 sec
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Evaluation completed in 6.4 sec
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 1: Completed in 0.72 sec
Evaluation completed in 0.99 sec
|    3 | Best   |      3.1876 |      29.091 |      3.1876 |      3.1884 |           18 |

Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 1: Completed in 0.48 sec
Evaluation completed in 0.76 sec
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 4: Completed in 0.5 sec
- Pass 2 of 4: Completed in 1.2 sec
- Pass 3 of 4: Completed in 1.9 sec
- Pass 4 of 4: Completed in 1.4 sec
Evaluation completed in 5.8 sec
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 4: Completed in 0.48 sec
- Pass 2 of 4: Completed in 1.1 sec
- Pass 3 of 4: Completed in 2 sec
- Pass 4 of 4: Completed in 1.5 sec
Evaluation completed in 5.8 sec
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 4: Completed in 0.54 sec
- Pass 2 of 4: Completed in 1.1 sec
- Pass 3 of 4: Completed in 1.9 sec
- Pass 4 of 4: Completed in 1.4 sec
Evaluation completed in 5.7 sec
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 4: Completed in 0.46 sec
- Pass 2 of 4: Completed in 1.1 sec
- Pass 3 of 4: Completed in 1.8 sec
- Pass 4 of 4: Completed in 1.4 sec
Evaluation completed in 5.5 sec
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 1: Completed in 0.64 sec
Evaluation completed in 0.92 sec
|    4 | Best   |      2.9048 |      33.465 |      2.9048 |      2.9537 |            6 |

Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 1: Completed in 0.44 sec
Evaluation completed in 0.71 sec
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 4: Completed in 0.46 sec
- Pass 2 of 4: Completed in 1.1 sec
- Pass 3 of 4: Completed in 2 sec
- Pass 4 of 4: Completed in 1.5 sec
Evaluation completed in 5.9 sec
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 4: Completed in 0.47 sec
- Pass 2 of 4: Completed in 1.1 sec
- Pass 3 of 4: Completed in 1.9 sec
- Pass 4 of 4: Completed in 1.5 sec
Evaluation completed in 5.7 sec
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 4: Completed in 0.44 sec
- Pass 2 of 4: Completed in 1.1 sec
- Pass 3 of 4: Completed in 1.9 sec
- Pass 4 of 4: Completed in 1.4 sec
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Evaluation completed in 5.6 sec
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 1: Completed in 0.66 sec
Evaluation completed in 0.92 sec
|    5 | Accept |      3.2895 |      25.902 |      2.9048 |      2.9048 |           15 |

Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 1: Completed in 0.54 sec
Evaluation completed in 0.82 sec
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 4: Completed in 0.53 sec
- Pass 2 of 4: Completed in 1.2 sec
- Pass 3 of 4: Completed in 2 sec
- Pass 4 of 4: Completed in 1.5 sec
Evaluation completed in 6 sec
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 4: Completed in 0.5 sec
- Pass 2 of 4: Completed in 1.1 sec
- Pass 3 of 4: Completed in 2.1 sec
- Pass 4 of 4: Completed in 1.9 sec
Evaluation completed in 6.4 sec
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 4: Completed in 0.49 sec
- Pass 2 of 4: Completed in 1.1 sec
- Pass 3 of 4: Completed in 1.9 sec
- Pass 4 of 4: Completed in 2 sec
Evaluation completed in 6.6 sec
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 4: Completed in 0.45 sec
- Pass 2 of 4: Completed in 1.1 sec
- Pass 3 of 4: Completed in 2 sec
- Pass 4 of 4: Completed in 1.4 sec
Evaluation completed in 5.8 sec
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 1: Completed in 0.68 sec
Evaluation completed in 0.99 sec
|    6 | Accept |      3.1641 |      35.522 |      2.9048 |      3.1493 |            5 |

Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 1: Completed in 0.51 sec
Evaluation completed in 0.79 sec
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 4: Completed in 0.67 sec
- Pass 2 of 4: Completed in 1.3 sec
- Pass 3 of 4: Completed in 1.8 sec
- Pass 4 of 4: Completed in 1.4 sec
Evaluation completed in 6.2 sec
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 4: Completed in 0.45 sec
- Pass 2 of 4: Completed in 1.1 sec
- Pass 3 of 4: Completed in 1.9 sec
- Pass 4 of 4: Completed in 1.4 sec
Evaluation completed in 5.7 sec
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 4: Completed in 0.48 sec
- Pass 2 of 4: Completed in 1.4 sec
- Pass 3 of 4: Completed in 1.8 sec
- Pass 4 of 4: Completed in 1.4 sec
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Evaluation completed in 5.8 sec
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 4: Completed in 0.46 sec
- Pass 2 of 4: Completed in 1.1 sec
- Pass 3 of 4: Completed in 1.8 sec
- Pass 4 of 4: Completed in 1.4 sec
Evaluation completed in 5.6 sec
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 1: Completed in 0.63 sec
Evaluation completed in 0.89 sec
|    7 | Accept |      2.9048 |      33.755 |      2.9048 |      2.9048 |            6 |

Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 1: Completed in 0.45 sec
Evaluation completed in 0.75 sec
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 4: Completed in 0.51 sec
- Pass 2 of 4: Completed in 1.2 sec
- Pass 3 of 4: Completed in 2.2 sec
- Pass 4 of 4: Completed in 1.5 sec
Evaluation completed in 6.1 sec
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 4: Completed in 0.49 sec
- Pass 2 of 4: Completed in 1.1 sec
- Pass 3 of 4: Completed in 1.9 sec
- Pass 4 of 4: Completed in 1.4 sec
Evaluation completed in 5.6 sec
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 4: Completed in 0.46 sec
- Pass 2 of 4: Completed in 1.1 sec
- Pass 3 of 4: Completed in 1.8 sec
- Pass 4 of 4: Completed in 1.4 sec
Evaluation completed in 5.6 sec
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 4: Completed in 0.45 sec
- Pass 2 of 4: Completed in 1.1 sec
- Pass 3 of 4: Completed in 1.8 sec
- Pass 4 of 4: Completed in 1.3 sec
Evaluation completed in 5.4 sec
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 1: Completed in 0.68 sec
Evaluation completed in 0.97 sec
|    8 | Accept |      2.9522 |      33.362 |      2.9048 |      2.9048 |            7 |

Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 1: Completed in 0.42 sec
Evaluation completed in 0.71 sec
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 4: Completed in 0.48 sec
- Pass 2 of 4: Completed in 1.1 sec
- Pass 3 of 4: Completed in 1.8 sec
- Pass 4 of 4: Completed in 1.4 sec
Evaluation completed in 5.5 sec
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 4: Completed in 0.45 sec
- Pass 2 of 4: Completed in 1.1 sec
- Pass 3 of 4: Completed in 1.8 sec
- Pass 4 of 4: Completed in 1.4 sec
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Evaluation completed in 5.5 sec
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 4: Completed in 0.5 sec
- Pass 2 of 4: Completed in 1.1 sec
- Pass 3 of 4: Completed in 1.9 sec
- Pass 4 of 4: Completed in 1.5 sec
Evaluation completed in 5.7 sec
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 4: Completed in 0.49 sec
- Pass 2 of 4: Completed in 1.1 sec
- Pass 3 of 4: Completed in 1.8 sec
- Pass 4 of 4: Completed in 1.4 sec
Evaluation completed in 5.5 sec
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 1: Completed in 0.64 sec
Evaluation completed in 0.9 sec
|    9 | Accept |      2.9985 |      32.674 |      2.9048 |      2.9048 |            8 |

Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 1: Completed in 0.43 sec
Evaluation completed in 0.7 sec
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 4: Completed in 0.47 sec
- Pass 2 of 4: Completed in 1.1 sec
- Pass 3 of 4: Completed in 1.8 sec
- Pass 4 of 4: Completed in 1.4 sec
Evaluation completed in 5.5 sec
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 4: Completed in 0.56 sec
- Pass 2 of 4: Completed in 1.2 sec
- Pass 3 of 4: Completed in 2 sec
- Pass 4 of 4: Completed in 1.4 sec
Evaluation completed in 6 sec
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 4: Completed in 0.45 sec
- Pass 2 of 4: Completed in 1.1 sec
- Pass 3 of 4: Completed in 1.8 sec
- Pass 4 of 4: Completed in 1.5 sec
Evaluation completed in 5.7 sec
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 4: Completed in 0.47 sec
- Pass 2 of 4: Completed in 1.1 sec
- Pass 3 of 4: Completed in 1.8 sec
- Pass 4 of 4: Completed in 1.6 sec
Evaluation completed in 5.8 sec
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 1: Completed in 0.88 sec
Evaluation completed in 1.2 sec
|   10 | Accept |      3.0185 |      33.922 |      2.9048 |      2.9048 |           10 |

Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 1: Completed in 0.44 sec
Evaluation completed in 0.74 sec
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 4: Completed in 0.46 sec
- Pass 2 of 4: Completed in 1.2 sec
- Pass 3 of 4: Completed in 1.8 sec
- Pass 4 of 4: Completed in 1.3 sec
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Evaluation completed in 5.6 sec
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 4: Completed in 0.48 sec
- Pass 2 of 4: Completed in 1.2 sec
- Pass 3 of 4: Completed in 2 sec
- Pass 4 of 4: Completed in 1.6 sec
Evaluation completed in 6.2 sec
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 4: Completed in 0.73 sec
- Pass 2 of 4: Completed in 1.2 sec
- Pass 3 of 4: Completed in 2 sec
- Pass 4 of 4: Completed in 1.5 sec
Evaluation completed in 6.2 sec
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 1: Completed in 0.63 sec
Evaluation completed in 0.88 sec
|   11 | Accept |      3.2895 |      26.625 |      2.9048 |      2.9048 |           14 |

Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 1: Completed in 0.48 sec
Evaluation completed in 0.78 sec
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 4: Completed in 0.51 sec
- Pass 2 of 4: Completed in 1.2 sec
- Pass 3 of 4: Completed in 1.9 sec
- Pass 4 of 4: Completed in 1.3 sec
Evaluation completed in 5.7 sec
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 4: Completed in 0.48 sec
- Pass 2 of 4: Completed in 1.2 sec
- Pass 3 of 4: Completed in 1.8 sec
- Pass 4 of 4: Completed in 1.4 sec
Evaluation completed in 5.5 sec
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 1: Completed in 0.65 sec
Evaluation completed in 0.9 sec
|   12 | Accept |      3.4798 |      18.111 |      2.9048 |      2.9049 |           31 |

Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 1: Completed in 0.44 sec
Evaluation completed in 0.71 sec
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 4: Completed in 0.45 sec
- Pass 2 of 4: Completed in 1.1 sec
- Pass 3 of 4: Completed in 1.8 sec
- Pass 4 of 4: Completed in 1.3 sec
Evaluation completed in 5.4 sec
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 4: Completed in 0.5 sec
- Pass 2 of 4: Completed in 1.1 sec
- Pass 3 of 4: Completed in 1.8 sec
- Pass 4 of 4: Completed in 1.3 sec
Evaluation completed in 5.5 sec
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 4: Completed in 0.5 sec
- Pass 2 of 4: Completed in 1.1 sec
- Pass 3 of 4: Completed in 1.8 sec
- Pass 4 of 4: Completed in 1.4 sec
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Evaluation completed in 5.5 sec
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 4: Completed in 0.48 sec
- Pass 2 of 4: Completed in 1.1 sec
- Pass 3 of 4: Completed in 1.8 sec
- Pass 4 of 4: Completed in 1.4 sec
Evaluation completed in 5.7 sec
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 4: Completed in 0.44 sec
- Pass 2 of 4: Completed in 1.1 sec
- Pass 3 of 4: Completed in 1.8 sec
- Pass 4 of 4: Completed in 1.3 sec
Evaluation completed in 5.4 sec
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 4: Completed in 0.43 sec
- Pass 2 of 4: Completed in 1.2 sec
- Pass 3 of 4: Completed in 2 sec
- Pass 4 of 4: Completed in 1.4 sec
Evaluation completed in 5.7 sec
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 1: Completed in 0.64 sec
Evaluation completed in 0.91 sec
|   13 | Accept |      3.2248 |      47.436 |      2.9048 |      2.9048 |            1 |

Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 1: Completed in 0.46 sec
Evaluation completed in 0.74 sec
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 4: Completed in 0.6 sec
- Pass 2 of 4: Completed in 1.1 sec
- Pass 3 of 4: Completed in 1.8 sec
- Pass 4 of 4: Completed in 1.3 sec
Evaluation completed in 5.5 sec
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 4: Completed in 0.45 sec
- Pass 2 of 4: Completed in 1.1 sec
- Pass 3 of 4: Completed in 1.8 sec
- Pass 4 of 4: Completed in 1.4 sec
Evaluation completed in 5.6 sec
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 4: Completed in 0.57 sec
- Pass 2 of 4: Completed in 1.1 sec
- Pass 3 of 4: Completed in 2.6 sec
- Pass 4 of 4: Completed in 1.6 sec
Evaluation completed in 6.6 sec
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 4: Completed in 0.62 sec
- Pass 2 of 4: Completed in 1.1 sec
- Pass 3 of 4: Completed in 1.8 sec
- Pass 4 of 4: Completed in 1.4 sec
Evaluation completed in 5.7 sec
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 4: Completed in 0.5 sec
- Pass 2 of 4: Completed in 1.1 sec
- Pass 3 of 4: Completed in 1.8 sec
- Pass 4 of 4: Completed in 1.6 sec
Evaluation completed in 6.1 sec
Evaluating tall expression using the Parallel Pool 'local':
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- Pass 1 of 1: Completed in 0.61 sec
Evaluation completed in 0.88 sec
|   14 | Accept |      3.1498 |      42.062 |      2.9048 |      2.9048 |            3 |

Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 1: Completed in 0.46 sec
Evaluation completed in 0.76 sec
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 4: Completed in 0.48 sec
- Pass 2 of 4: Completed in 1.1 sec
- Pass 3 of 4: Completed in 1.8 sec
- Pass 4 of 4: Completed in 1.4 sec
Evaluation completed in 5.5 sec
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 4: Completed in 0.5 sec
- Pass 2 of 4: Completed in 1.1 sec
- Pass 3 of 4: Completed in 1.8 sec
- Pass 4 of 4: Completed in 1.3 sec
Evaluation completed in 5.5 sec
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 4: Completed in 0.67 sec
- Pass 2 of 4: Completed in 1.3 sec
- Pass 3 of 4: Completed in 2.3 sec
- Pass 4 of 4: Completed in 2.2 sec
Evaluation completed in 7.4 sec
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 4: Completed in 0.45 sec
- Pass 2 of 4: Completed in 1.1 sec
- Pass 3 of 4: Completed in 1.8 sec
- Pass 4 of 4: Completed in 1.4 sec
Evaluation completed in 5.4 sec
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 1: Completed in 0.6 sec
Evaluation completed in 0.86 sec
|   15 | Accept |      2.9048 |        34.3 |      2.9048 |      2.9048 |            6 |

Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 1: Completed in 0.48 sec
Evaluation completed in 0.78 sec
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 4: Completed in 0.44 sec
- Pass 2 of 4: Completed in 1.1 sec
- Pass 3 of 4: Completed in 1.8 sec
- Pass 4 of 4: Completed in 1.3 sec
Evaluation completed in 5.5 sec
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 4: Completed in 0.44 sec
- Pass 2 of 4: Completed in 1.2 sec
- Pass 3 of 4: Completed in 1.8 sec
- Pass 4 of 4: Completed in 1.4 sec
Evaluation completed in 5.6 sec
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 4: Completed in 0.43 sec
- Pass 2 of 4: Completed in 1.1 sec
- Pass 3 of 4: Completed in 1.8 sec
- Pass 4 of 4: Completed in 1.3 sec
Evaluation completed in 5.4 sec
Evaluating tall expression using the Parallel Pool 'local':
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- Pass 1 of 4: Completed in 0.44 sec
- Pass 2 of 4: Completed in 1.1 sec
- Pass 3 of 4: Completed in 2 sec
- Pass 4 of 4: Completed in 1.4 sec
Evaluation completed in 5.7 sec
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 1: Completed in 0.62 sec
Evaluation completed in 0.88 sec
|   16 | Accept |      2.9048 |       32.97 |      2.9048 |      2.9048 |            6 |

Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 1: Completed in 0.43 sec
Evaluation completed in 0.73 sec
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 4: Completed in 0.47 sec
- Pass 2 of 4: Completed in 1.1 sec
- Pass 3 of 4: Completed in 1.8 sec
- Pass 4 of 4: Completed in 1.3 sec
Evaluation completed in 5.5 sec
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 4: Completed in 0.43 sec
- Pass 2 of 4: Completed in 1.1 sec
- Pass 3 of 4: Completed in 1.8 sec
- Pass 4 of 4: Completed in 1.3 sec
Evaluation completed in 5.5 sec
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 1: Completed in 0.62 sec
Evaluation completed in 0.9 sec
|   17 | Accept |      3.1847 |       17.47 |      2.9048 |      2.9048 |           23 |

Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 1: Completed in 0.43 sec
Evaluation completed in 0.72 sec
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 4: Completed in 0.44 sec
- Pass 2 of 4: Completed in 1.1 sec
- Pass 3 of 4: Completed in 1.8 sec
- Pass 4 of 4: Completed in 1.4 sec
Evaluation completed in 5.7 sec
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 4: Completed in 0.68 sec
- Pass 2 of 4: Completed in 1.4 sec
- Pass 3 of 4: Completed in 1.9 sec
- Pass 4 of 4: Completed in 1.4 sec
Evaluation completed in 6.3 sec
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 4: Completed in 0.45 sec
- Pass 2 of 4: Completed in 1.1 sec
- Pass 3 of 4: Completed in 1.8 sec
- Pass 4 of 4: Completed in 1.4 sec
Evaluation completed in 5.4 sec
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 4: Completed in 0.44 sec
- Pass 2 of 4: Completed in 1.1 sec
- Pass 3 of 4: Completed in 1.8 sec
- Pass 4 of 4: Completed in 1.4 sec
Evaluation completed in 5.4 sec
Evaluating tall expression using the Parallel Pool 'local':
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- Pass 1 of 1: Completed in 0.62 sec
Evaluation completed in 0.93 sec
|   18 | Accept |      3.1817 |      33.346 |      2.9048 |      2.9048 |            4 |

Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 1: Completed in 0.43 sec
Evaluation completed in 0.72 sec
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 4: Completed in 0.44 sec
- Pass 2 of 4: Completed in 1.1 sec
- Pass 3 of 4: Completed in 1.8 sec
- Pass 4 of 4: Completed in 1.3 sec
Evaluation completed in 5.4 sec
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 1: Completed in 0.62 sec
Evaluation completed in 0.86 sec
|   19 | Error  |         NaN |      10.235 |      2.9048 |      2.9048 |           38 |

Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 1: Completed in 0.47 sec
Evaluation completed in 0.76 sec
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 4: Completed in 0.44 sec
- Pass 2 of 4: Completed in 1.2 sec
- Pass 3 of 4: Completed in 1.8 sec
- Pass 4 of 4: Completed in 1.3 sec
Evaluation completed in 5.5 sec
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 4: Completed in 0.44 sec
- Pass 2 of 4: Completed in 1.1 sec
- Pass 3 of 4: Completed in 1.8 sec
- Pass 4 of 4: Completed in 1.4 sec
Evaluation completed in 5.5 sec
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 4: Completed in 0.44 sec
- Pass 2 of 4: Completed in 1.1 sec
- Pass 3 of 4: Completed in 1.9 sec
- Pass 4 of 4: Completed in 1.3 sec
Evaluation completed in 5.5 sec
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 4: Completed in 0.43 sec
- Pass 2 of 4: Completed in 1.1 sec
- Pass 3 of 4: Completed in 1.8 sec
- Pass 4 of 4: Completed in 1.4 sec
Evaluation completed in 5.5 sec
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 1: Completed in 0.63 sec
Evaluation completed in 0.89 sec
|   20 | Accept |      3.0628 |      32.459 |      2.9048 |      2.9048 |           12 |

Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 1: Completed in 0.46 sec
Evaluation completed in 0.76 sec
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 4: Completed in 0.48 sec
- Pass 2 of 4: Completed in 1.1 sec
- Pass 3 of 4: Completed in 1.8 sec
- Pass 4 of 4: Completed in 1.4 sec
Evaluation completed in 5.5 sec
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Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 4: Completed in 0.68 sec
- Pass 2 of 4: Completed in 1.7 sec
- Pass 3 of 4: Completed in 2.1 sec
- Pass 4 of 4: Completed in 1.4 sec
Evaluation completed in 6.8 sec
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 1: Completed in 0.64 sec
Evaluation completed in 0.9 sec
|======================================================================================|
| Iter | Eval   | Objective:  | Objective   | BestSoFar   | BestSoFar   |  MinLeafSize |
|      | result | log(1+loss) | runtime     | (observed)  | (estim.)    |              |
|======================================================================================|
|   21 | Accept |      3.1847 |       19.02 |      2.9048 |      2.9048 |           27 |

Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 1: Completed in 0.45 sec
Evaluation completed in 0.75 sec
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 4: Completed in 0.47 sec
- Pass 2 of 4: Completed in 1.1 sec
- Pass 3 of 4: Completed in 1.8 sec
- Pass 4 of 4: Completed in 1.4 sec
Evaluation completed in 5.6 sec
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 4: Completed in 0.45 sec
- Pass 2 of 4: Completed in 1.1 sec
- Pass 3 of 4: Completed in 1.8 sec
- Pass 4 of 4: Completed in 1.3 sec
Evaluation completed in 5.5 sec
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 4: Completed in 0.5 sec
- Pass 2 of 4: Completed in 1.6 sec
- Pass 3 of 4: Completed in 2.4 sec
- Pass 4 of 4: Completed in 1.5 sec
Evaluation completed in 6.8 sec
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 4: Completed in 0.44 sec
- Pass 2 of 4: Completed in 1.1 sec
- Pass 3 of 4: Completed in 1.8 sec
- Pass 4 of 4: Completed in 1.5 sec
Evaluation completed in 5.6 sec
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 1: Completed in 0.63 sec
Evaluation completed in 0.89 sec
|   22 | Accept |      3.0185 |      33.933 |      2.9048 |      2.9048 |            9 |

Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 1: Completed in 0.46 sec
Evaluation completed in 0.76 sec
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 4: Completed in 0.45 sec
- Pass 2 of 4: Completed in 1.1 sec
- Pass 3 of 4: Completed in 1.8 sec
- Pass 4 of 4: Completed in 1.4 sec
Evaluation completed in 5.5 sec
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 4: Completed in 0.45 sec
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- Pass 2 of 4: Completed in 1.1 sec
- Pass 3 of 4: Completed in 1.8 sec
- Pass 4 of 4: Completed in 1.4 sec
Evaluation completed in 5.5 sec
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 4: Completed in 0.43 sec
- Pass 2 of 4: Completed in 1.1 sec
- Pass 3 of 4: Completed in 1.8 sec
- Pass 4 of 4: Completed in 1.3 sec
Evaluation completed in 5.4 sec
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 1: Completed in 0.64 sec
Evaluation completed in 0.89 sec
|   23 | Accept |      3.0749 |      25.147 |      2.9048 |      2.9048 |           20 |

Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 1: Completed in 0.44 sec
Evaluation completed in 0.73 sec
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 4: Completed in 0.42 sec
- Pass 2 of 4: Completed in 1.1 sec
- Pass 3 of 4: Completed in 1.8 sec
- Pass 4 of 4: Completed in 1.4 sec
Evaluation completed in 5.5 sec
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 4: Completed in 0.43 sec
- Pass 2 of 4: Completed in 1.1 sec
- Pass 3 of 4: Completed in 1.8 sec
- Pass 4 of 4: Completed in 1.3 sec
Evaluation completed in 5.4 sec
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 4: Completed in 0.53 sec
- Pass 2 of 4: Completed in 1.4 sec
- Pass 3 of 4: Completed in 1.9 sec
- Pass 4 of 4: Completed in 1.4 sec
Evaluation completed in 5.9 sec
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 4: Completed in 0.44 sec
- Pass 2 of 4: Completed in 1.1 sec
- Pass 3 of 4: Completed in 1.8 sec
- Pass 4 of 4: Completed in 1.4 sec
Evaluation completed in 5.5 sec
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 1: Completed in 0.62 sec
Evaluation completed in 0.88 sec
|   24 | Accept |      3.0628 |      32.764 |      2.9048 |      2.9048 |           11 |

Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 1: Completed in 0.44 sec
Evaluation completed in 0.73 sec
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 4: Completed in 0.44 sec
- Pass 2 of 4: Completed in 1.2 sec
- Pass 3 of 4: Completed in 1.8 sec
- Pass 4 of 4: Completed in 1.4 sec
Evaluation completed in 5.5 sec
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 1: Completed in 0.61 sec
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Evaluation completed in 0.87 sec
|   25 | Error  |         NaN |      10.294 |      2.9048 |      2.9048 |           34 |

Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 1: Completed in 0.44 sec
Evaluation completed in 0.73 sec
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 4: Completed in 0.45 sec
- Pass 2 of 4: Completed in 1.1 sec
- Pass 3 of 4: Completed in 1.8 sec
- Pass 4 of 4: Completed in 1.3 sec
Evaluation completed in 5.4 sec
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 4: Completed in 0.43 sec
- Pass 2 of 4: Completed in 1.1 sec
- Pass 3 of 4: Completed in 1.8 sec
- Pass 4 of 4: Completed in 1.3 sec
Evaluation completed in 5.4 sec
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 1: Completed in 0.62 sec
Evaluation completed in 0.87 sec
|   26 | Accept |      3.1847 |      17.587 |      2.9048 |      2.9048 |           25 |

Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 1: Completed in 0.45 sec
Evaluation completed in 0.73 sec
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 4: Completed in 0.45 sec
- Pass 2 of 4: Completed in 1 sec
- Pass 3 of 4: Completed in 1.8 sec
- Pass 4 of 4: Completed in 1.3 sec
Evaluation completed in 5.4 sec
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 4: Completed in 0.44 sec
- Pass 2 of 4: Completed in 1.1 sec
- Pass 3 of 4: Completed in 1.8 sec
- Pass 4 of 4: Completed in 1.4 sec
Evaluation completed in 5.5 sec
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 4: Completed in 0.43 sec
- Pass 2 of 4: Completed in 1 sec
- Pass 3 of 4: Completed in 1.8 sec
- Pass 4 of 4: Completed in 1.3 sec
Evaluation completed in 5.3 sec
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 1: Completed in 0.66 sec
Evaluation completed in 0.96 sec
|   27 | Accept |      3.2895 |      24.867 |      2.9048 |      2.9048 |           16 |

Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 1: Completed in 0.44 sec
Evaluation completed in 0.74 sec
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 4: Completed in 0.45 sec
- Pass 2 of 4: Completed in 1.1 sec
- Pass 3 of 4: Completed in 1.8 sec
- Pass 4 of 4: Completed in 1.3 sec
Evaluation completed in 5.4 sec
Evaluating tall expression using the Parallel Pool 'local':
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- Pass 1 of 4: Completed in 0.43 sec
- Pass 2 of 4: Completed in 1.1 sec
- Pass 3 of 4: Completed in 1.8 sec
- Pass 4 of 4: Completed in 1.4 sec
Evaluation completed in 5.5 sec
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 4: Completed in 0.44 sec
- Pass 2 of 4: Completed in 1.1 sec
- Pass 3 of 4: Completed in 1.8 sec
- Pass 4 of 4: Completed in 1.4 sec
Evaluation completed in 5.4 sec
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 1: Completed in 0.6 sec
Evaluation completed in 0.88 sec
|   28 | Accept |      3.2135 |      24.928 |      2.9048 |      2.9048 |           13 |

Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 1: Completed in 0.47 sec
Evaluation completed in 0.76 sec
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 4: Completed in 0.45 sec
- Pass 2 of 4: Completed in 1.1 sec
- Pass 3 of 4: Completed in 1.8 sec
- Pass 4 of 4: Completed in 1.3 sec
Evaluation completed in 5.4 sec
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 4: Completed in 0.46 sec
- Pass 2 of 4: Completed in 1.1 sec
- Pass 3 of 4: Completed in 1.8 sec
- Pass 4 of 4: Completed in 1.3 sec
Evaluation completed in 5.5 sec
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 1: Completed in 0.62 sec
Evaluation completed in 0.87 sec
|   29 | Accept |      3.1847 |      17.582 |      2.9048 |      2.9048 |           21 |

Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 1: Completed in 0.53 sec
Evaluation completed in 0.81 sec
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 4: Completed in 0.44 sec
- Pass 2 of 4: Completed in 1.1 sec
- Pass 3 of 4: Completed in 1.8 sec
- Pass 4 of 4: Completed in 1.3 sec
Evaluation completed in 5.4 sec
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 4: Completed in 0.43 sec
- Pass 2 of 4: Completed in 1.1 sec
- Pass 3 of 4: Completed in 1.8 sec
- Pass 4 of 4: Completed in 1.3 sec
Evaluation completed in 5.4 sec
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 1: Completed in 0.63 sec
Evaluation completed in 0.88 sec
|   30 | Accept |      3.1827 |      17.597 |      2.9048 |      2.9122 |           29 |
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__________________________________________________________
Optimization completed.
MaxObjectiveEvaluations of 30 reached.
Total function evaluations: 30
Total elapsed time: 882.5668 seconds.
Total objective function evaluation time: 859.2122

Best observed feasible point:
    MinLeafSize
    ___________

         6     

Observed objective function value = 2.9048
Estimated objective function value = 2.9122
Function evaluation time = 33.4655

Best estimated feasible point (according to models):
    MinLeafSize
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    ___________

         6     

Estimated objective function value = 2.9122
Estimated function evaluation time = 33.6594

Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 2: Completed in 0.26 sec
- Pass 2 of 2: Completed in 0.26 sec
Evaluation completed in 0.84 sec
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 7: Completed in 0.31 sec
- Pass 2 of 7: Completed in 0.25 sec
- Pass 3 of 7: Completed in 0.75 sec
- Pass 4 of 7: Completed in 1.2 sec
- Pass 5 of 7: Completed in 0.45 sec
- Pass 6 of 7: Completed in 0.69 sec
- Pass 7 of 7: Completed in 1.2 sec
Evaluation completed in 5.7 sec
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 7: Completed in 0.28 sec
- Pass 2 of 7: Completed in 0.24 sec
- Pass 3 of 7: Completed in 0.75 sec
- Pass 4 of 7: Completed in 1.2 sec
- Pass 5 of 7: Completed in 0.46 sec
- Pass 6 of 7: Completed in 0.67 sec
- Pass 7 of 7: Completed in 1.2 sec
Evaluation completed in 5.6 sec
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 7: Completed in 0.32 sec
- Pass 2 of 7: Completed in 0.25 sec
- Pass 3 of 7: Completed in 0.71 sec
- Pass 4 of 7: Completed in 1.2 sec
- Pass 5 of 7: Completed in 0.47 sec
- Pass 6 of 7: Completed in 0.66 sec
- Pass 7 of 7: Completed in 1.2 sec
Evaluation completed in 5.6 sec
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 7: Completed in 0.29 sec
- Pass 2 of 7: Completed in 0.25 sec
- Pass 3 of 7: Completed in 0.73 sec
- Pass 4 of 7: Completed in 1.2 sec
- Pass 5 of 7: Completed in 0.46 sec
- Pass 6 of 7: Completed in 0.68 sec
- Pass 7 of 7: Completed in 1.2 sec
Evaluation completed in 5.5 sec
Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 7: Completed in 0.27 sec
- Pass 2 of 7: Completed in 0.25 sec
- Pass 3 of 7: Completed in 0.75 sec
- Pass 4 of 7: Completed in 1.2 sec
- Pass 5 of 7: Completed in 0.47 sec
- Pass 6 of 7: Completed in 0.69 sec
- Pass 7 of 7: Completed in 1.2 sec
Evaluation completed in 5.6 sec
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Mdl = 
  CompactRegressionTree
             ResponseName: 'Y'
    CategoricalPredictors: []
        ResponseTransform: 'none'

  Properties, Methods

FitInfo = struct with no fields.

HyperparameterOptimizationResults = 
  BayesianOptimization with properties:

                      ObjectiveFcn: @createObjFcn/tallObjFcn
              VariableDescriptions: [3×1 optimizableVariable]
                           Options: [1×1 struct]
                      MinObjective: 2.9048
                   XAtMinObjective: [1×1 table]
             MinEstimatedObjective: 2.9122
          XAtMinEstimatedObjective: [1×1 table]
           NumObjectiveEvaluations: 30
                  TotalElapsedTime: 882.5668
                         NextPoint: [1×1 table]
                            XTrace: [30×1 table]
                    ObjectiveTrace: [30×1 double]
                  ConstraintsTrace: []
                     UserDataTrace: {30×1 cell}
      ObjectiveEvaluationTimeTrace: [30×1 double]
                IterationTimeTrace: [30×1 double]
                        ErrorTrace: [30×1 double]
                  FeasibilityTrace: [30×1 logical]
       FeasibilityProbabilityTrace: [30×1 double]
               IndexOfMinimumTrace: [30×1 double]
             ObjectiveMinimumTrace: [30×1 double]
    EstimatedObjectiveMinimumTrace: [30×1 double]

Input Arguments
Tbl — Sample data
table

Sample data used to train the model, specified as a table. Each row of Tbl corresponds to one
observation, and each column corresponds to one predictor variable. Optionally, Tbl can contain one
additional column for the response variable. Multicolumn variables and cell arrays other than cell
arrays of character vectors are not allowed.

• If Tbl contains the response variable, and you want to use all remaining variables in Tbl as
predictors, then specify the response variable by using ResponseVarName.

• If Tbl contains the response variable, and you want to use only a subset of the remaining
variables in Tbl as predictors, then specify a formula by using formula.
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• If Tbl does not contain the response variable, then specify a response variable by using Y. The
length of the response variable and the number of rows in Tbl must be equal.

ResponseVarName — Response variable name
name of variable in Tbl

Response variable name, specified as the name of a variable in Tbl. The response variable must be a
numeric vector.

You must specify ResponseVarName as a character vector or string scalar. For example, if Tbl stores
the response variable Y as Tbl.Y, then specify it as 'Y'. Otherwise, the software treats all columns
of Tbl, including Y, as predictors when training the model.
Data Types: char | string

formula — Explanatory model of response variable and subset of predictor variables
character vector | string scalar

Explanatory model of the response variable and a subset of the predictor variables, specified as a
character vector or string scalar in the form "Y~x1+x2+x3". In this form, Y represents the response
variable, and x1, x2, and x3 represent the predictor variables.

To specify a subset of variables in Tbl as predictors for training the model, use a formula. If you
specify a formula, then the software does not use any variables in Tbl that do not appear in
formula.

The variable names in the formula must be both variable names in Tbl
(Tbl.Properties.VariableNames) and valid MATLAB identifiers. You can verify the variable
names in Tbl by using the isvarname function. If the variable names are not valid, then you can
convert them by using the matlab.lang.makeValidName function.
Data Types: char | string

Y — Response data
numeric column vector

Response data, specified as a numeric column vector with the same number of rows as X. Each entry
in Y is the response to the data in the corresponding row of X.

The software considers NaN values in Y to be missing values. fitrtree does not use observations
with missing values for Y in the fit.
Data Types: single | double

X — Predictor data
numeric matrix

Predictor data, specified as a numeric matrix. Each column of X represents one variable, and each
row represents one observation.

fitrtree considers NaN values in X as missing values. fitrtree does not use observations with all
missing values for X in the fit. fitrtree uses observations with some missing values for X to find
splits on variables for which these observations have valid values.
Data Types: single | double
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Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.

Note You cannot use any cross-validation name-value argument together with the
'OptimizeHyperparameters' name-value argument. You can modify the cross-validation for
'OptimizeHyperparameters' only by using the 'HyperparameterOptimizationOptions'
name-value argument.

Example: 'CrossVal','on','MinParentSize',30 specifies a cross-validated regression tree
with a minimum of 30 observations per branch node.

Model Parameters

CategoricalPredictors — Categorical predictors list
vector of positive integers | logical vector | character matrix | string array | cell array of character
vectors | 'all'

Categorical predictors list, specified as one of the values in this table.

Value Description
Vector of positive
integers

Each entry in the vector is an index value indicating that the corresponding
predictor is categorical. The index values are between 1 and p, where p is
the number of predictors used to train the model.

If fitrtree uses a subset of input variables as predictors, then the
function indexes the predictors using only the subset. The
CategoricalPredictors values do not count the response variable,
observation weights variable, or any other variables that the function does
not use.

Logical vector A true entry means that the corresponding predictor is categorical. The
length of the vector is p.

Character matrix Each row of the matrix is the name of a predictor variable. The names must
match the entries in PredictorNames. Pad the names with extra blanks
so each row of the character matrix has the same length.

String array or cell
array of character
vectors

Each element in the array is the name of a predictor variable. The names
must match the entries in PredictorNames.

"all" All predictors are categorical.

By default, if the predictor data is in a table (Tbl), fitrtree assumes that a variable is categorical if
it is a logical vector, unordered categorical vector, character array, string array, or cell array of
character vectors. If the predictor data is a matrix (X), fitrtree assumes that all predictors are
continuous. To identify any other predictors as categorical predictors, specify them by using the
CategoricalPredictors name-value argument.
Example: 'CategoricalPredictors','all'
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Data Types: single | double | logical | char | string | cell

MaxDepth — Maximum tree depth
positive integer

Maximum tree depth, specified as the comma-separated pair consisting of 'MaxDepth' and a
positive integer. Specify a value for this argument to return a tree that has fewer levels and requires
fewer passes through the tall array to compute. Generally, the algorithm of fitrtree takes one pass
through the data and an additional pass for each tree level. The function does not set a maximum tree
depth, by default.

Note This option applies only when you use fitrtree on tall arrays. See Tall Arrays on page 35-
2798 for more information.

MergeLeaves — Leaf merge flag
'on' (default) | 'off'

Leaf merge flag, specified as the comma-separated pair consisting of 'MergeLeaves' and 'on' or
'off'.

If MergeLeaves is 'on', then fitrtree:

• Merges leaves that originate from the same parent node and yield a sum of risk values greater
than or equal to the risk associated with the parent node

• Estimates the optimal sequence of pruned subtrees, but does not prune the regression tree

Otherwise, fitrtree does not merge leaves.
Example: 'MergeLeaves','off'

MinParentSize — Minimum number of branch node observations
10 (default) | positive integer value

Minimum number of branch node observations, specified as the comma-separated pair consisting of
'MinParentSize' and a positive integer value. Each branch node in the tree has at least
MinParentSize observations. If you supply both MinParentSize and MinLeafSize, fitrtree
uses the setting that gives larger leaves: MinParentSize =
max(MinParentSize,2*MinLeafSize).
Example: 'MinParentSize',8
Data Types: single | double

NumBins — Number of bins for numeric predictors
[](empty) (default) | positive integer scalar

Number of bins for numeric predictors, specified as the comma-separated pair consisting of
'NumBins' and a positive integer scalar.

• If the 'NumBins' value is empty (default), then fitrtree does not bin any predictors.
• If you specify the 'NumBins' value as a positive integer scalar (numBins), then fitrtree bins

every numeric predictor into at most numBins equiprobable bins, and then grows trees on the bin
indices instead of the original data.
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• The number of bins can be less than numBins if a predictor has fewer than numBins unique
values.

• fitrtree does not bin categorical predictors.

When you use a large training data set, this binning option speeds up training but might cause a
potential decrease in accuracy. You can try 'NumBins',50 first, and then change the value
depending on the accuracy and training speed.

A trained model stores the bin edges in the BinEdges property.
Example: 'NumBins',50
Data Types: single | double

PredictorNames — Predictor variable names
string array of unique names | cell array of unique character vectors

Predictor variable names, specified as a string array of unique names or cell array of unique
character vectors. The functionality of PredictorNames depends on the way you supply the training
data.

• If you supply X and Y, then you can use PredictorNames to assign names to the predictor
variables in X.

• The order of the names in PredictorNames must correspond to the column order of X. That
is, PredictorNames{1} is the name of X(:,1), PredictorNames{2} is the name of
X(:,2), and so on. Also, size(X,2) and numel(PredictorNames) must be equal.

• By default, PredictorNames is {'x1','x2',...}.
• If you supply Tbl, then you can use PredictorNames to choose which predictor variables to use

in training. That is, fitrtree uses only the predictor variables in PredictorNames and the
response variable during training.

• PredictorNames must be a subset of Tbl.Properties.VariableNames and cannot include
the name of the response variable.

• By default, PredictorNames contains the names of all predictor variables.
• A good practice is to specify the predictors for training using either PredictorNames or

formula, but not both.

Example: "PredictorNames",
["SepalLength","SepalWidth","PetalLength","PetalWidth"]

Data Types: string | cell

PredictorSelection — Algorithm used to select the best split predictor
'allsplits' (default) | 'curvature' | 'interaction-curvature'

Algorithm used to select the best split predictor at each node, specified as the comma-separated pair
consisting of 'PredictorSelection' and a value in this table.

Value Description
'allsplits' Standard CART — Selects the split predictor that maximizes the split-

criterion gain over all possible splits of all predictors [1].
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Value Description
'curvature' Curvature test on page 35-2792 — Selects the split predictor that

minimizes the p-value of chi-square tests of independence between
each predictor and the response [2]. Training speed is similar to
standard CART.

'interaction-
curvature'

Interaction test on page 35-2793 — Chooses the split predictor that
minimizes the p-value of chi-square tests of independence between
each predictor and the response (that is, conducts curvature tests),
and that minimizes the p-value of a chi-square test of independence
between each pair of predictors and response [2]. Training speed can
be slower than standard CART.

For 'curvature' and 'interaction-curvature', if all tests yield p-values greater than 0.05,
then fitrtree stops splitting nodes.

Tip

• Standard CART tends to select split predictors containing many distinct values, e.g., continuous
variables, over those containing few distinct values, e.g., categorical variables [3]. Consider
specifying the curvature or interaction test if any of the following are true:

• If there are predictors that have relatively fewer distinct values than other predictors, for
example, if the predictor data set is heterogeneous.

• If an analysis of predictor importance is your goal. For more on predictor importance
estimation, see predictorImportance and “Introduction to Feature Selection” on page 16-
47.

• Trees grown using standard CART are not sensitive to predictor variable interactions. Also, such
trees are less likely to identify important variables in the presence of many irrelevant predictors
than the application of the interaction test. Therefore, to account for predictor interactions and
identify importance variables in the presence of many irrelevant variables, specify the interaction
test .

• Prediction speed is unaffected by the value of 'PredictorSelection'.

For details on how fitrtree selects split predictors, see “Node Splitting Rules” on page 35-2795
and “Choose Split Predictor Selection Technique” on page 20-14.
Example: 'PredictorSelection','curvature'

Prune — Flag to estimate optimal sequence of pruned subtrees
'on' (default) | 'off'

Flag to estimate the optimal sequence of pruned subtrees, specified as the comma-separated pair
consisting of 'Prune' and 'on' or 'off'.

If Prune is 'on', then fitrtree grows the regression tree and estimates the optimal sequence of
pruned subtrees, but does not prune the regression tree. Otherwise, fitrtree grows the regression
tree without estimating the optimal sequence of pruned subtrees.

To prune a trained regression tree, pass the regression tree to prune.
Example: 'Prune','off'

35 Functions

35-2784



PruneCriterion — Pruning criterion
'mse' (default)

Pruning criterion, specified as the comma-separated pair consisting of 'PruneCriterion' and
'mse'.

QuadraticErrorTolerance — Quadratic error tolerance
1e-6 (default) | positive scalar value

Quadratic error tolerance per node, specified as the comma-separated pair consisting of
'QuadraticErrorTolerance' and a positive scalar value. The function stops splitting nodes when
the weighted mean squared error per node drops below QuadraticErrorTolerance*ε, where ε is
the weighted mean squared error of all n responses computed before growing the decision tree.

ε = ∑
i = 1

n
wi yi− y 2 .

wi is the weight of observation i, given that the weights of all the observations sum to one

( ∑
i = 1

n
wi = 1), and

y = ∑
i = 1

n
wiyi

is the weighted average of all the responses.

For more details on node splitting, see Node Splitting Rules on page 35-2795.
Example: 'QuadraticErrorTolerance',1e-4

Reproducible — Flag to enforce reproducibility
false (logical 0) (default) | true (logical 1)

Flag to enforce reproducibility over repeated runs of training a model, specified as the comma-
separated pair consisting of 'Reproducible' and either false or true.

If 'NumVariablesToSample' is not 'all', then the software selects predictors at random for each
split. To reproduce the random selections, you must specify 'Reproducible',true and set the seed
of the random number generator by using rng. Note that setting 'Reproducible' to true can slow
down training.
Example: 'Reproducible',true
Data Types: logical

ResponseName — Response variable name
"Y" (default) | character vector | string scalar

Response variable name, specified as a character vector or string scalar.

• If you supply Y, then you can use ResponseName to specify a name for the response variable.
• If you supply ResponseVarName or formula, then you cannot use ResponseName.

Example: "ResponseName","response"
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Data Types: char | string

ResponseTransform — Response transformation
'none' (default) | function handle

Response transformation, specified as either 'none' or a function handle. The default is 'none',
which means @(y)y, or no transformation. For a MATLAB function or a function you define, use its
function handle for the response transformation. The function handle must accept a vector (the
original response values) and return a vector of the same size (the transformed response values).
Example: Suppose you create a function handle that applies an exponential transformation to an
input vector by using myfunction = @(y)exp(y). Then, you can specify the response
transformation as 'ResponseTransform',myfunction.
Data Types: char | string | function_handle

SplitCriterion — Split criterion
'MSE' (default)

Split criterion, specified as the comma-separated pair consisting of 'SplitCriterion' and 'MSE',
meaning mean squared error.
Example: 'SplitCriterion','MSE'

Surrogate — Surrogate decision splits flag
'off' (default) | 'on' | 'all' | positive integer

Surrogate decision splits flag, specified as the comma-separated pair consisting of 'Surrogate' and
'on', 'off', 'all', or a positive integer.

• When 'on', fitrtree finds at most 10 surrogate splits at each branch node.
• When set to a positive integer, fitrtree finds at most the specified number of surrogate splits at

each branch node.
• When set to 'all', fitrtree finds all surrogate splits at each branch node. The 'all' setting

can use much time and memory.

Use surrogate splits to improve the accuracy of predictions for data with missing values. The setting
also enables you to compute measures of predictive association between predictors.
Example: 'Surrogate','on'
Data Types: single | double | char | string

Weights — Observation weights
ones(size(X,1),1) (default) | vector of scalar values | name of variable in Tbl

Observation weights, specified as the comma-separated pair consisting of 'Weights' and a vector of
scalar values or the name of a variable in Tbl. The software weights the observations in each row of
X or Tbl with the corresponding value in Weights. The size of Weights must equal the number of
rows in X or Tbl.

If you specify the input data as a table Tbl, then Weights can be the name of a variable in Tbl that
contains a numeric vector. In this case, you must specify Weights as a character vector or string
scalar. For example, if weights vector W is stored as Tbl.W, then specify it as 'W'. Otherwise, the
software treats all columns of Tbl, including W, as predictors when training the model.

fitrtree normalizes the values of Weights to sum to 1.
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Data Types: single | double | char | string

Cross-Validation

CrossVal — Cross-validation flag
'off' (default) | 'on'

Cross-validation flag, specified as the comma-separated pair consisting of 'CrossVal' and either
'on' or 'off'.

If 'on', fitrtree grows a cross-validated decision tree with 10 folds. You can override this cross-
validation setting using one of the 'KFold', 'Holdout', 'Leaveout', or 'CVPartition' name-
value pair arguments. You can only use one of these four options ('KFold', 'Holdout',
'Leaveout', or 'CVPartition') at a time when creating a cross-validated tree.

Alternatively, cross-validate tree later using the crossval method.
Example: 'CrossVal','on'

CVPartition — Partition for cross-validation tree
cvpartition object

Partition for cross-validated tree, specified as the comma-separated pair consisting of
'CVPartition' and an object created using cvpartition.

If you use 'CVPartition', you cannot use any of the 'KFold', 'Holdout', or 'Leaveout' name-
value pair arguments.

Holdout — Fraction of data for holdout validation
0 (default) | scalar value in the range [0,1]

Fraction of data used for holdout validation, specified as the comma-separated pair consisting of
'Holdout' and a scalar value in the range [0,1]. Holdout validation tests the specified fraction of
the data, and uses the rest of the data for training.

If you use 'Holdout', you cannot use any of the 'CVPartition', 'KFold', or 'Leaveout' name-
value pair arguments.
Example: 'Holdout',0.1
Data Types: single | double

KFold — Number of folds
10 (default) | positive integer greater than 1

Number of folds to use in a cross-validated tree, specified as the comma-separated pair consisting of
'KFold' and a positive integer value greater than 1.

If you use 'KFold', you cannot use any of the 'CVPartition', 'Holdout', or 'Leaveout' name-
value pair arguments.
Example: 'KFold',8
Data Types: single | double

Leaveout — Leave-one-out cross-validation flag
'off' (default) | 'on'
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Leave-one-out cross-validation flag, specified as the comma-separated pair consisting of 'Leaveout'
and either 'on' or 'off. Use leave-one-out cross-validation by setting to 'on'.

If you use 'Leaveout', you cannot use any of the 'CVPartition', 'Holdout', or 'KFold' name-
value pair arguments.
Example: 'Leaveout','on'

Hyperparameters

MaxNumSplits — Maximal number of decision splits
size(X,1) - 1 (default) | positive integer

Maximal number of decision splits (or branch nodes), specified as the comma-separated pair
consisting of 'MaxNumSplits' and a positive integer. fitrtree splits MaxNumSplits or fewer
branch nodes. For more details on splitting behavior, see “Tree Depth Control” on page 35-2797.
Example: 'MaxNumSplits',5
Data Types: single | double

MinLeafSize — Minimum number of leaf node observations
1 (default) | positive integer value

Minimum number of leaf node observations, specified as the comma-separated pair consisting of
'MinLeafSize' and a positive integer value. Each leaf has at least MinLeafSize observations per
tree leaf. If you supply both MinParentSize and MinLeafSize, fitrtree uses the setting that
gives larger leaves: MinParentSize = max(MinParentSize,2*MinLeafSize).
Example: 'MinLeafSize',3
Data Types: single | double

NumVariablesToSample — Number of predictors to select at random for each split
'all' (default) | positive integer value

Number of predictors to select at random for each split, specified as the comma-separated pair
consisting of 'NumVariablesToSample' and a positive integer value. Alternatively, you can specify
'all' to use all available predictors.

If the training data includes many predictors and you want to analyze predictor importance, then
specify 'NumVariablesToSample' as 'all'. Otherwise, the software might not select some
predictors, underestimating their importance.

To reproduce the random selections, you must set the seed of the random number generator by using
rng and specify 'Reproducible',true.
Example: 'NumVariablesToSample',3
Data Types: char | string | single | double

Hyperparameter Optimization

OptimizeHyperparameters — Parameters to optimize
'none' (default) | 'auto' | 'all' | string array or cell array of eligible parameter names | vector of
optimizableVariable objects
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Parameters to optimize, specified as the comma-separated pair consisting of
'OptimizeHyperparameters' and one of the following:

• 'none' — Do not optimize.
• 'auto' — Use {'MinLeafSize'}.
• 'all' — Optimize all eligible parameters.
• String array or cell array of eligible parameter names.
• Vector of optimizableVariable objects, typically the output of hyperparameters.

The optimization attempts to minimize the cross-validation loss (error) for fitrtree by varying the
parameters. To control the cross-validation type and other aspects of the optimization, use the
HyperparameterOptimizationOptions name-value pair.

Note The values of 'OptimizeHyperparameters' override any values you specify using other
name-value arguments. For example, setting 'OptimizeHyperparameters' to 'auto' causes
fitrtree to optimize hyperparameters corresponding to the 'auto' option and to ignore any
specified values for the hyperparameters.

The eligible parameters for fitrtree are:

• MaxNumSplits — fitrtree searches among integers, by default log-scaled in the range
[1,max(2,NumObservations-1)].

• MinLeafSize — fitrtree searches among integers, by default log-scaled in the range
[1,max(2,floor(NumObservations/2))].

• NumVariablesToSample — fitrtree does not optimize over this hyperparameter. If you pass
NumVariablesToSample as a parameter name, fitrtree simply uses the full number of
predictors. However, fitrensemble does optimize over this hyperparameter.

Set nondefault parameters by passing a vector of optimizableVariable objects that have
nondefault values. For example,

load carsmall
params = hyperparameters('fitrtree',[Horsepower,Weight],MPG);
params(1).Range = [1,30];

Pass params as the value of OptimizeHyperparameters.

By default, the iterative display appears at the command line, and plots appear according to the
number of hyperparameters in the optimization. For the optimization and plots, the objective function
is log(1 + cross-validation loss). To control the iterative display, set the Verbose field of the
'HyperparameterOptimizationOptions' name-value argument. To control the plots, set the
ShowPlots field of the 'HyperparameterOptimizationOptions' name-value argument.

For an example, see “Optimize Regression Tree” on page 35-2750.
Example: 'auto'

HyperparameterOptimizationOptions — Options for optimization
structure

Options for optimization, specified as a structure. This argument modifies the effect of the
OptimizeHyperparameters name-value argument. All fields in the structure are optional.
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Field Name Values Default
Optimizer • 'bayesopt' — Use Bayesian optimization.

Internally, this setting calls bayesopt.
• 'gridsearch' — Use grid search with

NumGridDivisions values per dimension.
• 'randomsearch' — Search at random among

MaxObjectiveEvaluations points.

'gridsearch' searches in a random order, using
uniform sampling without replacement from the
grid. After optimization, you can get a table in grid
order by using the command
sortrows(Mdl.HyperparameterOptimizatio
nResults).

'bayesopt'

AcquisitionFunct
ionName

• 'expected-improvement-per-second-
plus'

• 'expected-improvement'
• 'expected-improvement-plus'
• 'expected-improvement-per-second'
• 'lower-confidence-bound'
• 'probability-of-improvement'

Acquisition functions whose names include per-
second do not yield reproducible results because
the optimization depends on the runtime of the
objective function. Acquisition functions whose
names include plus modify their behavior when
they are overexploiting an area. For more details,
see “Acquisition Function Types” on page 10-3.

'expected-
improvement-per-
second-plus'

MaxObjectiveEval
uations

Maximum number of objective function
evaluations.

30 for 'bayesopt' and
'randomsearch', and
the entire grid for
'gridsearch'

MaxTime Time limit, specified as a positive real scalar. The
time limit is in seconds, as measured by tic and
toc. The run time can exceed MaxTime because
MaxTime does not interrupt function evaluations.

Inf

NumGridDivisions For 'gridsearch', the number of values in each
dimension. The value can be a vector of positive
integers giving the number of values for each
dimension, or a scalar that applies to all
dimensions. This field is ignored for categorical
variables.

10
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Field Name Values Default
ShowPlots Logical value indicating whether to show plots. If

true, this field plots the best observed objective
function value against the iteration number. If you
use Bayesian optimization (Optimizer is
'bayesopt'), then this field also plots the best
estimated objective function value. The best
observed objective function values and best
estimated objective function values correspond to
the values in the BestSoFar (observed) and
BestSoFar (estim.) columns of the iterative
display, respectively. You can find these values in
the properties ObjectiveMinimumTrace and
EstimatedObjectiveMinimumTrace of
Mdl.HyperparameterOptimizationResults.
If the problem includes one or two optimization
parameters for Bayesian optimization, then
ShowPlots also plots a model of the objective
function against the parameters.

true

SaveIntermediate
Results

Logical value indicating whether to save results
when Optimizer is 'bayesopt'. If true, this
field overwrites a workspace variable named
'BayesoptResults' at each iteration. The
variable is a BayesianOptimization object.

false

Verbose Display at the command line:

• 0 — No iterative display
• 1 — Iterative display
• 2 — Iterative display with extra information

For details, see the bayesopt Verbose name-
value argument and the example “Optimize
Classifier Fit Using Bayesian Optimization” on
page 10-56.

1

UseParallel Logical value indicating whether to run Bayesian
optimization in parallel, which requires Parallel
Computing Toolbox. Due to the nonreproducibility
of parallel timing, parallel Bayesian optimization
does not necessarily yield reproducible results. For
details, see “Parallel Bayesian Optimization” on
page 10-7.

false
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Field Name Values Default
Repartition Logical value indicating whether to repartition the

cross-validation at every iteration. If this field is
false, the optimizer uses a single partition for
the optimization.

The setting true usually gives the most robust
results because it takes partitioning noise into
account. However, for good results, true requires
at least twice as many function evaluations.

false

Use no more than one of the following three options.
CVPartition A cvpartition object, as created by

cvpartition
'Kfold',5 if you do not
specify a cross-validation
fieldHoldout A scalar in the range (0,1) representing the

holdout fraction
Kfold An integer greater than 1

Example:
'HyperparameterOptimizationOptions',struct('MaxObjectiveEvaluations',60)

Data Types: struct

Output Arguments
tree — Regression tree
regression tree object

Regression tree, returned as a regression tree object. Using the 'Crossval', 'KFold', 'Holdout',
'Leaveout', or 'CVPartition' options results in a tree of class RegressionPartitionedModel.
You cannot use a partitioned tree for prediction, so this kind of tree does not have a predict
method.

Otherwise, tree is of class RegressionTree, and you can use the predict method to make
predictions.

More About
Curvature Test

The curvature test is a statistical test assessing the null hypothesis that two variables are
unassociated.

The curvature test between predictor variable x and y is conducted using this process.

1 If x is continuous, then partition it into its quartiles. Create a nominal variable that bins
observations according to which section of the partition they occupy. If there are missing values,
then create an extra bin for them.

2 For each level in the partitioned predictor j = 1...J and class in the response k = 1,...,K, compute
the weighted proportion of observations in class k
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π jk = ∑
i = 1

n
I yi = k wi .

wi is the weight of observation i, ∑wi = 1, I is the indicator function, and n is the sample size. If

all observations have the same weight, then π jk =
n jk
n , where njk is the number of observations in

level j of the predictor that are in class k.
3 Compute the test statistic

t = n ∑
k = 1

K
∑

j = 1

J π jk− π j + π +k
2

π j + π +k

π j + = ∑
k

π jk, that is, the marginal probability of observing the predictor at level j. π +k = ∑
j

π jk,

that is the marginal probability of observing class k. If n is large enough, then t is distributed as a
χ2 with (K – 1)(J – 1) degrees of freedom.

4 If the p-value for the test is less than 0.05, then reject the null hypothesis that there is no
association between x and y.

When determining the best split predictor at each node, the standard CART algorithm prefers to
select continuous predictors that have many levels. Sometimes, such a selection can be spurious and
can also mask more important predictors that have fewer levels, such as categorical predictors.

The curvature test can be applied instead of standard CART to determine the best split predictor at
each node. In that case, the best split predictor variable is the one that minimizes the significant p-
values (those less than 0.05) of curvature tests between each predictor and the response variable.
Such a selection is robust to the number of levels in individual predictors.

For more details on how the curvature test applies to growing regression trees, see “Node Splitting
Rules” on page 35-2795 and [3].

Interaction Test

The interaction test is a statistical test that assesses the null hypothesis that there is no interaction
between a pair of predictor variables and the response variable.

The interaction test assessing the association between predictor variables x1 and x2 with respect to y
is conducted using this process.

1 If x1 or x2 is continuous, then partition that variable into its quartiles. Create a nominal variable
that bins observations according to which section of the partition they occupy. If there are
missing values, then create an extra bin for them.

2 Create the nominal variable z with J = J1J2 levels that assigns an index to observation i according
to which levels of x1 and x2 it belongs. Remove any levels of z that do not correspond to any
observations.

3 Conduct a curvature test on page 35-2792 between z and y.

When growing decision trees, if there are important interactions between pairs of predictors, but
there are also many other less important predictors in the data, then standard CART tends to miss the
important interactions. However, conducting curvature and interaction tests for predictor selection
instead can improve detection of important interactions, which can yield more accurate decision
trees.
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For more details on how the interaction test applies to growing decision trees, see “Curvature Test”
on page 35-2792, “Node Splitting Rules” on page 35-2795 and [2].

Predictive Measure of Association

The predictive measure of association is a value that indicates the similarity between decision rules
that split observations. Among all possible decision splits that are compared to the optimal split
(found by growing the tree), the best surrogate decision split on page 35-2272 yields the maximum
predictive measure of association. The second-best surrogate split has the second-largest predictive
measure of association.

Suppose xj and xk are predictor variables j and k, respectively, and j ≠ k. At node t, the predictive
measure of association between the optimal split xj < u and a surrogate split xk < v is

λ jk =
min PL, PR − 1− PLjLk− PRjRk

min PL, PR
.

• PL is the proportion of observations in node t, such that xj < u. The subscript L stands for the left
child of node t.

• PR is the proportion of observations in node t, such that xj ≥ u. The subscript R stands for the right
child of node t.

• PLjLk is the proportion of observations at node t, such that xj < u and xk < v.

• PRjRk is the proportion of observations at node t, such that xj ≥ u and xk ≥ v.

• Observations with missing values for xj or xk do not contribute to the proportion calculations.

λjk is a value in (–∞,1]. If λjk > 0, then xk < v is a worthwhile surrogate split for xj < u.

Surrogate Decision Splits

A surrogate decision split is an alternative to the optimal decision split at a given node in a decision
tree. The optimal split is found by growing the tree; the surrogate split uses a similar or correlated
predictor variable and split criterion.

When the value of the optimal split predictor for an observation is missing, the observation is sent to
the left or right child node using the best surrogate predictor. When the value of the best surrogate
split predictor for the observation is also missing, the observation is sent to the left or right child
node using the second-best surrogate predictor, and so on. Candidate splits are sorted in descending
order by their predictive measure of association on page 35-2794.

Tip
• By default, Prune is 'on'. However, this specification does not prune the regression tree. To

prune a trained regression tree, pass the regression tree to prune.
• After training a model, you can generate C/C++ code that predicts responses for new data.

Generating C/C++ code requires MATLAB Coder. For details, see “Introduction to Code
Generation” on page 34-2.
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Algorithms
Node Splitting Rules

fitrtree uses these processes to determine how to split node t.

• For standard CART (that is, if PredictorSelection is 'allpairs') and for all predictors xi, i =
1,...,p:

1 fitrtree computes the weighted mean squared error (MSE) of the responses in node t using

εt = ∑
j ∈ T

w j y j− yt
2 .

wj is the weight of observation j, and T is the set of all observation indices in node t. If you do
not specify Weights, then wj = 1/n, where n is the sample size.

2 fitrtree estimates the probability that an observation is in node t using

P T = ∑
j ∈ T

w j .

3 fitrtree sorts xi in ascending order. Each element of the sorted predictor is a splitting
candidate or cut point. fitrtree records any indices corresponding to missing values in the
set TU, which is the unsplit set.

4 fitrtree determines the best way to split node t using xi by maximizing the reduction in
MSE (ΔI) over all splitting candidates. That is, for all splitting candidates in xi:

a fitrtree splits the observations in node t into left and right child nodes (tL and tR,
respectively).

b fitrtree computes ΔI. Suppose that for a particular splitting candidate, tL and tR
contain observation indices in the sets TL and TR, respectively.

• If xi does not contain any missing values, then the reduction in MSE for the current
splitting candidate is

ΔI = P T εt− P TL εtL− P TR εtR .

• If xi contains missing values, then, assuming that the observations are missing at
random, the reduction in MSE is

ΔIU = P T − TU εt − P TL εtL− P TR εtR .

T – TU is the set of all observation indices in node t that are not missing.
• If you use surrogate decision splits on page 35-2794, then:

i fitrtree computes the predictive measures of association on page 35-2794
between the decision split xj < u and all possible decision splits xk < v, j ≠ k.

ii fitrtree sorts the possible alternative decision splits in descending order by
their predictive measure of association with the optimal split. The surrogate split
is the decision split yielding the largest measure.

iii fitrtree decides the child node assignments for observations with a missing
value for xi using the surrogate split. If the surrogate predictor also contains a
missing value, then fitrtree uses the decision split with the second largest
measure, and so on, until there are no other surrogates. It is possible for
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fitrtree to split two different observations at node t using two different
surrogate splits. For example, suppose the predictors x1 and x2 are the best and
second best surrogates, respectively, for the predictor xi, i ∉ {1,2}, at node t. If
observation m of predictor xi is missing (i.e., xmi is missing), but xm1 is not missing,
then x1 is the surrogate predictor for observation xmi. If observations x(m + 1),i and
x(m + 1),1 are missing, but x(m + 1),2 is not missing, then x2 is the surrogate
predictor for observation m + 1.

iv fitrtree uses the appropriate MSE reduction formula. That is, if fitrtree fails
to assign all missing observations in node t to children nodes using surrogate
splits, then the MSE reduction is ΔIU. Otherwise, fitrtree uses ΔI for the MSE
reduction.

c fitrtree chooses the candidate that yields the largest MSE reduction.

fitrtree splits the predictor variable at the cut point that maximizes the MSE reduction.
• For the curvature test (that is, if PredictorSelection is 'curvature'):

1 fitrtree computes the residuals rti = yti− yt for all observations in node t.

yt = 1
∑iwi

∑iwiyti, which is the weighted average of the responses in node t. The weights are

the observation weights in Weights.
2 fitrtree assigns observations to one of two bins according to the sign of the corresponding

residuals. Let zt be a nominal variable that contains the bin assignments for the observations
in node t.

3 fitrtree conducts curvature tests on page 35-2792 between each predictor and zt. For
regression trees, K = 2.

• If all p-values are at least 0.05, then fitrtree does not split node t.
• If there is a minimal p-value, then fitrtree chooses the corresponding predictor to split

node t.
• If more than one p-value is zero due to underflow, then fitrtree applies standard CART

to the corresponding predictors to choose the split predictor.
4 If fitrtree chooses a split predictor, then it uses standard CART to choose the cut point (see

step 4 in the standard CART process).
• For the interaction test (that is, if PredictorSelection is 'interaction-curvature' ):

1 For observations in node t, fitrtree conducts curvature tests on page 35-2792 between
each predictor and the response and interaction tests on page 35-2793 between each pair of
predictors and the response.

• If all p-values are at least 0.05, then fitrtree does not split node t.
• If there is a minimal p-value and it is the result of a curvature test, then fitrtree

chooses the corresponding predictor to split node t.
• If there is a minimal p-value and it is the result of an interaction test, then fitrtree

chooses the split predictor using standard CART on the corresponding pair of predictors.
• If more than one p-value is zero due to underflow, then fitrtree applies standard CART

to the corresponding predictors to choose the split predictor.
2 If fitrtree chooses a split predictor, then it uses standard CART to choose the cut point (see

step 4 in the standard CART process).
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Tree Depth Control

• If MergeLeaves is 'on' and PruneCriterion is 'mse' (which are the default values for these
name-value pair arguments), then the software applies pruning only to the leaves and by using
MSE. This specification amounts to merging leaves coming from the same parent node whose
MSE is at most the sum of the MSE of its two leaves.

• To accommodate MaxNumSplits, fitrtree splits all nodes in the current layer, and then counts
the number of branch nodes. A layer is the set of nodes that are equidistant from the root node. If
the number of branch nodes exceeds MaxNumSplits, fitrtree follows this procedure:

1 Determine how many branch nodes in the current layer must be unsplit so that there are at
most MaxNumSplits branch nodes.

2 Sort the branch nodes by their impurity gains.
3 Unsplit the number of least successful branches.
4 Return the decision tree grown so far.

This procedure produces maximally balanced trees.
• The software splits branch nodes layer by layer until at least one of these events occurs:

• There are MaxNumSplits branch nodes.
• A proposed split causes the number of observations in at least one branch node to be fewer

than MinParentSize.
• A proposed split causes the number of observations in at least one leaf node to be fewer than

MinLeafSize.
• The algorithm cannot find a good split within a layer (i.e., the pruning criterion (see

PruneCriterion), does not improve for all proposed splits in a layer). A special case is when
all nodes are pure (i.e., all observations in the node have the same class).

• For values 'curvature' or 'interaction-curvature' of PredictorSelection, all tests
yield p-values greater than 0.05.

MaxNumSplits and MinLeafSize do not affect splitting at their default values. Therefore, if you
set 'MaxNumSplits', splitting might stop due to the value of MinParentSize, before
MaxNumSplits splits occur.

Parallelization

For dual-core systems and above, fitrtree parallelizes training decision trees using Intel Threading
Building Blocks (TBB). For details on Intel TBB, see https://www.intel.com/content/www/us/en/
developer/tools/oneapi/onetbb.html.

Version History
Introduced in R2014a

References
[1] Breiman, L., J. Friedman, R. Olshen, and C. Stone. Classification and Regression Trees. Boca

Raton, FL: CRC Press, 1984.
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Extended Capabilities
Tall Arrays
Calculate with arrays that have more rows than fit in memory.

Usage notes and limitations:

• Supported syntaxes are:

• tree = fitrtree(Tbl,Y)
• tree = fitrtree(X,Y)
• tree = fitrtree(___,Name,Value)
• [tree,FitInfo,HyperparameterOptimizationResults] =

fitrtree(___,Name,Value) — fitrtree returns the additional output arguments
FitInfo and HyperparameterOptimizationResults when you specify the
'OptimizeHyperparameters' name-value pair argument.

tree is a CompactRegressionTree object; therefore, it does not include the data used in
training the regression tree.

• The FitInfo output argument is an empty structure array currently reserved for possible future
use.

• The HyperparameterOptimizationResults output argument is a BayesianOptimization
object or a table of hyperparameters with associated values that describe the cross-validation
optimization of hyperparameters.

'HyperparameterOptimizationResults' is nonempty when the
'OptimizeHyperparameters' name-value pair argument is nonempty at the time you create
the model. The values in 'HyperparameterOptimizationResults' depend on the value you
specify for the 'HyperparameterOptimizationOptions' name-value pair argument when you
create the model.

• If you specify 'bayesopt' (default), then HyperparameterOptimizationResults is an
object of class BayesianOptimization.

• If you specify 'gridsearch' or 'randomsearch', then
HyperparameterOptimizationResults is a table of the hyperparameters used, observed
objective function values (cross-validation loss), and rank of observations from lowest (best) to
highest (worst).

• Supported name-value pair arguments are:

• 'CategoricalPredictors'
• 'HyperparameterOptimizationOptions' — For cross-validation, tall optimization

supports only 'Holdout' validation. By default, the software selects and reserves 20% of the
data as holdout validation data, and trains the model using the rest of the data. You can specify
a different value for the holdout fraction by using this argument. For example, specify
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'HyperparameterOptimizationOptions',struct('Holdout',0.3) to reserve 30% of
the data as validation data.

• 'MaxNumSplits' — For tall optimization, fitrtree searches among integers, log-scaled (by
default) in the range [1,max(2,min(10000,NumObservations–1))].

• 'MergeLeaves'
• 'MinLeafSize' — For tall optimization, fitrtree searches among integers, log-scaled (by

default) in the range [1,max(2,floor(NumObservations/2))].
• 'MinParentSize'
• 'NumVariablesToSample' — For tall optimization, fitrtree searches among integers in

the range [1,max(2,NumPredictors)].
• 'OptimizeHyperparameters'
• 'PredictorNames'
• 'QuadraticErrorTolerance'
• 'ResponseName'
• 'ResponseTransform'
• 'SplitCriterion'
• 'Weights'

• This additional name-value pair argument is specific to tall arrays:

• 'MaxDepth' — A positive integer specifying the maximum depth of the output tree. Specify a
value for this argument to return a tree that has fewer levels and requires fewer passes
through the tall array to compute. Generally, the algorithm of fitrtree takes one pass
through the data and an additional pass for each tree level. The function does not set a
maximum tree depth, by default.

For more information, see “Tall Arrays”.

Automatic Parallel Support
Accelerate code by automatically running computation in parallel using Parallel Computing Toolbox™.

To perform parallel hyperparameter optimization, use the
'HyperparameterOptimizationOptions', struct('UseParallel',true) name-value
argument in the call to the fitrtree function.

For more information on parallel hyperparameter optimization, see “Parallel Bayesian Optimization”
on page 10-7.

For general information about parallel computing, see “Run MATLAB Functions with Automatic
Parallel Support” (Parallel Computing Toolbox).

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

Usage notes and limitations:

• fitrtree does not support surrogate splits. You can specify the name-value argument
Surrogate only as "off".

• For data with categorical predictors, you can specify the name-value argument
NumVariablesToSample only as "all".
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• You can specify the name-value argument PredictorSelection only as "allsplits".
• fitrtree fits the model on a GPU if any of the following apply:

• The input argument X is a gpuArray object.
• The input argument Y is a gpuArray object.
• The input argument Tbl contains gpuArray variables.

• Note that fitrtree might not execute faster on a GPU than a CPU for deeper decision trees.

For more information, see “Run MATLAB Functions on a GPU” (Parallel Computing Toolbox).

See Also
predict | RegressionPartitionedModel | RegressionTree | prune |
surrogateAssociation

Topics
“Splitting Categorical Predictors in Classification Trees” on page 20-25
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fitSVMPosterior
Fit posterior probabilities

Syntax
ScoreSVMModel = fitSVMPosterior(SVMModel)

ScoreSVMModel = fitSVMPosterior(SVMModel,Tbl,ResponseVarName)
ScoreSVMModel = fitSVMPosterior(SVMModel,Tbl,Y)

ScoreSVMModel = fitSVMPosterior(SVMModel,X,Y)

ScoreSVMModel = fitSVMPosterior( ___ ,Name,Value)

[ScoreSVMModel,ScoreTransform] = fitSVMPosterior( ___ )

Description
ScoreSVMModel = fitSVMPosterior(SVMModel) returns ScoreSVMModel, which is a trained,
support vector machine (SVM) classifier containing the optimal score-to-posterior-probability
transformation function for two-class learning.

The software fits the appropriate score-to-posterior-probability transformation function using the
SVM classifier SVMModel, and by cross validation using the stored predictor data (SVMModel.X) and
the class labels (SVMModel.Y). The transformation function computes the posterior probability that
an observation is classified into the positive class (SVMModel.Classnames(2)).

• If the classes are inseparable, then the transformation function is the sigmoid function on page 35-
2809.

• If the classes are perfectly separable, the transformation function is the step function on page 35-
2809.

• In two-class learning, if one of the two classes has a relative frequency of 0, then the
transformation function is the constant function on page 35-2810. fitSVMPosterior is not
appropriate for one-class learning.

• If SVMModel is a ClassificationSVM classifier, then the software estimates the optimal
transformation function by 10-fold cross validation as outlined in [1]. Otherwise, SVMModel must
be a ClassificationPartitionedModel classifier. SVMModel specifies the cross-validation
method.

• The software stores the optimal transformation function in ScoreSVMModel.ScoreTransform.

ScoreSVMModel = fitSVMPosterior(SVMModel,Tbl,ResponseVarName) returns a trained
support vector classifier containing the transformation function from the trained, compact SVM
classifier SVMModel. The software estimates the score transformation function using predictor data
in the table Tbl and class labels Tbl.ResponseVarName.

ScoreSVMModel = fitSVMPosterior(SVMModel,Tbl,Y) returns a trained support vector
classifier containing the transformation function from the trained, compact SVM classifier SVMModel.
The software estimates the score transformation function using predictor data in the table Tbl and
class labels Y.
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ScoreSVMModel = fitSVMPosterior(SVMModel,X,Y) returns a trained support vector classifier
containing the transformation function from the trained, compact SVM classifier SVMModel. The
software estimates the score transformation function using predictor data X and class labels Y.

ScoreSVMModel = fitSVMPosterior( ___ ,Name,Value) uses additional options specified by
one or more Name,Value pair arguments provided SVMModel is a ClassificationSVM classifier.
For example, you can specify the number of folds to use in k-fold cross validation.

[ScoreSVMModel,ScoreTransform] = fitSVMPosterior( ___ ) additionally returns the
transformation function parameters (ScoreTransform) using any of the input arguments in the
previous syntaxes.

Examples

Fit the Score-to-Posterior Probability Function for Separable Classes

Load Fisher's iris data set. Train the classifier using the petal lengths and widths, and remove the
virginica species from the data.

load fisheriris
classKeep = ~strcmp(species,'virginica');
X = meas(classKeep,3:4);
y = species(classKeep);

gscatter(X(:,1),X(:,2),y);
title('Scatter Diagram of Iris Measurements')
xlabel('Petal length')
ylabel('Petal width')
legend('Setosa','Versicolor')
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The classes are perfectly separable. Therefore, the score transformation function is a step function.

Train an SVM classifier using the data. Cross validate the classifier using 10-fold cross validation (the
default).

rng(1);
CVSVMModel = fitcsvm(X,y,'CrossVal','on');

CVSVMModel is a trained ClassificationPartitionedModel SVM classifier.

Estimate the step function that transforms scores to posterior probabilities.

[ScoreCVSVMModel,ScoreParameters] = fitSVMPosterior(CVSVMModel);

Warning: Classes are perfectly separated. The optimal score-to-posterior transformation is a step function.

fitSVMPosterior does the following:

• Uses the data that the software stored in CVSVMModel to fit the transformation function
• Warns whenever the classes are separable
• Stores the step function in ScoreCSVMModel.ScoreTransform

Display the score function type and its parameter values.

ScoreParameters

ScoreParameters = struct with fields:
                        Type: 'step'
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                  LowerBound: -0.8431
                  UpperBound: 0.6897
    PositiveClassProbability: 0.5000

ScoreParameters is a structure array with four fields:

• The score transformation function type (Type)
• The score corresponding to the negative class boundary (LowerBound)
• The score corresponding to the positive class boundary (UpperBound)
• The positive class probability (PositiveClassProbability)

Since the classes are separable, the step function transforms the score to either 0 or 1, which is the
posterior probability that an observation is a versicolor iris.

Fit the Score-to-Posterior Probability Function for Inseparable Classes

Load the ionosphere data set.

load ionosphere

The classes of this data set are not separable.

Train an SVM classifier. Cross validate using 10-fold cross validation (the default). It is good practice
to standardize the predictors and specify the class order.

rng(1) % For reproducibility
CVSVMModel = fitcsvm(X,Y,'ClassNames',{'b','g'},'Standardize',true,...
    'CrossVal','on');
ScoreTransform = CVSVMModel.ScoreTransform

ScoreTransform = 
'none'

CVSVMModel is a trained ClassificationPartitionedModel SVM classifier. The positive class is
'g'. The ScoreTransform property is none.

Estimate the optimal score function for mapping observation scores to posterior probabilities of an
observation being classified as 'g'.

[ScoreCVSVMModel,ScoreParameters] = fitSVMPosterior(CVSVMModel);
ScoreTransform = ScoreCVSVMModel.ScoreTransform

ScoreTransform = 
'@(S)sigmoid(S,-9.481989e-01,-1.218252e-01)'

ScoreParameters

ScoreParameters = struct with fields:
         Type: 'sigmoid'
        Slope: -0.9482
    Intercept: -0.1218
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ScoreTransform is the optimal score transform function. ScoreParameters contains the score
transformation function, slope estimate, and the intercept estimate.

You can estimate test-sample, posterior probabilities by passing ScoreCVSVMModel to
kfoldPredict.

Estimate Posterior Probabilities for Test Samples

Estimate positive class posterior probabilities for the test set of an SVM algorithm.

Load the ionosphere data set.

load ionosphere

Train an SVM classifier. Specify a 20% holdout sample. It is good practice to standardize the
predictors and specify the class order.

rng(1) % For reproducibility
CVSVMModel = fitcsvm(X,Y,'Holdout',0.2,'Standardize',true,...
    'ClassNames',{'b','g'});

CVSVMModel is a trained ClassificationPartitionedModel cross-validated classifier.

Estimate the optimal score function for mapping observation scores to posterior probabilities of an
observation being classified as 'g'.

ScoreCVSVMModel = fitSVMPosterior(CVSVMModel);

ScoreSVMModel is a trained ClassificationPartitionedModel cross-validated classifier
containing the optimal score transformation function estimated from the training data.

Estimate the out-of-sample positive class posterior probabilities. Display the results for the first 10
out-of-sample observations.

[~,OOSPostProbs] = kfoldPredict(ScoreCVSVMModel);
indx = ~isnan(OOSPostProbs(:,2));
hoObs = find(indx); % Holdout observation numbers
OOSPostProbs = [hoObs, OOSPostProbs(indx,2)];
table(OOSPostProbs(1:10,1),OOSPostProbs(1:10,2),...
    'VariableNames',{'ObservationIndex','PosteriorProbability'})

ans=10×2 table
    ObservationIndex    PosteriorProbability
    ________________    ____________________

            6                   0.17381     
            7                   0.89639     
            8                 0.0076613     
            9                   0.91602     
           16                  0.026722     
           22                4.6114e-06     
           23                    0.9024     
           24                2.4137e-06     
           38                0.00042705     
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           41                   0.86427     

Input Arguments
SVMModel — Trained SVM classifier
ClassificationSVM classifier | CompactClassificationSVM classifier |
ClassificationPartitionedModel classifier

Trained SVM classifier, specified as a ClassificationSVM, CompactClassificationSVM, or
ClassificationPartitionedModel classifier.

If SVMModel is a ClassificationSVM classifier, then you can set optional name-value pair
arguments.

If SVMModel is a CompactClassificationSVM classifier, then you must input predictor data X and
class labels Y.

Tbl — Sample data
table

Sample data used to train the model, specified as a table. Each row of Tbl corresponds to one
observation, and each column corresponds to one predictor variable. Optionally, Tbl can contain
additional columns for the response variable and observation weights. Tbl must contain all of the
predictors used to train SVMModel. Multicolumn variables and cell arrays other than cell arrays of
character vectors are not allowed.

If Tbl contains the response variable used to train SVMModel, then you do not need to specify
ResponseVarName or Y.

If you trained SVMModel using sample data contained in a table, then the input data for
fitSVMPosterior must also be in a table.

If you set 'Standardize',true in fitcsvm when training SVMModel, then the software
standardizes the columns of the predictor data using the corresponding means in SVMModel.Mu and
the standard deviations in SVMModel.Sigma.
Data Types: table

X — Predictor data
matrix

Predictor data used to estimate the score-to-posterior-probability transformation function, specified
as a matrix.

Each row of X corresponds to one observation (also known as an instance or example), and each
column corresponds to one variable (also known as a feature).

The length of Y and the number of rows in X must be equal.

If you set 'Standardize',true in fitcsvm when training SVMModel, then the software fits the
transformation function parameter estimates using standardized data.
Data Types: double | single
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ResponseVarName — Response variable name
name of variable in Tbl

Response variable name, specified as the name of a variable in Tbl. If Tbl contains the response
variable used to train SVMModel, then you do not need to specify ResponseVarName.

If you specify ResponseVarName, then you must do so as a character vector or string scalar. For
example, if the response variable is stored as Tbl.Response, then specify ResponseVarName as
'Response'. Otherwise, the software treats all columns of Tbl, including Tbl.Response, as
predictors.

The response variable must be a categorical, character, or string array, logical or numeric vector, or
cell array of character vectors. If the response variable is a character array, then each element must
correspond to one row of the array.
Data Types: char | string

Y — Class labels
categorical array | character array | string array | logical vector | numeric vector | cell array of
character vectors

Class labels used to estimate the score-to-posterior-probability transformation function, specified as a
categorical, character, or string array, a logical or numeric vector, or a cell array of character vectors.

If Y is a character array, then each element must correspond to one class label.

The length of Y and the number of rows in X must be equal.
Data Types: categorical | char | string | logical | single | double | cell

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: 'KFold',8 performs 8-fold cross validation when SVMModel is a ClassificationSVM
classifier.

CVPartition — Cross-validation partition
[] (default) | cvpartition partition

Cross-validation partition used to compute the transformation function, specified as the comma-
separated pair consisting of 'CVPartition' and a cvpartition partition object as created by
cvpartition. You can use only one of these four options at a time for creating a cross-validated
model: 'KFold', 'Holdout', 'Leaveout', or 'CVPartition'.

The crossval name-value pair argument of fitcsvm splits the data into subsets using
cvpartition.
Example: Suppose you create a random partition for 5-fold cross-validation on 500 observations by
using cvp = cvpartition(500,'KFold',5). Then, you can specify the cross-validated model by
using 'CVPartition',cvp.
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Holdout — Fraction of data for holdout validation
scalar value in the range (0,1)

Fraction of the data for holdout validation used to compute the transformation function, specified as
the comma-separated pair consisting of 'Holdout' and a scalar value in the range (0,1). Holdout
validation tests the specified fraction of the data and uses the remaining data for training.

You can use only one of these four options at a time for creating a cross-validated model: 'KFold',
'Holdout', 'Leaveout', or 'CVPartition'.
Example: 'Holdout',0.1
Data Types: double | single

KFold — Number of folds
10 (default) | positive integer value greater than 1

Number of folds to use when computing the transformation function, specified as the comma-
separated pair consisting of 'KFold' and a positive integer value greater than 1.

You can use only one of these four options at a time for creating a cross-validated model: 'KFold',
'Holdout', 'Leaveout', or 'CVPartition'.
Example: 'KFold',8
Data Types: single | double

Leaveout — Leave-one-out cross-validation flag
'off' (default) | 'on'

Leave-one-out cross-validation flag indicating whether to use leave-one-out cross-validation to
compute the transformation function, specified as the comma-separated pair consisting of
'Leaveout' and 'on' or 'off'. Use leave-one-out cross-validation by specifying
'Leaveout','on'.

You can use only one of these four options at a time for creating a cross-validated model: 'KFold',
'Holdout', 'Leaveout', or 'CVPartition'.
Example: 'Leaveout','on'

Output Arguments
ScoreSVMModel — Trained SVM classifier
ClassificationSVM classifier | CompactClassificationSVM classifier |
ClassificationPartitionedModel classifier

Trained SVM classifier containing the estimated score transformation function, returned as a
ClassificationSVM, CompactClassificationSVM, or ClassificationPartitionedModel
classifier.

The ScoreSVMModel classifier type is the same as the SVMModel classifier type.

To estimate posterior probabilities, pass ScoreSVMModel and predictor data to predict. If you set
'Standardize',true in fitcsvm to train SVMModel, then predict standardizes the columns of X
using the corresponding means in SVMModel.Mu and standard deviations in SVMModel.Sigma.
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ScoreTransform — Optimal score-to-posterior-probability transformation function
parameters
structure array

Optimal score-to-posterior-probability transformation function parameters, specified as a structure
array. If field Type is:

• sigmoid, then ScoreTransform has these fields:

• Slope — The value of A in the sigmoid function on page 35-2809
• Intercept — The value of B in the sigmoid function

• step, then ScoreTransform has these fields:

• PositiveClassProbability: the value of π in the step function on page 35-2809. π
represents:

• The probability that an observation is in the positive class.
• The posterior probability that a score is in the interval (LowerBound,UpperBound).

• LowerBound: the value max
yn = − 1

sn in the step function. It represents the lower bound of the

interval that assigns the posterior probability of being in the positive class
PositiveClassProbability to scores. Any observation with a score less than LowerBound
has posterior probability of being the positive class 0.

• UpperBound: the value min
yn = + 1

sn in the step function. It represents the upper bound of the

interval that assigns the posterior probability of being in the positive class
PositiveClassProbability. Any observation with a score greater than UpperBound has
posterior probability of being the positive class 1.

• constant, then ScoreTransform.PredictedClass contains the name of the class prediction.

This result is the same as SVMModel.ClassNames. The posterior probability of an observation
being in ScoreTransform.PredictedClass is always 1.

More About
Sigmoid Function

The sigmoid function that maps score sj corresponding to observation j to the positive class posterior
probability is

P(s j) = 1
1 + exp(As j + B) .

If the value of the Type field of ScoreTransform is sigmoid, then parameters A and B correspond
to the fields Scale and Intercept of ScoreTransform, respectively.

Step Function

The step function that maps score sj corresponding to observation j to the positive class posterior
probability is

 fitSVMPosterior
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P s j =

0; s < max
yk = − 1

sk

π; max
yk = − 1

sk ≤ s j ≤ min
yk = + 1

sk

1; s j > min
yk = + 1

sk

,

where:

• sj is the score of observation j.
• +1 and –1 denote the positive and negative classes, respectively.
• π is the prior probability that an observation is in the positive class.

If the value of the Type field of ScoreTransform is step, then the quantities max
yk = − 1

sk and min
yk = + 1

sk

correspond to the fields LowerBound and UpperBound of ScoreTransform, respectively.

Constant Function

The constant function maps all scores in a sample to posterior probabilities 1 or 0.

If all observations have posterior probability 1, then they are expected to come from the positive
class.

If all observations have posterior probability 0, then they are not expected to come from the positive
class.

Tips
• This process describes one way to predict positive class posterior probabilities.

1 Train an SVM classifier by passing the data to fitcsvm. The result is a trained SVM classifier,
such as SVMModel, that stores the data. The software sets the score transformation function
property (SVMModel.ScoreTransformation) to none.

2 Pass the trained SVM classifier SVMModel to fitSVMPosterior or fitPosterior. The
result, such as, ScoreSVMModel, is the same trained SVM classifier as SVMModel, except the
software sets ScoreSVMModel.ScoreTransformation to the optimal score transformation
function.

3 Pass the predictor data matrix and the trained SVM classifier containing the optimal score
transformation function (ScoreSVMModel) to predict. The second column in the second
output argument of predict stores the positive class posterior probabilities corresponding to
each row of the predictor data matrix.

If you skip step 2, then predict returns the positive class score rather than the positive class
posterior probability.

• After fitting posterior probabilities, you can generate C/C++ code that predicts labels for new
data. Generating C/C++ code requires MATLAB Coder. For details, see “Introduction to Code
Generation” on page 34-2.
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Algorithms
If you re-estimate the score-to-posterior-probability transformation function, that is, if you pass an
SVM classifier to fitPosterior or fitSVMPosterior and its ScoreTransform property is not
none, then the software:

• Displays a warning
• Resets the original transformation function to 'none' before estimating the new one

Version History
Introduced in R2014a

References
[1] Platt, J. “Probabilistic outputs for support vector machines and comparisons to regularized

likelihood methods”. In: Advances in Large Margin Classifiers. Cambridge, MA: The MIT
Press, 2000, pp. 61–74.

See Also
ClassificationSVM | CompactClassificationSVM | ClassificationPartitionedModel |
fitcsvm | predict | fitPosterior | fitPosterior | kfoldPredict

 fitSVMPosterior

35-2811



fitted
Class: GeneralizedLinearMixedModel

Fitted responses from generalized linear mixed-effects model

Syntax
mufit = fitted(glme)
mufit = fitted(glme,Name,Value)

Description
mufit = fitted(glme) returns the fitted conditional response of the generalized linear mixed-
effects model glme.

mufit = fitted(glme,Name,Value) returns the fitted response with additional options specified
by one or more name-value pair arguments. For example, you can specify to compute the marginal
fitted response.

Input Arguments
glme — Generalized linear mixed-effects model
GeneralizedLinearMixedModel object

Generalized linear mixed-effects model, specified as a GeneralizedLinearMixedModel object. For
properties and methods of this object, see GeneralizedLinearMixedModel.

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.

Conditional — Indicator for conditional response
true (default) | false

Indicator for conditional response, specified as the comma-separated pair consisting of
'Conditional' and one of the following.

Value Description
true Contributions from both fixed effects and random

effects (conditional)
false Contribution from only fixed effects (marginal)

To obtain fitted marginal response values, fitted computes the conditional mean of the response
with the empirical Bayes predictor vector of random effects b set equal to 0. For more information,
see “Conditional and Marginal Response” on page 35-2815
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Example: 'Conditional',false

Output Arguments
mufit — Fitted response values
n-by-1 vector

Fitted response values, returned as an n-by-1 vector, where n is the number of observations.

Examples

Plot Observed Versus Fitted Values

Load the sample data.

load mfr

This simulated data is from a manufacturing company that operates 50 factories across the world,
with each factory running a batch process to create a finished product. The company wants to
decrease the number of defects in each batch, so it developed a new manufacturing process. To test
the effectiveness of the new process, the company selected 20 of its factories at random to participate
in an experiment: Ten factories implemented the new process, while the other ten continued to run
the old process. In each of the 20 factories, the company ran five batches (for a total of 100 batches)
and recorded the following data:

• Flag to indicate whether the batch used the new process (newprocess)
• Processing time for each batch, in hours (time)
• Temperature of the batch, in degrees Celsius (temp)
• Categorical variable indicating the supplier (A, B, or C) of the chemical used in the batch

(supplier)
• Number of defects in the batch (defects)

The data also includes time_dev and temp_dev, which represent the absolute deviation of time and
temperature, respectively, from the process standard of 3 hours at 20 degrees Celsius.

Fit a generalized linear mixed-effects model using newprocess, time_dev, temp_dev, and
supplier as fixed-effects predictors. Include a random-effects term for intercept grouped by
factory, to account for quality differences that might exist due to factory-specific variations. The
response variable defects has a Poisson distribution, and the appropriate link function for this
model is log. Use the Laplace fit method to estimate the coefficients. Specify the dummy variable
encoding as 'effects', so the dummy variable coefficients sum to 0.

The number of defects can be modeled using a Poisson distribution

defectsi j ∼ Poisson(μi j)

This corresponds to the generalized linear mixed-effects model

log(μi j) = β0 + β1newprocessi j + β2time_devi j + β3temp_devi j + β4supplier_Ci j + β5supplier_Bi j
+ bi,

 fitted
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where

• defectsi j is the number of defects observed in the batch produced by factory i during batch j.
• μi j is the mean number of defects corresponding to factory i (where i = 1, 2, . . . , 20) during batch

j (where j = 1, 2, . . . , 5).
• newprocessi j, time_devi j, and temp_devi j are the measurements for each variable that correspond

to factory i during batch j. For example, newprocessi j indicates whether the batch produced by
factory i during batch j used the new process.

• supplier_Ci j and supplier_Bi j are dummy variables that use effects (sum-to-zero) coding to indicate
whether company C or B, respectively, supplied the process chemicals for the batch produced by
factory i during batch j.

• bi ∼ N(0, σb
2) is a random-effects intercept for each factory i that accounts for factory-specific

variation in quality.

glme = fitglme(mfr,'defects ~ 1 + newprocess + time_dev + temp_dev + supplier + (1|factory)', ...
    'Distribution','Poisson','Link','log','FitMethod','Laplace','DummyVarCoding','effects');

Generate the fitted conditional mean values for the model.

mufit = fitted(glme);

Create a scatterplot of the observed values versus fitted values.

figure
scatter(mfr.defects,mufit)
title('Residuals versus Fitted Values')
xlabel('Fitted Values')
ylabel('Residuals')
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More About
Conditional and Marginal Response

A conditional response includes contributions from both fixed- and random-effects predictors. A
marginal response includes contribution from only fixed effects.

Suppose the generalized linear mixed-effects model glme has an n-by-p fixed-effects design matrix X
and an n-by-q random-effects design matrix Z. Also, suppose the estimated p-by-1 fixed-effects vector
is β , and the q-by-1 empirical Bayes predictor vector of random effects is b .

The fitted conditional response corresponds to the 'Conditional',true name-value pair
argument, and is defined as

μ cond = g−1 η ME ,

where η ME is the linear predictor including the fixed- and random-effects of the generalized linear
mixed-effects model

η ME = Xβ + Zb + δ .

The fitted marginal response corresponds to the 'Conditional',false name-value pair argument,
and is defined as

 fitted
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μ mar = g−1 η FE ,

whereη FE is the linear predictor including only the fixed-effects portion of the generalized linear
mixed-effects model

η FE = Xβ + δ .

See Also
GeneralizedLinearMixedModel | fitglme | residuals | response | designMatrix
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fitted
Class: LinearMixedModel

Fitted responses from a linear mixed-effects model

Syntax
yfit = fitted(lme)
yfit = fitted(lme,Name,Value)

Description
yfit = fitted(lme) returns the fitted conditional response on page 35-2822 from the linear
mixed-effects model lme.

yfit = fitted(lme,Name,Value) returns the fitted response from the linear mixed-effects model
lme with additional options specified by one or more Name,Value pair arguments.

For example, you can specify if you want to compute the fitted marginal response on page 35-2822.

Input Arguments
lme — Linear mixed-effects model
LinearMixedModel object

Linear mixed-effects model, specified as a LinearMixedModel object constructed using fitlme or
fitlmematrix.

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.

Conditional — Indicator for conditional response
true (default) | false

Indicator for conditional response, specified as the comma-separated pair consisting of
'Conditional' and either of the following.

true Contribution from both fixed effects and random
effects (conditional)

false Contribution from only fixed effects (marginal)

Example: 'Conditional',false
Data Types: logical
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Output Arguments
yfit — Fitted response values
n-by-1 vector

Fitted response values, returned as an n-by-1 vector, where n is the number of observations.

Examples

Compute Fitted Conditional and Marginal Responses

Load the sample data.

load flu

The flu dataset array has a Date variable, and 10 variables containing estimated influenza rates (in
9 different regions, estimated from Google® searches, plus a nationwide estimate from the Center for
Disease Control and Prevention, CDC).

To fit a linear-mixed effects model, your data must be in a properly formatted dataset array. To fit a
linear mixed-effects model with the influenza rates as the responses and region as the predictor
variable, combine the nine columns corresponding to the regions into an array. The new dataset
array, flu2, must have the response variable, FluRate, the nominal variable, Region, that shows
which region each estimate is from, and the grouping variable Date.

flu2 = stack(flu,2:10,'NewDataVarName','FluRate','IndVarName','Region');
flu2.Date = nominal(flu2.Date);

Fit a linear mixed-effects model with fixed effects for region and a random intercept that varies by
Date.

Region is a categorical variable. You can specify the contrasts for categorical variables using the
DummyVarCoding name-value pair argument when fitting the model. When you do not specify the
contrasts, fitlme uses the 'reference' contrast by default. Because the model has an intercept,
fitlme takes the first region, NE, as the reference and creates eight dummy variables representing
the other eight regions. For example, I[MidAtl] is the dummy variable representing the region
MidAtl. For details, see “Dummy Variables” on page 2-49.

The corresponding model is

yim = β0 + β1I MidAtl i + β2I ENCentral i + β3I WNCentral i + β4I SAtl i
+β5I ESCentral i + β6I WSCentral i + β7I Mtn i + β8I Pac i + b0m + εim, m = 1, 2, . . . , 52,

where yim is the observation i for level m of grouping variable Date, β j, j = 0, 1, ..., 8, are the fixed-
effects coefficients, with β0 being the coefficient for region NE. b0m is the random effect for level m of
the grouping variable Date, and εim is the observation error for observation i. The random effect has
the prior distribution, b0m ∼ N(0, σb

2) and the error term has the distribution, εim ∼ N(0, σ2).

lme = fitlme(flu2,'FluRate ~ 1 + Region + (1|Date)')

lme = 
Linear mixed-effects model fit by ML
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Model information:
    Number of observations             468
    Fixed effects coefficients           9
    Random effects coefficients         52
    Covariance parameters                2

Formula:
    FluRate ~ 1 + Region + (1 | Date)

Model fit statistics:
    AIC       BIC       LogLikelihood    Deviance
    318.71    364.35    -148.36          296.71  

Fixed effects coefficients (95% CIs):
    Name                        Estimate    SE          tStat      DF 
    {'(Intercept)'     }          1.2233    0.096678     12.654    459
    {'Region_MidAtl'   }        0.010192    0.052221    0.19518    459
    {'Region_ENCentral'}        0.051923    0.052221     0.9943    459
    {'Region_WNCentral'}         0.23687    0.052221     4.5359    459
    {'Region_SAtl'     }        0.075481    0.052221     1.4454    459
    {'Region_ESCentral'}         0.33917    0.052221      6.495    459
    {'Region_WSCentral'}           0.069    0.052221     1.3213    459
    {'Region_Mtn'      }        0.046673    0.052221    0.89377    459
    {'Region_Pac'      }        -0.16013    0.052221    -3.0665    459

    pValue        Lower        Upper    
     1.085e-31       1.0334       1.4133
       0.84534    -0.092429      0.11281
        0.3206    -0.050698      0.15454
    7.3324e-06      0.13424      0.33949
       0.14902     -0.02714       0.1781
    2.1623e-10      0.23655      0.44179
       0.18705    -0.033621      0.17162
       0.37191    -0.055948      0.14929
     0.0022936     -0.26276    -0.057514

Random effects covariance parameters (95% CIs):
Group: Date (52 Levels)
    Name1                  Name2                  Type           Estimate
    {'(Intercept)'}        {'(Intercept)'}        {'std'}        0.6443  

    Lower     Upper  
    0.5297    0.78368

Group: Error
    Name               Estimate    Lower      Upper
    {'Res Std'}        0.26627     0.24878    0.285

The p-values 7.3324e-06 and 2.1623e-10 respectively show that the fixed effects of the flu rates in
regions WNCentral and ESCentral are significantly different relative to the flu rates in region NE.
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The confidence limits for the standard deviation of the random-effects term, σb, do not include 0
(0.5297, 0.78368), which indicates that the random-effects term is significant. You can also test the
significance of the random-effects terms using the compare method.

The conditional fitted response from the model at a given observation includes contributions from
fixed and random effects. For example, the estimated best linear unbiased predictor (BLUP) of the flu
rate for region WNCentral in week 10/9/2005 is

yWNCentral, 10/9/2005 = β0 + β3I WNCentral + b10/9/2005

= 1 . 2233 + 0 . 23687− 0 . 1718
= 1 . 28837 .

This is the fitted conditional response, since it includes contributions to the estimate from both the
fixed and random effects. You can compute this value as follows.

beta = fixedEffects(lme);
[~,~,STATS] = randomEffects(lme); % Compute the random-effects statistics (STATS)
STATS.Level = nominal(STATS.Level);
y_hat = beta(1) + beta(4) + STATS.Estimate(STATS.Level=='10/9/2005')

y_hat = 1.2884

In the previous calculation, beta(1) corresponds to the estimate for β0 and beta(4) corresponds to
the estimate for β3. You can simply display the fitted value using the fitted method.

F = fitted(lme);
F(flu2.Date == '10/9/2005' & flu2.Region == 'WNCentral')

ans = 1.2884

The estimated marginal response for region WNCentral in week 10/9/2005 is

yWNCentral, 10/9/2005
(marginal) = β0 + β3I WNCentral

= 1 . 2233 + 0 . 23687
= 1 . 46017 .

Compute the fitted marginal response.

F = fitted(lme,'Conditional',false);
F(flu2.Date == '10/9/2005' & flu2.Region == 'WNCentral')

ans = 1.4602

Plot Residuals vs. Fitted Values

Load the sample data.

load('weight.mat');

weight contains data from a longitudinal study, where 20 subjects are randomly assigned to 4
exercise programs, and their weight loss is recorded over six 2-week time periods. This is simulated
data.
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Store the data in a table. Define Subject and Program as categorical variables.

tbl = table(InitialWeight,Program,Subject,Week,y);
tbl.Subject = nominal(tbl.Subject);
tbl.Program = nominal(tbl.Program);

Fit a linear mixed-effects model where the initial weight, type of program, week, and the interaction
between the week and type of program are the fixed effects. The intercept and week vary by subject.

lme = fitlme(tbl,'y ~ InitialWeight + Program*Week + (Week|Subject)');

Compute the fitted values and raw residuals.

F = fitted(lme);
R = residuals(lme);

Plot the residuals versus the fitted values.

plot(F,R,'bx')
xlabel('Fitted Values')
ylabel('Residuals')

Now, plot the residuals versus the fitted values, grouped by program.

figure()
gscatter(F,R,Program)
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More About
Fitted Conditional and Marginal Response

A conditional response includes contributions from both fixed and random effects, whereas a
marginal response includes contribution from only fixed effects.

Suppose the linear mixed-effects model, lme, has an n-by-p fixed-effects design matrix X and an n-by-
q random-effects design matrix Z. Also, suppose the p-by-1 estimated fixed-effects vector is β , and the
q-by-1 estimated best linear unbiased predictor (BLUP) vector of random effects is b . The fitted
conditional response is

y Cond = Xβ + Zb ,

and the fitted marginal response is

y Mar = Xβ ,

See Also
LinearMixedModel | residuals | response
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fixedEffects
Class: GeneralizedLinearMixedModel

Estimates of fixed effects and related statistics

Syntax
beta = fixedEffects(glme)
[beta,betanames] = fixedEffects(glme)
[beta,betanames,stats] = fixedEffects(glme)
[ ___ ] = fixedEffects(glme,Name,Value)

Description
beta = fixedEffects(glme) returns the estimated fixed-effects coefficients, beta, of the
generalized linear mixed-effects model glme.

[beta,betanames] = fixedEffects(glme) also returns the names of estimated fixed-effects
coefficients in betanames. Each name corresponds to a fixed-effects coefficient in beta.

[beta,betanames,stats] = fixedEffects(glme) also returns a table of statistics, stats,
related to the estimated fixed-effects coefficients of glme.

[ ___ ] = fixedEffects(glme,Name,Value) returns any of the output arguments in previous
syntaxes using additional options specified by one or more Name,Value pair arguments. For
example, you can specify the confidence level, or the method for computing the approximate degrees
of freedom for the t-statistic.

Input Arguments
glme — Generalized linear mixed-effects model
GeneralizedLinearMixedModel object

Generalized linear mixed-effects model, specified as a GeneralizedLinearMixedModel object. For
properties and methods of this object, see GeneralizedLinearMixedModel.

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.

Alpha — Significance level
0.05 (default) | scalar value in the range [0,1]

Significance level, specified as the comma-separated pair consisting of 'Alpha' and a scalar value in
the range [0,1]. For a value α, the confidence level is 100 × (1 – α)%.

For example, for 99% confidence intervals, you can specify the confidence level as follows.
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Example: 'Alpha',0.01
Data Types: single | double

DFMethod — Method for computing approximate degrees of freedom
'residual' (default) | 'none'

Method for computing approximate degrees of freedom, specified as the comma-separated pair
consisting of 'DFMethod' and one of the following.

Value Description
'residual' The degrees of freedom value is assumed to be

constant and equal to n – p, where n is the
number of observations and p is the number of
fixed effects.

'none' The degrees of freedom is set to infinity.

Example: 'DFMethod','none'

Output Arguments
beta — Estimated fixed-effects coefficients
vector

Estimated fixed-effects coefficients of the fitted generalized linear mixed-effects model glme,
returned as a vector.

betanames — Names of fixed-effects coefficients
table

Names of fixed-effects coefficients in beta, returned as a table.

stats — Fixed-effects estimates and related statistics
dataset array

Fixed-effects estimates and related statistics, returned as a dataset array that has one row for each of
the fixed effects and one column for each of the following statistics.

Column Name Description
Name Name of the fixed-effects coefficient
Estimate Estimated coefficient value
SE Standard error of the estimate
tStat t-statistic for a test that the coefficient is 0
DF Estimated degrees of freedom for the t-statistic
pValue p-value for the t-statistic
Lower Lower limit of a 95% confidence interval for the

fixed-effects coefficient
Upper Upper limit of a 95% confidence interval for the

fixed-effects coefficient
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When fitting a model using fitglme and one of the maximum likelihood fit methods ('Laplace' or
'ApproximateLaplace'), if you specify the 'CovarianceMethod' name-value pair argument as
'conditional', then SE does not account for the uncertainty in estimating the covariance
parameters. To account for this uncertainty, specify 'CovarianceMethod' as 'JointHessian'.

When fitting a GLME model using fitglme and one of the pseudo likelihood fit methods ('MPL' or
'REMPL'), fixedEffects bases the fixed effects estimates and related statistics on the fitted linear
mixed-effects model from the final pseudo likelihood iteration.

Examples

Estimate Fixed-Effects Coefficients

Load the sample data.

load mfr

This simulated data is from a manufacturing company that operates 50 factories across the world,
with each factory running a batch process to create a finished product. The company wants to
decrease the number of defects in each batch, so it developed a new manufacturing process. To test
the effectiveness of the new process, the company selected 20 of its factories at random to participate
in an experiment: Ten factories implemented the new process, while the other ten continued to run
the old process. In each of the 20 factories, the company ran five batches (for a total of 100 batches)
and recorded the following data:

• Flag to indicate whether the batch used the new process (newprocess)
• Processing time for each batch, in hours (time)
• Temperature of the batch, in degrees Celsius (temp)
• Categorical variable indicating the supplier (A, B, or C) of the chemical used in the batch

(supplier)
• Number of defects in the batch (defects)

The data also includes time_dev and temp_dev, which represent the absolute deviation of time and
temperature, respectively, from the process standard of 3 hours at 20 degrees Celsius.

Fit a generalized linear mixed-effects model using newprocess, time_dev, temp_dev, and
supplier as fixed-effects predictors. Include a random-effects term for intercept grouped by
factory, to account for quality differences that might exist due to factory-specific variations. The
response variable defects has a Poisson distribution, and the appropriate link function for this
model is log. Use the Laplace fit method to estimate the coefficients. Specify the dummy variable
encoding as 'effects', so the dummy variable coefficients sum to 0.

The number of defects can be modeled using a Poisson distribution

defectsi j ∼ Poisson(μi j)

This corresponds to the generalized linear mixed-effects model

log(μi j) = β0 + β1newprocessi j + β2time_devi j + β3temp_devi j + β4supplier_Ci j + β5supplier_Bi j
+ bi,

where
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• defectsi j is the number of defects observed in the batch produced by factory i during batch j.

• μi j is the mean number of defects corresponding to factory i (where i = 1, 2, . . . , 20) during batch
j (where j = 1, 2, . . . , 5).

• newprocessi j, time_devi j, and temp_devi j are the measurements for each variable that correspond
to factory i during batch j. For example, newprocessi j indicates whether the batch produced by
factory i during batch j used the new process.

• supplier_Ci j and supplier_Bi j are dummy variables that use effects (sum-to-zero) coding to indicate
whether company C or B, respectively, supplied the process chemicals for the batch produced by
factory i during batch j.

• bi ∼ N(0, σb
2) is a random-effects intercept for each factory i that accounts for factory-specific

variation in quality.

glme = fitglme(mfr,'defects ~ 1 + newprocess + time_dev + temp_dev + supplier + (1|factory)', ...
    'Distribution','Poisson','Link','log','FitMethod','Laplace','DummyVarCoding','effects');

Compute and display the estimated fixed-effects coefficient values and related statistics.

[beta,betanames,stats] = fixedEffects(glme);
stats

stats = 
    Fixed effect coefficients: DFMethod = 'residual', Alpha = 0.05

    Name                   Estimate     SE          tStat       DF    pValue    
    {'(Intercept)'}           1.4689     0.15988      9.1875    94    9.8194e-15
    {'newprocess' }         -0.36766     0.17755     -2.0708    94      0.041122
    {'time_dev'   }        -0.094521     0.82849    -0.11409    94       0.90941
    {'temp_dev'   }         -0.28317      0.9617    -0.29444    94       0.76907
    {'supplier_C' }        -0.071868    0.078024     -0.9211    94       0.35936
    {'supplier_B' }         0.071072     0.07739     0.91836    94       0.36078

    Lower        Upper    
       1.1515       1.7864
     -0.72019    -0.015134
      -1.7395       1.5505
      -2.1926       1.6263
     -0.22679     0.083051
    -0.082588      0.22473

The returned results indicate, for example, that the estimated coefficient for temp_dev is –0.28317.
Its large p-value, 0.76907, indicates that it is not a statistically significant predictor at the 5%
significance level. Additionally, the confidence interval boundaries Lower and Upper indicate that the
95% confidence interval for the coefficient for temp_dev is [-2.1926 , 1.6263]. This interval contains
0, which supports the conclusion that temp_dev is not statistically significant at the 5% significance
level.

See Also
GeneralizedLinearMixedModel | fitglme | coefCI | coefTest | randomEffects
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fixedEffects
Class: LinearMixedModel

Estimates of fixed effects and related statistics

Syntax
beta = fixedEffects(lme)
[beta,betanames] = fixedEffects(lme)
[beta,betanames,stats] = fixedEffects(lme)
[beta,betanames,stats] = fixedEffects(lme,Name,Value)

Description
beta = fixedEffects(lme) returns the estimated fixed-effects coefficients, beta, of the linear
mixed-effects model lme.

[beta,betanames] = fixedEffects(lme) also returns the names of estimated fixed-effects
coefficients in betanames. Each name corresponds to a fixed-effects coefficient in beta.

[beta,betanames,stats] = fixedEffects(lme) also returns the estimated fixed-effects
coefficients of the linear mixed-effects model lme and related statistics in stats.

[beta,betanames,stats] = fixedEffects(lme,Name,Value) also returns the estimated
fixed-effects coefficients of the linear mixed-effects model lme and related statistics with additional
options specified by one or more Name,Value pair arguments.

Input Arguments
lme — Linear mixed-effects model
LinearMixedModel object

Linear mixed-effects model, specified as a LinearMixedModel object constructed using fitlme or
fitlmematrix.

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.

Alpha — Significance level
0.05 (default) | scalar value in the range 0 to 1

Significance level, specified as the comma-separated pair consisting of 'Alpha' and a scalar value in
the range 0 to 1. For a value α, the confidence level is 100*(1–α)%.

For example, for 99% confidence intervals, you can specify the confidence level as follows.
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Example: 'Alpha',0.01
Data Types: single | double

DFMethod — Method for computing approximate degrees of freedom
'residual' (default) | 'satterthwaite' | 'none'

Method for computing approximate degrees of freedom for the t-statistic that tests the fixed-effects
coefficients against 0, specified as the comma-separated pair consisting of 'DFMethod' and one of
the following.

'residual' Default. The degrees of freedom are assumed to
be constant and equal to n – p, where n is the
number of observations and p is the number of
fixed effects.

'satterthwaite' Satterthwaite approximation.
'none' All degrees of freedom are set to infinity.

For example, you can specify the Satterthwaite approximation as follows.
Example: 'DFMethod','satterthwaite'

Output Arguments
beta — Fixed-effects coefficients estimates
vector

Fixed-effects coefficients estimates of the fitted linear mixed-effects model lme, returned as a vector.

betanames — Names of fixed-effects coefficients
table

Names of fixed-effects coefficients in beta, returned as a table.

stats — Fixed-effects estimates and related statistics
dataset array

Fixed-effects estimates and related statistics, returned as a dataset array that has one row for each of
the fixed effects and one column for each of the following statistics.

Name Name of the fixed effect coefficient
Estimate Estimated coefficient value
SE Standard error of the estimate
tStat t-statistic for a test that the coefficient is zero
DF Estimated degrees of freedom for the t-statistic
pValue p-value for the t-statistic
Lower Lower limit of a 95% confidence interval for the

fixed-effect coefficient
Upper Upper limit of a 95% confidence interval for the

fixed-effect coefficient
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Examples

Display Fixed-Effects Coefficient Estimates and Names

Load the sample data.

load('weight.mat');

The data set weight contains data from a longitudinal study, where 20 subjects are randomly
assigned to 4 exercise programs, and their weight loss is recorded over six 2-week time periods. This
is simulated data.

Store the data in a table. Define Subject and Program as categorical variables.

tbl = table(InitialWeight,Program,Subject,Week,y);
tbl.Subject = nominal(tbl.Subject);
tbl.Program = nominal(tbl.Program);

Fit a linear mixed-effects model where the initial weight, type of program, week, and the interaction
between week and program are the fixed effects. The intercept and week vary by subject.

lme = fitlme(tbl,'y ~ InitialWeight + Program*Week + (Week|Subject)');

Display the fixed-effects coefficient estimates and corresponding fixed-effects names.

[beta,betanames] = fixedEffects(lme)

beta = 9×1

    0.6610
    0.0032
    0.3608
   -0.0333
    0.1132
    0.1732
    0.0388
    0.0305
    0.0331

betanames=9×1 table
           Name       
    __________________

    {'(Intercept)'   }
    {'InitialWeight' }
    {'Program_B'     }
    {'Program_C'     }
    {'Program_D'     }
    {'Week'          }
    {'Program_B:Week'}
    {'Program_C:Week'}
    {'Program_D:Week'}
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Compute Coefficient Estimates and Related Statistics

Load the sample data.

load carbig

Fit a linear mixed-effects model for miles per gallon (MPG), with fixed effects for acceleration and
horsepower, and potentially correlated random effects for intercept and acceleration grouped by
model year. First, store the data in a table.

tbl = table(Acceleration,Horsepower,Model_Year,MPG);

Fit the model.

lme = fitlme(tbl, 'MPG ~ Acceleration + Horsepower + (Acceleration|Model_Year)');

Compute the fixed-effects coefficients estimates and related statistics.

[~,~,stats] = fixedEffects(lme)

stats = 
    Fixed effect coefficients: DFMethod = 'Residual', Alpha = 0.05

    Name                    Estimate    SE           tStat      DF 
    {'(Intercept)' }          50.133       2.2652     22.132    389
    {'Acceleration'}        -0.58327      0.13394    -4.3545    389
    {'Horsepower'  }        -0.16954    0.0072609     -23.35    389

    pValue        Lower       Upper   
    7.7727e-71      45.679      54.586
    1.7075e-05    -0.84661    -0.31992
     5.188e-76    -0.18382    -0.15527

The small p-values (under pValue) indicate that all fixed-effects coefficients are significant.

Compute Confidence Intervals with Specified Options

Load the sample data.

load('shift.mat');

The data shows the deviations from the target quality characteristic measured from the products that
five operators manufacture during three shifts: morning, evening, and night. This is a randomized
block design, where the operators are the blocks. The experiment is designed to study the impact of
the time of shift on the performance. The performance measure is the deviation of the quality
characteristics from the target value. This is simulated data.

Shift and Operator are nominal variables.

shift.Shift = nominal(shift.Shift);
shift.Operator = nominal(shift.Operator);

Fit a linear mixed-effects model with a random intercept grouped by operator to assess if
performance significantly differs according to the time of the shift.
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lme = fitlme(shift,'QCDev ~ Shift + (1|Operator)');

Compute the 99% confidence intervals for fixed-effects coefficients, using the residual method to
compute the degrees of freedom. This is the default method.

[~,~,stats] = fixedEffects(lme,'alpha',0.01)

stats = 
    Fixed effect coefficients: DFMethod = 'Residual', Alpha = 0.01

    Name                     Estimate    SE         tStat       DF    pValue   
    {'(Intercept)'  }         3.1196     0.88681      3.5178    12    0.0042407
    {'Shift_Morning'}        -0.3868     0.48344    -0.80009    12      0.43921
    {'Shift_Night'  }         1.9856     0.48344      4.1072    12    0.0014535

    Lower      Upper 
    0.41081    5.8284
    -1.8635    1.0899
     0.5089    3.4623

Compute the 99% confidence intervals for fixed-effects coefficients, using the Satterthwaite
approximation to compute the degrees of freedom.

[~,~,stats] = fixedEffects(lme,'DFMethod','satterthwaite','alpha',0.01)

stats = 
    Fixed effect coefficients: DFMethod = 'Satterthwaite', Alpha = 0.01

    Name                     Estimate    SE         tStat       DF       pValue 
    {'(Intercept)'  }         3.1196     0.88681      3.5178    6.123    0.01214
    {'Shift_Morning'}        -0.3868     0.48344    -0.80009       10    0.44225
    {'Shift_Night'  }         1.9856     0.48344      4.1072       10    0.00212

    Lower       Upper 
    -0.14122    6.3804
      -1.919    1.1454
     0.45343    3.5178

The Satterthwaite approximation usually produces smaller DF values than the residual method. That
is why it produces larger p-values (pValue) and larger confidence intervals (see Lower and Upper).

See Also
LinearMixedModel | fitlme | coefCI | coefTest | randomEffects
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fpdf
F probability density function

Syntax
Y = fpdf(X,V1,V2)

Description
Y = fpdf(X,V1,V2) computes the F pdf at each of the values in X using the corresponding
numerator degrees of freedom V1 and denominator degrees of freedom V2. X, V1, and V2 can be
vectors, matrices, or multidimensional arrays that all have the same size. A scalar input is expanded
to a constant array with the same dimensions as the other inputs. V1 and V2 parameters must contain
real positive values, and the values in X must lie on the interval [0 Inf].

The probability density function for the F distribution is

y = f (x ν1, ν2) =
Γ

(ν1 + ν2)
2

Γ
ν1
2 Γ

ν2
2

ν1
ν2

ν1
2 x

ν1− 2
2

1 +
ν1
ν2

x
ν1 + ν2

2

Examples
y = fpdf(1:6,2,2)
y =
  0.2500  0.1111  0.0625  0.0400  0.0278  0.0204

z = fpdf(3,5:10,5:10)
z =
  0.0689  0.0659  0.0620  0.0577  0.0532  0.0487

Version History
Introduced before R2006a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

This function fully supports GPU arrays. For more information, see “Run MATLAB Functions on a
GPU” (Parallel Computing Toolbox).
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See Also
pdf | fcdf | finv | fstat | frnd

Topics
“F Distribution” on page B-46
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fracfact
Fractional factorial design

Syntax
X = fracfact(gen)
[X,conf] = fracfact(gen)
[X,conf] = fracfact(gen,Name,Value)

Description
X = fracfact(gen) creates the two-level fractional factorial design defined by the generator gen.

[X,conf] = fracfact(gen) returns a cell array of character vectors containing the confounding
pattern for the design.

[X,conf] = fracfact(gen,Name,Value) creates a fractional factorial designs with additional
options specified by one or more Name,Value pair arguments.

Input Arguments
gen

Either a string array or cell array of character vectors where each element contains one “word,” or a
character array or string scalar consisting of “words” separated by spaces. “Words” consist of case-
sensitive letters or groups of letters, where 'a' represents value 1, 'b' represents value 2, ..., 'A'
represents value 27, ..., 'Z' represents value 52.

Each word defines how the corresponding factor’s levels are defined as products of generators from a
2^K full-factorial design. K is the number of letters of the alphabet in gen.

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.

FactorNames

String array or cell array specifying the name for each factor.

Default: {'X1','X2',...}

MaxInt

Positive integer setting the maximum level of interaction to include in the confounding output.

Default: 2
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Output Arguments
X

The two-level fractional factorial design. X is a matrix of size N-by-P, where

• N = 2^K, where K is the number of letters of the alphabet in gen.
• P is the number of words in gen.

Because X is a two-level design, the components of X are ±1. For the meaning of X, see “Fractional
Factorial Designs” on page 30-5.

conf

Cell array of character vectors containing the confounding pattern for the design.

Examples
Generate a fractional factorial design for four variables, where the fourth variable is the product of
the first three:

x = fracfact('a b c abc')

x =
    -1    -1    -1    -1
    -1    -1     1     1
    -1     1    -1     1
    -1     1     1    -1
     1    -1    -1     1
     1    -1     1    -1
     1     1    -1    -1
     1     1     1     1

Find generators for a six-factor design that uses four factors and achieves resolution IV using
fracfactgen. Use the result to specify the design:

generators = fracfactgen('a b c d e f',4, ... % 4 factors
    4) % resolution 4

generators = 
    'a'
    'b'
    'c'
    'd'
    'bcd'
    'acd'

x = fracfact(generators)

x =
    -1    -1    -1    -1    -1    -1
    -1    -1    -1     1     1     1
    -1    -1     1    -1     1     1
    -1    -1     1     1    -1    -1
    -1     1    -1    -1     1    -1
    -1     1    -1     1    -1     1

 fracfact

35-2835



    -1     1     1    -1    -1     1
    -1     1     1     1     1    -1
     1    -1    -1    -1    -1     1
     1    -1    -1     1     1    -1
     1    -1     1    -1     1    -1
     1    -1     1     1    -1     1
     1     1    -1    -1     1     1
     1     1    -1     1    -1    -1
     1     1     1    -1    -1    -1
     1     1     1     1     1     1

Version History
Introduced before R2006a

References

[1] Box, G. E. P., W. G. Hunter, and J. S. Hunter. Statistics for Experimenters. Hoboken, NJ: Wiley-
Interscience, 1978.

See Also
ff2n | fracfactgen | fullfact | hadamard

Topics
“Fractional Factorial Designs” on page 30-5
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fracfactgen
Fractional factorial design generators

Syntax
generators = fracfactgen(terms)
generators = fracfactgen(terms,k)
generators = fracfactgen(terms,k,R)
generators = fracfactgen(terms,k,R,basic)

Description
generators = fracfactgen(terms) uses the Franklin-Bailey algorithm to find generators for the
smallest two-level fractional-factorial design for estimating linear model terms specified by terms.
terms is a character vector or string scalar consisting of words formed from the 52 case-sensitive
letters a-Z, separated by spaces. Use 'a'-'z' for the first 26 factors, and, if necessary, 'A'-'Z' for
the remaining factors. For example, terms = 'a b c ab ac'. Single-letter words indicate main
effects to be estimated; multiple-letter words indicate interactions. Alternatively, terms is an m-by-n
matrix of 0s and 1s where m is the number of model terms to be estimated and n is the number of
factors. For example, if terms contains rows [0 1 0 0] and [1 0 0 1], then the factor b and the
interaction between factors a and d are included in the model. generators is a cell array of
character vectors with one generator per cell. Pass generators to fracfact to produce the
fractional-factorial design and corresponding confounding pattern.

generators = fracfactgen(terms,k) returns generators for a two-level fractional-factorial
design with 2k-runs, if possible. If k is [], fracfactgen finds the smallest design.

generators = fracfactgen(terms,k,R) finds a design with resolution R, if possible. The default
resolution is 3.

A design of resolution R is one in which no n-factor interaction is confounded with any other effect
containing less than R – n factors. Thus a resolution III design does not confound main effects with
one another but may confound them with two-way interactions, while a resolution IV design does not
confound either main effects or two-way interactions but may confound two-way interactions with
each other.

If fracfactgen is unable to find a design at the requested resolution, it tries to find a lower-
resolution design sufficient to calibrate the model. If it is successful, it returns the generators for the
lower-resolution design along with a warning. If it fails, it returns an error.

generators = fracfactgen(terms,k,R,basic) also accepts a vector basic specifying the
indices of factors that are to be treated as basic. These factors receive full-factorial treatments in the
design. The default includes factors that are part of the highest-order interaction in terms.

Examples
Suppose you wish to determine the effects of four two-level factors, for which there may be two-way
interactions. A full-factorial design would require 24 = 16 runs. The fracfactgen function finds
generators for a resolution IV (separating main effects) fractional-factorial design that requires only
23 = 8 runs:
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generators = fracfactgen('a b c d',3,4)
generators = 
    'a'
    'b'
    'c'
    'abc'

The more economical design and the corresponding confounding pattern are returned by fracfact:

[dfF,confounding] = fracfact(generators)
dfF =
    -1    -1    -1    -1
    -1    -1     1     1
    -1     1    -1     1
    -1     1     1    -1
     1    -1    -1     1
     1    -1     1    -1
     1     1    -1    -1
     1     1     1     1
confounding = 
    'Term'     'Generator'    'Confounding'  
    'X1'       'a'            'X1'           
    'X2'       'b'            'X2'           
    'X3'       'c'            'X3'           
    'X4'       'abc'          'X4'           
    'X1*X2'    'ab'           'X1*X2 + X3*X4'
    'X1*X3'    'ac'           'X1*X3 + X2*X4'
    'X1*X4'    'bc'           'X1*X4 + X2*X3'
    'X2*X3'    'bc'           'X1*X4 + X2*X3'
    'X2*X4'    'ac'           'X1*X3 + X2*X4'
    'X3*X4'    'ab'           'X1*X2 + X3*X4'

The confounding pattern shows, for example, that the two-way interaction between X1 and X2 is
confounded by the two-way interaction between X3 and X4.

Version History
Introduced in R2006a

References

[1] Box, G. E. P., W. G. Hunter, and J. S. Hunter. Statistics for Experimenters. Hoboken, NJ: Wiley-
Interscience, 1978.

See Also
fracfact | hadamard

Topics
“Fractional Factorial Designs” on page 30-5
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friedman
Friedman’s test

Syntax
p = friedman(x,reps)
p = friedman(x,reps,displayopt)
[p,tbl] = friedman( ___ )
[p,tbl,stats] = friedman( ___ )

Description
p = friedman(x,reps) returns the p-value for the nonparametric Friedman's test to compare
column effects in a two-way layout. friedman tests the null hypothesis that the column effects are all
the same against the alternative that they are not all the same.

p = friedman(x,reps,displayopt) enables the ANOVA table display when displayopt is 'on'
(default) and suppresses the display when displayopt is 'off'.

[p,tbl] = friedman( ___ ) returns the ANOVA table (including column and row labels) in cell
array tbl.

[p,tbl,stats] = friedman( ___ ) also returns a structure stats that you can use to perform a
follow-up multiple comparison test.

Examples

Test For Column Effects Using Friedman's Test

This example shows how to test for column effects in a two-way layout using Friedman's test.

Load the sample data.

load popcorn
popcorn

popcorn = 6×3

    5.5000    4.5000    3.5000
    5.5000    4.5000    4.0000
    6.0000    4.0000    3.0000
    6.5000    5.0000    4.0000
    7.0000    5.5000    5.0000
    7.0000    5.0000    4.5000

This data comes from a study of popcorn brands and popper type (Hogg 1987). The columns of the
matrix popcorn are brands (Gourmet, National, and Generic). The rows are popper type (Oil and
Air). The study popped a batch of each brand three times with each popper. The values are the yield
in cups of popped popcorn.
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Use Friedman's test to determine whether the popcorn brand affects the yield of popcorn.

p = friedman(popcorn,3)

p = 0.0010

The small value of p = 0.001 indicates the popcorn brand affects the yield of popcorn.

Input Arguments
x — Sample data
matrix

Sample data for the hypothesis test, specified as a matrix. The columns of x represent changes in a
factor A. The rows represent changes in a blocking factor B. If there is more than one observation for
each combination of factors, input reps indicates the number of replicates in each “cell,” which must
be constant.
Data Types: single | double

reps — Number of replicates
1 (default) | positive integer value

Number of replicates for each combination of groups, specified as a positive integer value. For
example, the following data has two replicates (reps = 2) for each group combination of row factor
A and column factor B.

B = 1 B = 2
x111 x121
x112 x122
x211 x221
x212 x222
x311 x321
x312 x322

A = 1
A = 2
A = 3

Data Types: single | double

displayopt — ANOVA table display option
'off' (default) | 'on'

ANOVA table display option, specified as 'off' or 'on'.
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If displayopt is 'on', then friedman displays a figure showing an ANOVA table, which divides the
variability of the ranks into two or three parts:

• The variability due to the differences among the column effects
• The variability due to the interaction between rows and columns (if reps is greater than its default

value of 1)
• The remaining variability not explained by any systematic source

The ANOVA table has six columns:

• The first shows the source of the variability.
• The second shows the Sum of Squares (SS) due to each source.
• The third shows the degrees of freedom (df) associated with each source.
• The fourth shows the Mean Squares (MS), which is the ratio SS/df.
• The fifth shows Friedman's chi-square statistic.
• The sixth shows the p value for the chi-square statistic.

You can copy a text version of the ANOVA table to the clipboard by selecting Copy Text from the
Edit menu.

Output Arguments
p — p-value
scalar value in the range [0,1]

p-value of the test, returned as a scalar value in the range [0,1]. p is the probability of observing a
test statistic as extreme as, or more extreme than, the observed value under the null hypothesis.
Small values of p cast doubt on the validity of the null hypothesis.

tbl — ANOVA table
cell array

ANOVA table, including column and row labels, returned as a cell array. The ANOVA table has six
columns:

• The first shows the source of the variability.
• The second shows the Sum of Squares (SS) due to each source.
• The third shows the degrees of freedom (df) associated with each source.
• The fourth shows the Mean Squares (MS), which is the ratio SS/df.
• The fifth shows Friedman's chi-square statistic.
• The sixth shows the p value for the chi-square statistic.

You can copy a text version of the ANOVA table to the clipboard by selecting Copy Text from the
Edit menu.

stats — Test data
structure

Test data, returned as a structure. friedman evaluates the hypothesis that the column effects are all
the same against the alternative that they are not all the same. However, sometimes it is preferable to
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perform a test to determine which pairs of column effects are significantly different, and which are
not. You can use the multcompare function to perform such tests by supplying stats as the input
value.

More About
Friedman’s Test

Friedman's test is similar to classical balanced two-way ANOVA, but it tests only for column effects
after adjusting for possible row effects. It does not test for row effects or interaction effects.
Friedman's test is appropriate when columns represent treatments that are under study, and rows
represent nuisance effects (blocks) that need to be taken into account but are not of any interest.

The different columns of X represent changes in a factor A. The different rows represent changes in a
blocking factor B. If there is more than one observation for each combination of factors, input reps
indicates the number of replicates in each “cell,” which must be constant.

The matrix below illustrates the format for a set-up where column factor A has three levels, row
factor B has two levels, and there are two replicates (reps=2). The subscripts indicate row, column,
and replicate, respectively.

x111 x121 x131
x112 x122 x132
x211 x221 x231
x212 x222 x232

Friedman's test assumes a model of the form

xi jk = μ + αi + β j + εi jk

where μ is an overall location parameter, αi represents the column effect,β j represents the row effect,
and εi jk represents the error. This test ranks the data within each level of B, and tests for a difference
across levels of A. The p that friedman returns is the p value for the null hypothesis that αi = 0. If
the p value is near zero, this casts doubt on the null hypothesis. A sufficiently small p value suggests
that at least one column-sample median is significantly different than the others; i.e., there is a main
effect due to factor A. The choice of a critical p value to determine whether a result is “statistically
significant” is left to the researcher. It is common to declare a result significant if the p value is less
than 0.05 or 0.01.

Friedman's test makes the following assumptions about the data in X:

• All data come from populations having the same continuous distribution, apart from possibly
different locations due to column and row effects.

• All observations are mutually independent.

The classical two-way ANOVA replaces the first assumption with the stronger assumption that data
come from normal distributions.

Version History
Introduced before R2006a
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References
[1] Hogg, R. V., and J. Ledolter. Engineering Statistics. New York: MacMillan, 1987.

[2] Hollander, M., and D. A. Wolfe. Nonparametric Statistical Methods. Hoboken, NJ: John Wiley &
Sons, Inc., 1999.

See Also
anova2 | multcompare | kruskalwallis
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frnd
F random numbers

Syntax
R = frnd(V1,V2)
R = frnd(V1,V2,m,n,...)
R = frnd(V1,V2,[m,n,...])

Description
R = frnd(V1,V2) generates random numbers from the F distribution with numerator degrees of
freedom V1 and denominator degrees of freedom V2. V1 and V2 can be vectors, matrices, or
multidimensional arrays that all have the same size. A scalar input for V1 or V2 is expanded to a
constant array with the same dimensions as the other input. V1 and V2 parameters must contain real
positive values.

R = frnd(V1,V2,m,n,...) or R = frnd(V1,V2,[m,n,...]) generates an m-by-n-by-... array
containing random numbers from the F distribution with parameters V1 and V2. V1 and V2 can each
be scalars or arrays of the same size as R.

Examples
n1 = frnd(1:6,1:6)
n1 =
  0.0022  0.3121  3.0528  0.3189  0.2715  0.9539

n2 = frnd(2,2,[2 3])
n2 =
  0.3186  0.9727  3.0268
  0.2052 148.5816  0.2191

n3 = frnd([1 2 3;4 5 6],1,2,3)
n3 =
  0.6233  0.2322  31.5458
  2.5848  0.2121  4.4955

Version History
Introduced before R2006a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

The generated code can return a different sequence of numbers than MATLAB if either of the
following is true:
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• The output is nonscalar.
• An input parameter is invalid for the distribution.

For more information on code generation, see “Introduction to Code Generation” on page 34-2 and
“General Code Generation Workflow” on page 34-5.

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

This function fully supports GPU arrays. For more information, see “Run MATLAB Functions on a
GPU” (Parallel Computing Toolbox).

See Also
random | fpdf | fcdf | finv | fstat

Topics
“F Distribution” on page B-46
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fscchi2
Univariate feature ranking for classification using chi-square tests

Syntax
idx = fscchi2(Tbl,ResponseVarName)
idx = fscchi2(Tbl,formula)
idx = fscchi2(Tbl,Y)

idx = fscchi2(X,Y)

idx = fscchi2( ___ ,Name,Value)
[idx,scores] = fscchi2( ___ )

Description
idx = fscchi2(Tbl,ResponseVarName) ranks features (predictors) using chi-square tests on
page 35-2855. The table Tbl contains predictor variables and a response variable, and
ResponseVarName is the name of the response variable in Tbl. The function returns idx, which
contains the indices of predictors ordered by predictor importance, meaning idx(1) is the index of
the most important predictor. You can use idx to select important predictors for classification
problems.

idx = fscchi2(Tbl,formula) specifies a response variable and predictor variables to consider
among the variables in Tbl by using formula.

idx = fscchi2(Tbl,Y) ranks predictors in Tbl using the response variable Y.

idx = fscchi2(X,Y) ranks predictors in X using the response variable Y.

idx = fscchi2( ___ ,Name,Value) specifies additional options using one or more name-value
pair arguments in addition to any of the input argument combinations in the previous syntaxes. For
example, you can specify prior probabilities and observation weights.

[idx,scores] = fscchi2( ___ ) also returns the predictor scores scores. A large score value
indicates that the corresponding predictor is important.

Examples

Rank Predictors in Matrix

Rank predictors in a numeric matrix and create a bar plot of predictor importance scores.

Load the sample data.

load ionosphere

ionosphere contains predictor variables (X) and a response variable (Y).

Rank the predictors using chi-square tests.
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[idx,scores] = fscchi2(X,Y);

The values in scores are the negative logs of the p-values. If a p-value is smaller than eps(0), then
the corresponding score value is Inf. Before creating a bar plot, determine whether scores includes
Inf values.

find(isinf(scores))

ans =

  1x0 empty double row vector

scores does not include Inf values. If scores includes Inf values, you can replace Inf by a large
numeric number before creating a bar plot for visualization purposes. For details, see “Rank
Predictors in Table” on page 35-2848.

Create a bar plot of the predictor importance scores.

bar(scores(idx))
xlabel('Predictor rank')
ylabel('Predictor importance score')

Select the top five most important predictors. Find the columns of these predictors in X.

idx(1:5)

ans = 1×5
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     5     7     3     8     6

The fifth column of X is the most important predictor of Y.

Rank Predictors in Table

Rank predictors in a table and create a bar plot of predictor importance scores.

If your data is in a table and fscchi2 ranks a subset of the variables in the table, then the function
indexes the variables using only the subset. Therefore, a good practice is to move the predictors that
you do not want to rank to the end of the table. Move the response variable and observation weight
vector as well. Then, the indexes of the output arguments are consistent with the indexes of the table.

Load the census1994 data set.

load census1994

The table adultdata in census1994 contains demographic data from the US Census Bureau to
predict whether an individual makes over $50,000 per year. Display the first three rows of the table.

head(adultdata,3)

    age       workClass          fnlwgt      education    education_num      marital_status         occupation        relationship     race     sex     capital_gain    capital_loss    hours_per_week    native_country    salary
    ___    ________________    __________    _________    _____________    __________________    _________________    _____________    _____    ____    ____________    ____________    ______________    ______________    ______

    39     State-gov                77516    Bachelors         13          Never-married         Adm-clerical         Not-in-family    White    Male        2174             0                40          United-States     <=50K 
    50     Self-emp-not-inc         83311    Bachelors         13          Married-civ-spouse    Exec-managerial      Husband          White    Male           0             0                13          United-States     <=50K 
    38     Private             2.1565e+05    HS-grad            9          Divorced              Handlers-cleaners    Not-in-family    White    Male           0             0                40          United-States     <=50K 

In the table adultdata, the third column fnlwgt is the weight of the samples, and the last column
salary is the response variable. Move fnlwgt to the left of salary by using the movevars
function.

adultdata = movevars(adultdata,'fnlwgt','before','salary');
head(adultdata,3)

    age       workClass        education    education_num      marital_status         occupation        relationship     race     sex     capital_gain    capital_loss    hours_per_week    native_country      fnlwgt      salary
    ___    ________________    _________    _____________    __________________    _________________    _____________    _____    ____    ____________    ____________    ______________    ______________    __________    ______

    39     State-gov           Bachelors         13          Never-married         Adm-clerical         Not-in-family    White    Male        2174             0                40          United-States          77516    <=50K 
    50     Self-emp-not-inc    Bachelors         13          Married-civ-spouse    Exec-managerial      Husband          White    Male           0             0                13          United-States          83311    <=50K 
    38     Private             HS-grad            9          Divorced              Handlers-cleaners    Not-in-family    White    Male           0             0                40          United-States     2.1565e+05    <=50K 

Rank the predictors in adultdata. Specify the column salary as a response variable, and specify
the column fnlwgt as observation weights.

[idx,scores] = fscchi2(adultdata,'salary','Weights','fnlwgt');

The values in scores are the negative logs of the p-values. If a p-value is smaller than eps(0), then
the corresponding score value is Inf. Before creating a bar plot, determine whether scores includes
Inf values.

idxInf = find(isinf(scores))
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idxInf = 1×8

     1     3     4     5     6     7    10    12

scores includes eight Inf values.

Create a bar plot of predictor importance scores. Use the predictor names for the x-axis tick labels.

figure
bar(scores(idx))
xlabel('Predictor rank')
ylabel('Predictor importance score')
xticklabels(strrep(adultdata.Properties.VariableNames(idx),'_','\_'))
xtickangle(45)

The bar function does not plot any bars for the Inf values. For the Inf values, plot bars that have
the same length as the largest finite score.

hold on
bar(scores(idx(length(idxInf)+1))*ones(length(idxInf),1))
legend('Finite Scores','Inf Scores')
hold off

The bar graph displays finite scores and Inf scores using different colors.
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Input Arguments
Tbl — Sample data
table

Sample data, specified as a table. Multicolumn variables and cell arrays other than cell arrays of
character vectors are not allowed.

Each row of Tbl corresponds to one observation, and each column corresponds to one predictor
variable. Optionally, Tbl can contain additional columns for a response variable and observation
weights.

A response variable can be a categorical, character, or string array, logical or numeric vector, or cell
array of character vectors. If the response variable is a character array, then each element of the
response variable must correspond to one row of the array.

• If Tbl contains the response variable, and you want to use all remaining variables in Tbl as
predictors, then specify the response variable by using ResponseVarName. If Tbl also contains
the observation weights, then you can specify the weights by using Weights.

• If Tbl contains the response variable, and you want to use only a subset of the remaining
variables in Tbl as predictors, then specify the subset of variables by using formula.

• If Tbl does not contain the response variable, then specify a response variable by using Y. The
response variable and Tbl must have the same number of rows.

If fscchi2 uses a subset of variables in Tbl as predictors, then the function indexes the predictors
using only the subset. The values in the 'CategoricalPredictors' name-value pair argument and
the output argument idx do not count the predictors that the function does not rank.

fscchi2 considers NaN, '' (empty character vector), "" (empty string), <missing>, and
<undefined> values in Tbl for a response variable to be missing values. fscchi2 does not use
observations with missing values for a response variable.
Data Types: table

ResponseVarName — Response variable name
character vector or string scalar containing name of variable in Tbl

Response variable name, specified as a character vector or string scalar containing the name of a
variable in Tbl.

For example, if a response variable is the column Y of Tbl (Tbl.Y), then specify ResponseVarName
as "Y".
Data Types: char | string

formula — Explanatory model of response variable and subset of predictor variables
character vector | string scalar

Explanatory model of the response variable and a subset of the predictor variables, specified as a
character vector or string scalar in the form "Y ~ x1 + x2 + x3". In this form, Y represents the
response variable, and x1, x2, and x3 represent the predictor variables.

To specify a subset of variables in Tbl as predictors, use a formula. If you specify a formula, then
fscchi2 does not rank any variables in Tbl that do not appear in formula.
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The variable names in the formula must be both variable names in Tbl
(Tbl.Properties.VariableNames) and valid MATLAB identifiers. You can verify the variable
names in Tbl by using the isvarname function. If the variable names are not valid, then you can
convert them by using the matlab.lang.makeValidName function.
Data Types: char | string

Y — Response variable
numeric vector | categorical vector | logical vector | character array | string array | cell array of
character vectors

Response variable, specified as a numeric, categorical, or logical vector, a character or string array,
or a cell array of character vectors. Each row of Y represents the labels of the corresponding row of
X.

fscchi2 considers NaN, '' (empty character vector), "" (empty string), <missing>, and
<undefined> values in Y to be missing values. fscchi2 does not use observations with missing
values for Y.
Data Types: single | double | categorical | logical | char | string | cell

X — Predictor data
numeric matrix

Predictor data, specified as a numeric matrix. Each row of X corresponds to one observation, and
each column corresponds to one predictor variable.
Data Types: single | double

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: 'NumBins',20,'UseMissing',true sets the number of bins as 20 and specifies to use
missing values in predictors for ranking.

CategoricalPredictors — List of categorical predictors
vector of positive integers | logical vector | character matrix | string array | cell array of character
vectors | "all"

List of categorical predictors, specified as one of the values in this table.
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Value Description
Vector of positive
integers

Each entry in the vector is an index value indicating that the corresponding
predictor is categorical. The index values are between 1 and p, where p is
the number of predictors used to train the model.

If fscchi2 uses a subset of input variables as predictors, then the function
indexes the predictors using only the subset. The
CategoricalPredictors values do not count the response variable,
observation weights variable, or any other variables that the function does
not use.

Logical vector A true entry means that the corresponding predictor is categorical. The
length of the vector is p.

Character matrix Each row of the matrix is the name of a predictor variable. The names must
match the names in Tbl. Pad the names with extra blanks so each row of
the character matrix has the same length.

String array or cell
array of character
vectors

Each element in the array is the name of a predictor variable. The names
must match the names in Tbl.

"all" All predictors are categorical.

By default, if the predictor data is in a table (Tbl), fscchi2 assumes that a variable is categorical if
it is a logical vector, unordered categorical vector, character array, string array, or cell array of
character vectors. If the predictor data is a matrix (X), fscchi2 assumes that all predictors are
continuous. To identify any other predictors as categorical predictors, specify them by using the
CategoricalPredictors name-value argument.
Example: "CategoricalPredictors","all"
Example: CategoricalPredictors=[1 5 6 8]
Data Types: single | double | logical | char | string | cell

ClassNames — Names of classes to use for ranking
categorical array | character array | string array | logical vector | numeric vector | cell array of
character vectors

Names of the classes to use for ranking, specified as the comma-separated pair consisting of
'ClassNames' and a categorical, character, or string array, a logical or numeric vector, or a cell
array of character vectors. ClassNames must have the same data type as Y or the response variable
in Tbl.

If ClassNames is a character array, then each element must correspond to one row of the array.

Use 'ClassNames' to:

• Specify the order of the Prior dimensions that corresponds to the class order.
• Select a subset of classes for ranking. For example, suppose that the set of all distinct class names

in Y is {'a','b','c'}. To rank predictors using observations from classes 'a' and 'c' only,
specify 'ClassNames',{'a','c'}.

The default value for 'ClassNames' is the set of all distinct class names in Y or the response
variable in Tbl. The default 'ClassNames' value has mathematical ordering if the response variable
is ordinal. Otherwise, the default value has alphabetical ordering.
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Example: 'ClassNames',{'b','g'}
Data Types: categorical | char | string | logical | single | double | cell

NumBins — Number of bins for binning continuous predictors
10 (default) | positive integer scalar

Number of bins for binning continuous predictors, specified as the comma-separated pair consisting
of 'NumBins' and a positive integer scalar.
Example: 'NumBins',50
Data Types: single | double

Prior — Prior probabilities
'empirical' (default) | 'uniform' | vector of scalar values | structure

Prior probabilities for each class, specified as one of the following:

• Character vector or string scalar.

• 'empirical' determines class probabilities from class frequencies in the response variable in
Y or Tbl. If you pass observation weights, fscchi2 uses the weights to compute the class
probabilities.

• 'uniform' sets all class probabilities to be equal.
• Vector (one scalar value for each class). To specify the class order for the corresponding elements

of 'Prior', set the 'ClassNames' name-value argument.
• Structure S with two fields.

• S.ClassNames contains the class names as a variable of the same type as the response
variable in Y or Tbl.

• S.ClassProbs contains a vector of corresponding probabilities.

fscchi2 normalizes the weights in each class ('Weights') to add up to the value of the prior
probability of the respective class.
Example: 'Prior','uniform'
Data Types: char | string | single | double | struct

UseMissing — Indicator for whether to use or discard missing values in predictors
false (default) | true

Indicator for whether to use or discard missing values in predictors, specified as the comma-
separated pair consisting of 'UseMissing' and either true to use or false to discard missing
values in predictors for ranking.

fscchi2 considers NaN, '' (empty character vector), "" (empty string), <missing>, and
<undefined> values to be missing values.

If you specify 'UseMissing',true, then fscchi2 uses missing values for ranking. For a categorical
variable, fscchi2 treats missing values as an extra category. For a continuous variable, fscchi2
places NaN values in a separate bin for binning.

If you specify 'UseMissing',false, then fscchi2 does not use missing values for ranking.
Because fscchi2 computes importance scores individually for each predictor, the function does not
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discard an entire row when values in the row are partially missing. For each variable, fscchi2 uses
all values that are not missing.
Example: 'UseMissing',true
Data Types: logical

Weights — Observation weights
ones(size(X,1),1) (default) | vector of scalar values | name of variable in Tbl

Observation weights, specified as the comma-separated pair consisting of 'Weights' and a vector of
scalar values or the name of a variable in Tbl. The function weights the observations in each row of X
or Tbl with the corresponding value in Weights. The size of Weights must equal the number of
rows in X or Tbl.

If you specify the input data as a table Tbl, then Weights can be the name of a variable in Tbl that
contains a numeric vector. In this case, you must specify Weights as a character vector or string
scalar. For example, if the weight vector is the column W of Tbl (Tbl.W), then specify
'Weights,'W'.

fscchi2 normalizes the weights in each class to add up to the value of the prior probability of the
respective class.
Data Types: single | double | char | string

Output Arguments
idx — Indices of predictors ordered by predictor importance
numeric vector

Indices of predictors in X or Tbl ordered by predictor importance, returned as a 1-by-r numeric
vector, where r is the number of ranked predictors.

If fscchi2 uses a subset of variables in Tbl as predictors, then the function indexes the predictors
using only the subset. For example, suppose Tbl includes 10 columns and you specify the last five
columns of Tbl as the predictor variables by using formula. If idx(3) is 5, then the third most
important predictor is the 10th column in Tbl, which is the fifth predictor in the subset.

scores — Predictor scores
numeric vector

Predictor scores, returned as a 1-by-r numeric vector, where r is the number of ranked predictors.

A large score value indicates that the corresponding predictor is important.

• If you use X to specify the predictors or use all the variables in Tbl as predictors, then the values
in scores have the same order as the predictors in X or Tbl.

• If you specify a subset of variables in Tbl as predictors, then the values in scores have the same
order as the subset.

For example, suppose Tbl includes 10 columns and you specify the last five columns of Tbl as the
predictor variables by using formula. Then, score(3) contains the score value of the 8th column in
Tbl, which is the third predictor in the subset.
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Algorithms
Univariate Feature Ranking Using Chi-Square Tests

• fscchi2 examines whether each predictor variable is independent of a response variable by
using individual chi-square tests. A small p-value of the test statistic indicates that the
corresponding predictor variable is dependent on the response variable, and, therefore is an
important feature.

• The output scores is –log(p). Therefore, a large score value indicates that the corresponding
predictor is important. If a p-value is smaller than eps(0), then the output is Inf.

• fscchi2 examines a continuous variable after binning, or discretizing, the variable. You can
specify the number of bins using the 'NumBins' name-value pair argument.

Version History
Introduced in R2020a

See Also
fscmrmr | relieff | sequentialfs | fscnca

Topics
“Introduction to Feature Selection” on page 16-47

 fscchi2

35-2855



fscmrmr
Rank features for classification using minimum redundancy maximum relevance (MRMR) algorithm

Syntax
idx = fscmrmr(Tbl,ResponseVarName)
idx = fscmrmr(Tbl,formula)
idx = fscmrmr(Tbl,Y)

idx = fscmrmr(X,Y)

idx = fscmrmr( ___ ,Name,Value)
[idx,scores] = fscmrmr( ___ )

Description
idx = fscmrmr(Tbl,ResponseVarName) ranks features (predictors) using the MRMR algorithm
on page 35-2865. The table Tbl contains predictor variables and a response variable, and
ResponseVarName is the name of the response variable in Tbl. The function returns idx, which
contains the indices of predictors ordered by predictor importance. You can use idx to select
important predictors for classification problems.

idx = fscmrmr(Tbl,formula) specifies a response variable and predictor variables to consider
among the variables in Tbl by using formula.

idx = fscmrmr(Tbl,Y) ranks predictors in Tbl using the response variable Y.

idx = fscmrmr(X,Y) ranks predictors in X using the response variable Y.

idx = fscmrmr( ___ ,Name,Value) specifies additional options using one or more name-value
pair arguments in addition to any of the input argument combinations in the previous syntaxes. For
example, you can specify prior probabilities and observation weights.

[idx,scores] = fscmrmr( ___ ) also returns the predictor scores scores. A large score value
indicates that the corresponding predictor is important.

Examples

Rank Predictors by Importance

Load the sample data.

load ionosphere

Rank the predictors based on importance.

[idx,scores] = fscmrmr(X,Y);

Create a bar plot of the predictor importance scores.
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bar(scores(idx))
xlabel('Predictor rank')
ylabel('Predictor importance score')

The drop in score between the first and second most important predictors is large, while the drops
after the sixth predictor are relatively small. A drop in the importance score represents the
confidence of feature selection. Therefore, the large drop implies that the software is confident of
selecting the most important predictor. The small drops indicate that the difference in predictor
importance are not significant.

Select the top five most important predictors. Find the columns of these predictors in X.

idx(1:5)

ans = 1×5

     5     4     1     7    24

The fifth column of X is the most important predictor of Y.
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Select Features and Compare Accuracies of Two Classification Models

Find important predictors by using fscmrmr. Then compare the accuracies of the full classification
model (which uses all the predictors) and a reduced model that uses the five most important
predictors by using testckfold.

Load the census1994 data set.

load census1994

The table adultdata in census1994 contains demographic data from the US Census Bureau to
predict whether an individual makes over $50,000 per year. Display the first three rows of the table.

head(adultdata,3)

    age       workClass          fnlwgt      education    education_num      marital_status         occupation        relationship     race     sex     capital_gain    capital_loss    hours_per_week    native_country    salary
    ___    ________________    __________    _________    _____________    __________________    _________________    _____________    _____    ____    ____________    ____________    ______________    ______________    ______

    39     State-gov                77516    Bachelors         13          Never-married         Adm-clerical         Not-in-family    White    Male        2174             0                40          United-States     <=50K 
    50     Self-emp-not-inc         83311    Bachelors         13          Married-civ-spouse    Exec-managerial      Husband          White    Male           0             0                13          United-States     <=50K 
    38     Private             2.1565e+05    HS-grad            9          Divorced              Handlers-cleaners    Not-in-family    White    Male           0             0                40          United-States     <=50K 

The output arguments of fscmrmr include only the variables ranked by the function. Before passing a
table to the function, move the variables that you do not want to rank, including the response variable
and weight, to the end of the table so that the order of the output arguments is consistent with the
order of the table.

In the table adultdata, the third column fnlwgt is the weight of the samples, and the last column
salary is the response variable. Move fnlwgt to the left of salary by using the movevars
function.

adultdata = movevars(adultdata,'fnlwgt','before','salary');
head(adultdata,3)

    age       workClass        education    education_num      marital_status         occupation        relationship     race     sex     capital_gain    capital_loss    hours_per_week    native_country      fnlwgt      salary
    ___    ________________    _________    _____________    __________________    _________________    _____________    _____    ____    ____________    ____________    ______________    ______________    __________    ______

    39     State-gov           Bachelors         13          Never-married         Adm-clerical         Not-in-family    White    Male        2174             0                40          United-States          77516    <=50K 
    50     Self-emp-not-inc    Bachelors         13          Married-civ-spouse    Exec-managerial      Husband          White    Male           0             0                13          United-States          83311    <=50K 
    38     Private             HS-grad            9          Divorced              Handlers-cleaners    Not-in-family    White    Male           0             0                40          United-States     2.1565e+05    <=50K 

Rank the predictors in adultdata. Specify the column salary as the response variable.

[idx,scores] = fscmrmr(adultdata,'salary','Weights','fnlwgt');

Create a bar plot of predictor importance scores. Use the predictor names for the x-axis tick labels.

bar(scores(idx))
xlabel('Predictor rank')
ylabel('Predictor importance score')
xticklabels(strrep(adultdata.Properties.VariableNames(idx),'_','\_'))
xtickangle(45)
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The five most important predictors are relationship, capital_loss, capital_gain,
education, and hours_per_week.

Compare the accuracy of a classification tree trained with all predictors to the accuracy of one
trained with the five most important predictors.

Create a classification tree template using the default options.

C = templateTree;

Define the table tbl1 to contain all predictors and the table tbl2 to contain the five most important
predictors.

tbl1 = adultdata(:,adultdata.Properties.VariableNames(idx(1:13)));
tbl2 = adultdata(:,adultdata.Properties.VariableNames(idx(1:5)));

Pass the classification tree template and the two tables to the testckfold function. The function
compares the accuracies of the two models by repeated cross-validation. Specify
'Alternative','greater' to test the null hypothesis that the model with all predictors is, at
most, as accurate as the model with the five predictors. The 'greater' option is available when
'Test' is '5x2t' (5-by-2 paired t test) or '10x10t' (10-by-10 repeated cross-validation t test).

[h,p] = testckfold(C,C,tbl1,tbl2,adultdata.salary,'Weights',adultdata.fnlwgt,'Alternative','greater','Test','5x2t')

h = logical
   0
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p = 0.9969

h equals 0 and the p-value is almost 1, indicating failure to reject the null hypothesis. Using the
model with the five predictors does not result in loss of accuracy compared to the model with all the
predictors.

Now train a classification tree using the selected predictors.

mdl = fitctree(adultdata,'salary ~ relationship + capital_loss + capital_gain + education +  hours_per_week', ...
    'Weights',adultdata.fnlwgt)

mdl = 
  ClassificationTree
           PredictorNames: {1x5 cell}
             ResponseName: 'salary'
    CategoricalPredictors: [1 2]
               ClassNames: [<=50K    >50K]
           ScoreTransform: 'none'
          NumObservations: 32561

  Properties, Methods

Input Arguments
Tbl — Sample data
table

Sample data, specified as a table. Multicolumn variables and cell arrays other than cell arrays of
character vectors are not allowed.

Each row of Tbl corresponds to one observation, and each column corresponds to one predictor
variable. Optionally, Tbl can contain additional columns for a response variable and observation
weights.

A response variable can be a categorical, character, or string array, logical or numeric vector, or cell
array of character vectors. If the response variable is a character array, then each element of the
response variable must correspond to one row of the array.

• If Tbl contains the response variable, and you want to use all remaining variables in Tbl as
predictors, then specify the response variable by using ResponseVarName. If Tbl also contains
the observation weights, then you can specify the weights by using Weights.

• If Tbl contains the response variable, and you want to use only a subset of the remaining
variables in Tbl as predictors, then specify the subset of variables by using formula.

• If Tbl does not contain the response variable, then specify a response variable by using Y. The
response variable and Tbl must have the same number of rows.

If fscmrmr uses a subset of variables in Tbl as predictors, then the function indexes the predictors
using only the subset. The values in the 'CategoricalPredictors' name-value pair argument and
the output argument idx do not count the predictors that the function does not rank.
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fscmrmr considers NaN, '' (empty character vector), "" (empty string), <missing>, and
<undefined> values in Tbl for a response variable to be missing values. fscmrmr does not use
observations with missing values for a response variable.
Data Types: table

ResponseVarName — Response variable name
character vector or string scalar containing name of variable in Tbl

Response variable name, specified as a character vector or string scalar containing the name of a
variable in Tbl.

For example, if a response variable is the column Y of Tbl (Tbl.Y), then specify ResponseVarName
as "Y".
Data Types: char | string

formula — Explanatory model of response variable and subset of predictor variables
character vector | string scalar

Explanatory model of the response variable and a subset of the predictor variables, specified as a
character vector or string scalar in the form "Y ~ x1 + x2 + x3". In this form, Y represents the
response variable, and x1, x2, and x3 represent the predictor variables.

To specify a subset of variables in Tbl as predictors, use a formula. If you specify a formula, then
fscmrmr does not rank any variables in Tbl that do not appear in formula.

The variable names in the formula must be both variable names in Tbl
(Tbl.Properties.VariableNames) and valid MATLAB identifiers. You can verify the variable
names in Tbl by using the isvarname function. If the variable names are not valid, then you can
convert them by using the matlab.lang.makeValidName function.
Data Types: char | string

Y — Response variable
numeric vector | categorical vector | logical vector | character array | string array | cell array of
character vectors

Response variable, specified as a numeric, categorical, or logical vector, a character or string array,
or a cell array of character vectors. Each row of Y represents the labels of the corresponding row of
X.

fscmrmr considers NaN, '' (empty character vector), "" (empty string), <missing>, and
<undefined> values in Y to be missing values. fscmrmr does not use observations with missing
values for Y.
Data Types: single | double | categorical | logical | char | string | cell

X — Predictor data
numeric matrix

Predictor data, specified as a numeric matrix. Each row of X corresponds to one observation, and
each column corresponds to one predictor variable.
Data Types: single | double
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Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: 'CategoricalPredictors',[1 2],'Verbose',2 specifies the first two predictor
variables as categorical variables and specifies the verbosity level as 2.

CategoricalPredictors — List of categorical predictors
vector of positive integers | logical vector | character matrix | string array | cell array of character
vectors | "all"

List of categorical predictors, specified as one of the values in this table.

Value Description
Vector of positive
integers

Each entry in the vector is an index value indicating that the corresponding
predictor is categorical. The index values are between 1 and p, where p is
the number of predictors used to train the model.

If fscmrmr uses a subset of input variables as predictors, then the function
indexes the predictors using only the subset. The
CategoricalPredictors values do not count the response variable,
observation weights variable, or any other variables that the function does
not use.

Logical vector A true entry means that the corresponding predictor is categorical. The
length of the vector is p.

Character matrix Each row of the matrix is the name of a predictor variable. The names must
match the names in Tbl. Pad the names with extra blanks so each row of
the character matrix has the same length.

String array or cell
array of character
vectors

Each element in the array is the name of a predictor variable. The names
must match the names in Tbl.

"all" All predictors are categorical.

By default, if the predictor data is in a table (Tbl), fscmrmr assumes that a variable is categorical if
it is a logical vector, unordered categorical vector, character array, string array, or cell array of
character vectors. If the predictor data is a matrix (X), fscmrmr assumes that all predictors are
continuous. To identify any other predictors as categorical predictors, specify them by using the
CategoricalPredictors name-value argument.
Example: "CategoricalPredictors","all"
Example: CategoricalPredictors=[1 5 6 8]
Data Types: single | double | logical | char | string | cell

ClassNames — Names of classes to use for ranking
categorical array | character array | string array | logical vector | numeric vector | cell array of
character vectors
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Names of the classes to use for ranking, specified as the comma-separated pair consisting of
'ClassNames' and a categorical, character, or string array, a logical or numeric vector, or a cell
array of character vectors. ClassNames must have the same data type as Y or the response variable
in Tbl.

If ClassNames is a character array, then each element must correspond to one row of the array.

Use 'ClassNames' to:

• Specify the order of the Prior dimensions that corresponds to the class order.
• Select a subset of classes for ranking. For example, suppose that the set of all distinct class names

in Y is {'a','b','c'}. To rank predictors using observations from classes 'a' and 'c' only,
specify 'ClassNames',{'a','c'}.

The default value for 'ClassNames' is the set of all distinct class names in Y or the response
variable in Tbl. The default 'ClassNames' value has mathematical ordering if the response variable
is ordinal. Otherwise, the default value has alphabetical ordering.
Example: 'ClassNames',{'b','g'}
Data Types: categorical | char | string | logical | single | double | cell

Prior — Prior probabilities
'empirical' (default) | 'uniform' | vector of scalar values | structure

Prior probabilities for each class, specified as one of the following:

• Character vector or string scalar.

• 'empirical' determines class probabilities from class frequencies in the response variable in
Y or Tbl. If you pass observation weights, fscmrmr uses the weights to compute the class
probabilities.

• 'uniform' sets all class probabilities to be equal.
• Vector (one scalar value for each class). To specify the class order for the corresponding elements

of 'Prior', set the 'ClassNames' name-value argument.
• Structure S with two fields.

• S.ClassNames contains the class names as a variable of the same type as the response
variable in Y or Tbl.

• S.ClassProbs contains a vector of corresponding probabilities.

fscmrmr normalizes the weights in each class ('Weights') to add up to the value of the prior
probability of the respective class.
Example: 'Prior','uniform'
Data Types: char | string | single | double | struct

UseMissing — Indicator for whether to use missing values in predictors
false (default) | true

Indicator for whether to use missing values in predictors, specified as either true to use the values
for ranking, or false to discard the values.

fscmrmr considers NaN, '' (empty character vector), "" (empty string), <missing>, and
<undefined> values to be missing values.
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If you specify UseMissing as true, then fscmrmr uses missing values for ranking. For a categorical
variable, fscmrmr treats missing values as an extra category. For a continuous variable, fscmrmr
places NaN values in a separate bin for binning.

If you specify UseMissing as false, then fscmrmr does not use missing values for ranking.
Because fscmrmr computes mutual information for each pair of variables, the function does not
discard an entire row when values in the row are partially missing. fscmrmr uses all pair values that
do not include missing values.
Example: "UseMissing",true
Example: UseMissing=true
Data Types: logical

Verbose — Verbosity level
0 (default) | nonnegative integer

Verbosity level, specified as the comma-separated pair consisting of 'Verbose' and a nonnegative
integer. The value of Verbose controls the amount of diagnostic information that the software
displays in the Command Window.

• 0 — fscmrmr does not display any diagnostic information.
• 1 — fscmrmr displays the elapsed times for computing “Mutual Information” on page 35-2865

and ranking predictors.
• ≥ 2 — fscmrmr displays the elapsed times and more messages related to computing mutual

information. The amount of information increases as you increase the 'Verbose' value.

Example: 'Verbose',1
Data Types: single | double

Weights — Observation weights
ones(size(X,1),1) (default) | vector of scalar values | name of variable in Tbl

Observation weights, specified as the comma-separated pair consisting of 'Weights' and a vector of
scalar values or the name of a variable in Tbl. The function weights the observations in each row of X
or Tbl with the corresponding value in Weights. The size of Weights must equal the number of
rows in X or Tbl.

If you specify the input data as a table Tbl, then Weights can be the name of a variable in Tbl that
contains a numeric vector. In this case, you must specify Weights as a character vector or string
scalar. For example, if the weight vector is the column W of Tbl (Tbl.W), then specify
'Weights,'W'.

fscmrmr normalizes the weights in each class to add up to the value of the prior probability of the
respective class.
Data Types: single | double | char | string

Output Arguments
idx — Indices of predictors ordered by predictor importance
numeric vector
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Indices of predictors in X or Tbl ordered by predictor importance, returned as a 1-by-r numeric
vector, where r is the number of ranked predictors.

If fscmrmr uses a subset of variables in Tbl as predictors, then the function indexes the predictors
using only the subset. For example, suppose Tbl includes 10 columns and you specify the last five
columns of Tbl as the predictor variables by using formula. If idx(3) is 5, then the third most
important predictor is the 10th column in Tbl, which is the fifth predictor in the subset.

scores — Predictor scores
numeric vector

Predictor scores, returned as a 1-by-r numeric vector, where r is the number of ranked predictors.

A large score value indicates that the corresponding predictor is important. Also, a drop in the
feature importance score represents the confidence of feature selection. For example, if the software
is confident of selecting a feature x, then the score value of the next most important feature is much
smaller than the score value of x.

• If you use X to specify the predictors or use all the variables in Tbl as predictors, then the values
in scores have the same order as the predictors in X or Tbl.

• If you specify a subset of variables in Tbl as predictors, then the values in scores have the same
order as the subset.

For example, suppose Tbl includes 10 columns and you specify the last five columns of Tbl as the
predictor variables by using formula. Then, score(3) contains the score value of the 8th column in
Tbl, which is the third predictor in the subset.

More About
Mutual Information

The mutual information between two variables measures how much uncertainty of one variable can
be reduced by knowing the other variable.

The mutual information I of the discrete random variables X and Z is defined as

I X, Z = ∑i, jP X = xi, Z = z j log
P X = xi, Z = z j

P X = xi P Z = z j
.

If X and Z are independent, then I equals 0. If X and Z are the same random variable, then I equals
the entropy of X.

The fscmrmr function uses this definition to compute the mutual information values for both
categorical (discrete) and continuous variables. fscmrmr discretizes a continuous variable into 256
bins or the number of unique values in the variable if it is less than 256. The function finds optimal
bivariate bins for each pair of variables using the adaptive algorithm [2].

Algorithms
Minimum Redundancy Maximum Relevance (MRMR) Algorithm

The MRMR algorithm [1] finds an optimal set of features that is mutually and maximally dissimilar
and can represent the response variable effectively. The algorithm minimizes the redundancy of a
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feature set and maximizes the relevance of a feature set to the response variable. The algorithm
quantifies the redundancy and relevance using the mutual information of variables—pairwise mutual
information of features and mutual information of a feature and the response. You can use this
algorithm for classification problems.

The goal of the MRMR algorithm is to find an optimal set S of features that maximizes VS, the
relevance of S with respect to a response variable y, and minimizes WS, the redundancy of S, where
VS and WS are defined with mutual information on page 35-2865 I:

VS = 1
S ∑x ∈ S I x, y ,

WS = 1
S 2∑x, z ∈ S I x, z .

|S| is the number of features in S.

Finding an optimal set S requires considering all 2|Ω| combinations, where Ω is the entire feature set.
Instead, the MRMR algorithm ranks features through the forward addition scheme, which requires
O(|Ω|·|S|) computations, by using the mutual information quotient (MIQ) value.

MIQx =
Vx
Wx

,

where Vx and Wx are the relevance and redundancy of a feature, respectively:

Vx = I(x, y),

Wx = 1
S ∑z ∈ S I x, z .

The fscmrmr function ranks all features in Ω and returns idx (the indices of features ordered by
feature importance) using the MRMR algorithm. Therefore, the computation cost becomes O(|Ω|2).
The function quantifies the importance of a feature using a heuristic algorithm and returns a score
(scores). A large score value indicates that the corresponding predictor is important. Also, a drop in
the feature importance score represents the confidence of feature selection. For example, if the
software is confident of selecting a feature x, then the score value of the next most important feature
is much smaller than the score value of x. You can use the outputs to find an optimal set S for a given
number of features.

fscmrmr ranks features as follows:

1 Select the feature with the largest relevance, max
x ∈ Ω

Vx. Add the selected feature to an empty set S.

2 Find the features with nonzero relevance and zero redundancy in the complement of S, Sc.

• If Sc does not include a feature with nonzero relevance and zero redundancy, go to step 4.
• Otherwise, select the feature with the largest relevance, max

x ∈ Sc, Wx = 0
Vx. Add the selected

feature to the set S.
3 Repeat Step 2 until the redundancy is not zero for all features in Sc.
4 Select the feature that has the largest MIQ value with nonzero relevance and nonzero

redundancy in Sc, and add the selected feature to the set S.

35 Functions

35-2866



max
x ∈ Sc

MIQx = max
x ∈ Sc

I(x, y)
1
S ∑z ∈ S I x, z

.

5 Repeat Step 4 until the relevance is zero for all features in Sc.
6 Add the features with zero relevance to S in random order.

The software can skip any step if it cannot find a feature that satisfies the conditions described in the
step.

Version History
Introduced in R2019b

Specify 'UseMissing',true to use missing values in predictors for ranking
Behavior changed in R2020a

Starting in R2020a, you can specify whether to use or discard missing values in predictors for
ranking by using the 'UseMissing' name-value pair argument. The default value of 'UseMissing'
is false because most classification training functions in Statistics and Machine Learning Toolbox do
not use missing values for training.

In R2019b, fscmrmr used missing values in predictors by default. To update your code, specify
'UseMissing',true.

References
[1] Ding, C., and H. Peng. "Minimum redundancy feature selection from microarray gene expression

data." Journal of Bioinformatics and Computational Biology. Vol. 3, Number 2, 2005, pp. 185–
205.

[2] Darbellay, G. A., and I. Vajda. "Estimation of the information by an adaptive partitioning of the
observation space." IEEE Transactions on Information Theory. Vol. 45, Number 4, 1999, pp.
1315–1321.

See Also
relieff | sequentialfs | fsulaplacian | fscnca

Topics
“Introduction to Feature Selection” on page 16-47
“Sequential Feature Selection” on page 16-59
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fscnca
Feature selection using neighborhood component analysis for classification

Syntax
mdl = fscnca(X,Y)
mdl = fscnca(X,Y,Name,Value)

Description
mdl = fscnca(X,Y) performs feature selection for classification using the predictors in X and
responses in Y.

fscnca learns the feature weights by using a diagonal adaptation of neighborhood component
analysis (NCA) with regularization.

mdl = fscnca(X,Y,Name,Value) performs feature selection for classification with additional
options specified by one or more name-value pair arguments.

Examples

Detect Relevant Features in Data Using NCA for Classification

Generate toy data where the response variable depends on the 3rd, 9th, and 15th predictors.

rng(0,'twister'); % For reproducibility
N = 100;
X = rand(N,20);
y = -ones(N,1);
y(X(:,3).*X(:,9)./X(:,15) < 0.4) = 1;

Fit the neighborhood component analysis model for classification.

mdl = fscnca(X,y,'Solver','sgd','Verbose',1);

 o Tuning initial learning rate: NumTuningIterations = 20, TuningSubsetSize = 100

|===============================================|
|    TUNING    | TUNING SUBSET |    LEARNING    |
|     ITER     |   FUN VALUE   |      RATE      |
|===============================================|
|            1 | -3.755936e-01 |   2.000000e-01 |
|            2 | -3.950971e-01 |   4.000000e-01 |
|            3 | -4.311848e-01 |   8.000000e-01 |
|            4 | -4.903195e-01 |   1.600000e+00 |
|            5 | -5.630190e-01 |   3.200000e+00 |
|            6 | -6.166993e-01 |   6.400000e+00 |
|            7 | -6.255669e-01 |   1.280000e+01 |
|            8 | -6.255669e-01 |   1.280000e+01 |
|            9 | -6.255669e-01 |   1.280000e+01 |
|           10 | -6.255669e-01 |   1.280000e+01 |
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|           11 | -6.255669e-01 |   1.280000e+01 |
|           12 | -6.255669e-01 |   1.280000e+01 |
|           13 | -6.255669e-01 |   1.280000e+01 |
|           14 | -6.279210e-01 |   2.560000e+01 |
|           15 | -6.279210e-01 |   2.560000e+01 |
|           16 | -6.279210e-01 |   2.560000e+01 |
|           17 | -6.279210e-01 |   2.560000e+01 |
|           18 | -6.279210e-01 |   2.560000e+01 |
|           19 | -6.279210e-01 |   2.560000e+01 |
|           20 | -6.279210e-01 |   2.560000e+01 |

 o Solver = SGD, MiniBatchSize = 10, PassLimit = 5

|==========================================================================================|
|   PASS   |     ITER     | AVG MINIBATCH | AVG MINIBATCH |   NORM STEP   |    LEARNING    |
|          |              |   FUN VALUE   |   NORM GRAD   |               |      RATE      |
|==========================================================================================|
|        0 |            9 | -5.658450e-01 |  4.492407e-02 |  9.290605e-01 |   2.560000e+01 |
|        1 |           19 | -6.131382e-01 |  4.923625e-02 |  7.421541e-01 |   1.280000e+01 |
|        2 |           29 | -6.225056e-01 |  3.738784e-02 |  3.277588e-01 |   8.533333e+00 |
|        3 |           39 | -6.233366e-01 |  4.947901e-02 |  5.431133e-01 |   6.400000e+00 |
|        4 |           49 | -6.238576e-01 |  3.445763e-02 |  2.946188e-01 |   5.120000e+00 |

         Two norm of the final step = 2.946e-01
Relative two norm of the final step = 6.588e-02, TolX = 1.000e-06
EXIT: Iteration or pass limit reached.

Plot the selected features. The weights of the irrelevant features should be close to zero.

figure()
plot(mdl.FeatureWeights,'ro')
grid on
xlabel('Feature index')
ylabel('Feature weight')
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fscnca correctly detects the relevant features.

Identify Relevant Features for Classification

Load sample data

load ovariancancer; 
whos

  Name        Size                Bytes  Class     Attributes

  grp       216x1                 25056  cell                
  obs       216x4000            3456000  single              

This example uses the high-resolution ovarian cancer data set that was generated using the WCX2
protein array. After some preprocessing steps, the data set has two variables: obs and grp. The obs
variable consists 216 observations with 4000 features. Each element in grp defines the group to
which the corresponding row of obs belongs.

Divide data into training and test sets

Use cvpartition to divide data into a training set of size 160 and a test set of size 56. Both the
training set and the test set have roughly the same group proportions as in grp.
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rng(1); % For reproducibility
cvp = cvpartition(grp,'holdout',56)

cvp = 
Hold-out cross validation partition
   NumObservations: 216
       NumTestSets: 1
         TrainSize: 160
          TestSize: 56

Xtrain = obs(cvp.training,:);
ytrain = grp(cvp.training,:);
Xtest  = obs(cvp.test,:);
ytest  = grp(cvp.test,:);

Determine if feature selection is necessary

Compute generalization error without fitting.

nca = fscnca(Xtrain,ytrain,'FitMethod','none');
L = loss(nca,Xtest,ytest)

L = 0.0893

This option computes the generalization error of the neighborhood component analysis (NCA) feature
selection model using the initial feature weights (in this case the default feature weights) provided in
fscnca.

Fit NCA without regularization parameter (Lambda = 0)

nca = fscnca(Xtrain,ytrain,'FitMethod','exact','Lambda',0,...
      'Solver','sgd','Standardize',true);
L = loss(nca,Xtest,ytest)

L = 0.0714

The improvement on the loss value suggests that feature selection is a good idea. Tuning the λ value
usually improves the results.

Tune the regularization parameter for NCA using five-fold cross-validation

Tuning λ means finding the λ value that produces the minimum classification loss. To tune λ using
cross-validation:

1. Partition the training data into five folds and extract the number of validation (test) sets. For each
fold, cvpartition assigns four-fifths of the data as a training set, and one-fifth of the data as a test
set.

cvp = cvpartition(ytrain,'kfold',5);
numvalidsets = cvp.NumTestSets;

Assign λ values and create an array to store the loss function values.

n = length(ytrain);
lambdavals = linspace(0,20,20)/n;
lossvals = zeros(length(lambdavals),numvalidsets);

2. Train the NCA model for each λ value, using the training set in each fold.
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3. Compute the classification loss for the corresponding test set in the fold using the NCA model.
Record the loss value.

4. Repeat this process for all folds and all λ values.

for i = 1:length(lambdavals)
    for k = 1:numvalidsets
        X = Xtrain(cvp.training(k),:);
        y = ytrain(cvp.training(k),:);
        Xvalid = Xtrain(cvp.test(k),:);
        yvalid = ytrain(cvp.test(k),:);

        nca = fscnca(X,y,'FitMethod','exact', ...
             'Solver','sgd','Lambda',lambdavals(i), ...
             'IterationLimit',30,'GradientTolerance',1e-4, ...
             'Standardize',true);
                  
        lossvals(i,k) = loss(nca,Xvalid,yvalid,'LossFunction','classiferror');
    end
end

Compute the average loss obtained from the folds for each λ value.

meanloss = mean(lossvals,2);

Plot the average loss values versus the λ values.

figure()
plot(lambdavals,meanloss,'ro-')
xlabel('Lambda')
ylabel('Loss (MSE)')
grid on
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Find the best lambda value that corresponds to the minimum average loss.

[~,idx] = min(meanloss) % Find the index

idx = 2

bestlambda = lambdavals(idx) % Find the best lambda value

bestlambda = 0.0066

bestloss = meanloss(idx)

bestloss = 0.0250

Fit the nca model on all data using best λ and plot the feature weights

Use the solver lbfgs and standardize the predictor values.

nca = fscnca(Xtrain,ytrain,'FitMethod','exact','Solver','sgd',...
    'Lambda',bestlambda,'Standardize',true,'Verbose',1);

 o Tuning initial learning rate: NumTuningIterations = 20, TuningSubsetSize = 100

|===============================================|
|    TUNING    | TUNING SUBSET |    LEARNING    |
|     ITER     |   FUN VALUE   |      RATE      |
|===============================================|
|            1 |  2.403497e+01 |   2.000000e-01 |
|            2 |  2.275050e+01 |   4.000000e-01 |
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|            3 |  2.036845e+01 |   8.000000e-01 |
|            4 |  1.627647e+01 |   1.600000e+00 |
|            5 |  1.023512e+01 |   3.200000e+00 |
|            6 |  3.864283e+00 |   6.400000e+00 |
|            7 |  4.743816e-01 |   1.280000e+01 |
|            8 | -7.260138e-01 |   2.560000e+01 |
|            9 | -7.260138e-01 |   2.560000e+01 |
|           10 | -7.260138e-01 |   2.560000e+01 |
|           11 | -7.260138e-01 |   2.560000e+01 |
|           12 | -7.260138e-01 |   2.560000e+01 |
|           13 | -7.260138e-01 |   2.560000e+01 |
|           14 | -7.260138e-01 |   2.560000e+01 |
|           15 | -7.260138e-01 |   2.560000e+01 |
|           16 | -7.260138e-01 |   2.560000e+01 |
|           17 | -7.260138e-01 |   2.560000e+01 |
|           18 | -7.260138e-01 |   2.560000e+01 |
|           19 | -7.260138e-01 |   2.560000e+01 |
|           20 | -7.260138e-01 |   2.560000e+01 |

 o Solver = SGD, MiniBatchSize = 10, PassLimit = 5

|==========================================================================================|
|   PASS   |     ITER     | AVG MINIBATCH | AVG MINIBATCH |   NORM STEP   |    LEARNING    |
|          |              |   FUN VALUE   |   NORM GRAD   |               |      RATE      |
|==========================================================================================|
|        0 |            9 |  4.016078e+00 |  2.835465e-02 |  5.395984e+00 |   2.560000e+01 |
|        1 |           19 | -6.726156e-01 |  6.111354e-02 |  5.021138e-01 |   1.280000e+01 |
|        1 |           29 | -8.316555e-01 |  4.024185e-02 |  1.196030e+00 |   1.280000e+01 |
|        2 |           39 | -8.838656e-01 |  2.333418e-02 |  1.225839e-01 |   8.533333e+00 |
|        3 |           49 | -8.669035e-01 |  3.413150e-02 |  3.421881e-01 |   6.400000e+00 |
|        3 |           59 | -8.906935e-01 |  1.946293e-02 |  2.232510e-01 |   6.400000e+00 |
|        4 |           69 | -8.778630e-01 |  3.561283e-02 |  3.290643e-01 |   5.120000e+00 |
|        4 |           79 | -8.857136e-01 |  2.516633e-02 |  3.902977e-01 |   5.120000e+00 |

         Two norm of the final step = 3.903e-01
Relative two norm of the final step = 6.171e-03, TolX = 1.000e-06
EXIT: Iteration or pass limit reached.

Plot the feature weights.

figure()
plot(nca.FeatureWeights,'ro')
xlabel('Feature index')
ylabel('Feature weight')
grid on
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Select features using the feature weights and a relative threshold.

tol    = 0.02;
selidx = find(nca.FeatureWeights > tol*max(1,max(nca.FeatureWeights)))

selidx = 72×1

   565
   611
   654
   681
   737
   743
   744
   750
   754
   839
      ⋮

Compute the classification loss using the test set.

L = loss(nca,Xtest,ytest)

L = 0.0179

Classify observations using the selected features

Extract the features with feature weights greater than 0 from the training data.
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features = Xtrain(:,selidx);

Apply a support vector machine classifier using the selected features to the reduced training set.

svmMdl = fitcsvm(features,ytrain);

Evaluate the accuracy of the trained classifier on the test data which has not been used for selecting
features.

L = loss(svmMdl,Xtest(:,selidx),ytest)

L = single
    0

Input Arguments
X — Predictor variable values
n-by-p matrix

Predictor variable values, specified as an n-by-p matrix, where n is the number of observations and p
is the number of predictor variables.
Data Types: single | double

Y — Class labels
categorical vector | logical vector | numeric vector | string array | cell array of character vectors of
length n | character matrix with n rows

Class labels, specified as a categorical vector, logical vector, numeric vector, string array, cell array of
character vectors of length n, or character matrix with n rows, where n is the number of
observations. Element i or row i of Y is the class label corresponding to row i of X (observation i).
Data Types: single | double | logical | char | string | cell | categorical

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: 'Solver','sgd','Weights',W,'Lambda',0.0003 specifies the solver as the stochastic
gradient descent, the observation weights as the values in the vector W, and sets the regularization
parameter at 0.0003.

Fitting Options

FitMethod — Method for fitting the model
'exact' (default) | 'none' | 'average'

Method for fitting the model, specified as the comma-separated pair consisting of 'FitMethod' and
one of the following:

• 'exact' — Performs fitting using all of the data.
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• 'none' — No fitting. Use this option to evaluate the generalization error of the NCA model using
the initial feature weights supplied in the call to fscnca.

• 'average' — Divides the data into partitions (subsets), fits each partition using the exact
method, and returns the average of the feature weights. You can specify the number of partitions
using the NumPartitions name-value pair argument.

Example: 'FitMethod','none'

NumPartitions — Number of partitions
max(2,min(10,n)) (default) | integer between 2 and n

Number of partitions to split the data for using with 'FitMethod','average' option, specified as
the comma-separated pair consisting of 'NumPartitions' and an integer value between 2 and n,
where n is the number of observations.
Example: 'NumPartitions',15
Data Types: double | single

Lambda — Regularization parameter
1/n (default) | nonnegative scalar

Regularization parameter to prevent overfitting, specified as the comma-separated pair consisting of
'Lambda' and a nonnegative scalar.

As the number of observations n increases, the chance of overfitting decreases and the required
amount of regularization also decreases. See “Identify Relevant Features for Classification” on page
35-2870 and “Tune Regularization Parameter to Detect Features Using NCA for Classification” on
page 16-207 to learn how to tune the regularization parameter.
Example: 'Lambda',0.002
Data Types: double | single

LengthScale — Width of the kernel
1 (default) | positive real scalar

Width of the kernel, specified as the comma-separated pair consisting of 'LengthScale' and a
positive real scalar.

A length scale value of 1 is sensible when all predictors are on the same scale. If the predictors in X
are of very different magnitudes, then consider standardizing the predictor values using
'Standardize',true and setting 'LengthScale',1.
Example: 'LengthScale',1.5
Data Types: double | single

InitialFeatureWeights — Initial feature weights
ones(p,1) (default) | p-by-1 vector of real positive scalars

Initial feature weights, specified as the comma-separated pair consisting of
'InitialFeatureWeights' and a p-by-1 vector of real positive scalars, where p is the number of
predictors in the training data.

The regularized objective function for optimizing feature weights is nonconvex. As a result, using
different initial feature weights can give different results. Setting all initial feature weights to 1
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generally works well, but in some cases, random initialization using rand(p,1) can give better
quality solutions.
Data Types: double | single

Weights — Observation weights
n-by-1 vector of 1s (default) | n-by-1 vector of real positive scalars

Observation weights, specified as the comma-separated pair consisting of 'Weights' and an n-by-1
vector of real positive scalars. Use observation weights to specify higher importance of some
observations compared to others. The default weights assign equal importance to all observations.
Data Types: double | single

Prior — Prior probabilities for each class
'empirical' (default) | 'uniform' | structure

Prior probabilities for each class, specified as the comma-separated pair consisting of 'Prior' and
one of the following:

• 'empirical' — fscnca obtains the prior class probabilities from class frequencies.
• 'uniform' — fscnca sets all class probabilities equal.
• Structure with two fields:

• ClassProbs — Vector of class probabilities. If these are numeric values with a total greater
than 1, fsnca normalizes them to add up to 1.

• ClassNames — Class names corresponding to the class probabilities in ClassProbs.

Example: 'Prior','uniform'

Standardize — Indicator for standardizing predictor data
false (default) | true

Indicator for standardizing the predictor data, specified as the comma-separated pair consisting of
'Standardize' and either false or true. For more information, see “Impact of Standardization”
on page 16-100.
Example: 'Standardize',true
Data Types: logical

Verbose — Verbosity level indicator
0 (default) | 1 | >1

Verbosity level indicator for the convergence summary display, specified as the comma-separated pair
consisting of 'Verbose' and one of the following:

• 0 — No convergence summary
• 1 — Convergence summary, including norm of gradient and objective function values
• > 1 — More convergence information, depending on the fitting algorithm

When using 'minibatch-lbfgs' solver and verbosity level > 1, the convergence information
includes iteration the log from intermediate mini-batch LBFGS fits.

Example: 'Verbose',1
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Data Types: double | single

Solver — Solver type
'lbfgs' | 'sgd' | 'minibatch-lbfgs'

Solver type for estimating feature weights, specified as the comma-separated pair consisting of
'Solver' and one of the following:

• 'lbfgs' — Limited memory Broyden-Fletcher-Goldfarb-Shanno (LBFGS) algorithm
• 'sgd' — Stochastic gradient descent (SGD) algorithm
• 'minibatch-lbfgs' — Stochastic gradient descent with LBFGS algorithm applied to mini-

batches

Default is 'lbfgs' for n ≤ 1000, and 'sgd' for n > 1000.
Example: 'solver','minibatch-lbfgs'

LossFunction — Loss function
'classiferror' (default) | function handle

Loss function, specified as the comma-separated pair consisting of 'LossFunction' and one of the
following.

• 'classiferror' — Misclassification error

l yi, y j =
1 if yi ≠ y j,

0 otherwise.
• @lossfun — Custom loss function handle. A loss function has this form.

function L = lossfun(Yu,Yv)
% calculation of loss
...

Yu is a u-by-1 vector and Yv is a v-by-1 vector. L is a u-by-v matrix of loss values such that L(i,j)
is the loss value for Yu(i) and Yv(j).

The objective function for minimization includes the loss function l(yi,yj) as follows:

f w = 1
n ∑i = 1

n
∑

j = 1, j ≠ i

n
pi jl yi, y j + λ ∑

r = 1

p
wr

2,

where w is the feature weight vector, n is the number of observations, and p is the number of
predictor variables. pij is the probability that xj is the reference point for xi. For details, see “NCA
Feature Selection for Classification” on page 16-97.
Example: 'LossFunction',@lossfun

CacheSize — Memory size
1000MB (default) | integer

Memory size, in MB, to use for objective function and gradient computation, specified as the comma-
separated pair consisting of 'CacheSize' and an integer.
Example: 'CacheSize',1500MB
Data Types: double | single
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LBFGS Options

HessianHistorySize — Size of history buffer for Hessian approximation
15 (default) | positive integer

Size of history buffer for Hessian approximation for the 'lbfgs' solver, specified as the comma-
separated pair consisting of 'HessianHistorySize' and a positive integer. At each iteration the
function uses the most recent HessianHistorySize iterations to build an approximation to the
inverse Hessian.
Example: 'HessianHistorySize',20
Data Types: double | single

InitialStepSize — Initial step size
'auto' (default) | positive real scalar

Initial step size for the 'lbfgs' solver, specified as the comma-separated pair consisting of
'InitialStepSize' and a positive real scalar. By default, the function determines the initial step
size automatically.
Data Types: double | single

LineSearchMethod — Line search method
'weakwolfe' (default) | 'strongwolfe' | 'backtracking'

Line search method, specified as the comma-separated pair consisting of 'LineSearchMethod' and
one of the following:

• 'weakwolfe' — Weak Wolfe line search
• 'strongwolfe' — Strong Wolfe line search
• 'backtracking' — Backtracking line search

Example: 'LineSearchMethod','backtracking'

MaxLineSearchIterations — Maximum number of line search iterations
20 (default) | positive integer

Maximum number of line search iterations, specified as the comma-separated pair consisting of
'MaxLineSearchIterations' and a positive integer.
Example: 'MaxLineSearchIterations',25
Data Types: double | single

GradientTolerance — Relative convergence tolerance
1e-6 (default) | positive real scalar

Relative convergence tolerance on the gradient norm for solver lbfgs, specified as the comma-
separated pair consisting of 'GradientTolerance' and a positive real scalar.
Example: 'GradientTolerance',0.000002
Data Types: double | single
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SGD Options

InitialLearningRate — Initial learning rate for 'sgd' solver
'auto' (default) | positive real scalar

Initial learning rate for the 'sgd' solver, specified as the comma-separated pair consisting of
'InitialLearningRate' and a positive real scalar.

When using solver type 'sgd', the learning rate decays over iterations starting with the value
specified for 'InitialLearningRate'.

The default 'auto' means that the initial learning rate is determined using experiments on small
subsets of data. Use the NumTuningIterations name-value pair argument to specify the number of
iterations for automatically tuning the initial learning rate. Use the TuningSubsetSize name-value
pair argument to specify the number of observations to use for automatically tuning the initial
learning rate.

For solver type 'minibatch-lbfgs', you can set 'InitialLearningRate' to a very high value.
In this case, the function applies LBFGS to each mini-batch separately with initial feature weights
from the previous mini-batch.

To make sure the chosen initial learning rate decreases the objective value with each iteration, plot
the Iteration versus the Objective values saved in the mdl.FitInfo property.

You can use the refit method with 'InitialFeatureWeights' equal to mdl.FeatureWeights
to start from the current solution and run additional iterations
Example: 'InitialLearningRate',0.9
Data Types: double | single

MiniBatchSize — Number of observations to use in each batch for the 'sgd' solver
min(10,n) (default) | positive integer value from 1 to n

Number of observations to use in each batch for the 'sgd' solver, specified as the comma-separated
pair consisting of 'MiniBatchSize' and a positive integer from 1 to n.
Example: 'MiniBatchSize',25
Data Types: double | single

PassLimit — Maximum number of passes for solver 'sgd'
5 (default) | positive integer

Maximum number of passes through all n observations for solver 'sgd', specified as the comma-
separated pair consisting of 'PassLimit' and a positive integer. Each pass through all of the data is
called an epoch.
Example: 'PassLimit',10
Data Types: double | single

NumPrint — Frequency of batches for displaying convergence summary
10 (default) | positive integer value

Frequency of batches for displaying convergence summary for the 'sgd' solver , specified as the
comma-separated pair consisting of 'NumPrint' and a positive integer. This argument applies when
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the 'Verbose' value is greater than 0. NumPrint mini-batches are processed for each line of the
convergence summary that is displayed on the command line.
Example: 'NumPrint',5
Data Types: double | single

NumTuningIterations — Number of tuning iterations
20 (default) | positive integer

Number of tuning iterations for the 'sgd' solver, specified as the comma-separated pair consisting of
'NumTuningIterations' and a positive integer. This option is valid only for
'InitialLearningRate','auto'.
Example: 'NumTuningIterations',15
Data Types: double | single

TuningSubsetSize — Number of observations to use for tuning initial learning rate
min(100,n) (default) | positive integer value from 1 to n

Number of observations to use for tuning the initial learning rate, specified as the comma-separated
pair consisting of 'TuningSubsetSize' and a positive integer value from 1 to n. This option is valid
only for 'InitialLearningRate','auto'.
Example: 'TuningSubsetSize',25
Data Types: double | single

SGD or LBFGS Options

IterationLimit — Maximum number of iterations
positive integer

Maximum number of iterations, specified as the comma-separated pair consisting of
'IterationLimit' and a positive integer. The default is 10000 for SGD and 1000 for LBFGS and
mini-batch LBFGS.

Each pass through a batch is an iteration. Each pass through all of the data is an epoch. If the data is
divided into k mini-batches, then every epoch is equivalent to k iterations.
Example: 'IterationLimit',250
Data Types: double | single

StepTolerance — Convergence tolerance on the step size
1e-6 (default) | positive real scalar

Convergence tolerance on the step size, specified as the comma-separated pair consisting of
'StepTolerance' and a positive real scalar. The 'lbfgs' solver uses an absolute step tolerance,
and the 'sgd' solver uses a relative step tolerance.
Example: 'StepTolerance',0.000005
Data Types: double | single
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Mini-Batch LBFGS Options

MiniBatchLBFGSIterations — Maximum number of iterations per mini-batch LBFGS step
10 (default) | positive integer

Maximum number of iterations per mini-batch LBFGS step, specified as the comma-separated pair
consisting of 'MiniBatchLBFGSIterations' and a positive integer.
Example: 'MiniBatchLBFGSIterations',15
Data Types: double | single

Note The mini-batch LBFGS algorithm is a combination of SGD and LBFGS methods. Therefore, all
of the name-value pair arguments that apply to SGD and LBFGS solvers also apply to the mini-batch
LBFGS algorithm.

Output Arguments
mdl — Neighborhood component analysis model for classification
FeatureSelectionNCAClassification object

Neighborhood component analysis model for classification, returned as a
FeatureSelectionNCAClassification object.

Version History
Introduced in R2016b

See Also
FeatureSelectionNCAClassification | loss | refit | predict

Topics
“Tune Regularization Parameter to Detect Features Using NCA for Classification” on page 16-207
“Neighborhood Component Analysis (NCA) Feature Selection” on page 16-97
“Introduction to Feature Selection” on page 16-47
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fsrnca
Feature selection using neighborhood component analysis for regression

Syntax
mdl = fsrnca(X,Y)
mdl = fsrnca(X,Y,Name,Value)

Description
mdl = fsrnca(X,Y) performs feature selection for regression using the predictors in X and
responses in Y.

fsrnca learns the feature weights by a diagonal adaptation of neighborhood component analysis
(NCA) with regularization.

mdl = fsrnca(X,Y,Name,Value) performs feature selection for regression with additional options
specified by one or more name-value pair arguments.

Examples

Detect Relevant Features in Data Using NCA for Regression

Generate toy data where the response variable depends on the 3rd, 9th, and 15th predictors.

rng(0,'twister'); % For reproducibility
N = 100;
X = rand(N,20);
y = 1 + X(:,3)*5 + sin(X(:,9)./X(:,15) + 0.25*randn(N,1));

Fit the neighborhood component analysis model for regression.

mdl = fsrnca(X,y,'Verbose',1,'Lambda',0.5/N);

 o Solver = LBFGS, HessianHistorySize = 15, LineSearchMethod = weakwolfe

|====================================================================================================|
|   ITER   |   FUN VALUE   |  NORM GRAD  |  NORM STEP  |  CURV  |    GAMMA    |    ALPHA    | ACCEPT |
|====================================================================================================|
|        0 |  1.636932e+00 |   3.688e-01 |   0.000e+00 |        |   1.627e+00 |   0.000e+00 |   YES  |
|        1 |  8.304833e-01 |   1.083e-01 |   2.449e+00 |    OK  |   9.194e+00 |   4.000e+00 |   YES  |
|        2 |  7.548105e-01 |   1.341e-02 |   1.164e+00 |    OK  |   1.095e+01 |   1.000e+00 |   YES  |
|        3 |  7.346997e-01 |   9.752e-03 |   6.383e-01 |    OK  |   2.979e+01 |   1.000e+00 |   YES  |
|        4 |  7.053407e-01 |   1.605e-02 |   1.712e+00 |    OK  |   5.809e+01 |   1.000e+00 |   YES  |
|        5 |  6.970502e-01 |   9.106e-03 |   8.818e-01 |    OK  |   6.223e+01 |   1.000e+00 |   YES  |
|        6 |  6.952347e-01 |   5.522e-03 |   6.382e-01 |    OK  |   3.280e+01 |   1.000e+00 |   YES  |
|        7 |  6.946302e-01 |   9.102e-04 |   1.952e-01 |    OK  |   3.380e+01 |   1.000e+00 |   YES  |
|        8 |  6.945037e-01 |   6.557e-04 |   9.942e-02 |    OK  |   8.490e+01 |   1.000e+00 |   YES  |
|        9 |  6.943908e-01 |   1.997e-04 |   1.756e-01 |    OK  |   1.124e+02 |   1.000e+00 |   YES  |
|       10 |  6.943785e-01 |   3.478e-04 |   7.755e-02 |    OK  |   7.621e+01 |   1.000e+00 |   YES  |
|       11 |  6.943728e-01 |   1.428e-04 |   3.416e-02 |    OK  |   3.649e+01 |   1.000e+00 |   YES  |
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|       12 |  6.943711e-01 |   1.128e-04 |   1.231e-02 |    OK  |   6.092e+01 |   1.000e+00 |   YES  |
|       13 |  6.943688e-01 |   1.066e-04 |   2.326e-02 |    OK  |   9.319e+01 |   1.000e+00 |   YES  |
|       14 |  6.943655e-01 |   9.324e-05 |   4.399e-02 |    OK  |   1.810e+02 |   1.000e+00 |   YES  |
|       15 |  6.943603e-01 |   1.206e-04 |   8.823e-02 |    OK  |   4.609e+02 |   1.000e+00 |   YES  |
|       16 |  6.943582e-01 |   1.701e-04 |   6.669e-02 |    OK  |   8.425e+01 |   5.000e-01 |   YES  |
|       17 |  6.943552e-01 |   5.160e-05 |   6.473e-02 |    OK  |   8.832e+01 |   1.000e+00 |   YES  |
|       18 |  6.943546e-01 |   2.477e-05 |   1.215e-02 |    OK  |   7.925e+01 |   1.000e+00 |   YES  |
|       19 |  6.943546e-01 |   1.077e-05 |   6.086e-03 |    OK  |   1.378e+02 |   1.000e+00 |   YES  |

|====================================================================================================|
|   ITER   |   FUN VALUE   |  NORM GRAD  |  NORM STEP  |  CURV  |    GAMMA    |    ALPHA    | ACCEPT |
|====================================================================================================|
|       20 |  6.943545e-01 |   2.260e-05 |   4.071e-03 |    OK  |   5.856e+01 |   1.000e+00 |   YES  |
|       21 |  6.943545e-01 |   4.250e-06 |   1.109e-03 |    OK  |   2.964e+01 |   1.000e+00 |   YES  |
|       22 |  6.943545e-01 |   1.916e-06 |   8.356e-04 |    OK  |   8.649e+01 |   1.000e+00 |   YES  |
|       23 |  6.943545e-01 |   1.083e-06 |   5.270e-04 |    OK  |   1.168e+02 |   1.000e+00 |   YES  |
|       24 |  6.943545e-01 |   1.791e-06 |   2.673e-04 |    OK  |   4.016e+01 |   1.000e+00 |   YES  |
|       25 |  6.943545e-01 |   2.596e-07 |   1.111e-04 |    OK  |   3.154e+01 |   1.000e+00 |   YES  |

         Infinity norm of the final gradient = 2.596e-07
              Two norm of the final step     = 1.111e-04, TolX   = 1.000e-06
Relative infinity norm of the final gradient = 2.596e-07, TolFun = 1.000e-06
EXIT: Local minimum found.

Plot the selected features. The weights of the irrelevant features should be close to zero.

figure()
plot(mdl.FeatureWeights,'ro')
grid on
xlabel('Feature index')
ylabel('Feature weight')
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fsrnca correctly detects the relevant predictors for this response.

Tune Regularization Parameter in NCA for Regression

Load the sample data.

load robotarm.mat

The robotarm (pumadyn32nm) dataset is created using a robot arm simulator with 7168 training
observations and 1024 test observations with 32 features [1][2]. This is a preprocessed version of the
original data set. The data are preprocessed by subtracting off a linear regression fit, followed by
normalization of all features to unit variance.

Perform neighborhood component analysis (NCA) feature selection for regression with the default λ
(regularization parameter) value.

nca = fsrnca(Xtrain,ytrain,'FitMethod','exact', ...
    'Solver','lbfgs');

Plot the selected values.

figure
plot(nca.FeatureWeights,'ro')
xlabel('Feature index')
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ylabel('Feature weight')
grid on

More than half of the feature weights are nonzero. Compute the loss using the test set as a measure
of the performance by using the selected features.

L = loss(nca,Xtest,ytest)

L = 0.0837

Try improving the performance. Tune the regularization parameter λ for feature selection using five-
fold cross-validation. Tuning λ means finding the λ value that produces the minimum regression loss.
To tune λ using cross-validation:

1. Partition the data into five folds. For each fold, cvpartition assigns 4/5th of the data as a
training set, and 1/5th of the data as a test set.

rng(1) % For reproducibility 
n = length(ytrain);
cvp = cvpartition(length(ytrain),'kfold',5);
numvalidsets = cvp.NumTestSets;

Assign the λ values for the search. Multiplying response values by a constant increases the loss
function term by a factor of the constant. Therefore, including the std(ytrain) factor in the λ
values balances the default loss function ('mad', mean absolute deviation) term and the
regularization term in the objective function. In this example, the std(ytrain) factor is one because
the loaded sample data is a preprocessed version of the original data set.
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lambdavals = linspace(0,50,20)*std(ytrain)/n;

Create an array to store the loss values.

lossvals = zeros(length(lambdavals),numvalidsets);

2. Train the NCA model for each λ value, using the training set in each fold.

3. Compute the regression loss for the corresponding test set in the fold using the NCA model.
Record the loss value.

4. Repeat this for each λ value and each fold.

for i = 1:length(lambdavals)
    for k = 1:numvalidsets
        X = Xtrain(cvp.training(k),:);
        y = ytrain(cvp.training(k),:);
        Xvalid = Xtrain(cvp.test(k),:);
        yvalid = ytrain(cvp.test(k),:);

        nca = fsrnca(X,y,'FitMethod','exact', ...
             'Solver','minibatch-lbfgs','Lambda',lambdavals(i), ...
             'GradientTolerance',1e-4,'IterationLimit',30);
        
        lossvals(i,k) = loss(nca,Xvalid,yvalid,'LossFunction','mse');
    end
end

Compute the average loss obtained from the folds for each λ value.

meanloss = mean(lossvals,2);

Plot the mean loss versus the λ values.

figure
plot(lambdavals,meanloss,'ro-')
xlabel('Lambda')
ylabel('Loss (MSE)')
grid on
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Find the λ value that gives the minimum loss value.

[~,idx] = min(meanloss)

idx = 17

bestlambda = lambdavals(idx)

bestlambda = 0.0059

bestloss = meanloss(idx)

bestloss = 0.0590

Fit the NCA feature selection model for regression using the best λ value.

nca = fsrnca(Xtrain,ytrain,'FitMethod','exact', ...
    'Solver','lbfgs','Lambda',bestlambda);

Plot the selected features.

figure
plot(nca.FeatureWeights,'ro')
xlabel('Feature Index')
ylabel('Feature Weight')
grid on
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Most of the feature weights are zero. fsrnca identifies the four most relevant features.

Compute the loss for the test set.

L = loss(nca,Xtest,ytest)

L = 0.0571

Tuning the regularization parameter, λ, eliminated more of the irrelevant features and improved the
performance.

Compare NCA and ARD Feature Selection

This example uses the Abalone data [3][4] from the UCI Machine Learning Repository [5].

Download the data and save it in your current folder with the name 'abalone.csv'.

url = 'https://archive.ics.uci.edu/ml/machine-learning-databases/abalone/abalone.data';
websave('abalone.csv',url);

Read the data into a table. Display the first seven rows.

tbl = readtable('abalone.csv','Filetype','text','ReadVariableNames',false);
tbl.Properties.VariableNames = {'Sex','Length','Diameter','Height', ...

35 Functions

35-2890



    'WWeight','SWeight','VWeight','ShWeight','NoShellRings'};
tbl(1:7,:)

ans=7×9 table
     Sex     Length    Diameter    Height    WWeight    SWeight    VWeight    ShWeight    NoShellRings
    _____    ______    ________    ______    _______    _______    _______    ________    ____________

    {'M'}    0.455      0.365      0.095      0.514     0.2245      0.101       0.15           15     
    {'M'}     0.35      0.265       0.09     0.2255     0.0995     0.0485       0.07            7     
    {'F'}     0.53       0.42      0.135      0.677     0.2565     0.1415       0.21            9     
    {'M'}     0.44      0.365      0.125      0.516     0.2155      0.114      0.155           10     
    {'I'}     0.33      0.255       0.08      0.205     0.0895     0.0395      0.055            7     
    {'I'}    0.425        0.3      0.095     0.3515      0.141     0.0775       0.12            8     
    {'F'}     0.53      0.415       0.15     0.7775      0.237     0.1415       0.33           20     

The dataset has 4177 observations. The goal is to predict the age of abalone from eight physical
measurements. The last variable, the number of shell rings, shows the age of the abalone. The first
predictor is a categorical variable. The last variable in the table is the response variable.

Prepare the predictor and response variables for fsrnca. The last column of tbl contains the
number of shell rings, which is the response variable. The first predictor variable, sex, is categorical.
You must create dummy variables.

y = table2array(tbl(:,end));
X(:,1:3) = dummyvar(categorical(tbl.Sex));
X = [X,table2array(tbl(:,2:end-1))];

Use four-fold cross-validation to tune the regularization parameter in the NCA model. First partition
the data into four folds.

rng('default') % For reproducibility
n = length(y);
cvp = cvpartition(n,'kfold',4);
numtestsets = cvp.NumTestSets;

cvpartition divides the data into four partitions (folds). In each fold, about three-fourths of the
data is assigned as a training set and one-fourth is assigned as a test set.

Generate a variety of λ (regularization parameter) values for fitting the model to determine the best λ
value. Create a vector to collect the loss values from each fit.

lambdavals = linspace(0,25,20)*std(y)/n;
lossvals = zeros(length(lambdavals),numtestsets);

The rows of lossvals corresponds to the λ values and the columns correspond to the folds.

Fit the NCA model for regression using fsrnca to the data from each fold using each λ value.
Compute the loss for each model using the test data from each fold.

for i = 1:length(lambdavals)
   for k = 1:numtestsets
       Xtrain = X(cvp.training(k),:);
       ytrain = y(cvp.training(k),:);
       Xtest = X(cvp.test(k),:);
       ytest = y(cvp.test(k),:);

       nca = fsrnca(Xtrain,ytrain,'FitMethod','exact', ...
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                 'Solver','lbfgs','Lambda',lambdavals(i),'Standardize',true);

       lossvals(i,k) = loss(nca,Xtest,ytest,'LossFunction','mse');
    end
end

Compute the average loss for the folds, that is, compute the mean in the second dimension of
lossvals.

meanloss = mean(lossvals,2);

Plot the λ values versus the mean loss from the four folds.

figure
plot(lambdavals,meanloss,'ro-')
xlabel('Lambda')
ylabel('Loss (MSE)')
grid on

Find the λ value that minimizes the mean loss.

[~,idx] = min(meanloss);
bestlambda = lambdavals(idx)

bestlambda = 0.0071

Compute the best loss value.

bestloss = meanloss(idx)
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bestloss = 4.7799

Fit the NCA model on all of the data using the best λ value.

nca = fsrnca(X,y,'FitMethod','exact','Solver','lbfgs', ...
    'Verbose',1,'Lambda',bestlambda,'Standardize',true);

 o Solver = LBFGS, HessianHistorySize = 15, LineSearchMethod = weakwolfe

|====================================================================================================|
|   ITER   |   FUN VALUE   |  NORM GRAD  |  NORM STEP  |  CURV  |    GAMMA    |    ALPHA    | ACCEPT |
|====================================================================================================|
|        0 |  2.469168e+00 |   1.266e-01 |   0.000e+00 |        |   4.741e+00 |   0.000e+00 |   YES  |
|        1 |  2.375166e+00 |   8.265e-02 |   7.268e-01 |    OK  |   1.054e+01 |   1.000e+00 |   YES  |
|        2 |  2.293528e+00 |   2.067e-02 |   2.034e+00 |    OK  |   1.569e+01 |   1.000e+00 |   YES  |
|        3 |  2.286703e+00 |   1.031e-02 |   3.158e-01 |    OK  |   2.213e+01 |   1.000e+00 |   YES  |
|        4 |  2.279928e+00 |   2.023e-02 |   9.374e-01 |    OK  |   1.953e+01 |   1.000e+00 |   YES  |
|        5 |  2.276258e+00 |   6.884e-03 |   2.497e-01 |    OK  |   1.439e+01 |   1.000e+00 |   YES  |
|        6 |  2.274358e+00 |   1.792e-03 |   4.010e-01 |    OK  |   3.109e+01 |   1.000e+00 |   YES  |
|        7 |  2.274105e+00 |   2.412e-03 |   2.399e-01 |    OK  |   3.557e+01 |   1.000e+00 |   YES  |
|        8 |  2.274073e+00 |   1.459e-03 |   7.684e-02 |    OK  |   1.356e+01 |   1.000e+00 |   YES  |
|        9 |  2.274050e+00 |   3.733e-04 |   3.797e-02 |    OK  |   1.725e+01 |   1.000e+00 |   YES  |
|       10 |  2.274043e+00 |   2.750e-04 |   1.379e-02 |    OK  |   2.445e+01 |   1.000e+00 |   YES  |
|       11 |  2.274027e+00 |   2.682e-04 |   5.701e-02 |    OK  |   7.386e+01 |   1.000e+00 |   YES  |
|       12 |  2.274020e+00 |   1.712e-04 |   4.107e-02 |    OK  |   9.461e+01 |   1.000e+00 |   YES  |
|       13 |  2.274014e+00 |   2.633e-04 |   6.720e-02 |    OK  |   7.469e+01 |   1.000e+00 |   YES  |
|       14 |  2.274012e+00 |   9.818e-05 |   2.263e-02 |    OK  |   3.275e+01 |   1.000e+00 |   YES  |
|       15 |  2.274012e+00 |   4.220e-05 |   6.188e-03 |    OK  |   2.799e+01 |   1.000e+00 |   YES  |
|       16 |  2.274012e+00 |   2.859e-05 |   4.979e-03 |    OK  |   6.628e+01 |   1.000e+00 |   YES  |
|       17 |  2.274011e+00 |   1.582e-05 |   6.767e-03 |    OK  |   1.439e+02 |   1.000e+00 |   YES  |
|       18 |  2.274011e+00 |   7.623e-06 |   4.311e-03 |    OK  |   1.211e+02 |   1.000e+00 |   YES  |
|       19 |  2.274011e+00 |   3.038e-06 |   2.528e-04 |    OK  |   1.798e+01 |   5.000e-01 |   YES  |

|====================================================================================================|
|   ITER   |   FUN VALUE   |  NORM GRAD  |  NORM STEP  |  CURV  |    GAMMA    |    ALPHA    | ACCEPT |
|====================================================================================================|
|       20 |  2.274011e+00 |   6.710e-07 |   2.325e-04 |    OK  |   2.721e+01 |   1.000e+00 |   YES  |

         Infinity norm of the final gradient = 6.710e-07
              Two norm of the final step     = 2.325e-04, TolX   = 1.000e-06
Relative infinity norm of the final gradient = 6.710e-07, TolFun = 1.000e-06
EXIT: Local minimum found.

Plot the selected features.

figure
plot(nca.FeatureWeights,'ro')
xlabel('Feature Index')
ylabel('Feature Weight')
grid on
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The irrelevant features have zero weights. According to this figure, the features 1, 3, and 9 are not
selected.

Fit a Gaussian process regression (GPR) model using the subset of regressors method for parameter
estimation and the fully independent conditional method for prediction. Use the ARD squared
exponential kernel function, which assigns an individual weight to each predictor. Standardize the
predictors.

gprMdl = fitrgp(tbl,'NoShellRings','KernelFunction','ardsquaredexponential', ...
      'FitMethod','sr','PredictMethod','fic','Standardize',true)

gprMdl = 
  RegressionGP
           PredictorNames: {'Sex'  'Length'  'Diameter'  'Height'  'WWeight'  'SWeight'  'VWeight'  'ShWeight'}
             ResponseName: 'NoShellRings'
    CategoricalPredictors: 1
        ResponseTransform: 'none'
          NumObservations: 4177
           KernelFunction: 'ARDSquaredExponential'
        KernelInformation: [1×1 struct]
            BasisFunction: 'Constant'
                     Beta: 11.4959
                    Sigma: 2.0282
        PredictorLocation: [10×1 double]
           PredictorScale: [10×1 double]
                    Alpha: [1000×1 double]
         ActiveSetVectors: [1000×10 double]
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            PredictMethod: 'FIC'
            ActiveSetSize: 1000
                FitMethod: 'SR'
          ActiveSetMethod: 'Random'
        IsActiveSetVector: [4177×1 logical]
            LogLikelihood: -9.0019e+03
         ActiveSetHistory: [1×1 struct]
           BCDInformation: []

  Properties, Methods

Compute the regression loss on the training data (resubstitution loss) for the trained model.

L = resubLoss(gprMdl)

L = 4.0306

The smallest cross-validated loss using fsrnca is comparable to the loss obtained using a GPR model
with an ARD kernel.

Input Arguments
X — Predictor variable values
n-by-p matrix

Predictor variable values, specified as an n-by-p matrix, where n is the number of observations and p
is the number of predictor variables.
Data Types: single | double

Y — Response values
numeric real vector of length n

Response values, specified as a numeric real vector of length n, where n is the number of
observations.
Data Types: single | double

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: 'Solver','sgd','Weights',W,'Lambda',0.0003 specifies the solver as the stochastic
gradient descent, the observation weights as the values in the vector W, and sets the regularization
parameter at 0.0003.

Fitting Options

FitMethod — Method for fitting the model
'exact' (default) | 'none' | 'average'
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Method for fitting the model, specified as the comma-separated pair consisting of 'FitMethod' and
one of the following:

• 'exact' — Performs fitting using all of the data.
• 'none' — No fitting. Use this option to evaluate the generalization error of the NCA model using

the initial feature weights supplied in the call to fsrnca.
• 'average' — Divides the data into partitions (subsets), fits each partition using the exact

method, and returns the average of the feature weights. You can specify the number of partitions
using the NumPartitions name-value pair argument.

Example: 'FitMethod','none'

NumPartitions — Number of partitions
max(2,min(10,n)) (default) | integer between 2 and n

Number of partitions to split the data for using with 'FitMethod','average' option, specified as
the comma-separated pair consisting of 'NumPartitions' and an integer value between 2 and n,
where n is the number of observations.
Example: 'NumPartitions',15
Data Types: double | single

Lambda — Regularization parameter
1/n (default) | nonnegative scalar

Regularization parameter to prevent overfitting, specified as the comma-separated pair consisting of
'Lambda' and a nonnegative scalar.

As the number of observations n increases, the chance of overfitting decreases and the required
amount of regularization also decreases. See “Tune Regularization Parameter in NCA for Regression”
on page 35-2886 to learn how to tune the regularization parameter.
Example: 'Lambda',0.002
Data Types: double | single

LengthScale — Width of the kernel
1 (default) | positive real scalar

Width of the kernel, specified as the comma-separated pair consisting of 'LengthScale' and a
positive real scalar.

A length scale value of 1 is sensible when all predictors are on the same scale. If the predictors in X
are of very different magnitudes, then consider standardizing the predictor values using
'Standardize',true and setting 'LengthScale',1.
Example: 'LengthScale',1.5
Data Types: double | single

InitialFeatureWeights — Initial feature weights
ones(p,1) (default) | p-by-1 vector of real positive scalars

Initial feature weights, specified as the comma-separated pair consisting of
'InitialFeatureWeights' and a p-by-1 vector of real positive scalars, where p is the number of
predictors in the training data.
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The regularized objective function for optimizing feature weights is nonconvex. As a result, using
different initial feature weights can give different results. Setting all initial feature weights to 1
generally works well, but in some cases, random initialization using rand(p,1) can give better
quality solutions.
Data Types: double | single

Weights — Observation weights
n-by-1 vector of 1s (default) | n-by-1 vector of real positive scalars

Observation weights, specified as the comma-separated pair consisting of 'Weights' and an n-by-1
vector of real positive scalars. Use observation weights to specify higher importance of some
observations compared to others. The default weights assign equal importance to all observations.
Data Types: double | single

Standardize — Indicator for standardizing predictor data
false (default) | true

Indicator for standardizing the predictor data, specified as the comma-separated pair consisting of
'Standardize' and either false or true. For more information, see “Impact of Standardization”
on page 16-100.
Example: 'Standardize',true
Data Types: logical

Verbose — Verbosity level indicator
0 (default) | 1 | >1

Verbosity level indicator for the convergence summary display, specified as the comma-separated pair
consisting of 'Verbose' and one of the following:

• 0 — No convergence summary
• 1 — Convergence summary, including norm of gradient and objective function values
• > 1 — More convergence information, depending on the fitting algorithm

When using 'minibatch-lbfgs' solver and verbosity level > 1, the convergence information
includes iteration the log from intermediate mini-batch LBFGS fits.

Example: 'Verbose',1
Data Types: double | single

Solver — Solver type
'lbfgs' | 'sgd' | 'minibatch-lbfgs'

Solver type for estimating feature weights, specified as the comma-separated pair consisting of
'Solver' and one of the following:

• 'lbfgs' — Limited memory Broyden-Fletcher-Goldfarb-Shanno (LBFGS) algorithm
• 'sgd' — Stochastic gradient descent (SGD) algorithm
• 'minibatch-lbfgs' — Stochastic gradient descent with LBFGS algorithm applied to mini-

batches

Default is 'lbfgs' for n ≤ 1000, and 'sgd' for n > 1000.
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Example: 'solver','minibatch-lbfgs'

LossFunction — Loss function
'mad' (default) | 'mse' | 'epsiloninsensitive' | function handle

Loss function, specified as the comma-separated pair consisting of 'LossFunction' and one of the
following:

• 'mad' — Mean absolute deviation

l yi, y j = yi− y j .
• 'mse' — Mean squared error

l yi, y j = yi− y j
2 .

• 'epsiloninsensitive' — ε-insensitive loss function

l yi, y j = max 0, yi− y j − ϵ .

This loss function is more robust to outliers than mean squared error or mean absolute deviation.
• @lossfun — Custom loss function handle. A loss function has this form.

function L = lossfun(Yu,Yv)
% calculation of loss
...

Yu is a u-by-1 vector and Yv is a v-by-1 vector. L is a u-by-v matrix of loss values such that L(i,j)
is the loss value for Yu(i) and Yv(j).

The objective function for minimization includes the loss function l(yi,yj) as follows:

f w = 1
n ∑i = 1

n
∑

j = 1, j ≠ i

n
pi jl yi, y j + λ ∑

r = 1

p
wr

2,

where w is the feature weight vector, n is the number of observations, and p is the number of
predictor variables. pij is the probability that xj is the reference point for xi. For details, see “NCA
Feature Selection for Regression” on page 16-99.
Example: 'LossFunction',@lossfun

Epsilon — Epsilon value
iqr(Y)/13.49 (default) | nonnegative real scalar

Epsilon value for the 'LossFunction','epsiloninsensitive' option, specified as the comma-
separated pair consisting of 'LossFunction' and a nonnegative real scalar. The default value is an
estimate of the sample standard deviation using the interquartile range of the response variable.
Example: 'Epsilon',0.1
Data Types: double | single

CacheSize — Memory size
1000MB (default) | integer

Memory size, in MB, to use for objective function and gradient computation, specified as the comma-
separated pair consisting of 'CacheSize' and an integer.
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Example: 'CacheSize',1500MB
Data Types: double | single

LBFGS Options

HessianHistorySize — Size of history buffer for Hessian approximation
15 (default) | positive integer

Size of history buffer for Hessian approximation for the 'lbfgs' solver, specified as the comma-
separated pair consisting of 'HessianHistorySize' and a positive integer. At each iteration the
function uses the most recent HessianHistorySize iterations to build an approximation to the
inverse Hessian.
Example: 'HessianHistorySize',20
Data Types: double | single

InitialStepSize — Initial step size
'auto' (default) | positive real scalar

Initial step size for the 'lbfgs' solver, specified as the comma-separated pair consisting of
'InitialStepSize' and a positive real scalar. By default, the function determines the initial step
size automatically.
Data Types: double | single

LineSearchMethod — Line search method
'weakwolfe' (default) | 'strongwolfe' | 'backtracking'

Line search method, specified as the comma-separated pair consisting of 'LineSearchMethod' and
one of the following:

• 'weakwolfe' — Weak Wolfe line search
• 'strongwolfe' — Strong Wolfe line search
• 'backtracking' — Backtracking line search

Example: 'LineSearchMethod','backtracking'

MaxLineSearchIterations — Maximum number of line search iterations
20 (default) | positive integer

Maximum number of line search iterations, specified as the comma-separated pair consisting of
'MaxLineSearchIterations' and a positive integer.
Example: 'MaxLineSearchIterations',25
Data Types: double | single

GradientTolerance — Relative convergence tolerance
1e-6 (default) | positive real scalar

Relative convergence tolerance on the gradient norm for solver lbfgs, specified as the comma-
separated pair consisting of 'GradientTolerance' and a positive real scalar.
Example: 'GradientTolerance',0.000002
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Data Types: double | single

SGD Options

InitialLearningRate — Initial learning rate for 'sgd' solver
'auto' (default) | positive real scalar

Initial learning rate for the 'sgd' solver, specified as the comma-separated pair consisting of
'InitialLearningRate' and a positive real scalar.

When using solver type 'sgd', the learning rate decays over iterations starting with the value
specified for 'InitialLearningRate'.

The default 'auto' means that the initial learning rate is determined using experiments on small
subsets of data. Use the NumTuningIterations name-value pair argument to specify the number of
iterations for automatically tuning the initial learning rate. Use the TuningSubsetSize name-value
pair argument to specify the number of observations to use for automatically tuning the initial
learning rate.

For solver type 'minibatch-lbfgs', you can set 'InitialLearningRate' to a very high value.
In this case, the function applies LBFGS to each mini-batch separately with initial feature weights
from the previous mini-batch.

To make sure the chosen initial learning rate decreases the objective value with each iteration, plot
the Iteration versus the Objective values saved in the mdl.FitInfo property.

You can use the refit method with 'InitialFeatureWeights' equal to mdl.FeatureWeights
to start from the current solution and run additional iterations
Example: 'InitialLearningRate',0.9
Data Types: double | single

MiniBatchSize — Number of observations to use in each batch for the 'sgd' solver
min(10,n) (default) | positive integer value from 1 to n

Number of observations to use in each batch for the 'sgd' solver, specified as the comma-separated
pair consisting of 'MiniBatchSize' and a positive integer from 1 to n.
Example: 'MiniBatchSize',25
Data Types: double | single

PassLimit — Maximum number of passes for solver 'sgd'
5 (default) | positive integer

Maximum number of passes through all n observations for solver 'sgd', specified as the comma-
separated pair consisting of 'PassLimit' and a positive integer. Each pass through all of the data is
called an epoch.
Example: 'PassLimit',10
Data Types: double | single

NumPrint — Frequency of batches for displaying convergence summary
10 (default) | positive integer value
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Frequency of batches for displaying convergence summary for the 'sgd' solver , specified as the
comma-separated pair consisting of 'NumPrint' and a positive integer. This argument applies when
the 'Verbose' value is greater than 0. NumPrint mini-batches are processed for each line of the
convergence summary that is displayed on the command line.
Example: 'NumPrint',5
Data Types: double | single

NumTuningIterations — Number of tuning iterations
20 (default) | positive integer

Number of tuning iterations for the 'sgd' solver, specified as the comma-separated pair consisting of
'NumTuningIterations' and a positive integer. This option is valid only for
'InitialLearningRate','auto'.
Example: 'NumTuningIterations',15
Data Types: double | single

TuningSubsetSize — Number of observations to use for tuning initial learning rate
min(100,n) (default) | positive integer value from 1 to n

Number of observations to use for tuning the initial learning rate, specified as the comma-separated
pair consisting of 'TuningSubsetSize' and a positive integer value from 1 to n. This option is valid
only for 'InitialLearningRate','auto'.
Example: 'TuningSubsetSize',25
Data Types: double | single

SGD or LBFGS Options

IterationLimit — Maximum number of iterations
positive integer

Maximum number of iterations, specified as the comma-separated pair consisting of
'IterationLimit' and a positive integer. The default is 10000 for SGD and 1000 for LBFGS and
mini-batch LBFGS.

Each pass through a batch is an iteration. Each pass through all of the data is an epoch. If the data is
divided into k mini-batches, then every epoch is equivalent to k iterations.
Example: 'IterationLimit',250
Data Types: double | single

StepTolerance — Convergence tolerance on the step size
1e-6 (default) | positive real scalar

Convergence tolerance on the step size, specified as the comma-separated pair consisting of
'StepTolerance' and a positive real scalar. The 'lbfgs' solver uses an absolute step tolerance,
and the 'sgd' solver uses a relative step tolerance.
Example: 'StepTolerance',0.000005
Data Types: double | single
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Mini-batch LBFGS Options

MiniBatchLBFGSIterations — Maximum number of iterations per mini-batch LBFGS step
10 (default) | positive integer

Maximum number of iterations per mini-batch LBFGS step, specified as the comma-separated pair
consisting of 'MiniBatchLBFGSIterations' and a positive integer.
Example: 'MiniBatchLBFGSIterations',15
Data Types: double | single

Note The mini-batch LBFGS algorithm is a combination of SGD and LBFGS methods. Therefore, all
of the name-value pair arguments that apply to SGD and LBFGS solvers also apply to the mini-batch
LBFGS algorithm.

Output Arguments
mdl — Neighborhood component analysis model for regression
FeatureSelectionNCARegression object

Neighborhood component analysis model for regression, returned as a
FeatureSelectionNCARegression object.

Version History
Introduced in R2016b
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See Also
predict | loss | refit | FeatureSelectionNCARegression
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Topics
“Robust Feature Selection Using NCA for Regression” on page 16-83
“Neighborhood Component Analysis (NCA) Feature Selection” on page 16-97
“Introduction to Feature Selection” on page 16-47
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fsrftest
Univariate feature ranking for regression using F-tests

Syntax
idx = fsrftest(Tbl,ResponseVarName)
idx = fsrftest(Tbl,formula)
idx = fsrftest(Tbl,Y)

idx = fsrftest(X,Y)

idx = fsrftest( ___ ,Name,Value)
[idx,scores] = fsrftest( ___ )

Description
idx = fsrftest(Tbl,ResponseVarName) ranks features (predictors) using F-tests on page 35-
2912. The table Tbl contains predictor variables and a response variable, and ResponseVarName is
the name of the response variable in Tbl. The function returns idx, which contains the indices of
predictors ordered by predictor importance, meaning idx(1) is the index of the most important
predictor. You can use idx to select important predictors for regression problems.

idx = fsrftest(Tbl,formula) specifies a response variable and predictor variables to consider
among the variables in Tbl by using formula.

idx = fsrftest(Tbl,Y) ranks predictors in Tbl using the response variable Y.

idx = fsrftest(X,Y) ranks predictors in X using the response variable Y.

idx = fsrftest( ___ ,Name,Value) specifies additional options using one or more name-value
pair arguments in addition to any of the input argument combinations in the previous syntaxes. For
example, you can specify categorical predictors and observation weights.

[idx,scores] = fsrftest( ___ ) also returns the predictor scores scores. A large score value
indicates that the corresponding predictor is important.

Examples

Rank Predictors in Matrix

Rank predictors in a numeric matrix and create a bar plot of predictor importance scores.

Load the sample data.

load robotarm.mat

The robotarm data set contains 7168 training observations (Xtrain and ytrain) and 1024 test
observations (Xtest and ytest) with 32 features [1][2].

Rank the predictors using the training observations.
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[idx,scores] = fsrftest(Xtrain,ytrain);

The values in scores are the negative logs of the p-values. If a p-value is smaller than eps(0), then
the corresponding score value is Inf. Before creating a bar plot, determine whether scores includes
Inf values.

find(isinf(scores))

ans =

  1x0 empty double row vector

scores does not include Inf values. If scores includes Inf values, you can replace Inf by a large
numeric number before creating a bar plot for visualization purposes. For details, see “Rank
Predictors in Table” on page 35-2906.

Create a bar plot of the predictor importance scores.

bar(scores(idx))
xlabel('Predictor rank')
ylabel('Predictor importance score')

Select the top five most important predictors. Find the columns of these predictors in Xtrain.

idx(1:5)

ans = 1×5
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    30    24    10     4     5

The 30th column of Xtrain is the most important predictor of ytrain.

Rank Predictors in Table

Rank predictors in a table and create a bar plot of predictor importance scores.

If your data is in a table and fsrftest ranks a subset of the variables in the table, then the function
indexes the variables using only the subset. Therefore, a good practice is to move the predictors that
you do not want to rank to the end of the table. Move the response variable and observation weight
vector as well. Then, the indexes of the output arguments are consistent with the indexes of the table.
You can move variables in a table using the movevars function.

This example uses the Abalone data [3][4] from the UCI Machine Learning Repository [5].

Download the data and save it in your current folder with the name 'abalone.csv'.

url = 'https://archive.ics.uci.edu/ml/machine-learning-databases/abalone/abalone.data';
websave('abalone.csv',url);

Read the data in a table.

tbl = readtable('abalone.csv','Filetype','text','ReadVariableNames',false);
tbl.Properties.VariableNames = {'Sex','Length','Diameter','Height', ...
    'WWeight','SWeight','VWeight','ShWeight','NoShellRings'};

Preview the first few rows of the table.

head(tbl)

ans=8×9 table
     Sex     Length    Diameter    Height    WWeight    SWeight    VWeight    ShWeight    NoShellRings
    _____    ______    ________    ______    _______    _______    _______    ________    ____________

    {'M'}    0.455      0.365      0.095      0.514     0.2245      0.101       0.15           15     
    {'M'}     0.35      0.265       0.09     0.2255     0.0995     0.0485       0.07            7     
    {'F'}     0.53       0.42      0.135      0.677     0.2565     0.1415       0.21            9     
    {'M'}     0.44      0.365      0.125      0.516     0.2155      0.114      0.155           10     
    {'I'}     0.33      0.255       0.08      0.205     0.0895     0.0395      0.055            7     
    {'I'}    0.425        0.3      0.095     0.3515      0.141     0.0775       0.12            8     
    {'F'}     0.53      0.415       0.15     0.7775      0.237     0.1415       0.33           20     
    {'F'}    0.545      0.425      0.125      0.768      0.294     0.1495       0.26           16     

The last variable in the table is a response variable.

Rank the predictors in tbl. Specify the last column NoShellRings as a response variable.

[idx,scores] = fsrftest(tbl,'NoShellRings')

idx = 1×8

     3     4     5     7     8     2     6     1
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scores = 1×8

  447.6891  736.9619       Inf       Inf       Inf  604.6692       Inf       Inf

The values in scores are the negative logs of the p-values. If a p-value is smaller than eps(0), then
the corresponding score value is Inf. Before creating a bar plot, determine whether scores includes
Inf values.

idxInf = find(isinf(scores))

idxInf = 1×5

     3     4     5     7     8

scores includes five Inf values.

Create a bar plot of predictor importance scores. Use the predictor names for the x-axis tick labels.

bar(scores(idx))
xlabel('Predictor rank')
ylabel('Predictor importance score')
xticklabels(strrep(tbl.Properties.VariableNames(idx),'_','\_'))
xtickangle(45)

The bar function does not plot any bars for the Inf values. For the Inf values, plot bars that have
the same length as the largest finite score.

hold on
bar(scores(idx(length(idxInf)+1))*ones(length(idxInf),1))
legend('Finite Scores','Inf Scores')
hold off
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The bar graph displays finite scores and Inf scores using different colors.

Input Arguments
Tbl — Sample data
table

Sample data, specified as a table. Multicolumn variables and cell arrays other than cell arrays of
character vectors are not allowed.

Each row of Tbl corresponds to one observation, and each column corresponds to one predictor
variable. Optionally, Tbl can contain additional columns for a response variable and observation
weights. The response variable must be a numeric vector.

• If Tbl contains the response variable, and you want to use all remaining variables in Tbl as
predictors, then specify the response variable by using ResponseVarName. If Tbl also contains
the observation weights, then you can specify the weights by using Weights.

• If Tbl contains the response variable, and you want to use only a subset of the remaining
variables in Tbl as predictors, then specify the subset of variables by using formula.

• If Tbl does not contain the response variable, then specify a response variable by using Y. The
response variable and Tbl must have the same number of rows.
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If fsrftest uses a subset of variables in Tbl as predictors, then the function indexes the predictors
using only the subset. The values in the CategoricalPredictors name-value argument and the
output argument idx do not count the predictors that the function does not rank.

If Tbl contains a response variable, then fsrftest considers NaN values in the response variable to
be missing values. fsrftest does not use observations with missing values in the response variable.
Data Types: table

ResponseVarName — Response variable name
character vector or string scalar containing name of variable in Tbl

Response variable name, specified as a character vector or string scalar containing the name of a
variable in Tbl.

For example, if a response variable is the column Y of Tbl (Tbl.Y), then specify ResponseVarName
as "Y".
Data Types: char | string

formula — Explanatory model of response variable and subset of predictor variables
character vector | string scalar

Explanatory model of the response variable and a subset of the predictor variables, specified as a
character vector or string scalar in the form "Y ~ x1 + x2 + x3". In this form, Y represents the
response variable, and x1, x2, and x3 represent the predictor variables.

To specify a subset of variables in Tbl as predictors, use a formula. If you specify a formula, then
fsrftest does not rank any variables in Tbl that do not appear in formula.

The variable names in the formula must be both variable names in Tbl
(Tbl.Properties.VariableNames) and valid MATLAB identifiers. You can verify the variable
names in Tbl by using the isvarname function. If the variable names are not valid, then you can
convert them by using the matlab.lang.makeValidName function.
Data Types: char | string

Y — Response variable
numeric vector

Response variable, specified as a numeric vector. Each row of Y represents the response of the
corresponding row of X or Tbl.

fsrftest considers NaN values in Y to be missing values. fsrftest does not use observations with
missing values for Y.
Data Types: single | double

X — Predictor data
numeric matrix

Predictor data, specified as a numeric matrix. Each row of X corresponds to one observation, and
each column corresponds to one predictor variable.
Data Types: single | double
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Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: 'NumBins',20,'UseMissing',true sets the number of bins as 20 and specifies to use
missing values in predictors for ranking.

CategoricalPredictors — List of categorical predictors
vector of positive integers | logical vector | character matrix | string array | cell array of character
vectors | "all"

List of categorical predictors, specified as one of the values in this table.

Value Description
Vector of positive
integers

Each entry in the vector is an index value indicating that the corresponding
predictor is categorical. The index values are between 1 and p, where p is
the number of predictors used to train the model.

If fsrftest uses a subset of input variables as predictors, then the
function indexes the predictors using only the subset. The
CategoricalPredictors values do not count the response variable,
observation weights variable, or any other variables that the function does
not use.

Logical vector A true entry means that the corresponding predictor is categorical. The
length of the vector is p.

Character matrix Each row of the matrix is the name of a predictor variable. The names must
match the names in Tbl. Pad the names with extra blanks so each row of
the character matrix has the same length.

String array or cell
array of character
vectors

Each element in the array is the name of a predictor variable. The names
must match the names in Tbl.

"all" All predictors are categorical.

By default, if the predictor data is in a table (Tbl), fsrftest assumes that a variable is categorical if
it is a logical vector, unordered categorical vector, character array, string array, or cell array of
character vectors. If the predictor data is a matrix (X), fsrftest assumes that all predictors are
continuous. To identify any other predictors as categorical predictors, specify them by using the
CategoricalPredictors name-value argument.
Example: "CategoricalPredictors","all"
Example: CategoricalPredictors=[1 5 6 8]
Data Types: single | double | logical | char | string | cell

NumBins — Number of bins for binning continuous predictors
10 (default) | positive integer scalar

Number of bins for binning continuous predictors, specified as the comma-separated pair consisting
of 'NumBins' and a positive integer scalar.
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Example: 'NumBins',50
Data Types: single | double

UseMissing — Indicator for whether to use or discard missing values in predictors
false (default) | true

Indicator for whether to use or discard missing values in predictors, specified as the comma-
separated pair consisting of 'UseMissing' and either true to use or false to discard missing
values in predictors for ranking.

fsrftest considers NaN, '' (empty character vector), "" (empty string), <missing>, and
<undefined> values to be missing values.

If you specify 'UseMissing',true, then fsrftest uses missing values for ranking. For a
categorical variable, fsrftest treats missing values as an extra category. For a continuous variable,
fsrftest places NaN values in a separate bin for binning.

If you specify 'UseMissing',false, then fsrftest does not use missing values for ranking.
Because fsrftest computes importance scores individually for each predictor, the function does not
discard an entire row when values in the row are partially missing. For each variable, fsrftest uses
all values that are not missing.
Example: 'UseMissing',true
Data Types: logical

Weights — Observation weights
ones(size(X,1),1) (default) | vector of scalar values | name of variable in Tbl

Observation weights, specified as the comma-separated pair consisting of 'Weights' and a vector of
scalar values or the name of a variable in Tbl. The function weights the observations in each row of X
or Tbl with the corresponding value in Weights. The size of Weights must equal the number of
rows in X or Tbl.

If you specify the input data as a table Tbl, then Weights can be the name of a variable in Tbl that
contains a numeric vector. In this case, you must specify Weights as a character vector or string
scalar. For example, if the weight vector is the column W of Tbl (Tbl.W), then specify
'Weights','W'.

fsrftest normalizes the weights to add up to one.
Data Types: single | double | char | string

Output Arguments
idx — Indices of predictors ordered by predictor importance
numeric vector

Indices of predictors in X or Tbl ordered by predictor importance, returned as a 1-by-r numeric
vector, where r is the number of ranked predictors.

If fsrftest uses a subset of variables in Tbl as predictors, then the function indexes the predictors
using only the subset. For example, suppose Tbl includes 10 columns and you specify the last five
columns of Tbl as the predictor variables by using formula. If idx(3) is 5, then the third most
important predictor is the 10th column in Tbl, which is the fifth predictor in the subset.
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scores — Predictor scores
numeric vector

Predictor scores, returned as a 1-by-r numeric vector, where r is the number of ranked predictors.

A large score value indicates that the corresponding predictor is important.

• If you use X to specify the predictors or use all the variables in Tbl as predictors, then the values
in scores have the same order as the predictors in X or Tbl.

• If you specify a subset of variables in Tbl as predictors, then the values in scores have the same
order as the subset.

For example, suppose Tbl includes 10 columns and you specify the last five columns of Tbl as the
predictor variables by using formula. Then, score(3) contains the score value of the 8th column in
Tbl, which is the third predictor in the subset.

Algorithms
Univariate Feature Ranking Using F-Tests

• fsrftest examines the importance of each predictor individually using an F-test. Each F-test
tests the hypothesis that the response values grouped by predictor variable values are drawn from
populations with the same mean against the alternative hypothesis that the population means are
not all the same. A small p-value of the test statistic indicates that the corresponding predictor is
important.

• The output scores is –log(p). Therefore, a large score value indicates that the corresponding
predictor is important. If a p-value is smaller than eps(0), then the output is Inf.

• fsrftest examines a continuous variable after binning, or discretizing, the variable. You can
specify the number of bins using the 'NumBins' name-value pair argument.

Version History
Introduced in R2020a

References
[1] Rasmussen, C. E., R. M. Neal, G. E. Hinton, D. van Camp, M. Revow, Z. Ghahramani, R. Kustra,
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and Islands of Bass Strait." Sea Fisheries Division, Technical Report No. 48, 1994.
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Correlation Architecture and Benchmarking of Feed-forward Supervised Artificial Neural
Networks." University of Tasmania Department of Computer Science thesis, 1995.

[5] Lichman, M. UCI Machine Learning Repository. Irvine, CA: University of California, School of
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See Also
fsrnca | fsrmrmr | relieff | sequentialfs

Topics
“Introduction to Feature Selection” on page 16-47
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fsrmrmr
Rank features for regression using minimum redundancy maximum relevance (MRMR) algorithm

Syntax
idx = fsrmrmr(Tbl,ResponseVarName)
idx = fsrmrmr(Tbl,formula)
idx = fsrmrmr(Tbl,Y)
idx = fsrmrmr(X,Y)
idx = fsrmrmr( ___ ,Name=Value)
[idx,scores] = fsrmrmr( ___ )

Description
idx = fsrmrmr(Tbl,ResponseVarName) ranks features (predictors) using the MRMR algorithm
on page 35-2923. The table Tbl contains predictor variables and a response variable, and
ResponseVarName is the name of the response variable in Tbl. The function returns idx, which
contains the indices of predictors ordered by predictor importance. You can use idx to select
important predictors for regression problems.

idx = fsrmrmr(Tbl,formula) specifies a response variable and predictor variables to consider
among the variables in Tbl by using formula. For example, fsrmrmr(cartable,"MPG ~
Acceleration + Displacement + Horsepower") ranks the Acceleration, Displacement,
and Horsepower predictors in cartable using the response variable MPG in cartable.

idx = fsrmrmr(Tbl,Y) ranks predictors in Tbl using the response variable Y.

idx = fsrmrmr(X,Y) ranks predictors in X using the response variable Y.

idx = fsrmrmr( ___ ,Name=Value) specifies additional options using one or more name-value
arguments in addition to any of the input argument combinations in the previous syntaxes. For
example, you can specify observation weights.

[idx,scores] = fsrmrmr( ___ ) also returns the predictor scores scores. A large score value
indicates that the corresponding predictor is important.

Examples

Rank Predictors by Importance

Simulate 1000 observations from the modely = x4 + 2x7 + e.

• X = {x1, . . . , x10} is a 1000-by-10 matrix of standard normal elements.
• e is a vector of random normal errors with mean 0 and standard deviation 0.3.

rng("default") % For reproducibility
X = randn(1000,10);
Y = X(:,4) + 2*X(:,7) + 0.3*randn(1000,1);
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Rank the predictors based on importance.

idx = fsrmrmr(X,Y);

Select the top two most important predictors.

idx(1:2)

ans = 1×2

     7     4

The function identifies the seventh and fourth columns of X as the most important predictors of Y.

Rank Predictors and Visualize Scores

Load the carbig data set, and create a table containing the different variables. Include the response
variable MPG as the last variable in the table.

load carbig
cartable = table(Acceleration,Cylinders,Displacement, ...
    Horsepower,Model_Year,Weight,Origin,MPG);

Rank the predictors based on importance. Specify the response variable.

[idx,scores] = fsrmrmr(cartable,"MPG");

Note: If fsrmrmr uses a subset of variables in a table as predictors, then the function indexes the
subset of predictors only. The returned indices do not count the variables that the function does not
rank (including the response variable).

Create a bar plot of the predictor importance scores. Use the predictor names for the x-axis tick
labels.

bar(scores(idx))
xlabel("Predictor rank")
ylabel("Predictor importance score")
predictorNames = cartable.Properties.VariableNames(1:end-1);
xticklabels(strrep(predictorNames(idx),"_","\_"))
xtickangle(45)
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The drop in score between the second and third most important predictors is large, while the drops
after the third predictor are relatively small. A drop in the importance score represents the
confidence of feature selection. Therefore, the large drop implies that the software is confident of
selecting the second most important predictor, given the selection of the most important predictor.
The small drops indicate that the differences in predictor importance are not significant.

Select the top two most important predictors.

idx(1:2)

ans = 1×2

     3     5

The third column of cartable is the most important predictor of MPG. The fifth column of cartable
is the second most important predictor of MPG.

Improve Regression Model Performance by Generating and Selecting Features

To improve the performance of a regression model, generate new features by using genrfeatures
and then select the most important predictors by using fsrmrmr. Compare the test set performance
of the model trained using only original features to the performance of the model trained using the
most important generated features.
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Read power outage data into the workspace as a table. Remove observations with missing values, and
display the first few rows of the table.

outages = readtable("outages.csv");
Tbl = rmmissing(outages);
head(Tbl)

       Region           OutageTime        Loss     Customers     RestorationTime            Cause       
    _____________    ________________    ______    __________    ________________    ___________________

    {'SouthWest'}    2002-02-01 12:18    458.98    1.8202e+06    2002-02-07 16:50    {'winter storm'   }
    {'SouthEast'}    2003-02-07 21:15     289.4    1.4294e+05    2003-02-17 08:14    {'winter storm'   }
    {'West'     }    2004-04-06 05:44    434.81    3.4037e+05    2004-04-06 06:10    {'equipment fault'}
    {'MidWest'  }    2002-03-16 06:18    186.44    2.1275e+05    2002-03-18 23:23    {'severe storm'   }
    {'West'     }    2003-06-18 02:49         0             0    2003-06-18 10:54    {'attack'         }
    {'NorthEast'}    2003-07-16 16:23    239.93         49434    2003-07-17 01:12    {'fire'           }
    {'MidWest'  }    2004-09-27 11:09    286.72         66104    2004-09-27 16:37    {'equipment fault'}
    {'SouthEast'}    2004-09-05 17:48    73.387         36073    2004-09-05 20:46    {'equipment fault'}

Some of the variables, such as OutageTime and RestorationTime, have data types that are not
supported by regression model training functions like fitrensemble.

Partition the data set into a training set and a test set by using cvpartition. Use approximately
70% of the observations as training data and the other 30% as test data.

rng("default") % For reproducibility of the data partition
c = cvpartition(length(Tbl.Loss),"Holdout",0.30);
trainTbl = Tbl(training(c),:);
testTbl = Tbl(test(c),:);

Identify and remove outliers of Customers from the training data by using the isoutlier function.

[customersIdx,customersL,customersU] = isoutlier(trainTbl.Customers);
trainTbl(customersIdx,:) = [];

Remove the outliers of Customers from the test data by using the same lower and upper thresholds
computed on the training data.

testTbl(testTbl.Customers < customersL | testTbl.Customers > customersU,:) = [];

Generate 35 features from the predictors in trainTbl that can be used to train a bagged ensemble.
Specify the Loss variable as the response and MRMR as the feature selection method.

[Transformer,newTrainTbl] = genrfeatures(trainTbl,"Loss",35, ...
    TargetLearner="bag",FeatureSelectionMethod="mrmr");

The returned table newTrainTbl contains various engineered features. The first three columns of
newTrainTbl are the original features in trainTbl that can be used to train a regression model
using the fitrensemble function, and the last column of newTrainTbl is the response variable
Loss.

originalIdx = 1:3;
head(newTrainTbl(:,[originalIdx end]))

    c(Region)    Customers        c(Cause)         Loss 
    _________    __________    _______________    ______

    SouthEast    1.4294e+05    winter storm        289.4
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    West         3.4037e+05    equipment fault    434.81
    MidWest      2.1275e+05    severe storm       186.44
    West                  0    attack                  0
    MidWest           66104    equipment fault    286.72
    SouthEast         36073    equipment fault    73.387
    SouthEast    1.0698e+05    winter storm       46.918
    NorthEast    1.0444e+05    winter storm       255.45

Rank the predictors in newTrainTbl. Specify the response variable.

[idx,scores] = fsrmrmr(newTrainTbl,"Loss");

Note: If fsrmrmr uses a subset of variables in a table as predictors, then the function indexes the
subset only. The returned indices do not count the variables that the function does not rank (including
the response variable).

Create a bar plot of the predictor importance scores.

bar(scores(idx))
xlabel("Predictor rank")
ylabel("Predictor importance score")

Because there is a large gap between the scores of the seventh and eighth most important predictors,
select the seven most important features to train a bagged ensemble model.

importantIdx = idx(1:7);
fsMdl = fitrensemble(newTrainTbl(:,importantIdx),newTrainTbl.Loss, ...
    Method="Bag");
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For comparison, train another bagged ensemble model using the three original predictors that can be
used for model training.

originalMdl = fitrensemble(newTrainTbl(:,originalIdx),newTrainTbl.Loss, ...
    Method="Bag");

Transform the test data set.

newTestTbl = transform(Transformer,testTbl);

Compute the test mean squared error (MSE) of the two regression models.

fsMSE = loss(fsMdl,newTestTbl(:,importantIdx), ...
    newTestTbl.Loss)

fsMSE = 1.0867e+06

originalMSE = loss(originalMdl,newTestTbl(:,originalIdx), ...
    newTestTbl.Loss)

originalMSE = 1.0961e+06

fsMSE is less than originalMSE, which suggests that the bagged ensemble trained on the most
important generated features performs slightly better than the bagged ensemble trained on the
original features.

Input Arguments
Tbl — Sample data
table

Sample data, specified as a table. Multicolumn variables and cell arrays other than cell arrays of
character vectors are not allowed.

Each row of Tbl corresponds to one observation, and each column corresponds to one predictor
variable. Optionally, Tbl can contain additional columns for a response variable and observation
weights. The response variable must be a numeric vector.

• If Tbl contains the response variable, and you want to use all remaining variables in Tbl as
predictors, then specify the response variable by using ResponseVarName. If Tbl also contains
the observation weights, then you can specify the weights by using Weights.

• If Tbl contains the response variable, and you want to use only a subset of the remaining
variables in Tbl as predictors, then specify the subset of variables by using formula.

• If Tbl does not contain the response variable, then specify a response variable by using Y. The
response variable and Tbl must have the same number of rows.

If fsrmrmr uses a subset of variables in Tbl as predictors, then the function indexes the predictors
using only the subset. The values in the CategoricalPredictors name-value argument and the
output argument idx do not count the predictors that the function does not rank.

If Tbl contains a response variable, then fsrmrmr considers NaN values in the response variable to
be missing values. fsrmrmr does not use observations with missing values in the response variable.
Data Types: table

 fsrmrmr

35-2919



ResponseVarName — Response variable name
character vector or string scalar containing name of variable in Tbl

Response variable name, specified as a character vector or string scalar containing the name of a
variable in Tbl.

For example, if a response variable is the column Y of Tbl (Tbl.Y), then specify ResponseVarName
as "Y".
Data Types: char | string

formula — Explanatory model of response variable and subset of predictor variables
character vector | string scalar

Explanatory model of the response variable and a subset of the predictor variables, specified as a
character vector or string scalar in the form "Y ~ x1 + x2 + x3". In this form, Y represents the
response variable, and x1, x2, and x3 represent the predictor variables.

To specify a subset of variables in Tbl as predictors, use a formula. If you specify a formula, then
fsrmrmr does not rank any variables in Tbl that do not appear in formula.

The variable names in the formula must be both variable names in Tbl
(Tbl.Properties.VariableNames) and valid MATLAB identifiers. You can verify the variable
names in Tbl by using the isvarname function. If the variable names are not valid, then you can
convert them by using the matlab.lang.makeValidName function.
Data Types: char | string

Y — Response variable
numeric vector

Response variable, specified as a numeric vector. Each row of Y represents the response of the
corresponding row of X or Tbl.

fsrmrmr considers NaN values in Y to be missing values. fsrmrmr does not use observations with
missing values for Y.
Data Types: single | double

X — Predictor data
numeric matrix

Predictor data, specified as a numeric matrix. Each row of X corresponds to one observation, and
each column corresponds to one predictor variable.
Data Types: single | double

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.
Example: fsrmrmr(Tbl,"y",CategoricalPredictors=[1 2 4],Weights="w") specifies that
the y column of Tbl is the response variable, the w column of Tbl contains the observation weights,
and the first, second, and fourth columns of Tbl (with the y and w columns removed) are categorical
predictors.
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CategoricalPredictors — List of categorical predictors
vector of positive integers | logical vector | character matrix | string array | cell array of character
vectors | "all"

List of categorical predictors, specified as one of the values in this table.

Value Description
Vector of positive
integers

Each entry in the vector is an index value indicating that the corresponding
predictor is categorical. The index values are between 1 and p, where p is
the number of predictors used to train the model.

If fsrmrmr uses a subset of input variables as predictors, then the function
indexes the predictors using only the subset. The
CategoricalPredictors values do not count the response variable,
observation weights variable, or any other variables that the function does
not use.

Logical vector A true entry means that the corresponding predictor is categorical. The
length of the vector is p.

Character matrix Each row of the matrix is the name of a predictor variable. The names must
match the names in Tbl. Pad the names with extra blanks so each row of
the character matrix has the same length.

String array or cell
array of character
vectors

Each element in the array is the name of a predictor variable. The names
must match the names in Tbl.

"all" All predictors are categorical.

By default, if the predictor data is in a table (Tbl), fsrmrmr assumes that a variable is categorical if
it is a logical vector, unordered categorical vector, character array, string array, or cell array of
character vectors. If the predictor data is a matrix (X), fsrmrmr assumes that all predictors are
continuous. To identify any other predictors as categorical predictors, specify them by using the
CategoricalPredictors name-value argument.
Example: "CategoricalPredictors","all"
Example: CategoricalPredictors=[1 5 6 8]
Data Types: single | double | logical | char | string | cell

UseMissing — Indicator for whether to use missing values in predictors
false (default) | true

Indicator for whether to use missing values in predictors, specified as either true to use the values
for ranking, or false to discard the values.

fsrmrmr considers NaN, '' (empty character vector), "" (empty string), <missing>, and
<undefined> values to be missing values.

If you specify UseMissing as true, then fsrmrmr uses missing values for ranking. For a categorical
variable, fsrmrmr treats missing values as an extra category. For a continuous variable, fsrmrmr
places NaN values in a separate bin for binning.

If you specify UseMissing as false, then fsrmrmr does not use missing values for ranking.
Because fsrmrmr computes mutual information for each pair of variables, the function does not
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discard an entire row when values in the row are partially missing. fsrmrmr uses all pair values that
do not include missing values.
Example: "UseMissing",true
Example: UseMissing=true
Data Types: logical

Verbose — Verbosity level
0 (default) | nonnegative integer

Verbosity level, specified as a nonnegative integer. The value of Verbose controls the amount of
diagnostic information that the software displays in the Command Window.

• 0 — fsrmrmr does not display any diagnostic information.
• 1 — fsrmrmr displays the elapsed times for computing mutual information on page 35-2923 and

ranking predictors.
• ≥ 2 — fsrmrmr displays the elapsed times and more messages related to computing mutual

information. The amount of information increases as you increase the Verbose value.

Example: Verbose=1
Data Types: single | double

Weights — Observation weights
ones(size(X,1),1) (default) | vector of scalar values | name of variable in Tbl

Observation weights, specified as a vector of scalar values or the name of a variable in Tbl. The
function weights the observations in each row of X or Tbl with the corresponding value in Weights.
The size of Weights must equal the number of rows in X or Tbl.

If you specify the input data as a table Tbl, then Weights can be the name of a variable in Tbl that
contains a numeric vector. In this case, you must specify Weights as a character vector or string
scalar. For example, if the weight vector is the column W of Tbl (Tbl.W), then specify Weights="W".

fsrmrmr normalizes the weights to add up to one.
Data Types: single | double | char | string

Output Arguments
idx — Indices of predictors ordered by predictor importance
numeric vector

Indices of predictors in X or Tbl ordered by predictor importance, returned as a 1-by-r numeric
vector, where r is the number of ranked predictors.

If fsrmrmr uses a subset of variables in Tbl as predictors, then the function indexes the predictors
using only the subset. For example, suppose Tbl includes 10 columns and you specify the last five
columns of Tbl as the predictor variables by using formula. If idx(3) is 5, then the third most
important predictor is the 10th column in Tbl, which is the fifth predictor in the subset.

scores — Predictor scores
numeric vector
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Predictor scores, returned as a 1-by-r numeric vector, where r is the number of ranked predictors.

A large score value indicates that the corresponding predictor is important. Also, a drop in the
feature importance score represents the confidence of feature selection. For example, if the software
is confident of selecting a feature x, then the score value of the next most important feature is much
smaller than the score value of x.

• If you use X to specify the predictors or use all the variables in Tbl as predictors, then the values
in scores have the same order as the predictors in X or Tbl.

• If you specify a subset of variables in Tbl as predictors, then the values in scores have the same
order as the subset.

For example, suppose Tbl includes 10 columns and you specify the last five columns of Tbl as the
predictor variables by using formula. Then, score(3) contains the score value of the 8th column in
Tbl, which is the third predictor in the subset.

More About
Mutual Information

The mutual information between two variables measures how much uncertainty of one variable can
be reduced by knowing the other variable.

The mutual information I of the discrete random variables X and Z is defined as

I X, Z = ∑i, jP X = xi, Z = z j log
P X = xi, Z = z j

P X = xi P Z = z j
.

If X and Z are independent, then I equals 0. If X and Z are the same random variable, then I equals
the entropy of X.

The fsrmrmr function uses this definition to compute the mutual information values for both
categorical (discrete) and continuous variables. For each continuous variable, including the response,
fsrmrmr discretizes the variable into 256 bins or the number of unique values in the variable if it is
less than 256. The function finds optimal bivariate bins for each pair of variables using the adaptive
algorithm [2].

Algorithms
Minimum Redundancy Maximum Relevance (MRMR) Algorithm

The MRMR algorithm [1] finds an optimal set of features that is mutually and maximally dissimilar
and can represent the response variable effectively. The algorithm minimizes the redundancy of a
feature set and maximizes the relevance of a feature set to the response variable. The algorithm
quantifies the redundancy and relevance using the mutual information of variables—pairwise mutual
information of features and mutual information of a feature and the response. You can use this
algorithm for regression problems.

The goal of the MRMR algorithm is to find an optimal set S of features that maximizes VS, the
relevance of S with respect to a response variable y, and minimizes WS, the redundancy of S, where
VS and WS are defined with mutual information on page 35-2923 I:
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VS = 1
S ∑x ∈ S I x, y ,

WS = 1
S 2∑x, z ∈ S I x, z .

|S| is the number of features in S.

Finding an optimal set S requires considering all 2|Ω| combinations, where Ω is the entire feature set.
Instead, the MRMR algorithm ranks features through the forward addition scheme, which requires
O(|Ω|·|S|) computations, by using the mutual information quotient (MIQ) value.

MIQx =
Vx
Wx

,

where Vx and Wx are the relevance and redundancy of a feature, respectively:

Vx = I(x, y),

Wx = 1
S ∑z ∈ S I x, z .

The fsrmrmr function ranks all features in Ω and returns idx (the indices of features ordered by
feature importance) using the MRMR algorithm. Therefore, the computation cost becomes O(|Ω|2).
The function quantifies the importance of a feature using a heuristic algorithm and returns a score
(scores). A large score value indicates that the corresponding predictor is important. Also, a drop in
the feature importance score represents the confidence of feature selection. For example, if the
software is confident of selecting a feature x, then the score value of the next most important feature
is much smaller than the score value of x. You can use the outputs to find an optimal set S for a given
number of features.

fsrmrmr ranks features as follows:

1 Select the feature with the largest relevance, max
x ∈ Ω

Vx. Add the selected feature to an empty set S.

2 Find the features with nonzero relevance and zero redundancy in the complement of S, Sc.

• If Sc does not include a feature with nonzero relevance and zero redundancy, go to step 4.
• Otherwise, select the feature with the largest relevance, max

x ∈ Sc, Wx = 0
Vx. Add the selected

feature to the set S.
3 Repeat Step 2 until the redundancy is not zero for all features in Sc.
4 Select the feature that has the largest MIQ value with nonzero relevance and nonzero

redundancy in Sc, and add the selected feature to the set S.

max
x ∈ Sc

MIQx = max
x ∈ Sc

I(x, y)
1
S ∑z ∈ S I x, z

.

5 Repeat Step 4 until the relevance is zero for all features in Sc.
6 Add the features with zero relevance to S in random order.

The software can skip any step if it cannot find a feature that satisfies the conditions described in the
step.
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Version History
Introduced in R2022a

References
[1] Ding, C., and H. Peng. "Minimum redundancy feature selection from microarray gene expression

data." Journal of Bioinformatics and Computational Biology. Vol. 3, Number 2, 2005, pp. 185–
205.

[2] Darbellay, G. A., and I. Vajda. "Estimation of the information by an adaptive partitioning of the
observation space." IEEE Transactions on Information Theory. Vol. 45, Number 4, 1999, pp.
1315–1321.

See Also
fsrftest | fsrnca | relieff | sequentialfs

Topics
“Introduction to Feature Selection” on page 16-47
“Sequential Feature Selection” on page 16-59
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fstat
F mean and variance

Syntax
[M,V] = fstat(V1,V2)

Description
[M,V] = fstat(V1,V2) returns the mean of and variance for the F distribution with numerator
degrees of freedom V1 and denominator degrees of freedom V2. V1 and V2 can be vectors, matrices,
or multidimensional arrays that all have the same size, which is also the size of M and V. A scalar
input for V1 or V2 is expanded to a constant arrays with the same dimensions as the other input. V1
and V2 parameters must contain real positive values.

The mean of the F distribution for values of ν2 greater than 2 is

ν2
ν2− 2

The variance of the F distribution for values of ν2 greater than 4 is

2ν2
2(ν1 + ν2− 2)

ν1(ν2− 2)2(ν2− 4)

The mean of the F distribution is undefined if ν2 is less than 3. The variance is undefined for ν2 less
than 5.

Examples
fstat returns NaN when the mean and variance are undefined.

[m,v] = fstat(1:5,1:5)
m =
    NaN  NaN  3.0000  2.0000  1.6667
v =
    NaN  NaN  NaN  NaN  8.8889

Version History
Introduced before R2006a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.
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This function fully supports GPU arrays. For more information, see “Run MATLAB Functions on a
GPU” (Parallel Computing Toolbox).

See Also
fpdf | fcdf | finv | frnd

Topics
“F Distribution” on page B-46
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fsulaplacian
Rank features for unsupervised learning using Laplacian scores

Syntax
idx = fsulaplacian(X)
idx = fsulaplacian(X,Name,Value)
[idx,scores] = fsulaplacian( ___ )

Description
idx = fsulaplacian(X) ranks features (variables) in X using the Laplacian scores on page 35-
2934. The function returns idx, which contains the indices of features ordered by feature
importance. You can use idx to select important features for unsupervised learning.

idx = fsulaplacian(X,Name,Value) specifies additional options using one or more name-value
pair arguments. For example, you can specify 'NumNeighbors',10 to create a similarity graph on
page 35-2933 using 10 nearest neighbors.

[idx,scores] = fsulaplacian( ___ ) also returns the feature scores scores, using any of the
input argument combinations in the previous syntaxes. A large score value indicates that the
corresponding feature is important.

Examples

Rank Features by Importance

Load the sample data.

load ionosphere

Rank the features based on importance.

[idx,scores] = fsulaplacian(X);

Create a bar plot of the feature importance scores.

bar(scores(idx))
xlabel('Feature rank')
ylabel('Feature importance score')

35 Functions

35-2928



Select the top five most important features. Find the columns of these features in X.

idx(1:5)

ans = 1×5

    15    13    17    21    19

The 15th column of X is the most important feature.

Rank Features Using Specified Similarity Matrix

Compute a similarity matrix from Fisher's iris data set and rank the features using the similarity
matrix.

Load Fisher's iris data set.

load fisheriris

Find the distance between each pair of observations in meas by using the pdist and squareform
functions with the default Euclidean distance metric.

D = pdist(meas);
Z = squareform(D);
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Construct the similarity matrix and confirm that it is symmetric.

S = exp(-Z.^2);
issymmetric(S)

ans = logical
   1

Rank the features.

idx = fsulaplacian(meas,'Similarity',S)

idx = 1×4

     3     4     1     2

Ranking using the similarity matrix S is the same as ranking by specifying 'NumNeighbors' as
size(meas,1).

idx2 = fsulaplacian(meas,'NumNeighbors',size(meas,1))

idx2 = 1×4

     3     4     1     2

Input Arguments
X — Input data
numeric matrix

Input data, specified as an n-by-p numeric matrix. The rows of X correspond to observations (or
points), and the columns correspond to features.

The software treats NaNs in X as missing data and ignores any row of X containing at least one NaN.
Data Types: single | double

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: 'NumNeighbors',10,'KernelScale','auto' specifies the number of nearest
neighbors as 10 and the kernel scale factor as 'auto'.

Similarity — Similarity matrix
[] (empty matrix) (default) | symmetric matrix

Similarity matrix, specified as the comma-separated pair consisting of 'Similarity' and an n-by-n
symmetric matrix, where n is the number of observations. The similarity matrix (or adjacency matrix)
represents the input data by modeling local neighborhood relationships among the data points. The
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values in a similarity matrix represent the edges (or connections) between nodes (data points) that
are connected in a similarity graph on page 35-2933. For more information, see “Similarity Matrix”
on page 35-2934.

If you specify the 'Similarity' value, then you cannot specify any other name-value pair
argument. If you do not specify the 'Similarity' value, then the software computes a similarity
matrix using the options specified by the other name-value pair arguments.
Data Types: single | double

Distance — Distance metric
character vector | string scalar | function handle

Distance metric, specified as the comma-separated pair consisting of 'Distance' and a character
vector, string scalar, or function handle, as described in this table.

Value Description
'euclidean' Euclidean distance (default)
'seuclidean' Standardized Euclidean distance. Each coordinate difference between

observations is scaled by dividing by the corresponding element of the
standard deviation computed from X. Use the Scale name-value pair
argument to specify a different scaling factor.

'mahalanobis' Mahalanobis distance using the sample covariance of X, C =
cov(X,'omitrows'). Use the Cov name-value pair argument to
specify a different covariance matrix.

'cityblock' City block distance
'minkowski' Minkowski distance. The default exponent is 2. Use the P name-value

pair argument to specify a different exponent, where P is a positive
scalar value.

'chebychev' Chebychev distance (maximum coordinate difference)
'cosine' One minus the cosine of the included angle between observations

(treated as vectors)
'correlation' One minus the sample correlation between observations (treated as

sequences of values)
'hamming' Hamming distance, which is the percentage of coordinates that differ
'jaccard' One minus the Jaccard coefficient, which is the percentage of nonzero

coordinates that differ
'spearman' One minus the sample Spearman's rank correlation between

observations (treated as sequences of values)
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Value Description
@distfun Custom distance function handle. A distance function has the form

function D2 = distfun(ZI,ZJ)
% calculation of distance
...

where

• ZI is a 1-by-n vector containing a single observation.
• ZJ is an m2-by-n matrix containing multiple observations. distfun

must accept a matrix ZJ with an arbitrary number of observations.
• D2 is an m2-by-1 vector of distances, and D2(k) is the distance

between observations ZI and ZJ(k,:).

If your data is not sparse, you can generally compute distance more
quickly by using a built-in distance instead of a function handle.

For more information, see “Distance Metrics” on page 19-14.

When you use the 'seuclidean', 'minkowski', or 'mahalanobis' distance metric, you can
specify the additional name-value pair argument 'Scale', 'P', or 'Cov', respectively, to control the
distance metrics.
Example: 'Distance','minkowski','P',3 specifies to use the Minkowski distance metric with an
exponent of 3.

P — Exponent for Minkowski distance metric
2 (default) | positive scalar

Exponent for the Minkowski distance metric, specified as the comma-separated pair consisting of 'P'
and a positive scalar.

This argument is valid only if 'Distance' is 'minkowski'.
Example: 'P',3
Data Types: single | double

Cov — Covariance matrix for Mahalanobis distance metric
cov(X,'omitrows') (default) | positive definite matrix

Covariance matrix for the Mahalanobis distance metric, specified as the comma-separated pair
consisting of 'Cov' and a positive definite matrix.

This argument is valid only if 'Distance' is 'mahalanobis'.
Example: 'Cov',eye(4)
Data Types: single | double

Scale — Scaling factors for standardized Euclidean distance metric
std(X,'omitnan') (default) | numeric vector of nonnegative values

Scaling factors for the standardized Euclidean distance metric, specified as the comma-separated
pair consisting of 'Scale' and a numeric vector of nonnegative values.
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Scale has length p (the number of columns in X), because each dimension (column) of X has a
corresponding value in Scale. For each dimension of X, fsulaplacian uses the corresponding
value in Scale to standardize the difference between observations.

This argument is valid only if 'Distance' is 'seuclidean'.
Data Types: single | double

NumNeighbors — Number of nearest neighbors
log(size(X,1)) (default) | positive integer

Number of nearest neighbors used to construct the similarity graph, specified as the comma-
separated pair consisting of 'NumNeighbors' and a positive integer.
Example: 'NumNeighbors',10
Data Types: single | double

KernelScale — Scale factor
1 (default) | 'auto' | positive scalar

Scale factor for the kernel, specified as the comma-separated pair consisting of 'KernelScale' and
'auto' or a positive scalar. The software uses the scale factor to transform distances to similarity
measures. For more information, see “Similarity Graph” on page 35-2933.

• The 'auto' option is supported only for the 'euclidean' and 'seuclidean' distance metrics.
• If you specify 'auto', then the software selects an appropriate scale factor using a heuristic

procedure. This heuristic procedure uses subsampling, so estimates can vary from one call to
another. To reproduce results, set a random number seed using rng before calling
fsulaplacian.

Example: 'KernelScale','auto'

Output Arguments
idx — Indices of features ordered by feature importance
numeric vector

Indices of the features in X ordered by feature importance, returned as a numeric vector. For
example, if idx(3) is 5, then the third most important feature is the fifth column in X.

scores — Feature scores
numeric vector

Feature scores, returned as a numeric vector. A large score value in scores indicates that the
corresponding feature is important. The values in scores have the same order as the features in X.

More About
Similarity Graph

A similarity graph models the local neighborhood relationships between data points in X as an
undirected graph. The nodes in the graph represent data points, and the edges, which are
directionless, represent the connections between the data points.
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If the pairwise distance Disti,j between any two nodes i and j is positive (or larger than a certain
threshold), then the similarity graph connects the two nodes using an edge [2]. The edge between the

two nodes is weighted by the pairwise similarity Si,j, where Si, j = exp −
Disti, j

σ
2

, for a specified

kernel scale σ value.

fsulaplacian constructs a similarity graph using the nearest neighbor method. The function
connects points in X that are nearest neighbors. Use 'NumNeighbors' to specify the number of
nearest neighbors.

Similarity Matrix

A similarity matrix is a matrix representation of a similarity graph on page 35-2933. The n-by-n
matrix S = (Si, j)i, j = 1, …, n contains pairwise similarity values between connected nodes in the
similarity graph. The similarity matrix of a graph is also called an adjacency matrix.

The similarity matrix is symmetric because the edges of the similarity graph are directionless. A value
of Si,j = 0 means that nodes i and j of the similarity graph are not connected.

Degree Matrix

A degree matrix Dg is an n-by-n diagonal matrix obtained by summing the rows of the similarity

matrix on page 35-2934 S. That is, the ith diagonal element of Dg is Dg(i, i) = ∑
j = 1

n
Si, j .

Laplacian Matrix

A Laplacian matrix, which is one way of representing a similarity graph on page 35-2933, is defined
as the difference between the degree matrix on page 35-2934 Dg and the similarity matrix on page
35-2934 S.

L = Dg− S .

Algorithms
Laplacian Score

The fsulaplacian function ranks features using Laplacian scores[1] obtained from a nearest
neighbor similarity graph on page 35-2933.

fsulaplacian computes the values in scores as follows:

1 For each data point in X, define a local neighborhood using the nearest neighbor method, and
find pairwise distances Disti, j for all points i and j in the neighborhood.

2 Convert the distances to the similarity matrix on page 35-2934 S using the kernel transformation

Si, j = exp −
Disti, j

σ
2

, where σ is the scale factor for the kernel as specified by the

'KernelScale' name-value pair argument.
3 Center each feature by removing its mean.

xr = xr −
xr

TDg1
1TDg1

1,
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where xr is the rth feature, Dg is the degree matrix on page 35-2934, and 1T = [1,⋯, 1]T.
4 Compute the score sr for each feature.

sr =
xr

TSxr

xr
TDgxr

.

Note that [1] defines the Laplacian score as

Lr =
xr

TLxr

xr
TDgxr

= 1−
xr

TSxr

xr
TDgxr

,

where L is the Laplacian matrix on page 35-2934, defined as the difference between Dg and S. The
fsulaplacian function uses only the second term of this equation for the score value of scores so
that a large score value indicates an important feature.

Selecting features using the Laplacian score is consistent with minimizing the value

∑i, j xir − x jr
2Si, j

Var(xr)
,

where xir represents the ith observation of the rth feature. Minimizing this value implies that the
algorithm prefers features with large variance. Also, the algorithm assumes that two data points of an
important feature are close if and only if the similarity graph has an edge between the two data
points.

Version History
Introduced in R2019b

References
[1] He, X., D. Cai, and P. Niyogi. "Laplacian Score for Feature Selection." NIPS Proceedings. 2005.

[2] Von Luxburg, U. “A Tutorial on Spectral Clustering.” Statistics and Computing Journal. Vol.17,
Number 4, 2007, pp. 395–416.

See Also
fscmrmr | relieff | sequentialfs

Topics
“Introduction to Feature Selection” on page 16-47
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fsurfht
Interactive contour plot

Syntax
fsurfht(fun,xlims,ylims)
fsurfht(fun,xlims,ylims,p1,p2,p3,p4,p5)

Description
fsurfht(fun,xlims,ylims) is an interactive contour plot of the function specified by the text
variable fun. The x-axis limits are specified by xlims in the form [xmin xmax], and the y-axis limits
are specified by ylims in the form [ymin ymax].

fsurfht(fun,xlims,ylims,p1,p2,p3,p4,p5) allows for five optional parameters that you can
supply to the function fun.

The intersection of the vertical and horizontal reference lines on the plot defines the current x value
and y value. You can drag these reference lines and watch the calculated z-values (at the top of the
plot) update simultaneously. Alternatively, you can type the x value and y value into editable text
fields on the x-axis and y-axis.

Examples
Plot the Gaussian likelihood function for the gas.mat data.

load gas

Create a function containing the following commands, and name it gauslike.m.

function z = gauslike(mu,sigma,p1)
n = length(p1);
z = ones(size(mu));
for i = 1:n
z = z .* (normpdf(p1(i),mu,sigma));
end

The gauslike function calls normpdf, treating the data sample as fixed and the parameters µ and σ
as variables. Assume that the gas prices are normally distributed, and plot the likelihood surface of
the sample.

fsurfht('gauslike',[112 118],[3 5],price1)
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The sample mean is the x value at the maximum, but the sample standard deviation is not the y value
at the maximum.

mumax = mean(price1)
mumax =
 115.1500
sigmamax = std(price1)*sqrt(19/20)
sigmamax =
  3.7719

Version History
Introduced before R2006a
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fullfact
Full factorial design

Syntax
dFF = fullfact(levels)

Description
dFF = fullfact(levels) gives factor settings dFF for a full factorial design with n factors, where
the number of levels for each factor is given by the vector levels of length n. dFF is m-by-n, where
m is the number of treatments in the full-factorial design. Each row of dFF corresponds to a single
treatment. Each column contains the settings for a single factor, with integer values from one to the
number of levels.

Examples
The following generates an eight-run full-factorial design with two levels in the first factor and four
levels in the second factor:

dFF = fullfact([2 4])
dFF =
   1   1
   2   1
   1   2
   2   2
   1   3
   2   3
   1   4
   2   4

Version History
Introduced before R2006a

See Also
ff2n
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gagerr
Gage repeatability and reproducibility study

Syntax
gagerr(y,{part,operator})
gagerr(y,GROUP)
gagerr(y,part)
gagerr(...,param1,val1,param2,val2,...)
[TABLE, stats] = gagerr(...)

Description
gagerr(y,{part,operator}) performs a gage repeatability and reproducibility study on
measurements in y collected by operator on part. y is a column vector containing the
measurements on different parts. part and operator are categorical variables, numeric vectors,
character matrices, string arrays, or cell arrays of character vectors. The number of elements in part
and operator should be the same as in y.

gagerr prints a table in the command window in which the decomposition of variance, standard
deviation, study var (5.15 x standard deviation) are listed with respective percentages for different
sources. Summary statistics are printed below the table giving the number of distinct categories
(NDC) and the percentage of Gage R&R of total variations (PRR).

gagerr also plots a bar graph showing the percentage of different components of variations. Gage
R&R, repeatability, reproducibility, and part-to-part variations are plotted as four vertical bars.
Variance and study var are plotted as two groups.

To determine the capability of a measurement system using NDC, use the following guidelines:

• If NDC > 5, the measurement system is capable.
• If NDC < 2, the measurement system is not capable.
• Otherwise, the measurement system may be acceptable.

To determine the capability of a measurement system using PRR, use the following guidelines:

• If PRR < 10%, the measurement system is capable.
• If PRR > 30%, the measurement system is not capable.
• Otherwise, the measurement system may be acceptable.

gagerr(y,GROUP) performs a gage R&R study on measurements in y with part and operator
represented in GROUP. GROUP is a numeric matrix whose first and second columns specify different
parts and operators, respectively. The number of rows in GROUP should be the same as the number of
elements in y.

gagerr(y,part) performs a gage R&R study on measurements in y without operator information.
The assumption is that all variability is contributed by part.

gagerr(...,param1,val1,param2,val2,...) performs a gage R&R study using one or more of
the following parameter name/value pairs:
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• 'spec' — A two-element vector that defines the lower and upper limit of the process,
respectively. In this case, summary statistics printed in the command window include Precision-to-
Tolerance Ratio (PTR). Also, the bar graph includes an additional group, the percentage of
tolerance.

To determine the capability of a measurement system using PTR, use the following guidelines:

• If PTR < 0.1, the measurement system is capable.
• If PTR > 0.3, the measurement system is not capable.
• Otherwise, the measurement system may be acceptable.

• 'printtable' — A value 'on' or 'off' that indicates whether the tabular output should be
printed in the command window or not. The default value is 'on'.

• 'printgraph' — A value 'on' or 'off' that indicates whether the bar graph should be plotted
or not. The default value is 'on'.

• 'randomoperator' — A logical value, true or false, that indicates whether the effect of
operator is random or not. The default value is true.

• 'model' — The model to use, specified by one of:

• 'linear' — Main effects only (default)
• 'interaction' — Main effects plus two-factor interactions
• 'nested' — Nest operator in part

The default value is 'linear'.

[TABLE, stats] = gagerr(...) returns a 6-by-5 matrix TABLE and a structure stats. The
columns of TABLE, from left to right, represent variance, percentage of variance, standard deviations,
study var, and percentage of study var. The rows of TABLE, from top to bottom, represent different
sources of variations: gage R&R, repeatability, reproducibility, operator, operator and part
interactions, and part. stats is a structure containing summary statistics for the performance of the
measurement system. The fields of stats are:

• ndc — Number of distinct categories
• prr — Percentage of gage R&R of total variations
• ptr — Precision-to-tolerance ratio. The value is NaN if the parameter 'spec' is not given.

Examples

Gage R&R Study

Simulate a measurement system by randomly generating the operators, parts, and the
measurements, y , operators do on the parts.

rng(1234,'twister')               % for reproducibility   
y = randn(100,1);                 % measurements
part = ceil(3*rand(100,1));       % parts
operator = ceil(4*rand(100,1));   % operators

Conduct a gage R&R study for this system using a mixed ANOVA model without interactions.

gagerr(y,{part, operator},'randomoperator',true)
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  Columns 1 through 4

    {'Source'           }    {'Variance'}    {'% Variance'}    {'sigma' }
    {'Gage R&R'         }    {[  0.9715]}    {[   99.2653]}    {[0.9857]}
    {'  Repeatability'  }    {[  0.9535]}    {[   97.4201]}    {[0.9765]}
    {'  Reproducibility'}    {[  0.0181]}    {[    1.8452]}    {[0.1344]}
    {'   Operator'      }    {[  0.0181]}    {[    1.8452]}    {[0.1344]}
    {'Part'             }    {[  0.0072]}    {[    0.7347]}    {[0.0848]}
    {'Total'            }    {[  0.9787]}    {[       100]}    {[0.9893]}

  Columns 5 through 6

    {'5.15*sigma'}    {'% 5.15*sigma'}
    {[    5.0762]}    {[     99.6320]}
    {[    5.0288]}    {[     98.7016]}
    {[    0.6921]}    {[     13.5838]}
    {[    0.6921]}    {[     13.5838]}
    {[    0.4367]}    {[      8.5716]}
    {[    5.0949]}    {0x0 char      }

Number of distinct categories (NDC):0
% of Gage R&R of total variations (PRR): 99.63
Note: The last column of the above table does not have to sum to 100%
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Version History
Introduced in R2006b

References
[1] Burdick, Richard K., Connie M. Borror, and Douglas C. Montgomery. Design and Analysis of Gauge

R&R Studies: Making Decisions with Confidence Intervals in Random and Mixed ANOVA
Models. Society for Industrial Applied Mathematics: American Statistical Association, 2005.

See Also
Topics
“Grouping Variables” on page 2-46
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gamcdf
Gamma cumulative distribution function

Syntax
p = gamcdf(x,a)
p = gamcdf(x,a,b)

[p,pLo,pUp] = gamcdf(x,a,b,pCov)
[p,pLo,pUp] = gamcdf(x,a,b,pCov,alpha)

___  = gamcdf( ___ ,'upper')

Description
p = gamcdf(x,a) returns the cumulative distribution function (cdf) of the standard gamma
distribution with the shape parameters in a, evaluated at the values in x.

p = gamcdf(x,a,b) returns the cdf of the gamma distribution with the shape parameters in a and
scale parameters in b, evaluated at the values in x.

[p,pLo,pUp] = gamcdf(x,a,b,pCov) also returns the 95% confidence interval [pLo,pUp] of p
when a and b are estimates. pCov is the covariance matrix of the estimated parameters.

[p,pLo,pUp] = gamcdf(x,a,b,pCov,alpha) specifies the confidence level for the confidence
interval [pLo pUp] to be 100(1–alpha)%.

___  = gamcdf( ___ ,'upper') returns the complement of the cdf, evaluated at the values in x,
using an algorithm that more accurately computes the extreme upper-tail probabilities than
subtracting the lower tail value from 1. 'upper' can follow any of the input argument combinations
in the previous syntaxes.

Examples

Compute Gamma Distribution cdf

Compute the cdf of the mean of the gamma distribution, which is equal to the product of the
parameters ab.

a = 1:6;
b = 5:10;
prob = gamcdf(a.*b,a,b)

prob = 1×6

    0.6321    0.5940    0.5768    0.5665    0.5595    0.5543

As ab increases, the distribution becomes more symmetric, and the mean approaches the median.
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Confidence Interval of Gamma cdf Value

Find a confidence interval estimating the probability that an observation is in the interval [0 10]
using gamma distributed data.

Generate a sample of 1000 gamma distributed random numbers with shape 2 and scale 5.

x = gamrnd(2,5,1000,1);

Compute estimates for the parameters.

[params,~] = gamfit(x)

params = 1×2

    2.1089    4.8147

Store the parameters as ahat and bhat.

ahat = params(1);
bhat = params(2);

Find the covariance of the parameter estimates.

[~,nCov] = gamlike(params,x)

nCov = 2×2

    0.0077   -0.0176
   -0.0176    0.0512

Create a confidence interval estimating the probability that an observation is in the interval [0 10].

[prob,pLo,pUp] = gamcdf(10,ahat,bhat,nCov)

prob = 0.5830

pLo = 0.5587

pUp = 0.6069

Complementary cdf (Tail Distribution)

Determine the probability that an observation from the gamma distribution with shape parameter 2
and scale parameter 3 will is in the interval [150 Inf].

p1 = 1 - gamcdf(150,2,3)

p1 = 0

gamcdf(150, 2, 3) is nearly 1, so p1 becomes 0. Specify 'upper' so that gamcdf computes the
extreme upper-tail probabilities more accurately.
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p2 = gamcdf(150,2,3,'upper')

p2 = 9.8366e-21

Input Arguments
x — Values at which to evaluate cdf
nonnegative scalar value | array of nonnegative scalar values

Values at which to evaluate the cdf, specified as a nonnegative scalar value or an array of nonnegative
scalar values.

If you specify pCov to compute the confidence interval [pLo,pUp], then x must be a scalar value.

• To evaluate the cdf at multiple values, specify x using an array.
• To evaluate the cdfs of multiple distributions, specify a and b using arrays.

If one or more of the input arguments x, a, and b are arrays, then the array sizes must be the same.
In this case, gamcdf expands each scalar input into a constant array of the same size as the array
inputs. Each element in p is the cdf value of the distribution specified by the corresponding elements
in a and b, evaluated at the corresponding element in x.
Example: [3 4 7 9]
Data Types: single | double

a — Shape parameter
positive scalar value | array of positive scalar values

Shape of the gamma distribution, specified as a positive scalar value or an array of positive scalar
values.

• To evaluate the cdf at multiple values, specify x using an array.
• To evaluate the cdfs of multiple distributions, specify a and b using arrays.

If one or more of the input arguments x, a, and b are arrays, then the array sizes must be the same.
In this case, gamcdf expands each scalar input into a constant array of the same size as the array
inputs. Each element in p is the cdf value of the distribution specified by the corresponding elements
in a and b, evaluated at the corresponding element in x.
Example: [1 2 3 5]
Data Types: single | double

b — Scale parameter
1 (default) | positive scalar value | array of positive scalar values

Scale of the gamma distribution, specified as a positive scalar value or an array of positive scalar
values.

• To evaluate the cdf at multiple values, specify x using an array.
• To evaluate the cdfs of multiple distributions, specify a and b using arrays.

If one or more of the input arguments x, a, and b are arrays, then the array sizes must be the same.
In this case, gamcdf expands each scalar input into a constant array of the same size as the array
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inputs. Each element in p is the cdf value of the distribution specified by the corresponding elements
in a and b, evaluated at the corresponding element in x.
Example: [1 1 2 2]
Data Types: single | double

pCov — Covariance of estimates
2-by-2 numeric matrix

Covariance of the estimates a and b, specified as a 2-by-2 matrix.

If you specify pCov to compute the confidence interval [pLo,pUp], then x, a, and b must be scalar
values.

You can estimate a and b by using gamfit or mle, and estimate the covariance of a and b by using
gamlike. For an example, see “Confidence Interval of Gamma cdf Value” on page 35-2944.
Data Types: single | double

alpha — Significance level
0.05 (default) | scalar in the range (0,1)

Significance level for the confidence interval, specified as a scalar in the range (0,1). The confidence
level is 100(1–alpha)%, where alpha is the probability that the confidence interval does not
contain the true value.
Example: 0.01
Data Types: single | double

Output Arguments
p — cdf values
scalar value | array of scalar values

cdf values evaluated at the values in x, returned as a scalar value or an array of scalar values. p is the
same size as x, a, and b after any necessary scalar expansion. Each element in p is the cdf value of
the distribution specified by the corresponding elements in a and b, evaluated at the corresponding
element in x.

pLo — Lower confidence bound for p
scalar value | array of scalar values

Lower confidence bound for p, returned as a scalar value or an array of scalar values. pLo has the
same size as p.

pUp — Upper confidence bound for p
scalar value | array of scalar values

Upper confidence bound for p, returned as a scalar value or an array of scalar values. pUp has the
same size as p.
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More About
Gamma cdf

The gamma distribution is a two-parameter family of curves. The parameters a and b are shape and
scale, respectively.

The gamma cdf is

p = F(x a, b) = 1
baΓ(a)∫0

x
ta− 1e

−t
b dt .

The result p is the probability that a single observation from a gamma distribution with parameters a
and b falls in the interval [0,x].

The gamma cdf is related to the incomplete gamma function gammainc by

f x a, b = gammainc x
b , a .

The standard gamma distribution occurs when b = 1, which coincides with the incomplete gamma
function precisely.

For more information, see “Gamma Distribution” on page B-48.

Alternative Functionality
• gamcdf is a function specific to the gamma distribution. Statistics and Machine Learning Toolbox

also offers the generic function cdf, which supports various probability distributions. To use cdf,
create a GammaDistribution probability distribution object and pass the object as an input
argument or specify the probability distribution name and its parameters. Note that the
distribution-specific function gamcdf is faster than the generic function cdf.

• Use the Probability Distribution Function app to create an interactive plot of the cumulative
distribution function (cdf) or probability density function (pdf) for a probability distribution.

Version History
Introduced before R2006a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

This function fully supports GPU arrays. For more information, see “Run MATLAB Functions on a
GPU” (Parallel Computing Toolbox).
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See Also
GammaDistribution | cdf | gampdf | gaminv | gamstat | gamfit | gamlike | gamrnd | gamma

Topics
“Gamma Distribution” on page B-48
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gamfit
Gamma parameter estimates

Syntax
phat = gamfit(data)
[phat,pci] = gamfit(data)
[phat,pci] = gamfit(data,alpha)
[...] = gamfit(data,alpha,censoring,freq,options)

Description
phat = gamfit(data) returns the maximum likelihood estimates (MLEs) for the parameters of the
gamma distribution given the data in vector data.

[phat,pci] = gamfit(data) returns MLEs and 95% percent confidence intervals. The first row
of pci is the lower bound of the confidence intervals; the last row is the upper bound.

[phat,pci] = gamfit(data,alpha) returns 100(1 - alpha)% confidence intervals. For
example, alpha = 0.01 yields 99% confidence intervals.

[...] = gamfit(data,alpha,censoring) accepts a Boolean vector of the same size as data
that is 1 for observations that are right-censored and 0 for observations that are observed exactly.

[...] = gamfit(data,alpha,censoring,freq) accepts a frequency vector of the same size as
data. freq typically contains integer frequencies for the corresponding elements in data, but may
contain any nonnegative values.

[...] = gamfit(data,alpha,censoring,freq,options) accepts a structure, options, that
specifies control parameters for the iterative algorithm the function uses to compute maximum
likelihood estimates. The gamma fit function accepts an options structure which can be created
using the function statset. Enter statset('gamfit') to see the names and default values of the
parameters that gamfit accepts in the options structure.

Examples
Fit a gamma distribution to random data generated from a specified gamma distribution:

a = 2; b = 4;
data = gamrnd(a,b,100,1);

[p,ci] = gamfit(data)
p =
  2.1990  3.7426
ci =
  1.6840  2.8298
  2.7141  4.6554
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Version History
Introduced before R2006a

References

[1] Hahn, Gerald J., and S. S. Shapiro. Statistical Models in Engineering. Hoboken, NJ: John Wiley &
Sons, Inc., 1994, p. 88.

Extended Capabilities
GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

This function fully supports GPU arrays. For more information, see “Run MATLAB Functions on a
GPU” (Parallel Computing Toolbox).

See Also
mle | gamlike | gampdf | gamcdf | gaminv | gamstat | gamrnd

Topics
“Gamma Distribution” on page B-48
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gaminv
Gamma inverse cumulative distribution function

Syntax
x = gaminv(p,a)
x = gaminv(p,a,b)

[x,xLo,xUp] = gaminv(p,a,b,pCov)
[x,xLo,xUp] = gaminv(p,a,b,pCov,alpha)

Description
x = gaminv(p,a) returns the inverse cumulative distribution function (icdf) of the standard gamma
distribution with the shape parameter a, evaluated at the values in p.

x = gaminv(p,a,b) returns the icdf of the gamma distribution with shape parameter a and the
scale parameter b, evaluated at the values in p.

[x,xLo,xUp] = gaminv(p,a,b,pCov) also returns the 95% confidence interval [xLo,xUp] of x
when a and b are estimates. pCov is the covariance matrix of the estimated parameters.

[x,xLo,xUp] = gaminv(p,a,b,pCov,alpha) specifies the confidence level for the confidence
interval [xLo,xUp] to be 100(1–alpha)%.

Examples

Compute Gamma icdf

Find the median of the gamma distribution with shape parameter 3 and scale parameter 5.

x = gaminv(0.5,3,5)

x = 13.3703

Confidence Interval of Gamma icdf Value

Find a confidence interval estimating the median using gamma distributed data.

Generate a sample of 500 gamma distributed random numbers with shape 2 and scale 5.

x = gamrnd(2,5,500,1);

Compute estimates for the parameters.

params = gamfit(x)

params = 1×2
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    1.9820    5.0601

Store the estimates for the parameters as ahat and bhat.

ahat = params(1);
bhat = params(2);

Compute the covariance of the parameter estimates.

[~,nCov] = gamlike(params,x)

nCov = 2×2

    0.0135   -0.0346
   -0.0346    0.1141

Create a confidence interval estimating x.

[x,xLo,xUp] = gaminv(0.50,ahat,bhat,nCov)

x = 8.4021

xLo = 7.8669

xUp = 8.9737

Input Arguments
p — Probability values at which to evaluate icdf
scalar value in [0,1] | array of scalar values

Probability values at which to evaluate the inverse cdf (icdf), specified as a scalar value or an array of
scalar values, where each element is in the range [0,1].

If you specify pCov to compute the confidence interval [xLo,xUp], then p must be a scalar value
(not an array).

• To evaluate the icdf at multiple values, specify p using an array.
• To evaluate the icdfs of multiple distributions, specify a and b using arrays.

If one or more of the input arguments p, a, and b are arrays, then the array sizes must be the same.
In this case, gaminv expands each scalar input into a constant array of the same size as the array
inputs. Each element in x is the icdf value of the distribution specified by the corresponding elements
in a and b, evaluated at the corresponding element in p.
Example: [0.1,0.5,0.9]
Data Types: single | double

a — Shape Parameter
positive scalar value | array of positive scalar values

Shape parameter of the gamma distribution, specified as a positive scalar value or an array of
positive scalar values.
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• To evaluate the icdf at multiple values, specify p using an array.
• To evaluate the icdfs of multiple distributions, specify a and b using arrays.

If one or more of the input arguments p, a, and b are arrays, then the array sizes must be the same.
In this case, gaminv expands each scalar input into a constant array of the same size as the array
inputs. Each element in x is the icdf value of the distribution specified by the corresponding elements
in a and b, evaluated at the corresponding element in p.
Example: [1 2 3 5]
Data Types: single | double

b — Scale Parameter
1 (default) | positive scalar value | array of positive scalar values

Scale parameter of the gamma distribution, specified as a positive scalar value or an array of positive
scalar values.

• To evaluate the icdf at multiple values, specify p using an array.
• To evaluate the icdfs of multiple distributions, specify a and b using arrays.

If one or more of the input arguments p, a, and b are arrays, then the array sizes must be the same.
In this case, gaminv expands each scalar input into a constant array of the same size as the array
inputs. Each element in x is the icdf value of the distribution specified by the corresponding elements
in a and b, evaluated at the corresponding element in p.
Example: [1 1 2 2]
Data Types: single | double

pCov — Covariance of estimates
2-by-2 numeric matrix

Covariance of the estimates a and b, specified as a 2-by-2 matrix.

If you specify pCov to compute the confidence interval [xLo,xUp], then p, a, and b must be scalar
values.

You can estimate a and b by using gamfit or mle, and estimate the covariance of a and b by using
gamlike. For an example, see “Confidence Interval of Gamma icdf Value” on page 35-2951.
Data Types: single | double

alpha — Significance level
0.05 (default) | scalar in the range (0,1)

Significance level for the confidence interval, specified as a scalar in the range (0,1). The confidence
level is 100(1–alpha)%, where alpha is the probability that the confidence interval does not
contain the true value.
Example: 0.01
Data Types: single | double
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Output Arguments
x — icdf values
scalar value | array of scalar values

icdf values evaluated at the probability values in p, returned as a scalar value or an array of scalar
values. x is the same size as p, a, and b, after any necessary scalar expansion. Each element in x is
the icdf value of the distribution specified by the corresponding elements in a and b, evaluated at the
corresponding element in p.

xLo — Lower confidence bound for x
scalar value | array of scalar values

Lower confidence bound for x, returned as a scalar value or an array of scalar values. xLo has the
same size as x.

xUp — Upper confidence bound for x
scalar value | array of scalar values

Upper confidence bound for x, returned as a scalar value or an array of scalar values. xUp has the
same size as x.

More About
Gamma icdf

The gamma distribution is a two-parameter family of curves. The parameters a and b are shape and
scale, respectively.

The gamma inverse function in terms of the gamma cdf is

x = F−1(p a, b) = x:F(x a, b) = p ,

where

p = F(x a, b) = 1
baΓ(a)∫0

x
ta− 1e

−t
b dt .

The result x is the value such that an observation from the gamma distribution with parameters a and
b falls in [0,x] with probability p.

For more information, see “Gamma Distribution” on page B-48.

Algorithms
No known analytical solution exists for the integral equation shown in “Gamma icdf” on page 35-
2954. gaminv uses an iterative approach (Newton's method) to converge on the solution.

Alternative Functionality
• gaminv is a function specific to the gamma distribution. Statistics and Machine Learning Toolbox

also offers the generic function icdf, which supports various probability distributions. To use
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icdf, create a GammaDistribution probability distribution object and pass the object as an
input argument or specify the probability distribution name and its parameters. Note that the
distribution-specific function gaminv is faster than the generic function icdf.

Version History
Introduced before R2006a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

This function fully supports GPU arrays. For more information, see “Run MATLAB Functions on a
GPU” (Parallel Computing Toolbox).

See Also
GammaDistribution | icdf | gamcdf | gampdf | gamstat | gamfit | gamlike | gamrnd

Topics
“Gamma Distribution” on page B-48
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gamlike
Gamma negative log-likelihood

Syntax
nlogL = gamlike(params,data)
[nlogL,AVAR] = gamlike(params,data)

Description
nlogL = gamlike(params,data) returns the negative of the gamma log-likelihood of the
parameters, params, given data. params(1)=A, shape parameters, and params(2)=B, scale
parameters. The parameters in params must all be positive

[nlogL,AVAR] = gamlike(params,data) also returns AVAR, which is the asymptotic variance-
covariance matrix of the parameter estimates when the values in params are the maximum likelihood
estimates. AVAR is the inverse of Fisher's information matrix. The diagonal elements of AVAR are the
asymptotic variances of their respective parameters.

[...] = gamlike(params,data,censoring) accepts a Boolean vector of the same size as data
that is 1 for observations that are right-censored and 0 for observations that are observed exactly.

[...] = gamfit(params,data,censoring,freq) accepts a frequency vector of the same size
as data. freq typically contains integer frequencies for the corresponding elements in data, but
may contain any non-negative values.

gamlike is a utility function for maximum likelihood estimation of the gamma distribution. Since
gamlike returns the negative gamma log-likelihood function, minimizing gamlike using
fminsearch is the same as maximizing the likelihood.

Examples
Compute the negative log-likelihood of parameter estimates computed by the gamfit function:

a = 2; b = 3;
r = gamrnd(a,b,100,1);

[nlogL,AVAR] = gamlike(gamfit(r),r)
nlogL =
  267.5648
AVAR =
  0.0788  -0.1104
 -0.1104  0.1955

Version History
Introduced before R2006a
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Extended Capabilities
GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

This function fully supports GPU arrays. For more information, see “Run MATLAB Functions on a
GPU” (Parallel Computing Toolbox).

See Also
gamfit | gampdf | gamcdf | gaminv | gamstat | gamrnd

Topics
“Gamma Distribution” on page B-48
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gampdf
Gamma probability density function

Syntax
y = gampdf(x,a)
y = gampdf(x,a,b)

Description
y = gampdf(x,a) returns the probability density function (pdf) of the standard gamma distribution
with the shape parameter a, evaluated at the values in x.

y = gampdf(x,a,b) returns the pdf of the gamma distribution with the shape parameter a and the
scale parameter b, evaluated at the values in x.

Examples

Compute Gamma pdf

Compute the density of the observed value 5 in the standard gamma distribution with shape
parameter 2.

y1 = gampdf(5,2)

y1 = 0.0337

Compute the density of the observed value 5 in the gamma distributions with shape parameter 2 and
scale parameters 1 through 5.

y2 = gampdf(5,2,1:5)

y2 = 1×5

    0.0337    0.1026    0.1049    0.0895    0.0736

Input Arguments
x — Values at which to evaluate pdf
nonnegative scalar value | array of nonnegative scalar values

Values at which to evaluate the pdf, specified as a nonnegative scalar value or an array of
nonnegative scalar values.

• To evaluate the pdf at multiple values, specify x using an array.
• To evaluate the pdfs of multiple distributions, specify a and b using arrays.
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If one or more of the input arguments x, a, and b are arrays, then the array sizes must be the same.
In this case, gampdf expands each scalar input into a constant array of the same size as the array
inputs. Each element in y is the pdf value of the distribution specified by the corresponding elements
in a and b, evaluated at the corresponding element in x.
Example: [3 4 7 9]
Data Types: single | double

a — Shape parameter
positive scalar value | array of positive scalar values

Shape parameter of the gamma distribution, specified as a positive scalar value or an array of
positive scalar values.

• To evaluate the pdf at multiple values, specify x using an array.
• To evaluate the pdfs of multiple distributions, specify a and b using arrays.

If one or more of the input arguments x, a, and b are arrays, then the array sizes must be the same.
In this case, gampdf expands each scalar input into a constant array of the same size as the array
inputs. Each element in y is the pdf value of the distribution specified by the corresponding elements
in a and b, evaluated at the corresponding element in x.
Example: [1 2 3 5]
Data Types: single | double

b — Scale parameter
1 (default) | positive scalar value | array of positive scalar values

Scale parameter of the gamma distribution, specified as a positive scalar value or an array of positive
scalar values.

• To evaluate the pdf at multiple values, specify x using an array.
• To evaluate the pdfs of multiple distributions, specify a and b using arrays.

If one or more of the input arguments x, a, and b are arrays, then the array sizes must be the same.
In this case, gampdf expands each scalar input into a constant array of the same size as the array
inputs. Each element in y is the pdf value of the distribution specified by the corresponding elements
in a and b, evaluated at the corresponding element in x.
Example: [1 1 2 2]
Data Types: single | double

Output Arguments
y — pdf values
scalar value | array of scalar values

pdf values evaluated at the values in x, returned as a scalar value or an array of scalar values. y is the
same size as x, a, and b after any necessary scalar expansion. Each element in y is the pdf value of
the distribution specified by the corresponding elements in a and b, evaluated at the corresponding
element in x.
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More About
Gamma pdf

The gamma distribution is a two-parameter family of curves. The parameters a and b are shape and
scale, respectively.

The gamma pdf is

y = f (x a, b) = 1
baΓ(a)

xa− 1e
−x
b ,

where Γ( · ) is the Gamma function.

The standard gamma distribution occurs when b = 1.

For more information, see “Gamma Distribution” on page B-48.

Alternative Functionality
• gampdf is a function specific to the gamma distribution. Statistics and Machine Learning Toolbox

also offers the generic function pdf, which supports various probability distributions. To use pdf,
create a GammaDistribution probability distribution object and pass the object as an input
argument or specify the probability distribution name and its parameters. Note that the
distribution-specific function gampdf is faster than the generic function pdf.

• Use the Probability Distribution Function app to create an interactive plot of the cumulative
distribution function (cdf) or probability density function (pdf) for a probability distribution.

Version History
Introduced before R2006a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

This function fully supports GPU arrays. For more information, see “Run MATLAB Functions on a
GPU” (Parallel Computing Toolbox).

See Also
GammaDistribution | pdf | gamcdf | gaminv | gamstat | gamfit | gamlike | gamrnd

Topics
“Gamma Distribution” on page B-48
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gamrnd
Gamma random numbers

Syntax
r = gamrnd(a,b)
r = gamrnd(a,b,sz1,...,szN)
r = gamrnd(a,b,sz)

Description
r = gamrnd(a,b) generates a random number from the gamma distribution with the shape
parameter a and the scale parameter b.

r = gamrnd(a,b,sz1,...,szN) generates an array of random numbers from the gamma
distribution, where sz1,...,szN indicates the size of each dimension.

r = gamrnd(a,b,sz) generates an array of random numbers from the gamma distribution, where
vector sz specifies size(r).

Examples

Generate Gamma Random Number

Generate a single random number from the gamma distribution with shape 5 and scale 7.

r = gamrnd(5,7)

r = 68.9857

Generate Array of Gamma Random Numbers

Generate five random numbers from the gamma distributions with shape parameter values 1 through
5 and scale parameter 2.

a1 = 1:5;
b1 = 2;
r1 = gamrnd(a1,b1)

r1 = 1×5

    7.1297    6.0918    2.1010    8.7253   29.5447

By default, gamrnd generates an array that is the same size as a and b after any necessary scalar
expansion so that all scalars are expanded to match the dimensions of the other inputs.
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If you specify array dimensions sz1,...,szN or sz, they must match the dimensions of a and b after
any necessary scalar expansion.

Generate a 2-by-3 array of random numbers from the gamma distribution with shape parameter 3
and scale parameter 7.

sz = [2 3];
r2 = gamrnd(3,7,sz)

r2 = 2×3

   17.9551   41.3983    7.9865
   16.4204   40.0048   44.1909

Generate six random numbers from the gamma distributions with shape parameter values 1 through
6 and scale parameter values 5 through 10 respectively.

a3 = 1:6;
b3 = 5:10;
r3 = gamrnd(a3,b3,1,6)

r3 = 1×6

    9.5930    7.8289   11.0360   15.0367   28.1456   98.2664

Input Arguments
a — Shape parameter
nonnegative scalar value | array of nonnegative scalar values

Shape parameter of the gamma distribution, specified as a nonnegative scalar value or an array of
nonnegative scalar values.

To generate random numbers from multiple distributions, specify a and b using arrays. If both a and
b are arrays, then the array sizes must be the same. If either a or b is a scalar, then gamrnd expands
the scalar argument into a constant array of the same size as the other argument. Each element in r
is the random number generated from the distribution specified by the corresponding elements in a
and b.
Example: [3 4 7 9]
Data Types: single | double

b — Scale parameter
nonnegative scalar value | array of nonnegative scalar values

Scale parameter of the gamma distribution, specified as a nonnegative scalar value or an array of
nonnegative scalar values.

To generate random numbers from multiple distributions, specify a and b using arrays. If both a and
b are arrays, then the array sizes must be the same. If either a or b is a scalar, then gamrnd expands
the scalar argument into a constant array of the same size as the other argument. Each element in r
is the random number generated from the distribution specified by the corresponding elements in a
and b.
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Example: [1 1 2 2]
Data Types: single | double

sz1,...,szN — Size of each dimension (as separate arguments)
integers

Size of each dimension, specified as separate arguments of integers.

If either a or b is an array, then the specified dimensions sz1,...,szN must match the common
dimensions of a and b after any necessary scalar expansion. The default values of sz1,...,szN are
the common dimensions.

• If you specify a single value sz1, then r is a square matrix of size sz1-by-sz1.
• If the size of any dimension is 0 or negative, then r is an empty array.
• Beyond the second dimension, gamrnd ignores trailing dimensions with a size of 1. For example,

gamrnd(2,5,3,1,1,1) produces a 3-by-1 vector of random numbers from the gamma
distribution with shape 2 and scale 5.

Example: 2,4
Data Types: single | double

sz — Size of each dimension (as a row vector)
row vector of integers

Size of each dimension, specified as a row vector of integers.

If either a or b is an array, then the specified dimensions sz must match the common dimensions of a
and b after any necessary scalar expansion. The default values of sz are the common dimensions.

• If you specify a single value [sz1], then r is a square matrix of size sz1-by-sz1.
• If the size of any dimension is 0 or negative, then r is an empty array.
• Beyond the second dimension, gamrnd ignores trailing dimensions with a size of 1. For example,

gamrnd(2,5,[3 1 1 1]) produces a 3-by-1 vector of random numbers from the gamma
distribution with shape 2 and scale 5.

Example: [2 4]
Data Types: single | double

Output Arguments
r — Gamma random numbers
nonnegative scalar value | array of nonnegative scalar values

Gamma random numbers, returned as a nonnegative scalar value or an array of nonnegative scalar
values with the dimensions specified by sz1,...,szN or sz. Each element in r is the random
number generated from the distribution specified by the corresponding elements in a and b.

Alternative Functionality
• gamrnd is a function specific to the gamma distribution. Statistics and Machine Learning Toolbox

also offers the generic function random, which supports various probability distributions. To use
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random, create a GammaDistribution probability distribution object and pass the object as an
input argument or specify the probability distribution name and its parameters. Note that the
distribution-specific function gamrnd is faster than the generic function random.

• Use randg to generate random numbers from the standard gamma distribution (unit scale).
• To generate random numbers interactively, use randtool, a user interface for random number

generation.

Version History
Introduced before R2006a

References
[1] Marsaglia, George, and Wai Wan Tsang. “A Simple Method for Generating Gamma Variables.”

ACM Transactions on Mathematical Software 26, no. 3 (September 1, 2000): 363–72. https://
doi.org/10.1145/358407.358414.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

The generated code can return a different sequence of numbers from the sequence returned by
MATLAB if either of the following is true:

• The output is nonscalar.
• An input parameter is invalid for the distribution.

For more information on code generation, see “Introduction to Code Generation” on page 34-2 and
“General Code Generation Workflow” on page 34-5.

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

This function fully supports GPU arrays. For more information, see “Run MATLAB Functions on a
GPU” (Parallel Computing Toolbox).

See Also
GammaDistribution | randg | random | gampdf | gamcdf | gaminv | gamstat | gamfit | gamlike

Topics
“Gamma Distribution” on page B-48
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gamstat
Gamma mean and variance

Syntax
[M,V] = gamstat(A,B)

Description
[M,V] = gamstat(A,B) returns the mean of and variance for the gamma distribution with shape
parameters in A and scale parameters in B. A and B can be vectors, matrices, or multidimensional
arrays that have the same size, which is also the size of M and V. A scalar input for A or B is expanded
to a constant array with the same dimensions as the other input. The parameters in A and B must be
positive.

The mean of the gamma distribution with parameters A and B is AB. The variance is AB2.

Examples
[m,v] = gamstat(1:5,1:5)
m =
   1   4   9  16  25
v =
   1   8  27  64  125

[m,v] = gamstat(1:5,1./(1:5))
m =
   1   1   1   1   1
v =
  1.0000  0.5000  0.3333  0.2500  0.2000

Version History
Introduced before R2006a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

This function fully supports GPU arrays. For more information, see “Run MATLAB Functions on a
GPU” (Parallel Computing Toolbox).

See Also
gampdf | gamcdf | gaminv | gamfit | gamlike | gamrnd
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Topics
“Gamma Distribution” on page B-48

35 Functions

35-2966



gardnerAltmanPlot
Gardner-Altman plot for two-sample effect size

Syntax
gardnerAltmanPlot(X,Y)
gardnerAltmanPlot(ax,X,Y)
gardnerAltmanPlot( ___ ,Name=Value)
H = gardnerAltmanPlot( ___ )

Description
gardnerAltmanPlot(X,Y) generates a Gardner-Altman plot for the mean-difference effect size of
data in X and Y.

gardnerAltmanPlot(ax,X,Y) plots into the axes with handle ax.

gardnerAltmanPlot( ___ ,Name=Value) generates a Gardner-Altman plot for options specified
using one or more of the Name=Value arguments in combination with any of the previous syntaxes.

H = gardnerAltmanPlot( ___ ) returns a graphics array H for the plot using any of the previous
syntaxes.

Examples

Compute Mean Effect Size for Two Independent Samples

Load Fisher's iris data and define the variables for which to compare.

load fisheriris
species2 = categorical(species);
x = meas(species2=='setosa');
y = meas(species2=='virginica');

Compute the median difference effect size of the observations from two independent samples.

effect = meanEffectSize(x,y,Effect="mediandiff")

effect=1×2 table
                        Effect    ConfidenceIntervals
                        ______    ___________________

    MedianDifference     -1.5     -1.8259       -1.3 

meanEffectSize by default assumes independent samples (that is, Paired=false). The function
uses bootstrapping to estimate the confidence intervals when effect type is median difference.

Visualize the median difference effect size using Gardner-Altman plot.

gardnerAltmanPlot(x,y,Effect="mediandiff");
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Gardner-Altman plot displays the two sample data on the left. The median of the sample Y
corresponds to the zero effect size on the effect size axis, which is the yellow axis line on the right.
The median of the sample X corresponds to the value of the effect size on the effect size axis. The plot
displays the actual median difference effect size value and the confidence intervals with the vertical
error bar.

Specify Bootstrap Options

Load Fisher's iris data and define the variables for which to compare.

load fisheriris
species2 = categorical(species);
x = meas(species2=='setosa');
y = meas(species2=='virginica');

Compute the Cohen's d effect size for the observations from two independent samples and compute
the 95% confidence intervals for the effect size. meanEffectSize by default uses the exact formula
based on the noncentral t-distribution to estimate the confidence intervals when the effect type is
Cohen's d. Specify the bootstrapping options:

• Tell meanEffectSize to use bootstrapping for confidence interval computation.
• Use parallel computing for bootstrapping computations. You need Parallel Computing Toolbox™

for this option.
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• Use 3000 bootstrap replicas.

rng(123) % For reproducibility
effect = meanEffectSize(x,y,Effect="cohen",ConfidenceIntervalType="bootstrap", ...
      BootstrapOptions=statset(UseParallel=true),NumBootstraps=3000)

Starting parallel pool (parpool) using the 'local' profile ...
Connected to the parallel pool (number of workers: 6).

effect=1×2 table
               Effect     ConfidenceIntervals
               _______    ___________________

    CohensD    -3.0536    -3.5611    -2.3219 

Use the same options in Gardner-Altman plot to visualize the effect size.

gardnerAltmanPlot(x,y,Effect="cohen",ConfidenceIntervalType="bootstrap", ...
      BootstrapOptions=statset(UseParallel=true),NumBootstraps=3000);

Gardner-Altman plot displays the two sample data on the left. The mean of the sample Y corresponds
to the zero effect size on the effect size axis, which is the yellow axis line on the right. The mean of
the sample X corresponds to the value of the effect size on the effect size axis. The plot displays the
Cohen's d effect size value and the confidence intervals with the vertical error bar.
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Compare Paired Sample Means

Load exam grades data and define the variables for which to compare.

load examgrades
x = grades(:,1);
y = grades(:,2);

Compute the mean difference effect size of the grades from the paired samples and 95% confidence
intervals for the effect size.

effect = meanEffectSize(x,y,Paired=true)

effect=1×2 table
                       Effect     ConfidenceIntervals
                      ________    ___________________

    MeanDifference    0.016667    -1.3311     1.3644 

meanEffectSize uses the exact method to estimate the confidence intervals when you use mean
difference effect size.

You can use a different effect size type (note that you can't use Glass's delta for paired samples). Use
robust Cohen's d to compare the paired-sample means. Compute the 97% confidence intervals for the
effect size.

effect = meanEffectSize(x,y,Paired=true,Effect="robustcohen",Alpha=0.03)

effect=1×2 table
                      Effect     ConfidenceIntervals
                     ________    ___________________

    RobustCohensD    0.059128    -0.1405    0.26573 

meanEffectSize uses bootstrapping to estimate the confidence intervals when you use robust
Cohen's d as the effect size.

Visualize the effect size using Gardner-Altman plot. Again use robust Cohen's d as the effect size and
compute the 97% confidence intervals.

gardnerAltmanPlot(x,y,Paired=true,Effect="robustcohen",Alpha=0.03);
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Gardner-Altman plot displays the paired data on the left. Blue lines show the values that are
increasing and the red lines show the values that are decreasing from the first sample to the
corresponding values in the paired sample, respectively. On the right side of the plot, you see the
robust Cohen's d effect size with the 97% confidence intervals.

Input Arguments
X — Input data
numeric vector

Input data, specified as a numeric vector.
Data Types: single | double

Y — Input data
numeric vector

Input data, specified as a numeric vector.
Data Types: single | double

ax — Axes for plot
Axes object | UIAxes object

 gardnerAltmanPlot

35-2971



Axes for the plot, specified as an Axes or UIAxes object. If you do not specify ax, then
gardnerAltmanPlot creates the plot using the current axes. For more information on creating an
axes object, see axes and uiaxes.

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.
Example:
Effect="cliff",Alpha=0.03,ConfidenceIntervalType="bootstrap",VarianceType=une
qual specifies to use the Cliff's Delta effect size and compute the 97% confidence intervals using
bootstrapping and assume the samples come from populations with unequal variances..

Alpha — Confidence level
0.05 (default) | value from 0 to 1

Confidence level, specified as a numeric value from 0 to 1. Default value of Alpha, 0.05, corresponds
to 95% confidence level.
Example: Alpha=0.025
Data Types: single | double

BootstrapOptions — Options for bootstrap confidence interval computation in parallel
structure

Options for bootstrap confidence interval computation in parallel, specified as a structure generated
by using statset('bootci'). gardnerAltmanPlot uses the following fields:

Field Description
'Streams' A RandStream object or cell array of such

objects. If you do not specify Streams,
gardnerAltmanPlot uses the default stream or
streams. If you specify Streams, use a single
object except when all of the following conditions
exist:

• You have an open parallel pool.
• UseParallel is true.
• UseSubstreams is false.

In this case, use a cell array the same size as the
parallel pool. If a parallel pool is not open, then
Streams must supply a single random number
stream.

'UseParallel' The default is false, indicating serial
computation.
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Field Description
'UseSubstreams' Set to true to compute in parallel in a

reproducible fashion. The default is false. To
compute reproducibly, set Streams to a type
allowing substreams: 'mlfg6331_64' or
'mrg32k3a'.

Computing bootstrap confidence intervals in parallel requires Parallel Computing Toolbox.
Example: BootstrapOptions=options
Data Types: struct

ConfidenceIntervalType — Type of confidence interval
"exact" | "bootstrap" | "none"

Type of confidence interval to compute, specified as "exact", "bootstrap", or "none". The default
is "exact" when there is an exact formula for the effect size or "bootstrap" otherwise. "none" is
for not computing any confidence intervals.

Default is "exact" for Cliff's Delta, Glass's delta, mean difference, and Cohen's d and "bootstrap"
for Kolmogorov-Smirnov statistic, median difference, and Robust Cohen's d. If you specify confidence
interval type as "exact" for Kolmogorov-Smirnov statistic, median difference, and Robust Cohen's d,
gardnerAltmanPlot returns an error.
Example: ConfidenceIntervalType="none"
Data Types: string | char

Effect — Effect size to compute
"meandiff" (default) | "cohen" | "cliff" | "glass" | "kstest" | "mediandiff" |
"robustcohen"

Effect size to compute, specified as one of the following:

Effect size option Definition
"cohen" Cohen's d for two-sample input.
"cliff" Cliff's Delta.
"glass" Glass's delta. gardnerAltmanPlot doesn't

support this option for paired data.
"kstest" Kolmogorov-Smirnov statistic.
"mediandiff" Median difference.
"meandiff" Mean difference.
"robustcohen" Robust Cohen's d for two-sample input.

Example: Effect="glass"
Data Types: string | char

NumBootstraps — Number of bootstrap replicas
1000 (default) | positive integer
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Number of bootstrap replicas to use when computing the bootstrap confidence intervals, specified as
a positive integer.
Example: NumBootstraps=1500
Data Types: single | double

Paired — Indicator for paired samples
false (default) | true

Indicator for paired samples, specified as a logical value.

• If Paired is "true", then VarianceType must be "equal".
• If Paired is "true", then Effect cannot be "glass".

Example: Paired="true"
Data Types: logical

VarianceType — Population variance assumption for two samples
"equal" (default) | "unequal"

Population variance assumption for two samples, specified as either "equal" or "unequal". If
Paired is "true", then VarianceType must be "equal".
Example: VarianceType="unequal"
Data Types: string | char

Output Arguments
H — Graphics array for the plot
1-by-5 graphics array (default) | 1-by-4 graphics array

Graphics array for the plot, specified as a 1-by-5 or a 1-by-4 graphics array depending on the effect
size you choose and whether the data is unpaired or paired as follows.

• Unpaired data (Paired="false"):

• "meandiff", "glass", "cohen" or "robustcohen" effect size:

H is a 1-by-5 graphics array that holds two Scatter objects, one ErrorBar object, and two
Line objects.

The Scatter objects represent the scatter plots of the input data in X and Y, the ErrorBar
object represents the effect size and its confidence intervals, and the Line objects represent
the mean line from the control sample to the effect size and the other sample to 0.

• "mediandiff" effect size:

H is a 1-by-5 graphics array that holds two Scatter objects, one ErrorBar object, and two
Line objects that represent the median lines from the two sample data sets.

• "cliff" or "kstest" effect size:

H is a 1-by-4 graphics array that holds two Scatter objects, one ErrorBar object, and one
Line object that represents the line at 0 to indicate no effect between the two groups.
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• Paired data (Paired="true"):

• H holds 1-3 Line objects, representing the lines for the pairs that increased, decreased, or
stayed the same and one ErrorBar object, representing the effect size and its confidence
intervals.

For all cases, if you choose not to generate any confidence intervals for the effect
(ConfidenceIntervalType="none"), the ErrorBar object will instead be a Line object.

Use H to inspect and adjust the properties of the objects. To learn more about the object properties,
see Scatter Properties, ErrorBar Properties, and Line Properties, respectively.

Algorithms
Effect Sizes

• Cliff's Delta

• Unpaired data

δ =
∑

i, j = 1

n1, n2
xi > y j − xi < y j

n1 * n2
,

where n1 is the size of the first sample and n2 is the size of the second sample.
• Paired data

gardnerAltmanPlot uses the between-group delta, which is comparing the differences from
x and y, but excluding comparisons of paired data. For n paired samples, this results in n(n-1)
comparisons [3].

• Cohen's d

gardnerAltmanPlot computes the unbiased estimate of Cohen's d, which is also known as
Hedge's g.

• One-sample

d = J df * x − μ
s

• Two-sample

d = J df * x − y
s

where df is the degrees of freedom, μ is the known population mean to compare against, s is the
pooled standard deviation, and J(df) is the bias correction term. The pooled standard deviation and
the bias correction term are defined as follows, respectively.

s =
n1− 1 s1

2 + n2− 1 s2
2

n1 + n2− 2 ,

where n1 is the size of the first sample and n2 is the size of the second sample.
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J df = Γ df /2
df /2Γ df − 1 /2 ,

where Γ  is the gamma function.

Cohen's d follows a noncentral t-distribution, and uses that to derive the confidence intervals.
Hence, gardnerAltmanPlot by default uses "exact" to compute the confidence intervals for
the effect size. See [1] and [4] to see the derivation of the confidence intervals for paired versus
unpaired input data.

• Glass's Delta

D = x − y
sx

,

where sx is the standard deviation of the control group. gardnerAltmanPlot uses the data in x
as the control group. If you wish to use the other sample as the control group, you can swap the
data in x and y and swap the sign of the test result.

Similar to Cohen's d, Glass's delta also follows a noncentral t-distribution, and uses that to derive
the confidence intervals. Hence, gardnerAltmanPlot by default uses "exact" to compute the
confidence intervals for the effect size [4]. You can't use this effect size for paired samples.

• Kolmogorov-Smirnov Test Statistic

This two-sample test statistic is the same as given in “Two-Sample Kolmogorov-Smirnov Test” on
page 35-4099. gardnerAltmanPlot uses bootstrapping to compute the confidence intervals.

• Mean Difference

• One-sample

m = x − μ
• Two-sample

m = x − y

gardnerAltmanPlot computes the confidence intervals using the t-distribution (using pooled
standard deviation in the two-sample case. In case of unequal variance assumption for two
samples, the confidence intervals are called Welch-Satterthwaite confidence intervals). The
function by default uses the "exact" method to compute the confidence intervals.

• Median Difference

M = median x −median y

gardnerAltmanPlot computes the confidence intervals using bootstrapping for this effect size.
• Robust Cohen's d

d = 0.643 * J df *
xt− yt

sw
,

where xt and yt are the 20% trimmed mean of data in x and y, respectively. sw is the pooled 20%
Winsorized variance [2].

gardnerAltmanPlot computes the confidence intervals using bootstrapping for this effect size.
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Version History
Introduced in R2022a

References
[1] Cousineau, Denis and Jean-Christophe Goulet-Pelletier. "A study of confidence intervals for

Cohen's d in within-subject designs with new proposals". The Quantitative Methods for
Psychology, 2021.

[2] Algina, James, H. J. Keselman, and R. D. Penfield. "An Alternative to Cohen's Standardized Mean
Difference Effect Size: A Robust Parameter and Confidence Interval in the Two Independent
Groups Case". Psychological Methods, Vol. 10, No. 3, pp. 317–328. 2005.
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Annual Meeting of the American Educational Research Association. 2004.

[4] Delacre, Marie, Daniel Lakens, Christophe Ley, Limin Liu, and Christophe Leys. "Why Hedges G's
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[5] Gardner, M. J. and D. G. Altman. "Confidence intervals rather than P values: estimation rather than
hypothesis testing". BMJ, Vol. 292 No. 6522, pp. 746–750. 1986.

Extended Capabilities
Automatic Parallel Support
Accelerate code by automatically running computation in parallel using Parallel Computing Toolbox™.

To run in parallel, specify the 'Options' name-value argument in the call to this function and set the
'UseParallel' field of the options structure to true using statset.

For example: 'Options',statset('UseParallel',true)

For more information about parallel computing, see “Run MATLAB Functions with Automatic Parallel
Support” (Parallel Computing Toolbox).

See Also
meanEffectSize
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gather
Package: 

Gather properties of Statistics and Machine Learning Toolbox object from GPU

Syntax
gatheredObj = gather(obj)
[gatheredObj1,gatheredObj2,...,gatheredObjn] = gather(obj1,obj2,...,objn)

Description
gatheredObj = gather(obj) gathers all properties of the input object obj and returns the
gathered object gatheredObj. All properties of the output object are stored in the local workspace.

Use gather to create a Statistics and Machine Learning Toolbox object with properties stored in the
local workspace from an object fitted using data stored as a GPU array. For more details on GPU
arrays, see gpuArray. Using a GPU requires Parallel Computing Toolbox and a supported GPU
device. For information on supported devices, see “GPU Computing Requirements” (Parallel
Computing Toolbox).

[gatheredObj1,gatheredObj2,...,gatheredObjn] = gather(obj1,obj2,...,objn)
gathers the properties of multiple objects obj1,obj2,...,objn and returns the corresponding
gathered objects gatheredObj1,gatheredObj2,...,gatheredObjn. The number of input
arguments and output arguments must match.

Examples

Gather Properties of Linear Regression Model

Gather the properties of a linear regression model fitted with GPU array data.

Load the carsmall data set. Create X as a numeric matrix that contains three car performance
metrics. Create Y as a numeric vector that contains the corresponding miles per gallon.

load carsmall
X = [Weight,Horsepower,Acceleration];
Y = MPG;

Convert the predictor X and response Y to gpuArray (Parallel Computing Toolbox) objects.

X = gpuArray(X);
Y = gpuArray(Y);

Fit a linear regression model mdl by using fitlm.

mdl = fitlm(X,Y);

Display the coefficients of mdl and determine whether the estimated coefficient values are GPU
arrays.
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mdl.Coefficients

ans=4×4 table
                    Estimate        SE          tStat        pValue  
                   __________    _________    _________    __________

    (Intercept)        47.977       3.8785        12.37    4.8957e-21
    x1             -0.0065416    0.0011274      -5.8023    9.8742e-08
    x2              -0.042943     0.024313      -1.7663       0.08078
    x3              -0.011583      0.19333    -0.059913       0.95236

isgpuarray(mdl.Coefficients.Estimate)

ans = logical
   1

Gather the properties of the linear regression model.

gatheredMdl = gather(mdl);

Display the coefficients of gatheredMdl and determine whether the estimated coefficient values are
GPU arrays.

gatheredMdl.Coefficients

ans=4×4 table
                    Estimate        SE          tStat        pValue  
                   __________    _________    _________    __________

    (Intercept)        47.977       3.8785        12.37    4.8957e-21
    x1             -0.0065416    0.0011274      -5.8023    9.8742e-08
    x2              -0.042943     0.024313      -1.7663       0.08078
    x3              -0.011583      0.19333    -0.059913       0.95236

isgpuarray(gatheredMdl.Coefficients.Estimate)

ans = logical
   0

Gather Properties of Multiple Models

Gather the properties of a linear regression model and a k-nearest neighbor classifier. Both models
are fitted using GPU array data.

Load the carsmall data set. Create X as a numeric matrix that contains three car performance
metrics, and convert the predictor X to a gpuArray object.

load carsmall
X = [Weight,Horsepower,Acceleration];
X = gpuArray(X);

Fit a linear regression model of MPG (miles per gallon) as a function of the predictor X.
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mdlLinear = fitlm(X,MPG);

Train a 3-nearest neighbor classifier using the predictor X and the classes Cylinders. Standardize
the noncategorical predictor data.

mdlKNN = fitcknn(X,Cylinders,'NumNeighbors',3,'Standardize',1);

Gather the properties of the mdLinear and mdlKNN models.

[gMdlLinear,gMdlKNN] = gather(mdlLinear,mdlKNN);

Determine whether the p-value of the Durbin-Watson test for the regression model mdlLinear is a
GPU array.

isgpuarray(dwtest(mdlLinear))

ans = logical
   1

Determine whether the p-value of the Durbin-Watson test for the gathered regression model
gMdlLinear is a GPU array.

isgpuarray(dwtest(gMdlLinear))

ans = logical
   0

Determine whether the resubstitution loss of the classifier mdlKNN is a GPU array.

isgpuarray(resubLoss(mdlKNN))

ans = logical
   1

Determine whether the resubstitution loss of the gathered classifier gMdlKNN is a GPU array.

isgpuarray(resubLoss(gMdlKNN))

ans = logical
   1

Input Arguments
obj — Object fitted with GPU arrays or a gpuArray object
regression model object | classification model object | probability distribution object | cvpartition
object | gpuArray object

Object fitted with GPU arrays or a gpuArray object, specified as a regression model object,
classification model object, probability distribution object, cvpartition object, or gpuArray object.
A gpuArray object represents an array stored on the GPU.
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For more information on the Statistics and Machine Learning Toolbox objects supported by gather,
see “Supported Regression Models” on page 35-2981, “Supported Classification Models” on page 35-
2981, and “Supported Probability Distribution Objects” on page 35-2982.

More About
Supported Regression Models

The gather function can gather the properties of the following regression model objects.

Model Type Full or Compact Model Object Model Creation Function
Ensemble of learners for
regression

RegressionEnsemble,
CompactRegressionEnsembl
e, or
RegressionBaggedEnsemble

fitrensemble or
RegressionEnsemble object
function compact

Full generalized linear
regression model

GeneralizedLinearModel or
CompactGeneralizedLinear
Model

fitglm or
GeneralizedLinearModel
object function compact

Full linear regression model LinearModel or
CompactLinearModel

fitlm or LinearModel object
function compact

Regression tree model RegressionTree or
CompactRegressionTree

fitrtree or RegressionTree
object function compact

Cross-validated regression
ensemble

RegressionPartitionedEns
emble

fitrensemble

Cross-validated regression
model

RegressionPartitionedMod
el

fitrtree

If you want to create a compact model fitted with GPU arrays, the input argument mdl of compact
must be a full model object fitted with GPU array input arguments.

Supported Classification Models

The gather function can gather the properties of the following classification model objects.

Model Type Full or Compact Model Object Model Creation Function
Multiclass model for support
vector machines or other
classifiers

ClassificationECOC or
CompactClassificationECO
C

fitcecoc or
ClassificationECOC object
function compact

Ensemble of learners for
classification

ClassificationEnsemble,
CompactClassificationEns
emble, or
ClassificationBaggedEnse
mble

fitcensemble or
ClassificationEnsemble
object function compact

k-nearest neighbor classifier ClassificationKNN fitcknn
Support vector machine (SVM)
classifier

ClassificationSVM or
CompactClassificationSVM

fitcsvm or
ClassificationSVM object
function compact
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Model Type Full or Compact Model Object Model Creation Function
Binary decision tree for
multiclass classification

ClassificationTree or
CompactClassificationTre
e

fitctree or
ClassificationTree object
function compact

Cross-validated ECOC model ClassificationPartitione
dECOC

fitcecoc

Cross-validated classification
ensemble

ClassificationPartitione
dEnsemble

fitcensemble

Cross-validated classification
model

ClassificationPartitione
dModel

fitcknn, fitcsvm, or
fitctree

If you want to create a compact model fitted with GPU arrays, the input argument mdl of compact
must be a full model object fitted with GPU array input arguments.

Supported Probability Distribution Objects

The gather function can gather the properties of the following probability distribution objects.

Probability Distribution Probability Distribution
Object

Object Creation Function

Beta distribution BetaDistribution fitdist with distname
specified as 'Beta'

Binomial distribution BinomialDistribution fitdist with distname
specified as 'Binomial'

Birnbaum-Saunders distribution BirnbaumSaundersDistribu
tion

fitdist with distname
specified as
'BirnbaumSaunders'

Burr distribution BurrDistribution fitdist with distname
specified as 'Burr'

Exponential distribution ExponentialDistribution fitdist with distname
specified as 'Exponential'

Extreme Value distribution ExtremeValueDistribution fitdist with distname
specified as 'ExtremeValue'

Gamma distribution GammaDistribution fitdist with distname
specified as 'Gamma'

Generalized Extreme Value
distribution

GeneralizedExtremeValueD
istribution

fitdist with distname
specified as
'GeneralizedExtremeValue
'

Generalized Pareto distribution GeneralizedParetoDistrib
ution

fitdist with distname
specified as
'GeneralizedPareto'

Half-normal distribution HalfNormalDistribution fitdist with distname
specified as 'HalfNormal'
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Probability Distribution Probability Distribution
Object

Object Creation Function

Inverse Gaussian distribution InverseGaussianDistribut
ion

fitdist with distname
specified as
'InverseGaussian'

Kernel distribution KernelDistribution fitdist with distname
specified as 'Kernel'

Logistic distribution LogisticDistribution fitdist with distname
specified as 'Logistic'

Loglogistic distribution LoglogisticDistribution fitdist with distname
specified as 'Loglogistic'

Lognormal distribution LognormalDistribution fitdist with distname
specified as 'Lognormal'

Nakagami distribution NakagamiDistribution fitdist with distname
specified as 'Nakagami'

Negative Binomial distribution NegativeBinomialDistribu
tion

fitdist with distname
specified as
'NegativeBinomial'

Normal distribution NormalDistribution fitdist with distname
specified as 'Normal'

Poisson distribution PoissonDistribution fitdist with distname
specified as 'Poisson'

Rayleigh distribution RayleighDistribution fitdist with distname
specified as 'Rayleigh'

t Location-Scale distribution tLocationScaleDistributi
on

fitdist with distname
specified as
'tLocationScale'

Weibull distribution WeibullDistribution fitdist with distname
specified as 'Weibull'

Tips
• Gathering GPU arrays can be costly and is generally not necessary unless you need to use the

results with functions that do not support GPU arrays. For the complete list of Statistics and
Machine Learning Toolbox functions that accept GPU arrays, see Function List (GPU Arrays).

• You can also call gather on other data types, such as distributed, codistributed, or tall arrays. If
the data type does not support gathering, then gather has no effect.

Version History
Introduced in R2020b

Extended Capabilities
Tall Arrays
Calculate with arrays that have more rows than fit in memory.
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Usage notes and limitations:

• This function supports only cvpartition objects and unevaluated tall arrays.

For more information, see “Tall Arrays”.

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

This function fully supports GPU arrays. For more information, see “Run MATLAB Functions on a
GPU” (Parallel Computing Toolbox).

See Also
gather | gpuArray | LinearModel | GeneralizedLinearModel | ClassificationKNN |
ClassificationTree | ClassificationEnsemble | ClassificationECOC | RegressionTree |
fitdist

Topics
“Analyze and Model Data on GPU” on page 33-9
“Linear Regression” on page 11-9
“Generalized Linear Models” on page 12-9
“Classification Using Nearest Neighbors” on page 19-14
“Working with Probability Distributions” on page 5-3
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ge
Class: qrandstream

Greater than or equal relation for handles

Syntax
h1 >= h2

Description
h1 >= h2 performs element-wise comparisons between handle arrays h1 and h2. h1 and h2 must be
of the same dimensions unless one is a scalar. The result is a logical array of the same dimensions,
where each element is an element-wise >= result.

If one of h1 or h2 is scalar, scalar expansion is performed and the result will match the dimensions of
the array that is not scalar.

tf = ge(h1, h2) stores the result in a logical array of the same dimensions.

See Also
qrandstream | eq | gt | le | lt | ne
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GeneralizedLinearMixedModel class
Generalized linear mixed-effects model class

Description
A GeneralizedLinearMixedModel object represents a regression model of a response variable
that contains both fixed and random effects. The object comprises data, a model description, fitted
coefficients, covariance parameters, design matrices, residuals, residual plots, and other diagnostic
information for a generalized linear mixed-effects (GLME) model. You can predict model responses
with the predict function and generate random data at new design points using the random
function.

Construction
You can fit a generalized linear mixed-effects (GLME) model to sample data using fitglme(tbl,
formula). For more information, see fitglme.

Input Arguments

tbl — Input data
table | dataset array

Input data, which includes the response variable, predictor variables, and grouping variables,
specified as a table or dataset array. The predictor variables can be continuous or grouping variables
(see “Grouping Variables” on page 2-46). You must specify the model for the variables using
formula.
Data Types: table

formula — Formula for model specification
character vector or string scalar of the form 'y ~ fixed + (random1|grouping1) + ... +
(randomR|groupingR)'

Formula for model specification, specified as a character vector or string scalar of the form 'y ~
fixed + (random1|grouping1) + ... + (randomR|groupingR)'. For a full description, see
Formula on page 35-2998.
Example: 'y ~ treatment +(1|block)'

Properties
Coefficients — Estimates of fixed-effects coefficients
dataset array

Estimates of fixed-effects coefficients and related statistics, stored as a dataset array that has one
row for each coefficient and the following columns:

• Name — Name of the coefficient
• Estimate — Estimated coefficient value
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• SE — Standard error of the estimate
• tStat — t-statistic for a test that the coefficient is equal to 0
• DF — Degrees of freedom associated with the t statistic
• pValue — p-value for the t-statistic
• Lower — Lower confidence limit
• Upper — Upper confidence limit

To obtain any of these columns as a vector, index into the property using dot notation.

Use the coefTest method to perform other tests on the coefficients.

CoefficientCovariance — Covariance of estimated fixed-effects vector
matrix

Covariance of estimated fixed-effects vector, stored as a matrix.
Data Types: single | double

CoefficientNames — Names of fixed-effects coefficients
cell array of character vectors

Names of fixed-effects coefficients, stored as a cell array of character vectors. The label for the
coefficient of the constant term is (Intercept). The labels for other coefficients indicate the terms
that they multiply. When the term includes a categorical predictor, the label also indicates the level of
that predictor.
Data Types: cell

DFE — Degrees of freedom for error
positive integer value

Degrees of freedom for error, stored as a positive integer value. DFE is the number of observations
minus the number of estimated coefficients.

DFE contains the degrees of freedom corresponding to the 'Residual' method of calculating
denominator degrees of freedom for hypothesis tests on fixed-effects coefficients. If n is the number
of observations and p is the number of fixed-effects coefficients, then DFE is equal to n – p.
Data Types: double

Dispersion — Model dispersion parameter
scalar value

Model dispersion parameter, stored as a scalar value. The dispersion parameter defines the
conditional variance of the response.

For observation i, the conditional variance of the response yi, given the conditional mean μi and the
dispersion parameter σ2, in a generalized linear mixed-effects model is

var yi μi, σ2 = σ2

wi
v μi ,

where wi is the ith observation weight and v is the variance function for the specified conditional
distribution of the response. The Dispersion property contains an estimate of σ2 for the specified
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GLME model. The value of Dispersion depends on the specified conditional distribution of the
response. For binomial and Poisson distributions, the theoretical value of Dispersion is equal to σ2

= 1.0.

• If FitMethod is MPL or REMPL and the 'DispersionFlag' name-value pair argument in
fitglme is true, then a dispersion parameter is estimated from data for all distributions,
including binomial and Poisson distributions.

• If FitMethod is ApproximateLaplace or Laplace, then the 'DispersionFlag' name-value
pair argument in fitglme does not apply, and the dispersion parameter is fixed at 1.0 for
binomial and Poisson distributions. For all other distributions, Dispersion is estimated from
data.

Data Types: double

DispersionEstimated — Flag indicating if dispersion parameter was estimated
true | false

Flag indicating estimated dispersion parameter, stored as a logical value.

• If FitMethod is ApproximateLaplace or Laplace, then the dispersion parameter is fixed at its
theoretical value of 1.0 for binomial and Poisson distributions, and DispersionEstimated is
false. For other distributions, the dispersion parameter is estimated from the data, and
DispersionEstimated is true.

• If FitMethod is MPL or REMPL, and the 'DispersionFlag' name-value pair argument in
fitglme is specified as true, then the dispersion parameter is estimated for all distributions,
including binomial and Poisson distributions, and DispersionEstimated is true.

• If FitMethod is MPL or REMPL, and the 'DispersionFlag' name-value pair argument in
fitglme is specified as false, then the dispersion parameter is fixed at its theoretical value for
binomial and Poisson distributions, and DispersionEstimated is false. For distributions other
than binomial and Poisson, the dispersion parameter is estimated from the data, and
DispersionEstimated is true.

Data Types: logical

Distribution — Response distribution name
'Normal' | 'Binomial' | 'Poisson' | 'Gamma' | 'InverseGaussian'

Response distribution name, stored as one of the following:

• 'Normal' — Normal distribution
• 'Binomial' — Binomial distribution
• 'Poisson' — Poisson distribution
• 'Gamma' — Gamma distribution
• 'InverseGaussian' — Inverse Gaussian distribution

FitMethod — Method used to fit the model
'MPL' | 'REMPL' | 'ApproximateLaplace' | 'Laplace'

Method used to fit the model, stored as one of the following.

• 'MPL' — Maximum pseudo likelihood
• 'REMPL' — Restricted maximum pseudo likelihood
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• 'ApproximateLaplace' — Maximum likelihood using the approximate Laplace method, with
fixed effects profiled out

• 'Laplace' — Maximum likelihood using the Laplace method

Formula — Model specification formula
object

Model specification formula, stored as an object. The model specification formula uses Wilkinson’s
notation to describe the relationship between the fixed-effects terms, random-effects terms, and
grouping variables in the GLME model. For more information see Formula on page 35-2998.

Link — Link function characteristics
structure

Link function characteristics, stored as a structure containing the following fields. The link is a
function G that links the distribution parameter MU to the linear predictor ETA as follows: G(MU) =
ETA.

Field Description
Name Name of the link function
Link Function that defines G
Derivative Derivative of G
SecondDerivative Second derivative of G
Inverse Inverse of G

Data Types: struct

LogLikelihood — Log of likelihood function
scalar value

Log of likelihood function evaluated at the estimated coefficient values, stored as a scalar value.
LogLikelihood depends on the method used to fit the model.

• If you use 'Laplace' or 'ApproximateLaplace', then LogLikelihood is the maximized log
likelihood.

• If you use 'MPL', then LogLikelihood is the maximized log likelihood of the pseudo data from
the final pseudo likelihood iteration.

• If you use 'REMPL', then LogLikelihood is the maximized restricted log likelihood of the
pseudo data from the final pseudo likelihood iteration.

Data Types: double

ModelCriterion — Model criterion
table

Model criterion to compare fitted generalized linear mixed-effects models, stored as a table with the
following fields.

Field Description
AIC Akaike information criterion
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Field Description
BIC Bayesian information criterion
LogLikelihood • For a model fit using 'Laplace' or

'ApproximateLaplace', LogLikelihood
is the maximized log likelihood.

• For a model fit using 'MPL', LogLikelihood
is the maximized log likelihood of the pseudo
data from the final pseudo likelihood iteration.

• For a model fit using 'REMPL',
LogLikelihood is the maximized restricted
log likelihood of the pseudo data from the final
pseudo likelihood iteration.

Deviance –2 times LogLikelihood

NumCoefficients — Number of fixed-effects coefficients
positive integer value

Number of fixed-effects coefficients in the fitted generalized linear mixed-effects model, stored as a
positive integer value.
Data Types: double

NumEstimatedCoefficients — Number of estimated fixed-effects coefficients
positive integer value

Number of estimated fixed-effects coefficients in the fitted generalized linear mixed-effects model,
stored as a positive integer value.
Data Types: double

NumObservations — Number of observations
positive integer value

Number of observations used in the fit, stored as a positive integer value. NumObservations is the
number of rows in the table or dataset array tbl, minus rows excluded using the 'Exclude' name-
value pair of fitglme or rows containing NaN values.
Data Types: double

NumPredictors — Number of predictors
positive integer value

Number of variables used as predictors in the generalized linear mixed-effects model, stored as a
positive integer value.
Data Types: double

NumVariables — Total number of variables
positive integer value

Total number of variables, including the response and predictors, stored as a positive integer value. If
the sample data is in a table or dataset array tbl, then NumVariables is the total number of
variables in tbl, including the response variable. NumVariables includes variables, if any, that are
not used as predictors or as the response.
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Data Types: double

ObservationInfo — Information about the observations
table

Information about the observations used in the fit, stored as a table.

ObservationInfo has one row for each observation and the following columns.

Name Description
Weights The weight value for the observation. The default

value is 1.
Excluded If the observation was excluded from the fit using

the 'Exclude' name-value pair argument in
fitglme, then Excluded is true, or 1.
Otherwise, Excluded is false, or 0.

Missing If the observation was excluded from the fit
because any response or predictor value is
missing, then Missing is true. Otherwise,
Missing is false.

Missing values include NaN for numeric variables,
empty cells for cell arrays, blank rows for
character arrays, and the <undefined> value for
categorical arrays.

Subset If the observation was used in the fit, then
Subset is true. If the observation was not used
in the fit because it is missing or excluded, then
Subset is false.

BinomSize Binomial size for each observation. This column
only applies when fitting a binomial distribution.

Data Types: table

ObservationNames — Names of observations
cell array of character vectors

Names of observations used in the fit, stored as a cell array of character vectors.

• If the data is in a table or dataset array tbl that contains observation names, then
ObservationNames uses those names.

• If the data is provided in matrices, or in a table or dataset array without observation names, then
ObservationNames is an empty cell array.

Data Types: cell

PredictorNames — Names of predictors
cell array of character vectors

Names of the variables used as predictors in the fit, stored as a cell array of character vectors that
has the same length as NumPredictors.
Data Types: cell
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ResponseName — Name of response variable
character vector

Name of the variable used as the response variable in the fit, stored as a character vector.
Data Types: char

Rsquared — Proportion of variability in the response explained by the fitted model
structure

Proportion of variability in the response explained by the fitted model, stored as a structure.
Rsquared contains the R-squared value of the fitted model, also known as the multiple correlation
coefficient. Rsquared contains the following fields.

Field Description
Ordinary R-squared value, stored as a scalar value in a

structure.
Rsquared.Ordinary = 1 — SSE./SST

Adjusted R-squared value adjusted for the number of fixed-
effects coefficients, stored as a scalar value in a
structure.
Rsquared.Adjusted = 1 — (SSE./
SST)*(DFT./DFE),
where DFE = n – p, DFT = n – 1, n is the
total number of observations, and p is the
number of fixed-effects coefficients.

Data Types: struct

SSE — Error sum of squares
positive scalar

Error sum of squares, specified as a positive scalar. SSE is the weighted sum of the squared
conditional residuals, and is calculated as

SSE = ∑
i = 1

N
wi

ef f yi− f i
2 ,

where N is the number of observations, wi
eff is the ith effective weight, yi is the ith response, and fi is

the ith fitted value.

The ith effective weight is calculated as

wi
ef f =

wi
vi f i β , b

,

where wi is the ith observation weight, vi is the variance term for the ith observation, and β  and b
are estimated values of β and b, respectively.

The ith fitted value is calculated as

f i = g−1 xi
Tβ + zi

Tb + δi ,
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where g is the link function, xi
T is the ith row of the fixed-effects design matrix X, zi

T is the ith row of
the random-effects design matrix Z, and δi is the ith offset value.
Data Types: double

SSR — Regression sum of squares
positive scalar

Regression sum of squares, specified as a positive scalar. SSR is the sum of squares explained by the
generalized linear mixed-effects regression, and is equal to the sum of the squared deviations
between the fitted values and the mean of the response. SSR is calculated as

SSR = ∑
i = 1

N
wi

ef f f i− y 2 ,

where N is the number of observations, wi
eff is the ith effective weight, fi is the ith fitted value, and y

is the weighted average of the response.

The ith effective weight is calculated as

wi
ef f =

wi
vi f i β , b

,

where wi is the ith observation weight, vi is the variance term for the ith observation, and β  and b
are estimated values of β and b, respectively.

The ith fitted value is calculated as

f i = g−1 xi
Tβ + zi

Tb + δi ,

where g is the link function, xi
T is the ith row of the fixed-effects design matrix X, zi

T is the ith row of
the random-effects design matrix Z, and δi is the ith offset value.
Data Types: double

SST — Total sum of squares
positive scalar

Total sum of squares, specified as a positive scalar.

For a GLME model with an intercept, SST is calculated as
SST = SSE + SSR,

where SST is the total sum of squares, SSE is the error sum of squares, and SSR is the regression sum
of squares.

For a GLME model without an intercept, SST is calculated as

SST = ∑
i = 1

N
wi

ef f yi− y 2 ,

where N is the number of observations, wi
eff is the ith effective weight, yi is the ith response value,

and y is the weighted average of the response.
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Data Types: double

VariableInfo — Information about the variables
table

Information about the variables used in the fit, stored as a table. VariableInfo has one row for
each variable and contains the following columns.

Column Name Description
Class Class of the variable ('double', 'cell',

'nominal', and so on).
Range Value range of the variable.

• For a numerical variable, Range is a two-
element vector of the form [min,max].

• For a cell or categorical variable, Range is a
cell or categorical array containing all unique
values of the variable.

InModel If the variable is a predictor in the fitted model,
InModel is true.

If the variable is not in the fitted model, InModel
is false.

IsCategorical If the variable type is treated as a categorical
predictor (such as cell, logical, or categorical),
then IsCategorical is true.

If the variable is a continuous predictor, then
IsCategorical is false.

Data Types: table

VariableNames — Names of the variables
cell array of character vectors

Names of all the variables contained in the table or dataset array tbl, stored as a cell array of
character vectors.
Data Types: cell

Variables — Variables
table

Variables, stored as a table. If the fit is based on a table or dataset array tbl, then Variables is
identical to tbl.
Data Types: table

Object Functions
anova Analysis of variance for generalized linear mixed-effects model
coefCI Confidence intervals for coefficients of generalized linear mixed-effects

model
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coefTest Hypothesis test on fixed and random effects of generalized linear mixed-
effects model

compare Compare generalized linear mixed-effects models
covarianceParameters Extract covariance parameters of generalized linear mixed-effects model
designMatrix Fixed- and random-effects design matrices
fitted Fitted responses from generalized linear mixed-effects model
fixedEffects Estimates of fixed effects and related statistics
partialDependence Compute partial dependence
plotPartialDependence Create partial dependence plot (PDP) and individual conditional expectation

(ICE) plots
plotResiduals Plot residuals of generalized linear mixed-effects model
predict Predict response of generalized linear mixed-effects model
random Generate random responses from fitted generalized linear mixed-effects

model
randomEffects Estimates of random effects and related statistics
refit Refit generalized linear mixed-effects model
residuals Residuals of fitted generalized linear mixed-effects model
response Response vector of generalized linear mixed-effects model

Examples

Fit a Generalized Linear Mixed-Effects Model

Load the sample data.

load mfr

This simulated data is from a manufacturing company that operates 50 factories across the world,
with each factory running a batch process to create a finished product. The company wants to
decrease the number of defects in each batch, so it developed a new manufacturing process. To test
the effectiveness of the new process, the company selected 20 of its factories at random to participate
in an experiment: Ten factories implemented the new process, while the other ten continued to run
the old process. In each of the 20 factories, the company ran five batches (for a total of 100 batches)
and recorded the following data:

• Flag to indicate whether the batch used the new process (newprocess)
• Processing time for each batch, in hours (time)
• Temperature of the batch, in degrees Celsius (temp)
• Categorical variable indicating the supplier (A, B, or C) of the chemical used in the batch

(supplier)
• Number of defects in the batch (defects)

The data also includes time_dev and temp_dev, which represent the absolute deviation of time and
temperature, respectively, from the process standard of 3 hours at 20 degrees Celsius.

Fit a generalized linear mixed-effects model using newprocess, time_dev, temp_dev, and
supplier as fixed-effects predictors. Include a random-effects term for intercept grouped by
factory, to account for quality differences that might exist due to factory-specific variations. The
response variable defects has a Poisson distribution, and the appropriate link function for this
model is log. Use the Laplace fit method to estimate the coefficients. Specify the dummy variable
encoding as 'effects', so the dummy variable coefficients sum to 0.
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The number of defects can be modeled using a Poisson distribution

defectsi j ∼ Poisson(μi j)

This corresponds to the generalized linear mixed-effects model

log(μi j) = β0 + β1newprocessi j + β2time_devi j + β3temp_devi j + β4supplier_Ci j + β5supplier_Bi j
+ bi,

where

• defectsi j is the number of defects observed in the batch produced by factory i during batch j.
• μi j is the mean number of defects corresponding to factory i (where i = 1, 2, . . . , 20) during batch

j (where j = 1, 2, . . . , 5).
• newprocessi j, time_devi j, and temp_devi j are the measurements for each variable that correspond

to factory i during batch j. For example, newprocessi j indicates whether the batch produced by
factory i during batch j used the new process.

• supplier_Ci j and supplier_Bi j are dummy variables that use effects (sum-to-zero) coding to indicate
whether company C or B, respectively, supplied the process chemicals for the batch produced by
factory i during batch j.

• bi ∼ N(0, σb
2) is a random-effects intercept for each factory i that accounts for factory-specific

variation in quality.

glme = fitglme(mfr,'defects ~ 1 + newprocess + time_dev + temp_dev + supplier + (1|factory)', ...
    'Distribution','Poisson','Link','log','FitMethod','Laplace','DummyVarCoding','effects');

Display the model.

disp(glme)

Generalized linear mixed-effects model fit by ML

Model information:
    Number of observations             100
    Fixed effects coefficients           6
    Random effects coefficients         20
    Covariance parameters                1
    Distribution                    Poisson
    Link                            Log   
    FitMethod                       Laplace

Formula:
    defects ~ 1 + newprocess + time_dev + temp_dev + supplier + (1 | factory)

Model fit statistics:
    AIC       BIC       LogLikelihood    Deviance
    416.35    434.58    -201.17          402.35  

Fixed effects coefficients (95% CIs):
    Name                   Estimate     SE          tStat       DF    pValue    
    {'(Intercept)'}           1.4689     0.15988      9.1875    94    9.8194e-15
    {'newprocess' }         -0.36766     0.17755     -2.0708    94      0.041122
    {'time_dev'   }        -0.094521     0.82849    -0.11409    94       0.90941
    {'temp_dev'   }         -0.28317      0.9617    -0.29444    94       0.76907
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    {'supplier_C' }        -0.071868    0.078024     -0.9211    94       0.35936
    {'supplier_B' }         0.071072     0.07739     0.91836    94       0.36078

    Lower        Upper    
       1.1515       1.7864
     -0.72019    -0.015134
      -1.7395       1.5505
      -2.1926       1.6263
     -0.22679     0.083051
    -0.082588      0.22473

Random effects covariance parameters:
Group: factory (20 Levels)
    Name1                  Name2                  Type           Estimate
    {'(Intercept)'}        {'(Intercept)'}        {'std'}        0.31381 

Group: Error
    Name                        Estimate
    {'sqrt(Dispersion)'}        1       

The Model information table displays the total number of observations in the sample data (100),
the number of fixed- and random-effects coefficients (6 and 20, respectively), and the number of
covariance parameters (1). It also indicates that the response variable has a Poisson distribution,
the link function is Log, and the fit method is Laplace.

Formula indicates the model specification using Wilkinson’s notation.

The Model fit statistics table displays statistics used to assess the goodness of fit of the model.
This includes the Akaike information criterion (AIC), Bayesian information criterion (BIC) values, log
likelihood (LogLikelihood), and deviance (Deviance) values.

The Fixed effects coefficients table indicates that fitglme returned 95% confidence
intervals. It contains one row for each fixed-effects predictor, and each column contains statistics
corresponding to that predictor. Column 1 (Name) contains the name of each fixed-effects coefficient,
column 2 (Estimate) contains its estimated value, and column 3 (SE) contains the standard error of
the coefficient. Column 4 (tStat) contains the t-statistic for a hypothesis test that the coefficient is
equal to 0. Column 5 (DF) and column 6 (pValue) contain the degrees of freedom and p-value that
correspond to the t-statistic, respectively. The last two columns (Lower and Upper) display the lower
and upper limits, respectively, of the 95% confidence interval for each fixed-effects coefficient.

Random effects covariance parameters displays a table for each grouping variable (here, only
factory), including its total number of levels (20), and the type and estimate of the covariance
parameter. Here, std indicates that fitglme returns the standard deviation of the random effect
associated with the factory predictor, which has an estimated value of 0.31381. It also displays a table
containing the error parameter type (here, the square root of the dispersion parameter), and its
estimated value of 1.

The standard display generated by fitglme does not provide confidence intervals for the random-
effects parameters. To compute and display these values, use covarianceParameters.
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More About
Formula

In general, a formula for model specification is a character vector or string scalar of the form 'y ~
terms'. For generalized linear mixed-effects models, this formula is in the form 'y ~ fixed +
(random1|grouping1) + ... + (randomR|groupingR)', where fixed and random contain
the fixed-effects and the random-effects terms, respectively, and R is the number of grouping
variables in the model.

Suppose a table tbl contains the following:

• A response variable, y
• Predictor variables, Xj, which can be continuous or grouping variables
• Grouping variables, g1, g2, ..., gR,

where the grouping variables in Xj and gr can be categorical, logical, character arrays, string arrays,
or cell arrays of character vectors.

Then, in a formula of the form, 'y ~ fixed + (random1|g1) + ... + (randomR|gR)', the term
fixed corresponds to a specification of the fixed-effects design matrix X, random1 is a specification
of the random-effects design matrix Z1 corresponding to grouping variable g1, and similarly randomR
is a specification of the random-effects design matrix ZR corresponding to grouping variable gR. You
can express the fixed and random terms using Wilkinson notation.

Wilkinson notation describes the factors present in models. The notation relates to factors present in
models, not to the multipliers (coefficients) of those factors.

Wilkinson Notation Factors in Standard Notation
1 Constant (intercept) term
X^k, where k is a positive integer X, X2, ..., Xk

X1 + X2 X1, X2
X1*X2 X1, X2, X1.*X2 (elementwise

multiplication of X1 and X2)
X1:X2 X1.*X2 only
- X2 Do not include X2
X1*X2 + X3 X1, X2, X3, X1*X2
X1 + X2 + X3 + X1:X2 X1, X2, X3, X1*X2
X1*X2*X3 - X1:X2:X3 X1, X2, X3, X1*X2, X1*X3, X2*X3
X1*(X2 + X3) X1, X2, X3, X1*X2, X1*X3

Statistics and Machine Learning Toolbox notation always includes a constant term unless you
explicitly remove the term using -1. Here are some examples for linear mixed-effects model
specification.

Examples:
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Formula Description
'y ~ X1 + X2' Fixed effects for the intercept, X1 and X2. This is

equivalent to 'y ~ 1 + X1 + X2'.
'y ~ -1 + X1 + X2' No intercept and fixed effects for X1 and X2. The

implicit intercept term is suppressed by including
-1.

'y ~ 1 + (1 | g1)' Fixed effects for the intercept plus random effect
for the intercept for each level of the grouping
variable g1.

'y ~ X1 + (1 | g1)' Random intercept model with a fixed slope.
'y ~ X1 + (X1 | g1)' Random intercept and slope, with possible

correlation between them. This is equivalent to
'y ~ 1 + X1 + (1 + X1|g1)'.

'y ~ X1 + (1 | g1) + (-1 + X1 | g1)' Independent random effects terms for intercept
and slope.

'y ~ 1 + (1 | g1) + (1 | g2) + (1 |
g1:g2)'

Random intercept model with independent main
effects for g1 and g2, plus an independent
interaction effect.

See Also
fitglme

Topics
“Fit a Generalized Linear Mixed-Effects Model” on page 12-57
“Generalized Linear Mixed-Effects Models” on page 12-48
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GeneralizedLinearModel
Generalized linear regression model class

Description
GeneralizedLinearModel is a fitted generalized linear regression model. A generalized linear
regression model is a special class of nonlinear models that describe a nonlinear relationship between
a response and predictors. A generalized linear regression model has generalized characteristics of a
linear regression model. The response variable follows a normal, binomial, Poisson, gamma, or
inverse Gaussian distribution with parameters including the mean response μ. A link function f
defines the relationship between μ and the linear combination of predictors.

Use the properties of a GeneralizedLinearModel object to investigate a fitted generalized linear
regression model. The object properties include information about coefficient estimates, summary
statistics, fitting method, and input data. Use the object functions to predict responses and to modify,
evaluate, and visualize the model.

Creation
Create a GeneralizedLinearModel object by using fitglm or stepwiseglm.

fitglm fits a generalized linear regression model to data using a fixed model specification. Use
addTerms, removeTerms, or step to add or remove terms from the model. Alternatively, use
stepwiseglm to fit a model using stepwise generalized linear regression.

Properties
Coefficient Estimates

CoefficientCovariance — Covariance matrix of coefficient estimates
numeric matrix

This property is read-only.

Covariance matrix of coefficient estimates, specified as a p-by-p matrix of numeric values. p is the
number of coefficients in the fitted model.

For details, see “Coefficient Standard Errors and Confidence Intervals” on page 11-60.
Data Types: single | double

CoefficientNames — Coefficient names
cell array of character vectors

This property is read-only.

Coefficient names, specified as a cell array of character vectors, each containing the name of the
corresponding term.
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Data Types: cell

Coefficients — Coefficient values
table

This property is read-only.

Coefficient values, specified as a table. Coefficients contains one row for each coefficient and
these columns:

• Estimate — Estimated coefficient value
• SE — Standard error of the estimate
• tStat — t-statistic for a two-sided test with the null hypothesis that the coefficient is zero
• pValue — p-value for the t-statistic

Use coefTest to perform linear hypothesis tests on the coefficients. Use coefCI to find the
confidence intervals of the coefficient estimates.

To obtain any of these columns as a vector, index into the property using dot notation. For example,
obtain the estimated coefficient vector in the model mdl:

beta = mdl.Coefficients.Estimate

Data Types: table

NumCoefficients — Number of model coefficients
positive integer

This property is read-only.

Number of model coefficients, specified as a positive integer. NumCoefficients includes coefficients
that are set to zero when the model terms are rank deficient.
Data Types: double

NumEstimatedCoefficients — Number of estimated coefficients
positive integer

This property is read-only.

Number of estimated coefficients in the model, specified as a positive integer.
NumEstimatedCoefficients does not include coefficients that are set to zero when the model
terms are rank deficient. NumEstimatedCoefficients is the degrees of freedom for regression.
Data Types: double

Summary Statistics

Deviance — Deviance of fit
numeric value

This property is read-only.

Deviance of the fit, specified as a numeric value. The deviance is useful for comparing two models
when one model is a special case of the other model. The difference between the deviance of the two
models has a chi-square distribution with degrees of freedom equal to the difference in the number of
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estimated parameters between the two models. For more information, see “Deviance” on page 35-
3016.
Data Types: single | double

DFE — Degrees of freedom for error
positive integer

This property is read-only.

Degrees of freedom for the error (residuals), equal to the number of observations minus the number
of estimated coefficients, specified as a positive integer.
Data Types: double

Diagnostics — Observation diagnostics
table

This property is read-only.

Observation diagnostics, specified as a table that contains one row for each observation and the
columns described in this table.

Column Meaning Description
Leverage Diagonal elements of

HatMatrix
Leverage for each observation indicates to what extent the
fit is determined by the observed predictor values. A value
close to 1 indicates that the fit is largely determined by that
observation, with little contribution from the other
observations. A value close to 0 indicates that the fit is
largely determined by the other observations. For a model
with P coefficients and N observations, the average value of
Leverage is P/N. A Leverage value greater than 2*P/N
indicates high leverage.

CooksDistance Cook's distance of scaled
change in fitted values

CooksDistance is a measure of scaled change in fitted
values. An observation with CooksDistance greater than
three times the mean Cook's distance can be an outlier.

HatMatrix Projection matrix to
compute fitted from
observed responses

HatMatrix is an N-by-N matrix such that
Fitted = HatMatrix*Y, where Y is the response vector
and Fitted is the vector of fitted response values.

The software computes these values on the scale of the linear combination of the predictors, stored in
the LinearPredictor field of the Fitted and Residuals properties. For example, the software
computes the diagnostic values by using the fitted response and adjusted response values from the
model mdl.

Yfit = mdl.Fitted.LinearPredictor
Yadjusted = mdl.Fitted.LinearPredictor + mdl.Residuals.LinearPredictor

Diagnostics contains information that is helpful in finding outliers and influential observations. For
more details, see “Leverage” on page 35-3015, “Cook’s Distance” on page 35-3015, and “Hat Matrix”
on page 35-3015.

Use plotDiagnostics to plot observation diagnostics.
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Rows not used in the fit because of missing values (in ObservationInfo.Missing) or excluded
values (in ObservationInfo.Excluded) contain NaN values in the CooksDistance column and
zeros in the Leverage and HatMatrix columns.

To obtain any of these columns as an array, index into the property using dot notation. For example,
obtain the hat matrix in the model mdl:

HatMatrix = mdl.Diagnostics.HatMatrix;

Data Types: table

Dispersion — Scale factor of variance of response
numeric scalar

This property is read-only.

Scale factor of the variance of the response, specified as a numeric scalar.

If the 'DispersionFlag' name-value pair argument of fitglm or stepwiseglm is true, then the
function estimates the Dispersion scale factor in computing the variance of the response. The
variance of the response equals the theoretical variance multiplied by the scale factor.

For example, the variance function for the binomial distribution is p(1–p)/n, where p is the probability
parameter and n is the sample size parameter. If Dispersion is near 1, the variance of the data
appears to agree with the theoretical variance of the binomial distribution. If Dispersion is larger
than 1, the data set is “overdispersed” relative to the binomial distribution.
Data Types: double

DispersionEstimated — Flag to indicate use of dispersion scale factor
logical value

This property is read-only.

Flag to indicate whether fitglm used the Dispersion scale factor to compute standard errors for
the coefficients in Coefficients.SE, specified as a logical value. If DispersionEstimated is
false, fitglm used the theoretical value of the variance.

• DispersionEstimated can be false only for the binomial and Poisson distributions.
• Set DispersionEstimated by setting the 'DispersionFlag' name-value pair argument of

fitglm or stepwiseglm.

Data Types: logical

Fitted — Fitted response values based on input data
table

This property is read-only.

Fitted (predicted) values based on the input data, specified as a table that contains one row for each
observation and the columns described in this table.

Column Description
Response Predicted values on the scale of the response
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Column Description
LinearPredictor Predicted values on the scale of the linear combination of the predictors (same

as the link function applied to the Response fitted values)
Probability Fitted probabilities (included only with the binomial distribution)

To obtain any of these columns as a vector, index into the property using dot notation. For example,
obtain the vector f of fitted values on the response scale in the model mdl:

f = mdl.Fitted.Response

Use predict to compute predictions for other predictor values, or to compute confidence bounds on
Fitted.
Data Types: table

LogLikelihood — Loglikelihood
numeric value

This property is read-only.

Loglikelihood of the model distribution at the response values, specified as a numeric value. The
mean is fitted from the model, and other parameters are estimated as part of the model fit.
Data Types: single | double

ModelCriterion — Criterion for model comparison
structure

This property is read-only.

Criterion for model comparison, specified as a structure with these fields:

• AIC — Akaike information criterion. AIC = –2*logL + 2*m, where logL is the loglikelihood and
m is the number of estimated parameters.

• AICc — Akaike information criterion corrected for the sample size. AICc = AIC + (2*m*(m +
1))/(n – m – 1), where n is the number of observations.

• BIC — Bayesian information criterion. BIC = –2*logL + m*log(n).
• CAIC — Consistent Akaike information criterion. CAIC = –2*logL + m*(log(n) + 1).

Information criteria are model selection tools that you can use to compare multiple models fit to the
same data. These criteria are likelihood-based measures of model fit that include a penalty for
complexity (specifically, the number of parameters). Different information criteria are distinguished
by the form of the penalty.

When you compare multiple models, the model with the lowest information criterion value is the best-
fitting model. The best-fitting model can vary depending on the criterion used for model comparison.

To obtain any of the criterion values as a scalar, index into the property using dot notation. For
example, obtain the AIC value aic in the model mdl:

aic = mdl.ModelCriterion.AIC

Data Types: struct
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Residuals — Residuals for fitted model
table

This property is read-only.

Residuals for the fitted model, specified as a table that contains one row for each observation and the
columns described in this table.

Column Description
Raw Observed minus fitted values
LinearPredictor Residuals on the linear predictor scale, equal to the adjusted response

value minus the fitted linear combination of the predictors
Pearson Raw residuals divided by the estimated standard deviation of the

response
Anscombe Residuals defined on transformed data with the transformation selected

to remove skewness
Deviance Residuals based on the contribution of each observation to the deviance

Rows not used in the fit because of missing values (in ObservationInfo.Missing) contain NaN
values.

To obtain any of these columns as a vector, index into the property using dot notation. For example,
obtain the ordinary raw residual vector r in the model mdl:

r = mdl.Residuals.Raw

Data Types: table

Rsquared — R-squared value for model
structure

This property is read-only.

R-squared value for the model, specified as a structure with five fields.

Field Description Equation
Ordinary Ordinary (unadjusted)

R-squared ROrdinary
2 = 1− SSE

SST

SSE is the sum of squared errors, and SST is the
total sum of squared deviations of the response
vector from the mean of the response vector.

Adjusted R-squared adjusted for
the number of
coefficients

RAdjusted
2 = 1− SSE

SST ⋅
N − 1
DFE

N is the number of observations
(NumObservations), and DFE is the degrees of
freedom for the error (residuals).
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Field Description Equation
LLR Loglikelihood ratio RLLR

2 = 1− L
L0

L is the loglikelihood of the fitted model
(LogLikelihood), and L0 is the loglikelihood of
a model that includes only a constant term. R2

LLR
is the McFadden pseudo R-squared value [1] for
logistic regression models.

Deviance Deviance R-squared RDeviance
2 = 1− D

D0

D is the deviance of the fitted model (Deviance),
and D0 is the deviance of a model that includes
only a constant term.

AdjGeneralized Adjusted generalized R-
squared RAdjGeneralized

2 =
1− exp

2 L0− L
N

1− exp
2L0
N

R2
AdjGeneralized is the Nagelkerke adjustment [2] to

a formula proposed by Maddala [3], Cox and
Snell [4], and Magee [5] for logistic regression
models.

To obtain any of these values as a scalar, index into the property using dot notation. For example, to
obtain the adjusted R-squared value in the model mdl, enter:

r2 = mdl.Rsquared.Adjusted

Data Types: struct

SSE — Sum of squared errors
numeric value

This property is read-only.

Sum of squared errors (residuals), specified as a numeric value. If the model was trained with
observation weights, the sum of squares in the SSE calculation is the weighted sum of squares.
Data Types: single | double

SSR — Regression sum of squares
numeric value

This property is read-only.

Regression sum of squares, specified as a numeric value. SSR is equal to the sum of the squared
deviations between the fitted values and the mean of the response. If the model was trained with
observation weights, the sum of squares in the SSR calculation is the weighted sum of squares.
Data Types: single | double

SST — Total sum of squares
numeric value
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This property is read-only.

Total sum of squares, specified as a numeric value. SST is equal to the sum of squared deviations of
the response vector y from the mean(y). If the model was trained with observation weights, the sum
of squares in the SST calculation is the weighted sum of squares.
Data Types: single | double

Fitting Information

Steps — Stepwise fitting information
structure

This property is read-only.

Stepwise fitting information, specified as a structure with the fields described in this table.

Field Description
Start Formula representing the starting model
Lower Formula representing the lower bound model. The terms in Lower must

remain in the model.
Upper Formula representing the upper bound model. The model cannot contain

more terms than Upper.
Criterion Criterion used for the stepwise algorithm, such as 'sse'
PEnter Threshold for Criterion to add a term
PRemove Threshold for Criterion to remove a term
History Table representing the steps taken in the fit

The History table contains one row for each step, including the initial fit, and the columns described
in this table.

Column Description
Action Action taken during the step:

• 'Start' — First step
• 'Add' — A term is added
• 'Remove' — A term is removed

TermName • If Action is 'Start', TermName specifies the starting model
specification.

• If Action is 'Add' or 'Remove', TermName specifies the term added
or removed in the step.

Terms Model specification in a “Terms Matrix” on page 35-3017
DF Regression degrees of freedom after the step
delDF Change in regression degrees of freedom from the previous step

(negative for steps that remove a term)
Deviance Deviance (residual sum of squares) at the step (only for a generalized

linear regression model)
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Column Description
FStat F-statistic that leads to the step
PValue p-value of the F-statistic

The structure is empty unless you fit the model using stepwise regression.
Data Types: struct

Input Data

Distribution — Generalized distribution information
structure

This property is read-only.

Generalized distribution information, specified as a structure with the fields described in this table.

Field Description
Name Name of the distribution: 'normal', 'binomial', 'poisson', 'gamma', or

'inverse gaussian'
DevianceFunction Function that computes the components of the deviance as a function of the

fitted parameter values and the response values
VarianceFunction Function that computes the theoretical variance for the distribution as a function

of the fitted parameter values. When DispersionEstimated is true, the
software multiplies the variance function by Dispersion in the computation of
the coefficient standard errors.

Data Types: struct

Formula — Model information
LinearFormula object

This property is read-only.

Model information, specified as a LinearFormula object.

Display the formula of the fitted model mdl using dot notation:

mdl.Formula

Link — Link function
structure

This property is read-only.

Link function, specified as a structure with the fields described in this table.

Field Description
Name Name of the link function, specified as a character vector. If you specify the link

function using a function handle, then Name is ''.
Link Function f that defines the link function, specified as a function handle
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Field Description
Derivative Derivative of f, specified as a function handle
Inverse Inverse of f, specified as a function handle

The link function is a function f that links the distribution parameter μ to the fitted linear combination
Xb of the predictors:

f(μ) = Xb.
Data Types: struct

NumObservations — Number of observations
positive integer

This property is read-only.

Number of observations the fitting function used in fitting, specified as a positive integer.
NumObservations is the number of observations supplied in the original table, dataset, or matrix,
minus any excluded rows (set with the 'Exclude' name-value pair argument) or rows with missing
values.
Data Types: double

NumPredictors — Number of predictor variables
positive integer

This property is read-only.

Number of predictor variables used to fit the model, specified as a positive integer.
Data Types: double

NumVariables — Number of variables
positive integer

This property is read-only.

Number of variables in the input data, specified as a positive integer. NumVariables is the number
of variables in the original table or dataset, or the total number of columns in the predictor matrix
and response vector.

NumVariables also includes any variables that are not used to fit the model as predictors or as the
response.
Data Types: double

ObservationInfo — Observation information
table

This property is read-only.

Observation information, specified as an n-by-4 table, where n is equal to the number of rows of input
data. ObservationInfo contains the columns described in this table.
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Column Description
Weights Observation weights, specified as a numeric value. The default value is 1.
Excluded Indicator of excluded observations, specified as a logical value. The value

is true if you exclude the observation from the fit by using the
'Exclude' name-value pair argument.

Missing Indicator of missing observations, specified as a logical value. The value
is true if the observation is missing.

Subset Indicator of whether or not the fitting function uses the observation,
specified as a logical value. The value is true if the observation is not
excluded or missing, meaning the fitting function uses the observation.

To obtain any of these columns as a vector, index into the property using dot notation. For example,
obtain the weight vector w of the model mdl:

w = mdl.ObservationInfo.Weights

Data Types: table

ObservationNames — Observation names
cell array of character vectors

This property is read-only.

Observation names, specified as a cell array of character vectors containing the names of the
observations used in the fit.

• If the fit is based on a table or dataset containing observation names, ObservationNames uses
those names.

• Otherwise, ObservationNames is an empty cell array.

Data Types: cell

Offset — Offset variable
numeric vector

This property is read-only.

Offset variable, specified as a numeric vector with the same length as the number of rows in the data.
Offset is passed from fitglm or stepwiseglm in the 'Offset' name-value pair argument. The
fitting functions use Offset as an additional predictor variable with a coefficient value fixed at 1. In
other words, the formula for fitting is

f(μ) ~ Offset + (terms involving real predictors)

where f is the link function. The Offset predictor has coefficient 1.

For example, consider a Poisson regression model. Suppose the number of counts is known for
theoretical reasons to be proportional to a predictor A. By using the log link function and by
specifying log(A) as an offset, you can force the model to satisfy this theoretical constraint.
Data Types: double

PredictorNames — Names of predictors used to fit model
cell array of character vectors
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This property is read-only.

Names of predictors used to fit the model, specified as a cell array of character vectors.
Data Types: cell

ResponseName — Response variable name
character vector

This property is read-only.

Response variable name, specified as a character vector.
Data Types: char

VariableInfo — Information about variables
table

This property is read-only.

Information about variables contained in Variables, specified as a table with one row for each
variable and the columns described in this table.

Column Description
Class Variable class, specified as a cell array of character vectors, such as

'double' and 'categorical'
Range Variable range, specified as a cell array of vectors

• Continuous variable — Two-element vector [min,max], the minimum
and maximum values

• Categorical variable — Vector of distinct variable values
InModel Indicator of which variables are in the fitted model, specified as a logical

vector. The value is true if the model includes the variable.
IsCategorical Indicator of categorical variables, specified as a logical vector. The value

is true if the variable is categorical.

VariableInfo also includes any variables that are not used to fit the model as predictors or as the
response.
Data Types: table

VariableNames — Names of variables
cell array of character vectors

This property is read-only.

Names of variables, specified as a cell array of character vectors.

• If the fit is based on a table or dataset, this property provides the names of the variables in the
table or dataset.

• If the fit is based on a predictor matrix and response vector, VariableNames contains the values
specified by the 'VarNames' name-value pair argument of the fitting method. The default value of
'VarNames' is {'x1','x2',...,'xn','y'}.
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VariableNames also includes any variables that are not used to fit the model as predictors or as the
response.
Data Types: cell

Variables — Input data
table

This property is read-only.

Input data, specified as a table. Variables contains both predictor and response values. If the fit is
based on a table or dataset array, Variables contains all the data from the table or dataset array.
Otherwise, Variables is a table created from the input data matrix X and the response vector y.

Variables also includes any variables that are not used to fit the model as predictors or as the
response.
Data Types: table

Object Functions

Create CompactGeneralizedLinearModel
compact Compact generalized linear regression model

Add or Remove Terms from Generalized Linear Model
addTerms Add terms to generalized linear regression model
removeTerms Remove terms from generalized linear regression model
step Improve generalized linear regression model by adding or removing terms

Predict Responses
feval Predict responses of generalized linear regression model using one input for each predictor
predict Predict responses of generalized linear regression model
random Simulate responses with random noise for generalized linear regression model

Evaluate Generalized Linear Model
coefCI Confidence intervals of coefficient estimates of generalized linear regression

model
coefTest Linear hypothesis test on generalized linear regression model coefficients
devianceTest Analysis of deviance for generalized linear regression model
partialDependence Compute partial dependence

Visualize Generalized Linear Model and Summary Statistics
plotDiagnostics Plot observation diagnostics of generalized linear regression model
plotPartialDependence Create partial dependence plot (PDP) and individual conditional expectation

(ICE) plots
plotResiduals Plot residuals of generalized linear regression model
plotSlice Plot of slices through fitted generalized linear regression surface
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Gather Properties of Generalized Linear Model
gather Gather properties of Statistics and Machine Learning Toolbox object from GPU

Examples

Create Generalized Linear Regression Model

Fit a logistic regression model of the probability of smoking as a function of age, weight, and sex,
using a two-way interaction model.

Load the hospital data set.

load hospital

Convert the dataset array to a table.

tbl = dataset2table(hospital);

Specify the model using a formula that includes two-way interactions and lower-order terms.

modelspec = 'Smoker ~ Age*Weight*Sex - Age:Weight:Sex';

Create the generalized linear model.

mdl = fitglm(tbl,modelspec,'Distribution','binomial')

mdl = 
Generalized linear regression model:
    logit(Smoker) ~ 1 + Sex*Age + Sex*Weight + Age*Weight
    Distribution = Binomial

Estimated Coefficients:
                        Estimate         SE         tStat      pValue 
                       ___________    _________    ________    _______

    (Intercept)            -6.0492       19.749     -0.3063    0.75938
    Sex_Male               -2.2859       12.424    -0.18399    0.85402
    Age                    0.11691      0.50977     0.22934    0.81861
    Weight                0.031109      0.15208     0.20455    0.83792
    Sex_Male:Age          0.020734      0.20681     0.10025    0.92014
    Sex_Male:Weight        0.01216     0.053168     0.22871     0.8191
    Age:Weight         -0.00071959    0.0038964    -0.18468    0.85348

100 observations, 93 error degrees of freedom
Dispersion: 1
Chi^2-statistic vs. constant model: 5.07, p-value = 0.535

The large p-value indicates that the model might not differ statistically from a constant.

Create Generalized Linear Regression Model Using Stepwise Regression

Create response data using three of 20 predictor variables, and create a generalized linear model
using stepwise regression from a constant model to see if stepwiseglm finds the correct predictors.
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Generate sample data that has 20 predictor variables. Use three of the predictors to generate the
Poisson response variable.

rng default % for reproducibility
X = randn(100,20);
mu = exp(X(:,[5 10 15])*[.4;.2;.3] + 1);
y = poissrnd(mu);

Fit a generalized linear regression model using the Poisson distribution. Specify the starting model as
a model that contains only a constant (intercept) term. Also, specify a model with an intercept and
linear term for each predictor as the largest model to consider as the fit by using the 'Upper' name-
value pair argument.

mdl =  stepwiseglm(X,y,'constant','Upper','linear','Distribution','poisson')

1. Adding x5, Deviance = 134.439, Chi2Stat = 52.24814, PValue = 4.891229e-13
2. Adding x15, Deviance = 106.285, Chi2Stat = 28.15393, PValue = 1.1204e-07
3. Adding x10, Deviance = 95.0207, Chi2Stat = 11.2644, PValue = 0.000790094

mdl = 
Generalized linear regression model:
    log(y) ~ 1 + x5 + x10 + x15
    Distribution = Poisson

Estimated Coefficients:
                   Estimate       SE       tStat       pValue  
                   ________    ________    ______    __________

    (Intercept)     1.0115     0.064275    15.737    8.4217e-56
    x5             0.39508     0.066665    5.9263    3.0977e-09
    x10            0.18863      0.05534    3.4085     0.0006532
    x15            0.29295     0.053269    5.4995    3.8089e-08

100 observations, 96 error degrees of freedom
Dispersion: 1
Chi^2-statistic vs. constant model: 91.7, p-value = 9.61e-20

stepwiseglm finds the three correct predictors: x5, x10, and x15.

More About
Canonical Link Function

The default link function for a generalized linear model is the canonical link function. You can specify
a link function when you fit a model with fitglm or stepwiseglm by using the 'Link' name-value
pair argument.

Distribution Canonical Link
Function Name

Link Function Mean (Inverse)
Function

'normal' 'identity' f(μ) = μ μ = Xb
'binomial' 'logit' f(μ) = log(μ/(1 – μ)) μ = exp(Xb) / (1 +

exp(Xb))

35 Functions

35-3014



Distribution Canonical Link
Function Name

Link Function Mean (Inverse)
Function

'poisson' 'log' f(μ) = log(μ) μ = exp(Xb)
'gamma' -1 f(μ) = 1/μ μ = 1/(Xb)
'inverse gaussian' -2 f(μ) = 1/μ2 μ = (Xb)–1/2

Cook’s Distance

Cook’s distance is the scaled change in fitted values, which is useful for identifying outliers in the
observations for predictor variables. Cook’s distance shows the influence of each observation on the
fitted response values. An observation with Cook’s distance larger than three times the mean Cook’s
distance might be an outlier.

The Cook’s distance Di of observation i is

Di = wi
ei

2

pφ
hii

1− hii
2 ,

where

• φ  is the dispersion parameter (estimated or theoretical).
• ei is the linear predictor residual, g yi − xiβ , where

• g is the link function.
• yi is the observed response.
• xi is the observation.
• β  is the estimated coefficient vector.

• p is the number of coefficients in the regression model.
• hii is the ith diagonal element of the Hat Matrix on page 35-3015 H.

Leverage

Leverage is a measure of the effect of a particular observation on the regression predictions due to
the position of that observation in the space of the inputs.

The leverage of observation i is the value of the ith diagonal term hii of the hat matrix H. Because the
sum of the leverage values is p (the number of coefficients in the regression model), an observation i
can be considered an outlier if its leverage substantially exceeds p/n, where n is the number of
observations.

Hat Matrix

The hat matrix is a projection matrix that projects the vector of response observations onto the vector
of predictions.

The hat matrix H is defined in terms of the data matrix X and a diagonal weight matrix W:

H = X(XTWX)–1XTWT.

W has diagonal elements wi:
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wi =
g′ μi
V μi

,

where

• g is the link function mapping yi to xib.
• g′ is the derivative of the link function g.
• V is the variance function.
• μi is the ith mean.

The diagonal elements Hii satisfy

0 ≤ hii ≤ 1

∑
i = 1

n
hii = p,

where n is the number of observations (rows of X), and p is the number of coefficients in the
regression model.

Deviance

Deviance is a generalization of the residual sum of squares. It measures the goodness of fit compared
to a saturated model.

Deviance of a model M1 is twice the difference between the loglikelihood of the model M1 and the
saturated model Ms. A saturated model is a model with the maximum number of parameters that you
can estimate.

For example, if you have n observations (yi, i = 1, 2, ..., n) with potentially different values for Xi
Tβ,

then you can define a saturated model with n parameters. Let L(b,y) denote the maximum value of
the likelihood function for a model with the parameters b. Then the deviance of the model M1 is

−2 logL b1, y − logL bS, y ,

where b1 and bs contain the estimated parameters for the model M1 and the saturated model,
respectively. The deviance has a chi-square distribution with n – p degrees of freedom, where n is the
number of parameters in the saturated model and p is the number of parameters in the model M1.

Assume you have two different generalized linear regression models M1 and M2, and M1 has a subset
of the terms in M2. You can assess the fit of the models by comparing the deviances D1 and D2 of the
two models. The difference of the deviances is

D = D2− D1 = − 2 logL b2, y − logL bS, y + 2 logL b1, y − logL bS, y
= − 2 logL b2, y − logL b1, y .

Asymptotically, the difference D has a chi-square distribution with degrees of freedom v equal to the
difference in the number of parameters estimated in M1 and M2. You can obtain the p-value for this
test by using 1 – chi2cdf(D,v).

Typically, you examine D using a model M2 with a constant term and no predictors. Therefore, D has a
chi-square distribution with p – 1 degrees of freedom. If the dispersion is estimated, the difference
divided by the estimated dispersion has an F distribution with p – 1 numerator degrees of freedom
and n – p denominator degrees of freedom.
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Terms Matrix

A terms matrix T is a t-by-(p + 1) matrix specifying terms in a model, where t is the number of terms,
p is the number of predictor variables, and +1 accounts for the response variable. The value of
T(i,j) is the exponent of variable j in term i.

For example, suppose that an input includes three predictor variables x1, x2, and x3 and the
response variable y in the order x1, x2, x3, and y. Each row of T represents one term:

• [0 0 0 0] — Constant term or intercept
• [0 1 0 0] — x2; equivalently, x1^0 * x2^1 * x3^0
• [1 0 1 0] — x1*x3
• [2 0 0 0] — x1^2
• [0 1 2 0] — x2*(x3^2)

The 0 at the end of each term represents the response variable. In general, a column vector of zeros
in a terms matrix represents the position of the response variable. If you have the predictor and
response variables in a matrix and column vector, then you must include 0 for the response variable
in the last column of each row.

Version History
Introduced in R2012a

References
[1] McFadden, Daniel. "Conditional logit analysis of qualitative choice behavior." in Frontiers in

Econometrics, edited by P. Zarembka,105–42. New York: Academic Press, 1974.

[2] Nagelkerke, N. J. D. "A Note on a General Definition of the Coefficient of Determination."
Biometrika 78, no. 3 (1991): 691–92.

[3] Maddala, Gangadharrao S. Limited-Dependent and Qualitative Variables in Econometrics.
Econometric Society Monographs. New York, NY: Cambridge University Press, 1983.

[4] Cox, D. R., and E. J. Snell. Analysis of Binary Data. 2nd ed. Monographs on Statistics and Applied
Probability 32. London; New York: Chapman and Hall, 1989.

[5] Magee, Lonnie. "R 2 Measures Based on Wald and Likelihood Ratio Joint Significance Tests." The
American Statistician 44, no. 3 (August 1990): 250–53.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• The predict and random functions support code generation.
• When you fit a model by using fitglm or stepwiseglm, you cannot specify Link, Derivative,

and Inverse fields of the 'Link' name-value pair argument as anonymous functions. That is, you
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cannot generate code using a generalized linear model that was created using anonymous
functions for links. Instead, define functions for link components.

For more information, see “Introduction to Code Generation” on page 34-2.

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

Usage notes and limitations:

• The object functions of the GeneralizedLinearModel model fully support GPU arrays.

For more information, see “Run MATLAB Functions on a GPU” (Parallel Computing Toolbox).

See Also
fitglm | stepwiseglm | LinearModel | NonLinearModel | CompactGeneralizedLinearModel

Topics
“Generalized Linear Model Workflow” on page 12-28
“Generalized Linear Models” on page 12-9
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generateCode
Package: classreg.learning.coder.config.svm

Generate C/C++ code using coder configurer

Syntax
generateCode(configurer)
generateCode(configurer,cfg)
generateCode( ___ ,'OutputPath',outputPath)

Description
After training a machine learning model, create a coder configurer for the model by using
learnerCoderConfigurer. Modify the properties of the configurer to specify code generation
options. Then use generateCode to generate C/C++ code for the predict and update functions of
the machine learning model. Generating C/C++ code requires MATLAB Coder.

This flow chart shows the code generation workflow using a coder configurer. Use generateCode for
the highlighted step.

generateCode(configurer) generates a MEX (MATLAB Executable) function for the predict
and update functions of a machine learning model by using configurer. The generated MEX
function is named outputFileName, which is the file name stored in the OutputFileName property
of configurer.

To generate a MEX function, generateCode first generates the following MATLAB files required to
generate code and stores them in the current folder:

• predict.m, update.m, and initialize.m — predict.m and update.m are the entry-point
functions for the predict and update functions of the machine learning model, respectively, and
these two functions call initialize.m.

• A MAT-file that includes machine learning model information — generateCode uses the
saveLearnerForCoder function to save machine learning model information in a MAT-file whose
file name is stored in the OutputFileName property of a coder configurer. initialize.m loads
the saved MAT-file by using the loadLearnerForCoder function.

After generating the necessary MATLAB files, generateCode creates the MEX function and the code
for the MEX function in the codegen\mex\outputFileName folder and copies the MEX function to
the current folder.
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generateCode(configurer,cfg) generates C/C++ code using the build type specified by cfg.

generateCode( ___ ,'OutputPath',outputPath) specifies the folder path for the output files in
addition to any of the input arguments in previous syntaxes. generateCode generates the MATLAB
files in the folder specified by outputPath and generates C/C++ code in the folder outputPath
\codegen\type\outputFileName where type is the build type specified by cfg.

Examples

Generate Code Using Coder Configurer

Train a machine learning model, and then generate code for the predict and update functions of
the model by using a coder configurer.

Load the carsmall data set and train a support vector machine (SVM) regression model.

load carsmall
X = [Horsepower,Weight];
Y = MPG;
Mdl = fitrsvm(X,Y);

Mdl is a RegressionSVM object.

Create a coder configurer for the RegressionSVM model by using learnerCoderConfigurer.
Specify the predictor data X. The learnerCoderConfigurer function uses the input X to configure
the coder attributes of the predict function input.

configurer = learnerCoderConfigurer(Mdl,X)

configurer = 
  RegressionSVMCoderConfigurer with properties:

   Update Inputs:
             Alpha: [1x1 LearnerCoderInput]
    SupportVectors: [1x1 LearnerCoderInput]
             Scale: [1x1 LearnerCoderInput]
              Bias: [1x1 LearnerCoderInput]

   Predict Inputs:
                 X: [1x1 LearnerCoderInput]

   Code Generation Parameters:
        NumOutputs: 1
    OutputFileName: 'RegressionSVMModel'

  Properties, Methods

configurer is a RegressionSVMCoderConfigurer object, which is a coder configurer of a
RegressionSVM object.

To generate C/C++ code, you must have access to a C/C++ compiler that is configured properly.
MATLAB Coder locates and uses a supported, installed compiler. You can use mex -setup to view and
change the default compiler. For more details, see “Change Default Compiler”.
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Generate code for the predict and update functions of the SVM regression model (Mdl) with
default settings.

generateCode(configurer)

generateCode creates these files in output folder:
'initialize.m', 'predict.m', 'update.m', 'RegressionSVMModel.mat'
Code generation successful.

The generateCode function completes these actions:

• Generate the MATLAB files required to generate code, including the two entry-point functions
predict.m and update.m for the predict and update functions of Mdl, respectively.

• Create a MEX function named RegressionSVMModel for the two entry-point functions.
• Create the code for the MEX function in the codegen\mex\RegressionSVMModel folder.
• Copy the MEX function to the current folder.

Display the contents of the predict.m, update.m, and initialize.m files by using the type
function.

type predict.m

function varargout = predict(X,varargin) %#codegen
% Autogenerated by MATLAB, 01-Sep-2022 11:20:22
[varargout{1:nargout}] = initialize('predict',X,varargin{:});
end

type update.m

function update(varargin) %#codegen
% Autogenerated by MATLAB, 01-Sep-2022 11:20:22
initialize('update',varargin{:});
end

type initialize.m

function [varargout] = initialize(command,varargin) %#codegen
% Autogenerated by MATLAB, 01-Sep-2022 11:20:22
coder.inline('always')
persistent model
if isempty(model)
    model = loadLearnerForCoder('RegressionSVMModel.mat');
end
switch(command)
    case 'update'
        % Update struct fields: Alpha
        %                       SupportVectors
        %                       Scale
        %                       Bias
        model = update(model,varargin{:});
    case 'predict'
        % Predict Inputs: X
        X = varargin{1};
        if nargin == 2
            [varargout{1:nargout}] = predict(model,X);
        else
            PVPairs = cell(1,nargin-2);
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            for i = 1:nargin-2
                PVPairs{1,i} = varargin{i+1};
            end
            [varargout{1:nargout}] = predict(model,X,PVPairs{:});
        end
end
end

Specify Build Type

Train a machine learning model and generate code by using the coder configurer of the trained
model. When generating code, specify the build type and other configuration options using a code
generation configuration object.

Load the ionosphere data set and train a binary support vector machine (SVM) classification model.

load ionosphere
Mdl = fitcsvm(X,Y);

Mdl is a ClassificationSVM object.

Create a coder configurer for the ClassificationSVM model by using learnerCoderConfigurer.
Specify the predictor data X. The learnerCoderConfigurer function uses the input X to configure
the coder attributes of the predict function input.

configurer = learnerCoderConfigurer(Mdl,X);

configurer is a ClassificationSVMCoderConfigurer object, which is a coder configurer of a
ClassificationSVM object.

Create a code generation configuration object by using coder.config (MATLAB Coder). Specify
'dll' to generate a dynamic library and specify the GenerateReport property as true to enable
the code generation report.

cfg = coder.config('dll');
cfg.GenerateReport = true;

To generate C/C++ code, you must have access to a C/C++ compiler that is configured properly.
MATLAB Coder locates and uses a supported, installed compiler. You can use mex -setup to view and
change the default compiler. For more details, see “Change Default Compiler”.

Use generateCode and the configuration object cfg to generate code. Also, specify the output
folder path.

generateCode(configurer,cfg,'OutputPath','testPath')

Specified folder does not exist. Folder has been created.
generateCode creates these files in output folder:
'initialize.m', 'predict.m', 'update.m', 'ClassificationSVMModel.mat'
Code generation successful: To view the report, open('codegen\dll\ClassificationSVMModel\html\report.mldatx')

generateCode creates the specified folder. The function also generates the MATLAB files required to
generate code and stores them in the folder. Then generateCode generates C code in the testPath
\codegen\dll\ClassificationSVMModel folder.
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Update Parameters of ECOC Classification Model in Generated Code

Train an error-correcting output codes (ECOC) model using SVM binary learners and create a coder
configurer for the model. Use the properties of the coder configurer to specify coder attributes of the
ECOC model parameters. Use the object function of the coder configurer to generate C code that
predicts labels for new predictor data. Then retrain the model using different settings, and update
parameters in the generated code without regenerating the code.

Train Model

Load Fisher's iris data set.

load fisheriris
X = meas;
Y = species;

Create an SVM binary learner template to use a Gaussian kernel function and to standardize
predictor data.

t = templateSVM('KernelFunction','gaussian','Standardize',true);

Train a multiclass ECOC model using the template t.

Mdl = fitcecoc(X,Y,'Learners',t);

Mdl is a ClassificationECOC object.

Create Coder Configurer

Create a coder configurer for the ClassificationECOC model by using
learnerCoderConfigurer. Specify the predictor data X. The learnerCoderConfigurer function
uses the input X to configure the coder attributes of the predict function input. Also, set the number
of outputs to 2 so that the generated code returns the first two outputs of the predict function,
which are the predicted labels and negated average binary losses.

configurer = learnerCoderConfigurer(Mdl,X,'NumOutputs',2)

configurer = 
  ClassificationECOCCoderConfigurer with properties:

   Update Inputs:
    BinaryLearners: [1x1 ClassificationSVMCoderConfigurer]
             Prior: [1x1 LearnerCoderInput]
              Cost: [1x1 LearnerCoderInput]

   Predict Inputs:
                 X: [1x1 LearnerCoderInput]

   Code Generation Parameters:
        NumOutputs: 2
    OutputFileName: 'ClassificationECOCModel'

  Properties, Methods
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configurer is a ClassificationECOCCoderConfigurer object, which is a coder configurer of a
ClassificationECOC object. The display shows the tunable input arguments of predict and
update: X, BinaryLearners, Prior, and Cost.

Specify Coder Attributes of Parameters

Specify the coder attributes of predict arguments (predictor data and the name-value pair
arguments 'Decoding' and 'BinaryLoss') and update arguments (support vectors of the SVM
learners) so that you can use these arguments as the input arguments of predict and update in the
generated code.

First, specify the coder attributes of X so that the generated code accepts any number of
observations. Modify the SizeVector and VariableDimensions attributes. The SizeVector
attribute specifies the upper bound of the predictor data size, and the VariableDimensions
attribute specifies whether each dimension of the predictor data has a variable size or fixed size.

configurer.X.SizeVector = [Inf 4];
configurer.X.VariableDimensions = [true false];

The size of the first dimension is the number of observations. In this case, the code specifies that the
upper bound of the size is Inf and the size is variable, meaning that X can have any number of
observations. This specification is convenient if you do not know the number of observations when
generating code.

The size of the second dimension is the number of predictor variables. This value must be fixed for a
machine learning model. X contains 4 predictors, so the second value of the SizeVector attribute
must be 4 and the second value of the VariableDimensions attribute must be false.

Next, modify the coder attributes of BinaryLoss and Decoding to use the 'BinaryLoss' and
'Decoding' name-value pair arguments in the generated code. Display the coder attributes of
BinaryLoss.

configurer.BinaryLoss

ans = 
  EnumeratedInput with properties:

             Value: 'hinge'
    SelectedOption: 'Built-in'
    BuiltInOptions: {1x7 cell}
        IsConstant: 1
        Tunability: 0

To use a nondefault value in the generated code, you must specify the value before generating the
code. Specify the Value attribute of BinaryLoss as 'exponential'.

configurer.BinaryLoss.Value = 'exponential';
configurer.BinaryLoss

ans = 
  EnumeratedInput with properties:

             Value: 'exponential'
    SelectedOption: 'Built-in'
    BuiltInOptions: {1x7 cell}
        IsConstant: 1
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        Tunability: 1

If you modify attribute values when Tunability is false (logical 0), the software sets the
Tunability to true (logical 1).

Display the coder attributes of Decoding.

configurer.Decoding

ans = 
  EnumeratedInput with properties:

             Value: 'lossweighted'
    SelectedOption: 'Built-in'
    BuiltInOptions: {'lossweighted'  'lossbased'}
        IsConstant: 1
        Tunability: 0

Specify the IsConstant attribute of Decoding as false so that you can use all available values in
BuiltInOptions in the generated code.

configurer.Decoding.IsConstant = false;
configurer.Decoding

ans = 
  EnumeratedInput with properties:

             Value: [1x1 LearnerCoderInput]
    SelectedOption: 'NonConstant'
    BuiltInOptions: {'lossweighted'  'lossbased'}
        IsConstant: 0
        Tunability: 1

The software changes the Value attribute of Decoding to a LearnerCoderInput object so that you
can use both 'lossweighted' and 'lossbased' as the value of 'Decoding'. Also, the software
sets the SelectedOption to 'NonConstant' and the Tunability to true.

Finally, modify the coder attributes of SupportVectors in BinaryLearners. Display the coder
attributes of SupportVectors.

configurer.BinaryLearners.SupportVectors

ans = 
  LearnerCoderInput with properties:

            SizeVector: [54 4]
    VariableDimensions: [1 0]
              DataType: 'double'
            Tunability: 1

The default value of VariableDimensions is [true false] because each learner has a different
number of support vectors. If you retrain the ECOC model using new data or different settings, the
number of support vectors in the SVM learners can vary. Therefore, increase the upper bound of the
number of support vectors.
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configurer.BinaryLearners.SupportVectors.SizeVector = [150 4];

SizeVector attribute for Alpha has been modified to satisfy configuration constraints.
SizeVector attribute for SupportVectorLabels has been modified to satisfy configuration constraints.

If you modify the coder attributes of SupportVectors, then the software modifies the coder
attributes of Alpha and SupportVectorLabels to satisfy configuration constraints. If the
modification of the coder attributes of one parameter requires subsequent changes to other
dependent parameters to satisfy configuration constraints, then the software changes the coder
attributes of the dependent parameters.

Display the coder configurer.

configurer

configurer = 
  ClassificationECOCCoderConfigurer with properties:

   Update Inputs:
    BinaryLearners: [1x1 ClassificationSVMCoderConfigurer]
             Prior: [1x1 LearnerCoderInput]
              Cost: [1x1 LearnerCoderInput]

   Predict Inputs:
                 X: [1x1 LearnerCoderInput]
        BinaryLoss: [1x1 EnumeratedInput]
          Decoding: [1x1 EnumeratedInput]

   Code Generation Parameters:
        NumOutputs: 2
    OutputFileName: 'ClassificationECOCModel'

  Properties, Methods

The display now includes BinaryLoss and Decoding as well.

Generate Code

To generate C/C++ code, you must have access to a C/C++ compiler that is configured properly.
MATLAB Coder locates and uses a supported, installed compiler. You can use mex -setup to view and
change the default compiler. For more details, see “Change Default Compiler”.

Generate code for the predict and update functions of the ECOC classification model (Mdl).

generateCode(configurer)

generateCode creates these files in output folder:
'initialize.m', 'predict.m', 'update.m', 'ClassificationECOCModel.mat'
Code generation successful.

The generateCode function completes these actions:

• Generate the MATLAB files required to generate code, including the two entry-point functions
predict.m and update.m for the predict and update functions of Mdl, respectively.

• Create a MEX function named ClassificationECOCModel for the two entry-point functions.
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• Create the code for the MEX function in the codegen\mex\ClassificationECOCModel folder.
• Copy the MEX function to the current folder.

Verify Generated Code

Pass some predictor data to verify whether the predict function of Mdl and the predict function in
the MEX function return the same labels. To call an entry-point function in a MEX function that has
more than one entry point, specify the function name as the first input argument. Because you
specified 'Decoding' as a tunable input argument by changing the IsConstant attribute before
generating the code, you also need to specify it in the call to the MEX function, even though
'lossweighted' is the default value of 'Decoding'.

[label,NegLoss] = predict(Mdl,X,'BinaryLoss','exponential');
[label_mex,NegLoss_mex] = ClassificationECOCModel('predict',X,'BinaryLoss','exponential','Decoding','lossweighted');

Compare label to label_mex by using isequal.

isequal(label,label_mex)

ans = logical
   1

isequal returns logical 1 (true) if all the inputs are equal. The comparison confirms that the
predict function of Mdl and the predict function in the MEX function return the same labels.

NegLoss_mex might include round-off differences compared to NegLoss. In this case, compare
NegLoss_mex to NegLoss, allowing a small tolerance.

find(abs(NegLoss-NegLoss_mex) > 1e-8)

ans =

  0x1 empty double column vector

The comparison confirms that NegLoss and NegLoss_mex are equal within the tolerance 1e–8.

Retrain Model and Update Parameters in Generated Code

Retrain the model using a different setting. Specify 'KernelScale' as 'auto' so that the software
selects an appropriate scale factor using a heuristic procedure.

t_new = templateSVM('KernelFunction','gaussian','Standardize',true,'KernelScale','auto');
retrainedMdl = fitcecoc(X,Y,'Learners',t_new);

Extract parameters to update by using validatedUpdateInputs. This function detects the modified
model parameters in retrainedMdl and validates whether the modified parameter values satisfy the
coder attributes of the parameters.

params = validatedUpdateInputs(configurer,retrainedMdl);

Update parameters in the generated code.

ClassificationECOCModel('update',params)
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Verify Generated Code

Compare the outputs from the predict function of retrainedMdl to the outputs from the predict
function in the updated MEX function.

[label,NegLoss] = predict(retrainedMdl,X,'BinaryLoss','exponential','Decoding','lossbased');
[label_mex,NegLoss_mex] = ClassificationECOCModel('predict',X,'BinaryLoss','exponential','Decoding','lossbased');
isequal(label,label_mex)

ans = logical
   1

find(abs(NegLoss-NegLoss_mex) > 1e-8)

ans =

  0x1 empty double column vector

The comparison confirms that label and label_mex are equal, and NegLoss and NegLoss_mex are
equal within the tolerance.

Input Arguments
configurer — Coder configurer
coder configurer object

Coder configurer of a machine learning model, specified as a coder configurer object created by using
learnerCoderConfigurer.

Model Coder Configurer Object
Binary decision tree for multiclass classification ClassificationTreeCoderConfigurer
SVM for one-class and binary classification ClassificationSVMCoderConfigurer
Linear model for binary classification ClassificationLinearCoderConfigurer
Multiclass model for SVMs and linear models ClassificationECOCCoderConfigurer
Binary decision tree for regression RegressionTreeCoderConfigurer
Support vector machine (SVM) regression RegressionSVMCoderConfigurer
Linear regression RegressionLinearCoderConfigurer

cfg — Build type
'mex' (default) | 'dll' | 'lib' | code generation configuration object

Build type, specified as 'mex', 'dll', 'lib', or a code generation configuration object created by
coder.config.

generateCode generates C/C++ code using one of the following build types.

• 'mex' — Generates a MEX function that has a platform-dependent extension. A MEX function is a
C/C++ program that is executable from the Command Window. Before generating a C/C++ library
for deployment, generate a MEX function to verify that the generated code provides the correct
functionality.
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• 'dll' — Generate a dynamic C/C++ library.
• 'lib' — Generate a static C/C++ library.
• Code generation configuration object created by coder.config — Generate C/C++ code using

the code generation configuration object to customize code generation options. You can specify
the build type and other configuration options using the object. For example, modify the
GenerateReport parameter to enable the code generation report, and modify the TargetLang
parameter to generate C++ code. The default value of the TargetLang parameter is 'C',
generating C code.

cfg = coder.config('mex');
cfg.GenerateReport = true;
cfg.TargetLang = 'C++';

For details, see the -config option of codegen, coder.config, and “Configure Build Settings”
(MATLAB Coder).

generateCode generates C/C++ code in the folder outputPath\codegen\type
\outputFileName, where type is the build type specified by the cfg argument and
outputFileName is the file name stored in the OutputFileName property of configurer.

outputPath — Folder path for output files
current folder (default) | character vector | string scalar

Folder path for the output files of generateCode, specified as a character vector or string array.

The specified folder path can be an absolute path or a relative path to the current folder path.

• The path must not contain spaces because they can lead to code generation failures in certain
operating system configurations.

• The path also cannot contain non-7-bit ASCII characters, such as Japanese characters.

If the specified folder does not exist, then generateCode creates the folder.

generateCode searches the specified folder for the four MATLAB files: predict.m, update.m,
initialize.m, and a MAT-file that includes machine learning model information. If the four files do
not exist in the folder, then generateCode generates the files. Otherwise, generateCode does not
generate any MATLAB files.

generateCode generates C/C++ code in the folder outputPath\codegen\type
\outputFileName, where type is the build type specified by the cfg argument and
outputFileName is the file name stored in the OutputFileName property of configurer.
Example: 'C:\myfiles'
Data Types: char | string

Limitations
• The generateCode function uses the saveLearnerForCoder, loadLearnerForCoder, and

codegen functions, so the code generation limitations of these functions also apply to the
generateCode function. For details, see the function reference pages saveLearnerForCoder,
loadLearnerForCoder, and codegen.

• For the code generation usage notes and limitations of a machine learning model and its object
functions, see the Code Generation sections of the corresponding reference pages.
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Model Model Object predict Function
Binary decision tree for
multiclass classification

CompactClassificationTr
ee

predict

SVM for one-class and binary
classification

CompactClassificationSV
M

predict

Linear model for binary
classification

ClassificationLinear predict

Multiclass model for SVMs
and linear models

CompactClassificationEC
OC

predict

Binary decision tree for
regression

CompactRegressionTree predict

SVM regression CompactRegressionSVM predict
Linear regression RegressionLinear predict

Alternative Functionality
• If you want to modify the MATLAB files (predict.m, update.m, and initialize.m) according

to your code generation workflow, then use generateFiles to generate these files and use
codegen to generate code.

Version History
Introduced in R2018b

See Also
validatedUpdateInputs | learnerCoderConfigurer | generateFiles | update

Topics
“Introduction to Code Generation” on page 34-2
“Code Generation for Prediction and Update Using Coder Configurer” on page 34-92
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generateFiles
Package: classreg.learning.coder.config.svm

Generate MATLAB files for code generation using coder configurer

Syntax
generateFiles(configurer)
generateFiles(configurer,'OutputPath',outputPath)

Description
generateFiles(configurer) generates the MATLAB files required to generate C/C++ code by
using the coder configurer configurer, and saves the generated files in the current folder.

To customize the code generation workflow, use generateFiles and codegen. If you do not need to
customize your workflow, use generateCode.

generateFiles generates the following MATLAB files:

• predict.m, update.m, and initialize.m — predict.m and update.m are the entry-point
functions for the predict and update functions of the machine learning model, respectively, and
these two functions call initialize.m. You can modify these files according to your code
generation workflow. For example, you can modify the predict.m file to include data
preprocessing, or you can add these entry-point functions to another code generation project.

• A MAT-file that includes machine learning model information — generateFiles uses the
saveLearnerForCoder function to save machine learning model information in a MAT-file whose
file name is stored in the OutputFileName property of a coder configurer. initialize.m loads
the saved MAT-file by using the loadLearnerForCoder function.

After you generate these files, generate C/C++ code by using codegen and the prepared codegen
argument stored in the CodeGenerationArguments property of a coder configurer.

If the folder already includes all four MATLAB files, then generateFiles does not generate any
files.

generateFiles(configurer,'OutputPath',outputPath) generates the MATLAB files in the
folder specified by outputPath.

Examples

Generate MATLAB® Files for Code Generation

Train a machine learning model and then generate the MATLAB files required to generate C/C++
code for the predict and update functions of the model by using a coder configurer.

Load the ionosphere data set and train a binary support vector machine (SVM) classification model.
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load ionosphere
Mdl = fitcsvm(X,Y);

Mdl is a ClassificationSVM object.

Create a coder configurer for the ClassificationSVM object.

configurer = learnerCoderConfigurer(Mdl,X);

configurer is a ClassificationSVMCoderConfigurer object, which is a coder configurer of a
ClassificationSVM object.

Use generateFiles to generate the MATLAB files required to generate C/C++ code for the
predict and update functions of the model.

generateFiles(configurer)

generateFiles generates predict.m, update.m, initialize.m, and
ClassificationSVMModel.mat (a MAT-file that includes machine learning model information).

Display the contents of the predict.m, update.m, and initialize.m files.

type predict.m % Display contents of predict.m

function varargout = predict(X,varargin) %#codegen
% Autogenerated by MATLAB, 01-Sep-2022 11:28:37
[varargout{1:nargout}] = initialize('predict',X,varargin{:});
end

type update.m % Display contents of update.m

function update(varargin) %#codegen
% Autogenerated by MATLAB, 01-Sep-2022 11:28:37
initialize('update',varargin{:});
end

type initialize.m % Display contents of initialize.m

function [varargout] = initialize(command,varargin) %#codegen
% Autogenerated by MATLAB, 01-Sep-2022 11:28:37
coder.inline('always')
persistent model
if isempty(model)
    model = loadLearnerForCoder('ClassificationSVMModel.mat');
end
switch(command)
    case 'update'
        % Update struct fields: Alpha
        %                       SupportVectors
        %                       SupportVectorLabels
        %                       Scale
        %                       Bias
        %                       Prior
        %                       Cost
        model = update(model,varargin{:});
    case 'predict'
        % Predict Inputs: X
        X = varargin{1};
        if nargin == 2
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            [varargout{1:nargout}] = predict(model,X);
        else
            PVPairs = cell(1,nargin-2);
            for i = 1:nargin-2
                PVPairs{1,i} = varargin{i+1};
            end
            [varargout{1:nargout}] = predict(model,X,PVPairs{:});
        end
end
end

Generate C/C++ code by using codegen (MATLAB Coder) and the prepared codegen argument
stored in the CodeGenerationArguments property of configurer.

cfArgs = configurer.CodeGenerationArguments;
codegen(cfArgs{:})

Code generation successful.

Input Arguments
configurer — Coder configurer
coder configurer object

Coder configurer of a machine learning model, specified as a coder configurer object created by using
learnerCoderConfigurer.

Model Coder Configurer Object
Binary decision tree for multiclass classification ClassificationTreeCoderConfigurer
SVM for one-class and binary classification ClassificationSVMCoderConfigurer
Linear model for binary classification ClassificationLinearCoderConfigurer
Multiclass model for SVMs and linear models ClassificationECOCCoderConfigurer
Binary decision tree for regression RegressionTreeCoderConfigurer
Support vector machine (SVM) regression RegressionSVMCoderConfigurer
Linear regression RegressionLinearCoderConfigurer

outputPath — Folder path for output files
current folder (default) | character vector | string scalar

Folder path for the output files of generateFiles, specified as a character vector or string array.

The specified folder path can be an absolute path or a relative path to the current folder path.

• The path must not contain spaces because they can lead to code generation failures in certain
operating system configurations.

• The path also cannot contain non-7-bit ASCII characters, such as Japanese characters.

If the specified folder does not exist, then generateFiles creates the folder.

generateFiles searches the specified folder for the four MATLAB files: predict.m, update.m,
initialize.m, and a MAT-file that includes machine learning model information. If the four files do

 generateFiles

35-3033



not exist in the folder, then generateFiles generates the files. Otherwise, generateFiles does
not generate any MATLAB files.
Example: 'C:\myfiles'
Data Types: char | string

Alternative Functionality
• To customize the code generation workflow, use generateFiles and codegen. If you do not

need to customize your workflow, use generateCode. In addition to generating the four MATLAB
files generated by generateFiles, the generateCode function also generates the C/C++ code.

Version History
Introduced in R2018b

See Also
generateCode | validatedUpdateInputs | learnerCoderConfigurer | update

Topics
“Introduction to Code Generation” on page 34-2
“Code Generation for Prediction and Update Using Coder Configurer” on page 34-92
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generateLearnerDataTypeFcn
Generate function that defines data types for fixed-point code generation

Syntax
generateLearnerDataTypeFcn(filename,X)
generateLearnerDataTypeFcn(filename,X,Name,Value)

Description
To generate fixed-point C/C++ code for the predict function of a machine learning model, use
generateLearnerDataTypeFcn, saveLearnerForCoder, loadLearnerForCoder, and codegen.

• After training a machine learning model, save the model using saveLearnerForCoder.
• Create a structure that defines fixed-point data types by using the function generated from

generateLearnerDataTypeFcn.
• Define an entry-point function that loads the model by using both loadLearnerForCoder and

the structure, and then calls the predict function.
• Generate code using codegen, and then verify the generated code.

The generateLearnerDataTypeFcn function requires Fixed-Point Designer, and generating fixed-
point C/C++ code requires MATLAB Coder and Fixed-Point Designer.

This flow chart shows the fixed-point code generation workflow for the predict function of a
machine learning model. Use generateLearnerDataTypeFcn for the highlighted step.

generateLearnerDataTypeFcn(filename,X) generates a data type function on page 35-3041
that defines fixed-point data types for the variables required to generate fixed-point C/C++ code for
prediction of a machine learning model. filename stores the machine learning model, and X
contains the predictor data for the predict function of the model.

Use the generated function to create a structure that defines fixed-point data types. Then, use the
structure as the input argument T of loadLearnerForCoder.

generateLearnerDataTypeFcn(filename,X,Name,Value) specifies additional options by using
one or more name-value pair arguments. For example, you can specify 'WordLength',32 to use 32-
bit word length for the fixed-point data types.

Examples

Generate Fixed-Point C/C++ Code for Prediction

After training a machine learning model, save the model using saveLearnerForCoder. For fixed-
point code generation, specify the fixed-point data types of the variables required for prediction by
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using the data type function generated by generateLearnerDataTypeFcn. Then, define an entry-
point function that loads the model by using both loadLearnerForCoder and the specified fixed-
point data types, and calls the predict function of the model. Use codegen (MATLAB Coder) to
generate fixed-point C/C++ code for the entry-point function, and then verify the generated code.

Before generating code using codegen, you can use buildInstrumentedMex (Fixed-Point
Designer) and showInstrumentationResults (Fixed-Point Designer) to optimize the fixed-point
data types to improve the performance of the fixed-point code. Record minimum and maximum values
of named and internal variables for prediction by using buildInstrumentedMex. View the
instrumentation results using showInstrumentationResults; then, based on the results, tune the
fixed-point data type properties of the variables. For details regarding this optional step, see “Fixed-
Point Code Generation for Prediction of SVM” on page 34-99.

Train Model

Load the ionosphere data set and train a binary SVM classification model.

load ionosphere
Mdl = fitcsvm(X,Y,'KernelFunction','gaussian');

Mdl is a ClassificationSVM model.

Save Model

Save the SVM classification model to the file myMdl.mat by using saveLearnerForCoder.

saveLearnerForCoder(Mdl,'myMdl');

Define Fixed-Point Data Types

Use generateLearnerDataTypeFcn to generate a function that defines the fixed-point data types
of the variables required for prediction of the SVM model.

generateLearnerDataTypeFcn('myMdl',X)

generateLearnerDataTypeFcn generates the myMdl_datatype function.

Create a structure T that defines the fixed-point data types by using myMdl_datatype.

T = myMdl_datatype('Fixed')

T = struct with fields:
               XDataType: [0x0 embedded.fi]
           ScoreDataType: [0x0 embedded.fi]
    InnerProductDataType: [0x0 embedded.fi]

The structure T includes the fields for the named and internal variables required to run the predict
function. Each field contains a fixed-point object, returned by fi (Fixed-Point Designer). The fixed-
point object specifies fixed-point data type properties, such as word length and fraction length. For
example, display the fixed-point data type properties of the predictor data.

T.XDataType

ans = 

[]
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          DataTypeMode: Fixed-point: binary point scaling
            Signedness: Signed
            WordLength: 16
        FractionLength: 14

        RoundingMethod: Floor
        OverflowAction: Wrap
           ProductMode: FullPrecision
  MaxProductWordLength: 128
               SumMode: FullPrecision
      MaxSumWordLength: 128

Define Entry-Point Function

Define an entry-point function named myFixedPointPredict that does the following:

• Accept the predictor data X and the fixed-point data type structure T.
• Load a fixed-point version of a trained SVM classification model by using both

loadLearnerForCoder and the structure T.
• Predict labels and scores using the loaded model.

type myFixedPointPredict.m % Display contents of myFixedPointPredict.m file

function [label,score] = myFixedPointPredict(X,T) %#codegen
Mdl = loadLearnerForCoder('myMdl','DataType',T);
[label,score] = predict(Mdl,X);
end

Note: If you click the button located in the upper-right section of this example and open the example
in MATLAB®, then MATLAB opens the example folder. This folder includes the entry-point function
file.

Generate Code

The XDataType field of the structure T specifies the fixed-point data type of the predictor data.
Convert X to the type specified in T.XDataType by using the cast (Fixed-Point Designer) function.

X_fx = cast(X,'like',T.XDataType);

Generate code for the entry-point function using codegen. Specify X_fx and constant folded T as
input arguments of the entry-point function.

codegen myFixedPointPredict -args {X_fx,coder.Constant(T)}

Code generation successful.

codegen generates the MEX function myFixedPointPredict_mex with a platform-dependent
extension.

Verify Generated Code

Pass predictor data to predict and myFixedPointPredict_mex to compare the outputs.

[labels,scores] = predict(Mdl,X);
[labels_fx,scores_fx] = myFixedPointPredict_mex(X_fx,T);

Compare the outputs from predict and myFixedPointPredict_mex.
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verify_labels = isequal(labels,labels_fx)

verify_labels = logical
   1

isequal returns logical 1 (true), which means labels and labels_fx are equal. If the labels are
not equal, you can compute the percentage of incorrectly classified labels as follows.

sum(strcmp(labels_fx,labels)==0)/numel(labels_fx)*100

ans = 0

Find the maximum of the relative differences between the score outputs.

relDiff_scores = max(abs((scores_fx.double(:,1)-scores(:,1))./scores(:,1)))

relDiff_scores = 0.0055

If you are not satisfied with the comparison results and want to improve the precision of the
generated code, you can tune the fixed-point data types and regenerate the code. For details, see
“Tips” on page 35-3042 in generateLearnerDataTypeFcn, “Data Type Function” on page 35-3041,
and “Fixed-Point Code Generation for Prediction of SVM” on page 34-99.

Input Arguments
filename — Name of MAT-file that contains structure array representing model object
character vector | string scalar

Name of the MATLAB formatted binary file (MAT-file) that contains the structure array representing a
model object, specified as a character vector or string scalar.

You must create the filename file using saveLearnerForCoder, and the model in filename can
be one of the following:

• Classification model

• Decision tree (CompactClassificationTree)
• Ensemble of decision trees (CompactClassificationEnsemble,

ClassificationBaggedEnsemble)
• SVM (support vector machine) (CompactClassificationSVM)

• Regression model

• Decision tree (CompactRegressionTree)
• Ensemble of decision trees (CompactRegressionEnsemble, RegressionBaggedEnsemble)
• SVM (CompactRegressionSVM)

The extension of the filename file must be .mat. If filename has no extension, then
generateLearnerDataTypeFcn appends .mat.

If filename does not include a full path, then generateLearnerDataTypeFcn loads the file from
the current folder.
Example: 'myMdl'
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Data Types: char | string

X — Predictor data
numeric matrix

Predictor data for the predict function of the model stored in filename, specified as an n-by-p
numeric matrix, where n is the number of observations and p is the number of predictor variables.
Data Types: single | double

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example:
generateLearnerDataTypeFcn(filename,X,'OutputFunctionName','myDataTypeFcn','W
ordLength',32) generates a data type function named myDataTypeFcn that uses 32 bits for the
word length when defining the fixed-point data type for each variable.

OutputFunctionName — Name of generated function
filename plus _datatype (default) | character vector | string scalar

Name of the generated function, specified as the comma-separated pair consisting of
'OutputFunctionName' and a character vector or string scalar. The 'OutputFunctionName'
value must be a valid MATLAB function name.

The default function name is the file name in filename followed by _datatype. For example, if
filename is myMdl, then the default function name is myMdl_datatype.
Example: 'OutputFunctionName','myDataTypeFcn'
Data Types: char | string

WordLength — Word length in bits
16 (default) | numeric scalar

Word length in bits, specified as the comma-separated pair consisting of 'WordLength' and a
numeric scalar.

The generated data type function on page 35-3041 defines a fixed-point object for each variable using
the specified 'WordLength' value. If a variable requires a longer word length than the specified
value, the software doubles the word length for the variable.

The optimal word length depends on your target hardware properties. When the specified word
length is longer than the longest word size of your target hardware, the generated code contains
multiword operations.

For details, see “Fixed-Point Data Types” (Fixed-Point Designer).
Example: 'WordLength',32
Data Types: single | double
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OutputRange — Range of predict output
range simulated using X (default) | numeric vector of two elements

Range of the output argument of the predict function, specified as the comma-separated pair
consisting of 'OutputRange' and a numeric vector of two elements (minimum and maximum values
of the output).

The 'OutputRange' value specifies the range of predicted class scores for a classification model and
the range of predicted responses for a regression model. The following tables list the output
arguments for which you can specify the range by using the 'OutputRange' name-value pair
argument.

Classification Model

Model predict Function of Model Output Argument
Decision tree predict score
Ensemble of decision trees predict score
SVM predict score

Regression Model

Model predict Function of Model Output Argument
Decision tree predict Yfit
Ensemble of decision trees predict Yfit
SVM predict yfit

When X contains a large number of observations and the range for the output argument is known,
specify the 'OutputRange' value to reduce the amount of computation.

If you do not specify the 'OutputRange' value, then the software simulates the output range using
the predictor data X and the predict function.

The software determines the span of numbers that the fixed-point data can represent by using the
'OutputRange' value and the 'PercentSafetyMargin' value.
Example: 'OutputRange',[0,1]
Data Types: single | double

PercentSafetyMargin — Safety margin percentage
10 (default) | numeric scalar

Safety margin percentage, specified as the comma-separated pair consisting of
'PercentSafetyMargin' and a numeric scalar.

For each variable, the software simulates the range of the variable and adds the specified safety
margin to determine the span of numbers that the fixed-point data can represent. Then, the software
proposes the maximum fraction length that does not cause overflows.

Use caution when you specify the 'PercentSafetyMargin' value. If a variable range is large, then
increasing the safety margin can cause underflow, because the software decreases fraction length to
represent a larger range using a given word length.
Example: 'PercentSafetyMargin',15

35 Functions

35-3040



Data Types: single | double

More About
Data Type Function

Use the data type function generated by generateLearnerDataTypeFcn to create a structure that
defines fixed-point data types for the variables required to generate fixed-point C/C++ code for
prediction of a machine learning model. Use the output structure of the data type function as the
input argument T of loadLearnerForCoder.

If filename is 'myMdl', then generateLearnerDataTypeFcn generates a data type function
named myMdl_datatype. The myMdl_datatype function supports this syntax:

T = myMdl_datatype(dt)

T = myMdl_datatype(dt) returns a data type structure that defines data types for the variables
required to generate fixed-point C/C++ code for prediction of a machine learning model.

Each field of T contains a fixed-point object returned by fi. The input argument dt specifies the
DataType property of the fixed-point object.

• Specify dt as 'Fixed'(default) for fixed-point code generation.
• Specify dt as 'Double' to simulate floating-point behavior of the fixed-point code.

Use the output structure T as the second input argument of loadLearnerForCoder.

The structure T contains the fields in the following table. These fields define the data types for the
variables that directly influence the precision of the model. These variables, along with other named
and internal variables, are required to run the predict function of the model.

Description Fields
Common fields for classification • XDataType (input)

• ScoreDataType (output or internal variable) and
TransformedScoreDataType (output)

• If you train a model using the default 'ScoreTransform'
value of 'none' or 'identity' (that is, you do not
transform predicted scores), then the ScoreDataType field
influences the precision of the output scores.

• If you train a model using a value of 'ScoreTransform'
other than 'none' or 'identity' (that is, you do
transform predicted scores), then the ScoreDataType field
influences the precision of the internal untransformed
scores. The TransformedScoreDataType field influences
the precision of the transformed output scores.

Common fields for regression • XDataType (input)
• YFitDataType (output)
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Description Fields
Additional fields for an
ensemble of decision trees

• WeakLearnerOutputDataType (internal variable) — Data
type for outputs from weak learners.

• AggregatedLearnerWeightsDataType (internal variable) —
Data type for a weighted aggregate of the outputs from weak
learners, applicable only if you train a model using bagging
('Method','bag'). The software computes predicted scores
(ScoreDataType) by dividing the aggregate by the sum of
learner weights.

Additional fields for SVM • XnormDataType (internal variable), applicable only if you train
a model using 'Standardize' or 'KernelScale'

• InnerProductDataType (internal variable)

The software proposes the maximum fraction length that does not cause overflows, based on the
default word length (16) and safety margin (10%) for each variable.

The following code shows the data type function myMdl_datatype, generated by
generateLearnerDataTypeFcn when filename is 'myMdl' and the model in the filename file is
an SVM classifier.

function T = myMdl_datatype(dt)

if nargin < 1
    dt = 'Fixed';
end

% Set fixed-point math settings
fm = fimath('RoundingMethod','Floor', ...
    'OverflowAction','Wrap', ...
    'ProductMode','FullPrecision', ...
    'MaxProductWordLength',128, ...
    'SumMode','FullPrecision', ...
    'MaxSumWordLength',128);

% Data type for predictor data
T.XDataType = fi([],true,16,14,fm,'DataType',dt);

% Data type for output score
T.ScoreDataType = fi([],true,16,14,fm,'DataType',dt);

% Internal variables
% Data type of the squared distance dist = (x-sv)^2 for the Gaussian kernel G(x,sv) = exp(-dist),
% where x is the predictor data for an observation and sv is a support vector
T.InnerProductDataType = fi([],true,16,6,fm,'DataType',dt);

end

Tips
• To improve the precision of the generated fixed-point code, you can tune the fixed-point data

types. Modify the fixed-point data types by updating the data type function on page 35-3041
(myMdl_datatype) and creating a new structure, and then regenerate the code using the new
structure. You can update the myMdl_datatype function in one of two ways:
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• Regenerate the myMdl_datatype function by using generateLearnerDataTypeFcn and its
name-value pair arguments.

• Increase the word length by using the 'WordLength' name-value pair argument.
• Decrease the safety margin by using the 'PercentSafetyMargin' name-value pair

argument.

If you increase the word length or decrease the safety margin, the software can propose a
longer fraction length, and therefore, improve the precision of the generated code based on
the given data set.

• Manually modify the fixed-point data types in the function file (myMdl_datatype.m). For each
variable, you can tune the word length and fraction length and specify fixed-point math
settings using a fimath object.

• In the generated fixed-point code, a large number of operations or a large variable range can
result in loss of precision, compared to the precision of the corresponding floating-point code.
When training an SVM model, keep the following tips in mind to avoid loss of precision in the
generated fixed-point code:

• Data standardization ('Standardize') — To avoid overflows in the model property values of
support vectors in an SVM model, you can standardize the predictor data. Instead of using the
'Standardize' name-value pair argument when training the model, standardize the
predictor data before passing the data to the fitting function and the predict function so that
the fixed-point code does not include the operations for the standardization.

• Kernel function ('KernelFunction') — Using the Gaussian kernel or linear kernel is
preferable to using a polynomial kernel. A polynomial kernel requires higher computational
complexity than the other kernels, and the output of a polynomial kernel function is
unbounded.

• Kernel scale ('KernelScale') — Using a kernel scale requires additional operations if the
value of 'KernelScale' is not 1.

• The prediction of a one-class classification problem might have loss of precision if the
predicted class score values have a large range.

Version History
Introduced in R2019b

Specify precision of transformed scores before and after their transformation
Behavior changed in R2020a

In R2019b, you could train an SVM classifier for fixed-point code generation with some nondefault
score transforms ('ismax', 'sign', 'symmetric', or 'symmetricismax'). The
generateLearnerDataTypeFcn function generated a data type function whose output structure
contained only one field related to the scores, ScoreDataType. This field influenced the precision of
the output scores both before and after their transformation.

Starting in R2020a, when you train an SVM classifier with a score transform other than 'none' or
'identity', the generateLearnerDataTypeFcn function generates a data type function whose
output structure T contains two fields related to the scores: ScoreDataType and
TransformedScoreDataType. Use these fields to influence the precision of the output scores
before and after their transformation, respectively. For more details, see “Data Type Function” on
page 35-3041.
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To update your code, rerun the generateLearnerDataTypeFcn function and then regenerate the
output structure T.

See Also
loadLearnerForCoder | saveLearnerForCoder | buildInstrumentedMex |
showInstrumentationResults | codegen | fi

Topics
“Fixed-Point Code Generation for Prediction of SVM” on page 34-99
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gencfeatures
Perform automated feature engineering for classification

Syntax
[Transformer,NewTbl] = gencfeatures(Tbl,ResponseVarName,q)
[Transformer,NewTbl] = gencfeatures(Tbl,Y,q)
[Transformer,NewTbl] = gencfeatures(Tbl,formula,q)
[Transformer,NewTbl] = gencfeatures( ___ ,Name=Value)

Description
The gencfeatures function enables you to automate the feature engineering process in the context
of a machine learning workflow. Before passing tabular training data to a classifier, you can create
new features from the predictors in the data by using gencfeatures. Use the returned data to train
the classifier.

gencfeatures allows you to generate features from variables with data types—such as datetime,
duration, and various int types—that are not supported by most classifier training functions. The
resulting features have data types that are supported by these training functions.

To better understand the generated features, use the describe function of the returned
FeatureTransformer object. To apply the same training set feature transformations to a test set,
use the transform function of the FeatureTransformer object.

[Transformer,NewTbl] = gencfeatures(Tbl,ResponseVarName,q) uses automated feature
engineering to create q features from the predictors in Tbl. The software assumes that the
ResponseVarName variable in Tbl is the response and does not create new features from this
variable. gencfeatures returns a FeatureTransformer object (Transformer) and a new table
(NewTbl) that contains the transformed features.

By default, gencfeatures assumes that generated features are used to train an interpretable linear
model with a binary response variable. If you have a multiclass response variable and you want to
generate features to improve the accuracy of a bagged ensemble, specify TargetLearner="bag".

[Transformer,NewTbl] = gencfeatures(Tbl,Y,q) assumes that the vector Y is the response
variable and creates new features from the variables in Tbl.

[Transformer,NewTbl] = gencfeatures(Tbl,formula,q) uses the explanatory model
formula to determine the response variable in Tbl and the subset of Tbl predictors from which to
create new features.

[Transformer,NewTbl] = gencfeatures( ___ ,Name=Value) specifies options using one or
more name-value arguments in addition to any of the input argument combinations in previous
syntaxes. For example, you can change the expected learner type, the method for selecting new
features, and the standardization method for transformed data.

Examples
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Interpret Linear Model with Generated Features

Use automated feature engineering to generate new features. Train a linear classifier using the
generated features. Interpret the relationship between the generated features and the trained model.

Load the patients data set. Create a table from a subset of the variables. Display the first few rows
of the table.

load patients
Tbl = table(Age,Diastolic,Gender,Height,SelfAssessedHealthStatus, ...
    Systolic,Weight,Smoker);
head(Tbl)

    Age    Diastolic      Gender      Height    SelfAssessedHealthStatus    Systolic    Weight    Smoker
    ___    _________    __________    ______    ________________________    ________    ______    ______

    38        93        {'Male'  }      71           {'Excellent'}            124        176      true  
    43        77        {'Male'  }      69           {'Fair'     }            109        163      false 
    38        83        {'Female'}      64           {'Good'     }            125        131      false 
    40        75        {'Female'}      67           {'Fair'     }            117        133      false 
    49        80        {'Female'}      64           {'Good'     }            122        119      false 
    46        70        {'Female'}      68           {'Good'     }            121        142      false 
    33        88        {'Female'}      64           {'Good'     }            130        142      true  
    40        82        {'Male'  }      68           {'Good'     }            115        180      false 

Generate 10 new features from the variables in Tbl. Specify the Smoker variable as the response. By
default, gencfeatures assumes that the new features will be used to train a binary linear classifier.

rng("default") % For reproducibility
[T,NewTbl] = gencfeatures(Tbl,"Smoker",10)

T = 
  FeatureTransformer with properties:

                     Type: 'classification'
            TargetLearner: 'linear'
    NumEngineeredFeatures: 10
      NumOriginalFeatures: 0
         TotalNumFeatures: 10

NewTbl=100×11 table
    zsc(Systolic.^2)    eb8(Diastolic)    q8(Systolic)    eb8(Systolic)    q8(Diastolic)    zsc(kmd9)    zsc(sin(Age))    zsc(sin(Weight))    zsc(Height-Systolic)    zsc(kmc1)    Smoker
    ________________    ______________    ____________    _____________    _____________    _________    _____________    ________________    ____________________    _________    ______

         0.15379              8                6                4                8           -1.7207        0.50027            0.19202               0.40418            0.76177    true  
         -1.9421              2                1                1                2          -0.22056        -1.1319            -0.4009                2.3431             1.1617    false 
         0.30311              4                6                5                5           0.57695        0.50027             -1.037              -0.78898            -1.4456    false 
        -0.85785              2                2                2                2           0.83391         1.1495             1.3039               0.85162          -0.010294    false 
        -0.14125              3                5                4                4             1.779        -1.3083           -0.42387              -0.34154            0.99368    false 
        -0.28697              1                4                3                1           0.67326         1.3761           -0.72529               0.40418             1.3755    false 
          1.0677              6                8                6                6          -0.42521         1.5181           -0.72529               -1.5347            -1.4456    true  
         -1.1361              4                2                2                5          -0.79995         1.1495            -1.0225                1.2991             1.1617    false 
         -1.1361              3                2                2                3          -0.80136        0.46343             1.0806                1.2991             -1.208    false 
        -0.71693              5                3                3                6           0.37961       -0.51304            0.16741               0.55333            -1.4456    false 
         -1.2734              2                1                1                2            1.2572         1.3025             1.0978                1.4482          -0.010294    false 
         -1.1361              1                2                2                1             1.001        -1.2545            -1.2194                1.0008          -0.010294    false 
         0.60534              1                6                5                1          -0.98493       -0.11998             -1.211             -0.043252             -1.208    false 
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          1.0677              8                8                6                8          -0.27307         1.4659             1.2168              -0.34154            0.24706    true  
         -1.2734              3                1                1                4           0.93395        -1.3633           -0.17603                1.0008          -0.010294    false 
          1.0677              7                8                6                8          -0.91396          -1.04            -1.2109              -0.49069            0.24706    true  
      ⋮

T is a FeatureTransformer object that can be used to transform new data, and newTbl contains
the new features generated from the Tbl data.

To better understand the generated features, use the describe object function of the
FeatureTransformer object. For example, inspect the first two generated features.

describe(T,1:2)

                           Type        IsOriginal    InputVariables                            Transformations
                        ___________    __________    ______________    _______________________________________________________________

    zsc(Systolic.^2)    Numeric          false         Systolic        power(  ,2)
                                                                       Standardization with z-score (mean = 15119.54, std = 1667.5858)
    eb8(Diastolic)      Categorical      false         Diastolic       Equal-width binning (number of bins = 8)

The first feature in newTbl is a numeric variable, created by first squaring the values of the
Systolic variable and then converting the results to z-scores. The second feature in newTbl is a
categorical variable, created by binning the values of the Diastolic variable into 8 bins of equal
width.

Use the generated features to fit a linear classifier without any regularization.

Mdl = fitclinear(NewTbl,"Smoker",Lambda=0);

Plot the coefficients of the predictors used to train Mdl. Note that fitclinear expands categorical
predictors before fitting a model.

p = length(Mdl.Beta);
[sortedCoefs,expandedIndex] = sort(Mdl.Beta,ComparisonMethod="abs");
sortedExpandedPreds = Mdl.ExpandedPredictorNames(expandedIndex);
bar(sortedCoefs,Horizontal="on")
yticks(1:2:p)
yticklabels(sortedExpandedPreds(1:2:end))
xlabel("Coefficient")
ylabel("Expanded Predictors")
title("Coefficients for Expanded Predictors")
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Identify the predictors whose coefficients have larger absolute values.

bigCoefs = abs(sortedCoefs) >= 4;
flip(sortedExpandedPreds(bigCoefs))

ans = 1x7 cell
  Columns 1 through 3

    {'zsc(Systolic.^2)'}    {'eb8(Systolic) ...'}    {'q8(Diastolic) ...'}

  Columns 4 through 6

    {'eb8(Diastolic)...'}    {'q8(Systolic) >= 6'}    {'q8(Diastolic) ...'}

  Column 7

    {'zsc(Height-Sys...'}

You can use partial dependence plots to analyze the categorical features whose levels have large
coefficients in terms of absolute value. For example, inspect the partial dependence plot for the
q8(Diastolic) variable, whose levels q8(Diastolic) >= 3 and q8(Diastolic) >= 6 have
coefficients with large absolute values. These two levels correspond to noticeable changes in the
predicted scores.

plotPartialDependence(Mdl,"q8(Diastolic)",Mdl.ClassNames,NewTbl);
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Improve Accuracy for Interpretable Linear Model

Generate new features to improve the model accuracy for an interpretable linear model. Compare the
test set accuracy of a linear model trained on the original data to the test set accuracy of a linear
model trained on the transformed features.

Load the ionosphere data set. Convert the matrix of predictors X to a table.

load ionosphere
tbl = array2table(X);

Partition the data into training and test sets. Use approximately 70% of the observations as training
data, and 30% of the observations as test data. Partition the data using cvpartition.

rng("default") % For reproducibility of the partition
cvp = cvpartition(Y,Holdout=0.3);

trainIdx = training(cvp);
trainTbl = tbl(training(cvp),:);
trainY = Y(trainIdx);

testIdx = test(cvp);
testTbl = tbl(testIdx,:);
testY = Y(testIdx);
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Use the training data to generate 45 new features. Inspect the returned FeatureTransformer
object.

[T,newTrainTbl] = gencfeatures(trainTbl,trainY,45);
T

T = 
  FeatureTransformer with properties:

                     Type: 'classification'
            TargetLearner: 'linear'
    NumEngineeredFeatures: 45
      NumOriginalFeatures: 0
         TotalNumFeatures: 45

All the generated features are engineered features rather than original features in trainTbl.

Apply the transformations stored in the object T to the test data.

newTestTbl = transform(T,testTbl);

Compare the test set performances of a linear classifier trained on the original features and a linear
classifier trained on the new features.

Fit a linear model without transforming the data. Check the test set performance of the model using a
confusion matrix.

originalMdl = fitclinear(trainTbl,trainY);
originalPredictedLabels = predict(originalMdl,testTbl);
cm = confusionchart(testY,originalPredictedLabels);
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confusionMatrix = cm.NormalizedValues;
originalTestAccuracy = sum(diag(confusionMatrix))/sum(confusionMatrix,"all")

originalTestAccuracy = 0.8952

Fit a linear model with the transformed data. Check the test set performance of the model using a
confusion matrix.

newMdl = fitclinear(newTrainTbl,trainY);
newPredictedLabels = predict(newMdl,newTestTbl);
newcm = confusionchart(testY,newPredictedLabels);
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newConfusionMatrix = newcm.NormalizedValues;
newTestAccuracy = sum(diag(newConfusionMatrix))/sum(newConfusionMatrix,"all")

newTestAccuracy = 0.9238

The linear classifier trained on the transformed data seems to outperform the linear classifier trained
on the original data.

Generate New Features to Improve Bagged Ensemble Accuracy

Use gencfeatures to engineer new features before training a bagged ensemble classifier. Before
making predictions on new data, apply the same feature transformations to the new data set.
Compare the test set performance of the ensemble that uses the engineered features to the test set
performance of the ensemble that uses the original features.

Read the sample file CreditRating_Historical.dat into a table. The predictor data consists of
financial ratios and industry sector information for a list of corporate customers. The response
variable consists of credit ratings assigned by a rating agency. Preview the first few rows of the data
set.

creditrating = readtable("CreditRating_Historical.dat");
head(creditrating)

     ID      WC_TA     RE_TA     EBIT_TA    MVE_BVTD    S_TA     Industry    Rating 
    _____    ______    ______    _______    ________    _____    ________    _______
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    62394     0.013     0.104     0.036      0.447      0.142        3       {'BB' }
    48608     0.232     0.335     0.062      1.969      0.281        8       {'A'  }
    42444     0.311     0.367     0.074      1.935      0.366        1       {'A'  }
    48631     0.194     0.263     0.062      1.017      0.228        4       {'BBB'}
    43768     0.121     0.413     0.057      3.647      0.466       12       {'AAA'}
    39255    -0.117    -0.799      0.01      0.179      0.082        4       {'CCC'}
    62236     0.087     0.158     0.049      0.816      0.324        2       {'BBB'}
    39354     0.005     0.181     0.034      2.597      0.388        7       {'AA' }

Because each value in the ID variable is a unique customer ID, that is,
length(unique(creditrating.ID)) is equal to the number of observations in creditrating,
the ID variable is a poor predictor. Remove the ID variable from the table, and convert the Industry
variable to a categorical variable.

creditrating = removevars(creditrating,"ID");
creditrating.Industry = categorical(creditrating.Industry);

Convert the Rating response variable to an ordinal categorical variable.

creditrating.Rating = categorical(creditrating.Rating, ...
    ["AAA","AA","A","BBB","BB","B","CCC"],Ordinal=true);

Partition the data into training and test sets. Use approximately 75% of the observations as training
data, and 25% of the observations as test data. Partition the data using cvpartition.

rng("default") % For reproducibility of the partition
c = cvpartition(creditrating.Rating,Holdout=0.25);
trainingIndices = training(c); % Indices for the training set
testIndices = test(c); % Indices for the test set
creditTrain = creditrating(trainingIndices,:);
creditTest = creditrating(testIndices,:);

Use the training data to generate 40 new features to fit a bagged ensemble. By default, the 40
features include original features that can be used as predictors by a bagged ensemble.

[T,newCreditTrain] = gencfeatures(creditTrain,"Rating",40, ...
    TargetLearner="bag");
T

T = 
  FeatureTransformer with properties:

                     Type: 'classification'
            TargetLearner: 'bag'
    NumEngineeredFeatures: 34
      NumOriginalFeatures: 6
         TotalNumFeatures: 40

Create newCreditTest by applying the transformations stored in the object T to the test data.

newCreditTest = transform(T,creditTest);

Compare the test set performances of a bagged ensemble trained on the original features and a
bagged ensemble trained on the new features.

Train a bagged ensemble using the original training set creditTrain. Compute the accuracy of the
model on the original test set creditTest. Visualize the results using a confusion matrix.
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originalMdl = fitcensemble(creditTrain,"Rating",Method="Bag");
originalTestAccuracy = 1 - loss(originalMdl,creditTest, ...
    "Rating",LossFun="classiferror")

originalTestAccuracy = 0.7512

predictedTestLabels = predict(originalMdl,creditTest);
confusionchart(creditTest.Rating,predictedTestLabels);

Train a bagged ensemble using the transformed training set newCreditTrain. Compute the
accuracy of the model on the transformed test set newCreditTest. Visualize the results using a
confusion matrix.

newMdl = fitcensemble(newCreditTrain,"Rating",Method="Bag");
newTestAccuracy = 1 - loss(newMdl,newCreditTest, ...
    "Rating",LossFun="classiferror")

newTestAccuracy = 0.7512

newPredictedTestLabels = predict(newMdl,newCreditTest);
confusionchart(newCreditTest.Rating,newPredictedTestLabels)
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The bagged ensemble trained on the transformed data seems to outperform the bagged ensemble
trained on the original data.

Generate New Features to Train SVM Classifier

Engineer and inspect new features before training a binary support vector machine (SVM) classifier
with a Gaussian kernel. Then, assess the test set performance of the classifier.

Load the ionosphere data set, which contains radar signal data. The response variable Y indicates
the quality of radar returns: g indicates good quality, and b indicates bad quality. Combine the
predictor and response data into one table variable.

load ionosphere
Tbl = array2table(X);
Tbl.Y = Y;
head(Tbl)

    X1    X2      X3          X4          X5          X6          X7          X8         X9         X10         X11        X12         X13        X14         X15         X16         X17         X18         X19         X20         X21         X22         X23         X24         X25         X26         X27         X28         X29         X30         X31         X32         X33         X34         Y  
    __    __    _______    ________    ________    ________    ________    ________    _______    ________    _______    ________    _______    ________    ________    ________    ________    ________    ________    ________    ________    ________    ________    ________    ________    ________    ________    ________    ________    ________    ________    ________    ________    ________    _____

    1     0     0.99539    -0.05889     0.85243     0.02306     0.83398    -0.37708          1      0.0376    0.85243    -0.17755    0.59755    -0.44945     0.60536    -0.38223     0.84356    -0.38542     0.58212    -0.32192     0.56971    -0.29674     0.36946    -0.47357     0.56811    -0.51171     0.41078    -0.46168     0.21266     -0.3409     0.42267    -0.54487     0.18641      -0.453    {'g'}
    1     0           1    -0.18829     0.93035    -0.36156    -0.10868    -0.93597          1    -0.04549    0.50874    -0.67743    0.34432    -0.69707    -0.51685    -0.97515     0.05499    -0.62237     0.33109          -1    -0.13151      -0.453    -0.18056    -0.35734    -0.20332    -0.26569    -0.20468    -0.18401     -0.1904    -0.11593    -0.16626    -0.06288    -0.13738    -0.02447    {'b'}
    1     0           1    -0.03365           1     0.00485           1    -0.12062    0.88965     0.01198    0.73082     0.05346    0.85443     0.00827     0.54591     0.00299     0.83775    -0.13644     0.75535     -0.0854     0.70887    -0.27502     0.43385    -0.12062     0.57528     -0.4022     0.58984    -0.22145       0.431    -0.17365     0.60436     -0.2418     0.56045    -0.38238    {'g'}
    1     0           1    -0.45161           1           1     0.71216          -1          0           0          0           0          0           0          -1     0.14516     0.54094     -0.3933          -1    -0.54467    -0.69975           1           0           0           1     0.90695     0.51613           1           1    -0.20099     0.25682           1    -0.32382           1    {'b'}
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    1     0           1    -0.02401      0.9414     0.06531     0.92106    -0.23255    0.77152    -0.16399    0.52798    -0.20275    0.56409    -0.00712     0.34395    -0.27457      0.5294     -0.2178     0.45107    -0.17813     0.05982    -0.35575     0.02309    -0.52879     0.03286    -0.65158      0.1329    -0.53206     0.02431    -0.62197    -0.05707    -0.59573    -0.04608    -0.65697    {'g'}
    1     0     0.02337    -0.00592    -0.09924    -0.11949    -0.00763    -0.11824    0.14706     0.06637    0.03786    -0.06302          0           0    -0.04572     -0.1554    -0.00343    -0.10196    -0.11575    -0.05414     0.01838     0.03669     0.01519     0.00888     0.03513    -0.01535     -0.0324     0.09223    -0.07859     0.00732           0           0    -0.00039     0.12011    {'b'}
    1     0     0.97588    -0.10602     0.94601      -0.208     0.92806     -0.2835    0.85996    -0.27342    0.79766    -0.47929    0.78225    -0.50764     0.74628    -0.61436     0.57945    -0.68086     0.37852    -0.73641     0.36324    -0.76562     0.31898    -0.79753     0.22792    -0.81634     0.13659     -0.8251     0.04606    -0.82395    -0.04262    -0.81318    -0.13832    -0.80975    {'g'}
    0     0           0           0           0           0           1          -1          0           0         -1          -1          0           0           0           0           1           1          -1          -1           0           0           0           0           1           1           1           1           0           0           1           1           0           0    {'b'}

Partition the data into training and test sets. Use approximately 75% of the observations as training
data, and 25% of the observations as test data. Partition the data using cvpartition.

rng("default") % For reproducibility of the partition
c = cvpartition(Tbl.Y,Holdout=0.25);
trainTbl = Tbl(training(c),:);
testTbl = Tbl(test(c),:);

Use the training data to generate 50 features to fit a binary SVM classifier with a Gaussian kernel. By
default, the 50 features include original features that can be used as predictors by an SVM classifier.
Additionally, gencfeatures uses neighborhood component analysis (NCA) to reduce the set of
engineered features to the most important predictors. You can use the NCA feature selection method
only when the target learner is "gaussian-svm" and all the predictor features are numeric.

[Transformer,newTrainTbl] = gencfeatures(trainTbl,"Y",50, ...
    TargetLearner="gaussian-svm")

Transformer = 
  FeatureTransformer with properties:

                     Type: 'classification'
            TargetLearner: 'gaussian-svm'
    NumEngineeredFeatures: 17
      NumOriginalFeatures: 33
         TotalNumFeatures: 50

newTrainTbl=264×51 table
    zsc(X1)    zsc(X3)      zsc(X4)     zsc(X5)    zsc(X6)     zsc(X7)     zsc(X8)     zsc(X9)     zsc(X10)    zsc(X11)     zsc(X12)     zsc(X13)     zsc(X14)      zsc(X15)    zsc(X16)    zsc(X17)    zsc(X18)    zsc(X19)    zsc(X20)     zsc(X21)    zsc(X22)     zsc(X23)     zsc(X24)    zsc(X25)    zsc(X26)    zsc(X27)     zsc(X28)    zsc(X29)    zsc(X30)    zsc(X31)     zsc(X32)     zsc(X33)    zsc(X34)     zsc(X1.*X29)    zsc(X8.*X14)    zsc(X10.*X33)    zsc(X13.*X17)    zsc(X3+X8)    zsc(X5+X6)    zsc(X5+X8)    zsc(X6+X12)    zsc(X7+X8)    zsc(X8+X21)    zsc(X10+X31)    zsc(X3-X27)    zsc(X18-X22)    zsc(X24-X32)    zsc(kmc2)    zsc(tanh(X5))    zsc(tanh(X7))      Y  


    0.35062     0.71387     -0.24103    0.48341    -0.19017     0.58078     -1.0063     0.97782    -0.26974       0.6391     -0.67348     0.31834        -1.1367     0.38853    -0.98325     0.75294    -0.77965      0.3598     -0.57266     0.38845     -0.60939    -0.012451    -0.80961     0.28949    -0.84597      -0.2517    -0.72759    -0.28242    -0.63852    0.080034       -1.0708    -0.31129       -1.046      -0.26816         0.32751        -0.038585          0.2021        -0.19559        0.2362       -0.35849      -0.56279      -0.34165       -0.42505       -0.12416         0.72183       -0.12462         0.18881        1.0418        0.52296             0.62       {'g'}
    0.35062     0.72301     -0.18451    0.77158    -0.22962     0.91433    -0.49033     0.75792    -0.32357      0.42329     -0.20389     0.73252        -0.1965     0.29679    -0.13823     0.74354    -0.27428     0.64142     -0.10244      0.6146     -0.56742      0.09598    -0.12919     0.30176    -0.62944     0.094562    -0.28922    0.096446    -0.30619        0.41      -0.47923      0.4091      -0.8911       0.14996        -0.14738        -0.039539         0.68049         0.16872       0.42742        0.21486      -0.27702       0.34208        0.21888        0.10563         0.46493        0.28732         0.26203        0.5226        0.69699          0.82404       {'g'}
    0.35062     0.72301      -1.1204    0.77158      1.9267     0.33603     -2.2596     -1.0149    -0.34873     -0.87362     -0.31257    -0.64512       -0.21349     -2.0888     0.17363     0.26338    -0.79564     -2.2123      -1.0155     -1.6745       1.8964     -0.63461     0.10334      1.0283      1.9591    -0.047978      1.9396      1.0838    -0.36052    -0.22117        1.9446      -1.294       2.1421        1.2396        -0.14461        -0.061281         -0.9368         -1.0584        1.8984         -1.033       0.98761       -1.5469        -3.5052        -0.4237         0.57348        -2.4894         -1.3837       -1.5842        0.69699          0.43769       {'b'}
    0.35062     -1.2136     -0.12242     -1.375    -0.49905     -1.1101    -0.48554    -0.72188     -0.2093     -0.80643     -0.44067    -0.64512       -0.21349    -0.61619    -0.48568    -0.61727    -0.20429    -0.77473    -0.040295    -0.50751     0.034923     -0.60903     0.12046    -0.62226     0.13548      -1.1087     0.28317     -0.7878    0.053398    -0.68758    -0.0072697    -0.67106      0.21145       -0.8259        -0.14461        -0.061365         -0.9368         -1.1908       -1.3813        -1.3417      -0.60042       -1.2848       -0.90111        -0.7041       -0.056942       -0.21519        0.097188       -1.5842        -1.4653           -1.163       {'b'}
    0.35062     0.67519     -0.34656    0.66615    -0.69083      0.7698    -0.81803     0.69875    -0.92315      0.54191      -1.2868     0.61614        -1.2563     0.60599     -1.4924     0.32568     -1.3793     0.02881      -1.3967    0.052918      -1.5154    -0.097458     -1.4342    -0.29246     -1.4483     -0.78193     -1.3907     -0.5715     -1.5984    -0.76498       -1.5945    -0.93671      -1.8288      -0.58719          0.2563         0.061186        0.087338       -0.092231      0.032979      -0.092894       -1.2783     -0.037943       -0.60879        -1.2671          1.0969        0.18976         0.10713        1.0418        0.63763          0.74162       {'g'}
    -2.8413     -1.2599     -0.10917    -1.1812    -0.24013     0.91433     -2.2596     -1.0149    -0.34873      -2.6482      -2.3453    -0.64512       -0.21349    -0.54564    -0.14479       1.006      2.0324     -2.2123      -1.9207    -0.53738    -0.035976     -0.63461     0.10334      1.0283      2.1431      0.88773      1.9396    -0.65143    0.038853      1.1285        1.9446    -0.67031    -0.052094       -0.6754        -0.14461        -0.061281         -0.9368         -2.4539       -1.0579        -2.4521       -1.6983       -1.0811        -2.3662        0.67049         -1.6117         1.8487         -1.3837       -1.5842        -1.2168          0.82404       {'b'}
    0.35062     0.65074     -0.27034    0.77158     -0.5507     0.91433    -0.67645     0.97782     -1.1087      0.76913      -1.1982     0.87871        -1.0489     0.84926     -1.1622      0.9786    -0.71297     0.78777      -1.2452     0.68706      -1.2068      0.53806     -1.1348     0.77353     -1.1281     0.067353     -1.1572    -0.21008     -1.2312     0.13174       -1.4278    0.078797       -1.663      -0.18832        0.096844         -0.51689          1.1624       -0.011238       0.20838       0.083582       -1.1329       0.19237        0.14089       -0.67019         0.43198         0.4953         0.20971        1.0418        0.69699          0.82404       {'g'}
    0.35062     -1.2969     -0.29857    -1.1812    -0.24013     -1.0948    -0.24765    -0.78637    -0.91197       -1.684      -1.0885    -0.64512       -0.21349      -1.065     0.70198     -1.2124      0.3075     0.44948        0.507    -0.53738    -0.035976     -0.63461     0.10334    -0.93558     0.13961     -0.64684    0.073011    -0.65143    0.038853     -0.3862       0.46286    -0.82839      0.78311       -0.6754        -0.14461        0.0099774         -0.9368         -1.0844       -1.0579         -1.033      -0.86794       -1.0811       -0.73858       -0.95221        -0.47054        0.30835        -0.26939       -1.5842        -1.2168          -1.1433       {'b'}
    0.35062     0.72301     0.039848    0.77158    -0.63857     0.91433    -0.79731     0.97782     -1.2544      0.90098      -1.1531     0.90648        -1.2791     0.85418     -1.4394     0.83179     -1.3466     0.54942      -1.3441     0.61066      -1.5108      0.42766     -1.4494     0.27335     -1.5965      -0.1331     -1.4636    0.047912     -1.6238    -0.12466       -1.7462    -0.22743      -2.0084      0.096399         0.25018         -0.38227          1.0033       -0.044199       0.14844     -0.0016619       -1.1575      0.095151      -0.033402       -0.98013          0.6383         0.2146         0.20964        1.0418        0.69699          0.82404       {'g'}
    0.35062     0.72301       -1.323    0.77158     -2.4069     0.91433     -2.2596     0.97782     0.41213      0.90098      -1.1484     0.96723         1.8407     0.99753     -2.3384       1.006    -0.59315      1.0392      -1.7935      1.0877       1.8964       1.0494      2.0312      1.0283    -0.64265      0.88773     -1.0301      1.0838     -1.9482      1.1285       -1.9591      1.2557      -2.2463        1.2396         -2.9303           1.1115          1.3226         -1.0584       -1.0579         -1.033       -2.2504       -1.0811       -0.73858         1.2037        -0.13907        -2.3086          3.0198        1.0418        0.69699          0.82404       {'b'}
    0.35062     0.72301     0.056082    0.77158    -0.16603     0.91433    -0.35958     0.97782    -0.16462      0.90098     0.086893     0.96723        0.20409     0.99753     0.13566       1.006     0.21703      1.0392      0.60585      1.0877      0.82892       1.0494     0.90821      1.0283     0.56194      0.88773     0.78535      1.0075      1.0054      1.1285       0.62693      1.2557      0.97284        1.1554        -0.17611          0.22251          1.3226         0.25941       0.47081        0.30709     -0.045495       0.44726        0.79852        0.79953        -0.13907       -0.58373         0.22005        0.5226        0.69699          0.82404       {'g'}
    0.35062    -0.24996      -2.2139    0.77158     0.33858     -1.1655     -2.2596     0.97782     -2.4496    -0.098384      -2.3453    -0.64512       -0.21349     -2.0888    -0.89643     -1.2213    0.076204      1.0392      -1.9207    -0.53738    -0.035976     -0.63461     0.10334    -0.96039      1.9896     -0.27735     0.59845    -0.65143    0.038853      1.1285       0.44533    -0.67031    -0.052094       -0.6754        -0.14461        -0.061281         -0.9368         -1.7432       0.81505         -1.033       -1.3396       -2.7564        -2.3662       -0.80182        0.025568         0.1018        -0.25621       -1.5842        0.69699          -1.2342       {'b'}
    0.35062     0.71598     0.035661    0.77158    -0.26691     0.87035     -0.1974     0.90034    -0.30016       0.8881     -0.15385     0.79508    -0.00095871     0.90821    -0.02921     0.82498     0.22838     0.81324      0.23893     0.78923      0.19262      0.77433     0.38176     0.70892     0.43102      0.49084     0.36373     0.72129     0.34444     0.71304       0.30366     0.69599      0.21153       0.83955        -0.13741       -0.0081697         0.85553         0.36695       0.40198        0.42148      -0.26706       0.54229        0.63077         0.3677         0.15794       0.023257        0.062312        0.5226        0.69699           0.7999       {'g'}
    0.35062    0.069941    -0.052561    0.11987    -0.13112    0.054366      0.1298    -0.84005     0.36726       0.2554    -0.065971     0.35614       0.079956     0.66786    0.095978      0.3326     0.37109    -0.35253       0.8869     0.33835      0.37612      0.23129     0.53951      0.1531     0.63492     -0.15329     0.56409     0.10222     0.54169    0.050904       0.49615      1.2557      0.67277       0.15634        -0.06995           1.0423        -0.11778         0.13925     0.0012868        0.17866      -0.12485        0.1482        0.44389        0.29865         0.16868      -0.021424        0.037667        0.5226        0.24699           0.1917       {'g'}
    -2.8413     0.72301      -2.3483    -1.1812    -0.24013     -1.0948    -0.24765     0.97782      1.7521      0.90098      -2.3453      -1.804         1.8407    -0.54564    -0.14479     -2.2295      2.0324      1.0392       2.0554     -2.1625       1.8964       1.0494      1.1877      -2.393      2.1431      0.88773      1.9396      1.0838     -1.9482      1.1285        1.9446      1.2557       2.1421       -0.6754        -0.14461           3.1769         0.68716         0.33704       -1.0579         -1.033       -1.6983       -1.0811        -2.3662         2.1428        -0.13907       0.036127        -0.55803       0.92994        -1.2168          -1.1433       {'b'}
    -2.8413     0.72301         2.13    -1.1812    -0.24013     -1.0948    -0.24765     -3.0077     -2.4496     -0.87362     -0.31257    -0.64512       -0.21349     -2.0888     -2.3384     -2.2295     -2.0271     -2.2123       2.0554     -2.1625       1.8964     -0.63461     0.10334    -0.68235     0.16583      0.88773     -1.7099     -2.3866      2.0259     -2.5037        1.9446     -2.5963       2.1421       -0.6754        -0.14461           3.1769         -0.9368         0.33704       -1.0579         -1.033      -0.35532       -1.0811        -2.3662        -3.7464        -0.13907        -3.5891         -1.3837       -1.5842        -1.2168          -1.1433       {'b'}
      ⋮

By default, gencfeatures standardizes the original features before including them in
newTrainTbl. Because it has a constant value of 0, the original X2 variable in trainTbl is not
included in newTrainTbl.

35 Functions

35-3056



unique(trainTbl.X2)

ans = 0

Inspect the first three engineered features. Note that the engineered features are stored after the 33
original features in the Transformer object. Visualize the engineered features by using a matrix of
scatter plots and histograms.

featIndex = 34:36; 
describe(Transformer,featIndex)

                      Type      IsOriginal    InputVariables                           Transformations
                     _______    __________    ______________    _____________________________________________________________

    zsc(X1.*X29)     Numeric      false          X1, X29        X1 .* X29
                                                                Standardization with z-score (mean = 0.35269, std = 0.5222)
    zsc(X8.*X14)     Numeric      false          X8, X14        X8 .* X14
                                                                Standardization with z-score (mean = 0.051911, std = 0.35898)
    zsc(X10.*X33)    Numeric      false          X10, X33       X10 .* X33
                                                                Standardization with z-score (mean = 0.018924, std = 0.30881)

colors = lines(2);
gplotmatrix(newTrainTbl{:,featIndex},[],newTrainTbl.Y,colors, ...
    [],[],[],"grpbars", ...
    newTrainTbl.Properties.VariableNames(featIndex))

The plots can help you better understand the engineered features. For example:
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• The top-left plot is a histogram of the zsc(X1.*X29) feature. This feature consists of the
standardized element-wise product of the original X1 and X29 features. The histogram shows that
the distribution of values corresponding to good radar returns (blue) is different from the
distribution of values corresponding to bad radar returns (red). For example, many of the values in
zsc(X1.*X29) that correspond to bad radar returns are between –1 and –0.5.

• The plot in the second row, first column is a scatter plot that compares the zsc(X1.*X29) values
(along the x-axis) to the zsc(X8.*X14) values (along the y-axis). The scatter plot shows that most
of the zsc(X8.*X14) values corresponding to good radar returns (blue) are greater than –1,
while many of the zsc(X8.*X14) values corresponding to bad radar returns (red) are less than 1.
Note that this plot contains the same information as the plot in the first row, second column, but
with the axes flipped.

Create newTestTbl by applying the transformations stored in the object Transformer to the test
data.

newTestTbl = transform(Transformer,testTbl);

Train an SVM classifier with a Gaussian kernel using the transformed training set newTrainTbl. Let
the fitcsvm function find an appropriate scale value for the kernel function. Compute the accuracy
of the model on the transformed test set newTestTbl. Visualize the results using a confusion matrix.

Mdl = fitcsvm(newTrainTbl,"Y",KernelFunction="gaussian", ...
    KernelScale="auto");
testAccuracy = 1 - loss(Mdl,newTestTbl,"Y", ...
    LossFun="classiferror")

testAccuracy = 0.9425

predictedTestLabels = predict(Mdl,newTestTbl);
confusionchart(newTestTbl.Y,predictedTestLabels)
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The SVM model correctly classifies most of the observations. That is, for most observations, the class
predicted by the SVM model matches the true class label.

Compute Cross-Validation Loss Using Generated Features

Generate features to train a linear classifier. Compute the cross-validation classification error of the
model by using the crossval function.

Load the ionosphere data set, and create a table containing the predictor data.

load ionosphere
Tbl = array2table(X);

Create a random partition for stratified 5-fold cross-validation.

rng("default") % For reproducibility of the partition
cvp = cvpartition(Y,KFold=5);

Compute the cross-validation classification loss for a linear model trained on the original features in
Tbl.

CVMdl = fitclinear(Tbl,Y,CVPartition=cvp);
cvloss = kfoldLoss(CVMdl)

cvloss = 0.1339
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Create the custom function myloss (shown at the end of this example). This function generates 20
features from the training data, and then applies the same training set transformations to the test
data. The function then fits a linear classifier to the training data and computes the test set loss.

Note: If you use the live script file for this example, the myloss function is already included at the
end of the file. Otherwise, you need to create this function at the end of your .m file or add it as a file
on the MATLAB® path.

Compute the cross-validation classification loss for a linear model trained on features generated from
the predictors in Tbl.

newcvloss = mean(crossval(@myloss,Tbl,Y,Partition=cvp))

newcvloss = 0.0741

function testloss = myloss(TrainTbl,trainY,TestTbl,testY)
[Transformer,NewTrainTbl] = gencfeatures(TrainTbl,trainY,20);
NewTestTbl = transform(Transformer,TestTbl);
Mdl = fitclinear(NewTrainTbl,trainY);
testloss = loss(Mdl,NewTestTbl,testY, ...
    LossFun="classiferror");
end

Input Arguments
Tbl — Original features
table

Original features, specified as a table. Each row of Tbl corresponds to one observation, and each
column corresponds to one predictor variable. Optionally, Tbl can contain one additional column for
the response variable. Multicolumn variables and cell arrays other than cell arrays of character
vectors are not allowed, but datetime, duration, and various int predictor variables are allowed.

• If Tbl contains the response variable, and you want to create new features from any of the
remaining variables in Tbl, then specify the response variable by using ResponseVarName.

• If Tbl contains the response variable, and you want to create new features from only a subset of
the remaining variables in Tbl, then specify a formula by using formula.

• If Tbl does not contain the response variable, then specify a response variable by using Y. The
length of the response variable and the number of rows in Tbl must be equal.

Data Types: table

ResponseVarName — Response variable name
name of variable in Tbl

Response variable name, specified as the name of a variable in Tbl.

You must specify ResponseVarName as a character vector or string scalar. For example, if the
response variable Y is stored as Tbl.Y, then specify it as 'Y'. Otherwise, the software treats all
columns of Tbl as predictors, and might create new features from Y.
Data Types: char | string

q — Number of features
positive integer scalar
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Number of features, specified as a positive integer scalar. For example, you can set q to
approximately 1.5*size(Tbl,2), which is about 1.5 times the number of original features.
Data Types: single | double

Y — Response variable
numeric vector | logical vector | string array | cell array of character vectors | categorical vector

Response variable with observations in rows, specified as a numeric vector, logical vector, string
array, cell array of character vectors, or categorical vector. Y and Tbl must have the same number of
rows.
Data Types: single | double | logical | string | cell | categorical

formula — Explanatory model of response variable and subset of predictor variables
character vector | string scalar

Explanatory model of the response variable and a subset of the predictor variables, specified as a
character vector or string scalar in the form "Y~X1+X2+X3". In this form, Y represents the response
variable, and X1, X2, and X3 represent the predictor variables.

To create new features from only a subset of the predictor variables in Tbl, use a formula. If you
specify a formula, then the software does not create new features from any variables in Tbl that do
not appear in formula.

The variable names in the formula must be both variable names in Tbl
(Tbl.Properties.VariableNames) and valid MATLAB identifiers. You can verify the variable
names in Tbl by using the isvarname function. If the variable names are not valid, then you can
convert them by using the matlab.lang.makeValidName function.
Data Types: char | string

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.
Example:
gencfeatures(Tbl,"Response",10,TargetLearner="bag",FeatureSelection="oob")
specifies that the expected learner type is a bagged ensemble classifier and the method for selecting
features is an out-of-bag, predictor importance technique.

TargetLearner — Expected learner type
"linear" (default) | "bag" | "gaussian-svm"

Expected learner type, specified as "linear", "bag", or "gaussian-svm". The software creates
and selects new features assuming they will be used to train this type of model.

Value Expected Model
"linear" ClassificationLinear — Appropriate for

binary classification only. You can create a model
by using the fitclinear function.
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Value Expected Model
"bag" ClassificationBaggedEnsemble —

Appropriate for binary and multiclass
classification. You can create a model by using
the fitcensemble function and specifying
Method="Bag".

"gaussian-svm" ClassificationSVM (with a Gaussian kernel) —
Appropriate for binary classification only. You can
create a model by using the fitcsvm function
and specifying KernelFunction="gaussian".
To create a model with good predictive
performance, specify KernelScale="auto".

By default, TargetLearner is "linear", which supports binary response variables only. If you have
a multiclass response variable and you want to generate new features, you must set TargetLearner
to "bag".
Example: TargetLearner="bag"

IncludeInputVariables — Method for including original features in Tbl
"auto" (default) | "include" | "select" | "omit"

Method for including the original features in Tbl in the new table NewTbl, specified as one of the
values in this table.

Value Description
"auto" This value is equivalent to:

• "select" when TargetLearner is
"linear"

• "include" when TargetLearner is "bag"
or "gaussian-svm"

"include" The software includes original features that can
be used as predictors by the target learner, and
excludes features that are:

• Unsupported, such as datetime and
duration variables

• Constant-valued, including variables with all
missing values

• Numeric with NaN or Inf values (when the
TargetLearner is "linear" or
"gaussian-svm")

• Categorical with all unique values
• Categorical with more categories than the

CategoricalEncodingLimit value
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Value Description
"select" The software includes original features that are

supported by the target learner and considered to
be important by the specified feature selection
method (FeatureSelectionMethod).

"omit" The software omits the original features.

Note that the software applies the standardization method specified by the
TransformedDataStandardization name-value argument to original features included in
NewTbl.
Example: IncludeInputVariables="include"

FeatureSelectionMethod — Method for selecting new features
"auto" (default) | "lasso" | "oob" | "nca" | "mrmr"

Method for selecting new features, specified as one of the values in this table. The software generates
many features using various transformations and uses this method to select the important features to
include in NewTbl.

Value Description
"auto" This value is equivalent to:

• "lasso" when TargetLearner is "linear"
• "oob" when TargetLearner is "bag"
• "nca" when TargetLearner is "gaussian-

svm"
"lasso" Lasso regularization — Available when

TargetLearner is "linear"

To perform feature selection, the software uses
fitclinear with Regularization specified as
"lasso". The fitclinear function uses a
vector of regularization strengths (Lambda) to
find a linear fit that has the requested number of
features with nonzero coefficients (Beta). The
software includes these important features in
NewTbl.

"oob" Out-of-bag, predictor importance estimates by
permutation — Available when TargetLearner
is "bag"

To perform feature selection, the software fits a
bagged ensemble of trees and uses the
oobPermutedPredictorImportance function
to rank the features in the ensemble. The
software includes the requested number of top-
ranked features in NewTbl.
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Value Description
"nca" Neighborhood component analysis (NCA) —

Available when TargetLearner is "gaussian-
svm" and the predictor features in Tbl are
numeric only

Tip If TargetLearner is "gaussian-svm" and
Tbl includes categorical predictors, specify
FeatureSelectionMethod as "mrmr".

To perform feature selection, the software uses
fscnca to fit a
FeatureSelectionNCAClassification
object, and then sorts the features by their
average weights (FeatureWeights). Greater
weight indicates greater feature importance. The
software includes the requested number of
important features in NewTbl.

"mrmr" Minimum redundancy maximum relevance
(MRMR) — Available when TargetLearner is
"linear", "bag", or "gaussian-svm"

To perform feature selection, the software uses
fscmrmr to rank the features, and then includes
the requested number of top-ranked features in
NewTbl.

For more information on different feature selection methods, see “Introduction to Feature Selection”
on page 16-47.
Example: FeatureSelection="mrmr"

TransformedDataStandardization — Standardization method for transformed data
"auto" (default) | "zscore" | "none" | "mad" | "range"

Standardization method for the transformed data, specified as one of the values in this table. The
software applies this standardization method to both engineered features and original features.

Value Description
"auto" This value is equivalent to:

• "zscore" when TargetLearner is
"linear" or "gaussian-svm"

• "none" when TargetLearner is "bag"
"zscore" Center and scale to have mean 0 and standard

deviation 1
"none" Use raw data
"mad" Center and scale to have median 0 and median

absolute deviation 1
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Value Description
"range" Scale range of data to [0,1]

Example: TransformedDataStandardization="range"

CategoricalEncodingLimit — Maximum number of categories allowed in categorical
predictor
nonnegative integer scalar | Inf

Maximum number of categories allowed in a categorical predictor, specified as a nonnegative integer
scalar. If a categorical predictor has more than the specified number of categories, then
gencfeatures does not create new features from the predictor and excludes the predictor from the
new table NewTbl. The default value is 50 when TargetLearner is "linear" or "gaussian-svm",
and Inf when TargetLearner is "bag".
Example: CategoricalEncodingLimit=20
Data Types: single | double

Output Arguments
Transformer — Engineered feature transformer
FeatureTransformer object

Engineered feature transformer, returned as a FeatureTransformer object. To better understand
the engineered features, use the describe object function of Transformer. To apply the same
feature transformations on a new data set, use the transform object function of Transformer.

NewTbl — Generated features
table

Generated features, returned as a table. Each row corresponds to an observation, and each column
corresponds to a generated feature. If the response variable is included in Tbl, then NewTbl also
includes the response variable. Use this table to train a classification model of type TargetLearner.

NewTbl contains generated features in the following order: original features, engineered features as
ranked by the feature selection method, and the response variable.

Tips
• By default, when TargetLearner is "linear" or "gaussian-svm", the software generates new

features from numeric predictors by using z-scores (see TransformedDataStandardization).
You can change the type of standardization for the transformed features. However, using some
method of standardization, thereby avoiding the "none" specification, is strongly recommended.
Fitting linear and SVM models works best with standardized data.

• When you generate features to create an SVM model with good predictive performance, specify
KernelScale as "auto" in the call to fitcsvm. This specification allows the software to find an
appropriate scale value for the SVM kernel function.

Version History
Introduced in R2021a
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Original features with NaN or Inf values are omitted when TargetLearner is "linear" or
"gaussian-svm"
Behavior changed in R2022a

When the TargetLearner is "linear" or "gaussian-svm", the gencfeatures function always
excludes original features that include NaN or Inf values, even when IncludeInputVariables is
specified as "include". That is, the features are not included in the table of generated features
NewTbl. Additionally, gencfeatures does not generate features from the original features that
include NaN values.

To include the original features with NaN values in NewTbl, you can first remove the observations
with missing values from Tbl by using the rmmissing function.

See Also
FeatureTransformer | describe | transform | fitclinear | fitcensemble | fitcsvm |
plotPartialDependence | genrfeatures

Topics
“Automated Feature Engineering for Classification” on page 19-194
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genrfeatures
Perform automated feature engineering for regression

Syntax
[Transformer,NewTbl] = genrfeatures(Tbl,ResponseVarName,q)
[Transformer,NewTbl] = genrfeatures(Tbl,Y,q)
[Transformer,NewTbl] = genrfeatures(Tbl,formula,q)
[Transformer,NewTbl] = genrfeatures( ___ ,Name=Value)

Description
The genrfeatures function enables you to automate the feature engineering process in the context
of a machine learning workflow. Before passing tabular training data to a regression model, you can
create new features from the predictors in the data by using genrfeatures. Use the returned data
to train the regression model.

genrfeatures allows you to generate features from variables with data types—such as datetime,
duration, and various int types—that are not supported by most regression model training
functions. The resulting features have data types that are supported by these training functions.

To better understand the generated features, use the describe function of the returned
FeatureTransformer object. To apply the same training set feature transformations to a test set,
use the transform function of the FeatureTransformer object.

[Transformer,NewTbl] = genrfeatures(Tbl,ResponseVarName,q) uses automated feature
engineering to create q features from the predictors in Tbl. The software assumes that the
ResponseVarName variable in Tbl is the response and does not create new features from this
variable. genrfeatures returns a FeatureTransformer object (Transformer) and a new table
(NewTbl) that contains the transformed features.

By default, genrfeatures assumes that generated features are used to train an interpretable linear
regression model. If you want to generate features to improve the accuracy of a bagged ensemble,
specify TargetLearner="bag".

[Transformer,NewTbl] = genrfeatures(Tbl,Y,q) assumes that the vector Y is the response
variable and creates new features from the variables in Tbl.

[Transformer,NewTbl] = genrfeatures(Tbl,formula,q) uses the explanatory model
formula to determine the response variable in Tbl and the subset of Tbl predictors from which to
create new features.

[Transformer,NewTbl] = genrfeatures( ___ ,Name=Value) specifies options using one or
more name-value arguments in addition to any of the input argument combinations in previous
syntaxes. For example, you can change the expected learner type, the method for selecting new
features, and the standardization method for transformed data.

Examples
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Interpret Linear Model with Generated Features

Use automated feature engineering to generate new features. Train a linear regression model using
the generated features. Interpret the relationship between the generated features and the trained
model.

Load the patients data set. Create a table from a subset of the variables. Display the first few rows
of the table.

load patients
Tbl = table(Age,Diastolic,Gender,Height,SelfAssessedHealthStatus, ...
    Smoker,Weight,Systolic);
head(Tbl)

    Age    Diastolic      Gender      Height    SelfAssessedHealthStatus    Smoker    Weight    Systolic
    ___    _________    __________    ______    ________________________    ______    ______    ________

    38        93        {'Male'  }      71           {'Excellent'}          true       176        124   
    43        77        {'Male'  }      69           {'Fair'     }          false      163        109   
    38        83        {'Female'}      64           {'Good'     }          false      131        125   
    40        75        {'Female'}      67           {'Fair'     }          false      133        117   
    49        80        {'Female'}      64           {'Good'     }          false      119        122   
    46        70        {'Female'}      68           {'Good'     }          false      142        121   
    33        88        {'Female'}      64           {'Good'     }          true       142        130   
    40        82        {'Male'  }      68           {'Good'     }          false      180        115   

Generate 10 new features from the variables in Tbl. Specify the Systolic variable as the response.
By default, genrfeatures assumes that the new features will be used to train a linear regression
model.

rng("default") % For reproducibility
[T,NewTbl] = genrfeatures(Tbl,"Systolic",10)

T = 
  FeatureTransformer with properties:

                     Type: 'regression'
            TargetLearner: 'linear'
    NumEngineeredFeatures: 10
      NumOriginalFeatures: 0
         TotalNumFeatures: 10

NewTbl=100×11 table
    zsc(d(Smoker))    q8(Age)    eb8(Age)    zsc(sin(Height))    zsc(kmd8)    q6(Height)    eb8(Diastolic)    q8(Diastolic)    zsc(fenc(c(SelfAssessedHealthStatus)))    q10(Weight)    Systolic
    ______________    _______    ________    ________________    _________    __________    ______________    _____________    ______________________________________    ___________    ________

         1.3863          4          5              1.1483         -0.56842        6               8                 8                         0.27312                        7            124   
       -0.71414          6          6             -0.3877          -2.0772        5               2                 2                         -1.4682                        6            109   
       -0.71414          4          5              1.1036         -0.21519        2               4                 5                         0.82302                        3            125   
       -0.71414          5          6             -1.4552         -0.32389        4               2                 2                         -1.4682                        4            117   
       -0.71414          8          8              1.1036           1.2302        2               3                 4                         0.82302                        1            122   
       -0.71414          7          7             -1.5163         -0.88497        4               1                 1                         0.82302                        5            121   
         1.3863          3          3              1.1036          -1.1434        2               6                 6                         0.82302                        5            130   
       -0.71414          5          6             -1.5163          -0.3907        4               4                 5                         0.82302                        8            115   
       -0.71414          1          2             -1.5163           0.4278        4               3                 3                         0.27312                        9            115   
       -0.71414          2          3            -0.26055        -0.092621        3               5                 6                         0.27312                        3            118   
       -0.71414          7          7             -1.5163          0.16737        4               2                 2                         0.27312                        2            114   
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       -0.71414          6          6            -0.26055         -0.32104        3               1                 1                         -1.8348                        5            115   
       -0.71414          1          1              1.1483        -0.051074        6               1                 1                         -1.8348                        7            127   
         1.3863          5          5             0.14351           2.3695        6               8                 8                         0.27312                        10           130   
       -0.71414          3          4             0.96929         0.092962        2               3                 4                         0.82302                        3            114   
         1.3863          8          8              1.1483        -0.049336        6               7                 8                         0.82302                        8            130   
      ⋮

T is a FeatureTransformer object that can be used to transform new data, and newTbl contains
the new features generated from the Tbl data.

To better understand the generated features, use the describe object function of the
FeatureTransformer object. For example, inspect the first two generated features.

describe(T,1:2)

                         Type        IsOriginal    InputVariables                          Transformations
                      ___________    __________    ______________    ___________________________________________________________

    zsc(d(Smoker))    Numeric          false           Smoker        Variable of type double converted from an integer data type
                                                                     Standardization with z-score (mean = 0.34, std = 0.4761)
    q8(Age)           Categorical      false           Age           Equiprobable binning (number of bins = 8)

The first feature in newTbl is a numeric variable, created by first converting the values of the
Smoker variable to a numeric variable of type double and then transforming the results to z-scores.
The second feature in newTbl is a categorical variable, created by binning the values of the Age
variable into 8 equiprobable bins.

Use the generated features to fit a linear regression model without any regularization.

Mdl = fitrlinear(NewTbl,"Systolic",Lambda=0);

Plot the coefficients of the predictors used to train Mdl. Note that fitrlinear expands categorical
predictors before fitting a model.

p = length(Mdl.Beta);
[sortedCoefs,expandedIndex] = sort(Mdl.Beta,ComparisonMethod="abs");
sortedExpandedPreds = Mdl.ExpandedPredictorNames(expandedIndex);
bar(sortedCoefs,Horizontal="on")
yticks(1:2:p)
yticklabels(sortedExpandedPreds(1:2:end))
xlabel("Coefficient")
ylabel("Expanded Predictors")
title("Coefficients for Expanded Predictors")
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Identify the predictors whose coefficients have larger absolute values.

bigCoefs = abs(sortedCoefs) >= 4;
flip(sortedExpandedPreds(bigCoefs))

ans = 1x6 cell
  Columns 1 through 3

    {'eb8(Diastolic)...'}    {'zsc(d(Smoker))'}    {'q8(Age) >= 2'}

  Columns 4 through 6

    {'q10(Weight) >= 9'}    {'q6(Height) >= 5'}    {'eb8(Diastolic)...'}

You can use partial dependence plots to analyze the categorical features whose levels have large
coefficients in terms of absolute value. For example, inspect the partial dependence plot for the
eb8(Diastolic) variable, whose levels eb8(Diastolic) >= 5 and eb8(Diastolic) >= 6 have
coefficients with large absolute values. These two levels correspond to noticeable changes in the
predicted Systolic values.

plotPartialDependence(Mdl,"eb8(Diastolic)",NewTbl);
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Improve Performance for Interpretable Linear Model

Generate new features to improve the predictive performance of an interpretable linear regression
model. Compare the test set performance of a linear model trained on the original data to the test set
performance of a linear model trained on the transformed features.

Load the carbig data set, which contains measurements of cars made in the 1970s and early 1980s.

load carbig

Convert the Origin variable to a categorical variable. Then create a table containing the predictor
variables Acceleration, Displacement, and so on, as well as the response variable MPG. Each row
contains the measurements for a single car. Remove rows that have missing values.

Origin = categorical(cellstr(Origin));
cars = table(Acceleration,Displacement,Horsepower, ...
    Model_Year,Origin,Weight,MPG);
Tbl = rmmissing(cars);

Partition the data into training and test sets. Use approximately 70% of the observations as training
data, and 30% of the observations as test data. Partition the data using cvpartition.

rng("default") % For reproducibility of the partition
c = cvpartition(size(Tbl,1),Holdout=0.3);
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trainIdx = training(c);
trainTbl = Tbl(trainIdx,:);

testIdx = test(c);
testTbl = Tbl(testIdx,:);

Use the training data to generate 45 new features. Inspect the returned FeatureTransformer
object.

[T,newTrainTbl] = genrfeatures(trainTbl,"MPG",45);
T

T = 
  FeatureTransformer with properties:

                     Type: 'regression'
            TargetLearner: 'linear'
    NumEngineeredFeatures: 43
      NumOriginalFeatures: 2
         TotalNumFeatures: 45

Note that T.NumOriginalFeatures is 2, which means the function keeps two of the original
predictors.

Apply the transformations stored in the object T to the test data.

newTestTbl = transform(T,testTbl);

Compare the test set performances of a linear model trained on the original features and a linear
model trained on the new features.

Train a linear regression model using the original training set trainTbl, and compute the mean
squared error (MSE) of the model on the original test set testTbl. Then, train a linear regression
model using the transformed training set newTrainTbl, and compute the MSE of the model on the
transformed test set newTestTbl.

originalMdl = fitrlinear(trainTbl,"MPG");
originalTestMSE = loss(originalMdl,testTbl,"MPG")

originalTestMSE = 65.9916

newMdl = fitrlinear(newTrainTbl,"MPG");
newTestMSE = loss(newMdl,newTestTbl,"MPG")

newTestMSE = 12.1628

newTestMSE is less than originalTestMSE, which suggests that the linear model trained on the
transformed data performs better than the linear model trained on the original data.

Compare the predicted test set response values to the true response values for both models. Plot the
predicted miles per gallon (MPG) along the vertical axis and the true MPG along the horizontal axis.
Points on the reference line indicate correct predictions. A good model produces predictions that are
scattered near the line.

predictedTestY = predict(originalMdl,testTbl);
newPredictedTestY = predict(newMdl,newTestTbl);
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plot(testTbl.MPG,predictedTestY,".")
hold on
plot(testTbl.MPG,newPredictedTestY,".")
hold on
plot(testTbl.MPG,testTbl.MPG)
hold off
xlabel("True Miles Per Gallon (MPG)")
ylabel("Predicted Miles Per Gallon (MPG)")
legend(["Original Model Results","New Model Results","Reference Line"])

Generate New Features to Improve Bagged Ensemble Performance

Use genrfeatures to engineer new features before training a bagged ensemble regression model.
Before making predictions on new data, apply the same feature transformations to the new data set.
Compare the test set performance of the ensemble that uses the engineered features to the test set
performance of the ensemble that uses the original features.

Read power outage data into the workspace as a table. Remove observations with missing values, and
display the first few rows of the table.

outages = readtable("outages.csv");
Tbl = rmmissing(outages);
head(Tbl)
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       Region           OutageTime        Loss     Customers     RestorationTime            Cause       
    _____________    ________________    ______    __________    ________________    ___________________

    {'SouthWest'}    2002-02-01 12:18    458.98    1.8202e+06    2002-02-07 16:50    {'winter storm'   }
    {'SouthEast'}    2003-02-07 21:15     289.4    1.4294e+05    2003-02-17 08:14    {'winter storm'   }
    {'West'     }    2004-04-06 05:44    434.81    3.4037e+05    2004-04-06 06:10    {'equipment fault'}
    {'MidWest'  }    2002-03-16 06:18    186.44    2.1275e+05    2002-03-18 23:23    {'severe storm'   }
    {'West'     }    2003-06-18 02:49         0             0    2003-06-18 10:54    {'attack'         }
    {'NorthEast'}    2003-07-16 16:23    239.93         49434    2003-07-17 01:12    {'fire'           }
    {'MidWest'  }    2004-09-27 11:09    286.72         66104    2004-09-27 16:37    {'equipment fault'}
    {'SouthEast'}    2004-09-05 17:48    73.387         36073    2004-09-05 20:46    {'equipment fault'}

Some of the variables, such as OutageTime and RestorationTime, have data types that are not
supported by regression model training functions like fitrensemble.

Partition the data into training and test sets. Use approximately 70% of the observations as training
data, and 30% of the observations as test data. Partition the data using cvpartition.

rng("default") % For reproducibility of the partition
c = cvpartition(size(Tbl,1),Holdout=0.30);
TrainTbl = Tbl(training(c),:);
TestTbl = Tbl(test(c),:);

Use the training data to generate 30 new features to fit a bagged ensemble. By default, the 30
features include original features that can be used as predictors by a bagged ensemble.

[Transformer,NewTrainTbl] = genrfeatures(TrainTbl,"Loss",30, ...
    TargetLearner="bag");
Transformer

Transformer = 
  FeatureTransformer with properties:

                     Type: 'regression'
            TargetLearner: 'bag'
    NumEngineeredFeatures: 27
      NumOriginalFeatures: 3
         TotalNumFeatures: 30

Create NewTestTbl by applying the transformations stored in the object Transformer to the test
data.

NewTestTbl = transform(Transformer,TestTbl);

Train a bagged ensemble using the original training set TrainTbl, and compute the mean squared
error (MSE) of the model on the original test set TestTbl. Specify only the three predictor variables
that can be used by fitrensemble (Region, Customers, and Cause), and omit the two datetime
predictor variables (OutageTime and RestorationTime). Then, train a bagged ensemble using the
transformed training set NewTrainTbl, and compute the MSE of the model on the transformed test
set NewTestTbl.

originalMdl = fitrensemble(TrainTbl,"Loss ~ Region + Customers + Cause", ...
    Method="bag");
originalTestMSE = loss(originalMdl,TestTbl)

originalTestMSE = 1.8999e+06
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newMdl = fitrensemble(NewTrainTbl,"Loss",Method="bag");
newTestMSE = loss(newMdl,NewTestTbl)

newTestMSE = 1.8617e+06

newTestMSE is less than originalTestMSE, which suggests that the bagged ensemble trained on
the transformed data performs slightly better than the bagged ensemble trained on the original data.

Compare the predicted test set response values to the true response values for both models. Plot the
log of the predicted response along the vertical axis and the log of the true response (Loss) along the
horizontal axis. Points on the reference line indicate correct predictions. A good model produces
predictions that are scattered near the line.

predictedTestY = predict(originalMdl,TestTbl);
newPredictedTestY = predict(newMdl,NewTestTbl);

plot(log(TestTbl.Loss),log(predictedTestY),".")
hold on
plot(log(TestTbl.Loss),log(newPredictedTestY),".")
hold on
plot(log(TestTbl.Loss),log(TestTbl.Loss))
hold off
xlabel("log(True Response)")
ylabel("log(Predicted Response)")
legend(["Original Model Results","New Model Results","Reference Line"], ...
    Location="southeast")
xlim([-1 10])
ylim([-1 10])
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Generate New Features to Train SVM Regression Model

Engineer and inspect new features before training a support vector machine (SVM) regression model
with a Gaussian kernel. Then, assess the test set performance of the model.

Load the carbig data set, which contains measurements of cars made in the 1970s and early 1980s.

load carbig

Create a table containing the numeric predictor variables Acceleration, Displacement, and so
on, as well as the response variable MPG. Each row contains the measurements for a single car.
Remove rows that have missing values.

cars = table(Acceleration,Displacement,Horsepower, ...
    Model_Year,Weight,MPG);
Tbl = rmmissing(cars);
head(Tbl)

    Acceleration    Displacement    Horsepower    Model_Year    Weight    MPG
    ____________    ____________    __________    __________    ______    ___

          12            307            130            70         3504     18 
        11.5            350            165            70         3693     15 
          11            318            150            70         3436     18 
          12            304            150            70         3433     16 
        10.5            302            140            70         3449     17 
          10            429            198            70         4341     15 
           9            454            220            70         4354     14 
         8.5            440            215            70         4312     14 

Partition the data into training and test sets. Use approximately 75% of the observations as training
data, and 25% of the observations as test data. Partition the data using cvpartition.

rng("default") % For reproducibility of the partition
n = length(Tbl.MPG);
c = cvpartition(n,Holdout=0.25);
trainTbl = Tbl(training(c),:);
testTbl = Tbl(test(c),:);

Use the training data to generate 25 features to fit an SVM regression model with a Gaussian kernel.
By default, the 25 features include original features that can be used as predictors by an SVM
regression model. Additionally, genrfeatures uses neighborhood component analysis (NCA) to
reduce the set of engineered features to the most important predictors. You can use the NCA feature
selection method only when the target learner is "gaussian-svm" and all the predictor features are
numeric.

[Transformer,newTrainTbl] = genrfeatures(trainTbl,"MPG",25, ...
    TargetLearner="gaussian-svm")

Transformer = 
  FeatureTransformer with properties:

                     Type: 'regression'
            TargetLearner: 'gaussian-svm'
    NumEngineeredFeatures: 20
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      NumOriginalFeatures: 5
         TotalNumFeatures: 25

newTrainTbl=294×26 table
    zsc(Acceleration)    zsc(Displacement)    zsc(Horsepower)    zsc(Model_Year)    zsc(Weight)    zsc(Acceleration.*Horsepower)    zsc(Acceleration.*Weight)    zsc(Horsepower.*Weight)    zsc(Model_Year.*Weight)    zsc(Acceleration+Model_Year)    zsc(Acceleration-Model_Year)    zsc(Displacement./Horsepower)    zsc(Displacement./Weight)    zsc(Model_Year./Weight)    zsc(kmc4)    zsc(kmc5)    zsc(sin(Acceleration))    zsc(sin(Weight))    zsc(cos(Displacement))    zsc(cos(Horsepower))    zsc(cos(Model_Year))    zsc(cos(Weight))    zsc(log(Displacement))    zsc(log(Horsepower))    zsc(log(Model_Year))    MPG


          -1.2878              1.0999             0.67715            -1.6278           0.6473                0.046384                       -0.25776                     0.54695                    0.35655                       -1.8529                         0.58974                          1.1707                         1.4711                    -0.98922            -0.27892      0.58093            -0.84061                -1.2446                 1.0834                 -0.52084                0.88679               -0.63765                 1.1489                 0.83573                 -1.6691           18 
          -1.4652              1.5106              1.5694            -1.6278          0.87016                 0.88366                       -0.22352                      1.2406                    0.57391                       -1.9492                         0.46488                         0.68641                         1.8668                     -1.1166            -0.72987       1.0942             -1.3283                 -1.379               -0.27316                -0.099711                0.88679               0.063193                 1.3943                  1.5178                 -1.6691           15 
          -1.6425              1.2049               1.187            -1.6278          0.56711                 0.26966                       -0.60316                     0.81696                    0.27835                       -2.0455                         0.34001                         0.68397                         1.7439                    -0.93998            -0.27892      0.58093             -1.5076                -1.0814               -0.98059                  0.97158                0.88679                0.86743                 1.2148                  1.2451                 -1.6691           18 
          -1.8198              1.0521             0.93209            -1.6278          0.58244                -0.17689                       -0.73163                     0.67023                     0.2933                       -2.1417                         0.21515                         0.75883                         1.4682                    -0.94955            -0.27892      0.58093             -1.3344               -0.61728                 1.4918                 -0.28369                0.88679                 1.2572                 1.1182                  1.0477                 -1.6691           17 
          -1.9971              2.2653              2.4107            -1.6278           1.6343                  1.0883                       -0.14713                      2.3686                     1.3191                        -2.238                        0.090291                         0.77802                         2.0908                      -1.469             -1.7817       1.6098            -0.85133               -0.86513               -0.10886                  -1.4017                0.88679                 1.0923                 1.7752                  2.0394                 -1.6691           15 
          -2.3517              2.5041              2.9716            -1.6278           1.6496                  1.0883                       -0.49025                      2.8122                     1.3341                       -2.4305                        -0.15943                         0.57038                         2.3918                      -1.475             -1.7817       1.6098             0.52473                 -0.329               0.084822                   1.3869                0.88679                  1.368                 1.8812                  2.3408                 -1.6691           14 
           -2.529              2.3704              2.8441            -1.6278           1.6001                    0.71                       -0.69609                      2.6733                     1.2858                       -2.5268                        -0.28429                         0.53587                         2.2685                     -1.4555             -1.7817       1.6098              1.0808                 1.3872                 1.5888                  0.26987                0.88679                -0.2533                 1.8226                   2.275                 -1.6691           14 
           -2.529              1.8927              2.2068            -1.6278           1.0553                 0.18283                        -1.0151                      1.7914                    0.75446                       -2.5268                        -0.28429                         0.54821                         2.2275                     -1.2128            -0.72987       1.0942              1.0808                 -1.381                 1.4703                 0.085898                0.88679              -0.050724                 1.5968                  1.9214                 -1.6691           15 
          -1.9971              1.8259              1.6969            -1.6278          0.71687                  0.3937                       -0.77911                      1.2242                     0.4244                        -2.238                        0.090291                         0.95189                         2.5699                     -1.0304            -0.27892      0.58093            -0.85133                0.59822                 1.5569                   1.3056                0.88679                  1.279                 1.5629                  1.6032                 -1.6691           15 
          -2.7063              1.4151               1.442            -1.6278          0.77111                -0.64825                        -1.3281                      1.0967                     0.4773                        -2.623                        -0.40916                         0.69405                         1.8356                     -1.0616            -0.27892      0.58093              1.3555                0.89932                 1.2589                  -1.3721                0.88679                -1.1233                   1.34                  1.4297                 -1.6691           14 
          -1.9971              2.5137              3.0991            -1.6278           0.1544                  1.7582                        -1.1666                      1.6239                   -0.12417                        -2.238                        0.090291                         0.48692                         4.7777                    -0.65221             0.35951      0.08908            -0.85133                 1.1507                -1.1229                   0.5071                0.88679                0.80592                 1.8853                  2.4051                 -1.6691           14 
         -0.22399            -0.75341            -0.21514            -1.6278         -0.68753                -0.28853                       -0.78317                    -0.49096                    -0.9453                       -1.2754                          1.3389                         -1.1913                       -0.73834                     0.19818             0.38679     -0.64629              0.8675               -0.12343                 1.6048                   1.0148                0.88679                -1.4439               -0.72174                 -0.0616                 -1.6691           24 
        -0.046679            0.058585            -0.21514            -1.6278         -0.14393                -0.17069                       -0.10639                    -0.29348                   -0.41513                       -1.1791                          1.4638                         0.61185                        0.49152                    -0.39991              0.8353     -0.33885             0.22876               -0.90303                -1.3204                   1.0148                0.88679                 1.0596                0.32804                 -0.0616                 -1.6691           22 
          0.13063            0.077691            -0.47008            -1.6278         -0.43401                -0.44978                       -0.31105                    -0.51551                   -0.69804                       -1.0829                          1.5886                          1.1534                        0.90157                    -0.10728              0.8353     -0.33885            -0.48273                -1.3741                0.85875                  -1.3843                0.88679               -0.16461                0.34685                 -0.3798                 -1.6691           21 
           1.7264            -0.90626             -1.4643            -1.6278          -1.3207                 -1.4843                       -0.61766                     -1.1264                    -1.5629                      -0.21655                          2.7124                         0.66119                       -0.44972                      1.2738            -0.97737      -1.3862              1.3662                0.43728                -1.2152                 -0.61163                0.88679                 1.3434                -1.0075                 -2.1364                 -1.6691           26 
          0.66256            -0.83939            -0.21514            -1.6278         -0.68399                 0.30067                        -0.2972                    -0.48967                   -0.94185                       -0.7941                          1.9632                         -1.3822                       -0.95111                     0.19354             0.38679     -0.64629             -1.4725              -0.049071                -1.2471                   1.0148                0.88679                 1.4102               -0.87708                 -0.0616                 -1.6691           25 
      ⋮

By default, genrfeatures standardizes the original features before including them in
newTrainTbl.

Inspect the first three engineered features. Note that the engineered features are stored after the five
original features in the Transformer object. Visualize the engineered features by using a matrix of
scatter plots and histograms.

featIndex = 6:8; 
describe(Transformer,featIndex)

                                      Type      IsOriginal         InputVariables                                   Transformations
                                     _______    __________    ________________________    ____________________________________________________________________

    zsc(Acceleration.*Horsepower)    Numeric      false       Acceleration, Horsepower    Acceleration .* Horsepower
                                                                                          Standardization with z-score (mean = 1541.3031, std = 403.0917)
    zsc(Acceleration.*Weight)        Numeric      false       Acceleration, Weight        Acceleration .* Weight
                                                                                          Standardization with z-score (mean = 45221.1823, std = 12310.4734)
    zsc(Horsepower.*Weight)          Numeric      false       Horsepower, Weight          Horsepower .* Weight
                                                                                          Standardization with z-score (mean = 334221.0068, std = 221771.6874)

plotmatrix(newTrainTbl{:,featIndex})
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The plots can help you better understand the engineered features. For example:

• The top-left plot is a histogram of the zsc(Acceleration.*Horsepower) feature. This feature
consists of the standardized element-wise product of the original Acceleration and
Horsepower features. The histogram shows that zsc(Acceleration.*Horsepower) has a few
outlying values greater than 3.

• The bottom-left plot is a scatter plot that compares the zsc(Acceleration.*Horsepower)
values (along the x-axis) to the zsc(Horsepower.*Weight) values (along the y-axis). The scatter
plot shows that the zsc(Horsepower.*Weight) values tend to increase as the
zsc(Acceleration.*Horsepower) values increase. Note that this plot contains the same
information as the top-right plot, but with the axes flipped.

Create newTestTbl by applying the transformations stored in the object Transformer to the test
data.

newTestTbl = transform(Transformer,testTbl);

Train an SVM regression model with a Gaussian kernel using the transformed training set
newTrainTbl. Let the fitrsvm function find an appropriate scale value for the kernel function.
Compute the mean squared error (MSE) of the model on the transformed test set newTestTbl.

Mdl = fitrsvm(newTrainTbl,"MPG",KernelFunction="gaussian", ...
    KernelScale="auto");
testMSE = loss(Mdl,newTestTbl,"MPG")

testMSE = 9.4666
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Compare the predicted test set response values to the true response values. Plot the predicted miles
per gallon (MPG) along the vertical axis and the true MPG along the horizontal axis. Points on the
reference line indicate correct predictions. A good model produces predictions that are scattered
near the line.

predictedTestY = predict(Mdl,newTestTbl);

plot(newTestTbl.MPG,predictedTestY,".")
hold on
plot(newTestTbl.MPG,newTestTbl.MPG)
hold off
xlabel("True Miles Per Gallon (MPG)")
ylabel("Predicted Miles Per Gallon (MPG)")

The SVM model seems to predict MPG values well.

Compute Cross-Validation Mean Squared Error Using Generated Features

Generate features to train a linear regression model. Compute the cross-validation mean squared
error (MSE) of the model by using the crossval function.

Load the patients data set, and create a table containing the predictor data.
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load patients
Tbl = table(Age,Diastolic,Gender,Height,SelfAssessedHealthStatus, ...
    Smoker,Weight);

Create a random partition for 5-fold cross-validation.

rng("default") % For reproducibility of the partition
cvp = cvpartition(size(Tbl,1),KFold=5);

Compute the cross-validation MSE for a linear regression model trained on the original features in
Tbl and the Systolic response variable.

CVMdl = fitrlinear(Tbl,Systolic,CVPartition=cvp);
cvloss = kfoldLoss(CVMdl)

cvloss = 45.2594

Create the custom function myloss (shown at the end of this example). This function generates 20
features from the training data, and then applies the same training set transformations to the test
data. The function then fits a linear regression model to the training data and computes the test set
MSE.

Note: If you use the live script file for this example, the myloss function is already included at the
end of the file. Otherwise, you need to create this function at the end of your .m file or add it as a file
on the MATLAB® path.

Compute the cross-validation MSE for a linear model trained on features generated from the
predictors in Tbl.

newcvloss = mean(crossval(@myloss,Tbl,Systolic,Partition=cvp))

newcvloss = 26.7663

function testloss = myloss(TrainTbl,trainY,TestTbl,testY)
[Transformer,NewTrainTbl] = genrfeatures(TrainTbl,trainY,20);
NewTestTbl = transform(Transformer,TestTbl);
Mdl = fitrlinear(NewTrainTbl,trainY);
testloss = loss(Mdl,NewTestTbl,testY);
end

Input Arguments
Tbl — Original features
table

Original features, specified as a table. Each row of Tbl corresponds to one observation, and each
column corresponds to one predictor variable. Optionally, Tbl can contain one additional column for
the response variable. Multicolumn variables and cell arrays other than cell arrays of character
vectors are not allowed, but datetime, duration, and various int predictor variables are allowed.

• If Tbl contains the response variable, and you want to create new features from any of the
remaining variables in Tbl, then specify the response variable by using ResponseVarName.

• If Tbl contains the response variable, and you want to create new features from only a subset of
the remaining variables in Tbl, then specify a formula by using formula.
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• If Tbl does not contain the response variable, then specify a response variable by using Y. The
length of the response variable and the number of rows in Tbl must be equal.

Data Types: table

ResponseVarName — Response variable name
name of variable in Tbl

Response variable name, specified as the name of a variable in Tbl.

You must specify ResponseVarName as a character vector or string scalar. For example, if the
response variable Y is stored as Tbl.Y, then specify it as 'Y'. Otherwise, the software treats all
columns of Tbl as predictors, and might create new features from Y.
Data Types: char | string

q — Number of features
positive integer scalar

Number of features, specified as a positive integer scalar. For example, you can set q to
approximately 1.5*size(Tbl,2), which is about 1.5 times the number of original features.
Data Types: single | double

Y — Response variable
numeric column vector

Response variable, specified as a numeric column vector. Y and Tbl must have the same number of
rows.
Data Types: single | double

formula — Explanatory model of response variable and subset of predictor variables
character vector | string scalar

Explanatory model of the response variable and a subset of the predictor variables, specified as a
character vector or string scalar in the form "Y~X1+X2+X3". In this form, Y represents the response
variable, and X1, X2, and X3 represent the predictor variables.

To create new features from only a subset of the predictor variables in Tbl, use a formula. If you
specify a formula, then the software does not create new features from any variables in Tbl that do
not appear in formula.

The variable names in the formula must be both variable names in Tbl
(Tbl.Properties.VariableNames) and valid MATLAB identifiers. You can verify the variable
names in Tbl by using the isvarname function. If the variable names are not valid, then you can
convert them by using the matlab.lang.makeValidName function.
Data Types: char | string

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.
Example:
genrfeatures(Tbl,"Response",10,TargetLearner="bag",FeatureSelection="oob")
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specifies that the expected learner type is a bagged ensemble regression model and the method for
selecting features is an out-of-bag, predictor importance technique.

TargetLearner — Expected learner type
"linear" (default) | "bag" | "gaussian-svm"

Expected learner type, specified as "linear", "bag", or "gaussian-svm". The software creates
and selects new features assuming they will be used to train this type of model.

Value Expected Model
"linear" RegressionLinear — You can create a model

by using the fitrlinear function.
"bag" RegressionBaggedEnsemble — You can create

a model by using the fitrensemble function
and specifying Method="Bag".

"gaussian-svm" RegressionSVM (with a Gaussian kernel) — You
can create a model by using the fitrsvm
function and specifying
KernelFunction="gaussian". To create a
model with good predictive performance, specify
KernelScale="auto".

Example: TargetLearner="bag"

IncludeInputVariables — Method for including original features in Tbl
"auto" (default) | "include" | "select" | "omit"

Method for including the original features in Tbl in the new table NewTbl, specified as one of the
values in this table.

Value Description
"auto" This value is equivalent to:

• "select" when TargetLearner is
"linear"

• "include" when TargetLearner is "bag"
or "gaussian-svm"
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Value Description
"include" The software includes original features that can

be used as predictors by the target learner, and
excludes features that are:

• Unsupported, such as datetime and
duration variables

• Constant-valued, including variables with all
missing values

• Numeric with NaN or Inf values (when the
TargetLearner is "linear" or
"gaussian-svm")

• Categorical with all unique values
• Categorical with more categories than the

CategoricalEncodingLimit value
"select" The software includes original features that are

supported by the target learner and considered to
be important by the specified feature selection
method (FeatureSelectionMethod).

"omit" The software omits the original features.

Note that the software applies the standardization method specified by the
TransformedDataStandardization name-value argument to original features included in
NewTbl.
Example: IncludeInputVariables="include"

FeatureSelectionMethod — Method for selecting new features
"auto" (default) | "lasso" | "oob" | "nca" | "mrmr"

Method for selecting new features, specified as one of the values in this table. The software generates
many features using various transformations and uses this method to select the important features to
include in NewTbl.

Value Description
"auto" This value is equivalent to:

• "lasso" when TargetLearner is "linear"
• "oob" when TargetLearner is "bag"
• "nca" when TargetLearner is "gaussian-

svm"
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Value Description
"lasso" Lasso regularization — Available when

TargetLearner is "linear"

To perform feature selection, the software uses
fitrlinear with Regularization specified as
"lasso". The fitrlinear function uses a
vector of regularization strengths (Lambda) to
find a linear fit that has the requested number of
features with nonzero coefficients (Beta). The
software includes these important features in
NewTbl.

"oob" Out-of-bag, predictor importance estimates by
permutation — Available when TargetLearner
is "bag"

To perform feature selection, the software fits a
bagged ensemble of trees and uses the
oobPermutedPredictorImportance function
to rank the features in the ensemble. The
software includes the requested number of top-
ranked features in NewTbl.

"nca" Neighborhood component analysis (NCA) —
Available when TargetLearner is "gaussian-
svm" and the predictor features in Tbl are
numeric only

Tip If TargetLearner is "gaussian-svm" and
Tbl includes categorical predictors, specify
FeatureSelectionMethod as "mrmr".

To perform feature selection, the software uses
fsrnca to fit a
FeatureSelectionNCARegression object, and
then sorts the features by their average weights
(FeatureWeights). Greater weight indicates
greater feature importance. The software
includes the requested number of important
features in NewTbl.

"mrmr" Minimum redundancy maximum relevance
(MRMR) — Available when TargetLearner is
"linear", "bag", or "gaussian-svm"

To perform feature selection, the software uses
fsrmrmr to rank the features, and then includes
the requested number of top-ranked features in
NewTbl.
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For more information on different feature selection methods, see “Introduction to Feature Selection”
on page 16-47.
Example: FeatureSelection="mrmr"

TransformedDataStandardization — Standardization method for transformed data
"auto" (default) | "zscore" | "none" | "mad" | "range"

Standardization method for the transformed data, specified as one of the values in this table. The
software applies this standardization method to both engineered features and original features.

Value Description
"auto" This value is equivalent to:

• "zscore" when TargetLearner is
"linear" or "gaussian-svm"

• "none" when TargetLearner is "bag"
"zscore" Center and scale to have mean 0 and standard

deviation 1
"none" Use raw data
"mad" Center and scale to have median 0 and median

absolute deviation 1
"range" Scale range of data to [0,1]

Example: TransformedDataStandardization="range"

CategoricalEncodingLimit — Maximum number of categories allowed in categorical
predictor
nonnegative integer scalar | Inf

Maximum number of categories allowed in a categorical predictor, specified as a nonnegative integer
scalar. If a categorical predictor has more than the specified number of categories, then
genrfeatures does not create new features from the predictor and excludes the predictor from the
new table NewTbl. The default value is 50 when TargetLearner is "linear" or "gaussian-svm",
and Inf when TargetLearner is "bag".
Example: CategoricalEncodingLimit=20
Data Types: single | double

Output Arguments
Transformer — Engineered feature transformer
FeatureTransformer object

Engineered feature transformer, returned as a FeatureTransformer object. To better understand
the engineered features, use the describe object function of Transformer. To apply the same
feature transformations on a new data set, use the transform object function of Transformer.

NewTbl — Generated features
table
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Generated features, returned as a table. Each row corresponds to an observation, and each column
corresponds to a generated feature. If the response variable is included in Tbl, then NewTbl also
includes the response variable. Use this table to train a regression model of type TargetLearner.

NewTbl contains generated features in the following order: original features, engineered features as
ranked by the feature selection method, and the response variable.

Tips
• By default, when TargetLearner is "linear" or "gaussian-svm", the software generates new

features from numeric predictors by using z-scores (see TransformedDataStandardization).
You can change the type of standardization for the transformed features. However, using some
method of standardization, thereby avoiding the "none" specification, is strongly recommended.
Fitting linear and SVM models works best with standardized data.

• When you generate features to create an SVM model with good predictive performance, specify
KernelScale as "auto" in the call to fitrsvm. This specification allows the software to find an
appropriate scale value for the SVM kernel function.

Version History
Introduced in R2021b

Original features with NaN or Inf values are omitted when TargetLearner is "linear" or
"gaussian-svm"
Behavior changed in R2022a

When the TargetLearner is "linear" or "gaussian-svm", the genrfeatures function always
excludes original features that include NaN or Inf values, even when IncludeInputVariables is
specified as "include". That is, the features are not included in the table of generated features
NewTbl. Additionally, genrfeatures does not generate features from the original features that
include NaN values.

To include the original features with NaN values in NewTbl, you can first remove the observations
with missing values from Tbl by using the rmmissing function.

See Also
FeatureTransformer | describe | transform | fitrlinear | fitrensemble | fitrsvm |
plotPartialDependence | gencfeatures

Topics
“Automated Feature Engineering for Regression” on page 19-201
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geocdf
Geometric cumulative distribution function

Syntax
y = geocdf(x,p)
y = geocdf(x,p,"upper")

Description
y = geocdf(x,p) returns the cumulative distribution function (cdf) of the geometric distribution,
evaluated at each value in x using the corresponding probabilities in p.

y = geocdf(x,p,"upper") returns the complement of the cdf, evaluated at each value in x, using
an algorithm that more accurately computes the extreme upper tail probabilities.

Examples

Compute Geometric Distribution cdf

Toss a fair coin repeatedly until the coin successfully lands with heads facing up. Determine the
probability of observing at most three tails before tossing heads.

Compute the value of the cumulative distribution function (cdf) for the geometric distribution
evaluated at the point x = 3, where x is the number of tails observed before the result is heads.
Because the coin is fair, the probability of getting heads in any given toss is p = 0.5.

x = 3;
p = 0.5;
y = geocdf(x,p)

y = 0.9375

The returned value y indicates that the probability of observing three or fewer tails before tossing
heads is 0.9375.

Compute Multiple Geometric Distribution cdfs

Compare the cumulative distribution functions (cdfs) of three geometric distributions.

Create a probability vector that contains three different parameter values.

• The first parameter corresponds to a geometric distribution that models the number of times you
toss a coin before the result is heads.

• The second parameter corresponds to a geometric distribution that models the number of times
you roll a four-sided die before the result is a 4.

 geocdf

35-3087



• The third parameter corresponds to a geometric distribution that models the number of times you
roll a six-sided die before the result is a 6.

p = [1/2 1/4 1/6]'

p = 3×1

    0.5000
    0.2500
    0.1667

For each geometric distribution, evaluate the cdf at the points x = 0,1,2,...,25. Expand x and p so that
the two geocdf input arguments have the same dimensions.

x = 0:25

x = 1×26

     0     1     2     3     4     5     6     7     8     9    10    11    12    13    14    15    16    17    18    19    20    21    22    23    24    25

expandedX = repmat(x,3,1);
expandedP = repmat(p,1,26);
y = geocdf(expandedX,expandedP)

y = 3×26

    0.5000    0.7500    0.8750    0.9375    0.9688    0.9844    0.9922    0.9961    0.9980    0.9990    0.9995    0.9998    0.9999    0.9999    1.0000    1.0000    1.0000    1.0000    1.0000    1.0000    1.0000    1.0000    1.0000    1.0000    1.0000    1.0000
    0.2500    0.4375    0.5781    0.6836    0.7627    0.8220    0.8665    0.8999    0.9249    0.9437    0.9578    0.9683    0.9762    0.9822    0.9866    0.9900    0.9925    0.9944    0.9958    0.9968    0.9976    0.9982    0.9987    0.9990    0.9992    0.9994
    0.1667    0.3056    0.4213    0.5177    0.5981    0.6651    0.7209    0.7674    0.8062    0.8385    0.8654    0.8878    0.9065    0.9221    0.9351    0.9459    0.9549    0.9624    0.9687    0.9739    0.9783    0.9819    0.9849    0.9874    0.9895    0.9913

Each row of y contains the cdf values for one of the three geometric distributions.

Compare the three geometric distributions by plotting the cdf values.

hold on
plot(x,y(1,:))
plot(x,y(2,:))
plot(x,y(3,:))
legend(["p = 1/2","p = 1/4","p = 1/6"])
xlabel(["Number of Failures","Before Success"])
ylabel("Cumulative Probability")
title("Geometric Distribution")
hold off
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Compute Complement of Geometric Distribution cdf

Roll a fair die repeatedly until you successfully get a 6. Determine the probability of failing to roll a 6
within the first three rolls.

Compute the complement of the cumulative distribution function (cdf) for the geometric distribution
evaluated at the point x = 2, where x is the number of non-6 rolls before the result is a 6. Note that
an x value of 2 or less indicates successfully rolling a 6 within the first three rolls. Because the die is
fair, the probability of getting a 6 in any given roll is p = 1/6.

x = 2;
p = 1/6;
y = geocdf(x,p,"upper")

y = 0.5787

The returned value y indicates that the probability of failing to roll a 6 within the first three rolls is
0.5787. Note that this probability is equal to the probability of rolling a non-6 value three times.

probability = (1-p)^3

probability = 0.5787
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Input Arguments
x — Values at which to evaluate cdf
nonnegative integer scalar | array of nonnegative integer scalars

Values at which to evaluate the cdf, specified as a nonnegative integer scalar or an array of
nonnegative integer scalars.

To evaluate the cdf at multiple values, specify x using an array. To evaluate the cdfs of multiple
distributions, specify p using an array. If both of the input arguments x and p are arrays, then the
array sizes must be the same. If only one of the input arguments is an array, then geocdf expands
the scalar input into a constant array of the same size as the array input. Each element in y is the cdf
value of the distribution specified by the corresponding element in p, evaluated at the corresponding
element in x.
Example: 2
Example: [0 1 2 3]
Data Types: single | double

p — Probability of success
scalar in the range [0,1] | array of scalars in the range [0,1]

Probability of success in a single trial, specified as a scalar or an array of scalars in the range [0,1].

To evaluate the cdf at multiple values, specify x using an array. To evaluate the cdfs of multiple
distributions, specify p using an array. If both of the input arguments x and p are arrays, then the
array sizes must be the same. If only one of the input arguments is an array, then geocdf expands
the scalar input into a constant array of the same size as the array input. Each element in y is the cdf
value of the distribution specified by the corresponding element in p, evaluated at the corresponding
element in x.
Example: 0.5
Example: [1/2 1/3]
Data Types: single | double

Output Arguments
y — cdf values
scalar in the range [0,1] | array of scalars in the range [0,1]

cdf values, returned as a scalar or an array of scalars in the range [0,1]. y is the same size as x and p
after any necessary scalar expansion. For an element of y, y, and its corresponding elements in x and
p, x and p, the cdf value y is the probability of having at most x trials before a success, when p is the
probability of a success in any given trial.

More About
Geometric Distribution cdf

The geometric distribution is a one-parameter family of curves that models the number of failures
before a success occurs in a series of independent trials. Each trial results in either success or
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failure, and the probability of success in any individual trial is constant. For example, if you toss a
coin, the geometric distribution models the number of tails observed before the result is heads. The
geometric distribution is discrete, existing only on the nonnegative integers.

The cumulative distribution function (cdf) of the geometric distribution is

y = F(x p) = 1− 1− p x + 1 ; x = 0, 1, 2, ... ,

where p is the probability of success, and x is the number of failures before the first success. The
result y is the probability of observing up to x trials before a success, when the probability of success
in any given trial is p.

Version History
Introduced before R2006a

References
[1] Abramowitz, M., and I. A. Stegun. Handbook of Mathematical Functions. New York: Dover, 1964.

[2] Evans, M., N. Hastings, and B. Peacock. Statistical Distributions. 2nd ed., Hoboken, NJ: John Wiley
& Sons, Inc., 1993.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

This function fully supports GPU arrays. For more information, see “Run MATLAB Functions on a
GPU” (Parallel Computing Toolbox).

See Also
geopdf | geoinv | geostat | geornd | cdf | mle

Topics
“Geometric Distribution” on page B-64
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geoinv
Geometric inverse cumulative distribution function

Syntax
x = geoinv(y,p)

Description
x = geoinv(y,p) returns the inverse cumulative distribution function (icdf) of the geometric
distribution at each value in y using the corresponding probabilities in p.

geoinv returns the smallest positive integer x such that the geometric cdf evaluated at x is equal to
or exceeds y. You can think of y as the probability of observing x successes in a row in independent
trials, where p is the probability of success in each trial.

y and p can be vectors, matrices, or multidimensional arrays that all have the same size. A scalar
input for p or y is expanded to a constant array with the same dimensions as the other input. The
values in p and y must lie on the interval [0,1].

Examples

Compute Geometric Distribution icdf

Suppose the probability of a five-year-old car battery not starting in cold weather is 0.03. If we want
no more than a ten percent chance that the car does not start, what is the maximum number of days
in a row that we should try to start the car?

To solve, compute the inverse cdf of the geometric distribution. In this example, a "success" means
the car does not start, while a "failure" means the car does start. The probability of success for each
trial p equals 0.03, while the probability of observing x failures in a row before observing a success y
equals 0.1.

y = 0.1;
p = 0.03;
x = geoinv(y,p)

x = 3

The returned result indicates that if we start the car three times, there is at least a ten percent
chance that it will not start on one of those tries. Therefore, if we want no greater than a ten percent
chance that the car will not start, we should only attempt to start it for a maximum of two days in a
row.

We can confirm this result by evaluating the cdf at values of x equal to 2 and 3, given the probability
of success for each trial p equal to 0.03.

y2 = geocdf(2,p)  % cdf for x = 2

y2 = 0.0873
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y3 = geocdf(3,p)  % cdf for x = 3

y3 = 0.1147

The returned results indicate an 8.7% chance of the car not starting if we try two days in a row, and
an 11.5% chance of not starting if we try three days in a row.

Version History
Introduced before R2006a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

This function fully supports GPU arrays. For more information, see “Run MATLAB Functions on a
GPU” (Parallel Computing Toolbox).

See Also
geocdf | geopdf | geostat | geornd | icdf

Topics
“Geometric Distribution” on page B-64
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geomean
Geometric mean

Syntax
m = geomean(X)
m = geomean(X,'all')
m = geomean(X,dim)
m = geomean(X,vecdim)
m = geomean( ___ ,nanflag)

Description
m = geomean(X) returns the geometric mean on page 35-3099 of X.

• If X is a vector, then geomean(X) is the geometric mean of the elements in X.
• If X is a matrix, then geomean(X) is a row vector containing the geometric mean of each column

of X.
• If X is a multidimensional array, then geomean operates along the first nonsingleton dimension of

X.

m = geomean(X,'all') returns the geometric mean of all the elements in X.

m = geomean(X,dim) returns the geometric mean along the operating dimension dim of X.

m = geomean(X,vecdim) returns the geometric mean over the dimensions specified in the vector
vecdim. For example, if X is a 2-by-3-by-4 array, then geomean(X,[1 2]) returns a 1-by-1-by-4
array. Each element of the output array is the geometric mean of the elements on the corresponding
page of X.

m = geomean( ___ ,nanflag) specifies whether to exclude NaN values from the calculation, using
any of the input argument combinations in previous syntaxes. By default, geomean includes NaN
values in the calculation (nanflag has the value 'includenan'). To exclude NaN values, set the
value of nanflag to 'omitnan'.

Examples

Compare Geometric and Arithmetic Mean

Set the random seed for reproducibility of the results.

rng('default')

Create a matrix of exponential random numbers with 5 rows and 4 columns.

X = exprnd(1,5,4)

X = 5×4
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    0.2049    2.3275    1.8476    1.9527
    0.0989    1.2783    0.0298    0.8633
    2.0637    0.6035    0.0438    0.0880
    0.0906    0.0434    0.7228    0.2329
    0.4583    0.0357    0.2228    0.0414

Compute the geometric and arithmetic means of the columns of X.

geometric = geomean(X)

geometric = 1×4

    0.2805    0.3083    0.2079    0.2698

arithmetic = mean(X)

arithmetic = 1×4

    0.5833    0.8577    0.5734    0.6357

The arithmetic mean is greater than the geometric mean for all the columns of X.

Geometric Mean of All Elements

Find the geometric mean over multiple dimensions by using the 'all' input argument.

Create a 2-by-5-by-4 array X.

X = reshape(1:40,[2 5 4])

X = 
X(:,:,1) =

     1     3     5     7     9
     2     4     6     8    10

X(:,:,2) =

    11    13    15    17    19
    12    14    16    18    20

X(:,:,3) =

    21    23    25    27    29
    22    24    26    28    30

X(:,:,4) =

    31    33    35    37    39
    32    34    36    38    40
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Find the geometric mean of all the elements of X.

m = geomean(X,'all')

m = 15.7685

m is the geometric mean of the entire array X.

Geometric Mean Along Specified Dimensions

Find the geometric mean along different operating dimensions and vectors of dimensions for a
multidimensional array.

Create a 3-by-5-by-2 array X.

X = reshape(1:30,[3 5 2])

X = 
X(:,:,1) =

     1     4     7    10    13
     2     5     8    11    14
     3     6     9    12    15

X(:,:,2) =

    16    19    22    25    28
    17    20    23    26    29
    18    21    24    27    30

Find the geometric mean of X along the default dimension.

gmean1 = geomean(X)

gmean1 = 
gmean1(:,:,1) =

    1.8171    4.9324    7.9581   10.9696   13.9761

gmean1(:,:,2) =

   16.9804   19.9833   22.9855   25.9872   28.9885

By default, geomean operates along the first dimension of X whose size does not equal 1. In this case,
this dimension is the first dimension of X. Therefore, gmean1 is a 1-by-5-by-2 array.

Find the geometric mean of X along the second dimension.

gmean2 = geomean(X,2)

gmean2 = 
gmean2(:,:,1) =
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    5.1549
    6.5784
    7.8155

gmean2(:,:,2) =

   21.5814
   22.6004
   23.6177

gmean2 is a 3-by-1-by-2 array.

Find the geometric mean of X along the third dimension.

gmean3 = geomean(X,3)

gmean3 = 3×5

    4.0000    8.7178   12.4097   15.8114   19.0788
    5.8310   10.0000   13.5647   16.9115   20.1494
    7.3485   11.2250   14.6969   18.0000   21.2132

gmean3 is a 3-by-5 array.

Find the geometric mean of each page of X by specifying the first and second dimensions using the
vecdim input argument.

mpage = geomean(X,[1 2])

mpage = 
mpage(:,:,1) =

    6.4234

mpage(:,:,2) =

   22.5845

For example, mpage(1,1,2) is the geometric mean of the elements in X(:,:,2).

Find the geometric mean of the elements in each X(i,:,:) slice by specifying the second and third
dimensions.

mrow = geomean(X,[2 3])

mrow = 3×1

   10.5475
   12.1932
   13.5862
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For example, mrow(3) is the geometric mean of the elements in X(3,:,:), and is equivalent to
specifying geomean(X(3,:,:),'all').

Geometric Mean Excluding NaN

Create a vector and compute its geomean, excluding NaN values.

x = 1:10;
x(3) = nan; % Replace the third element of x with a NaN value
n = geomean(x,'omitnan')

n = 4.7408

If you do not specify 'omitnan', then geomean(x) returns NaN.

Input Arguments
X — Input data
nonnegative vector | nonnegative matrix | nonnegative multidimensional array

Input data that represents a sample from a population, specified as a nonnegative vector, matrix, or
multidimensional array.

• If X is a vector, then geomean(X) is the geometric mean of the elements in X.
• If X is a matrix, then geomean(X) is a row vector containing the geometric mean of each column

of X.
• If X is a multidimensional array, then geomean operates along the first nonsingleton dimension of

X.

To specify the operating dimension when X is a matrix or an array, use the dim input argument.
Data Types: single | double

dim — Dimension
positive integer scalar

Dimension along which to operate, specified as a positive integer scalar. If you do not specify a value,
then the default value is the first array dimension of X whose size does not equal 1.

Consider a two-dimensional array X:

• If dim is equal to 1, then geomean(X,1) returns a row vector containing the geometric mean for
each column in X.

• If dim is equal to 2, then geomean(X,2) returns a column vector containing the geometric mean
for each row in X.

If dim is greater than ndims(X) or if size(X,dim) is 1, then geomean returns X.
Data Types: single | double

vecdim — Vector of dimensions
positive integer vector
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Vector of dimensions, specified as a positive integer vector. Each element of vecdim represents a
dimension of the input array X. The output m has length 1 in the specified operating dimensions. The
other dimension lengths are the same for X and m.

For example, if X is a 2-by-3-by-3 array, then geomean(X,[1 2]) returns a 1-by-1-by-3 array. Each
element of the output is the geometric mean of the elements on the corresponding page of X.

Data Types: single | double

nanflag — NaN condition
'includenan' (default) | 'omitnan'

NaN condition, specified as one of these values:

• 'includenan' — Include NaN values when computing the geomean. This returns NaN.
• 'omitnan' — Ignore NaN values in the input.

Data Types: char | string

Output Arguments
m — Geometric mean
scalar | vector | matrix | multidimensional array

Geometric mean, returned as a scalar, vector, matrix, or multidimensional array.

More About
Geometric Mean

The geometric mean of a sample X is

m = ∏
i = 1

n
xi

1
n

where n is the number of values in X.

Version History
Introduced before R2006a
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Extended Capabilities
Tall Arrays
Calculate with arrays that have more rows than fit in memory.

This function fully supports tall arrays. For more information, see “Tall Arrays”.

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• These input arguments are not supported: 'all', vecdim, and nanflag.
• The dim input argument must be a compile-time constant.
• If you do not specify the dim input argument, the working (or operating) dimension can be
different in the generated code. As a result, run-time errors can occur. For more details, see
“Automatic dimension restriction” (MATLAB Coder).

For more information on code generation, see “Introduction to Code Generation” on page 34-2 and
“General Code Generation Workflow” on page 34-5.

Thread-Based Environment
Run code in the background using MATLAB® backgroundPool or accelerate code with Parallel
Computing Toolbox™ ThreadPool.

This function fully supports thread-based environments. For more information, see “Run MATLAB
Functions in Thread-Based Environment”.

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

Usage notes and limitations:

• The 'all' and vecdim input arguments are not supported.

For more information, see “Run MATLAB Functions on a GPU” (Parallel Computing Toolbox).

See Also
mean | median | harmmean | trimmean

Topics
“Geometric Distribution” on page B-64
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geopdf
Geometric probability density function

Syntax
y = geopdf(x,p)

Description
y = geopdf(x,p) returns the probability density function (pdf) of the geometric distribution at
each value in x using the corresponding probabilities in p. x and p can be vectors, matrices, or
multidimensional arrays that all have the same size. A scalar input is expanded to a constant array
with the same dimensions as the other input. The parameters in p must lie on the interval [0,1].

Examples

Compute Geometric Distribution pdf

Suppose you toss a fair coin repeatedly, and a "success" occurs when the coin lands with heads facing
up. What is the probability of observing exactly three tails ("failures") before tossing a heads?

To solve, determine the value of the probability density function (pdf) for the geometric distribution at
x equal to 3. The probability of success (tossing a heads) p in any given trial is 0.5.

x = 3;
p = 0.5;
y = geopdf(x,p)

y = 0.0625

The returned value of y indicates that the probability of observing exactly three tails before tossing a
heads is 0.0625.

More About
Geometric Distribution pdf

The probability density function (pdf) of the geometric distribution is

y = f (x p) = p(1− p)x ; x = 0, 1, 2, … ,

where p is the probability of success, and x is the number of failures before the first success. The
result y is the probability of observing exactly x trials before a success, when the probability of
success in any given trial is p. For discrete distributions, the pdf is also known as the probability mass
function (pmf).

 geopdf

35-3101



Version History
Introduced before R2006a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

This function fully supports GPU arrays. For more information, see “Run MATLAB Functions on a
GPU” (Parallel Computing Toolbox).

See Also
geocdf | geoinv | geostat | geornd | pdf | mle

Topics
“Geometric Distribution” on page B-64
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geornd
Geometric random numbers

Syntax
r = geornd(p)
r = geornd(p,m,n,...)
r = geornd(p,[m,n,...])

Description
r = geornd(p) generates random numbers from a geometric distribution with probability
parameter p. p can be a vector, a matrix, or a multidimensional array. The size of r is equal to the size
of p. The parameters in p must lie in the interval [0,1].

r = geornd(p,m,n,...) or r = geornd(p,[m,n,...]) generates a multidimensional m-by-n-
by-... array containing random numbers from the geometric distribution with probability parameter
p. p can be a scalar or an array of the same size as r.

The geometric distribution is useful to model the number of failures before one success in a series of
independent trials, where each trial results in either success or failure, and the probability of success
in any individual trial is the constant p.

Examples

Generate Random Numbers from Geometric Distribution

Generate a single random number from a geometric distribution with probability parameter p equal
to 0.01.

rng default  % For reproducibility
p = 0.01;
r1 = geornd(0.01)

r1 = 20

The returned random number represents a single experiment in which 20 failures were observed
before a success, where each independent trial has a probability of success p equal to 0.01.

Generate a 1-by-5 array of random numbers from a geometric distribution with probability parameter
p equal to 0.01.

r2 = geornd(p,1,5)

r2 = 1×5

     9   205     9    45   231
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Each random number in the returned array represents the result of an experiment to determine the
number of failures observed before a success, where each independent trial has a probability of
success p equal to 0.01.

Generate a 1-by-3 array containing one random number from each of the three geometric
distributions corresponding to the parameters in the 1-by-3 array of probabilities p.

p = [0.01 0.1 0.5];
r3 = geornd(p,[1 3])

r3 = 1×3

   127     5     0

Each element of the returned 1-by-3 array r3 contains one random number generated from the
geometric distribution described by the corresponding parameter in P. For example, the first element
in r3 represents an experiment in which 127 failures were observed before a success, where each
independent trial has a probability of success p equal to 0.01. The second element in r3 represents
an experiment in which 5 failures were observed before a success, where each independent trial has
a probability of success p equal to 0.1. The third element in r3 represents an experiment in which
zero failures were observed before a success - in other words, the first attempt was a success - where
each independent trial has a probability of success p equal to 0.5.

Version History
Introduced before R2006a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

The generated code can return a different sequence of numbers than MATLAB if either of the
following is true:

• The output is nonscalar.
• An input parameter is invalid for the distribution.

For more information on code generation, see “Introduction to Code Generation” on page 34-2 and
“General Code Generation Workflow” on page 34-5.

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

This function fully supports GPU arrays. For more information, see “Run MATLAB Functions on a
GPU” (Parallel Computing Toolbox).

See Also
geopdf | geocdf | geoinv | geostat | random
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Topics
“Geometric Distribution” on page B-64
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geostat
Geometric mean and variance

Syntax
[m,v] = geostat(p)

Description
[m,v] = geostat(p) returns the mean m and variance v of a geometric distribution with the
corresponding probability parameter in p. For more information, see “Geometric Distribution Mean
and Variance” on page 35-3108.

Examples

Visualize Mean and Standard Deviation of Geometric Distribution

Roll a fair die repeatedly until you successfully get a 6. The associated geometric distribution models
the number of times you roll the die before the result is a 6. Determine the mean and variance of the
distribution, and visualize the results.

Because the die is fair, the probability of successfully rolling a 6 in any given trial is p = 1/6. Compute
the mean and variance of the geometric distribution.

p = 1/6;
[m,v] = geostat(p)

m = 5.0000

v = 30.0000

Notice that the mean m is (1− p)/p and the variance v is (1− p)/p2.

m2 = (1-p)/p

m2 = 5.0000

v2 = (1-p)/p^2

v2 = 30.0000

Evaluate the probability density function (pdf), or probability mass function (pmf), at the points x =
0,1,2,...,25.

rng("default") % For reproducibility
x = 0:25;
y = geopdf(x,p);

Plot the pdf values. Indicate the mean, one standard deviation below the mean, and one standard
deviation above the mean.
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bar(x,y,"FaceAlpha",0.2,"EdgeAlpha",0.2);
xline([m-sqrt(v) m m+sqrt(v)],"-", ...
    ["-1 Standard Dev.","Mean","+1 Standard Dev."])
xlabel(["Number of Rolls","Before Rolling a 6"])
ylabel("Probability")

Compute Mean and Variance of Multiple Geometric Distributions

Create a probability vector that contains three different parameter values.

• The first parameter corresponds to a geometric distribution that models the number of times you
toss a coin before the result is heads.

• The second parameter corresponds to a geometric distribution that models the number of times
you roll a four-sided die before the result is a 4.

• The third parameter corresponds to a geometric distribution that models the number of times you
roll a six-sided die before the result is a 6.

p = [1/2 1/4 1/6];

Compute the mean and variance of each geometric distribution.

[m,v] = geostat(p)

m = 1×3
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    1.0000    3.0000    5.0000

v = 1×3

    2.0000   12.0000   30.0000

The returned values indicate that, for example, the mean of a geometric distribution with probability
parameter p = 1/4 is 3, and the variance of the distribution is 12.

Input Arguments
p — Probability of success
scalar in the range [0,1] | array of scalars in the range [0,1]

Probability of success in a single trial, specified as a scalar or an array of scalars in the range [0,1].
To compute the means and variances of multiple distributions, specify the distribution parameters p
using an array of scalar values.
Example: 0.5
Example: [1/2 1/3]
Data Types: single | double

Output Arguments
m — Mean
numeric scalar | array of numeric scalars

Mean of the geometric distribution, returned as a numeric scalar or an array of numeric scalars. m is
the same size as p, and each element in m is the mean of the geometric distribution specified by the
corresponding element in p.

v — Variance
numeric scalar | array of numeric scalars

Variance of the geometric distribution, returned as a numeric scalar or an array of numeric scalars. v
is the same size as p, and each element in v is the variance of the geometric distribution specified by
the corresponding element in p.

More About
Geometric Distribution Mean and Variance

The geometric distribution is a one-parameter family of curves that models the number of failures
before a success occurs in a series of independent trials. Each trial results in either success or
failure, and the probability of success in any individual trial is constant. For example, if you toss a
coin, the geometric distribution models the number of tails observed before the result is heads. The
geometric distribution is discrete, existing only on the nonnegative integers.
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The mean of the geometric distribution is mean = 1− p
p , and the variance of the geometric

distribution is var = 1− p
p2 , where p is the probability of success.

Version History
Introduced before R2006a

References
[1] Abramowitz, M., and I. A. Stegun. Handbook of Mathematical Functions. New York: Dover, 1964.

[2] Evans, M., N. Hastings, and B. Peacock. Statistical Distributions. 2nd ed., Hoboken, NJ: John Wiley
& Sons, Inc., 1993.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

This function fully supports GPU arrays. For more information, see “Run MATLAB Functions on a
GPU” (Parallel Computing Toolbox).

See Also
geopdf | geocdf | geoinv | geornd

Topics
“Geometric Distribution” on page B-64
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GapEvaluation
Gap criterion clustering evaluation object

Description
GapEvaluation is an object consisting of sample data (X), clustering data (OptimalY), and gap
criterion values (CriterionValues) used to evaluate the optimal number of clusters (OptimalK).
The gap criterion values correspond to the difference ExpectedLogW – LogW, where W is the within-
cluster dispersion, ExpectedLogW is determined by Monte Carlo sampling from a reference
distribution, and LogW is computed from the sample data. The optimal number of clusters
corresponds to the solution with the largest local or global gap value within a tolerance range
(SearchMethod). For more information, see “Gap Value” on page 35-3116.

Creation
Create a gap criterion clustering evaluation object by using the evalclusters function and
specifying the criterion as "gap".

You can then use compact to create a compact version of the gap criterion clustering evaluation
object. The function removes the contents of the properties X, OptimalY, and Missing.

Properties
Clustering Evaluation Properties

ClusteringFunction — Clustering algorithm
'kmeans' | 'linkage' | 'gmdistribution' | function handle

This property is read-only.

Clustering algorithm used to cluster the sample data, returned as 'kmeans', 'linkage',
'gmdistribution', or a function handle.

Value Description
'kmeans' Cluster the data in X using the kmeans clustering

algorithm, with EmptyAction set to
"singleton" and Replicates set to 5.

'linkage' Cluster the data in X using the clusterdata
agglomerative clustering algorithm, with
Linkage set to "ward".

'gmdistribution' Cluster the data in X using the gmdistribution
Gaussian mixture distribution algorithm, with
SharedCov set to true and Replicates set to
5.

Data Types: char | function_handle
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CriterionName — Name of criterion
'Gap'

This property is read-only.

Name of the criterion used for clustering evaluation, returned as 'Gap'.

CriterionValues — Criterion values
numeric vector

This property is read-only.

Criterion values, returned as a numeric vector. Each value corresponds to a proposed number of
clusters in InspectedK.
Data Types: double

Distance — Distance metric
'sqEuclidean' | 'Euclidean' | 'cityblock' | 'cosine' | 'correlation' | function handle

This property is read-only.

Distance metric used for clustering data and computing the criterion values, returned as one of the
values in this table or a function handle.

Value Description
'sqEuclidean' Squared Euclidean distance
'Euclidean' Euclidean distance
'cityblock' Sum of absolute differences
'cosine' One minus the cosine of the included angle

between points (treated as vectors)
'correlation' One minus the sample correlation between points

(treated as sequences of values)

Data Types: char | function_handle

InspectedK — List of number of proposed clusters
positive integer vector

This property is read-only.

List of the number of proposed clusters for which to compute criterion values, returned as a positive
integer vector.
Data Types: double

OptimalK — Optimal number of clusters
positive integer scalar

This property is read-only.

Optimal number of clusters, returned as a positive integer scalar.
Data Types: double
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OptimalY — Optimal clustering solution
positive integer column vector | []

This property is read-only.

Optimal clustering solution corresponding to OptimalK, returned as a positive integer column vector.
Each row of OptimalY represents the cluster index of the corresponding observation (or row) in X. If
you specify the clustering solutions as an input argument to evalclusters when you create the
clustering evaluation object, or if the clustering evaluation object is compact (see compact), then
OptimalY is empty.
Data Types: double

SearchMethod — Method for selecting optimal number of clusters
'globalMaxSE' | 'firstMaxSE'

This property is read-only.

Method for selecting the optimal number of clusters, returned as 'globalMaxSE' or
'firstMaxSE'.

Value Description
'globalMaxSE' Evaluate each proposed number of clusters in

InspectedK and select the smallest number of
clusters satisfying

Gap K ≥ GAPMAX − SE(GAPMAX),

where K is the number of clusters, Gap(K) is the
gap value for the clustering solution with K
clusters, GAPMAX is the largest gap value, and
SE(GAPMAX) is the standard error corresponding
to the largest gap value.

'firstMaxSE' Evaluate each proposed number of clusters in
InspectedK and select the smallest number of
clusters satisfying

Gap(K) ≥ Gap(K + 1)− SE(K + 1),

where K is the number of clusters, Gap(K) is the
gap value for the clustering solution with K
clusters, and SE(K + 1) is the standard error of
the clustering solution with K + 1 clusters.

Sample Data Properties

LogW — Natural logarithm of within-cluster dispersion
numeric vector

This property is read-only.

Natural logarithm of the within-cluster dispersion W based on the sample data X, returned as a
numeric vector. W is the within-cluster dispersion computed using the distance metric Distance.
Each element of LogW corresponds to a specific number of proposed clusters (an element of
InspectedK).
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Data Types: double

Missing — Excluded data
logical column vector | []

This property is read-only.

Excluded data, returned as a logical column vector. If an element of Missing is true, then the
corresponding observation (or row) in the data matrix X is not used in the clustering solutions. If the
clustering evaluation object is compact (see compact), then Missing is empty.
Data Types: double | logical

NumObservations — Number of observations
positive integer scalar

This property is read-only.

Number of observations in the data matrix X, ignoring observations with missing (NaN) values,
returned as a positive integer scalar.
Data Types: double

X — Data used for clustering
numeric matrix | []

This property is read-only.

Data used for clustering, returned as a numeric matrix. Rows correspond to observations, and
columns correspond to variables. If the clustering evaluation object is compact (see compact), then X
is empty.
Data Types: single | double

Reference Data Properties

B — Number of reference data sets
positive integer scalar

This property is read-only.

Number of reference data sets generated from the reference distribution ReferenceDistribution,
returned as a positive integer scalar.
Data Types: double

ExpectedLogW — Expectation of natural logarithm of within-cluster dispersion
numeric vector

This property is read-only.

Expectation of the natural logarithm of the within-cluster dispersion W based on the generated
reference data, returned as a numeric vector. W is the within-cluster dispersion computed using the
distance metric Distance. Each element of ExpectedLogW corresponds to a specific number of
proposed clusters (an element of InspectedK).
Data Types: double
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ReferenceDistribution — Reference data generation method
'PCA' | 'uniform'

This property is read-only.

Reference data generation method, returned as 'PCA' or 'uniform'.

Value Description
'PCA' Generate reference data from a uniform

distribution over a box aligned with the principal
components of the data matrix X.

'uniform' Generate reference data uniformly over the range
of each feature in the data matrix X.

SE — Standard error of natural logarithm of within-cluster dispersion
numeric vector

This property is read-only.

Standard error of the natural logarithm of the within-cluster dispersion W with respect to the
reference data, returned as a numeric vector. W is the within-cluster dispersion computed using the
distance metric Distance. Each element of SE corresponds to a specific number of proposed clusters
(an element of InspectedK).
Data Types: double

StdLogW — Standard deviation of natural logarithm of within-cluster dispersion
numeric vector

This property is read-only.

Standard deviation of the natural logarithm of the within-cluster dispersion W with respect to the
reference data, returned as a numeric vector. W is the within-cluster dispersion computed using the
distance metric Distance. Each element of StdLogW corresponds to a specific number of proposed
clusters (an element of InspectedK).
Data Types: double

Object Functions
addK Evaluate additional numbers of clusters
compact Compact clustering evaluation object
increaseB Increase reference data sets
plot Plot clustering evaluation object criterion values

Examples

Evaluate Clustering Solution Using Gap Criterion

Evaluate the optimal number of clusters using the gap clustering evaluation criterion.

Load the fisheriris data set. The data contains length and width measurements from the sepals
and petals of three species of iris flowers.
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load fisheriris

Evaluate the optimal number of clusters based on the gap criterion values. Cluster the data using
kmeans.

rng("default") % For reproducibility
evaluation = evalclusters(meas,"kmeans","gap","KList",1:6)

evaluation = 
  GapEvaluation with properties:

    NumObservations: 150
         InspectedK: [1 2 3 4 5 6]
    CriterionValues: [0.0720 0.5928 0.8762 1.0114 1.0534 1.0720]
           OptimalK: 5

The OptimalK value indicates that, based on the gap criterion, the optimal number of clusters is five.

Plot the gap criterion values for each number of clusters tested.

plot(evaluation)

Based on the plot, the maximum value of the gap criterion occurs at six clusters. However, the value
at five clusters is within one standard error of the maximum, so the suggested optimal number of
clusters is five.
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Create a grouped scatter plot to examine the relationship between petal length and width. Group the
data by the suggested clusters.

PetalLength = meas(:,3);
PetalWidth = meas(:,4);
clusters = evaluation.OptimalY;
gscatter(PetalLength,PetalWidth,clusters,[],"xod^*");

The plot shows cluster 4 in the lower-left corner, completely separated from the other four clusters.
Cluster 4 contains flowers with the smallest petal widths and lengths. Cluster 2 is in the upper-right
corner, and contains flowers with the largest petal widths and lengths. Cluster 5 is next to cluster 2,
and contains flowers with similar petal widths but smaller petal lengths compared to the flowers in
cluster 2. Clusters 1 and 3 are near the center of the plot, and contain flowers with measurements
between the extremes.

More About
Gap Value

A common graphical approach to clustering evaluation involves plotting an error measurement versus
several proposed numbers of clusters, and locating the “elbow” of this plot. The “elbow” occurs at the
most dramatic decrease in error measurement. The gap criterion formalizes this approach by
estimating the “elbow” location as the number of clusters with the largest gap value. Therefore,
under the gap criterion, the optimal number of clusters corresponds to the solution with the largest
local or global gap value within a tolerance range.
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The gap value is defined as

Gapn k = En* log Wk − log Wk ,

where n is the sample size, k is the number of clusters being evaluated, and Wk is the pooled within-
cluster dispersion measurement

Wk = ∑
r = 1

k 1
2nr

Dr,

where nr is the number of data points in cluster r, and Dr is the sum of the pairwise distances for all
points in cluster r.

The expected value En* log Wk  is determined by Monte Carlo sampling from a reference
distribution, and log(Wk) is computed from the sample data.

The gap value is defined even for clustering solutions that contain only one cluster, and can be used
with any distance metric. However, the gap criterion is more computationally expensive than other
clustering evaluation criteria, because the clustering algorithm must be applied to the reference data
for each proposed clustering solution.

Version History
Introduced in R2013b

References
[1] Tibshirani, R., G. Walther, and T. Hastie. “Estimating the number of clusters in a data set via the

gap statistic.” Journal of the Royal Statistical Society: Series B. Vol. 63, Part 2, 2001, pp. 411–
423.

See Also
evalclusters | CalinskiHarabaszEvaluation | DaviesBouldinEvaluation |
SilhouetteEvaluation
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get
Class: dataset

(Not Recommended) Access dataset array properties

Note The dataset data type is not recommended. To work with heterogeneous data, use the
MATLAB® table data type instead. See MATLAB table documentation for more information.

Syntax
get(A)
s = get(A)
p = get(A,PropertyName)
p = get(A,{PropertyName1,PropertyName2,...})

Description
get(A) displays a list of property/value pairs for the dataset array A.

s = get(A) returns the values in a scalar structure s with field names given by the properties.

p = get(A,PropertyName) returns the value of the property specified by PropertyName.

p = get(A,{PropertyName1,PropertyName2,...}) allows multiple property names to be
specified and returns their values in a cell array.

Examples
Create a dataset array from Fisher's iris data and access the information.

load fisheriris
NumObs = size(meas,1);
NameObs = strcat({'Obs'},num2str((1:NumObs)','%-d'));
iris = dataset({nominal(species),'species'},...
               {meas,'SL','SW','PL','PW'},...
               'ObsNames',NameObs);

get(iris)
   Description: ''
   Units: {}
   DimNames: {'Observations' 'Variables'}
   UserData: []
   ObsNames: {150x1 cell}
   VarNames: {'species' 'SL' 'SW' 'PL' 'PW'}

ON = get(iris,'ObsNames');
ON(1:3)
ans = 
    'Obs1'
    'Obs2'
    'Obs3'
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See Also
set | summary
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getlabels
(Not Recommended) Access nominal or ordinal array labels

Note The nominal and ordinal array data types are not recommended. To represent ordered and
unordered discrete, nonnumeric data, use the “Categorical Arrays” data type instead.

Syntax
labels = getlabels(A)

Description
labels = getlabels(A) returns the labels of the levels in the nominal or ordinal array A as a cell
array of character vectors, labels. If A is an ordinal array, getlabels returns the labels in the
order of the levels.

Input Arguments
A — Nominal or ordinal array
nominal array | ordinal array

Nominal or ordinal array, specified as a nominal or ordinal array object created with nominal or
ordinal.

Version History
Introduced in R2007a

See Also
getlevels | nominal | ordinal

Topics
“Change Category Labels” on page 2-7
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getlevels
(Not Recommended) Access nominal or ordinal array levels

Note The nominal and ordinal array data types are not recommended. To represent ordered and
unordered discrete, nonnumeric data, use the “Categorical Arrays” data type instead.

Syntax
L = getlevels(A)

Description
L = getlevels(A) returns the levels in the nominal or ordinal array A. L is a vector of the same
type as A.

Input Arguments
A — Nominal or ordinal array
nominal array | ordinal array

Nominal or ordinal array, specified as a nominal or ordinal array object created with nominal or
ordinal.

Version History
Introduced in R2009a

See Also
getlabels | nominal | ordinal

Topics
“Add and Drop Category Levels” on page 2-18
“Merge Category Levels” on page 2-16
“Reorder Category Levels” on page 2-9
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gevcdf
Generalized extreme value cumulative distribution function

Syntax
p = gevcdf(x,k,sigma,mu)
p = gevcdf(x,k,sigma,mu,'upper')

Description
p = gevcdf(x,k,sigma,mu) returns the cdf of the generalized extreme value (GEV) distribution
with shape parameter k, scale parameter sigma, and location parameter, mu, evaluated at the values
in x. The size of p is the common size of the input arguments. A scalar input functions as a constant
matrix of the same size as the other inputs.

p = gevcdf(x,k,sigma,mu,'upper') returns the complement of the cdf of the GEV distribution,
using an algorithm that more accurately computes the extreme upper tail probabilities.

Default values for k, sigma, and mu are 0, 1, and 0, respectively.

When k < 0, the GEV is the type III extreme value distribution. When k > 0, the GEV distribution is
the type II, or Frechet, extreme value distribution. If w has a Weibull distribution as computed by the
wblcdf function, then -w has a type III extreme value distribution and 1/w has a type II extreme
value distribution. In the limit as k approaches 0, the GEV is the mirror image of the type I extreme
value distribution as computed by the evcdf function.

The mean of the GEV distribution is not finite when k ≥ 1, and the variance is not finite when k ≥
1/2. The GEV distribution has positive density only for values of X such that k*(X-mu)/sigma >
-1.

Version History
Introduced before R2006a

References

[1] Embrechts, P., C. Klüppelberg, and T. Mikosch. Modelling Extremal Events for Insurance and
Finance. New York: Springer, 1997.

[2] Kotz, S., and S. Nadarajah. Extreme Value Distributions: Theory and Applications. London:
Imperial College Press, 2000.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.
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GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

This function fully supports GPU arrays. For more information, see “Run MATLAB Functions on a
GPU” (Parallel Computing Toolbox).

See Also
cdf | gevpdf | gevinv | gevstat | gevfit | gevlike | gevrnd

Topics
“Generalized Extreme Value Distribution” on page B-56
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gevfit
Generalized extreme value parameter estimates

Syntax
parmhat = gevfit(X)
[parmhat,parmci] = gevfit(X)
[parmhat,parmci] = gevfit(X,alpha)
[...] = gevfit(X,alpha,options)

Description
parmhat = gevfit(X) returns maximum likelihood estimates of the parameters for the generalized
extreme value (GEV) distribution given the data in X. parmhat(1) is the shape parameter, k,
parmhat(2) is the scale parameter, sigma, and parmhat(3) is the location parameter, mu.

[parmhat,parmci] = gevfit(X) returns 95% confidence intervals for the parameter estimates.

[parmhat,parmci] = gevfit(X,alpha) returns 100(1-alpha)% confidence intervals for the
parameter estimates.

[...] = gevfit(X,alpha,options) specifies control parameters for the iterative algorithm used
to compute ML estimates. This argument can be created by a call to statset. See
statset('gevfit') for parameter names and default values. Pass in [] for alpha to use the
default values.

When k < 0, the GEV is the type III extreme value distribution. When k > 0, the GEV distribution is
the type II, or Frechet, extreme value distribution. If w has a Weibull distribution as computed by the
wblfit function, then -w has a type III extreme value distribution and 1/w has a type II extreme
value distribution. In the limit as k approaches 0, the GEV is the mirror image of the type I extreme
value distribution as computed by the evfit function.

The mean of the GEV distribution is not finite when k ≥ 1, and the variance is not finite when k ≥
1/2. The GEV distribution is defined for k*(X-mu)/sigma > -1.

Version History
Introduced before R2006a

References

[1] Embrechts, P., C. Klüppelberg, and T. Mikosch. Modelling Extremal Events for Insurance and
Finance. New York: Springer, 1997.

[2] Kotz, S., and S. Nadarajah. Extreme Value Distributions: Theory and Applications. London:
Imperial College Press, 2000.
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Extended Capabilities
GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

This function fully supports GPU arrays. For more information, see “Run MATLAB Functions on a
GPU” (Parallel Computing Toolbox).

See Also
mle | gevlike | gevpdf | gevcdf | gevinv | gevstat | gevrnd

Topics
“Generalized Extreme Value Distribution” on page B-56
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gevinv
Generalized extreme value inverse cumulative distribution function

Syntax
X = gevinv(P,k,sigma,mu)

Description
X = gevinv(P,k,sigma,mu) returns the inverse cdf of the generalized extreme value (GEV)
distribution with shape parameter k, scale parameter sigma, and location parameter mu, evaluated at
the values in P. The size of X is the common size of the input arguments. A scalar input functions as a
constant matrix of the same size as the other inputs.

Default values for k, sigma, and mu are 0, 1, and 0, respectively.

When k < 0, the GEV is the type III extreme value distribution. When k > 0, the GEV distribution is
the type II, or Frechet, extreme value distribution. If w has a Weibull distribution as computed by the
wblinv function, then -w has a type III extreme value distribution and 1/w has a type II extreme
value distribution. In the limit as k approaches 0, the GEV is the mirror image of the type I extreme
value distribution as computed by the evinv function.

The mean of the GEV distribution is not finite when k ≥ 1, and the variance is not finite when k ≥
1/2. The GEV distribution has positive density only for values of X such that k*(X-mu)/sigma >
-1.

Version History
Introduced before R2006a

References

[1] Embrechts, P., C. Klüppelberg, and T. Mikosch. Modelling Extremal Events for Insurance and
Finance. New York: Springer, 1997.

[2] Kotz, S., and S. Nadarajah. Extreme Value Distributions: Theory and Applications. London:
Imperial College Press, 2000.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

This function fully supports GPU arrays. For more information, see “Run MATLAB Functions on a
GPU” (Parallel Computing Toolbox).
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See Also
icdf | gevcdf | gevpdf | gevstat | gevfit | gevlike | gevrnd

Topics
“Generalized Extreme Value Distribution” on page B-56

 gevinv

35-3127



gevlike
Generalized extreme value negative log-likelihood

Syntax
nlogL = gevlike(params,data)
[nlogL,ACOV] = gevlike(params,data)

Description
nlogL = gevlike(params,data) returns the negative of the log-likelihood nlogL for the
generalized extreme value (GEV) distribution, evaluated at parameters params. params(1) is the
shape parameter, k, params(2) is the scale parameter, sigma, and params(3) is the location
parameter, mu.

[nlogL,ACOV] = gevlike(params,data) returns the inverse of Fisher's information matrix,
ACOV. If the input parameter values in params are the maximum likelihood estimates, the diagonal
elements of ACOV are their asymptotic variances. ACOV is based on the observed Fisher's information,
not the expected information.

When k < 0, the GEV is the type III extreme value distribution. When k > 0, the GEV distribution is
the type II, or Frechet, extreme value distribution. If w has a Weibull distribution as computed by the
wbllike function, then -w has a type III extreme value distribution and 1/w has a type II extreme
value distribution. In the limit as k approaches 0, the GEV is the mirror image of the type I extreme
value distribution as computed by the evlike function.

The mean of the GEV distribution is not finite when k ≥ 1, and the variance is not finite when k ≥
1/2. The GEV distribution has positive density only for values of X such that k*(X-mu)/sigma >
-1.

Version History
Introduced before R2006a

References

[1] Embrechts, P., C. Klüppelberg, and T. Mikosch. Modelling Extremal Events for Insurance and
Finance. New York: Springer, 1997.

[2] Kotz, S., and S. Nadarajah.Extreme Value Distributions: Theory and Applications. London:
Imperial College Press, 2000.

Extended Capabilities
GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.
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This function fully supports GPU arrays. For more information, see “Run MATLAB Functions on a
GPU” (Parallel Computing Toolbox).

See Also
gevfit | gevpdf | gevcdf | gevinv | gevstat | gevrnd

Topics
“Generalized Extreme Value Distribution” on page B-56
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gevpdf
Generalized extreme value probability density function

Syntax
Y = gevpdf(X,k,sigma,mu)

Description
Y = gevpdf(X,k,sigma,mu) returns the pdf of the generalized extreme value (GEV) distribution
with shape parameter k, scale parameter sigma, and location parameter, mu, evaluated at the values
in X. The size of Y is the common size of the input arguments. A scalar input functions as a constant
matrix of the same size as the other inputs.

Default values for k, sigma, and mu are 0, 1, and 0, respectively.

When k < 0, the GEV is the type III extreme value distribution. When k > 0, the GEV distribution is
the type II, or Frechet, extreme value distribution. If w has a Weibull distribution as computed by the
wblpdf function, then -w has a type III extreme value distribution and 1/w has a type II extreme
value distribution. In the limit as k approaches 0, the GEV is the mirror image of the type I extreme
value distribution as computed by the evcdf function.

The mean of the GEV distribution is not finite when k ≥ 1, and the variance is not finite when k ≥
1/2. The GEV distribution has positive density only for values of X such that k*(X-mu)/sigma >
-1.

Version History
Introduced before R2006a

References

[1] Embrechts, P., C. Klüppelberg, and T. Mikosch. Modelling Extremal Events for Insurance and
Finance. New York: Springer, 1997.

[2] Kotz, S., and S. Nadarajah. Extreme Value Distributions: Theory and Applications. London:
Imperial College Press, 2000.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

This function fully supports GPU arrays. For more information, see “Run MATLAB Functions on a
GPU” (Parallel Computing Toolbox).
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See Also
pdf | gevcdf | gevinv | gevstat | gevfit | gevlike | gevrnd

Topics
“Generalized Extreme Value Distribution” on page B-56
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gevrnd
Generalized extreme value random numbers

Syntax
R = gevrnd(k,sigma,mu)
R = gevrnd(k,sigma,mu,m,n,...)
R = gevrnd(k,sigma,mu,[m,n,...])

Description
R = gevrnd(k,sigma,mu) returns an array of random numbers chosen from the generalized
extreme value (GEV) distribution with shape parameter k, scale parameter sigma, and location
parameter, mu. The size of R is the common size of the input arguments if all are arrays. If any
parameter is a scalar, the size of R is the size of the other parameters.

R = gevrnd(k,sigma,mu,m,n,...) or R = gevrnd(k,sigma,mu,[m,n,...]) generates an m-
by-n-by-... array containing random numbers from the GEV distribution with parameters k, sigma,
and mu. The k, sigma, mu parameters can each be scalars or arrays of the same size as R.

When k < 0, the GEV is the type III extreme value distribution. When k > 0, the GEV distribution is
the type II, or Frechet, extreme value distribution. If w has a Weibull distribution as computed by the
wblrnd function, then -w has a type III extreme value distribution and 1/w has a type II extreme
value distribution. In the limit as k approaches 0, the GEV is the mirror image of the type I extreme
value distribution as computed by the evrnd function.

The mean of the GEV distribution is not finite when k ≥ 1, and the variance is not finite when k ≥
1/2. The GEV distribution has positive density only for values of X such that k*(X-mu)/sigma >
-1.

Version History
Introduced before R2006a

References

[1] Embrechts, P., C. Klüppelberg, and T. Mikosch. Modelling Extremal Events for Insurance and
Finance. New York: Springer, 1997.

[2] Kotz, S., and S. Nadarajah. Extreme Value Distributions: Theory and Applications. London:
Imperial College Press, 2000.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:
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The generated code can return a different sequence of numbers than MATLAB if either of the
following is true:

• The output is nonscalar.
• An input parameter is invalid for the distribution.

For more information on code generation, see “Introduction to Code Generation” on page 34-2 and
“General Code Generation Workflow” on page 34-5.

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

This function fully supports GPU arrays. For more information, see “Run MATLAB Functions on a
GPU” (Parallel Computing Toolbox).

See Also
random | gevpdf | gevcdf | gevinv | gevstat | gevfit | gevlike

Topics
“Generalized Extreme Value Distribution” on page B-56
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gevstat
Generalized extreme value mean and variance

Syntax
[M,V] = gevstat(k,sigma,mu)

Description
[M,V] = gevstat(k,sigma,mu) returns the mean of and variance for the generalized extreme
value (GEV) distribution with shape parameter k, scale parameter sigma, and location parameter, mu.
The sizes of M and V are the common size of the input arguments. A scalar input functions as a
constant matrix of the same size as the other inputs.

When k < 0, the GEV is the type III extreme value distribution. When k > 0, the GEV distribution is
the type II, or Frechet, extreme value distribution. If w has a Weibull distribution as computed by the
wblstat function, then -w has a type III extreme value distribution and 1/w has a type II extreme
value distribution. In the limit as k approaches 0, the GEV is the mirror image of the type I extreme
value distribution as computed by the evstat function.

The mean of the GEV distribution is not finite when k ≥ 1, and the variance is not finite when k ≥
1/2. The GEV distribution has positive density only for values of X such that k*(X-mu)/sigma >
-1.

Version History
Introduced before R2006a

References

[1] Embrechts, P., C. Klüppelberg, and T. Mikosch. Modelling Extremal Events for Insurance and
Finance. New York: Springer, 1997.

[2] Kotz, S., and S. Nadarajah. Extreme Value Distributions: Theory and Applications. London:
Imperial College Press, 2000.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

This function fully supports GPU arrays. For more information, see “Run MATLAB Functions on a
GPU” (Parallel Computing Toolbox).
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See Also
gevpdf | gevcdf | gevinv | gevfit | gevlike | gevrnd

Topics
“Generalized Extreme Value Distribution” on page B-56
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gline
Interactively add line to plot

Syntax
gline(h)
gline
hline = gline(...)

Description
gline(h) allows you to draw a line segment in the figure with handle h by clicking the pointer at the
two endpoints. A rubber-band line tracks the pointer movement.

gline with no input arguments defaults to h = gcf and draws in the current figure.

hline = gline(...) returns the handle hline to the line.

Examples
Use gline to connect two points in a plot:

x = 1:10;

y = x + randn(1,10);
scatter(x,y,25,'b','*')

lsline

mu = mean(y);
hold on
plot([1 10],[mu mu],'ro')

hline = gline; % Connect circles
set(hline,'Color','r')
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Version History
Introduced before R2006a

See Also
refline | refcurve | lsline

 gline
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glmfit
Fit generalized linear regression model

Syntax
b = glmfit(X,y,distr)
b = glmfit(X,y,distr,Name,Value)
[b,dev] = glmfit( ___ )
[b,dev,stats] = glmfit( ___ )

Description
b = glmfit(X,y,distr) returns a vector b of coefficient estimates for a generalized linear
regression model of the responses in y on the predictors in X, using the distribution distr.

b = glmfit(X,y,distr,Name,Value) specifies additional options using one or more name-value
arguments. For example, you can specify 'Constant','off' to omit the constant term from the
model.

[b,dev] = glmfit( ___ ) also returns the value dev, the deviance on page 35-3146 of the fit.

[b,dev,stats] = glmfit( ___ ) also returns the model statistics stats.

Examples

Fit Generalized Linear Model with Probit Link

Fit a generalized linear regression model, and compute predicted (estimated) values for the predictor
data using the fitted model.

Create a sample data set.

x = [2100 2300 2500 2700 2900 3100 ...
     3300 3500 3700 3900 4100 4300]';
n = [48 42 31 34 31 21 23 23 21 16 17 21]';
y = [1 2 0 3 8 8 14 17 19 15 17 21]';

x contains the predictor variable values. Each y value is the number of successes in the
corresponding number of trials in n.

Fit a probit regression model for y on x.

b = glmfit(x,[y n],'binomial','Link','probit');

Compute the estimated number of successes.

yfit = glmval(b,x,'probit','Size',n);

Plot the observed success percent and estimated success percent versus the x values.

plot(x,y./n,'o',x,yfit./n,'-')
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Fit Generalized Linear Model Using Custom Link Function

Define a custom link function and use it to fit a generalized linear regression model.

Load the sample data.

load fisheriris

The column vector species contains iris flowers of three different species: setosa, versicolor, and
virginica. The matrix meas contains four types of measurements for the flowers, the length and width
of sepals and petals in centimeters.

Define the predictor variables and response variable.

X = meas(51:end,:);
y = strcmp('versicolor',species(51:end));

Define a custom link function for a logit link function. Create three function handles that define the
link function, the derivative of the link function, and the inverse link function. Store them in a cell
array.

link = @(mu) log(mu./(1-mu));
derlink = @(mu) 1./(mu.*(1-mu));
invlink = @(resp) 1./(1+exp(-resp));
F = {link,derlink,invlink};
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Fit a logistic regression model using glmfit with the custom link function.

b = glmfit(X,y,'binomial','link',F)

b = 5×1

   42.6378
    2.4652
    6.6809
   -9.4294
  -18.2861

Fit a generalized linear model by using the built-in logit link function, and compare the results.

b = glmfit(X,y,'binomial','link','logit')

b = 5×1

   42.6378
    2.4652
    6.6809
   -9.4294
  -18.2861

Perform Deviance Test

Fit a generalized linear regression model that contains an intercept and linear term for each
predictor. Perform a deviance test that determines whether the model fits significantly better than a
constant model.

Generate sample data using Poisson random numbers with two underlying predictors X(:,1) and
X(:,2).

rng('default') % For reproducibility
rndvars = randn(100,2);
X = [2 + rndvars(:,1),rndvars(:,2)];
mu = exp(1 + X*[1;2]);
y = poissrnd(mu);

Fit a generalized linear regression model that contains an intercept and linear term for each
predictor.

[b,dev] = glmfit(X,y,'poisson');

The second output argument dev is a “Deviance” on page 35-3146 of the fit.

Fit a generalized linear regression model that contains only an intercept. Specify the predictor
variable as a column of 1s, and specify 'Constant' as 'off' so that glmfit does not include a
constant term in the model.

[~,dev_noconstant] = glmfit(ones(100,1),y,'poisson','Constant','off');

Compute the difference between dev_constant and dev.
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D = dev_noconstant - dev

D = 2.9533e+05

D has a chi-square distribution with 2 degrees of freedom. The degrees of freedom equal the
difference in the number of estimated parameters in the model corresponding to dev and the number
of estimated parameters in the constant model. Find the p-value for a deviance test.

p = 1 - chi2cdf(D,2)

p = 0

The small p-value indicates that the model differs significantly from a constant.

Alternatively, you can create a generalized linear regression model of Poisson data by using the
fitglm function. The model display includes the statistic (Chi^2-statistic vs. constant
model) and p-value.

mdl = fitglm(X,y,'y ~ x1 + x2','Distribution','poisson')

mdl = 
Generalized linear regression model:
    log(y) ~ 1 + x1 + x2
    Distribution = Poisson

Estimated Coefficients:
                   Estimate       SE        tStat     pValue
                   ________    _________    ______    ______

    (Intercept)     1.0405      0.022122    47.034      0   
    x1              0.9968      0.003362    296.49      0   
    x2               1.987     0.0063433    313.24      0   

100 observations, 97 error degrees of freedom
Dispersion: 1
Chi^2-statistic vs. constant model: 2.95e+05, p-value = 0

You can also use the devianceTest function with the fitted model object.

devianceTest(mdl)

ans=2×4 table
                             Deviance     DFE     chi2Stat     pValue
                            __________    ___    __________    ______

    log(y) ~ 1              2.9544e+05    99                         
    log(y) ~ 1 + x1 + x2         107.4    97     2.9533e+05       0  

Input Arguments
X — Predictor variables
numeric matrix
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Predictor variables, specified as an n-by-p numeric matrix, where n is the number of observations and
p is the number of predictor variables. Each column of X represents one variable, and each row
represents one observation.

By default, glmfit includes a constant term in the model. Do not add a column of 1s directly to X.
You can change the default behavior of glmfit by specifying the 'Constant' name-value argument.
Data Types: single | double

y — Response variable
vector | matrix

Response variable, specified as a vector or matrix.

• If distr is not 'binomial', then y must be an n-by-1 vector, where n is the number of
observations. Each entry in y is the response for the corresponding row of X. The data type must
be single or double.

• If distr is 'binomial', then y is an n-by-1 vector indicating success or failure at each
observation, or an n-by-2 matrix whose first column indicates the number of successes for each
observation and second column indicates the number of trials for each observation.

Data Types: single | double | logical | categorical

distr — Distribution of response variable
'normal' (default) | 'binomial' | 'poisson' | 'gamma' | 'inverse gaussian'

Distribution of the response variable, specified as one of the values in this table.

Value Description
'normal' Normal distribution (default)
'binomial' Binomial distribution
'poisson' Poisson distribution
'gamma' Gamma distribution
'inverse gaussian' Inverse Gaussian distribution

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: b = glmfit(X,y,'normal','link','probit') specifies that the distribution of the
response is normal and instructs glmfit to use the probit link function.

B0 — Initial values for coefficient estimates
numeric vector

Initial values for the coefficient estimates, specified as a numeric vector. The default values are initial
fitted values derived from the input data.
Data Types: single | double
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Constant — Indicator for constant term
'on' (default) | 'off'

Indicator for the constant term (intercept) in the fit, specified as either 'on' to include the constant
term or 'off' to remove it from the model.

• 'on' (default) — glmfit includes a constant term in the model and returns a (p + 1)-by-1 vector
of coefficient estimates b, where p is the number of predictors in X. The coefficient of the constant
term is the first element of b.

• 'off' — glmfit omits the constant term and returns a p-by-1 vector of coefficient estimates b.

Example: 'Constant','off'

EstDisp — Indicator to compute dispersion parameter
'off' for 'binomial' and 'poisson' distributions (default) | 'on'

Indicator to compute a dispersion parameter for 'binomial' and 'poisson' distributions, specified
as 'on' or 'off'.

Value Description
'on' Estimate a dispersion parameter when computing

standard errors. The estimated dispersion
parameter value is the sum of squared Pearson
residuals divided by the degrees of freedom for
error (DFE).

'off' Use the theoretical value of 1 when computing
standard errors (default).

The fitting function always estimates the dispersion for other distributions.
Example: 'EstDisp','on'

Link — Link function
canonical link function (default) | scalar value | structure or cell array of custom link function

Link function to use in place of the canonical link function, specified as one of the built-in link
functions in the following table or a custom link function.

Link Function Name Link Function Mean (Inverse) Function
'identity' (default for
'normal' distribution)

f(μ) = μ μ = Xb

'log' (default for 'poisson'
distribution)

f(μ) = log(μ) μ = exp(Xb)

'logit' (default for
'binomial' distribution)

f(μ) = log(μ/(1 – μ)) μ = exp(Xb) / (1 + exp(Xb))

'probit' f(μ) = Φ–1(μ), where Φ is the
cumulative distribution function of
the standard normal distribution

μ = Φ(Xb)

'loglog' f(μ) = log(–log(μ)) μ = exp(–exp(Xb))
'comploglog' f(μ) = log(–log(1 – μ)) μ = 1 – exp(–exp(Xb))
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Link Function Name Link Function Mean (Inverse) Function
'reciprocal' (default for
'gamma' distribution)

f(μ) = 1/μ μ = 1/(Xb)

p (a number, default for the
'inverse gaussian'
distribution with p = –2)

f(μ) = μp μ = Xb1/p

The default 'Link' value is the canonical link function, which depends on the distribution of the
response variable specified by the distr argument.

You can specify a custom link function using a structure or cell array.

• Structure with three fields. Each field of the structure (for example, S) holds a function handle
that accepts a vector of inputs and returns a vector of the same size:

• S.Link — Link function, f(μ) = S.Link(μ)
• S.Derivative — Derivative of the link function
• S.Inverse — Inverse link function, μ = S.Inverse(Xb)

• Cell array of the form {FL FD FI} that defines the link function (FL(mu)), the derivative of the
link function (FD = dFL(mu)/dmu), and the inverse link function (FI = FL^(–1)). Each entry
holds a function handle that accepts a vector of inputs and returns a vector of the same size.

The link function defines the relationship f(μ) = X*b between the mean response μ and the linear
combination of predictors X*b.
Example: 'Link','probit'
Data Types: single | double | char | string | struct | cell

Offset — Offset variable
[ ] (default) | numeric vector

Offset variable in the fit, specified as a numeric vector with the same length as the response y.

glmfit uses Offset as an additional predictor with a coefficient value fixed at 1. In other words, the
formula for fitting is

f(μ) = Offset + X*b,
where f is the link function, μ is the mean response, and X*b is the linear combination of predictors X.
The Offset predictor has coefficient 1.

For example, consider a Poisson regression model. Suppose, for theoretical reasons, the number of
counts is to be proportional to a predictor A. By using the log link function and specifying log(A) as
an offset, you can force the model to satisfy this theoretical constraint.
Data Types: single | double

Options — Optimization options
statset('glmfit') (default) | structure

Optimization options, specified as a structure. This argument determines the control parameters for
the iterative algorithm that glmfit uses.

Create the 'Options' value by using the function statset or by creating a structure array
containing the fields and values described in this table.
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Field Name Value Default Value
Display Amount of information displayed by the algorithm

• 'off' — Displays no information
• 'final' — Displays the final output

'off'

MaxIter Maximum number of iterations allowed, specified
as a positive integer

100

TolX Termination tolerance for the parameters,
specified as a positive scalar

1e-6

You can also enter statset('glmfit') in the Command Window to see the names and default
values of the fields that glmfit accepts in the 'Options' name-value argument.
Example: 'Options',statset('Display','final','MaxIter',1000) specifies to display the
final information of the iterative algorithm results, and change the maximum number of iterations
allowed to 1000.
Data Types: struct

Weights — Observation weights
ones(n,1) (default) | n-by-1 vector of nonnegative scalar values

Observation weights, specified as an n-by-1 vector of nonnegative scalar values, where n is the
number of observations.
Data Types: single | double

Output Arguments
b — Coefficient estimates
numeric vector

Coefficient estimates, returned as a numeric vector.

• If 'Constant' is 'on' (default), then glmfit includes a constant term in the model and returns
a (p + 1)-by-1 vector of coefficient estimates b, where p is the number of predictors in X. The
coefficient of the constant term is the first element of b.

• If 'Constant' is 'off', then glmfit omits the constant term and returns a p-by-1 vector of
coefficient estimates b.

dev — Deviance of fit
numeric value

Deviance of the fit, returned as a numeric value. The deviance is useful for comparing two models
when one model is a special case of the other model. The difference between the deviance of the two
models has a chi-square distribution with degrees of freedom equal to the difference in the number of
estimated parameters between the two models.

For more information, see “Deviance” on page 35-3146.

stats — Model statistics
structure

Model statistics, returned as a structure with the following fields:
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• beta — Coefficient estimates b
• dfe — Degrees of freedom for error
• sfit — Estimated dispersion parameter
• s — Theoretical or estimated dispersion parameter
• estdisp — 0 when 'EstDisp' is 'off' and 1 when 'EstDisp' is 'on'
• covb — Estimated covariance matrix for b
• se — Vector of standard errors of the coefficient estimates b
• coeffcorr — Correlation matrix for b
• t — t statistics for b
• p — p-values for b
• resid — Vector of residuals
• residp — Vector of Pearson residuals
• residd — Vector of deviance residuals
• resida — Vector of Anscombe residuals

If you estimate a dispersion parameter for the binomial or Poisson distribution, then stats.s is
equal to stats.sfit. Also, the elements of stats.se differ by the factor stats.s from their
theoretical values.

More About
Deviance

Deviance is a generalization of the residual sum of squares. It measures the goodness of fit compared
to a saturated model.

Deviance of a model M1 is twice the difference between the loglikelihood of the model M1 and the
saturated model Ms. A saturated model is a model with the maximum number of parameters that you
can estimate.

For example, if you have n observations (yi, i = 1, 2, ..., n) with potentially different values for Xi
Tβ,

then you can define a saturated model with n parameters. Let L(b,y) denote the maximum value of
the likelihood function for a model with the parameters b. Then the deviance of the model M1 is

−2 logL b1, y − logL bS, y ,

where b1 and bs contain the estimated parameters for the model M1 and the saturated model,
respectively. The deviance has a chi-square distribution with n – p degrees of freedom, where n is the
number of parameters in the saturated model and p is the number of parameters in the model M1.

Assume you have two different generalized linear regression models M1 and M2, and M1 has a subset
of the terms in M2. You can assess the fit of the models by comparing the deviances D1 and D2 of the
two models. The difference of the deviances is

D = D2− D1 = − 2 logL b2, y − logL bS, y + 2 logL b1, y − logL bS, y
= − 2 logL b2, y − logL b1, y .
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Asymptotically, the difference D has a chi-square distribution with degrees of freedom v equal to the
difference in the number of parameters estimated in M1 and M2. You can obtain the p-value for this
test by using 1 – chi2cdf(D,v).

Typically, you examine D using a model M2 with a constant term and no predictors. Therefore, D has a
chi-square distribution with p – 1 degrees of freedom. If the dispersion is estimated, the difference
divided by the estimated dispersion has an F distribution with p – 1 numerator degrees of freedom
and n – p denominator degrees of freedom.

Tips
• glmfit treats NaNs in X or y as missing values and ignores them.

Alternative Functionality
glmfit is useful when you simply need the output arguments of the function or when you want to
repeat fitting a model multiple times in a loop. If you need to investigate a fitted model further, create
a generalized linear regression model object GeneralizedLinearModel by using fitglm or
stepwiseglm. A GeneralizedLinearModel object provides more features than glmfit.

• Use the properties of GeneralizedLinearModel to investigate a fitted model. The object
properties include information about the coefficient estimates, summary statistics, fitting method,
and input data.

• Use the object functions of GeneralizedLinearModel to predict responses and to modify,
evaluate, and visualize the generalized linear regression model.

• You can find the information in the output of glmfit using the properties and object functions of
GeneralizedLinearModel.

Output of glmfit Equivalent Values in
GeneralizedLinearModel

b See the Estimate column of the
Coefficients property.

dev See the Deviance property.
stats See the model display in the Command

Window. You can find the statistics in the
model properties (CoefficientCovariance,
Coefficients, Dispersion,
DispersionEstimated, and Residuals).

The dispersion parameter in stats.s of
glmfit is the scale factor for the standard
errors of coefficients, whereas the dispersion
parameter in the Dispersion property of a
generalized linear model is the scale factor for
the variance of the response. Therefore,
stats.s is the square root of the
Dispersion value.
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Version History
Introduced before R2006a

References
[1] Dobson, A. J. An Introduction to Generalized Linear Models. New York: Chapman & Hall, 1990.

[2] McCullagh, P., and J. A. Nelder. Generalized Linear Models. New York: Chapman & Hall, 1990.

[3] Collett, D. Modeling Binary Data. New York: Chapman & Hall, 2002.

Extended Capabilities
GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

This function fully supports GPU arrays. For more information, see “Run MATLAB Functions on a
GPU” (Parallel Computing Toolbox).

See Also
glmval | regress | regstats | GeneralizedLinearModel | fitglm | stepwiseglm

Topics
“Fitting Data with Generalized Linear Models” on page 12-65
“Generalized Linear Models” on page 12-9
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glmval
Generalized linear model values

Syntax
yhat = glmval(b,X,link)
[yhat,dylo,dyhi] = glmval(b,X,link,stats)
[...] = glmval(...,param1,val1,param2,val2,...)

Description
yhat = glmval(b,X,link) computes predicted values for the generalized linear model with link
function link and predictors X. Distinct predictor variables should appear in different columns of X.
b is a vector of coefficient estimates as returned by the glmfit function. link can be any of the
character vectors, string scalars, or custom-defined link functions used as values for the 'link'
name-value pair argument in the glmfit function.

Note By default, glmval adds a first column of 1s to X, corresponding to a constant term in the
model. Do not enter a column of 1s directly into X. You can change the default behavior of glmval
using the 'constant' parameter.

[yhat,dylo,dyhi] = glmval(b,X,link,stats) also computes 95% confidence bounds for the
predicted values. When the stats structure output of the glmfit function is specified, dylo and
dyhi are also returned. dylo and dyhi define a lower confidence bound of yhat-dylo, and an
upper confidence bound of yhat+dyhi. Confidence bounds are nonsimultaneous, and apply to the
fitted curve, not to a new observation.

[...] = glmval(...,param1,val1,param2,val2,...) specifies optional parameter name/
value pairs to control the predicted values. Acceptable parameters are listed in this table:

Parameter Value
'confidence' — the confidence level for the
confidence bounds

A scalar between 0 and 1

'size' — the size parameter (N) for a binomial
model

A scalar, or a vector with one value for each row
of X

'offset' — used as an additional predictor
variable, but with a coefficient value fixed at 1.0

A vector

'constant' • 'on' — Includes a constant term in the
model. The coefficient of the constant term is
the first element of b.

• 'off' — Omit the constant term
'simultaneous' — Compute simultaneous
confidence intervals (true), or compute non-
simultaneous confidence intervals (default
false)

true or false
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Examples

Fit Generalized Linear Model with Probit Link

Fit a generalized linear regression model, and compute predicted (estimated) values for the predictor
data using the fitted model.

Create a sample data set.

x = [2100 2300 2500 2700 2900 3100 ...
     3300 3500 3700 3900 4100 4300]';
n = [48 42 31 34 31 21 23 23 21 16 17 21]';
y = [1 2 0 3 8 8 14 17 19 15 17 21]';

x contains the predictor variable values. Each y value is the number of successes in the
corresponding number of trials in n.

Fit a probit regression model for y on x.

b = glmfit(x,[y n],'binomial','Link','probit');

Compute the estimated number of successes.

yfit = glmval(b,x,'probit','Size',n);

Plot the observed success percent and estimated success percent versus the x values.

plot(x,y./n,'o',x,yfit./n,'-')
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Use Custom-Defined Link Function

Enter sample data.

x = [2100 2300 2500 2700 2900 3100 ...
     3300 3500 3700 3900 4100 4300]';
n = [48 42 31 34 31 21 23 23 21 16 17 21]';
y = [1 2 0 3 8 8 14 17 19 15 17 21]';

Each y value is the number of successes in corresponding number of trials in n, and x contains the
predictor variable values.

Define three function handles, created by using @, that define the link, the derivative of the link, and
the inverse link for a probit link function,. Store the handles in a cell array.

link = @(mu) norminv(mu);
derlink = @(mu) 1 ./ normpdf(norminv(mu));
invlink = @(resp) normcdf(resp);
F = {link, derlink, invlink};

Fit a generalized linear model for y on x by using the link function that you defined.

b = glmfit(x,[y n],'binomial','link',F);

Compute the estimated number of successes. Plot the observed and estimated percent success versus
the x values.

yfit = glmval(b,x,F,'size',n);
plot(x, y./n,'o',x,yfit./n,'-','LineWidth',2)
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Generate Code from Function That Predicts Responses Given New Data

Train a generalized linear model, and then generate code from a function that classifies new
observations based on the model. This example is based on the “Use Custom-Defined Link Function”
on page 35-3151 example.

Enter the sample data.

x = [2100 2300 2500 2700 2900 3100 ...
     3300 3500 3700 3900 4100 4300]';
n = [48 42 31 34 31 21 23 23 21 16 17 21]';
y = [1 2 0 3 8 8 14 17 19 15 17 21]';

Suppose that the inverse normal pdf is an appropriate link function for the problem.

Define a function named myInvNorm.m that accepts values of  and returns corresponding values
of the inverse of the standard normal cdf.

function in = myInvNorm(mu) %#codegen
%myInvNorm Inverse of standard normal cdf for code generation
%   myInvNorm is a GLM link function that accepts a numeric vector mu, and
%   returns in, which is a numeric vector of corresponding values of the
%   inverse of the standard normal cdf.
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%   
in = norminv(mu);
end

Define another function named myDInvNorm.m that accepts values of  and returns corresponding
values of the derivative of the link function.

function din = myDInvNorm(mu) %#codegen
%myDInvNorm Derivative of inverse of standard normal cdf for code
%generation
%   myDInvNorm corresponds to the derivative of the GLM link function
%   myInvNorm. myDInvNorm accepts a numeric vector mu, and returns din,
%   which is a numeric vector of corresponding derivatives of the inverse
%   of the standard normal cdf.
%   
din = 1./normpdf(norminv(mu));
end

Define another function named myInvInvNorm.m that accepts values of  and returns
corresponding values of the inverse of the link function.

function iin = myInvInvNorm(mu) %#codegen
%myInvInvNorm Standard normal cdf for code generation
%   myInvInvNorm is the inverse of the GLM link function myInvNorm.
%   myInvInvNorm accepts a numeric vector mu, and returns iin, which is a
%   numeric vector of corresponding values of the standard normal cdf.
% 
iin = normcdf(mu);
end

Create a structure array that specifies each of the link functions. Specifically, the structure array
contains fields named 'Link', 'Derivative', and 'Inverse'. The corresponding values are the
names of the functions.

link = struct('Link','myInvNorm','Derivative','myDInvNorm',...
    'Inverse','myInvInvNorm')

link = 

  struct with fields:

          Link: 'myInvNorm'
    Derivative: 'myDInvNorm'
       Inverse: 'myInvInvNorm'

Fit a GLM for y on x using the link function link. Return the structure array of statistics.

[b,~,stats] = glmfit(x,[y n],'binomial','link',link);
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b is a 2-by-1 vector of regression coefficients.

In your current working folder, define a function called classifyGLM.m that:

• Accepts measurements with columns corresponding to those in x, regression coefficients whose
dimensions correspond to b, a link function, the structure of GLM statistics, and any valid glmval
name-value pair argument

• Returns predictions and confidence interval margins of error

function [yhat,lo,hi] = classifyGLM(b,x,link,varargin) %#codegen
%CLASSIFYGLM Classify measurements using GLM model 
%   CLASSIFYGLM classifies the n observations in the n-by-1 vector x using
%   the GLM model with regression coefficients b and link function link,
%   and then returns the n-by-1 vector of predicted values in yhat.
%   CLASSIFYGLM also returns margins of error for the predictions using
%   additional information in the GLM statistics structure stats.
narginchk(3,Inf);
if(isstruct(varargin{1}))
    stats = varargin{1};
    [yhat,lo,hi] = glmval(b,x,link,stats,varargin{2:end});
else
    yhat = glmval(b,x,link,varargin{:});
end
end

Generate a MEX function from classifyGLM.m. Because C uses static typing, codegen must
determine the properties of all variables in MATLAB® files at compile time. To ensure that the MEX
function can use the same inputs, use the -args argument to specify the following in the order given:

• Regression coefficients b as a compile-time constant
• In-sample observations x
• Link function as a compile-time constant
• Resulting GLM statistics as a compile-time constant
• Name 'Confidence' as a compile-time constant
• Confidence level 0.9

To designate arguments as compile-time constants, use coder.Constant.

codegen -config:mex classifyGLM -args {coder.Constant(b),x,coder.Constant(link),coder.Constant(stats),coder.Constant('Confidence'),0.9}

Code generation successful.

codegen generates the MEX file classifyGLM_mex.mexw64 in your current folder. The file
extension depends on your system platform.

Compare predictions by using glmval and classifyGLM_mex. Specify name-value pair arguments
in the same order as in the -args argument in the call to codegen.

[yhat1,melo1,mehi1] = glmval(b,x,link,stats,'Confidence',0.9);
[yhat2,melo2,mehi2] = classifyGLM_mex(b,x,link,stats,'Confidence',0.9);

comp1 = (yhat1 - yhat2)'*(yhat1 - yhat2);
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agree1 = comp1 < eps
comp2 = (melo1 - melo2)'*(melo1 - melo2);
agree2 = comp2 < eps
comp3 = (mehi1 - mehi2)'*(mehi1 - mehi2);
agree3 = comp3 < eps

agree1 =

  logical

   1

agree2 =

  logical

   1

agree3 =

  logical

   1

The generated MEX function produces the same predictions as predict.

Version History
Introduced before R2006a

References

[1] Dobson, A. J. An Introduction to Generalized Linear Models. New York: Chapman & Hall, 1990.

[2] McCullagh, P., and J. A. Nelder. Generalized Linear Models. New York: Chapman & Hall, 1990.

[3] Collett, D. Modeling Binary Data. New York: Chapman & Hall, 2002.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

Argument Notes and Limitations
b b must be a compile-time constant (the value of b cannot change while codegen

generates the C/C++ code). You can designate variables as compile-time constants
using coder.Constant.
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Argument Notes and Limitations
X Must be a double- or single-precision numeric matrix
link • Does not support function handles, that is, functions created using @.

• Must be a compile-time constant.
stats Must be a compile-time constant
'Constant'
name-value
pair argument

Must be a compile-time constant

Name-value
pair arguments

Names in name-value pair arguments must be compile-time constants. For example,
to specify a confidence level of 0.9, include
{coder.Constant('Confidence'),coder.Constant(0.9)} in the -args value
of codegen.

For more information on code generation, see “Introduction to Code Generation” on page 34-2 and
“General Code Generation Workflow” on page 34-5.

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

This function fully supports GPU arrays. For more information, see “Run MATLAB Functions on a
GPU” (Parallel Computing Toolbox).

See Also
glmfit | GeneralizedLinearModel | fitglm | stepwiseglm

Topics
“Introduction to Code Generation” on page 34-2
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glyphplot
Glyph plot

Syntax
glyphplot(X)
glyphplot(X,'glyph','face')
glyphplot(X,'glyph','face','features',f)
glyphplot(X,...,'grid',[rows,cols])
glyphplot(X,...,'grid',[rows,cols],'page',p)
glyphplot(X,...,'centers',C)
glyphplot(X,...,'centers',C,'radius',r)
glyphplot(X,...,'obslabels',labels)
glyphplot(X,...,'standardize',method)
glyphplot(X,...,prop1,val1,...)
h = glyphplot(X,...)

Description
glyphplot(X) creates a star plot from the multivariate data in the n-by-p matrix X. Rows of X
correspond to observations, columns to variables. A star plot represents each observation as a “star”
whose ith spoke is proportional in length to the ith coordinate of that observation. glyphplot
standardizes X by shifting and scaling each column separately onto the interval [0,1] before making
the plot, and centers the glyphs on a rectangular grid that is as close to square as possible.
glyphplot treats NaNs in X as missing values, and does not plot the corresponding rows of X.
glyphplot(X,'glyph','star') is a synonym for glyphplot(X).

glyphplot(X,'glyph','face') creates a face plot from X. A face plot represents each
observation as a “face,” whose ith facial feature is drawn with a characteristic proportional to the ith
coordinate of that observation. The features are described in “Face Features” on page 35-3158.

glyphplot(X,'glyph','face','features',f) creates a face plot where the ith element of the
index vector f defines which facial feature will represent the ith column of X. f must contain integers
from 0 to 17, where 0 indicate that the corresponding column of X should not be plotted. See “Face
Features” on page 35-3158 for more information.

glyphplot(X,...,'grid',[rows,cols]) organizes the glyphs into a rows-by-cols grid.

glyphplot(X,...,'grid',[rows,cols],'page',p) organizes the glyph into one or more pages
of a rows-by-cols grid, and displays the page p. If p is a vector, glyphplot displays multiple pages
in succession. If p is 'all', glyphplot displays all pages. If p is 'scroll', glyphplot displays a
single plot with a scrollbar.

glyphplot(X,...,'centers',C) creates a plot with each glyph centered at the locations in the n-
by-2 matrix C.

glyphplot(X,...,'centers',C,'radius',r) creates a plot with glyphs positioned using C, and
scale the glyphs so the largest has radius r.
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glyphplot(X,...,'obslabels',labels) labels each glyph with the text in labels. By default,
the glyphs are labelled 1:N. Use '' for blank labels.

glyphplot(X,...,'standardize',method) standardizes X before making the plot. Choices for
method are

• 'column' — Maps each column of X separately onto the interval [0,1]. This is the default.
• 'matrix' — Maps the entire matrix X onto the interval [0,1].
• 'PCA' — Transforms X to its principal component scores, in order of decreasing eigenvalue, and

maps each one onto the interval [0,1].
• 'off' — No standardization. Negative values in X may make a star plot uninterpretable.

glyphplot(X,...,prop1,val1,...) sets properties to the specified property values for all line
graphics objects created by glyphplot.

h = glyphplot(X,...) returns a matrix of handles to the graphics objects created by glyphplot.
For a star plot, h(:,1) and h(:,2) contain handles to the line objects for each star's perimeter and
spokes, respectively. For a face plot, h(:,1) and h(:,2) contain object handles to the lines making
up each face and to the pupils, respectively. h(:,3) contains handles to the text objects for the
labels, if present.

Face Features

The following table describes the correspondence between the columns of the vector f, the value of
the 'Features' input parameter, and the facial features of the glyph plot. If X has fewer than 17
columns, unused features are displayed at their default value.

Column Facial Feature
1 Size of face
2 Forehead/jaw relative arc length
3 Shape of forehead
4 Shape of jaw
5 Width between eyes
6 Vertical position of eyes
7 Height of eyes
8 Width of eyes (this also affects eyebrow width)
9 Angle of eyes (this also affects eyebrow angle)
10 Vertical position of eyebrows
11 Width of eyebrows (relative to eyes)
12 Angle of eyebrows (relative to eyes)
13 Direction of pupils
14 Length of nose
15 Vertical position of mouth
16 Shape of mouth
17 Mouth arc length
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Examples

Star and Face Plots of Multivariate Data

Load the sample data.

load carsmall
X = [Acceleration Displacement Horsepower MPG Weight];

Create a star plot of the data in X . Standardize the data before plotting.

glyphplot(X,'standardize','column','obslabels',Model,'grid',[2 2],...
            'page','scroll');

Create a face plot of the data in X .

glyphplot(X,'glyph','face','obslabels',Model,'grid',[2 3],'page',9);
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Version History
Introduced before R2006a

See Also
andrewsplot | parallelcoords
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gmdistribution
Create Gaussian mixture model

Description
A gmdistribution object stores a Gaussian mixture distribution, also called a Gaussian mixture
model (GMM), which is a multivariate distribution that consists of multivariate Gaussian distribution
components. Each component is defined by its mean and covariance. The mixture is defined by a
vector of mixing proportions, where each mixing proportion represents the fraction of the population
described by a corresponding component.

Creation
You can create a gmdistribution model object in two ways.

• Use the gmdistribution function (described here) to create a gmdistribution model object
by specifying the distribution parameters.

• Use the fitgmdist function to fit a gmdistribution model object to data given a fixed number
of components.

Syntax
gm = gmdistribution(mu,sigma)
gm = gmdistribution(mu,sigma,p)

Description

gm = gmdistribution(mu,sigma) creates a gmdistribution model object using the specified
means mu and covariances sigma with equal mixing proportions.

gm = gmdistribution(mu,sigma,p) specifies the mixing proportions of multivariate Gaussian
distribution components.

Input Arguments

mu — Means
k-by-m numeric matrix

Means of multivariate Gaussian distribution components, specified as a k-by-m numeric matrix, where
k is the number of components and m is the number of variables in each component. mu(i,:) is the
mean of component i.
Data Types: single | double

sigma — Covariances
numeric vector | numeric matrix | numeric array

Covariances of multivariate Gaussian distribution components, specified as a numeric vector, matrix,
or array.

 gmdistribution

35-3161



Given that k is the number of components and m is the number of variables in each component,
sigma is one of the values in this table.

Value Description
m-by-m-by-k array sigma(:,:,i) is the covariance matrix of component i.
1-by-m-by-k array Covariance matrices are diagonal. sigma(1,:,i) contains the diagonal

elements of the covariance matrix of component i.
m-by-m matrix Covariance matrices are the same across components.
1-by-m vector Covariance matrices are diagonal and the same across components.

Data Types: single | double

p — Mixing proportions of mixture components
numeric vector of length k

Mixing proportions of mixture components, specified as a numeric vector of length k, where k is the
number of components. The default is a row vector of (1/k)s, which sets equal proportions. If p does
not sum to 1, gmdistribution normalizes it.
Data Types: single | double

Properties
Distribution Parameters

mu — Means
k-by-m numeric matrix

This property is read-only.

Means of multivariate Gaussian distribution components, specified as a k-by-m numeric matrix, where
k is the number of components and m is the number of variables in each component. mu(i,:) is the
mean of component i.

• If you create a gmdistribution object by using the gmdistribution function, then the mu
input argument of gmdistribution sets this property.

• If you fit a gmdistribution object to data by using the fitgmdist function, then fitgmdist
estimates this property.

Data Types: single | double

Sigma — Covariances
numeric vector | numeric matrix | numeric array

This property is read-only.

Covariances of multivariate Gaussian distribution components, specified as a numeric vector, matrix,
or array.

Given that k is the number of components and m is the number of variables in each component,
Sigma is one of the values in this table.
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Value Description
m-by-m-by-k array Sigma(:,:,i) is the covariance matrix of component i.
1-by-m-by-k array Covariance matrices are diagonal. Sigma(1,:,i) contains the diagonal

elements of the covariance matrix of component i.
m-by-m matrix Covariance matrices are the same across components.
1-by-m vector Covariance matrices are diagonal and the same across components.

• If you create a gmdistribution object by using the gmdistribution function, then the sigma
input argument of gmdistribution sets this property.

• If you fit a gmdistribution object to data by using the fitgmdist function, then fitgmdist
estimates this property.

Data Types: single | double

ComponentProportion — Mixing proportions of mixture components
1-by-k numeric vector

This property is read-only.

Mixing proportions of mixture components, specified as a 1-by-k numeric vector.

• If you create a gmdistribution object by using the gmdistribution function, then the p input
argument of gmdistribution sets this property.

• If you fit a gmdistribution object to data by using the fitgmdist function, then fitgmdist
estimates this property.

Data Types: single | double

Distribution Characteristics

CovarianceType — Type of covariance matrices
'diagonal' | 'full'

This property is read-only.

Type of covariance matrices, specified as either 'diagonal' or 'full'.

• If you create a gmdistribution object by using the gmdistribution function, then the type of
covariance matrices in the sigma input argument of gmdistribution sets this property.

• If you fit a gmdistribution object to data by using the fitgmdist function, then the
'CovarianceType' name-value pair argument of fitgmdist sets this property.

DistributionName — Distribution name
'gaussian mixture distribution' (default)

This property is read-only.

Distribution name, specified as 'gaussian mixture distribution'.

NumComponents — Number of mixture components
positive integer

This property is read-only.
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Number of mixture components, k, specified as a positive integer.

• If you create a gmdistribution object by using the gmdistribution function, then the input
arguments mu, sigma, and p of gmdistribution set this property.

• If you fit a gmdistribution object to data by using the fitgmdist function, then the k input
argument of fitgmdist sets this property.

Data Types: single | double

NumVariables — Number of variables
positive integer

This property is read-only.

Number of variables in the multivariate Gaussian distribution components, m, specified as a positive
integer.

• If you create a gmdistribution object by using the gmdistribution function, then the input
arguments mu, sigma, and p of gmdistribution set this property.

• If you fit a gmdistribution object to data by using the fitgmdist function, then the input data
X of fitgmdist sets this property.

Data Types: double

SharedCovariance — Flag indicating shared covariance
true | false

This property is read-only.

Flag indicating whether a covariance matrix is shared across mixture components, specified as true
or false.

• If you create a gmdistribution object by using the gmdistribution function, then the type of
covariance matrices in the sigma input argument of gmdistribution sets this property.

• If you fit a gmdistribution object to data by using the fitgmdist function, then the
'SharedCovariance' name-value pair argument of fitgmdist sets this property.

Data Types: logical

Properties for Fitted Object

The following properties apply only to a fitted object you create by using fitgmdist. The values of
these properties are empty if you create a gmdistribution object by using the gmdistribution
function.

AIC — Akaike Information Criterion
scalar

This property is read-only.

Akaike information criterion (AIC), specified as a scalar. AIC = 2*NlogL + 2*p, where NlogL is
the negative loglikelihood (the NegativeLogLikelihood property) and p is the number of
estimated parameters.
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AIC is a model selection tool you can use to compare multiple models fit to the same data. AIC is a
likelihood-based measure of model fit that includes a penalty for complexity, specifically, the number
of parameters. When you compare multiple models, a model with a smaller value of AIC is better.

This property is empty if you create a gmdistribution object by using the gmdistribution
function.
Data Types: single | double

BIC — Bayes Information Criterion
scalar

This property is read-only.

Bayes information criterion (BIC), specified as a scalar. BIC = 2*NlogL + p*log(n), where NlogL
is the negative loglikelihood (the NegativeLogLikelihood property), n is the number of
observations, and p is the number of estimated parameters.

BIC is a model selection tool you can use to compare multiple models fit to the same data. BIC is a
likelihood-based measure of model fit that includes a penalty for complexity, specifically, the number
of parameters. When you compare multiple models, a model with the lowest BIC value is the best
fitting model.

This property is empty if you create a gmdistribution object by using the gmdistribution
function.
Data Types: single | double

Converged — Flag indicating convergence
true | false

This property is read-only.

Flag indicating whether the Expectation-Maximization (EM) algorithm is converged when fitting a
Gaussian mixture model, specified as true or false.

You can change the optimization options by using the 'Options' name-value pair argument of
fitgmdist.

This property is empty if you create a gmdistribution object by using the gmdistribution
function.
Data Types: logical

NegativeLogLikelihood — Negative loglikelihood
scalar

This property is read-only.

Negative loglikelihood of the fitted Gaussian mixture model given the input data X of fitgmdist,
specified as a scalar.

This property is empty if you create a gmdistribution object by using the gmdistribution
function.
Data Types: single | double
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NumIterations — Number of iterations
positive integer

This property is read-only.

Number of iterations in the Expectation-Maximization (EM) algorithm, specified as a positive integer.

You can change the optimization options, including the maximum number of iterations allowed, by
using the 'Options' name-value pair argument of fitgmdist.

This property is empty if you create a gmdistribution object by using the gmdistribution
function.
Data Types: double

ProbabilityTolerance — Tolerance for posterior probabilities
nonnegative scalar value in range [0,1e-6]

This property is read-only.

Tolerance for posterior probabilities, specified as a nonnegative scalar value in the range [0,1e-6].

The 'ProbabilityTolerance' name-value pair argument of fitgmdist sets this property.

This property is empty if you create a gmdistribution object by using the gmdistribution
function.
Data Types: single | double

RegularizationValue — Regularization parameter value
nonnegative scalar

This property is read-only.

Regularization parameter value, specified as a nonnegative scalar.

The 'RegularizationValue' name-value pair argument of fitgmdist sets this property.

This property is empty if you create a gmdistribution object by using the gmdistribution
function.
Data Types: single | double

Object Functions
cdf Cumulative distribution function for Gaussian mixture distribution
cluster Construct clusters from Gaussian mixture distribution
mahal Mahalanobis distance to Gaussian mixture component
pdf Probability density function for Gaussian mixture distribution
posterior Posterior probability of Gaussian mixture component
random Random variate from Gaussian mixture distribution

Examples
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Create Gaussian Mixture Distribution Using gmdistribution

Create a two-component bivariate Gaussian mixture distribution by using the gmdistribution
function.

Define the distribution parameters (means and covariances) of two bivariate Gaussian mixture
components.

mu = [1 2;-3 -5];
sigma = cat(3,[2 .5],[1 1]) % 1-by-2-by-2 array

sigma = 
sigma(:,:,1) =

    2.0000    0.5000

sigma(:,:,2) =

     1     1

The cat function concatenates the covariances along the third array dimension. The defined
covariance matrices are diagonal matrices. sigma(1,:,i) contains the diagonal elements of the
covariance matrix of component i.

Create a gmdistribution object. By default, the gmdistribution function creates an equal
proportion mixture.

gm = gmdistribution(mu,sigma)

gm = 

Gaussian mixture distribution with 2 components in 2 dimensions
Component 1:
Mixing proportion: 0.500000
Mean:     1     2

Component 2:
Mixing proportion: 0.500000
Mean:    -3    -5

List the properties of the gm object.

properties(gm)

Properties for class gmdistribution:

    NumVariables
    DistributionName
    NumComponents
    ComponentProportion
    SharedCovariance
    NumIterations
    RegularizationValue
    NegativeLogLikelihood
    CovarianceType
    mu
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    Sigma
    AIC
    BIC
    Converged
    ProbabilityTolerance

You can access these properties by using dot notation. For example, access the
ComponentProportion property, which represents the mixing proportions of mixture components.

gm.ComponentProportion

ans = 1×2

    0.5000    0.5000

A gmdistribution object has properties that apply only to a fitted object. The fitted object
properties are AIC, BIC, Converged, NegativeLogLikelihood, NumIterations,
ProbabilityTolerance, and RegularizationValue. The values of the fitted object properties
are empty if you create an object by using the gmdistribution function and specifying distribution
parameters. For example, access the NegativeLogLikelihood property by using dot notation.

gm.NegativeLogLikelihood

ans =

     []

After you create a gmdistribution object, you can use the object functions. Use cdf and pdf to
compute the values of the cumulative distribution function (cdf) and the probability density function
(pdf). Use random to generate random vectors. Use cluster, mahal, and posterior for cluster
analysis.

Visualize the object by using pdf and fsurf.

gmPDF = @(x,y) arrayfun(@(x0,y0) pdf(gm,[x0 y0]),x,y);
fsurf(gmPDF,[-10 10])
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Fit Gaussian Mixture Model to Data Using fitgmdist

Generate random variates that follow a mixture of two bivariate Gaussian distributions by using the
mvnrnd function. Fit a Gaussian mixture model (GMM) to the generated data by using the
fitgmdist function.

Define the distribution parameters (means and covariances) of two bivariate Gaussian mixture
components.

mu1 = [1 2];          % Mean of the 1st component
sigma1 = [2 0; 0 .5]; % Covariance of the 1st component
mu2 = [-3 -5];        % Mean of the 2nd component
sigma2 = [1 0; 0 1];  % Covariance of the 2nd component

Generate an equal number of random variates from each component, and combine the two sets of
random variates.

rng('default') % For reproducibility
r1 = mvnrnd(mu1,sigma1,1000);
r2 = mvnrnd(mu2,sigma2,1000);
X = [r1; r2];

The combined data set X contains random variates following a mixture of two bivariate Gaussian
distributions.

 gmdistribution

35-3169



Fit a two-component GMM to X.

gm = fitgmdist(X,2)

gm = 

Gaussian mixture distribution with 2 components in 2 dimensions
Component 1:
Mixing proportion: 0.500000
Mean:   -2.9617   -4.9727

Component 2:
Mixing proportion: 0.500000
Mean:    0.9539    2.0261

List the properties of the gm object.

properties(gm)

Properties for class gmdistribution:

    NumVariables
    DistributionName
    NumComponents
    ComponentProportion
    SharedCovariance
    NumIterations
    RegularizationValue
    NegativeLogLikelihood
    CovarianceType
    mu
    Sigma
    AIC
    BIC
    Converged
    ProbabilityTolerance

You can access these properties by using dot notation. For example, access the
NegativeLogLikelihood property, which represents the negative loglikelihood of the data X given
the fitted model.

gm.NegativeLogLikelihood

ans = 7.0584e+03

After you create a gmdistribution object, you can use the object functions. Use cdf and pdf to
compute the values of the cumulative distribution function (cdf) and the probability density function
(pdf). Use random to generate random variates. Use cluster, mahal, and posterior for cluster
analysis.

Plot X by using scatter. Visualize the fitted model gm by using pdf and fcontour.

scatter(X(:,1),X(:,2),10,'.') % Scatter plot with points of size 10
hold on
gmPDF = @(x,y) arrayfun(@(x0,y0) pdf(gm,[x0 y0]),x,y);
fcontour(gmPDF,[-8 6])
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Version History
Introduced in R2007b

References
[1] McLachlan, G., and D. Peel. Finite Mixture Models. Hoboken, NJ: John Wiley & Sons, Inc., 2000.

See Also
fitgmdist

Topics
“Simulate Data from Gaussian Mixture Model” on page 5-127
“Cluster Using Gaussian Mixture Model” on page 17-39
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gname
Add case names to plot

Syntax
gname(cases)
gname
h = gname(cases,line_handle)

Description
gname(cases) displays a figure window and waits for you to press a mouse button or a keyboard
key. The input argument cases is a character array, string array, or cell array of character vectors, in
which each row of the character array or each element of the string array or cell array contains the
case name of a point. Moving the mouse over the graph displays a pair of cross-hairs. If you position
the cross-hairs near a point with the mouse and click once, the graph displays the label
corresponding to that point. Alternatively, you can click and drag the mouse to create a rectangle
around several points. When you release the mouse button, the graph displays the labels for all points
in the rectangle. Right-click a point to remove its label. When you are done labelling points, press the
Enter or Escape key to stop labeling.

gname with no arguments labels each case with its case number.

cases typically contains unique case names for each point, and is a string array, cell array of
character vectors, or character matrix with each row representing a name. cases can also be any
grouping variable, which gname converts to labels.

h = gname(cases,line_handle) returns a vector of handles to the text objects on the plot. Use
the scalar line_handle to identify the correct line if there is more than one line object on the plot.

You can use gname to label plots created by the plot, scatter, gscatter, plotmatrix, and
gplotmatrix functions.

Examples
This example uses the city ratings data sets to find out which cities are the best and worst for
education and the arts.

load cities
education = ratings(:,6);
arts = ratings(:,7);
plot(education,arts,'+')
gname(names)
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Click the point at the top of the graph to display its label, “New York.”

Version History
Introduced before R2006a

See Also
gtext | gscatter | gplotmatrix
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gpcdf
Generalized Pareto cumulative distribution function

Syntax
p = gpcdf(x,k,sigma,theta)
p = gpcdf(x,k,sigma,theta,'upper')

Description
p = gpcdf(x,k,sigma,theta) returns the cdf of the generalized Pareto (GP) distribution with the
tail index (shape) parameter k, scale parameter sigma, and threshold (location) parameter, theta,
evaluated at the values in x. The size of p is the common size of the input arguments. A scalar input
functions as a constant matrix of the same size as the other inputs.

p = gpcdf(x,k,sigma,theta,'upper') returns the complement of the cdf of the generalized
Pareto (GP) distribution, using an algorithm that more accurately computes the extreme upper tail
probabilities.

Default values for k, sigma, and theta are 0, 1, and 0, respectively.

When k = 0 and theta = 0, the GP is equivalent to the exponential distribution. When k > 0 and
theta = sigma/k, the GP is equivalent to a Pareto distribution with a scale parameter equal to
sigma/k and a shape parameter equal to 1/k. The mean of the GP is not finite when k ≥ 1, and the
variance is not finite when k ≥ 1/2. When k ≥ 0, the GP has positive density for

x > theta, or, when

k < 0, 0 ≤ x− θ
σ ≤ − 1

k .

Version History
Introduced before R2006a

References

[1] Embrechts, P., C. Klüppelberg, and T. Mikosch. Modelling Extremal Events for Insurance and
Finance. New York: Springer, 1997.

[2] Kotz, S., and S. Nadarajah. Extreme Value Distributions: Theory and Applications. London:
Imperial College Press, 2000.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.
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GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

This function fully supports GPU arrays. For more information, see “Run MATLAB Functions on a
GPU” (Parallel Computing Toolbox).

See Also
cdf | gppdf | gpinv | gpstat | gpfit | gplike | gprnd

Topics
“Generalized Pareto Distribution” on page B-60
“Working with Probability Distributions” on page 5-3
“Nonparametric and Empirical Probability Distributions” on page 5-31
“Fit a Nonparametric Distribution with Pareto Tails” on page 5-44
“Supported Distributions” on page 5-16
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gpfit
Generalized Pareto parameter estimates

Syntax
parmhat = gpfit(x)
[parmhat,parmci] = gpfit(x)
[parmhat,parmci] = gpfit(x,alpha)
[...] = gpfit(x,alpha,options)

Description
parmhat = gpfit(x) returns maximum likelihood estimates of the parameters for the two-
parameter generalized Pareto (GP) distribution given the data in x. parmhat(1) is the tail index
(shape) parameter, k and parmhat(2) is the scale parameter, sigma. gpfit does not fit a threshold
(location) parameter.

[parmhat,parmci] = gpfit(x) returns 95% confidence intervals for the parameter estimates.

[parmhat,parmci] = gpfit(x,alpha) returns 100(1-alpha)% confidence intervals for the
parameter estimates.

[...] = gpfit(x,alpha,options) specifies control parameters for the iterative algorithm used
to compute ML estimates. This argument can be created by a call to statset. See
statset('gpfit') for parameter names and default values.

Other functions for the generalized Pareto, such as gpcdf allow a threshold parameter, theta.
However, gpfit does not estimate theta. It is assumed to be known, and subtracted from x before
calling gpfit.

When k = 0 and theta = 0, the GP is equivalent to the exponential distribution. When k > 0 and
theta = sigma/k, the GP is equivalent to a Pareto distribution with a scale parameter equal to
sigma/k and a shape parameter equal to 1/k. The mean of the GP is not finite when k ≥ 1, and the
variance is not finite when k ≥ 1/2. When k ≥ 0, the GP has positive density for

k > theta, or, when k < 0, for

0 ≤ x− θ
σ ≤ − 1

k

Version History
Introduced before R2006a

References

[1] Embrechts, P., C. Klüppelberg, and T. Mikosch. Modelling Extremal Events for Insurance and
Finance. New York: Springer, 1997.
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[2] Kotz, S., and S. Nadarajah. Extreme Value Distributions: Theory and Applications. London:
Imperial College Press, 2000.

Extended Capabilities
GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

This function fully supports GPU arrays. For more information, see “Run MATLAB Functions on a
GPU” (Parallel Computing Toolbox).

See Also
mle | gplike | gppdf | gpcdf | gpinv | gpstat | gprnd

Topics
“Generalized Pareto Distribution” on page B-60
“Working with Probability Distributions” on page 5-3
“Nonparametric and Empirical Probability Distributions” on page 5-31
“Fit a Nonparametric Distribution with Pareto Tails” on page 5-44
“Supported Distributions” on page 5-16

 gpfit

35-3177



gpinv
Generalized Pareto inverse cumulative distribution function

Syntax
x = gpinv(p,k,sigma,theta)

Description
x = gpinv(p,k,sigma,theta) returns the inverse cdf for a generalized Pareto (GP) distribution
with tail index (shape) parameter k, scale parameter sigma, and threshold (location) parameter
theta, evaluated at the values in p. The size of x is the common size of the input arguments. A scalar
input functions as a constant matrix of the same size as the other inputs.

Default values for k, sigma, and theta are 0, 1, and 0, respectively.

When k = 0 and theta = 0, the GP is equivalent to the exponential distribution. When k > 0 and
theta = sigma/k, the GP is equivalent to a Pareto distribution with a scale parameter equal to
sigma/k and a shape parameter equal to 1/k. The mean of the GP is not finite when k ≥ 1, and the
variance is not finite when k ≥ 1/2. When k ≥ 0, the GP has positive density for

x > theta, or, when

k < 0, 0 ≤ x− θ
σ ≤ − 1

k .

Version History
Introduced before R2006a

References

[1] Embrechts, P., C. Klüppelberg, and T. Mikosch. Modelling Extremal Events for Insurance and
Finance. New York: Springer, 1997.

[2] Kotz, S., and S. Nadarajah. Extreme Value Distributions: Theory and Applications. London:
Imperial College Press, 2000.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

This function fully supports GPU arrays. For more information, see “Run MATLAB Functions on a
GPU” (Parallel Computing Toolbox).
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See Also
icdf | gpcdf | gppdf | gpstat | gpfit | gplike | gprnd

Topics
“Generalized Pareto Distribution” on page B-60
“Working with Probability Distributions” on page 5-3
“Nonparametric and Empirical Probability Distributions” on page 5-31
“Fit a Nonparametric Distribution with Pareto Tails” on page 5-44
“Supported Distributions” on page 5-16
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gplike
Generalized Pareto negative loglikelihood

Syntax
nlogL = gplike(params,data)
[nlogL,acov] = gplike(params,data)

Description
nlogL = gplike(params,data) returns the negative of the loglikelihood nlogL for the two-
parameter generalized Pareto (GP) distribution, evaluated at parameters params. params(1) is the
tail index (shape) parameter, k, and params(2) is the scale parameter. gplike does not allow a
threshold (location) parameter.

[nlogL,acov] = gplike(params,data) returns the inverse of Fisher's information matrix, acov.
If the input parameter values in params are the maximum likelihood estimates, the diagonal
elements of acov are their asymptotic variances. acov is based on the observed Fisher's information,
not the expected information.

When k = 0 and theta = 0, the GP is equivalent to the exponential distribution. When k > 0 and
theta = sigma/k, the GP is equivalent to a Pareto distribution with a scale parameter equal to
sigma/k and a shape parameter equal to 1/k. The mean of the GP is not finite when k ≥ 1, and the
variance is not finite when k ≥ 1/2. When k ≥ 0, the GP has positive density for

x > theta, or, when

k < 0, 0 ≤ x− θ
σ ≤ − 1

k .

Version History
Introduced before R2006a

References

[1] Embrechts, P., C. Klüppelberg, and T. Mikosch. Modelling Extremal Events for Insurance and
Finance. New York: Springer, 1997.

[2] Kotz, S., and S. Nadarajah. Extreme Value Distributions: Theory and Applications. London:
Imperial College Press, 2000.

Extended Capabilities
GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.
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This function fully supports GPU arrays. For more information, see “Run MATLAB Functions on a
GPU” (Parallel Computing Toolbox).

See Also
gpfit | gppdf | gpcdf | gpinv | gpstat | gprnd

Topics
“Generalized Pareto Distribution” on page B-60
“Working with Probability Distributions” on page 5-3
“Nonparametric and Empirical Probability Distributions” on page 5-31
“Fit a Nonparametric Distribution with Pareto Tails” on page 5-44
“Supported Distributions” on page 5-16
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gppdf
Generalized Pareto probability density function

Syntax
p = gppdf(x,k,sigma,theta)

Description
p = gppdf(x,k,sigma,theta) returns the pdf of the generalized Pareto (GP) distribution with the
tail index (shape) parameter k, scale parameter sigma, and threshold (location) parameter, theta,
evaluated at the values in x. The size of p is the common size of the input arguments. A scalar input
functions as a constant matrix of the same size as the other inputs.

Default values for k, sigma, and theta are 0, 1, and 0, respectively.

When k = 0 and theta = 0, the GP is equivalent to the exponential distribution. When k > 0 and
theta = sigma/k, the GP is equivalent to a Pareto distribution with a scale parameter equal to
sigma/k and a shape parameter equal to 1/k. The mean of the GP is not finite when k ≥ 1, and the
variance is not finite when k ≥ 1/2. When k ≥ 0, the GP has positive density for

x > theta, or, when

k < 0, 0 ≤ x− θ
σ ≤ − 1

k .

Version History
Introduced before R2006a

References

[1] Embrechts, P., C. Klüppelberg, and T. Mikosch. Modelling Extremal Events for Insurance and
Finance. New York: Springer, 1997.

[2] Kotz, S., and S. Nadarajah. Extreme Value Distributions: Theory and Applications. London:
Imperial College Press, 2000.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

This function fully supports GPU arrays. For more information, see “Run MATLAB Functions on a
GPU” (Parallel Computing Toolbox).

35 Functions

35-3182



See Also
pdf | gpcdf | gpinv | gpstat | gpfit | gplike | gprnd

Topics
“Generalized Pareto Distribution” on page B-60
“Working with Probability Distributions” on page 5-3
“Nonparametric and Empirical Probability Distributions” on page 5-31
“Fit a Nonparametric Distribution with Pareto Tails” on page 5-44
“Supported Distributions” on page 5-16
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gplotmatrix
Matrix of scatter plots by group

Syntax
gplotmatrix(X,[],group)
gplotmatrix(X,Y,group)
gplotmatrix(X,Y,group,clr,sym,siz)
gplotmatrix(X,Y,group,clr,sym,siz,doleg)
gplotmatrix(X,[],group,clr,sym,siz,doleg,dispopt)
gplotmatrix(X,[],group,clr,sym,siz,doleg,dispopt,xnam)
gplotmatrix(X,Y,group,clr,sym,siz,doleg,[],xnam,ynam)

gplotmatrix(parent, ___ )

[h,ax,bigax] = gplotmatrix( ___ )

Description
gplotmatrix(X,[],group) creates a matrix of scatter plots and histograms of the data in X,
grouped by the grouping variable in group. Each off-diagonal plot in the resulting figure is a scatter
plot of a column of X against another column of X. The software also plots the outlines of the grouped
histograms in the diagonal plots of the plot matrix. X and group must have the same number of rows.

gplotmatrix(X,Y,group) creates a matrix of scatter plots. Each plot in the resulting figure is a
scatter plot of a column of X against a column of Y. For example, if X has p columns and Y has q
columns, then the figure contains a q-by-p matrix of scatter plots. All plots are grouped by the
grouping variable group. The input arguments X, Y, and group must all have the same number of
rows.

gplotmatrix(X,Y,group,clr,sym,siz) specifies the marker color clr, symbol sym, and size
siz for each group.

gplotmatrix(X,Y,group,clr,sym,siz,doleg) controls whether a legend is displayed in the
figure. gplotmatrix creates a legend by default.

gplotmatrix(X,[],group,clr,sym,siz,doleg,dispopt) controls the display options for the
diagonal plots in the plot matrix of X.

gplotmatrix(X,[],group,clr,sym,siz,doleg,dispopt,xnam) labels the x-axes and y-axes of
the scatter plots using the column names specified in xnam. The input argument xnam must contain
one name for each column of X. Set dispopt to 'variable' to display the variable names along the
diagonal of the scatter plot matrix.

gplotmatrix(X,Y,group,clr,sym,siz,doleg,[],xnam,ynam) labels the x-axes and y-axes of
the scatter plots using the column names specified in xnam and ynam. The input arguments xnam and
ynam must contain one name for each column of X and Y, respectively.

gplotmatrix(parent, ___ ) creates the scatter plot matrix in the figure or panel specified by
parent. Specify parent as the first input argument followed by any of the input argument
combinations in the previous syntaxes.
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[h,ax,bigax] = gplotmatrix( ___ ) returns graphics handles to the individual plots and the
entire scatter plot matrix.

You can pass in [] for clr, sym, siz, doleg, and dispopt to use their default values.

Examples

Scatter Plots with Grouped Data

Create a matrix of scatter plots for each combination of variables in a data set. Group the data
according to a separate variable.

Load the fisheriris data set, which contains flower data. The four columns of meas are the sepal
length, sepal width, petal length, and petal width of the flowers. species contains the flower species
names: setosa, versicolor, and virginica. Visually compare the flower measurements across flower
species.

load fisheriris
gplotmatrix(meas,[],species)

In the matrix of scatter plots, the x-axis of the leftmost column of scatter plots corresponds to sepal
length, the first column in meas. Similarly, the y-axis of the bottom row of scatter plots corresponds to
petal width, the last column in meas. Therefore, the scatter plot in the bottom left of the matrix
compares sepal length values (along the x-axis) to petal width values (along the y-axis). The color of
each point depends on the species of the flower.
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The diagonal plots are histograms rather than scatter plots. For example, the plot in the top left of the
matrix shows the distribution of sepal length values for each species of flower.

Create Scatter Plot Matrix with Subset of Variables

Create scatter plots comparing a subset of the variables in a data set to another subset of variables.
Group the data according to a separate variable.

Load the discrim data set.

load discrim

The ratings array contains rating values of 329 US cities for the nine categories listed in the
categories array. The group array contains a city size code that is equal to 2 for the 26 largest
cities, and 1 otherwise.

Create a matrix of scatter plots to compare the first two categories, climate and housing, with the
fourth and seventh categories, crime and arts. Specify group as the grouping variable to visually
distinguish the data for large and small cities.

X = ratings(:,1:2);
Y = ratings(:,[4 7]);
gplotmatrix(X,Y,group)
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The matrix of scatter plots shows the specified comparisons, with each city size group represented by
a different color.

Adjust the appearance of the plots by specifying marker colors and symbols, and labeling the axes
with the rating categories.

xnames = categories(1:2,:);
ynames = categories([4 7],:);
gplotmatrix(X,Y,group,'br','.o',[],'on',[],xnames,ynames)

Scatter Plot Matrix with Multiple Grouping Variables

Create a matrix of scatter plots comparing data variables by using two grouping variables.

Load the patients data set. Compare patient diastolic and systolic blood pressure values. Group the
patients according to their gender and smoker status. Convert Smoker to a categorical variable to
have more descriptive labels in the legend. Display grouped histograms along the diagonal of the plot
matrix by using the 'grpbars' display option, and label the axes.

load patients
X = [Diastolic Systolic];
labeledSmoker = categorical(Smoker,[true false],{'Smoker','Nonsmoker'});
group = {Gender,labeledSmoker};
color = lines(4)
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color = 4×3

         0    0.4470    0.7410
    0.8500    0.3250    0.0980
    0.9290    0.6940    0.1250
    0.4940    0.1840    0.5560

xnames = {'Diastolic','Systolic'};
gplotmatrix(X,[],group,color,[],[],[],'grpbars',xnames)

For example, the scatter plot in the bottom left of the matrix shows that smokers (blue and yellow
markers) tend to have higher diastolic and systolic blood pressure values, regardless of gender.

Modify Scatter Plot Matrix Appearance

Create a matrix of scatter plots that display grouped data. Modify the appearance of one of the
scatter plots.

Load the carsmall data set. Create a scatter plot matrix using different car measurements. Group
the cars by the number of cylinders. Specify the group colors, and display the car variable names
along the diagonal of the plot matrix. Add a title to the plot matrix.
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load carsmall
X = [Acceleration Displacement Horsepower MPG Weight];
color = lines(3)

color = 3×3

         0    0.4470    0.7410
    0.8500    0.3250    0.0980
    0.9290    0.6940    0.1250

xnames = {'Acceleration','Displacement','Horsepower','MPG','Weight'};
[h,ax] = gplotmatrix(X,[],Cylinders,color,[],[],[],'variable',xnames);
title('Car Data')

Change the appearance of the scatter plot in the bottom left of the matrix by using h and ax. First,
change the colors of the data points in the scatter plot. Then, add grid lines to the scatter plot.

bottomleftPlot = h(5,1,:);
bottomleftPlot(1).Color = 'blue';
bottomleftPlot(2).Color = 'red';
bottomleftPlot(3).Color = 'yellow';

bottomleftAxes = ax(5,1);
bottomleftAxes.XGrid = 'on';
bottomleftAxes.YGrid = 'on';
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Input Arguments
X — Input data
numeric matrix | datetime array | duration array

Input data, specified as an n-by-p numeric matrix, datetime array, or duration array. gplotmatrix
creates a matrix of plots using the columns of X. If you do not specify an additional input matrix Y,
then gplotmatrix creates a p-by-p matrix of plots. The off-diagonal plots are scatter plots, and the
diagonal plots depend on the value of dispopt. In each scatter plot, gplotmatrix plots one column
of X against another column of X. The points in the scatter plots are grouped according to group.

If you specify Y, then gplotmatrix creates a q-by-p matrix of scatter plots using the p columns of X
and the q columns of Y.
Data Types: single | double | datetime | duration

Y — Input data
numeric matrix | datetime array | duration array

Input data, specified as an n-by-q numeric matrix, datetime array, or duration array. gplotmatrix
creates a q-by-p matrix of scatter plots using the p columns of X and the q columns of Y. For each
column of the plot matrix, the x-axis values of the scatter plots are the same as the values in the
corresponding column of X. Similarly, for each row of the plot matrix, the y-axis values of the scatter
plots are the same as the values in the corresponding column of Y. The points in the scatter plots are
grouped according to group.
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X and Y must have the same number of rows.
Data Types: single | double | datetime | duration

group — Grouping variable
categorical vector | numeric vector | logical vector | character array | string array | cell array

Grouping variable, specified as a categorical vector, numeric vector, logical vector, character array,
string array, or cell array of character vectors. Alternatively, group can be a cell array containing
several grouping variables (such as {g1 g2 g3}), in which case observations are in the same group
if they have common values of all grouping variables. In any case, group must have the same number
of rows as X. Points in the same group appear on the graph with the same marker color, symbol, and
size.
Example:
categorical({'blue','red','yellow','blue','yellow','red','red','yellow','blue
','red'})

Example: {Smoker,Gender} where Smoker and Gender are grouping variables
Data Types: categorical | single | double | logical | char | string | cell

clr — Marker colors
character vector | string scalar | string array | cell array of character vectors | matrix of RGB values

Marker colors, specified as one of the following:

• Character vector or string scalar of color short names.
• String array or cell array of character vectors designating color names or short names.
• Three-column matrix of RGB values in the range [0,1]. The three columns represent the R (red)

value, G (green) value, and B (blue) value.

You can choose among these predefined colors and their equivalent RGB triplets.

Color Name Short Name RGB Triplet Appearance
'red' 'r' [1 0 0]
'green' 'g' [0 1 0]
'blue' 'b' [0 0 1]
'cyan' 'c' [0 1 1]
'magenta' 'm' [1 0 1]
'yellow' 'y' [1 1 0]
'black' 'k' [0 0 0]
'white' 'w' [1 1 1]

When the total number of groups exceeds the number of specified colors, gplotmatrix cycles
through the specified colors.
Example: {'blue','black','green'}
Example: [0 0 1; 0 0.5 0.5; 0.5 0.5 0.5]
Data Types: char | string | cell | single | double
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sym — Marker symbols
'.' (default) | character vector | string scalar

Marker symbols, specified as a character vector or string scalar.

You can choose among these marker options.

Value Description
'o' Circle
'+' Plus sign
'*' Asterisk
'.' Point
'x' Cross
's' Square
'd' Diamond
'^' Upward-pointing triangle
'v' Downward-pointing triangle
'>' Right-pointing triangle
'<' Left-pointing triangle
'p' Five-pointed star (pentagram)
'h' Six-pointed star (hexagram)
'none' No markers

By default, gplotmatrix assigns '.' as the marker symbol for each group. When the total number
of groups exceeds the number of specified symbols, gplotmatrix cycles through the specified
symbols.
Example: 'x'
Example: 'xo+'
Data Types: char | string

siz — Marker sizes
positive numeric vector

Marker sizes, specified as a positive numeric vector. The default value is determined by the number of
observations. When the total number of groups exceeds the number of specified sizes, gplotmatrix
cycles through the specified sizes.
Example: [6 12]
Data Types: single | double

doleg — Option to include legend
'on' (default) | 'off'

Option to include a legend, specified as either 'on' or 'off'. By default, the legend is displayed in
the figure.
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dispopt — Display options for diagonal plots
'stairs' (default) | 'hist' | 'grpbars' | 'none' | 'variable'

Display options for the diagonal plots in the plot matrix, specified as 'stairs', 'hist','grpbars',
'none', or 'variable'. This table describes the different display options.

Value Description
'stairs' Plot the outlines of grouped histograms.
'hist' Plot histograms.
'grpbars' Plot grouped histograms.
'none' Display blank plots.
'variable' Display variable names. To use this display option, you must specify

xnam.

The default is 'stairs' when group contains more than one group. Otherwise, gplotmatrix
displays a single histogram in each diagonal plot.

To generate the histograms, gplotmatrix uses the 'pdf' type of normalization for numeric data
and the 'count' type of normalization for datetime and duration data. (See the 'Normalization'
name-value pair argument of histogram.) Note that the y-axis tick mark labels do not apply to the
histograms. Use data tips to see the correct histogram values.

xnam — X column names
character array | string array | cell array of character vectors

X column names, specified as a character array, string array, or cell array of character vectors. xnam
must contain one name for each column of X.
Example: {'Sepal Length','Sepal Width','Petal Length','Petal Width'}
Data Types: char | string | cell

ynam — Y column names
character array | string array | cell array of character vectors

Y column names, specified as a character array, string array, or cell array of character vectors. ynam
must contain one name for each column of Y.
Example: {'Diastolic','Systolic'}
Data Types: char | string | cell

parent — Parent container
Figure object | Panel object

Parent container, specified as a Figure or Panel object.

Output Arguments
h — Line handles to individual plots
array of Line and Histogram objects

Line handles to individual plots, returned as a one of these arrays:
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• p-by-p-by-k array of Line and Histogram objects if you do not specify Y
• q-by-p-by-k array of Line objects if you specify both X and Y

p is the number of columns in X, q is the number of columns in Y, and k is the number of unique
groups in group.

Each scatter plot has k corresponding Line objects in h, and each histogram has k corresponding
Histogram objects in h.

ax — Axes handles to individual plots
matrix of Axes objects

Axes handles to individual plots, returned as a matrix of Axes objects. If dispopt is 'hist',
'stairs', or 'grpbars', then ax contains one extra row of handles to invisible axes where the
histograms are plotted.

bigax — Axes handle to entire plot matrix
Axes object

Axes handle to the entire plot matrix, returned as an Axes object. bigax points to the current axes,
so a subsequent title, xlabel, or ylabel command produces labels that are centered with respect
to the entire plot matrix.

Version History
Introduced before R2006a

See Also
grpstats | gscatter | plotmatrix

Topics
“Create Scatter Plots Using Grouped Data” on page 4-2
“MANOVA” on page 9-49
“Grouping Variables” on page 2-46
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gprnd
Generalized Pareto random numbers

Syntax
r = gprnd(k,sigma,theta)
r = gprnd(k,sigma,theta,m,n,...)
R = gprnd(K,sigma,theta,[m,n,...])

Description
r = gprnd(k,sigma,theta) returns an array of random numbers chosen from the generalized
Pareto (GP) distribution with tail index (shape) parameter k, scale parameter sigma, and threshold
(location) parameter, theta. The size of r is the common size of the input arguments if all are arrays.
If any parameter is a scalar, the size of r is the size of the other parameters.

r = gprnd(k,sigma,theta,m,n,...) or R = gprnd(K,sigma,theta,[m,n,...]) generates
an m-by-n-by-... array. The k, sigma, theta parameters can each be scalars or arrays of the same size
as r.

When k = 0 and theta = 0, the GP is equivalent to the exponential distribution. When k > 0 and
theta = sigma/k, the GP is equivalent to a Pareto distribution with a scale parameter equal to
sigma/k and a shape parameter equal to 1/k. The mean of the GP is not finite when k ≥ 1, and the
variance is not finite when k ≥ 1/2. When k ≥ 0, the GP has positive density for

x > theta, or, when

0 ≤ x− θ
σ ≤ − 1

k

Version History
Introduced before R2006a

References

[1] Embrechts, P., C. Klüppelberg, and T. Mikosch. Modelling Extremal Events for Insurance and
Finance. New York: Springer, 1997.

[2] Kotz, S., and S. Nadarajah. Extreme Value Distributions: Theory and Applications. London:
Imperial College Press, 2000.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:
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The generated code can return a different sequence of numbers than MATLAB if either of the
following is true:

• The output is nonscalar.
• An input parameter is invalid for the distribution.

For more information on code generation, see “Introduction to Code Generation” on page 34-2 and
“General Code Generation Workflow” on page 34-5.

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

This function fully supports GPU arrays. For more information, see “Run MATLAB Functions on a
GPU” (Parallel Computing Toolbox).

See Also
random | gppdf | gpcdf | gpinv | gpstat | gpfit | gplike

Topics
“Generalized Pareto Distribution” on page B-60
“Working with Probability Distributions” on page 5-3
“Nonparametric and Empirical Probability Distributions” on page 5-31
“Fit a Nonparametric Distribution with Pareto Tails” on page 5-44
“Supported Distributions” on page 5-16
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gpstat
Generalized Pareto mean and variance

Syntax
[m,v] = gpstat(k,sigma,theta)

Description
[m,v] = gpstat(k,sigma,theta) returns the mean of and variance for the generalized Pareto
(GP) distribution with the tail index (shape) parameter k, scale parameter sigma, and threshold
(location) parameter, theta.

The default value for theta is 0.

When k = 0 and theta = 0, the GP is equivalent to the exponential distribution. When k > 0 and
theta = sigma/k, the GP is equivalent to a Pareto distribution with a scale parameter equal to
sigma/k and a shape parameter equal to 1/k. The mean of the GP is not finite when k ≥ 1, and the
variance is not finite when k ≥ 1/2. When k ≥ 0, the GP has positive density for x > theta, or when

k < 0, 0 ≤ x− θ
σ ≤ − 1

k .

Version History
Introduced before R2006a

References

[1] Embrechts, P., C. Klüppelberg, and T. Mikosch. Modelling Extremal Events for Insurance and
Finance. New York: Springer, 1997.

[2] Kotz, S., and S. Nadarajah. Extreme Value Distributions: Theory and Applications. London:
Imperial College Press, 2000.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

This function fully supports GPU arrays. For more information, see “Run MATLAB Functions on a
GPU” (Parallel Computing Toolbox).

See Also
gppdf | gpcdf | gpinv | gpfit | gplike | gprnd
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Topics
“Generalized Pareto Distribution” on page B-60
“Working with Probability Distributions” on page 5-3
“Nonparametric and Empirical Probability Distributions” on page 5-31
“Fit a Nonparametric Distribution with Pareto Tails” on page 5-44
“Supported Distributions” on page 5-16
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groupmeans
Mean response estimates for analysis of variance (ANOVA)

Syntax
means = groupmeans(aov)
means = groupmeans(aov,factors)
means = groupmeans( ___ ,Alpha=alpha)

Description
means = groupmeans(aov) returns a table of mean response estimates, standard errors, and 95%
confidence intervals for each value of the factor in a one-way ANOVA.

means = groupmeans(aov,factors) returns means with information for each unique
combination of values of the factors specified in factors.

means = groupmeans( ___ ,Alpha=alpha) specifies the confidence level of the confidence
intervals to be 100(1− α)%.

Examples

Inspect One-Way ANOVA Group Means

Load the sample data.

load carbig.mat

Create a table that has variables for acceleration and horsepower category. Obtain the horsepower
categories by sorting the variable Horsepower into three horsepower ranges.

tbl = table(Acceleration);
tbl.HorsepowerCats = discretize(Horsepower,[0 100 200 300])

tbl=406×2 table
    Acceleration    HorsepowerCats
    ____________    ______________

          12              2       
        11.5              2       
          11              2       
          12              2       
        10.5              2       
          10              2       
           9              3       
         8.5              3       
          10              3       
         8.5              2       
        17.5              2       
        11.5              2       
          11              2       
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        10.5              2       
          11              2       
          10              2       
      ⋮

Perform a one-way ANOVA to test the null hypothesis that the mean acceleration time is the same
across the three horsepower ranges.

aov = anova(tbl,"Acceleration")

aov = 
1-way anova, constrained (Type III) sums of squares.

Acceleration ~ 1 + HorsepowerCats

                      SumOfSquares    DF     MeanSquares      F         pValue  
                      ____________    ___    ___________    ______    __________

    HorsepowerCats       975.93         2      487.96       89.571    7.8471e-33
    Error                2162.8       397      5.4478                           
    Total                3138.7       399                                       

  Properties, Methods

The small p-value indicates that the mean acceleration time is different for at least one of the
horsepower categories. Investigate which horsepower ranges have different mean acceleration times
by inspecting the means of the horsepower categories.

means = groupmeans(aov)

means=3×5 table
    HorsepowerCats     Mean       SE       MeanLower    MeanUpper
    ______________    ______    _______    _________    _________

          1           16.804    0.15526     16.498        17.11  
          2           13.969    0.18282     13.608        14.33  
          3           11.136    0.70374     9.5683       12.704  

The table means shows that each category has a mean that is outside the 95% confidence intervals of
the mean estimates for the other categories. Therefore, the mean acceleration time is significantly
different for all three horsepower categories.

Inspect Two-Way ANOVA Group Means

Load the car mileage sample data.

load mileage.mat

The columns of the 6-by-3 matrix mileage contain mileage data for three car models. The first three
rows contain data for cars built at one factory, and the last three rows contain data for cars built at
another factory.
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Convert mileage to a vector.

mileage = mileage(:);

Create string arrays of factor values for the factory and car model factors using the function repmat.

factory = repmat(["factory1";"factory1";"factory1";...
    "factory2";"factory2";"factory2"], [3, 1]);
model = [repmat("model1",6,1);...
    repmat("model2",6,1);repmat("model3",6,1)];
factors = {factory,model};

Perform a two-way ANOVA to test the null hypothesis that car mileage is not affected by the factory
or car model factors.

aov = anova(factors,mileage,FactorNames=["Factory","Model"])

aov = 
2-way anova, constrained (Type III) sums of squares.

Y ~ 1 + Factory + Model

               SumOfSquares    DF    MeanSquares      F         pValue  
               ____________    __    ___________    ______    __________

    Factory        1.445        1        1.445      14.382     0.0019807
    Model         53.351        2       26.676      265.49    7.3827e-12
    Error         1.4067       14      0.10048                          
    Total         56.203       17                                       

  Properties, Methods

The small p-values indicate that the model of a car has a more significant effect on car mileage than
the factory in which the car was manufactured.

To investigate which car models have different mileages at the 99% confidence level, inspect the
group means.

means = groupmeans(aov,"Model",Alpha=0.01)

means=3×5 table
     Model       Mean       SE       MeanLower    MeanUpper
    ________    ______    _______    _________    _________

    "model1"     32.95    0.12941     32.428       33.472  
    "model2"    34.017    0.12941     33.495       34.538  
    "model3"    37.017    0.12941     36.495       37.538  

The table shows that the 99% confidence intervals of all car models do not overlap. Therefore, all
three models have statistically significant differences in mean car mileage at the 99% confidence
level.
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Input Arguments
aov — ANOVA results
anova object

ANOVA results, specified as an anova object. The properties of aov contain the factors and response
data used by groupmeans to compute the mean responses.

factors — Factors used to group response data
string vector | cell array of character vectors

Factors used to group the response data, specified as a string vector or cell array of character
vectors. The groupmeans function groups the response data by the combinations of values for the
factors in factors. The factors argument must be one or more of the names in
aov.FactorNames.
Example: ["g1","g2"]
Data Types: string | cell

alpha — Significance level
0.05 (default) | scalar value in the range (0,1)

Significance level for the estimates, specified as a scalar value in the range (0,1). The confidence level
of the confidence intervals is 100(1− α)%. The default value for alpha is 0.05, which returns 95%
confidence intervals for the estimates.
Example: Alpha=0.01
Data Types: single | double

Output Arguments
means — Mean response estimates, standard errors, and confidence intervals
table

Mean response estimates, standard errors, and confidence intervals, returned as a table. The table
means has one row per unique combination of factor values. If aov is a one-way anova object, means
has a column corresponding to the single factor. If aov is a two- or N-way anova object, means
contains a column for each factor specified in factors. In addition to the factor columns, means
contains the following:

• Mean — Estimate of the mean response of the factor value
• SE — Standard error of the mean estimate
• MeanLower — 95% lower confidence bound of the mean estimate
• MeanUpper — 95% upper confidence bound of the mean estimate

Version History
Introduced in R2022b
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See Also
multcompare | plotComparisons | anova | “One-Way ANOVA” on page 9-2 | “Two-Way ANOVA” on
page 9-11 | “N-Way ANOVA” on page 9-26
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growTrees
Train additional trees and add to ensemble

Syntax
B = growTrees(B,ntrees)
B = growTrees(B,ntrees,'param1',val1,'param2',val2,...)

Description
B = growTrees(B,ntrees) grows ntrees new trees and appends them to those trees already
stored in the ensemble B.

B = growTrees(B,ntrees,'param1',val1,'param2',val2,...) specifies optional parameter
name/value pairs:

'NumPrint' Specifies that a diagnostic message showing training progress should
display after every value training cycles (grown trees). Default is no
diagnostic messages.
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'Options' A struct that specifies options that govern computation when
growing the ensemble of decision trees. One option requests that the
computation of decision trees on multiple bootstrap replicates uses
multiple processors, if the Parallel Computing Toolbox is available. Two
options specify the random number streams to use in selecting
bootstrap replicates. You can create this argument with a call to
statset. You can retrieve values of the individual fields with a call to
statget. Applicable statset parameters are:

• 'UseParallel' — If true and Parallel Computing Toolbox is
installed, then the software uses an existing parallel pool for
parallel trees, or, depending on parallel preferences, the software
opens and uses a new pool if none is currently open. Otherwise, the
software computes in serial. Default is false, meaning serial
computation.

For dual-core systems and above, TreeBagger parallelizes training
using Intel Threading Building Blocks (TBB). Therefore, using the
'UseParallel' option on a single computer may not speed up
computation much and may consume more memory than in serial.
For details on Intel TBB, see https://www.intel.com/
content/www/us/en/developer/tools/oneapi/onetbb.html.

• UseSubstreams — Set to true to compute in parallel in a
reproducible fashion. Default is false. To compute reproducibly,
set Streams to a type allowing substreams: 'mlfg6331_64' or
'mrg32k3a'.

• Streams — A RandStream object or cell array of such objects. If
you do not specify Streams, growTrees uses the default stream or
streams. If you choose to specify Streams, use a single object
except in the case

• UseParallel is true
• UseSubstreams is false

In that case, use a cell array the same size as the Parallel pool.

Extended Capabilities
Automatic Parallel Support
Accelerate code by automatically running computation in parallel using Parallel Computing Toolbox™.

To run in parallel, specify the 'Options' name-value argument in the call to this function and set the
'UseParallel' field of the options structure to true using statset.

For example: 'Options',statset('UseParallel',true)

For more information about parallel computing, see “Run MATLAB Functions with Automatic Parallel
Support” (Parallel Computing Toolbox).

See Also
TreeBagger | fitctree | fitrtree | statset | statget
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grp2idx
Create index vector from grouping variable

Syntax
[g,gN] = grp2idx(s)
[g,gN,gL] = grp2idx(s)

Description
[g,gN] = grp2idx(s) creates an index vector g from the grouping variable s. The output g is a
vector of integer values from 1 up to the number K of distinct groups. gN is a cell array of character
vectors representing the list of group names.

[g,gN,gL] = grp2idx(s) also returns a column vector gL representing the list of the group levels
with the same data type as s.

Examples

Create Index Vector from Categorical Vector

Create a categorical vector by using discretize and convert it to an index vector by using
grp2idx.

Load the hospital data set and convert the ages in hospital.Ages to categorical values
representing the ages by decade.

load hospital
edges = 0:10:100; % Bin edges
labels = strcat(num2str((0:10:90)','%d'),{'s'}); % Labels for the bins
s = discretize(hospital.Age,edges,'Categorical',labels);

Display the ages and the groups of ages for the first five samples.

ages = hospital.Age(1:5)

ages = 5×1

    38
    43
    38
    40
    49

groups = s(1:5)

groups = 5x1 categorical
     30s 
     40s 
     30s 
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     40s 
     40s 

Create an index vector from the categorical vector s.

[g,gN,gL] = grp2idx(s);

Display the index values corresponding to the first five samples.

g(1:5)

ans = 5×1

     4
     5
     4
     5
     5

Reproduce the input argument s using the output gL.

gL(g(1:5))

ans = 5x1 categorical
     30s 
     40s 
     30s 
     40s 
     40s 

Use gN(g) to reproduce the input argument s as a cell array of character vectors.

gN(g(1:5))

ans = 5x1 cell
    {'30s'}
    {'40s'}
    {'30s'}
    {'40s'}
    {'40s'}

Input Arguments
s — Grouping variable
categorical vector | numeric vector | logical vector | datetime vector | duration vector | string array |
cell array of character vectors | character array

Grouping variable, specified as a categorical, numeric, logical, datetime, or duration vector, a string
array, a cell array of character vectors, or a character array with each row representing a group
label.

grp2idx treats NaNs (numeric, duration, or logical), '' (empty character arrays or cell arrays of
character vectors), "" (empty strings), <missing> values (string), <undefined> values
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(categorical), and NaTs (datetime) in s as missing values and returns NaNs in the corresponding
rows of g. The outputs gN and gL do not include entries for missing values.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
logical | char | string | cell | categorical | datetime | duration

Output Arguments
g — Group index
positive integer vector

Group index, returned as a positive integer vector with values from 1 up to the number K of distinct
groups in s.

gN — List of group names
cell array of character vectors

List of group names, returned as a cell array of character vectors.

The order of gN depends on the data type of the grouping variable s.

• For numeric and logical vectors, the order is the sorted order of s.
• For categorical vectors, the order is the order of categories(s).
• For other data types, the order is the order of first appearance in s.

gN(g) reproduces the contents of s in a cell array.

gL — List of group levels
categorical vector | numeric vector | logical vector | datetime vector | duration vector | cell array of
character vectors | character array

List of group levels, returned as the same data type as s: a categorical, numeric, logical, datetime,
or duration vector, a cell array of character vectors, or a character array with each row representing
a group label. (The software treats string arrays as cell arrays of character vectors.)

The set of groups and their order in gL are the same as those in gN, but gL has the same data type as
s.

If s is a character matrix, then gL(g,:) reproduces s; otherwise, gL(g) reproduces s.

Version History
Introduced before R2006a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:
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• The input argument s can be a numeric, logical, or character vector or a cell array of character
vectors. Code generation does not support a categorical, datetime, or duration vector or a string
array for the input argument.

• In the generated code, the second and third outputs, gN and gL, are identical. gN and gL have the
same data type as the input argument s.

For more information on code generation, see “Introduction to Code Generation” on page 34-2 and
“General Code Generation Workflow” on page 34-5.

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

This function fully supports GPU arrays. For more information, see “Run MATLAB Functions on a
GPU” (Parallel Computing Toolbox).

See Also
gscatter | grpstats | crosstab | findgroups | categories

Topics
“Grouping Variables” on page 2-46
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grpstats
Summary statistics organized by group

Syntax
tblstats = grpstats(tbl,groupvars)
tblstats = grpstats(tbl,groupvars,whichstats)
tblstats = grpstats(tbl,groupvars,whichstats,Name,Value)

stats = grpstats(X,group)
[stats1,...,statsN] = grpstats(X,group,whichstats)
[stats1,...,statsN] = grpstats(X,group,whichstats,"Alpha",a)

grpstats(X,group,alpha)

Description
tblstats = grpstats(tbl,groupvars) returns a table with group summary statistics for the
variables in the table tbl, where the function determines the groups according to the grouping
variables in tbl specified by groupvars.

If all variables in tbl (other than the grouping variables) are numeric or logical, then the summary
statistic is the mean of each group for each variable in tbl. Otherwise, the summary statistic is the
number of elements in each group. tblstats contains a row for each observed unique value or
combination of values in the grouping variables.

tblstats = grpstats(tbl,groupvars,whichstats) specifies the summary statistic types
whichstats.

tblstats = grpstats(tbl,groupvars,whichstats,Name,Value) specifies additional options
using one or more name-value arguments. For example, "DataVars",[2,4] instructs the function to
compute summary statistics for the second and fourth variables in tbl.

stats = grpstats(X,group) returns an array with group summary statistics for the columns of
the matrix X, where the function determines the groups by the grouping variables in group.

If X is a numeric or logical matrix, then the summary statistic is the mean of each group for each
column of X. Otherwise, the summary statistic is the number of elements in each group. stats
contains a row for each observed unique combination of the grouping variables.

[stats1,...,statsN] = grpstats(X,group,whichstats) specifies the summary statistic
types whichstats and returns an array for each summary statistic.

[stats1,...,statsN] = grpstats(X,group,whichstats,"Alpha",a) also specifies the
significance level a for confidence and prediction intervals.

grpstats(X,group,alpha) plots the group means of data in the numeric or logical matrix X,
grouped by the variables in group. The function also plots the 100×(1 – alpha)% confidence interval
for each group mean. The grouping variable values are on the horizontal plot axis.
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• If X is a matrix, then grpstats plots the means and confidence intervals for each column of X.
• If group is a cell array of grouping variables, then grpstats plots the means and confidence

intervals for the groups determined by the observed unique combinations of the grouping
variables.

Examples

Group Summary Statistics for Table Input

Compute summary statistics for input data in a table. Group the input data using one or two grouping
variables, and specify one or two types of summary statistics to compute.

Load the patients data set.

load patients

Create a table that contains the variables Gender, Age, Weight, and Smoker.

tbl = table(Gender,Age,Weight,Smoker);

Gender is a cell array with the two unique values Male and Female. The variables Age and Weight
have numeric values, and Smoker has logical values.

Compute the mean for the numeric and logical arrays in tbl grouped by Gender.

tblstats1 = grpstats(tbl,"Gender")

tblstats1=2×5 table
                Gender      GroupCount    mean_Age    mean_Weight    mean_Smoker
              __________    __________    ________    ___________    ___________

    Male      {'Male'  }        47         38.915       180.53         0.44681  
    Female    {'Female'}        53         37.717       130.47         0.24528  

tblstats1 is a table with two rows corresponding to the unique values in Gender. The GroupCount
column shows the number of observations in each group. The columns mean_Age, mean_Weight,
and mean_Smoker show the means of Age, Weight, and Smoker grouped by Gender.

Compute the mean for Age and Weight grouped by the values in Smoker. Specify Age and Weight
as the variables for which you want to compute summary statistics by using the DataVars name-
value argument. You must use DataVars because the input tbl includes the Gender variable, which
is a cell array, and the built-in summary statistic mean is valid only for numeric and logical arrays.

tblstats2 = grpstats(tbl,"Smoker","mean","DataVars",["Age","Weight"])

tblstats2=2×4 table
         Smoker    GroupCount    mean_Age    mean_Weight
         ______    __________    ________    ___________

    0    false         66          37.97       149.91   
    1    true          34         38.882       161.94   

Compute the minimum and maximum weight grouped by the combinations of values for Gender and
Smoker.
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tblstats3 = grpstats(tbl,["Gender","Smoker"],["min","max"], ...
    "DataVars","Weight")

tblstats3=4×5 table
                  Gender      Smoker    GroupCount    min_Weight    max_Weight
                __________    ______    __________    __________    __________

    Male_0      {'Male'  }    false         26           158           194    
    Male_1      {'Male'  }    true          21           164           202    
    Female_0    {'Female'}    false         40           111           147    
    Female_1    {'Female'}    true          13           115           146    

Smoker and Gender each have two unique values, so the output table includes four rows for the
possible combinations: Male Nonsmoker (Male_0), Male Smoker (Male_1), Female Nonsmoker
(Female_0), and Female Smoker (Female_1).

Specify the names for the columns in the output by using the VarNames name-value argument.

tblstats4 = grpstats(tbl,["Gender","Smoker"],["min","max"], ...
    "DataVars","Weight", ...
    "VarNames",["Gender","Smoker","Group Count", ...
    "Lowest Weight","Highest Weight"])

tblstats4=4×5 table
                  Gender      Smoker    Group Count    Lowest Weight    Highest Weight
                __________    ______    ___________    _____________    ______________

    Male_0      {'Male'  }    false         26              158              194      
    Male_1      {'Male'  }    true          21              164              202      
    Female_0    {'Female'}    false         40              111              147      
    Female_1    {'Female'}    true          13              115              146      

Group Means for Matrix Input

Compute group means for input data in a matrix. Group the input data using one or two grouping
variables.

Load the carsmall data set, which contains measurements of 100 cars.

load carsmall

Compute group means for the variable Acceleration grouped by the variables Origin and
Cylinders. The variable Acceleration is the time from 0 to 60 MPH in seconds. The grouping
variable Origin is the country of origin for each car (France, Germany, Italy, Japan, Sweden, or
USA). The grouping variable Cylinders has three unique values, 4, 6, and 8, indicating the number
of cylinders in each car.

Calculate the mean acceleration grouped by the country of origin.

means = grpstats(Acceleration,Origin)

means = 6×1
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   14.4377
   18.0500
   15.8867
   16.3778
   16.6000
   15.5000

means is a 6-by-1 vector of mean accelerations, where each value corresponds to a country of origin.

Calculate the mean acceleration grouped by both the country of origin and number of cylinders.
Return the group names along with the mean acceleration for each group.

[means,grps] = grpstats(Acceleration,{Origin,Cylinders}, ...
    ["mean","gname"])

means = 10×1

   17.0818
   16.5267
   11.6406
   18.0500
   15.9143
   15.5000
   16.3375
   16.7000
   16.6000
   15.5000

grps = 10x2 cell
    {'USA'    }    {'4'}
    {'USA'    }    {'6'}
    {'USA'    }    {'8'}
    {'France' }    {'4'}
    {'Japan'  }    {'4'}
    {'Japan'  }    {'6'}
    {'Germany'}    {'4'}
    {'Germany'}    {'6'}
    {'Sweden' }    {'4'}
    {'Italy'  }    {'4'}

The two grouping variables Origin and Cylinders have 18 possible combinations because Origin
has six unique values and Cylinders has three unique values. Only 10 of the possible combinations
appear in the data, so means is a 10-by-1 vector of group means corresponding to the observed
combinations of values. The output grps shows the 10 observed combinations of grouping variable
values. For example, the mean acceleration of 4-cylinder cars made in France is 18.05.

Multiple Group Summary Statistics for Matrix Input

Compute multiple group summary statistics for input data in a matrix.

Load the carsmall data set, which contains measurements of 100 cars.

load carsmall
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Compute group summary statistics for the variable Acceleration grouped by the variable Origin.
The variable Acceleration is the time from 0 to 60 MPH in seconds, and the grouping variable
Origin is the country of origin for each car (France, Germany, Italy, Japan, Sweden, or USA).

Return the minimum and maximum acceleration grouped by the country of origin.

[grpMin,grpMax,grp] = grpstats(Acceleration,Origin, ...
    ["min","max","gname"])

grpMin = 6×1

    8.0000
   15.3000
   13.9000
   12.2000
   15.7000
   15.5000

grpMax = 6×1

   22.2000
   21.9000
   18.2000
   24.6000
   17.5000
   15.5000

grp = 6x1 cell
    {'USA'    }
    {'France' }
    {'Japan'  }
    {'Germany'}
    {'Sweden' }
    {'Italy'  }

The car with the lowest acceleration is made in the USA, and the car with the highest acceleration is
made in Germany.

Summary Statistics Without Grouping

Compute summary statistics for input data in a table. Pass in [] for the grouping variable so that
grpstats computes summary statistics without grouping.

Load the patients data set.

load patients

Create a table that contains the variables Age, Weight, and Smoker.

tbl = table(Age,Weight,Smoker);

The variables Age and Weight have numeric values, and Smoker has logical values.
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Compute the mean, minimum, and maximum for the numeric arrays Age and Weight and the logical
array Smoker, with no grouping.

tblstats = grpstats(tbl,[],["mean","min","max"])

tblstats=1×10 table
           GroupCount    mean_Age    min_Age    max_Age    mean_Weight    min_Weight    max_Weight    mean_Smoker    min_Smoker    max_Smoker
           __________    ________    _______    _______    ___________    __________    __________    ___________    __________    __________

    All       100         38.28        25         50           154           111           202           0.34          false         true    

The observation name All indicates that grpstats uses all observations in tbl to compute the
summary statistics.

Plot Prediction Intervals for New Observation in Each Group

Compute and plot means and prediction intervals for each group of input data in a matrix.

Load the carsmall data set, which contains measurements of 100 cars.

load carsmall

Compute group summary statistics for the variable Weight grouped by the variable Model_Year.
The variable Weight contains car weight values, and the grouping variable Model_Year has three
unique values, 70, 76, and 82, which correspond to the model years 1970, 1976, and 1982.

Calculate the mean weight and 90% prediction intervals for each model year.

[means,pred,grp] = grpstats(Weight,Model_Year, ...
    ["mean","predci","gname"],"Alpha",0.1);

Plot error bars showing the mean weight and 90% prediction intervals grouped by model year.
Specify the horizontal tick labels as the group names.

f = figure;
ngrps = length(grp); % Number of groups
errorbar((1:ngrps)',means,pred(:,2)-means)
xlim([0.5 3.5])
f.CurrentAxes.XTick = 1:ngrps;
f.CurrentAxes.XTickLabel = grp;
title("90% Prediction Intervals for Weight by Year")
xlabel("Year")
ylabel("Weight")
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Plot Group Means and Confidence Intervals for Matrix Input

Plot group means and confidence intervals for input data in a matrix. Group the input data using one
or two grouping variables, and specify one or two variables for which you want to plot the summary
statistics.

Load the carsmall data set, which contains measurements of 100 cars.

load carsmall

The variable Acceleration is the time from 0 to 60 MPH in seconds. The grouping variable
Cylinders is the number of cylinders in each car.

Plot the mean acceleration grouped by cylinder, with 95% confidence intervals.

grpstats(Acceleration,Cylinders,0.05);
legend("Acceleration")
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The mean acceleration for cars with 8 cylinders is significantly lower than for cars with 4 or 6
cylinders.

The variable Weight is the weight value for each car. Plot the mean acceleration and weight grouped
by cylinder, with 95% confidence intervals. Scale the Weight values by 1000 so the means of Weight
and Acceleration are the same order of magnitude.

grpstats([Acceleration,Weight/1000],Cylinders,0.05);
legend("Acceleration","Weight/1000")
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The mean weight of cars increases with the number of cylinders, and the mean acceleration
decreases with the number of cylinders.

The Model_Year variable has three unique values, 70, 76, and 82, which correspond to the model
years 1970, 1976, and 1982. Plot the mean acceleration grouped by both cylinder and model year.
Specify 95% confidence intervals.

grpstats(Acceleration,{Cylinders,Model_Year},0.05);
legend("Acceleration")
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The two grouping variables Cylinders and Model_Year have nine possible combinations of values,
because each variable has three unique values. The plot does not show 8-cylinder cars with the model
year 1982 because the data does not include this combination.

The mean acceleration of 8-cylinder cars made in 1976 is significantly larger than the mean
acceleration of 8-cylinder cars made in 1970.

Compute Custom Summary Statistics

Define a custom summary statistic by using an anonymous function. Pass the anonymous function to
grpstats to compute the custom summary statistic for each group of input data.

Load the patients data set.

load patients

Create a table that contains the variables Age, Smoker, and LastName.

tbl = table(Age,Smoker,LastName);

Find the number of smokers for each age group by using a custom function that computes the sum of
each column of an input matrix.
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f_sum = @(x)sum(x,1);
tblstats1 = grpstats(tbl,"Age",f_sum,"DataVars","Smoker", ...
    "VarNames",["Age","Group Count","Number of Smokers"])

tblstats1=25×3 table
          Age    Group Count    Number of Smokers
          ___    ___________    _________________

    25    25          6                 1        
    27    27          1                 1        
    28    28          5                 2        
    29    29          3                 0        
    30    30          4                 1        
    31    31          4                 2        
    32    32          4                 1        
    33    33          3                 3        
    34    34          1                 0        
    35    35          2                 0        
    36    36          4                 0        
    37    37          5                 2        
    38    38          6                 2        
    39    39          8                 3        
    40    40          4                 1        
    41    41          3                 0        
      ⋮

tblstats1 is a table with 25 rows corresponding to the unique values in Age. The Group Count
column shows the number of observations in each age group, and the last column shows the number
of smokers in each group.

Determine the mean length of the last name for each age group by using a custom function that
computes the mean length of the elements in a cell array.

f_length = @(x)mean(cellfun("length",x));
tblstats2 = grpstats(tbl,"Age",f_length,"DataVars","LastName", ...
    "VarNames",["Age","Group Count","Mean Length of Last Name"])

tblstats2=25×3 table
          Age    Group Count    Mean Length of Last Name
          ___    ___________    ________________________

    25    25          6                  5.6667         
    27    27          1                       6         
    28    28          5                     5.4         
    29    29          3                  5.6667         
    30    30          4                     6.5         
    31    31          4                    5.25         
    32    32          4                     6.5         
    33    33          3                  6.3333         
    34    34          1                       9         
    35    35          2                     7.5         
    36    36          4                    6.25         
    37    37          5                     8.2         
    38    38          6                  5.8333         
    39    39          8                   6.125         
    40    40          4                     5.5         
    41    41          3                  5.3333         
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      ⋮

Input Arguments
tbl — Input data
table

Input data, specified as a table. tbl must include at least one grouping variable, which you specify
using groupvars. You can select variables for which to calculate summary statistics by using the
DataVars name-value argument.

Each variable in tbl can be a numeric, logical, categorical, datetime, duration, or calendar duration
vector, a character or string array, or a cell array of character vectors. You cannot specify a calendar
duration vector as a grouping variable.

groupvars — Identifiers for grouping variables in tbl
character vector | string array | cell array of character vectors | vector of positive integers | logical
vector | []

Identifiers for the grouping variables in the table input tbl, specified as one of the values in this
table.

Value Description
Character vector, string array, or cell array of
character vectors

Names of the grouping variables

Vector of positive integers Variable numbers of the grouping variables
Vector of logical values with the number of
elements equal to the number of variables in tbl

Logical indicator with the value true for
grouping variables and false otherwise

[] No groups (returns summary statistics for all
data)

The variables specified by groupvars as grouping variables must have a data type that is valid for
grouping variables: numeric, logical, categorical, datetime, or duration vector; character or string
array; or cell array of character vectors.

For example, consider an input table tbl with six variables. The fourth variable is named Gender. To
specify the variable Gender as the grouping variable, you can use one of these syntaxes:

• tblstats = grpstats(tbl,"Gender")
• tblstats = grpstats(tbl,4)
• tblstats = grpstats(tbl,logical([0 0 0 1 0 0]))

Data Types: single | double | logical | char | string | cell

whichstats — Types of summary statistics
character vector | string array | function handle | cell array of character vectors or function handles

Types of summary statistics to compute, specified as one of the following values.
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• Character vector or string scalar specifying the built-in summary statistic, as described in this
table.

Built-in Summary Statistic Description
"gname" Group name
"numel" Count, or number, of non-NaN elements

If you specify input data as a table tbl, then the output table tblstats includes the group name
and group count by default. You do not need to specify "gname" and "numel".

For numeric and logical variables, you can also specify one of these built-in summary statistics.

Built-in Summary Statistic Description
"mean" Mean
"sem" Standard error of the mean
"std" Standard deviation
"var" Variance
"min" Minimum
"max" Maximum
"range" Range
"meanci" 95% confidence interval for the mean. You can

specify different significance levels using the
Alpha name-value argument.

"predci" 95% prediction interval for a new observation.
You can specify different significance levels
using the Alpha name-value argument.

• Function handle to specify any other types of summary statistics. You can use the handle to any
function that accepts a column or matrix of data, and returns the same size output each time
grpstats calls the function handle (even if the output for some groups is empty).

• If the function accepts a column of data, then the function can return either a scalar value or
an nvals-by-1 column vector for descriptive statistics of length nvals (for example, a confidence
interval has length two). If the function accepts a matrix, the function must return either a 1-
by-ncols row vector or an nvals-by-ncols matrix, where ncols is the number of columns in the
input data matrix.

• For functions that do not compute column-wise statistics, specify the computation direction
while specifying the function. For example, to use the sum function, specify the function handle
as @(x)sum(x,1) because sum computes column-wise statistics for matrices with two or more
rows, but not for single-row matrices.

• String array or a cell array of character vectors or function handles to specify multiple types of
summary statistics.

Example: stat1 = grpstats(X,group,"sem")
Example: stat1 = grpstats(X,group,@(x)sum(x,1))
Example: [stat1,stat2,stat3] = grpstats(X,group,{"mean","std",@skewness})
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X — Input data
vector | matrix

Input data, specified as a vector or matrix. If X is a matrix, then grpstats returns summary statistics
for each column of X.
Data Types: single | double | logical | char | string | cell | categorical | datetime |
duration | calendarDuration

group — Grouping variables for X
numeric, logical, categorical, datetime, or duration vector | character or string array | cell array of
character vectors | cell array of multiple grouping variables | []

Grouping variables for the input array X, specified as a numeric, logical, categorical, datetime, or
duration vector, a character or string array, a cell array of character vectors, or a cell array of
multiple grouping variables.

grpstats groups data in X using the grouping variable values. Use [] to compute summary
statistics for all data, without grouping.

You can also use more than one grouping variable to group data for summary statistics. In this case,
specify a cell array of grouping variables.

For example, consider the two grouping variables Gender and Smoker. The variable Gender is a
string array with the values "Male" and "Female", and the variable Smoker is a logical vector with
the value 0 for nonsmokers and 1 for smokers. If you specify the cell array {Gender,Smoker}, then
grpstats divides observations into four groups: Male Smoker, Male Nonsmoker, Female Smoker,
and Female Nonsmoker. grpstats returns summary statistics only for the combinations of values
that exist in the grouping variables (not all possible combinations).
Data Types: single | double | logical | char | string | cell | categorical | datetime |
duration

alpha — Significance level for plotting
scalar value in the range (0,1)

Significance level for plotting, specified as a scalar value in the range (0,1).

Use the syntax grpstats(X,group,alpha) to plot group means and corresponding 100×(1 –
alpha)% confidence intervals.
Data Types: double

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: "DataVars",[1,3,4],"Alpha",0.01 calculates summary statistics for the 1st, 3rd, and
4th variables in the input table, with 99% confidence intervals.

Alpha — Significance level
0.05 (default) | scalar value in the range (0,1)
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Significance level for confidence and prediction intervals, specified as a scalar value in the range
(0,1).

When you include "meanci" or "predci" in whichstats, you can use Alpha to specify the
significance level for confidence or prediction intervals, respectively. If you specify the value α, then
grpstats returns 100×(1 – α)% confidence or prediction intervals. If you do not specify a value for
Alpha, then grpstats returns 95% intervals (α = 0.05).
Example: "Alpha",0.1
Data Types: double

DataVars — Table variables for which to compute summary statistics
character vector | string array | cell array of character vectors | vector of positive integers | logical
vector

Table variables in tbl for which to compute summary statistics, specified as one of the values in this
table.

Value Description
Character vector, string array, or cell array of
character vectors

Names of the table variables

Vector of positive integers Variable numbers of the table variables in tbl
Vector of logical values with the number of
elements equal to the number of variables in tbl

Logical indicator with the value true to include
the table variables and false otherwise

Example: "DataVars",["Height","Weight"]
Data Types: double | string | cell | char

VarNames — Variable names for output table
string array | cell array of character vectors

Variable (column) names for the output table tblstats, specified as a string array or a cell array of
character vectors. By default, grpstats constructs output variable names by appending a prefix to
them from the input data tbl. This prefix corresponds to the summary statistic name.
Example: "VarNames",["Gender","GroupCount","MaleMean","FemaleMean"]
Data Types: string | cell

Output Arguments
tblstats — Group summary statistics for table input
table

Group summary statistics for the table input tbl, returned as a table.

tblstats contains a row for each observed unique value or combination of values in the grouping
variables, and includes columns for the following:

• All grouping variables specified by groupvars
• The variable GroupCount, which contains the number of observations in each group
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• Group summary statistic values for all variables in tbl (other than the grouping variables) or for
only the variables specified by DataVars

The total number of columns in tblstats is ngroupvars + 1 + ndatavars×nstats, where ngroupvars
is the number of observed unique values or combinations of values in groupvars, ndatavars is the
number of variables for which summary statistics are computed, and nstats is the number of
summary statistic types specified in whichstats.

grpstats assigns default names to the columns in tblstats unless you specify column names using
the name-value argument VarNames.

stats — Group summary statistics for matrix input
array

Group summary statistic values for the matrix input X, returned as an ngroups-by-ncols array. Here,
ngroups is the number of observed unique values or combinations of values in the grouping variables
specified in group, and ncols is the number of columns in X. Each column of stats contains the
summary statistics for the corresponding column of X.

If X is a numeric or logical matrix, then the summary statistic is the mean of each group. Otherwise,
the summary statistic is the number of elements in each group.

stats1,...,statsN — Multiple group summary statistics for matrix input
arrays

Multiple group summary statistics for the matrix input X, returned as ngroups-by-ncols arrays. Here,
ngroups is the number of observed unique values or combinations of values in the grouping variables
specified in group, and ncols is the number of columns in X. Each column of the output array
contains the summary statistics for the corresponding column of X.

You must specify an output argument for each type of summary statistic specified in whichstats.

If a summary statistic type in whichstats returns a value of length nvals (for example, a confidence
interval is a descriptive statistic of length two), then the corresponding output argument is an
ngroups-by-ncols-by-nvals array.

Algorithms
• grpstats computes summary statistic values for each observed unique value or combination of

values in the grouping variables.

• If you specify a single grouping variable, then the output of grpstats contains a row for each
observed unique value of the grouping variable. grpstats sorts the groups by order of
appearance (if the grouping variable is a character vector or string scalar); in ascending
numeric order (if the grouping variable is numeric); or in order of by category (if the grouping
variable is categorical).

• If you specify multiple grouping variables, then the output of grpstats contains a row for
each observed unique combination of values in the grouping variables. For example, if you
specify two grouping variables, each with two values, then the output has four possible
combinations of grouping variable values. The function computes summary statistics only for
the observed combinations that exist in the input grouping variables (not all possible
combinations). grpstats sorts the groups by the values of the first grouping variable, then the
second grouping variable, and so on.
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• grpstats ignores missing values in tbl, X, and group. Missing values depend on the data type:

• NaN for double, single, duration, and calendarDuration
• NaT for datetime
• <missing> for string
• <undefined> for categorical
• ' ' for char
• {''} for cell of character vectors

Alternative Functionality
MATLAB includes the function groupsummary, which also returns group summaries and is
recommended when you are working with a table. groupsummary allows you to specify whether to
include groups that consist of missing values and groups with zero elements in the output. Also, the
function supports various group binning schemes and anonymous functions that require more than
one input argument for custom summary statistics.

Version History
Introduced before R2006a

Extended Capabilities
Tall Arrays
Calculate with arrays that have more rows than fit in memory.

This function supports tall arrays for out-of-memory data with some limitations.

• If the input data is a tall array, then all grouping variables must also be tall arrays and have the
same number of rows as the data.

• The whichstats option cannot be specified as a function handle. In addition to being specified as
one of the current built-in options, whichstats can also be:

• "Count" — Compute the number of non-NaNs.
• "NNZ" — Compute the number of nonzeros and non-NaNs.
• "Kurtosis" — Compute the kurtosis.
• "Skewness" — Compute the skewness.
• "all-stats" — Compute all summary statistics.

• The group order is not guaranteed to be the same as the in-memory grpstats computation.
Specify "gname" as the whichstats option to return the order of rows of the summary statistics.
For example [means,grpname] = grpstats(x,bins,["mean","gname"]) returns the
means of groups in x in the same order that the groups appear in grpname.

• Summary statistics for nonnumeric variables return NaNs.
• grpstats always operates on the first dimension.
• If the input is a tall table, then the output is also a tall table. However, rather than including row

names, the output tall table contains the extra variable GroupLabel, which contains the same
information.
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For more information, see “Tall Arrays for Out-of-Memory Data”.

Thread-Based Environment
Run code in the background using MATLAB® backgroundPool or accelerate code with Parallel
Computing Toolbox™ ThreadPool.

Usage notes and limitations:

• grpstats does not support plotting group means when you run the function in the background
using backgroundPool or Parallel Computing Toolbox ThreadPool.

For more information, see “Run MATLAB Functions in Thread-Based Environment”.

See Also
table | groupsummary

Topics
“Summary Statistics Grouped by Category” on page 2-33
“Test Differences Between Category Means” on page 2-25
“Plot Data Grouped by Category” on page 2-21
“Calculations on Dataset Arrays” on page 2-93
“Dataset Arrays” on page 2-113
“Grouping Variables” on page 2-46
“Nominal and Ordinal Arrays” on page 2-37
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grpstats
Class: RepeatedMeasuresModel

Compute descriptive statistics of repeated measures data by group

Syntax
statstbl = grpstats(rm,g)
statstbl = grpstats(rm,g,stats)

Description
statstbl = grpstats(rm,g) returns the count, mean, and variance for the data used to fit the
repeated measures model rm, grouped by the factors, g.

statstbl = grpstats(rm,g,stats) returns the statistics specified by stats for the data used to
fit the repeated measures model rm, grouped by the factors, g.

Input Arguments
rm — Repeated measures model
RepeatedMeasuresModel object

Repeated measures model, returned as a RepeatedMeasuresModel object.

For properties and methods of this object, see RepeatedMeasuresModel.

g — Name of grouping factor or factors
character vector | string array | cell array of character vectors

Name of grouping factor or factors, specified as a character vector, string array, or cell array of
character vectors.
Example: 'Drug'
Example: {'Drug','Sex'}
Data Types: char | string | cell

stats — Statistics to compute
character vector | string scalar | function handle | string array | cell array of multiple character
vectors and function handles

Statistics to compute, specified as one of the following:

• Character vector or string scalar specifying the name of the statistics to compute. Names can be
one of the following.

Name Description
'mean' Mean
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Name Description
'sem' Standard error of the mean
'numel' Count or number of elements
'gname' Group name
'std' Standard deviation
'var' Variance
'min' Minimum
'max' Maximum
'range' Maximum minus minimum
'meanci' 95% confidence interval for the mean
'predci' 95% prediction interval for a new observation

• Function handle — The function you specify must accept a vector of response values for a single
group, and compute descriptive statistics for it. A function should typically return a value that has
one row. A function must return the same size output each time grpstats calls it, even if the
input for some groups is empty.

• A string array or cell array of character vectors and function handles.

Example: @median
Example: @skewness
Example: 'gname'
Example: {'gname','range','predci'}

Output Arguments
statstbl — Statistics values for each group
table

Statistics values for each group, returned as a table.

Examples

Compute Group Statistics

Load the sample data.

load fisheriris

The column vector, species consists of iris flowers of three different species: setosa, versicolor, and
virginica. The double matrix meas consists of four types of measurements on the flowers: the length
and width of sepals and petals in centimeters, respectively.

Store the data in a table array.

t = table(species,meas(:,1),meas(:,2),meas(:,3),meas(:,4),...
'VariableNames',{'species','meas1','meas2','meas3','meas4'});
Meas = dataset([1 2 3 4]','VarNames',{'Measurements'});
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Fit a repeated measures model, where the measurements are the responses and the species is the
predictor variable.

rm = fitrm(t,'meas1-meas4~species','WithinDesign',Meas);

Compute group counts, mean, and standard deviation with respect to species.

grpstats(rm,'species')

ans=3×4 table
       species        GroupCount     mean      std  
    ______________    __________    ______    ______

    {'setosa'    }       200        2.5355    1.8483
    {'versicolor'}       200         3.573    1.7624
    {'virginica' }       200         4.285    1.9154

Now, compute the range of data and 95% confidence intervals for the group means for the factor
species. Also display the group name.

grpstats(rm,'species',{'gname','range','predci'})

ans=3×5 table
       species            gname         GroupCount    range           predci       
    ______________    ______________    __________    _____    ____________________

    {'setosa'    }    {'setosa'    }       200         5.7      -1.1185      6.1895
    {'versicolor'}    {'versicolor'}       200           6     0.088976       7.057
    {'virginica' }    {'virginica' }       200         6.5       0.4985      8.0715

Statistics for Data Grouped by Two Factors

Load the sample data.

load repeatedmeas

The table between includes the between-subject variables age, IQ, group, gender, and eight repeated
measures y1 through y8 as responses. The table within includes the within-subject variables w1 and
w2. This is simulated data.

Fit a repeated measures model, where the repeated measures y1 through y8 are the responses, and
age, IQ, group, gender, and the group-gender interaction are the predictor variables. Also specify the
within-subject design matrix.

rm = fitrm(between,'y1-y8 ~ Group*Gender + Age + IQ','WithinDesign',within);

Compute group counts, mean, standard deviation, skewness, and kurtosis of data grouped by the
factors Group and Gender.

GS = grpstats(rm,{'Group','Gender'},{'mean','std',@skewness,@kurtosis})

GS=6×7 table
    Group    Gender    GroupCount     mean       std      skewness    kurtosis
    _____    ______    __________    _______    ______    ________    ________
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      A      Female        40         16.554    21.498     0.35324     3.7807 
      A      Male          40         9.8335    20.602    -0.38722     2.7834 
      B      Female        40         11.261    25.779    -0.49177     4.1484 
      B      Male          40         3.6078    24.646     0.55447     2.7966 
      C      Female        40        -11.335    27.186      1.7499     6.1429 
      C      Male          40        -14.028    31.984      1.7362      5.141 

Tips
• grpstats computes results separately for each group. The results do not depend on the fitted

repeated measures model. It computes the results on all available data, without omitting entire
rows that contain NaNs.

See Also
plot | fitrm

 grpstats

35-3231



gscatter
Scatter plot by group

Syntax
gscatter(x,y,g)
gscatter(x,y,g,clr,sym,siz)
gscatter(x,y,g,clr,sym,siz,doleg)
gscatter(x,y,g,clr,sym,siz,doleg,xnam,ynam)

gscatter(ax, ___ )

h = gscatter( ___ )

Description
gscatter(x,y,g) creates a scatter plot of x and y, grouped by g. The inputs x and y are vectors of
the same size.

gscatter(x,y,g,clr,sym,siz) specifies the marker color clr, symbol sym, and size siz for
each group.

gscatter(x,y,g,clr,sym,siz,doleg) controls whether a legend is displayed on the graph.
gscatter creates a legend by default.

gscatter(x,y,g,clr,sym,siz,doleg,xnam,ynam) specifies the names to use for the x-axis and
y-axis labels. If you do not provide xnam and ynam, and the x and y inputs are variables with names,
then gscatter labels the axes with the variable names.

gscatter(ax, ___ ) uses the plot axes specified by the axes object ax. Specify ax as the first input
argument followed by any of the input argument combinations in the previous syntaxes.

h = gscatter( ___ ) returns graphics handles corresponding to the groups in g.

You can pass in [] for clr, sym, and siz to use their default values.

Examples

Scatter Plot with Default Settings

Load the carsmall data set.

load carsmall

Plot the Displacement values on the x-axis and the Horsepower values on the y-axis. gscatter
uses the variable names as the default labels for the axes. Group the data points by Model_Year.

gscatter(Displacement,Horsepower,Model_Year)
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Scatter Plot with One Grouping Variable

Load the discrim data set.

load discrim

The data set contains ratings of cities according to nine factors such as climate, housing, education,
and health. The matrix ratings contains the ratings information.

Plot the relationship between the ratings for climate (first column) and housing (second column)
grouped by city size in the matrix group. Choose different colors and plotting symbols for each
group.

gscatter(ratings(:,1),ratings(:,2),group,'br','xo')
xlabel('climate')
ylabel('housing')
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Scatter Plot with Multiple Grouping Variables

Load the hospital data set.

load hospital

Plot the ages and weights of the hospital patients. Group the patients according to their gender and
smoker status. Use the o symbol to represent nonsmokers and the * symbol to represent smokers.

x = hospital.Age;
y = hospital.Weight;
g = {hospital.Sex,hospital.Smoker};
gscatter(x,y,g,'rkgb','o*',8,'on','Age','Weight')
legend('Location','northeastoutside')
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Specify Axes for Scatter Plot

Load the carsmall data set. Create a figure with two subplots and return the axes objects as ax1
and ax2. Create a scatter plot in each set of axes by referring to the corresponding Axes object. In
the left subplot, group the data using the Model_Year variable. In the right subplot, group the data
using the Cylinders variable. Add a title to each plot by passing the corresponding Axes object to
the title function.

load carsmall
color = lines(6); % Generate color values

ax1 = subplot(1,2,1); % Left subplot
gscatter(ax1,Acceleration,MPG,Model_Year,color(1:3,:))
title(ax1,'Left Subplot (Model Year)')

ax2 = subplot(1,2,2); % Right subplot
gscatter(ax2,Acceleration,MPG,Cylinders,color(4:6,:))
title(ax2,'Right Subplot (Cylinders)')
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Specify Marker Colors

Specify marker colors using the colormap determined by the hsv function.

Load the Lidar scan data set which contains the coordinates of objects surrounding a vehicle, stored
as a collection of 3-D points.

load('lidar_subset.mat') 
loc = lidar_subset;

To highlight the environment around the vehicle, set the region of interest to span 20 meters to the
left and right of the vehicle, 20 meters in front and back of the vehicle, and the area above the
surface of the road.

xBound = 20; % in meters
yBound = 20; % in meters
zLowerBound = 0; % in meters

Crop the data to contain only points within the specified region.

indices = loc(:,1) <= xBound & loc(:,1) >= -xBound ...
    & loc(:,2) <= yBound & loc(:,2) >= -yBound ...
    & loc(:,3) > zLowerBound;
loc = loc(indices,:);
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Cluster the data by using dbscan with pairwise distances.

D = pdist2(loc,loc);
idx = dbscan(D,2,50,'Distance','precomputed');

Visualize the resulting clusters as a 2-D group scatter plot by using the gscatter function. By
default, gscatter uses the seven MATLAB default colors. If the number of unique clusters exceeds
seven, the function cycles through the default colors as needed. Find the number of clusters, and
generate the corresponding number of colors by using the hsv function. Specify marker colors to use
a unique color for each cluster.

numGroups = length(unique(idx));
clr = hsv(numGroups);
gscatter(loc(:,1),loc(:,2),idx,clr)
xlabel('x')
ylabel('y')

Create and Modify Scatter Plot

Load the carbig data set.

load carbig

Create a scatter plot comparing Acceleration to MPG. Group data points based on Origin.
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h = gscatter(Acceleration,MPG,Origin)

h = 
  7x1 Line array:

  Line    (USA)
  Line    (France)
  Line    (Japan)
  Line    (Germany)
  Line    (Sweden)
  Line    (Italy)
  Line    (England)

Display the Line object corresponding to the group labeled (Japan).

jgroup = h(3)

jgroup = 
  Line (Japan) with properties:

              Color: [0.9290 0.6940 0.1250]
          LineStyle: 'none'
          LineWidth: 0.5000
             Marker: '.'
         MarkerSize: 15
    MarkerFaceColor: 'none'
              XData: [15 14.5000 14.5000 14 19 18 15.5000 13.5000 17 ... ]
              YData: [24 27 27 25 31 35 24 19 28 23 27 20 22 18 20 31 32 ... ]

  Show all properties

Change the marker color for the Japan group to black.

jgroup.Color = 'k';
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Input Arguments
x — x-axis values
numeric vector

x-axis values, specified as a numeric vector. x must have the same size as y.
Data Types: single | double

y — y-axis values
numeric vector

y-axis values, specified as a numeric vector. y must have the same size as x.
Data Types: single | double

g — Grouping variable
categorical vector | logical vector | numeric vector | character array | string array | cell array of
character vectors | cell array

Grouping variable, specified as a categorical vector, logical vector, numeric vector, character array,
string array, or cell array of character vectors. Alternatively, g can be a cell array containing several
grouping variables (such as {g1 g2 g3}), in which case observations are in the same group if they
have common values of all grouping variables. Points in the same group appear on the scatter plot
with the same marker color, symbol, and size.
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The number of rows in g must be equal to the length of x.
Example: species
Example: {Cylinders,Origin}
Data Types: categorical | logical | single | double | char | string | cell

clr — Marker colors
MATLAB default colors (default) | character vector or string scalar of short color names | matrix of
RGB triplets

Marker colors, specified as a character vector or string scalar of short color names or a matrix of
RGB triplets.

For a custom color, specify a matrix of RGB triplets. An RGB triplet is a three-element row vector
whose elements specify the intensities of the red, green, and blue components of the color. The
intensities must be in the range [0,1]; for example, [0.4 0.6 0.7].

Alternatively, you can specify some common colors by name. This table lists the named color options
and the equivalent RGB triplets

Short Name RGB Triplet Appearance
'r' [1 0 0]
'g' [0 1 0]
'b' [0 0 1]
'c' [0 1 1]
'm' [1 0 1]
'y' [1 1 0]
'k' [0 0 0]
'w' [1 1 1]

Here are the RGB triplet color codes for the default colors MATLAB uses in many types of plots.

RGB Triplet Appearance
[0 0.4470 0.7410]
[0.8500 0.3250 0.0980]
[0.9290 0.6940 0.1250]
[0.4940 0.1840 0.5560]
[0.4660 0.6740 0.1880]
[0.3010 0.7450 0.9330]
[0.6350 0.0780 0.1840]

The default value for clr is the matrix of RGB triplets containing the MATLAB default colors.

If you do not specify enough colors for all unique groups in g, then gscatter cycles through the
specified values in clr. If you use default values when the number of unique groups exceeds the
number of default colors (7), then gscatter cycles through the default values as needed.
Example: 'rgb'
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Example: [0 0 1; 0 0 0]
Data Types: char | string | single | double

sym — Marker symbols
'.' (default) | character vector or string scalar of symbols

Marker symbols, specified as a character vector or string scalar of symbols recognized by the plot
function. This table lists the available marker symbols.

Value Description
'o' Circle
'+' Plus sign
'*' Asterisk
'.' Point
'x' Cross
's' Square
'd' Diamond
'^' Upward-pointing triangle
'v' Downward-pointing triangle
'>' Right-pointing triangle
'<' Left-pointing triangle
'p' Five-pointed star (pentagram)
'h' Six-pointed star (hexagram)
'none' No markers

If you do not specify enough values for all groups, then gscatter cycles through the specified values
as needed.
Example: 'o+*v'
Data Types: char | string

siz — Marker sizes
positive numeric vector

Marker sizes, specified as a positive numeric vector in points. The default value is determined by the
number of observations. If you do not specify enough values for all groups, then gscatter cycles
through the specified values as needed.
Example: [6 12]
Data Types: single | double

doleg — Option to include legend
'on' (default) | 'off'

Option to include a legend, specified as either 'on' or 'off'. By default, the legend is displayed on
the graph.
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xnam — x-axis label
x variable name (default) | character vector | string scalar

x-axis label, specified as a character vector or string scalar.
Data Types: char | string

ynam — y-axis label
y variable name (default) | character vector | string scalar

y-axis label, specified as a character vector or string scalar.
Data Types: char | string

ax — Axes for plot
Axes object | UIAxes object

Axes for the plot, specified as an Axes or UIAxes object. If you do not specify ax, then gscatter
creates the plot using the current axes. For more information on creating an axes object, see axes
and uiaxes.

Output Arguments
h — Graphics handles
array of Line objects

Graphics handles, returned as an array of Line objects. Each Line object corresponds to one of the
groups in g. You can use dot notation to query and set properties of the line objects. For a list of Line
object properties, see Chart Line.

Version History
Introduced before R2006a

gscatter uses the MATLAB default color scheme
Behavior changed in R2022a

Starting in R2022a, the gscatter function uses the MATLAB default color scheme to determine
marker colors, following the order specified in the ColorOrder property of the axes.

In previous releases, the gscatter function uses the colormap returned by the hsv function. If you
want to determine marker colors using the hsv colormap, specify marker colors (fourth input
argument of gscatter) as hsv(numGroups), where numGroups is the number of unique group
combinations in the grouping variables.

If you use the new default color scheme and the number of unique groups exceeds the number of
default colors (7), then gscatter cycles through the default values as needed. If you want to use
different colors for different groups, specify the marker colors as hsv(numGroups). For an example,
see “Specify Marker Colors” on page 35-3236.

See Also
gplotmatrix | grpstats | scatter
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Topics
“Create Scatter Plots Using Grouped Data” on page 4-2
“MANOVA” on page 9-49
“Grouping Variables” on page 2-46
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gt
Class: qrandstream

Greater than relation for handles

Syntax
h1 > h2

Description
h1 > h2 performs element-wise comparisons between handle arrays h1 and h2. h1 and h2 must be
of the same dimensions unless one is a scalar. The result is a logical array of the same dimensions,
where each element is an element-wise > result.

If one of h1 or h2 is scalar, scalar expansion is performed and the result will match the dimensions of
the array that is not scalar.

tf = gt(h1, h2) stores the result in a logical array of the same dimensions.

See Also
qrandstream | eq | ge | le | lt | ne
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haltonset
Halton quasirandom point set

Description
haltonset is a quasirandom point set object that produces points from the Halton sequence. The
Halton sequence uses different prime bases in each dimension to fill space in a highly uniform
manner.

Creation

Syntax
p = haltonset(d)
p = haltonset(d,Name,Value)

Description

p = haltonset(d) constructs a d-dimensional point set p, which is a haltonset object with
default property settings. The input argument d corresponds to the Dimensions property of p.

p = haltonset(d,Name,Value) sets properties on page 35-3245 of p using one or more name-
value pair arguments. Enclose each property name in quotes. For example,
haltonset(5,'Leap',2) creates a five-dimensional point set from the first point, fourth point,
seventh point, tenth point, and so on.

The returned object p encapsulates properties of a Halton quasirandom sequence. The point set is
finite, with a length determined by the Skip and Leap properties and by limits on the size of the
point set indices (maximum value of 253). Values of the point set are generated whenever you access p
using net or parenthesis indexing. Values are not stored within p.

Properties
Dimensions — Number of dimensions
positive integer scalar

This property is read-only.

Number of dimensions of the points in the point set, specified as a positive integer scalar. For
example, each point in the point set p with p.Dimensions = 5 has five values.

Use the d input argument to specify the number of dimensions when you create a point set using the
haltonset function.

Leap — Interval between points
0 (default) | positive integer scalar
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Interval between points in the sequence, specified as a positive integer scalar. In other words, the
Leap property of a point set specifies the number of points in the sequence to leap over and omit for
every point taken. The default Leap value is 0, which corresponds to taking every point from the
sequence.

Leaping is a technique used to improve the quality of a point set. However, you must choose the Leap
values with care. Many Leap values create sequences that fail to touch on large sub-hyper-rectangles
of the unit hypercube and, therefore, fail to be a uniform quasirandom point set. For more
information, see [1].

One rule for choosing Leap values for Halton sets is to set the value to (n–1), where n is a prime
number that has not been used to generate one of the dimensions. For example, for a d-dimensional
point set, specify the (d+1)th or greater prime number for n.
Example: p = haltonset(2,'Leap',4); (where d = 2 and n = 5)
Example: p.Leap = 100;

ScrambleMethod — Settings that control scrambling
0x0 structure (default) | structure with Type and Options fields

Settings that control the scrambling of the sequence, specified as a structure with these fields:

• Type — A character vector containing the name of the scramble
• Options — A cell array of parameter values for the scramble

Use the scramble object function to set scrambles. For a list of valid scramble types, see the type
input argument of scramble. An error occurs if you set an invalid scramble type for a given point
set.

The ScrambleMethod property also accepts an empty matrix as a value. The software then clears all
scrambling and sets the property to contain a 0x0 structure.

Skip — Number of initial points in sequence to omit
0 (default) | positive integer scalar

Number of initial points in the sequence to omit from the point set, specified as a positive integer
scalar.

Initial points of a sequence sometimes exhibit undesirable properties. For example, the first point is
often (0,0,0,...), which can cause the sequence to be unbalanced because the counterpart of the
point, (1,1,1,...), never appears. Also, initial points often exhibit correlations among different
dimensions, and these correlations disappear later in the sequence.
Example: p = haltonset(__,'Skip',2e3);
Example: p.Skip = 1e3;

Type — Sequence type
'Halton' (default)

This property is read-only.

Sequence type on which the quasirandom point set p is based, specified as 'Halton'.
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Object Functions
net Generate quasirandom point set
scramble Scramble quasirandom point set

You can also use the following MATLAB functions with a haltonset object. The software treats the
point set object like a matrix of multidimensional points.
length Length of largest array dimension
size Array size

Examples

Create Halton Point Set

Generate a three-dimensional Halton point set, skip the first 1000 values, and then retain every 101st
point.

p = haltonset(3,'Skip',1e3,'Leap',1e2)

p = 
Halton point set in 3 dimensions (89180190640991 points)

Properties:
              Skip : 1000
              Leap : 100
    ScrambleMethod : none

Apply reverse-radix scrambling by using scramble.

p = scramble(p,'RR2')

p = 
Halton point set in 3 dimensions (89180190640991 points)

Properties:
              Skip : 1000
              Leap : 100
    ScrambleMethod : RR2

Generate the first four points by using net.

X0 = net(p,4)

X0 = 4×3

    0.0928    0.6950    0.0029
    0.6958    0.2958    0.8269
    0.3013    0.6497    0.4141
    0.9087    0.7883    0.2166

Generate every third point, up to the eleventh point, by using parenthesis indexing.

X = p(1:3:11,:)
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X = 4×3

    0.0928    0.6950    0.0029
    0.9087    0.7883    0.2166
    0.3843    0.9840    0.9878
    0.6831    0.7357    0.7923

Tips
• The Skip and Leap properties are useful for parallel applications. For example, if you have a

Parallel Computing Toolbox license, you can partition a sequence of points across N different
workers by using the function labindex. On each nth worker, set the Skip property of the point
set to n – 1 and the Leap property to N – 1. The following code shows how to partition a sequence
across three workers.

Nworkers = 3;
p = haltonset(10,'Leap',Nworkers-1);
spmd(Nworkers)
    p.Skip = labindex - 1;

    % Compute something using points 1,4,7...
    % or points 2,5,8... or points 3,6,9...
end

Algorithms
Halton Sequence Generation

Consider a default haltonset object p that contains d-dimensional points. Each p(i,:) is a point in
a Halton sequence. The jth coordinate of the point, p(i,j), is equal to

∑
k

ai j(k)b j−k− 1 .

• bj is the jth prime.
• The ai j(k) coefficients are nonnegative integers less than bj such that

i− 1 = ∑
k = 0

ai j(k)b jk .

In other words, the ai j(k) values are the base bj digits of the integer i – 1.

For more information, see [1].

Version History
Introduced in R2008a

References
[1] Kocis, L., and W. J. Whiten. “Computational Investigations of Low-Discrepancy Sequences.” ACM

Transactions on Mathematical Software. Vol. 23, No. 2, 1997, pp. 266–294.
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See Also
sobolset | net | scramble

Topics
“Generating Quasi-Random Numbers” on page 7-12
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harmmean
Harmonic mean

Syntax
m = harmmean(X)
m = harmmean(X,'all')
m = harmmean(X,dim)
m = harmmean(X,vecdim)
m = harmmean( ___ ,nanflag)

Description
m = harmmean(X) calculates the harmonic mean on page 35-3254 of a sample. For vectors,
harmmean(X) is the harmonic mean of the elements in X. For matrices, harmmean(X) is a row vector
containing the harmonic means of each column. For N-dimensional arrays, harmmean operates along
the first nonsingleton dimension of X.

m = harmmean(X,'all') returns the harmonic mean of all elements of X.

m = harmmean(X,dim) takes the harmonic mean along the operating dimension dim of X.

m = harmmean(X,vecdim) returns the harmonic mean over the dimensions specified in the vector
vecdim. Each element of vecdim represents a dimension of the input array X. The output m has
length 1 in the specified operating dimensions. The other dimension lengths are the same for X and m.
For example, if X is a 2-by-3-by-4 array, then harmmean(X,[1 2]) returns a 1-by-1-by-4 array. Each
element of the output array is the harmonic mean of the elements on the corresponding page of X.

m = harmmean( ___ ,nanflag) specifies whether to exclude NaN values from the calculation, using
any of the input argument combinations in previous syntaxes. By default, harmmean includes NaN
values in the calculation (nanflag has the value 'includenan'). To exclude NaN values, set the
value of nanflag to 'omitnan'.

Examples

Compare Harmonic and Arithmetic Mean

Set the random seed for reproducibility of the results.

rng('default')

Create a matrix of exponential random numbers with 5 rows and 4 columns.

X = exprnd(1,5,4)

X = 5×4

    0.2049    2.3275    1.8476    1.9527
    0.0989    1.2783    0.0298    0.8633
    2.0637    0.6035    0.0438    0.0880
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    0.0906    0.0434    0.7228    0.2329
    0.4583    0.0357    0.2228    0.0414

Compute the harmonic and arithmetic means of the columns of X.

harmonic = harmmean(X)

harmonic = 1×4

    0.1743    0.0928    0.0797    0.1205

arithmetic = mean(X)

arithmetic = 1×4

    0.5833    0.8577    0.5734    0.6357

The arithmetic mean is greater than the harmonic mean for all the columns of X.

Harmonic Mean of All Values

Find the harmonic mean of all the values in an array.

Create a 3-by-5-by-2 array X.

X = reshape(1:30,[3 5 2])

X = 
X(:,:,1) =

     1     4     7    10    13
     2     5     8    11    14
     3     6     9    12    15

X(:,:,2) =

    16    19    22    25    28
    17    20    23    26    29
    18    21    24    27    30

Find the harmonic mean of the elements of X.

m = harmmean(X,'all')

m = 7.5094
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Harmonic Mean Along Specified Dimensions

Find the harmonic mean along different operating dimensions and vectors of dimensions for a
multidimensional array.

Create a 3-by-5-by-2 array X.

X = reshape(1:30,[3 5 2])

X = 
X(:,:,1) =

     1     4     7    10    13
     2     5     8    11    14
     3     6     9    12    15

X(:,:,2) =

    16    19    22    25    28
    17    20    23    26    29
    18    21    24    27    30

Find the harmonic mean of X along the default dimension.

hmean1 = harmmean(X)

hmean1 = 
hmean1(:,:,1) =

    1.6364    4.8649    7.9162   10.9392   13.9523

hmean1(:,:,2) =

   16.9607   19.9666   22.9710   25.9743   28.9770

By default, harmmean operates along the first dimension of X whose size does not equal 1. In this
case, this dimension is the first dimension of X. Therefore, hmean1 is a 1-by-5-by-2 array.

Find the harmonic mean of X along the second dimension.

hmean2 = harmmean(X,2)

hmean2 = 
hmean2(:,:,1) =

    3.1852
    5.0641
    6.5693

hmean2(:,:,2) =

   21.1595
   22.1979
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   23.2329

hmean2 is a 3-by-1-by-2 array.

Find the harmonic mean of X along the third dimension.

hmean3 = harmmean(X,3)

hmean3 = 3×5

    1.8824    6.6087   10.6207   14.2857   17.7561
    3.5789    8.0000   11.8710   15.4595   18.8837
    5.1429    9.3333   13.0909   16.6154   20.0000

hmean3 is a 3-by-5 array.

Find the harmonic mean of each page of X by specifying the first and second dimensions using the
vecdim input argument.

mpage = harmmean(X,[1 2])

mpage = 
mpage(:,:,1) =

    4.5205

mpage(:,:,2) =

   22.1645

For example, mpage(1,1,2) is the harmonic mean of the elements in X(:,:,2).

Find the harmonic mean of the elements in each X(i,:,:) slice by specifying the second and third
dimensions.

mrow = harmmean(X,[2 3])

mrow = 3×1

    5.5369
    8.2469
   10.2425

For example, mrow(3) is the harmonic mean of the elements in X(3,:,:) and is equivalent to
specifying harmmean(X(3,:,:),'all').

Harmonic Mean Excluding NaN

Create a vector and compute its harmmean, excluding NaN values.

 harmmean

35-3253



x = 1:10;
x(3) = nan; % Replace the third element of x with a NaN value
n = harmmean(x,'omitnan')

n = 3.4674

If you do not specify 'omitnan', then harmmean(x) returns NaN.

More About
Harmonic Mean

The harmonic mean of a sample X is

m = n

∑
i = 1

n 1
xi

where n is the number of values in X.

Tips
• When harmmean computes the harmonic mean of an array containing 0, the returned value is 0.

Version History
Introduced before R2006a

Extended Capabilities
Tall Arrays
Calculate with arrays that have more rows than fit in memory.

This function fully supports tall arrays. For more information, see “Tall Arrays”.

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• These input arguments are not supported: 'all', vecdim, and nanflag.
• The dim input argument must be a compile-time constant.
• If you do not specify the dim input argument, the working (or operating) dimension can be
different in the generated code. As a result, run-time errors can occur. For more details, see
“Automatic dimension restriction” (MATLAB Coder).

For more information on code generation, see “Introduction to Code Generation” on page 34-2 and
“General Code Generation Workflow” on page 34-5.

Thread-Based Environment
Run code in the background using MATLAB® backgroundPool or accelerate code with Parallel
Computing Toolbox™ ThreadPool.
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This function fully supports thread-based environments. For more information, see “Run MATLAB
Functions in Thread-Based Environment”.

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

Usage notes and limitations:

• The 'all' and vecdim input arguments are not supported.

For more information, see “Run MATLAB Functions on a GPU” (Parallel Computing Toolbox).

See Also
mean | median | geomean | trimmean
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hazardratio
Estimate Cox model hazard relative to baseline

Syntax
hazard = hazardratio(coxMdl,X)
hazard = hazardratio(coxMdl,X,Stratification)
hazard = hazardratio( ___ ,'Baseline',baseline)

Description
hazard = hazardratio(coxMdl,X) returns the estimated hazard relative to the baseline for a
fitted Cox proportional hazards model coxMdl using the predictors X.

hazard = hazardratio(coxMdl,X,Stratification) returns the estimated hazard relative to
the baseline using the predictors X and stratification levels Stratification. The number of rows in
X and Stratification must be the same.

Note When you train coxMdl using stratification variables and pass predictor variables X,
hazardratio also requires you to pass stratification variables.

hazard = hazardratio( ___ ,'Baseline',baseline) estimates the hazard relative to the
supplied baseline using any of the input argument combinations in the previous syntaxes.

Examples

Compute Relative Hazard

Perform a Cox proportional hazards regression on the lightbulb data set, which contains simulated
lifetimes of light bulbs. The first column of the light bulb data contains the lifetime (in hours) of two
different types of bulbs. The second column contains a binary variable indicating whether the bulb is
fluorescent or incandescent; 0 indicates the bulb is fluorescent, and 1 indicates it is incandescent.
The third column contains the censoring information, where 0 indicates the bulb was observed until
failure, and 1 indicates the observation was censored.

Fit a Cox proportional hazards model for the lifetime of the light bulbs, accounting for censoring. The
predictor variable is the type of bulb.

load lightbulb
coxMdl = fitcox(lightbulb(:,2),lightbulb(:,1), ...
    'Censoring',lightbulb(:,3));

View the default baseline for the fitted model.

defaultBaseline = coxMdl.Baseline

defaultBaseline = 0.5000
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Compute the hazard ratio of an incandescent bulb (1) relative to this baseline.

defaultHazard = hazardratio(coxMdl,1)

defaultHazard = 10.6238

Compute the hazard ratio of an incandescent bulb relative to a fluorescent bulb (0).

relHazard = hazardratio(coxMdl,1,'Baseline',0)

relHazard = 112.8646

The hazard rate of an incandescent bulb is estimated to be over 100 times the hazard rate of a
fluorescent bulb.

Compute Hazard Relative to Different Baseline Values

Create a Cox model from the readmissiontimes data. In this data, 0 indicates a male patient, and 1
indicates a female patient.

load readmissiontimes
coxMdl = fitcox([Age,Sex,Weight],ReadmissionTime,'Censoring',Censored);

Calculate the relative hazard of a 40-year-old man weighing 200 lbs. relative to the baseline hazard.

hazard = hazardratio(coxMdl,[40 0 200])

hazard = 4.3112

Calculate the hazard of this same man relative to a 50-year-old woman weighing 150 lbs.

hazard2 = hazardratio(coxMdl,[40 0 200],'Baseline',[50 1 150])

hazard2 = 5.2053

Hazard Ratios for Stratified Model

Load the coxModel data. (This simulated data is generated in the example “Cox Proportional
Hazards Model Object” on page 15-39.) The model named coxMdl has three stratification levels (1, 2,
and 3) and a predictor X with three categorical values (1, 1/20, and 1/100).

load coxModel

Find the hazard ratio of the predictor value categorical(1) and stratification level 3 with respect
to the baseline.

X = categorical(1);
stratification = 3;
hazard = hazardratio(coxMdl,X,stratification)

hazard = 12.7096

Calculate the ratio with respect to a baseline of 0.
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hazard = hazardratio(coxMdl,X,stratification,'Baseline',0)

hazard = 95.5127

Calculate the ratio of a categorical(1/100) predictor with respect to a baseline of 0.

X = categorical(1/100);
hazard = hazardratio(coxMdl,X,stratification,'Baseline',0)

hazard = 1

Input Arguments
coxMdl — Fitted Cox proportional hazards model
CoxModel object

Fitted Cox proportional hazards model, specified as a CoxModel object. Create coxMdl using
fitcox.

X — Data for estimating hazard
matrix | table

Data for estimating the hazard, specified as a matrix or table. The data must be the same type as the
data used to train coxMdl.
Data Types: double | table | categorical

Stratification — Stratification level
variable or variables of type used for training

Stratification level, specified as a variable or variables of the same type used for training coxMdl.
Specify the same number of rows in Stratification as in X.
Data Types: single | double | logical | char | string | table | cell | categorical

baseline — Baseline hazard
inferred from coxMdl (default) | real scalar | real row vector

Baseline hazard, specified as a real scalar or row vector.

• A scalar value applies to all predictors.
• A row vector value must have the same number of entries as the number of predictors.

The returned hazard ratio is relative to the baseline.
Example: [1 20 100]
Data Types: single | double

Output Arguments
hazard — Hazard ratio relative to baseline
nonnegative vector
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Hazard ratio relative to the baseline, returned as a nonnegative vector. hazard gives the factor by
which to multiply the baseline hazard, so you can obtain the relative hazard of an individual with
predictor values X and, if applicable, stratification level Stratification.

Version History
Introduced in R2021a

See Also
CoxModel | survival | plotSurvival | fitcox

Topics
“Cox Proportional Hazards Model Object” on page 15-39
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hist3
Bivariate histogram plot

Syntax
hist3(X)
hist3(X,'Nbins',nbins)
hist3(X,'Ctrs',ctrs)
hist3(X,'Edges',edges)
hist3( ___ ,Name,Value)
hist3(ax, ___ )

N = hist3( ___ )
[N,c] = hist3( ___ )

Description
hist3(X) creates a bivariate histogram plot of X(:,1) and X(:,2) using 10-by-10 equally spaced
bins. The hist3 function displays the bins as 3-D rectangular bars, and the height of each bar
indicates the number of elements in the bin.

hist3(X,'Nbins',nbins) specifies the number of bins in each dimension of the histogram. This
syntax is equivalent to hist3(X,nbins).

hist3(X,'Ctrs',ctrs) specifies the centers of the bins in each dimension of the histogram. This
syntax is equivalent to hist3(X,ctrs).

hist3(X,'Edges',edges) specifies the edges of the bins in each dimension.

hist3( ___ ,Name,Value) specifies graphical properties using one or more name-value pair
arguments in addition to the input arguments in the previous syntaxes. For example,
'FaceAlpha',0.5 creates a semitransparent histogram. For a list of properties, see Surface
Properties.

hist3(ax, ___ ) plots into the axes specified by ax instead of the current axes (gca). The option ax
can precede any of the input argument combinations in the previous syntaxes.

N = hist3( ___ ) returns the number of elements in X that fall in each bin. This syntax does not
create a histogram.

[N,c] = hist3( ___ ) also returns the bin centers. This syntax does not create a histogram.

Examples

Histogram of Vectors

Load the sample data.

load carbig
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Create a bivariate histogram with the default settings.

X = [MPG,Weight];
hist3(X)
xlabel('MPG')
ylabel('Weight')

Specify Centers of Histogram Bins

Create a bivariate histogram on the bins specified by the bin centers, and count the number of
elements in each bin.

Load the sample data.

load carbig

Create a bivariate histogram. Specify the centers of the histogram bins using a two-element cell
array.

X = [MPG,Weight];
hist3(X,'Ctrs',{0:10:50 2000:500:5000})
xlabel('MPG')
ylabel('Weight')
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Count the number of elements in each bin.

N = hist3(X,'Ctrs',{0:10:50 2000:500:5000})

N = 6×7

     0     0     0     0     0     0     0
     0     0     2     3    16    26     6
     6    34    50    49    27    10     0
    70    49    11     3     0     0     0
    29     4     2     0     0     0     0
     1     0     0     0     0     0     0

Color Histogram Bars by Height

Load the sample data.

load carbig

Create a bivariate histogram. Specify graphical properties to color the histogram bars by height
representing the frequency of the observations.

X = [MPG,Weight];
hist3(X,'CDataMode','auto','FaceColor','interp')
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xlabel('MPG')
ylabel('Weight')

Tiled Histogram View

Load the sample data.

load carbig

Create a bivariate tiled histogram. Specify graphical properties to color the top surface of the
histogram bars by the frequency of the observations. Change the view to two-dimensional.

X = [MPG,Weight];
hist3(X,'CdataMode','auto')
xlabel('MPG')
ylabel('Weight')
colorbar
view(2)
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Adjust Graphical Properties

Create a bivariate histogram and adjust its graphical properties by using the handle of the histogram
surface object.

Load the sample data.

load carbig

Create a bivariate histogram with 7 bins in each dimension.

X = [MPG,Weight];
hist3(X,'Nbins',[7 7])
xlabel('MPG')
ylabel('Weight')
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The hist3 function creates a bivariate histogram, which is a type of surface plot. Find the handle of
the surface object and adjust the face transparency.

s = findobj(gca,'Type','Surface');
s.FaceAlpha = 0.65;
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Plot Histogram with Intensity Map

Create a bivariate histogram and add the 2-D projected view of intensities to the histogram.

Load the seamount data set (a seamount is an underwater mountain). The data set consists of a set
of longitude (x) and latitude (y) locations, and the corresponding seamount elevations (z) measured
at those coordinates. This example uses x and y to draw a bivariate histogram.

load seamount

Draw a bivariate histogram.

hist3([x,y])
xlabel('Longitude')
ylabel('Latitude')
hold on
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Count the number of elements in each bin.

N = hist3([x,y]);

Generate a grid to draw the 2-D projected view of intensities by using pcolor.

N_pcolor = N';
N_pcolor(size(N_pcolor,1)+1,size(N_pcolor,2)+1) = 0;
xl = linspace(min(x),max(x),size(N_pcolor,2)); % Columns of N_pcolor
yl = linspace(min(y),max(y),size(N_pcolor,1)); % Rows of N_pcolor

Draw the intensity map by using pcolor. Set the z-level of the intensity map to view the histogram
and the intensity map together.

h = pcolor(xl,yl,N_pcolor);
colormap('hot') % Change color scheme 
colorbar % Display colorbar
h.ZData = -max(N_pcolor(:))*ones(size(N_pcolor));
ax = gca;
ax.ZTick(ax.ZTick < 0) = [];
title('Seamount Location Histogram and Intensity Map');
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Input Arguments
X — Data to distribute among bins
m-by-2 numeric matrix

Data to distribute among the bins, specified as an m-by-2 numeric matrix, where m is the number of
data points. Corresponding elements in X(:,1) and X(:,2) specify the x and y coordinates of 2-D
data points.

hist3 ignores all NaN values. Similarly, hist3 ignores Inf and –Inf values unless you explicitly
specify Inf or –Inf as a bin edge by using the edges input argument.
Data Types: single | double

nbins — Number of bins
[10 10] (default) | two-element vector of positive integers

Number of bins in each dimension, specified as a two-element vector of positive integers. nbins(1)
specifies the number of bins in the first dimension, and nbins(2) specifies the number of bins in the
second dimension.
Example: [10 20]
Data Types: single | double
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ctrs — Bin centers
two-element cell array of numeric vectors

Bin centers in each dimension, specified as a two-element cell array of numeric vectors with
monotonically nondecreasing values. ctrs{1} and ctrs{2} are the positions of the bin centers in
the first and second dimensions, respectively.

hist3 assigns rows of X falling outside the range of the grid to the bins along the outer edges of the
grid.
Example: {0:10:100 0:50:500}
Data Types: cell

edges — Bin edges
two-element cell array of numeric vectors

Bin edges in each dimension, specified as a two-element cell array of numeric vectors with
monotonically nondecreasing values. edges{1} and edges{2} are the positions of the bin edges in
the first and second dimensions, respectively.

The value X(k,:) is in the (i,j)th bin if edges{1}(i) ≤ X(k,1) < edges{1}(i+1) and
edges{2}(j) ≤ X(k,2) < edges{2}(j+1).

The last bins in each dimension also include the last (outer) edge. For example, X(k,:) falls into the
(I,j)th bin if edges{1}(I–1) ≤ X(k,1) ≤ edges{1}(I) and edges{2}(j) ≤ X(k,2) <
edges{2}(j+1), where I is the length of edges{1}. Also, X(k,:) falls into the (i,J)th bin if
edges{1}(i) ≤ X(k,1) < edges{1}(i+1) and edges{2}(J–1) ≤ X(k,2) ≤ edges{2}(J),
where J is the length of edges{2}.

hist3 does not count rows of X falling outside the range of the grid. Use –Inf and Inf in edges to
include all non-NaN values.
Example: {0:10:100 0:50:500}
Data Types: cell

ax — Target axes
current axes (gca) (default) | Axes object

Target axes, specified as an axes object. If you do not specify an Axes object, then the hist3 function
uses the current axes (gca). For details, see Axes Properties.

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: hist3(X,'FaceColor','interp','CDataMode','auto') colors the histogram bars
according to the height of the bars.

The graphical properties listed here are only a subset. For a full list, see Surface Properties.

CDataMode — Selection mode for vertex colors
'manual' (default) | 'auto'
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Selection mode for CData (vertex colors), specified as the comma-separated pair consisting of
'CDataMode' and one of these values:

• 'manual' — Use manually specified values in the CData property. The default color in CData is
light steel blue corresponding to an RGB triple value of [0.75 0.85 0.95].

• 'auto' — Use the ZData values to set the colors. ZData contains the z-coordinate data for the
eight corners of each bar.

Example: 'CDataMode','auto'

EdgeColor — Edge line color
[0 0 0] (default) | 'none' | 'flat' | 'interp' | RGB triplet | hexadecimal color code | color name
| short name

Edge line color, specified as the comma-separated pair consisting of 'EdgeColor' and one of these
values:

• 'none' — Do not draw the edges.
• 'flat' — Use a different color for each edge based on the values in the CData property.
• 'interp' — Use interpolated coloring for each edge based on the values in the CData property.
• RGB triplet, hexadecimal color code, color name, or short name — Use the specified color for all

the edges. These values do not use the color values in the CData property.

The default color of [0 0 0] corresponds to black edges.

RGB triplets and hexadecimal color codes are useful for specifying custom colors.

• An RGB triplet is a three-element row vector whose elements specify the intensities of the red,
green, and blue components of the color. The intensities must be in the range [0,1]; for example,
[0.4 0.6 0.7].

• A hexadecimal color code is a character vector or a string scalar that starts with a hash symbol (#)
followed by three or six hexadecimal digits, which can range from 0 to F. The values are not case
sensitive. Thus, the color codes '#FF8800', '#ff8800', '#F80', and '#f80' are equivalent.

Alternatively, you can specify some common colors by name. This table lists the named color options,
the equivalent RGB triplets, and hexadecimal color codes.

Color Name Short Name RGB Triplet Hexadecimal
Color Code

Appearance

"red" "r" [1 0 0] "#FF0000"
"green" "g" [0 1 0] "#00FF00"
"blue" "b" [0 0 1] "#0000FF"
"cyan" "c" [0 1 1] "#00FFFF"
"magenta" "m" [1 0 1] "#FF00FF"
"yellow" "y" [1 1 0] "#FFFF00"
"black" "k" [0 0 0] "#000000"
"white" "w" [1 1 1] "#FFFFFF"

Here are the RGB triplets and hexadecimal color codes for the default colors MATLAB uses in many
types of plots.
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RGB Triplet Hexadecimal Color Code Appearance
[0 0.4470 0.7410] "#0072BD"
[0.8500 0.3250 0.0980] "#D95319"
[0.9290 0.6940 0.1250] "#EDB120"
[0.4940 0.1840 0.5560] "#7E2F8E"
[0.4660 0.6740 0.1880] "#77AC30"
[0.3010 0.7450 0.9330] "#4DBEEE"
[0.6350 0.0780 0.1840] "#A2142F"

Example: 'EdgeColor','blue'

FaceAlpha — Face transparency
1 (default) | scalar in the range [0,1] | 'flat' | 'interp' | 'texturemap'

Face transparency, specified as the comma-separated pair consisting of 'FaceAlpha' and one of
these values:

• Scalar in the range [0,1] — Use uniform transparency across all the faces. A value of 1 is fully
opaque and 0 is completely transparent. Values between 0 and 1 are semitransparent. This option
does not use the transparency values in the AlphaData property.

• 'flat' — Use a different transparency for each face based on the values in the AlphaData
property. The transparency value at the first vertex determines the transparency for the entire
face. This value applies only when you specify the AlphaData property and set the FaceColor
property to 'flat'.

• 'interp' — Use interpolated transparency for each face based on the values in the AlphaData
property. The transparency varies across each face by interpolating the values at the vertices. This
value applies only when you specify the AlphaData property and set the FaceColor property to
'interp'.

• 'texturemap' — Transform the data in AlphaData so that it conforms to the surface.

Example: 'FaceAlpha',0.5

FaceColor — Face color
'flat' (default) | 'interp' | 'none' | 'texturemap' | RGB triplet | hexadecimal color code |
color name | short name

Face color, specified as the comma-separated pair consisting of 'FaceColor' and one of these
values:

• 'flat' — Use a different color for each face based on the values in the CData property.
• 'interp' — Use interpolated coloring for each face based on the values in the CData property.
• 'none' — Do not draw the faces.
• 'texturemap' — Transform the color data in CData so that it conforms to the surface.
• RGB triplet, hexadecimal color code, color name, or short name — Use the specified color for all

the faces. These values do not use the color values in the CData property.

RGB triplets and hexadecimal color codes are useful for specifying custom colors.
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• An RGB triplet is a three-element row vector whose elements specify the intensities of the red,
green, and blue components of the color. The intensities must be in the range [0,1]; for example,
[0.4 0.6 0.7].

• A hexadecimal color code is a character vector or a string scalar that starts with a hash symbol (#)
followed by three or six hexadecimal digits, which can range from 0 to F. The values are not case
sensitive. Thus, the color codes '#FF8800', '#ff8800', '#F80', and '#f80' are equivalent.

Alternatively, you can specify some common colors by name. This table lists the named color options,
the equivalent RGB triplets, and hexadecimal color codes.

Color Name Short Name RGB Triplet Hexadecimal
Color Code

Appearance

"red" "r" [1 0 0] "#FF0000"
"green" "g" [0 1 0] "#00FF00"
"blue" "b" [0 0 1] "#0000FF"
"cyan" "c" [0 1 1] "#00FFFF"
"magenta" "m" [1 0 1] "#FF00FF"
"yellow" "y" [1 1 0] "#FFFF00"
"black" "k" [0 0 0] "#000000"
"white" "w" [1 1 1] "#FFFFFF"

Here are the RGB triplets and hexadecimal color codes for the default colors MATLAB uses in many
types of plots.

RGB Triplet Hexadecimal Color Code Appearance
[0 0.4470 0.7410] "#0072BD"
[0.8500 0.3250 0.0980] "#D95319"
[0.9290 0.6940 0.1250] "#EDB120"
[0.4940 0.1840 0.5560] "#7E2F8E"
[0.4660 0.6740 0.1880] "#77AC30"
[0.3010 0.7450 0.9330] "#4DBEEE"
[0.6350 0.0780 0.1840] "#A2142F"

Example: 'FaceColor','interp'

LineStyle — Line style
'-' (default) | '--' | ':' | '-.' | 'none'

Line style, specified as the comma-separated pair consisting of 'LineStyle' and one of the options
in this table.

Line Style Description Resulting Line
"-" Solid line

"--" Dashed line
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Line Style Description Resulting Line
":" Dotted line

"-." Dash-dotted line

"none" No line No line

Example: 'LineStyle',':'

LineWidth — Line width
0.5 (default) | positive value

Line width, specified as the comma-separated pair consisting of 'LineWidth' and a positive value in
points.
Example: 'LineWidth',0.75
Data Types: single | double

Output Arguments
N — Number of elements in each bin
numeric matrix

Number of elements in X that fall in each bin, returned as a numeric matrix.

c — Bin centers
two-element cell array of numeric vectors

Bin centers in each dimension, returned as a two-element cell array of numeric vectors. c{1} and
c{2} are the positions of the bin centers in the first and second dimensions, respectively.

Tips
The hist3 function creates a bivariate histogram, which is a type of surface plot. You can specify
surface properties using one or more name-value pair arguments. Also, you can change the
appearance of the histogram by changing the surface property values after you create a histogram.
Get the handle of the surface object by using s = findobj(gca,'Type','Surface'), and then
use s to modify the surface properties. For an example, see “Adjust Graphical Properties” on page 35-
3264. For a list of properties, see Surface Properties.

Alternative Functionality
The histogram2 function enables you to create a bivariate histogram using a Histogram2 object.
You can use the name-value pair arguments of histogram2 to use normalization
('Normalization'), adjust the width of the bins in each dimension ('BinWidth'), and display the
histogram as a rectangular array of tiles instead of 3-D bars ('DisplayStyle').

Version History
Introduced before R2006a
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See Also
accumarray | bar3 | histcounts2 | histogram2 | binScatterPlot
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histfit
Histogram with a distribution fit

Syntax
histfit(data)
histfit(data,nbins)
histfit(data,nbins,dist)

histfit(ax, ___ )

h = histfit( ___ )

Description
histfit(data) plots a histogram of values in data using the number of bins equal to the square
root of the number of elements in data and fits a normal density function.

histfit(data,nbins) plots a histogram using nbins bins and fits a normal density function.

histfit(data,nbins,dist) plots a histogram with nbins bins and fits a density function from
the distribution specified by dist.

histfit(ax, ___ ) uses the plot axes specified by the Axes object ax. Specify ax as the first input
argument followed by any of the input argument combinations in the previous syntaxes.

h = histfit( ___ ) returns a vector of handles h, where h(1) is the handle to the histogram and
h(2) is the handle to the density curve.

Examples

Histogram with a Normal Distribution Fit

Generate a sample of size 100 from a normal distribution with mean 10 and variance 1.

rng default; % For reproducibility
r = normrnd(10,1,100,1);

Construct a histogram with a normal distribution fit.

histfit(r)
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histfit uses fitdist to fit a distribution to data. Use fitdist to obtain parameters used in
fitting.

pd = fitdist(r,'Normal')

pd = 
  NormalDistribution

  Normal distribution
       mu = 10.1231   [9.89244, 10.3537]
    sigma =  1.1624   [1.02059, 1.35033]

The intervals next to the parameter estimates are the 95% confidence intervals for the distribution
parameters.

Histogram for a Given Number of Bins

Generate a sample of size 100 from a normal distribution with mean 10 and variance 1.

rng default; % For reproducibility
r = normrnd(10,1,100,1);

Construct a histogram using six bins with a normal distribution fit.
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histfit(r,6)

Histogram with a Specified Distribution Fit

Generate a sample of size 100 from a beta distribution with parameters (3,10).

rng default;  % For reproducibility
b = betarnd(3,10,100,1);

Construct a histogram using 10 bins with a beta distribution fit.

histfit(b,10,'beta')
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Histogram with a Kernel Smoothing Function Fit

Generate a sample of size 100 from a beta distribution with parameters (3,10).

rng default;  % For reproducibility
b = betarnd(3,10,[100,1]);

Construct a histogram using 10 bins with a smoothing function fit.

histfit(b,10,'kernel')
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Specify Axes for Histogram with Distribution Fit

Generate a sample of size 100 from a normal distribution with mean 3 and variance 1.

rng('default') % For reproducibility
r = normrnd(3,1,100,1);

Create a figure with two subplots and return the Axes objects as ax1 and ax2. Create a histogram
with a normal distribution fit in each set of axes by referring to the corresponding Axes object. In the
left subplot, plot a histogram with 10 bins. In the right subplot, plot a histogram with 5 bins. Add a
title to each plot by passing the corresponding Axes object to the title function.

ax1 = subplot(1,2,1); % Left subplot
histfit(ax1,r,10,'normal')
title(ax1,'Left Subplot')

ax2 = subplot(1,2,2); % Right subplot
histfit(ax2,r,5,'normal')
title(ax2,'Right Subplot')
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Handle for a Histogram with a Distribution Fit

Generate a sample of size 100 from a normal distribution with mean 10 and variance 1.

rng default % for reproducibility
r = normrnd(10,1,100,1);

Construct a histogram with a normal distribution fit.

h = histfit(r,10,'normal')
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h = 
  2x1 graphics array:

  Bar
  Line

Change the bar colors of the histogram.

h(1).FaceColor = [.8 .8 1];
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Change the color of the density curve.

h(2).Color = [.2 .2 .2];
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Input Arguments
data — Input data
vector

Input data, specified as a vector.
Example: data = [1.5 2.5 4.6 1.2 3.4]
Example: data = [1.5 2.5 4.6 1.2 3.4]'
Data Types: double | single

nbins — Number of bins
positive integer | [ ]

Number of bins for the histogram, specified as a positive integer. Default value is the square root of
the number of elements in data, rounded up. Use [ ] for the default number of bins when fitting a
distribution.
Example: y = histfit(x,8)
Example: y = histfit(x,10,'gamma')
Example: y = histfit(x,[ ],'weibull')
Data Types: double | single
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dist — Distribution to fit
'normal' (default) | character vector | string scalar

Distribution to fit to the histogram, specified as a character vector or string scalar. The following
table shows the supported distributions.

dist Description
'beta' Beta
'birnbaumsaunders' Birnbaum-Saunders
'burr' Burr Type XII
'exponential' Exponential
'extreme value' or 'ev' Extreme value
'gamma' Gamma
'generalized extreme value' or 'gev' Generalized extreme value
'generalized pareto' or 'gp' Generalized Pareto (threshold 0)
'inversegaussian' Inverse Gaussian
'logistic' Logistic
'loglogistic' Loglogistic
'lognormal' Lognormal
'nakagami' Nakagami
'negative binomial' or 'nbin' Negative binomial
'normal' Normal
'poisson' Poisson
'rayleigh' Rayleigh
'rician' Rician
'tlocationscale' t location-scale
'weibull' or 'wbl' Weibull
'kernel' Nonparametric kernel-smoothing distribution. The

density is evaluated at 100 equally spaced points
that cover the range of the data in data. It works
best with continuously distributed samples.

ax — Axes for plot
Axes object

Axes for the plot, specified as an Axes object. If you do not specify ax, then histfit creates the plot
using the current axes. For more information on creating an Axes object, see axes.

Output Arguments
h — Handles for the plot
plot handle
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Handles for the plot, returned as a vector, where h(1) is the handle to the histogram, and h(2) is the
handle to the density curve. histfit normalizes the density to match the total area under the curve
with that of the histogram.

Algorithms
histfit uses fitdist to fit a distribution to data. Use fitdist to obtain parameters used in
fitting.

Version History
Introduced before R2006a

See Also
histogram | normfit | distributionFitter | fitdist | paramci
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hmmdecode
Hidden Markov model posterior state probabilities

Syntax
PSTATES = hmmdecode(seq,TRANS,EMIS)
[PSTATES,logpseq] = hmmdecode(...)
[PSTATES,logpseq,FORWARD,BACKWARD,S] = hmmdecode(...)
hmmdecode(...,'Symbols',SYMBOLS)

Description
PSTATES = hmmdecode(seq,TRANS,EMIS) calculates the posterior state probabilities, PSTATES,
of the sequence seq, from a hidden Markov model. The posterior state probabilities are the
conditional probabilities of being at state k at step i, given the observed sequence of symbols, sym.
You specify the model by a transition probability matrix, TRANS, and an emissions probability matrix,
EMIS. TRANS(i,j) is the probability of transition from state i to state j. EMIS(k,seq) is the
probability that symbol seq is emitted from state k.

PSTATES is an array with the same length as seq and one row for each state in the model. The (i, j)th
element of PSTATES gives the probability that the model is in state i at the jth step, given the
sequence seq.

Note The function hmmdecode begins with the model in state 1 at step 0, prior to the first emission.
hmmdecode computes the probabilities in PSTATES based on the fact that the model begins in state 1.

[PSTATES,logpseq] = hmmdecode(...) returns logpseq, the logarithm of the probability of
sequence seq, given transition matrix TRANS and emission matrix EMIS.

[PSTATES,logpseq,FORWARD,BACKWARD,S] = hmmdecode(...) returns the forward and
backward probabilities of the sequence scaled by S.

hmmdecode(...,'Symbols',SYMBOLS) specifies the symbols that are emitted. SYMBOLS can be a
numeric array, a string array, or a cell array of the names of the symbols. The default symbols are
integers 1 through N, where N is the number of possible emissions.

Examples
trans = [0.95,0.05;
         0.10,0.90];
emis = [1/6 1/6 1/6 1/6 1/6 1/6;
   1/10 1/10 1/10 1/10 1/10 1/2];
 
[seq,states] = hmmgenerate(100,trans,emis);
pStates = hmmdecode(seq,trans,emis);
[seq,states] = hmmgenerate(100,trans,emis,...
   'Symbols',{'one','two','three','four','five','six'})
pStates = hmmdecode(seq,trans,emis,...
   'Symbols',{'one','two','three','four','five','six'});
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Version History
Introduced before R2006a

References

[1] Durbin, R., S. Eddy, A. Krogh, and G. Mitchison. Biological Sequence Analysis. Cambridge, UK:
Cambridge University Press, 1998.

See Also
hmmgenerate | hmmestimate | hmmviterbi | hmmtrain
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hmmestimate
Hidden Markov model parameter estimates from emissions and states

Syntax
[TRANS,EMIS] = hmmestimate(seq,states)
hmmestimate(...,'Symbols',SYMBOLS)
hmmestimate(...,'Statenames',STATENAMES)
hmmestimate(...,'Pseudoemissions',PSEUDOE)
hmmestimate(...,'Pseudotransitions',PSEUDOTR)

Description
[TRANS,EMIS] = hmmestimate(seq,states) calculates the maximum likelihood estimate of the
transition, TRANS, and emission, EMIS, probabilities of a hidden Markov model for sequence, seq,
with known states, states.

hmmestimate(...,'Symbols',SYMBOLS) specifies the symbols that are emitted. SYMBOLS can be
a numeric array, a string array or a cell array of the names of the symbols. The default symbols are
integers 1 through N, where N is the number of possible emissions.

hmmestimate(...,'Statenames',STATENAMES) specifies the names of the states. STATENAMES
can be a numeric array, a string array, or a cell array of the names of the states. The default state
names are 1 through M, where M is the number of states.

hmmestimate(...,'Pseudoemissions',PSEUDOE) specifies pseudocount emission values in the
matrix PSEUDOE. Use this argument to avoid zero probability estimates for emissions with very low
probability that might not be represented in the sample sequence. PSEUDOE should be a matrix of
size m-by-n, where m is the number of states in the hidden Markov model and n is the number of
possible emissions. If the i k emission does not occur in seq, you can set PSEUDOE(i,k) to be a
positive number representing an estimate of the expected number of such emissions in the sequence
seq.

hmmestimate(...,'Pseudotransitions',PSEUDOTR) specifies pseudocount transition values.
You can use this argument to avoid zero probability estimates for transitions with very low probability
that might not be represented in the sample sequence. PSEUDOTR should be a matrix of size m-by-m,
where m is the number of states in the hidden Markov model. If the i j transition does not occur in
states, you can set PSEUDOTR(i,j) to be a positive number representing an estimate of the
expected number of such transitions in the sequence states.

Pseudotransitions and Pseudoemissions

If the probability of a specific transition or emission is very low, the transition might never occur in
the sequence states, or the emission might never occur in the sequence seq. In either case, the
algorithm returns a probability of 0 for the given transition or emission in TRANS or EMIS. You can
compensate for the absence of transition with the 'Pseudotransitions' and
'Pseudoemissions' arguments. The simplest way to do this is to set the corresponding entry of
PSEUDOE or PSEUDOTR to 1. For example, if the transition i j does not occur in states, set
PSEUDOTR(i,j) = 1. This forces TRANS(i,j) to be positive. If you have an estimate for the
expected number of transitions i j in a sequence of the same length as states, and the actual
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number of transitions i j that occur in seq is substantially less than what you expect, you can set
PSEUDOTR(i,j) to the expected number. This increases the value of TRANS(i,j). For transitions
that do occur in states with the frequency you expect, set the corresponding entry of PSEUDOTR to 0,
which does not increase the corresponding entry of TRANS.

If you do not know the sequence of states, use hmmtrain to estimate the model parameters.

Examples
trans = [0.95,0.05; 0.10,0.90];
emis = [1/6 1/6 1/6 1/6 1/6 1/6;
   1/10 1/10 1/10 1/10 1/10 1/2];

[seq,states] = hmmgenerate(1000,trans,emis);
[estimateTR,estimateE] = hmmestimate(seq,states);

Version History
Introduced before R2006a

References

[1] Durbin, R., S. Eddy, A. Krogh, and G. Mitchison. Biological Sequence Analysis. Cambridge, UK:
Cambridge University Press, 1998.

See Also
hmmgenerate | hmmdecode | hmmviterbi | hmmtrain
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hmmgenerate
Hidden Markov model states and emissions

Syntax
[seq,states] = hmmgenerate(len,TRANS,EMIS)
hmmgenerate(...,'Symbols',SYMBOLS)
hmmgenerate(...,'Statenames',STATENAMES)

Description
[seq,states] = hmmgenerate(len,TRANS,EMIS) takes a known Markov model, specified by
transition probability matrix TRANS and emission probability matrix EMIS, and uses it to generate

• A random sequence seq of emission symbols
• A random sequence states of states

The length of both seq and states is len. TRANS(i,j) is the probability of transition from state i
to state j. EMIS(k,l) is the probability that symbol l is emitted from state k.

Note The function hmmgenerate begins with the model in state 1 at step 0, prior to the first
emission. The model then makes a transition to state i1, with probability T1i1, and generates an
emission ak1

 with probability Ei1k11
. hmmgenerate returns i1 as the first entry of states, and ak1

 as the
first entry of seq.

hmmgenerate(...,'Symbols',SYMBOLS) specifies the symbols that are emitted. SYMBOLS can be
specified as a numeric array, a string array, or a cell array of character vectors. The default symbols
are integers 1 through N, where N is the number of possible emissions.

hmmgenerate(...,'Statenames',STATENAMES) specifies the names of the states. STATENAMES
can be specified as a numeric array, a string array, or a cell array of character vectors. The default
state names are 1 through M, where M is the number of states.

Since the model always begins at state 1, whose transition probabilities are in the first row of TRANS,
in the following example, the first entry of the output states is be 1 with probability 0.95 and 2 with
probability 0.05.

Examples
 trans = [0.95,0.05;
          0.10,0.90];
 emis = [1/6 1/6 1/6 1/6 1/6 1/6;
    1/10 1/10 1/10 1/10 1/10 1/2];

[seq,states] = hmmgenerate(100,trans,emis)
[seq,states] = hmmgenerate(100,trans,emis,...
    'Symbols',{'one','two','three','four','five','six'},...
    'Statenames',{'fair';'loaded'})
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Version History
Introduced before R2006a

See Also
hmmviterbi | hmmdecode | hmmestimate | hmmtrain

 hmmgenerate

35-3291



hmmtrain
Hidden Markov model parameter estimates from emissions

Syntax
[ESTTR,ESTEMIT] = hmmtrain(seq,TRGUESS,EMITGUESS)
hmmtrain(...,'Algorithm',algorithm)
hmmtrain(...,'Symbols',SYMBOLS)
hmmtrain(...,'Tolerance',tol)
hmmtrain(...,'Maxiterations',maxiter)
hmmtrain(...,'Verbose',true)
hmmtrain(...,'Pseudoemissions',PSEUDOE)
hmmtrain(...,'Pseudotransitions',PSEUDOTR)

Description
[ESTTR,ESTEMIT] = hmmtrain(seq,TRGUESS,EMITGUESS) estimates the transition and
emission probabilities for a hidden Markov model using the Baum-Welch algorithm. seq can be a row
vector containing a single sequence, a matrix with one row per sequence, or a cell array with each
cell containing a sequence. TRGUESS and EMITGUESS are initial estimates of the transition and
emission probability matrices. TRGUESS(i,j) is the estimated probability of transition from state i
to state j. EMITGUESS(i,k) is the estimated probability that symbol k is emitted from state i.

hmmtrain(...,'Algorithm',algorithm) specifies the training algorithm. algorithm can be
either 'BaumWelch' or 'Viterbi'. The default algorithm is 'BaumWelch'.

hmmtrain(...,'Symbols',SYMBOLS) specifies the symbols that are emitted. SYMBOLS can be a
numeric array, a string array, or a cell array of the names of the symbols. The default symbols are
integers 1 through N, where N is the number of possible emissions.

hmmtrain(...,'Tolerance',tol) specifies the tolerance used for testing convergence of the
iterative estimation process. The default tolerance is 1e-4.

hmmtrain(...,'Maxiterations',maxiter) specifies the maximum number of iterations for the
estimation process. The default maximum is 100.

hmmtrain(...,'Verbose',true) returns the status of the algorithm at each iteration.

hmmtrain(...,'Pseudoemissions',PSEUDOE) specifies pseudocount emission values for the
Viterbi training algorithm. Use this argument to avoid zero probability estimates for emissions with
very low probability that might not be represented in the sample sequence. PSEUDOE should be a
matrix of size m-by-n, where m is the number of states in the hidden Markov model and n is the
number of possible emissions. If the i→k emission does not occur in seq, you can set PSEUDOE(i,k)
to be a positive number representing an estimate of the expected number of such emissions in the
sequence seq.

hmmtrain(...,'Pseudotransitions',PSEUDOTR) specifies pseudocount transition values for
the Viterbi training algorithm. Use this argument to avoid zero probability estimates for transitions
with very low probability that might not be represented in the sample sequence. PSEUDOTR should be
a matrix of size m-by-m, where m is the number of states in the hidden Markov model. If the i→j
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transition does not occur in states, you can set PSEUDOTR(i,j) to be a positive number
representing an estimate of the expected number of such transitions in the sequence states.

If you know the states corresponding to the sequences, use hmmestimate to estimate the model
parameters.

Tolerance

The input argument 'tolerance' controls how many steps the hmmtrain algorithm executes before
the function returns an answer. The algorithm terminates when all of the following three quantities
are less than the value that you specify for tolerance:

• The log likelihood that the input sequence seq is generated by the currently estimated values of
the transition and emission matrices

• The change in the norm of the transition matrix, normalized by the size of the matrix
• The change in the norm of the emission matrix, normalized by the size of the matrix

The default value of 'tolerance' is 1e-6. Increasing the tolerance decreases the number of steps
the hmmtrain algorithm executes before it terminates.

maxiterations

The maximum number of iterations, 'maxiterations', controls the maximum number of steps the
algorithm executes before it terminates. If the algorithm executes maxiter iterations before
reaching the specified tolerance, the algorithm terminates and the function returns a warning. If this
occurs, you can increase the value of 'maxiterations' to make the algorithm reach the desired
tolerance before terminating.

Examples
trans = [0.95,0.05;
      0.10,0.90];
emis = [1/6, 1/6, 1/6, 1/6, 1/6, 1/6;
   1/10, 1/10, 1/10, 1/10, 1/10, 1/2];

seq1 = hmmgenerate(100,trans,emis);
seq2 = hmmgenerate(200,trans,emis);
seqs = {seq1,seq2};
[estTR,estE] = hmmtrain(seqs,trans,emis);

Version History
Introduced before R2006a

References

[1] Durbin, R., S. Eddy, A. Krogh, and G. Mitchison. Biological Sequence Analysis. Cambridge, UK:
Cambridge University Press, 1998.

See Also
hmmgenerate | hmmdecode | hmmestimate | hmmviterbi
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hmmviterbi
Hidden Markov model most probable state path

Syntax
STATES = hmmviterbi(seq,TRANS,EMIS)
hmmviterbi(...,'Symbols',SYMBOLS)
hmmviterbi(...,'Statenames',STATENAMES)

Description
STATES = hmmviterbi(seq,TRANS,EMIS) given a sequence, seq, calculates the most likely path
through the hidden Markov model specified by transition probability matrix, TRANS, and emission
probability matrix EMIS. TRANS(i,j) is the probability of transition from state i to state j.
EMIS(i,k) is the probability that symbol k is emitted from state i.

Note The function hmmviterbi begins with the model in state 1 at step 0, prior to the first emission.
hmmviterbi computes the most likely path based on the fact that the model begins in state 1.

hmmviterbi(...,'Symbols',SYMBOLS) specifies the symbols that are emitted. SYMBOLS can be a
numeric array, a string array, or a cell array of the names of the symbols. The default symbols are
integers 1 through N, where N is the number of possible emissions.

hmmviterbi(...,'Statenames',STATENAMES) specifies the names of the states. STATENAMES
can be a numeric array, a string array, or a cell array of the names of the states. The default state
names are 1 through M, where M is the number of states.

Examples
trans = [0.95,0.05;
         0.10,0.90];
emis = [1/6 1/6 1/6 1/6 1/6 1/6;
   1/10 1/10 1/10 1/10 1/10 1/2];

[seq,states] = hmmgenerate(100,trans,emis);
estimatedStates = hmmviterbi(seq,trans,emis);

[seq,states] = ...
   hmmgenerate(100,trans,emis,...
               'Statenames',{'fair';'loaded'});
estimatesStates = ...
   hmmviterbi(seq,trans,emis,...
              'Statenames',{'fair';'loaded'});

Version History
Introduced before R2006a
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References

[1] Durbin, R., S. Eddy, A. Krogh, and G. Mitchison. Biological Sequence Analysis. Cambridge, UK:
Cambridge University Press, 1998.

See Also
hmmgenerate | hmmdecode | hmmestimate | hmmtrain
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HoeffdingDriftDetectionMethod
Incremental concept drift detector that utilizes Hoeffding's Bounds Drift Detection Method (HDDM)

Description
HoeffdingDriftDetectionMethod model object represents an incremental concept drift detector
that uses the Hoeffding's Bounds nonparametric drift detection methods based on moving averages
(A-test) or exponentially weighted moving averages (W-test) [1]. After creating the object, you can use
the detectdrift object function to update the statistics and check for any drift in the concept data
(for example, failure rate, regression loss, and so on).

HoeffdingDriftDetectionMethod is suitable for incremental concept drift detection. For drift
detection on raw data, see detectdrift for batch drift detection.

Creation
You can create HoeffdingDriftDetectionMethod by specifying the DetectionMethod argument
as "hddma" or "hddmw" in the call to incrementalConceptDriftDetector.

Properties
Alternative — Type of alternative hypothesis
'greater' (default) | 'less' | 'unequal'

This property is read-only.

Type of alternative hypothesis for determining the drift status, specified as 'greater', 'less', or
'unequal'.
Data Types: char

CutHoeffdingBound — Hoeffding's bound for input data observed up to the cut point
numeric value

This property is read-only.

Hoeffding's bound for input data observed up to the cut point, specified as a numeric value.

detectdrift updates CutMean and CutHoeffdingBound and resets PostCutMean and
PostCutHoeffdingBound when any one of these conditions is satisfied:

• Alternative is "greater" and Mean + HoeffdingBound is less than or equal to CutMean +
CutHoeffdingBound.

• Alternative is "less" and Mean - HoeffdingBound is greater than or equal to CutMean -
CutHoeffdingBound.

• Alternative is "unequal" and Mean + HoeffdingBound is less than or equal to CutMean -
CutHoeffdingBound or Mean - HoeffdingBound is greater than or equal to CutMean +
CutHoeffdingBound.
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Data Types: double

CutMean — Weighted average
numeric value

This property is read-only.

Weighted average of data observed up to the cut point, specified as a numeric value.

detectdrift updates CutMean and CutHoeffdingBound and resets PostCutMean and
PostCutHoeffdingBound when any one of these conditions is satisfied:

• Alternative is "greater" and Mean + HoeffdingBound is less than or equal to CutMean +
CutHoeffdingBound.

• Alternative is "less" and Mean - HoeffdingBound is greater than or equal to CutMean -
CutHoeffdingBound.

• Alternative is "unequal" and Mean + HoeffdingBound is less than or equal to CutMean -
CutHoeffdingBound or Mean - HoeffdingBound is greater than or equal to CutMean +
CutHoeffdingBound.

Data Types: double

DriftDetected — Flag indicating whether software detects drift
1 | 0

This property is read-only.

Flag indicating whether software detects drift or not, specified as either 1 or 0. Value of 1 means
DriftStatus is 'Drift'.
Data Types: logical

DriftStatus — Current drift status
'Stable' | 'Warning' | 'Drift'

This property is read-only.

Current drift status, specified as 'Stable', 'Warning', or 'Drift'. You can see the transition in
the drift status by comparing DriftStatus and PreviousDriftStaus.
Data Types: char

DriftThreshold — Threshold to determine if drift exists
0.001 (default) | nonnegative scalar value from 0 to 1

This property is read-only.

Threshold to determine if drift exists, specified as a nonnegative scalar value from 0 to 1. It is the
significance level the software uses for calculating the allowed error between a random variable and
its expected value in Hoeffding's inequality or McDiarmid's inequality before it sets DriftStatus to
'Drift'.
Data Types: double

EstimationPeriod — Number of observations used for estimating the input bound
nonnegative integer
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This property is read-only.

Number of observations used for estimating the input bound for continuous variables, specified as a
nonnegative integer.
Data Types: double

ForgettingFactor — Forgetting factor for HDDMW method
0.05 (default) | scalar value from 0 to 1

This property is read-only.

Note This option is for the exponentially weighted moving average method (ewma) only.

Forgetting factor for the exponentially weighted moving average (EWMA) method (HDDMW),
specified as a scalar value from 0 to 1.
Data Types: double

HoeffdingBound — Hoeffding's bound for all input data
numeric value

This property is read-only.

Hoeffding's bound for all input data used for training the drift detector, specified as a numeric value.
Data Types: double

InputBounds — Bounds of input data
numeric vector of size 2

This property is read-only.

Bounds of input data, specified as a numeric vector of size 2.
Data Types: double

InputType — Type of input data
'binary' (default) | 'continuous'

This property is read-only.

Type of input data, specified as either 'binary' or 'continuous'.
Data Types: char

IsWarm — Flag indicating whether warmup period is over
1 | 0

This property is read-only.

Flag indicating whether the warmup period is over or not, specified as 1 (true) or 0(false).
Data Types: logical

Mean — Weighted average of all input data
numeric value
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This property is read-only.

Weighted average of all input data used for training the drift detector, specified as a numeric value.
Data Types: double

NumTrainingObservations — Number of observations used for training
nonnegative integer value

This property is read-only.

Number of observations used for training the drift detector, specified as a nonnegative integer value.
Data Types: double

PostCutHoeffdingBound — Hoeffding's bound for data observed after the cut point
numeric value

This property is read-only.

Hoeffding's bound for data observed after the cut point, specified as a numeric value.

detectdrift updates CutMean and CutHoeffdingBound and resets PostCutMean and
PostCutHoeffdingBound when any one of these conditions is satisfied:

• Alternative is "greater" and Mean + HoeffdingBound is less than or equal to CutMean +
CutHoeffdingBound.

• Alternative is "less" and Mean - HoeffdingBound is greater than or equal to CutMean -
CutHoeffdingBound.

• Alternative is "unequal" and Mean + HoeffdingBound is less than or equal to CutMean -
CutHoeffdingBound or Mean - HoeffdingBound is greater than or equal to CutMean +
CutHoeffdingBound.

Data Types: double

PostCutMean — Weighted average of data observed after the cut point
numeric value

This property is read-only.

Weighted average of data observed after the cut point, specified as a numeric value.

detectdrift updates CutMean and CutHoeffdingBound and resets PostCutMean and
PostCutHoeffdingBound when any one of these conditions is satisfied:

• Alternative is "greater" and Mean + HoeffdingBound is less than or equal to CutMean +
CutHoeffdingBound.

• Alternative is "less" and Mean - HoeffdingBound is greater than or equal to CutMean -
CutHoeffdingBound.

• Alternative is "unequal" and Mean + HoeffdingBound is less than or equal to CutMean -
CutHoeffdingBound or Mean - HoeffdingBound is greater than or equal to CutMean +
CutHoeffdingBound.

Data Types: double
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PreviousDriftStatus — Drift status prior to the latest training
'Stable' | 'Warning' | 'Drift'

This property is read-only.

Drift status prior to the latest training using the most recent batch of data, specified as 'Stable',
'Warning', or 'Drift'. You can see the transition in the drift status by comparing DriftStatus
and PreviousDriftStaus.
Data Types: char

TestMethod — Test method used for drift detection
'ewma' | 'average'

This property is read-only.

Test method used for drift detection, specified as either 'ewma' or 'average' corresponding to the
"hddmw" and "hddma" detection methods, respectively, in the call to
incrementalConceptDriftDetector.
Data Types: char

WarmupPeriod — Number of observations for drift detector warmup
nonnegative integer value

This property is read-only.

Number of observations for drift detector warmup, specified as a nonnegative integer.
Data Types: double

WarningDetected — Flag indicating whether there is warning
1 | 0

This property is read-only.

Flag indicating whether there is warning or not, specified as either 1 or 0. Value of 1 means
DriftStatus is 'Warning'.
Data Types: logical

WarningThreshold — Threshold to determine warning versus drift
0.005 (default) | nonnegative scalar value from 0 to 1

This property is read-only.

Threshold to determine warning versus drift, specified as a nonnegative scalar value from 0 to 1. It is
the significance level the software uses for calculating the allowed error between a random variable
and its expected value in Hoeffding's inequality or McDiarmid's inequality before it sets
DriftStatus to 'Warning'.
Data Types: double

Object Functions
detectdrift Update drift detector states and drift status with new data
reset Reset incremental concept drift detector
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Examples

Monitor Continuous Data for Drift

Create a random stream such that the observations come from a normal distribution with standard
deviation 0.75, but the mean changes over time. First 1000 observations come from a distribution
with mean 2, the next 1000 come from a distribution with mean 4, and the following 1000 come from
a distribution with mean 7.

rng(1234) % For reproducibility
numObservations = 3000;
switchPeriod1 = 1000;
switchPeriod2 = 2000;
X = zeros([numObservations 1]);

% Generate the data
for i = 1:numObservations
   if i <= switchPeriod1
      X(i) = normrnd(2,0.75);
   elseif i <= switchPeriod2
      X(i) = normrnd(4,0.75);
   else
      X(i) = normrnd(7,0.75);
   end
end

In an incremental drift detection application, access to data stream and model update would happen
consecutively. One would not collect the data first and then feed into the model. However, for the
purpose of clarification, this example demonstrates the simulation of data separately.

Specify the drift warmup period as 50 observations and estimation period for the data input bounds
as 100.

driftWarmupPeriod = 50;
estimationPeriod = 100;

Initiate the incremental concept drift detector. Utilize the Hoeffding's bounds method with
exponentially weighted moving average method (EWMA). Specify the input type and warmup period.

incCDDetector = incrementalConceptDriftDetector("hddmw",InputType="continuous", ...
                WarmupPeriod=driftWarmupPeriod,EstimationPeriod=estimationPeriod)

incCDDetector = 
  HoeffdingDriftDetectionMethod

        PreviousDriftStatus: 'Stable'
                DriftStatus: 'Stable'
                     IsWarm: 0
    NumTrainingObservations: 0
                Alternative: 'greater'
                  InputType: 'continuous'
                 TestMethod: 'ewma'

  Properties, Methods
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incDDetector is a HoeffdingDriftDetectionMethod object. When you first create the object,
properties such as DriftStatus, IsWarm, CutMean, and NumTrainingObservations are at their
initial state. detectdrift updates them as you feed the data incrementally and monitor for drift.

Preallocate the batch size and the variables to record drift status and the mean the drift detector
computes with each income of data.

status = zeros([numObservations 1]);
statusname = strings([numObservations 1]);
M = zeros([numObservations 1]);

Simulate the data stream of one observation at a time and perform incremental drift detection. At
each iteration:

• Monitor for drift using the new data with detectdrift.
• Track and record the drift status and the statistics for visualization purposes.
• When a drift is detected, reset the incremental concept drift detector by using the function reset.

for i = 1:numObservations
    
    incCDDetector = detectdrift(incCDDetector,X(i));
    
    M(i) = incCDDetector.Mean;
        
    if incCDDetector.DriftDetected
        status(i) = 2;
        statusname(i) = string(incCDDetector.DriftStatus);
        incCDDetector = reset(incCDDetector); % If drift detected, reset the detector
        sprintf("Drift detected at observation #%d. Detector reset.",i)
    elseif incCDDetector.WarningDetected
        status(i) = 1;
        statusname(i) = string(incCDDetector.DriftStatus);
        sprintf("Warning detected at observation #%d.",i)
    else 
        status(i) = 0;
        statusname(i) = string(incCDDetector.DriftStatus);
    end      
end

ans = 
"Warning detected at observation #1024."

ans = 
"Warning detected at observation #1025."

ans = 
"Warning detected at observation #1026."

ans = 
"Warning detected at observation #1027."

ans = 
"Warning detected at observation #1028."

ans = 
"Warning detected at observation #1029."
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ans = 
"Drift detected at observation #1030. Detector reset."

ans = 
"Warning detected at observation #2012."

ans = 
"Warning detected at observation #2013."

ans = 
"Warning detected at observation #2014."

ans = 
"Drift detected at observation #2015. Detector reset."

Plot the drift status versus the observation number.

gscatter(1:numObservations,status,statusname,'gyr','*',5,'on',"Number of observations","Drift status")

Plot the mean values versus the number of observations.

scatter(1:numObservations,M)
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You can see the increase in the sample mean from the plot. The mean value becomes larger and the
software eventually detects the drift in the data. Once a drift is detected, reset the incremental drift
detector. This also resets the mean value. In the plot, the observations where the sample mean is zero
correspond to the estimation periods. There is an estimation period at the beginning and then twice
after the drift detector is reset following the detection of a drift.

Version History
Introduced in R2022a

References
[1] Frias-Blanco, Isvani, Jose del Campo-Ávila, Ramos-Jimenez Gonzalo, Rafael Morales-Bueno,

Augustin Ortiz-Diaz, and Yaile Caballero-Mota. “Online and non-parametric drift detection
methods based on Hoeffding's bounds.“ IEEE Transactions on Knowledge and Data
Engineering, Vol. 27, No. 3, pp.810-823. 2014.

See Also
incrementalConceptDriftDetector | DriftDetectionMethod | detectdrift | reset
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horzcat
Class: dataset

(Not Recommended) Horizontal concatenation for dataset arrays

Note The dataset data type is not recommended. To work with heterogeneous data, use the
MATLAB® table data type instead. See MATLAB table documentation for more information.

Syntax
ds = horzcat(ds1, ds2, ...)

Description
ds = horzcat(ds1, ds2, ...) horizontally concatenates the dataset arrays ds1, ds2, ... .
You may concatenate dataset arrays that have duplicate variable names, however, the variables must
contain identical data, and horzcat includes only one copy of the variable in the output dataset.

Observation names for all dataset arrays that have them must be identical except for order. horzcat
concatenates by matching observation names when present, or by position for datasets that do not
have observation names.

See Also
cat | vertcat
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hougen
Hougen-Watson model

Syntax
yhat = hougen(beta,x)

Description
yhat = hougen(beta,x) returns the predicted values of the reaction rate, yhat, as a function of
the vector of parameters, beta, and the matrix of data, X. beta must have 5 elements and X must
have three columns.

hougen is a utility function for rsmdemo.

The model form is:

y =
β1x2− x3/β5

1 + β2x1 + β3x2 + β4x3

Version History
Introduced before R2006a

References

[1] Bates, D. M., and D. G. Watts. Nonlinear Regression Analysis and Its Applications. Hoboken, NJ:
John Wiley & Sons, Inc., 1988.

See Also
rsmdemo
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hygecdf
Hypergeometric cumulative distribution function

Syntax
hygecdf(x,M,K,N)
hygecdf(x,M,K,N,'upper')

Description
hygecdf(x,M,K,N) computes the hypergeometric cdf at each of the values in x using the
corresponding size of the population, M, number of items with the desired characteristic in the
population, K, and number of samples drawn, N. Vector or matrix inputs for x, M, K, and N must all
have the same size. A scalar input is expanded to a constant matrix with the same dimensions as the
other inputs.

hygecdf(x,M,K,N,'upper') returns the complement of the hypergeometric cdf at each value in x,
using an algorithm that more accurately computes the extreme upper tail probabilities.

The hypergeometric cdf is

p = F(x M, K, N) = ∑
i = 0

x
K
i

M − K
N − i
M
N

The result, p, is the probability of drawing up to x of a possible K items in N drawings without
replacement from a group of M objects.

Examples

Compute Hypergeometric Distribution CDF

Suppose you have a lot of 100 floppy disks and you know that 20 of them are defective. What is the
probability of drawing zero to two defective floppies if you select 10 at random?

p = hygecdf(2,100,20,10)

p = 0.6812

Version History
Introduced before R2006a
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Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

This function fully supports GPU arrays. For more information, see “Run MATLAB Functions on a
GPU” (Parallel Computing Toolbox).

See Also
cdf | hygepdf | hygeinv | hygestat | hygernd
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hygeinv
Hypergeometric inverse cumulative distribution function

Syntax
hygeinv(P,M,K,N)

Description
hygeinv(P,M,K,N) returns the smallest integer X such that the hypergeometric cdf evaluated at X
equals or exceeds P. You can think of P as the probability of observing X defective items in N drawings
without replacement from a group of M items where K are defective.

Examples
Suppose you are the Quality Assurance manager for a floppy disk manufacturer. The production line
turns out floppy disks in batches of 1,000. You want to sample 50 disks from each batch to see if they
have defects. You want to accept 99% of the batches if there are no more than 10 defective disks in
the batch. What is the maximum number of defective disks should you allow in your sample of 50?

x = hygeinv(0.99,1000,10,50)
x =
   3

What is the median number of defective floppy disks in samples of 50 disks from batches with 10
defective disks?

x = hygeinv(0.50,1000,10,50)
x =
   0

Version History
Introduced before R2006a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

This function fully supports GPU arrays. For more information, see “Run MATLAB Functions on a
GPU” (Parallel Computing Toolbox).

See Also
icdf | hygecdf | hygepdf | hygestat | hygernd
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hygepdf
Hypergeometric probability density function

Syntax
Y = hygepdf(X,M,K,N)

Description
Y = hygepdf(X,M,K,N) computes the hypergeometric pdf at each of the values in X using the
corresponding size of the population, M, number of items with the desired characteristic in the
population, K, and number of samples drawn, N. X, M, K, and N can be vectors, matrices, or
multidimensional arrays that all have the same size. A scalar input is expanded to a constant array
with the same dimensions as the other inputs.

The parameters in M, K, and N must all be positive integers, with N ≤ M. The values in X must be less
than or equal to all the parameter values.

The hypergeometric pdf is

y = f (x M, K, N) =

K
x

M − K
N − x
M
N

The result, y, is the probability of drawing exactly x of a possible K items in n drawings without
replacement from a group of M objects.

Examples
Suppose you have a lot of 100 floppy disks and you know that 20 of them are defective. What is the
probability of drawing 0 through 5 defective floppy disks if you select 10 at random?

p = hygepdf(0:5,100,20,10)
p =
  0.0951  0.2679  0.3182  0.2092  0.0841  0.0215

Version History
Introduced before R2006a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

35 Functions

35-3310



This function fully supports GPU arrays. For more information, see “Run MATLAB Functions on a
GPU” (Parallel Computing Toolbox).

See Also
pdf | hygecdf | hygeinv | hygestat | hygernd
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hygernd
Hypergeometric random numbers

Syntax
R = hygernd(M,K,N)
R = hygernd(M,K,N,m,n,...)
R = hygernd(M,K,N,[m,n,...])

Description
R = hygernd(M,K,N) generates random numbers from the hypergeometric distribution with
corresponding size of the population, M, number of items with the desired characteristic in the
population, K, and number of samples drawn, N. M, K, and N can be vectors, matrices, or
multidimensional arrays that all have the same size, which is also the size of R. A scalar input for M, K,
or N is expanded to a constant array with the same dimensions as the other inputs.

R = hygernd(M,K,N,m,n,...) or R = hygernd(M,K,N,[m,n,...]) generates an m-by-n-by-...
array. The M, K, N parameters can each be scalars or arrays of the same size as R.

Examples
numbers = hygernd(1000,40,50)
numbers =
   1

Version History
Introduced before R2006a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

The generated code can return a different sequence of numbers than MATLAB if either of the
following is true:

• The output is nonscalar.
• An input parameter is invalid for the distribution.

For more information on code generation, see “Introduction to Code Generation” on page 34-2 and
“General Code Generation Workflow” on page 34-5.

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.
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This function fully supports GPU arrays. For more information, see “Run MATLAB Functions on a
GPU” (Parallel Computing Toolbox).

See Also
random | hygepdf | hygecdf | hygeinv | hygestat
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hygestat
Hypergeometric mean and variance

Syntax
[MN,V] = hygestat(M,K,N)

Description
[MN,V] = hygestat(M,K,N) returns the mean of and variance for the hypergeometric distribution
with corresponding size of the population, M, number of items with the desired characteristic in the
population, K, and number of samples drawn, N. Vector or matrix inputs for M, K, and N must have the
same size, which is also the size of MN and V. A scalar input for M, K, or N is expanded to a constant
matrix with the same dimensions as the other inputs.

The mean of the hypergeometric distribution with parameters M, K, and N is NK/M, and the variance is
NK(M-K)(M-N)/[M^2(M-1)].

Examples
The hypergeometric distribution approaches the binomial distribution, where p = K/M, as M goes to
infinity.

[m,v] = hygestat(10.^(1:4),10.^(0:3),9)
m =
  0.9000  0.9000  0.9000  0.9000
v =
  0.0900  0.7445  0.8035  0.8094

[m,v] = binostat(9,0.1)
m =
  0.9000
v =
  0.8100

Version History
Introduced before R2006a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
hygepdf | hygecdf | hygeinv | hygernd
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hyperparameters
Variable descriptions for optimizing a fit function

Syntax
VariableDescriptions = hyperparameters(FitFcnName,predictors,response)
VariableDescriptions = hyperparameters(FitFcnName,predictors,response,
LearnerType)

Description
VariableDescriptions = hyperparameters(FitFcnName,predictors,response) returns
the default variables for the given fit function. These are the variables that apply when you set the
OptimizeHyperparameters name-value argument to 'auto'.

VariableDescriptions = hyperparameters(FitFcnName,predictors,response,
LearnerType) returns the variables for an ensemble fit with specified learner type. This syntax
applies when FitFcnName is 'fitcecoc', 'fitcensemble', or 'fitrensemble'.

Examples

Obtain Default Hyperparameters

Obtain the default hyperparameters for the fitcsvm classifier.

Load the ionosphere data.

load ionosphere

Obtain the hyperparameters.

VariableDescriptions = hyperparameters('fitcsvm',X,Y);

Examine all the hyperparameters.

for ii = 1:length(VariableDescriptions)
    disp(ii),disp(VariableDescriptions(ii))
end

     1

  optimizableVariable with properties:

         Name: 'BoxConstraint'
        Range: [1.0000e-03 1000]
         Type: 'real'
    Transform: 'log'
     Optimize: 1

     2
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  optimizableVariable with properties:

         Name: 'KernelScale'
        Range: [1.0000e-03 1000]
         Type: 'real'
    Transform: 'log'
     Optimize: 1

     3

  optimizableVariable with properties:

         Name: 'KernelFunction'
        Range: {'gaussian'  'linear'  'polynomial'}
         Type: 'categorical'
    Transform: 'none'
     Optimize: 0

     4

  optimizableVariable with properties:

         Name: 'PolynomialOrder'
        Range: [2 4]
         Type: 'integer'
    Transform: 'none'
     Optimize: 0

     5

  optimizableVariable with properties:

         Name: 'Standardize'
        Range: {'true'  'false'}
         Type: 'categorical'
    Transform: 'none'
     Optimize: 0

Change the PolynomialOrder hyperparameter to have a wider range and to be used in an
optimization.

VariableDescriptions(4).Range = [2,5];
VariableDescriptions(4).Optimize = true;
disp(VariableDescriptions(4))

  optimizableVariable with properties:

         Name: 'PolynomialOrder'
        Range: [2 5]
         Type: 'integer'
    Transform: 'none'
     Optimize: 1

Obtain Ensemble Hyperparameters

Obtain the default hyperparameters for the fitrensemble ensemble regression function.
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Load the carsmall data.

load carsmall

Use Horsepower and Weight as predictor variables, and MPG as the response variable.

X = [Horsepower Weight];
Y = MPG;

Obtain the default hyperparameters for a Tree learner.

VariableDescriptions = hyperparameters('fitrensemble',X,Y,'Tree');

Examine all the hyperparameters.

for ii = 1:length(VariableDescriptions)
    disp(ii),disp(VariableDescriptions(ii))
end

     1

  optimizableVariable with properties:

         Name: 'Method'
        Range: {'Bag'  'LSBoost'}
         Type: 'categorical'
    Transform: 'none'
     Optimize: 1

     2

  optimizableVariable with properties:

         Name: 'NumLearningCycles'
        Range: [10 500]
         Type: 'integer'
    Transform: 'log'
     Optimize: 1

     3

  optimizableVariable with properties:

         Name: 'LearnRate'
        Range: [1.0000e-03 1]
         Type: 'real'
    Transform: 'log'
     Optimize: 1

     4

  optimizableVariable with properties:

         Name: 'MinLeafSize'
        Range: [1 50]
         Type: 'integer'
    Transform: 'log'
     Optimize: 1
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     5

  optimizableVariable with properties:

         Name: 'MaxNumSplits'
        Range: [1 99]
         Type: 'integer'
    Transform: 'log'
     Optimize: 0

     6

  optimizableVariable with properties:

         Name: 'NumVariablesToSample'
        Range: [1 2]
         Type: 'integer'
    Transform: 'none'
     Optimize: 0

Change the MaxNumSplits hyperparameter to have a wider range and to be used in an optimization.

VariableDescriptions(5).Range = [1,200];
VariableDescriptions(5).Optimize = true;
disp(VariableDescriptions(5))

  optimizableVariable with properties:

         Name: 'MaxNumSplits'
        Range: [1 200]
         Type: 'integer'
    Transform: 'log'
     Optimize: 1

Input Arguments
FitFcnName — Name of fitting function
'fitcdiscr' | 'fitcecoc' | 'fitcensemble' | 'fitcgam' | 'fitckernel' | 'fitcknn' |
'fitclinear' | 'fitcnb' | 'fitcnet' | 'fitcsvm' | 'fitctree' | 'fitrensemble' |
'fitrgam' | 'fitrgp' | 'fitrkernel' | 'fitrlinear' | 'fitrnet' | 'fitrsvm' | 'fitrtree'

Name of the fitting function, specified as one of the listed classification or regression fit function
names.

• Classification fit functions: fitcdiscr, fitcecoc, fitcensemble, fitcgam, fitckernel,
fitcknn, fitclinear, fitcnb, fitcnet, fitcsvm, fitctree

• Regression fit functions: fitrensemble, fitrgam, fitrgp, fitrkernel, fitrlinear,
fitrnet, fitrsvm, fitrtree

If FitFcnName is 'fitcecoc', 'fitcensemble', or 'fitrensemble', then you also need to
specify the learner type in the LearnerType argument.
Example: 'fitctree'

predictors — Predictor data
matrix with D predictor columns | table with D predictor columns
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Predictor data, specified as a matrix with D predictor columns or a table with D predictor columns,
where D is the number of predictors.
Example: X
Data Types: double | logical | char | string | table | cell | categorical | datetime

response — Class labels or numeric response
grouping variable | scalar

Class labels or numeric response, specified as a grouping variable (see “Grouping Variables” on page
2-46) or a scalar.
Example: Y
Data Types: single | double | logical | char | string | cell

LearnerType — Learner type for ensemble fit
'Discriminant' | 'Kernel' | 'KNN' | 'Linear' | 'SVM' | 'Tree' | template of a listed learner

Learner type for an ensemble fit, specified as 'Discriminant', 'Kernel', 'KNN', 'Linear',
'SVM', 'Tree', or a template of one of these learners. Use this argument when FitFcnName is
'fitcecoc', 'fitcensemble', or 'fitrensemble'.

For 'fitcensemble' you can specify only 'Discriminant', 'KNN', 'Tree', or an associated
template.

For 'fitrensemble', you can specify only 'Tree' or its associated template.
Example: 'Tree'

Output Arguments
VariableDescriptions — Variable descriptions
vector of optimizableVariable objects

Variable descriptions, returned as a vector of optimizableVariable objects. The variables have
their default parameters set, such as range and variable type. All eligible variables exist in the
descriptions, but the variables unused in the 'auto' setting have their Optimize property set to
false. You can update the variables by using dot notation, as shown in “Examples” on page 35-0 .

Version History
Introduced in R2016b

See Also
optimizableVariable | bayesopt
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icdf
Package: prob

Inverse cumulative distribution function

Syntax
x = icdf(name,p,A)
x = icdf(name,p,A,B)
x = icdf(name,p,A,B,C)
x = icdf(name,p,A,B,C,D)

x = icdf(pd,p)

Description
x = icdf(name,p,A) returns the inverse cumulative distribution function (icdf) for the one-
parameter distribution family specified by name and the distribution parameter A, evaluated at the
probability values in p.

x = icdf(name,p,A,B) returns the icdf for the two-parameter distribution family specified by
name and the distribution parameters A and B, evaluated at the probability values in p.

x = icdf(name,p,A,B,C) returns the icdf for the three-parameter distribution family specified by
name and the distribution parameters A, B, and C, evaluated at the probability values in p.

x = icdf(name,p,A,B,C,D) returns the icdf for the four-parameter distribution family specified
by name and the distribution parameters A, B, C, and D, evaluated at the probability values in p.

x = icdf(pd,p) returns the icdf function of the probability distribution object pd, evaluated at the
probability values in p.

Examples

Compute Normal Distribution icdf by Specifying Distribution Name and Parameters

Compute the icdf values for a normal distribution by specifying the distribution name 'Normal' and
the distribution parameters.

Define the input vector p to contain the probability values at which to calculate the icdf.

p = [0.1,0.25,0.5,0.75,0.9];

Compute the icdf values for the normal distribution with the mean μ equal to 1 and the standard
deviation σ equal to 5.

mu = 1;
sigma = 5;
y = icdf('Normal',p,mu,sigma)
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y = 1×5

   -5.4078   -2.3724    1.0000    4.3724    7.4078

Each value in y corresponds to a value in the input vector x. For example, at the value x equal to 1,
the corresponding icdf value y is equal to 7.4078.

Compute Normal Distribution icdf Using Distribution Object

Create a normal distribution object and compute the icdf values of the normal distribution using the
object.

Create a normal distribution object with the mean μ equal to 1 and the standard deviation σ equal to
5.

mu = 1;
sigma = 5;
pd = makedist('Normal','mu',mu,'sigma',sigma);

Define the input vector p to contain the probability values at which to calculate the icdf.

p = [0.1,0.25,0.5,0.75,0.9];

Compute the icdf values for the normal distribution at the values in p.

x = icdf(pd,p)

x = 1×5

   -5.4078   -2.3724    1.0000    4.3724    7.4078

Each value in x corresponds to a value in the input vector p. For example, at the value p equal to 0.9,
the corresponding icdf value x is equal to 7.4078.

Compute the Poisson Distribution icdf

Create a Poisson distribution object with the rate parameter, λ, equal to 2.

lambda = 2;
pd = makedist('Poisson','lambda',lambda);

Define the input vector p to contain the probability values at which to calculate the icdf.

p = [0.1,0.25,0.5,0.75,0.9];

Compute the icdf values for the Poisson distribution at the values in p.

x = icdf(pd,p)

x = 1×5

 icdf

35-3321



     0     1     2     3     4

Each value in x corresponds to a value in the input vector p. For example, at the value p equal to 0.9,
the corresponding icdf value x is equal to 4.

Alternatively, you can compute the same icdf values without creating a probability distribution object.
Use the icdf function and specify a Poisson distribution using the same value for the rate parameter
λ.

x2 = icdf('Poisson',p,lambda)

x2 = 1×5

     0     1     2     3     4

The icdf values are the same as those computed using the probability distribution object.

Compute Standard Normal Critical Values

Create a standard normal distribution object.

pd = makedist('Normal')

pd = 
  NormalDistribution

  Normal distribution
       mu = 0
    sigma = 1

Determine the critical values at the 5% significance level for a test statistic with a standard normal
distribution, by computing the upper and lower 2.5% values.

x = icdf(pd,[.025,.975])

x = 1×2

   -1.9600    1.9600

Plot the cdf and shade the critical regions.

p = normspec(x,0,1,'outside')
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p = 0.0500

Input Arguments
name — Probability distribution name
character vector or string scalar of probability distribution name

Probability distribution name, specified as one of the probability distribution names in this table.

name Distribution Input
Parameter A

Input
Parameter B

Input
Parameter C

Input
Parameter D

'Beta' “Beta Distribution” on
page B-6

a first shape
parameter

b second
shape
parameter

N/A N/A

'Binomial' “Binomial
Distribution” on page
B-10

n number of
trials

p probability
of success for
each trial

N/A N/A

'BirnbaumSaunders
'

“Birnbaum-Saunders
Distribution” on page
B-18

β scale
parameter

γ shape
parameter

N/A N/A
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name Distribution Input
Parameter A

Input
Parameter B

Input
Parameter C

Input
Parameter D

'Burr' “Burr Type XII
Distribution” on page
B-19

α scale
parameter

c first shape
parameter

k second
shape
parameter

N/A

'Chisquare' or
'chi2'

“Chi-Square
Distribution” on page
B-29

ν degrees of
freedom

N/A N/A N/A

'Exponential' “Exponential
Distribution” on page
B-34

μ mean N/A N/A N/A

'Extreme Value' or
'ev'

“Extreme Value
Distribution” on page
B-41

μ location
parameter

σ scale
parameter

N/A N/A

'F' “F Distribution” on
page B-46

ν1 numerator
degrees of
freedom

ν2
denominator
degrees of
freedom

N/A N/A

'Gamma' “Gamma Distribution”
on page B-48

a shape
parameter

b scale
parameter

N/A N/A

'Generalized
Extreme Value' or
'gev'

“Generalized Extreme
Value Distribution” on
page B-56

k shape
parameter

σ scale
parameter

μ location
parameter

N/A

'Generalized
Pareto' or 'gp'

“Generalized Pareto
Distribution” on page
B-60

k tail index
(shape)
parameter

σ scale
parameter

μ threshold
(location)
parameter

N/A

'Geometric' “Geometric
Distribution” on page
B-64

p probability
parameter

N/A N/A N/A

'Half Normal' or
'hn'

“Half-Normal
Distribution” on page
B-69

μ location
parameter

σ scale
parameter

N/A N/A

'Hypergeometric'
or 'hyge'

“Hypergeometric
Distribution” on page
B-74

m size of the
population

k number of
items with the
desired
characteristic
in the
population

n number of
samples drawn

N/A

'InverseGaussian' “Inverse Gaussian
Distribution” on page
B-76

μ scale
parameter

λ shape
parameter

N/A N/A

'Logistic' “Logistic Distribution”
on page B-86

μ mean σ scale
parameter

N/A N/A
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name Distribution Input
Parameter A

Input
Parameter B

Input
Parameter C

Input
Parameter D

'LogLogistic' “Loglogistic
Distribution” on page
B-87

μ mean of
logarithmic
values

σ scale
parameter of
logarithmic
values

N/A N/A

'LogNormal' “Lognormal
Distribution” on page
B-89

μ mean of
logarithmic
values

σ standard
deviation of
logarithmic
values

N/A N/A

'Loguniform' “Loguniform
Distribution” on page
B-97

a lower
endpoint
(minimum)

b upper
endpoint
(maximum)

N/A N/A

'Nakagami' “Nakagami
Distribution” on page
B-114

μ shape
parameter

ω scale
parameter

N/A N/A

'Negative
Binomial' or 'nbin'

“Negative Binomial
Distribution” on page
B-115

r number of
successes

p probability
of success in a
single trial

N/A N/A

'Noncentral F' or
'ncf'

“Noncentral F
Distribution” on page
B-121

ν1 numerator
degrees of
freedom

ν2
denominator
degrees of
freedom

δ noncentrality
parameter

N/A

'Noncentral t' or
'nct'

“Noncentral t
Distribution” on page
B-123

ν degrees of
freedom

δ noncentrality
parameter

N/A N/A

'Noncentral Chi-
square' or 'ncx2'

“Noncentral Chi-
Square Distribution”
on page B-119

ν degrees of
freedom

δ noncentrality
parameter

N/A N/A

'Normal' “Normal Distribution”
on page B-125

μ mean σ standard
deviation

N/A N/A

'Poisson' “Poisson Distribution”
on page B-137

λ mean N/A N/A N/A

'Rayleigh' “Rayleigh
Distribution” on page
B-143

b scale
parameter

N/A N/A N/A

'Rician' “Rician Distribution”
on page B-145

s noncentrality
parameter

σ scale
parameter

N/A N/A

'Stable' “Stable Distribution”
on page B-147

α first shape
parameter

β second
shape
parameter

γ scale
parameter

δ location
parameter

'T' “Student's t
Distribution” on page
B-156

ν degrees of
freedom

N/A N/A N/A
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name Distribution Input
Parameter A

Input
Parameter B

Input
Parameter C

Input
Parameter D

'tLocationScale' “t Location-Scale
Distribution” on page
B-163

μ location
parameter

σ scale
parameter

ν shape
parameter

N/A

'Uniform' “Uniform Distribution
(Continuous)” on page
B-170

a lower
endpoint
(minimum)

b upper
endpoint
(maximum)

N/A N/A

'Discrete
Uniform' or 'unid'

“Uniform Distribution
(Discrete)” on page B-
175

n maximum
observable
value

N/A N/A N/A

'Weibull' or 'wbl' “Weibull Distribution”
on page B-177

a scale
parameter

b shape
parameter

N/A N/A

Example: 'Normal'

p — Probability values at which to evaluate icdf
scalar value | array of scalar values

Probability values at which to evaluate the icdf, specified as a scalar value, or an array of scalar
values in the range [0,1].

If one or more of the input arguments p, A, B, C, and D are arrays, then the array sizes must be the
same. In this case, icdf expands each scalar input into a constant array of the same size as the array
inputs. See name for the definitions of A, B, C, and D for each distribution.
Example: [0.1,0.25,0.5,0.75,0.9]
Data Types: single | double

A — First probability distribution parameter
scalar value | array of scalar values

First probability distribution parameter, specified as a scalar value or an array of scalar values.

If one or more of the input arguments p, A, B, C, and D are arrays, then the array sizes must be the
same. In this case, icdf expands each scalar input into a constant array of the same size as the array
inputs. See name for the definitions of A, B, C, and D for each distribution.
Data Types: single | double

B — Second probability distribution parameter
scalar value | array of scalar values

Second probability distribution parameter, specified as a scalar value or an array of scalar values.

If one or more of the input arguments p, A, B, C, and D are arrays, then the array sizes must be the
same. In this case, icdf expands each scalar input into a constant array of the same size as the array
inputs. See name for the definitions of A, B, C, and D for each distribution.
Data Types: single | double

C — Third probability distribution parameter
scalar value | array of scalar values
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Third probability distribution parameter, specified as a scalar value or an array of scalar values.

If one or more of the input arguments p, A, B, C, and D are arrays, then the array sizes must be the
same. In this case, icdf expands each scalar input into a constant array of the same size as the array
inputs. See name for the definitions of A, B, C, and D for each distribution.
Data Types: single | double

D — Fourth probability distribution parameter
scalar value | array of scalar values

Fourth probability distribution parameter, specified as a scalar value or an array of scalar values.

If one or more of the input arguments p, A, B, C, and D are arrays, then the array sizes must be the
same. In this case, icdf expands each scalar input into a constant array of the same size as the array
inputs. See name for the definitions of A, B, C, and D for each distribution.
Data Types: single | double

pd — Probability distribution
probability distribution object

Probability distribution, specified as one of the probability distribution objects in this table.

Distribution Object Function or App to Create Probability
Distribution Object

BetaDistribution makedist, fitdist, Distribution Fitter
BinomialDistribution makedist, fitdist, Distribution Fitter
BirnbaumSaundersDistribution makedist, fitdist, Distribution Fitter
BurrDistribution makedist, fitdist, Distribution Fitter
ExponentialDistribution makedist, fitdist, Distribution Fitter
ExtremeValueDistribution makedist, fitdist, Distribution Fitter
GammaDistribution makedist, fitdist, Distribution Fitter
GeneralizedExtremeValueDistribution makedist, fitdist, Distribution Fitter
GeneralizedParetoDistribution makedist, fitdist, Distribution Fitter
HalfNormalDistribution makedist, fitdist, Distribution Fitter
InverseGaussianDistribution makedist, fitdist, Distribution Fitter
KernelDistribution fitdist, Distribution Fitter
LogisticDistribution makedist, fitdist, Distribution Fitter
LoglogisticDistribution makedist, fitdist, Distribution Fitter
LognormalDistribution makedist, fitdist, Distribution Fitter
LoguniformDistribution makedist
MultinomialDistribution makedist
NakagamiDistribution makedist, fitdist, Distribution Fitter
NegativeBinomialDistribution makedist, fitdist, Distribution Fitter
NormalDistribution makedist, fitdist, Distribution Fitter

 icdf

35-3327



Distribution Object Function or App to Create Probability
Distribution Object

Piecewise distribution with generalized Pareto
distributions in the tails

paretotails

PiecewiseLinearDistribution makedist
PoissonDistribution makedist, fitdist, Distribution Fitter
RayleighDistribution makedist, fitdist, Distribution Fitter
RicianDistribution makedist, fitdist, Distribution Fitter
StableDistribution makedist, fitdist, Distribution Fitter
tLocationScaleDistribution makedist, fitdist, Distribution Fitter
TriangularDistribution makedist
UniformDistribution makedist
WeibullDistribution makedist, fitdist, Distribution Fitter

Output Arguments
x — icdf values
scalar value | array of scalar values

icdf values, returned as a scalar value or an array of scalar values. x is the same size as p after any
necessary scalar expansion. Each element in x is the icdf value of the distribution, specified by the
corresponding elements in the distribution parameters (A, B, C, and D) or specified by the probability
distribution object (pd), evaluated at the corresponding element in p.

Alternative Functionality
icdf is a generic function that accepts either a distribution by its name name or a probability
distribution object pd. It is faster to use a distribution-specific function, such as norminv for the
normal distribution and binoinv for the binomial distribution. For a list of distribution-specific
functions, see “Supported Distributions” on page 5-16.

Version History
Introduced before R2006a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• The input argument name must be a compile-time constant. For example, to use the normal
distribution, include coder.Constant('Normal') in the -args value of codegen.

• The input argument pd can be a fitted probability distribution object for beta, exponential,
extreme value, lognormal, normal, and Weibull distributions. Create pd by fitting a probability
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distribution to sample data from the fitdist function. For an example, see “Code Generation for
Probability Distribution Objects” on page 34-94.

For more information on code generation, see “Introduction to Code Generation” on page 34-2 and
“General Code Generation Workflow” on page 34-5.

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

This function fully supports GPU arrays. For more information, see “Run MATLAB Functions on a
GPU” (Parallel Computing Toolbox).

See Also
cdf | mle | pdf | random | makedist | fitdist | Distribution Fitter | paretotails

Topics
“Working with Probability Distributions” on page 5-3
“Supported Distributions” on page 5-16
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inconsistent
Inconsistency coefficient

Syntax
Y = inconsistent(Z)
Y = inconsistent(Z,d)

Description
Y = inconsistent(Z) returns the inconsistency coefficient for each link of the hierarchical cluster
tree Z generated by the linkage function. inconsistent calculates the inconsistency coefficient
for each link by comparing its height with the average height of other links at the same level of the
hierarchy. The larger the coefficient, the greater the difference between the objects connected by the
link. For more information, see “Algorithms” on page 35-3333.

Y = inconsistent(Z,d) returns the inconsistency coefficient for each link in the tree Z by
searching to a depth d below each link.

Examples

Inconsistency Coefficient Calculation

Examine an inconsistency coefficient calculation for a hierarchical cluster tree.

Load the examgrades data set.

load examgrades

Create a hierarchical cluster tree.

Z = linkage(grades);

Create a matrix of inconsistency coefficient information using inconsistent. Examine the
information for the 84th link.

Y = inconsistent(Z);
Y(84,:)

ans = 1×4

    7.2741    0.3624    3.0000    0.5774

The fourth column of Y contains the inconsistency coefficient, which is computed using the mean in
the first column of Y and the standard deviation in the second column of Y.

Because the rows of Y correspond to the rows of Z, examine the 84th link in Z.

Z(84,:)
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ans = 1×3

  190.0000  203.0000    7.4833

The 84th link connects the 190th and 203rd clusters in the tree and has a height of 7.4833. The
190th cluster corresponds to the link of index 190− 120 = 70, where 120 is the number of
observations. The 203rd cluster corresponds to the 83rd link.

By default, inconsistent uses two levels of the tree to compute Y. Therefore, it uses only the 70th,
83rd, and 84th links to compute the inconsistency coefficient for the 84th link. Compare the values in
Y(84,:) with the corresponding computations by using the link heights in Z.

mean84 = mean([Z(70,3) Z(83,3) Z(84,3)])

mean84 = 7.2741

std84 = std([Z(70,3) Z(83,3) Z(84,3)])

std84 = 0.3624

inconsistent84 = (Z(84,3)-mean84)/std84

inconsistent84 = 0.5774

Compute Inconsistency Coefficient

Create the sample data.

X = gallery('uniformdata',[10 2],12);
Y = pdist(X);

Generate the hierarchical cluster tree.

Z = linkage(Y,'single');

Generate a dendrogram plot of the hierarchical cluster tree.

dendrogram(Z)

 inconsistent

35-3331



Compute the inconsistency coefficient for each link in the cluster tree Z to depth 3.

W = inconsistent(Z,3)

W = 9×4

    0.1313         0    1.0000         0
    0.1386         0    1.0000         0
    0.1463    0.0109    2.0000    0.7071
    0.2391         0    1.0000         0
    0.1951    0.0568    4.0000    0.9425
    0.2308    0.0543    4.0000    0.9320
    0.2395    0.0748    4.0000    0.7636
    0.2654    0.0945    4.0000    0.9203
    0.3769    0.0950    3.0000    1.1040

Input Arguments
Z — Agglomerative hierarchical cluster tree
numeric matrix

Agglomerative hierarchical cluster tree, specified as a numeric matrix returned by linkage. Z is an
(m – 1)-by-3 matrix, where m is the number of observations. Columns 1 and 2 of Z contain cluster
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indices linked in pairs to form a binary tree. Z(I,3) contains the linkage distances between the two
clusters merged in row Z(I,:).
Data Types: single | double

d — Depth
2 (default) | positive integer scalar

Depth, specified as a positive integer scalar. For each link k, inconsistent calculates the
corresponding inconsistency coefficient using all the links in the tree within d levels below k.
Data Types: single | double

Output Arguments
Y — Inconsistency coefficient information
numeric matrix

Inconsistency coefficient information, returned as an (m – 1)-by-4 matrix, where the (m – 1) rows
correspond to the rows of Z. This table describes the columns of Y.

Column Description
1 Mean of the heights of all the links included in the calculation
2 Standard deviation of the heights of all the links included in the calculation
3 Number of links included in the calculation
4 Inconsistency coefficient

Data Types: double

Algorithms
For each link k, the inconsistency coefficient is calculated as

Y(k, 4) = (Z(k, 3)− Y(k, 1))/Y(k, 2),

where Y is the inconsistency coefficient information for links in the hierarchical cluster tree Z.

For links that have no further links below them, the inconsistency coefficient is set to 0.

Version History
Introduced before R2006a

References
[1] Jain, A., and R. Dubes. Algorithms for Clustering Data. Upper Saddle River, NJ: Prentice-Hall,

1988.

[2] Zahn, C. T. “Graph-theoretical methods for detecting and describing Gestalt clusters.” IEEE
Transactions on Computers. Vol. C-20, Issue 1, 1971, pp. 68–86.
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See Also
cluster | cophenet | clusterdata | dendrogram | linkage | pdist | squareform

Topics
“Hierarchical Clustering” on page 17-6
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increaseB
Package: clustering.evaluation

Increase reference data sets

Syntax
updatedEvaluation = increaseB(evaluation,numsets)

Description
updatedEvaluation = increaseB(evaluation,numsets) returns a gap criterion clustering
evaluation object updatedEvaluation, which uses the gap criterion clustering evaluation object
evaluation and an additional number of reference data sets specified by numsets.

Examples

Evaluate Clustering Solutions Using Additional Reference Data

Create a gap clustering evaluation object using evalclusters. Then, use increaseB to increase
the number of reference data sets used to compute the gap criterion values.

Load the fisheriris data set. The data contains length and width measurements from the sepals
and petals of three species of iris flowers.

load fisheriris

Cluster the flower measurement data using kmeans, and use the gap criterion to evaluate proposed
solutions for 1 to 5 clusters. Use 50 reference data sets.

rng("default") % For reproducibility
evaluation = evalclusters(meas,"kmeans","gap","KList",1:5,"B",50)

evaluation = 
  GapEvaluation with properties:

    NumObservations: 150
         InspectedK: [1 2 3 4 5]
    CriterionValues: [0.0870 0.5822 0.8766 1.0007 1.0465]
           OptimalK: 4

The clustering evaluation object evaluation contains data on each proposed clustering solution.
The returned results indicate that the optimal number of clusters is four.

The value of the B property of evaluation shows 50 reference data sets.

evaluation.B

ans = 50
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Increase the number of reference data sets by 100, for a total of 150 sets.

evaluation = increaseB(evaluation,100)

evaluation = 
  GapEvaluation with properties:

    NumObservations: 150
         InspectedK: [1 2 3 4 5]
    CriterionValues: [0.0794 0.5850 0.8738 1.0034 1.0508]
           OptimalK: 5

The returned results now indicate that the optimal number of clusters is five.

The value of the B property of evaluation now shows 150 reference data sets.

evaluation.B

ans = 150

Input Arguments
evaluation — Clustering evaluation data
GapEvaluation object

Clustering evaluation data, specified as a GapEvaluation clustering evaluation object. Create a
clustering evaluation object by using evalclusters.

numsets — Number of additional reference data sets
positive integer scalar

Number of additional reference data sets, specified as a positive integer scalar.
Data Types: single | double

Output Arguments
updatedEvaluation — Updated clustering evaluation data
GapEvaluation object

Updated clustering evaluation data, returned as a GapEvaluation clustering evaluation object.
updatedEvaluation contains evaluation data obtained using the reference data sets from the
evaluation object and a number of additional reference data sets specified by numsets.

The increaseB function updates the B property of the evaluation object to reflect the increase in
the number of reference data sets used to compute the gap criterion values. The function also
updates the CriterionValues property with gap criterion values computed using the total number
of reference data sets. If the software finds a new optimal number of clusters and optimal clustering
solution when using the total number of reference data sets, then increaseB updates the OptimalK
and OptimalY properties. The function also updates the LogW, ExpectedLogW, StdLogW, and SE
properties.
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Version History
Introduced in R2014a

See Also
evalclusters | GapEvaluation
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interactionplot
Interaction plot for grouped data

Syntax
interactionplot(Y,GROUP)
interactionplot(Y,GROUP,'varnames',VARNAMES)
[h,AX,bigax] = interactionplot(...)

Description
interactionplot(Y,GROUP) displays the two-factor interaction plot for the group means of matrix
Y with groups defined by entries in GROUP, which can be a cell array or a matrix. Y is a numeric
matrix or vector. If Y is a matrix, the rows represent different observations and the columns represent
replications of each observation. If Y is a vector, the rows give the means of each entry in GROUP. If
GROUP is a cell array, then each cell of GROUP must contain a grouping variable that is a categorical
variable, numeric vector, character matrix, string array, or single-column cell array of character
vectors. If GROUP is a matrix, then its columns represent different grouping variables. Each grouping
variable must have the same number of rows as Y. The number of grouping variables must be greater
than 1.

The interaction plot is a matrix plot, with the number of rows and columns both equal to the number
of grouping variables. The grouping variable names are printed on the diagonal of the plot matrix.
The plot at off-diagonal position (i,j) is the interaction of the two variables whose names are given at
row diagonal (i,i) and column diagonal (j,j), respectively.

interactionplot(Y,GROUP,'varnames',VARNAMES) displays the interaction plot with user-
specified grouping variable names VARNAMES. VARNAMES is a character matrix, a string array, or a
cell array of character vectors, one per grouping variable. Default names are 'X1', 'X2', ... .

[h,AX,bigax] = interactionplot(...) returns a handle h to the figure window, a matrix AX of
handles to the subplot axes, and a handle bigax to the big (invisible) axes framing the subplots.

Examples

Display Interaction Plots

Randomly generate data for a response variable y .

rng default;     % For reproducibility
y = randn(1000,1);

Randomly generate data for four three-level factors.

group = ceil(3*rand(1000,4));

Display the interaction plots for the factors and name the factors 'A', 'B', 'C', 'D'.

interactionplot(y,group,'varnames',{'A','B','C','D'})
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Version History
Introduced in R2006b

See Also
maineffectsplot | multivarichart
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intersect
Class: dataset

(Not Recommended) Set intersection for dataset array observations

Note The dataset data type is not recommended. To work with heterogeneous data, use the
MATLAB® table data type instead. See MATLAB table documentation for more information.

Syntax
C = intersect(A,B)
C = intersect(A,B,vars)
C = intersect(A,B,vars,setOrder)
[C,iA,iB] = intersect( ___ )

Description
C = intersect(A,B) for dataset arrays A and B returns the common set of observations from the
two arrays, with repetitions removed. The observations in the dataset array C are in sorted order.

C = intersect(A,B,vars) returns the set of common observations from the two arrays,
considering only the variables specified in vars, with repetitions removed. The observations in the
dataset array C are sorted by those variables.

The values for variables not specified in vars for each observation in C are taken from the
corresponding observations in A. If there are multiple observations in A that correspond to an
observation in C, then those values are taken from the first occurrence.

C = intersect(A,B,vars,setOrder) returns the observations in C in the order specified by
setOrder.

[C,iA,iB] = intersect( ___ ) also returns index vectors iA and iB such that C = A(iA,:) and
C = B(iB,:). If there are repeated observations in A or B, then intersect returns the index of the
first occurrence. You can use any of the previous input arguments.

Input Arguments
A,B

Input dataset arrays.

vars

String array or cell array of character vectors containing variable names, or a vector of integers
containing variable column numbers. vars indicates the variables in A and B that intersect
considers.

Specify vars as [] to use its default value of all variables.
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setOrder

Flag indicating the sorting order for the observations in C. The possible values of setOrder are:

'sorted' Observations in C are in sorted order (default).
'stable' Observations in C are in the same order that they appear in A.

Output Arguments
C

Dataset array with the common set of observations in A and B, with repetitions removed. C is in
sorted order (by default), or the order specified by setOrder.

iA

Index vector, indicating the observations in A that are common to B. The vector iA contains the index
to the first occurrence of any repeated observations in A.

iB

Index vector, indicating the observations in B that are common to A. The vector iB contains the index
to the first occurrence of any repeated observations in B.

Examples

Intersection of Two Dataset Arrays

Load sample data.

A = dataset('XLSFile',fullfile(matlabroot,'help/toolbox/stats/examples','hospitalSmall.xlsx'));
B = dataset('XLSFile',fullfile(matlabroot,'help/toolbox/stats/examples','hospitalSmall.xlsx'),'Sheet',2);

Return the intersection and index vectors.

[C,iA,iB] = intersect(A,B);

C = 

    id               name           sex        age    wgt    smoke
    'TRW-072'        'WHITE'        'm'        39     202    1    

There is one observation in common between A and B.

Find the observation in the original dataset arrays.

A(iA,:)

ans = 

    id               name           sex        age    wgt    smoke
    'TRW-072'        'WHITE'        'm'        39     202    1    

B(iB,:)
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ans = 

    id               name           sex        age    wgt    smoke
    'TRW-072'        'WHITE'        'm'        39     202    1    

See Also
dataset | ismember | setdiff | setxor | sortrows | union | unique

Topics
“Merge Dataset Arrays” on page 2-86
“Dataset Arrays” on page 2-113
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invpred
Inverse prediction

Syntax
X0 = invpred(X,Y,Y0)
[X0,DXLO,DXUP] = invpred(X,Y,Y0)
[X0,DXLO,DXUP] = invpred(X,Y,Y0,name1,val1,name2,val2,...)

Description
X0 = invpred(X,Y,Y0) accepts vectors X and Y of the same length, fits a simple regression, and
returns the estimated value X0 for which the height of the line is equal to Y0. The output, X0, has the
same size as Y0, and Y0 can be an array of any size.

[X0,DXLO,DXUP] = invpred(X,Y,Y0) also computes 95% inverse prediction intervals. DXLO and
DXUP define intervals with lower bound X0–DXLO and upper bound X0+DXUP. Both DXLO and DXUP
have the same size as Y0.

The intervals are not simultaneous and are not necessarily finite. Some intervals may extend from a
finite value to -Inf or +Inf, and some may extend over the entire real line.

[X0,DXLO,DXUP] = invpred(X,Y,Y0,name1,val1,name2,val2,...) specifies optional
argument name/value pairs chosen from the following list. Argument names are case insensitive and
partial matches are allowed.

Name Value
'alpha' A value between 0 and 1 specifying a confidence level of 100*(1-

alpha)%. Default is alpha=0.05 for 95% confidence.
'predopt' Either 'observation', the default value to compute the intervals

for X0 at which a new observation could equal Y0, or 'curve' to
compute intervals for the X0 value at which the curve is equal to Y0.

Examples

Inverse Prediction

Generate sample data.

x = 4*rand(25,1);
y = 10 + 5*x + randn(size(x));

Make a scatterplot of the data.

scatter(x,y)
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Predict the x value for a given y value of 20.

x0 = invpred(x,y,20)

x0 = 1.9967

Version History
Introduced before R2006a

See Also
polyfit | polyval | polyconf | polytool
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iqr
Package: prob

Interquartile range of probability distribution

Syntax
r = iqr(pd)

Description
r = iqr(pd) returns the interquartile range of the probability distribution pd. The scalar value of r
is the difference between the values of the 75th and 25th percentiles of the probability distribution.

Examples

Compute the Normal Distribution Interquartile Range

Create a standard normal distribution object with the mean, μ, equal to 0 and the standard deviation,
σ, equal to 1.

pd = makedist('Normal','mu',0,'sigma',1);

Compute the interquartile range of the standard normal distribution.

r = iqr(pd)

r = 1.3490

The returned value is the difference between the 75th and the 25th percentile values for the
distribution. This is equivalent to computing the difference between the inverse cumulative
distribution function (icdf) values at the probabilities y equal to 0.75 and 0.25.

r2 = icdf(pd,0.75) - icdf(pd,0.25)

r2 = 1.3490

Interquartile Range of a Fitted Distribution

Load the sample data. Create a vector containing the first column of students’ exam grade data.

load examgrades;
x = grades(:,1);

Create a normal distribution object by fitting it to the data.

pd = fitdist(x,'Normal')

pd = 
  NormalDistribution
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  Normal distribution
       mu = 75.0083   [73.4321, 76.5846]
    sigma =  8.7202   [7.7391, 9.98843]

Compute the interquartile range of the fitted distribution.

r = iqr(pd)

r = 11.7634

The returned result indicates that the difference between the 75th and 25th percentile of the
students’ grades is 11.7634.

Use icdf to determine the 75th and 25th percentiles of the students’ grades.

y = icdf(pd,[0.25,0.75])

y = 1×2

   69.1266   80.8900

Calculate the difference between the 75th and 25th percentiles. This yields the same result as iqr.

y(2)-y(1)

ans = 11.7634

Use boxplot to visualize the interquartile range.

boxplot(x)
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The top line of the box shows the 75th percentile, and the bottom line shows the 25th percentile. The
center line shows the median, which is the 50th percentile.

Input Arguments
pd — Probability distribution
probability distribution object

Probability distribution, specified as one of the probability distribution objects in the following table.

Distribution Object Function or App Used to Create Probability
Distribution Object

BetaDistribution makedist, fitdist, Distribution Fitter
BinomialDistribution makedist, fitdist, Distribution Fitter
BirnbaumSaundersDistribution makedist, fitdist, Distribution Fitter
BurrDistribution makedist, fitdist, Distribution Fitter
ExponentialDistribution makedist, fitdist, Distribution Fitter
ExtremeValueDistribution makedist, fitdist, Distribution Fitter
GammaDistribution makedist, fitdist, Distribution Fitter
GeneralizedExtremeValueDistribution makedist, fitdist, Distribution Fitter

 iqr

35-3347



Distribution Object Function or App Used to Create Probability
Distribution Object

GeneralizedParetoDistribution makedist, fitdist, Distribution Fitter
HalfNormalDistribution makedist, fitdist, Distribution Fitter
InverseGaussianDistribution makedist, fitdist, Distribution Fitter
KernelDistribution fitdist, Distribution Fitter
LogisticDistribution makedist, fitdist, Distribution Fitter
LoglogisticDistribution makedist, fitdist, Distribution Fitter
LognormalDistribution makedist, fitdist, Distribution Fitter
LoguniformDistribution makedist
MultinomialDistribution makedist
NakagamiDistribution makedist, fitdist, Distribution Fitter
NegativeBinomialDistribution makedist, fitdist, Distribution Fitter
NormalDistribution makedist, fitdist, Distribution Fitter
PiecewiseLinearDistribution makedist
PoissonDistribution makedist, fitdist, Distribution Fitter
RayleighDistribution makedist, fitdist, Distribution Fitter
RicianDistribution makedist, fitdist, Distribution Fitter
StableDistribution makedist, fitdist, Distribution Fitter
tLocationScaleDistribution makedist, fitdist, Distribution Fitter
TriangularDistribution makedist
UniformDistribution makedist
WeibullDistribution makedist, fitdist, Distribution Fitter

Version History
Introduced in R2013a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• The input argument pd can be a fitted probability distribution object for beta, exponential,
extreme value, lognormal, normal, and Weibull distributions. Create pd by fitting a probability
distribution to sample data from the fitdist function. For an example, see “Code Generation for
Probability Distribution Objects” on page 34-94.

For more information on code generation, see “Introduction to Code Generation” on page 34-2 and
“General Code Generation Workflow” on page 34-5.

35 Functions

35-3348



GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

This function fully supports GPU arrays. For more information, see “Run MATLAB Functions on a
GPU” (Parallel Computing Toolbox).

See Also
std | mad | range | icdf | boxplot | makedist | fitdist | Distribution Fitter

Topics
“Working with Probability Distributions” on page 5-3
“Supported Distributions” on page 5-16
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incrementalConceptDriftDetector
Instantiate incremental concept drift detector

Syntax
IncCDDetector = incrementalConceptDriftDetector()
IncCDDetector = incrementalConceptDriftDetector(DetectionMethod)
IncCDDetector = incrementalConceptDriftDetector(DetectionMethod,Name=Value)

Description
IncCDDetector = incrementalConceptDriftDetector() returns an incremental concept drift
detector that utilizes the default method, Hoeffding's Bounds Drift Detection Method with moving
average test (HDDMA).

IncCDDetector = incrementalConceptDriftDetector(DetectionMethod) returns an
incremental concept drift detector that utilizes the method DetectionMethod.

IncCDDetector = incrementalConceptDriftDetector(DetectionMethod,Name=Value)
specifies additional options using one or more Name=Value arguments.

Examples

Monitor Data Stream for Potential Drift

Initiate the concept drift detector using the Drift Detection Method (DDM).

incCDDetector = incrementalConceptDriftDetector("ddm");

Create a random stream such that for the first 1000 observations, failure rate is 0.1 and after 1000
observations, failure rate increases to 0.6.

rng(1234)  % For reproducibility
numObservations = 3000;
switchPeriod = 1000;

for i = 1:numObservations
    if i <= switchPeriod
       failurerate = 0.1;
    else
       failurerate = 0.6;
    end
       X(i) = rand()<failurerate; % Value 1 represents failure
end

Preallocate variables for tracking drift status.

status = zeros(numObservations,1);
statusname = strings(numObservations,1);
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Continuously feed the data to the drift detector and perform incremental drift detection. At each
iteration:

• Update statistics of the drift detector and monitor for drift using the new data point with
detectdrift. (Note: detectdrift checks for drift after the warmup period.)

• Track and record the drift status for visualization purposes.
• When a drift is detected, reset the incremental concept drift detector by using reset.

for i = 1:numObservations     
    
    incCDDetector = detectdrift(incCDDetector,X(i));
    statusname(i) = string(incCDDetector.DriftStatus);
          
    if incCDDetector.DriftDetected
       status(i) = 2;
       incCDDetector = reset(incCDDetector); % If drift detected, reset the detector
       sprintf("Drift detected at Observation #%d. Detector reset.",i)
    elseif incCDDetector.WarningDetected
       status(i) = 1;
    else 
       status(i) = 0;
    end   
end

ans = 
"Drift detected at Observation #1078. Detector reset."

After the change in the failure rate at observation number 1000, detectdrift detects the shift at
observation number 1078.

Plot the drift status versus the observation number.

gscatter(1:numObservations,status,statusname,'gyr','*',4,'on',"Observation number","Drift status")
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Monitor Continuous Data for Drift

Create a random stream such that the observations come from a normal distribution with standard
deviation 0.75, but the mean changes over time. First 1000 observations come from a distribution
with mean 2, the next 1000 come from a distribution with mean 4, and the following 1000 come from
a distribution with mean 7.

rng(1234) % For reproducibility
numObservations = 3000;
switchPeriod1 = 1000;
switchPeriod2 = 2000;
X = zeros([numObservations 1]);

% Generate the data
for i = 1:numObservations
   if i <= switchPeriod1
      X(i) = normrnd(2,0.75);
   elseif i <= switchPeriod2
      X(i) = normrnd(4,0.75);
   else
      X(i) = normrnd(7,0.75);
   end
end
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In an incremental drift detection application, access to data stream and model update would happen
consecutively. One would not collect the data first and then feed into the model. However, for the
purpose of clarification, this example demonstrates the simulation of data separately.

Specify the drift warmup period as 50 observations and estimation period for the data input bounds
as 100.

driftWarmupPeriod = 50;
estimationPeriod = 100;

Initiate the incremental concept drift detector. Utilize the Hoeffding's bounds method with
exponentially weighted moving average method (EWMA). Specify the input type and warmup period.

incCDDetector = incrementalConceptDriftDetector("hddmw",InputType="continuous", ...
                WarmupPeriod=driftWarmupPeriod,EstimationPeriod=estimationPeriod)

incCDDetector = 
  HoeffdingDriftDetectionMethod

        PreviousDriftStatus: 'Stable'
                DriftStatus: 'Stable'
                     IsWarm: 0
    NumTrainingObservations: 0
                Alternative: 'greater'
                  InputType: 'continuous'
                 TestMethod: 'ewma'

  Properties, Methods

incDDetector is a HoeffdingDriftDetectionMethod object. When you first create the object,
properties such as DriftStatus, IsWarm, CutMean, and NumTrainingObservations are at their
initial state. detectdrift updates them as you feed the data incrementally and monitor for drift.

Preallocate the batch size and the variables to record drift status and the mean the drift detector
computes with each income of data.

status = zeros([numObservations 1]);
statusname = strings([numObservations 1]);
M = zeros([numObservations 1]);

Simulate the data stream of one observation at a time and perform incremental drift detection. At
each iteration:

• Monitor for drift using the new data with detectdrift.
• Track and record the drift status and the statistics for visualization purposes.
• When a drift is detected, reset the incremental concept drift detector by using the function reset.

for i = 1:numObservations
    
    incCDDetector = detectdrift(incCDDetector,X(i));
    
    M(i) = incCDDetector.Mean;
        
    if incCDDetector.DriftDetected
        status(i) = 2;
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        statusname(i) = string(incCDDetector.DriftStatus);
        incCDDetector = reset(incCDDetector); % If drift detected, reset the detector
        sprintf("Drift detected at observation #%d. Detector reset.",i)
    elseif incCDDetector.WarningDetected
        status(i) = 1;
        statusname(i) = string(incCDDetector.DriftStatus);
        sprintf("Warning detected at observation #%d.",i)
    else 
        status(i) = 0;
        statusname(i) = string(incCDDetector.DriftStatus);
    end      
end

ans = 
"Warning detected at observation #1024."

ans = 
"Warning detected at observation #1025."

ans = 
"Warning detected at observation #1026."

ans = 
"Warning detected at observation #1027."

ans = 
"Warning detected at observation #1028."

ans = 
"Warning detected at observation #1029."

ans = 
"Drift detected at observation #1030. Detector reset."

ans = 
"Warning detected at observation #2012."

ans = 
"Warning detected at observation #2013."

ans = 
"Warning detected at observation #2014."

ans = 
"Drift detected at observation #2015. Detector reset."

Plot the drift status versus the observation number.

gscatter(1:numObservations,status,statusname,'gyr','*',5,'on',"Number of observations","Drift status")
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Plot the mean values versus the number of observations.

scatter(1:numObservations,M)
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You can see the increase in the sample mean from the plot. The mean value becomes larger and the
software eventually detects the drift in the data. Once a drift is detected, reset the incremental drift
detector. This also resets the mean value. In the plot, the observations where the sample mean is zero
correspond to the estimation periods. There is an estimation period at the beginning and then twice
after the drift detector is reset following the detection of a drift.

Monitor Data Stream for Decrease in Failure Rate

Initiate the concept drift detector using the Drift Detection Method (DDM).

incCDDetector = incrementalConceptDriftDetector("ddm",Alternative="less",WarmupPeriod=100);

Create a random stream such that for the first 1000 observations, failure rate is 0.4 and after 1000
failure rate decreases to 0.1.

rng(1234)  % For reproducibility
numObservations = 3000;
switchPeriod = 1000;
for i = 1:numObservations
    if i <= switchPeriod
       failurerate = 0.4;
    else
       failurerate = 0.125;
    end
       X(i) = rand()<failurerate; % Value 1 represents failure
end

Preallocate variables for tracking drift status and the optimal mean and optimal standard deviation
value.

optmean = zeros(numObservations,1);
optstddev = zeros(numObservations,1);
status = zeros(numObservations,1);
statusname = strings(numObservations,1);

Continuously feed the data to the drift detector and monitor for any potential change. Record the
drift status for visualization purposes.

for i = 1:numObservations     
    
    incCDDetector = detectdrift(incCDDetector,X(i)); 

    statusname(i) = string(incCDDetector.DriftStatus);
    optmean(i) = incCDDetector.OptimalMean;
    optstddev(i) = incCDDetector.OptimalStandardDeviation;

    if incCDDetector.DriftDetected
       status(i) = 2;
       incCDDetector = reset(incCDDetector); % If drift detected, reset the detector
       sprintf("Drift detected at Observation #%d. Detector reset.",i)
    elseif incCDDetector.WarningDetected
       status(i) = 1;
    else 
       status(i) = 0;
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    end   
end

ans = 
"Drift detected at Observation #1107. Detector reset."

After the change in the failure rate at observation number 1000, detectdrift detects the shift at
observation number 1096.

Plot the change in the optimal mean and optimal standard deviation.

tiledlayout(2,1);
ax1 = nexttile;
plot(ax1,1:numObservations,optmean)
ax2 = nexttile;
plot(ax2,1:numObservations,optstddev)

Plot the drift status versus the observation number.

figure();
gscatter(1:numObservations,status,statusname,'gyr','*',4,'on',"Observation number","Drift status")
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detectdrift concludes on a warning status for multiple observations before it decides on a drift.

Input Arguments
DetectionMethod — Incremental drift detection method
"ddm" | "hddma" | "hddmw"

Incremental drift detection method, specified as one of the following.

Detection Method Definition
"ddm" Drift Detection Method (DDM)
"hddma" Hoeffding's Bounds Drift Detection Method with

moving average test (HDDMA)
"hddmw" Hoeffding's Bounds Drift Detection Method with

exponentially weighted moving average (EWMA)
test (HDDMW)

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.
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Example:
Alternative="less",InputType="continuous",InputBounds=[-1,1],ForgettingFactor
=0.075 specifies the alternative hypothesis as less, that is, left-sided, the input data type as
continuous data, lower and upper bounds of the input data as [-1,1] and the value of the forgetting
factor for the HDDMW method as 0.075.

General Options

Alternative — Type of alternative hypothesis
"greater" (default) | "less" | "unequal" (for HDDMA or HDDMW)

Type of alternative hypothesis for determining drift status, specified as one of "unequal",
"greater", or "less". Given two test statistics F1 x  and F2 x ,

• "greater" tests for a drift in the positive direction, that is, F1 x > F2 x .

In this case, the null hypothesis is F1 x ≤ F2 x .

• "less" tests for a drift in the negative direction, that is, F1 x < F2 x .

In this case, the null hypothesis is F1 x ≥ F2 x .

• "unequal" tests for a drift in the either direction, that is, F1 x ≠ F2 x .

In this case, the null hypothesis is F1 x = F2 x .

"unequal" is for the HDDMA and HDDMW methods only.

For each type of test, detectdrift updates the statistics and checks whether it can reject the null
hypothesis in favor of the alternative at the significance level of WarningThreshold or
DriftThreshold. If it rejects the null hypothesis at the significance level of WarningThreshold,
then it updates the DriftStatus to 'Warning'. If it rejects the null hypothesis at the
DriftThreshold, then it updates the DriftStatus to 'Drift'.
Example: Alternative="less"

InputType — Type of input to the drift detector
"binary" (default) | "continuous"

Type of input to the drift detector, specified as either "binary" or "continuous".
Example: InputType="continuous"

WarmupPeriod — Number of observations used for drift detector to warm up
30 (default) | nonnegative integer

Number of observations used for drift detector to warm up, specified as a nonnegative integer. Until
the end of the warmup period, detectdrift trains the drift detector using the incoming data and
updates the internal statistics, but does not check for the drift status. After the software reaches the
warmup period, that is, once the drift detector is warm, it starts checking for any changes in the drift
status.
Example: WarmupPeriod=50
Data Types: double | single
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Options for DDM

DriftThreshold — Number of standard deviations for drift limit
3 (default) | nonnegative scalar value

Number of standard deviations for drift limit, specified as a nonnegative scalar value. This is the
number of standard deviations the overall test statistic value can be away from the optimal test
statistic value before the drift detector sets the drift status to drift. Default value of 3 corresponds to
a 99.7% confidence level [1].

DriftThreshold value must be strictly greater than the WarningThreshold value.
Example: DriftThreshold=2.5
Data Types: double | single

WarningThreshold — Number of standard deviations for warning limit
2 (default) | nonnegative scalar value

Number of standard deviations for warning limit, specified as a nonnegative scalar value. This is the
number of standard deviations the overall test statistic value can be away from the optimal test
statistic value before the drift detector sets the drift status to warning. Default value of 2 corresponds
to a 95% confidence level [1].

WarningThreshold value must be strictly smaller than the DriftThreshold value.
Example: WarningThreshold=1.75
Data Types: double | single

Options for HDDMA and HDDMW

DriftThreshold — Threshold to determine if drift exists
0.001 (default) | nonnegative scalar value from 0 to 1

Threshold to determine if drift exists, specified as a nonnegative scalar value from 0 to 1. It is the
significance level the drift detector uses for calculating the allowed error between a random variable
and its expected value in Hoeffding's inequality and McDiarmid's inequality before it sets the drift
status to drift [2].

DriftThreshold value must be strictly smaller than the WarningThreshold value.
Example: DriftThreshold=0.003
Data Types: double | single

EstimationPeriod — Number of observations used to estimate the input bounds for
continuous data
nonnegative integer

Number of observations used to estimate the input bounds for continuous data, specified as a
nonnegative integer. That is, when InputType is "continuous" and you did not specify the
InputBounds value, the software uses EstimationPeriod number of observations to estimate the
input bounds. After the estimation period, the software starts the warmup period.

If you specify the InputBounds value or InputType is "binary", then the software ignores
EstimationPeriod.
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Default value is 100 when there is a need for estimating the input bounds. Otherwise, default value is
0.
Example: EstimationPeriod=150
Data Types: double | single

InputBounds — Lower and upper bounds of continuous input data
numeric vector of size 2

Lower and upper bounds of continuous input data, specified as a numeric vector of size 2.

If InputType is "continuous" and you do not specify the InputBounds value, then detectdrift
estimates the bounds from the data during the estimation period. Specify the number of observations
to estimate the data input bounds by using EstimationPeriod.

If InputType is "binary", then the drift detector sets the InputBounds value to [0,1] and the
software ignores the InputBounds name-value argument.

HDDM uses Hoeffding's inequality and McDiarmid's inequality for drift detection and these
inequalities assume bounded inputs [2].
Example: InputBounds=[-1 1]
Data Types: double | single

ForgettingFactor — Forgetting factor for HDDMW method
0.05 (default) | scalar value from 0 to 1

Note This option is only for the exponentially weighted moving average (EWMA) method
(corresponding to DetectionMethod value set as "hddmw").

Forgetting factor in the HDDMW method, specified as a scalar value from 0 to 1. Forgetting factor is
the λ in the EWMA statistic X t = λXt + 1− λ X t − 1[2]. Forgetting factor determines how much the
current prediction of mean is influenced by the past observations. A higher value of
ForgettingFactor attains more weight to the current observations and less value to the past
observations.
Example: ForgettingFactor=0.075
Data Types: double | single

WarningThreshold — Threshold to determine warning versus drift
0.005 (default) | nonnegative scalar value from 0 to 1

Threshold to determine warning versus drift, specified as a nonnegative scalar value from 0 to 1. It is
the significance level the drift detector uses for calculating the allowed error between a random
variable and its expected value in Hoeffding's inequality and McDiarmid's inequality before it sets the
drift status to warning [2].

WarningThreshold value must be strictly greater than DriftThreshold value.
Example: WarningThreshold=0.007
Data Types: double | single
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Output Arguments
IncCDDetector — Incremental concept drift detector
DriftDetectionMethod | HoeffdingDriftDetectionMethod

Incremental concept drift detector, specified as either DriftDetectionMethod or
HoeffdingDriftDetectionMethod object. For more information on these objects and their
properties, see the corresponding reference pages.

Version History
Introduced in R2022a

References
[1] Gama, Joao, Pedro Medas, Gladys Castillo, and Pedro P. Rodrigues. “Learning with drift detection.

“ In Brazilian symposium on artificial intelligence, pp. 286-295. Berlin, Heidelberg: Springer.
2004, September.

[2] Frias-Blanco, Isvani, Jose del Campo-Ávila, Ramos-Jimenez Gonzalo, Rafael Morales-Bueno,
Augustin Ortiz-Diaz, and Yaile Caballero-Mota. “Online and non-parametric drift detection
methods based on Hoeffding's bounds.“ IEEE Transactions on Knowledge and Data
Engineering, Vol. 27, No. 3, pp.810-823. 2014.

See Also
DriftDetectionMethod | HoeffdingDriftDetectionMethod | reset | detectdrift
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incrementalClassificationECOC
Multiclass classification model using binary learners for incremental learning

Description
The incrementalClassificationECOC function creates an incrementalClassificationECOC
model object, which represents a multiclass error-correcting output codes on page 35-3389 (ECOC)
classification model that uses binary learners for incremental learning.

Unlike other Statistics and Machine Learning Toolbox model objects,
incrementalClassificationECOC can be called directly. Also, you can specify learning options,
such as performance metrics configurations and prior class probabilities, before fitting the model to
data. After you create an incrementalClassificationECOC object, it is prepared for incremental
learning on page 35-3389.

incrementalClassificationECOC is best suited for incremental learning. For a traditional
approach to training a multiclass classification model (such as creating a model by fitting it to data,
performing cross-validation, tuning hyperparameters, and so on), see fitcecoc.

Creation
You can create an incrementalClassificationECOC model object in several ways:

• Call the function directly — Configure incremental learning options, or specify learner-specific
options, by calling incrementalClassificationECOC directly. This approach is best when you
do not have data yet or you want to start incremental learning immediately. You must specify the
maximum number of classes or all class names expected in the response data during incremental
learning.

• Convert a traditionally trained model — To initialize a multiclass ECOC classification model for
incremental learning using the model parameters of a trained model object
(ClassificationECOC or CompactClassificationECOC), you can convert the traditionally
trained model to an incrementalClassificationECOC model object by passing it to the
incrementalLearner function.

• Call an incremental learning function — fit, updateMetrics, and updateMetricsAndFit
accept a configured incrementalClassificationECOC model object and data as input, and
return an incrementalClassificationECOC model object updated with information learned
from the input model and data.

Syntax
Mdl = incrementalClassificationECOC(MaxNumClasses=maxNumClasses)
Mdl = incrementalClassificationECOC(ClassNames=classNames)
Mdl = incrementalClassificationECOC( ___ ,Name=Value)

Description

Mdl = incrementalClassificationECOC(MaxNumClasses=maxNumClasses) returns a default
incremental learning model object for multiclass ECOC classification, Mdl, where MaxNumClasses is
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the maximum number of classes expected in the response data during incremental learning.
Properties of a default model contain placeholders for unknown model parameters. You must train a
default model before you can track its performance or generate predictions from it.

Mdl = incrementalClassificationECOC(ClassNames=classNames) specifies all class names
ClassNames expected in the response data during incremental learning, and sets the ClassNames
property.

Mdl = incrementalClassificationECOC( ___ ,Name=Value) uses either of the previous
syntaxes to set properties on page 35-3368 and additional options using name-value arguments. For
example,
incrementalClassificationECOC(MaxNumClasses=5,Coding="onevsone",MetricsWarmup
Period=100) sets the maximum number of classes expected in the response data to 5, specifies to
use a one-versus-one coding design, and sets the metrics warm-up period to 100.

Input Arguments

MaxNumClasses — Maximum number of classes
positive integer

Maximum number of classes expected in the response data during incremental learning, specified as
a positive integer.

MaxNumClasses sets the number of class names in the ClassNames property.

If you do not specify MaxNumClasses, you must specify the ClassNames argument.
Example: MaxNumClasses=5
Data Types: single | double

ClassNames — All unique class labels
categorical array | character array | string array | logical vector | numeric vector | cell array of
character vectors

All unique class labels expected in the response data during incremental learning, specified as a
categorical, character, or string array; logical or numeric vector; or cell array of character vectors.
ClassNames and the response data must have the same data type. This argument sets the
ClassNames property.

ClassNames specifies the order of any input or output argument dimension that corresponds to the
class order. For example, set ClassNames to specify the column order of classification scores
returned by predict.

If you do not specify ClassNames, you must specify the MaxNumClasses argument. In that case, the
software infers the ClassNames property from the data during incremental learning.
Example: ClassNames=["virginica","setosa","versicolor"]
Data Types: single | double | logical | string | char | cell | categorical

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.
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Example: NumPredictors=4,Prior=[0.3 0.3 0.4] specifies the number of predictor variables
as 4 and sets the prior class probability distribution to [0.3 0.3 0.4].

Coding — Coding design
"onevsone" (default) | "allpairs" | "binarycomplete" | "denserandom" | "onevsall" |
"ordinal" | "sparserandom" | "ternarycomplete" | numeric matrix

Coding design on page 35-3390 name, specified as a numeric matrix or a value in this table.

Value Number of Binary
Learners

Description

"allpairs" and
"onevsone"

K(K – 1)/2 For each binary learner, one class is positive,
another is negative, and the software ignores the
rest. This design exhausts all combinations of
class pair assignments.

"binarycomplete" 2(K − 1)− 1 This design partitions the classes into all binary
combinations, and does not ignore any classes.
For each binary learner, all class assignments are
–1 and 1 with at least one positive class and one
negative class in the assignment.

"denserandom" Random, but
approximately 10 log2K

For each binary learner, the software randomly
assigns classes into positive or negative classes,
with at least one of each type. For more details,
see “Random Coding Design Matrices” on page
35-3396.

"onevsall" K For each binary learner, one class is positive and
the rest are negative. This design exhausts all
combinations of positive class assignments.

"ordinal" K – 1 For the first binary learner, the first class is
negative and the rest are positive. For the second
binary learner, the first two classes are negative
and the rest are positive, and so on.

"sparserandom" Random, but
approximately 15 log2K

For each binary learner, the software randomly
assigns classes as positive or negative with
probability 0.25 for each, and ignores classes
with probability 0.5. For more details, see
“Random Coding Design Matrices” on page 35-
3396.

"ternarycomplete" 3K − 2(K + 1) + 1 /2 This design partitions the classes into all ternary
combinations. All class assignments are 0, –1,
and 1 with at least one positive class and one
negative class in each assignment.

You can also specify a coding design using a custom coding matrix, which is a K-by-L matrix. Each
row corresponds to a class and each column corresponds to a binary learner. The class order (rows)
corresponds to the order in the ClassNames property. Create the matrix by following these
guidelines:
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• Every element of the custom coding matrix must be –1, 0, or 1, and the value must correspond to
a dichotomous class assignment. Consider Coding(i,j), the class that learner j assigns to
observations in class i.

Value Dichotomous Class Assignment
–1 Learner j assigns observations in class i to a negative class.
0 Before training, learner j removes observations in class i

from the data set.
1 Learner j assigns observations in class i to a positive class.

• Every column must contain at least one –1 and one 1.
• For all column indices i,j where i ≠ j, Coding(:,i) cannot equal Coding(:,j), and

Coding(:,i) cannot equal –Coding(:,j).
• All rows of the custom coding matrix must be different.

For more details on the form of custom coding design matrices, see “Custom Coding Design
Matrices” on page 35-3396.
Example: Coding="ternarycomplete"
Data Types: char | string | double | single | int16 | int32 | int64 | int8

Metrics — Model performance metrics to track during incremental learning
"classiferror" (default) | function handle | cell vector | structure array

Model performance metrics to track during incremental learning, specified as "classiferror"
(classification error on page 35-3394, or misclassification error rate), a function handle (for example,
@metricName), a structure array of function handles, or a cell vector of names, function handles, or
structure arrays.

When Mdl is warm (see IsWarm), updateMetrics and updateMetricsAndFit track performance
metrics in the Metrics property of Mdl.

To specify a custom function that returns a performance metric, use function handle notation. The
function must have this form.

metric = customMetric(C,S)

• The output argument metric is an n-by-1 numeric vector, where each element is the loss of the
corresponding observation in the data processed by the incremental learning functions during a
learning cycle.

• You specify the function name (here, customMetric).
• C is an n-by-K logical matrix with rows indicating the class to which the corresponding observation

belongs, where K is the number of classes. The column order corresponds to the class order in the
ClassNames property. Create C by setting C(p,q) = 1, if observation p is in class q, for each
observation in the specified data. Set the other element in row p to 0.

• S is an n-by-K numeric matrix of predicted classification scores. S is similar to the NegLoss output
of predict, where rows correspond to observations in the data and the column order
corresponds to the class order in the ClassNames property. S(p,q) is the classification score of
observation p being classified in class q.

To specify multiple custom metrics and assign a custom name to each, use a structure array. To
specify a combination of built-in and custom metrics, use a cell vector.
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updateMetrics and updateMetricsAndFit store specified metrics in a table in the Metrics
property. The data type of Metrics determines the row names of the table.

Metrics Value
Data Type

Description of Metrics Property Row
Name

Example

String or character
vector

Name of corresponding built-in metric Row name for "classiferror" is
"ClassificationError"

Structure array Field name Row name for
struct(Metric1=@customMetric
1) is "Metric1"

Function handle to
function stored in
a program file

Name of function Row name for @customMetric is
"customMetric"

Anonymous
function

CustomMetric_j, where j is metric j in
Metrics

Row name for
@(C,S)customMetric(C,S)... is
CustomMetric_1

For more details on performance metrics options, see “Performance Metrics” on page 35-3395.
Example: Metrics=struct(Metric1=@customMetric1,Metric2=@customMetric2)
Example:
Metrics={@customMetric1,@customMetric2,"classiferror",struct(Metric3=@customM
etric3)}

Data Types: char | string | struct | cell | function_handle

Learners — Binary learner templates
"linear" (default) | "kernel" | incremental learning object | template object | cell array of
incremental learning objects and template objects

Binary learner templates, specified as "linear", "kernel", an incremental learning object, a
template object, or a cell array of supported incremental learning objects and template objects.

• "linear" or "kernel" — Specify the Learners value as a string scalar or character vector to
use the default linear learners or default kernel learners (default
incrementalClassificationLinear or incrementalClassificationKernel objects,
respectively).

• Incremental learning object (incrementalClassificationLinear or
incrementalClassificationKernel object) — Configure binary learner properties (both
model-specific properties and incremental learning properties) when you create an incremental
learning object, and pass the object to incrementalClassificationECOC as the Learners
value.

• Template object returned by the templateLinear, templateSVM, or templateKernel function
— Configure model-specific properties when you create a template object, and pass the object to
incrementalClassificationECOC as the Learners value. Use this approach to specify model
properties with a template object and to use the default incremental learning options.

• Cell array of supported incremental learning objects and template objects — Use this approach to
customize each learner individually.

You cannot specify the ClassNames (class names), Prior (prior class probabilities), and
ScoreTransform (score transformation function) properties for an
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incrementalClassificationECOC object by using the binary learners. Instead, specify the
properties by using the corresponding name-value arguments of
incrementalClassificationECOC.
Example: Learners="kernel"

UpdateBinaryLearnerMetrics — Flag for updating metrics of binary learners
false or 0 (default) | true or 1

Flag for updating the metrics of binary learners, specified as logical 0 (false) or 1 (true).

If the value is true, the software tracks the performance metrics of binary learners using the
Metrics property of the binary learners, stored in the BinaryLearners property. For an example,
see “Configure Incremental Model to Track Performance Metrics for Model and Binary Learners” on
page 35-7684.
Example: UpdateBinaryLearnerMetrics=true
Data Types: logical

Properties
You can set most properties by using name-value argument syntax when you call
incrementalClassificationECOC directly. You cannot set the properties BinaryLearners,
CodingMatrix, CodingName, NumTrainingObservations, and IsWarm using name-value
argument syntax with the arguments of the same names. However, you can set CodingMatrix and
CodingName by using the Coding name-value argument, and you can set BinaryLearners by using
the Learners name-value argument.

You can set some properties when you call incrementalLearner to convert a traditionally trained
model.

Classification Model Parameters

BinaryLearners — Trained binary learners
cell array of model objects

This property is read-only.

Trained binary learners, specified as a cell array of incrementalClassificationLinear or
incrementalClassificationKernel model objects. The number of binary learners depends on
the coding design.

The software trains BinaryLearner{j} according to the binary problem specified by
CodingMatrix(:,j).

The default BinaryLearners value depends on how you create the model:

• If you convert a traditionally trained model (for example, TTMdl) to create Mdl, BinaryLearners
contains incremental learners converted from the binary learners in TTMdl.

When you train TTMdl, you must specify the Learners name-value argument of fitcecoc to use
support vector machine (SVM) binary learner templates (templateSVM) or linear classification
model binary learner templates (templateLinear).
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• Otherwise, the Learners name-value argument sets this property. The default value of the
argument is "linear", which uses incrementalClassificationLinear model objects with
SVM learners.

Data Types: cell

BinaryLoss — Binary learner loss function
"hamming" | "linear" | "logit" | "exponential" | "binodeviance" | "hinge" | "quadratic"
| function handle

This property is read-only.

Binary learner loss function, specified as a built-in loss function name or function handle.
incrementalClassificationECOC stores the BinaryLoss value as a character vector or function
handle.

• This table describes the built-in functions, where yj is the class label for a particular binary learner
(in the set {–1,1,0}), sj is the score for observation j, and g(yj,sj) is the binary loss formula.

Value Description Score Domain g(yj,sj)
"binodeviance" Binomial deviance (–∞,∞) log[1 + exp(–2yjsj)]/

[2log(2)]
"exponential" Exponential (–∞,∞) exp(–yjsj)/2
"hamming" Hamming [0,1] or (–∞,∞) [1 – sign(yjsj)]/2
"hinge" Hinge (–∞,∞) max(0,1 – yjsj)/2
"linear" Linear (–∞,∞) (1 – yjsj)/2
"logit" Logistic (–∞,∞) log[1 + exp(–yjsj)]/

[2log(2)]
"quadratic" Quadratic [0,1] [1 – yj(2sj – 1)]2/2

The software normalizes binary losses so that the loss is 0.5 when yj = 0. Also, the software
calculates the mean binary loss for each class.

• For a custom binary loss function, for example customFunction, specify its function handle
BinaryLoss=@customFunction.

customFunction has this form:

bLoss = customFunction(M,s)

• M is the K-by-B coding matrix stored in Mdl.CodingMatrix.
• s is the 1-by-B row vector of classification scores.
• bLoss is the classification loss. This scalar aggregates the binary losses for every learner in a

particular class. For example, you can use the mean binary loss to aggregate the loss over the
learners for each class.

• K is the number of classes.
• B is the number of binary learners.

For an example of a custom binary loss function, see “Predict Test-Sample Labels of ECOC Model
Using Custom Binary Loss Function” on page 35-5751. This example is for a traditionally trained
model. You can define a custom loss function for incremental learning as shown in the example.
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For more information, see “Binary Loss” on page 35-3393.

The default BinaryLoss value depends on how you create the model:

• If you convert a traditionally trained model to create Mdl, BinaryLoss is specified by the
corresponding property of the traditionally trained model. You can also specify the BinaryLoss
value by using the BinaryLoss name-value argument of incrementalLearner.

• Otherwise, the default value of BinaryLoss is "hinge".

Data Types: char | string | function_handle

ClassNames — All unique class labels
categorical array | character array | string array | logical vector | numeric vector | cell array of
character vectors

This property is read-only.

All unique class labels expected in the response data during incremental learning, specified as a
categorical or character array, a logical or numeric vector, or a cell array of character vectors.

You can set ClassNames in one of three ways:

• If you specify the MaxNumClasses argument, the software infers the ClassNames property
during incremental learning.

• If you specify the ClassNames argument, incrementalClassificationECOC stores your
specification in the ClassNames property. (The software treats string arrays as cell arrays of
character vectors.)

• If you convert a traditionally trained model to create Mdl, the ClassNames property is specified
by the corresponding property of the traditionally trained model.

Data Types: single | double | logical | char | string | cell | categorical

CodingMatrix — Class assignment codes
numeric matrix

This property is read-only.

Class assignment codes for the binary learners, specified as a numeric matrix. CodingMatrix is a K-
by-L matrix, where K is the number of classes and L is the number of binary learners.

The elements of CodingMatrix are –1, 0, and 1, and the values correspond to dichotomous class
assignments. This table describes how learner j assigns observations in class i to a dichotomous
class corresponding to the value of CodingMatrix(i,j).

Value Dichotomous Class Assignment
–1 Learner j assigns observations in class i to a negative class.
0 Before training, learner j removes observations in class i from the

data set.
1 Learner j assigns observations in class i to a positive class.

For details, see “Coding Design” on page 35-3390.

The default CodingMatrix value depends on how you create the model:
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• If you convert a traditionally trained model to create Mdl, CodingMatrix is specified by the
corresponding property of the traditionally trained model.

• Otherwise, the Coding name-value argument sets this property. The default value of the argument
uses the one-versus-one coding design.

Data Types: double | single | int8 | int16 | int32 | int64

CodingName — Coding design name
character vector

This property is read-only.

Coding design name, specified as a character vector.

The default CodingName value depends on how you create the model:

• If you convert a full, traditionally trained model (ClassificationECOC) to create Mdl,
CodingName is specified by the corresponding property of the traditionally trained model.

• If you convert a compact, traditionally trained model (CompactClassificationECOC) to create
Mdl, CodingName is "converted".

• Otherwise, the Coding name-value argument sets this property. The default value of the argument
is "onevsone". If you specify a custom coding matrix using Coding, CodingName is "custom".

For details, see “Coding Design” on page 35-3390.
Data Types: char

Decoding — Decoding scheme
"lossweighted" | "lossbased"

This property is read-only.

Decoding scheme, specified as "lossweighted" or "lossbased".
incrementalClassificationECOC stores the Decoding value as a character vector.

The decoding scheme of an ECOC model specifies how the software aggregates the binary losses and
determines the predicted class for each observation. The software supports two decoding schemes:

• "lossweighted" — The predicted class of an observation corresponds to the class that produces
the minimum sum of the binary losses over binary learners.

• "lossbased" — The predicted class of an observation corresponds to the class that produces the
minimum average of the binary losses over binary learners.

For more information, see “Binary Loss” on page 35-3393.

The default Decoding value depends on how you create the model:

• If you convert a traditionally trained model to create Mdl, the Decoding name-value argument of
incrementalLearner sets this property. The default value of the argument is "lossweighted".

• Otherwise, the default value of Decoding is "lossweighted".

Data Types: char | string

NumPredictors — Number of predictor variables
nonnegative numeric scalar
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This property is read-only.

Number of predictor variables, specified as a nonnegative numeric scalar.

The default NumPredictors value depends on how you create the model:

• If you convert a traditionally trained model to create Mdl, NumPredictors is specified by the
corresponding property of the traditionally trained model.

• If you create Mdl by calling incrementalClassificationECOC directly, you can specify
NumPredictors by using name-value argument syntax. If you do not specify the value, then the
default value is 0, and incremental fitting functions infer NumPredictors from the predictor data
during training.

Data Types: double

NumTrainingObservations — Number of observations fit to incremental model
0 (default) | nonnegative numeric scalar

This property is read-only.

Number of observations fit to the incremental model Mdl, specified as a nonnegative numeric scalar.
NumTrainingObservations increases when you pass Mdl and training data to fit or
updateMetricsAndFit.

Note If you convert a traditionally trained model to create Mdl,
incrementalClassificationECOC does not add the number of observations fit to the traditionally
trained model to NumTrainingObservations.

Data Types: double

Prior — Prior class probabilities
numeric vector | "empirical" | "uniform"

This property is read-only.

Prior class probabilities, specified as "empirical", "uniform", or a numeric vector.
incrementalClassificationECOC stores the Prior value as a numeric vector.

Value Description
"empirical" Incremental learning functions infer prior class

probabilities from the observed class relative
frequencies in the response data during
incremental training.

"uniform" For each class, the prior probability is 1/K, where
K is the number of classes.

numeric vector Custom, normalized prior probabilities. The order
of the elements of Prior corresponds to the
elements of the ClassNames property.

The default Prior value depends on how you create the model:
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• If you convert a traditionally trained model to create Mdl, Prior is specified by the corresponding
property of the traditionally trained model.

• Otherwise, the default value is "empirical".

Data Types: single | double | char | string

ScoreTransform — Score transformation function
character vector | string scalar | function handle

This property is read-only.

Score transformation function describing how incremental learning functions transform raw response
values, specified as a character vector, string scalar, or function handle.
incrementalClassificationECOC stores the ScoreTransform value as a character vector or
function handle.

This table describes the available built-in functions for score transformation.

Value Description
"doublelogit" 1/(1 + e–2x)
"invlogit" log(x / (1 – x))
"ismax" Sets the score for the class with the largest score to 1,

and sets the scores for all other classes to 0
"logit" 1/(1 + e–x)
"none" or "identity" x (no transformation)
"sign" –1 for x < 0

0 for x = 0
1 for x > 0

"symmetric" 2x – 1
"symmetricismax" Sets the score for the class with the largest score to 1,

and sets the scores for all other classes to –1
"symmetriclogit" 2/(1 + e–x) – 1

For a MATLAB function or a function that you define, enter its function handle; for example,
ScoreTransform=@function, where:

• function accepts an n-by-K matrix (the original scores) and returns a matrix of the same size
(the transformed scores).

• n is the number of observations, and row j of the matrix contains the class scores of observation j.
• K is the number of classes numel(ClassNames), and column k is class ClassNames(k).

The default ScoreTransform value depends on how you create the model:

• If you convert a traditionally trained model to create Mdl, incrementalClassificationECOC is
specified by the corresponding property of the traditionally trained model.

• Otherwise, the default value is "none".

Data Types: char | string | function_handle
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Performance Metrics Parameters

IsWarm — Flag indicating whether model tracks performance metrics
false or 0 | true or 1

Flag indicating whether the incremental model tracks performance metrics, specified as logical 0
(false) or 1 (true).

The incremental model Mdl is warm (IsWarm becomes true) when incremental fitting functions
perform both of these actions:

• Fit the incremental model to MetricsWarmupPeriod observations.
• Process MaxNumClasses classes or all class names specified by the ClassNames name-value

argument.

Value Description
true or 1 The incremental model Mdl is warm.

Consequently, updateMetrics and
updateMetricsAndFit track performance
metrics in the Metrics property of Mdl.

false or 0 updateMetrics and updateMetricsAndFit do
not track performance metrics.

Data Types: logical

Metrics — Model performance metrics
table

This property is read-only.

Model performance metrics updated during incremental learning by updateMetrics and
updateMetricsAndFit, specified as a table with two columns and m rows, where m is the number
of metrics specified by the Metrics name-value argument.

The columns of Metrics are labeled Cumulative and Window.

• Cumulative: Element j is the model performance, as measured by metric j, from the time the
model became warm (IsWarm is 1).

• Window: Element j is the model performance, as measured by metric j, evaluated over all
observations within the window specified by the MetricsWindowSize property. The software
updates Window after it processes MetricsWindowSize observations.

Rows are labeled by the specified metrics. For details, see the Metrics name-value argument of
incrementalLearner or incrementalClassificationECOC.
Data Types: table

MetricsWarmupPeriod — Number of observations fit before tracking performance metrics
nonnegative integer

This property is read-only.

Number of observations the incremental model must be fit to before it tracks performance metrics in
its Metrics property, specified as a nonnegative integer.
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The default MetricsWarmupPeriod value depends on how you create the model:

• If you convert a traditionally trained model to create Mdl, the MetricsWarmupPeriod name-
value argument of the incrementalLearner function sets this property. The default value of the
argument is 0.

• Otherwise, the default value is 1000.

For more details, see “Performance Metrics” on page 35-3395.
Data Types: single | double

MetricsWindowSize — Number of observations to use to compute window performance
metrics
positive integer

This property is read-only.

Number of observations to use to compute window performance metrics, specified as a positive
integer.

The default MetricsWindowSize value depends on how you create the model:

• If you convert a traditionally trained model to create Mdl, the MetricsWindowSize name-value
argument of the incrementalLearner function sets this property. The default value of the
argument is 200.

• Otherwise, the default value is 200.

For more details on performance metrics options, see “Performance Metrics” on page 35-3395.
Data Types: single | double

Object Functions
fit Train ECOC classification model for incremental learning
updateMetricsAndFit Update performance metrics in ECOC incremental learning classification

model given new data and train model
updateMetrics Update performance metrics in ECOC incremental learning classification

model given new data
loss Loss of ECOC incremental learning classification model on batch of data
predict Predict responses for new observations from ECOC incremental learning

classification model
perObservationLoss Per observation classification error of model for incremental learning
reset Reset incremental classification model

Examples

Create Incremental Learner with Little Prior Information

To create an ECOC classification model for incremental learning, you must specify the maximum
number of classes that you expect the model to process (MaxNumClasses name-value argument). As
you fit the model to incoming batches of data by using an incremental fitting function, the model
collects new classes in its ClassNames property. If the specified maximum number of classes is
inaccurate, one of the following occurs:
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• Before an incremental fitting function processes the expected maximum number of classes, the
model is cold. Consequently, the updateMetrics and updateMetricsAndFit functions do not
measure performance metrics.

• If the number of classes exceeds the maximum expected, the incremental fitting function issues an
error.

This example shows how to create an ECOC model for incremental learning when the only
information you specify is the expected maximum number of classes in the data. Also, the example
illustrates the consequences when incremental fitting functions process all expected classes early and
late in the sample.

For this example, consider training a device to predict whether a subject is sitting, standing, walking,
running, or dancing based on biometric data measured on the subject. Therefore, the device has a
maximum of 5 classes from which to choose.

Process Expected Maximum Number of Classes Early in Sample

Load the human activity data set. Randomly shuffle the data.

load humanactivity
n = numel(actid);
rng(1) % For reproducibility
idx = randsample(n,n);
X = feat(idx,:);
Y = actid(idx);

For details on the data set, enter Description at the command line.

Create an incremental ECOC model for multiclass learning. Specify a maximum of 5 classes in the
data.

MdlEarly = incrementalClassificationECOC(MaxNumClasses=5)

MdlEarly = 
  incrementalClassificationECOC

            IsWarm: 0
           Metrics: [1x2 table]
        ClassNames: [1x0 double]
    ScoreTransform: 'none'
    BinaryLearners: {10x1 cell}
        CodingName: 'onevsone'
          Decoding: 'lossweighted'

  Properties, Methods

MdlEarly is an incrementalClassificationECOC model object. All its properties are read-only.
MdlEarly must be fit to data before you can use it to perform any other operations.

Display the coding design matrix.

MdlEarly.CodingMatrix

ans = 5×10
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     1     1     1     1     0     0     0     0     0     0
    -1     0     0     0     1     1     1     0     0     0
     0    -1     0     0    -1     0     0     1     1     0
     0     0    -1     0     0    -1     0    -1     0     1
     0     0     0    -1     0     0    -1     0    -1    -1

Each row of the coding design matrix corresponds to a class, and each column corresponds to a
binary learner. For example, the first binary learner is for classes 1 and 2, and the fourth binary
learner is for classes 1 and 5, where both learners assume class 1 as a positive class.

Fit the incremental model to the training data by using the updateMetricsAndFit function.
Simulate a data stream by processing chunks of 50 observations at a time. At each iteration:

• Process 50 observations.
• Overwrite the previous incremental model with a new one fitted to the incoming observations.
• Store the first model coefficient of the first binary learner β11, the cumulative metrics, and the

window metrics to see how they evolve during incremental learning.

% Preallocation
numObsPerChunk = 50;
nchunk = floor(n/numObsPerChunk);
mc = array2table(zeros(nchunk,2),VariableNames=["Cumulative","Window"]);
beta11 = zeros(nchunk,1);    

% Incremental learning
for j = 1:nchunk
    ibegin = min(n,numObsPerChunk*(j-1) + 1);
    iend = min(n,numObsPerChunk*j);
    idx = ibegin:iend;    
    MdlEarly = updateMetricsAndFit(MdlEarly,X(idx,:),Y(idx));
    mc{j,:} = MdlEarly.Metrics{"ClassificationError",:};
    beta11(j) = MdlEarly.BinaryLearners{1}.Beta(1);
end

MdlEarly is an incrementalClassificationECOC model object trained on all the data in the
stream. During incremental learning and after the model is warmed up, updateMetricsAndFit
checks the performance of the model on the incoming observations, and then fits the model to those
observations.

To see how the performance metrics and β11 evolve during training, plot them on separate tiles.

t = tiledlayout(2,1);
nexttile
plot(beta11)
ylabel("\beta_{11}")
xlim([0 nchunk])
nexttile
plot(mc.Variables)
xlim([0 nchunk])
ylabel("Classification Error")
xline(MdlEarly.MetricsWarmupPeriod/numObsPerChunk,"--")
legend(mc.Properties.VariableNames)
xlabel(t,"Iteration")
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The plots indicate that updateMetricsAndFit performs the following actions:

• Fit β11 during all incremental learning iterations.
• Compute the performance metrics after the metrics warm-up period (dashed vertical line) only.
• Compute the cumulative metrics during each iteration.
• Compute the window metrics after processing 200 observations (4 iterations).

Process Expected Maximum Number of Classes Late in Sample

Rearrange the data set so that only the last 5000 samples contain the observations labeled with class
5.

Move all observations labeled with class 5 to the end of the sample.

idx5 = Y == 5;
Xnew = [X(~idx5,:); X(idx5,:)];
Ynew = [Y(~idx5); Y(idx5)];
sum(idx5)

ans = 2653

Shuffle the last 5000 samples.

m = 5000;
idx_shuffle = randsample(m,m);
Xnew(end-m+1:end,:) = Xnew(end-m+idx_shuffle,:);
Ynew(end-m+1:end) = Ynew(end-m+idx_shuffle);
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An ECOC model trains a binary learner only when an incoming chunk contains observations for the
classes that the binary learner treats as either positive or negative. Therefore, when the labels in
incoming data are not well distributed for all expected classes, a good practice is to choose a coding
design that does not have zeros in the coding matrix so that the software trains all binary learners for
every chunk.

Create a new ECOC model for incremental learning. Specify the onevsall coding design. In this
design, one class is positive and the rest are negative for each binary learner.

MdlLate = incrementalClassificationECOC(MaxNumClasses=5,Coding="onevsall")

MdlLate = 
  incrementalClassificationECOC

            IsWarm: 0
           Metrics: [1x2 table]
        ClassNames: [1x0 double]
    ScoreTransform: 'none'
    BinaryLearners: {5x1 cell}
        CodingName: 'onevsall'
          Decoding: 'lossweighted'

  Properties, Methods

Display the coding design matrix.

MdlLate.CodingMatrix

ans = 5×5

     1    -1    -1    -1    -1
    -1     1    -1    -1    -1
    -1    -1     1    -1    -1
    -1    -1    -1     1    -1
    -1    -1    -1    -1     1

Fit the incremental model and plot the results. Store the first model coefficients of the first and fifth
binary learners, β11 and β51.

mcnew = array2table(zeros(nchunk,2),VariableNames=["Cumulative","Window"]);
beta11new = zeros(nchunk,1);    
beta51new = zeros(nchunk,1); 

for j = 1:nchunk
    ibegin = min(n,numObsPerChunk*(j-1) + 1);
    iend   = min(n,numObsPerChunk*j);
    idx = ibegin:iend;    
    MdlLate = updateMetricsAndFit(MdlLate,Xnew(idx,:),Ynew(idx));
    mcnew{j,:} = MdlLate.Metrics{"ClassificationError",:};
    beta11new(j) = MdlLate.BinaryLearners{1}.Beta(1);
    beta51new(j) = MdlLate.BinaryLearners{5}.Beta(1);
end

t = tiledlayout(3,1);
nexttile
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plot(beta11new)
xline(MdlLate.MetricsWarmupPeriod/numObsPerChunk,"--")
xline((n-m)/numObsPerChunk,":")
ylabel("\beta_{11}")
xlim([0 nchunk])
nexttile
plot(beta51new)
xline(MdlLate.MetricsWarmupPeriod/numObsPerChunk,"--")
xline((n-m)/numObsPerChunk,":")
ylabel("\beta_{51}")
xlim([0 nchunk])
nexttile
plot(mcnew.Variables)
xline(MdlLate.MetricsWarmupPeriod/numObsPerChunk,"--")
xline((n-m)/numObsPerChunk,":")
xlim([0 nchunk])
ylabel("Classification Error")
legend(mcnew.Properties.VariableNames,Location="best")
xlabel(t,"Iteration")

The updateMetricsAndFit function trains the model throughout incremental learning. However,
β51 does not change significantly until an incoming chunk contains observations with the fifth class
(the dotted vertical line). Also, the function starts tracking performance metrics only after the model
is fit to the expected number of classes.
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Specify All Class Names

Create an incremental ECOC model when you know all the class names in the data.

Consider training a device to predict whether a subject is sitting, standing, walking, running, or
dancing based on biometric data measured on the subject. The class names map 1 through 5 to an
activity.

Create an incremental ECOC model for multiclass learning. Specify the class names.

classnames = 1:5;
Mdl = incrementalClassificationECOC(ClassNames=classnames)

Mdl = 
  incrementalClassificationECOC

            IsWarm: 0
           Metrics: [1x2 table]
        ClassNames: [1 2 3 4 5]
    ScoreTransform: 'none'
    BinaryLearners: {10x1 cell}
        CodingName: 'onevsone'
          Decoding: 'lossweighted'

  Properties, Methods

Mdl is an incrementalClassificationECOC model object. All its properties are read-only.

Mdl must be fit to data before you can use it to perform any other operations.

Load the human activity data set. Randomly shuffle the data.

load humanactivity
n = numel(actid);
rng(1) % For reproducibility
idx = randsample(n,n);
X = feat(idx,:);
Y = actid(idx);

For details on the data set, enter Description at the command line.

Fit the incremental model to the training data by using the updateMetricsAndFit function.
Simulate a data stream by processing chunks of 50 observations at a time. At each iteration:

• Process 50 observations.
• Overwrite the previous incremental model with a new one fitted to the incoming observations.

% Preallocation
numObsPerChunk = 50;
nchunk = floor(n/numObsPerChunk);

% Incremental learning
for j = 1:nchunk
    ibegin = min(n,numObsPerChunk*(j-1) + 1);
    iend   = min(n,numObsPerChunk*j);
    idx = ibegin:iend;    
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    Mdl = updateMetricsAndFit(Mdl,X(idx,:),Y(idx));
end

Configure Incremental Learning Options

In addition to specifying the maximum number of classes, prepare an incremental ECOC learner by
specifying a metrics warm-up period and a metrics window size.

Load the human activity data set. Randomly shuffle the data. Orient the observations of the predictor
data in columns.

load humanactivity
n = numel(actid);
rng(1) % For reproducibility
idx = randsample(n,n);
X = feat(idx,:)';
Y = actid(idx);

For details on the data set, enter Description at the command line.

Create an incremental ECOC model for multiclass learning. Configure the model as follows:

• Set the maximum number of classes to 5.
• Specify a metrics warm-up period of 5000 observations.
• Specify a metrics window size of 500 observations.

Mdl = incrementalClassificationECOC(MaxNumClasses=5, ...
    MetricsWarmupPeriod=5000,MetricsWindowSize=500)

Mdl = 
  incrementalClassificationECOC

            IsWarm: 0
           Metrics: [1x2 table]
        ClassNames: [1x0 double]
    ScoreTransform: 'none'
    BinaryLearners: {10x1 cell}
        CodingName: 'onevsone'
          Decoding: 'lossweighted'

  Properties, Methods

Mdl is an incrementalClassificationECOC model object configured for incremental learning. By
default, incrementalClassificationECOC uses classification error loss to measure the
performance of the model.

Fit the incremental model to the rest of the data by using the updateMetricsAndFit function. At
each iteration:

• Simulate a data stream by processing a chunk of 50 observations.
• Overwrite the previous incremental model with a new one fitted to the incoming observations.

Specify that the observations are oriented in columns
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• Store the first model coefficient of the first binary learner β11, the cumulative metrics, and the
window metrics to see how they evolve during incremental learning.

% Preallocation
numObsPerChunk = 50;
nchunk = floor(n/numObsPerChunk);
ce = array2table(zeros(nchunk,2),VariableNames=["Cumulative","Window"]);
beta11 = zeros(nchunk,1);    

% Incremental fitting
for j = 1:nchunk
    ibegin = min(n,numObsPerChunk*(j-1) + 1);
    iend   = min(n,numObsPerChunk*j);
    idx = ibegin:iend;    
    Mdl = updateMetricsAndFit(Mdl,X(:,idx),Y(idx),ObservationsIn="columns");
    ce{j,:} = Mdl.Metrics{"ClassificationError",:};
    beta11(j) = Mdl.BinaryLearners{1}.Beta(1);
end

Mdl is an incrementalClassificationECOC model object trained on all the data in the stream.
During incremental learning and after the model is warmed up, updateMetricsAndFit checks the
performance of the model on the incoming observations, and then fits the model to those
observations.

To see how the performance metrics and β11 evolve during training, plot them on separate tiles.

t = tiledlayout(2,1);
nexttile
plot(beta11)
ylabel("\beta_{11}")
xlim([0 nchunk])
xline(Mdl.MetricsWarmupPeriod/numObsPerChunk,"--")
nexttile
plot(ce.Variables)
xlim([0 nchunk])
ylabel("Classification Error")
xline(Mdl.MetricsWarmupPeriod/numObsPerChunk,"--")
legend(ce.Properties.VariableNames)
xlabel(t,"Iteration")
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The plots indicate that updateMetricsAndFit performs the following actions:

• Fit β11 during all incremental learning iterations.
• Compute the performance metrics after the metrics warm-up period (dashed vertical line) only.
• Compute the cumulative metrics during each iteration.
• Compute the window metrics after processing 500 observations (10 iterations).

Convert Traditionally Trained Model to Incremental Learner

Train an ECOC model for multiclass classification by using fitcecoc. Then, convert the model to an
incremental learner, track its performance, and fit the model to streaming data. Carry over training
options from traditional to incremental learning.

Load and Preprocess Data

Load the human activity data set. Randomly shuffle the data.

load humanactivity
rng(1) % For reproducibility
n = numel(actid);
idx = randsample(n,n);
X = feat(idx,:);
Y = actid(idx);
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For details on the data set, enter Description at the command line.

Suppose that the data collected when the subject was stationary (Y <= 2) has double the quality than
when the subject was moving. Create a weight variable that attributes 2 to observations collected
from a stationary subject, and 1 to a moving subject.

W = ones(n,1) + (Y <= 2);

Train ECOC Model

Fit an ECOC model for multiclass classification to a random sample of half the data.

idxtt = randsample([true false],n,true);
TTMdl = fitcecoc(X(idxtt,:),Y(idxtt),Weights=W(idxtt))

TTMdl = 
  ClassificationECOC
             ResponseName: 'Y'
    CategoricalPredictors: []
               ClassNames: [1 2 3 4 5]
           ScoreTransform: 'none'
           BinaryLearners: {10x1 cell}
               CodingName: 'onevsone'

  Properties, Methods

TTMdl is a ClassificationECOC model object representing a traditionally trained ECOC model.

Convert Trained Model

Convert the traditionally trained ECOC model to a model for incremental learning.

IncrementalMdl = incrementalLearner(TTMdl)

IncrementalMdl = 
  incrementalClassificationECOC

            IsWarm: 1
           Metrics: [1x2 table]
        ClassNames: [1 2 3 4 5]
    ScoreTransform: 'none'
    BinaryLearners: {10x1 cell}
        CodingName: 'onevsone'
          Decoding: 'lossweighted'

  Properties, Methods

IncrementalMdl is an incrementalClassificationECOC model object configured for
incremental learning.

Separately Track Performance Metrics and Fit Model

Perform incremental learning on the rest of the data by using the updateMetrics and fit
functions. Simulate a data stream by processing 50 observations at a time. At each iteration:
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1 Call updateMetrics to update the cumulative and window classification error of the model
given the incoming chunk of observations. Overwrite the previous incremental model to update
the Metrics property. Note that the function does not fit the model to the chunk of data—the
chunk is "new" data for the model. Specify the observation weights.

2 Call fit to fit the model to the incoming chunk of observations. Overwrite the previous
incremental model to update the model parameters. Specify the observation weights.

3 Store the classification error and first model coefficient of the first binary learner β11.

% Preallocation
idxil = ~idxtt;
nil = sum(idxil);
numObsPerChunk = 50;
nchunk = floor(nil/numObsPerChunk);
ec = array2table(zeros(nchunk,2),VariableNames=["Cumulative","Window"]);
beta11 = [IncrementalMdl.BinaryLearners{1}.Beta(1); zeros(nchunk,1)];
Xil = X(idxil,:);
Yil = Y(idxil);
Wil = W(idxil);

% Incremental fitting
for j = 1:nchunk
    ibegin = min(nil,numObsPerChunk*(j-1) + 1);
    iend   = min(nil,numObsPerChunk*j);
    idx = ibegin:iend;
    IncrementalMdl = updateMetrics(IncrementalMdl,Xil(idx,:),Yil(idx), ...
        Weights=Wil(idx));
    ec{j,:} = IncrementalMdl.Metrics{"ClassificationError",:};
    IncrementalMdl = fit(IncrementalMdl,Xil(idx,:),Yil(idx),Weights=Wil(idx));
    beta11(j+1) = IncrementalMdl.BinaryLearners{1}.Beta(1);
end

IncrementalMdl is an incrementalClassificationECOC model object trained on all the data in
the stream.

Alternatively, you can use updateMetricsAndFit to update the performance metrics of the model
given a new chunk of data, and then fit the model to the data.

Plot a trace plot of the performance metrics and estimated coefficient β11 on separate tiles.

t = tiledlayout(2,1);
nexttile
plot(ec.Variables)
xlim([0 nchunk])
ylabel("Classification Error")
legend(ec.Properties.VariableNames)
nexttile
plot(beta11)
ylabel("\beta_{11}")
xlim([0 nchunk])
xlabel(t,"Iteration")
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The cumulative loss levels quickly and is stable, whereas the window loss jumps throughout the
training.

β11 changes abruptly at first, then gradually levels off as fit processes more chunks.

Specify Binary Learners

Customize binary learners of an incrementalClassificationECOC model object by specifying the
Learners name-value argument.

First, configure binary learner properties by creating an incrementalClassificationLinear
object. Set the linear classification model type (Learner) to logistic regression, and specify
Standardize as true to standardize the predictor data.

binaryMdl = incrementalClassificationLinear(Learner="logistic", ...
    Standardize=true)

binaryMdl = 
  incrementalClassificationLinear

            IsWarm: 0
           Metrics: [1x2 table]
        ClassNames: [1x0 double]
    ScoreTransform: 'logit'
              Beta: [0x1 double]
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              Bias: 0
           Learner: 'logistic'

  Properties, Methods

Create an incremental ECOC model for multiclass learning. Specify the number of classes in the data
as five, and set the binary learner template (Learners) to binaryMdl.

Mdl = incrementalClassificationECOC(MaxNumClasses=5,Learners=binaryMdl)

Warning: 'ScoreTransform' property for binary learner 1 is discarded because the binary learner is used in an ECOC model.

Mdl = 
  incrementalClassificationECOC

            IsWarm: 0
           Metrics: [1x2 table]
        ClassNames: [1x0 double]
    ScoreTransform: 'none'
    BinaryLearners: {10x1 cell}
        CodingName: 'onevsone'
          Decoding: 'lossweighted'

  Properties, Methods

The software displays a warning message that incrementalClassificationECOC does not use the
ScoreTransform property in the binary learner. Because the software does not transform scores for
each learner, incrementalClassificationECOC does not use the property. Instead, you can
specify the score transformation function for incrementalClassificationECOC by using the
ScoreTransform name-value argument of incrementalClassificationECOC.

Display the BinaryLearners property in Mdl.

Mdl.BinaryLearners

ans=10×1 cell array
    {1x1 incrementalClassificationLinear}
    {1x1 incrementalClassificationLinear}
    {1x1 incrementalClassificationLinear}
    {1x1 incrementalClassificationLinear}
    {1x1 incrementalClassificationLinear}
    {1x1 incrementalClassificationLinear}
    {1x1 incrementalClassificationLinear}
    {1x1 incrementalClassificationLinear}
    {1x1 incrementalClassificationLinear}
    {1x1 incrementalClassificationLinear}

By default, incrementalClassificationECOC uses the one-versus-one coding design, which
requires 10 learners for five classes. Therefore, the BinaryLearners property contains 10 binary
learners of type incrementalClassificationLinear.
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More About
Incremental Learning

Incremental learning, or online learning, is a branch of machine learning concerned with processing
incoming data from a data stream, possibly given little to no knowledge of the distribution of the
predictor variables, aspects of the prediction or objective function (including tuning parameter
values), or whether the observations are labeled. Incremental learning differs from traditional
machine learning, where enough labeled data is available to fit to a model, perform cross-validation
to tune hyperparameters, and infer the predictor distribution.

Given incoming observations, an incremental learning model processes data in any of the following
ways, but usually in this order:

• Predict labels.
• Measure the predictive performance.
• Check for structural breaks or drift in the model.
• Fit the model to the incoming observations.

For more details, see “Incremental Learning Overview” on page 28-2.

Adaptive Scale-Invariant Solver for Incremental Learning

The adaptive scale-invariant solver for incremental learning, introduced in [5], is a gradient-descent-
based objective solver for training linear predictive models. The solver is hyperparameter free,
insensitive to differences in predictor variable scales, and does not require prior knowledge of the
distribution of the predictor variables. These characteristics make it well suited to incremental
learning.

The incremental fitting functions fit and updateMetricsAndFit use the more aggressive ScInOL2
version of the algorithm to train binary learners. The functions always shuffles an incoming batch of
data before fitting the model.

Error-Correcting Output Codes Model

An error-correcting output codes (ECOC) model reduces the problem of classification with three or
more classes to a set of binary classification problems.

ECOC classification requires a coding design, which determines the classes that the binary learners
train on, and a decoding scheme, which determines how the results (predictions) of the binary
classifiers are aggregated.

Assume the following:

• The classification problem has three classes.
• The coding design is one-versus-one. For three classes, this coding design is

Learner 1 Learner 2 Learner 3
Class 1 1 1 0
Class 2 −1 0 1
Class 3 0 −1 −1
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You can specify a different coding design by using the Coding name-value argument when you
create a classification model.

• The model determines the predicted class by using the loss-weighted decoding scheme with the
binary loss function g. The software also supports the loss-based decoding scheme. You can
specify the decoding scheme and binary loss function by using the Decoding and BinaryLoss
name-value arguments, respectively, when you create a classification model or when you call the
object functions predict and loss.

To build this classification model, the ECOC algorithm follows these steps.

1 Learner 1 trains on observations in Class 1 or Class 2, and treats Class 1 as the positive class and
Class 2 as the negative class. The other learners are trained similarly.

2 Let M be the coding design matrix with elements mkl, and sl be the predicted classification score
for the positive class of learner l. The algorithm assigns a new observation to the class (k ) that
minimizes the aggregation of the losses for the L binary learners.

k = argmin
k

∑l = 1

B

mkl g mkl, sl

∑l = 1

B

mkl

.

ECOC models can improve classification accuracy, compared to other multiclass models [4].

Coding Design

The coding design is a matrix whose elements direct which classes are trained by each binary learner,
that is, how the multiclass problem is reduced to a series of binary problems.

Each row of the coding design corresponds to a distinct class, and each column corresponds to a
binary learner. In a ternary coding design, for a particular column (or binary learner):

• A row containing 1 directs the binary learner to group all observations in the corresponding class
into a positive class.

• A row containing –1 directs the binary learner to group all observations in the corresponding class
into a negative class.

• A row containing 0 directs the binary learner to ignore all observations in the corresponding class.

Coding design matrices with large, minimal, pairwise row distances based on the Hamming measure
are optimal. For details on the pairwise row distance, see “Random Coding Design Matrices” on page
35-3396 and [3].

This table describes popular coding designs.
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Coding Design Description Number of Learners Minimal Pairwise Row
Distance

one-versus-all (OVA) For each binary learner,
one class is positive and
the rest are negative.
This design exhausts all
combinations of positive
class assignments.

K 2

one-versus-one (OVO) For each binary learner,
one class is positive,
one class is negative,
and the rest are
ignored. This design
exhausts all
combinations of class
pair assignments.

K(K – 1)/2 1

binary complete This design partitions
the classes into all
binary combinations,
and does not ignore any
classes. That is, all class
assignments are –1 and
1 with at least one
positive class and one
negative class in the
assignment for each
binary learner.

2K – 1 – 1 2K – 2

ternary complete This design partitions
the classes into all
ternary combinations.
That is, all class
assignments are 0, –1,
and 1 with at least one
positive class and one
negative class in the
assignment for each
binary learner.

(3K – 2K + 1 + 1)/2 3K – 2

ordinal For the first binary
learner, the first class is
negative and the rest
are positive. For the
second binary learner,
the first two classes are
negative and the rest
are positive, and so on.

K – 1 1
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Coding Design Description Number of Learners Minimal Pairwise Row
Distance

dense random For each binary learner,
the software randomly
assigns classes into
positive or negative
classes, with at least
one of each type. For
more details, see
“Random Coding Design
Matrices” on page 35-
3396.

Random, but
approximately 10 log2K

Variable

sparse random For each binary learner,
the software randomly
assigns classes as
positive or negative
with probability 0.25 for
each, and ignores
classes with probability
0.5. For more details,
see “Random Coding
Design Matrices” on
page 35-3396.

Random, but
approximately 15 log2K

Variable

This plot compares the number of binary learners for the coding designs with increasing K.
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Binary Loss

The binary loss is a function of the class and classification score that determines how well a binary
learner classifies an observation into the class.

Suppose the following:

• mkj is element (k,j) of the coding design matrix M—that is, the code corresponding to class k of
binary learner j. M is a K-by-B matrix, where K is the number of classes, and B is the number of
binary learners.

• sj is the score of binary learner j for an observation.
• g is the binary loss function.
• k  is the predicted class for the observation.

The decoding scheme of an ECOC model specifies how the software aggregates the binary losses and
determines the predicted class for each observation. The software supports two decoding schemes:

• Loss-based decoding [3] (Decoding is 'lossbased') — The predicted class of an observation
corresponds to the class that produces the minimum average of the binary losses over all binary
learners.

k = argmin
k

1
B ∑j = 1

B
mk j g(mk j, s j) .
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• Loss-weighted decoding [2] (Decoding is 'lossweighted') — The predicted class of an
observation corresponds to the class that produces the minimum average of the binary losses over
the binary learners for the corresponding class.

k = argmin
k

∑
j = 1

B
mk j g(mk j, s j)

∑ j = 1

B

mk j

.

The denominator corresponds to the number of binary learners for class k. [1] suggests that loss-
weighted decoding improves classification accuracy by keeping loss values for all classes in the
same dynamic range.

The predict, resubPredict, and kfoldPredict functions return the negated value of the
objective function of argmin as the second output argument (NegLoss) for each observation and
class.

This table summarizes the supported binary loss functions, where yj is a class label for a particular
binary learner (in the set {–1,1,0}), sj is the score for observation j, and g(yj,sj) is the binary loss
function.

Value Description Score Domain g(yj,sj)
"binodeviance" Binomial deviance (–∞,∞) log[1 + exp(–2yjsj)]/

[2log(2)]
"exponential" Exponential (–∞,∞) exp(–yjsj)/2
"hamming" Hamming [0,1] or (–∞,∞) [1 – sign(yjsj)]/2
"hinge" Hinge (–∞,∞) max(0,1 – yjsj)/2
"linear" Linear (–∞,∞) (1 – yjsj)/2
"logit" Logistic (–∞,∞) log[1 + exp(–yjsj)]/

[2log(2)]
"quadratic" Quadratic [0,1] [1 – yj(2sj – 1)]2/2

The software normalizes binary losses so that the loss is 0.5 when yj = 0, and aggregates using the
average of the binary learners.

Do not confuse the binary loss with the overall classification loss (specified by the LossFun name-
value argument of the loss and predict object functions), which measures how well an ECOC
classifier performs as a whole.

Classification Error

The classification error has the form

L = ∑
j = 1

n
w je j,

where:

• wj is the weight for observation j. The software renormalizes the weights to sum to 1.
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• ej = 1 if the predicted class of observation j differs from its true class, and 0 otherwise.

In other words, the classification error is the proportion of observations misclassified by the classifier.

Algorithms
Performance Metrics

• The updateMetrics and updateMetricsAndFit functions track model performance metrics
(Metrics) from new data only when the incremental model is warm (IsWarm property is true).

• If you create an incremental model by using incrementalLearner and
MetricsWarmupPeriod is 0 (default for incrementalLearner), the model is warm at
creation.

• Otherwise, an incremental model becomes warm after fit or updateMetricsAndFit
performs both of these actions:

• Fit the incremental model to MetricsWarmupPeriod observations, which is the metrics
warm-up period.

• Fit the incremental model to all expected classes (see the MaxNumClasses and
ClassNames arguments of incrementalClassificationECOC).

• The Metrics property of the incremental model stores two forms of each performance metric as
variables (columns) of a table, Cumulative and Window, with individual metrics in rows. When
the incremental model is warm, updateMetrics and updateMetricsAndFit update the metrics
at the following frequencies:

• Cumulative — The functions compute cumulative metrics since the start of model
performance tracking. The functions update metrics every time you call the functions and base
the calculation on the entire supplied data set.

• Window — The functions compute metrics based on all observations within a window
determined by MetricsWindowSize, which also determines the frequency at which the
software updates Window metrics. For example, if MetricsWindowSize is 20, the functions
compute metrics based on the last 20 observations in the supplied data (X((end – 20 +
1):end,:) and Y((end – 20 + 1):end)).

Incremental functions that track performance metrics within a window use the following
process:

1 Store a buffer of length MetricsWindowSize for each specified metric, and store a buffer
of observation weights.

2 Populate elements of the metrics buffer with the model performance based on batches of
incoming observations, and store corresponding observation weights in the weights buffer.

3 When the buffer is full, overwrite the Window field of the Metrics property with the
weighted average performance in the metrics window. If the buffer overfills when the
function processes a batch of observations, the latest incoming MetricsWindowSize
observations enter the buffer, and the earliest observations are removed from the buffer.
For example, suppose MetricsWindowSize is 20, the metrics buffer has 10 values from a
previously processed batch, and 15 values are incoming. To compose the length 20
window, the functions use the measurements from the 15 incoming observations and the
latest 5 measurements from the previous batch.

• The software omits an observation with a NaN score when computing the Cumulative and
Window performance metric values.
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Custom Coding Design Matrices

Custom coding matrices must have a certain form. The software validates a custom coding matrix by
ensuring:

• Every element is –1, 0, or 1.
• Every column contains as least one –1 and one 1.
• For all distinct column vectors u and v, u ≠ v and u ≠ –v.
• All row vectors are unique.
• The matrix can separate any two classes. That is, you can move from any row to any other row

following these rules:

• Move vertically from 1 to –1 or –1 to 1.
• Move horizontally from a nonzero element to another nonzero element.
• Use a column of the matrix for a vertical move only once.

If it is not possible to move from row i to row j using these rules, then classes i and j cannot be
separated by the design. For example, in the coding design

1 0
−1 0
0 1
0 −1

classes 1 and 2 cannot be separated from classes 3 and 4 (that is, you cannot move horizontally
from –1 in row 2 to column 2 because that position contains a 0). Therefore, the software rejects
this coding design.

Random Coding Design Matrices

For a given number of classes K, the software generates random coding design matrices as follows.

1 The software generates one of these matrices:

a Dense random — The software assigns 1 or –1 with equal probability to each element of the
K-by-Ld coding design matrix, where Ld ≈ 10log2K .

b Sparse random — The software assigns 1 to each element of the K-by-Ls coding design
matrix with probability 0.25, –1 with probability 0.25, and 0 with probability 0.5, where
Ls ≈ 15log2K .

2 If a column does not contain at least one 1 and one –1, then the software removes that column.
3 For distinct columns u and v, if u = v or u = –v, then the software removes v from the coding

design matrix.

The software randomly generates 10,000 matrices by default, and retains the matrix with the largest,
minimal, pairwise row distance based on the Hamming measure ([3]) given by

Δ(k1, k2) = 0.5∑
l = 1

L

mk1l mk2l mk1l−mk2l ,

where mkjl is an element of coding design matrix j.
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Version History
Introduced in R2022a
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incrementalClassificationKernel
Binary classification kernel model for incremental learning

Description
The incrementalClassificationKernel function creates an
incrementalClassificationKernel model object, which represents a binary Gaussian kernel
classification model for incremental learning. The kernel model maps data in a low-dimensional space
into a high-dimensional space, then fits a linear model in the high-dimensional space. Supported
linear models include support vector machine (SVM) and logistic regression.

Unlike other Statistics and Machine Learning Toolbox model objects,
incrementalClassificationKernel can be called directly. Also, you can specify learning options,
such as performance metrics configurations and the objective solver, before fitting the model to data.
After you create an incrementalClassificationKernel object, it is prepared for incremental
learning on page 35-3418.

incrementalClassificationKernel is best suited for incremental learning. For a traditional
approach to training a kernel model for binary classification (such as creating a model by fitting it to
data, performing cross-validation, tuning hyperparameters, and so on), see fitckernel. For
multiclass incremental learning, see incrementalClassificationECOC and
incrementalClassificationNaiveBayes.

Creation
You can create an incrementalClassificationKernel model object in several ways:

• Call the function directly — Configure incremental learning options, or specify learner-specific
options, by calling incrementalClassificationKernel directly. This approach is best when
you do not have data yet or you want to start incremental learning immediately.

• Convert a traditionally trained model — To initialize a model for incremental learning using
the model parameters and hyperparameters of a trained model object, you can convert the
traditionally trained model (ClassificationKernel) to an
incrementalClassificationKernel model object by passing it to the incrementalLearner
function.

• Convert a template object — You can convert a template object (templateKernel) to an
incrementalClassificationKernel model object by passing it to the incrementalLearner
function.

• Call an incremental learning function — fit, updateMetrics, and updateMetricsAndFit
accept a configured incrementalClassificationKernel model object and data as input, and
return an incrementalClassificationKernel model object updated with information learned
from the input model and data.

Syntax
Mdl = incrementalClassificationKernel()
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Mdl = incrementalClassificationKernel(Name=Value)

Description

Mdl = incrementalClassificationKernel() returns a default incremental learning model
object for binary Gaussian kernel classification, Mdl. Properties of a default model contain
placeholders for unknown model parameters. You must train a default model before you can track its
performance or generate predictions from it.

Mdl = incrementalClassificationKernel(Name=Value) sets properties on page 35-3402 and
additional options using name-value arguments. For example,
incrementalClassificationKernel(Solver="sgd",LearnRateSchedule="constant")
specifies to use the stochastic gradient descent (SGD) solver with a constant learning rate.

Input Arguments
Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.
Example: Metrics="logit",MetricsWarmupPeriod=100 sets the model performance metric to
the logistic loss and the metrics warm-up period to 100.

Classification Options

RandomStream — Random number stream
global stream (default) | random stream object

Random number stream for reproducibility of data transformation, specified as a random stream
object. For details, see “Random Feature Expansion” on page 35-3419.

Use RandomStream to reproduce the random basis functions used by
incrementalClassificationKernel to transform the predictor data to a high-dimensional space.
For details, see “Managing the Global Stream Using RandStream” and “Creating and Controlling a
Random Number Stream”.
Example: RandomStream=RandStream("mlfg6331_64")

SGD and ASGD (Average SGD) Solver Options

BatchSize — Mini-batch size
10 (default) | positive integer

Mini-batch size, specified as a positive integer. At each learning cycle during training,
incrementalClassificationKernel uses BatchSize observations to compute the subgradient.

The number of observations in the last mini-batch (last learning cycle in each function call of fit or
updateMetricsAndFit) can be smaller than BatchSize. For example, if you supply 25
observations to fit or updateMetricsAndFit, the function uses 10 observations for the first two
learning cycles and 5 observations for the last learning cycle.
Example: BatchSize=5
Data Types: single | double
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Lambda — Ridge (L2) regularization term strength
1e-5 (default) | nonnegative scalar

Ridge (L2) regularization term strength, specified as a nonnegative scalar.
Example: Lambda=0.01
Data Types: single | double

LearnRate — Initial learning rate
"auto" (default) | positive scalar

Initial learning rate, specified as "auto" or a positive scalar.

The learning rate controls the optimization step size by scaling the objective subgradient. LearnRate
specifies an initial value for the learning rate, and LearnRateSchedule determines the learning
rate for subsequent learning cycles.

When you specify "auto":

• The initial learning rate is 0.7.
• If EstimationPeriod > 0, fit and updateMetricsAndFit change the rate to 1/

sqrt(1+max(sum(X.^2,2))) at the end of EstimationPeriod.

Example: LearnRate=0.001
Data Types: single | double | char | string

LearnRateSchedule — Learning rate schedule
"decaying" (default) | "constant"

Learning rate schedule, specified as a value in this table, where LearnRate specifies the initial
learning rate ɣ0.

Value Description
"constant" The learning rate is ɣ0 for all learning cycles.
"decaying" The learning rate at learning cycle t is

γt =
γ0

1 + λγ0t c .

• λ is the value of Lambda.
• If Solver is "sgd", then c = 1.
• If Solver is "asgd", then c = 0.75 [4].

Example: LearnRateSchedule="constant"
Data Types: char | string

Adaptive Scale-Invariant Solver Options

Shuffle — Flag for shuffling observations
true or 1 (default) | false or 0

Flag for shuffling the observations at each iteration, specified as logical 1 (true) or 0 (false).
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Value Description
logical 1 (true) The software shuffles the observations in an

incoming chunk of data before the fit function
fits the model. This action reduces bias induced
by the sampling scheme.

logical 0 (false) The software processes the data in the order
received.

Example: Shuffle=false
Data Types: logical

Performance Metrics Options

Metrics — Model performance metrics to track during incremental learning
"classiferror" (default) | string vector | function handle | cell vector | structure array |
"binodeviance" | "exponential" | "hinge" | "logit" | "quadratic"

Model performance metrics to track during incremental learning, specified as a built-in loss function
name, string vector of names, function handle (@metricName), structure array of function handles, or
cell vector of names, function handles, or structure arrays.

When Mdl is warm (see IsWarm), updateMetrics and updateMetricsAndFit track performance
metrics in the Metrics property of Mdl.

The following table lists the built-in loss function names. You can specify more than one by using a
string vector.

Name Description
"binodeviance" Binomial deviance
"classiferror" Classification error
"exponential" Exponential loss
"hinge" Hinge loss
"logit" Logistic loss
"quadratic" Quadratic loss

For more details on the built-in loss functions, see loss.
Example: Metrics=["classiferror","hinge"]

To specify a custom function that returns a performance metric, use function handle notation. The
function must have this form:

metric = customMetric(C,S)

• The output argument metric is an n-by-1 numeric vector, where each element is the loss of the
corresponding observation in the data processed by the incremental learning functions during a
learning cycle.

• You specify the function name (customMetric).
• C is an n-by-2 logical matrix with rows indicating the class to which the corresponding observation

belongs. The column order corresponds to the class order in the ClassNames property. Create C
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by setting C(p,q) = 1, if observation p is in class q, for each observation in the specified data. Set
the other element in row p to 0.

• S is an n-by-2 numeric matrix of predicted classification scores. S is similar to the score output of
predict, where rows correspond to observations in the data and the column order corresponds
to the class order in the ClassNames property. S(p,q) is the classification score of observation p
being classified in class q.

To specify multiple custom metrics and assign a custom name to each, use a structure array. To
specify a combination of built-in and custom metrics, use a cell vector.
Example: Metrics=struct(Metric1=@customMetric1,Metric2=@customMetric2)
Example:
Metrics={@customMetric1,@customMetric2,"logit",struct(Metric3=@customMetric3)
}

updateMetrics and updateMetricsAndFit store specified metrics in a table in the Metrics
property. The data type of Metrics determines the row names of the table.

Metrics Value
Data Type

Description of Metrics Property Row
Name

Example

String or character
vector

Name of corresponding built-in metric Row name for "classiferror" is
"ClassificationError"

Structure array Field name Row name for
struct(Metric1=@customMetric
1) is "Metric1"

Function handle to
function stored in
a program file

Name of function Row name for @customMetric is
"customMetric"

Anonymous
function

CustomMetric_j, where j is metric j in
Metrics

Row name for
@(C,S)customMetric(C,S)... is
CustomMetric_1

For more details on performance metrics options, see “Performance Metrics” on page 35-3420.
Data Types: char | string | struct | cell | function_handle

Properties
You can set most properties by using name-value argument syntax when you call
incrementalClassificationKernel directly. You can set some properties when you call
incrementalLearner to convert a traditionally trained model object or model template object. You
cannot set the properties FittedLoss, NumTrainingObservations, SolverOptions, and
IsWarm.

Classification Model Parameters

ClassNames — Unique class labels
categorical array | character array | string array | logical vector | numeric vector | cell array of
character vectors

This property is read-only.
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Unique class labels used in training the model, specified as a categorical, character, or string array, a
logical or numeric vector, or a cell array of character vectors. ClassNames and the response data
must have the same data type. (The software treats string arrays as cell arrays of character vectors.)

The default ClassNames value depends on how you create the model:

• If you convert a traditionally trained model to create Mdl, ClassNames is specified by the
corresponding property of the traditionally trained model.

• Otherwise, incremental fitting functions infer ClassNames during training.

Data Types: single | double | logical | char | string | cell | categorical

FittedLoss — Loss function used to fit linear model
'hinge' | 'logit'

This property is read-only.

Loss function used to fit the linear model, specified as 'hinge' or 'logit'.

Value Algorithm Loss Function Learner Value
'hinge' Support vector machine Hinge: ℓ y, f x = max

0, 1− yf x
'svm'

'logit' Logistic regression Deviance (logistic):
ℓ y, f x = log

1 + exp −yf x

'logistic'

KernelScale — Kernel scale parameter
"auto" | positive scalar

This property is read-only.

Kernel scale parameter, specified as "auto" or a positive scalar.
incrementalClassificationKernel stores the KernelScale value as a numeric scalar. The
software obtains a random basis for feature expansion by using the kernel scale parameter. For
details, see “Random Feature Expansion” on page 35-3419.

If you specify "auto" when creating the model object, the software selects an appropriate kernel
scale parameter using a heuristic procedure. This procedure uses subsampling, so estimates can vary
from one call to another. Therefore, to reproduce results, set a random number seed by using rng
before training.

The default KernelScale value depends on how you create the model:

• If you convert a traditionally trained model object or template model object to create Mdl,
KernelScale is specified by the corresponding property of the object.

• Otherwise, the default value is 1.

Data Types: char | string | single | double

Learner — Linear classification model type
"svm" | "logistic"

This property is read-only.
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Linear classification model type, specified as "svm" or "logistic".
incrementalClassificationKernel stores the Learner value as a character vector.

In the following table, f x = T(x)β + b .

• x is an observation (row vector) from p predictor variables.
• T ·  is a transformation of an observation (row vector) for feature expansion. T(x) maps x in ℝp to

a high-dimensional space (ℝm).
• β is a vector of coefficients.
• b is the scalar bias.

Value Algorithm Loss Function FittedLoss Value
"svm" Support vector machine Hinge loss:

ℓ y, f x = max
0, 1− yf x

'hinge'

"logistic" Logistic regression Deviance (logistic loss):
ℓ y, f x = log

1 + exp −yf x

'logit'

The default Learner value depends on how you create the model:

• If you convert a traditionally trained model object or template model object to create Mdl,
Learner is specified by the corresponding property of the object.

• Otherwise, the default value is "svm".

Data Types: char | string

NumExpansionDimensions — Number of dimensions of expanded space
"auto" | positive integer

This property is read-only.

Number of dimensions of the expanded space, specified as "auto" or a positive integer.
incrementalClassificationKernel stores the NumExpansionDimensions value as a numeric
scalar.

For "auto", the software selects the number of dimensions using 2.^ceil(min(log2(p)+5,15)),
where p is the number of predictors. For details, see “Random Feature Expansion” on page 35-3419.

The default NumExpansionDimensions value depends on how you create the model:

• If you convert a traditionally trained model object or template model object to create Mdl,
NumExpansionDimensions is specified by the corresponding property of the object.

• Otherwise, the default value is "auto".

Data Types: char | string | single | double

NumPredictors — Number of predictor variables
nonnegative numeric scalar

This property is read-only.

Number of predictor variables, specified as a nonnegative numeric scalar.
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The default NumPredictors value depends on how you create the model:

• If you convert a traditionally trained model to create Mdl, NumPredictors is specified by the
corresponding property of the traditionally trained model.

• If you create Mdl by calling incrementalClassificationKernel directly, you can specify
NumPredictors by using name-value argument syntax.

• Otherwise, the default value is 0, and incremental fitting functions infer NumPredictors from the
predictor data during training.

Data Types: double

NumTrainingObservations — Number of observations fit to incremental model
0 (default) | nonnegative numeric scalar

This property is read-only.

Number of observations fit to the incremental model Mdl, specified as a nonnegative numeric scalar.
NumTrainingObservations increases when you pass Mdl and training data to fit or
updateMetricsAndFit.

Note If you convert a traditionally trained model to create Mdl,
incrementalClassificationKernel does not add the number of observations fit to the
traditionally trained model to NumTrainingObservations.

Data Types: double

Prior — Prior class probabilities
"empirical" | "uniform" | numeric vector

This property is read-only.

Prior class probabilities, specified as "empirical", "uniform", or a numeric vector.
incrementalClassificationKernel stores the Prior value as a numeric vector.

Value Description
"empirical" Incremental learning functions infer prior class

probabilities from the observed class relative
frequencies in the response data during
incremental training (after the estimation period
EstimationPeriod).

"uniform" For each class, the prior probability is 1/2.
numeric vector Custom, normalized prior probabilities. The order

of the elements of Prior corresponds to the
elements of the ClassNames property.

The default Prior value depends on how you create the model:

• If you convert a traditionally trained model to create Mdl, Prior is specified by the corresponding
property of the traditionally trained model.

• Otherwise, the default value is "empirical".
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Data Types: single | double | char | string

ScoreTransform — Score transformation function
character vector | string scalar | function handle

This property is read-only.

Score transformation function describing how incremental learning functions transform raw response
values, specified as a character vector, string scalar, or function handle.
incrementalClassificationKernel stores the ScoreTransform value as a character vector or
function handle.

This table describes the available built-in functions for score transformation.

Value Description
"doublelogit" 1/(1 + e–2x)
"invlogit" log(x / (1 – x))
"ismax" Sets the score for the class with the largest score to 1,

and sets the scores for all other classes to 0
"logit" 1/(1 + e–x)
"none" or "identity" x (no transformation)
"sign" –1 for x < 0

0 for x = 0
1 for x > 0

"symmetric" 2x – 1
"symmetricismax" Sets the score for the class with the largest score to 1,

and sets the scores for all other classes to –1
"symmetriclogit" 2/(1 + e–x) – 1

For a MATLAB function or a function that you define, enter its function handle; for example,
ScoreTransform=@function, where:

• function accepts an n-by-2 matrix (the original scores) and returns a matrix of the same size
(the transformed scores). The column order corresponds to the class order in the ClassNames
property.

• n is the number of observations, and row j of the matrix contains the class scores of observation j.

The default ScoreTransform value depends on how you create the model:

• If you convert a traditionally trained model to create Mdl, ScoreTransform is specified by the
corresponding property of the traditionally trained model.

• Otherwise, the default value is "none" (when Learner is "svm") or "logit" (when Learner is
"logistic").

Data Types: char | string | function_handle

Training Parameters

EstimationPeriod — Number of observations processed to estimate hyperparameters
nonnegative integer
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This property is read-only.

Number of observations processed by the incremental model to estimate hyperparameters before
training or tracking performance metrics, specified as a nonnegative integer.

Note

• If Mdl is prepared for incremental learning (all hyperparameters required for training are
specified), incrementalClassificationKernel forces EstimationPeriod to 0.

• If Mdl is not prepared for incremental learning, incrementalClassificationKernel sets
EstimationPeriod to 1000.

For more details, see “Estimation Period” on page 35-3420.

Data Types: single | double

Solver — Objective function minimization technique
"scale-invariant" | "sgd" | "asgd"

This property is read-only.

Objective function minimization technique, specified as "scale-invariant", "sgd", or "asgd".
incrementalClassificationKernel stores the Solver value as a character vector.

Value Description Notes
"scale-
invariant"

Adaptive scale-invariant solver
for incremental learning on
page 35-3419 [1]

• This algorithm is parameter free and can
adapt to differences in predictor scales. Try
this algorithm before using SGD or ASGD.

• To shuffle an incoming chunk of data before
the fit function fits the model, set Shuffle
to true.

"sgd" Stochastic gradient descent
(SGD) [2][3]

• To train effectively with SGD, specify adequate
values for hyperparameters using options
listed in “SGD and ASGD (Average SGD)
Solver Options” on page 35-0 .

• The fit function always shuffles an incoming
chunk of data before fitting the model.

"asgd" Average stochastic gradient
descent (ASGD) [4]

• To train effectively with ASGD, specify
adequate values for hyperparameters using
options listed in “SGD and ASGD (Average
SGD) Solver Options” on page 35-0 .

• The fit function always shuffles an incoming
chunk of data before fitting the model.

The default Solver value depends on how you create the model:

• If you convert a traditionally trained model to create Mdl, the Solver name-value argument of the
incrementalLearner function sets this property. The default value of the argument is "scale-
invariant".
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• Otherwise, the default value is "scale-invariant".

Data Types: char | string

SolverOptions — Objective solver configurations
structure array

This property is read-only.

Objective solver configurations, specified as a structure array. The fields of SolverOptions depend
on Solver.

• For the SGD and ASGD solvers, the structure array includes the Solver, BatchSize, Lambda,
LearnRate, and LearnRateSchedule fields.

• For the adaptive scale-invariant solver, the structure array includes the Solver and Shuffle
fields.

You can specify the field values using the corresponding name-value arguments when you create the
model object by calling incrementalClassificationKernel directly, or when you convert a
traditionally trained model using the incrementalLearner function.
Data Types: struct

Performance Metrics Parameters

IsWarm — Flag indicating whether model tracks performance metrics
false or 0 | true or 1

This property is read-only.

Flag indicating whether the incremental model tracks performance metrics, specified as logical 0
(false) or 1 (true).

The incremental model Mdl is warm (IsWarm becomes true) after incremental fitting functions fit
(EstimationPeriod + MetricsWarmupPeriod) observations to the incremental model.

Value Description
true or 1 The incremental model Mdl is warm.

Consequently, updateMetrics and
updateMetricsAndFit track performance
metrics in the Metrics property of Mdl.

false or 0 updateMetrics and updateMetricsAndFit do
not track performance metrics.

Data Types: logical

Metrics — Model performance metrics
table

This property is read-only.

Model performance metrics updated during incremental learning by updateMetrics and
updateMetricsAndFit, specified as a table with two columns and m rows, where m is the number
of metrics specified by the Metrics name-value argument.
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The columns of Metrics are labeled Cumulative and Window.

• Cumulative: Element j is the model performance, as measured by metric j, from the time the
model became warm (IsWarm is 1).

• Window: Element j is the model performance, as measured by metric j, evaluated over all
observations within the window specified by the MetricsWindowSize property. The software
updates Window after it processes MetricsWindowSize observations.

Rows are labeled by the specified metrics. For details, see the Metrics name-value argument of
incrementalLearner or incrementalClassificationKernel.
Data Types: table

MetricsWarmupPeriod — Number of observations fit before tracking performance metrics
nonnegative integer

This property is read-only.

Number of observations the incremental model must be fit to before it tracks performance metrics in
its Metrics property, specified as a nonnegative integer.

The default MetricsWarmupPeriod value depends on how you create the model:

• If you convert a traditionally trained model to create Mdl, the MetricsWarmupPeriod name-
value argument of the incrementalLearner function sets this property. The default value of the
argument is 0.

• Otherwise, the default value is 1000.

For more details, see “Performance Metrics” on page 35-3420.
Data Types: single | double

MetricsWindowSize — Number of observations to use to compute window performance
metrics
positive integer

This property is read-only.

Number of observations to use to compute window performance metrics, specified as a positive
integer.

The default MetricsWindowSize value depends on how you create the model:

• If you convert a traditionally trained model to create Mdl, the MetricsWindowSize name-value
argument of the incrementalLearner function sets this property. The default value of the
argument is 200.

• Otherwise, the default value is 200.

For more details on performance metrics options, see “Performance Metrics” on page 35-3420.
Data Types: single | double

Object Functions
fit Train kernel model for incremental learning
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updateMetrics Update performance metrics in kernel incremental learning model given new
data

updateMetricsAndFit Update performance metrics in kernel incremental learning model given new
data and train model

loss Loss of kernel incremental learning model on batch of data
predict Predict responses for new observations from kernel incremental learning

model
perObservationLoss Per observation classification error of model for incremental learning
reset Reset incremental classification model

Examples

Create Incremental Learner Without Any Prior Information

Create an incremental kernel model without any prior information. Track the model performance on
streaming data, and fit the model to the data.

Create a default incremental kernel SVM model for binary classification.

Mdl = incrementalClassificationKernel()

Mdl = 
  incrementalClassificationKernel

                    IsWarm: 0
                   Metrics: [1x2 table]
                ClassNames: [1x0 double]
            ScoreTransform: 'none'
    NumExpansionDimensions: 0
               KernelScale: 1

  Properties, Methods

Mdl is an incrementalClassificationKernel model object. All its properties are read-only.

Mdl must be fit to data before you can use it to perform any other operations.

Load the human activity data set. Randomly shuffle the data.

load humanactivity
n = numel(actid);
rng(1) % For reproducibility
idx = randsample(n,n);
X = feat(idx,:);
Y = actid(idx);

For details on the data set, enter Description at the command line.

Responses can be one of five classes: Sitting, Standing, Walking, Running, or Dancing. Dichotomize
the response by identifying whether the subject is moving (actid > 2).

Y = Y > 2;
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Fit the incremental model to the training data by using the updateMetricsAndFit function.
Simulate a data stream by processing chunks of 50 observations at a time. At each iteration:

• Process 50 observations.
• Overwrite the previous incremental model with a new one fitted to the incoming observations.
• Store the cumulative metrics, window metrics, and number of training observations to see how

they evolve during incremental learning.

% Preallocation
numObsPerChunk = 50;
nchunk = floor(n/numObsPerChunk);
ce = array2table(zeros(nchunk,2),VariableNames=["Cumulative","Window"]);    
numtrainobs = zeros(nchunk,1);

% Incremental learning
for j = 1:nchunk
    ibegin = min(n,numObsPerChunk*(j-1) + 1);
    iend   = min(n,numObsPerChunk*j);
    idx = ibegin:iend;    
    Mdl = updateMetricsAndFit(Mdl,X(idx,:),Y(idx));
    ce{j,:} = Mdl.Metrics{"ClassificationError",:};
    numtrainobs(j) = Mdl.NumTrainingObservations;
end

Mdl is an incrementalClassificationKernel model object trained on all the data in the stream.
During incremental learning and after the model is warmed up, updateMetricsAndFit checks the
performance of the model on the incoming observations, and then fits the model to those
observations.

Plot a trace plot of the number of training observations and the performance metrics on separate
tiles.

t = tiledlayout(2,1);
nexttile
plot(numtrainobs)
xline(Mdl.MetricsWarmupPeriod/numObsPerChunk,"--")
xlim([0 nchunk])
ylabel("Number of Training Observations")
nexttile
plot(ce.Variables)
xline(Mdl.MetricsWarmupPeriod/numObsPerChunk,"--")
xlim([0 nchunk])
ylabel("Classification Error")
legend(ce.Properties.VariableNames,Location="best")
xlabel(t,"Iteration")
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The plot suggests that updateMetricsAndFit does the following:

• Fit the model during all incremental learning iterations
• Compute the performance metrics after the metrics warm-up period only.
• Compute the cumulative metrics during each iteration.
• Compute the window metrics after processing 200 observations (4 iterations).

Configure Incremental Learning Options

Prepare an incremental kernel SVM learner by specifying a metrics warm-up period and a metrics
window size. Train the model by using SGD, and adjust the SGD batch size, learning rate, and
regularization parameter.

Load the human activity data set. Randomly shuffle the data.

load humanactivity
n = numel(actid);
rng("default") % For reproducibility
idx = randsample(n,n);
X = feat(idx,:);
Y = actid(idx);

For details on the data set, enter Description at the command line.
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Responses can be one of five classes: Sitting, Standing, Walking, Running, or Dancing. Dichotomize
the response by identifying whether the subject is moving (actid > 2).

Y = Y > 2;

Create an incremental kernel model for binary classification. Configure the model as follows:

• Specify the SGD solver.
• Assume that a ridge regularization parameter value of 0.001, SGD batch size of 20, and learning

rate of 0.002 work well for the problem.
• Specify a metrics warm-up period of 5000 observations.
• Specify a metrics window size of 500 observations.
• Track the classification and hinge error metrics to measure the performance of the model.

Mdl = incrementalClassificationKernel( ...
    Solver="sgd",Lambda=0.001,BatchSize=20,LearnRate=0.002, ...
    MetricsWarmupPeriod=5000,MetricsWindowSize=500, ...
    Metrics=["classiferror","hinge"])

Mdl = 
  incrementalClassificationKernel

                    IsWarm: 0
                   Metrics: [2x2 table]
                ClassNames: [1x0 double]
            ScoreTransform: 'none'
    NumExpansionDimensions: 0
               KernelScale: 1

  Properties, Methods

Mdl is an incrementalClassificationKernel model object configured for incremental learning.

Fit the incremental model to the rest of the data by using the updateMetricsAndFit function. At
each iteration:

• Simulate a data stream by processing a chunk of 50 observations. Note that the chunk size is
different from the SGD batch size.

• Overwrite the previous incremental model with a new one fitted to the incoming observations.
• Store the cumulative metrics, window metrics, and number of training observations to see how

they evolve during incremental learning.

% Preallocation
numObsPerChunk = 50;
nchunk = floor(n/numObsPerChunk);
ce = array2table(zeros(nchunk,2),VariableNames=["Cumulative","Window"]);
hinge = array2table(zeros(nchunk,2),VariableNames=["Cumulative","Window"]);
numtrainobs = zeros(nchunk,1);
% Incremental fitting
for j = 1:nchunk
    ibegin = min(n,numObsPerChunk*(j-1) + 1);
    iend   = min(n,numObsPerChunk*j);
    idx = ibegin:iend;    
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    Mdl = updateMetricsAndFit(Mdl,X(idx,:),Y(idx));
    ce{j,:} = Mdl.Metrics{"ClassificationError",:};
    hinge{j,:} = Mdl.Metrics{"HingeLoss",:};
    numtrainobs(j) = Mdl.NumTrainingObservations;
end

Mdl is an incrementalClassificationKernel model object trained on all the data in the stream.
During incremental learning and after the model is warmed up, updateMetricsAndFit checks the
performance of the model on the incoming observations, and then fits the model to those
observations.

Plot a trace plot of the number of training observations and the performance metrics on separate
tiles.

t = tiledlayout(3,1);
nexttile
plot(numtrainobs)
xlim([0 nchunk])
ylabel(["Number of","Training Observations"])
xline(Mdl.MetricsWarmupPeriod/numObsPerChunk,"--")
nexttile
plot(ce.Variables)
xlim([0 nchunk])
ylabel("Classification Error")
xline(Mdl.MetricsWarmupPeriod/numObsPerChunk,"--")
legend(ce.Properties.VariableNames,Location="best")
nexttile
plot(hinge.Variables)
xlim([0 nchunk])
ylabel("Hinge Loss")
xline(Mdl.MetricsWarmupPeriod/numObsPerChunk,"--")
legend(hinge.Properties.VariableNames,Location="best")
xlabel(t,"Iteration")
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The plot suggests that updateMetricsAndFit does the following:

• Fit the model during all incremental learning iterations.
• Compute the performance metrics after the metrics warm-up period only.
• Compute the cumulative metrics during each iteration.
• Compute the window metrics after processing 500 observations (10 iterations).

Convert Traditionally Trained Model to Incremental Learner

Train a kernel model for binary classification by using fitckernel, convert it to an incremental
learner, track its performance, and fit it to streaming data. Carry over training options from
traditional to incremental learning.

Load and Preprocess Data

Load the human activity data set. Randomly shuffle the data.

load humanactivity
rng(1) % For reproducibility
n = numel(actid);
idx = randsample(n,n);
X = feat(idx,:);
Y = actid(idx);
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For details on the data set, enter Description at the command line.

Responses can be one of five classes: Sitting, Standing, Walking, Running, or Dancing. Dichotomize
the response by identifying whether the subject is moving (actid > 2).

Y = Y > 2;

Suppose that the data collected when the subject was stationary (Y = false) has double the quality
than when the subject was moving. Create a weight variable that attributes 2 to observations
collected from a stationary subject, and 1 to a moving subject.

W = ones(n,1) + ~Y;

Train Kernel Model for Binary Classification

Fit a kernel model for binary classification to a random sample of half the data.

idxtt = randsample([true false],n,true);
Mdl = fitckernel(X(idxtt,:),Y(idxtt),Weights=W(idxtt))

Mdl = 
  ClassificationKernel
              ResponseName: 'Y'
                ClassNames: [0 1]
                   Learner: 'svm'
    NumExpansionDimensions: 2048
               KernelScale: 1
                    Lambda: 8.2967e-05
             BoxConstraint: 1

  Properties, Methods

Mdl is a ClassificationKernel model object representing a traditionally trained kernel model for
binary classification.

Convert Trained Model

Convert the traditionally trained classification model to a model for incremental learning.

IncrementalMdl = incrementalLearner(Mdl)

IncrementalMdl = 
  incrementalClassificationKernel

                    IsWarm: 1
                   Metrics: [1x2 table]
                ClassNames: [0 1]
            ScoreTransform: 'none'
    NumExpansionDimensions: 2048
               KernelScale: 1

  Properties, Methods

IncrementalMdl is an incrementalClassificationKernel model object configured for
incremental learning.
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Separately Track Performance Metrics and Fit Model

Perform incremental learning on the rest of the data by using the updateMetrics and fit
functions. Simulate a data stream by processing 50 observations at a time. At each iteration:

1 Call updateMetrics to update the cumulative and window classification error of the model
given the incoming chunk of observations. Overwrite the previous incremental model to update
the Metrics property. Note that the function does not fit the model to the chunk of data—the
chunk is "new" data for the model. Specify the observation weights.

2 Call fit to fit the model to the incoming chunk of observations. Overwrite the previous
incremental model to update the model parameters. Specify the observation weights.

3 Store the classification error and number of training observations.

% Preallocation
idxil = ~idxtt;
nil = sum(idxil);
numObsPerChunk = 50;
nchunk = floor(nil/numObsPerChunk);
ce = array2table(zeros(nchunk,2),VariableNames=["Cumulative","Window"]);
numtrainobs = zeros(nchunk,1);
Xil = X(idxil,:);
Yil = Y(idxil);
Wil = W(idxil);

% Incremental fitting
for j = 1:nchunk
    ibegin = min(nil,numObsPerChunk*(j-1) + 1);
    iend   = min(nil,numObsPerChunk*j);
    idx = ibegin:iend;
    IncrementalMdl = updateMetrics(IncrementalMdl,Xil(idx,:),Yil(idx), ...
        Weights=Wil(idx));
    ce{j,:} = IncrementalMdl.Metrics{"ClassificationError",:};
    IncrementalMdl = fit(IncrementalMdl,Xil(idx,:),Yil(idx), ...
        Weights=Wil(idx));
    numtrainobs(j) = IncrementalMdl.NumTrainingObservations;
end

IncrementalMdl is an incrementalClassificationKernel model object trained on all the data
in the stream.

Alternatively, you can use updateMetricsAndFit to update performance metrics of the model given
a new chunk of data, and then fit the model to the data.

Plot a trace plot of the number of training observations and the performance metrics.

t = tiledlayout(2,1);
nexttile
plot(numtrainobs)
xlim([0 nchunk])
ylabel("Number of Training Observations")
nexttile
plot(ce.Variables)
xlim([0 nchunk])
legend(ce.Properties.VariableNames)
ylabel("Classification Error")
xlabel(t,"Iteration")
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The cumulative loss is stable and decreases gradually, whereas the window loss jumps.

More About
Incremental Learning

Incremental learning, or online learning, is a branch of machine learning concerned with processing
incoming data from a data stream, possibly given little to no knowledge of the distribution of the
predictor variables, aspects of the prediction or objective function (including tuning parameter
values), or whether the observations are labeled. Incremental learning differs from traditional
machine learning, where enough labeled data is available to fit to a model, perform cross-validation
to tune hyperparameters, and infer the predictor distribution.

Given incoming observations, an incremental learning model processes data in any of the following
ways, but usually in this order:

• Predict labels.
• Measure the predictive performance.
• Check for structural breaks or drift in the model.
• Fit the model to the incoming observations.

For more details, see “Incremental Learning Overview” on page 28-2.
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Adaptive Scale-Invariant Solver for Incremental Learning

The adaptive scale-invariant solver for incremental learning, introduced in [1], is a gradient-descent-
based objective solver for training linear predictive models. The solver is hyperparameter free,
insensitive to differences in predictor variable scales, and does not require prior knowledge of the
distribution of the predictor variables. These characteristics make it well suited to incremental
learning.

The incremental fitting functions fit and updateMetricsAndFit use the more aggressive ScInOL2
version of the algorithm.

Random Feature Expansion

Random feature expansion, such as Random Kitchen Sinks[5] or Fastfood[6], is a scheme to
approximate Gaussian kernels of the kernel classification algorithm to use for big data in a
computationally efficient way. Random feature expansion is more practical for big data applications
that have large training sets, but can also be applied to smaller data sets that fit in memory.

The kernel classification algorithm searches for an optimal hyperplane that separates the data into
two classes after mapping features into a high-dimensional space. Nonlinear features that are not
linearly separable in a low-dimensional space can be separable in the expanded high-dimensional
space. All the calculations for hyperplane classification use only dot products. You can obtain a
nonlinear classification model by replacing the dot product x1x2' with the nonlinear kernel function
G(x1, x2) = φ(x1), φ(x2) , where xi is the ith observation (row vector) and φ(xi) is a transformation
that maps xi to a high-dimensional space (called the “kernel trick”). However, evaluating G(x1,x2)
(Gram matrix) for each pair of observations is computationally expensive for a large data set (large
n).

The random feature expansion scheme finds a random transformation so that its dot product
approximates the Gaussian kernel. That is,

G(x1, x2) = φ(x1), φ(x2) ≈ T(x1)T(x2)′,

where T(x) maps x in ℝp to a high-dimensional space (ℝm). The Random Kitchen Sinks scheme uses
the random transformation

T(x) = m−1/2exp iZx′ ′,

where Z ∈ ℝm × p is a sample drawn from N 0, σ−2  and σ is a kernel scale. This scheme requires
O(mp) computation and storage.

The Fastfood scheme introduces another random basis V instead of Z using Hadamard matrices
combined with Gaussian scaling matrices. This random basis reduces the computation cost to
O(mlogp) and reduces storage to O(m).

incrementalClassificationKernel uses the Fastfood scheme for random feature expansion,
and uses linear classification to train a Gaussian kernel classification model. You can specify values
for m and σ using the NumExpansionDimensions and KernelScale name-value arguments,
respectively, when you create a traditionally trained model using fitckernel or when you
callincrementalClassificationKernel directly to create the model object.
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Algorithms
Estimation Period

During the estimation period, the incremental fitting functions fit and updateMetricsAndFit use
the first incoming EstimationPeriod observations to tune a hyperparameter required for
incremental training. Estimation occurs only when EstimationPeriod is positive. This table
describes the hyperparameter and when it is estimated, or tuned.

Hyperparameter Model Property Usage Conditions
Learning rate LearnRate field of

SolverOptions
Adjust solver step
size

The hyperparameter is estimated when
both of these conditions apply:

• You specify the Solver name-value
argument as "sgd" or "asgd".

• You do not specify the LearnRate
name-value argument as a positive
scalar.

During the estimation period, fit does not fit the model, and updateMetricsAndFit does not fit
the model or update the performance metrics. At the end of the estimation period, the functions
update the property that stores the hyperparameter.

Performance Metrics

• The updateMetrics and updateMetricsAndFit functions are incremental learning functions
that track model performance metrics (Metrics) from new data only when the incremental model
is warm (IsWarm property is true). An incremental model becomes warm after fit or
updateMetricsAndFit fits the incremental model to MetricsWarmupPeriod observations,
which is the metrics warm-up period.

If EstimationPeriod > 0, the fit and updateMetricsAndFit functions estimate
hyperparameters before fitting the model to data. Therefore, the functions must process an
additional EstimationPeriod observations before the model starts the metrics warm-up period.

• The Metrics property of the incremental model stores two forms of each performance metric as
variables (columns) of a table, Cumulative and Window, with individual metrics in rows. When
the incremental model is warm, updateMetrics and updateMetricsAndFit update the metrics
at the following frequencies:

• Cumulative — The functions compute cumulative metrics since the start of model
performance tracking. The functions update metrics every time you call the functions and base
the calculation on the entire supplied data set.

• Window — The functions compute metrics based on all observations within a window
determined by MetricsWindowSize, which also determines the frequency at which the
software updates Window metrics. For example, if MetricsWindowSize is 20, the functions
compute metrics based on the last 20 observations in the supplied data (X((end – 20 +
1):end,:) and Y((end – 20 + 1):end)).

Incremental functions that track performance metrics within a window use the following
process:

1 Store a buffer of length MetricsWindowSize for each specified metric, and store a buffer
of observation weights.
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2 Populate elements of the metrics buffer with the model performance based on batches of
incoming observations, and store corresponding observation weights in the weights buffer.

3 When the buffer is full, overwrite the Window field of the Metrics property with the
weighted average performance in the metrics window. If the buffer overfills when the
function processes a batch of observations, the latest incoming MetricsWindowSize
observations enter the buffer, and the earliest observations are removed from the buffer.
For example, suppose MetricsWindowSize is 20, the metrics buffer has 10 values from a
previously processed batch, and 15 values are incoming. To compose the length 20
window, the functions use the measurements from the 15 incoming observations and the
latest 5 measurements from the previous batch.

• The software omits an observation with a NaN score when computing the Cumulative and
Window performance metric values.

Version History
Introduced in R2022a
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incrementalClassificationLinear
Binary classification linear model for incremental learning

Description
incrementalClassificationLinear creates an incrementalClassificationLinear model
object, which represents a binary classification linear model for incremental learning. Supported
learners include support vector machine (SVM) and logistic regression.

Unlike other Statistics and Machine Learning Toolbox model objects,
incrementalClassificationLinear can be called directly. Also, you can specify learning options,
such as performance metrics configurations, parameter values, and the objective solver, before fitting
the model to data. After you create an incrementalClassificationLinear object, it is prepared
for incremental learning on page 35-3445.

incrementalClassificationLinear is best suited for incremental learning. For a traditional
approach to training an SVM or linear model for binary classification (such as creating a model by
fitting it to data, performing cross-validation, tuning hyperparameters, and so on), see fitcsvm or
fitclinear. For multiclass incremental learning, see incrementalClassificationECOC and
incrementalClassificationNaiveBayes.

Creation
You can create an incrementalClassificationLinear model object in several ways:

• Call the function directly — Configure incremental learning options, or specify initial values for
linear model parameters and hyperparameters, by calling
incrementalClassificationLinear directly. This approach is best when you do not have data
yet or you want to start incremental learning immediately.

• Convert a traditionally trained model — To initialize a binary classification linear model for
incremental learning using the model coefficients and hyperparameters of a trained model object,
you can convert the traditionally trained model to an incrementalClassificationLinear
model object by passing it to the incrementalLearner function. This table contains links to the
appropriate reference pages.

Convertible Model Object Conversion Function
ClassificationSVM or
CompactClassificationSVM

incrementalLearner

ClassificationLinear incrementalLearner

• Convert a template object — You can convert the template object to an
incrementalClassificationLinear model object by passing it to the incrementalLearner
function. This table contains links to the appropriate reference pages.

Convertible Template Object Conversion Function
templateSVM incrementalLearner

 incrementalClassificationLinear

35-3423



Convertible Template Object Conversion Function
templateLinear incrementalLearner

• Call an incremental learning function — fit, updateMetrics, and updateMetricsAndFit
accept a configured incrementalClassificationLinear model object and data as input, and
return an incrementalClassificationLinear model object updated with information learned
from the input model and data.

Syntax
Mdl = incrementalClassificationLinear()
Mdl = incrementalClassificationLinear(Name,Value)

Description

Mdl = incrementalClassificationLinear() returns a default incremental learning model
object for binary linear classification, Mdl. Properties of a default model contain placeholders for
unknown model parameters. You must train a default model before you can track its performance or
generate predictions from it.

Mdl = incrementalClassificationLinear(Name,Value) sets properties on page 35-3427 and
additional options using name-value arguments. Enclose each name in quotes. For example,
incrementalClassificationLinear('Beta',[0.1
0.3],'Bias',1,'MetricsWarmupPeriod',100) sets the vector of linear model coefficients β to
[0.1 0.3], the bias β0 to 1, and the metrics warm-up period to 100.

Input Arguments

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: 'Standardize',true standardizes the predictor data using the predictor means and
standard deviations estimated during the estimation period.

Metrics — Model performance metrics to track during incremental learning
"classiferror" (default) | string vector | function handle | cell vector | structure array |
"binodeviance" | "exponential" | "hinge" | "logit" | "quadratic"

Model performance metrics to track during incremental learning, specified as a built-in loss function
name, string vector of names, function handle (@metricName), structure array of function handles, or
cell vector of names, function handles, or structure arrays.

When Mdl is warm (see IsWarm), updateMetrics and updateMetricsAndFit track performance
metrics in the Metrics property of Mdl.

The following table lists the built-in loss function names. You can specify more than one by using a
string vector.
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Name Description
"binodeviance" Binomial deviance
"classiferror" Classification error
"exponential" Exponential
"hinge" Hinge
"logit" Logistic
"quadratic" Quadratic

For more details on the built-in loss functions, see loss.
Example: 'Metrics',["classiferror" "hinge"]

To specify a custom function that returns a performance metric, use function handle notation. The
function must have this form:

metric = customMetric(C,S)

• The output argument metric is an n-by-1 numeric vector, where each element is the loss of the
corresponding observation in the data processed by the incremental learning functions during a
learning cycle.

• You specify the function name (customMetric).
• C is an n-by-2 logical matrix with rows indicating the class to which the corresponding observation

belongs. The column order corresponds to the class order in the ClassNames property. Create C
by setting C(p,q) = 1, if observation p is in class q, for each observation in the specified data. Set
the other element in row p to 0.

• S is an n-by-2 numeric matrix of predicted classification scores. S is similar to the score output of
predict, where rows correspond to observations in the data and the column order corresponds
to the class order in the ClassNames property. S(p,q) is the classification score of observation p
being classified in class q.

To specify multiple custom metrics and assign a custom name to each, use a structure array. To
specify a combination of built-in and custom metrics, use a cell vector.
Example: 'Metrics',struct('Metric1',@customMetric1,'Metric2',@customMetric2)
Example: 'Metrics',{@customMetric1 @customMetric2 'logit'
struct('Metric3',@customMetric3)}

updateMetrics and updateMetricsAndFit store specified metrics in a table in the Metrics
property. The data type of Metrics determines the row names of the table.

'Metrics' Value
Data Type

Description of Metrics Property Row
Name

Example

String or character
vector

Name of corresponding built-in metric Row name for "classiferror" is
"ClassificationError"

Structure array Field name Row name for
struct('Metric1',@customMetr
ic1) is "Metric1"
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'Metrics' Value
Data Type

Description of Metrics Property Row
Name

Example

Function handle to
function stored in
a program file

Name of function Row name for @customMetric is
"customMetric"

Anonymous
function

CustomMetric_j, where j is metric j in
Metrics

Row name for
@(C,S)customMetric(C,S)... is
CustomMetric_1

For more details on performance metrics options, see “Performance Metrics” on page 35-3448.
Data Types: char | string | struct | cell | function_handle

Standardize — Flag to standardize predictor data
'auto' (default) | false | true

Flag to standardize the predictor data, specified as a value in this table.

Value Description
'auto' incrementalClassificationLinear

determines whether the predictor variables need
to be standardized. See “Standardize Data” on
page 35-3447.

true The software standardizes the predictor data. For
more details, see “Standardize Data” on page 35-
3447.

false The software does not standardize the predictor
data.

Example: 'Standardize',true
Data Types: logical | char | string

Shuffle — Flag for shuffling observations
true (default) | false

Flag for shuffling the observations at each iteration, specified as a value in this table.

Value Description
true The software shuffles the observations in an

incoming chunk of data before the fit function
fits the model. This action reduces bias induced
by the sampling scheme.

false The software processes the data in the order
received.

This option is valid only when Solver is 'scale-invariant'. When Solver is 'sgd' or 'asgd',
the software always shuffles the observations in an incoming chunk of data before processing the
data.
Example: 'Shuffle',false
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Data Types: logical

Properties
You can set most properties by using name-value argument syntax only when you call
incrementalClassificationLinear directly. You can set some properties when you call
incrementalLearner to convert a traditionally trained model object or model template object. You
cannot set the properties FittedLoss, NumTrainingObservations, Mu, Sigma, SolverOptions,
and IsWarm.

Classification Model Parameters

Beta — Linear model coefficients β
numeric vector

This property is read-only.

Linear model coefficients β, specified as a NumPredictors-by-1 numeric vector.

Incremental fitting functions estimate Beta during training. The default initial Beta value depends
on how you create the model:

• If you convert a traditionally trained model object or template model object to create Mdl, the
initial value is specified by the corresponding property of the object.

• Otherwise, the initial value is zeros(NumPredictors,1).

Data Types: single | double

Bias — Model intercept β0
numeric scalar

This property is read-only.

Model intercept β0, or bias term, specified as a numeric scalar.

Incremental fitting functions estimate Bias during training. The default initial Bias value depends
on how you create the model:

• If you convert a traditionally trained model object or template model object to create Mdl, the
initial value is specified by the corresponding property of the object.

• Otherwise, the initial value is 0.

Data Types: single | double

ClassNames — Unique class labels
categorical array | character array | string array | logical vector | numeric vector | cell array of
character vectors

This property is read-only.

Unique class labels used in training the model, specified as a categorical, character, or string array,
logical or numeric vector, or cell array of character vectors. ClassNames and the response data must
have the same data type. (The software treats string arrays as cell arrays of character vectors.)

The default ClassNames value depends on how you create the model:

 incrementalClassificationLinear

35-3427



• If you convert a traditionally trained model to create Mdl, ClassNames is specified by the
corresponding property of the traditionally trained model.

• Otherwise, incremental fitting functions infer ClassNames during training.

Data Types: single | double | logical | char | string | cell | categorical

FittedLoss — Loss function used to fit linear model
'hinge' | 'logit'

This property is read-only.

Loss function used to fit the linear model, specified as 'hinge' or 'logit'.

Value Algorithm Loss Function Learner Value
'hinge' Support vector machine Hinge: ℓ y, f x = max

0, 1− yf x
'svm'

'logit' Logistic regression Deviance (logistic):
ℓ y, f x = log

1 + exp −yf x

'logistic'

Learner — Linear classification model type
'svm' | 'logistic'

This property is read-only.

Linear classification model type, specified as 'svm' or 'logistic'.
incrementalClassificationLinear stores the Learner value as a character vector.

In the following table, f x = xβ + b .

• β is a vector of p coefficients.
• x is an observation from p predictor variables.
• b is the scalar bias.

Value Algorithm Loss Function FittedLoss Value
'svm' Support vector machine Hinge: ℓ y, f x = max

0, 1− yf x
'hinge'

'logistic' Logistic regression Deviance (logistic):
ℓ y, f x = log

1 + exp −yf x

'logit'

The default Learner value depends on how you create the model:

• If you convert a traditionally trained SVM classification model object (ClassificationSVM or
CompactClassificationSVM) or SVM model template object (returned by templateSVM) to
create Mdl, Learner is 'svm'.

• If you convert a traditionally trained linear classification model object (ClassificationLinear)
or linear classification model template object (returned by templateLinear) to create Mdl,
Learner is specified by the corresponding property of the object.

• Otherwise, the default value is 'svm'.

Data Types: char | string
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NumPredictors — Number of predictor variables
nonnegative numeric scalar

This property is read-only.

Number of predictor variables, specified as a nonnegative numeric scalar.

The default NumPredictors value depends on how you create the model:

• If you convert a traditionally trained model to create Mdl, NumPredictors is specified by the
corresponding property of the traditionally trained model.

• If you create Mdl by calling incrementalClassificationLinear directly, you can specify
NumPredictors by using name-value argument syntax.

• Otherwise, the default value is 0, and incremental fitting functions infer NumPredictors from the
predictor data during training.

Data Types: double

NumTrainingObservations — Number of observations fit to incremental model
0 (default) | nonnegative numeric scalar

This property is read-only.

Number of observations fit to the incremental model Mdl, specified as a nonnegative numeric scalar.
NumTrainingObservations increases when you pass Mdl and training data to fit or
updateMetricsAndFit.

Note If you convert a traditionally trained model to create Mdl,
incrementalClassificationLinear does not add the number of observations fit to the
traditionally trained model to NumTrainingObservations.

Data Types: double

Prior — Prior class probabilities
'empirical' | 'uniform' | numeric vector

This property is read-only.

Prior class probabilities, specified as 'empirical', 'uniform', or a numeric vector.
incrementalClassificationLinear stores the Prior value as a numeric vector.

Value Description
'empirical' Incremental learning functions infer prior class

probabilities from the observed class relative
frequencies in the response data during
incremental training (after the estimation period
EstimationPeriod).

'uniform' For each class, the prior probability is 1/2.
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Value Description
numeric vector Custom, normalized prior probabilities. The order

of the elements of Prior corresponds to the
elements of the ClassNames property.

The default Prior value depends on how you create the model:

• If you convert a traditionally trained model to create Mdl, Prior is specified by the corresponding
property of the traditionally trained model.

• Otherwise, the default value is 'empirical'.

Data Types: single | double | char | string

ScoreTransform — Score transformation function
character vector | string scalar | function handle

This property is read-only.

Score transformation function describing how incremental learning functions transform raw response
values, specified as a character vector, string scalar, or function handle.
incrementalClassificationLinear stores the ScoreTransform value as a character vector or
function handle.

This table describes the available built-in functions for score transformation.

Value Description
"doublelogit" 1/(1 + e–2x)
"invlogit" log(x / (1 – x))
"ismax" Sets the score for the class with the largest score to 1,

and sets the scores for all other classes to 0
"logit" 1/(1 + e–x)
"none" or "identity" x (no transformation)
"sign" –1 for x < 0

0 for x = 0
1 for x > 0

"symmetric" 2x – 1
"symmetricismax" Sets the score for the class with the largest score to 1,

and sets the scores for all other classes to –1
"symmetriclogit" 2/(1 + e–x) – 1

For a MATLAB function or a function that you define, enter its function handle; for example,
'ScoreTransform',@function, where:

• function accepts an n-by-2 matrix (the original scores) and returns a matrix of the same size
(the transformed scores). The column order corresponds to the class order in the ClassNames
property.

• n is the number of observations, and row j of the matrix contains the class scores of observation j.

The default ScoreTransform value depends on how you create the model:
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• If you convert a traditionally trained model to create Mdl, ScoreTransform is specified by the
corresponding property of the traditionally trained model. For example, if the ScoreTransform
property of the traditionally trained model is a score-to-posterior-probability transformation
function, as computed by fitPosterior or fitSVMPosterior, Mdl.ScoreTransform contains
an anonymous function.

• Otherwise, the default value is 'none' (when Learner is 'svm') or 'logit' (when Learner is
'logistic').

Data Types: char | string | function_handle

Training Parameters

EstimationPeriod — Number of observations processed to estimate hyperparameters
nonnegative integer

This property is read-only.

Number of observations processed by the incremental model to estimate hyperparameters before
training or tracking performance metrics, specified as a nonnegative integer.

Note

• If Mdl is prepared for incremental learning (all hyperparameters required for training are
specified), incrementalClassificationLinear forces EstimationPeriod to 0.

• If Mdl is not prepared for incremental learning, incrementalClassificationLinear sets
EstimationPeriod to 1000.

For more details, see “Estimation Period” on page 35-3446.

Data Types: single | double

FitBias — Linear model intercept inclusion flag
true | false

This property is read-only.

Linear model intercept inclusion flag, specified as true or false.

Value Description
true incrementalClassificationLinear includes

the bias term β0 in the linear model, which
incremental fitting functions fit to data.

false incrementalClassificationLinear sets β0
= 0.

If Bias ≠ 0, FitBias must be true. In other words, incrementalClassificationLinear does
not support an equality constraint on β0.

The default FitBias value depends on how you create the model:
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• If you convert a traditionally trained linear classification model object (ClassificationLinear)
to create Mdl, FitBias is specified by the FitBias value of the ModelParameters property of
the traditionally trained model.

• If you convert a linear model template object (returned by templateLinear) to create Mdl,
FitBias is specified by the corresponding property of the object.

• Otherwise, the default value is true.

Data Types: logical

Mu — Predictor means
vector of numeric values | []

This property is read-only.

Predictor means, specified as a numeric vector.

If Mu is an empty array [] and you specify 'Standardize',true, incremental fitting functions set
Mu to the predictor variable means estimated during the estimation period specified by
EstimationPeriod.

You cannot specify Mu directly.
Data Types: single | double

Sigma — Predictor standard deviations
vector of numeric values | []

This property is read-only.

Predictor standard deviations, specified as a numeric vector.

If Sigma is an empty array [] and you specify 'Standardize',true, incremental fitting functions
set Sigma to the predictor variable standard deviations estimated during the estimation period
specified by EstimationPeriod.

You cannot specify Sigma directly.
Data Types: single | double

Solver — Objective function minimization technique
'scale-invariant' | 'sgd' | 'asgd'

This property is read-only.

Objective function minimization technique, specified as 'scale-invariant', 'sgd', or 'asgd'.
incrementalClassificationLinear stores the Solver value as a character vector.

Value Description Notes
'scale-
invariant'

Adaptive scale-invariant solver
for incremental learning on
page 35-3446 [1]

• This algorithm is parameter free and can
adapt to differences in predictor scales. Try
this algorithm before using SGD or ASGD.

• To shuffle an incoming chunk of data before
the fit function fits the model, set Shuffle
to true.
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Value Description Notes
'sgd' Stochastic gradient descent

(SGD) [3][2]
• To train effectively with SGD, standardize the

data and specify adequate values for
hyperparameters using options listed in “SGD
and ASGD Solver Parameters” on page 35-
3433.

• The fit function always shuffles an incoming
chunk of data before fitting the model.

'asgd' Average stochastic gradient
descent (ASGD) [4]

• To train effectively with ASGD, standardize the
data and specify adequate values for
hyperparameters using options listed in “SGD
and ASGD Solver Parameters” on page 35-
3433.

• The fit function always shuffles an incoming
chunk of data before fitting the model.

The default Solver value depends on how you create the model:

• If you create Mdl by calling incrementalClassificationLinear directly, the default value is
'scale-invariant'.

• If you convert a traditionally trained linear classification model object (ClassificationLinear)
or a linear model template object (returned by templateLinear) to create Mdl, and the object
uses ridge regularization and the SGD or ASGD solver, Mdl uses the same solver.

(You can view the Solver value of a traditionally trained model (for example, TTMdl) in
TTMdl.ModelParameters.Solver. For a model template object, you can view the Solver value
by displaying the object in the Command Window or the Variables editor.)

• Otherwise, the Solver name-value argument of the incrementalLearner function sets this
property. The default value of the argument is 'scale-invariant'.

Data Types: char | string

SolverOptions — Objective solver configurations
structure array

This property is read-only.

Objective solver configurations, specified as a structure array. The fields of SolverOptions are
properties specific to the specified solver Solver.
Data Types: struct

SGD and ASGD Solver Parameters

BatchSize — Mini-batch size
positive integer

This property is read-only.

Mini-batch size, specified as a positive integer. At each learning cycle during training,
incrementalClassificationLinear uses BatchSize observations to compute the subgradient.
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The number of observations for the last mini-batch (last learning cycle in each function call of fit or
updateMetricsAndFit) can be smaller than BatchSize. For example, if you supply 25
observations to fit or updateMetricsAndFit, the function uses 10 observations for the first two
learning cycles and 5 observations for the last learning cycle.

The default BatchSize value depends on how you create the model:

• If you create Mdl by calling incrementalClassificationLinear directly, the default value is
10.

• If you convert a traditionally trained linear classification model object (ClassificationLinear)
to create Mdl, and the object uses ridge regularization and the SGD or ASGD solver, BatchSize is
specified by the BatchSize value of the ModelParameters property of the traditionally trained
model.

• If you convert a linear model template object (returned by templateLinear) to create Mdl, and
the object uses ridge regularization and the SGD or ASGD solver, BatchSize is specified by the
corresponding property of the object.

• Otherwise, the BatchSize name-value argument of the incrementalLearner function sets this
property. The default value of the argument is 10.

Data Types: single | double

Lambda — Ridge (L2) regularization term strength
nonnegative scalar

This property is read-only.

Ridge (L2) regularization term strength, specified as a nonnegative scalar.

The default Lambda value depends on how you create the model:

• If you create Mdl by calling incrementalClassificationLinear directly, the default value is
1e-5.

• If you convert a traditionally trained linear classification model object (ClassificationLinear)
or a linear model template object (returned by templateLinear) to create Mdl, and the object
uses ridge regularization and the SGD or ASGD solver, Lambda is specified by the corresponding
property of the object.

• Otherwise, the Lambda name-value argument of the incrementalLearner function sets this
property. The default value of the argument is 1e-5.

Data Types: double | single

LearnRate — Initial learning rate
'auto' | positive scalar

This property is read-only.

Initial learning rate, specified as 'auto' or a positive scalar.
incrementalClassificationLinear stores the LearnRate value as a numeric scalar.

The learning rate controls the optimization step size by scaling the objective subgradient. LearnRate
specifies an initial value for the learning rate, and LearnRateSchedule determines the learning
rate for subsequent learning cycles.

When you specify 'auto':
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• The initial learning rate is 0.7.
• If EstimationPeriod > 0, fit and updateMetricsAndFit change the rate to 1/

sqrt(1+max(sum(X.^2,obsDim))) at the end of EstimationPeriod. The obsDim value is 1 if
the observations compose the columns of the predictor data; otherwise, the value is 2.

The default LearnRate value depends on how you create the model:

• If you create Mdl by calling incrementalClassificationLinear directly, the default value is
'auto'.

• If you convert a traditionally trained linear classification model object (ClassificationLinear)
to create Mdl, and the object uses ridge regularization and the SGD or ASGD solver, LearnRate is
specified by the LearnRate value of the ModelParameters property of the traditionally trained
model.

• If you convert a linear model template object (returned by templateLinear) to create Mdl, and
the object uses ridge regularization and the SGD or ASGD solver, LearnRate is specified by the
corresponding property of the object.

• Otherwise, the LearnRate name-value argument of the incrementalLearner function sets this
property. The default value of the argument is 'auto'.

Data Types: single | double | char | string

LearnRateSchedule — Learning rate schedule
'decaying' | 'constant'

This property is read-only.

Learning rate schedule, specified as 'decaying' or 'constant', where LearnRate specifies the
initial learning rate ɣ0. incrementalClassificationLinear stores the LearnRateSchedule
value as a character vector.

Value Description
'constant' The learning rate is ɣ0 for all learning cycles.
'decaying' The learning rate at learning cycle t is

γt =
γ0

1 + λγ0t c .

• λ is the value of Lambda.
• If Solver is 'sgd', then c = 1.
• If Solver is 'asgd', then c is 0.75 [4].

The default LearnRateSchedule value depends on how you create the model:

• If you convert a traditionally trained model object or template model object to create Mdl, the
LearnRateSchedule name-value argument of the incrementalLearner function sets this
property. The default value of the argument is 'decaying'.

• Otherwise, the default value is 'decaying'.

Data Types: char | string
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Performance Metrics Parameters

IsWarm — Flag indicating whether model tracks performance metrics
false or 0 | true or 1

This property is read-only.

Flag indicating whether the incremental model tracks performance metrics, specified as logical 0
(false) or 1 (true).

The incremental model Mdl is warm (IsWarm becomes true) after incremental fitting functions fit
(EstimationPeriod + MetricsWarmupPeriod) observations to the incremental model.

Value Description
true or 1 The incremental model Mdl is warm.

Consequently, updateMetrics and
updateMetricsAndFit track performance
metrics in the Metrics property of Mdl.

false or 0 updateMetrics and updateMetricsAndFit do
not track performance metrics.

Data Types: logical

Metrics — Model performance metrics
table

This property is read-only.

Model performance metrics updated during incremental learning by updateMetrics and
updateMetricsAndFit, specified as a table with two columns and m rows, where m is the number
of metrics specified by the Metrics name-value argument.

The columns of Metrics are labeled Cumulative and Window.

• Cumulative: Element j is the model performance, as measured by metric j, from the time the
model became warm (IsWarm is 1).

• Window: Element j is the model performance, as measured by metric j, evaluated over all
observations within the window specified by the MetricsWindowSize property. The software
updates Window after it processes MetricsWindowSize observations.

Rows are labeled by the specified metrics. For details, see the Metrics name-value argument of
incrementalLearner or incrementalClassificationLinear.
Data Types: table

MetricsWarmupPeriod — Number of observations fit before tracking performance metrics
nonnegative integer

This property is read-only.

Number of observations the incremental model must be fit to before it tracks performance metrics in
its Metrics property, specified as a nonnegative integer.

The default MetricsWarmupPeriod value depends on how you create the model:
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• If you convert a traditionally trained model to create Mdl, the MetricsWarmupPeriod name-
value argument of the incrementalLearner function sets this property. The default value of the
argument is 0.

• Otherwise, the default value is 1000.

For more details, see “Performance Metrics” on page 35-3448.
Data Types: single | double

MetricsWindowSize — Number of observations to use to compute window performance
metrics
positive integer

This property is read-only.

Number of observations to use to compute window performance metrics, specified as a positive
integer.

The default MetricsWindowSize value depends on how you create the model:

• If you convert a traditionally trained model to create Mdl, the MetricsWindowSize name-value
argument of the incrementalLearner function sets this property. The default value of the
argument is 200.

• Otherwise, the default value is 200.

For more details on performance metrics options, see “Performance Metrics” on page 35-3448.
Data Types: single | double

Object Functions
fit Train linear model for incremental learning
updateMetricsAndFit Update performance metrics in linear incremental learning model given new

data and train model
updateMetrics Update performance metrics in linear incremental learning model given new

data
loss Loss of linear incremental learning model on batch of data
predict Predict responses for new observations from linear incremental learning

model
perObservationLoss Per observation classification error of model for incremental learning
reset Reset incremental classification model

Examples

Create Incremental Learner Without Any Prior Information

Create a default incremental linear SVM model for binary classification.

Mdl = incrementalClassificationLinear()

Mdl = 
  incrementalClassificationLinear

            IsWarm: 0
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           Metrics: [1x2 table]
        ClassNames: [1x0 double]
    ScoreTransform: 'none'
              Beta: [0x1 double]
              Bias: 0
           Learner: 'svm'

  Properties, Methods

Mdl is an incrementalClassificationLinear model object. All its properties are read-only.

Mdl must be fit to data before you can use it to perform any other operations.

Load the human activity data set. Randomly shuffle the data.

load humanactivity
n = numel(actid);
rng(1) % For reproducibility
idx = randsample(n,n);
X = feat(idx,:);
Y = actid(idx);

For details on the data set, enter Description at the command line.

Responses can be one of five classes: Sitting, Standing, Walking, Running, or Dancing. Dichotomize
the response by identifying whether the subject is moving (actid > 2).

Y = Y > 2;

Fit the incremental model to the training data by using the updateMetricsAndFit function.
Simulate a data stream by processing chunks of 50 observations at a time. At each iteration:

• Process 50 observations.
• Overwrite the previous incremental model with a new one fitted to the incoming observations.
• Store β1, the cumulative metrics, and the window metrics to see how they evolve during

incremental learning.

% Preallocation
numObsPerChunk = 50;
nchunk = floor(n/numObsPerChunk);
ce = array2table(zeros(nchunk,2),'VariableNames',["Cumulative" "Window"]);
beta1 = zeros(nchunk,1);    

% Incremental learning
for j = 1:nchunk
    ibegin = min(n,numObsPerChunk*(j-1) + 1);
    iend   = min(n,numObsPerChunk*j);
    idx = ibegin:iend;    
    Mdl = updateMetricsAndFit(Mdl,X(idx,:),Y(idx));
    ce{j,:} = Mdl.Metrics{"ClassificationError",:};
    beta1(j + 1) = Mdl.Beta(1);
end

IncrementalMdl is an incrementalClassificationLinear model object trained on all the data
in the stream. During incremental learning and after the model is warmed up,
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updateMetricsAndFit checks the performance of the model on the incoming observations, and
then fits the model to those observations.

To see how the performance metrics and β1 evolve during training, plot them on separate tiles.

t = tiledlayout(2,1);
nexttile
plot(beta1)
ylabel('\beta_1')
xlim([0 nchunk])
nexttile
h = plot(ce.Variables);
xlim([0 nchunk])
ylabel('Classification Error')
xline(Mdl.MetricsWarmupPeriod/numObsPerChunk,'g-.')
legend(h,ce.Properties.VariableNames)
xlabel(t,'Iteration')

The plot suggests that updateMetricsAndFit does the following:

• Fit β1 during all incremental learning iterations.
• Compute the performance metrics after the metrics warm-up period only.
• Compute the cumulative metrics during each iteration.
• Compute the window metrics after processing 200 observations (4 iterations).
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Configure Incremental Learning Options

Prepare an incremental binary SVM learner by specifying a metrics warm-up period, during which
the updateMetricsAndFit function only fits the model. Specify a metrics window size of 500
observations. Train the model by using SGD, and adjust the SGD batch size, learning rate, and
regularization parameter.

Load the human activity data set. Randomly shuffle the data.

load humanactivity
n = numel(actid);
rng("default") % For reproducibility
idx = randsample(n,n);
X = feat(idx,:);
Y = actid(idx);

For details on the data set, enter Description at the command line.

Responses can be one of five classes: Sitting, Standing, Walking, Running, or Dancing. Dichotomize
the response by identifying whether the subject is moving (actid > 2).

Y = Y > 2;

Create an incremental linear model for binary classification. Configure the model as follows:

• Specify that the incremental fitting functions process the raw (unstandardized) predictor data.
• Specify the SGD solver.
• Assume that a ridge regularization parameter value of 0.001, SGD batch size of 20, and learning

rate of 0.002 work well for the problem.
• Specify a metrics warm-up period of 5000 observations.
• Specify a metrics window size of 500 observations.
• Track the classification and hinge error metrics to measure the performance of the model.

Mdl = incrementalClassificationLinear('Standardize',false, ...
    'Solver','sgd','Lambda',0.001,'BatchSize',20,'LearnRate',0.002, ...
    'MetricsWarmupPeriod',5000,'MetricsWindowSize',500, ...
    'Metrics',{'classiferror' 'hinge'})

Mdl = 
  incrementalClassificationLinear

            IsWarm: 0
           Metrics: [2x2 table]
        ClassNames: [1x0 double]
    ScoreTransform: 'none'
              Beta: [0x1 double]
              Bias: 0
           Learner: 'svm'

  Properties, Methods

Mdl is an incrementalClassificationLinear model object configured for incremental learning.
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Fit the incremental model to the rest of the data by using the updateMetricsAndFit function. At
each iteration:

• Simulate a data stream by processing a chunk of 50 observations. Note that the chunk size is
different from SGD batch size.

• Overwrite the previous incremental model with a new one fitted to the incoming observations.
• Store the estimated coefficient β10, the cumulative metrics, and the window metrics to see how

they evolve during incremental learning.

% Preallocation
numObsPerChunk = 50;
nchunk = floor(n/numObsPerChunk);
ce = array2table(zeros(nchunk,2),'VariableNames',["Cumulative" "Window"]);
hinge = array2table(zeros(nchunk,2),'VariableNames',["Cumulative" "Window"]);
beta10 = zeros(nchunk,1);    

% Incremental fitting
for j = 1:nchunk
    ibegin = min(n,numObsPerChunk*(j-1) + 1);
    iend   = min(n,numObsPerChunk*j);
    idx = ibegin:iend;    
    Mdl = updateMetricsAndFit(Mdl,X(idx,:),Y(idx));
    ce{j,:} = Mdl.Metrics{"ClassificationError",:};
    hinge{j,:} = Mdl.Metrics{"HingeLoss",:};
    beta10(j + 1) = Mdl.Beta(10);
end

Mdl is an incrementalClassificationLinear model object trained on all the data in the stream.
During incremental learning and after the model is warmed up, updateMetricsAndFit checks the
performance of the model on the incoming observations, and then fits the model to those
observations.

To see how the performance metrics and β10 evolve during training, plot them on separate tiles.

tiledlayout(2,2)
nexttile
plot(beta10)
ylabel('\beta_{10}')
xlim([0 nchunk]);
xline(Mdl.MetricsWarmupPeriod/numObsPerChunk,'g-.')
xlabel('Iteration')
nexttile
h = plot(ce.Variables);
xlim([0 nchunk]);
ylabel('Classification Error')
xline(Mdl.MetricsWarmupPeriod/numObsPerChunk,'g-.')
legend(h,ce.Properties.VariableNames)
xlabel('Iteration')
nexttile
h = plot(hinge.Variables);
xlim([0 nchunk]);
ylabel('Hinge Loss')
xline(Mdl.MetricsWarmupPeriod/numObsPerChunk,'g-.')
legend(h,hinge.Properties.VariableNames)
xlabel('Iteration')
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The plot suggests that updateMetricsAndFit does the following:

• Fit β10 during all incremental learning iterations.
• Compute the performance metrics after the metrics warm-up period only.
• Compute the cumulative metrics during each iteration.
• Compute the window metrics after processing 500 observations (10 iterations).

Convert Traditionally Trained Model to Incremental Learner

Train a linear model for binary classification by using fitclinear, convert it to an incremental
learner, track its performance, and fit it to streaming data. Carry over training options from
traditional to incremental learning.

Load and Preprocess Data

Load the human activity data set. Randomly shuffle the data. Orient the observations of the predictor
data in columns.

load humanactivity
rng(1); % For reproducibility
n = numel(actid);
idx = randsample(n,n);
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X = feat(idx,:)';
Y = actid(idx);

For details on the data set, enter Description at the command line.

Responses can be one of five classes: Sitting, Standing, Walking, Running, or Dancing. Dichotomize
the response by identifying whether the subject is moving (actid > 2).

Y = Y > 2;

Suppose that the data collected when the subject was idle (Y = false) has double the quality than
when the subject was moving. Create a weight variable that attributes 2 to observations collected
from an idle subject, and 1 to a moving subject.

W = ones(n,1) + ~Y;

Train Linear Model for Binary Classification

Fit a linear model for binary classification to a random sample of half the data.

idxtt = randsample([true false],n,true);
TTMdl = fitclinear(X(:,idxtt),Y(idxtt),'ObservationsIn','columns', ...
    'Weights',W(idxtt))

TTMdl = 
  ClassificationLinear
      ResponseName: 'Y'
        ClassNames: [0 1]
    ScoreTransform: 'none'
              Beta: [60x1 double]
              Bias: -0.1107
            Lambda: 8.2967e-05
           Learner: 'svm'

  Properties, Methods

TTMdl is a ClassificationLinear model object representing a traditionally trained linear model
for binary classification.

Convert Trained Model

Convert the traditionally trained classification model to a binary classification linear model for
incremental learning.

IncrementalMdl = incrementalLearner(TTMdl)

IncrementalMdl = 
  incrementalClassificationLinear

            IsWarm: 1
           Metrics: [1x2 table]
        ClassNames: [0 1]
    ScoreTransform: 'none'
              Beta: [60x1 double]
              Bias: -0.1107
           Learner: 'svm'
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  Properties, Methods

Separately Track Performance Metrics and Fit Model

Perform incremental learning on the rest of the data by using the updateMetrics and fit
functions. Simulate a data stream by processing 50 observations at a time. At each iteration:

1 Call updateMetrics to update the cumulative and window classification error of the model
given the incoming chunk of observations. Overwrite the previous incremental model to update
the losses in the Metrics property. Note that the function does not fit the model to the chunk of
data—the chunk is "new" data for the model. Specify that the observations are oriented in
columns, and specify the observation weights.

2 Call fit to fit the model to the incoming chunk of observations. Overwrite the previous
incremental model to update the model parameters. Specify that the observations are oriented in
columns, and specify the observation weights.

3 Store the classification error and first estimated coefficient β1.

% Preallocation
idxil = ~idxtt;
nil = sum(idxil);
numObsPerChunk = 50;
nchunk = floor(nil/numObsPerChunk);
ce = array2table(zeros(nchunk,2),'VariableNames',["Cumulative" "Window"]);
beta1 = [IncrementalMdl.Beta(1); zeros(nchunk,1)];
Xil = X(:,idxil);
Yil = Y(idxil);
Wil = W(idxil);

% Incremental fitting
for j = 1:nchunk
    ibegin = min(nil,numObsPerChunk*(j-1) + 1);
    iend   = min(nil,numObsPerChunk*j);
    idx = ibegin:iend;
    IncrementalMdl = updateMetrics(IncrementalMdl,Xil(:,idx),Yil(idx), ...
        'ObservationsIn','columns','Weights',Wil(idx));
    ce{j,:} = IncrementalMdl.Metrics{"ClassificationError",:};
    IncrementalMdl = fit(IncrementalMdl,Xil(:,idx),Yil(idx), ...
        'ObservationsIn','columns','Weights',Wil(idx));
    beta1(j + 1) = IncrementalMdl.Beta(end);
end

IncrementalMdl is an incrementalClassificationLinear model object trained on all the data
in the stream.

Alternatively, you can use updateMetricsAndFit to update performance metrics of the model given
a new chunk of data, and then fit the model to the data.

Plot a trace plot of the performance metrics and estimated coefficient β1.

t = tiledlayout(2,1);
nexttile
h = plot(ce.Variables);
xlim([0 nchunk])
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ylabel('Classification Error')
legend(h,ce.Properties.VariableNames)
nexttile
plot(beta1)
ylabel('\beta_1')
xlim([0 nchunk])
xlabel(t,'Iteration')

The cumulative loss is stable and decreases gradually, whereas the window loss jumps.

β1 changes abruptly at first, then gradually levels off as fit processes more chunks.

More About
Incremental Learning

Incremental learning, or online learning, is a branch of machine learning concerned with processing
incoming data from a data stream, possibly given little to no knowledge of the distribution of the
predictor variables, aspects of the prediction or objective function (including tuning parameter
values), or whether the observations are labeled. Incremental learning differs from traditional
machine learning, where enough labeled data is available to fit to a model, perform cross-validation
to tune hyperparameters, and infer the predictor distribution.

Given incoming observations, an incremental learning model processes data in any of the following
ways, but usually in this order:
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• Predict labels.
• Measure the predictive performance.
• Check for structural breaks or drift in the model.
• Fit the model to the incoming observations.

For more details, see “Incremental Learning Overview” on page 28-2.

Adaptive Scale-Invariant Solver for Incremental Learning

The adaptive scale-invariant solver for incremental learning, introduced in [1], is a gradient-descent-
based objective solver for training linear predictive models. The solver is hyperparameter free,
insensitive to differences in predictor variable scales, and does not require prior knowledge of the
distribution of the predictor variables. These characteristics make it well suited to incremental
learning.

The standard SGD and ASGD solvers are sensitive to differing scales among the predictor variables,
resulting in models that can perform poorly. To achieve better accuracy using SGD and ASGD, you
can standardize the predictor data, and tune the regularization and learning rate parameters. For
traditional machine learning, enough data is available to enable hyperparameter tuning by cross-
validation and predictor standardization. However, for incremental learning, enough data might not
be available (for example, observations might be available only one at a time) and the distribution of
the predictors might be unknown. These characteristics make parameter tuning and predictor
standardization difficult or impossible to do during incremental learning.

The incremental fitting functions for classification fit and updateMetricsAndFit use the more
aggressive ScInOL2 version of the algorithm.

Tips
• After creating a model, you can generate C/C++ code that performs incremental learning on a

data stream. Generating C/C++ code requires MATLAB Coder. For details, see “Introduction to
Code Generation” on page 34-2.

Algorithms
Estimation Period

During the estimation period, the incremental fitting functions fit and updateMetricsAndFit use
the first incoming EstimationPeriod observations to estimate (tune) hyperparameters required for
incremental training. Estimation occurs only when EstimationPeriod is positive. This table
describes the hyperparameters and when they are estimated, or tuned.
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Hyperparameter Model Property Usage Conditions
Predictor means
and standard
deviations

Mu and Sigma Standardize
predictor data

The hyperparameters are estimated
when both of these conditions apply:

• Incremental fitting functions are
configured to standardize predictor
data (see “Standardize Data” on
page 35-3447).

• Mdl.Mu and Mdl.Sigma are empty
arrays [].

Learning rate LearnRate Adjust solver step
size

The hyperparameter is estimated when
both of these conditions apply:

• The solver is SGD or ASGD (see
Solver).

• You do not specify the
'LearnRate' name-value
argument as a positive scalar.

During the estimation period, fit does not fit the model, and updateMetricsAndFit does not fit
the model or update the performance metrics. At the end of the estimation period, the functions
update the properties that store the hyperparameters.

Standardize Data

If incremental learning functions are configured to standardize predictor variables, they do so using
the means and standard deviations stored in the Mu and Sigma properties of the incremental learning
model Mdl.

• When you set 'Standardize',true and a positive estimation period (see EstimationPeriod),
and Mdl.Mu and Mdl.Sigma are empty, incremental fitting functions estimate means and
standard deviations using the estimation period observations.

• When you set 'Standardize','auto' (the default), the following conditions apply:

• If you create incrementalClassificationLinear by converting a traditionally trained
binary linear SVM model (ClassificationSVM or CompactClassificationSVM), and the
Mu and Sigma properties of the traditionally trained model are empty arrays [], incremental
learning functions do not standardize predictor variables. If the Mu and Sigma properties of
the traditionally trained model are nonempty, incremental learning functions standardize the
predictor variables using the specified means and standard deviations. Incremental fitting
functions do not estimate new means and standard deviations, regardless of the length of the
estimation period.

• If you create incrementalClassificationLinear by converting a linear classification
model (ClassificationLinear), incremental learning functions do not standardize the data,
regardless of the length of the estimation period.

• If you do not convert a traditionally trained model, incremental learning functions standardize
the predictor data only when you specify an SGD solver (see Solver) and a positive estimation
period (see EstimationPeriod).

• When incremental fitting functions estimate predictor means and standard deviations, the
functions compute weighted means and weighted standard deviations using the estimation period
observations. Specifically, the functions standardize predictor j (xj) using
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x j
∗ =

x j− μ j
∗

σ j
∗ .

• xj is predictor j, and xjk is observation k of predictor j in the estimation period.
• μ j

∗ = 1
∑
k
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∗∑k wk

∗x jk .
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∗ 2 = 1

∑
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∗ x jk− μ j
∗ 2 .

•
w j
∗ =

w j
∑

∀ j ∈ Class k
w j

pk,

• pk is the prior probability of class k (Prior property of the incremental model).
• wj is observation weight j.

Performance Metrics

• The updateMetrics and updateMetricsAndFit functions track model performance metrics
('Metrics') from new data when the incremental model is warm (IsWarm property). An
incremental model becomes warm after fit or updateMetricsAndFit fit the incremental model
to MetricsWarmupPeriod observations, which is the metrics warm-up period.

If EstimationPeriod > 0, the functions estimate hyperparameters before fitting the model to data.
Therefore, the functions must process an additional EstimationPeriod observations before the
model starts the metrics warm-up period.

• The Metrics property of the incremental model stores two forms of each performance metric as
variables (columns) of a table, Cumulative and Window, with individual metrics in rows. When
the incremental model is warm, updateMetrics and updateMetricsAndFit update the metrics
at the following frequencies:

• Cumulative — The functions compute cumulative metrics since the start of model
performance tracking. The functions update metrics every time you call the functions and base
the calculation on the entire supplied data set.

• Window — The functions compute metrics based on all observations within a window
determined by the MetricsWindowSize name-value pair argument. MetricsWindowSize also
determines the frequency at which the software updates Window metrics. For example, if
MetricsWindowSize is 20, the functions compute metrics based on the last 20 observations
in the supplied data (X((end – 20 + 1):end,:) and Y((end – 20 + 1):end)).

Incremental functions that track performance metrics within a window use the following
process:

1 Store a buffer of length MetricsWindowSize for each specified metric, and store a buffer
of observation weights.

2 Populate elements of the metrics buffer with the model performance based on batches of
incoming observations, and store corresponding observation weights in the weights buffer.

3 When the buffer is filled, overwrite Mdl.Metrics.Window with the weighted average
performance in the metrics window. If the buffer is overfilled when the function processes
a batch of observations, the latest incoming MetricsWindowSize observations enter the
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buffer, and the earliest observations are removed from the buffer. For example, suppose
MetricsWindowSize is 20, the metrics buffer has 10 values from a previously processed
batch, and 15 values are incoming. To compose the length 20 window, the functions use
the measurements from the 15 incoming observations and the latest 5 measurements from
the previous batch.

• The software omits an observation with a NaN score when computing the Cumulative and
Window performance metric values.

Version History
Introduced in R2020b
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Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• All object functions on page 35-3437 of an incrementalClassificationLinear model object
support code generation.

• If you configure Mdl to shuffle data (see Solver and Shuffle), the fit function randomly shuffles
each incoming batch of observations before it fits the model to the batch. The order of the shuffled
observations might not match the order generated by MATLAB.

• When you generate code that loads or creates an incrementalClassificationLinear model
object, the following restrictions apply.

• Mdl cannot represent a converted SVM model configured to return posterior probabilities as
scores.

• The ClassNames property must contain all expected class names.
• The NumPredictors property must reflect the number of predictor variables.

For more information, see “Introduction to Code Generation” on page 34-2.
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See Also
Functions
fit | updateMetrics | updateMetricsAndFit | predict | incrementalLearner
(ClassificationLinear) | incrementalLearner (ClassificationSVM)

Objects
ClassificationLinear | ClassificationSVM | CompactClassificationSVM

Topics
“Incremental Learning Overview” on page 28-2
“Configure Incremental Learning Model” on page 28-9
“Implement Incremental Learning for Classification Using Succinct Workflow” on page 28-22
“Implement Incremental Learning for Classification Using Flexible Workflow” on page 28-29
“Initialize Incremental Learning Model from Logistic Regression Model Trained in Classification
Learner” on page 28-40
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incrementalClassificationNaiveBayes
Naive Bayes classification model for incremental learning

Description
The incrementalClassificationNaiveBayes function creates an
incrementalClassificationNaiveBayes model object, which represents a naive Bayes
multiclass classification model for incremental learning.

Unlike other Statistics and Machine Learning Toolbox model objects,
incrementalClassificationNaiveBayes can be called directly. Also, you can specify learning
options, such as performance metrics configurations and prior class probabilities, before fitting the
model to data. After you create an incrementalClassificationNaiveBayes object, it is prepared
for incremental learning on page 35-3474.

incrementalClassificationNaiveBayes is best suited for incremental learning. For a
traditional approach to training a naive Bayes model for multiclass classification (such as creating a
model by fitting it to data, performing cross-validation, tuning hyperparameters, and so on), see
fitcnb.

Creation
You can create an incrementalClassificationNaiveBayes model object in several ways:

• Call the function directly — Configure incremental learning options, or specify learner-specific
options, by calling incrementalClassificationNaiveBayes directly. This approach is best
when you do not have data yet or you want to start incremental learning immediately. You must
specify the maximum number of classes or all class names expected in the response data during
incremental learning.

• Convert a traditionally trained model — To initialize a naive Bayes classification model for
incremental learning using the model parameters of a trained model object
(ClassificationNaiveBayes), you can convert the traditionally trained model to an
incrementalClassificationNaiveBayes model object by passing it to the
incrementalLearner function.

• Call an incremental learning function — fit, updateMetrics, and updateMetricsAndFit
accept a configured incrementalClassificationNaiveBayes model object and data as input,
and return an incrementalClassificationNaiveBayes model object updated with
information learned from the input model and data.

Syntax
Mdl = incrementalClassificationNaiveBayes('MaxNumClasses',MaxNumClasses)
Mdl = incrementalClassificationNaiveBayes('ClassNames',ClassNames)
Mdl = incrementalClassificationNaiveBayes( ___ ,Name,Value)
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Description

Mdl = incrementalClassificationNaiveBayes('MaxNumClasses',MaxNumClasses)
returns a default incremental learning model object for naive Bayes classification, Mdl, where
MaxNumClasses is the maximum number of classes expected in the response data during
incremental learning. Properties of a default model contain placeholders for unknown model
parameters. You must train a default model before you can track its performance or generate
predictions from it.

Mdl = incrementalClassificationNaiveBayes('ClassNames',ClassNames) specifies all
class names ClassNames expected in the response data during incremental learning, and sets the
ClassNames property.

Mdl = incrementalClassificationNaiveBayes( ___ ,Name,Value) uses either of the
previous syntaxes to set properties on page 35-3455 and additional options using name-value
arguments. Enclose each name in quotes. For example,
incrementalClassificationNaiveBayes('DistributionNames','mn','MaxNumClasses',
5,'MetricsWarmupPeriod',100) specifies that the joint conditional distribution of the predictor
variables is multinomial, sets the maximum number of classes expected in the response data to 5, and
sets the metrics warm-up period to 100.

Input Arguments

MaxNumClasses — Maximum number of classes
positive integer

Maximum number of classes expected in the response data during incremental learning, specified as
a positive integer.

MaxNumClasses sets the number of class names in the ClassNames property.

If you do not specify MaxNumClasses, you must specify the ClassNames argument.
Example: 'MaxNumClasses',5
Data Types: single | double

ClassNames — All unique class labels
categorical array | character array | string array | logical vector | numeric vector | cell array of
character vectors

All unique class labels expected in the response data during incremental learning, specified as a
categorical, character, or string array; logical or numeric vector; or cell array of character vectors.
ClassNames and the response data must have the same data type. This argument sets the
ClassNames property.

ClassNames specifies the order of any input or output argument dimension that corresponds to the
class order. For example, set 'ClassNames' to specify the order of the dimensions of Cost or the
column order of classification scores returned by predict

If you do not specify ClassNames, you must specify the MaxNumClasses argument. In that case, the
software infers the ClassNames property from the data during incremental learning.
Example: 'ClassNames',["virginica" "setosa" "versicolor"]
Data Types: single | double | logical | string | char | cell | categorical
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Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: 'NumPredictors',4,'Prior',[0.3 0.3 0.4] specifies 4 variables in the predictor
data and the prior class probability distribution of [0.3 0.3 0.4].

Cost — Cost of misclassifying observation
square matrix | structure array

Cost of misclassifying an observation, specified as a value in this table, where c is the number of
classes in the ClassNames property:

Value Description
c-by-c numeric matrix Cost(i,j) is the cost of classifying an

observation into class j when its true class is i,
for classes ClassNames(i) and
ClassNames(j). In other words, the rows
correspond to the true class and the columns
correspond to the predicted class. For example,
Cost = [0 2;1 0] applies double the penalty
for misclassifying ClassNames(1) than for
misclassifying ClassNames(2).

Structure array A structure array having two fields:

• ClassNames containing the class names, the
same value as ClassNames

• ClassificationCosts containing the cost
matrix, as previously described.

If you specify Cost, you must also specify the ClassNames argument. Cost sets the Cost property.

The default is one of the following alternatives:

• An empty array [] when you specify MaxNumClasses
• A c-by-c matrix when you specify ClassNames, where Cost(i,j) = 1 for all i ≠ j, and

Cost(i,j) = 0 for all i = j

Example: 'Cost',struct('ClassNames',{'b','g'},'ClassificationCosts',[0 2; 1 0])
Data Types: single | double | struct

Metrics — Model performance metrics to track during incremental learning
"mincost" (default) | "classiferror" | string vector | function handle | cell vector | structure
array | "binodeviance" | "exponential" | "hinge" | "logit" | "quadratic"

Model performance metrics to track during incremental learning, in addition to minimal expected
misclassification cost, specified as a built-in loss function name, string vector of names, function
handle (for example, @metricName), structure array of function handles, or cell vector of names,
function handles, or structure arrays.
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When Mdl is warm (see IsWarm), updateMetrics and updateMetricsAndFit track performance
metrics in the Metrics property of Mdl.

The following table lists the built-in loss function names. You can specify more than one by using a
string vector.

Name Description
"binodeviance" Binomial deviance
"classiferror" Misclassification error rate
"exponential" Exponential
"hinge" Hinge
"logit" Logistic
"mincost" Minimal expected misclassification cost (for

classification scores that are posterior
probabilities).
incrementalClassificationNaiveBayes
always tracks this metric.

"quadratic" Quadratic

For more details on the built-in loss functions, see loss.
Example: 'Metrics',["classiferror" "logit"]

To specify a custom function that returns a performance metric, use function handle notation. The
function must have this form.

metric = customMetric(C,S,Cost)

• The output argument metric is an n-by-1 numeric vector, where each element is the loss of the
corresponding observation in the data processed by the incremental learning functions during a
learning cycle.

• You specify the function name (here, customMetric).
• C is an n-by-K logical matrix with rows indicating the class to which the corresponding observation

belongs, where K is the number of classes. The column order corresponds to the class order in the
ClassNames property. Create C by setting C(p,q) = 1, if observation p is in class q, for each
observation in the specified data. Set the other element in row p to 0.

• S is an n-by-K numeric matrix of predicted classification scores. S is similar to the Posterior
output of predict, where rows correspond to observations in the data and the column order
corresponds to the class order in the ClassNames property. S(p,q) is the classification score of
observation p being classified in class q.

• Cost is a K-by-K numeric matrix of misclassification costs. See the 'Cost' name-value argument.

To specify multiple custom metrics and assign a custom name to each, use a structure array. To
specify a combination of built-in and custom metrics, use a cell vector.
Example: 'Metrics',struct('Metric1',@customMetric1,'Metric2',@customMetric2)
Example: 'Metrics',{@customMetric1 @customMetric2 'logit'
struct('Metric3',@customMetric3)}

updateMetrics and updateMetricsAndFit store specified metrics in a table in the Metrics
property. The data type of Metrics determines the row names of the table.
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'Metrics' Value
Data Type

Description of Metrics Property Row
Name

Example

String or character
vector

Name of corresponding built-in metric Row name for "classiferror" is
"ClassificationError"

Structure array Field name Row name for
struct('Metric1',@customMetr
ic1) is "Metric1"

Function handle to
function stored in
a program file

Name of function Row name for @customMetric is
"customMetric"

Anonymous
function

CustomMetric_j, where j is metric j in
Metrics

Row name for
@(C,S,Cost)customMetric(C,S,
Cost)... is CustomMetric_1

For more details on performance metrics options, see “Performance Metrics” on page 35-3475.
Data Types: char | string | struct | cell | function_handle

Properties
You can set most properties by using name-value pair argument syntax only when you call
incrementalClassificationNaiveBayes directly. You can set some properties when you call
incrementalLearner to convert a traditionally trained model. You cannot set the properties
DistributionParameters, IsWarm, and NumTrainingObservations.

Classification Model Parameters

CategoricalPredictors — Categorical predictors list
vector of positive integers | logical vector | "all"

This property is read-only.

Categorical predictors list, specified as one of the values in this table.

Value Description
Vector of positive integers Each entry in the vector is an index value

corresponding to the column of the predictor data
that contains a categorical variable. The index
values are between 1 and NumPredictors.

Logical vector A true entry means that the corresponding
column of predictor data is a categorical variable.
The length of the vector is NumPredictors.

"all" All predictors are categorical.

For the identified categorical predictors, incrementalClassificationNaiveBayes uses
multivariate multinomial distributions. For more details, see DistributionNames.

By default, if you specify the DistributionNames option, all predictor variables corresponding to
'mvmn' are categorical. Otherwise, none of the predictor variables are categorical.
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Example: 'CategoricalPredictors',[1 2 4] and 'CategoricalPredictors',[true true
false true] specify that the first, second, and fourth of four predictor variables are categorical.
Data Types: single | double | logical

CategoricalLevels — Levels of multivariate multinomial predictor variables
cell vector

Levels of multivariate multinomial predictor variables, specified as a cell vector. The length of
CategoricalLevels is equal to NumPredictors.

Incremental fitting functions fit and updateMetricsAndFit populate cells with the learned
numeric categorical levels of each categorical predictor variable, while cells corresponding to other
predictor variables contain an empty array []. Specifically, if predictor j is multivariate multinomial,
CategoricalLevels{j} is a list of all distinct values of predictor j experienced during incremental
fitting. For more details, see the DistributionNames property.

Note Unlike fitcnb, incremental fitting functions order the levels of a predictor as the functions
experience them during training. For example, suppose predictor j is categorical with multivariate
multinomial distribution. The order of the levels in CategoricalLevels{j} and, consequently, the
order of the level probabilities in each cell of DistributionParameters{:,j} returned by
incremental fitting functions can differ from the order returned by fitcnb for the same training data
set.

Cost — Cost of misclassifying observation
square numeric matrix | empty array []

This property is read-only.

Cost of misclassifying an observation, specified as an array.

If you specify the 'Cost' name-value argument, its value sets Cost. If you specify a structure array,
Cost is the value of the ClassificationCosts field.

If you convert a traditionally trained model to create Mdl, Cost is the Cost property of the
traditionally trained model.
Data Types: single | double

ClassNames — All unique class labels
categorical array | character array | string array | logical vector | numeric vector | cell array of
character vectors

This property is read-only.

All unique class labels expected in the response data during incremental learning, specified as a
categorical or character array, a logical or numeric vector, or a cell array of character vectors.

You can set ClassNames in one of three ways:

• If you specify the MaxNumClasses argument, the software infers the ClassNames property
during incremental learning.
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• If you specify the ClassNames argument, incrementalClassificationNaiveBayes stores
your specification in the ClassNames property. (The software treats string arrays as cell arrays of
character vectors.)

• If you convert a traditionally trained model to create Mdl, the ClassNames property is specified
by the corresponding property of the traditionally trained model.

Data Types: single | double | logical | char | string | cell | categorical

NumPredictors — Number of predictor variables
nonnegative numeric scalar

This property is read-only.

Number of predictor variables, specified as a nonnegative numeric scalar.

The default NumPredictors value depends on how you create the model:

• If you convert a traditionally trained model to create Mdl, NumPredictors is specified by the
corresponding property of the traditionally trained model.

• If you create Mdl by calling incrementalClassificationNaiveBayes directly, you can specify
NumPredictors by using name-value argument syntax. If you do not specify the value, then the
default value is 0, and incremental fitting functions infer NumPredictors from the predictor data
during training.

Data Types: double

NumTrainingObservations — Number of observations fit to incremental model
0 (default) | nonnegative numeric scalar

This property is read-only.

Number of observations fit to the incremental model Mdl, specified as a nonnegative numeric scalar.
NumTrainingObservations increases when you pass Mdl and training data to fit or
updateMetricsAndFit.

Note If you convert a traditionally trained model to create Mdl,
incrementalClassificationNaiveBayes does not add the number of observations fit to the
traditionally trained model to NumTrainingObservations.

Data Types: double

Prior — Prior class probabilities
numeric vector | 'empirical' | 'uniform'

This property is read-only.

Prior class probabilities, specified as 'empirical', 'uniform', or a numeric vector.
incrementalClassificationNaiveBayes stores the Prior value as a numeric vector.
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Value Description
'empirical' Incremental learning functions infer prior class

probabilities from the observed class relative
frequencies in the response data during
incremental training.

'uniform' For each class, the prior probability is 1/K, where
K is the number of classes.

numeric vector Custom, normalized prior probabilities. The order
of the elements of Prior corresponds to the
elements of the ClassNames property.

The default Prior value depends on how you create the model:

• If you convert a traditionally trained model to create Mdl, Prior is specified by the corresponding
property of the traditionally trained model.

• Otherwise, the default value of Prior is 'empirical'.

Data Types: single | double | char | string

ScoreTransform — Score transformation function
'none' (default) | string scalar | character vector | function handle

This property is read-only.

Score transformation function describing how incremental learning functions transform raw response
values, specified as a character vector, string scalar, or function handle.
incrementalClassificationNaiveBayes stores the specified value as a character vector or
function handle.

This table describes the available built-in functions for score transformation.

Value Description
"doublelogit" 1/(1 + e–2x)
"invlogit" log(x / (1 – x))
"ismax" Sets the score for the class with the largest score to 1,

and sets the scores for all other classes to 0
"logit" 1/(1 + e–x)
"none" or "identity" x (no transformation)
"sign" –1 for x < 0

0 for x = 0
1 for x > 0

"symmetric" 2x – 1
"symmetricismax" Sets the score for the class with the largest score to 1,

and sets the scores for all other classes to –1
"symmetriclogit" 2/(1 + e–x) – 1

For a MATLAB function or a function that you define, enter its function handle; for example,
@function, where:
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• function accepts an n-by-K matrix (the original scores) and returns a matrix of the same size
(the transformed scores).

• n is the number of observations, and row j of the matrix contains the class scores of observation j.
• K is the number of classes, and column k is class ClassNames(k).

The default ScoreTransform value depends on how you create the model:

• If you convert a traditionally trained model to create Mdl, ScoreTransform is specified by the
corresponding property of the traditionally trained model.

• The default 'none' specifies returning posterior class probabilities.

Data Types: char | function_handle | string

Training Parameters

DistributionNames — Predictor distributions
"mn" | "mvmn" | "normal" | string vector | cell vector of character vectors

Predictor distributions P(x|ck), where ck is class ClassNames(k), specified as a character vector or
string scalar, or a 1-by-NumPredictors string vector or cell vector of character vectors with values
from the table.

Value Description
"mn" Multinomial distribution. If you specify "mn",

then all features are components of a multinomial
distribution (for example, a bag-of-tokens on page
35-3474 model). Therefore, you cannot include
"mn" as an element of a string array or a cell
array of character vectors. For details, see
“Estimated Probability for Multinomial
Distribution” on page 35-3476.

"mvmn" Multivariate multinomial distribution. For details,
see “Estimated Probability for Multivariate
Multinomial Distribution” on page 35-3477.

"normal" Normal distribution. For details, see “Normal
Distribution Estimators” on page 35-3476

If you specify a character vector or string scalar, then the software models all the features using that
distribution. If you specify a 1-by-NumPredictors string vector or cell vector of character vectors,
the software models feature j using the distribution in element j of the vector.

By default, the software sets all predictors specified as categorical predictors (see the
CategoricalPredictors property) to 'mvmn'. Otherwise, the default distribution is 'normal'.

incrementalClassificationNaiveBayes stores the value as a character vector or cell vector of
character vectors.
Example: 'DistributionNames',"mn" specifies that the joint conditional distribution of all
predictor variables is multinomial.
Example: 'DistributionNames',["normal" "mvmn" "normal"] specifies that the first and
third predictor variables are normally distributed and the second variable is categorical with a
multivariate multinomial distribution.
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Data Types: char | string | cell

DistributionParameters — Distribution parameter estimates
cell array

This property is read-only.

Distribution parameter estimates, specified as a cell array. DistributionParameters is a K-by-
NumPredictors cell array, where K is the number of classes and cell (k,j) contains the distribution
parameter estimates for instances of predictor j in class k. The order of the rows corresponds to the
order of the classes in the property ClassNames, and the order of the columns corresponds to the
order of the predictors in the predictor data.

If class k has no observations for predictor j, then DistributionParameters{k,j} is empty ([]).

The elements of DistributionParameters depend on the distributions of the predictors. This table
describes the values in DistributionParameters{k,j}.

Distribution of
Predictor j

Value of Cell Array for Predictor j and Class k

'mn' A scalar representing the probability that token j appears in class k. For
details, see “Estimated Probability for Multinomial Distribution” on page
35-3476.

'mvmn' A numeric vector containing the probabilities for each possible level of
predictor j in class k. The software orders the probabilities by the sorted
order of all unique levels of predictor j (stored in the property
CategoricalLevels). For more details, see “Estimated Probability for
Multivariate Multinomial Distribution” on page 35-3477.

'normal' A 2-by-1 numeric vector. The first element is the weighted sample mean
and the second element is the weighted sample standard deviation. For
more details, see “Normal Distribution Estimators” on page 35-3476.

Note Unlike fitcnb, incremental fitting functions order the levels of a predictor as the functions
experience them during training. For example, suppose predictor j is categorical with multivariate
multinomial distribution. The order of the levels in CategoricalLevels{j} and, consequently, the
order of the level probabilities in each cell of DistributionParameters{:,j} returned by
incremental fitting functions can differ from the order returned by fitcnb for the same training data
set.

Data Types: cell

Performance Metrics Parameters

IsWarm — Flag indicating whether model tracks performance metrics
false or 0 | true or 1

Flag indicating whether the incremental model tracks performance metrics, specified as logical 0
(false) or 1 (true).

The incremental model Mdl is warm (IsWarm becomes true) when incremental fitting functions
perform both of these actions:
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• Fit the incremental model to MetricsWarmupPeriod observations.
• Process MaxNumClasses classes or all class names specified by the ClassNames name-value

argument.

Value Description
true or 1 The incremental model Mdl is warm.

Consequently, updateMetrics and
updateMetricsAndFit track performance
metrics in the Metrics property of Mdl.

false or 0 updateMetrics and updateMetricsAndFit do
not track performance metrics.

Data Types: logical

Metrics — Model performance metrics
table

This property is read-only.

Model performance metrics updated during incremental learning by updateMetrics and
updateMetricsAndFit, specified as a table with two columns and m rows, where m is the number
of metrics specified by the Metrics name-value argument.

The columns of Metrics are labeled Cumulative and Window.

• Cumulative: Element j is the model performance, as measured by metric j, from the time the
model became warm (IsWarm is 1).

• Window: Element j is the model performance, as measured by metric j, evaluated over all
observations within the window specified by the MetricsWindowSize property. The software
updates Window after it processes MetricsWindowSize observations.

Rows are labeled by the specified metrics. For details, see the Metrics name-value argument of
incrementalLearner or incrementalClassificationNaiveBayes.
Data Types: table

MetricsWarmupPeriod — Number of observations fit before tracking performance metrics
nonnegative integer

This property is read-only.

Number of observations the incremental model must be fit to before it tracks performance metrics in
its Metrics property, specified as a nonnegative integer.

The default MetricsWarmupPeriod value depends on how you create the model:

• If you convert a traditionally trained model to create Mdl, the MetricsWarmupPeriod name-
value argument of the incrementalLearner function sets this property. The default value of the
argument is 0.

• Otherwise, the default value is 1000.

For more details, see “Performance Metrics” on page 35-3475.
Data Types: single | double
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MetricsWindowSize — Number of observations to use to compute window performance
metrics
positive integer

This property is read-only.

Number of observations to use to compute window performance metrics, specified as a positive
integer.

The default MetricsWindowSize value depends on how you create the model:

• If you convert a traditionally trained model to create Mdl, the MetricsWindowSize name-value
argument of the incrementalLearner function sets this property. The default value of the
argument is 200.

• Otherwise, the default value is 200.

For more details on performance metrics options, see “Performance Metrics” on page 35-3475.
Data Types: single | double

Object Functions
fit Train naive Bayes classification model for incremental learning
updateMetricsAndFit Update performance metrics in naive Bayes incremental learning

classification model given new data and train model
updateMetrics Update performance metrics in naive Bayes incremental learning

classification model given new data
logp Log unconditional probability density of naive Bayes classification model for

incremental learning
loss Loss of naive Bayes incremental learning classification model on batch of data
predict Predict responses for new observations from naive Bayes incremental

learning classification model
perObservationLoss Per observation classification error of model for incremental learning
reset Reset incremental classification model

Examples

Create Incremental Learner with Little Prior Information

To create a naive Bayes classification model for incremental learning, you must specify the maximum
number of classes that you expect the model to process ('MaxNumClasses' name-value argument).
As you fit the model to incoming batches of data by using an incremental fitting function, the model
collects new classes in its ClassNames property. If the specified maximum number of classes is
inaccurate, one of the following occurs:

• Before an incremental fitting function processes the expected maximum number of classes, the
model is cold. Consequently, the updateMetrics and updateMetricsAndFit functions do not
measure performance metrics.

• If the number of classes exceeds the maximum expected, the incremental fitting function issues an
error.

This example shows how to create a naive Bayes classification model for incremental learning when
the only information you specify is the expected maximum number of classes in the data. Also, the
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example illustrates the consequences when incremental fitting functions process all expected classes
early and late in the sample.

For this example, consider training a device to predict whether a subject is sitting, standing, walking,
running, or dancing based on biometric data measured on the subject. Therefore, the device has a
maximum of 5 classes from which to choose.

Process Expected Maximum Number of Classes Early in Sample

Create an incremental naive Bayes model for multiclass learning. Specify a maximum of 5 classes in
the data.

MdlEarly = incrementalClassificationNaiveBayes('MaxNumClasses',5)

MdlEarly = 
  incrementalClassificationNaiveBayes

                    IsWarm: 0
                   Metrics: [1x2 table]
                ClassNames: [1x0 double]
            ScoreTransform: 'none'
         DistributionNames: 'normal'
    DistributionParameters: {}

  Properties, Methods

MdlEarly is an incrementalClassificationNaiveBayes model object. All its properties are
read-only.

MdlEarly must be fit to data before you can use it to perform any other operations.

Load the human activity data set. Randomly shuffle the data.

load humanactivity
n = numel(actid);
rng(1); % For reproducibility
idx = randsample(n,n);
X = feat(idx,:);
Y = actid(idx);

For details on the data set, enter Description at the command line.

Fit the incremental model to the training data by using the updateMetricsAndFit function.
Simulate a data stream by processing chunks of 50 observations at a time. At each iteration:

• Process 50 observations.
• Overwrite the previous incremental model with a new one fitted to the incoming observations.
• Store the mean of the first predictor in the first class μ11, the cumulative metrics, and the window

metrics to see how they evolve during incremental learning.

% Preallocation
numObsPerChunk = 50;
nchunk = floor(n/numObsPerChunk);
mc = array2table(zeros(nchunk,2),'VariableNames',["Cumulative" "Window"]);
mu1 = zeros(nchunk,1);    
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% Incremental learning
for j = 1:nchunk
    ibegin = min(n,numObsPerChunk*(j-1) + 1);
    iend = min(n,numObsPerChunk*j);
    idx = ibegin:iend;    
    MdlEarly = updateMetricsAndFit(MdlEarly,X(idx,:),Y(idx));
    mc{j,:} = MdlEarly.Metrics{"MinimalCost",:};
    mu1(j + 1) = MdlEarly.DistributionParameters{1,1}(1);
end

MdlEarly is an incrementalClassificationNaiveBayes model object trained on all the data in
the stream. During incremental learning and after the model is warmed up, updateMetricsAndFit
checks the performance of the model on the incoming observations, and then fits the model to those
observations.

To see how the performance metrics and μ11 evolve during training, plot them on separate tiles.

t = tiledlayout(2,1);
nexttile
plot(mu1)
ylabel('\mu_{11}')
xlim([0 nchunk])
nexttile
h = plot(mc.Variables);
xlim([0 nchunk])
ylabel('Minimal Cost')
xline(MdlEarly.MetricsWarmupPeriod/numObsPerChunk,'r-.')
legend(h,mc.Properties.VariableNames)
xlabel(t,'Iteration')
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The plots indicate that updateMetricsAndFit performs the following actions:

• Fit μ11 during all incremental learning iterations.
• Compute the performance metrics after the metrics warm-up period (red vertical line) only.
• Compute the cumulative metrics during each iteration.
• Compute the window metrics after processing 200 observations (4 iterations).

Process Expected Maximum Number of Classes Late in Sample

Create a different naive Bayes model for incremental learning for the objective.

MdlLate = incrementalClassificationNaiveBayes('MaxNumClasses',5)

MdlLate = 
  incrementalClassificationNaiveBayes

                    IsWarm: 0
                   Metrics: [1x2 table]
                ClassNames: [1x0 double]
            ScoreTransform: 'none'
         DistributionNames: 'normal'
    DistributionParameters: {}

  Properties, Methods
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Move all observations labeled with class 5 to the end of the sample.

idx5 = Y == 5;
Xnew = [X(~idx5,:); X(idx5,:)];
Ynew = [Y(~idx5) ;Y(idx5)];

Fit the incremental model and plot the results.

mcnew = array2table(zeros(nchunk,2),'VariableNames',["Cumulative" "Window"]);
mu1new = zeros(nchunk,1);    

for j = 1:nchunk
    ibegin = min(n,numObsPerChunk*(j-1) + 1);
    iend   = min(n,numObsPerChunk*j);
    idx = ibegin:iend;    
    MdlLate = updateMetricsAndFit(MdlLate,Xnew(idx,:),Ynew(idx));
    mcnew{j,:} = MdlLate.Metrics{"MinimalCost",:};
    mu1new(j + 1) = MdlLate.DistributionParameters{1,1}(1);
end

t = tiledlayout(2,1);
nexttile
plot(mu1new)
ylabel('\mu_{11}')
xlim([0 nchunk])
nexttile
h = plot(mcnew.Variables);
xlim([0 nchunk]);
ylabel('Minimal Cost')
xline(MdlLate.MetricsWarmupPeriod/numObsPerChunk,'r-.')
xline(sum(~idx5)/numObsPerChunk,'g-.')
legend(h,mcnew.Properties.VariableNames,'Location','best')
xlabel(t,'Iteration')
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The updateMetricsAndFit function trains the model throughout incremental learning, but the
function starts tracking performance metrics only after the model is fit to all expected number of
classes (the green vertical line in the bottom tile).

Specify All Class Names

Create an incremental naive Bayes model when you know all the class names in the data.

Consider training a device to predict whether a subject is sitting, standing, walking, running, or
dancing based on biometric data measured on the subject. The class names map 1 through 5 to an
activity.

Create an incremental naive Bayes model for multiclass learning. Specify the class names.

classnames = 1:5;
Mdl = incrementalClassificationNaiveBayes('ClassNames',classnames)

Mdl = 
  incrementalClassificationNaiveBayes

                    IsWarm: 0
                   Metrics: [1x2 table]
                ClassNames: [1 2 3 4 5]
            ScoreTransform: 'none'
         DistributionNames: 'normal'

 incrementalClassificationNaiveBayes

35-3467



    DistributionParameters: {5x0 cell}

  Properties, Methods

Mdl is an incrementalClassificationNaiveBayes model object. All its properties are read-only.

Mdl must be fit to data before you can use it to perform any other operations.

Load the human activity data set. Randomly shuffle the data.

load humanactivity
n = numel(actid);
rng(1); % For reproducibility
idx = randsample(n,n);
X = feat(idx,:);
Y = actid(idx);

For details on the data set, enter Description at the command line.

Fit the incremental model to the training data by using the updateMetricsAndFit function.
Simulate a data stream by processing chunks of 50 observations at a time. At each iteration:

• Process 50 observations.
• Overwrite the previous incremental model with a new one fitted to the incoming observations.

% Preallocation
numObsPerChunk = 50;
nchunk = floor(n/numObsPerChunk);

% Incremental learning
for j = 1:nchunk
    ibegin = min(n,numObsPerChunk*(j-1) + 1);
    iend   = min(n,numObsPerChunk*j);
    idx = ibegin:iend;    
    Mdl = updateMetricsAndFit(Mdl,X(idx,:),Y(idx));
end

Configure Incremental Learning Options

In addition to specifying the maximum number of class names, prepare an incremental naive Bayes
learner by specifying a metrics warm-up period, during which the updateMetricsAndFit function
fits only the model. Specify a metrics window size of 500 observations.

Load the human activity data set. Randomly shuffle the data.

load humanactivity
n = numel(actid);
rng(1); % For reproducibility
idx = randsample(n,n);
X = feat(idx,:);
Y = actid(idx);
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The class names map 1 through 5 to an activity—sitting, standing, walking, running, or dancing,
respectively—based on biometric data measured on the subject. For details on the data set, enter
Description at the command line.

Create an incremental naive Bayes model for multiclass learning. Configure the model as follows:

• Specify a metrics warm-up period of 5000 observations.
• Specify a metrics window size of 500 observations.
• Double the penalty to the classifier when it mistakenly classifies class 2.
• Track the classification error and minimal cost to measure the performance of the model. You do

not have to specify 'mincost' for Metrics because
incrementalClassificationNaiveBayes always tracks this metric.

C = ones(5) - eye(5);
C(2,[1 3 4 5]) = 2;
Mdl = incrementalClassificationNaiveBayes('ClassNames',1:5, ...
    'MetricsWarmupPeriod',5000,'MetricsWindowSize',500, ...
    'Cost',C,'Metrics','classiferror')

Mdl = 
  incrementalClassificationNaiveBayes

                    IsWarm: 0
                   Metrics: [2x2 table]
                ClassNames: [1 2 3 4 5]
            ScoreTransform: 'none'
         DistributionNames: 'normal'
    DistributionParameters: {5x0 cell}

  Properties, Methods

Mdl is an incrementalClassificationNaiveBayes model object configured for incremental
learning.

Fit the incremental model to the rest of the data by using the updateMetricsAndFit function. At
each iteration:

• Simulate a data stream by processing a chunk of 50 observations.
• Overwrite the previous incremental model with a new one fitted to the incoming observations.
• Store the standard deviation of the first predictor variable in the first class σ11, the cumulative

metrics, and the window metrics to see how they evolve during incremental learning.

% Preallocation
numObsPerChunk = 50;
nchunk = floor(n/numObsPerChunk);
ce = array2table(zeros(nchunk,2),'VariableNames',["Cumulative" "Window"]);
mc = array2table(zeros(nchunk,2),'VariableNames',["Cumulative" "Window"]);
sigma11 = zeros(nchunk,1);    

% Incremental fitting
for j = 1:nchunk
    ibegin = min(n,numObsPerChunk*(j-1) + 1);
    iend   = min(n,numObsPerChunk*j);
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    idx = ibegin:iend;    
    Mdl = updateMetricsAndFit(Mdl,X(idx,:),Y(idx));
    ce{j,:} = Mdl.Metrics{"ClassificationError",:};
    mc{j,:} = Mdl.Metrics{"MinimalCost",:};
    sigma11(j + 1) = Mdl.DistributionParameters{1,1}(2);
end

Mdl is an incrementalClassificationNaiveBayes model object trained on all the data in the
stream. During incremental learning and after the model is warmed up, updateMetricsAndFit
checks the performance of the model on the incoming observations, and then fits the model to those
observations.

To see how the performance metrics and σ11 evolve during training, plot them on separate tiles.

tiledlayout(2,2)
nexttile
plot(sigma11)
ylabel('\sigma_{11}')
xlim([0 nchunk]);
xline(Mdl.MetricsWarmupPeriod/numObsPerChunk,'r-.')
xlabel('Iteration')
nexttile
h = plot(ce.Variables);
xlim([0 nchunk])
ylabel('Classification Error')
xline(Mdl.MetricsWarmupPeriod/numObsPerChunk,'r-.')
legend(h,ce.Properties.VariableNames)
xlabel('Iteration')
nexttile
h = plot(mc.Variables);
xlim([0 nchunk]);
ylabel('Minimal Cost')
xline(Mdl.MetricsWarmupPeriod/numObsPerChunk,'r-.')
legend(h,mc.Properties.VariableNames)
xlabel('Iteration')

35 Functions

35-3470



The plots indicate that updateMetricsAndFit performs the following actions:

• Fit σ11 during all incremental learning iterations.
• Compute the performance metrics after the metrics warm-up period (red vertical line) only.
• Compute the cumulative metrics during each iteration.
• Compute the window metrics after processing 500 observations (10 iterations).

Convert Traditionally Trained Model to Incremental Learner

Train a naive Bayes model for multiclass classification by using fitcnb. Then, convert the model to
an incremental learner, track its performance, and fit the model to streaming data. Carry over
training options from traditional to incremental learning.

Load and Preprocess Data

Load the human activity data set. Randomly shuffle the data.

load humanactivity
rng(1) % For reproducibility
n = numel(actid);
idx = randsample(n,n);
X = feat(idx,:);
Y = actid(idx);
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For details on the data set, enter Description at the command line.

Suppose that the data collected when the subject was idle (Y <= 2) has double the quality than when
the subject was moving. Create a weight variable that attributes 2 to observations collected from an
idle subject, and 1 to a moving subject.

W = ones(n,1) + (Y <= 2);

Train Naive Bayes Model

Fit a naive Bayes model for multiclass classification to a random sample of half the data.

idxtt = randsample([true false],n,true);
TTMdl = fitcnb(X(idxtt,:),Y(idxtt),'Weights',W(idxtt))

TTMdl = 
  ClassificationNaiveBayes
              ResponseName: 'Y'
     CategoricalPredictors: []
                ClassNames: [1 2 3 4 5]
            ScoreTransform: 'none'
           NumObservations: 12053
         DistributionNames: {1x60 cell}
    DistributionParameters: {5x60 cell}

  Properties, Methods

TTMdl is a ClassificationNaiveBayes model object representing a traditionally trained naive
Bayes model.

Convert Trained Model

Convert the traditionally trained naive Bayes model to a naive Bayes classification model for
incremental learning.

IncrementalMdl = incrementalLearner(TTMdl)

IncrementalMdl = 
  incrementalClassificationNaiveBayes

                    IsWarm: 1
                   Metrics: [1x2 table]
                ClassNames: [1 2 3 4 5]
            ScoreTransform: 'none'
         DistributionNames: {1x60 cell}
    DistributionParameters: {5x60 cell}

  Properties, Methods

Separately Track Performance Metrics and Fit Model

Perform incremental learning on the rest of the data by using the updateMetrics and fit
functions. Simulate a data stream by processing 50 observations at a time. At each iteration:
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1 Call updateMetrics to update the cumulative and window classification error of the model
given the incoming chunk of observations. Overwrite the previous incremental model to update
the losses in the Metrics property. Note that the function does not fit the model to the chunk of
data—the chunk is "new" data for the model. Specify the observation weights.

2 Call fit to fit the model to the incoming chunk of observations. Overwrite the previous
incremental model to update the model parameters. Specify the observation weights.

3 Store the minimal cost and mean of the first predictor variable of the first class μ11.

% Preallocation
idxil = ~idxtt;
nil = sum(idxil);
numObsPerChunk = 50;
nchunk = floor(nil/numObsPerChunk);
mc = array2table(zeros(nchunk,2),'VariableNames',["Cumulative" "Window"]);
mu11 = [IncrementalMdl.DistributionParameters{1,1}(1); zeros(nchunk,1)];
Xil = X(idxil,:);
Yil = Y(idxil);
Wil = W(idxil);

% Incremental fitting
for j = 1:nchunk
    ibegin = min(nil,numObsPerChunk*(j-1) + 1);
    iend   = min(nil,numObsPerChunk*j);
    idx = ibegin:iend;
    IncrementalMdl = updateMetrics(IncrementalMdl,Xil(idx,:),Yil(idx), ...
        'Weights',Wil(idx));
    mc{j,:} = IncrementalMdl.Metrics{"MinimalCost",:};
    IncrementalMdl = fit(IncrementalMdl,Xil(idx,:),Yil(idx),'Weights',Wil(idx));
    mu11(j+1) = IncrementalMdl.DistributionParameters{1,1}(1);
end

IncrementalMdl is an incrementalClassificationNaiveBayes model object trained on all the
data in the stream.

Alternatively, you can use updateMetricsAndFit to update the performance metrics of the model
given a new chunk of data, and then fit the model to the data.

Plot a trace plot of the performance metrics and μ11.

t = tiledlayout(2,1);
nexttile
h = plot(mc.Variables);
xlim([0 nchunk])
ylabel('Minimal Cost')
legend(h,mc.Properties.VariableNames)
nexttile
plot(mu11)
ylabel('\mu_{11}')
xlim([0 nchunk])
xlabel(t,'Iteration')
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The cumulative loss levels quickly and is stable, whereas the window loss jumps throughout the
training.

μ11 changes abruptly at first, then gradually levels off as fit processes more chunks.

More About
Bag-of-Tokens Model

In the bag-of-tokens model, the value of predictor j is the nonnegative number of occurrences of
token j in the observation. The number of categories (bins) in the multinomial model is the number of
distinct tokens (number of predictors).

Incremental Learning

Incremental learning, or online learning, is a branch of machine learning concerned with processing
incoming data from a data stream, possibly given little to no knowledge of the distribution of the
predictor variables, aspects of the prediction or objective function (including tuning parameter
values), or whether the observations are labeled. Incremental learning differs from traditional
machine learning, where enough labeled data is available to fit to a model, perform cross-validation
to tune hyperparameters, and infer the predictor distribution.

Given incoming observations, an incremental learning model processes data in any of the following
ways, but usually in this order:
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• Predict labels.
• Measure the predictive performance.
• Check for structural breaks or drift in the model.
• Fit the model to the incoming observations.

For more details, see “Incremental Learning Overview” on page 28-2.

Algorithms
Performance Metrics

• The updateMetrics and updateMetricsAndFit functions track model performance metrics
(Metrics) from new data only when the incremental model is warm (IsWarm property is true).

• If you create an incremental model by using incrementalLearner and
MetricsWarmupPeriod is 0 (default for incrementalLearner), the model is warm at
creation.

• Otherwise, an incremental model becomes warm after fit or updateMetricsAndFit
performs both of these actions:

• Fit the incremental model to MetricsWarmupPeriod observations, which is the metrics
warm-up period.

• Fit the incremental model to all expected classes (see the MaxNumClasses and
ClassNames arguments of incrementalClassificationNaiveBayes).

• The Metrics property of the incremental model stores two forms of each performance metric as
variables (columns) of a table, Cumulative and Window, with individual metrics in rows. When
the incremental model is warm, updateMetrics and updateMetricsAndFit update the metrics
at the following frequencies:

• Cumulative — The functions compute cumulative metrics since the start of model
performance tracking. The functions update metrics every time you call the functions and base
the calculation on the entire supplied data set.

• Window — The functions compute metrics based on all observations within a window
determined by the MetricsWindowSize name-value argument. MetricsWindowSize also
determines the frequency at which the software updates Window metrics. For example, if
MetricsWindowSize is 20, the functions compute metrics based on the last 20 observations
in the supplied data (X((end – 20 + 1):end,:) and Y((end – 20 + 1):end)).

Incremental functions that track performance metrics within a window use the following
process:

1 Store a buffer of length MetricsWindowSize for each specified metric, and store a buffer
of observation weights.

2 Populate elements of the metrics buffer with the model performance based on batches of
incoming observations, and store corresponding observation weights in the weights buffer.

3 When the buffer is full, overwrite Mdl.Metrics.Window with the weighted average
performance in the metrics window. If the buffer overfills when the function processes a
batch of observations, the latest incoming MetricsWindowSize observations enter the
buffer, and the earliest observations are removed from the buffer. For example, suppose
MetricsWindowSize is 20, the metrics buffer has 10 values from a previously processed
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batch, and 15 values are incoming. To compose the length 20 window, the functions use
the measurements from the 15 incoming observations and the latest 5 measurements from
the previous batch.

• The software omits an observation with a NaN score when computing the Cumulative and
Window performance metric values.

Normal Distribution Estimators

If predictor variable j has a conditional normal distribution (see the DistributionNames property),
the software fits the distribution to the data by computing the class-specific weighted mean and the
biased (maximum likelihood) estimate of the weighted standard deviation. For each class k:

• The weighted mean of predictor j is

x j k =
∑

i: yi = k
wixi j

∑
i: yi = k

wi
,

where wi is the weight for observation i. The software normalizes weights within a class such that
they sum to the prior probability for that class.

• The unbiased estimator of the weighted standard deviation of predictor j is

s j k =
∑

i: yi = k
wi xi j− x j k

2

∑
i: yi = k

wi

1/2

.

Estimated Probability for Multinomial Distribution

If all predictor variables compose a conditional multinomial distribution (see the
DistributionNames property), the software fits the distribution using the “Bag-of-Tokens Model”
on page 35-3474. The software stores the probability that token j appears in class k in the property
DistributionParameters{k,j}. With additive smoothing [1], the estimated probability is

P(token  j class k) =
1 + c j k
P + ck

,

where:

•

c j k = nk

∑
i: yi = k

xi jwi

∑
i: yi = k

wi
, which is the weighted number of occurrences of token j in class k.

• nk is the number of observations in class k.
• wi is the weight for observation i. The software normalizes weights within a class so that they sum

to the prior probability for that class.
•

ck = ∑
j = 1

P
c j k, which is the total weighted number of occurrences of all tokens in class k.
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Estimated Probability for Multivariate Multinomial Distribution

If predictor variable j has a conditional multivariate multinomial distribution (see the
DistributionNames property), the software follows this procedure:

1 The software collects a list of the unique levels, stores the sorted list in CategoricalLevels,
and considers each level a bin. Each combination of predictor and class is a separate,
independent multinomial random variable.

2 For each class k, the software counts instances of each categorical level using the list stored in
CategoricalLevels{j}.

3 The software stores the probability that predictor j in class k has level L in the property
DistributionParameters{k,j}, for all levels in CategoricalLevels{j}. With additive
smoothing [1], the estimated probability is

P predictor  j = L class k =
1 + m j k(L)

m j + mk
,

where:

•

m j k(L) = nk

∑
i: yi = k

I xi j = L wi

∑
i: yi = k

wi
, which is the weighted number of observations for which

predictor j equals L in class k.
• nk is the number of observations in class k.
• I xi j = L = 1 if xij = L, and 0 otherwise.
• wi is the weight for observation i. The software normalizes weights within a class so that they

sum to the prior probability for that class.
• mj is the number of distinct levels in predictor j.
• mk is the weighted number of observations in class k.

Version History
Introduced in R2021a

Naive Bayes incremental fitting functions compute biased (maximum likelihood) standard
deviations for conditionally normal predictor variables
Behavior changed in R2021b

Starting in R2021b, naive Bayes incremental fitting functions fit and updateMetricsAndFit
compute biased (maximum likelihood) estimates of the weighted standard deviations for conditionally
normal predictor variables during training. In other words, for each class k, incremental fitting
functions normalize the sum of square weighted deviations of the conditionally normal predictor xj by
the sum of the weights in class k. Before R2021b, naive Bayes incremental fitting functions computed
the unbiased standard deviation, like fitcnb. The currently returned weighted standard deviation
estimates differ from those computed before R2021b by a factor of

1−
∑

i: yi = k
wi2

∑
i: yi = k

wi

2 .
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The factor approaches 1 as the sample size increases.

References
[1] Manning, Christopher D., Prabhakar Raghavan, and Hinrich Schütze. Introduction to Information

Retrieval, NY: Cambridge University Press, 2008.

See Also
Functions
fit | updateMetrics | updateMetricsAndFit | predict | fitcnb | incrementalLearner

Topics
“Incremental Learning Overview” on page 28-2
“Configure Incremental Learning Model” on page 28-9
“Implement Incremental Learning for Classification Using Succinct Workflow” on page 28-22
“Implement Incremental Learning for Classification Using Flexible Workflow” on page 28-29
“Perform Text Classification Incrementally” on page 28-49
“Incremental Learning with Naive Bayes and Heterogeneous Data” on page 28-52
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incrementalDriftAwareLearner
Construct drift-aware model for incremental learning

Description
incrementalDriftAwareLearner creates an incrementalDriftAwareLearner model object,
which incorporates an incremental classification or regression learner and an incremental concept
drift detector to provide a self-adjusting incremental machine learning model.
incrementalDriftAwareLearner supports all classification and regression models for incremental
learning and all concept drift detection methods supported by Statistics and Machine Learning
Toolbox.

Unlike most Statistics and Machine Learning Toolbox model objects,
incrementalDriftAwareLearner can be called directly. After you create an
incrementalDriftAwareLearner object, it is prepared for incremental drift-aware learning on
page 35-7737.

incrementalDriftAwareLearner is best suited for incremental learning that adapts for concept
drift. For a traditional approach to batch drift detection, see detectdrift.

Creation
You can create an incrementalDriftAwareLearner model object in the following ways:

• Initiate an incremental classification or regression learner using any incremental learner. Pass the
incremental learning model as an input in the call to incrementalDriftAwareLearner. For
example,

BaseLearner = incrementalClassificationLinear();
Mdl = incrementalDriftAwareLearner(BaseLearner);

• Initiate an incremental classification or regression learner using any incremental learner. Initiate
an incremental concept drift detector using incrementalConceptDriftDetector. Pass both
the incremental learning model and concept drift detector as inputs in the call to
incrementalDriftAwareLearner. For example,

BaseLearner = incrementalRegressionKernel();
DDM = incrementalConceptDriftDetector("ddm");
Mdl = incrementalDriftAwareLearner(BaseLearner,DriftDetector=DDM);

Syntax
Mdl = incrementalDriftAwareLearner(BaseLearner)
Mdl = incrementalDriftAwareLearner(BaseLearner,Name=Value)

Description

Mdl = incrementalDriftAwareLearner(BaseLearner) returns a drift-aware model Mdl for
incremental learning with default model parameters and default drift detector.
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Mdl = incrementalDriftAwareLearner(BaseLearner,Name=Value) sets additional options
using name-value arguments. For example,
incrementalDriftAwareLearner(BaseLearner,DriftDetector=CDDetector,TrainingPer
iod=1000) specifies the concept drift detector as a predefined CDDetector and sets the training
period to 1000 observations.

Input Arguments

BaseLearner — Underlying incremental classification or regression model
incrementalClassificationKernel object | incrementalClassificationLinear object |
incrementalClassificationECOC object | incrementalClassificationNaiveBayes object |
incrementalRegressionKernel object | incrementalRegressionLinear object

Underlying incremental classification or regression model, specified as one of the following.

Classification Regression
incrementalClassificationKernel incrementalRegressionKernel
incrementalClassificationLinear incrementalRegressionLinear
incrementalClassificationECOC  
incrementalClassificationNaiveBayes  

To learn how to create these learners, refer to the corresponding reference page.

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.
Example: BufferSize=5000,TrainingPeriod=8000,StableCountLimit=6000 specifies the
buffer size as 5000, the training period as 8000, and the limit of consecutive stable states before a
reset as 6000 observations.

BufferSize — Size of buffer to store loss values
7000 (default) | scalar integer

Size of the buffer to store the loss values of BaseLearner for each training observation, specified as
a scalar integer.
Example: BufferSize=5000
Data Types: single | double

DriftDetector — Incremental concept drift detector
HoeffdingDriftDetectionMethod object | DriftDetectionMethod object

Incremental concept drift detector used for monitoring and detecting drift, specified as a
HoeffdingDriftDetectionMethod or DriftDetectionMethod object.

• If BaseLearner is an incremental classification object, then the default detector is
HoeffdingDriftDetectionMethod that uses the moving average method. That is,
incrementalDriftAwareLearner creates the drift detector using
incrementalConceptDriftDetector("hddma").
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• If BaseLearner is an incremental regression object, then the default is
HoeffdingDriftDetectionMethod that uses the moving average method for continuous
variables. That is, incrementalDriftAwareLearner creates the drift detector using
incrementalConceptDriftDetector("hddma",InputType="continuous").

To specify an incremental concept drift detector that uses a different method, see the
incrementalConceptDriftDetector reference page.
Example: DriftDetector=dd

TrainingPeriod — Number of observations used for training
10000 (default) | scalar integer

Number of observations used for training, specified as a scalar integer.

If you specify the TrainingPeriod value as Inf, then the software always trains with incoming
data.

If the TrainingPeriod value is smaller than the BaseLearner.MetricsWarmupPeriod value,
then incrementalDriftAwareLearner sets the TrainingPeriod value as
BaseLearner.MetricsWarmupPeriod.
Example: TrainingPeriod=7000
Data Types: single | double

StableCountLimit — Maximum number of consecutive 'Stable' observations before soft
reset
40000 (default) | scalar integer

Maximum number of consecutive 'Stable' observations the can identify as before a soft reset,
specified as a scalar integer.
Example: StableCountLimit=35000
Data Types: single | double

WarningCountLimit — Maximum number of consecutive 'Warning' observations before
reset
1400 (default) | scalar integer

Maximum number of consecutive 'Warning' observations before a reset, specified as a scalar
integer.
Example: WarningCountLimit=1000
Data Types: single | double

Properties
BaseLearner — Underlying incremental classification or regression model
incrementalClassificationKernel object | incrementalClassificationLinear object |
incrementalClassificationECOC object | incrementalClassificationNaiveBayes object |
incrementalRegressionKernel object | incrementalRegressionLinear object

This property is read-only.
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Underlying incremental classification or regression model, specified as one of the following model
objects.

Classification Regression
incrementalClassificationKernel incrementalRegressionKernel
incrementalClassificationLinear incrementalRegressionLinear
incrementalClassificationECOC  
incrementalClassificationNaiveBayes  

This property is set by the BaseLearner input argument.

Access the properties of BaseLearner using the dot operator, for example,
Mdl.BaseLearner.Solver.

DriftDetector — Underlying incremental concept drift detector
HoeffdingDriftDetectionMethod object | DriftDetectionMethod object

This property is read-only.

Underlying incremental concept drift detector, specified as either a
HoeffdingDriftDetectionMethod or DriftDetectionMethod object.

This property is set by the DriftDetector name-value argument.

Access the properties of DriftDetector using the dot operator, for example,
Mdl.DriftDetector.WarningThreshold.

TrainingPeriod — Number of observations used for training
scalar integer

This property is read-only.

Number of observations used for training before the software starts monitoring for potential drift,
specified as a scalar integer.

This property is set by the TrainingPeriod name-value argument.
Data Types: double

StableCountLimit — Maximum number of consecutive 'Stable' observations before a
soft reset
scalar integer

This property is read-only.

Maximum number of consecutive 'Stable' observations before a soft reset, specified as a scalar
integer.

This property is set by the StableCountLimit name-value argument.
Data Types: double

PreviousDriftStatus — Status of DriftDetector prior to training most recent data
'Stable' | 'Warning' | 'Drift'
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This property is read-only.

Status of DriftDetector prior to training most recent data, specified as 'Stable', 'Warning', or
'Drift'.
Data Types: char

DriftStatus — Current status of DriftDetector
'Stable' | 'Warning' | 'Drift'

This property is read-only.

Current status of DriftDetector after training with the most recent data, specified as 'Stable',
'Warning', or 'Drift'.
Data Types: char

DriftDetected — Flag indicating whether DriftStatus is 'Drift'
false or 0 | true or 1

This property is read-only.

Flag indicating whether DriftStatus is 'Drift', specified as logical 0 (false) or 1 (true).
Data Types: logical

WarningCountLimit — Maximum number of consecutive 'Warning' observations before a
reset
scalar integer

This property is read-only.

Maximum number of consecutive 'Warning' observations before a reset, specified as a scalar
integer.
Data Types: double

WarningDetected — Flag indicating whether DriftStatus is 'Warning'
false or 0 | true or 1

This property is read-only.

Flag indicating whether DriftStatus is 'Warning', specified as logical 0 (false) or 1 (true).
Data Types: logical

IsTraining — Flag indicating whether BaseLearner continues training with incoming data
false or 0 | true or 1

This property is read-only.

Flag indicating whether BaseLearner continues training with incoming data, specified as logical 0
(false) or 1 (true).
Data Types: logical

IsWarm — Flag indicating whether model tracks performance metrics
false or 0 | true or 1
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This property is read-only.

Flag indicating whether the incremental model tracks performance metrics, specified as logical 0
(false) or 1 (true).

incrementalDriftAwareLearner takes this property from Mdl.BaseLearner.

The incremental model Mdl is warm (IsWarm becomes true) after incremental fitting functions fit
(Mdl.BaseLearner.EstimationPeriod + MetricsWarmupPeriod) observations to the
incremental model.

Value Description
true or 1 The incremental model Mdl is warm.

Consequently, updateMetrics and
updateMetricsAndFit track performance
metrics in the Metrics property of Mdl.

false or 0 The incremental model Mdl is not warm.
updateMetrics and updateMetricsAndFit do
not track performance metrics.

Data Types: logical

NumPredictors — Number of predictor variables
nonnegative numeric scalar

This property is read-only.

Number of predictor variables, specified as a nonnegative numeric scalar.

incrementalDriftAwareLearner takes this property from Mdl.BaseLearner. You can specify
the number of predictor variables during the initiation of BaseLearner.
Data Types: double

NumTrainingObservations — Number of observations fit to incremental model
0 (default) | nonnegative numeric scalar

This property is read-only.

Number of observations fit to the incremental model Mdl, specified as a nonnegative numeric scalar.

incrementalDriftAwareLearner pulls this property from Mdl.BaseLearner.

NumTrainingObservations increases when you pass Mdl and training data to fit or
updateMetricsAndFit.

Note If you convert a traditionally trained model to create Mdl.BaseLearner,
incrementalDriftAwareLearner does not add the number of observations fit to the traditionally
trained model to NumTrainingObservations.

Data Types: double
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Metrics — Model performance metrics
table

This property is read-only.

Model performance metrics updated during incremental learning by updateMetrics or
updateMetricsAndFit, specified as a table with two columns and m rows, where m is the number
of metrics specified by the Metrics name-value argument during the initiation of BaseLearner.

incrementalDriftAwareLearner takes this property from Mdl.BaseLearner.

The columns of Metrics are labeled Cumulative and Window.

• Cumulative – Element j is the model performance, as measured by metric j, from the time the
model becomes warm (IsWarm is 1).

• Window – Element j is the model performance, as measured by metric j, evaluated over all
observations within the window specified by the MetricsWindowSize property. The software
updates Window after it processes MetricsWindowSize observations.

Rows are labeled by the specified metrics.
Data Types: table

MetricsWarmupPeriod — Number of observations fit before tracking performance metrics
nonnegative integer

This property is read-only.

Number of observations to which the incremental model must be fit before it tracks performance
metrics in its Metrics property, specified as a nonnegative integer.

incrementalDriftAwareLearner takes this property from Mdl.BaseLearner. You can specify
the metrics warm up period during the initiation of BaseLearner.
Data Types: double

MetricsWindowSize — Number of observations to use to compute window performance
metrics
positive integer

This property is read-only.

Number of observations to use to compute window performance metrics, specified as a positive
integer.

incrementalDriftAwareLearner pulls this property from Mdl.BaseLearner. You can specify the
metrics window size during the initiation of the BaseLearner.
Data Types: double

Object Functions
fit Train drift-aware learner for incremental learning with new data
loss Regression or classification error of incremental drift-aware learner
perObservationLoss Per observation regression or classification error of incremental drift-aware

learner
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predict Predict responses for new observations from incremental drift-aware learning
model

reset Reset incremental drift-aware learner
updateMetrics Update performance metrics in incremental drift-aware learning model given

new data
updateMetricsAndFit Update performance metrics in incremental drift-aware learning model given

new data and train model

Examples

Create Incremental Drift-Aware Learner Without Any Prior Information

Load the human activity dataset. Randomly shuffle the data.

load humanactivity;
n = numel(actid);
rng(1) % For reproducibility
idx = randsample(n,n);

For details on the data set, enter Description at the command line.

Define the predictor and response variables.

X = feat(idx,:);
Y = actid(idx);

Responses can be one of five classes: Sitting, Standing, Walking, Running, or Dancing. Dichotomize
the response by identifying whether the subject is moving (actid > 2).

Y = Y > 2;

Flip labels for the second half of the dataset to simulate drift.

Y(floor(numel(Y)/2):end,:) = ~Y(floor(numel(Y)/2):end,:);

Initiate a default incremental drift-aware model for classification as follows:

1 Create a default incremental linear SVM model for binary classification.
2 Initiate a default incremental drift-aware model using the incremental linear SVM model.

incMdl = incrementalClassificationLinear();
idaMdl = incrementalDriftAwareLearner(incMdl);

idaMdl is an incrementalDriftAwareLearner model. All its properties are read-only.

Preallocate the number of variables in each chunk for creating a stream of data and the variable to
store the classification error.

numObsPerChunk = 50;
nchunk = floor(n/numObsPerChunk);
ce = array2table(zeros(nchunk,2),'VariableNames',["Cumulative" "Window"]);

Preallocate variables for tracking drift status.

status = zeros(nchunk,1);
statusname = strings(nchunk,1);
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Simulate a data stream with incoming chunks of 50 observations each. At each iteration:

1 Call updateMetricsAndFit to update the performance metrics and fit the drift-aware model to
the incoming data. Overwrite the previous incremental model with the new one.

2 Store the cumulative and per iteration classification error in ce. The Metrics property of
idaMdl stores the cumulative and window classification error, which is updated at each iteration.

for j = 1:nchunk
 ibegin = min(n,numObsPerChunk*(j-1)+1);
 iend   = min(n,numObsPerChunk*j);
 idx = ibegin:iend;    

 idaMdl = updateMetricsAndFit(idaMdl,X(idx,:),Y(idx));

 statusname(j) = string(idaMdl.DriftStatus);
 if idaMdl.DriftDetected
       status(j) = 2;  
    elseif idaMdl.WarningDetected
       status(j) = 1;
    else 
       status(j) = 0;
    end   
 ce{j,:} = idaMdl.Metrics{"ClassificationError",:};
end

The updateMetricsAndFit function first evaluates the performance of the model by calling
updateMetrics on incoming data, and then fits the model to data by calling fit:

The updateMetrics function evaluates the performance of the model as it processes incoming
observations. The function writes specified metrics, measured cumulatively and within a specified
window of processed observations, to the Metrics model property.

The fit function fits the model by updating the base learner and monitoring for drift given an
incoming batch of data. When you call fit, the software performs the following procedure:

• Trains the model up to NumTrainingObservations observations.
• After training, the software starts tracking the model loss to see if any concept drift has occurred

and updates drift status accordingly.
• When the drift status is Warning, the software trains a temporary model to replace

theBaseLearner in preparation for an imminent drift.
• When the drift status is Drift, temporary model replaces the BaseLearner.
• When the drift status is Stable, the software discards the temporary model.

For more information, see the Algorithms section.

Plot the cumulative and per window classification error. Mark the warmup and training periods, and
where the drift was introduced.

h = plot(ce.Variables);

xlim([0 nchunk])
ylabel("Classification Error")
xlabel("Iteration")

xline(idaMdl.MetricsWarmupPeriod/numObsPerChunk,"g-.","Warmup Period",LineWidth= 1.5)
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xline(idaMdl.TrainingPeriod/numObsPerChunk,"b-.","Training Period",LabelVerticalAlignment="middle",LineWidth= 1.5)
xline(floor(numel(Y)/2)/numObsPerChunk,"m--","Drift",LabelVerticalAlignment="middle",LineWidth= 1.5)

legend(h,ce.Properties.VariableNames)
legend(h,Location="best")

Plot the drift status versus the iteration number.

figure()
gscatter(1:nchunk,status,statusname,'gmr','*ox',[4 5 5],'on',"Iteration","Drift Status","filled")
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Compute Performance Metrics and Monitor Concept Drift

Create the random concept data and concept drift generator using the helper functions,
HelperSineGenerator and HelperConceptDriftGenerator, respectively.

concept1 = HelperSineGenerator(ClassificationFunction=1,IrrelevantFeatures=true,TableOutput=false);
concept2 = HelperSineGenerator(ClassificationFunction=3,IrrelevantFeatures=true,TableOutput=false);
driftGenerator = HelperConceptDriftGenerator(concept1,concept2,15000,1000);

When ClassificationFunction is 1, HelperSineGenerator labels all points that satisfy x1 <
sin(x2) as 1, otherwise the function labels them as 0. When ClassificationFunction is 3, this is
reversed. That is, HelperSineGenerator labels all points that satisfy x1 >= sin(x2) as 1, otherwise
the function labels them as 0 [2]. The software returns the data in matrices for using in incremental
learners.

HelperConceptDriftGenerator establishes the concept drift. The object uses a sigmoid function
1./(1+exp(-4*(numobservations-position)./width)) to decide the probability of choosing
the first stream when generating data [3]. In this case, the position argument is 15000 and the width
argument is 1000. As the number of observations exceeds the position value minus half of the width,
the probability of sampling from the first stream when generating data decreases. The sigmoid
function allows a smooth transition from one stream to the other. Larger width values indicate a
larger transition period where both streams are approximately equally likely to be selected.

Initiate an incremental drift-aware model for classification as follows:
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1 Create an incremental Naive Bayes classification model for binary classification.
2 Initiate an incremental concept drift detector that uses the Hoeffding's Bounds Drift Detection

Method with moving average (HDDMA).
3 Using the incremental linear model and the concept drift detector, initiate an incremental drift-

aware model. Specify the training period as 5000 observations.

BaseLearner = incrementalClassificationNaiveBayes(MaxNumClasses=2,Metrics="classiferror");
dd = incrementalConceptDriftDetector("hddma");
idal = incrementalDriftAwareLearner(BaseLearner,DriftDetector=dd,TrainingPeriod=5000);

Preallocate the number of variables in each chunk and number of iterations for creating a stream of
data.

numObsPerChunk = 10;
numIterations = 4000;

Preallocate the variables for tracking the drift status and drift time, and storing the classification
error.

dstatus = zeros(numIterations,1);
statusname = strings(numIterations,1);
driftTimes = [];
ce = array2table(zeros(numIterations,2),VariableNames=["Cumulative" "Window"]);

Simulate a data stream with incoming chunks of 10 observations each and perform incremental drift-
aware learning. At each iteration:

1 Simulate predictor data and labels, and update driftGenerator using the helper function
hgenerate.

2 Call updateMetricsAndFit to update the performance metrics and fit the incremental drift-
aware model to the incoming data.

3 Track and record the drift status and the classification error for visualization purposes.

rng(12); % For reproducibility

for j = 1:numIterations
 
 % Generate data
 [driftGenerator,X,Y] = hgenerate(driftGenerator,numObsPerChunk); 

 % Update performance metrics and fit
 idal = updateMetricsAndFit(idal,X,Y); 

 % Record drift status and classification error
 statusname(j) = string(idal.DriftStatus); 
 ce{j,:} = idal.Metrics{"ClassificationError",:};
 if idal.DriftDetected
       dstatus(j) = 2;  
    elseif idal.WarningDetected
       dstatus(j) = 1;
    else 
       dstatus(j) = 0;
    end   
 if idal.DriftDetected
    driftTimes(end+1) = j; 
 end
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end

Plot the cumulative and per window classification error. Mark the warmup and training periods, and
where the drift was introduced.

h = plot(ce.Variables);

xlim([0 numIterations])
ylim([0 0.22])
ylabel("Classification Error")
xlabel("Iteration")

xline(idal.MetricsWarmupPeriod/numObsPerChunk,"g-.","Warmup Period",LineWidth=1.5)
xline(idal.MetricsWarmupPeriod/numObsPerChunk+driftTimes,"g-.","Warmup Period",LineWidth=1.5)
xline(idal.TrainingPeriod/numObsPerChunk,"b-.","Training Period",LabelVerticalAlignment="middle",LineWidth=1.5)
xline(driftTimes,"m--","Drift",LabelVerticalAlignment="middle",LineWidth=1.5)

legend(h,ce.Properties.VariableNames)
legend(h,Location="best")

The updateMetricsAndFit function first evaluates the performance of the model by calling
updateMetrics on incoming data, and then fits the model to data by calling fit:

The updateMetrics function evaluates the performance of the model as it processes incoming
observations. The function writes specified metrics, measured cumulatively and within a specified
window of processed observations, to the Metrics model property.
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The fit function fits the model by updating the base learner and monitoring for drift given an
incoming batch of data. When you call fit, the software performs the following procedure:

• Trains the model up to NumTrainingObservations observations.
• After training, the software starts tracking the model loss to see if any concept drift has occurred

and updates drift status accordingly.
• When the drift status is Warning, the software trains a temporary model to replace

theBaseLearner in preparation for an imminent drift.
• When the drift status is Drift, temporary model replaces the BaseLearner.
• When the drift status is Stable, the software discards the temporary model.

For more information, see the Algorithms section.

Plot the drift status versus the iteration number.

gscatter(1:numIterations,dstatus,statusname,"gmr","o",5,"on","Iteration","Drift Status","filled")

Monitor Concept Drift in Regression Model

Create the random concept data and the concept drift generator using the helper functions
HelperRegrGenerator and HelperConceptDriftGenerator, respectively.

concept1 = HelperRegrGenerator(NumFeatures=100,NonZeroFeatures=[1,20,40,50,55], ...
    FeatureCoefficients=[4,5,10,-2,-6],NoiseStd=1.1,TableOutput=false);
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concept2 = HelperRegrGenerator(NumFeatures=100,NonZeroFeatures=[10,20,45,56,80], ...
    FeatureCoefficients=[4,5,10,-2,-6],NoiseStd=1.1,TableOutput=false);
driftGenerator = HelperConceptDriftGenerator(concept1,concept2,15000,1000);

HelperRegrGenerator generates streaming data using features and feature coefficients for
regression specified in the call to the function. At each step, the function samples the predictors from
a normal distribution. Then, the function computes the response using the feature coefficients and
predictor values and adding a random noise from a normal distribution with mean zero and specified
noise standard deviation. The software returns the data in matrices for using in incremental learners.

HelperConceptDriftGenerator establishes the concept drift. The object uses a sigmoid function
1./(1+exp(-4*(numobservations-position)./width)) to decide the probability of choosing
the first stream when generating data [3]. In this case, the position argument is 15000 and the width
argument is 1000. As the number of observations exceeds the position value minus half of the width,
the probability of sampling from the first stream when generating data decreases. The sigmoid
function allows a smooth transition from one stream to the other. Larger width values indicate a
larger transition period where both streams are approximately equally likely to be selected.

Initiate an incremental drift-aware model for regression as follows:

1 Create an incremental linear model for regression. Specify the linear regression model type and
solver type.

2 Initiate an incremental concept drift detector that uses the Hoeffding's Bounds Drift Detection
Method with moving average (HDDMA).

3 Using the incremental linear model and the concept drift detector, instantiate an incremental
drift-aware model. Specify the training period as 6000 observations.

baseMdl = incrementalRegressionLinear(Learner="leastsquares",Solver="sgd",EstimationPeriod=1000,Standardize=false);
dd = incrementalConceptDriftDetector("hddma",Alternative="greater",InputType="continuous",WarmupPeriod=1000);
idal = incrementalDriftAwareLearner(baseMdl,DriftDetector=dd,TrainingPeriod=6000);

Preallocate the number of variables in each chunk and number of iterations for creating a stream of
data.

numObsPerChunk = 10;
numIterations = 4000;

Preallocate the variables for tracking the drift status and drift time, and storing the regression error.

dstatus = zeros(numIterations,1);
statusname = strings(numIterations,1);
driftTimes = [];
ce = array2table(zeros(numIterations,2),VariableNames=["Cumulative" "Window"]);

Simulate a data stream with incoming chunks of 10 observations each and perform incremental drift-
aware learning. At each iteration:

1 Simulate predictor data and labels, and update the drift generator using the helper function
hgenerate.

2 Call updateMetricsAndFit to update the performance metrics and fit the incremental drift-
aware model to the incoming data.

3 Track and record the drift status and the regression error for visualization purposes.

rng(12); % For reproducibility

 incrementalDriftAwareLearner

35-3493



for j = 1:numIterations
 
 % Generate data
 [driftGenerator,X,Y] = hgenerate(driftGenerator,numObsPerChunk); 

 % Update performance metrics and fit
 idal = updateMetricsAndFit(idal,X,Y); 

 % Record drift status and regression error
 statusname(j) = string(idal.DriftStatus); 
 ce{j,:} = idal.Metrics{"MeanSquaredError",:};
 if idal.DriftDetected
       dstatus(j) = 2;  
    elseif idal.WarningDetected
       dstatus(j) = 1;
    else 
       dstatus(j) = 0;
    end   
 if idal.DriftDetected
    driftTimes(end+1) = j; 
 end
end

Plot the cumulative and per window regression error. Mark the warmup and training periods, and
where the drift was introduced.

h = plot(ce.Variables);

xlim([0 numIterations])
ylabel("Mean Squared Error")
xlabel("Iteration")

xline((idal.MetricsWarmupPeriod+idal.BaseLearner.EstimationPeriod)/numObsPerChunk,"g-.","Warmup Period",LineWidth=1.5)
xline(idal.TrainingPeriod/numObsPerChunk,"b-.","Training Period",LabelVerticalAlignment="middle",LineWidth=1.5)
xline(driftTimes,"m--","Drift",LabelVerticalAlignment="middle",LineWidth=1.5)

legend(h,ce.Properties.VariableNames)
legend(h,Location="best")
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Plot the drift status versus the iteration number.

gscatter(1:numIterations,dstatus,statusname,'gmr','o',5,'on',"Iteration","Drift Status","filled")
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Algorithms
Incremental Drift-Aware Learning

Incremental learning, or online learning, is a branch of machine learning concerned with processing
incoming data from a data stream, possibly given little to no knowledge of the distribution of the
predictor variables, aspects of the prediction or objective function (including tuning parameter
values), or whether the observations are labeled. Incremental learning differs from traditional
machine learning, where enough labeled data is available to fit to a model, perform cross-validation
to tune hyperparameters, and infer the predictor distribution. For more details, see “Incremental
Learning Overview” on page 28-2.

Unlike other incremental learning functionality offered by Statistics and Machine Learning Toolbox,
incrementalDriftAwareLearner model object combines incremental learning and concept drift
detection.

After creating an incrementalDriftAwareLearner object, use updateMetrics to update model
performance metrics and fit to fit the base model to incoming chunk of data, check for potential
drift in the model performance (concept drift), and update or reset the incremental drift-aware
learner, if necessary. You can also use updateMetricsAndFit. The fit function implements the
Reactive Drift Detection Method (RDDM) [1] as follows:

• After Mdl.BaseLearner.EstimationPeriod (if necessary) and MetricsWarmupPeriod, the
function trains the incremental drift-aware model up to NumTrainingObservations
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observations until it reaches TrainingPeriod. (If the TrainingPeriod value is smaller than
the Mdl.BaseLearner.MetricsWarmupPeriod value, then
incrementalDriftAwareLearner sets the TrainingPeriod value as
Mdl.BaseLearner.MetricsWarmupPeriod.)

• When NumTrainingObservations > TrainingPeriod, the software starts tracking the model
loss. The software computes the per observation loss using the perObservationLoss function.
While computing the per observation loss, the software uses the "classiferror" loss metric for
classification models and "squarederror" for regression models. The function then appends the
loss values computed using the last chunk of data to the existing buffer loss values.

• Next, the software checks to see if any concept drift occurred by using the detectdrift function
and updates DriftStatus accordingly.

Based on the drift status, fit performs the following procedure:

• DriftStatus is 'Warning' – The software first increases the consecutive 'Warning' status
count by 1.

• If the consecutive 'Warning' status count is less than the WarningCountLimit value and
the PreviousDriftStatus value is Stable, then the software trains a temporary
incremental learner (if one does not exist) and sets it (or the existing one) to BaseLearner.

Then the software resets the temporary incremental learner using the learner's reset
function.

• If the consecutive 'Warning' status count is less than the WarningCountLimit value and
the PreviousDriftStatus value is 'Warning', then the software trains the existing
temporary incremental model using the latest chunk of data.

• If the consecutive 'Warning' status count is more than the WarningCountLimit value, then
the software sets the DriftStatus value to 'Drift'.

• DriftStatus is 'Drift' – The software performs the following steps.

• Sets the consecutive 'Warning' status count to 0.
• Resets DriftDetector using the reset function.
• Empties the buffer loss values and appends the loss values for the latest chunk of data to buffer

loss values.
• If the temporary incremental model is not empty, then the software sets the current

BaseLearner value to the temporary incremental model and empties the temporary
incremental model.

• If the temporary incremental model is empty, then the software resets the BaseLearner value
by using the learner's reset function.

• DriftStatus is 'Stable' – The software first increases the consecutive 'Stable' status count
by 1.

• If the consecutive 'Stable' status count is less than the StableCountLimit and the
PreviousDriftStatus value is 'Warning', then the software sets the number of warnings
to zero and empties the temporary model.

• If the consecutive 'Stable' status count is more than the StableCountLimit value, then
the software resets the DriftDetector using the reset function. Then the software tests all
of the saved loss values in the buffer for concept drift by using the detectdrift function.
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Once DriftStatus is set to 'Drift', and the BaseLearner and DriftDetector are reset, the
software waits until Mdl.BaseLearner.EstimationPeriod +
Mdl.BaseLearner.MetricsWarmupPeriod before it starts computing the performance metrics.

Performance Metrics

• The updateMetrics and updateMetricsAndFit functions track model performance metrics
(Metrics) from new data when the incremental model is warm (Mdl.BaseLearner.IsWarm
property). An incremental model becomes warm after fit or updateMetricsAndFit fits the
incremental model to MetricsWarmupPeriod observations, which is the metrics warm-up period.

If Mdl.BaseLearner.EstimationPeriod > 0, the functions estimate hyperparameters before
fitting the model to data. Therefore, the functions must process an additional EstimationPeriod
observations before the model starts the metrics warm-up period.

• The Metrics property of the incremental model stores two forms of each performance metric as
variables (columns) of a table, Cumulative and Window, with individual metrics in rows. When
the incremental model is warm, updateMetrics and updateMetricsAndFit update the metrics
at the following frequencies:

• Cumulative — The functions compute cumulative metrics since the start of model
performance tracking. The functions update metrics every time you call the functions, and base
the calculation on the entire supplied data set until a model reset.

• Window — The functions compute metrics based on all observations within a window
determined by the MetricsWindowSize name-value argument. MetricsWindowSize also
determines the frequency at which the software updates Window metrics. For example, if
MetricsWindowSize is 20, the functions compute metrics based on the last 20 observations
in the supplied data (X((end – 20 + 1):end,:) and Y((end – 20 + 1):end)).

Incremental functions that track performance metrics within a window use the following
process:

1 Store MetricsWindowSize amount of values for each specified metric, and store the
same amount of observation weights.

2 Populate elements of the metrics values with the model performance based on batches of
incoming observations, and store the corresponding observation weights.

3 When the window of observations is filled, overwrite Mdl.Metrics.Window with the
weighted average performance in the metrics window. If the window is overfilled when the
function processes a batch of observations, the latest incoming MetricsWindowSize
observations are stored, and the earliest observations are removed from the window. For
example, suppose MetricsWindowSize is 20, there are 10 stored values from a
previously processed batch, and 15 values are incoming. To compose the length 20
window, the functions use the measurements from the 15 incoming observations and the
latest 5 measurements from the previous batch.

• The software omits an observation with a NaN score when computing the Cumulative and
Window performance metric values.

Version History
Introduced in R2022b
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incrementalLearner
Convert kernel model for binary classification to incremental learner

Syntax
IncrementalMdl = incrementalLearner(Mdl)
IncrementalMdl = incrementalLearner(Mdl,Name=Value)

Description
IncrementalMdl = incrementalLearner(Mdl) returns a binary Gaussian kernel classification
model for incremental learning on page 35-3512, IncrementalMdl, using the traditionally trained
kernel model object or kernel model template object in Mdl.

If you specify a traditionally trained model, then its property values reflect the knowledge gained
from Mdl (parameters and hyperparameters of the model). Therefore, IncrementalMdl can predict
labels given new observations, and it is warm, meaning that its predictive performance is tracked.

IncrementalMdl = incrementalLearner(Mdl,Name=Value) uses additional options specified
by one or more name-value arguments. Some options require you to train IncrementalMdl before
its predictive performance is tracked. For example,
MetricsWarmupPeriod=50,MetricsWindowSize=100 specifies a preliminary incremental
training period of 50 observations before performance metrics are tracked, and specifies processing
100 observations before updating the window performance metrics.

Examples

Convert Traditionally Trained Model to Incremental Learner

Train a kernel classification model for binary learning by using fitckernel, and then convert it to
an incremental learner.

Load and Preprocess Data

Load the human activity data set.

load humanactivity

For details on the data set, enter Description at the command line.

Responses can be one of five classes: Sitting, Standing, Walking, Running, or Dancing.
Dichotomize the response by identifying whether the subject is moving (actid > 2).

Y = actid > 2;

Train Kernel Classification Model

Fit a kernel classification model to the entire data set.

Mdl = fitckernel(feat,Y)
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Mdl = 
  ClassificationKernel
              ResponseName: 'Y'
                ClassNames: [0 1]
                   Learner: 'svm'
    NumExpansionDimensions: 2048
               KernelScale: 1
                    Lambda: 4.1537e-05
             BoxConstraint: 1

  Properties, Methods

Mdl is a ClassificationKernel model object representing a traditionally trained kernel
classification model.

Convert Trained Model

Convert the traditionally trained kernel classification model to a model for incremental learning.

IncrementalMdl = incrementalLearner(Mdl,Solver="sgd",LearnRate=1)

IncrementalMdl = 
  incrementalClassificationKernel

                    IsWarm: 1
                   Metrics: [1x2 table]
                ClassNames: [0 1]
            ScoreTransform: 'none'
    NumExpansionDimensions: 2048
               KernelScale: 1

  Properties, Methods

IncrementalMdl is an incrementalClassificationKernel model object prepared for
incremental learning.

• The incrementalLearner function initializes the incremental learner by passing model
parameters to it, along with other information Mdl extracted from the training data.

• IncrementalMdl is warm (IsWarm is 1), which means that incremental learning functions can
start tracking performance metrics.

• incrementalClassificationKernel trains the model using the adaptive scale-invariant
solver, whereas fitckernel trained Mdl using the Limited-memory Broyden-Fletcher-Goldfarb-
Shanno (LBFGS) solver.

Predict Responses

An incremental learner created from converting a traditionally trained model can generate
predictions without further processing.

Predict classification scores for all observations using both models.
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[~,ttscores] = predict(Mdl,feat);
[~,ilscores] = predict(IncrementalMdl,feat);
compareScores = norm(ttscores(:,1) - ilscores(:,1))

compareScores = 0

The difference between the scores generated by the models is 0.

Configure Performance Metric Options

Use a trained kernel classification model to initialize an incremental learner. Prepare the incremental
learner by specifying a metrics warm-up period and a metrics window size.

Load the human activity data set.

load humanactivity

For details on the data set, enter Description at the command line.

Responses can be one of five classes: Sitting, Standing, Walking, Running, and Dancing. Dichotomize
the response by identifying whether the subject is moving (actid > 2).

Y = actid > 2;

Because the data set is grouped by activity, shuffle it for simplicity. Then, randomly split the data in
half: the first half for training a model traditionally, and the second half for incremental learning.

n = numel(Y);

rng(1) % For reproducibility
cvp = cvpartition(n,Holdout=0.5);
idxtt = training(cvp);
idxil = test(cvp);
shuffidx = randperm(n);
X = feat(shuffidx,:);
Y = Y(shuffidx);

% First half of data
Xtt = X(idxtt,:);
Ytt = Y(idxtt);

% Second half of data
Xil = X(idxil,:);
Yil = Y(idxil);

Fit a kernel classification model to the first half of the data.

Mdl = fitckernel(Xtt,Ytt);

Convert the traditionally trained kernel classification model to a model for incremental learning.
Specify the following:

• A performance metrics warm-up period of 2000 observations
• A metrics window size of 500 observations
• Use of classification error and hinge loss to measure the performance of the model
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IncrementalMdl = incrementalLearner(Mdl, ...
    MetricsWarmupPeriod=2000,MetricsWindowSize=500, ...
    Metrics=["classiferror","hinge"]);

Fit the incremental model to the second half of the data by using the updateMetricsAndFit
function. At each iteration:

• Simulate a data stream by processing 20 observations at a time.
• Overwrite the previous incremental model with a new one fitted to the incoming observations.
• Store the cumulative metrics, window metrics, and number of training observations to see how

they evolve during incremental learning.

% Preallocation
nil = numel(Yil);
numObsPerChunk = 20;
nchunk = ceil(nil/numObsPerChunk);
ce = array2table(zeros(nchunk,2),VariableNames=["Cumulative","Window"]);
hinge = array2table(zeros(nchunk,2),VariableNames=["Cumulative","Window"]); 
numtrainobs = [zeros(nchunk,1)];

% Incremental fitting
for j = 1:nchunk
    ibegin = min(nil,numObsPerChunk*(j-1) + 1);
    iend   = min(nil,numObsPerChunk*j);
    idx = ibegin:iend;    
    IncrementalMdl = updateMetricsAndFit(IncrementalMdl,Xil(idx,:),Yil(idx));
    ce{j,:} = IncrementalMdl.Metrics{"ClassificationError",:};
    hinge{j,:} = IncrementalMdl.Metrics{"HingeLoss",:};
    numtrainobs(j) = IncrementalMdl.NumTrainingObservations;
end

IncrementalMdl is an incrementalClassificationKernel model object trained on all the data
in the stream. During incremental learning and after the model is warmed up,
updateMetricsAndFit checks the performance of the model on the incoming observations, and
then fits the model to those observations.

Plot a trace plot of the number of training observations and the performance metrics on separate
tiles.

t = tiledlayout(3,1);
nexttile
plot(numtrainobs)
xlim([0 nchunk])
ylabel(["Number of","Training Observations"])
xline(IncrementalMdl.MetricsWarmupPeriod/numObsPerChunk,"--")
nexttile
plot(ce.Variables)
xlim([0 nchunk])
ylabel("Classification Error")
xline(IncrementalMdl.MetricsWarmupPeriod/numObsPerChunk,"--")
legend(ce.Properties.VariableNames,Location="best")
nexttile
plot(hinge.Variables)
xlim([0 nchunk])
ylabel("Hinge Loss")
xline(IncrementalMdl.MetricsWarmupPeriod/numObsPerChunk,"--")
xlabel(t,"Iteration")
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The plot suggests that updateMetricsAndFit does the following:

• Fit the model during all incremental learning iterations.
• Compute the performance metrics after the metrics warm-up period only.
• Compute the cumulative metrics during each iteration.
• Compute the window metrics after processing 500 observations (25 iterations).

Specify SGD Solver

The default solver for incrementalClassificationKernel is the adaptive scale-invariant solver,
which does not require hyperparameter tuning before you fit a model. However, if you specify either
the standard stochastic gradient descent (SGD) or average SGD (ASGD) solver instead, you can also
specify an estimation period, during which the incremental fitting functions tune the learning rate.

Load the human activity data set.

load humanactivity

For details on the data set, enter Description at the command line.

Responses can be one of five classes: Sitting, Standing, Walking, Running, and Dancing.
Dichotomize the response by identifying whether the subject is moving (actid > 2).
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Y = actid > 2;

Randomly split the data in half: the first half for training a model traditionally, and the second half for
incremental learning.

n = numel(Y);

rng(1) % For reproducibility
cvp = cvpartition(n,Holdout=0.5);
idxtt = training(cvp);
idxil = test(cvp);

% First half of data 
Xtt = feat(idxtt,:);
Ytt = Y(idxtt);

% Second half of data
Xil = feat(idxil,:);
Yil = Y(idxil);

Fit a kernel classification model to the first half of the data.

TTMdl = fitckernel(Xtt,Ytt);

Convert the traditionally trained kernel classification model to a model for incremental learning.
Specify the standard SGD solver and an estimation period of 2000 observations (the default is 1000
when a learning rate is required).

IncrementalMdl = incrementalLearner(TTMdl,Solver="sgd",EstimationPeriod=2000);

IncrementalMdl is an incrementalClassificationKernel model object configured for
incremental learning.

Fit the incremental model to the second half of the data by using the fit function. At each iteration:

• Simulate a data stream by processing 10 observations at a time.
• Overwrite the previous incremental model with a new one fitted to the incoming observations.
• Store the initial learning rate and number of training observations to see how they evolve during

training.

% Preallocation
nil = numel(Yil);
numObsPerChunk = 10;
nchunk = floor(nil/numObsPerChunk);
learnrate = [zeros(nchunk,1)];
numtrainobs = [zeros(nchunk,1)];

% Incremental fitting
for j = 1:nchunk
    ibegin = min(nil,numObsPerChunk*(j-1) + 1);
    iend   = min(nil,numObsPerChunk*j);
    idx = ibegin:iend;
    IncrementalMdl = fit(IncrementalMdl,Xil(idx,:),Yil(idx));
    learnrate(j) = IncrementalMdl.SolverOptions.LearnRate;
    numtrainobs(j) = IncrementalMdl.NumTrainingObservations;
end
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IncrementalMdl is an incrementalClassificationKernel model object trained on all the data
in the stream.

Plot a trace plot of the number of training observations and the initial learning rate on separate tiles.

t = tiledlayout(2,1);
nexttile
plot(numtrainobs)
xlim([0 nchunk])
xline(IncrementalMdl.EstimationPeriod/numObsPerChunk,"-.");
ylabel("Number of Training Observations")
nexttile
plot(learnrate)
xlim([0 nchunk])
ylabel("Initial Learning Rate")
xline(IncrementalMdl.EstimationPeriod/numObsPerChunk,"-.");
xlabel(t,"Iteration")

The plot suggests that the fit function does not fit the model to the streaming data during the
estimation period. The initial learning rate jumps from 0.7 to its autotuned value after the estimation
period. During training, the software uses a learning rate that gradually decays from the initial value
specified in the “LearnRateSchedule” on page 35-0  property of IncrementalMdl.
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Input Arguments
Mdl — Traditionally trained model or model template
ClassificationKernel model object | kernel model template

Traditionally trained Gaussian kernel model or kernel model template, specified as a
ClassificationKernel model object returned by fitckernel or a template object returned by
templateKernel, respectively.

Note

Incremental learning functions support only numeric input predictor data. If Mdl was trained on
categorical data, you must prepare an encoded version of the categorical data to use incremental
learning functions. Use dummyvar to convert each categorical variable to a numeric matrix of dummy
variables. Then, concatenate all dummy variable matrices and any other numeric predictors, in the
same way that the training function encodes categorical data. For more details, see “Dummy
Variables” on page 2-49.

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.
Example: Solver="sgd",MetricsWindowSize=100 specifies the stochastic gradient descent
solver for objective optimization, and specifies processing 100 observations before updating the
window performance metrics.

General Options

Solver — Objective function minimization technique
"scale-invariant" (default) | "sgd" | "asgd"

Objective function minimization technique, specified as a value in this table.

Value Description Notes
"scale-
invariant"

Adaptive scale-invariant solver
for incremental learning on
page 35-3513 [1]

• This algorithm is parameter free and can
adapt to differences in predictor scales. Try
this algorithm before using SGD or ASGD.

• To shuffle an incoming chunk of data before
the fit function fits the model, set Shuffle
to true.

"sgd" Stochastic gradient descent
(SGD) [2][3]

• To train effectively with SGD, specify adequate
values for hyperparameters using options
listed in “SGD and ASGD Solver Options” on
page 35-0 .

• The fit function always shuffles an incoming
chunk of data before fitting the model.
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Value Description Notes
"asgd" Average stochastic gradient

descent (ASGD) [4]
• To train effectively with ASGD, specify

adequate values for hyperparameters using
options listed in “SGD and ASGD Solver
Options” on page 35-0 .

• The fit function always shuffles an incoming
chunk of data before fitting the model.

Example: Solver="sgd"
Data Types: char | string

EstimationPeriod — Number of observations processed to estimate hyperparameters
nonnegative integer

Number of observations processed by the incremental model to estimate hyperparameters before
training or tracking performance metrics, specified as a nonnegative integer.

Note

• If Mdl is prepared for incremental learning (all hyperparameters required for training are
specified), incrementalLearner forces EstimationPeriod to 0.

• If Mdl is not prepared for incremental learning, incrementalLearner sets EstimationPeriod
to 1000.

For more details, see “Estimation Period” on page 35-3514.

Example: EstimationPeriod=100
Data Types: single | double

SGD and ASGD Solver Options

BatchSize — Mini-batch size
10 (default) | positive integer

Mini-batch size, specified as a positive integer. At each learning cycle during training,
incrementalLearner uses BatchSize observations to compute the subgradient.

The number of observations in the last mini-batch (last learning cycle in each function call of fit or
updateMetricsAndFit) can be smaller than BatchSize. For example, if you supply 25
observations to fit or updateMetricsAndFit, the function uses 10 observations for the first two
learning cycles and 5 observations for the last learning cycle.
Example: BatchSize=5
Data Types: single | double

Lambda — Ridge (L2) regularization term strength
1e-5 (default) | nonnegative scalar

Ridge (L2) regularization term strength, specified as a nonnegative scalar.
Example: Lambda=0.01
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Data Types: single | double

LearnRate — Initial learning rate
"auto" (default) | positive scalar

Initial learning rate, specified as "auto" or a positive scalar.

The learning rate controls the optimization step size by scaling the objective subgradient. LearnRate
specifies an initial value for the learning rate, and LearnRateSchedule determines the learning
rate for subsequent learning cycles.

When you specify "auto":

• The initial learning rate is 0.7.
• If EstimationPeriod > 0, fit and updateMetricsAndFit change the rate to 1/

sqrt(1+max(sum(X.^2,2))) at the end of EstimationPeriod.

Example: LearnRate=0.001
Data Types: single | double | char | string

LearnRateSchedule — Learning rate schedule
"decaying" (default) | "constant"

Learning rate schedule, specified as a value in this table, where LearnRate specifies the initial
learning rate ɣ0.

Value Description
"constant" The learning rate is ɣ0 for all learning cycles.
"decaying" The learning rate at learning cycle t is

γt =
γ0

1 + λγ0t c .

• λ is the value of Lambda.
• If Solver is "sgd", then c = 1.
• If Solver is "asgd", then c = 0.75 [4].

Example: LearnRateSchedule="constant"
Data Types: char | string

Adaptive Scale-Invariant Solver Options

Shuffle — Flag for shuffling observations
true or 1 (default) | false or 0

Flag for shuffling the observations at each iteration, specified as logical 1 (true) or 0 (false).
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Value Description
logical 1 (true) The software shuffles the observations in an

incoming chunk of data before the fit function
fits the model. This action reduces bias induced
by the sampling scheme.

logical 0 (false) The software processes the data in the order
received.

Example: Shuffle=false
Data Types: logical

Performance Metrics Options

Metrics — Model performance metrics to track during incremental learning
"classiferror" (default) | string vector | function handle | cell vector | structure array |
"binodeviance" | "exponential" | "hinge" | "logit" | "quadratic"

Model performance metrics to track during incremental learning with the updateMetrics or
updateMetricsAndFit function, specified as a built-in loss function name, string vector of names,
function handle (@metricName), structure array of function handles, or cell vector of names, function
handles, or structure arrays.

The following table lists the built-in loss function names. You can specify more than one by using a
string vector.

Name Description
"binodeviance" Binomial deviance
"classiferror" Classification error
"exponential" Exponential loss
"hinge" Hinge loss
"logit" Logistic loss
"quadratic" Quadratic loss

For more details on the built-in loss functions, see loss.
Example: Metrics=["classiferror","hinge"]

To specify a custom function that returns a performance metric, use function handle notation. The
function must have this form:

metric = customMetric(C,S)

• The output argument metric is an n-by-1 numeric vector, where each element is the loss of the
corresponding observation in the data processed by the incremental learning functions during a
learning cycle.

• You specify the function name (customMetric).
• C is an n-by-2 logical matrix with rows indicating the class to which the corresponding observation

belongs. The column order corresponds to the class order in the model for incremental learning.
Create C by setting C(p,q) = 1, if observation p is in class q, for each observation in the specified
data. Set the other element in row p to 0.
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• S is an n-by-2 numeric matrix of predicted classification scores. S is similar to the score output of
predict, where rows correspond to observations in the data and the column order corresponds
to the class order in the model for incremental learning. S(p,q) is the classification score of
observation p being classified in class q.

To specify multiple custom metrics and assign a custom name to each, use a structure array. To
specify a combination of built-in and custom metrics, use a cell vector.
Example: Metrics=struct(Metric1=@customMetric1,Metric2=@customMetric2)
Example:
Metrics={@customMetric1,@customMetric2,"logit",struct(Metric3=@customMetric3)
}

updateMetrics and updateMetricsAndFit store specified metrics in a table in the property
IncrementalMdl.Metrics. The data type of Metrics determines the row names of the table.

Metrics Value
Data Type

Description of Metrics Property Row
Name

Example

String or character
vector

Name of corresponding built-in metric Row name for "classiferror" is
"ClassificationError"

Structure array Field name Row name for
struct(Metric1=@customMetric
1) is "Metric1"

Function handle to
function stored in
a program file

Name of function Row name for @customMetric is
"customMetric"

Anonymous
function

CustomMetric_j, where j is metric j in
Metrics

Row name for
@(C,S)customMetric(C,S)... is
CustomMetric_1

For more details on performance metrics options, see “Performance Metrics” on page 35-3514.
Data Types: char | string | struct | cell | function_handle

MetricsWarmupPeriod — Number of observations fit before tracking performance metrics
0 (default) | nonnegative integer

Number of observations the incremental model must be fit to before it tracks performance metrics in
its Metrics property, specified as a nonnegative integer. The incremental model is warm after
incremental fitting functions fit (EstimationPeriod + MetricsWarmupPeriod) observations to the
incremental model.

For more details on performance metrics options, see “Performance Metrics” on page 35-3514.
Example: MetricsWarmupPeriod=50
Data Types: single | double

MetricsWindowSize — Number of observations to use to compute window performance
metrics
200 (default) | positive integer

Number of observations to use to compute window performance metrics, specified as a positive
integer.
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For more details on performance metrics options, see “Performance Metrics” on page 35-3514.
Example: MetricsWindowSize=250
Data Types: single | double

Output Arguments
IncrementalMdl — Binary Gaussian kernel classification model for incremental learning
incrementalClassificationKernel model object

Binary Gaussian kernel classification model for incremental learning, returned as an
incrementalClassificationKernel model object. IncrementalMdl is also configured to
generate predictions given new data (see predict).

The incrementalLearner function initializes IncrementalMdl for incremental learning using the
model information in Mdl. The following table shows the Mdl properties that incrementalLearner
passes to corresponding properties of IncrementalMdl. The function also passes other model
information required to initialize IncrementalMdl, such as learned model coefficients,
regularization term strength, and the random number stream.

Input Object Mdl Type Property Description
ClassificationKernel
model object or kernel model
template object

KernelScale Kernel scale parameter, a
positive scalar

Learner Linear classification model type,
a character vector

NumExpansionDimensions Number of dimensions of
expanded space, a positive
integer

ClassificationKernel
model object

ClassNames Class labels for binary
classification, a two-element list

NumPredictors Number of predictors, a positive
integer

Prior Prior class label distribution, a
numeric vector

ScoreTransform Score transformation function, a
function name or function
handle

Note that incrementalLearner does not use the Cost property of the traditionally trained model in
Mdl because incrementalClassificationKernel does not support this property.

More About
Incremental Learning

Incremental learning, or online learning, is a branch of machine learning concerned with processing
incoming data from a data stream, possibly given little to no knowledge of the distribution of the
predictor variables, aspects of the prediction or objective function (including tuning parameter
values), or whether the observations are labeled. Incremental learning differs from traditional
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machine learning, where enough labeled data is available to fit to a model, perform cross-validation
to tune hyperparameters, and infer the predictor distribution.

Given incoming observations, an incremental learning model processes data in any of the following
ways, but usually in this order:

• Predict labels.
• Measure the predictive performance.
• Check for structural breaks or drift in the model.
• Fit the model to the incoming observations.

For more details, see “Incremental Learning Overview” on page 28-2.

Adaptive Scale-Invariant Solver for Incremental Learning

The adaptive scale-invariant solver for incremental learning, introduced in [1], is a gradient-descent-
based objective solver for training linear predictive models. The solver is hyperparameter free,
insensitive to differences in predictor variable scales, and does not require prior knowledge of the
distribution of the predictor variables. These characteristics make it well suited to incremental
learning.

The incremental fitting functions fit and updateMetricsAndFit use the more aggressive ScInOL2
version of the algorithm.

Random Feature Expansion

Random feature expansion, such as Random Kitchen Sinks[5] or Fastfood[6], is a scheme to
approximate Gaussian kernels of the kernel classification algorithm to use for big data in a
computationally efficient way. Random feature expansion is more practical for big data applications
that have large training sets, but can also be applied to smaller data sets that fit in memory.

The kernel classification algorithm searches for an optimal hyperplane that separates the data into
two classes after mapping features into a high-dimensional space. Nonlinear features that are not
linearly separable in a low-dimensional space can be separable in the expanded high-dimensional
space. All the calculations for hyperplane classification use only dot products. You can obtain a
nonlinear classification model by replacing the dot product x1x2' with the nonlinear kernel function
G(x1, x2) = φ(x1), φ(x2) , where xi is the ith observation (row vector) and φ(xi) is a transformation
that maps xi to a high-dimensional space (called the “kernel trick”). However, evaluating G(x1,x2)
(Gram matrix) for each pair of observations is computationally expensive for a large data set (large
n).

The random feature expansion scheme finds a random transformation so that its dot product
approximates the Gaussian kernel. That is,

G(x1, x2) = φ(x1), φ(x2) ≈ T(x1)T(x2)′,

where T(x) maps x in ℝp to a high-dimensional space (ℝm). The Random Kitchen Sinks scheme uses
the random transformation

T(x) = m−1/2exp iZx′ ′,

where Z ∈ ℝm × p is a sample drawn from N 0, σ−2  and σ is a kernel scale. This scheme requires
O(mp) computation and storage.
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The Fastfood scheme introduces another random basis V instead of Z using Hadamard matrices
combined with Gaussian scaling matrices. This random basis reduces the computation cost to
O(mlogp) and reduces storage to O(m).

incrementalClassificationKernel uses the Fastfood scheme for random feature expansion,
and uses linear classification to train a Gaussian kernel classification model. You can specify values
for m and σ using the NumExpansionDimensions and KernelScale name-value arguments,
respectively, when you create a traditionally trained model using fitckernel or when you
callincrementalClassificationKernel directly to create the model object.

Algorithms
Estimation Period

During the estimation period, the incremental fitting functions fit and updateMetricsAndFit use
the first incoming EstimationPeriod observations to tune a hyperparameter required for
incremental training. Estimation occurs only when EstimationPeriod is positive. This table
describes the hyperparameter and when it is estimated, or tuned.

Hyperparameter Model Property Usage Conditions
Learning rate LearnRate field of

SolverOptions
Adjust solver step
size

The hyperparameter is estimated when
both of these conditions apply:

• You specify the Solver name-value
argument as "sgd" or "asgd".

• You do not specify the LearnRate
name-value argument as a positive
scalar.

During the estimation period, fit does not fit the model, and updateMetricsAndFit does not fit
the model or update the performance metrics. At the end of the estimation period, the functions
update the property that stores the hyperparameter.

Performance Metrics

• The updateMetrics and updateMetricsAndFit functions are incremental learning functions
that track model performance metrics (Metrics) from new data only when the incremental model
is warm (IsWarm property is true). An incremental model becomes warm after fit or
updateMetricsAndFit fits the incremental model to MetricsWarmupPeriod observations,
which is the metrics warm-up period.

If EstimationPeriod > 0, the fit and updateMetricsAndFit functions estimate
hyperparameters before fitting the model to data. Therefore, the functions must process an
additional EstimationPeriod observations before the model starts the metrics warm-up period.

• The Metrics property of the incremental model stores two forms of each performance metric as
variables (columns) of a table, Cumulative and Window, with individual metrics in rows. When
the incremental model is warm, updateMetrics and updateMetricsAndFit update the metrics
at the following frequencies:

• Cumulative — The functions compute cumulative metrics since the start of model
performance tracking. The functions update metrics every time you call the functions and base
the calculation on the entire supplied data set.
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• Window — The functions compute metrics based on all observations within a window
determined by MetricsWindowSize, which also determines the frequency at which the
software updates Window metrics. For example, if MetricsWindowSize is 20, the functions
compute metrics based on the last 20 observations in the supplied data (X((end – 20 +
1):end,:) and Y((end – 20 + 1):end)).

Incremental functions that track performance metrics within a window use the following
process:

1 Store a buffer of length MetricsWindowSize for each specified metric, and store a buffer
of observation weights.

2 Populate elements of the metrics buffer with the model performance based on batches of
incoming observations, and store corresponding observation weights in the weights buffer.

3 When the buffer is full, overwrite the Window field of the Metrics property with the
weighted average performance in the metrics window. If the buffer overfills when the
function processes a batch of observations, the latest incoming MetricsWindowSize
observations enter the buffer, and the earliest observations are removed from the buffer.
For example, suppose MetricsWindowSize is 20, the metrics buffer has 10 values from a
previously processed batch, and 15 values are incoming. To compose the length 20
window, the functions use the measurements from the 15 incoming observations and the
latest 5 measurements from the previous batch.

• The software omits an observation with a NaN score when computing the Cumulative and
Window performance metric values.

Version History
Introduced in R2022a
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incrementalLearner
Convert linear model for binary classification to incremental learner

Syntax
IncrementalMdl = incrementalLearner(Mdl)
IncrementalMdl = incrementalLearner(Mdl,Name,Value)

Description
IncrementalMdl = incrementalLearner(Mdl) returns a binary classification linear model for
incremental learning on page 35-3532, IncrementalMdl, using the traditionally trained linear model
object or linear model template object in Mdl.

If you specify a traditionally trained model, then its property values reflect the knowledge gained
from Mdl (parameters and hyperparameters of the model). Therefore, IncrementalMdl can predict
labels given new observations, and it is warm, meaning that its predictive performance is tracked.

IncrementalMdl = incrementalLearner(Mdl,Name,Value) uses additional options specified
by one or more name-value arguments. Some options require you to train IncrementalMdl before
its predictive performance is tracked. For example,
'MetricsWarmupPeriod',50,'MetricsWindowSize',100 specifies a preliminary incremental
training period of 50 observations before performance metrics are tracked, and specifies processing
100 observations before updating the window performance metrics.

Examples

Convert Traditionally Trained Model to Incremental Learner

Train a linear classification model for binary learning by using fitclinear, and then convert it to an
incremental learner.

Load and Preprocess Data

Load the human activity data set.

load humanactivity

For details on the data set, enter Description at the command line.

Responses can be one of five classes: Sitting, Standing, Walking, Running, or Dancing.
Dichotomize the response by identifying whether the subject is moving (actid > 2).

Y = actid > 2;

Train Linear Classification Model

Fit a linear classification model to the entire data set.

TTMdl = fitclinear(feat,Y)
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TTMdl = 
  ClassificationLinear
      ResponseName: 'Y'
        ClassNames: [0 1]
    ScoreTransform: 'none'
              Beta: [60x1 double]
              Bias: -0.2005
            Lambda: 4.1537e-05
           Learner: 'svm'

  Properties, Methods

TTMdl is a ClassificationLinear model object representing a traditionally trained linear
classification model.

Convert Trained Model

Convert the traditionally trained linear classification model to a binary classification linear model for
incremental learning.

IncrementalMdl = incrementalLearner(TTMdl)

IncrementalMdl = 
  incrementalClassificationLinear

            IsWarm: 1
           Metrics: [1x2 table]
        ClassNames: [0 1]
    ScoreTransform: 'none'
              Beta: [60x1 double]
              Bias: -0.2005
           Learner: 'svm'

  Properties, Methods

IncrementalMdl is an incrementalClassificationLinear model object prepared for
incremental learning using SVM.

• The incrementalLearner function Initializes the incremental learner by passing learned
coefficients to it, along with other information TTMdl extracted from the training data.

• IncrementalMdl is warm (IsWarm is 1), which means that incremental learning functions can
start tracking performance metrics.

• incrementalClassificationLinear trains the model using the adaptive scale-invariant
solver, whereas fitclinear trained TTMdl using the BFGS solver.

Predict Responses

An incremental learner created from converting a traditionally trained model can generate
predictions without further processing.

Predict classification scores for all observations using both models.
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[~,ttscores] = predict(TTMdl,feat);
[~,ilscores] = predict(IncrementalMdl,feat);
compareScores = norm(ttscores(:,1) - ilscores(:,1))

compareScores = 0

The difference between the scores generated by the models is 0.

Specify SGD Solver and Standardize Predictor Data

If you train a linear classification model using the SGD or ASGD solver, incrementalLearner
preserves the solver, linear model type, and associated hyperparameter values when it converts the
linear classification model.

Load the human activity data set.

load humanactivity

For details on the data set, enter Description at the command line.

Responses can be one of five classes: Sitting, Standing, Walking, Running, or Dancing. Dichotomize
the response by identifying whether the subject is moving (actid > 2).

Y = actid > 2;

Randomly split the data in half: the first half for training a model traditionally, and the second half for
incremental learning.

n = numel(Y);
rng(1) % For reproducibility
cvp = cvpartition(n,'Holdout',0.5);
idxtt = training(cvp);
idxil = test(cvp);

% First half of data 
Xtt = feat(idxtt,:);
Ytt = Y(idxtt);

% Second half of data
Xil = feat(idxil,:);
Yil = Y(idxil);

Create a set of 11 logarithmically spaced regularization strengths from 10−6 through 10−0 . 5.

Lambda = logspace(-6,-0.5,11);

Because the variables are on different scales, use implicit expansion to standardize the predictor
data.

Xtt = (Xtt - mean(Xtt))./std(Xtt);

Tune the L2 regularization parameter by applying 5-fold cross-validation. Specify the standard SGD
solver.

TTCVMdl = fitclinear(Xtt,Ytt,'KFold',5,'Learner','logistic',...
    'Solver','sgd','Lambda',Lambda);
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TTCVMdl is a ClassificationPartitionedLinear model representing the five models created
during cross-validation (see TTCVMdl.Trained). The cross-validation procedure includes training
with each specified regularization value.

Compute the cross-validated classification error for each model and regularization.

cvloss = kfoldLoss(TTCVMdl)

cvloss = 1×11

    0.0054    0.0039    0.0034    0.0033    0.0030    0.0027    0.0027    0.0031    0.0036    0.0056    0.0077

cvloss contains the test-sample classification loss for each regularization value in Lamba.

Select the regularization value that minimizes the classification error. Train the model again using the
selected regularization value.

[~,idxmin] = min(cvloss);
TTMdl = fitclinear(Xtt,Ytt,'Learner','logistic','Solver','sgd',...
    'Lambda',Lambda(idxmin));

TTMdl is a ClassificationLinear model.

Convert the traditionally trained linear classification model to a binary classification linear model for
incremental learning. Specify the standard SGD solver. Prepare incremental learning functions to
standardize the predictors. This action requires an initial period for estimating the predictor means
and standard deviations. Specify an estimation period of 2000 observations (the default is 1000 when
predictor moments are required).

IncrementalMdl = incrementalLearner(TTMdl,'Standardize',true,'EstimationPeriod',2000);

IncrementalMdl is an incrementalClassificationLinear model object.
incrementalLearner passes the solver and regularization strength, among other information
learned from training TTMdl, to IncrementalMdl.

Fit the incremental model to the second half of the data by using the fit function. At each iteration:

• Simulate a data stream by processing 10 observations at a time.
• Overwrite the previous incremental model with a new one fitted to the incoming observations.
• Store β1 to see how it evolves during training.

% Preallocation
nil = numel(Yil);
numObsPerChunk = 10;
nchunk = floor(nil/numObsPerChunk);
learnrate = [IncrementalMdl.LearnRate; zeros(nchunk,1)];
beta1 = [IncrementalMdl.Beta(1); zeros(nchunk,1)];

% Incremental fitting
for j = 1:nchunk
    ibegin = min(nil,numObsPerChunk*(j-1) + 1);
    iend   = min(nil,numObsPerChunk*j);
    idx = ibegin:iend;
    IncrementalMdl = fit(IncrementalMdl,Xil(idx,:),Yil(idx));
    beta1(j + 1) = IncrementalMdl.Beta(1);
end
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IncrementalMdl is an incrementalClassificationLinear model object trained on all the data
in the stream.

Plot β1 to see how it evolved.

plot(beta1)
ylabel('\beta_1') 
xline(IncrementalMdl.EstimationPeriod/numObsPerChunk,'r-.')
xlabel('Iteration')

Because fit does not fit the model to the streaming data during the estimation period, β1 is constant
for the first 200 iterations (2000 observations). Then, β1 changes abruptly during incremental fitting.

Configure Performance Metric Options

Use a trained linear classification model to initialize an incremental learner. Prepare the incremental
learner by specifying a metrics warm-up period, during which the updateMetricsAndFit function
only fits the model. Specify a metrics window size of 500 observations.

Load the human activity data set.

load humanactivity

For details on the data set, enter Description at the command line.

 incrementalLearner

35-3521



Responses can be one of five classes: Sitting, Standing, Walking, Running, and Dancing. Dichotomize
the response by identifying whether the subject is moving (actid > 2).

Y = actid > 2;

Because the data set is grouped by activity, shuffle it for simplicity. Then, randomly split the data in
half: the first half for training a model traditionally, and the second half for incremental learning.

n = numel(Y);

rng(1) % For reproducibility
cvp = cvpartition(n,'Holdout',0.5);
idxtt = training(cvp);
idxil = test(cvp);
shuffidx = randperm(n);
X = feat(shuffidx,:);
Y = Y(shuffidx);

% First half of data
Xtt = X(idxtt,:);
Ytt = Y(idxtt);

% Second half of data
Xil = X(idxil,:);
Yil = Y(idxil);

Fit a linear classification model to the first half of the data.

TTMdl = fitclinear(Xtt,Ytt);

Convert the traditionally trained linear classification model to a binary classification linear model for
incremental learning. Specify the following:

• A performance metrics warm-up period of 2000 observations
• A metrics window size of 500 observations
• Use of classification error and hinge loss to measure the performance of the model

IncrementalMdl = incrementalLearner(TTMdl,'MetricsWarmupPeriod',2000,'MetricsWindowSize',500,...
    'Metrics',["classiferror" "hinge"]);

Fit the incremental model to the second half of the data by using the updateMetricsAndFit
function. At each iteration:

• Simulate a data stream that processing a chunk of 20 observations.
• Overwrite the previous incremental model with a new one fitted to the incoming observations.
• Store β1, the cumulative metrics, and the window metrics to see how they evolve during

incremental learning.

% Preallocation
nil = numel(Yil);
numObsPerChunk = 20;
nchunk = ceil(nil/numObsPerChunk);
ce = array2table(zeros(nchunk,2),'VariableNames',["Cumulative" "Window"]);
hinge = array2table(zeros(nchunk,2),'VariableNames',["Cumulative" "Window"]);
beta1 = [IncrementalMdl.Beta(1); zeros(nchunk,1)];    
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% Incremental fitting
for j = 1:nchunk
    ibegin = min(nil,numObsPerChunk*(j-1) + 1);
    iend   = min(nil,numObsPerChunk*j);
    idx = ibegin:iend;    
    IncrementalMdl = updateMetricsAndFit(IncrementalMdl,Xil(idx,:),Yil(idx));
    ce{j,:} = IncrementalMdl.Metrics{"ClassificationError",:};
    hinge{j,:} = IncrementalMdl.Metrics{"HingeLoss",:};
    beta1(j + 1) = IncrementalMdl.Beta(1);
end

IncrementalMdl is an incrementalClassificationLinear model trained on all the data in the
stream. During incremental learning and after the model is warmed up, updateMetricsAndFit
checks the performance of the model on the incoming observations, and then fits the model to those
observations.

To see how the performance metrics and β1 evolve during training, plot them on separate tiles.

t = tiledlayout(3,1);
nexttile
plot(beta1)
ylabel('\beta_1')
xlim([0 nchunk])
xline(IncrementalMdl.MetricsWarmupPeriod/numObsPerChunk,'r-.')
nexttile
h = plot(ce.Variables);
xlim([0 nchunk])
ylabel('Classification Error')
xline(IncrementalMdl.MetricsWarmupPeriod/numObsPerChunk,'r-.')
legend(h,ce.Properties.VariableNames,'Location','northwest')
nexttile
h = plot(hinge.Variables);
xlim([0 nchunk])
ylabel('Hinge Loss')
xline(IncrementalMdl.MetricsWarmupPeriod/numObsPerChunk,'r-.')
legend(h,hinge.Properties.VariableNames,'Location','northwest')
xlabel(t,'Iteration')
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The plot suggests that updateMetricsAndFit does the following:

• Fit β1 during all incremental learning iterations.
• Compute the performance metrics after the metrics warm-up period only.
• Compute the cumulative metrics during each iteration.
• Compute the window metrics after processing 500 observations (25 iterations).

Input Arguments
Mdl — Traditionally trained model or model template
ClassificationLinear model object | linear model template

Traditionally trained linear model or linear model template, specified as a ClassificationLinear
model object returned by fitclinear or a template object returned by templateLinear,
respectively.

Note

• The Lambda property of Mdl must be a numeric scalar. If Lambda is a numeric vector for a
traditionally trained linear model, you must select the model corresponding to one regularization
strength in the regularization path by using selectModels.

• Incremental learning functions support only numeric input predictor data. If Mdl was trained on
categorical data, you must prepare an encoded version of the categorical data to use incremental
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learning functions. Use dummyvar to convert each categorical variable to a numeric matrix of
dummy variables. Then, concatenate all dummy variable matrices and any other numeric
predictors, in the same way that the training function encodes categorical data. For more details,
see “Dummy Variables” on page 2-49.

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: 'Solver','scale-invariant','MetricsWindowSize',100 specifies the adaptive
scale-invariant solver for objective optimization, and specifies processing 100 observations before
updating the window performance metrics.

General Options

Solver — Objective function minimization technique
'scale-invariant' | 'sgd' | 'asgd'

Objective function minimization technique, specified as the comma-separated pair consisting of
'Solver' and a value in this table.

Value Description Notes
'scale-
invariant'

Adaptive scale-invariant solver
for incremental learning on
page 35-3532 [1]

• This algorithm is parameter free and can
adapt to differences in predictor scales. Try
this algorithm before using SGD or ASGD.

• To shuffle an incoming chunk of data before
the fit function fits the model, set Shuffle
to true.

'sgd' Stochastic gradient descent
(SGD) [3][2]

• To train effectively with SGD, standardize the
data and specify adequate values for
hyperparameters using options listed in “SGD
and ASGD Solver Options” on page 35-0 .

• The fit function always shuffles an incoming
chunk of data before fitting the model.

'asgd' Average stochastic gradient
descent (ASGD) [4]

• To train effectively with ASGD, standardize the
data and specify adequate values for
hyperparameters using options listed in “SGD
and ASGD Solver Options” on page 35-0 .

• The fit function always shuffles an incoming
chunk of data before fitting the model.

The default Solver value depends on the input model object Mdl:

• If Mdl uses ridge regularization and the SGD or ASGD solver, IncrementalMdl uses the same
solver.
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(If Mdl is a traditionally trained model, you can view the Solver value in
Mdl.ModelParameters.Solver. If Mdl is a model template, you can view the Solver value by
displaying the object in the Command Window or the Variables editor.)

• Otherwise, the default Solver value is 'scale-invariant'.

Example: 'Solver','sgd'
Data Types: char | string

EstimationPeriod — Number of observations processed to estimate hyperparameters
nonnegative integer

Number of observations processed by the incremental model to estimate hyperparameters before
training or tracking performance metrics, specified as the comma-separated pair consisting of
'EstimationPeriod' and a nonnegative integer.

Note

• If Mdl is prepared for incremental learning (all hyperparameters required for training are
specified), incrementalLearner forces EstimationPeriod to 0.

• If Mdl is not prepared for incremental learning, incrementalLearner sets EstimationPeriod
to 1000.

For more details, see “Estimation Period” on page 35-3532.

Example: 'EstimationPeriod',100
Data Types: single | double

Standardize — Flag to standardize predictor data
false (default) | true

Flag to standardize the predictor data, specified as the comma-separated pair consisting of
'Standardize' and a value in this table.

Value Description
true The software standardizes the predictor data. For more details, see

“Standardize Data” on page 35-3533.
false The software does not standardize the predictor data.

Example: 'Standardize',true
Data Types: logical

SGD and ASGD Solver Options

BatchSize — Mini-batch size
positive integer

Mini-batch size, specified as the comma-separated pair consisting of 'BatchSize' and a positive
integer. At each learning cycle during training, incrementalLearner uses BatchSize observations
to compute the subgradient.
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The number of observations for the last mini-batch (last learning cycle in each function call of fit or
updateMetricsAndFit) can be smaller than BatchSize. For example, if you supply 25
observations to fit or updateMetricsAndFit, the function uses 10 observations for the first two
learning cycles and uses 5 observations for the last learning cycle.

The default BatchSize value depends on the input model object Mdl:

• If Mdl uses ridge regularization and the SGD or ASGD solver, you cannot set BatchSize. Instead,
incrementalLearner sets BatchSize to Mdl.ModelParameters.BatchSize of the
traditionally trained model, or to the BatchSize property of the model template.

• Otherwise, the default BatchSize value is 10.

Example: 'BatchSize',1
Data Types: single | double

Lambda — Ridge (L2) regularization term strength
nonnegative scalar

Ridge (L2) regularization term strength, specified as a nonnegative scalar.

The default Lambda value depends on the input model object Mdl:

• If Mdl uses ridge regularization and the SGD or ASGD solver, you cannot set Lambda. Instead,
incrementalLearner sets Lambda to the Lambda property of Mdl.

• Otherwise, the default Lambda value is 1e-5.

Note incrementalLearner does not support lasso regularization. If the Regularization
property of Mdl is 'lasso (L1)', incrementalLearner uses ridge regularization instead, and
sets the Solver name-value argument to 'scale-invariant' by default.

Example: 'Lambda',0.01
Data Types: single | double

LearnRate — Initial learning rate
'auto' | positive scalar

Initial learning rate, specified as 'auto' or a positive scalar.

The learning rate controls the optimization step size by scaling the objective subgradient. LearnRate
specifies an initial value for the learning rate, and LearnRateSchedule determines the learning
rate for subsequent learning cycles.

When you specify 'auto':

• The initial learning rate is 0.7.
• If EstimationPeriod > 0, fit and updateMetricsAndFit change the rate to 1/

sqrt(1+max(sum(X.^2,obsDim))) at the end of EstimationPeriod. The obsDim value is 1 if
the observations compose the columns of the predictor data; otherwise, the value is 2.

The default LearnRate value depends on the input model object Mdl:

 incrementalLearner

35-3527



• If Mdl uses ridge regularization and the SGD or ASGD solver, you cannot set LearnRate. Instead,
incrementalLearner sets LearnRate to Mdl.ModelParameters.LearnRate of the
traditionally trained model, or to the LearnRate property of the model template.

• Otherwise, the default LearnRate value is 'auto'.

Example: 'LearnRate',0.001
Data Types: single | double | char | string

LearnRateSchedule — Learning rate schedule
'decaying' (default) | 'constant'

Learning rate schedule, specified as the comma-separated pair consisting of 'LearnRateSchedule'
and a value in this table, where LearnRate specifies the initial learning rate ɣ0.

Value Description
'constant' The learning rate is ɣ0 for all learning cycles.
'decaying' The learning rate at learning cycle t is

γt =
γ0

1 + λγ0t c .

• λ is the value of Lambda.
• If Solver is 'sgd', then c = 1.
• If Solver is 'asgd', then c is 0.75 [4].

If Mdl uses ridge regularization and the SGD or ASGD solver, you cannot set LearnRateSchedule.
Instead, incrementalLearner sets LearnRateSchedule to 'decaying'.
Example: 'LearnRateSchedule','constant'
Data Types: char | string

Adaptive Scale-Invariant Solver Options

Shuffle — Flag for shuffling observations in batch
true (default) | false

Flag for shuffling the observations in the batch at each iteration, specified as the comma-separated
pair consisting of 'Shuffle' and a value in this table.

Value Description
true The software shuffles an incoming chunk of data

before the fit function fits the model. This
action reduces bias induced by the sampling
scheme.

false The software processes the data in the order
received.

Example: 'Shuffle',false
Data Types: logical
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Performance Metrics Options

Metrics — Model performance metrics to track during incremental learning
"classiferror" (default) | string vector | function handle | cell vector | structure array |
"binodeviance" | "exponential" | "hinge" | "logit" | "quadratic"

Model performance metrics to track during incremental learning with the updateMetrics or
updateMetricsAndFit function, specified as a built-in loss function name, string vector of names,
function handle (@metricName), structure array of function handles, or cell vector of names, function
handles, or structure arrays.

The following table lists the built-in loss function names. You can specify more than one by using a
string vector.

Name Description
"binodeviance" Binomial deviance
"classiferror" Classification error
"exponential" Exponential loss
"hinge" Hinge loss
"logit" Logistic loss
"quadratic" Quadratic loss

For more details on the built-in loss functions, see loss.
Example: 'Metrics',["classiferror" "hinge"]

To specify a custom function that returns a performance metric, use function handle notation. The
function must have this form:

metric = customMetric(C,S)

• The output argument metric is an n-by-1 numeric vector, where each element is the loss of the
corresponding observation in the data processed by the incremental learning functions during a
learning cycle.

• You specify the function name (customMetric).
• C is an n-by-2 logical matrix with rows indicating the class to which the corresponding observation

belongs. The column order corresponds to the class order in the model for incremental learning.
Create C by setting C(p,q) = 1, if observation p is in class q, for each observation in the specified
data. Set the other element in row p to 0.

• S is an n-by-2 numeric matrix of predicted classification scores. S is similar to the score output of
predict, where rows correspond to observations in the data, and the column order corresponds
to the class order in the model for incremental learning. S(p,q) is the classification score of
observation p being classified in class q.

To specify multiple custom metrics and assign a custom name to each, use a structure array. To
specify a combination of built-in and custom metrics, use a cell vector.
Example: 'Metrics',struct('Metric1',@customMetric1,'Metric2',@customMetric2)
Example: 'Metrics',{@customMetric1 @customMetric2 'logit'
struct('Metric3',@customMetric3)}
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updateMetrics and updateMetricsAndFit store specified metrics in a table in the property
IncrementalMdl.Metrics. The data type of Metrics determines the row names of the table.

'Metrics' Value
Data Type

Description of Metrics Property Row
Name

Example

String or character
vector

Name of corresponding built-in metric Row name for "classiferror" is
"ClassificationError"

Structure array Field name Row name for
struct('Metric1',@customMetr
ic1) is "Metric1"

Function handle to
function stored in
a program file

Name of function Row name for @customMetric is
"customMetric"

Anonymous
function

CustomMetric_j, where j is metric j in
Metrics

Row name for
@(C,S)customMetric(C,S)... is
CustomMetric_1

For more details on performance metrics options, see “Performance Metrics” on page 35-3534.
Data Types: char | string | struct | cell | function_handle

MetricsWarmupPeriod — Number of observations fit before tracking performance metrics
0 (default) | nonnegative integer

Number of observations the incremental model must be fit to before it tracks performance metrics in
its Metrics property, specified as a nonnegative integer. The incremental model is warm after
incremental fitting functions fit (EstimationPeriod + MetricsWarmupPeriod) observations to the
incremental model.

For more details on performance metrics options, see “Performance Metrics” on page 35-3534.
Example: 'MetricsWarmupPeriod',50
Data Types: single | double

MetricsWindowSize — Number of observations to use to compute window performance
metrics
200 (default) | positive integer

Number of observations to use to compute window performance metrics, specified as a positive
integer.

For more details on performance metrics options, see “Performance Metrics” on page 35-3534.
Example: 'MetricsWindowSize',100
Data Types: single | double

Output Arguments
IncrementalMdl — Binary classification linear model for incremental learning
incrementalClassificationLinear model object
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Binary classification linear model for incremental learning, returned as an
incrementalClassificationLinear model object. IncrementalMdl is also configured to
generate predictions given new data (see predict).

To initialize IncrementalMdl for incremental learning, incrementalLearner passes the values of
the Mdl properties in this table to corresponding properties of IncrementalMdl.

Input Object Mdl Type Property Description
ClassificationLinear
model object or linear model
template object

Beta Linear model coefficients, a
numeric vector

Bias Model intercept, a numeric
scalar

Learner Linear classification model type,
a character vector

ModelParameters.FitBias
of a model object or FitBias of
a template object

Linear model intercept inclusion
flag, a logical scalar

ClassificationLinear
model object

ClassNames Class labels for binary
classification, a two-element list

NumPredictors Number of predictors, a positive
integer

Prior Prior class label distribution, a
numeric vector

ScoreTransform Score transformation function, a
function name or function
handle

If Mdl uses ridge regularization and the SGD or ASGD solver, incrementalLearner also passes the
properties in this table.

Input Object Mdl Type Property Description
ClassificationLinear
model object or linear model
template object

Lambda Ridge (L2) regularization term
strength, a nonnegative scalar

ModelParameters.LearnRat
e of a model object or
LearnRate of a template object

Learning rate, a positive scalar

ModelParameters.BatchSiz
e of a model object or
BatchSize of a template object

Mini-batch size, a positive
integer

ModelParameters.Solver of
a model object or Solver of a
template object

Objective function minimization
technique, a character vector

Note that incrementalLearner does not use the Cost property of the traditionally trained model in
Mdl because incrementalClassificationLinear does not support this property.
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More About
Incremental Learning

Incremental learning, or online learning, is a branch of machine learning concerned with processing
incoming data from a data stream, possibly given little to no knowledge of the distribution of the
predictor variables, aspects of the prediction or objective function (including tuning parameter
values), or whether the observations are labeled. Incremental learning differs from traditional
machine learning, where enough labeled data is available to fit to a model, perform cross-validation
to tune hyperparameters, and infer the predictor distribution.

Given incoming observations, an incremental learning model processes data in any of the following
ways, but usually in this order:

• Predict labels.
• Measure the predictive performance.
• Check for structural breaks or drift in the model.
• Fit the model to the incoming observations.

For more details, see “Incremental Learning Overview” on page 28-2.

Adaptive Scale-Invariant Solver for Incremental Learning

The adaptive scale-invariant solver for incremental learning, introduced in [1], is a gradient-descent-
based objective solver for training linear predictive models. The solver is hyperparameter free,
insensitive to differences in predictor variable scales, and does not require prior knowledge of the
distribution of the predictor variables. These characteristics make it well suited to incremental
learning.

The standard SGD and ASGD solvers are sensitive to differing scales among the predictor variables,
resulting in models that can perform poorly. To achieve better accuracy using SGD and ASGD, you
can standardize the predictor data, and tune the regularization and learning rate parameters. For
traditional machine learning, enough data is available to enable hyperparameter tuning by cross-
validation and predictor standardization. However, for incremental learning, enough data might not
be available (for example, observations might be available only one at a time) and the distribution of
the predictors might be unknown. These characteristics make parameter tuning and predictor
standardization difficult or impossible to do during incremental learning.

The incremental fitting functions for classification fit and updateMetricsAndFit use the more
aggressive ScInOL2 version of the algorithm.

Algorithms
Estimation Period

During the estimation period, the incremental fitting functions fit and updateMetricsAndFit use
the first incoming EstimationPeriod observations to estimate (tune) hyperparameters required for
incremental training. Estimation occurs only when EstimationPeriod is positive. This table
describes the hyperparameters and when they are estimated, or tuned.
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Hyperparameter Model Property Usage Conditions
Predictor means
and standard
deviations

Mu and Sigma Standardize
predictor data

The hyperparameters are estimated
when you set 'Standardize',true
(see “Standardize Data” on page 35-
3533)

Learning rate LearnRate Adjust solver step
size

The hyperparameter is estimated when
both of these conditions apply:

• You change the solver of Mdl to
SGD or ASGD (see Solver).

• You do not specify the
'LearnRate' name-value
argument as a positive scalar.

During the estimation period, fit does not fit the model, and updateMetricsAndFit does not fit
the model or update the performance metrics. At the end of the estimation period, the functions
update the properties that store the hyperparameters.

Standardize Data

If incremental learning functions are configured to standardize predictor variables, they do so using
the means and standard deviations stored in the Mu and Sigma properties of the incremental learning
model IncrementalMdl.

• When you set 'Standardize',true, and IncrementalMdl.Mu and IncrementalMdl.Sigma
are empty, the following conditions apply:

• If the estimation period is positive (see the EstimationPeriod property of
IncrementalMdl), incremental fitting functions estimate means and standard deviations
using the estimation period observations.

• If the estimation period is 0, incrementalLearner forces the estimation period to 1000.
Consequently, incremental fitting functions estimate new predictor variable means and
standard deviations during the forced estimation period.

• When incremental fitting functions estimate predictor means and standard deviations, the
functions compute weighted means and weighted standard deviations using the estimation period
observations. Specifically, the functions standardize predictor j (xj) using

x j
∗ =

x j− μ j
∗

σ j
∗ .

where

• xj is predictor j, and xjk is observation k of predictor j in the estimation period.
• μ j

∗ = 1
∑
k

wk
∗∑k wk

∗x jk .

• σ j
∗ 2 = 1

∑
k

wk
∗∑k wk

∗ x jk− μ j
∗ 2 .
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•
w j
∗ =

w j
∑

∀ j ∈ Class k
w j

pk, where

• pk is the prior probability of class k (Prior property of the incremental model).
• wj is observation weight j.

Performance Metrics

• The updateMetrics and updateMetricsAndFit functions are incremental learning functions
that track model performance metrics ('Metrics') from new data when the incremental model is
warm (IsWarm property). An incremental model becomes warm after fit or
updateMetricsAndFit fit the incremental model to 'MetricsWarmupPeriod' observations,
which is the metrics warm-up period.

If 'EstimationPeriod' > 0, the functions estimate hyperparameters before fitting the model to
data. Therefore, the functions must process an additional EstimationPeriod observations
before the model starts the metrics warm-up period.

• The Metrics property of the incremental model stores two forms of each performance metric as
variables (columns) of a table, Cumulative and Window, with individual metrics in rows. When
the incremental model is warm, updateMetrics and updateMetricsAndFit update the metrics
at the following frequencies:

• Cumulative — The functions compute cumulative metrics since the start of model
performance tracking. The functions update metrics every time you call the functions and base
the calculation on the entire supplied data set.

• Window — The functions compute metrics based on all observations within a window
determined by the 'MetricsWindowSize' name-value pair argument.
'MetricsWindowSize' also determines the frequency at which the software updates Window
metrics. For example, if MetricsWindowSize is 20, the functions compute metrics based on
the last 20 observations in the supplied data (X((end – 20 + 1):end,:) and Y((end – 20
+ 1):end)).

Incremental functions that track performance metrics within a window use the following
process:

1 Store a buffer of length MetricsWindowSize for each specified metric, and store a buffer
of observation weights.

2 Populate elements of the metrics buffer with the model performance based on batches of
incoming observations, and store corresponding observation weights in the weights buffer.

3 When the buffer is filled, overwrite IncrementalMdl.Metrics.Window with the
weighted average performance in the metrics window. If the buffer is overfilled when the
function processes a batch of observations, the latest incoming MetricsWindowSize
observations enter the buffer, and the earliest observations are removed from the buffer.
For example, suppose MetricsWindowSize is 20, the metrics buffer has 10 values from a
previously processed batch, and 15 values are incoming. To compose the length 20
window, the functions use the measurements from the 15 incoming observations and the
latest 5 measurements from the previous batch.

• The software omits an observation with a NaN score when computing the Cumulative and
Window performance metric values.
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incrementalLearner
Convert naive Bayes classification model to incremental learner

Syntax
IncrementalMdl = incrementalLearner(Mdl)
IncrementalMdl = incrementalLearner(Mdl,Name,Value)

Description
IncrementalMdl = incrementalLearner(Mdl) returns a naive Bayes classification model for
incremental learning on page 35-3543, IncrementalMdl, using the hyperparameters of the
traditionally trained naive Bayes classification model Mdl. Because its property values reflect the
knowledge gained from Mdl, IncrementalMdl can predict labels given new observations, and it is
warm, meaning that its predictive performance is tracked.

IncrementalMdl = incrementalLearner(Mdl,Name,Value) uses additional options specified
by one or more name-value arguments. Some options require you to train IncrementalMdl before
its predictive performance is tracked. For example,
'MetricsWarmupPeriod',50,'MetricsWindowSize',100 specifies a preliminary incremental
training period of 50 observations before performance metrics are tracked, and specifies processing
100 observations before updating the window performance metrics.

Examples

Convert Traditionally Trained Model to Incremental Learner

Train a naive Bayes model by using fitcnb, and then convert it to an incremental learner.

Load and Preprocess Data

Load the human activity data set.

load humanactivity

For details on the data set, enter Description at the command line.

Train Naive Bayes Model

Fit a naive Bayes classification model to the entire data set.

TTMdl = fitcnb(feat,actid);

TTMdl is a ClassificationNaiveBayes model object representing a traditionally trained naive
Bayes classification model.

Convert Trained Model

Convert the traditionally trained naive Bayes classification model to one suitable for incremental
learning.
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IncrementalMdl = incrementalLearner(TTMdl) 

IncrementalMdl = 
  incrementalClassificationNaiveBayes

                    IsWarm: 1
                   Metrics: [1x2 table]
                ClassNames: [1 2 3 4 5]
            ScoreTransform: 'none'
         DistributionNames: {1x60 cell}
    DistributionParameters: {5x60 cell}

  Properties, Methods

IncrementalMdl is an incrementalClassificationNaiveBayes model object prepared for
incremental learning using naive Bayes classification.

• The incrementalLearner function initializes the incremental learner by passing learned
conditional predictor distribution parameters to it, along with other information TTMdl extracts
from the training data.

• IncrementalMdl is warm (IsWarm is 1), which means that incremental learning functions can
track performance metrics and make predictions.

Predict Responses

An incremental learner created from converting a traditionally trained model can generate
predictions without further processing.

Predict classification scores (class posterior probabilities) for all observations using both models.

[~,ttscores] = predict(TTMdl,feat);
[~,ilcores] = predict(IncrementalMdl,feat);
compareScores = norm(ttscores - ilcores)

compareScores = 0

The difference between the scores generated by the models is 0.

Configure Performance Metric Options

Use a trained naive Bayes model to initialize an incremental learner. Prepare the incremental learner
by specifying a metrics warm-up period, during which the updateMetricsAndFit function only fits
the model. Specify a metrics window size of 500 observations.

Load the human activity data set.

load humanactivity

For details on the data set, enter Description at the command line

Randomly split the data in half: the first half for training a model traditionally, and the second half for
incremental learning.
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n = numel(actid);

rng(1) % For reproducibility
cvp = cvpartition(n,'Holdout',0.5);
idxtt = training(cvp);
idxil = test(cvp);

% First half of data
Xtt = feat(idxtt,:);
Ytt = actid(idxtt);

% Second half of data
Xil = feat(idxil,:);
Yil = actid(idxil);

Fit a naive Bayes model to the first half of the data. Suppose you want to double the penalty to the
classifier when it mistakenly classifies class 2.

C = ones(5) - eye(5);
C(2,[1 3 4 5]) = 2;
TTMdl = fitcnb(Xtt,Ytt,'Cost',C);

Convert the traditionally trained naive Bayes model to a naive Bayes classification model for
incremental learning. Specify the following:

• A performance metrics warm-up period of 2000 observations.
• A metrics window size of 500 observations.
• Use of classification error and minimal cost to measure the performance of the model. You do not

have to specify "mincost" for Metrics because incrementalClassificationNaiveBayes
always tracks this metric.

IncrementalMdl = incrementalLearner(TTMdl,'MetricsWarmupPeriod',2000,'MetricsWindowSize',500,...
    'Metrics','classiferror');

Fit the incremental model to the second half of the data by using the updateMetricsAndFit
function. At each iteration:

• Simulate a data stream by processing 20 observations at a time.
• Overwrite the previous incremental model with a new one fitted to the incoming observations.
• Store the mean of the second predictor within the first class μ12, the cumulative metrics, and the

window metrics to see how they evolve during incremental learning.

% Preallocation
nil = numel(Yil);
numObsPerChunk = 20;
nchunk = ceil(nil/numObsPerChunk);
ce = array2table(zeros(nchunk,2),'VariableNames',["Cumulative" "Window"]);
mc = array2table(zeros(nchunk,2),'VariableNames',["Cumulative" "Window"]);
mu12 = [IncrementalMdl.DistributionParameters{1,2}(1); zeros(nchunk,1)];    

% Incremental fitting
for j = 1:nchunk
    ibegin = min(nil,numObsPerChunk*(j-1) + 1);
    iend   = min(nil,numObsPerChunk*j);
    idx = ibegin:iend;    
    IncrementalMdl = updateMetricsAndFit(IncrementalMdl,Xil(idx,:),Yil(idx));
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    ce{j,:} = IncrementalMdl.Metrics{"ClassificationError",:};
    mc{j,:} = IncrementalMdl.Metrics{"MinimalCost",:};
    mu12(j + 1) = IncrementalMdl.DistributionParameters{1,2}(1);
end

IncrementalMdl is an incrementalClassificationNaiveBayes model object trained on all the
data in the stream. During incremental learning and after the model is warmed up,
updateMetricsAndFit checks the performance of the model on the incoming observations, and
then fits the model to those observations.

To see how the performance metrics and μ12 evolve during training, plot them on separate tiles.

t = tiledlayout(3,1);
nexttile
plot(mu12)
ylabel('\mu_{12}')
xlim([0 nchunk]);
xline(IncrementalMdl.MetricsWarmupPeriod/numObsPerChunk,'r-.');
nexttile
h = plot(ce.Variables);
xlim([0 nchunk]);
ylabel('Classification Error')
xline(IncrementalMdl.MetricsWarmupPeriod/numObsPerChunk,'r-.');
legend(h,ce.Properties.VariableNames,'Location','northwest')
nexttile
h = plot(mc.Variables);
xlim([0 nchunk]);
ylabel('Minimal Cost')
xline(IncrementalMdl.MetricsWarmupPeriod/numObsPerChunk,'r-.');
legend(h,mc.Properties.VariableNames,'Location','northwest')
xlabel(t,'Iteration')
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The plots indicate that updateMetricsAndFit performs the following actions:

• Fit μ12 during all incremental learning iterations.
• Compute the performance metrics after the metrics warm-up period (red vertical line) only.
• Compute the cumulative metrics during each iteration.
• Compute the window metrics after processing 500 observations (25 iterations).

Because the data is ordered by activity, the mean and performance metrics periodically change
abruptly.

Input Arguments
Mdl — Traditionally trained naive Bayes model for multiclass classification
ClassificationNaiveBayes model object

Traditionally trained naive Bayes model for multiclass classification, specified as a
ClassificationNaiveBayes model object returned by fitcnb. The conditional distribution of
each predictor variable, as stored in Mdl.DistributionNames, cannot be a kernel distribution.

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.
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Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: 'Metrics',["classiferror" "mincost"],'MetricsWindowSize',100 specifies
tracking the misclassification rate and minimal cost, and specifies processing 100 observations before
updating the window performance metrics.

Metrics — Model performance metrics to track during incremental learning
"mincost" (default) | "classiferror" | "hinge" | "logit" | string vector | function handle |
structure array | ...

Model performance metrics to track during incremental learning with the updateMetrics or
updateMetricsAndFit function, specified as a built-in loss function name, string vector of names,
function handle (for example, @metricName), structure array of function handles, or cell vector of
names, function handles, or structure arrays.

The following table lists the built-in loss function names. You can specify more than one by using a
string vector.

Name Description
"binodeviance" Binomial deviance
"classiferror" Classification error
"exponential" Exponential
"hinge" Hinge
"logit" Logistic
"mincost" Minimal expected misclassification cost (for

classification scores that are posterior
probabilities)

"quadratic" Quadratic

For more details on the built-in loss functions, see loss.
Example: 'Metrics',["classiferror" "mincost"]

To specify a custom function that returns a performance metric, use function handle notation. The
function must have this form.

metric = customMetric(C,S,Cost)

• The output argument metric is an n-by-1 numeric vector, where each element is the loss of the
corresponding observation in the data processed by the incremental learning functions during a
learning cycle.

• You select the function name (here, customMetric).
• C is an n-by-K logical matrix with rows indicating the class to which the corresponding observation

belongs, where K is the number of classes. The column order corresponds to the class order in the
ClassNames property. Create C by setting C(p,q) = 1, if observation p is in class q, for each
observation in the specified data. Set the other element in row p to 0.

• S is an n-by-K numeric matrix of predicted classification scores. S is similar to the Score output of
predict, where rows correspond to observations in the data and the column order corresponds
to the class order in the ClassNames property. S(p,q) is the classification score of observation p
being classified in class q.

 incrementalLearner

35-3541



• Cost is a K-by-K numeric matrix of misclassification costs. See the 'Cost' name-value argument.

To specify multiple custom metrics and assign a custom name to each, use a structure array. To
specify a combination of built-in and custom metrics, use a cell vector.
Example: 'Metrics',struct('Metric1',@customMetric1,'Metric2',@customMetric2)
Example: 'Metrics',{@customMetric1 @customMetric2 'logit'
struct('Metric3',@customMetric3)}

updateMetrics and updateMetricsAndFit store specified metrics in a table in the property
IncrementalMdl.Metrics. The data type of Metrics determines the row names of the table.

'Metrics' Value
Data Type

Description of Metrics Property Row
Name

Example

String or character
vector

Name of corresponding built-in metric Row name for "classiferror" is
"ClassificationError"

Structure array Field name Row name for
struct('Metric1',@customMetr
ic1) is "Metric1"

Function handle to
function stored in
a program file

Name of function Row name for @customMetric is
"customMetric"

Anonymous
function

CustomMetric_j, where j is metric j in
Metrics

Row name for
@(C,S,Cost)customMetric(C,S,
Cost)... is CustomMetric_1

For more details on performance metrics options, see “Performance Metrics” on page 35-3544.
Data Types: char | string | struct | cell | function_handle

MetricsWarmupPeriod — Number of observations fit before tracking performance metrics
0 (default) | nonnegative integer

Number of observations the incremental model must be fit to before it tracks performance metrics in
its Metrics property, specified as a nonnegative integer. The incremental model is warm after
incremental fitting functions fit MetricsWarmupPeriod observations to the incremental model.

For more details on performance metrics options, see “Performance Metrics” on page 35-3544.
Example: 'MetricsWarmupPeriod',50
Data Types: single | double

MetricsWindowSize — Number of observations to use to compute window performance
metrics
200 (default) | positive integer

Number of observations to use to compute window performance metrics, specified as a positive
integer.

For more details on performance metrics options, see “Performance Metrics” on page 35-3544.
Example: 'MetricsWindowSize',100
Data Types: single | double
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Output Arguments
IncrementalMdl — Naive Bayes classification for incremental learning
incrementalClassificationNaiveBayes model object

Naive Bayes classification model for incremental learning, returned as an
incrementalClassificationNaiveBayes model object. IncrementalMdl is also configured to
generate predictions given new data (see predict).

incrementalLearner initializes IncrementalMdl for incremental learning using the model
information in Mdl. The following table shows the Mdl properties that incrementalLearner passes
to corresponding properties of IncrementalMdl. The function also uses other model properties
required to initialize IncrementalMdl, such as Y (class labels) and W (observation weights).

Property Description
CategoricalLevels Multivariate multinomial predictor levels, a cell array with

length equal to NumPredictors
CategoricalPredictors Categorical predictor indices, a vector of positive integers
ClassNames Class labels for binary classification, a list of names
Cost Misclassification costs, a numeric matrix
DistributionNames Names of the conditional distributions of the predictor variables,

either a cell array in which each cell contains 'normal' or
'mvmn', or the value 'mn'

DistributionParameters Parameter values of the conditional distributions of the predictor
variables, a cell array of length 2 numeric vectors (for details,
see DistributionParameters)

NumPredictors Number of predictors, a positive integer
Prior Prior class label distribution, a numeric vector
ScoreTransform Score transformation function, a function name or function

handle

More About
Incremental Learning

Incremental learning, or online learning, is a branch of machine learning concerned with processing
incoming data from a data stream, possibly given little to no knowledge of the distribution of the
predictor variables, aspects of the prediction or objective function (including tuning parameter
values), or whether the observations are labeled. Incremental learning differs from traditional
machine learning, where enough labeled data is available to fit to a model, perform cross-validation
to tune hyperparameters, and infer the predictor distribution.

Given incoming observations, an incremental learning model processes data in any of the following
ways, but usually in this order:

• Predict labels.
• Measure the predictive performance.
• Check for structural breaks or drift in the model.
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• Fit the model to the incoming observations.

For more details, see “Incremental Learning Overview” on page 28-2.

Algorithms
Performance Metrics

• The updateMetrics and updateMetricsAndFit functions track model performance metrics
(Metrics) from new data only when the incremental model is warm (IsWarm property is true).

• If you create an incremental model by using incrementalLearner and
MetricsWarmupPeriod is 0 (default for incrementalLearner), the model is warm at
creation.

• Otherwise, an incremental model becomes warm after fit or updateMetricsAndFit
performs both of these actions:

• Fit the incremental model to MetricsWarmupPeriod observations, which is the metrics
warm-up period.

• Fit the incremental model to all expected classes (see the MaxNumClasses and
ClassNames arguments of incrementalClassificationNaiveBayes).

• The Metrics property of the incremental model stores two forms of each performance metric as
variables (columns) of a table, Cumulative and Window, with individual metrics in rows. When
the incremental model is warm, updateMetrics and updateMetricsAndFit update the metrics
at the following frequencies:

• Cumulative — The functions compute cumulative metrics since the start of model
performance tracking. The functions update metrics every time you call the functions and base
the calculation on the entire supplied data set.

• Window — The functions compute metrics based on all observations within a window
determined by the MetricsWindowSize name-value argument. MetricsWindowSize also
determines the frequency at which the software updates Window metrics. For example, if
MetricsWindowSize is 20, the functions compute metrics based on the last 20 observations
in the supplied data (X((end – 20 + 1):end,:) and Y((end – 20 + 1):end)).

Incremental functions that track performance metrics within a window use the following
process:

1 Store a buffer of length MetricsWindowSize for each specified metric, and store a buffer
of observation weights.

2 Populate elements of the metrics buffer with the model performance based on batches of
incoming observations, and store corresponding observation weights in the weights buffer.

3 When the buffer is full, overwrite Mdl.Metrics.Window with the weighted average
performance in the metrics window. If the buffer overfills when the function processes a
batch of observations, the latest incoming MetricsWindowSize observations enter the
buffer, and the earliest observations are removed from the buffer. For example, suppose
MetricsWindowSize is 20, the metrics buffer has 10 values from a previously processed
batch, and 15 values are incoming. To compose the length 20 window, the functions use
the measurements from the 15 incoming observations and the latest 5 measurements from
the previous batch.

• The software omits an observation with a NaN score when computing the Cumulative and
Window performance metric values.
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Version History
Introduced in R2021a

See Also
Objects
incrementalClassificationNaiveBayes

Functions
fit | updateMetrics | updateMetricsAndFit | predict

Topics
“Incremental Learning Overview” on page 28-2
“Configure Incremental Learning Model” on page 28-9
“Incremental Learning with Naive Bayes and Heterogeneous Data” on page 28-52
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incrementalLearner
Package: 

Convert multiclass error-correcting output codes (ECOC) model to incremental learner

Syntax
IncrementalMdl = incrementalLearner(Mdl)
IncrementalMdl = incrementalLearner(Mdl,Name=Value)

Description
IncrementalMdl = incrementalLearner(Mdl) returns a multiclass error-correcting output
codes (ECOC) model for incremental learning on page 35-3554, IncrementalMdl, using the
hyperparameters and parameters of the traditionally trained ECOC model for multiclass
classification, Mdl. Because its property values reflect the knowledge gained from Mdl,
IncrementalMdl can predict labels given new observations, and it is warm, meaning that its
predictive performance is tracked.

IncrementalMdl = incrementalLearner(Mdl,Name=Value) uses additional options specified
by one or more name-value arguments. Some options require you to train IncrementalMdl before
its predictive performance is tracked. For example,
MetricsWarmupPeriod=50,MetricsWindowSize=100 specifies a preliminary incremental
training period of 50 observations before performance metrics are tracked, and specifies processing
100 observations before updating the window performance metrics.

Examples

Convert Traditionally Trained Model to Incremental Learner

Train a multiclass ECOC classification model by using fitcecoc, and then convert it to an
incremental learner.

Load Data

Load the human activity data set.

load humanactivity

For details on the data set, enter Description at the command line.

Train ECOC Model

Fit a multiclass ECOC classification model to the entire data set.

Mdl = fitcecoc(feat,actid);

Mdl is a ClassificationECOC model object representing a traditionally trained ECOC classification
model.
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Convert Trained Model

Convert the traditionally trained ECOC classification model to a model for incremental learning.

IncrementalMdl = incrementalLearner(Mdl) 

IncrementalMdl = 
  incrementalClassificationECOC

            IsWarm: 1
           Metrics: [1x2 table]
        ClassNames: [1 2 3 4 5]
    ScoreTransform: 'none'
    BinaryLearners: {10x1 cell}
        CodingName: 'onevsone'
          Decoding: 'lossweighted'

  Properties, Methods

IncrementalMdl is an incrementalClassificationECOC model object prepared for incremental
learning.

• The incrementalLearner function initializes the incremental learner by passing the coding
design and model parameters for binary learners to it, along with other information Mdl extracts
from the training data.

• IncrementalMdl is warm (IsWarm is 1), which means that incremental learning functions can
track performance metrics and make predictions.

Predict Responses

An incremental learner created from converting a traditionally trained model can generate
predictions without further processing.

Predict classification scores for all observations using both models.

[~,ttscores] = predict(Mdl,feat);
[~,ilcores] = predict(IncrementalMdl,feat);
compareScores = norm(ttscores - ilcores)

compareScores = 0

The difference between the scores generated by the models is 0.

Configure Performance Metric Options

Use a trained ECOC model to initialize an incremental learner. Prepare the incremental learner by
specifying a metrics warm-up period and a metrics window size.

Load the human activity data set.

load humanactivity

For details on the data set, enter Description at the command line

 incrementalLearner

35-3547



Randomly split the data in half: the first half for training a model traditionally, and the second half for
incremental learning.

n = numel(actid);

rng(1) % For reproducibility
cvp = cvpartition(n,Holdout=0.5);
idxtt = training(cvp);
idxil = test(cvp);

% First half of data
Xtt = feat(idxtt,:);
Ytt = actid(idxtt);

% Second half of data
Xil = feat(idxil,:);
Yil = actid(idxil);

Fit an ECOC model to the first half of the data.

Mdl = fitcecoc(Xtt,Ytt);

Convert the traditionally trained ECOC model to a model for incremental learning. Specify the
following:

• A performance metrics warm-up period of 2000 observations
• A metrics window size of 500 observations

IncrementalMdl = incrementalLearner(Mdl, ...
    MetricsWarmupPeriod=2000,MetricsWindowSize=500);

By default, incrementalClassificationECOC uses classification error loss to measure the
performance of the model.

Fit the incremental model to the second half of the data by using the updateMetricsAndFit
function. At each iteration:

• Simulate a data stream by processing 20 observations at a time.
• Overwrite the previous incremental model with a new one fitted to the incoming observations.
• Store the first model coefficient of the first binary learner β11, the cumulative metrics, and the

window metrics to see how they evolve during incremental learning.

% Preallocation
nil = numel(Yil);
numObsPerChunk = 20;
nchunk = ceil(nil/numObsPerChunk);
ce = array2table(zeros(nchunk,2),VariableNames=["Cumulative","Window"]);
beta11 = [IncrementalMdl.BinaryLearners{1}.Beta(1); zeros(nchunk,1)];  

% Incremental fitting
for j = 1:nchunk
    ibegin = min(nil,numObsPerChunk*(j-1) + 1);
    iend   = min(nil,numObsPerChunk*j);
    idx = ibegin:iend;    
    IncrementalMdl = updateMetricsAndFit(IncrementalMdl,Xil(idx,:),Yil(idx));
    ce{j,:} = IncrementalMdl.Metrics{"ClassificationError",:};
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    beta11(j+1) = IncrementalMdl.BinaryLearners{1}.Beta(1);
end

IncrementalMdl is an incrementalClassificationECOC model object trained on all the data in
the stream. During incremental learning and after the model is warmed up, updateMetricsAndFit
checks the performance of the model on the incoming observations, and then fits the model to those
observations.

To see how the performance metrics and β11 evolve during training, plot them on separate tiles.

t = tiledlayout(2,1);
nexttile
plot(beta11)
ylabel("\beta_{11}")
xlim([0 nchunk]);
xline(IncrementalMdl.MetricsWarmupPeriod/numObsPerChunk,"r-.");
nexttile
plot(ce.Variables);
xlim([0 nchunk]);
ylabel("Classification Error")
xline(IncrementalMdl.MetricsWarmupPeriod/numObsPerChunk,"r-.");
legend(ce.Properties.VariableNames,Location="best")
xlabel(t,"Iteration")

The plots indicate that updateMetricsAndFit performs the following actions:

• Fit β11 during all incremental learning iterations.
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• Compute the performance metrics after the metrics warm-up period (red vertical line) only.
• Compute the cumulative metrics during each iteration.
• Compute the window metrics after processing 500 observations (25 iterations).

Input Arguments
Mdl — Traditionally trained ECOC model for multiclass classification
ClassificationECOC model object | CompactClassificationECOC model object

Traditionally trained ECOC model for multiclass classification, specified as a ClassificationECOC
or CompactClassificationECOC model object returned by fitcecoc or compact, respectively.

Note

• When you train Mdl, you must specify the Learners name-value argument of fitcecoc to use
support vector machine (SVM) binary learner templates (templateSVM) or linear classification
model binary learner templates (templateLinear).

• Incremental learning functions support only numeric input predictor data. If Mdl was trained on
categorical data, you must prepare an encoded version of the categorical data to use incremental
learning functions. Use dummyvar to convert each categorical variable to a numeric matrix of
dummy variables. Then, concatenate all dummy variable matrices and any other numeric
predictors, in the same way that the training function encodes categorical data. For more details,
see “Dummy Variables” on page 2-49.

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.
Example: Decoding="lossbased",MetricsWindowSize=100 specifies to use the loss-based
decoding scheme and to process 100 observations before updating the window performance metrics.

ECOC Classifier Options

BinaryLoss — Binary learner loss function
Mdl.BinaryLoss (default) | "hamming" | "linear" | "logit" | "exponential" |
"binodeviance" | "hinge" | "quadratic" | function handle

Binary learner loss function, specified as a built-in loss function name or function handle.

• This table describes the built-in functions, where yj is the class label for a particular binary learner
(in the set {–1,1,0}), sj is the score for observation j, and g(yj,sj) is the binary loss formula.

Value Description Score Domain g(yj,sj)
"binodeviance" Binomial deviance (–∞,∞) log[1 + exp(–2yjsj)]/

[2log(2)]
"exponential" Exponential (–∞,∞) exp(–yjsj)/2
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Value Description Score Domain g(yj,sj)
"hamming" Hamming [0,1] or (–∞,∞) [1 – sign(yjsj)]/2
"hinge" Hinge (–∞,∞) max(0,1 – yjsj)/2
"linear" Linear (–∞,∞) (1 – yjsj)/2
"logit" Logistic (–∞,∞) log[1 + exp(–yjsj)]/

[2log(2)]
"quadratic" Quadratic [0,1] [1 – yj(2sj – 1)]2/2

The software normalizes binary losses so that the loss is 0.5 when yj = 0. Also, the software
calculates the mean binary loss for each class.

• For a custom binary loss function, for example customFunction, specify its function handle
BinaryLoss=@customFunction.

customFunction has this form:

bLoss = customFunction(M,s)

• M is the K-by-B coding matrix stored in Mdl.CodingMatrix.
• s is the 1-by-B row vector of classification scores.
• bLoss is the classification loss. This scalar aggregates the binary losses for every learner in a

particular class. For example, you can use the mean binary loss to aggregate the loss over the
learners for each class.

• K is the number of classes.
• B is the number of binary learners.

For an example of a custom binary loss function, see “Predict Test-Sample Labels of ECOC Model
Using Custom Binary Loss Function” on page 35-5751. This example is for a traditionally trained
model. You can define a custom loss function for incremental learning as shown in the example.

For more information, see “Binary Loss” on page 35-3555.
Data Types: char | string | function_handle

Decoding — Decoding scheme
"lossweighted" (default) | "lossbased"

Decoding scheme, specified as "lossweighted" or "lossbased".

The decoding scheme of an ECOC model specifies how the software aggregates the binary losses and
determines the predicted class for each observation. The software supports two decoding schemes:

• "lossweighted" — The predicted class of an observation corresponds to the class that produces
the minimum sum of the binary losses over binary learners.

• "lossbased" — The predicted class of an observation corresponds to the class that produces the
minimum average of the binary losses over binary learners.

For more information, see “Binary Loss” on page 35-3555.
Example: Decoding="lossbased"
Data Types: char | string
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Performance Metrics Options

Metrics — Model performance metrics to track during incremental learning
"classiferror" (default) | function handle | cell vector | structure array

Model performance metrics to track during incremental learning with the updateMetrics or
updateMetricsAndFit function, specified as "classiferror" (classification error on page 35-
3554, or misclassification error rate), a function handle (for example, @metricName), a structure
array of function handles, or a cell vector of names, function handles, or structure arrays.

To specify a custom function that returns a performance metric, use function handle notation. The
function must have this form.

metric = customMetric(C,S)

• The output argument metric is an n-by-1 numeric vector, where each element is the loss of the
corresponding observation in the data processed by the incremental learning functions during a
learning cycle.

• You specify the function name (here, customMetric).
• C is an n-by-K logical matrix with rows indicating the class to which the corresponding observation

belongs, where K is the number of classes. The column order corresponds to the class order in the
ClassNames property. Create C by setting C(p,q) = 1, if observation p is in class q, for each
observation in the specified data. Set the other element in row p to 0.

• S is an n-by-K numeric matrix of predicted classification scores. S is similar to the NegLoss output
of predict, where rows correspond to observations in the data and the column order
corresponds to the class order in the ClassNames property. S(p,q) is the classification score of
observation p being classified in class q.

To specify multiple custom metrics and assign a custom name to each, use a structure array. To
specify a combination of built-in and custom metrics, use a cell vector.

updateMetrics and updateMetricsAndFit store specified metrics in a table in the Metrics
property. The data type of Metrics determines the row names of the table.

Metrics Value
Data Type

Description of Metrics Property Row
Name

Example

String or character
vector

Name of corresponding built-in metric Row name for "classiferror" is
"ClassificationError"

Structure array Field name Row name for
struct(Metric1=@customMetric
1) is "Metric1"

Function handle to
function stored in
a program file

Name of function Row name for @customMetric is
"customMetric"

Anonymous
function

CustomMetric_j, where j is metric j in
Metrics

Row name for
@(C,S)customMetric(C,S)... is
CustomMetric_1

For more details on performance metrics options, see “Performance Metrics” on page 35-3556.
Example: Metrics=struct(Metric1=@customMetric1,Metric2=@customMetric2)

35 Functions

35-3552



Example:
Metrics={@customMetric1,@customMetric2,"classiferror",struct(Metric3=@customM
etric3)}

Data Types: char | string | struct | cell | function_handle

MetricsWarmupPeriod — Number of observations fit before tracking performance metrics
0 (default) | nonnegative integer

Number of observations the incremental model must be fit to before it tracks performance metrics in
its Metrics property, specified as a nonnegative integer. The incremental model is warm after
incremental fitting functions fit MetricsWarmupPeriod observations to the incremental model.

For more details on performance metrics options, see “Performance Metrics” on page 35-3556.
Example: MetricsWarmupPeriod=50
Data Types: single | double

MetricsWindowSize — Number of observations to use to compute window performance
metrics
200 (default) | positive integer

Number of observations to use to compute window performance metrics, specified as a positive
integer.

For more details on performance metrics options, see “Performance Metrics” on page 35-3556.
Example: MetricsWindowSize=250
Data Types: single | double

UpdateBinaryLearnerMetrics — Flag for updating metrics of binary learners
false or 0 (default) | true or 1

Flag for updating the metrics of binary learners, specified as logical 0 (false) or 1 (true).

If the value is true, the software tracks the performance metrics of binary learners using the
Metrics property of the binary learners, stored in the BinaryLearners property. For an example,
see “Configure Incremental Model to Track Performance Metrics for Model and Binary Learners” on
page 35-7684.
Example: UpdateBinaryLearnerMetrics=true
Data Types: logical

Output Arguments
IncrementalMdl — ECOC classification model for incremental learning
incrementalClassificationECOC model object

ECOC classification model for incremental learning, returned as an
incrementalClassificationECOC model object. IncrementalMdl is also configured to generate
predictions given new data (see predict).

To initialize IncrementalMdl for incremental learning, incrementalLearner passes the values of
the properties of Mdl in this table to corresponding properties of IncrementalMdl.
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Property Description
BinaryLearners Trained binary learners, a cell array of model objects. The learners

in Mdl are traditionally trained binary learners, and the learners in
IncrementalMdl are binary learners for incremental learning
converted from the traditionally trained binary learners.

BinaryLoss Binary learner loss function, a character vector. You can specify a
different value by using the BinaryLoss name-value argument.

ClassNames Class labels for binary classification, a list of names
CodingMatrix Class assignment codes for the binary learners, a numeric matrix
CodingName Coding design name, a character vector
NumPredictors Number of predictors, a positive integer
Prior Prior class label distribution, a numeric vector
ScoreTransform Score transformation function, a function name or function handle

Note that incrementalLearner does not use the Cost property of Mdl because
incrementalClassificationECOC does not support it.

More About
Incremental Learning

Incremental learning, or online learning, is a branch of machine learning concerned with processing
incoming data from a data stream, possibly given little to no knowledge of the distribution of the
predictor variables, aspects of the prediction or objective function (including tuning parameter
values), or whether the observations are labeled. Incremental learning differs from traditional
machine learning, where enough labeled data is available to fit to a model, perform cross-validation
to tune hyperparameters, and infer the predictor distribution.

Given incoming observations, an incremental learning model processes data in any of the following
ways, but usually in this order:

• Predict labels.
• Measure the predictive performance.
• Check for structural breaks or drift in the model.
• Fit the model to the incoming observations.

For more details, see “Incremental Learning Overview” on page 28-2.

Classification Error

The classification error has the form

L = ∑
j = 1

n
w je j,

where:

• wj is the weight for observation j. The software renormalizes the weights to sum to 1.
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• ej = 1 if the predicted class of observation j differs from its true class, and 0 otherwise.

In other words, the classification error is the proportion of observations misclassified by the classifier.

Binary Loss

The binary loss is a function of the class and classification score that determines how well a binary
learner classifies an observation into the class.

Suppose the following:

• mkj is element (k,j) of the coding design matrix M—that is, the code corresponding to class k of
binary learner j. M is a K-by-B matrix, where K is the number of classes, and B is the number of
binary learners.

• sj is the score of binary learner j for an observation.
• g is the binary loss function.
• k  is the predicted class for the observation.

The decoding scheme of an ECOC model specifies how the software aggregates the binary losses and
determines the predicted class for each observation. The software supports two decoding schemes:

• Loss-based decoding [3] (Decoding is 'lossbased') — The predicted class of an observation
corresponds to the class that produces the minimum average of the binary losses over all binary
learners.

k = argmin
k

1
B ∑j = 1

B
mk j g(mk j, s j) .

• Loss-weighted decoding [2] (Decoding is 'lossweighted') — The predicted class of an
observation corresponds to the class that produces the minimum average of the binary losses over
the binary learners for the corresponding class.

k = argmin
k

∑
j = 1

B
mk j g(mk j, s j)

∑ j = 1

B

mk j

.

The denominator corresponds to the number of binary learners for class k. [1] suggests that loss-
weighted decoding improves classification accuracy by keeping loss values for all classes in the
same dynamic range.

The predict, resubPredict, and kfoldPredict functions return the negated value of the
objective function of argmin as the second output argument (NegLoss) for each observation and
class.

This table summarizes the supported binary loss functions, where yj is a class label for a particular
binary learner (in the set {–1,1,0}), sj is the score for observation j, and g(yj,sj) is the binary loss
function.
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Value Description Score Domain g(yj,sj)
"binodeviance" Binomial deviance (–∞,∞) log[1 + exp(–2yjsj)]/

[2log(2)]
"exponential" Exponential (–∞,∞) exp(–yjsj)/2
"hamming" Hamming [0,1] or (–∞,∞) [1 – sign(yjsj)]/2
"hinge" Hinge (–∞,∞) max(0,1 – yjsj)/2
"linear" Linear (–∞,∞) (1 – yjsj)/2
"logit" Logistic (–∞,∞) log[1 + exp(–yjsj)]/

[2log(2)]
"quadratic" Quadratic [0,1] [1 – yj(2sj – 1)]2/2

The software normalizes binary losses so that the loss is 0.5 when yj = 0, and aggregates using the
average of the binary learners.

Do not confuse the binary loss with the overall classification loss (specified by the LossFun name-
value argument of the loss and predict object functions), which measures how well an ECOC
classifier performs as a whole.

Algorithms
Performance Metrics

• The updateMetrics and updateMetricsAndFit functions track model performance metrics
(Metrics) from new data only when the incremental model is warm (IsWarm property is true).

• If you create an incremental model by using incrementalLearner and
MetricsWarmupPeriod is 0 (default for incrementalLearner), the model is warm at
creation.

• Otherwise, an incremental model becomes warm after fit or updateMetricsAndFit
performs both of these actions:

• Fit the incremental model to MetricsWarmupPeriod observations, which is the metrics
warm-up period.

• Fit the incremental model to all expected classes (see the MaxNumClasses and
ClassNames arguments of incrementalClassificationECOC).

• The Metrics property of the incremental model stores two forms of each performance metric as
variables (columns) of a table, Cumulative and Window, with individual metrics in rows. When
the incremental model is warm, updateMetrics and updateMetricsAndFit update the metrics
at the following frequencies:

• Cumulative — The functions compute cumulative metrics since the start of model
performance tracking. The functions update metrics every time you call the functions and base
the calculation on the entire supplied data set.

• Window — The functions compute metrics based on all observations within a window
determined by MetricsWindowSize, which also determines the frequency at which the
software updates Window metrics. For example, if MetricsWindowSize is 20, the functions
compute metrics based on the last 20 observations in the supplied data (X((end – 20 +
1):end,:) and Y((end – 20 + 1):end)).
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Incremental functions that track performance metrics within a window use the following
process:

1 Store a buffer of length MetricsWindowSize for each specified metric, and store a buffer
of observation weights.

2 Populate elements of the metrics buffer with the model performance based on batches of
incoming observations, and store corresponding observation weights in the weights buffer.

3 When the buffer is full, overwrite the Window field of the Metrics property with the
weighted average performance in the metrics window. If the buffer overfills when the
function processes a batch of observations, the latest incoming MetricsWindowSize
observations enter the buffer, and the earliest observations are removed from the buffer.
For example, suppose MetricsWindowSize is 20, the metrics buffer has 10 values from a
previously processed batch, and 15 values are incoming. To compose the length 20
window, the functions use the measurements from the 15 incoming observations and the
latest 5 measurements from the previous batch.

• The software omits an observation with a NaN score when computing the Cumulative and
Window performance metric values.

Version History
Introduced in R2022a
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incrementalLearner
Convert binary classification support vector machine (SVM) model to incremental learner

Syntax
IncrementalMdl = incrementalLearner(Mdl)
IncrementalMdl = incrementalLearner(Mdl,Name,Value)

Description
IncrementalMdl = incrementalLearner(Mdl) returns a binary classification linear model for
incremental learning on page 35-3572, IncrementalMdl, using the traditionally trained linear SVM
model object or SVM model template object in Mdl.

If you specify a traditionally trained model, then its property values reflect the knowledge gained
from Mdl (parameters and hyperparameters of the model). Therefore, IncrementalMdl can predict
labels given new observations, and it is warm, meaning that its predictive performance is tracked.

IncrementalMdl = incrementalLearner(Mdl,Name,Value) uses additional options specified
by one or more name-value arguments. Some options require you to train IncrementalMdl before
its predictive performance is tracked. For example,
'MetricsWarmupPeriod',50,'MetricsWindowSize',100 specifies a preliminary incremental
training period of 50 observations before performance metrics are tracked, and specifies processing
100 observations before updating the window performance metrics.

Examples

Convert Traditionally Trained Model to Incremental Learner

Train an SVM model by using fitcsvm, and then convert it to an incremental learner.

Load and Preprocess Data

Load the human activity data set.

load humanactivity

For details on the data set, enter Description at the command line.

Responses can be one of five classes: Sitting, Standing, Walking, Running, or Dancing.
Dichotomize the response by identifying whether the subject is moving (actid > 2).

Y = actid > 2;

Train SVM Model

Fit an SVM model to the entire data set. Discard the support vectors (Alpha) from the model so that
the software uses the linear coefficients (Beta) for prediction.
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TTMdl = fitcsvm(feat,Y);
TTMdl = discardSupportVectors(TTMdl)

TTMdl = 
  ClassificationSVM
             ResponseName: 'Y'
    CategoricalPredictors: []
               ClassNames: [0 1]
           ScoreTransform: 'none'
          NumObservations: 24075
                     Beta: [60x1 double]
                     Bias: -6.4221
         KernelParameters: [1x1 struct]
           BoxConstraints: [24075x1 double]
          ConvergenceInfo: [1x1 struct]
          IsSupportVector: [24075x1 logical]
                   Solver: 'SMO'

  Properties, Methods

TTMdl is a ClassificationSVM model object representing a traditionally trained SVM model.

Convert Trained Model

Convert the traditionally trained SVM model to a binary classification linear model for incremental
learning.

IncrementalMdl = incrementalLearner(TTMdl) 

IncrementalMdl = 
  incrementalClassificationLinear

            IsWarm: 1
           Metrics: [1x2 table]
        ClassNames: [0 1]
    ScoreTransform: 'none'
              Beta: [60x1 double]
              Bias: -6.4221
           Learner: 'svm'

  Properties, Methods

IncrementalMdl is an incrementalClassificationLinear model object prepared for
incremental learning using SVM.

• The incrementalLearner function Initializes the incremental learner by passing learned
coefficients to it, along with other information TTMdl extracted from the training data.

• IncrementalMdl is warm (IsWarm is 1), which means that incremental learning functions can
start tracking performance metrics.

• The incrementalLearner function specifies to train the model using the adaptive scale-
invariant solver, whereas fitcsvm trained TTMdl using the SMO solver.
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Predict Responses

An incremental learner created from converting a traditionally trained model can generate
predictions without further processing.

Predict classification scores for all observations using both models.

[~,ttscores] = predict(TTMdl,feat);
[~,ilcores] = predict(IncrementalMdl,feat);
compareScores = norm(ttscores(:,1) - ilcores(:,1))

compareScores = 0

The difference between the scores generated by the models is 0.

Specify SGD Solver and Standardize Predictor Data

The default solver is the adaptive scale-invariant solver. If you specify this solver, you do not need to
tune any parameters for training. However, if you specify either the standard SGD or ASGD solver
instead, you can also specify an estimation period, during which the incremental fitting functions tune
the learning rate.

Load the human activity data set.

load humanactivity

For details on the data set, enter Description at the command line.

Responses can be one of five classes: Sitting, Standing, Walking, Running, and Dancing.
Dichotomize the response by identifying whether the subject is moving (actid > 2).

Y = actid > 2;

Randomly split the data in half: the first half for training a model traditionally, and the second half for
incremental learning.

n = numel(Y);

rng(1) % For reproducibility
cvp = cvpartition(n,'Holdout',0.5);
idxtt = training(cvp);
idxil = test(cvp);

% First half of data 
Xtt = feat(idxtt,:);
Ytt = Y(idxtt);

% Second half of data
Xil = feat(idxil,:);
Yil = Y(idxil);

Fit an SVM model to the first half of the data. Standardize the predictor data by setting
'Standardize',true.

TTMdl = fitcsvm(Xtt,Ytt,'Standardize',true);
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The Mu and Sigma properties of TTMdl contain the predictor data sample means and standard
deviations, respectively.

Suppose that the distribution of the predictors is not expected to change in the future. Convert the
traditionally trained SVM model to a binary classification linear model for incremental learning.
Specify the standard SGD solver and an estimation period of 2000 observations (the default is 1000
when a learning rate is required).

IncrementalMdl = incrementalLearner(TTMdl,'Solver','sgd','EstimationPeriod',2000);

IncrementalMdl is an incrementalClassificationLinear model object. Because the predictor
data of TTMdl is standardized (TTMdl.Mu and TTMdl.Sigma are nonempty), incrementalLearner
prepares incremental learning functions to standardize supplied predictor data by using the
previously learned moments (stored in IncrementalMdl.Mu and IncrementalMdl.Sigma).

Fit the incremental model to the second half of the data by using the fit function. At each iteration:

• Simulate a data stream by processing 10 observations at a time.
• Overwrite the previous incremental model with a new one fitted to the incoming observations.
• Store the initial learning rate and β1 to see how the coefficients and rate evolve during training.

% Preallocation
nil = numel(Yil);
numObsPerChunk = 10;
nchunk = floor(nil/numObsPerChunk);
learnrate = [IncrementalMdl.LearnRate; zeros(nchunk,1)];
beta1 = [IncrementalMdl.Beta(1); zeros(nchunk,1)];

% Incremental fitting
for j = 1:nchunk
    ibegin = min(nil,numObsPerChunk*(j-1) + 1);
    iend   = min(nil,numObsPerChunk*j);
    idx = ibegin:iend;
    IncrementalMdl = fit(IncrementalMdl,Xil(idx,:),Yil(idx));
    beta1(j + 1) = IncrementalMdl.Beta(1);
    learnrate(j + 1) = IncrementalMdl.LearnRate;
end

IncrementalMdl is an incrementalClassificationLinear model object trained on all the data
in the stream.

To see how the initial learning rate and β1 evolve during training, plot them on separate tiles.

t = tiledlayout(2,1);
nexttile
plot(beta1)
ylabel('\beta_1')
xline(IncrementalMdl.EstimationPeriod/numObsPerChunk,'r-.')
nexttile
plot(learnrate)
ylabel('Initial Learning Rate')
xline(IncrementalMdl.EstimationPeriod/numObsPerChunk,'r-.')
xlabel(t,'Iteration')
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The initial learning rate jumps from 0.7 to its autotuned value after the estimation period. During
training, the software uses a learning rate that gradually decays from the initial value specified in the
“LearnRateSchedule” on page 35-0  property of IncrementalMdl.

Because fit does not fit the model to the streaming data during the estimation period, β1 is constant
for the first 200 iterations (2000 observations). Then, β1 changes during incremental fitting.

Configure Performance Metric Options

Use a trained SVM model to initialize an incremental learner. Prepare the incremental learner by
specifying a metrics warm-up period, during which the updateMetricsAndFit function only fits the
model. Specify a metrics window size of 500 observations.

Load the human activity data set.

load humanactivity

For details on the data set, enter Description at the command line

Responses can be one of five classes: Sitting, Standing, Walking, Running, and Dancing.
Dichotomize the response by identifying whether the subject is moving (actid > 2).

Y = actid > 2;
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Because the data set is grouped by activity, shuffle it to reduce bias. Then, randomly split the data in
half: the first half for training a model traditionally, and the second half for incremental learning.

n = numel(Y);

rng(1) % For reproducibility
cvp = cvpartition(n,'Holdout',0.5);
idxtt = training(cvp);
idxil = test(cvp);
shuffidx = randperm(n);
X = feat(shuffidx,:);
Y = Y(shuffidx);

% First half of data
Xtt = X(idxtt,:);
Ytt = Y(idxtt);

% Second half of data
Xil = X(idxil,:);
Yil = Y(idxil);

Fit an SVM model to the first half of the data.

TTMdl = fitcsvm(Xtt,Ytt);

Convert the traditionally trained SVM model to a binary classification linear model for incremental
learning. Specify the following:

• A performance metrics warm-up period of 2000 observations
• A metrics window size of 500 observations
• Use of classification error and hinge loss to measure the performance of the model

IncrementalMdl = incrementalLearner(TTMdl,'MetricsWarmupPeriod',2000,'MetricsWindowSize',500,...
    'Metrics',["classiferror" "hinge"]);

Fit the incremental model to the second half of the data by using the updateMetricsAndFit
function. At each iteration:

• Simulate a data stream by processing 20 observations at a time.
• Overwrite the previous incremental model with a new one fitted to the incoming observations.
• Store β1, the cumulative metrics, and the window metrics to see how they evolve during

incremental learning.

% Preallocation
nil = numel(Yil);
numObsPerChunk = 20;
nchunk = ceil(nil/numObsPerChunk);
ce = array2table(zeros(nchunk,2),'VariableNames',["Cumulative" "Window"]);
hinge = array2table(zeros(nchunk,2),'VariableNames',["Cumulative" "Window"]);
beta1 = [IncrementalMdl.Beta(1); zeros(nchunk,1)];

% Incremental fitting
for j = 1:nchunk
    ibegin = min(nil,numObsPerChunk*(j-1) + 1);
    iend   = min(nil,numObsPerChunk*j);
    idx = ibegin:iend;    
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    IncrementalMdl = updateMetricsAndFit(IncrementalMdl,Xil(idx,:),Yil(idx));
    ce{j,:} = IncrementalMdl.Metrics{"ClassificationError",:};
    hinge{j,:} = IncrementalMdl.Metrics{"HingeLoss",:};
    beta1(j + 1) = IncrementalMdl.Beta(1);
end

IncrementalMdl is an incrementalClassificationLinear model object trained on all the data
in the stream. During incremental learning and after the model is warmed up,
updateMetricsAndFit checks the performance of the model on the incoming observations, and
then fits the model to those observations.

To see how the performance metrics and β1 evolve during training, plot them on separate tiles.

t = tiledlayout(3,1);
nexttile
plot(beta1)
ylabel('\beta_1')
xlim([0 nchunk]);
xline(IncrementalMdl.MetricsWarmupPeriod/numObsPerChunk,'r-.');
nexttile
h = plot(ce.Variables);
xlim([0 nchunk]);
ylabel('Classification Error')
xline(IncrementalMdl.MetricsWarmupPeriod/numObsPerChunk,'r-.');
legend(h,ce.Properties.VariableNames,'Location','northwest')
nexttile
h = plot(hinge.Variables);
xlim([0 nchunk]);
ylabel('Hinge Loss')
xline(IncrementalMdl.MetricsWarmupPeriod/numObsPerChunk,'r-.');
legend(h,hinge.Properties.VariableNames,'Location','northwest')
xlabel(t,'Iteration')
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The plot suggests that updateMetricsAndFit does the following:

• Fit β1 during all incremental learning iterations.

• Compute the performance metrics after the metrics warm-up period only.
• Compute the cumulative metrics during each iteration.
• Compute the window metrics after processing 500 observations (25 iterations).

Input Arguments
Mdl — Traditionally trained model or model template
ClassificationSVM model object | CompactClassificationSVM model object | SVM model
template

Traditionally trained linear SVM model or SVM model template, specified as a model object returned
by its training or processing function.

Model Object or Template Object Training or Processing Function
ClassificationSVM model object fitcsvm
CompactClassificationSVM model object fitcsvm or compact
SVM model template object templateSVM
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Note

Incremental learning functions support only numeric input predictor data. If Mdl was trained on
categorical data, you must prepare an encoded version of the categorical data to use incremental
learning functions. Use dummyvar to convert each categorical variable to a numeric matrix of dummy
variables. Then, concatenate all dummy variable matrices and any other numeric predictors, in the
same way that the training function encodes categorical data. For more details, see “Dummy
Variables” on page 2-49.

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: 'Solver','scale-invariant','MetricsWindowSize',100 specifies the adaptive
scale-invariant solver for objective optimization, and specifies processing 100 observations before
updating the window performance metrics.

General Options

Solver — Objective function minimization technique
'scale-invariant' (default) | 'sgd' | 'asgd'

Objective function minimization technique, specified as the comma-separated pair consisting of
'Solver' and a value in this table.

Value Description Notes
'scale-
invariant'

Adaptive scale-invariant solver
for incremental learning on
page 35-3572 [1]

• This algorithm is parameter free and can
adapt to differences in predictor scales. Try
this algorithm before using SGD or ASGD.

• To shuffle an incoming chunk of data before
the fit function fits the model, set Shuffle
to true.

'sgd' Stochastic gradient descent
(SGD) [3][2]

• To train effectively with SGD, standardize the
data and specify adequate values for
hyperparameters using options listed in “SGD
and ASGD Solver Options” on page 35-0 .

• The fit function always shuffles an incoming
chunk of data before fitting the model.

'asgd' Average stochastic gradient
descent (ASGD) [4]

• To train effectively with ASGD, standardize the
data and specify adequate values for
hyperparameters using options listed in “SGD
and ASGD Solver Options” on page 35-0 .

• The fit function always shuffles an incoming
chunk of data before fitting the model.

Example: 'Solver','sgd'
Data Types: char | string
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EstimationPeriod — Number of observations processed to estimate hyperparameters
nonnegative integer

Number of observations processed by the incremental model to estimate hyperparameters before
training or tracking performance metrics, specified as the comma-separated pair consisting of
'EstimationPeriod' and a nonnegative integer.

Note

• If Mdl is prepared for incremental learning (all hyperparameters required for training are
specified), incrementalLearner forces EstimationPeriod to 0.

• If Mdl is not prepared for incremental learning, incrementalLearner sets EstimationPeriod
to 1000.

For more details, see “Estimation Period” on page 35-3573.

Example: 'EstimationPeriod',100
Data Types: single | double

Standardize — Flag to standardize predictor data
'auto' (default) | false | true

Flag to standardize the predictor data, specified as the comma-separated pair consisting of
'Standardize' and a value in this table.

Value Description
'auto' incrementalLearner determines whether the

predictor variables need to be standardized. See
“Standardize Data” on page 35-3573.

true The software standardizes the predictor data.
false The software does not standardize the predictor

data.

Under some conditions, incrementalLearner can override your specification. For more details, see
“Standardize Data” on page 35-3573.
Example: 'Standardize',true
Data Types: logical | char | string

SGD and ASGD Solver Options

BatchSize — Mini-batch size
10 (default) | positive integer

Mini-batch size, specified as the comma-separated pair consisting of 'BatchSize' and a positive
integer. At each learning cycle during training, incrementalLearner uses BatchSize observations
to compute the subgradient.

The number of observations for the last mini-batch (last learning cycle in each function call of fit or
updateMetricsAndFit) can be smaller than BatchSize. For example, if you supply 25
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observations to fit or updateMetricsAndFit, the function uses 10 observations for the first two
learning cycles and uses 5 observations for the last learning cycle.
Example: 'BatchSize',1
Data Types: single | double

Lambda — Ridge (L2) regularization term strength
1e-5 (default) | nonnegative scalar

Ridge (L2) regularization term strength, specified as the comma-separated pair consisting of
'Lambda' and a nonnegative scalar.
Example: 'Lambda',0.01
Data Types: single | double

LearnRate — Initial learning rate
'auto' (default) | positive scalar

Initial learning rate, specified as the comma-separated pair consisting of 'LearnRate' and 'auto'
or a positive scalar. LearnRate controls the optimization step size by scaling the objective
subgradient.

The learning rate controls the optimization step size by scaling the objective subgradient. LearnRate
specifies an initial value for the learning rate, and LearnRateSchedule determines the learning
rate for subsequent learning cycles.

When you specify 'auto':

• The initial learning rate is 0.7.
• If EstimationPeriod > 0, fit and updateMetricsAndFit change the rate to 1/

sqrt(1+max(sum(X.^2,obsDim))) at the end of EstimationPeriod. The obsDim value is 1 if
the observations compose the columns of the predictor data; otherwise, the value is 2.

Example: 'LearnRate',0.001
Data Types: single | double | char | string

LearnRateSchedule — Learning rate schedule
'decaying' (default) | 'constant'

Learning rate schedule, specified as the comma-separated pair consisting of 'LearnRateSchedule'
and a value in this table, where LearnRate specifies the initial learning rate ɣ0.

Value Description
'constant' The learning rate is ɣ0 for all learning cycles.
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Value Description
'decaying' The learning rate at learning cycle t is

γt =
γ0

1 + λγ0t c .

• λ is the value of Lambda.
• If Solver is 'sgd', then c = 1.
• If Solver is 'asgd', then c is 0.75 [4].

Example: 'LearnRateSchedule','constant'
Data Types: char | string

Adaptive Scale-Invariant Solver Options

Shuffle — Flag for shuffling observations in batch
true (default) | false

Flag for shuffling the observations in the batch at each iteration, specified as the comma-separated
pair consisting of 'Shuffle' and a value in this table.

Value Description
true The software shuffles an incoming chunk of data

before the fit function fits the model. This
action reduces bias induced by the sampling
scheme.

false The software processes the data in the order
received.

Example: 'Shuffle',false
Data Types: logical

Performance Metrics Options

Metrics — Model performance metrics to track during incremental learning
"classiferror" (default) | string vector | function handle | cell vector | structure array |
"binodeviance" | "exponential" | "hinge" | "logit" | "quadratic"

Model performance metrics to track during incremental learning with the updateMetrics or
updateMetricsAndFit function, specified as a built-in loss function name, string vector of names,
function handle (@metricName), structure array of function handles, or cell vector of names, function
handles, or structure arrays.

The following table lists the built-in loss function names. You can specify more than one by using a
string vector.

Name Description
"binodeviance" Binomial deviance
"classiferror" Classification error
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Name Description
"exponential" Exponential loss
"hinge" Hinge loss
"logit" Logistic loss
"quadratic" Quadratic loss

For more details on the built-in loss functions, see loss.
Example: 'Metrics',["classiferror" "hinge"]

To specify a custom function that returns a performance metric, use function handle notation. The
function must have this form:

metric = customMetric(C,S)

• The output argument metric is an n-by-1 numeric vector, where each element is the loss of the
corresponding observation in the data processed by the incremental learning functions during a
learning cycle.

• You specify the function name (customMetric).
• C is an n-by-2 logical matrix with rows indicating the class to which the corresponding observation

belongs. The column order corresponds to the class order in the model for incremental learning.
Create C by setting C(p,q) = 1, if observation p is in class q, for each observation in the specified
data. Set the other element in row p to 0.

• S is an n-by-2 numeric matrix of predicted classification scores. S is similar to the score output of
predict, where rows correspond to observations in the data, and the column order corresponds
to the class order in the model for incremental learning. S(p,q) is the classification score of
observation p being classified in class q.

To specify multiple custom metrics and assign a custom name to each, use a structure array. To
specify a combination of built-in and custom metrics, use a cell vector.
Example: 'Metrics',struct('Metric1',@customMetric1,'Metric2',@customMetric2)
Example: 'Metrics',{@customMetric1 @customMetric2 'logit'
struct('Metric3',@customMetric3)}

updateMetrics and updateMetricsAndFit store specified metrics in a table in the property
IncrementalMdl.Metrics. The data type of Metrics determines the row names of the table.

'Metrics' Value
Data Type

Description of Metrics Property Row
Name

Example

String or character
vector

Name of corresponding built-in metric Row name for "classiferror" is
"ClassificationError"

Structure array Field name Row name for
struct('Metric1',@customMetr
ic1) is "Metric1"

Function handle to
function stored in
a program file

Name of function Row name for @customMetric is
"customMetric"
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'Metrics' Value
Data Type

Description of Metrics Property Row
Name

Example

Anonymous
function

CustomMetric_j, where j is metric j in
Metrics

Row name for
@(C,S)customMetric(C,S)... is
CustomMetric_1

For more details on performance metrics options, see “Performance Metrics” on page 35-3575.
Data Types: char | string | struct | cell | function_handle

MetricsWarmupPeriod — Number of observations fit before tracking performance metrics
0 (default) | nonnegative integer

Number of observations the incremental model must be fit to before it tracks performance metrics in
its Metrics property, specified as a nonnegative integer. The incremental model is warm after
incremental fitting functions fit (EstimationPeriod + MetricsWarmupPeriod) observations to the
incremental model.

For more details on performance metrics options, see “Performance Metrics” on page 35-3575.
Example: 'MetricsWarmupPeriod',50
Data Types: single | double

MetricsWindowSize — Number of observations to use to compute window performance
metrics
200 (default) | positive integer

Number of observations to use to compute window performance metrics, specified as a positive
integer.

For more details on performance metrics options, see “Performance Metrics” on page 35-3575.
Example: 'MetricsWindowSize',100
Data Types: single | double

Output Arguments
IncrementalMdl — Binary classification linear model for incremental learning
incrementalClassificationLinear model object

Binary classification linear model for incremental learning, returned as an
incrementalClassificationLinear model object. IncrementalMdl is also configured to
generate predictions given new data (see predict).

• If you specify a traditionally trained model object in Mdl, incrementalLearner passes the
values of the Mdl properties to corresponding properties of IncrementalMdl to initialize
IncrementalMdl for incremental learning.

Property Description
Beta Scaled linear model coefficients, Mdl.Beta/

Mdl.KernelParameters.Scale, a numeric
vector
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Property Description
Bias Model intercept, a numeric scalar
ClassNames Class labels for binary classification, two-

element list
Mu Predictor variable means, a numeric vector
NumPredictors Number of predictors, a positive integer
Prior Prior class label distribution, a numeric vector
Sigma Predictor variable standard deviations, a

numeric vector
ScoreTransform Score transformation function, a function

name or function handle

Note that incrementalLearner does not use the Cost property of the traditionally trained
model in Mdl because incrementalClassificationLinear does not support this property.

• If you specify an SVM template object in Mdl and set Standardize to 'auto' (default),
incrementalLearner determines whether to standardize the predictor variables depending on
the Standardize property of the model template.

More About
Incremental Learning

Incremental learning, or online learning, is a branch of machine learning concerned with processing
incoming data from a data stream, possibly given little to no knowledge of the distribution of the
predictor variables, aspects of the prediction or objective function (including tuning parameter
values), or whether the observations are labeled. Incremental learning differs from traditional
machine learning, where enough labeled data is available to fit to a model, perform cross-validation
to tune hyperparameters, and infer the predictor distribution.

Given incoming observations, an incremental learning model processes data in any of the following
ways, but usually in this order:

• Predict labels.
• Measure the predictive performance.
• Check for structural breaks or drift in the model.
• Fit the model to the incoming observations.

For more details, see “Incremental Learning Overview” on page 28-2.

Adaptive Scale-Invariant Solver for Incremental Learning

The adaptive scale-invariant solver for incremental learning, introduced in [1], is a gradient-descent-
based objective solver for training linear predictive models. The solver is hyperparameter free,
insensitive to differences in predictor variable scales, and does not require prior knowledge of the
distribution of the predictor variables. These characteristics make it well suited to incremental
learning.

The standard SGD and ASGD solvers are sensitive to differing scales among the predictor variables,
resulting in models that can perform poorly. To achieve better accuracy using SGD and ASGD, you
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can standardize the predictor data, and tune the regularization and learning rate parameters. For
traditional machine learning, enough data is available to enable hyperparameter tuning by cross-
validation and predictor standardization. However, for incremental learning, enough data might not
be available (for example, observations might be available only one at a time) and the distribution of
the predictors might be unknown. These characteristics make parameter tuning and predictor
standardization difficult or impossible to do during incremental learning.

The incremental fitting functions for classification fit and updateMetricsAndFit use the more
aggressive ScInOL2 version of the algorithm.

Algorithms
Estimation Period

During the estimation period, the incremental fitting functions fit and updateMetricsAndFit use
the first incoming EstimationPeriod observations to estimate (tune) hyperparameters required for
incremental training. Estimation occurs only when EstimationPeriod is positive. This table
describes the hyperparameters and when they are estimated, or tuned.

Hyperparameter Model Property Usage Conditions
Predictor means
and standard
deviations

Mu and Sigma Standardize
predictor data

The hyperparameters are estimated
when both of these conditions apply:

• When you set
'Standardize',true (see
“Standardize Data” on page 35-
3573)

• IncrementalMdl.Mu and
IncrementalMdl.Sigma are
empty arrays [].

Learning rate LearnRate Adjust solver step
size

The hyperparameter is estimated when
both of these conditions apply:

• You change the solver of Mdl to
SGD or ASGD (see Solver).

• You do not specify the
'LearnRate' name-value
argument as a positive scalar.

During the estimation period, fit does not fit the model, and updateMetricsAndFit does not fit
the model or update the performance metrics. At the end of the estimation period, the functions
update the properties that store the hyperparameters.

Standardize Data

If incremental learning functions are configured to standardize predictor variables, they do so using
the means and standard deviations stored in the Mu and Sigma properties of the incremental learning
model IncrementalMdl.

• If you standardized the predictor data when you trained the input model Mdl by using fitcsvm,
the following conditions apply:
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• incrementalLearner passes the means in Mdl.Mu and standard deviations in Mdl.Sigma to
the corresponding incremental learning model properties.

• Incremental learning functions always standardize the predictor data, regardless of the value
of the 'Standardize' name-value pair argument.

• When you set 'Standardize',true by using the Standardize name-value argument of
incrementalLearner or templateSVM, and the IncrementalMdl.Mu and
IncrementalMdl.Sigma properties are empty, the following conditions apply:

• If the estimation period is positive (see the EstimationPeriod property of
IncrementalMdl), incremental fitting functions estimate means and standard deviations
using the estimation period observations.

• If the estimation period is 0, incrementalLearner forces the estimation period to 1000.
Consequently, incremental fitting functions estimate new predictor variable means and
standard deviations during the forced estimation period.

• When you set 'Standardize','auto' (the default) for a traditionally trained linear SVM model
Mdl, the following conditions apply.

• If Mdl.Mu and Mdl.Sigma are empty, incremental learning functions do not standardize
predictor variables.

• Otherwise, incremental learning functions standardize the predictor variables using their
means and standard deviations in Mdl.Mu and Mdl.Sigma, respectively. Incremental fitting
functions do not estimate new means and standard deviations regardless of the length of the
estimation period.

• If you set 'Standardize','auto' (the default) for an SVM model template Mdl,
incrementalLearner determines whether to standardize the predictor variables depending on
the Standardize property of the model template.

• When incremental fitting functions estimate predictor means and standard deviations, the
functions compute weighted means and weighted standard deviations using the estimation period
observations. Specifically, the functions standardize predictor j (xj) using

x j
∗ =

x j− μ j
∗

σ j
∗ .

where

• xj is predictor j, and xjk is observation k of predictor j in the estimation period.
• μ j

∗ = 1
∑
k

wk
∗∑k wk

∗x jk .

• σ j
∗ 2 = 1

∑
k

wk
∗∑k wk

∗ x jk− μ j
∗ 2 .

•
w j
∗ =

w j
∑

∀ j ∈ Class k
w j

pk, where

• pk is the prior probability of class k (Prior property of the incremental model).
• wj is observation weight j.
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Performance Metrics

• The updateMetrics and updateMetricsAndFit functions are incremental learning functions
that track model performance metrics ('Metrics') from new data when the incremental model is
warm (IsWarm property). An incremental model becomes warm after fit or
updateMetricsAndFit fit the incremental model to 'MetricsWarmupPeriod' observations,
which is the metrics warm-up period.

If 'EstimationPeriod' > 0, the functions estimate hyperparameters before fitting the model to
data. Therefore, the functions must process an additional EstimationPeriod observations
before the model starts the metrics warm-up period.

• The Metrics property of the incremental model stores two forms of each performance metric as
variables (columns) of a table, Cumulative and Window, with individual metrics in rows. When
the incremental model is warm, updateMetrics and updateMetricsAndFit update the metrics
at the following frequencies:

• Cumulative — The functions compute cumulative metrics since the start of model
performance tracking. The functions update metrics every time you call the functions and base
the calculation on the entire supplied data set.

• Window — The functions compute metrics based on all observations within a window
determined by the 'MetricsWindowSize' name-value pair argument.
'MetricsWindowSize' also determines the frequency at which the software updates Window
metrics. For example, if MetricsWindowSize is 20, the functions compute metrics based on
the last 20 observations in the supplied data (X((end – 20 + 1):end,:) and Y((end – 20
+ 1):end)).

Incremental functions that track performance metrics within a window use the following
process:

1 Store a buffer of length MetricsWindowSize for each specified metric, and store a buffer
of observation weights.

2 Populate elements of the metrics buffer with the model performance based on batches of
incoming observations, and store corresponding observation weights in the weights buffer.

3 When the buffer is filled, overwrite IncrementalMdl.Metrics.Window with the
weighted average performance in the metrics window. If the buffer is overfilled when the
function processes a batch of observations, the latest incoming MetricsWindowSize
observations enter the buffer, and the earliest observations are removed from the buffer.
For example, suppose MetricsWindowSize is 20, the metrics buffer has 10 values from a
previously processed batch, and 15 values are incoming. To compose the length 20
window, the functions use the measurements from the 15 incoming observations and the
latest 5 measurements from the previous batch.

• The software omits an observation with a NaN score when computing the Cumulative and
Window performance metric values.

Version History
Introduced in R2020b
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incrementalLearner
Convert support vector machine (SVM) regression model to incremental learner

Syntax
IncrementalMdl = incrementalLearner(Mdl)
IncrementalMdl = incrementalLearner(Mdl,Name,Value)

Description
IncrementalMdl = incrementalLearner(Mdl) returns a linear regression model for
incremental learning on page 35-3591, IncrementalMdl, using the hyperparameters and
coefficients of the traditionally trained linear SVM model for regression, Mdl. Because its property
values reflect the knowledge gained from Mdl, IncrementalMdl can predict labels given new
observations, and it is warm, meaning that its predictive performance is tracked.

IncrementalMdl = incrementalLearner(Mdl,Name,Value) uses additional options specified
by one or more name-value arguments. Some options require you to train IncrementalMdl before
its predictive performance is tracked. For example,
'MetricsWarmupPeriod',50,'MetricsWindowSize',100 specifies a preliminary incremental
training period of 50 observations before performance metrics are tracked, and specifies processing
100 observations before updating the window performance metrics.

Examples

Convert Traditionally Trained Model to Incremental Learner

Train an SVM regression model by using fitrsvm, and then convert it to an incremental learner.

Load and Preprocess Data

Load the 2015 NYC housing data set. For more details on the data, see NYC Open Data.

load NYCHousing2015

Extract the response variable SALEPRICE from the table. For numerical stability, scale SALEPRICE by
1e6.

Y = NYCHousing2015.SALEPRICE/1e6;
NYCHousing2015.SALEPRICE = [];

Create dummy variable matrices from the categorical predictors.

catvars = ["BOROUGH" "BUILDINGCLASSCATEGORY" "NEIGHBORHOOD"];
dumvarstbl = varfun(@(x)dummyvar(categorical(x)),NYCHousing2015,...
    'InputVariables',catvars);
dumvarmat = table2array(dumvarstbl);
NYCHousing2015(:,catvars) = [];

Treat all other numeric variables in the table as linear predictors of sales price. Concatenate the
matrix of dummy variables to the rest of the predictor data.
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idxnum = varfun(@isnumeric,NYCHousing2015,'OutputFormat','uniform');
X = [dumvarmat NYCHousing2015{:,idxnum}];

Train SVM Regression Model

Fit an SVM regression model to 5000 randomly drawn observations from the data set. Discard the
support vectors (Alpha) from the model so that the software uses linear coefficients (Beta) for
prediction.

N = numel(Y);
n = 5000;
rng(1); % For reproducibility
idx = randsample(N,n);

TTMdl = fitrsvm(X(idx,:),Y(idx));
TTMdl = discardSupportVectors(TTMdl)

TTMdl = 
  RegressionSVM
             ResponseName: 'Y'
    CategoricalPredictors: []
        ResponseTransform: 'none'
                     Beta: [312x1 double]
                     Bias: 64.5811
         KernelParameters: [1x1 struct]
          NumObservations: 5000
           BoxConstraints: [5000x1 double]
          ConvergenceInfo: [1x1 struct]
          IsSupportVector: [5000x1 logical]
                   Solver: 'SMO'

  Properties, Methods

TTMdl is a RegressionSVM model object representing a traditionally trained SVM regression model.

Convert Trained Model

Convert the traditionally trained SVM regression model to a linear regression model for incremental
learning.

IncrementalMdl = incrementalLearner(TTMdl)

IncrementalMdl = 
  incrementalRegressionLinear

               IsWarm: 1
              Metrics: [1x2 table]
    ResponseTransform: 'none'
                 Beta: [312x1 double]
                 Bias: 64.5811
              Learner: 'svm'

  Properties, Methods
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IncrementalMdl is an incrementalRegressionLinear model object prepared for incremental
learning using SVM.

• The incrementalLearner function Initializes the incremental learner by passing learned
coefficients to it, along with other information TTMdl extracted from the training data.

• IncrementalMdl is warm (IsWarm is 1), which means that incremental learning functions can
start tracking performance metrics.

• The incrementalLearner function trains the model using the adaptive scale-invariant solver,
whereas fitrsvm trained TTMdl using the SMO solver.

Predict Responses

An incremental learner created from converting a traditionally trained model can generate
predictions without further processing.

Predict sales prices for all observations using both models.

ttyfit = predict(TTMdl,X);
ilyfit = predict(IncrementalMdl,X);
compareyfit = norm(ttyfit - ilyfit)

compareyfit = 0

The difference between the fitted values generated by the models is 0.

Specify SGD Solver

The default solver is the adaptive scale-invariant solver. If you specify this solver, you do not need to
tune any parameters for training. However, if you specify either the standard SGD or ASGD solver
instead, you can also specify an estimation period, during which the incremental fitting functions tune
the learning rate.

Load and shuffle the 2015 NYC housing data set. For more details on the data, see NYC Open Data.

load NYCHousing2015

rng(1) % For reproducibility
n = size(NYCHousing2015,1);
shuffidx = randsample(n,n);
NYCHousing2015 = NYCHousing2015(shuffidx,:);

Extract the response variable SALEPRICE from the table. For numerical stability, scale SALEPRICE by
1e6.

Y = NYCHousing2015.SALEPRICE/1e6;
NYCHousing2015.SALEPRICE = [];

Create dummy variable matrices from the categorical predictors.

catvars = ["BOROUGH" "BUILDINGCLASSCATEGORY" "NEIGHBORHOOD"];
dumvarstbl = varfun(@(x)dummyvar(categorical(x)),NYCHousing2015,...
    'InputVariables',catvars);
dumvarmat = table2array(dumvarstbl);
NYCHousing2015(:,catvars) = [];
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Treat all other numeric variables in the table as linear predictors of sales price. Concatenate the
matrix of dummy variables to the rest of the predictor data.

idxnum = varfun(@isnumeric,NYCHousing2015,'OutputFormat','uniform');
X = [dumvarmat NYCHousing2015{:,idxnum}];

Randomly partition the data into 5% and 95% sets: the first set for training a model traditionally, and
the second set for incremental learning.

cvp = cvpartition(n,'Holdout',0.95);
idxtt = training(cvp);
idxil = test(cvp);

% 5% set for traditional training 
Xtt = X(idxtt,:);
Ytt = Y(idxtt);

% 95% set for incremental learning
Xil = X(idxil,:);
Yil = Y(idxil);

Fit an SVM regression model to 5% of the data.

TTMdl = fitrsvm(Xtt,Ytt);

Convert the traditionally trained SVM regression model to a linear regression model for incremental
learning. Specify the standard SGD solver and an estimation period of 2e4 observations (the default
is 1000 when a learning rate is required).

IncrementalMdl = incrementalLearner(TTMdl,'Solver','sgd','EstimationPeriod',2e4);

IncrementalMdl is an incrementalRegressionLinear model object.

Fit the incremental model to the rest of the data by using the fit function. At each iteration:

• Simulate a data stream by processing 10 observations at a time.
• Overwrite the previous incremental model with a new one fitted to the incoming observations.
• Store the initial learning rate and β1 to see how the coefficients and rate evolve during training.

% Preallocation
nil = numel(Yil);
numObsPerChunk = 10;
nchunk = floor(nil/numObsPerChunk);
learnrate = [IncrementalMdl.LearnRate; zeros(nchunk,1)];
beta1 = [IncrementalMdl.Beta(1); zeros(nchunk,1)];

% Incremental fitting
for j = 1:nchunk
    ibegin = min(nil,numObsPerChunk*(j-1) + 1);
    iend   = min(nil,numObsPerChunk*j);
    idx = ibegin:iend;
    IncrementalMdl = fit(IncrementalMdl,Xil(idx,:),Yil(idx));
    beta1(j + 1) = IncrementalMdl.Beta(1);
    learnrate(j + 1) = IncrementalMdl.LearnRate;
end
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IncrementalMdl is an incrementalRegressionLinear model object trained on all the data in
the stream.

To see how the initial learning rate and β1 evolve during training, plot them on separate tiles.

t = tiledlayout(2,1);
nexttile
plot(beta1)
hold on
ylabel('\beta_1')
xline(IncrementalMdl.EstimationPeriod/numObsPerChunk,'r-.')
nexttile
plot(learnrate)
ylabel('Initial Learning Rate')
xline(IncrementalMdl.EstimationPeriod/numObsPerChunk,'r-.')
xlabel(t,'Iteration')

The initial learning rate jumps from 0.7 to its autotuned value after the estimation period. During
training, the software uses a learning rate that gradually decays from the initial value specified in the
“LearnRateSchedule” on page 35-0  property of IncrementalMdl.

Because fit does not fit the model to the streaming data during the estimation period, β1 is constant
for the first 2000 iterations (20,000 observations). Then, β1 changes slightly as fit fits the model to
each new chunk of 10 observations.
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Configure Performance Metric Options

Use a trained SVM regression model to initialize an incremental learner. Prepare the incremental
learner by specifying a metrics warm-up period, during which the updateMetricsAndFit function
only fits the model. Specify a metrics window size of 500 observations.

Load the robot arm data set.

load robotarm

For details on the data set, enter Description at the command line.

Randomly partition the data into 5% and 95% sets: the first set for training a model traditionally, and
the second set for incremental learning.

n = numel(ytrain);

rng(1) % For reproducibility
cvp = cvpartition(n,'Holdout',0.95);
idxtt = training(cvp);
idxil = test(cvp);

% 5% set for traditional training
Xtt = Xtrain(idxtt,:);
Ytt = ytrain(idxtt);

% 95% set for incremental learning
Xil = Xtrain(idxil,:);
Yil = ytrain(idxil);

Fit an SVM regression model to the first set.

TTMdl = fitrsvm(Xtt,Ytt);

Convert the traditionally trained SVM regression model to a linear regression model for incremental
learning. Specify the following:

• A performance metrics warm-up period of 2000 observations.
• A metrics window size of 500 observations.
• Use of epsilon insensitive loss, MSE, and mean absolute error (MAE) to measure the performance

of the model. The software supports epsilon insensitive loss and MSE. Create an anonymous
function that measures the absolute error of each new observation. Create a structure array
containing the name MeanAbsoluteError and its corresponding function.

maefcn = @(z,zfit)abs(z - zfit);
maemetric = struct("MeanAbsoluteError",maefcn);
IncrementalMdl = incrementalLearner(TTMdl,'MetricsWarmupPeriod',2000,'MetricsWindowSize',500,...
    'Metrics',{'epsiloninsensitive' 'mse' maemetric});

Fit the incremental model to the rest of the data by using the updateMetricsAndFit function. At
each iteration:

• Simulate a data stream by processing 50 observations at a time.
• Overwrite the previous incremental model with a new one fitted to the incoming observations.
• Store the estimated coefficient β10, the cumulative metrics, and the window metrics to see how

they evolve during incremental learning.

35 Functions

35-3582



% Preallocation
nil = numel(Yil);
numObsPerChunk = 50;
nchunk = floor(nil/numObsPerChunk);
ei = array2table(zeros(nchunk,2),'VariableNames',["Cumulative" "Window"]);
mse = array2table(zeros(nchunk,2),'VariableNames',["Cumulative" "Window"]);
mae = array2table(zeros(nchunk,2),'VariableNames',["Cumulative" "Window"]);
beta1 = [IncrementalMdl.Beta(10); zeros(nchunk,1)];

% Incremental fitting
for j = 1:nchunk
    ibegin = min(nil,numObsPerChunk*(j-1) + 1);
    iend   = min(nil,numObsPerChunk*j);
    idx = ibegin:iend;    
    IncrementalMdl = updateMetricsAndFit(IncrementalMdl,Xil(idx,:),Yil(idx));
    ei{j,:} = IncrementalMdl.Metrics{"EpsilonInsensitiveLoss",:};
    mse{j,:} = IncrementalMdl.Metrics{"MeanSquaredError",:};
    mae{j,:} = IncrementalMdl.Metrics{"MeanAbsoluteError",:};
    beta1(j + 1) = IncrementalMdl.Beta(10);
end

IncrementalMdl is an incrementalRegressionLinear model object trained on all the data in
the stream. During incremental learning and after the model is warmed up, updateMetricsAndFit
checks the performance of the model on the incoming observations, and then fits the model to those
observations.

To see how the performance metrics and β10 evolve during training, plot them on separate tiles.

tiledlayout(2,2)
nexttile
plot(beta1)
ylabel('\beta_{10}')
xlim([0 nchunk])
xline(IncrementalMdl.MetricsWarmupPeriod/numObsPerChunk,'r-.')
xlabel('Iteration')
nexttile
h = plot(ei.Variables);
xlim([0 nchunk])
ylabel('Epsilon Insensitive Loss')
xline(IncrementalMdl.MetricsWarmupPeriod/numObsPerChunk,'r-.')
legend(h,ei.Properties.VariableNames)
xlabel('Iteration')
nexttile
h = plot(mse.Variables);
xlim([0 nchunk])
ylabel('MSE')
xline(IncrementalMdl.MetricsWarmupPeriod/numObsPerChunk,'r-.')
legend(h,mse.Properties.VariableNames)
xlabel('Iteration')
nexttile
h = plot(mae.Variables);
xlim([0 nchunk])
ylabel('MAE')
xline(IncrementalMdl.MetricsWarmupPeriod/numObsPerChunk,'r-.')
legend(h,mae.Properties.VariableNames)
xlabel('Iteration')
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The plot suggests that updateMetricsAndFit does the following:

• Fit β10 during all incremental learning iterations.

• Compute the performance metrics after the metrics warm-up period only.
• Compute the cumulative metrics during each iteration.
• Compute the window metrics after processing 500 observations.

Input Arguments
Mdl — Traditionally trained linear SVM model for regression
RegressionSVM model object | CompactRegressionSVM model object

Traditionally trained linear SVM model for regression, specified as a model object returned by its
training or processing function.

Model Object Training or Processing Function
RegressionSVM fitrsvm
CompactRegressionSVM fitrsvm or compact

Note
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Incremental learning functions support only numeric input predictor data. If Mdl was trained on
categorical data, you must prepare an encoded version of the categorical data to use incremental
learning functions. Use dummyvar to convert each categorical variable to a numeric matrix of dummy
variables. Then, concatenate all dummy variable matrices and any other numeric predictors, in the
same way that the training function encodes categorical data. For more details, see “Dummy
Variables” on page 2-49.

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: 'Solver','scale-invariant','MetricsWindowSize',100 specifies the adaptive
scale-invariant solver for objective optimization, and specifies processing 100 observations before
updating the window performance metrics.

General Options

Solver — Objective function minimization technique
'scale-invariant' (default) | 'sgd' | 'asgd'

Objective function minimization technique, specified as the comma-separated pair consisting of
'Solver' and a value in this table.

Value Description Notes
'scale-
invariant'

Adaptive scale-invariant solver
for incremental learning on
page 35-3591 [1]

• This algorithm is parameter free and can
adapt to differences in predictor scales. Try
this algorithm before using SGD or ASGD.

• To shuffle an incoming chunk of data before
the fit function fits the model, set Shuffle
to true.

'sgd' Stochastic gradient descent
(SGD) [3][2]

• To train effectively with SGD, standardize the
data and specify adequate values for
hyperparameters using options listed in “SGD
and ASGD Solver Options” on page 35-0 .

• The fit function always shuffles an incoming
chunk of data before fitting the model.

'asgd' Average stochastic gradient
descent (ASGD) [4]

• To train effectively with ASGD, standardize the
data and specify adequate values for
hyperparameters using options listed in “SGD
and ASGD Solver Options” on page 35-0 .

• The fit function always shuffles an incoming
chunk of data before fitting the model.

Example: 'Solver','sgd'
Data Types: char | string
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EstimationPeriod — Number of observations processed to estimate hyperparameters
nonnegative integer

Number of observations processed by the incremental model to estimate hyperparameters before
training or tracking performance metrics, specified as the comma-separated pair consisting of
'EstimationPeriod' and a nonnegative integer.

Note

• If Mdl is prepared for incremental learning (all hyperparameters required for training are
specified), incrementalLearner forces EstimationPeriod to 0.

• If Mdl is not prepared for incremental learning, incrementalLearner sets EstimationPeriod
to 1000.

For more details, see “Estimation Period” on page 35-3591.

Example: 'EstimationPeriod',100
Data Types: single | double

Standardize — Flag to standardize predictor data
'auto' (default) | false | true

Flag to standardize the predictor data, specified as the comma-separated pair consisting of
'Standardize' and a value in this table.

Value Description
'auto' incrementalLearner determines whether the

predictor variables need to be standardized. See
“Standardize Data” on page 35-3592.

true The software standardizes the predictor data.
false The software does not standardize the predictor

data.

Under some conditions, incrementalLearner can override your specification. For more details, see
“Standardize Data” on page 35-3592.
Example: 'Standardize',true
Data Types: logical | char | string

SGD and ASGD Solver Options

BatchSize — Mini-batch size
10 (default) | positive integer

Mini-batch size, specified as the comma-separated pair consisting of 'BatchSize' and a positive
integer. At each learning cycle during training, incrementalLearner uses BatchSize observations
to compute the subgradient.

The number of observations for the last mini-batch (last learning cycle in each function call of fit or
updateMetricsAndFit) can be smaller than BatchSize. For example, if you supply 25
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observations to fit or updateMetricsAndFit, the function uses 10 observations for the first two
learning cycles and uses 5 observations for the last learning cycle.
Example: 'BatchSize',1
Data Types: single | double

Lambda — Ridge (L2) regularization term strength
1e-5 (default) | nonnegative scalar

Ridge (L2) regularization term strength, specified as the comma-separated pair consisting of
'Lambda' and a nonnegative scalar.
Example: 'Lambda',0.01
Data Types: single | double

LearnRate — Initial learning rate
'auto' (default) | positive scalar

Initial learning rate, specified as the comma-separated pair consisting of 'LearnRate' and 'auto'
or a positive scalar. LearnRate controls the optimization step size by scaling the objective
subgradient.

The learning rate controls the optimization step size by scaling the objective subgradient. LearnRate
specifies an initial value for the learning rate, and LearnRateSchedule determines the learning
rate for subsequent learning cycles.

When you specify 'auto':

• The initial learning rate is 0.7.
• If EstimationPeriod > 0, fit and updateMetricsAndFit change the rate to 1/

sqrt(1+max(sum(X.^2,obsDim))) at the end of EstimationPeriod. The obsDim value is 1 if
the observations compose the columns of the predictor data; otherwise, the value is 2.

Example: 'LearnRate',0.001
Data Types: single | double | char | string

LearnRateSchedule — Learning rate schedule
'decaying' (default) | 'constant'

Learning rate schedule, specified as the comma-separated pair consisting of 'LearnRateSchedule'
and a value in this table, where LearnRate specifies the initial learning rate ɣ0.

Value Description
'constant' The learning rate is ɣ0 for all learning cycles.
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Value Description
'decaying' The learning rate at learning cycle t is

γt =
γ0

1 + λγ0t c .

• λ is the value of Lambda.
• If Solver is 'sgd', c = 1.
• If Solver is 'asgd':

• c = 2/3 if Learner is 'leastsquares'.
• c = 3/4 if Learner is 'svm' [4].

Example: 'LearnRateSchedule','constant'
Data Types: char | string

Adaptive Scale-Invariant Solver Options

Shuffle — Flag for shuffling observations in batch
true (default) | false

Flag for shuffling the observations in the batch at each iteration, specified as the comma-separated
pair consisting of 'Shuffle' and a value in this table.

Value Description
true The software shuffles an incoming chunk of data

before the fit function fits the model. This
action reduces bias induced by the sampling
scheme.

false The software processes the data in the order
received.

Example: 'Shuffle',false
Data Types: logical

Performance Metrics Options

Metrics — Model performance metrics to track during incremental learning
"epsiloninsensitive" (default) | string vector | function handle | cell vector | structure array |
"mse" | ...

Model performance metrics to track during incremental learning with updateMetrics and
updateMetricsAndFit, specified as the comma-separated pair consisting of 'Metrics' and a
built-in loss function name, string vector of names, function handle (@metricName), structure array
of function handles, or cell vector of names, function handles, or structure arrays.

The following table lists the built-in loss function names. You can specify more than one by using a
string vector.
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Name Description
"epsiloninsensitive" Epsilon insensitive loss
"mse" Weighted mean squared error

For more details on the built-in loss functions, see loss.
Example: 'Metrics',["epsiloninsensitive" "mse"]

To specify a custom function that returns a performance metric, use function handle notation. The
function must have this form:

metric = customMetric(Y,YFit)

• The output argument metric is an n-by-1 numeric vector, where each element is the loss of the
corresponding observation in the data processed by the incremental learning functions during a
learning cycle.

• You select the function name (customMetric).
• Y is a length n numeric vector of observed responses, where n is the sample size.
• YFit is a length n numeric vector of corresponding predicted responses.

To specify multiple custom metrics and assign a custom name to each, use a structure array. To
specify a combination of built-in and custom metrics, use a cell vector.
Example: 'Metrics',struct('Metric1',@customMetric1,'Metric2',@customMetric2)
Example: 'Metrics',{@customMetric1 @customMetric2 'mse'
struct('Metric3',@customMetric3)}

updateMetrics and updateMetricsAndFit store specified metrics in a table in the property
IncrementalMdl.Metrics. The data type of Metrics determines the row names of the table.

'Metrics' Value
Data Type

Description of Metrics Property Row
Name

Example

String or character
vector

Name of corresponding built-in metric Row name for
"epsiloninsensitive" is
"EpsilonInsensitiveLoss"

Structure array Field name Row name for
struct('Metric1',@customMetr
ic1) is "Metric1"

Function handle to
function stored in
a program file

Name of function Row name for @customMetric is
"customMetric"

Anonymous
function

CustomMetric_j, where j is metric j in
Metrics

Row name for
@(Y,YFit)customMetric(Y,YFit
)... is CustomMetric_1

For more details on performance metrics options, see “Performance Metrics” on page 35-3593.
Data Types: char | string | struct | cell | function_handle

MetricsWarmupPeriod — Number of observations fit before tracking performance metrics
0 (default) | nonnegative integer
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Number of observations the incremental model must be fit to before it tracks performance metrics in
its Metrics property, specified as a nonnegative integer. The incremental model is warm after
incremental fitting functions fit (EstimationPeriod + MetricsWarmupPeriod) observations to the
incremental model.

For more details on performance metrics options, see “Performance Metrics” on page 35-3593.
Example: 'MetricsWarmupPeriod',50
Data Types: single | double

MetricsWindowSize — Number of observations to use to compute window performance
metrics
200 (default) | positive integer

Number of observations to use to compute window performance metrics, specified as a positive
integer.

For more details on performance metrics options, see “Performance Metrics” on page 35-3593.
Example: 'MetricsWindowSize',100
Data Types: single | double

Output Arguments
IncrementalMdl — Linear regression model for incremental learning
incrementalRegressionLinear model object

Linear regression model for incremental learning, returned as an incrementalRegressionLinear
model object. IncrementalMdl is also configured to generate predictions given new data (see
predict).

To initialize IncrementalMdl for incremental learning, incrementalLearner passes the values of
the Mdl properties in this table to corresponding properties of IncrementalMdl.

Property Description
Beta Scaled linear model coefficients, Mdl.Beta/

Mdl.KernelParameters.Scale, a numeric vector
Bias Model intercept, a numeric scalar
Epsilon Half the width of the epsilon insensitive band, a nonnegative

scalar
Mu Predictor variable means, a numeric vector
NumPredictors Number of predictors, a positive integer
ResponseTransform Response transformation function, a function name or function

handle
Sigma Predictor variable standard deviations, a numeric vector
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More About
Incremental Learning

Incremental learning, or online learning, is a branch of machine learning concerned with processing
incoming data from a data stream, possibly given little to no knowledge of the distribution of the
predictor variables, aspects of the prediction or objective function (including tuning parameter
values), or whether the observations are labeled. Incremental learning differs from traditional
machine learning, where enough labeled data is available to fit to a model, perform cross-validation
to tune hyperparameters, and infer the predictor distribution.

Given incoming observations, an incremental learning model processes data in any of the following
ways, but usually in this order:

• Predict labels.
• Measure the predictive performance.
• Check for structural breaks or drift in the model.
• Fit the model to the incoming observations.

For more details, see “Incremental Learning Overview” on page 28-2.

Adaptive Scale-Invariant Solver for Incremental Learning

The adaptive scale-invariant solver for incremental learning, introduced in [1], is a gradient-descent-
based objective solver for training linear predictive models. The solver is hyperparameter free,
insensitive to differences in predictor variable scales, and does not require prior knowledge of the
distribution of the predictor variables. These characteristics make it well suited to incremental
learning.

The standard SGD and ASGD solvers are sensitive to differing scales among the predictor variables,
resulting in models that can perform poorly. To achieve better accuracy using SGD and ASGD, you
can standardize the predictor data, and tune the regularization and learning rate parameters. For
traditional machine learning, enough data is available to enable hyperparameter tuning by cross-
validation and predictor standardization. However, for incremental learning, enough data might not
be available (for example, observations might be available only one at a time) and the distribution of
the predictors might be unknown. These characteristics make parameter tuning and predictor
standardization difficult or impossible to do during incremental learning.

The incremental fitting functions for regression fit and updateMetricsAndFit use the more
conservative ScInOL1 version of the algorithm.

Algorithms
Estimation Period

During the estimation period, the incremental fitting functions fit and updateMetricsAndFit use
the first incoming EstimationPeriod observations to estimate (tune) hyperparameters required for
incremental training. Estimation occurs only when EstimationPeriod is positive. This table
describes the hyperparameters and when they are estimated, or tuned.
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Hyperparameter Model Property Usage Conditions
Predictor means
and standard
deviations

Mu and Sigma Standardize
predictor data

The hyperparameters are estimated
when both of these conditions apply:

• When you set
'Standardize',true (see
“Standardize Data” on page 35-
3592)

• IncrementalMdl.Mu and
IncrementalMdl.Sigma are
empty arrays [].

Learning rate LearnRate Adjust solver step
size

The hyperparameter is estimated when
both of these conditions apply:

• You change the solver of Mdl to
SGD or ASGD (see Solver).

• You do not specify the
'LearnRate' name-value
argument as a positive scalar.

During the estimation period, fit does not fit the model, and updateMetricsAndFit does not fit
the model or update the performance metrics. At the end of the estimation period, the functions
update the properties that store the hyperparameters.

Standardize Data

If incremental learning functions are configured to standardize predictor variables, they do so using
the means and standard deviations stored in the Mu and Sigma properties of the incremental learning
model IncrementalMdl.

• If you standardized the predictor data when you trained the input model Mdl by using fitrsvm,
the following conditions apply:

• incrementalLearner passes the means in Mdl.Mu and standard deviations in Mdl.Sigma to
the corresponding incremental learning model properties.

• Incremental learning functions always standardize the predictor data, regardless of the value
of the 'Standardize' name-value pair argument.

• When you set 'Standardize',true, and IncrementalMdl.Mu and IncrementalMdl.Sigma
are empty, the following conditions apply:

• If the estimation period is positive (see the EstimationPeriod property of
IncrementalMdl), incremental fitting functions estimate means and standard deviations
using the estimation period observations.

• If the estimation period is 0, incrementalLearner forces the estimation period to 1000.
Consequently, incremental fitting functions estimate new predictor variable means and
standard deviations during the forced estimation period.

• If you set 'Standardize','auto' (the default), the following conditions apply.

• If IncrementalMdl.Mu and IncrementalMdl.Sigma are empty, incremental learning
functions do not standardize predictor variables.
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• Otherwise, incremental learning functions standardize the predictor variables using their
means and standard deviations in IncrementalMdl.Mu and IncrementalMdl.Sigma,
respectively. Incremental fitting functions do not estimate new means and standard deviations
regardless of the length of the estimation period.

• When incremental fitting functions estimate predictor means and standard deviations, the
functions compute weighted means and weighted standard deviations using the estimation period
observations. Specifically, the functions standardize predictor j (xj) using

x j
∗ =

x j− μ j
∗

σ j
∗ .

• xj is predictor j, and xjk is observation k of predictor j in the estimation period.
• μ j

∗ = 1
∑
k

wk
∑
k

wkx jk .

• σ j
∗ 2 = 1

∑
k

wk
∑
k

wk x jk− μ j
∗ 2 .

• wj is observation weight j.

Performance Metrics

• The updateMetrics and updateMetricsAndFit functions are incremental learning functions
that track model performance metrics ('Metrics') from new data when the incremental model is
warm (IsWarm property). An incremental model becomes warm after fit or
updateMetricsAndFit fit the incremental model to 'MetricsWarmupPeriod' observations,
which is the metrics warm-up period.

If 'EstimationPeriod' > 0, the functions estimate hyperparameters before fitting the model to
data. Therefore, the functions must process an additional EstimationPeriod observations
before the model starts the metrics warm-up period.

• The Metrics property of the incremental model stores two forms of each performance metric as
variables (columns) of a table, Cumulative and Window, with individual metrics in rows. When
the incremental model is warm, updateMetrics and updateMetricsAndFit update the metrics
at the following frequencies:

• Cumulative — The functions compute cumulative metrics since the start of model
performance tracking. The functions update metrics every time you call the functions and base
the calculation on the entire supplied data set.

• Window — The functions compute metrics based on all observations within a window
determined by the 'MetricsWindowSize' name-value pair argument.
'MetricsWindowSize' also determines the frequency at which the software updates Window
metrics. For example, if MetricsWindowSize is 20, the functions compute metrics based on
the last 20 observations in the supplied data (X((end – 20 + 1):end,:) and Y((end – 20
+ 1):end)).

Incremental functions that track performance metrics within a window use the following
process:

1 Store a buffer of length MetricsWindowSize for each specified metric, and store a buffer
of observation weights.
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2 Populate elements of the metrics buffer with the model performance based on batches of
incoming observations, and store corresponding observation weights in the weights buffer.

3 When the buffer is filled, overwrite IncrementalMdl.Metrics.Window with the
weighted average performance in the metrics window. If the buffer is overfilled when the
function processes a batch of observations, the latest incoming MetricsWindowSize
observations enter the buffer, and the earliest observations are removed from the buffer.
For example, suppose MetricsWindowSize is 20, the metrics buffer has 10 values from a
previously processed batch, and 15 values are incoming. To compose the length 20
window, the functions use the measurements from the 15 incoming observations and the
latest 5 measurements from the previous batch.

• The software omits an observation with a NaN prediction when computing the Cumulative and
Window performance metric values.

Version History
Introduced in R2020b
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incrementalLearner
Convert kernel regression model to incremental learner

Syntax
IncrementalMdl = incrementalLearner(Mdl)
IncrementalMdl = incrementalLearner(Mdl,Name=Value)

Description
IncrementalMdl = incrementalLearner(Mdl) returns a Gaussian kernel regression model for
incremental learning on page 35-3608, IncrementalMdl, using the parameters and
hyperparameters of the traditionally trained, Gaussian kernel regression model Mdl. Because its
property values reflect the knowledge gained from Mdl, IncrementalMdl can predict responses
given new observations, and it is warm, meaning that its predictive performance is tracked.

IncrementalMdl = incrementalLearner(Mdl,Name=Value) uses additional options specified
by one or more name-value arguments. Some options require you to train IncrementalMdl before
its predictive performance is tracked. For example,
MetricsWarmupPeriod=50,MetricsWindowSize=100 specifies a preliminary incremental
training period of 50 observations before performance metrics are tracked, and specifies processing
100 observations before updating the window performance metrics.

Examples

Convert Traditionally Trained Model to Incremental Learner

Train a kernel regression model by using fitrkernel, and then convert it to an incremental learner.

Load and Preprocess Data

Load the 2015 NYC housing data set. For more details on the data, see NYC Open Data.

load NYCHousing2015

Extract the response variable SALEPRICE from the table. For numerical stability, scale SALEPRICE by
1e6.

Y = NYCHousing2015.SALEPRICE/1e6;
NYCHousing2015.SALEPRICE = [];

To reduce computational cost for this example, remove the NEIGHBORHOOD column, which contains a
categorical variable with 254 categories.

NYCHousing2015.NEIGHBORHOOD = [];

Create dummy variable matrices from the other categorical predictors.

catvars = ["BOROUGH","BUILDINGCLASSCATEGORY"];
dumvarstbl = varfun(@(x)dummyvar(categorical(x)),NYCHousing2015, ...
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    InputVariables=catvars);
dumvarmat = table2array(dumvarstbl);
NYCHousing2015(:,catvars) = [];

Treat all other numeric variables in the table as predictors of sales price. Concatenate the matrix of
dummy variables to the rest of the predictor data.

idxnum = varfun(@isnumeric,NYCHousing2015,OutputFormat="uniform");
X = [dumvarmat NYCHousing2015{:,idxnum}];

Train Kernel Regression Model

Fit a kernel regression model to the entire data set.

Mdl = fitrkernel(X,Y)

Mdl = 
  RegressionKernel
              ResponseName: 'Y'
                   Learner: 'svm'
    NumExpansionDimensions: 2048
               KernelScale: 1
                    Lambda: 1.0935e-05
             BoxConstraint: 1
                   Epsilon: 0.0549

  Properties, Methods

Mdl is a RegressionKernel model object representing a traditionally trained kernel regression
model.

Convert Trained Model

Convert the traditionally trained kernel regression model to a model for incremental learning.

IncrementalMdl = incrementalLearner(Mdl)

IncrementalMdl = 
  incrementalRegressionKernel

                    IsWarm: 1
                   Metrics: [1x2 table]
         ResponseTransform: 'none'
    NumExpansionDimensions: 2048
               KernelScale: 1

  Properties, Methods

IncrementalMdl is an incrementalRegressionKernel model object prepared for incremental
learning.

• The incrementalLearner function initializes the incremental learner by passing model
parameters to it, along with other information Mdl extracted from the training data.
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• IncrementalMdl is warm (IsWarm is 1), which means that incremental learning functions can
start tracking performance metrics.

• incrementalRegressionKernel trains the model using the adaptive scale-invariant solver,
whereas fitrkernel trained Mdl using the Limited-memory Broyden-Fletcher-Goldfarb-Shanno
(LBFGS) solver.

Predict Responses

An incremental learner created from converting a traditionally trained model can generate
predictions without further processing.

Predict sales prices for all observations using both models.

ttyfit = predict(Mdl,X);
ilyfit = predict(IncrementalMdl,X);
compareyfit = norm(ttyfit - ilyfit)

compareyfit = 0

The difference between the fitted values generated by the models is 0.

Configure Performance Metric Options

Use a trained kernel regression model to initialize an incremental learner. Prepare the incremental
learner by specifying a metrics warm-up period and a metrics window size.

Load the robot arm data set.

load robotarm

For details on the data set, enter Description at the command line.

Randomly partition the data into 5% and 95% sets: the first set for training a model traditionally, and
the second set for incremental learning.

n = numel(ytrain);

rng(1) % For reproducibility
cvp = cvpartition(n,Holdout=0.95);
idxtt = training(cvp);
idxil = test(cvp);

% 5% set for traditional training
Xtt = Xtrain(idxtt,:);
Ytt = ytrain(idxtt);

% 95% set for incremental learning
Xil = Xtrain(idxil,:);
Yil = ytrain(idxil);

Fit a kernel regression model to the first set.

TTMdl = fitrkernel(Xtt,Ytt);

Convert the traditionally trained kernel regression model to a model for incremental learning. Specify
the following:
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• A performance metrics warm-up period of 2000 observations.
• A metrics window size of 500 observations.
• Use of epsilon insensitive loss, MSE, and mean absolute error (MAE) to measure the performance

of the model. The software supports epsilon insensitive loss and MSE. Create an anonymous
function that measures the absolute error of each new observation. Create a structure array
containing the name MeanAbsoluteError and its corresponding function.

maefcn = @(z,zfit)abs(z - zfit);
maemetric = struct(MeanAbsoluteError=maefcn);
IncrementalMdl = incrementalLearner(TTMdl,MetricsWarmupPeriod=2000,MetricsWindowSize=500, ...
    Metrics={"epsiloninsensitive","mse",maemetric});

Fit the incremental model to the rest of the data by using the updateMetricsAndFit function. At
each iteration:

• Simulate a data stream by processing 50 observations at a time.
• Overwrite the previous incremental model with a new one fitted to the incoming observations.
• Store the cumulative metrics, window metrics, and number of training observations to see how

they evolve during incremental learning.

% Preallocation
nil = numel(Yil);
numObsPerChunk = 50;
nchunk = floor(nil/numObsPerChunk);
ei = array2table(zeros(nchunk,2),VariableNames=["Cumulative","Window"]);
mse = array2table(zeros(nchunk,2),VariableNames=["Cumulative","Window"]);
mae = array2table(zeros(nchunk,2),VariableNames=["Cumulative","Window"]);
numtrainobs = [IncrementalMdl.NumTrainingObservations; zeros(nchunk,1)];

% Incremental fitting
for j = 1:nchunk
    ibegin = min(nil,numObsPerChunk*(j-1) + 1);
    iend   = min(nil,numObsPerChunk*j);
    idx = ibegin:iend;    
    IncrementalMdl = updateMetricsAndFit(IncrementalMdl,Xil(idx,:),Yil(idx));
    ei{j,:} = IncrementalMdl.Metrics{"EpsilonInsensitiveLoss",:};
    mse{j,:} = IncrementalMdl.Metrics{"MeanSquaredError",:};
    mae{j,:} = IncrementalMdl.Metrics{"MeanAbsoluteError",:};
    numtrainobs(j+1) = IncrementalMdl.NumTrainingObservations;
end

IncrementalMdl is an incrementalRegressionKernel model object trained on all the data in
the stream. During incremental learning and after the model is warmed up, updateMetricsAndFit
checks the performance of the model on the incoming observations, and then fits the model to those
observations.

Plot a trace plot of the number of training observations and the performance metrics on separate
tiles.

t = tiledlayout(4,1);
nexttile
plot(numtrainobs)
xlim([0 nchunk])
xline(IncrementalMdl.MetricsWarmupPeriod/numObsPerChunk,"--")
ylabel(["Number of Training","Observations"])
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nexttile
plot(ei.Variables)
xlim([0 nchunk])
ylabel(["Epsilon Insensitive","Loss"])
xline(IncrementalMdl.MetricsWarmupPeriod/numObsPerChunk,"--")
legend(ei.Properties.VariableNames,Location="best")
nexttile
plot(mse.Variables)
xlim([0 nchunk])
ylabel("MSE")
xline(IncrementalMdl.MetricsWarmupPeriod/numObsPerChunk,"--")
nexttile
plot(mae.Variables)
xlim([0 nchunk])
ylabel("MAE")
xline(IncrementalMdl.MetricsWarmupPeriod/numObsPerChunk,"--")
xlabel(t,"Iteration")

The plot suggests that updateMetricsAndFit does the following:

• Fit the model during all incremental learning iterations.
• Compute the performance metrics after the metrics warm-up period only.
• Compute the cumulative metrics during each iteration.
• Compute the window metrics after processing 500 observations.
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Specify SGD Solver

The default solver for incrementalRegressionKernel is the adaptive scale-invariant solver, which
does not require hyperparameter tuning before you fit a model. However, if you specify either the
standard stochastic gradient descent (SGD) or average SGD (ASGD) solver instead, you can also
specify an estimation period, during which the incremental fitting functions tune the learning rate.

Load and shuffle the 2015 NYC housing data set. For more details on the data, see NYC Open Data.

load NYCHousing2015

rng(1) % For reproducibility
n = size(NYCHousing2015,1);
shuffidx = randsample(n,n);
NYCHousing2015 = NYCHousing2015(shuffidx,:);

Extract the response variable SALEPRICE from the table. For numerical stability, scale SALEPRICE by
1e6.

Y = NYCHousing2015.SALEPRICE/1e6;
NYCHousing2015.SALEPRICE = [];

To reduce computational cost for this example, remove the NEIGHBORHOOD column, which contains a
categorical variable with 254 categories.

NYCHousing2015.NEIGHBORHOOD = [];

Create dummy variable matrices from the categorical predictors.

catvars = ["BOROUGH","BUILDINGCLASSCATEGORY"];
dumvarstbl = varfun(@(x)dummyvar(categorical(x)),NYCHousing2015, ...
    InputVariables=catvars);
dumvarmat = table2array(dumvarstbl);
NYCHousing2015(:,catvars) = [];

Treat all other numeric variables in the table as predictors of sales price. Concatenate the matrix of
dummy variables to the rest of the predictor data.

idxnum = varfun(@isnumeric,NYCHousing2015,OutputFormat="uniform");
X = [dumvarmat NYCHousing2015{:,idxnum}];

Randomly partition the data into 5% and 95% sets: the first set for training a model traditionally, and
the second set for incremental learning.

cvp = cvpartition(n,Holdout=0.95);
idxtt = training(cvp);
idxil = test(cvp);

% 5% set for traditional training 
Xtt = X(idxtt,:);
Ytt = Y(idxtt);

% 95% set for incremental learning
Xil = X(idxil,:);
Yil = Y(idxil);

Fit a kernel regression model to 5% of the data.
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Mdl = fitrkernel(Xtt,Ytt);

Convert the traditionally trained kernel regression model to a model for incremental learning. Specify
the standard SGD solver and an estimation period of 2e4 observations (the default is 1000 when a
learning rate is required).

IncrementalMdl = incrementalLearner(Mdl,Solver="sgd",EstimationPeriod=2e4);

IncrementalMdl is an incrementalRegressionKernel model object configured for incremental
learning.

Fit the incremental model to the rest of the data by using the fit function. At each iteration:

• Simulate a data stream by processing 10 observations at a time.
• Overwrite the previous incremental model with a new one fitted to the incoming observations.
• Store the initial learning rate and number of training observations to see how they evolve during

training.

% Preallocation
nil = numel(Yil);
numObsPerChunk = 10;
nchunk = floor(nil/numObsPerChunk);
learnrate = [zeros(nchunk,1)];
numtrainobs = [zeros(nchunk,1)];

% Incremental fitting
for j = 1:nchunk
    ibegin = min(nil,numObsPerChunk*(j-1) + 1);
    iend   = min(nil,numObsPerChunk*j);
    idx = ibegin:iend;
    IncrementalMdl = fit(IncrementalMdl,Xil(idx,:),Yil(idx));
    learnrate(j) = IncrementalMdl.SolverOptions.LearnRate;
    numtrainobs(j) = IncrementalMdl.NumTrainingObservations;
end

IncrementalMdl is an incrementalRegressionKernel model object trained on all the data in
the stream.

Plot a trace plot of the number of training observations and the initial learning rate on separate tiles.

t = tiledlayout(2,1);
nexttile
plot(numtrainobs)
xlim([0 nchunk])
xline(IncrementalMdl.EstimationPeriod/numObsPerChunk,"-.");
ylabel("Number of Training Observations")
nexttile
plot(learnrate)
xlim([0 nchunk])
ylabel("Initial Learning Rate")
xline(IncrementalMdl.EstimationPeriod/numObsPerChunk,"-.");
xlabel(t,"Iteration")
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The plot suggests that fit does not fit the model to the streaming data during the estimation period.
The initial learning rate jumps from 0.7 to its autotuned value after the estimation period. During
training, the software uses a learning rate that gradually decays from the initial value specified in the
“LearnRateSchedule” on page 35-0  property of IncrementalMdl.

Input Arguments
Mdl — Traditionally trained Gaussian kernel regression model
RegressionKernel model object

Traditionally trained Gaussian kernel regression model, specified as a RegressionKernel model
object returned by fitrkernel.

Note

Incremental learning functions support only numeric input predictor data. If Mdl was trained on
categorical data, you must prepare an encoded version of the categorical data to use incremental
learning functions. Use dummyvar to convert each categorical variable to a numeric matrix of dummy
variables. Then, concatenate all dummy variable matrices and any other numeric predictors, in the
same way that the training function encodes categorical data. For more details, see “Dummy
Variables” on page 2-49.
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Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.
Example: Solver="sgd",MetricsWindowSize=100 specifies the stochastic gradient descent
solver for objective optimization, and specifies processing 100 observations before updating the
window performance metrics.

General Options

Solver — Objective function minimization technique
"scale-invariant" (default) | "sgd" | "asgd"

Objective function minimization technique, specified as a value in this table.

Value Description Notes
"scale-
invariant"

Adaptive scale-invariant solver
for incremental learning on
page 35-3608 [1]

• This algorithm is parameter free and can
adapt to differences in predictor scales. Try
this algorithm before using SGD or ASGD.

• To shuffle an incoming chunk of data before
the fit function fits the model, set Shuffle
to true.

"sgd" Stochastic gradient descent
(SGD) [2][3]

• To train effectively with SGD, specify adequate
values for hyperparameters using options
listed in “SGD and ASGD Solver Options” on
page 35-0 .

• The fit function always shuffles an incoming
chunk of data before fitting the model.

"asgd" Average stochastic gradient
descent (ASGD) [4]

• To train effectively with ASGD, specify
adequate values for hyperparameters using
options listed in “SGD and ASGD Solver
Options” on page 35-0 .

• The fit function always shuffles an incoming
chunk of data before fitting the model.

Example: Solver="sgd"
Data Types: char | string

EstimationPeriod — Number of observations processed to estimate hyperparameters
nonnegative integer

Number of observations processed by the incremental model to estimate hyperparameters before
training or tracking performance metrics, specified as a nonnegative integer.

Note

• If Mdl is prepared for incremental learning (all hyperparameters required for training are
specified), incrementalLearner forces EstimationPeriod to 0.
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• If Mdl is not prepared for incremental learning, incrementalLearner sets EstimationPeriod
to 1000.

For more details, see “Estimation Period” on page 35-3609.

Example: EstimationPeriod=100
Data Types: single | double

SGD and ASGD Solver Options

BatchSize — Mini-batch size
10 (default) | positive integer

Mini-batch size, specified as a positive integer. At each learning cycle during training,
incrementalLearner uses BatchSize observations to compute the subgradient.

The number of observations in the last mini-batch (last learning cycle in each function call of fit or
updateMetricsAndFit) can be smaller than BatchSize. For example, if you supply 25
observations to fit or updateMetricsAndFit, the function uses 10 observations for the first two
learning cycles and 5 observations for the last learning cycle.
Example: BatchSize=5
Data Types: single | double

Lambda — Ridge (L2) regularization term strength
1e-5 (default) | nonnegative scalar

Ridge (L2) regularization term strength, specified as a nonnegative scalar.
Example: Lambda=0.01
Data Types: single | double

LearnRate — Initial learning rate
"auto" (default) | positive scalar

Initial learning rate, specified as "auto" or a positive scalar.

The learning rate controls the optimization step size by scaling the objective subgradient. LearnRate
specifies an initial value for the learning rate, and LearnRateSchedule determines the learning
rate for subsequent learning cycles.

When you specify "auto":

• The initial learning rate is 0.7.
• If EstimationPeriod > 0, fit and updateMetricsAndFit change the rate to 1/

sqrt(1+max(sum(X.^2,2))) at the end of EstimationPeriod.

Example: LearnRate=0.001
Data Types: single | double | char | string

LearnRateSchedule — Learning rate schedule
"decaying" (default) | "constant"
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Learning rate schedule, specified as a value in this table, where LearnRate specifies the initial
learning rate ɣ0.

Value Description
"constant" The learning rate is ɣ0 for all learning cycles.
"decaying" The learning rate at learning cycle t is

γt =
γ0

1 + λγ0t c .

• λ is the value of Lambda.
• If Solver is "sgd", c = 1.
• If Solver is "asgd":

• c = 2/3 if Learner is "leastsquares".
• c = 3/4 if Learner is "svm" [4].

Example: LearnRateSchedule="constant"
Data Types: char | string

Adaptive Scale-Invariant Solver Options

Shuffle — Flag for shuffling observations
true or 1 (default) | false or 0

Flag for shuffling the observations at each iteration, specified as logical 1 (true) or 0 (false).

Value Description
logical 1 (true) The software shuffles the observations in an

incoming chunk of data before the fit function
fits the model. This action reduces bias induced
by the sampling scheme.

logical 0 (false) The software processes the data in the order
received.

Example: Shuffle=false
Data Types: logical

Performance Metrics Options

Metrics — Model performance metrics to track during incremental learning
"epsiloninsensitive" | "mse" | string vector | function handle | cell vector | structure array

Model performance metrics to track during incremental learning with updateMetrics or
updateMetricsAndFit, specified as a built-in loss function name, string vector of names, function
handle (@metricName), structure array of function handles, or cell vector of names, function handles,
or structure arrays.

The following table lists the built-in loss function names and which learners, specified in
Mdl.Learner, support them. You can specify more than one loss function by using a string vector.
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Name Description Learner Supporting Metric
"epsiloninsensitive" Epsilon insensitive loss 'svm'
"mse" Weighted mean squared error 'svm' and 'leastsquares'

For more details on the built-in loss functions, see loss.
Example: Metrics=["epsiloninsensitive","mse"]

To specify a custom function that returns a performance metric, use function handle notation. The
function must have this form:

metric = customMetric(Y,YFit)

• The output argument metric is an n-by-1 numeric vector, where each element is the loss of the
corresponding observation in the data processed by the incremental learning functions during a
learning cycle.

• You specify the function name (customMetric).
• Y is a length n numeric vector of observed responses, where n is the sample size.
• YFit is a length n numeric vector of corresponding predicted responses.

To specify multiple custom metrics and assign a custom name to each, use a structure array. To
specify a combination of built-in and custom metrics, use a cell vector.
Example: Metrics=struct(Metric1=@customMetric1,Metric2=@customMetric2)
Example:
Metrics={@customMetric1,@customMetric2,"mse",struct(Metric3=@customMetric3)}

updateMetrics and updateMetricsAndFit store specified metrics in a table in the property
IncrementalMdl.Metrics. The data type of Metrics determines the row names of the table.

Metrics Value
Data Type

Description of Metrics Property Row
Name

Example

String or character
vector

Name of corresponding built-in metric Row name for
"epsiloninsensitive" is
"EpsilonInsensitiveLoss"

Structure array Field name Row name for
struct(Metric1=@customMetric
1) is "Metric1"

Function handle to
function stored in
a program file

Name of function Row name for @customMetric is
"customMetric"

Anonymous
function

CustomMetric_j, where j is metric j in
Metrics

Row name for
@(Y,YFit)customMetric(Y,YFit
)... is CustomMetric_1

By default:

• Metrics is "epsiloninsensitive" if Mdl.Learner is 'svm'.
• Metrics is "mse" if Mdl.Learner is 'leastsquares'.

For more details on performance metrics options, see “Performance Metrics” on page 35-3610.
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Data Types: char | string | struct | cell | function_handle

MetricsWarmupPeriod — Number of observations fit before tracking performance metrics
0 (default) | nonnegative integer

Number of observations the incremental model must be fit to before it tracks performance metrics in
its Metrics property, specified as a nonnegative integer. The incremental model is warm after
incremental fitting functions fit (EstimationPeriod + MetricsWarmupPeriod) observations to the
incremental model.

For more details on performance metrics options, see “Performance Metrics” on page 35-3610.
Example: MetricsWarmupPeriod=50
Data Types: single | double

MetricsWindowSize — Number of observations to use to compute window performance
metrics
200 (default) | positive integer

Number of observations to use to compute window performance metrics, specified as a positive
integer.

For more details on performance metrics options, see “Performance Metrics” on page 35-3610.
Example: MetricsWindowSize=250
Data Types: single | double

Output Arguments
IncrementalMdl — Gaussian kernel regression model for incremental learning
incrementalRegressionKernel model object

Gaussian kernel regression model for incremental learning, returned as an
incrementalRegressionKernel model object. IncrementalMdl is also configured to generate
predictions given new data (see predict).

The incrementalLearner function initializes IncrementalMdl for incremental learning using the
model information in Mdl. The following table shows the Mdl properties that incrementalLearner
passes to corresponding properties of IncrementalMdl. The function also passes other model
information required to initialize IncrementalMdl, such as learned model coefficients and the
random number stream.

Property Description
Epsilon Half the width of the epsilon insensitive band, a nonnegative

scalar. incrementalLearner passes this value only when
Mdl.Learner is 'svm'.

KernelScale Kernel scale parameter, a positive scalar
Learner Linear regression model type, a character vector
NumExpansionDimensions Number of dimensions of expanded space, a positive integer
NumPredictors Number of predictors, a positive integer
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Property Description
ResponseTransform Response transformation function, a function name or function

handle

More About
Incremental Learning

Incremental learning, or online learning, is a branch of machine learning concerned with processing
incoming data from a data stream, possibly given little to no knowledge of the distribution of the
predictor variables, aspects of the prediction or objective function (including tuning parameter
values), or whether the observations are labeled. Incremental learning differs from traditional
machine learning, where enough labeled data is available to fit to a model, perform cross-validation
to tune hyperparameters, and infer the predictor distribution.

Given incoming observations, an incremental learning model processes data in any of the following
ways, but usually in this order:

• Predict labels.
• Measure the predictive performance.
• Check for structural breaks or drift in the model.
• Fit the model to the incoming observations.

For more details, see “Incremental Learning Overview” on page 28-2.

Adaptive Scale-Invariant Solver for Incremental Learning

The adaptive scale-invariant solver for incremental learning, introduced in [1], is a gradient-descent-
based objective solver for training linear predictive models. The solver is hyperparameter free,
insensitive to differences in predictor variable scales, and does not require prior knowledge of the
distribution of the predictor variables. These characteristics make it well suited to incremental
learning.

The incremental fitting functions fit and updateMetricsAndFit use the more aggressive ScInOL2
version of the algorithm.

Random Feature Expansion

Random feature expansion, such as Random Kitchen Sinks[1] or Fastfood[2], is a scheme to
approximate Gaussian kernels of the kernel regression algorithm for big data in a computationally
efficient way. Random feature expansion is more practical for big data applications that have large
training sets, but can also be applied to smaller data sets that fit in memory.

After mapping the predictor data into a high-dimensional space, the kernel regression algorithm
searches for an optimal function that deviates from each response data point (yi) by values no greater
than the epsilon margin (ε).

Some regression problems cannot be described adequately using a linear model. In such cases,
obtain a nonlinear regression model by replacing the dot product x1x2′ with a nonlinear kernel
function G(x1, x2) = φ(x1), φ(x2) , where xi is the ith observation (row vector) and φ(xi) is a
transformation that maps xi to a high-dimensional space (called the “kernel trick”). However,
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evaluating G(x1,x2), the Gram matrix, for each pair of observations is computationally expensive for a
large data set (large n).

The random feature expansion scheme finds a random transformation so that its dot product
approximates the Gaussian kernel. That is,

G(x1, x2) = φ(x1), φ(x2) ≈ T(x1)T(x2)′,

where T(x) maps x in ℝp to a high-dimensional space (ℝm). The Random Kitchen Sinks[1] scheme
uses the random transformation

T(x) = m−1/2exp iZx′ ′,

where Z ∈ ℝm × p is a sample drawn from N 0, σ−2  and σ is a kernel scale. This scheme requires
O(mp) computation and storage. The Fastfood[2] scheme introduces another random basis V instead
of Z using Hadamard matrices combined with Gaussian scaling matrices. This random basis reduces
computation cost to O(mlogp) and reduces storage to O(m).

incrementalRegressionKernel uses the Fastfood scheme for random feature expansion, and uses
linear regression to train a Gaussian kernel regression model. You can specify values for m and σ
using the NumExpansionDimensions and KernelScale name-value arguments, respectively, when
you create a traditionally trained model using fitrkernel or when you call
incrementalRegressionKernel directly to create the model object.

Algorithms
Estimation Period

During the estimation period, the incremental fitting functions fit and updateMetricsAndFit use
the first incoming EstimationPeriod observations to estimate (tune) hyperparameters required for
incremental training. Estimation occurs only when EstimationPeriod is positive. This table
describes the hyperparameters and when they are estimated, or tuned.

Hyperparameter Model Property Usage Conditions
Learning rate LearnRate field of

SolverOptions
Adjust solver step
size

The hyperparameter is estimated when
both of these conditions apply:

• You specify the Solver name-value
argument as "sgd" or "asgd".

• You do not specify the LearnRate
name-value argument as a positive
scalar.

 incrementalLearner

35-3609



Hyperparameter Model Property Usage Conditions
Half the width of
the epsilon
insensitive band

Epsilon Control number of
support vectors

The software does not estimate
Epsilon if you create an
incrementalRegressionKernel
model object by using
incrementalLearner.

If you create an
incrementalRegressionKernel
model object by calling the
incrementalRegressionKernel
function, the software estimates
Epsilon in some cases. For details,
see “Estimation Period” on page 35-
3652 on the
incrementalRegressionKernel
page.

During the estimation period, fit does not fit the model, and updateMetricsAndFit does not fit
the model or update the performance metrics. At the end of the estimation period, the functions
update the properties that store the hyperparameters.

Performance Metrics

• The updateMetrics and updateMetricsAndFit functions are incremental learning functions
that track model performance metrics (Metrics) from new data only when the incremental model
is warm (IsWarm property is true). An incremental model becomes warm after fit or
updateMetricsAndFit fits the incremental model to MetricsWarmupPeriod observations,
which is the metrics warm-up period.

If EstimationPeriod > 0, the fit and updateMetricsAndFit functions estimate
hyperparameters before fitting the model to data. Therefore, the functions must process an
additional EstimationPeriod observations before the model starts the metrics warm-up period.

• The Metrics property of the incremental model stores two forms of each performance metric as
variables (columns) of a table, Cumulative and Window, with individual metrics in rows. When
the incremental model is warm, updateMetrics and updateMetricsAndFit update the metrics
at the following frequencies:

• Cumulative — The functions compute cumulative metrics since the start of model
performance tracking. The functions update metrics every time you call the functions and base
the calculation on the entire supplied data set.

• Window — The functions compute metrics based on all observations within a window
determined by MetricsWindowSize, which also determines the frequency at which the
software updates Window metrics. For example, if MetricsWindowSize is 20, the functions
compute metrics based on the last 20 observations in the supplied data (X((end – 20 +
1):end,:) and Y((end – 20 + 1):end)).

Incremental functions that track performance metrics within a window use the following
process:

1 Store a buffer of length MetricsWindowSize for each specified metric, and store a buffer
of observation weights.
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2 Populate elements of the metrics buffer with the model performance based on batches of
incoming observations, and store corresponding observation weights in the weights buffer.

3 When the buffer is full, overwrite the Window field of the Metrics property with the
weighted average performance in the metrics window. If the buffer overfills when the
function processes a batch of observations, the latest incoming MetricsWindowSize
observations enter the buffer, and the earliest observations are removed from the buffer.
For example, suppose MetricsWindowSize is 20, the metrics buffer has 10 values from a
previously processed batch, and 15 values are incoming. To compose the length 20
window, the functions use the measurements from the 15 incoming observations and the
latest 5 measurements from the previous batch.

• The software omits an observation with a NaN prediction when computing the Cumulative and
Window performance metric values.

Version History
Introduced in R2022a
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incrementalLearner
Convert linear regression model to incremental learner

Syntax
IncrementalMdl = incrementalLearner(Mdl)
IncrementalMdl = incrementalLearner(Mdl,Name,Value)

Description
IncrementalMdl = incrementalLearner(Mdl) returns a linear regression model for
incremental learning on page 35-3627, IncrementalMdl, using the hyperparameters and
coefficients of the traditionally trained linear regression model Mdl. Because its property values
reflect the knowledge gained from Mdl, IncrementalMdl can predict labels given new observations,
and it is warm, meaning that its predictive performance is tracked.

IncrementalMdl = incrementalLearner(Mdl,Name,Value) uses additional options specified
by one or more name-value arguments. Some options require you to train IncrementalMdl before
its predictive performance is tracked. For example,
'MetricsWarmupPeriod',50,'MetricsWindowSize',100 specifies a preliminary incremental
training period of 50 observations before performance metrics are tracked, and specifies processing
100 observations before updating the window performance metrics.

Examples

Convert Traditionally Trained Model to Incremental Learner

Train a linear regression model by using fitrlinear, and then convert it to an incremental learner.

Load and Preprocess Data

Load the 2015 NYC housing data set. For more details on the data, see NYC Open Data.

load NYCHousing2015

Extract the response variable SALEPRICE from the table. For numerical stability, scale SALEPRICE by
1e6.

Y = NYCHousing2015.SALEPRICE/1e6;
NYCHousing2015.SALEPRICE = [];

Create dummy variable matrices from the categorical predictors.

catvars = ["BOROUGH" "BUILDINGCLASSCATEGORY" "NEIGHBORHOOD"];
dumvarstbl = varfun(@(x)dummyvar(categorical(x)),NYCHousing2015,...
    'InputVariables',catvars);
dumvarmat = table2array(dumvarstbl);
NYCHousing2015(:,catvars) = [];

Treat all other numeric variables in the table as linear predictors of sales price. Concatenate the
matrix of dummy variables to the rest of the predictor data.
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idxnum = varfun(@isnumeric,NYCHousing2015,'OutputFormat','uniform');
X = [dumvarmat NYCHousing2015{:,idxnum}];

Train Linear Regression Model

Fit a linear regression model to the entire data set.

TTMdl = fitrlinear(X,Y)

TTMdl = 
  RegressionLinear
         ResponseName: 'Y'
    ResponseTransform: 'none'
                 Beta: [312x1 double]
                 Bias: 0.0956
               Lambda: 1.0935e-05
              Learner: 'svm'

  Properties, Methods

TTMdl is a RegressionLinear model object representing a traditionally trained linear regression
model.

Convert Trained Model

Convert the traditionally trained linear regression model to a linear regression model for incremental
learning.

IncrementalMdl = incrementalLearner(TTMdl)

IncrementalMdl = 
  incrementalRegressionLinear

               IsWarm: 1
              Metrics: [1x2 table]
    ResponseTransform: 'none'
                 Beta: [312x1 double]
                 Bias: 0.0956
              Learner: 'svm'

  Properties, Methods

IncrementalMdl is an incrementalRegressionLinear model object prepared for incremental
learning using SVM.

• The incrementalLearner function Initializes the incremental learner by passing learned
coefficients to it, along with other information TTMdl extracted from the training data.

• IncrementalMdl is warm (IsWarm is 1), which means that incremental learning functions can
start tracking performance metrics.

• incrementalRegressionLinear trains the model using the adaptive scale-invariant solver,
whereas fitrlinear trained TTMdl using the dual SGD solver.
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Predict Responses

An incremental learner created from converting a traditionally trained model can generate
predictions without further processing.

Predict sales prices for all observations using both models.

ttyfit = predict(TTMdl,X);
ilyfit = predict(IncrementalMdl,X);
compareyfit = norm(ttyfit - ilyfit)

compareyfit = 0

The difference between the fitted values generated by the models is 0.

Specify SGD Solver

The default solver is the adaptive scale-invariant solver. If you specify this solver, you do not need to
tune any parameters for training. However, if you specify either the standard SGD or ASGD solver
instead, you can also specify an estimation period, during which the incremental fitting functions tune
the learning rate.

Load and shuffle the 2015 NYC housing data set. For more details on the data, see NYC Open Data.

load NYCHousing2015

rng(1) % For reproducibility
n = size(NYCHousing2015,1);
shuffidx = randsample(n,n);
NYCHousing2015 = NYCHousing2015(shuffidx,:);

Extract the response variable SALEPRICE from the table. For numerical stability, scale SALEPRICE by
1e6.

Y = NYCHousing2015.SALEPRICE/1e6;
NYCHousing2015.SALEPRICE = [];

Create dummy variable matrices from the categorical predictors.

catvars = ["BOROUGH" "BUILDINGCLASSCATEGORY" "NEIGHBORHOOD"];
dumvarstbl = varfun(@(x)dummyvar(categorical(x)),NYCHousing2015,...
    'InputVariables',catvars);
dumvarmat = table2array(dumvarstbl);
NYCHousing2015(:,catvars) = [];

Treat all other numeric variables in the table as linear predictors of sales price. Concatenate the
matrix of dummy variables to the rest of the predictor data.

idxnum = varfun(@isnumeric,NYCHousing2015,'OutputFormat','uniform');
X = [dumvarmat NYCHousing2015{:,idxnum}];

Randomly partition the data into 5% and 95% sets: the first set for training a model traditionally, and
the second set for incremental learning.

cvp = cvpartition(n,'Holdout',0.95);
idxtt = training(cvp);
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idxil = test(cvp);

% 5% set for traditional training 
Xtt = X(idxtt,:);
Ytt = Y(idxtt);

% 95% set for incremental learning
Xil = X(idxil,:);
Yil = Y(idxil);

Fit a linear regression model to 5% of the data.

TTMdl = fitrlinear(Xtt,Ytt);

Convert the traditionally trained linear regression model to a linear regression model for incremental
learning. Specify the standard SGD solver and an estimation period of 2e4 observations (the default
is 1000 when a learning rate is required).

IncrementalMdl = incrementalLearner(TTMdl,'Solver','sgd','EstimationPeriod',2e4);

IncrementalMdl is an incrementalRegressionLinear model object.

Fit the incremental model to the rest of the data by using the fit function. At each iteration:

• Simulate a data stream by processing 10 observations at a time.
• Overwrite the previous incremental model with a new one fitted to the incoming observations.
• Store the initial learning rate and β1 to see how the coefficients and rate evolve during training.

% Preallocation
nil = numel(Yil);
numObsPerChunk = 10;
nchunk = floor(nil/numObsPerChunk);
learnrate = [IncrementalMdl.LearnRate; zeros(nchunk,1)];
beta1 = [IncrementalMdl.Beta(1); zeros(nchunk,1)];    

% Incremental fitting
for j = 1:nchunk
    ibegin = min(nil,numObsPerChunk*(j-1) + 1);
    iend   = min(nil,numObsPerChunk*j);
    idx = ibegin:iend;
    IncrementalMdl = fit(IncrementalMdl,Xil(idx,:),Yil(idx));
    beta1(j + 1) = IncrementalMdl.Beta(1);
    learnrate(j + 1) = IncrementalMdl.LearnRate;
end

IncrementalMdl is an incrementalRegressionLinear model object trained on all the data in
the stream.

To see how the initial learning rate and β1 evolve during training, plot them on separate tiles.

t = tiledlayout(2,1);
nexttile
plot(beta1)
hold on
ylabel('\beta_1')
xline(IncrementalMdl.EstimationPeriod/numObsPerChunk,'r-.')
nexttile
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plot(learnrate)
ylabel('Initial Learning Rate')
xline(IncrementalMdl.EstimationPeriod/numObsPerChunk,'r-.')
xlabel(t,'Iteration')

The initial learning rate jumps from 0.7 to its autotuned value after the estimation period. During
training, the software uses a learning rate that gradually decays from the initial value specified in the
“LearnRateSchedule” on page 35-0  property of IncrementalMdl.

Because fit does not fit the model to the streaming data during the estimation period, β1 is constant
for the first 2000 iterations (20,000 observations). Then, β1 changes slightly as fit fits the model to
each new chunk of 10 observations.

Configure Performance Metric Options

Use a trained linear regression model to initialize an incremental learner. Prepare the incremental
learner by specifying a metrics warm-up period, during which the updateMetricsAndFit function
only fits the model. Specify a metrics window size of 500 observations.

Load the robot arm data set.

load robotarm

For details on the data set, enter Description at the command line.
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Randomly partition the data into 5% and 95% sets: the first set for training a model traditionally, and
the second set for incremental learning.

n = numel(ytrain);

rng(1) % For reproducibility
cvp = cvpartition(n,'Holdout',0.95);
idxtt = training(cvp);
idxil = test(cvp);

% 5% set for traditional training
Xtt = Xtrain(idxtt,:);
Ytt = ytrain(idxtt);

% 95% set for incremental learning
Xil = Xtrain(idxil,:);
Yil = ytrain(idxil);

Fit a linear regression model to the first set.

TTMdl = fitrlinear(Xtt,Ytt);

Convert the traditionally trained linear regression model to a linear regression model for incremental
learning. Specify the following:

• A performance metrics warm-up period of 2000 observations.
• A metrics window size of 500 observations.
• Use of epsilon insensitive loss, MSE, and mean absolute error (MAE) to measure the performance

of the model. The software supports epsilon insensitive loss and MSE. Create an anonymous
function that measures the absolute error of each new observation. Create a structure array
containing the name MeanAbsoluteError and its corresponding function.

maefcn = @(z,zfit)abs(z - zfit);
maemetric = struct("MeanAbsoluteError",maefcn);
IncrementalMdl = incrementalLearner(TTMdl,'MetricsWarmupPeriod',2000,'MetricsWindowSize',500,...
    'Metrics',{'epsiloninsensitive' 'mse' maemetric});

Fit the incremental model to the rest of the data by using the updateMetricsAndFit function. At
each iteration:

• Simulate a data stream by processing 50 observations at a time.
• Overwrite the previous incremental model with a new one fitted to the incoming observations.
• Store β10, the cumulative metrics, and the window metrics to see how they evolve during

incremental learning.

% Preallocation
nil = numel(Yil);
numObsPerChunk = 50;
nchunk = floor(nil/numObsPerChunk);
ei = array2table(zeros(nchunk,2),'VariableNames',["Cumulative" "Window"]);
mse = array2table(zeros(nchunk,2),'VariableNames',["Cumulative" "Window"]);
mae = array2table(zeros(nchunk,2),'VariableNames',["Cumulative" "Window"]);
beta1 = zeros(nchunk+1,1);    
beta1(1) = IncrementalMdl.Beta(10);

% Incremental fitting
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for j = 1:nchunk
    ibegin = min(nil,numObsPerChunk*(j-1) + 1);
    iend   = min(nil,numObsPerChunk*j);
    idx = ibegin:iend;    
    IncrementalMdl = updateMetricsAndFit(IncrementalMdl,Xil(idx,:),Yil(idx));
    ei{j,:} = IncrementalMdl.Metrics{"EpsilonInsensitiveLoss",:};
    mse{j,:} = IncrementalMdl.Metrics{"MeanSquaredError",:};
    mae{j,:} = IncrementalMdl.Metrics{"MeanAbsoluteError",:};
    beta1(j + 1) = IncrementalMdl.Beta(10);
end

IncrementalMdl is an incrementalRegressionLinear model object trained on all the data in
the stream. During incremental learning and after the model is warmed up, updateMetricsAndFit
checks the performance of the model on the incoming observations, and then fits the model to those
observations.

To see how the performance metrics and β10 evolve during training, plot them on separate tiles.

tiledlayout(2,2)
nexttile
plot(beta1)
ylabel('\beta_{10}')
xlim([0 nchunk])
xline(IncrementalMdl.MetricsWarmupPeriod/numObsPerChunk,'r-.')
xlabel('Iteration')
nexttile
h = plot(ei.Variables);
xlim([0 nchunk])
ylabel('Epsilon Insensitive Loss')
xline(IncrementalMdl.MetricsWarmupPeriod/numObsPerChunk,'r-.')
legend(h,ei.Properties.VariableNames)
xlabel('Iteration')
nexttile
h = plot(mse.Variables);
xlim([0 nchunk]);
ylabel('MSE')
xline(IncrementalMdl.MetricsWarmupPeriod/numObsPerChunk,'r-.')
legend(h,mse.Properties.VariableNames)
xlabel('Iteration')
nexttile
h = plot(mae.Variables);
xlim([0 nchunk]);
ylabel('MAE')
xline(IncrementalMdl.MetricsWarmupPeriod/numObsPerChunk,'r-.')
legend(h,mae.Properties.VariableNames)
xlabel('Iteration')
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The plot suggests that updateMetricsAndFit does the following:

• Fit β10 during all incremental learning iterations.
• Compute the performance metrics after the metrics warm-up period only.
• Compute the cumulative metrics during each iteration.
• Compute the window metrics after processing 500 observations.

Input Arguments
Mdl — Traditionally trained linear regression model
RegressionLinear model object

Traditionally trained linear regression model, specified as a RegressionLinear model object
returned by fitrlinear.

Note

• If Mdl.Lambda is a numeric vector, you must select the model corresponding to one regularization
strength in the regularization path by using selectModels.

• Incremental learning functions support only numeric input predictor data. If Mdl was trained on
categorical data, you must prepare an encoded version of the categorical data to use incremental
learning functions. Use dummyvar to convert each categorical variable to a numeric matrix of
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dummy variables. Then, concatenate all dummy variable matrices and any other numeric
predictors, in the same way that the training function encodes categorical data. For more details,
see “Dummy Variables” on page 2-49.

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: 'Solver','scale-invariant','MetricsWindowSize',100 specifies the adaptive
scale-invariant solver for objective optimization, and specifies processing 100 observations before
updating the window performance metrics.

General Options

Solver — Objective function minimization technique
'scale-invariant' | 'sgd' | 'asgd'

Objective function minimization technique, specified as the comma-separated pair consisting of
'Solver' and a value in this table.

Value Description Notes
'scale-
invariant'

Adaptive scale-invariant solver
for incremental learning on
page 35-3627 [1]

• This algorithm is parameter free and can
adapt to differences in predictor scales. Try
this algorithm before using SGD or ASGD.

• To shuffle an incoming chunk of data before
the fit function fits the model, set Shuffle
to true.

'sgd' Stochastic gradient descent
(SGD) [3][2]

• To train effectively with SGD, standardize the
data and specify adequate values for
hyperparameters using options listed in “SGD
and ASGD Solver Options” on page 35-0 .

• The fit function always shuffles an incoming
chunk of data before fitting the model.

'asgd' Average stochastic gradient
descent (ASGD) [4]

• To train effectively with ASGD, standardize the
data and specify adequate values for
hyperparameters using options listed in “SGD
and ASGD Solver Options” on page 35-0 .

• The fit function always shuffles an incoming
chunk of data before fitting the model.

• If Mdl.Regularization is 'ridge (L2)' and Mdl.ModelParameters.Solver is 'sgd' or
'asgd', the default Solver value is Mdl.ModelParameters.Solver.

• Otherwise, the default Solver value is 'scale-invariant'.

Example: 'Solver','sgd'
Data Types: char | string
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EstimationPeriod — Number of observations processed to estimate hyperparameters
nonnegative integer

Number of observations processed by the incremental model to estimate hyperparameters before
training or tracking performance metrics, specified as the comma-separated pair consisting of
'EstimationPeriod' and a nonnegative integer.

Note

• If Mdl is prepared for incremental learning (all hyperparameters required for training are
specified), incrementalLearner forces EstimationPeriod to 0.

• If Mdl is not prepared for incremental learning, incrementalLearner sets EstimationPeriod
to 1000.

For more details, see “Estimation Period” on page 35-3628.

Example: 'EstimationPeriod',100
Data Types: single | double

Standardize — Flag to standardize predictor data
false (default) | true

Flag to standardize the predictor data, specified as the comma-separated pair consisting of
'Standardize' and a value in this table.

Value Description
true The software standardizes the predictor data. For more details, see

“Standardize Data” on page 35-3628.
false The software does not standardize the predictor data.

Example: 'Standardize',true
Data Types: logical

SGD and ASGD Solver Options

BatchSize — Mini-batch size
positive integer

Mini-batch size, specified as the comma-separated pair consisting of 'BatchSize' and a positive
integer. At each learning cycle during training, incrementalLearner uses BatchSize observations
to compute the subgradient.

The number of observations for the last mini-batch (last learning cycle in each function call of fit or
updateMetricsAndFit) can be smaller than BatchSize. For example, if you supply 25
observations to fit or updateMetricsAndFit, the function uses 10 observations for the first two
learning cycles and uses 5 observations for the last learning cycle.

• If Mdl.Regularization is 'ridge (L2)' and Mdl.ModelParameters.Solver is 'sgd' or
'asgd', you cannot set BatchSize. Instead, incrementalLearner sets BatchSize to
Mdl.ModelParameters.BatchSize.
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• Otherwise, BatchSize is 10.

Example: 'BatchSize',1
Data Types: single | double

Lambda — Ridge (L2) regularization term strength
nonnegative scalar

Ridge (L2) regularization term strength, specified as the comma-separated pair consisting of
'Lambda' and a nonnegative scalar.

• If Mdl.Regularization is 'ridge (L2)' and Mdl.ModelParameters.Solver is 'sgd' or
'asgd', you cannot set Lambda. Instead, incrementalLearner sets Lambda to Mdl.Lambda.

• Otherwise, Lambda is 1e-5.

Note incrementalLearner does not support lasso regularization. If Mdl.Regularization is
'lasso (L1)', incrementalLearner uses ridge regularization instead, and sets the Solver
name-value pair argument to 'scale-invariant' by default.

Example: 'Lambda',0.01
Data Types: single | double

LearnRate — Initial learning rate
'auto' | positive scalar

Initial learning rate, specified as the comma-separated pair consisting of 'LearnRate' and 'auto'
or a positive scalar.

The learning rate controls the optimization step size by scaling the objective subgradient. LearnRate
specifies an initial value for the learning rate, and LearnRateSchedule determines the learning
rate for subsequent learning cycles.

When you specify 'auto':

• The initial learning rate is 0.7.
• If EstimationPeriod > 0, fit and updateMetricsAndFit change the rate to 1/

sqrt(1+max(sum(X.^2,obsDim))) at the end of EstimationPeriod. The obsDim value is 1 if
the observations compose the columns of the predictor data; otherwise, the value is 2.

By default:

• If Mdl.Regularization is 'ridge (L2)' and Mdl.ModelParameters.Solver is 'sgd' or
'asgd', you cannot set LearnRate. Instead, incrementalLearner sets LearnRate to
Mdl.ModelParameters.LearnRate.

• Otherwise, LearnRate is 'auto'.

Example: 'LearnRate',0.001
Data Types: single | double | char | string

LearnRateSchedule — Learning rate schedule
'decaying' (default) | 'constant'

 incrementalLearner

35-3623



Learning rate schedule, specified as the comma-separated pair consisting of 'LearnRateSchedule'
and a value in this table, where LearnRate specifies the initial learning rate ɣ0.

Value Description
'constant' The learning rate is ɣ0 for all learning cycles.
'decaying' The learning rate at learning cycle t is

γt =
γ0

1 + λγ0t c .

• λ is the value of Lambda.
• If Solver is 'sgd', c = 1.
• If Solver is 'asgd':

• c = 2/3 if Learner is 'leastsquares'.
• c = 3/4 if Learner is 'svm' [4].

If Mdl.Regularization is 'ridge (L2)' and Mdl.ModelParameters.Solver is 'sgd' or
'asgd', you cannot set LearnRateSchedule. Instead, incrementalLearner sets
LearnRateSchedule to 'decaying'.
Example: 'LearnRateSchedule','constant'
Data Types: char | string

Adaptive Scale-Invariant Solver Options

Shuffle — Flag for shuffling observations in batch
true (default) | false

Flag for shuffling the observations in the batch at each iteration, specified as the comma-separated
pair consisting of 'Shuffle' and a value in this table.

Value Description
true The software shuffles an incoming chunk of data

before the fit function fits the model. This
action reduces bias induced by the sampling
scheme.

false The software processes the data in the order
received.

Example: 'Shuffle',false
Data Types: logical

Performance Metrics Options

Metrics — Model performance metrics to track during incremental learning
"epsiloninsensitive" | "mse" | string vector | function handle | cell vector | structure array

Model performance metrics to track during incremental learning with updateMetrics and
updateMetricsAndFit, specified as the comma-separated pair consisting of 'Metrics' and a
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built-in loss function name, string vector of names, function handle (@metricName), structure array
of function handles, or cell vector of names, function handles, or structure arrays.

The following table lists the built-in loss function names and which learners, specified in
Mdl.Learner, support them. You can specify more than one loss function by using a string vector.

Name Description Learner Supporting Metric
"epsiloninsensitive" Epsilon insensitive loss 'svm'
"mse" Weighted mean squared error 'svm' and 'leastsquares'

For more details on the built-in loss functions, see loss.
Example: 'Metrics',["epsiloninsensitive" "mse"]

To specify a custom function that returns a performance metric, use function handle notation. The
function must have this form:

metric = customMetric(Y,YFit)

• The output argument metric is an n-by-1 numeric vector, where each element is the loss of the
corresponding observation in the data processed by the incremental learning functions during a
learning cycle.

• You specify the function name (customMetric).
• Y is a length n numeric vector of observed responses, where n is the sample size.
• YFit is a length n numeric vector of corresponding predicted responses.

To specify multiple custom metrics and assign a custom name to each, use a structure array. To
specify a combination of built-in and custom metrics, use a cell vector.
Example: 'Metrics',struct('Metric1',@customMetric1,'Metric2',@customMetric2)
Example: 'Metrics',{@customMetric1 @customMetric2 'mse'
struct('Metric3',@customMetric3)}

updateMetrics and updateMetricsAndFit store specified metrics in a table in the property
IncrementalMdl.Metrics. The data type of Metrics determines the row names of the table.

'Metrics' Value
Data Type

Description of Metrics Property Row
Name

Example

String or character
vector

Name of corresponding built-in metric Row name for
"epsiloninsensitive" is
"EpsilonInsensitiveLoss"

Structure array Field name Row name for
struct('Metric1',@customMetr
ic1) is "Metric1"

Function handle to
function stored in
a program file

Name of function Row name for @customMetric is
"customMetric"

Anonymous
function

CustomMetric_j, where j is metric j in
Metrics

Row name for
@(Y,YFit)customMetric(Y,YFit
)... is CustomMetric_1
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By default:

• Metrics is "epsiloninsensitive" if Mdl.Learner is 'svm'.
• Metrics is "mse" if Mdl.Learner is 'leastsquares'.

For more details on performance metrics options, see “Performance Metrics” on page 35-3629.
Data Types: char | string | struct | cell | function_handle

MetricsWarmupPeriod — Number of observations fit before tracking performance metrics
0 (default) | nonnegative integer

Number of observations the incremental model must be fit to before it tracks performance metrics in
its Metrics property, specified as a nonnegative integer. The incremental model is warm after
incremental fitting functions fit (EstimationPeriod + MetricsWarmupPeriod) observations to the
incremental model.

For more details on performance metrics options, see “Performance Metrics” on page 35-3629.
Example: 'MetricsWarmupPeriod',50
Data Types: single | double

MetricsWindowSize — Number of observations to use to compute window performance
metrics
200 (default) | positive integer

Number of observations to use to compute window performance metrics, specified as a positive
integer.

For more details on performance metrics options, see “Performance Metrics” on page 35-3629.
Example: 'MetricsWindowSize',100
Data Types: single | double

Output Arguments
IncrementalMdl — Linear regression model for incremental learning
incrementalRegressionLinear model object

Linear regression model for incremental learning, returned as an incrementalRegressionLinear
model object. IncrementalMdl is also configured to generate predictions given new data (see
predict).

To initialize IncrementalMdl for incremental learning, incrementalLearner passes the values of
the Mdl properties in this table to corresponding properties of IncrementalMdl.

Property Description
Beta Linear model coefficients, a numeric vector
Bias Model intercept, a numeric scalar
Epsilon Half the width of the epsilon insensitive band, a nonnegative scalar
Learner Linear regression model type, a character vector
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Property Description
ModelParameters.FitBias Linear model intercept inclusion flag
NumPredictors Number of predictors, a positive integer
ResponseTransform Response transformation function, a function name or function

handle

If Mdl.Regularization is 'ridge (L2)' and Mdl.ModelParameters.Solver is 'sgd' or
'asgd', incrementalLearner also passes the values of Mdl properties in this table.

Property Description
Lambda Ridge (L2) regularization term strength, a nonnegative scalar
ModelParameters.LearnRat
e

Learning rate, a positive scalar

ModelParameters.BatchSiz
e

Mini-batch size, a positive integer

ModelParameters.Solver Objective function minimization technique, a character vector

More About
Incremental Learning

Incremental learning, or online learning, is a branch of machine learning concerned with processing
incoming data from a data stream, possibly given little to no knowledge of the distribution of the
predictor variables, aspects of the prediction or objective function (including tuning parameter
values), or whether the observations are labeled. Incremental learning differs from traditional
machine learning, where enough labeled data is available to fit to a model, perform cross-validation
to tune hyperparameters, and infer the predictor distribution.

Given incoming observations, an incremental learning model processes data in any of the following
ways, but usually in this order:

• Predict labels.
• Measure the predictive performance.
• Check for structural breaks or drift in the model.
• Fit the model to the incoming observations.

For more details, see “Incremental Learning Overview” on page 28-2.

Adaptive Scale-Invariant Solver for Incremental Learning

The adaptive scale-invariant solver for incremental learning, introduced in [1], is a gradient-descent-
based objective solver for training linear predictive models. The solver is hyperparameter free,
insensitive to differences in predictor variable scales, and does not require prior knowledge of the
distribution of the predictor variables. These characteristics make it well suited to incremental
learning.

The standard SGD and ASGD solvers are sensitive to differing scales among the predictor variables,
resulting in models that can perform poorly. To achieve better accuracy using SGD and ASGD, you
can standardize the predictor data, and tune the regularization and learning rate parameters. For
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traditional machine learning, enough data is available to enable hyperparameter tuning by cross-
validation and predictor standardization. However, for incremental learning, enough data might not
be available (for example, observations might be available only one at a time) and the distribution of
the predictors might be unknown. These characteristics make parameter tuning and predictor
standardization difficult or impossible to do during incremental learning.

The incremental fitting functions for regression fit and updateMetricsAndFit use the more
conservative ScInOL1 version of the algorithm.

Algorithms
Estimation Period

During the estimation period, the incremental fitting functions fit and updateMetricsAndFit use
the first incoming EstimationPeriod observations to estimate (tune) hyperparameters required for
incremental training. Estimation occurs only when EstimationPeriod is positive. This table
describes the hyperparameters and when they are estimated, or tuned.

Hyperparameter Model Property Usage Conditions
Predictor means
and standard
deviations

Mu and Sigma Standardize
predictor data

The hyperparameters are estimated
when you set 'Standardize',true
(see “Standardize Data” on page 35-
3628)

Learning rate LearnRate Adjust solver step
size

The hyperparameter is estimated when
both of these conditions apply:

• You change the solver of Mdl to
SGD or ASGD (see Solver).

• You do not specify the
'LearnRate' name-value
argument as a positive scalar.

During the estimation period, fit does not fit the model, and updateMetricsAndFit does not fit
the model or update the performance metrics. At the end of the estimation period, the functions
update the properties that store the hyperparameters.

Standardize Data

If incremental learning functions are configured to standardize predictor variables, they do so using
the means and standard deviations stored in the Mu and Sigma properties of the incremental learning
model IncrementalMdl.

• When you set 'Standardize',true, and IncrementalMdl.Mu and IncrementalMdl.Sigma
are empty, the following conditions apply:

• If the estimation period is positive (see the EstimationPeriod property of
IncrementalMdl), incremental fitting functions estimate means and standard deviations
using the estimation period observations.

• If the estimation period is 0, incrementalLearner forces the estimation period to 1000.
Consequently, incremental fitting functions estimate new predictor variable means and
standard deviations during the forced estimation period.
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• When incremental fitting functions estimate predictor means and standard deviations, the
functions compute weighted means and weighted standard deviations using the estimation period
observations. Specifically, the functions standardize predictor j (xj) using

x j
∗ =

x j− μ j
∗

σ j
∗ .

where

• xj is predictor j, and xjk is observation k of predictor j in the estimation period.
• μ j

∗ = 1
∑
k

wk
∑
k

wkx jk .

• σ j
∗ 2 = 1

∑
k

wk
∑
k

wk x jk− μ j
∗ 2 .

• wj is observation weight j.

Performance Metrics

• The updateMetrics and updateMetricsAndFit functions are incremental learning functions
that track model performance metrics ('Metrics') from new data when the incremental model is
warm (IsWarm property). An incremental model becomes warm after fit or
updateMetricsAndFit fit the incremental model to 'MetricsWarmupPeriod' observations,
which is the metrics warm-up period.

If 'EstimationPeriod' > 0, the functions estimate hyperparameters before fitting the model to
data. Therefore, the functions must process an additional EstimationPeriod observations
before the model starts the metrics warm-up period.

• The Metrics property of the incremental model stores two forms of each performance metric as
variables (columns) of a table, Cumulative and Window, with individual metrics in rows. When
the incremental model is warm, updateMetrics and updateMetricsAndFit update the metrics
at the following frequencies:

• Cumulative — The functions compute cumulative metrics since the start of model
performance tracking. The functions update metrics every time you call the functions and base
the calculation on the entire supplied data set.

• Window — The functions compute metrics based on all observations within a window
determined by the 'MetricsWindowSize' name-value pair argument.
'MetricsWindowSize' also determines the frequency at which the software updates Window
metrics. For example, if MetricsWindowSize is 20, the functions compute metrics based on
the last 20 observations in the supplied data (X((end – 20 + 1):end,:) and Y((end – 20
+ 1):end)).

Incremental functions that track performance metrics within a window use the following
process:

1 Store a buffer of length MetricsWindowSize for each specified metric, and store a buffer
of observation weights.

2 Populate elements of the metrics buffer with the model performance based on batches of
incoming observations, and store corresponding observation weights in the weights buffer.

 incrementalLearner

35-3629



3 When the buffer is filled, overwrite IncrementalMdl.Metrics.Window with the
weighted average performance in the metrics window. If the buffer is overfilled when the
function processes a batch of observations, the latest incoming MetricsWindowSize
observations enter the buffer, and the earliest observations are removed from the buffer.
For example, suppose MetricsWindowSize is 20, the metrics buffer has 10 values from a
previously processed batch, and 15 values are incoming. To compose the length 20
window, the functions use the measurements from the 15 incoming observations and the
latest 5 measurements from the previous batch.

• The software omits an observation with a NaN prediction when computing the Cumulative and
Window performance metric values.

Version History
Introduced in R2020b
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incrementalRegressionKernel
Kernel regression model for incremental learning

Description
The incrementalRegressionKernel function creates an incrementalRegressionKernel
model object, which represents a binary Gaussian kernel regression model for incremental learning.
The kernel model maps data in a low-dimensional space into a high-dimensional space, then fits a
linear model in the high-dimensional space. Supported linear models include support vector machine
(SVM) and least-squares regression.

Unlike other Statistics and Machine Learning Toolbox model objects,
incrementalRegressionKernel can be called directly. Also, you can specify learning options, such
as performance metrics configurations and the objective solver, before fitting the model to data. After
you create an incrementalRegressionKernel object, it is prepared for incremental learning on
page 35-3651.

incrementalRegressionKernel is best suited for incremental learning. For a traditional approach
to training a kernel regression model (such as creating a model by fitting it to data, performing cross-
validation, tuning hyperparameters, and so on), see fitrkernel.

Creation
You can create an incrementalRegressionKernel model object in several ways:

• Call the function directly — Configure incremental learning options, or specify learner-specific
options, by calling incrementalRegressionKernel directly. This approach is best when you do
not have data yet or you want to start incremental learning immediately.

• Convert a traditionally trained model — To initialize a model for incremental learning using
the model parameters and hyperparameters of a trained model object (RegressionKernel), you
can convert the traditionally trained model to an incrementalRegressionKernel model object
by passing it to the incrementalLearner function.

• Call an incremental learning function — fit, updateMetrics, and updateMetricsAndFit
accept a configured incrementalRegressionKernel model object and data as input, and
return an incrementalRegressionKernel model object updated with information learned from
the input model and data.

Syntax
Mdl = incrementalRegressionKernel()
Mdl = incrementalRegressionKernel(Name=Value)

Description

Mdl = incrementalRegressionKernel() returns a default incremental learning model object for
binary Gaussian kernel regression, Mdl. Properties of a default model contain placeholders for
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unknown model parameters. You must train a default model before you can track its performance or
generate predictions from it.

Mdl = incrementalRegressionKernel(Name=Value) sets properties on page 35-3635 and
additional options using name-value arguments. For example,
incrementalRegressionKernel(Solver="sgd",LearnRateSchedule="constant") specifies
to use the stochastic gradient descent (SGD) solver with a constant learning rate.

Input Arguments
Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.
Example: Metrics="mse",MetricsWarmupPeriod=100 sets the model performance metric to the
weighted mean squared error and the metrics warm-up period to 100.

Regression Options

RandomStream — Random number stream
global stream (default) | random stream object

Random number stream for reproducibility of data transformation, specified as a random stream
object. For details, see “Random Feature Expansion” on page 35-3651.

Use RandomStream to reproduce the random basis functions used by
incrementalRegressionKernel to transform the predictor data to a high-dimensional space. For
details, see “Managing the Global Stream Using RandStream” and “Creating and Controlling a
Random Number Stream”.
Example: RandomStream=RandStream("mlfg6331_64")

SGD and ASGD (Average SGD) Solver Options

BatchSize — Mini-batch size
10 (default) | positive integer

Mini-batch size, specified as a positive integer. At each learning cycle during training,
incrementalRegressionKernel uses BatchSize observations to compute the subgradient.

The number of observations in the last mini-batch (last learning cycle in each function call of fit or
updateMetricsAndFit) can be smaller than BatchSize. For example, if you supply 25
observations to fit or updateMetricsAndFit, the function uses 10 observations for the first two
learning cycles and 5 observations for the last learning cycle.
Example: BatchSize=5
Data Types: single | double

Lambda — Ridge (L2) regularization term strength
1e-5 (default) | nonnegative scalar

Ridge (L2) regularization term strength, specified as a nonnegative scalar.
Example: Lambda=0.01
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Data Types: single | double

LearnRate — Initial learning rate
"auto" (default) | positive scalar

Initial learning rate, specified as "auto" or a positive scalar.

The learning rate controls the optimization step size by scaling the objective subgradient. LearnRate
specifies an initial value for the learning rate, and LearnRateSchedule determines the learning
rate for subsequent learning cycles.

When you specify "auto":

• The initial learning rate is 0.7.
• If EstimationPeriod > 0, fit and updateMetricsAndFit change the rate to 1/

sqrt(1+max(sum(X.^2,2))) at the end of EstimationPeriod.

Example: LearnRate=0.001
Data Types: single | double | char | string

LearnRateSchedule — Learning rate schedule
"decaying" (default) | "constant"

Learning rate schedule, specified as a value in this table, where LearnRate specifies the initial
learning rate ɣ0.

Value Description
"constant" The learning rate is ɣ0 for all learning cycles.
"decaying" The learning rate at learning cycle t is

γt =
γ0

1 + λγ0t c .

• λ is the value of Lambda.
• If Solver is "sgd", c = 1.
• If Solver is "asgd":

• c = 2/3 if Learner is "leastsquares".
• c = 3/4 if Learner is "svm" [4].

Example: LearnRateSchedule="constant"
Data Types: char | string

Adaptive Scale-Invariant Solver Options

Shuffle — Flag for shuffling observations
true or 1 (default) | false or 0

Flag for shuffling the observations at each iteration, specified as logical 1 (true) or 0 (false).
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Value Description
logical 1 (true) The software shuffles the observations in an

incoming chunk of data before the fit function
fits the model. This action reduces bias induced
by the sampling scheme.

logical 0 (false) The software processes the data in the order
received.

Example: Shuffle=false
Data Types: logical

Performance Metrics Options

Metrics — Model performance metrics to track during incremental learning
"epsiloninsensitive" | "mse" | string vector | function handle | cell vector | structure array

Model performance metrics to track during incremental learning, specified as a built-in loss function
name, string vector of names, function handle (@metricName), structure array of function handles, or
cell vector of names, function handles, or structure arrays.

When Mdl is warm (see IsWarm), updateMetrics and updateMetricsAndFit track performance
metrics in the Metrics property of Mdl.

The following table lists the built-in loss function names and which learners, specified in Learner,
support them. You can specify more than one loss function by using a string vector.

Name Description Learner Supporting Metric
"epsiloninsensitive" Epsilon insensitive loss "svm"
"mse" Weighted mean squared error "svm" and "leastsquares"

For more details on the built-in loss functions, see loss.
Example: Metrics=["epsiloninsensitive","mse"]

To specify a custom function that returns a performance metric, use function handle notation. The
function must have this form:

metric = customMetric(Y,YFit)

• The output argument metric is an n-by-1 numeric vector, where each element is the loss of the
corresponding observation in the data processed by the incremental learning functions during a
learning cycle.

• You specify the function name (customMetric).
• Y is a length n numeric vector of observed responses, where n is the sample size.
• YFit is a length n numeric vector of corresponding predicted responses.

To specify multiple custom metrics and assign a custom name to each, use a structure array. To
specify a combination of built-in and custom metrics, use a cell vector.
Example: Metrics=struct(Metric1=@customMetric1,Metric2=@customMetric2)
Example:
Metrics={@customMetric1,@customMetric2,"mse",struct(Metric3=@customMetric3)}
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updateMetrics and updateMetricsAndFit store specified metrics in a table in the property
Metrics. The data type of Metrics determines the row names of the table.

Metrics Value
Data Type

Description of Metrics Property Row
Name

Example

String or character
vector

Name of corresponding built-in metric Row name for
"epsiloninsensitive" is
"EpsilonInsensitiveLoss"

Structure array Field name Row name for
struct(Metric1=@customMetric
1) is "Metric1"

Function handle to
function stored in
a program file

Name of function Row name for @customMetric is
"customMetric"

Anonymous
function

CustomMetric_j, where j is metric j in
Metrics

Row name for
@(Y,YFit)customMetric(Y,YFit
)... is CustomMetric_1

By default:

• Metrics is "epsiloninsensitive" if Learner is "svm".
• Metrics is "mse" if Learner is "leastsquares".

For more details on performance metrics options, see “Performance Metrics” on page 35-3653.
Data Types: char | string | struct | cell | function_handle

Properties
You can set most properties by using name-value argument syntax when you call
incrementalRegressionKernel directly. You can set some properties when you call
incrementalLearner to convert a traditionally trained model. You cannot set the properties
FittedLoss, NumTrainingObservations, SolverOptions, and IsWarm.

Regression Model Parameters

Epsilon — Half of the width of epsilon insensitive band
"auto" | nonnegative scalar

This property is read-only.

Half of the width of the epsilon insensitive band, specified as "auto" or a nonnegative scalar.
incrementalRegressionKernel stores the Epsilon value as a numeric scalar.

If you specify "auto" when you call incrementalRegressionKernel, incremental fitting functions
estimate Epsilon during the estimation period, specified by EstimationPeriod, using this
procedure:

• If iqr(Y) ≠ 0, Epsilon is iqr(Y)/13.49, where Y is the estimation period response data.
• If iqr(Y) = 0 or before you fit Mdl to data, Epsilon is 0.1.

The default Epsilon value depends on how you create the model:
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• If you convert a traditionally trained model whose Learner property is 'svm', Epsilon is
specified by the corresponding property of the traditionally trained model.

• Otherwise, the default value is "auto".

If Learner is "leastsquares", you cannot set Epsilon and its value is NaN.
Data Types: single | double

FittedLoss — Loss function used to fit linear model
'epsiloninsensitive' | 'mse'

This property is read-only.

Loss function used to fit the linear model, specified as 'epsiloninsensitive' or 'mse'.

Value Algorithm Loss Function Learner Value
'epsiloninsensitiv
e'

Support vector machine
regression

Epsilon insensitive:
ℓ y, f x = max
0, y − f x − ε

'svm'

'mse' Linear regression
through ordinary least
squares

Mean squared error
(MSE):
ℓ y, f x = 1

2 y − f x 2

'leastsquares'

KernelScale — Kernel scale parameter
"auto" | positive scalar

This property is read-only.

Kernel scale parameter, specified as "auto" or a positive scalar. incrementalRegressionKernel
stores the KernelScale value as a numeric scalar. The software obtains a random basis for feature
expansion by using the kernel scale parameter. For details, see “Random Feature Expansion” on page
35-3651.

If you specify "auto" when creating the model object, the software selects an appropriate kernel
scale parameter using a heuristic procedure. This procedure uses subsampling, so estimates can vary
from one call to another. Therefore, to reproduce results, set a random number seed by using rng
before training.

The default KernelScale value depends on how you create the model:

• If you convert a traditionally trained model to create Mdl, KernelScale is specified by the
corresponding property of the traditionally trained model.

• Otherwise, the default value is 1.

Data Types: char | string | single | double

Learner — Linear regression model type
"svm" | "leastsquares"

This property is read-only.

Linear regression model type, specified as "svm" or "leastsquares".
incrementalRegressionKernel stores the Learner value as a character vector.
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In the following table, f x = T(x)β + b .

• x is an observation (row vector) from p predictor variables.
• T ·  is a transformation of an observation (row vector) for feature expansion. T(x) maps x in ℝp to

a high-dimensional space (ℝm).
• β is a vector of coefficients.
• b is the scalar bias.

Value Algorithm Loss Function FittedLoss Value
"svm" Support vector machine

regression
Epsilon insensitive:
ℓ y, f x = max
0, y − f x − ε

'epsiloninsensitiv
e'

"leastsquares" Linear regression
through ordinary least
squares

Mean squared error
(MSE):
ℓ y, f x = 1

2 y − f x 2

'mse'

The default Learner value depends on how you create the model:

• If you convert a traditionally trained model to create Mdl, Learner is specified by the
corresponding property of the traditionally trained model.

• Otherwise, the default value is "svm".

NumExpansionDimensions — Number of dimensions of expanded space
"auto" | positive integer

This property is read-only.

Number of dimensions of the expanded space, specified as "auto" or a positive integer.
incrementalRegressionKernel stores the NumExpansionDimensions value as a numeric scalar.

For "auto", the software selects the number of dimensions using 2.^ceil(min(log2(p)+5,15)),
where p is the number of predictors. For details, see “Random Feature Expansion” on page 35-3651.

The default NumExpansionDimensions value depends on how you create the model:

• If you convert a traditionally trained model to create Mdl, NumExpansionDimensions is
specified by the corresponding property of the traditionally trained model.

• Otherwise, the default value is "auto".

Data Types: char | string | single | double

NumPredictors — Number of predictor variables
nonnegative numeric scalar

This property is read-only.

Number of predictor variables, specified as a nonnegative numeric scalar.

The default NumPredictors value depends on how you create the model:

• If you convert a traditionally trained model to create Mdl, NumPredictors is specified by the
corresponding property of the traditionally trained model.
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• If you create Mdl by calling incrementalRegressionKernel directly, you can specify
NumPredictors by using name-value argument syntax. If you do not specify the value, then the
default value is 0, and incremental fitting functions infer NumPredictors from the predictor data
during training.

Data Types: double

NumTrainingObservations — Number of observations fit to incremental model
0 (default) | nonnegative numeric scalar

This property is read-only.

Number of observations fit to the incremental model Mdl, specified as a nonnegative numeric scalar.
NumTrainingObservations increases when you pass Mdl and training data to fit or
updateMetricsAndFit.

Note If you convert a traditionally trained model to create Mdl, incrementalRegressionKernel
does not add the number of observations fit to the traditionally trained model to
NumTrainingObservations.

Data Types: double

ResponseTransform — Response transformation function
"none" | function handle

This property is read-only.

Response transformation function, specified as "none" or a function handle.
incrementalRegressionKernel stores the ResponseTransform value as a character vector or
function handle.

ResponseTransform describes how incremental learning functions transform raw response values.

For a MATLAB function or a function that you define, enter its function handle; for example,
ResponseTransform=@function, where function accepts an n-by-1 vector (the original
responses) and returns a vector of the same length (the transformed responses).

The default ResponseTransform value depends on how you create the model:

• If you convert a traditionally trained model to create Mdl, ResponseTransform is specified by
the corresponding property of the traditionally trained model.

• Otherwise, the default value is "none".

Data Types: char | string | function_handle

Training Parameters

EstimationPeriod — Number of observations processed to estimate hyperparameters
nonnegative integer

This property is read-only.

Number of observations processed by the incremental model to estimate hyperparameters before
training or tracking performance metrics, specified as a nonnegative integer.
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Note

• If Mdl is prepared for incremental learning (all hyperparameters required for training are
specified), incrementalRegressionKernel forces EstimationPeriod to 0.

• If Mdl is not prepared for incremental learning, incrementalRegressionKernel sets
EstimationPeriod to 1000.

For more details, see “Estimation Period” on page 35-3652.

Data Types: single | double

Solver — Objective function minimization technique
"scale-invariant" | "sgd" | "asgd"

This property is read-only.

Objective function minimization technique, specified as "scale-invariant", "sgd", or "asgd".
incrementalRegressionKernel stores the Solver value as a character vector.

Value Description Notes
"scale-
invariant"

Adaptive scale-invariant solver
for incremental learning on
page 35-3651 [1]

• This algorithm is parameter free and can
adapt to differences in predictor scales. Try
this algorithm before using SGD or ASGD.

• To shuffle an incoming chunk of data before
the fit function fits the model, set Shuffle
to true.

"sgd" Stochastic gradient descent
(SGD) [2][3]

• To train effectively with SGD, specify adequate
values for hyperparameters using options
listed in “SGD and ASGD (Average SGD)
Solver Options” on page 35-0 .

• The fit function always shuffles an incoming
chunk of data before fitting the model.

"asgd" Average stochastic gradient
descent (ASGD) [4]

• To train effectively with ASGD, specify
adequate values for hyperparameters using
options listed in “SGD and ASGD (Average
SGD) Solver Options” on page 35-0 .

• The fit function always shuffles an incoming
chunk of data before fitting the model.

The default Solver value depends on how you create the model:

• If you convert a traditionally trained model to create Mdl, the Solver name-value argument of the
incrementalLearner function sets this property. The default value of the argument is "scale-
invariant".

• Otherwise, the default value is "scale-invariant".

Data Types: char | string

SolverOptions — Objective solver configurations
structure array
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This property is read-only.

Objective solver configurations, specified as a structure array. The fields of SolverOptions depend
on Solver.

• For the SGD and ASGD solvers, the structure array includes the Solver, BatchSize, Lambda,
LearnRate, and LearnRateSchedule fields.

• For the adaptive scale-invariant solver, the structure array includes the Solver and Shuffle
fields.

You can specify the field values using the corresponding name-value arguments when you create the
model object by calling incrementalRegressionKernel directly, or when you convert a
traditionally trained model using the incrementalLearner function.
Data Types: struct

Performance Metrics Parameters

IsWarm — Flag indicating whether model tracks performance metrics
false or 0 | true or 1

This property is read-only.

Flag indicating whether the incremental model tracks performance metrics, specified as logical 0
(false) or 1 (true).

The incremental model Mdl is warm (IsWarm becomes true) after incremental fitting functions fit
(EstimationPeriod + MetricsWarmupPeriod) observations to the incremental model.

Value Description
true or 1 The incremental model Mdl is warm.

Consequently, updateMetrics and
updateMetricsAndFit track performance
metrics in the Metrics property of Mdl.

false or 0 updateMetrics and updateMetricsAndFit do
not track performance metrics.

Data Types: logical

Metrics — Model performance metrics
table

This property is read-only.

Model performance metrics updated during incremental learning by updateMetrics and
updateMetricsAndFit, specified as a table with two columns and m rows, where m is the number
of metrics specified by the Metrics name-value argument.

The columns of Metrics are labeled Cumulative and Window.

• Cumulative: Element j is the model performance, as measured by metric j, from the time the
model became warm (IsWarm is 1).
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• Window: Element j is the model performance, as measured by metric j, evaluated over all
observations within the window specified by the MetricsWindowSize property. The software
updates Window after it processes MetricsWindowSize observations.

Rows are labeled by the specified metrics. For details, see the Metrics name-value argument of
incrementalLearner or incrementalRegressionKernel.
Data Types: table

MetricsWarmupPeriod — Number of observations fit before tracking performance metrics
nonnegative integer

This property is read-only.

Number of observations the incremental model must be fit to before it tracks performance metrics in
its Metrics property, specified as a nonnegative integer.

The default MetricsWarmupPeriod value depends on how you create the model:

• If you convert a traditionally trained model to create Mdl, the MetricsWarmupPeriod name-
value argument of the incrementalLearner function sets this property. The default value of the
argument is 0.

• Otherwise, the default value is 1000.

For more details, see “Performance Metrics” on page 35-3653.
Data Types: single | double

MetricsWindowSize — Number of observations to use to compute window performance
metrics
positive integer

This property is read-only.

Number of observations to use to compute window performance metrics, specified as a positive
integer.

The default MetricsWindowSize value depends on how you create the model:

• If you convert a traditionally trained model to create Mdl, the MetricsWindowSize name-value
argument of the incrementalLearner function sets this property. The default value of the
argument is 200.

• Otherwise, the default value is 200.

For more details on performance metrics options, see “Performance Metrics” on page 35-3653.
Data Types: single | double

Object Functions
fit Train kernel model for incremental learning
updateMetrics Update performance metrics in kernel incremental learning model given new

data
updateMetricsAndFit Update performance metrics in kernel incremental learning model given new

data and train model
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loss Loss of kernel incremental learning model on batch of data
predict Predict responses for new observations from kernel incremental learning

model
perObservationLoss Per observation regression error of model for incremental learning
reset Reset incremental regression model

Examples

Create Incremental Learner Without Any Prior Information

Create an incremental kernel model without any prior information. Track the model performance on
streaming data, and fit the model to the data.

Create a default incremental kernel SVM model for regression.

Mdl = incrementalRegressionKernel()

Mdl = 
  incrementalRegressionKernel

                    IsWarm: 0
                   Metrics: [1x2 table]
         ResponseTransform: 'none'
    NumExpansionDimensions: 0
               KernelScale: 1

  Properties, Methods

Mdl.EstimationPeriod

ans = 1000

Mdl is an incrementalRegressionKernel model object. All its properties are read-only.

Mdl must be fit to data before you can use it to perform any other operations. The software sets the
estimation period to 1000 because half the width of the epsilon insensitive band Epsilon is
unknown. You can set Epsilon to a positive floating-point scalar by using the Epsilon name-value
argument. This action results in a default estimation period of 0.

Load the robot arm data set.

load robotarm

For details on the data set, enter Description at the command line.

Fit the incremental model to the training data by using the updateMetricsAndFit function. To
simulate a data stream, fit the model in chunks of 50 observations at a time. At each iteration:

• Process 50 observations.
• Overwrite the previous incremental model with a new one fitted to the incoming observations.
• Store the cumulative metrics, window metrics, and number of training observations to see how

they evolve during incremental learning.
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% Preallocation
n = numel(ytrain);
numObsPerChunk = 50;
nchunk = floor(n/numObsPerChunk);
ei = array2table(zeros(nchunk,2),VariableNames=["Cumulative","Window"]); 
numtrainobs = zeros(nchunk+1,1);

% Incremental fitting
for j = 1:nchunk
    ibegin = min(n,numObsPerChunk*(j-1) + 1);
    iend   = min(n,numObsPerChunk*j);
    idx = ibegin:iend;    
    Mdl = updateMetricsAndFit(Mdl,Xtrain(idx,:),ytrain(idx));
    ei{j,:} = Mdl.Metrics{"EpsilonInsensitiveLoss",:};
    numtrainobs(j+1) = Mdl.NumTrainingObservations;
end

Mdl is an incrementalRegressionKernel model object trained on all the data in the stream.
While updateMetricsAndFit processes the first 1000 observations, it stores the response values to
estimate Epsilon; the function does not fit the model until after this estimation period. During
incremental learning and after the model is warmed up, updateMetricsAndFit checks the
performance of the model on the incoming observations, and then fits the model to those
observations.

Plot a trace plot of the number of training observations and the performance metrics on separate
tiles.

t = tiledlayout(2,1);
nexttile
plot(numtrainobs)
xlim([0 nchunk])
ylabel("Number of Training Observations")
xline(Mdl.EstimationPeriod/numObsPerChunk,"-.")
xline((Mdl.EstimationPeriod + Mdl.MetricsWarmupPeriod)/numObsPerChunk,"--")
nexttile
plot(ei.Variables)
xlim([0 nchunk])
ylabel("Epsilon Insensitive Loss")
xline(Mdl.EstimationPeriod/numObsPerChunk,"-.")
xline((Mdl.EstimationPeriod + Mdl.MetricsWarmupPeriod)/numObsPerChunk,"--")
legend(ei.Properties.VariableNames,Location="best")
xlabel(t,"Iteration")
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The plot suggests that updateMetricsAndFit does the following:

• After the estimation period (first 20 iterations), fit the model during all incremental learning
iterations.

• Compute the performance metrics after the metrics warm-up period only.
• Compute the cumulative metrics during each iteration.
• Compute the window metrics after processing 200 observations (4 iterations).

Configure Incremental Learning Options

Prepare an incremental regression learner by specifying a metrics warm-up period and a metrics
window size. Train the model by using SGD, and adjust the SGD batch size, learning rate, and
regularization parameter.

Load the robot arm data set.

load robotarm
n = numel(ytrain);

For details on the data set, enter Description at the command line.

Create an incremental kernel model for regression. Configure the model as follows:
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• Specify the SGD solver.
• Assume that these settings work well for the problem: a ridge regularization parameter value of

0.001, SGD batch size of 20, learning rate of 0.002, and half the width of the epsilon insensitive
band for SVM of 0.05.

• Specify a metrics warm-up period of 1000 observations.
• Specify a metrics window size of 500 observations.
• Track the epsilon insensitive loss, MSE, and mean absolute error (MAE) to measure the

performance of the model. The software supports epsilon insensitive loss and MSE. Create an
anonymous function that measures the absolute error of each new observation. Create a structure
array containing the name MeanAbsoluteError and its corresponding function.

maefcn = @(z,zfit)abs(z - zfit);
maemetric = struct("MeanAbsoluteError",maefcn);

Mdl = incrementalRegressionKernel(Solver="sgd", ...
    Lambda=0.001,BatchSize=20,LearnRate=0.002,Epsilon=0.05, ...
    MetricsWarmupPeriod=1000,MetricsWindowSize=500, ...
    Metrics={"epsiloninsensitive","mse",maemetric})

Mdl = 
  incrementalRegressionKernel

                    IsWarm: 0
                   Metrics: [3x2 table]
         ResponseTransform: 'none'
    NumExpansionDimensions: 0
               KernelScale: 1

  Properties, Methods

Mdl is an incrementalRegressionKernel model object configured for incremental learning
without an estimation period.

Fit the incremental model to the data by using the updateMetricsAndFit function. At each
iteration:

• Simulate a data stream by processing a chunk of 50 observations. Note that the chunk size is
different from the SGD batch size.

• Overwrite the previous incremental model with a new one fitted to the incoming observations.
• Store the cumulative metrics, window metrics, and number of training observations to see how

they evolve during incremental learning.

% Preallocation
numObsPerChunk = 50;
nchunk = floor(n/numObsPerChunk);
ei = array2table(zeros(nchunk,2),VariableNames=["Cumulative","Window"]);
mse = array2table(zeros(nchunk,2),VariableNames=["Cumulative","Window"]);
mae = array2table(zeros(nchunk,2),VariableNames=["Cumulative","Window"]);  
numtrainobs = zeros(nchunk,1);

% Incremental fitting
rng("default") % For reproducibility
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for j = 1:nchunk
    ibegin = min(n,numObsPerChunk*(j-1) + 1);
    iend   = min(n,numObsPerChunk*j);
    idx = ibegin:iend;    
    Mdl = updateMetricsAndFit(Mdl,Xtrain(idx,:),ytrain(idx));
    ei{j,:} = Mdl.Metrics{"EpsilonInsensitiveLoss",:};
    mse{j,:} = Mdl.Metrics{"MeanSquaredError",:};
    mae{j,:} = Mdl.Metrics{"MeanAbsoluteError",:};
    numtrainobs(j) = Mdl.NumTrainingObservations;
end

Mdl is an incrementalRegressionKernel model object trained on all the data in the stream.
During incremental learning and after the model is warmed up, updateMetricsAndFit checks the
performance of the model on the incoming observations, and then fits the model to those
observations.

Plot a trace plot of the number of training observations and the performance metrics on separate
tiles.

t = tiledlayout(4,1);
nexttile
plot(numtrainobs)
xlim([0 nchunk])
ylabel(["Number of","Training Observations"])
xline(Mdl.MetricsWarmupPeriod/numObsPerChunk,"--")
nexttile
plot(ei.Variables)
xlim([0 nchunk])
ylabel(["Epsilon Insensitive","Loss"])
xline(Mdl.MetricsWarmupPeriod/numObsPerChunk,"--")
legend(ei.Properties.VariableNames)
nexttile
plot(mse.Variables)
xlim([0 nchunk])
ylabel("MSE")
xline(Mdl.MetricsWarmupPeriod/numObsPerChunk,"--")
legend(mse.Properties.VariableNames)
nexttile
plot(mae.Variables)
xlim([0 nchunk])
ylabel("MAE")
xline(Mdl.MetricsWarmupPeriod/numObsPerChunk,"--")
legend(mae.Properties.VariableNames)
xlabel(t,"Iteration")
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The plot suggests that updateMetricsAndFit does the following:

• Fit the model during all incremental learning iterations.
• Compute the performance metrics after the metrics warm-up period only.
• Compute the cumulative metrics during each iteration.
• Compute the window metrics after processing 500 observations (10 iterations).

Convert Traditionally Trained Model to Incremental Learner

Train a kernel regression model by using fitrkernel, convert it to an incremental learner, track its
performance, and fit it to streaming data. Carry over training options from traditional to incremental
learning.

Load and Preprocess Data

Load the 2015 NYC housing data set, and shuffle the data. For more details on the data, see NYC
Open Data.

load NYCHousing2015
rng(1) % For reproducibility
n = size(NYCHousing2015,1);
idxshuff = randsample(n,n);
NYCHousing2015 = NYCHousing2015(idxshuff,:);
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Suppose that the data collected from Manhattan (BOROUGH = 1) was collected using a new method
that doubles its quality. Create a weight variable that attributes 2 to observations collected from
Manhattan, and 1 to all other observations.

NYCHousing2015.W = ones(n,1) + (NYCHousing2015.BOROUGH == 1);

Extract the response variable SALEPRICE from the table. For numerical stability, scale SALEPRICE by
1e6.

Y = NYCHousing2015.SALEPRICE/1e6;
NYCHousing2015.SALEPRICE = [];

To reduce computational cost for this example, remove the NEIGHBORHOOD column, which contains a
categorical variable with 254 categories.

NYCHousing2015.NEIGHBORHOOD = [];

Create dummy variable matrices from the other categorical predictors.

catvars = ["BOROUGH","BUILDINGCLASSCATEGORY"];
dumvarstbl = varfun(@(x)dummyvar(categorical(x)),NYCHousing2015, ...
    InputVariables=catvars);
dumvarmat = table2array(dumvarstbl);
NYCHousing2015(:,catvars) = [];

Treat all other numeric variables in the table as predictors of sales price. Concatenate the matrix of
dummy variables to the rest of the predictor data.

idxnum = varfun(@isnumeric,NYCHousing2015,OutputFormat="uniform");
X = [dumvarmat NYCHousing2015{:,idxnum}];

Train Kernel Regression Model

Fit a kernel regression model to a random sample of half the data. Specify the observation weights.

idxtt = randsample([true false],n,true);
Mdl = fitrkernel(X(idxtt,:),Y(idxtt),Weights=NYCHousing2015.W(idxtt))

Mdl = 
  RegressionKernel
              ResponseName: 'Y'
                   Learner: 'svm'
    NumExpansionDimensions: 2048
               KernelScale: 1
                    Lambda: 2.1977e-05
             BoxConstraint: 1
                   Epsilon: 0.0547

  Properties, Methods

Mdl is a RegressionKernel model object representing a traditionally trained kernel regression
model.

Convert Trained Model

Convert the traditionally trained kernel regression model to a model for incremental learning.
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IncrementalMdl = incrementalLearner(Mdl)

IncrementalMdl = 
  incrementalRegressionKernel

                    IsWarm: 1
                   Metrics: [1x2 table]
         ResponseTransform: 'none'
    NumExpansionDimensions: 2048
               KernelScale: 1

  Properties, Methods

IncrementalMdl is an incrementalRegressionKernel model object configured for incremental
learning.

Separately Track Performance Metrics and Fit Model

Perform incremental learning on the rest of the data by using the updateMetrics and fit
functions. Simulate a data stream by processing 500 observations at a time. At each iteration:

1 Call updateMetrics to update the cumulative and window epsilon insensitive loss of the model
given the incoming chunk of observations. Overwrite the previous incremental model to update
the Metrics property. Note that the function does not fit the model to the chunk of data—the
chunk is "new" data for the model. Specify the observation weights.

2 Call fit to fit the model to the incoming chunk of observations. Overwrite the previous
incremental model to update the model parameters. Specify the observation weights.

3 Store the losses and number of training observations.

% Preallocation
idxil = ~idxtt;
nil = sum(idxil);
numObsPerChunk = 500;
nchunk = floor(nil/numObsPerChunk);
ei = array2table(zeros(nchunk,2),VariableNames=["Cumulative","Window"]);
numtrainobs = zeros(nchunk,1);
Xil = X(idxil,:);
Yil = Y(idxil);
Wil = NYCHousing2015.W(idxil);

% Incremental fitting
for j = 1:nchunk
    ibegin = min(nil,numObsPerChunk*(j-1) + 1);
    iend   = min(nil,numObsPerChunk*j);
    idx = ibegin:iend;
    IncrementalMdl = updateMetrics(IncrementalMdl,Xil(idx,:),Yil(idx), ...
        Weights=Wil(idx));
    ei{j,:} = IncrementalMdl.Metrics{"EpsilonInsensitiveLoss",:};
    IncrementalMdl = fit(IncrementalMdl,Xil(idx,:),Yil(idx), ...
        Weights=Wil(idx));
    numtrainobs(j) = IncrementalMdl.NumTrainingObservations;
end

IncrementalMdl is an incrementalRegressionKernel model object trained on all the data in
the stream.
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Alternatively, you can use updateMetricsAndFit to update performance metrics of the model given
a new chunk of data, and then fit the model to the data.

Plot a trace plot of the number of training observations and the performance metrics on separate
tiles.

t = tiledlayout(2,1);
nexttile
plot(numtrainobs)
xlim([0 nchunk])
ylabel("Number of Training Observations")
nexttile
plot(ei.Variables)
xlim([0 nchunk])
ylabel("Epsilon Insensitive Loss")
legend(ei.Properties.VariableNames)
xlabel(t,"Iteration")
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The cumulative loss gradually changes with each iteration (chunk of 500 observations), whereas the
window loss jumps. Because the metrics window is 200 by default, updateMetrics measures the
performance based on the latest 200 observations in each 500 observation chunk.

More About
Incremental Learning

Incremental learning, or online learning, is a branch of machine learning concerned with processing
incoming data from a data stream, possibly given little to no knowledge of the distribution of the
predictor variables, aspects of the prediction or objective function (including tuning parameter
values), or whether the observations are labeled. Incremental learning differs from traditional
machine learning, where enough labeled data is available to fit to a model, perform cross-validation
to tune hyperparameters, and infer the predictor distribution.

Given incoming observations, an incremental learning model processes data in any of the following
ways, but usually in this order:

• Predict labels.
• Measure the predictive performance.
• Check for structural breaks or drift in the model.
• Fit the model to the incoming observations.

For more details, see “Incremental Learning Overview” on page 28-2.

Adaptive Scale-Invariant Solver for Incremental Learning

The adaptive scale-invariant solver for incremental learning, introduced in [1], is a gradient-descent-
based objective solver for training linear predictive models. The solver is hyperparameter free,
insensitive to differences in predictor variable scales, and does not require prior knowledge of the
distribution of the predictor variables. These characteristics make it well suited to incremental
learning.

The incremental fitting functions fit and updateMetricsAndFit use the more aggressive ScInOL2
version of the algorithm.

Random Feature Expansion

Random feature expansion, such as Random Kitchen Sinks[1] or Fastfood[2], is a scheme to
approximate Gaussian kernels of the kernel regression algorithm for big data in a computationally
efficient way. Random feature expansion is more practical for big data applications that have large
training sets, but can also be applied to smaller data sets that fit in memory.

After mapping the predictor data into a high-dimensional space, the kernel regression algorithm
searches for an optimal function that deviates from each response data point (yi) by values no greater
than the epsilon margin (ε).

Some regression problems cannot be described adequately using a linear model. In such cases,
obtain a nonlinear regression model by replacing the dot product x1x2′ with a nonlinear kernel
function G(x1, x2) = φ(x1), φ(x2) , where xi is the ith observation (row vector) and φ(xi) is a
transformation that maps xi to a high-dimensional space (called the “kernel trick”). However,
evaluating G(x1,x2), the Gram matrix, for each pair of observations is computationally expensive for a
large data set (large n).
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The random feature expansion scheme finds a random transformation so that its dot product
approximates the Gaussian kernel. That is,

G(x1, x2) = φ(x1), φ(x2) ≈ T(x1)T(x2)′,

where T(x) maps x in ℝp to a high-dimensional space (ℝm). The Random Kitchen Sinks[1] scheme
uses the random transformation

T(x) = m−1/2exp iZx′ ′,

where Z ∈ ℝm × p is a sample drawn from N 0, σ−2  and σ is a kernel scale. This scheme requires
O(mp) computation and storage. The Fastfood[2] scheme introduces another random basis V instead
of Z using Hadamard matrices combined with Gaussian scaling matrices. This random basis reduces
computation cost to O(mlogp) and reduces storage to O(m).

incrementalRegressionKernel uses the Fastfood scheme for random feature expansion, and uses
linear regression to train a Gaussian kernel regression model. You can specify values for m and σ
using the NumExpansionDimensions and KernelScale name-value arguments, respectively, when
you create a traditionally trained model using fitrkernel or when you call
incrementalRegressionKernel directly to create the model object.

Algorithms
Estimation Period

During the estimation period, the incremental fitting functions fit and updateMetricsAndFit use
the first incoming EstimationPeriod observations to estimate (tune) hyperparameters required for
incremental training. Estimation occurs only when EstimationPeriod is positive. This table
describes the hyperparameters and when they are estimated, or tuned.

Hyperparameter Model Property Usage Conditions
Learning rate LearnRate field of

SolverOptions
Adjust solver step
size

The hyperparameter is estimated when
both of these conditions apply:

• You specify the Solver name-value
argument as "sgd" or "asgd".

• You do not specify the LearnRate
name-value argument as a positive
scalar.
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Hyperparameter Model Property Usage Conditions
Half the width of
the epsilon
insensitive band

Epsilon Control number of
support vectors

The hyperparameter is estimated when
all of these conditions apply:

• You create an
incrementalRegressionKernel
model object by calling the
incrementalRegressionKernel
function directly.

• The learner is SVM (see Learner).
• You do not specify the Epsilon

name-value argument as a
nonnegative scalar.

During the estimation period, fit does not fit the model, and updateMetricsAndFit does not fit
the model or update the performance metrics. At the end of the estimation period, the functions
update the properties that store the hyperparameters.

Performance Metrics

• The updateMetrics and updateMetricsAndFit functions are incremental learning functions
that track model performance metrics (Metrics) from new data only when the incremental model
is warm (IsWarm property is true). An incremental model becomes warm after fit or
updateMetricsAndFit fits the incremental model to MetricsWarmupPeriod observations,
which is the metrics warm-up period.

If EstimationPeriod > 0, the fit and updateMetricsAndFit functions estimate
hyperparameters before fitting the model to data. Therefore, the functions must process an
additional EstimationPeriod observations before the model starts the metrics warm-up period.

• The Metrics property of the incremental model stores two forms of each performance metric as
variables (columns) of a table, Cumulative and Window, with individual metrics in rows. When
the incremental model is warm, updateMetrics and updateMetricsAndFit update the metrics
at the following frequencies:

• Cumulative — The functions compute cumulative metrics since the start of model
performance tracking. The functions update metrics every time you call the functions and base
the calculation on the entire supplied data set.

• Window — The functions compute metrics based on all observations within a window
determined by MetricsWindowSize, which also determines the frequency at which the
software updates Window metrics. For example, if MetricsWindowSize is 20, the functions
compute metrics based on the last 20 observations in the supplied data (X((end – 20 +
1):end,:) and Y((end – 20 + 1):end)).

Incremental functions that track performance metrics within a window use the following
process:

1 Store a buffer of length MetricsWindowSize for each specified metric, and store a buffer
of observation weights.

2 Populate elements of the metrics buffer with the model performance based on batches of
incoming observations, and store corresponding observation weights in the weights buffer.

3 When the buffer is full, overwrite the Window field of the Metrics property with the
weighted average performance in the metrics window. If the buffer overfills when the
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function processes a batch of observations, the latest incoming MetricsWindowSize
observations enter the buffer, and the earliest observations are removed from the buffer.
For example, suppose MetricsWindowSize is 20, the metrics buffer has 10 values from a
previously processed batch, and 15 values are incoming. To compose the length 20
window, the functions use the measurements from the 15 incoming observations and the
latest 5 measurements from the previous batch.

• The software omits an observation with a NaN prediction when computing the Cumulative and
Window performance metric values.

Version History
Introduced in R2022a
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incrementalRegressionLinear
Linear regression model for incremental learning

Description
incrementalRegressionLinear creates an incrementalRegressionLinear model object,
which represents an incremental linear model for regression problems. Supported learners include
support vector machine (SVM) and least squares.

Unlike other Statistics and Machine Learning Toolbox model objects,
incrementalRegressionLinear can be called directly. Also, you can specify learning options, such
as performance metrics configurations, parameter values, and the objective solver, before fitting the
model to data. After you create an incrementalRegressionLinear object, it is prepared for
incremental learning on page 35-3676.

incrementalRegressionLinear is best suited for incremental learning. For a traditional approach
to training an SVM or linear regression model (such as creating a model by fitting it to data,
performing cross-validation, tuning hyperparameters, and so on), see fitrsvm or fitrlinear.

Creation
You can create an incrementalRegressionLinear model object in several ways:

• Call the function directly — Configure incremental learning options, or specify initial values for
linear model parameters and hyperparameters, by calling incrementalRegressionLinear
directly. This approach is best when you do not have data yet or you want to start incremental
learning immediately.

• Convert a traditionally trained model — To initialize an linear regression model for
incremental learning using the model coefficients and hyperparameters of a trained model object,
you can convert the traditionally trained model to an incrementalRegressionLinear model
object by passing it to the incrementalLearner function. This table contains links to the
appropriate reference pages.

Convertible Model Object Conversion Function
RegressionSVM or CompactRegressionSVM incrementalLearner
RegressionLinear incrementalLearner

• Call an incremental learning function — fit, updateMetrics, and updateMetricsAndFit
accept a configured incrementalRegressionLinear model object and data as input, and
return an incrementalRegressionLinear model object updated with information learned from
the input model and data.

Syntax
Mdl = incrementalRegressionLinear()
Mdl = incrementalRegressionLinear(Name,Value)
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Description

Mdl = incrementalRegressionLinear() returns a default incremental model object for linear
regression, Mdl. Properties of a default model contain placeholders for unknown model parameters.
You must train a default model before you can track its performance or generate predictions from it.

Mdl = incrementalRegressionLinear(Name,Value) sets properties on page 35-3658 and
additional options using name-value arguments. Enclose each name in quotes. For example,
incrementalRegressionLinear('Beta',[0.1
0.3],'Bias',1,'MetricsWarmupPeriod',100) sets the vector of linear model coefficients β to
[0.1 0.3], the bias β0 to 1, and the metrics warm-up period to 100.

Input Arguments
Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: 'Standardize',true standardizes the predictor data using the predictor means and
standard deviations estimated during the estimation period.

Metrics — Model performance metrics to track during incremental learning
"epsiloninsensitive" | "mse" | string vector | function handle | cell vector | structure array

Model performance metrics to track during incremental learning, specified as a built-in loss function
name, string vector of names, function handle (@metricName), structure array of function handles, or
cell vector of names, function handles, or structure arrays.

When Mdl is warm (see IsWarm), updateMetrics and updateMetricsAndFit track performance
metrics in the Metrics property of Mdl.

The following table lists the built-in loss function names and which learners, specified in Learner,
support them. You can specify more than one loss function by using a string vector.

Name Description Learner Supporting Metric
"epsiloninsensitive" Epsilon insensitive loss 'svm'
"mse" Weighted mean squared error 'svm' and 'leastsquares'

For more details on the built-in loss functions, see loss.
Example: 'Metrics',["epsiloninsensitive" "mse"]

To specify a custom function that returns a performance metric, use function handle notation. The
function must have this form:

metric = customMetric(Y,YFit)

• The output argument metric is an n-by-1 numeric vector, where each element is the loss of the
corresponding observation in the data processed by the incremental learning functions during a
learning cycle.
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• You specify the function name (customMetric).
• Y is a length n numeric vector of observed responses, where n is the sample size.
• YFit is a length n numeric vector of corresponding predicted responses.

To specify multiple custom metrics and assign a custom name to each, use a structure array. To
specify a combination of built-in and custom metrics, use a cell vector.
Example: 'Metrics',struct('Metric1',@customMetric1,'Metric2',@customMetric2)
Example: 'Metrics',{@customMetric1 @customMetric2 'mse'
struct('Metric3',@customMetric3)}

updateMetrics and updateMetricsAndFit store specified metrics in a table in the property
Metrics. The data type of Metrics determines the row names of the table.

'Metrics' Value
Data Type

Description of Metrics Property Row
Name

Example

String or character
vector

Name of corresponding built-in metric Row name for
"epsiloninsensitive" is
"EpsilonInsensitiveLoss"

Structure array Field name Row name for
struct('Metric1',@customMetr
ic1) is "Metric1"

Function handle to
function stored in
a program file

Name of function Row name for @customMetric is
"customMetric"

Anonymous
function

CustomMetric_j, where j is metric j in
Metrics

Row name for
@(Y,YFit)customMetric(Y,YFit
)... is CustomMetric_1

By default:

• Metrics is "epsiloninsensitive" if Learner is 'svm'.
• Metrics is "mse" if Learner is 'leastsquares'.

For more details on performance metrics options, see “Performance Metrics” on page 35-3679.
Data Types: char | string | struct | cell | function_handle

Standardize — Flag to standardize predictor data
'auto' (default) | false | true

Flag to standardize the predictor data, specified as a value in this table.

Value Description
'auto' incrementalRegressionLinear determines

whether the predictor variables need to be
standardized. See “Standardize Data” on page
35-3678.
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Value Description
true The software standardizes the predictor data. For

more details, see “Standardize Data” on page 35-
3678.

false The software does not standardize the predictor
data.

Example: 'Standardize',true
Data Types: logical | char | string

Shuffle — Flag for shuffling observations
true (default) | false

Flag for shuffling the observations at each iteration, specified as a value in this table.

Value Description
true The software shuffles the observations in an

incoming chunk of data before the fit function
fits the model. This action reduces bias induced
by the sampling scheme.

false The software processes the data in the order
received.

This option is valid only when Solver is 'scale-invariant'. When Solver is 'sgd' or 'asgd',
the software always shuffles the observations in an incoming chunk of data before processing the
data.
Example: 'Shuffle',false
Data Types: logical

Properties
You can set most properties by using name-value argument syntax only when you call
incrementalRegressionLinear. You can set some properties when you call
incrementalLearner to convert a traditionally trained model. You cannot set the properties
FittedLoss, NumTrainingObservations, Mu, Sigma, SolverOptions, and IsWarm.

Regression Model Parameters

Beta — Linear model coefficients β
numeric vector

This property is read-only.

Linear model coefficients β, specified as a NumPredictors-by-1 numeric vector.

Incremental fitting functions estimate Beta during training. The default initial Beta value depends
on how you create the model:

• If you convert a traditionally trained model to create Mdl, the initial value is specified by the
corresponding property of the traditionally trained model.
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• Otherwise, the initial value is zeros(NumPredictors,1).

Data Types: single | double

Bias — Model intercept β0
numeric scalar

This property is read-only.

Model intercept β0, or bias term, specified as a numeric scalar.

Incremental fitting functions estimate Bias during training. The default initial Bias value depends
on how you create the model:

• If you convert a traditionally trained model to create Mdl, the initial value is specified by the
corresponding property of the traditionally trained model.

• Otherwise, the initial value is 0.

Data Types: single | double

Epsilon — Half of the width of epsilon insensitive band
'auto' | nonnegative scalar

This property is read-only.

Half of the width of the epsilon insensitive band, specified as 'auto' or a nonnegative scalar.
incrementalRegressionLinear stores the Epsilon value as a numeric scalar.

If you specify 'auto' when you call incrementalRegressionLinear, incremental fitting functions
estimate Epsilon during the estimation period, specified by EstimationPeriod, using this
procedure:

• If iqr(Y) ≠ 0, Epsilon is iqr(Y)/13.49, where Y is the estimation period response data.
• If iqr(Y) = 0 or before you fit Mdl to data, Epsilon is 0.1.

The default Epsilon value depends on how you create the model:

• If you convert a traditionally trained SVM regression model (Learner is 'svm'), Epsilon is
specified by the corresponding property of the traditionally trained model.

• Otherwise, the default value is 'auto'.

If Learner is 'leastsquares', you cannot set Epsilon and its value is NaN.
Data Types: single | double

FittedLoss — Loss function used to fit linear model
'epsiloninsensitive' | 'mse'

This property is read-only.

Loss function used to fit the linear model, specified as 'epsiloninsensitive' or 'mse'.
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Value Algorithm Loss Function Learner Value
'epsiloninsensitiv
e'

Support vector machine
regression

Epsilon insensitive:
ℓ y, f x = max
0, y − f x − ε

'svm'

'mse' Linear regression
through ordinary least
squares

Mean squared error
(MSE):
ℓ y, f x = 1

2 y − f x 2

'leastsquares'

Learner — Linear regression model type
'svm' | 'leastsquares'

This property is read-only.

Linear regression model type, specified as 'svm' or 'leastsquares'.
incrementalRegressionLinear stores the Learner value as a character vector.

In the following table, f x = xβ + b .

• β is Beta.
• x is an observation from p predictor variables.
• β0 is Bias.

Value Algorithm Loss Function FittedLoss Value
'svm' Support vector machine

regression
Epsilon insensitive:
ℓ y, f x = max
0, y − f x − ε

'epsiloninsensitiv
e'

'leastsquares' Linear regression
through ordinary least
squares

Mean squared error
(MSE):
ℓ y, f x = 1

2 y − f x 2

'mse'

The default Learner value depends on how you create the model:

• If you convert a traditionally trained model to create Mdl:

• Learner is 'svm' when the traditionally trained model is RegressionSVM or
CompactRegressionSVM.

• Learner is specified by the corresponding property of the traditionally trained model when
the traditionally trained model is RegressionLinear.

• Otherwise, the default value is 'svm'.

Data Types: char | string

NumPredictors — Number of predictor variables
nonnegative numeric scalar

This property is read-only.

Number of predictor variables, specified as a nonnegative numeric scalar.

The default NumPredictors value depends on how you create the model:
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• If you convert a traditionally trained model to create Mdl, NumPredictors is specified by the
corresponding property of the traditionally trained model.

• If you create Mdl by calling incrementalRegressionLinear directly, you can specify
NumPredictors by using name-value argument syntax. If you do not specify the value, then the
default value is 0, and incremental fitting functions infer NumPredictors from the predictor data
during training.

Data Types: double

NumTrainingObservations — Number of observations fit to incremental model
0 (default) | nonnegative numeric scalar

This property is read-only.

Number of observations fit to the incremental model Mdl, specified as a nonnegative numeric scalar.
NumTrainingObservations increases when you pass Mdl and training data to fit or
updateMetricsAndFit.

Note If you convert a traditionally trained model to create Mdl, incrementalRegressionLinear
does not add the number of observations fit to the traditionally trained model to
NumTrainingObservations.

Data Types: double

ResponseTransform — Response transformation function
'none' | function handle

This property is read-only.

Response transformation function, specified as 'none' or a function handle.
incrementalRegressionLinear stores the ResponseTransform value as a character vector or
function handle.

ResponseTransform describes how incremental learning functions transform raw response values.

For a MATLAB function or a function that you define, enter its function handle; for example,
'ResponseTransform',@function, where function accepts an n-by-1 vector (the original
responses) and returns a vector of the same length (the transformed responses).

The default ResponseTransform value depends on how you create the model:

• If you convert a traditionally trained model to create Mdl, ResponseTransform is specified by
the corresponding property of the traditionally trained model.

• Otherwise, the default value is "none".

Data Types: char | string | function_handle

Training Parameters

EstimationPeriod — Number of observations processed to estimate hyperparameters
nonnegative integer

This property is read-only.
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Number of observations processed by the incremental model to estimate hyperparameters before
training or tracking performance metrics, specified as a nonnegative integer.

Note

• If Mdl is prepared for incremental learning (all hyperparameters required for training are
specified), incrementalRegressionLinear forces EstimationPeriod to 0.

• If Mdl is not prepared for incremental learning, incrementalRegressionLinear sets
EstimationPeriod to 1000.

For more details, see “Estimation Period” on page 35-3677.

Data Types: single | double

FitBias — Linear model intercept inclusion flag
true | false

This property is read-only.

Linear model intercept inclusion flag, specified as true or false.

Value Description
true incrementalRegressionLinear includes the

bias term β0 in the linear model, which
incremental fitting functions fit to data.

false incrementalRegressionLinear sets β0 = 0.

If Bias ≠ 0, FitBias must be true. In other words, incrementalRegressionLinear does not
support an equality constraint on β0.

The default FitBias value depends on how you create the model:

• If you convert a traditionally trained linear regression model (RegressionLinear) to create Mdl,
FitBias is specified by the FitBias value of the ModelParameters property of the traditionally
trained model.

• Otherwise, the default value is true.

Data Types: logical

Mu — Predictor means
vector of numeric values | []

This property is read-only.

Predictor means, specified as a numeric vector.

If Mu is an empty array [] and you specify 'Standardize',true, incremental fitting functions set
Mu to the predictor variable means estimated during the estimation period specified by
EstimationPeriod.

You cannot specify Mu directly.
Data Types: single | double
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Sigma — Predictor standard deviations
vector of numeric values | []

This property is read-only.

Predictor standard deviations, specified as a numeric vector.

If Sigma is an empty array [] and you specify 'Standardize',true, incremental fitting functions
set Sigma to the predictor variable standard deviations estimated during the estimation period
specified by EstimationPeriod.

You cannot specify Sigma directly.
Data Types: single | double

Solver — Objective function minimization technique
'scale-invariant' | 'sgd' | 'asgd'

This property is read-only.

Objective function minimization technique, specified as 'scale-invariant', 'sgd', or 'asgd'.
incrementalRegressionLinear stores the Solver value as a character vector.

Value Description Notes
'scale-
invariant'

Adaptive scale-invariant solver
for incremental learning on
page 35-3677 [1]

• This algorithm is parameter free and can
adapt to differences in predictor scales. Try
this algorithm before using SGD or ASGD.

• To shuffle an incoming chunk of data before
the fit function fits the model, set Shuffle
to true.

'sgd' Stochastic gradient descent
(SGD) [3][2]

• To train effectively with SGD, standardize the
data and specify adequate values for
hyperparameters using options listed in “SGD
and ASGD Solver Parameters” on page 35-
3664.

• The fit function always shuffles an incoming
chunk of data before fitting the model.

'asgd' Average stochastic gradient
descent (ASGD) [4]

• To train effectively with ASGD, standardize the
data and specify adequate values for
hyperparameters using options listed in “SGD
and ASGD Solver Parameters” on page 35-
3664.

• The fit function always shuffles an incoming
chunk of data before fitting the model.

The default Solver value depends on how you create the model:

• If you create Mdl by calling incrementalRegressionLinear directly, the default value is
'scale-invariant'.

• If you convert a traditionally trained linear regression model (RegressionLinear) to create Mdl,
and the traditionally trained model's Regularization property is 'ridge (L2)' and
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ModelParameters.Solver is 'sgd' or 'asgd', Solver is specified by the Solver value of the
ModelParameters property of the traditionally trained model.

• Otherwise, the Solver name-value argument of the incrementalLearner function sets this
property. The default value of the argument is 'scale-invariant'.

Data Types: char | string

SolverOptions — Objective solver configurations
structure array

This property is read-only.

Objective solver configurations, specified as a structure array. The fields of SolverOptions are
properties specific to the specified solver Solver.
Data Types: struct

SGD and ASGD Solver Parameters

BatchSize — Mini-batch size
positive integer

This property is read-only.

Mini-batch size, specified as a positive integer. At each learning cycle during training,
incrementalRegressionLinear uses BatchSize observations to compute the subgradient.

The number of observations for the last mini-batch (last learning cycle in each function call of fit or
updateMetricsAndFit) can be smaller than BatchSize. For example, if you supply 25
observations to fit or updateMetricsAndFit, the function uses 10 observations for the first two
learning cycles and 5 observations for the last learning cycle.

The default BatchSize value depends on how you create the model:

• If you create Mdl by calling incrementalRegressionLinear directly, the default value is 10.
• If you convert a traditionally trained linear regression model (RegressionLinear) to create Mdl,

and the traditionally trained model's Regularization property is 'ridge (L2)' and
ModelParameters.Solver is 'sgd' or 'asgd', BatchSize is specified by the BatchSize
value of the ModelParameters property of the traditionally trained model.

• Otherwise, the BatchSize name-value argument of the incrementalLearner function sets this
property. The default value of the argument is 10.

Data Types: single | double

Lambda — Ridge (L2) regularization term strength
nonnegative scalar

This property is read-only.

Ridge (L2) regularization term strength, specified as a nonnegative scalar.

The default Lambda value depends on how you create the model:

• If you create Mdl by calling incrementalRegressionLinear directly, the default value is 1e-5.
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• If you convert a traditionally trained linear regression model (RegressionLinear) to create Mdl,
and the traditionally trained model's Regularization property is 'ridge (L2)' and
ModelParameters.Solver is 'sgd' or 'asgd', Lambda is specified by the corresponding
property of the traditionally trained model.

• Otherwise, the Lambda name-value argument of the incrementalLearner function sets this
property. The default value of the argument is 1e-5.

Data Types: double | single

LearnRate — Initial learning rate
'auto' | positive scalar

This property is read-only.

Initial learning rate, specified as 'auto' or a positive scalar. incrementalRegressionLinear
stores the LearnRate value as a positive scalar.

The learning rate controls the optimization step size by scaling the objective subgradient. LearnRate
specifies an initial value for the learning rate, and LearnRateSchedule determines the learning
rate for subsequent learning cycles.

When you specify 'auto':

• The initial learning rate is 0.7.
• If EstimationPeriod > 0, fit and updateMetricsAndFit change the rate to 1/

sqrt(1+max(sum(X.^2,obsDim))) at the end of EstimationPeriod. The obsDim value is 1 if
the observations compose the columns of the predictor data; otherwise, the value is 2.

The default LearnRate value depends on how you create the model:

• If you create Mdl by calling incrementalRegressionLinear directly, the default value is
'auto'.

• If you convert a traditionally trained linear regression model (RegressionLinear) to create Mdl,
and the traditionally trained model's Regularization property is 'ridge (L2)' and
ModelParameters.Solver is 'sgd' or 'asgd', LearnRate is specified by the LearnRate
value of the ModelParameters property of the traditionally trained model.

• Otherwise, the LearnRate name-value argument of the incrementalLearner function sets this
property. The default value of the argument is 'auto'.

Example: 'LearnRate',0.001
Data Types: single | double | char | string

LearnRateSchedule — Learning rate schedule
'decaying' | 'constant'

This property is read-only.

Learning rate schedule, specified as a value in this table, where LearnRate specifies the initial
learning rate ɣ0. incrementalRegressionLinear stores the LearnRateSchedule value as a
character vector.
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Value Description
'constant' The learning rate is ɣ0 for all learning cycles.
'decaying' The learning rate at learning cycle t is

γt =
γ0

1 + λγ0t c .

• λ is the value of Lambda.
• If Solver is 'sgd', c = 1.
• If Solver is 'asgd':

• c = 2/3 if Learner is 'leastsquares'.
• c = 3/4 if Learner is 'svm' [4].

The default LearnRateSchedule value depends on how you create the model:

• If you convert a traditionally trained model to create Mdl, the LearnRateSchedule name-value
argument of the incrementalLearner function sets this property. The default value of the
argument is 'decaying'.

• Otherwise, the default value is 'decaying'.

Data Types: char | string

Performance Metrics Parameters

IsWarm — Flag indicating whether model tracks performance metrics
false or 0 | true or 1

This property is read-only.

Flag indicating whether the incremental model tracks performance metrics, specified as logical 0
(false) or 1 (true).

The incremental model Mdl is warm (IsWarm becomes true) after incremental fitting functions fit
(EstimationPeriod + MetricsWarmupPeriod) observations to the incremental model.

Value Description
true or 1 The incremental model Mdl is warm.

Consequently, updateMetrics and
updateMetricsAndFit track performance
metrics in the Metrics property of Mdl.

false or 0 updateMetrics and updateMetricsAndFit do
not track performance metrics.

Data Types: logical

Metrics — Model performance metrics
table

This property is read-only.
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Model performance metrics updated during incremental learning by updateMetrics and
updateMetricsAndFit, specified as a table with two columns and m rows, where m is the number
of metrics specified by the Metrics name-value argument.

The columns of Metrics are labeled Cumulative and Window.

• Cumulative: Element j is the model performance, as measured by metric j, from the time the
model became warm (IsWarm is 1).

• Window: Element j is the model performance, as measured by metric j, evaluated over all
observations within the window specified by the MetricsWindowSize property. The software
updates Window after it processes MetricsWindowSize observations.

Rows are labeled by the specified metrics. For details, see the Metrics name-value argument of
incrementalLearner or incrementalRegressionLinear.
Data Types: table

MetricsWarmupPeriod — Number of observations fit before tracking performance metrics
nonnegative integer

This property is read-only.

Number of observations the incremental model must be fit to before it tracks performance metrics in
its Metrics property, specified as a nonnegative integer.

The default MetricsWarmupPeriod value depends on how you create the model:

• If you convert a traditionally trained model to create Mdl, the MetricsWarmupPeriod name-
value argument of the incrementalLearner function sets this property. The default value of the
argument is 0.

• Otherwise, the default value is 1000.

For more details, see “Performance Metrics” on page 35-3679.
Data Types: single | double

MetricsWindowSize — Number of observations to use to compute window performance
metrics
positive integer

This property is read-only.

Number of observations to use to compute window performance metrics, specified as a positive
integer.

The default MetricsWindowSize value depends on how you create the model:

• If you convert a traditionally trained model to create Mdl, the MetricsWindowSize name-value
argument of the incrementalLearner function sets this property. The default value of the
argument is 200.

• Otherwise, the default value is 200.

For more details on performance metrics options, see “Performance Metrics” on page 35-3679.
Data Types: single | double
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Object Functions
fit Train linear model for incremental learning
updateMetricsAndFit Update performance metrics in linear incremental learning model given new

data and train model
updateMetrics Update performance metrics in linear incremental learning model given new

data
loss Loss of linear incremental learning model on batch of data
predict Predict responses for new observations from linear incremental learning

model
perObservationLoss Per observation regression error of model for incremental learning
reset Reset incremental regression model

Examples

Create Incremental Learner Without Any Prior Information

Create a default incremental linear model for regression.

Mdl = incrementalRegressionLinear()

Mdl = 
  incrementalRegressionLinear

               IsWarm: 0
              Metrics: [1x2 table]
    ResponseTransform: 'none'
                 Beta: [0x1 double]
                 Bias: 0
              Learner: 'svm'

  Properties, Methods

Mdl.EstimationPeriod

ans = 1000

Mdl is an incrementalRegressionLinear model object. All its properties are read-only.

Mdl must be fit to data before you can use it to perform any other operations. The software sets the
estimation period to 1000 because half the width of the epsilon insensitive band Epsilon is
unknown. You can set Epsilon to a positive floating-point scalar by using the Epsilon name-value
argument. This action results in a default estimation period of 0.

Load the robot arm data set.

load robotarm

For details on the data set, enter Description at the command line.

Fit the incremental model to the training data by using the updateMetricsAndFit function. To
simulate a data stream fit the model in chunks of 50 observations at a time. At each iteration:
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• Process 50 observations.
• Overwrite the previous incremental model with a new one fitted to the incoming observations.
• Store β1, the cumulative metrics, and the window metrics to see how they evolve during

incremental learning.

% Preallocation
n = numel(ytrain);
numObsPerChunk = 50;
nchunk = floor(n/numObsPerChunk);
ei = array2table(zeros(nchunk,2),'VariableNames',["Cumulative" "Window"]);
beta1 = zeros(nchunk,1);    

% Incremental fitting
rng("default"); % For reproducibility
for j = 1:nchunk
    ibegin = min(n,numObsPerChunk*(j-1) + 1);
    iend   = min(n,numObsPerChunk*j);
    idx = ibegin:iend;    
    Mdl = updateMetricsAndFit(Mdl,Xtrain(idx,:),ytrain(idx));
    ei{j,:} = Mdl.Metrics{"EpsilonInsensitiveLoss",:};
    beta1(j + 1) = Mdl.Beta(1);
end

IncrementalMdl is an incrementalRegressionLinear model object trained on all the data in
the stream. While updateMetricsAndFit processes the first 1000 observations, it stores the
response values to estimate Epsilon; the function does not fit the coefficients until after this
estimation period. During incremental learning and after the model is warmed up,
updateMetricsAndFit checks the performance of the model on the incoming observations, and
then fits the model to those observations.

To see how the performance metrics and β1 evolve during training, plot them on separate tiles.

t = tiledlayout(2,1);
nexttile
plot(beta1)
ylabel('\beta_1')
xlim([0 nchunk])
xline(Mdl.EstimationPeriod/numObsPerChunk,'r-.')
nexttile
h = plot(ei.Variables);
xlim([0 nchunk])
ylabel('Epsilon Insensitive Loss')
xline(Mdl.EstimationPeriod/numObsPerChunk,'r-.')
xline((Mdl.EstimationPeriod + Mdl.MetricsWarmupPeriod)/numObsPerChunk,'g-.')
legend(h,ei.Properties.VariableNames)
xlabel(t,'Iteration')
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The plot suggests that updateMetricsAndFit does the following:

• After the estimation period (first 20 iterations), fit β1 during all incremental learning iterations.
• Compute the performance metrics after the metrics warm-up period only.
• Compute the cumulative metrics during each iteration.
• Compute the window metrics after processing 500 observations (4 iterations).

Configure Incremental Learning Options

Prepare an incremental regression learner by specifying a metrics warm-up period, during which the
updateMetricsAndFit function only fits the model. Specify a metrics window size of 500
observations. Train the model by using SGD, and adjust the SGD batch size, learning rate, and
regularization parameter.

Load the robot arm data set.

load robotarm
n = numel(ytrain);

For details on the data set, enter Description at the command line.

Create an incremental linear model for regression. Configure the model as follows:
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• Specify the SGD solver.
• Assume that these settings work well for the problem: a ridge regularization parameter value of

0.001, SGD batch size of 20, learning rate of 0.002, and half the width of the epsilon insensitive
band for SVM of 0.05.

• Specify that the incremental fitting functions process the raw (unstandardized) predictor data.
• Specify a metrics warm-up period of 1000 observations.
• Specify a metrics window size of 500 observations.
• Track the epsilon insensitive loss, MSE, and mean absolute error (MAE) to measure the

performance of the model. The software supports epsilon insensitive loss and MSE. Create an
anonymous function that measures the absolute error of each new observation. Create a structure
array containing the name MeanAbsoluteError and its corresponding function.

maefcn = @(z,zfit)abs(z - zfit);
maemetric = struct("MeanAbsoluteError",maefcn);

Mdl = incrementalRegressionLinear('Epsilon',0.05, ...
    'Solver','sgd','Lambda',0.001,'BatchSize',20,'LearnRate',0.002, ...
    'Standardize',false, ...
    'MetricsWarmupPeriod',1000,'MetricsWindowSize',500, ...
    'Metrics',{'epsiloninsensitive' 'mse' maemetric})

Mdl = 
  incrementalRegressionLinear

               IsWarm: 0
              Metrics: [3x2 table]
    ResponseTransform: 'none'
                 Beta: [0x1 double]
                 Bias: 0
              Learner: 'svm'

  Properties, Methods

Mdl is an incrementalRegressionLinear model object configured for incremental learning
without an estimation period.

Fit the incremental model to the data by using the updateMetricsAndFit function. At each
iteration:

• Simulate a data stream by processing a chunk of 50 observations. Note that the chunk size is
different from SGD batch size.

• Overwrite the previous incremental model with a new one fitted to the incoming observations.
• Store the estimated coefficient β10, the cumulative metrics, and the window metrics to see how

they evolve during incremental learning.

% Preallocation
numObsPerChunk = 50;
nchunk = floor(n/numObsPerChunk);
ei = array2table(zeros(nchunk,2),'VariableNames',["Cumulative" "Window"]);
mse = array2table(zeros(nchunk,2),'VariableNames',["Cumulative" "Window"]);
mae = array2table(zeros(nchunk,2),'VariableNames',["Cumulative" "Window"]);
beta10 = zeros(nchunk,1);    
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% Incremental fitting
rng("default"); % For reproducibility
for j = 1:nchunk
    ibegin = min(n,numObsPerChunk*(j-1) + 1);
    iend   = min(n,numObsPerChunk*j);
    idx = ibegin:iend;    
    Mdl = updateMetricsAndFit(Mdl,Xtrain(idx,:),ytrain(idx));
    ei{j,:} = Mdl.Metrics{"EpsilonInsensitiveLoss",:};
    mse{j,:} = Mdl.Metrics{"MeanSquaredError",:};
    mae{j,:} = Mdl.Metrics{"MeanAbsoluteError",:};
    beta10(j + 1) = Mdl.Beta(10);
end

Mdl is an incrementalRegressionLinear model object trained on all the data in the stream.
During incremental learning and after the model is warmed up, updateMetricsAndFit checks the
performance of the model on the incoming observations, and then fits the model to those
observations.

To see how the performance metrics and β10 evolve during training, plot them on separate tiles.

tiledlayout(2,2)
nexttile
plot(beta10)
ylabel('\beta_{10}')
xlim([0 nchunk])
xline(Mdl.MetricsWarmupPeriod/numObsPerChunk,'g-.')
xlabel('Iteration')
nexttile
h = plot(ei.Variables);
xlim([0 nchunk])
ylabel('Epsilon Insensitive Loss')
xline(Mdl.MetricsWarmupPeriod/numObsPerChunk,'g-.')
legend(h,ei.Properties.VariableNames)
xlabel('Iteration')
nexttile
h = plot(mse.Variables);
xlim([0 nchunk])
ylabel('MSE')
xline(Mdl.MetricsWarmupPeriod/numObsPerChunk,'g-.')
legend(h,mse.Properties.VariableNames)
xlabel('Iteration')
nexttile
h = plot(mae.Variables);
xlim([0 nchunk])
ylabel('MAE')
xline(Mdl.MetricsWarmupPeriod/numObsPerChunk,'g-.')
legend(h,mae.Properties.VariableNames)
xlabel('Iteration')
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The plot suggests that updateMetricsAndFit does the following:

• Fit β10 during all incremental learning iterations.
• Compute the performance metrics after the metrics warm-up period only.
• Compute the cumulative metrics during each iteration.
• Compute the window metrics after processing 500 observations (10 iterations).

Convert Traditionally Trained Model to Incremental Learner

Train a linear regression model by using fitrlinear, convert it to an incremental learner, track its
performance, and fit it to streaming data. Carry over training options from traditional to incremental
learning.

Load and Preprocess Data

Load the 2015 NYC housing data set, and shuffle the data. For more details on the data, see NYC
Open Data.

load NYCHousing2015
rng(1); % For reproducibility
n = size(NYCHousing2015,1);
idxshuff = randsample(n,n);
NYCHousing2015 = NYCHousing2015(idxshuff,:);
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Suppose that the data collected from Manhattan (BOROUGH = 1) was collected using a new method
that doubles its quality. Create a weight variable that attributes 2 to observations collected from
Manhattan, and 1 to all other observations.

NYCHousing2015.W = ones(n,1) + (NYCHousing2015.BOROUGH == 1);

Extract the response variable SALEPRICE from the table. For numerical stability, scale SALEPRICE by
1e6.

Y = NYCHousing2015.SALEPRICE/1e6;
NYCHousing2015.SALEPRICE = [];

Create dummy variable matrices from the categorical predictors.

catvars = ["BOROUGH" "BUILDINGCLASSCATEGORY" "NEIGHBORHOOD"];
dumvarstbl = varfun(@(x)dummyvar(categorical(x)),NYCHousing2015, ...
    'InputVariables',catvars);
dumvarmat = table2array(dumvarstbl);
NYCHousing2015(:,catvars) = [];

Treat all other numeric variables in the table as linear predictors of sales price. Concatenate the
matrix of dummy variables to the rest of the predictor data. Transpose the resulting predictor matrix.

idxnum = varfun(@isnumeric,NYCHousing2015,'OutputFormat','uniform');
X = [dumvarmat NYCHousing2015{:,idxnum}]';

Train Linear Regression Model

Fit a linear regression model to a random sample of half the data.

idxtt = randsample([true false],n,true);
TTMdl = fitrlinear(X(:,idxtt),Y(idxtt),'ObservationsIn','columns', ...
    'Weights',NYCHousing2015.W(idxtt))

TTMdl = 
  RegressionLinear
         ResponseName: 'Y'
    ResponseTransform: 'none'
                 Beta: [313x1 double]
                 Bias: 0.1116
               Lambda: 2.1977e-05
              Learner: 'svm'

  Properties, Methods

TTMdl is a RegressionLinear model object representing a traditionally trained linear regression
model.

Convert Trained Model

Convert the traditionally trained linear regression model to a linear regression model for incremental
learning.

IncrementalMdl = incrementalLearner(TTMdl)

IncrementalMdl = 
  incrementalRegressionLinear
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               IsWarm: 1
              Metrics: [1x2 table]
    ResponseTransform: 'none'
                 Beta: [313x1 double]
                 Bias: 0.1116
              Learner: 'svm'

  Properties, Methods

Separately Track Performance Metrics and Fit Model

Perform incremental learning on the rest of the data by using the updateMetrics and fit
functions. Simulate a data stream by processing 500 observations at a time. At each iteration:

1 Call updateMetrics to update the cumulative and window epsilon insensitive loss of the model
given the incoming chunk of observations. Overwrite the previous incremental model to update
the losses in the Metrics property. Note that the function does not fit the model to the chunk of
data—the chunk is "new" data for the model. Specify that the observations are oriented in
columns, and specify the observation weights.

2 Call fit to fit the model to the incoming chunk of observations. Overwrite the previous
incremental model to update the model parameters. Specify that the observations are oriented in
columns, and specify the observation weights.

3 Store the losses and last estimated coefficient β313.

% Preallocation
idxil = ~idxtt;
nil = sum(idxil);
numObsPerChunk = 500;
nchunk = floor(nil/numObsPerChunk);
ei = array2table(zeros(nchunk,2),'VariableNames',["Cumulative" "Window"]);
beta313 = [IncrementalMdl.Beta(end); zeros(nchunk,1)];
Xil = X(:,idxil);
Yil = Y(idxil);
Wil = NYCHousing2015.W(idxil);

% Incremental fitting
for j = 1:nchunk
    ibegin = min(nil,numObsPerChunk*(j-1) + 1);
    iend   = min(nil,numObsPerChunk*j);
    idx = ibegin:iend;
    IncrementalMdl = updateMetrics(IncrementalMdl,Xil(:,idx),Yil(idx), ...
        'ObservationsIn','columns','Weights',Wil(idx));
    ei{j,:} = IncrementalMdl.Metrics{"EpsilonInsensitiveLoss",:};
    IncrementalMdl = fit(IncrementalMdl,Xil(:,idx),Yil(idx),'ObservationsIn','columns', ...
        'Weights',Wil(idx));
    beta313(j + 1) = IncrementalMdl.Beta(end);
end

IncrementalMdl is an incrementalRegressionLinear model object trained on all the data in
the stream.

Alternatively, you can use updateMetricsAndFit to update performance metrics of the model given
a new chunk of data, and then fit the model to the data.
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Plot a trace plot of the performance metrics and estimated coefficient β313.

t = tiledlayout(2,1);
nexttile
h = plot(ei.Variables);
xlim([0 nchunk])
ylabel('Epsilon Insensitive Loss')
legend(h,ei.Properties.VariableNames)
nexttile
plot(beta313)
ylabel('\beta_{313}')
xlim([0 nchunk])
xlabel(t,'Iteration')

The cumulative loss gradually changes with each iteration (chunk of 500 observations), whereas the
window loss jumps. Because the metrics window is 200 by default, updateMetrics measures the
performance based on the latest 200 observations in each 500 observation chunk.

β313 changes abruptly, then levels off as fit processes chunks of observations.

More About
Incremental Learning

Incremental learning, or online learning, is a branch of machine learning concerned with processing
incoming data from a data stream, possibly given little to no knowledge of the distribution of the
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predictor variables, aspects of the prediction or objective function (including tuning parameter
values), or whether the observations are labeled. Incremental learning differs from traditional
machine learning, where enough labeled data is available to fit to a model, perform cross-validation
to tune hyperparameters, and infer the predictor distribution.

Given incoming observations, an incremental learning model processes data in any of the following
ways, but usually in this order:

• Predict labels.
• Measure the predictive performance.
• Check for structural breaks or drift in the model.
• Fit the model to the incoming observations.

For more details, see “Incremental Learning Overview” on page 28-2.

Adaptive Scale-Invariant Solver for Incremental Learning

The adaptive scale-invariant solver for incremental learning, introduced in [1], is a gradient-descent-
based objective solver for training linear predictive models. The solver is hyperparameter free,
insensitive to differences in predictor variable scales, and does not require prior knowledge of the
distribution of the predictor variables. These characteristics make it well suited to incremental
learning.

The standard SGD and ASGD solvers are sensitive to differing scales among the predictor variables,
resulting in models that can perform poorly. To achieve better accuracy using SGD and ASGD, you
can standardize the predictor data, and tune the regularization and learning rate parameters. For
traditional machine learning, enough data is available to enable hyperparameter tuning by cross-
validation and predictor standardization. However, for incremental learning, enough data might not
be available (for example, observations might be available only one at a time) and the distribution of
the predictors might be unknown. These characteristics make parameter tuning and predictor
standardization difficult or impossible to do during incremental learning.

The incremental fitting functions for regression fit and updateMetricsAndFit use the more
conservative ScInOL1 version of the algorithm.

Tips
• After creating a model, you can generate C/C++ code that performs incremental learning on a

data stream. Generating C/C++ code requires MATLAB Coder. For details, see “Introduction to
Code Generation” on page 34-2.

Algorithms
Estimation Period

During the estimation period, the incremental fitting functions fit and updateMetricsAndFit use
the first incoming EstimationPeriod observations to estimate (tune) hyperparameters required for
incremental training. Estimation occurs only when EstimationPeriod is positive. This table
describes the hyperparameters and when they are estimated, or tuned.
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Hyperparameter Model Property Usage Conditions
Predictor means
and standard
deviations

Mu and Sigma Standardize
predictor data

The hyperparameters are estimated
when both of these conditions apply:

• Incremental fitting functions are
configured to standardize predictor
data (see “Standardize Data” on
page 35-3678).

• Mdl.Mu and Mdl.Sigma are empty
arrays [].

Learning rate LearnRate Adjust solver step
size

The hyperparameter is estimated when
both of these conditions apply:

• The solver is SGD or ASGD (see
Solver).

• You do not specify the
'LearnRate' name-value
argument as a positive scalar.

Half the width of
the epsilon
insensitive band

Epsilon Control number of
support vectors

The hyperparameter is estimated when
both of these conditions apply:

• The learner is SVM (see Learner).
• You do not specify the 'Epsilon'

name-value argument as a
nonnegative scalar.

During the estimation period, fit does not fit the model, and updateMetricsAndFit does not fit
the model or update the performance metrics. At the end of the estimation period, the functions
update the properties that store the hyperparameters.

Standardize Data

If incremental learning functions are configured to standardize predictor variables, they do so using
the means and standard deviations stored in the Mu and Sigma properties of the incremental learning
model Mdl.

• When you set 'Standardize',true and a positive estimation period (see EstimationPeriod),
and Mdl.Mu and Mdl.Sigma are empty, incremental fitting functions estimate means and
standard deviations using the estimation period observations.

• When you set 'Standardize','auto' (the default), the following conditions apply.

• If you create incrementalRegressionLinear by converting a traditionally trained SVM
regression model (CompactRegressionSVM or RegressionSVM), and the Mu and Sigma
properties of the model being converted are empty arrays [], incremental learning functions
do not standardize predictor variables. If the Mu and Sigma properties of the model being
converted are nonempty, incremental learning functions standardize the predictor variables
using the specified means and standard deviations. Incremental fitting functions do not
estimate new means and standard deviations regardless of the length of the estimation period.

• If you create incrementalRegressionLinear by converting a linear regression model
(RegressionLinear), incremental learning functions does not standardize the data
regardless of the length of the estimation period.
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• If you do not convert a traditionally trained model, incremental learning functions standardize
the predictor data only when you specify an SGD solver (see Solver) and a positive estimation
period (see EstimationPeriod).

• When incremental fitting functions estimate predictor means and standard deviations, the
functions compute weighted means and weighted standard deviations using the estimation period
observations. Specifically, the functions standardize predictor j (xj) using

x j
∗ =

x j− μ j
∗

σ j
∗ .

• xj is predictor j, and xjk is observation k of predictor j in the estimation period.
• μ j

∗ = 1
∑
k

wk
∑
k

wkx jk .

• σ j
∗ 2 = 1

∑
k

wk
∑
k

wk x jk− μ j
∗ 2 .

• wj is observation weight j.

Performance Metrics

• The updateMetrics and updateMetricsAndFit functions track model performance metrics
('Metrics') from new data when the incremental model is warm (IsWarm property). An
incremental model becomes warm after fit or updateMetricsAndFit fit the incremental model
to MetricsWarmupPeriod observations, which is the metrics warm-up period.

If EstimationPeriod > 0, the functions estimate hyperparameters before fitting the model to data.
Therefore, the functions must process an additional EstimationPeriod observations before the
model starts the metrics warm-up period.

• The Metrics property of the incremental model stores two forms of each performance metric as
variables (columns) of a table, Cumulative and Window, with individual metrics in rows. When
the incremental model is warm, updateMetrics and updateMetricsAndFit update the metrics
at the following frequencies:

• Cumulative — The functions compute cumulative metrics since the start of model
performance tracking. The functions update metrics every time you call the functions and base
the calculation on the entire supplied data set.

• Window — The functions compute metrics based on all observations within a window
determined by the MetricsWindowSize name-value pair argument. MetricsWindowSize also
determines the frequency at which the software updates Window metrics. For example, if
MetricsWindowSize is 20, the functions compute metrics based on the last 20 observations
in the supplied data (X((end – 20 + 1):end,:) and Y((end – 20 + 1):end)).

Incremental functions that track performance metrics within a window use the following
process:

1 Store a buffer of length MetricsWindowSize for each specified metric, and store a buffer
of observation weights.

2 Populate elements of the metrics buffer with the model performance based on batches of
incoming observations, and store corresponding observation weights in the weights buffer.
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3 When the buffer is filled, overwrite Mdl.Metrics.Window with the weighted average
performance in the metrics window. If the buffer is overfilled when the function processes
a batch of observations, the latest incoming MetricsWindowSize observations enter the
buffer, and the earliest observations are removed from the buffer. For example, suppose
MetricsWindowSize is 20, the metrics buffer has 10 values from a previously processed
batch, and 15 values are incoming. To compose the length 20 window, the functions use
the measurements from the 15 incoming observations and the latest 5 measurements from
the previous batch.

• The software omits an observation with a NaN prediction when computing the Cumulative and
Window performance metric values.

Version History
Introduced in R2020b
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Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• All object functions on page 35-3668 of an incrementalRegressionLinear model object
support code generation.

• If you configure Mdl to shuffle data (see Solver and Shuffle), the fit function randomly shuffles
each incoming batch of observations before it fits the model to the batch. The order of the shuffled
observations might not match the order generated by MATLAB.

• When you generate code that loads or creates an incrementalRegressionLinear model
object, the NumPredictors property must reflect the number of predictor variables.

For more information, see “Introduction to Code Generation” on page 34-2.
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See Also
Functions
fit | updateMetrics | updateMetricsAndFit | predict | incrementalLearner
(RegressionLinear) | incrementalLearner (RegressionSVM)

Objects
RegressionLinear | RegressionSVM | CompactRegressionSVM

Topics
“Incremental Learning Overview” on page 28-2
“Configure Incremental Learning Model” on page 28-9
“Implement Incremental Learning for Regression Using Succinct Workflow” on page 28-19
“Implement Incremental Learning for Regression Using Flexible Workflow” on page 28-25
“Initialize Incremental Learning Model from SVM Regression Model Trained in Regression Learner”
on page 28-33
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isempty
Class: dataset

(Not Recommended) True for empty dataset array

Note The dataset data type is not recommended. To work with heterogeneous data, use the
MATLAB® table data type instead. See MATLAB table documentation for more information.

Syntax
tf = isempty(A)

Description
tf = isempty(A) returns true (1) if A is an empty dataset and false (0) otherwise. An empty array
has no elements, that is prod(size(A))==0.

See Also
size
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isanomaly
Find anomalies in data using isolation forest

Syntax
tf = isanomaly(forest,Tbl)
tf = isanomaly(forest,X)
tf = isanomaly( ___ ,Name=Value)
[tf,scores] = isanomaly( ___ )

Description
tf = isanomaly(forest,Tbl) finds anomalies in the table Tbl using the IsolationForest
object forest and returns the logical array tf, whose elements are true when an anomaly is
detected in the corresponding row of Tbl. You must use this syntax if you create forest by passing a
table to the iforest function.

tf = isanomaly(forest,X) finds anomalies in the matrix X. You must use this syntax if you create
forest by passing a matrix to the iforest function.

tf = isanomaly( ___ ,Name=Value) specifies options using one or more name-value arguments
in addition to any of the input argument combinations in the previous syntaxes. For example, set
ScoreThreshold=0.5 to identify observations with scores above 0.5 as anomalies.

[tf,scores] = isanomaly( ___ ) also returns an anomaly score in the range [0,1] for each
observation in Tbl or X. A score value close to 0 indicates a normal observation, and a value close to
1 indicates an anomaly.

Examples

Detect Novelties

Create an IsolationForest object for uncontaminated training observations by using the iforest
function. Then detect novelties (anomalies in new data) by passing the object and the new data to the
object function isanomaly.

Load the 1994 census data stored in census1994.mat. The data set consists of demographic data
from the US Census Bureau to predict whether an individual makes over $50,000 per year.

load census1994

census1994 contains the training data set adultdata and the test data set adulttest.

Train an isolation forest model for adultdata. Assume that adultdata does not contain outliers.

rng("default") % For reproducibility
[Mdl,tf,s] = iforest(adultdata);

Mdl is an IsolationForest object. iforest also returns the anomaly indicators tf and anomaly
scores s for the training data adultdata. If you do not specify the ContaminationFraction name-
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value argument as a value greater than 0, then iforest treats all training observations as normal
observations, meaning all the values in tf are logical 0 (false). The function sets the score
threshold to the maximum score value. Display the threshold value.

Mdl.ScoreThreshold

ans = 0.8600

Find anomalies in adulttest by using the trained isolation forest model.

[tf_test,s_test] = isanomaly(Mdl,adulttest);

The isanomaly function returns the anomaly indicators tf_test and scores s_test for
adulttest. By default, isanomaly identifies observations with scores above the threshold
(Mdl.ScoreThreshold) as anomalies.

Create histograms for the anomaly scores s and s_test. Create a vertical line at the threshold of the
anomaly scores.

histogram(s,Normalization="probability")
hold on
histogram(s_test,Normalization="probability")
xline(Mdl.ScoreThreshold,"r-",join(["Threshold" Mdl.ScoreThreshold]))
legend("Training Data","Test Data",Location="northwest")
hold off

Display the observation index of the anomalies in the test data.
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find(tf_test)

ans = 15655

The anomaly score distribution of the test data is similar to that of the training data, so isanomaly
detects a small number of anomalies in the test data with the default threshold value. You can specify
a different threshold value by using the ScoreThreshold name-value argument. For an example, see
“Specify Anomaly Score Threshold” on page 35-3685.

Specify Anomaly Score Threshold

Specify the threshold value for anomaly scores by using the ScoreThreshold name-value argument
of isanomaly.

Load the 1994 census data stored in census1994.mat. The data set consists of demographic data
from the US Census Bureau to predict whether an individual makes over $50,000 per year.

load census1994

census1994 contains the training data set adultdata and the test data set adulttest.

Train an isolation forest model for adultdata.

rng("default") % For reproducibility
[Mdl,tf,scores] = iforest(adultdata);

Plot a histogram of the score values. Create a vertical line at the default score threshold.

histogram(scores,Normalization="probability");
xline(Mdl.ScoreThreshold,"r-",join(["Threshold" Mdl.ScoreThreshold]))
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Find the anomalies in the test data using the trained isolation forest model. Use a different threshold
from the default threshold value obtained when training the isolation forest model.

First, determine the score threshold by using the isoutlier function.

[~,~,U] = isoutlier(scores)

U = 0.7449

Specify the value of the ScoreThreshold name-value argument as U.

[tf_test,scores_test] = isanomaly(Mdl,adulttest,ScoreThreshold=U);
histogram(scores_test,Normalization="probability")
xline(U,"r-",join(["Threshold" U]))
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Input Arguments
forest — Trained isolation forest model
IsolationForest object

Trained isolation forest model, specified as an IsolationForest object.

Tbl — Predictor data
table

Predictor data, specified as a table. Each row of Tbl corresponds to one observation, and each
column corresponds to one predictor variable. Multicolumn variables and cell arrays other than cell
arrays of character vectors are not allowed.

If you train forest using a table, then you must provide predictor data by using Tbl, not X. All
predictor variables in Tbl must have the same variable names and data types as those in the training
data. However, the column order in Tbl does not need to correspond to the column order of the
training data.
Data Types: table

X — Predictor data
numeric matrix
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Predictor data, specified as a numeric matrix. Each row of X corresponds to one observation, and
each column corresponds to one predictor variable.

If you train forest using a matrix, then you must provide predictor data by using X, not Tbl. The
variables that make up the columns of X must have the same order as the training data.
Data Types: single | double

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.
Example: ScoreThreshold=0.75,UseParallel=true sets the threshold for the anomaly score to
0.75 and instructs the function to run computations in parallel.

ScoreThreshold — Threshold for anomaly score
forest.ScoreThreshold (default) | numeric scalar in the range [0,1]

Threshold for the anomaly score, specified as a numeric scalar in the range [0,1]. isanomaly
identifies observations with scores above the threshold as anomalies.

The default value is the ScoreThreshold property value of forest.
Example: ScoreThreshold=0.5
Data Types: single | double

UseParallel — Flag to run in parallel
false (default) | true

Flag to run in parallel, specified as true or false. If you specify UseParallel=true, the
isanomaly function executes for-loop iterations in parallel by using parfor. This option requires
Parallel Computing Toolbox.
Example: UseParallel=true
Data Types: logical

Output Arguments
tf — Anomaly indicators
logical column vector

Anomaly indicators, returned as a logical column vector. An element of tf is true when the
observation in the corresponding row of Tbl or X is an anomaly, and false otherwise. tf has the
same length as Tbl or X.

isanomaly identifies observations with scores above the threshold (the ScoreThreshold value) as
anomalies.

scores — Anomaly scores
numeric column vector in the range [0,1]

Anomaly scores on page 35-3689, returned as a numeric column vector whose values are in the range
[0,1]. scores has the same length as Tbl or X, and each element of scores contains an anomaly
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score for the observation in the corresponding row of Tbl or X. A score value close to 0 indicates a
normal observation, and a value close to 1 indicates an anomaly.

More About
Isolation Forest

The isolation forest algorithm [1] detects anomalies by isolating anomalies from normal points using
an ensemble of isolation trees.

The iforest function builds an isolation forest (ensemble of isolation trees) for training observations
and detects outliers (anomalies in the training data). Each isolation tree is trained for a subset of
training observations, sampled without replacements. iforest grows an isolation tree by choosing a
split variable and split position at random until every observation in a subset lands in a separate leaf
node. Anomalies are few and different; therefore, an anomaly lands in a separate leaf node closer to
the root node and has a shorter path length (the distance from the root node to the leaf node) than
normal points. The function identifies outliers using anomaly scores on page 35-3689 defined based
on the average path lengths over all isolation trees.

The isanomaly function uses a trained isolation forest to detect anomalies in data. For novelty
detection (detecting anomalies in new data with uncontaminated training data), you can train an
isolation forest with uncontaminated training data (data with no outliers) and use it to detect
anomalies in new data. For each observation of the new data, the function finds the average path
length to reach a leaf node from the root node in the trained isolation forest, and returns an anomaly
indicator and score.

For more details, see “Anomaly Detection with Isolation Forest” on page 17-81.

Anomaly Scores

The isolation forest algorithm computes the anomaly score s(x) of an observation x by normalizing the
path length h(x):

s(x) = 2−
E[h(x)]

c(n) ,

where E[h(x)] is the average path length over all isolation trees in the isolation forest, and c(n) is the
average path length of unsuccessful searches in a binary search tree of n observations.

• The score approaches 1 as E[h(x)] approaches 0. Therefore, a score value close to 1 indicates an
anomaly.

• The score approaches 0 as E[h(x)] approaches n – 1. Also, the score approaches 0.5 when E[h(x)]
approaches c(n). Therefore, a score value smaller than 0.5 and close to 0 indicates a normal point.

Algorithms
isanomaly considers NaN, '' (empty character vector), "" (empty string), <missing>, and
<undefined> values in Tbl and NaN values in X to be missing values.

• isanomaly does not use observations with all missing values. The function assigns the anomaly
score of 1 and anomaly indicator of false (logical 0) to the observations.

• isanomaly uses observations with some missing values to find splits on variables for which these
observations have valid values.
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Version History
Introduced in R2021b

References
[1] Liu, F. T., K. M. Ting, and Z. Zhou. "Isolation Forest," 2008 Eighth IEEE International Conference

on Data Mining. Pisa, Italy, 2008, pp. 413-422.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• Use saveLearnerForCoder, loadLearnerForCoder, and codegen to generate code for the
isanomaly function. Save a trained model by using saveLearnerForCoder. Define an entry-
point function that loads the saved model by using loadLearnerForCoder and calls the
isanomaly function. Then use codegen to generate code for the entry-point function. For an
example, see “Code Generation for Anomaly Detection” on page 34-179.

• To generate single-precision C/C++ code for isanomaly, specify the name-value argument
"DataType","single" when you call the loadLearnerForCoder function.

Strict single-precision calculations are not supported. In the generated code, single-precision
inputs produce single-precision outputs. However, variables inside the function might be double-
precision.

• This table contains notes about the arguments of isanomaly. Arguments not included in this
table are fully supported.

Argument Notes and Limitations
Tbl • The entry-point function must do the following:

• Accept data as arrays.
• Create a table from the data input arguments and specify the

variable names in the table.
• Pass the table to isanomaly.

For an example of this table workflow, see “Generate Code to
Classify Data in Table” on page 34-112. For more information on
using tables in code generation, see “Code Generation for Tables”
(MATLAB Coder) and “Table Limitations for Code Generation”
(MATLAB Coder).

• The number of rows, or observations, in Tbl can be a variable size,
but the number of columns in Tbl must be fixed.

X The number of rows, or observations, in X can be a variable size, but
the number of columns in X must be fixed.

ScoreThreshold Names in name-value arguments must be compile-time constants.
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Argument Notes and Limitations
UseParallel This name-value argument is not supported, but the function supports

parallel computation through OpenMP.

The generated code of isanomaly uses parfor to create loops that
run in parallel on supported shared-memory multicore platforms in the
generated code. If your compiler does not support the Open
Multiprocessing (OpenMP) application interface or you disable
OpenMP library, MATLAB Coder treats the parfor-loops as for-loops.
To find supported compilers, see https://www.mathworks.com/
support/compilers/current_release/. To disable OpenMP
library, set the EnableOpenMP property of the configuration object to
false. For details, see coder.CodeConfig.

For more information, see “Introduction to Code Generation” on page 34-2.

Automatic Parallel Support
Accelerate code by automatically running computation in parallel using Parallel Computing Toolbox™.

To run in parallel, set the UseParallel name-value argument to true in the call to this function.

For more general information about parallel computing, see “Run MATLAB Functions with Automatic
Parallel Support” (Parallel Computing Toolbox).

See Also
IsolationForest | iforest | lof | ocsvm | robustcov

Topics
“Anomaly Detection with Isolation Forest” on page 17-81
“Unsupervised Anomaly Detection” on page 17-91
“Code Generation for Anomaly Detection” on page 34-179
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isanomaly
Find anomalies in data using local outlier factor

Syntax
tf = isanomaly(LOFObj,Tbl)
tf = isanomaly(LOFObj,X)
tf = isanomaly( ___ ,ScoreThreshold=scoreThreshold)
[tf,scores] = isanomaly( ___ )

Description
tf = isanomaly(LOFObj,Tbl) finds anomalies in the table Tbl using the LocalOutlierFactor
object LOFObj and returns the logical array tf, whose elements are true when an anomaly is
detected in the corresponding row of Tbl. You must use this syntax if you create LOFObj by passing a
table to the lof function.

tf = isanomaly(LOFObj,X) finds anomalies in the matrix X. You must use this syntax if you create
LOFObj by passing a matrix to the lof function.

tf = isanomaly( ___ ,ScoreThreshold=scoreThreshold) specifies the threshold for the
anomaly score, in addition to any of the input argument combinations in the previous syntaxes.
isanomaly identifies observations with scores above scoreThreshold as anomalies.

[tf,scores] = isanomaly( ___ ) also returns an anomaly score, which is a local outlier factor on
page 35-3700 value, for each observation in Tbl or X. A score value less than or close to 1 indicates a
normal observation, and a value greater than 1 can indicate an anomaly.

Examples

Detect Novelties

Create a LocalOutlierFactor object for uncontaminated training observations by using the lof
function. Then detect novelties (anomalies in new data) by passing the object and the new data to the
object function isanomaly.

Load the 1994 census data stored in census1994.mat. The data set consists of demographic data
from the US Census Bureau to predict whether an individual makes over $50,000 per year.

load census1994

census1994 contains the training data set adultdata and the test data set adulttest. The
predictor data must be either all continuous or all categorical to train a LocalOutlierFactor
object. Remove nonnumeric variables from adultdata and adulttest.

adultdata = adultdata(:,vartype("numeric"));
adulttest = adulttest(:,vartype("numeric"));

Train a local outlier factor model for adultdata. Assume that adultdata does not contain outliers.
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[Mdl,tf,s] = lof(adultdata);

Mdl is a LocalOutlierFactor object. lof also returns the anomaly indicators tf and anomaly
scores s for the training data adultdata. If you do not specify the ContaminationFraction name-
value argument as a value greater than 0, then lof treats all training observations as normal
observations, meaning all the values in tf are logical 0 (false). The function sets the score
threshold to the maximum score value. Display the threshold value.

Mdl.ScoreThreshold

ans = 28.6719

Find anomalies in adulttest by using the trained local outlier factor model.

[tf_test,s_test] = isanomaly(Mdl,adulttest);

The isanomaly function returns the anomaly indicators tf_test and scores s_test for
adulttest. By default, isanomaly identifies observations with scores above the threshold
(Mdl.ScoreThreshold) as anomalies.

Create histograms for the anomaly scores s and s_test. Create a vertical line at the threshold of the
anomaly scores.

h1 = histogram(s,NumBins=50,Normalization="probability");
hold on
h2 = histogram(s_test,h1.BinEdges,Normalization="probability");
xline(Mdl.ScoreThreshold,"r-",join(["Threshold" Mdl.ScoreThreshold]))
h1.Parent.YScale = 'log';
h2.Parent.YScale = 'log';
legend("Training Data","Test Data",Location="north")
hold off

 isanomaly

35-3693



Display the observation index of the anomalies in the test data.

find(tf_test)

ans =

  0x1 empty double column vector

The anomaly score distribution of the test data is similar to that of the training data, so isanomaly
does not detect any anomalies in the test data with the default threshold value. You can specify a
different threshold value by using the ScoreThreshold name-value argument. For an example, see
“Specify Anomaly Score Threshold” on page 35-3694.

Specify Anomaly Score Threshold

Specify the threshold value for anomaly scores by using the ScoreThreshold name-value argument
of isanomaly.

Load the 1994 census data stored in census1994.mat. The data set consists of demographic data
from the US Census Bureau to predict whether an individual makes over $50,000 per year.

load census1994

census1994 contains the training data set adultdata and the test data set adulttest.
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Remove nonnumeric variables from adultdata and adulttest.

adultdata = adultdata(:,vartype("numeric"));
adulttest = adulttest(:,vartype("numeric"));

Train a local outlier factor model for adultdata.

[Mdl,tf,scores] = lof(adultdata);

Plot a histogram of the score values. Create a vertical line at the default score threshold.

h = histogram(scores,NumBins=50,Normalization="probability");
h.Parent.YScale = 'log';
xline(Mdl.ScoreThreshold,"r-",join(["Threshold" Mdl.ScoreThreshold]))

Find the anomalies in the test data using the trained local outlier factor model. Use a different
threshold from the default threshold value obtained when training the local outlier factor model.

First, determine the score threshold by using the isoutlier function.

[~,~,U] = isoutlier(scores)

U = 1.1567

Specify the value of the ScoreThreshold name-value argument as U.

[tf_test,scores_test] = isanomaly(Mdl,adulttest,ScoreThreshold=U);
h = histogram(scores_test,NumBins=50,Normalization="probability");
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h.Parent.YScale = 'log';
xline(U,"r-",join(["Threshold" U]))

Plot Contours of Anomaly Scores

Generate a sample data set that contains outliers. Compute anomaly scores for the points around the
sample data by using the isanomaly function, and create a contour plot of the anomaly scores. Then,
check the performance of the trained local outlier model by plotting the precision-recall curve.

Use a Gaussian copula to generate random data points from a bivariate distribution.

rng("default")
rho = [1,0.05;0.05,1];
n = 1000;
u = copularnd("Gaussian",rho,n);

Add noise to 5% of randomly selected observations to make the observations outliers.

noise = randperm(n,0.05*n);
true_tf = false(n,1);
true_tf(noise) = true;
u(true_tf,1) = u(true_tf,1)*5;

Train a local outlier factor model by using the lof function. Set the fraction of anomalies in the
training observations to 0.05. For better performance, you can also modify the local outlier factor

35 Functions

35-3696



algorithm options by specifying name-value arguments, such as SearchMethod, NumNeighbors, and
Distance. In this case, specify the number of nearest neighbors to use as 40.

[LOFObj,tf,scores] = lof(u,ContaminationFraction=0.05,NumNeighbors=40);

Compute anomaly scores for 2-D grid coordinates around the training observations by using the
trained local outlier factor model and the isanomaly function.

l1 = linspace(min(u(:,1),[],1),max(u(:,1),[],1));
l2 = linspace(min(u(:,2),[],1),max(u(:,2),[],1));
[X1,X2] = meshgrid(l1,l2);
[~,scores_grid] = isanomaly(LOFObj,[X1(:),X2(:)]);
scores_grid = reshape(scores_grid,size(X1,1),size(X2,2));

Create a scatter plot of the training observations and a contour plot of the anomaly scores. Flag true
outliers and the outliers detected by lof.

idx = setdiff(1:1000,noise);
scatter(u(idx,1),u(idx,2),[],[0.5 0.5 0.5],".")
hold on
scatter(u(noise,1),u(noise,2),"ro","filled")
scatter(u(tf,1),u(tf,2),60,"kx",LineWidth=1)
contour(X1,X2,scores_grid,"ShowText","on")
legend(["Normal Points" "Outliers" "Detected Outliers"],Location="best")
colorbar
hold off
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Check the performance of the trained local outlier factor model by plotting the precision-recall curve
and computing the area under the curve (AUC) value. Create a rocmetrics object. rocmetrics
computes the false positive rates and the true positive rates (or recall) by default. Specify the
AdditionalMetrics name-value argument to additionally compute the precision values (or positive
predictive values).

rocObj = rocmetrics(true_tf,scores,true,AdditionalMetrics="PositivePredictiveValue");

Plot the curve by using the plot function of rocmetrics. Specify the y-axis metric as precision (or
positive predictive value) and the x-axis metric as recall (or true positive rate). Display a filled circle
at the model operating point corresponding to LOFObj.ScoreThreshold. Compute the area under
the precision-recall curve using the trapezoidal method of the trapz function, and display the value
in the legend.

r = plot(rocObj,YAxisMetric="PositivePredictiveValue",XAxisMetric="TruePositiveRate");
hold on
idx = find(rocObj.Metrics.Threshold>=LOFObj.ScoreThreshold,1,'last');
scatter(rocObj.Metrics.TruePositiveRate(idx), ...
    rocObj.Metrics.PositivePredictiveValue(idx), ...
    [],r.Color,"filled")
xyData = rmmissing([r.XData r.YData]);
auc = trapz(xyData(:,1),xyData(:,2));
legend(join([r.DisplayName " (AUC = " string(auc) ")"],""),"true Model Operating Point")
xlabel("Recall")
ylabel("Precision")
title("Precision-Recall Curve")
hold off
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Input Arguments
LOFObj — Trained local outlier factor model
LocalOutlierFactor object

Trained local outlier factor model, specified as a LocalOutlierFactor object.

Tbl — Predictor data
table

Predictor data, specified as a table. Each row of Tbl corresponds to one observation, and each
column corresponds to one predictor variable. Multicolumn variables and cell arrays other than cell
arrays of character vectors are not allowed.

If you train LOFObj using a table, then you must provide predictor data by using Tbl, not X. All
predictor variables in Tbl must have the same variable names and data types as those in the training
data. However, the column order in Tbl does not need to correspond to the column order of the
training data.
Data Types: table

X — Predictor data
numeric matrix

Predictor data, specified as a numeric matrix. Each row of X corresponds to one observation, and
each column corresponds to one predictor variable.

If you train LOFObj using a matrix, then you must provide predictor data by using X, not Tbl. The
variables that make up the columns of X must have the same order as the training data.
Data Types: single | double

scoreThreshold — Threshold for anomaly score
LOFObj.ScoreThreshold (default) | nonnegative scalar

Threshold for the anomaly score, specified as a nonnegative scalar. isanomaly identifies
observations with scores above the threshold as anomalies.

The default value is the ScoreThreshold property value of LOFObj.
Example: ScoreThreshold=0.5
Data Types: single | double

Output Arguments
tf — Anomaly indicators
logical column vector

Anomaly indicators, returned as a logical column vector. An element of tf is true when the
observation in the corresponding row of Tbl or X is an anomaly, and false otherwise. tf has the
same length as Tbl or X.

isanomaly identifies observations with scores above the threshold (the ScoreThreshold value) as
anomalies.
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scores — Anomaly scores (local outlier factor values)
numeric column vector

Anomaly scores (local outlier factor on page 35-3700 values), returned as a numeric column vector
whose values are nonnegative. scores has the same length as Tbl or X, and each element of scores
contains an anomaly score for the observation in the corresponding row of Tbl or X. A score value
less than or close to 1 can indicate a normal observation, and a value greater than 1 can indicate an
anomaly.

More About
Local Outlier Factor

The local outlier factor (LOF) algorithm detects anomalies based on the relative density of an
observation with respect to the surrounding neighborhood.

The algorithm finds the k-nearest neighbors of an observation and computes the local reachability
densities for the observation and its neighbors. The local outlier factor is the average density ratio of
the observation to its neighbor. That is, the local outlier factor of observation p is

LOFk(p) = 1
Nk(p) ∑

o ∈ Nk(p)

lrdk(o)
lrdk(p) ,

where

• lrdk(·) is the local reachability density of an observation.
• Nk(p) represents the k-nearest neighbors of observation p. You can specify the IncludeTies

name-value argument as true to include all the neighbors whose distance values are equal to the
kth smallest distance, or specify false to include exactly k neighbors. The default IncludeTies
value of lof is false for more efficient performance. Note that the algorithm in [1] uses all the
neighbors.

• |Nk(p)| is the number of observations in Nk(p).

For normal observations, the local outlier factor values are less than or close to 1, indicating that the
local reachability density of an observation is higher than or similar to its neighbors. A local outlier
factor value greater than 1 can indicate an anomaly. The ContaminationFraction argument of lof
and the ScoreThreshold argument of isanomaly control the threshold for the local outlier factor
values.

The algorithm measures the density based on the reachability distance. The reachability distance of
observation p with respect to observation o is defined as

dk(p, o) = max(dk(o), d(p, o)),

where

• dk(o) is the kth smallest distance among the distances from observation o to its neighbors.
• d(p,o) is the distance between observation p and observation o.

The algorithm uses the reachability distance to reduce the statistical fluctuations of d(p,o) for the
observations close to observation o.

35 Functions

35-3700



The local reachability density of observation p is the reciprocal of the average reachability distance
from observation p to its neighbors.

lrdk(p) = 1/
∑

o ∈ Nk(p)
dk(p, o)

Nk(p) .

The density value can be infinity if the number of duplicates is greater than the number of neighbors
(k). Therefore, if the training data contains duplicates, the lof and isanomaly functions use the
weighted local outlier factor (WLOF) algorithm. This algorithm computes the weighted local outlier
factors using the weighted local reachability density (wlrd).

WLOFk(p) = 1
∑

o ∈ Nk(p)
w(o) ∑

o ∈ Nk(p)

wlrdk(o)
wlrdk(p) ,

where

wlrdk(p) = 1/
∑

o ∈ Nk(p)
w(o)dk(p, o)

∑
o ∈ Nk(p)

w(o)
,

and w(o) is the number of duplicates for observation o in the training data. After computing the
weight values, the algorithm treats each set of duplicates as one observation.

Algorithms
• To compute the local outlier factor values (scores) for each observation in Tbl or X, isanomaly
finds the k-nearest neighbors among the training observations stored in the X property of a
LocalOutlierFactor object.

• isanomaly considers NaN, '' (empty character vector), "" (empty string), <missing>, and
<undefined> values in Tbl and NaN values in X to be missing values.

• isanomaly does not use observations with missing values.
• isanomaly assigns the anomaly score of NaN and anomaly indicator of false (logical 0) to

observations with missing values.

Version History
Introduced in R2022b

References
[1] Breunig, Markus M., et al. “LOF: Identifying Density-Based Local Outliers.” Proceedings of the

2000 ACM SIGMOD International Conference on Management of Data, 2000, pp. 93–104.

See Also
LocalOutlierFactor | lof | ocsvm | robustcov

 isanomaly

35-3701



Topics
“Unsupervised Anomaly Detection” on page 17-91
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isanomaly
Find anomalies in data using one-class support vector machine (SVM)

Syntax
tf = isanomaly(Mdl,Tbl)
tf = isanomaly(Mdl,X)
tf = isanomaly( ___ ,ScoreThreshold=scoreThreshold)
[tf,scores] = isanomaly( ___ )

Description
tf = isanomaly(Mdl,Tbl) finds anomalies in the table Tbl using the OneClassSVM object Mdl
and returns the logical array tf, whose elements are true when an anomaly is detected in the
corresponding row of Tbl. You must use this syntax if you create Mdl by passing a table to the ocsvm
function.

tf = isanomaly(Mdl,X) finds anomalies in the matrix X. You must use this syntax if you create
Mdl by passing a matrix to the ocsvm function.

tf = isanomaly( ___ ,ScoreThreshold=scoreThreshold) specifies the threshold for the
anomaly score using any of the input argument combinations in the previous syntaxes. isanomaly
identifies observations with scores above scoreThreshold as anomalies.

[tf,scores] = isanomaly( ___ ) also returns an anomaly score in the range (–inf,inf) for
each observation in Tbl or X. A negative score value with large magnitude indicates a normal
observation, and a large positive value indicates an anomaly.

Examples

Detect Novelties

Create a OneClassSVM object for uncontaminated training observations by using the ocsvm function.
Then detect novelties (anomalies in new data) by passing the object and the new data to the object
function isanomaly.

Load the 1994 census data stored in census1994.mat. The data set consists of demographic data
from the US Census Bureau to predict whether an individual makes over $50,000 per year.

load census1994

census1994 contains the training data set adultdata and the test data set adulttest.

ocsvm does not use observations with missing values. Remove missing values in the data sets to
reduce memory consumption and speed up training.

adultdata = rmmissing(adultdata);
adulttest = rmmissing(adulttest);
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Train a one-class SVM for adultdata. Assume that adultdata does not contain outliers. Specify
StandardizeData as true to standardize the input data, and set KernelScale to "auto" to let
the function select an appropriate kernel scale parameter using a heuristic procedure.

rng("default") % For reproducibility
[Mdl,~,s] = ocsvm(adultdata,StandardizeData=true,KernelScale="auto");

Mdl is a OneClassSVM object. If you do not specify the ContaminationFraction name-value
argument as a value greater than 0, then ocsvm treats all training observations as normal
observations. The function sets the score threshold to the maximum score value. Display the
threshold value.

Mdl.ScoreThreshold

ans = 0.0322

Find anomalies in adulttest by using the trained one-class SVM model.

[tf_test,s_test] = isanomaly(Mdl,adulttest);

The isanomaly function returns the anomaly indicators tf_test and scores s_test for
adulttest. By default, isanomaly identifies observations with scores above the threshold
(Mdl.ScoreThreshold) as anomalies.

Create histograms for the anomaly scores s and s_test. Create a vertical line at the threshold of the
anomaly scores.

h1 = histogram(s,NumBins=50,Normalization="probability");
hold on
h2 = histogram(s_test,h1.BinEdges,Normalization="probability");
xline(Mdl.ScoreThreshold,"r-",join(["Threshold" Mdl.ScoreThreshold]))
h1.Parent.YScale = 'log';
h2.Parent.YScale = 'log';
legend("Training Data","Test Data",Location="north")
hold off
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Display the observation index of the anomalies in the test data.

find(tf_test)

ans =

  0x1 empty double column vector

The anomaly score distribution of the test data is similar to that of the training data, so isanomaly
does not detect any anomalies in the test data with the default threshold value. You can specify a
different threshold value by using the ScoreThreshold name-value argument. For an example, see
“Specify Anomaly Score Threshold” on page 35-3705.

Specify Anomaly Score Threshold

Specify the threshold value for anomaly scores by using the ScoreThreshold name-value argument
of isanomaly.

Load the 1994 census data stored in census1994.mat. The data set consists of demographic data
from the US Census Bureau to predict whether an individual makes over $50,000 per year.

load census1994

census1994 contains the training data set adultdata and the test data set adulttest.
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ocsvm does not use observations with missing values. Remove missing values in the data sets to
reduce memory consumption and speed up training.

adultdata = rmmissing(adultdata);
adulttest = rmmissing(adulttest);

Train a one-class SVM model for adultdata. Specify StandardizeData as true to standardize the
input data, and set KernelScale to "auto" to let the function select an appropriate kernel scale
parameter using a heuristic procedure.

rng("default") % For reproducibility
[Mdl,~,scores] = ocsvm(adultdata, ...
    StandardizeData=true,KernelScale="auto");

Plot a histogram of the score values. Create a vertical line at the default score threshold.

h = histogram(scores,NumBins=50,Normalization="probability");
h.Parent.YScale = 'log';
xline(Mdl.ScoreThreshold,"r-",join(["Threshold" Mdl.ScoreThreshold]))

Find the anomalies in the test data using the trained one-class SVM model. Use a different threshold
from the default threshold value obtained when training the model.

First, determine the score threshold by using the isoutlier function.

[~,~,U] = isoutlier(scores)

U = -0.5342
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Specify the value of the ScoreThreshold name-value argument as U. Because you specified
StandardizeData as true when you trained Mdl, the isanomaly function standardizes new input
data using the means and standard deviations stored in Mdl.Mu and Mdl.Sigma, respectively.

[tf_test,scores_test] = isanomaly(Mdl,adulttest,ScoreThreshold=U);
h = histogram(scores_test,NumBins=50,Normalization="probability");
h.Parent.YScale = 'log';
xline(U,"r-",join(["Threshold" U]))

Input Arguments
Mdl — Trained one-class SVM model
OneClassSVM object

Trained one-class SVM model, specified as a OneClassSVM object.

Tbl — Predictor data
table

Predictor data, specified as a table. Each row of Tbl corresponds to one observation, and each
column corresponds to one predictor variable. Multicolumn variables and cell arrays other than cell
arrays of character vectors are not allowed.

If you train Mdl using a table, then you must provide predictor data by using Tbl, not X. All predictor
variables in Tbl must have the same variable names and data types as those in the training data.
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However, the column order in Tbl does not need to correspond to the column order of the training
data.
Data Types: table

X — Predictor data
numeric matrix

Predictor data, specified as a numeric matrix. Each row of X corresponds to one observation, and
each column corresponds to one predictor variable.

If you train Mdl using a matrix, then you must provide predictor data by using X, not Tbl. The
variables that make up the columns of X must have the same order as the training data.
Data Types: single | double

scoreThreshold — Threshold for anomaly score
Mdl.ScoreThreshold (default) | numeric scalar in the range (–Inf,Inf)

Threshold for the anomaly score, specified as a numeric scalar in the range (–Inf,Inf).
isanomaly identifies observations with scores above the threshold as anomalies.

The default value is the ScoreThreshold property value of Mdl.
Example: ScoreThreshold=0.5
Data Types: single | double

Output Arguments
tf — Anomaly indicators
logical column vector

Anomaly indicators, returned as a logical column vector. An element of tf is true when the
observation in the corresponding row of Tbl or X is an anomaly, and false otherwise. tf has the
same length as Tbl or X.

isanomaly identifies observations with scores above the threshold (the scoreThreshold value) as
anomalies.

scores — Anomaly scores
numeric column vector

Anomaly scores, returned as a numeric column vector whose values are in the range (–Inf,Inf).
scores has the same length as Tbl or X, and each element of scores contains an anomaly score for
the observation in the corresponding row of Tbl or X. A negative score value with large magnitude
indicates a normal observation, and a large positive value indicates an anomaly.

Version History
Introduced in R2022b

See Also
OneClassSVM | ocsvm | lof | robustcov

35 Functions

35-3708



Topics
“Unsupervised Anomaly Detection” on page 17-91

 isanomaly

35-3709



islevel
(Not Recommended) Determine if levels are in nominal or ordinal array

Note The nominal and ordinal array data types are not recommended. To represent ordered and
unordered discrete, nonnumeric data, use the “Categorical Arrays” data type instead.

Syntax
tf = islevel(levels,A)

Description
tf = islevel(levels,A) returns a logical array indicating which of the levels in levels
correspond to a level in the nominal or ordinal array A.

Input Arguments
A — Nominal or ordinal array
nominal array | ordinal array

Nominal or ordinal array, specified as a nominal or ordinal array object created with nominal or
ordinal.

levels — Levels to test
character vector | string array | cell array of character vectors | 2-D character matrix

Levels to test, specified as a character vector, string array, cell array of character vectors, or 2-D
character matrix.
Data Types: char | string | cell

Output Arguments
tf — Level indicator
logical array

Level indicator, returned as a logical array of the same size as levels. tf has the value 1 (true)
when the corresponding element of levels is the label of a level in the nominal or ordinal array A,
even if the level contains no elements. Otherwise, tf has the value 0 (false).

Version History
Introduced in R2007a

See Also
ismember | isequal | nominal | ordinal
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iforest
Fit isolation forest for anomaly detection

Syntax
forest = iforest(Tbl)
forest = iforest(X)
forest = iforest( ___ ,Name=Value)
[forest,tf] = iforest( ___ )
[forest,tf,scores] = iforest( ___ )

Description
Use the iforest function to fit an isolation forest on page 35-3720 model for outlier detection and
novelty detection.

• Outlier detection (detecting anomalies in training data) — Use the output argument tf of
iforest to identify anomalies in training data.

• Novelty detection (detecting anomalies in new data with uncontaminated training data) — Create
an IsolationForest object by passing uncontaminated training data (data with no outliers) to
iforest. Detect anomalies in new data by passing the object and the new data to the object
function isanomaly.

forest = iforest(Tbl) returns an IsolationForest object for predictor data in the table Tbl.

forest = iforest(X) uses predictor data in the matrix X.

forest = iforest( ___ ,Name=Value) specifies options using one or more name-value
arguments in addition to any of the input argument combinations in the previous syntaxes. For
example, ContaminationFraction=0.1 instructs the function to process 10% of the training data
as anomalies.

[forest,tf] = iforest( ___ ) also returns the logical array tf, whose elements are true when
an anomaly is detected in the corresponding row of Tbl or X.

[forest,tf,scores] = iforest( ___ ) also returns an anomaly score in the range [0,1] for
each observation in Tbl or X. A score value close to 0 indicates a normal observation, and a value
close to 1 indicates an anomaly.

Examples

Detect Outliers

Detect outliers (anomalies in training data) by using the iforest function.

Load the sample data set NYCHousing2015.

load NYCHousing2015

 iforest

35-3711



The data set includes 10 variables with information on the sales of properties in New York City in
2015. Display a summary of the data set.

summary(NYCHousing2015)

Variables:

    BOROUGH: 91446x1 double

        Values:

            Min          1    
            Median       3    
            Max          5    

    NEIGHBORHOOD: 91446x1 cell array of character vectors

    BUILDINGCLASSCATEGORY: 91446x1 cell array of character vectors

    RESIDENTIALUNITS: 91446x1 double

        Values:

            Min            0  
            Median         1  
            Max         8759  

    COMMERCIALUNITS: 91446x1 double

        Values:

            Min           0   
            Median        0   
            Max         612   

    LANDSQUAREFEET: 91446x1 double

        Values:

            Min                0
            Median          1700
            Max       2.9306e+07

    GROSSSQUAREFEET: 91446x1 double

        Values:

            Min                0
            Median          1056
            Max       8.9422e+06

    YEARBUILT: 91446x1 double

        Values:

            Min            0  
            Median      1939  
            Max         2016  
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    SALEPRICE: 91446x1 double

        Values:

            Min                0
            Median    3.3333e+05
            Max       4.1111e+09

    SALEDATE: 91446x1 datetime

        Values:

            Min       01-Jan-2015
            Median    09-Jul-2015
            Max       31-Dec-2015

The SALEDATE column is a datetime array, which is not supported by iforest. Create columns for
the month and day numbers of the datetime values, and delete the SALEDATE column.

[~,NYCHousing2015.MM,NYCHousing2015.DD] = ymd(NYCHousing2015.SALEDATE);
NYCHousing2015.SALEDATE = [];

The columns BOROUGH, NEIGHBORHOOD, and BUILDINGCLASSCATEGORY contain categorical
predictors. Display the number of categories for the categorical predictors.

length(unique(NYCHousing2015.BOROUGH))

ans = 5

length(unique(NYCHousing2015.NEIGHBORHOOD))

ans = 254

length(unique(NYCHousing2015.BUILDINGCLASSCATEGORY))

ans = 48

For a categorical variable with more than 64 categories, the iforest function uses an approximate
splitting method that can reduce the accuracy of the isolation forest model. Remove the
NEIGHBORHOOD column, which contains a categorical variable with 254 categories.

NYCHousing2015.NEIGHBORHOOD = [];

Train an isolation forest model for NYCHousing2015. Specify the fraction of anomalies in the training
observations as 0.1, and specify the first variable (BOROUGH) as a categorical predictor. The first
variable is a numeric array, so iforest assumes it is a continuous variable unless you specify the
variable as a categorical variable.

rng("default") % For reproducibility 
[Mdl,tf,scores] = iforest(NYCHousing2015,ContaminationFraction=0.1, ...
    CategoricalPredictors=1);

Mdl is an IsolationForest object. iforest also returns the anomaly indicators (tf) and anomaly
scores (scores) for the training data NYCHousing2015.

Plot a histogram of the score values. Create a vertical line at the score threshold corresponding to the
specified fraction.
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histogram(scores)
xline(Mdl.ScoreThreshold,"r-",["Threshold" Mdl.ScoreThreshold])

If you want to identify anomalies with a different contamination fraction (for example, 0.01), you can
train a new isolation forest model.

rng("default") % For reproducibility 
[newMdl,newtf,scores] = iforest(NYCHousing2015, ...
    ContaminationFraction=0.01,CategoricalPredictors=1);

If you want to identify anomalies with a different score threshold value (for example, 0.65), you can
pass the IsolationForest object, the training data, and a new threshold value to the isanomaly
function.

[newtf,scores] = isanomaly(Mdl,NYCHousing2015,ScoreThreshold=0.65);

Note that changing the contamination fraction or score threshold changes the anomaly indicators
only, and does not affect the anomaly scores. Therefore, if you do not want to compute the anomaly
scores again by using iforest or isanomaly, you can obtain a new anomaly indicator with the
existing score values.

Change the fraction of anomalies in the training data to 0.01.

newContaminationFraction = 0.01;

Find a new score threshold by using the quantile function.

newScoreThreshold = quantile(scores,1-newContaminationFraction)
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newScoreThreshold = 0.7045

Obtain a new anomaly indicator.

newtf = scores > newScoreThreshold;

Detect Novelties

Create an IsolationForest object for uncontaminated training observations by using the iforest
function. Then detect novelties (anomalies in new data) by passing the object and the new data to the
object function isanomaly.

Load the 1994 census data stored in census1994.mat. The data set consists of demographic data
from the US Census Bureau to predict whether an individual makes over $50,000 per year.

load census1994

census1994 contains the training data set adultdata and the test data set adulttest.

Train an isolation forest model for adultdata. Assume that adultdata does not contain outliers.

rng("default") % For reproducibility
[Mdl,tf,s] = iforest(adultdata);

Mdl is an IsolationForest object. iforest also returns the anomaly indicators tf and anomaly
scores s for the training data adultdata. If you do not specify the ContaminationFraction name-
value argument as a value greater than 0, then iforest treats all training observations as normal
observations, meaning all the values in tf are logical 0 (false). The function sets the score
threshold to the maximum score value. Display the threshold value.

Mdl.ScoreThreshold

ans = 0.8600

Find anomalies in adulttest by using the trained isolation forest model.

[tf_test,s_test] = isanomaly(Mdl,adulttest);

The isanomaly function returns the anomaly indicators tf_test and scores s_test for
adulttest. By default, isanomaly identifies observations with scores above the threshold
(Mdl.ScoreThreshold) as anomalies.

Create histograms for the anomaly scores s and s_test. Create a vertical line at the threshold of the
anomaly scores.

histogram(s,Normalization="probability")
hold on
histogram(s_test,Normalization="probability")
xline(Mdl.ScoreThreshold,"r-",join(["Threshold" Mdl.ScoreThreshold]))
legend("Training Data","Test Data",Location="northwest")
hold off
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Display the observation index of the anomalies in the test data.

find(tf_test)

ans = 15655

The anomaly score distribution of the test data is similar to that of the training data, so isanomaly
detects a small number of anomalies in the test data with the default threshold value. You can specify
a different threshold value by using the ScoreThreshold name-value argument. For an example, see
“Specify Anomaly Score Threshold” on page 35-3685.

Input Arguments
Tbl — Predictor data
table

Predictor data, specified as a table. Each row of Tbl corresponds to one observation, and each
column corresponds to one predictor variable. Multicolumn variables and cell arrays other than cell
arrays of character vectors are not allowed.

To use a subset of the variables in Tbl, specify the variables by using the PredictorNames name-
value argument.
Data Types: table
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X — Predictor data
numeric matrix

Predictor data, specified as a numeric matrix. Each row of X corresponds to one observation, and
each column corresponds to one predictor variable.

You can use the PredictorNames name-value argument to assign names to the predictor variables
in X.
Data Types: single | double

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.
Example: NumLearners=50,NumObservationsPerLearner=100 specifies to train an isolation
forest using 50 isolation trees and 100 observations for each isolation tree.

CategoricalPredictors — List of categorical predictors
vector of positive integers | logical vector | character matrix | string array | cell array of character
vectors | 'all'

List of categorical predictors, specified as one of the values in this table.

Value Description
Vector of positive
integers

Each entry in the vector is an index value indicating that the corresponding
predictor is categorical. The index values are between 1 and p, where p is
the number of predictors used to train the model.

If iforest uses a subset of input variables as predictors, then the function
indexes the predictors using only the subset. The
CategoricalPredictors values do not count any variables that the
function does not use.

Logical vector A true entry means that the corresponding predictor is categorical. The
length of the vector is p.

Character matrix Each row of the matrix is the name of a predictor variable. The names must
match the entries in PredictorNames. Pad the names with extra blanks
so each row of the character matrix has the same length.

String array or cell
array of character
vectors

Each element in the array is the name of a predictor variable. The names
must match the entries in PredictorNames.

"all" All predictors are categorical.

By default, if the predictor data is in a table (Tbl), iforest assumes that a variable is categorical if
it is a logical vector, unordered categorical vector, character array, string array, or cell array of
character vectors. If the predictor data is a matrix (X), iforest assumes that all predictors are
continuous. To identify any other predictors as categorical predictors, specify them by using the
CategoricalPredictors name-value argument.

For a categorical variable with more than 64 categories, the iforest function uses an approximate
splitting method that can reduce the accuracy of the isolation forest model.
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Example: CategoricalPredictors='all'
Data Types: single | double | logical | char | string | cell

ContaminationFraction — Fraction of anomalies in training data
0 (default) | numeric scalar in the range [0,1]

Fraction of anomalies in the training data, specified as a numeric scalar in the range [0,1].

• If the ContaminationFraction value is 0 (default), then iforest treats all training
observations as normal observations, and sets the score threshold (ScoreThreshold property
value of forest) to the maximum value of scores.

• If the ContaminationFraction value is in the range (0,1], then iforest determines the
threshold value so that the function detects the specified fraction of training observations as
anomalies.

Example: ContaminationFraction=0.1
Data Types: single | double

NumLearners — Number of isolation trees
100 (default) | positive integer scalar

Number of isolation trees, specified as a positive integer scalar.

The average path lengths used by the isolation forest algorithm to compute anomaly scores usually
converge well before growing 100 isolation trees for both normal points and anomalies [1].
Example: NumLearners=50
Data Types: single | double

NumObservationsPerLearner — Number of observations for each isolation tree
min(N,256) where N is the number of training observations (default) | positive integer scalar greater
than or equal to 3

Number of observations to draw from the training data without replacement for each isolation tree,
specified as a positive integer scalar greater than or equal to 3.

The isolation forest algorithm performs well with a small NumObservationsPerLearner value,
because using a small sample size helps to detect dense anomalies and anomalies close to normal
points. However, you need to experiment with the sample size if N is small. For an example, see
“Examine NumObservationsPerLearner for Small Data” on page 17-85.
Example: NumObservationsPerLearner=100
Data Types: single | double

PredictorNames — Predictor variable names
string array of unique names | cell array of unique character vectors

Predictor variable names, specified as a string array of unique names or cell array of unique
character vectors. The functionality of PredictorNames depends on how you supply the predictor
data.

• If you supply Tbl, then you can use PredictorNames to specify which predictor variables to use.
That is, iforest uses only the predictor variables in PredictorNames.

35 Functions

35-3718



• PredictorNames must be a subset of Tbl.Properties.VariableNames.
• By default, PredictorNames contains the names of all predictor variables in Tbl.

• If you supply X, then you can use PredictorNames to assign names to the predictor variables in
X.

• The order of the names in PredictorNames must correspond to the column order of X. That
is, PredictorNames{1} is the name of X(:,1), PredictorNames{2} is the name of
X(:,2), and so on. Also, size(X,2) and numel(PredictorNames) must be equal.

• By default, PredictorNames is {'x1','x2',...}.

Example: PredictorNames=["SepalLength" "SepalWidth" "PetalLength" "PetalWidth"]
Data Types: string | cell

UseParallel — Flag to run in parallel
false (default) | true

Flag to run in parallel, specified as true or false. If you specify UseParallel=true, the iforest
function executes for-loop iterations in parallel by using parfor. This option requires Parallel
Computing Toolbox.
Example: UseParallel=true
Data Types: logical

Output Arguments
forest — Trained isolation forest model
IsolationForest object

Trained isolation forest model, returned as an IsolationForest object.

You can use the object function isanomaly with forest to find anomalies in new data.

tf — Anomaly indicators
logical column vector

Anomaly indicators, returned as a logical column vector. An element of tf is true when the
observation in the corresponding row of Tbl or X is an anomaly, and false otherwise. tf has the
same length as Tbl or X.

iforest identifies observations with scores above the threshold (ScoreThreshold property value
of forest) as anomalies. The function determines the threshold value to detect the specified fraction
(ContaminationFraction name-value argument) of training observations as anomalies.

scores — Anomaly scores
numeric column vector in the range [0,1]

Anomaly scores on page 35-3720, returned as a numeric column vector whose values are in the range
[0,1]. scores has the same length as Tbl or X, and each element of scores contains an anomaly
score for the observation in the corresponding row of Tbl or X. A score value close to 0 indicates a
normal observation, and a value close to 1 indicates an anomaly.
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More About
Isolation Forest

The isolation forest algorithm [1] detects anomalies by isolating anomalies from normal points using
an ensemble of isolation trees.

The iforest function builds an isolation forest (ensemble of isolation trees) for training observations
and detects outliers (anomalies in the training data). Each isolation tree is trained for a subset of
training observations, sampled without replacements. iforest grows an isolation tree by choosing a
split variable and split position at random until every observation in a subset lands in a separate leaf
node. Anomalies are few and different; therefore, an anomaly lands in a separate leaf node closer to
the root node and has a shorter path length (the distance from the root node to the leaf node) than
normal points. The function identifies outliers using anomaly scores on page 35-3720 defined based
on the average path lengths over all isolation trees.

The isanomaly function uses a trained isolation forest to detect anomalies in data. For novelty
detection (detecting anomalies in new data with uncontaminated training data), you can train an
isolation forest with uncontaminated training data (data with no outliers) and use it to detect
anomalies in new data. For each observation of the new data, the function finds the average path
length to reach a leaf node from the root node in the trained isolation forest, and returns an anomaly
indicator and score.

For more details, see “Anomaly Detection with Isolation Forest” on page 17-81.

Anomaly Scores

The isolation forest algorithm computes the anomaly score s(x) of an observation x by normalizing the
path length h(x):

s(x) = 2−
E[h(x)]

c(n) ,

where E[h(x)] is the average path length over all isolation trees in the isolation forest, and c(n) is the
average path length of unsuccessful searches in a binary search tree of n observations.

• The score approaches 1 as E[h(x)] approaches 0. Therefore, a score value close to 1 indicates an
anomaly.

• The score approaches 0 as E[h(x)] approaches n – 1. Also, the score approaches 0.5 when E[h(x)]
approaches c(n). Therefore, a score value smaller than 0.5 and close to 0 indicates a normal point.

Tips
• After training a model, you can generate C/C++ code that finds anomalies for new data.

Generating C/C++ code requires MATLAB Coder. For details, see “Code Generation” on page 35-
3690 of the isanomaly function and “Introduction to Code Generation” on page 34-2.

Algorithms
iforest considers NaN, '' (empty character vector), "" (empty string), <missing>, and
<undefined> values in Tbl and NaN values in X to be missing values.

• iforest does not use observations with all missing values. The function assigns the anomaly
score of 1 and anomaly indicator of false (logical 0) to the observations.
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• iforest uses observations with some missing values to find splits on variables for which these
observations have valid values.

Version History
Introduced in R2021b

References
[1] Liu, F. T., K. M. Ting, and Z. Zhou. "Isolation Forest," 2008 Eighth IEEE International Conference

on Data Mining. Pisa, Italy, 2008, pp. 413-422.

Extended Capabilities
Automatic Parallel Support
Accelerate code by automatically running computation in parallel using Parallel Computing Toolbox™.

To run in parallel, set the UseParallel name-value argument to true in the call to this function.

For more general information about parallel computing, see “Run MATLAB Functions with Automatic
Parallel Support” (Parallel Computing Toolbox).

See Also
IsolationForest | isanomaly | lof | ocsvm | robustcov

Topics
“Anomaly Detection with Isolation Forest” on page 17-81
“Unsupervised Anomaly Detection” on page 17-91
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ismember
Class: dataset

(Not Recommended) Dataset array elements that are members of set

Note The dataset data type is not recommended. To work with heterogeneous data, use the
MATLAB® table data type instead. See MATLAB table documentation for more information.

Syntax
LiA = ismember(A,B)
LiA = ismember(A,B,vars)
[LiA,LocB] = ismember( ___ )

Description
LiA = ismember(A,B) for dataset arrays A and B returns a vector of logical values the same
length as A. The output vector, LiA, has value 1 (true) in the elements that correspond to
observations in A that are also present in B, and 0 (false) otherwise.

LiA = ismember(A,B,vars) returns a vector of logical values the same length as A. The output
vector, LiA, has value 1 (true) in the elements that correspond to observations in A that are also
present in B for the variables specified in vars only, and 0 (false) otherwise.

[LiA,LocB] = ismember( ___ ) also returns a vector the same length as A containing the index to
the first observation in B that corresponds to each observation in A, or 0 if there is no such
observation. You can use any of the previous input arguments.

Input Arguments
A

Query dataset array, containing the observations to be found in B.

B

Set dataset array. When an observation in A is found in B, for all variables or only those variables
specified in vars, the corresponding element of LiA is 1.

vars

String array or cell array of character vectors containing variable names, or a vector of integers
containing variable column numbers. vars indicates which variables to match observations on in A
and B.
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Output Arguments
LiA

Vector of logical values the same length as A. LiA has value 1 (true) when the corresponding
observation in A is present in B. Otherwise, LiA has value 0 (false).

If you specify vars, LiA has value 1 when the corresponding observation in A is present in B for the
variables in vars only.

LocB

Vector the same length as A containing the index to the first observation in B that corresponds to
each observation in A, for all variables or only those variables specified in vars.

Examples

Find Observations That Are Members of a Dataset Array

Load sample data.

load('hospital')
B = hospital(1:50,1:5);

This set dataset array, B, has 50 observations on 5 variables.

Specify a query dataset array.

rng('default')
rIx = randsample(100,10);
A = hospital(rIx,1:5)

A = 
               LastName             Sex       Age    Weight    Smoker
    YLN-495    {'COLEMAN'  }        Male      39     188       false 
    LQW-768    {'TAYLOR'   }        Female    31     132       false 
    DGC-290    {'BUTLER'   }        Male      38     184       true  
    DAU-529    {'REED'     }        Male      50     186       true  
    REV-997    {'ALEXANDER'}        Male      25     171       true  
    QEQ-082    {'COX'      }        Female    28     111       false 
    AGR-528    {'SIMMONS'  }        Male      45     181       false 
    PUE-347    {'YOUNG'    }        Female    25     114       false 
    HVR-372    {'RUSSELL'  }        Male      44     188       true  
    XUE-826    {'JACKSON'  }        Male      25     174       false 

Check which observations in A are present in B.

LiA = ismember(A,B)

LiA = 10x1 logical array

   0
   1
   0
   0
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   0
   0
   0
   1
   0
   1

Display the observations in A that are present in B.

A(LiA,:)

ans = 
               LastName           Sex       Age    Weight    Smoker
    LQW-768    {'TAYLOR' }        Female    31     132       false 
    PUE-347    {'YOUNG'  }        Female    25     114       false 
    XUE-826    {'JACKSON'}        Male      25     174       false 

Find the location of the observations in B.

[~,LocB] = ismember(A,B)

LocB = 10×1

     0
    10
     0
     0
     0
     0
     0
    28
     0
    13

Display the observations in B that match observations in A.

B(LocB(LocB>0),:)

ans = 
               LastName           Sex       Age    Weight    Smoker
    LQW-768    {'TAYLOR' }        Female    31     132       false 
    PUE-347    {'YOUNG'  }        Female    25     114       false 
    XUE-826    {'JACKSON'}        Male      25     174       false 

See Also
dataset | intersect | setdiff | setxor | sortrows | union | unique

Topics
“Dataset Arrays” on page 2-113
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ismissing
Class: dataset

(Not Recommended) Find dataset array elements with missing values

Note The dataset data type is not recommended. To work with heterogeneous data, use the
MATLAB® table data type instead. See MATLAB table documentation for more information.

Syntax
I = ismissing(ds)
I = ismissing(ds,Name,Value)

Description
I = ismissing(ds) returns a logical array that indicates which elements in the dataset array, ds,
contain a missing value. By default, ismissing recognizes NaN as a missing value in numeric
variables, '' as a missing value in character variables, and <undefined> as a missing value in
categorical arrays.

• ds2 = ds(~any(I,2),:) creates a new dataset array containing only the complete
observations in ds.

• ds2 = ds(:,~any(I,1)) creates a new dataset array containing only the variables from ds
with no missing values.

I = ismissing(ds,Name,Value) returns missing value indices with additional options specified
by one or more Name,Value pair arguments.

Input Arguments
ds

dataset array

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.

NumericTreatAsMissing

Vector of numeric values to treat as missing value indicators in floating point ds variables.
ismissing always treats a NaN value as a missing value.

Default:
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StringTreatAsMissing

Character vector, string array, or cell array of character vectors to treat as missing value indicators in
character ds variables. ismissing always treats '' as a missing value.

Output Arguments
I

Logical array indicating which elements in ds contain a missing value. I is the same size as ds, with
value 1 for elements that contain a missing value.

See Also
dataset | isempty | isnan | isundefined | replaceWithMissing

Topics
“Clean Messy and Missing Data” on page 2-98
“Dataset Arrays” on page 2-113
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IsolationForest
Isolation forest for anomaly detection

Description
Use an isolation forest on page 35-3733 (ensemble of isolation trees) model object
IsolationForest for outlier detection and novelty detection.

• Outlier detection (detecting anomalies in training data) — Detect anomalies in training data by
using the iforest function. The iforest function builds an IsolationForest object and
returns anomaly indicators and scores for the training data.

• Novelty detection (detecting anomalies in new data with uncontaminated training data) — Create
an IsolationForest object by passing uncontaminated training data (data with no outliers) to
iforest, and detect anomalies in new data by passing the object and the new data to the object
function isanomaly. The isanomaly function returns anomaly indicators and scores for the new
data.

Creation
Create an IsolationForest object by using the iforest function.

Properties
CategoricalPredictors — Categorical predictor indices
vector of positive integers | []

This property is read-only.

Categorical predictor indices, specified as a vector of positive integers. CategoricalPredictors
contains index values indicating that the corresponding predictors are categorical. The index values
are between 1 and p, where p is the number of predictors used to train the model. If none of the
predictors are categorical, then this property is empty ([]).

ContaminationFraction — Fraction of anomalies in training data
numeric scalar in the range [0,1]

This property is read-only.

Fraction of anomalies in the training data, specified as a numeric scalar in the range [0,1].

• If the ContaminationFraction value is 0, then iforest treats all training observations as
normal observations, and sets the score threshold (ScoreThreshold property value) to the
maximum anomaly score value of the training data.

• If the ContaminationFraction value is in the range (0,1], then iforest determines the
threshold value (ScoreThreshold property value) so that the function detects the specified
fraction of training observations as anomalies.

 IsolationForest

35-3727



NumLearners — Number of isolation trees
positive integer scalar

This property is read-only.

Number of isolation trees, specified as a positive integer scalar.

NumObservationsPerLearner — Number of observations for each isolation tree
positive integer scalar

This property is read-only.

Number of observations to draw from the training data without replacement for each isolation tree,
specified as a positive integer scalar.

PredictorNames — Predictor variable names
cell array of character vectors

This property is read-only.

Predictor variable names, specified as a cell array of character vectors. The order of the elements of
PredictorNames corresponds to the order in which the predictor names appear in the training data.

ScoreThreshold — Threshold for anomaly score
numeric scalar in the range [0,1]

This property is read-only.

Threshold for the anomaly score used to identify anomalies in the training data, specified as a
numeric scalar in the range [0,1].

The software identifies observations with anomaly scores above the threshold as anomalies.

• The iforest function determines the threshold value to detect the specified fraction
(ContaminationFraction property) of training observations as anomalies.

• The isanomaly object function uses the ScoreThreshold property value as the default value of
the ScoreThreshold name-value argument.

Object Functions
isanomaly Find anomalies in data using isolation forest

Examples

Detect Outliers

Detect outliers (anomalies in training data) by using the iforest function.

Load the sample data set NYCHousing2015.

load NYCHousing2015

The data set includes 10 variables with information on the sales of properties in New York City in
2015. Display a summary of the data set.

35 Functions

35-3728



summary(NYCHousing2015)

Variables:

    BOROUGH: 91446x1 double

        Values:

            Min          1    
            Median       3    
            Max          5    

    NEIGHBORHOOD: 91446x1 cell array of character vectors

    BUILDINGCLASSCATEGORY: 91446x1 cell array of character vectors

    RESIDENTIALUNITS: 91446x1 double

        Values:

            Min            0  
            Median         1  
            Max         8759  

    COMMERCIALUNITS: 91446x1 double

        Values:

            Min           0   
            Median        0   
            Max         612   

    LANDSQUAREFEET: 91446x1 double

        Values:

            Min                0
            Median          1700
            Max       2.9306e+07

    GROSSSQUAREFEET: 91446x1 double

        Values:

            Min                0
            Median          1056
            Max       8.9422e+06

    YEARBUILT: 91446x1 double

        Values:

            Min            0  
            Median      1939  
            Max         2016  

    SALEPRICE: 91446x1 double
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        Values:

            Min                0
            Median    3.3333e+05
            Max       4.1111e+09

    SALEDATE: 91446x1 datetime

        Values:

            Min       01-Jan-2015
            Median    09-Jul-2015
            Max       31-Dec-2015

The SALEDATE column is a datetime array, which is not supported by iforest. Create columns for
the month and day numbers of the datetime values, and delete the SALEDATE column.

[~,NYCHousing2015.MM,NYCHousing2015.DD] = ymd(NYCHousing2015.SALEDATE);
NYCHousing2015.SALEDATE = [];

The columns BOROUGH, NEIGHBORHOOD, and BUILDINGCLASSCATEGORY contain categorical
predictors. Display the number of categories for the categorical predictors.

length(unique(NYCHousing2015.BOROUGH))

ans = 5

length(unique(NYCHousing2015.NEIGHBORHOOD))

ans = 254

length(unique(NYCHousing2015.BUILDINGCLASSCATEGORY))

ans = 48

For a categorical variable with more than 64 categories, the iforest function uses an approximate
splitting method that can reduce the accuracy of the isolation forest model. Remove the
NEIGHBORHOOD column, which contains a categorical variable with 254 categories.

NYCHousing2015.NEIGHBORHOOD = [];

Train an isolation forest model for NYCHousing2015. Specify the fraction of anomalies in the training
observations as 0.1, and specify the first variable (BOROUGH) as a categorical predictor. The first
variable is a numeric array, so iforest assumes it is a continuous variable unless you specify the
variable as a categorical variable.

rng("default") % For reproducibility 
[Mdl,tf,scores] = iforest(NYCHousing2015,ContaminationFraction=0.1, ...
    CategoricalPredictors=1);

Mdl is an IsolationForest object. iforest also returns the anomaly indicators (tf) and anomaly
scores (scores) for the training data NYCHousing2015.

Plot a histogram of the score values. Create a vertical line at the score threshold corresponding to the
specified fraction.

histogram(scores)
xline(Mdl.ScoreThreshold,"r-",["Threshold" Mdl.ScoreThreshold])
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If you want to identify anomalies with a different contamination fraction (for example, 0.01), you can
train a new isolation forest model.

rng("default") % For reproducibility 
[newMdl,newtf,scores] = iforest(NYCHousing2015, ...
    ContaminationFraction=0.01,CategoricalPredictors=1);

If you want to identify anomalies with a different score threshold value (for example, 0.65), you can
pass the IsolationForest object, the training data, and a new threshold value to the isanomaly
function.

[newtf,scores] = isanomaly(Mdl,NYCHousing2015,ScoreThreshold=0.65);

Note that changing the contamination fraction or score threshold changes the anomaly indicators
only, and does not affect the anomaly scores. Therefore, if you do not want to compute the anomaly
scores again by using iforest or isanomaly, you can obtain a new anomaly indicator with the
existing score values.

Change the fraction of anomalies in the training data to 0.01.

newContaminationFraction = 0.01;

Find a new score threshold by using the quantile function.

newScoreThreshold = quantile(scores,1-newContaminationFraction)

newScoreThreshold = 0.7045
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Obtain a new anomaly indicator.

newtf = scores > newScoreThreshold;

Detect Novelties

Create an IsolationForest object for uncontaminated training observations by using the iforest
function. Then detect novelties (anomalies in new data) by passing the object and the new data to the
object function isanomaly.

Load the 1994 census data stored in census1994.mat. The data set consists of demographic data
from the US Census Bureau to predict whether an individual makes over $50,000 per year.

load census1994

census1994 contains the training data set adultdata and the test data set adulttest.

Train an isolation forest model for adultdata. Assume that adultdata does not contain outliers.

rng("default") % For reproducibility
[Mdl,tf,s] = iforest(adultdata);

Mdl is an IsolationForest object. iforest also returns the anomaly indicators tf and anomaly
scores s for the training data adultdata. If you do not specify the ContaminationFraction name-
value argument as a value greater than 0, then iforest treats all training observations as normal
observations, meaning all the values in tf are logical 0 (false). The function sets the score
threshold to the maximum score value. Display the threshold value.

Mdl.ScoreThreshold

ans = 0.8600

Find anomalies in adulttest by using the trained isolation forest model.

[tf_test,s_test] = isanomaly(Mdl,adulttest);

The isanomaly function returns the anomaly indicators tf_test and scores s_test for
adulttest. By default, isanomaly identifies observations with scores above the threshold
(Mdl.ScoreThreshold) as anomalies.

Create histograms for the anomaly scores s and s_test. Create a vertical line at the threshold of the
anomaly scores.

histogram(s,Normalization="probability")
hold on
histogram(s_test,Normalization="probability")
xline(Mdl.ScoreThreshold,"r-",join(["Threshold" Mdl.ScoreThreshold]))
legend("Training Data","Test Data",Location="northwest")
hold off
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Display the observation index of the anomalies in the test data.

find(tf_test)

ans = 15655

The anomaly score distribution of the test data is similar to that of the training data, so isanomaly
detects a small number of anomalies in the test data with the default threshold value. You can specify
a different threshold value by using the ScoreThreshold name-value argument. For an example, see
“Specify Anomaly Score Threshold” on page 35-3685.

More About
Isolation Forest

The isolation forest algorithm [1] detects anomalies by isolating anomalies from normal points using
an ensemble of isolation trees.

The iforest function builds an isolation forest (ensemble of isolation trees) for training observations
and detects outliers (anomalies in the training data). Each isolation tree is trained for a subset of
training observations, sampled without replacements. iforest grows an isolation tree by choosing a
split variable and split position at random until every observation in a subset lands in a separate leaf
node. Anomalies are few and different; therefore, an anomaly lands in a separate leaf node closer to
the root node and has a shorter path length (the distance from the root node to the leaf node) than
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normal points. The function identifies outliers using anomaly scores on page 35-3734 defined based
on the average path lengths over all isolation trees.

The isanomaly function uses a trained isolation forest to detect anomalies in data. For novelty
detection (detecting anomalies in new data with uncontaminated training data), you can train an
isolation forest with uncontaminated training data (data with no outliers) and use it to detect
anomalies in new data. For each observation of the new data, the function finds the average path
length to reach a leaf node from the root node in the trained isolation forest, and returns an anomaly
indicator and score.

For more details, see “Anomaly Detection with Isolation Forest” on page 17-81.

Anomaly Scores

The isolation forest algorithm computes the anomaly score s(x) of an observation x by normalizing the
path length h(x):

s(x) = 2−
E[h(x)]

c(n) ,

where E[h(x)] is the average path length over all isolation trees in the isolation forest, and c(n) is the
average path length of unsuccessful searches in a binary search tree of n observations.

• The score approaches 1 as E[h(x)] approaches 0. Therefore, a score value close to 1 indicates an
anomaly.

• The score approaches 0 as E[h(x)] approaches n – 1. Also, the score approaches 0.5 when E[h(x)]
approaches c(n). Therefore, a score value smaller than 0.5 and close to 0 indicates a normal point.

Tips
• You can use interpretability features, such as lime, shapley, partialDependence, and

plotPartialDependence, to interpret how predictors contribute to anomaly scores. Define a
custom function that returns anomaly scores, and pass the custom function to the interpretability
functions. For an example, see “Specify Model Using Function Handle” on page 35-5592.

Version History
Introduced in R2021b

References
[1] Liu, F. T., K. M. Ting, and Z. Zhou. "Isolation Forest," 2008 Eighth IEEE International Conference

on Data Mining. Pisa, Italy, 2008, pp. 413-422.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• The isanomaly function supports code generation.
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For more information, see “Introduction to Code Generation” on page 34-2.

See Also
iforest | lof | ocsvm | robustcov

Topics
“Anomaly Detection with Isolation Forest” on page 17-81
“Unsupervised Anomaly Detection” on page 17-91
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isvalid
Class: qrandstream

Test handle validity

Syntax
tf = isvalid(h)

Description
tf = isvalid(h) performs an element-wise check for validity on the handle elements of h. The
result is a logical array of the same dimensions as h, where each element is the element-wise validity
result.

A handle is invalid if it has been deleted or if it is an element of a handle array and has not yet been
initialized.

See Also
delete | qrandstream
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iwishrnd
Inverse Wishart random numbers

Syntax
W = iwishrnd(Tau,df)
W = iwishrnd(Tau,df,DI)
[W,DI] = iwishrnd(Tau,df)

Description
W = iwishrnd(Tau,df) generates a random matrix W from the inverse Wishart distribution with
parameters Tau and df. The inverse of W has the Wishart distribution with covariance matrix Sigma
= inv(Tau) and with df degrees of freedom. Tau is a symmetric and positive definite matrix.

W = iwishrnd(Tau,df,DI) expects DI to be the transpose of the inverse of the Cholesky factor of
Tau, so that DI'*DI = inv(Tau), where inv is the MATLAB inverse function. DI is lower-
triangular and the same size as Tau. If you call iwishrnd multiple times using the same value of
Tau, it is more efficient to supply DI instead of computing it each time.

[W,DI] = iwishrnd(Tau,df) returns DI so you can use it as an input in future calls to iwishrnd.

Note that different sources use different parametrizations for the inverse Wishart distribution. This
function defines the parameter tau so that the mean of the output matrix is Tau/(df-d-1) where d
is the dimension of Tau.

Version History
Introduced before R2006a

See Also
wishrnd

Topics
“Inverse Wishart Distribution” on page B-77
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jackknife
Jackknife sampling

Syntax
jackstat = jackknife(jackfun,X)
jackstat = jackknife(jackfun,X,Y,...)
jackstat = jackknife(jackfun,...,'Options',option)

Description
jackstat = jackknife(jackfun,X) draws jackknife data samples from the n-by-p data array X,
computes statistics on each sample using the function jackfun, and returns the results in the matrix
jackstat. jackknife regards each row of X as one data sample, so there are n data samples. Each
of the n rows of jackstat contains the results of applying jackfun to one jackknife sample.
jackfun is a function handle specified with @. Row i of jackstat contains the results for the
sample consisting of X with the ith row omitted:

s = x;
s(i,:) = [];
jackstat(i,:) = jackfun(s);

If jackfun returns a matrix or array, then this output is converted to a row vector for storage in
jackstat. If X is a row vector, it is converted to a column vector.

jackstat = jackknife(jackfun,X,Y,...) accepts additional arguments to be supplied as
inputs to jackfun. They may be scalars, column vectors, or matrices. jackknife creates each
jackknife sample by sampling with replacement from the rows of the non-scalar data arguments
(these must have the same number of rows). Scalar data are passed to jackfun unchanged. Non-
scalar arguments must have the same number of rows, and each jackknife sample omits the same row
from these arguments.

jackstat = jackknife(jackfun,...,'Options',option) provides an option to perform
jackknife iterations in parallel, if the Parallel Computing Toolbox is available. Set 'Options' as a
structure you create with statset. jackknife uses the following field in the structure:

'UseParallel' If true, use multiple processors to compute jackknife iterations. If the
Parallel Computing Toolbox is not installed, then computation occurs in serial
mode. Default is false, meaning serial computation.

Examples
Estimate the bias of the MLE variance estimator of random samples taken from the vector y using
jackknife. The bias has a known formula in this problem, so you can compare the jackknife value
to this formula.

sigma = 5;
y = normrnd(0,sigma,100,1);
m = jackknife(@var,y,1);
n = length(y);
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bias = -sigma^2/n % known bias formula
jbias = (n-1)*(mean(m)-var(y,1)) % jackknife bias estimate

bias =
   -0.2500

jbias =
   -0.3378

Version History
Introduced in R2006a

Extended Capabilities
Automatic Parallel Support
Accelerate code by automatically running computation in parallel using Parallel Computing Toolbox™.

To run in parallel, specify the 'Options' name-value argument in the call to this function and set the
'UseParallel' field of the options structure to true using statset.

For example: 'Options',statset('UseParallel',true)

For more information about parallel computing, see “Run MATLAB Functions with Automatic Parallel
Support” (Parallel Computing Toolbox).

See Also
bootstrp | random | randsample | histogram | ksdensity

Topics
“Jackknife Resampling” on page 3-12
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jbtest
Jarque-Bera test

Syntax
h = jbtest(x)
h = jbtest(x,alpha)
h = jbtest(x,alpha,mctol)
[h,p] = jbtest( ___ )
[h,p,jbstat,critval] = jbtest( ___ )

Description
h = jbtest(x) returns a test decision for the null hypothesis that the data in vector x comes from a
normal distribution with an unknown mean and variance, using the Jarque-Bera test on page 35-3743.
The alternative hypothesis is that it does not come from such a distribution. The result h is 1 if the
test rejects the null hypothesis at the 5% significance level, and 0 otherwise.

h = jbtest(x,alpha) returns a test decision for the null hypothesis at the significance level
specified by alpha.

h = jbtest(x,alpha,mctol) returns a test decision based on a p-value computed using a Monte
Carlo simulation with a maximum Monte Carlo standard error on page 35-3743 less than or equal to
mctol.

[h,p] = jbtest( ___ ) also returns the p-value p of the hypothesis test, using any of the input
arguments from the previous syntaxes.

[h,p,jbstat,critval] = jbtest( ___ ) also returns the test statistic jbstat and the critical
value critval for the test.

Examples

Test for a Normal Distribution

Load the data set.

load carbig

Test the null hypothesis that car mileage, in miles per gallon (MPG), follows a normal distribution
across different makes of cars.

h = jbtest(MPG)

h = 1

The returned value of h = 1 indicates that jbtest rejects the null hypothesis at the default 5%
significance level.
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Test the Hypothesis at a Different Significance Level

Load the data set.

load carbig

Test the null hypothesis that car mileage in miles per gallon (MPG) follows a normal distribution
across different makes of cars at the 1% significance level.

[h,p] = jbtest(MPG,0.01)

h = 1

p = 0.0022

The returned value of h = 1, and the returned p-value less than α = 0.01 indicate that jbtest
rejects the null hypothesis.

Test for a Normal Distribution Using Monte Carlo Simulation

Load the data set.

load carbig

Test the null hypothesis that car mileage, in miles per gallon (MPG), follows a normal distribution
across different makes of cars. Use a Monte Carlo simulation to obtain an exact p-value.

[h,p,jbstat,critval] = jbtest(MPG,[],0.0001)

h = 1

p = 0.0022

jbstat = 18.2275

critval = 5.8461

The returned value of h = 1 indicates that jbtest rejects the null hypothesis at the default 5%
significance level. Additionally, the test statistic, jbstat, is larger than the critical value, critval,
which indicates rejection of the null hypothesis.

Input Arguments
x — Sample data
vector

Sample data for the hypothesis test, specified as a vector. jbtest treats NaN values in x as missing
values and ignores them.
Data Types: single | double

alpha — Significance level
0.05 (default) | scalar value in the range (0,1)
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Significance level of the hypothesis test, specified as a scalar value in the range (0,1). If alpha is in
the range [0.001,0.50], and if the sample size is less than or equal to 2000, jbtest looks up the
critical value for the test in a table of precomputed values. To conduct the test at a significance level
outside of these specifications, use mctol.
Example: 0.01
Data Types: single | double

mctol — Maximum Monte Carlo standard error
nonnegative scalar value

Maximum Monte Carlo standard error on page 35-3743 for the p-value, p, specified as a nonnegative
scalar value. If you specify a value for mctol, jbtest computes a Monte Carlo approximation for p
directly, rather than interpolating into a table of precomputed values. jbtest chooses the number of
Monte Carlo replications large enough to make the Monte Carlo standard error for p less than
mctol.

If you specify a value for mctol, you must also specify a value for alpha. You can specify alpha as
[] to use the default value of 0.05.
Example: 0.0001
Data Types: single | double

Output Arguments
h — Hypothesis test result
1 | 0

Hypothesis test result, returned as 1 or 0.

• If h = 1, this indicates the rejection of the null hypothesis at the alpha significance level.
• If h = 0, this indicates a failure to reject the null hypothesis at the alpha significance level.

p — p-value
scalar value in the range (0,1)

p-value of the test, returned as a scalar value in the range (0,1). p is the probability of observing a
test statistic as extreme as, or more extreme than, the observed value under the null hypothesis.
Small values of p cast doubt on the validity of the null hypothesis.

jbtest warns when p is not found within the tabulated range of [0.001,0.50], and returns either the
smallest or largest tabulated value. In this case, you can use mctol to compute a more accurate p-
value.

jbstat — Test statistic
nonnegative scalar value

Test statistic for the Jarque-Bera test, returned as a nonnegative scalar value.

critval — Critical value
nonnegative scalar value

Critical value for the Jarque-Bera test at the alpha significance level, returned as a nonnegative
scalar value. If alpha is in the range [0.001,0.50], and if the sample size is less than or equal to 2000,
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jbtest looks up the critical value for the test in a table of precomputed values. If you use mctol,
jbtest determines the critical value of the test using a Monte Carlo simulation. The null hypothesis
is rejected when jbstat > critval.

More About
Jarque-Bera Test

The Jarque-Bera test is a two-sided goodness-of-fit test suitable when a fully specified null distribution
is unknown and its parameters must be estimated.

The test is specifically designed for alternatives in the Pearson system of distributions. The test
statistic is

JB = n
6 s2 + k− 3 2

4 ,

where n is the sample size, s is the sample skewness, and k is the sample kurtosis. For large sample
sizes, the test statistic has a chi-square distribution with two degrees of freedom.

Monte Carlo Standard Error

The Monte Carlo standard error is the error due to simulating the p-value.

The Monte Carlo standard error is calculated as

SE = p 1− p
mcreps ,

where p  is the estimated p-value of the hypothesis test, and mcreps is the number of Monte Carlo
replications performed. jbtest chooses the number of Monte Carlo replications, mcreps, large
enough to make the Monte Carlo standard error for p  less than the value specified for mctol.

Algorithms
Jarque-Bera tests often use the chi-square distribution to estimate critical values for large samples,
deferring to the Lilliefors test (see lillietest) for small samples. jbtest, by contrast, uses a table
of critical values computed using Monte Carlo simulation for sample sizes less than 2000 and
significance levels from 0.001 to 0.50. Critical values for a test are computed by interpolating into the
table, using the analytic chi-square approximation only when extrapolating for larger sample sizes.

Version History
Introduced before R2006a

References
[1] Jarque, C. M., and A. K. Bera. “A Test for Normality of Observations and Regression Residuals.”

International Statistical Review. Vol. 55, No. 2, 1987, pp. 163–172.

[2] Deb, P., and M. Sefton. “The Distribution of a Lagrange Multiplier Test of Normality.” Economics
Letters. Vol. 51, 1996, pp. 123–130. This paper proposed a Monte Carlo simulation for
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determining the distribution of the test statistic. The results of this function are based on an
independent Monte Carlo simulation, not the results in this paper.

See Also
adtest | kstest | lillietest
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johnsrnd
Johnson system random numbers

Syntax
r = johnsrnd(quantiles,m,n)
r = johnsrnd(quantiles)
[r,type] = johnsrnd(...)
[r,type,coefs] = johnsrnd(...)

Description
r = johnsrnd(quantiles,m,n) returns an m-by-n matrix of random numbers drawn from the
distribution in the Johnson system that satisfies the quantile specification given by quantiles.
quantiles is a four-element vector of quantiles for the desired distribution that correspond to the
standard normal quantiles [–1.5 –0.5 0.5 1.5]. In other words, you specify a distribution from which to
draw random values by designating quantiles that correspond to the cumulative probabilities [0.067
0.309 0.691 0.933]. quantiles may also be a 2-by-4 matrix whose first row contains four standard
normal quantiles, and whose second row contains the corresponding quantiles of the desired
distribution. The standard normal quantiles must be spaced evenly.

Note Because r is a random sample, its sample quantiles typically differ somewhat from the
specified distribution quantiles.

r = johnsrnd(quantiles) returns a scalar value.

r = johnsrnd(quantiles,m,n,...) or r = johnsrnd(quantiles,[m,n,...]) returns an m-
by-n-by-... array.

[r,type] = johnsrnd(...) returns the type of the specified distribution within the Johnson
system. type is 'SN', 'SL', 'SB', or 'SU'. Set m and n to zero to identify the distribution type
without generating any random values.

The four distribution types in the Johnson system correspond to the following transformations of a
normal random variate:

• 'SN' — Identity transformation (normal distribution on page B-125)
• 'SL' — Exponential transformation (lognormal distribution on page B-89)
• 'SB' — Logistic transformation (bounded)
• 'SU' — Hyperbolic sine transformation (unbounded)

[r,type,coefs] = johnsrnd(...) returns coefficients coefs of the transformation that defines
the distribution. coefs is [gamma, eta, epsilon, lambda]. If z is a standard normal random
variable and h is one of the transformations defined above, r = lambda*h((z-gamma)/eta)
+epsilon is a random variate from the distribution type corresponding to h.
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Examples

Generate Random Samples Using the Johnson System

This example shows several different approaches to using the Johnson system of flexible distribution
families to generate random numbers and fit a distribution to sample data.

Generate random values with longer tails than a standard normal.

rng default;  % For reproducibility
r = johnsrnd([-1.7 -.5 .5 1.7],1000,1);
figure;
qqplot(r);

Generate random values skewed to the right.

r = johnsrnd([-1.3 -.5 .5 1.7],1000,1);
figure;
qqplot(r);
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Generate random values that match some sample data well in the right-hand tail.

load carbig;
qnorm = [.5 1 1.5 2];
q = quantile(Acceleration, normcdf(qnorm));
r = johnsrnd([qnorm;q],1000,1);
[q;quantile(r,normcdf(qnorm))]

ans = 2×4

   16.7000   18.2086   19.5376   21.7263
   16.6986   18.2220   19.9078   22.0918

Determine the distribution type and the coefficients.

[r,type,coefs] = johnsrnd([qnorm;q],0)

r =

     []

type = 
'SU'

coefs = 1×4

    1.0920    0.5829   18.4382    1.4494

 johnsrnd

35-3747



Version History
Introduced in R2006a

See Also
random | pearsrnd

Topics
“Generating Data Using Flexible Families of Distributions” on page 7-20
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join
Class: dataset

(Not Recommended) Merge dataset array observations

Note The dataset data type is not recommended. To work with heterogeneous data, use the
MATLAB® table data type instead. See MATLAB table documentation for more information.

Syntax
C = join(A,B)
C = join(A,B,keys)
C = join(A,B,param1,val1,param2,val2,...)
[C,IB] = join(...)
C = join(A,B,'Type',TYPE,...)
C = join(A,B,'Type',TYPE,'MergeKeys',true,...)
[C,IA,IB] = join(A,B,'Type',TYPE,...)

Description
C = join(A,B) creates a dataset array C by merging observations from the two dataset arrays A
and B. join performs the merge by first finding key variables, that is, pairs of dataset variables, one
in A and one in B, that share the same name. Each observation in B must contain a unique
combination of values in the key variables, and must contain all combinations of values that are
present in the keys from A. join then uses these key variables to define a many-to-one
correspondence between observations in A and those in B. join uses this correspondence to
replicate the observations in B and combine them with the observations in A to create C.

C = join(A,B,keys) performs the merge using the variables specified by keys as the key
variables in both A and B. keys is a positive integer, a vector of positive integers, a character vector,
a string array, a cell array of character vectors, or a logical vector.

C contains one observation for each observation in A. Variables in C include all of the variables from
A, as well as one variable corresponding to each variable in B (except for the keys from B). If A and B
contain variables with identical names, join adds the suffix '_left' and '_right' to the
corresponding variables in C.

C = join(A,B,param1,val1,param2,val2,...) specifies optional parameter name/value pairs
to control how the dataset variables in A and B are used in the merge. Parameters are:

• 'Keys' — Specifies the variables to use as keys in both A and B.
• 'LeftKeys' — Specifies the variables to use as keys in A.
• 'RightKeys' — Specifies the variables to use as keys in B.

You may provide either the 'Keys' parameter, or both the 'LeftKeys' and 'RightKeys'
parameters. The value for these parameters is a positive integer, a vector of positive integers, a
character vector, a string array, a cell array of character vectors, or a logical vector. 'LeftKeys' or
'RightKeys' must both specify the same number of key variables, and join pairs the left and right
keys in the order specified.
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• 'LeftVars' — Specifies which variables from A to include in C. By default, join includes all
variables from A.

• 'RightVars' — Specifies which variables from B to include in C. By default, join includes all
variables from B except the key variables.

You can use 'LeftVars' or 'RightVars' to include or exclude key variables as well as data
variables. The value for these parameters is a positive integer, a vector of positive integers, a
character vector, a string array, a cell array of character vectors, or a logical vector.

[C,IB] = join(...) returns an index vector IB, where join constructs C by horizontally
concatenating A(:,LeftVars) and B(IB,RightVars). join can also perform more complicated
inner and outer join operations that allow a many-to-many correspondence between A and B, and
allow unmatched observations in either A or B.

C = join(A,B,'Type',TYPE,...) performs the join operation specified by TYPE. TYPE is one of
'inner', 'leftouter', 'rightouter', 'fullouter', or 'outer' (which is a synonym for
'fullouter'). For an inner join, C only contains observations corresponding to a combination of key
values that occurred in both A and B. For a left (or right) outer join, C also contains observations
corresponding to keys in A (or B) that did not match any in B (or A). Variables in C taken from A (or B)
contain null values in those observations. A full outer join is equivalent to a left and right outer join. C
contains variables corresponding to the key variables from both A and B, and join sorts the
observations in C by the key values.

For inner and outer joins, C contains variables corresponding to the key variables from both A and B
by default, as well as all the remaining variables. join sorts the observations in the result C by the
key values.

C = join(A,B,'Type',TYPE,'MergeKeys',true,...) includes a single variable in C for each
key variable pair from A and B, rather than including two separate variables. For outer joins, join
creates the single variable by merging the key values from A and B, taking values from A where a
corresponding observation exists in A, and from B otherwise. Setting the 'MergeKeys' parameter to
true overrides inclusion or exclusion of any key variables specified via the 'LeftVars' or
'RightVars' parameter. Setting the 'MergeKeys' parameter to false is equivalent to not passing
in the 'MergeKeys' parameter.

[C,IA,IB] = join(A,B,'Type',TYPE,...) returns index vectors IA and IB indicating the
correspondence between observations in C and those in A and B. For an inner join, join constructs C
by horizontally concatenating A(IA,LeftVars) and B(IB,RightVars). For an outer join, IA or IB
may also contain zeros, indicating the observations in C that do not correspond to observations in A or
B, respectively.

Examples
Create a dataset array from Fisher's iris data:

load fisheriris
NumObs = size(meas,1);
NameObs = strcat({'Obs'},num2str((1:NumObs)','%-d'));
iris = dataset({nominal(species),'species'},...
               {meas,'SL','SW','PL','PW'},...
               'ObsNames',NameObs);

Create a separate dataset array with the diploid chromosome counts for each species of iris:
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snames = nominal({'setosa';'versicolor';'virginica'});
CC = dataset({snames,'species'},{[38;108;70],'cc'})
CC = 
    species       cc 
    setosa         38
    versicolor    108
    virginica      70

Broadcast the data in CC to the rows of iris using the key variable species in each dataset:

iris2 = join(iris,CC);
iris2([1 2 51 52 101 102],:)
ans = 
           species       SL     SW     PL     PW     cc 
 Obs1      setosa        5.1    3.5    1.4    0.2     38
 Obs2      setosa        4.9      3    1.4    0.2     38
 Obs51     versicolor      7    3.2    4.7    1.4    108
 Obs52     versicolor    6.4    3.2    4.5    1.5    108
 Obs101    virginica     6.3    3.3      6    2.5     70
 Obs102    virginica     5.8    2.7    5.1    1.9     70

Create two datasets and join them using the 'MergeKeys' flag:

% Create two data sets that both contain the key variable 
% 'Key1'. The two arrays contain observations with common
% values of Key1, but each array also contains observations
% with values of Key1 not present in the other.
a = dataset({'a' 'b' 'c' 'e' 'h'}',[1 2 3 11 17]',...
   'VarNames',{'Key1' 'Var1'})
b = dataset({'a' 'b' 'd' 'e'}',[4 5 6 7]',...
   'VarNames',{'Key1' 'Var2'})

% Combine a and b with an outer join, which matches up
% observations with common key values, but also retains
% observations whose key values don't have a match. 
% Keep the key values as separate variables in the result.
couter = join(a,b,'key','Key1','Type','outer')

% Join a and b, merging the key values as a single variable
% in the result.
coutermerge = join(a,b,'key','Key1','Type','outer',...
   'MergeKeys',true)

% Join a and b, retaining only observations whose key
% values match.
cinner = join(a,b,'key','Key1','Type','inner',...
   'MergeKeys',true) 

a = 

    Key1       Var1
    'a'         1  
    'b'         2  
    'c'         3  
    'e'        11  
    'h'        17  
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b = 

    Key1       Var2
    'a'        4   
    'b'        5   
    'd'        6   
    'e'        7   

couter = 

    Key1_left    Var1    Key1_right    Var2
    'a'            1     'a'             4 
    'b'            2     'b'             5 
    'c'            3     ''            NaN 
    ''           NaN     'd'             6 
    'e'           11     'e'             7 
    'h'           17     ''            NaN 

coutermerge = 

    Key1       Var1    Var2
    'a'          1       4 
    'b'          2       5 
    'c'          3     NaN 
    'd'        NaN       6 
    'e'         11       7 
    'h'         17     NaN 

cinner = 

    Key1       Var1    Var2
    'a'         1      4   
    'b'         2      5   
    'e'        11      7  

See Also
sortrows
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KDTreeSearcher
Create Kd-tree nearest neighbor searcher

Description
KDTreeSearcher model objects store the results of a nearest neighbor search that uses the Kd-tree
algorithm. Results include the training data, distance metric and its parameters, and maximum
number of data points in each leaf node (that is, the bucket size). The Kd-tree algorithm partitions an
n-by-K data set by recursively splitting n points in K-dimensional space into a binary tree.

Once you create a KDTreeSearcher model object, you can search the stored tree to find all
neighboring points to the query data by performing a nearest neighbor search using knnsearch or a
radius search using rangesearch. The Kd-tree algorithm is more efficient than the exhaustive
search algorithm when K is small (that is, K ≤ 10), the training and query sets are not sparse, and the
training and query sets have many observations.

Creation
Use either the createns function or the KDTreeSearcher function (described here) to create a
KDTreeSearcher model object. Both functions use the same syntax except that the createns
function has the 'NSMethod' name-value pair argument, which you use to choose the nearest
neighbor search method. The createns function also creates an ExhaustiveSearcher object.
Specify 'NSMethod','kdtree' to create a KDTreeSearcher object. The default is 'kdtree' if K
≤ 10, the training data is not sparse, and the distance metric is Euclidean, city block, Chebychev, or
Minkowski.

Syntax
Mdl = KDTreeSearcher(X)
Mdl = KDTreeSearcher(X,Name,Value)

Description

Mdl = KDTreeSearcher(X) grows a default Kd-tree (Mdl) using the n-by-K numeric matrix of
training data (X).

Mdl = KDTreeSearcher(X,Name,Value) specifies additional options using one or more name-
value pair arguments. You can specify the maximum number of data points in each leaf node (that is,
the bucket size) and the distance metric, and set the distance metric parameter (DistParameter)
property. For example, KDTreeSearcher(X,'Distance','minkowski','BucketSize',10)
specifies to use the Minkowski distance when searching for nearest neighbors and to use 10 for the
bucket size. To specify DistParameter, use the P name-value pair argument.

Input Arguments

X — Training data
numeric matrix
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Training data that grows the Kd-tree, specified as a numeric matrix. X has n rows, each
corresponding to an observation (that is, an instance or example), and K columns, each
corresponding to a predictor (that is, a feature).
Data Types: single | double

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: 'Distance','minkowski','P',3,'BucketSize',10 specifies to use the following
when searching for nearest neighbors: the Minkowski distance, 3 for the Minkowski distance metric
exponent, and 10 for the bucket size.

Distance — Distance metric
'euclidean' (default) | 'chebychev' | 'cityblock' | 'minkowski'

Distance metric used when you call knnsearch or rangesearch to find nearest neighbors for future
query points, specified as the comma-separated pair consisting of 'Distance' and one of these
values.

Value Description
'chebychev' Chebychev distance (maximum coordinate difference).
'cityblock' City block distance.
'euclidean' Euclidean distance.
'minkowski' Minkowski distance. The default exponent is 2. To specify a different

exponent, use the 'P' name-value pair argument.

For more details, see “Distance Metrics” on page 19-14.

The software does not use the distance metric for creating a KDTreeSearcher model object, so you
can alter the distance metric by using dot notation after creating the object.
Example: 'Distance','minkowski'

P — Exponent for Minkowski distance metric
2 (default) | positive scalar

Exponent for the Minkowski distance metric, specified as the comma-separated pair consisting of 'P'
and a positive scalar. This argument is valid only if 'Distance' is 'minkowski'.
Example: 'P',3
Data Types: single | double

BucketSize — Maximum number of data points in each leaf node
50 (default) | positive integer

Maximum number of data points in each leaf node of the Kd-tree, specified as the comma-separated
pair consisting of 'BucketSize' and a positive integer.
Example: 'BucketSize',10
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Data Types: single | double

Properties
X — Training data
numeric matrix

This property is read-only.

Training data that grows the Kd-tree, specified as a numeric matrix. X has n rows, each
corresponding to an observation (that is, an instance or example), and K columns, each
corresponding to a predictor (that is, a feature).

The input argument X of createns or KDTreeSearcher sets this property.
Data Types: single | double

Distance — Distance metric
'euclidean' | 'chebychev' | 'cityblock' | 'minkowski'

Distance metric used when you call knnsearch or rangesearch to find nearest neighbors for future
query points, specified as 'chebychev', 'cityblock', 'euclidean', or 'minkowski'.

The 'Distance' name-value pair argument of createns or KDTreeSearcher sets this property.

The software does not use the distance metric for creating a KDTreeSearcher model object, so you
can alter it by using dot notation.

DistParameter — Distance metric parameter values
[] | positive scalar

Distance metric parameter values, specified as empty ([]) or a positive scalar.

If Distance is 'minkowski', then DistParameter is the exponent in the Minkowski distance
formula. Otherwise, DistParameter is [], indicating that the specified distance metric formula has
no parameters.

The 'P' name-value pair argument of createns or KDTreeSearcher sets this property.

You can alter DistParameter by using dot notation, for example, Mdl.DistParameter = PNew,
where PNew is a positive scalar.
Data Types: single | double

BucketSize — Maximum number of data points in each leaf node
positive integer

This property is read-only.

Maximum number of data points in each leaf node of the Kd-tree, specified as a positive integer.

The 'BucketSize' name-value pair argument of createns or KDTreeSearcher sets this property.
Data Types: single | double
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Object Functions
knnsearch Find k-nearest neighbors using searcher object
rangesearch Find all neighbors within specified distance using searcher object

Examples

Grow Default Kd-Tree

Grow a four-dimensional Kd-tree that uses the Euclidean distance.

Load Fisher's iris data set.

load fisheriris
X = meas;
[n,k] = size(X)

n = 150

k = 4

X has 150 observations and 4 predictors.

Grow a four-dimensional Kd-tree using the entire data set as training data.

Mdl1 = KDTreeSearcher(X)

Mdl1 = 
  KDTreeSearcher with properties:

       BucketSize: 50
         Distance: 'euclidean'
    DistParameter: []
                X: [150x4 double]

Mdl1 is a KDTreeSearcher model object, and its properties appear in the Command Window. The
object contains information about the grown four-dimensional Kd-tree, such as the distance metric.
You can alter property values using dot notation.

Alternatively, you can grow a Kd-tree by using createns.

Mdl2 = createns(X)

Mdl2 = 
  KDTreeSearcher with properties:

       BucketSize: 50
         Distance: 'euclidean'
    DistParameter: []
                X: [150x4 double]

Mdl2 is also a KDTreeSearcher model object, and it is equivalent to Mdl1. Because X has four
columns and the default distance metric is Euclidean, createns creates a KDTreeSearcher model
by default.
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To find the nearest neighbors in X to a batch of query data, pass the KDTreeSearcher model object
and the query data to knnsearch or rangesearch.

Specify the Minkowski Distance for Nearest Neighbor Search

Load Fisher's iris data. Focus on the petal dimensions.

load fisheriris
X = meas(:,[3 4]); % Predictors

Grow a two-dimensional Kd-tree using createns and the training data. Specify the Minkowski
distance metric.

Mdl = createns(X,'Distance','Minkowski')

Mdl = 
  KDTreeSearcher with properties:

       BucketSize: 50
         Distance: 'minkowski'
    DistParameter: 2
                X: [150x2 double]

Because X has two columns and the distance metric is Minkowski, createns creates a
KDTreeSearcher model object by default.

Access properties of Mdl by using dot notation. For example, use Mdl.DistParameter to access the
Minkowski distance exponent.

Mdl.DistParameter

ans = 2

You can pass query data and Mdl to:

• knnsearch to find indices and distances of nearest neighbors
• rangesearch to find indices of all nearest neighbors within a distance that you specify

Alter Properties of KDTreeSearcher Model

Create a KDTreeSearcher model object and alter the Distance property by using dot notation.

Load Fisher's iris data set.

load fisheriris
X = meas;

Grow a default four-dimensional Kd-tree using the entire data set as training data.

Mdl = KDTreeSearcher(X)
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Mdl = 
  KDTreeSearcher with properties:

       BucketSize: 50
         Distance: 'euclidean'
    DistParameter: []
                X: [150x4 double]

Specify that the neighbor searcher use the Minkowski metric to compute the distances between the
training and query data.

Mdl.Distance = 'minkowski'

Mdl = 
  KDTreeSearcher with properties:

       BucketSize: 50
         Distance: 'minkowski'
    DistParameter: 2
                X: [150x4 double]

You can pass Mdl and the query data to either knnsearch or rangesearch to find the nearest
neighbors to the points in the query data based on the Minkowski distance.

Search for Nearest Neighbors of Query Data Using Minkowski Distance

Grow a Kd-tree nearest neighbor searcher object by using the createns function. Pass the object
and query data to the knnsearch function to find k-nearest neighbors.

Load Fisher's iris data set.

load fisheriris

Remove five irises randomly from the predictor data to use as a query set.

rng(1)                      % For reproducibility
n = size(meas,1);           % Sample size
qIdx = randsample(n,5);     % Indices of query data
tIdx = ~ismember(1:n,qIdx); % Indices of training data
Q = meas(qIdx,:);
X = meas(tIdx,:);

Grow a four-dimensional Kd-tree using the training data. Specify the Minkowski distance for finding
nearest neighbors.

Mdl = createns(X,'Distance','minkowski')

Mdl = 
  KDTreeSearcher with properties:

       BucketSize: 50
         Distance: 'minkowski'
    DistParameter: 2

35 Functions

35-3758



                X: [145x4 double]

Because X has four columns and the distance metric is Minkowski, createns creates a
KDTreeSearcher model object by default. The Minkowski distance exponent is 2 by default.

Find the indices of the training data (Mdl.X) that are the two nearest neighbors of each point in the
query data (Q).

IdxNN = knnsearch(Mdl,Q,'K',2)

IdxNN = 5×2

    17     4
     6     2
     1    12
    89    66
   124   100

Each row of IdxNN corresponds to a query data observation, and the column order corresponds to
the order of the nearest neighbors, with respect to ascending distance. For example, based on the
Minkowski distance, the second nearest neighbor of Q(3,:) is X(12,:).

Version History
Introduced in R2010a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations: The knnsearch and rangesearch functions support code generation.

For more information, see “Introduction to Code Generation” on page 34-2 and “Code Generation for
Nearest Neighbor Searcher” on page 34-20.

See Also
ExhaustiveSearcher | createns

Topics
“k-Nearest Neighbor Search and Radius Search” on page 19-16
“Distance Metrics” on page 19-14
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kfoldEdge
Package: classreg.learning.partition

Classification edge for cross-validated ECOC model

Syntax
edge = kfoldEdge(CVMdl)
edge = kfoldEdge(CVMdl,Name,Value)

Description
edge = kfoldEdge(CVMdl) returns the classification edge on page 35-3765 obtained by the cross-
validated ECOC model (ClassificationPartitionedECOC) CVMdl. For every fold, kfoldEdge
computes the classification edge for validation-fold observations using an ECOC model trained on
training-fold observations. CVMdl.X contains both sets of observations.

edge = kfoldEdge(CVMdl,Name,Value) returns the classification edge with additional options
specified by one or more name-value pair arguments. For example, specify the number of folds,
decoding scheme, or verbosity level.

Examples

Estimate k-Fold Cross-Validation Edge

Load Fisher's iris data set. Specify the predictor data X, the response data Y, and the order of the
classes in Y.

load fisheriris
X = meas;
Y = categorical(species);
classOrder = unique(Y);
rng(1); % For reproducibility

Train and cross-validate an ECOC model using support vector machine (SVM) binary classifiers.
Standardize the predictor data using an SVM template, and specify the class order.

t = templateSVM('Standardize',1);
CVMdl = fitcecoc(X,Y,'CrossVal','on','Learners',t,'ClassNames',classOrder);

CVMdl is a ClassificationPartitionedECOC model. By default, the software implements 10-fold
cross-validation. You can specify a different number of folds using the 'KFold' name-value pair
argument.

Estimate the average of the edges.

edge = kfoldEdge(CVMdl)

edge = 0.7238
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Alternatively, you can obtain the per-fold edges by specifying the name-value pair
'Mode','individual' in kfoldEdge.

Display Individual Edges for Each Cross-Validation Fold

The classification edge is a relative measure of classifier quality. To determine which folds perform
poorly, display the edges for each fold.

Load Fisher's iris data set. Specify the predictor data X, the response data Y, and the order of the
classes in Y.

load fisheriris
X = meas;
Y = categorical(species);
classOrder = unique(Y);
rng(1); % For reproducibility

Train an ECOC model using SVM binary classifiers. Use 8-fold cross-validation, standardize the
predictors using an SVM template, and specify the class order.

t = templateSVM('Standardize',1);
CVMdl = fitcecoc(X,Y,'KFold',8,'Learners',t,'ClassNames',classOrder);

Estimate the classification edge for each fold.

edges = kfoldEdge(CVMdl,'Mode','individual')

edges = 8×1

    0.7188
    0.7308
    0.6389
    0.7952
    0.7596
    0.6863
    0.7290
    0.7030

The edges have similar magnitudes across folds. Folds that perform poorly have small edges relative
to the other folds.

To return the average classification edge across the folds that perform well, specify the 'Folds'
name-value pair argument.

Select ECOC Model Features by Comparing Cross-Validation Edges

The classifier edge measures the average of the classifier margins. One way to perform feature
selection is to compare cross-validation edges from multiple models. Based solely on this criterion,
the classifier with the greatest edge is the best classifier.
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Load Fisher's iris data set. Specify the predictor data X, the response data Y, and the order of the
classes in Y.

load fisheriris
X = meas;
Y = categorical(species);
classOrder = unique(Y); % Class order
rng(1); % For reproducibility

Define the following two data sets.

• fullX contains all the predictors.
• partX contains the petal dimensions.

fullX = X;
partX = X(:,3:4);

For each predictor set, train and cross-validate an ECOC model using SVM binary classifiers.
Standardize the predictors using an SVM template, and specify the class order.

t = templateSVM('Standardize',1);
CVMdl = fitcecoc(fullX,Y,'CrossVal','on','Learners',t,...
    'ClassNames',classOrder);
PCVMdl = fitcecoc(partX,Y,'CrossVal','on','Learners',t,...
    'ClassNames',classOrder);

CVMdl and PCVMdl are ClassificationPartitionedECOC models. By default, the software
implements 10-fold cross-validation.

Estimate the edge for each classifier.

fullEdge = kfoldEdge(CVMdl)

fullEdge = 0.7238

partEdge = kfoldEdge(PCVMdl)

partEdge = 0.7426

The two models have comparable edges.

Input Arguments
CVMdl — Cross-validated ECOC model
ClassificationPartitionedECOC model

Cross-validated ECOC model, specified as a ClassificationPartitionedECOC model. You can
create a ClassificationPartitionedECOC model in two ways:

• Pass a trained ECOC model (ClassificationECOC) to crossval.
• Train an ECOC model using fitcecoc and specify any one of these cross-validation name-value

pair arguments: 'CrossVal', 'CVPartition', 'Holdout', 'KFold', or 'Leaveout'.
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Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: kfoldEdge(CVMdl,'BinaryLoss','hinge') specifies 'hinge' as the binary learner
loss function.

BinaryLoss — Binary learner loss function
'hamming' | 'linear' | 'logit' | 'exponential' | 'binodeviance' | 'hinge' | 'quadratic'
| function handle

Binary learner loss function, specified as the comma-separated pair consisting of 'BinaryLoss' and
a built-in loss function name or function handle.

• This table describes the built-in functions, where yj is the class label for a particular binary learner
(in the set {–1,1,0}), sj is the score for observation j, and g(yj,sj) is the binary loss formula.

Value Description Score Domain g(yj,sj)
'binodeviance' Binomial deviance (–∞,∞) log[1 + exp(–2yjsj)]/

[2log(2)]
'exponential' Exponential (–∞,∞) exp(–yjsj)/2
'hamming' Hamming [0,1] or (–∞,∞) [1 – sign(yjsj)]/2
'hinge' Hinge (–∞,∞) max(0,1 – yjsj)/2
'linear' Linear (–∞,∞) (1 – yjsj)/2
'logit' Logistic (–∞,∞) log[1 + exp(–yjsj)]/

[2log(2)]
'quadratic' Quadratic [0,1] [1 – yj(2sj – 1)]2/2

The software normalizes binary losses so that the loss is 0.5 when yj = 0. Also, the software
calculates the mean binary loss for each class.

• For a custom binary loss function, for example customFunction, specify its function handle
'BinaryLoss',@customFunction.

customFunction has this form:

bLoss = customFunction(M,s)

• M is the K-by-B coding matrix stored in Mdl.CodingMatrix.
• s is the 1-by-B row vector of classification scores.
• bLoss is the classification loss. This scalar aggregates the binary losses for every learner in a

particular class. For example, you can use the mean binary loss to aggregate the loss over the
learners for each class.

• K is the number of classes.
• B is the number of binary learners.

For an example of passing a custom binary loss function, see “Predict Test-Sample Labels of ECOC
Model Using Custom Binary Loss Function” on page 35-5751.
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The default BinaryLoss value depends on the score ranges returned by the binary learners. This
table identifies what some default BinaryLoss values are when you use the default score transform
(ScoreTransform property of the model is 'none').

Assumption Default Value
All binary learners are any of the following:

• Classification decision trees
• Discriminant analysis models
• k-nearest neighbor models
• Naive Bayes models

'quadratic'

All binary learners are SVMs. 'hinge'
All binary learners are ensembles trained by AdaboostM1 or
GentleBoost.

'exponential'

All binary learners are ensembles trained by LogitBoost. 'binodeviance'
You specify to predict class posterior probabilities by setting
'FitPosterior',true in fitcecoc.

'quadratic'

Binary learners are heterogeneous and use different loss functions. 'hamming'

To check the default value, use dot notation to display the BinaryLoss property of the trained model
at the command line.
Example: 'BinaryLoss','binodeviance'
Data Types: char | string | function_handle

Decoding — Decoding scheme
'lossweighted' (default) | 'lossbased'

Decoding scheme that aggregates the binary losses, specified as the comma-separated pair consisting
of 'Decoding' and 'lossweighted' or 'lossbased'. For more information, see “Binary Loss” on
page 35-3766.
Example: 'Decoding','lossbased'

Folds — Fold indices for prediction
1:CVMdl.KFold (default) | numeric vector of positive integers

Fold indices for prediction, specified as the comma-separated pair consisting of 'Folds' and a
numeric vector of positive integers. The elements of Folds must be within the range from 1 to
CVMdl.KFold.

The software uses only the folds specified in Folds for prediction.
Example: 'Folds',[1 4 10]
Data Types: single | double

Mode — Aggregation level for output
'average' (default) | 'individual'

Aggregation level for the output, specified as the comma-separated pair consisting of 'Mode' and
'average' or 'individual'.
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This table describes the values.

Value Description
'average' The output is a scalar average over all folds.
'individual' The output is a vector of length k containing one

value per fold, where k is the number of folds.

Example: 'Mode','individual'

Options — Estimation options
[] (default) | structure array returned by statset

Estimation options, specified as the comma-separated pair consisting of 'Options' and a structure
array returned by statset.

To invoke parallel computing:

• You need a Parallel Computing Toolbox license.
• Specify 'Options',statset('UseParallel',true).

Verbose — Verbosity level
0 (default) | 1

Verbosity level, specified as the comma-separated pair consisting of 'Verbose' and 0 or 1. Verbose
controls the number of diagnostic messages that the software displays in the Command Window.

If Verbose is 0, then the software does not display diagnostic messages. Otherwise, the software
displays diagnostic messages.
Example: 'Verbose',1
Data Types: single | double

Output Arguments
edge — Classification edge
numeric scalar | numeric column vector

Classification edge on page 35-3765, returned as a numeric scalar or numeric column vector.

If Mode is 'average', then edge is the average classification edge over all folds. Otherwise, edge is
a k-by-1 numeric column vector containing the classification edge for each fold, where k is the
number of folds.

More About
Classification Edge

The classification edge is the weighted mean of the classification margins.

One way to choose among multiple classifiers, for example to perform feature selection, is to choose
the classifier that yields the greatest edge.
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Classification Margin

The classification margin is, for each observation, the difference between the negative loss for the
true class and the maximal negative loss among the false classes. If the margins are on the same
scale, then they serve as a classification confidence measure. Among multiple classifiers, those that
yield greater margins are better.

Binary Loss

The binary loss is a function of the class and classification score that determines how well a binary
learner classifies an observation into the class.

Suppose the following:

• mkj is element (k,j) of the coding design matrix M—that is, the code corresponding to class k of
binary learner j. M is a K-by-B matrix, where K is the number of classes, and B is the number of
binary learners.

• sj is the score of binary learner j for an observation.
• g is the binary loss function.
• k  is the predicted class for the observation.

The decoding scheme of an ECOC model specifies how the software aggregates the binary losses and
determines the predicted class for each observation. The software supports two decoding schemes:

• Loss-based decoding [2] (Decoding is 'lossbased') — The predicted class of an observation
corresponds to the class that produces the minimum average of the binary losses over all binary
learners.

k = argmin
k

1
B ∑j = 1

B
mk j g(mk j, s j) .

• Loss-weighted decoding [3] (Decoding is 'lossweighted') — The predicted class of an
observation corresponds to the class that produces the minimum average of the binary losses over
the binary learners for the corresponding class.

k = argmin
k

∑
j = 1

B
mk j g(mk j, s j)

∑ j = 1

B

mk j

.

The denominator corresponds to the number of binary learners for class k. [1] suggests that loss-
weighted decoding improves classification accuracy by keeping loss values for all classes in the
same dynamic range.

The predict, resubPredict, and kfoldPredict functions return the negated value of the
objective function of argmin as the second output argument (NegLoss) for each observation and
class.

This table summarizes the supported binary loss functions, where yj is a class label for a particular
binary learner (in the set {–1,1,0}), sj is the score for observation j, and g(yj,sj) is the binary loss
function.

35 Functions

35-3766



Value Description Score Domain g(yj,sj)
"binodeviance" Binomial deviance (–∞,∞) log[1 + exp(–2yjsj)]/

[2log(2)]
"exponential" Exponential (–∞,∞) exp(–yjsj)/2
"hamming" Hamming [0,1] or (–∞,∞) [1 – sign(yjsj)]/2
"hinge" Hinge (–∞,∞) max(0,1 – yjsj)/2
"linear" Linear (–∞,∞) (1 – yjsj)/2
"logit" Logistic (–∞,∞) log[1 + exp(–yjsj)]/

[2log(2)]
"quadratic" Quadratic [0,1] [1 – yj(2sj – 1)]2/2

The software normalizes binary losses so that the loss is 0.5 when yj = 0, and aggregates using the
average of the binary learners.

Do not confuse the binary loss with the overall classification loss (specified by the LossFun name-
value argument of the kfoldLoss and kfoldPredict object functions), which measures how well
an ECOC classifier performs as a whole.

Version History
Introduced in R2014b

References
[1] Allwein, E., R. Schapire, and Y. Singer. “Reducing multiclass to binary: A unifying approach for

margin classifiers.” Journal of Machine Learning Research. Vol. 1, 2000, pp. 113–141.

[2] Escalera, S., O. Pujol, and P. Radeva. “Separability of ternary codes for sparse designs of error-
correcting output codes.” Pattern Recog. Lett., Vol. 30, Issue 3, 2009, pp. 285–297.

[3] Escalera, S., O. Pujol, and P. Radeva. “On the decoding process in ternary error-correcting output
codes.” IEEE Transactions on Pattern Analysis and Machine Intelligence. Vol. 32, Issue 7,
2010, pp. 120–134.

Extended Capabilities
Automatic Parallel Support
Accelerate code by automatically running computation in parallel using Parallel Computing Toolbox™.

To run in parallel, specify the 'Options' name-value argument in the call to this function and set the
'UseParallel' field of the options structure to true using statset.

For example: 'Options',statset('UseParallel',true)

For more information about parallel computing, see “Run MATLAB Functions with Automatic Parallel
Support” (Parallel Computing Toolbox).

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.
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This function fully supports GPU arrays. For more information, see “Run MATLAB Functions on a
GPU” (Parallel Computing Toolbox).

See Also
ClassificationPartitionedECOC | ClassificationECOC | kfoldMargin | edge |
kfoldPredict | fitcecoc | statset

Topics
“Quick Start Parallel Computing for Statistics and Machine Learning Toolbox” on page 33-2
“Reproducibility in Parallel Statistical Computations” on page 33-16
“Concepts of Parallel Computing in Statistics and Machine Learning Toolbox” on page 33-6
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kfoldEdge
Package: classreg.learning.partition

Classification edge for cross-validated kernel classification model

Syntax
edge = kfoldEdge(CVMdl)
edge = kfoldEdge(CVMdl,Name,Value)

Description
edge = kfoldEdge(CVMdl) returns the classification edge on page 35-3772 obtained by the cross-
validated, binary kernel model (ClassificationPartitionedKernel) CVMdl. For every fold,
kfoldEdge computes the classification edge for validation-fold observations using a model trained on
training-fold observations.

edge = kfoldEdge(CVMdl,Name,Value) returns the classification edge with additional options
specified by one or more name-value pair arguments. For example, specify the number of folds or the
aggregation level.

Examples

Estimate k-Fold Cross-Validation Edge

Load the ionosphere data set. This data set has 34 predictors and 351 binary responses for radar
returns, which are labeled either bad ('b') or good ('g').

load ionosphere

Cross-validate a binary kernel classification model using the data.

CVMdl = fitckernel(X,Y,'Crossval','on')

CVMdl = 
  ClassificationPartitionedKernel
    CrossValidatedModel: 'Kernel'
           ResponseName: 'Y'
        NumObservations: 351
                  KFold: 10
              Partition: [1x1 cvpartition]
             ClassNames: {'b'  'g'}
         ScoreTransform: 'none'

  Properties, Methods

CVMdl is a ClassificationPartitionedKernel model. By default, the software implements 10-
fold cross-validation. To specify a different number of folds, use the 'KFold' name-value pair
argument instead of 'Crossval'.
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Estimate the cross-validated classification edge.

edge = kfoldEdge(CVMdl)

edge = 1.5585

Alternatively, you can obtain the per-fold edges by specifying the name-value pair
'Mode','individual' in kfoldEdge.

Feature Selection Using k-Fold Edges

Perform feature selection by comparing k-fold edges from multiple models. Based solely on this
criterion, the classifier with the greatest edge is the best classifier.

Load the ionosphere data set. This data set has 34 predictors and 351 binary responses for radar
returns, which are labeled either bad ('b') or good ('g').

load ionosphere

Randomly choose half of the predictor variables.

rng(1); % For reproducibility
p = size(X,2); % Number of predictors
idxPart = randsample(p,ceil(0.5*p));

Cross-validate two binary kernel classification models: one that uses all of the predictors, and one
that uses half of the predictors.

CVMdl = fitckernel(X,Y,'CrossVal','on');
PCVMdl = fitckernel(X(:,idxPart),Y,'CrossVal','on');

CVMdl and PCVMdl are ClassificationPartitionedKernel models. By default, the software
implements 10-fold cross-validation. To specify a different number of folds, use the 'KFold' name-
value pair argument instead of 'Crossval'.

Estimate the k-fold edge for each classifier.

fullEdge = kfoldEdge(CVMdl)

fullEdge = 1.5142

partEdge = kfoldEdge(PCVMdl)

partEdge = 1.8910

Based on the k-fold edges, the classifier that uses half of the predictors is the better model.

Input Arguments
CVMdl — Cross-validated, binary kernel classification model
ClassificationPartitionedKernel model object

Cross-validated, binary kernel classification model, specified as a
ClassificationPartitionedKernel model object. You can create a
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ClassificationPartitionedKernel model by using fitckernel and specifying any one of the
cross-validation name-value pair arguments.

To obtain estimates, kfoldEdge applies the same data used to cross-validate the kernel classification
model (X and Y).

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: kfoldEdge(CVMdl,'Mode','individual') returns the classification edge for each fold.

Folds — Fold indices for prediction
1:CVMdl.KFold (default) | numeric vector of positive integers

Fold indices for prediction, specified as the comma-separated pair consisting of 'Folds' and a
numeric vector of positive integers. The elements of Folds must be within the range from 1 to
CVMdl.KFold.

The software uses only the folds specified in Folds for prediction.
Example: 'Folds',[1 4 10]
Data Types: single | double

Mode — Aggregation level for output
'average' (default) | 'individual'

Aggregation level for the output, specified as the comma-separated pair consisting of 'Mode' and
'average' or 'individual'.

This table describes the values.

Value Description
'average' The output is a scalar average over all folds.
'individual' The output is a vector of length k containing one

value per fold, where k is the number of folds.

Example: 'Mode','individual'

Output Arguments
edge — Classification edge
numeric scalar | numeric column vector

Classification edge on page 35-3772, returned as a numeric scalar or numeric column vector.

If Mode is 'average', then edge is the average classification edge over all folds. Otherwise, edge is
a k-by-1 numeric column vector containing the classification edge for each fold, where k is the
number of folds.
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More About
Classification Edge

The classification edge is the weighted mean of the classification margins.

One way to choose among multiple classifiers, for example to perform feature selection, is to choose
the classifier that yields the greatest edge.

Classification Margin

The classification margin for binary classification is, for each observation, the difference between the
classification score for the true class and the classification score for the false class.

The software defines the classification margin for binary classification as

m = 2yf x .

x is an observation. If the true label of x is the positive class, then y is 1, and –1 otherwise. f(x) is the
positive-class classification score for the observation x. The classification margin is commonly defined
as m = yf(x).

If the margins are on the same scale, then they serve as a classification confidence measure. Among
multiple classifiers, those that yield greater margins are better.

Classification Score

For kernel classification models, the raw classification score for classifying the observation x, a row
vector, into the positive class is defined by

f x = T(x)β + b .

• T ·  is a transformation of an observation for feature expansion.
• β is the estimated column vector of coefficients.
• b is the estimated scalar bias.

The raw classification score for classifying x into the negative class is −f(x). The software classifies
observations into the class that yields a positive score.

If the kernel classification model consists of logistic regression learners, then the software applies the
'logit' score transformation to the raw classification scores (see ScoreTransform).

Version History
Introduced in R2018b

kfoldEdge returns a different value for a model with a nondefault cost matrix
Behavior changed in R2022a

If you specify a nondefault cost matrix when you train the input model object, the kfoldEdge
function returns a different value compared to previous releases.

The kfoldEdge function uses the observation weights stored in the W property. The way the function
uses the W property value has not changed. However, the property value stored in the input model
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object has changed for a model with a nondefault cost matrix, so the function can return a different
value.

For details about the property value change, see “Cost property stores the user-specified cost matrix”
on page 35-579.

If you want the software to handle the cost matrix, prior probabilities, and observation weights as in
previous releases, adjust the prior probabilities and observation weights for the nondefault cost
matrix, as described in “Adjust Prior Probabilities and Observation Weights for Misclassification Cost
Matrix” on page 19-9. Then, when you train a classification model, specify the adjusted prior
probabilities and observation weights by using the Prior and Weights name-value arguments,
respectively, and use the default cost matrix.

See Also
ClassificationPartitionedKernel | fitckernel
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kfoldEdge
Package: classreg.learning.partition

Classification edge for cross-validated kernel ECOC model

Syntax
edge = kfoldEdge(CVMdl)
edge = kfoldEdge(CVMdl,Name,Value)

Description
edge = kfoldEdge(CVMdl) returns the classification edge on page 35-3778 obtained by the cross-
validated kernel ECOC model (ClassificationPartitionedKernelECOC) CVMdl. For every fold,
kfoldEdge computes the classification edge for validation-fold observations using a model trained on
training-fold observations.

edge = kfoldEdge(CVMdl,Name,Value) returns the classification edge with additional options
specified by one or more name-value pair arguments. For example, specify the number of folds,
decoding scheme, or verbosity level.

Examples

Estimate k-Fold Cross-Validation Edge

Load Fisher's iris data set. X contains flower measurements, and Y contains the names of flower
species.

load fisheriris
X = meas;
Y = species;

Cross-validate an ECOC model composed of kernel binary learners.

CVMdl = fitcecoc(X,Y,'Learners','kernel','CrossVal','on')

CVMdl = 
  ClassificationPartitionedKernelECOC
    CrossValidatedModel: 'KernelECOC'
           ResponseName: 'Y'
        NumObservations: 150
                  KFold: 10
              Partition: [1x1 cvpartition]
             ClassNames: {'setosa'  'versicolor'  'virginica'}
         ScoreTransform: 'none'

  Properties, Methods
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CVMdl is a ClassificationPartitionedKernelECOC model. By default, the software implements
10-fold cross-validation. To specify a different number of folds, use the 'KFold' name-value pair
argument instead of 'Crossval'.

Estimate the cross-validated classification edges.

edge = kfoldEdge(CVMdl)

edge = 0.6218

Alternatively, you can obtain the per-fold edges by specifying the name-value pair
'Mode','individual' in kfoldEdge.

Feature Selection Using k-Fold Edges

Perform feature selection by comparing k-fold edges from multiple models. Based solely on this
criterion, the classifier with the greatest edge is the best classifier.

Load Fisher's iris data set. X contains flower measurements, and Y contains the names of flower
species.

load fisheriris
X = meas;
Y = species;

Randomly choose half of the predictor variables.

rng(1); % For reproducibility
p = size(X,2); % Number of predictors
idxPart = randsample(p,ceil(0.5*p));

Cross-validate two ECOC models composed of kernel classification models: one that uses all of the
predictors, and one that uses half of the predictors.

CVMdl = fitcecoc(X,Y,'Learners','kernel','CrossVal','on');
PCVMdl = fitcecoc(X(:,idxPart),Y,'Learners','kernel','CrossVal','on');

CVMdl and PCVMdl are ClassificationPartitionedKernelECOC models. By default, the
software implements 10-fold cross-validation. To specify a different number of folds, use the 'KFold'
name-value pair argument instead of 'Crossval'.

Estimate the k-fold edge for each classifier.

fullEdge = kfoldEdge(CVMdl)

fullEdge = 0.6137

partEdge = kfoldEdge(PCVMdl)

partEdge = 0.6242

Based on the k-fold edges, the two classifiers are comparable.
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Input Arguments
CVMdl — Cross-validated kernel ECOC model
ClassificationPartitionedKernelECOC model

Cross-validated kernel ECOC model, specified as a ClassificationPartitionedKernelECOC
model. You can create a ClassificationPartitionedKernelECOC model by training an ECOC
model using fitcecoc and specifying these name-value pair arguments:

• 'Learners'– Set the value to 'kernel', a template object returned by templateKernel, or a
cell array of such template objects.

• One of the arguments 'CrossVal', 'CVPartition', 'Holdout', 'KFold', or 'Leaveout'.

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: kfoldEdge(CVMdl,'BinaryLoss','hinge') specifies 'hinge' as the binary learner
loss function.

BinaryLoss — Binary learner loss function
'hamming' | 'linear' | 'logit' | 'exponential' | 'binodeviance' | 'hinge' | 'quadratic'
| function handle

Binary learner loss function, specified as the comma-separated pair consisting of 'BinaryLoss' and
a built-in loss function name or function handle.

• This table contains names and descriptions of the built-in functions, where yj is the class label for
a particular binary learner (in the set {–1,1,0}), sj is the score for observation j, and g(yj,sj) is the
binary loss formula.

Value Description Score Domain g(yj,sj)
'binodeviance' Binomial deviance (–∞,∞) log[1 + exp(–2yjsj)]/

[2log(2)]
'exponential' Exponential (–∞,∞) exp(–yjsj)/2
'hamming' Hamming [0,1] or (–∞,∞) [1 – sign(yjsj)]/2
'hinge' Hinge (–∞,∞) max(0,1 – yjsj)/2
'linear' Linear (–∞,∞) (1 – yjsj)/2
'logit' Logistic (–∞,∞) log[1 + exp(–yjsj)]/

[2log(2)]
'quadratic' Quadratic [0,1] [1 – yj(2sj – 1)]2/2

The software normalizes binary losses so that the loss is 0.5 when yj = 0. Also, the software
calculates the mean binary loss for each class.

• For a custom binary loss function, for example, customFunction, specify its function handle
'BinaryLoss',@customFunction.

customFunction has this form:
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bLoss = customFunction(M,s)

• M is the K-by-B coding matrix stored in Mdl.CodingMatrix.
• s is the 1-by-B row vector of classification scores.
• bLoss is the classification loss. This scalar aggregates the binary losses for every learner in a

particular class. For example, you can use the mean binary loss to aggregate the loss over the
learners for each class.

• K is the number of classes.
• B is the number of binary learners.

By default, if all binary learners are kernel classification models using SVM, then BinaryLoss is
'hinge'. If all binary learners are kernel classification models using logistic regression, then
BinaryLoss is 'quadratic'.
Example: 'BinaryLoss','binodeviance'
Data Types: char | string | function_handle

Decoding — Decoding scheme
'lossweighted' (default) | 'lossbased'

Decoding scheme that aggregates the binary losses, specified as the comma-separated pair consisting
of 'Decoding' and 'lossweighted' or 'lossbased'. For more information, see “Binary Loss” on
page 35-3778.
Example: 'Decoding','lossbased'

Folds — Fold indices for prediction
1:CVMdl.KFold (default) | numeric vector of positive integers

Fold indices for prediction, specified as the comma-separated pair consisting of 'Folds' and a
numeric vector of positive integers. The elements of Folds must be within the range from 1 to
CVMdl.KFold.

The software uses only the folds specified in Folds for prediction.
Example: 'Folds',[1 4 10]
Data Types: single | double

Mode — Aggregation level for output
'average' (default) | 'individual'

Aggregation level for the output, specified as the comma-separated pair consisting of 'Mode' and
'average' or 'individual'.

This table describes the values.

Value Description
'average' The output is a scalar average over all folds.
'individual' The output is a vector of length k containing one

value per fold, where k is the number of folds.

Example: 'Mode','individual'
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Options — Estimation options
[] (default) | structure array returned by statset

Estimation options, specified as the comma-separated pair consisting of 'Options' and a structure
array returned by statset.

To invoke parallel computing:

• You need a Parallel Computing Toolbox license.
• Specify 'Options',statset('UseParallel',true).

Verbose — Verbosity level
0 (default) | 1

Verbosity level, specified as the comma-separated pair consisting of 'Verbose' and 0 or 1. Verbose
controls the number of diagnostic messages that the software displays in the Command Window.

If Verbose is 0, then the software does not display diagnostic messages. Otherwise, the software
displays diagnostic messages.
Example: 'Verbose',1
Data Types: single | double

Output Arguments
edge — Classification edge
numeric scalar | numeric column vector

Classification edge on page 35-3778, returned as a numeric scalar or numeric column vector.

If Mode is 'average', then edge is the average classification edge over all folds. Otherwise, edge is
a k-by-1 numeric column vector containing the classification edge for each fold, where k is the
number of folds.

More About
Classification Edge

The classification edge is the weighted mean of the classification margins.

One way to choose among multiple classifiers, for example to perform feature selection, is to choose
the classifier that yields the greatest edge.

Classification Margin

The classification margin is, for each observation, the difference between the negative loss for the
true class and the maximal negative loss among the false classes. If the margins are on the same
scale, then they serve as a classification confidence measure. Among multiple classifiers, those that
yield greater margins are better.

Binary Loss

The binary loss is a function of the class and classification score that determines how well a binary
learner classifies an observation into the class.

35 Functions

35-3778



Suppose the following:

• mkj is element (k,j) of the coding design matrix M—that is, the code corresponding to class k of
binary learner j. M is a K-by-B matrix, where K is the number of classes, and B is the number of
binary learners.

• sj is the score of binary learner j for an observation.
• g is the binary loss function.
• k  is the predicted class for the observation.

The decoding scheme of an ECOC model specifies how the software aggregates the binary losses and
determines the predicted class for each observation. The software supports two decoding schemes:

• Loss-based decoding [2] (Decoding is 'lossbased') — The predicted class of an observation
corresponds to the class that produces the minimum average of the binary losses over all binary
learners.

k = argmin
k

1
B ∑j = 1

B
mk j g(mk j, s j) .

• Loss-weighted decoding [3] (Decoding is 'lossweighted') — The predicted class of an
observation corresponds to the class that produces the minimum average of the binary losses over
the binary learners for the corresponding class.

k = argmin
k

∑
j = 1

B
mk j g(mk j, s j)

∑ j = 1

B

mk j

.

The denominator corresponds to the number of binary learners for class k. [1] suggests that loss-
weighted decoding improves classification accuracy by keeping loss values for all classes in the
same dynamic range.

The predict, resubPredict, and kfoldPredict functions return the negated value of the
objective function of argmin as the second output argument (NegLoss) for each observation and
class.

This table summarizes the supported binary loss functions, where yj is a class label for a particular
binary learner (in the set {–1,1,0}), sj is the score for observation j, and g(yj,sj) is the binary loss
function.

Value Description Score Domain g(yj,sj)
"binodeviance" Binomial deviance (–∞,∞) log[1 + exp(–2yjsj)]/

[2log(2)]
"exponential" Exponential (–∞,∞) exp(–yjsj)/2
"hamming" Hamming [0,1] or (–∞,∞) [1 – sign(yjsj)]/2
"hinge" Hinge (–∞,∞) max(0,1 – yjsj)/2
"linear" Linear (–∞,∞) (1 – yjsj)/2
"logit" Logistic (–∞,∞) log[1 + exp(–yjsj)]/

[2log(2)]
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Value Description Score Domain g(yj,sj)
"quadratic" Quadratic [0,1] [1 – yj(2sj – 1)]2/2

The software normalizes binary losses so that the loss is 0.5 when yj = 0, and aggregates using the
average of the binary learners.

Do not confuse the binary loss with the overall classification loss (specified by the LossFun name-
value argument of the kfoldLoss and kfoldPredict object functions), which measures how well
an ECOC classifier performs as a whole.

Version History
Introduced in R2018b

References
[1] Allwein, E., R. Schapire, and Y. Singer. “Reducing multiclass to binary: A unifying approach for

margin classifiers.” Journal of Machine Learning Research. Vol. 1, 2000, pp. 113–141.

[2] Escalera, S., O. Pujol, and P. Radeva. “Separability of ternary codes for sparse designs of error-
correcting output codes.” Pattern Recog. Lett., Vol. 30, Issue 3, 2009, pp. 285–297.

[3] Escalera, S., O. Pujol, and P. Radeva. “On the decoding process in ternary error-correcting output
codes.” IEEE Transactions on Pattern Analysis and Machine Intelligence. Vol. 32, Issue 7,
2010, pp. 120–134.

See Also
ClassificationPartitionedKernelECOC | fitcecoc
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kfoldEdge
Classification edge for observations not used for training

Syntax
e = kfoldEdge(CVMdl)
e = kfoldEdge(CVMdl,Name,Value)

Description
e = kfoldEdge(CVMdl) returns the cross-validated classification edges on page 35-3786 obtained
by the cross-validated, binary, linear classification model CVMdl. That is, for every fold, kfoldEdge
estimates the classification edge for observations that it holds out when it trains using all other
observations.

e contains a classification edge for each regularization strength in the linear classification models
that comprise CVMdl.

e = kfoldEdge(CVMdl,Name,Value) uses additional options specified by one or more
Name,Value pair arguments. For example, indicate which folds to use for the edge calculation.

Input Arguments
CVMdl — Cross-validated, binary, linear classification model
ClassificationPartitionedLinear model object

Cross-validated, binary, linear classification model, specified as a
ClassificationPartitionedLinear model object. You can create a
ClassificationPartitionedLinear model using fitclinear and specifying any one of the
cross-validation, name-value pair arguments, for example, CrossVal.

To obtain estimates, kfoldEdge applies the same data used to cross-validate the linear classification
model (X and Y).

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.

Folds — Fold indices to use for classification-score prediction
1:CVMdl.KFold (default) | numeric vector of positive integers

Fold indices to use for classification-score prediction, specified as the comma-separated pair
consisting of 'Folds' and a numeric vector of positive integers. The elements of Folds must range
from 1 through CVMdl.KFold.
Example: 'Folds',[1 4 10]
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Data Types: single | double

Mode — Edge aggregation level
'average' (default) | 'individual'

Edge aggregation level, specified as the comma-separated pair consisting of 'Mode' and 'average'
or 'individual'.

Value Description
'average' Returns classification edges averaged over all

folds
'individual' Returns classification edges for each fold

Example: 'Mode','individual'

Output Arguments
e — Cross-validated classification edges
numeric scalar | numeric vector | numeric matrix

Cross-validated classification edges on page 35-3786, returned as a numeric scalar, vector, or matrix.

Let L be the number of regularization strengths in the cross-validated models (that is, L is
numel(CVMdl.Trained{1}.Lambda)) and F be the number of folds (stored in CVMdl.KFold).

• If Mode is 'average', then e is a 1-by-L vector. e(j) is the average classification edge over all
folds of the cross-validated model that uses regularization strength j.

• Otherwise, e is an F-by-L matrix. e(i,j) is the classification edge for fold i of the cross-validated
model that uses regularization strength j.

To estimate e, kfoldEdge uses the data that created CVMdl (see X and Y).

Examples

Estimate k-Fold Cross-Validation Edge

Load the NLP data set.

load nlpdata

X is a sparse matrix of predictor data, and Y is a categorical vector of class labels. There are more
than two classes in the data.

The models should identify whether the word counts in a web page are from the Statistics and
Machine Learning Toolbox™ documentation. So, identify the labels that correspond to the Statistics
and Machine Learning Toolbox™ documentation web pages.

Ystats = Y == 'stats';

Cross-validate a binary, linear classification model that can identify whether the word counts in a
documentation web page are from the Statistics and Machine Learning Toolbox™ documentation.
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rng(1); % For reproducibility 
CVMdl = fitclinear(X,Ystats,'CrossVal','on');

CVMdl is a ClassificationPartitionedLinear model. By default, the software implements 10-
fold cross validation. You can alter the number of folds using the 'KFold' name-value pair argument.

Estimate the average of the out-of-fold edges.

e = kfoldEdge(CVMdl)

e = 8.1243

Alternatively, you can obtain the per-fold edges by specifying the name-value pair
'Mode','individual' in kfoldEdge.

Feature Selection Using k-fold Edges

One way to perform feature selection is to compare k-fold edges from multiple models. Based solely
on this criterion, the classifier with the highest edge is the best classifier.

Load the NLP data set. Preprocess the data as in “Estimate k-Fold Cross-Validation Edge” on page 35-
3782.

load nlpdata
Ystats = Y == 'stats';
X = X';

Create these two data sets:

• fullX contains all predictors.
• partX contains 1/2 of the predictors chosen at random.

rng(1); % For reproducibility
p = size(X,1); % Number of predictors
halfPredIdx = randsample(p,ceil(0.5*p));
fullX = X;
partX = X(halfPredIdx,:);

Cross-validate two binary, linear classification models: one that uses the all of the predictors and one
that uses half of the predictors. Optimize the objective function using SpaRSA, and indicate that
observations correspond to columns.

CVMdl = fitclinear(fullX,Ystats,'CrossVal','on','Solver','sparsa',...
    'ObservationsIn','columns');
PCVMdl = fitclinear(partX,Ystats,'CrossVal','on','Solver','sparsa',...
    'ObservationsIn','columns');

CVMdl and PCVMdl are ClassificationPartitionedLinear models.

Estimate the k-fold edge for each classifier.

fullEdge = kfoldEdge(CVMdl)

fullEdge = 16.5629

partEdge = kfoldEdge(PCVMdl)
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partEdge = 13.9030

Based on the k-fold edges, the classifier that uses all of the predictors is the better model.

Find Good Lasso Penalty Using k-fold Edge

To determine a good lasso-penalty strength for a linear classification model that uses a logistic
regression learner, compare k-fold edges.

Load the NLP data set. Preprocess the data as in “Estimate k-Fold Cross-Validation Edge” on page 35-
3782.

load nlpdata
Ystats = Y == 'stats';
X = X';

Create a set of 11 logarithmically-spaced regularization strengths from 10−8 through 101.

Lambda = logspace(-8,1,11);

Cross-validate a binary, linear classification model using 5-fold cross-validation and that uses each of
the regularization strengths. Optimize the objective function using SpaRSA. Lower the tolerance on
the gradient of the objective function to 1e-8.

rng(10); % For reproducibility
CVMdl = fitclinear(X,Ystats,'ObservationsIn','columns','KFold',5,...
    'Learner','logistic','Solver','sparsa','Regularization','lasso',...
    'Lambda',Lambda,'GradientTolerance',1e-8)

CVMdl = 
  ClassificationPartitionedLinear
    CrossValidatedModel: 'Linear'
           ResponseName: 'Y'
        NumObservations: 31572
                  KFold: 5
              Partition: [1x1 cvpartition]
             ClassNames: [0 1]
         ScoreTransform: 'none'

  Properties, Methods

CVMdl is a ClassificationPartitionedLinear model. Because fitclinear implements 5-fold
cross-validation, CVMdl contains 5 ClassificationLinear models that the software trains on each
fold.

Estimate the edges for each fold and regularization strength.

eFolds = kfoldEdge(CVMdl,'Mode','individual')

eFolds = 5×11

    0.9958    0.9958    0.9958    0.9958    0.9958    0.9924    0.9771    0.9238    0.8441    0.8127    0.8127
    0.9991    0.9991    0.9991    0.9991    0.9991    0.9939    0.9779    0.9167    0.8263    0.8128    0.8128
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    0.9992    0.9992    0.9992    0.9992    0.9992    0.9941    0.9781    0.9213    0.8252    0.8128    0.8128
    0.9974    0.9974    0.9974    0.9974    0.9974    0.9931    0.9772    0.9195    0.8486    0.8130    0.8130
    0.9978    0.9978    0.9978    0.9978    0.9978    0.9942    0.9781    0.9110    0.8384    0.8127    0.8127

eFolds is a 5-by-11 matrix of edges. Rows correspond to folds and columns correspond to
regularization strengths in Lambda. You can use eFolds to identify ill-performing folds, that is,
unusually low edges.

Estimate the average edge over all folds for each regularization strength.

e = kfoldEdge(CVMdl)

e = 1×11

    0.9979    0.9979    0.9979    0.9979    0.9979    0.9936    0.9777    0.9185    0.8365    0.8128    0.8128

Determine how well the models generalize by plotting the averages of the 5-fold edge for each
regularization strength. Identify the regularization strength that maximizes the 5-fold edge over the
grid.

figure;
plot(log10(Lambda),log10(e),'-o')
[~, maxEIdx] = max(e);
maxLambda = Lambda(maxEIdx);
hold on
plot(log10(maxLambda),log10(e(maxEIdx)),'ro');
ylabel('log_{10} 5-fold edge')
xlabel('log_{10} Lambda')
legend('Edge','Max edge')
hold off
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Several values of Lambda yield similarly high edges. Higher values of lambda lead to predictor
variable sparsity, which is a good quality of a classifier.

Choose the regularization strength that occurs just before the edge starts decreasing.

LambdaFinal = Lambda(5);

Train a linear classification model using the entire data set and specify the regularization strength
LambdaFinal.

MdlFinal = fitclinear(X,Ystats,'ObservationsIn','columns',...
    'Learner','logistic','Solver','sparsa','Regularization','lasso',...
    'Lambda',LambdaFinal);

To estimate labels for new observations, pass MdlFinal and the new data to predict.

More About
Classification Edge

The classification edge is the weighted mean of the classification margins.

One way to choose among multiple classifiers, for example to perform feature selection, is to choose
the classifier that yields the greatest edge.
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Classification Margin

The classification margin for binary classification is, for each observation, the difference between the
classification score for the true class and the classification score for the false class.

The software defines the classification margin for binary classification as

m = 2yf x .

x is an observation. If the true label of x is the positive class, then y is 1, and –1 otherwise. f(x) is the
positive-class classification score for the observation x. The classification margin is commonly defined
as m = yf(x).

If the margins are on the same scale, then they serve as a classification confidence measure. Among
multiple classifiers, those that yield greater margins are better.

Classification Score

For linear classification models, the raw classification score for classifying the observation x, a row
vector, into the positive class is defined by

f j(x) = xβ j + b j .

For the model with regularization strength j, β j is the estimated column vector of coefficients (the
model property Beta(:,j)) and b j is the estimated, scalar bias (the model property Bias(j)).

The raw classification score for classifying x into the negative class is –f(x). The software classifies
observations into the class that yields the positive score.

If the linear classification model consists of logistic regression learners, then the software applies the
'logit' score transformation to the raw classification scores (see ScoreTransform).

Version History
Introduced in R2016a

kfoldEdge returns a different value for a model with a nondefault cost matrix
Behavior changed in R2022a

If you specify a nondefault cost matrix when you train the input model object, the kfoldEdge
function returns a different value compared to previous releases.

The kfoldEdge function uses the observation weights stored in the W property. The way the function
uses the W property value has not changed. However, the property value stored in the input model
object has changed for a model with a nondefault cost matrix, so the function can return a different
value.

For details about the property value change, see “Cost property stores the user-specified cost matrix”
on page 35-596.

If you want the software to handle the cost matrix, prior probabilities, and observation weights as in
previous releases, adjust the prior probabilities and observation weights for the nondefault cost
matrix, as described in “Adjust Prior Probabilities and Observation Weights for Misclassification Cost
Matrix” on page 19-9. Then, when you train a classification model, specify the adjusted prior
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probabilities and observation weights by using the Prior and Weights name-value arguments,
respectively, and use the default cost matrix.

See Also
ClassificationPartitionedLinear | kfoldMargin | ClassificationLinear |
kfoldPredict | edge
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kfoldEdge
Classification edge for observations not used for training

Syntax
e = kfoldEdge(CVMdl)
e = kfoldEdge(CVMdl,Name,Value)

Description
e = kfoldEdge(CVMdl) returns the cross-validated classification edges on page 35-3797 obtained
by the cross-validated, error-correcting output codes (ECOC) model composed of linear classification
models CVMdl. That is, for every fold, kfoldEdge estimates the classification edge for observations
that it holds out when it trains using all other observations.

e contains a classification edge for each regularization strength in the linear classification models
that comprise CVMdl.

e = kfoldEdge(CVMdl,Name,Value) uses additional options specified by one or more
Name,Value pair arguments. For example, specify a decoding scheme, which folds to use for the
edge calculation, or verbosity level.

Input Arguments
CVMdl — Cross-validated, ECOC model composed of linear classification models
ClassificationPartitionedLinearECOC model object

Cross-validated, ECOC model composed of linear classification models, specified as a
ClassificationPartitionedLinearECOC model object. You can create a
ClassificationPartitionedLinearECOC model using fitcecoc and by:

1 Specifying any one of the cross-validation, name-value pair arguments, for example, CrossVal
2 Setting the name-value pair argument Learners to 'linear' or a linear classification model

template returned by templateLinear

To obtain estimates, kfoldEdge applies the same data used to cross-validate the ECOC model (X and
Y).

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.

BinaryLoss — Binary learner loss function
'hamming' | 'linear' | 'logit' | 'exponential' | 'binodeviance' | 'hinge' | 'quadratic'
| function handle
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Binary learner loss function, specified as the comma-separated pair consisting of 'BinaryLoss' and
a built-in loss function name or function handle.

• This table contains names and descriptions of the built-in functions, where yj is the class label for
a particular binary learner (in the set {-1,1,0}), sj is the score for observation j, and g(yj,sj) is the
binary loss formula.

Value Description Score Domain g(yj,sj)
'binodeviance' Binomial deviance (–∞,∞) log[1 + exp(–2yjsj)]/

[2log(2)]
'exponential' Exponential (–∞,∞) exp(–yjsj)/2
'hamming' Hamming [0,1] or (–∞,∞) [1 – sign(yjsj)]/2
'hinge' Hinge (–∞,∞) max(0,1 – yjsj)/2
'linear' Linear (–∞,∞) (1 – yjsj)/2
'logit' Logistic (–∞,∞) log[1 + exp(–yjsj)]/

[2log(2)]
'quadratic' Quadratic [0,1] [1 – yj(2sj – 1)]2/2

The software normalizes the binary losses such that the loss is 0.5 when yj = 0. Also, the software
calculates the mean binary loss for each class.

• For a custom binary loss function, e.g., customFunction, specify its function handle
'BinaryLoss',@customFunction.

customFunction should have this form

bLoss = customFunction(M,s)

where:

• M is the K-by-B coding matrix stored in Mdl.CodingMatrix.
• s is the 1-by-B row vector of classification scores.
• bLoss is the classification loss. This scalar aggregates the binary losses for every learner in a

particular class. For example, you can use the mean binary loss to aggregate the loss over the
learners for each class.

• K is the number of classes.
• B is the number of binary learners.

For an example of passing a custom binary loss function, see “Predict Test-Sample Labels of ECOC
Model Using Custom Binary Loss Function” on page 35-5751.

By default, if all binary learners are linear classification models using:

• SVM, then BinaryLoss is 'hinge'
• Logistic regression, then BinaryLoss is 'quadratic'

Example: 'BinaryLoss','binodeviance'
Data Types: char | string | function_handle

Decoding — Decoding scheme
'lossweighted' (default) | 'lossbased'
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Decoding scheme that aggregates the binary losses, specified as the comma-separated pair consisting
of 'Decoding' and 'lossweighted' or 'lossbased'. For more information, see “Binary Loss” on
page 35-3796.
Example: 'Decoding','lossbased'

Folds — Fold indices to use for classification-score prediction
1:CVMdl.KFold (default) | numeric vector of positive integers

Fold indices to use for classification-score prediction, specified as the comma-separated pair
consisting of 'Folds' and a numeric vector of positive integers. The elements of Folds must range
from 1 through CVMdl.KFold.
Example: 'Folds',[1 4 10]
Data Types: single | double

Mode — Edge aggregation level
'average' (default) | 'individual'

Edge aggregation level, specified as the comma-separated pair consisting of 'Mode' and 'average'
or 'individual'.

Value Description
'average' Returns classification edges averaged over all

folds
'individual' Returns classification edges for each fold

Example: 'Mode','individual'

Options — Estimation options
[] (default) | structure array returned by statset

Estimation options, specified as the comma-separated pair consisting of 'Options' and a structure
array returned by statset.

To invoke parallel computing:

• You need a Parallel Computing Toolbox license.
• Specify 'Options',statset('UseParallel',true).

Verbose — Verbosity level
0 (default) | 1

Verbosity level, specified as the comma-separated pair consisting of 'Verbose' and 0 or 1. Verbose
controls the number of diagnostic messages that the software displays in the Command Window.

If Verbose is 0, then the software does not display diagnostic messages. Otherwise, the software
displays diagnostic messages.
Example: 'Verbose',1
Data Types: single | double
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Output Arguments
e — Cross-validated classification edges
numeric scalar | numeric vector | numeric matrix

Cross-validated classification edges on page 35-3797, returned as a numeric scalar, vector, or matrix.

Let L be the number of regularization strengths in the cross-validated models (that is, L is
numel(CVMdl.Trained{1}.BinaryLearners{1}.Lambda)) and F be the number of folds (stored
in CVMdl.KFold).

• If Mode is 'average', then e is a 1-by-L vector. e(j) is the average classification edge over all
folds of the cross-validated model that uses regularization strength j.

• Otherwise, e is a F-by-L matrix. e(i,j) is the classification edge for fold i of the cross-validated
model that uses regularization strength j.

Examples

Estimate k-Fold Cross-Validation Edge

Load the NLP data set.

load nlpdata

X is a sparse matrix of predictor data, and Y is a categorical vector of class labels.

For simplicity, use the label 'others' for all observations in Y that are not 'simulink', 'dsp', or
'comm'.

Y(~(ismember(Y,{'simulink','dsp','comm'}))) = 'others';

Cross-validate a multiclass, linear classification model.

rng(1); % For reproducibility 
CVMdl = fitcecoc(X,Y,'Learner','linear','CrossVal','on');

CVMdl is a ClassificationPartitionedLinearECOC model. By default, the software implements
10-fold cross validation. You can alter the number of folds using the 'KFold' name-value pair
argument.

Estimate the average of the out-of-fold edges.

e = kfoldEdge(CVMdl)

e = 1.4464

Alternatively, you can obtain the per-fold edges by specifying the name-value pair
'Mode','individual' in kfoldEdge.
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Feature Selection Using k-fold Edges

One way to perform feature selection is to compare k-fold edges from multiple models. Based solely
on this criterion, the classifier with the highest edge is the best classifier.

Load the NLP data set. Preprocess the data as in “Estimate k-Fold Cross-Validation Edge” on page 35-
3792, and orient the predictor data so that observations correspond to columns.

load nlpdata
Y(~(ismember(Y,{'simulink','dsp','comm'}))) = 'others';
X = X';

Create these two data sets:

• fullX contains all predictors.
• partX contains a 1/2 of the predictors chosen at random.

rng(1); % For reproducibility
p = size(X,1); % Number of predictors
halfPredIdx = randsample(p,ceil(0.5*p));
fullX = X;
partX = X(halfPredIdx,:);

Create a linear classification model template that specifies to optimize the objective function using
SpaRSA.

t = templateLinear('Solver','sparsa');

Cross-validate two ECOC models composed of binary, linear classification models: one that uses the
all of the predictors and one that uses half of the predictors. Indicate that observations correspond to
columns.

CVMdl = fitcecoc(fullX,Y,'Learners',t,'CrossVal','on',...
    'ObservationsIn','columns');
PCVMdl = fitcecoc(partX,Y,'Learners',t,'CrossVal','on',...
    'ObservationsIn','columns');

CVMdl and PCVMdl are ClassificationPartitionedLinearECOC models.

Estimate the k-fold edge for each classifier.

fullEdge = kfoldEdge(CVMdl)

fullEdge = 0.6181

partEdge = kfoldEdge(PCVMdl)

partEdge = 0.5235

Based on the k-fold edges, the classifier that uses all of the predictors is the better model.

Find Good Lasso Penalty Using k-fold Edge

To determine a good lasso-penalty strength for a linear classification model that uses a logistic
regression learner, compare k-fold edges.
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Load the NLP data set. Preprocess the data as in “Feature Selection Using k-fold Edges” on page 35-
3792.

load nlpdata
Y(~(ismember(Y,{'simulink','dsp','comm'}))) = 'others';
X = X';

Create a set of 8 logarithmically-spaced regularization strengths from 10−8 through 101.

Lambda = logspace(-8,1,8);

Create a linear classification model template that specifies to use logistic regression with a lasso
penalty, use each of the regularization strengths, optimize the objective function using SpaRSA, and
reduce the tolerance on the gradient of the objective function to 1e-8.

t = templateLinear('Learner','logistic','Solver','sparsa',...
    'Regularization','lasso','Lambda',Lambda,'GradientTolerance',1e-8);

Cross-validate an ECOC model composed of binary, linear classification models using 5-fold cross-
validation and that

rng(10) % For reproducibility
CVMdl = fitcecoc(X,Y,'Learners',t,'ObservationsIn','columns','KFold',5)

CVMdl = 
  ClassificationPartitionedLinearECOC
    CrossValidatedModel: 'LinearECOC'
           ResponseName: 'Y'
        NumObservations: 31572
                  KFold: 5
              Partition: [1x1 cvpartition]
             ClassNames: [comm    dsp    simulink    others]
         ScoreTransform: 'none'

  Properties, Methods

CVMdl is a ClassificationPartitionedLinearECOC model.

Estimate the edges for each fold and regularization strength.

eFolds = kfoldEdge(CVMdl,'Mode','individual')

eFolds = 5×8

    0.5563    0.5563    0.5567    0.5540    0.4952    0.2938    0.1034    0.0853
    0.5261    0.5262    0.5268    0.5271    0.4799    0.2947    0.1045    0.0867
    0.5390    0.5396    0.5397    0.5386    0.4770    0.2884    0.1045    0.0866
    0.5441    0.5448    0.5452    0.5419    0.4878    0.2912    0.1018    0.0855
    0.5506    0.5556    0.5582    0.5577    0.4950    0.2941    0.1029    0.0849

eFolds is a 5-by-8 matrix of edges. Rows correspond to folds and columns correspond to
regularization strengths in Lambda. You can use eFolds to identify ill-performing folds, that is,
unusually low edges.

Estimate the average edge over all folds for each regularization strength.
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e = kfoldEdge(CVMdl)

e = 1×8

    0.5432    0.5445    0.5453    0.5439    0.4870    0.2925    0.1034    0.0858

Determine how well the models generalize by plotting the averages of the 5-fold edge for each
regularization strength. Identify the regularization strength that maximizes the 5-fold edge over the
grid.

figure
plot(log10(Lambda),log10(e),'-o')
[~, maxEIdx] = max(e);
maxLambda = Lambda(maxEIdx);
hold on
plot(log10(maxLambda),log10(e(maxEIdx)),'ro')
ylabel('log_{10} 5-fold edge')
xlabel('log_{10} Lambda')
legend('Edge','Max edge')
hold off

Several values of Lambda yield similarly high edges. Greater regularization strength values lead to
predictor variable sparsity, which is a good quality of a classifier.

Choose the regularization strength that occurs just before the edge starts decreasing.

LambdaFinal = Lambda(4);
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Train an ECOC model composed of linear classification model using the entire data set and specify
the regularization strength LambdaFinal.

t = templateLinear('Learner','logistic','Solver','sparsa',...
    'Regularization','lasso','Lambda',LambdaFinal,'GradientTolerance',1e-8);
MdlFinal = fitcecoc(X,Y,'Learners',t,'ObservationsIn','columns');

To estimate labels for new observations, pass MdlFinal and the new data to predict.

More About
Binary Loss

The binary loss is a function of the class and classification score that determines how well a binary
learner classifies an observation into the class.

Suppose the following:

• mkj is element (k,j) of the coding design matrix M—that is, the code corresponding to class k of
binary learner j. M is a K-by-B matrix, where K is the number of classes, and B is the number of
binary learners.

• sj is the score of binary learner j for an observation.
• g is the binary loss function.
• k  is the predicted class for the observation.

The decoding scheme of an ECOC model specifies how the software aggregates the binary losses and
determines the predicted class for each observation. The software supports two decoding schemes:

• Loss-based decoding [2] (Decoding is 'lossbased') — The predicted class of an observation
corresponds to the class that produces the minimum average of the binary losses over all binary
learners.

k = argmin
k

1
B ∑j = 1

B
mk j g(mk j, s j) .

• Loss-weighted decoding [3] (Decoding is 'lossweighted') — The predicted class of an
observation corresponds to the class that produces the minimum average of the binary losses over
the binary learners for the corresponding class.

k = argmin
k

∑
j = 1

B
mk j g(mk j, s j)

∑ j = 1

B

mk j

.

The denominator corresponds to the number of binary learners for class k. [1] suggests that loss-
weighted decoding improves classification accuracy by keeping loss values for all classes in the
same dynamic range.

The predict, resubPredict, and kfoldPredict functions return the negated value of the
objective function of argmin as the second output argument (NegLoss) for each observation and
class.
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This table summarizes the supported binary loss functions, where yj is a class label for a particular
binary learner (in the set {–1,1,0}), sj is the score for observation j, and g(yj,sj) is the binary loss
function.

Value Description Score Domain g(yj,sj)
"binodeviance" Binomial deviance (–∞,∞) log[1 + exp(–2yjsj)]/

[2log(2)]
"exponential" Exponential (–∞,∞) exp(–yjsj)/2
"hamming" Hamming [0,1] or (–∞,∞) [1 – sign(yjsj)]/2
"hinge" Hinge (–∞,∞) max(0,1 – yjsj)/2
"linear" Linear (–∞,∞) (1 – yjsj)/2
"logit" Logistic (–∞,∞) log[1 + exp(–yjsj)]/

[2log(2)]
"quadratic" Quadratic [0,1] [1 – yj(2sj – 1)]2/2

The software normalizes binary losses so that the loss is 0.5 when yj = 0, and aggregates using the
average of the binary learners.

Do not confuse the binary loss with the overall classification loss (specified by the LossFun name-
value argument of the kfoldLoss and kfoldPredict object functions), which measures how well
an ECOC classifier performs as a whole.

Classification Edge

The classification edge is the weighted mean of the classification margins.

One way to choose among multiple classifiers, for example to perform feature selection, is to choose
the classifier that yields the greatest edge.

Classification Margin

The classification margin is, for each observation, the difference between the negative loss for the
true class and the maximal negative loss among the false classes. If the margins are on the same
scale, then they serve as a classification confidence measure. Among multiple classifiers, those that
yield greater margins are better.

Version History
Introduced in R2016a

References
[1] Allwein, E., R. Schapire, and Y. Singer. “Reducing multiclass to binary: A unifying approach for

margin classifiers.” Journal of Machine Learning Research. Vol. 1, 2000, pp. 113–141.

[2] Escalera, S., O. Pujol, and P. Radeva. “Separability of ternary codes for sparse designs of error-
correcting output codes.” Pattern Recog. Lett., Vol. 30, Issue 3, 2009, pp. 285–297.

[3] Escalera, S., O. Pujol, and P. Radeva. “On the decoding process in ternary error-correcting output
codes.” IEEE Transactions on Pattern Analysis and Machine Intelligence. Vol. 32, Issue 7,
2010, pp. 120–134.
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Extended Capabilities
Automatic Parallel Support
Accelerate code by automatically running computation in parallel using Parallel Computing Toolbox™.

To run in parallel, specify the 'Options' name-value argument in the call to this function and set the
'UseParallel' field of the options structure to true using statset.

For example: 'Options',statset('UseParallel',true)

For more information about parallel computing, see “Run MATLAB Functions with Automatic Parallel
Support” (Parallel Computing Toolbox).

See Also
ClassificationPartitionedLinearECOC | ClassificationECOC | ClassificationLinear |
kfoldMargin | edge | kfoldPredict | fitcecoc | statset

Topics
“Quick Start Parallel Computing for Statistics and Machine Learning Toolbox” on page 33-2
“Reproducibility in Parallel Statistical Computations” on page 33-16
“Concepts of Parallel Computing in Statistics and Machine Learning Toolbox” on page 33-6
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kfoldEdge
Package: classreg.learning.partition

Classification edge for cross-validated classification model

Syntax
E = kfoldEdge(CVMdl)
E = kfoldEdge(CVMdl,Name,Value)

Description
E = kfoldEdge(CVMdl) returns the classification edge on page 35-3803 obtained by the cross-
validated classification model CVMdl. For every fold, kfoldEdge computes the classification edge for
validation-fold observations using a classifier trained on training-fold observations. CVMdl.X and
CVMdl.Y contain both sets of observations.

E = kfoldEdge(CVMdl,Name,Value) returns the classification edge with additional options
specified by one or more name-value arguments. For example, specify the folds to use or specify to
compute the classification edge for each individual fold.

Examples

Estimate k-fold Edge of Classifier

Compute the k-fold edge for a model trained on Fisher's iris data.

Load Fisher's iris data set.

load fisheriris

Train a classification tree classifier.

tree = fitctree(meas,species);

Cross-validate the classifier using 10-fold cross-validation.

cvtree = crossval(tree);

Compute the k-fold edge.

edge = kfoldEdge(cvtree)

edge = 0.8578

Compute K-Fold Edge of Held-Out Observations

Compute the k-fold edge for an ensemble trained on the Fisher iris data.
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Load the sample data set.

load fisheriris

Train an ensemble of 100 boosted classification trees.

t = templateTree('MaxNumSplits',1); % Weak learner template tree object
ens = fitcensemble(meas,species,'Learners',t);

Create a cross-validated ensemble from ens and find the classification edge.

rng(10,'twister') % For reproducibility
cvens = crossval(ens);
E = kfoldEdge(cvens)

E = 3.2033

Input Arguments
CVMdl — Cross-validated partitioned classifier
ClassificationPartitionedModel object | ClassificationPartitionedEnsemble object |
ClassificationPartitionedGAM object

Cross-validated partitioned classifier, specified as a ClassificationPartitionedModel,
ClassificationPartitionedEnsemble, or ClassificationPartitionedGAM object. You can
create the object in two ways:

• Pass a trained classification model listed in the following table to its crossval object function.
• Train a classification model using a function listed in the following table and specify one of the

cross-validation name-value arguments for the function.

Classification Model Function
ClassificationDiscriminant fitcdiscr
ClassificationEnsemble fitcensemble
ClassificationGAM fitcgam
ClassificationKNN fitcknn
ClassificationNaiveBayes fitcnb
ClassificationNeuralNetwork fitcnet
ClassificationSVM fitcsvm
ClassificationTree fitctree

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: kfoldEdge(CVMdl,'Folds',[1 2 3 5]) specifies to use the first, second, third, and
fifth folds to compute the classification edge, but to exclude the fourth fold.
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Folds — Fold indices to use
1:CVMdl.KFold (default) | positive integer vector

Fold indices to use, specified as a positive integer vector. The elements of Folds must be within the
range from 1 to CVMdl.KFold.

The software uses only the folds specified in Folds.
Example: 'Folds',[1 4 10]
Data Types: single | double

IncludeInteractions — Flag to include interaction terms
true | false

Flag to include interaction terms of the model, specified as true or false. This argument is valid
only for a generalized additive model (GAM). That is, you can specify this argument only when CVMdl
is ClassificationPartitionedGAM.

The default value is true if the models in CVMdl (CVMdl.Trained) contain interaction terms. The
value must be false if the models do not contain interaction terms.
Example: 'IncludeInteractions',false
Data Types: logical

Mode — Aggregation level for output
'average' (default) | 'individual' | 'cumulative'

Aggregation level for the output, specified as 'average', 'individual', or 'cumulative'.

Value Description
'average' The output is a scalar average over all folds.
'individual' The output is a vector of length k containing one value per fold,

where k is the number of folds.

 kfoldEdge

35-3801



Value Description
'cumulative' Note If you want to specify this value, CVMdl must be a

ClassificationPartitionedEnsemble object or
ClassificationPartitionedGAM object.

• If CVMdl is ClassificationPartitionedEnsemble, then
the output is a vector of length
min(CVMdl.NumTrainedPerFold). Each element j is an
average over all folds that the function obtains by using
ensembles trained with weak learners 1:j.

• If CVMdl is ClassificationPartitionedGAM, then the
output value depends on the IncludeInteractions value.

• If IncludeInteractions is false, then L is a
(1 + min(NumTrainedPerFold.PredictorTrees))-
by-1 numeric column vector. The first element of L is an
average over all folds that is obtained only the intercept
(constant) term. The (j + 1)th element of L is an average
obtained using the intercept term and the first j predictor
trees per linear term.

• If IncludeInteractions is true, then L is a
(1 + min(NumTrainedPerFold.InteractionTrees))-
by-1 numeric column vector. The first element of L is an
average over all folds that is obtained using the intercept
(constant) term and all predictor trees per linear term. The
(j + 1)th element of L is an average obtained using the
intercept term, all predictor trees per linear term, and the
first j interaction trees per interaction term.

Example: 'Mode','individual'

Output Arguments
E — Classification edge
numeric scalar | numeric column vector

Classification edge on page 35-3803, returned as a numeric scalar or numeric column vector.

• If Mode is 'average', then E is the average classification edge over all folds.
• If Mode is 'individual', then E is a k-by-1 numeric column vector containing the classification

edge for each fold, where k is the number of folds.
• If Mode is 'cumulative' and CVMdl is ClassificationPartitionedEnsemble, then E is a

min(CVMdl.NumTrainedPerFold)-by-1 numeric column vector. Each element j is the average
classification edge over all folds that the function obtains by using ensembles trained with weak
learners 1:j.

• If Mode is 'cumulative' and CVMdl is ClassificationPartitionedGAM, then the output
value depends on the IncludeInteractions value.

• If IncludeInteractions is false, then L is a
(1 + min(NumTrainedPerFold.PredictorTrees))-by-1 numeric column vector. The first
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element of L is the average classification edge over all folds that is obtained using only the
intercept (constant) term. The (j + 1)th element of L is the average edge obtained using the
intercept term and the first j predictor trees per linear term.

• If IncludeInteractions is true, then L is a
(1 + min(NumTrainedPerFold.InteractionTrees))-by-1 numeric column vector. The
first element of L is the average classification edge over all folds that is obtained using the
intercept (constant) term and all predictor trees per linear term. The (j + 1)th element of L
is the average edge obtained using the intercept term, all predictor trees per linear term, and
the first j interaction trees per interaction term.

More About
Classification Edge

The classification edge is the weighted mean of the classification margins.

One way to choose among multiple classifiers, for example to perform feature selection, is to choose
the classifier that yields the greatest edge.

Classification Margin

The classification margin for binary classification is, for each observation, the difference between the
classification score for the true class and the classification score for the false class. The classification
margin for multiclass classification is the difference between the classification score for the true class
and the maximal score for the false classes.

If the margins are on the same scale (that is, the score values are based on the same score
transformation), then they serve as a classification confidence measure. Among multiple classifiers,
those that yield greater margins are better.

Algorithms
kfoldEdge computes the classification edge as described in the corresponding edge object function.
For a model-specific description, see the appropriate edge function reference page in the following
table.

Model Type edge Function
Discriminant analysis classifier edge
Ensemble classifier edge
Generalized additive model classifier edge
k-nearest neighbor classifier edge
Naive Bayes classifier edge
Neural network classifier edge
Support vector machine classifier edge
Binary decision tree for multiclass classification edge

Version History
Introduced in R2011a
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kfoldEdge returns a different value for cross-validated SVM and ensemble classifiers with
a nondefault cost matrix
Behavior changed in R2022a

If you specify a nondefault cost matrix when you cross-validate the input model object for an SVM or
ensemble classification model, the kfoldEdge function returns a different value compared to
previous releases.

The kfoldEdge function uses the observation weights stored in the W property. The way the function
uses the W property value has not changed. However, the property value stored in the input model
object has changed for cross-validated SVM and ensemble model objects with a nondefault cost
matrix, so the function can return a different value.

For details about the property value change, see “Cost property stores the user-specified cost matrix”
on page 35-613 (cross-validated SVM classifier) or “Cost property stores the user-specified cost
matrix” on page 35-561 (cross-validated ensemble classifier).

If you want the software to handle the cost matrix, prior probabilities, and observation weights as in
previous releases, adjust the prior probabilities and observation weights for the nondefault cost
matrix, as described in “Adjust Prior Probabilities and Observation Weights for Misclassification Cost
Matrix” on page 19-9. Then, when you train a classification model, specify the adjusted prior
probabilities and observation weights by using the Prior and Weights name-value arguments,
respectively, and use the default cost matrix.

Extended Capabilities
GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

Usage notes and limitations:

• This function fully supports GPU arrays for the following cross-validated model objects:

• Ensemble classifier trained with fitcensemble
• k-nearest neighbor classifier trained with fitcknn
• Support vector machine classifier trained with fitcsvm
• Binary decision tree for multiclass classification trained with fitctree

For more information, see “Run MATLAB Functions on a GPU” (Parallel Computing Toolbox).

See Also
kfoldPredict | kfoldMargin | kfoldLoss | kfoldfun | ClassificationPartitionedModel
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kfoldfun
Package: classreg.learning.partition

Cross-validate function using cross-validated ECOC model

Syntax
vals = kfoldfun(CVMdl,fun)

Description
vals = kfoldfun(CVMdl,fun) cross-validates the function fun by applying fun to the data stored
in the cross-validated ECOC model CVMdl. You must pass fun as a function handle.

Examples

Estimate Classification Error Using Custom Loss Function

Train a multiclass ECOC classifier, and then cross-validate the model using a custom k-fold loss
function.

Load Fisher’s iris data set. Specify the predictor data X, the response data Y, and the order of the
classes in Y.

load fisheriris
X = meas;
Y = categorical(species);
classOrder = unique(Y); % Class order
rng(1); % For reproducibility

Train and cross-validate an ECOC model using support vector machine (SVM) binary classifiers.
Standardize the predictors using an SVM template, and specify the class order.

t = templateSVM('Standardize',1);
CVMdl = fitcecoc(X,Y,'CrossVal','on','Learners',t,...
    'ClassNames',classOrder);

CVMdl is a ClassificationPartitionedECOC model. By default, the software implements 10-fold
cross-validation.

Compute the classification error (proportion of misclassified observations) for the validation-fold
observations.

L = kfoldLoss(CVMdl)

L = 0.0400

Examine the result when the cost of misclassifying a flower as versicolor is 10 and the cost of any
other error is 1. Write a function named noversicolor that assigns a cost of 1 for general
misclassification and a cost of 10 for misclassifying a flower as versicolor.
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If you use the live script file for this example, the noversicolor function is already included at the
end of the file. Otherwise, you need to create this function at the end of your .m file or add it as a file
on the MATLAB path.

Compute the mean misclassification error with the noversicolor cost.

foldLoss = kfoldfun(CVMdl,@noversicolor);
mean(foldLoss)

ans = single
    0.0667

This code creates the function noversicolor.

function averageCost = noversicolor(CMP,Xtrain,Ytrain,Wtrain,Xtest,Ytest,Wtest)
% noversicolor: Example custom cross-validation function that assigns a cost of
%   10 for misclassifying versicolor irises and a cost of 1 for misclassifying
%   the other irises. This example function requires the fisheriris data
%   set.
Ypredict = predict(CMP,Xtest);
misclassified = not(strcmp(Ypredict,Ytest)); % Different result
classifiedAsVersicolor = strcmp(Ypredict,'versicolor'); % Index of bad decisions
cost = sum(misclassified) + ...
    9*sum(misclassified & classifiedAsVersicolor); % Total differences
averageCost = single(cost/numel(Ytest)); % Average error
end

Input Arguments
CVMdl — Cross-validated ECOC model
ClassificationPartitionedECOC model

Cross-validated ECOC model, specified as a ClassificationPartitionedECOC model.

fun — Cross-validated function
function handle

Cross-validated function, specified as a function handle. fun has this syntax:

testvals = fun(CMP,Xtrain,Ytrain,Wtrain,Xtest,Ytest,Wtest)

• CMP is a compact model stored in one element of the CVMdl.Trained property.
• Xtrain is the training matrix of predictor values.
• Ytrain is the training array of response values.
• Wtrain is the set of training weights for observations.
• Xtest and Ytest are the validation data, with associated weights Wtest.
• The returned value testvals must have the same size across all folds.

Data Types: function_handle
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Output Arguments
vals — Cross-validation results
numeric matrix

Cross-validation results, returned as a numeric matrix. vals corresponds to the arrays of the
testvals output, concatenated vertically over all the folds. For example, if testvals from every
fold is a numeric vector of length n, kfoldfun returns a KFold-by-n numeric matrix with one row
per fold.

Version History
Introduced in R2014b

Extended Capabilities
GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

This function fully supports GPU arrays. For more information, see “Run MATLAB Functions on a
GPU” (Parallel Computing Toolbox).

See Also
kfoldPredict | kfoldEdge | kfoldMargin | kfoldLoss | crossval |
ClassificationPartitionedECOC | ClassificationECOC | fitcecoc
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kfoldfun
Package: classreg.learning.partition

Cross-validate function for classification

Syntax
vals = kfoldfun(CVMdl,fun)

Description
vals = kfoldfun(CVMdl,fun) cross-validates the function fun by applying fun to the data stored
in the cross-validated model CVMdl. You must pass fun as a function handle.

Examples

Estimate Classification Loss Using Custom Loss Function

Train a classification tree classifier, and then cross-validate it using a custom k-fold loss function.

Load Fisher’s iris data set.

load fisheriris

Train a classification tree classifier.

Mdl = fitctree(meas,species);

Mdl is a ClassificationTree model.

Cross-validate Mdl using the default 10-fold cross-validation. Compute the classification error
(proportion of misclassified observations) for the validation-fold observations.

rng(1); % For reproducibility
CVMdl = crossval(Mdl);
L = kfoldLoss(CVMdl,'LossFun','classiferror')

L = 0.0467

Examine the result when the cost of misclassifying a flower as versicolor is 10, and the cost of any
other misclassification is 1. Create the custom function noversicolor (shown at the end of this
example). This function attributes a cost of 10 for misclassifying a flower as versicolor, and a cost
of 1 for any other misclassification.

Compute the mean misclassification error with the noversicolor cost.

mean(kfoldfun(CVMdl,@noversicolor))

ans = 0.2267

This code creates the function noversicolor.
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function averageCost = noversicolor(CMP,~,~,~,Xtest,Ytest,~)
% noversicolor Example custom cross-validation function
%    Attributes a cost of 10 for misclassifying versicolor irises, and 1 for
%    the other irises.  This example function requires the fisheriris data
%    set.
Ypredict = predict(CMP,Xtest);
misclassified = not(strcmp(Ypredict,Ytest)); % Different result
classifiedAsVersicolor = strcmp(Ypredict,'versicolor'); % Index of bad decisions
cost = sum(misclassified) + ...
    9*sum(misclassified & classifiedAsVersicolor); % Total differences
averageCost = cost/numel(Ytest); % Average error
end

Input Arguments
CVMdl — Cross-validated model
ClassificationPartitionedModel object | ClassificationPartitionedEnsemble object |
ClassificationPartitionedGAM object

Cross-validated model, specified as a ClassificationPartitionedModel object,
ClassificationPartitionedEnsemble object, or ClassificationPartitionedGAM object.

fun — Cross-validated function
function handle

Cross-validated function, specified as a function handle. fun has the syntax:

testvals = fun(CMP,Xtrain,Ytrain,Wtrain,Xtest,Ytest,Wtest)

• CMP is a compact model stored in one element of the CVMdl.Trained property.
• Xtrain is the training matrix of predictor values.
• Ytrain is the training array of response values.
• Wtrain are the training weights for observations.
• Xtest and Ytest are the test data, with associated weights Wtest.
• The returned value testvals must have the same size across all folds.

Data Types: function_handle

Output Arguments
vals — Cross-validation results
numeric matrix

Cross-validation results, returned as a numeric matrix. vals contains the arrays of testvals output,
concatenated vertically over all folds. For example, if testvals from every fold is a numeric vector
of length N, kfoldfun returns a KFold-by-N numeric matrix with one row per fold.
Data Types: double

Version History
Introduced in R2011a
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Extended Capabilities
GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

Usage notes and limitations:

• This function fully supports GPU arrays for the following cross-validated model objects:

• Ensemble classifier trained with fitcensemble
• k-nearest neighbor classifier trained with fitcknn
• Support vector machine classifier trained with fitcsvm
• Binary decision tree for multiclass classification trained with fitctree

For more information, see “Run MATLAB Functions on a GPU” (Parallel Computing Toolbox).

See Also
ClassificationPartitionedModel | kfoldPredict | kfoldEdge | kfoldMargin | kfoldLoss
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kfoldfun
Package: classreg.learning.partition

Cross-validate function for regression

Syntax
vals = kfoldfun(CVMdl,fun)

Description
vals = kfoldfun(CVMdl,fun) cross-validates the function fun by applying fun to the data stored
in the cross-validated model CVMdl. You must pass fun as a function handle.

Examples

Estimate Regression Loss Using Custom Loss Function

Train a regression tree model, and then cross-validate it using a custom k-fold loss function.

Load the imports-85 data set. Train a regression tree using a subset of the data.

load imports-85
Mdl = fitrtree(X(:,[4 5]),X(:,16),...
    'PredictorNames',{'Length','Width'},...
    'ResponseName','Price');

Cross-validate the regression tree, and obtain the mean squared error.

CVMdl = crossval(Mdl);
L = kfoldLoss(CVMdl)

L = 1.9167e+07

Examine the error when you use a simple averaging of training responses instead of predictions in
the calculation.

f = @(CMP,Xtrain,Ytrain,Wtrain,Xtest,Ytest,Wtest)...
    mean((Ytest-mean(Ytrain)).^2)

f = function_handle with value:
    @(CMP,Xtrain,Ytrain,Wtrain,Xtest,Ytest,Wtest)mean((Ytest-mean(Ytrain)).^2)

mean(kfoldfun(CVMdl,f))

ans = 6.3586e+07
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Input Arguments
CVMdl — Cross-validated model
RegressionPartitionedModel object | RegressionPartitionedEnsemble object |
RegressionPartitionedGAM object | RegressionPartitionedGP object |
RegressionPartitionedSVM object

Cross-validated model, specified as a RegressionPartitionedModel object,
RegressionPartitionedEnsemble object, RegressionPartitionedGAM object,
RegressionPartitionedGP object, or RegressionPartitionedSVM object.

fun — Cross-validated function
function handle

Cross-validated function, specified as a function handle. fun has the syntax:

testvals = fun(CMP,Xtrain,Ytrain,Wtrain,Xtest,Ytest,Wtest)

• CMP is a compact model stored in one element of the CVMdl.Trained property.
• Xtrain is the training matrix of predictor values.
• Ytrain is the training array of response values.
• Wtrain are the training weights for observations.
• Xtest and Ytest are the test data, with associated weights Wtest.
• The returned value testvals must have the same size across all folds.

Data Types: function_handle

Output Arguments
vals — Cross-validation results
numeric matrix

Cross-validation results, returned as a numeric matrix. vals contains the arrays of testvals output,
concatenated vertically over all folds. For example, if testvals from every fold is a numeric vector
of length N, kfoldfun returns a KFold-by-N numeric matrix with one row per fold.
Data Types: double

Version History
Introduced in R2011a

Extended Capabilities
GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

Usage notes and limitations:

• This function fully supports GPU arrays for regression tree model objects fitted with fitrtree or
fitrensemble.
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For more information, see “Run MATLAB Functions on a GPU” (Parallel Computing Toolbox).

See Also
RegressionPartitionedEnsemble | kfoldPredict | kfoldLoss |
RegressionPartitionedModel | RegressionPartitionedSVM | RegressionPartitionedGAM
| RegressionPartitionedGP
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kfoldLoss
Package: classreg.learning.partition

Classification loss for cross-validated ECOC model

Syntax
loss = kfoldLoss(CVMdl)
loss = kfoldLoss(CVMdl,Name,Value)

Description
loss = kfoldLoss(CVMdl) returns the classification loss obtained by the cross-validated ECOC
model (ClassificationPartitionedECOC) CVMdl. For every fold, kfoldLoss computes the
classification loss for validation-fold observations using a model trained on training-fold observations.
CVMdl.X contains both sets of observations.

loss = kfoldLoss(CVMdl,Name,Value) returns the classification loss with additional options
specified by one or more name-value pair arguments. For example, specify the number of folds,
decoding scheme, or verbosity level.

Examples

Determine k-Fold Cross-Validation Loss

Load Fisher's iris data set. Specify the predictor data X, the response data Y, and the order of the
classes in Y.

load fisheriris
X = meas;
Y = categorical(species);
classOrder = unique(Y); % Class order
rng(1); % For reproducibility

Train and cross-validate an ECOC model using support vector machine (SVM) binary classifiers.
Standardize the predictors using an SVM template, and specify the class order.

t = templateSVM('Standardize',1);
CVMdl = fitcecoc(X,Y,'CrossVal','on','Learners',t,'ClassNames',classOrder);

CVMdl is a ClassificationPartitionedECOC model. By default, the software implements 10-fold
cross-validation. You can specify a different number of folds using the 'KFold' name-value pair
argument.

Estimate the average classification error.

L = kfoldLoss(CVMdl)

L = 0.0400

The average classification error for the folds is 4%.
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Alternatively, you can obtain the per-fold losses by specifying the name-value pair
'Mode','individual' in kfoldLoss.

Display Individual Losses for Each Cross-Validation Fold

The classification loss is a measure of classifier quality. To determine which folds perform poorly,
display the losses for each fold.

Load Fisher's iris data set. Specify the predictor data X, the response data Y, and the order of the
classes in Y.

load fisheriris
X = meas;
Y = categorical(species);
classOrder = unique(Y);
rng(1); % For reproducibility

Train an ECOC model using SVM binary classifiers. Use 8-fold cross-validation, standardize the
predictors using an SVM template, and specify the class order.

t = templateSVM('Standardize',1);
CVMdl = fitcecoc(X,Y,'KFold',8,'Learners',t,'ClassNames',classOrder);

Estimate the average classification loss across all folds and the losses for each fold.

loss = kfoldLoss(CVMdl)

loss = 0.0333

losses = kfoldLoss(CVMdl,'Mode','individual')

losses = 8×1

    0.0556
    0.0526
    0.1579
         0
         0
         0
         0
         0

The third fold misclassifies a much higher percentage of observations than any other fold.

Return the average classification loss for the folds that perform well by specifying the 'Folds'
name-value pair argument.

newloss = kfoldLoss(CVMdl,'Folds',[1:2 4:8])

newloss = 0.0153

The total classification loss decreases by approximately half its original size.

Consider adjusting parameters of the binary classifiers or the coding design to see if performance for
all folds improves.
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Determine ECOC Model Quality Using Custom Cross-Validation Loss

In addition to knowing whether a model generally classifies observations correctly, you can determine
how well the model classifies an observation into its predicted class. One way to determine this type
of model quality is to pass a custom loss function to kfoldLoss.

Load Fisher's iris data set. Specify the predictor data X, the response data Y, and the order of the
classes in Y.

load fisheriris
X = meas;
Y = categorical(species);
classOrder = unique(Y)  % Class order

classOrder = 3x1 categorical
     setosa 
     versicolor 
     virginica 

rng(1) % For reproducibility

Train and cross-validate an ECOC model using SVM binary classifiers. Standardize the predictors
using an SVM template, and specify the class order.

t = templateSVM('Standardize',1);
CVMdl = fitcecoc(X,Y,'CrossVal','on','Learners',t,'ClassNames',classOrder);

CVMdl is a ClassificationPartitionedECOC model. By default, the software implements 10-fold
cross-validation. You can specify a different number of folds using the 'KFold' name-value pair
argument.

Create a custom function that takes the minimal loss for each observation, then averages the minimal
losses for all observations. S corresponds to the NegLoss output of kfoldPredict.

lossfun = @(~,S,~,~)mean(min(-S,[],2));

Compute the cross-validated custom loss.

kfoldLoss(CVMdl,'LossFun',lossfun)

ans = 0.0152

The average minimal binary loss for the validation-fold observations is 0.0101.

Input Arguments
CVMdl — Cross-validated ECOC model
ClassificationPartitionedECOC model

Cross-validated ECOC model, specified as a ClassificationPartitionedECOC model. You can
create a ClassificationPartitionedECOC model in two ways:
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• Pass a trained ECOC model (ClassificationECOC) to crossval.
• Train an ECOC model using fitcecoc and specify any one of these cross-validation name-value

pair arguments: 'CrossVal', 'CVPartition', 'Holdout', 'KFold', or 'Leaveout'.

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: kfoldLoss(CVMdl,'Folds',[1 3 5]) specifies to use only the first, third, and fifth
folds to calculate the classification loss.

BinaryLoss — Binary learner loss function
'hamming' | 'linear' | 'logit' | 'exponential' | 'binodeviance' | 'hinge' | 'quadratic'
| function handle

Binary learner loss function, specified as the comma-separated pair consisting of 'BinaryLoss' and
a built-in loss function name or function handle.

• This table describes the built-in functions, where yj is the class label for a particular binary learner
(in the set {–1,1,0}), sj is the score for observation j, and g(yj,sj) is the binary loss formula.

Value Description Score Domain g(yj,sj)
'binodeviance' Binomial deviance (–∞,∞) log[1 + exp(–2yjsj)]/

[2log(2)]
'exponential' Exponential (–∞,∞) exp(–yjsj)/2
'hamming' Hamming [0,1] or (–∞,∞) [1 – sign(yjsj)]/2
'hinge' Hinge (–∞,∞) max(0,1 – yjsj)/2
'linear' Linear (–∞,∞) (1 – yjsj)/2
'logit' Logistic (–∞,∞) log[1 + exp(–yjsj)]/

[2log(2)]
'quadratic' Quadratic [0,1] [1 – yj(2sj – 1)]2/2

The software normalizes binary losses so that the loss is 0.5 when yj = 0. Also, the software
calculates the mean binary loss for each class.

• For a custom binary loss function, for example customFunction, specify its function handle
'BinaryLoss',@customFunction.

customFunction has this form:

bLoss = customFunction(M,s)

• M is the K-by-B coding matrix stored in Mdl.CodingMatrix.
• s is the 1-by-B row vector of classification scores.
• bLoss is the classification loss. This scalar aggregates the binary losses for every learner in a

particular class. For example, you can use the mean binary loss to aggregate the loss over the
learners for each class.
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• K is the number of classes.
• B is the number of binary learners.

For an example of passing a custom binary loss function, see “Predict Test-Sample Labels of ECOC
Model Using Custom Binary Loss Function” on page 35-5751.

The default BinaryLoss value depends on the score ranges returned by the binary learners. This
table identifies what some default BinaryLoss values are when you use the default score transform
(ScoreTransform property of the model is 'none').

Assumption Default Value
All binary learners are any of the following:

• Classification decision trees
• Discriminant analysis models
• k-nearest neighbor models
• Naive Bayes models

'quadratic'

All binary learners are SVMs. 'hinge'
All binary learners are ensembles trained by AdaboostM1 or
GentleBoost.

'exponential'

All binary learners are ensembles trained by LogitBoost. 'binodeviance'
You specify to predict class posterior probabilities by setting
'FitPosterior',true in fitcecoc.

'quadratic'

Binary learners are heterogeneous and use different loss functions. 'hamming'

To check the default value, use dot notation to display the BinaryLoss property of the trained model
at the command line.
Example: 'BinaryLoss','binodeviance'
Data Types: char | string | function_handle

Decoding — Decoding scheme
'lossweighted' (default) | 'lossbased'

Decoding scheme that aggregates the binary losses, specified as the comma-separated pair consisting
of 'Decoding' and 'lossweighted' or 'lossbased'. For more information, see “Binary Loss” on
page 35-3821.
Example: 'Decoding','lossbased'

Folds — Fold indices for prediction
1:CVMdl.KFold (default) | numeric vector of positive integers

Fold indices for prediction, specified as the comma-separated pair consisting of 'Folds' and a
numeric vector of positive integers. The elements of Folds must be within the range from 1 to
CVMdl.KFold.

The software uses only the folds specified in Folds for prediction.
Example: 'Folds',[1 4 10]
Data Types: single | double
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LossFun — Loss function
'classiferror' (default) | 'classifcost' | function handle

Loss function, specified as 'classiferror', 'classifcost', or a function handle.

• Specify the built-in function 'classiferror'. In this case, the loss function is the classification
error on page 35-3820.

• Specify the built-in function 'classifcost'. In this case, the loss function is the observed
misclassification cost on page 35-3820. If you use the default cost matrix (whose element value is
0 for correct classification and 1 for incorrect classification), then the loss values for
'classifcost' and 'classiferror' are identical.

• Or, specify your own function using function handle notation.

Assume that n is the number of observations in the training data (CVMdl.NumObservations) and
K is the number of classes (numel(CVMdl.ClassNames)). Your function needs the signature
lossvalue = lossfun(C,S,W,Cost), where:

• The output argument lossvalue is a scalar.
• You specify the function name (lossfun).
• C is an n-by-K logical matrix with rows indicating the class to which the corresponding

observation belongs. The column order corresponds to the class order in CVMdl.ClassNames.

Construct C by setting C(p,q) = 1 if observation p is in class q, for each row. Set every
element of row p to 0.

• S is an n-by-K numeric matrix of negated loss values for the classes. Each row corresponds to
an observation. The column order corresponds to the class order in CVMdl.ClassNames. The
input S resembles the output argument NegLoss of kfoldPredict.

• W is an n-by-1 numeric vector of observation weights. If you pass W, the software normalizes its
elements to sum to 1.

• Cost is a K-by-K numeric matrix of misclassification costs. For example, Cost = ones(K) –
eye(K) specifies a cost of 0 for correct classification and 1 for misclassification.

Specify your function using 'LossFun',@lossfun.

Data Types: char | string | function_handle

Mode — Aggregation level for output
'average' (default) | 'individual'

Aggregation level for the output, specified as the comma-separated pair consisting of 'Mode' and
'average' or 'individual'.

This table describes the values.

Value Description
'average' The output is a scalar average over all folds.
'individual' The output is a vector of length k containing one

value per fold, where k is the number of folds.

Example: 'Mode','individual'
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Options — Estimation options
[] (default) | structure array returned by statset

Estimation options, specified as the comma-separated pair consisting of 'Options' and a structure
array returned by statset.

To invoke parallel computing:

• You need a Parallel Computing Toolbox license.
• Specify 'Options',statset('UseParallel',true).

Verbose — Verbosity level
0 (default) | 1

Verbosity level, specified as the comma-separated pair consisting of 'Verbose' and 0 or 1. Verbose
controls the number of diagnostic messages that the software displays in the Command Window.

If Verbose is 0, then the software does not display diagnostic messages. Otherwise, the software
displays diagnostic messages.
Example: 'Verbose',1
Data Types: single | double

Output Arguments
loss — Classification loss
numeric scalar | numeric column vector

Classification loss, returned as a numeric scalar or numeric column vector.

If Mode is 'average', then loss is the average classification loss over all folds. Otherwise, loss is a
k-by-1 numeric column vector containing the classification loss for each fold, where k is the number
of folds.

More About
Classification Error

The classification error has the form

L = ∑
j = 1

n
w je j,

where:

• wj is the weight for observation j. The software renormalizes the weights to sum to 1.
• ej = 1 if the predicted class of observation j differs from its true class, and 0 otherwise.

In other words, the classification error is the proportion of observations misclassified by the classifier.

Observed Misclassification Cost

The observed misclassification cost has the form
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L = ∑
j = 1

n
w jcy jy j,

where:

• wj is the weight for observation j. The software renormalizes the weights to sum to 1.
• cy jy j is the user-specified cost of classifying an observation into class y j when its true class is yj.

Binary Loss

The binary loss is a function of the class and classification score that determines how well a binary
learner classifies an observation into the class.

Suppose the following:

• mkj is element (k,j) of the coding design matrix M—that is, the code corresponding to class k of
binary learner j. M is a K-by-B matrix, where K is the number of classes, and B is the number of
binary learners.

• sj is the score of binary learner j for an observation.
• g is the binary loss function.
• k  is the predicted class for the observation.

The decoding scheme of an ECOC model specifies how the software aggregates the binary losses and
determines the predicted class for each observation. The software supports two decoding schemes:

• Loss-based decoding [2] (Decoding is 'lossbased') — The predicted class of an observation
corresponds to the class that produces the minimum average of the binary losses over all binary
learners.

k = argmin
k

1
B ∑j = 1

B
mk j g(mk j, s j) .

• Loss-weighted decoding [3] (Decoding is 'lossweighted') — The predicted class of an
observation corresponds to the class that produces the minimum average of the binary losses over
the binary learners for the corresponding class.

k = argmin
k

∑
j = 1

B
mk j g(mk j, s j)

∑ j = 1

B

mk j

.

The denominator corresponds to the number of binary learners for class k. [1] suggests that loss-
weighted decoding improves classification accuracy by keeping loss values for all classes in the
same dynamic range.

The predict, resubPredict, and kfoldPredict functions return the negated value of the
objective function of argmin as the second output argument (NegLoss) for each observation and
class.

This table summarizes the supported binary loss functions, where yj is a class label for a particular
binary learner (in the set {–1,1,0}), sj is the score for observation j, and g(yj,sj) is the binary loss
function.
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Value Description Score Domain g(yj,sj)
"binodeviance" Binomial deviance (–∞,∞) log[1 + exp(–2yjsj)]/

[2log(2)]
"exponential" Exponential (–∞,∞) exp(–yjsj)/2
"hamming" Hamming [0,1] or (–∞,∞) [1 – sign(yjsj)]/2
"hinge" Hinge (–∞,∞) max(0,1 – yjsj)/2
"linear" Linear (–∞,∞) (1 – yjsj)/2
"logit" Logistic (–∞,∞) log[1 + exp(–yjsj)]/

[2log(2)]
"quadratic" Quadratic [0,1] [1 – yj(2sj – 1)]2/2

The software normalizes binary losses so that the loss is 0.5 when yj = 0, and aggregates using the
average of the binary learners.

Do not confuse the binary loss with the overall classification loss (specified by the LossFun name-
value argument of the kfoldLoss and kfoldPredict object functions), which measures how well
an ECOC classifier performs as a whole.

Version History
Introduced in R2014b

References
[1] Allwein, E., R. Schapire, and Y. Singer. “Reducing multiclass to binary: A unifying approach for

margin classifiers.” Journal of Machine Learning Research. Vol. 1, 2000, pp. 113–141.

[2] Escalera, S., O. Pujol, and P. Radeva. “Separability of ternary codes for sparse designs of error-
correcting output codes.” Pattern Recog. Lett., Vol. 30, Issue 3, 2009, pp. 285–297.

[3] Escalera, S., O. Pujol, and P. Radeva. “On the decoding process in ternary error-correcting output
codes.” IEEE Transactions on Pattern Analysis and Machine Intelligence. Vol. 32, Issue 7,
2010, pp. 120–134.

Extended Capabilities
Automatic Parallel Support
Accelerate code by automatically running computation in parallel using Parallel Computing Toolbox™.

To run in parallel, specify the 'Options' name-value argument in the call to this function and set the
'UseParallel' field of the options structure to true using statset.

For example: 'Options',statset('UseParallel',true)

For more information about parallel computing, see “Run MATLAB Functions with Automatic Parallel
Support” (Parallel Computing Toolbox).

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.
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This function fully supports GPU arrays. For more information, see “Run MATLAB Functions on a
GPU” (Parallel Computing Toolbox).

See Also
ClassificationPartitionedECOC | ClassificationECOC | kfoldPredict | fitcecoc |
statset | loss

Topics
“Quick Start Parallel Computing for Statistics and Machine Learning Toolbox” on page 33-2
“Reproducibility in Parallel Statistical Computations” on page 33-16
“Concepts of Parallel Computing in Statistics and Machine Learning Toolbox” on page 33-6
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kfoldLoss
Package: classreg.learning.partition

Classification loss for cross-validated kernel classification model

Syntax
loss = kfoldLoss(CVMdl)
loss = kfoldLoss(CVMdl,Name,Value)

Description
loss = kfoldLoss(CVMdl) returns the classification loss on page 35-3828 obtained by the cross-
validated, binary kernel model (ClassificationPartitionedKernel) CVMdl. For every fold,
kfoldLoss computes the classification loss for validation-fold observations using a model trained on
training-fold observations.

By default, kfoldLoss returns the classification error.

loss = kfoldLoss(CVMdl,Name,Value) returns the classification loss with additional options
specified by one or more name-value pair arguments. For example, specify the classification loss
function, number of folds, or aggregation level.

Examples

Estimate k-Fold Cross-Validation Classification Error

Load the ionosphere data set. This data set has 34 predictors and 351 binary responses for radar
returns, which are labeled either bad ('b') or good ('g').

load ionosphere

Cross-validate a binary kernel classification model using the data.

CVMdl = fitckernel(X,Y,'Crossval','on')

CVMdl = 
  ClassificationPartitionedKernel
    CrossValidatedModel: 'Kernel'
           ResponseName: 'Y'
        NumObservations: 351
                  KFold: 10
              Partition: [1x1 cvpartition]
             ClassNames: {'b'  'g'}
         ScoreTransform: 'none'

  Properties, Methods
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CVMdl is a ClassificationPartitionedKernel model. By default, the software implements 10-
fold cross-validation. To specify a different number of folds, use the 'KFold' name-value pair
argument instead of 'Crossval'.

Estimate the cross-validated classification loss. By default, the software computes the classification
error.

loss = kfoldLoss(CVMdl)

loss = 0.0940

Alternatively, you can obtain the per-fold classification errors by specifying the name-value pair
'Mode','individual' in kfoldLoss.

Specify Custom Classification Loss

Load the ionosphere data set. This data set has 34 predictors and 351 binary responses for radar
returns, which are labeled either bad ('b') or good ('g').

load ionosphere

Cross-validate a binary kernel classification model using the data.

CVMdl = fitckernel(X,Y,'Crossval','on')

CVMdl = 
  ClassificationPartitionedKernel
    CrossValidatedModel: 'Kernel'
           ResponseName: 'Y'
        NumObservations: 351
                  KFold: 10
              Partition: [1x1 cvpartition]
             ClassNames: {'b'  'g'}
         ScoreTransform: 'none'

  Properties, Methods

CVMdl is a ClassificationPartitionedKernel model. By default, the software implements 10-
fold cross-validation. To specify a different number of folds, use the 'KFold' name-value pair
argument instead of 'Crossval'.

Create an anonymous function that measures linear loss, that is,

L =
∑ j −w jy jf j
∑ jw j

.

w j is the weight for observation j, y j is the response j (–1 for the negative class and 1 otherwise), and
f j is the raw classification score of observation j.

linearloss = @(C,S,W,Cost)sum(-W.*sum(S.*C,2))/sum(W);

Custom loss functions must be written in a particular form. For rules on writing a custom loss
function, see the 'LossFun' name-value pair argument.
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Estimate the cross-validated classification loss using the linear loss function.

loss = kfoldLoss(CVMdl,'LossFun',linearloss)

loss = -0.7792

Input Arguments
CVMdl — Cross-validated, binary kernel classification model
ClassificationPartitionedKernel model object

Cross-validated, binary kernel classification model, specified as a
ClassificationPartitionedKernel model object. You can create a
ClassificationPartitionedKernel model by using fitckernel and specifying any one of the
cross-validation name-value pair arguments.

To obtain estimates, kfoldLoss applies the same data used to cross-validate the kernel classification
model (X and Y).

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: kfoldLoss(CVMdl,'Folds',[1 3 5]) specifies to use only the first, third, and fifth
folds to calculate the classification loss.

Folds — Fold indices for prediction
1:CVMdl.KFold (default) | numeric vector of positive integers

Fold indices for prediction, specified as the comma-separated pair consisting of 'Folds' and a
numeric vector of positive integers. The elements of Folds must be within the range from 1 to
CVMdl.KFold.

The software uses only the folds specified in Folds for prediction.
Example: 'Folds',[1 4 10]
Data Types: single | double

LossFun — Loss function
'classiferror' (default) | 'binodeviance' | 'classifcost' | 'exponential' | 'hinge' |
'logit' | 'mincost' | 'quadratic' | function handle

Loss function, specified as the comma-separated pair consisting of 'LossFun' and a built-in loss
function name or a function handle.

• This table lists the available loss functions. Specify one using its corresponding value.

Value Description
'binodeviance' Binomial deviance
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Value Description
'classifcost' Observed misclassification cost
'classiferror' Misclassified rate in decimal
'exponential' Exponential loss
'hinge' Hinge loss
'logit' Logistic loss
'mincost' Minimal expected misclassification cost (for

classification scores that are posterior
probabilities)

'quadratic' Quadratic loss

'mincost' is appropriate for classification scores that are posterior probabilities. For kernel
classification models, logistic regression learners return posterior probabilities as classification
scores by default, but SVM learners do not (see kfoldPredict).

• Specify your own function by using function handle notation.

Assume that n is the number of observations in X, and K is the number of distinct classes
(numel(CVMdl.ClassNames), where CVMdl is the input model). Your function must have this
signature:

lossvalue = lossfun(C,S,W,Cost)

• The output argument lossvalue is a scalar.
• You specify the function name (lossfun).
• C is an n-by-K logical matrix with rows indicating the class to which the corresponding

observation belongs. The column order corresponds to the class order in CVMdl.ClassNames.

Construct C by setting C(p,q) = 1, if observation p is in class q, for each row. Set all other
elements of row p to 0.

• S is an n-by-K numeric matrix of classification scores. The column order corresponds to the
class order in CVMdl.ClassNames. S is a matrix of classification scores, similar to the output
of kfoldPredict.

• W is an n-by-1 numeric vector of observation weights. If you pass W, the software normalizes the
weights to sum to 1.

• Cost is a K-by-K numeric matrix of misclassification costs. For example, Cost = ones(K) –
eye(K) specifies a cost of 0 for correct classification, and 1 for misclassification.

Example: 'LossFun',@lossfun
Data Types: char | string | function_handle

Mode — Aggregation level for output
'average' (default) | 'individual'

Aggregation level for the output, specified as the comma-separated pair consisting of 'Mode' and
'average' or 'individual'.

This table describes the values.
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Value Description
'average' The output is a scalar average over all folds.
'individual' The output is a vector of length k containing one

value per fold, where k is the number of folds.

Example: 'Mode','individual'

Output Arguments
loss — Classification loss
numeric scalar | numeric column vector

Classification loss on page 35-3828, returned as a numeric scalar or numeric column vector.

If Mode is 'average', then loss is the average classification loss over all folds. Otherwise, loss is a
k-by-1 numeric column vector containing the classification loss for each fold, where k is the number
of folds.

More About
Classification Loss

Classification loss functions measure the predictive inaccuracy of classification models. When you
compare the same type of loss among many models, a lower loss indicates a better predictive model.

Consider the following scenario.

• L is the weighted average classification loss.
• n is the sample size.

• yj is the observed class label. The software codes it as –1 or 1, indicating the negative or positive
class (or the first or second class in the ClassNames property), respectively.

• f(Xj) is the positive-class classification score for observation (row) j of the predictor data X.
• mj = yjf(Xj) is the classification score for classifying observation j into the class corresponding to

yj. Positive values of mj indicate correct classification and do not contribute much to the average
loss. Negative values of mj indicate incorrect classification and contribute significantly to the
average loss.

• The weight for observation j is wj. The software normalizes the observation weights so that they
sum to the corresponding prior class probability stored in the Prior property. Therefore,

∑
j = 1

n
w j = 1.

Given this scenario, the following table describes the supported loss functions that you can specify by
using the LossFun name-value argument.
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Loss Function Value of LossFun Equation
Binomial deviance 'binodeviance'

L = ∑
j = 1

n
w jlog 1 + exp −2m j .

Observed
misclassification cost

'classifcost'
L = ∑

j = 1

n
w jcy jy j,

where y j is the class label corresponding to the
class with the maximal score, and cy jy j is the
user-specified cost of classifying an observation
into class y j when its true class is yj.

Misclassified rate in
decimal

'classiferror'
L = ∑

j = 1

n
w jI y j ≠ y j ,

where I{·} is the indicator function.
Cross-entropy loss 'crossentropy' 'crossentropy' is appropriate only for neural

network models.

The weighted cross-entropy loss is

L = − ∑
j = 1

n w jlog(m j)
Kn ,

where the weights w j are normalized to sum to n
instead of 1.

Exponential loss 'exponential'
L = ∑

j = 1

n
w jexp −m j .

Hinge loss 'hinge'

L =∑
j = 1

n

w jmax 0, 1−m j .

Logit loss 'logit'
L = ∑

j = 1

n
w jlog 1 + exp −m j .
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Loss Function Value of LossFun Equation
Minimal expected
misclassification cost

'mincost' 'mincost' is appropriate only if classification
scores are posterior probabilities.

The software computes the weighted minimal
expected classification cost using this procedure
for observations j = 1,...,n.

1 Estimate the expected misclassification cost
of classifying the observation Xj into the class
k:

γ jk = f X j ′C k .

f(Xj) is the column vector of class posterior
probabilities for the observation Xj. C is the
cost matrix stored in the Cost property of
the model.

2 For observation j, predict the class label
corresponding to the minimal expected
misclassification cost:

y j = argmin
k = 1, ..., K

γ jk .

3 Using C, identify the cost incurred (cj) for
making the prediction.

The weighted average of the minimal expected
misclassification cost loss is

L = ∑
j = 1

n
w jc j .

Quadratic loss 'quadratic'
L = ∑

j = 1

n
w j 1−m j

2 .

If you use the default cost matrix (whose element value is 0 for correct classification and 1 for
incorrect classification), then the loss values for 'classifcost', 'classiferror', and
'mincost' are identical. For a model with a nondefault cost matrix, the 'classifcost' loss is
equivalent to the 'mincost' loss most of the time. These losses can be different if prediction into the
class with maximal posterior probability is different from prediction into the class with minimal
expected cost. Note that 'mincost' is appropriate only if classification scores are posterior
probabilities.

This figure compares the loss functions (except 'classifcost', 'crossentropy', and
'mincost') over the score m for one observation. Some functions are normalized to pass through
the point (0,1).
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Version History
Introduced in R2018b

kfoldLoss returns a different value for a model with a nondefault cost matrix
Behavior changed in R2022a

If you specify a nondefault cost matrix when you train the input model object, the kfoldLoss
function returns a different value compared to previous releases.

The kfoldLoss function uses the observation weights stored in the W property. Also, the function
uses the cost matrix stored in the Cost property if you specify the LossFun name-value argument as
"classifcost" or "mincost". The way the function uses the W and Cost property values has not
changed. However, the property values stored in the input model object have changed for a model
with a nondefault cost matrix, so the function can return a different value.

For details about the property value change, see “Cost property stores the user-specified cost matrix”
on page 35-579.

If you want the software to handle the cost matrix, prior probabilities, and observation weights as in
previous releases, adjust the prior probabilities and observation weights for the nondefault cost
matrix, as described in “Adjust Prior Probabilities and Observation Weights for Misclassification Cost
Matrix” on page 19-9. Then, when you train a classification model, specify the adjusted prior
probabilities and observation weights by using the Prior and Weights name-value arguments,
respectively, and use the default cost matrix.

 kfoldLoss

35-3831



See Also
ClassificationPartitionedKernel | fitckernel
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kfoldLoss
Package: classreg.learning.partition

Classification loss for cross-validated kernel ECOC model

Syntax
loss = kfoldLoss(CVMdl)
loss = kfoldLoss(CVMdl,Name,Value)

Description
loss = kfoldLoss(CVMdl) returns the classification loss obtained by the cross-validated kernel
ECOC model (ClassificationPartitionedKernelECOC) CVMdl. For every fold, kfoldLoss
computes the classification loss for validation-fold observations using a model trained on training-fold
observations. kfoldLoss applies the same data used to create CVMdl (see fitcecoc).

By default, kfoldLoss returns the classification error on page 35-3838.

loss = kfoldLoss(CVMdl,Name,Value) returns the classification loss with additional options
specified by one or more name-value pair arguments. For example, specify the classification loss
function, number of folds, decoding scheme, or verbosity level.

Examples

Estimate k-Fold Cross-Validation Classification Error

Load Fisher's iris data set. X contains flower measurements, and Y contains the names of flower
species.

load fisheriris
X = meas;
Y = species;

Cross-validate an ECOC model composed of kernel binary learners.

CVMdl = fitcecoc(X,Y,'Learners','kernel','CrossVal','on')

CVMdl = 
  ClassificationPartitionedKernelECOC
    CrossValidatedModel: 'KernelECOC'
           ResponseName: 'Y'
        NumObservations: 150
                  KFold: 10
              Partition: [1x1 cvpartition]
             ClassNames: {'setosa'  'versicolor'  'virginica'}
         ScoreTransform: 'none'

  Properties, Methods
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CVMdl is a ClassificationPartitionedKernelECOC model. By default, the software implements
10-fold cross-validation. To specify a different number of folds, use the 'KFold' name-value pair
argument instead of 'Crossval'.

Estimate the cross-validated classification loss. By default, the software computes the classification
error.

loss = kfoldLoss(CVMdl)

loss = 0.0333

Alternatively, you can obtain the per-fold classification errors by specifying the name-value pair
'Mode','individual' in kfoldLoss.

Determine Model Quality Using Custom Cross-Validation Loss

In addition to knowing whether a model generally classifies observations correctly, you can determine
how well the model classifies an observation into its predicted class. One way to determine this type
of model quality is to pass a custom loss function to kfoldLoss.

Load Fisher's iris data set. X contains flower measurements, and Y contains the names of flower
species.

load fisheriris
X = meas;
Y = species;

Cross-validate an ECOC model composed of kernel binary learners.

rng(1) % For reproducibility
CVMdl = fitcecoc(X,Y,'Learners','kernel','CrossVal','on')

CVMdl = 
  ClassificationPartitionedKernelECOC
    CrossValidatedModel: 'KernelECOC'
           ResponseName: 'Y'
        NumObservations: 150
                  KFold: 10
              Partition: [1x1 cvpartition]
             ClassNames: {'setosa'  'versicolor'  'virginica'}
         ScoreTransform: 'none'

  Properties, Methods

CVMdl is a ClassificationPartitionedKernelECOC model. By default, the software implements
10-fold cross-validation. To specify a different number of folds, use the 'KFold' name-value pair
argument instead of 'Crossval'.

Create a custom function that takes the minimal loss for each observation, then averages the minimal
losses for all observations. S corresponds to the NegLoss output of kfoldPredict.

lossfun = @(~,S,~,~)mean(min(-S,[],2));
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Compute the cross-validated custom loss.

kfoldLoss(CVMdl,'LossFun',lossfun)

ans = 0.0299

The average minimal binary loss for the validation-fold observations is about 0.02.

Input Arguments
CVMdl — Cross-validated kernel ECOC model
ClassificationPartitionedKernelECOC model

Cross-validated kernel ECOC model, specified as a ClassificationPartitionedKernelECOC
model. You can create a ClassificationPartitionedKernelECOC model by training an ECOC
model using fitcecoc and specifying these name-value pair arguments:

• 'Learners'– Set the value to 'kernel', a template object returned by templateKernel, or a
cell array of such template objects.

• One of the arguments 'CrossVal', 'CVPartition', 'Holdout', 'KFold', or 'Leaveout'.

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: kfoldLoss(CVMdl,'Folds',[1 3 5]) specifies to use only the first, third, and fifth
folds to calculate the classification loss.

BinaryLoss — Binary learner loss function
'hamming' | 'linear' | 'logit' | 'exponential' | 'binodeviance' | 'hinge' | 'quadratic'
| function handle

Binary learner loss function, specified as the comma-separated pair consisting of 'BinaryLoss' and
a built-in loss function name or function handle.

• This table contains names and descriptions of the built-in functions, where yj is the class label for
a particular binary learner (in the set {–1,1,0}), sj is the score for observation j, and g(yj,sj) is the
binary loss formula.

Value Description Score Domain g(yj,sj)
'binodeviance' Binomial deviance (–∞,∞) log[1 + exp(–2yjsj)]/

[2log(2)]
'exponential' Exponential (–∞,∞) exp(–yjsj)/2
'hamming' Hamming [0,1] or (–∞,∞) [1 – sign(yjsj)]/2
'hinge' Hinge (–∞,∞) max(0,1 – yjsj)/2
'linear' Linear (–∞,∞) (1 – yjsj)/2
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Value Description Score Domain g(yj,sj)
'logit' Logistic (–∞,∞) log[1 + exp(–yjsj)]/

[2log(2)]
'quadratic' Quadratic [0,1] [1 – yj(2sj – 1)]2/2

The software normalizes binary losses so that the loss is 0.5 when yj = 0. Also, the software
calculates the mean binary loss for each class.

• For a custom binary loss function, for example, customFunction, specify its function handle
'BinaryLoss',@customFunction.

customFunction has this form:

bLoss = customFunction(M,s)

• M is the K-by-B coding matrix stored in Mdl.CodingMatrix.
• s is the 1-by-B row vector of classification scores.
• bLoss is the classification loss. This scalar aggregates the binary losses for every learner in a

particular class. For example, you can use the mean binary loss to aggregate the loss over the
learners for each class.

• K is the number of classes.
• B is the number of binary learners.

By default, if all binary learners are kernel classification models using SVM, then BinaryLoss is
'hinge'. If all binary learners are kernel classification models using logistic regression, then
BinaryLoss is 'quadratic'.
Example: 'BinaryLoss','binodeviance'
Data Types: char | string | function_handle

Decoding — Decoding scheme
'lossweighted' (default) | 'lossbased'

Decoding scheme that aggregates the binary losses, specified as the comma-separated pair consisting
of 'Decoding' and 'lossweighted' or 'lossbased'. For more information, see “Binary Loss” on
page 35-3839.
Example: 'Decoding','lossbased'

Folds — Fold indices for prediction
1:CVMdl.KFold (default) | numeric vector of positive integers

Fold indices for prediction, specified as the comma-separated pair consisting of 'Folds' and a
numeric vector of positive integers. The elements of Folds must be within the range from 1 to
CVMdl.KFold.

The software uses only the folds specified in Folds for prediction.
Example: 'Folds',[1 4 10]
Data Types: single | double

LossFun — Loss function
'classiferror' (default) | 'classifcost' | function handle
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Loss function, specified as 'classiferror', 'classifcost', or a function handle.

• Specify the built-in function 'classiferror'. In this case, the loss function is the classification
error on page 35-3838.

• Specify the built-in function 'classifcost'. In this case, the loss function is the observed
misclassification cost on page 35-3838. If you use the default cost matrix (whose element value is
0 for correct classification and 1 for incorrect classification), then the loss values for
'classifcost' and 'classiferror' are identical.

• Or, specify your own function using function handle notation.

Assume that n is the number of observations in the training data (CVMdl.NumObservations) and
K is the number of classes (numel(CVMdl.ClassNames)). Your function needs the signature
lossvalue = lossfun(C,S,W,Cost), where:

• The output argument lossvalue is a scalar.
• You specify the function name (lossfun).
• C is an n-by-K logical matrix with rows indicating the class to which the corresponding

observation belongs. The column order corresponds to the class order in CVMdl.ClassNames.

Construct C by setting C(p,q) = 1 if observation p is in class q, for each row. Set every
element of row p to 0.

• S is an n-by-K numeric matrix of negated loss values for the classes. Each row corresponds to
an observation. The column order corresponds to the class order in CVMdl.ClassNames. The
input S resembles the output argument NegLoss of kfoldPredict.

• W is an n-by-1 numeric vector of observation weights. If you pass W, the software normalizes its
elements to sum to 1.

• Cost is a K-by-K numeric matrix of misclassification costs. For example, Cost = ones(K) –
eye(K) specifies a cost of 0 for correct classification and 1 for misclassification.

Specify your function using 'LossFun',@lossfun.

Data Types: char | string | function_handle

Mode — Aggregation level for output
'average' (default) | 'individual'

Aggregation level for the output, specified as the comma-separated pair consisting of 'Mode' and
'average' or 'individual'.

This table describes the values.

Value Description
'average' The output is a scalar average over all folds.
'individual' The output is a vector of length k containing one

value per fold, where k is the number of folds.

Example: 'Mode','individual'

Options — Estimation options
[] (default) | structure array returned by statset
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Estimation options, specified as the comma-separated pair consisting of 'Options' and a structure
array returned by statset.

To invoke parallel computing:

• You need a Parallel Computing Toolbox license.
• Specify 'Options',statset('UseParallel',true).

Verbose — Verbosity level
0 (default) | 1

Verbosity level, specified as the comma-separated pair consisting of 'Verbose' and 0 or 1. Verbose
controls the number of diagnostic messages that the software displays in the Command Window.

If Verbose is 0, then the software does not display diagnostic messages. Otherwise, the software
displays diagnostic messages.
Example: 'Verbose',1
Data Types: single | double

Output Arguments
loss — Classification loss
numeric scalar | numeric column vector

Classification loss, returned as a numeric scalar or numeric column vector.

If Mode is 'average', then loss is the average classification loss over all folds. Otherwise, loss is a
k-by-1 numeric column vector containing the classification loss for each fold, where k is the number
of folds.

More About
Classification Error

The classification error has the form

L = ∑
j = 1

n
w je j,

where:

• wj is the weight for observation j. The software renormalizes the weights to sum to 1.
• ej = 1 if the predicted class of observation j differs from its true class, and 0 otherwise.

In other words, the classification error is the proportion of observations misclassified by the classifier.

Observed Misclassification Cost

The observed misclassification cost has the form

L = ∑
j = 1

n
w jcy jy j,
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where:

• wj is the weight for observation j. The software renormalizes the weights to sum to 1.
• cy jy j is the user-specified cost of classifying an observation into class y j when its true class is yj.

Binary Loss

The binary loss is a function of the class and classification score that determines how well a binary
learner classifies an observation into the class.

Suppose the following:

• mkj is element (k,j) of the coding design matrix M—that is, the code corresponding to class k of
binary learner j. M is a K-by-B matrix, where K is the number of classes, and B is the number of
binary learners.

• sj is the score of binary learner j for an observation.
• g is the binary loss function.
• k  is the predicted class for the observation.

The decoding scheme of an ECOC model specifies how the software aggregates the binary losses and
determines the predicted class for each observation. The software supports two decoding schemes:

• Loss-based decoding [2] (Decoding is 'lossbased') — The predicted class of an observation
corresponds to the class that produces the minimum average of the binary losses over all binary
learners.

k = argmin
k

1
B ∑j = 1

B
mk j g(mk j, s j) .

• Loss-weighted decoding [3] (Decoding is 'lossweighted') — The predicted class of an
observation corresponds to the class that produces the minimum average of the binary losses over
the binary learners for the corresponding class.

k = argmin
k

∑
j = 1

B
mk j g(mk j, s j)

∑ j = 1

B

mk j

.

The denominator corresponds to the number of binary learners for class k. [1] suggests that loss-
weighted decoding improves classification accuracy by keeping loss values for all classes in the
same dynamic range.

The predict, resubPredict, and kfoldPredict functions return the negated value of the
objective function of argmin as the second output argument (NegLoss) for each observation and
class.

This table summarizes the supported binary loss functions, where yj is a class label for a particular
binary learner (in the set {–1,1,0}), sj is the score for observation j, and g(yj,sj) is the binary loss
function.
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Value Description Score Domain g(yj,sj)
"binodeviance" Binomial deviance (–∞,∞) log[1 + exp(–2yjsj)]/

[2log(2)]
"exponential" Exponential (–∞,∞) exp(–yjsj)/2
"hamming" Hamming [0,1] or (–∞,∞) [1 – sign(yjsj)]/2
"hinge" Hinge (–∞,∞) max(0,1 – yjsj)/2
"linear" Linear (–∞,∞) (1 – yjsj)/2
"logit" Logistic (–∞,∞) log[1 + exp(–yjsj)]/

[2log(2)]
"quadratic" Quadratic [0,1] [1 – yj(2sj – 1)]2/2

The software normalizes binary losses so that the loss is 0.5 when yj = 0, and aggregates using the
average of the binary learners.

Do not confuse the binary loss with the overall classification loss (specified by the LossFun name-
value argument of the kfoldLoss and kfoldPredict object functions), which measures how well
an ECOC classifier performs as a whole.

Version History
Introduced in R2018b

References
[1] Allwein, E., R. Schapire, and Y. Singer. “Reducing multiclass to binary: A unifying approach for

margin classifiers.” Journal of Machine Learning Research. Vol. 1, 2000, pp. 113–141.

[2] Escalera, S., O. Pujol, and P. Radeva. “Separability of ternary codes for sparse designs of error-
correcting output codes.” Pattern Recog. Lett., Vol. 30, Issue 3, 2009, pp. 285–297.

[3] Escalera, S., O. Pujol, and P. Radeva. “On the decoding process in ternary error-correcting output
codes.” IEEE Transactions on Pattern Analysis and Machine Intelligence. Vol. 32, Issue 7,
2010, pp. 120–134.

See Also
ClassificationPartitionedKernelECOC | fitcecoc
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kfoldLoss
Classification loss for observations not used in training

Syntax
L = kfoldLoss(CVMdl)
L = kfoldLoss(CVMdl,Name,Value)

Description
L = kfoldLoss(CVMdl) returns the cross-validated classification losses on page 35-3847 obtained
by the cross-validated, binary, linear classification model CVMdl. That is, for every fold, kfoldLoss
estimates the classification loss for observations that it holds out when it trains using all other
observations.

L contains a classification loss for each regularization strength in the linear classification models that
compose CVMdl.

L = kfoldLoss(CVMdl,Name,Value) uses additional options specified by one or more
Name,Value pair arguments. For example, indicate which folds to use for the loss calculation or
specify the classification-loss function.

Input Arguments
CVMdl — Cross-validated, binary, linear classification model
ClassificationPartitionedLinear model object

Cross-validated, binary, linear classification model, specified as a
ClassificationPartitionedLinear model object. You can create a
ClassificationPartitionedLinear model using fitclinear and specifying any one of the
cross-validation, name-value pair arguments, for example, CrossVal.

To obtain estimates, kfoldLoss applies the same data used to cross-validate the linear classification
model (X and Y).

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.

Folds — Fold indices to use for classification-score prediction
1:CVMdl.KFold (default) | numeric vector of positive integers

Fold indices to use for classification-score prediction, specified as the comma-separated pair
consisting of 'Folds' and a numeric vector of positive integers. The elements of Folds must range
from 1 through CVMdl.KFold.
Example: 'Folds',[1 4 10]
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Data Types: single | double

LossFun — Loss function
'classiferror' (default) | 'binodeviance' | 'classifcost' | 'exponential' | 'hinge' |
'logit' | 'mincost' | 'quadratic' | function handle

Loss function, specified as the comma-separated pair consisting of 'LossFun' and a built-in loss
function name or function handle.

• The following table lists the available loss functions. Specify one using its corresponding character
vector or string scalar.

Value Description
'binodeviance' Binomial deviance
'classifcost' Observed misclassification cost
'classiferror' Misclassified rate in decimal
'exponential' Exponential loss
'hinge' Hinge loss
'logit' Logistic loss
'mincost' Minimal expected misclassification cost (for

classification scores that are posterior
probabilities)

'quadratic' Quadratic loss

'mincost' is appropriate for classification scores that are posterior probabilities. For linear
classification models, logistic regression learners return posterior probabilities as classification
scores by default, but SVM learners do not (see predict).

• Specify your own function using function handle notation.

Let n be the number of observations in X and K be the number of distinct classes
(numel(Mdl.ClassNames), Mdl is the input model). Your function must have this signature

lossvalue = lossfun(C,S,W,Cost)

where:

• The output argument lossvalue is a scalar.
• You choose the function name (lossfun).
• C is an n-by-K logical matrix with rows indicating which class the corresponding observation

belongs. The column order corresponds to the class order in Mdl.ClassNames.

Construct C by setting C(p,q) = 1 if observation p is in class q, for each row. Set all other
elements of row p to 0.

• S is an n-by-K numeric matrix of classification scores. The column order corresponds to the
class order in Mdl.ClassNames. S is a matrix of classification scores, similar to the output of
predict.

• W is an n-by-1 numeric vector of observation weights. If you pass W, the software normalizes
them to sum to 1.

• Cost is a K-by-K numeric matrix of misclassification costs. For example, Cost = ones(K) -
eye(K) specifies a cost of 0 for correct classification, and 1 for misclassification.
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Specify your function using 'LossFun',@lossfun.

Data Types: char | string | function_handle

Mode — Loss aggregation level
'average' (default) | 'individual'

Loss aggregation level, specified as the comma-separated pair consisting of 'Mode' and 'average'
or 'individual'.

Value Description
'average' Returns losses averaged over all folds
'individual' Returns losses for each fold

Example: 'Mode','individual'

Output Arguments
L — Cross-validated classification losses
numeric scalar | numeric vector | numeric matrix

Cross-validated classification losses on page 35-3847, returned as a numeric scalar, vector, or matrix.
The interpretation of L depends on LossFun.

Let R be the number of regularizations strengths is the cross-validated models (stored in
numel(CVMdl.Trained{1}.Lambda)) and F be the number of folds (stored in CVMdl.KFold).

• If Mode is 'average', then L is a 1-by-R vector. L(j) is the average classification loss over all
folds of the cross-validated model that uses regularization strength j.

• Otherwise, L is an F-by-R matrix. L(i,j) is the classification loss for fold i of the cross-validated
model that uses regularization strength j.

To estimate L, kfoldLoss uses the data that created CVMdl (see X and Y).

Examples

Estimate k-Fold Cross-Validation Classification Error

Load the NLP data set.

load nlpdata

X is a sparse matrix of predictor data, and Y is a categorical vector of class labels. There are more
than two classes in the data.

The models should identify whether the word counts in a web page are from the Statistics and
Machine Learning Toolbox™ documentation. So, identify the labels that correspond to the Statistics
and Machine Learning Toolbox™ documentation web pages.

Ystats = Y == 'stats';

Cross-validate a binary, linear classification model that can identify whether the word counts in a
documentation web page are from the Statistics and Machine Learning Toolbox™ documentation.
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rng(1); % For reproducibility 
CVMdl = fitclinear(X,Ystats,'CrossVal','on');

CVMdl is a ClassificationPartitionedLinear model. By default, the software implements 10-
fold cross validation. You can alter the number of folds using the 'KFold' name-value pair argument.

Estimate the average of the out-of-fold, classification error rates.

ce = kfoldLoss(CVMdl)

ce = 7.6017e-04

Alternatively, you can obtain the per-fold classification error rates by specifying the name-value pair
'Mode','individual' in kfoldLoss.

Specify Custom Classification Loss

Load the NLP data set. Preprocess the data as in “Estimate k-Fold Cross-Validation Classification
Error” on page 35-3843, and transpose the predictor data.

load nlpdata
Ystats = Y == 'stats';
X = X';

Cross-validate a binary, linear classification model using 5-fold cross-validation. Optimize the
objective function using SpaRSA. Specify that the predictor observations correspond to columns.

rng(1) % For reproducibility 
CVMdl = fitclinear(X,Ystats,'Solver','sparsa','KFold',5, ...
    'ObservationsIn','columns');
CMdl = CVMdl.Trained{1};

CVMdl is a ClassificationPartitionedLinear model. It contains the property Trained, which
is a 5-by-1 cell array holding a ClassificationLinear models that the software trained using the
training set of each fold.

Create an anonymous function that measures linear loss, that is,

L =
∑ j −w jy jf j
∑ jw j

.

w j is the weight for observation j, y j is response j (-1 for the negative class, and 1 otherwise), and f j is
the raw classification score of observation j. Custom loss functions must be written in a particular
form. For rules on writing a custom loss function, see the LossFun name-value pair argument.
Because the function does not use classification cost, use ~ to have kfoldLoss ignore its position.

linearloss = @(C,S,W,~)sum(-W.*sum(S.*C,2))/sum(W);

Estimate the average cross-validated classification loss using the linear loss function. Also, obtain the
loss for each fold.

ce = kfoldLoss(CVMdl,'LossFun',linearloss)

ce = -8.0982
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ceFold = kfoldLoss(CVMdl,'LossFun',linearloss,'Mode','individual')

ceFold = 5×1

   -8.3165
   -8.7633
   -7.4342
   -8.0423
   -7.9347

Find Good Lasso Penalty Using k-fold Classification Loss

To determine a good lasso-penalty strength for a linear classification model that uses a logistic
regression learner, compare test-sample classification error rates.

Load the NLP data set. Preprocess the data as in “Specify Custom Classification Loss” on page 35-
3844.

load nlpdata
Ystats = Y == 'stats';
X = X';

Create a set of 11 logarithmically-spaced regularization strengths from 10−6 through 100 . 5.

Lambda = logspace(-6,-0.5,11);

Cross-validate binary, linear classification models using 5-fold cross-validation, and that use each of
the regularization strengths. Optimize the objective function using SpaRSA. Lower the tolerance on
the gradient of the objective function to 1e-8.

rng(10); % For reproducibility
CVMdl = fitclinear(X,Ystats,'ObservationsIn','columns',...
    'KFold',5,'Learner','logistic','Solver','sparsa',...
    'Regularization','lasso','Lambda',Lambda,'GradientTolerance',1e-8)

CVMdl = 
  ClassificationPartitionedLinear
    CrossValidatedModel: 'Linear'
           ResponseName: 'Y'
        NumObservations: 31572
                  KFold: 5
              Partition: [1x1 cvpartition]
             ClassNames: [0 1]
         ScoreTransform: 'none'

  Properties, Methods

Extract a trained linear classification model.

Mdl1 = CVMdl.Trained{1}

Mdl1 = 
  ClassificationLinear
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      ResponseName: 'Y'
        ClassNames: [0 1]
    ScoreTransform: 'logit'
              Beta: [34023x11 double]
              Bias: [-13.1654 -13.1654 -13.1654 -13.1654 -9.2347 -7.0908 ... ]
            Lambda: [1.0000e-06 3.5481e-06 1.2589e-05 4.4668e-05 ... ]
           Learner: 'logistic'

  Properties, Methods

Mdl1 is a ClassificationLinear model object. Because Lambda is a sequence of regularization
strengths, you can think of Mdl as 11 models, one for each regularization strength in Lambda.

Estimate the cross-validated classification error.

ce = kfoldLoss(CVMdl);

Because there are 11 regularization strengths, ce is a 1-by-11 vector of classification error rates.

Higher values of Lambda lead to predictor variable sparsity, which is a good quality of a classifier. For
each regularization strength, train a linear classification model using the entire data set and the same
options as when you cross-validated the models. Determine the number of nonzero coefficients per
model.

Mdl = fitclinear(X,Ystats,'ObservationsIn','columns',...
    'Learner','logistic','Solver','sparsa','Regularization','lasso',...
    'Lambda',Lambda,'GradientTolerance',1e-8);
numNZCoeff = sum(Mdl.Beta~=0);

In the same figure, plot the cross-validated, classification error rates and frequency of nonzero
coefficients for each regularization strength. Plot all variables on the log scale.

figure;
[h,hL1,hL2] = plotyy(log10(Lambda),log10(ce),...
    log10(Lambda),log10(numNZCoeff)); 
hL1.Marker = 'o';
hL2.Marker = 'o';
ylabel(h(1),'log_{10} classification error')
ylabel(h(2),'log_{10} nonzero-coefficient frequency')
xlabel('log_{10} Lambda')
title('Test-Sample Statistics')
hold off
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Choose the indexes of the regularization strength that balances predictor variable sparsity and low
classification error. In this case, a value between 10−4 to 10−1 should suffice.

idxFinal = 7;

Select the model from Mdl with the chosen regularization strength.

MdlFinal = selectModels(Mdl,idxFinal);

MdlFinal is a ClassificationLinear model containing one regularization strength. To estimate
labels for new observations, pass MdlFinal and the new data to predict.

More About
Classification Loss

Classification loss functions measure the predictive inaccuracy of classification models. When you
compare the same type of loss among many models, a lower loss indicates a better predictive model.

Consider the following scenario.

• L is the weighted average classification loss.
• n is the sample size.
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• yj is the observed class label. The software codes it as –1 or 1, indicating the negative or positive
class (or the first or second class in the ClassNames property), respectively.

• f(Xj) is the positive-class classification score for observation (row) j of the predictor data X.
• mj = yjf(Xj) is the classification score for classifying observation j into the class corresponding to

yj. Positive values of mj indicate correct classification and do not contribute much to the average
loss. Negative values of mj indicate incorrect classification and contribute significantly to the
average loss.

• The weight for observation j is wj. The software normalizes the observation weights so that they
sum to the corresponding prior class probability stored in the Prior property. Therefore,

∑
j = 1

n
w j = 1.

Given this scenario, the following table describes the supported loss functions that you can specify by
using the LossFun name-value argument.

Loss Function Value of LossFun Equation
Binomial deviance 'binodeviance'

L = ∑
j = 1

n
w jlog 1 + exp −2m j .

Observed
misclassification cost

'classifcost'
L = ∑

j = 1

n
w jcy jy j,

where y j is the class label corresponding to the
class with the maximal score, and cy jy j is the
user-specified cost of classifying an observation
into class y j when its true class is yj.

Misclassified rate in
decimal

'classiferror'
L = ∑

j = 1

n
w jI y j ≠ y j ,

where I{·} is the indicator function.
Cross-entropy loss 'crossentropy' 'crossentropy' is appropriate only for neural

network models.

The weighted cross-entropy loss is

L = − ∑
j = 1

n w jlog(m j)
Kn ,

where the weights w j are normalized to sum to n
instead of 1.

Exponential loss 'exponential'
L = ∑

j = 1

n
w jexp −m j .
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Loss Function Value of LossFun Equation
Hinge loss 'hinge'

L =∑
j = 1

n

w jmax 0, 1−m j .

Logit loss 'logit'
L = ∑

j = 1

n
w jlog 1 + exp −m j .

Minimal expected
misclassification cost

'mincost' 'mincost' is appropriate only if classification
scores are posterior probabilities.

The software computes the weighted minimal
expected classification cost using this procedure
for observations j = 1,...,n.

1 Estimate the expected misclassification cost
of classifying the observation Xj into the class
k:

γ jk = f X j ′C k .

f(Xj) is the column vector of class posterior
probabilities for the observation Xj. C is the
cost matrix stored in the Cost property of
the model.

2 For observation j, predict the class label
corresponding to the minimal expected
misclassification cost:

y j = argmin
k = 1, ..., K

γ jk .

3 Using C, identify the cost incurred (cj) for
making the prediction.

The weighted average of the minimal expected
misclassification cost loss is

L = ∑
j = 1

n
w jc j .

Quadratic loss 'quadratic'
L = ∑

j = 1

n
w j 1−m j

2 .

If you use the default cost matrix (whose element value is 0 for correct classification and 1 for
incorrect classification), then the loss values for 'classifcost', 'classiferror', and
'mincost' are identical. For a model with a nondefault cost matrix, the 'classifcost' loss is
equivalent to the 'mincost' loss most of the time. These losses can be different if prediction into the
class with maximal posterior probability is different from prediction into the class with minimal
expected cost. Note that 'mincost' is appropriate only if classification scores are posterior
probabilities.
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This figure compares the loss functions (except 'classifcost', 'crossentropy', and
'mincost') over the score m for one observation. Some functions are normalized to pass through
the point (0,1).

Version History
Introduced in R2016a

kfoldLoss returns a different value for a model with a nondefault cost matrix
Behavior changed in R2022a

If you specify a nondefault cost matrix when you train the input model object, the kfoldLoss
function returns a different value compared to previous releases.

The kfoldLoss function uses the observation weights stored in the W property. Also, the function
uses the cost matrix stored in the Cost property if you specify the LossFun name-value argument as
"classifcost" or "mincost". The way the function uses the W and Cost property values has not
changed. However, the property values stored in the input model object have changed for a model
with a nondefault cost matrix, so the function can return a different value.

For details about the property value change, see “Cost property stores the user-specified cost matrix”
on page 35-596.

If you want the software to handle the cost matrix, prior probabilities, and observation weights as in
previous releases, adjust the prior probabilities and observation weights for the nondefault cost
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matrix, as described in “Adjust Prior Probabilities and Observation Weights for Misclassification Cost
Matrix” on page 19-9. Then, when you train a classification model, specify the adjusted prior
probabilities and observation weights by using the Prior and Weights name-value arguments,
respectively, and use the default cost matrix.

See Also
ClassificationPartitionedLinear | ClassificationLinear | kfoldPredict | loss
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kfoldLoss
Classification loss for observations not used in training

Syntax
L = kfoldLoss(CVMdl)
L = kfoldLoss(CVMdl,Name,Value)

Description
L = kfoldLoss(CVMdl) returns the cross-validated classification error on page 35-3860 rates
estimated by the cross-validated, error-correcting output codes (ECOC) model composed of linear
classification models CVMdl. That is, for every fold, kfoldLoss estimates the classification error rate
for observations that it holds out when it trains using all other observations. kfoldLoss applies the
same data used create CVMdl (see fitcecoc).

L contains a classification loss for each regularization strength in the linear classification models that
compose CVMdl.

L = kfoldLoss(CVMdl,Name,Value) uses additional options specified by one or more
Name,Value pair arguments. For example, specify a decoding scheme, which folds to use for the loss
calculation, or verbosity level.

Input Arguments
CVMdl — Cross-validated, ECOC model composed of linear classification models
ClassificationPartitionedLinearECOC model object

Cross-validated, ECOC model composed of linear classification models, specified as a
ClassificationPartitionedLinearECOC model object. You can create a
ClassificationPartitionedLinearECOC model using fitcecoc and by:

1 Specifying any one of the cross-validation, name-value pair arguments, for example, CrossVal
2 Setting the name-value pair argument Learners to 'linear' or a linear classification model

template returned by templateLinear

To obtain estimates, kfoldLoss applies the same data used to cross-validate the ECOC model (X and
Y).

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.

BinaryLoss — Binary learner loss function
'hamming' | 'linear' | 'logit' | 'exponential' | 'binodeviance' | 'hinge' | 'quadratic'
| function handle
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Binary learner loss function, specified as the comma-separated pair consisting of 'BinaryLoss' and
a built-in loss function name or function handle.

• This table contains names and descriptions of the built-in functions, where yj is the class label for
a particular binary learner (in the set {-1,1,0}), sj is the score for observation j, and g(yj,sj) is the
binary loss formula.

Value Description Score Domain g(yj,sj)
'binodeviance' Binomial deviance (–∞,∞) log[1 + exp(–2yjsj)]/

[2log(2)]
'exponential' Exponential (–∞,∞) exp(–yjsj)/2
'hamming' Hamming [0,1] or (–∞,∞) [1 – sign(yjsj)]/2
'hinge' Hinge (–∞,∞) max(0,1 – yjsj)/2
'linear' Linear (–∞,∞) (1 – yjsj)/2
'logit' Logistic (–∞,∞) log[1 + exp(–yjsj)]/

[2log(2)]
'quadratic' Quadratic [0,1] [1 – yj(2sj – 1)]2/2

The software normalizes the binary losses such that the loss is 0.5 when yj = 0. Also, the software
calculates the mean binary loss for each class.

• For a custom binary loss function, e.g., customFunction, specify its function handle
'BinaryLoss',@customFunction.

customFunction should have this form

bLoss = customFunction(M,s)

where:

• M is the K-by-B coding matrix stored in Mdl.CodingMatrix.
• s is the 1-by-B row vector of classification scores.
• bLoss is the classification loss. This scalar aggregates the binary losses for every learner in a

particular class. For example, you can use the mean binary loss to aggregate the loss over the
learners for each class.

• K is the number of classes.
• B is the number of binary learners.

For an example of passing a custom binary loss function, see “Predict Test-Sample Labels of ECOC
Model Using Custom Binary Loss Function” on page 35-5751.

By default, if all binary learners are linear classification models using:

• SVM, then BinaryLoss is 'hinge'
• Logistic regression, then BinaryLoss is 'quadratic'

Example: 'BinaryLoss','binodeviance'
Data Types: char | string | function_handle

Decoding — Decoding scheme
'lossweighted' (default) | 'lossbased'
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Decoding scheme that aggregates the binary losses, specified as the comma-separated pair consisting
of 'Decoding' and 'lossweighted' or 'lossbased'. For more information, see “Binary Loss” on
page 35-3860.
Example: 'Decoding','lossbased'

Folds — Fold indices to use for classification-score prediction
1:CVMdl.KFold (default) | numeric vector of positive integers

Fold indices to use for classification-score prediction, specified as the comma-separated pair
consisting of 'Folds' and a numeric vector of positive integers. The elements of Folds must range
from 1 through CVMdl.KFold.
Example: 'Folds',[1 4 10]
Data Types: single | double

LossFun — Loss function
'classiferror' (default) | 'classifcost' | function handle

Loss function, specified as 'classiferror', 'classifcost', or a function handle.

You can:

• Specify the built-in function 'classiferror', then the loss function is the classification error on
page 35-3860.

• Specify the built-in function 'classifcost'. In this case, the loss function is the observed
misclassification cost on page 35-3860. If you use the default cost matrix (whose element value is
0 for correct classification and 1 for incorrect classification), then the loss values for
'classifcost' and 'classiferror' are identical.

• Specify your own function using function handle notation.

For what follows, n is the number of observations in the training data
(CVMdl.NumObservations) and K is the number of classes (numel(CVMdl.ClassNames)). Your
function needs the signature lossvalue = lossfun(C,S,W,Cost), where:

• The output argument lossvalue is a scalar.
• You choose the function name (lossfun).
• C is an n-by-K logical matrix with rows indicating which class the corresponding observation

belongs. The column order corresponds to the class order in CVMdl.ClassNames.

Construct C by setting C(p,q) = 1 if observation p is in class q, for each row. Set every
element of row p to 0.

• S is an n-by-K numeric matrix of negated loss values for classes. Each row corresponds to an
observation. The column order corresponds to the class order in CVMdl.ClassNames. S
resembles the output argument NegLoss of kfoldPredict.

• W is an n-by-1 numeric vector of observation weights. If you pass W, the software normalizes its
elements to sum to 1.

• Cost is a K-by-K numeric matrix of misclassification costs. For example, Cost = ones(K) -
eye(K) specifies a cost of 0 for correct classification, and 1 for misclassification.

Specify your function using 'LossFun',@lossfun.

Data Types: function_handle | char | string
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Mode — Loss aggregation level
'average' (default) | 'individual'

Loss aggregation level, specified as the comma-separated pair consisting of 'Mode' and 'average'
or 'individual'.

Value Description
'average' Returns losses averaged over all folds
'individual' Returns losses for each fold

Example: 'Mode','individual'

Options — Estimation options
[] (default) | structure array returned by statset

Estimation options, specified as the comma-separated pair consisting of 'Options' and a structure
array returned by statset.

To invoke parallel computing:

• You need a Parallel Computing Toolbox license.
• Specify 'Options',statset('UseParallel',true).

Verbose — Verbosity level
0 (default) | 1

Verbosity level, specified as the comma-separated pair consisting of 'Verbose' and 0 or 1. Verbose
controls the number of diagnostic messages that the software displays in the Command Window.

If Verbose is 0, then the software does not display diagnostic messages. Otherwise, the software
displays diagnostic messages.
Example: 'Verbose',1
Data Types: single | double

Output Arguments
L — Cross-validated classification losses
numeric scalar | numeric vector | numeric matrix

Cross-validated classification losses on page 35-3860, returned as a numeric scalar, vector, or matrix.
The interpretation of L depends on LossFun.

Let R be the number of regularizations strengths is the cross-validated models
(CVMdl.Trained{1}.BinaryLearners{1}.Lambda) and F be the number of folds (stored in
CVMdl.KFold).

• If Mode is 'average', then L is a 1-by-R vector. L(j) is the average classification loss over all
folds of the cross-validated model that uses regularization strength j.

• Otherwise, L is a F-by-R matrix. L(i,j) is the classification loss for fold i of the cross-validated
model that uses regularization strength j.
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Examples

Estimate k-Fold Cross-Validation Classification Error

Load the NLP data set.

load nlpdata

X is a sparse matrix of predictor data, and Y is a categorical vector of class labels.

Cross-validate an ECOC model of linear classification models.

rng(1); % For reproducibility 
CVMdl = fitcecoc(X,Y,'Learner','linear','CrossVal','on');

CVMdl is a ClassificationPartitionedLinearECOC model. By default, the software implements
10-fold cross validation.

Estimate the average of the out-of-fold classification error rates.

ce = kfoldLoss(CVMdl)

ce = 0.0958

Alternatively, you can obtain the per-fold classification error rates by specifying the name-value pair
'Mode','individual' in kfoldLoss.

Specify Custom Classification Loss

Load the NLP data set. Transpose the predictor data.

load nlpdata
X = X';

For simplicity, use the label 'others' for all observations in Y that are not 'simulink', 'dsp', or
'comm'.

Y(~(ismember(Y,{'simulink','dsp','comm'}))) = 'others';

Create a linear classification model template that specifies optimizing the objective function using
SpaRSA.

t = templateLinear('Solver','sparsa');

Cross-validate an ECOC model of linear classification models using 5-fold cross-validation. Optimize
the objective function using SpaRSA. Specify that the predictor observations correspond to columns.

rng(1); % For reproducibility 
CVMdl = fitcecoc(X,Y,'Learners',t,'KFold',5,'ObservationsIn','columns');
CMdl1 = CVMdl.Trained{1}

CMdl1 = 
  CompactClassificationECOC
      ResponseName: 'Y'

35 Functions

35-3856



        ClassNames: [comm    dsp    simulink    others]
    ScoreTransform: 'none'
    BinaryLearners: {6x1 cell}
      CodingMatrix: [4x6 double]

  Properties, Methods

CVMdl is a ClassificationPartitionedLinearECOC model. It contains the property Trained,
which is a 5-by-1 cell array holding a CompactClassificationECOC models that the software
trained using the training set of each fold.

Create a function that takes the minimal loss for each observation, and then averages the minimal
losses across all observations. Because the function does not use the class-identifier matrix (C),
observation weights (W), and classification cost (Cost), use ~ to have kfoldLoss ignore its their
positions.

lossfun = @(~,S,~,~)mean(min(-S,[],2));

Estimate the average cross-validated classification loss using the minimal loss per observation
function. Also, obtain the loss for each fold.

ce = kfoldLoss(CVMdl,'LossFun',lossfun)

ce = 0.0485

ceFold = kfoldLoss(CVMdl,'LossFun',lossfun,'Mode','individual')

ceFold = 5×1

    0.0488
    0.0511
    0.0496
    0.0479
    0.0452

Find Good Lasso Penalty Using Cross-Validation

To determine a good lasso-penalty strength for an ECOC model composed of linear classification
models that use logistic regression learners, implement 5-fold cross-validation.

Load the NLP data set.

load nlpdata

X is a sparse matrix of predictor data, and Y is a categorical vector of class labels.

For simplicity, use the label 'others' for all observations in Y that are not 'simulink', 'dsp', or
'comm'.

Y(~(ismember(Y,{'simulink','dsp','comm'}))) = 'others';

Create a set of 11 logarithmically-spaced regularization strengths from 10−7 through 10−2.
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Lambda = logspace(-7,-2,11);

Create a linear classification model template that specifies to use logistic regression learners, use
lasso penalties with strengths in Lambda, train using SpaRSA, and lower the tolerance on the
gradient of the objective function to 1e-8.

t = templateLinear('Learner','logistic','Solver','sparsa',...
    'Regularization','lasso','Lambda',Lambda,'GradientTolerance',1e-8);

Cross-validate the models. To increase execution speed, transpose the predictor data and specify that
the observations are in columns.

X = X'; 
rng(10); % For reproducibility
CVMdl = fitcecoc(X,Y,'Learners',t,'ObservationsIn','columns','KFold',5);

CVMdl is a ClassificationPartitionedLinearECOC model.

Dissect CVMdl, and each model within it.

numECOCModels = numel(CVMdl.Trained)

numECOCModels = 5

ECOCMdl1 = CVMdl.Trained{1}

ECOCMdl1 = 
  CompactClassificationECOC
      ResponseName: 'Y'
        ClassNames: [comm    dsp    simulink    others]
    ScoreTransform: 'none'
    BinaryLearners: {6×1 cell}
      CodingMatrix: [4×6 double]

  Properties, Methods

numCLModels = numel(ECOCMdl1.BinaryLearners)

numCLModels = 6

CLMdl1 = ECOCMdl1.BinaryLearners{1}

CLMdl1 = 
  ClassificationLinear
      ResponseName: 'Y'
        ClassNames: [-1 1]
    ScoreTransform: 'logit'
              Beta: [34023×11 double]
              Bias: [-0.3169 -0.3169 -0.3168 -0.3168 -0.3168 -0.3167 -0.1725 -0.0805 -0.1762 -0.3450 -0.5174]
            Lambda: [1.0000e-07 3.1623e-07 1.0000e-06 3.1623e-06 1.0000e-05 3.1623e-05 1.0000e-04 3.1623e-04 1.0000e-03 0.0032 0.0100]
           Learner: 'logistic'

  Properties, Methods

Because fitcecoc implements 5-fold cross-validation, CVMdl contains a 5-by-1 cell array of
CompactClassificationECOC models that the software trains on each fold. The BinaryLearners
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property of each CompactClassificationECOC model contains the ClassificationLinear
models. The number of ClassificationLinear models within each compact ECOC model depends
on the number of distinct labels and coding design. Because Lambda is a sequence of regularization
strengths, you can think of CLMdl1 as 11 models, one for each regularization strength in Lambda.

Determine how well the models generalize by plotting the averages of the 5-fold classification error
for each regularization strength. Identify the regularization strength that minimizes the
generalization error over the grid.

ce = kfoldLoss(CVMdl);
figure;
plot(log10(Lambda),log10(ce))
[~,minCEIdx] = min(ce);
minLambda = Lambda(minCEIdx);
hold on
plot(log10(minLambda),log10(ce(minCEIdx)),'ro');
ylabel('log_{10} 5-fold classification error')
xlabel('log_{10} Lambda')
legend('MSE','Min classification error')
hold off

Train an ECOC model composed of linear classification model using the entire data set, and specify
the minimal regularization strength.

t = templateLinear('Learner','logistic','Solver','sparsa',...
    'Regularization','lasso','Lambda',minLambda,'GradientTolerance',1e-8);
MdlFinal = fitcecoc(X,Y,'Learners',t,'ObservationsIn','columns');
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To estimate labels for new observations, pass MdlFinal and the new data to predict.

More About
Classification Error

The classification error has the form

L = ∑
j = 1

n
w je j,

where:

• wj is the weight for observation j. The software renormalizes the weights to sum to 1.
• ej = 1 if the predicted class of observation j differs from its true class, and 0 otherwise.

In other words, the classification error is the proportion of observations misclassified by the classifier.

Observed Misclassification Cost

The observed misclassification cost has the form

L = ∑
j = 1

n
w jcy jy j,

where:

• wj is the weight for observation j. The software renormalizes the weights to sum to 1.
• cy jy j is the user-specified cost of classifying an observation into class y j when its true class is yj.

Binary Loss

The binary loss is a function of the class and classification score that determines how well a binary
learner classifies an observation into the class.

Suppose the following:

• mkj is element (k,j) of the coding design matrix M—that is, the code corresponding to class k of
binary learner j. M is a K-by-B matrix, where K is the number of classes, and B is the number of
binary learners.

• sj is the score of binary learner j for an observation.
• g is the binary loss function.
• k  is the predicted class for the observation.

The decoding scheme of an ECOC model specifies how the software aggregates the binary losses and
determines the predicted class for each observation. The software supports two decoding schemes:

• Loss-based decoding [2] (Decoding is 'lossbased') — The predicted class of an observation
corresponds to the class that produces the minimum average of the binary losses over all binary
learners.
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k = argmin
k

1
B ∑j = 1

B
mk j g(mk j, s j) .

• Loss-weighted decoding [3] (Decoding is 'lossweighted') — The predicted class of an
observation corresponds to the class that produces the minimum average of the binary losses over
the binary learners for the corresponding class.

k = argmin
k

∑
j = 1

B
mk j g(mk j, s j)

∑ j = 1

B

mk j

.

The denominator corresponds to the number of binary learners for class k. [1] suggests that loss-
weighted decoding improves classification accuracy by keeping loss values for all classes in the
same dynamic range.

The predict, resubPredict, and kfoldPredict functions return the negated value of the
objective function of argmin as the second output argument (NegLoss) for each observation and
class.

This table summarizes the supported binary loss functions, where yj is a class label for a particular
binary learner (in the set {–1,1,0}), sj is the score for observation j, and g(yj,sj) is the binary loss
function.

Value Description Score Domain g(yj,sj)
"binodeviance" Binomial deviance (–∞,∞) log[1 + exp(–2yjsj)]/

[2log(2)]
"exponential" Exponential (–∞,∞) exp(–yjsj)/2
"hamming" Hamming [0,1] or (–∞,∞) [1 – sign(yjsj)]/2
"hinge" Hinge (–∞,∞) max(0,1 – yjsj)/2
"linear" Linear (–∞,∞) (1 – yjsj)/2
"logit" Logistic (–∞,∞) log[1 + exp(–yjsj)]/

[2log(2)]
"quadratic" Quadratic [0,1] [1 – yj(2sj – 1)]2/2

The software normalizes binary losses so that the loss is 0.5 when yj = 0, and aggregates using the
average of the binary learners.

Do not confuse the binary loss with the overall classification loss (specified by the LossFun name-
value argument of the kfoldLoss and kfoldPredict object functions), which measures how well
an ECOC classifier performs as a whole.

Version History
Introduced in R2016a
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Extended Capabilities
Automatic Parallel Support
Accelerate code by automatically running computation in parallel using Parallel Computing Toolbox™.

To run in parallel, specify the 'Options' name-value argument in the call to this function and set the
'UseParallel' field of the options structure to true using statset.

For example: 'Options',statset('UseParallel',true)

For more information about parallel computing, see “Run MATLAB Functions with Automatic Parallel
Support” (Parallel Computing Toolbox).

See Also
ClassificationPartitionedLinearECOC | ClassificationECOC | ClassificationLinear |
loss | kfoldPredict | fitcecoc | statset

Topics
“Quick Start Parallel Computing for Statistics and Machine Learning Toolbox” on page 33-2
“Reproducibility in Parallel Statistical Computations” on page 33-16
“Concepts of Parallel Computing in Statistics and Machine Learning Toolbox” on page 33-6
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kfoldLoss
Package: classreg.learning.partition

Classification loss for cross-validated classification model

Syntax
L = kfoldLoss(CVMdl)
L = kfoldLoss(CVMdl,Name,Value)

Description
L = kfoldLoss(CVMdl) returns the classification loss obtained by the cross-validated classification
model CVMdl. For every fold, kfoldLoss computes the classification loss for validation-fold
observations using a classifier trained on training-fold observations. CVMdl.X and CVMdl.Y contain
both sets of observations.

L = kfoldLoss(CVMdl,Name,Value) returns the classification loss with additional options
specified by one or more name-value arguments. For example, you can specify a custom loss function.

Examples

Estimate Cross-Validated Classification Error

Load the ionosphere data set.

load ionosphere

Grow a classification tree.

tree = fitctree(X,Y);

Cross-validate the classification tree using 10-fold cross-validation.

cvtree = crossval(tree);

Estimate the cross-validated classification error.

L = kfoldLoss(cvtree)

L = 0.1083

Estimate Cross-Validated Classification Error

Load the ionosphere data set.

load ionosphere
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Train a classification ensemble of 100 decision trees using AdaBoostM1. Specify tree stumps as the
weak learners.

t = templateTree('MaxNumSplits',1);
ens = fitcensemble(X,Y,'Method','AdaBoostM1','Learners',t);

Cross-validate the ensemble using 10-fold cross-validation.

cvens = crossval(ens);

Estimate the cross-validated classification error.

L = kfoldLoss(cvens)

L = 0.0655

Find Optimal Number of Trees for GAM Using kfoldLoss

Train a cross-validated generalized additive model (GAM) with 10 folds. Then, use kfoldLoss to
compute cumulative cross-validation classification errors (misclassification rate in decimal). Use the
errors to determine the optimal number of trees per predictor (linear term for predictor) and the
optimal number of trees per interaction term.

Alternatively, you can find optimal values of fitcgam name-value arguments by using the
“OptimizeHyperparameters” on page 35-0  name-value argument. For an example, see “Optimize
GAM Using OptimizeHyperparameters” on page 35-2007.

Load the ionosphere data set. This data set has 34 predictors and 351 binary responses for radar
returns, either bad ('b') or good ('g').

load ionosphere

Create a cross-validated GAM by using the default cross-validation option. Specify the 'CrossVal'
name-value argument as 'on'. Specify to include all available interaction terms whose p-values are
not greater than 0.05.

rng('default') % For reproducibility
CVMdl = fitcgam(X,Y,'CrossVal','on','Interactions','all','MaxPValue',0.05);

If you specify 'Mode' as 'cumulative' for kfoldLoss, then the function returns cumulative
errors, which are the average errors across all folds obtained using the same number of trees for
each fold. Display the number of trees for each fold.

CVMdl.NumTrainedPerFold 

ans = struct with fields:
      PredictorTrees: [65 64 59 61 60 66 65 62 64 61]
    InteractionTrees: [1 2 2 2 2 1 2 2 2 2]

kfoldLoss can compute cumulative errors using up to 59 predictor trees and one interaction tree.

Plot the cumulative, 10-fold cross-validated, classification error (misclassification rate in decimal).
Specify 'IncludeInteractions' as false to exclude interaction terms from the computation.
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L_noInteractions = kfoldLoss(CVMdl,'Mode','cumulative','IncludeInteractions',false);
figure
plot(0:min(CVMdl.NumTrainedPerFold.PredictorTrees),L_noInteractions)

The first element of L_noInteractions is the average error over all folds obtained using only the
intercept (constant) term. The (J+1)th element of L_noInteractions is the average error obtained
using the intercept term and the first J predictor trees per linear term. Plotting the cumulative loss
allows you to monitor how the error changes as the number of predictor trees in GAM increases.

Find the minimum error and the number of predictor trees used to achieve the minimum error.

[M,I] = min(L_noInteractions)

M = 0.0655

I = 23

The GAM achieves the minimum error when it includes 22 predictor trees.

Compute the cumulative classification error using both linear terms and interaction terms.

L = kfoldLoss(CVMdl,'Mode','cumulative')

L = 2×1

    0.0712
    0.0712
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The first element of L is the average error over all folds obtained using the intercept (constant) term
and all predictor trees per linear term. The second element of L is the average error obtained using
the intercept term, all predictor trees per linear term, and one interaction tree per interaction term.
The error does not decrease when interaction terms are added.

If you are satisfied with the error when the number of predictor trees is 22, you can create a
predictive model by training the univariate GAM again and specifying
'NumTreesPerPredictor',22 without cross-validation.

Input Arguments
CVMdl — Cross-validated partitioned classifier
ClassificationPartitionedModel object | ClassificationPartitionedEnsemble object |
ClassificationPartitionedGAM object

Cross-validated partitioned classifier, specified as a ClassificationPartitionedModel,
ClassificationPartitionedEnsemble, or ClassificationPartitionedGAM object. You can
create the object in two ways:

• Pass a trained classification model listed in the following table to its crossval object function.
• Train a classification model using a function listed in the following table and specify one of the

cross-validation name-value arguments for the function.

Classification Model Function
ClassificationDiscriminant fitcdiscr
ClassificationEnsemble fitcensemble
ClassificationGAM fitcgam
ClassificationKNN fitcknn
ClassificationNaiveBayes fitcnb
ClassificationNeuralNetwork fitcnet
ClassificationSVM fitcsvm
ClassificationTree fitctree

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: kfoldLoss(CVMdl,'Folds',[1 2 3 5]) specifies to use the first, second, third, and
fifth folds to compute the classification loss, but to exclude the fourth fold.

Folds — Fold indices to use
1:CVMdl.KFold (default) | positive integer vector

Fold indices to use, specified as a positive integer vector. The elements of Folds must be within the
range from 1 to CVMdl.KFold.
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The software uses only the folds specified in Folds.
Example: 'Folds',[1 4 10]
Data Types: single | double

IncludeInteractions — Flag to include interaction terms
true | false

Flag to include interaction terms of the model, specified as true or false. This argument is valid
only for a generalized additive model (GAM). That is, you can specify this argument only when CVMdl
is ClassificationPartitionedGAM.

The default value is true if the models in CVMdl (CVMdl.Trained) contain interaction terms. The
value must be false if the models do not contain interaction terms.
Data Types: logical

LossFun — Loss function
'binodeviance' | 'classifcost' | 'classiferror' | 'crossentropy' | 'exponential' |
'hinge' | 'logit' | 'mincost' | 'quadratic' | function handle

Loss function, specified as a built-in loss function name or a function handle. The default loss function
depends on the model type of CVMdl.

• The default value is 'classiferror' if the model type is an ensemble or support vector machine
classifier.

• The default value is 'mincost' if the model type is a discriminant analysis, k-nearest neighbor,
naive Bayes, neural network, or tree classifier.

• If the model type is a generalized additive model classifier, the default value is 'mincost' if the
ScoreTransform property of the input model object (CVMdl.ScoreTransform) is 'logit';
otherwise, the default value is 'classiferror'.

'classiferror' and 'mincost' are equivalent when you use the default cost matrix. See
“Algorithms” on page 35-3873 for more information.

• This table lists the available loss functions. Specify one using its corresponding character vector
or string scalar.

Value Description
'binodeviance' Binomial deviance
'classifcost' Observed misclassification cost
'classiferror' Misclassified rate in decimal
'crossentropy' Cross-entropy loss (for neural networks only)
'exponential' Exponential loss
'hinge' Hinge loss
'logit' Logistic loss
'mincost' Minimal expected misclassification cost (for

classification scores that are posterior
probabilities)

'quadratic' Quadratic loss
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'mincost' is appropriate for classification scores that are posterior probabilities. The predict
and kfoldPredict functions of discriminant analysis, generalized additive model, k-nearest
neighbor, naive Bayes, neural network, and tree classifiers return such scores by default.

• For ensemble models that use 'Bag' or 'Subspace' methods, classification scores are
posterior probabilities by default. For ensemble models that use 'AdaBoostM1',
'AdaBoostM2', GentleBoost, or 'LogitBoost' methods, you can use posterior
probabilities as classification scores by specifying the double-logit score transform. For
example, enter:

CVMdl.ScoreTransform = 'doublelogit';

For all other ensemble methods, the software does not support posterior probabilities as
classification scores.

• For SVM models, you can specify to use posterior probabilities as classification scores by
setting 'FitPosterior',true when you cross-validate the model using fitcsvm.

• Specify your own function using function handle notation.

Suppose that n is the number of observations in the training data (CVMdl.NumObservations)
and K is the number of classes (numel(CVMdl.ClassNames)). Your function must have the
signature lossvalue = lossfun(C,S,W,Cost), where:

• The output argument lossvalue is a scalar.
• You specify the function name (lossfun).
• C is an n-by-K logical matrix with rows indicating the class to which the corresponding

observation belongs. The column order corresponds to the class order in CVMdl.ClassNames.

Construct C by setting C(p,q) = 1 if observation p is in class q, for each row. Set all other
elements of row p to 0.

• S is an n-by-K numeric matrix of classification scores. The column order corresponds to the
class order in CVMdl.ClassNames. The input S resembles the output argument score of
kfoldPredict.

• W is an n-by-1 numeric vector of observation weights. If you pass W, the software normalizes its
elements to sum to 1.

• Cost is a K-by-K numeric matrix of misclassification costs. For example, Cost = ones(K) –
eye(K) specifies a cost of 0 for correct classification, and 1 for misclassification.

Specify your function using 'LossFun',@lossfun.

For more details on loss functions, see “Classification Loss” on page 35-3870.
Example: 'LossFun','hinge'
Data Types: char | string | function_handle

Mode — Aggregation level for output
'average' (default) | 'individual' | 'cumulative'

Aggregation level for the output, specified as 'average', 'individual', or 'cumulative'.

Value Description
'average' The output is a scalar average over all folds.
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Value Description
'individual' The output is a vector of length k containing one value per fold,

where k is the number of folds.
'cumulative' Note If you want to specify this value, CVMdl must be a

ClassificationPartitionedEnsemble object or
ClassificationPartitionedGAM object.

• If CVMdl is ClassificationPartitionedEnsemble, then
the output is a vector of length
min(CVMdl.NumTrainedPerFold). Each element j is an
average over all folds that the function obtains by using
ensembles trained with weak learners 1:j.

• If CVMdl is ClassificationPartitionedGAM, then the
output value depends on the IncludeInteractions value.

• If IncludeInteractions is false, then L is a
(1 + min(NumTrainedPerFold.PredictorTrees))-
by-1 numeric column vector. The first element of L is an
average over all folds that is obtained only the intercept
(constant) term. The (j + 1)th element of L is an average
obtained using the intercept term and the first j predictor
trees per linear term.

• If IncludeInteractions is true, then L is a
(1 + min(NumTrainedPerFold.InteractionTrees))-
by-1 numeric column vector. The first element of L is an
average over all folds that is obtained using the intercept
(constant) term and all predictor trees per linear term. The
(j + 1)th element of L is an average obtained using the
intercept term, all predictor trees per linear term, and the
first j interaction trees per interaction term.

Example: 'Mode','individual'

Output Arguments
L — Classification loss
numeric scalar | numeric column vector

Classification loss, returned as a numeric scalar or numeric column vector.

• If Mode is 'average', then L is the average classification loss over all folds.
• If Mode is 'individual', then L is a k-by-1 numeric column vector containing the classification

loss for each fold, where k is the number of folds.
• If Mode is 'cumulative' and CVMdl is ClassificationPartitionedEnsemble, then L is a

min(CVMdl.NumTrainedPerFold)-by-1 numeric column vector. Each element j is the average
classification loss over all folds that the function obtains by using ensembles trained with weak
learners 1:j.

• If Mode is 'cumulative' and CVMdl is ClassificationPartitionedGAM, then the output
value depends on the IncludeInteractions value.
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• If IncludeInteractions is false, then L is a
(1 + min(NumTrainedPerFold.PredictorTrees))-by-1 numeric column vector. The first
element of L is the average classification loss over all folds that is obtained using only the
intercept (constant) term. The (j + 1)th element of L is the average loss obtained using the
intercept term and the first j predictor trees per linear term.

• If IncludeInteractions is true, then L is a
(1 + min(NumTrainedPerFold.InteractionTrees))-by-1 numeric column vector. The
first element of L is the average classification loss over all folds that is obtained using the
intercept (constant) term and all predictor trees per linear term. The (j + 1)th element of L
is the average loss obtained using the intercept term, all predictor trees per linear term, and
the first j interaction trees per interaction term.

More About
Classification Loss

Classification loss functions measure the predictive inaccuracy of classification models. When you
compare the same type of loss among many models, a lower loss indicates a better predictive model.

Consider the following scenario.

• L is the weighted average classification loss.
• n is the sample size.

• For binary classification:

• yj is the observed class label. The software codes it as –1 or 1, indicating the negative or
positive class (or the first or second class in the ClassNames property), respectively.

• f(Xj) is the positive-class classification score for observation (row) j of the predictor data X.
• mj = yjf(Xj) is the classification score for classifying observation j into the class corresponding

to yj. Positive values of mj indicate correct classification and do not contribute much to the
average loss. Negative values of mj indicate incorrect classification and contribute significantly
to the average loss.

• For algorithms that support multiclass classification (that is, K ≥ 3):

• yj
* is a vector of K – 1 zeros, with 1 in the position corresponding to the true, observed class yj.

For example, if the true class of the second observation is the third class and K = 4, then y2
* =

[0 0 1 0]′. The order of the classes corresponds to the order in the ClassNames property of
the input model.

• f(Xj) is the length K vector of class scores for observation j of the predictor data X. The order of
the scores corresponds to the order of the classes in the ClassNames property of the input
model.

• mj = yj
*′f(Xj). Therefore, mj is the scalar classification score that the model predicts for the true,

observed class.
• The weight for observation j is wj. The software normalizes the observation weights so that they

sum to the corresponding prior class probability stored in the Prior property. Therefore,

∑
j = 1

n
w j = 1.
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Given this scenario, the following table describes the supported loss functions that you can specify by
using the LossFun name-value argument.

Loss Function Value of LossFun Equation
Binomial deviance 'binodeviance'

L = ∑
j = 1

n
w jlog 1 + exp −2m j .

Observed
misclassification cost

'classifcost'
L = ∑

j = 1

n
w jcy jy j,

where y j is the class label corresponding to the
class with the maximal score, and cy jy j is the
user-specified cost of classifying an observation
into class y j when its true class is yj.

Misclassified rate in
decimal

'classiferror'
L = ∑

j = 1

n
w jI y j ≠ y j ,

where I{·} is the indicator function.
Cross-entropy loss 'crossentropy' 'crossentropy' is appropriate only for neural

network models.

The weighted cross-entropy loss is

L = − ∑
j = 1

n w jlog(m j)
Kn ,

where the weights w j are normalized to sum to n
instead of 1.

Exponential loss 'exponential'
L = ∑

j = 1

n
w jexp −m j .

Hinge loss 'hinge'

L =∑
j = 1

n

w jmax 0, 1−m j .

Logit loss 'logit'
L = ∑

j = 1

n
w jlog 1 + exp −m j .
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Loss Function Value of LossFun Equation
Minimal expected
misclassification cost

'mincost' 'mincost' is appropriate only if classification
scores are posterior probabilities.

The software computes the weighted minimal
expected classification cost using this procedure
for observations j = 1,...,n.

1 Estimate the expected misclassification cost
of classifying the observation Xj into the class
k:

γ jk = f X j ′C k .

f(Xj) is the column vector of class posterior
probabilities for the observation Xj. C is the
cost matrix stored in the Cost property of
the model.

2 For observation j, predict the class label
corresponding to the minimal expected
misclassification cost:

y j = argmin
k = 1, ..., K

γ jk .

3 Using C, identify the cost incurred (cj) for
making the prediction.

The weighted average of the minimal expected
misclassification cost loss is

L = ∑
j = 1

n
w jc j .

Quadratic loss 'quadratic'
L = ∑

j = 1

n
w j 1−m j

2 .

If you use the default cost matrix (whose element value is 0 for correct classification and 1 for
incorrect classification), then the loss values for 'classifcost', 'classiferror', and
'mincost' are identical. For a model with a nondefault cost matrix, the 'classifcost' loss is
equivalent to the 'mincost' loss most of the time. These losses can be different if prediction into the
class with maximal posterior probability is different from prediction into the class with minimal
expected cost. Note that 'mincost' is appropriate only if classification scores are posterior
probabilities.

This figure compares the loss functions (except 'classifcost', 'crossentropy', and
'mincost') over the score m for one observation. Some functions are normalized to pass through
the point (0,1).
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Algorithms
kfoldLoss computes the classification loss as described in the corresponding loss object function.
For a model-specific description, see the appropriate loss function reference page in the following
table.

Model Type loss Function
Discriminant analysis classifier loss
Ensemble classifier loss
Generalized additive model classifier loss
k-nearest neighbor classifier loss
Naive Bayes classifier loss
Neural network classifier loss
Support vector machine classifier loss
Binary decision tree for multiclass classification loss

Version History
Introduced in R2011a
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kfoldLoss returns a different value for cross-validated SVM and ensemble classifiers with
a nondefault cost matrix
Behavior changed in R2022a

If you specify a nondefault cost matrix when you cross-validate the input model object for an SVM or
ensemble classification model, the kfoldLoss function returns a different value compared to
previous releases.

The kfoldLoss function uses the observation weights stored in the W property. Also, the function
uses the cost matrix stored in the Cost property if you specify the LossFun name-value argument as
"classifcost" or "mincost". The way the function uses the W and Cost property values has not
changed. However, the property values stored in the input model object have changed for cross-
validated SVM and ensemble model objects with a nondefault cost matrix, so the function can return
a different value.

For details about the property value change, see “Cost property stores the user-specified cost matrix”
on page 35-613 (cross-validated SVM classifier) or “Cost property stores the user-specified cost
matrix” on page 35-561 (cross-validated ensemble classifier).

If you want the software to handle the cost matrix, prior probabilities, and observation weights as in
previous releases, adjust the prior probabilities and observation weights for the nondefault cost
matrix, as described in “Adjust Prior Probabilities and Observation Weights for Misclassification Cost
Matrix” on page 19-9. Then, when you train a classification model, specify the adjusted prior
probabilities and observation weights by using the Prior and Weights name-value arguments,
respectively, and use the default cost matrix.

Default LossFun value has changed for cross-validated GAM and neural network classifiers
Behavior changed in R2022a

Starting in R2022a, the default value of the LossFun name-value argument has changed for both a
generalized additive model (GAM) and a neural network model, so that the kfoldLoss function uses
the "mincost" option (minimal expected misclassification cost) as the default when a cross-validated
classification object uses posterior probabilities for classification scores.

• If the model type of the input model object CVMdl is a GAM classifier, the default value is
"mincost" if the ScoreTransform property of CVMdl (CVMdl.ScoreTransform) is 'logit';
otherwise, the default value is "classiferror".

• If the model type of CVMdl is a neural network model classifier, the default value is "mincost".

In previous releases, the default value was 'classiferror'.

You do not need to make any changes to your code if you use the default cost matrix (whose element
value is 0 for correct classification and 1 for incorrect classification). The "mincost" option is
equivalent to the "classiferror" option for the default cost matrix.

Extended Capabilities
GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

Usage notes and limitations:

• This function fully supports GPU arrays for the following cross-validated model objects:
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• Ensemble classifier trained with fitcensemble
• k-nearest neighbor classifier trained with fitcknn
• Support vector machine classifier trained with fitcsvm
• Binary decision tree for multiclass classification trained with fitctree

For more information, see “Run MATLAB Functions on a GPU” (Parallel Computing Toolbox).

See Also
ClassificationPartitionedModel | kfoldPredict | kfoldEdge | kfoldMargin | kfoldfun

Topics
“Examine Quality of KNN Classifier” on page 19-30
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kfoldLoss
Regression loss for observations not used in training

Syntax
L = kfoldLoss(CVMdl)
L = kfoldLoss(CVMdl,Name,Value)

Description
L = kfoldLoss(CVMdl) returns the cross-validated mean squared error (MSE) obtained by the
cross-validated, linear regression model CVMdl. That is, for every fold, kfoldLoss estimates the
regression loss for observations that it holds out when it trains using all other observations.

L contains a regression loss for each regularization strength in the linear regression models that
compose CVMdl.

L = kfoldLoss(CVMdl,Name,Value) uses additional options specified by one or more
Name,Value pair arguments. For example, indicate which folds to use for the loss calculation or
specify the regression-loss function.

Input Arguments
CVMdl — Cross-validated, linear regression model
RegressionPartitionedLinear model object

Cross-validated, linear regression model, specified as a RegressionPartitionedLinear model
object. You can create a RegressionPartitionedLinear model using fitrlinear and specifying
any of the one of the cross-validation, name-value pair arguments, for example, CrossVal.

To obtain estimates, kfoldLoss applies the same data used to cross-validate the linear regression
model (X and Y).

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.

Folds — Fold indices to use for response prediction
1:CVMdl.KFold (default) | numeric vector of positive integers

Fold indices to use for response prediction, specified as the comma-separated pair consisting of
'Folds' and a numeric vector of positive integers. The elements of Folds must range from 1
through CVMdl.KFold.
Example: 'Folds',[1 4 10]
Data Types: single | double
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LossFun — Loss function
'mse' (default) | 'epsiloninsensitive' | function handle

Loss function, specified as the comma-separated pair consisting of 'LossFun' and a built-in loss
function name or function handle.

• The following table lists the available loss functions. Specify one using its corresponding character
vector or string scalar. Also, in the table, f x = xβ + b .

• β is a vector of p coefficients.
• x is an observation from p predictor variables.
• b is the scalar bias.

Value Description
'epsiloninsensitive' Epsilon-insensitive loss:

ℓ y, f x = max 0, y − f x − ε
'mse' MSE: ℓ y, f x = y − f x 2

'epsiloninsensitive' is appropriate for SVM learners only.
• Specify your own function using function handle notation.

Let n be the number of observations in X. Your function must have this signature

lossvalue = lossfun(Y,Yhat,W)

where:

• The output argument lossvalue is a scalar.
• You choose the function name (lossfun).
• Y is an n-dimensional vector of observed responses. kfoldLoss passes the input argument Y

in for Y.
• Yhat is an n-dimensional vector of predicted responses, which is similar to the output of

predict.
• W is an n-by-1 numeric vector of observation weights.

Specify your function using 'LossFun',@lossfun.

Data Types: char | string | function_handle

Mode — Loss aggregation level
'average' (default) | 'individual'

Loss aggregation level, specified as the comma-separated pair consisting of 'Mode' and 'average'
or 'individual'.

Value Description
'average' Returns losses averaged over all folds
'individual' Returns losses for each fold

Example: 'Mode','individual'
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Output Arguments
L — Cross-validated regression losses
numeric scalar | numeric vector | numeric matrix

Cross-validated regression losses, returned as a numeric scalar, vector, or matrix. The interpretation
of L depends on LossFun.

Let R be the number of regularizations strengths is the cross-validated models (stored in
numel(CVMdl.Trained{1}.Lambda)) and F be the number of folds (stored in CVMdl.KFold).

• If Mode is 'average', then L is a 1-by-R vector. L(j) is the average regression loss over all folds
of the cross-validated model that uses regularization strength j.

• Otherwise, L is an F-by-R matrix. L(i,j) is the regression loss for fold i of the cross-validated
model that uses regularization strength j.

To estimate L, kfoldLoss uses the data that created CVMdl (see X and Y).

Examples

Estimate k-Fold Mean Squared Error

Simulate 10000 observations from this model

y = x100 + 2x200 + e .

• X = {x1, . . . , x1000} is a 10000-by-1000 sparse matrix with 10% nonzero standard normal
elements.

• e is random normal error with mean 0 and standard deviation 0.3.

rng(1) % For reproducibility
n = 1e4;
d = 1e3;
nz = 0.1;
X = sprandn(n,d,nz);
Y = X(:,100) + 2*X(:,200) + 0.3*randn(n,1);

Cross-validate a linear regression model using SVM learners.

rng(1); % For reproducibility 
CVMdl = fitrlinear(X,Y,'CrossVal','on');

CVMdl is a RegressionPartitionedLinear model. By default, the software implements 10-fold
cross validation. You can alter the number of folds using the 'KFold' name-value pair argument.

Estimate the average of the test-sample MSEs.

mse = kfoldLoss(CVMdl)

mse = 0.1735

Alternatively, you can obtain the per-fold MSEs by specifying the name-value pair
'Mode','individual' in kfoldLoss.
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Specify Custom Regression Loss

Simulate data as in “Estimate k-Fold Mean Squared Error” on page 35-3878.

rng(1) % For reproducibility
n = 1e4;
d = 1e3;
nz = 0.1;
X = sprandn(n,d,nz); 
Y = X(:,100) + 2*X(:,200) + 0.3*randn(n,1);
X = X'; % Put observations in columns for faster training 

Cross-validate a linear regression model using 10-fold cross-validation. Optimize the objective
function using SpaRSA.

CVMdl = fitrlinear(X,Y,'CrossVal','on','ObservationsIn','columns',...
    'Solver','sparsa');

CVMdl is a RegressionPartitionedLinear model. It contains the property Trained, which is a
10-by-1 cell array holding RegressionLinear models that the software trained using the training
set.

Create an anonymous function that measures Huber loss (δ = 1), that is,

L = 1
∑w j

∑
j = 1

n
w j ℓ j ,

where

ℓ j =
0 . 5e j

2;

e j − 0 . 5;

e j ≤ 1

e j > 1
.

e j is the residual for observation j. Custom loss functions must be written in a particular form. For
rules on writing a custom loss function, see the 'LossFun' name-value pair argument.

huberloss = @(Y,Yhat,W)sum(W.*((0.5*(abs(Y-Yhat)<=1).*(Y-Yhat).^2) + ...
    ((abs(Y-Yhat)>1).*abs(Y-Yhat)-0.5)))/sum(W);

Estimate the average Huber loss over the folds. Also, obtain the Huber loss for each fold.

mseAve = kfoldLoss(CVMdl,'LossFun',huberloss)

mseAve = -0.4447

mseFold = kfoldLoss(CVMdl,'LossFun',huberloss,'Mode','individual')

mseFold = 10×1

   -0.4454
   -0.4473
   -0.4452
   -0.4469
   -0.4434
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   -0.4427
   -0.4471
   -0.4430
   -0.4438
   -0.4426

Find Good Lasso Penalty Using Cross-Validation

To determine a good lasso-penalty strength for a linear regression model that uses least squares,
implement 5-fold cross-validation.

Simulate 10000 observations from this model

y = x100 + 2x200 + e .

• X = {x1, . . . , x1000} is a 10000-by-1000 sparse matrix with 10% nonzero standard normal
elements.

• e is random normal error with mean 0 and standard deviation 0.3.

rng(1) % For reproducibility
n = 1e4;
d = 1e3;
nz = 0.1;
X = sprandn(n,d,nz);
Y = X(:,100) + 2*X(:,200) + 0.3*randn(n,1);

Create a set of 15 logarithmically-spaced regularization strengths from 10−5 through 10−1.

Lambda = logspace(-5,-1,15);

Cross-validate the models. To increase execution speed, transpose the predictor data and specify that
the observations are in columns. Optimize the objective function using SpaRSA.

X = X'; 
CVMdl = fitrlinear(X,Y,'ObservationsIn','columns','KFold',5,'Lambda',Lambda,...
    'Learner','leastsquares','Solver','sparsa','Regularization','lasso');

numCLModels = numel(CVMdl.Trained)

numCLModels = 5

CVMdl is a RegressionPartitionedLinear model. Because fitrlinear implements 5-fold cross-
validation, CVMdl contains 5 RegressionLinear models that the software trains on each fold.

Display the first trained linear regression model.

Mdl1 = CVMdl.Trained{1}

Mdl1 = 
  RegressionLinear
         ResponseName: 'Y'
    ResponseTransform: 'none'
                 Beta: [1000x15 double]
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                 Bias: [-0.0049 -0.0049 -0.0049 -0.0049 -0.0049 -0.0048 ... ]
               Lambda: [1.0000e-05 1.9307e-05 3.7276e-05 7.1969e-05 ... ]
              Learner: 'leastsquares'

  Properties, Methods

Mdl1 is a RegressionLinear model object. fitrlinear constructed Mdl1 by training on the first
four folds. Because Lambda is a sequence of regularization strengths, you can think of Mdl1 as 15
models, one for each regularization strength in Lambda.

Estimate the cross-validated MSE.

mse = kfoldLoss(CVMdl);

Higher values of Lambda lead to predictor variable sparsity, which is a good quality of a regression
model. For each regularization strength, train a linear regression model using the entire data set and
the same options as when you cross-validated the models. Determine the number of nonzero
coefficients per model.

Mdl = fitrlinear(X,Y,'ObservationsIn','columns','Lambda',Lambda,...
    'Learner','leastsquares','Solver','sparsa','Regularization','lasso');
numNZCoeff = sum(Mdl.Beta~=0);

In the same figure, plot the cross-validated MSE and frequency of nonzero coefficients for each
regularization strength. Plot all variables on the log scale.

figure
[h,hL1,hL2] = plotyy(log10(Lambda),log10(mse),...
    log10(Lambda),log10(numNZCoeff)); 
hL1.Marker = 'o';
hL2.Marker = 'o';
ylabel(h(1),'log_{10} MSE')
ylabel(h(2),'log_{10} nonzero-coefficient frequency')
xlabel('log_{10} Lambda')
hold off
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Choose the index of the regularization strength that balances predictor variable sparsity and low
MSE (for example, Lambda(10)).

idxFinal = 10;

Extract the model with corresponding to the minimal MSE.

MdlFinal = selectModels(Mdl,idxFinal)

MdlFinal = 
  RegressionLinear
         ResponseName: 'Y'
    ResponseTransform: 'none'
                 Beta: [1000x1 double]
                 Bias: -0.0050
               Lambda: 0.0037
              Learner: 'leastsquares'

  Properties, Methods

idxNZCoeff = find(MdlFinal.Beta~=0)

idxNZCoeff = 2×1

   100
   200
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EstCoeff = Mdl.Beta(idxNZCoeff)

EstCoeff = 2×1

    1.0051
    1.9965

MdlFinal is a RegressionLinear model with one regularization strength. The nonzero coefficients
EstCoeff are close to the coefficients that simulated the data.

Version History
Introduced in R2016a

See Also
RegressionPartitionedLinear | RegressionLinear | kfoldPredict | loss
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kfoldLoss
Package: classreg.learning.partition

Loss for cross-validated partitioned regression model

Syntax
L = kfoldLoss(CVMdl)
L = kfoldLoss(CVMdl,Name,Value)

Description
L = kfoldLoss(CVMdl) returns the loss (mean squared error) obtained by the cross-validated
regression model CVMdl. For every fold, kfoldLoss computes the loss for validation-fold
observations using a model trained on training-fold observations. CVMdl.X and CVMdl.Y contain
both sets of observations.

L = kfoldLoss(CVMdl,Name,Value) returns the loss with additional options specified by one or
more name-value arguments. For example, you can specify a custom loss function.

Examples

Find Cross-Validation Loss for Regression Ensemble

Find the cross-validation loss for a regression ensemble of the carsmall data.

Load the carsmall data set and select displacement, horsepower, and vehicle weight as predictors.

load carsmall
X = [Displacement Horsepower Weight];

Train an ensemble of regression trees.

rens = fitrensemble(X,MPG);

Create a cross-validated ensemble from rens and find the k-fold cross-validation loss.

rng(10,'twister') % For reproducibility
cvrens = crossval(rens);
L = kfoldLoss(cvrens)

L = 28.7114

Display Individual Losses for Each Cross-Validation Fold

The mean squared error (MSE) is a measure of model quality. Examine the MSE for each fold of a
cross-validated regression model.

35 Functions

35-3884



Load the carsmall data set. Specify the predictor X and the response data Y.

load carsmall
X = [Cylinders Displacement Horsepower Weight];
Y = MPG;

Train a cross-validated regression tree model. By default, the software implements 10-fold cross-
validation.

rng('default') % For reproducibility
CVMdl = fitrtree(X,Y,'CrossVal','on');

Compute the MSE for each fold. Visualize the distribution of the loss values by using a box plot.
Notice that none of the values is an outlier.

losses = kfoldLoss(CVMdl,'Mode','individual')

losses = 10×1

   42.5072
   20.3995
   22.3737
   34.4255
   40.8005
   60.2755
   19.5562
    9.2060
   29.0788
   16.3386

boxchart(losses)
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Find Optimal Number of Trees for GAM Using kfoldLoss

Train a cross-validated generalized additive model (GAM) with 10 folds. Then, use kfoldLoss to
compute the cumulative cross-validation regression loss (mean squared errors). Use the errors to
determine the optimal number of trees per predictor (linear term for predictor) and the optimal
number of trees per interaction term.

Alternatively, you can find optimal values of fitrgam name-value arguments by using the
“OptimizeHyperparameters” on page 35-0  name-value argument. For an example, see “Optimize
GAM Using OptimizeHyperparameters” on page 35-2469.

Load the patients data set.

load patients

Create a table that contains the predictor variables (Age, Diastolic, Smoker, Weight, Gender, and
SelfAssessedHealthStatus) and the response variable (Systolic).

tbl = table(Age,Diastolic,Smoker,Weight,Gender,SelfAssessedHealthStatus,Systolic);

Create a cross-validated GAM by using the default cross-validation option. Specify the 'CrossVal'
name-value argument as 'on'. Also, specify to include 5 interaction terms.

rng('default') % For reproducibility
CVMdl = fitrgam(tbl,'Systolic','CrossVal','on','Interactions',5);
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If you specify 'Mode' as 'cumulative' for kfoldLoss, then the function returns cumulative
errors, which are the average errors across all folds obtained using the same number of trees for
each fold. Display the number of trees for each fold.

CVMdl.NumTrainedPerFold 

ans = struct with fields:
      PredictorTrees: [300 300 300 300 300 300 300 300 300 300]
    InteractionTrees: [76 100 100 100 100 42 100 100 59 100]

kfoldLoss can compute cumulative errors using up to 300 predictor trees and 42 interaction trees.

Plot the cumulative, 10-fold cross-validated, mean squared errors. Specify
'IncludeInteractions' as false to exclude interaction terms from the computation.

L_noInteractions = kfoldLoss(CVMdl,'Mode','cumulative','IncludeInteractions',false);
figure
plot(0:min(CVMdl.NumTrainedPerFold.PredictorTrees),L_noInteractions)

The first element of L_noInteractions is the average error over all folds obtained using only the
intercept (constant) term. The (J+1)th element of L_noInteractions is the average error obtained
using the intercept term and the first J predictor trees per linear term. Plotting the cumulative loss
allows you to monitor how the error changes as the number of predictor trees in the GAM increases.

Find the minimum error and the number of predictor trees used to achieve the minimum error.

[M,I] = min(L_noInteractions)
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M = 28.0506

I = 6

The GAM achieves the minimum error when it includes 5 predictor trees.

Compute the cumulative mean squared error using both linear terms and interaction terms.

L = kfoldLoss(CVMdl,'Mode','cumulative');
figure
plot(0:min(CVMdl.NumTrainedPerFold.InteractionTrees),L)

The first element of L is the average error over all folds obtained using the intercept (constant) term
and all predictor trees per linear term. The (J+1)th element of L is the average error obtained using
the intercept term, all predictor trees per linear term, and the first J interaction trees per interaction
term. The plot shows that the error increases when interaction terms are added.

If you are satisfied with the error when the number of predictor trees is 5, you can create a predictive
model by training the univariate GAM again and specifying 'NumTreesPerPredictor',5 without
cross-validation.

35 Functions

35-3888



Input Arguments
CVMdl — Cross-validated partitioned regression model
RegressionPartitionedModel object | RegressionPartitionedEnsemble object |
RegressionPartitionedGAM object | RegressionPartitionedGP object |
RegressionPartitionedSVM object

Cross-validated partitioned regression model, specified as a RegressionPartitionedModel,
RegressionPartitionedEnsemble, RegressionPartitionedGAM,
RegressionPartitionedGP, or RegressionPartitionedSVM object. You can create the object in
two ways:

• Pass a trained regression model listed in the following table to its crossval object function.
• Train a regression model using a function listed in the following table and specify one of the cross-

validation name-value arguments for the function.

Regression Model Function
RegressionEnsemble fitrensemble
RegressionGAM fitrgam
RegressionGP fitrgp
RegressionNeuralNetwork fitrnet
RegressionSVM fitrsvm
RegressionTree fitrtree

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: kfoldLoss(CVMdl,'Folds',[1 2 3 5]) specifies to use the first, second, third, and
fifth folds to compute the mean squared error, but to exclude the fourth fold.

Folds — Fold indices to use
1:CVMdl.KFold (default) | positive integer vector

Fold indices to use, specified as a positive integer vector. The elements of Folds must be within the
range from 1 to CVMdl.KFold.

The software uses only the folds specified in Folds.
Example: 'Folds',[1 4 10]
Data Types: single | double

IncludeInteractions — Flag to include interaction terms
true | false

Flag to include interaction terms of the model, specified as true or false. This argument is valid
only for a generalized additive model (GAM). That is, you can specify this argument only when CVMdl
is RegressionPartitionedGAM.
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The default value is true if the models in CVMdl (CVMdl.Trained) contain interaction terms. The
value must be false if the models do not contain interaction terms.
Example: 'IncludeInteractions',false
Data Types: logical

LossFun — Loss function
'mse' (default) | function handle

Loss function, specified as 'mse' or a function handle.

• Specify the built-in function 'mse'. In this case, the loss function is the mean squared error.
• Specify your own function using function handle notation.

Assume that n is the number of observations in the training data (CVMdl.NumObservations).
Your function must have the signature lossvalue = lossfun(Y,Yfit,W), where:

• The output argument lossvalue is a scalar.
• You specify the function name (lossfun).
• Y is an n-by-1 numeric vector of observed responses.
• Yfit is an n-by-1 numeric vector of predicted responses.
• W is an n-by-1 numeric vector of observation weights.

Specify your function using 'LossFun',@lossfun.

Data Types: char | string | function_handle

Mode — Aggregation level for output
'average' (default) | 'individual' | 'cumulative'

Aggregation level for the output, specified as 'average', 'individual', or 'cumulative'.

Value Description
'average' The output is a scalar average over all folds.
'individual' The output is a vector of length k containing one value per fold,

where k is the number of folds.
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Value Description
'cumulative' Note If you want to specify this value, CVMdl must be a

RegressionPartitionedEnsemble object or
RegressionPartitionedGAM object.

• If CVMdl is RegressionPartitionedEnsemble, then the
output is a vector of length
min(CVMdl.NumTrainedPerFold). Each element j is an
average over all folds that the function obtains by using
ensembles trained with weak learners 1:j.

• If CVMdl is RegressionPartitionedGAM, then the output
value depends on the IncludeInteractions value.

• If IncludeInteractions is false, then L is a
(1 + min(NumTrainedPerFold.PredictorTrees))-
by-1 numeric column vector. The first element of L is an
average over all folds that is obtained using only the
intercept (constant) term. The (j + 1)th element of L is an
average obtained using the intercept term and the first j
predictor trees per linear term.

• If IncludeInteractions is true, then L is a
(1 + min(NumTrainedPerFold.InteractionTrees))-
by-1 numeric column vector. The first element of L is an
average over all folds that is obtained using the intercept
(constant) term and all predictor trees per linear term. The
(j + 1)th element of L is an average obtained using the
intercept term, all predictor trees per linear term, and the
first j interaction trees per interaction term.

Example: 'Mode','individual'

Output Arguments
L — Loss
numeric scalar | numeric column vector

Loss, returned as a numeric scalar or numeric column vector.

By default, the loss is the mean squared error between the validation-fold observations and the
predictions made with a regression model trained on the training-fold observations.

• If Mode is 'average', then L is the average loss over all folds.
• If Mode is 'individual', then L is a k-by-1 numeric column vector containing the loss for each

fold, where k is the number of folds.
• If Mode is 'cumulative' and CVMdl is RegressionPartitionedEnsemble, then L is a

min(CVMdl.NumTrainedPerFold)-by-1 numeric column vector. Each element j is the average
loss over all folds that the function obtains using ensembles trained with weak learners 1:j.

• If Mode is 'cumulative' and CVMdl is RegressionPartitionedGAM, then the output value
depends on the IncludeInteractions value.
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• If IncludeInteractions is false, then L is a
(1 + min(NumTrainedPerFold.PredictorTrees))-by-1 numeric column vector. The first
element of L is the average loss over all folds that is obtained using only the intercept
(constant) term. The (j + 1)th element of L is the average loss obtained using the intercept
term and the first j predictor trees per linear term.

• If IncludeInteractions is true, then L is a
(1 + min(NumTrainedPerFold.InteractionTrees))-by-1 numeric column vector. The
first element of L is the average loss over all folds that is obtained using the intercept
(constant) term and all predictor trees per linear term. The (j + 1)th element of L is the
average loss obtained using the intercept term, all predictor trees per linear term, and the first
j interaction trees per interaction term.

Alternative Functionality
If you want to compute the cross-validated loss of a tree model, you can avoid constructing a
RegressionPartitionedModel object by calling cvloss. Creating a cross-validated tree object
can save you time if you plan to examine it more than once.

Version History
Introduced in R2011a

Extended Capabilities
GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

Usage notes and limitations:

• This function fully supports GPU arrays for regression tree model objects fitted with fitrtree or
fitrensemble.

For more information, see “Run MATLAB Functions on a GPU” (Parallel Computing Toolbox).

See Also
kfoldPredict | RegressionPartitionedModel | RegressionPartitionedEnsemble |
RegressionPartitionedSVM | RegressionPartitionedGAM | RegressionPartitionedGP
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kfoldMargin
Package: classreg.learning.partition

Classification margins for cross-validated ECOC model

Syntax
margin = kfoldMargin(CVMdl)
margin = kfoldMargin(CVMdl,Name,Value)

Description
margin = kfoldMargin(CVMdl) returns classification margins on page 35-3898 obtained by the
cross-validated ECOC model (ClassificationPartitionedECOC) CVMdl. For every fold,
kfoldMargin computes classification margins for validation-fold observations using an ECOC model
trained on training-fold observations. CVMdl.X contains both sets of observations.

margin = kfoldMargin(CVMdl,Name,Value) returns classification margins with additional
options specified by one or more name-value pair arguments. For example, specify the binary learner
loss function, decoding scheme, or verbosity level.

Examples

Estimate k-Fold Cross-Validation Margins

Load Fisher's iris data set. Specify the predictor data X, the response data Y, and the order of the
classes in Y.

load fisheriris
X = meas;
Y = categorical(species);
classOrder = unique(Y);
rng(1); % For reproducibility

Train and cross-validate an ECOC model using support vector machine (SVM) binary classifiers.
Standardize the predictor data using an SVM template, and specify the class order.

t = templateSVM('Standardize',1);
CVMdl = fitcecoc(X,Y,'CrossVal','on','Learners',t,'ClassNames',classOrder);

CVMdl is a ClassificationPartitionedECOC model. By default, the software implements 10-fold
cross-validation. You can specify a different number of folds using the 'KFold' name-value pair
argument.

Estimate the margins for validation-fold observations. Display the distribution of the margins using a
boxplot.

margin = kfoldMargin(CVMdl);

boxplot(margin)
title('Distribution of Margins')
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Select ECOC Model Features by Comparing Cross-Validation Margins

One way to perform feature selection is to compare cross-validation margins from multiple models.
Based solely on this criterion, the classifier with the greatest margins is the best classifier.

Load Fisher's iris data set. Specify the predictor data X, the response data Y, and the order of the
classes in Y.

load fisheriris
X = meas;
Y = categorical(species);
classOrder = unique(Y); % Class order
rng(1); % For reproducibility

Define the following two data sets.

• fullX contains all the predictors.
• partX contains the petal dimensions.

fullX = X;
partX = X(:,3:4);

For each predictor set, train and cross-validate an ECOC model using SVM binary classifiers.
Standardize the predictors using an SVM template, and specify the class order.

t = templateSVM('Standardize',1);
CVMdl = fitcecoc(fullX,Y,'CrossVal','on','Learners',t,...
    'ClassNames',classOrder);
PCVMdl = fitcecoc(partX,Y,'CrossVal','on','Learners',t,...
    'ClassNames',classOrder);
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CVMdl and PCVMdl are ClassificationPartitionedECOC models. By default, the software
implements 10-fold cross-validation.

Estimate the margins for each classifier. Use loss-based decoding for aggregating the binary learner
results. For each model, display the distribution of the margins using a boxplot.

fullMargins = kfoldMargin(CVMdl,'Decoding','lossbased');
partMargins = kfoldMargin(PCVMdl,'Decoding','lossbased');

boxplot([fullMargins partMargins],'Labels',{'All Predictors','Two Predictors'})
title('Distributions of Margins')

The margin distributions are approximately the same.

Input Arguments
CVMdl — Cross-validated ECOC model
ClassificationPartitionedECOC model

Cross-validated ECOC model, specified as a ClassificationPartitionedECOC model. You can
create a ClassificationPartitionedECOC model in two ways:

• Pass a trained ECOC model (ClassificationECOC) to crossval.
• Train an ECOC model using fitcecoc and specify any one of these cross-validation name-value

pair arguments: 'CrossVal', 'CVPartition', 'Holdout', 'KFold', or 'Leaveout'.
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Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: kfoldMargin(CVMdl,'Verbose',1) specifies to display diagnostic messages in the
Command Window.

BinaryLoss — Binary learner loss function
'hamming' | 'linear' | 'logit' | 'exponential' | 'binodeviance' | 'hinge' | 'quadratic'
| function handle

Binary learner loss function, specified as the comma-separated pair consisting of 'BinaryLoss' and
a built-in loss function name or function handle.

• This table describes the built-in functions, where yj is the class label for a particular binary learner
(in the set {–1,1,0}), sj is the score for observation j, and g(yj,sj) is the binary loss formula.

Value Description Score Domain g(yj,sj)
'binodeviance' Binomial deviance (–∞,∞) log[1 + exp(–2yjsj)]/

[2log(2)]
'exponential' Exponential (–∞,∞) exp(–yjsj)/2
'hamming' Hamming [0,1] or (–∞,∞) [1 – sign(yjsj)]/2
'hinge' Hinge (–∞,∞) max(0,1 – yjsj)/2
'linear' Linear (–∞,∞) (1 – yjsj)/2
'logit' Logistic (–∞,∞) log[1 + exp(–yjsj)]/

[2log(2)]
'quadratic' Quadratic [0,1] [1 – yj(2sj – 1)]2/2

The software normalizes binary losses so that the loss is 0.5 when yj = 0. Also, the software
calculates the mean binary loss for each class.

• For a custom binary loss function, for example customFunction, specify its function handle
'BinaryLoss',@customFunction.

customFunction has this form:

bLoss = customFunction(M,s)

• M is the K-by-B coding matrix stored in Mdl.CodingMatrix.
• s is the 1-by-B row vector of classification scores.
• bLoss is the classification loss. This scalar aggregates the binary losses for every learner in a

particular class. For example, you can use the mean binary loss to aggregate the loss over the
learners for each class.

• K is the number of classes.
• B is the number of binary learners.

For an example of passing a custom binary loss function, see “Predict Test-Sample Labels of ECOC
Model Using Custom Binary Loss Function” on page 35-5751.
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The default BinaryLoss value depends on the score ranges returned by the binary learners. This
table identifies what some default BinaryLoss values are when you use the default score transform
(ScoreTransform property of the model is 'none').

Assumption Default Value
All binary learners are any of the following:

• Classification decision trees
• Discriminant analysis models
• k-nearest neighbor models
• Naive Bayes models

'quadratic'

All binary learners are SVMs. 'hinge'
All binary learners are ensembles trained by AdaboostM1 or
GentleBoost.

'exponential'

All binary learners are ensembles trained by LogitBoost. 'binodeviance'
You specify to predict class posterior probabilities by setting
'FitPosterior',true in fitcecoc.

'quadratic'

Binary learners are heterogeneous and use different loss functions. 'hamming'

To check the default value, use dot notation to display the BinaryLoss property of the trained model
at the command line.
Example: 'BinaryLoss','binodeviance'
Data Types: char | string | function_handle

Decoding — Decoding scheme
'lossweighted' (default) | 'lossbased'

Decoding scheme that aggregates the binary losses, specified as the comma-separated pair consisting
of 'Decoding' and 'lossweighted' or 'lossbased'. For more information, see “Binary Loss” on
page 35-3898.
Example: 'Decoding','lossbased'

Options — Estimation options
[] (default) | structure array returned by statset

Estimation options, specified as the comma-separated pair consisting of 'Options' and a structure
array returned by statset.

To invoke parallel computing:

• You need a Parallel Computing Toolbox license.
• Specify 'Options',statset('UseParallel',true).

Verbose — Verbosity level
0 (default) | 1

Verbosity level, specified as the comma-separated pair consisting of 'Verbose' and 0 or 1. Verbose
controls the number of diagnostic messages that the software displays in the Command Window.
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If Verbose is 0, then the software does not display diagnostic messages. Otherwise, the software
displays diagnostic messages.
Example: 'Verbose',1
Data Types: single | double

Output Arguments
margin — Classification margins
numeric vector

Classification margins on page 35-3898, returned as a numeric vector. margin is an n-by-1 vector,
where each row is the margin of the corresponding observation and n is the number of observations
(size(CVMdl.X,1)).

More About
Classification Margin

The classification margin is, for each observation, the difference between the negative loss for the
true class and the maximal negative loss among the false classes. If the margins are on the same
scale, then they serve as a classification confidence measure. Among multiple classifiers, those that
yield greater margins are better.

Binary Loss

The binary loss is a function of the class and classification score that determines how well a binary
learner classifies an observation into the class.

Suppose the following:

• mkj is element (k,j) of the coding design matrix M—that is, the code corresponding to class k of
binary learner j. M is a K-by-B matrix, where K is the number of classes, and B is the number of
binary learners.

• sj is the score of binary learner j for an observation.
• g is the binary loss function.
• k  is the predicted class for the observation.

The decoding scheme of an ECOC model specifies how the software aggregates the binary losses and
determines the predicted class for each observation. The software supports two decoding schemes:

• Loss-based decoding [2] (Decoding is 'lossbased') — The predicted class of an observation
corresponds to the class that produces the minimum average of the binary losses over all binary
learners.

k = argmin
k

1
B ∑j = 1

B
mk j g(mk j, s j) .

• Loss-weighted decoding [3] (Decoding is 'lossweighted') — The predicted class of an
observation corresponds to the class that produces the minimum average of the binary losses over
the binary learners for the corresponding class.
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k = argmin
k

∑
j = 1

B
mk j g(mk j, s j)

∑ j = 1

B

mk j

.

The denominator corresponds to the number of binary learners for class k. [1] suggests that loss-
weighted decoding improves classification accuracy by keeping loss values for all classes in the
same dynamic range.

The predict, resubPredict, and kfoldPredict functions return the negated value of the
objective function of argmin as the second output argument (NegLoss) for each observation and
class.

This table summarizes the supported binary loss functions, where yj is a class label for a particular
binary learner (in the set {–1,1,0}), sj is the score for observation j, and g(yj,sj) is the binary loss
function.

Value Description Score Domain g(yj,sj)
"binodeviance" Binomial deviance (–∞,∞) log[1 + exp(–2yjsj)]/

[2log(2)]
"exponential" Exponential (–∞,∞) exp(–yjsj)/2
"hamming" Hamming [0,1] or (–∞,∞) [1 – sign(yjsj)]/2
"hinge" Hinge (–∞,∞) max(0,1 – yjsj)/2
"linear" Linear (–∞,∞) (1 – yjsj)/2
"logit" Logistic (–∞,∞) log[1 + exp(–yjsj)]/

[2log(2)]
"quadratic" Quadratic [0,1] [1 – yj(2sj – 1)]2/2

The software normalizes binary losses so that the loss is 0.5 when yj = 0, and aggregates using the
average of the binary learners.

Do not confuse the binary loss with the overall classification loss (specified by the LossFun name-
value argument of the kfoldLoss and kfoldPredict object functions), which measures how well
an ECOC classifier performs as a whole.

Version History
Introduced in R2014b

References
[1] Allwein, E., R. Schapire, and Y. Singer. “Reducing multiclass to binary: A unifying approach for

margin classifiers.” Journal of Machine Learning Research. Vol. 1, 2000, pp. 113–141.

[2] Escalera, S., O. Pujol, and P. Radeva. “Separability of ternary codes for sparse designs of error-
correcting output codes.” Pattern Recog. Lett., Vol. 30, Issue 3, 2009, pp. 285–297.
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Extended Capabilities
Automatic Parallel Support
Accelerate code by automatically running computation in parallel using Parallel Computing Toolbox™.

To run in parallel, specify the 'Options' name-value argument in the call to this function and set the
'UseParallel' field of the options structure to true using statset.

For example: 'Options',statset('UseParallel',true)

For more information about parallel computing, see “Run MATLAB Functions with Automatic Parallel
Support” (Parallel Computing Toolbox).

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

This function fully supports GPU arrays. For more information, see “Run MATLAB Functions on a
GPU” (Parallel Computing Toolbox).

See Also
ClassificationPartitionedECOC | ClassificationECOC | kfoldEdge | margin |
kfoldPredict | fitcecoc | statset

Topics
“Quick Start Parallel Computing for Statistics and Machine Learning Toolbox” on page 33-2
“Reproducibility in Parallel Statistical Computations” on page 33-16
“Concepts of Parallel Computing in Statistics and Machine Learning Toolbox” on page 33-6
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kfoldMargin
Package: classreg.learning.partition

Classification margins for cross-validated kernel classification model

Syntax
margin = kfoldMargin(CVMdl)

Description
margin = kfoldMargin(CVMdl) returns the classification margins on page 35-3904 obtained by
the cross-validated, binary kernel model (ClassificationPartitionedKernel) CVMdl. For every
fold, kfoldMargin computes the classification margins for validation-fold observations using a
model trained on training-fold observations.

Examples

Estimate k-Fold Cross-Validation Margins

Load the ionosphere data set. This data set has 34 predictors and 351 binary responses for radar
returns, which are labeled as either bad ('b') or good ('g').

load ionosphere

Cross-validate a binary kernel classification model using the data.

CVMdl = fitckernel(X,Y,'Crossval','on')

CVMdl = 
  ClassificationPartitionedKernel
    CrossValidatedModel: 'Kernel'
           ResponseName: 'Y'
        NumObservations: 351
                  KFold: 10
              Partition: [1x1 cvpartition]
             ClassNames: {'b'  'g'}
         ScoreTransform: 'none'

  Properties, Methods

CVMdl is a ClassificationPartitionedKernel model. By default, the software implements 10-
fold cross-validation. To specify a different number of folds, use the 'KFold' name-value pair
argument instead of 'Crossval'.

Estimate the classification margins for validation-fold observations.

m = kfoldMargin(CVMdl);
size(m)
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ans = 1×2

   351     1

m is a 351-by-1 vector. m(j) is the classification margin for observation j.

Plot the k-fold margins using a boxplot.

boxplot(m,'Labels','All Observations')
title('Distribution of Margins')

Feature Selection Using k-Fold Margins

Perform feature selection by comparing k-fold margins from multiple models. Based solely on this
criterion, the classifier with the greatest margins is the best classifier.

Load the ionosphere data set. This data set has 34 predictors and 351 binary responses for radar
returns, which are labeled either bad ('b') or good ('g').

load ionosphere

Randomly choose 10% of the predictor variables.
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rng(1); % For reproducibility
p = size(X,2); % Number of predictors
idxPart = randsample(p,ceil(0.1*p));

Cross-validate two binary kernel classification models: one that uses all of the predictors, and one
that uses 10% of the predictors.

CVMdl = fitckernel(X,Y,'CrossVal','on');
PCVMdl = fitckernel(X(:,idxPart),Y,'CrossVal','on');

CVMdl and PCVMdl are ClassificationPartitionedKernel models. By default, the software
implements 10-fold cross-validation. To specify a different number of folds, use the 'KFold' name-
value pair argument instead of 'Crossval'.

Estimate the k-fold margins for each classifier.

fullMargins = kfoldMargin(CVMdl);
partMargins = kfoldMargin(PCVMdl);

Plot the distribution of the margin sets using box plots.

boxplot([fullMargins partMargins], ...
    'Labels',{'All Predictors','10% of the Predictors'});
title('Distribution of Margins')

The quartiles of the PCVMdl margin distribution are situated higher than the quartiles of the CVMdl
margin distribution, indicating that the PCVMdl model is the better classifier.
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Input Arguments
CVMdl — Cross-validated, binary kernel classification model
ClassificationPartitionedKernel model object

Cross-validated, binary kernel classification model, specified as a
ClassificationPartitionedKernel model object. You can create a
ClassificationPartitionedKernel model by using fitckernel and specifying any one of the
cross-validation name-value pair arguments.

To obtain estimates, kfoldMargin applies the same data used to cross-validate the kernel
classification model (X and Y).

Output Arguments
margin — Classification margins
numeric vector

Classification margins on page 35-3904, returned as a numeric vector. margin is an n-by-1 vector,
where each row is the margin of the corresponding observation and n is the number of observations
(size(CVMdl.Y,1)).

More About
Classification Margin

The classification margin for binary classification is, for each observation, the difference between the
classification score for the true class and the classification score for the false class.

The software defines the classification margin for binary classification as

m = 2yf x .

x is an observation. If the true label of x is the positive class, then y is 1, and –1 otherwise. f(x) is the
positive-class classification score for the observation x. The classification margin is commonly defined
as m = yf(x).

If the margins are on the same scale, then they serve as a classification confidence measure. Among
multiple classifiers, those that yield greater margins are better.

Classification Score

For kernel classification models, the raw classification score for classifying the observation x, a row
vector, into the positive class is defined by

f x = T(x)β + b .

• T ·  is a transformation of an observation for feature expansion.
• β is the estimated column vector of coefficients.
• b is the estimated scalar bias.

The raw classification score for classifying x into the negative class is −f(x). The software classifies
observations into the class that yields a positive score.
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If the kernel classification model consists of logistic regression learners, then the software applies the
'logit' score transformation to the raw classification scores (see ScoreTransform).

Version History
Introduced in R2018b

See Also
ClassificationPartitionedKernel | fitckernel
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kfoldMargin
Package: classreg.learning.partition

Classification margins for cross-validated kernel ECOC model

Syntax
margin = kfoldMargin(CVMdl)
margin = kfoldMargin(CVMdl,Name,Value)

Description
margin = kfoldMargin(CVMdl) returns the classification margins on page 35-3911 obtained by
the cross-validated kernel ECOC model (ClassificationPartitionedKernelECOC) CVMdl. For
every fold, kfoldMargin computes the classification margins for validation-fold observations using a
model trained on training-fold observations.

margin = kfoldMargin(CVMdl,Name,Value) returns classification margins with additional
options specified by one or more name-value pair arguments. For example, specify the binary learner
loss function, decoding scheme, or verbosity level.

Examples

Estimate k-Fold Cross-Validation Margins

Load Fisher's iris data set. X contains flower measurements, and Y contains the names of flower
species.

load fisheriris
X = meas;
Y = species;

Cross-validate an ECOC model composed of kernel binary learners.

CVMdl = fitcecoc(X,Y,'Learners','kernel','CrossVal','on')

CVMdl = 
  ClassificationPartitionedKernelECOC
    CrossValidatedModel: 'KernelECOC'
           ResponseName: 'Y'
        NumObservations: 150
                  KFold: 10
              Partition: [1x1 cvpartition]
             ClassNames: {'setosa'  'versicolor'  'virginica'}
         ScoreTransform: 'none'

  Properties, Methods
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CVMdl is a ClassificationPartitionedKernelECOC model. By default, the software implements
10-fold cross-validation. To specify a different number of folds, use the 'KFold' name-value pair
argument instead of 'Crossval'.

Estimate the classification margins for validation-fold observations.

m = kfoldMargin(CVMdl);
size(m)

ans = 1×2

   150     1

m is a 150-by-1 vector. m(j) is the classification margin for observation j.

Plot the k-fold margins using a boxplot.

boxplot(m,'Labels','All Observations')
title('Distribution of Margins')

Feature Selection Using k-Fold Margins

Perform feature selection by comparing k-fold margins from multiple models. Based solely on this
criterion, the classifier with the greatest margins is the best classifier.
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Load Fisher's iris data set. X contains flower measurements, and Y contains the names of flower
species.

load fisheriris
X = meas;
Y = species;

Randomly choose half of the predictor variables.

rng(1); % For reproducibility
p = size(X,2); % Number of predictors
idxPart = randsample(p,ceil(0.5*p));

Cross-validate two ECOC models composed of kernel classification models: one that uses all of the
predictors, and one that uses half of the predictors.

CVMdl = fitcecoc(X,Y,'Learners','kernel','CrossVal','on');
PCVMdl = fitcecoc(X(:,idxPart),Y,'Learners','kernel','CrossVal','on');

CVMdl and PCVMdl are ClassificationPartitionedKernelECOC models. By default, the
software implements 10-fold cross-validation. To specify a different number of folds, use the 'KFold'
name-value pair argument instead of 'Crossval'.

Estimate the k-fold margins for each classifier.

fullMargins = kfoldMargin(CVMdl);
partMargins = kfoldMargin(PCVMdl);

Plot the distribution of the margin sets using box plots.

boxplot([fullMargins partMargins], ...
    'Labels',{'All Predictors','Half of the Predictors'});
title('Distribution of Margins')
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The PCVMdl margin distribution is similar to the CVMdl margin distribution.

Input Arguments
CVMdl — Cross-validated kernel ECOC model
ClassificationPartitionedKernelECOC model

Cross-validated kernel ECOC model, specified as a ClassificationPartitionedKernelECOC
model. You can create a ClassificationPartitionedKernelECOC model by training an ECOC
model using fitcecoc and specifying these name-value pair arguments:

• 'Learners'– Set the value to 'kernel', a template object returned by templateKernel, or a
cell array of such template objects.

• One of the arguments 'CrossVal', 'CVPartition', 'Holdout', 'KFold', or 'Leaveout'.

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: kfoldMargin(CVMdl,'Verbose',1) specifies to display diagnostic messages in the
Command Window.
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BinaryLoss — Binary learner loss function
'hamming' | 'linear' | 'logit' | 'exponential' | 'binodeviance' | 'hinge' | 'quadratic'
| function handle

Binary learner loss function, specified as the comma-separated pair consisting of 'BinaryLoss' and
a built-in loss function name or function handle.

• This table contains names and descriptions of the built-in functions, where yj is the class label for
a particular binary learner (in the set {–1,1,0}), sj is the score for observation j, and g(yj,sj) is the
binary loss formula.

Value Description Score Domain g(yj,sj)
'binodeviance' Binomial deviance (–∞,∞) log[1 + exp(–2yjsj)]/

[2log(2)]
'exponential' Exponential (–∞,∞) exp(–yjsj)/2
'hamming' Hamming [0,1] or (–∞,∞) [1 – sign(yjsj)]/2
'hinge' Hinge (–∞,∞) max(0,1 – yjsj)/2
'linear' Linear (–∞,∞) (1 – yjsj)/2
'logit' Logistic (–∞,∞) log[1 + exp(–yjsj)]/

[2log(2)]
'quadratic' Quadratic [0,1] [1 – yj(2sj – 1)]2/2

The software normalizes binary losses so that the loss is 0.5 when yj = 0. Also, the software
calculates the mean binary loss for each class.

• For a custom binary loss function, for example, customFunction, specify its function handle
'BinaryLoss',@customFunction.

customFunction has this form:

bLoss = customFunction(M,s)

• M is the K-by-B coding matrix stored in Mdl.CodingMatrix.
• s is the 1-by-B row vector of classification scores.
• bLoss is the classification loss. This scalar aggregates the binary losses for every learner in a

particular class. For example, you can use the mean binary loss to aggregate the loss over the
learners for each class.

• K is the number of classes.
• B is the number of binary learners.

By default, if all binary learners are kernel classification models using SVM, then BinaryLoss is
'hinge'. If all binary learners are kernel classification models using logistic regression, then
BinaryLoss is 'quadratic'.
Example: 'BinaryLoss','binodeviance'
Data Types: char | string | function_handle

Decoding — Decoding scheme
'lossweighted' (default) | 'lossbased'
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Decoding scheme that aggregates the binary losses, specified as the comma-separated pair consisting
of 'Decoding' and 'lossweighted' or 'lossbased'. For more information, see “Binary Loss” on
page 35-3911.
Example: 'Decoding','lossbased'

Options — Estimation options
[] (default) | structure array returned by statset

Estimation options, specified as the comma-separated pair consisting of 'Options' and a structure
array returned by statset.

To invoke parallel computing:

• You need a Parallel Computing Toolbox license.
• Specify 'Options',statset('UseParallel',true).

Verbose — Verbosity level
0 (default) | 1

Verbosity level, specified as the comma-separated pair consisting of 'Verbose' and 0 or 1. Verbose
controls the number of diagnostic messages that the software displays in the Command Window.

If Verbose is 0, then the software does not display diagnostic messages. Otherwise, the software
displays diagnostic messages.
Example: 'Verbose',1
Data Types: single | double

Output Arguments
margin — Classification margins
numeric vector

Classification margins on page 35-3911, returned as a numeric vector. margin is an n-by-1 vector,
where each row is the margin of the corresponding observation and n is the number of observations
(size(CVMdl.Y,1)).

More About
Classification Margin

The classification margin is, for each observation, the difference between the negative loss for the
true class and the maximal negative loss among the false classes. If the margins are on the same
scale, then they serve as a classification confidence measure. Among multiple classifiers, those that
yield greater margins are better.

Binary Loss

The binary loss is a function of the class and classification score that determines how well a binary
learner classifies an observation into the class.

Suppose the following:
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• mkj is element (k,j) of the coding design matrix M—that is, the code corresponding to class k of
binary learner j. M is a K-by-B matrix, where K is the number of classes, and B is the number of
binary learners.

• sj is the score of binary learner j for an observation.
• g is the binary loss function.
• k  is the predicted class for the observation.

The decoding scheme of an ECOC model specifies how the software aggregates the binary losses and
determines the predicted class for each observation. The software supports two decoding schemes:

• Loss-based decoding [2] (Decoding is 'lossbased') — The predicted class of an observation
corresponds to the class that produces the minimum average of the binary losses over all binary
learners.

k = argmin
k

1
B ∑j = 1

B
mk j g(mk j, s j) .

• Loss-weighted decoding [3] (Decoding is 'lossweighted') — The predicted class of an
observation corresponds to the class that produces the minimum average of the binary losses over
the binary learners for the corresponding class.

k = argmin
k

∑
j = 1

B
mk j g(mk j, s j)

∑ j = 1

B

mk j

.

The denominator corresponds to the number of binary learners for class k. [1] suggests that loss-
weighted decoding improves classification accuracy by keeping loss values for all classes in the
same dynamic range.

The predict, resubPredict, and kfoldPredict functions return the negated value of the
objective function of argmin as the second output argument (NegLoss) for each observation and
class.

This table summarizes the supported binary loss functions, where yj is a class label for a particular
binary learner (in the set {–1,1,0}), sj is the score for observation j, and g(yj,sj) is the binary loss
function.

Value Description Score Domain g(yj,sj)
"binodeviance" Binomial deviance (–∞,∞) log[1 + exp(–2yjsj)]/

[2log(2)]
"exponential" Exponential (–∞,∞) exp(–yjsj)/2
"hamming" Hamming [0,1] or (–∞,∞) [1 – sign(yjsj)]/2
"hinge" Hinge (–∞,∞) max(0,1 – yjsj)/2
"linear" Linear (–∞,∞) (1 – yjsj)/2
"logit" Logistic (–∞,∞) log[1 + exp(–yjsj)]/

[2log(2)]
"quadratic" Quadratic [0,1] [1 – yj(2sj – 1)]2/2
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The software normalizes binary losses so that the loss is 0.5 when yj = 0, and aggregates using the
average of the binary learners.

Do not confuse the binary loss with the overall classification loss (specified by the LossFun name-
value argument of the kfoldLoss and kfoldPredict object functions), which measures how well
an ECOC classifier performs as a whole.

Version History
Introduced in R2018b
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See Also
ClassificationPartitionedKernelECOC | fitcecoc
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kfoldMargin
Classification margins for observations not used in training

Syntax
m = kfoldMargin(CVMdl)

Description
m = kfoldMargin(CVMdl) returns the cross-validated classification margins on page 35-3920
obtained by the cross-validated, binary, linear classification model CVMdl. That is, for every fold,
kfoldMargin estimates the classification margins for observations that it holds out when it trains
using all other observations.

m contains classification margins for each regularization strength in the linear classification models
that comprise CVMdl.

Input Arguments
CVMdl — Cross-validated, binary, linear classification model
ClassificationPartitionedLinear model object

Cross-validated, binary, linear classification model, specified as a
ClassificationPartitionedLinear model object. You can create a
ClassificationPartitionedLinear model using fitclinear and specifying any one of the
cross-validation, name-value pair arguments, for example, CrossVal.

To obtain estimates, kfoldMargin applies the same data used to cross-validate the linear classification
model (X and Y).

Output Arguments
m — Cross-validated classification margins
numeric vector | numeric matrix

Cross-validated classification margins on page 35-3920, returned as a numeric vector or matrix.

m is n-by-L, where n is the number of observations in the data that created CVMdl (see X and Y) and L
is the number of regularization strengths in CVMdl (that is, numel(CVMdl.Trained{1}.Lambda)).

m(i,j) is the cross-validated classification margin of observation i using the linear classification
model that has regularization strength CVMdl.Trained{1}.Lambda(j).
Data Types: single | double

Examples
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Estimate k-Fold Cross-Validation Margins

Load the NLP data set.

load nlpdata

X is a sparse matrix of predictor data, and Y is a categorical vector of class labels. There are more
than two classes in the data.

The models should identify whether the word counts in a web page are from the Statistics and
Machine Learning Toolbox™ documentation. So, identify the labels that correspond to the Statistics
and Machine Learning Toolbox™ documentation web pages.

Ystats = Y == 'stats';

Cross-validate a binary, linear classification model that can identify whether the word counts in a
documentation web page are from the Statistics and Machine Learning Toolbox™ documentation.

rng(1); % For reproducibility 
CVMdl = fitclinear(X,Ystats,'CrossVal','on');

CVMdl is a ClassificationPartitionedLinear model. By default, the software implements 10-
fold cross validation. You can alter the number of folds using the 'KFold' name-value pair argument.

Estimate the cross-validated margins.

m = kfoldMargin(CVMdl);
size(m)

ans = 1×2

       31572           1

m is a 31572-by-1 vector. m(j) is the average of the out-of-fold margins for observation j.

Plot the k-fold margins using box plots.

figure;
boxplot(m);
h = gca;
h.YLim = [-5 30];
title('Distribution of Cross-Validated Margins')
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Feature Selection Using k-fold Margins

One way to perform feature selection is to compare k-fold margins from multiple models. Based solely
on this criterion, the classifier with the larger margins is the better classifier.

Load the NLP data set. Preprocess the data as in “Estimate k-Fold Cross-Validation Margins” on page
35-3914.

load nlpdata
Ystats = Y == 'stats';
X = X';

Create these two data sets:

• fullX contains all predictors.
• partX contains 1/2 of the predictors chosen at random.

rng(1); % For reproducibility
p = size(X,1); % Number of predictors
halfPredIdx = randsample(p,ceil(0.5*p));
fullX = X;
partX = X(halfPredIdx,:);
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Cross-validate two binary, linear classification models: one that uses the all of the predictors and one
that uses half of the predictors. Optimize the objective function using SpaRSA, and indicate that
observations correspond to columns.

CVMdl = fitclinear(fullX,Ystats,'CrossVal','on','Solver','sparsa',...
    'ObservationsIn','columns');
PCVMdl = fitclinear(partX,Ystats,'CrossVal','on','Solver','sparsa',...
    'ObservationsIn','columns');

CVMdl and PCVMdl are ClassificationPartitionedLinear models.

Estimate the k-fold margins for each classifier. Plot the distribution of the k-fold margins sets using
box plots.

fullMargins = kfoldMargin(CVMdl);
partMargins = kfoldMargin(PCVMdl);

figure;
boxplot([fullMargins partMargins],'Labels',...
    {'All Predictors','Half of the Predictors'});
h = gca;
h.YLim = [-30 60];
title('Distribution of Cross-Validated Margins')

The distributions of the margins of the two classifiers are similar.
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Find Good Lasso Penalty Using k-fold Margins

To determine a good lasso-penalty strength for a linear classification model that uses a logistic
regression learner, compare distributions of k-fold margins.

Load the NLP data set. Preprocess the data as in “Estimate k-Fold Cross-Validation Margins” on page
35-3914.

load nlpdata
Ystats = Y == 'stats';
X = X';

Create a set of 11 logarithmically-spaced regularization strengths from 10−8 through 101.

Lambda = logspace(-8,1,11);

Cross-validate a binary, linear classification model using 5-fold cross-validation and that uses each of
the regularization strengths. Optimize the objective function using SpaRSA. Lower the tolerance on
the gradient of the objective function to 1e-8.

rng(10); % For reproducibility
CVMdl = fitclinear(X,Ystats,'ObservationsIn','columns','KFold',5, ...
    'Learner','logistic','Solver','sparsa','Regularization','lasso', ...
    'Lambda',Lambda,'GradientTolerance',1e-8)

CVMdl = 
  ClassificationPartitionedLinear
    CrossValidatedModel: 'Linear'
           ResponseName: 'Y'
        NumObservations: 31572
                  KFold: 5
              Partition: [1x1 cvpartition]
             ClassNames: [0 1]
         ScoreTransform: 'none'

  Properties, Methods

CVMdl is a ClassificationPartitionedLinear model. Because fitclinear implements 5-fold
cross-validation, CVMdl contains 5 ClassificationLinear models that the software trains on each
fold.

Estimate the k-fold margins for each regularization strength.

m = kfoldMargin(CVMdl);
size(m)

ans = 1×2

       31572          11

m is a 31572-by-11 matrix of cross-validated margins for each observation. The columns correspond to
the regularization strengths.
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Plot the k-fold margins for each regularization strength. Because logistic regression scores are in
[0,1], margins are in [-1,1]. Rescale the margins to help identify the regularization strength that
maximizes the margins over the grid.

figure
boxplot(10000.^m)
ylabel('Exponentiated test-sample margins')
xlabel('Lambda indices')

Several values of Lambda yield k-fold margin distributions that are compacted near 10000. Higher
values of lambda lead to predictor variable sparsity, which is a good quality of a classifier.

Choose the regularization strength that occurs just before the centers of the k-fold margin
distributions start decreasing.

LambdaFinal = Lambda(5);

Train a linear classification model using the entire data set and specify the desired regularization
strength.

MdlFinal = fitclinear(X,Ystats,'ObservationsIn','columns', ...
    'Learner','logistic','Solver','sparsa','Regularization','lasso', ...
    'Lambda',LambdaFinal);

To estimate labels for new observations, pass MdlFinal and the new data to predict.
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More About
Classification Margin

The classification margin for binary classification is, for each observation, the difference between the
classification score for the true class and the classification score for the false class.

The software defines the classification margin for binary classification as

m = 2yf x .

x is an observation. If the true label of x is the positive class, then y is 1, and –1 otherwise. f(x) is the
positive-class classification score for the observation x. The classification margin is commonly defined
as m = yf(x).

If the margins are on the same scale, then they serve as a classification confidence measure. Among
multiple classifiers, those that yield greater margins are better.

Classification Score

For linear classification models, the raw classification score for classifying the observation x, a row
vector, into the positive class is defined by

f j(x) = xβ j + b j .

For the model with regularization strength j, β j is the estimated column vector of coefficients (the
model property Beta(:,j)) and b j is the estimated, scalar bias (the model property Bias(j)).

The raw classification score for classifying x into the negative class is –f(x). The software classifies
observations into the class that yields the positive score.

If the linear classification model consists of logistic regression learners, then the software applies the
'logit' score transformation to the raw classification scores (see ScoreTransform).

Version History
Introduced in R2016a

See Also
ClassificationPartitionedLinear | kfoldEdge | ClassificationLinear | kfoldPredict |
margin
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kfoldMargin
Classification margins for observations not used in training

Syntax
m = kfoldMargin(CVMdl)
m = kfoldMargin(CVMdl,Name,Value)

Description
m = kfoldMargin(CVMdl) returns the cross-validated classification margins on page 35-3930
obtained by CVMdl, which is a cross-validated, error-correcting output codes (ECOC) model
composed of linear classification models. That is, for every fold, kfoldMargin estimates the
classification margins for observations that it holds out when it trains using all other observations.

m contains classification margins for each regularization strength in the linear classification models
that comprise CVMdl.

m = kfoldMargin(CVMdl,Name,Value) uses additional options specified by one or more
Name,Value pair arguments. For example, specify a decoding scheme or verbosity level.

Input Arguments
CVMdl — Cross-validated, ECOC model composed of linear classification models
ClassificationPartitionedLinearECOC model object

Cross-validated, ECOC model composed of linear classification models, specified as a
ClassificationPartitionedLinearECOC model object. You can create a
ClassificationPartitionedLinearECOC model using fitcecoc and by:

1 Specifying any one of the cross-validation, name-value pair arguments, for example, CrossVal
2 Setting the name-value pair argument Learners to 'linear' or a linear classification model

template returned by templateLinear

To obtain estimates, kfoldMargin applies the same data used to cross-validate the ECOC model (X and
Y).

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.

BinaryLoss — Binary learner loss function
'hamming' | 'linear' | 'logit' | 'exponential' | 'binodeviance' | 'hinge' | 'quadratic'
| function handle
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Binary learner loss function, specified as the comma-separated pair consisting of 'BinaryLoss' and
a built-in loss function name or function handle.

• This table contains names and descriptions of the built-in functions, where yj is the class label for
a particular binary learner (in the set {-1,1,0}), sj is the score for observation j, and g(yj,sj) is the
binary loss formula.

Value Description Score Domain g(yj,sj)
'binodeviance' Binomial deviance (–∞,∞) log[1 + exp(–2yjsj)]/

[2log(2)]
'exponential' Exponential (–∞,∞) exp(–yjsj)/2
'hamming' Hamming [0,1] or (–∞,∞) [1 – sign(yjsj)]/2
'hinge' Hinge (–∞,∞) max(0,1 – yjsj)/2
'linear' Linear (–∞,∞) (1 – yjsj)/2
'logit' Logistic (–∞,∞) log[1 + exp(–yjsj)]/

[2log(2)]
'quadratic' Quadratic [0,1] [1 – yj(2sj – 1)]2/2

The software normalizes the binary losses such that the loss is 0.5 when yj = 0. Also, the software
calculates the mean binary loss for each class.

• For a custom binary loss function, e.g., customFunction, specify its function handle
'BinaryLoss',@customFunction.

customFunction should have this form

bLoss = customFunction(M,s)

where:

• M is the K-by-B coding matrix stored in Mdl.CodingMatrix.
• s is the 1-by-B row vector of classification scores.
• bLoss is the classification loss. This scalar aggregates the binary losses for every learner in a

particular class. For example, you can use the mean binary loss to aggregate the loss over the
learners for each class.

• K is the number of classes.
• B is the number of binary learners.

For an example of passing a custom binary loss function, see “Predict Test-Sample Labels of ECOC
Model Using Custom Binary Loss Function” on page 35-5751.

By default, if all binary learners are linear classification models using:

• SVM, then BinaryLoss is 'hinge'
• Logistic regression, then BinaryLoss is 'quadratic'

Example: 'BinaryLoss','binodeviance'
Data Types: char | string | function_handle

Decoding — Decoding scheme
'lossweighted' (default) | 'lossbased'
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Decoding scheme that aggregates the binary losses, specified as the comma-separated pair consisting
of 'Decoding' and 'lossweighted' or 'lossbased'. For more information, see “Binary Loss” on
page 35-3929.
Example: 'Decoding','lossbased'

Options — Estimation options
[] (default) | structure array returned by statset

Estimation options, specified as the comma-separated pair consisting of 'Options' and a structure
array returned by statset.

To invoke parallel computing:

• You need a Parallel Computing Toolbox license.
• Specify 'Options',statset('UseParallel',true).

Verbose — Verbosity level
0 (default) | 1

Verbosity level, specified as the comma-separated pair consisting of 'Verbose' and 0 or 1. Verbose
controls the number of diagnostic messages that the software displays in the Command Window.

If Verbose is 0, then the software does not display diagnostic messages. Otherwise, the software
displays diagnostic messages.
Example: 'Verbose',1
Data Types: single | double

Output Arguments
m — Cross-validated classification margins
numeric vector | numeric matrix

Cross-validated classification margins on page 35-3930, returned as a numeric vector or matrix.

m is n-by-L, where n is the number of observations in X and L is the number of regularization
strengths in Mdl (that is, numel(Mdl.Lambda)).

m(i,j) is the cross-validated classification margin of observation i using the ECOC model, composed
of linear classification models, that has regularization strength Mdl.Lambda(j).

Examples

Estimate k-Fold Cross-Validation Margins

Load the NLP data set.

load nlpdata

X is a sparse matrix of predictor data, and Y is a categorical vector of class labels.

For simplicity, use the label 'others' for all observations in Y that are not 'simulink', 'dsp', or
'comm'.
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Y(~(ismember(Y,{'simulink','dsp','comm'}))) = 'others';

Cross-validate a multiclass, linear classification model.

rng(1); % For reproducibility 
CVMdl = fitcecoc(X,Y,'Learner','linear','CrossVal','on');

CVMdl is a ClassificationPartitionedLinearECOC model. By default, the software implements
10-fold cross validation. You can alter the number of folds using the 'KFold' name-value pair
argument.

Estimate the k-fold margins.

m = kfoldMargin(CVMdl);
size(m)

ans = 1×2

       31572           1

m is a 31572-by-1 vector. m(j) is the average of the out-of-fold margins for observation j.

Plot the k-fold margins using box plots.

figure;
boxplot(m);
h = gca;
h.YLim = [-5 5];
title('Distribution of Cross-Validated Margins')
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Feature Selection Using k-fold Margins

One way to perform feature selection is to compare k-fold margins from multiple models. Based solely
on this criterion, the classifier with the larger margins is the better classifier.

Load the NLP data set. Preprocess the data as in “Estimate k-Fold Cross-Validation Margins” on page
35-3923, and orient the predictor data so that observations correspond to columns.

load nlpdata
Y(~(ismember(Y,{'simulink','dsp','comm'}))) = 'others';
X = X';

Create these two data sets:

• fullX contains all predictors.
• partX contains 1/2 of the predictors chosen at random.

rng(1); % For reproducibility
p = size(X,1); % Number of predictors
halfPredIdx = randsample(p,ceil(0.5*p));
fullX = X;
partX = X(halfPredIdx,:);

Create a linear classification model template that specifies optimizing the objective function using
SpaRSA.
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t = templateLinear('Solver','sparsa');

Cross-validate two ECOC models composed of binary, linear classification models: one that uses the
all of the predictors and one that uses half of the predictors. Indicate that observations correspond to
columns.

CVMdl = fitcecoc(fullX,Y,'Learners',t,'CrossVal','on',...
    'ObservationsIn','columns');
PCVMdl = fitcecoc(partX,Y,'Learners',t,'CrossVal','on',...
    'ObservationsIn','columns');

CVMdl and PCVMdl are ClassificationPartitionedLinearECOC models.

Estimate the k-fold margins for each classifier. Plot the distribution of the k-fold margins sets using
box plots.

fullMargins = kfoldMargin(CVMdl);
partMargins = kfoldMargin(PCVMdl);

figure;
boxplot([fullMargins partMargins],'Labels',...
    {'All Predictors','Half of the Predictors'});
h = gca;
h.YLim = [-1 1];
title('Distribution of Cross-Validated Margins')

The distributions of the k-fold margins of the two classifiers are similar.

35 Functions

35-3926



Find Good Lasso Penalty Using k-fold Margins

To determine a good lasso-penalty strength for a linear classification model that uses a logistic
regression learner, compare distributions of k-fold margins.

Load the NLP data set. Preprocess the data as in “Feature Selection Using k-fold Margins” on page
35-3925.

load nlpdata
Y(~(ismember(Y,{'simulink','dsp','comm'}))) = 'others';
X = X';

Create a set of 11 logarithmically-spaced regularization strengths from 10−8 through 101.

Lambda = logspace(-8,1,11);

Create a linear classification model template that specifies using logistic regression with a lasso
penalty, using each of the regularization strengths, optimizing the objective function using SpaRSA,
and reducing the tolerance on the gradient of the objective function to 1e-8.

t = templateLinear('Learner','logistic','Solver','sparsa',...
    'Regularization','lasso','Lambda',Lambda,'GradientTolerance',1e-8);

Cross-validate an ECOC model composed of binary, linear classification models using 5-fold cross-
validation and that

rng(10); % For reproducibility
CVMdl = fitcecoc(X,Y,'Learners',t,'ObservationsIn','columns','KFold',5)

CVMdl = 
  ClassificationPartitionedLinearECOC
    CrossValidatedModel: 'LinearECOC'
           ResponseName: 'Y'
        NumObservations: 31572
                  KFold: 5
              Partition: [1x1 cvpartition]
             ClassNames: [comm    dsp    simulink    others]
         ScoreTransform: 'none'

  Properties, Methods

CVMdl is a ClassificationPartitionedLinearECOC model.

Estimate the k-fold margins for each regularization strength. The scores for logistic regression are in
[0,1]. Apply the quadratic binary loss.

m = kfoldMargin(CVMdl,'BinaryLoss','quadratic');
size(m)

ans = 1×2

       31572          11
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m is a 31572-by-11 matrix of cross-validated margins for each observation. The columns correspond to
the regularization strengths.

Plot the k-fold margins for each regularization strength.

figure;
boxplot(m)
ylabel('Cross-validated margins')
xlabel('Lambda indices')

Several values of Lambda yield similarly high margin distribution centers with low spreads. Higher
values of Lambda lead to predictor variable sparsity, which is a good quality of a classifier.

Choose the regularization strength that occurs just before the margin distribution center starts
decreasing and spread starts increasing.

LambdaFinal = Lambda(5);

Train an ECOC model composed of linear classification model using the entire data set and specify
the regularization strength LambdaFinal.

t = templateLinear('Learner','logistic','Solver','sparsa',...
    'Regularization','lasso','Lambda',Lambda(5),'GradientTolerance',1e-8);
MdlFinal = fitcecoc(X,Y,'Learners',t,'ObservationsIn','columns');

To estimate labels for new observations, pass MdlFinal and the new data to predict.
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More About
Binary Loss

The binary loss is a function of the class and classification score that determines how well a binary
learner classifies an observation into the class.

Suppose the following:

• mkj is element (k,j) of the coding design matrix M—that is, the code corresponding to class k of
binary learner j. M is a K-by-B matrix, where K is the number of classes, and B is the number of
binary learners.

• sj is the score of binary learner j for an observation.
• g is the binary loss function.
• k  is the predicted class for the observation.

The decoding scheme of an ECOC model specifies how the software aggregates the binary losses and
determines the predicted class for each observation. The software supports two decoding schemes:

• Loss-based decoding [2] (Decoding is 'lossbased') — The predicted class of an observation
corresponds to the class that produces the minimum average of the binary losses over all binary
learners.

k = argmin
k

1
B ∑j = 1

B
mk j g(mk j, s j) .

• Loss-weighted decoding [3] (Decoding is 'lossweighted') — The predicted class of an
observation corresponds to the class that produces the minimum average of the binary losses over
the binary learners for the corresponding class.

k = argmin
k

∑
j = 1

B
mk j g(mk j, s j)

∑ j = 1

B

mk j

.

The denominator corresponds to the number of binary learners for class k. [1] suggests that loss-
weighted decoding improves classification accuracy by keeping loss values for all classes in the
same dynamic range.

The predict, resubPredict, and kfoldPredict functions return the negated value of the
objective function of argmin as the second output argument (NegLoss) for each observation and
class.

This table summarizes the supported binary loss functions, where yj is a class label for a particular
binary learner (in the set {–1,1,0}), sj is the score for observation j, and g(yj,sj) is the binary loss
function.

Value Description Score Domain g(yj,sj)
"binodeviance" Binomial deviance (–∞,∞) log[1 + exp(–2yjsj)]/

[2log(2)]
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Value Description Score Domain g(yj,sj)
"exponential" Exponential (–∞,∞) exp(–yjsj)/2
"hamming" Hamming [0,1] or (–∞,∞) [1 – sign(yjsj)]/2
"hinge" Hinge (–∞,∞) max(0,1 – yjsj)/2
"linear" Linear (–∞,∞) (1 – yjsj)/2
"logit" Logistic (–∞,∞) log[1 + exp(–yjsj)]/

[2log(2)]
"quadratic" Quadratic [0,1] [1 – yj(2sj – 1)]2/2

The software normalizes binary losses so that the loss is 0.5 when yj = 0, and aggregates using the
average of the binary learners.

Do not confuse the binary loss with the overall classification loss (specified by the LossFun name-
value argument of the kfoldLoss and kfoldPredict object functions), which measures how well
an ECOC classifier performs as a whole.

Classification Margin

The classification margin is, for each observation, the difference between the negative loss for the
true class and the maximal negative loss among the false classes. If the margins are on the same
scale, then they serve as a classification confidence measure. Among multiple classifiers, those that
yield greater margins are better.

Version History
Introduced in R2016a

References
[1] Allwein, E., R. Schapire, and Y. Singer. “Reducing multiclass to binary: A unifying approach for

margin classifiers.” Journal of Machine Learning Research. Vol. 1, 2000, pp. 113–141.

[2] Escalera, S., O. Pujol, and P. Radeva. “Separability of ternary codes for sparse designs of error-
correcting output codes.” Pattern Recog. Lett., Vol. 30, Issue 3, 2009, pp. 285–297.

[3] Escalera, S., O. Pujol, and P. Radeva. “On the decoding process in ternary error-correcting output
codes.” IEEE Transactions on Pattern Analysis and Machine Intelligence. Vol. 32, Issue 7,
2010, pp. 120–134.

Extended Capabilities
Automatic Parallel Support
Accelerate code by automatically running computation in parallel using Parallel Computing Toolbox™.

To run in parallel, specify the 'Options' name-value argument in the call to this function and set the
'UseParallel' field of the options structure to true using statset.

For example: 'Options',statset('UseParallel',true)
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For more information about parallel computing, see “Run MATLAB Functions with Automatic Parallel
Support” (Parallel Computing Toolbox).

See Also
ClassificationPartitionedLinearECOC | kfoldEdge | ClassificationLinear |
kfoldPredict | margin

Topics
“Quick Start Parallel Computing for Statistics and Machine Learning Toolbox” on page 33-2
“Reproducibility in Parallel Statistical Computations” on page 33-16
“Concepts of Parallel Computing in Statistics and Machine Learning Toolbox” on page 33-6
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kfoldMargin
Package: classreg.learning.partition

Classification margins for cross-validated classification model

Syntax
M = kfoldMargin(CVMdl)
M = kfoldMargin(CVMdl,'IncludeInteractions',includeInteractions)

Description
M = kfoldMargin(CVMdl) returns classification margins on page 35-3934 obtained by the cross-
validated classification model CVMdl. For every fold, kfoldMargin computes classification margins
for validation-fold observations using a classifier trained on training-fold observations. CVMdl.X and
CVMdl.Y contain both sets of observations.

M = kfoldMargin(CVMdl,'IncludeInteractions',includeInteractions) specifies
whether to include interaction terms in computations. This syntax applies only to generalized additive
models.

Examples

Estimate k-fold Margins of Classifier

Find the k-fold margins for an ensemble that classifies the ionosphere data.

Load the ionosphere data set.

load ionosphere

Create a template tree stump.

t = templateTree('MaxNumSplits',1);

Train a classification ensemble of decision trees. Specify t as the weak learner.

Mdl = fitcensemble(X,Y,'Method','AdaBoostM1','Learners',t);

Cross-validate the classifier using 10-fold cross-validation.

cvens = crossval(Mdl);

Compute the k-fold margins. Display summary statistics for the margins.

m = kfoldMargin(cvens);
marginStats = table(min(m),mean(m),max(m),...
    'VariableNames',{'Min','Mean','Max'})

marginStats=1×3 table
      Min       Mean      Max  
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    _______    ______    ______

    -11.312    7.3236    23.517

Input Arguments
CVMdl — Cross-validated partitioned classifier
ClassificationPartitionedModel object | ClassificationPartitionedEnsemble object |
ClassificationPartitionedGAM object

Cross-validated partitioned classifier, specified as a ClassificationPartitionedModel,
ClassificationPartitionedEnsemble, or ClassificationPartitionedGAM object. You can
create the object in two ways:

• Pass a trained classification model listed in the following table to its crossval object function.
• Train a classification model using a function listed in the following table and specify one of the

cross-validation name-value arguments for the function.

Classification Model Function
ClassificationDiscriminant fitcdiscr
ClassificationEnsemble fitcensemble
ClassificationGAM fitcgam
ClassificationKNN fitcknn
ClassificationNaiveBayes fitcnb
ClassificationNeuralNetwork fitcnet
ClassificationSVM fitcsvm
ClassificationTree fitctree

includeInteractions — Flag to include interaction terms
true | false

Flag to include interaction terms of the model, specified as true or false. This argument is valid
only for a generalized additive model (GAM). That is, you can specify this argument only when CVMdl
is ClassificationPartitionedGAM.

The default value is true if the models in CVMdl (CVMdl.Trained) contain interaction terms. The
value must be false if the models do not contain interaction terms.
Data Types: logical

Output Arguments
M — Classification margins
numeric vector

Classification margins on page 35-3934, returned as a numeric vector. M is an n-by-1 vector, where
each row is the margin of the corresponding observation and n is the number of observations. (n is
size(CVMdl.X,1) when observations are in rows.)
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If you use a holdout validation technique to create CVMdl (that is, if CVMdl.KFold is 1), then M has
NaN values for training-fold observations.

More About
Classification Margin

The classification margin for binary classification is, for each observation, the difference between the
classification score for the true class and the classification score for the false class. The classification
margin for multiclass classification is the difference between the classification score for the true class
and the maximal score for the false classes.

If the margins are on the same scale (that is, the score values are based on the same score
transformation), then they serve as a classification confidence measure. Among multiple classifiers,
those that yield greater margins are better.

Algorithms
kfoldMargin computes classification margins as described in the corresponding margin object
function. For a model-specific description, see the appropriate margin function reference page in the
following table.

Model Type margin Function
Discriminant analysis classifier margin
Ensemble classifier margin
Generalized additive model classifier margin
k-nearest neighbor classifier margin
Naive Bayes classifier margin
Neural network classifier margin
Support vector machine classifier margin
Binary decision tree for multiclass classification margin

Version History
Introduced in R2011a

Extended Capabilities
GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

Usage notes and limitations:

• This function fully supports GPU arrays for the following cross-validated model objects:

• Ensemble classifier trained with fitcensemble
• k-nearest neighbor classifier trained with fitcknn
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• Support vector machine classifier trained with fitcsvm
• Binary decision tree for multiclass classification trained with fitctree

For more information, see “Run MATLAB Functions on a GPU” (Parallel Computing Toolbox).

See Also
ClassificationPartitionedModel | kfoldPredict | kfoldEdge | kfoldLoss | kfoldfun
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kfoldPredict
Package: classreg.learning.partition

Classify observations in cross-validated ECOC model

Syntax
label = kfoldPredict(CVMdl)
label = kfoldPredict(CVMdl,Name,Value)
[label,NegLoss,PBScore] = kfoldPredict( ___ )
[label,NegLoss,PBScore,Posterior] = kfoldPredict( ___ )

Description
label = kfoldPredict(CVMdl) returns class labels predicted by the cross-validated ECOC model
(ClassificationPartitionedECOC) CVMdl. For every fold, kfoldPredict predicts class labels
for observations that it holds out during training. CVMdl.X contains both sets of observations.

The software predicts the classification of an observation by assigning the observation to the class
yielding the largest negated average binary loss (or, equivalently, the smallest average binary loss).

label = kfoldPredict(CVMdl,Name,Value) returns predicted class labels with additional
options specified by one or more name-value pair arguments. For example, specify the posterior
probability estimation method, decoding scheme, or verbosity level.

[label,NegLoss,PBScore] = kfoldPredict( ___ ) additionally returns negated values of the
average binary loss per class (NegLoss) for validation-fold observations and positive-class scores
(PBScore) for validation-fold observations classified by each binary learner, using any of the input
argument combinations in the previous syntaxes.

If the coding matrix varies across folds (that is, the coding scheme is sparserandom or
denserandom), then PBScore is empty ([]).

[label,NegLoss,PBScore,Posterior] = kfoldPredict( ___ ) additionally returns posterior
class probability estimates for validation-fold observations (Posterior).

To obtain posterior class probabilities, you must set 'FitPosterior',1 when training the cross-
validated ECOC model using fitcecoc. Otherwise, kfoldPredict throws an error.

Examples

Predict k-Fold Cross-Validation Labels

Load Fisher's iris data set. Specify the predictor data X, the response data Y, and the order of the
classes in Y.

load fisheriris
X = meas;
Y = categorical(species);
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classOrder = unique(Y);
rng(1); % For reproducibility

Train and cross-validate an ECOC model using support vector machine (SVM) binary classifiers.
Standardize the predictor data using an SVM template, and specify the class order.

t = templateSVM('Standardize',1);
CVMdl = fitcecoc(X,Y,'CrossVal','on','Learners',t,'ClassNames',classOrder);

CVMdl is a ClassificationPartitionedECOC model. By default, the software implements 10-fold
cross-validation. You can specify a different number of folds using the 'KFold' name-value pair
argument.

Predict the validation-fold labels. Print a random subset of true and predicted labels.

labels = kfoldPredict(CVMdl);
idx = randsample(numel(labels),10);
table(Y(idx),labels(idx),...
    'VariableNames',{'TrueLabels','PredictedLabels'})

ans=10×2 table
    TrueLabels    PredictedLabels
    __________    _______________

    setosa          setosa       
    versicolor      versicolor   
    setosa          setosa       
    virginica       virginica    
    versicolor      versicolor   
    setosa          setosa       
    virginica       virginica    
    virginica       virginica    
    setosa          setosa       
    setosa          setosa       

CVMdl correctly labels the validation-fold observations with indices idx.

Predict Cross-Validation Labels Using Custom Binary Loss Function

Load Fisher's iris data set. Specify the predictor data X, the response data Y, and the order of the
classes in Y.

load fisheriris
X = meas;
Y = categorical(species);
classOrder = unique(Y); % Class order
K = numel(classOrder);  % Number of classes
rng(1); % For reproducibility

Train and cross-validate an ECOC model using SVM binary classifiers. Standardize the predictor data
using an SVM template, and specify the class order.

t = templateSVM('Standardize',1);
CVMdl = fitcecoc(X,Y,'CrossVal','on','Learners',t,'ClassNames',classOrder);
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CVMdl is a ClassificationPartitionedECOC model. By default, the software implements 10-fold
cross-validation. You can specify a different number of folds using the 'KFold' name-value pair
argument.

SVM scores are signed distances from the observation to the decision boundary. Therefore, the
domain is (− ∞ , ∞ ). Create a custom binary loss function that:

• Maps the coding design matrix (M) and positive-class classification scores (s) for each learner to
the binary loss for each observation

• Uses linear loss
• Aggregates the binary learner loss using the median

You can create a separate function for the binary loss function, and then save it on the MATLAB®
path. Alternatively, you can specify an anonymous binary loss function. In this case, create a function
handle (customBL) to an anonymous binary loss function.

customBL = @(M,s)nanmedian(1 - bsxfun(@times,M,s),2)/2;

Predict cross-validation labels and estimate the median binary loss per class. Print the median
negative binary losses per class for a random set of 10 validation-fold observations.

[label,NegLoss] = kfoldPredict(CVMdl,'BinaryLoss',customBL);

idx = randsample(numel(label),10);
classOrder

classOrder = 3x1 categorical
     setosa 
     versicolor 
     virginica 

table(Y(idx),label(idx),NegLoss(idx,:),'VariableNames',...
    {'TrueLabel','PredictedLabel','NegLoss'})

ans=10×3 table
    TrueLabel     PredictedLabel                 NegLoss             
    __________    ______________    _________________________________

    setosa          versicolor      0.37155       2.1293      -4.0008
    versicolor      versicolor      -1.2169      0.36693     -0.65003
    setosa          versicolor      0.23932       2.0793      -3.8186
    virginica       virginica       -1.9151     -0.19958      0.61472
    versicolor      versicolor      -1.3746      0.45538     -0.58079
    setosa          versicolor      0.20061       2.2774       -3.978
    virginica       versicolor      -1.4926     0.090706    -0.098127
    virginica       virginica       -1.7666     -0.13467      0.40126
    setosa          versicolor      0.19994       1.9114      -3.6114
    setosa          versicolor      0.16103       1.9682      -3.6292

The order of the columns corresponds to the elements of classOrder. The software predicts the
label based on the maximum negated loss. The results indicate that the median of the linear losses
might not perform as well as other losses.

35 Functions

35-3938



Estimate Cross-Validation Posterior Probabilities

Load Fisher's iris data set. Use the petal dimensions as the predictor data X. Specify the response
data Y and the order of the classes in Y.

load fisheriris
X = meas(:,3:4);
Y = categorical(species);
classOrder = unique(Y);
rng(1); % For reproducibility

Create an SVM template. Standardize the predictors, and specify the Gaussian kernel.

t = templateSVM('Standardize',1,'KernelFunction','gaussian');

t is an SVM template. Most of its properties are empty. When training the ECOC classifier, the
software sets the applicable properties to their default values.

Train and cross-validate an ECOC classifier using the SVM template. Transform classification scores
to class posterior probabilities (returned by kfoldPredict) using the 'FitPosterior' name-value
pair argument. Specify the class order.

CVMdl = fitcecoc(X,Y,'Learners',t,'CrossVal','on','FitPosterior',true,...
    'ClassNames',classOrder);

CVMdl is a ClassificationPartitionedECOC model. By default, the software uses 10-fold cross-
validation.

Predict the validation-fold class posterior probabilities. Use 10 random initial values for the Kullback-
Leibler algorithm.

[label,~,~,Posterior] = kfoldPredict(CVMdl,'NumKLInitializations',10);

The software assigns an observation to the class that yields the smallest average binary loss. Because
all the binary learners compute posterior probabilities, the binary loss function is quadratic.

Display a random set of results.

idx = randsample(size(X,1),10);
CVMdl.ClassNames

ans = 3x1 categorical
     setosa 
     versicolor 
     virginica 

table(Y(idx),label(idx),Posterior(idx,:),...
    'VariableNames',{'TrueLabel','PredLabel','Posterior'})

ans=10×3 table
    TrueLabel     PredLabel                   Posterior               
    __________    __________    ______________________________________

    versicolor    versicolor     0.0086404       0.98243     0.0089302
    versicolor    virginica     2.2197e-14       0.12448       0.87552
    setosa        setosa             0.999    0.00022837    0.00076884
    versicolor    versicolor    2.2194e-14       0.98916      0.010845
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    virginica     virginica        0.01232      0.012926       0.97475
    virginica     virginica      0.0015569     0.0015636       0.99688
    virginica     virginica      0.0042886     0.0043547       0.99136
    setosa        setosa             0.999    0.00028329    0.00071382
    virginica     virginica      0.0094736     0.0098247        0.9807
    setosa        setosa             0.999    0.00013558    0.00086196

The columns of Posterior correspond to the class order of CVMdl.ClassNames.

Estimate Cross-Validation Posterior Probabilities Using Parallel Computing

Train a multiclass ECOC model and estimate the posterior probabilities using parallel computing.

Load the arrhythmia data set. Examine the response data Y.

load arrhythmia
Y = categorical(Y);
tabulate(Y)

  Value    Count   Percent
      1      245     54.20%
      2       44      9.73%
      3       15      3.32%
      4       15      3.32%
      5       13      2.88%
      6       25      5.53%
      7        3      0.66%
      8        2      0.44%
      9        9      1.99%
     10       50     11.06%
     14        4      0.88%
     15        5      1.11%
     16       22      4.87%

n = numel(Y);
K = numel(unique(Y));

Several classes are not represented in the data, and many of the other classes have low relative
frequencies.

Specify an ensemble learning template that uses the GentleBoost method and 50 weak classification
tree learners.

t = templateEnsemble('GentleBoost',50,'Tree');

t is a template object. Most of the options are empty ([]). The software uses default values for all
empty options during training.

Because the response variable contains many classes, specify a sparse random coding design.

rng(1); % For reproducibility
Coding = designecoc(K,'sparserandom');

Train and cross-validate an ECOC model using parallel computing. Fit posterior probabilities
(returned by kfoldPredict).
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pool = parpool;                      % Invokes workers

Starting parallel pool (parpool) using the 'local' profile ...
connected to 6 workers.

options = statset('UseParallel',1);
CVMdl = fitcecoc(X,Y,'Learner',t,'Options',options,'Coding',Coding,...
    'FitPosterior',1,'CrossVal','on');

Warning: One or more folds do not contain points from all the groups.

CVMdl is a ClassificationPartitionedECOC model. By default, the software implements 10-fold
cross-validation. You can specify a different number of folds using the 'KFold' name-value pair
argument.

The pool invokes six workers, although the number of workers might vary among systems. Because
some classes have low relative frequency, one or more folds most likely do not contain observations
from all classes.

Estimate posterior probabilities, and display the posterior probability of being classified as not having
arrhythmia (class 1) given the data for a random set of validation-fold observations.

[~,~,~,posterior] = kfoldPredict(CVMdl,'Options',options);
idx = randsample(n,10);
table(idx,Y(idx),posterior(idx,1),...
    'VariableNames',{'OOFSampleIndex','TrueLabel','PosteriorNoArrhythmia'})

ans=10×3 table
    OOFSampleIndex    TrueLabel    PosteriorNoArrhythmia
    ______________    _________    _____________________

         171             1                0.33654       
         221             1                0.85135       
          72             16                0.9174       
           3             10              0.025649       
         202             1                 0.8438       
         243             1                 0.9435       
          18             1                0.81198       
          49             6               0.090154       
         234             1                0.61625       
         315             1                0.97187       

Input Arguments
CVMdl — Cross-validated ECOC model
ClassificationPartitionedECOC model

Cross-validated ECOC model, specified as a ClassificationPartitionedECOC model. You can
create a ClassificationPartitionedECOC model in two ways:

• Pass a trained ECOC model (ClassificationECOC) to crossval.
• Train an ECOC model using fitcecoc and specify any one of these cross-validation name-value

pair arguments: 'CrossVal', 'CVPartition', 'Holdout', 'KFold', or 'Leaveout'.
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Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: kfoldPredict(CVMdl,'PosteriorMethod','qp') specifies to estimate multiclass
posterior probabilities by solving a least-squares problem using quadratic programming.

BinaryLoss — Binary learner loss function
'hamming' | 'linear' | 'logit' | 'exponential' | 'binodeviance' | 'hinge' | 'quadratic'
| function handle

Binary learner loss function, specified as the comma-separated pair consisting of 'BinaryLoss' and
a built-in loss function name or function handle.

• This table describes the built-in functions, where yj is the class label for a particular binary learner
(in the set {–1,1,0}), sj is the score for observation j, and g(yj,sj) is the binary loss formula.

Value Description Score Domain g(yj,sj)
'binodeviance' Binomial deviance (–∞,∞) log[1 + exp(–2yjsj)]/

[2log(2)]
'exponential' Exponential (–∞,∞) exp(–yjsj)/2
'hamming' Hamming [0,1] or (–∞,∞) [1 – sign(yjsj)]/2
'hinge' Hinge (–∞,∞) max(0,1 – yjsj)/2
'linear' Linear (–∞,∞) (1 – yjsj)/2
'logit' Logistic (–∞,∞) log[1 + exp(–yjsj)]/

[2log(2)]
'quadratic' Quadratic [0,1] [1 – yj(2sj – 1)]2/2

The software normalizes binary losses so that the loss is 0.5 when yj = 0. Also, the software
calculates the mean binary loss for each class.

• For a custom binary loss function, for example customFunction, specify its function handle
'BinaryLoss',@customFunction.

customFunction has this form:

bLoss = customFunction(M,s)

• M is the K-by-B coding matrix stored in Mdl.CodingMatrix.
• s is the 1-by-B row vector of classification scores.
• bLoss is the classification loss. This scalar aggregates the binary losses for every learner in a

particular class. For example, you can use the mean binary loss to aggregate the loss over the
learners for each class.

• K is the number of classes.
• B is the number of binary learners.

For an example of passing a custom binary loss function, see “Predict Test-Sample Labels of ECOC
Model Using Custom Binary Loss Function” on page 35-5751.
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The default BinaryLoss value depends on the score ranges returned by the binary learners. This
table identifies what some default BinaryLoss values are when you use the default score transform
(ScoreTransform property of the model is 'none').

Assumption Default Value
All binary learners are any of the following:

• Classification decision trees
• Discriminant analysis models
• k-nearest neighbor models
• Naive Bayes models

'quadratic'

All binary learners are SVMs. 'hinge'
All binary learners are ensembles trained by AdaboostM1 or
GentleBoost.

'exponential'

All binary learners are ensembles trained by LogitBoost. 'binodeviance'
You specify to predict class posterior probabilities by setting
'FitPosterior',true in fitcecoc.

'quadratic'

Binary learners are heterogeneous and use different loss functions. 'hamming'

To check the default value, use dot notation to display the BinaryLoss property of the trained model
at the command line.
Example: 'BinaryLoss','binodeviance'
Data Types: char | string | function_handle

Decoding — Decoding scheme
'lossweighted' (default) | 'lossbased'

Decoding scheme that aggregates the binary losses, specified as the comma-separated pair consisting
of 'Decoding' and 'lossweighted' or 'lossbased'. For more information, see “Binary Loss” on
page 35-3945.
Example: 'Decoding','lossbased'

NumKLInitializations — Number of random initial values
0 (default) | nonnegative integer scalar

Number of random initial values for fitting posterior probabilities by Kullback-Leibler divergence
minimization, specified as the comma-separated pair consisting of 'NumKLInitializations' and a
nonnegative integer scalar.

If you do not request the fourth output argument (Posterior) and set 'PosteriorMethod','kl'
(the default), then the software ignores the value of NumKLInitializations.

For more details, see “Posterior Estimation Using Kullback-Leibler Divergence” on page 35-3947.
Example: 'NumKLInitializations',5
Data Types: single | double

Options — Estimation options
[] (default) | structure array returned by statset
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Estimation options, specified as the comma-separated pair consisting of 'Options' and a structure
array returned by statset.

To invoke parallel computing:

• You need a Parallel Computing Toolbox license.
• Specify 'Options',statset('UseParallel',true).

PosteriorMethod — Posterior probability estimation method
'kl' (default) | 'qp'

Posterior probability estimation method, specified as the comma-separated pair consisting of
'PosteriorMethod' and 'kl' or 'qp'.

• If PosteriorMethod is 'kl', then the software estimates multiclass posterior probabilities by
minimizing the Kullback-Leibler divergence between the predicted and expected posterior
probabilities returned by binary learners. For details, see “Posterior Estimation Using Kullback-
Leibler Divergence” on page 35-3947.

• If PosteriorMethod is 'qp', then the software estimates multiclass posterior probabilities by
solving a least-squares problem using quadratic programming. You need an Optimization Toolbox
license to use this option. For details, see “Posterior Estimation Using Quadratic Programming” on
page 35-3948.

• If you do not request the fourth output argument (Posterior), then the software ignores the
value of PosteriorMethod.

Example: 'PosteriorMethod','qp'

Verbose — Verbosity level
0 (default) | 1

Verbosity level, specified as the comma-separated pair consisting of 'Verbose' and 0 or 1. Verbose
controls the number of diagnostic messages that the software displays in the Command Window.

If Verbose is 0, then the software does not display diagnostic messages. Otherwise, the software
displays diagnostic messages.
Example: 'Verbose',1
Data Types: single | double

Output Arguments
label — Predicted class labels
categorical array | character array | logical vector | numeric vector | cell array of character vectors

Predicted class labels, returned as a categorical or character array, logical or numeric vector, or cell
array of character vectors.

label has the same data type and number of rows as CVMdl.Y.

The software predicts the classification of an observation by assigning the observation to the class
yielding the largest negated average binary loss (or, equivalently, the smallest average binary loss).

NegLoss — Negated average binary losses
numeric matrix
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Negated average binary losses, returned as a numeric matrix. NegLoss is an n-by-K matrix, where n
is the number of observations (size(CVMdl.X,1)) and K is the number of unique classes
(size(CVMdl.ClassNames,1)).

NegLoss(i,k) is the negated average binary loss for classifying observation i into the kth class.

• If Decoding is 'lossbased', then NegLoss(i,k) is the negated sum of the binary losses
divided by the total number of binary learners.

• If Decoding is 'lossweighted', then NegLoss(i,k) is the negated sum of the binary losses
divided by the number of binary learners for the kth class.

For more details, see “Binary Loss” on page 35-3945.

PBScore — Positive-class scores
numeric matrix

Positive-class scores for each binary learner, returned as a numeric matrix. PBScore is an n-by-B
matrix, where n is the number of observations (size(CVMdl.X,1)) and B is the number of binary
learners (size(CVMdl.CodingMatrix,2)).

If the coding matrix varies across folds (that is, the coding scheme is sparserandom or
denserandom), then PBScore is empty ([]).

Posterior — Posterior class probabilities
numeric matrix

Posterior class probabilities, returned as a numeric matrix. Posterior is an n-by-K matrix, where n
is the number of observations (size(CVMdl.X,1)) and K is the number of unique classes
(size(CVMdl.ClassNames,1)).

You must set 'FitPosterior',1 when training the cross-validated ECOC model using fitcecoc in
order to request Posterior. Otherwise, the software throws an error.

More About
Binary Loss

The binary loss is a function of the class and classification score that determines how well a binary
learner classifies an observation into the class.

Suppose the following:

• mkj is element (k,j) of the coding design matrix M—that is, the code corresponding to class k of
binary learner j. M is a K-by-B matrix, where K is the number of classes, and B is the number of
binary learners.

• sj is the score of binary learner j for an observation.
• g is the binary loss function.
• k  is the predicted class for the observation.

The decoding scheme of an ECOC model specifies how the software aggregates the binary losses and
determines the predicted class for each observation. The software supports two decoding schemes:
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• Loss-based decoding [3] (Decoding is 'lossbased') — The predicted class of an observation
corresponds to the class that produces the minimum average of the binary losses over all binary
learners.

k = argmin
k

1
B ∑j = 1

B
mk j g(mk j, s j) .

• Loss-weighted decoding [4] (Decoding is 'lossweighted') — The predicted class of an
observation corresponds to the class that produces the minimum average of the binary losses over
the binary learners for the corresponding class.

k = argmin
k

∑
j = 1

B
mk j g(mk j, s j)

∑ j = 1

B

mk j

.

The denominator corresponds to the number of binary learners for class k. [1] suggests that loss-
weighted decoding improves classification accuracy by keeping loss values for all classes in the
same dynamic range.

The predict, resubPredict, and kfoldPredict functions return the negated value of the
objective function of argmin as the second output argument (NegLoss) for each observation and
class.

This table summarizes the supported binary loss functions, where yj is a class label for a particular
binary learner (in the set {–1,1,0}), sj is the score for observation j, and g(yj,sj) is the binary loss
function.

Value Description Score Domain g(yj,sj)
"binodeviance" Binomial deviance (–∞,∞) log[1 + exp(–2yjsj)]/

[2log(2)]
"exponential" Exponential (–∞,∞) exp(–yjsj)/2
"hamming" Hamming [0,1] or (–∞,∞) [1 – sign(yjsj)]/2
"hinge" Hinge (–∞,∞) max(0,1 – yjsj)/2
"linear" Linear (–∞,∞) (1 – yjsj)/2
"logit" Logistic (–∞,∞) log[1 + exp(–yjsj)]/

[2log(2)]
"quadratic" Quadratic [0,1] [1 – yj(2sj – 1)]2/2

The software normalizes binary losses so that the loss is 0.5 when yj = 0, and aggregates using the
average of the binary learners.

Do not confuse the binary loss with the overall classification loss (specified by the LossFun name-
value argument of the kfoldLoss and kfoldPredict object functions), which measures how well
an ECOC classifier performs as a whole.
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Algorithms
The software can estimate class posterior probabilities by minimizing the Kullback-Leibler divergence
or by using quadratic programming. For the following descriptions of the posterior estimation
algorithms, assume that:

• mkj is the element (k,j) of the coding design matrix M.
• I is the indicator function.
• p k is the class posterior probability estimate for class k of an observation, k = 1,...,K.
• rj is the positive-class posterior probability for binary learner j. That is, rj is the probability that

binary learner j classifies an observation into the positive class, given the training data.

Posterior Estimation Using Kullback-Leibler Divergence

By default, the software minimizes the Kullback-Leibler divergence to estimate class posterior
probabilities. The Kullback-Leibler divergence between the expected and observed positive-class
posterior probabilities is

Δ(r, r ) = ∑
j = 1

L
w j r jlog

r j
r j

+ 1− r j log
1− r j
1− r j

,

where w j = ∑
Sj

wi
∗ is the weight for binary learner j.

• Sj is the set of observation indices on which binary learner j is trained.
• wi

∗ is the weight of observation i.

The software minimizes the divergence iteratively. The first step is to choose initial values
p k

(0); k = 1, ..., K for the class posterior probabilities.

• If you do not specify 'NumKLIterations', then the software tries both sets of deterministic
initial values described next, and selects the set that minimizes Δ.

• p k
(0) = 1/K; k = 1, ..., K .

• p k
(0); k = 1, ..., K is the solution of the system

M01p (0) = r,

where M01 is M with all mkj = –1 replaced with 0, and r is a vector of positive-class posterior
probabilities returned by the L binary learners [Dietterich et al.] on page 19-285. The software
uses lsqnonneg to solve the system.

• If you specify 'NumKLIterations',c, where c is a natural number, then the software does the
following to choose the set p k

(0); k = 1, ..., K, and selects the set that minimizes Δ.

• The software tries both sets of deterministic initial values as described previously.
• The software randomly generates c vectors of length K using rand, and then normalizes each

vector to sum to 1.

At iteration t, the software completes these steps:
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1 Compute

r j
(t) =

∑
k = 1

K
p k

(t)I(mk j = + 1)

∑
k = 1

K
p k

(t)I(mk j = + 1∪mk j = − 1)
.

2 Estimate the next class posterior probability using

p k
(t + 1) = p k

(t)
∑

j = 1

L
w j r jI mk j = + 1 + 1− r j I mk j = − 1

∑
j = 1

L
w j r j

(t)I mk j = + 1 + 1− r j
(t) I mk j = − 1

.

3 Normalize p k
(t + 1); k = 1, ..., K so that they sum to 1.

4 Check for convergence.

For more details, see [Hastie et al.] on page 19-286 and [Zadrozny] on page 19-287.

Posterior Estimation Using Quadratic Programming

Posterior probability estimation using quadratic programming requires an Optimization Toolbox
license. To estimate posterior probabilities for an observation using this method, the software
completes these steps:

1 Estimate the positive-class posterior probabilities, rj, for binary learners j = 1,...,L.
2 Using the relationship between rj and p k [Wu et al.] on page 19-287, minimize

∑
j = 1

L

−r j ∑
k = 1

K
p kI mk j = − 1 + 1− r j ∑

k = 1

K
p kI mk j = + 1

2

with respect to p k and the restrictions

0 ≤ p k ≤ 1

∑
k

p k = 1.

The software performs minimization using quadprog.

Version History
Introduced in R2014b
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Extended Capabilities
Automatic Parallel Support
Accelerate code by automatically running computation in parallel using Parallel Computing Toolbox™.

To run in parallel, specify the 'Options' name-value argument in the call to this function and set the
'UseParallel' field of the options structure to true using statset.

For example: 'Options',statset('UseParallel',true)

For more information about parallel computing, see “Run MATLAB Functions with Automatic Parallel
Support” (Parallel Computing Toolbox).

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

This function fully supports GPU arrays. For more information, see “Run MATLAB Functions on a
GPU” (Parallel Computing Toolbox).

See Also
ClassificationPartitionedECOC | ClassificationECOC | edge | fitcecoc | statset |
predict | quadprog

Topics
“Quick Start Parallel Computing for Statistics and Machine Learning Toolbox” on page 33-2
“Reproducibility in Parallel Statistical Computations” on page 33-16
“Concepts of Parallel Computing in Statistics and Machine Learning Toolbox” on page 33-6
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kfoldPredict
Package: classreg.learning.partition

Classify observations in cross-validated kernel classification model

Syntax
label = kfoldPredict(CVMdl)
[label,score] = kfoldPredict(CVMdl)

Description
label = kfoldPredict(CVMdl) returns class labels predicted by the cross-validated, binary
kernel model (ClassificationPartitionedKernel) CVMdl. For every fold, kfoldPredict
predicts class labels for validation-fold observations using a model trained on training-fold
observations.

[label,score] = kfoldPredict(CVMdl) also returns classification scores on page 35-3954 for
both classes.

Examples

Classify Observations Using Cross-Validation

Classify observations using a cross-validated, binary kernel classifier, and display the confusion
matrix for the resulting classification.

Load the ionosphere data set. This data set has 34 predictors and 351 binary responses for radar
returns, which are labeled either bad ('b') or good ('g').

load ionosphere

Cross-validate a binary kernel classification model using the data.

rng(1); % For reproducibility 
CVMdl = fitckernel(X,Y,'Crossval','on')

CVMdl = 
  ClassificationPartitionedKernel
    CrossValidatedModel: 'Kernel'
           ResponseName: 'Y'
        NumObservations: 351
                  KFold: 10
              Partition: [1x1 cvpartition]
             ClassNames: {'b'  'g'}
         ScoreTransform: 'none'

  Properties, Methods
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CVMdl is a ClassificationPartitionedKernel model. By default, the software implements 10-
fold cross-validation. To specify a different number of folds, use the 'KFold' name-value pair
argument instead of 'Crossval'.

Classify the observations that fitckernel does not use in training the folds.

label = kfoldPredict(CVMdl);

Construct a confusion matrix to compare the true classes of the observations to their predicted
labels.

C = confusionchart(Y,label);

The CVMdl model misclassifies 32 good ('g') radar returns as being bad ('b') and misclassifies 7
bad radar returns as being good.

Estimate k-Fold Cross-Validation Posterior Class Probabilities

Estimate posterior class probabilities using a cross-validated, binary kernel classifier, and determine
the quality of the model by plotting a receiver operating characteristic (ROC) curve. Cross-validated
kernel classification models return posterior probabilities for logistic regression learners only.

Load the ionosphere data set. This data set has 34 predictors and 351 binary responses for radar
returns, which are labeled either bad ('b') or good ('g').
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load ionosphere

Cross-validate a binary kernel classification model using the data. Specify the class order, and fit
logistic regression learners.

rng(1); % For reproducibility 
CVMdl = fitckernel(X,Y,'Crossval','on', ...
    'ClassNames',{'b','g'},'Learner','logistic')

CVMdl = 
  ClassificationPartitionedKernel
    CrossValidatedModel: 'Kernel'
           ResponseName: 'Y'
        NumObservations: 351
                  KFold: 10
              Partition: [1x1 cvpartition]
             ClassNames: {'b'  'g'}
         ScoreTransform: 'none'

  Properties, Methods

CVMdl is a ClassificationPartitionedKernel model. By default, the software implements 10-
fold cross-validation. To specify a different number of folds, use the 'KFold' name-value pair
argument instead of 'Crossval'.

Predict the posterior class probabilities for the observations that fitckernel does not use in
training the folds.

[~,posterior] = kfoldPredict(CVMdl);

The output posterior is a matrix with two columns and n rows, where n is the number of
observations. Column i contains posterior probabilities of CVMdl.ClassNames(i) given a particular
observation.

Compute the performance metrics (true positive rates and false positive rates) for a ROC curve and
find the area under the ROC curve (AUC) value by creating a rocmetrics object.

rocObj = rocmetrics(Y,posterior,CVMdl.ClassNames);

Plot the ROC curve for the second class by using the plot function of rocmetrics.

plot(rocObj,ClassNames=CVMdl.ClassNames(2))

35 Functions

35-3952



The AUC is close to 1, which indicates that the model predicts labels well.

Input Arguments
CVMdl — Cross-validated, binary kernel classification model
ClassificationPartitionedKernel model object

Cross-validated, binary kernel classification model, specified as a
ClassificationPartitionedKernel model object. You can create a
ClassificationPartitionedKernel model by using fitckernel and specifying any one of the
cross-validation name-value pair arguments.

To obtain estimates, kfoldPredict applies the same data used to cross-validate the kernel
classification model (X and Y).

Output Arguments
label — Predicted class labels
categorical array | character array | logical matrix | numeric matrix | cell array of character vectors

Predicted class labels, returned as a categorical or character array, logical or numeric matrix, or cell
array of character vectors.
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label has n rows, where n is the number of observations in X, and has the same data type as the
observed class labels (Y) used to train CVMdl. (The software treats string arrays as cell arrays of
character vectors.)

kfoldPredict classifies observations into the class yielding the highest score.

score — Classification scores
numeric array

Classification scores on page 35-3954, returned as an n-by-2 numeric array, where n is the number of
observations in X. score(i,j) is the score for classifying observation i into class j. The order of the
classes is stored in CVMdl.ClassNames.

If CVMdl.Trained{1}.Learner is 'logistic', then classification scores are posterior
probabilities.

More About
Classification Score

For kernel classification models, the raw classification score for classifying the observation x, a row
vector, into the positive class is defined by

f x = T(x)β + b .

• T ·  is a transformation of an observation for feature expansion.
• β is the estimated column vector of coefficients.
• b is the estimated scalar bias.

The raw classification score for classifying x into the negative class is −f(x). The software classifies
observations into the class that yields a positive score.

If the kernel classification model consists of logistic regression learners, then the software applies the
'logit' score transformation to the raw classification scores (see ScoreTransform).

Version History
Introduced in R2018b

See Also
ClassificationPartitionedKernel | fitckernel
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kfoldPredict
Package: classreg.learning.partition

Classify observations in cross-validated kernel ECOC model

Syntax
label = kfoldPredict(CVMdl)
label = kfoldPredict(CVMdl,Name,Value)
[label,NegLoss,PBScore] = kfoldPredict( ___ )
[label,NegLoss,PBScore,Posterior] = kfoldPredict( ___ )

Description
label = kfoldPredict(CVMdl) returns class labels predicted by the cross-validated kernel ECOC
model (ClassificationPartitionedKernelECOC) CVMdl. For every fold, kfoldPredict
predicts class labels for validation-fold observations using a model trained on training-fold
observations. kfoldPredict applies the same data used to create CVMdl (see fitcecoc).

The software predicts the classification of an observation by assigning the observation to the class
yielding the largest negated average binary loss (or, equivalently, the smallest average binary loss).

label = kfoldPredict(CVMdl,Name,Value) returns predicted class labels with additional
options specified by one or more name-value pair arguments. For example, specify the posterior
probability estimation method, decoding scheme, or verbosity level.

[label,NegLoss,PBScore] = kfoldPredict( ___ ) additionally returns negated values of the
average binary loss per class (NegLoss) for validation-fold observations and positive-class scores
(PBScore) for validation-fold observations classified by each binary learner, using any of the input
argument combinations in the previous syntaxes.

If the coding matrix varies across folds (that is, the coding scheme is sparserandom or
denserandom), then PBScore is empty ([]).

[label,NegLoss,PBScore,Posterior] = kfoldPredict( ___ ) additionally returns posterior
class probability estimates for validation-fold observations (Posterior).

To obtain posterior class probabilities, the kernel classification binary learners must be logistic
regression models. Otherwise, kfoldPredict throws an error.

Examples

Classify Observations Using Cross-Validation

Classify observations using a cross-validated, multiclass kernel ECOC classifier, and display the
confusion matrix for the resulting classification.

Load Fisher's iris data set. X contains flower measurements, and Y contains the names of flower
species.
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load fisheriris
X = meas;
Y = species;

Cross-validate an ECOC model composed of kernel binary learners.

rng(1); % For reproducibility 
CVMdl = fitcecoc(X,Y,'Learners','kernel','CrossVal','on')

CVMdl = 
  ClassificationPartitionedKernelECOC
    CrossValidatedModel: 'KernelECOC'
           ResponseName: 'Y'
        NumObservations: 150
                  KFold: 10
              Partition: [1x1 cvpartition]
             ClassNames: {'setosa'  'versicolor'  'virginica'}
         ScoreTransform: 'none'

  Properties, Methods

CVMdl is a ClassificationPartitionedKernelECOC model. By default, the software implements
10-fold cross-validation. To specify a different number of folds, use the 'KFold' name-value pair
argument instead of 'Crossval'.

Classify the observations that fitcecoc does not use in training the folds.

label = kfoldPredict(CVMdl);

Construct a confusion matrix to compare the true classes of the observations to their predicted
labels.

C = confusionchart(Y,label);
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The CVMdl model misclassifies four 'versicolor' irises as 'virginica' irises and misclassifies
one 'virginica' iris as a 'versicolor' iris.

Predict Cross-Validation Labels Using Custom Binary Loss

Load Fisher's iris data set. X contains flower measurements, and Y contains the names of flower
species.

load fisheriris
X = meas;
Y = species;

Cross-validate an ECOC model of kernel classification models using 5-fold cross-validation.

rng(1); % For reproducibility 
CVMdl = fitcecoc(X,Y,'Learners','kernel','KFold',5)

CVMdl = 
  ClassificationPartitionedKernelECOC
    CrossValidatedModel: 'KernelECOC'
           ResponseName: 'Y'
        NumObservations: 150
                  KFold: 5
              Partition: [1x1 cvpartition]
             ClassNames: {'setosa'  'versicolor'  'virginica'}
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         ScoreTransform: 'none'

  Properties, Methods

CVMdl is a ClassificationPartitionedKernelECOC model. It contains the property Trained,
which is a 5-by-1 cell array of CompactClassificationECOC models.

By default, the kernel classification models that compose the CompactClassificationECOC models
use SVMs. SVM scores are signed distances from the observation to the decision boundary.
Therefore, the domain is (− ∞ , ∞ ). Create a custom binary loss function that:

• Maps the coding design matrix (M) and positive-class classification scores (s) for each learner to
the binary loss for each observation

• Uses linear loss
• Aggregates the binary learner loss using the median

You can create a separate function for the binary loss function, and then save it on the MATLAB®
path. Or, you can specify an anonymous binary loss function. In this case, create a function handle
(customBL) to an anonymous binary loss function.

customBL = @(M,s)nanmedian(1 - bsxfun(@times,M,s),2)/2;

Predict cross-validation labels and estimate the median binary loss per class. Print the median
negative binary losses per class for a random set of 10 observations.

[label,NegLoss] = kfoldPredict(CVMdl,'BinaryLoss',customBL);

idx = randsample(numel(label),10);
table(Y(idx),label(idx),NegLoss(idx,1),NegLoss(idx,2),NegLoss(idx,3),...
    'VariableNames',[{'True'};{'Predicted'};...
    unique(CVMdl.ClassNames)])

ans=10×5 table
         True           Predicted        setosa     versicolor    virginica
    ______________    ______________    ________    __________    _________

    {'setosa'    }    {'setosa'    }     0.20926     -0.84572     -0.86354 
    {'setosa'    }    {'setosa'    }     0.16144     -0.90572     -0.75572 
    {'virginica' }    {'versicolor'}    -0.83532     -0.12157     -0.54311 
    {'virginica' }    {'virginica' }    -0.97235     -0.69759      0.16994 
    {'virginica' }    {'virginica' }    -0.89441     -0.69937     0.093778 
    {'virginica' }    {'virginica' }    -0.86774     -0.47297     -0.15929 
    {'setosa'    }    {'setosa'    }     -0.1026     -0.69671     -0.70069 
    {'setosa'    }    {'setosa'    }      0.1001     -0.89163     -0.70848 
    {'virginica' }    {'virginica' }     -1.0106     -0.52919     0.039829 
    {'versicolor'}    {'versicolor'}     -1.0298     0.027354     -0.49757 

The cross-validated model correctly predicts the labels for 9 of the 10 random observations.
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Estimate k-Fold Cross-Validation Posterior Class Probabilities

Estimate posterior class probabilities using a cross-validated, multiclass kernel ECOC classification
model. Kernel classification models return posterior probabilities for logistic regression learners only.

Load Fisher's iris data set. X contains flower measurements, and Y contains the names of flower
species.

load fisheriris
X = meas;
Y = species;

Create a kernel template for the binary kernel classification models. Specify to fit logistic regression
learners.

t = templateKernel('Learner','logistic')

t = 
Fit template for classification Kernel.

             BetaTolerance: []
                 BlockSize: []
             BoxConstraint: []
                   Epsilon: []
    NumExpansionDimensions: []
         GradientTolerance: []
        HessianHistorySize: []
            IterationLimit: []
               KernelScale: []
                    Lambda: []
                   Learner: 'logistic'
              LossFunction: []
                    Stream: []
            VerbosityLevel: []
                   Version: 1
                    Method: 'Kernel'
                      Type: 'classification'

t is a kernel template. Most of its properties are empty. When training an ECOC classifier using the
template, the software sets the applicable properties to their default values.

Cross-validate an ECOC model using the kernel template.

rng('default'); % For reproducibility
CVMdl = fitcecoc(X,Y,'Learners',t,'CrossVal','on')

CVMdl = 
  ClassificationPartitionedKernelECOC
    CrossValidatedModel: 'KernelECOC'
           ResponseName: 'Y'
        NumObservations: 150
                  KFold: 10
              Partition: [1x1 cvpartition]
             ClassNames: {'setosa'  'versicolor'  'virginica'}
         ScoreTransform: 'none'
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  Properties, Methods

CVMdl is a ClassificationPartitionedECOC model. By default, the software uses 10-fold cross-
validation.

Predict the validation-fold class posterior probabilities.

[label,~,~,Posterior] = kfoldPredict(CVMdl);

The software assigns an observation to the class that yields the smallest average binary loss. Because
all binary learners are computing posterior probabilities, the binary loss function is quadratic.

Display the posterior probabilities for 10 randomly selected observations.

idx = randsample(size(X,1),10);
CVMdl.ClassNames

ans = 3x1 cell
    {'setosa'    }
    {'versicolor'}
    {'virginica' }

table(Y(idx),label(idx),Posterior(idx,:),...
    'VariableNames',{'TrueLabel','PredLabel','Posterior'})

ans=10×3 table
      TrueLabel         PredLabel                  Posterior            
    ______________    ______________    ________________________________

    {'setosa'    }    {'setosa'    }     0.68216     0.18546     0.13238
    {'virginica' }    {'virginica' }      0.1581     0.14405     0.69785
    {'virginica' }    {'virginica' }    0.071807    0.093291      0.8349
    {'setosa'    }    {'setosa'    }     0.74918     0.11434     0.13648
    {'versicolor'}    {'versicolor'}     0.09375     0.67149     0.23476
    {'versicolor'}    {'versicolor'}    0.036202     0.85544     0.10836
    {'versicolor'}    {'versicolor'}      0.2252     0.50473     0.27007
    {'virginica' }    {'virginica' }    0.061562     0.11086     0.82758
    {'setosa'    }    {'setosa'    }     0.42448     0.21181     0.36371
    {'virginica' }    {'virginica' }    0.082705      0.1428      0.7745

The columns of Posterior correspond to the class order of CVMdl.ClassNames.

Input Arguments
CVMdl — Cross-validated kernel ECOC model
ClassificationPartitionedKernelECOC model

Cross-validated kernel ECOC model, specified as a ClassificationPartitionedKernelECOC
model. You can create a ClassificationPartitionedKernelECOC model by training an ECOC
model using fitcecoc and specifying these name-value pair arguments:

• 'Learners'– Set the value to 'kernel', a template object returned by templateKernel, or a
cell array of such template objects.
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• One of the arguments 'CrossVal', 'CVPartition', 'Holdout', 'KFold', or 'Leaveout'.

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: kfoldPredict(CVMdl,'PosteriorMethod','qp') specifies to estimate multiclass
posterior probabilities by solving a least-squares problem using quadratic programming.

BinaryLoss — Binary learner loss function
'hamming' | 'linear' | 'logit' | 'exponential' | 'binodeviance' | 'hinge' | 'quadratic'
| function handle

Binary learner loss function, specified as the comma-separated pair consisting of 'BinaryLoss' and
a built-in loss function name or function handle.

• This table contains names and descriptions of the built-in functions, where yj is the class label for
a particular binary learner (in the set {–1,1,0}), sj is the score for observation j, and g(yj,sj) is the
binary loss formula.

Value Description Score Domain g(yj,sj)
'binodeviance' Binomial deviance (–∞,∞) log[1 + exp(–2yjsj)]/

[2log(2)]
'exponential' Exponential (–∞,∞) exp(–yjsj)/2
'hamming' Hamming [0,1] or (–∞,∞) [1 – sign(yjsj)]/2
'hinge' Hinge (–∞,∞) max(0,1 – yjsj)/2
'linear' Linear (–∞,∞) (1 – yjsj)/2
'logit' Logistic (–∞,∞) log[1 + exp(–yjsj)]/

[2log(2)]
'quadratic' Quadratic [0,1] [1 – yj(2sj – 1)]2/2

The software normalizes binary losses so that the loss is 0.5 when yj = 0. Also, the software
calculates the mean binary loss for each class.

• For a custom binary loss function, for example, customFunction, specify its function handle
'BinaryLoss',@customFunction.

customFunction has this form:

bLoss = customFunction(M,s)

• M is the K-by-B coding matrix stored in Mdl.CodingMatrix.
• s is the 1-by-B row vector of classification scores.
• bLoss is the classification loss. This scalar aggregates the binary losses for every learner in a

particular class. For example, you can use the mean binary loss to aggregate the loss over the
learners for each class.

• K is the number of classes.
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• B is the number of binary learners.

By default, if all binary learners are kernel classification models using SVM, then BinaryLoss is
'hinge'. If all binary learners are kernel classification models using logistic regression, then
BinaryLoss is 'quadratic'.
Example: 'BinaryLoss','binodeviance'
Data Types: char | string | function_handle

Decoding — Decoding scheme
'lossweighted' (default) | 'lossbased'

Decoding scheme that aggregates the binary losses, specified as the comma-separated pair consisting
of 'Decoding' and 'lossweighted' or 'lossbased'. For more information, see “Binary Loss” on
page 35-3964.
Example: 'Decoding','lossbased'

NumKLInitializations — Number of random initial values
0 (default) | nonnegative integer scalar

Number of random initial values for fitting posterior probabilities by Kullback-Leibler divergence
minimization, specified as the comma-separated pair consisting of 'NumKLInitializations' and a
nonnegative integer scalar.

If you do not request the fourth output argument (Posterior) and set 'PosteriorMethod','kl'
(the default), then the software ignores the value of NumKLInitializations.

For more details, see “Posterior Estimation Using Kullback-Leibler Divergence” on page 35-3965.
Example: 'NumKLInitializations',5
Data Types: single | double

Options — Estimation options
[] (default) | structure array returned by statset

Estimation options, specified as the comma-separated pair consisting of 'Options' and a structure
array returned by statset.

To invoke parallel computing:

• You need a Parallel Computing Toolbox license.
• Specify 'Options',statset('UseParallel',true).

PosteriorMethod — Posterior probability estimation method
'kl' (default) | 'qp'

Posterior probability estimation method, specified as the comma-separated pair consisting of
'PosteriorMethod' and 'kl' or 'qp'.

• If PosteriorMethod is 'kl', then the software estimates multiclass posterior probabilities by
minimizing the Kullback-Leibler divergence between the predicted and expected posterior
probabilities returned by binary learners. For details, see “Posterior Estimation Using Kullback-
Leibler Divergence” on page 35-3965.
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• If PosteriorMethod is 'qp', then the software estimates multiclass posterior probabilities by
solving a least-squares problem using quadratic programming. You need an Optimization Toolbox
license to use this option. For details, see “Posterior Estimation Using Quadratic Programming” on
page 35-3967.

• If you do not request the fourth output argument (Posterior), then the software ignores the
value of PosteriorMethod.

Example: 'PosteriorMethod','qp'

Verbose — Verbosity level
0 (default) | 1

Verbosity level, specified as the comma-separated pair consisting of 'Verbose' and 0 or 1. Verbose
controls the number of diagnostic messages that the software displays in the Command Window.

If Verbose is 0, then the software does not display diagnostic messages. Otherwise, the software
displays diagnostic messages.
Example: 'Verbose',1
Data Types: single | double

Output Arguments
label — Predicted class labels
categorical array | character array | logical vector | numeric vector | cell array of character vectors

Predicted class labels, returned as a categorical or character array, logical or numeric vector, or cell
array of character vectors.

label has the same data type and number of rows as CVMdl.Y.

The software predicts the classification of an observation by assigning the observation to the class
yielding the largest negated average binary loss (or, equivalently, the smallest average binary loss).

NegLoss — Negated average binary losses
numeric matrix

Negated average binary losses, returned as a numeric matrix. NegLoss is an n-by-K matrix, where n
is the number of observations (size(CVMdl.Y,1)) and K is the number of unique classes
(size(CVMdl.ClassNames,1)).

NegLoss(i,k) is the negated average binary loss for classifying observation i into the kth class.

• If Decoding is 'lossbased', then NegLoss(i,k) is the negated sum of the binary losses
divided by the total number of binary learners.

• If Decoding is 'lossweighted', then NegLoss(i,k) is the negated sum of the binary losses
divided by the number of binary learners for the kth class.

For more details, see “Binary Loss” on page 35-3964.

PBScore — Positive-class scores
numeric matrix
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Positive-class scores for each binary learner, returned as a numeric matrix. PBScore is an n-by-B
matrix, where n is the number of observations (size(CVMdl.Y,1)) and B is the number of binary
learners (size(CVMdl.CodingMatrix,2)).

If the coding matrix varies across folds (that is, the coding scheme is sparserandom or
denserandom), then PBScore is empty ([]).

Posterior — Posterior class probabilities
numeric matrix

Posterior class probabilities, returned as a numeric matrix. Posterior is an n-by-K matrix, where n
is the number of observations (size(CVMdl.Y,1)) and K is the number of unique classes
(size(CVMdl.ClassNames,1)).

To return posterior probabilities, each kernel classification binary learner must have its Learner
property set to 'logistic'. Otherwise, the software throws an error.

More About
Binary Loss

The binary loss is a function of the class and classification score that determines how well a binary
learner classifies an observation into the class.

Suppose the following:

• mkj is element (k,j) of the coding design matrix M—that is, the code corresponding to class k of
binary learner j. M is a K-by-B matrix, where K is the number of classes, and B is the number of
binary learners.

• sj is the score of binary learner j for an observation.
• g is the binary loss function.
• k  is the predicted class for the observation.

The decoding scheme of an ECOC model specifies how the software aggregates the binary losses and
determines the predicted class for each observation. The software supports two decoding schemes:

• Loss-based decoding [3] (Decoding is 'lossbased') — The predicted class of an observation
corresponds to the class that produces the minimum average of the binary losses over all binary
learners.

k = argmin
k

1
B ∑j = 1

B
mk j g(mk j, s j) .

• Loss-weighted decoding [4] (Decoding is 'lossweighted') — The predicted class of an
observation corresponds to the class that produces the minimum average of the binary losses over
the binary learners for the corresponding class.

k = argmin
k

∑
j = 1

B
mk j g(mk j, s j)

∑ j = 1

B

mk j

.
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The denominator corresponds to the number of binary learners for class k. [1] suggests that loss-
weighted decoding improves classification accuracy by keeping loss values for all classes in the
same dynamic range.

The predict, resubPredict, and kfoldPredict functions return the negated value of the
objective function of argmin as the second output argument (NegLoss) for each observation and
class.

This table summarizes the supported binary loss functions, where yj is a class label for a particular
binary learner (in the set {–1,1,0}), sj is the score for observation j, and g(yj,sj) is the binary loss
function.

Value Description Score Domain g(yj,sj)
"binodeviance" Binomial deviance (–∞,∞) log[1 + exp(–2yjsj)]/

[2log(2)]
"exponential" Exponential (–∞,∞) exp(–yjsj)/2
"hamming" Hamming [0,1] or (–∞,∞) [1 – sign(yjsj)]/2
"hinge" Hinge (–∞,∞) max(0,1 – yjsj)/2
"linear" Linear (–∞,∞) (1 – yjsj)/2
"logit" Logistic (–∞,∞) log[1 + exp(–yjsj)]/

[2log(2)]
"quadratic" Quadratic [0,1] [1 – yj(2sj – 1)]2/2

The software normalizes binary losses so that the loss is 0.5 when yj = 0, and aggregates using the
average of the binary learners.

Do not confuse the binary loss with the overall classification loss (specified by the LossFun name-
value argument of the kfoldLoss and kfoldPredict object functions), which measures how well
an ECOC classifier performs as a whole.

Algorithms
The software can estimate class posterior probabilities by minimizing the Kullback-Leibler divergence
or by using quadratic programming. For the following descriptions of the posterior estimation
algorithms, assume that:

• mkj is the element (k,j) of the coding design matrix M.
• I is the indicator function.
• p k is the class posterior probability estimate for class k of an observation, k = 1,...,K.
• rj is the positive-class posterior probability for binary learner j. That is, rj is the probability that

binary learner j classifies an observation into the positive class, given the training data.

Posterior Estimation Using Kullback-Leibler Divergence

By default, the software minimizes the Kullback-Leibler divergence to estimate class posterior
probabilities. The Kullback-Leibler divergence between the expected and observed positive-class
posterior probabilities is

Δ(r, r ) = ∑
j = 1

L
w j r jlog

r j
r j

+ 1− r j log
1− r j
1− r j

,
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where w j = ∑
Sj

wi
∗ is the weight for binary learner j.

• Sj is the set of observation indices on which binary learner j is trained.
• wi

∗ is the weight of observation i.

The software minimizes the divergence iteratively. The first step is to choose initial values
p k

(0); k = 1, ..., K for the class posterior probabilities.

• If you do not specify 'NumKLIterations', then the software tries both sets of deterministic
initial values described next, and selects the set that minimizes Δ.

• p k
(0) = 1/K; k = 1, ..., K .

• p k
(0); k = 1, ..., K is the solution of the system

M01p (0) = r,

where M01 is M with all mkj = –1 replaced with 0, and r is a vector of positive-class posterior
probabilities returned by the L binary learners [Dietterich et al.] on page 19-285. The software
uses lsqnonneg to solve the system.

• If you specify 'NumKLIterations',c, where c is a natural number, then the software does the
following to choose the set p k

(0); k = 1, ..., K, and selects the set that minimizes Δ.

• The software tries both sets of deterministic initial values as described previously.
• The software randomly generates c vectors of length K using rand, and then normalizes each

vector to sum to 1.

At iteration t, the software completes these steps:

1 Compute

r j
(t) =

∑
k = 1

K
p k

(t)I(mk j = + 1)

∑
k = 1

K
p k

(t)I(mk j = + 1∪mk j = − 1)
.

2 Estimate the next class posterior probability using

p k
(t + 1) = p k

(t)
∑

j = 1

L
w j r jI mk j = + 1 + 1− r j I mk j = − 1

∑
j = 1

L
w j r j

(t)I mk j = + 1 + 1− r j
(t) I mk j = − 1

.

3 Normalize p k
(t + 1); k = 1, ..., K so that they sum to 1.

4 Check for convergence.

For more details, see [Hastie et al.] on page 19-286 and [Zadrozny] on page 19-287.

35 Functions

35-3966



Posterior Estimation Using Quadratic Programming

Posterior probability estimation using quadratic programming requires an Optimization Toolbox
license. To estimate posterior probabilities for an observation using this method, the software
completes these steps:

1 Estimate the positive-class posterior probabilities, rj, for binary learners j = 1,...,L.
2 Using the relationship between rj and p k [Wu et al.] on page 19-287, minimize

∑
j = 1

L

−r j ∑
k = 1

K
p kI mk j = − 1 + 1− r j ∑

k = 1

K
p kI mk j = + 1

2

with respect to p k and the restrictions

0 ≤ p k ≤ 1

∑
k

p k = 1.

The software performs minimization using quadprog.

Version History
Introduced in R2018b
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kfoldPredict
Predict labels for observations not used for training

Syntax
Label = kfoldPredict(CVMdl)
[Label,Score] = kfoldPredict(CVMdl)

Description
Label = kfoldPredict(CVMdl) returns cross-validated class labels predicted by the cross-
validated, binary, linear classification model CVMdl. That is, for every fold, kfoldPredict predicts
class labels for observations that it holds out when it trains using all other observations.

Label contains predicted class labels for each regularization strength in the linear classification
models that compose CVMdl.

[Label,Score] = kfoldPredict(CVMdl) also returns cross-validated classification scores on
page 35-3975 for both classes. Score contains classification scores for each regularization strength
in CVMdl.

Input Arguments
CVMdl — Cross-validated, binary, linear classification model
ClassificationPartitionedLinear model object

Cross-validated, binary, linear classification model, specified as a
ClassificationPartitionedLinear model object. You can create a
ClassificationPartitionedLinear model using fitclinear and specifying any one of the
cross-validation, name-value pair arguments, for example, CrossVal.

To obtain estimates, kfoldPredict applies the same data used to cross-validate the linear classification
model (X and Y).

Output Arguments
Label — Cross-validated, predicted class labels
categorical array | character array | logical matrix | numeric matrix | cell array of character vectors

Cross-validated, predicted class labels, returned as a categorical or character array, logical or
numeric matrix, or cell array of character vectors.

In most cases, Label is an n-by-L array of the same data type as the observed class labels (see Y)
used to create CVMdl. (The software treats string arrays as cell arrays of character vectors.) n is the
number of observations in the predictor data (see X) and L is the number of regularization strengths
in CVMdl.Trained{1}.Lambda. That is, Label(i,j) is the predicted class label for observation i
using the linear classification model that has regularization strength
CVMdl.Trained{1}.Lambda(j).
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If Y is a character array and L > 1, then Label is a cell array of class labels.

Score — Cross-validated classification scores
numeric array

Cross-validated classification scores on page 35-3975, returned as an n-by-2-by-L numeric array. n is
the number of observations in the predictor data that created CVMdl (see X) and L is the number of
regularization strengths in CVMdl.Trained{1}.Lambda. Score(i,k,j) is the score for classifying
observation i into class k using the linear classification model that has regularization strength
CVMdl.Trained{1}.Lambda(j). CVMdl.ClassNames stores the order of the classes.

If CVMdl.Trained{1}.Learner is 'logistic', then classification scores are posterior
probabilities.

Examples

Predict k-fold Cross-Validation Labels

Load the NLP data set.

load nlpdata

X is a sparse matrix of predictor data, and Y is a categorical vector of class labels. There are more
than two classes in the data.

The models should identify whether the word counts in a web page are from the Statistics and
Machine Learning Toolbox™ documentation. So, identify the labels that correspond to the Statistics
and Machine Learning Toolbox™ documentation web pages.

Ystats = Y == 'stats';

Cross-validate a binary, linear classification model using the entire data set, which can identify
whether the word counts in a documentation web page are from the Statistics and Machine Learning
Toolbox™ documentation.

rng(1); % For reproducibility 
CVMdl = fitclinear(X,Ystats,'CrossVal','on');
Mdl1 = CVMdl.Trained{1}

Mdl1 = 
  ClassificationLinear
      ResponseName: 'Y'
        ClassNames: [0 1]
    ScoreTransform: 'none'
              Beta: [34023x1 double]
              Bias: -1.0008
            Lambda: 3.5193e-05
           Learner: 'svm'

  Properties, Methods

CVMdl is a ClassificationPartitionedLinear model. By default, the software implements 10-
fold cross validation. You can alter the number of folds using the 'KFold' name-value pair argument.
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Predict labels for the observations that fitclinear did not use in training the folds.

label = kfoldPredict(CVMdl);

Because there is one regularization strength in Mdl1, label is a column vector of predictions
containing as many rows as observations in X.

Construct a confusion matrix.

ConfusionTrain = confusionchart(Ystats,label);

The model misclassifies 15 'stats' documentation pages as being outside of the Statistics and
Machine Learning Toolbox documentation, and misclassifies nine pages as 'stats' pages.

Estimate k-fold Cross-Validation Posterior Class Probabilities

Linear classification models return posterior probabilities for logistic regression learners only.

Load the NLP data set and preprocess it as in “Predict k-fold Cross-Validation Labels” on page 35-
3969. Transpose the predictor data matrix.

load nlpdata
Ystats = Y == 'stats';
X = X';
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Cross-validate binary, linear classification models using 5-fold cross-validation. Optimize the objective
function using SpaRSA. Lower the tolerance on the gradient of the objective function to 1e-8.

rng(10); % For reproducibility
CVMdl = fitclinear(X,Ystats,'ObservationsIn','columns',...
    'KFold',5,'Learner','logistic','Solver','sparsa',...
    'Regularization','lasso','GradientTolerance',1e-8);

Predict the posterior class probabilities for observations not used to train each fold.

[~,posterior] = kfoldPredict(CVMdl);
CVMdl.ClassNames

ans = 2x1 logical array

   0
   1

Because there is one regularization strength in CVMdl, posterior is a matrix with 2 columns and
rows equal to the number of observations. Column i contains posterior probabilities of
Mdl.ClassNames(i) given a particular observation.

Compute the performance metrics (true positive rates and false positive rates) for a ROC curve and
find the area under the ROC curve (AUC) value by creating a rocmetrics object.

rocObj = rocmetrics(Ystats,posterior,CVMdl.ClassNames);

Plot the ROC curve for the second class by using the plot function of rocmetrics.

plot(rocObj,ClassNames=CVMdl.ClassNames(2))

 kfoldPredict

35-3971



The ROC curve indicates that the model classifies the validation observations almost perfectly.

Find Good Lasso Penalty Using Cross-Validated AUC

To determine a good lasso-penalty strength for a linear classification model that uses a logistic
regression learner, compare cross-validated AUC values.

Load the NLP data set. Preprocess the data as in “Estimate k-fold Cross-Validation Posterior Class
Probabilities” on page 35-3970.

load nlpdata
Ystats = Y == 'stats';
X = X';

There are 9471 observations in the test sample.

Create a set of 11 logarithmically-spaced regularization strengths from 10−6 through 10−0 . 5.

Lambda = logspace(-6,-0.5,11);

Cross-validate a binary, linear classification models that use each of the regularization strengths and
5-fold cross-validation. Optimize the objective function using SpaRSA. Lower the tolerance on the
gradient of the objective function to 1e-8.
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rng(10) % For reproducibility
CVMdl = fitclinear(X,Ystats,'ObservationsIn','columns', ...
    'KFold',5,'Learner','logistic','Solver','sparsa', ...
    'Regularization','lasso','Lambda',Lambda,'GradientTolerance',1e-8)

CVMdl = 
  ClassificationPartitionedLinear
    CrossValidatedModel: 'Linear'
           ResponseName: 'Y'
        NumObservations: 31572
                  KFold: 5
              Partition: [1x1 cvpartition]
             ClassNames: [0 1]
         ScoreTransform: 'none'

  Properties, Methods

Mdl1 = CVMdl.Trained{1}

Mdl1 = 
  ClassificationLinear
      ResponseName: 'Y'
        ClassNames: [0 1]
    ScoreTransform: 'logit'
              Beta: [34023x11 double]
              Bias: [-13.1654 -13.1654 -13.1654 -13.1654 -9.2347 -7.0908 ... ]
            Lambda: [1.0000e-06 3.5481e-06 1.2589e-05 4.4668e-05 ... ]
           Learner: 'logistic'

  Properties, Methods

Mdl1 is a ClassificationLinear model object. Because Lambda is a sequence of regularization
strengths, you can think of Mdl1 as 11 models, one for each regularization strength in Lambda.

Predict the cross-validated labels and posterior class probabilities.

[label,posterior] = kfoldPredict(CVMdl);
CVMdl.ClassNames;
[n,K,L] = size(posterior)

n = 31572

K = 2

L = 11

posterior(3,1,5)

ans = 1.0000

label is a 31572-by-11 matrix of predicted labels. Each column corresponds to the predicted labels
of the model trained using the corresponding regularization strength. posterior is a 31572-by-2-
by-11 matrix of posterior class probabilities. Columns correspond to classes and pages correspond to
regularization strengths. For example, posterior(3,1,5) indicates that the posterior probability
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that the first class (label 0) is assigned to observation 3 by the model that uses Lambda(5) as a
regularization strength is 1.0000.

For each model, compute the AUC by using rocmetrics.

auc = 1:numel(Lambda);  % Preallocation
for j = 1:numel(Lambda)
    rocObj = rocmetrics(Ystats,posterior(:,:,j),CVMdl.ClassNames);
    auc(j) = rocObj.AUC(1);
end

Higher values of Lambda lead to predictor variable sparsity, which is a good quality of a classifier. For
each regularization strength, train a linear classification model using the entire data set and the same
options as when you trained the model. Determine the number of nonzero coefficients per model.

Mdl = fitclinear(X,Ystats,'ObservationsIn','columns', ...
    'Learner','logistic','Solver','sparsa','Regularization','lasso', ...
    'Lambda',Lambda,'GradientTolerance',1e-8);
numNZCoeff = sum(Mdl.Beta~=0);

In the same figure, plot the test-sample error rates and frequency of nonzero coefficients for each
regularization strength. Plot all variables on the log scale.

figure
yyaxis left
plot(log10(Lambda),log10(auc),'o-')
ylabel('log_{10} AUC')
yyaxis right
plot(log10(Lambda),log10(numNZCoeff + 1),'o-')
ylabel('log_{10} nonzero-coefficient frequency')
xlabel('log_{10} Lambda')
title('Cross-Validated Statistics')
hold off

35 Functions

35-3974



Choose the index of the regularization strength that balances predictor variable sparsity and high
AUC. In this case, a value between 10−3 to 10−1 should suffice.

idxFinal = 9;

Select the model from Mdl with the chosen regularization strength.

MdlFinal = selectModels(Mdl,idxFinal);

MdlFinal is a ClassificationLinear model containing one regularization strength. To estimate
labels for new observations, pass MdlFinal and the new data to predict.

More About
Classification Score

For linear classification models, the raw classification score for classifying the observation x, a row
vector, into the positive class is defined by

f j(x) = xβ j + b j .

For the model with regularization strength j, β j is the estimated column vector of coefficients (the
model property Beta(:,j)) and b j is the estimated, scalar bias (the model property Bias(j)).
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The raw classification score for classifying x into the negative class is –f(x). The software classifies
observations into the class that yields the positive score.

If the linear classification model consists of logistic regression learners, then the software applies the
'logit' score transformation to the raw classification scores (see ScoreTransform).

Version History
Introduced in R2016a

See Also
ClassificationPartitionedLinear | ClassificationLinear | predict | confusionchart |
rocmetrics | testcholdout
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kfoldPredict
Predict labels for observations not used for training

Syntax
Label = kfoldPredict(CVMdl)
Label = kfoldPredict(CVMdl,Name,Value)
[Label,NegLoss,PBScore] = kfoldPredict( ___ )
[Label,NegLoss,PBScore,Posterior] = kfoldPredict( ___ )

Description
Label = kfoldPredict(CVMdl) returns class labels predicted by the cross-validated ECOC model
composed of linear classification models CVMdl. That is, for every fold, kfoldPredict predicts class
labels for observations that it holds out when it trains using all other observations. kfoldPredict
applies the same data used create CVMdl (see fitcecoc).

Also, Label contains class labels for each regularization strength in the linear classification models
that compose CVMdl.

Label = kfoldPredict(CVMdl,Name,Value) returns predicted class labels with additional
options specified by one or more Name,Value pair arguments. For example, specify the posterior
probability estimation method, decoding scheme, or verbosity level.

[Label,NegLoss,PBScore] = kfoldPredict( ___ ) additionally returns, for held-out
observations and each regularization strength:

• Negated values of the average binary loss per class (NegLoss).
• Positive-class scores (PBScore) for each binary learner.

[Label,NegLoss,PBScore,Posterior] = kfoldPredict( ___ ) additionally returns posterior
class probability estimates for held-out observations and for each regularization strength. To return
posterior probabilities, the linear classification model learners must be logistic regression models.

Input Arguments
CVMdl — Cross-validated, ECOC model composed of linear classification models
ClassificationPartitionedLinearECOC model object

Cross-validated, ECOC model composed of linear classification models, specified as a
ClassificationPartitionedLinearECOC model object. You can create a
ClassificationPartitionedLinearECOC model using fitcecoc and by:

1 Specifying any one of the cross-validation, name-value pair arguments, for example, CrossVal
2 Setting the name-value pair argument Learners to 'linear' or a linear classification model

template returned by templateLinear

To obtain estimates, kfoldPredict applies the same data used to cross-validate the ECOC model (X and
Y).
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Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.

BinaryLoss — Binary learner loss function
'hamming' | 'linear' | 'logit' | 'exponential' | 'binodeviance' | 'hinge' | 'quadratic'
| function handle

Binary learner loss function, specified as the comma-separated pair consisting of 'BinaryLoss' and
a built-in loss function name or function handle.

• This table contains names and descriptions of the built-in functions, where yj is the class label for
a particular binary learner (in the set {-1,1,0}), sj is the score for observation j, and g(yj,sj) is the
binary loss formula.

Value Description Score Domain g(yj,sj)
'binodeviance' Binomial deviance (–∞,∞) log[1 + exp(–2yjsj)]/

[2log(2)]
'exponential' Exponential (–∞,∞) exp(–yjsj)/2
'hamming' Hamming [0,1] or (–∞,∞) [1 – sign(yjsj)]/2
'hinge' Hinge (–∞,∞) max(0,1 – yjsj)/2
'linear' Linear (–∞,∞) (1 – yjsj)/2
'logit' Logistic (–∞,∞) log[1 + exp(–yjsj)]/

[2log(2)]
'quadratic' Quadratic [0,1] [1 – yj(2sj – 1)]2/2

The software normalizes the binary losses such that the loss is 0.5 when yj = 0. Also, the software
calculates the mean binary loss for each class.

• For a custom binary loss function, e.g., customFunction, specify its function handle
'BinaryLoss',@customFunction.

customFunction should have this form

bLoss = customFunction(M,s)

where:

• M is the K-by-B coding matrix stored in Mdl.CodingMatrix.
• s is the 1-by-B row vector of classification scores.
• bLoss is the classification loss. This scalar aggregates the binary losses for every learner in a

particular class. For example, you can use the mean binary loss to aggregate the loss over the
learners for each class.

• K is the number of classes.
• B is the number of binary learners.

For an example of passing a custom binary loss function, see “Predict Test-Sample Labels of ECOC
Model Using Custom Binary Loss Function” on page 35-5751.
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By default, if all binary learners are linear classification models using:

• SVM, then BinaryLoss is 'hinge'
• Logistic regression, then BinaryLoss is 'quadratic'

Example: 'BinaryLoss','binodeviance'
Data Types: char | string | function_handle

Decoding — Decoding scheme
'lossweighted' (default) | 'lossbased'

Decoding scheme that aggregates the binary losses, specified as the comma-separated pair consisting
of 'Decoding' and 'lossweighted' or 'lossbased'. For more information, see “Binary Loss” on
page 35-3986.
Example: 'Decoding','lossbased'

NumKLInitializations — Number of random initial values
0 (default) | nonnegative integer

Number of random initial values for fitting posterior probabilities by Kullback-Leibler divergence
minimization, specified as the comma-separated pair consisting of 'NumKLInitializations' and a
nonnegative integer.

To use this option, you must:

• Return the fourth output argument (Posterior).
• The linear classification models that compose the ECOC models must use logistic regression

learners (that is, CVMdl.Trained{1}.BinaryLearners{1}.Learner must be 'logistic').
• PosteriorMethod must be 'kl'.

For more details, see “Posterior Estimation Using Kullback-Leibler Divergence” on page 35-3987.
Example: 'NumKLInitializations',5
Data Types: single | double

Options — Estimation options
[] (default) | structure array returned by statset

Estimation options, specified as the comma-separated pair consisting of 'Options' and a structure
array returned by statset.

To invoke parallel computing:

• You need a Parallel Computing Toolbox license.
• Specify 'Options',statset('UseParallel',true).

PosteriorMethod — Posterior probability estimation method
'kl' (default) | 'qp'

Posterior probability estimation method, specified as the comma-separated pair consisting of
'PosteriorMethod' and 'kl' or 'qp'.
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• To use this option, you must return the fourth output argument (Posterior) and the linear
classification models that compose the ECOC models must use logistic regression learners (that is,
CVMdl.Trained{1}.BinaryLearners{1}.Learner must be 'logistic').

• If PosteriorMethod is 'kl', then the software estimates multiclass posterior probabilities by
minimizing the Kullback-Leibler divergence between the predicted and expected posterior
probabilities returned by binary learners. For details, see “Posterior Estimation Using Kullback-
Leibler Divergence” on page 35-3987.

• If PosteriorMethod is 'qp', then the software estimates multiclass posterior probabilities by
solving a least-squares problem using quadratic programming. You need an Optimization Toolbox
license to use this option. For details, see “Posterior Estimation Using Quadratic Programming” on
page 35-3988.

Example: 'PosteriorMethod','qp'

Verbose — Verbosity level
0 (default) | 1

Verbosity level, specified as the comma-separated pair consisting of 'Verbose' and 0 or 1. Verbose
controls the number of diagnostic messages that the software displays in the Command Window.

If Verbose is 0, then the software does not display diagnostic messages. Otherwise, the software
displays diagnostic messages.
Example: 'Verbose',1
Data Types: single | double

Output Arguments
Label — Cross-validated, predicted class labels
categorical array | character array | logical matrix | numeric matrix | cell array of character vectors

Cross-validated, predicted class labels, returned as a categorical or character array, logical or
numeric matrix, or cell array of character vectors.

In most cases, Label is an n-by-L array of the same data type as the observed class labels (Y) used to
create CVMdl. (The software treats string arrays as cell arrays of character vectors.) n is the number
of observations in the predictor data (X) and L is the number of regularization strengths in the linear
classification models that compose the cross-validated ECOC model. That is, Label(i,j) is the
predicted class label for observation i using the ECOC model of linear classification models that has
regularization strength CVMdl.Trained{1}.BinaryLearners{1}.Lambda(j).

If Y is a character array and L > 1, then Label is a cell array of class labels.

The software assigns the predicted label corresponding to the class with the largest, negated,
average binary loss (NegLoss), or, equivalently, the smallest average binary loss.

NegLoss — Cross-validated, negated, average binary losses
numeric array

Cross-validated, negated, average binary losses, returned as an n-by-K-by-L numeric matrix or array.
K is the number of distinct classes in the training data and columns correspond to the classes in
CVMdl.ClassNames. For n and L, see Label. NegLoss(i,k,j) is the negated, average binary loss
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for classifying observation i into class k using the linear classification model that has regularization
strength CVMdl.Trained{1}.BinaryLoss{1}.Lambda(j).

• If Decoding is 'lossbased', then NegLoss(i,k,j) is the sum of the binary losses divided by
the number of binary learners.

• If Decoding is 'lossweighted', then NegLoss(i,k,j) is the sum of the binary losses divided
by the number of binary learners for the kth class.

For more details, see “Binary Loss” on page 35-3986.

PBScore — Cross-validated, positive-class scores
numeric array

Cross-validated, positive-class scores, returned as an n-by-B-by-L numeric array. B is the number of
binary learners in the cross-validated ECOC model and columns correspond to the binary learners in
CVMdl.Trained{1}.BinaryLearners. For n and L, see Label. PBScore(i,b,j) is the positive-
class score of binary learner b for classifying observation i into its positive class, using the linear
classification model that has regularization strength
CVMdl.Trained{1}.BinaryLearners{1}.Lambda(j).

If the coding matrix varies across folds (that is, if the coding scheme is sparserandom or
denserandom), then PBScore is empty ([]).

Posterior — Cross-validated posterior class probabilities
numeric array

Cross-validated posterior class probabilities, returned as an n-by-K-by-L numeric array. For dimension
definitions, see NegLoss. Posterior(i,k,j) is the posterior probability for classifying observation
i into class k using the linear classification model that has regularization strength
CVMdl.Trained{1}.BinaryLearners{1}.Lambda(j).

To return posterior probabilities, CVMdl.Trained{1}.BinaryLearner{1}.Learner must be
'logistic'.

Examples

Predict k-fold Cross-Validation Labels

Load the NLP data set.

load nlpdata

X is a sparse matrix of predictor data, and Y is a categorical vector of class labels.

Cross-validate an ECOC model of linear classification models.

rng(1); % For reproducibility 
CVMdl = fitcecoc(X,Y,'Learner','linear','CrossVal','on');

CVMdl is a ClassificationPartitionedLinearECOC model. By default, the software implements
10-fold cross validation.

Predict labels for the observations that fitcecoc did not use in training the folds.
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label = kfoldPredict(CVMdl);

Because there is one regularization strength in CVMdl, label is a column vector of predictions
containing as many rows as observations in X.

Construct a confusion matrix.

cm = confusionchart(Y,label);

Specify Custom Binary Loss

Load the NLP data set. Transpose the predictor data.

load nlpdata
X = X';

For simplicity, use the label 'others' for all observations in Y that are not 'simulink', 'dsp', or
'comm'.

Y(~(ismember(Y,{'simulink','dsp','comm'}))) = 'others';

Create a linear classification model template that specifies optimizing the objective function using
SpaRSA.

t = templateLinear('Solver','sparsa');
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Cross-validate an ECOC model of linear classification models using 5-fold cross-validation. Specify
that the predictor observations correspond to columns.

rng(1); % For reproducibility 
CVMdl = fitcecoc(X,Y,'Learners',t,'KFold',5,'ObservationsIn','columns');
CMdl1 = CVMdl.Trained{1}

CMdl1 = 
  CompactClassificationECOC
      ResponseName: 'Y'
        ClassNames: [comm    dsp    simulink    others]
    ScoreTransform: 'none'
    BinaryLearners: {6x1 cell}
      CodingMatrix: [4x6 double]

  Properties, Methods

CVMdl is a ClassificationPartitionedLinearECOC model. It contains the property Trained,
which is a 5-by-1 cell array holding a CompactClassificationECOC models that the software
trained using the training set of each fold.

By default, the linear classification models that compose the ECOC models use SVMs. SVM scores are
signed distances from the observation to the decision boundary. Therefore, the domain is (− ∞ , ∞ ).
Create a custom binary loss function that:

• Maps the coding design matrix (M) and positive-class classification scores (s) for each learner to
the binary loss for each observation

• Uses linear loss
• Aggregates the binary learner loss using the median.

You can create a separate function for the binary loss function, and then save it on the MATLAB®
path. Or, you can specify an anonymous binary loss function.

customBL = @(M,s)nanmedian(1 - bsxfun(@times,M,s),2)/2;

Predict cross-validation labels and estimate the median binary loss per class. Print the median
negative binary losses per class for a random set of 10 out-of-fold observations.

[label,NegLoss] = kfoldPredict(CVMdl,'BinaryLoss',customBL);

idx = randsample(numel(label),10);
table(Y(idx),label(idx),NegLoss(idx,1),NegLoss(idx,2),NegLoss(idx,3),...
    NegLoss(idx,4),'VariableNames',[{'True'};{'Predicted'};...
    categories(CVMdl.ClassNames)])

ans=10×6 table
      True      Predicted      comm         dsp       simulink    others 
    ________    _________    _________    ________    ________    _______

    others      others         -1.2319     -1.0488    0.048758     1.6175
    simulink    simulink       -16.407     -12.218      21.531     11.218
    dsp         dsp            -0.7387    -0.11534    -0.88466    -0.2613
    others      others         -0.1251     -0.8749    -0.99766    0.14517
    dsp         dsp             2.5867      6.4187     -3.5867    -4.4165
    others      others       -0.025358     -1.2287    -0.97464    0.19747
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    others      others         -2.6725    -0.56708    -0.51092     2.7453
    others      others         -1.1605    -0.88321    -0.11679    0.43504
    others      others         -1.9511     -1.3175     0.24735    0.95111
    simulink    others          -7.848     -5.8203      4.8203     6.8457

The software predicts the label based on the maximum negated loss.

Estimate Posterior Class Probabilities

ECOC models composed of linear classification models return posterior probabilities for logistic
regression learners only. This example requires the Parallel Computing Toolbox™ and the
Optimization Toolbox™

Load the NLP data set and preprocess the data as in “Specify Custom Binary Loss” on page 35-3982.

load nlpdata
X = X';
Y(~(ismember(Y,{'simulink','dsp','comm'}))) = 'others';

Create a set of 5 logarithmically-spaced regularization strengths from  through .

Lambda = logspace(-6,-0.5,5);

Create a linear classification model template that specifies optimizing the objective function using
SpaRSA and to use logistic regression learners.

t = templateLinear('Solver','sparsa','Learner','logistic','Lambda',Lambda);

Cross-validate an ECOC model of linear classification models using 5-fold cross-validation. Specify
that the predictor observations correspond to columns, and to use parallel computing.

rng(1); % For reproducibility
Options = statset('UseParallel',true);
CVMdl = fitcecoc(X,Y,'Learners',t,'KFold',5,'ObservationsIn','columns',...
    'Options',Options);

Starting parallel pool (parpool) using the 'local' profile ...
Connected to the parallel pool (number of workers: 6).

Predict the cross-validated posterior class probabilities. Specify to use parallel computing and to
estimate posterior probabilities using quadratic programming.

[label,~,~,Posterior] = kfoldPredict(CVMdl,'Options',Options,...
    'PosteriorMethod','qp');
size(label)
label(3,4)
size(Posterior)
Posterior(3,:,4)

ans =

       31572           5
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ans = 

  categorical

     others 

ans =

       31572           4           5

ans =

    0.0285    0.0373    0.1714    0.7627

Because there are five regularization strengths:

• label is a 31572-by-5 categorical array. label(3,4) is the predicted, cross-validated label for
observation 3 using the model trained with regularization strength Lambda(4).

• Posterior is a 31572-by-4-by-5 matrix. Posterior(3,:,4) is the vector of all estimated,
posterior class probabilities for observation 3 using the model trained with regularization strength
Lambda(4). The order of the second dimension corresponds to CVMdl.ClassNames. Display a
random set of 10 posterior class probabilities.

Display a random sample of cross-validated labels and posterior probabilities for the model trained
using Lambda(4).

idx = randsample(size(label,1),10);
table(Y(idx),label(idx,4),Posterior(idx,1,4),Posterior(idx,2,4),...
    Posterior(idx,3,4),Posterior(idx,4,4),...
    'VariableNames',[{'True'};{'Predicted'};categories(CVMdl.ClassNames)])

ans =

  10×6 table

      True      Predicted       comm          dsp        simulink     others  
    ________    _________    __________    __________    ________    _________

    others      others         0.030275      0.022142     0.10416      0.84342
    simulink    simulink     3.4954e-05    4.2982e-05     0.99832    0.0016016
    dsp         others          0.15787       0.25718     0.18848      0.39647
    others      others         0.094177      0.062712     0.12921      0.71391
    dsp         dsp           0.0057979       0.89703    0.015098     0.082072
    others      others         0.086084      0.054836    0.086165      0.77292
    others      others        0.0062338     0.0060492    0.023816       0.9639
    others      others          0.06543      0.075097     0.17136      0.68812
    others      others         0.051843      0.025566     0.13299       0.7896

 kfoldPredict

35-3985



    simulink    simulink     0.00044059    0.00049753     0.70958      0.28948

More About
Binary Loss

The binary loss is a function of the class and classification score that determines how well a binary
learner classifies an observation into the class.

Suppose the following:

• mkj is element (k,j) of the coding design matrix M—that is, the code corresponding to class k of
binary learner j. M is a K-by-B matrix, where K is the number of classes, and B is the number of
binary learners.

• sj is the score of binary learner j for an observation.
• g is the binary loss function.
• k  is the predicted class for the observation.

The decoding scheme of an ECOC model specifies how the software aggregates the binary losses and
determines the predicted class for each observation. The software supports two decoding schemes:

• Loss-based decoding [3] (Decoding is 'lossbased') — The predicted class of an observation
corresponds to the class that produces the minimum average of the binary losses over all binary
learners.

k = argmin
k

1
B ∑j = 1

B
mk j g(mk j, s j) .

• Loss-weighted decoding [4] (Decoding is 'lossweighted') — The predicted class of an
observation corresponds to the class that produces the minimum average of the binary losses over
the binary learners for the corresponding class.

k = argmin
k

∑
j = 1

B
mk j g(mk j, s j)

∑ j = 1

B

mk j

.

The denominator corresponds to the number of binary learners for class k. [1] suggests that loss-
weighted decoding improves classification accuracy by keeping loss values for all classes in the
same dynamic range.

The predict, resubPredict, and kfoldPredict functions return the negated value of the
objective function of argmin as the second output argument (NegLoss) for each observation and
class.

This table summarizes the supported binary loss functions, where yj is a class label for a particular
binary learner (in the set {–1,1,0}), sj is the score for observation j, and g(yj,sj) is the binary loss
function.
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Value Description Score Domain g(yj,sj)
"binodeviance" Binomial deviance (–∞,∞) log[1 + exp(–2yjsj)]/

[2log(2)]
"exponential" Exponential (–∞,∞) exp(–yjsj)/2
"hamming" Hamming [0,1] or (–∞,∞) [1 – sign(yjsj)]/2
"hinge" Hinge (–∞,∞) max(0,1 – yjsj)/2
"linear" Linear (–∞,∞) (1 – yjsj)/2
"logit" Logistic (–∞,∞) log[1 + exp(–yjsj)]/

[2log(2)]
"quadratic" Quadratic [0,1] [1 – yj(2sj – 1)]2/2

The software normalizes binary losses so that the loss is 0.5 when yj = 0, and aggregates using the
average of the binary learners.

Do not confuse the binary loss with the overall classification loss (specified by the LossFun name-
value argument of the kfoldLoss and kfoldPredict object functions), which measures how well
an ECOC classifier performs as a whole.

Algorithms
The software can estimate class posterior probabilities by minimizing the Kullback-Leibler divergence
or by using quadratic programming. For the following descriptions of the posterior estimation
algorithms, assume that:

• mkj is the element (k,j) of the coding design matrix M.
• I is the indicator function.
• p k is the class posterior probability estimate for class k of an observation, k = 1,...,K.
• rj is the positive-class posterior probability for binary learner j. That is, rj is the probability that

binary learner j classifies an observation into the positive class, given the training data.

Posterior Estimation Using Kullback-Leibler Divergence

By default, the software minimizes the Kullback-Leibler divergence to estimate class posterior
probabilities. The Kullback-Leibler divergence between the expected and observed positive-class
posterior probabilities is

Δ(r, r ) = ∑
j = 1

L
w j r jlog

r j
r j

+ 1− r j log
1− r j
1− r j

,

where w j = ∑
Sj

wi
∗ is the weight for binary learner j.

• Sj is the set of observation indices on which binary learner j is trained.
• wi

∗ is the weight of observation i.

The software minimizes the divergence iteratively. The first step is to choose initial values
p k

(0); k = 1, ..., K for the class posterior probabilities.
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• If you do not specify 'NumKLIterations', then the software tries both sets of deterministic
initial values described next, and selects the set that minimizes Δ.

• p k
(0) = 1/K; k = 1, ..., K .

• p k
(0); k = 1, ..., K is the solution of the system

M01p (0) = r,

where M01 is M with all mkj = –1 replaced with 0, and r is a vector of positive-class posterior
probabilities returned by the L binary learners [Dietterich et al.] on page 19-285. The software
uses lsqnonneg to solve the system.

• If you specify 'NumKLIterations',c, where c is a natural number, then the software does the
following to choose the set p k

(0); k = 1, ..., K, and selects the set that minimizes Δ.

• The software tries both sets of deterministic initial values as described previously.
• The software randomly generates c vectors of length K using rand, and then normalizes each

vector to sum to 1.

At iteration t, the software completes these steps:

1 Compute

r j
(t) =

∑
k = 1

K
p k

(t)I(mk j = + 1)

∑
k = 1

K
p k

(t)I(mk j = + 1∪mk j = − 1)
.

2 Estimate the next class posterior probability using

p k
(t + 1) = p k

(t)
∑

j = 1

L
w j r jI mk j = + 1 + 1− r j I mk j = − 1

∑
j = 1

L
w j r j

(t)I mk j = + 1 + 1− r j
(t) I mk j = − 1

.

3 Normalize p k
(t + 1); k = 1, ..., K so that they sum to 1.

4 Check for convergence.

For more details, see [Hastie et al.] on page 19-286 and [Zadrozny] on page 19-287.

Posterior Estimation Using Quadratic Programming

Posterior probability estimation using quadratic programming requires an Optimization Toolbox
license. To estimate posterior probabilities for an observation using this method, the software
completes these steps:

1 Estimate the positive-class posterior probabilities, rj, for binary learners j = 1,...,L.
2 Using the relationship between rj and p k [Wu et al.] on page 19-287, minimize
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∑
j = 1

L

−r j ∑
k = 1

K
p kI mk j = − 1 + 1− r j ∑

k = 1

K
p kI mk j = + 1

2

with respect to p k and the restrictions

0 ≤ p k ≤ 1

∑
k

p k = 1.

The software performs minimization using quadprog.

Version History
Introduced in R2016a
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Extended Capabilities
Automatic Parallel Support
Accelerate code by automatically running computation in parallel using Parallel Computing Toolbox™.

To run in parallel, specify the 'Options' name-value argument in the call to this function and set the
'UseParallel' field of the options structure to true using statset.

For example: 'Options',statset('UseParallel',true)

For more information about parallel computing, see “Run MATLAB Functions with Automatic Parallel
Support” (Parallel Computing Toolbox).
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See Also
ClassificationPartitionedLinearECOC | ClassificationECOC | ClassificationLinear |
predict | fitcecoc | statset | confusionchart | rocmetrics | testcholdout

Topics
“Quick Start Parallel Computing for Statistics and Machine Learning Toolbox” on page 33-2
“Reproducibility in Parallel Statistical Computations” on page 33-16
“Concepts of Parallel Computing in Statistics and Machine Learning Toolbox” on page 33-6
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kfoldPredict
Package: classreg.learning.partition

Classify observations in cross-validated classification model

Syntax
label = kfoldPredict(CVMdl)
label = kfoldPredict(CVMdl,'IncludeInteractions',includeInteractions)
[label,Score] = kfoldPredict( ___ )
[label,Score,Cost] = kfoldPredict(CVMdl)

Description
label = kfoldPredict(CVMdl) returns class labels predicted by the cross-validated classifier
CVMdl. For every fold, kfoldPredict predicts class labels for validation-fold observations using a
classifier trained on training-fold observations. CVMdl.X and CVMdl.Y contain both sets of
observations.

label = kfoldPredict(CVMdl,'IncludeInteractions',includeInteractions) specifies
whether to include interaction terms in computations. This syntax applies only to generalized additive
models.

[label,Score] = kfoldPredict( ___ ) additionally returns the predicted classification scores
for validation-fold observations using a classifier trained on training-fold observations, with any of the
input argument in the previous syntaxes.

[label,Score,Cost] = kfoldPredict(CVMdl) additionally returns the expected
misclassification costs for discriminant analysis, k-nearest neighbor, naive Bayes, and tree classifiers.

Examples

Create Confusion Matrix Using Cross-Validation Predictions

Create a confusion matrix using the 10-fold cross-validation predictions of a discriminant analysis
model.

Load the fisheriris data set. X contains flower measurements for 150 different flowers, and y lists
the species, or class, for each flower. Create a variable order that specifies the order of the classes.

load fisheriris
X = meas;
y = species;
order = unique(y)

order = 3x1 cell
    {'setosa'    }
    {'versicolor'}
    {'virginica' }
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Create a 10-fold cross-validated discriminant analysis model by using the fitcdiscr function. By
default, fitcdiscr ensures that training and test sets have roughly the same proportions of flower
species. Specify the order of the flower classes.

cvmdl = fitcdiscr(X,y,'KFold',10,'ClassNames',order);

Predict the species of the test set flowers.

predictedSpecies = kfoldPredict(cvmdl);

Create a confusion matrix that compares the true class values to the predicted class values.

confusionchart(y,predictedSpecies)

Estimate Cross-Validation Predictions from Ensemble

Find the cross-validation predictions for a model based on Fisher's iris data.

Load Fisher's iris data set.

load fisheriris

Train an ensemble of classification trees using AdaBoostM2. Specify tree stumps as the weak
learners.
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rng(1); % For reproducibility
t = templateTree('MaxNumSplits',1);
Mdl = fitcensemble(meas,species,'Method','AdaBoostM2','Learners',t);

Cross-validate the trained ensemble using 10-fold cross-validation.

CVMdl = crossval(Mdl);

Estimate cross-validation predicted labels and scores.

[elabel,escore] = kfoldPredict(CVMdl);

Display the maximum and minimum scores of each class.

max(escore)

ans = 1×3

    9.3862    8.9871   10.1866

min(escore)

ans = 1×3

    0.0018    3.8359    0.9573

Input Arguments
CVMdl — Cross-validated partitioned classifier
ClassificationPartitionedModel object | ClassificationPartitionedEnsemble object |
ClassificationPartitionedGAM object

Cross-validated partitioned classifier, specified as a ClassificationPartitionedModel,
ClassificationPartitionedEnsemble, or ClassificationPartitionedGAM object. You can
create the object in two ways:

• Pass a trained classification model listed in the following table to its crossval object function.
• Train a classification model using a function listed in the following table and specify one of the

cross-validation name-value arguments for the function.

Classification Model Function
ClassificationDiscriminant fitcdiscr
ClassificationEnsemble fitcensemble
ClassificationGAM fitcgam
ClassificationKNN fitcknn
ClassificationNaiveBayes fitcnb
ClassificationNeuralNetwork fitcnet
ClassificationSVM fitcsvm
ClassificationTree fitctree

 kfoldPredict

35-3993



includeInteractions — Flag to include interaction terms
true | false

Flag to include interaction terms of the model, specified as true or false. This argument is valid
only for a generalized additive model (GAM). That is, you can specify this argument only when CVMdl
is ClassificationPartitionedGAM.

The default value is true if the models in CVMdl (CVMdl.Trained) contain interaction terms. The
value must be false if the models do not contain interaction terms.
Data Types: logical

Output Arguments
label — Predicted class labels
categorical vector | logical vector | numeric vector | character array | cell array of character vectors

Predicted class labels, returned as a categorical vector, logical vector, numeric vector, character
array, or cell array of character vectors. label has the same data type and number of rows as
CVMdl.Y. Each entry of label corresponds to the predicted class label for the corresponding
observation in CVMdl.X.

If you use a holdout validation technique to create CVMdl (that is, if CVMdl.KFold is 1), then ignore
the label values for training-fold observations. These values match the class with the highest
frequency.

Score — Classification scores
numeric matrix

Classification scores, returned as an n-by-K matrix, where n is the number of observations
(size(CVMdl.X,1) when observations are in rows) and K is the number of unique classes
(size(CVMdl.ClassNames,1)). The classification score Score(i,j) represents the confidence
that the ith observation belongs to class j.

If you use a holdout validation technique to create CVMdl (that is, if CVMdl.KFold is 1), then Score
has NaN values for training-fold observations.

Cost — Expected misclassification costs
numeric matrix

Expected misclassification costs, returned as an n-by-K matrix, where n is the number of observations
(size(CVMdl.X,1) when observations are in rows) and K is the number of unique classes
(size(CVMdl.ClassNames,1)). The value Cost(i,j) is the average misclassification cost of
predicting that the ith observation belongs to class j.

Note If you want to return this output argument, CVMdl must be a discriminant analysis, k-nearest
neighbor, naive Bayes, or tree classifier.

If you use a holdout validation technique to create CVMdl (that is, if CVMdl.KFold is 1), then Cost
has NaN values for training-fold observations.
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Algorithms
kfoldPredict computes predictions as described in the corresponding predict object function.
For a model-specific description, see the appropriate predict function reference page in the
following table.

Model Type predict Function
Discriminant analysis classifier predict
Ensemble classifier predict
Generalized additive model classifier predict
k-nearest neighbor classifier predict
Naive Bayes classifier predict
Neural network classifier predict
Support vector machine classifier predict
Binary decision tree for multiclass classification predict

Version History
Introduced in R2011a

Extended Capabilities
GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

Usage notes and limitations:

• This function fully supports GPU arrays for the following cross-validated model objects:

• Ensemble classifier trained with fitcensemble
• k-nearest neighbor classifier trained with fitcknn
• Support vector machine classifier trained with fitcsvm
• Binary decision tree for multiclass classification trained with fitctree

For more information, see “Run MATLAB Functions on a GPU” (Parallel Computing Toolbox).

See Also
ClassificationPartitionedModel | kfoldEdge | kfoldMargin | kfoldLoss | kfoldfun
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kfoldPredict
Predict responses for observations not used for training

Syntax
YHat = kfoldPredict(CVMdl)

Description
YHat = kfoldPredict(CVMdl) returns cross-validated predicted responses by the cross-validated
linear regression model CVMdl. That is, for every fold, kfoldPredict predicts responses for
observations that it holds out when it trains using all other observations.

YHat contains predicted responses for each regularization strength in the linear regression models
that compose CVMdl.

Input Arguments
CVMdl — Cross-validated, linear regression model
RegressionPartitionedLinear model object

Cross-validated, linear regression model, specified as a RegressionPartitionedLinear model
object. You can create a RegressionPartitionedLinear model using fitrlinear and specifying
any of the one of the cross-validation, name-value pair arguments, for example, CrossVal.

To obtain estimates, kfoldPredict applies the same data used to cross-validate the linear regression
model (X and Y).

Output Arguments
YHat — Cross-validated predicted responses
numeric array

Cross-validated predicted responses, returned as an n-by-L numeric array. n is the number of
observations in the predictor data that created CVMdl (see X) and L is the number of regularization
strengths in CVMdl.Trained{1}.Lambda. YHat(i,j) is the predicted response for observation i
using the linear regression model that has regularization strength CVMdl.Trained{1}.Lambda(j).

The predicted response using the model with regularization strength j is y j = xβ j + b j .

• x is an observation from the predictor data matrix X, and is row vector.
• β j is the estimated column vector of coefficients. The software stores this vector in

Mdl.Beta(:,j).
• b j is the estimated, scalar bias, which the software stores in Mdl.Bias(j).

Examples
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Predict Cross-Validated Responses

Simulate 10000 observations from this model

y = x100 + 2x200 + e .

• X = x1, . . . , x1000 is a 10000-by-1000 sparse matrix with 10% nonzero standard normal elements.
• e is random normal error with mean 0 and standard deviation 0.3.

rng(1) % For reproducibility
n = 1e4;
d = 1e3;
nz = 0.1;
X = sprandn(n,d,nz);
Y = X(:,100) + 2*X(:,200) + 0.3*randn(n,1);

Cross-validate a linear regression model.

CVMdl = fitrlinear(X,Y,'CrossVal','on')

CVMdl = 
  RegressionPartitionedLinear
    CrossValidatedModel: 'Linear'
           ResponseName: 'Y'
        NumObservations: 10000
                  KFold: 10
              Partition: [1x1 cvpartition]
      ResponseTransform: 'none'

  Properties, Methods

Mdl1 = CVMdl.Trained{1}

Mdl1 = 
  RegressionLinear
         ResponseName: 'Y'
    ResponseTransform: 'none'
                 Beta: [1000x1 double]
                 Bias: 0.0107
               Lambda: 1.1111e-04
              Learner: 'svm'

  Properties, Methods

By default, fitrlinear implements 10-fold cross-validation. CVMdl is a
RegressionPartitionedLinear model. It contains the property Trained, which is a 10-by-1 cell
array holding 10 RegressionLinear models that the software trained using the training set.

Predict responses for observations that fitrlinear did not use in training the folds.

yHat = kfoldPredict(CVMdl);

Because there is one regularization strength in Mdl, yHat is a numeric vector.
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Predict for Models Containing Several Regularization Strengths

Simulate 10000 observations as in “Predict Cross-Validated Responses” on page 35-3996.

rng(1) % For reproducibility
n = 1e4;
d = 1e3;
nz = 0.1;
X = sprandn(n,d,nz);
Y = X(:,100) + 2*X(:,200) + 0.3*randn(n,1);

Create a set of 15 logarithmically-spaced regularization strengths from 10−5 through 10−1.

Lambda = logspace(-5,-1,15);

Cross-validate the models. To increase execution speed, transpose the predictor data and specify that
the observations are in columns. Specify using least squares with a lasso penalty and optimizing the
objective function using SpaRSA.

X = X'; 
CVMdl = fitrlinear(X,Y,'ObservationsIn','columns','KFold',5,'Lambda',Lambda,...
    'Learner','leastsquares','Solver','sparsa','Regularization','lasso');

CVMdl is a RegressionPartitionedLinear model. Its Trained property contains a 5-by-1 cell
array of trained RegressionLinear models, each one holds out a different fold during training.
Because fitrlinear trained using 15 regularization strengths, you can think of each
RegressionLinear model as 15 models.

Predict cross-validated responses.

YHat = kfoldPredict(CVMdl);
size(YHat)

ans = 1×2

       10000          15

YHat(2,:)

ans = 1×15

   -1.7338   -1.7332   -1.7319   -1.7299   -1.7266   -1.7239   -1.7135   -1.7210   -1.7324   -1.7063   -1.6397   -1.5112   -1.2631   -0.7841   -0.0096

YHat is a 10000-by-15 matrix. YHat(2,:) is the cross-validated response for observation 2 using the
model regularized with all 15 regularization values.

Version History
Introduced in R2016a
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See Also
RegressionPartitionedLinear | predict | RegressionLinear | fitrlinear
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kfoldPredict
Package: classreg.learning.partition

Predict responses for observations in cross-validated regression model

Syntax
yFit = kfoldPredict(CVMdl)
yFit = kfoldPredict(CVMdl,Name,Value)
[yFit,ySD,yInt] = kfoldPredict( ___ )

Description
yFit = kfoldPredict(CVMdl) returns responses predicted by the cross-validated regression
model CVMdl. For every fold, kfoldPredict predicts the responses for validation-fold observations
using a model trained on training-fold observations. CVMdl.X and CVMdl.Y contain both sets of
observations.

yFit = kfoldPredict(CVMdl,Name,Value) specifies options using one or more name-value
arguments. For example, 'IncludeInteractions',true specifies to include interaction terms in
computations. This syntax applies only to generalized additive models.

[yFit,ySD,yInt] = kfoldPredict( ___ ) also returns the standard deviations and prediction
intervals of the response variable, evaluated at each observation in the predictor data CVMdl.X,
using any of the input argument combinations in the previous syntaxes. This syntax applies only to
generalized additive models for which the IsStandardDeviationFit property of CVMdl is true.

Examples

Compute Cross-Validation Loss Manually

When you create a cross-validated regression model, you can compute the mean squared error (MSE)
by using the kfoldLoss object function. Alternatively, you can predict responses for validation-fold
observations using kfoldPredict and compute the MSE manually.

Load the carsmall data set. Specify the predictor data X and the response data Y.

load carsmall
X = [Cylinders Displacement Horsepower Weight];
Y = MPG;

Train a cross-validated regression tree model. By default, the software implements 10-fold cross-
validation.

rng('default') % For reproducibility
CVMdl = fitrtree(X,Y,'CrossVal','on');

Compute the 10-fold cross-validation MSE by using kfoldLoss.

L = kfoldLoss(CVMdl)
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L = 29.4963

Predict the responses yfit by using the cross-validated regression model. Compute the mean
squared error between yfit and the true responses CVMdl.Y. The computed MSE matches the loss
value returned by kfoldLoss.

yfit = kfoldPredict(CVMdl);
mse = mean((yfit - CVMdl.Y).^2)

mse = 29.4963

Input Arguments
CVMdl — Cross-validated partitioned regression model
RegressionPartitionedModel object | RegressionPartitionedEnsemble object |
RegressionPartitionedGAM object | RegressionPartitionedGP object |
RegressionPartitionedSVM object

Cross-validated partitioned regression model, specified as a RegressionPartitionedModel,
RegressionPartitionedEnsemble, RegressionPartitionedGAM,
RegressionPartitionedGP, or RegressionPartitionedSVM object. You can create the object in
two ways:

• Pass a trained regression model listed in the following table to its crossval object function.
• Train a regression model using a function listed in the following table and specify one of the cross-

validation name-value arguments for the function.

Regression Model Function
RegressionEnsemble fitrensemble
RegressionGAM fitrgam
RegressionGP fitrgp
RegressionNeuralNetwork fitrnet
RegressionSVM fitrsvm
RegressionTree fitrtree

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: 'Alpha',0.01,'IncludeInteractions',false specifies the confidence level as 99%
and excludes interaction terms from computations for a generalized additive model.

Alpha — Significance level
0.05 (default) | numeric scalar in [0,1]

Significance level for the confidence level of the prediction intervals yInt, specified as a numeric
scalar in the range [0,1]. The confidence level of yInt is equal to 100(1 – Alpha)%.
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This argument is valid only for a generalized additive model object that includes the standard
deviation fit. That is, you can specify this argument only when CVMdl is
RegressionPartitionedGAM and the IsStandardDeviationFit property of CVMdl is true.
Example: 'Alpha',0.01
Data Types: single | double

IncludeInteractions — Flag to include interaction terms
true | false

Flag to include interaction terms of the model, specified as true or false. This argument is valid
only for a generalized additive model (GAM). That is, you can specify this argument only when CVMdl
is RegressionPartitionedGAM.

The default value is true if the models in CVMdl (CVMdl.Trained) contain interaction terms. The
value must be false if the models do not contain interaction terms.
Data Types: logical

Output Arguments
yFit — Predicted responses
numeric vector

Predicted responses, returned as an n-by-1 numeric vector, where n is the number of observations. (n
is size(CVMdl.X,1) when observations are in rows.) Each entry of yFit corresponds to the
predicted response for the corresponding row of CVMdl.X.

If you use a holdout validation technique to create CVMdl (that is, if CVMdl.KFold is 1), then yFit
has NaN values for training-fold observations.

ySD — Standard deviations of response variable
column vector

Standard deviations of the response variable, evaluated at each observation in the predictor data
CVMdl.X, returned as a column vector of length n, where n is the number of observations in
CVMdl.X. The ith element ySD(i) contains the standard deviation of the ith response for the ith
observation CVMdl.X(i,:), estimated using the trained standard deviation model in CVMdl.

This argument is valid only for a generalized additive model object that includes the standard
deviation fit. That is, kfoldPredict can return this argument only when CVMdl is
RegressionPartitionedGAM and the IsStandardDeviationFit property of CVMdl is true.

yInt — Prediction intervals of response variable
two-column matrix

Prediction intervals of the response variable, evaluated at each observation in the predictor data
CVMdl.X, returned as an n-by-2 matrix, where n is the number of observations in CVMdl.X. The ith
row yInt(i,:) contains the estimated 100(1 – Alpha)% prediction interval of the ith response
for the ith observation CVMdl.X(i,:) using ySD(i). The Alpha value is the probability that the
prediction interval does not contain the true response value CVMdl.Y(i). The first column of yInt
contains the lower limits of the prediction intervals, and the second column contains the upper limits.
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This argument is valid only for a generalized additive model object that includes the standard
deviation fit. That is, kfoldPredict can return this argument only when CVMdl is
RegressionPartitionedGAM and the IsStandardDeviationFit property of CVMdl is true.

Version History
Introduced in R2011a

Extended Capabilities
GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

Usage notes and limitations:

• This function fully supports GPU arrays for regression tree model objects fitted with fitrtree or
fitrensemble.

For more information, see “Run MATLAB Functions on a GPU” (Parallel Computing Toolbox).

See Also
kfoldLoss | RegressionPartitionedModel | RegressionPartitionedEnsemble |
RegressionPartitionedSVM | RegressionPartitionedGAM | RegressionPartitionedGP
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kmeans
k-means clustering

Syntax
idx = kmeans(X,k)
idx = kmeans(X,k,Name,Value)
[idx,C] = kmeans( ___ )
[idx,C,sumd] = kmeans( ___ )
[idx,C,sumd,D] = kmeans( ___ )

Description
idx = kmeans(X,k) performs k-means clustering on page 35-4018 to partition the observations of
the n-by-p data matrix X into k clusters, and returns an n-by-1 vector (idx) containing cluster indices
of each observation. Rows of X correspond to points and columns correspond to variables.

By default, kmeans uses the squared Euclidean distance metric and the k-means++ algorithm on
page 35-4018 for cluster center initialization.

idx = kmeans(X,k,Name,Value) returns the cluster indices with additional options specified by
one or more Name,Value pair arguments.

For example, specify the cosine distance, the number of times to repeat the clustering using new
initial values, or to use parallel computing.

[idx,C] = kmeans( ___ ) returns the k cluster centroid locations in the k-by-p matrix C.

[idx,C,sumd] = kmeans( ___ ) returns the within-cluster sums of point-to-centroid distances in
the k-by-1 vector sumd.

[idx,C,sumd,D] = kmeans( ___ ) returns distances from each point to every centroid in the n-by-
k matrix D.

Examples

Train a k-Means Clustering Algorithm

Cluster data using k-means clustering, then plot the cluster regions.

Load Fisher's iris data set. Use the petal lengths and widths as predictors.

load fisheriris
X = meas(:,3:4);

figure;
plot(X(:,1),X(:,2),'k*','MarkerSize',5);
title 'Fisher''s Iris Data';
xlabel 'Petal Lengths (cm)'; 
ylabel 'Petal Widths (cm)';
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The larger cluster seems to be split into a lower variance region and a higher variance region. This
might indicate that the larger cluster is two, overlapping clusters.

Cluster the data. Specify k = 3 clusters.

rng(1); % For reproducibility
[idx,C] = kmeans(X,3);

idx is a vector of predicted cluster indices corresponding to the observations in X. C is a 3-by-2
matrix containing the final centroid locations.

Use kmeans to compute the distance from each centroid to points on a grid. To do this, pass the
centroids (C) and points on a grid to kmeans, and implement one iteration of the algorithm.

x1 = min(X(:,1)):0.01:max(X(:,1));
x2 = min(X(:,2)):0.01:max(X(:,2));
[x1G,x2G] = meshgrid(x1,x2);
XGrid = [x1G(:),x2G(:)]; % Defines a fine grid on the plot

idx2Region = kmeans(XGrid,3,'MaxIter',1,'Start',C);

Warning: Failed to converge in 1 iterations.

    % Assigns each node in the grid to the closest centroid

kmeans displays a warning stating that the algorithm did not converge, which you should expect
since the software only implemented one iteration.
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Plot the cluster regions.

figure;
gscatter(XGrid(:,1),XGrid(:,2),idx2Region,...
    [0,0.75,0.75;0.75,0,0.75;0.75,0.75,0],'..');
hold on;
plot(X(:,1),X(:,2),'k*','MarkerSize',5);
title 'Fisher''s Iris Data';
xlabel 'Petal Lengths (cm)';
ylabel 'Petal Widths (cm)'; 
legend('Region 1','Region 2','Region 3','Data','Location','SouthEast');
hold off;

Partition Data into Two Clusters

Randomly generate the sample data.

rng default; % For reproducibility
X = [randn(100,2)*0.75+ones(100,2);
    randn(100,2)*0.5-ones(100,2)];

figure;
plot(X(:,1),X(:,2),'.');
title 'Randomly Generated Data';
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There appears to be two clusters in the data.

Partition the data into two clusters, and choose the best arrangement out of five initializations.
Display the final output.

opts = statset('Display','final');
[idx,C] = kmeans(X,2,'Distance','cityblock',...
    'Replicates',5,'Options',opts);

Replicate 1, 3 iterations, total sum of distances = 201.533.
Replicate 2, 5 iterations, total sum of distances = 201.533.
Replicate 3, 3 iterations, total sum of distances = 201.533.
Replicate 4, 3 iterations, total sum of distances = 201.533.
Replicate 5, 2 iterations, total sum of distances = 201.533.
Best total sum of distances = 201.533

By default, the software initializes the replicates separately using k-means++.

Plot the clusters and the cluster centroids.

figure;
plot(X(idx==1,1),X(idx==1,2),'r.','MarkerSize',12)
hold on
plot(X(idx==2,1),X(idx==2,2),'b.','MarkerSize',12)
plot(C(:,1),C(:,2),'kx',...
     'MarkerSize',15,'LineWidth',3) 
legend('Cluster 1','Cluster 2','Centroids',...
       'Location','NW')
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title 'Cluster Assignments and Centroids'
hold off

You can determine how well separated the clusters are by passing idx to silhouette.

Cluster Data Using Parallel Computing

Clustering large data sets might take time, particularly if you use online updates (set by default). If
you have a Parallel Computing Toolbox ™ license and you set the options for parallel computing, then
kmeans runs each clustering task (or replicate) in parallel. And, if Replicates>1, then parallel
computing decreases time to convergence.

Randomly generate a large data set from a Gaussian mixture model.

Mu = bsxfun(@times,ones(20,30),(1:20)'); % Gaussian mixture mean
rn30 = randn(30,30);
Sigma = rn30'*rn30; % Symmetric and positive-definite covariance
Mdl = gmdistribution(Mu,Sigma); % Define the Gaussian mixture distribution

rng(1); % For reproducibility
X = random(Mdl,10000);

Mdl is a 30-dimensional gmdistribution model with 20 components. X is a 10000-by-30 matrix of
data generated from Mdl.
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Specify the options for parallel computing.

stream = RandStream('mlfg6331_64');  % Random number stream
options = statset('UseParallel',1,'UseSubstreams',1,...
    'Streams',stream);

The input argument 'mlfg6331_64' of RandStream specifies to use the multiplicative lagged
Fibonacci generator algorithm. options is a structure array with fields that specify options for
controlling estimation.

Cluster the data using k-means clustering. Specify that there are k = 20 clusters in the data and
increase the number of iterations. Typically, the objective function contains local minima. Specify 10
replicates to help find a lower, local minimum.

tic; % Start stopwatch timer
[idx,C,sumd,D] = kmeans(X,20,'Options',options,'MaxIter',10000,...
    'Display','final','Replicates',10);

Starting parallel pool (parpool) using the 'local' profile ...
connected to 6 workers.
Replicate 5, 72 iterations, total sum of distances = 7.73161e+06.
Replicate 1, 64 iterations, total sum of distances = 7.72988e+06.
Replicate 3, 68 iterations, total sum of distances = 7.72576e+06.
Replicate 4, 84 iterations, total sum of distances = 7.72696e+06.
Replicate 6, 82 iterations, total sum of distances = 7.73006e+06.
Replicate 7, 40 iterations, total sum of distances = 7.73451e+06.
Replicate 2, 194 iterations, total sum of distances = 7.72953e+06.
Replicate 9, 105 iterations, total sum of distances = 7.72064e+06.
Replicate 10, 125 iterations, total sum of distances = 7.72816e+06.
Replicate 8, 70 iterations, total sum of distances = 7.73188e+06.
Best total sum of distances = 7.72064e+06

toc % Terminate stopwatch timer

Elapsed time is 61.915955 seconds.

The Command Window indicates that six workers are available. The number of workers might vary on
your system. The Command Window displays the number of iterations and the terminal objective
function value for each replicate. The output arguments contain the results of replicate 9 because it
has the lowest total sum of distances.

Assign New Data to Existing Clusters and Generate C/C++ Code

kmeans performs k-means clustering to partition data into k clusters. When you have a new data set
to cluster, you can create new clusters that include the existing data and the new data by using
kmeans. The kmeans function supports C/C++ code generation, so you can generate code that
accepts training data and returns clustering results, and then deploy the code to a device. In this
workflow, you must pass training data, which can be of considerable size. To save memory on the
device, you can separate training and prediction by using kmeans and pdist2, respectively.

Use kmeans to create clusters in MATLAB® and use pdist2 in the generated code to assign new
data to existing clusters. For code generation, define an entry-point function that accepts the cluster
centroid positions and the new data set, and returns the index of the nearest cluster. Then, generate
code for the entry-point function.
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Generating C/C++ code requires MATLAB® Coder™.

Perform k-Means Clustering

Generate a training data set using three distributions.

rng('default') % For reproducibility
X = [randn(100,2)*0.75+ones(100,2);
    randn(100,2)*0.5-ones(100,2);
    randn(100,2)*0.75];

Partition the training data into three clusters by using kmeans.

[idx,C] = kmeans(X,3);

Plot the clusters and the cluster centroids.

figure
gscatter(X(:,1),X(:,2),idx,'bgm')
hold on
plot(C(:,1),C(:,2),'kx')
legend('Cluster 1','Cluster 2','Cluster 3','Cluster Centroid')

Assign New Data to Existing Clusters

Generate a test data set.
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Xtest = [randn(10,2)*0.75+ones(10,2);
    randn(10,2)*0.5-ones(10,2);
    randn(10,2)*0.75];

Classify the test data set using the existing clusters. Find the nearest centroid from each test data
point by using pdist2.

[~,idx_test] = pdist2(C,Xtest,'euclidean','Smallest',1);

Plot the test data and label the test data using idx_test by using gscatter.

gscatter(Xtest(:,1),Xtest(:,2),idx_test,'bgm','ooo')
legend('Cluster 1','Cluster 2','Cluster 3','Cluster Centroid', ...
    'Data classified to Cluster 1','Data classified to Cluster 2', ...
    'Data classified to Cluster 3')

Generate Code

Generate C code that assigns new data to the existing clusters. Note that generating C/C++ code
requires MATLAB® Coder™.

Define an entry-point function named findNearestCentroid that accepts centroid positions and
new data, and then find the nearest cluster by using pdist2.

Add the %#codegen compiler directive (or pragma) to the entry-point function after the function
signature to indicate that you intend to generate code for the MATLAB algorithm. Adding this
directive instructs the MATLAB Code Analyzer to help you diagnose and fix violations that would
cause errors during code generation.
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type findNearestCentroid % Display contents of findNearestCentroid.m

function idx = findNearestCentroid(C,X) %#codegen
[~,idx] = pdist2(C,X,'euclidean','Smallest',1); % Find the nearest centroid

Note: If you click the button located in the upper-right section of this page and open this example in
MATLAB®, then MATLAB® opens the example folder. This folder includes the entry-point function
file.

Generate code by using codegen (MATLAB Coder). Because C and C++ are statically typed
languages, you must determine the properties of all variables in the entry-point function at compile
time. To specify the data type and array size of the inputs of findNearestCentroid, pass a
MATLAB expression that represents the set of values with a certain data type and array size by using
the -args option. For details, see “Specify Variable-Size Arguments for Code Generation” on page
34-56.

codegen findNearestCentroid -args {C,Xtest}

Code generation successful.

codegen generates the MEX function findNearestCentroid_mex with a platform-dependent
extension.

Verify the generated code.

myIndx = findNearestCentroid(C,Xtest);
myIndex_mex = findNearestCentroid_mex(C,Xtest);
verifyMEX = isequal(idx_test,myIndx,myIndex_mex)

verifyMEX = logical
   1

isequal returns logical 1 (true), which means all the inputs are equal. The comparison confirms
that the pdist2 function, the findNearestCentroid function, and the MEX function return the
same index.

You can also generate optimized CUDA® code using GPU Coder™.

cfg = coder.gpuConfig('mex');
codegen -config cfg findNearestCentroid -args {C,Xtest}

For more information on code generation, see “General Code Generation Workflow” on page 34-5. For
more information on GPU coder, see “Get Started with GPU Coder” (GPU Coder) and “Supported
Functions” (GPU Coder).

Input Arguments
X — Data
numeric matrix

Data, specified as a numeric matrix. The rows of X correspond to observations, and the columns
correspond to variables.

If X is a numeric vector, then kmeans treats it as an n-by-1 data matrix, regardless of its orientation.
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The software treats NaNs in X as missing data and removes any row of X that contains at least one
NaN. Removing rows of X reduces the sample size. The kmeans function returns NaN for the
corresponding value in the output argument idx.
Data Types: single | double

k — Number of clusters
positive integer

Number of clusters in the data, specified as a positive integer.
Data Types: single | double

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: 'Distance','cosine','Replicates',10,'Options',statset('UseParallel',1)
specifies the cosine distance, 10 replicate clusters at different starting values, and to use parallel
computing.

Display — Level of output to display
'off' (default) | 'final' | 'iter'

Level of output to display in the Command Window, specified as the comma-separated pair consisting
of 'Display' and one of the following options:

• 'final' — Displays results of the final iteration
• 'iter' — Displays results of each iteration
• 'off' — Displays nothing

Example: 'Display','final'

Distance — Distance metric
'sqeuclidean' (default) | 'cityblock' | 'cosine' | 'correlation' | 'hamming'

Distance metric, in p-dimensional space, used for minimization, specified as the comma-separated
pair consisting of 'Distance' and 'sqeuclidean', 'cityblock', 'cosine', 'correlation',
or 'hamming'.

kmeans computes centroid clusters differently for the supported distance metrics. This table
summarizes the available distance metrics. In the formulae, x is an observation (that is, a row of X)
and c is a centroid (a row vector).

Distance Metric Description Formula
'sqeuclidean' Squared Euclidean distance

(default). Each centroid is the
mean of the points in that
cluster.

d(x, c) = (x− c)(x− c)′
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Distance Metric Description Formula
'cityblock' Sum of absolute differences, i.e.,

the L1 distance. Each centroid
is the component-wise median
of the points in that cluster.

d(x, c) = ∑
j = 1

p
x j− c j

'cosine' One minus the cosine of the
included angle between points
(treated as vectors). Each
centroid is the mean of the
points in that cluster, after
normalizing those points to unit
Euclidean length.

d(x, c) = 1− xc′
xx′ cc′

'correlation' One minus the sample
correlation between points
(treated as sequences of
values). Each centroid is the
component-wise mean of the
points in that cluster, after
centering and normalizing those
points to zero mean and unit
standard deviation.

d(x, c) = 1

−
x− x c− c ′

x− x x− x ′ c− c c− c ′
,

where

•
x = 1

p ∑
j = 1

p
x j 1p

•
c = 1

p ∑
j = 1

p
c j 1p

• 1p is a row vector of p ones.
'hamming' This metric is only suitable for

binary data.

It is the proportion of bits that
differ. Each centroid is the
component-wise median of
points in that cluster.

d(x, y) = 1
p∑

j = 1

p

I x j ≠ y j ,

where I is the indicator
function.

Example: 'Distance','cityblock'

EmptyAction — Action to take if cluster loses all member observations
'singleton' (default) | 'error' | 'drop'

Action to take if a cluster loses all its member observations, specified as the comma-separated pair
consisting of 'EmptyAction' and one of the following options.

Value Description
'error' Treat an empty cluster as an error.
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Value Description
'drop' Remove any clusters that become empty. kmeans

sets the corresponding return values in C and D
to NaN.

'singleton' Create a new cluster consisting of the one point
furthest from its centroid (default).

Example: 'EmptyAction','error'

MaxIter — Maximum number of iterations
100 (default) | positive integer

Maximum number of iterations, specified as the comma-separated pair consisting of 'MaxIter' and
a positive integer.
Example: 'MaxIter',1000
Data Types: double | single

OnlinePhase — Online update flag
'off' (default) | 'on'

Online update flag, specified as the comma-separated pair consisting of 'OnlinePhase' and 'off'
or 'on'.

If OnlinePhase is on, then kmeans performs an online update phase in addition to a batch update
phase. The online phase can be time consuming for large data sets, but guarantees a solution that is a
local minimum of the distance criterion. In other words, the software finds a partition of the data in
which moving any single point to a different cluster increases the total sum of distances.
Example: 'OnlinePhase','on'

Options — Options for controlling iterative algorithm for minimizing fitting criteria
[] (default) | structure array returned by statset

Options for controlling the iterative algorithm for minimizing the fitting criteria, specified as the
comma-separated pair consisting of 'Options' and a structure array returned by statset.
Supported fields of the structure array specify options for controlling the iterative algorithm.

This table summarizes the supported fields. Note that the supported fields require Parallel Computing
Toolbox.
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Field Description
'Streams' A RandStream object or cell array of such

objects. If you do not specify Streams, kmeans
uses the default stream or streams. If you specify
Streams, use a single object except when all of
the following conditions exist:

• You have an open parallel pool.
• UseParallel is true.
• UseSubstreams is false.

In this case, use a cell array the same size as the
parallel pool. If a parallel pool is not open, then
Streams must supply a single random number
stream.

'UseParallel' • If true and Replicates > 1, then kmeans
implements the k-means algorithm on each
replicate in parallel.

• If Parallel Computing Toolbox is not installed,
then computation occurs in serial mode. The
default is false, indicating serial
computation.

'UseSubstreams' Set to true to compute in parallel in a
reproducible fashion. The default is false. To
compute reproducibly, set Streams to a type
allowing substreams: 'mlfg6331_64' or
'mrg32k3a'.

To ensure more predictable results, use parpool and explicitly create a parallel pool before invoking
kmeans and setting 'Options',statset('UseParallel',1).
Example: 'Options',statset('UseParallel',1)
Data Types: struct

Replicates — Number of times to repeat clustering using new initial cluster centroid
positions
1 (default) | positive integer

Number of times to repeat clustering using new initial cluster centroid positions, specified as the
comma-separated pair consisting of 'Replicates' and an integer. kmeans returns the solution with
the lowest sumd.

You can set 'Replicates' implicitly by supplying a 3-D array as the value for the 'Start' name-
value pair argument.
Example: 'Replicates',5
Data Types: double | single

Start — Method for choosing initial cluster centroid positions
'plus' (default) | 'cluster' | 'sample' | 'uniform' | numeric matrix | numeric array
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Method for choosing initial cluster centroid positions (or seeds), specified as the comma-separated
pair consisting of 'Start' and 'cluster', 'plus', 'sample', 'uniform', a numeric matrix, or a
numeric array. This table summarizes the available options for choosing seeds.

Value Description
'cluster' Perform a preliminary clustering phase on a

random 10% subsample of X when the number of
observations in the subsample is greater than k.
This preliminary phase is itself initialized using
'sample'.

If the number of observations in the random 10%
subsample is less than k, then the software
selects k observations from X at random.

'plus' (default) Select k seeds by implementing the k-means++
algorithm on page 35-4018 for cluster center
initialization.

'sample' Select k observations from X at random.
'uniform' Select k points uniformly at random from the

range of X. Not valid with the Hamming distance.
numeric matrix k-by-p matrix of centroid starting locations. The

rows of Start correspond to seeds. The software
infers k from the first dimension of Start, so you
can pass in [] for k.

numeric array k-by-p-by-r array of centroid starting locations.
The rows of each page correspond to seeds. The
third dimension invokes replication of the
clustering routine. Page j contains the set of
seeds for replicate j. The software infers the
number of replicates (specified by the
'Replicates' name-value pair argument) from
the size of the third dimension.

Example: 'Start','sample'
Data Types: char | string | double | single

Output Arguments
idx — Cluster indices
numeric column vector

Cluster indices, returned as a numeric column vector. idx has as many rows as X, and each row
indicates the cluster assignment of the corresponding observation.

C — Cluster centroid locations
numeric matrix

Cluster centroid locations, returned as a numeric matrix. C is a k-by-p matrix, where row j is the
centroid of cluster j.
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sumd — Within-cluster sums of point-to-centroid distances
numeric column vector

Within-cluster sums of point-to-centroid distances, returned as a numeric column vector. sumd is a k-
by-1 vector, where element j is the sum of point-to-centroid distances within cluster j. By default,
kmeans uses the squared Euclidean distance (see 'Distance' metrics).

D — Distances from each point to every centroid
numeric matrix

Distances from each point to every centroid, returned as a numeric matrix. D is an n-by-k matrix,
where element (j,m) is the distance from observation j to centroid m. By default, kmeans uses the
squared Euclidean distance (see 'Distance' metrics).

More About
k-Means Clustering

k-means clustering, or Lloyd’s algorithm [2], is an iterative, data-partitioning algorithm that assigns n
observations to exactly one of k clusters defined by centroids, where k is chosen before the algorithm
starts.

The algorithm proceeds as follows:

1 Choose k initial cluster centers (centroid). For example, choose k observations at random (by
using 'Start','sample') or use the k-means ++ algorithm on page 35-4018 for cluster center
initialization (the default).

2 Compute point-to-cluster-centroid distances of all observations to each centroid.
3 There are two ways to proceed (specified by OnlinePhase):

• Batch update — Assign each observation to the cluster with the closest centroid.
• Online update — Individually assign observations to a different centroid if the reassignment

decreases the sum of the within-cluster, sum-of-squares point-to-cluster-centroid distances.

For more details, see “Algorithms” on page 35-4019.
4 Compute the average of the observations in each cluster to obtain k new centroid locations.
5 Repeat steps 2 through 4 until cluster assignments do not change, or the maximum number of

iterations is reached.

k-means++ Algorithm

The k-means++ algorithm uses an heuristic to find centroid seeds for k-means clustering. According
to Arthur and Vassilvitskii [1], k-means++ improves the running time of Lloyd’s algorithm, and the
quality of the final solution.

The k-means++ algorithm chooses seeds as follows, assuming the number of clusters is k.

1 Select an observation uniformly at random from the data set, X. The chosen observation is the
first centroid, and is denoted c1.

2 Compute distances from each observation to c1. Denote the distance between cj and the
observation m as d xm, c j .
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3 Select the next centroid, c2 at random from X with probability

d2 xm, c1

∑ j = 1

n

d2 x j, c1

.

4 To choose center j:

a Compute the distances from each observation to each centroid, and assign each observation
to its closest centroid.

b For m = 1,...,n and p = 1,...,j – 1, select centroid j at random from X with probability

d2 xm, cp

∑ h; xh ∈ Cp
d2 xh, cp

,

where Cp is the set of all observations closest to centroid cp and xm belongs to Cp.

That is, select each subsequent center with a probability proportional to the distance from
itself to the closest center that you already chose.

5 Repeat step 4 until k centroids are chosen.

Arthur and Vassilvitskii [1] demonstrate, using a simulation study for several cluster orientations, that
k-means++ achieves faster convergence to a lower sum of within-cluster, sum-of-squares point-to-
cluster-centroid distances than Lloyd’s algorithm.

Algorithms
• kmeans uses a two-phase iterative algorithm to minimize the sum of point-to-centroid distances,

summed over all k clusters.

1 This first phase uses batch updates, where each iteration consists of reassigning points to
their nearest cluster centroid, all at once, followed by recalculation of cluster centroids. This
phase occasionally does not converge to solution that is a local minimum. That is, a partition
of the data where moving any single point to a different cluster increases the total sum of
distances. This is more likely for small data sets. The batch phase is fast, but potentially only
approximates a solution as a starting point for the second phase.

2 This second phase uses online updates, where points are individually reassigned if doing so
reduces the sum of distances, and cluster centroids are recomputed after each reassignment.
Each iteration during this phase consists of one pass though all the points. This phase
converges to a local minimum, although there might be other local minima with lower total
sum of distances. In general, finding the global minimum is solved by an exhaustive choice of
starting points, but using several replicates with random starting points typically results in a
solution that is a global minimum.

• If Replicates = r > 1 and Start is plus (the default), then the software selects r possibly
different sets of seeds according to the k-means++ algorithm on page 35-4018.

• If you enable the UseParallel option in Options and Replicates > 1, then each worker
selects seeds and clusters in parallel.
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Version History
Introduced before R2006a
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Extended Capabilities
Tall Arrays
Calculate with arrays that have more rows than fit in memory.

Usage notes and limitations:

• Supported syntaxes are:

• idx = kmeans(X,k)
• [idx,C] = kmeans(X,k)
• [idx,C,sumd] = kmeans(X,k)
• [___] = kmeans(___,Name,Value)

• Supported name-value pair arguments, and any differences, are:

• 'Display' — Default value is 'iter'.
• 'MaxIter'
• 'Options' — Supports only the 'TolFun' field of the structure array created by statset.

The default value of 'TolFun' is 1e-4. The kmeans function uses the value of 'TolFun' as
the termination tolerance for the within-cluster sums of point-to-centroid distances. For
example, you can specify 'Options',statset('TolFun',1e-8).

• 'Replicates'
• 'Start' — Supports only 'plus', 'sample', and a numeric array.

For more information, see “Tall Arrays for Out-of-Memory Data”.

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• If the Start method uses random selections, the initial centroid cluster positions might not match
MATLAB.
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• If the number of rows in X is fixed, code generation does not remove rows of X that contain a NaN.
• The cluster centroid locations in C can have a different order than in MATLAB. In this case, the

cluster indices in idx have corresponding differences.
• If you provide Display, its value must be 'off'.
• If you provide Streams, it must be empty and UseSubstreams must be false.
• When you set the UseParallel option to true:

• Some computations can execute in parallel even when Replicates is 1. For large data sets,
when Replicates is 1, consider setting the UseParallel option to true.

• kmeans uses parfor to create loops that run in parallel on supported shared-memory
multicore platforms. Loops that run in parallel can be faster than loops that run on a single
thread. If your compiler does not support the Open Multiprocessing (OpenMP) application
interface or you disable OpenMP library, MATLAB Coder treats the parfor-loops as for-loops.
To find supported compilers, see https://www.mathworks.com/support/compilers/
current_release/.

• To save memory on the device to which you deploy generated code, you can separate training and
prediction by using kmeans and pdist2, respectively. Use kmeans to create clusters in MATLAB
and use pdist2 in the generated code to assign new data to existing clusters. For code
generation, define an entry-point function that accepts the cluster centroid positions and the new
data set, and returns the index of the nearest cluster. Then, generate code for the entry-point
function. For an example, see “Assign New Data to Existing Clusters and Generate C/C++ Code”
on page 35-4009.

• Starting in R2020a, kmeans returns integer-type (int32) indices, rather than double-precision
indices, in generated standalone C/C++ code. Therefore, the function allows for stricter single-
precision support when you use single-precision inputs. For MEX code generation, the function
still returns double-precision indices to match the MATLAB behavior.

For more information on code generation, see “Introduction to Code Generation” on page 34-2 and
“General Code Generation Workflow” on page 34-5.

Automatic Parallel Support
Accelerate code by automatically running computation in parallel using Parallel Computing Toolbox™.

To run in parallel, specify the 'Options' name-value argument in the call to this function and set the
'UseParallel' field of the options structure to true using statset.

For example: 'Options',statset('UseParallel',true)

For more information about parallel computing, see “Run MATLAB Functions with Automatic Parallel
Support” (Parallel Computing Toolbox).

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

This function fully supports GPU arrays. For more information, see “Run MATLAB Functions on a
GPU” (Parallel Computing Toolbox).

See Also
linkage | clusterdata | silhouette | parpool | statset | gmdistribution | kmedoids
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Topics
“Compare k-Means Clustering Solutions” on page 17-33
“Introduction to k-Means Clustering” on page 17-33
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kmedoids
k-medoids clustering

Syntax
idx = kmedoids(X,k)
idx = kmedoids(X,k,Name,Value)
[idx,C] = kmedoids( ___ )
[idx,C,sumd] = kmedoids( ___ )
[idx,C,sumd,D] = kmedoids( ___ )
[idx,C,sumd,D,midx] = kmedoids( ___ )
[idx,C,sumd,D,midx,info] = kmedoids( ___ )

Description
idx = kmedoids(X,k) performs “k-medoids Clustering” on page 35-4034 to partition the
observations of the n-by-p matrix X into k clusters, and returns an n-by-1 vector idx containing
cluster indices of each observation. Rows of X correspond to points and columns correspond to
variables. By default, kmedoids uses squared Euclidean distance metric and the k-means++
algorithm on page 35-4018 for choosing initial cluster medoid positions.

idx = kmedoids(X,k,Name,Value) uses additional options specified by one or more Name,Value
pair arguments.

[idx,C] = kmedoids( ___ ) returns the k cluster medoid locations in the k-by-p matrix C.

[idx,C,sumd] = kmedoids( ___ ) returns the within-cluster sums of point-to-medoid distances in
the k-by-1 vector sumd.

[idx,C,sumd,D] = kmedoids( ___ ) returns distances from each point to every medoid in the n-
by-k matrix D.

[idx,C,sumd,D,midx] = kmedoids( ___ ) returns the indices midx such that C = X(midx,:).
midx is a k-by-1 vector.

[idx,C,sumd,D,midx,info] = kmedoids( ___ ) returns a structure info with information
about the options used by the algorithm when executed.

Examples

Group Data into Two Clusters

Randomly generate data.

rng('default'); % For reproducibility
X = [randn(100,2)*0.75+ones(100,2);
    randn(100,2)*0.55-ones(100,2)];
figure;
plot(X(:,1),X(:,2),'.');
title('Randomly Generated Data');
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Group data into two clusters using kmedoids. Use the cityblock distance metric.

opts = statset('Display','iter');
[idx,C,sumd,d,midx,info] = kmedoids(X,2,'Distance','cityblock','Options',opts);

   rep        iter             sum
     1           1         209.856
     1           2         209.856
Best total sum of distances = 209.856

info is a struct that contains information about how the algorithm was executed. For example,
bestReplicate field indicates the replicate that was used to produce the final solution. In this
example, the replicate number 1 was used since the default number of replicates is 1 for the default
algorithm, which is pam in this case.

info

info = struct with fields:
        algorithm: 'pam'
            start: 'plus'
         distance: 'cityblock'
       iterations: 2
    bestReplicate: 1

Plot the clusters and the cluster medoids.

figure;
plot(X(idx==1,1),X(idx==1,2),'r.','MarkerSize',7)
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hold on
plot(X(idx==2,1),X(idx==2,2),'b.','MarkerSize',7)
plot(C(:,1),C(:,2),'co',...
     'MarkerSize',7,'LineWidth',1.5)
legend('Cluster 1','Cluster 2','Medoids',...
       'Location','NW');
title('Cluster Assignments and Medoids');
hold off

Cluster Categorical Data Using k-Medoids

This example uses "Mushroom" data set [3][4][5] [6][7] from the UCI machine learning archive [7],
described in http://archive.ics.uci.edu/ml/datasets/Mushroom. The data set includes 22 predictors for
8,124 observations of various mushrooms. The predictors are categorical data types. For example,
cap shape is categorized with features of 'b' for bell-shaped cap and 'c' for conical. Mushroom
color is also categorized with features of 'n' for brown, and 'p' for pink. The data set also includes
a classification for each mushroom of either edible or poisonous.

Since the features of the mushroom data set are categorical, it is not possible to define the mean of
several data points, and therefore the widely-used k-means clustering algorithm cannot be
meaningfully applied to this data set. k-medoids is a related algorithm that partitions data into k
distinct clusters, by finding medoids that minimize the sum of dissimilarities between points in the
data and their nearest medoid.
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The medoid of a set is a member of that set whose average dissimilarity with the other members of
the set is the smallest. Similarity can be defined for many types of data that do not allow a mean to be
calculated, allowing k-medoids to be used for a broader range of problems than k-means.

Using k-medoids, this example clusters the mushrooms into two groups, based on the predictors
provided. It then explores the relationship between those clusters and the classifications of the
mushrooms as either edible or poisonous.

This example assumes that you have downloaded the "Mushroom" data set [3][4][5] [6][7] from the
UCI database (http://archive.ics.uci.edu/ml/machine-learning-databases/mushroom/) and saved it in
your current directory as a text file named agaricus-lepiota.txt. There is no column headers in the
data, so readtable uses the default variable names.

clear all
data = readtable('agaricus-lepiota.txt','ReadVariableNames',false);

Display the first 5 mushrooms with their first few features.

data(1:5,1:10)

ans = 

    Var1    Var2    Var3    Var4    Var5    Var6    Var7    Var8    Var9    Var10
    ____    ____    ____    ____    ____    ____    ____    ____    ____    _____

    'p'     'x'     's'     'n'     't'     'p'     'f'     'c'     'n'     'k'  
    'e'     'x'     's'     'y'     't'     'a'     'f'     'c'     'b'     'k'  
    'e'     'b'     's'     'w'     't'     'l'     'f'     'c'     'b'     'n'  
    'p'     'x'     'y'     'w'     't'     'p'     'f'     'c'     'n'     'n'  
    'e'     'x'     's'     'g'     'f'     'n'     'f'     'w'     'b'     'k'

Extract the first column, labeled data for edible and poisonous groups. Then delete the column.

labels = data(:,1);
labels = categorical(labels{:,:});
data(:,1) = [];

Store the names of predictors (features), which are described in http://archive.ics.uci.edu/ml/
machine-learning-databases/mushroom/agaricus-lepiota.names.

VarNames = {'cap_shape' 'cap_surface' 'cap_color' 'bruises' 'odor' ...
    'gill_attachment' 'gill_spacing' 'gill_size' 'gill_color' ...
    'stalk_shape' 'stalk_root' 'stalk_surface_above_ring' ...
    'stalk_surface_below_ring' 'stalk_color_above_ring' ...
    'stalk_color_below_ring' 'veil_type' 'veil_color' 'ring_number' ....
    'ring_type' 'spore_print_color' 'population' 'habitat'};

Set the variable names.

data.Properties.VariableNames = VarNames;

There are a total of 2480 missing values denoted as '?'.

sum(char(data{:,:}) == '?')

ans =

        2480
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Based on the inspection of the data set and its description, the missing values belong only to the 11th
variable (stalk_root). Remove the column from the table.

data(:,11) = [];

kmedoids only accepts numeric data. You need to cast the categories you have into numeric type.
The distance function you will use to define the dissimilarity of the data will be based on the double
representation of the categorical data.

cats = categorical(data{:,:});
data = double(cats);

kmedoids can use any distance metric supported by pdist2 to cluster. For this example you will
cluster the data using the Hamming distance because this is an appropriate distance metric for
categorical data as illustrated below. The Hamming distance between two vectors is the percentage
of the vector components that differ. For instance, consider these two vectors.

v1 = [1 0 2 1];

v2 = [1 1 2 1];

They are equal in the 1st, 3rd and 4th coordinate. Since 1 of the 4 coordinates differ, the Hamming
distance between these two vectors is .25.

You can use the function pdist2 to measure the Hamming distance between the first and second row
of data, the numerical representation of the categorical mushroom data. The value .2857 means that
6 of the 21 features of the mushroom differ.

pdist2(data(1,:),data(2,:),'hamming')

ans =

    0.2857

In this example, you’re clustering the mushroom data into two clusters based on features to see if the
clustering corresponds to edibility. The kmedoids function is guaranteed to converge to a local
minima of the clustering criterion; however, this may not be a global minimum for the problem. It is a
good idea to cluster the problem a few times using the 'replicates' parameter. When
'replicates' is set to a value, n, greater than 1, the k-medoids algorithm is run n times, and the
best result is returned.

To run kmedoids to cluster data into 2 clusters, based on the Hamming distance and to return the
best result of 3 replicates, you run the following.

rng('default'); % For reproducibility
[IDX, C, SUMD, D, MIDX, INFO] = kmedoids(data,2,'distance','hamming','replicates',3);

Let's assume that mushrooms in the predicted group 1 are poisonous and group 2 are all edible. To
determine the performance of clustering results, calculate how many mushrooms in group 1 are
indeed poisonous and group 2 are edible based on the known labels. In other words, calculate the
number of false positives, false negatives, as well as true positives and true negatives.

Construct a confusion matrix (or matching matrix), where the diagonal elements represent the
number of true positives and true negatives, respectively. The off-diagonal elements represent false
negatives and false positives, respectively. For convenience, use the confusionmat function, which
calculates a confusion matrix given known labels and predicted labels. Get the predicted label
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information from the IDX variable. IDX contains values of 1 and 2 for each data point, representing
poisonous and edible groups, respectively.

predLabels = labels; % Initialize a vector for predicted labels.
predLabels(IDX==1) = categorical({'p'}); % Assign group 1 to be poisonous.
predLabels(IDX==2) = categorical({'e'}); % Assign group 2 to be edible.
confMatrix = confusionmat(labels,predLabels)

confMatrix =

        4176          32
         816        3100

Out of 4208 edible mushrooms, 4176 were correctly predicted to be in group 2 (edible group), and 32
were incorrectly predicted to be in group 1 (poisonous group). Similarly, out of 3916 poisonous
mushrooms, 3100 were correctly predicted to be in group 1 (poisonous group), and 816 were
incorrectly predicted to be in group 2 (edible group).

Given this confusion matrix, calculate the accuracy, which is the proportion of true results (both true
positives and true negatives) against the overall data, and precision, which is the proportion of the
true positives against all the positive results (true positives and false positives).

accuracy = (confMatrix(1,1)+confMatrix(2,2))/(sum(sum(confMatrix)))

accuracy =

    0.8956

precision = confMatrix(1,1) / (confMatrix(1,1)+confMatrix(2,1))

precision =

    0.8365

The results indicated that applying the k-medoids algorithm to the categorical features of mushrooms
resulted in clusters that were associated with edibility.

Input Arguments
X — Data
numeric matrix

Data, specified as a numeric matrix. The rows of X correspond to observations, and the columns
correspond to variables.

k — Number of medoids
positive integer

Number of medoids in the data, specified as a positive integer.

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
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Example:
'Distance','euclidean','Replicates',3,'Options',statset('UseParallel',1)
specifies Euclidean distance, three replicate medoids at different starting values, and to use parallel
computing.

Algorithm — Algorithm to find medoids
'pam' | 'small' | 'clara' | 'large'

Algorithm to find medoids, specified as the comma-separated pair consisting of 'Algorithm' and
'pam', 'small', 'clara', or 'large'. The default algorithm depends on the number of rows of X.

• If the number of rows of X is less than 3000, 'pam' is the default algorithm.
• If the number of rows is between 3000 and 10000, 'small' is the default algorithm.
• For all other cases, 'large' is the default algorithm.

You can override the default choice by explicitly stating the algorithm. This table summarizes the
available algorithms.

Algorithm Description
'pam' Partitioning Around Medoids (PAM) is the classical algorithm for solving the

k-medoids problem described in [1]. After applying the initialization function
to select initial medoid positions, the program performs the swap-step of the
PAM algorithm, that is, it searches over all possible swaps between medoids
and non-medoids to see if the sum of medoid to cluster member distances
goes down. You can specify which initialization function to use via the
'Start' name-value pair argument.

The algorithm proceeds as follows.

1 Build-step: Each of k clusters is associated with a potential medoid. This
assignment is performed using a technique specified by the 'Start'
name-value pair argument. 

2 Swap-step: Within each cluster, each point is tested as a potential
medoid by checking if the sum of within-cluster distances gets smaller
using that point as the medoid. If so, the point is defined as a new
medoid. Every point is then assigned to the cluster with the closest
medoid.

The algorithm iterates the build- and swap-steps until the medoids do not
change, or other termination criteria are met.

The algorithm can produce better solutions than the other algorithms in
some situations, but it can be prohibitively long running.
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Algorithm Description
'small' Use an algorithm similar to the k-means algorithm to find k medoids. This

option employs a variant of the Lloyd’s iterations based on [2].

The algorithm proceeds as follows.

1 For each point in each cluster, calculate the sum of distances from the
point to every other point in the cluster. Choose the point that minimizes
the sum as the new medoid.

2 Update the cluster membership for each data point to reflect the new
medoid.

The algorithm repeats these steps until no further updates occur or other
termination criteria are met. The algorithm has an optional PAM-like online
update phase (specified by the 'OnlinePhase' name-value pair argument)
that improves cluster quality. It tends to return higher quality solutions than
the clara or large algorithms, but it may not be the best choice for very
large data.

'clara' Clustering LARge Applications (CLARA) [1] repeatedly performs the PAM
algorithm on random subsets of the data. It aims to overcome scaling
challenges posed by the PAM algorithm through sampling.

The algorithm proceeds as follows.

1 Select a subset of the data and apply the PAM algorithm to the subset.
2 Assign points of the full data set to clusters by picking the closest

medoid.

The algorithm repeats these steps until the medoids do not change, or other
termination criteria are met.

For the best performance, it is recommended that you perform multiple
replicates. By default, the program performs five replicates. Each replicate
samples s rows from X (specified by 'NumSamples' name-value pair
argument) to perform clustering on. By default, 40+2*k samples are
selected.

'large' This is similar to the small scale algorithm and repeatedly performs
searches using a k-means like update. However, the algorithm examines only
a random sample of cluster members during each iteration. The user-
adjustable parameter, 'PercentNeighbors', controls the number of
neighbors to examine. If there is no improvement after the neighbors are
examined, the algorithm terminates the local search. The algorithm performs
a total of r replicates (specified by 'Replicates' name-value pair
argument) and returns the best clustering result. The algorithm has an
optional PAM-like online phase (specified by the 'OnlinePhase' name-value
pair argument) that improves cluster quality.

Example: 'Algorithm','pam'

OnlinePhase — Flag to perform PAM-like online update phase
'on' (default) | 'off'
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A flag to perform PAM-like online update phase, specified as a comma-separated pair consisting of
'OnlinePhase' and 'on' or 'off'.

If it is on, then kmedoids performs a PAM-like update to the medoids after the Lloyd iterations in the
small and large algorithms. During this online update phase, the algorithm chooses a small subset
of data points in each cluster that are the furthest from and nearest to medoid. For each chosen
point, it reassigns the clustering of the entire data set and check if this creates a smaller sum of
distances than the best known.

In other words, the swap considerations are limited to the points near the medoids and far from the
medoids. The near points are considered in order to refine the clustering. The far points are
considered in order to escape local minima. Turning on this feature tends to improve the quality of
solutions generated by both algorithms. Total run time tends to increase as well, but the increase
typically is less than one iteration of PAM.
Example: OnlinePhase,'off'

Distance — Distance metric
'sqEuclidean' (default) | 'euclidean' | character vector | string scalar | function handle | ...

Distance metric, specified as the name of a distance metric described in the following table, or a
function handle. kmedoids minimizes the sum of medoid to cluster member distances.

Value Description
'sqEuclidean' Squared Euclidean distance (default)
'euclidean' Euclidean distance
'seuclidean' Standardized Euclidean distance. Each coordinate difference between

observations is scaled by dividing by the corresponding element of the
standard deviation, S = std(X,'omitnan').

'cityblock' City block distance
'minkowski' Minkowski distance. The exponent is 2.
'chebychev' Chebychev distance (maximum coordinate difference)
'mahalanobis' Mahalanobis distance using the sample covariance of X, C =

cov(X,'omitrows')
'cosine' One minus the cosine of the included angle between points (treated as

vectors)
'correlation' One minus the sample correlation between points (treated as

sequences of values)
'spearman' One minus the sample Spearman's rank correlation between

observations (treated as sequences of values)
'hamming' Hamming distance, which is the percentage of coordinates that differ
'jaccard' One minus the Jaccard coefficient, which is the percentage of nonzero

coordinates that differ
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Value Description
@distfun Custom distance function handle. A distance function has the form

function D2 = distfun(ZI,ZJ)
% calculation of distance
...

where

• ZI is a 1-by-n vector containing a single observation.
• ZJ is an m2-by-n matrix containing multiple observations. distfun

must accept a matrix ZJ with an arbitrary number of observations.
• D2 is an m2-by-1 vector of distances, and D2(k) is the distance

between observations ZI and ZJ(k,:).

If your data is not sparse, you can generally compute distance more
quickly by using a built-in distance instead of a function handle.

For the definition of each distance metric, see “Distance Metrics” on page 35-5388.
Example: 'Distance','hamming'

Options — Options to control iterative algorithm to minimize fitting criteria
[] (default) | structure array returned by statset

Options to control the iterative algorithm to minimize fitting criteria, specified as the comma-
separated pair consisting of 'Options' and a structure array returned by statset. Supported fields
of the structure array specify options for controlling the iterative algorithm. This table summarizes
the supported fields.

Field Description
Display Level of display output. Choices are 'off' (default) and 'iter'.
MaxIter Maximum number of iterations allowed. The default is 100.
UseParallel If true, compute in parallel. If Parallel Computing Toolbox is not

available, then computation occurs in serial mode. The default is false,
meaning serial computation.

UseSubstreams Set to true to compute in parallel in a reproducible fashion. The default
is false. To compute reproducibly, you must also set Streams to a type
allowing substreams: 'mlfg6331_64' or 'mrg32k3a'.

Streams A RandStream object or cell array of such objects. For details about these
options and parallel computing in Statistics and Machine Learning
Toolbox, see “Speed Up Statistical Computations” or enter help
parallelstats at the command line.

Example: 'Options',statset('Display','off')

Replicates — Number of times to repeat clustering using new initial cluster medoid
positions
positive integer
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Number of times to repeat clustering using new initial cluster medoid positions, specified as a
positive integer. The default value depends on the choice of algorithm. For pam and small, the
default is 1. For clara, the default is 5. For large, the default is 3.
Example: 'Replicates',4

NumSamples — Number of samples to take from data when executing clara algorithm
40+2*k (default) | positive integer

Number of samples to take from the data when executing the clara algorithm, specified as a positive
integer. The default number of samples is calculated as 40+2*k.
Example: 'NumSamples',160

PercentNeighbors — Percent of data set to examine using large algorithm
0.001 (default) | scalar value between 0 and 1

Percent of the data set to examine using the large algorithm, specified as a positive number.

The program examines percentneighbors*size(X,1) number of neighbors for the medoids. If
there is no improvement in the within-cluster sum of distances, then the algorithm terminates.

The value of this parameter between 0 and 1, where a value closer to 1 tends to give higher quality
solutions, but the algorithm takes longer to run, and a value closer to 0 tends to give lower quality
solutions, but finishes faster.
Example: 'PercentNeighbors',0.01

Start — Method for choosing initial cluster medoid positions
'plus' (default) | 'sample' | 'cluster' | matrix

Method for choosing initial cluster medoid positions, specified as the comma-separated pair
consisting of 'Start' and 'plus', 'sample', 'cluster', or a matrix. This table summarizes the
available methods.

Method Description
'plus' (default) Select k observations from X according to the k-

means++ algorithm on page 35-4018 for cluster
center initialization.

'sample' Select k observations from X at random.
'cluster' Perform preliminary clustering phase on a

random subsample (10%) of X. This preliminary
phase is itself initialized using sample, that is,
the observations are selected at random.

matrix A custom k-by-p matrix of starting locations. In
this case, you can pass in [] for the k input
argument, and kmedoids infers k from the first
dimension of the matrix. You can also supply a 3-
D array, implying a value for 'Replicates' from
the array’s third dimension.

Example: 'Start','sample'
Data Types: char | string | single | double
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Output Arguments
idx — Medoid indices
numeric column vector

Medoid indices, returned as a numeric column vector. idx has as many rows as X, and each row
indicates the medoid assignment of the corresponding observation.

C — Cluster medoid locations
numeric matrix

Cluster medoid locations, returned as a numeric matrix. C is a k-by-p matrix, where row j is the
medoid of cluster j

sumd — Within-cluster sums of point-to-medoid distances
numeric column vector

Within-cluster sums of point-to-medoid distances, returned as a numeric column vector. sumd is a k-
by1 vector, where element j is the sum of point-to-medoid distances within cluster j.

D — Distances from each point to every medoid
numeric matrix

Distances from each point to every medoid, returned as a numeric matrix. D is an n-by-k matrix,
where element (j,m) is the distance from observation j to medoid m.

midx — Index to X
column vector

Index to X, returned as a column vector of indices. midx is a k-by-1 vector and the indices satisfy C =
X(midx,:).

info — Algorithm information
struct

Algorithm information, returned as a struct. info contains options used by the function when
executed such as k-medoid clustering algorithm (algorithm), method used to choose initial cluster
medoid positions (start), distance metric (distance), number of iterations taken in the best
replicate (iterations) and the replicate number of the returned results (bestReplicate).

More About
k-medoids Clustering

k-medoids clustering is a partitioning method commonly used in domains that require robustness to
outlier data, arbitrary distance metrics, or ones for which the mean or median does not have a clear
definition.

It is similar to k-means, and the goal of both methods is to divide a set of measurements or
observations into k subsets or clusters so that the subsets minimize the sum of distances between a
measurement and a center of the measurement’s cluster. In the k-means algorithm, the center of the
subset is the mean of measurements in the subset, often called a centroid. In the k-medoids
algorithm, the center of the subset is a member of the subset, called a medoid.
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The k-medoids algorithm returns medoids which are the actual data points in the data set. This allows
you to use the algorithm in situations where the mean of the data does not exist within the data set.
This is the main difference between k-medoids and k-means where the centroids returned by k-means
may not be within the data set. Hence k-medoids is useful for clustering categorical data where a
mean is impossible to define or interpret.

The function kmedoids provides several iterative algorithms that minimize the sum of distances from
each object to its cluster medoid, over all clusters. One of the algorithms is called partitioning around
medoids (PAM) [1] which proceeds in two steps.

1 Build-step: Each of k clusters is associated with a potential medoid. This assignment is performed
using a technique specified by the 'Start' name-value pair argument. 

2 Swap-step: Within each cluster, each point is tested as a potential medoid by checking if the sum
of within-cluster distances gets smaller using that point as the medoid. If so, the point is defined
as a new medoid. Every point is then assigned to the cluster with the closest medoid.

The algorithm iterates the build- and swap-steps until the medoids do not change, or other
termination criteria are met.

You can control the details of the minimization using several optional input parameters to kmedoids,
including ones for the initial values of the cluster medoids, and for the maximum number of
iterations. By default, kmedoids uses the k-means++ algorithm on page 35-4018 for cluster medoid
initialization and the squared Euclidean metric to determine distances.

Version History
Introduced in R2014b
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Extended Capabilities
Automatic Parallel Support
Accelerate code by automatically running computation in parallel using Parallel Computing Toolbox™.

To run in parallel, specify the 'Options' name-value argument in the call to this function and set the
'UseParallel' field of the options structure to true using statset.

For example: 'Options',statset('UseParallel',true)

For more information about parallel computing, see “Run MATLAB Functions with Automatic Parallel
Support” (Parallel Computing Toolbox).

See Also
clusterdata | kmeans | linkage | silhouette | pdist | linkage | evalclusters
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knnsearch
Find k-nearest neighbors using searcher object

Syntax
Idx = knnsearch(Mdl,Y)
Idx = knnsearch(Mdl,Y,Name,Value)
[Idx,D] = knnsearch( ___ )

Description
Idx = knnsearch(Mdl,Y) searches for the nearest neighbor (i.e., the closest point, row, or
observation) in Mdl.X to each point (i.e., row or observation) in the query data Y using an exhaustive
search or a Kd-tree. knnsearch returns Idx, which is a column vector of the indices in Mdl.X
representing the nearest neighbors.

Idx = knnsearch(Mdl,Y,Name,Value) returns the indices of the closest points in Mdl.X to Y
with additional options specified by one or more Name,Value pair arguments. For example, specify
the number of nearest neighbors to search for, distance metric different from the one stored in
Mdl.Distance. You can also specify which action to take if the closest distances are tied.

[Idx,D] = knnsearch( ___ ) additionally returns the matrix D using any of the input arguments in
the previous syntaxes. D contains the distances between each observation in Y that correspond to the
closest observations in Mdl.X. By default, the function arranges the columns of D in ascending order
by closeness, with respect to the distance metric.

Examples

Search for Nearest Neighbors Using Kd-tree and Exhaustive Search

knnsearch accepts ExhaustiveSearcher or KDTreeSearcher model objects to search the
training data for the nearest neighbors to the query data. An ExhaustiveSearcher model invokes
the exhaustive searcher algorithm, and a KDTreeSearcher model defines a Kd-tree, which
knnsearch uses to search for nearest neighbors.

Load Fisher's iris data set. Randomly reserve five observations from the data for query data.

load fisheriris
rng(1); % For reproducibility
n = size(meas,1);
idx = randsample(n,5);
X = meas(~ismember(1:n,idx),:); % Training data
Y = meas(idx,:);                % Query data

The variable meas contains 4 predictors.

Grow a default four-dimensional Kd-tree.

MdlKDT = KDTreeSearcher(X)
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MdlKDT = 
  KDTreeSearcher with properties:

       BucketSize: 50
         Distance: 'euclidean'
    DistParameter: []
                X: [145x4 double]

MdlKDT is a KDTreeSearcher model object. You can alter its writable properties using dot notation.

Prepare an exhaustive nearest neighbor searcher.

MdlES = ExhaustiveSearcher(X)

MdlES = 
  ExhaustiveSearcher with properties:

         Distance: 'euclidean'
    DistParameter: []
                X: [145x4 double]

MdlKDT is an ExhaustiveSearcher model object. It contains the options, such as the distance
metric, to use to find nearest neighbors.

Alternatively, you can grow a Kd-tree or prepare an exhaustive nearest neighbor searcher using
createns.

Search the training data for the nearest neighbors indices that correspond to each query observation.
Conduct both types of searches using the default settings. By default, the number of neighbors to
search for per query observation is 1.

IdxKDT = knnsearch(MdlKDT,Y);
IdxES = knnsearch(MdlES,Y);
[IdxKDT IdxES]

ans = 5×2

    17    17
     6     6
     1     1
    89    89
   124   124

In this case, the results of the search are the same.

Search for Nearest Neighbors of Query Data Using Minkowski Distance

Grow a Kd-tree nearest neighbor searcher object by using the createns function. Pass the object
and query data to the knnsearch function to find k-nearest neighbors.

Load Fisher's iris data set.

load fisheriris
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Remove five irises randomly from the predictor data to use as a query set.

rng(1)                      % For reproducibility
n = size(meas,1);           % Sample size
qIdx = randsample(n,5);     % Indices of query data
tIdx = ~ismember(1:n,qIdx); % Indices of training data
Q = meas(qIdx,:);
X = meas(tIdx,:);

Grow a four-dimensional Kd-tree using the training data. Specify the Minkowski distance for finding
nearest neighbors.

Mdl = createns(X,'Distance','minkowski')

Mdl = 
  KDTreeSearcher with properties:

       BucketSize: 50
         Distance: 'minkowski'
    DistParameter: 2
                X: [145x4 double]

Because X has four columns and the distance metric is Minkowski, createns creates a
KDTreeSearcher model object by default. The Minkowski distance exponent is 2 by default.

Find the indices of the training data (Mdl.X) that are the two nearest neighbors of each point in the
query data (Q).

IdxNN = knnsearch(Mdl,Q,'K',2)

IdxNN = 5×2

    17     4
     6     2
     1    12
    89    66
   124   100

Each row of IdxNN corresponds to a query data observation, and the column order corresponds to
the order of the nearest neighbors, with respect to ascending distance. For example, based on the
Minkowski distance, the second nearest neighbor of Q(3,:) is X(12,:).

Include Ties in Nearest Neighbor Search

Load Fisher's iris data set.

load fisheriris

Remove five irises randomly from the predictor data to use as a query set.

rng(4);                     % For reproducibility
n = size(meas,1);           % Sample size
qIdx = randsample(n,5);     % Indices of query data
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X = meas(~ismember(1:n,qIdx),:);
Y = meas(qIdx,:);

Grow a four-dimensional Kd-tree using the training data. Specify the Minkowski distance for finding
nearest neighbors.

Mdl = KDTreeSearcher(X);

Mdl is a KDTreeSearcher model object. By default, the distance metric for finding nearest
neighbors is the Euclidean metric.

Find the indices of the training data (X) that are the seven nearest neighbors of each point in the
query data (Y).

[Idx,D] = knnsearch(Mdl,Y,'K',7,'IncludeTies',true);

Idx and D are five-element cell arrays of vectors, with each vector having at least seven elements.

Display the lengths of the vectors in Idx.

cellfun('length',Idx)

ans = 5×1

     8
     7
     7
     7
     7

Because cell 1 contains a vector with length greater than k = 7, query observation 1 (Y(1,:)) is
equally close to at least two observations in X.

Display the indices of the nearest neighbors to Y(1,:) and their distances.

nn5 = Idx{1}

nn5 = 1×8

    91    98    67    69    71    93    88    95

nn5d = D{1}

nn5d = 1×8

    0.1414    0.2646    0.2828    0.3000    0.3464    0.3742    0.3873    0.3873

Training observations 88 and 95 are 0.3873 cm away from query observation 1.

Compare k-Nearest Neighbors Using Different Distance Metrics

Train two KDTreeSearcher models using different distance metrics, and compare k-nearest
neighbors of query data for the two models.

Load Fisher's iris data set. Consider the petal measurements as predictors.
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load fisheriris
X = meas(:,3:4); % Predictors
Y = species;     % Response

Train a KDTreeSearcher model object by using the predictors. Specify the Minkowski distance with
exponent 5.

KDTreeMdl = KDTreeSearcher(X,'Distance','minkowski','P',5)

KDTreeMdl = 
  KDTreeSearcher with properties:

       BucketSize: 50
         Distance: 'minkowski'
    DistParameter: 5
                X: [150x2 double]

Find the 10 nearest neighbors from X to a query point (newpoint), first using Minkowski then
Chebychev distance metrics. The query point must have the same column dimension as the data used
to train the model.

newpoint = [5 1.45];
[IdxMk,DMk] = knnsearch(KDTreeMdl,newpoint,'k',10);
[IdxCb,DCb] = knnsearch(KDTreeMdl,newpoint,'k',10,'Distance','chebychev');

IdxMk and IdxCb are 1-by-10 matrices containing the row indices of X corresponding to the nearest
neighbors to newpoint using Minkowski and Chebychev distances, respectively. Element (1,1) is the
nearest, element (1,2) is the next nearest, and so on.

Plot the training data, query point, and nearest neighbors.

figure;
gscatter(X(:,1),X(:,2),Y);
title('Fisher''s Iris Data -- Nearest Neighbors');
xlabel('Petal length (cm)');
ylabel('Petal width (cm)');
hold on
plot(newpoint(1),newpoint(2),'kx','MarkerSize',10,'LineWidth',2);   % Query point 
plot(X(IdxMk,1),X(IdxMk,2),'o','Color',[.5 .5 .5],'MarkerSize',10); % Minkowski nearest neighbors
plot(X(IdxCb,1),X(IdxCb,2),'p','Color',[.5 .5 .5],'MarkerSize',10); % Chebychev nearest neighbors
legend('setosa','versicolor','virginica','query point',...
   'minkowski','chebychev','Location','Best');
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Zoom in on the points of interest.

h = gca; % Get current axis handle.
h.XLim = [4.5 5.5];
h.YLim = [1 2];
axis square;
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Several observations are equal, which is why only eight nearest neighbors are identified in the plot.

Input Arguments
Mdl — Nearest neighbor searcher
ExhaustiveSearcher model object | KDTreeSearcher model object

Nearest neighbor searcher, specified as an ExhaustiveSearcher or KDTreeSearcher model
object, respectively.

If Mdl is an ExhaustiveSearcher model, then knnsearch searches for nearest neighbors using an
exhaustive search. Otherwise, knnsearch uses the grown Kd-tree to search for nearest neighbors.

Y — Query data
numeric matrix

Query data, specified as a numeric matrix.

Y is an m-by-K matrix. Rows of Y correspond to observations (i.e., examples), and columns correspond
to predictors (i.e., variables or features). Y must have the same number of columns as the training
data stored in Mdl.X.
Data Types: single | double
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Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: 'K',2,'Distance','minkowski' specifies to find the two nearest neighbors of Mdl.X to
each point in Y and to use the Minkowski distance metric.

For Both Nearest Neighbor Searchers

Distance — Distance metric
Mdl.Distance (default) | 'cityblock' | 'euclidean' | 'mahalanobis' | 'minkowski' |
'seuclidean' | function handle | ...

Distance metric used to find neighbors of the training data to the query observations, specified as the
comma-separated pair consisting of 'Distance' and a character vector, string scalar, or function
handle.

For both types of nearest neighbor searchers, knnsearch supports these distance metrics.

Value Description
'chebychev' Chebychev distance (maximum coordinate difference).
'cityblock' City block distance.
'euclidean' Euclidean distance.
'minkowski' Minkowski distance. The default exponent is 2. To specify a different

exponent, use the 'P' name-value pair argument.

If Mdl is an ExhaustiveSearcher model object, then knnsearch also supports these distance
metrics.

Value Description
'correlation' One minus the sample linear correlation between

observations (treated as sequences of values).
'cosine' One minus the cosine of the included angle

between observations (treated as row vectors).
'hamming' Hamming distance, which is the percentage of

coordinates that differ.
'jaccard' One minus the Jaccard coefficient, which is the

percentage of nonzero coordinates that differ.
'mahalanobis' Mahalanobis distance, computed using a positive

definite covariance matrix. To change the value of
the covariance matrix, use the 'Cov' name-value
pair argument.
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Value Description
'seuclidean' Standardized Euclidean distance. Each

coordinate difference between rows in Mdl.X and
the query matrix is scaled by dividing by the
corresponding element of the standard deviation
computed from Mdl.X. To specify another
scaling, use the 'Scale' name-value pair
argument.

'spearman' One minus the sample Spearman's rank
correlation between observations (treated as
sequences of values).

If Mdl is an ExhaustiveSearcher model object, then you can also specify a function handle for a
custom distance metric by using @ (for example, @distfun). The custom distance function must:

• Have the form function D2 = distfun(ZI,ZJ).
• Take as arguments:

• A 1-by-K vector ZI containing a single row from Mdl.X or Y, where K is the number of columns
of Mdl.X.

• An m-by-K matrix ZJ containing multiple rows of Mdl.X or Y, where m is a positive integer.
• Return an m-by-1 vector of distances D2, where D2(j) is the distance between the observations

ZI and ZJ(j,:).

For more details, see “Distance Metrics” on page 19-14.
Example: 'Distance','minkowski'

IncludeTies — Flag to include all nearest neighbors
false (0) (default) | true (1)

Flag to include nearest neighbors that have the same distance from query observations, specified as
the comma-separated pair consisting of 'IncludeTies' and false (0) or true (1).

If IncludeTies is true, then:

• knnsearch includes all nearest neighbors whose distances are equal to the kth smallest distance
in the output arguments, where k is the number of searched nearest neighbors specified by the
'K' name-value pair argument.

• Idx and D are m-by-1 cell arrays such that each cell contains a vector of at least k indices and
distances, respectively. Each vector in D contains arranged distances in ascending order. Each row
in Idx contains the indices of the nearest neighbors corresponding to the distances in D.

If IncludeTies is false, then knnsearch chooses the observation with the smallest index among
the observations that have the same distance from a query point.
Example: 'IncludeTies',true

K — Number of nearest neighbors
1 (default) | positive integer

Number of nearest neighbors to search for in the training data per query observation, specified as the
comma-separated pair consisting of 'K' and a positive integer.
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Example: 'K',2
Data Types: single | double

P — Exponent for Minkowski distance metric
2 (default) | positive scalar

Exponent for the Minkowski distance metric, specified as the comma-separated pair consisting of 'P'
and a positive scalar. This argument is valid only if 'Distance' is 'minkowski'.
Example: 'P',3
Data Types: single | double

For Kd-Tree Nearest Neighbor Searchers

SortIndices — Flag to sort returned indices according to distance
true (1) (default) | false (0)

Flag to sort returned indices according to distance, specified as the comma-separated pair consisting
of 'SortIndices' and either true (1) or false (0).

For faster performance, you can set SortIndices to false when the following are true:

• Y contains many observations that have many nearest neighbors in X.
• Mdl is a KDTreeSearcher model object.
• IncludeTies is false.

In this case, knnsearch returns the indices of the nearest neighbors in no particular order. When
SortIndices is true, the function arranges the nearest-neighbor indices in ascending order by
distance.

SortIndices is true by default. When Mdl is an ExhaustiveSearcher model object or
IncludeTies is true, the function always sorts the indices.
Example: 'SortIndices',false
Data Types: logical

For Exhaustive Nearest Neighbor Searchers

Cov — Covariance matrix for Mahalanobis distance metric
cov(Mdl.X,'omitrows') (default) | positive definite matrix

Covariance matrix for the Mahalanobis distance metric, specified as the comma-separated pair
consisting of 'Cov' and a positive definite matrix. Cov is a K-by-K matrix, where K is the number of
columns of Mdl.X. If you specify Cov and do not specify 'Distance','mahalanobis', then
knnsearch returns an error message.
Example: 'Cov',eye(3)
Data Types: single | double

Scale — Scale parameter value for standardized Euclidean distance metric
std(Mdl.X,'omitnan') (default) | nonnegative numeric vector
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Scale parameter value for the standardized Euclidean distance metric, specified as the comma-
separated pair consisting of 'Scale' and a nonnegative numeric vector. Scale has length K, where
K is the number of columns of Mdl.X.

The software scales each difference between the training and query data using the corresponding
element of Scale. If you specify Scale and do not specify 'Distance','seuclidean', then
knnsearch returns an error message.
Example: 'Scale',quantile(Mdl.X,0.75) - quantile(Mdl.X,0.25)
Data Types: single | double

Note If you specify 'Distance', 'Cov', 'P', or 'Scale', then Mdl.Distance and
Mdl.DistParameter do not change value.

Output Arguments
Idx — Training data indices of nearest neighbors
numeric matrix | cell array of numeric vectors

Training data indices of nearest neighbors, returned as a numeric matrix or cell array of numeric
vectors.

• If you do not specify IncludeTies (false by default), then Idx is an m-by-k numeric matrix,
where m is the number of rows in Y and k is the number of searched nearest neighbors specified
by the 'K' name-value pair argument. Idx(j,i) indicates that Mdl.X(Idx(j,i),:) is one of
the k closest observations in Mdl.X to the query observation Y(j,:).

• If you specify 'IncludeTies',true, then Idx is an m-by-1 cell array such that cell j (Idx{j})
contains a vector of at least k indices of the closest observations in Mdl.X to the query
observation Y(j,:).

If SortIndices is true, then knnsearch arranges the indices in ascending order by distance.

D — Distances of nearest neighbors
numeric matrix | cell array of numeric vectors

Distances of the nearest neighbors to the query data, returned as a numeric matrix or cell array of
numeric vectors.

• If you do not specify IncludeTies (false by default), then D is an m-by-k numeric matrix, where
m is the number of rows in Y and k is the number of searched nearest neighbors specified by the
'K' name-value pair argument. D(j,i) is the distance between Mdl.X(Idx(j,i),:) and the
query observation Y(j,:) with respect to the distance metric.

• If you specify 'IncludeTies',true, then D is an m-by-1 cell array such that cell j (D{j})
contains a vector of at least k distances of the closest observations in Mdl.X to the query
observation Y(j,:).

If SortIndices is true, then knnsearch arranges the distances in ascending order.
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Tips
knnsearch finds the k (positive integer) points in Mdl.X that are k-nearest for each Y point. In
contrast, rangesearch finds all the points in Mdl.X that are within distance r (positive scalar) of
each Y point.

Alternative Functionality
• knnsearch is an object function that requires an ExhaustiveSearcher or a KDTreeSearcher

model object and query data. Under equivalent conditions, the knnsearch object function returns
the same results as the knnsearch function when you specify the name-value pair argument
'NSMethod','exhaustive' or 'NSMethod','kdtree', respectively.

• For k-nearest neighbors classification, see fitcknn and ClassificationKNN.

Version History
Introduced in R2010a

References
[1] Friedman, J. H., Bentley, J., and Finkel, R. A. (1977). “An Algorithm for Finding Best Matches in

Logarithmic Expected Time.” ACM Transactions on Mathematical Software Vol. 3, Issue 3,
Sept. 1977, pp. 209–226.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• This table contains notes about the arguments of knnsearch. Arguments not included in this
table are fully supported.
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Argument Notes and Limitations
Mdl There are two ways to use Mdl in code generation. For an example, see

“Code Generation for Nearest Neighbor Searcher” on page 34-20.

• Use saveLearnerForCoder, loadLearnerForCoder, and
codegen to generate code for the knnsearch function. Save a
trained model by using saveLearnerForCoder. Define an entry-
point function that loads the saved model by using
loadLearnerForCoder and calls the knnsearch function. Then
use codegen to generate code for the entry-point function.

• Include coder.Constant(Mdl) in the -args value of codegen.

If Mdl is a KDTreeSearcher object, and the code generation build
type is a MEX function, then codegen generates a MEX function using
Intel Threading Building Blocks (TBB) for parallel computation.
Otherwise, codegen generates code using parfor.

• MEX function for the kd-tree search algorithm — codegen
generates an optimized MEX function using Intel TBB for parallel
computation on multicore platforms. You can use the MEX function
to accelerate MATLAB algorithms. For details on Intel TBB, see
https://www.intel.com/content/www/us/en/developer/tools/oneapi/
onetbb.html.

If you generate the MEX function to test the generated code of the
parfor version, you can disable the usage of Intel TBB. Set the
ExtrinsicCalls property of the MEX configuration object to
false. For details, see coder.MexCodeConfig.

• MEX function for the exhaustive search algorithm and standalone
C/C++ code for both algorithms — The generated code of
knnsearch uses parfor to create loops that run in parallel on
supported shared-memory multicore platforms in the generated
code. If your compiler does not support the Open Multiprocessing
(OpenMP) application interface or you disable OpenMP library,
MATLAB Coder treats the parfor-loops as for-loops. To find
supported compilers, see https://www.mathworks.com/
support/compilers/current_release/. To disable OpenMP
library, set the EnableOpenMP property of the configuration object
to false. For details, see coder.CodeConfig.

'Distance' • Cannot be a custom distance function.
• Must be a compile-time constant; its value cannot change in the

generated code.
'IncludeTies' Must be a compile-time constant; its value cannot change in the

generated code.
'SortIndices' Not supported. The output arguments are always sorted.
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Argument Notes and Limitations
Name-value pair
arguments

Names in name-value arguments must be compile-time constants. For
example, to allow a user-defined exponent for the Minkowski distance
in the generated code, include
{coder.Constant('Distance'),coder.Constant('Minkowski'
),coder.Constant('P'),0} in the -args value of codegen.

Idx • When you specify 'IncludeTies' as true, the sorted order of
tied distances in the generated code can be different from the order
in MATLAB due to numerical precision.

• Starting in R2020a, knnsearch returns integer-type (int32)
indices, rather than double-precision indices, in generated
standalone C/C++ code. Therefore, the function allows for strict
single-precision support when you use single-precision inputs. For
MEX code generation, the function still returns double-precision
indices to match the MATLAB behavior.

For more information, see “Introduction to Code Generation” on page 34-2 and “Code Generation for
Nearest Neighbor Searcher” on page 34-20.

See Also
createns | ExhaustiveSearcher | KDTreeSearcher | rangesearch | knnsearch | fitcknn |
ClassificationKNN

Topics
“k-Nearest Neighbor Search and Radius Search” on page 19-16
“Distance Metrics” on page 19-14
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knnsearch
Find k-nearest neighbors using input data

Syntax
Idx = knnsearch(X,Y)
Idx = knnsearch(X,Y,Name,Value)
[Idx,D] = knnsearch( ___ )

Description
Idx = knnsearch(X,Y) finds the nearest neighbor in X for each query point in Y and returns the
indices of the nearest neighbors in Idx, a column vector. Idx has the same number of rows as Y.

Idx = knnsearch(X,Y,Name,Value) returns Idx with additional options specified using one or
more name-value pair arguments. For example, you can specify the number of nearest neighbors to
search for and the distance metric used in the search.

[Idx,D] = knnsearch( ___ ) additionally returns the matrix D, using any of the input arguments
in the previous syntaxes. D contains the distances between each observation in Y and the
corresponding closest observations in X.

Examples

Find Nearest Neighbors

Find the patients in the hospital data set that most closely resemble the patients in Y, according to
age and weight.

Load the hospital data set.

load hospital;
X = [hospital.Age hospital.Weight];
Y = [20 162; 30 169; 40 168; 50 170; 60 171];   % New patients

Perform a knnsearch between X and Y to find indices of nearest neighbors.

Idx = knnsearch(X,Y);

Find the patients in X closest in age and weight to those in Y.

X(Idx,:)

ans = 5×2

    25   171
    25   171
    39   164
    49   170
    50   172
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Find k-Nearest Neighbors Using Different Distance Metrics

Find the 10 nearest neighbors in X to each point in Y, first using the Minkowski distance metric and
then using the Chebychev distance metric.

Load Fisher's iris data set.

load fisheriris
X = meas(:,3:4);    % Measurements of original flowers
Y = [5 1.45;6 2;2.75 .75];  % New flower data

Perform a knnsearch between X and the query points Y using Minkowski and Chebychev distance
metrics.

[mIdx,mD] = knnsearch(X,Y,'K',10,'Distance','minkowski','P',5);
[cIdx,cD] = knnsearch(X,Y,'K',10,'Distance','chebychev');

Visualize the results of the two nearest neighbor searches. Plot the training data. Plot the query
points with the marker X. Use circles to denote the Minkowski nearest neighbors. Use pentagrams to
denote the Chebychev nearest neighbors.

gscatter(X(:,1),X(:,2),species)
line(Y(:,1),Y(:,2),'Marker','x','Color','k',...
   'Markersize',10,'Linewidth',2,'Linestyle','none')
line(X(mIdx,1),X(mIdx,2),'Color',[.5 .5 .5],'Marker','o',...
   'Linestyle','none','Markersize',10)
line(X(cIdx,1),X(cIdx,2),'Color',[.5 .5 .5],'Marker','p',...
   'Linestyle','none','Markersize',10)
legend('setosa','versicolor','virginica','query point',...
'minkowski','chebychev','Location','best')
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Input Arguments
X — Input data
numeric matrix

Input data, specified as a numeric matrix. Rows of X correspond to observations, and columns
correspond to variables.
Data Types: single | double

Y — Query points
numeric matrix

Query points, specified as a numeric matrix. Rows of Y correspond to observations, and columns
correspond to variables. Y must have the same number of columns as X.
Data Types: single | double

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
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Example: knnsearch(X,Y,'K',10,'IncludeTies',true,'Distance','cityblock') searches
for 10 nearest neighbors, including ties and using the city block distance.

K — Number of nearest neighbors
1 (default) | positive integer

Number of nearest neighbors to find in X for each point in Y, specified as the comma-separated pair
consisting of 'K' and a positive integer.
Example: 'K',10
Data Types: single | double

IncludeTies — Flag to include all nearest neighbors
false (0) (default) | true (1)

Flag to include all nearest neighbors that have the same distance from query points, specified as the
comma-separated pair consisting of 'IncludeTies' and false (0) or true (1).

If 'IncludeTies' is false, then knnsearch chooses the observation with the smallest index
among the observations that have the same distance from a query point.

If 'IncludeTies' is true, then:

• knnsearch includes all nearest neighbors whose distances are equal to the kth smallest distance
in the output arguments. To specify k, use the 'K' name-value pair argument.

• Idx and D are m-by-1 cell arrays such that each cell contains a vector of at least k indices and
distances, respectively. Each vector in D contains distances arranged in ascending order. Each row
in Idx contains the indices of the nearest neighbors corresponding to the distances in D.

Example: 'IncludeTies',true

NSMethod — Nearest neighbor search method
'kdtree' | 'exhaustive'

Nearest neighbor search method, specified as the comma-separated pair consisting of 'NSMethod'
and one of these values.

• 'kdtree' — Creates and uses a Kd-tree to find nearest neighbors. 'kdtree' is the default value
when the number of columns in X is less than or equal to 10, X is not sparse, and the distance
metric is 'euclidean', 'cityblock', 'chebychev', or 'minkowski'. Otherwise, the default
value is 'exhaustive'.

The value 'kdtree' is valid only when the distance metric is one of the four metrics noted above.
• 'exhaustive' — Uses the exhaustive search algorithm by computing the distance values from

all the points in X to each point in Y.

Example: 'NSMethod','exhaustive'

Distance — Distance metric
'euclidean' (default) | 'seuclidean' | 'cityblock' | 'chebychev' | 'minkowski' |
'mahalanobis' | function handle | ...

Distance metric knnsearch uses, specified as the comma-separated pair consisting of 'Distance'
and one of the values in this table or a function handle.
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Value Description
'euclidean' Euclidean distance.
'seuclidean' Standardized Euclidean distance. Each coordinate difference between rows in X

and the query matrix Y is scaled by dividing by the corresponding element of the
standard deviation computed from X. To specify another scaling, use the 'Scale'
name-value pair argument.

'cityblock' City block distance.
'chebychev' Chebychev distance (maximum coordinate difference).
'minkowski' Minkowski distance. The default exponent is 2. To specify a different exponent,

use the 'P' name-value pair argument.
'mahalanobis' Mahalanobis distance, computed using a positive definite covariance matrix. To

change the value of the covariance matrix, use the 'Cov' name-value pair
argument.

'cosine' One minus the cosine of the included angle between observations (treated as
vectors).

'correlation' One minus the sample linear correlation between observations (treated as
sequences of values).

'spearman' One minus the sample Spearman's rank correlation between observations (treated
as sequences of values).

'hamming' Hamming distance, which is the percentage of coordinates that differ.
'jaccard' One minus the Jaccard coefficient, which is the percentage of nonzero coordinates

that differ.

You can also specify a function handle for a custom distance metric by using @ (for example,
@distfun). A custom distance function must:

• Have the form function D2 = distfun(ZI,ZJ).
• Take as arguments:

• A 1-by-n vector ZI containing a single row from X or from the query points Y.
• An m2-by-n matrix ZJ containing multiple rows of X or Y.

• Return an m2-by-1 vector of distances D2, whose jth element is the distance between the
observations ZI and ZJ(j,:).

For more information, see “Distance Metrics” on page 19-14.
Example: 'Distance','chebychev'

P — Exponent for Minkowski distance metric
2 (default) | positive scalar

Exponent for the Minkowski distance metric, specified as the comma-separated pair consisting of 'P'
and a positive scalar.

This argument is valid only if 'Distance' is 'minkowski'.
Example: 'P',3
Data Types: single | double
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Cov — Covariance matrix for Mahalanobis distance metric
cov(X,'omitrows') (default) | positive definite matrix

Covariance matrix for the Mahalanobis distance metric, specified as the comma-separated pair
consisting of 'Cov' and a positive definite matrix.

This argument is valid only if 'Distance' is 'mahalanobis'.
Example: 'Cov',eye(4)
Data Types: single | double

Scale — Scale parameter value for standardized Euclidean distance metric
std(X,'omitnan') (default) | nonnegative numeric vector

Scale parameter value for the standardized Euclidean distance metric, specified as the comma-
separated pair consisting of 'Scale' and a nonnegative numeric vector. 'Scale' has length equal
to the number of columns in X. When knnsearch computes the standardized Euclidean distance,
each coordinate of X is scaled by the corresponding element of 'Scale', as is each query point. This
argument is valid only when 'Distance' is 'seuclidean'.
Example: 'Scale',quantile(X,0.75) - quantile(X,0.25)
Data Types: single | double

BucketSize — Maximum number of data points in leaf node of Kd-tree
50 (default) | positive integer

Maximum number of data points in the leaf node of the Kd-tree, specified as the comma-separated
pair consisting of 'BucketSize' and a positive integer. This argument is valid only when NSMethod
is 'kdtree'.
Example: 'BucketSize',20
Data Types: single | double

SortIndices — Flag to sort returned indices according to distance
true (1) (default) | false (0)

Flag to sort returned indices according to distance, specified as the comma-separated pair consisting
of 'SortIndices' and either true (1) or false (0).

For faster performance, you can set SortIndices to false when the following are true:

• Y contains many observations that have many nearest neighbors in X.
• NSMethod is 'kdtree'.
• IncludeTies is false.

In this case, knnsearch returns the indices of the nearest neighbors in no particular order. When
SortIndices is true, the function arranges the nearest-neighbor indices in ascending order by
distance.

SortIndices is true by default. When NSMethod is 'exhaustive' or IncludeTies is true, the
function always sorts the indices.
Example: 'SortIndices',false
Data Types: logical
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Output Arguments
Idx — Input data indices of nearest neighbors
numeric matrix | cell array of numeric vectors

Input data indices of the nearest neighbors, returned as a numeric matrix or cell array of numeric
vectors.

• If you do not specify IncludeTies (false by default), then Idx is an m-by-k numeric matrix,
where m is the number of rows in Y and k is the number of searched nearest neighbors. Idx(j,i)
indicates that X(Idx(j,i),:) is one of the k closest observations in X to the query point
Y(j,:).

• If you specify 'IncludeTies',true, then Idx is an m-by-1 cell array such that cell j (Idx{j})
contains a vector of at least k indices of the closest observations in X to the query point Y(j,:).

If SortIndices is true, then knnsearch arranges the indices in ascending order by distance.

D — Distances of nearest neighbors
numeric matrix | cell array of numeric vectors

Distances of the nearest neighbors to the query points, returned as a numeric matrix or cell array of
numeric vectors.

• If you do not specify IncludeTies (false by default), then D is an m-by-k numeric matrix, where
m is the number of rows in Y and k is the number of searched nearest neighbors. D(j,i) is the
distance between X(Idx(j,i),:) and Y(j,:) with respect to the distance metric.

• If you specify 'IncludeTies',true, then D is an m-by-1 cell array such that cell j (D{j})
contains a vector of at least k distances of the closest observations in X to the query point Y(j,:).

If SortIndices is true, then knnsearch arranges the distances in ascending order.

Tips
• For a fixed positive integer k, knnsearch finds the k points in X that are the nearest to each point

in Y. To find all points in X within a fixed distance of each point in Y, use rangesearch.
• knnsearch does not save a search object. To create a search object, use createns.

Algorithms
For information on a specific search algorithm, see “k-Nearest Neighbor Search and Radius Search”
on page 19-16.

Alternative Functionality
If you set the knnsearch function's 'NSMethod' name-value pair argument to the appropriate value
('exhaustive' for an exhaustive search algorithm or 'kdtree' for a Kd-tree algorithm), then the
search results are equivalent to the results obtained by conducting a distance search using the
knnsearch object function. Unlike the knnsearch function, the knnsearch object function requires
an ExhaustiveSearcher or a KDTreeSearcher model object.
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Version History
Introduced in R2010a

References
[1] Friedman, J. H., J. Bentley, and R. A. Finkel. “An Algorithm for Finding Best Matches in

Logarithmic Expected Time.” ACM Transactions on Mathematical Software 3, no. 3 (1977):
209–226.

Extended Capabilities
Tall Arrays
Calculate with arrays that have more rows than fit in memory.

Usage notes and limitations:

• If X is a tall array, then Y cannot be a tall array. Similarly, if Y is a tall array, then X cannot be a tall
array.

For more information, see “Tall Arrays”.

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• For code generation, the default value of the 'NSMethod' name-value pair argument is
'exhaustive' when the number of columns in X is greater than 7.

• The value of the 'Distance' name-value pair argument must be a compile-time constant and
cannot be a custom distance function.

• The value of the 'IncludeTies' name-value pair argument must be a compile-time constant.
• The 'SortIndices' name-value pair argument is not supported. The output arguments are

always sorted.
• Names in name-value arguments must be compile-time constants. For example, to allow a user-
defined exponent for the Minkowski distance in the generated code, include
{coder.Constant('Distance'),coder.Constant('Minkowski'),coder.Constant('P')
,0} in the -args value of codegen.

• When you specify 'IncludeTies' as true, the sorted order of tied distances in the generated
code can be different from the order in MATLAB due to numerical precision.

• When knnsearch uses the kd-tree search algorithm, and the code generation build type is a MEX
function, codegen generates a MEX function using Intel Threading Building Blocks (TBB) for
parallel computation. Otherwise, codegen generates code using parfor.

• MEX function for the kd-tree search algorithm — codegen generates an optimized MEX
function using Intel TBB for parallel computation on multicore platforms. You can use the MEX
function to accelerate MATLAB algorithms. For details on Intel TBB, see https://www.intel.com/
content/www/us/en/developer/tools/oneapi/onetbb.html.

If you generate the MEX function to test the generated code of the parfor version, you can
disable the usage of Intel TBB. Set the ExtrinsicCalls property of the MEX configuration
object to false. For details, see coder.MexCodeConfig.
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• MEX function for the exhaustive search algorithm and standalone C/C++ code for both
algorithms — The generated code of knnsearch uses parfor to create loops that run in
parallel on supported shared-memory multicore platforms in the generated code. If your
compiler does not support the Open Multiprocessing (OpenMP) application interface or you
disable OpenMP library, MATLAB Coder treats the parfor-loops as for-loops. To find
supported compilers, see https://www.mathworks.com/support/compilers/
current_release/. To disable OpenMP library, set the EnableOpenMP property of the
configuration object to false. For details, see coder.CodeConfig.

• Starting in R2020a, knnsearch returns integer-type (int32) indices, rather than double-
precision indices, in generated standalone C/C++ code. Therefore, the function allows for strict
single-precision support when you use single-precision inputs. For MEX code generation, the
function still returns double-precision indices to match the MATLAB behavior.

For more information on code generation, see “Introduction to Code Generation” on page 34-2 and
“General Code Generation Workflow” on page 34-5.

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

Usage notes and limitations:

• The 'IncludeTies', 'NSMethod', and 'SortIndices' name-value pair arguments are not
supported.

For more information, see “Run MATLAB Functions on a GPU” (Parallel Computing Toolbox).

See Also
createns | knnsearch | ExhaustiveSearcher | KDTreeSearcher

Topics
“k-Nearest Neighbor Search and Radius Search” on page 19-16
“Distance Metrics” on page 19-14
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kruskalwallis
Kruskal-Wallis test

Syntax
p = kruskalwallis(x)
p = kruskalwallis(x,group)
p = kruskalwallis(x,group,displayopt)
[p,tbl,stats] = kruskalwallis( ___ )

Description
p = kruskalwallis(x) returns the p-value for the null hypothesis that the data in each column of
the matrix x comes from the same distribution, using a Kruskal-Wallis test on page 35-4065. The
alternative hypothesis is that not all samples come from the same distribution. kruskalwallis also
returns an ANOVA table and a box plot.

p = kruskalwallis(x,group) returns the p-value for a test of the null hypothesis that the data in
each categorical group, as specified by the grouping variable group comes from the same
distribution. The alternative hypothesis is that not all groups come from the same distribution.

p = kruskalwallis(x,group,displayopt) returns the p-value of the test and lets you display
or suppress the ANOVA table and box plot.

[p,tbl,stats] = kruskalwallis( ___ ) also returns the ANOVA table as the cell array tbl and
the structure stats containing information about the test statistics.

Examples

Test Data Samples for the Same Distribution

Create two different normal probability distribution objects. The first distribution has mu = 0 and
sigma = 1, and the second distribution has mu = 2 and sigma = 1.

pd1 = makedist('Normal');
pd2 = makedist('Normal','mu',2,'sigma',1);

Create a matrix of sample data by generating random numbers from these two distributions.

rng('default'); % for reproducibility
x = [random(pd1,20,2),random(pd2,20,1)];

The first two columns of x contain data generated from the first distribution, while the third column
contains data generated from the second distribution.

Test the null hypothesis that the sample data from each column in x comes from the same
distribution.

p = kruskalwallis(x)
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p = 3.6896e-06

The returned value of p indicates that kruskalwallis rejects the null hypothesis that all three data
samples come from the same distribution at a 1% significance level. The ANOVA table provides
additional test results, and the box plot visually presents the summary statistics for each column in x.

Conduct Followup Tests for Unequal Medians

Create two different normal probability distribution objects. The first distribution has mu = 0 and
sigma = 1. The second distribution has mu = 2 and sigma = 1.

pd1 = makedist('Normal');
pd2 = makedist('Normal','mu',2,'sigma',1);

Create a matrix of sample data by generating random numbers from these two distributions.
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rng('default'); % for reproducibility
x = [random(pd1,20,2),random(pd2,20,1)];

The first two columns of x contain data generated from the first distribution, while the third column
contains data generated from the second distribution.

Test the null hypothesis that the sample data from each column in x comes from the same
distribution. Suppress the output displays, and generate the structure stats to use in further
testing.

[p,tbl,stats] = kruskalwallis(x,[],'off')

p = 3.6896e-06

tbl=4×6 cell array
  Columns 1 through 5

    {'Source' }    {'SS'        }    {'df'}    {'MS'        }    {'Chi-sq'  }
    {'Columns'}    {[7.6311e+03]}    {[ 2]}    {[3.8155e+03]}    {[ 25.0200]}
    {'Error'  }    {[1.0364e+04]}    {[57]}    {[  181.8228]}    {0x0 double}
    {'Total'  }    {[     17995]}    {[59]}    {0x0 double  }    {0x0 double}

  Column 6

    {'Prob>Chi-sq'}
    {[ 3.6896e-06]}
    {0x0 double   }
    {0x0 double   }

stats = struct with fields:
       gnames: [3x1 char]
            n: [20 20 20]
       source: 'kruskalwallis'
    meanranks: [26.7500 18.9500 45.8000]
         sumt: 0

The returned value of p indicates that the test rejects the null hypothesis at the 1% significance level.
You can use the structure stats to perform additional followup testing. The cell array tbl contains
the same data as the graphical ANOVA table, including column and row labels.

Conduct a followup test to identify which data sample comes from a different distribution.

c = multcompare(stats);

Note: Intervals can be used for testing but are not simultaneous confidence intervals.
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Display the multiple comparison results in a table.

tbl = array2table(c,"VariableNames", ...
    ["Group A","Group B","Lower Limit","A-B","Upper Limit","P-value"])

tbl=3×6 table
    Group A    Group B    Lower Limit     A-B      Upper Limit     P-value  
    _______    _______    ___________    ______    ___________    __________

       1          2         -5.1435         7.8       20.744         0.33446
       1          3         -31.994      -19.05      -6.1065       0.0016282
       2          3         -39.794      -26.85      -13.906      3.4768e-06

The results indicate that there is a significant difference between groups 1 and 3, so the test rejects
the null hypothesis that the data in these two groups comes from the same distribution. The same is
true for groups 2 and 3. However, there is not a significant difference between groups 1 and 2, so the
test does not reject the null hypothesis that these two groups come from the same distribution.
Therefore, these results suggest that the data in groups 1 and 2 come from the same distribution, and
the data in group 3 comes from a different distribution.

Test for the Same Distribution Across Groups

Create a vector, strength, containing measurements of the strength of metal beams. Create a
second vector, alloy, indicating the type of metal alloy from which the corresponding beam is made.
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strength = [82 86 79 83 84 85 86 87 74 82 ...
            78 75 76 77 79 79 77 78 82 79];

alloy = {'st','st','st','st','st','st','st','st',...
         'al1','al1','al1','al1','al1','al1',...
         'al2','al2','al2','al2','al2','al2'};

Test the null hypothesis that the beam strength measurements have the same distribution across all
three alloys.

p = kruskalwallis(strength,alloy,'off')

p = 0.0018

The returned value of p indicates that the test rejects the null hypothesis at the 1% significance level.

Input Arguments
x — Sample data
vector | matrix

Sample data for the hypothesis test, specified as a vector or an m-by-n matrix. If x is an m-by-n
matrix, each of the n columns represents an independent sample containing m mutually independent
observations.
Data Types: single | double

group — Grouping variable
numeric vector | logical vector | character array | string array | cell array of character vectors

Grouping variable, specified as a numeric or logical vector, a character or string array, or a cell array
of character vectors.

• If x is a vector, then each element in group identifies the group to which the corresponding
element in x belongs, and group must be a vector of the same length as x. If a row of group
contains an empty value, that row and the corresponding observation in x are disregarded. NaN
values in either x or group are similarly ignored.

• If x is a matrix, then each column in x represents a different group, and you can use group to
specify labels for these columns. The number of elements in group and the number of columns in
x must be equal.

The labels contained in group also annotate the box plot.
Example: {'red','blue','green','blue','red','blue','green','green','red'}
Data Types: single | double | logical | char | string | cell

displayopt — Display option
'on' (default) | 'off'

Display option, specified as 'on' or 'off'. If displayopt is 'on', kruskalwallis displays the
following figures:

• An ANOVA table containing the sums of squares, degrees of freedom, and other quantities
calculated based on the ranks of the data in x.
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• A box plot of the data in each column of the data matrix x. The box plots are based on the actual
data values, rather than on the ranks.

If displayopt is 'off', kruskalwallis does not display these figures.

If you specify a value for displayopt, you must also specify a value for group. If you do not have a
grouping variable, specify group as [].
Example: 'off'

Output Arguments
p — p-value
scalar value in the range [0,1]

p-value of the test, returned as a scalar value in the range [0,1]. p is the probability of observing a
test statistic as extreme as, or more extreme than, the observed value under the null hypothesis.
Small values of p cast doubt on the validity of the null hypothesis.

tbl — ANOVA table
cell array

ANOVA table of test results, returned as a cell array. tbl includes the sums of squares, degrees of
freedom, and other quantities calculated based on the ranks of the data in x, as well as column and
row labels.

stats — Test data
structure

Test data, returned as a structure. You can perform followup multiple comparison tests on pairs of
sample medians by using multcompare, with stats as the input value.

More About
Kruskal-Wallis Test

The Kruskal-Wallis test is a nonparametric version of classical one-way ANOVA, and an extension of
the Wilcoxon rank sum test to more than two groups. The Kruskal-Wallis test is valid for data that has
two or more groups. It compares the medians of the groups of data in x to determine if the samples
come from the same population (or, equivalently, from different populations with the same
distribution).

The Kruskal-Wallis test uses ranks of the data, rather than numeric values, to compute the test
statistics. It finds ranks by ordering the data from smallest to largest across all groups, and taking
the numeric index of this ordering. The rank for a tied observation is equal to the average rank of all
observations tied with it. The F-statistic used in classical one-way ANOVA is replaced by a chi-square
statistic, and the p-value measures the significance of the chi-square statistic.

The Kruskal-Wallis test assumes that all samples come from populations having the same continuous
distribution, apart from possibly different locations due to group effects, and that all observations are
mutually independent. By contrast, classical one-way ANOVA replaces the first assumption with the
stronger assumption that the populations have normal distributions.
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Version History
Introduced before R2006a

See Also
anova1 | boxplot | friedman | multcompare | ranksum

Topics
“Grouping Variables” on page 2-46
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ksdensity
Kernel smoothing function estimate for univariate and bivariate data

Syntax
[f,xi] = ksdensity(x)
[f,xi] = ksdensity(x,pts)
[f,xi] = ksdensity( ___ ,Name,Value)
[f,xi,bw] = ksdensity( ___ )

ksdensity( ___ )
ksdensity(ax, ___ )

Description
[f,xi] = ksdensity(x) returns a probability density estimate, f, for the sample data in the
vector or two-column matrix x. The estimate is based on a normal kernel function, and is evaluated at
equally-spaced points, xi, that cover the range of the data in x. ksdensity estimates the density at
100 points for univariate data, or 900 points for bivariate data.

ksdensity works best with continuously distributed samples.

[f,xi] = ksdensity(x,pts) specifies points (pts) to evaluate f. Here, xi and pts contain
identical values.

[f,xi] = ksdensity( ___ ,Name,Value) uses additional options specified by one or more name-
value pair arguments in addition to any of the input arguments in the previous syntaxes. For example,
you can define the function type ksdensity evaluates, such as probability density, cumulative
probability, survivor function, and so on. Or you can specify the bandwidth of the smoothing window.

[f,xi,bw] = ksdensity( ___ ) also returns the bandwidth of the kernel smoothing window, bw.
The default bandwidth is the optimal for normal densities.

ksdensity( ___ ) plots the kernel smoothing function estimate.

ksdensity(ax, ___ ) plots the results using axes with the handle, ax, instead of the current axes
returned by gca.

Examples

Estimate Density

Generate a sample data set from a mixture of two normal distributions.

rng('default')  % For reproducibility
x = [randn(30,1); 5+randn(30,1)];

Plot the estimated density.
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[f,xi] = ksdensity(x); 
figure
plot(xi,f);

The density estimate shows the bimodality of the sample.

Estimate Density with Boundary Correction

Generate a nonnegative sample data set from the half-normal distribution.

rng('default') % For reproducibility
pd = makedist('HalfNormal','mu',0,'sigma',1);
x = random(pd,100,1);

Estimate pdfs with two different boundary correction methods, log transformation and reflection, by
using the 'BoundaryCorrection' name-value pair argument.

pts = linspace(0,5,1000); % points to evaluate the estimator
[f1,xi1] = ksdensity(x,pts,'Support','positive');
[f2,xi2] = ksdensity(x,pts,'Support','positive','BoundaryCorrection','reflection');

Plot the two estimated pdfs.

plot(xi1,f1,xi2,f2)
lgd = legend('log','reflection');
title(lgd, 'Boundary Correction Method')
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xl = xlim;
xlim([xl(1)-0.25 xl(2)])

ksdensity uses a boundary correction method when you specify either positive or bounded support.
The default boundary correction method is log transformation. When ksdensity transforms the
support back, it introduces the 1/x term in the kernel density estimator. Therefore, the estimate has
a peak near x = 0. On the other hand, the reflection method does not cause undesirable peaks near
the boundary.

Estimate Cumulative Distribution Function at Specified Values

Load the sample data.

load hospital

Compute and plot the estimated cdf evaluated at a specified set of values.

pts = (min(hospital.Weight):2:max(hospital.Weight));
figure()
ecdf(hospital.Weight)
hold on
[f,xi,bw] = ksdensity(hospital.Weight,pts,'Support','positive',...
    'Function','cdf');
plot(xi,f,'-g','LineWidth',2)
legend('empirical cdf','kernel-bw:default','Location','northwest')
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xlabel('Patient weights')
ylabel('Estimated cdf')

ksdensity seems to smooth the cumulative distribution function estimate too much. An estimate
with a smaller bandwidth might produce a closer estimate to the empirical cumulative distribution
function.

Return the bandwidth of the smoothing window.

bw

bw = 0.1070

Plot the cumulative distribution function estimate using a smaller bandwidth.

[f,xi] = ksdensity(hospital.Weight,pts,'Support','positive',...
    'Function','cdf','Bandwidth',0.05); 
plot(xi,f,'--r','LineWidth',2)
legend('empirical cdf','kernel-bw:default','kernel-bw:0.05',...
    'Location','northwest')
hold off
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The ksdensity estimate with a smaller bandwidth matches the empirical cumulative distribution
function better.

Plot Estimated Cumulative Density Function for Given Number of Points

Load the sample data.

load hospital

Plot the estimated cdf evaluated at 50 equally spaced points.

figure()
ksdensity(hospital.Weight,'Support','positive','Function','cdf',...
'NumPoints',50)
xlabel('Patient weights')
ylabel('Estimated cdf')
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Estimate Survivor and Cumulative Hazard for Censored Failure Data

Generate sample data from an exponential distribution with mean 3.

rng('default')  % For reproducibility
x = random('exp',3,100,1);

Create a logical vector that indicates censoring. Here, observations with lifetimes longer than 10 are
censored.

T = 10;
cens = (x>T);

Compute and plot the estimated density function.

figure
ksdensity(x,'Support','positive','Censoring',cens);
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Compute and plot the survivor function.

figure
ksdensity(x,'Support','positive','Censoring',cens,...
'Function','survivor');
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Compute and plot the cumulative hazard function.

figure
ksdensity(x,'Support','positive','Censoring',cens,...
'Function','cumhazard');
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Estimate Inverse Cumulative Distribution Function for Specified Probability Values

Generate a mixture of two normal distributions, and plot the estimated inverse cumulative
distribution function at a specified set of probability values.

rng('default')  % For reproducibility
x = [randn(30,1); 5+randn(30,1)];
pi = linspace(.01,.99,99);
figure
ksdensity(x,pi,'Function','icdf');
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Return Bandwidth of Smoothing Window

Generate a mixture of two normal distributions.

rng('default')  % For reproducibility
x = [randn(30,1); 5+randn(30,1)];

Return the bandwidth of the smoothing window for the probability density estimate.

[f,xi,bw] = ksdensity(x); 
bw

bw = 1.5141

The default bandwidth is optimal for normal densities.

Plot the estimated density.

figure
plot(xi,f);
xlabel('xi')
ylabel('f')
hold on
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Plot the density using an increased bandwidth value.

[f,xi] = ksdensity(x,'Bandwidth',1.8);
plot(xi,f,'--r','LineWidth',1.5)
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A higher bandwidth further smooths the density estimate, which might mask some characteristics of
the distribution.

Now, plot the density using a decreased bandwidth value.

[f,xi] = ksdensity(x,'Bandwidth',0.8);
plot(xi,f,'-.k','LineWidth',1.5)
legend('bw = default','bw = 1.8','bw = 0.8')
hold off
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A smaller bandwidth smooths the density estimate less, which exaggerates some characteristics of
the sample.

Plot Kernel Density Estimate of Bivariate Data

Create a two-column vector of points at which to evaluate the density.

gridx1 = -0.25:.05:1.25;
gridx2 = 0:.1:15;
[x1,x2] = meshgrid(gridx1, gridx2);
x1 = x1(:);
x2 = x2(:);
xi = [x1 x2];

Generate a 30-by-2 matrix containing random numbers from a mixture of bivariate normal
distributions.

rng('default')  % For reproducibility
x = [0+.5*rand(20,1) 5+2.5*rand(20,1);
            .75+.25*rand(10,1) 8.75+1.25*rand(10,1)];

Plot the estimated density of the sample data.

figure
ksdensity(x,xi);
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Input Arguments
x — Sample data
column vector | two-column matrix

Sample data for which ksdensity returns f values, specified as a column vector or two-column
matrix. Use a column vector for univariate data, and a two-column matrix for bivariate data.
Example: [f,xi] = ksdensity(x)
Data Types: single | double

pts — Points at which to evaluate f
vector | two-column matrix

Points at which to evaluate f, specified as a vector or two-column matrix. For univariate data, pts
can be a row or column vector. The length of the returned output f is equal to the number of points in
pts.
Example: pts = (0:1:25); ksdensity(x,pts);
Data Types: single | double

ax — Axes handle
handle

Axes handle for the figure ksdensity plots to, specified as a handle.
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For example, if h is a handle for a figure, then ksdensity can plot to that figure as follows.
Example: ksdensity(h,x)

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: 'Censoring',cens,'Kernel','triangle','NumPoints',20,'Function','cdf'
specifies that ksdensity estimates the cdf by evaluating at 20 equally spaced points that covers the
range of data, using the triangle kernel smoothing function and accounting for the censored data
information in vector cens.

Bandwidth — Bandwidth of the kernel smoothing window
optimal value for normal densities (default) | scalar value | two-element vector

The bandwidth of the kernel-smoothing window, which is a function of the number of points in x,
specified as the comma-separated pair consisting of 'Bandwidth' and a scalar value. If the sample
data is bivariate, Bandwidth can also be a two-element vector. The default is optimal for estimating
normal densities [1], but you might want to choose a larger or smaller value to smooth more or less.

If you specify 'BoundaryCorrection' as 'log'(default) and 'Support' as either 'positive' or
a vector [L U], ksdensity converts bounded data to be unbounded by using log transformation.
The value of 'Bandwidth' is on the scale of the transformed values.
Example: 'Bandwidth',0.8
Data Types: single | double

BoundaryCorrection — Boundary correction method
'log' (default) | 'reflection'

Boundary correction method, specified as the comma-separated pair consisting of
'BoundaryCorrection' and 'log' or 'reflection'.

Value Description
'log' ksdensity converts bounded data x to be unbounded by one of the following

transformations. Then, it transforms back to the original bounded scale after
density estimation.

• For univariate data, if you specify 'Support','positive', then
ksdensity applies log(x).

• For univariate data, if you specify 'Support',[L U], where L and U are
numeric scalars and L < U, then ksdensity applies log((x-L)/(U–x)).

• For bivariate data, ksdensity transforms each column of x in the same way
with the univariate data.

The value of 'Bandwidth' and the bw output are on the scale of the
transformed values.
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Value Description
'reflection' ksdensity augments bounded data by adding reflected data near the

boundaries, then it returns estimates corresponding to the original support. For
details, see “Reflection Method” on page 35-4085.

ksdensity applies boundary correction only when you specify 'Support' as a value other than
'unbounded'.
Example: 'BoundaryCorrection','reflection'

Censoring — Logical vector
vector of 0s (default) | vector of 0s and 1s

Logical vector indicating which entries are censored, specified as the comma-separated pair
consisting of 'Censoring' and a vector of binary values. A value of 0 indicates there is no
censoring, 1 indicates that observation is censored. Default is there is no censoring. This name-value
pair is only valid for univariate data.
Example: 'Censoring',censdata
Data Types: logical

Function — Function to estimate
'pdf' (default) | 'cdf' | 'icdf' | 'survivor' | 'cumhazard'

Function to estimate, specified as the comma-separated pair consisting of 'Function' and one of
the following.

Value Description
'pdf' Probability density function.
'cdf' Cumulative distribution function.
'icdf' Inverse cumulative distribution function. ksdensity computes the estimated

inverse cdf of the values in x, and evaluates it at the probability values specified
in pi.

This value is valid only for univariate data.
'survivor' Survivor function.
'cumhazard' Cumulative hazard function.

This value is valid only for univariate data.

Example: 'Function','icdf'

Kernel — Type of kernel smoother
'normal' (default) | 'box' | 'triangle' | 'epanechnikov' | function handle | character vector |
string scalar

Type of kernel smoother, specified as the comma-separated pair consisting of 'Kernel' and one of
the following.

• 'normal' (default)
• 'box'
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• 'triangle'
• 'epanechnikov'
• A kernel function that is a custom or built-in function. Specify the function as a function handle

(for example, @myfunction or @normpdf) or as a character vector or string scalar (for example,
'myfunction' or 'normpdf'). The software calls the specified function with one argument that
is an array of distances between data values and locations where the density is evaluated. The
function must return an array of the same size containing corresponding values of the kernel
function.

When 'Function' is 'pdf', the kernel function returns density values. Otherwise, it returns
cumulative probability values.

Specifying a custom kernel when 'Function' is 'icdf' returns an error.

For bivariate data, ksdensity applies the same kernel to each dimension.
Example: 'Kernel','box'

NumPoints — Number of equally spaced points
100 (default) | scalar value

Number of equally spaced points in xi, specified as the comma-separated pair consisting of
'NumPoints' and a scalar value. This name-value pair is only valid for univariate data.

For example, for a kernel smooth estimate of a specified function at 80 equally spaced points within
the range of sample data, input:
Example: 'NumPoints',80
Data Types: single | double

Support — Support for the density
'unbounded' (default) | 'positive' | two-element vector, [L U] | two-by-two matrix, [L1 L2; U1
U2]

Support for the density, specified as the comma-separated pair consisting of 'support' and one of
the following.

Value Description
'unbounded' Default. Allow the density to extend over the whole real line.
'positive' Restrict the density to positive values.
Two-element vector, [L U] Give the finite lower and upper bounds for the support of the density.

This option is only valid for univariate sample data.
Two-by-two matrix, [L1 L2;
U1 U2]

Give the finite lower and upper bounds for the support of the density.
The first row contains the lower limits and the second row contains
the upper limits. This option is only valid for bivariate sample data.

For bivariate data, 'Support' can be a combination of positive, unbounded, or bounded variables
specified as [0 -Inf; Inf Inf] or [0 L; Inf U].
Example: 'Support','positive'
Example: 'Support',[0 10]
Data Types: single | double | char | string
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PlotFcn — Function used to create kernel density plot
'surf' (default) | 'contour' | 'plot3' | 'surfc'

Function used to create kernel density plot, specified as the comma-separated pair consisting of
'PlotFcn' and one of the following.

Value Description
'surf' 3-D shaded surface plot, created using surf
'contour' Contour plot, created using contour
'plot3' 3-D line plot, created using plot3
'surfc' Contour plot under a 3-D shaded surface plot, created using surfc

This name-value pair is only valid for bivariate sample data.
Example: 'PlotFcn','contour'

Weights — Weights for sample data
vector

Weights for sample data, specified as the comma-separated pair consisting of 'Weights' and a
vector of length size(x,1), where x is the sample data.
Example: 'Weights',xw
Data Types: single | double

Output Arguments
f — Estimated function values
vector

Estimated function values, returned as a vector whose length is equal to the number of points in xi
or pts.

xi — Evaluation points
100 equally spaced points | 900 equally spaced points | vector | two-column matrix

Evaluation points at which ksdensity calculates f, returned as a vector or a two-column matrix. For
univariate data, the default is 100 equally-spaced points that cover the range of data in x. For
bivariate data, the default is 900 equally-spaced points created using meshgrid from 30 equally-
spaced points in each dimension.

bw — Bandwidth of smoothing window
scalar value

Bandwidth of smoothing window, returned as a scalar value.

If you specify 'BoundaryCorrection' as 'log'(default) and 'Support' as either 'positive' or
a vector [L U], ksdensity converts bounded data to be unbounded by using log transformation.
The value of bw is on the scale of the transformed values.
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More About
Kernel Distribution

A kernel distribution is a nonparametric representation of the probability density function (pdf) of a
random variable. You can use a kernel distribution when a parametric distribution cannot properly
describe the data, or when you want to avoid making assumptions about the distribution of the data.
A kernel distribution is defined by a smoothing function and a bandwidth value, which control the
smoothness of the resulting density curve.

The kernel density estimator is the estimated pdf of a random variable. For any real values of x, the
kernel density estimator's formula is given by

f h x = 1
nh ∑i = 1

n
K

x− xi
h ,

where x1, x2, …, xn are random samples from an unknown distribution, n is the sample size, K ·  is
the kernel smoothing function, and h is the bandwidth.

The kernel estimator for the cumulative distribution function (cdf), for any real values of x, is given by

F h x =∫−∞
x

f h(t)dt = 1
n ∑i = 1

n
G

x− xi
h ,

where G(x) =∫−∞
x

K(t)dt.

For more details, see “Kernel Distribution” on page B-79.

Reflection Method

The reflection method is a boundary correction method that accurately finds kernel density
estimators when a random variable has bounded support. If you specify
'BoundaryCorrection','reflection', ksdensity uses the reflection method. This method
augments bounded data by adding reflected data near the boundaries, and estimates the pdf. Then,
ksdensity returns the estimated pdf corresponding to the original support with proper
normalization, so that the estimated pdf's integral over the original support is equal to one.

If you additionally specify 'Support',[L U], then ksdensity finds the kernel estimator as follows.

• If 'Function' is 'pdf', then the kernel density estimator is

     f h(x) = 1
nh ∑i = 1

n
K

x− xi
−

h + K
x− xi

h + K
x− xi

+

h  for L ≤ x ≤ U,

where xi
− = 2L− xi, xi

+ = 2U − xi, and xi is the ith sample data.

• If 'Function' is 'cdf', then the kernel estimator for cdf is

     F h(x) = 1
n ∑i = 1

n
G

x− xi
−

h + G
x− xi

h + G
x− xi

+

h − 1
n ∑i = 1

n
G

L− xi
−

h + G
L− xi

h + G
L− xi

+

h
 for L ≤ x ≤ U.
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• To obtain a kernel estimator for an inverse cdf, a survivor function, or a cumulative hazard
function (when 'Function' is 'icdf', 'survivor', or 'cumhazrd'), ksdensity uses both
f h(x) and F h(x).

If you additionally specify 'Support' as 'positive' or [0 inf], then ksdensity finds the kernel
estimator by replacing [L U] with [0 inf] in the above equations.

Version History
Introduced before R2006a

References
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Oxford University Press Inc., 1997.

[2] Hill, P. D. “Kernel estimation of a distribution function.” Communications in Statistics - Theory and
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Extended Capabilities
Tall Arrays
Calculate with arrays that have more rows than fit in memory.

This function supports tall arrays for out-of-memory data with some limitations.

• Some options that require extra passes or sorting of the input data are not supported:

• 'BoundaryCorrection'
• 'Censoring'
• 'Support' (support is always unbounded).

• Uses standard deviation (instead of median absolute deviation) to compute the bandwidth.

For more information, see “Tall Arrays for Out-of-Memory Data”.

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• Plotting is not supported.
• Names in name-value pair arguments must be compile-time constants.
• Values in the following name-value pair arguments must also be compile-time constants:

'BoundaryCorrection', 'Function', and 'Kernel'. For example, to use the
'Function','cdf' name-value pair argument in the generated code, include
{coder.Constant('Function'),coder.Constant('cdf')} in the -args value of codegen.
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• The value of the 'Kernel' name-value pair argument cannot be a custom function handle. To
specify a custom kernel function, use a character vector or string scalar.

• For the value of the 'Support' name-value pair argument, the compile-time data type must
match the runtime data type.

For more information on code generation, see “Introduction to Code Generation” on page 34-2 and
“General Code Generation Workflow” on page 34-5.

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

This function fully supports GPU arrays. For more information, see “Run MATLAB Functions on a
GPU” (Parallel Computing Toolbox).

See Also
histogram | mvksdensity

Topics
“Fit Kernel Distribution Using ksdensity” on page 5-40
“Fit Distributions to Grouped Data Using ksdensity” on page 5-42
“Working with Probability Distributions” on page 5-3
“Nonparametric and Empirical Probability Distributions” on page 5-31
“Supported Distributions” on page 5-16
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kstest
One-sample Kolmogorov-Smirnov test

Syntax
h = kstest(x)
h = kstest(x,Name,Value)
[h,p] = kstest( ___ )
[h,p,ksstat,cv] = kstest( ___ )

Description
h = kstest(x) returns a test decision for the null hypothesis that the data in vector x comes from a
standard normal distribution, against the alternative that it does not come from such a distribution,
using the one-sample Kolmogorov-Smirnov test on page 35-4094. The result h is 1 if the test rejects
the null hypothesis at the 5% significance level, or 0 otherwise.

h = kstest(x,Name,Value) returns a test decision for the one-sample Kolmogorov-Smirnov test
with additional options specified by one or more name-value pair arguments. For example, you can
test for a distribution other than standard normal, change the significance level, or conduct a one-
sided test.

[h,p] = kstest( ___ ) also returns the p-value p of the hypothesis test, using any of the input
arguments from the previous syntaxes.

[h,p,ksstat,cv] = kstest( ___ ) also returns the value of the test statistic ksstat and the
approximate critical value cv of the test.

Examples

Test for Standard Normal Distribution

Perform the one-sample Kolmogorov-Smirnov test by using kstest. Confirm the test decision by
visually comparing the empirical cumulative distribution function (cdf) to the standard normal cdf.

Load the examgrades data set. Create a vector containing the first column of the exam grade data.

load examgrades
test1 = grades(:,1);

Test the null hypothesis that the data comes from a normal distribution with a mean of 75 and a
standard deviation of 10. Use these parameters to center and scale each element of the data vector,
because kstest tests for a standard normal distribution by default.

x = (test1-75)/10;
h = kstest(x)

h = logical
   0
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The returned value of h = 0 indicates that kstest fails to reject the null hypothesis at the default
5% significance level.

Plot the empirical cdf and the standard normal cdf for a visual comparison.

cdfplot(x)
hold on
x_values = linspace(min(x),max(x));
plot(x_values,normcdf(x_values,0,1),'r-')
legend('Empirical CDF','Standard Normal CDF','Location','best')

The figure shows the similarity between the empirical cdf of the centered and scaled data vector and
the cdf of the standard normal distribution.

Specify the Hypothesized Distribution Using a Two-Column Matrix

Load the sample data. Create a vector containing the first column of the students’ exam grades data.

load examgrades;
x = grades(:,1);

Specify the hypothesized distribution as a two-column matrix. Column 1 contains the data vector x.
Column 2 contains cdf values evaluated at each value in x for a hypothesized Student’s t distribution
with a location parameter of 75, a scale parameter of 10, and one degree of freedom.
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test_cdf = [x,cdf('tlocationscale',x,75,10,1)];

Test if the data are from the hypothesized distribution.

h = kstest(x,'CDF',test_cdf)

h = logical
   1

The returned value of h = 1 indicates that kstest rejects the null hypothesis at the default 5%
significance level.

Specify the Hypothesized Distribution Using a Probability Distribution Object

Load the sample data. Create a vector containing the first column of the students’ exam grades data.

load examgrades;
x = grades(:,1);

Create a probability distribution object to test if the data comes from a Student’s t distribution with a
location parameter of 75, a scale parameter of 10, and one degree of freedom.

test_cdf = makedist('tlocationscale','mu',75,'sigma',10,'nu',1);

Test the null hypothesis that the data comes from the hypothesized distribution.

h = kstest(x,'CDF',test_cdf)

h = logical
   1

The returned value of h = 1 indicates that kstest rejects the null hypothesis at the default 5%
significance level.

Test the Hypothesis at Different Significance Levels

Load the sample data. Create a vector containing the first column of the students’ exam grades.

load examgrades;
x = grades(:,1);

Create a probability distribution object to test if the data comes from a Student’s t distribution with a
location parameter of 75, a scale parameter of 10, and one degree of freedom.

test_cdf = makedist('tlocationscale','mu',75,'sigma',10,'nu',1);

Test the null hypothesis that data comes from the hypothesized distribution at the 1% significance
level.

[h,p] = kstest(x,'CDF',test_cdf,'Alpha',0.01)
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h = logical
   1

p = 0.0021

The returned value of h = 1 indicates that kstest rejects the null hypothesis at the 1% significance
level.

Conduct a One-Sided Hypothesis Test

Load the sample data. Create a vector containing the third column of the stock return data matrix.

load stockreturns;
x = stocks(:,3);

Test the null hypothesis that the data comes from a standard normal distribution, against the
alternative hypothesis that the population cdf of the data is larger than the standard normal cdf.

[h,p,k,c] = kstest(x,'Tail','larger')

h = logical
   1

p = 5.0854e-05

k = 0.2197

c = 0.1207

The returned value of h = 1 indicates that kstest rejects the null hypothesis in favor of the
alternative hypothesis at the default 5% significance level.

Plot the empirical cdf and the standard normal cdf for a visual comparison.

[f,x_values] = ecdf(x);
J = plot(x_values,f);
hold on;
K = plot(x_values,normcdf(x_values),'r--');
set(J,'LineWidth',2);
set(K,'LineWidth',2);
legend([J K],'Empirical CDF','Standard Normal CDF','Location','SE');
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The plot shows the difference between the empirical cdf of the data vector x and the cdf of the
standard normal distribution.

Input Arguments
x — Sample data
vector

Sample data, specified as a vector.
Data Types: single | double

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: 'Tail','larger','Alpha',0.01 specifies a test using the alternative hypothesis that
the cdf of the population from which the sample data is drawn is greater than the cdf of the
hypothesized distribution, conducted at the 1% significance level.

Alpha — Significance level
0.05 (default) | scalar value in the range (0,1)
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Significance level of the hypothesis test, specified as the comma-separated pair consisting of
'Alpha' and a scalar value in the range (0,1).
Example: 'Alpha',0.01
Data Types: single | double

CDF — cdf of hypothesized continuous distribution
matrix | probability distribution object

cdf of hypothesized continuous distribution, specified the comma-separated pair consisting of 'CDF'
and either a two-column matrix or a continuous probability distribution object. When CDF is a matrix,
column 1 contains a set of possible x values, and column 2 contains the corresponding hypothesized
cumulative distribution function values G(x). The calculation is most efficient if CDF is specified such
that column 1 contains the values in the data vector x. If there are values in x not found in column 1
of CDF, kstest approximates G(x) by interpolation. All values in x must lie in the interval between
the smallest and largest values in the first column of CDF. By default, kstest tests for a standard
normal distribution.

The one-sample Kolmogorov-Smirnov test on page 35-4094 is only valid for continuous cumulative
distribution functions, and requires CDF to be predetermined. The result is not accurate if CDF is
estimated from the data. To test x against the normal, lognormal, extreme value, Weibull, or
exponential distribution without specifying distribution parameters, use lillietest instead.
Data Types: single | double

Tail — Type of alternative hypothesis
'unequal' (default) | 'larger' | 'smaller'

Type of alternative hypothesis to evaluate, specified as the comma-separated pair consisting of
'Tail' and one of the following.

'unequal' Test the alternative hypothesis that the cdf of the population from which x is
drawn is not equal to the cdf of the hypothesized distribution.

'larger' Test the alternative hypothesis that the cdf of the population from which x is
drawn is greater than the cdf of the hypothesized distribution.

'smaller' Test the alternative hypothesis that the cdf of the population from which x is
drawn is less than the cdf of the hypothesized distribution.

If the values in the data vector x tend to be larger than expected from the hypothesized distribution,
the empirical distribution function of x tends to be smaller, and vice versa.
Example: 'Tail','larger'

Output Arguments
h — Hypothesis test result
1 | 0

Hypothesis test result, returned as a logical value.

• If h = 1, this indicates the rejection of the null hypothesis at the Alpha significance level.
• If h = 0, this indicates a failure to reject the null hypothesis at the Alpha significance level.
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p — p-value
scalar value in the range [0,1]

p-value of the test, returned as a scalar value in the range [0,1]. p is the probability of observing a
test statistic as extreme as, or more extreme than, the observed value under the null hypothesis.
Small values of p cast doubt on the validity of the null hypothesis.

ksstat — Test statistic
nonnegative scalar value

Test statistic of the hypothesis test, returned as a nonnegative scalar value.

cv — Critical value
nonnegative scalar value

Critical value, returned as a nonnegative scalar value.

More About
One-Sample Kolmogorov-Smirnov Test

The one-sample Kolmogorov-Smirnov test is a nonparametric test of the null hypothesis that the
population cdf of the data is equal to the hypothesized cdf.

The two-sided test for “unequal” cdf functions tests the null hypothesis against the alternative that
the population cdf of the data is not equal to the hypothesized cdf. The test statistic is the maximum
absolute difference between the empirical cdf calculated from x and the hypothesized cdf:

D* = max
x

F x − G x ,

where F x  is the empirical cdf and G x  is the cdf of the hypothesized distribution.

The one-sided test for a “larger” cdf function tests the null hypothesis against the alternative that the
population cdf of the data is greater than the hypothesized cdf. The test statistic is the maximum
amount by which the empirical cdf calculated from x exceeds the hypothesized cdf:

D* = max
x

F x − G x .

The one-sided test for a “smaller” cdf function tests the null hypothesis against the alternative that
the population cdf of the data is less than the hypothesized cdf. The test statistic is the maximum
amount by which the hypothesized cdf exceeds the empirical cdf calculated from x:

D* = max
x

G x − F x .

kstest computes the critical value cv using an approximate formula or by interpolation in a table.
The formula and table cover the range 0.01 ≤ alpha ≤ 0.2 for two-sided tests and 0.005 ≤ alpha
≤ 0.1 for one-sided tests. cv is returned as NaN if alpha is outside this range.

Algorithms
kstest decides to reject the null hypothesis by comparing the p-value p with the significance level
Alpha, not by comparing the test statistic ksstat with the critical value cv. Since cv is
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approximate, comparing ksstat with cv occasionally leads to a different conclusion than comparing
p with Alpha.

Version History
Introduced before R2006a

References
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See Also
kstest2 | lillietest | adtest

 kstest

35-4095



kstest2
Two-sample Kolmogorov-Smirnov test

Syntax
h = kstest2(x1,x2)
h = kstest2(x1,x2,Name,Value)
[h,p] = kstest2( ___ )
[h,p,ks2stat] = kstest2( ___ )

Description
h = kstest2(x1,x2) returns a test decision for the null hypothesis that the data in vectors x1 and
x2 are from the same continuous distribution, using the two-sample Kolmogorov-Smirnov test on
page 35-4099. The alternative hypothesis is that x1 and x2 are from different continuous
distributions. The result h is 1 if the test rejects the null hypothesis at the 5% significance level, and 0
otherwise.

h = kstest2(x1,x2,Name,Value) returns a test decision for a two-sample Kolmogorov-Smirnov
test with additional options specified by one or more name-value pair arguments. For example, you
can change the significance level or conduct a one-sided test.

[h,p] = kstest2( ___ ) also returns the asymptotic p-value p, using any of the input arguments
from the previous syntaxes.

[h,p,ks2stat] = kstest2( ___ ) also returns the test statistic ks2stat.

Examples

Test Two Samples for the Same Distribution

Generate sample data from two different Weibull distributions.

rng(1);     % For reproducibility
x1 = wblrnd(1,1,1,50);
x2 = wblrnd(1.2,2,1,50);

Test the null hypothesis that data in vectors x1 and x2 comes from populations with the same
distribution.

h = kstest2(x1,x2)

h = logical
   1

The returned value of h = 1 indicates that kstest rejects the null hypothesis at the default 5%
significance level.
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Test the Hypothesis at Different Significance Levels

Generate sample data from two different Weibull distributions.

rng(1);     % For reproducibility
x1 = wblrnd(1,1,1,50);
x2 = wblrnd(1.2,2,1,50);

Test the null hypothesis that data vectors x1 and x2 are from populations with the same distribution
at the 1% significance level.

[h,p] = kstest2(x1,x2,'Alpha',0.01)

h = logical
   0

p = 0.0317

The returned value of h = 0 indicates that kstest does not reject the null hypothesis at the 1%
significance level.

One-Sided Hypothesis Test

Generate sample data from two different Weibull distributions.

rng(1);     % For reproducibility
x1 = wblrnd(1,1,1,50);
x2 = wblrnd(1.2,2,1,50);

Test the null hypothesis that data in vectors x1 and x2 comes from populations with the same
distribution, against the alternative hypothesis that the cdf of the distribution of x1 is larger than the
cdf of the distribution of x2.

[h,p,k] = kstest2(x1,x2,'Tail','larger')

h = logical
   1

p = 0.0158

k = 0.2800

The returned value of h = 1 indicates that kstest rejects the null hypothesis, in favor of the
alternative hypothesis that the cdf of the distribution of x1 is larger than the cdf of the distribution of
x2, at the default 5% significance level. The returned value of k is the test statistic for the two-sample
Kolmogorov-Smirnov test.

Input Arguments
x1 — Sample data
vector
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Sample data from the first sample, specified as a vector. Data vectors x1 and x2 do not need to be the
same size.
Data Types: single | double

x2 — Sample data
vector

Sample data from the second sample, specified as a vector. Data vectors x1 and x2 do not need to be
the same size.
Data Types: single | double

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: 'Tail','larger','Alpha',0.01 specifies a test using the alternative hypothesis that
the empirical cdf of x1 is larger than the empirical cdf of x2, conducted at the 1% significance level.

Alpha — Significance level
0.05 (default) | scalar value in the range (0,1)

Significance level of the hypothesis test, specified as the comma-separated pair consisting of
'Alpha' and a scalar value in the range (0,1).
Example: 'Alpha',0.01
Data Types: single | double

Tail — Type of alternative hypothesis
'unequal' (default) | 'larger' | 'smaller'

Type of alternative hypothesis to evaluate, specified as the comma-separated pair consisting of
'Tail' and one of the following.

'unequal' Test the alternative hypothesis that the empirical cdf of x1 is unequal to the
empirical cdf of x2.

'larger' Test the alternative hypothesis that the empirical cdf of x1 is larger than the
empirical cdf of x2.

'smaller' Test the alternative hypothesis that the empirical cdf of x1 is smaller than the
empirical cdf of x2.

If the data values in x1 tend to be larger than those in x2, the empirical distribution function of x1
tends to be smaller than that of x2, and vice versa.
Example: 'Tail','larger'

Output Arguments
h — Hypothesis test result
1 | 0
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Hypothesis test result, returned as a logical value.

• If h = 1, this indicates the rejection of the null hypothesis at the Alpha significance level.
• If h = 0, this indicates a failure to reject the null hypothesis at the Alpha significance level.

p — Asymptotic p-value
scalar value in the range (0,1)

Asymptotic p-value of the test, returned as a scalar value in the range (0,1). p is the probability of
observing a test statistic as extreme as, or more extreme than, the observed value under the null
hypothesis. The asymptotic p-value becomes very accurate for large sample sizes, and is believed to
be reasonably accurate for sample sizes n1 and n2, such that (n1*n2)/(n1 + n2) ≥ 4.

ks2stat — Test statistic
nonnegative scalar value

Test statistic, returned as a nonnegative scalar value.

More About
Two-Sample Kolmogorov-Smirnov Test

The two-sample Kolmogorov-Smirnov test is a nonparametric hypothesis test that evaluates the
difference between the cdfs of the distributions of the two sample data vectors over the range of x in
each data set.

The two-sided test uses the maximum absolute difference between the cdfs of the distributions of the
two data vectors. The test statistic is

D* = max
x

F 1 x − F 2 x ,

where F 1 x  is the proportion of x1 values less than or equal to x and F 2 x  is the proportion of x2
values less than or equal to x.

The one-sided test uses the actual value of the difference between the cdfs of the distributions of the
two data vectors rather than the absolute value. The test statistic is

D* = max
x

F 1 x − F 2 x .

Algorithms
In kstest2, the decision to reject the null hypothesis is based on comparing the p-value p with the
significance level Alpha, not by comparing the test statistic ks2stat with a critical value.

Version History
Introduced before R2006a
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See Also
kstest | lillietest | adtest
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kurtosis
Kurtosis

Syntax
k = kurtosis(X)
k = kurtosis(X,flag)
k = kurtosis(X,flag,'all')
k = kurtosis(X,flag,dim)
k = kurtosis(X,flag,vecdim)

Description
k = kurtosis(X) returns the sample kurtosis of X.

• If X is a vector, then kurtosis(X) returns a scalar value that is the kurtosis of the elements in X.
• If X is a matrix, then kurtosis(X) returns a row vector that contains the sample kurtosis of each

column in X.
• If X is a multidimensional array, then kurtosis(X) operates along the first nonsingleton

dimension of X.

k = kurtosis(X,flag) specifies whether to correct for bias (flag is 0) or not (flag is 1, the
default). When X represents a sample from a population, the kurtosis of X is biased, meaning it tends
to differ from the population kurtosis by a systematic amount based on the sample size. You can set
flag to 0 to correct for this systematic bias.

k = kurtosis(X,flag,'all') returns the kurtosis of all elements of X.

k = kurtosis(X,flag,dim) returns the kurtosis along the operating dimension dim of X.

k = kurtosis(X,flag,vecdim) returns the kurtosis over the dimensions specified in the vector
vecdim. For example, if X is a 2-by-3-by-4 array, then kurtosis(X,1,[1 2]) returns a 1-by-1-by-4
array. Each element of the output array is the biased kurtosis of the elements on the corresponding
page of X.

Examples

Find Kurtosis of Matrix

Set the random seed for reproducibility of the results.

rng('default')

Generate a matrix with 5 rows and 4 columns.

X = randn(5,4)

X = 5×4
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    0.5377   -1.3077   -1.3499   -0.2050
    1.8339   -0.4336    3.0349   -0.1241
   -2.2588    0.3426    0.7254    1.4897
    0.8622    3.5784   -0.0631    1.4090
    0.3188    2.7694    0.7147    1.4172

Find the sample kurtosis of X.

k = kurtosis(X)

k = 1×4

    2.7067    1.4069    2.3783    1.1759

k is a row vector containing the sample kurtosis of each column in X.

Correct for Bias in Sample Kurtosis

For an input vector, correct for bias in the calculation of kurtosis by specifying the flag input
argument.

Set the random seed for reproducibility of the results.

rng('default') 

Generate a vector of length 10.

x = randn(10,1)

x = 10×1

    0.5377
    1.8339
   -2.2588
    0.8622
    0.3188
   -1.3077
   -0.4336
    0.3426
    3.5784
    2.7694

Find the biased kurtosis of x. By default, kurtosis sets the value of flag to 1 for computing the
biased kurtosis.

k1 = kurtosis(x) % flag is 1 by default

k1 = 2.3121

Find the bias-corrected kurtosis of x by setting the value of flag to 0.

k2 = kurtosis(x,0) 

k2 = 2.7483
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Find Kurtosis Along Given Dimension

Find the kurtosis along different dimensions for a multidimensional array.

Set the random seed for reproducibility of the results.

rng('default') 

Create a 4-by-3-by-2 array of random numbers.

X = randn([4,3,2])

X = 
X(:,:,1) =

    0.5377    0.3188    3.5784
    1.8339   -1.3077    2.7694
   -2.2588   -0.4336   -1.3499
    0.8622    0.3426    3.0349

X(:,:,2) =

    0.7254   -0.1241    0.6715
   -0.0631    1.4897   -1.2075
    0.7147    1.4090    0.7172
   -0.2050    1.4172    1.6302

Find the kurtosis of X along the default dimension.

k1 = kurtosis(X)

k1 = 
k1(:,:,1) =

    2.1350    1.7060    2.2789

k1(:,:,2) =

    1.0542    2.3278    2.0996

By default, kurtosis operates along the first dimension of X whose size does not equal 1. In this
case, this dimension is the first dimension of X. Therefore, k1 is a 1-by-3-by-2 array.

Find the biased kurtosis of X along the second dimension.

k2 = kurtosis(X,1,2)

k2 = 
k2(:,:,1) =

    1.5000
    1.5000
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    1.5000
    1.5000

k2(:,:,2) =

    1.5000
    1.5000
    1.5000
    1.5000

k2 is a 4-by-1-by-2 array.

Find the biased kurtosis of X along the third dimension.

k3 = kurtosis(X,1,3)

k3 = 4×3

    1.0000    1.0000    1.0000
    1.0000    1.0000    1.0000
    1.0000    1.0000    1.0000
    1.0000    1.0000    1.0000

k3 is a 4-by-3 matrix.

Find Kurtosis Along Vector of Dimensions

Find the kurtosis over multiple dimensions by using the 'all' and vecdim input arguments.

Set the random seed for reproducibility of the results.

rng('default')

Create a 4-by-3-by-2 array of random numbers.

X = randn([4 3 2])

X = 
X(:,:,1) =

    0.5377    0.3188    3.5784
    1.8339   -1.3077    2.7694
   -2.2588   -0.4336   -1.3499
    0.8622    0.3426    3.0349

X(:,:,2) =

    0.7254   -0.1241    0.6715
   -0.0631    1.4897   -1.2075
    0.7147    1.4090    0.7172
   -0.2050    1.4172    1.6302
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Find the biased kurtosis of X.

kall = kurtosis(X,1,'all')

kall = 2.8029

kall is the biased kurtosis of the entire input data set X.

Find the biased kurtosis of each page of X by specifying the first and second dimensions.

kpage = kurtosis(X,1,[1 2])

kpage = 
kpage(:,:,1) =

    1.9345

kpage(:,:,2) =

    2.5877

For example, kpage(1,1,2) is the biased kurtosis of the elements in X(:,:,2).

Find the biased kurtosis of the elements in each X(i,:,:) slice by specifying the second and third
dimensions.

krow = kurtosis(X,1,[2 3])

krow = 4×1

    3.8457
    1.4306
    1.7094
    2.3378

For example, krow(3) is the biased kurtosis of the elements in X(3,:,:).

Input Arguments
X — Input data
vector | matrix | multidimensional array

Input data that represents a sample from a population, specified as a vector, matrix, or
multidimensional array.

• If X is a vector, then kurtosis(X) returns a scalar value that is the kurtosis of the elements in X.
• If X is a matrix, then kurtosis(X) returns a row vector that contains the sample kurtosis of each

column in X.
• If X is a multidimensional array, then kurtosis(X) operates along the first nonsingleton

dimension of X.

To specify the operating dimension when X is a matrix or an array, use the dim input argument.
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kurtosis treats NaN values in X as missing values and removes them.
Data Types: single | double

flag — Indicator for bias
1 (default) | 0

Indicator for the bias, specified as 0 or 1.

• If flag is 1 (default), then the kurtosis of X is biased, meaning it tends to differ from the
population kurtosis by a systematic amount based on the sample size.

• If flag is 0, then kurtosis corrects for the systematic bias.

Data Types: single | double | logical

dim — Dimension
positive integer

Dimension along which to operate, specified as a positive integer. If you do not specify a value for
dim, then the default is the first dimension of X whose size does not equal 1.

Consider the kurtosis of a matrix X:

• If dim is equal to 1, then kurtosis returns a row vector that contains the sample kurtosis of each
column in X.

• If dim is equal to 2, then kurtosis returns a column vector that contains the sample kurtosis of
each row in X.

If dim is greater than ndims(X) or if size(X,dim) is 1, then kurtosis returns an array of NaNs
the same size as X.
Data Types: single | double

vecdim — Vector of dimensions
positive integer vector

Vector of dimensions, specified as a positive integer vector. Each element of vecdim represents a
dimension of the input array X. The output k has length 1 in the specified operating dimensions. The
other dimension lengths are the same for X and k.

For example, if X is a 2-by-3-by-3 array, then kurtosis(X,1,[1 2]) returns a 1-by-1-by-3 array.
Each element of the output is the biased kurtosis of the elements on the corresponding page of X.

Data Types: single | double
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Output Arguments
k — Kurtosis
scalar | vector | matrix | multidimensional array

Kurtosis, returned as a scalar, vector, matrix, or multidimensional array.

Algorithms
Kurtosis is a measure of how outlier-prone a distribution is. The kurtosis of the normal distribution on
page B-125 is 3. Distributions that are more outlier-prone than the normal distribution have kurtosis
greater than 3; distributions that are less outlier-prone have kurtosis less than 3. Some definitions of
kurtosis subtract 3 from the computed value, so that the normal distribution has kurtosis of 0. The
kurtosis function does not use this convention.

The kurtosis of a distribution is defined as

k = E(x− μ)4

σ4 ,

where μ is the mean of x, σ is the standard deviation of x, and E(t) represents the expected value of
the quantity t. The kurtosis function computes a sample version of this population value.

When you set flag to 1, the kurtosis is biased, and the following equation applies:

k1 =

1
n ∑i = 1

n
xi− x 4

1
n ∑i = 1

n
xi− x 2

2 .

When you set flag to 0, kurtosis corrects for the systematic bias, and the following equation
applies:

k0 = n− 1
n− 2 n− 3 n + 1 k1− 3 n− 1 + 3.

This bias-corrected equation requires that X contain at least four elements.

Version History
Introduced before R2006a

Extended Capabilities
Tall Arrays
Calculate with arrays that have more rows than fit in memory.

This function fully supports tall arrays. For more information, see “Tall Arrays”.

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.
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Usage notes and limitations:

• The 'all' and vecdim input arguments are not supported.
• The dim input argument must be a compile-time constant.
• If you do not specify the dim input argument, the working (or operating) dimension can be
different in the generated code. As a result, run-time errors can occur. For more details, see
“Automatic dimension restriction” (MATLAB Coder).

For more information on code generation, see “Introduction to Code Generation” on page 34-2 and
“General Code Generation Workflow” on page 34-5.

Thread-Based Environment
Run code in the background using MATLAB® backgroundPool or accelerate code with Parallel
Computing Toolbox™ ThreadPool.

This function fully supports thread-based environments. For more information, see “Run MATLAB
Functions in Thread-Based Environment”.

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

Usage notes and limitations:

• The 'all' and vecdim input arguments are not supported.

For more information, see “Run MATLAB Functions on a GPU” (Parallel Computing Toolbox).

See Also
mean | moment | skewness | std | var

Topics
“Normal Distribution” on page B-125
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lasso
Lasso or elastic net regularization for linear models

Syntax
B = lasso(X,y)
B = lasso(X,y,Name,Value)
[B,FitInfo] = lasso( ___ )

Description
B = lasso(X,y) returns fitted least-squares regression coefficients for linear models of the
predictor data X and the response y. Each column of B corresponds to a particular regularization
coefficient in Lambda. By default, lasso performs lasso regularization using a geometric sequence of
Lambda values.

B = lasso(X,y,Name,Value) fits regularized regressions with additional options specified by one
or more name-value pair arguments. For example, 'Alpha',0.5 sets elastic net as the regularization
method, with the parameter Alpha equal to 0.5.

[B,FitInfo] = lasso( ___ ) also returns the structure FitInfo, which contains information
about the fit of the models, using any of the input arguments in the previous syntaxes.

Examples

Remove Redundant Predictors Using Lasso Regularization

Construct a data set with redundant predictors and identify those predictors by using lasso.

Create a matrix X of 100 five-dimensional normal variables. Create a response vector y from just two
components of X, and add a small amount of noise.

rng default % For reproducibility
X = randn(100,5);
weights = [0;2;0;-3;0]; % Only two nonzero coefficients
y = X*weights + randn(100,1)*0.1; % Small added noise

Construct the default lasso fit.

B = lasso(X,y);

Find the coefficient vector for the 25th Lambda value in B.

B(:,25)

ans = 5×1

         0
    1.6093
         0
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   -2.5865
         0

lasso identifies and removes the redundant predictors.

Create Linear Model Without Intercept Term Using Lasso Regularization

Create sample data with predictor variable X and response variable y = 0 + 2X + ε.

rng('default') % For reproducibility
X = rand(100,1);
y = 2*X + randn(100,1)/10;

Specify a regularization value, and find the coefficient of the regression model without an intercept
term.

lambda = 1e-03;
B = lasso(X,y,'Lambda',lambda,'Intercept',false)

Warning: When the 'Intercept' value is false, the 'Standardize' value is set to false.

B = 1.9825

Plot the real values (points) against the predicted values (line).

scatter(X,y)
hold on
x = 0:0.1:1;
plot(x,x*B)
hold off
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Remove Redundant Predictors by Using Cross-Validated Fits

Construct a data set with redundant predictors and identify those predictors by using cross-validated
lasso.

Create a matrix X of 100 five-dimensional normal variables. Create a response vector y from two
components of X, and add a small amount of noise.

rng default % For reproducibility
X = randn(100,5);
weights = [0;2;0;-3;0]; % Only two nonzero coefficients
y = X*weights + randn(100,1)*0.1; % Small added noise

Construct the lasso fit by using 10-fold cross-validation with labeled predictor variables.

[B,FitInfo] = lasso(X,y,'CV',10,'PredictorNames',{'x1','x2','x3','x4','x5'});

Display the variables in the model that corresponds to the minimum cross-validated mean squared
error (MSE).

idxLambdaMinMSE = FitInfo.IndexMinMSE;
minMSEModelPredictors = FitInfo.PredictorNames(B(:,idxLambdaMinMSE)~=0)
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minMSEModelPredictors = 1x2 cell
    {'x2'}    {'x4'}

Display the variables in the sparsest model within one standard error of the minimum MSE.

idxLambda1SE = FitInfo.Index1SE;
sparseModelPredictors = FitInfo.PredictorNames(B(:,idxLambda1SE)~=0)

sparseModelPredictors = 1x2 cell
    {'x2'}    {'x4'}

In this example, lasso identifies the same predictors for the two models and removes the redundant
predictors.

Lasso Plot with Cross-Validated Fits

Visually examine the cross-validated error of various levels of regularization.

Load the sample data.

load acetylene

Create a design matrix with interactions and no constant term.

X = [x1 x2 x3];
D = x2fx(X,'interaction');
D(:,1) = []; % No constant term

Construct the lasso fit using 10-fold cross-validation. Include the FitInfo output so you can plot the
result.

rng default % For reproducibility 
[B,FitInfo] = lasso(D,y,'CV',10);

Plot the cross-validated fits.

lassoPlot(B,FitInfo,'PlotType','CV');
legend('show') % Show legend
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The green circle and dotted line locate the Lambda with minimum cross-validation error. The blue
circle and dotted line locate the point with minimum cross-validation error plus one standard error.

Predict Values Using Elastic Net Regularization

Predict students' exam scores using lasso and the elastic net method.

Load the examgrades data set.

load examgrades
X = grades(:,1:4);
y = grades(:,5);

Split the data into training and test sets.

n = length(y);
c = cvpartition(n,'HoldOut',0.3);
idxTrain = training(c,1);
idxTest = ~idxTrain;
XTrain = X(idxTrain,:);
yTrain = y(idxTrain);
XTest = X(idxTest,:);
yTest = y(idxTest);
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Find the coefficients of a regularized linear regression model using 10-fold cross-validation and the
elastic net method with Alpha = 0.75. Use the largest Lambda value such that the mean squared
error (MSE) is within one standard error of the minimum MSE.

[B,FitInfo] = lasso(XTrain,yTrain,'Alpha',0.75,'CV',10);
idxLambda1SE = FitInfo.Index1SE;
coef = B(:,idxLambda1SE);
coef0 = FitInfo.Intercept(idxLambda1SE);

Predict exam scores for the test data. Compare the predicted values to the actual exam grades using
a reference line.

yhat = XTest*coef + coef0;
hold on
scatter(yTest,yhat)
plot(yTest,yTest)
xlabel('Actual Exam Grades')
ylabel('Predicted Exam Grades')
hold off

Use Correlation Matrix for Fitting Lasso

Create a matrix X of N p-dimensional normal variables, where N is large and p = 1000. Create a
response vector y from the model y = beta0 + X*p, where beta0 is a constant, along with
additive noise.
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rng default % For reproducibility
N = 1e4; % Number of samples
p = 1e3; % Number of features
X = randn(N,p);
beta = randn(p,1); % Multiplicative coefficients
beta0 = randn; % Additive term
y = beta0 + X*beta + randn(N,1); % Last term is noise

Construct the default lasso fit. Time the creation.

B = lasso(X,y,"UseCovariance",false); % Warm up lasso for reliable timing data
tic
B = lasso(X,y,"UseCovariance",false);
timefalse = toc

timefalse = 45.5558

Construct the lasso fit using the covariance matrix. Time the creation.

B2 = lasso(X,y,"UseCovariance",true); % Warm up lasso for reliable timing data
tic
B2 = lasso(X,y,"UseCovariance",true);
timetrue = toc

timetrue = 1.5506

The fitting time with the covariance matrix is much less than the time without it. View the speedup
factor that results from using the covariance matrix.

speedup = timefalse/timetrue

speedup = 29.3795

Check that the returned coefficients B and B2 are similar.

norm(B-B2)/norm(B)

ans = 3.3932e-15

The results are virtually identical.

Input Arguments
X — Predictor data
numeric matrix

Predictor data, specified as a numeric matrix. Each row represents one observation, and each column
represents one predictor variable.
Data Types: single | double

y — Response data
numeric vector

Response data, specified as a numeric vector. y has length n, where n is the number of rows of X. The
response y(i) corresponds to the ith row of X.
Data Types: single | double
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Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: lasso(X,y,'Alpha',0.75,'CV',10) performs elastic net regularization with 10-fold
cross-validation. The 'Alpha',0.75 name-value pair argument sets the parameter used in the
elastic net optimization.

AbsTol — Absolute error tolerance
1e–4 (default) | positive scalar

Absolute error tolerance used to determine the convergence of the “ADMM Algorithm” on page 35-
4123, specified as the comma-separated pair consisting of 'AbsTol' and a positive scalar. The
algorithm converges when successive estimates of the coefficient vector differ by an amount less than
AbsTol.

Note This option applies only when you use lasso on tall arrays. See “Extended Capabilities” on
page 35-0  for more information.

Example: 'AbsTol',1e–3
Data Types: single | double

Alpha — Weight of lasso versus ridge optimization
1 (default) | positive scalar

Weight of lasso (L1) versus ridge (L2) optimization, specified as the comma-separated pair consisting
of 'Alpha' and a positive scalar value in the interval (0,1]. The value Alpha = 1 represents lasso
regression, Alpha close to 0 approaches ridge regression on page 11-111, and other values represent
elastic net optimization. See “Elastic Net” on page 35-4122.
Example: 'Alpha',0.5
Data Types: single | double

B0 — Initial values for x-coefficients in ADMM Algorithm
vector of zeros (default) | numeric vector

Initial values for x-coefficients in “ADMM Algorithm” on page 35-4123, specified as the comma-
separated pair consisting of 'B0' and a numeric vector.

Note This option applies only when you use lasso on tall arrays. See “Extended Capabilities” on
page 35-0  for more information.

Data Types: single | double

CacheSize — Size of covariance matrix in megabytes
1000 (default) | positive scalar | 'maximal'
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Size of the covariance matrix in megabytes, specified as a positive scalar or 'maximal'. The lasso
function can use a covariance matrix for fitting when the UseCovariance argument is true or
'auto'.

If UseCovariance is true or 'auto' and CacheSize is 'maximal', lasso can attempt to allocate
a covariance matrix that exceeds the available memory. In this case, MATLAB issues an error.
Example: 'CacheSize','maximal'
Data Types: double | char | string

CV — Cross-validation specification for estimating mean squared error
'resubstitution' (default) | positive integer scalar | cvpartition object

Cross-validation specification for estimating the mean squared error (MSE), specified as the comma-
separated pair consisting of 'CV' and one of the following:

• 'resubstitution' — lasso uses X and y to fit the model and to estimate the MSE without
cross-validation.

• Positive scalar integer K — lasso uses K-fold cross-validation.
• cvpartition object cvp — lasso uses the cross-validation method expressed in cvp. You cannot

use a 'leaveout' partition with lasso.

Example: 'CV',3

DFmax — Maximum number of nonzero coefficients
Inf (default) | positive integer scalar

Maximum number of nonzero coefficients in the model, specified as the comma-separated pair
consisting of 'DFmax' and a positive integer scalar. lasso returns results only for Lambda values
that satisfy this criterion.
Example: 'DFmax',5
Data Types: single | double

Intercept — Flag for fitting the model with intercept term
true (default) | false

Flag for fitting the model with the intercept term, specified as the comma-separated pair consisting of
'Intercept' and either true or false. The default value is true, which indicates to include the
intercept term in the model. If Intercept is false, then the returned intercept value is 0.
Example: 'Intercept',false
Data Types: logical

Lambda — Regularization coefficients
nonnegative vector

Regularization coefficients, specified as the comma-separated pair consisting of 'Lambda' and a
vector of nonnegative values. See “Lasso” on page 35-4122.

• If you do not supply Lambda, then lasso calculates the largest value of Lambda that gives a
nonnull model. In this case, LambdaRatio gives the ratio of the smallest to the largest value of
the sequence, and NumLambda gives the length of the vector.
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• If you supply Lambda, then lasso ignores LambdaRatio and NumLambda.
• If Standardize is true, then Lambda is the set of values used to fit the models with the X data

standardized to have zero mean and a variance of one.

The default is a geometric sequence of NumLambda values, with only the largest value able to produce
B = 0.
Example: 'Lambda',linspace(0,1)
Data Types: single | double

LambdaRatio — Ratio of smallest to largest Lambda values
1e–4 (default) | positive scalar

Ratio of the smallest to the largest Lambda values when you do not supply Lambda, specified as the
comma-separated pair consisting of 'LambdaRatio' and a positive scalar.

If you set LambdaRatio = 0, then lasso generates a default sequence of Lambda values and
replaces the smallest one with 0.
Example: 'LambdaRatio',1e–2
Data Types: single | double

MaxIter — Maximum number of iterations allowed
positive integer scalar

Maximum number of iterations allowed, specified as the comma-separated pair consisting of
'MaxIter' and a positive integer scalar.

If the algorithm executes MaxIter iterations before reaching the convergence tolerance RelTol,
then the function stops iterating and returns a warning message.

The function can return more than one warning when NumLambda is greater than 1.

Default values are 1e5 for standard data and 1e4 for tall arrays.
Example: 'MaxIter',1e3
Data Types: single | double

MCReps — Number of Monte Carlo repetitions for cross-validation
1 (default) | positive integer scalar

Number of Monte Carlo repetitions for cross-validation, specified as the comma-separated pair
consisting of 'MCReps' and a positive integer scalar.

• If CV is 'resubstitution' or a cvpartition of type 'resubstitution', then MCReps must
be 1.

• If CV is a cvpartition of type 'holdout', then MCReps must be greater than 1.

Example: 'MCReps',5
Data Types: single | double

NumLambda — Number of Lambda values
100 (default) | positive integer scalar
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Number of Lambda values lasso uses when you do not supply Lambda, specified as the comma-
separated pair consisting of 'NumLambda' and a positive integer scalar. lasso can return fewer than
NumLambda fits if the residual error of the fits drops below a threshold fraction of the variance of y.
Example: 'NumLambda',50
Data Types: single | double

Options — Option to cross-validate in parallel and specify random streams
structure

Option to cross-validate in parallel and specify the random streams, specified as the comma-
separated pair consisting of 'Options' and a structure. This option requires Parallel Computing
Toolbox.

Create the Options structure with statset. The option fields are:

• UseParallel — Set to true to compute in parallel. The default is false.
• UseSubstreams — Set to true to compute in parallel in a reproducible fashion. For

reproducibility, set Streams to a type allowing substreams: 'mlfg6331_64' or 'mrg32k3a'. The
default is false.

• Streams — A RandStream object or cell array consisting of one such object. If you do not specify
Streams, then lasso uses the default stream.

Example: 'Options',statset('UseParallel',true)
Data Types: struct

PredictorNames — Names of predictor variables
{} (default) | string array | cell array of character vectors

Names of the predictor variables, in the order in which they appear in X, specified as the comma-
separated pair consisting of 'PredictorNames' and a string array or cell array of character
vectors.
Example: 'PredictorNames',{'x1','x2','x3','x4'}
Data Types: string | cell

RelTol — Convergence threshold for coordinate descent algorithm
1e–4 (default) | positive scalar

Convergence threshold for the coordinate descent algorithm [3], specified as the comma-separated
pair consisting of 'RelTol' and a positive scalar. The algorithm terminates when successive
estimates of the coefficient vector differ in the L2 norm by a relative amount less than RelTol.
Example: 'RelTol',5e–3
Data Types: single | double

Rho — Augmented Lagrangian parameter
positive scalar

Augmented Lagrangian parameter ρ for the “ADMM Algorithm” on page 35-4123, specified as the
comma-separated pair consisting of 'Rho' and a positive scalar. The default is automatic selection.
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Note This option applies only when you use lasso on tall arrays. See “Extended Capabilities” on
page 35-0  for more information.

Example: 'Rho',2
Data Types: single | double

Standardize — Flag for standardizing predictor data before fitting models
true (default) | false

Flag for standardizing the predictor data X before fitting the models, specified as the comma-
separated pair consisting of 'Standardize' and either true or false. If Standardize is true,
then the X data is scaled to have zero mean and a variance of one. Standardize affects whether the
regularization is applied to the coefficients on the standardized scale or the original scale. The results
are always presented on the original data scale.

If Intercept is false, then the software sets Standardize to false, regardless of the
Standardize value you specify.

X and y are always centered when Intercept is true.
Example: 'Standardize',false
Data Types: logical

UseCovariance — Indication to use covariance matrix for fitting
'auto' (default) | logical scalar

Indication to use a covariance matrix for fitting, specified as 'auto' or a logical scalar.

• 'auto' causes lasso to attempt to use a covariance matrix for fitting when the number of
observations is greater than the number of problem variables. This attempt can fail when memory
is insufficient. To find out whether lasso used a covariance matrix for fitting, examine the
UseCovariance field of the FitInfo output.

• true causes lasso to use a covariance matrix for fitting as long as the required size does not
exceed CacheSize. If the required covariance matrix size exceeds CacheSize, lasso issues a
warning and does not use a covariance matrix for fitting.

• false causes lasso not to use a covariance matrix for fitting.

Using a covariance matrix for fitting can be faster than not using one, but can require more memory.
See “Use Correlation Matrix for Fitting Lasso” on page 35-4114. The speed increase can negatively
affect numerical stability. For details, see “Coordinate Descent Algorithm” on page 35-4122.
Example: 'UseCovariance',true
Data Types: logical | char | string

U0 — Initial value of scaled dual variable
vector of zeros (default) | numeric vector

Initial value of the scaled dual variable u in the “ADMM Algorithm” on page 35-4123, specified as the
comma-separated pair consisting of 'U0' and a numeric vector.

Note This option applies only when you use lasso on tall arrays. See “Extended Capabilities” on
page 35-0  for more information.
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Data Types: single | double

Weights — Observation weights
1/n*ones(n,1) (default) | nonnegative vector

Observation weights, specified as the comma-separated pair consisting of 'Weights' and a
nonnegative vector. Weights has length n, where n is the number of rows of X. The lasso function
scales Weights to sum to 1.
Data Types: single | double

Output Arguments
B — Fitted coefficients
numeric matrix

Fitted coefficients, returned as a numeric matrix. B is a p-by-L matrix, where p is the number of
predictors (columns) in X, and L is the number of Lambda values. You can specify the number of
Lambda values using the NumLambda name-value pair argument.

The coefficient corresponding to the intercept term is a field in FitInfo.
Data Types: single | double

FitInfo — Fit information of models
structure

Fit information of the linear models, returned as a structure with the fields described in this table.

Field in FitInfo Description
Intercept Intercept term β0 for each linear model, a 1-by-L vector
Lambda Lambda parameters in ascending order, a 1-by-L vector
Alpha Value of the Alpha parameter, a scalar
DF Number of nonzero coefficients in B for each value of Lambda, a 1-by-L

vector
MSE Mean squared error (MSE), a 1-by-L vector
PredictorNames Value of the PredictorNames parameter, stored as a cell array of

character vectors
UseCovariance Logical value indicating whether the covariance matrix was used in

fitting. If the covariance was computed and used, this field is true.
Otherwise, this field is false.

If you set the CV name-value pair argument to cross-validate, the FitInfo structure contains these
additional fields.

Field in FitInfo Description
SE Standard error of MSE for each Lambda, as calculated during cross-

validation, a 1-by-L vector
LambdaMinMSE Lambda value with the minimum MSE, a scalar

 lasso

35-4121



Field in FitInfo Description
Lambda1SE Largest Lambda value such that MSE is within one standard error of

the minimum MSE, a scalar
IndexMinMSE Index of Lambda with the value LambdaMinMSE, a scalar
Index1SE Index of Lambda with the value Lambda1SE, a scalar

More About
Lasso

For a given value of λ, a nonnegative parameter, lasso solves the problem

min
β0, β

1
2N ∑i = 1

N
yi− β0− xi

Tβ 2 + λ ∑
j = 1

p
β j .

• N is the number of observations.
• yi is the response at observation i.
• xi is data, a vector of length p at observation i.
• λ is a nonnegative regularization parameter corresponding to one value of Lambda.
• The parameters β0 and β are a scalar and a vector of length p, respectively.

As λ increases, the number of nonzero components of β decreases.

The lasso problem involves the L1 norm of β, as contrasted with the elastic net algorithm.

Elastic Net

For α strictly between 0 and 1, and nonnegative λ, elastic net solves the problem

min
β0, β

1
2N ∑i = 1

N
yi− β0− xi

Tβ 2 + λPα β ,

where

Pα β = (1− α)
2 β 2

2 + α β 1 = ∑
j = 1

p (1− α)
2 β j

2 + α β j .

Elastic net is the same as lasso when α = 1. For other values of α, the penalty term Pα(β) interpolates
between the L1 norm of β and the squared L2 norm of β. As α shrinks toward 0, elastic net approaches
ridge regression.

Algorithms
Coordinate Descent Algorithm

lasso fits many values of λ simultaneously by an efficient procedure named coordinate descent,
based on Friedman, Tibshirani, and Hastie [3]. The procedure has two main code paths depending on
whether the fitting uses a covariance matrix. You can affect this choice with the UseCovariance
name-value argument.

35 Functions

35-4122



When lasso uses a covariance matrix to fit N data points and D predictors, the fitting has a rough
computational complexity of D*D. Without a covariance matrix, the computational complexity is
roughly N*D. So, typically, using a covariance matrix can be faster when N > D, and the default
'auto' setting of the UseCovariance argument makes this choice. Using a covariance matrix
causes lasso to subtract larger numbers than otherwise, which can be less numerically stable. For
details of the algorithmic differences, see [3]. For one comparison of timing and accuracy differences,
see “Use Correlation Matrix for Fitting Lasso” on page 35-4114.

ADMM Algorithm

When operating on tall arrays, lasso uses an algorithm based on the Alternating Direction Method
of Multipliers (ADMM) [5]. The notation used here is the same as in the reference paper. This method
solves problems of the form

Minimize l x + g z

Subject to Ax + Bz = c

Using this notation, the lasso regression problem is

Minimize l x + g z = 1
2 Ax− b 2

2 + λ z 1

Subject to x− z = 0

Because the loss function l x = 1
2 Ax− b 2

2 is quadratic, the iterative updates performed by the
algorithm amount to solving a linear system of equations with a single coefficient matrix but several
right-hand sides. The updates performed by the algorithm during each iteration are

xk + 1 = ATA + ρI −1 ATb + ρ zk− uk

zk + 1 = Sλ/ρ xk + 1 + uk

uk + 1 = uk + xk + 1− zk + 1

A is the dataset (a tall array), x contains the coefficients, ρ is the penalty parameter (augmented
Lagrangian parameter), b is the response (a tall array), and S is the soft thresholding operator.

Sκ a =
a− κ, a > κ
0, a ≤ κ

a + κ, a < κ
.

lasso solves the linear system using Cholesky factorization because the coefficient matrix ATA + ρI
is symmetric and positive definite. Because ρ does not change between iterations, the Cholesky
factorization is cached between iterations.

Even though A and b are tall arrays, they appear only in the terms ATA and ATb. The results of these
two matrix multiplications are small enough to fit in memory, so they are precomputed and the
iterative updates between iterations are performed entirely within memory.

Version History
Introduced in R2011b
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Extended Capabilities
Tall Arrays
Calculate with arrays that have more rows than fit in memory.

This function supports tall arrays for out-of-memory data with some limitations.

• With tall arrays, lasso uses an algorithm based on ADMM (Alternating Direction Method of
Multipliers).

• No elastic net support. The 'Alpha' parameter is always 1.
• No cross-validation ('CV' parameter) support, which includes the related parameter 'MCReps'.
• The output FitInfo does not contain the additional fields 'SE', 'LambdaMinMSE',

'Lambda1SE', 'IndexMinMSE', and 'Index1SE'.
• The 'Options' parameter is not supported because it does not contain options that apply to the

ADMM algorithm. You can tune the ADMM algorithm using name-value pair arguments.
• Supported name-value pair arguments are:

• 'Lambda'
• 'LambdaRatio'
• 'NumLambda'
• 'Standardize'
• 'PredictorNames'
• 'RelTol'
• 'Weights'

• Additional name-value pair arguments to control the ADMM algorithm are:

• 'Rho' — Augmented Lagrangian parameter, ρ. The default value is automatic selection.
• 'AbsTol' — Absolute tolerance used to determine convergence. The default value is 1e–4.
• 'MaxIter' — Maximum number of iterations. The default value is 1e4.
• 'B0' — Initial values for the coefficients x. The default value is a vector of zeros.
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• 'U0' — Initial values of the scaled dual variable u. The default value is a vector of zeros.

For more information, see “Tall Arrays”.

Automatic Parallel Support
Accelerate code by automatically running computation in parallel using Parallel Computing Toolbox™.

To run in parallel, specify the 'Options' name-value argument in the call to this function and set the
'UseParallel' field of the options structure to true using statset.

For example: 'Options',statset('UseParallel',true)

For more information about parallel computing, see “Run MATLAB Functions with Automatic Parallel
Support” (Parallel Computing Toolbox).

See Also
lassoPlot | ridge | fitlm | lassoglm | fitrlinear

Topics
“Lasso Regularization” on page 11-122
“Lasso and Elastic Net with Cross Validation” on page 11-125
“Wide Data via Lasso and Parallel Computing” on page 11-117
“Lasso and Elastic Net” on page 11-114
“Introduction to Feature Selection” on page 16-47
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lassoglm
Lasso or elastic net regularization for generalized linear models

Syntax
B = lassoglm(X,y)
B = lassoglm(X,y,distr)
B = lassoglm(X,y,distr,Name,Value)
[B,FitInfo] = lassoglm( ___ )

Description
B = lassoglm(X,y) returns penalized, maximum-likelihood fitted coefficients for generalized linear
models of the predictor data X and the response y, where the values in y are assumed to have a
normal probability distribution. Each column of B corresponds to a particular regularization
coefficient in Lambda. By default, lassoglm performs lasso regularization using a geometric
sequence of Lambda values.

B = lassoglm(X,y,distr) performs lasso regularization to fit the models using the probability
distribution distr for y.

B = lassoglm(X,y,distr,Name,Value) fits regularized generalized linear regressions with
additional options specified by one or more name-value pair arguments. For example, 'Alpha',0.5
sets elastic net as the regularization method, with the parameter Alpha equal to 0.5.

[B,FitInfo] = lassoglm( ___ ) also returns the structure FitInfo, which contains information
about the fit of the models, using any of the input arguments in the previous syntaxes.

Examples

Remove Redundant Predictors Using Lasso Regularization

Construct a data set with redundant predictors and identify those predictors by using lassoglm.

Create a random matrix X with 100 observations and 10 predictors. Create the normally distributed
response y using only four of the predictors and a small amount of noise.

rng default
X = randn(100,10);
weights = [0.6;0.5;0.7;0.4];
y = X(:,[2 4 5 7])*weights + randn(100,1)*0.1; % Small added noise

Perform lasso regularization.

B = lassoglm(X,y);

Find the coefficient vector for the 75th Lambda value in B.

B(:,75)
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ans = 10×1

         0
    0.5431
         0
    0.3944
    0.6173
         0
    0.3473
         0
         0
         0

lassoglm identifies and removes the redundant predictors.

Cross-Validated Lasso Regularization of Generalized Linear Model

Construct data from a Poisson model, and identify the important predictors by using lassoglm.

Create data with 20 predictors. Create a Poisson response variable using only three of the predictors
plus a constant.

rng default % For reproducibility
X = randn(100,20);
weights = [.4;.2;.3];
mu = exp(X(:,[5 10 15])*weights + 1);
y = poissrnd(mu);

Construct a cross-validated lasso regularization of a Poisson regression model of the data.

[B,FitInfo] = lassoglm(X,y,'poisson','CV',10);

Examine the cross-validation plot to see the effect of the Lambda regularization parameter.

lassoPlot(B,FitInfo,'plottype','CV'); 
legend('show') % Show legend
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The green circle and dotted line locate the Lambda with minimum cross-validation error. The blue
circle and dotted line locate the point with minimum cross-validation error plus one standard
deviation.

Find the nonzero model coefficients corresponding to the two identified points.

idxLambdaMinDeviance = FitInfo.IndexMinDeviance;
mincoefs = find(B(:,idxLambdaMinDeviance))

mincoefs = 7×1

     3
     5
     6
    10
    11
    15
    16

idxLambda1SE = FitInfo.Index1SE;
min1coefs = find(B(:,idxLambda1SE))

min1coefs = 3×1

     5
    10
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    15

The coefficients from the minimum-plus-one standard error point are exactly those coefficients used
to create the data.

Predict Values Using Lasso Regularization

Predict whether students got a B or above on their last exam by using lassoglm.

Load the examgrades data set. Convert the last exam grades to a logical vector, where 1 represents
a grade of 80 or above and 0 represents a grade below 80.

load examgrades
X = grades(:,1:4);
y = grades(:,5);
yBinom = (y>=80);

Partition the data into training and test sets.

rng default    % Set the seed for reproducibility
c = cvpartition(yBinom,'HoldOut',0.3);
idxTrain = training(c,1);
idxTest = ~idxTrain;
XTrain = X(idxTrain,:);
yTrain = yBinom(idxTrain);
XTest = X(idxTest,:);
yTest = yBinom(idxTest);

Perform lasso regularization for generalized linear model regression with 3-fold cross-validation on
the training data. Assume the values in y are binomially distributed. Choose model coefficients
corresponding to the Lambda with minimum expected deviance.

[B,FitInfo] = lassoglm(XTrain,yTrain,'binomial','CV',3);
idxLambdaMinDeviance = FitInfo.IndexMinDeviance;
B0 = FitInfo.Intercept(idxLambdaMinDeviance);
coef = [B0; B(:,idxLambdaMinDeviance)]

coef = 5×1

  -21.1911
    0.0235
    0.0670
    0.0693
    0.0949

Predict exam grades for the test data using the model coefficients found in the previous step. Specify
the link function for a binomial response using 'logit'. Convert the prediction values to a logical
vector.

yhat = glmval(coef,XTest,'logit');
yhatBinom = (yhat>=0.5);

Determine the accuracy of the predictions using a confusion matrix.
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c = confusionchart(yTest,yhatBinom);

The function correctly predicts 31 exam grades. However, the function incorrectly predicts that 1
student receives a B or above and 4 students receive a grade below a B.

Use Correlation Matrix for Fitting lassoglm

Create a matrix X of N p-dimensional normal variables, where N is large and p = 1000. Create a
response vector y from the model y = X*beta + noise, where beta is a vector of coefficients with
50% nonzero values.

rng default % For reproducibility
N = 1e4; % Number of samples
p = 1e3; % Number of features
X = randn(N,p);
beta = 1 + 3*rand(p,1); % Multiplicative coefficients
activep = randperm(p,p/2); % 50% nonzero coefficients
y = X(:,activep)*beta(activep) + randn(N,1)*0.1; % Add noise

Construct the lasso fit without using the covariance matrix. Time the creation.

B = lassoglm(X,y,"normal",UseCovariance=false); % Warm up lasso for reliable timing data
tic
B = lassoglm(X,y,"normal",UseCovariance=false);
timefalse = toc
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timefalse = 30.9450

Construct the lasso fit using the covariance matrix. Time the creation.

B2 = lassoglm(X,y,"normal",UseCovariance=true); % Warm up lasso for reliable timing data
tic
B2 = lassoglm(X,y,"normal",UseCovariance=true);
timetrue = toc

timetrue = 4.8576

The fitting time with the covariance matrix is less than the time without it. View the speedup factor
that results from using the covariance matrix.

speedup = timefalse/timetrue

speedup = 6.3704

Check that the returned coefficients B and B2 are similar.

norm(B-B2)/norm(B)

ans = 2.0614e-15

The results are virtually identical.

Input Arguments
X — Predictor data
numeric matrix

Predictor data, specified as a numeric matrix. Each row represents one observation, and each column
represents one predictor variable.
Data Types: single | double

y — Response data
numeric vector | logical vector | categorical array | numeric matrix

Response data, specified as a numeric vector, logical vector, categorical array, or two-column numeric
matrix.

• When distr is not 'binomial', y is a numeric vector or categorical array of length n, where n is
the number of rows in X. The response y(i) corresponds to row i in X.

• When distr is 'binomial', y is one of the following:

• Numeric vector of length n, where each entry represents success (1) or failure (0)
• Logical vector of length n, where each entry represents success or failure
• Categorical array of length n, where each entry represents success or failure
• Two-column numeric matrix, where the first column contains the number of successes for each

observation and the second column contains the total number of trials

Data Types: single | double | logical | categorical
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distr — Distribution of response data
'normal' (default) | 'binomial' | 'poisson' | 'gamma' | 'inverse gaussian'

Distribution of response data, specified as one of the following:

• 'normal' (default)
• 'binomial'
• 'poisson'
• 'gamma'
• 'inverse gaussian'

lassoglm uses the default link function on page 35-4138 corresponding to distr. Specify another
link function using the Link name-value pair argument.

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: lassoglm(X,y,'poisson','Alpha',0.5) performs elastic net regularization assuming
that the response values are Poisson distributed. The 'Alpha',0.5 name-value pair argument sets
the parameter used in the elastic net optimization.

Alpha — Weight of lasso versus ridge optimization
1 (default) | positive scalar

Weight of lasso (L1) versus ridge (L2) optimization, specified as the comma-separated pair consisting
of 'Alpha' and a positive scalar value in the interval (0,1]. The value Alpha = 1 represents lasso
regression, Alpha close to 0 approaches ridge regression, and other values represent elastic net
optimization. See “Elastic Net” on page 35-4138.
Example: 'Alpha',0.75
Data Types: single | double

CacheSize — Size of covariance matrix in megabytes
1000 (default) | positive scalar | 'maximal'

Size of the covariance matrix in megabytes, specified as a positive scalar or 'maximal'. The
lassoglm function can use a covariance matrix for fitting when the UseCovariance argument is
true or 'auto'.

If UseCovariance is true or 'auto' and CacheSize is 'maximal', lassoglm can attempt to
allocate a covariance matrix that exceeds the available memory. In this case, MATLAB issues an error.
Example: 'CacheSize','maximal'
Data Types: double | char | string

CV — Cross-validation specification for estimating deviance
'resubstitution' (default) | positive integer scalar | cvpartition object
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Cross-validation specification for estimating the deviance, specified as the comma-separated pair
consisting of 'CV' and one of the following:

• 'resubstitution' — lassoglm uses X and y to fit the model and to estimate the deviance
without cross-validation.

• Positive scalar integer K — lassoglm uses K-fold cross-validation.
• cvpartition object cvp — lassoglm uses the cross-validation method expressed in cvp. You

cannot use a 'leaveout' partition with lassoglm.

Example: 'CV',10

DFmax — Maximum number of nonzero coefficients
Inf (default) | positive integer scalar

Maximum number of nonzero coefficients in the model, specified as the comma-separated pair
consisting of 'DFmax' and a positive integer scalar. lassoglm returns results only for Lambda values
that satisfy this criterion.
Example: 'DFmax',25
Data Types: single | double

Lambda — Regularization coefficients
nonnegative vector

Regularization coefficients, specified as the comma-separated pair consisting of 'Lambda' and a
vector of nonnegative values. See “Lasso” on page 35-4138.

• If you do not supply Lambda, then lassoglm estimates the largest value of Lambda that gives a
nonnull model. In this case, LambdaRatio gives the ratio of the smallest to the largest value of
the sequence, and NumLambda gives the length of the vector.

• If you supply Lambda, then lassoglm ignores LambdaRatio and NumLambda.
• If Standardize is true, then Lambda is the set of values used to fit the models with the X data

standardized to have zero mean and a variance of one.

The default is a geometric sequence of NumLambda values, with only the largest value able to produce
B = 0.
Data Types: single | double

LambdaRatio — Ratio of smallest to largest Lambda values
1e–4 (default) | positive scalar

Ratio of the smallest to the largest Lambda values when you do not supply Lambda, specified as the
comma-separated pair consisting of 'LambdaRatio' and a positive scalar.

If you set LambdaRatio = 0, then lassoglm generates a default sequence of Lambda values and
replaces the smallest one with 0.
Example: 'LambdaRatio',1e–2
Data Types: single | double

Link — Mapping between mean of response and linear predictor
'comploglog' | 'identity' | 'log' | 'logit' | 'loglog' | ...
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Mapping between the mean µ of the response and the linear predictor Xb, specified as the comma-
separated pair consisting of 'Link' and one of the values in this table.

Value Description
'comploglog' log(–log((1 – µ))) = Xb
'identity', default for the distribution
'normal'

µ = Xb

'log', default for the distribution
'poisson'

log(µ) = Xb

'logit', default for the distribution
'binomial'

log(µ/(1 – µ)) = Xb

'loglog' log(–log(µ)) = Xb
'probit' Φ–1(µ) = Xb, where Φ is the normal (Gaussian)

cumulative distribution function
'reciprocal', default for the
distribution 'gamma'

µ–1 = Xb

p (a number), default for the distribution
'inverse gaussian' (with p = –2)

µp = Xb

A cell array of the form {FL FD FI},
containing three function handles created
using @, which define the link (FL), the
derivative of the link (FD), and the inverse
link (FI). Or, a structure of function
handles with the field Link containing FL,
the field Derivative containing FD, and
the field Inverse containing FI.

User-specified link function (see “Custom Link Function”
on page 12-12)

Example: 'Link','probit'
Data Types: char | string | single | double | cell

MaxIter — Maximum number of iterations allowed
1e4 (default) | positive integer scalar

Maximum number of iterations allowed, specified as the comma-separated pair consisting of
'MaxIter' and a positive integer scalar.

If the algorithm executes MaxIter iterations before reaching the convergence tolerance RelTol,
then the function stops iterating and returns a warning message.

The function can return more than one warning when NumLambda is greater than 1.
Example: 'MaxIter',1e3
Data Types: single | double

MCReps — Number of Monte Carlo repetitions for cross-validation
1 (default) | positive integer scalar

Number of Monte Carlo repetitions for cross-validation, specified as the comma-separated pair
consisting of 'MCReps' and a positive integer scalar.
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• If CV is 'resubstitution' or a cvpartition of type 'resubstitution', then MCReps must
be 1.

• If CV is a cvpartition of type 'holdout', then MCReps must be greater than 1.

Example: 'MCReps',2
Data Types: single | double

NumLambda — Number of Lambda values
100 (default) | positive integer scalar

Number of Lambda values lassoglm uses when you do not supply Lambda, specified as the comma-
separated pair consisting of 'NumLambda' and a positive integer scalar. lassoglm can return fewer
than NumLambda fits if the deviance of the fits drops below a threshold fraction of the null deviance
(deviance of the fit without any predictors X).
Example: 'NumLambda',150
Data Types: single | double

Offset — Additional predictor variable
numeric vector

Additional predictor variable, specified as the comma-separated pair consisting of 'Offset' and a
numeric vector with the same number of rows as X. The lassoglm function keeps the coefficient
value of Offset fixed at 1.0.
Data Types: single | double

Options — Option to cross-validate in parallel and specify random streams
structure

Option to cross-validate in parallel and specify the random streams, specified as the comma-
separated pair consisting of 'Options' and a structure. This option requires Parallel Computing
Toolbox.

Create the Options structure with statset. The option fields are:

• UseParallel — Set to true to compute in parallel. The default is false.
• UseSubstreams — Set to true to compute in parallel in a reproducible fashion. For

reproducibility, set Streams to a type allowing substreams: 'mlfg6331_64' or 'mrg32k3a'. The
default is false.

• Streams — A RandStream object or cell array consisting of one such object. If you do not specify
Streams, then lassoglm uses the default stream.

Example: 'Options',statset('UseParallel',true)
Data Types: struct

PredictorNames — Names of predictor variables
{} (default) | string array | cell array of character vectors

Names of the predictor variables, in the order in which they appear in X, specified as the comma-
separated pair consisting of 'PredictorNames' and a string array or cell array of character
vectors.
Example: 'PredictorNames',{'Height','Weight','Age'}
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Data Types: string | cell

RelTol — Convergence threshold for coordinate descent algorithm
1e–4 (default) | positive scalar

Convergence threshold for the coordinate descent algorithm [3], specified as the comma-separated
pair consisting of 'RelTol' and a positive scalar. The algorithm terminates when successive
estimates of the coefficient vector differ in the L2 norm by a relative amount less than RelTol.
Example: 'RelTol',2e–3
Data Types: single | double

Standardize — Flag for standardizing predictor data before fitting models
true (default) | false

Flag for standardizing the predictor data X before fitting the models, specified as the comma-
separated pair consisting of 'Standardize' and either true or false. If Standardize is true,
then the X data is scaled to have zero mean and a variance of one. Standardize affects whether the
regularization is applied to the coefficients on the standardized scale or the original scale. The results
are always presented on the original data scale.
Example: 'Standardize',false
Data Types: logical

UseCovariance — Indication to use covariance matrix for fitting
'auto' (default) | logical scalar

Indication to use a covariance matrix for fitting, specified as 'auto' or a logical scalar.

• 'auto' causes lassoglm to attempt to use a covariance matrix for fitting when the number of
observations is greater than the number of problem variables, Link = 'identity', and distr =
'normal'. This attempt can fail when memory is insufficient. To find out whether lassoglm used
a covariance matrix for fitting, examine the UseCovariance field of the FitInfo output.

• true causes lassoglm to use a covariance matrix for fitting as long as the required size does not
exceed CacheSize. If the required covariance matrix size exceeds CacheSize, lassoglm issues
a warning and does not use a covariance matrix for fitting.

• false causes lassoglm not to use a covariance matrix for fitting.

Using a covariance matrix for fitting can be faster than not using one, especially for a normally-
distributed response, but can require more memory. See “Use Correlation Matrix for Fitting
lassoglm” on page 35-4130. The speed increase can negatively affect numerical stability. For details,
see “Coordinate Descent Algorithm” on page 35-4122.
Example: 'UseCovariance',true
Data Types: logical | char | string

Weights — Observation weights
1/n*ones(n,1) (default) | nonnegative vector

Observation weights, specified as the comma-separated pair consisting of 'Weights' and a
nonnegative vector. Weights has length n, where n is the number of rows of X. At least two values
must be positive.
Data Types: single | double
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Output Arguments
B — Fitted coefficients
numeric matrix

Fitted coefficients, returned as a numeric matrix. B is a p-by-L matrix, where p is the number of
predictors (columns) in X, and L is the number of Lambda values. You can specify the number of
Lambda values using the NumLambda name-value pair argument.

The coefficient corresponding to the intercept term is a field in FitInfo.
Data Types: single | double

FitInfo — Fit information of models
structure

Fit information of the generalized linear models, returned as a structure with the fields described in
this table.

Field in FitInfo Description
Intercept Intercept term β0 for each linear model, a 1-by-L vector
Lambda Lambda parameters in ascending order, a 1-by-L vector
Alpha Value of the Alpha parameter, a scalar
DF Number of nonzero coefficients in B for each value of Lambda, a 1-

by-L vector
Deviance Deviance of the fitted model for each value of Lambda, a 1-by-L

vector

If the model is cross-validated, then the values for Deviance
represent the estimated expected deviance of the model applied to
new data, as calculated by cross-validation. Otherwise, Deviance is
the deviance of the fitted model applied to the data used to perform
the fit.

PredictorNames Value of the PredictorNames parameter, stored as a cell array of
character vectors

UseCovariance Logical value indicating whether the covariance matrix was used in
fitting. If the covariance was computed and used, this field is true.
Otherwise, this field is false.

If you set the CV name-value pair argument to cross-validate, the FitInfo structure contains these
additional fields.

Field in FitInfo Description
SE Standard error of Deviance for each Lambda, as calculated during

cross-validation, a 1-by-L vector
LambdaMinDeviance Lambda value with minimum expected deviance, as calculated by

cross-validation, a scalar
Lambda1SE Largest Lambda value such that Deviance is within one standard

error of the minimum, a scalar
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Field in FitInfo Description
IndexMinDeviance Index of Lambda with the value LambdaMinDeviance, a scalar
Index1SE Index of Lambda with the value Lambda1SE, a scalar

More About
Link Function

A link function f(μ) maps a distribution with mean μ to a linear model with data X and coefficient
vector b using the formula

f(μ) = Xb.

You can find the formulas for the link functions in the Link name-value pair argument description.
This table lists the link functions that are typically used for each distribution.

Distribution Family Default Link Function Other Typical Link Functions
'normal' 'identity'  
'binomial' 'logit' 'comploglog', 'loglog',

'probit'
'poisson' 'log'  
'gamma' 'reciprocal'  
'inverse
gaussian'

–2  

Lasso

For a nonnegative value of λ, lassoglm solves the problem

min
β0, β

1
NDeviance β0, β + λ ∑

j = 1

p
β j .

• The function Deviance in this equation is the deviance of the model fit to the responses using the
intercept β0 and the predictor coefficients β. The formula for Deviance depends on the distr
parameter you supply to lassoglm. Minimizing the λ-penalized deviance is equivalent to
maximizing the λ-penalized loglikelihood.

• N is the number of observations.
• λ is a nonnegative regularization parameter corresponding to one value of Lambda.
• The parameters β0 and β are a scalar and a vector of length p, respectively.

As λ increases, the number of nonzero components of β decreases.

The lasso problem involves the L1 norm of β, as contrasted with the elastic net algorithm.

Elastic Net

For α strictly between 0 and 1, and nonnegative λ, elastic net solves the problem

min
β0, β

1
NDeviance β0, β + λPα β ,
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where

Pα β = (1− α)
2 β 2

2 + α β 1 = ∑
j = 1

p (1− α)
2 β j

2 + α β j .

Elastic net is the same as lasso when α = 1. For other values of α, the penalty term Pα(β) interpolates
between the L1 norm of β and the squared L2 norm of β. As α shrinks toward 0, elastic net approaches
ridge regression.

Algorithms
Coordinate Descent Algorithm

lassoglm fits many values of λ simultaneously by an efficient procedure named coordinate descent,
based on Friedman, Tibshirani, and Hastie [3]. The procedure has two main code paths depending on
whether the fitting uses a covariance matrix. You can affect this choice with the UseCovariance
name-value argument.

When lassoglm uses a covariance matrix to fit N data points and D predictors, the fitting has a rough
computational complexity of D*D. Without a covariance matrix, the computational complexity is
roughly N*D. So, typically, using a covariance matrix can be faster when N > D, and the default
'auto' setting of the UseCovariance argument makes this choice. Using a covariance matrix
causes lassoglm to subtract larger numbers than otherwise, which can be less numerically stable.
For details of the algorithmic differences, see [3]. For one comparison of timing and accuracy
differences, see “Use Correlation Matrix for Fitting lassoglm” on page 35-4130.

Version History
Introduced in R2012a
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Extended Capabilities
Automatic Parallel Support
Accelerate code by automatically running computation in parallel using Parallel Computing Toolbox™.

To run in parallel, specify the 'Options' name-value argument in the call to this function and set the
'UseParallel' field of the options structure to true using statset.

For example: 'Options',statset('UseParallel',true)

For more information about parallel computing, see “Run MATLAB Functions with Automatic Parallel
Support” (Parallel Computing Toolbox).

See Also
fitglm | glmval | lasso | lassoPlot | ridge

Topics
“Lasso Regularization of Generalized Linear Models” on page 12-32
“Regularize Poisson Regression” on page 12-34
“Regularize Logistic Regression” on page 12-36
“Regularize Wide Data in Parallel” on page 12-43
“Introduction to Feature Selection” on page 16-47
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lassoPlot
Trace plot of lasso fit

Syntax
lassoPlot(B)
lassoPlot(B,FitInfo)
lassoPlot(B,FitInfo,Name,Value)
[ax,figh] = lassoPlot( ___ )

Description
lassoPlot(B) creates a trace plot of the values in B against the L1 norm of B.

lassoPlot(B,FitInfo) creates a plot with type depending on the data type of FitInfo and the
value, if any, of the PlotType name-value pair.

lassoPlot(B,FitInfo,Name,Value) creates a plot with additional options specified by one or
more Name,Value pair arguments.

[ax,figh] = lassoPlot( ___ ), for any previous input syntax, returns a handle ax to the plot
axis, and a handle figh to the figure window.

Input Arguments
B

Coefficients of a sequence of regression fits, as returned from the lasso or lassoglm functions. B is
a p-by-NLambda matrix, where p is the number of predictors, and each column of B is a set of
coefficients lasso calculates using one Lambda penalty value.

FitInfo

Information controlling the plot:

• FitInfo is a structure, especially as returned from lasso or lassoglm — lassoPlot creates a
plot based on the PlotType name-value pair.

• FitInfo is a vector — lassoPlot forms the x-axis of the plot from the values in FitInfo. The
length of FitInfo must equal the number of columns of B.

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.

Parent

Axis in which to draw the plot.
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Default: New plot

PlotType

Plot type when you specify a FitInfo vector or structure:

PlotType Plot
'L1' lassoPlot creates the x-axis from the L1 norm of the coefficients in B. The x-axis at

the top of the plot contains the degrees of freedom (df), meaning the number of
nonzero coefficients of B.

'Lambda'

When you
choose this
value,
FitInfo must
be a structure.

lassoPlot creates the x-axis from the Lambda field of FitInfo. The x-axis at the
top of the plot contains the degrees of freedom (df), meaning the number of
nonzero coefficients of B.

'CV'

When you
choose this
value,
FitInfo must
be a cross-
validated
structure.

• For each Lambda, lassoPlot plots an estimate of the mean squared prediction
error on new data for the model fitted by lasso with that value of Lambda.

• lassoPlot plots error bars for the estimates.

If you include a cross-validated FitInfo structure, lassoPlot also indicates two specific Lambda
values with green and blue dashed lines.

• A green, dashed line indicates the value of Lambda with a minimum cross-validated mean squared
error (MSE).

• A blue, dashed line indicates the greatest Lambda that is within one standard error of the
minimum MSE. This Lambda value makes the sparsest model with relatively low MSE.

To display the label for each plot in the legend of the figure, type legend('show') in the Command
Window.

Default: 'L1'

PredictorNames

String array or cell array of character vectors to label each coefficient of B. If the length of
PredictorNames is less than the number of rows of B, the remaining labels are padded with default
values.

lassoPlot uses PredictorNames in FitInfo only if:

• You created FitInfo with a call to lasso that included a PredictorNames name-value pair.
• You call lassoPlot without a PredictorNames name-value pair.
• You include FitInfo in your lassoPlot call.

For an example, see “Lasso Plot with Default Plot Type” on page 35-4143.
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Default: {'B1','B2',...}

XScale

• 'linear' for linear x-axis
• 'log' for logarithmic scaled x-axis

Default: 'linear', except 'log' for the 'CV' plot type

Output Arguments
ax

Handle to the axis of the plot (see “Axes Appearance”).

figh

Handle to the figure window (see “Special Object Identifiers”).

Examples

Lasso Plot with Default Plot Type

Load the sample data

load acetylene

Prepare the design matrix for lasso fit with interactions.

X = [x1 x2 x3];
D = x2fx(X,'interaction');
D(:,1) = []; % No constant term

The x2fx function returns the quadratic model in the order of a constant term, linear terms and
interaction terms: constant term, x1, x2, x3, x1.*x2, x1.*x3, and x2.*x3

Fit a regularized model of the data using lasso.

B = lasso(D,y);

Plot the lasso fits with labeled coefficients by using the PredictorNames name-value pair.

lassoPlot(B,'PredictorNames',{'x1','x2','x3','x1.*x2','x1.*x3','x2.*x3'});
legend('show','Location','NorthWest') % Show legend
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Each line represents a trace of the values in B for a single predictor variable: x1, x2, x3, x1.*x2,
x1.*x3, and x2.*x3.

Display a data tip for the trace plot. A data tip appears when you hover over a data tip.
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A data tip displays these lines of information: the name of the selected coefficient with a fitted value,
the L1 norm of a set of coefficients including the selected coefficient, and the index of the
corresponding Lambda.

Lasso Plot with Lambda Plot Type

Load the sample data.

load acetylene

Prepare the data for lasso fit with interactions.

X = [x1 x2 x3];
D = x2fx(X,'interaction');
D(:,1) = []; % No constant term

Fit a regularized model of the data with lasso.

[B,FitInfo] = lasso(D,y);

Plot the fits with the Lambda plot type and logarithmic scaling.

lassoPlot(B,FitInfo,'PlotType','Lambda','XScale','log');
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Lasso Plot with Cross-Validated Fits

Visually examine the cross-validated error of various levels of regularization.

Load the sample data.

load acetylene

Create a design matrix with interactions and no constant term.

X = [x1 x2 x3];
D = x2fx(X,'interaction');
D(:,1) = []; % No constant term

Construct the lasso fit using 10-fold cross-validation. Include the FitInfo output so you can plot the
result.

rng default % For reproducibility 
[B,FitInfo] = lasso(D,y,'CV',10);

Plot the cross-validated fits.

lassoPlot(B,FitInfo,'PlotType','CV');
legend('show') % Show legend
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The green circle and dotted line locate the Lambda with minimum cross-validation error. The blue
circle and dotted line locate the point with minimum cross-validation error plus one standard error.

Version History
Introduced in R2011b

See Also
lasso | lassoglm

Topics
“Lasso and Elastic Net” on page 11-114
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le
Class: qrandstream

Less than or equal relation for handles

Syntax
h1 <= h2

Description
Handles are equal if they are handles for the same object. All comparisons use a number associated
with each handle object. Nothing can be assumed about the result of a handle comparison except that
the repeated comparison of two handles in the same MATLAB session will yield the same result. The
order of handle values is purely arbitrary and has no connection to the state of the handle objects
being compared.

h1 <= h2 performs element-wise comparisons between handle arrays h1 and h2. h1 and h2 must be
of the same dimensions unless one is a scalar. The result is a logical array of the same dimensions,
where each element is an element-wise <= result.

If one of h1 or h2 is scalar, scalar expansion is performed and the result will match the dimensions of
the array that is not scalar.

tf = le(h1, h2) stores the result in a logical array of the same dimensions.

See Also
qrandstream | eq | ge | gt | lt | ne
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learnerCoderConfigurer
Create coder configurer of machine learning model

Syntax
configurer = learnerCoderConfigurer(Mdl,X)
configurer = learnerCoderConfigurer(Mdl,X,Name,Value)

Description
After training a machine learning model, create a coder configurer for the model by using
learnerCoderConfigurer. Use the object functions and properties of the configurer to specify
code generation options and to generate C/C++ code for the predict and update functions of the
machine learning model. Generating C/C++ code requires MATLAB Coder.

This flow chart shows the code generation workflow using a coder configurer. Use
learnerCoderConfigurer for the highlighted step.

configurer = learnerCoderConfigurer(Mdl,X) returns the coder configurer configurer for
the machine learning model Mdl. Specify the predictor data X for the predict function of Mdl.

configurer = learnerCoderConfigurer(Mdl,X,Name,Value) returns a coder configurer with
additional options specified by one or more name-value pair arguments. For example, you can specify
the number of output arguments in the predict function, the file name of generated C/C++ code,
and the verbosity level of the coder configurer.

Examples

Generate Code Using Coder Configurer

Train a machine learning model, and then generate code for the predict and update functions of
the model by using a coder configurer.

Load the carsmall data set and train a support vector machine (SVM) regression model.

load carsmall
X = [Horsepower,Weight];
Y = MPG;
Mdl = fitrsvm(X,Y);
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Mdl is a RegressionSVM object.

Create a coder configurer for the RegressionSVM model by using learnerCoderConfigurer.
Specify the predictor data X. The learnerCoderConfigurer function uses the input X to configure
the coder attributes of the predict function input.

configurer = learnerCoderConfigurer(Mdl,X)

configurer = 
  RegressionSVMCoderConfigurer with properties:

   Update Inputs:
             Alpha: [1x1 LearnerCoderInput]
    SupportVectors: [1x1 LearnerCoderInput]
             Scale: [1x1 LearnerCoderInput]
              Bias: [1x1 LearnerCoderInput]

   Predict Inputs:
                 X: [1x1 LearnerCoderInput]

   Code Generation Parameters:
        NumOutputs: 1
    OutputFileName: 'RegressionSVMModel'

  Properties, Methods

configurer is a RegressionSVMCoderConfigurer object, which is a coder configurer of a
RegressionSVM object.

To generate C/C++ code, you must have access to a C/C++ compiler that is configured properly.
MATLAB Coder locates and uses a supported, installed compiler. You can use mex -setup to view and
change the default compiler. For more details, see “Change Default Compiler”.

Generate code for the predict and update functions of the SVM regression model (Mdl) with
default settings.

generateCode(configurer)

generateCode creates these files in output folder:
'initialize.m', 'predict.m', 'update.m', 'RegressionSVMModel.mat'
Code generation successful.

The generateCode function completes these actions:

• Generate the MATLAB files required to generate code, including the two entry-point functions
predict.m and update.m for the predict and update functions of Mdl, respectively.

• Create a MEX function named RegressionSVMModel for the two entry-point functions.
• Create the code for the MEX function in the codegen\mex\RegressionSVMModel folder.
• Copy the MEX function to the current folder.

Display the contents of the predict.m, update.m, and initialize.m files by using the type
function.

type predict.m
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function varargout = predict(X,varargin) %#codegen
% Autogenerated by MATLAB, 01-Sep-2022 11:20:22
[varargout{1:nargout}] = initialize('predict',X,varargin{:});
end

type update.m

function update(varargin) %#codegen
% Autogenerated by MATLAB, 01-Sep-2022 11:20:22
initialize('update',varargin{:});
end

type initialize.m

function [varargout] = initialize(command,varargin) %#codegen
% Autogenerated by MATLAB, 01-Sep-2022 11:20:22
coder.inline('always')
persistent model
if isempty(model)
    model = loadLearnerForCoder('RegressionSVMModel.mat');
end
switch(command)
    case 'update'
        % Update struct fields: Alpha
        %                       SupportVectors
        %                       Scale
        %                       Bias
        model = update(model,varargin{:});
    case 'predict'
        % Predict Inputs: X
        X = varargin{1};
        if nargin == 2
            [varargout{1:nargout}] = predict(model,X);
        else
            PVPairs = cell(1,nargin-2);
            for i = 1:nargin-2
                PVPairs{1,i} = varargin{i+1};
            end
            [varargout{1:nargout}] = predict(model,X,PVPairs{:});
        end
end
end

Update Parameters of SVM Classification Model in Generated Code

Train a SVM model using a partial data set and create a coder configurer for the model. Use the
properties of the coder configurer to specify coder attributes of the SVM model parameters. Use the
object function of the coder configurer to generate C code that predicts labels for new predictor data.
Then retrain the model using the whole data set and update parameters in the generated code
without regenerating the code.

Train Model

Load the ionosphere data set. This data set has 34 predictors and 351 binary responses for radar
returns, either bad ('b') or good ('g'). Train a binary SVM classification model using the first 50
observations.
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load ionosphere
Mdl = fitcsvm(X(1:50,:),Y(1:50));

Mdl is a ClassificationSVM object.

Create Coder Configurer

Create a coder configurer for the ClassificationSVM model by using learnerCoderConfigurer.
Specify the predictor data X. The learnerCoderConfigurer function uses the input X to configure
the coder attributes of the predict function input. Also, set the number of outputs to 2 so that the
generated code returns predicted labels and scores.

configurer = learnerCoderConfigurer(Mdl,X(1:50,:),'NumOutputs',2);

configurer is a ClassificationSVMCoderConfigurer object, which is a coder configurer of a
ClassificationSVM object.

Specify Coder Attributes of Parameters

Specify the coder attributes of the SVM classification model parameters so that you can update the
parameters in the generated code after retraining the model. This example specifies the coder
attributes of predictor data that you want to pass to the generated code and the coder attributes of
the support vectors of the SVM model.

First, specify the coder attributes of X so that the generated code accepts any number of
observations. Modify the SizeVector and VariableDimensions attributes. The SizeVector
attribute specifies the upper bound of the predictor data size, and the VariableDimensions
attribute specifies whether each dimension of the predictor data has a variable size or fixed size.

configurer.X.SizeVector = [Inf 34];
configurer.X.VariableDimensions = [true false];

The size of the first dimension is the number of observations. In this case, the code specifies that the
upper bound of the size is Inf and the size is variable, meaning that X can have any number of
observations. This specification is convenient if you do not know the number of observations when
generating code.

The size of the second dimension is the number of predictor variables. This value must be fixed for a
machine learning model. X contains 34 predictors, so the value of the SizeVector attribute must be
34 and the value of the VariableDimensions attribute must be false.

If you retrain the SVM model using new data or different settings, the number of support vectors can
vary. Therefore, specify the coder attributes of SupportVectors so that you can update the support
vectors in the generated code.

configurer.SupportVectors.SizeVector = [250 34];

SizeVector attribute for Alpha has been modified to satisfy configuration constraints.
SizeVector attribute for SupportVectorLabels has been modified to satisfy configuration constraints.

configurer.SupportVectors.VariableDimensions = [true false];

VariableDimensions attribute for Alpha has been modified to satisfy configuration constraints.
VariableDimensions attribute for SupportVectorLabels has been modified to satisfy configuration constraints.

If you modify the coder attributes of SupportVectors, then the software modifies the coder
attributes of Alpha and SupportVectorLabels to satisfy configuration constraints. If the
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modification of the coder attributes of one parameter requires subsequent changes to other
dependent parameters to satisfy configuration constraints, then the software changes the coder
attributes of the dependent parameters.

Generate Code

To generate C/C++ code, you must have access to a C/C++ compiler that is configured properly.
MATLAB Coder locates and uses a supported, installed compiler. You can use mex -setup to view and
change the default compiler. For more details, see “Change Default Compiler”.

Use generateCode to generate code for the predict and update functions of the SVM
classification model (Mdl) with default settings.

generateCode(configurer)

generateCode creates these files in output folder:
'initialize.m', 'predict.m', 'update.m', 'ClassificationSVMModel.mat'
Code generation successful.

generateCode generates the MATLAB files required to generate code, including the two entry-point
functions predict.m and update.m for the predict and update functions of Mdl, respectively.
Then generateCode creates a MEX function named ClassificationSVMModel for the two entry-
point functions in the codegen\mex\ClassificationSVMModel folder and copies the MEX
function to the current folder.

Verify Generated Code

Pass some predictor data to verify whether the predict function of Mdl and the predict function in
the MEX function return the same labels. To call an entry-point function in a MEX function that has
more than one entry point, specify the function name as the first input argument.

[label,score] = predict(Mdl,X);
[label_mex,score_mex] = ClassificationSVMModel('predict',X);

Compare label and label_mex by using isequal.

isequal(label,label_mex)

ans = logical
   1

isequal returns logical 1 (true) if all the inputs are equal. The comparison confirms that the
predict function of Mdl and the predict function in the MEX function return the same labels.

score_mex might include round-off differences compared with score. In this case, compare
score_mex and score, allowing a small tolerance.

find(abs(score-score_mex) > 1e-8)

ans =

  0x1 empty double column vector

The comparison confirms that score and score_mex are equal within the tolerance 1e–8.
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Retrain Model and Update Parameters in Generated Code

Retrain the model using the entire data set.

retrainedMdl = fitcsvm(X,Y);

Extract parameters to update by using validatedUpdateInputs. This function detects the modified
model parameters in retrainedMdl and validates whether the modified parameter values satisfy the
coder attributes of the parameters.

params = validatedUpdateInputs(configurer,retrainedMdl);

Update parameters in the generated code.

ClassificationSVMModel('update',params)

Verify Generated Code

Compare the outputs from the predict function of retrainedMdl and the predict function in the
updated MEX function.

[label,score] = predict(retrainedMdl,X);
[label_mex,score_mex] = ClassificationSVMModel('predict',X);
isequal(label,label_mex)

ans = logical
   1

find(abs(score-score_mex) > 1e-8)

ans =

  0x1 empty double column vector

The comparison confirms that labels and labels_mex are equal, and the score values are equal
within the tolerance.

Input Arguments
Mdl — Machine learning model
full model object | compact model object

Machine learning model, specified as a full or compact model object, as given in this table of
supported models.

Model Full/Compact Model Object Training Function
Binary decision tree for
multiclass classification

ClassificationTree,
CompactClassificationTre
e

fitctree

SVM for one-class and binary
classification

ClassificationSVM,
CompactClassificationSVM

fitcsvm

Linear model for binary
classification

ClassificationLinear fitclinear
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Model Full/Compact Model Object Training Function
Multiclass model for SVMs and
linear models

ClassificationECOC,
CompactClassificationECO
C

fitcecoc

Binary decision tree for
regression

RegressionTree,
CompactRegressionTree

fitrtree

Support vector machine (SVM)
regression

RegressionSVM,
CompactRegressionSVM

fitrsvm

Linear regression RegressionLinear fitrlinear

For the code generation usage notes and limitations of a machine learning model, see the Code
Generation section of the model object page.

X — Predictor data
numeric matrix

Predictor data for the predict function of Mdl, specified as an n-by-p numeric matrix, where n is the
number of observations and p is the number of predictor variables. To instead specify X as a p-by-n
matrix, where the observations correspond to columns, you must set the 'ObservationsIn' name-
value pair argument to 'columns'. This option is available only for linear models and ECOC models
with linear binary learners.

The predict function of a machine learning model predicts labels for classification and responses
for regression for given predictor data. After creating the coder configurer configurer, you can use
the generateCode function to generate C/C++ code for the predict function of Mdl. The
generated code accepts predictor data that has the same size and data type of X. You can specify
whether each dimension has a variable size or fixed size after creating configurer.

For example, if you want to generate C/C++ code that predicts labels using 100 observations with
three predictor variables, then specify X as zeros(100,3). The learnerCoderConfigurer
function uses only the size and data type of X, not its values. Therefore, X can be predictor data or a
MATLAB expression that represents the set of values with a certain data type. The output
configurer stores the size and data type of X in the X property of configurer. You can modify the
size and data type of X after creating configurer. For example, change the number of observations
to 200 and the data type to single.

configurer.X.SizeVector = [200 3];
configurer.X.DataType = 'single';

To allow the generated C/C++ code to accept predictor data with up to 100 observations, specify X as
zeros(100,3) and change the VariableDimensions property.

configurer.X.VariableDimensions = [1 0];

[1 0] indicates that the first dimension of X (number of observations) has a variable size and the
second dimension of X (number of predictor variables) has a fixed size. The specified number of
observations, 100 in this example, becomes the maximum allowed number of observations in the
generated C/C++ code. To allow any number of observations, specify the bound as Inf.

configurer.X.SizeVector = [Inf 3];

Data Types: single | double
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Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: configurer =
learnerCoderConfigurer(Mdl,X,'NumOutputs',2,'OutputFileName','myModel') sets the
number of outputs in predict to 2 and specifies the file name 'myModel' for the generated C/C++
code.

NumOutputs — Number of outputs in predict
1 (default) | positive integer

Number of output arguments in the predict function of the machine learning model Mdl, specified
as the comma-separated pair consisting of 'NumOutputs' and a positive integer n.

This table lists the outputs for the predict function of different models. predict in the generated
C/C++ code returns the first n outputs of the predict function in the order given in the Outputs
column.

Model predict Function of
Model

Outputs

Binary decision tree for
multiclass classification

predict label (predicted class labels), score (posterior
probabilities), node (node numbers for predicted
classes), cnum (class numbers of predicted labels)

SVM for one-class and
binary classification

predict label (predicted class labels), score (scores or
posterior probabilities)

Linear model for binary
classification

predict Label (predicted class labels), Score
(classification scores)

Multiclass model for
SVMs and linear models

predict label (predicted class labels), NegLoss
(negated average binary losses), PBScore
(positive-class scores)

Binary decision tree for
regression

predict Yfit (predicted responses), node (node numbers
for predictions)

SVM regression predict yfit (predicted responses)
Linear regression predict YHat (predicted responses)

For example, if you specify 'NumOutputs',1 for an SVM classification model, then predict returns
predicted class labels in the generated C/C++ code.

After creating the coder configurer configurer, you can modify the number of outputs by using dot
notation.

configurer.NumOutputs = 2;

The 'NumOutputs' name-value pair argument is equivalent to the '-nargout' compiler option of
codegen. This option specifies the number of output arguments in the entry-point function of code
generation. The object function generateCode of a coder configurer generates two entry-point
functions—predict.m and update.m for the predict and update functions of Mdl, respectively—
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and generates C/C++ code for the two entry-point functions. The specified value for 'NumOutputs'
corresponds to the number of output arguments in predict.m.
Example: 'NumOutputs',2
Data Types: single | double

OutputFileName — File name of generated C/C++ code
Mdl object name plus 'Model' (default) | character vector | string scalar

File name of the generated C/C++ code, specified as the comma-separated pair consisting of
'OutputFileName' and a character vector or string scalar.

The object function generateCode of a coder configurer generates C/C++ code using this file name.

The file name must not contain spaces because they can lead to code generation failures in certain
operating system configurations. Also, the name must be a valid MATLAB function name.

The default file name is the object name of Mdl followed by 'Model'. For example, if Mdl is a
CompactClassificationSVM or ClassificationSVM object, then the default name is
'ClassificationSVMModel'.

After creating the coder configurer configurer, you can modify the file name by using dot notation.

configurer.OutputFileName = 'myModel';

Example: 'OutputFileName','myModel'
Data Types: char | string

Verbose — Verbosity level
true (logical 1) (default) | false (logical 0)

Verbosity level, specified as the comma-separated pair consisting of 'Verbose' and either true
(logical 1) or false (logical 0). The verbosity level controls the display of notification messages at the
command line for the coder configurer configurer.

Value Description
true (logical 1) The software displays notification messages when your changes to the

coder attributes of a parameter result in changes for other dependent
parameters.

false (logical 0) The software does not display notification messages.

To enable updating machine learning model parameters in the generated code, you need to configure
the coder attributes of the parameters before generating code. The coder attributes of parameters
are dependent on each other, so the software stores the dependencies as configuration constraints. If
you modify the coder attributes of a parameter by using a coder configurer, and the modification
requires subsequent changes to other dependent parameters to satisfy configuration constraints,
then the software changes the coder attributes of the dependent parameters. The verbosity level
determines whether or not the software displays notification messages for these subsequent changes.

After creating the coder configurer configurer, you can modify the verbosity level by using dot
notation.

configurer.Verbose = false;
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Example: 'Verbose',false
Data Types: logical

ObservationsIn — Predictor data observation dimension
'rows' (default) | 'columns'

Predictor data observation dimension, specified as the comma-separated pair consisting of
'ObservationsIn' and either 'rows' or 'columns'. If you set 'ObservationsIn' to
'columns', then the predictor data X must be oriented so that the observations correspond to
columns.

Note The 'columns' option is available only for linear models and ECOC models with linear binary
learners.

Example: 'ObservationsIn','columns'

Output Arguments
configurer — Coder configurer
coder configurer object

Coder configurer of a machine learning model, returned as one of the coder configurer objects in this
table.

Model Coder Configurer Object
Binary decision tree for multiclass classification ClassificationTreeCoderConfigurer
SVM for one-class and binary classification ClassificationSVMCoderConfigurer
Linear model for binary classification ClassificationLinearCoderConfigurer
Multiclass model for SVMs and linear models ClassificationECOCCoderConfigurer
Binary decision tree for regression RegressionTreeCoderConfigurer
Support vector machine (SVM) regression RegressionSVMCoderConfigurer
Linear regression RegressionLinearCoderConfigurer

Use the object functions and properties of a coder configurer object to configure code generation
options and to generate C/C++ code for the predict and update functions of the machine learning
model.

Version History
Introduced in R2018b

See Also
generateCode | update | validatedUpdateInputs

Topics
“Introduction to Code Generation” on page 34-2
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“Code Generation for Prediction and Update Using Coder Configurer” on page 34-92
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length
Class: dataset

(Not Recommended) Length of dataset array

Note The dataset data type is not recommended. To work with heterogeneous data, use the
MATLAB® table data type instead. See MATLAB table documentation for more information.

Syntax
n = length(A)

Description
n = length(A) returns the number of observations in the dataset A. length is equivalent to
size(A,1).

See Also
size
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levelcounts
(Not Recommended) Element counts by level of a nominal or ordinal array

Note The nominal and ordinal array data types are not recommended. To represent ordered and
unordered discrete, nonnumeric data, use the “Categorical Arrays” data type instead.

Syntax
C = levelcounts(A)
C = levelcounts(A,dim)

Description
C = levelcounts(A) returns counts of the number of elements in the nominal or ordinal array A
equal to each possible level in A.

• If A is a vector, then C is a vector containing as many elements as the number of levels in A.
• If A is a matrix, then C is a matrix of column counts.
• If A is an N-dimensional array, then levelcounts operates along the first nonsingleton

dimension.

C = levelcounts(A,dim) operates along the dimension dim.

Examples

Count Observations in Each Level

Create a nominal array from data in a cell array.

colors = nominal({'r','b','g';'g','r','b';'b','r','g'},...
                 {'blue','green','red'})

colors = 3x3 nominal
     red        blue      green 
     green      red       blue  
     blue       red       green 

Count the number of observations of each level in each column.

levelcounts(colors)

ans = 3×3

     1     1     1
     1     0     2
     1     2     0
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Count the number of observations of each level in each row.

levelcounts(colors,2)

ans = 3×3

     1     1     1
     1     1     1
     1     1     1

Alternatively, you can use summary to display the counts with their labels. The default is to count
elements in each column.

summary(colors)

     blue       1      1      1 
     green      1      0      2 
     red        1      2      0 

You can also count elements in each row.

summary(colors,2)

     blue      green      red 
     1         1          1   
     1         1          1   
     1         1          1   

Input Arguments
A — Nominal or ordinal array
nominal array | ordinal array

Nominal or ordinal array, specified as a nominal or ordinal array object created with nominal or
ordinal.

dim — Dimension along which to count
positive integer value

Dimension along which to count the number of elements in each level, specified as a positive integer
value. For example, if the dimension is 1, then levelcounts counts along each column, while if the
dimension is 2, then levelcounts counts along each row.
Data Types: double | single

Version History
Introduced in R2007a

See Also
summary | nominal | ordinal
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leverage
Leverage

Syntax
h = leverage(data)
h = leverage(data,model)

Description
h = leverage(data) finds the leverage of each row (point) in the matrix data for a linear additive
regression model.

h = leverage(data,model) finds the leverage on a regression, using a specified model type,
where model can be one of the following:

• 'linear' - includes constant and linear terms
• 'interaction' - includes constant, linear, and cross product terms
• 'quadratic' - includes interactions and squared terms
• 'purequadratic' - includes constant, linear, and squared terms

Leverage is a measure of the influence of a given observation on a regression due to its location in
the space of the inputs.

Examples
One rule of thumb is to compare the leverage to 2p/n where n is the number of observations and p is
the number of parameters in the model. For the Hald data set this value is 0.7692.

load hald
h = max(leverage(ingredients,'linear'))
h =
  0.7004

Since 0.7004 < 0.7692, there are no high leverage points using this rule.

Algorithms
[Q,R] = qr(x2fx(data,'model'),0);

leverage = (sum(Q'.*Q'))'

Version History
Introduced before R2006a
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References

[1] Goodall, C. R. “Computation Using the QR Decomposition.” Handbook in Statistics. Vol. 9,
Amsterdam: Elsevier/North-Holland, 1993.

See Also
Topics
regstats
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lhsdesign
Latin hypercube sample

Syntax
X = lhsdesign(n,p)
X = lhsdesign(n,p,Name,Value)

Description
X = lhsdesign(n,p) returns a Latin hypercube sample matrix of size n-by-p. For each column of X,
the n values are randomly distributed with one from each interval (0,1/n), (1/n,2/n), ..., (1 -
1/n,1), and randomly permuted.

X = lhsdesign(n,p,Name,Value) modifies the resulting design using one or more name-value
pair arguments. For example, you can obtain a discrete design by specifying 'Smooth','off'.

Examples

Create Latin Hypercube Sample

Create a Latin hypercube sample of 10 rows and 4 columns.

rng default % For reproducibility
X = lhsdesign(10,4)

X = 10×4

    0.1893    0.2569    0.0147    0.5583
    0.8038    0.1089    0.9378    0.1950
    0.5995    0.6818    0.3649    0.3097
    0.3225    0.8736    0.4487    0.8055
    0.9183    0.9854    0.1598    0.2509
    0.0131    0.3864    0.5924    0.7511
    0.7916    0.7131    0.2760    0.6662
    0.6600    0.5420    0.6877    0.9100
    0.2740    0.0450    0.7816    0.0631
    0.4200    0.4855    0.8760    0.4889

Each column of X contains one random number in each interval [0,0.1], [0.1,0.2], [0.2,0.3],
[0.3,0.4], [0.4,0.5], [0.5,0.6], [0.6,0.7], [0.7,0.8], [0.8,0.9], and [0.9,1].

Latin Hypercube Design with Nondefault Options

Determine the effects of various name-value pair arguments in lhsdesign. Start with a default
design for 10 rows and four columns.
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rng default % For reproducibility
X = lhsdesign(10,4)

X = 10×4

    0.1893    0.2569    0.0147    0.5583
    0.8038    0.1089    0.9378    0.1950
    0.5995    0.6818    0.3649    0.3097
    0.3225    0.8736    0.4487    0.8055
    0.9183    0.9854    0.1598    0.2509
    0.0131    0.3864    0.5924    0.7511
    0.7916    0.7131    0.2760    0.6662
    0.6600    0.5420    0.6877    0.9100
    0.2740    0.0450    0.7816    0.0631
    0.4200    0.4855    0.8760    0.4889

To obtain a discrete design. as opposed to a continuous design, set the 'Smooth' name-value pair
argument to 'off'.

rng default % For reproducibility
X = lhsdesign(10,4,'Smooth','off')

X = 10×4

    0.2500    0.3500    0.7500    0.8500
    0.1500    0.8500    0.2500    0.3500
    0.8500    0.7500    0.4500    0.7500
    0.9500    0.1500    0.6500    0.1500
    0.0500    0.0500    0.8500    0.9500
    0.4500    0.5500    0.9500    0.4500
    0.3500    0.9500    0.5500    0.0500
    0.5500    0.4500    0.0500    0.2500
    0.6500    0.6500    0.1500    0.6500
    0.7500    0.2500    0.3500    0.5500

The resulting design is discrete.

Calculate the sum of squares of the between-column correlations of the returned design.

y = corr(X);
(sum(y(:).^2) - 4)/2 % Subtract 4 to remove the diagonal terms of corr(X)

ans = 0.4874

Observe the effect of changing the 'Criterion' name-value pair argument to 'correlation',
which minimizes the sum of between-column squared correlations. The 'correlation' criterion
always gives a discrete design, as if 'Smooth' is set to 'off'.

rng default % For reproducibility
X = lhsdesign(10,4,'Criterion','correlation')

X = 10×4

    0.6500    0.0500    0.4500    0.7500
    0.2500    0.3500    0.0500    0.1500
    0.1500    0.9500    0.8500    0.4500
    0.8500    0.5500    0.9500    0.0500
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    0.5500    0.2500    0.5500    0.3500
    0.3500    0.4500    0.7500    0.8500
    0.4500    0.1500    0.6500    0.6500
    0.0500    0.6500    0.2500    0.5500
    0.9500    0.8500    0.3500    0.9500
    0.7500    0.7500    0.1500    0.2500

y = corr(X);
(sum(y(:).^2) - 4)/2

ans = 0.0102

Minimizing the correlations results in a design with much lower sum of squared correlations.

Specify fewer iterations to improve the criterion.

rng default % For reproducibility
X = lhsdesign(10,4,'Criterion','correlation','Iterations',2)

X = 10×4

    0.6500    0.0500    0.4500    0.7500
    0.3500    0.3500    0.0500    0.1500
    0.1500    0.9500    0.8500    0.4500
    0.9500    0.5500    0.9500    0.0500
    0.5500    0.2500    0.5500    0.3500
    0.2500    0.4500    0.7500    0.8500
    0.4500    0.1500    0.6500    0.6500
    0.0500    0.6500    0.2500    0.5500
    0.8500    0.8500    0.3500    0.9500
    0.7500    0.7500    0.1500    0.2500

y = corr(X);
(sum(y(:).^2) - 4)/2

ans = 0.0328

Lowering the number of iterations results in a worse design (higher sum of squared correlations).

Input Arguments
n — Number of returned samples
positive integer

Number of returned samples, specified as a positive integer.
Example: 24
Data Types: single | double

p — Number of returned variables
positive integer

Number of returned variables, specified as a positive integer.
Example: 4
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Data Types: single | double

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: X = lhsdesign(n,p,'Smooth','off') returns a discrete Latin hypercube design

Smooth — Indication for continuous samples
'on' (default) | 'off'

Indication for continuous samples, specified as the comma-separated pair consisting of 'Smooth'
and 'on' (continuous samples) or 'off' (discrete samples). When this option is 'off', the returned
values in each column of X are a random permutation of the values 0.5/n, 1.5/n, …, 1 – 0.5/n.
Example: 'Smooth','off'
Data Types: char | string

Criterion — Criterion for iterative sample generation
'maximin' (default) | 'none' | 'correlation'

Criterion for iterative sample generation, specified as the comma-separated pair consisting of
'Criterion' and 'maximin', 'none', or 'correlation'. The algorithm uses up to Iterations
tries to improve the criterion.

Note The 'correlation' criterion gives discrete samples, as if Smooth is set to 'off'.

Criterion Description
'maximin' Maximize the minimum distance between points.
'correlation' Minimize the sum of between-column squared correlations.
'none' No iteration

Example: 'Criterion','correlation'
Data Types: char | string

Iterations — Maximum number of iterations to improve criterion
5 (default) | positive integer

Maximum number of iterations to improve Criterion, specified as the comma-separated pair
consisting of 'Iterations' and a positive integer. The algorithm uses up to Iterations tries to
improve the criterion.
Example: 'Iterations',10
Data Types: single | double
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Version History
Introduced before R2006a

See Also
haltonset | sobolset | lhsnorm | unifrnd
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lhsnorm
Latin hypercube sample from normal distribution

Syntax
X = lhsnorm(mu,sigma,n)
X = lhsnorm(mu,sigma,n,flag)
[X,Z] = lhsnorm(...)

Description
X = lhsnorm(mu,sigma,n) returns an n-by-p matrix, X, containing a Latin hypercube sample of
size n from a p-dimensional multivariate normal distribution with mean vector, mu, and covariance
matrix, sigma.

X is similar to a random sample from the multivariate normal distribution, but the marginal
distribution of each column is adjusted so that its sample marginal distribution is close to its
theoretical normal distribution.

X = lhsnorm(mu,sigma,n,flag) controls the amount of smoothing in the sample. If flag is
'off', each column has points equally spaced on the probability scale. In other words, each column
is a permutation of the values G(0.5/n), G(1.5/n), ..., G(1-0.5/n), where G is the inverse
normal cumulative distribution for that column's marginal distribution. If flag is 'on' (the default),
each column has points uniformly distributed on the probability scale. For example, in place of 0.5/n
you use a value having a uniform distribution on the interval (0/n,1/n).

[X,Z] = lhsnorm(...) also returns Z, the original multivariate normal sample before the
marginals are adjusted to obtain X.

Version History
Introduced before R2006a

References

[1] Stein, M. “Large sample properties of simulations using Latin hypercube sampling.”
Technometrics. Vol. 29, No. 2, 1987, pp. 143–151. Correction, Vol. 32, p. 367.

See Also
lhsdesign | mvnrnd
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lillietest
Lilliefors test

Syntax
h = lillietest(x)
h = lillietest(x,Name,Value)
[h,p] = lillietest( ___ )
[h,p,kstat,critval] = lillietest( ___ )

Description
h = lillietest(x) returns a test decision for the null hypothesis that the data in vector x comes
from a distribution in the normal family, against the alternative that it does not come from such a
distribution, using a Lilliefors test. The result h is 1 if the test rejects the null hypothesis at the 5%
significance level, and 0 otherwise.

h = lillietest(x,Name,Value) returns a test decision with additional options specified by one
or more name-value pair arguments. For example, you can test the data against a different
distribution family, change the significance level, or calculate the p-value using a Monte Carlo
approximation.

[h,p] = lillietest( ___ ) also returns the p-value p, using any of the input arguments from the
previous syntaxes.

[h,p,kstat,critval] = lillietest( ___ ) also returns the test statistic kstat and the critical
value critval for the test.

Examples

Test for Normal Distribution

Load the sample data. Test the null hypothesis that car mileage, in miles per gallon (MPG), follows a
normal distribution across different makes of cars.

load carbig
[h,p,k,c] = lillietest(MPG)

Warning: P is less than the smallest tabulated value, returning 0.001.

h = 1

p = 1.0000e-03

k = 0.0789

c = 0.0451

The test statistic k is greater than the critical value c, so lillietest returns a result of h = 1 to
indicate rejection of the null hypothesis at the default 5% significance level. The warning indicates
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that the returned p-value is less than the smallest value in the table of precomputed values. To find a
more accurate p-value, use MCTol to run a Monte Carlo approximation. See “Determine the p-value
Using Monte Carlo Approximation” on page 35-4174.

Test the Hypothesis at Different Significance Levels

Load the sample data. Create a vector containing the first column of the students’ exam grades data.

load examgrades
x = grades(:,1);

Test the null hypothesis that the sample data comes from a normal distribution at the 1% significance
level.

[h,p] = lillietest(x,'Alpha',0.01)

h = 0

p = 0.0348

The returned value of h = 0 indicates that lillietest does not reject the null hypothesis at the 1%
significance level.

Test for Exponential Distribution

Load the sample data. Test the null hypothesis that car mileage, in miles per gallon (MPG), follows an
exponential distribution across different makes of cars.

load carbig
h = lillietest(MPG,'Distribution','exponential')

h = 1

The returned value of h = 1 indicates that lillietest rejects the null hypothesis at the default 5%
significance level.

Test for Weibull Distribution

Generate two sample data sets, one from a Weibull distribution and another from a lognormal
distribution. Perform the Lilliefors test to assess whether each data set is from a Weibull distribution.
Confirm the test decision by performing a visual comparison using a Weibull probability plot
(wblplot).

Generate samples from a Weibull distribution.

rng('default')
data1 = wblrnd(0.5,2,[500,1]);

Perform the Lilliefors test by using the lillietest. To test data for a Weibull distribution, test if the
logarithm of the data has an extreme value distribution.

h1 = lillietest(log(data1),'Distribution','extreme value')
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h1 = 0

The returned value of h1 = 0 indicates that lillietest fails to reject the null hypothesis at the
default 5% significance level. Confirm the test decision using a Weibull probability plot.

wblplot(data1)

The plot indicates that the data follows a Weibull distribution.

Generate samples from a lognormal distribution.

data2 =lognrnd(5,2,[500,1]);

Perform the Lilliefors test.

h2 = lillietest(log(data2),'Distribution','extreme value')

h2 = 1

The returned value of h2 = 1 indicates that lillietest rejects the null hypothesis at the default
5% significance level. Confirm the test decision using a Weibull probability plot.

wblplot(data2)
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The plot indicates that the data does not follow a Weibull distribution.

Determine the p-value Using Monte Carlo Approximation

Load the sample data. Test the null hypothesis that car mileage, in miles per gallon (MPG), follows a
normal distribution across different makes of cars. Determine the p-value using a Monte Carlo
approximation with a maximum Monte Carlo standard error of 1e-4.

load carbig
[h,p] = lillietest(MPG,'MCTol',1e-4)

h = 1

p = 8.3333e-06

The returned value of h = 1 indicates that lillietest rejects the null hypothesis that the data
comes from a normal distribution at the 5% significance level.

Input Arguments
x — Sample data
vector
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Sample data, specified as a vector.
Data Types: single | double

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: 'Distribution','exponential','Alpha',0.01 tests the null hypothesis that the
population distribution belongs to the exponential distribution family at the 1% significance level.

Alpha — Significance level
0.05 (default) | scalar value in the range (0,1)

Significance level of the hypothesis test, specified as the comma-separated pair consisting of
'Alpha' and a scalar value in the range (0,1).

• If MCTol is not used, Alpha must be in the range [0.001,0.50].
• If MCTol is used, Alpha must be in the range (0,1).

Example: 'Alpha',0.01
Data Types: single | double

Distribution — Distribution family
'normal' (default) | 'exponential' | 'extreme value'

Distribution family for the hypothesis test, specified as the comma-separated pair consisting of
'Distr' and one of the following.

'normal' Normal distribution
'exponential
'

Exponential distribution

'extreme
value'

Extreme value distribution

• To test x for a lognormal distribution, test if log(x) has a normal distribution.
• To test x for a Weibull distribution, test if log(x) has an extreme value distribution.

Example: 'Distribution','exponential'

MCTol — Maximum Monte Carlo standard error
scalar value in the range (0,1)

Maximum Monte Carlo standard error on page 35-4177 for p, the p-value of the test, specified as the
comma-separated pair consisting of 'MCTol' and a scalar value in the range (0,1).
Example: 'MCTol',0.001
Data Types: single | double
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Output Arguments
h — Hypothesis test result
1 | 0

Hypothesis test result, returned as 1 or 0.

• If h = 1, this indicates the rejection of the null hypothesis at the Alpha significance level.
• If h = 0, this indicates a failure to reject the null hypothesis at the Alpha significance level.

p — p-value
scalar value in the range (0,1)

p-value of the test, returned as a scalar value in the range (0,1). p is the probability of observing a
test statistic as extreme as, or more extreme than, the observed value under the null hypothesis.
Small values of p cast doubt on the validity of the null hypothesis.

• If MCTol is not used, p is computed using inverse interpolation into the table of critical values,
and is returned as a scalar value in the range [0.001,0.50]. lillietest warns when p is not
found within the tabulated range and returns either the smallest or largest tabulated value.

• If MCTol is used, lillietest conducts a Monte Carlo simulation to compute a more accurate p-
value, and p is returned as a scalar value in the range (0,1).

kstat — Test statistic
nonnegative scalar value

Test statistic, returned as a nonnegative scalar value.

critval — Critical value
nonnegative scalar value

Critical value for the hypothesis test, returned as a nonnegative scalar value.

More About
Lilliefors Test

The Lilliefors test is a two-sided goodness-of-fit test suitable when the parameters of the null
distribution are unknown and must be estimated. This is in contrast to the one-sample Kolmogorov-
Smirnov test, which requires the null distribution to be completely specified.

The Lilliefors test statistic is:

D* = max
x

F x − G x ,

where F x  is the empirical cdf of the sample data and G x  is the cdf of the hypothesized distribution
with estimated parameters equal to the sample parameters.

lillietest can be used to test whether the data vector x has a lognormal or Weibull distribution by
applying a transformation to the data vector and running the appropriate Lilliefors test:

• To test x for a lognormal distribution, test if log(x) has a normal distribution.
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• To test x for a Weibull distribution, test if log(x) has an extreme value distribution.

The Lilliefors test cannot be used when the null hypothesis is not a location-scale family of
distributions.

Monte Carlo Standard Error

The Monte Carlo standard error is the error due to simulating the p-value.

The Monte Carlo standard error is calculated as:

SE = p 1− p
mcreps ,

where p  is the estimated p-value of the hypothesis test, and mcreps is the number of Monte Carlo
replications performed.

The number of Monte Carlo replications, mcreps, is determined such that the Monte Carlo standard
error for p  less than the value specified for MCTol.

Algorithms
To compute the critical value for the hypothesis test, lillietest interpolates into a table of critical
values pre-computed using Monte Carlo simulation for sample sizes less than 1000 and significance
levels between 0.001 and 0.50. The table used by lillietest is larger and more accurate than the
table originally introduced by Lilliefors. If a more accurate p-value is desired, or if the desired
significance level is less than 0.001 or greater than 0.50, the MCTol input argument can be used to
run a Monte Carlo simulation to calculate the p-value more exactly.

When the computed value of the test statistic is greater than the critical value, lillietest rejects
the null hypothesis at significance level Alpha.

lillietest treats NaN values in x as missing values and ignores them.

Version History
Introduced before R2006a

References
[1] Conover, W. J. Practical Nonparametric Statistics. Hoboken, NJ: John Wiley & Sons, Inc., 1980.

[2] Lilliefors, H. W. “On the Kolmogorov-Smirnov test for the exponential distribution with mean
unknown.” Journal of the American Statistical Association. Vol. 64, 1969, pp. 387–389.

[3] Lilliefors, H. W. “On the Kolmogorov-Smirnov test for normality with mean and variance
unknown.” Journal of the American Statistical Association. Vol. 62, 1967, pp. 399–402.

See Also
jbtest | kstest | kstest2 | cdfplot | adtest
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lime
Local interpretable model-agnostic explanations (LIME)

Description
“LIME” on page 35-4199 explains a prediction of a machine learning model (classification or
regression) for a query point by finding important predictors and fitting a simple interpretable model.

You can create a lime object for a machine learning model with a specified query point
(queryPoint) and a specified number of important predictors (numImportantPredictors). The
software generates a synthetic data set, and fits a simple interpretable model of important predictors
that effectively explains the predictions for the synthetic data around the query point. The simple
model can be a linear model (default) or decision tree model.

Use the fitted simple model to explain a prediction of the machine learning model locally, at the
specified query point. Use the plot function to visualize the LIME results. Based on the local
explanations, you can decide whether or not to trust the machine learning model.

Fit a new simple model for another query point by using the fit function.

Creation

Syntax
results = lime(blackbox)
results = lime(blackbox,X)
results = lime(blackbox,'CustomSyntheticData',customSyntheticData)

results = lime( ___ ,'QueryPoint',queryPoint,'NumImportantPredictors',
numImportantPredictors)

results = lime( ___ ,Name,Value)

Description

results = lime(blackbox) creates a lime object using a machine learning model object
blackbox that contains predictor data. The lime function generates samples of a synthetic predictor
data set and computes the predictions for the samples. To fit a simple model, use the fit function
with results.

results = lime(blackbox,X) creates a lime object using the predictor data in X.

results = lime(blackbox,'CustomSyntheticData',customSyntheticData) creates a
lime object using the pregenerated, custom synthetic predictor data set customSyntheticData.
The lime function computes the predictions for the samples in customSyntheticData.

results = lime( ___ ,'QueryPoint',queryPoint,'NumImportantPredictors',
numImportantPredictors) also finds the specified number of important predictors and fits a
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linear simple model for the query point queryPoint. You can specify queryPoint and
numImportantPredictors in addition to any of the input argument combinations in the previous
syntaxes.

results = lime( ___ ,Name,Value) specifies additional options using one or more name-value
arguments. For example, 'SimpleModelType','tree' specifies the type of simple model as a
decision tree model.

Input Arguments

blackbox — Machine learning model to be interpreted
regression model object | classification model object | function handle

Machine learning model to be interpreted, specified as a full or compact regression or classification
model object or a function handle.

• Full or compact model object — You can specify a full or compact regression or classification
model object, which has a predict object function. The software uses the predict function to
compute the predictions for the query point and the synthetic predictor data set.

• If you specify a model object that does not contain predictor data (for example, a compact
model), then you must provide predictor data using X or customSyntheticData.

• lime does not support a model object trained with a sparse matrix. When you train a model,
use a full numeric matrix or table for the predictor data where rows correspond to individual
observations.

Regression Model Object

Supported Model Full or Compact Regression Model Object
Ensemble of regression
models

RegressionEnsemble, RegressionBaggedEnsemble,
CompactRegressionEnsemble

Gaussian kernel regression
model using random feature
expansion

RegressionKernel

Gaussian process regression RegressionGP, CompactRegressionGP
Generalized additive model RegressionGAM, CompactRegressionGAM
Linear regression for high-
dimensional data

RegressionLinear

Neural network regression
model

RegressionNeuralNetwork,
CompactRegressionNeuralNetwork

Regression tree RegressionTree, CompactRegressionTree
Support vector machine
regression

RegressionSVM, CompactRegressionSVM
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Classification Model Object

Supported Model Full or Compact Classification Model Object
Binary decision tree for
multiclass classification

ClassificationTree, CompactClassificationTree

Discriminant analysis
classifier

ClassificationDiscriminant,
CompactClassificationDiscriminant

Ensemble of learners for
classification

ClassificationEnsemble,
CompactClassificationEnsemble,
ClassificationBaggedEnsemble

Gaussian kernel classification
model using random feature
expansion

ClassificationKernel

Generalized additive model ClassificationGAM, CompactClassificationGAM
k-nearest neighbor model ClassificationKNN
Linear classification model ClassificationLinear
Multiclass model for support
vector machines or other
classifiers

ClassificationECOC, CompactClassificationECOC

Naive Bayes model ClassificationNaiveBayes,
CompactClassificationNaiveBayes

Neural network classifier ClassificationNeuralNetwork,
CompactClassificationNeuralNetwork

Support vector machine for
binary classification

ClassificationSVM, CompactClassificationSVM

• Function handle — You can specify a function handle that accepts predictor data and returns a
column vector containing a prediction for each observation in the predictor data. The prediction is
a predicted response for regression or a classified label for classification. You must provide the
predictor data using X or customSyntheticData and specify the 'Type' name-value argument.

X — Predictor data
numeric matrix | table

Predictor data, specified as a numeric matrix or table. Each row of X corresponds to one observation,
and each column corresponds to one variable.

X must be consistent with the predictor data that trained blackbox, stored in blackbox.X. The
specified value must not contain a response variable.

• X must have the same data types as the predictor variables (for example, trainX) that trained
blackbox. The variables that make up the columns of X must have the same number and order as
in trainX.

• If you train blackbox using a numeric matrix, then X must be a numeric matrix.
• If you train blackbox using a table, then X must be a table. All predictor variables in X must

have the same variable names and data types as in trainX.
• lime does not support a sparse matrix.
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If blackbox is a model object that does not contain predictor data or a function handle, you must
provide X or customSyntheticData. If blackbox is a full machine learning model object and you
specify this argument, then lime does not use the predictor data in blackbox. It uses the specified
predictor data only.
Data Types: single | double | table

customSyntheticData — Pregenerated, custom synthetic predictor data set
[] (default) | numeric matrix | table

Pregenerated, custom synthetic predictor data set, specified as a numeric matrix or table.

If you provide a pregenerated data set, then lime uses the provided data set instead of generating a
new synthetic predictor data set.

customSyntheticData must be consistent with the predictor data that trained blackbox, stored in
blackbox.X. The specified value must not contain a response variable.

• customSyntheticData must have the same data types as the predictor variables (for example,
trainX) that trained blackbox. The variables that make up the columns of
customSyntheticData must have the same number and order as in trainX

• If you train blackbox using a numeric matrix, then customSyntheticData must be a
numeric matrix.

• If you train blackbox using a table, then customSyntheticData must be a table. All
predictor variables in customSyntheticData must have the same variable names and data
types as in trainX.

• lime does not support a sparse matrix.

If blackbox is a model object that does not contain predictor data or a function handle, you must
provide X or customSyntheticData. If blackbox is a full machine learning model object and you
specify this argument, then lime does not use the predictor data in blackbox; it uses the specified
predictor data only.
Data Types: single | double | table

queryPoint — Query point
row vector of numeric values | single-row table

Query point at which lime explains a prediction, specified as a row vector of numeric values or a
single-row table. queryPoint must have the same data type and number of columns as X,
customSyntheticData, or the predictor data in blackbox.

If you specify numImportantPredictors and queryPoint, then the lime function fits a simple
model when creating a lime object.

queryPoint must not contain missing values.
Example: blackbox.X(1,:) specifies the query point as the first observation of the predictor data
in the full machine learning model blackbox.
Data Types: single | double | table

numImportantPredictors — Number of important predictors to use in simple model
positive integer scalar value
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Number of important predictors to use in the simple model, specified as a positive integer scalar
value.

• If 'SimpleModelType' is 'linear' (default), then the software selects the specified number of
important predictors and fits a linear model of the selected predictors.

• If 'SimpleModelType' is 'tree', then the software specifies the maximum number of decision
splits (or branch nodes) as the number of important predictors so that the fitted decision tree uses
at most the specified number of predictors.

If you specify numImportantPredictors and queryPoint, then the lime function fits a simple
model when creating a lime object.
Data Types: single | double

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example:
lime(blackbox,'QueryPoint',q,'NumImportantPredictors',n,'SimpleModelType','tr
ee') specifies the query point as q, the number of important predictors to use for the simple model
as n, and the type of simple model as a decision tree model. lime generates samples of a synthetic
predictor data set, computes the predictions for the samples, and fits a decision tree model for the
query point using at most the specified number of predictors.

Options for Synthetic Predictor Data

DataLocality — Locality of synthetic data for data generation
'global' (default) | 'local'

Locality of the synthetic data for data generation, specified as the comma-separated pair consisting of
'DataLocality' and 'global' or 'local'.

• 'global' — The software estimates distribution parameters using the whole predictor data set (X
or the predictor data in blackbox). The software generates a synthetic predictor data set with
the estimated parameters and uses the data set for simple model fitting of any query point.

• 'local' — The software estimates the distribution parameters using the k-nearest neighbors of a
query point, where k is the 'NumNeighbors' value. The software generates a new synthetic
predictor data set each time it fits a simple model for the specified query point.

For more details, see “LIME” on page 35-4199.
Example: 'DataLocality','local'
Data Types: char | string

NumNeighbors — Number of neighbors of query point
1500 (default) | positive integer scalar value

Number of neighbors of the query point, specified as the comma-separated pair consisting of
'NumNeighbors' and a positive integer scalar value. This argument is valid only when
'DataLocality' is 'local'.
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If you specify a value larger than the number of observations in the predictor data set (X or the
predictor data in blackbox), then lime uses all observations.
Example: 'NumNeighbors',2000
Data Types: single | double

NumSyntheticData — Number of samples to generate for synthetic data set
5000 (default) | positive integer scalar value

Number of samples to generate for the synthetic data set, specified as the comma-separated pair
consisting of 'NumSyntheticData' and a positive integer scalar value.
Example: 'NumSyntheticData',2500
Data Types: single | double

Options for Simple Model

KernelWidth — Kernel width
0.75 (default) | numeric scalar value

Kernel width of the squared exponential (or Gaussian) kernel function, specified as the comma-
separated pair consisting of 'KernelWidth' and a numeric scalar value.

The lime function computes distances between the query point and the samples in the synthetic
predictor data set, and then converts the distances to weights by using the squared exponential
kernel function. If you lower the 'KernelWidth' value, then lime uses weights that are more
focused on the samples near the query point. For details, see “LIME” on page 35-4199.
Example: 'KernelWidth',0.5
Data Types: single | double

SimpleModelType — Type of simple model
'linear' (default) | 'tree'

Type of the simple model, specified as the comma-separated pair consisting of 'SimpleModelType'
and 'linear' or 'tree'.

• 'linear' — The software fits a linear model by using fitrlinear for regression or
fitclinear for classification.

• 'tree' — The software fits a decision tree model by using fitrtree for regression or fitctree
for classification.

Example: 'SimpleModelType','tree'
Data Types: char | string

Options for Machine Learning Model

CategoricalPredictors — Categorical predictors list
vector of positive integers | logical vector | character matrix | string array | cell array of character
vectors | 'all'

Categorical predictors list, specified as the comma-separated pair consisting of
'CategoricalPredictors' and one of the values in this table.
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Value Description
Vector of positive
integers

Each entry in the vector is an index value indicating that the corresponding
predictor is categorical. The index values are between 1 and p, where p is
the number of predictors used to train the model.

If blackbox uses a subset of input variables as predictors, then the
software indexes the predictors using only the subset. The
'CategoricalPredictors' values do not count the response variable,
observation weight variable, or any other variables that the function does
not use.

Logical vector A true entry means that the corresponding predictor is categorical. The
length of the vector is p.

Character matrix Each row of the matrix is the name of a predictor variable. The names must
match the variable names of the predictor data in the form of a table. Pad
the names with extra blanks so each row of the character matrix has the
same length.

String array or cell
array of character
vectors

Each element in the array is the name of a predictor variable. The names
must match the variable names of the predictor data in the form of a table.

'all' All predictors are categorical.

• If you specify blackbox as a function handle, then lime identifies categorical predictors from the
predictor data X or customSyntheticData. If the predictor data is in a table, lime assumes that
a variable is categorical if it is a logical vector, unordered categorical vector, character array,
string array, or cell array of character vectors. If the predictor data is a matrix, lime assumes that
all predictors are continuous.

• If you specify blackbox as a regression or classification model object, then lime identifies
categorical predictors by using the CategoricalPredictors property of the model object.

lime does not support an ordered categorical predictor.
Example: 'CategoricalPredictors','all'
Data Types: single | double | logical | char | string | cell

Type — Type of machine learning model
'regression | 'classification'

Type of the machine learning model, specified as the comma-separated pair consisting of 'Type' and
'regression or 'classification'.

You must specify this argument when you specify blackbox as a function handle. If you specify
blackbox as a regression or classification model object, then lime determines the 'Type' value
depending on the model type.
Example: 'Type','classification'
Data Types: char | string

Options for Computing Distances

Distance — Distance metric
character vector | string scalar | function handle
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Distance metric, specified as the comma-separated pair consisting of 'Distance' and a character
vector, string scalar, or function handle.

• If the predictor data includes only continuous variables, then lime supports these distance
metrics.

Value Description
'euclidean' Euclidean distance.
'seuclidean' Standardized Euclidean distance. Each coordinate difference between

observations is scaled by dividing by the corresponding element of the
standard deviation, S = std(PD,'omitnan'), where PD is the
predictor data or synthetic predictor data. To specify different scaling,
use the 'Scale' name-value argument.

'mahalanobis' Mahalanobis distance using the sample covariance of PD, C =
cov(PD,'omitrows'). To change the value of the covariance matrix,
use the 'Cov' name-value argument.

'cityblock' City block distance.
'minkowski' Minkowski distance. The default exponent is 2. To specify a different

exponent, use the 'P' name-value argument.
'chebychev' Chebychev distance (maximum coordinate difference).
'cosine' One minus the cosine of the included angle between points (treated as

vectors).
'correlation' One minus the sample correlation between points (treated as

sequences of values).
'spearman' One minus the sample Spearman's rank correlation between

observations (treated as sequences of values).
@distfun Custom distance function handle. A distance function has the form

function D2 = distfun(ZI,ZJ)
% calculation of distance
...

where

• ZI is a 1-by-t vector containing a single observation.
• ZJ is an s-by-t matrix containing multiple observations. distfun

must accept a matrix ZJ with an arbitrary number of observations.
• D2 is an s-by-1 vector of distances, and D2(k) is the distance

between observations ZI and ZJ(k,:).

If your data is not sparse, you can generally compute distance more
quickly by using a built-in distance metric instead of a function
handle.

• If the predictor data includes both continuous and categorical variables, then lime supports these
distance metrics.

Value Description
'goodall3' Modified Goodall distance
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Value Description
'ofd' Occurrence frequency distance

For definitions, see “Distance Metrics” on page 35-4197.

The default value is 'euclidean' if the predictor data includes only continuous variables, or
'goodall3' if the predictor data includes both continuous and categorical variables.
Example: 'Distance','ofd'
Data Types: char | string | function_handle

Cov — Covariance matrix for Mahalanobis distance metric
positive definite matrix

Covariance matrix for the Mahalanobis distance metric, specified as the comma-separated pair
consisting of 'Cov' and a K-by-K positive definite matrix, where K is the number of predictors.

This argument is valid only if 'Distance' is 'mahalanobis'.

The default 'Cov' value is cov(PD,'omitrows'), where PD is the predictor data or synthetic
predictor data. If you do not specify the 'Cov' value, then the software uses different covariance
matrices when computing the distances for both the predictor data and the synthetic predictor data.
Example: 'Cov',eye(3)
Data Types: single | double

P — Exponent for Minkowski distance metric
2 (default) | positive scalar

Exponent for the Minkowski distance metric, specified as the comma-separated pair consisting of 'P'
and a positive scalar.

This argument is valid only if 'Distance' is 'minkowski'.
Example: 'P',3
Data Types: single | double

Scale — Scale parameter value for standardized Euclidean distance metric
nonnegative numeric vector

Scale parameter value for the standardized Euclidean distance metric, specified as the comma-
separated pair consisting of 'Scale' and a nonnegative numeric vector of length K, where K is the
number of predictors.

This argument is valid only if 'Distance' is 'seuclidean'.

The default 'Scale' value is std(PD,'omitnan'), where PD is the predictor data or synthetic
predictor data. If you do not specify the 'Scale' value, then the software uses different scale
parameters when computing the distances for both the predictor data and the synthetic predictor
data.
Example: 'Scale',quantile(X,0.75) - quantile(X,0.25)
Data Types: single | double
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Properties
Specified Properties

You can specify the following properties when creating a lime object.

BlackboxModel — Machine learning model to be interpreted
regression model object | classification model object | function handle

This property is read-only.

Machine learning model to be interpreted, specified as a regression or classification model object or a
function handle.

The blackbox argument sets this property.

CategoricalPredictors — Categorical predictor indices
vector of positive integers | []

This property is read-only.

Categorical predictor indices, specified as a vector of positive integers. CategoricalPredictors
contains index values indicating that the corresponding predictors are categorical. The index values
are between 1 and p, where p is the number of predictors used to train the model. If none of the
predictors are categorical, then this property is empty ([]).

• If you specify blackbox using a function handle, then lime identifies categorical predictors from
the predictor data X or customSyntheticData. If you specify the 'CategoricalPredictors'
name-value argument, then the argument sets this property.

• If you specify blackbox as a regression or classification model object, then lime determines this
property by using the CategoricalPredictors property of the model object.

lime does not support an ordered categorical predictor.

If 'SimpleModelType' is 'linear' (default), then lime creates dummy variables for each
identified categorical predictor. lime treats the category of the specified query point as a reference
group and creates one less dummy variable than the number of categories. For more details, see
“Dummy Variables with Reference Group” on page 2-49.
Data Types: single | double

DataLocality — Locality of synthetic data for data generation
'global' | 'local'

This property is read-only.

Locality of the synthetic data for data generation, specified as 'global' or 'local'.

The 'DataLocality' name-value argument sets this property.

NumImportantPredictors — Number of important predictors to use in simple model
positive integer scalar value

This property is read-only.
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Number of important predictors to use in the simple model (SimpleModel), specified as a positive
integer scalar value.

The numImportantPredictors argument of lime or the numImportantPredictors argument of
fit sets this property.
Data Types: single | double

NumSyntheticData — Number of samples in synthetic data set
positive integer scalar value

This property is read-only.

Number of samples in the synthetic data set, specified as a positive integer scalar value.

• If you specify customSyntheticData, then the number of samples in the custom synthetic data
set sets this property.

• Otherwise, the 'NumSyntheticData' name-value argument of lime or the
'NumSyntheticData' name-value argument of fit sets this property.

Data Types: single | double

QueryPoint — Query point
row vector of numeric values | single-row table

This property is read-only.

Query point at which lime explains a prediction using the simple model (SimpleModel), specified as
a row vector of numeric values or single-row table.

The queryPoint argument of lime or the queryPoint argument of fit sets this property.
Data Types: single | double | table

Type — Type of machine learning model
'regression | 'classification'

This property is read-only.

Type of the machine learning model (BlackboxModel), specified as 'regression or
'classification'.

• If you specify blackbox as a regression or classification model object, then lime determines this
property depending on the model type.

• If you specify blackbox using a function handle, then the 'Type' name-value argument sets this
property.

X — Predictor data
numeric matrix | table

This property is read-only.

Predictor data, specified as a numeric matrix or table.

Each row of X corresponds to one observation, and each column corresponds to one variable.
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• If you specify the X argument, then the argument sets this property.
• If you specify the customSyntheticData argument, then this property is empty.
• If you specify blackbox as a full machine learning model object and do not specify X or

customSyntheticData, then this property value is the predictor data used to train blackbox.

lime does not use rows that contain missing values and does not store the rows in X.
Data Types: single | double | table

Computed Properties

The software computes the following properties.

BlackboxFitted — Prediction for query point computed by machine learning model
scalar

This property is read-only.

Prediction for the query point computed by the machine learning model (BlackboxModel), specified
as a scalar. The prediction is a predicted response for regression or a classified label for
classification.
Data Types: single | double | categorical | logical | char | string | cell

Fitted — Predictions for synthetic predictor data computed by machine learning model
vector

This property is read-only.

Predictions for synthetic predictor data computed by the machine learning model (BlackboxModel),
specified as a vector.
Data Types: single | double | categorical | logical | char | string | cell

ImportantPredictors — Important predictor indices
vector of positive integers

This property is read-only.

Important predictor indices, specified as a vector of positive integers. ImportantPredictors
contains the index values corresponding to the columns of the predictors used in the simple model
(SimpleModel).
Data Types: single | double

SimpleModel — Simple model
RegressionLinear model object | RegressionTree model object | ClassificationLinear
model object | ClassificationTree model object

This property is read-only.

Simple model, specified as a RegressionLinear, RegressionTree, ClassificationLinear, or
ClassificationTree model object. lime determines the type of simple model object depending on
the type of the machine learning model (Type) and the type of the simple model
('SimpleModelType').
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SimpleModelFitted — Prediction for query point computed by simple model
scalar

This property is read-only.

Prediction for the query point computed by the simple model (SimpleModel), specified as a scalar.

If SimpleModel is ClassificationLinear, then the SimpleModelFitted value is 1 or –1.

• The SimpleModelFitted value is 1 if the prediction from the simple model is the same as
BlackboxFitted (prediction from the machine learning model).

• The SimpleModelFitted value is –1 if the prediction from the simple model is different from
BlackboxFitted. If the BlackboxFitted value is A, then the plot function displays the
SimpleModelFitted value as Not A.

Data Types: single | double | categorical | logical | char | string | cell

SyntheticData — Synthetic predictor data
numeric matrix | table

This property is read-only.

Synthetic predictor data, specified as a numeric matrix or a table.

• If you specify the customSyntheticData input argument, then the argument sets this property.
• Otherwise, lime estimates distribution parameters from the predictor data X and generates a

synthetic predictor data set.

Data Types: single | double | table

Object Functions
fit Fit simple model of local interpretable model-agnostic explanations (LIME)
plot Plot results of local interpretable model-agnostic explanations (LIME)

Examples

Explain Prediction with Decision Tree Simple Model

Train a classification model and create a lime object that uses a decision tree simple model. When
you create a lime object, specify a query point and the number of important predictors so that the
software generates samples of a synthetic data set and fits a simple model for the query point with
important predictors. Then display the estimated predictor importance in the simple model by using
the object function plot.

Load the CreditRating_Historical data set. The data set contains customer IDs and their
financial ratios, industry labels, and credit ratings.

tbl = readtable('CreditRating_Historical.dat');

Display the first three rows of the table.

head(tbl,3)
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     ID      WC_TA    RE_TA    EBIT_TA    MVE_BVTD    S_TA     Industry    Rating
    _____    _____    _____    _______    ________    _____    ________    ______

    62394    0.013    0.104     0.036      0.447      0.142       3        {'BB'}
    48608    0.232    0.335     0.062      1.969      0.281       8        {'A' }
    42444    0.311    0.367     0.074      1.935      0.366       1        {'A' }

Create a table of predictor variables by removing the columns of customer IDs and ratings from tbl.

tblX = removevars(tbl,["ID","Rating"]);

Train a blackbox model of credit ratings by using the fitcecoc function.

blackbox = fitcecoc(tblX,tbl.Rating,'CategoricalPredictors','Industry');

Create a lime object that explains the prediction for the last observation using a decision tree simple
model. Specify 'NumImportantPredictors' as six to find at most 6 important predictors. If you
specify the 'QueryPoint' and 'NumImportantPredictors' values when you create a lime
object, then the software generates samples of a synthetic data set and fits a simple interpretable
model to the synthetic data set.

queryPoint = tblX(end,:)

queryPoint=1×6 table
    WC_TA    RE_TA    EBIT_TA    MVE_BVTD    S_TA    Industry
    _____    _____    _______    ________    ____    ________

    0.239    0.463     0.065      2.924      0.34       2    

rng('default') % For reproducibility
results = lime(blackbox,'QueryPoint',queryPoint,'NumImportantPredictors',6, ...
    'SimpleModelType','tree')

results = 
  lime with properties:

             BlackboxModel: [1x1 ClassificationECOC]
              DataLocality: 'global'
     CategoricalPredictors: 6
                      Type: 'classification'
                         X: [3932x6 table]
                QueryPoint: [1x6 table]
    NumImportantPredictors: 6
          NumSyntheticData: 5000
             SyntheticData: [5000x6 table]
                    Fitted: {5000x1 cell}
               SimpleModel: [1x1 ClassificationTree]
       ImportantPredictors: [2x1 double]
            BlackboxFitted: {'AA'}
         SimpleModelFitted: {'AA'}

Plot the lime object results by using the object function plot. To display an existing underscore in
any predictor name, change the TickLabelInterpreter value of the axes to 'none'.

f = plot(results);
f.CurrentAxes.TickLabelInterpreter = 'none';
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The plot displays two predictions for the query point, which correspond to the “BlackboxFitted” on
page 35-0  property and the “SimpleModelFitted” on page 35-0  property of results.

The horizontal bar graph shows the sorted predictor importance values. lime finds the financial ratio
variables MVE_BVTD and RE_TA as important predictors for the query point.

You can read the bar lengths by using data tips or Bar Properties. For example, you can find Bar
objects by using the findobj function and add labels to the ends of the bars by using the text
function.

b = findobj(f,'Type','bar');
text(b.YEndPoints+0.001,b.XEndPoints,string(b.YData))
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Alternatively, you can display the coefficient values in a table with the predictor variable names.

imp = b.YData;
flipud(array2table(imp', ...
    'RowNames',f.CurrentAxes.YTickLabel,'VariableNames',{'Predictor Importance'}))

ans=2×1 table
                Predictor Importance
                ____________________

    MVE_BVTD          0.088412      
    RE_TA            0.0018061      

Explain Prediction with Linear Simple Model

Train a regression model and create a lime object that uses a linear simple model. When you create
a lime object, if you do not specify a query point and the number of important predictors, then the
software generates samples of a synthetic data set but does not fit a simple model. Use the object
function fit to fit a simple model for a query point. Then display the coefficients of the fitted linear
simple model by using the object function plot.

Load the carbig data set, which contains measurements of cars made in the 1970s and early 1980s.

load carbig
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Create a table containing the predictor variables Acceleration, Cylinders, and so on, as well as
the response variable MPG.

tbl = table(Acceleration,Cylinders,Displacement,Horsepower,Model_Year,Weight,MPG);

Removing missing values in a training set can help reduce memory consumption and speed up
training for the fitrkernel function. Remove missing values in tbl.

tbl = rmmissing(tbl);

Create a table of predictor variables by removing the response variable from tbl.

tblX = removevars(tbl,'MPG');

Train a blackbox model of MPG by using the fitrkernel function.

rng('default') % For reproducibility
mdl = fitrkernel(tblX,tbl.MPG,'CategoricalPredictors',[2 5]);

Create a lime object. Specify a predictor data set because mdl does not contain predictor data.

results = lime(mdl,tblX)

results = 
  lime with properties:

             BlackboxModel: [1x1 RegressionKernel]
              DataLocality: 'global'
     CategoricalPredictors: [2 5]
                      Type: 'regression'
                         X: [392x6 table]
                QueryPoint: []
    NumImportantPredictors: []
          NumSyntheticData: 5000
             SyntheticData: [5000x6 table]
                    Fitted: [5000x1 double]
               SimpleModel: []
       ImportantPredictors: []
            BlackboxFitted: []
         SimpleModelFitted: []

results contains the generated synthetic data set. The SimpleModel property is empty ([]).

Fit a linear simple model for the first observation in tblX. Specify the number of important
predictors to find as 3.

queryPoint = tblX(1,:)

queryPoint=1×6 table
    Acceleration    Cylinders    Displacement    Horsepower    Model_Year    Weight
    ____________    _________    ____________    __________    __________    ______

         12             8            307            130            70         3504 

results = fit(results,queryPoint,3);
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Plot the lime object results by using the object function plot. To display an existing underscore in
any predictor name, change the TickLabelInterpreter value of the axes to 'none'.

f = plot(results);
f.CurrentAxes.TickLabelInterpreter = 'none';

The plot displays two predictions for the query point, which correspond to the “BlackboxFitted” on
page 35-0  property and the “SimpleModelFitted” on page 35-0  property of results.

The horizontal bar graph shows the coefficient values of the simple model, sorted by their absolute
values. LIME finds Horsepower, Model_Year, and Cylinders as important predictors for the query
point.

Model_Year and Cylinders are categorical predictors that have multiple categories. For a linear
simple model, the software creates one less dummy variable than the number of categories for each
categorical predictor. The bar graph displays only the most important dummy variable. You can check
the coefficients of the other dummy variables using the SimpleModel property of results. Display
the sorted coefficient values, including all categorical dummy variables.

[~,I] = sort(abs(results.SimpleModel.Beta),'descend');
table(results.SimpleModel.ExpandedPredictorNames(I)',results.SimpleModel.Beta(I), ...
    'VariableNames',{'Exteded Predictor Name','Coefficient'})

ans=17×2 table
      Exteded Predictor Name      Coefficient
    __________________________    ___________
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    {'Horsepower'            }    -3.4485e-05
    {'Model_Year (74 vs. 70)'}    -6.1279e-07
    {'Model_Year (80 vs. 70)'}     -4.015e-07
    {'Model_Year (81 vs. 70)'}     3.4176e-07
    {'Model_Year (82 vs. 70)'}    -2.2483e-07
    {'Cylinders (6 vs. 8)'   }    -1.9024e-07
    {'Model_Year (76 vs. 70)'}     1.8136e-07
    {'Cylinders (5 vs. 8)'   }     1.7461e-07
    {'Model_Year (71 vs. 70)'}      1.558e-07
    {'Model_Year (75 vs. 70)'}     1.5456e-07
    {'Model_Year (77 vs. 70)'}      1.521e-07
    {'Model_Year (78 vs. 70)'}     1.4272e-07
    {'Model_Year (72 vs. 70)'}     6.7001e-08
    {'Model_Year (73 vs. 70)'}     4.7214e-08
    {'Cylinders (4 vs. 8)'   }     4.5118e-08
    {'Model_Year (79 vs. 70)'}    -2.2598e-08
      ⋮

Specify Blackbox Model as Function Handle

Train a regression model and create a lime object using a function handle to the predict function
of the model. Use the object function fit to fit a simple model for the specified query point. Then
display the coefficients of the fitted linear simple model by using the object function plot.

Load the carbig data set, which contains measurements of cars made in the 1970s and early 1980s.

load carbig

Create a table containing the predictor variables Acceleration, Cylinders, and so on.

tbl = table(Acceleration,Cylinders,Displacement,Horsepower,Model_Year,Weight);

Train a blackbox model of MPG by using the TreeBagger function.

rng('default') % For reproducibility
Mdl = TreeBagger(100,tbl,MPG,'Method','regression','CategoricalPredictors',[2 5]);

lime does not support a TreeBagger object directly, so you cannot specify the first input argument
(blackbox model) of lime as a TreeBagger object. Instead, you can use a function handle to the
predict function. You can also specify options of the predict function using name-value arguments
of the function.

Create the function handle to the predict function of the TreeBagger object Mdl. Specify the array
of tree indices to use as 1:50.

myPredict = @(tbl) predict(Mdl,tbl,'Trees',1:50);

Create a lime object using the function handle myPredict. When you specify a blackbox model as a
function handle, you must provide the predictor data and specify the 'Type' name-value argument.
tbl includes categorical predictors (Cylinder and Model_Year) with the double data type. By
default, lime does not treat variables with the double data type as categorical predictors. Specify
the second (Cylinder) and fifth (Model_Year) variables as categorical predictors.

results = lime(myPredict,tbl,'Type','regression','CategoricalPredictors',[2 5]);
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Fit a linear simple model for the first observation in tbl. To display an existing underscore in any
predictor name, change the TickLabelInterpreter value of the axes to 'none'.

results = fit(results,tbl(1,:),4);
f = plot(results);
f.CurrentAxes.TickLabelInterpreter = 'none';

lime finds Horsepower, Displacement, Cylinders, and Model_Year as important predictors.

More About
Distance Metrics

A distance metric is a function that defines a distance between two observations. lime supports
various distance metrics for continuous variables and a mix of continuous and categorical variables.

• Distance metrics for continuous variables

Given an mx-by-n data matrix X, which is treated as mx (1-by-n) row vectors x1, x2, ..., xmx, and an
my-by-n data matrix Y, which is treated as my (1-by-n) row vectors y1, y2, ...,ymy, the various
distances between the vector xs and yt are defined as follows:

• Euclidean distance

dst
2 = (xs− yt)(xs− yt)′ .
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The Euclidean distance is a special case of the Minkowski distance, where p = 2.
• Standardized Euclidean distance

dst
2 = (xs− yt)V−1(xs− yt)′,

where V is the n-by-n diagonal matrix whose jth diagonal element is (S(j))2, where S is a vector
of scaling factors for each dimension.

• Mahalanobis distance

dst
2 = (xs− yt)C−1(xs− yt)′,

where C is the covariance matrix.
• City block distance

dst = ∑
j = 1

n
xs j− yt j .

The city block distance is a special case of the Minkowski distance, where p = 1.
• Minkowski distance

dst = ∑
j = 1

n
xs j− yt j

pp .

For the special case of p = 1, the Minkowski distance gives the city block distance. For the
special case of p = 2, the Minkowski distance gives the Euclidean distance. For the special
case of p = ∞, the Minkowski distance gives the Chebychev distance.

• Chebychev distance

dst = max j xs j− yt j .

The Chebychev distance is a special case of the Minkowski distance, where p = ∞.
• Cosine distance

dst = 1−
xsy′t

xsx′s yty′t
.

• Correlation distance

dst = 1−
xs− xs yt− yt ′

xs− xs xs− xs ′ yt − yt yt − yt ′ ,

where

xs = 1
n∑j xs j

and

yt = 1
n∑j yt j .
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• Spearman distance

dst = 1−
rs− r s rt − r t ′

rs− r s rs− r s ′ rt − r t rt− r t ′ ,

where

• rsj is the rank of xsj taken over x1j, x2j, ...xmx,j, as computed by tiedrank.
• rtj is the rank of ytj taken over y1j, y2j, ...ymy,j, as computed by tiedrank.
• rs and rt are the coordinate-wise rank vectors of xs and yt, that is, rs = (rs1, rs2, ... rsn) and rt

= (rt1, rt2, ... rtn).
• r s = 1

n∑j rs j = n + 1
2 .

• r t = 1
n∑j rt j = n + 1

2 .

• Distance metrics for a mix of continuous and categorical variables

• Modified Goodall distance

This distance is a variant of the Goodall distance, which assigns a small distance if the
matching values are infrequent regardless of the frequencies of the other values. For
mismatches, the distance contribution of the predictor is 1/(number of variables).

• Occurrence frequency distance

For a match, the occurrence frequency distance assigns zero distance. For a mismatch, the
occurrence frequency distance assigns a higher distance on a less frequent value and a lower
distance on a more frequent value.

Algorithms
LIME

To explain a prediction of a machine learning model using LIME [1], the software generates a
synthetic data set and fits a simple interpretable model to the synthetic data set by using lime and
fit, as described in steps 1–5.

• If you specify the queryPoint and numImportantPredictors values of lime, then the lime
function performs all steps.

• If you do not specify queryPoint and numImportantPredictors and specify 'DataLocality'
as 'global' (default), then the lime function generates a synthetic data set (steps 1–2), and the
fit function fits a simple model (steps 3–5).

• If you do not specify queryPoint and numImportantPredictors and specify 'DataLocality'
as 'local', then the fit function performs all steps.

The lime and fit functions perform these steps:

1 Generate a synthetic predictor data set Xs using a multivariate normal distribution for continuous
variables and a multinomial distribution for each categorical variable. You can specify the
number of samples to generate by using the 'NumSyntheticData' name-value argument.
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• If 'DataLocality' is 'global' (default), then the software estimates the distribution
parameters from the whole predictor data set (X or predictor data in blackbox).

• If 'DataLocality' is 'local', then the software estimates the distribution parameters
using the k-nearest neighbors of the query point, where k is the 'NumNeighbors' value. You
can specify a distance metric to find the nearest neighbors by using the 'Distance' name-
value argument.

The software ignores missing values in the predictor data set when estimating the distribution
parameters.

Alternatively, you can provide a pregenerated, custom synthetic predictor data set by using the
customSyntheticData input argument of lime.

2 Compute the predictions Ys for the synthetic data set Xs. The predictions are predicted responses
for regression or classified labels for classification. The software uses the predict function of
the blackbox model to compute the predictions. If you specify blackbox as a function handle,
then the software computes the predictions by using the function handle.

3 Compute the distances d between the query point and the samples in the synthetic predictor data
set using the distance metric specified by 'Distance'.

4 Compute the weight values wq of the samples in the synthetic predictor data set with respect to
the query point q using the squared exponential (or Gaussian) kernel function

wq(xs) = exp −1
2

d(xs, q)
pσ

2
.

• xs is a sample in the synthetic predictor data set Xs.
• d(xs,q) is the distance between the sample xs and the query point q.
• p is the number of predictors in Xs.
• σ is the kernel width, which you can specify by using the 'KernelWidth' name-value

argument. The default 'KernelWidth' value is 0.75.

The weight value at the query point is 1, and then it converges to zero as the distance value
increases. The 'KernelWidth' value controls how fast the weight value converges to zero. The
lower the 'KernelWidth' value, the faster the weight value converges to zero. Therefore, the
algorithm gives more weight to samples near the query point. Because this algorithm uses such
weight values, the selected important predictors and fitted simple model effectively explain the
predictions for the synthetic data locally, around the query point.

5 Fit a simple model.

• If 'SimpleModelType' is 'linear' (default), then the software selects important
predictors and fits a linear model of the selected important predictors.

• Select n important predictors (Xs) by using the group orthogonal matching pursuit (OMP)
algorithm [2][3], where n is the numImportantPredictors value. This algorithm uses
the synthetic predictor data set (Xs), predictions (Ys), and weight values (wq).

• Fit a linear model of the selected important predictors (Xs) to the predictions (Ys) using the
weight values (wq). The software uses fitrlinear for regression or fitclinear for
classification. For a multiclass model, the software uses the one-versus-all scheme to
construct a binary classification problem. The positive class is the predicted class for the
query point from the blackbox model, and the negative class refers to the other classes.
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• If 'SimpleModelType' is 'tree', then the software fits a decision tree model by using
fitrtree for regression or fitctree for classification. The software specifies the maximum
number of decision splits (or branch nodes) as the number of important predictors so that the
fitted decision tree uses at most the specified number of predictors.

Version History
Introduced in R2020b
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LinearModel
Linear regression model

Description
LinearModel is a fitted linear regression model object. A regression model describes the
relationship between a response and predictors. The linearity in a linear regression model refers to
the linearity of the predictor coefficients.

Use the properties of a LinearModel object to investigate a fitted linear regression model. The
object properties include information about coefficient estimates, summary statistics, fitting method,
and input data. Use the object functions to predict responses and to modify, evaluate, and visualize
the linear regression model.

Creation
Create a LinearModel object by using fitlm or stepwiselm.

fitlm fits a linear regression model to data using a fixed model specification. Use addTerms,
removeTerms, or step to add or remove terms from the model. Alternatively, use stepwiselm to fit
a model using stepwise linear regression.

Properties

Coefficient Estimates

CoefficientCovariance — Covariance matrix of coefficient estimates
numeric matrix

This property is read-only.

Covariance matrix of coefficient estimates, specified as a p-by-p matrix of numeric values. p is the
number of coefficients in the fitted model.

For details, see “Coefficient Standard Errors and Confidence Intervals” on page 11-60.
Data Types: single | double

CoefficientNames — Coefficient names
cell array of character vectors

This property is read-only.

Coefficient names, specified as a cell array of character vectors, each containing the name of the
corresponding term.
Data Types: cell
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Coefficients — Coefficient values
table

This property is read-only.

Coefficient values, specified as a table. Coefficients contains one row for each coefficient and
these columns:

• Estimate — Estimated coefficient value
• SE — Standard error of the estimate
• tStat — t-statistic for a two-sided test with the null hypothesis that the coefficient is zero
• pValue — p-value for the t-statistic

Use anova (only for a linear regression model) or coefTest to perform other tests on the
coefficients. Use coefCI to find the confidence intervals of the coefficient estimates.

To obtain any of these columns as a vector, index into the property using dot notation. For example,
obtain the estimated coefficient vector in the model mdl:

beta = mdl.Coefficients.Estimate

Data Types: table

NumCoefficients — Number of model coefficients
positive integer

This property is read-only.

Number of model coefficients, specified as a positive integer. NumCoefficients includes coefficients
that are set to zero when the model terms are rank deficient.
Data Types: double

NumEstimatedCoefficients — Number of estimated coefficients
positive integer

This property is read-only.

Number of estimated coefficients in the model, specified as a positive integer.
NumEstimatedCoefficients does not include coefficients that are set to zero when the model
terms are rank deficient. NumEstimatedCoefficients is the degrees of freedom for regression.
Data Types: double

Summary Statistics

DFE — Degrees of freedom for error
positive integer

This property is read-only.

Degrees of freedom for the error (residuals), equal to the number of observations minus the number
of estimated coefficients, specified as a positive integer.
Data Types: double
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Diagnostics — Observation diagnostics
table

This property is read-only.

Observation diagnostics, specified as a table that contains one row for each observation and the
columns described in this table.

Column Meaning Description
Leverage Diagonal elements of

HatMatrix
Leverage for each observation indicates to what
extent the fit is determined by the observed predictor
values. A value close to 1 indicates that the fit is
largely determined by that observation, with little
contribution from the other observations. A value close
to 0 indicates that the fit is largely determined by the
other observations. For a model with P coefficients and
N observations, the average value of Leverage is P/N.
A Leverage value greater than 2*P/N indicates high
leverage.

CooksDistance Cook's distance CooksDistance is a measure of scaled change in
fitted values. An observation with CooksDistance
greater than three times the mean Cook's distance can
be an outlier.

Dffits Delete-1 scaled differences
in fitted values

Dffits is the scaled change in the fitted values for
each observation that results from excluding that
observation from the fit. Values greater than
2*sqrt(P/N) in absolute value can be considered
influential.

S2_i Delete-1 variance S2_i is a set of residual variance estimates obtained
by deleting each observation in turn. These estimates
can be compared with the mean squared error (MSE)
value, stored in the MSE property.

CovRatio Delete-1 ratio of
determinant of covariance

CovRatio is the ratio of the determinant of the
coefficient covariance matrix, with each observation
deleted in turn, to the determinant of the covariance
matrix for the full model. Values greater than
1 + 3*P/N or less than 1 – 3*P/N indicate
influential points.

Dfbetas Delete-1 scaled differences
in coefficient estimates

Dfbetas is an N-by-P matrix of the scaled change in
the coefficient estimates that results from excluding
each observation in turn. Values greater than 3/
sqrt(N) in absolute value indicate that the
observation has a significant influence on the
corresponding coefficient.

HatMatrix Projection matrix to
compute fitted from
observed responses

HatMatrix is an N-by-N matrix such that
Fitted = HatMatrix*Y, where Y is the response
vector and Fitted is the vector of fitted response
values.
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Diagnostics contains information that is helpful in finding outliers and influential observations.
Delete-1 diagnostics capture the changes that result from excluding each observation in turn from
the fit. For more details, see “Hat Matrix and Leverage” on page 11-79, “Cook’s Distance” on page
11-57, and “Delete-1 Statistics” on page 11-65.

Use plotDiagnostics to plot observation diagnostics.

Rows not used in the fit because of missing values (in ObservationInfo.Missing) or excluded
values (in ObservationInfo.Excluded) contain NaN values in the CooksDistance, Dffits,
S2_i, and CovRatio columns and zeros in the Leverage, Dfbetas, and HatMatrix columns.

To obtain any of these columns as an array, index into the property using dot notation. For example,
obtain the delete-1 variance vector in the model mdl:

S2i = mdl.Diagnostics.S2_i;

Data Types: table

Fitted — Fitted response values based on input data
numeric vector

This property is read-only.

Fitted (predicted) response values based on input data, specified as an n-by-1 numeric vector. n is the
number of observations in the input data. Use predict to compute predictions for other predictor
values, or to compute confidence bounds on Fitted.
Data Types: single | double

LogLikelihood — Loglikelihood
numeric value

This property is read-only.

Loglikelihood of response values, specified as a numeric value, based on the assumption that each
response value follows a normal distribution. The mean of the normal distribution is the fitted
(predicted) response value, and the variance is the MSE.
Data Types: single | double

ModelCriterion — Criterion for model comparison
structure

This property is read-only.

Criterion for model comparison, specified as a structure with these fields:

• AIC — Akaike information criterion. AIC = –2*logL + 2*m, where logL is the loglikelihood and
m is the number of estimated parameters.

• AICc — Akaike information criterion corrected for the sample size. AICc = AIC + (2*m*(m +
1))/(n – m – 1), where n is the number of observations.

• BIC — Bayesian information criterion. BIC = –2*logL + m*log(n).
• CAIC — Consistent Akaike information criterion. CAIC = –2*logL + m*(log(n) + 1).

Information criteria are model selection tools that you can use to compare multiple models fit to the
same data. These criteria are likelihood-based measures of model fit that include a penalty for
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complexity (specifically, the number of parameters). Different information criteria are distinguished
by the form of the penalty.

When you compare multiple models, the model with the lowest information criterion value is the best-
fitting model. The best-fitting model can vary depending on the criterion used for model comparison.

To obtain any of the criterion values as a scalar, index into the property using dot notation. For
example, obtain the AIC value aic in the model mdl:

aic = mdl.ModelCriterion.AIC

Data Types: struct

ModelFitVsNullModel — F-statistic of regression model
structure

This property is read-only.

F-statistic of the regression model, specified as a structure. The ModelFitVsNullModel structure
contains these fields:

• Fstats — F-statistic of the fitted model versus the null model
• Pvalue — p-value for the F-statistic
• NullModel — null model type

Data Types: struct

MSE — Mean squared error
numeric value

This property is read-only.

Mean squared error (residuals), specified as a numeric value.
MSE = SSE / DFE,

where MSE is the mean squared error, SSE is the sum of squared errors, and DFE is the degrees of
freedom.
Data Types: single | double

Residuals — Residuals for fitted model
table

This property is read-only.

Residuals for the fitted model, specified as a table that contains one row for each observation and the
columns described in this table.

Column Description
Raw Observed minus fitted values
Pearson Raw residuals divided by the root mean squared error (RMSE)
Standardized Raw residuals divided by their estimated standard deviation
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Column Description
Studentized Raw residual divided by an independent estimate of the residual

standard deviation. The residual for observation i is divided by an
estimate of the error standard deviation based on all observations except
observation i.

Use plotResiduals to create a plot of the residuals. For details, see “Residuals” on page 11-82.

Rows not used in the fit because of missing values (in ObservationInfo.Missing) or excluded
values (in ObservationInfo.Excluded) contain NaN values.

To obtain any of these columns as a vector, index into the property using dot notation. For example,
obtain the raw residual vector r in the model mdl:

r = mdl.Residuals.Raw

Data Types: table

RMSE — Root mean squared error
numeric value

This property is read-only.

Root mean squared error (residuals), specified as a numeric value.
RMSE = sqrt(MSE),

where RMSE is the root mean squared error and MSE is the mean squared error.
Data Types: single | double

Rsquared — R-squared value for model
structure

This property is read-only.

R-squared value for the model, specified as a structure with two fields:

• Ordinary — Ordinary (unadjusted) R-squared
• Adjusted — R-squared adjusted for the number of coefficients

The R-squared value is the proportion of the total sum of squares explained by the model. The
ordinary R-squared value relates to the SSR and SST properties:

Rsquared = SSR/SST,
where SST is the total sum of squares, and SSR is the regression sum of squares.

For details, see “Coefficient of Determination (R-Squared)” on page 11-63.

To obtain either of these values as a scalar, index into the property using dot notation. For example,
obtain the adjusted R-squared value in the model mdl:

r2 = mdl.Rsquared.Adjusted

Data Types: struct

SSE — Sum of squared errors
numeric value
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This property is read-only.

Sum of squared errors (residuals), specified as a numeric value. If the model was trained with
observation weights, the sum of squares in the SSE calculation is the weighted sum of squares.

For a linear model with an intercept, the Pythagorean theorem implies
SST = SSE + SSR,

where SST is the total sum of squares, SSE is the sum of squared errors, and SSR is the regression
sum of squares.

For more information on the calculation of SST for a robust linear model, see SST.
Data Types: single | double

SSR — Regression sum of squares
numeric value

This property is read-only.

Regression sum of squares, specified as a numeric value. SSR is equal to the sum of the squared
deviations between the fitted values and the mean of the response. If the model was trained with
observation weights, the sum of squares in the SSR calculation is the weighted sum of squares.

For a linear model with an intercept, the Pythagorean theorem implies
SST = SSE + SSR,

where SST is the total sum of squares, SSE is the sum of squared errors, and SSR is the regression
sum of squares.

For more information on the calculation of SST for a robust linear model, see SST.
Data Types: single | double

SST — Total sum of squares
numeric value

This property is read-only.

Total sum of squares, specified as a numeric value. SST is equal to the sum of squared deviations of
the response vector y from the mean(y). If the model was trained with observation weights, the sum
of squares in the SST calculation is the weighted sum of squares.

For a linear model with an intercept, the Pythagorean theorem implies
SST = SSE + SSR,

where SST is the total sum of squares, SSE is the sum of squared errors, and SSR is the regression
sum of squares.

For a robust linear model, SST is not calculated as the sum of squared deviations of the response
vector y from the mean(y). It is calculated as SST = SSE + SSR.
Data Types: single | double

Fitting Method

Robust — Robust fit information
structure

This property is read-only.
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Robust fit information, specified as a structure with the fields described in this table.

Field Description
WgtFun Robust weighting function, such as 'bisquare' (see 'RobustOpts')
Tune Tuning constant. This field is empty ([]) if WgtFun is 'ols' or if

WgtFun is a function handle for a custom weight function with the
default tuning constant 1.

Weights Vector of weights used in the final iteration of robust fit. This field is
empty for a CompactLinearModel object.

This structure is empty unless you fit the model using robust regression.
Data Types: struct

Steps — Stepwise fitting information
structure

This property is read-only.

Stepwise fitting information, specified as a structure with the fields described in this table.

Field Description
Start Formula representing the starting model
Lower Formula representing the lower bound model. The terms in Lower must

remain in the model.
Upper Formula representing the upper bound model. The model cannot contain

more terms than Upper.
Criterion Criterion used for the stepwise algorithm, such as 'sse'
PEnter Threshold for Criterion to add a term
PRemove Threshold for Criterion to remove a term
History Table representing the steps taken in the fit

The History table contains one row for each step, including the initial fit, and the columns described
in this table.

Column Description
Action Action taken during the step:

• 'Start' — First step
• 'Add' — A term is added
• 'Remove' — A term is removed

TermName • If Action is 'Start', TermName specifies the starting model
specification.

• If Action is 'Add' or 'Remove', TermName specifies the term added
or removed in the step.

Terms Model specification in a “Terms Matrix” on page 35-4220
DF Regression degrees of freedom after the step
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Column Description
delDF Change in regression degrees of freedom from the previous step

(negative for steps that remove a term)
Deviance Deviance (residual sum of squares) at the step (only for a generalized

linear regression model)
FStat F-statistic that leads to the step
PValue p-value of the F-statistic

The structure is empty unless you fit the model using stepwise regression.
Data Types: struct

Input Data

Formula — Model information
LinearFormula object

This property is read-only.

Model information, specified as a LinearFormula object.

Display the formula of the fitted model mdl using dot notation:

mdl.Formula

NumObservations — Number of observations
positive integer

This property is read-only.

Number of observations the fitting function used in fitting, specified as a positive integer.
NumObservations is the number of observations supplied in the original table, dataset, or matrix,
minus any excluded rows (set with the 'Exclude' name-value pair argument) or rows with missing
values.
Data Types: double

NumPredictors — Number of predictor variables
positive integer

This property is read-only.

Number of predictor variables used to fit the model, specified as a positive integer.
Data Types: double

NumVariables — Number of variables
positive integer

This property is read-only.

Number of variables in the input data, specified as a positive integer. NumVariables is the number
of variables in the original table or dataset, or the total number of columns in the predictor matrix
and response vector.
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NumVariables also includes any variables that are not used to fit the model as predictors or as the
response.
Data Types: double

ObservationInfo — Observation information
table

This property is read-only.

Observation information, specified as an n-by-4 table, where n is equal to the number of rows of input
data. ObservationInfo contains the columns described in this table.

Column Description
Weights Observation weights, specified as a numeric value. The default value is 1.
Excluded Indicator of excluded observations, specified as a logical value. The value

is true if you exclude the observation from the fit by using the
'Exclude' name-value pair argument.

Missing Indicator of missing observations, specified as a logical value. The value
is true if the observation is missing.

Subset Indicator of whether or not the fitting function uses the observation,
specified as a logical value. The value is true if the observation is not
excluded or missing, meaning the fitting function uses the observation.

To obtain any of these columns as a vector, index into the property using dot notation. For example,
obtain the weight vector w of the model mdl:

w = mdl.ObservationInfo.Weights

Data Types: table

ObservationNames — Observation names
cell array of character vectors

This property is read-only.

Observation names, specified as a cell array of character vectors containing the names of the
observations used in the fit.

• If the fit is based on a table or dataset containing observation names, ObservationNames uses
those names.

• Otherwise, ObservationNames is an empty cell array.

Data Types: cell

PredictorNames — Names of predictors used to fit model
cell array of character vectors

This property is read-only.

Names of predictors used to fit the model, specified as a cell array of character vectors.
Data Types: cell
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ResponseName — Response variable name
character vector

This property is read-only.

Response variable name, specified as a character vector.
Data Types: char

VariableInfo — Information about variables
table

This property is read-only.

Information about variables contained in Variables, specified as a table with one row for each
variable and the columns described in this table.

Column Description
Class Variable class, specified as a cell array of character vectors, such as

'double' and 'categorical'
Range Variable range, specified as a cell array of vectors

• Continuous variable — Two-element vector [min,max], the minimum
and maximum values

• Categorical variable — Vector of distinct variable values
InModel Indicator of which variables are in the fitted model, specified as a logical

vector. The value is true if the model includes the variable.
IsCategorical Indicator of categorical variables, specified as a logical vector. The value

is true if the variable is categorical.

VariableInfo also includes any variables that are not used to fit the model as predictors or as the
response.
Data Types: table

VariableNames — Names of variables
cell array of character vectors

This property is read-only.

Names of variables, specified as a cell array of character vectors.

• If the fit is based on a table or dataset, this property provides the names of the variables in the
table or dataset.

• If the fit is based on a predictor matrix and response vector, VariableNames contains the values
specified by the 'VarNames' name-value pair argument of the fitting method. The default value of
'VarNames' is {'x1','x2',...,'xn','y'}.

VariableNames also includes any variables that are not used to fit the model as predictors or as the
response.
Data Types: cell
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Variables — Input data
table

This property is read-only.

Input data, specified as a table. Variables contains both predictor and response values. If the fit is
based on a table or dataset array, Variables contains all the data from the table or dataset array.
Otherwise, Variables is a table created from the input data matrix X and the response vector y.

Variables also includes any variables that are not used to fit the model as predictors or as the
response.
Data Types: table

Object Functions

Create CompactLinearModel
compact Compact linear regression model

Add or Remove Terms from Linear Model
addTerms Add terms to linear regression model
removeTerms Remove terms from linear regression model
step Improve linear regression model by adding or removing terms

Predict Responses
feval Predict responses of linear regression model using one input for each predictor
predict Predict responses of linear regression model
random Simulate responses with random noise for linear regression model

Evaluate Linear Model
anova Analysis of variance for linear regression model
coefCI Confidence intervals of coefficient estimates of linear regression model
coefTest Linear hypothesis test on linear regression model coefficients
dwtest Durbin-Watson test with linear regression model object
partialDependence Compute partial dependence

Visualize Linear Model and Summary Statistics
plot Scatter plot or added variable plot of linear regression model
plotAdded Added variable plot of linear regression model
plotAdjustedResponse Adjusted response plot of linear regression model
plotDiagnostics Plot observation diagnostics of linear regression model
plotEffects Plot main effects of predictors in linear regression model
plotInteraction Plot interaction effects of two predictors in linear regression model
plotPartialDependence Create partial dependence plot (PDP) and individual conditional expectation

(ICE) plots
plotResiduals Plot residuals of linear regression model
plotSlice Plot of slices through fitted linear regression surface

 LinearModel

35-4213



Gather Properties of Linear Model
gather Gather properties of Statistics and Machine Learning Toolbox object from GPU

Examples

Fit Linear Regression Using Data in Matrix

Fit a linear regression model using a matrix input data set.

Load the carsmall data set, a matrix input data set.

load carsmall
X = [Weight,Horsepower,Acceleration];

Fit a linear regression model by using fitlm.

mdl = fitlm(X,MPG)

mdl = 
Linear regression model:
    y ~ 1 + x1 + x2 + x3

Estimated Coefficients:
                    Estimate        SE          tStat        pValue  
                   __________    _________    _________    __________

    (Intercept)        47.977       3.8785        12.37    4.8957e-21
    x1             -0.0065416    0.0011274      -5.8023    9.8742e-08
    x2              -0.042943     0.024313      -1.7663       0.08078
    x3              -0.011583      0.19333    -0.059913       0.95236

Number of observations: 93, Error degrees of freedom: 89
Root Mean Squared Error: 4.09
R-squared: 0.752,  Adjusted R-Squared: 0.744
F-statistic vs. constant model: 90, p-value = 7.38e-27

The model display includes the model formula, estimated coefficients, and model summary statistics.

The model formula in the display, y ~ 1 + x1 + x2 + x3, corresponds to
y = β0 + β1X1 + β2X2 + β3X3 + ϵ.

The model display also shows the estimated coefficient information, which is stored in the
Coefficients property. Display the Coefficients property.

mdl.Coefficients

ans=4×4 table
                    Estimate        SE          tStat        pValue  
                   __________    _________    _________    __________

    (Intercept)        47.977       3.8785        12.37    4.8957e-21
    x1             -0.0065416    0.0011274      -5.8023    9.8742e-08
    x2              -0.042943     0.024313      -1.7663       0.08078
    x3              -0.011583      0.19333    -0.059913       0.95236
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The Coefficient property includes these columns:

• Estimate — Coefficient estimates for each corresponding term in the model. For example, the
estimate for the constant term (intercept) is 47.977.

• SE — Standard error of the coefficients.
• tStat — t-statistic for each coefficient to test the null hypothesis that the corresponding
coefficient is zero against the alternative that it is different from zero, given the other predictors
in the model. Note that tStat = Estimate/SE. For example, the t-statistic for the intercept is
47.977/3.8785 = 12.37.

• pValue — p-value for the t-statistic of the two-sided hypothesis test. For example, the p-value of
the t-statistic for x2 is greater than 0.05, so this term is not significant at the 5% significance level
given the other terms in the model.

The summary statistics of the model are:

• Number of observations — Number of rows without any NaN values. For example, Number of
observations is 93 because the MPG data vector has six NaN values and the Horsepower data
vector has one NaN value for a different observation, where the number of rows in X and MPG is
100.

• Error degrees of freedom — n – p, where n is the number of observations, and p is the
number of coefficients in the model, including the intercept. For example, the model has four
predictors, so the Error degrees of freedom is 93 – 4 = 89.

• Root mean squared error — Square root of the mean squared error, which estimates the
standard deviation of the error distribution.

• R-squared and Adjusted R-squared — Coefficient of determination and adjusted coefficient of
determination, respectively. For example, the R-squared value suggests that the model explains
approximately 75% of the variability in the response variable MPG.

• F-statistic vs. constant model — Test statistic for the F-test on the regression model,
which tests whether the model fits significantly better than a degenerate model consisting of only
a constant term.

• p-value — p-value for the F-test on the model. For example, the model is significant with a p-
value of 7.3816e-27.

You can find these statistics in the model properties (NumObservations, DFE, RMSE, and Rsquared)
and by using the anova function.

anova(mdl,'summary')

ans=3×5 table
                SumSq     DF    MeanSq      F         pValue  
                ______    __    ______    ______    __________

    Total       6004.8    92    65.269                        
    Model         4516     3    1505.3    89.987    7.3816e-27
    Residual    1488.8    89    16.728                        

Use plot to create an added variable plot (partial regression leverage plot) for the whole model
except the constant (intercept) term.

plot(mdl)
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Linear Regression with Categorical Predictor

Fit a linear regression model that contains a categorical predictor. Reorder the categories of the
categorical predictor to control the reference level in the model. Then, use anova to test the
significance of the categorical variable.

Model with Categorical Predictor

Load the carsmall data set and create a linear regression model of MPG as a function of
Model_Year. To treat the numeric vector Model_Year as a categorical variable, identify the
predictor using the 'CategoricalVars' name-value pair argument.

load carsmall
mdl = fitlm(Model_Year,MPG,'CategoricalVars',1,'VarNames',{'Model_Year','MPG'})

mdl = 
Linear regression model:
    MPG ~ 1 + Model_Year

Estimated Coefficients:
                     Estimate      SE      tStat       pValue  
                     ________    ______    ______    __________

    (Intercept)        17.69     1.0328    17.127    3.2371e-30
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    Model_Year_76     3.8839     1.4059    2.7625     0.0069402
    Model_Year_82      14.02     1.4369    9.7571    8.2164e-16

Number of observations: 94, Error degrees of freedom: 91
Root Mean Squared Error: 5.56
R-squared: 0.531,  Adjusted R-Squared: 0.521
F-statistic vs. constant model: 51.6, p-value = 1.07e-15

The model formula in the display, MPG ~ 1 + Model_Year, corresponds to

MPG = β0 + β1ΙYear = 76 + β2ΙYear = 82 + ϵ,

where ΙYear = 76 and ΙYear = 82 are indicator variables whose value is one if the value of Model_Year is
76 and 82, respectively. The Model_Year variable includes three distinct values, which you can
check by using the unique function.

unique(Model_Year)

ans = 3×1

    70
    76
    82

fitlm chooses the smallest value in Model_Year as a reference level ('70') and creates two
indicator variables ΙYear = 76 and ΙYear = 82. The model includes only two indicator variables because
the design matrix becomes rank deficient if the model includes three indicator variables (one for each
level) and an intercept term.

Model with Full Indicator Variables

You can interpret the model formula of mdl as a model that has three indicator variables without an
intercept term:

y = β0Ιx1 = 70 + β0 + β1 Ιx1 = 76 + β0 + β2 Ιx2 = 82 + ϵ.

Alternatively, you can create a model that has three indicator variables without an intercept term by
manually creating indicator variables and specifying the model formula.

temp_Year = dummyvar(categorical(Model_Year));
Model_Year_70 = temp_Year(:,1);
Model_Year_76 = temp_Year(:,2);
Model_Year_82 = temp_Year(:,3);
tbl = table(Model_Year_70,Model_Year_76,Model_Year_82,MPG);
mdl = fitlm(tbl,'MPG ~ Model_Year_70 + Model_Year_76 + Model_Year_82 - 1')

mdl = 
Linear regression model:
    MPG ~ Model_Year_70 + Model_Year_76 + Model_Year_82

Estimated Coefficients:
                     Estimate      SE       tStat       pValue  
                     ________    _______    ______    __________

    Model_Year_70      17.69      1.0328    17.127    3.2371e-30
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    Model_Year_76     21.574     0.95387    22.617    4.0156e-39
    Model_Year_82      31.71     0.99896    31.743    5.2234e-51

Number of observations: 94, Error degrees of freedom: 91
Root Mean Squared Error: 5.56

Choose Reference Level in Model

You can choose a reference level by modifying the order of categories in a categorical variable. First,
create a categorical variable Year.

Year = categorical(Model_Year);

Check the order of categories by using the categories function.

categories(Year)

ans = 3x1 cell
    {'70'}
    {'76'}
    {'82'}

If you use Year as a predictor variable, then fitlm chooses the first category '70' as a reference
level. Reorder Year by using the reordercats function.

Year_reordered = reordercats(Year,{'76','70','82'});
categories(Year_reordered)

ans = 3x1 cell
    {'76'}
    {'70'}
    {'82'}

The first category of Year_reordered is '76'. Create a linear regression model of MPG as a function
of Year_reordered.

mdl2 = fitlm(Year_reordered,MPG,'VarNames',{'Model_Year','MPG'})

mdl2 = 
Linear regression model:
    MPG ~ 1 + Model_Year

Estimated Coefficients:
                     Estimate      SE        tStat       pValue  
                     ________    _______    _______    __________

    (Intercept)       21.574     0.95387     22.617    4.0156e-39
    Model_Year_70    -3.8839      1.4059    -2.7625     0.0069402
    Model_Year_82     10.136      1.3812     7.3385    8.7634e-11

Number of observations: 94, Error degrees of freedom: 91
Root Mean Squared Error: 5.56
R-squared: 0.531,  Adjusted R-Squared: 0.521
F-statistic vs. constant model: 51.6, p-value = 1.07e-15
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mdl2 uses '76' as a reference level and includes two indicator variables ΙYear = 70 and ΙYear = 82.

Evaluate Categorical Predictor

The model display of mdl2 includes a p-value of each term to test whether or not the corresponding
coefficient is equal to zero. Each p-value examines each indicator variable. To examine the categorical
variable Model_Year as a group of indicator variables, use anova. Use the 'components'(default)
option to return a component ANOVA table that includes ANOVA statistics for each variable in the
model except the constant term.

anova(mdl2,'components')

ans=2×5 table
                  SumSq     DF    MeanSq      F        pValue  
                  ______    __    ______    _____    __________

    Model_Year    3190.1     2    1595.1    51.56    1.0694e-15
    Error         2815.2    91    30.936                       

The component ANOVA table includes the p-value of the Model_Year variable, which is smaller than
the p-values of the indicator variables.

Fit Robust Linear Regression Model

Load the hald data set, which measures the effect of cement composition on its hardening heat.

load hald

This data set includes the variables ingredients and heat. The matrix ingredients contains the
percent composition of four chemicals present in the cement. The vector heat contains the values for
the heat hardening after 180 days for each cement sample.

Fit a robust linear regression model to the data.

mdl = fitlm(ingredients,heat,'RobustOpts','on')

mdl = 
Linear regression model (robust fit):
    y ~ 1 + x1 + x2 + x3 + x4

Estimated Coefficients:
                   Estimate      SE        tStat       pValue 
                   ________    _______    ________    ________

    (Intercept)       60.09     75.818     0.79256      0.4509
    x1               1.5753    0.80585      1.9548    0.086346
    x2               0.5322    0.78315     0.67957     0.51596
    x3              0.13346     0.8166     0.16343     0.87424
    x4             -0.12052     0.7672    -0.15709     0.87906

Number of observations: 13, Error degrees of freedom: 8
Root Mean Squared Error: 2.65
R-squared: 0.979,  Adjusted R-Squared: 0.969
F-statistic vs. constant model: 94.6, p-value = 9.03e-07
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For more details, see the topic “Reduce Outlier Effects Using Robust Regression” on page 11-106,
which compares the results of a robust fit to a standard least-squares fit.

Fit Linear Model Using Stepwise Regression

Load the hald data set, which measures the effect of cement composition on its hardening heat.

load hald

This data set includes the variables ingredients and heat. The matrix ingredients contains the
percent composition of four chemicals present in the cement. The vector heat contains the values for
the heat hardening after 180 days for each cement sample.

Fit a stepwise linear regression model to the data. Specify 0.06 as the threshold for the criterion to
add a term to the model.

 mdl = stepwiselm(ingredients,heat,'PEnter',0.06)

1. Adding x4, FStat = 22.7985, pValue = 0.000576232
2. Adding x1, FStat = 108.2239, pValue = 1.105281e-06
3. Adding x2, FStat = 5.0259, pValue = 0.051687
4. Removing x4, FStat = 1.8633, pValue = 0.2054

mdl = 
Linear regression model:
    y ~ 1 + x1 + x2

Estimated Coefficients:
                   Estimate       SE       tStat       pValue  
                   ________    ________    ______    __________

    (Intercept)     52.577       2.2862    22.998    5.4566e-10
    x1              1.4683       0.1213    12.105    2.6922e-07
    x2             0.66225     0.045855    14.442     5.029e-08

Number of observations: 13, Error degrees of freedom: 10
Root Mean Squared Error: 2.41
R-squared: 0.979,  Adjusted R-Squared: 0.974
F-statistic vs. constant model: 230, p-value = 4.41e-09

By default, the starting model is a constant model. stepwiselm performs forward selection and adds
the x4, x1, and x2 terms (in that order), because the corresponding p-values are less than the
PEnter value of 0.06. stepwiselm then uses backward elimination and removes x4 from the model
because, once x2 is in the model, the p-value of x4 is greater than the default value of PRemove, 0.1.

More About
Terms Matrix

A terms matrix T is a t-by-(p + 1) matrix specifying terms in a model, where t is the number of terms,
p is the number of predictor variables, and +1 accounts for the response variable. The value of
T(i,j) is the exponent of variable j in term i.
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For example, suppose that an input includes three predictor variables x1, x2, and x3 and the
response variable y in the order x1, x2, x3, and y. Each row of T represents one term:

• [0 0 0 0] — Constant term or intercept
• [0 1 0 0] — x2; equivalently, x1^0 * x2^1 * x3^0
• [1 0 1 0] — x1*x3
• [2 0 0 0] — x1^2
• [0 1 2 0] — x2*(x3^2)

The 0 at the end of each term represents the response variable. In general, a column vector of zeros
in a terms matrix represents the position of the response variable. If you have the predictor and
response variables in a matrix and column vector, then you must include 0 for the response variable
in the last column of each row.

Alternative Functionality
• For reduced computation time on high-dimensional data sets, fit a linear regression model using

the fitrlinear function.
• To regularize a regression, use fitrlinear, lasso, ridge, or plsregress.

• fitrlinear regularizes a regression for high-dimensional data sets using lasso or ridge
regression.

• lasso removes redundant predictors in linear regression using lasso or elastic net.
• ridge regularizes a regression with correlated terms using ridge regression.
• plsregress regularizes a regression with correlated terms using partial least squares.

Version History
Introduced in R2012a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• The predict and random functions support code generation.

For more information, see “Introduction to Code Generation” on page 34-2.

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

Usage notes and limitations:

• The object functions of the LinearModel model fully support GPU arrays.

For more information, see “Run MATLAB Functions on a GPU” (Parallel Computing Toolbox).
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See Also
fitlm | stepwiselm | CompactLinearModel

Topics
“Linear Regression” on page 11-9
“What Is a Linear Regression Model?” on page 11-6
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LinearMixedModel class
Linear mixed-effects model class

Description

A LinearMixedModel object represents a model of a response variable with fixed and random
effects. It comprises data, a model description, fitted coefficients, covariance parameters, design
matrices, residuals, residual plots, and other diagnostic information for a linear mixed-effects model.
You can predict model responses with the predict function and generate random data at new design
points using the random function.

Construction
You can fit a linear mixed-effects model using fitlme(tbl,formula) if your data is in a table or
dataset array. Alternatively, if your model is not easily described using a formula, you can create
matrices to define the fixed and random effects, and fit the model using fitlmematrix(X,y,Z,G).

Input Arguments

tbl — Input data
table | dataset array

Input data, which includes the response variable, predictor variables, and grouping variables,
specified as a table or dataset array. The predictor variables can be continuous or grouping
variables (see “Grouping Variables” on page 2-46). You must specify the model for the variables using
formula.
Data Types: table

formula — Formula for model specification
character vector or string scalar of the form 'y ~ fixed + (random1|grouping1) + ... +
(randomR|groupingR)'

Formula for model specification, specified as a character vector or string scalar of the form 'y ~
fixed + (random1|grouping1) + ... + (randomR|groupingR)'. For a full description, see
“Formula” on page 35-4236.
Example: 'y ~ treatment +(1|block)'

X — Fixed-effects design matrix
n-by-p matrix

Fixed-effects design matrix, specified as an n-by-p matrix, where n is the number of observations, and
p is the number of fixed-effects predictor variables. Each row of X corresponds to one observation,
and each column of X corresponds to one variable.
Data Types: single | double

y — Response values
n-by-1 vector
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Response values, specified as an n-by-1 vector, where n is the number of observations.
Data Types: single | double

Z — Random-effects design
n-by-q matrix | cell array of R n-by-q(r) matrices, r = 1, 2, ..., R

Random-effects design, specified as either of the following.

• If there is one random-effects term in the model, then Z must be an n-by-q matrix, where n is the
number of observations and q is the number of variables in the random-effects term.

• If there are R random-effects terms, then Z must be a cell array of length R. Each cell of Z
contains an n-by-q(r) design matrix Z{r}, r = 1, 2, ..., R, corresponding to each random-effects
term. Here, q(r) is the number of random effects term in the rth random effects design matrix,
Z{r}.

Data Types: single | double | cell

G — Grouping variable or variables
n-by-1 vector | cell array of R n-by-1 vectors

Grouping variable or variables on page 2-46, specified as either of the following.

• If there is one random-effects term, then G must be an n-by-1 vector corresponding to a single
grouping variable with M levels or groups.

G can be a categorical vector, logical vector, numeric vector, character array, string array, or cell
array of character vectors.

• If there are multiple random-effects terms, then G must be a cell array of length R. Each cell of G
contains a grouping variable G{r}, r = 1, 2, ..., R, with M(r) levels.

G{r} can be a categorical vector, logical vector, numeric vector, character array, string array, or
cell array of character vectors.

Data Types: categorical | logical | single | double | char | string | cell

Properties
Coefficients — Fixed-effects coefficient estimates
dataset array

Fixed-effects coefficient estimates and related statistics, stored as a dataset array containing the
following fields.

Name Name of the term.
Estimate Estimated value of the coefficient.
SE Standard error of the coefficient.
tStat t-statistics for testing the null hypothesis that the

coefficient is equal to zero.
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DF Degrees of freedom for the t-test. Method to
compute DF is specified by the 'DFMethod'
name-value pair argument. Coefficients
always uses the 'Residual' method for
'DFMethod'.

pValue p-value for the t-test.
Lower Lower limit of the confidence interval for

coefficient. Coefficients always uses the 95%
confidence level, i.e.'alpha' is 0.05.

Upper Upper limit of confidence interval for coefficient.
Coefficients always uses the 95% confidence
level, i.e.'alpha' is 0.05.

You can change 'DFMethod' and 'alpha' while computing confidence intervals for or testing
hypotheses involving fixed- and random-effects, using the coefCI and coefTest methods.

CoefficientCovariance — Covariance of the estimated fixed-effects coefficients
p-by-p matrix

Covariance of the estimated fixed-effects coefficients of the linear mixed-effects model, stored as a p-
by-p matrix, where p is the number of fixed-effects coefficients.

You can display the covariance parameters associated with the random effects using the
covarianceParameters method.
Data Types: double

CoefficientNames — Names of the fixed-effects coefficients
1-by-p cell array of character vectors

Names of the fixed-effects coefficients of a linear mixed-effects model, stored as a 1-by-p cell array of
character vectors.
Data Types: cell

DFE — Residual degrees of freedom
positive integer value

Residual degrees of freedom, stored as a positive integer value. DFE = n – p, where n is the number
of observations, and p is the number of fixed-effects coefficients.

This corresponds to the 'Residual' method of calculating degrees of freedom in the
fixedEffects and randomEffects methods.
Data Types: double

FitMethod — Method used to fit the linear mixed-effects model
ML | REML

Method used to fit the linear mixed-effects model, stored as either of the following.

• ML, if the fitting method is maximum likelihood
• REML, if the fitting method is restricted maximum likelihood

Data Types: char
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Formula — Specification of the fixed- and random-effects terms, and grouping variables
object

Specification of the fixed-effects terms, random-effects terms, and grouping variables that define the
linear mixed-effects model, stored as an object.

For more information on how to specify the model to fit using a formula, see “Formula” on page 35-
4236.

LogLikelihood — Maximized log or restricted log likelihood
scalar value

Maximized log likelihood or maximized restricted log likelihood of the fitted linear mixed-effects
model depending on the fitting method you choose, stored as a scalar value.
Data Types: double

ModelCriterion — Model criterion
dataset array

Model criterion to compare fitted linear mixed-effects models, stored as a dataset array with the
following columns.

AIC Akaike Information Criterion
BIC Bayesian Information Criterion
Loglikelihood Log likelihood value of the model
Deviance –2 times the log likelihood of the model

If n is the number of observations used in fitting the model, and p is the number of fixed-effects
coefficients, then for calculating AIC and BIC,

• The total number of parameters is nc + p + 1, where nc is the total number of parameters in the
random-effects covariance excluding the residual variance

• The effective number of observations is

• n, when the fitting method is maximum likelihood (ML)
• n – p, when the fitting method is restricted maximum likelihood (REML)

MSE — ML or REML estimate
positive scalar value

ML or REML estimate, based on the fitting method used for estimating σ2, stored as a positive scalar
value. σ2 is the residual variance or variance of the observation error term of the linear mixed-effects
model.
Data Types: double

NumCoefficients — Number of fixed-effects coefficients
positive integer value

Number of fixed-effects coefficients in the fitted linear mixed-effects model, stored as a positive
integer value.
Data Types: double
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NumEstimatedCoefficients — Number of estimated fixed-effects coefficients
positive integer value

Number of estimated fixed-effects coefficients in the fitted linear mixed-effects model, stored as a
positive integer value.
Data Types: double

NumObservations — Number of observations
positive integer value

Number of observations used in the fit, stored as a positive integer value. This is the number of rows
in the table or dataset array, or the design matrices minus the excluded rows or rows with NaN
values.
Data Types: double

NumPredictors — Number of predictors
positive integer value

Number of variables used as predictors in the linear mixed-effects model, stored as a positive integer
value.
Data Types: double

NumVariables — Total number of variables
positive integer value

Total number of variables including the response and predictors, stored as a positive integer value.

• If the sample data is in a table or dataset array tbl, NumVariables is the total number of
variables in tbl including the response variable.

• If the fit is based on matrix input, NumVariables is the total number of columns in the predictor
matrix or matrices, and response vector.

NumVariables includes variables, if there are any, that are not used as predictors or as the
response.
Data Types: double

ObservationInfo — Information about the observations
table

Information about the observations used in the fit, stored as a table.

ObservationInfo has one row for each observation and the following four columns.

Weights The value of the weighted variable for that
observation. Default value is 1.

Excluded true, if the observation was excluded from the fit
using the 'Exclude' name-value pair argument,
false, otherwise. 1 stands for true and 0 stands
for false.

 LinearMixedModel class

35-4227



Missing true, if the observation was excluded from the fit
because any response or predictor value is
missing, false, otherwise.

Missing values include NaN for numeric variables,
empty cells for cell arrays, blank rows for
character arrays, and the <undefined> value for
categorical arrays.

Subset true, if the observation was used in the fit,
false, if it was not used because it is missing or
excluded.

Data Types: table

ObservationNames — Names of observations
cell array of character vectors

Names of observations used in the fit, stored as a cell array of character vectors.

• If the data is in a table or dataset array, tbl, containing observation names, ObservationNames
has those names.

• If the data is provided in matrices, or a table or dataset array without observation names, then
ObservationNames is an empty cell array.

Data Types: cell

PredictorNames — Names of predictors
cell array of character vectors

Names of the variables that you use as predictors in the fit, stored as a cell array of character vectors
that has the same length as NumPredictors.
Data Types: cell

ResponseName — Names of response variable
character vector

Name of the variable used as the response variable in the fit, stored as a character vector.
Data Types: char

Rsquared — Proportion of variability in the response explained by the fitted model
structure

Proportion of variability in the response explained by the fitted model, stored as a structure. It is the
multiple correlation coefficient or R-squared. Rsquared has two fields.

Ordinary R-squared value, stored as a scalar value in a
structure. Rsquared.Ordinary = 1 –
SSE./SST
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Adjusted R-squared value adjusted for the number of fixed-
effects coefficients, stored as a scalar value in a
structure.

Rsquared.Adjusted = 1 – (SSE./
SST)*(DFT./DFE),

where DFE = n – p, DFT = n – 1, and n is the
total number of observations, p is the number of
fixed-effects coefficients.

Data Types: struct

SSE — Error sum of squares
positive scalar

Error sum of squares, specified as a positive scalar. SSE is equal to the squared conditional residuals,
that is

SSE = sum((y – F).^2),

where y is the response vector and F is the fitted conditional response of the linear mixed-effects
model. The conditional model has contributions from both fixed and random effects.

If the model was trained with observation weights, the sum of squares in the SSE calculation is the
weighted sum of squares.
Data Types: double

SSR — Regression sum of squares
positive scalar

Regression sum of squares, specified as a positive scalar. SSR is the sum of squares explained by the
linear mixed-effects regression, and is equal to the sum of the squared deviations between the fitted
values and the mean of the response.

SSR = sum((F – mean(y)).^2),

where F is the fitted conditional response of the linear mixed-effects model and y is the response
vector. The conditional model has contributions from both fixed and random effects.

If the model was trained with observation weights, the sum of squares in the SSR calculation is the
weighted sum of squares.
Data Types: double

SST — Total sum of squares
positive scalar

Total sum of squares, specified as a positive scalar.

For a linear mixed-effects model with an intercept, SST is calculated as

SST = SSE + SSR,
where SST is the total sum of squares, SSE is the sum of squared errors, and SSR is the regression
sum of squares.
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For a linear mixed-effects model without an intercept, SST is calculated as the sum of the squared
deviations of the observed response values from their mean, that is

SST = sum((y – mean(y)).^2),
where y is the response vector.

If the model was trained with observation weights, the sum of squares in the SST calculation is the
weighted sum of squares.
Data Types: double

Variables — Variables
table

Variables, stored as a table.

• If the fit is based on a table or dataset array tbl, then Variables is identical to tbl.
• If the fit is based on matrix input, then Variables is a table containing all the variables in the

predictor matrix or matrices, and response variable.

Data Types: table

VariableInfo — Information about the variables
table

Information about the variables used in the fit, stored as a table.

VariableInfo has one row for each variable and contains the following four columns.

Class Class of the variable ('double', 'cell',
'nominal', and so on).

Range Value range of the variable.

• For a numerical variable, it is a two-element
vector of the form [min,max].

• For a cell or categorical variable, it is a cell or
categorical array containing all unique values
of the variable.

InModel true, if the variable is a predictor in the fitted
model.

false, if the variable is not in the fitted model.
IsCategorical true, if the variable has a type that is treated as

a categorical predictor, such as cell, logical, or
categorical, or if it is specified as categorical by
the 'Categorical' name-value pair argument
of the fit method.

false, if it is a continuous predictor.

Data Types: table

VariableNames — Names of the variables
cell array of character vectors
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Names of the variables used in the fit, stored as a cell array of character vectors.

• If sample data is in a table or dataset array tbl, VariableNames contains the names of the
variables in tbl.

• If sample data is in matrix format, then VariableInfo includes variable names you supply while
fitting the model. If you do not supply the variable names, then VariableInfo contains the
default names.

Data Types: cell

Object Functions
anova Analysis of variance for linear mixed-effects model
coefCI Confidence intervals for coefficients of linear mixed-effects model
coefTest Hypothesis test on fixed and random effects of linear mixed-effects model
compare Compare linear mixed-effects models
covarianceParameters Extract covariance parameters of linear mixed-effects model
designMatrix Fixed- and random-effects design matrices
fitted Fitted responses from a linear mixed-effects model
fixedEffects Estimates of fixed effects and related statistics
partialDependence Compute partial dependence
plotPartialDependence Create partial dependence plot (PDP) and individual conditional expectation

(ICE) plots
plotResiduals Plot residuals of linear mixed-effects model
predict Predict response of linear mixed-effects model
random Generate random responses from fitted linear mixed-effects model
randomEffects Estimates of random effects and related statistics
residuals Residuals of fitted linear mixed-effects model
response Response vector of the linear mixed-effects model

Copy Semantics
Value. To learn how value classes affect copy operations, see Copying Objects.

Examples

Random Intercept Model with Categorical Predictor

Load the sample data.

load flu

The flu dataset array has a Date variable, and 10 variables containing estimated influenza rates (in
9 different regions, estimated from Google® searches, plus a nationwide estimate from the Center for
Disease Control and Prevention, CDC).

To fit a linear-mixed effects model, your data must be in a properly formatted dataset array. To fit a
linear mixed-effects model with the influenza rates as the responses and region as the predictor
variable, combine the nine columns corresponding to the regions into an array. The new dataset
array, flu2, must have the response variable, FluRate, the nominal variable, Region, that shows
which region each estimate is from, and the grouping variable Date.
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flu2 = stack(flu,2:10,'NewDataVarName','FluRate',...
    'IndVarName','Region');
flu2.Date = nominal(flu2.Date);

Fit a linear mixed-effects model with fixed effects for region and a random intercept that varies by
Date.

Because region is a nominal variable, fitlme takes the first region, NE, as the reference and creates
eight dummy variables representing the other eight regions. For example, I[MidAtl] is the dummy
variable representing the region MidAtl. For details, see “Dummy Variables” on page 2-49.

The corresponding model is

yim = β0 + β1I MidAtl i + β2I ENCentral i + β3I WNCentral i + β4I SAtl i
+β5I ESCentral i + β6I WSCentral i + β7I Mtn i + β8I Pac i + b0m + εim, m = 1, 2, . . . , 52,

where yim is the observation i for level m of grouping variable Date, β j, j = 0, 1, ..., 8, are the fixed-
effects coefficients, b0m is the random effect for level m of the grouping variable Date, and εim is the
observation error for observation i. The random effect has the prior distribution, b0m ∼ N(0, σb

2) and
the error term has the distribution, εim ∼ N(0, σ2).

lme = fitlme(flu2,'FluRate ~ 1 + Region + (1|Date)')

lme = 
Linear mixed-effects model fit by ML

Model information:
    Number of observations             468
    Fixed effects coefficients           9
    Random effects coefficients         52
    Covariance parameters                2

Formula:
    FluRate ~ 1 + Region + (1 | Date)

Model fit statistics:
    AIC       BIC       LogLikelihood    Deviance
    318.71    364.35    -148.36          296.71  

Fixed effects coefficients (95% CIs):
    Name                        Estimate    SE          tStat      DF 
    {'(Intercept)'     }          1.2233    0.096678     12.654    459
    {'Region_MidAtl'   }        0.010192    0.052221    0.19518    459
    {'Region_ENCentral'}        0.051923    0.052221     0.9943    459
    {'Region_WNCentral'}         0.23687    0.052221     4.5359    459
    {'Region_SAtl'     }        0.075481    0.052221     1.4454    459
    {'Region_ESCentral'}         0.33917    0.052221      6.495    459
    {'Region_WSCentral'}           0.069    0.052221     1.3213    459
    {'Region_Mtn'      }        0.046673    0.052221    0.89377    459
    {'Region_Pac'      }        -0.16013    0.052221    -3.0665    459

    pValue        Lower        Upper    
     1.085e-31       1.0334       1.4133
       0.84534    -0.092429      0.11281
        0.3206    -0.050698      0.15454
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    7.3324e-06      0.13424      0.33949
       0.14902     -0.02714       0.1781
    2.1623e-10      0.23655      0.44179
       0.18705    -0.033621      0.17162
       0.37191    -0.055948      0.14929
     0.0022936     -0.26276    -0.057514

Random effects covariance parameters (95% CIs):
Group: Date (52 Levels)
    Name1                  Name2                  Type           Estimate
    {'(Intercept)'}        {'(Intercept)'}        {'std'}        0.6443  

    Lower     Upper  
    0.5297    0.78368

Group: Error
    Name               Estimate    Lower      Upper
    {'Res Std'}        0.26627     0.24878    0.285

The p-values 7.3324e-06 and 2.1623e-10 respectively show that the fixed effects of the flu rates in
regions WNCentral and ESCentral are significantly different relative to the flu rates in region NE.

The confidence limits for the standard deviation of the random-effects term, σb, do not include 0
(0.5297, 0.78368), which indicates that the random-effects term is significant. You can also test the
significance of the random-effects terms using the compare method.

The estimated value of an observation is the sum of the fixed effects and the random-effect value at
the grouping variable level corresponding to that observation. For example, the estimated best linear
unbiased predictor (BLUP) of the flu rate for region WNCentral in week 10/9/2005 is

yWNCentral, 10/9/2005 = β0 + β3I WNCentral + b10/9/2005

= 1 . 2233 + 0 . 23687− 0 . 1718
= 1 . 28837 .

This is the fitted conditional response, since it includes contribution to the estimate from both the
fixed and random effects. You can compute this value as follows.

beta = fixedEffects(lme);
[~,~,STATS] = randomEffects(lme); % Compute the random-effects statistics (STATS)
STATS.Level = nominal(STATS.Level);
y_hat = beta(1) + beta(4) + STATS.Estimate(STATS.Level=='10/9/2005')

y_hat = 1.2884

You can simply display the fitted value using the fitted method.

F = fitted(lme);
F(flu2.Date == '10/9/2005' & flu2.Region == 'WNCentral')

ans = 1.2884

Compute the fitted marginal response for region WNCentral in week 10/9/2005.

F = fitted(lme,'Conditional',false);
F(flu2.Date == '10/9/2005' & flu2.Region == 'WNCentral')
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ans = 1.4602

Linear Mixed-Effects Model with a Random Slope

Load the sample data.

load carbig

Fit a linear mixed-effects model for miles per gallon (MPG), with fixed effects for acceleration,
horsepower and the cylinders, and uncorrelated random-effect for intercept and acceleration grouped
by the model year. This model corresponds to

MPGim = β0 + β1Acci + β2HP + b0m + b1mAccim + εim, m = 1, 2, 3,

with the random-effects terms having the following prior distributions:

bm =
b0m
b1m

∼ N 0,
σ0

2 σ0, 1

σ0, 1 σ1
2

,

where m represents the model year.

First, prepare the design matrices for fitting the linear mixed-effects model.

X = [ones(406,1) Acceleration Horsepower];
Z = [ones(406,1) Acceleration];
Model_Year = nominal(Model_Year);
G = Model_Year;

Now, fit the model using fitlmematrix with the defined design matrices and grouping variables.
Use the 'fminunc' optimization algorithm.

lme = fitlmematrix(X,MPG,Z,G,'FixedEffectPredictors',....
{'Intercept','Acceleration','Horsepower'},'RandomEffectPredictors',...
{{'Intercept','Acceleration'}},'RandomEffectGroups',{'Model_Year'},...
'FitMethod','REML')

lme = 
Linear mixed-effects model fit by REML

Model information:
    Number of observations             392
    Fixed effects coefficients           3
    Random effects coefficients         26
    Covariance parameters                4

Formula:
    Linear Mixed Formula with 4 predictors.

Model fit statistics:
    AIC       BIC       LogLikelihood    Deviance
    2202.9    2230.7    -1094.5          2188.9  

Fixed effects coefficients (95% CIs):
    Name                    Estimate    SE           tStat      DF 
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    {'Intercept'   }          50.064       2.3176     21.602    389
    {'Acceleration'}        -0.57897      0.13843    -4.1825    389
    {'Horsepower'  }        -0.16958    0.0073242    -23.153    389

    pValue        Lower       Upper   
    1.4185e-68      45.507       54.62
    3.5654e-05    -0.85112    -0.30681
    3.5289e-75    -0.18398    -0.15518

Random effects covariance parameters (95% CIs):
Group: Model_Year (13 Levels)
    Name1                   Name2                   Type            Estimate
    {'Intercept'   }        {'Intercept'   }        {'std' }           3.72 
    {'Acceleration'}        {'Intercept'   }        {'corr'}        -0.8769 
    {'Acceleration'}        {'Acceleration'}        {'std' }         0.3593 

    Lower       Upper   
      1.5215      9.0954
    -0.98275    -0.33845
     0.19418     0.66483

Group: Error
    Name               Estimate    Lower     Upper 
    {'Res Std'}        3.6913      3.4331    3.9688

The fixed effects coefficients display includes the estimate, standard errors (SE), and the 95%
confidence interval limits (Lower and Upper). The p-values for (pValue) indicate that all three fixed-
effects coefficients are significant.

The confidence intervals for the standard deviations and the correlation between the random effects
for intercept and acceleration do not include zeros, hence they seem significant. Use the compare
method to test for the random effects.

Display the covariance matrix of the estimated fixed-effects coefficients.

lme.CoefficientCovariance

ans = 3×3

    5.3711   -0.2809   -0.0126
   -0.2809    0.0192    0.0005
   -0.0126    0.0005    0.0001

The diagonal elements show the variances of the fixed-effects coefficient estimates. For example, the
variance of the estimate of the intercept is 5.3711. Note that the standard errors of the estimates are
the square roots of the variances. For example, the standard error of the intercept is 2.3176, which is
sqrt(5.3711).

The off-diagonal elements show the correlation between the fixed-effects coefficient estimates. For
example, the correlation between the intercept and acceleration is –0.2809 and the correlation
between acceleration and horsepower is 0.0005.

Display the coefficient of determination for the model.

 LinearMixedModel class

35-4235



lme.Rsquared

ans = struct with fields:
    Ordinary: 0.7866
    Adjusted: 0.7855

The adjusted value is the R-squared value adjusted for the number of predictors in the model.

More About
Formula

In general, a formula for model specification is a character vector or string scalar of the form 'y ~
terms'. For the linear mixed-effects models, this formula is in the form 'y ~ fixed + (random1|
grouping1) + ... + (randomR|groupingR)', where fixed and random contain the fixed-
effects and the random-effects terms.

Suppose a table tbl contains the following:

• A response variable, y
• Predictor variables, Xj, which can be continuous or grouping variables
• Grouping variables, g1, g2, ..., gR,

where the grouping variables in Xj and gr can be categorical, logical, character arrays, string arrays,
or cell arrays of character vectors.

Then, in a formula of the form, 'y ~ fixed + (random1|g1) + ... + (randomR|gR)', the term
fixed corresponds to a specification of the fixed-effects design matrix X, random1 is a specification
of the random-effects design matrix Z1 corresponding to grouping variable g1, and similarly randomR
is a specification of the random-effects design matrix ZR corresponding to grouping variable gR. You
can express the fixed and random terms using Wilkinson notation.

Wilkinson notation describes the factors present in models. The notation relates to factors present in
models, not to the multipliers (coefficients) of those factors.

Wilkinson Notation Factors in Standard Notation
1 Constant (intercept) term
X^k, where k is a positive integer X, X2, ..., Xk

X1 + X2 X1, X2
X1*X2 X1, X2, X1.*X2 (elementwise

multiplication of X1 and X2)
X1:X2 X1.*X2 only
- X2 Do not include X2
X1*X2 + X3 X1, X2, X3, X1*X2
X1 + X2 + X3 + X1:X2 X1, X2, X3, X1*X2
X1*X2*X3 - X1:X2:X3 X1, X2, X3, X1*X2, X1*X3, X2*X3
X1*(X2 + X3) X1, X2, X3, X1*X2, X1*X3
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Statistics and Machine Learning Toolbox notation always includes a constant term unless you
explicitly remove the term using -1. Here are some examples for linear mixed-effects model
specification.

Examples:

Formula Description
'y ~ X1 + X2' Fixed effects for the intercept, X1 and X2. This is

equivalent to 'y ~ 1 + X1 + X2'.
'y ~ -1 + X1 + X2' No intercept and fixed effects for X1 and X2. The

implicit intercept term is suppressed by including
-1.

'y ~ 1 + (1 | g1)' Fixed effects for the intercept plus random effect
for the intercept for each level of the grouping
variable g1.

'y ~ X1 + (1 | g1)' Random intercept model with a fixed slope.
'y ~ X1 + (X1 | g1)' Random intercept and slope, with possible

correlation between them. This is equivalent to
'y ~ 1 + X1 + (1 + X1|g1)'.

'y ~ X1 + (1 | g1) + (-1 + X1 | g1)' Independent random effects terms for intercept
and slope.

'y ~ 1 + (1 | g1) + (1 | g2) + (1 |
g1:g2)'

Random intercept model with independent main
effects for g1 and g2, plus an independent
interaction effect.

See Also
fitlme | fitlmematrix
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linhyptest
Linear hypothesis test

Syntax
p = linhyptest(beta,COVB,c,H,dfe)
[p,t,r] = linhyptest(...)

Description
p = linhyptest(beta,COVB,c,H,dfe) returns the p value p of a hypothesis test on a vector of
parameters. beta is a vector of k parameter estimates. COVB is the k-by-k estimated covariance
matrix of the parameter estimates. c and H specify the null hypothesis in the form H*b = c, where b
is the vector of unknown parameters estimated by beta. dfe is the degrees of freedom for the COVB
estimate, or Inf if COVB is known rather than estimated.

beta is required. The remaining arguments have default values:

• COVB = eye(k)
• c = zeros(k,1)
• H = eye(K)
• dfe = Inf

If H is omitted, c must have k elements and it specifies the null hypothesis values for the entire
parameter vector.

Note The following functions return outputs suitable for use as the COVB input argument to
linhyptest: nlinfit, coxphfit, glmfit, mnrfit, regstats, robustfit. nlinfit returns
COVB directly; the other functions return COVB in stats.covb.

[p,t,r] = linhyptest(...) also returns the test statistic t and the rank r of the hypothesis
matrix H. If dfe is Inf or is not given, t*r is a chi-square statistic with r degrees of freedom . If dfe
is specified as a finite value, t is an F statistic with r and dfe degrees of freedom.

linhyptest performs a test based on an asymptotic normal distribution for the parameter
estimates. It can be used after any estimation procedure for which the parameter covariances are
available, such as regstats or glmfit. For linear regression, the p-values are exact. For other
procedures, the p-values are approximate, and may be less accurate than other procedures such as
those based on a likelihood ratio.

Examples
Fit a multiple linear model to the data in hald.mat:

load hald
stats = regstats(heat,ingredients,'linear');
beta = stats.beta
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beta =
   62.4054
    1.5511
    0.5102
    0.1019
   -0.1441

Perform an F-test that the last two coefficients are both 0:

SIGMA = stats.covb;
dfe = stats.fstat.dfe;
H = [0 0 0 1 0;0 0 0 0 1];
c = [0;0];
[p,F] = linhyptest(beta,SIGMA,c,H,dfe)
p =
    0.4668
F =
    0.8391

Version History
Introduced in R2007a

See Also
regstats | glmfit | robustfit | mnrfit | nlinfit | coxphfit
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linhyptest
Linear hypothesis tests on Cox model coefficients

Syntax
testTable = linhyptest(coxMdl)

Description
testTable = linhyptest(coxMdl) returns an ANOVA-style table with p-values for tests that
determine if sequential combinations of Cox model coefficient estimates are zero. linhyptest tests
successive null hypotheses, starting with the hypothesis that all the coefficients are 0. The function
then tests to determine if all but the first coefficient are 0, all but the first two coefficients are zero,
and so on, up to the number of coefficients minus one. A significant p-value indicates that you can
reject the null hypothesis, meaning the assumption that all coefficients in a particular combination of
coefficients are 0.

Examples

Perform Linear Hypothesis Test

Examine the result of linhyptest on the readmissiontimes data set.

load readmissiontimes
coxMdl = fitcox([Age,Sex,Weight],ReadmissionTime,...
    'Censoring',Censored);
testTable = linhyptest(coxMdl)

testTable=3×2 table
       Predictor         pValue  
    _______________    __________

    {'Empty Model'}    2.5612e-07
    {'X1'         }    7.9753e-08
    {'X1, X2'     }      0.095973

• The first row of the returned table indicates that you can reject the hypothesis that all model
coefficients are 0 at the .05 or .01 significance levels.

• The second row indicates that you can reject the hypothesis that only the Sex and Weight
coefficients are 0 at the .05 or .01 significance levels.

• The third row indicates that you cannot reject the hypothesis that only the Weight coefficient is 0
at the .05 or .01 significance levels.

Input Arguments
coxMdl — Fitted Cox proportional hazards model
CoxModel object
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Fitted Cox proportional hazards model, specified as a CoxModel object. Create coxMdl using
fitcox.

Output Arguments
testTable — Significance levels of cumulative hypothesis tests
table

Significance levels of cumulative hypothesis tests, returned as a table. The tested coefficients are in
the Coefficients property of the model. The table returns tests of successive null hypotheses,
starting with the hypothesis that all the coefficients are 0. The second row tests whether all but the
first coefficient is 0. The third row tests whether all but the first two coefficients are zero, and so on.
The last row tests whether all coefficients but the last are zero. A significant p-value indicates that
you can reject the null hypothesis, meaning the assumption that all coefficients in a particular
combination of coefficients are 0. A significant p-value is one that is smaller than a specified
significance level.

Version History
Introduced in R2021a

See Also
CoxModel | coefci | fitcox
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linkage
Agglomerative hierarchical cluster tree

Syntax
Z = linkage(X)
Z = linkage(X,method)
Z = linkage(X,method,metric)
Z = linkage(X,method,metric,'savememory',value)

Z = linkage(X,method,pdist_inputs)

Z = linkage(y)
Z = linkage(y,method)

Description
Z = linkage(X) returns a matrix Z that encodes a tree containing hierarchical clusters of the rows
of the input data matrix X.

Z = linkage(X,method) creates the tree using the specified method, which describes how to
measure the distance between clusters. For more information, see “Linkages” on page 35-4249.

Z = linkage(X,method,metric) performs clustering by passing metric to the pdist function,
which computes the distance between the rows of X.

Z = linkage(X,method,metric,'savememory',value) uses a memory-saving algorithm when
value is 'on', and uses the standard algorithm when value is 'off'.

Z = linkage(X,method,pdist_inputs) passes pdist_inputs to the pdist function, which
computes the distance between the rows of X. The pdist_inputs argument consists of the
'seuclidean', 'minkowski', or 'mahalanobis' metric and an additional distance metric option.

Z = linkage(y) uses a vector representation y of a distance matrix. y is either computed by pdist
or is a more general dissimilarity matrix conforming to the output format of pdist.

Z = linkage(y,method) creates the tree using the specified method, which describes how to
measure the distance between clusters.

Examples

Cluster Data and Plot Result

Randomly generate sample data with 20,000 observations.

rng('default') % For reproducibility
X = rand(20000,3);
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Create a hierarchical cluster tree using the ward linkage method. In this case, the 'SaveMemory'
option of the clusterdata function is set to 'on' by default. In general, specify the best value for
'SaveMemory' based on the dimensions of X and the available memory.

Z = linkage(X,'ward');

Cluster the data into a maximum of four groups and plot the result.

c = cluster(Z,'Maxclust',4);
scatter3(X(:,1),X(:,2),X(:,3),10,c)

cluster identifies four groups in the data.

Compare Cluster Assignments to Classes

Find a maximum of three clusters in the fisheriris data set and compare cluster assignments of
the flowers to their known classification.

Load the sample data.

load fisheriris

Create a hierarchical cluster tree using the 'average' method and the 'chebychev' metric.

Z = linkage(meas,'average','chebychev');
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Find a maximum of three clusters in the data.

T = cluster(Z,'maxclust',3);

Create a dendrogram plot of Z. To see the three clusters, use 'ColorThreshold' with a cutoff
halfway between the third-from-last and second-from-last linkages.

cutoff = median([Z(end-2,3) Z(end-1,3)]);
dendrogram(Z,'ColorThreshold',cutoff)

Display the last two rows of Z to see how the three clusters are combined into one. linkage
combines the 293rd (blue) cluster with the 297th (red) cluster to form the 298th cluster with a
linkage of 1.7583. linkage then combines the 296th (green) cluster with the 298th cluster.

lastTwo = Z(end-1:end,:)

lastTwo = 2×3

  293.0000  297.0000    1.7583
  296.0000  298.0000    3.4445

See how the cluster assignments correspond to the three species. For example, one of the clusters
contains 50 flowers of the second species and 40 flowers of the third species.

crosstab(T,species)
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ans = 3×3

     0     0    10
     0    50    40
    50     0     0

Observe Clustering Step in Hierarchical Tree

Load the examgrades data set.

load examgrades

Create a hierarchical tree using linkage. Use the 'single' method and the Minkowski metric with
an exponent of 3.

Z = linkage(grades,'single',{'minkowski',3});

Observe the 25th clustering step.

Z(25,:)

ans = 1×3

   86.0000  137.0000    4.5307

linkage combines the 86th observation and the 137th cluster to form a cluster of index
120 + 25 = 145, where 120 is the total number of observations in grades and 25 is the row number
in Z. The shortest distance between the 86th observation and any of the points in the 137th cluster is
4.5307.

Cluster Data Using Dissimilarity Matrix

Create an agglomerative hierarchical cluster tree using a dissimilarity matrix.

Take a dissimilarity matrix X and convert it to a vector form that linkage accepts by using
squareform.

X = [0 1 2 3; 1 0 4 5; 2 4 0 6; 3 5 6 0];
y = squareform(X);

Create a cluster tree using linkage with the 'complete' method of calculating the distance
between clusters. The first two columns of Z show how linkage combines clusters. The third column
of Z gives the distance between clusters.

Z = linkage(y,'complete')

Z = 3×3

     1     2     1
     3     5     4
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     4     6     6

Create a dendrogram plot of Z. The x-axis corresponds to the leaf nodes of the tree, and the y-axis
corresponds to the linkage distances between clusters.

dendrogram(Z)

Input Arguments
X — Input data
numeric matrix

Input data, specified as a numeric matrix with two or more rows. The rows represent observations,
and the columns represent categories or dimensions.
Data Types: single | double

method — Algorithm for computing distance between clusters
'single' (default) | 'average' | 'centroid' | 'complete' | ...

Algorithm for computing the distance between clusters, specified as one of the values in this table.
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Method Description
'average' Unweighted average distance (UPGMA)
'centroid' Centroid distance (UPGMC), appropriate for Euclidean distances only
'complete' Farthest distance
'median' Weighted center of mass distance (WPGMC), appropriate for Euclidean

distances only
'single' Shortest distance
'ward' Inner squared distance (minimum variance algorithm), appropriate for

Euclidean distances only
'weighted' Weighted average distance (WPGMA)

For more information on these methods, see “Linkages” on page 35-4249.

metric — Distance metric
'euclidean' (default) | 'squaredeuclidean' | 'seuclidean' | 'mahalanobis' | function
handle | ...

Distance metric, specified as any metric accepted by the pdist function. These metrics are described
in the following table.

Value Description
'euclidean' Euclidean distance (default).
'squaredeuclidean' Squared Euclidean distance. (This option is provided for efficiency only.

It does not satisfy the triangle inequality.)
'seuclidean' Standardized Euclidean distance. Each coordinate difference between

observations is scaled by dividing by the corresponding element of the
standard deviation, S = std(X,'omitnan'). Use DistParameter
to specify another value for S.

'mahalanobis' Mahalanobis distance using the sample covariance of X, C =
cov(X,'omitrows'). Use DistParameter to specify another value
for C, where the matrix C is symmetric and positive definite.

'cityblock' City block distance.
'minkowski' Minkowski distance. The default exponent is 2. Use DistParameter

to specify a different exponent P, where P is a positive scalar value of
the exponent.

'chebychev' Chebychev distance (maximum coordinate difference).
'cosine' One minus the cosine of the included angle between points (treated as

vectors).
'correlation' One minus the sample correlation between points (treated as

sequences of values).
'hamming' Hamming distance, which is the percentage of coordinates that differ.
'jaccard' One minus the Jaccard coefficient, which is the percentage of nonzero

coordinates that differ.
'spearman' One minus the sample Spearman's rank correlation between

observations (treated as sequences of values).
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Value Description
@distfun Custom distance function handle. A distance function has the form

function D2 = distfun(ZI,ZJ)
% calculation of distance
...

where

• ZI is a 1-by-n vector containing a single observation.
• ZJ is an m2-by-n matrix containing multiple observations. distfun

must accept a matrix ZJ with an arbitrary number of observations.
• D2 is an m2-by-1 vector of distances, and D2(k) is the distance

between observations ZI and ZJ(k,:).

If your data is not sparse, you can generally compute distance more
quickly by using a built-in distance instead of a function handle.

For more information, see “Distance Metrics” on page 35-5388.

Use pdist_inputs instead of metric to specify the additional input argument DistParameter of
pdist for 'seuclidean', 'minkowski', or 'mahalanobis'.
Data Types: char | string | function_handle

pdist_inputs — Distance metric and distance metric option
cell array

Distance metric and distance metric option, specified as a cell array of the comma-separated pair
consisting of the two input arguments Distance and DistParameter of the function pdist. This
argument is valid only for specifying 'seuclidean', 'minkowski', or 'mahalanobis'.
Example: {'minkowski',5}
Data Types: cell

value — Flag for 'savememory' option
'on' | 'off'

Flag for the 'savememory' option, specified as either 'on' or 'off'. The 'on' setting causes
linkage to construct clusters without computing the distance matrix. The 'on' setting is available
only when method is 'centroid', 'median', or 'ward' and metric is 'euclidean'.

When value is 'on', the linkage run time is proportional to the number of dimensions (number of
columns of X). When value is 'off', the linkage memory requirement is proportional to N2, where
N is the number of observations. The best (least-time) setting to use for value depends on the
problem dimensions, number of observations, and available memory. The default value setting is a
rough approximation of an optimal setting.

The default is 'on' when X has 20 columns or fewer, or the computer does not have enough memory
to store the distance matrix. Otherwise, the default is 'off'.
Example: 'savememory','on'

y — Distances
numeric vector
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Distances, specified as a numeric vector with the same format as the output of the pdist function:

• A row vector of length m(m – 1)/2, corresponding to pairs of observations in a matrix with m rows
• Distances arranged in the order (2,1), (3,1), ..., (m,1), (3,2), ..., (m,2), ..., (m,m – 1))

y can be a more general dissimilarity matrix conforming to the output format of pdist.
Data Types: single | double

Output Arguments
Z — Agglomerative hierarchical cluster tree
numeric matrix

Agglomerative hierarchical cluster tree, returned as a numeric matrix. Z is an (m – 1)-by-3 matrix,
where m is the number of observations in the original data. Columns 1 and 2 of Z contain cluster
indices linked in pairs to form a binary tree. The leaf nodes are numbered from 1 to m. Leaf nodes are
the singleton clusters from which all higher clusters are built. Each newly formed cluster,
corresponding to row Z(I,:), is assigned the index m + I. The entries Z(I,1) and Z(I,2) contain
the indices of the two component clusters that form cluster m + I. The m – 1 higher clusters
correspond to the interior nodes of the clustering tree. Z(I,3) contains the linkage distance between
the two clusters merged in row Z(I,:).

For example, consider building a tree with 30 initial nodes. Suppose that cluster 5 and cluster 7 are
combined at step 12, and that the distance between them at that step is 1.5. Then Z(12,:) is [5 7
1.5]. The newly formed cluster has index 12 + 30 = 42. If cluster 42 appears in a later row, then the
function is combining the cluster created at step 12 into a larger cluster.
Data Types: single | double

More About
Linkages

A linkage is the distance between two clusters.

The following notation describes the linkages used by the various methods:

• Cluster r is formed from clusters p and q.
• nr is the number of objects in cluster r.
• xri is the ith object in cluster r.

• Single linkage, also called nearest neighbor, uses the smallest distance between objects in the two
clusters.

d(r, s) = min(dist(xri, xs j)), i ∈ (i, ..., nr), j ∈ (1, ..., ns)

• Complete linkage, also called farthest neighbor, uses the largest distance between objects in the
two clusters.

d(r, s) = max(dist(xri, xs j)), i ∈ (1, ..., nr), j ∈ (1, ..., ns)

• Average linkage uses the average distance between all pairs of objects in any two clusters.
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d(r, s) = 1
nrns

∑
i = 1

nr
∑

j = 1

ns
dist(xri, xs j)

• Centroid linkage uses the Euclidean distance between the centroids of the two clusters.

d(r, s) = xr − xs 2,

where

xr = 1
nr
∑

i = 1

nr
xri

• Median linkage uses the Euclidean distance between weighted centroids of the two clusters.

d(r, s) = xr − xs 2,

where xr and xs are weighted centroids for the clusters r and s. If cluster r was created by
combining clusters p and q, xr is defined recursively as

xr = 1
2(xp + xq)

• Ward's linkage uses the incremental sum of squares, that is, the increase in the total within-
cluster sum of squares as a result of joining two clusters. The within-cluster sum of squares is
defined as the sum of the squares of the distances between all objects in the cluster and the
centroid of the cluster. The sum of squares metric is equivalent to the following distance metric
d(r,s), which is the formula linkage uses.

d(r, s) =
2nrns

(nr + ns)
xr − xs 2,

where

• 2 is the Euclidean distance.
• xr and xs are the centroids of clusters r and s.
• nr and ns are the number of elements in clusters r and s.

In some references, Ward's linkage does not use the factor of 2 multiplying nrns. The linkage
function uses this factor so that the distance between two singleton clusters is the same as the
Euclidean distance.

• Weighted average linkage uses a recursive definition for the distance between two clusters. If
cluster r was created by combining clusters p and q, the distance between r and another cluster s
is defined as the average of the distance between p and s and the distance between q and s.

d r, s = d p, s + d q, s
2

Tips
• Computing linkage(y) can be slow when y is a vector representation of the distance matrix. For

the 'centroid', 'median', and 'ward' methods, linkage checks whether y is a Euclidean
distance. Avoid this time-consuming check by passing in X instead of y.
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• The 'centroid' and 'median' methods can produce a cluster tree that is not monotonic. This
result occurs when the distance from the union of two clusters, r and s, to a third cluster is less
than the distance between r and s. In this case, in a dendrogram drawn with the default
orientation, the path from a leaf to the root node takes some downward steps. To avoid this result,
use another method. This figure shows a nonmonotonic cluster tree.

In this case, cluster 1 and cluster 3 are joined into a new cluster, and the distance between this
new cluster and cluster 2 is less than the distance between cluster 1 and cluster 3. The result is a
nonmonotonic tree.

• You can provide the output Z to other functions including dendrogram to display the tree,
cluster to assign points to clusters, inconsistent to compute inconsistent measures, and
cophenet to compute the cophenetic correlation coefficient.

Version History
Introduced before R2006a

See Also
cluster | clusterdata | cophenet | dendrogram | inconsistent | kmeans | pdist |
silhouette | squareform

Topics
“Hierarchical Clustering” on page 17-6
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loadCompactModel
(Removed) Reconstruct model object from saved model for code generation

Note loadCompactModel has been removed. Use loadLearnerForCoder instead. To update your
code, simply replace instances of loadCompactModel with loadLearnerForCoder.

Syntax
Mdl = loadCompactModel(filename)

Description
To generate C/C++ code for the object functions (predict, random, knnsearch, or rangesearch)
of machine learning models, use saveCompactModel, loadCompactModel, and codegen. After
training a machine learning model, save the model by using saveCompactModel. Define an entry-
point function that loads the model by using loadCompactModel and calls an object function. Then
use codegen or the MATLAB Coder app to generate C/C++ code. Generating C/C++ code requires
MATLAB Coder.

This flow chart shows the code generation workflow for the object functions of machine learning
models. Use loadCompactModel for the highlighted step.

Mdl = loadCompactModel(filename) reconstructs a classification model, regression model, or
nearest neighbor searcher (Mdl) from the model stored in the MATLAB formatted binary file (MAT-
file) named filename. You must create the filename file by using saveCompactModel.

Examples

Generate C/C++ Code for Prediction

After training a machine learning model, save the model by using saveCompactModel. Define an
entry-point function that loads the model by using loadCompactModel and calls the predict
function of the trained model. Then use codegen (MATLAB Coder) to generate C/C++ code.

This example briefly explains the code generation workflow for the prediction of machine learning
models at the command line. For more details, see “Code Generation for Prediction of Machine
Learning Model at Command Line” on page 34-9. You can also generate code using the MATLAB
Coder app. See “Code Generation for Prediction of Machine Learning Model Using MATLAB Coder
App” on page 34-23 for details. To learn about the code generation for finding nearest neighbors
using a nearest neighbor searcher model, see “Code Generation for Nearest Neighbor Searcher” on
page 34-20.
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Load Fisher's iris data set. Remove all observed setosa irises data so that X and Y contain data for
two classes only.

load fisheriris
inds = ~strcmp(species,'setosa');
X = meas(inds,:);
Y = species(inds);

Train a support vector machine (SVM) classification model using the processed data set.

Mdl = fitcsvm(X,Y);

Mdl is a ClassificationSVM model.

Save the SVM classification model to the file SVMIris.mat by using saveCompactModel.

saveCompactModel(Mdl,'SVMIris');

Define an entry-point function named classifyIrises that does the following:

• Accept iris flower measurements with columns corresponding to meas, and return predicted
labels.

• Load a trained SVM classification model.
• Predict labels using the loaded classification model for the iris flower measurements.

function label = classifyIrises(X) %#codegen
%CLASSIFYIRISES Classify iris species using SVM Model
%   CLASSIFYIRISES classifies the iris flower measurements in X using the
%   compact SVM model in the file SVMIris.mat, and then returns class
%   labels in label.
CompactMdl = loadCompactModel('SVMIris');
label = predict(CompactMdl,X);
end

Add the %#codegen compiler directive (or pragma) to the entry-point function after the function
signature to indicate that you intend to generate code for the MATLAB algorithm. Adding this
directive instructs the MATLAB Code Analyzer to help you diagnose and fix violations that would
result in errors during code generation.

Generate code for the entry-point function using codegen (MATLAB Coder). Because C and C++ are
statically typed languages, you must determine the properties of all variables in the entry-point
function at compile time. Pass X as the value of the -args option to specify that the generated code
must accept an input that has the same data type and array size as the training data X. If the number
of observations is unknown at compile time, you can also specify the input as variable-size by using
coder.typeof (MATLAB Coder). For details, see “Specify Variable-Size Arguments for Code
Generation” on page 34-56 and “Specify Properties of Entry-Point Function Inputs” (MATLAB Coder).

codegen classifyIrises -args {X}

Code generation successful.

codegen generates the MEX function classifyIrises_mex with a platform-dependent extension.

Compare the labels classified using predict, classifyIrises, and classifyIrises_mex.

label1 = predict(Mdl,X);
label2 = classifyIrises(X);
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label3 = classifyIrises_mex(X);
verify_label = isequal(label1,label2,label3)

verify_label = logical
   1

isequal returns logical 1 (true), which means all the inputs are equal. The labels classified all three
ways are the same.

Input Arguments
filename — Name of MAT-file that contains structure array representing a model object
character vector | string scalar

Name of the MAT-file that contains the structure array representing a model object, specified as a
character vector or string scalar. You must create the filename file using saveCompactModel.

loadCompactModel reconstructs the model stored in the filename file at compile time. For
supported models, see the Mdl input argument of saveCompactModel.

The extension of the filename file must be .mat. If filename has no extension, then
loadCompactModel appends .mat.

If filename does not include a full path, then loadCompactModel loads the file from the current
folder.
Example: 'Mdl'
Data Types: char | string

Output Arguments
Mdl — Machine learning model
model object

Machine learning model, returned as one of these model objects:

• Classification model object

• ClassificationKNN
• ClassificationLinear
• CompactClassificationDiscriminant
• CompactClassificationECOC
• CompactClassificationEnsemble
• CompactClassificationNaiveBayes
• CompactClassificationSVM — If you use saveCompactModel to save an SVM model that

is equipped to predict posterior probabilities, and use loadCompactModel to load the model,
then loadCompactModel cannot restore the ScoreTransform property into the MATLAB
Workspace. However, loadCompactModel can load the model, including the ScoreTransform
property, at compile time for code generation, within an entry-point function.

• CompactClassificationTree
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• Regression model object

• CompactGeneralizedLinearModel
• CompactLinearModel — Suppose you train a linear model by using fitlm and specifying

'RobustOpts' as a structure with an anonymous function handle for the RobustWgtFun
field, use saveCompactModel to save the model, and then use loadCompactModel to load
the model. In this case, loadCompactModel cannot restore the Robust property into the
MATLAB Workspace. However, loadCompactModel can load the model at compile time within
an entry-point function for code generation.

• CompactRegressionEnsemble
• CompactRegressionGP
• CompactRegressionSVM
• CompactRegressionTree
• RegressionLinear

• Nearest neighbor searcher object

• ExhaustiveSearcher
• KDTreeSearcher

Algorithms
saveCompactModel prepares a machine learning model (Mdl) for code generation. The function
removes some properties that are not required for prediction.

• For a model that has a corresponding compact model, the saveCompactModel function applies
the appropriate compact function to the model before saving it.

• For a model that does not have a corresponding compact model, such as ClassificationKNN,
ClassificationLinear, RegressionLinear, ExhaustiveSearcher, and KDTreeSearcher,
the saveCompactModel function removes properties such as hyperparameter optimization
properties, training solver information, and others.

loadCompactModel loads the model saved by saveCompactModel.

Alternative Functionality
• Use a coder configurer created by learnerCoderConfigurer for the models listed in this table.

Model Coder Configurer Object
Binary decision tree for multiclass
classification

ClassificationTreeCoderConfigurer

SVM for one-class and binary classification ClassificationSVMCoderConfigurer
Linear model for binary classification ClassificationLinearCoderConfigurer
Multiclass model for SVMs and linear models ClassificationECOCCoderConfigurer
Binary decision tree for regression RegressionTreeCoderConfigurer
Support vector machine (SVM) regression RegressionSVMCoderConfigurer
Linear regression RegressionLinearCoderConfigurer
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After training a machine learning model, create a coder configurer of the model. Use the object
functions and properties of the configurer to configure code generation options and to generate
code for the predict and update functions of the model. If you generate code using a coder
configurer, you can update model parameters in the generated code without having to regenerate
the code. For details, see “Code Generation for Prediction and Update Using Coder Configurer” on
page 34-92.

Version History
Introduced in R2016b

loadCompactModel has been removed
Errors starting in R2021b

loadCompactModel has been removed. Use loadLearnerForCoder instead.

saveLearnerForCoder and loadLearnerForCoder provide broader functionality, including fixed-
point code generation for supported models.

This table shows how to update your code to use loadLearnerForCoder.

Removed Recommended
Mdl = loadCompactModel('MyModel'); Mdl = loadLearnerForCoder('MyModel');

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
saveCompactModel | codegen | loadLearnerForCoder

Topics
“Introduction to Code Generation” on page 34-2
“Code Generation for Prediction of Machine Learning Model at Command Line” on page 34-9
“Code Generation for Prediction of Machine Learning Model Using MATLAB Coder App” on page 34-
23
“Code Generation for Nearest Neighbor Searcher” on page 34-20
“Specify Variable-Size Arguments for Code Generation” on page 34-56

35 Functions

35-4256



loadLearnerForCoder
Reconstruct model object from saved model for code generation

Syntax
Mdl = loadLearnerForCoder(filename)
Mdl = loadLearnerForCoder(filename,'DataType','single')
Mdl = loadLearnerForCoder(filename,'DataType',T)

Description
To generate C/C++ code for the object functions of machine learning models (including predict,
random, knnsearch, rangesearch, isanomaly, and incremental learning functions), use
saveLearnerForCoder, loadLearnerForCoder, and codegen. After training a machine learning
model, save the model by using saveLearnerForCoder. Define an entry-point function that loads
the model by using loadLearnerForCoder and calls an object function. Then use codegen or the
MATLAB Coder app to generate C/C++ code. Generating C/C++ code requires MATLAB Coder.

For functions that support single-precision C/C++ code generation, use saveLearnerForCoder,
loadLearnerForCoder, and codegen; specify the name-value argument 'DataType','single'
when you call the loadLearnerForCoder function.

This flow chart shows the code generation workflow for the object functions of machine learning
models. Use loadLearnerForCoder for the highlighted step.

Fixed-point C/C++ code generation requires an additional step that defines the fixed-point data types
of the variables required for prediction. Create a fixed-point data type structure by using the data
type function generated by generateLearnerDataTypeFcn, and use the structure as an input
argument of loadLearnerForCoder in an entry-point function. Generating fixed-point C/C++ code
requires MATLAB Coder and Fixed-Point Designer.

This flow chart shows the fixed-point code generation workflow for the predict function of a
machine learning model. Use loadLearnerForCoder for the highlighted step.

Mdl = loadLearnerForCoder(filename) reconstructs a model (Mdl) from the model stored in
the MATLAB formatted binary file (MAT-file) named filename. You must create the filename file by
using saveLearnerForCoder.

Mdl = loadLearnerForCoder(filename,'DataType','single') reconstructs a single-
precision model (Mdl) from the model stored in the MATLAB formatted binary file (MAT-file) named
filename.

Mdl = loadLearnerForCoder(filename,'DataType',T) returns a fixed-point version of the
model stored in filename. The structure T contains the fields that specify the fixed-point data types
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for the variables required to use the predict function of the model. Create T using the function
generated by generateLearnerDataTypeFcn.

Use this syntax in an entry-point function, and use codegen to generate fixed-point code for the
entry-point function. You can use this syntax only when generating code.

Examples

Generate C/C++ Code for Prediction

After training a machine learning model, save the model by using saveLearnerForCoder. Define an
entry-point function that loads the model by using loadLearnerForCoder and calls the predict
function of the trained model. Then use codegen (MATLAB Coder) to generate C/C++ code.

This example briefly explains the code generation workflow for the prediction of machine learning
models at the command line. For more details, see “Code Generation for Prediction of Machine
Learning Model at Command Line” on page 34-9. You can also generate code using the MATLAB
Coder app. See “Code Generation for Prediction of Machine Learning Model Using MATLAB Coder
App” on page 34-23 for details. To learn about the code generation for finding nearest neighbors
using a nearest neighbor searcher model, see “Code Generation for Nearest Neighbor Searcher” on
page 34-20.

Train Model

Load Fisher's iris data set. Remove all observed setosa irises data so that X and Y contain data for
two classes only.

load fisheriris
inds = ~strcmp(species,'setosa');
X = meas(inds,:);
Y = species(inds);

Train a support vector machine (SVM) classification model using the processed data set.

Mdl = fitcsvm(X,Y);

Mdl is a ClassificationSVM model.

Save Model

Save the SVM classification model to the file SVMIris.mat by using saveLearnerForCoder.

saveLearnerForCoder(Mdl,'SVMIris');

Define Entry-Point Function

Define an entry-point function named classifyIris that does the following:

• Accept iris flower measurements with columns corresponding to meas, and return predicted
labels.

• Load a trained SVM classification model.
• Predict labels using the loaded classification model for the iris flower measurements.

type classifyIris.m % Display contents of classifyIris.m file
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function label = classifyIris(X) %#codegen
%CLASSIFYIRIS Classify iris species using SVM Model
%   CLASSIFYIRIS classifies the iris flower measurements in X using the SVM
%   model in the file SVMIris.mat, and then returns class labels in label.
Mdl = loadLearnerForCoder('SVMIris');
label = predict(Mdl,X);
end

Add the %#codegen compiler directive (or pragma) to the entry-point function after the function
signature to indicate that you intend to generate code for the MATLAB algorithm. Adding this
directive instructs the MATLAB Code Analyzer to help you diagnose and fix violations that would
result in errors during code generation.

Note: If you click the button located in the upper-right section of this example and open this example
in MATLAB®, then MATLAB® opens the example folder. This folder includes the entry-point function
file.

Generate Code

Generate code for the entry-point function using codegen (MATLAB Coder). Because C and C++ are
statically typed languages, you must determine the properties of all variables in the entry-point
function at compile time. Pass X as the value of the -args option to specify that the generated code
must accept an input that has the same data type and array size as the training data X. If the number
of observations is unknown at compile time, you can also specify the input as variable-size by using
coder.typeof (MATLAB Coder). For details, see “Specify Variable-Size Arguments for Code
Generation” on page 34-56 and “Specify Properties of Entry-Point Function Inputs” (MATLAB Coder).

codegen classifyIris -args {X}

Code generation successful.

codegen generates the MEX function classifyIris_mex with a platform-dependent extension.

Verify Generated Code

Compare the labels classified using predict, classifyIris, and classifyIris_mex.

label1 = predict(Mdl,X);
label2 = classifyIris(X);
label3 = classifyIris_mex(X);
verify_label = isequal(label1,label2,label3)

verify_label = logical
   1

isequal returns logical 1 (true), which means all the inputs are equal. The labels classified all three
ways are the same.

Generate Single-Precision C/C++ Code for Prediction

After training a machine learning model, save the model by using saveLearnerForCoder. Define an
entry-point function that loads the model by using loadLearnerForCoder and calls the predict
function of the trained model. Then use codegen (MATLAB Coder) to generate C/C++ code.
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This example briefly explains the single-precision code generation workflow for the prediction of
machine learning models at the command line. For more details, see “Code Generation for Prediction
of Machine Learning Model at Command Line” on page 34-9. You can also generate code using the
MATLAB Coder app. See “Code Generation for Prediction of Machine Learning Model Using MATLAB
Coder App” on page 34-23 for details.

Train Model

Load the fisheriris data set. Create X as a numeric matrix that contains four petal measurements
for 150 irises. Create Y as a cell array of character vectors that contains the corresponding iris
species.

load fisheriris
X = meas;
Y = species;

Train a naive Bayes classifier using predictors X and class labels Y.

Mdl = fitcnb(X,Y);

Mdl is a trained ClassificationNaiveBayes classifier.

Save Model

Save the naive Bayes classification model to the file naiveBayesIris.mat by using
saveLearnerForCoder.

saveLearnerForCoder(Mdl,'naiveBayesIris');

Define Entry-Point Function

Define an entry-point function named classifyIrisSingle that does the following:

• Accept iris flower measurements with columns corresponding to petal measurements, and return
predicted labels.

• Load a trained naive Bayes classification model.
• Predict labels using the single-precision loaded classification model for the iris flower

measurements.

type classifyIrisSingle.m

function label = classifyIrisSingle(X) %#codegen
% CLASSIFYIRISSINGLE Classify iris species using single-precision naive
% Bayes model
% CLASSIFYIRISSINGLE classifies the iris flower measurements in X using the
% single-precision naive Bayes model in the file naiveBayesIris.mat, and
% then returns the predicted labels in label.
Mdl = loadLearnerForCoder('naiveBayesIris','DataType','single');
label = predict(Mdl,X);
end

Add the %#codegen compiler directive (or pragma) to the entry-point function after the function
signature to indicate that you intend to generate code for the MATLAB algorithm. Adding this
directive instructs the MATLAB Code Analyzer to help you diagnose and fix violations that would
result in errors during code generation.
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Note: If you click the button located in the upper-right section of this example and open this example
in MATLAB, then MATLAB opens the example folder. This folder includes the entry-point function file.

Generate Code

Generate code for the entry-point function using codegen (MATLAB Coder). Because C and C++ are
statically typed languages, you must determine the properties of all variables in the entry-point
function at compile time. Pass X as the value of the -args option to specify that the generated code
must accept an input that has the same data type and array size as the training data X. If the number
of observations is unknown at compile time, you can also specify the input as variable-size by using
coder.typeof (MATLAB Coder). For details, see “Specify Variable-Size Arguments for Code
Generation” on page 34-56 and “Specify Properties of Entry-Point Function Inputs” (MATLAB Coder).

Xpred = single(X);
codegen classifyIrisSingle -args Xpred

Code generation successful.

codegen generates the MEX function classifyIrisSingle_mex with a platform-dependent
extension.

Verify Generated Code

Compare the labels classified using predict, classifyIrisSingle, and
classifyIrisSingle_mex.

label1 = predict(Mdl,X);
label2 = classifyIrisSingle(X);
label3 = classifyIrisSingle_mex(Xpred);
verify_label = isequal(label1,label2,label3)

verify_label = logical
   1

isequal returns logical 1 (true), which means all the inputs are equal. The labels classified all three
ways are the same. If the generated MEX function classifyIrisSingle_mex and the function
predict do not produce the same classification results, you can compute the percentage of
incorrectly classified labels.

sum(strcmp(label3,label1)==0)/numel(label1)*100

ans = 0

Generate Fixed-Point C/C++ Code for Prediction

After training a machine learning model, save the model using saveLearnerForCoder. For fixed-
point code generation, specify the fixed-point data types of the variables required for prediction by
using the data type function generated by generateLearnerDataTypeFcn. Then, define an entry-
point function that loads the model by using both loadLearnerForCoder and the specified fixed-
point data types, and calls the predict function of the model. Use codegen (MATLAB Coder) to
generate fixed-point C/C++ code for the entry-point function, and then verify the generated code.

Before generating code using codegen, you can use buildInstrumentedMex (Fixed-Point
Designer) and showInstrumentationResults (Fixed-Point Designer) to optimize the fixed-point
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data types to improve the performance of the fixed-point code. Record minimum and maximum values
of named and internal variables for prediction by using buildInstrumentedMex. View the
instrumentation results using showInstrumentationResults; then, based on the results, tune the
fixed-point data type properties of the variables. For details regarding this optional step, see “Fixed-
Point Code Generation for Prediction of SVM” on page 34-99.

Train Model

Load the ionosphere data set and train a binary SVM classification model.

load ionosphere
Mdl = fitcsvm(X,Y,'KernelFunction','gaussian');

Mdl is a ClassificationSVM model.

Save Model

Save the SVM classification model to the file myMdl.mat by using saveLearnerForCoder.

saveLearnerForCoder(Mdl,'myMdl');

Define Fixed-Point Data Types

Use generateLearnerDataTypeFcn to generate a function that defines the fixed-point data types
of the variables required for prediction of the SVM model.

generateLearnerDataTypeFcn('myMdl',X)

generateLearnerDataTypeFcn generates the myMdl_datatype function.

Create a structure T that defines the fixed-point data types by using myMdl_datatype.

T = myMdl_datatype('Fixed')

T = struct with fields:
               XDataType: [0x0 embedded.fi]
           ScoreDataType: [0x0 embedded.fi]
    InnerProductDataType: [0x0 embedded.fi]

The structure T includes the fields for the named and internal variables required to run the predict
function. Each field contains a fixed-point object, returned by fi (Fixed-Point Designer). The fixed-
point object specifies fixed-point data type properties, such as word length and fraction length. For
example, display the fixed-point data type properties of the predictor data.

T.XDataType

ans = 

[]

          DataTypeMode: Fixed-point: binary point scaling
            Signedness: Signed
            WordLength: 16
        FractionLength: 14

        RoundingMethod: Floor
        OverflowAction: Wrap
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           ProductMode: FullPrecision
  MaxProductWordLength: 128
               SumMode: FullPrecision
      MaxSumWordLength: 128

Define Entry-Point Function

Define an entry-point function named myFixedPointPredict that does the following:

• Accept the predictor data X and the fixed-point data type structure T.
• Load a fixed-point version of a trained SVM classification model by using both

loadLearnerForCoder and the structure T.
• Predict labels and scores using the loaded model.

type myFixedPointPredict.m % Display contents of myFixedPointPredict.m file

function [label,score] = myFixedPointPredict(X,T) %#codegen
Mdl = loadLearnerForCoder('myMdl','DataType',T);
[label,score] = predict(Mdl,X);
end

Note: If you click the button located in the upper-right section of this example and open the example
in MATLAB®, then MATLAB opens the example folder. This folder includes the entry-point function
file.

Generate Code

The XDataType field of the structure T specifies the fixed-point data type of the predictor data.
Convert X to the type specified in T.XDataType by using the cast (Fixed-Point Designer) function.

X_fx = cast(X,'like',T.XDataType);

Generate code for the entry-point function using codegen. Specify X_fx and constant folded T as
input arguments of the entry-point function.

codegen myFixedPointPredict -args {X_fx,coder.Constant(T)}

Code generation successful.

codegen generates the MEX function myFixedPointPredict_mex with a platform-dependent
extension.

Verify Generated Code

Pass predictor data to predict and myFixedPointPredict_mex to compare the outputs.

[labels,scores] = predict(Mdl,X);
[labels_fx,scores_fx] = myFixedPointPredict_mex(X_fx,T);

Compare the outputs from predict and myFixedPointPredict_mex.

verify_labels = isequal(labels,labels_fx)

verify_labels = logical
   1
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isequal returns logical 1 (true), which means labels and labels_fx are equal. If the labels are
not equal, you can compute the percentage of incorrectly classified labels as follows.

sum(strcmp(labels_fx,labels)==0)/numel(labels_fx)*100

ans = 0

Find the maximum of the relative differences between the score outputs.

relDiff_scores = max(abs((scores_fx.double(:,1)-scores(:,1))./scores(:,1)))

relDiff_scores = 0.0055

If you are not satisfied with the comparison results and want to improve the precision of the
generated code, you can tune the fixed-point data types and regenerate the code. For details, see
“Tips” on page 35-3042 in generateLearnerDataTypeFcn, “Data Type Function” on page 35-3041,
and “Fixed-Point Code Generation for Prediction of SVM” on page 34-99.

Input Arguments
filename — Name of MAT-file that contains structure array representing a model object
character vector | string scalar

Name of the MAT-file that contains the structure array representing a model object, specified as a
character vector or string scalar. You must create the filename file using saveLearnerForCoder.
loadLearnerForCoder reconstructs the model stored in the filename file at compile time.

The extension of the filename file must be .mat. If filename has no extension, then
loadLearnerForCoder appends .mat.

If filename does not include a full path, then loadLearnerForCoder loads the file from the
current folder.

The following tables show the models you can save using saveLearnerForCoder and whether each
model supports fixed-point and single-precision code generation.
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• Classification Model Object

Model Full/Compact Model
Objects

Fixed-Point Code
Generation Support

Single-Precision
Code Generation
Support

Discriminant analysis
classification

ClassificationDis
criminant,
CompactClassifica
tionDiscriminant

No Yes

Multiclass model for
support vector
machines (SVMs) or
other classifiers

ClassificationECO
C,
CompactClassifica
tionECOC

No Yes

Ensemble classifier ClassificationEns
emble,
CompactClassifica
tionEnsemble,
ClassificationBag
gedEnsemble

Yes (only for
ensembles of decision
trees)

Yes

k-nearest neighbor
classification

ClassificationKNN No Yes

Linear model for
binary classification of
high-dimensional data

ClassificationLin
ear

No Yes

Naive Bayes classifier ClassificationNai
veBayes,
CompactClassifica
tionNaiveBayes

No Yes

Neural network
classifier

ClassificationNeu
ralNetwork,
CompactClassifica
tionNeuralNetwork

No Yes

SVM for one-class and
binary classification

ClassificationSVM
,
CompactClassifica
tionSVM

Yes Yes

Binary decision tree
for classification

ClassificationTre
e,
CompactClassifica
tionTree

Yes Yes

Binary classification
linear model for
incremental learning

incrementalClassi
ficationLinear

No Yes
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• Regression Model Object

Model Full/Compact Model
Object

Fixed-Point Code
Generation Support

Single-Precision
Code Generation
Support

Generalized linear
model

GeneralizedLinear
Model,
CompactGeneralize
dLinearModel

No No

Linear regression
model for incremental
learning

incrementalRegres
sionLinear

No Yes

Linear regression
model

LinearModel,
CompactLinearMode
l

No Yes

Ensemble regression RegressionEnsembl
e,
CompactRegression
Ensemble,
RegressionBaggedE
nsemble

Yes Yes

Gaussian process
regression

RegressionGP,
CompactRegression
GP

No Yes (see “Tips” on
page 35-4268)

Linear regression for
high-dimensional data

RegressionLinear No No

Neural network
regression

RegressionNeuralN
etwork,
CompactRegression
NeuralNetwork

No Yes

Regression tree RegressionTree,
CompactRegression
Tree

Yes Yes

SVM regression RegressionSVM,
CompactRegression
SVM

Yes Yes

• Nearest Neighbor Searcher Object

Model Model Object Fixed-Point Code
Generation Support

Single-Precision
Code Generation
Support

Exhaustive nearest
neighbor searcher

ExhaustiveSearche
r

No No

Nearest neighbor
searcher using Kd-tree

KDTreeSearcher No No
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• Anomaly Detection Object

Model Model Object Fixed-Point Code
Generation Support

Single-Precision
Code Generation
Support

Isolation Forest IsolationForest No Yes

Example: 'Mdl'
Data Types: char | string

T — Fixed-point data types
structure

Fixed-point data types, specified as a structure. This argument is for fixed-point C/C++ code
generation.

Create T using a function generated by generateLearnerDataTypeFcn. For details about the
generated function and the structure T, see generateLearnerDataTypeFcn and “Data Type
Function” on page 35-3041.

You can use this argument when the model in the filename file is an SVM model, a decision tree
model, and an ensemble of decision trees.
Data Types: struct

Output Arguments
Mdl — Machine learning model
model object

Machine learning model, returned as one of these model objects:

• Classification model object

• ClassificationKNN
• ClassificationLinear
• CompactClassificationDiscriminant
• CompactClassificationECOC
• CompactClassificationEnsemble
• CompactClassificationNaiveBayes
• CompactClassificationNeuralNetwork
• CompactClassificationSVM
• CompactClassificationTree
• incrementalClassificationLinear

• Regression model object

• CompactGeneralizedLinearModel
• CompactLinearModel
• CompactRegressionEnsemble
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• CompactRegressionGP
• CompactRegressionNeuralNetwork
• CompactRegressionSVM
• CompactRegressionTree
• incrementalRegressionLinear
• RegressionLinear

• Nearest neighbor searcher object

• ExhaustiveSearcher
• KDTreeSearcher

• Anomaly detection object

• IsolationForest

Limitations
• When Mdl is CompactLinearModel — Suppose you train a linear model by using fitlm and

specifying 'RobustOpts' as a structure with an anonymous function handle for the
RobustWgtFun field, use saveLearnerForCoder to save the model, and then use
loadLearnerForCoder to load the model. In this case, loadLearnerForCoder cannot restore
the Robust property into the MATLAB Workspace. However, loadLearnerForCoder can load the
model at compile time within an entry-point function for code generation.

• When Mdl is CompactClassificationSVM or CompactClassificationECOC — If you use
saveLearnerForCoder to save a model that is equipped to predict posterior probabilities, and
use loadLearnerForCoder to load the model, then loadLearnerForCoder cannot restore the
ScoreTransform property into the MATLAB Workspace. However, loadLearnerForCoder can
load the model, including the ScoreTransform property, within an entry-point function at
compile time for code generation.

Tips
• For single-precision code generation for a Gaussian process regression (GPR) model or a support

vector machine (SVM) model, use standardized data by specifying 'Standardize',true when
you train the model.

Algorithms
saveLearnerForCoder prepares a machine learning model (Mdl) for code generation. The function
removes some unnecessary properties.

• For a model that has a corresponding compact model, the saveLearnerForCoder function
applies the appropriate compact function to the model before saving it.

• For a model that does not have a corresponding compact model, such as ClassificationKNN,
ClassificationLinear, RegressionLinear, ExhaustiveSearcher, KDTreeSearcher, and
IsolationForest, the saveLearnerForCoder function removes properties such as
hyperparameter optimization properties, training solver information, and others.

loadLearnerForCoder loads the model saved by saveLearnerForCoder.
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Alternative Functionality
• Use a coder configurer created by learnerCoderConfigurer for the models listed in this table.

Model Coder Configurer Object
Binary decision tree for multiclass
classification

ClassificationTreeCoderConfigurer

SVM for one-class and binary classification ClassificationSVMCoderConfigurer
Linear model for binary classification ClassificationLinearCoderConfigurer
Multiclass model for SVMs and linear models ClassificationECOCCoderConfigurer
Binary decision tree for regression RegressionTreeCoderConfigurer
Support vector machine (SVM) regression RegressionSVMCoderConfigurer
Linear regression RegressionLinearCoderConfigurer

After training a machine learning model, create a coder configurer of the model. Use the object
functions and properties of the configurer to configure code generation options and to generate
code for the predict and update functions of the model. If you generate code using a coder
configurer, you can update model parameters in the generated code without having to regenerate
the code. For details, see “Code Generation for Prediction and Update Using Coder Configurer” on
page 34-92.

Version History
Introduced in R2019b

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• For fixed-point C/C++ code generation, the input argument T must be a compile-time constant.
For an example, see “Generate Fixed-Point C/C++ Code for Prediction” on page 35-4261.

For more information, see “Introduction to Code Generation” on page 34-2.

See Also
saveLearnerForCoder | codegen | generateLearnerDataTypeFcn

Topics
“Introduction to Code Generation” on page 34-2
“Code Generation for Prediction of Machine Learning Model at Command Line” on page 34-9
“Code Generation for Prediction of Machine Learning Model Using MATLAB Coder App” on page 34-
23
“Code Generation for Nearest Neighbor Searcher” on page 34-20
“Code Generation for Anomaly Detection” on page 34-179
“Fixed-Point Code Generation for Prediction of SVM” on page 34-99
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“Specify Variable-Size Arguments for Code Generation” on page 34-56
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LocalOutlierFactor
Local outlier factor model for anomaly detection

Description
Use a local outlier factor on page 35-4279 model object LocalOutlierFactor for anomaly
detection.

• Outlier detection (detecting anomalies in training data) — Detect anomalies in training data by
using the lof function. The lof function creates a LocalOutlierFactor object and returns
anomaly indicators and scores (local outlier factor values) for the training data.

• Novelty detection (detecting anomalies in new data with uncontaminated training data) — Create
a LocalOutlierFactor object by passing uncontaminated training data (data with no outliers)
to lof, and detect anomalies in new data by passing the object and the new data to the object
function isanomaly. The isanomaly function returns anomaly indicators and scores for the new
data.

Creation
Create a LocalOutlierFactor object by using the lof function.

Properties
X — Predictors
numeric matrix | table

This property is read-only.

Predictors used to train the local outlier factor model, specified as a numeric matrix or a table. Each
row of X corresponds to one observation, and each column corresponds to one variable.

BucketSize — Maximum number of data points in each leaf node
positive integer | []

This property is read-only.

Maximum number of data points in each leaf node of the Kd-tree, specified as a positive integer.

This property is valid when SearchMethod is 'kdtree'. If SearchMethod is 'exhaustive', the
BucketSize value is empty ([]).

CategoricalPredictors — Categorical predictor indices
vector of positive integers | []

This property is read-only.

Categorical predictor indices, specified as a vector of positive integers. CategoricalPredictors
contains index values indicating that the corresponding predictors are categorical. The index values
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are between 1 and p, where p is the number of predictors used to train the model. If none of the
predictors are categorical, then this property is empty ([]).

ContaminationFraction — Fraction of anomalies in training data
numeric scalar in the range [0,1]

This property is read-only.

Fraction of anomalies in the training data, specified as a numeric scalar in the range [0,1].

• If the ContaminationFraction value is 0, then lof treats all training observations as normal
observations, and sets the score threshold (ScoreThreshold property value) to the maximum
anomaly score value of the training data.

• If the ContaminationFraction value is in the range (0,1], then lof determines the threshold
value (ScoreThreshold property value) so that the function detects the specified fraction of
training observations as anomalies.

Distance — Distance metric
character vector

This property is read-only.

Distance metric, specified as a character vector.

• If all the predictor variables are continuous (numeric) variables, then the Distance value can be
one of these distance metrics.

Value Description
'euclidean' Euclidean distance
'mahalanobis' Mahalanobis distance — The distance uses the covariance matrix

stored in the DistParameter property.
'minkowski' Minkowski distance — The distance uses the exponent value stored in

the DistParameter property.
'chebychev' Chebychev distance (maximum coordinate difference)
'cityblock' City block distance
'correlation' One minus the sample correlation between observations (treated as

sequences of values)
'cosine' One minus the cosine of the included angle between observations

(treated as vectors)
'spearman' One minus the sample Spearman's rank correlation between

observations (treated as sequences of values)
• If all the predictor variables are categorical variables, then the Distance value can be one of

these distance metrics.

Value Description
'hamming' Hamming distance, which is the percentage of coordinates that differ
'jaccard' One minus the Jaccard coefficient, which is the percentage of nonzero

coordinates that differ

For more information on the various distance metrics, see “Distance Metrics” on page 35-4280.
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DistParameter — Distance metric parameter value
positive scalar | []

This property is read-only.

Distance metric parameter value for the Mahalanobis or Minkowski distance, specified as a positive
scalar. The DistParameter value is empty ([]) for the other distances, indicating that the specified
distance metric formula has no parameters.

• If Distance is 'mahalanobis', then DistParameter is the covariance matrix in the
Mahalanobis distance formula. The Cov name-value argument of lof sets this property.

• If Distance is 'minkowski', then DistParameter is the exponent in the Minkowski distance
formula. The Exponent name-value argument of lof sets this property.

IncludeTies — Tie inclusion flag
false or 0 | true or 1

This property is read-only.

Tie inclusion flag indicating whether LocalOutlierFactor includes all the neighbors whose
distance values are equal to the kth smallest distance, specified as logical 0 (false) or 1 (true). If
IncludeTies is true, LocalOutlierFactor includes all of these neighbors. Otherwise,
LocalOutlierFactor includes exactly k neighbors.

NumNeighbors — Number of nearest neighbors
positive integer value

This property is read-only.

Number of nearest neighbors in X used to compute local outlier factor values, specified as a positive
integer value.

PredictorNames — Predictor variable names
cell array of character vectors

This property is read-only.

Predictor variable names, specified as a cell array of character vectors. The order of the elements of
PredictorNames corresponds to the order in which the predictor names appear in the training data.

ScoreThreshold — Threshold for anomaly score
nonnegative scalar

This property is read-only.

Threshold for the anomaly score used to identify anomalies in the training data, specified as a
nonnegative scalar.

The software identifies observations with anomaly scores above the threshold as anomalies.

• The lof function determines the threshold value to detect the specified fraction
(ContaminationFraction property) of training observations as anomalies.

• The isanomaly object function uses the ScoreThreshold property value as the default value of
the ScoreThreshold name-value argument.
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SearchMethod — Nearest neighbor search method
'kdtree' | 'exhaustive'

This property is read-only.

Nearest neighbor search method, specified as 'kdtree' or 'exhaustive'.

• 'kdtree' — This method uses a Kd-tree algorithm to find nearest neighbors. This option is valid
when the distance metric (Distance) is one of the following:

• 'euclidean' — Euclidean distance
• 'cityblock' — City block distance
• 'minkowski' — Minkowski distance
• 'chebychev' — Chebychev distance

• 'exhaustive' — This method uses the exhaustive search algorithm to find nearest neighbors.

• When you compute local outlier factor values for X using the lof function, the function finds
nearest neighbors by computing the distance values from all points in X to each point in X.

• When you compute local outlier factor values for new data Xnew using the isanomaly
function, the function finds nearest neighbors by computing the distance values from all points
in X to each point in Xnew.

Object Functions
isanomaly Find anomalies in data using local outlier factor

Examples

Detect Outliers

Detect outliers (anomalies in training data) by using the lof function.

Load the sample data set NYCHousing2015.

load NYCHousing2015

The data set includes 10 variables with information on the sales of properties in New York City in
2015. Display a summary of the data set.

summary(NYCHousing2015)

Variables:

    BOROUGH: 91446x1 double

        Values:

            Min          1    
            Median       3    
            Max          5    

    NEIGHBORHOOD: 91446x1 cell array of character vectors
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    BUILDINGCLASSCATEGORY: 91446x1 cell array of character vectors

    RESIDENTIALUNITS: 91446x1 double

        Values:

            Min            0  
            Median         1  
            Max         8759  

    COMMERCIALUNITS: 91446x1 double

        Values:

            Min           0   
            Median        0   
            Max         612   

    LANDSQUAREFEET: 91446x1 double

        Values:

            Min                0
            Median          1700
            Max       2.9306e+07

    GROSSSQUAREFEET: 91446x1 double

        Values:

            Min                0
            Median          1056
            Max       8.9422e+06

    YEARBUILT: 91446x1 double

        Values:

            Min            0  
            Median      1939  
            Max         2016  

    SALEPRICE: 91446x1 double

        Values:

            Min                0
            Median    3.3333e+05
            Max       4.1111e+09

    SALEDATE: 91446x1 datetime

        Values:

            Min       01-Jan-2015
            Median    09-Jul-2015
            Max       31-Dec-2015
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Remove nonnumeric variables from NYCHousing2015. The data type of the BOROUGH variable is
double, but it is a categorical variable indicating the borough in which the property is located.
Remove the BOROUGH variable as well.

NYCHousing2015 = NYCHousing2015(:,vartype("numeric"));
NYCHousing2015.BOROUGH = [];

Train a local outlier factor model for NYCHousing2015. Specify the fraction of anomalies in the
training observations as 0.01.

[Mdl,tf,scores] = lof(NYCHousing2015,ContaminationFraction=0.01);

Mdl is a LocalOutlierFactor object. lof also returns the anomaly indicators (tf) and anomaly
scores (scores) for the training data NYCHousing2015.

Plot a histogram of the score values. Create a vertical line at the score threshold corresponding to the
specified fraction.

h = histogram(scores,NumBins=50);
h.Parent.YScale = 'log';
xline(Mdl.ScoreThreshold,"r-",["Threshold" Mdl.ScoreThreshold]) 

If you want to identify anomalies with a different contamination fraction (for example, 0.05), you can
train a new local outlier factor model.

 [newMdl,newtf,scores] = lof(NYCHousing2015,ContaminationFraction=0.05);
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Note that changing the contamination fraction changes the anomaly indicators only, and does not
affect the anomaly scores. Therefore, if you do not want to compute the anomaly scores again by
using lof, you can obtain a new anomaly indicator with the existing score values.

Change the fraction of anomalies in the training data to 0.05.

newContaminationFraction = 0.05;

Find a new score threshold by using the quantile function.

newScoreThreshold = quantile(scores,1-newContaminationFraction)

newScoreThreshold = 6.7493

Obtain a new anomaly indicator.

newtf = scores > newScoreThreshold;

Detect Novelties

Create a LocalOutlierFactor object for uncontaminated training observations by using the lof
function. Then detect novelties (anomalies in new data) by passing the object and the new data to the
object function isanomaly.

Load the 1994 census data stored in census1994.mat. The data set consists of demographic data
from the US Census Bureau to predict whether an individual makes over $50,000 per year.

load census1994

census1994 contains the training data set adultdata and the test data set adulttest. The
predictor data must be either all continuous or all categorical to train a LocalOutlierFactor
object. Remove nonnumeric variables from adultdata and adulttest.

adultdata = adultdata(:,vartype("numeric"));
adulttest = adulttest(:,vartype("numeric"));

Train a local outlier factor model for adultdata. Assume that adultdata does not contain outliers.

[Mdl,tf,s] = lof(adultdata);

Mdl is a LocalOutlierFactor object. lof also returns the anomaly indicators tf and anomaly
scores s for the training data adultdata. If you do not specify the ContaminationFraction name-
value argument as a value greater than 0, then lof treats all training observations as normal
observations, meaning all the values in tf are logical 0 (false). The function sets the score
threshold to the maximum score value. Display the threshold value.

Mdl.ScoreThreshold

ans = 28.6719

Find anomalies in adulttest by using the trained local outlier factor model.

[tf_test,s_test] = isanomaly(Mdl,adulttest);
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The isanomaly function returns the anomaly indicators tf_test and scores s_test for
adulttest. By default, isanomaly identifies observations with scores above the threshold
(Mdl.ScoreThreshold) as anomalies.

Create histograms for the anomaly scores s and s_test. Create a vertical line at the threshold of the
anomaly scores.

h1 = histogram(s,NumBins=50,Normalization="probability");
hold on
h2 = histogram(s_test,h1.BinEdges,Normalization="probability");
xline(Mdl.ScoreThreshold,"r-",join(["Threshold" Mdl.ScoreThreshold]))
h1.Parent.YScale = 'log';
h2.Parent.YScale = 'log';
legend("Training Data","Test Data",Location="north")
hold off

Display the observation index of the anomalies in the test data.

find(tf_test)

ans =

  0x1 empty double column vector

The anomaly score distribution of the test data is similar to that of the training data, so isanomaly
does not detect any anomalies in the test data with the default threshold value. You can specify a
different threshold value by using the ScoreThreshold name-value argument. For an example, see
“Specify Anomaly Score Threshold” on page 35-3694.
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More About
Local Outlier Factor

The local outlier factor (LOF) algorithm detects anomalies based on the relative density of an
observation with respect to the surrounding neighborhood.

The algorithm finds the k-nearest neighbors of an observation and computes the local reachability
densities for the observation and its neighbors. The local outlier factor is the average density ratio of
the observation to its neighbor. That is, the local outlier factor of observation p is

LOFk(p) = 1
Nk(p) ∑

o ∈ Nk(p)

lrdk(o)
lrdk(p) ,

where

• lrdk(·) is the local reachability density of an observation.
• Nk(p) represents the k-nearest neighbors of observation p. You can specify the IncludeTies

name-value argument as true to include all the neighbors whose distance values are equal to the
kth smallest distance, or specify false to include exactly k neighbors. The default IncludeTies
value of lof is false for more efficient performance. Note that the algorithm in [1] uses all the
neighbors.

• |Nk(p)| is the number of observations in Nk(p).

For normal observations, the local outlier factor values are less than or close to 1, indicating that the
local reachability density of an observation is higher than or similar to its neighbors. A local outlier
factor value greater than 1 can indicate an anomaly. The ContaminationFraction argument of lof
and the ScoreThreshold argument of isanomaly control the threshold for the local outlier factor
values.

The algorithm measures the density based on the reachability distance. The reachability distance of
observation p with respect to observation o is defined as

dk(p, o) = max(dk(o), d(p, o)),

where

• dk(o) is the kth smallest distance among the distances from observation o to its neighbors.
• d(p,o) is the distance between observation p and observation o.

The algorithm uses the reachability distance to reduce the statistical fluctuations of d(p,o) for the
observations close to observation o.

The local reachability density of observation p is the reciprocal of the average reachability distance
from observation p to its neighbors.

lrdk(p) = 1/
∑

o ∈ Nk(p)
dk(p, o)

Nk(p) .

The density value can be infinity if the number of duplicates is greater than the number of neighbors
(k). Therefore, if the training data contains duplicates, the lof and isanomaly functions use the
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weighted local outlier factor (WLOF) algorithm. This algorithm computes the weighted local outlier
factors using the weighted local reachability density (wlrd).

WLOFk(p) = 1
∑

o ∈ Nk(p)
w(o) ∑

o ∈ Nk(p)

wlrdk(o)
wlrdk(p) ,

where

wlrdk(p) = 1/
∑

o ∈ Nk(p)
w(o)dk(p, o)

∑
o ∈ Nk(p)

w(o)
,

and w(o) is the number of duplicates for observation o in the training data. After computing the
weight values, the algorithm treats each set of duplicates as one observation.

Distance Metrics

A distance metric is a function that defines a distance between two observations.
LocalOutlierFactor supports various distance metrics for continuous variables and categorical
variables.

Given an mx-by-n data matrix X, which is treated as mx (1-by-n) row vectors x1, x2, ..., xmx, and an my-
by-n data matrix Y, which is treated as my (1-by-n) row vectors y1, y2, ...,ymy, the various distances
between the vector xs and yt are defined as follows:

• Distance metrics for continuous (numeric) variables

• Euclidean distance

dst
2 = (xs− yt)(xs− yt)′ .

The Euclidean distance is a special case of the Minkowski distance, where p = 2.
• Mahalanobis distance

dst
2 = (xs− yt)C−1(xs− yt)′,

where C is the covariance matrix.
• City block distance

dst = ∑
j = 1

n
xs j− yt j .

The city block distance is a special case of the Minkowski distance, where p = 1.
• Minkowski distance

dst = ∑
j = 1

n
xs j− yt j

pp .

For the special case of p = 1, the Minkowski distance gives the city block distance. For the
special case of p = 2, the Minkowski distance gives the Euclidean distance. For the special
case of p = ∞, the Minkowski distance gives the Chebychev distance.
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• Chebychev distance

dst = max j xs j− yt j .

The Chebychev distance is a special case of the Minkowski distance, where p = ∞.
• Cosine distance

dst = 1−
xsy′t

xsx′s yty′t
.

• Correlation distance

dst = 1−
xs− xs yt− yt ′

xs− xs xs− xs ′ yt − yt yt − yt ′ ,

where

xs = 1
n∑j xs j

and

yt = 1
n∑j yt j .

• Spearman distance

dst = 1−
rs− r s rt − r t ′

rs− r s rs− r s ′ rt − r t rt− r t ′ ,

where

• rsj is the rank of xsj taken over x1j, x2j, ...xmx,j, as computed by tiedrank.
• rtj is the rank of ytj taken over y1j, y2j, ...ymy,j, as computed by tiedrank.
• rs and rt are the coordinate-wise rank vectors of xs and yt, that is, rs = (rs1, rs2, ... rsn) and rt

= (rt1, rt2, ... rtn).
• r s = 1

n∑j rs j = n + 1
2 .

• r t = 1
n∑j rt j = n + 1

2 .

• Distance metrics for categorical variables

• Hamming distance

dst = ( # (xs j ≠ yt j)/n) .

• Jaccard distance

dst =
# xs j ≠ yt j ∩ xs j ≠ 0 ∪ yt j ≠ 0

# xs j ≠ 0 ∪ yt j ≠ 0
.
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Tips
• You can use interpretability features, such as lime, shapley, partialDependence, and

plotPartialDependence, to interpret how predictors contribute to anomaly scores. Define a
custom function that returns anomaly scores, and pass the custom function to the interpretability
functions. For an example, see “Specify Model Using Function Handle” on page 35-5592.

Version History
Introduced in R2022b

References
[1] Breunig, Markus M., et al. “LOF: Identifying Density-Based Local Outliers.” Proceedings of the

2000 ACM SIGMOD International Conference on Management of Data, 2000, pp. 93–104.

See Also
lof | iforest | ocsvm | robustcov

Topics
“Unsupervised Anomaly Detection” on page 17-91
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lof
Create local outlier factor model for anomaly detection

Syntax
LOFObj = lof(Tbl)
LOFObj = lof(X)
LOFObj = lof( ___ ,Name=Value)
[LOFObj,tf] = lof( ___ )
[LOFObj,tf,scores] = lof( ___ )

Description
Use the lof function to create a local outlier factor on page 35-4293 model for outlier detection and
novelty detection.

• Outlier detection (detecting anomalies in training data) — Use the output argument tf of lof to
identify anomalies in training data.

• Novelty detection (detecting anomalies in new data with uncontaminated training data) — Create
a LocalOutlierFactor object by passing uncontaminated training data (data with no outliers)
to lof. Detect anomalies in new data by passing the object and the new data to the object
function isanomaly.

LOFObj = lof(Tbl) returns a LocalOutlierFactor object for predictor data in the table Tbl.

LOFObj = lof(X) uses predictor data in the matrix X.

LOFObj = lof( ___ ,Name=Value) specifies options using one or more name-value arguments in
addition to any of the input argument combinations in the previous syntaxes. For example,
ContaminationFraction=0.1 instructs the function to process 10% of the training data as
anomalies.

[LOFObj,tf] = lof( ___ ) also returns the logical array tf, whose elements are true when an
anomaly is detected in the corresponding row of Tbl or X.

[LOFObj,tf,scores] = lof( ___ ) also returns an anomaly score, which is a local outlier factor
on page 35-4293 value, for each observation in Tbl or X. A score value less than or close to 1
indicates a normal observation, and a value greater than 1 can indicate an anomaly.

Examples

Detect Outliers

Detect outliers (anomalies in training data) by using the lof function.

Load the sample data set NYCHousing2015.

load NYCHousing2015
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The data set includes 10 variables with information on the sales of properties in New York City in
2015. Display a summary of the data set.

summary(NYCHousing2015)

Variables:

    BOROUGH: 91446x1 double

        Values:

            Min          1    
            Median       3    
            Max          5    

    NEIGHBORHOOD: 91446x1 cell array of character vectors

    BUILDINGCLASSCATEGORY: 91446x1 cell array of character vectors

    RESIDENTIALUNITS: 91446x1 double

        Values:

            Min            0  
            Median         1  
            Max         8759  

    COMMERCIALUNITS: 91446x1 double

        Values:

            Min           0   
            Median        0   
            Max         612   

    LANDSQUAREFEET: 91446x1 double

        Values:

            Min                0
            Median          1700
            Max       2.9306e+07

    GROSSSQUAREFEET: 91446x1 double

        Values:

            Min                0
            Median          1056
            Max       8.9422e+06

    YEARBUILT: 91446x1 double

        Values:

            Min            0  
            Median      1939  
            Max         2016  
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    SALEPRICE: 91446x1 double

        Values:

            Min                0
            Median    3.3333e+05
            Max       4.1111e+09

    SALEDATE: 91446x1 datetime

        Values:

            Min       01-Jan-2015
            Median    09-Jul-2015
            Max       31-Dec-2015

Remove nonnumeric variables from NYCHousing2015. The data type of the BOROUGH variable is
double, but it is a categorical variable indicating the borough in which the property is located.
Remove the BOROUGH variable as well.

NYCHousing2015 = NYCHousing2015(:,vartype("numeric"));
NYCHousing2015.BOROUGH = [];

Train a local outlier factor model for NYCHousing2015. Specify the fraction of anomalies in the
training observations as 0.01.

[Mdl,tf,scores] = lof(NYCHousing2015,ContaminationFraction=0.01);

Mdl is a LocalOutlierFactor object. lof also returns the anomaly indicators (tf) and anomaly
scores (scores) for the training data NYCHousing2015.

Plot a histogram of the score values. Create a vertical line at the score threshold corresponding to the
specified fraction.

h = histogram(scores,NumBins=50);
h.Parent.YScale = 'log';
xline(Mdl.ScoreThreshold,"r-",["Threshold" Mdl.ScoreThreshold]) 
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If you want to identify anomalies with a different contamination fraction (for example, 0.05), you can
train a new local outlier factor model.

 [newMdl,newtf,scores] = lof(NYCHousing2015,ContaminationFraction=0.05);

Note that changing the contamination fraction changes the anomaly indicators only, and does not
affect the anomaly scores. Therefore, if you do not want to compute the anomaly scores again by
using lof, you can obtain a new anomaly indicator with the existing score values.

Change the fraction of anomalies in the training data to 0.05.

newContaminationFraction = 0.05;

Find a new score threshold by using the quantile function.

newScoreThreshold = quantile(scores,1-newContaminationFraction)

newScoreThreshold = 6.7493

Obtain a new anomaly indicator.

newtf = scores > newScoreThreshold;
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Detect Novelties

Create a LocalOutlierFactor object for uncontaminated training observations by using the lof
function. Then detect novelties (anomalies in new data) by passing the object and the new data to the
object function isanomaly.

Load the 1994 census data stored in census1994.mat. The data set consists of demographic data
from the US Census Bureau to predict whether an individual makes over $50,000 per year.

load census1994

census1994 contains the training data set adultdata and the test data set adulttest. The
predictor data must be either all continuous or all categorical to train a LocalOutlierFactor
object. Remove nonnumeric variables from adultdata and adulttest.

adultdata = adultdata(:,vartype("numeric"));
adulttest = adulttest(:,vartype("numeric"));

Train a local outlier factor model for adultdata. Assume that adultdata does not contain outliers.

[Mdl,tf,s] = lof(adultdata);

Mdl is a LocalOutlierFactor object. lof also returns the anomaly indicators tf and anomaly
scores s for the training data adultdata. If you do not specify the ContaminationFraction name-
value argument as a value greater than 0, then lof treats all training observations as normal
observations, meaning all the values in tf are logical 0 (false). The function sets the score
threshold to the maximum score value. Display the threshold value.

Mdl.ScoreThreshold

ans = 28.6719

Find anomalies in adulttest by using the trained local outlier factor model.

[tf_test,s_test] = isanomaly(Mdl,adulttest);

The isanomaly function returns the anomaly indicators tf_test and scores s_test for
adulttest. By default, isanomaly identifies observations with scores above the threshold
(Mdl.ScoreThreshold) as anomalies.

Create histograms for the anomaly scores s and s_test. Create a vertical line at the threshold of the
anomaly scores.

h1 = histogram(s,NumBins=50,Normalization="probability");
hold on
h2 = histogram(s_test,h1.BinEdges,Normalization="probability");
xline(Mdl.ScoreThreshold,"r-",join(["Threshold" Mdl.ScoreThreshold]))
h1.Parent.YScale = 'log';
h2.Parent.YScale = 'log';
legend("Training Data","Test Data",Location="north")
hold off
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Display the observation index of the anomalies in the test data.

find(tf_test)

ans =

  0x1 empty double column vector

The anomaly score distribution of the test data is similar to that of the training data, so isanomaly
does not detect any anomalies in the test data with the default threshold value. You can specify a
different threshold value by using the ScoreThreshold name-value argument. For an example, see
“Specify Anomaly Score Threshold” on page 35-3694.

Input Arguments
Tbl — Predictor data
table

Predictor data, specified as a table. Each row of Tbl corresponds to one observation, and each
column corresponds to one predictor variable. Multicolumn variables and cell arrays other than cell
arrays of character vectors are not allowed.

The predictor data must be either all continuous or all categorical. If you specify Tbl, the lof
function assumes that a variable is categorical if it is a logical vector, unordered categorical vector,
character array, string array, or cell array of character vectors. If Tbl includes both continuous and
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categorical values, and you want to identify all predictors in Tbl as categorical, you must specify
CategoricalPredictors as "all".

To use a subset of the variables in Tbl, specify the variables by using the PredictorNames name-
value argument.
Data Types: table

X — Predictor data
numeric matrix

Predictor data, specified as a numeric matrix. Each row of X corresponds to one observation, and
each column corresponds to one predictor variable.

The predictor data must be either all continuous or all categorical. If you specify X, the lof function
assumes that all predictors are continuous. To identify all predictors in X as categorical, specify
CategoricalPredictors as "all".

You can use the PredictorNames name-value argument to assign names to the predictor variables
in X.
Data Types: single | double

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.
Example: SearchMethod=exhaustive,Distance=minkowski uses the exhaustive search
algorithm with the Minkowski distance.

BucketSize — Maximum data points in node
50 (default) | positive integer value

Maximum number of data points in the leaf node of the Kd-tree, specified as a positive integer value.
This argument is valid only when SearchMethod is "kdtree".
Example: BucketSize=40
Data Types: single | double

CategoricalPredictors — Categorical predictor flag
[] | "all"

Categorical predictor flag, specified as one of the following:

• "all" — All predictors are categorical. By default, lof uses the Hamming distance ("hamming")
for the Distance name-value argument.

• [] — No predictors are categorical, that is, all predictors are continuous (numeric). In this case,
the default Distance value is "euclidean".

The predictor data for lof must be either all continuous or all categorical.

• If the predictor data is in a table (Tbl), lof assumes that a variable is categorical if it is a logical
vector, unordered categorical vector, character array, string array, or cell array of character
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vectors. If Tbl includes both continuous and categorical values, and you want to identify all
predictors in Tbl as categorical, you must specify CategoricalPredictors as "all".

• If the predictor data is a matrix (X), lof assumes that all predictors are continuous. To identify all
predictors in X as categorical, specify CategoricalPredictors as "all".

lof encodes categorical variables as numeric variables by assigning a positive integer value to each
category. When you use categorical predictors, ensure that you use an appropriate distance metric
(Distance).
Example: CategoricalPredictors="all"

ContaminationFraction — Fraction of anomalies in training data
0 (default) | numeric scalar in the range [0,1]

Fraction of anomalies in the training data, specified as a numeric scalar in the range [0,1].

• If the ContaminationFraction value is 0 (default), then lof treats all training observations as
normal observations, and sets the score threshold (ScoreThreshold property value of LOFObj)
to the maximum value of scores.

• If the ContaminationFraction value is in the range (0,1], then lof determines the threshold
value so that the function detects the specified fraction of training observations as anomalies.

Example: ContaminationFraction=0.1
Data Types: single | double

Cov — Covariance matrix
positive definite matrix of scalar values

Covariance matrix, specified as a positive definite matrix of scalar values representing the covariance
matrix when the function computes the Mahalanobis distance. This argument is valid only when
Distance is "mahalanobis".

The default value is the covariance matrix computed from the predictor data (Tbl or X) after the
function excludes rows with duplicated values and missing values.
Data Types: single | double

Distance — Distance metric
character vector | string scalar

Distance metric, specified as a character vector or string scalar.

• If all the predictor variables are continuous (numeric) variables, then you can specify one of these
distance metrics.

Value Description
"euclidean" Euclidean distance
"mahalanobis" Mahalanobis distance — You can specify the covariance matrix for the

Mahalanobis distance by using the Cov name-value argument.
"minkowski" Minkowski distance — You can specify the exponent of the Minkowski

distance by using the Exponent name-value argument.
"chebychev" Chebychev distance (maximum coordinate difference)
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Value Description
"cityblock" City block distance
"correlation" One minus the sample correlation between observations (treated as

sequences of values)
"cosine" One minus the cosine of the included angle between observations

(treated as vectors)
"spearman" One minus the sample Spearman's rank correlation between

observations (treated as sequences of values)

Note If you specify one of these distance metrics for categorical predictors, then the software
treats each categorical predictor as a numeric variable for the distance computation, with each
category represented by a positive integer. The Distance value does not affect the
CategoricalPredictors property of the trained model.

• If all the predictor variables are categorical variables, then you can specify one of these distance
metrics.

Value Description
"hamming" Hamming distance, which is the percentage of coordinates that differ
"jaccard" One minus the Jaccard coefficient, which is the percentage of nonzero

coordinates that differ

Note If you specify one of these distance metrics for continuous (numeric) predictors, then the
software treats each continuous predictor as a categorical variable for the distance computation.
This option does not change the CategoricalPredictors value.

The default value is "euclidean" if all the predictor variables are continuous, and "hamming" if all
the predictor variables are categorical.

If you want to use the Kd-tree algorithm (SearchMethod="kdtree"), then Distance must be
"euclidean", "cityblock", "minkowski", or "chebychev".

For more information on the various distance metrics, see “Distance Metrics” on page 35-4295.
Example: Distance="jaccard"
Data Types: char | string

Exponent — Minkowski distance exponent
2 (default) | positive scalar value

Minkowski distance exponent, specified as a positive scalar value. This argument is valid only when
Distance is "minkowski".
Example: Exponent=3
Data Types: single | double

IncludeTies — Tie inclusion flag
false or 0 (default) | true or 1

Tie inclusion flag indicating whether the software includes all the neighbors whose distance values
are equal to the kth smallest distance, specified as logical 0 (false) or 1 (true). If IncludeTies is
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true, the software includes all of these neighbors. Otherwise, the software includes exactly k
neighbors.
Example: IncludeTies=true
Data Types: logical

NumNeighbors — Number of nearest neighbors
min(20,n-1) where n is the number of unique rows in predictor data (default) | positive integer
value

Number of nearest neighbors in the predictor data (Tbl or X) to find for computing the local outlier
factor values, specified as a positive integer value.

The default value is min(20,n-1), where n is the number of unique rows in the predictor data.
Example: NumNeighbors=3
Data Types: single | double

PredictorNames — Predictor variable names
string array of unique names | cell array of unique character vectors

Predictor variable names, specified as a string array of unique names or cell array of unique
character vectors. The functionality of PredictorNames depends on how you supply the predictor
data.

• If you supply Tbl, then you can use PredictorNames to specify which predictor variables to use.
That is, lof uses only the predictor variables in PredictorNames.

• PredictorNames must be a subset of Tbl.Properties.VariableNames.
• By default, PredictorNames contains the names of all predictor variables in Tbl.

• If you supply X, then you can use PredictorNames to assign names to the predictor variables in
X.

• The order of the names in PredictorNames must correspond to the column order of X. That
is, PredictorNames{1} is the name of X(:,1), PredictorNames{2} is the name of
X(:,2), and so on. Also, size(X,2) and numel(PredictorNames) must be equal.

• By default, PredictorNames is {'x1','x2',...}.

Example: PredictorNames=["SepalLength" "SepalWidth" "PetalLength" "PetalWidth"]
Data Types: string | cell

SearchMethod — Nearest neighbor search method
"kdtree" | "exhaustive"

Nearest neighbor search method, specified as "kdtree" or "exhaustive".

• "kdtree" — This method uses the Kd-tree algorithm to find nearest neighbors. This option is
valid when the distance metric (Distance) is one of the following:

• "euclidean" — Euclidean distance
• "cityblock" — City block distance
• "minkowski" — Minkowski distance
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• "chebychev" — Chebychev distance
• "exhaustive" — This method uses the exhaustive search algorithm to find nearest neighbors.

• When you compute local outlier factor values for the predictor data (Tbl or X), the lof
function finds nearest neighbors by computing the distance values from all points in the
predictor data to each point in the predictor data.

• When you compute local outlier factor values for new data Xnew using the isanomaly
function, the function finds nearest neighbors by computing the distance values from all points
in the predictor data (Tbl or X) to each point in Xnew.

The default value is "kdtree" if the predictor data has 10 or fewer columns, the data is not sparse,
and the distance metric (Distance) is valid for the Kd-tree algorithm. Otherwise, the default value is
"exhaustive".

Output Arguments
LOFObj — Trained local outlier factor model
LocalOutlierFactor object

Trained local outlier factor model, returned as a LocalOutlierFactor object.

You can use the object function isanomaly with LOFObj to find anomalies in new data.

tf — Anomaly indicators
logical column vector

Anomaly indicators, returned as a logical column vector. An element of tf is logical 1 (true) when
the observation in the corresponding row of Tbl or X is an anomaly, and logical 0 (false) otherwise.
tf has the same length as Tbl or X.

lof identifies observations with scores above the threshold (ScoreThreshold property value of
LOFObj) as anomalies. The function determines the threshold value to detect the specified fraction
(ContaminationFraction name-value argument) of training observations as anomalies.

scores — Anomaly scores (local outlier factor values)
numeric column vector

Anomaly scores (local outlier factor on page 35-4293 values), returned as a numeric column vector
whose values are nonnegative. scores has the same length as Tbl or X, and each element of scores
contains an anomaly score for the observation in the corresponding row of Tbl or X. A score value
less than or close to 1 indicates a normal observation, and a value greater than 1 can indicate an
anomaly.

More About
Local Outlier Factor

The local outlier factor (LOF) algorithm detects anomalies based on the relative density of an
observation with respect to the surrounding neighborhood.

The algorithm finds the k-nearest neighbors of an observation and computes the local reachability
densities for the observation and its neighbors. The local outlier factor is the average density ratio of
the observation to its neighbor. That is, the local outlier factor of observation p is
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LOFk(p) = 1
Nk(p) ∑

o ∈ Nk(p)

lrdk(o)
lrdk(p) ,

where

• lrdk(·) is the local reachability density of an observation.
• Nk(p) represents the k-nearest neighbors of observation p. You can specify the IncludeTies

name-value argument as true to include all the neighbors whose distance values are equal to the
kth smallest distance, or specify false to include exactly k neighbors. The default IncludeTies
value of lof is false for more efficient performance. Note that the algorithm in [1] uses all the
neighbors.

• |Nk(p)| is the number of observations in Nk(p).

For normal observations, the local outlier factor values are less than or close to 1, indicating that the
local reachability density of an observation is higher than or similar to its neighbors. A local outlier
factor value greater than 1 can indicate an anomaly. The ContaminationFraction argument of lof
and the ScoreThreshold argument of isanomaly control the threshold for the local outlier factor
values.

The algorithm measures the density based on the reachability distance. The reachability distance of
observation p with respect to observation o is defined as

dk(p, o) = max(dk(o), d(p, o)),

where

• dk(o) is the kth smallest distance among the distances from observation o to its neighbors.
• d(p,o) is the distance between observation p and observation o.

The algorithm uses the reachability distance to reduce the statistical fluctuations of d(p,o) for the
observations close to observation o.

The local reachability density of observation p is the reciprocal of the average reachability distance
from observation p to its neighbors.

lrdk(p) = 1/
∑

o ∈ Nk(p)
dk(p, o)

Nk(p) .

The density value can be infinity if the number of duplicates is greater than the number of neighbors
(k). Therefore, if the training data contains duplicates, the lof and isanomaly functions use the
weighted local outlier factor (WLOF) algorithm. This algorithm computes the weighted local outlier
factors using the weighted local reachability density (wlrd).

WLOFk(p) = 1
∑

o ∈ Nk(p)
w(o) ∑

o ∈ Nk(p)

wlrdk(o)
wlrdk(p) ,

where

wlrdk(p) = 1/
∑

o ∈ Nk(p)
w(o)dk(p, o)

∑
o ∈ Nk(p)

w(o)
,
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and w(o) is the number of duplicates for observation o in the training data. After computing the
weight values, the algorithm treats each set of duplicates as one observation.

Distance Metrics

A distance metric is a function that defines a distance between two observations. lof supports
various distance metrics for continuous variables and categorical variables.

Given an mx-by-n data matrix X, which is treated as mx (1-by-n) row vectors x1, x2, ..., xmx, and an my-
by-n data matrix Y, which is treated as my (1-by-n) row vectors y1, y2, ...,ymy, the various distances
between the vector xs and yt are defined as follows:

• Distance metrics for continuous (numeric) variables

• Euclidean distance

dst
2 = (xs− yt)(xs− yt)′ .

The Euclidean distance is a special case of the Minkowski distance, where p = 2.
• Mahalanobis distance

dst
2 = (xs− yt)C−1(xs− yt)′,

where C is the covariance matrix.
• City block distance

dst = ∑
j = 1

n
xs j− yt j .

The city block distance is a special case of the Minkowski distance, where p = 1.
• Minkowski distance

dst = ∑
j = 1

n
xs j− yt j

pp .

For the special case of p = 1, the Minkowski distance gives the city block distance. For the
special case of p = 2, the Minkowski distance gives the Euclidean distance. For the special
case of p = ∞, the Minkowski distance gives the Chebychev distance.

• Chebychev distance

dst = max j xs j− yt j .

The Chebychev distance is a special case of the Minkowski distance, where p = ∞.
• Cosine distance

dst = 1−
xsy′t

xsx′s yty′t
.

• Correlation distance

dst = 1−
xs− xs yt− yt ′

xs− xs xs− xs ′ yt − yt yt − yt ′ ,
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where

xs = 1
n∑j xs j

and

yt = 1
n∑j yt j .

• Spearman distance

dst = 1−
rs− r s rt − r t ′

rs− r s rs− r s ′ rt − r t rt− r t ′ ,

where

• rsj is the rank of xsj taken over x1j, x2j, ...xmx,j, as computed by tiedrank.
• rtj is the rank of ytj taken over y1j, y2j, ...ymy,j, as computed by tiedrank.
• rs and rt are the coordinate-wise rank vectors of xs and yt, that is, rs = (rs1, rs2, ... rsn) and rt

= (rt1, rt2, ... rtn).
• r s = 1

n∑j rs j = n + 1
2 .

• r t = 1
n∑j rt j = n + 1

2 .

• Distance metrics for categorical variables

• Hamming distance

dst = ( # (xs j ≠ yt j)/n) .

• Jaccard distance

dst =
# xs j ≠ yt j ∩ xs j ≠ 0 ∪ yt j ≠ 0

# xs j ≠ 0 ∪ yt j ≠ 0
.

Algorithms
lof considers NaN, '' (empty character vector), "" (empty string), <missing>, and <undefined>
values in Tbl and NaN values in X to be missing values.

• lof does not use observations with missing values.
• lof assigns the anomaly score of NaN and anomaly indicator of false (logical 0) to observations

with missing values.

Version History
Introduced in R2022b
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References
[1] Breunig, Markus M., et al. “LOF: Identifying Density-Based Local Outliers.” Proceedings of the

2000 ACM SIGMOD International Conference on Management of Data, 2000, pp. 93–104.

See Also
LocalOutlierFactor | isanomaly | iforest | ocsvm | robustcov

Topics
“Unsupervised Anomaly Detection” on page 17-91
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logncdf
Lognormal cumulative distribution function

Syntax
p = logncdf(x)
p = logncdf(x,mu)
p = logncdf(x,mu,sigma)

[p,pLo,pUp] = logncdf(x,mu,sigma,pCov)
[p,pLo,pUp] = logncdf(x,mu,sigma,pCov,alpha)

___  = logncdf( ___ ,'upper')

Description
p = logncdf(x) returns the cumulative distribution function (cdf) of the standard lognormal
distribution, evaluated at the values in x. In the standard lognormal distribution, the mean and
standard deviation of logarithmic values are 0 and 1, respectively.

p = logncdf(x,mu) returns the cdf of the lognormal distribution with the distribution parameters
mu (mean of logarithmic values) and 1 (standard deviation of logarithmic values), evaluated at the
values in x.

p = logncdf(x,mu,sigma) returns the cdf of the lognormal distribution with the distribution
parameters mu (mean of logarithmic values) and sigma (standard deviation of logarithmic values),
evaluated at the values in x.

[p,pLo,pUp] = logncdf(x,mu,sigma,pCov) also returns the 95% confidence bounds [pLo,pUp]
of p using the estimated parameters (mu and sigma) and their covariance matrix pCov.

[p,pLo,pUp] = logncdf(x,mu,sigma,pCov,alpha) specifies the confidence level for the
confidence interval [pLo,pUp] to be 100(1–alpha)%.

___  = logncdf( ___ ,'upper') returns the complement of the cdf, evaluated at the values in x,
using an algorithm that more accurately computes the extreme upper-tail probabilities. 'upper' can
follow any of the input argument combinations in the previous syntaxes.

Examples

Compute Lognormal Distribution cdf

Compute the cdf values evaluated at the values in x for the lognormal distribution with mean mu and
standard deviation sigma.

x = 0:0.2:10;
mu = 0;
sigma = 1;
p = logncdf(x,mu,sigma);
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Plot the cdf.

plot(x,p)
grid on
xlabel('x')
ylabel('p')

Confidence Interval of Lognormal cdf Value

Find the maximum likelihood estimates (MLEs) of the lognormal distribution parameters, and then
find the confidence interval of the corresponding cdf value.

Generate 1000 random numbers from the lognormal distribution with the parameters 5 and 2.

rng('default') % For reproducibility
n = 1000; % Number of samples
x = lognrnd(5,2,n,1);

Find the MLEs for the distribution parameters (mean and standard deviation of logarithmic values)
by using mle.

phat = mle(x,'distribution','LogNormal')

phat = 1×2

 logncdf

35-4299



    4.9347    1.9969

muHat = phat(1);
sigmaHat = phat(2);

Estimate the covariance of the distribution parameters by using lognlike. The function lognlike
returns an approximation to the asymptotic covariance matrix if you pass the MLEs and the samples
used to estimate the MLEs.

[~,pCov] = lognlike(phat,x)

pCov = 2×2

    0.0040   -0.0000
   -0.0000    0.0020

Find the cdf value at 0.5 and its 95% confidence interval.

[p,pLo,pUp] = logncdf(0.5,muHat,sigmaHat,pCov)

p = 0.0024

pLo = 0.0016

pUp = 0.0037

p is the cdf value of the lognormal distribution with the parameters muHat and sigmaHat. The
interval [pLo,pUp] is the 95% confidence interval of the cdf evaluated at 0.5, considering the
uncertainty of muHat and sigmaHat using pCov. The 95% confidence interval means the probability
that [pLo,pUp] contains the true cdf value is 0.95.

Complementary cdf (Tail Distribution)

Determine the probability that an observation from a standard lognormal distribution will fall on the
interval [exp(10),Inf].

p1 = 1 - logncdf(exp(10))

p1 = 0

logncdf(exp(10)) is nearly 1, so p1 becomes 0. Specify 'upper' so that logncdf computes the
extreme upper-tail probabilities more accurately.

p2 = logncdf(exp(10),'upper')

p2 = 7.6199e-24

You can also use 'upper' to compute a right-tailed p-value.

Input Arguments
x — Values at which to evaluate cdf
positive scalar value | array of positive scalar values
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Values at which to evaluate the cdf, specified as a positive scalar value or an array of positive scalar
values.

If you specify pCov to compute the confidence interval [pLo,pUp], then x must be a scalar value.

To evaluate the cdf at multiple values, specify x using an array. To evaluate the cdfs of multiple
distributions, specify mu and sigma using arrays. If one or more of the input arguments x, mu, and
sigma are arrays, then the array sizes must be the same. In this case, logncdf expands each scalar
input into a constant array of the same size as the array inputs. Each element in p is the cdf value of
the distribution specified by the corresponding elements in mu and sigma, evaluated at the
corresponding element in x.
Example: [-1,0,3,4]
Data Types: single | double

mu — Mean of logarithmic values
0 (default) | scalar value | array of scalar values

Mean of logarithmic values for the lognormal distribution, specified as a scalar value or an array of
scalar values.

If you specify pCov to compute the confidence interval [pLo,pUp], then mu must be a scalar value.

To evaluate the cdf at multiple values, specify x using an array. To evaluate the cdfs of multiple
distributions, specify mu and sigma using arrays. If one or more of the input arguments x, mu, and
sigma are arrays, then the array sizes must be the same. In this case, logncdf expands each scalar
input into a constant array of the same size as the array inputs. Each element in p is the cdf value of
the distribution specified by the corresponding elements in mu and sigma, evaluated at the
corresponding element in x.
Example: [0 1 2; 0 1 2]
Data Types: single | double

sigma — Standard deviation of logarithmic values
1 (default) | positive scalar value | array of positive scalar values

Standard deviation of logarithmic values for the lognormal distribution, specified as a positive scalar
value or an array of positive scalar values.

If you specify pCov to compute the confidence interval [pLo,pUp], then sigma must be a scalar
value.

To evaluate the cdf at multiple values, specify x using an array. To evaluate the cdfs of multiple
distributions, specify mu and sigma using arrays. If one or more of the input arguments x, mu, and
sigma are arrays, then the array sizes must be the same. In this case, logncdf expands each scalar
input into a constant array of the same size as the array inputs. Each element in p is the cdf value of
the distribution specified by the corresponding elements in mu and sigma, evaluated at the
corresponding element in x.
Example: [1 1 1; 2 2 2]
Data Types: single | double

pCov — Covariance of estimates
2-by-2 numeric matrix
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Covariance of the estimates mu and sigma, specified as a 2-by-2 matrix.

If you specify pCov to compute the confidence interval [pLo,pUp], then x, mu, and sigma must be
scalar values.

You can estimate the maximum likelihood estimates of mu and sigma by using mle, and estimate the
covariance of mu and sigma by using lognlike. For an example, see “Confidence Interval of
Lognormal cdf Value” on page 35-4299.
Data Types: single | double

alpha — Significance level
0.05 (default) | scalar in the range (0,1)

Significance level for the confidence interval, specified as a scalar in the range (0,1). The confidence
level is 100(1–alpha)%, where alpha is the probability that the confidence interval does not
contain the true value.
Example: 0.01
Data Types: single | double

Output Arguments
p — cdf values
scalar value | array of scalar values

cdf values, evaluated at the values in x, returned as a scalar value or an array of scalar values. p is
the same size as x, mu, and sigma after any necessary scalar expansion. Each element in p is the cdf
value of the distribution specified by the corresponding elements in mu and sigma, evaluated at the
corresponding element in x.

pLo — Lower confidence bound for p
scalar value | array of scalar values

Lower confidence bound for p, returned as a scalar value or an array of scalar values. pLo has the
same size as p.

pUp — Upper confidence bound for p
scalar value | array of scalar values

Upper confidence bound for p, returned as a scalar value or an array of scalar values. pUp has the
same size as p.

More About
Lognormal Distribution

The lognormal distribution is a probability distribution whose logarithm has a normal distribution.

The cumulative distribution function (cdf) of the lognormal distribution is

p = F(x μ, σ) = 1
σ 2π∫0

x 1
t exp −(logt − μ)2

2σ2 dt, for x > 0.
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Algorithms
• The logncdf function uses the complementary error function erfc. The relationship between

logncdf and erfc is

logncdf(x, 0, 1) = 1
2erfc − logx

2 .

The complementary error function erfc(x) is defined as

erfc(x) = 1− erf(x) = 2
π∫x

∞
e−t2dt .

• The logncdf function computes confidence bounds for p by using the delta method. The normal
distribution cdf value of log(x) with the parameters mu and sigma is equivalent to the cdf value
of (log(x)–mu)/sigma with the parameters 0 and 1. Therefore, the logncdf function estimates
the variance of (log(x)–mu)/sigma using the covariance matrix of mu and sigma by the delta
method, and finds the confidence bounds of (log(x)–mu)/sigma using the estimates of this
variance. Then, the function transforms the bounds to the scale of p. The computed bounds give
approximately the desired confidence level when you estimate mu, sigma, and pCov from large
samples.

Alternative Functionality
• logncdf is a function specific to lognormal distribution. Statistics and Machine Learning Toolbox

also offers the generic function cdf, which supports various probability distributions. To use cdf,
create a LognormalDistribution probability distribution object and pass the object as an input
argument or specify the probability distribution name and its parameters. Note that the
distribution-specific function logncdf is faster than the generic function cdf.

• Use the Probability Distribution Function app to create an interactive plot of the cumulative
distribution function (cdf) or probability density function (pdf) for a probability distribution.

Version History
Introduced before R2006a

References
[1] Abramowitz, M., and I. A. Stegun. Handbook of Mathematical Functions. New York: Dover, 1964.

[2] Evans, M., N. Hastings, and B. Peacock. Statistical Distributions. 2nd ed., Hoboken, NJ: John Wiley
& Sons, Inc., 1993.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.
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This function fully supports GPU arrays. For more information, see “Run MATLAB Functions on a
GPU” (Parallel Computing Toolbox).

See Also
cdf | lognpdf | logninv | lognstat | lognfit | lognlike | lognrnd |
LognormalDistribution | erfc

Topics
“Lognormal Distribution” on page B-89
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lognfit
Lognormal parameter estimates

Syntax
pHat = lognfit(x)

[pHat,pCI] = lognfit(x)
[pHat,pCI] = lognfit(x,alpha)

[ ___ ] = lognfit(x,alpha,censoring)
[ ___ ] = lognfit(x,alpha,censoring,freq)
[ ___ ] = lognfit(x,alpha,censoring,freq,options)

Description
pHat = lognfit(x) returns unbiased estimates of lognormal distribution parameters, given the
sample data in x. pHat(1) and pHat(2) are the mean and standard deviation of logarithmic values,
respectively.

[pHat,pCI] = lognfit(x) also returns 95% confidence intervals for the parameter estimates.

[pHat,pCI] = lognfit(x,alpha) specifies the confidence level for the confidence intervals to be
100(1–alpha)%.

[ ___ ] = lognfit(x,alpha,censoring) specifies whether each value in x is right-censored or
not. Use the logical vector censoring in which 1 indicates observations that are right-censored and
0 indicates observations that are fully observed. With censoring, the phat values are the maximum
likelihood estimates (MLEs).

[ ___ ] = lognfit(x,alpha,censoring,freq) specifies the frequency or weights of
observations.

[ ___ ] = lognfit(x,alpha,censoring,freq,options) specifies optimization options for the
iterative algorithm lognfit to use to compute MLEs with censoring. Create options by using the
function statset.

You can pass in [] for alpha, censoring, and freq to use their default values.

Examples

Estimate Parameters and Confidence Intervals

Generate 1000 random numbers from the lognormal distribution with the parameters 5 and 2.

rng('default') % For reproducibility
n = 1000; % Number of samples
x = lognrnd(5,2,n,1);

Find the parameter estimates and the 99% confidence intervals.
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[pHat,pCI] = lognfit(x,0.01)

pHat = 1×2

    4.9347    1.9979

pCI = 2×2

    4.7717    1.8887
    5.0978    2.1196

pHat(1) and pHat(2) are the mean and standard deviation of logarithmic values, respectively. pCI
contains the 99% confidence intervals of the mean and standard deviation parameters. The values in
the first row are the lower bounds, and the values in the second row are the upper bounds.

Change Algorithm Options

Find the MLEs of a data set with censoring by using lognfit. Use statset to specify the iterative
algorithm options that lognfit uses to compute MLEs for censored data, and then find the MLEs
again.

Generate the true times x that follow the lognormal distribution with the parameters 5 and 2.

rng('default') % For reproducibility
n = 1000; % Number of samples
x = lognrnd(5,2,n,1);

Generate the censoring times. Note that the censoring times must be independent of the true times x.

censtime = normrnd(150,20,size(x));

Specify the indicator for the censoring times and the observed times.

censoring = x>censtime;
y = min(x,censtime);

Find the MLEs of the lognormal distribution parameters. The second input argument of lognfit
specifies the confidence level. Pass in [] to use its default value 0.05. The third input argument
specifies the censorship information.

pHat = lognfit(y,[],censoring)

pHat = 1×2

    4.9535    1.9996

Display the default algorithm parameters that lognfit uses to estimate the lognormal distribution
parameters.

statset('lognfit')

ans = struct with fields:
          Display: 'off'
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      MaxFunEvals: 200
          MaxIter: 100
           TolBnd: 1.0000e-06
           TolFun: 1.0000e-08
       TolTypeFun: []
             TolX: 1.0000e-08
         TolTypeX: []
          GradObj: []
         Jacobian: []
        DerivStep: []
      FunValCheck: []
           Robust: []
     RobustWgtFun: []
           WgtFun: []
             Tune: []
      UseParallel: []
    UseSubstreams: []
          Streams: {}
        OutputFcn: []

Save the options using a different name. Change how the results are displayed (Display) and the
termination tolerance for the objective function (TolFun).

options = statset('lognfit');
options.Display = 'final';
options.TolFun = 1e-10;

Alternatively, you can specify algorithm parameters by using the name-value pair arguments of the
function statset.

options = statset('Display','final','TolFun',1e-10);

Find the MLEs with the new algorithm parameters.

pHat = lognfit(y,[],censoring,[],options)

Successful convergence: Norm of gradient less than OPTIONS.TolFun

pHat = 1×2

    4.9535    1.9996

lognfit displays a report on the final iteration.

Input Arguments
x — Sample data
vector

Sample data, specified as a vector.
Data Types: single | double

alpha — Significance level
0.05 (default) | scalar in the range (0,1)

 lognfit

35-4307



Significance level for the confidence intervals, specified as a scalar in the range (0,1). The confidence
level is 100(1—alpha)%, where alpha is the probability that the confidence intervals do not contain
the true value.
Example: 0.01
Data Types: single | double

censoring — Indicator for censoring
array of 0s (default) | logical vector

Indicator for the censoring of each value in x, specified as a logical vector of the same size as x. Use
1 for observations that are right-censored and 0 for observations that are fully observed.

The default is an array of 0s, meaning that all observations are fully observed.
Data Types: logical

freq — Frequency or weights of observations
array of 1s (default) | nonnegative vector

Frequency or weights of observations, specified as a nonnegative vector that is the same size as x.
The freq input argument typically contains nonnegative integer counts for the corresponding
elements in x, but can contain any nonnegative values.

To obtain the weighted MLEs for a data set with censoring, specify weights of observations,
normalized to the number of observations in x.

The default is an array of 1s, meaning one observation per element of x.
Data Types: single | double

options — Optimization options
statset('lognfit') (default) | structure

Optimization options, specified as a structure. options determines the control parameters for the
iterative algorithm that lognfit uses to compute MLEs for censored data.

Create options by using the function statset or by creating a structure array containing the fields
and values described in this table.

Field Name Value Default Value
Display Amount of information displayed by the

algorithm.

• 'off' — Displays no information.
• 'final' — Displays the final output.

'off'

MaxFunEvals Maximum number of objective function
evaluations allowed, specified as a positive
integer.

200

MaxIter Maximum number of iterations allowed, specified
as a positive integer.

100
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Field Name Value Default Value
TolBnd Lower bound of the standard deviation parameter

estimate, specified as a positive scalar.

The bounds for the mean and standard deviation
parameter estimates are [–Inf,Inf] and
[TolBnd,Inf], respectively.

1e-6

TolFun Termination tolerance for the objective function
value, specified as a positive scalar.

1e-8

TolX Termination tolerance for the parameters,
specified as a positive scalar.

1e-8

You can also enter statset('lognfit') in the Command Window to see the names and default
values of the fields that lognfit accepts in the options structure.
Example: statset('Display','final','MaxIter',1000) specifies to display the final
information of the iterative algorithm results, and change the maximum number of iterations allowed
to 1000.
Data Types: struct

Output Arguments
pHat — Estimates of lognormal distribution parameters
1-by-2 vector

Estimates of lognormal distribution parameters, returned as a 1-by-2 vector. pHat(1) and pHat(2)
are the mean and standard deviation of logarithmic values, respectively.

• With no censoring, the pHat values are unbiased estimates. To compute the MLEs with no
censoring, use the mle function.

• With censoring, the pHat values are the MLEs. To compute the weighted MLEs, specify the
weights of observations by using freq.

pCI — Confidence intervals for parameter estimates
2-by-2 matrix

Confidence intervals for parameter estimates of the lognormal distribution, returned as a 2-by-2
matrix containing the lower and upper bounds of the 100(1–alpha)% confidence intervals.

The first and second rows correspond to the lower and upper bounds of the confidence intervals,
respectively.

Algorithms
To compute the confidence intervals, lognfit uses the exact method for uncensored data and the
Wald method for censored data. The exact method provides exact coverage for uncensored samples
based on t and chi-square distributions.
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Alternative Functionality
lognfit is a function specific to lognormal distribution. Statistics and Machine Learning Toolbox
also offers the generic functions mle, fitdist, and paramci and the Distribution Fitter app,
which support various probability distributions.

• mle returns MLEs and the confidence intervals of MLEs for the parameters of various probability
distributions. You can specify the probability distribution name or a custom probability density
function.

• Create a LognormalDistribution probability distribution object by fitting the distribution to
data using the fitdist function or the Distribution Fitter app. The object properties mu and
sigma store the parameter estimates. To obtain the confidence intervals for the parameter
estimates, pass the object to paramci.

Version History
Introduced before R2006a

References
[1] Evans, M., N. Hastings, and B. Peacock. Statistical Distributions. 2nd ed. Hoboken, NJ: John Wiley

& Sons, Inc., 1993.

[2] Lawless, J. F. Statistical Models and Methods for Lifetime Data. Hoboken, NJ: Wiley-Interscience,
1982.

[3] Meeker, W. Q., and L. A. Escobar. Statistical Methods for Reliability Data. Hoboken, NJ: John Wiley
& Sons, Inc., 1998.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

This function fully supports GPU arrays. For more information, see “Run MATLAB Functions on a
GPU” (Parallel Computing Toolbox).

See Also
mle | lognlike | lognpdf | logncdf | logninv | lognstat | lognrnd |
LognormalDistribution | paramci | fitdist | statset

Topics
“Lognormal Distribution” on page B-89
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logninv
Lognormal inverse cumulative distribution function

Syntax
x = logninv(p)
x = logninv(p,mu)
x = logninv(p,mu,sigma)

[x,xLo,xUp] = logninv(p,mu,sigma,pCov)
[x,xLo,xUp] = logninv(p,mu,sigma,pCov,alpha)

Description
x = logninv(p) returns the inverse of the standard lognormal cumulative distribution function
(cdf), evaluated at the probability values in p. In the standard lognormal distribution, the mean and
standard deviation of logarithmic values are 0 and 1, respectively.

x = logninv(p,mu) returns the inverse of the lognormal cdf with the distribution parameters mu
(mean of logarithmic values) and 1 (standard deviation of logarithmic values), evaluated at the
probability values in p.

x = logninv(p,mu,sigma) returns the inverse of the lognormal cdf with the distribution
parameters mu (mean of logarithmic values) and sigma (standard deviation of logarithmic values),
evaluated at the probability values in p.

[x,xLo,xUp] = logninv(p,mu,sigma,pCov) also returns the 95% confidence bounds [xLo,xUp]
of x using the estimated parameters (mu and sigma) and their covariance matrix pCov.

[x,xLo,xUp] = logninv(p,mu,sigma,pCov,alpha) specifies the confidence level for the
confidence interval [xLo,xUp] to be 100(1–alpha)%.

Examples

Inverse of Lognormal Distribution cdf

Compute the inverse of cdf values evaluated at the probability values in p for the lognormal
distribution with mean mu and standard deviation sigma.

p = 0.005:0.01:0.995;
mu = 1;
sigma = 0.5;
x = logninv(p,mu,sigma);

Plot the inverse cdf.

plot(p,x)
grid on
xlabel('p');
ylabel('x');
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Confidence Interval of Inverse Lognormal cdf Value

Find the maximum likelihood estimates (MLEs) of the lognormal distribution parameters, and then
find the confidence interval of the corresponding inverse cdf value.

Generate 1000 random numbers from the lognormal distribution with the parameters 5 and 2.

rng('default') % For reproducibility
n = 1000; % Number of samples
x = lognrnd(5,2,[n,1]);

Find the MLEs for the distribution parameters (mean and standard deviation of logarithmic values)
by using mle.

phat = mle(x,'distribution','LogNormal')

phat = 1×2

    4.9347    1.9969

muHat = phat(1);
sigmaHat = phat(2);
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Estimate the covariance of the distribution parameters by using lognlike. The function lognlike
returns an approximation to the asymptotic covariance matrix if you pass the MLEs and the samples
used to estimate the MLEs.

[~,pCov] = lognlike(phat,x)

pCov = 2×2

    0.0040   -0.0000
   -0.0000    0.0020

Find the inverse cdf value at 0.5 and its 99% confidence interval.

[x,xLo,xUp] = logninv(0.5,muHat,sigmaHat,pCov,0.01)

x = 139.0364

xLo = 118.1643

xUp = 163.5953

x is the inverse cdf value using the lognormal distribution with the parameters muHat and sigmaHat.
The interval [xLo,xUp] is the 99% confidence interval of the inverse cdf value evaluated at 0.5,
considering the uncertainty of muHat and sigmaHat using pCov. The 99% confidence interval means
the probability that [xLo,xUp] contains the true inverse cdf value is 0.99.

Input Arguments
p — Probability values at which to evaluate inverse of cdf
scalar value in [0,1] | array of scalar values

Probability values at which to evaluate the inverse of the cdf (icdf), specified as a scalar value or an
array of scalar values, where each element is in the range [0,1].

If you specify pCov to compute the confidence interval [xLo,xUp], then p must be a scalar value.

To evaluate the icdf at multiple values, specify p using an array. To evaluate the icdfs of multiple
distributions, specify mu and sigma using arrays. If one or more of the input arguments p, mu, and
sigma are arrays, then the array sizes must be the same. In this case, logninv expands each scalar
input into a constant array of the same size as the array inputs. Each element in x is the icdf value of
the distribution specified by the corresponding elements in mu and sigma, evaluated at the
corresponding element in p.
Example: [0.1,0.5,0.9]
Data Types: single | double

mu — Mean of logarithmic values
0 (default) | scalar value | array of scalar values

Mean of logarithmic values for the lognormal distribution, specified as a scalar value or an array of
scalar values.

If you specify pCov to compute the confidence interval [xLo,xUp], then mu must be a scalar value.
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To evaluate the icdf at multiple values, specify p using an array. To evaluate the icdfs of multiple
distributions, specify mu and sigma using arrays. If one or more of the input arguments p, mu, and
sigma are arrays, then the array sizes must be the same. In this case, logninv expands each scalar
input into a constant array of the same size as the array inputs. Each element in x is the icdf value of
the distribution specified by the corresponding elements in mu and sigma, evaluated at the
corresponding element in p.
Example: [0 1 2; 0 1 2]
Data Types: single | double

sigma — Standard deviation of logarithmic values
1 (default) | positive scalar value | array of positive scalar values

Standard deviation of logarithmic values for the lognormal distribution, specified as a positive scalar
value or an array of positive scalar values.

If you specify pCov to compute the confidence interval [xLo,xUp], then sigma must be a scalar
value.

To evaluate the icdf at multiple values, specify p using an array. To evaluate the icdfs of multiple
distributions, specify mu and sigma using arrays. If one or more of the input arguments p, mu, and
sigma are arrays, then the array sizes must be the same. In this case, logninv expands each scalar
input into a constant array of the same size as the array inputs. Each element in x is the icdf value of
the distribution specified by the corresponding elements in mu and sigma, evaluated at the
corresponding element in p.
Example: [1 1 1; 2 2 2]
Data Types: single | double

pCov — Covariance of estimates
2-by-2 numeric matrix

Covariance of the estimates mu and sigma, specified as a 2-by-2 matrix.

If you specify pCov to compute the confidence interval [xLo,xUp], then p, mu, and sigma must be
scalar values.

You can estimate the maximum likelihood estimates of mu and sigma by using mle, and estimate the
covariance of mu and sigma by using lognlike. For an example, see “Confidence Interval of Inverse
Lognormal cdf Value” on page 35-4312.
Data Types: single | double

alpha — Significance level
0.05 (default) | scalar in the range (0,1)

Significance level for the confidence interval, specified as a scalar in the range (0,1). The confidence
level is 100(1–alpha)%, where alpha is the probability that the confidence interval does not
contain the true value.
Example: 0.01
Data Types: single | double
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Output Arguments
x — icdf values
scalar value | array of scalar values

icdf values, evaluated at the probability values in p, returned as a scalar value or an array of scalar
values. x is the same size as p, mu, and sigma after any necessary scalar expansion. Each element in
x is the icdf value of the distribution specified by the corresponding elements in mu and sigma,
evaluated at the corresponding element in p.

xLo — Lower confidence bound for x
scalar value | array of scalar values

Lower confidence bound for x, returned as a scalar value or an array of scalar values. xLo has the
same size as x.

xUp — Upper confidence bound for x
scalar value | array of scalar values

Upper confidence bound for x, returned as a scalar value or an array of scalar values. xUp has the
same size as x.

More About
Lognormal Distribution

The lognormal distribution is a probability distribution whose logarithm has a normal distribution.

The lognormal inverse function is defined in terms of the lognormal cdf as

x = F−1(p μ, σ) = x:F(x μ, σ) = p

where

p = F(x μ, σ) = 1
σ 2π∫0

x 1
t exp −(logt − μ)2

2σ2 dt, for x > 0.

Algorithms
• The function logninv uses the inverse complementary error function erfcinv. The relationship

between logninv and erfcinv is

logninv(p, 0, 1) = exp − 2erfcinv(2p) .

The inverse complementary error function erfcinv(x) is defined as erfcinv(erfc(x))=x, and
the complementary error function erfc(x) is defined as

erfc(x) = 1− erf(x) = 2
π∫x

∞
e−t2dt .

• The logninv function computes confidence bounds for x by using the delta method.
log(logninv(p,mu,sigma)) is equivalent to mu + sigma*log(logninv(p,0,1)).
Therefore, the logninv function estimates the variance of mu + sigma*log(logninv(p,0,1))
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using the covariance matrix of mu and sigma by the delta method, and finds the confidence
bounds using the estimates of this variance. The computed bounds give approximately the desired
confidence level when you estimate mu, sigma, and pCov from large samples.

Alternative Functionality
• logninv is a function specific to lognormal distribution. Statistics and Machine Learning Toolbox

also offers the generic function icdf, which supports various probability distributions. To use
icdf, create a LognormalDistribution probability distribution object and pass the object as
an input argument or specify the probability distribution name and its parameters. Note that the
distribution-specific function logninv is faster than the generic function icdf.

Version History
Introduced before R2006a

References
[1] Abramowitz, M., and I. A. Stegun. Handbook of Mathematical Functions. New York: Dover, 1964.

[2] Evans, M., N. Hastings, and B. Peacock. Statistical Distributions. Hoboken, NJ: Wiley-Interscience,
2000. pp. 102–105.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

This function fully supports GPU arrays. For more information, see “Run MATLAB Functions on a
GPU” (Parallel Computing Toolbox).

See Also
icdf | logncdf | lognpdf | lognstat | lognfit | lognlike | lognrnd |
LognormalDistribution | erfcinv

Topics
“Lognormal Distribution” on page B-89
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lognlike
Lognormal negative loglikelihood

Syntax
nlogL = lognlike(params,x)
nlogL = lognlike(params,x,censoring)
nlogL = lognlike(params,x,censoring,freq)

[nlogL,aVar] = lognlike( ___ )

Description
nlogL = lognlike(params,x) returns the lognormal negative loglikelihood of the distribution
parameters (params) given the sample data (x). params(1) and params(2) are the mean and
standard deviation of logarithmic values, respectively.

nlogL = lognlike(params,x,censoring) specifies whether each value in x is right-censored or
not. Use the logical vector censoring in which 1 indicates observations that are right-censored and
0 indicates observations that are fully observed.

nlogL = lognlike(params,x,censoring,freq) specifies the frequency or weights of
observations. To specify freq without specifying censoring, you can pass [] for censoring.

[nlogL,aVar] = lognlike( ___ ) also returns the inverse of the Fisher information matrix aVar,
using any of the input argument combinations in the previous syntaxes. If values in params are the
maximum likelihood estimates (MLEs) of the parameters, aVar is an approximation to the asymptotic
covariance matrix.

Examples

Negative Loglikelihood of MLEs

Find the MLEs of a data set with censoring by using mle, and then find the negative loglikelihood of
the MLEs by using lognlike.

Generate 1000 random numbers from the lognormal distribution with the parameters 5 and 2.

rng('default') % For reproducibility
n = 1000; % Number of samples
x = lognrnd(5,2,[n,1]);

Find the MLEs for the distribution parameters (mean and standard deviation of logarithmic values)
by using mle.

phat = mle(x,'distribution','LogNormal')

phat = 1×2

 lognlike

35-4317



    4.9347    1.9969

Find the negative loglikelihood of the MLEs.

nlogL = lognlike(phat,x)

nlogL = 7.0453e+03

Confidence Interval of Lognormal cdf Value

Find the maximum likelihood estimates (MLEs) of the lognormal distribution parameters, and then
find the confidence interval of the corresponding cdf value.

Generate 1000 random numbers from the lognormal distribution with the parameters 5 and 2.

rng('default') % For reproducibility
n = 1000; % Number of samples
x = lognrnd(5,2,n,1);

Find the MLEs for the distribution parameters (mean and standard deviation of logarithmic values)
by using mle.

phat = mle(x,'distribution','LogNormal')

phat = 1×2

    4.9347    1.9969

muHat = phat(1);
sigmaHat = phat(2);

Estimate the covariance of the distribution parameters by using lognlike. The function lognlike
returns an approximation to the asymptotic covariance matrix if you pass the MLEs and the samples
used to estimate the MLEs.

[~,pCov] = lognlike(phat,x)

pCov = 2×2

    0.0040   -0.0000
   -0.0000    0.0020

Find the cdf value at 0.5 and its 95% confidence interval.

[p,pLo,pUp] = logncdf(0.5,muHat,sigmaHat,pCov)

p = 0.0024

pLo = 0.0016

pUp = 0.0037

p is the cdf value of the lognormal distribution with the parameters muHat and sigmaHat. The
interval [pLo,pUp] is the 95% confidence interval of the cdf evaluated at 0.5, considering the
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uncertainty of muHat and sigmaHat using pCov. The 95% confidence interval means the probability
that [pLo,pUp] contains the true cdf value is 0.95.

Input Arguments
params — Lognormal distribution parameters
vector of two numeric values

Lognormal distribution parameters, specified as a vector of two numeric values. params(1) and
params(2) are the mean and standard deviation of logarithmic values, respectively. params(2)
must be positive.
Example: [0,1]
Data Types: single | double

x — Sample data
vector

Sample data, specified as a vector.
Data Types: single | double

censoring — Indicator for censoring
array of 0s (default) | logical vector

Indicator for the censoring of each value in x, specified as a logical vector of the same size as x. Use
1 for observations that are right-censored and 0 for observations that are fully observed.

The default is an array of 0s, meaning that all observations are fully observed.
Data Types: logical

freq — Frequency or weights of observations
array of 1s (default) | nonnegative vector

Frequency or weights of observations, specified as a nonnegative vector that is the same size as x.
The freq input argument typically contains nonnegative integer counts for the corresponding
elements in x, but can contain any nonnegative values.

To obtain the weighted negative loglikelihood for a data set with censoring, specify weights of
observations, normalized to the number of observations in x.

The default is an array of 1s, meaning one observation per element of x.
Data Types: single | double

Output Arguments
nlogL — Negative loglikelihood
numeric scalar

Negative loglikelihood value of the distribution parameters (params) given the sample data (x),
returned as a numeric scalar.
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aVar — Inverse of Fisher information matrix
numeric matrix

Inverse of the Fisher information matrix, returned as a 2-by-2 numeric matrix. aVar is based on the
observed Fisher information given the observed data (x), not the expected information.

If values in params are the MLEs of the parameters, aVar is an approximation to the asymptotic
variance-covariance matrix (also known as the asymptotic covariance matrix). To find the MLEs, use
mle.

Alternative Functionality
lognlike is a function specific to lognormal distribution. Statistics and Machine Learning Toolbox
also offers the generic functions mlecov, fitdist, negloglik, and proflik and the Distribution
Fitter app, which support various probability distributions.

• mlecov returns the asymptotic covariance matrix of the MLEs of the parameters for a distribution
specified by a custom probability density function. For example,
mlecov(params,x,'pdf',@lognpdf) returns the asymptotic covariance matrix of the MLEs for
the lognormal distribution.

• Create a LognormalDistribution probability distribution object by fitting the distribution to
data using the fitdist function or the Distribution Fitter app. The object property
ParameterCovariance stores the covariance matrix of the parameter estimates. To obtain the
negative loglikelihood of the parameter estimates and the profile of the likelihood function, pass
the object to negloglik and proflik, respectively.

Version History
Introduced before R2006a

References
[1] Evans, M., N. Hastings, and B. Peacock. Statistical Distributions. 2nd ed. Hoboken, NJ: John Wiley

& Sons, Inc., 1993.

[2] Lawless, J. F. Statistical Models and Methods for Lifetime Data. Hoboken, NJ: Wiley-Interscience,
1982.

[3] Meeker, W. Q., and L. A. Escobar. Statistical Methods for Reliability Data. Hoboken, NJ: John Wiley
& Sons, Inc., 1998.

Extended Capabilities
GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

This function fully supports GPU arrays. For more information, see “Run MATLAB Functions on a
GPU” (Parallel Computing Toolbox).
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See Also
lognfit | lognpdf | logncdf | logninv | lognstat | lognrnd | LognormalDistribution |
negloglik | proflik | mlecov | mle

Topics
“Lognormal Distribution” on page B-89
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lognpdf
Lognormal probability density function

Syntax
y = lognpdf(x)
y = lognpdf(x,mu)
y = lognpdf(x,mu,sigma)

Description
y = lognpdf(x) returns the probability density function (pdf) of the standard lognormal
distribution, evaluated at the values in x. In the standard lognormal distribution, the mean and
standard deviation of logarithmic values are 0 and 1, respectively.

y = lognpdf(x,mu) returns the pdf of the lognormal distribution with the distribution parameters
mu (mean of logarithmic values) and 1 (standard deviation of logarithmic values), evaluated at the
values in x.

y = lognpdf(x,mu,sigma) returns the pdf of the lognormal distribution with the distribution
parameters mu (mean of logarithmic values) and sigma (standard deviation of logarithmic values),
evaluated at the values in x.

Examples

Compute Lognormal Distribution pdf

Compute the pdf values evaluated at the values in x for the lognormal distribution with mean mu and
standard deviation sigma.

x = 0:0.02:10;
mu = 0;
sigma = 1;
y = lognpdf(x,mu,sigma);

Plot the pdf.

plot(x,y)
grid on
xlabel('x')
ylabel('y')
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Input Arguments
x — Values at which to evaluate pdf
positive scalar value | array of positive scalar values

Values at which to evaluate the pdf, specified as a positive scalar value or an array of positive scalar
values.

To evaluate the pdf at multiple values, specify x using an array. To evaluate the pdfs of multiple
distributions, specify mu and sigma using arrays. If one or more of the input arguments x, mu, and
sigma are arrays, then the array sizes must be the same. In this case, lognpdf expands each scalar
input into a constant array of the same size as the array inputs. Each element in y is the pdf value of
the distribution specified by the corresponding elements in mu and sigma, evaluated at the
corresponding element in x.
Example: [-1,0,3,4]
Data Types: single | double

mu — Mean of logarithmic values
0 (default) | scalar value | array of scalar values

Mean of logarithmic values for the lognormal distribution, specified as a scalar value or an array of
scalar values.
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To evaluate the pdf at multiple values, specify x using an array. To evaluate the pdfs of multiple
distributions, specify mu and sigma using arrays. If one or more of the input arguments x, mu, and
sigma are arrays, then the array sizes must be the same. In this case, lognpdf expands each scalar
input into a constant array of the same size as the array inputs. Each element in y is the pdf value of
the distribution specified by the corresponding elements in mu and sigma, evaluated at the
corresponding element in x.
Example: [0 1 2; 0 1 2]
Data Types: single | double

sigma — Standard deviation of logarithmic values
1 (default) | positive scalar value | array of positive scalar values

Standard deviation of logarithmic values for the lognormal distribution, specified as a positive scalar
value or an array of positive scalar values.

To evaluate the pdf at multiple values, specify x using an array. To evaluate the pdfs of multiple
distributions, specify mu and sigma using arrays. If one or more of the input arguments x, mu, and
sigma are arrays, then the array sizes must be the same. In this case, lognpdf expands each scalar
input into a constant array of the same size as the array inputs. Each element in y is the pdf value of
the distribution specified by the corresponding elements in mu and sigma, evaluated at the
corresponding element in x.
Example: [1 1 1; 2 2 2]
Data Types: single | double

Output Arguments
y — pdf values
scalar value | array of scalar values

pdf values, evaluated at the values in x, returned as a scalar value or an array of scalar values. y is
the same size as x, mu, and sigma after any necessary scalar expansion. Each element in y is the pdf
value of the distribution specified by the corresponding elements in mu and sigma, evaluated at the
corresponding element in x.

More About
Lognormal Distribution

The lognormal distribution is a probability distribution whose logarithm has a normal distribution.

The probability density function (pdf) of the lognormal distribution is

y = f (x μ, σ) = 1
xσ 2πexp − logx− μ 2

2σ2 , for x > 0.

Alternative Functionality
• lognpdf is a function specific to lognormal distribution. Statistics and Machine Learning Toolbox

also offers the generic function pdf, which supports various probability distributions. To use pdf,
create a LognormalDistribution probability distribution object and pass the object as an input
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argument or specify the probability distribution name and its parameters. Note that the
distribution-specific function lognpdf is faster than the generic function pdf.

• Use the Probability Distribution Function app to create an interactive plot of the cumulative
distribution function (cdf) or probability density function (pdf) for a probability distribution.

Version History
Introduced before R2006a

References
[1] Mood, A. M., F. A. Graybill, and D. C. Boes. Introduction to the Theory of Statistics. 3rd ed., New

York: McGraw-Hill, 1974. pp. 540–541.

[2] Evans, M., N. Hastings, and B. Peacock. Statistical Distributions. 2nd ed., Hoboken, NJ: John Wiley
& Sons, Inc., 1993.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

This function fully supports GPU arrays. For more information, see “Run MATLAB Functions on a
GPU” (Parallel Computing Toolbox).

See Also
pdf | logncdf | logninv | lognstat | lognfit | lognlike | lognrnd |
LognormalDistribution

Topics
“Lognormal Distribution” on page B-89
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lognrnd
Lognormal random numbers

Syntax
r = lognrnd(mu,sigma)
r = lognrnd(mu,sigma,sz1,...,szN)
r = lognrnd(mu,sigma,sz)

Description
r = lognrnd(mu,sigma) generates a random number from the lognormal distribution with the
distribution parameters mu (mean of logarithmic values) and sigma (standard deviation of
logarithmic values).

r = lognrnd(mu,sigma,sz1,...,szN) generates an array of lognormal random numbers, where
sz1,...,szN indicates the size of each dimension.

r = lognrnd(mu,sigma,sz) generates an array of lognormal random numbers, where vector sz
specifies size(r).

Examples

Generate Lognormal Random Number

Find the distribution parameters from the mean and variance of a lognormal distribution and
generate a lognormal random value from the distribution.

Find the distribution parameters mu and sigma from the mean and variance.

m = 1; % mean
v = 2; % variance
mu = log((m^2)/sqrt(v+m^2))

mu = -0.5493

sigma = sqrt(log(v/(m^2)+1))

sigma = 1.0481

Generate a lognormal random value.

rng('default') % For reproducibility
r = lognrnd(mu,sigma)

r = 1.0144
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Reset Random Number Generator

Save the current state of the random number generator. Then create a 1-by-5 vector of lognormal
random numbers from the lognormal distribution with the parameters 3 and 10.

s = rng;
r = lognrnd(3,10,[1,5])

r = 1×5
109 ×

    0.0000    1.8507    0.0000    0.0001    0.0000

Restore the state of the random number generator to s, and then create a new 1-by-5 vector of
random numbers. The values are the same as before.

rng(s);
r1 = lognrnd(3,10,[1,5])

r1 = 1×5
109 ×

    0.0000    1.8507    0.0000    0.0001    0.0000

Clone Size from Existing Array

Create a matrix of lognormally distributed random numbers with the same size as an existing array.

A = [3 2; -2 1];
sz = size(A);
R = lognrnd(0,1,sz)

R = 2×2

    1.7120    0.1045
    6.2582    2.3683

You can combine the previous two lines of code into a single line.

R = lognrnd(1,0,size(A));

Input Arguments
mu — Mean of logarithmic values
scalar value | array of scalar values

Mean of logarithmic values for the lognormal distribution, specified as a scalar value or an array of
scalar values.

To generate random numbers from multiple distributions, specify mu and sigma using arrays. If both
mu and sigma are arrays, then the array sizes must be the same. If either mu or sigma is a scalar,
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then lognrnd expands the scalar argument into a constant array of the same size as the other
argument. Each element in r is the random number generated from the distribution specified by the
corresponding elements in mu and sigma.
Example: [0 1 2; 0 1 2]
Data Types: single | double

sigma — Standard deviation of logarithmic values
nonnegative scalar value | array of nonnegative scalar values

Standard deviation of logarithmic values for the lognormal distribution, specified as a nonnegative
scalar value or an array of nonnegative scalar values.

If sigma is zero, then the output r is always equal to exp(mu).

To generate random numbers from multiple distributions, specify mu and sigma using arrays. If both
mu and sigma are arrays, then the array sizes must be the same. If either mu or sigma is a scalar,
then lognrnd expands the scalar argument into a constant array of the same size as the other
argument. Each element in r is the random number generated from the distribution specified by the
corresponding elements in mu and sigma.
Example: [1 1 1; 2 2 2]
Data Types: single | double

sz1,...,szN — Size of each dimension (as separate arguments)
integers

Size of each dimension, specified as separate arguments of integers. For example, specifying 5,3,2
generates a 5-by-3-by-2 array of random numbers from the lognormal probability distribution.

If either mu or sigma is an array, then the specified dimensions sz1,...,szN must match the
common dimensions of mu and sigma after any necessary scalar expansion. The default values of
sz1,...,szN are the common dimensions.

• If you specify a single value sz1, then r is a square matrix of size sz1-by-sz1.
• If the size of any dimension is 0 or negative, then r is an empty array.
• Beyond the second dimension, lognrnd ignores trailing dimensions with a size of 1. For example,

lognrnd(mu,sigma,3,1,1,1) produces a 3-by-1 vector of random numbers.

Example: 5,3,2
Data Types: single | double

sz — Size of each dimension (as a row vector)
row vector of integers

Size of each dimension, specified as a row vector of integers. For example, specifying [5 3 2]
generates a 5-by-3-by-2 array of random numbers from the lognormal probability distribution.

If either mu or sigma is an array, then the specified dimensions sz must match the common
dimensions of mu and sigma after any necessary scalar expansion. The default values of sz are the
common dimensions.

• If you specify a single value [sz1], then r is a square matrix of size sz1-by-sz1.
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• If the size of any dimension is 0 or negative, then r is an empty array.
• Beyond the second dimension, lognrnd ignores trailing dimensions with a size of 1. For example,

lognrnd(mu,sigma,[3,1,1,1]) produces a 3-by-1 vector of random numbers.

Example: [5 3 2]
Data Types: single | double

Output Arguments
r — Lognormal random numbers
scalar value | array of scalar values

Lognormal random numbers, returned as a scalar value or an array of scalar values with the
dimensions specified by sz1,...,szN or sz. Each element in r is the random number generated
from the distribution specified by the corresponding elements in mu and sigma.

More About
Lognormal Distribution

The lognormal distribution is a probability distribution whose logarithm has a normal distribution.

The mean m and variance v of a lognormal random variable are functions of the lognormal
distribution parameters µ and σ:

m = exp μ + σ2/2

v = exp 2μ + σ2 exp σ2 − 1

Also, you can compute the lognormal distribution parameters µ and σ from the mean m and variance
v:

μ = log m2/ v + m2

σ = log v/m2 + 1

Alternative Functionality
• lognrnd is a function specific to lognormal distribution. Statistics and Machine Learning Toolbox

also offers the generic function random, which supports various probability distributions. To use
random, create a LognormalDistribution probability distribution object and pass the object as
an input argument or specify the probability distribution name and its parameters. Note that the
distribution-specific function lognrnd is faster than the generic function random.

• To generate random numbers interactively, use randtool, a user interface for random number
generation.

Version History
Introduced before R2006a

 lognrnd

35-4329



References
[1] Marsaglia, G., and W. W. Tsang. “A Fast, Easily Implemented Method for Sampling from

Decreasing or Symmetric Unimodal Density Functions.” SIAM Journal on Scientific and
Statistical Computing. Vol. 5, Number 2, 1984, pp. 349–359.

[2] Evans, M., N. Hastings, and B. Peacock. Statistical Distributions. 2nd ed., Hoboken, NJ: John Wiley
& Sons, Inc., 1993.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

The generated code can return a different sequence of numbers than MATLAB if either of the
following is true:

• The output is nonscalar.
• An input parameter is invalid for the distribution.

For more information on code generation, see “Introduction to Code Generation” on page 34-2 and
“General Code Generation Workflow” on page 34-5.

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

This function fully supports GPU arrays. For more information, see “Run MATLAB Functions on a
GPU” (Parallel Computing Toolbox).

See Also
random | lognpdf | logncdf | logninv | lognstat | lognfit | lognlike | normrnd |
LognormalDistribution

Topics
“Lognormal Distribution” on page B-89

35 Functions

35-4330



lognstat
Lognormal mean and variance

Syntax
[m,v] = lognstat(mu,sigma)

Description
[m,v] = lognstat(mu,sigma) returns the mean and variance of the lognormal distribution with
the distribution parameters mu (mean of logarithmic values) and sigma (standard deviation of
logarithmic values).

Examples

Compute Mean and Variance

Compute the mean and variance of the lognormal distribution with parameters mu and sigma.

mu = 0;
sigma = 1;
[m,v] = lognstat(mu,sigma)

m = 1.6487

v = 4.6708

Input Arguments
mu — Mean of logarithmic values
scalar value | array of scalar values

Mean of logarithmic values for the lognormal distribution, specified as a scalar value or an array of
scalar values.

To compute the means and variances of multiple distributions, specify distribution parameters using
an array of scalar values. If both mu and sigma are arrays, then the array sizes must be the same. If
either mu or sigma is a scalar, then lognstat expands the scalar argument into a constant array of
the same size as the other argument. Each element in m and v is the mean and variance of the
distribution specified by the corresponding elements in mu and sigma.
Example: [0 1 2; 0 1 2]
Data Types: single | double

sigma — Standard deviation of logarithmic values
positive scalar value | array of positive scalar values

Standard deviation of logarithmic values for the lognormal distribution, specified as a positive scalar
value or an array of positive scalar values.
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To compute the means and variances of multiple distributions, specify distribution parameters using
an array of scalar values. If both mu and sigma are arrays, then the array sizes must be the same. If
either mu or sigma is a scalar, then lognstat expands the scalar argument into a constant array of
the same size as the other argument. Each element in m and v is the mean and variance of the
distribution specified by the corresponding elements in mu and sigma.
Example: [1 1 1; 2 2 2]
Data Types: single | double

Output Arguments
m — Mean
scalar value | array of scalar values

Mean of the lognormal distribution, returned as a scalar value or an array of scalar values. m is the
same size as mu and sigma after any necessary scalar expansion. Each element in m is the mean of
the lognormal distribution specified by the corresponding elements in mu and sigma.

v — Variance
scalar value | array of scalar values

Variance of the lognormal distribution, returned as a scalar value or an array of scalar values. v is the
same size as mu and sigma after any necessary scalar expansion. Each element in v is the variance of
the lognormal distribution specified by the corresponding elements in mu and sigma.

More About
Lognormal Distribution

The lognormal distribution is a probability distribution whose logarithm has a normal distribution.

The mean m and variance v of a lognormal random variable are functions of the lognormal
distribution parameters µ and σ:

m = exp μ + σ2/2

v = exp 2μ + σ2 exp σ2 − 1

Also, you can compute the lognormal distribution parameters µ and σ from the mean m and variance
v:

μ = log m2/ v + m2

σ = log v/m2 + 1

Alternative Functionality
• lognstat is a function specific to lognormal distribution. Statistics and Machine Learning

Toolbox also offers generic functions to compute summary statistics, including mean (mean),
median (median), interquartile range (iqr), variance (var), and standard deviation (std). These
generic functions support various probability distributions. To use these functions, create a
LognormalDistribution probability distribution object and pass the object as an input
argument.

35 Functions

35-4332



Version History
Introduced before R2006a

References
[1] Mood, A. M., F. A. Graybill, and D. C. Boes. Introduction to the Theory of Statistics. 3rd ed., New

York: McGraw-Hill, 1974. pp. 540–541.

[2] Evans, M., N. Hastings, and B. Peacock. Statistical Distributions. 2nd ed., Hoboken, NJ: John Wiley
& Sons, Inc., 1993.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

This function fully supports GPU arrays. For more information, see “Run MATLAB Functions on a
GPU” (Parallel Computing Toolbox).

See Also
lognpdf | logncdf | logninv | lognfit | lognlike | lognrnd | LognormalDistribution |
mean | std | var

Topics
“Lognormal Distribution” on page B-89
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logp
Log unconditional probability density for discriminant analysis classifier

Syntax
lp = logp(obj,Xnew)

Description
lp = logp(obj,Xnew) returns the log of the unconditional probability density of each row of Xnew,
computed using the discriminant analysis model obj.

Input Arguments
obj

Discriminant analysis classifier, produced using fitcdiscr.

Xnew

Matrix where each row represents an observation, and each column represents a predictor. The
number of columns in Xnew must equal the number of predictors in obj.

Output Arguments
lp

Column vector with the same number of rows as Xnew. Each entry is the logarithm of the
unconditional probability density of the corresponding row of Xnew.

Examples

Compute Log Unconditional Probability Density of an Observation

Construct a discriminant analysis classifier for Fisher's iris data, and examine its prediction for an
average measurement.

Load Fisher's iris data and construct a default discriminant analysis classifier.

load fisheriris
Mdl = fitcdiscr(meas,species);

Find the log probability of the discriminant model applied to an average iris.

logpAverage = logp(Mdl,mean(meas))

logpAverage = -1.7254
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More About
Unconditional Probability Density

The unconditional probability density of a point x of a discriminant analysis model is

P(x) = ∑
k = 1

K
P(x, k),

where P(x,k) is the conditional density of the model at x for class k, when the total number of classes
is K.

The conditional density P(x,k) is

P(x,k) = P(k)P(x|k),

where P(k) is the prior probability of class k, and P(x|k) is the conditional density of x given class k.
The conditional density function of the multivariate normal with 1-by-d mean μk and d-by-d covariance
Σk at a 1-by-d point x is

P x k = 1
2π d Σk

1/2exp −1
2 x− μk Σk

−1 x− μk
T ,

where Σk  is the determinant of Σk, and Σk
−1 is the inverse matrix.

See Also
CompactClassificationDiscriminant | fitcdiscr | mahal

Topics
“Model-Specific Anomaly Detection” on page 17-107
“Discriminant Analysis Classification” on page 21-2
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logp
Log unconditional probability density for naive Bayes classifier

Syntax
lp = logp(Mdl,tbl)
lp = logp(Mdl,X)

Description
lp = logp(Mdl,tbl) returns the log “Unconditional Probability Density” on page 35-4339 (lp) of
the observations (rows) in tbl using the naive Bayes model Mdl. You can use lp to identify outliers in
the training data.

lp = logp(Mdl,X) returns the log unconditional probability density of the observations (rows) in X
using the naive Bayes model Mdl.

Examples

Compute Unconditional Probability Densities of Observations

Compute the unconditional probability densities of the in-sample observations of a naive Bayes
classifier model.

Load the fisheriris data set. Create X as a numeric matrix that contains four petal measurements
for 150 irises. Create Y as a cell array of character vectors that contains the corresponding iris
species.

load fisheriris
X = meas;
Y = species;

Train a naive Bayes classifier using the predictors X and class labels Y. A recommended practice is to
specify the class names. fitcnb assumes that each predictor is conditionally and normally
distributed.

Mdl = fitcnb(X,Y,'ClassNames',{'setosa','versicolor','virginica'})

Mdl = 
  ClassificationNaiveBayes
              ResponseName: 'Y'
     CategoricalPredictors: []
                ClassNames: {'setosa'  'versicolor'  'virginica'}
            ScoreTransform: 'none'
           NumObservations: 150
         DistributionNames: {'normal'  'normal'  'normal'  'normal'}
    DistributionParameters: {3x4 cell}

  Properties, Methods
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Mdl is a trained ClassificationNaiveBayes classifier.

Compute the unconditional probability densities of the in-sample observations.

lp = logp(Mdl,X);

Identify indices of observations that have very small or very large log unconditional probabilities
(ind). Display lower (L) and upper (U) thresholds used by the outlier detection method.

[TF,L,U] = isoutlier(lp);
L

L = -6.9222

U

U = 3.0323

ind = find(TF)

ind = 4×1

    61
   118
   119
   132

Display the values of the outlier unconditional probability densities.

lp(ind)

ans = 4×1

   -7.8995
   -8.4765
   -6.9854
   -7.8969

All the outliers are smaller than the lower outlier detection threshold.

Plot the unconditional probability densities.

histogram(lp)
hold on
xline(L,'k--')
hold off
xlabel('Log unconditional probability')
ylabel('Frequency')
title('Histogram: Log Unconditional Probability')
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Input Arguments
Mdl — Naive Bayes classification model
ClassificationNaiveBayes model object | CompactClassificationNaiveBayes model object

Naive Bayes classification model, specified as a ClassificationNaiveBayes model object or
CompactClassificationNaiveBayes model object returned by fitcnb or compact, respectively.

tbl — Sample data
table

Sample data used to train the model, specified as a table. Each row of tbl corresponds to one
observation, and each column corresponds to one predictor variable. tbl must contain all the
predictors used to train Mdl. Multicolumn variables and cell arrays other than cell arrays of character
vectors are not allowed. Optionally, tbl can contain additional columns for the response variable and
observation weights.

If you train Mdl using sample data contained in a table, then the input data for logp must also be in a
table.

X — Predictor data
numeric matrix

Predictor data, specified as a numeric matrix.
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Each row of X corresponds to one observation (also known as an instance or example), and each
column corresponds to one variable (also known as a feature). The variables in the columns of X must
be the same as the variables that trained the Mdl classifier.

The length of Y and the number of rows of X must be equal.
Data Types: double | single

More About
Unconditional Probability Density

The unconditional probability density of the predictors is the density's distribution marginalized over
the classes.

In other words, the unconditional probability density is

P(X1, .., XP) = ∑
k = 1

K
P(X1, .., XP, Y = k) = ∑

k = 1

K
P(X1, .., XP y = k)π(Y = k),

where π(Y = k) is the class prior probability. The conditional distribution of the data given the class
(P(X1,..,XP|y = k)) and the class prior probability distributions are training options (that is, you specify
them when training the classifier).

Prior Probability

The prior probability of a class is the assumed relative frequency with which observations from that
class occur in a population.

Version History
Introduced in R2014b

See Also
ClassificationNaiveBayes | CompactClassificationNaiveBayes | predict | fitcnb

Topics
“Model-Specific Anomaly Detection” on page 17-107
“Naive Bayes Classification” on page 22-2
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logp
Log unconditional probability density of naive Bayes classification model for incremental learning

Syntax
lp = logp(Mdl,X)

Description
lp = logp(Mdl,X) returns the log unconditional probability densities on page 35-4343 lp of the
observations in the predictor data X using the naive Bayes classification model for incremental
learning Mdl. You can use lp to identify outliers in the training data.

Examples

Detect Outliers In Streaming Data

Train a naive Bayes classification model by using fitcnb, convert it to an incremental learner, and
then use the incremental model to detect outliers in streaming data.

Load and Preprocess Data

Load the human activity data set. Randomly shuffle the data.

load humanactivity
rng(1); % For reproducibility
n = numel(actid);
idx = randsample(n,n);
X = feat(idx,:);
Y = actid(idx);

For details on the data set, enter Description at the command line.

Train Naive Bayes Classification Model

Fit a naive Bayes classification model to a random sample of about 25% of the data.

idxtt = randsample([true false false false],n,true);
TTMdl = fitcnb(X(idxtt,:),Y(idxtt))

TTMdl = 
  ClassificationNaiveBayes
              ResponseName: 'Y'
     CategoricalPredictors: []
                ClassNames: [1 2 3 4 5]
            ScoreTransform: 'none'
           NumObservations: 6167
         DistributionNames: {1x60 cell}
    DistributionParameters: {5x60 cell}
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  Properties, Methods

TTMdl is a ClassificationNaiveBayes model object representing a traditionally trained model.

Convert Trained Model

Convert the traditionally trained model to a naive Bayes classification model for incremental learning.

IncrementalMdl = incrementalLearner(TTMdl)

IncrementalMdl = 
  incrementalClassificationNaiveBayes

                    IsWarm: 1
                   Metrics: [1x2 table]
                ClassNames: [1 2 3 4 5]
            ScoreTransform: 'none'
         DistributionNames: {1x60 cell}
    DistributionParameters: {5x60 cell}

  Properties, Methods

IncrementalMdl is an incrementalClassificationNaiveBayes object. IncrementalMdl
represents a naive Bayes classification model for incremental learning; the parameter values are the
same as the parameters in TTMdl.

Detect Outliers

Determine an unconditional density threshold for outliers by using the traditionally trained model and
training data. Outliers are observations in the streaming data that yield densities lower than the
threshold.

ttlp = logp(TTMdl,X(idxtt,:));
[~,lower] = isoutlier(ttlp)

lower = -336.0424

Detect these outliers in the rest of the data. Simulate a data stream by processing 1 observation at a
time. At each iteration, call logp to compute the log unconditional probability density of the
observation and store each value.

% Preallocation
idxil = ~idxtt;
nil = sum(idxil);
numObsPerChunk = 1;
nchunk = floor(nil/numObsPerChunk);
lp = zeros(nchunk,1);
iso = false(nchunk,1);
Xil = X(idxil,:);
Yil = Y(idxil);

% Incremental processing
for j = 1:nchunk
    ibegin = min(nil,numObsPerChunk*(j-1) + 1);
    iend = min(nil,numObsPerChunk*j);
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    idx = ibegin:iend;
    lp(j) = logp(IncrementalMdl,Xil(idx,:));
    iso(j) = lp(j) < lower;
end

Plot the log unconditional probability densities of the streaming data. Identify the outliers.

figure;
h1 = plot(lp);
hold on
x = 1:nchunk;
h2 = plot(x(iso),lp(iso),'r*');
h3 = yline(lower,'g--');
xlim([0 nchunk]);
ylabel('Unconditional Density')
xlabel('Iteration')
legend([h1 h2 h3],["Log unconditional probabilities" "Outliers" "Threshold"])
hold off

Input Arguments
Mdl — Naive Bayes classification model for incremental learning
incrementalClassificationNaiveBayes model object

Naive Bayes classification model for incremental learning, specified as an
incrementalClassificationNaiveBayes model object. You can create Mdl directly or by
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converting a supported, traditionally trained machine learning model using the
incrementalLearner function. For more details, see the corresponding reference page.

You must configure Mdl to compute the log conditional probability densities on a batch of
observations.

• If Mdl is a converted, traditionally trained model, you can compute the log conditional
probabilities without any modifications.

• Otherwise, Mdl.DistributionParameters must be a cell matrix with Mdl.NumPredictors >
0 columns and at least one row, where each row corresponds to each class name in
Mdl.ClassNames.

X — Batch of predictor data
floating-point matrix

Batch of predictor data with which to compute the log conditional probability densities, specified as
an n-by-Mdl.NumPredictors floating-point matrix.

For each j = 1 through n, if X(j,:) contains at least one NaN, lp(j) is NaN.
Data Types: single | double

Output Arguments
lp — Log conditional probability densities
floating-point vector

Log unconditional probability densities on page 35-4343, returned as an n-by-1 floating-point vector.
lp(j) is the log unconditional probability density of the predictors evaluated at X(j,:).
Data Types: single | double

More About
Unconditional Probability Density

The unconditional probability density of the predictors is the density's distribution marginalized over
the classes.

In other words, the unconditional probability density is

P(X1, .., XP) = ∑
k = 1

K
P(X1, .., XP, Y = k) = ∑

k = 1

K
P(X1, .., XP y = k)π(Y = k),

where π(Y = k) is the class prior probability. The conditional distribution of the data given the class
(P(X1,..,XP|y = k)) and the class prior probability distributions are training options (that is, you specify
them when training the classifier).

Prior Probability

The prior probability of a class is the assumed relative frequency with which observations from that
class occur in a population.
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Version History
Introduced in R2021a

See Also
Objects
incrementalClassificationNaiveBayes

Functions
updateMetrics | fit | updateMetricsAndFit | predict

Topics
“Incremental Learning Overview” on page 28-2
“Configure Incremental Learning Model” on page 28-9
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loss
Package: 

Classification loss for generalized additive model (GAM)

Syntax
L = loss(Mdl,Tbl,ResponseVarName)
L = loss(Mdl,Tbl,Y)
L = loss(Mdl,X,Y)
L = loss( ___ ,Name,Value)

Description
L = loss(Mdl,Tbl,ResponseVarName) returns the “Classification Loss” on page 35-4350 (L), a
scalar representing how well the generalized additive model Mdl classifies the predictor data in Tbl
compared to the true class labels in Tbl.ResponseVarName.

The interpretation of L depends on the loss function ('LossFun') and weighting scheme
('Weights'). In general, better classifiers yield smaller classification loss values. The default
'LossFun' value is 'classiferror' (misclassification rate in decimal).

L = loss(Mdl,Tbl,Y) uses the predictor data in table Tbl and the true class labels in Y.

L = loss(Mdl,X,Y) uses the predictor data in matrix X and the true class labels in Y.

L = loss( ___ ,Name,Value) specifies options using one or more name-value arguments in
addition to any of the input argument combinations in previous syntaxes. For example,
'LossFun','mincost' sets the loss function to the minimal expected misclassification cost
function.

Examples

Determine Test Sample Classification Loss

Determine the test sample classification error (loss) of a generalized additive model. When you
compare the same type of loss among many models, a lower loss indicates a better predictive model.

Load the ionosphere data set. This data set has 34 predictors and 351 binary responses for radar
returns, either bad ('b') or good ('g').

load ionosphere

Randomly partition observations into a training set and a test set with stratification, using the class
information in Y. Specify a 30% holdout sample for testing.

rng('default') % For reproducibility
cv = cvpartition(Y,'HoldOut',0.30);

Extract the training and test indices.
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trainInds = training(cv);
testInds = test(cv);

Specify the training and test data sets.

XTrain = X(trainInds,:);
YTrain = Y(trainInds);
XTest = X(testInds,:);
YTest = Y(testInds);

Train a GAM using the predictors XTrain and class labels YTrain. A recommended practice is to
specify the class names.

Mdl = fitcgam(XTrain,YTrain,'ClassNames',{'b','g'});

Mdl is a ClassificationGAM model object.

Determine how well the algorithm generalizes by estimating the test sample classification error. By
default, the loss function of ClassificationGAM estimates classification error by using the
'classiferror' loss (misclassification rate in decimal).

L = loss(Mdl,XTest,YTest)

L = 0.1052

The trained classifier misclassifies approximately 11% of the test sample.

Compare GAMs by Examining Classification Loss

Train a generalized additive model (GAM) that contains both linear and interaction terms for
predictors, and estimate the classification loss with and without interaction terms. Specify whether to
include interaction terms when estimating the classification loss for training and test data.

Load the ionosphere data set. This data set has 34 predictors and 351 binary responses for radar
returns, either bad ('b') or good ('g').

load ionosphere

Partition the data set into two sets: one containing training data, and the other containing new,
unobserved test data. Reserve 50 observations for the new test data set.

rng('default') % For reproducibility
n = size(X,1);
newInds = randsample(n,50);
inds = ~ismember(1:n,newInds);
XNew = X(newInds,:);
YNew = Y(newInds);

Train a GAM using the predictors X and class labels Y. A recommended practice is to specify the class
names. Specify to include the 10 most important interaction terms.

Mdl = fitcgam(X(inds,:),Y(inds),'ClassNames',{'b','g'},'Interactions',10)

Mdl = 
  ClassificationGAM
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             ResponseName: 'Y'
    CategoricalPredictors: []
               ClassNames: {'b'  'g'}
           ScoreTransform: 'logit'
                Intercept: 2.0026
             Interactions: [10x2 double]
          NumObservations: 301

  Properties, Methods

Mdl is a ClassificationGAM model object.

Compute the resubstitution classification loss both with and without interaction terms in Mdl. To
exclude interaction terms, specify 'IncludeInteractions',false.

resubl = resubLoss(Mdl)

resubl = 0

resubl_nointeraction = resubLoss(Mdl,'IncludeInteractions',false)

resubl_nointeraction = 0

Estimate the classification loss both with and without interaction terms in Mdl.

l = loss(Mdl,XNew,YNew)

l = 0.0615

l_nointeraction = loss(Mdl,XNew,YNew,'IncludeInteractions',false)

l_nointeraction = 0.0615

Including interaction terms does not change the classification loss for Mdl. The trained model
classifies all training samples correctly and misclassifies approximately 6% of the test samples.

Input Arguments
Mdl — Generalized additive model
ClassificationGAM model object | CompactClassificationGAM model object

Generalized additive model, specified as a ClassificationGAM or CompactClassificationGAM
model object.

• If you trained Mdl using sample data contained in a table, then the input data for loss must also
be in a table (Tbl).

• If you trained Mdl using sample data contained in a matrix, then the input data for loss must also
be in a matrix (X).

Tbl — Sample data
table

Sample data, specified as a table. Each row of Tbl corresponds to one observation, and each column
corresponds to one predictor variable. Multicolumn variables and cell arrays other than cell arrays of
character vectors are not allowed.
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Tbl must contain all the predictors used to train Mdl. Optionally, Tbl can contain a column for the
response variable and a column for the observation weights.

• The response variable must have the same data type as Mdl.Y. (The software treats string arrays
as cell arrays of character vectors.) If the response variable in Tbl has the same name as the
response variable used to train Mdl, then you do not need to specify ResponseVarName.

• The weight values must be a numeric vector. You must specify the observation weights in Tbl by
using 'Weights'.

If you trained Mdl using sample data contained in a table, then the input data for loss must also be
in a table.
Data Types: table

ResponseVarName — Response variable name
name of variable in Tbl

Response variable name, specified as a character vector or string scalar containing the name of the
response variable in Tbl. For example, if the response variable Y is stored in Tbl.Y, then specify it as
'Y'.
Data Types: char | string

Y — Class labels
categorical array | character array | string array | logical vector | numeric vector | cell array of
character vectors

Class labels, specified as a categorical, character, or string array, a logical or numeric vector, or a cell
array of character vectors. Each row of Y represents the classification of the corresponding row of X
or Tbl.

Y must have the same data type as Mdl.Y. (The software treats string arrays as cell arrays of
character vectors.)
Data Types: single | double | categorical | logical | char | string | cell

X — Predictor data
numeric matrix

Predictor data, specified as a numeric matrix. Each row of X corresponds to one observation, and
each column corresponds to one predictor variable.

If you trained Mdl using sample data contained in a matrix, then the input data for loss must also be
in a matrix.
Data Types: single | double

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: 'IncludeInteractions',false,'Weights',w specifies to exclude interaction terms
from the model and to use the observation weights w.
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IncludeInteractions — Flag to include interaction terms
true | false

Flag to include interaction terms of the model, specified as true or false.

The default 'IncludeInteractions' value is true if Mdl contains interaction terms. The value
must be false if the model does not contain interaction terms.
Example: 'IncludeInteractions',false
Data Types: logical

LossFun — Loss function
'binodeviance' | 'classifcost' | 'classiferror' | 'exponential' | 'hinge' | 'logit' |
'mincost' | 'quadratic' | function handle

Loss function, specified as a built-in loss function name or a function handle.

The default value is 'mincost' if the ScoreTransform property of the input model object
(Mdl.ScoreTransform) is 'logit'; otherwise, the default value is 'classiferror'.

• This table lists the available loss functions. Specify one using its corresponding character vector
or string scalar.

Value Description
'binodeviance' Binomial deviance
'classifcost' Observed misclassification cost
'classiferror' Misclassified rate in decimal
'exponential' Exponential loss
'hinge' Hinge loss
'logit' Logistic loss
'mincost' Minimal expected misclassification cost (for

classification scores that are posterior
probabilities)

'quadratic' Quadratic loss

For more details on loss functions, see “Classification Loss” on page 35-4350.
• To specify a custom loss function, use function handle notation. The function must have this form:

lossvalue = lossfun(C,S,W,Cost)

• The output argument lossvalue is a scalar.
• You specify the function name (lossfun).
• C is an n-by-K logical matrix with rows indicating the class to which the corresponding

observation belongs. n is the number of observations in Tbl or X, and K is the number of
distinct classes (numel(Mdl.ClassNames). The column order corresponds to the class order
in Mdl.ClassNames. Create C by setting C(p,q) = 1, if observation p is in class q, for each
row. Set all other elements of row p to 0.

• S is an n-by-K numeric matrix of classification scores. The column order corresponds to the
class order in Mdl.ClassNames. S is a matrix of classification scores, similar to the output of
predict.
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• W is an n-by-1 numeric vector of observation weights.
• Cost is a K-by-K numeric matrix of misclassification costs. For example, Cost = ones(K) –

eye(K) specifies a cost of 0 for correct classification and 1 for misclassification.

Example: 'LossFun','binodeviance'
Data Types: char | string | function_handle

Weights — Observation weights
ones(size(X,1),1) (default) | vector of scalar values | name of variable in Tbl

Observation weights, specified as a vector of scalar values or the name of a variable in Tbl. The
software weights the observations in each row of X or Tbl with the corresponding value in Weights.
The size of Weights must equal the number of rows in X or Tbl.

If you specify the input data as a table Tbl, then Weights can be the name of a variable in Tbl that
contains a numeric vector. In this case, you must specify Weights as a character vector or string
scalar. For example, if the weights vector W is stored in Tbl.W, then specify it as 'W'.

loss normalizes the weights in each class to add up to the value of the prior probability of the
respective class.
Data Types: single | double | char | string

More About
Classification Loss

Classification loss functions measure the predictive inaccuracy of classification models. When you
compare the same type of loss among many models, a lower loss indicates a better predictive model.

Consider the following scenario.

• L is the weighted average classification loss.
• n is the sample size.

• yj is the observed class label. The software codes it as –1 or 1, indicating the negative or positive
class (or the first or second class in the ClassNames property), respectively.

• f(Xj) is the positive-class classification score for observation (row) j of the predictor data X.
• mj = yjf(Xj) is the classification score for classifying observation j into the class corresponding to

yj. Positive values of mj indicate correct classification and do not contribute much to the average
loss. Negative values of mj indicate incorrect classification and contribute significantly to the
average loss.

• The weight for observation j is wj. The software normalizes the observation weights so that they
sum to the corresponding prior class probability stored in the Prior property. Therefore,

∑
j = 1

n
w j = 1.

Given this scenario, the following table describes the supported loss functions that you can specify by
using the LossFun name-value argument.
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Loss Function Value of LossFun Equation
Binomial deviance 'binodeviance'

L = ∑
j = 1

n
w jlog 1 + exp −2m j .

Observed
misclassification cost

'classifcost'
L = ∑

j = 1

n
w jcy jy j,

where y j is the class label corresponding to the
class with the maximal score, and cy jy j is the
user-specified cost of classifying an observation
into class y j when its true class is yj.

Misclassified rate in
decimal

'classiferror'
L = ∑

j = 1

n
w jI y j ≠ y j ,

where I{·} is the indicator function.
Cross-entropy loss 'crossentropy' 'crossentropy' is appropriate only for neural

network models.

The weighted cross-entropy loss is

L = − ∑
j = 1

n w jlog(m j)
Kn ,

where the weights w j are normalized to sum to n
instead of 1.

Exponential loss 'exponential'
L = ∑

j = 1

n
w jexp −m j .

Hinge loss 'hinge'

L =∑
j = 1

n

w jmax 0, 1−m j .

Logit loss 'logit'
L = ∑

j = 1

n
w jlog 1 + exp −m j .
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Loss Function Value of LossFun Equation
Minimal expected
misclassification cost

'mincost' 'mincost' is appropriate only if classification
scores are posterior probabilities.

The software computes the weighted minimal
expected classification cost using this procedure
for observations j = 1,...,n.

1 Estimate the expected misclassification cost
of classifying the observation Xj into the class
k:

γ jk = f X j ′C k .

f(Xj) is the column vector of class posterior
probabilities for the observation Xj. C is the
cost matrix stored in the Cost property of
the model.

2 For observation j, predict the class label
corresponding to the minimal expected
misclassification cost:

y j = argmin
k = 1, ..., K

γ jk .

3 Using C, identify the cost incurred (cj) for
making the prediction.

The weighted average of the minimal expected
misclassification cost loss is

L = ∑
j = 1

n
w jc j .

Quadratic loss 'quadratic'
L = ∑

j = 1

n
w j 1−m j

2 .

If you use the default cost matrix (whose element value is 0 for correct classification and 1 for
incorrect classification), then the loss values for 'classifcost', 'classiferror', and
'mincost' are identical. For a model with a nondefault cost matrix, the 'classifcost' loss is
equivalent to the 'mincost' loss most of the time. These losses can be different if prediction into the
class with maximal posterior probability is different from prediction into the class with minimal
expected cost. Note that 'mincost' is appropriate only if classification scores are posterior
probabilities.

This figure compares the loss functions (except 'classifcost', 'crossentropy', and
'mincost') over the score m for one observation. Some functions are normalized to pass through
the point (0,1).
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Version History
Introduced in R2021a

Default LossFun value has changed
Behavior changed in R2022a

Starting in R2022a, the loss function uses the "mincost" option (minimal expected
misclassification cost) as the default for the LossFun name-value argument when a GAM object uses
posterior probabilities for classification scores, that is, when the ScoreTransform property of the
input model object is 'logit'. Otherwise, the function uses the "classiferror" option
(misclassified rate in decimal) by default. In previous releases, the default value was always
"classiferror".

You do not need to make any changes to your code if you use the default cost matrix (whose element
value is 0 for correct classification and 1 for incorrect classification). The "mincost" option is
equivalent to the "classiferror" option for the default cost matrix.

See Also
predict | margin | edge | resubLoss

Topics
“Train Generalized Additive Model for Binary Classification” on page 12-77
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loss
Loss of k-nearest neighbor classifier

Syntax
L = loss(mdl,Tbl,ResponseVarName)
L = loss(mdl,Tbl,Y)
L = loss(mdl,X,Y)
L = loss( ___ ,Name,Value)

Description
L = loss(mdl,Tbl,ResponseVarName) returns a scalar representing how well mdl classifies the
data in Tbl when Tbl.ResponseVarName contains the true classifications. If Tbl contains the
response variable used to train mdl, then you do not need to specify ResponseVarName.

When computing the loss, the loss function normalizes the class probabilities in
Tbl.ResponseVarName to the class probabilities used for training, which are stored in the Prior
property of mdl.

The meaning of the classification loss (L) depends on the loss function and weighting scheme, but, in
general, better classifiers yield smaller classification loss values. For more details, see “Classification
Loss” on page 35-4358.

L = loss(mdl,Tbl,Y) returns a scalar representing how well mdl classifies the data in Tbl when
Y contains the true classifications.

When computing the loss, the loss function normalizes the class probabilities in Y to the class
probabilities used for training, which are stored in the Prior property of mdl.

L = loss(mdl,X,Y) returns a scalar representing how well mdl classifies the data in X when Y
contains the true classifications.

When computing the loss, the loss function normalizes the class probabilities in Y to the class
probabilities used for training, which are stored in the Prior property of mdl.

L = loss( ___ ,Name,Value) specifies options using one or more name-value pair arguments in
addition to the input arguments in previous syntaxes. For example, you can specify the loss function
and the classification weights.

Note If the predictor data in X or Tbl contains any missing values and LossFun is not set to
"classifcost", "classiferror", or "mincost", the loss function can return NaN. For more
details, see “loss can return NaN for predictor data with missing values” on page 35-4362.

Examples
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Loss Calculation

Create a k-nearest neighbor classifier for the Fisher iris data, where k = 5.

Load the Fisher iris data set.

load fisheriris

Create a classifier for five nearest neighbors.

mdl = fitcknn(meas,species,'NumNeighbors',5);

Examine the loss of the classifier for a mean observation classified as 'versicolor'.

X = mean(meas);
Y = {'versicolor'};
L = loss(mdl,X,Y)

L = 0

All five nearest neighbors classify as 'versicolor'.

Input Arguments
mdl — k-nearest neighbor classifier model
ClassificationKNN object

k-nearest neighbor classifier model, specified as a ClassificationKNN object.

Tbl — Sample data
table

Sample data used to train the model, specified as a table. Each row of Tbl corresponds to one
observation, and each column corresponds to one predictor variable. Optionally, Tbl can contain one
additional column for the response variable. Multicolumn variables and cell arrays other than cell
arrays of character vectors are not allowed.

If Tbl contains the response variable used to train mdl, then you do not need to specify
ResponseVarName or Y.

If you train mdl using sample data contained in a table, then the input data for loss must also be in a
table.
Data Types: table

ResponseVarName — Response variable name
name of a variable in Tbl

Response variable name, specified as the name of a variable in Tbl. If Tbl contains the response
variable used to train mdl, then you do not need to specify ResponseVarName.

You must specify ResponseVarName as a character vector or string scalar. For example, if the
response variable is stored as Tbl.response, then specify it as 'response'. Otherwise, the
software treats all columns of Tbl, including Tbl.response, as predictors.
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The response variable must be a categorical, character, or string array, logical or numeric vector, or
cell array of character vectors. If the response variable is a character array, then each element must
correspond to one row of the array.
Data Types: char | string

X — Predictor data
numeric matrix

Predictor data, specified as a numeric matrix. Each row of X represents one observation, and each
column represents one variable.
Data Types: single | double

Y — Class labels
categorical array | character array | string array | logical vector | numeric vector | cell array of
character vectors

Class labels, specified as a categorical, character, or string array, logical or numeric vector, or cell
array of character vectors. Each row of Y represents the classification of the corresponding row of X.
Data Types: categorical | char | string | logical | single | double | cell

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: loss(mdl,Tbl,'response','LossFun','exponential','Weights','w') returns
the weighted exponential loss of mdl classifying the data in Tbl. Here, Tbl.response is the
response variable, and Tbl.w is the weight variable.

LossFun — Loss function
'mincost' (default) | 'binodeviance' | 'classifcost' | 'classiferror' | 'exponential' |
'hinge' | 'logit' | 'quadratic' | function handle

Loss function, specified as the comma-separated pair consisting of 'LossFun' and a built-in loss
function name or a function handle.

• The following table lists the available loss functions.

Value Description
'binodeviance' Binomial deviance
'classifcost' Observed misclassification cost
'classiferror' Misclassified rate in decimal
'exponential' Exponential loss
'hinge' Hinge loss
'logit' Logistic loss
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Value Description
'mincost' Minimal expected misclassification cost (for

classification scores that are posterior
probabilities)

'quadratic' Quadratic loss

'mincost' is appropriate for classification scores that are posterior probabilities. By default, k-
nearest neighbor models return posterior probabilities as classification scores (see predict).

• You can specify a function handle for a custom loss function using @ (for example, @lossfun). Let
n be the number of observations in X and K be the number of distinct classes
(numel(mdl.ClassNames)). Your custom loss function must have this form:

function lossvalue = lossfun(C,S,W,Cost)

• C is an n-by-K logical matrix with rows indicating the class to which the corresponding
observation belongs. The column order corresponds to the class order in mdl.ClassNames.
Construct C by setting C(p,q) = 1, if observation p is in class q, for each row. Set all other
elements of row p to 0.

• S is an n-by-K numeric matrix of classification scores. The column order corresponds to the
class order in mdl.ClassNames. The argument S is a matrix of classification scores, similar to
the output of predict.

• W is an n-by-1 numeric vector of observation weights. If you pass W, the software normalizes the
weights to sum to 1.

• Cost is a K-by-K numeric matrix of misclassification costs. For example, Cost = ones(K) –
eye(K) specifies a cost of 0 for correct classification and 1 for misclassification.

• The output argument lossvalue is a scalar.

For more details on loss functions, see “Classification Loss” on page 35-4358.
Data Types: char | string | function_handle

Weights — Observation weights
ones(size(X,1),1) (default) | numeric vector | name of a variable in Tbl

Observation weights, specified as the comma-separated pair consisting of 'Weights' and a numeric
vector or the name of a variable in Tbl.

If you specify Weights as a numeric vector, then the size of Weights must be equal to the number of
rows in X or Tbl.

If you specify Weights as the name of a variable in Tbl, the name must be a character vector or
string scalar. For example, if the weights are stored as Tbl.w, then specify Weights as 'w'.
Otherwise, the software treats all columns of Tbl, including Tbl.w, as predictors.

loss normalizes the weights so that observation weights in each class sum to the prior probability of
that class. When you supply Weights, loss computes the weighted classification loss.
Example: 'Weights','w'
Data Types: single | double | char | string
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Algorithms
Classification Loss

Classification loss functions measure the predictive inaccuracy of classification models. When you
compare the same type of loss among many models, a lower loss indicates a better predictive model.

Consider the following scenario.

• L is the weighted average classification loss.
• n is the sample size.

• For binary classification:

• yj is the observed class label. The software codes it as –1 or 1, indicating the negative or
positive class (or the first or second class in the ClassNames property), respectively.

• f(Xj) is the positive-class classification score for observation (row) j of the predictor data X.
• mj = yjf(Xj) is the classification score for classifying observation j into the class corresponding

to yj. Positive values of mj indicate correct classification and do not contribute much to the
average loss. Negative values of mj indicate incorrect classification and contribute significantly
to the average loss.

• For algorithms that support multiclass classification (that is, K ≥ 3):

• yj
* is a vector of K – 1 zeros, with 1 in the position corresponding to the true, observed class yj.

For example, if the true class of the second observation is the third class and K = 4, then y2
* =

[0 0 1 0]′. The order of the classes corresponds to the order in the ClassNames property of
the input model.

• f(Xj) is the length K vector of class scores for observation j of the predictor data X. The order of
the scores corresponds to the order of the classes in the ClassNames property of the input
model.

• mj = yj
*′f(Xj). Therefore, mj is the scalar classification score that the model predicts for the true,

observed class.
• The weight for observation j is wj. The software normalizes the observation weights so that they

sum to the corresponding prior class probability stored in the Prior property. Therefore,

∑
j = 1

n
w j = 1.

Given this scenario, the following table describes the supported loss functions that you can specify by
using the LossFun name-value argument.

Loss Function Value of LossFun Equation
Binomial deviance 'binodeviance'

L = ∑
j = 1

n
w jlog 1 + exp −2m j .
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Loss Function Value of LossFun Equation
Observed
misclassification cost

'classifcost'
L = ∑

j = 1

n
w jcy jy j,

where y j is the class label corresponding to the
class with the maximal score, and cy jy j is the
user-specified cost of classifying an observation
into class y j when its true class is yj.

Misclassified rate in
decimal

'classiferror'
L = ∑

j = 1

n
w jI y j ≠ y j ,

where I{·} is the indicator function.
Cross-entropy loss 'crossentropy' 'crossentropy' is appropriate only for neural

network models.

The weighted cross-entropy loss is

L = − ∑
j = 1

n w jlog(m j)
Kn ,

where the weights w j are normalized to sum to n
instead of 1.

Exponential loss 'exponential'
L = ∑

j = 1

n
w jexp −m j .

Hinge loss 'hinge'

L =∑
j = 1

n

w jmax 0, 1−m j .

Logit loss 'logit'
L = ∑

j = 1

n
w jlog 1 + exp −m j .
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Loss Function Value of LossFun Equation
Minimal expected
misclassification cost

'mincost' 'mincost' is appropriate only if classification
scores are posterior probabilities.

The software computes the weighted minimal
expected classification cost using this procedure
for observations j = 1,...,n.

1 Estimate the expected misclassification cost
of classifying the observation Xj into the class
k:

γ jk = f X j ′C k .

f(Xj) is the column vector of class posterior
probabilities for the observation Xj. C is the
cost matrix stored in the Cost property of
the model.

2 For observation j, predict the class label
corresponding to the minimal expected
misclassification cost:

y j = argmin
k = 1, ..., K

γ jk .

3 Using C, identify the cost incurred (cj) for
making the prediction.

The weighted average of the minimal expected
misclassification cost loss is

L = ∑
j = 1

n
w jc j .

Quadratic loss 'quadratic'
L = ∑

j = 1

n
w j 1−m j

2 .

If you use the default cost matrix (whose element value is 0 for correct classification and 1 for
incorrect classification), then the loss values for 'classifcost', 'classiferror', and
'mincost' are identical. For a model with a nondefault cost matrix, the 'classifcost' loss is
equivalent to the 'mincost' loss most of the time. These losses can be different if prediction into the
class with maximal posterior probability is different from prediction into the class with minimal
expected cost. Note that 'mincost' is appropriate only if classification scores are posterior
probabilities.

This figure compares the loss functions (except 'classifcost', 'crossentropy', and
'mincost') over the score m for one observation. Some functions are normalized to pass through
the point (0,1).
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True Misclassification Cost

Two costs are associated with KNN classification: the true misclassification cost per class and the
expected misclassification cost per observation.

You can set the true misclassification cost per class by using the 'Cost' name-value pair argument
when you run fitcknn. The value Cost(i,j) is the cost of classifying an observation into class j if
its true class is i. By default, Cost(i,j) = 1 if i ~= j, and Cost(i,j) = 0 if i = j. In other
words, the cost is 0 for correct classification and 1 for incorrect classification.

Expected Cost

Two costs are associated with KNN classification: the true misclassification cost per class and the
expected misclassification cost per observation. The third output of predict is the expected
misclassification cost per observation.

Suppose you have Nobs observations that you want to classify with a trained classifier mdl, and you
have K classes. You place the observations into a matrix Xnew with one observation per row. The
command

[label,score,cost] = predict(mdl,Xnew)

returns a matrix cost of size Nobs-by-K, among other outputs. Each row of the cost matrix contains
the expected (average) cost of classifying the observation into each of the K classes. cost(n,j) is

∑
i = 1

K
P i Xnew(n) C j i ,
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where

• K is the number of classes.
• P i X(n)  is the posterior probability on page 35-5727 of class i for observation Xnew(n).
• C j i  is the true misclassification cost of classifying an observation as j when its true class is i.

Version History
Introduced in R2012a

loss can return NaN for predictor data with missing values
Behavior changed in R2022a

The loss function no longer omits an observation with a NaN score when computing the weighted
average classification loss. Therefore, loss can now return NaN when the predictor data X or the
predictor variables in Tbl contain any missing values, and the name-value argument LossFun is not
specified as "classifcost", "classiferror", or "mincost". In most cases, if the test set
observations do not contain missing predictors, the loss function does not return NaN.

This change improves the automatic selection of a classification model when you use fitcauto.
Before this change, the software might select a model (expected to best classify new data) with few
non-NaN predictors.

If loss in your code returns NaN, you can update your code to avoid this result by doing one of the
following:

• Remove or replace the missing values by using rmmissing or fillmissing, respectively.
• Specify the name-value argument LossFun as "classifcost", "classiferror", or

"mincost".

The following table shows the classification models for which the loss object function might return
NaN. For more details, see the Compatibility Considerations for each loss function.

Model Type Full or Compact Model Object loss Object Function
Discriminant analysis
classification model

ClassificationDiscrimina
nt,
CompactClassificationDis
criminant

loss

Ensemble of learners for
classification

ClassificationEnsemble,
CompactClassificationEns
emble

loss

Gaussian kernel classification
model

ClassificationKernel loss

k-nearest neighbor classification
model

ClassificationKNN loss

Linear classification model ClassificationLinear loss
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Model Type Full or Compact Model Object loss Object Function
Neural network classification
model

ClassificationNeuralNetw
ork,
CompactClassificationNeu
ralNetwork

loss

Support vector machine (SVM)
classification model

ClassificationSVM,
CompactClassificationSVM

loss

Extended Capabilities
Tall Arrays
Calculate with arrays that have more rows than fit in memory.

This function fully supports tall arrays. For more information, see “Tall Arrays”.

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

Usage notes and limitations:

• loss does not support GPU arrays for ClassificationKNN models with the following
specifications:

• The 'NSMethod' property is specified as 'kdtree'.
• The 'Distance' property is specified as a function handle.
• The 'IncludeTies' property is specified as true.

For more information, see “Run MATLAB Functions on a GPU” (Parallel Computing Toolbox).

See Also
ClassificationKNN | fitcknn | edge | margin

Topics
“Examine Quality of KNN Classifier” on page 19-30
“Predict Classification Using KNN Classifier” on page 19-31
“Modify KNN Classifier” on page 19-31
“Classification Using Nearest Neighbors” on page 19-14
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loss
Class: ClassificationLinear

Classification loss for linear classification models

Syntax
L = loss(Mdl,X,Y)

L = loss(Mdl,Tbl,ResponseVarName)
L = loss(Mdl,Tbl,Y)

L = loss( ___ ,Name,Value)

Description
L = loss(Mdl,X,Y) returns the classification losses on page 35-4372 for the binary, linear
classification model Mdl using predictor data in X and corresponding class labels in Y. L contains
classification error rates for each regularization strength in Mdl.

L = loss(Mdl,Tbl,ResponseVarName) returns the classification losses for the predictor data in
Tbl and the true class labels in Tbl.ResponseVarName.

L = loss(Mdl,Tbl,Y) returns the classification losses for the predictor data in table Tbl and the
true class labels in Y.

L = loss( ___ ,Name,Value) specifies options using one or more name-value pair arguments in
addition to any of the input argument combinations in previous syntaxes. For example, you can
specify that columns in the predictor data correspond to observations or specify the classification loss
function.

Note If the predictor data in X or Tbl contains any missing values and LossFun is not set to
"classifcost", "classiferror", or "mincost", the loss function can return NaN. For more
details, see “loss can return NaN for predictor data with missing values” on page 35-4376.

Input Arguments
Mdl — Binary, linear classification model
ClassificationLinear model object

Binary, linear classification model, specified as a ClassificationLinear model object. You can
create a ClassificationLinear model object using fitclinear.

X — Predictor data
full matrix | sparse matrix

Predictor data, specified as an n-by-p full or sparse matrix. This orientation of X indicates that rows
correspond to individual observations, and columns correspond to individual predictor variables.
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Note If you orient your predictor matrix so that observations correspond to columns and specify
'ObservationsIn','columns', then you might experience a significant reduction in computation
time.

The length of Y and the number of observations in X must be equal.
Data Types: single | double

Y — Class labels
categorical array | character array | string array | logical vector | numeric vector | cell array of
character vectors

Class labels, specified as a categorical, character, or string array; logical or numeric vector; or cell
array of character vectors.

• The data type of Y must be the same as the data type of Mdl.ClassNames. (The software treats
string arrays as cell arrays of character vectors.)

• The distinct classes in Y must be a subset of Mdl.ClassNames.
• If Y is a character array, then each element must correspond to one row of the array.
• The length of Y must be equal to the number of observations in X or Tbl.

Data Types: categorical | char | string | logical | single | double | cell

Tbl — Sample data
table

Sample data used to train the model, specified as a table. Each row of Tbl corresponds to one
observation, and each column corresponds to one predictor variable. Optionally, Tbl can contain
additional columns for the response variable and observation weights. Tbl must contain all the
predictors used to train Mdl. Multicolumn variables and cell arrays other than cell arrays of character
vectors are not allowed.

If Tbl contains the response variable used to train Mdl, then you do not need to specify
ResponseVarName or Y.

If you train Mdl using sample data contained in a table, then the input data for loss must also be in a
table.

ResponseVarName — Response variable name
name of variable in Tbl

Response variable name, specified as the name of a variable in Tbl. If Tbl contains the response
variable used to train Mdl, then you do not need to specify ResponseVarName.

If you specify ResponseVarName, then you must specify it as a character vector or string scalar. For
example, if the response variable is stored as Tbl.Y, then specify ResponseVarName as 'Y'.
Otherwise, the software treats all columns of Tbl, including Tbl.Y, as predictors.

The response variable must be a categorical, character, or string array; a logical or numeric vector;
or a cell array of character vectors. If the response variable is a character array, then each element
must correspond to one row of the array.
Data Types: char | string
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Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.

LossFun — Loss function
'classiferror' (default) | 'binodeviance' | 'classifcost' | 'exponential' | 'hinge' |
'logit' | 'mincost' | 'quadratic' | function handle

Loss function, specified as the comma-separated pair consisting of 'LossFun' and a built-in loss
function name or function handle.

• The following table lists the available loss functions. Specify one using its corresponding character
vector or string scalar.

Value Description
'binodeviance' Binomial deviance
'classifcost' Observed misclassification cost
'classiferror' Misclassified rate in decimal
'exponential' Exponential loss
'hinge' Hinge loss
'logit' Logistic loss
'mincost' Minimal expected misclassification cost (for

classification scores that are posterior
probabilities)

'quadratic' Quadratic loss

'mincost' is appropriate for classification scores that are posterior probabilities. For linear
classification models, logistic regression learners return posterior probabilities as classification
scores by default, but SVM learners do not (see predict).

• To specify a custom loss function, use function handle notation. The function must have this form:

lossvalue = lossfun(C,S,W,Cost)

• The output argument lossvalue is a scalar.
• You specify the function name (lossfun).
• C is an n-by-K logical matrix with rows indicating the class to which the corresponding

observation belongs. n is the number of observations in Tbl or X, and K is the number of
distinct classes (numel(Mdl.ClassNames). The column order corresponds to the class order
in Mdl.ClassNames. Create C by setting C(p,q) = 1, if observation p is in class q, for each
row. Set all other elements of row p to 0.

• S is an n-by-K numeric matrix of classification scores. The column order corresponds to the
class order in Mdl.ClassNames. S is a matrix of classification scores, similar to the output of
predict.

• W is an n-by-1 numeric vector of observation weights.
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• Cost is a K-by-K numeric matrix of misclassification costs. For example, Cost = ones(K) –
eye(K) specifies a cost of 0 for correct classification and 1 for misclassification.

Example: 'LossFun',@lossfun
Data Types: char | string | function_handle

ObservationsIn — Predictor data observation dimension
'rows' (default) | 'columns'

Predictor data observation dimension, specified as 'rows' or 'columns'.

Note If you orient your predictor matrix so that observations correspond to columns and specify
'ObservationsIn','columns', then you might experience a significant reduction in computation
time. You cannot specify 'ObservationsIn','columns' for predictor data in a table.

Data Types: char | string

Weights — Observation weights
ones(size(X,1),1) (default) | numeric vector | name of variable in Tbl

Observation weights, specified as the comma-separated pair consisting of 'Weights' and a numeric
vector or the name of a variable in Tbl.

• If you specify Weights as a numeric vector, then the size of Weights must be equal to the
number of observations in X or Tbl.

• If you specify Weights as the name of a variable in Tbl, then the name must be a character
vector or string scalar. For example, if the weights are stored as Tbl.W, then specify Weights as
'W'. Otherwise, the software treats all columns of Tbl, including Tbl.W, as predictors.

If you supply weights, then for each regularization strength, loss computes the weighted
classification loss on page 35-4372 and normalizes weights to sum up to the value of the prior
probability in the respective class.
Data Types: double | single

Output Arguments
L — Classification losses
numeric scalar | numeric row vector

Classification losses, returned as a numeric scalar or row vector. The interpretation of L depends on
Weights and LossFun.

L is the same size as Mdl.Lambda. L(j) is the classification loss of the linear classification model
trained using the regularization strength Mdl.Lambda(j).

Examples

Estimate Test-Sample Classification Loss

Load the NLP data set.
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load nlpdata

X is a sparse matrix of predictor data, and Y is a categorical vector of class labels. There are more
than two classes in the data.

The models should identify whether the word counts in a web page are from the Statistics and
Machine Learning Toolbox™ documentation. So, identify the labels that correspond to the Statistics
and Machine Learning Toolbox™ documentation web pages.

Ystats = Y == 'stats';

Train a binary, linear classification model that can identify whether the word counts in a
documentation web page are from the Statistics and Machine Learning Toolbox™ documentation.
Specify to hold out 30% of the observations. Optimize the objective function using SpaRSA.

rng(1); % For reproducibility 
CVMdl = fitclinear(X,Ystats,'Solver','sparsa','Holdout',0.30);
CMdl = CVMdl.Trained{1};

CVMdl is a ClassificationPartitionedLinear model. It contains the property Trained, which
is a 1-by-1 cell array holding a ClassificationLinear model that the software trained using the
training set.

Extract the training and test data from the partition definition.

trainIdx = training(CVMdl.Partition);
testIdx = test(CVMdl.Partition);

Estimate the training- and test-sample classification error.

ceTrain = loss(CMdl,X(trainIdx,:),Ystats(trainIdx))

ceTrain = 1.3572e-04

ceTest = loss(CMdl,X(testIdx,:),Ystats(testIdx))

ceTest = 5.2804e-04

Because there is one regularization strength in CMdl, ceTrain and ceTest are numeric scalars.

Specify Custom Classification Loss

Load the NLP data set. Preprocess the data as in “Estimate Test-Sample Classification Loss” on page
35-4367, and transpose the predictor data.

load nlpdata
Ystats = Y == 'stats';
X = X';

Train a binary, linear classification model. Specify to hold out 30% of the observations. Optimize the
objective function using SpaRSA. Specify that the predictor observations correspond to columns.

rng(1); % For reproducibility 
CVMdl = fitclinear(X,Ystats,'Solver','sparsa','Holdout',0.30,...
    'ObservationsIn','columns');
CMdl = CVMdl.Trained{1};
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CVMdl is a ClassificationPartitionedLinear model. It contains the property Trained, which
is a 1-by-1 cell array holding a ClassificationLinear model that the software trained using the
training set.

Extract the training and test data from the partition definition.

trainIdx = training(CVMdl.Partition);
testIdx = test(CVMdl.Partition);

Create an anonymous function that measures linear loss, that is,

L =
∑ j −w jy jf j
∑ jw j

.

w j is the weight for observation j, y j is response j (-1 for the negative class, and 1 otherwise), and f j is
the raw classification score of observation j. Custom loss functions must be written in a particular
form. For rules on writing a custom loss function, see the LossFun name-value pair argument.

linearloss = @(C,S,W,Cost)sum(-W.*sum(S.*C,2))/sum(W);

Estimate the training- and test-sample classification loss using the linear loss function.

ceTrain = loss(CMdl,X(:,trainIdx),Ystats(trainIdx),'LossFun',linearloss,...
    'ObservationsIn','columns')

ceTrain = -7.8330

ceTest = loss(CMdl,X(:,testIdx),Ystats(testIdx),'LossFun',linearloss,...
    'ObservationsIn','columns')

ceTest = -7.7383

Find Good Lasso Penalty Using Classification Loss

To determine a good lasso-penalty strength for a linear classification model that uses a logistic
regression learner, compare test-sample classification error rates.

Load the NLP data set. Preprocess the data as in “Specify Custom Classification Loss” on page 35-
4368.

load nlpdata
Ystats = Y == 'stats';
X = X'; 

rng(10); % For reproducibility
Partition = cvpartition(Ystats,'Holdout',0.30);
testIdx = test(Partition);
XTest = X(:,testIdx);
YTest = Ystats(testIdx);

Create a set of 11 logarithmically-spaced regularization strengths from 10−6 through 10−0 . 5.

Lambda = logspace(-6,-0.5,11);
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Train binary, linear classification models that use each of the regularization strengths. Optimize the
objective function using SpaRSA. Lower the tolerance on the gradient of the objective function to
1e-8.

CVMdl = fitclinear(X,Ystats,'ObservationsIn','columns',...
    'CVPartition',Partition,'Learner','logistic','Solver','sparsa',...
    'Regularization','lasso','Lambda',Lambda,'GradientTolerance',1e-8)

CVMdl = 
  ClassificationPartitionedLinear
    CrossValidatedModel: 'Linear'
           ResponseName: 'Y'
        NumObservations: 31572
                  KFold: 1
              Partition: [1x1 cvpartition]
             ClassNames: [0 1]
         ScoreTransform: 'none'

  Properties, Methods

Extract the trained linear classification model.

Mdl = CVMdl.Trained{1}

Mdl = 
  ClassificationLinear
      ResponseName: 'Y'
        ClassNames: [0 1]
    ScoreTransform: 'logit'
              Beta: [34023x11 double]
              Bias: [-12.1040 -12.1040 -12.1040 -12.1040 -12.1040 ... ]
            Lambda: [1.0000e-06 3.5481e-06 1.2589e-05 4.4668e-05 ... ]
           Learner: 'logistic'

  Properties, Methods

Mdl is a ClassificationLinear model object. Because Lambda is a sequence of regularization
strengths, you can think of Mdl as 11 models, one for each regularization strength in Lambda.

Estimate the test-sample classification error.

ce = loss(Mdl,X(:,testIdx),Ystats(testIdx),'ObservationsIn','columns');

Because there are 11 regularization strengths, ce is a 1-by-11 vector of classification error rates.

Higher values of Lambda lead to predictor variable sparsity, which is a good quality of a classifier. For
each regularization strength, train a linear classification model using the entire data set and the same
options as when you cross-validated the models. Determine the number of nonzero coefficients per
model.

Mdl = fitclinear(X,Ystats,'ObservationsIn','columns',...
    'Learner','logistic','Solver','sparsa','Regularization','lasso',...
    'Lambda',Lambda,'GradientTolerance',1e-8);
numNZCoeff = sum(Mdl.Beta~=0);
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In the same figure, plot the test-sample error rates and frequency of nonzero coefficients for each
regularization strength. Plot all variables on the log scale.

figure;
[h,hL1,hL2] = plotyy(log10(Lambda),log10(ce),...
    log10(Lambda),log10(numNZCoeff + 1)); 
hL1.Marker = 'o';
hL2.Marker = 'o';
ylabel(h(1),'log_{10} classification error')
ylabel(h(2),'log_{10} nonzero-coefficient frequency')
xlabel('log_{10} Lambda')
title('Test-Sample Statistics')
hold off

Choose the index of the regularization strength that balances predictor variable sparsity and low
classification error. In this case, a value between 10−4 to 10−1 should suffice.

idxFinal = 7;

Select the model from Mdl with the chosen regularization strength.

MdlFinal = selectModels(Mdl,idxFinal);

MdlFinal is a ClassificationLinear model containing one regularization strength. To estimate
labels for new observations, pass MdlFinal and the new data to predict.
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More About
Classification Loss

Classification loss functions measure the predictive inaccuracy of classification models. When you
compare the same type of loss among many models, a lower loss indicates a better predictive model.

Consider the following scenario.

• L is the weighted average classification loss.
• n is the sample size.

• yj is the observed class label. The software codes it as –1 or 1, indicating the negative or positive
class (or the first or second class in the ClassNames property), respectively.

• f(Xj) is the positive-class classification score for observation (row) j of the predictor data X.
• mj = yjf(Xj) is the classification score for classifying observation j into the class corresponding to

yj. Positive values of mj indicate correct classification and do not contribute much to the average
loss. Negative values of mj indicate incorrect classification and contribute significantly to the
average loss.

• The weight for observation j is wj. The software normalizes the observation weights so that they
sum to the corresponding prior class probability stored in the Prior property. Therefore,

∑
j = 1

n
w j = 1.

Given this scenario, the following table describes the supported loss functions that you can specify by
using the LossFun name-value argument.

Loss Function Value of LossFun Equation
Binomial deviance 'binodeviance'

L = ∑
j = 1

n
w jlog 1 + exp −2m j .

Observed
misclassification cost

'classifcost'
L = ∑

j = 1

n
w jcy jy j,

where y j is the class label corresponding to the
class with the maximal score, and cy jy j is the
user-specified cost of classifying an observation
into class y j when its true class is yj.

Misclassified rate in
decimal

'classiferror'
L = ∑

j = 1

n
w jI y j ≠ y j ,

where I{·} is the indicator function.
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Loss Function Value of LossFun Equation
Cross-entropy loss 'crossentropy' 'crossentropy' is appropriate only for neural

network models.

The weighted cross-entropy loss is

L = − ∑
j = 1

n w jlog(m j)
Kn ,

where the weights w j are normalized to sum to n
instead of 1.

Exponential loss 'exponential'
L = ∑

j = 1

n
w jexp −m j .

Hinge loss 'hinge'

L =∑
j = 1

n

w jmax 0, 1−m j .

Logit loss 'logit'
L = ∑

j = 1

n
w jlog 1 + exp −m j .
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Loss Function Value of LossFun Equation
Minimal expected
misclassification cost

'mincost' 'mincost' is appropriate only if classification
scores are posterior probabilities.

The software computes the weighted minimal
expected classification cost using this procedure
for observations j = 1,...,n.

1 Estimate the expected misclassification cost
of classifying the observation Xj into the class
k:

γ jk = f X j ′C k .

f(Xj) is the column vector of class posterior
probabilities for the observation Xj. C is the
cost matrix stored in the Cost property of
the model.

2 For observation j, predict the class label
corresponding to the minimal expected
misclassification cost:

y j = argmin
k = 1, ..., K

γ jk .

3 Using C, identify the cost incurred (cj) for
making the prediction.

The weighted average of the minimal expected
misclassification cost loss is

L = ∑
j = 1

n
w jc j .

Quadratic loss 'quadratic'
L = ∑

j = 1

n
w j 1−m j

2 .

If you use the default cost matrix (whose element value is 0 for correct classification and 1 for
incorrect classification), then the loss values for 'classifcost', 'classiferror', and
'mincost' are identical. For a model with a nondefault cost matrix, the 'classifcost' loss is
equivalent to the 'mincost' loss most of the time. These losses can be different if prediction into the
class with maximal posterior probability is different from prediction into the class with minimal
expected cost. Note that 'mincost' is appropriate only if classification scores are posterior
probabilities.

This figure compares the loss functions (except 'classifcost', 'crossentropy', and
'mincost') over the score m for one observation. Some functions are normalized to pass through
the point (0,1).
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Algorithms
By default, observation weights are prior class probabilities. If you supply weights using Weights,
then the software normalizes them to sum to the prior probabilities in the respective classes. The
software uses the renormalized weights to estimate the weighted classification loss.

Version History
Introduced in R2016a

loss returns a different value for a model with a nondefault cost matrix
Behavior changed in R2022a

If you specify a nondefault cost matrix when you train the input model object, the loss function
returns a different value compared to previous releases.

The loss function uses the prior probabilities stored in the Prior property to normalize the
observation weights of the input data. Also, the function uses the cost matrix stored in the Cost
property if you specify the LossFun name-value argument as "classifcost" or "mincost". The
way the function uses the Prior and Cost property values has not changed. However, the property
values stored in the input model object have changed for a model with a nondefault cost matrix, so
the function can return a different value.

For details about the property value change, see “Cost property stores the user-specified cost matrix”
on page 35-488.
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If you want the software to handle the cost matrix, prior probabilities, and observation weights as in
previous releases, adjust the prior probabilities and observation weights for the nondefault cost
matrix, as described in “Adjust Prior Probabilities and Observation Weights for Misclassification Cost
Matrix” on page 19-9. Then, when you train a classification model, specify the adjusted prior
probabilities and observation weights by using the Prior and Weights name-value arguments,
respectively, and use the default cost matrix.

loss can return NaN for predictor data with missing values
Behavior changed in R2022a

The loss function no longer omits an observation with a NaN score when computing the weighted
average classification loss. Therefore, loss can now return NaN when the predictor data X or the
predictor variables in Tbl contain any missing values, and the name-value argument LossFun is not
specified as "classifcost", "classiferror", or "mincost". In most cases, if the test set
observations do not contain missing predictors, the loss function does not return NaN.

This change improves the automatic selection of a classification model when you use fitcauto.
Before this change, the software might select a model (expected to best classify new data) with few
non-NaN predictors.

If loss in your code returns NaN, you can update your code to avoid this result by doing one of the
following:

• Remove or replace the missing values by using rmmissing or fillmissing, respectively.
• Specify the name-value argument LossFun as "classifcost", "classiferror", or

"mincost".

The following table shows the classification models for which the loss object function might return
NaN. For more details, see the Compatibility Considerations for each loss function.

Model Type Full or Compact Model Object loss Object Function
Discriminant analysis
classification model

ClassificationDiscrimina
nt,
CompactClassificationDis
criminant

loss

Ensemble of learners for
classification

ClassificationEnsemble,
CompactClassificationEns
emble

loss

Gaussian kernel classification
model

ClassificationKernel loss

k-nearest neighbor classification
model

ClassificationKNN loss

Linear classification model ClassificationLinear loss
Neural network classification
model

ClassificationNeuralNetw
ork,
CompactClassificationNeu
ralNetwork

loss

Support vector machine (SVM)
classification model

ClassificationSVM,
CompactClassificationSVM

loss
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Extended Capabilities
Tall Arrays
Calculate with arrays that have more rows than fit in memory.

Usage notes and limitations:

• loss does not support tall table data.

For more information, see “Tall Arrays”.

See Also
ClassificationLinear | predict | fitclinear
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loss
Classification error

Syntax
L = loss(obj,X,Y)
L = loss(obj,X,Y,Name,Value)

Description
L = loss(obj,X,Y) returns the classification loss on page 35-4380, which is a scalar representing
how well obj classifies the data in X, when Y contains the true classifications.

When computing the loss, loss normalizes the class probabilities in Y to the class probabilities used
for training, stored in the Prior property of obj.

L = loss(obj,X,Y,Name,Value) returns the loss with additional options specified by one or more
Name,Value pair arguments.

Note If the predictor data X contains any missing values and LossFun is not set to "mincost" or
"classiferror", the loss function can return NaN. For more information, see “loss can return
NaN for predictor data with missing values” on page 35-4385.

Input Arguments
obj

Discriminant analysis classifier of class ClassificationDiscriminant or
CompactClassificationDiscriminant, typically constructed with fitcdiscr.

X

Matrix where each row represents an observation, and each column represents a predictor. The
number of columns in X must equal the number of predictors in obj.

Y

Class labels, with the same data type as exists in obj. The number of elements of Y must equal the
number of rows of X.

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
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LossFun

Built-in loss function name (character vector or string scalar in the table) or function handle.

• The following table lists the available loss functions. Specify one using the corresponding value.

Value Description
'binodeviance' Binomial deviance
'classifcost' Observed misclassification cost
'classiferror' Misclassified rate in decimal
'exponential' Exponential loss
'hinge' Hinge loss
'logit' Logistic loss
'mincost' Minimal expected misclassification cost (for

classification scores that are posterior
probabilities)

'quadratic' Quadratic loss

'mincost' is appropriate for classification scores that are posterior probabilities. Discriminant
analysis models return posterior probabilities as classification scores by default (see predict).

• Specify your own function using function handle notation.

Suppose that n be the number of observations in X and K be the number of distinct classes
(numel(Mdl.ClassNames)). Your function must have this signature

lossvalue = lossfun(C,S,W,Cost)

where:

• The output argument lossvalue is a scalar.
• You choose the function name (lossfun).
• C is an n-by-K logical matrix with rows indicating which class the corresponding observation

belongs. The column order corresponds to the class order in Mdl.ClassNames.

Construct C by setting C(p,q) = 1 if observation p is in class q, for each row. Set all other
elements of row p to 0.

• S is an n-by-K numeric matrix of classification scores. The column order corresponds to the
class order in Mdl.ClassNames. S is a matrix of classification scores, similar to the output of
predict.

• W is an n-by-1 numeric vector of observation weights. If you pass W, the software normalizes
them to sum to 1.

• Cost is a K-by-K numeric matrix of misclassification costs. For example, Cost = ones(K) -
eye(K) specifies a cost of 0 for correct classification, and 1 for misclassification.

Specify your function using 'LossFun',@lossfun.

For more details on loss functions, see “Classification Loss” on page 35-4380.

Default: 'mincost'
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Weights

Numeric vector of length N, where N is the number of rows of X. weights are nonnegative. loss
normalizes the weights so that observation weights in each class sum to the prior probability of that
class. When you supply weights, loss computes weighted classification loss.

Default: ones(N,1)

Output Arguments
L

Classification loss on page 35-4380, a scalar. The interpretation of L depends on the values in
weights and lossfun.

Examples

Estimate Classification Error

Load Fisher's iris data set.

load fisheriris

Train a discriminant analysis model using all observations in the data.

Mdl = fitcdiscr(meas,species);

Estimate the classification error of the model using the training observations.

L = loss(Mdl,meas,species)

L = 0.0200

Alternatively, if Mdl is not compact, then you can estimate the training-sample classification error by
passing Mdl to resubLoss.

More About
Classification Loss

Classification loss functions measure the predictive inaccuracy of classification models. When you
compare the same type of loss among many models, a lower loss indicates a better predictive model.

Consider the following scenario.

• L is the weighted average classification loss.
• n is the sample size.

• For binary classification:

• yj is the observed class label. The software codes it as –1 or 1, indicating the negative or
positive class (or the first or second class in the ClassNames property), respectively.
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• f(Xj) is the positive-class classification score for observation (row) j of the predictor data X.
• mj = yjf(Xj) is the classification score for classifying observation j into the class corresponding

to yj. Positive values of mj indicate correct classification and do not contribute much to the
average loss. Negative values of mj indicate incorrect classification and contribute significantly
to the average loss.

• For algorithms that support multiclass classification (that is, K ≥ 3):

• yj
* is a vector of K – 1 zeros, with 1 in the position corresponding to the true, observed class yj.

For example, if the true class of the second observation is the third class and K = 4, then y2
* =

[0 0 1 0]′. The order of the classes corresponds to the order in the ClassNames property of
the input model.

• f(Xj) is the length K vector of class scores for observation j of the predictor data X. The order of
the scores corresponds to the order of the classes in the ClassNames property of the input
model.

• mj = yj
*′f(Xj). Therefore, mj is the scalar classification score that the model predicts for the true,

observed class.
• The weight for observation j is wj. The software normalizes the observation weights so that they

sum to the corresponding prior class probability stored in the Prior property. Therefore,

∑
j = 1

n
w j = 1.

Given this scenario, the following table describes the supported loss functions that you can specify by
using the LossFun name-value argument.

Loss Function Value of LossFun Equation
Binomial deviance 'binodeviance'

L = ∑
j = 1

n
w jlog 1 + exp −2m j .

Observed
misclassification cost

'classifcost'
L = ∑

j = 1

n
w jcy jy j,

where y j is the class label corresponding to the
class with the maximal score, and cy jy j is the
user-specified cost of classifying an observation
into class y j when its true class is yj.

Misclassified rate in
decimal

'classiferror'
L = ∑

j = 1

n
w jI y j ≠ y j ,

where I{·} is the indicator function.
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Loss Function Value of LossFun Equation
Cross-entropy loss 'crossentropy' 'crossentropy' is appropriate only for neural

network models.

The weighted cross-entropy loss is

L = − ∑
j = 1

n w jlog(m j)
Kn ,

where the weights w j are normalized to sum to n
instead of 1.

Exponential loss 'exponential'
L = ∑

j = 1

n
w jexp −m j .

Hinge loss 'hinge'

L =∑
j = 1

n

w jmax 0, 1−m j .

Logit loss 'logit'
L = ∑

j = 1

n
w jlog 1 + exp −m j .
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Loss Function Value of LossFun Equation
Minimal expected
misclassification cost

'mincost' 'mincost' is appropriate only if classification
scores are posterior probabilities.

The software computes the weighted minimal
expected classification cost using this procedure
for observations j = 1,...,n.

1 Estimate the expected misclassification cost
of classifying the observation Xj into the class
k:

γ jk = f X j ′C k .

f(Xj) is the column vector of class posterior
probabilities for the observation Xj. C is the
cost matrix stored in the Cost property of
the model.

2 For observation j, predict the class label
corresponding to the minimal expected
misclassification cost:

y j = argmin
k = 1, ..., K

γ jk .

3 Using C, identify the cost incurred (cj) for
making the prediction.

The weighted average of the minimal expected
misclassification cost loss is

L = ∑
j = 1

n
w jc j .

Quadratic loss 'quadratic'
L = ∑

j = 1

n
w j 1−m j

2 .

If you use the default cost matrix (whose element value is 0 for correct classification and 1 for
incorrect classification), then the loss values for 'classifcost', 'classiferror', and
'mincost' are identical. For a model with a nondefault cost matrix, the 'classifcost' loss is
equivalent to the 'mincost' loss most of the time. These losses can be different if prediction into the
class with maximal posterior probability is different from prediction into the class with minimal
expected cost. Note that 'mincost' is appropriate only if classification scores are posterior
probabilities.

This figure compares the loss functions (except 'classifcost', 'crossentropy', and
'mincost') over the score m for one observation. Some functions are normalized to pass through
the point (0,1).
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Posterior Probability

The posterior probability that a point x belongs to class k is the product of the prior probability and
the multivariate normal density. The density function of the multivariate normal with 1-by-d mean μk
and d-by-d covariance Σk at a 1-by-d point x is

P x k = 1
2π d Σk

1/2exp −1
2 x− μk Σk

−1 x− μk
T ,

where Σk  is the determinant of Σk, and Σk
−1 is the inverse matrix.

Let P(k) represent the prior probability of class k. Then the posterior probability that an observation x
is of class k is

P k x = P x k P k
P x ,

where P(x) is a normalization constant, the sum over k of P(x|k)P(k).

Prior Probability

The prior probability is one of three choices:

• 'uniform' — The prior probability of class k is one over the total number of classes.
• 'empirical' — The prior probability of class k is the number of training samples of class k

divided by the total number of training samples.
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• Custom — The prior probability of class k is the kth element of the prior vector. See fitcdiscr.

After creating a classification model (Mdl) you can set the prior using dot notation:

Mdl.Prior = v;

where v is a vector of positive elements representing the frequency with which each element occurs.
You do not need to retrain the classifier when you set a new prior.

Cost

The matrix of expected costs per observation is defined in “Cost” on page 21-7.

Version History
loss can return NaN for predictor data with missing values
Behavior changed in R2022a

The loss function no longer omits an observation with a NaN score when computing the weighted
average classification loss. Therefore, loss can now return NaN when the predictor data X contains
any missing values and the name-value argument LossFun is not specified as "classifcost",
"classiferror", or "mincost". In most cases, if the test set observations do not contain missing
predictors, the loss function does not return NaN.

This change improves the automatic selection of a classification model when you use fitcauto.
Before this change, the software might select a model (expected to best classify new data) with few
non-NaN predictors.

If loss in your code returns NaN, you can update your code to avoid this result by doing one of the
following:

• Remove or replace the missing values by using rmmissing or fillmissing, respectively.
• Specify the name-value argument LossFun as "classifcost", "classiferror", or

"mincost".

The following table shows the classification models for which the loss object function might return
NaN. For more details, see the Compatibility Considerations for each loss function.

Model Type Full or Compact Model Object loss Object Function
Discriminant analysis
classification model

ClassificationDiscrimina
nt,
CompactClassificationDis
criminant

loss

Ensemble of learners for
classification

ClassificationEnsemble,
CompactClassificationEns
emble

loss

Gaussian kernel classification
model

ClassificationKernel loss

k-nearest neighbor classification
model

ClassificationKNN loss
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Model Type Full or Compact Model Object loss Object Function
Linear classification model ClassificationLinear loss
Neural network classification
model

ClassificationNeuralNetw
ork,
CompactClassificationNeu
ralNetwork

loss

Support vector machine (SVM)
classification model

ClassificationSVM,
CompactClassificationSVM

loss

Extended Capabilities
Tall Arrays
Calculate with arrays that have more rows than fit in memory.

This function fully supports tall arrays. You can use models trained on either in-memory or tall data
with this function.

For more information, see “Tall Arrays”.

See Also
ClassificationDiscriminant | fitcdiscr | edge | margin | predict

Topics
“Discriminant Analysis Classification” on page 21-2
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loss
Package: 

Classification loss for multiclass error-correcting output codes (ECOC) model

Syntax
L = loss(Mdl,tbl,ResponseVarName)
L = loss(Mdl,tbl,Y)

L = loss(Mdl,X,Y)

L = loss( ___ ,Name,Value)

Description
L = loss(Mdl,tbl,ResponseVarName) returns the classification loss (L), a scalar representing
how well the trained multiclass error-correcting output codes (ECOC) model Mdl classifies the
predictor data in tbl compared to the true class labels in tbl.ResponseVarName. By default, loss
uses the classification error on page 35-4394 to compute L.

L = loss(Mdl,tbl,Y) returns the classification loss for the predictor data in table tbl and the
true class labels in Y.

L = loss(Mdl,X,Y) returns the classification loss for the predictor data in matrix X and the true
class labels in Y.

L = loss( ___ ,Name,Value) specifies options using one or more name-value pair arguments in
addition to any of the input argument combinations in previous syntaxes. For example, you can
specify a decoding scheme, classification loss function, and verbosity level.

Examples

Determine Test-Sample Loss of ECOC Model

Load Fisher's iris data set. Specify the predictor data X, the response data Y, and the order of the
classes in Y.

load fisheriris
X = meas;
Y = categorical(species);
classOrder = unique(Y); % Class order
rng(1); % For reproducibility

Train an ECOC model using SVM binary classifiers. Specify a 15% holdout sample, standardize the
predictors using an SVM template, and specify the class order.

t = templateSVM('Standardize',true);
PMdl = fitcecoc(X,Y,'Holdout',0.15,'Learners',t,'ClassNames',classOrder);
Mdl = PMdl.Trained{1};           % Extract trained, compact classifier
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PMdl is a ClassificationPartitionedECOC model. It has the property Trained, a 1-by-1 cell
array containing the CompactClassificationECOC model that the software trained using the
training set.

Estimate the test-sample classification error, which is the default classification loss.

testInds = test(PMdl.Partition);  % Extract the test indices
XTest = X(testInds,:);
YTest = Y(testInds,:);
L = loss(Mdl,XTest,YTest)

L = 0

The ECOC model correctly classifies all irises in the test sample.

Determine ECOC Model Quality Using Custom Loss

Determine the quality of an ECOC model by using a custom loss function that considers the minimal
binary loss for each observation.

Load Fisher's iris data set. Specify the predictor data X, the response data Y, and the order of the
classes in Y.

load fisheriris
X = meas;
Y = categorical(species);
classOrder = unique(Y);  % Class order
rng(1) % For reproducibility

Train an ECOC model using SVM binary classifiers. Specify a 15% holdout sample, standardize the
predictors using an SVM template, and define the class order.

t = templateSVM('Standardize',true);
PMdl = fitcecoc(X,Y,'Holdout',0.15,'Learners',t,'ClassNames',classOrder);
Mdl = PMdl.Trained{1};           % Extract trained, compact classifier

PMdl is a ClassificationPartitionedECOC model. It has the property Trained, a 1-by-1 cell
array containing the CompactClassificationECOC model that the software trained using the
training set.

Create a function that takes the minimal loss for each observation, then averages the minimal losses
for all observations. S corresponds to the NegLoss output of predict.

lossfun = @(~,S,~,~)mean(min(-S,[],2));

Compute the test-sample custom loss.

testInds = test(PMdl.Partition);  % Extract the test indices
XTest = X(testInds,:);
YTest = Y(testInds,:);
loss(Mdl,XTest,YTest,'LossFun',lossfun)

ans = 0.0049

The average minimal binary loss for the test-sample observations is 0.0033.
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Input Arguments
Mdl — Full or compact multiclass ECOC model
ClassificationECOC model object | CompactClassificationECOC model object

Full or compact multiclass ECOC model, specified as a ClassificationECOC or
CompactClassificationECOC model object.

To create a full or compact ECOC model, see ClassificationECOC or
CompactClassificationECOC.

tbl — Sample data
table

Sample data, specified as a table. Each row of tbl corresponds to one observation, and each column
corresponds to one predictor variable. Optionally, tbl can contain additional columns for the
response variable and observation weights. tbl must contain all the predictors used to train Mdl.
Multicolumn variables and cell arrays other than cell arrays of character vectors are not allowed.

If you train Mdl using sample data contained in a table, then the input data for loss must also be in
a table.

When training Mdl, assume that you set 'Standardize',true for a template object specified in the
'Learners' name-value pair argument of fitcecoc. In this case, for the corresponding binary
learner j, the software standardizes the columns of the new predictor data using the corresponding
means in Mdl.BinaryLearner{j}.Mu and standard deviations in
Mdl.BinaryLearner{j}.Sigma.
Data Types: table

ResponseVarName — Response variable name
name of variable in tbl

Response variable name, specified as the name of a variable in tbl. If tbl contains the response
variable used to train Mdl, then you do not need to specify ResponseVarName.

If you specify ResponseVarName, then you must do so as a character vector or string scalar. For
example, if the response variable is stored as tbl.y, then specify ResponseVarName as 'y'.
Otherwise, the software treats all columns of tbl, including tbl.y, as predictors.

The response variable must be a categorical, character, or string array, a logical or numeric vector, or
a cell array of character vectors. If the response variable is a character array, then each element must
correspond to one row of the array.
Data Types: char | string

X — Predictor data
numeric matrix

Predictor data, specified as a numeric matrix.

Each row of X corresponds to one observation, and each column corresponds to one variable. The
variables in the columns of X must be the same as the variables that trained the classifier Mdl.

The number of rows in X must equal the number of rows in Y.
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When training Mdl, assume that you set 'Standardize',true for a template object specified in the
'Learners' name-value pair argument of fitcecoc. In this case, for the corresponding binary
learner j, the software standardizes the columns of the new predictor data using the corresponding
means in Mdl.BinaryLearner{j}.Mu and standard deviations in
Mdl.BinaryLearner{j}.Sigma.
Data Types: double | single

Y — Class labels
categorical array | character array | string array | logical vector | numeric vector | cell array of
character vectors

Class labels, specified as a categorical, character, or string array, a logical or numeric vector, or a cell
array of character vectors. Y must have the same data type as Mdl.ClassNames. (The software
treats string arrays as cell arrays of character vectors.)

The number of rows in Y must equal the number of rows in tbl or X.
Data Types: categorical | char | string | logical | single | double | cell

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: loss(Mdl,X,Y,'BinaryLoss','hinge','LossFun',@lossfun) specifies 'hinge' as
the binary learner loss function and the custom function handle @lossfun as the overall loss
function.

BinaryLoss — Binary learner loss function
'hamming' | 'linear' | 'logit' | 'exponential' | 'binodeviance' | 'hinge' | 'quadratic'
| function handle

Binary learner loss function, specified as the comma-separated pair consisting of 'BinaryLoss' and
a built-in loss function name or function handle.

• This table describes the built-in functions, where yj is the class label for a particular binary learner
(in the set {–1,1,0}), sj is the score for observation j, and g(yj,sj) is the binary loss formula.

Value Description Score Domain g(yj,sj)
'binodeviance' Binomial deviance (–∞,∞) log[1 + exp(–2yjsj)]/

[2log(2)]
'exponential' Exponential (–∞,∞) exp(–yjsj)/2
'hamming' Hamming [0,1] or (–∞,∞) [1 – sign(yjsj)]/2
'hinge' Hinge (–∞,∞) max(0,1 – yjsj)/2
'linear' Linear (–∞,∞) (1 – yjsj)/2
'logit' Logistic (–∞,∞) log[1 + exp(–yjsj)]/

[2log(2)]
'quadratic' Quadratic [0,1] [1 – yj(2sj – 1)]2/2
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The software normalizes binary losses so that the loss is 0.5 when yj = 0. Also, the software
calculates the mean binary loss for each class.

• For a custom binary loss function, for example customFunction, specify its function handle
'BinaryLoss',@customFunction.

customFunction has this form:

bLoss = customFunction(M,s)

• M is the K-by-B coding matrix stored in Mdl.CodingMatrix.
• s is the 1-by-B row vector of classification scores.
• bLoss is the classification loss. This scalar aggregates the binary losses for every learner in a

particular class. For example, you can use the mean binary loss to aggregate the loss over the
learners for each class.

• K is the number of classes.
• B is the number of binary learners.

For an example of passing a custom binary loss function, see “Predict Test-Sample Labels of ECOC
Model Using Custom Binary Loss Function” on page 35-5751.

The default BinaryLoss value depends on the score ranges returned by the binary learners. This
table identifies what some default BinaryLoss values are when you use the default score transform
(ScoreTransform property of the model is 'none').

Assumption Default Value
All binary learners are any of the following:

• Classification decision trees
• Discriminant analysis models
• k-nearest neighbor models
• Linear or kernel classification models of logistic regression

learners
• Naive Bayes models

'quadratic'

All binary learners are SVMs or linear or kernel classification
models of SVM learners.

'hinge'

All binary learners are ensembles trained by AdaboostM1 or
GentleBoost.

'exponential'

All binary learners are ensembles trained by LogitBoost. 'binodeviance'
You specify to predict class posterior probabilities by setting
'FitPosterior',true in fitcecoc.

'quadratic'

Binary learners are heterogeneous and use different loss functions. 'hamming'

To check the default value, use dot notation to display the BinaryLoss property of the trained model
at the command line.
Example: 'BinaryLoss','binodeviance'
Data Types: char | string | function_handle
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Decoding — Decoding scheme
'lossweighted' (default) | 'lossbased'

Decoding scheme that aggregates the binary losses, specified as the comma-separated pair consisting
of 'Decoding' and 'lossweighted' or 'lossbased'. For more information, see “Binary Loss” on
page 35-4394.
Example: 'Decoding','lossbased'

LossFun — Loss function
'classiferror' (default) | 'classifcost' | function handle

Loss function, specified as 'classiferror', 'classifcost', or a function handle.

• Specify the built-in function 'classiferror'. In this case, the loss function is the classification
error on page 35-4394, which is the proportion of misclassified observations.

• Specify the built-in function 'classifcost'. In this case, the loss function is the observed
misclassification cost on page 35-4394. If you use the default cost matrix (whose element value is
0 for correct classification and 1 for incorrect classification), then the loss values for
'classifcost' and 'classiferror' are identical.

• Or, specify your own function using function handle notation.

Assume that n = size(X,1) is the sample size and K is the number of classes. Your function
must have the signature lossvalue = lossfun(C,S,W,Cost), where:

• The output argument lossvalue is a scalar.
• You specify the function name (lossfun).
• C is an n-by-K logical matrix with rows indicating the class to which the corresponding

observation belongs. The column order corresponds to the class order in Mdl.ClassNames.

Construct C by setting C(p,q) = 1 if observation p is in class q, for each row. Set all other
elements of row p to 0.

• S is an n-by-K numeric matrix of negated loss values for the classes. Each row corresponds to
an observation. The column order corresponds to the class order in Mdl.ClassNames. The
input S resembles the output argument NegLoss of predict.

• W is an n-by-1 numeric vector of observation weights. If you pass W, the software normalizes its
elements to sum to 1.

• Cost is a K-by-K numeric matrix of misclassification costs. For example, Cost = ones(K) –
eye(K) specifies a cost of 0 for correct classification and 1 for misclassification.

Specify your function using 'LossFun',@lossfun.

Data Types: char | string | function_handle

ObservationsIn — Predictor data observation dimension
'rows' (default) | 'columns'

Predictor data observation dimension, specified as the comma-separated pair consisting of
'ObservationsIn' and 'columns' or 'rows'. Mdl.BinaryLearners must contain
ClassificationLinear models.
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Note If you orient your predictor matrix so that observations correspond to columns and specify
'ObservationsIn','columns', you can experience a significant reduction in execution time. You
cannot specify 'ObservationsIn','columns' for predictor data in a table.

Options — Estimation options
[] (default) | structure array returned by statset

Estimation options, specified as the comma-separated pair consisting of 'Options' and a structure
array returned by statset.

To invoke parallel computing:

• You need a Parallel Computing Toolbox license.
• Specify 'Options',statset('UseParallel',true).

Verbose — Verbosity level
0 (default) | 1

Verbosity level, specified as the comma-separated pair consisting of 'Verbose' and 0 or 1. Verbose
controls the number of diagnostic messages that the software displays in the Command Window.

If Verbose is 0, then the software does not display diagnostic messages. Otherwise, the software
displays diagnostic messages.
Example: 'Verbose',1
Data Types: single | double

Weights — Observation weights
ones(size(X,1),1) (default) | numeric vector | name of variable in tbl

Observation weights, specified as the comma-separated pair consisting of 'Weights' and a numeric
vector or the name of a variable in tbl. If you supply weights, then loss computes the weighted loss.

If you specify Weights as a numeric vector, then the size of Weights must be equal to the number of
rows in X or tbl.

If you specify Weights as the name of a variable in tbl, you must do so as a character vector or
string scalar. For example, if the weights are stored as tbl.w, then specify Weights as 'w'.
Otherwise, the software treats all columns of tbl, including tbl.w, as predictors.

If you do not specify your own loss function (using LossFun), then the software normalizes Weights
to sum up to the value of the prior probability in the respective class.
Data Types: single | double | char | string

Output Arguments
L — Classification loss
numeric scalar | numeric row vector

Classification loss, returned as a numeric scalar or row vector. L is a generalization or resubstitution
quality measure. Its interpretation depends on the loss function and weighting scheme, but in
general, better classifiers yield smaller classification loss values.
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If Mdl.BinaryLearners contains ClassificationLinear models, then L is a 1-by-ℓ vector, where
ℓ is the number of regularization strengths in the linear classification models
(numel(Mdl.BinaryLearners{1}.Lambda)). The value L(j) is the loss for the model trained
using regularization strength Mdl.BinaryLearners{1}.Lambda(j).

Otherwise, L is a scalar value.

More About
Classification Error

The classification error has the form

L = ∑
j = 1

n
w je j,

where:

• wj is the weight for observation j. The software renormalizes the weights to sum to 1.
• ej = 1 if the predicted class of observation j differs from its true class, and 0 otherwise.

In other words, the classification error is the proportion of observations misclassified by the classifier.

Observed Misclassification Cost

The observed misclassification cost has the form

L = ∑
j = 1

n
w jcy jy j,

where:

• wj is the weight for observation j. The software renormalizes the weights to sum to 1.
• cy jy j is the user-specified cost of classifying an observation into class y j when its true class is yj.

Binary Loss

The binary loss is a function of the class and classification score that determines how well a binary
learner classifies an observation into the class.

Suppose the following:

• mkj is element (k,j) of the coding design matrix M—that is, the code corresponding to class k of
binary learner j. M is a K-by-B matrix, where K is the number of classes, and B is the number of
binary learners.

• sj is the score of binary learner j for an observation.
• g is the binary loss function.
• k  is the predicted class for the observation.

The decoding scheme of an ECOC model specifies how the software aggregates the binary losses and
determines the predicted class for each observation. The software supports two decoding schemes:
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• Loss-based decoding [2] (Decoding is 'lossbased') — The predicted class of an observation
corresponds to the class that produces the minimum average of the binary losses over all binary
learners.

k = argmin
k

1
B ∑j = 1

B
mk j g(mk j, s j) .

• Loss-weighted decoding [3] (Decoding is 'lossweighted') — The predicted class of an
observation corresponds to the class that produces the minimum average of the binary losses over
the binary learners for the corresponding class.

k = argmin
k

∑
j = 1

B
mk j g(mk j, s j)

∑ j = 1

B

mk j

.

The denominator corresponds to the number of binary learners for class k. [1] suggests that loss-
weighted decoding improves classification accuracy by keeping loss values for all classes in the
same dynamic range.

The predict, resubPredict, and kfoldPredict functions return the negated value of the
objective function of argmin as the second output argument (NegLoss) for each observation and
class.

This table summarizes the supported binary loss functions, where yj is a class label for a particular
binary learner (in the set {–1,1,0}), sj is the score for observation j, and g(yj,sj) is the binary loss
function.

Value Description Score Domain g(yj,sj)
"binodeviance" Binomial deviance (–∞,∞) log[1 + exp(–2yjsj)]/

[2log(2)]
"exponential" Exponential (–∞,∞) exp(–yjsj)/2
"hamming" Hamming [0,1] or (–∞,∞) [1 – sign(yjsj)]/2
"hinge" Hinge (–∞,∞) max(0,1 – yjsj)/2
"linear" Linear (–∞,∞) (1 – yjsj)/2
"logit" Logistic (–∞,∞) log[1 + exp(–yjsj)]/

[2log(2)]
"quadratic" Quadratic [0,1] [1 – yj(2sj – 1)]2/2

The software normalizes binary losses so that the loss is 0.5 when yj = 0, and aggregates using the
average of the binary learners.

Do not confuse the binary loss with the overall classification loss (specified by the LossFun name-
value argument of the loss and predict object functions), which measures how well an ECOC
classifier performs as a whole.

Version History
Introduced in R2014b
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Extended Capabilities
Tall Arrays
Calculate with arrays that have more rows than fit in memory.

Usage notes and limitations:

• loss does not support tall table data when Mdl contains kernel or linear binary learners.

For more information, see “Tall Arrays”.

Automatic Parallel Support
Accelerate code by automatically running computation in parallel using Parallel Computing Toolbox™.

To run in parallel, specify the 'Options' name-value argument in the call to this function and set the
'UseParallel' field of the options structure to true using statset.

For example: 'Options',statset('UseParallel',true)

For more information about parallel computing, see “Run MATLAB Functions with Automatic Parallel
Support” (Parallel Computing Toolbox).

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

Usage notes and limitations:

• The loss function does not support models trained using decision tree learners with surrogate
splits.

• The loss function does not support models trained using SVM learners.

For more information, see “Run MATLAB Functions on a GPU” (Parallel Computing Toolbox).

See Also
ClassificationECOC | CompactClassificationECOC | predict | resubLoss | fitcecoc

Topics
“Quick Start Parallel Computing for Statistics and Machine Learning Toolbox” on page 33-2
“Reproducibility in Parallel Statistical Computations” on page 33-16
“Concepts of Parallel Computing in Statistics and Machine Learning Toolbox” on page 33-6
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loss
Classification error

Syntax
L = loss(ens,tbl,ResponseVarName)
L = loss(ens,tbl,Y)
L = loss(ens,X,Y)
L = loss( ___ ,Name,Value)

Description
L = loss(ens,tbl,ResponseVarName) returns the classification error for ensemble ens
computed using table of predictors tbl and true class labels tbl.ResponseVarName.

L = loss(ens,tbl,Y) returns the classification error for ensemble ens computed using table of
predictors tbl and true class labels Y.

L = loss(ens,X,Y) returns the classification error for ensemble ens computed using matrix of
predictors X and true class labels Y.

L = loss( ___ ,Name,Value) computes classification error with additional options specified by
one or more Name,Value pair arguments, using any of the previous syntaxes.

When computing the loss, loss normalizes the class probabilities in ResponseVarName or Y to the
class probabilities used for training, stored in the Prior property of ens.

Note If the predictor data X or the predictor variables in tbl contain any missing values, the loss
function can return NaN. For more details, see “loss can return NaN for predictor data with missing
values” on page 35-4408.

Input Arguments
ens

Classification ensemble created with fitcensemble, or a compact classification ensemble created
with compact.

tbl

Sample data, specified as a table. Each row of tbl corresponds to one observation, and each column
corresponds to one predictor variable. tbl must contain all of the predictors used to train the model.
Multicolumn variables and cell arrays other than cell arrays of character vectors are not allowed.

If you trained ens using sample data contained in a table, then the input data for this method must
also be in a table.
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ResponseVarName

Response variable name, specified as the name of a variable in tbl.

You must specify ResponseVarName as a character vector or string scalar. For example, if the
response variable Y is stored as tbl.Y, then specify it as 'Y'. Otherwise, the software treats all
columns of tbl, including Y, as predictors when training the model.

X

Matrix of data to classify. Each row of X represents one observation, and each column represents one
predictor. X must have the same number of columns as the data used to train ens. X should have the
same number of rows as the number of elements in Y.

If you trained ens using sample data contained in a matrix, then the input data for this method must
also be in a matrix.

Y

Class labels of observations in tbl or X. Y should be of the same type as the classification used to
train ens, and its number of elements should equal the number of rows of tbl or X.

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.

learners

Indices of weak learners in the ensemble ranging from 1 to ens.NumTrained. loss uses only these
learners for calculating loss.

Default: 1:NumTrained

Lossfun

Loss function, specified as the comma-separated pair consisting of 'LossFun' and a built-in loss
function name or function handle.

• The following table lists the available loss functions. Specify one using its corresponding character
vector or string scalar.

Value Description
'binodeviance' Binomial deviance
'classifcost' Observed misclassification cost
'classiferror' Misclassified rate in decimal
'exponential' Exponential loss
'hinge' Hinge loss
'logit' Logistic loss
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Value Description
'mincost' Minimal expected misclassification cost (for

classification scores that are posterior
probabilities)

'quadratic' Quadratic loss

'mincost' is appropriate for classification scores that are posterior probabilities.

• Bagged and subspace ensembles return posterior probabilities by default (ens.Method is
'Bag' or 'Subspace').

• If the ensemble method is 'AdaBoostM1', 'AdaBoostM2', GentleBoost, or 'LogitBoost',
then, to use posterior probabilities as classification scores, you must specify the double-logit
score transform by entering

ens.ScoreTransform = 'doublelogit';

• For all other ensemble methods, the software does not support posterior probabilities as
classification scores.

• Specify your own function using function handle notation.

Suppose that n be the number of observations in X and K be the number of distinct classes
(numel(ens.ClassNames), ens is the input model). Your function must have this signature

lossvalue = lossfun(C,S,W,Cost)

where:

• The output argument lossvalue is a scalar.
• You choose the function name (lossfun).
• C is an n-by-K logical matrix with rows indicating which class the corresponding observation

belongs. The column order corresponds to the class order in ens.ClassNames.

Construct C by setting C(p,q) = 1 if observation p is in class q, for each row. Set all other
elements of row p to 0.

• S is an n-by-K numeric matrix of classification scores. The column order corresponds to the
class order in ens.ClassNames. S is a matrix of classification scores, similar to the output of
predict.

• W is an n-by-1 numeric vector of observation weights. If you pass W, the software normalizes
them to sum to 1.

• Cost is a K-by-K numeric matrix of misclassification costs. For example, Cost = ones(K) -
eye(K) specifies a cost of 0 for correct classification, and 1 for misclassification.

Specify your function using 'LossFun',@lossfun.

For more details on loss functions, see “Classification Loss” on page 35-4403.

Default: 'classiferror'

mode

Meaning of the output L:
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• 'ensemble' — L is a scalar value, the loss for the entire ensemble.
• 'individual' — L is a vector with one element per trained learner.
• 'cumulative' — L is a vector in which element J is obtained by using learners 1:J from the

input list of learners.

Default: 'ensemble'

UseObsForLearner

A logical matrix of size N-by-T, where:

• N is the number of rows of X.
• T is the number of weak learners in ens.

When UseObsForLearner(i,j) is true, learner j is used in predicting the class of row i of X.

Default: true(N,T)

UseParallel

Indication to perform inference in parallel, specified as false (compute serially) or true (compute in
parallel). Parallel computation requires Parallel Computing Toolbox. Parallel inference can be faster
than serial inference, especially for large datasets. Parallel computation is supported only for tree
learners.

Default: false

weights

Vector of observation weights, with nonnegative entries. The length of weights must equal the
number of rows in X. When you specify weights, loss normalizes the weights so that observation
weights in each class sum to the prior probability of that class.

Default: ones(size(X,1),1)

Output Arguments
L

Classification loss on page 35-4403, by default the fraction of misclassified data. L can be a vector,
and can mean different things, depending on the name-value pair settings.

Examples

Estimate Classification Error

Load Fisher's iris data set.

load fisheriris

Train a classification ensemble of 100 decision trees using AdaBoostM2. Specify tree stumps as the
weak learners.
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t = templateTree('MaxNumSplits',1);
ens = fitcensemble(meas,species,'Method','AdaBoostM2','Learners',t);

Estimate the classification error of the model using the training observations.

L = loss(ens,meas,species)

L = 0.0333

Alternatively, if ens is not compact, then you can estimate the training-sample classification error by
passing ens to resubLoss.

Assess Performance of Ensemble of Boosted Trees

Create an ensemble of boosted trees and inspect the importance of each predictor. Using test data,
assess the classification accuracy of the ensemble.

Load the arrhythmia data set. Determine the class representations in the data.

load arrhythmia
Y = categorical(Y);
tabulate(Y)

  Value    Count   Percent
      1      245     54.20%
      2       44      9.73%
      3       15      3.32%
      4       15      3.32%
      5       13      2.88%
      6       25      5.53%
      7        3      0.66%
      8        2      0.44%
      9        9      1.99%
     10       50     11.06%
     14        4      0.88%
     15        5      1.11%
     16       22      4.87%

The data set contains 16 classes, but not all classes are represented (for example, class 13). Most
observations are classified as not having arrhythmia (class 1). The data set is highly discrete with
imbalanced classes.

Combine all observations with arrhythmia (classes 2 through 15) into one class. Remove those
observations with an unknown arrhythmia status (class 16) from the data set.

idx = (Y ~= "16");
Y = Y(idx);
X = X(idx,:);
Y(Y ~= "1") = "WithArrhythmia";
Y(Y == "1") = "NoArrhythmia";
Y = removecats(Y);

Create a partition that evenly splits the data into training and test sets.

rng("default") % For reproducibility
cvp = cvpartition(Y,"Holdout",0.5);
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idxTrain = training(cvp);
idxTest = test(cvp);

cvp is a cross-validation partition object that specifies the training and test sets.

Train an ensemble of 100 boosted classification trees using AdaBoostM1. Specify to use tree stumps
as the weak learners. Also, because the data set contains missing values, specify to use surrogate
splits.

t = templateTree("MaxNumSplits",1,"Surrogate","on");
numTrees = 100;
mdl = fitcensemble(X(idxTrain,:),Y(idxTrain),"Method","AdaBoostM1", ...
    "NumLearningCycles",numTrees,"Learners",t);

mdl is a trained ClassificationEnsemble model.

Inspect the importance measure for each predictor.

predImportance = predictorImportance(mdl);
bar(predImportance)
title("Predictor Importance")
xlabel("Predictor")
ylabel("Importance Measure")

Identify the top ten predictors in terms of their importance.

[~,idxSort] = sort(predImportance,"descend");
idx10 = idxSort(1:10)
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idx10 = 1×10

   228   233   238    93    15   224    91   177   260   277

Classify the test set observations. View the results using a confusion matrix. Blue values indicate
correct classifications, and red values indicate misclassified observations.

predictedValues = predict(mdl,X(idxTest,:));
confusionchart(Y(idxTest),predictedValues)

Compute the accuracy of the model on the test data.

error = loss(mdl,X(idxTest,:),Y(idxTest), ...
    "LossFun","classiferror");
accuracy = 1 - error

accuracy = 0.7731

accuracy estimates the fraction of correctly classified observations.

More About
Classification Loss

Classification loss functions measure the predictive inaccuracy of classification models. When you
compare the same type of loss among many models, a lower loss indicates a better predictive model.
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Consider the following scenario.

• L is the weighted average classification loss.
• n is the sample size.

• For binary classification:

• yj is the observed class label. The software codes it as –1 or 1, indicating the negative or
positive class (or the first or second class in the ClassNames property), respectively.

• f(Xj) is the positive-class classification score for observation (row) j of the predictor data X.
• mj = yjf(Xj) is the classification score for classifying observation j into the class corresponding

to yj. Positive values of mj indicate correct classification and do not contribute much to the
average loss. Negative values of mj indicate incorrect classification and contribute significantly
to the average loss.

• For algorithms that support multiclass classification (that is, K ≥ 3):

• yj
* is a vector of K – 1 zeros, with 1 in the position corresponding to the true, observed class yj.

For example, if the true class of the second observation is the third class and K = 4, then y2
* =

[0 0 1 0]′. The order of the classes corresponds to the order in the ClassNames property of
the input model.

• f(Xj) is the length K vector of class scores for observation j of the predictor data X. The order of
the scores corresponds to the order of the classes in the ClassNames property of the input
model.

• mj = yj
*′f(Xj). Therefore, mj is the scalar classification score that the model predicts for the true,

observed class.
• The weight for observation j is wj. The software normalizes the observation weights so that they

sum to the corresponding prior class probability stored in the Prior property. Therefore,

∑
j = 1

n
w j = 1.

Given this scenario, the following table describes the supported loss functions that you can specify by
using the LossFun name-value argument.

Loss Function Value of LossFun Equation
Binomial deviance 'binodeviance'

L = ∑
j = 1

n
w jlog 1 + exp −2m j .

Observed
misclassification cost

'classifcost'
L = ∑

j = 1

n
w jcy jy j,

where y j is the class label corresponding to the
class with the maximal score, and cy jy j is the
user-specified cost of classifying an observation
into class y j when its true class is yj.
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Loss Function Value of LossFun Equation
Misclassified rate in
decimal

'classiferror'
L = ∑

j = 1

n
w jI y j ≠ y j ,

where I{·} is the indicator function.
Cross-entropy loss 'crossentropy' 'crossentropy' is appropriate only for neural

network models.

The weighted cross-entropy loss is

L = − ∑
j = 1

n w jlog(m j)
Kn ,

where the weights w j are normalized to sum to n
instead of 1.

Exponential loss 'exponential'
L = ∑

j = 1

n
w jexp −m j .

Hinge loss 'hinge'

L =∑
j = 1

n

w jmax 0, 1−m j .

Logit loss 'logit'
L = ∑

j = 1

n
w jlog 1 + exp −m j .
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Loss Function Value of LossFun Equation
Minimal expected
misclassification cost

'mincost' 'mincost' is appropriate only if classification
scores are posterior probabilities.

The software computes the weighted minimal
expected classification cost using this procedure
for observations j = 1,...,n.

1 Estimate the expected misclassification cost
of classifying the observation Xj into the class
k:

γ jk = f X j ′C k .

f(Xj) is the column vector of class posterior
probabilities for the observation Xj. C is the
cost matrix stored in the Cost property of
the model.

2 For observation j, predict the class label
corresponding to the minimal expected
misclassification cost:

y j = argmin
k = 1, ..., K

γ jk .

3 Using C, identify the cost incurred (cj) for
making the prediction.

The weighted average of the minimal expected
misclassification cost loss is

L = ∑
j = 1

n
w jc j .

Quadratic loss 'quadratic'
L = ∑

j = 1

n
w j 1−m j

2 .

If you use the default cost matrix (whose element value is 0 for correct classification and 1 for
incorrect classification), then the loss values for 'classifcost', 'classiferror', and
'mincost' are identical. For a model with a nondefault cost matrix, the 'classifcost' loss is
equivalent to the 'mincost' loss most of the time. These losses can be different if prediction into the
class with maximal posterior probability is different from prediction into the class with minimal
expected cost. Note that 'mincost' is appropriate only if classification scores are posterior
probabilities.

This figure compares the loss functions (except 'classifcost', 'crossentropy', and
'mincost') over the score m for one observation. Some functions are normalized to pass through
the point (0,1).
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Version History
loss returns a different value for a model with a nondefault cost matrix
Behavior changed in R2022a

If you specify a nondefault cost matrix when you train the input model object, the loss function
returns a different value compared to previous releases.

The loss function uses the prior probabilities stored in the Prior property to normalize the
observation weights of the input data. Also, the function uses the cost matrix stored in the Cost
property if you specify the LossFun name-value argument as "classifcost" or "mincost". The
way the function uses the Prior and Cost property values has not changed. However, the property
values stored in the input model object have changed for a model with a nondefault cost matrix, so
the function can return a different value.

For details about the property value change, see “Cost property stores the user-specified cost matrix”
on page 35-442.

If you want the software to handle the cost matrix, prior probabilities, and observation weights as in
previous releases, adjust the prior probabilities and observation weights for the nondefault cost
matrix, as described in “Adjust Prior Probabilities and Observation Weights for Misclassification Cost
Matrix” on page 19-9. Then, when you train a classification model, specify the adjusted prior
probabilities and observation weights by using the Prior and Weights name-value arguments,
respectively, and use the default cost matrix.
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loss can return NaN for predictor data with missing values
Behavior changed in R2022a

The loss function no longer omits an observation with a NaN score when computing the weighted
average classification loss. Therefore, loss can now return NaN when the predictor data X or the
predictor variables in tbl contain any missing values. In most cases, if the test set observations do
not contain missing predictors, the loss function does not return NaN.

This change improves the automatic selection of a classification model when you use fitcauto.
Before this change, the software might select a model (expected to best classify new data) with few
non-NaN predictors.

If loss in your code returns NaN, you can update your code to avoid this result. Remove or replace
the missing values by using rmmissing or fillmissing, respectively.

The following table shows the classification models for which the loss object function might return
NaN. For more details, see the Compatibility Considerations for each loss function.

Model Type Full or Compact Model Object loss Object Function
Discriminant analysis
classification model

ClassificationDiscrimina
nt,
CompactClassificationDis
criminant

loss

Ensemble of learners for
classification

ClassificationEnsemble,
CompactClassificationEns
emble

loss

Gaussian kernel classification
model

ClassificationKernel loss

k-nearest neighbor classification
model

ClassificationKNN loss

Linear classification model ClassificationLinear loss
Neural network classification
model

ClassificationNeuralNetw
ork,
CompactClassificationNeu
ralNetwork

loss

Support vector machine (SVM)
classification model

ClassificationSVM,
CompactClassificationSVM

loss

Extended Capabilities
Tall Arrays
Calculate with arrays that have more rows than fit in memory.

Usage notes and limitations:

• You cannot use UseParallel with tall arrays.

For more information, see “Tall Arrays”.

Automatic Parallel Support
Accelerate code by automatically running computation in parallel using Parallel Computing Toolbox™.
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To run in parallel, set the UseParallel name-value argument to true in the call to this function.

For more general information about parallel computing, see “Run MATLAB Functions with Automatic
Parallel Support” (Parallel Computing Toolbox).

You cannot use UseParallel with tall or GPU arrays.

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

Usage notes and limitations:

• The loss function does not support ensembles trained using decision tree learners with surrogate
splits.

For more information, see “Run MATLAB Functions on a GPU” (Parallel Computing Toolbox).

See Also
loss | edge | margin | predict
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loss
Classification loss for naive Bayes classifier

Syntax
L = loss(Mdl,tbl,ResponseVarName)
L = loss(Mdl,tbl,Y)

L = loss(Mdl,X,Y)

L = loss( ___ ,Name,Value)

Description
L = loss(Mdl,tbl,ResponseVarName) returns the “Classification Loss” on page 35-4415, a
scalar representing how well the trained naive Bayes classifier Mdl classifies the predictor data in
table tbl compared to the true class labels in tbl.ResponseVarName.

loss normalizes the class probabilities in tbl.ResponseVarName to the prior class probabilities
used by fitcnb for training, which are stored in the Prior property of Mdl.

L = loss(Mdl,tbl,Y) returns the classification loss for the predictor data in table tbl and the
true class labels in Y.

L = loss(Mdl,X,Y) returns the classification loss based on the predictor data in matrix X
compared to the true class labels in Y.

L = loss( ___ ,Name,Value) specifies options using one or more name-value pair arguments in
addition to any of the input argument combinations in previous syntaxes. For example, you can
specify the loss function and the classification weights.

Examples

Determine Test Sample Classification Loss of Naive Bayes Classifier

Determine the test sample classification error (loss) of a naive Bayes classifier. When you compare
the same type of loss among many models, a lower loss indicates a better predictive model.

Load the fisheriris data set. Create X as a numeric matrix that contains four petal measurements
for 150 irises. Create Y as a cell array of character vectors that contains the corresponding iris
species.

load fisheriris
X = meas;
Y = species;
rng('default')  % for reproducibility

Randomly partition observations into a training set and a test set with stratification, using the class
information in Y. Specify a 30% holdout sample for testing.
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cv = cvpartition(Y,'HoldOut',0.30);

Extract the training and test indices.

trainInds = training(cv);
testInds = test(cv);

Specify the training and test data sets.

XTrain = X(trainInds,:);
YTrain = Y(trainInds);
XTest = X(testInds,:);
YTest = Y(testInds);

Train a naive Bayes classifier using the predictors XTrain and class labels YTrain. A recommended
practice is to specify the class names. fitcnb assumes that each predictor is conditionally and
normally distributed.

Mdl = fitcnb(XTrain,YTrain,'ClassNames',{'setosa','versicolor','virginica'})

Mdl = 
  ClassificationNaiveBayes
              ResponseName: 'Y'
     CategoricalPredictors: []
                ClassNames: {'setosa'  'versicolor'  'virginica'}
            ScoreTransform: 'none'
           NumObservations: 105
         DistributionNames: {'normal'  'normal'  'normal'  'normal'}
    DistributionParameters: {3x4 cell}

  Properties, Methods

Mdl is a trained ClassificationNaiveBayes classifier.

Determine how well the algorithm generalizes by estimating the test sample classification error.

L = loss(Mdl,XTest,YTest)

L = 0.0444

The naive Bayes classifier misclassifies approximately 4% of the test sample.

You might decrease the classification error by specifying better predictor distributions when you train
the classifier with fitcnb.

Determine Test Sample Logit Loss of Naive Bayes Classifier

Load the fisheriris data set. Create X as a numeric matrix that contains four petal measurements
for 150 irises. Create Y as a cell array of character vectors that contains the corresponding iris
species.

load fisheriris
X = meas;
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Y = species;
rng('default')  % for reproducibility

Randomly partition observations into a training set and a test set with stratification, using the class
information in Y. Specify a 30% holdout sample for testing.

cv = cvpartition(Y,'HoldOut',0.30);

Extract the training and test indices.

trainInds = training(cv);
testInds = test(cv);

Specify the training and test data sets.

XTrain = X(trainInds,:);
YTrain = Y(trainInds);
XTest = X(testInds,:);
YTest = Y(testInds);

Train a naive Bayes classifier using the predictors XTrain and class labels YTrain. A recommended
practice is to specify the class names. fitcnb assumes that each predictor is conditionally and
normally distributed.

Mdl = fitcnb(XTrain,YTrain,'ClassNames',{'setosa','versicolor','virginica'});

Mdl is a trained ClassificationNaiveBayes classifier.

Determine how well the algorithm generalizes by estimating the test sample logit loss.

L = loss(Mdl,XTest,YTest,'LossFun','logit')

L = 0.3359

The logit loss is approximately 0.34.

Input Arguments
Mdl — Naive Bayes classification model
ClassificationNaiveBayes model object | CompactClassificationNaiveBayes model object

Naive Bayes classification model, specified as a ClassificationNaiveBayes model object or
CompactClassificationNaiveBayes model object returned by fitcnb or compact, respectively.

tbl — Sample data
table

Sample data used to train the model, specified as a table. Each row of tbl corresponds to one
observation, and each column corresponds to one predictor variable. tbl must contain all the
predictors used to train Mdl. Multicolumn variables and cell arrays other than cell arrays of character
vectors are not allowed. Optionally, tbl can contain additional columns for the response variable and
observation weights.

If you train Mdl using sample data contained in a table, then the input data for loss must also be in a
table.
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ResponseVarName — Response variable name
name of a variable in tbl

Response variable name, specified as the name of a variable in tbl.

You must specify ResponseVarName as a character vector or string scalar. For example, if the
response variable y is stored as tbl.y, then specify it as 'y'. Otherwise, the software treats all
columns of tbl, including y, as predictors.

If tbl contains the response variable used to train Mdl, then you do not need to specify
ResponseVarName.

The response variable must be a categorical, character, or string array, logical or numeric vector, or
cell array of character vectors. If the response variable is a character array, then each element must
correspond to one row of the array.
Data Types: char | string

X — Predictor data
numeric matrix

Predictor data, specified as a numeric matrix.

Each row of X corresponds to one observation (also known as an instance or example), and each
column corresponds to one variable (also known as a feature). The variables in the columns of X must
be the same as the variables that trained the Mdl classifier.

The length of Y and the number of rows of X must be equal.
Data Types: double | single

Y — Class labels
categorical array | character array | string array | logical vector | numeric vector | cell array of
character vectors

Class labels, specified as a categorical, character, or string array, logical or numeric vector, or cell
array of character vectors. Y must have the same data type as Mdl.ClassNames. (The software
treats string arrays as cell arrays of character vectors.)

The length of Y must be equal to the number of rows of tbl or X.
Data Types: categorical | char | string | logical | single | double | cell

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: loss(Mdl,tbl,Y,'Weights',W) weighs the observations in each row of tbl using the
corresponding weight in each row of the variable W.

LossFun — Loss function
'mincost' (default) | 'binodeviance' | 'classifcost' | 'classiferror' | 'exponential' |
'hinge' | 'logit' | 'quadratic' | function handle
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Loss function, specified as the comma-separated pair consisting of 'LossFun' and a built-in loss
function name or function handle.

• The following table lists the available loss functions. Specify one using its corresponding character
vector or string scalar.

Value Description
'binodeviance' Binomial deviance
'classifcost' Observed misclassification cost
'classiferror' Misclassified rate in decimal
'exponential' Exponential loss
'hinge' Hinge loss
'logit' Logistic loss
'mincost' Minimal expected misclassification cost (for

classification scores that are posterior
probabilities)

'quadratic' Quadratic loss

'mincost' is appropriate for classification scores that are posterior probabilities. Naive Bayes
models return posterior probabilities as classification scores by default (see predict).

• Specify your own function using function handle notation.

Suppose that n is the number of observations in X and K is the number of distinct classes
(numel(Mdl.ClassNames), where Mdl is the input model). Your function must have this
signature

lossvalue = lossfun(C,S,W,Cost)

where:

• The output argument lossvalue is a scalar.
• You specify the function name (lossfun).
• C is an n-by-K logical matrix with rows indicating the class to which the corresponding

observation belongs. The column order corresponds to the class order in Mdl.ClassNames.

Create C by setting C(p,q) = 1 if observation p is in class q, for each row. Set all other
elements of row p to 0.

• S is an n-by-K numeric matrix of classification scores. The column order corresponds to the
class order in Mdl.ClassNames. S is a matrix of classification scores, similar to the output of
predict.

• W is an n-by-1 numeric vector of observation weights. If you pass W, the software normalizes the
weights to sum to 1.

• Cost is a K-by-K numeric matrix of misclassification costs. For example, Cost = ones(K) -
eye(K) specifies a cost of 0 for correct classification and 1 for misclassification.

Specify your function using 'LossFun',@lossfun.

For more details on loss functions, see “Classification Loss” on page 35-4415.
Data Types: char | string | function_handle
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Weights — Observation weights
ones(size(X,1),1) (default) | numeric vector | name of a variable in tbl

Observation weights, specified as a numeric vector or the name of a variable in tbl. The software
weighs the observations in each row of X or tbl with the corresponding weights in Weights.

If you specify Weights as a numeric vector, then the size of Weights must be equal to the number of
rows of X or tbl.

If you specify Weights as the name of a variable in tbl, then the name must be a character vector or
string scalar. For example, if the weights are stored as tbl.w, then specify Weights as 'w'.
Otherwise, the software treats all columns of tbl, including tbl.w, as predictors.

If you do not specify a loss function, then the software normalizes Weights to add up to 1.
Data Types: double | char | string

Output Arguments
L — Classification loss
scalar

Classification loss, returned as a scalar. L is a generalization or resubstitution quality measure. Its
interpretation depends on the loss function and weighting scheme; in general, better classifiers yield
smaller loss values.

More About
Classification Loss

Classification loss functions measure the predictive inaccuracy of classification models. When you
compare the same type of loss among many models, a lower loss indicates a better predictive model.

Consider the following scenario.

• L is the weighted average classification loss.
• n is the sample size.

• For binary classification:

• yj is the observed class label. The software codes it as –1 or 1, indicating the negative or
positive class (or the first or second class in the ClassNames property), respectively.

• f(Xj) is the positive-class classification score for observation (row) j of the predictor data X.
• mj = yjf(Xj) is the classification score for classifying observation j into the class corresponding

to yj. Positive values of mj indicate correct classification and do not contribute much to the
average loss. Negative values of mj indicate incorrect classification and contribute significantly
to the average loss.

• For algorithms that support multiclass classification (that is, K ≥ 3):

• yj
* is a vector of K – 1 zeros, with 1 in the position corresponding to the true, observed class yj.

For example, if the true class of the second observation is the third class and K = 4, then y2
* =

[0 0 1 0]′. The order of the classes corresponds to the order in the ClassNames property of
the input model.
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• f(Xj) is the length K vector of class scores for observation j of the predictor data X. The order of
the scores corresponds to the order of the classes in the ClassNames property of the input
model.

• mj = yj
*′f(Xj). Therefore, mj is the scalar classification score that the model predicts for the true,

observed class.
• The weight for observation j is wj. The software normalizes the observation weights so that they

sum to the corresponding prior class probability stored in the Prior property. Therefore,

∑
j = 1

n
w j = 1.

Given this scenario, the following table describes the supported loss functions that you can specify by
using the LossFun name-value argument.

Loss Function Value of LossFun Equation
Binomial deviance 'binodeviance'

L = ∑
j = 1

n
w jlog 1 + exp −2m j .

Observed
misclassification cost

'classifcost'
L = ∑

j = 1

n
w jcy jy j,

where y j is the class label corresponding to the
class with the maximal score, and cy jy j is the
user-specified cost of classifying an observation
into class y j when its true class is yj.

Misclassified rate in
decimal

'classiferror'
L = ∑

j = 1

n
w jI y j ≠ y j ,

where I{·} is the indicator function.
Cross-entropy loss 'crossentropy' 'crossentropy' is appropriate only for neural

network models.

The weighted cross-entropy loss is

L = − ∑
j = 1

n w jlog(m j)
Kn ,

where the weights w j are normalized to sum to n
instead of 1.

Exponential loss 'exponential'
L = ∑

j = 1

n
w jexp −m j .

Hinge loss 'hinge'

L =∑
j = 1

n

w jmax 0, 1−m j .
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Loss Function Value of LossFun Equation
Logit loss 'logit'

L = ∑
j = 1

n
w jlog 1 + exp −m j .

Minimal expected
misclassification cost

'mincost' 'mincost' is appropriate only if classification
scores are posterior probabilities.

The software computes the weighted minimal
expected classification cost using this procedure
for observations j = 1,...,n.

1 Estimate the expected misclassification cost
of classifying the observation Xj into the class
k:

γ jk = f X j ′C k .

f(Xj) is the column vector of class posterior
probabilities for the observation Xj. C is the
cost matrix stored in the Cost property of
the model.

2 For observation j, predict the class label
corresponding to the minimal expected
misclassification cost:

y j = argmin
k = 1, ..., K

γ jk .

3 Using C, identify the cost incurred (cj) for
making the prediction.

The weighted average of the minimal expected
misclassification cost loss is

L = ∑
j = 1

n
w jc j .

Quadratic loss 'quadratic'
L = ∑

j = 1

n
w j 1−m j

2 .

If you use the default cost matrix (whose element value is 0 for correct classification and 1 for
incorrect classification), then the loss values for 'classifcost', 'classiferror', and
'mincost' are identical. For a model with a nondefault cost matrix, the 'classifcost' loss is
equivalent to the 'mincost' loss most of the time. These losses can be different if prediction into the
class with maximal posterior probability is different from prediction into the class with minimal
expected cost. Note that 'mincost' is appropriate only if classification scores are posterior
probabilities.

This figure compares the loss functions (except 'classifcost', 'crossentropy', and
'mincost') over the score m for one observation. Some functions are normalized to pass through
the point (0,1).
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Misclassification Cost

A misclassification cost is the relative severity of a classifier labeling an observation into the wrong
class.

Two types of misclassification cost exist: true and expected. Let K be the number of classes.

• True misclassification cost — A K-by-K matrix, where element (i,j) indicates the cost of classifying
an observation into class j if its true class is i. The software stores the misclassification cost in the
property Mdl.Cost, and uses it in computations. By default, Mdl.Cost(i,j) = 1 if i ≠ j, and
Mdl.Cost(i,j) = 0 if i = j. In other words, the cost is 0 for correct classification and 1 for any
incorrect classification.

• Expected misclassification cost — A K-dimensional vector, where element k is the weighted
average cost of classifying an observation into class k, weighted by the class posterior
probabilities.

ck = ∑
j = 1

K
P Y = j x1, ..., xP Cost jk .

In other words, the software classifies observations into the class with the lowest expected
misclassification cost.

Posterior Probability

The posterior probability is the probability that an observation belongs in a particular class, given the
data.
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For naive Bayes, the posterior probability that a classification is k for a given observation (x1,...,xP) is

P Y = k x1, .., xP =
P X1, ..., XP y = k π Y = k

P X1, ..., XP
,

where:

• P X1, ..., XP y = k  is the conditional joint density of the predictors given they are in class k.
Mdl.DistributionNames stores the distribution names of the predictors.

• π(Y = k) is the class prior probability distribution. Mdl.Prior stores the prior distribution.
• P X1, .., XP  is the joint density of the predictors. The classes are discrete, so

P(X1, ..., XP) = ∑
k = 1

K
P(X1, ..., XP y = k)π(Y = k) .

Prior Probability

The prior probability of a class is the assumed relative frequency with which observations from that
class occur in a population.

Version History
Introduced in R2014b

Extended Capabilities
Tall Arrays
Calculate with arrays that have more rows than fit in memory.

This function fully supports tall arrays. You can use models trained on either in-memory or tall data
with this function.

For more information, see “Tall Arrays”.

See Also
ClassificationNaiveBayes | CompactClassificationNaiveBayes | predict | fitcnb |
resubLoss

Topics
“Naive Bayes Classification” on page 22-2
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loss
Package: 

Classification loss for neural network classifier

Syntax
L = loss(Mdl,Tbl,ResponseVarName)
L = loss(Mdl,Tbl,Y)

L = loss(Mdl,X,Y)

L = loss( ___ ,Name,Value)

Description
L = loss(Mdl,Tbl,ResponseVarName) returns the classification loss on page 35-4428 for the
trained neural network classifier Mdl using the predictor data in table Tbl and the class labels in the
ResponseVarName table variable.

L is returned as a scalar value that represents the classification error by default.

L = loss(Mdl,Tbl,Y) returns the classification loss for the classifier Mdl using the predictor data
in table Tbl and the class labels in vector Y.

L = loss(Mdl,X,Y) returns the classification loss for the trained neural network classifier Mdl
using the predictor data X and the corresponding class labels in Y.

L = loss( ___ ,Name,Value) specifies options using one or more name-value arguments in
addition to any of the input argument combinations in previous syntaxes. For example, you can
specify that columns in the predictor data correspond to observations, specify the loss function, or
supply observation weights.

Note If the predictor data in X or Tbl contains any missing values and LossFun is not set to
"classifcost", "classiferror", or "mincost", the loss function can return NaN. For more
details, see “loss can return NaN for predictor data with missing values” on page 35-4432.

Examples

Test Set Classification Error of Neural Network

Calculate the test set classification error of a neural network classifier.

Load the patients data set. Create a table from the data set. Each row corresponds to one patient,
and each column corresponds to a diagnostic variable. Use the Smoker variable as the response
variable, and the rest of the variables as predictors.

load patients
tbl = table(Diastolic,Systolic,Gender,Height,Weight,Age,Smoker);
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Separate the data into a training set tblTrain and a test set tblTest by using a stratified holdout
partition. The software reserves approximately 30% of the observations for the test data set and uses
the rest of the observations for the training data set.

rng("default") % For reproducibility of the partition
c = cvpartition(tbl.Smoker,"Holdout",0.30);
trainingIndices = training(c);
testIndices = test(c);
tblTrain = tbl(trainingIndices,:);
tblTest = tbl(testIndices,:);

Train a neural network classifier using the training set. Specify the Smoker column of tblTrain as
the response variable. Specify to standardize the numeric predictors.

Mdl = fitcnet(tblTrain,"Smoker", ...
    "Standardize",true);

Calculate the test set classification error. Classification error is the default loss type for neural
network classifiers.

testError = loss(Mdl,tblTest,"Smoker")

testError = 0.0671

testAccuracy = 1 - testError

testAccuracy = 0.9329

The neural network model correctly classifies approximately 93% of the test set observations.

Select Features to Include in Neural Network Classifier

Perform feature selection by comparing test set classification margins, edges, errors, and predictions.
Compare the test set metrics for a model trained using all the predictors to the test set metrics for a
model trained using only a subset of the predictors.

Load the sample file fisheriris.csv, which contains iris data including sepal length, sepal width,
petal length, petal width, and species type. Read the file into a table.

fishertable = readtable('fisheriris.csv');

Separate the data into a training set trainTbl and a test set testTbl by using a stratified holdout
partition. The software reserves approximately 30% of the observations for the test data set and uses
the rest of the observations for the training data set.

rng("default")
c = cvpartition(fishertable.Species,"Holdout",0.3);
trainTbl = fishertable(training(c),:);
testTbl = fishertable(test(c),:);

Train one neural network classifier using all the predictors in the training set, and train another
classifier using all the predictors except PetalWidth. For both models, specify Species as the
response variable, and standardize the predictors.
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allMdl = fitcnet(trainTbl,"Species","Standardize",true);
subsetMdl = fitcnet(trainTbl,"Species ~ SepalLength + SepalWidth + PetalLength", ...
    "Standardize",true);

Calculate the test set classification margins for the two models. Because the test set includes only 45
observations, display the margins using bar graphs.

For each observation, the classification margin is the difference between the classification score for
the true class and the maximal score for the false classes. Because neural network classifiers return
classification scores that are posterior probabilities, margin values close to 1 indicate confident
classifications and negative margin values indicate misclassifications.

tiledlayout(2,1)

% Top axes
ax1 = nexttile;
allMargins = margin(allMdl,testTbl);
bar(ax1,allMargins)
xlabel(ax1,"Observation")
ylabel(ax1,"Margin")
title(ax1,"All Predictors")

% Bottom axes
ax2 = nexttile;
subsetMargins = margin(subsetMdl,testTbl);
bar(ax2,subsetMargins)
xlabel(ax2,"Observation")
ylabel(ax2,"Margin")
title(ax2,"Subset of Predictors")
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Compare the test set classification edge, or mean of the classification margins, of the two models.

allEdge = edge(allMdl,testTbl)

allEdge = 0.8198

subsetEdge = edge(subsetMdl,testTbl)

subsetEdge = 0.9556

Based on the test set classification margins and edges, the model trained on a subset of the
predictors seems to outperform the model trained on all the predictors.

Compare the test set classification error of the two models.

allError = loss(allMdl,testTbl);
allAccuracy = 1-allError

allAccuracy = 0.9111

subsetError = loss(subsetMdl,testTbl);
subsetAccuracy = 1-subsetError

subsetAccuracy = 0.9778

Again, the model trained using only a subset of the predictors seems to perform better than the
model trained using all the predictors.

Visualize the test set classification results using confusion matrices.
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allLabels = predict(allMdl,testTbl);
figure
confusionchart(testTbl.Species,allLabels)
title("All Predictors")

subsetLabels = predict(subsetMdl,testTbl);
figure
confusionchart(testTbl.Species,subsetLabels)
title("Subset of Predictors")
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The model trained using all the predictors misclassifies four of the test set observations. The model
trained using a subset of the predictors misclassifies only one of the test set observations.

Given the test set performance of the two models, consider using the model trained using all the
predictors except PetalWidth.

Input Arguments
Mdl — Trained neural network classifier
ClassificationNeuralNetwork model object | CompactClassificationNeuralNetwork
model object

Trained neural network classifier, specified as a ClassificationNeuralNetwork model object or
CompactClassificationNeuralNetwork model object returned by fitcnet or compact,
respectively.

Tbl — Sample data
table

Sample data, specified as a table. Each row of Tbl corresponds to one observation, and each column
corresponds to one predictor variable. Optionally, Tbl can contain an additional column for the
response variable. Tbl must contain all of the predictors used to train Mdl. Multicolumn variables
and cell arrays other than cell arrays of character vectors are not allowed.
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• If Tbl contains the response variable used to train Mdl, then you do not need to specify
ResponseVarName or Y.

• If you trained Mdl using sample data contained in a table, then the input data for loss must also
be in a table.

• If you set 'Standardize',true in fitcnet when training Mdl, then the software standardizes
the numeric columns of the predictor data using the corresponding means and standard
deviations.

Data Types: table

ResponseVarName — Response variable name
name of variable in Tbl

Response variable name, specified as the name of a variable in Tbl. If Tbl contains the response
variable used to train Mdl, then you do not need to specify ResponseVarName.

If you specify ResponseVarName, then you must specify it as a character vector or string scalar. For
example, if the response variable is stored as Tbl.Y, then specify ResponseVarName as 'Y'.
Otherwise, the software treats all columns of Tbl, including Tbl.Y, as predictors.

The response variable must be a categorical, character, or string array; a logical or numeric vector;
or a cell array of character vectors. If the response variable is a character array, then each element
must correspond to one row of the array.
Data Types: char | string

Y — Class labels
categorical array | character array | string array | logical vector | numeric vector | cell array of
character vectors

Class labels, specified as a categorical, character, or string array; logical or numeric vector; or cell
array of character vectors.

• The data type of Y must be the same as the data type of Mdl.ClassNames. (The software treats
string arrays as cell arrays of character vectors.)

• The distinct classes in Y must be a subset of Mdl.ClassNames.
• If Y is a character array, then each element must correspond to one row of the array.
• The length of Y must be equal to the number of observations in X or Tbl.

Data Types: categorical | char | string | logical | single | double | cell

X — Predictor data
numeric matrix

Predictor data, specified as a numeric matrix. By default, loss assumes that each row of X
corresponds to one observation, and each column corresponds to one predictor variable.

Note If you orient your predictor matrix so that observations correspond to columns and specify
'ObservationsIn','columns', then you might experience a significant reduction in computation
time.

The length of Y and the number of observations in X must be equal.
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If you set 'Standardize',true in fitcnet when training Mdl, then the software standardizes the
numeric columns of the predictor data using the corresponding means and standard deviations.
Data Types: single | double

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: loss(Mdl,Tbl,"Response","LossFun","crossentropy") specifies to compute the
cross-entropy loss for the model Mdl.

LossFun — Loss function
'mincost' (default) | 'binodeviance' | 'classifcost' | 'classiferror' | 'crossentropy'
| 'exponential' | 'hinge' | 'logit' | 'quadratic' | function handle

Loss function, specified as a built-in loss function name or a function handle.

• This table lists the available loss functions. Specify one using its corresponding character vector
or string scalar.

Value Description
'binodeviance' Binomial deviance
'classifcost' Observed misclassification cost
'classiferror' Misclassified rate in decimal
'crossentropy' Cross-entropy loss (for neural networks only)
'exponential' Exponential loss
'hinge' Hinge loss
'logit' Logistic loss
'mincost' Minimal expected misclassification cost (for

classification scores that are posterior
probabilities)

'quadratic' Quadratic loss

For more details on loss functions, see “Classification Loss” on page 35-4428.
• To specify a custom loss function, use function handle notation. The function must have this form:

lossvalue = lossfun(C,S,W,Cost)

• The output argument lossvalue is a scalar.
• You specify the function name (lossfun).
• C is an n-by-K logical matrix with rows indicating the class to which the corresponding

observation belongs. n is the number of observations in Tbl or X, and K is the number of
distinct classes (numel(Mdl.ClassNames). The column order corresponds to the class order
in Mdl.ClassNames. Create C by setting C(p,q) = 1, if observation p is in class q, for each
row. Set all other elements of row p to 0.
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• S is an n-by-K numeric matrix of classification scores. The column order corresponds to the
class order in Mdl.ClassNames. S is a matrix of classification scores, similar to the output of
predict.

• W is an n-by-1 numeric vector of observation weights.
• Cost is a K-by-K numeric matrix of misclassification costs. For example, Cost = ones(K) –

eye(K) specifies a cost of 0 for correct classification and 1 for misclassification.

Example: 'LossFun','crossentropy'
Data Types: char | string | function_handle

ObservationsIn — Predictor data observation dimension
'rows' (default) | 'columns'

Predictor data observation dimension, specified as 'rows' or 'columns'.

Note If you orient your predictor matrix so that observations correspond to columns and specify
'ObservationsIn','columns', then you might experience a significant reduction in computation
time. You cannot specify 'ObservationsIn','columns' for predictor data in a table.

Data Types: char | string

Weights — Observation weights
nonnegative numeric vector | name of variable in Tbl

Observation weights, specified as a nonnegative numeric vector or the name of a variable in Tbl. The
software weights each observation in X or Tbl with the corresponding value in Weights. The length
of Weights must equal the number of observations in X or Tbl.

If you specify the input data as a table Tbl, then Weights can be the name of a variable in Tbl that
contains a numeric vector. In this case, you must specify Weights as a character vector or string
scalar. For example, if the weights vector W is stored as Tbl.W, then specify it as 'W'.

By default, Weights is ones(n,1), where n is the number of observations in X or Tbl.

If you supply weights, then loss computes the weighted classification loss and normalizes weights to
sum to the value of the prior probability in the respective class.
Data Types: single | double | char | string

More About
Classification Loss

Classification loss functions measure the predictive inaccuracy of classification models. When you
compare the same type of loss among many models, a lower loss indicates a better predictive model.

Consider the following scenario.

• L is the weighted average classification loss.
• n is the sample size.
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• For binary classification:

• yj is the observed class label. The software codes it as –1 or 1, indicating the negative or
positive class (or the first or second class in the ClassNames property), respectively.

• f(Xj) is the positive-class classification score for observation (row) j of the predictor data X.
• mj = yjf(Xj) is the classification score for classifying observation j into the class corresponding

to yj. Positive values of mj indicate correct classification and do not contribute much to the
average loss. Negative values of mj indicate incorrect classification and contribute significantly
to the average loss.

• For algorithms that support multiclass classification (that is, K ≥ 3):

• yj
* is a vector of K – 1 zeros, with 1 in the position corresponding to the true, observed class yj.

For example, if the true class of the second observation is the third class and K = 4, then y2
* =

[0 0 1 0]′. The order of the classes corresponds to the order in the ClassNames property of
the input model.

• f(Xj) is the length K vector of class scores for observation j of the predictor data X. The order of
the scores corresponds to the order of the classes in the ClassNames property of the input
model.

• mj = yj
*′f(Xj). Therefore, mj is the scalar classification score that the model predicts for the true,

observed class.
• The weight for observation j is wj. The software normalizes the observation weights so that they

sum to the corresponding prior class probability stored in the Prior property. Therefore,

∑
j = 1

n
w j = 1.

Given this scenario, the following table describes the supported loss functions that you can specify by
using the LossFun name-value argument.

Loss Function Value of LossFun Equation
Binomial deviance 'binodeviance'

L = ∑
j = 1

n
w jlog 1 + exp −2m j .

Observed
misclassification cost

'classifcost'
L = ∑

j = 1

n
w jcy jy j,

where y j is the class label corresponding to the
class with the maximal score, and cy jy j is the
user-specified cost of classifying an observation
into class y j when its true class is yj.

Misclassified rate in
decimal

'classiferror'
L = ∑

j = 1

n
w jI y j ≠ y j ,

where I{·} is the indicator function.

 loss

35-4429



Loss Function Value of LossFun Equation
Cross-entropy loss 'crossentropy' 'crossentropy' is appropriate only for neural

network models.

The weighted cross-entropy loss is

L = − ∑
j = 1

n w jlog(m j)
Kn ,

where the weights w j are normalized to sum to n
instead of 1.

Exponential loss 'exponential'
L = ∑

j = 1

n
w jexp −m j .

Hinge loss 'hinge'

L =∑
j = 1

n

w jmax 0, 1−m j .

Logit loss 'logit'
L = ∑

j = 1

n
w jlog 1 + exp −m j .
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Loss Function Value of LossFun Equation
Minimal expected
misclassification cost

'mincost' 'mincost' is appropriate only if classification
scores are posterior probabilities.

The software computes the weighted minimal
expected classification cost using this procedure
for observations j = 1,...,n.

1 Estimate the expected misclassification cost
of classifying the observation Xj into the class
k:

γ jk = f X j ′C k .

f(Xj) is the column vector of class posterior
probabilities for the observation Xj. C is the
cost matrix stored in the Cost property of
the model.

2 For observation j, predict the class label
corresponding to the minimal expected
misclassification cost:

y j = argmin
k = 1, ..., K

γ jk .

3 Using C, identify the cost incurred (cj) for
making the prediction.

The weighted average of the minimal expected
misclassification cost loss is

L = ∑
j = 1

n
w jc j .

Quadratic loss 'quadratic'
L = ∑

j = 1

n
w j 1−m j

2 .

If you use the default cost matrix (whose element value is 0 for correct classification and 1 for
incorrect classification), then the loss values for 'classifcost', 'classiferror', and
'mincost' are identical. For a model with a nondefault cost matrix, the 'classifcost' loss is
equivalent to the 'mincost' loss most of the time. These losses can be different if prediction into the
class with maximal posterior probability is different from prediction into the class with minimal
expected cost. Note that 'mincost' is appropriate only if classification scores are posterior
probabilities.

This figure compares the loss functions (except 'classifcost', 'crossentropy', and
'mincost') over the score m for one observation. Some functions are normalized to pass through
the point (0,1).
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Version History
Introduced in R2021a

Default LossFun value has changed
Behavior changed in R2022a

Starting in R2022a, the loss function uses the "mincost" option (minimal expected
misclassification cost) as the default value for the LossFun name-value argument. The "mincost"
option is appropriate when classification scores are posterior probabilities. In previous releases, the
default value was "classiferror".

You do not need to make any changes to your code for the default cost matrix (whose element value is
0 for correct classification and 1 for incorrect classification).

loss can return NaN for predictor data with missing values
Behavior changed in R2022a

The loss function no longer omits an observation with a NaN score when computing the weighted
average classification loss. Therefore, loss can now return NaN when the predictor data X or the
predictor variables in Tbl contain any missing values, and the name-value argument LossFun is not
specified as "classifcost", "classiferror", or "mincost". In most cases, if the test set
observations do not contain missing predictors, the loss function does not return NaN.
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This change improves the automatic selection of a classification model when you use fitcauto.
Before this change, the software might select a model (expected to best classify new data) with few
non-NaN predictors.

If loss in your code returns NaN, you can update your code to avoid this result by doing one of the
following:

• Remove or replace the missing values by using rmmissing or fillmissing, respectively.
• Specify the name-value argument LossFun as "classifcost", "classiferror", or

"mincost".

The following table shows the classification models for which the loss object function might return
NaN. For more details, see the Compatibility Considerations for each loss function.

Model Type Full or Compact Model Object loss Object Function
Discriminant analysis
classification model

ClassificationDiscrimina
nt,
CompactClassificationDis
criminant

loss

Ensemble of learners for
classification

ClassificationEnsemble,
CompactClassificationEns
emble

loss

Gaussian kernel classification
model

ClassificationKernel loss

k-nearest neighbor classification
model

ClassificationKNN loss

Linear classification model ClassificationLinear loss
Neural network classification
model

ClassificationNeuralNetw
ork,
CompactClassificationNeu
ralNetwork

loss

Support vector machine (SVM)
classification model

ClassificationSVM,
CompactClassificationSVM

loss

See Also
fitcnet | ClassificationNeuralNetwork | CompactClassificationNeuralNetwork | edge |
margin | predict

Topics
“Assess Neural Network Classifier Performance” on page 19-181
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loss
Package: classreg.learning.classif

Find classification error for support vector machine (SVM) classifier

Syntax
L = loss(SVMModel,Tbl,ResponseVarName)
L = loss(SVMModel,Tbl,Y)

L = loss(SVMModel,X,Y)

L = loss( ___ ,Name,Value)

Description
L = loss(SVMModel,Tbl,ResponseVarName) returns the classification error (see “Classification
Loss” on page 35-4439), a scalar representing how well the trained support vector machine (SVM)
classifier (SVMModel) classifies the predictor data in table Tbl compared to the true class labels in
Tbl.ResponseVarName.

The classification loss (L) is a generalization or resubstitution quality measure. Its interpretation
depends on the loss function and weighting scheme, but, in general, better classifiers yield smaller
classification loss values.

L = loss(SVMModel,Tbl,Y) returns the classification error for the predictor data in table Tbl and
the true class labels in Y.

L = loss(SVMModel,X,Y) returns the classification error based on the predictor data in matrix X
compared to the true class labels in Y.

L = loss( ___ ,Name,Value) specifies options using one or more name-value pair arguments in
addition to the input arguments in previous syntaxes. For example, you can specify the loss function
and the classification weights.

Note If the predictor data in X or Tbl contains any missing values and LossFun is not set to
"classifcost", "classiferror", or "mincost", the loss function can return NaN. For more
details, see “loss can return NaN for predictor data with missing values” on page 35-4443.

Examples

Determine Test Sample Classification Error of SVM Classifiers

Load the ionosphere data set.

load ionosphere
rng(1); % For reproducibility
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Train an SVM classifier. Specify a 15% holdout sample for testing, standardize the data, and specify
that 'g' is the positive class.

CVSVMModel = fitcsvm(X,Y,'Holdout',0.15,'ClassNames',{'b','g'},...
    'Standardize',true);
CompactSVMModel = CVSVMModel.Trained{1}; % Extract the trained, compact classifier
testInds = test(CVSVMModel.Partition);   % Extract the test indices
XTest = X(testInds,:);
YTest = Y(testInds,:);

CVSVMModel is a ClassificationPartitionedModel classifier. It contains the property Trained,
which is a 1-by-1 cell array holding a CompactClassificationSVM classifier that the software
trained using the training set.

Determine how well the algorithm generalizes by estimating the test sample classification error.

L = loss(CompactSVMModel,XTest,YTest)

L = 0.0787

The SVM classifier misclassifies approximately 8% of the test sample.

Determine Test Sample Hinge Loss of SVM Classifiers

Load the ionosphere data set.

load ionosphere
rng(1); % For reproducibility

Train an SVM classifier. Specify a 15% holdout sample for testing, standardize the data, and specify
that 'g' is the positive class.

CVSVMModel = fitcsvm(X,Y,'Holdout',0.15,'ClassNames',{'b','g'},...
    'Standardize',true);
CompactSVMModel = CVSVMModel.Trained{1}; % Extract the trained, compact classifier
testInds = test(CVSVMModel.Partition);   % Extract the test indices
XTest = X(testInds,:);
YTest = Y(testInds,:);

CVSVMModel is a ClassificationPartitionedModel classifier. It contains the property Trained,
which is a 1-by-1 cell array holding a CompactClassificationSVM classifier that the software
trained using the training set.

Determine how well the algorithm generalizes by estimating the test sample hinge loss.

L = loss(CompactSVMModel,XTest,YTest,'LossFun','hinge')

L = 0.2998

The hinge loss is approximately 0.3. Classifiers with hinge losses close to 0 are preferred.

 loss

35-4435



Input Arguments
SVMModel — SVM classification model
ClassificationSVM model object | CompactClassificationSVM model object

SVM classification model, specified as a ClassificationSVM model object or
CompactClassificationSVM model object returned by fitcsvm or compact, respectively.

Tbl — Sample data
table

Sample data used to train the model, specified as a table. Each row of Tbl corresponds to one
observation, and each column corresponds to one predictor variable. Optionally, Tbl can contain
additional columns for the response variable and observation weights. Tbl must contain all of the
predictors used to train SVMModel. Multicolumn variables and cell arrays other than cell arrays of
character vectors are not allowed.

If Tbl contains the response variable used to train SVMModel, then you do not need to specify
ResponseVarName or Y.

If you trained SVMModel using sample data contained in a table, then the input data for loss must
also be in a table.

If you set 'Standardize',true in fitcsvm when training SVMModel, then the software
standardizes the columns of the predictor data using the corresponding means in SVMModel.Mu and
the standard deviations in SVMModel.Sigma.
Data Types: table

ResponseVarName — Response variable name
name of variable in Tbl

Response variable name, specified as the name of a variable in Tbl. If Tbl contains the response
variable used to train SVMModel, then you do not need to specify ResponseVarName.

You must specify ResponseVarName as a character vector or string scalar. For example, if the
response variable Y is stored as Tbl.Y, then specify ResponseVarName as 'Y'. Otherwise, the
software treats all columns of Tbl, including Y, as predictors when training the model.

The response variable must be a categorical, character, or string array, logical or numeric vector, or
cell array of character vectors. If the response variable is a character array, then each element must
correspond to one row of the array.
Data Types: char | string

X — Predictor data
numeric matrix

Predictor data, specified as a numeric matrix.

Each row of X corresponds to one observation (also known as an instance or example), and each
column corresponds to one variable (also known as a feature). The variables in the columns of X must
be the same as the variables that trained the SVMModel classifier.

The length of Y and the number of rows in X must be equal.
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If you set 'Standardize',true in fitcsvm to train SVMModel, then the software standardizes the
columns of X using the corresponding means in SVMModel.Mu and the standard deviations in
SVMModel.Sigma.
Data Types: double | single

Y — Class labels
categorical array | character array | string array | logical vector | numeric vector | cell array of
character vectors

Class labels, specified as a categorical, character, or string array, logical or numeric vector, or cell
array of character vectors. Y must be the same as the data type of SVMModel.ClassNames. (The
software treats string arrays as cell arrays of character vectors.)

The length of Y must equal the number of rows in Tbl or the number of rows in X.

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: loss(SVMModel,Tbl,Y,'Weights',W) weighs the observations in each row of Tbl using
the corresponding weight in each row of the variable W in Tbl.

LossFun — Loss function
'classiferror' (default) | 'binodeviance' | 'classifcost' | 'exponential' | 'hinge' |
'logit' | 'mincost' | 'quadratic' | function handle

Loss function, specified as a built-in loss function name or a function handle.

• This table lists the available loss functions. Specify one using its corresponding character vector
or string scalar.

Value Description
'binodeviance' Binomial deviance
'classifcost' Observed misclassification cost
'classiferror' Misclassified rate in decimal
'exponential' Exponential loss
'hinge' Hinge loss
'logit' Logistic loss
'mincost' Minimal expected misclassification cost (for

classification scores that are posterior
probabilities)

'quadratic' Quadratic loss

'mincost' is appropriate for classification scores that are posterior probabilities. You can specify
to use posterior probabilities as classification scores for SVM models by setting
'FitPosterior',true when you cross-validate the model using fitcsvm.
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• Specify your own function by using function handle notation.

Suppose that n is the number of observations in X, and K is the number of distinct classes
(numel(SVMModel.ClassNames)) used to create the input model (SVMModel). Your function
must have this signature

lossvalue = lossfun(C,S,W,Cost)

where:

• The output argument lossvalue is a scalar.
• You choose the function name (lossfun).
• C is an n-by-K logical matrix with rows indicating the class to which the corresponding

observation belongs. The column order corresponds to the class order in
SVMModel.ClassNames.

Construct C by setting C(p,q) = 1 if observation p is in class q, for each row. Set all other
elements of row p to 0.

• S is an n-by-K numeric matrix of classification scores, similar to the output of predict. The
column order corresponds to the class order in SVMModel.ClassNames.

• W is an n-by-1 numeric vector of observation weights. If you pass W, the software normalizes the
weights to sum to 1.

• Cost is a K-by-K numeric matrix of misclassification costs. For example, Cost = ones(K) –
eye(K) specifies a cost of 0 for correct classification and 1 for misclassification.

Specify your function using 'LossFun',@lossfun.

For more details on loss functions, see “Classification Loss” on page 35-4439.
Example: 'LossFun','binodeviance'
Data Types: char | string | function_handle

Weights — Observation weights
ones(size(X,1),1) (default) | numeric vector | name of variable in Tbl

Observation weights, specified as a numeric vector or the name of a variable in Tbl. The software
weighs the observations in each row of X or Tbl with the corresponding weight in Weights.

If you specify Weights as a numeric vector, then the size of Weights must be equal to the number of
rows in X or Tbl.

If you specify Weights as the name of a variable in Tbl, you must do so as a character vector or
string scalar. For example, if the weights are stored as Tbl.W, then specify Weights as 'W'.
Otherwise, the software treats all columns of Tbl, including Tbl.W, as predictors.

If you do not specify your own loss function, then the software normalizes Weights to sum up to the
value of the prior probability in the respective class.
Example: 'Weights','W'
Data Types: single | double | char | string
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More About
Classification Loss

Classification loss functions measure the predictive inaccuracy of classification models. When you
compare the same type of loss among many models, a lower loss indicates a better predictive model.

Consider the following scenario.

• L is the weighted average classification loss.
• n is the sample size.

• yj is the observed class label. The software codes it as –1 or 1, indicating the negative or positive
class (or the first or second class in the ClassNames property), respectively.

• f(Xj) is the positive-class classification score for observation (row) j of the predictor data X.
• mj = yjf(Xj) is the classification score for classifying observation j into the class corresponding to

yj. Positive values of mj indicate correct classification and do not contribute much to the average
loss. Negative values of mj indicate incorrect classification and contribute significantly to the
average loss.

• The weight for observation j is wj. The software normalizes the observation weights so that they
sum to the corresponding prior class probability stored in the Prior property. Therefore,

∑
j = 1

n
w j = 1.

Given this scenario, the following table describes the supported loss functions that you can specify by
using the LossFun name-value argument.

Loss Function Value of LossFun Equation
Binomial deviance 'binodeviance'

L = ∑
j = 1

n
w jlog 1 + exp −2m j .

Observed
misclassification cost

'classifcost'
L = ∑

j = 1

n
w jcy jy j,

where y j is the class label corresponding to the
class with the maximal score, and cy jy j is the
user-specified cost of classifying an observation
into class y j when its true class is yj.

Misclassified rate in
decimal

'classiferror'
L = ∑

j = 1

n
w jI y j ≠ y j ,

where I{·} is the indicator function.
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Loss Function Value of LossFun Equation
Cross-entropy loss 'crossentropy' 'crossentropy' is appropriate only for neural

network models.

The weighted cross-entropy loss is

L = − ∑
j = 1

n w jlog(m j)
Kn ,

where the weights w j are normalized to sum to n
instead of 1.

Exponential loss 'exponential'
L = ∑

j = 1

n
w jexp −m j .

Hinge loss 'hinge'

L =∑
j = 1

n

w jmax 0, 1−m j .

Logit loss 'logit'
L = ∑

j = 1

n
w jlog 1 + exp −m j .
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Loss Function Value of LossFun Equation
Minimal expected
misclassification cost

'mincost' 'mincost' is appropriate only if classification
scores are posterior probabilities.

The software computes the weighted minimal
expected classification cost using this procedure
for observations j = 1,...,n.

1 Estimate the expected misclassification cost
of classifying the observation Xj into the class
k:

γ jk = f X j ′C k .

f(Xj) is the column vector of class posterior
probabilities for the observation Xj. C is the
cost matrix stored in the Cost property of
the model.

2 For observation j, predict the class label
corresponding to the minimal expected
misclassification cost:

y j = argmin
k = 1, ..., K

γ jk .

3 Using C, identify the cost incurred (cj) for
making the prediction.

The weighted average of the minimal expected
misclassification cost loss is

L = ∑
j = 1

n
w jc j .

Quadratic loss 'quadratic'
L = ∑

j = 1

n
w j 1−m j

2 .

If you use the default cost matrix (whose element value is 0 for correct classification and 1 for
incorrect classification), then the loss values for 'classifcost', 'classiferror', and
'mincost' are identical. For a model with a nondefault cost matrix, the 'classifcost' loss is
equivalent to the 'mincost' loss most of the time. These losses can be different if prediction into the
class with maximal posterior probability is different from prediction into the class with minimal
expected cost. Note that 'mincost' is appropriate only if classification scores are posterior
probabilities.

This figure compares the loss functions (except 'classifcost', 'crossentropy', and
'mincost') over the score m for one observation. Some functions are normalized to pass through
the point (0,1).
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Classification Score

The SVM classification score for classifying observation x is the signed distance from x to the decision
boundary ranging from -∞ to +∞. A positive score for a class indicates that x is predicted to be in that
class. A negative score indicates otherwise.

The positive class classification score f (x) is the trained SVM classification function. f (x) is also the
numerical predicted response for x, or the score for predicting x into the positive class.

f (x) = ∑
j = 1

n
α jy jG(x j, x) + b,

where (α1, ..., αn, b) are the estimated SVM parameters, G(x j, x) is the dot product in the predictor
space between x and the support vectors, and the sum includes the training set observations. The
negative class classification score for x, or the score for predicting x into the negative class, is –f(x).

If G(xj,x) = xj′x (the linear kernel), then the score function reduces to

f x = x/s ′β + b .

s is the kernel scale and β is the vector of fitted linear coefficients.

For more details, see “Understanding Support Vector Machines” on page 19-151.
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Version History
Introduced in R2014a

loss returns a different value for a model with a nondefault cost matrix
Behavior changed in R2022a

If you specify a nondefault cost matrix when you train the input model object, the loss function
returns a different value compared to previous releases.

The loss function uses the prior probabilities stored in the Prior property to normalize the
observation weights of the input data. Also, the function uses the cost matrix stored in the Cost
property if you specify the LossFun name-value argument as "classifcost" or "mincost". The
way the function uses the Prior and Cost property values has not changed. However, the property
values stored in the input model object have changed for a model with a nondefault cost matrix, so
the function can return a different value.

For details about the property value change, see “Cost property stores the user-specified cost matrix”
on page 35-634.

If you want the software to handle the cost matrix, prior probabilities, and observation weights as in
previous releases, adjust the prior probabilities and observation weights for the nondefault cost
matrix, as described in “Adjust Prior Probabilities and Observation Weights for Misclassification Cost
Matrix” on page 19-9. Then, when you train a classification model, specify the adjusted prior
probabilities and observation weights by using the Prior and Weights name-value arguments,
respectively, and use the default cost matrix.

loss can return NaN for predictor data with missing values
Behavior changed in R2022a

The loss function no longer omits an observation with a NaN score when computing the weighted
average classification loss. Therefore, loss can now return NaN when the predictor data X or the
predictor variables in Tbl contain any missing values, and the name-value argument LossFun is not
specified as "classifcost", "classiferror", or "mincost". In most cases, if the test set
observations do not contain missing predictors, the loss function does not return NaN.

This change improves the automatic selection of a classification model when you use fitcauto.
Before this change, the software might select a model (expected to best classify new data) with few
non-NaN predictors.

If loss in your code returns NaN, you can update your code to avoid this result by doing one of the
following:

• Remove or replace the missing values by using rmmissing or fillmissing, respectively.
• Specify the name-value argument LossFun as "classifcost", "classiferror", or

"mincost".

The following table shows the classification models for which the loss object function might return
NaN. For more details, see the Compatibility Considerations for each loss function.
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Model Type Full or Compact Model Object loss Object Function
Discriminant analysis
classification model

ClassificationDiscrimina
nt,
CompactClassificationDis
criminant

loss

Ensemble of learners for
classification

ClassificationEnsemble,
CompactClassificationEns
emble

loss

Gaussian kernel classification
model

ClassificationKernel loss

k-nearest neighbor classification
model

ClassificationKNN loss

Linear classification model ClassificationLinear loss
Neural network classification
model

ClassificationNeuralNetw
ork,
CompactClassificationNeu
ralNetwork

loss

Support vector machine (SVM)
classification model

ClassificationSVM,
CompactClassificationSVM

loss

References
[1] Hastie, T., R. Tibshirani, and J. Friedman. The Elements of Statistical Learning, second edition.

Springer, New York, 2008.

Extended Capabilities
Tall Arrays
Calculate with arrays that have more rows than fit in memory.

This function fully supports tall arrays. For more information, see “Tall Arrays”.

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

Usage notes and limitations:

• The loss function does not support one-class classification models.

For more information, see “Run MATLAB Functions on a GPU” (Parallel Computing Toolbox).

See Also
ClassificationSVM | CompactClassificationSVM | fitcsvm | predict
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loss
Classification error

Syntax
L = loss(tree,TBL,ResponseVarName)
L = loss(tree,TBL,Y)
L = loss(tree,X,Y)

L = loss( ___ ,Name,Value)

[L,se,NLeaf,bestlevel] = loss( ___ )

Description
L = loss(tree,TBL,ResponseVarName) returns a scalar representing how well tree classifies
the data in TBL, when TBL.ResponseVarName contains the true classifications.

When computing the loss, loss normalizes the class probabilities in Y to the class probabilities used
for training, stored in the Prior property of tree.

L = loss(tree,TBL,Y) returns a scalar representing how well tree classifies the data in TBL,
when Y contains the true classifications.

L = loss(tree,X,Y) returns a scalar representing how well tree classifies the data in X, when Y
contains the true classifications.

L = loss( ___ ,Name,Value) returns the loss with additional options specified by one or more
Name,Value pair arguments, using any of the previous syntaxes. For example, you can specify the
loss function or observation weights.

[L,se,NLeaf,bestlevel] = loss( ___ ) also returns the vector of standard errors of the
classification errors (se), the vector of numbers of leaf nodes in the trees of the pruning sequence
(NLeaf), and the best pruning level as defined in the TreeSize name-value pair (bestlevel).

Input Arguments
tree — Trained classification tree
ClassificationTree model object | CompactClassificationTree model object

Trained classification tree, specified as a ClassificationTree or CompactClassificationTree
model object. That is, tree is a trained classification model returned by fitctree or compact.

TBL — Sample data
table

Sample data, specified as a table. Each row of TBL corresponds to one observation, and each column
corresponds to one predictor variable. Optionally, TBL can contain additional columns for the
response variable and observation weights. TBL must contain all the predictors used to train tree.
Multicolumn variables and cell arrays other than cell arrays of character vectors are not allowed.
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If TBL contains the response variable used to train tree, then you do not need to specify
ResponseVarName or Y.

If you train tree using sample data contained in a table, then the input data for this method must
also be in a table.
Data Types: table

X — Data to classify
numeric matrix

Data to classify, specified as a numeric matrix. Each row of X represents one observation, and each
column represents one predictor. X must have the same number of columns as the data used to train
tree. X must have the same number of rows as the number of elements in Y.
Data Types: single | double

ResponseVarName — Response variable name
name of a variable in TBL

Response variable name, specified as the name of a variable in TBL. If TBL contains the response
variable used to train tree, then you do not need to specify ResponseVarName.

If you specify ResponseVarName, then you must do so as a character vector or string scalar. For
example, if the response variable is stored as TBL.Response, then specify it as 'Response'.
Otherwise, the software treats all columns of TBL, including TBL.ResponseVarName, as predictors.

The response variable must be a categorical, character, or string array, logical or numeric vector, or
cell array of character vectors. If the response variable is a character array, then each element must
correspond to one row of the array.
Data Types: char | string

Y — Class labels
categorical array | character array | string array | logical vector | numeric vector | cell array of
character vectors

Class labels, specified as a categorical, character, or string array, a logical or numeric vector, or a cell
array of character vectors. Y must be of the same type as the classification used to train tree, and its
number of elements must equal the number of rows of X.
Data Types: categorical | char | string | logical | single | double | cell

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.

LossFun — Loss function
'mincost' (default) | 'binodeviance' | 'classifcost' | 'classiferror' | 'exponential' |
'hinge' | 'logit' | 'quadratic' | function handle

Loss function, specified as the comma-separated pair consisting of 'LossFun' and a built-in loss
function name or function handle.
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• The following table lists the available loss functions. Specify one using its corresponding character
vector or string scalar.

Value Description
'binodeviance' Binomial deviance
'classifcost' Observed misclassification cost
'classiferror' Misclassified rate in decimal
'exponential' Exponential loss
'hinge' Hinge loss
'logit' Logistic loss
'mincost' Minimal expected misclassification cost (for

classification scores that are posterior
probabilities)

'quadratic' Quadratic loss

'mincost' is appropriate for classification scores that are posterior probabilities. Classification
trees return posterior probabilities as classification scores by default (see predict).

• Specify your own function using function handle notation.

Suppose that n be the number of observations in X and K be the number of distinct classes
(numel(tree.ClassNames)). Your function must have this signature

lossvalue = lossfun(C,S,W,Cost)

where:

• The output argument lossvalue is a scalar.
• You choose the function name (lossfun).
• C is an n-by-K logical matrix with rows indicating which class the corresponding observation

belongs. The column order corresponds to the class order in tree.ClassNames.

Construct C by setting C(p,q) = 1 if observation p is in class q, for each row. Set all other
elements of row p to 0.

• S is an n-by-K numeric matrix of classification scores. The column order corresponds to the
class order in tree.ClassNames. S is a matrix of classification scores, similar to the output of
predict.

• W is an n-by-1 numeric vector of observation weights. If you pass W, the software normalizes
them to sum to 1.

• Cost is a K-by-K numeric matrix of misclassification costs. For example, Cost = ones(K) -
eye(K) specifies a cost of 0 for correct classification, and 1 for misclassification.

Specify your function using 'LossFun',@lossfun.

For more details on loss functions, see “Classification Loss” on page 35-4452.
Data Types: char | string | function_handle

Weights — Observation weights
ones(size(X,1),1) (default) | name of a variable in TBL | numeric vector of positive values
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Observation weights, specified as the comma-separated pair consisting of 'Weights' and a numeric
vector of positive values or the name of a variable in TBL.

If you specify Weights as a numeric vector, then the size of Weights must be equal to the number of
rows in X or TBL.

If you specify Weights as the name of a variable in TBL, you must do so as a character vector or
string scalar. For example, if the weights are stored as TBL.W, then specify it as 'W'. Otherwise, the
software treats all columns of TBL, including TBL.W, as predictors.

loss normalizes the weights so that observation weights in each class sum to the prior probability of
that class. When you supply Weights, loss computes weighted classification loss.
Data Types: single | double | char | string

Name,Value arguments associated with pruning subtrees:

Subtrees — Pruning level
0 (default) | vector of nonnegative integers | 'all'

Pruning level, specified as the comma-separated pair consisting of 'Subtrees' and a vector of
nonnegative integers in ascending order or 'all'.

If you specify a vector, then all elements must be at least 0 and at most max(tree.PruneList). 0
indicates the full, unpruned tree and max(tree.PruneList) indicates the completely pruned tree
(i.e., just the root node).

If you specify 'all', then loss operates on all subtrees (i.e., the entire pruning sequence). This
specification is equivalent to using 0:max(tree.PruneList).

loss prunes tree to each level indicated in Subtrees, and then estimates the corresponding output
arguments. The size of Subtrees determines the size of some output arguments.

To invoke Subtrees, the properties PruneList and PruneAlpha of tree must be nonempty. In
other words, grow tree by setting 'Prune','on', or by pruning tree using prune.
Example: 'Subtrees','all'
Data Types: single | double | char | string

TreeSize — Tree size
'se' (default) | 'min'

Tree size, specified as the comma-separated pair consisting of 'TreeSize' and one of the following
values:

• 'se' — loss returns the highest pruning level with loss within one standard deviation of the
minimum (L+se, where L and se relate to the smallest value in Subtrees).

• 'min' — loss returns the element of Subtrees with smallest loss, usually the smallest element
of Subtrees.

Output Arguments
L — Classification loss
vector of scalar values
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Classification loss on page 35-4452, returned as a vector the length of Subtrees. The meaning of the
error depends on the values in Weights and LossFun.

se — Standard error of loss
vector of scalar values

Standard error of loss, returned as a vector the length of Subtrees.

NLeaf — Number of leaf nodes
vector of integer values

Number of leaves (terminal nodes) in the pruned subtrees, returned as a vector the length of
Subtrees.

bestlevel — Best pruning level
scalar value

Best pruning level as defined in the TreeSize name-value pair, returned as a scalar whose value
depends on TreeSize:

• TreeSize = 'se' — loss returns the highest pruning level with loss within one standard
deviation of the minimum (L+se, where L and se relate to the smallest value in Subtrees).

• TreeSize = 'min' — loss returns the element of Subtrees with smallest loss, usually the
smallest element of Subtrees.

By default, bestlevel is the pruning level that gives loss within one standard deviation of minimal
loss.

Examples

Compute the In-sample Classification Error

Compute the resubstituted classification error for the ionosphere data set.

load ionosphere
tree = fitctree(X,Y);
L = loss(tree,X,Y)

L = 0.0114

Examine the Classification Error for Each Subtree

Unpruned decision trees tend to overfit. One way to balance model complexity and out-of-sample
performance is to prune a tree (or restrict its growth) so that in-sample and out-of-sample
performance are satisfactory.

Load Fisher's iris data set. Partition the data into training (50%) and validation (50%) sets.

load fisheriris
n = size(meas,1);
rng(1) % For reproducibility
idxTrn = false(n,1);
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idxTrn(randsample(n,round(0.5*n))) = true; % Training set logical indices 
idxVal = idxTrn == false;                  % Validation set logical indices

Grow a classification tree using the training set.

Mdl = fitctree(meas(idxTrn,:),species(idxTrn));

View the classification tree.

view(Mdl,'Mode','graph');

The classification tree has four pruning levels. Level 0 is the full, unpruned tree (as displayed). Level
3 is just the root node (i.e., no splits).

Examine the training sample classification error for each subtree (or pruning level) excluding the
highest level.

m = max(Mdl.PruneList) - 1;
trnLoss = resubLoss(Mdl,'SubTrees',0:m)

trnLoss = 3×1
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    0.0267
    0.0533
    0.3067

• The full, unpruned tree misclassifies about 2.7% of the training observations.
• The tree pruned to level 1 misclassifies about 5.3% of the training observations.
• The tree pruned to level 2 (i.e., a stump) misclassifies about 30.6% of the training observations.

Examine the validation sample classification error at each level excluding the highest level.

valLoss = loss(Mdl,meas(idxVal,:),species(idxVal),'SubTrees',0:m)

valLoss = 3×1

    0.0369
    0.0237
    0.3067

• The full, unpruned tree misclassifies about 3.7% of the validation observations.
• The tree pruned to level 1 misclassifies about 2.4% of the validation observations.
• The tree pruned to level 2 (i.e., a stump) misclassifies about 30.7% of the validation observations.

To balance model complexity and out-of-sample performance, consider pruning Mdl to level 1.

pruneMdl = prune(Mdl,'Level',1);
view(pruneMdl,'Mode','graph')
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More About
Classification Loss

Classification loss functions measure the predictive inaccuracy of classification models. When you
compare the same type of loss among many models, a lower loss indicates a better predictive model.

Consider the following scenario.

• L is the weighted average classification loss.
• n is the sample size.

• For binary classification:

• yj is the observed class label. The software codes it as –1 or 1, indicating the negative or
positive class (or the first or second class in the ClassNames property), respectively.

• f(Xj) is the positive-class classification score for observation (row) j of the predictor data X.
• mj = yjf(Xj) is the classification score for classifying observation j into the class corresponding

to yj. Positive values of mj indicate correct classification and do not contribute much to the
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average loss. Negative values of mj indicate incorrect classification and contribute significantly
to the average loss.

• For algorithms that support multiclass classification (that is, K ≥ 3):

• yj
* is a vector of K – 1 zeros, with 1 in the position corresponding to the true, observed class yj.

For example, if the true class of the second observation is the third class and K = 4, then y2
* =

[0 0 1 0]′. The order of the classes corresponds to the order in the ClassNames property of
the input model.

• f(Xj) is the length K vector of class scores for observation j of the predictor data X. The order of
the scores corresponds to the order of the classes in the ClassNames property of the input
model.

• mj = yj
*′f(Xj). Therefore, mj is the scalar classification score that the model predicts for the true,

observed class.
• The weight for observation j is wj. The software normalizes the observation weights so that they

sum to the corresponding prior class probability stored in the Prior property. Therefore,

∑
j = 1

n
w j = 1.

Given this scenario, the following table describes the supported loss functions that you can specify by
using the LossFun name-value argument.

Loss Function Value of LossFun Equation
Binomial deviance 'binodeviance'

L = ∑
j = 1

n
w jlog 1 + exp −2m j .

Observed
misclassification cost

'classifcost'
L = ∑

j = 1

n
w jcy jy j,

where y j is the class label corresponding to the
class with the maximal score, and cy jy j is the
user-specified cost of classifying an observation
into class y j when its true class is yj.

Misclassified rate in
decimal

'classiferror'
L = ∑

j = 1

n
w jI y j ≠ y j ,

where I{·} is the indicator function.
Cross-entropy loss 'crossentropy' 'crossentropy' is appropriate only for neural

network models.

The weighted cross-entropy loss is

L = − ∑
j = 1

n w jlog(m j)
Kn ,

where the weights w j are normalized to sum to n
instead of 1.
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Loss Function Value of LossFun Equation
Exponential loss 'exponential'

L = ∑
j = 1

n
w jexp −m j .

Hinge loss 'hinge'

L =∑
j = 1

n

w jmax 0, 1−m j .

Logit loss 'logit'
L = ∑

j = 1

n
w jlog 1 + exp −m j .

Minimal expected
misclassification cost

'mincost' 'mincost' is appropriate only if classification
scores are posterior probabilities.

The software computes the weighted minimal
expected classification cost using this procedure
for observations j = 1,...,n.

1 Estimate the expected misclassification cost
of classifying the observation Xj into the class
k:

γ jk = f X j ′C k .

f(Xj) is the column vector of class posterior
probabilities for the observation Xj. C is the
cost matrix stored in the Cost property of
the model.

2 For observation j, predict the class label
corresponding to the minimal expected
misclassification cost:

y j = argmin
k = 1, ..., K

γ jk .

3 Using C, identify the cost incurred (cj) for
making the prediction.

The weighted average of the minimal expected
misclassification cost loss is

L = ∑
j = 1

n
w jc j .

Quadratic loss 'quadratic'
L = ∑

j = 1

n
w j 1−m j

2 .

If you use the default cost matrix (whose element value is 0 for correct classification and 1 for
incorrect classification), then the loss values for 'classifcost', 'classiferror', and
'mincost' are identical. For a model with a nondefault cost matrix, the 'classifcost' loss is
equivalent to the 'mincost' loss most of the time. These losses can be different if prediction into the
class with maximal posterior probability is different from prediction into the class with minimal
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expected cost. Note that 'mincost' is appropriate only if classification scores are posterior
probabilities.

This figure compares the loss functions (except 'classifcost', 'crossentropy', and
'mincost') over the score m for one observation. Some functions are normalized to pass through
the point (0,1).

True Misclassification Cost

The true misclassification cost is the cost of classifying an observation into an incorrect class.

You can set the true misclassification cost per class by using the 'Cost' name-value argument when
you create the classifier. Cost(i,j) is the cost of classifying an observation into class j when its
true class is i. By default, Cost(i,j)=1 if i~=j, and Cost(i,j)=0 if i=j. In other words, the cost
is 0 for correct classification and 1 for incorrect classification.

Expected Misclassification Cost

The expected misclassification cost per observation is an averaged cost of classifying the observation
into each class.

Suppose you have Nobs observations that you want to classify with a trained classifier, and you have
K classes. You place the observations into a matrix X with one observation per row.

The expected cost matrix CE has size Nobs-by-K. Each row of CE contains the expected (average) cost
of classifying the observation into each of the K classes. CE(n,k) is
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∑
i = 1

K
P i X(n) C k i ,

where:

• K is the number of classes.
• P i X(n)  is the posterior probability of class i for observation X(n).
• C k i  is the true misclassification cost of classifying an observation as k when its true class is i.

Score (tree)

For trees, the score of a classification of a leaf node is the posterior probability of the classification at
that node. The posterior probability of the classification at a node is the number of training sequences
that lead to that node with the classification, divided by the number of training sequences that lead to
that node.

For an example, see “Posterior Probability Definition for Classification Tree” on page 35-6715.

Extended Capabilities
Tall Arrays
Calculate with arrays that have more rows than fit in memory.

Usage notes and limitations:

• Only one output is supported.
• You can use models trained on either in-memory or tall data with this function.

For more information, see “Tall Arrays”.

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

Usage notes and limitations:

• The loss function does not support decision tree models trained with surrogate splits.

For more information, see “Run MATLAB Functions on a GPU” (Parallel Computing Toolbox).

See Also
margin | edge | predict | fitctree
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loss
Regression error

Syntax
L = loss(ens,tbl,ResponseVarName)
L = loss(ens,tbl,Y)
L = loss(ens,X,Y)
L = loss( ___ ,Name,Value)

Description
L = loss(ens,tbl,ResponseVarName) returns the mean squared error between the predictions
of ens to the data in tbl, compared to the true responses tbl.ResponseVarName.

L = loss(ens,tbl,Y) returns the mean squared error between the predictions of ens to the data
in tbl, compared to the true responses Y.

L = loss(ens,X,Y) returns the mean squared error between the predictions of ens to the data in
X, compared to the true responses Y.

L = loss( ___ ,Name,Value) computes the error in prediction with additional options specified by
one or more Name,Value pair arguments, using any of the previous syntaxes.

Input Arguments
ens

A regression ensemble created with fitrensemble, or the compact method.

tbl

Sample data, specified as a table. Each row of tbl corresponds to one observation, and each column
corresponds to one predictor variable. tbl must contain all of the predictors used to train the model.
Multicolumn variables and cell arrays other than cell arrays of character vectors are not allowed.

If you trained ens using sample data contained in a table, then the input data for this method must
also be in a table.

ResponseVarName

Response variable name, specified as the name of a variable in tbl. The response variable must be a
numeric vector.

You must specify ResponseVarName as a character vector or string scalar. For example, if the
response variable Y is stored as tbl.Y, then specify it as 'Y'. Otherwise, the software treats all
columns of tbl, including Y, as predictors when training the model.
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X

A matrix of predictor values. Each column of X represents one variable, and each row represents one
observation.

If you trained ens using sample data contained in a matrix, then the input data for this method must
also be in a matrix.

Y

A numeric column vector with the same number of rows as tbl or X. Each entry in Y is the response
to the data in the corresponding row of tbl or X.

NaN values in Y are taken to be missing values. Observations with missing values for Y are not used in
the calculation of loss.

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.

learners

Indices of weak learners in the ensemble ranging from 1 to ens.NumTrained. loss uses only these
learners for calculating loss.

Default: 1:NumTrained

lossfun

Function handle for loss function, or 'mse', meaning mean squared error. If you pass a function
handle fun, loss calls it as

fun(Y,Yfit,W)

where Y, Yfit, and W are numeric vectors of the same length.

• Y is the observed response.
• Yfit is the predicted response.
• W is the observation weights.

The returned value fun(Y,Yfit,W) should be a scalar.

Default: 'mse'

mode

Meaning of the output L:

• 'ensemble' — L is a scalar value, the loss for the entire ensemble.
• 'individual' — L is a vector with one element per trained learner.
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• 'cumulative' — L is a vector in which element J is obtained by using learners 1:J from the
input list of learners.

Default: 'ensemble'

UseObsForLearner

A logical matrix of size N-by-NumTrained, where N is the number of observations in ens.X, and
NumTrained is the number of weak learners. When UseObsForLearner(I,J) is true, predict
uses learner J in predicting observation I.

Default: true(N,NumTrained)

UseParallel

Indication to perform inference in parallel, specified as false (compute serially) or true (compute in
parallel). Parallel computation requires Parallel Computing Toolbox. Parallel inference can be faster
than serial inference, especially for large datasets. Parallel computation is supported only for tree
learners.

Default: false

weights

Numeric vector of observation weights with the same number of elements as Y. The formula for loss
with weights is in “Weighted Mean Squared Error” on page 35-4460.

Default: ones(size(Y))

Output Arguments
L

Weighted mean squared error of predictions. The formula for loss is in “Weighted Mean Squared
Error” on page 35-4460.

Examples
Find Mean-Squared Error of Ensemble Predictions

Find the loss of an ensemble predictor using the carsmall data set.

Load the carsmall data set and select engine displacement, horsepower, and vehicle weight as
predictors.

load carsmall
X = [Displacement Horsepower Weight];

Train an ensemble of regression trees and find the regression error for predicting MPG.

ens = fitrensemble(X,MPG);
L = loss(ens,X,MPG)

L = 0.3463
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More About
Weighted Mean Squared Error

Let n be the number of rows of data, xj be the jth row of data, yj be the true response to xj, and let f(xj)
be the response prediction of ens to xj. Let w be the vector of weights (all one by default).

First the weights are divided by their sum so they add to one: w→w/Σw. The mean squared error L is

L = ∑
j = 1

n
w j f x j − y j

2 .

Extended Capabilities
Tall Arrays
Calculate with arrays that have more rows than fit in memory.

Usage notes and limitations:

• You cannot use UseParallel with tall arrays.

For more information, see “Tall Arrays”.

Automatic Parallel Support
Accelerate code by automatically running computation in parallel using Parallel Computing Toolbox™.

To run in parallel, set the UseParallel name-value argument to true in the call to this function.

For more general information about parallel computing, see “Run MATLAB Functions with Automatic
Parallel Support” (Parallel Computing Toolbox).

You cannot use UseParallel with tall or GPU arrays.

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

Usage notes and limitations:

• The loss function does not support ensembles trained using decision tree learners with surrogate
splits.

• You cannot use UseParallel with GPU arrays.

For more information, see “Run MATLAB Functions on a GPU” (Parallel Computing Toolbox).

See Also
predict | fitrensemble
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loss
Regression error for Gaussian process regression model

Syntax
L = loss(gprMdl,Xnew,Ynew)
L = loss(gprMdl,Xnew,Ynew,Name,Value)

Description
L = loss(gprMdl,Xnew,Ynew) returns the mean squared error for the Gaussian process
regression (GPR) model gpr, using the predictors in Xnew and observed response in Ynew.

L = loss(gprMdl,Xnew,Ynew,Name,Value) returns the mean squared error for the GPR model,
gpr, with additional options specified by one or more Name,Value pair arguments. For example, you
can specify a custom loss function or the observation weights.

Note If the predictor data Xnew contains any missing values, the loss function can return NaN. For
more details, see “loss can return NaN for predictor data with missing values” on page 35-4464.

Input Arguments
gprMdl — Gaussian process regression model
RegressionGP object | CompactRegressionGP object

Gaussian process regression model, specified as a RegressionGP (full) or CompactRegressionGP
(compact) object.

Xnew — New observed data
table | m-by-d matrix

New data, specified as a table or an n-by-d matrix, where m is the number of observations, and d is
the number of predictor variables in the training data.

If you trained gprMdl on a table, then Xnew must be a table that contains all the predictor
variables used to train gprMdl.

If Xnew is a table, then it can also contain Ynew. And if it does, then you do not have to specify Ynew.

If you trained gprMdl on a matrix, then Xnew must be a numeric matrix with d columns, and can only
contain values for the predictor variables.
Data Types: single | double | table

Ynew — New response values
n-by-1 vector

New observed response values, that correspond to the predictor values in Xnew, specified as an n-
by-1 vector. n is the number of rows in Xnew. Each entry in Ynew is the observed response based on
the predictor data in the corresponding row of Xnew.
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If Xnew is a table containing new response values, you do not have to specify Ynew.
Data Types: single | double

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.

lossfun — Loss function
'mse' (default) | function handle

Loss function, specified as 'mse' (mean squared error) or a function handle.

If you pass a function handle, say fun, loss calls it as shown below: fun(Y,Ypred,W), where Y,
Ypred and W are numeric vectors of length n, and n is the number of rows in Xnew. Y is the observed
response, Ypred is the predicted response, and W is the observation weights.
Example: 'lossfun',Fct calls the loss function Fct.
Data Types: char | string | function_handle

weights — Observation weights
vector of 1s (default) | n-by-1 vector

Observation weights, specified as n-by-1 vector, where n is the number of rows in Xnew. By default,
the weight of each observation is 1.
Example: 'weights',W uses the observation weights in vector W.
Data Types: double | single

Output Arguments
L — Regression error
scalar value

Regression error for the trained Gaussian process regression model, gprMdl, returned as a scalar
value.

Examples

Compute Regression Loss for Test Data

Load the sample data.

load('gprdata.mat')

The data has 8 predictor variables and contains 500 observations in training data and 100
observations in test data. This is simulated data.

Fit a GPR model using the squared exponential kernel function with separate length scales for each
predictor. Standardize the predictor values in the training data. Use the exact method for fitting and
prediction.
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gprMdl = fitrgp(Xtrain,ytrain,'FitMethod','exact',...
'PredictMethod','exact','KernelFunction','ardsquaredexponential',...
'Standardize',1);

Compute the regression error for the test data.

L = loss(gprMdl,Xtest,ytest)

L = 0.6928

Predict the responses for test data.

ypredtest = predict(gprMdl,Xtest);

Plot the test response along with the predictions.

figure;
plot(ytest,'r');
hold on;
plot(ypredtest,'b');
legend('Data','Predictions','Location','Best');

Manually compute the regression loss.

L = (ytest - ypredtest)'*(ytest - ypredtest)/length(ytest)

L = 0.6928
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Specify Custom Loss Function

Load the sample data and store in a table.

load fisheriris
tbl = table(meas(:,1),meas(:,2),meas(:,3),meas(:,4),species,...
'VariableNames',{'meas1','meas2','meas3','meas4','species'});

Fit a GPR model using the first measurement as the response and the other variables as the
predictors.

mdl = fitrgp(tbl,'meas1');

Predict the responses using the trained model.

ypred = predict(mdl,tbl);

Compute the mean absolute error.

n = height(tbl);
y = tbl.meas1;
fun = @(y,ypred,w) sum(abs(y-ypred))/n;
L = loss(mdl,tbl,'lossfun',fun)

L = 0.2345

Alternatives
You can use resubLoss to compute the regression error for the trained GPR model at the
observations in the training data.

Version History
Introduced in R2015b

loss can return NaN for predictor data with missing values
Behavior changed in R2022a

The loss function no longer omits an observation with a NaN prediction when computing the
weighted average regression loss. Therefore, loss can now return NaN when the predictor data
Xnew contains any missing values. In most cases, if the test set observations do not contain missing
predictors, the loss function does not return NaN.

This change improves the automatic selection of a regression model when you use fitrauto. Before
this change, the software might select a model (expected to best predict the responses for new data)
with few non-NaN predictors.

If loss in your code returns NaN, you can update your code to avoid this result. Remove or replace
the missing values by using rmmissing or fillmissing, respectively.

The following table shows the regression models for which the loss object function might return
NaN. For more details, see the Compatibility Considerations for each loss function.
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Model Type Full or Compact Model Object loss Object Function
Gaussian process regression
(GPR) model

RegressionGP,
CompactRegressionGP

loss

Gaussian kernel regression
model

RegressionKernel loss

Linear regression model RegressionLinear loss
Neural network regression
model

RegressionNeuralNetwork,
CompactRegressionNeuralN
etwork

loss

Support vector machine (SVM)
regression model

RegressionSVM,
CompactRegressionSVM

loss

Extended Capabilities
Tall Arrays
Calculate with arrays that have more rows than fit in memory.

This function fully supports tall arrays. For more information, see “Tall Arrays”.

See Also
fitrgp | RegressionGP | CompactRegressionGP | compact | resubLoss | predict
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loss
Package: 

Loss for regression neural network

Syntax
L = loss(Mdl,Tbl,ResponseVarName)
L = loss(Mdl,Tbl,Y)

L = loss(Mdl,X,Y)

L = loss( ___ ,Name,Value)

Description
L = loss(Mdl,Tbl,ResponseVarName) returns the regression loss for the trained regression
neural network Mdl using the predictor data in table Tbl and the response values in the
ResponseVarName table variable.

L is returned as a scalar value that represents the mean squared error (MSE) by default.

L = loss(Mdl,Tbl,Y) returns the regression loss for the model Mdl using the predictor data in
table Tbl and the response values in vector Y.

L = loss(Mdl,X,Y) returns the regression loss for the trained regression neural network Mdl
using the predictor data X and the corresponding response values in Y.

L = loss( ___ ,Name,Value) specifies options using one or more name-value arguments in
addition to any of the input argument combinations in previous syntaxes. For example, you can
specify that columns in the predictor data correspond to observations, specify the loss function, or
supply observation weights.

Note If the predictor data X or the predictor variables in Tbl contain any missing values, the loss
function can return NaN. For more details, see “loss can return NaN for predictor data with missing
values” on page 35-4472.

Examples

Test Set Mean Squared Error of Neural Network

Calculate the test set mean squared error (MSE) of a regression neural network model.

Load the patients data set. Create a table from the data set. Each row corresponds to one patient,
and each column corresponds to a diagnostic variable. Use the Systolic variable as the response
variable, and the rest of the variables as predictors.

load patients
tbl = table(Diastolic,Height,Smoker,Weight,Systolic);
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Separate the data into a training set tblTrain and a test set tblTest by using a nonstratified
holdout partition. The software reserves approximately 30% of the observations for the test data set
and uses the rest of the observations for the training data set.

rng("default") % For reproducibility of the partition
c = cvpartition(size(tbl,1),"Holdout",0.30);
trainingIndices = training(c);
testIndices = test(c);
tblTrain = tbl(trainingIndices,:);
tblTest = tbl(testIndices,:);

Train a regression neural network model using the training set. Specify the Systolic column of
tblTrain as the response variable. Specify to standardize the numeric predictors, and set the
iteration limit to 50.

Mdl = fitrnet(tblTrain,"Systolic", ...
    "Standardize",true,"IterationLimit",50);

Calculate the test set MSE. Smaller MSE values indicate better performance.

testMSE = loss(Mdl,tblTest,"Systolic")

testMSE = 22.2447

Select Features to Include in Regression Neural Network

Perform feature selection by comparing test set losses and predictions. Compare the test set metrics
for a regression neural network model trained using all the predictors to the test set metrics for a
model trained using only a subset of the predictors.

Load the sample file fisheriris.csv, which contains iris data including sepal length, sepal width,
petal length, petal width, and species type. Read the file into a table.

fishertable = readtable('fisheriris.csv');

Separate the data into a training set trainTbl and a test set testTbl by using a nonstratified
holdout partition. The software reserves approximately 30% of the observations for the test data set
and uses the rest of the observations for the training data set.

rng("default")
c = cvpartition(size(fishertable,1),"Holdout",0.3);
trainTbl = fishertable(training(c),:);
testTbl = fishertable(test(c),:);

Train one regression neural network model using all the predictors in the training set, and train
another model using all the predictors except PetalWidth. For both models, specify PetalLength
as the response variable, and standardize the predictors.

allMdl = fitrnet(trainTbl,"PetalLength","Standardize",true);
subsetMdl = fitrnet(trainTbl,"PetalLength ~ SepalLength + SepalWidth + Species", ...
    "Standardize",true);

Compare the test set mean squared error (MSE) of the two models. Smaller MSE values indicate
better performance.
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allMSE = loss(allMdl,testTbl)

allMSE = 0.0831

subsetMSE = loss(subsetMdl,testTbl)

subsetMSE = 0.0884

For each model, compare the test set predicted petal lengths to the true petal lengths. Plot the
predicted petal lengths along the vertical axis and the true petal lengths along the horizontal axis.
Points on the reference line indicate correct predictions.

tiledlayout(2,1)

% Top axes
ax1 = nexttile;
allPredictedY = predict(allMdl,testTbl);
plot(ax1,testTbl.PetalLength,allPredictedY,".")
hold on
plot(ax1,testTbl.PetalLength,testTbl.PetalLength)
hold off
xlabel(ax1,"True Petal Length")
ylabel(ax1,"Predicted Petal Length")
title(ax1,"All Predictors")

% Bottom axes
ax2 = nexttile;
subsetPredictedY = predict(subsetMdl,testTbl);
plot(ax2,testTbl.PetalLength,subsetPredictedY,".")
hold on
plot(ax2,testTbl.PetalLength,testTbl.PetalLength)
hold off
xlabel(ax2,"True Petal Length")
ylabel(ax2,"Predicted Petal Length")
title(ax2,"Subset of Predictors")
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Because both models seems to perform well, with predictions scattered near the reference line,
consider using the model trained using all predictors except PetalWidth.

Input Arguments
Mdl — Trained regression neural network
RegressionNeuralNetwork model object | CompactRegressionNeuralNetwork model object

Trained regression neural network, specified as a RegressionNeuralNetwork model object or
CompactRegressionNeuralNetwork model object returned by fitrnet or compact, respectively.

Tbl — Sample data
table

Sample data, specified as a table. Each row of Tbl corresponds to one observation, and each column
corresponds to one predictor variable. Optionally, Tbl can contain an additional column for the
response variable. Tbl must contain all of the predictors used to train Mdl. Multicolumn variables
and cell arrays other than cell arrays of character vectors are not allowed.

• If Tbl contains the response variable used to train Mdl, then you do not need to specify
ResponseVarName or Y.

• If you trained Mdl using sample data contained in a table, then the input data for loss must also
be in a table.
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• If you set 'Standardize',true in fitrnet when training Mdl, then the software standardizes
the numeric columns of the predictor data using the corresponding means and standard
deviations.

Data Types: table

ResponseVarName — Response variable name
name of variable in Tbl

Response variable name, specified as the name of a variable in Tbl. The response variable must be a
numeric vector.

If you specify ResponseVarName, then you must specify it as a character vector or string scalar. For
example, if the response variable is stored as Tbl.Y, then specify ResponseVarName as 'Y'.
Otherwise, the software treats all columns of Tbl, including Tbl.Y, as predictors.
Data Types: char | string

Y — Response data
numeric vector

Response data, specified as a numeric vector. The length of Y must be equal to the number of
observations in X or Tbl.
Data Types: single | double

X — Predictor data
numeric matrix

Predictor data, specified as a numeric matrix. By default, loss assumes that each row of X
corresponds to one observation, and each column corresponds to one predictor variable.

Note If you orient your predictor matrix so that observations correspond to columns and specify
'ObservationsIn','columns', then you might experience a significant reduction in computation
time.

The length of Y and the number of observations in X must be equal.

If you set 'Standardize',true in fitrnet when training Mdl, then the software standardizes the
numeric columns of the predictor data using the corresponding means and standard deviations.
Data Types: single | double

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: loss(Mdl,Tbl,"Response","Weights","W") specifies to use the Response and W
variables in the table Tbl as the response values and observation weights, respectively.

LossFun — Loss function
'mse' (default) | function handle
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Loss function, specified as 'mse' or a function handle.

• 'mse' — Weighted mean squared error.
• Function handle — To specify a custom loss function, use a function handle. The function must

have this form:

lossval = lossfun(Y,YFit,W)

• The output argument lossval is a floating-point scalar.
• You specify the function name (lossfun).
• Y is a length n numeric vector of observed responses, where n is the number of observations in

Tbl or X.
• YFit is a length n numeric vector of corresponding predicted responses.
• W is an n-by-1 numeric vector of observation weights.

Example: 'LossFun',@lossfun
Data Types: char | string | function_handle

ObservationsIn — Predictor data observation dimension
'rows' (default) | 'columns'

Predictor data observation dimension, specified as 'rows' or 'columns'.

Note If you orient your predictor matrix so that observations correspond to columns and specify
'ObservationsIn','columns', then you might experience a significant reduction in computation
time. You cannot specify 'ObservationsIn','columns' for predictor data in a table.

Data Types: char | string

Weights — Observation weights
nonnegative numeric vector | name of variable in Tbl

Observation weights, specified as a nonnegative numeric vector or the name of a variable in Tbl. The
software weights each observation in X or Tbl with the corresponding value in Weights. The length
of Weights must equal the number of observations in X or Tbl.

If you specify the input data as a table Tbl, then Weights can be the name of a variable in Tbl that
contains a numeric vector. In this case, you must specify Weights as a character vector or string
scalar. For example, if the weights vector W is stored as Tbl.W, then specify it as 'W'.

By default, Weights is ones(n,1), where n is the number of observations in X or Tbl.

If you supply weights, then loss computes the weighted regression loss and normalizes weights to
sum to 1.
Data Types: single | double | char | string

Version History
Introduced in R2021a
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loss can return NaN for predictor data with missing values
Behavior changed in R2022a

The loss function no longer omits an observation with a NaN prediction when computing the
weighted average regression loss. Therefore, loss can now return NaN when the predictor data X or
the predictor variables in Tbl contain any missing values. In most cases, if the test set observations
do not contain missing predictors, the loss function does not return NaN.

This change improves the automatic selection of a regression model when you use fitrauto. Before
this change, the software might select a model (expected to best predict the responses for new data)
with few non-NaN predictors.

If loss in your code returns NaN, you can update your code to avoid this result. Remove or replace
the missing values by using rmmissing or fillmissing, respectively.

The following table shows the regression models for which the loss object function might return
NaN. For more details, see the Compatibility Considerations for each loss function.

Model Type Full or Compact Model Object loss Object Function
Gaussian process regression
(GPR) model

RegressionGP,
CompactRegressionGP

loss

Gaussian kernel regression
model

RegressionKernel loss

Linear regression model RegressionLinear loss
Neural network regression
model

RegressionNeuralNetwork,
CompactRegressionNeuralN
etwork

loss

Support vector machine (SVM)
regression model

RegressionSVM,
CompactRegressionSVM

loss

See Also
fitrnet | RegressionNeuralNetwork | predict | CompactRegressionNeuralNetwork

Topics
“Assess Regression Neural Network Performance” on page 19-188
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loss
Regression error for support vector machine regression model

Syntax
L = loss(mdl,Tbl,ResponseVarName)
L = loss(mdl,Tbl,Y)
L = loss(mdl,X,Y)
L = loss( ___ ,Name,Value)

Description
L = loss(mdl,Tbl,ResponseVarName) returns the loss for the predictions of the support vector
machine (SVM) regression model, mdl, based on the predictor data in the table Tbl and the true
response values in Tbl.ResponseVarName.

L = loss(mdl,Tbl,Y) returns the loss for the predictions of the support vector machine (SVM)
regression model, mdl, based on the predictor data in the table X and the true response values in the
vector Y.

L = loss(mdl,X,Y) returns the loss for the predictions of the support vector machine (SVM)
regression model, mdl, based on the predictor data in X and the true responses in Y.

L = loss( ___ ,Name,Value) returns the loss with additional options specified by one or more
Name,Value pair arguments, using any of the previous syntaxes. For example, you can specify the
loss function or observation weights.

Note If the predictor data X or the predictor variables in Tbl contain any missing values, the loss
function can return NaN. For more details, see “loss can return NaN for predictor data with missing
values” on page 35-4478.

Input Arguments
mdl — SVM regression model
RegressionSVM model | CompactRegressionSVM model

SVM regression model, specified as a RegressionSVM model or CompactRegressionSVM model
returned by fitrsvm or compact, respectively.

Tbl — Sample data
table

Sample data, specified as a table. Each row of tbl corresponds to one observation, and each column
corresponds to one predictor variable. Optionally, Tbl can contain additional columns for the
response variable and observation weights. Tbl must contain all of the predictors used to train mdl.
Multicolumn variables and cell arrays other than cell arrays of character vectors are not allowed.

If you trained mdl using sample data contained in a table, then the input data for this method must
also be in a table.
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Data Types: table

ResponseVarName — Response variable name
name of a variable in Tbl

Response variable name, specified as the name of a variable in Tbl. The response variable must be a
numeric vector.

You must specify ResponseVarName as a character vector or string scalar. For example, if the
response variable Y is stored as Tbl.Y, then specify ResponseVarName as 'Y'. Otherwise, the
software treats all columns of Tbl, including Y, as predictors when training the model.
Data Types: char | string

X — Predictor data
numeric matrix

Predictor data, specified as a numeric matrix or table. Each row of X corresponds to one observation
(also known as an instance or example), and each column corresponds to one variable (also known as
a feature).

If you trained mdl using a matrix of predictor values, then X must be a numeric matrix with p
columns. p is the number of predictors used to train mdl.

The length of Y and the number of rows of X must be equal.
Data Types: single | double

Y — Observed response values
vector of numeric values

Observed response values, specified as a vector of length n containing numeric values. Each entry in
Y is the observed response based on the predictor data in the corresponding row of X.
Data Types: single | double

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.

LossFun — Loss function
'mse' (default) | 'epsiloninsensitive' | function handle

Loss function, specified as the comma-separated pair consisting of 'LossFun' and 'mse',
'epsiloninsensitive', or a function handle.

• The following table lists the available loss functions.

Value Loss Function
'mse' “Weighted Mean Squared Error” on page 35-

4477
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Value Loss Function
'epsiloninsensitive' “Epsilon-Insensitive Loss Function” on page

35-4477
• Specify your own function using function handle notation.

Your function must have the signature lossvalue = lossfun(Y,Yfit,W), where:

• The output argument lossvalue is a scalar value.
• You choose the function name (lossfun).
• Y is an n-by-1 numeric vector of observed response values.
• Yfit is an n-by-1 numeric vector of predicted response values, calculated using the

corresponding predictor values in X (similar to the output of predict).
• W is an n-by-1 numeric vector of observation weights. If you pass W, the software normalizes

them to sum to 1.

Specify your function using 'LossFun',@lossfun.

Example: 'LossFun','epsiloninsensitive'
Data Types: char | string | function_handle

Weights — Observation weights
ones(size(X,1),1) (default) | numeric vector

Observation weights, specified as the comma-separated pair consisting of 'Weights' and a numeric
vector. Weights must be the same length as the number of rows in X. The software weighs the
observations in each row of X using the corresponding weight value in Weights.

Weights are normalized to sum to 1.
Data Types: single | double

Output Arguments
L — Regression loss
scalar value

Regression loss, returned as a scalar value.

Examples

Calculate Test Sample Loss for SVM Regression Model

Calculate the test set mean squared error (MSE) and epsilon-insensitive error of an SVM regression
model.

Load the carsmall sample data. Specify Horsepower and Weight as the predictor variables (X),
and MPG as the response variable (Y).

load carsmall
X = [Horsepower,Weight];
Y = MPG;
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Delete rows of X and Y where either array has NaN values.

R = rmmissing([X Y]);
X = R(:,1:2);
Y = R(:,end);

Reserve 10% of the observations as a holdout sample, and extract the training and test indices.

rng default  % For reproducibility
N = length(Y);
cv = cvpartition(N,'HoldOut',0.10);
trainInds = training(cv);
testInds = test(cv);

Specify the training and test data sets.

XTrain = X(trainInds,:);
YTrain = Y(trainInds);
XTest = X(testInds,:);
YTest = Y(testInds);

Train a linear SVM regression model and standardize the data.

mdl = fitrsvm(XTrain,YTrain,'Standardize',true)

mdl = 
  RegressionSVM
             ResponseName: 'Y'
    CategoricalPredictors: []
        ResponseTransform: 'none'
                    Alpha: [68x1 double]
                     Bias: 23.0248
         KernelParameters: [1x1 struct]
                       Mu: [108.8810 2.9419e+03]
                    Sigma: [44.4943 805.1412]
          NumObservations: 84
           BoxConstraints: [84x1 double]
          ConvergenceInfo: [1x1 struct]
          IsSupportVector: [84x1 logical]
                   Solver: 'SMO'

  Properties, Methods

mdl is a RegressionSVM model.

Determine how well the trained model generalizes to new predictor values by estimating the test
sample mean squared error and epsilon-insensitive error.

lossMSE = loss(mdl,XTest,YTest)

lossMSE = 32.0268

lossEI = loss(mdl,XTest,YTest,'LossFun','epsiloninsensitive')

lossEI = 3.2919
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More About
Weighted Mean Squared Error

The weighted mean squared error is calculated as follows:

mse =
∑

j = 1

n
w j f x j − y j

2

∑
j = 1

n
w j

,

where:

• n is the number of rows of data
• xj is the jth row of data
• yj is the true response to xj

• f(xj) is the response prediction of the SVM regression model mdl to xj

• w is the vector of weights.

The weights in w are all equal to one by default. You can specify different values for weights using the
'Weights' name-value pair argument. If you specify weights, each value is divided by the sum of all
weights, such that the normalized weights add to one.

Epsilon-Insensitive Loss Function

The epsilon-insensitive loss function ignores errors that are within the distance epsilon (ε) of the
function value. It is formally described as:

Lossε =
0 , if y − f x ≤ ε

y − f x − ε , otherwise .

The mean epsilon-insensitive loss is calculated as follows:

Loss =
∑

j = 1

n
w jmax 0, y j− f x j − ε

∑
j = 1

n
w j

,

where:

• n is the number of rows of data
• xj is the jth row of data
• yj is the true response to xj

• f(xj) is the response prediction of the SVM regression model mdl to xj

• w is the vector of weights.

The weights in w are all equal to one by default. You can specify different values for weights using the
'Weights' name-value pair argument. If you specify weights, each value is divided by the sum of all
weights, such that the normalized weights add to one.
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Tips
• If mdl is a cross-validated RegressionPartitionedSVM model, use kfoldLoss instead of loss

to calculate the regression error.

Version History
Introduced in R2015b

loss can return NaN for predictor data with missing values
Behavior changed in R2022a

The loss function no longer omits an observation with a NaN prediction when computing the
weighted average regression loss. Therefore, loss can now return NaN when the predictor data X or
the predictor variables in Tbl contain any missing values. In most cases, if the test set observations
do not contain missing predictors, the loss function does not return NaN.

This change improves the automatic selection of a regression model when you use fitrauto. Before
this change, the software might select a model (expected to best predict the responses for new data)
with few non-NaN predictors.

If loss in your code returns NaN, you can update your code to avoid this result. Remove or replace
the missing values by using rmmissing or fillmissing, respectively.

The following table shows the regression models for which the loss object function might return
NaN. For more details, see the Compatibility Considerations for each loss function.

Model Type Full or Compact Model Object loss Object Function
Gaussian process regression
(GPR) model

RegressionGP,
CompactRegressionGP

loss

Gaussian kernel regression
model

RegressionKernel loss

Linear regression model RegressionLinear loss
Neural network regression
model

RegressionNeuralNetwork,
CompactRegressionNeuralN
etwork

loss

Support vector machine (SVM)
regression model

RegressionSVM,
CompactRegressionSVM

loss

Extended Capabilities
Tall Arrays
Calculate with arrays that have more rows than fit in memory.

This function fully supports tall arrays. For more information, see “Tall Arrays”.

See Also
RegressionSVM | CompactRegressionSVM | fitrsvm | kfoldLoss
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loss
Regression error

Syntax
L = loss(tree,Tbl,ResponseVarName)
L = loss(tree,Tbl,Y)
L = loss(tree,X,Y)
L = loss( ___ ,Name,Value)
[L,se,NLeaf,bestlevel] = loss( ___ )

Description
L = loss(tree,Tbl,ResponseVarName) returns the mean squared error between the predictions
of tree to the data in Tbl, compared to the true responses Tbl.ResponseVarName.

L = loss(tree,Tbl,Y) returns the mean squared error between the predictions of tree to the
data in Tbl, compared to the true responses Y.

L = loss(tree,X,Y) returns the mean squared error between the predictions of tree to the data
in X, compared to the true responses Y.

L = loss( ___ ,Name,Value) computes the error in prediction with additional options specified by
one or more Name,Value pair arguments, using any of the previous syntaxes.

[L,se,NLeaf,bestlevel] = loss( ___ ) also returns the standard error of the loss (se), the
number of leaves (terminal nodes) in the tree (NLeaf), and the optimal pruning level for tree
(bestlevel).

Input Arguments
tree — Trained regression tree
RegressionTree object | CompactRegressionTree object

Trained regression tree, specified as a RegressionTree object constructed by fitrtree or a
CompactRegressionTree object constructed by compact.

Tbl — sample data
table

Sample data, specified as a table. Each row of Tbl corresponds to one observation, and each column
corresponds to one predictor variable. Tbl must contain all of the predictors used to train tree.
Optionally, Tbl can contain additional columns for the response variable and observation weights.
Multicolumn variables and cell arrays other than cell arrays of character vectors are not allowed.

If Tbl contains the response variable used to train tree, then you do not need to specify
ResponseVarName or Y.

If you trained tree using sample data contained in a table, then the input data for this method must
also be in a table.
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Data Types: table

X — Predictor values
numeric matrix

Predictor values, specified as a numeric matrix. Each column of X represents one variable, and each
row represents one observation.

X must have the same number of columns as the data used to train tree. X must have the same
number of rows as the number of elements in Y.
Data Types: single | double

ResponseVarName — Response variable name
name of a variable in Tbl

Response variable name, specified as the name of a variable in Tbl. If Tbl contains the response
variable used to train tree, then you do not need to specify ResponseVarName.

If you specify ResponseVarName, then you must do so as a character vector or string scalar. For
example, if the response variable is stored as Tbl.Response, then specify it as 'Response'.
Otherwise, the software treats all columns of Tbl, including Tbl.ResponseVarName, as predictors.
Data Types: char | string

Y — Response data
numeric column vector

Response data, specified as a numeric column vector with the same number of rows as X. Each entry
in Y is the response to the data in the corresponding row of X.
Data Types: single | double

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.

LossFun — Loss function
'mse' (default) | function handle

Loss function, specified as the comma-separated pair consisting of 'LossFun' and a function handle
for loss, or 'mse' representing mean-squared error. If you pass a function handle fun, loss calls
fun as:

fun(Y,Yfit,W)

• Y is the vector of observed responses.
• Yfit is the vector of predicted responses.
• W is the observation weights. If you pass W, the elements are normalized to sum to 1.

All the vectors have the same number of rows as Y.
Example: 'LossFun','mse'
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Data Types: function_handle | char | string

Subtrees — Pruning level
0 (default) | vector of nonnegative integers | 'all'

Pruning level, specified as the comma-separated pair consisting of 'Subtrees' and a vector of
nonnegative integers in ascending order or 'all'.

If you specify a vector, then all elements must be at least 0 and at most max(tree.PruneList). 0
indicates the full, unpruned tree and max(tree.PruneList) indicates the completely pruned tree
(i.e., just the root node).

If you specify 'all', then loss operates on all subtrees (i.e., the entire pruning sequence). This
specification is equivalent to using 0:max(tree.PruneList).

loss prunes tree to each level indicated in Subtrees, and then estimates the corresponding output
arguments. The size of Subtrees determines the size of some output arguments.

To invoke Subtrees, the properties PruneList and PruneAlpha of tree must be nonempty. In
other words, grow tree by setting 'Prune','on', or by pruning tree using prune.
Example: 'Subtrees','all'
Data Types: single | double | char | string

TreeSize — Tree size
'se' (default) | 'min'

Tree size, specified as the comma-separated pair consisting of 'TreeSize' and one of the following:

• 'se' — loss returns bestlevel that corresponds to the smallest tree whose mean squared
error (MSE) is within one standard error of the minimum MSE.

• 'min' — loss returns bestlevel that corresponds to the minimal MSE tree.

Example: 'TreeSize','min'

Weights — Observation weights
ones(size(X,1),1) (default) | vector of scalar values | name of a variable in Tbl

Observation weights, specified as the comma-separated pair consisting of 'Weights' and a vector of
scalar values. The software weights the observations in each row of X or Tbl with the corresponding
value in Weights. The size of Weights must equal the number of rows in X or Tbl.

If you specify the input data as a table Tbl, then Weights can be the name of a variable in Tbl that
contains a numeric vector. In this case, you must specify Weights as a variable name. For example, if
weights vector W is stored as Tbl.W, then specify Weights as 'W'. Otherwise, the software treats all
columns of Tbl, including W, as predictors when training the model.
Data Types: single | double | char | string

Output Arguments
L — Classification error
vector of scalar values
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Classification error, returned as a vector the length of Subtrees. The error for each tree is the mean
squared error, weighted with Weights. If you include LossFun, L reflects the loss calculated with
LossFun.

se — Standard error of loss
vector of scalar values

Standard error of loss, returned as a vector the length of Subtrees.

NLeaf — Number of leaf nodes
vector of integer values

Number of leaves (terminal nodes) in the pruned subtrees, returned as a vector the length of
Subtrees.

bestlevel — Best pruning level
scalar value

Best pruning level as defined in the TreeSize name-value pair, returned as a scalar whose value
depends on TreeSize:

• TreeSize = 'se' — loss returns the highest pruning level with loss within one standard
deviation of the minimum (L+se, where L and se relate to the smallest value in Subtrees).

• TreeSize = 'min' — loss returns the element of Subtrees with smallest loss, usually the
smallest element of Subtrees.

Examples

Compute the In-Sample MSE

Load the carsmall data set. Consider Displacement, Horsepower, and Weight as predictors of
the response MPG.

load carsmall
X = [Displacement Horsepower Weight];

Grow a regression tree using all observations.

tree = fitrtree(X,MPG);

Estimate the in-sample MSE.

L = loss(tree,X,MPG)

L = 4.8952

Find the Pruning Level Yielding the Optimal In-sample Loss

Load the carsmall data set. Consider Displacement, Horsepower, and Weight as predictors of
the response MPG.
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load carsmall
X = [Displacement Horsepower Weight];

Grow a regression tree using all observations.

Mdl = fitrtree(X,MPG);

View the regression tree.

view(Mdl,'Mode','graph');

Find the best pruning level that yields the optimal in-sample loss.

[L,se,NLeaf,bestLevel] = loss(Mdl,X,MPG,'Subtrees','all');
bestLevel

bestLevel = 1

The best pruning level is level 1.

Prune the tree to level 1.
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pruneMdl = prune(Mdl,'Level',bestLevel);
view(pruneMdl,'Mode','graph');

Examine the MSE for Each Subtree

Unpruned decision trees tend to overfit. One way to balance model complexity and out-of-sample
performance is to prune a tree (or restrict its growth) so that in-sample and out-of-sample
performance are satisfactory.

Load the carsmall data set. Consider Displacement, Horsepower, and Weight as predictors of
the response MPG.

load carsmall
X = [Displacement Horsepower Weight];
Y = MPG;

Partition the data into training (50%) and validation (50%) sets.
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n = size(X,1);
rng(1) % For reproducibility
idxTrn = false(n,1);
idxTrn(randsample(n,round(0.5*n))) = true; % Training set logical indices 
idxVal = idxTrn == false;                  % Validation set logical indices

Grow a regression tree using the training set.

Mdl = fitrtree(X(idxTrn,:),Y(idxTrn));

View the regression tree.

view(Mdl,'Mode','graph');

The regression tree has seven pruning levels. Level 0 is the full, unpruned tree (as displayed). Level 7
is just the root node (i.e., no splits).

Examine the training sample MSE for each subtree (or pruning level) excluding the highest level.

m = max(Mdl.PruneList) - 1;
trnLoss = resubLoss(Mdl,'SubTrees',0:m)
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trnLoss = 7×1

    5.9789
    6.2768
    6.8316
    7.5209
    8.3951
   10.7452
   14.8445

• The MSE for the full, unpruned tree is about 6 units.
• The MSE for the tree pruned to level 1 is about 6.3 units.
• The MSE for the tree pruned to level 6 (i.e., a stump) is about 14.8 units.

Examine the validation sample MSE at each level excluding the highest level.

valLoss = loss(Mdl,X(idxVal,:),Y(idxVal),'SubTrees',0:m)

valLoss = 7×1

   32.1205
   31.5035
   32.0541
   30.8183
   26.3535
   30.0137
   38.4695

• The MSE for the full, unpruned tree (level 0) is about 32.1 units.
• The MSE for the tree pruned to level 4 is about 26.4 units.
• The MSE for the tree pruned to level 5 is about 30.0 units.
• The MSE for the tree pruned to level 6 (i.e., a stump) is about 38.5 units.

To balance model complexity and out-of-sample performance, consider pruning Mdl to level 4.

pruneMdl = prune(Mdl,'Level',4);
view(pruneMdl,'Mode','graph')
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More About
Mean Squared Error

The mean squared error m of the predictions f(Xn) with weight vector w is

m = ∑wn f Xn − Yn
2

∑wn
.

Extended Capabilities
Tall Arrays
Calculate with arrays that have more rows than fit in memory.

Usage notes and limitations:

• Only one output is supported.
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• You can use models trained on either in-memory or tall data with this function.

For more information, see “Tall Arrays”.

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

Usage notes and limitations:

• The loss function does not support decision tree models trained with surrogate splits.

For more information, see “Run MATLAB Functions on a GPU” (Parallel Computing Toolbox).

See Also
predict | fitrtree
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loss
Regression or classification error of incremental drift-aware learner

Syntax
Err = loss(Mdl,X,Y)
Err = loss(Mdl,X,Y,Name=Value)

Description
Err = loss(Mdl,X,Y) returns the regression or classification error for model Mdl trained using
predictors in X and true observed values in Y.

Err is an n-by-1 vector, where n is the number of observations.

Err = loss(Mdl,X,Y,Name=Value) specifies additional options using one or more name-value
arguments. For example, you can specify the dimension of the predictor data and the loss function to
compute.

Examples

Measure and Visualize Model Performance During Incremental Learning

Load the human activity dataset. Randomly shuffle the data.

load humanactivity;
n = numel(actid);
rng(123) % For reproducibility
idx = randsample(n,n);

For details on the data set, enter Description at the command line.

Define the predictor and response variables.

X = feat(idx,:);
Y = actid(idx);

Responses can be one of five classes: Sitting, Standing, Walking, Running, or Dancing.

Dichotomize the response by identifying whether the subject is moving (actid > 2).

Y = Y > 2;

Flip labels for the second half of the dataset to simulate drift.

Y(floor(numel(Y)/2):end,:) = ~Y(floor(numel(Y)/2):end,:);

Initiate a default incremental drift-aware model for classification as follows:

1 Create a default incremental linear SVM model for binary classification.
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2 Initiate a default incremental drift-aware model using the incremental linear SVM model as the
base learner.

BaseLearner = incrementalClassificationLinear();
idaMdl = incrementalDriftAwareLearner(BaseLearner);

idaMdl is an incrementalDriftAwareLearner model. All its properties are read-only.

Preallocate the number of variables in each chunk for creating a stream of data and the variable to
store the classification error.

numObsPerChunk = 50;
nchunk = floor(n/numObsPerChunk);
ce = array2table(zeros(nchunk,3),VariableNames=["Cumulative" "Window" "Loss"]);
PoL = zeros(nchunk,numObsPerChunk); % To store per observation loss values
driftTimes = [];

Simulate a data stream with incoming chunks of 50 observations each. At each iteration:

1 Call updateMetrics to measure the cumulative performance and the performance within a
window of observations. Overwrite the previous incremental model with a new one to track
performance metrics.

2 Call fit to fit the model to the incoming chunk. Overwrite the previous incremental model with a
new one fitted to the incoming observations.

3 Call perObservationLoss to compute classification error on each observation in the incoming
chunk of data.

4 Call loss to measure the model performance on the incoming chunk.
5 Store all performance metrics in ce to see how they evolve during incremental learning. The

Metrics property of idaMdl stores the cumulative and window classification error, which is
updated at each iteration. Store the loss values for each chunk in the third column of ce.

for j = 1:nchunk

 ibegin = min(n,numObsPerChunk*(j-1)+1);
 iend   = min(n,numObsPerChunk*j);
 idx = ibegin:iend;   

 idaMdl = updateMetrics(idaMdl,X(idx,:),Y(idx));
 idaMdl = fit(idaMdl,X(idx,:),Y(idx));

 PoL(j,:) = perObservationLoss(idaMdl,X(idx,:),Y(idx));
 ce{j,["Cumulative" "Window"]} = idaMdl.Metrics{"ClassificationError",:};
 ce{j,"Loss"} = loss(idaMdl,X(idx,:),Y(idx));
 if idaMdl.DriftDetected
    driftTimes(end+1) = j; 
 end
end

The updateMetrics function evaluates the performance of the model as it processes incoming
observations. The function writes specified metrics, measured cumulatively and within a specified
window of processed observations, to the Metrics model property. The fit function fits the model by
updating the base learner and monitoring for drift given an incoming batch of data.

Plot the cumulative and per window classification error. Mark the warmup and training periods, and
where the drift was introduced.
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h = plot(ce.Variables);
xlim([0 nchunk])
ylim([0 0.07])
ylabel("Classification Error")
xlabel("Iteration")

xline(idaMdl.MetricsWarmupPeriod/numObsPerChunk,"g-.","Warmup Period",LineWidth= 1.5)
xline(idaMdl.TrainingPeriod/numObsPerChunk,"b-.","Training Period",LabelVerticalAlignment="middle",LineWidth= 1.5)
%xline(floor(numel(Y)/2)/numObsPerChunk,"m--","Drift",LabelVerticalAlignment="middle",LineWidth= 1.5)

xline(driftTimes,"m--","Drift",LabelVerticalAlignment="middle",LineWidth=1.5)
legend(h,ce.Properties.VariableNames)
legend(h,Location="best")

The yellow line represents the classification error on each incoming chunk of data. loss is agnostic
of the metrics warm-up period, so it measures the classification error for all iterations. After the
metrics warm-up period, idaMdl tracks the cumulative and window metrics.

Plot the per observation loss.

figure()
plot(PoL,'b.');
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perObservationLoss computes the classification loss for each observation in the incoming chunk
of data.

Compute Custom Loss on Incoming Chunks of Data

Create the random concept data and the concept drift generator using the helper functions
HelperRegrGenerator and HelperConceptDriftGenerator, respectively.

concept1 = HelperRegrGenerator(NumFeatures=100,NonZeroFeatures=[1,20,40,50,55], ...
        FeatureCoefficients=[4,5,10,-2,-6],NoiseStd=1.1);
concept2 = HelperRegrGenerator(NumFeatures=100,NonZeroFeatures=[1,20,40,50,55], ...
        FeatureCoefficients=[4,7,10,-1,-5],NoiseStd=1.1);
driftGenerator = HelperConceptDriftGenerator(concept1,concept2,15000,1250);

HelperRegrGenerator generates streaming data using features and feature coefficients for
regression specified in the call to the function. At each step, the function samples the predictors from
a normal distribution. Then, it computes the response using the feature coefficients and predictor
values and adding a random noise from a normal distribution with mean zero and specified noise
standard deviation.

HelperConceptDriftGenerator establishes the concept drift. The object uses a sigmoid function
1./(1+exp(-4*(numobservations-position)./width)) to decide the probability of choosing
the first stream when generating data [3]. In this case, the position argument is 15000 and the width
argument is 1250. As the number of observations exceeds the position value minus half of the width,
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the probability of sampling from the first stream when generating data decreases. The sigmoid
function allows a smooth transition from one stream to the other. Larger width values indicate a
larger transition period where both streams are approximately equally likely to be selected.

Configure an incremental drift-aware model for regression as follows:

1 Create an incremental linear model for regression: Track the mean absolute deviation (MAD) to
measure the performance of the model. Create an anonymous function that measures the
absolute error of each new observation. Create a structure array containing the name
MeanAbsoluteError and its corresponding function. Specify a metrics warm-up period of 1000
observations. Specify a metrics window size of 500 observations.

2 Initiate an incremental concept drift detector for continuous data. Use the Hoeffding's Bounds
Drift Detection Method with moving average (HDDMA).

3 Using the incremental linear model and the concept drift detector, instantiate an incremental
drift-aware model. Specify the training period as 1000 observations.

maefcn = @(z,zfit,w)(abs(z - zfit)); % Mean absolute deviation function
maemetric = struct(MeanAbsoluteError=maefcn);

baseMdl = incrementalRegressionLinear(MetricsWarmupPeriod=1000,MetricsWindowSize=400,Metrics=maemetric,EstimationPeriod=0);
dd = incrementalConceptDriftDetector("hddma",Alternative="greater",InputType="continuous");
idaMdl = incrementalDriftAwareLearner(baseMdl,DriftDetector=dd,TrainingPeriod=2000);

Generate an initial sample of 20 observations and configure the model to predict responses by fitting
it to the initial sample.

initobs = 20;
rng(1234); % For reproducibility
[driftGenerator,X,Y] = hgenerate(driftGenerator,initobs); 
idaMdl = fit(idaMdl,X,Y);

Preallocate the number of variables in each chunk and number of iterations for creating a stream of
data, the variables to store the classification error, drift status, and drift time(s).

numObsPerChunk = 50;
numIterations = 500;

mae = array2table(zeros(numIterations,3),VariableNames=["Cumulative" "Window" "Chunk"]);
PoL = zeros(numIterations,numObsPerChunk); % Per observation loss values

driftTimes = [];
dstatus = zeros(numIterations,1);
statusname = strings(numIterations,1);

Simulate a data stream with incoming chunks of 50 observations each and perform incremental drift-
aware learning. At each iteration:

1 Simulate predictor data and labels, and update the drift generator using the helper function
hgenerate.

2 Call updateMetrics to compute cumulative and window metrics on the incoming chunk of data.
Overwrite the previous incremental model with a new one fitted to overwrite the previous
metrics.

3 Call loss to compute the MAD on the incoming chunk of data. Whereas the cumulative and
window metrics require that custom losses return the loss for each observation, loss requires
the loss on the entire chunk. Compute the mean of the absolute deviation.
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4 Call perObservationLoss to compute the per observation regression error.
5 Call fit to fit the incremental model to the incoming chunk of data.
6 Store the cumulative, window, and chunk metrics and per observation loss to see how they evolve

during incremental learning.

for j = 1:numIterations
  
  % Generate data
    [driftGenerator,X,Y] = hgenerate(driftGenerator,numObsPerChunk); 

  % Perform incremental fitting and store performance metrics  
    idaMdl = updateMetrics(idaMdl,X,Y);
    PoL(j,:) = perObservationLoss(idaMdl,X,Y,'LossFun',@(x,y,w)(maefcn(x,y)));
    mae{j,1:2} = idaMdl.Metrics{"MeanAbsoluteError",:};
    mae{j,3} = loss(idaMdl,X,Y,LossFun=@(x,y,w)mean(maefcn(x,y,w)));
    idaMdl = fit(idaMdl,X,Y);

    statusname(j) = string(idaMdl.DriftStatus);
    if idaMdl.DriftDetected
       driftTimes(end+1) = j; 
       dstatus(j) = 2;
    elseif idaMdl.WarningDetected
       dstatus(j) = 1;
    else 
       dstatus(j) = 0;
    end   

end

idaMdl is an incrementalDriftAwareLearner model object trained on all the data in the stream.
During incremental learning and after the model is warm, updateMetrics checks the performance
of the model on the incoming observations, and the fit function fits the model to those observations.

Plot the drift status.

gscatter(1:numIterations,dstatus,statusname,'gmr','*',4,'on',"Iteration","Drift Status")
xlim([0 numIterations])
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Plot the performance metrics to see how they evolved during incremental learning.

figure
h = plot(mae.Variables);
xlim([0 numIterations])
ylim([0 4])
ylabel("Mean Absolute Deviation")
xlabel("Iteration")

xline(idaMdl.MetricsWarmupPeriod/numObsPerChunk,"g-.","Warmup Period",LineWidth= 1.5)
xline(idaMdl.TrainingPeriod/numObsPerChunk,"b-.","Training Period",LabelVerticalAlignment="middle",LineWidth= 1.5)
xline(driftTimes,"m--","Drift",LabelVerticalAlignment="middle",LineWidth=1.5)
legend(h,mae.Properties.VariableNames)
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The plot suggests the following:

• updateMetrics computes the performance metrics after the metrics warm-up period only.
• updateMetrics computes the cumulative metrics during each iteration.
• updateMetrics computes the window metrics after processing 400 observations
• Because idaMdl was configured to predict observations from the beginning of incremental

learning, loss can compute the MAD on each incoming chunk of data.

Plot the per observation loss.

figure()
plot(PoL,'b.');
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perObservationLoss computes the classification loss for each observation in the incoming chunk
of data after the metrics warm-up period.

Input Arguments
Mdl — Incremental drift-aware learning model
incrementalDriftAwareLearner model object

Incremental drift-aware learning model fit to streaming data, specified as an
incrementalDriftAwareLearner model object. You can create Mdl using the
incrementalDriftAwareLearner function. For more details, see the object reference page.

X — Chunk of predictor data
floating-point matrix

Batch of predictor data with which to compute loss, specified as a floating-point matrix of n
observations and Mdl.BaseLearner.NumPredictors predictor variables.

When Mdl.BaseLearner accepts the ObservationsIn name-value argument, the value of
ObservationsIn determines the orientation of the variables and observations. The default
ObservationsIn value is "rows", which indicates that observations in the predictor data are
oriented along the rows of X.

The length of the observation responses (or labels) Y and the number of observations in X must be
equal; Y(j) is the response (or label) of observation j (row or column) in X.
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Note

loss supports only floating-point input predictor data. If your input data includes categorical data,
you must prepare an encoded version of the categorical data. Use dummyvar to convert each
categorical variable to a numeric matrix of dummy variables. Then, concatenate all dummy variable
matrices and any other numeric predictors. For more details, see “Dummy Variables” on page 2-49.

Data Types: single | double

Y — Chunk of responses or labels
floating-point vector | categorical array | character array | string array | logical vector | cell array of
character vectors

Chunk of responses or labels with which to compute loss, specified as one of the following.

• Floating-point vector of n elements for regression models, where n is the number of rows in X..
• Categorical, character, or string array, logical vector, or cell array of character vectors for
classification models. If Y is a character array, it must have one class label per row. Otherwise, it
must be a vector with n elements.

The length of Y and the number of observations in X must be equal; Y(j) is the response (or label) of
observation j (row or column) in X.

For classification problems:

• If Y contains a label that is not a member of Mdl.BaseLearner.ClassNames, loss issues an
error.

• The data type of Y and Mdl.BaseLearner.ClassNames must be the same.

Data Types: single | double | categorical | char | string | logical | cell

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.
Example: ObservationsIn="columns",Weights=W specifies that the columns of the predictor
matrix correspond to observations, and the vector W contains observation weights to apply.

LossFun — Loss function
"mse" | "epsiloninsensitive" | "binodeviance" | "classiferror" | "exponential" |
"hinge" | "logit" | "quadratic" | "mincost" | function handle

Loss function, specified as a built-in loss function name or function handle.

The following table lists the built-in loss function names.

• For Regression Models:

Name Description
"mse" Mean squared error
"epsiloninsensitive" Epsilon insensitive error
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Default is "mse" for regression models.
• For Classification Models:

Name Description
"binodeviance" Binomial deviance
"classiferror" Misclassification error rate
"exponential" Exponential
"hinge" Hinge
"logit" Logistic
"quadratic" Quadratic
"mincost" Minimal expected misclassification cost (for

incrementalClassificationNaiveBayes
only)

Default is "mincost" for incrementalClassificationNaiveBayes model object and
"classiferror" for other classification objects.

Note You can only specify "classiferror" for incrementalClassificationECOC.

To specify a custom loss function, use function handle notation. The function must have one of these
forms:

• For Regression Models:

lossval = lossfcn(Y,YFit,W)

• The output argument lossval is a floating-point scalar.
• You specify the function name (lossfcn).
• Y is a length n numeric vector of observed responses.
• YFit is a length n numeric vector of corresponding predicted responses.
• W is a length n numeric vector of observation weights.

• For Classification Models:

lossval = lossfcn(C,S,W)

• The output argument lossval is an n-by-1 floating-point vector, where n is the number of
observations in X. The value in lossval(j) is the classification loss of observation j.

• You specify the function name (lossfcn).
• C is an n-by-K logical matrix with rows indicating the class to which the corresponding

observation belongs. K is the number of distinct classes
(numel(Mdl.BaseLearner.ClassNames)), and the column order corresponds to the class
order in the Mdl.BaseLearner.ClassNames property. Create C by setting C(p,q) = 1, if
observation p is in class q, for each observation in the specified data. Set the other elements in
row p to 0.

• S is an n-by-K numeric matrix of predicted classification scores. S is similar to the Score
output of predict, where rows correspond to observations in the data and the column order
corresponds to the class order in the Mdl.BaseLearner.ClassNames property. S(p,q) is
the classification score of observation p being classified in class q.
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• W is a length n numeric vector of observation weights.

Example: LossFun="logit"
Example: LossFun=@lossfcn
Data Types: char | string | function_handle

ObservationsIn — Orientation of data in X
"rows" (default) | "columns"

Predictor data observation dimension, specified as "columns" or "rows".

loss supports ObservationsIn only if Mdl.BaseLearner supports the ObservationsIn name-
value argument.
Example: ObservationsIn="columns"
Data Types: char | string

Weights — Chunk of observation weights
floating-point vector of positive values

Chunk of observation weights, specified as a floating-point vector of positive values. loss weighs the
observations in X with the corresponding values in Weights. The size of Weights must equal n,
which is the number of observations in X.

By default, Weights is ones(n,1).
Example: Weights=w
Data Types: double | single

Version History
Introduced in R2022b

References
[1] Barros, Roberto S.M. , et al. "RDDM: Reactive drift detection method." Expert Systems with

Applications. vol. 90, Dec. 2017, pp. 344-55. https://doi.org/10.1016/j.eswa.2017.08.023

[2] Bifet, Albert, et al. "New Ensemble Methods for Evolving Data Streams." Proceedings of the 15th
ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM
Press, 2009, p. 139. https://doi.org/10.1145/1557019.1557041.

[3] Gama, João, et al. "Learning with drift detection". Advances in Artificial Intelligence – SBIA 2004,
edited by Ana L. C. Bazzan and Sofiane Labidi, vol. 3171, Springer Berlin Heidelberg, 2004,
pp. 286–95. https://doi.org/10.1007/978-3-540-28645-5_29.

See Also
predict | perObservationLoss | fit | incrementalDriftAwareLearner | updateMetrics |
updateMetricsAndFit

35 Functions

35-4500

https://doi.org/10.1016/j.eswa.2017.08.023
https://doi.org/10.1145/1557019.1557041.
https://doi.org/10.1007/978-3-540-28645-5_29.


loss
Loss of ECOC incremental learning classification model on batch of data

Syntax
L = loss(Mdl,X,Y)
L = loss(Mdl,X,Y,Name=Value)

Description
loss returns the classification loss of a configured multiclass error-correcting output codes (ECOC)
classification model for incremental learning (incrementalClassificationECOC object).

To measure model performance on a data stream and store the results in the output model, call
updateMetrics or updateMetricsAndFit.

L = loss(Mdl,X,Y) returns the classification error of the ECOC classification model for
incremental learning Mdl using the batch of predictor data X and corresponding responses Y.

L = loss(Mdl,X,Y,Name=Value) uses additional options specified by one or more name-value
arguments. For example, you can specify a decoding scheme and classification loss function.

Examples

Measure Model Performance During Incremental Learning

The performance of an incremental model on streaming data is measured in three ways:

• Cumulative metrics measure the performance since the start of incremental learning.
• Window metrics measure the performance on a specified window of observations. The metrics are

updated every time the model processes the specified window.
• The loss function measures the performance on a specified batch of data only.

Load the human activity data set. Randomly shuffle the data.

load humanactivity
n = numel(actid);
rng(1) % For reproducibility
idx = randsample(n,n);
X = feat(idx,:);
Y = actid(idx);

For details on the data set, enter Description at the command line.

Create an ECOC classification model for incremental learning. Specify the class names and a metrics
window size of 1000 observations. Configure the model for loss by fitting it to the first 10
observations.
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Mdl = incrementalClassificationECOC(ClassNames=unique(Y),MetricsWindowSize=1000);
initobs = 10;
Mdl = fit(Mdl,X(1:initobs,:),Y(1:initobs));

Mdl is an incrementalClassificationECOC model. All its properties are read-only.

Simulate a data stream, and perform the following actions on each incoming chunk of 100
observations:

1 Call updateMetrics to measure the cumulative performance and the performance within a
window of observations. Overwrite the previous incremental model with a new one to track
performance metrics.

2 Call loss to measure the model performance on the incoming chunk.
3 Call fit to fit the model to the incoming chunk. Overwrite the previous incremental model with a

new one fitted to the incoming observations.
4 Store all performance metrics to see how they evolve during incremental learning.

% Preallocation
numObsPerChunk = 100;
nchunk = floor((n - initobs)/numObsPerChunk);
mc = array2table(zeros(nchunk,3),VariableNames=["Cumulative","Window","Chunk"]);

% Incremental learning
for j = 1:nchunk
    ibegin = min(n,numObsPerChunk*(j-1) + 1 + initobs);
    iend   = min(n,numObsPerChunk*j + initobs);
    idx = ibegin:iend;    
    Mdl = updateMetrics(Mdl,X(idx,:),Y(idx));
    mc{j,["Cumulative","Window"]} = Mdl.Metrics{"ClassificationError",:};
    mc{j,"Chunk"} = loss(Mdl,X(idx,:),Y(idx));
    Mdl = fit(Mdl,X(idx,:),Y(idx));
end

Mdl is an incrementalClassificationECOC model object trained on all the data in the stream.
During incremental learning and after the model is warmed up, updateMetrics checks the
performance of the model on the incoming observations, and then the fit function fits the model to
those observations. loss is agnostic of the metrics warm-up period, so it measures the classification
error for every chunk.

To see how the performance metrics evolve during training, plot them.

plot(mc.Variables)
xlim([0 nchunk])
ylabel("Classification Error")
xline(Mdl.MetricsWarmupPeriod/numObsPerChunk,"--")
grid on
legend(mc.Properties.VariableNames)
xlabel("Iteration")
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The yellow line represents the classification error on each incoming chunk of data. After the metrics
warm-up period, Mdl tracks the cumulative and window metrics.

Compute Custom Loss on Incoming Chunks of Data

Fit an ECOC classification model for incremental learning to streaming data, and compute the
minimum average binary loss on the incoming chunks of data.

Load the human activity data set. Randomly shuffle the data.

load humanactivity
n = numel(actid);
rng(1) % For reproducibility
idx = randsample(n,n);
X = feat(idx,:);
Y = actid(idx);

For details on the data set, enter Description at the command line.

Create an ECOC classification model for incremental learning. Configure the model as follows:

• Specify the class names.
• Specify a metrics warm-up period of 1000 observations.
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• Specify a metrics window size of 2000 observations.
• Track the minimal average binary loss to measure the performance of the model. Create an

anonymous function that measures the minimal average binary loss of each new observation.
Create a structure array containing the name MinimalLoss and its corresponding function
handle.

• Compute the classification loss by fitting the model to the first 10 observations.

tolerance = 1e-10;
minimalBinaryLoss = @(~,S,~)min(-S,[],2);
ce = struct("MinimalLoss",minimalBinaryLoss);

Mdl = incrementalClassificationECOC(ClassNames=unique(Y), ...
    MetricsWarmupPeriod=1000,MetricsWindowSize=2000, ...
    Metrics=ce);
initobs = 10;
Mdl = fit(Mdl,X(1:initobs,:),Y(1:initobs));

Mdl is an incrementalClassificationECOC model object configured for incremental learning.

Perform incremental learning. At each iteration:

• Simulate a data stream by processing a chunk of 100 observations.
• Call updateMetrics to compute cumulative and window metrics on the incoming chunk of data.

Overwrite the previous incremental model with a new one fitted to overwrite the previous metrics.
• Call loss to compute the minimum average binary loss on the incoming chunk of data. Whereas

the cumulative and window metrics require that custom losses return the loss for each
observation, loss requires the loss for the entire chunk. Compute the mean of the losses within a
chunk.

• Call fit to fit the incremental model to the incoming chunk of data.
• Store the cumulative, window, and chunk metrics to see how they evolve during incremental

learning.

% Preallocation
numObsPerChunk = 100;
nchunk = floor((n - initobs)/numObsPerChunk);
tanloss = array2table(zeros(nchunk,3), ...
    VariableNames=["Cumulative","Window","Chunk"]);

% Incremental fitting
for j = 1:nchunk
    ibegin = min(n,numObsPerChunk*(j-1) + 1 + initobs);
    iend   = min(n,numObsPerChunk*j + initobs);
    idx = ibegin:iend;    
    Mdl = updateMetrics(Mdl,X(idx,:),Y(idx));
    tanloss{j,1:2} = Mdl.Metrics{"MinimalLoss",:};
    tanloss{j,3} = loss(Mdl,X(idx,:),Y(idx), ...
        LossFun=@(z,zfit,w)mean(minimalBinaryLoss(z,zfit,w)));
    Mdl = fit(Mdl,X(idx,:),Y(idx));
end

Mdl is an incrementalClassificationECOC model object trained on all the data in the stream.
During incremental learning and after the model is warmed up, updateMetrics checks the
performance of the model on the incoming observations, and then the fit function fits the model to
those observations.

35 Functions

35-4504



Plot the performance metrics to see how they evolve during incremental learning.

semilogy(tanloss.Variables)
xlim([0 nchunk])
ylabel("Minimal Average Binary Loss")
xline(Mdl.MetricsWarmupPeriod/numObsPerChunk,"-.")
xlabel("Iteration")
legend(tanloss.Properties.VariableNames)

The plot suggests the following:

• updateMetrics computes the performance metrics after the metrics warm-up period only.
• updateMetrics computes the cumulative metrics during each iteration.
• updateMetrics computes the window metrics after processing 2000 observations (20 iterations).
• Because Mdl is configured to predict observations from the beginning of incremental learning,

loss can compute the minimum average binary loss on each incoming chunk of data.

Input Arguments
Mdl — ECOC classification model for incremental learning
incrementalClassificationECOC model object

ECOC classification model for incremental learning, specified as an
incrementalClassificationECOC model object. You can create Mdl by calling
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incrementalClassificationECOC directly, or by converting a supported, traditionally trained
machine learning model using the incrementalLearner function.

You must configure Mdl to predict labels for a batch of observations.

• If Mdl is a converted, traditionally trained model, you can predict labels without any
modifications.

• Otherwise, you must fit Mdl to data using fit or updateMetricsAndFit.

X — Batch of predictor data
floating-point matrix

Batch of predictor data, specified as a floating-point matrix of n observations and
Mdl.NumPredictors predictor variables. The value of the ObservationsIn name-value argument
determines the orientation of the variables and observations. The default ObservationsIn value is
"rows", which indicates that observations in the predictor data are oriented along the rows of X.

The length of the observation labels Y and the number of observations in X must be equal; Y(j) is the
label of observation j (row or column) in X.

Note

loss supports only floating-point input predictor data. If your input data includes categorical data,
you must prepare an encoded version of the categorical data. Use dummyvar to convert each
categorical variable to a numeric matrix of dummy variables. Then, concatenate all dummy variable
matrices and any other numeric predictors. For more details, see “Dummy Variables” on page 2-49.

Data Types: single | double

Y — Batch of labels
categorical array | character array | string array | logical vector | floating-point vector | cell array of
character vectors

Batch of labels, specified as a categorical, character, or string array, a logical or floating-point vector,
or a cell array of character vectors.

The length of the observation labels Y and the number of observations in X must be equal; Y(j) is the
label of observation j (row or column) in X.

If Y contains a label that is not a member of Mdl.ClassNames, the loss function issues an error.
The data type of Y and Mdl.ClassNames must be the same.
Data Types: char | string | cell | categorical | logical | single | double

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.
Example: BinaryLoss="quadratic",Decoding="lossbased" specifies the quadratic binary
learner loss function and the loss-based decoding scheme for aggregating the binary losses.
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BinaryLoss — Binary learner loss function
Mdl.BinaryLoss (default) | "hamming" | "linear" | "logit" | "exponential" |
"binodeviance" | "hinge" | "quadratic" | function handle

Binary learner loss function, specified as a built-in loss function name or function handle.

• This table describes the built-in functions, where yj is the class label for a particular binary learner
(in the set {–1,1,0}), sj is the score for observation j, and g(yj,sj) is the binary loss formula.

Value Description Score Domain g(yj,sj)
"binodeviance" Binomial deviance (–∞,∞) log[1 + exp(–2yjsj)]/

[2log(2)]
"exponential" Exponential (–∞,∞) exp(–yjsj)/2
"hamming" Hamming [0,1] or (–∞,∞) [1 – sign(yjsj)]/2
"hinge" Hinge (–∞,∞) max(0,1 – yjsj)/2
"linear" Linear (–∞,∞) (1 – yjsj)/2
"logit" Logistic (–∞,∞) log[1 + exp(–yjsj)]/

[2log(2)]
"quadratic" Quadratic [0,1] [1 – yj(2sj – 1)]2/2

The software normalizes binary losses so that the loss is 0.5 when yj = 0. Also, the software
calculates the mean binary loss for each class.

• For a custom binary loss function, for example customFunction, specify its function handle
BinaryLoss=@customFunction.

customFunction has this form:

bLoss = customFunction(M,s)

• M is the K-by-B coding matrix stored in Mdl.CodingMatrix.
• s is the 1-by-B row vector of classification scores.
• bLoss is the classification loss. This scalar aggregates the binary losses for every learner in a

particular class. For example, you can use the mean binary loss to aggregate the loss over the
learners for each class.

• K is the number of classes.
• B is the number of binary learners.

For an example of a custom binary loss function, see “Predict Test-Sample Labels of ECOC Model
Using Custom Binary Loss Function” on page 35-5751. This example is for a traditionally trained
model. You can define a custom loss function for incremental learning as shown in the example.

For more information, see “Binary Loss” on page 35-4509.
Data Types: char | string | function_handle

Decoding — Decoding scheme
Mdl.Decoding (default) | "lossweighted" | "lossbased"

Decoding scheme, specified as "lossweighted" or "lossbased".
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The decoding scheme of an ECOC model specifies how the software aggregates the binary losses and
determines the predicted class for each observation. The software supports two decoding schemes:

• "lossweighted" — The predicted class of an observation corresponds to the class that produces
the minimum sum of the binary losses over binary learners.

• "lossbased" — The predicted class of an observation corresponds to the class that produces the
minimum average of the binary losses over binary learners.

For more information, see “Binary Loss” on page 35-4509.
Example: Decoding="lossbased"
Data Types: char | string

LossFun — Loss function
"classiferror" (default) | function handle

Loss function, specified as "classiferror" (classification error on page 35-4509) or a function
handle for a custom loss function.

To specify a custom loss function, use function handle notation. The function must have this form:

lossval = lossfcn(C,S,W)

• The output argument lossval is an n-by-1 floating-point vector, where n is the number of
observations in X. The value in lossval(j) is the classification loss of observation j.

• You specify the function name (lossfcn).
• C is an n-by-K logical matrix with rows indicating the class to which the corresponding observation

belongs. K is the number of distinct classes (numel(Mdl.ClassNames), and the column order
corresponds to the class order in the ClassNames property. Create C by setting C(p,q) = 1, if
observation p is in class q, for each observation in the specified data. Set the other element in row
p to 0.

• S is an n-by-K numeric matrix of predicted classification scores. S is similar to the NegLoss output
of predict, where rows correspond to observations in the data and the column order
corresponds to the class order in the ClassNames property. S(p,q) is the classification score of
observation p being classified in class q.

• W is an n-by-1 numeric vector of observation weights.

Example: LossFun=@lossfcn
Data Types: char | string | function_handle

ObservationsIn — Predictor data observation dimension
"rows" (default) | "columns"

Predictor data observation dimension, specified as "rows" or "columns".
Example: ObservationsIn="columns"
Data Types: char | string

Weights — Batch of observation weights
floating-point vector of positive values
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Batch of observation weights, specified as a floating-point vector of positive values. loss weighs the
observations in the input data with the corresponding values in Weights. The size of Weights must
equal n, which is the number of observations in the input data.

By default, Weights is ones(n,1).

For more details, see “Observation Weights” on page 35-4511.
Example: Weights=W specifies the observation weights as the vector W.
Data Types: double | single

Output Arguments
L — Classification loss
numeric scalar

Classification loss, returned as a numeric scalar. L is a measure of model quality. Its interpretation
depends on the loss function and weighting scheme.

More About
Classification Error

The classification error has the form

L = ∑
j = 1

n
w je j,

where:

• wj is the weight for observation j. The software renormalizes the weights to sum to 1.
• ej = 1 if the predicted class of observation j differs from its true class, and 0 otherwise.

In other words, the classification error is the proportion of observations misclassified by the classifier.

Binary Loss

The binary loss is a function of the class and classification score that determines how well a binary
learner classifies an observation into the class.

Suppose the following:

• mkj is element (k,j) of the coding design matrix M—that is, the code corresponding to class k of
binary learner j. M is a K-by-B matrix, where K is the number of classes, and B is the number of
binary learners.

• sj is the score of binary learner j for an observation.
• g is the binary loss function.
• k  is the predicted class for the observation.

The decoding scheme of an ECOC model specifies how the software aggregates the binary losses and
determines the predicted class for each observation. The software supports two decoding schemes:

 loss
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• Loss-based decoding [2] (Decoding is 'lossbased') — The predicted class of an observation
corresponds to the class that produces the minimum average of the binary losses over all binary
learners.

k = argmin
k

1
B ∑j = 1

B
mk j g(mk j, s j) .

• Loss-weighted decoding [3] (Decoding is 'lossweighted') — The predicted class of an
observation corresponds to the class that produces the minimum average of the binary losses over
the binary learners for the corresponding class.

k = argmin
k

∑
j = 1

B
mk j g(mk j, s j)

∑ j = 1

B

mk j

.

The denominator corresponds to the number of binary learners for class k. [1] suggests that loss-
weighted decoding improves classification accuracy by keeping loss values for all classes in the
same dynamic range.

The predict, resubPredict, and kfoldPredict functions return the negated value of the
objective function of argmin as the second output argument (NegLoss) for each observation and
class.

This table summarizes the supported binary loss functions, where yj is a class label for a particular
binary learner (in the set {–1,1,0}), sj is the score for observation j, and g(yj,sj) is the binary loss
function.

Value Description Score Domain g(yj,sj)
"binodeviance" Binomial deviance (–∞,∞) log[1 + exp(–2yjsj)]/

[2log(2)]
"exponential" Exponential (–∞,∞) exp(–yjsj)/2
"hamming" Hamming [0,1] or (–∞,∞) [1 – sign(yjsj)]/2
"hinge" Hinge (–∞,∞) max(0,1 – yjsj)/2
"linear" Linear (–∞,∞) (1 – yjsj)/2
"logit" Logistic (–∞,∞) log[1 + exp(–yjsj)]/

[2log(2)]
"quadratic" Quadratic [0,1] [1 – yj(2sj – 1)]2/2

The software normalizes binary losses so that the loss is 0.5 when yj = 0, and aggregates using the
average of the binary learners.

Do not confuse the binary loss with the overall classification loss (specified by the LossFun name-
value argument of the loss and predict object functions), which measures how well an ECOC
classifier performs as a whole.
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Algorithms
Observation Weights

If the prior class probability distribution is known (in other words, the prior distribution is not
empirical), loss normalizes observation weights to sum to the prior class probabilities in the
respective classes. This action implies that the default observation weights are the respective prior
class probabilities.

If the prior class probability distribution is empirical, the software normalizes the specified
observation weights to sum to 1 each time you call loss.

Version History
Introduced in R2022a

References
[1] Allwein, E., R. Schapire, and Y. Singer. “Reducing multiclass to binary: A unifying approach for

margin classifiers.” Journal of Machine Learning Research. Vol. 1, 2000, pp. 113–141.

[2] Escalera, S., O. Pujol, and P. Radeva. “Separability of ternary codes for sparse designs of error-
correcting output codes.” Pattern Recog. Lett., Vol. 30, Issue 3, 2009, pp. 285–297.

[3] Escalera, S., O. Pujol, and P. Radeva. “On the decoding process in ternary error-correcting output
codes.” IEEE Transactions on Pattern Analysis and Machine Intelligence. Vol. 32, Issue 7,
2010, pp. 120–134.

See Also
Functions
fit | updateMetrics | updateMetricsAndFit | predict

Objects
incrementalClassificationECOC

Topics
“Incremental Learning Overview” on page 28-2
“Configure Incremental Learning Model” on page 28-9
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loss
Loss of kernel incremental learning model on batch of data

Syntax
L = loss(Mdl,X,Y)
L = loss(Mdl,X,Y,Name=Value)

Description
loss returns the regression or classification loss of a configured incremental learning model for
kernel regression (incrementalRegressionKernel object) or binary kernel classification
(incrementalClassificationKernel object).

To measure model performance on a data stream and store the results in the output model, call
updateMetrics or updateMetricsAndFit.

L = loss(Mdl,X,Y) returns the loss for the incremental learning model Mdl using the batch of
predictor data X and corresponding responses Y.

L = loss(Mdl,X,Y,Name=Value) uses additional options specified by one or more name-value
arguments. For example, you can specify the classification loss function and the observation weights.

Examples

Measure Model Performance During Incremental Learning

The performance of an incremental model on streaming data is measured in three ways:

1 Cumulative metrics measure the performance since the start of incremental learning.
2 Window metrics measure the performance on a specified window of observations. The metrics

are updated every time the model processes the specified window.
3 The loss function measures the performance on a specified batch of data only.

Load the human activity data set. Randomly shuffle the data.

load humanactivity
n = numel(actid);
rng(1) % For reproducibility
idx = randsample(n,n);
X = feat(idx,:);
Y = actid(idx);

For details on the data set, enter Description at the command line.

Responses can be one of five classes: Sitting, Standing, Walking, Running, or Dancing. Dichotomize
the response by identifying whether the subject is moving (actid > 2).

Y = Y > 2;
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Create an incremental kernel model for binary classification. Specify a metrics window size of 1000
observations. Configure the model for loss by fitting it to the first 10 observations.

p = size(X,2);
Mdl = incrementalClassificationKernel(MetricsWindowSize=1000);
initobs = 10;
Mdl = fit(Mdl,X(1:initobs,:),Y(1:initobs));

Mdl is an incrementalClassificationKernel model. All its properties are read-only.

Simulate a data stream, and perform the following actions on each incoming chunk of 50
observations:

1 Call updateMetrics to measure the cumulative performance and the performance within a
window of observations. Overwrite the previous incremental model with a new one to track
performance metrics.

2 Call loss to measure the model performance on the incoming chunk.
3 Call fit to fit the model to the incoming chunk. Overwrite the previous incremental model with a

new one fitted to the incoming observations.
4 Store all performance metrics to see how they evolve during incremental learning.

% Preallocation
numObsPerChunk = 50;
nchunk = floor((n - initobs)/numObsPerChunk);
ce = array2table(zeros(nchunk,3),VariableNames=["Cumulative","Window","Loss"]);

% Incremental learning
for j = 1:nchunk
    ibegin = min(n,numObsPerChunk*(j-1) + 1 + initobs);
    iend   = min(n,numObsPerChunk*j + initobs);
    idx = ibegin:iend;    
    Mdl = updateMetrics(Mdl,X(idx,:),Y(idx));
    ce{j,["Cumulative","Window"]} = Mdl.Metrics{"ClassificationError",:};
    ce{j,"Loss"} = loss(Mdl,X(idx,:),Y(idx));
    Mdl = fit(Mdl,X(idx,:),Y(idx));
end

Mdl is an incrementalClassificationKernel model object trained on all the data in the stream.
During incremental learning and after the model is warmed up, updateMetrics checks the
performance of the model on the incoming observations, and the fit function fits the model to those
observations. loss is agnostic of the metrics warm-up period, so it measures the classification error
for all iterations.

To see how the performance metrics evolve during training, plot them.

plot(ce.Variables)
xlim([0 nchunk])
ylabel("Classification Error")
xline(Mdl.MetricsWarmupPeriod/numObsPerChunk,"--")
legend(ce.Properties.VariableNames)
xlabel("Iteration")
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The yellow line represents the classification error on each incoming chunk of data. After the metrics
warm-up period, Mdl tracks the cumulative and window metrics. The cumulative and batch losses
converge as the fit function fits the incremental model to the incoming data.

Compute Custom Loss on Incoming Chunks of Data

Fit an incremental learning model for regression to streaming data, and compute the mean absolute
deviation (MAD) on the incoming data batches.

Load the robot arm data set. Obtain the sample size n and the number of predictor variables p.

load robotarm
n = numel(ytrain);
p = size(Xtrain,2);

For details on the data set, enter Description at the command line.

Create an incremental kernel model for regression. Configure the model as follows:

• Specify a metrics warm-up period of 1000 observations.
• Specify a metrics window size of 500 observations.
• Track the mean absolute deviation (MAD) to measure the performance of the model. Create an

anonymous function that measures the absolute error of each new observation. Create a structure
array containing the name MeanAbsoluteError and its corresponding function.
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• Configure the model to predict responses by fitting it to the first 10 observations.

maefcn = @(z,zfit,w)(abs(z - zfit));
maemetric = struct(MeanAbsoluteError=maefcn);

Mdl = incrementalRegressionKernel(MetricsWarmupPeriod=1000,MetricsWindowSize=500, ...
    Metrics=maemetric);
initobs = 10;
Mdl = fit(Mdl,Xtrain(1:initobs,:),ytrain(1:initobs));

Mdl is an incrementalRegressionKernel model object configured for incremental learning.

Perform incremental learning. At each iteration:

• Simulate a data stream by processing a chunk of 50 observations.
• Call updateMetrics to compute cumulative and window metrics on the incoming chunk of data.

Overwrite the previous incremental model with a new one fitted to overwrite the previous metrics.
• Call loss to compute the MAD on the incoming chunk of data. Whereas the cumulative and

window metrics require that custom losses return the loss for each observation, loss requires the
loss on the entire chunk. Compute the mean of the absolute deviation.

• Call fit to fit the incremental model to the incoming chunk of data.
• Store the cumulative, window, and chunk metrics to see how they evolve during incremental

learning.

% Preallocation
numObsPerChunk = 50;
nchunk = floor((n - initobs)/numObsPerChunk);
mae = array2table(zeros(nchunk,3),VariableNames=["Cumulative","Window","Chunk"]);

% Incremental fitting
for j = 1:nchunk
    ibegin = min(n,numObsPerChunk*(j-1) + 1 + initobs);
    iend   = min(n,numObsPerChunk*j + initobs);
    idx = ibegin:iend;    
    Mdl = updateMetrics(Mdl,Xtrain(idx,:),ytrain(idx));
    mae{j,1:2} = Mdl.Metrics{"MeanAbsoluteError",:};
    mae{j,3} = loss(Mdl,Xtrain(idx,:),ytrain(idx),LossFun=@(x,y,w)mean(maefcn(x,y,w)));
    Mdl = fit(Mdl,Xtrain(idx,:),ytrain(idx));
end

Mdl is an incrementalRegressionKernel model object trained on all the data in the stream.
During incremental learning and after the model is warmed up, updateMetrics checks the
performance of the model on the incoming observations, and the fit function fits the model to those
observations.

Plot the performance metrics to see how they evolved during incremental learning.

plot(mae.Variables)
ylabel("Mean Absolute Deviation")
xlabel("Iteration")
xlim([0 nchunk])
xline(Mdl.EstimationPeriod/numObsPerChunk,"-.")
xline((Mdl.EstimationPeriod + Mdl.MetricsWarmupPeriod)/numObsPerChunk,"--")
legend(mae.Properties.VariableNames)
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The plot suggests the following:

• updateMetrics computes the performance metrics after the metrics warm-up period only.
• updateMetrics computes the cumulative metrics during each iteration.
• updateMetrics computes the window metrics after processing 500 observations (10 iterations).
• Because Mdl was configured to predict observations from the beginning of incremental learning,

loss can compute the MAD on each incoming chunk of data.

Input Arguments
Mdl — Incremental learning model
incrementalClassificationKernel model object | incrementalRegressionKernel model
object

Incremental learning model, specified as an incrementalClassificationKernel or
incrementalRegressionKernel model object. You can create Mdl directly or by converting a
supported, traditionally trained machine learning model using the incrementalLearner function.
For more details, see the corresponding reference page.

You must configure Mdl to predict labels for a batch of observations.

• If Mdl is a converted, traditionally trained model, you can predict labels without any
modifications.
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• Otherwise, you must fit Mdl to data using fit or updateMetricsAndFit.

X — Batch of predictor data
floating-point matrix

Batch of predictor data, specified as a floating-point matrix of n observations and
Mdl.NumPredictors predictor variables.

The length of the observation labels Y and the number of observations in X must be equal; Y(j) is the
label of observation j (row) in X.

Note

loss supports only floating-point input predictor data. If your input data includes categorical data,
you must prepare an encoded version of the categorical data. Use dummyvar to convert each
categorical variable to a numeric matrix of dummy variables. Then, concatenate all dummy variable
matrices and any other numeric predictors. For more details, see “Dummy Variables” on page 2-49.

Data Types: single | double

Y — Batch of responses (labels)
categorical array | character array | string array | logical vector | floating-point vector | cell array of
character vectors

Batch of responses (labels), specified as a categorical, character, or string array, a logical or floating-
point vector, or a cell array of character vectors for classification problems; or a floating-point vector
for regression problems.

The length of the observation labels Y and the number of observations in X must be equal; Y(j) is the
label of observation j (row) in X.

For classification problems:

• loss supports binary classification only.
• If Y contains a label that is not a member of Mdl.ClassNames, loss issues an error.
• The data type of Y and Mdl.ClassNames must be the same.

Data Types: char | string | cell | categorical | logical | single | double

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.
Example: LossFun="epsiloninsensitive",Weights=W returns the epsilon insensitive loss and
specifies the observation weights as the vector W.

LossFun — Loss function
string vector | function handle | cell vector | structure array

Loss function, specified as a built-in loss function name or function handle.
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• Classification problems: The following table lists the available loss functions when Mdl is an
incrementalClassificationKernel model. Specify one using its corresponding character
vector or string scalar.

Name Description
"binodeviance" Binomial deviance
"classiferror" (default) Misclassification rate in decimal
"exponential" Exponential loss
"hinge" Hinge loss
"logit" Logistic loss
"quadratic" Quadratic loss

For more details, see “Classification Loss” on page 35-4519.

Logistic regression learners return posterior probabilities as classification scores, but SVM
learners do not (see predict).

To specify a custom loss function, use function handle notation. The function must have this form:

lossval = lossfcn(C,S,W)

• The output argument lossval is an n-by-1 floating-point vector, where lossval(j) is the
classification loss of observation j.

• You specify the function name (lossfcn).
• C is an n-by-2 logical matrix with rows indicating the class to which the corresponding

observation belongs. The column order corresponds to the class order in the ClassNames
property. Create C by setting C(p,q) = 1, if observation p is in class q, for each observation in
the specified data. Set the other element in row p to 0.

• S is an n-by-2 numeric matrix of predicted classification scores. S is similar to the score
output of predict, where rows correspond to observations in the data and the column order
corresponds to the class order in the ClassNames property. S(p,q) is the classification score
of observation p being classified in class q.

• W is an n-by-1 numeric vector of observation weights.
• Regression problems: The following table lists the available loss functions when Mdl is an

incrementalRegressionKernel model. Specify one using its corresponding character vector
or string scalar.

Name Description Learner Supporting Metric
"epsiloninsensitive" Epsilon insensitive loss 'svm'
"mse" (default) Weighted mean squared error 'svm' and 'leastsquares'

For more details, see “Regression Loss” on page 35-4521.

To specify a custom loss function, use function handle notation. The function must have this form:

lossval = lossfcn(Y,YFit,W)

• The output argument lossval is a floating-point scalar.
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• You specify the function name (lossfcn).
• Y is a length n numeric vector of observed responses.
• YFit is a length n numeric vector of corresponding predicted responses.
• W is an n-by-1 numeric vector of observation weights.

Example: LossFun="mse"
Example: LossFun=@lossfcn
Data Types: char | string | function_handle

Weights — Batch of observation weights
floating-point vector of positive values

Batch of observation weights, specified as a floating-point vector of positive values. loss weighs the
observations in the input data with the corresponding values in Weights. The size of Weights must
equal n, which is the number of observations in the input data.

By default, Weights is ones(n,1).

For more details, see “Observation Weights” on page 35-4522.
Example: Weights=W specifies the observation weights as the vector W.
Data Types: double | single

Output Arguments
L — Classification or regression loss
numeric scalar

Classification or regression loss, returned as a numeric scalar. The interpretation of L depends on
Weights and LossFun.

More About
Classification Loss

Classification loss functions measure the predictive inaccuracy of classification models. When you
compare the same type of loss among many models, a lower loss indicates a better predictive model.

Consider the following scenario.

• L is the weighted average classification loss.
• n is the sample size.

• yj is the observed class label. The software codes it as –1 or 1, indicating the negative or positive
class (or the first or second class in the ClassNames property), respectively.

• f(Xj) is the positive-class classification score for observation (row) j of the predictor data X.
• mj = yjf(Xj) is the classification score for classifying observation j into the class corresponding to

yj. Positive values of mj indicate correct classification and do not contribute much to the average
loss. Negative values of mj indicate incorrect classification and contribute significantly to the
average loss.
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• The weight for observation j is wj.

Given this scenario, the following table describes the supported loss functions that you can specify by
using the LossFun name-value argument.

Loss Function Value of LossFun Equation
Binomial deviance "binodeviance"

L = ∑
j = 1

n
w jlog 1 + exp −2m j .

Exponential loss "exponential"
L = ∑

j = 1

n
w jexp −m j .

Misclassification rate in
decimal

"classiferror"
L = ∑

j = 1

n
w jI y j ≠ y j ,

where y j is the class label corresponding to the
class with the maximal score, and I{·} is the
indicator function.

Hinge loss "hinge"

L =∑
j = 1

n

w jmax 0, 1−m j .

Logit loss "logit"
L = ∑

j = 1

n
w jlog 1 + exp −m j .

Quadratic loss "quadratic"
L = ∑

j = 1

n
w j 1−m j

2 .

The loss function does not omit an observation with a NaN score when computing the weighted
average loss. Therefore, loss can return NaN when the predictor data X contains missing values, and
the name-value argument LossFun is not specified as "classiferror". In most cases, if the data
set does not contain missing predictors, the loss function does not return NaN.

This figure compares the loss functions over the score m for one observation. Some functions are
normalized to pass through the point (0,1).
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Regression Loss

Regression loss functions measure the predictive inaccuracy of regression models. When you
compare the same type of loss among many models, a lower loss indicates a better predictive model.

Consider the following scenario.

• L is the weighted average classification loss.
• n is the sample size.
• yj is the observed response of observation j.
• f(Xj) is the predicted value of observation j of the predictor data X.
• The weight for observation j is wj.

Given this scenario, the following table describes the supported loss functions that you can specify by
using the LossFun name-value argument.

Loss Function Value of LossFun Equation
Epsilon insensitive loss "epsiloninsensitive" L = max 0, y − f x − ε .
Mean squared error "mse" L = y − f x 2 .

The loss function does not omit an observation with a NaN prediction when computing the weighted
average loss. Therefore, loss can return NaN when the predictor data X contains missing values. In
most cases, if the data set does not contain missing predictors, the loss function does not return
NaN.
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Algorithms
Observation Weights

For classification problems, if the prior class probability distribution is known (in other words, the
prior distribution is not empirical), loss normalizes observation weights to sum to the prior class
probabilities in the respective classes. This action implies that observation weights are the respective
prior class probabilities by default.

For regression problems or if the prior class probability distribution is empirical, the software
normalizes the specified observation weights to sum to 1 each time you call loss.

Version History
Introduced in R2022a

See Also
Objects
incrementalClassificationKernel | incrementalRegressionKernel

Functions
predict | fit | updateMetrics | updateMetricsAndFit

Topics
“Incremental Learning Overview” on page 28-2
“Configure Incremental Learning Model” on page 28-9

35 Functions

35-4522



loss
Loss of linear incremental learning model on batch of data

Syntax
L = loss(Mdl,X,Y)
L = loss(Mdl,X,Y,Name,Value)

Description
loss returns the regression or classification loss of a configured incremental learning model for
linear regression (incrementalRegressionLinear object) or linear binary classification
(incrementalClassificationLinear object).

To measure model performance on a data stream and store the results in the output model, call
updateMetrics or updateMetricsAndFit.

L = loss(Mdl,X,Y) returns the loss for the incremental learning model Mdl using the batch of
predictor data X and corresponding responses Y.

L = loss(Mdl,X,Y,Name,Value) uses additional options specified by one or more name-value
pair arguments. For example, you can specify that the columns of the predictor data matrix
correspond to observations, or specify the classification loss function .

Examples

Measure Model Performance During Incremental Learning

The performance of an incremental model on streaming data is measured in three ways:

1 Cumulative metrics measure the performance since the start of incremental learning.
2 Window metrics measure the performance on a specified window of observations. The metrics

are updated every time the model processes the specified window.
3 The loss function measures the performance on a specified batch of data only.

Load the human activity data set. Randomly shuffle the data.

load humanactivity
n = numel(actid);
rng(1) % For reproducibility
idx = randsample(n,n);
X = feat(idx,:);
Y = actid(idx);

For details on the data set, enter Description at the command line.

Responses can be one of five classes: Sitting, Standing, Walking, Running, or Dancing. Dichotomize
the response by identifying whether the subject is moving (actid > 2).

Y = Y > 2;
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Create an incremental linear SVM model for binary classification. Configure the model for loss by
specifying the class names, prior class distribution (uniform), and arbitrary coefficient and bias
values. Specify a metrics window size of 1000 observations.

p = size(X,2);
Beta = randn(p,1);
Bias = randn(1);
Mdl = incrementalClassificationLinear('Beta',Beta,'Bias',Bias, ...
    'ClassNames',unique(Y),'Prior','uniform','MetricsWindowSize',1000);

Mdl is an incrementalClassificationLinear model. All its properties are read-only. Instead of
specifying arbitrary values, you can take either of these actions to configure the model:

• Train an SVM model using fitcsvm or fitclinear on a subset of the data (if available), and
then convert the model to an incremental learner by using incrementalLearner.

• Incrementally fit Mdl to data by using fit.

Simulate a data stream, and perform the following actions on each incoming chunk of 50
observations:

1 Call updateMetrics to measure the cumulative performance and the performance within a
window of observations. Overwrite the previous incremental model with a new one to track
performance metrics.

2 Call loss to measure the model performance on the incoming chunk.
3 Call fit to fit the model to the incoming chunk. Overwrite the previous incremental model with a

new one fitted to the incoming observations.
4 Store all performance metrics to see how they evolve during incremental learning.

% Preallocation
numObsPerChunk = 50;
nchunk = floor(n/numObsPerChunk);
ce = array2table(zeros(nchunk,3),'VariableNames',["Cumulative" "Window" "Loss"]);

% Incremental learning
for j = 1:nchunk
    ibegin = min(n,numObsPerChunk*(j-1) + 1);
    iend   = min(n,numObsPerChunk*j);
    idx = ibegin:iend;    
    Mdl = updateMetrics(Mdl,X(idx,:),Y(idx));
    ce{j,["Cumulative" "Window"]} = Mdl.Metrics{"ClassificationError",:};
    ce{j,"Loss"} = loss(Mdl,X(idx,:),Y(idx));
    Mdl = fit(Mdl,X(idx,:),Y(idx));
end

Mdl is an incrementalClassificationLinear model object trained on all the data in the stream.
During incremental learning and after the model is warmed up, updateMetrics checks the
performance of the model on the incoming observations, then and the fit function fits the model to
those observations. loss is agnostic of the metrics warm-up period, so it measures the classification
error for all iterations.

To see how the performance metrics evolve during training, plot them.

figure
plot(ce.Variables)
xlim([0 nchunk])
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ylim([0 0.05])
ylabel('Classification Error')
xline(Mdl.MetricsWarmupPeriod/numObsPerChunk,'r-.')
legend(ce.Properties.VariableNames)
xlabel('Iteration')

The yellow line represents the classification error on each incoming chunk of data. After the metrics
warm-up period, Mdl tracks the cumulative and window metrics. The cumulative and batch losses
converge as the fit function fits the incremental model to the incoming data.

Compute Custom Loss on Incoming Chunks of Data

Fit an incremental learning model for regression to streaming data, and compute the mean absolute
deviation (MAD) on the incoming data batches.

Load the robot arm data set. Obtain the sample size n and the number of predictor variables p.

load robotarm
n = numel(ytrain);
p = size(Xtrain,2);

For details on the data set, enter Description at the command line.

Create an incremental linear model for regression. Configure the model as follows:

 loss
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• Specify a metrics warm-up period of 1000 observations.
• Specify a metrics window size of 500 observations.
• Track the mean absolute deviation (MAD) to measure the performance of the model. Create an

anonymous function that measures the absolute error of each new observation. Create a structure
array containing the name MeanAbsoluteError and its corresponding function.

• Configure the model to predict responses by specifying that all regression coefficients and the
bias are 0.

maefcn = @(z,zfit,w)(abs(z - zfit));
maemetric = struct("MeanAbsoluteError",maefcn);

Mdl = incrementalRegressionLinear('MetricsWarmupPeriod',1000,'MetricsWindowSize',500, ...
    'Metrics',maemetric,'Beta',zeros(p,1),'Bias',0,'EstimationPeriod',0)

Mdl = 
  incrementalRegressionLinear

               IsWarm: 0
              Metrics: [2x2 table]
    ResponseTransform: 'none'
                 Beta: [32x1 double]
                 Bias: 0
              Learner: 'svm'

  Properties, Methods

Mdl is an incrementalRegressionLinear model object configured for incremental learning.

Perform incremental learning. At each iteration:

• Simulate a data stream by processing a chunk of 50 observations.
• Call updateMetrics to compute cumulative and window metrics on the incoming chunk of data.

Overwrite the previous incremental model with a new one fitted to overwrite the previous metrics.
• Call loss to compute the MAD on the incoming chunk of data. Whereas the cumulative and

window metrics require that custom losses return the loss for each observation, loss requires the
loss on the entire chunk. Compute the mean of the absolute deviation.

• Call fit to fit the incremental model to the incoming chunk of data.
• Store the cumulative, window, and chunk metrics to see how they evolve during incremental

learning.

% Preallocation
numObsPerChunk = 50;
nchunk = floor(n/numObsPerChunk);
mae = array2table(zeros(nchunk,3),'VariableNames',["Cumulative" "Window" "Chunk"]);

% Incremental fitting
for j = 1:nchunk
    ibegin = min(n,numObsPerChunk*(j-1) + 1);
    iend   = min(n,numObsPerChunk*j);
    idx = ibegin:iend;    
    Mdl = updateMetrics(Mdl,Xtrain(idx,:),ytrain(idx));
    mae{j,1:2} = Mdl.Metrics{"MeanAbsoluteError",:};
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    mae{j,3} = loss(Mdl,Xtrain(idx,:),ytrain(idx),'LossFun',@(x,y,w)mean(maefcn(x,y,w)));
    Mdl = fit(Mdl,Xtrain(idx,:),ytrain(idx));
end

Mdl is an incrementalRegressionLinear model object trained on all the data in the stream.
During incremental learning and after the model is warmed up, updateMetrics checks the
performance of the model on the incoming observations, and the fit function fits the model to those
observations.

Plot the performance metrics to see how they evolved during incremental learning.

figure
h = plot(mae.Variables);
xlim([0 nchunk])
ylabel('Mean Absolute Deviation')
xline(Mdl.MetricsWarmupPeriod/numObsPerChunk,'r-.')
xlabel('Iteration')
legend(h,mae.Properties.VariableNames)

The plot suggests the following:

• updateMetrics computes the performance metrics after the metrics warm-up period only.
• updateMetrics computes the cumulative metrics during each iteration.
• updateMetrics computes the window metrics after processing 500 observations
• Because Mdl was configured to predict observations from the beginning of incremental learning,

loss can compute the MAD on each incoming chunk of data.
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Input Arguments
Mdl — Incremental learning model
incrementalClassificationLinear model object | incrementalRegressionLinear model
object

Incremental learning model, specified as an incrementalClassificationLinear or
incrementalRegressionLinear model object. You can create Mdl directly or by converting a
supported, traditionally trained machine learning model using the incrementalLearner function.
For more details, see the corresponding reference page.

You must configure Mdl to compute its loss on a batch of observations.

• If Mdl is a converted, traditionally trained model, you can compute its loss without any
modifications.

• Otherwise, Mdl must satisfy the following criteria, which you can specify directly or by fitting Mdl
to data using fit or updateMetricsAndFit.

• If Mdl is an incrementalRegressionLinear model, its model coefficients Mdl.Beta and
bias Mdl.Bias must be nonempty arrays.

• If Mdl is an incrementalClassificationLinear model, its model coefficients Mdl.Beta
and bias Mdl.Bias must be nonempty arrays, the class names Mdl.ClassNames must contain
two classes, and the prior class distribution Mdl.Prior must contain known values.

• Regardless of object type, if you configure the model so that functions standardize predictor
data, the predictor means Mdl.Mu and standard deviations Mdl.Sigma must be nonempty
arrays.

X — Batch of predictor data
floating-point matrix

Batch of predictor data with which to compute the loss, specified as a floating-point matrix of n
observations and Mdl.NumPredictors predictor variables. The value of the ObservationsIn
name-value argument determines the orientation of the variables and observations. The default
ObservationsIn value is "rows", which indicates that observations in the predictor data are
oriented along the rows of X.

The length of the observation labels Y and the number of observations in X must be equal; Y(j) is the
label of observation j (row or column) in X.

Note

loss supports only floating-point input predictor data. If your input data includes categorical data,
you must prepare an encoded version of the categorical data. Use dummyvar to convert each
categorical variable to a numeric matrix of dummy variables. Then, concatenate all dummy variable
matrices and any other numeric predictors. For more details, see “Dummy Variables” on page 2-49.

Data Types: single | double

Y — Batch of responses (labels)
categorical array | character array | string array | logical vector | floating-point vector | cell array of
character vectors
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Batch of responses (labels) with which to compute the loss, specified as a categorical, character, or
string array, logical or floating-point vector, or cell array of character vectors for classification
problems; or a floating-point vector for regression problems.

The length of the observation labels Y and the number of observations in X must be equal; Y(j) is the
label of observation j (row or column) in X.

For classification problems:

• loss supports binary classification only.
• If Y contains a label that is not a member of Mdl.ClassNames, loss issues an error.
• The data type of Y and Mdl.ClassNames must be the same.

Data Types: char | string | cell | categorical | logical | single | double

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: 'ObservationsIn','columns','Weights',W specifies that the columns of the
predictor matrix correspond to observations, and the vector W contains observation weights to apply.

LossFun — Loss function
string vector | function handle | cell vector | structure array | ...

Loss function, specified as the comma-separated pair consisting of 'LossFun' and a built-in loss
function name or function handle.

• Classification problems: The following table lists the available loss functions when Mdl is an
incrementalClassificationLinear model. Specify one using its corresponding character
vector or string scalar.

Name Description
"binodeviance" Binomial deviance
"classiferror" (default) Misclassification rate in decimal
"exponential" Exponential loss
"hinge" Hinge loss
"logit" Logistic loss
"quadratic" Quadratic loss

For more details, see “Classification Loss” on page 35-4531.

Logistic regression learners return posterior probabilities as classification scores, but SVM
learners do not (see predict).

To specify a custom loss function, use function handle notation. The function must have this form:

lossval = lossfcn(C,S,W)
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• The output argument lossval is an n-by-1 floating-point vector, where lossval(j) is the
classification loss of observation j.

• You specify the function name (lossfcn).
• C is an n-by-2 logical matrix with rows indicating the class to which the corresponding

observation belongs. The column order corresponds to the class order in the ClassNames
property. Create C by setting C(p,q) = 1, if observation p is in class q, for each observation in
the specified data. Set the other element in row p to 0.

• S is an n-by-2 numeric matrix of predicted classification scores. S is similar to the score
output of predict, where rows correspond to observations in the data and the column order
corresponds to the class order in the ClassNames property. S(p,q) is the classification score
of observation p being classified in class q.

• W is an n-by-1 numeric vector of observation weights.
• Regression problems: The following table lists the available loss functions when Mdl is an

incrementalRegressionLinear model. Specify one using its corresponding character vector
or string scalar.

Name Description Learner Supporting Metric
"epsiloninsensitive" Epsilon insensitive loss 'svm'
"mse" (default) Weighted mean squared error 'svm' and 'leastsquares'

For more details, see “Regression Loss” on page 35-4533.

To specify a custom loss function, use function handle notation. The function must have this form:

lossval = lossfcn(Y,YFit,W)

• The output argument lossval is a floating-point scalar.
• You specify the function name (lossfcn).
• Y is a length n numeric vector of observed responses.
• YFit is a length n numeric vector of corresponding predicted responses.
• W is an n-by-1 numeric vector of observation weights.

Example: 'LossFun',"mse"
Example: 'LossFun',@lossfcn
Data Types: char | string | function_handle

ObservationsIn — Predictor data observation dimension
'rows' (default) | 'columns'

Predictor data observation dimension, specified as the comma-separated pair consisting of
'ObservationsIn' and 'columns' or 'rows'.
Data Types: char | string

Weights — Batch of observation weights
floating-point vector of positive values

Batch of observation weights, specified as the comma-separated pair consisting of 'Weights' and a
floating-point vector of positive values. loss weighs the observations in the input data with the
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corresponding values in Weights. The size of Weights must equal n, which is the number of
observations in the input data.

By default, Weights is ones(n,1).

For more details, see “Observation Weights” on page 35-4534.
Data Types: double | single

Output Arguments
L — Classification or regression loss
numeric scalar

Classification or regression loss, returned as a numeric scalar. The interpretation of L depends on
Weights and LossFun.

More About
Classification Loss

Classification loss functions measure the predictive inaccuracy of classification models. When you
compare the same type of loss among many models, a lower loss indicates a better predictive model.

Consider the following scenario.

• L is the weighted average classification loss.
• n is the sample size.

• yj is the observed class label. The software codes it as –1 or 1, indicating the negative or positive
class (or the first or second class in the ClassNames property), respectively.

• f(Xj) is the positive-class classification score for observation (row) j of the predictor data X.
• mj = yjf(Xj) is the classification score for classifying observation j into the class corresponding to

yj. Positive values of mj indicate correct classification and do not contribute much to the average
loss. Negative values of mj indicate incorrect classification and contribute significantly to the
average loss.

• The weight for observation j is wj.

Given this scenario, the following table describes the supported loss functions that you can specify by
using the LossFun name-value argument.

Loss Function Value of LossFun Equation
Binomial deviance "binodeviance"

L = ∑
j = 1

n
w jlog 1 + exp −2m j .

Exponential loss "exponential"
L = ∑

j = 1

n
w jexp −m j .
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Loss Function Value of LossFun Equation
Misclassification rate in
decimal

"classiferror"
L = ∑

j = 1

n
w jI y j ≠ y j ,

where y j is the class label corresponding to the
class with the maximal score, and I{·} is the
indicator function.

Hinge loss "hinge"

L =∑
j = 1

n

w jmax 0, 1−m j .

Logit loss "logit"
L = ∑

j = 1

n
w jlog 1 + exp −m j .

Quadratic loss "quadratic"
L = ∑

j = 1

n
w j 1−m j

2 .

The loss function does not omit an observation with a NaN score when computing the weighted
average loss. Therefore, loss can return NaN when the predictor data X contains missing values, and
the name-value argument LossFun is not specified as "classiferror". In most cases, if the data
set does not contain missing predictors, the loss function does not return NaN.

This figure compares the loss functions over the score m for one observation. Some functions are
normalized to pass through the point (0,1).
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Regression Loss

Regression loss functions measure the predictive inaccuracy of regression models. When you
compare the same type of loss among many models, a lower loss indicates a better predictive model.

Consider the following scenario.

• L is the weighted average classification loss.
• n is the sample size.
• yj is the observed response of observation j.
• f(Xj) is the predicted value of observation j of the predictor data X.
• The weight for observation j is wj.

Given this scenario, the following table describes the supported loss functions that you can specify by
using the LossFun name-value argument.

Loss Function Value of LossFun Equation
Epsilon insensitive loss "epsiloninsensitive" L = max 0, y − f x − ε .
Mean squared error "mse" L = y − f x 2 .

The loss function does not omit an observation with a NaN prediction when computing the weighted
average loss. Therefore, loss can return NaN when the predictor data X contains missing values. In
most cases, if the data set does not contain missing predictors, the loss function does not return
NaN.
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Algorithms
Observation Weights

For classification problems, if the prior class probability distribution is known (in other words, the
prior distribution is not empirical), loss normalizes observation weights to sum to the prior class
probabilities in the respective classes. This action implies that observation weights are the respective
prior class probabilities by default.

For regression problems or if the prior class probability distribution is empirical, the software
normalizes the specified observation weights to sum to 1 each time you call loss.

Version History
Introduced in R2020b

loss can return NaN for predictor data with missing values
Behavior changed in R2022a

The loss function no longer omits an observation with a NaN prediction (score for classification and
response for regression) when computing the weighted average loss. Therefore, loss can now return
NaN when the predictor data X contains missing values, and the name-value argument LossFun is not
specified as "classiferror" (for classification). In most cases, if the data set does not contain
missing predictors, the loss function does not return NaN.

If loss in your code returns NaN, you can update your code to avoid this result. Remove or replace
the missing values by using rmmissing or fillmissing, respectively.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• Use saveLearnerForCoder, loadLearnerForCoder, and codegen to generate code for the
loss function. Save a trained model by using saveLearnerForCoder. Define an entry-point
function that loads the saved model by using loadLearnerForCoder and calls the loss
function. Then use codegen to generate code for the entry-point function.

• To generate single-precision C/C++ code for loss, specify the name-value argument
"DataType","single" when you call the loadLearnerForCoder function.

• This table contains notes about the arguments of loss. Arguments not included in this table are
fully supported.

Argument Notes and Limitations
Mdl For usage notes and limitations of the model

object, see
incrementalClassificationLinear or
incrementalRegressionLinear.
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Argument Notes and Limitations
X • Batch-to-batch, the number of observations

can be a variable size, but must equal the
number of observations in Y.

• The number of predictor variables must
equal to Mdl.NumPredictors.

• X must be single or double.
Y • Batch-to-batch, the number of observations

can be a variable size, but must equal the
number of observations in X.

• For classification problems, all labels in Y
must be represented in Mdl.ClassNames.

• Y and Mdl.ClassNames must have the
same data type.

'LossFun' The specified function cannot be an
anonymous function.

• If you configure Mdl to shuffle data (Mdl.Shuffle is true, or Mdl.Solver is 'sgd' or 'asgd'),
the loss function randomly shuffles each incoming batch of observations before it fits the model
to the batch. The order of the shuffled observations might not match the order generated by
MATLAB. Therefore, if you fit Mdl before computing the loss, the loss computed in MATLAB and
those computed by the generated code might not be equal.

• Use a homogeneous data type for all floating-point input arguments and object properties,
specifically, either single or double.

For more information, see “Introduction to Code Generation” on page 34-2.

See Also
Objects
incrementalClassificationLinear | incrementalRegressionLinear

Functions
updateMetrics | fit | updateMetricsAndFit | predict

Topics
“Incremental Learning Overview” on page 28-2
“Configure Incremental Learning Model” on page 28-9
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loss
Loss of naive Bayes incremental learning classification model on batch of data

Syntax
L = loss(Mdl,X,Y)
L = loss(Mdl,X,Y,Name,Value)

Description
loss returns the classification loss of a configured naive Bayes classification model for incremental
learning (incrementalClassificationNaiveBayes object).

To measure model performance on a data stream and store the results in the output model, call
updateMetrics or updateMetricsAndFit.

L = loss(Mdl,X,Y) returns the minimal cost classification loss for the naive Bayes classification
model for incremental learning Mdl using the batch of predictor data X and corresponding responses
Y.

L = loss(Mdl,X,Y,Name,Value) uses additional options specified by one or more name-value
arguments. For example, you can specify the classification loss function.

Examples

Measure Model Performance During Incremental Learning

Three different ways to measure performance of an incremental model on streaming data exist:

• Cumulative metrics measure the performance since the start of incremental learning.
• Window metrics measure the performance on a specified window of observations. The metrics are

updated every time the model processes the specified window.
• The loss function measures the performance on a specified batch of data only.

Load the human activity data set. Randomly shuffle the data.

load humanactivity
n = numel(actid);
rng(1) % For reproducibility
idx = randsample(n,n);
X = feat(idx,:);
Y = actid(idx);

For details on the data set, enter Description at the command line.

Create a naive Bayes classification model for incremental learning. Specify the class names and a
metrics window size of 1000 observations. Configure the model for loss by fitting it to the first 10
observations.
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Mdl = incrementalClassificationNaiveBayes('ClassNames',unique(Y),'MetricsWindowSize',1000);
initobs = 10;
Mdl = fit(Mdl,X(1:initobs,:),Y(1:initobs));
canComputeLoss = (size(Mdl.DistributionParameters,2) == Mdl.NumPredictors) + ...
    (size(Mdl.DistributionParameters,1) > 1) > 1

canComputeLoss = logical
   1

Mdl is an incrementalClassificationNaiveBayes model. All its properties are read-only.

Simulate a data stream, and perform the following actions on each incoming chunk of 500
observations:

1 Call updateMetrics to measure the cumulative performance and the performance within a
window of observations. Overwrite the previous incremental model with a new one to track
performance metrics.

2 Call loss to measure the model performance on the incoming chunk.
3 Call fit to fit the model to the incoming chunk. Overwrite the previous incremental model with a

new one fitted to the incoming observations.
4 Store all performance metrics to see how they evolve during incremental learning.

% Preallocation
numObsPerChunk = 500;
nchunk = floor((n - initobs)/numObsPerChunk);
mc = array2table(zeros(nchunk,3),'VariableNames',["Cumulative" "Window" "Chunk"]);

% Incremental learning
for j = 1:nchunk
    ibegin = min(n,numObsPerChunk*(j-1) + 1 + initobs);
    iend   = min(n,numObsPerChunk*j + initobs);
    idx = ibegin:iend;    
    Mdl = updateMetrics(Mdl,X(idx,:),Y(idx));
    mc{j,["Cumulative" "Window"]} = Mdl.Metrics{"MinimalCost",:};
    mc{j,"Chunk"} = loss(Mdl,X(idx,:),Y(idx));
    Mdl = fit(Mdl,X(idx,:),Y(idx));
end

Now, Mdl is an incrementalClassificationNaiveBayes model object trained on all the data in
the stream. During incremental learning and after the model is warmed up, updateMetrics checks
the performance of the model on the incoming observations, and then the fit function fits the model
to those observations. loss is agnostic of the metrics warm-up period, so it measures the minimal
cost for every chunk.

To see how the performance metrics evolve during training, plot them.

figure
plot(mc.Variables)
xlim([0 nchunk])
ylim([0 0.1])
ylabel('Minimal Cost')
xline(Mdl.MetricsWarmupPeriod/numObsPerChunk + 1,'r-.')
legend(mc.Properties.VariableNames)
xlabel('Iteration')
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The yellow line represents the minimal cost on each incoming chunk of data. After the metrics warm-
up period, Mdl tracks the cumulative and window metrics.

Compute Custom Loss on Incoming Chunks of Data

Fit a naive Bayes classification model for incremental learning to streaming data, and compute the
multiclass cross entropy loss on the incoming chunks of data.

Load the human activity data set. Randomly shuffle the data.

load humanactivity
n = numel(actid);
rng(1); % For reproducibility
idx = randsample(n,n);
X = feat(idx,:);
Y = actid(idx);

For details on the data set, enter Description at the command line.

Create a naive Bayes classification model for incremental learning. Configure the model as follows:

• Specify the class names.
• Specify a metrics warm-up period of 1000 observations.
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• Specify a metrics window size of 2000 observations.
• Track the multiclass cross entropy loss to measure the performance of the model. Create an

anonymous function that measures the multiclass cross entropy loss of each new observation, and
include a tolerance for numerical stability. Create a structure array containing the name
CrossEntropy and its corresponding function handle.

• Compute the classification loss by fitting the model to the first 10 observations.

tolerance = 1e-10;
crossentropy = @(z,zfit,w,cost)-log(max(zfit(z),tolerance));
ce = struct("CrossEntropy",crossentropy);

Mdl = incrementalClassificationNaiveBayes('ClassNames',unique(Y),'MetricsWarmupPeriod',1000, ...
    'MetricsWindowSize',2000,'Metrics',ce);
initobs = 10;
Mdl = fit(Mdl,X(1:initobs,:),Y(1:initobs));

Mdl is an incrementalClassificationNaiveBayes model object configured for incremental
learning.

Perform incremental learning. At each iteration:

• Simulate a data stream by processing a chunk of 100 observations.
• Call updateMetrics to compute cumulative and window metrics on the incoming chunk of data.

Overwrite the previous incremental model with a new one fitted to overwrite the previous metrics.
• Call loss to compute the cross entropy on the incoming chunk of data. Whereas the cumulative

and window metrics require that custom losses return the loss for each observation, loss
requires the loss for the entire chunk. Compute the mean of the losses within a chunk.

• Call fit to fit the incremental model to the incoming chunk of data.
• Store the cumulative, window, and chunk metrics to see how they evolve during incremental

learning.

% Preallocation
numObsPerChunk = 100;
nchunk = floor((n - initobs)/numObsPerChunk);
tanloss = array2table(zeros(nchunk,3),'VariableNames',["Cumulative" "Window" "Chunk"]);

% Incremental fitting
for j = 1:nchunk
    ibegin = min(n,numObsPerChunk*(j-1) + 1 + initobs);
    iend   = min(n,numObsPerChunk*j + initobs);
    idx = ibegin:iend;    
    Mdl = updateMetrics(Mdl,X(idx,:),Y(idx));
    tanloss{j,1:2} = Mdl.Metrics{"CrossEntropy",:};
    tanloss{j,3} = loss(Mdl,X(idx,:),Y(idx),'LossFun',@(z,zfit,w,cost)mean(crossentropy(z,zfit,w,cost)));
    Mdl = fit(Mdl,X(idx,:),Y(idx));
end

Mdl is an incrementalClassificationNaiveBayes model object trained on all the data in the
stream. During incremental learning and after the model is warmed up, updateMetrics checks the
performance of the model on the incoming observations, and then the fit function fits the model to
those observations.

Plot the performance metrics to see how they evolve during incremental learning.
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figure
h = plot(tanloss.Variables);
xlim([0 nchunk])
ylabel('Cross Entropy')
xline(Mdl.MetricsWarmupPeriod/numObsPerChunk,'r-.')
xlabel('Iteration')
legend(h,tanloss.Properties.VariableNames)

The plot suggests the following:

• updateMetrics computes the performance metrics after the metrics warm-up period only.
• updateMetrics computes the cumulative metrics during each iteration.
• updateMetrics computes the window metrics after processing 2000 observations (20 iterations).
• Because Mdl is configured to predict observations from the beginning of incremental learning,

loss can compute the cross entropy on each incoming chunk of data.

Input Arguments
Mdl — Naive Bayes classification model for incremental learning
incrementalClassificationNaiveBayes model object

Naive Bayes classification model for incremental learning, specified as an
incrementalClassificationNaiveBayes model object. You can create Mdl directly or by
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converting a supported, traditionally trained machine learning model using the
incrementalLearner function. For more details, see the corresponding reference page.

You must configure Mdl to compute its loss on a batch of observations.

• If Mdl is a converted, traditionally trained model, you can compute its loss without any
modifications.

• Otherwise, you must fit the input model Mdl to data that contains all expected classes. That is,
Mdl.DistributionParameters must be a cell matrix with Mdl.NumPredictors columns and
at least one row, where each row corresponds to each class name in Mdl.ClassNames.

X — Batch of predictor data
floating-point matrix

Batch of predictor data with which to compute the loss, specified as an n-by-Mdl.NumPredictors
floating-point matrix.

The length of the observation labels Y and the number of observations in X must be equal; Y(j) is the
label of observation j (row) in X.
Data Types: single | double

Y — Batch of labels
categorical array | character array | string array | logical vector | floating-point vector | cell array of
character vectors

Batch of labels with which to compute the loss, specified as a categorical, character, or string array;
logical or floating-point vector; or cell array of character vectors.

The length of the observation labels Y and the number of observations in X must be equal; Y(j) is the
label of observation j (row) in X.

If Y contains a label that is not a member of Mdl.ClassNames, loss issues an error. The data type of
Y and Mdl.ClassNames must be the same.
Data Types: char | string | cell | categorical | logical | single | double

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: 'LossFun','classiferror','Weights',W specifies returning the misclassification
error rate, and the observation weights W.

Cost — Cost of misclassifying an observation
Mdl.Cost (default) | square matrix | structure array

Cost of misclassifying an observation, specified as a value in the table, where c is the number of
classes in Mdl.ClassNames. The specified value overrides the value of Mdl.Cost.
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Value Description
c-by-c numeric matrix Cost(i,j) is the cost of classifying an

observation into class j when its true class is i,
for classes Mdl.ClassNames(i) and
Mdl.ClassNames(j). In other words, the rows
correspond to the true class and the columns
correspond to the predicted class. For example,
Cost = [0 2;1 0] applies double the penalty
for misclassifying Mdl.ClassNames(1) than for
misclassifying Mdl.ClassNames(2).

Structure array A structure array having two fields:

• ClassNames containing the class names, the
same value as Mdl.ClassNames

• ClassificationCosts containing the cost
matrix, as previously described.

Example: Cost=struct('ClassNames',Mdl.ClassNames,'ClassificationCosts',[0 2; 1
0])

Data Types: single | double | struct

LossFun — Loss function
'mincost' (default) | string vector | function handle | cell vector | structure array | ...

Loss function, specified as a built-in loss function name or function handle.

The following table lists the built-in loss function names. You can specify more than one by using a
string vector.

Name Description
"binodeviance" Binomial deviance
"classiferror" Misclassification error rate
"exponential" Exponential
"hinge" Hinge
"logit" Logistic
"mincost" Minimal expected misclassification cost
"quadratic" Quadratic

For more details, see “Classification Loss” on page 35-4544.

To specify a custom loss function, use function handle notation. The function must have this form:

lossval = lossfcn(C,S,W,Cost)

• The output argument lossval is an n-by-1 floating-point vector, where n is the number of
observations in X. The value in lossval(j) is the classification loss of observation j.

• You specify the function name (lossfcn).
• C is an n-by-K logical matrix with rows indicating the class to which the corresponding observation

belongs. K is the number of distinct classes (numel(Mdl.ClassNames), and the column order
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corresponds to the class order in the ClassNames property. Create C by setting C(p,q) = 1, if
observation p is in class q, for each observation in the specified data. Set the other element in row
p to 0.

• S is an n-by-K numeric matrix of predicted classification scores. S is similar to the Posterior
output of predict, where rows correspond to observations in the data and the column order
corresponds to the class order in the ClassNames property. S(p,q) is the classification score of
observation p being classified in class q.

• W is an n-by-1 numeric vector of observation weights.
• Cost is a K-by-K numeric matrix of misclassification costs.

Example: 'LossFun',"classiferror"
Example: 'LossFun',@lossfcn
Data Types: char | string | function_handle

Prior — Prior class probabilities
Mdl.Prior (default) | numeric vector

Prior class probabilities, specified as a value in this numeric vector. Prior has the same length as the
number of classes in Mdl.ClassNames, and the order of the elements corresponds to the class order
in Mdl.ClassNames. loss normalizes the vector so that the sum of the result is 1.

The specified value overrides the value of Mdl.Prior.
Data Types: single | double

ScoreTransform — Score transformation function
Mdl.ScoreTransform (default) | string scalar | character vector

Score transformation function describing how incremental learning functions transform raw response
values, specified as a character vector, string scalar, or function handle. The specified value overrides
the value of Mdl.ScoreTransform.

This table describes the available built-in functions for score transformation.

Value Description
"doublelogit" 1/(1 + e–2x)
"invlogit" log(x / (1 – x))
"ismax" Sets the score for the class with the largest score to 1,

and sets the scores for all other classes to 0
"logit" 1/(1 + e–x)
"none" or "identity" x (no transformation)
"sign" –1 for x < 0

0 for x = 0
1 for x > 0

"symmetric" 2x – 1
"symmetricismax" Sets the score for the class with the largest score to 1,

and sets the scores for all other classes to –1
"symmetriclogit" 2/(1 + e–x) – 1
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Data Types: char | string

Weights — Chunk of observation weights
floating-point vector of positive values

Chunk of observation weights, specified as a floating-point vector of positive values. loss weighs the
observations in X with the corresponding values in Weights. The size of Weights must equal n, the
number of observations in X.

By default, Weights is ones(n,1).

For more details, including normalization schemes, see “Observation Weights” on page 35-4547.
Data Types: double | single

Output Arguments
L — Classification loss
numeric scalar

Classification loss, returned as a numeric scalar. L is a measure of model quality. Its interpretation
depends on the loss function and weighting scheme.

More About
Classification Loss

Classification loss functions measure the predictive inaccuracy of classification models. When you
compare the same type of loss among many models, a lower loss indicates a better predictive model.

Consider the following scenario.

• L is the weighted average classification loss.
• n is the sample size.

• For binary classification:

• yj is the observed class label. The software codes it as –1 or 1, indicating the negative or
positive class (or the first or second class in the ClassNames property), respectively.

• f(Xj) is the positive-class classification score for observation (row) j of the predictor data X.
• mj = yjf(Xj) is the classification score for classifying observation j into the class corresponding

to yj. Positive values of mj indicate correct classification and do not contribute much to the
average loss. Negative values of mj indicate incorrect classification and contribute significantly
to the average loss.

• For algorithms that support multiclass classification (that is, K ≥ 3):

• yj
* is a vector of K – 1 zeros, with 1 in the position corresponding to the true, observed class yj.

For example, if the true class of the second observation is the third class and K = 4, then y2
* =

[0 0 1 0]′. The order of the classes corresponds to the order in the ClassNames property of
the input model.

• f(Xj) is the length K vector of class scores for observation j of the predictor data X. The order of
the scores corresponds to the order of the classes in the ClassNames property of the input
model.
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• mj = yj
*′f(Xj). Therefore, mj is the scalar classification score that the model predicts for the true,

observed class.
• The weight for observation j is wj. The software normalizes the observation weights so that they

sum to the corresponding prior class probability stored in the Prior property. Therefore,

∑
j = 1

n
w j = 1.

Given this scenario, the following table describes the supported loss functions that you can specify by
using the LossFun name-value argument.

Loss Function Value of LossFun Equation
Binomial deviance 'binodeviance'

L = ∑
j = 1

n
w jlog 1 + exp −2m j .

Observed
misclassification cost

'classifcost'
L = ∑

j = 1

n
w jcy jy j,

where y j is the class label corresponding to the
class with the maximal score, and cy jy j is the
user-specified cost of classifying an observation
into class y j when its true class is yj.

Misclassified rate in
decimal

'classiferror'
L = ∑

j = 1

n
w jI y j ≠ y j ,

where I{·} is the indicator function.
Cross-entropy loss 'crossentropy' 'crossentropy' is appropriate only for neural

network models.

The weighted cross-entropy loss is

L = − ∑
j = 1

n w jlog(m j)
Kn ,

where the weights w j are normalized to sum to n
instead of 1.

Exponential loss 'exponential'
L = ∑

j = 1

n
w jexp −m j .

Hinge loss 'hinge'

L =∑
j = 1

n

w jmax 0, 1−m j .

Logit loss 'logit'
L = ∑

j = 1

n
w jlog 1 + exp −m j .
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Loss Function Value of LossFun Equation
Minimal expected
misclassification cost

'mincost' 'mincost' is appropriate only if classification
scores are posterior probabilities.

The software computes the weighted minimal
expected classification cost using this procedure
for observations j = 1,...,n.

1 Estimate the expected misclassification cost
of classifying the observation Xj into the class
k:

γ jk = f X j ′C k .

f(Xj) is the column vector of class posterior
probabilities for the observation Xj. C is the
cost matrix stored in the Cost property of
the model.

2 For observation j, predict the class label
corresponding to the minimal expected
misclassification cost:

y j = argmin
k = 1, ..., K

γ jk .

3 Using C, identify the cost incurred (cj) for
making the prediction.

The weighted average of the minimal expected
misclassification cost loss is

L = ∑
j = 1

n
w jc j .

Quadratic loss 'quadratic'
L = ∑

j = 1

n
w j 1−m j

2 .

If you use the default cost matrix (whose element value is 0 for correct classification and 1 for
incorrect classification), then the loss values for 'classifcost', 'classiferror', and
'mincost' are identical. For a model with a nondefault cost matrix, the 'classifcost' loss is
equivalent to the 'mincost' loss most of the time. These losses can be different if prediction into the
class with maximal posterior probability is different from prediction into the class with minimal
expected cost. Note that 'mincost' is appropriate only if classification scores are posterior
probabilities.

This figure compares the loss functions (except 'classifcost', 'crossentropy', and
'mincost') over the score m for one observation. Some functions are normalized to pass through
the point (0,1).
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Algorithms
Observation Weights

For each conditional predictor distribution, loss computes the weighted average and standard
deviation.

If the prior class probability distribution is known (in other words, the prior distribution is not
empirical), loss normalizes observation weights to sum to the prior class probabilities in the
respective classes. This action implies that the default observation weights are the respective prior
class probabilities.

If the prior class probability distribution is empirical, the software normalizes the specified
observation weights to sum to 1 each time you call loss.

Version History
Introduced in R2021a

See Also
Objects
incrementalClassificationNaiveBayes
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Functions
updateMetrics | fit | updateMetricsAndFit | predict

Topics
“Incremental Learning Overview” on page 28-2
“Configure Incremental Learning Model” on page 28-9
“Incremental Learning with Naive Bayes and Heterogeneous Data” on page 28-52
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loss
Class: FeatureSelectionNCAClassification

Evaluate accuracy of learned feature weights on test data

Syntax
err = loss(mdl,X,Y)
err = loss(mdl,X,Y,Name,Value)

Description
err = loss(mdl,X,Y) computes the misclassification error of the model mdl, for the predictors in
X and the class labels in Y.

err = loss(mdl,X,Y,Name,Value) computes the classification error with additional options
specified by one or more Name,Value pair arguments.

Input Arguments
mdl — Neighborhood component analysis model for classification
FeatureSelectionNCAClassification object

Neighborhood component analysis model for classification, returned as a
FeatureSelectionNCAClassification object.

X — Predictor variable values
n-by-p matrix

Predictor variable values, specified as an n-by-p matrix, where n is the number of observations and p
is the number of predictor variables.
Data Types: single | double

Y — Class labels
categorical vector | logical vector | numeric vector | string array | cell array of character vectors of
length n | character matrix with n rows

Class labels, specified as a categorical vector, logical vector, numeric vector, string array, cell array of
character vectors of length n, or character matrix with n rows, where n is the number of
observations. Element i or row i of Y is the class label corresponding to row i of X (observation i).
Data Types: single | double | logical | char | string | cell | categorical

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
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LossFunction — Loss function type
'classiferror' (default) | 'quadratic'

Loss function type, specified as a comma-separated pair consisting of 'Loss Function' and one of
the following.

• 'classiferror' — Misclassification rate in decimal, defined as

1
n ∑i = 1

n
I ki ≠ ti ,

where ki is the predicted class and ti is the true class for observation i. I ki ≠ ti  is the indicator for
when the ki is not the same as ti.

• 'quadratic' — Quadratic loss function, defined as

1
n ∑i = 1

n
∑

k = 1

c
pik− I i, k 2,

where c is the number of classes, pik is the estimate probability that ith observation belongs to
class k, and I i, k  is the indicator that ith observation belongs to class k.

Example: 'LossFunction','quadratic'

Output Arguments
err — Smaller-the-better accuracy measure for learned feature weights
scalar value

Smaller-the-better accuracy measure for learned feature weights, returned as a scalar value. You can
specify the measure of accuracy using the LossFunction name-value pair argument.

Examples

Tune NCA Model for Classification

Load the sample data.

load('twodimclassdata.mat');

This data set is simulated using the scheme described in [1]. This is a two-class classification problem
in two dimensions. Data from the first class (class –1) are drawn from two bivariate normal
distributions  or  with equal probability, where , ,
and . Similarly, data from the second class (class 1) are drawn from two bivariate normal
distributions  or  with equal probability, where , ,
and . The normal distribution parameters used to create this data set result in tighter clusters
in data than the data used in [1].

Create a scatter plot of the data grouped by the class.

figure
gscatter(X(:,1),X(:,2),y)
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xlabel('x1')
ylabel('x2')

Add 100 irrelevant features to . First generate data from a Normal distribution with a mean of 0
and a variance of 20.

n = size(X,1);
rng('default')
XwithBadFeatures = [X,randn(n,100)*sqrt(20)];

Normalize the data so that all points are between 0 and 1.

XwithBadFeatures = bsxfun(@rdivide,...
    bsxfun(@minus,XwithBadFeatures,min(XwithBadFeatures,[],1)), ...
    range(XwithBadFeatures,1));
X = XwithBadFeatures;

Fit a neighborhood component analysis (NCA) model to the data using the default Lambda
(regularization parameter, ) value. Use the LBFGS solver and display the convergence information.

ncaMdl = fscnca(X,y,'FitMethod','exact','Verbose',1, ...
              'Solver','lbfgs');

 o Solver = LBFGS, HessianHistorySize = 15, LineSearchMethod = weakwolfe

|====================================================================================================|
|   ITER   |   FUN VALUE   |  NORM GRAD  |  NORM STEP  |  CURV  |    GAMMA    |    ALPHA    | ACCEPT |
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|====================================================================================================|
|        0 |  9.519258e-03 |   1.494e-02 |   0.000e+00 |        |   4.015e+01 |   0.000e+00 |   YES  |
|        1 | -3.093574e-01 |   7.186e-03 |   4.018e+00 |    OK  |   8.956e+01 |   1.000e+00 |   YES  |
|        2 | -4.809455e-01 |   4.444e-03 |   7.123e+00 |    OK  |   9.943e+01 |   1.000e+00 |   YES  |
|        3 | -4.938877e-01 |   3.544e-03 |   1.464e+00 |    OK  |   9.366e+01 |   1.000e+00 |   YES  |
|        4 | -4.964759e-01 |   2.901e-03 |   6.084e-01 |    OK  |   1.554e+02 |   1.000e+00 |   YES  |
|        5 | -4.972077e-01 |   1.323e-03 |   6.129e-01 |    OK  |   1.195e+02 |   5.000e-01 |   YES  |
|        6 | -4.974743e-01 |   1.569e-04 |   2.155e-01 |    OK  |   1.003e+02 |   1.000e+00 |   YES  |
|        7 | -4.974868e-01 |   3.844e-05 |   4.161e-02 |    OK  |   9.835e+01 |   1.000e+00 |   YES  |
|        8 | -4.974874e-01 |   1.417e-05 |   1.073e-02 |    OK  |   1.043e+02 |   1.000e+00 |   YES  |
|        9 | -4.974874e-01 |   4.893e-06 |   1.781e-03 |    OK  |   1.530e+02 |   1.000e+00 |   YES  |
|       10 | -4.974874e-01 |   9.404e-08 |   8.947e-04 |    OK  |   1.670e+02 |   1.000e+00 |   YES  |

         Infinity norm of the final gradient = 9.404e-08
              Two norm of the final step     = 8.947e-04, TolX   = 1.000e-06
Relative infinity norm of the final gradient = 9.404e-08, TolFun = 1.000e-06
EXIT: Local minimum found.

Plot the feature weights. The weights of the irrelevant features should be very close to zero.

figure
semilogx(ncaMdl.FeatureWeights,'ro')
xlabel('Feature index')
ylabel('Feature weight')
grid on

Predict the classes using the NCA model and compute the confusion matrix.
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ypred = predict(ncaMdl,X);
confusionchart(y,ypred)

Confusion matrix shows that 40 of the data that are in class –1 are predicted as belonging to class –1.
60 of the data from class –1 are predicted to be in class 1. Similarly, 94 of the data from class 1 are
predicted to be from class 1 and 6 of them are predicted to be from class –1. The prediction accuracy
for class –1 is not good.

All weights are very close to zero, which indicates that the value of  used in training the model is too
large. When , all features weights approach to zero. Hence, it is important to tune the
regularization parameter in most cases to detect the relevant features.

Use five-fold cross-validation to tune  for feature selection by using fscnca. Tuning  means finding
the  value that will produce the minimum classification loss. To tune  using cross-validation:

1. Partition the data into five folds. For each fold, cvpartition assigns four-fifths of the data as a
training set and one-fifth of the data as a test set. Again for each fold, cvpartition creates a
stratified partition, where each partition has roughly the same proportion of classes.

cvp = cvpartition(y,'kfold',5);
numtestsets = cvp.NumTestSets;
lambdavalues = linspace(0,2,20)/length(y);
lossvalues = zeros(length(lambdavalues),numtestsets);

2. Train the neighborhood component analysis (nca) model for each  value using the training set in
each fold.
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3. Compute the classification loss for the corresponding test set in the fold using the nca model.
Record the loss value.

4. Repeat this process for all folds and all  values.

for i = 1:length(lambdavalues)
    for k = 1:numtestsets

        % Extract the training set from the partition object
        Xtrain = X(cvp.training(k),:);
        ytrain = y(cvp.training(k),:);

        % Extract the test set from the partition object
        Xtest  = X(cvp.test(k),:);
        ytest  = y(cvp.test(k),:);

        % Train an NCA model for classification using the training set
        ncaMdl = fscnca(Xtrain,ytrain,'FitMethod','exact', ...
            'Solver','lbfgs','Lambda',lambdavalues(i));

        % Compute the classification loss for the test set using the NCA
        % model
        lossvalues(i,k) = loss(ncaMdl,Xtest,ytest, ...
            'LossFunction','quadratic');

    end
end

Plot the average loss values of the folds versus the  values. If the  value that corresponds to the
minimum loss falls on the boundary of the tested  values, the range of  values should be
reconsidered.

figure
plot(lambdavalues,mean(lossvalues,2),'ro-')
xlabel('Lambda values')
ylabel('Loss values')
grid on
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Find the  value that corresponds to the minimum average loss.

[~,idx] = min(mean(lossvalues,2)); % Find the index
bestlambda = lambdavalues(idx) % Find the best lambda value

bestlambda =

    0.0037

Fit the NCA model to all of the data using the best  value. Use the LBFGS solver and display the
convergence information.

ncaMdl = fscnca(X,y,'FitMethod','exact','Verbose',1, ...
        'Solver','lbfgs','Lambda',bestlambda);

 o Solver = LBFGS, HessianHistorySize = 15, LineSearchMethod = weakwolfe

|====================================================================================================|
|   ITER   |   FUN VALUE   |  NORM GRAD  |  NORM STEP  |  CURV  |    GAMMA    |    ALPHA    | ACCEPT |
|====================================================================================================|
|        0 | -1.246913e-01 |   1.231e-02 |   0.000e+00 |        |   4.873e+01 |   0.000e+00 |   YES  |
|        1 | -3.411330e-01 |   5.717e-03 |   3.618e+00 |    OK  |   1.068e+02 |   1.000e+00 |   YES  |
|        2 | -5.226111e-01 |   3.763e-02 |   8.252e+00 |    OK  |   7.825e+01 |   1.000e+00 |   YES  |
|        3 | -5.817731e-01 |   8.496e-03 |   2.340e+00 |    OK  |   5.591e+01 |   5.000e-01 |   YES  |
|        4 | -6.132632e-01 |   6.863e-03 |   2.526e+00 |    OK  |   8.228e+01 |   1.000e+00 |   YES  |
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|        5 | -6.135264e-01 |   9.373e-03 |   7.341e-01 |    OK  |   3.244e+01 |   1.000e+00 |   YES  |
|        6 | -6.147894e-01 |   1.182e-03 |   2.933e-01 |    OK  |   2.447e+01 |   1.000e+00 |   YES  |
|        7 | -6.148714e-01 |   6.392e-04 |   6.688e-02 |    OK  |   3.195e+01 |   1.000e+00 |   YES  |
|        8 | -6.149524e-01 |   6.521e-04 |   9.934e-02 |    OK  |   1.236e+02 |   1.000e+00 |   YES  |
|        9 | -6.149972e-01 |   1.154e-04 |   1.191e-01 |    OK  |   1.171e+02 |   1.000e+00 |   YES  |
|       10 | -6.149990e-01 |   2.922e-05 |   1.983e-02 |    OK  |   7.365e+01 |   1.000e+00 |   YES  |
|       11 | -6.149993e-01 |   1.556e-05 |   8.354e-03 |    OK  |   1.288e+02 |   1.000e+00 |   YES  |
|       12 | -6.149994e-01 |   1.147e-05 |   7.256e-03 |    OK  |   2.332e+02 |   1.000e+00 |   YES  |
|       13 | -6.149995e-01 |   1.040e-05 |   6.781e-03 |    OK  |   2.287e+02 |   1.000e+00 |   YES  |
|       14 | -6.149996e-01 |   9.015e-06 |   6.265e-03 |    OK  |   9.974e+01 |   1.000e+00 |   YES  |
|       15 | -6.149996e-01 |   7.763e-06 |   5.206e-03 |    OK  |   2.919e+02 |   1.000e+00 |   YES  |
|       16 | -6.149997e-01 |   8.374e-06 |   1.679e-02 |    OK  |   6.878e+02 |   1.000e+00 |   YES  |
|       17 | -6.149997e-01 |   9.387e-06 |   9.542e-03 |    OK  |   1.284e+02 |   5.000e-01 |   YES  |
|       18 | -6.149997e-01 |   3.250e-06 |   5.114e-03 |    OK  |   1.225e+02 |   1.000e+00 |   YES  |
|       19 | -6.149997e-01 |   1.574e-06 |   1.275e-03 |    OK  |   1.808e+02 |   1.000e+00 |   YES  |

|====================================================================================================|
|   ITER   |   FUN VALUE   |  NORM GRAD  |  NORM STEP  |  CURV  |    GAMMA    |    ALPHA    | ACCEPT |
|====================================================================================================|
|       20 | -6.149997e-01 |   5.764e-07 |   6.765e-04 |    OK  |   2.905e+02 |   1.000e+00 |   YES  |

         Infinity norm of the final gradient = 5.764e-07
              Two norm of the final step     = 6.765e-04, TolX   = 1.000e-06
Relative infinity norm of the final gradient = 5.764e-07, TolFun = 1.000e-06
EXIT: Local minimum found.

Plot the feature weights.

figure
semilogx(ncaMdl.FeatureWeights,'ro')
xlabel('Feature index')
ylabel('Feature weight')
grid on
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fscnca correctly figures out that the first two features are relevant and that the rest are not. The
first two features are not individually informative, but when taken together result in an accurate
classification model.

Predict the classes using the new model and compute the accuracy.

ypred = predict(ncaMdl,X);
confusionchart(y,ypred)
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Confusion matrix shows that prediction accuracy for class –1 has improved. 88 of the data from class
–1 are predicted to be from –1, and 12 of them are predicted to be from class 1. 92 of the data from
class 1 are predicted to be from class 1 and 8 of them are predicted to be from class –1.

References

[1] Yang, W., K. Wang, W. Zuo. "Neighborhood Component Feature Selection for High-Dimensional
Data." Journal of Computers. Vol. 7, Number 1, January, 2012.

Version History
Introduced in R2016b

See Also
predict | fscnca | refit | FeatureSelectionNCAClassification
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loss
Class: FeatureSelectionNCARegression

Evaluate accuracy of learned feature weights on test data

Syntax
err = loss(mdl,X,Y)
err = loss(mdl,X,Y,Name,Value)

Description
err = loss(mdl,X,Y) returns the mean squared error as the measure of accuracy in err, for the
model mdl, predictor values in X, and response values in Y.

err = loss(mdl,X,Y,Name,Value) returns the measure of accuracy, err, with the additional
option specified by the Name,Value pair argument.

Input Arguments
mdl — Neighborhood component analysis model for regression
FeatureSelectionNCARegression object

Neighborhood component analysis model for regression, specified as a
FeatureSelectionNCARegression object.

X — Predictor variable values
n-by-p matrix

Predictor variable values, specified as an n-by-p matrix, where n is the number of observations and p
is the number of predictor variables.
Data Types: single | double

Y — Response values
numeric real vector of length n

Response values, specified as a numeric real vector of length n, where n is the number of
observations.
Data Types: single | double

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.

LossFunction — Loss function type
'mse' (default) | 'mad'

 loss
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Loss function type, specified as a comma-separated pair consisting of 'Loss Function' and one of
the following.

Loss Function Type Description
'mse' Mean squared error
'mad' Mean absolute deviation

Example: 'LossFunction','mse'

Output Arguments
err — Smaller-the-better accuracy measure for learned feature weights
scalar value

Smaller-the-better accuracy measure for learned feature weights, returned as a scalar value. You can
specify the measure of accuracy using the LossFunction name-value pair argument.

Examples

Tune NCA Model for Regression Using loss and predict

Load the sample data.

Download the housing data [1], from the UCI Machine Learning Repository [2]. The dataset has 506
observations. The first 13 columns contain the predictor values and the last column contains the
response values. The goal is to predict the median value of owner-occupied homes in suburban
Boston as a function of 13 predictors.

Load the data and define the response vector and the predictor matrix.

load('housing.data');
X = housing(:,1:13);
y = housing(:,end);

Divide the data into training and test sets using the 4th predictor as the grouping variable for a
stratified partitioning. This ensures that each partition includes similar amount of observations from
each group.

rng(1) % For reproducibility
cvp = cvpartition(X(:,4),'Holdout',56);
Xtrain = X(cvp.training,:);
ytrain = y(cvp.training,:);
Xtest  = X(cvp.test,:);
ytest  = y(cvp.test,:);

cvpartition randomly assigns 56 observations into a test set and the rest of the data into a training
set.

Perform Feature Selection Using Default Settings

Perform feature selection using NCA model for regression. Standardize the predictor values.

nca = fsrnca(Xtrain,ytrain,'Standardize',1);
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Plot the feature weights.

figure()
plot(nca.FeatureWeights,'ro')

The weights of irrelevant features are expected to approach zero. fsrnca identifies two features as
irrelevant.

Compute the regression loss.

L = loss(nca,Xtest,ytest,'LossFunction','mad')

L = 2.5394

Compute the predicted response values for the test set and plot them versus the actual response.

ypred = predict(nca,Xtest);
figure()
plot(ypred,ytest,'bo')
xlabel('Predicted response')
ylabel('Actual response')
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A perfect fit versus the actual values forms a 45 degree straight line. In this plot, the predicted and
actual response values seem to be scattered around this line. Tuning λ (regularization parameter)
value usually helps improve the performance.

Tune the regularization parameter using 10-fold cross-validation

Tuning λ means finding the λ value that will produce the minimum regression loss. Here are the
steps for tuning λ using 10-fold cross-validation:

1. First partition the data into 10 folds. For each fold, cvpartition assigns 1/10th of the data as a
training set, and 9/10th of the data as a test set.

n = length(ytrain);
cvp = cvpartition(Xtrain(:,4),'kfold',10);
numvalidsets = cvp.NumTestSets;

Assign the λ values for the search. Create an array to store the loss values.

lambdavals = linspace(0,2,30)*std(ytrain)/n;
lossvals = zeros(length(lambdavals),numvalidsets);

2. Train the neighborhood component analysis (nca) model for each λ value using the training set in
each fold.

3. Fit a Gaussian process regression (gpr) model using the selected features. Next, compute the
regression loss for the corresponding test set in the fold using the gpr model. Record the loss value.
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4. Repeat this for each λ value and each fold.

 for i = 1:length(lambdavals)
    for k = 1:numvalidsets
        X = Xtrain(cvp.training(k),:);
        y = ytrain(cvp.training(k),:);
        Xvalid  = Xtrain(cvp.test(k),:);
        yvalid  = ytrain(cvp.test(k),:);

        nca = fsrnca(X,y,'FitMethod','exact',...
             'Lambda',lambdavals(i),...
             'Standardize',1,'LossFunction','mad');

        % Select features using the feature weights and a relative
        % threshold.
        tol    = 1e-3;
        selidx = nca.FeatureWeights > tol*max(1,max(nca.FeatureWeights));

        % Fit a non-ARD GPR model using selected features.
        gpr = fitrgp(X(:,selidx),y,'Standardize',1,...
              'KernelFunction','squaredexponential','Verbose',0);

        lossvals(i,k) = loss(gpr,Xvalid(:,selidx),yvalid);

    end
 end

Compute the average loss obtained from the folds for each λ value. Plot the mean loss versus the λ
values.

meanloss = mean(lossvals,2);
figure;
plot(lambdavals,meanloss,'ro-');
xlabel('Lambda');
ylabel('Loss (MSE)');
grid on;
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Find the λ value that produces the minimum loss value.

[~,idx] = min(meanloss);
bestlambda = lambdavals(idx)

bestlambda = 0.0251

Perform feature selection for regression using the best λ value. Standardize the predictor values.

nca2 = fsrnca(Xtrain,ytrain,'Standardize',1,'Lambda',bestlambda,...
    'LossFunction','mad');

Plot the feature weights.

figure()
plot(nca.FeatureWeights,'ro')
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Compute the loss using the new nca model on the test data, which is not used to select the features.

L2 = loss(nca2,Xtest,ytest,'LossFunction','mad')

L2 = 2.0560

Tuning the regularization parameter helps identify the relevant features and reduces the loss.

Plot the predicted versus the actual response values in the test set.

ypred = predict(nca2,Xtest);
figure;
plot(ypred,ytest,'bo');
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The predicted response values seem to be closer to the actual values as well.

References

[1] Harrison, D. and D.L., Rubinfeld. "Hedonic prices and the demand for clean air." J. Environ.
Economics & Management. Vol.5, 1978, pp. 81-102.

[2] Lichman, M. UCI Machine Learning Repository, Irvine, CA: University of California, School of
Information and Computer Science, 2013. https://archive.ics.uci.edu/ml.

Version History
Introduced in R2016b

See Also
predict | fsrnca | refit | FeatureSelectionNCARegression
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loss
Package: 

Regression loss for generalized additive model (GAM)

Syntax
L = loss(Mdl,Tbl,ResponseVarName)
L = loss(Mdl,Tbl,Y)
L = loss(Mdl,X,Y)
L = loss( ___ ,Name,Value)

Description
L = loss(Mdl,Tbl,ResponseVarName) returns the regression loss (L), a scalar representing how
well the generalized additive model Mdl predicts the predictor data in Tbl compared to the true
response values in Tbl.ResponseVarName.

The interpretation of L depends on the loss function ('LossFun') and weighting scheme
('Weights'). In general, better models yield smaller loss values. The default 'LossFun' value is
'mse' (mean squared error).

L = loss(Mdl,Tbl,Y) uses the predictor data in table Tbl and the true response values in Y.

L = loss(Mdl,X,Y) uses the predictor data in matrix X and the true response values in Y.

L = loss( ___ ,Name,Value) specifies options using one or more name-value arguments in
addition to any of the input argument combinations in previous syntaxes. For example, you can
specify the loss function and the observation weights.

Examples

Determine Test Sample Regression Loss

Determine the test sample regression loss (mean squared error) of a generalized additive model.
When you compare the same type of loss among many models, a lower loss indicates a better
predictive model.

Load the patients data set.

load patients

Create a table that contains the predictor variables (Age, Diastolic, Smoker, Weight, Gender,
SelfAssessedHealthStatus) and the response variable (Systolic).

tbl = table(Age,Diastolic,Smoker,Weight,Gender,SelfAssessedHealthStatus,Systolic);

Randomly partition observations into a training set and a test set. Specify a 10% holdout sample for
testing.
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rng('default') % For reproducibility
cv = cvpartition(size(tbl,1),'HoldOut',0.10);

Extract the training and test indices.

trainInds = training(cv);
testInds = test(cv);

Train a univariate GAM that contains the linear terms for the predictors in tbl.

Mdl = fitrgam(tbl(trainInds,:),"Systolic");

Determine how well the algorithm generalizes by estimating the test sample regression loss. By
default, the loss function of RegressionGAM estimates the mean squared error.

L = loss(Mdl,tbl(testInds,:))

L = 35.7540

Compare GAMs by Examining Regression Loss

Train a generalized additive model (GAM) that contains both linear and interaction terms for
predictors, and estimate the regression loss (mean squared error, MSE) with and without interaction
terms for the training data and test data. Specify whether to include interaction terms when
estimating the regression loss.

Load the carbig data set, which contains measurements of cars made in the 1970s and early 1980s.

load carbig

Specify Acceleration, Displacement, Horsepower, and Weight as the predictor variables (X)
and MPG as the response variable (Y).

X = [Acceleration,Displacement,Horsepower,Weight];
Y = MPG;

Partition the data set into two sets: one containing training data, and the other containing new,
unobserved test data. Reserve 10 observations for the new test data set.

rng('default') % For reproducibility
n = size(X,1);
newInds = randsample(n,10);
inds = ~ismember(1:n,newInds);
XNew = X(newInds,:);
YNew = Y(newInds);

Train a generalized additive model that contains all the available linear and interaction terms in X.

Mdl = fitrgam(X(inds,:),Y(inds),'Interactions','all');

Mdl is a RegressionGAM model object.

Compute the resubstitution MSEs (that is, the in-sample MSEs) both with and without interaction
terms in Mdl. To exclude interaction terms, specify 'IncludeInteractions',false.

resubl = resubLoss(Mdl)
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resubl = 0.0292

resubl_nointeraction = resubLoss(Mdl,'IncludeInteractions',false)

resubl_nointeraction = 4.7330

Compute the regression MSEs both with and without interaction terms for the test data set. Use a
memory-efficient model object for the computation.

CMdl = compact(Mdl);

CMdl is a CompactRegressionGAM model object.

l = loss(CMdl,XNew,YNew)

l = 12.8604

l_nointeraction = loss(CMdl,XNew,YNew,'IncludeInteractions',false)

l_nointeraction = 15.6741

Including interaction terms achieves a smaller error for the training data set and test data set.

Input Arguments
Mdl — Generalized additive model
RegressionGAM model object | CompactRegressionGAM model object

Generalized additive model, specified as a RegressionGAM or CompactRegressionGAM model
object.

• If you trained Mdl using sample data contained in a table, then the input data for loss must also
be in a table (Tbl).

• If you trained Mdl using sample data contained in a matrix, then the input data for loss must also
be in a matrix (X).

Tbl — Sample data
table

Sample data, specified as a table. Each row of Tbl corresponds to one observation, and each column
corresponds to one predictor variable. Multicolumn variables and cell arrays other than cell arrays of
character vectors are not allowed.

Tbl must contain all of the predictors used to train Mdl. Optionally, Tbl can contain a column for the
response variable and a column for the observation weights.

• The response variable must be a numeric vector. If the response variable in Tbl has the same
name as the response variable used to train Mdl, then you do not need to specify
ResponseVarName.

• The weight values must be a numeric vector. You must specify the observation weights in Tbl by
using 'Weights'.

If you trained Mdl using sample data contained in a table, then the input data for loss must also be
in a table.
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Data Types: table

ResponseVarName — Response variable name
name of variable in Tbl

Response variable name, specified as a character vector or string scalar containing the name of the
response variable in Tbl. For example, if the response variable Y is stored in Tbl.Y, then specify it as
'Y'.
Data Types: char | string

Y — Response data
numeric column vector

Response data, specified as a numeric column vector. Each entry in Y is the response to the data in
the corresponding row of X or Tbl.
Data Types: single | double

X — Predictor data
numeric matrix

Predictor data, specified as a numeric matrix. Each row of X corresponds to one observation, and
each column corresponds to one predictor variable.

If you trained Mdl using sample data contained in a matrix, then the input data for loss must also be
in a matrix.
Data Types: single | double

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: 'IncludeInteractions',false,'Weights',w specifies to exclude interaction terms
from the model and to use the observation weights w.

IncludeInteractions — Flag to include interaction terms
true | false

Flag to include interaction terms of the model, specified as true or false.

The default 'IncludeInteractions' value is true if Mdl contains interaction terms. The value
must be false if the model does not contain interaction terms.
Example: 'IncludeInteractions',false
Data Types: logical

LossFun — Loss function
'mse' (default) | function handle

Loss function, specified as 'mse' or a function handle.
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• 'mse' — Weighted mean squared error.
• Function handle — To specify a custom loss function, use a function handle. The function must

have this form:

lossval = lossfun(Y,YFit,W)

• The output argument lossval is a floating-point scalar.
• You specify the function name (lossfun).
• Y is a length n numeric vector of observed responses, where n is the number of observations in

Tbl or X.
• YFit is a length n numeric vector of corresponding predicted responses.
• W is an n-by-1 numeric vector of observation weights.

Example: 'LossFun',@lossfun
Data Types: char | string | function_handle

Weights — Observation weights
ones(size(X,1),1) (default) | vector of scalar values | name of variable in Tbl

Observation weights, specified as a vector of scalar values or the name of a variable in Tbl. The
software weights the observations in each row of X or Tbl with the corresponding value in Weights.
The size of Weights must equal the number of rows in X or Tbl.

If you specify the input data as a table Tbl, then Weights can be the name of a variable in Tbl that
contains a numeric vector. In this case, you must specify Weights as a character vector or string
scalar. For example, if weights vector W is stored as Tbl.W, then specify it as 'W'.

loss normalizes the values of Weights to sum to 1.
Data Types: single | double | char | string

More About
Weighted Mean Squared Error

The weighted mean squared error measures the predictive inaccuracy of regression models. When
you compare the same type of loss among many models, a lower error indicates a better predictive
model.

The weighted mean squared error is calculated as follows:

mse =
∑

j = 1

n
w j f x j − y j

2

∑
j = 1

n
w j

,

where:

• n is the number of rows of data.
• xj is the jth row of data.
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• yj is the true response to xj.
• f(xj) is the response prediction of the model Mdl to xj.
• w is the vector of observation weights.

Version History
Introduced in R2021a

See Also
predict | resubLoss

Topics
“Train Generalized Additive Model for Regression” on page 12-86
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loss
Class: RegressionLinear

Regression loss for linear regression models

Syntax
L = loss(Mdl,X,Y)

L = loss(Mdl,Tbl,ResponseVarName)
L = loss(Mdl,Tbl,Y)

L = loss( ___ ,Name,Value)

Description
L = loss(Mdl,X,Y) returns the mean squared error (MSE) for the linear regression model Mdl
using predictor data in X and corresponding responses in Y. L contains an MSE for each
regularization strength in Mdl.

L = loss(Mdl,Tbl,ResponseVarName) returns the MSE for the predictor data in Tbl and the
true responses in Tbl.ResponseVarName.

L = loss(Mdl,Tbl,Y) returns the MSE for the predictor data in table Tbl and the true responses
in Y.

L = loss( ___ ,Name,Value) specifies options using one or more name-value pair arguments in
addition to any of the input argument combinations in previous syntaxes. For example, specify that
columns in the predictor data correspond to observations or specify the regression loss function.

Note If the predictor data X or the predictor variables in Tbl contain any missing values, the loss
function can return NaN. For more details, see “loss can return NaN for predictor data with missing
values” on page 35-4580.

Input Arguments
Mdl — Linear regression model
RegressionLinear model object

Linear regression model, specified as a RegressionLinear model object. You can create a
RegressionLinear model object using fitrlinear.

X — Predictor data
full matrix | sparse matrix

Predictor data, specified as an n-by-p full or sparse matrix. This orientation of X indicates that rows
correspond to individual observations, and columns correspond to individual predictor variables.
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Note If you orient your predictor matrix so that observations correspond to columns and specify
'ObservationsIn','columns', then you might experience a significant reduction in computation
time.

The length of Y and the number of observations in X must be equal.
Data Types: single | double

Y — Response data
numeric vector

Response data, specified as an n-dimensional numeric vector. The length of Y must be equal to the
number of observations in X or Tbl.
Data Types: single | double

Tbl — Sample data
table

Sample data used to train the model, specified as a table. Each row of Tbl corresponds to one
observation, and each column corresponds to one predictor variable. Optionally, Tbl can contain
additional columns for the response variable and observation weights. Tbl must contain all the
predictors used to train Mdl. Multicolumn variables and cell arrays other than cell arrays of character
vectors are not allowed.

If Tbl contains the response variable used to train Mdl, then you do not need to specify
ResponseVarName or Y.

If you train Mdl using sample data contained in a table, then the input data for loss must also be in a
table.

ResponseVarName — Response variable name
name of variable in Tbl

Response variable name, specified as the name of a variable in Tbl. The response variable must be a
numeric vector.

If you specify ResponseVarName, then you must specify it as a character vector or string scalar. For
example, if the response variable is stored as Tbl.Y, then specify ResponseVarName as 'Y'.
Otherwise, the software treats all columns of Tbl, including Tbl.Y, as predictors.
Data Types: char | string

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.

LossFun — Loss function
'mse' (default) | 'epsiloninsensitive' | function handle

Loss function, specified as the comma-separated pair consisting of 'LossFun' and a built-in loss
function name or function handle.
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• The following table lists the available loss functions. Specify one using its corresponding value.
Also, in the table, f x = xβ + b .

• β is a vector of p coefficients.
• x is an observation from p predictor variables.
• b is the scalar bias.

Value Description
'epsiloninsensitive' Epsilon-insensitive loss:

ℓ y, f x = max 0, y − f x − ε
'mse' MSE: ℓ y, f x = y − f x 2

'epsiloninsensitive' is appropriate for SVM learners only.
• Specify your own function using function handle notation.

Let n be the number of observations in X. Your function must have this signature

lossvalue = lossfun(Y,Yhat,W)

where:

• The output argument lossvalue is a scalar.
• You choose the function name (lossfun).
• Y is an n-dimensional vector of observed responses. loss passes the input argument Y in for Y.
• Yhat is an n-dimensional vector of predicted responses, which is similar to the output of

predict.
• W is an n-by-1 numeric vector of observation weights.

Specify your function using 'LossFun',@lossfun.

Data Types: char | string | function_handle

ObservationsIn — Predictor data observation dimension
'rows' (default) | 'columns'

Predictor data observation dimension, specified as 'rows' or 'columns'.

Note If you orient your predictor matrix so that observations correspond to columns and specify
'ObservationsIn','columns', then you might experience a significant reduction in computation
time. You cannot specify 'ObservationsIn','columns' for predictor data in a table.

Data Types: char | string

Weights — Observation weights
ones(size(X,1),1) (default) | numeric vector | name of variable in Tbl

Observation weights, specified as the comma-separated pair consisting of 'Weights' and a numeric
vector or the name of a variable in Tbl.

• If you specify Weights as a numeric vector, then the size of Weights must be equal to the
number of observations in X or Tbl.
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• If you specify Weights as the name of a variable in Tbl, then the name must be a character
vector or string scalar. For example, if the weights are stored as Tbl.W, then specify Weights as
'W'. Otherwise, the software treats all columns of Tbl, including Tbl.W, as predictors.

If you supply weights, loss computes the weighted regression loss and normalizes Weights to sum
to 1.
Data Types: double | single

Output Arguments
L — Regression losses
numeric scalar | numeric row vector

Regression losses, returned as a numeric scalar or row vector. The interpretation of L depends on
Weights and LossFun.

L is the same size as Mdl.Lambda. L(j) is the regression loss of the linear regression model trained
using the regularization strength Mdl.Lambda(j).

Note If Mdl.FittedLoss is 'mse', then the loss term in the objective function is half of the MSE.
loss returns the MSE by default. Therefore, if you use loss to check the resubstitution (training)
error, then there is a discrepancy between the MSE and optimization results that fitrlinear
returns.

Examples

Estimate Test-Sample Mean Squared Error

Simulate 10000 observations from this model

y = x100 + 2x200 + e .

• X = x1, . . . , x1000 is a 10000-by-1000 sparse matrix with 10% nonzero standard normal elements.
• e is random normal error with mean 0 and standard deviation 0.3.

rng(1) % For reproducibility
n = 1e4;
d = 1e3;
nz = 0.1;
X = sprandn(n,d,nz);
Y = X(:,100) + 2*X(:,200) + 0.3*randn(n,1);

Train a linear regression model. Reserve 30% of the observations as a holdout sample.

CVMdl = fitrlinear(X,Y,'Holdout',0.3);
Mdl = CVMdl.Trained{1}

Mdl = 
  RegressionLinear
         ResponseName: 'Y'
    ResponseTransform: 'none'
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                 Beta: [1000x1 double]
                 Bias: -0.0066
               Lambda: 1.4286e-04
              Learner: 'svm'

  Properties, Methods

CVMdl is a RegressionPartitionedLinear model. It contains the property Trained, which is a 1-
by-1 cell array holding a RegressionLinear model that the software trained using the training set.

Extract the training and test data from the partition definition.

trainIdx = training(CVMdl.Partition);
testIdx = test(CVMdl.Partition);

Estimate the training- and test-sample MSE.

mseTrain = loss(Mdl,X(trainIdx,:),Y(trainIdx))

mseTrain = 0.1496

mseTest = loss(Mdl,X(testIdx,:),Y(testIdx))

mseTest = 0.1798

Because there is one regularization strength in Mdl, mseTrain and mseTest are numeric scalars.

Specify Custom Regression Loss

Simulate 10000 observations from this model

y = x100 + 2x200 + e .

• X = x1, . . . , x1000 is a 10000-by-1000 sparse matrix with 10% nonzero standard normal elements.
• e is random normal error with mean 0 and standard deviation 0.3.

rng(1) % For reproducibility
n = 1e4;
d = 1e3;
nz = 0.1;
X = sprandn(n,d,nz); 
Y = X(:,100) + 2*X(:,200) + 0.3*randn(n,1);
X = X'; % Put observations in columns for faster training

Train a linear regression model. Reserve 30% of the observations as a holdout sample.

CVMdl = fitrlinear(X,Y,'Holdout',0.3,'ObservationsIn','columns'); 
Mdl = CVMdl.Trained{1}

Mdl = 
  RegressionLinear
         ResponseName: 'Y'
    ResponseTransform: 'none'

 loss

35-4577



                 Beta: [1000x1 double]
                 Bias: -0.0066
               Lambda: 1.4286e-04
              Learner: 'svm'

  Properties, Methods

CVMdl is a RegressionPartitionedLinear model. It contains the property Trained, which is a 1-
by-1 cell array holding a RegressionLinear model that the software trained using the training set.

Extract the training and test data from the partition definition.

trainIdx = training(CVMdl.Partition);
testIdx = test(CVMdl.Partition);

Create an anonymous function that measures Huber loss (δ = 1), that is,

L = 1
∑w j

∑
j = 1

n
w j ℓ j ,

where

ℓ j =
0 . 5e j

2;

e j − 0 . 5;

e j ≤ 1

e j > 1
.

e j is the residual for observation j. Custom loss functions must be written in a particular form. For
rules on writing a custom loss function, see the 'LossFun' name-value pair argument.

huberloss = @(Y,Yhat,W)sum(W.*((0.5*(abs(Y-Yhat)<=1).*(Y-Yhat).^2) + ...
    ((abs(Y-Yhat)>1).*abs(Y-Yhat)-0.5)))/sum(W);

Estimate the training set and test set regression loss using the Huber loss function.

eTrain = loss(Mdl,X(:,trainIdx),Y(trainIdx),'LossFun',huberloss,...
    'ObservationsIn','columns')

eTrain = -0.4186

eTest = loss(Mdl,X(:,testIdx),Y(testIdx),'LossFun',huberloss,...
    'ObservationsIn','columns')

eTest = -0.4010

Find Good Lasso Penalty Using Regression Loss

Simulate 10000 observations from this model

y = x100 + 2x200 + e .

• X = {x1, . . . , x1000} is a 10000-by-1000 sparse matrix with 10% nonzero standard normal
elements.
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• e is random normal error with mean 0 and standard deviation 0.3.

rng(1) % For reproducibility
n = 1e4;
d = 1e3;
nz = 0.1;
X = sprandn(n,d,nz);
Y = X(:,100) + 2*X(:,200) + 0.3*randn(n,1);

Create a set of 15 logarithmically-spaced regularization strengths from 10−4 through 10−1.

Lambda = logspace(-4,-1,15);

Hold out 30% of the data for testing. Identify the test-sample indices.

cvp = cvpartition(numel(Y),'Holdout',0.30);
idxTest = test(cvp);

Train a linear regression model using lasso penalties with the strengths in Lambda. Specify the
regularization strengths, optimizing the objective function using SpaRSA, and the data partition. To
increase execution speed, transpose the predictor data and specify that the observations are in
columns.

X = X'; 
CVMdl = fitrlinear(X,Y,'ObservationsIn','columns','Lambda',Lambda,...
    'Solver','sparsa','Regularization','lasso','CVPartition',cvp);
Mdl1 = CVMdl.Trained{1};
numel(Mdl1.Lambda)

ans = 15

Mdl1 is a RegressionLinear model. Because Lambda is a 15-dimensional vector of regularization
strengths, you can think of Mdl1 as 15 trained models, one for each regularization strength.

Estimate the test-sample mean squared error for each regularized model.

mse = loss(Mdl1,X(:,idxTest),Y(idxTest),'ObservationsIn','columns');

Higher values of Lambda lead to predictor variable sparsity, which is a good quality of a regression
model. Retrain the model using the entire data set and all options used previously, except the data-
partition specification. Determine the number of nonzero coefficients per model.

Mdl = fitrlinear(X,Y,'ObservationsIn','columns','Lambda',Lambda,...
    'Solver','sparsa','Regularization','lasso');
numNZCoeff = sum(Mdl.Beta~=0);

In the same figure, plot the MSE and frequency of nonzero coefficients for each regularization
strength. Plot all variables on the log scale.

figure;
[h,hL1,hL2] = plotyy(log10(Lambda),log10(mse),...
    log10(Lambda),log10(numNZCoeff)); 
hL1.Marker = 'o';
hL2.Marker = 'o';
ylabel(h(1),'log_{10} MSE')
ylabel(h(2),'log_{10} nonzero-coefficient frequency')
xlabel('log_{10} Lambda')
hold off
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Select the index or indices of Lambda that balance minimal classification error and predictor-variable
sparsity (for example, Lambda(11)).

idx = 11;
MdlFinal = selectModels(Mdl,idx);

MdlFinal is a trained RegressionLinear model object that uses Lambda(11) as a regularization
strength.

Version History
Introduced in R2016a

loss can return NaN for predictor data with missing values
Behavior changed in R2022a

The loss function no longer omits an observation with a NaN prediction when computing the
weighted average regression loss. Therefore, loss can now return NaN when the predictor data X or
the predictor variables in Tbl contain any missing values. In most cases, if the test set observations
do not contain missing predictors, the loss function does not return NaN.

This change improves the automatic selection of a regression model when you use fitrauto. Before
this change, the software might select a model (expected to best predict the responses for new data)
with few non-NaN predictors.
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If loss in your code returns NaN, you can update your code to avoid this result. Remove or replace
the missing values by using rmmissing or fillmissing, respectively.

The following table shows the regression models for which the loss object function might return
NaN. For more details, see the Compatibility Considerations for each loss function.

Model Type Full or Compact Model Object loss Object Function
Gaussian process regression
(GPR) model

RegressionGP,
CompactRegressionGP

loss

Gaussian kernel regression
model

RegressionKernel loss

Linear regression model RegressionLinear loss
Neural network regression
model

RegressionNeuralNetwork,
CompactRegressionNeuralN
etwork

loss

Support vector machine (SVM)
regression model

RegressionSVM,
CompactRegressionSVM

loss

Extended Capabilities
Tall Arrays
Calculate with arrays that have more rows than fit in memory.

Usage notes and limitations:

• loss does not support tall table data.

For more information, see “Tall Arrays”.

See Also
RegressionLinear | predict | fitrlinear
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lowerparams
Lower Pareto tail parameters

Syntax
params = lowerparams(pd)

Description
params = lowerparams(pd) returns the two-element vector params, which includes the shape
and scale parameters of the generalized Pareto distribution (GPD) in the lower tail of pd.

lowerparams does not return the location parameter of the GPD. The location parameter is the
quantile value corresponding to the lower tail cumulative probability. Use the boundary function to
return the location parameter.

Examples

Parameters of Lower Pareto Tail

Generate a sample data set and fit a piecewise distribution with Pareto tails to the data by using
paretotails. Find the distribution parameters of the lower Pareto tail by using the object function
lowerparams.

Generate a sample data set containing 20% outliers.

rng('default');  % For reproducibility
left_tail = -exprnd(1,100,1);
right_tail = exprnd(5,100,1);
center = randn(800,1);
x = [left_tail;center;right_tail];

Create a paretotails object by fitting a piecewise distribution to x. Specify the boundaries of the
tails using the lower and upper tail cumulative probabilities so that a fitted object consists of the
empirical distribution for the middle 80% of the data set and GPDs for the lower and upper 10% of
the data set.

pd = paretotails(x,0.1,0.9)

pd = 
Piecewise distribution with 3 segments
      -Inf < x < -1.33251    (0 < p < 0.1): lower tail, GPD(-0.0063504,0.567017)
   -1.33251 < x < 1.80149  (0.1 < p < 0.9): interpolated empirical cdf
        1.80149 < x < Inf    (0.9 < p < 1): upper tail, GPD(0.24874,3.00974)

Return the shape and scale parameters of the fitted GPD of the lower tail by using the lowerparams
function.

params = lowerparams(pd)
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params = 1×2

   -0.0064    0.5670

You can also get the lower Pareto tail parameters by using the LowerParameters property. Access
the LowerParameters property by using dot notation.

pd.LowerParameters

ans = 1×2

   -0.0064    0.5670

The location parameter of the GPD is equal to the quantile value of the lower tail cumulative
probability. Return the location parameter by using the boundary function.

[p,q] = boundary(pd)

p = 2×1

    0.1000
    0.9000

q = 2×1

   -1.3325
    1.8015

The values in p are the cumulative probabilities at the boundaries, and the values in q are the
corresponding quantiles. q(2) is the location parameter of the GPD of the lower tail.

Use the upperparams function or the UpperParameters property to get the upper Pareto tail
parameters.

Input Arguments
pd — Piecewise distribution with Pareto tails
paretotails object

Piecewise distribution with Pareto tails, specified as a paretotails object.

Version History
Introduced in R2007a

See Also
paretotails | boundary | segment | upperparams | nsegments | gpfit

Topics
“Fit a Nonparametric Distribution with Pareto Tails” on page 5-44
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“Nonparametric and Empirical Probability Distributions” on page 5-31
“Nonparametric Estimates of Cumulative Distribution Functions and Their Inverses” on page 5-192
“Generalized Pareto Distribution” on page B-60
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lt
Class: qrandstream

Less than relation for handles

Syntax
h1 < h2

Description
h1 < h2 performs element-wise comparisons between handle arrays h1 and h2. h1 and h2 must be
of the same dimensions unless one is a scalar. The result is a logical array of the same dimensions,
where each element is an element-wise < result.

If one of h1 or h2 is scalar, scalar expansion is performed and the result will match the dimensions of
the array that is not scalar.

tf = lt(h1, h2) stores the result in a logical array of the same dimensions.

See Also
qrandstream | eq | ge | gt | le | ne
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lsline
Add least-squares line to scatter plot

Syntax
lsline
lsline(ax)
h = lsline( ___ )

Description
lsline superimposes a least-squares line on each scatter plot in the current axes.

lsline ignores data points that are connected with solid, dashed, or dash-dot lines ('-', '--', or
'.-') because it does not consider them to be scatter plots. To produce scatter plots, use the
MATLAB scatter and plot functions.

lsline(ax) superimposes a least-squares line on the scatter plot in the axes specified by ax instead
of the current axes (gca).

h = lsline( ___ ) returns a column vector of least-squares line objects h using any of the previous
syntaxes. Use h to modify the properties of a specific least-squares line after you create it. For a list
of properties, see Line Properties.

Examples

Plot Least-Squares Line

Generate three sets of sample data and plot each set on the same figure.

x = 1:10;
rng default;  % For reproducibility
figure;

y1 = x + randn(1,10);
scatter(x,y1,25,'b','*')
hold on

y2 = 2*x + randn(1,10);
plot(x,y2,'mo')

y3 = 3*x + randn(1,10);
plot(x,y3,'rx:')
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Add a least-squares line for each set of sample data.

lsline
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Specify Axes for Least-Squares and Reference Lines

Define the x-variable and two different y-variables to use for the plots.

rng default  % For reproducibility
x = 1:10;
y1 = x + randn(1,10);
y2 = 2*x + randn(1,10);

Define ax1 as the top half of the figure, and ax2 as the bottom half of the figure. Create the first
scatter plot on the top axis using y1, and the second scatter plot on the bottom axis using y2.

figure
ax1 = subplot(2,1,1);
ax2 = subplot(2,1,2);

scatter(ax1,x,y1)
scatter(ax2,x,y2)

35 Functions

35-4588



Superimpose a least-squares line on the top plot, and a reference line at the mean of the y2 values in
the bottom plot.

lsline(ax1) % This is equivalent to refline(ax1)

mu = mean(y2);
refline(ax2,[0 mu])
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Use Least-Squares Line Object to Modify Line Properties

Define the x-variable and two different y-variables to use for the plots.

rng default  % For reproducibility
x = 1:10;
y1 = x + randn(1,10);
y2 = 2*x + randn(1,10);

Define ax1 as the top half of the figure, and ax2 as the bottom half of the figure. Create the first
scatter plot on the top axis using y1, and the second scatter plot on the bottom axis using y2.

figure
ax1 = subplot(2,1,1);
ax2 = subplot(2,1,2);

scatter(ax1,x,y1)
scatter(ax2,x,y2)

Superimpose a least-squares line on the top plot. Then, use the least-squares line object h1 to change
the line color to red.

h1 = lsline(ax1);
h1.Color = 'r';
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Superimpose a least-squares line on the bottom plot. Then, use the least-squares line object h2 to
increase the line width to 5.

h2 = lsline(ax2);
h2.LineWidth = 5;

Input Arguments
ax — Target axes
gca (default) | axes object

Target axes, specified as an axes object. If you do not specify the axes and if the current axes are
Cartesian axes, then the lsline function uses the current axes.

Output Arguments
h — One or more least-squares line objects
scalar | vector

One or more least-squares line objects, returned as a scalar or a vector. These objects are unique
identifiers, which you can use to query and modify properties of a specific least-squares line. For a list
of properties, see Chart Line.
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Version History
Introduced before R2006a

See Also
scatter | plot | refline | refcurve | gline | gca
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mad
Mean or median absolute deviation

Syntax
y = mad(X)
y = mad(X,flag)
y = mad(X,flag,'all')
y = mad(X,flag,dim)
y = mad(X,flag,vecdim)

Description
y = mad(X) returns the mean absolute deviation of the values in X.

• If X is a vector, then mad returns the mean or median absolute deviation of the values in X.
• If X is a matrix, then mad returns a row vector containing the mean or median absolute deviation

of each column of X.
• If X is a multidimensional array, then mad operates along the first nonsingleton dimension of X.

y = mad(X,flag) specifies whether to compute the mean absolute deviation (flag = 0, the
default) or the median absolute deviation (flag = 1).

y = mad(X,flag,'all') returns the mean or median absolute deviation of all elements of X.

y = mad(X,flag,dim) returns the mean or median absolute deviation along the operating
dimension dim of X.

y = mad(X,flag,vecdim) returns the mean or median absolute deviation over the dimensions
specified in the vector vecdim. For example, if X is a 2-by-3-by-4 array, then mad(X,0,[1 2])
returns a 1-by-1-by-4 array. Each element of the output array is the mean absolute deviation of the
elements on the corresponding page of X.

Examples

Compare Robustness of Scale Estimates

Compare the robustness of the standard deviation, mean absolute deviation, and median absolute
deviation in the presence of outliers.

Create a data set x of normally distributed data. Create another data set xo that contains the
elements of x and an additional outlier.

rng('default') % For reproducibility
x = normrnd(0,1,1,50);
xo = [x 10];

Compute the ratio of the standard deviations of the two data sets.
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r1 = std(xo)/std(x)

r1 = 1.4633

Compute the ratio of the mean absolute deviations of the two data sets.

r2 = mad(xo)/mad(x)

r2 = 1.1833

Compute the ratio of the median absolute deviations of the two data sets.

r3 = mad(xo,1)/mad(x,1)

r3 = 1.0336

In this case, the median absolute deviation is less influenced by the outlier compared to the other two
scale estimates.

Mean and Median Absolute Deviations of All Values

Find the mean and median absolute deviations of all the values in an array.

Create a 3-by-5-by-2 array X and add an outlier.

X = reshape(1:30,[3 5 2]);
X(6) = 100

X = 
X(:,:,1) =

     1     4     7    10    13
     2     5     8    11    14
     3   100     9    12    15

X(:,:,2) =

    16    19    22    25    28
    17    20    23    26    29
    18    21    24    27    30

Find the mean and median absolute deviations of the elements in X.

meandev = mad(X,0,'all')

meandev = 10.1178

mediandev = mad(X,1,'all')

mediandev = 7.5000

meandev is the mean absolute deviation of all the elements in X, and mediandev is the median
absolute deviation of all the elements in X.
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Find Median Absolute Deviation Along Given Dimension

Find the median absolute deviation along different dimensions for a multidimensional array.

Set the random seed for reproducibility of the results.

rng('default') 

Create a 1-by-3-by-2 array of random numbers.

X = randn([1,3,2])

X = 
X(:,:,1) =

    0.5377    1.8339   -2.2588

X(:,:,2) =

    0.8622    0.3188   -1.3077

Find the median absolute deviation of X along the default dimension.

Y2 = mad(X,1) % Flag is set to 1 for the median absolute deviation

Y2 = 
Y2(:,:,1) =

    1.2962

Y2(:,:,2) =

    0.5434

By default, mad operates along the first dimension of X whose size does not equal 1. In this case, this
dimension is the second dimension of X. Therefore, Y2 is a 1-by-1-by-2 array.

Find the median absolute deviation of X along the third dimension.

Y3 = mad(X,1,3)

Y3 = 1×3

    0.1623    0.7576    0.4756

Y3 is a 1-by-3 matrix.
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Find Mean Absolute Deviation Along Vector of Dimensions

Find the mean absolute deviation over multiple dimensions by using the vecdim input argument.

Set the random seed for reproducibility of the results.

rng('default')

Create a 4-by-3-by-2 array of random numbers.

X = randn([4 3 2])

X = 
X(:,:,1) =

    0.5377    0.3188    3.5784
    1.8339   -1.3077    2.7694
   -2.2588   -0.4336   -1.3499
    0.8622    0.3426    3.0349

X(:,:,2) =

    0.7254   -0.1241    0.6715
   -0.0631    1.4897   -1.2075
    0.7147    1.4090    0.7172
   -0.2050    1.4172    1.6302

Find the mean absolute deviation of each page of X by specifying the first and second dimensions.

ypage = mad(X,0,[1 2])

ypage = 
ypage(:,:,1) =

    1.4626

ypage(:,:,2) =

    0.6652

For example, ypage(:,:,2) is the mean absolute deviation of all the elements in X(:,:,2), and is
equivalent to specifying mad(X(:,:,2),0,'all').

Find the mean absolute deviation of the elements in each X(:,i,:) slice by specifying the first and
third dimensions.

ycol = mad(X,0,[1 3])

ycol = 1×3

    0.8330    0.7872    1.5227

For example, ycol(3) is the mean absolute deviation of all the elements in X(:,3,:), and is
equivalent to specifying mad(X(:,3,:),0,'all').
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Input Arguments
X — Input data
vector | matrix | multidimensional array

Input data that represents a sample from a population, specified as a vector, matrix, or
multidimensional array.

• If X is a vector, then mad returns the mean or median absolute deviation of the values in X.
• If X is a matrix, then mad returns a row vector containing the mean or median absolute deviation

of each column of X.
• If X is a multidimensional array, then mad operates along the first nonsingleton dimension of X.

To specify the operating dimension when X is a matrix or an array, use the dim input argument.

mad treats NaNs as missing values and removes them.
Data Types: single | double

flag — Indicator for the type of deviation
0 (default) | 1

Indicator for the type of deviation, specified as 0 or 1.

• If flag is 0 (default), then mad computes the mean absolute deviation, mean(abs(X –
mean(X))).

• If flag is 1, then mad computes the median absolute deviation, median(abs(X – median(X))).

Data Types: single | double | logical

dim — Dimension
positive integer

Dimension along which to operate, specified as a positive integer. If you do not specify a value for
dim, then the default is the first dimension of X whose size does not equal 1.

Consider the mean absolute deviation of a matrix X:

• If dim is equal to 1, then mad(X) returns a row vector that contains the mean absolute deviation
of each column in X.

• If dim is equal to 2, then mad(X) returns a column vector that contains the mean absolute
deviation of each row in X.

Data Types: single | double

vecdim — Vector of dimensions
positive integer vector

Vector of dimensions, specified as a positive integer vector. Each element of vecdim represents a
dimension of the input array X. The output y has length 1 in the specified operating dimensions. The
other dimension lengths are the same for X and y.
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For example, if X is a 2-by-3-by-3 array, then mad(X,0,[1 2]) returns a 1-by-1-by-3 array. Each
element of the output array is the mean absolute deviation of the elements on the corresponding page
of X.

Data Types: single | double

Output Arguments
y — Mean or median absolute deviation
scalar | vector | matrix | multidimensional array

Mean or median absolute deviation, returned as a scalar, vector, matrix, or multidimensional array. If
flag is 0 (default), then y is the mean absolute deviation of the values in X, mean(abs(X –
mean(X))). If flag is 1, then y is the median absolute deviation of the values in X, median(abs(X
– median(X))).

Tips
• For normally distributed data, multiply mad by one of the following factors to obtain an estimate of

the normal scale parameter σ:

• sigma = 1.253 * mad(X,0) — For mean absolute deviation
• sigma = 1.4826 * mad(X,1) — For median absolute deviation

Version History
Introduced before R2006a

References
[1] Mosteller, F., and J. Tukey. Data Analysis and Regression. Upper Saddle River, NJ: Addison-Wesley,

1977.

[2] Sachs, L. Applied Statistics: A Handbook of Techniques. New York: Springer-Verlag, 1984, p. 253.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.
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Usage notes and limitations:

• The 'all' and vecdim input arguments are not supported.
• Empty dim input is not supported.
• The dim input argument must be a compile-time constant.
• If you do not specify the dim input argument, the working (or operating) dimension can be
different in the generated code. As a result, run-time errors can occur. For more details, see
“Automatic dimension restriction” (MATLAB Coder).

For more information on code generation, see “Introduction to Code Generation” on page 34-2 and
“General Code Generation Workflow” on page 34-5.

Thread-Based Environment
Run code in the background using MATLAB® backgroundPool or accelerate code with Parallel
Computing Toolbox™ ThreadPool.

This function fully supports thread-based environments. For more information, see “Run MATLAB
Functions in Thread-Based Environment”.

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

Usage notes and limitations:

• The 'all' and vecdim input arguments are not supported.

For more information, see “Run MATLAB Functions on a GPU” (Parallel Computing Toolbox).

See Also
std | range | iqr

 mad

35-4599



mahal
Mahalanobis distance to reference samples

Syntax
d2 = mahal(Y,X)

Description
d2 = mahal(Y,X) returns the squared Mahalanobis distance on page 35-4602 of each observation
in Y to the reference samples in X.

Examples

Compare Mahalanobis and Squared Euclidean Distances

Generate a correlated bivariate sample data set.

rng('default') % For reproducibility
X = mvnrnd([0;0],[1 .9;.9 1],1000);

Specify four observations that are equidistant from the mean of X in Euclidean distance.

Y = [1 1;1 -1;-1 1;-1 -1];

Compute the Mahalanobis distance of each observation in Y to the reference samples in X.

d2_mahal = mahal(Y,X)

d2_mahal = 4×1

    1.1095
   20.3632
   19.5939
    1.0137

Compute the squared Euclidean distance of each observation in Y from the mean of X .

d2_Euclidean = sum((Y-mean(X)).^2,2)

d2_Euclidean = 4×1

    2.0931
    2.0399
    1.9625
    1.9094

Plot X and Y by using scatter and use marker color to visualize the Mahalanobis distance of Y to the
reference samples in X.
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scatter(X(:,1),X(:,2),10,'.') % Scatter plot with points of size 10
hold on
scatter(Y(:,1),Y(:,2),100,d2_mahal,'o','filled')
hb = colorbar;
ylabel(hb,'Mahalanobis Distance')
legend('X','Y','Location','best')

All observations in Y ([1,1], [-1,-1,], [1,-1], and [-1,1]) are equidistant from the mean of X in
Euclidean distance. However, [1,1] and [-1,-1] are much closer to X than [1,-1] and [-1,1] in
Mahalanobis distance. Because Mahalanobis distance considers the covariance of the data and the
scales of the different variables, it is useful for detecting outliers.

Input Arguments
Y — Data
n-by-m numeric matrix

Data, specified as an n-by-m numeric matrix, where n is the number of observations and m is the
number of variables in each observation.

X and Y must have the same number of columns, but can have different numbers of rows.
Data Types: single | double

X — Reference samples
p-by-m numeric matrix
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Reference samples, specified as a p-by-m numeric matrix, where p is the number of samples and m is
the number of variables in each sample.

X and Y must have the same number of columns, but can have different numbers of rows. X must have
more rows than columns.
Data Types: single | double

Output Arguments
d2 — Squared Mahalanobis distance
n-by-1 numeric vector

Squared Mahalanobis distance on page 35-4602 of each observation in Y to the reference samples in
X, returned as an n-by-1 numeric vector, where n is the number of observations in X.

More About
Mahalanobis Distance

The Mahalanobis distance is a measure between a sample point and a distribution.

The Mahalanobis distance from a vector y to a distribution with mean μ and covariance Σ is

d = (y − μ)∑−1 (y − μ)′ .

This distance represents how far y is from the mean in number of standard deviations.

mahal returns the squared Mahalanobis distance d2 from an observation in Y to the reference
samples in X. In the mahal function, μ and Σ are the sample mean and covariance of the reference
samples, respectively.

Version History
Introduced before R2006a

See Also
pdist | mahal | mahal | robustcov | IsolationForest | fitcsvm

Topics
“Unsupervised Anomaly Detection” on page 17-91
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mahal
Mahalanobis distance to class means of discriminant analysis classifier

Syntax
M = mahal(obj,X)
M = mahal(obj,X,Name,Value)

Description
M = mahal(obj,X) returns the squared Mahalanobis distances from observations in X to the class
means in obj.

M = mahal(obj,X,Name,Value) computes the squared Mahalanobis distance with additional
options specified by one or more Name,Value pair arguments.

Input Arguments
obj

Discriminant analysis classifier of class ClassificationDiscriminant or
CompactClassificationDiscriminant, typically constructed with fitcdiscr.

X

Numeric matrix of size n-by-p, where p is the number of predictors in obj, and n is any positive
integer. mahal computes the Mahalanobis distances from the rows of X to each of the K means of the
classes in obj.

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.

ClassLabels

Class labels consisting of n elements of obj.Y, where n is the number of rows of X.

Output Arguments
M

Size and meaning of output M depends on whether the ClassLabels name-value pair is present:

• No ClassLabels — M is a numeric matrix of size n-by-K, where K is the number of classes in obj,
and n is the number of rows in X. M(i,j) is the squared Mahalanobis distance from the ith row
of X to the mean of class j.
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• ClassLabels exists — M is a column vector with n elements. M(i) is the squared Mahalanobis
distance from the ith row of X to the mean for the class of the ith element of ClassLabels.

Examples
Find the Mahalanobis distances from the mean of the Fisher iris data to the class means, using
distinct covariance matrices for each class:

load fisheriris
obj = fitcdiscr(meas,species,...
    'DiscrimType','quadratic');
mahadist = mahal(obj,mean(meas))

mahadist =
  220.0667    5.0254   30.5804

More About
Mahalanobis Distance

The Mahalanobis distance d(x,y) between n-dimensional points x and y, with respect to a given n-by-n
covariance matrix S, is

d(x, y) = x− y TS−1 x− y .

See Also
CompactClassificationDiscriminant | fitcdiscr | mahal | gmdistribution

Topics
“Model-Specific Anomaly Detection” on page 17-107
“Discriminant Analysis Classification” on page 21-2
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mahal
Mahalanobis distance to Gaussian mixture component

Syntax
d2 = mahal(gm,X)

Description
d2 = mahal(gm,X) returns the squared Mahalanobis distance of each observation in X to each
Gaussian mixture component in gm.

Examples

Measure Mahalanobis Distance

Generate random variates that follow a mixture of two bivariate Gaussian distributions by using the
mvnrnd function. Fit a Gaussian mixture model (GMM) to the generated data by using the
fitgmdist function, and then compute Mahalanobis distances between the generated data and the
mixture components of the fitted GMM.

Define the distribution parameters (means and covariances) of two bivariate Gaussian mixture
components.

rng('default') % For reproducibility
mu1 = [1 2];          % Mean of the 1st component
sigma1 = [2 0; 0 .5]; % Covariance of the 1st component
mu2 = [-3 -5];        % Mean of the 2nd component
sigma2 = [1 0; 0 1];  % Covariance of the 2nd component

Generate an equal number of random variates from each component, and combine the two sets of
random variates.

r1 = mvnrnd(mu1,sigma1,1000);
r2 = mvnrnd(mu2,sigma2,1000);
X = [r1; r2];

The combined data set X contains random variates following a mixture of two bivariate Gaussian
distributions.

Fit a two-component GMM to X.

gm = fitgmdist(X,2)

gm = 

Gaussian mixture distribution with 2 components in 2 dimensions
Component 1:
Mixing proportion: 0.500000
Mean:   -2.9617   -4.9727
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Component 2:
Mixing proportion: 0.500000
Mean:    0.9539    2.0261

fitgmdist fits a GMM to X using two mixture components. The means of Component 1 and
Component 2 are [-2.9617,-4.9727] and [0.9539,2.0261], which are close to mu2 and mu1,
respectively.

Compute the Mahalanobis distance of each point in X to each component of gm.

d2 = mahal(gm,X);

Plot X by using scatter and use marker color to visualize the Mahalanobis distance to Component
1.

scatter(X(:,1),X(:,2),10,d2(:,1),'.') % Scatter plot with points of size 10
c = colorbar;
ylabel(c,'Mahalanobis Distance to Component 1')

Input Arguments
gm — Gaussian mixture distribution
gmdistribution object

Gaussian mixture distribution, also called Gaussian mixture model (GMM), specified as a
gmdistribution object.
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You can create a gmdistribution object using gmdistribution or fitgmdist. Use the
gmdistribution function to create a gmdistribution object by specifying the distribution
parameters. Use the fitgmdist function to fit a gmdistribution model to data given a fixed
number of components.

X — Data
n-by-m numeric matrix

Data, specified as an n-by-m numeric matrix, where n is the number of observations and m is the
number of variables in each observation.

If a row of X contains NaNs, then mahal excludes the row from the computation. The corresponding
value in d2 is NaN.
Data Types: single | double

Output Arguments
d2 — Squared Mahalanobis distance
n-by-k numeric matrix

Squared Mahalanobis distance of each observation in X to each Gaussian mixture component in gm,
returned as an n-by-k numeric matrix, where n is the number of observations in X and k is the number
of mixture components in gm.

d2(i,j) is the squared distance of observation i to the jth Gaussian mixture component.

More About
Mahalanobis Distance

The Mahalanobis distance is a measure between a sample point and a distribution.

The Mahalanobis distance from a vector x to a distribution with mean μ and covariance Σ is

d = (x− μ)∑−1 (x− μ)′ .

This distance represents how far x is from the mean in number of standard deviations.

mahal returns the squared Mahalanobis distance d2 from an observation in X to a mixture component
in gm.

Version History
Introduced in R2007b

See Also
gmdistribution | cluster | posterior | mahal | fitgmdist

Topics
“Cluster Using Gaussian Mixture Model” on page 17-39
“Cluster Gaussian Mixture Data Using Hard Clustering” on page 17-46
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“Cluster Gaussian Mixture Data Using Soft Clustering” on page 17-52
“Model-Specific Anomaly Detection” on page 17-107
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maineffectsplot
Main effects plot for grouped data

Syntax
maineffectsplot(Y,GROUP)
maineffectsplot(Y,GROUP,param1,val1,param2,val2,...)
[figh,AXESH] = maineffectsplot(...)

Description
maineffectsplot(Y,GROUP) displays main effects plots for the group means of matrix Y with
groups defined by entries in GROUP, which can be a cell array or a matrix. Y is a numeric matrix or
vector. If Y is a matrix, the rows represent different observations and the columns represent
replications of each observation. If GROUP is a cell array, then each cell of GROUP must contain a
grouping variable that is a categorical variable, numeric vector, character matrix, string array, or
single-column cell array of character vectors. If GROUP is a matrix, then its columns represent
different grouping variables. Each grouping variable must have the same number of rows as Y. The
number of grouping variables must be greater than 1.

The display has one subplot per grouping variable, with each subplot showing the group means of Y
as a function of one grouping variable.

maineffectsplot(Y,GROUP,param1,val1,param2,val2,...) specifies one or more of the
following name/value pairs:

• 'varnames' — Grouping variable names in a character matrix, a string array, or a cell array of
character vectors, one per grouping variable. Default names are 'X1', 'X2', ... .

• 'statistic' — Values that indicate whether the group mean or the group standard deviation
should be plotted. Use 'mean' or 'std'. The default is 'mean'. If the value is 'std', Y is
required to have multiple columns.

• 'parent' — A handle to the figure window for the plots. The default is the current figure window.

[figh,AXESH] = maineffectsplot(...) returns the handle figh to the figure window and an
array of handles AXESH to the subplot axes.

Examples

Main Effects Plot

Load the sample data.

load carsmall;

Display main effects plots for car weight with two grouping variables, model year and number of
cylinders.

maineffectsplot(Weight,{Model_Year,Cylinders}, ...
               'varnames',{'Model Year','# of Cylinders'})
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Version History
Introduced in R2006b

See Also
interactionplot | multivarichart

Topics
“Grouping Variables” on page 2-46
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makecdiscr
Construct discriminant analysis classifier from parameters

Syntax
cobj = makecdiscr(Mu,Sigma)
cobj = makecdiscr(Mu,Sigma,Name,Value)

Description
cobj = makecdiscr(Mu,Sigma) constructs a compact discriminant analysis classifier from the
class means Mu and covariance matrix Sigma.

cobj = makecdiscr(Mu,Sigma,Name,Value) constructs a compact classifier with additional
options specified by one or more name-value pair arguments. For example, you can specify the cost of
misclassification or the prior probabilities for each class.

Examples

Construct a Compact Linear Discriminant Analysis Classifier

Construct a compact linear discriminant analysis classifier from the means and covariances of the
Fisher iris data.

load fisheriris
mu(1,:) = mean(meas(1:50,:));
mu(2,:) = mean(meas(51:100,:));
mu(3,:) = mean(meas(101:150,:));

mm1 = repmat(mu(1,:),50,1);
mm2 = repmat(mu(2,:),50,1);
mm3 = repmat(mu(3,:),50,1);
cc = meas;
cc(1:50,:) = cc(1:50,:) - mm1;
cc(51:100,:) = cc(51:100,:) - mm2;
cc(101:150,:) = cc(101:150,:) - mm3;
sigstar = cc' * cc / 147; % unbiased estimator of sigma
cpct = makecdiscr(mu,sigstar,...
   'ClassNames',{'setosa','versicolor','virginica'})

cpct = 
  CompactClassificationDiscriminant
           PredictorNames: {'x1'  'x2'  'x3'  'x4'}
             ResponseName: 'Y'
    CategoricalPredictors: []
               ClassNames: {'setosa'  'versicolor'  'virginica'}
           ScoreTransform: 'none'
              DiscrimType: 'linear'
                       Mu: [3x4 double]
                   Coeffs: [3x3 struct]
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  Properties, Methods

Input Arguments
Mu — Class means
matrix of scalar values

Class means, specified as a K-by-p matrix of scalar values class means of size. K is the number of
classes, and p is the number of predictors. Each row of Mu represents the mean of the multivariate
normal distribution of the corresponding class. The class indices are in the ClassNames attribute.
Data Types: single | double

Sigma — Within-class covariance
matrix of scalar values

Within-class covariance, specified as a matrix of scalar values.

• For a linear discriminant, Sigma is a symmetric, positive semidefinite matrix of size p-by-p, where
p is the number of predictors.

• For a quadratic discriminant, Sigma is an array of size p-by-p-by-K, where K is the number of
classes. For each i, Sigma(:,:,i) is a symmetric, positive semidefinite matrix.

Data Types: single | double

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: 'ClassNames',{'setosa' 'versicolor' 'virginica'} specifies a discriminant
analysis classifier that uses 'setosa', 'versicolor', and 'virginica' as the grouping variables.

ClassNames — Class names
numeric vector | categorical vector | logical vector | character array | string array | cell array of
character vectors

Class names as ordered in Mu, specified as the comma-separated pair consisting of 'ClassNames'
and an array containing grouping variables. Use any data type for a grouping variable, including
numeric vector, categorical vector, logical vector, character array, string array, or cell array of
character vectors.

The default is 1:K, where K is the number of classes (the number of rows of Mu).
Example: 'ClassNames',{'setosa' 'versicolor' 'virginica'}
Data Types: single | double | logical | char | string | cell

Cost — Cost of misclassification
square matrix | structure
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Cost of misclassification, specified as the comma-separated pair consisting of 'Cost' and a square
matrix, where Cost(i,j) is the cost of classifying a point into class j if its true class is i.
Alternatively, Cost can be a structure S having two fields: S.ClassNames containing the group
names as a variable of the same type as y, and S.ClassificationCosts containing the cost
matrix.

The default is Cost(i,j)=1 if i~=j, and Cost(i,j)=0 if i=j.
Data Types: single | double | struct

PredictorNames — Predictor variable names
{'X1','X2',...} (default) | string array | cell array of character vectors

Predictor variable names, specified as the comma-separated pair consisting of 'PredictorNames'
and a string array or cell array of character vectors containing the names for the predictor variables,
in the order in which they appear in X.
Data Types: string | cell

Prior — Prior probabilities
'uniform' (default) | vector of scalar values | structure

Prior probabilities for each class, specified as the comma-separated pair consisting of 'Prior' and
one of the following:

• 'uniform', meaning all class prior probabilities are equal
• A vector containing one scalar value for each class
• A structure S with two fields:

• S.ClassNames containing the class names as a variable of the same type as ClassNames
• S.ClassProbs containing a vector of corresponding probabilities

Data Types: char | string | single | double | struct

ResponseName — Response variable name
'Y' (default) | character vector | string scalar

Response variable name, specified as the comma-separated pair consisting of 'ResponseName' and
a character vector or string scalar containing the name of the response variable y.
Example: 'ResponseName','Response'
Data Types: char | string

Output Arguments
cobj — Discriminant analysis classifier
discriminant analysis classifier object

Discriminant analysis classifier, returned as a discriminant analysis classifier object of class
CompactClassificationDiscriminant. You can use the predict method to predict classification
labels for new data.
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Tips
• You can change the discriminant type using dot notation after constructing cobj:

cobj.DiscrimType = 'discrimType'

where discrimType is one of 'linear', 'quadratic', 'diagLinear', 'diagQuadratic',
'pseudoLinear', or 'pseudoQuadratic'. You can change between linear types or between
quadratic types, but cannot change between a linear and a quadratic type.

• cobj is a linear classifier when Sigma is a matrix. cobj is a quadratic classifier when Sigma is a
three-dimensional array.

Version History
Introduced in R2014a

See Also
fitcdiscr | compact | predict | CompactClassificationDiscriminant

Topics
“Discriminant Analysis Classification” on page 21-2
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makedist
Create probability distribution object

Syntax
pd = makedist(distname)
pd = makedist(distname,Name,Value)

list = makedist

makedist -reset

Description
pd = makedist(distname) creates a probability distribution object for the distribution distname,
using the default parameter values.

pd = makedist(distname,Name,Value) creates a probability distribution object with one or
more distribution parameter values specified by name-value pair arguments.

list = makedist returns a cell array list containing a list of the probability distributions that
makedist can create.

makedist -reset resets the list of distributions by searching the path for files contained in a
package named prob and implementing classes derived from ProbabilityDistribution. Use this
syntax after you define a custom distribution function. For details, see “Define Custom Distributions
Using the Distribution Fitter App” on page 5-82.

Examples

Create Normal Distribution Object Using Default Parameter Values

Create a normal distribution object using the default parameter values, which correspond to the
parameters of the standard normal distribution.

pd = makedist('Normal')

pd = 
  NormalDistribution

  Normal distribution
       mu = 0
    sigma = 1

You can use the object functions of pd to evaluate the distribution and generate random numbers.
Display the supported object functions.

methods(pd)
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Methods for class prob.NormalDistribution:

cdf        iqr        negloglik  plot       std        
gather     mean       paramci    proflik    truncate   
icdf       median     pdf        random     var        

For example, compute the interquartile range of the distribution by using the iqr function.

r = iqr(pd)

r = 1.3490

Create Gamma Distribution Object Using Default Parameter Values

Create a gamma distribution object using the default parameter values.

pd = makedist('Gamma')

pd = 
  GammaDistribution

  Gamma distribution
    a = 1
    b = 1

Compute the mean of the gamma distribution.

mean = mean(pd)

mean = 1

Specify Parameters for Normal Distribution Object

Create a normal distribution object with parameter values mu = 75 and sigma = 10.

pd = makedist('Normal','mu',75,'sigma',10)

pd = 
  NormalDistribution

  Normal distribution
       mu = 75
    sigma = 10

Specify Parameters for Gamma Distribution Object

Create a gamma distribution object with the parameter value a = 3 and the default value b = 1.

pd = makedist('Gamma','a',3)
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pd = 
  GammaDistribution

  Gamma distribution
    a = 3
    b = 1

Input Arguments
distname — Distribution name
character vector | string scalar

Distribution name, specified as one of the following character vectors or string scalars. The
distribution specified by distname determines the type of the returned probability distribution
object.

Distribution Name Description Distribution Object
'Beta' Beta distribution BetaDistribution
'Binomial' Binomial distribution BinomialDistribution
'BirnbaumSaunders' Birnbaum-Saunders distribution BirnbaumSaundersDistribu

tion
'Burr' Burr distribution BurrDistribution
'Exponential' Exponential distribution ExponentialDistribution
'ExtremeValue' Extreme Value distribution ExtremeValueDistribution
'Gamma' Gamma distribution GammaDistribution
'GeneralizedExtremeValue' Generalized Extreme Value

distribution
GeneralizedExtremeValueD
istribution

'GeneralizedPareto' Generalized Pareto distribution GeneralizedParetoDistrib
ution

'HalfNormal' Half-normal distribution HalfNormalDistribution
'InverseGaussian' Inverse Gaussian distribution InverseGaussianDistribut

ion
'Logistic' Logistic distribution LogisticDistribution
'Loglogistic' Loglogistic distribution LoglogisticDistribution
'Lognormal' Lognormal distribution LognormalDistribution
'Loguniform' Loguniform distribution LoguniformDistribution
'Multinomial' Multinomial distribution MultinomialDistribution
'Nakagami' Nakagami distribution NakagamiDistribution
'NegativeBinomial' Negative Binomial distribution NegativeBinomialDistribu

tion
'Normal' Normal distribution NormalDistribution
'PiecewiseLinear' Piecewise Linear distribution PiecewiseLinearDistribut

ion
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Distribution Name Description Distribution Object
'Poisson' Poisson distribution PoissonDistribution
'Rayleigh' Rayleigh distribution RayleighDistribution
'Rician' Rician distribution RicianDistribution
'Stable' Stable distribution StableDistribution
'tLocationScale' t Location-Scale distribution tLocationScaleDistributi

on
'Triangular' Triangular distribution TriangularDistribution
'Uniform' Uniform distribution UniformDistribution
'Weibull' Weibull distribution WeibullDistribution

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: makedist('Normal','mu',10) specifies a normal distribution with parameter mu equal
to 10, and parameter sigma equal to the default value of 1.

Beta Distribution

a — First shape parameter
1 (default) | positive scalar value

First shape parameter of a beta distribution, specified as a positive scalar value. This argument is
valid only when distname is 'Beta'.
Example: 'a',3
Data Types: single | double

b — Second shape parameter
1 (default) | positive scalar value

Second shape parameter of a beta distribution, specified as a positive scalar value. This argument is
valid only when distname is 'Beta'.
Example: 'b',5
Data Types: single | double

Binomial Distribution

N — Number of trials
1 (default) | positive integer value

Number of trials for a binomial distribution, specified as a positive integer value. This argument is
valid only when distname is 'Binomial'.
Example: 'N',25
Data Types: single | double
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p — Probability of success
0.5 (default) | scalar value in the range [0,1]

Probability of success of any individual trial for a binomial distribution, specified as a scalar value in
the range [0,1]. This argument is valid only when distname is 'Binomial'.
Example: 'p',0.25
Data Types: single | double

Birnbaum-Saunders Distribution

beta — Scale parameter
1 (default) | positive scalar value

Scale parameter of a Birnbaum-Saunders distribution, specified as a positive scalar value. This
argument is valid only when distname is 'BirnbaumSaunders'.
Example: 'beta',2
Data Types: single | double

gamma — Shape parameter
1 (default) | positive scalar value

Shape parameter of a Birnbaum-Saunders distribution, specified as a positive scalar value. This
argument is valid only when distname is 'BirnbaumSaunders'.
Example: 'gamma',0.5
Data Types: single | double

Burr Distribution

alpha — Scale parameter
1 (default) | positive scalar value

Scale parameter of a Burr distribution, specified as a positive scalar value. This argument is valid
only when distname is 'Burr'.
Example: 'alpha',2
Data Types: single | double

c — First shape parameter
1 (default) | positive scalar value

First shape parameter of a Burr distribution, specified as a positive scalar value. This argument is
valid only when distname is 'Burr'.
Example: 'c',2
Data Types: single | double

k — Second shape parameter
1 (default) | positive scalar value

Second shape parameter of a Burr distribution, specified as a positive scalar value. This argument is
valid only when distname is 'Burr'.
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Example: 'k',5
Data Types: single | double

Exponential Distribution

mu — Mean
1 (default) | positive scalar value

Mean of an exponential distribution, specified as a positive scalar value. This argument is valid only
when distname is 'Exponential'.
Example: 'mu',5
Data Types: single | double

Extreme Value Distribution

mu — Location parameter
0 (default) | scalar value

Location parameter of an extreme value distribution, specified as a scalar value. This argument is
valid only when distname is 'ExtremeValue'.
Example: 'mu',-2
Data Types: single | double

sigma — Scale parameter
1 (default) | nonnegative scalar value

Scale parameter of an extreme value distribution, specified as a nonnegative scalar value. This
argument is valid only when distname is 'ExtremeValue'.
Example: 'sigma',2
Data Types: single | double

Gamma Distribution

a — Shape parameter
1 (default) | positive scalar value

Shape parameter of a gamma distribution, specified as a positive scalar value. This argument is valid
only when distname is 'Gamma'.
Example: 'a',2
Data Types: single | double

b — Scale parameter
1 (default) | nonnegative scalar value

Scale parameter of a gamma distribution, specified as a nonnegative scalar value. This argument is
valid only when distname is 'Gamma'.
Example: 'b',0
Data Types: single | double
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Generalized Extreme Value Distribution

k — Shape parameter
0 (default) | scalar value

Shape parameter of a generalized extreme value distribution, specified as a scalar value. This
argument is valid only when distname is 'GeneralizedExtremeValue'.
Example: 'k',0
Data Types: single | double

sigma — Scale parameter
1 (default) | nonnegative scalar value

Scale parameter of a generalized extreme value distribution, specified as a nonnegative scalar value.
This argument is valid only when distname is 'GeneralizedExtremeValue'.
Example: 'sigma',2
Data Types: single | double

mu — Location parameter
0 (default) | scalar value

Location parameter of a generalized extreme value distribution, specified as a scalar value. This
argument is valid only when distname is 'GeneralizedExtremeValue'.
Example: 'mu',1
Data Types: single | double

Generalized Pareto Distribution

k — Shape parameter
1 (default) | scalar value

Shape parameter of a generalized Pareto distribution, specified as a scalar value. This argument is
valid only when distname is 'GeneralizedPareto'.
Example: 'k',0
Data Types: single | double

sigma — Scale parameter
1 (default) | nonnegative scalar value

Scale parameter of a generalized Pareto distribution, specified as a nonnegative scalar value. This
argument is valid only when distname is 'GeneralizedPareto'.
Example: 'sigma',2
Data Types: single | double

theta — Location (threshold) parameter
1 (default) | scalar value

Location (threshold) parameter of a generalized Pareto distribution, specified as a scalar value. This
argument is valid only when distname is 'GeneralizedPareto'.
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Example: 'theta',2
Data Types: single | double

Half-Normal Distribution

mu — Location parameter
0 (default) | scalar value

Location parameter of a half-normal distribution, specified as a scalar value. This argument is valid
only when distname is 'HalfNormal'.
Example: 'mu',1
Data Types: single | double

sigma — Scale parameter
1 (default) | nonnegative scalar value

Scale parameter of a half-normal distribution, specified as a nonnegative scalar value. This argument
is valid only when distname is 'HalfNormal'.
Example: 'sigma',2
Data Types: single | double

Inverse Gaussian Distribution

mu — Scale parameter
1 (default) | positive scalar value

Scale parameter of an inverse Gaussian distribution, specified as a positive scalar value. This
argument is valid only when distname is 'InverseGaussian'.
Example: 'mu',2
Data Types: single | double

lambda — Shape parameter
1 (default) | positive scalar value

Shape parameter of an inverse Gaussian distribution, specified as a positive scalar value. This
argument is valid only when distname is 'InverseGaussian'.
Example: 'lambda',4
Data Types: single | double

Logistic Distribution

mu — Mean
0 (default) | scalar value

Mean of a logistic distribution, specified as a scalar value. This argument is valid only when
distname is 'Logistic'.
Example: 'mu',2
Data Types: single | double
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sigma — Scale parameter
1 (default) | nonnegative scalar value

Scale parameter of a logistic distribution, specified as a nonnegative scalar value. This argument is
valid only when distname is 'Logistic'.
Example: 'sigma',4
Data Types: single | double

Loglogistic Distribution

mu — Mean of logarithmic values
0 (default) | scalar value

Mean of logarithmic values for a loglogistic distribution, specified as a scalar value. This argument is
valid only when distname is 'Loglogistic'.
Example: 'mu',2
Data Types: single | double

sigma — Scale parameter of logarithmic values
1 (default) | positive scalar value

Scale parameter of logarithmic values for a loglogistic distribution, specified as a positive scalar
value. This argument is valid only when distname is 'Loglogistic'.
Example: 'sigma',4
Data Types: single | double

Lognormal Distribution

mu — Mean of logarithmic values
0 (default) | scalar value

Mean of logarithmic values for a lognormal distribution, specified as a scalar value. This argument is
valid only when distname is 'Lognormal'.
Example: 'mu',2
Data Types: single | double

sigma — Standard deviation of logarithmic values
1 (default) | nonnegative scalar value

Standard deviation of logarithmic values for a lognormal distribution, specified as a nonnegative
scalar value. This argument is valid only when distname is 'Lognormal'.
Example: 'sigma',2
Data Types: single | double

Loguniform Distribution

Lower — Lower limit
1 (default) | nonnegative scalar value

Lower limit for a loguniform distribution, specified as a nonnegative scalar value. This argument is
valid only when distname is 'Loguniform'.
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Example: 'Lower',2
Data Types: single | double

Upper — Upper limit
4 (default) | scalar value greater than Lower

Upper limit for a loguniform distribution, specified as a scalar value greater than Lower. This
argument is valid only when distname is 'Loguniform'.
Example: 'Upper',6
Data Types: single | double

Multinomial Distribution

Probabilities — Outcome probabilities
[0.500 0.500] (default) | vector of scalar values in the range [0,1]

Outcome probabilities for a multinomial distribution, specified as a vector of scalar values in the
range [0,1]. The probabilities sum to 1 and correspond to outcomes [1, 2, ..., k], where k is the
number of elements in the probabilities vector. This argument is valid only when distname is
'Multinomial'.
Example: 'Probabilities',[0.1 0.2 0.5 0.2] gives the probabilities that the outcome is 1, 2,
3, or 4, respectively.
Data Types: single | double

Nakagami Distribution

mu — Shape parameter
1 (default) | positive scalar value

Shape parameter of a Nakagami distribution, specified as a positive scalar value. This argument is
valid only when distname is 'Nakagami'.
Example: 'mu',5
Data Types: single | double

omega — Scale parameter
1 (default) | positive scalar value

Scale parameter of a Nakagami distribution, specified as a positive scalar value. This argument is
valid only when distname is 'Nakagami'.
Example: 'omega',5
Data Types: single | double

Negative Binomial Distribution

R — Number of successes
1 (default) | positive scalar value

Number of successes for a negative binomial distribution, specified as a positive scalar value. This
argument is valid only when distname is 'NegativeBinomial'.
Example: 'R',5
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Data Types: single | double

P — Probability of success
0.5 (default) | scalar value in the range (0,1]

Probability of success of any individual trial for a negative binomial distribution, specified as a scalar
value in the range (0,1]. This argument is valid only when distname is 'NegativeBinomial'.
Example: 'P',0.1
Data Types: single | double

Normal Distribution

mu — Mean
0 (default) | scalar value

Mean of a normal distribution, specified as a scalar value. This argument is valid only when
distname is 'Normal'.
Example: 'mu',2
Data Types: single | double

sigma — Standard deviation
1 (default) | nonnegative scalar value

Standard deviation of a normal distribution, specified as a nonnegative scalar value. This argument is
valid only when distname is 'Normal'.
Example: 'sigma',2
Data Types: single | double

Piecewise Linear Distribution

x — Data values
1 (default) | monotonically increasing vector of scalar values

Data values at which the cumulative distribution function (cdf) changes slope for a piecewise linear
distribution, specified as a monotonically increasing vector of scalar values. This argument is valid
only when distname is 'PiecewiseLinear'.
Example: 'x',[1 2 3]
Data Types: single | double

Fx — cdf value at each value in x
1 (default) | monotonically increasing vector of scalar values that start at 0 and end at 1

cdf value at each value in x for a piecewise linear distribution, specified as a monotonically increasing
vector of scalar values that start at 0 and end at 1. This argument is valid only when distname is
'PiecewiseLinear'.
Example: 'Fx',[0.2 0.5 1]
Data Types: single | double
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Poisson Distribution

lambda — Mean
1 (default) | nonnegative scalar value

Mean of a Poisson distribution, specified as a nonnegative scalar value. This argument is valid only
when distname is 'Poisson'.
Example: 'lambda',5
Data Types: single | double

Rayleigh Distribution

B — Defining parameter
1 (default) | positive scalar value

Defining parameter of a Rayleigh distribution, specified as a positive scalar value. This argument is
valid only when distname is 'Rayleigh'.
Example: 'B',3
Data Types: single | double

Rician Distribution

s — Noncentrality parameter
1 (default) | nonnegative scalar value

Noncentrality parameter of a Rician distribution, specified as a nonnegative scalar value. This
argument is valid only when distname is 'Rician'.
Example: 's',0
Data Types: single | double

sigma — Scale parameter
1 (default) | positive scalar value

Scale parameter of a Rician distribution, specified as a positive scalar value. This argument is valid
only when distname is 'Rician'.
Example: 'sigma',2
Data Types: single | double

Stable Distribution

alpha — First shape parameter
2 (default) | scalar value in the range (0,2]

First shape parameter of a stable distribution, specified as a scalar value in the range (0,2]. This
argument is valid only when distname is 'Stable'.
Example: 'alpha',1
Data Types: single | double

beta — Second shape parameter
0 (default) | scalar value in the range [–1,1]
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Second shape parameter of a stable distribution, specified as a scalar value in the range [–1,1]. This
argument is valid only when distname is 'Stable'.
Example: 'beta',0.5
Data Types: single | double

gam — Scale parameter
1 (default) | scalar value in the range (0,∞)

Scale parameter of a stable distribution, specified as a scalar value in the range (0,∞). This argument
is valid only when distname is 'Stable'.
Example: 'gam',2
Data Types: single | double

delta — Location parameter
0 (default) | scalar value

Location parameter of a stable distribution, specified as a scalar value. This argument is valid only
when distname is 'Stable'.
Example: 'delta',5
Data Types: single | double

t Location-Scale Distribution

mu — Location parameter
0 (default) | scalar value

Location parameter of a t location-scale distribution, specified as a scalar value. This argument is
valid only when distname is 'tLocationScale'.
Example: 'mu',-2
Data Types: single | double

sigma — Scale parameter
1 (default) | positive scalar value

Scale parameter of a t location-scale distribution, specified as a positive scalar value. This argument
is valid only when distname is 'tLocationScale'.
Example: 'sigma',2
Data Types: single | double

nu — Degrees of freedom
5 (default) | positive scalar value

Degrees of freedom of a t location-scale distribution, specified as a positive scalar value. This
argument is valid only when distname is 'tLocationScale'.
Example: 'nu',20
Data Types: single | double
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Triangular Distribution

A — Lower limit
0 (default) | scalar value

Lower limit for a triangular distribution, specified as a scalar value. This argument is valid only when
distname is 'Triangular'.
Example: 'A',-2
Data Types: single | double

B — Peak location
0.5 (default) | scalar value greater than or equal to A

Peak location for a triangular distribution, specified as a scalar value greater than or equal to A. This
argument is valid only when distname is 'Triangular'.
Example: 'B',1
Data Types: single | double

C — Upper limit
1 (default) | scalar value greater than or equal to B

Upper limit for a triangular distribution, specified as a scalar value greater than or equal to B. This
argument is valid only when distname is 'Triangular'.
Example: 'C',5
Data Types: single | double

Uniform Distribution

Lower — Lower limit
0 (default) | scalar value

Lower limit for a uniform distribution, specified as a scalar value. This argument is valid only when
distname is 'Uniform'.
Example: 'Lower',-4
Data Types: single | double

Upper — Upper limit
1 (default) | scalar value greater than Lower

Upper limit for a uniform distribution, specified as a scalar value greater than Lower. This argument
is valid only when distname is 'Uniform'.
Example: 'Upper',2
Data Types: single | double

Weibull Distribution

A — Scale parameter
1 (default) | positive scalar value

Scale parameter of a Weibull distribution, specified as a positive scalar value. This argument is valid
only when distname is 'Weibull'.
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Example: 'A',2
Data Types: single | double

B — Shape parameter
1 (default) | positive scalar value

Shape parameter of a Weibull distribution, specified as a positive scalar value. This argument is valid
only when distname is 'Weibull'.
Example: 'B',5
Data Types: single | double

Output Arguments
pd — Probability distribution
probability distribution object

Probability distribution, returned as a probability distribution object of the type specified by
distname.

list — List of probability distributions
cell array of character vectors

List of probability distributions that makedist can create, returned as a cell array of character
vectors.

Alternative Functionality
App

The Distribution Fitter app opens a graphical user interface for you to import data from the
workspace and interactively fit a probability distribution to that data. You can then save the
distribution to the workspace as a probability distribution object. Open the Distribution Fitter app
using distributionFitter, or click Distribution Fitter on the Apps tab.

Version History
Introduced in R2013a

See Also
fitdist | distributionFitter

Topics
“Working with Probability Distributions” on page 5-3
“Supported Distributions” on page 5-16
“Define Custom Distributions Using the Distribution Fitter App” on page 5-82
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manova
Class: RepeatedMeasuresModel

Multivariate analysis of variance

Syntax
manovatbl = manova(rm)
manovatbl = manova(rm,Name,Value)
[manovatbl,A,C,D] = manova( ___ )

Description
manovatbl = manova(rm) returns the results of multivariate analysis of variance (manova) for the
repeated measures model rm.

manovatbl = manova(rm,Name,Value) also returns manova results with additional options,
specified by one or more Name,Value pair arguments.

[manovatbl,A,C,D] = manova( ___ ) also returns arrays A, C, and D for the hypotheses tests of
the form A*B*C = D, where D is zero.

Input Arguments
rm — Repeated measures model
RepeatedMeasuresModel object

Repeated measures model, returned as a RepeatedMeasuresModel object.

For properties and methods of this object, see RepeatedMeasuresModel.

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.

WithinModel — Model specifying within-subjects hypothesis test
'separatemeans' (default) | model specification using formula | r-by-nc matrix

Model specifying the within-subjects hypothesis test, specified as one of the following:

• 'separatemeans' — Compute a separate mean for each group, and test for equality among the
means.

• Model specification — This is a model specification in the within-subject factors. Test each term in
the model. In this case, tbl contains a separate manova for each term in the formula, with the
multivariate response equal to the vector of coefficients of that term.
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• An r-by-nc matrix, C, specifying nc contrasts among the r repeated measures. If Y represents the
matrix of repeated measures you use in the repeated measures model rm, then the output tbl
contains a separate manova for each column of Y*C.

Example: 'WithinModel','separatemeans'
Data Types: single | double | char | string

By — Single between-subjects factor
character vector | string scalar

Single between-subjects factor, specified as the comma-separated pair consisting of 'By' and a
character vector or string scalar. manova performs a separate test of the within-subjects model for
each value of this factor.

For example, if you have a between-subjects factor, Drug, then you can specify that factor to perform
manova as follows.
Example: 'By','Drug'
Data Types: char | string

Output Arguments
manovatbl — Results of multivariate analysis of variance
table

Results of multivariate analysis of variance for the repeated measures model rm, returned as a
table.

manova uses these methods to measure the contributions of the model terms to the overall
covariance:

• Wilks’ Lambda
• Pillai’s trace
• Hotelling-Lawley trace
• Roy’s maximum root statistic

For details, see “Multivariate Analysis of Variance for Repeated Measures” on page 9-59.

manova returns the results for these tests for each group. manovatbl contains the following
columns.

Column Name Definition
Within Within-subject terms
Between Between-subject terms
Statistic Name of the statistic computed
Value Value of the corresponding statistic
F F-statistic value
RSquare Measure for variance explained
df1 Numerator degrees of freedom
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Column Name Definition
df2 Denominator degrees of freedom
pValue p-value for the corresponding F-statistic value

Data Types: table

A — Specification based on between-subjects model
matrix | cell array

Specification based on the between-subjects model, returned as a matrix or a cell array. It permits the
hypothesis on the elements within given columns of B (within time hypothesis). If manovatbl
contains multiple hypothesis tests, A might be a cell array.
Data Types: single | double | cell

C — Specification based on within-subjects model
matrix | cell array

Specification based on the within-subjects model, returned as a matrix or a cell array. It permits the
hypotheses on the elements within given rows of B (between time hypotheses). If manovatbl
contains multiple hypothesis tests, C might be a cell array.
Data Types: single | double | cell

D — Hypothesis value
0

Hypothesis value, returned as 0.

Examples

Perform Multivariate Analysis of Variance

Load the sample data.

load fisheriris

The column vector species consists of iris flowers of three different species: setosa, versicolor,
virginica. The double matrix meas consists of four types of measurements on the flowers: the length
and width of sepals and petals in centimeters, respectively.

Store the data in a table array.

t = table(species,meas(:,1),meas(:,2),meas(:,3),meas(:,4),...
'VariableNames',{'species','meas1','meas2','meas3','meas4'});
Meas = table([1 2 3 4]','VariableNames',{'Measurements'});

Fit a repeated measures model where the measurements are the responses and the species is the
predictor variable.

rm = fitrm(t,'meas1-meas4~species','WithinDesign',Meas);

Perform multivariate analysis of variance.

manova(rm)
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ans=8×9 table
     Within       Between      Statistic      Value        F       RSquare    df1    df2      pValue   
    ________    ___________    _________    _________    ______    _______    ___    ___    ___________

    Constant    (Intercept)    Pillai         0.99013    4847.5    0.99013     3     145    3.7881e-145
    Constant    (Intercept)    Wilks        0.0098724    4847.5    0.99013     3     145    3.7881e-145
    Constant    (Intercept)    Hotelling       100.29    4847.5    0.99013     3     145    3.7881e-145
    Constant    (Intercept)    Roy             100.29    4847.5    0.99013     3     145    3.7881e-145
    Constant    species        Pillai         0.96909    45.749    0.48455     6     292     2.4729e-39
    Constant    species        Wilks         0.041153    189.92    0.79714     6     290     2.3958e-97
    Constant    species        Hotelling       23.051    555.17    0.92016     6     288    4.6662e-155
    Constant    species        Roy              23.04    1121.3     0.9584     3     146    1.4771e-100

Perform multivariate anova separately for each species.

manova(rm,'By','species')

ans=12×9 table
     Within          Between          Statistic     Value        F       RSquare    df1    df2      pValue   
    ________    __________________    _________    ________    ______    _______    ___    ___    ___________

    Constant    species=setosa        Pillai         0.9823    2682.7     0.9823     3     145    9.0223e-127
    Constant    species=setosa        Wilks        0.017698    2682.7     0.9823     3     145    9.0223e-127
    Constant    species=setosa        Hotelling      55.504    2682.7     0.9823     3     145    9.0223e-127
    Constant    species=setosa        Roy            55.504    2682.7     0.9823     3     145    9.0223e-127
    Constant    species=versicolor    Pillai           0.97    1562.8       0.97     3     145    3.7058e-110
    Constant    species=versicolor    Wilks        0.029999    1562.8       0.97     3     145    3.7058e-110
    Constant    species=versicolor    Hotelling      32.334    1562.8       0.97     3     145    3.7058e-110
    Constant    species=versicolor    Roy            32.334    1562.8       0.97     3     145    3.7058e-110
    Constant    species=virginica     Pillai        0.97261    1716.1    0.97261     3     145    5.1113e-113
    Constant    species=virginica     Wilks        0.027394    1716.1    0.97261     3     145    5.1113e-113
    Constant    species=virginica     Hotelling      35.505    1716.1    0.97261     3     145    5.1113e-113
    Constant    species=virginica     Roy            35.505    1716.1    0.97261     3     145    5.1113e-113

Return Arrays of the Hypothesis Test

Load the sample data.

load fisheriris

The column vector species consists of iris flowers of three different species: setosa, versicolor,
virginica. The double matrix meas consists of four types of measurements on the flowers: the length
and width of sepals and petals in centimeters, respectively.

Store the data in a table array.

t = table(species,meas(:,1),meas(:,2),meas(:,3),meas(:,4),...
'VariableNames',{'species','meas1','meas2','meas3','meas4'});
Meas = dataset([1 2 3 4]','VarNames',{'Measurements'});

Fit a repeated measures model where the measurements are the responses and the species is the
predictor variable.

rm = fitrm(t,'meas1-meas4~species','WithinDesign',Meas);
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Perform multivariate analysis of variance. Also return the arrays for constructing the hypothesis test.

[manovatbl,A,C,D] = manova(rm)

manovatbl=8×9 table
     Within       Between      Statistic      Value        F       RSquare    df1    df2      pValue   
    ________    ___________    _________    _________    ______    _______    ___    ___    ___________

    Constant    (Intercept)    Pillai         0.99013    4847.5    0.99013     3     145    3.7881e-145
    Constant    (Intercept)    Wilks        0.0098724    4847.5    0.99013     3     145    3.7881e-145
    Constant    (Intercept)    Hotelling       100.29    4847.5    0.99013     3     145    3.7881e-145
    Constant    (Intercept)    Roy             100.29    4847.5    0.99013     3     145    3.7881e-145
    Constant    species        Pillai         0.96909    45.749    0.48455     6     292     2.4729e-39
    Constant    species        Wilks         0.041153    189.92    0.79714     6     290     2.3958e-97
    Constant    species        Hotelling       23.051    555.17    0.92016     6     288    4.6662e-155
    Constant    species        Roy              23.04    1121.3     0.9584     3     146    1.4771e-100

A=2×1 cell array
    {[   1 0 0]}
    {2x3 double}

C = 4×3

     1     0     0
    -1     1     0
     0    -1     1
     0     0    -1

D = 0

Index into matrix A.

A{1}

ans = 1×3

     1     0     0

A{2}

ans = 2×3

     0     1     0
     0     0     1

Tips
• The multivariate response for each observation (subject) is the vector of repeated measures.
• To test a more general hypothesis A*B*C = D, use coeftest.

See Also
anova | ranova | fitrm | coeftest
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Topics
“Model Specification for Repeated Measures Models” on page 9-54
“Multivariate Analysis of Variance for Repeated Measures” on page 9-59
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manova1
One-way multivariate analysis of variance

Syntax
d = manova1(X,group)
d = manova1(X,group,alpha)
[d,p] = manova1(...)
[d,p,stats] = manova1(...)

Description
d = manova1(X,group) performs a one-way Multivariate Analysis of Variance (MANOVA) for
comparing the multivariate means of the columns of X, grouped by group. X is an m-by-n matrix of
data values, and each row is a vector of measurements on n variables for a single observation. group
is a grouping variable defined as a categorical variable, vector, character array, string array, or cell
array of character vectors. Two observations are in the same group if they have the same value in the
group array. The observations in each group represent a sample from a population.

The function returns d, an estimate of the dimension of the space containing the group means.
manova1 tests the null hypothesis that the means of each group are the same n-dimensional
multivariate vector, and that any difference observed in the sample X is due to random chance. If
d = 0, there is no evidence to reject that hypothesis. If d = 1, then you can reject the null hypothesis
at the 5% level, but you cannot reject the hypothesis that the multivariate means lie on the same line.
Similarly, if d = 2 the multivariate means may lie on the same plane in n-dimensional space, but not
on the same line.

d = manova1(X,group,alpha) gives control of the significance level, alpha. The return value d
will be the smallest dimension having p > alpha, where p is a p-value for testing whether the means
lie in a space of that dimension.

[d,p] = manova1(...) also returns a p, a vector of p-values for testing whether the means lie in a
space of dimension 0, 1, and so on. The largest possible dimension is either the dimension of the
space, or one less than the number of groups. There is one element of p for each dimension up to, but
not including, the largest.

If the ith p-value is near zero, this casts doubt on the hypothesis that the group means lie on a space
of i-1 dimensions. The choice of a critical p-value to determine whether the result is judged
statistically significant is left to the researcher and is specified by the value of the input argument
alpha. It is common to declare a result significant if the p-value is less than 0.05 or 0.01.

[d,p,stats] = manova1(...) also returns stats, a structure containing additional MANOVA
results. The structure contains the following fields.

Field Contents
W Within-groups sum of squares and cross-products matrix
B Between-groups sum of squares and cross-products matrix
T Total sum of squares and cross-products matrix
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Field Contents
dfW Degrees of freedom for W
dfB Degrees of freedom for B
dfT Degrees of freedom for T
lambda Vector of values of Wilks' lambda test statistic for testing whether the means

have dimension 0, 1, etc.
chisq Transformation of lambda to an approximate chi-square distribution
chisqdf Degrees of freedom for chisq
eigenval Eigenvalues of W-1B
eigenvec Eigenvectors of W-1B; these are the coefficients for the canonical variables C,

and they are scaled so the within-group variance of the canonical variables is 1
canon Canonical variables C, equal to XC*eigenvec, where XC is X with columns

centered by subtracting their means
mdist A vector of Mahalanobis distances from each point to the mean of its group
gmdist A matrix of Mahalanobis distances between each pair of group means

The canonical variables C are linear combinations of the original variables, chosen to maximize the
separation between groups. Specifically, C(:,1) is the linear combination of the X columns that has
the maximum separation between groups. This means that among all possible linear combinations, it
is the one with the most significant F statistic in a one-way analysis of variance. C(:,2) has the
maximum separation subject to it being orthogonal to C(:,1), and so on.

You may find it useful to use the outputs from manova1 along with other functions to supplement
your analysis. For example, you may want to start with a grouped scatter plot matrix of the original
variables using gplotmatrix. You can use gscatter to visualize the group separation using the
first two canonical variables. You can use manovacluster to graph a dendrogram showing the
clusters among the group means.

Assumptions

The MANOVA test makes the following assumptions about the data in X:

• The populations for each group are normally distributed.
• The variance-covariance matrix is the same for each population.
• All observations are mutually independent.

Examples
you can use manova1 to determine whether there are differences in the averages of four car
characteristics, among groups defined by the country where the cars were made.

load carbig
[d,p] = manova1([MPG Acceleration Weight Displacement],...
                Origin)
d =
   3
p =
     0
  0.0000
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  0.0075
  0.1934

There are four dimensions in the input matrix, so the group means must lie in a four-dimensional
space. manova1 shows that you cannot reject the hypothesis that the means lie in a 3-D subspace.

Version History
Introduced before R2006a

References

[1] Krzanowski, W. J. Principles of Multivariate Analysis: A User's Perspective. New York: Oxford
University Press, 1988.

See Also
anova1 | canoncorr | gscatter | gplotmatrix | manovacluster

Topics
“Grouping Variables” on page 2-46
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manovacluster
Dendrogram of group mean clusters following MANOVA

Syntax
manovacluster(stats)
manovacluster(stats,method)
H = manovacluster(stats,method)

Description
manovacluster(stats) generates a dendrogram plot of the group means after a multivariate
analysis of variance (MANOVA). stats is the output stats structure from manova1. The clusters are
computed by applying the single linkage method to the matrix of Mahalanobis distances between
group means.

See dendrogram for more information on the graphical output from this function. The dendrogram is
most useful when the number of groups is large.

manovacluster(stats,method) uses the specified method in place of single linkage. method can
be one of these values, which identify the methods used to create the cluster hierarchy. (See linkage
for additional information.)

Method Description
'single' Shortest distance (default)
'complete' Largest distance
'average' Average distance
'centroid' Centroid distance
'ward' Incremental sum of squares

H = manovacluster(stats,method) returns a vector of handles to the lines in the figure.

Examples

Dendrogram of Group Means After MANOVA

Load the sample data.

load carbig

Define the variable matrix.

X = [MPG Acceleration Weight Displacement];

Perform one-way MANOVA to compare the means of MPG, Acceleration, Weight,and Displacement
grouped by Origin.

[d,p,stats] = manova1(X,Origin);
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Create a dendrogram plot of the group means.

manovacluster(stats)

Version History
Introduced before R2006a

See Also
cluster | dendrogram | linkage | manova1
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margin
Package: 

Classification margins for generalized additive model (GAM)

Syntax
m = margin(Mdl,Tbl,ResponseVarName)
m = margin(Mdl,Tbl,Y)
m = margin(Mdl,X,Y)
m = margin( ___ ,'IncludeInteractions',includeInteractions)

Description
m = margin(Mdl,Tbl,ResponseVarName) returns the “Classification Margin” on page 35-4647
(m) for the generalized additive model Mdl using the predictor data in Tbl and the true class labels in
Tbl.ResponseVarName.

m is returned as an n-by-1 numeric column vector, where n is the number of observations in the
predictor data.

m = margin(Mdl,Tbl,Y) uses the predictor data in table Tbl and the true class labels in Y.

m = margin(Mdl,X,Y) uses the predictor data in matrix X and the true class labels in Y.

m = margin( ___ ,'IncludeInteractions',includeInteractions) specifies whether to
include interaction terms in computations. You can specify includeInteractions in addition to any
of the input argument combinations in the previous syntaxes.

Examples

Estimate Test Sample Classification Margins and Edge

Estimate the test sample classification margins and edge of a generalized additive model. The test
sample margins are the observed true class scores minus the false class scores, and the test sample
edge is the mean of the margins.

Load the fisheriris data set. Create X as a numeric matrix that contains two sepal and two petal
measurements for versicolor and virginica irises. Create Y as a cell array of character vectors that
contains the corresponding iris species.

load fisheriris
inds = strcmp(species,'versicolor') | strcmp(species,'virginica');
X = meas(inds,:);
Y = species(inds,:);

Randomly partition observations into a training set and a test set with stratification, using the class
information in Y. Specify a 30% holdout sample for testing.
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rng('default') % For reproducibility
cv = cvpartition(Y,'HoldOut',0.30);

Extract the training and test indices.

trainInds = training(cv);
testInds = test(cv);

Specify the training and test data sets.

XTrain = X(trainInds,:);
YTrain = Y(trainInds);
XTest = X(testInds,:);
YTest = Y(testInds);

Train a GAM using the predictors XTrain and class labels YTrain. A recommended practice is to
specify the class names.

Mdl = fitcgam(XTrain,YTrain,'ClassNames',{'versicolor','virginica'});

Mdl is a ClassificationGAM model object.

Estimate the test sample classification margins and edge.

m = margin(Mdl,XTest,YTest);
e = edge(Mdl,XTest,YTest)

e = 0.8000

Display the histogram of the test sample classification margins.

histogram(m,length(unique(m)),'Normalization','probability')
xlabel('Test Sample Margins')
ylabel('Probability')
title('Probability Distribution of the Test Sample Margins')

35 Functions

35-4642



Compare GAMs by Examining Test Sample Margins and Edge

Compare a GAM with linear terms to a GAM with both linear and interaction terms by examining the
test sample margins and edge. Based solely on this comparison, the classifier with the highest
margins and edge is the best model.

Load the ionosphere data set. This data set has 34 predictors and 351 binary responses for radar
returns, either bad ('b') or good ('g').

load ionosphere

Randomly partition observations into a training set and a test set with stratification, using the class
information in Y. Specify a 30% holdout sample for testing.

rng('default') % For reproducibility
cv = cvpartition(Y,'Holdout',0.30);

Extract the training and test indices.

trainInds = training(cv);
testInds = test(cv);

Specify the training and test data sets.

XTrain = X(trainInds,:);
YTrain = Y(trainInds);
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XTest = X(testInds,:);
YTest = Y(testInds);

Train a GAM that contains both linear and interaction terms for predictors. Specify to include all
available interaction terms whose p-values are not greater than 0.05.

Mdl = fitcgam(XTrain,YTrain,'Interactions','all','MaxPValue',0.05)

Mdl = 
  ClassificationGAM
             ResponseName: 'Y'
    CategoricalPredictors: []
               ClassNames: {'b'  'g'}
           ScoreTransform: 'logit'
                Intercept: 3.0398
             Interactions: [561x2 double]
          NumObservations: 246

  Properties, Methods

Mdl is a ClassificationGAM model object. Mdl includes all available interaction terms.

Estimate the test sample margins and edge for Mdl.

M = margin(Mdl,XTest,YTest);
E = edge(Mdl,XTest,YTest)

E = 0.7848

Estimate the test sample margins and edge for Mdl without including interaction terms.

M_nointeractions = margin(Mdl,XTest,YTest,'IncludeInteractions',false);
E_nointeractions = edge(Mdl,XTest,YTest,'IncludeInteractions',false)

E_nointeractions = 0.7871

Display the distributions of the margins using box plots.

boxplot([M M_nointeractions],'Labels',{'Linear and Interaction Terms','Linear Terms Only'})
title('Box Plots of Test Sample Margins')

35 Functions

35-4644



The margins M and M_nointeractions have a similar distribution, but the test sample edge of the
classifier with only linear terms is larger. Classifiers that yield relatively large margins are preferred.

Input Arguments
Mdl — Generalized additive model
ClassificationGAM model object | CompactClassificationGAM model object

Generalized additive model, specified as a ClassificationGAM or CompactClassificationGAM
model object.

• If you trained Mdl using sample data contained in a table, then the input data for margin must
also be in a table (Tbl).

• If you trained Mdl using sample data contained in a matrix, then the input data for margin must
also be in a matrix (X).

Tbl — Sample data
table

Sample data, specified as a table. Each row of Tbl corresponds to one observation, and each column
corresponds to one predictor variable. Multicolumn variables and cell arrays other than cell arrays of
character vectors are not allowed.

Tbl must contain all the predictors used to train Mdl. Optionally, Tbl can contain a column for the
response variable and a column for the observation weights.
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• The response variable must have the same data type as Mdl.Y. (The software treats string arrays
as cell arrays of character vectors.) If the response variable in Tbl has the same name as the
response variable used to train Mdl, then you do not need to specify ResponseVarName.

• The weight values must be a numeric vector. You must specify the observation weights in Tbl by
using 'Weights'.

If you trained Mdl using sample data contained in a table, then the input data for margin must also
be in a table.
Data Types: table

ResponseVarName — Response variable name
name of variable in Tbl

Response variable name, specified as a character vector or string scalar containing the name of the
response variable in Tbl. For example, if the response variable Y is stored in Tbl.Y, then specify it as
'Y'.
Data Types: char | string

Y — Class labels
categorical array | character array | string array | logical vector | numeric vector | cell array of
character vectors

Class labels, specified as a categorical, character, or string array, a logical or numeric vector, or a cell
array of character vectors. Each row of Y represents the classification of the corresponding row of X
or Tbl.

Y must have the same data type as Mdl.Y. (The software treats string arrays as cell arrays of
character vectors.)
Data Types: single | double | categorical | logical | char | string | cell

X — Predictor data
numeric matrix

Predictor data, specified as a numeric matrix. Each row of X corresponds to one observation, and
each column corresponds to one predictor variable.

If you trained Mdl using sample data contained in a matrix, then the input data for margin must also
be in a matrix.
Data Types: single | double

includeInteractions — Flag to include interaction terms
true | false

Flag to include interaction terms of the model, specified as true or false.

The default includeInteractions value is true if Mdl contains interaction terms. The value must
be false if the model does not contain interaction terms.
Data Types: logical
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More About
Classification Margin

The classification margin for binary classification is, for each observation, the difference between the
classification score for the true class and the classification score for the false class.

If the margins are on the same scale (that is, the score values are based on the same score
transformation), then they serve as a classification confidence measure. Among multiple classifiers,
those that yield greater margins are better.

Version History
Introduced in R2021a

See Also
predict | loss | edge | resubMargin

Topics
“Train Generalized Additive Model for Binary Classification” on page 12-77
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margin
Margin of k-nearest neighbor classifier

Syntax
m = margin(mdl,Tbl,ResponseVarName)
m = margin(mdl,Tbl,Y)
m = margin(mdl,X,Y)

Description
m = margin(mdl,Tbl,ResponseVarName) returns the classification margins on page 35-4650 for
mdl with data Tbl and classification Tbl.ResponseVarName. If Tbl contains the response variable
used to train mdl, then you do not need to specify ResponseVarName.

m is returned as a numeric vector of length size(Tbl,1). Each entry in m represents the margin for
the corresponding row of Tbl and the corresponding true class label in Tbl.ResponseVarName,
computed using mdl.

m = margin(mdl,Tbl,Y) returns the classification margins for mdl with data Tbl and
classification Y.

m = margin(mdl,X,Y) returns the classification margins for mdl with data X and classification Y. m
is returned as a numeric vector of length size(X,1).

Examples

Margin Calculation

Create a k-nearest neighbor classifier for the Fisher iris data, where k = 5.

Load the Fisher iris data set.

load fisheriris

Create a classifier for five nearest neighbors.

mdl = fitcknn(meas,species,'NumNeighbors',5);

Examine the margin of the classifier for a mean observation classified as 'versicolor'.

X = mean(meas);
Y = {'versicolor'};
m = margin(mdl,X,Y)

m = 1

All five nearest neighbors classify as 'versicolor'.
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Input Arguments
mdl — k-nearest neighbor classifier model
ClassificationKNN object

k-nearest neighbor classifier model, specified as a ClassificationKNN object.

Tbl — Sample data
table

Sample data used to train the model, specified as a table. Each row of Tbl corresponds to one
observation, and each column corresponds to one predictor variable. Optionally, Tbl can contain one
additional column for the response variable. Multicolumn variables and cell arrays other than cell
arrays of character vectors are not allowed.

If Tbl contains the response variable used to train mdl, then you do not need to specify
ResponseVarName or Y.

If you train mdl using sample data contained in a table, then the input data for margin must also be
in a table.
Data Types: table

ResponseVarName — Response variable name
name of a variable in Tbl

Response variable name, specified as the name of a variable in Tbl. If Tbl contains the response
variable used to train mdl, then you do not need to specify ResponseVarName.

You must specify ResponseVarName as a character vector or string scalar. For example, if the
response variable is stored as Tbl.response, then specify it as 'response'. Otherwise, the
software treats all columns of Tbl, including Tbl.response, as predictors.

The response variable must be a categorical, character, or string array, logical or numeric vector, or
cell array of character vectors. If the response variable is a character array, then each element must
correspond to one row of the array.
Data Types: char | string

X — Predictor data
numeric matrix

Predictor data, specified as a numeric matrix. Each row of X represents one observation, and each
column represents one variable.
Data Types: single | double

Y — Class labels
categorical array | character array | string array | logical vector | numeric vector | cell array of
character vectors

Class labels, specified as a categorical, character, or string array, logical or numeric vector, or cell
array of character vectors. Each row of Y represents the classification of the corresponding row of X.
Data Types: categorical | char | string | logical | single | double | cell
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More About
Margin

The classification margin for each observation is the difference between the classification score for
the true class and the maximal classification score for the false classes.

Score

The score of a classification is the posterior probability of the classification. The posterior probability
is the number of neighbors with that classification divided by the number of neighbors. For a more
detailed definition that includes weights and prior probabilities, see “Posterior Probability” on page
35-5727.

Version History
Introduced in R2012a

Extended Capabilities
Tall Arrays
Calculate with arrays that have more rows than fit in memory.

This function fully supports tall arrays. For more information, see “Tall Arrays”.

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

Usage notes and limitations:

• margin does not support GPU arrays for ClassificationKNN models with the following
specifications:

• The 'NSMethod' property is specified as 'kdtree'.
• The 'Distance' property is specified as a function handle.
• The 'IncludeTies' property is specified as true.

For more information, see “Run MATLAB Functions on a GPU” (Parallel Computing Toolbox).

See Also
ClassificationKNN | edge | loss | fitcknn

Topics
“Classification Using Nearest Neighbors” on page 19-14
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margin
Class: ClassificationLinear

Classification margins for linear classification models

Syntax
m = margin(Mdl,X,Y)
m = margin(Mdl,X,Y,'ObservationsIn',dimension)

m = margin(Mdl,Tbl,ResponseVarName)
m = margin(Mdl,Tbl,Y)

Description
m = margin(Mdl,X,Y) returns the classification margins on page 35-4658 for the binary, linear
classification model Mdl using predictor data in X and corresponding class labels in Y. m contains
classification margins for each regularization strength in Mdl.

m = margin(Mdl,X,Y,'ObservationsIn',dimension) specifies the predictor data observation
dimension, either 'rows' (default) or 'columns'. For example, specify
'ObservationsIn','columns' to indicate that columns in the predictor data correspond to
observations.

m = margin(Mdl,Tbl,ResponseVarName) returns the classification margins for the trained linear
classifier Mdl using the predictor data in table Tbl and the class labels in Tbl.ResponseVarName.

m = margin(Mdl,Tbl,Y) returns the classification margins for the classifier Mdl using the
predictor data in table Tbl and the class labels in vector Y.

Input Arguments
Mdl — Binary, linear classification model
ClassificationLinear model object

Binary, linear classification model, specified as a ClassificationLinear model object. You can
create a ClassificationLinear model object using fitclinear.

X — Predictor data
full matrix | sparse matrix

Predictor data, specified as an n-by-p full or sparse matrix. This orientation of X indicates that rows
correspond to individual observations, and columns correspond to individual predictor variables.

Note If you orient your predictor matrix so that observations correspond to columns and specify
'ObservationsIn','columns', then you might experience a significant reduction in computation
time.

The length of Y and the number of observations in X must be equal.
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Data Types: single | double

Y — Class labels
categorical array | character array | string array | logical vector | numeric vector | cell array of
character vectors

Class labels, specified as a categorical, character, or string array; logical or numeric vector; or cell
array of character vectors.

• The data type of Y must be the same as the data type of Mdl.ClassNames. (The software treats
string arrays as cell arrays of character vectors.)

• The distinct classes in Y must be a subset of Mdl.ClassNames.
• If Y is a character array, then each element must correspond to one row of the array.
• The length of Y must be equal to the number of observations in X or Tbl.

Data Types: categorical | char | string | logical | single | double | cell

dimension — Predictor data observation dimension
'rows' (default) | 'columns'

Predictor data observation dimension, specified as 'columns' or 'rows'.

Note If you orient your predictor matrix so that observations correspond to columns and specify
'ObservationsIn','columns', then you might experience a significant reduction in optimization
execution time. You cannot specify 'ObservationsIn','columns' for predictor data in a table.

Tbl — Sample data
table

Sample data used to train the model, specified as a table. Each row of Tbl corresponds to one
observation, and each column corresponds to one predictor variable. Optionally, Tbl can contain
additional columns for the response variable and observation weights. Tbl must contain all the
predictors used to train Mdl. Multicolumn variables and cell arrays other than cell arrays of character
vectors are not allowed.

If Tbl contains the response variable used to train Mdl, then you do not need to specify
ResponseVarName or Y.

If you train Mdl using sample data contained in a table, then the input data for margin must also be
in a table.

ResponseVarName — Response variable name
name of variable in Tbl

Response variable name, specified as the name of a variable in Tbl. If Tbl contains the response
variable used to train Mdl, then you do not need to specify ResponseVarName.

If you specify ResponseVarName, then you must specify it as a character vector or string scalar. For
example, if the response variable is stored as Tbl.Y, then specify ResponseVarName as 'Y'.
Otherwise, the software treats all columns of Tbl, including Tbl.Y, as predictors.
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The response variable must be a categorical, character, or string array; a logical or numeric vector;
or a cell array of character vectors. If the response variable is a character array, then each element
must correspond to one row of the array.
Data Types: char | string

Output Arguments
m — Classification margins
numeric column vector | numeric matrix

Classification margins on page 35-4658, returned as a numeric column vector or matrix.

m is n-by-L, where n is the number of observations in X and L is the number of regularization
strengths in Mdl (that is, numel(Mdl.Lambda)).

m(i,j) is the classification margin of observation i using the trained linear classification model that
has regularization strength Mdl.Lambda(j).

Examples

Estimate Test-Sample Margins

Load the NLP data set.

load nlpdata

X is a sparse matrix of predictor data, and Y is a categorical vector of class labels. There are more
than two classes in the data.

The models should identify whether the word counts in a web page are from the Statistics and
Machine Learning Toolbox™ documentation. So, identify the labels that correspond to the Statistics
and Machine Learning Toolbox™ documentation web pages.

Ystats = Y == 'stats';

Train a binary, linear classification model that can identify whether the word counts in a
documentation web page are from the Statistics and Machine Learning Toolbox™ documentation.
Specify to hold out 30% of the observations. Optimize the objective function using SpaRSA.

rng(1); % For reproducibility 
CVMdl = fitclinear(X,Ystats,'Solver','sparsa','Holdout',0.30);
CMdl = CVMdl.Trained{1};

CVMdl is a ClassificationPartitionedLinear model. It contains the property Trained, which
is a 1-by-1 cell array holding a ClassificationLinear model that the software trained using the
training set.

Extract the training and test data from the partition definition.

trainIdx = training(CVMdl.Partition);
testIdx = test(CVMdl.Partition);

Estimate the training- and test-sample margins.

 margin

35-4653



mTrain = margin(CMdl,X(trainIdx,:),Ystats(trainIdx));
mTest = margin(CMdl,X(testIdx,:),Ystats(testIdx));

Because there is one regularization strength in CMdl, mTrain and mTest are column vectors with
lengths equal to the number of training and test observations, respectively.

Plot both sets of margins using box plots.

figure;
boxplot([mTrain; mTest],[zeros(size(mTrain,1),1); ones(size(mTest,1),1)], ...
    'Labels',{'Training set','Test set'});
h = gca;
h.YLim = [-5 60];
title 'Training- and Test-Set Margins'

The distributions of the margins between the training and test sets appear similar.

Feature Selection Using Test-Sample Margins

One way to perform feature selection is to compare test-sample margins from multiple models. Based
solely on this criterion, the classifier with the larger margins is the better classifier.

Load the NLP data set. Preprocess the data as in “Estimate Test-Sample Margins” on page 35-4653.

load nlpdata
Ystats = Y == 'stats';
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X = X';
rng(1); % For reproducibility

Create a data partition which holds out 30% of the observations for testing.

Partition = cvpartition(Ystats,'Holdout',0.30);
testIdx = test(Partition); % Test-set indices
XTest = X(:,testIdx);     
YTest = Ystats(testIdx);

Partition is a cvpartition object that defines the data set partition.

Randomly choose 10% of the predictor variables.

p = size(X,1); % Number of predictors
idxPart = randsample(p,ceil(0.1*p));

Train two binary, linear classification models: one that uses the all of the predictors and one that uses
the random 10%. Optimize the objective function using SpaRSA, and indicate that observations
correspond to columns.

CVMdl = fitclinear(X,Ystats,'CVPartition',Partition,'Solver','sparsa',...
    'ObservationsIn','columns');
PCVMdl = fitclinear(X(idxPart,:),Ystats,'CVPartition',Partition,'Solver','sparsa',...
    'ObservationsIn','columns');

CVMdl and PCVMdl are ClassificationPartitionedLinear models.

Extract the trained ClassificationLinear models from the cross-validated models.

CMdl = CVMdl.Trained{1};
PCMdl = PCVMdl.Trained{1};

Estimate the test sample margins for each classifier. Plot the distribution of the margins sets using
box plots.

fullMargins = margin(CMdl,XTest,YTest,'ObservationsIn','columns');
partMargins = margin(PCMdl,XTest(idxPart,:),YTest,...
    'ObservationsIn','columns');

figure;
boxplot([fullMargins partMargins],'Labels',...
    {'All Predictors','10% of the Predictors'});
h = gca;
h.YLim = [-20 60];
title('Test-Sample Margins')
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The margin distribution of CMdl is situated higher than the margin distribution of PCMdl.

Find Good Lasso Penalty Using Margins

To determine a good lasso-penalty strength for a linear classification model that uses a logistic
regression learner, compare distributions of test-sample margins.

Load the NLP data set. Preprocess the data as in “Estimate Test-Sample Margins” on page 35-4653.

load nlpdata
Ystats = Y == 'stats';
X = X'; 

Partition = cvpartition(Ystats,'Holdout',0.30);
testIdx = test(Partition);
XTest = X(:,testIdx);
YTest = Ystats(testIdx);

Create a set of 11 logarithmically-spaced regularization strengths from 10−8 through 101.

Lambda = logspace(-8,1,11);

Train binary, linear classification models that use each of the regularization strengths. Optimize the
objective function using SpaRSA. Lower the tolerance on the gradient of the objective function to
1e-8.
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rng(10); % For reproducibility
CVMdl = fitclinear(X,Ystats,'ObservationsIn','columns',...
    'CVPartition',Partition,'Learner','logistic','Solver','sparsa',...
    'Regularization','lasso','Lambda',Lambda,'GradientTolerance',1e-8)

CVMdl = 
  ClassificationPartitionedLinear
    CrossValidatedModel: 'Linear'
           ResponseName: 'Y'
        NumObservations: 31572
                  KFold: 1
              Partition: [1x1 cvpartition]
             ClassNames: [0 1]
         ScoreTransform: 'none'

  Properties, Methods

Extract the trained linear classification model.

Mdl = CVMdl.Trained{1}

Mdl = 
  ClassificationLinear
      ResponseName: 'Y'
        ClassNames: [0 1]
    ScoreTransform: 'logit'
              Beta: [34023x11 double]
              Bias: [-11.2211 -11.2211 -11.2211 -11.2211 -11.2211 ... ]
            Lambda: [1.0000e-08 7.9433e-08 6.3096e-07 5.0119e-06 ... ]
           Learner: 'logistic'

  Properties, Methods

Mdl is a ClassificationLinear model object. Because Lambda is a sequence of regularization
strengths, you can think of Mdl as 11 models, one for each regularization strength in Lambda.

Estimate the test-sample margins.

m = margin(Mdl,X(:,testIdx),Ystats(testIdx),'ObservationsIn','columns');
size(m)

ans = 1×2

        9471          11

Because there are 11 regularization strengths, m has 11 columns.

Plot the test-sample margins for each regularization strength. Because logistic regression scores are
in [0,1], margins are in [-1,1]. Rescale the margins to help identify the regularization strength that
maximizes the margins over the grid.

figure;
boxplot(10000.^m)
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ylabel('Exponentiated test-sample margins')
xlabel('Lambda indices')

Several values of Lambda yield margin distributions that are compacted near 100001. Higher values
of lambda lead to predictor variable sparsity, which is a good quality of a classifier.

Choose the regularization strength that occurs just before the centers of the margin distributions
start decreasing.

LambdaFinal = Lambda(5);

Train a linear classification model using the entire data set and specify the desired regularization
strength.

MdlFinal = fitclinear(X,Ystats,'ObservationsIn','columns',...
    'Learner','logistic','Solver','sparsa','Regularization','lasso',...
    'Lambda',LambdaFinal);

To estimate labels for new observations, pass MdlFinal and the new data to predict.

More About
Classification Margin

The classification margin for binary classification is, for each observation, the difference between the
classification score for the true class and the classification score for the false class.
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The software defines the classification margin for binary classification as

m = 2yf x .

x is an observation. If the true label of x is the positive class, then y is 1, and –1 otherwise. f(x) is the
positive-class classification score for the observation x. The classification margin is commonly defined
as m = yf(x).

If the margins are on the same scale, then they serve as a classification confidence measure. Among
multiple classifiers, those that yield greater margins are better.

Classification Score

For linear classification models, the raw classification score for classifying the observation x, a row
vector, into the positive class is defined by

f j(x) = xβ j + b j .

For the model with regularization strength j, β j is the estimated column vector of coefficients (the
model property Beta(:,j)) and b j is the estimated, scalar bias (the model property Bias(j)).

The raw classification score for classifying x into the negative class is –f(x). The software classifies
observations into the class that yields the positive score.

If the linear classification model consists of logistic regression learners, then the software applies the
'logit' score transformation to the raw classification scores (see ScoreTransform).

Version History
Introduced in R2016a

Extended Capabilities
Tall Arrays
Calculate with arrays that have more rows than fit in memory.

Usage notes and limitations:

• margin does not support tall table data.

For more information, see “Tall Arrays”.

See Also
ClassificationLinear | edge | predict | fitclinear
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margin
Classification margins

Syntax
m = margin(obj,X,Y)

Description
m = margin(obj,X,Y) returns the classification margins for the matrix of predictors X and class
labels Y. For the definition, see “More About” on page 35-4661.

Input Arguments
obj

Discriminant analysis classifier of class ClassificationDiscriminant or
CompactClassificationDiscriminant, typically constructed with fitcdiscr.

X

Matrix where each row represents an observation, and each column represents a predictor. The
number of columns in X must equal the number of predictors in obj.

Y

Class labels, with the same data type as exists in obj. The number of elements of Y must equal the
number of rows of X.

Output Arguments
m

Numeric column vector of length size(X,1). Each entry in m represents the margin for the
corresponding rows of X and (true class) Y, computed using obj.

Examples
Compute the classification margin for the Fisher iris data, trained on its first two columns of data,
and view the last 10 entries:

load fisheriris
X = meas(:,1:2);
obj = fitcdiscr(X,species);
M = margin(obj,X,species);
M(end-10:end)

ans =
    0.6551
    0.4838
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    0.6551
   -0.5127
    0.5659
    0.4611
    0.4949
    0.1024
    0.2787
   -0.1439
   -0.4444

The classifier trained on all the data is better:

obj = fitcdiscr(meas,species);
M = margin(obj,meas,species);
M(end-10:end)

ans =
    0.9983
    1.0000
    0.9991
    0.9978
    1.0000
    1.0000
    0.9999
    0.9882
    0.9937
    1.0000
    0.9649

More About
Margin

The classification margin is the difference between the classification score for the true class and
maximal classification score for the false classes.

The classification margin is a column vector with the same number of rows as in the matrix X. A high
value of margin indicates a more reliable prediction than a low value.

Score (discriminant analysis)

For discriminant analysis, the score of a classification is the posterior probability of the classification.
For the definition of posterior probability in discriminant analysis, see “Posterior Probability” on page
21-6.

Extended Capabilities
Tall Arrays
Calculate with arrays that have more rows than fit in memory.

This function fully supports tall arrays. For more information, see “Tall Arrays”.

See Also
ClassificationDiscriminant | fitcdiscr | edge | loss | predict
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Topics
“Discriminant Analysis Classification” on page 21-2
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margin
Package: 

Classification margins for multiclass error-correcting output codes (ECOC) model

Syntax
m = margin(Mdl,tbl,ResponseVarName)
m = margin(Mdl,tbl,Y)

m = margin(Mdl,X,Y)

m = margin( ___ ,Name,Value)

Description
m = margin(Mdl,tbl,ResponseVarName) returns the classification margins on page 35-4672 (m)
for the trained multiclass error-correcting output codes (ECOC) model Mdl using the predictor data
in table tbl and the class labels in tbl.ResponseVarName.

m = margin(Mdl,tbl,Y) returns the classification margins for the classifier Mdl using the
predictor data in table tbl and the class labels in vector Y.

m = margin(Mdl,X,Y) returns the classification margins for the classifier Mdl using the predictor
data in matrix X and the class labels Y.

m = margin( ___ ,Name,Value) specifies options using one or more name-value pair arguments in
addition to any of the input argument combinations in previous syntaxes. For example, you can
specify a decoding scheme, binary learner loss function, and verbosity level.

Examples

Test-Sample Classification Margins of ECOC Model

Calculate the test-sample classification margins of an ECOC model with SVM binary learners.

Load Fisher's iris data set. Specify the predictor data X, the response data Y, and the order of the
classes in Y.

load fisheriris
X = meas;
Y = categorical(species);
classOrder = unique(Y); % Class order
rng(1)  % For reproducibility

Train an ECOC model using SVM binary classifiers. Specify a 30% holdout sample, standardize the
predictors using an SVM template, and specify the class order.
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t = templateSVM('Standardize',true);
PMdl = fitcecoc(X,Y,'Holdout',0.30,'Learners',t,'ClassNames',classOrder);
Mdl = PMdl.Trained{1};    % Extract trained, compact classifier

PMdl is a ClassificationPartitionedECOC model. It has the property Trained, a 1-by-1 cell
array containing the CompactClassificationECOC model that the software trained using the
training set.

Calculate the test-sample classification margins. Display the distribution of the margins using a
boxplot.

testInds = test(PMdl.Partition);   % Extract the test indices
XTest = X(testInds,:);
YTest = Y(testInds,:);
m = margin(Mdl,XTest,YTest);

boxplot(m)
title('Test-Sample Margins')

The classification margin of an observation is the positive-class negated loss minus the maximum
negative-class negated loss. Choose classifiers that yield relatively large margins.
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Select ECOC Model Features by Examining Test-Sample Margins

Perform feature selection by comparing test-sample margins from multiple models. Based solely on
this comparison, the model with the greatest margins is the best model.

Load Fisher's iris data set. Specify the predictor data X, the response data Y, and the order of the
classes in Y.

load fisheriris
X = meas;
Y = categorical(species);
classOrder = unique(Y); % Class order
rng(1); % For reproducibility

Partition the data set into training and test sets. Specify a 30% holdout sample for testing.

Partition = cvpartition(Y,'Holdout',0.30);
testInds = test(Partition); % Indices for the test set
XTest = X(testInds,:);
YTest = Y(testInds,:);

Partition defines the data set partition.

Define these two data sets:

• fullX contains all four predictors.
• partX contains the sepal measurements only.

fullX = X;
partX = X(:,1:2);

Train an ECOC model using SVM binary classifiers for each predictor set. Specify the partition
definition, standardize the predictors using an SVM template, and define the class order.

t = templateSVM('Standardize',true);
fullPMdl = fitcecoc(fullX,Y,'CVPartition',Partition,'Learners',t,...
    'ClassNames',classOrder);
partPMdl = fitcecoc(partX,Y,'CVPartition',Partition,'Learners',t,...
    'ClassNames',classOrder);
fullMdl = fullPMdl.Trained{1};
partMdl = partPMdl.Trained{1};

fullPMdl and partPMdl are ClassificationPartitionedECOC models. Each model has the
property Trained, a 1-by-1 cell array containing the CompactClassificationECOC model that the
software trained using the corresponding training set.

Calculate the test-sample margins for each classifier. For each model, display the distribution of the
margins using a boxplot.

fullMargins = margin(fullMdl,XTest,YTest);
partMargins = margin(partMdl,XTest(:,1:2),YTest);

boxplot([fullMargins partMargins],'Labels',{'All Predictors','Two Predictors'})
title('Boxplots of Test-Sample Margins')

 margin

35-4665



The margin distribution of fullMdl is situated higher and has less variability than the margin
distribution of partMdl.

Input Arguments
Mdl — Full or compact multiclass ECOC model
ClassificationECOC model object | CompactClassificationECOC model object

Full or compact multiclass ECOC model, specified as a ClassificationECOC or
CompactClassificationECOC model object.

To create a full or compact ECOC model, see ClassificationECOC or
CompactClassificationECOC.

tbl — Sample data
table

Sample data, specified as a table. Each row of tbl corresponds to one observation, and each column
corresponds to one predictor variable. Optionally, tbl can contain additional columns for the
response variable and observation weights. tbl must contain all the predictors used to train Mdl.
Multicolumn variables and cell arrays other than cell arrays of character vectors are not allowed.

If you train Mdl using sample data contained in a table, then the input data for margin must also be
in a table.
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When training Mdl, assume that you set 'Standardize',true for a template object specified in the
'Learners' name-value pair argument of fitcecoc. In this case, for the corresponding binary
learner j, the software standardizes the columns of the new predictor data using the corresponding
means in Mdl.BinaryLearner{j}.Mu and standard deviations in
Mdl.BinaryLearner{j}.Sigma.
Data Types: table

ResponseVarName — Response variable name
name of variable in tbl

Response variable name, specified as the name of a variable in tbl. If tbl contains the response
variable used to train Mdl, then you do not need to specify ResponseVarName.

If you specify ResponseVarName, then you must do so as a character vector or string scalar. For
example, if the response variable is stored as tbl.y, then specify ResponseVarName as 'y'.
Otherwise, the software treats all columns of tbl, including tbl.y, as predictors.

The response variable must be a categorical, character, or string array, a logical or numeric vector, or
a cell array of character vectors. If the response variable is a character array, then each element must
correspond to one row of the array.
Data Types: char | string

X — Predictor data
numeric matrix

Predictor data, specified as a numeric matrix.

Each row of X corresponds to one observation, and each column corresponds to one variable. The
variables in the columns of X must be the same as the variables that trained the classifier Mdl.

The number of rows in X must equal the number of rows in Y.

When training Mdl, assume that you set 'Standardize',true for a template object specified in the
'Learners' name-value pair argument of fitcecoc. In this case, for the corresponding binary
learner j, the software standardizes the columns of the new predictor data using the corresponding
means in Mdl.BinaryLearner{j}.Mu and standard deviations in
Mdl.BinaryLearner{j}.Sigma.
Data Types: double | single

Y — Class labels
categorical array | character array | string array | logical vector | numeric vector | cell array of
character vectors

Class labels, specified as a categorical, character, or string array, a logical or numeric vector, or a cell
array of character vectors. Y must have the same data type as Mdl.ClassNames. (The software
treats string arrays as cell arrays of character vectors.)

The number of rows in Y must equal the number of rows in tbl or X.
Data Types: categorical | char | string | logical | single | double | cell
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Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: margin(Mdl,tbl,'y','BinaryLoss','exponential') specifies an exponential binary
learner loss function.

BinaryLoss — Binary learner loss function
'hamming' | 'linear' | 'logit' | 'exponential' | 'binodeviance' | 'hinge' | 'quadratic'
| function handle

Binary learner loss function, specified as the comma-separated pair consisting of 'BinaryLoss' and
a built-in loss function name or function handle.

• This table describes the built-in functions, where yj is the class label for a particular binary learner
(in the set {–1,1,0}), sj is the score for observation j, and g(yj,sj) is the binary loss formula.

Value Description Score Domain g(yj,sj)
'binodeviance' Binomial deviance (–∞,∞) log[1 + exp(–2yjsj)]/

[2log(2)]
'exponential' Exponential (–∞,∞) exp(–yjsj)/2
'hamming' Hamming [0,1] or (–∞,∞) [1 – sign(yjsj)]/2
'hinge' Hinge (–∞,∞) max(0,1 – yjsj)/2
'linear' Linear (–∞,∞) (1 – yjsj)/2
'logit' Logistic (–∞,∞) log[1 + exp(–yjsj)]/

[2log(2)]
'quadratic' Quadratic [0,1] [1 – yj(2sj – 1)]2/2

The software normalizes binary losses so that the loss is 0.5 when yj = 0. Also, the software
calculates the mean binary loss for each class.

• For a custom binary loss function, for example customFunction, specify its function handle
'BinaryLoss',@customFunction.

customFunction has this form:

bLoss = customFunction(M,s)

• M is the K-by-B coding matrix stored in Mdl.CodingMatrix.
• s is the 1-by-B row vector of classification scores.
• bLoss is the classification loss. This scalar aggregates the binary losses for every learner in a

particular class. For example, you can use the mean binary loss to aggregate the loss over the
learners for each class.

• K is the number of classes.
• B is the number of binary learners.

For an example of passing a custom binary loss function, see “Predict Test-Sample Labels of ECOC
Model Using Custom Binary Loss Function” on page 35-5751.
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The default BinaryLoss value depends on the score ranges returned by the binary learners. This
table identifies what some default BinaryLoss values are when you use the default score transform
(ScoreTransform property of the model is 'none').

Assumption Default Value
All binary learners are any of the following:

• Classification decision trees
• Discriminant analysis models
• k-nearest neighbor models
• Linear or kernel classification models of logistic regression

learners
• Naive Bayes models

'quadratic'

All binary learners are SVMs or linear or kernel classification
models of SVM learners.

'hinge'

All binary learners are ensembles trained by AdaboostM1 or
GentleBoost.

'exponential'

All binary learners are ensembles trained by LogitBoost. 'binodeviance'
You specify to predict class posterior probabilities by setting
'FitPosterior',true in fitcecoc.

'quadratic'

Binary learners are heterogeneous and use different loss functions. 'hamming'

To check the default value, use dot notation to display the BinaryLoss property of the trained model
at the command line.
Example: 'BinaryLoss','binodeviance'
Data Types: char | string | function_handle

Decoding — Decoding scheme
'lossweighted' (default) | 'lossbased'

Decoding scheme that aggregates the binary losses, specified as the comma-separated pair consisting
of 'Decoding' and 'lossweighted' or 'lossbased'. For more information, see “Binary Loss” on
page 35-4670.
Example: 'Decoding','lossbased'

ObservationsIn — Predictor data observation dimension
'rows' (default) | 'columns'

Predictor data observation dimension, specified as the comma-separated pair consisting of
'ObservationsIn' and 'columns' or 'rows'. Mdl.BinaryLearners must contain
ClassificationLinear models.

Note If you orient your predictor matrix so that observations correspond to columns and specify
'ObservationsIn','columns', you can experience a significant reduction in execution time. You
cannot specify 'ObservationsIn','columns' for predictor data in a table.
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Options — Estimation options
[] (default) | structure array returned by statset

Estimation options, specified as the comma-separated pair consisting of 'Options' and a structure
array returned by statset.

To invoke parallel computing:

• You need a Parallel Computing Toolbox license.
• Specify 'Options',statset('UseParallel',true).

Verbose — Verbosity level
0 (default) | 1

Verbosity level, specified as the comma-separated pair consisting of 'Verbose' and 0 or 1. Verbose
controls the number of diagnostic messages that the software displays in the Command Window.

If Verbose is 0, then the software does not display diagnostic messages. Otherwise, the software
displays diagnostic messages.
Example: 'Verbose',1
Data Types: single | double

Output Arguments
m — Classification margins
numeric column vector | numeric matrix

Classification margins on page 35-4672, returned as a numeric column vector or numeric matrix.

If Mdl.BinaryLearners contains ClassificationLinear models, then m is an n-by-L vector,
where n is the number of observations in X and L is the number of regularization strengths in the
linear classification models (numel(Mdl.BinaryLearners{1}.Lambda)). The value m(i,j) is the
margin of observation i for the model trained using regularization strength
Mdl.BinaryLearners{1}.Lambda(j).

Otherwise, m is a column vector of length n.

More About
Binary Loss

The binary loss is a function of the class and classification score that determines how well a binary
learner classifies an observation into the class.

Suppose the following:

• mkj is element (k,j) of the coding design matrix M—that is, the code corresponding to class k of
binary learner j. M is a K-by-B matrix, where K is the number of classes, and B is the number of
binary learners.

• sj is the score of binary learner j for an observation.
• g is the binary loss function.
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• k  is the predicted class for the observation.

The decoding scheme of an ECOC model specifies how the software aggregates the binary losses and
determines the predicted class for each observation. The software supports two decoding schemes:

• Loss-based decoding [2] (Decoding is 'lossbased') — The predicted class of an observation
corresponds to the class that produces the minimum average of the binary losses over all binary
learners.

k = argmin
k

1
B ∑j = 1

B
mk j g(mk j, s j) .

• Loss-weighted decoding [3] (Decoding is 'lossweighted') — The predicted class of an
observation corresponds to the class that produces the minimum average of the binary losses over
the binary learners for the corresponding class.

k = argmin
k

∑
j = 1

B
mk j g(mk j, s j)

∑ j = 1

B

mk j

.

The denominator corresponds to the number of binary learners for class k. [1] suggests that loss-
weighted decoding improves classification accuracy by keeping loss values for all classes in the
same dynamic range.

The predict, resubPredict, and kfoldPredict functions return the negated value of the
objective function of argmin as the second output argument (NegLoss) for each observation and
class.

This table summarizes the supported binary loss functions, where yj is a class label for a particular
binary learner (in the set {–1,1,0}), sj is the score for observation j, and g(yj,sj) is the binary loss
function.

Value Description Score Domain g(yj,sj)
"binodeviance" Binomial deviance (–∞,∞) log[1 + exp(–2yjsj)]/

[2log(2)]
"exponential" Exponential (–∞,∞) exp(–yjsj)/2
"hamming" Hamming [0,1] or (–∞,∞) [1 – sign(yjsj)]/2
"hinge" Hinge (–∞,∞) max(0,1 – yjsj)/2
"linear" Linear (–∞,∞) (1 – yjsj)/2
"logit" Logistic (–∞,∞) log[1 + exp(–yjsj)]/

[2log(2)]
"quadratic" Quadratic [0,1] [1 – yj(2sj – 1)]2/2

The software normalizes binary losses so that the loss is 0.5 when yj = 0, and aggregates using the
average of the binary learners.

Do not confuse the binary loss with the overall classification loss (specified by the LossFun name-
value argument of the loss and predict object functions), which measures how well an ECOC
classifier performs as a whole.
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Classification Margin

The classification margin is, for each observation, the difference between the negative loss for the
true class and the maximal negative loss among the false classes. If the margins are on the same
scale, then they serve as a classification confidence measure. Among multiple classifiers, those that
yield greater margins are better.

Tips
• To compare the margins or edges of several ECOC classifiers, use template objects to specify a

common score transform function among the classifiers during training.

Version History
Introduced in R2014b
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Extended Capabilities
Tall Arrays
Calculate with arrays that have more rows than fit in memory.

Usage notes and limitations:

• margin does not support tall table data when Mdl contains kernel or linear binary learners.

For more information, see “Tall Arrays”.

Automatic Parallel Support
Accelerate code by automatically running computation in parallel using Parallel Computing Toolbox™.

To run in parallel, specify the 'Options' name-value argument in the call to this function and set the
'UseParallel' field of the options structure to true using statset.

For example: 'Options',statset('UseParallel',true)

For more information about parallel computing, see “Run MATLAB Functions with Automatic Parallel
Support” (Parallel Computing Toolbox).

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.
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Usage notes and limitations:

• The margin function does not support models trained using decision tree learners with surrogate
splits.

• The margin function does not support models trained using SVM learners.

For more information, see “Run MATLAB Functions on a GPU” (Parallel Computing Toolbox).

See Also
ClassificationECOC | CompactClassificationECOC | edge | resubMargin | predict |
fitcecoc | loss

Topics
“Quick Start Parallel Computing for Statistics and Machine Learning Toolbox” on page 33-2
“Reproducibility in Parallel Statistical Computations” on page 33-16
“Concepts of Parallel Computing in Statistics and Machine Learning Toolbox” on page 33-6
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margin
Classification margins

Syntax
M = margin(ens,tbl,ResponseVarName)
M = margin(ens,tbl,Y)
M = margin(ens,X,Y)
M = margin( ___ Name,Value)

Description
M = margin(ens,tbl,ResponseVarName) returns the classification margin for the predictions of
ens on data tbl, when the true classifications are tbl.ResponseVarName.

M = margin(ens,tbl,Y) returns the classification margin for the predictions of ens on data tbl,
when the true classifications are Y.

M = margin(ens,X,Y) returns the classification margin for the predictions of ens on data X, when
the true classifications are Y.

M = margin( ___ Name,Value) calculates margin with additional options specified by one or more
Name,Value pair arguments, using any of the previous syntaxes.

Input Arguments
ens

Classification ensemble created with fitcensemble, or a compact classification ensemble created
with compact.

tbl

Sample data, specified as a table. Each row of tbl corresponds to one observation, and each column
corresponds to one predictor variable. tbl must contain all of the predictors used to train the model.
Multicolumn variables and cell arrays other than cell arrays of character vectors are not allowed.

If you trained ens using sample data contained in a table, then the input data for this method must
also be in a table.

ResponseVarName

Response variable name, specified as the name of a variable in tbl.

You must specify ResponseVarName as a character vector or string scalar. For example, if the
response variable Y is stored as tbl.Y, then specify it as 'Y'. Otherwise, the software treats all
columns of tbl, including Y, as predictors when training the model.
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X

Matrix of data to classify. Each row of X represents one observation, and each column represents one
predictor. X must have the same number of columns as the data used to train ens. X should have the
same number of rows as the number of elements in Y.

If you trained ens using sample data contained in a matrix, then the input data for this method must
also be in a matrix.

Y

Class labels of observations in tbl or X. Y should be of the same type as the classification used to
train ens, and its number of elements should equal the number of rows of tbl or X.

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.

learners

Indices of weak learners in the ensemble ranging from 1 to ens.NumTrained. margin uses only
these learners for calculating loss.

Default: 1:NumTrained

UseObsForLearner

A logical matrix of size N-by-T, where:

• N is the number of rows of X.
• T is the number of weak learners in ens.

When UseObsForLearner(i,j) is true, learner j is used in predicting the class of row i of X.

Default: true(N,T)

UseParallel

Indication to perform inference in parallel, specified as false (compute serially) or true (compute in
parallel). Parallel computation requires Parallel Computing Toolbox. Parallel inference can be faster
than serial inference, especially for large datasets. Parallel computation is supported only for tree
learners.

Default: false

Output Arguments
M

A numeric column vector with the same number of rows as tbl or X. Each row of M gives the
classification margin for that row of tbl or X.
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Examples
Find Classification Margin

Find the margin for classifying an average flower from the fisheriris data as 'versicolor'.

Load the Fisher iris data set.

load fisheriris

Train an ensemble of 100 boosted classification trees using AdaBoostM2.

t = templateTree('MaxNumSplits',1); % Weak learner template tree object
ens = fitcensemble(meas,species,'Method','AdaBoostM2','Learners',t);

Classify an average flower and find the classification margin.

flower = mean(meas);
predict(ens,flower)

ans = 1x1 cell array
    {'versicolor'}

margin(ens,flower,'versicolor')

ans = 3.2140

More About
Margin

The classification margin is the difference between the classification score for the true class and
maximal classification score for the false classes. Margin is a column vector with the same number of
rows as in the matrix X.

Score (ensemble)

For ensembles, a classification score represents the confidence of a classification into a class. The
higher the score, the higher the confidence.

Different ensemble algorithms have different definitions for their scores. Furthermore, the range of
scores depends on ensemble type. For example:

• AdaBoostM1 scores range from –∞ to ∞.
• Bag scores range from 0 to 1.

Extended Capabilities
Tall Arrays
Calculate with arrays that have more rows than fit in memory.

Usage notes and limitations:
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• You cannot use UseParallel with tall arrays.

For more information, see “Tall Arrays”.

Automatic Parallel Support
Accelerate code by automatically running computation in parallel using Parallel Computing Toolbox™.

To run in parallel, set the UseParallel name-value argument to true in the call to this function.

For more general information about parallel computing, see “Run MATLAB Functions with Automatic
Parallel Support” (Parallel Computing Toolbox).

You cannot use UseParallel with tall or GPU arrays.

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

Usage notes and limitations:

• The margin function does not support ensembles trained using decision tree learners with
surrogate splits.

For more information, see “Run MATLAB Functions on a GPU” (Parallel Computing Toolbox).

See Also
predict | edge | loss
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margin
Classification margins for naive Bayes classifier

Syntax
m = margin(Mdl,tbl,ResponseVarName)
m = margin(Mdl,tbl,Y)
m = margin(Mdl,X,Y)

Description
m = margin(Mdl,tbl,ResponseVarName) returns the “Classification Margin” on page 35-4684
(m) for the trained naive Bayes classifier Mdl using the predictor data in table tbl and the class
labels in tbl.ResponseVarName.

m = margin(Mdl,tbl,Y) returns the classification margins for Mdl using the predictor data in
table tbl and the class labels in vector Y.

m = margin(Mdl,X,Y) returns the classification margins for Mdl using the predictor data in matrix
X and the class labels in Y.

m is returned as a numeric vector with the same length as Y. The software estimates each entry of m
using the trained naive Bayes classifier Mdl, the corresponding row of X, and the true class label Y.

Examples

Estimate Test Sample Classification Margins of Naive Bayes Classifier

Estimate the test sample classification margins of a naive Bayes classifier. An observation margin is
the observed true class score minus the maximum false class score among all scores in the respective
class.

Load the fisheriris data set. Create X as a numeric matrix that contains four petal measurements
for 150 irises. Create Y as a cell array of character vectors that contains the corresponding iris
species.

load fisheriris
X = meas;
Y = species;
rng('default')  % for reproducibility

Randomly partition observations into a training set and a test set with stratification, using the class
information in Y. Specify a 30% holdout sample for testing.

cv = cvpartition(Y,'HoldOut',0.30);

Extract the training and test indices.

trainInds = training(cv);
testInds = test(cv);
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Specify the training and test data sets.

XTrain = X(trainInds,:);
YTrain = Y(trainInds);
XTest = X(testInds,:);
YTest = Y(testInds);

Train a naive Bayes classifier using the predictors XTrain and class labels YTrain. A recommended
practice is to specify the class names. fitcnb assumes that each predictor is conditionally and
normally distributed.

Mdl = fitcnb(XTrain,YTrain,'ClassNames',{'setosa','versicolor','virginica'})

Mdl = 
  ClassificationNaiveBayes
              ResponseName: 'Y'
     CategoricalPredictors: []
                ClassNames: {'setosa'  'versicolor'  'virginica'}
            ScoreTransform: 'none'
           NumObservations: 105
         DistributionNames: {'normal'  'normal'  'normal'  'normal'}
    DistributionParameters: {3x4 cell}

  Properties, Methods

Mdl is a trained ClassificationNaiveBayes classifier.

Estimate the test sample classification margins.

m = margin(Mdl,XTest,YTest);
median(m)

ans = 1.0000

Display the histogram of the test sample classification margins.

histogram(m,length(unique(m)),'Normalization','probability')
xlabel('Test Sample Margins')
ylabel('Probability')
title('Probability Distribution of the Test Sample Margins')
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Classifiers that yield relatively large margins are preferred.

Select Naive Bayes Classifier Features by Examining Test Sample Margins

Perform feature selection by comparing test sample margins from multiple models. Based solely on
this comparison, the classifier with the highest margins is the best model.

Load the fisheriris data set. Specify the predictors X and class labels Y.

load fisheriris
X = meas;
Y = species;
rng('default')  % for reproducibility

Randomly partition observations into a training set and a test set with stratification, using the class
information in Y. Specify a 30% holdout sample for testing. Partition defines the data set partition.

cv = cvpartition(Y,'Holdout',0.30);

Extract the training and test indices.

trainInds = training(cv);
testInds = test(cv);

Specify the training and test data sets.
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XTrain = X(trainInds,:);
YTrain = Y(trainInds);
XTest = X(testInds,:);
YTest = Y(testInds);

Define these two data sets:

• fullX contains all predictors.
• partX contains the last two predictors.

fullX = XTrain;
partX = XTrain(:,3:4);

Train a naive Bayes classifier for each predictor set.

fullMdl = fitcnb(fullX,YTrain);
partMdl = fitcnb(partX,YTrain);

fullMdl and partMdl are trained ClassificationNaiveBayes classifiers.

Estimate the test sample margins for each classifier.

fullM = margin(fullMdl,XTest,YTest);
median(fullM)

ans = 1.0000

partM = margin(partMdl,XTest(:,3:4),YTest);
median(partM)

ans = 1.0000

Display the distribution of the margins for each model using boxplots.

boxplot([fullM partM],'Labels',{'All Predictors','Two Predictors'})
ylim([0.98 1.01]) % Modify the y-axis limits to see the boxes
title('Boxplots of Test Sample Margins')
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The margins for fullMdl (all predictors model) and partMdl (two predictors model) have a similar
distribution with the same median. partMdl is less complex but has outliers.

Input Arguments
Mdl — Naive Bayes classification model
ClassificationNaiveBayes model object | CompactClassificationNaiveBayes model object

Naive Bayes classification model, specified as a ClassificationNaiveBayes model object or
CompactClassificationNaiveBayes model object returned by fitcnb or compact, respectively.

tbl — Sample data
table

Sample data used to train the model, specified as a table. Each row of tbl corresponds to one
observation, and each column corresponds to one predictor variable. tbl must contain all the
predictors used to train Mdl. Multicolumn variables and cell arrays other than cell arrays of character
vectors are not allowed. Optionally, tbl can contain additional columns for the response variable and
observation weights.

If you train Mdl using sample data contained in a table, then the input data for margin must also be
in a table.

ResponseVarName — Response variable name
name of a variable in tbl
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Response variable name, specified as the name of a variable in tbl.

You must specify ResponseVarName as a character vector or string scalar. For example, if the
response variable y is stored as tbl.y, then specify it as 'y'. Otherwise, the software treats all
columns of tbl, including y, as predictors.

If tbl contains the response variable used to train Mdl, then you do not need to specify
ResponseVarName.

The response variable must be a categorical, character, or string array, logical or numeric vector, or
cell array of character vectors. If the response variable is a character array, then each element must
correspond to one row of the array.
Data Types: char | string

X — Predictor data
numeric matrix

Predictor data, specified as a numeric matrix.

Each row of X corresponds to one observation (also known as an instance or example), and each
column corresponds to one variable (also known as a feature). The variables in the columns of X must
be the same as the variables that trained the Mdl classifier.

The length of Y and the number of rows of X must be equal.
Data Types: double | single

Y — Class labels
categorical array | character array | string array | logical vector | numeric vector | cell array of
character vectors

Class labels, specified as a categorical, character, or string array, logical or numeric vector, or cell
array of character vectors. Y must have the same data type as Mdl.ClassNames. (The software
treats string arrays as cell arrays of character vectors.)

The length of Y must be equal to the number of rows of tbl or X.
Data Types: categorical | char | string | logical | single | double | cell

More About
Classification Edge

The classification edge is the weighted mean of the classification margins.

If you supply weights, then the software normalizes them to sum to the prior probability of their
respective class. The software uses the normalized weights to compute the weighted mean.

When choosing among multiple classifiers to perform a task such as feature section, choose the
classifier that yields the highest edge.
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Classification Margin

The classification margin for each observation is the difference between the score for the true class
and the maximal score for the false classes. Margins provide a classification confidence measure;
among multiple classifiers, those that yield larger margins (on the same scale) are better.

Posterior Probability

The posterior probability is the probability that an observation belongs in a particular class, given the
data.

For naive Bayes, the posterior probability that a classification is k for a given observation (x1,...,xP) is

P Y = k x1, .., xP =
P X1, ..., XP y = k π Y = k

P X1, ..., XP
,

where:

• P X1, ..., XP y = k  is the conditional joint density of the predictors given they are in class k.
Mdl.DistributionNames stores the distribution names of the predictors.

• π(Y = k) is the class prior probability distribution. Mdl.Prior stores the prior distribution.
• P X1, .., XP  is the joint density of the predictors. The classes are discrete, so

P(X1, ..., XP) = ∑
k = 1

K
P(X1, ..., XP y = k)π(Y = k) .

Prior Probability

The prior probability of a class is the assumed relative frequency with which observations from that
class occur in a population.

Score

The naive Bayes score is the class posterior probability given the observation.

Version History
Introduced in R2014b

Extended Capabilities
Tall Arrays
Calculate with arrays that have more rows than fit in memory.

This function fully supports tall arrays. For more information, see “Tall Arrays”.

See Also
ClassificationNaiveBayes | CompactClassificationNaiveBayes | loss | predict | edge |
fitcnb

Topics
“Naive Bayes Classification” on page 22-2
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margin
Package: 

Classification margins for neural network classifier

Syntax
m = margin(Mdl,Tbl,ResponseVarName)
m = margin(Mdl,Tbl,Y)

m = margin(Mdl,X,Y)
m = margin(Mdl,X,Y,'ObservationsIn',dimension)

Description
m = margin(Mdl,Tbl,ResponseVarName) returns the classification margins on page 35-4692 for
the trained neural network classifier Mdl using the predictor data in table Tbl and the class labels in
the ResponseVarName table variable.

m is returned as a numeric vector, whose ith entry corresponds to the ith observation in Tbl.

m = margin(Mdl,Tbl,Y) returns the classification margins for the classifier Mdl using the
predictor data in table Tbl and the class labels in vector Y.

m = margin(Mdl,X,Y) returns the classification margins for the trained neural network classifier
Mdl using the predictor data X and the corresponding class labels in Y.

m is returned as a numeric vector, whose ith entry corresponds to the ith observation in X.

m = margin(Mdl,X,Y,'ObservationsIn',dimension) specifies the predictor data observation
dimension, either 'rows' (default) or 'column'. For example, specify
'ObservationsIn','columns' to indicate that columns in the predictor data correspond to
observations.

Examples

Test Set Classification Margins of Neural Network

Calculate the test set classification margins of a neural network classifier.

Load the patients data set. Create a table from the data set. Each row corresponds to one patient,
and each column corresponds to a diagnostic variable. Use the Smoker variable as the response
variable, and the rest of the variables as predictors.

load patients
tbl = table(Diastolic,Systolic,Gender,Height,Weight,Age,Smoker);

Separate the data into a training set tblTrain and a test set tblTest by using a stratified holdout
partition. The software reserves approximately 30% of the observations for the test data set and uses
the rest of the observations for the training data set.
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rng("default") % For reproducibility of the partition
c = cvpartition(tbl.Smoker,"Holdout",0.30);
trainingIndices = training(c);
testIndices = test(c);
tblTrain = tbl(trainingIndices,:);
tblTest = tbl(testIndices,:);

Train a neural network classifier using the training set. Specify the Smoker column of tblTrain as
the response variable. Specify to standardize the numeric predictors.

Mdl = fitcnet(tblTrain,"Smoker", ...
    "Standardize",true);

Calculate the test set classification margins. Because the test set includes only 30 observations,
display the margins using a bar graph.

m = margin(Mdl,tblTest,"Smoker");
bar(m)
xlabel("Observation")
ylabel("Margin")
title("Test Set Margins")

Only the sixth and twenty-eighth observations have negative margins, which indicates that the model
performs well overall.
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Select Features to Include in Neural Network Classifier

Perform feature selection by comparing test set classification margins, edges, errors, and predictions.
Compare the test set metrics for a model trained using all the predictors to the test set metrics for a
model trained using only a subset of the predictors.

Load the sample file fisheriris.csv, which contains iris data including sepal length, sepal width,
petal length, petal width, and species type. Read the file into a table.

fishertable = readtable('fisheriris.csv');

Separate the data into a training set trainTbl and a test set testTbl by using a stratified holdout
partition. The software reserves approximately 30% of the observations for the test data set and uses
the rest of the observations for the training data set.

rng("default")
c = cvpartition(fishertable.Species,"Holdout",0.3);
trainTbl = fishertable(training(c),:);
testTbl = fishertable(test(c),:);

Train one neural network classifier using all the predictors in the training set, and train another
classifier using all the predictors except PetalWidth. For both models, specify Species as the
response variable, and standardize the predictors.

allMdl = fitcnet(trainTbl,"Species","Standardize",true);
subsetMdl = fitcnet(trainTbl,"Species ~ SepalLength + SepalWidth + PetalLength", ...
    "Standardize",true);

Calculate the test set classification margins for the two models. Because the test set includes only 45
observations, display the margins using bar graphs.

For each observation, the classification margin is the difference between the classification score for
the true class and the maximal score for the false classes. Because neural network classifiers return
classification scores that are posterior probabilities, margin values close to 1 indicate confident
classifications and negative margin values indicate misclassifications.

tiledlayout(2,1)

% Top axes
ax1 = nexttile;
allMargins = margin(allMdl,testTbl);
bar(ax1,allMargins)
xlabel(ax1,"Observation")
ylabel(ax1,"Margin")
title(ax1,"All Predictors")

% Bottom axes
ax2 = nexttile;
subsetMargins = margin(subsetMdl,testTbl);
bar(ax2,subsetMargins)
xlabel(ax2,"Observation")
ylabel(ax2,"Margin")
title(ax2,"Subset of Predictors")
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Compare the test set classification edge, or mean of the classification margins, of the two models.

allEdge = edge(allMdl,testTbl)

allEdge = 0.8198

subsetEdge = edge(subsetMdl,testTbl)

subsetEdge = 0.9556

Based on the test set classification margins and edges, the model trained on a subset of the
predictors seems to outperform the model trained on all the predictors.

Compare the test set classification error of the two models.

allError = loss(allMdl,testTbl);
allAccuracy = 1-allError

allAccuracy = 0.9111

subsetError = loss(subsetMdl,testTbl);
subsetAccuracy = 1-subsetError

subsetAccuracy = 0.9778

Again, the model trained using only a subset of the predictors seems to perform better than the
model trained using all the predictors.

Visualize the test set classification results using confusion matrices.
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allLabels = predict(allMdl,testTbl);
figure
confusionchart(testTbl.Species,allLabels)
title("All Predictors")

subsetLabels = predict(subsetMdl,testTbl);
figure
confusionchart(testTbl.Species,subsetLabels)
title("Subset of Predictors")
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The model trained using all the predictors misclassifies four of the test set observations. The model
trained using a subset of the predictors misclassifies only one of the test set observations.

Given the test set performance of the two models, consider using the model trained using all the
predictors except PetalWidth.

Input Arguments
Mdl — Trained neural network classifier
ClassificationNeuralNetwork model object | CompactClassificationNeuralNetwork
model object

Trained neural network classifier, specified as a ClassificationNeuralNetwork model object or
CompactClassificationNeuralNetwork model object returned by fitcnet or compact,
respectively.

Tbl — Sample data
table

Sample data, specified as a table. Each row of Tbl corresponds to one observation, and each column
corresponds to one predictor variable. Optionally, Tbl can contain an additional column for the
response variable. Tbl must contain all of the predictors used to train Mdl. Multicolumn variables
and cell arrays other than cell arrays of character vectors are not allowed.
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• If Tbl contains the response variable used to train Mdl, then you do not need to specify
ResponseVarName or Y.

• If you trained Mdl using sample data contained in a table, then the input data for margin must
also be in a table.

• If you set 'Standardize',true in fitcnet when training Mdl, then the software standardizes
the numeric columns of the predictor data using the corresponding means and standard
deviations.

Data Types: table

ResponseVarName — Response variable name
name of variable in Tbl

Response variable name, specified as the name of a variable in Tbl. If Tbl contains the response
variable used to train Mdl, then you do not need to specify ResponseVarName.

If you specify ResponseVarName, then you must specify it as a character vector or string scalar. For
example, if the response variable is stored as Tbl.Y, then specify ResponseVarName as 'Y'.
Otherwise, the software treats all columns of Tbl, including Tbl.Y, as predictors.

The response variable must be a categorical, character, or string array; a logical or numeric vector;
or a cell array of character vectors. If the response variable is a character array, then each element
must correspond to one row of the array.
Data Types: char | string

Y — Class labels
categorical array | character array | string array | logical vector | numeric vector | cell array of
character vectors

Class labels, specified as a categorical, character, or string array; logical or numeric vector; or cell
array of character vectors.

• The data type of Y must be the same as the data type of Mdl.ClassNames. (The software treats
string arrays as cell arrays of character vectors.)

• The distinct classes in Y must be a subset of Mdl.ClassNames.
• If Y is a character array, then each element must correspond to one row of the array.
• The length of Y must be equal to the number of observations in X or Tbl.

Data Types: categorical | char | string | logical | single | double | cell

X — Predictor data
numeric matrix

Predictor data, specified as a numeric matrix. By default, margin assumes that each row of X
corresponds to one observation, and each column corresponds to one predictor variable.

Note If you orient your predictor matrix so that observations correspond to columns and specify
'ObservationsIn','columns', then you might experience a significant reduction in computation
time.

The length of Y and the number of observations in X must be equal.
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If you set 'Standardize',true in fitcnet when training Mdl, then the software standardizes the
numeric columns of the predictor data using the corresponding means and standard deviations.
Data Types: single | double

dimension — Predictor data observation dimension
'rows' (default) | 'columns'

Predictor data observation dimension, specified as 'rows' or 'columns'.

Note If you orient your predictor matrix so that observations correspond to columns and specify
'ObservationsIn','columns', then you might experience a significant reduction in computation
time. You cannot specify 'ObservationsIn','columns' for predictor data in a table.

Data Types: char | string

More About
Classification Edge

The classification edge is the mean of the classification margins.

One way to choose among multiple classifiers, for example, to perform feature selection, is to choose
the classifier that yields the greatest edge.

Classification Margin

The classification margin for binary classification is, for each observation, the difference between the
classification score for the true class and the classification score for the false class. The classification
margin for multiclass classification is the difference between the classification score for the true class
and the maximal score for the false classes.

If the margins are on the same scale (that is, the score values are based on the same score
transformation), then they serve as a classification confidence measure. Among multiple classifiers,
those that yield greater margins are better.

Version History
Introduced in R2021a

See Also
fitcnet | ClassificationNeuralNetwork | CompactClassificationNeuralNetwork | edge |
loss | predict

Topics
“Assess Neural Network Classifier Performance” on page 19-181
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margin
Package: classreg.learning.classif

Find classification margins for support vector machine (SVM) classifier

Syntax
m = margin(SVMModel,Tbl,ResponseVarName)
m = margin(SVMModel,Tbl,Y)

m = margin(SVMModel,X,Y)

Description
m = margin(SVMModel,Tbl,ResponseVarName) returns the classification margins on page 35-
4696 (m) for the trained support vector machine (SVM) classifier SVMModel using the sample data in
table Tbl and the class labels in Tbl.ResponseVarName.

m is returned as a numeric vector with the same length as Y. The software estimates each entry of m
using the trained SVM classifier SVMModel, the corresponding row of X, and the true class label Y.

m = margin(SVMModel,Tbl,Y) returns the classification margins (m) for the trained SVM classifier
SVMModel using the sample data in table Tbl and the class labels in Y.

m = margin(SVMModel,X,Y) returns the classification margins for SVMModel using the predictor
data in matrix X and the class labels in Y.

Examples

Estimate Test Sample Classification Margins of SVM Classifiers

Load the ionosphere data set.

load ionosphere
rng(1); % For reproducibility

Train an SVM classifier. Specify a 15% holdout sample for testing, standardize the data, and specify
that 'g' is the positive class.

CVSVMModel = fitcsvm(X,Y,'Holdout',0.15,'ClassNames',{'b','g'},...
    'Standardize',true);
CompactSVMModel = CVSVMModel.Trained{1}; ...
    % Extract the trained, compact classifier
testInds = test(CVSVMModel.Partition);   % Extract the test indices
XTest = X(testInds,:);
YTest = Y(testInds,:);

CVSVMModel is a ClassificationPartitionedModel classifier. It contains the property Trained,
which is a 1-by-1 cell array holding a CompactClassificationSVM classifier that the software
trained using the training set.
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Estimate the test sample classification margins.

m = margin(CompactSVMModel,XTest,YTest);
m(10:20)

ans = 11×1

    3.5457
    5.5941
    4.9948
    4.5614
   -4.7970
    5.5122
   -2.8774
    1.8671
    9.5002
    9.5035
      ⋮

An observation margin is the observed true class score minus the maximum false class score among
all scores in the respective class. Classifiers that yield relatively large margins are preferred.

Select SVM Classifier Features by Examining Test Sample Margins

Perform feature selection by comparing test sample margins from multiple models. Based solely on
this comparison, the model with the highest margins is the best model.

Load the ionosphere data set.

load ionosphere
rng(1); % For reproducibility

Partition the data set into training and test sets. Specify a 15% holdout sample for testing.

Partition = cvpartition(Y,'Holdout',0.15);
testInds = test(Partition); % Indices for the test set
XTest = X(testInds,:);
YTest = Y(testInds,:);

Partition defines the data set partition.

Define these two data sets:

• fullX contains all predictors (except the removed column of 0s).
• partX contains the last 20 predictors.

fullX = X;
partX = X(:,end-20:end);

Train SVM classifiers for each predictor set. Specify the partition definition.

FullCVSVMModel = fitcsvm(fullX,Y,'CVPartition',Partition);
PartCVSVMModel = fitcsvm(partX,Y,'CVPartition',Partition);
FCSVMModel = FullCVSVMModel.Trained{1};
PCSVMModel = PartCVSVMModel.Trained{1};
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FullCVSVMModel and PartCVSVMModel are ClassificationPartitionedModel classifiers.
They contain the property Trained, which is a 1-by-1 cell array holding a
CompactClassificationSVM classifier that the software trained using the training set.

Estimate the test sample margins for each classifier.

fullM = margin(FCSVMModel,XTest,YTest);
partM = margin(PCSVMModel,XTest(:,end-20:end),YTest);
n = size(XTest,1);
p = sum(fullM < partM)/n

p = 0.2500

Approximately 25% of the margins from the full model are less than those from the model with fewer
predictors. This result suggests that the model trained with all the predictors is better.

Input Arguments
SVMModel — SVM classification model
ClassificationSVM model object | CompactClassificationSVM model object

SVM classification model, specified as a ClassificationSVM model object or
CompactClassificationSVM model object returned by fitcsvm or compact, respectively.

Tbl — Sample data
table

Sample data used to train the model, specified as a table. Each row of Tbl corresponds to one
observation, and each column corresponds to one predictor variable. Optionally, Tbl can contain
additional columns for the response variable and observation weights. Tbl must contain all of the
predictors used to train SVMModel. Multicolumn variables and cell arrays other than cell arrays of
character vectors are not allowed.

If Tbl contains the response variable used to train SVMModel, then you do not need to specify
ResponseVarName or Y.

If you trained SVMModel using sample data contained in a table, then the input data for margin must
also be in a table.

If you set 'Standardize',true in fitcsvm when training SVMModel, then the software
standardizes the columns of the predictor data using the corresponding means in SVMModel.Mu and
the standard deviations in SVMModel.Sigma.
Data Types: table

X — Predictor data
numeric matrix

Predictor data, specified as a numeric matrix.

Each row of X corresponds to one observation (also known as an instance or example), and each
column corresponds to one variable (also known as a feature). The variables in the columns of X must
be the same as the variables that trained the SVMModel classifier.

The length of Y and the number of rows in X must be equal.
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If you set 'Standardize',true in fitcsvm to train SVMModel, then the software standardizes the
columns of X using the corresponding means in SVMModel.Mu and the standard deviations in
SVMModel.Sigma.
Data Types: double | single

ResponseVarName — Response variable name
name of variable in Tbl

Response variable name, specified as the name of a variable in Tbl. If Tbl contains the response
variable used to train SVMModel, then you do not need to specify ResponseVarName.

If you specify ResponseVarName, then you must do so as a character vector or string scalar. For
example, if the response variable is stored as Tbl.Response, then specify ResponseVarName as
'Response'. Otherwise, the software treats all columns of Tbl, including Tbl.Response, as
predictors.

The response variable must be a categorical, character, or string array, logical or numeric vector, or
cell array of character vectors. If the response variable is a character array, then each element must
correspond to one row of the array.
Data Types: char | string

Y — Class labels
categorical array | character array | string array | logical vector | numeric vector | cell array of
character vectors

Class labels, specified as a categorical, character, or string array, logical or numeric vector, or cell
array of character vectors. Y must be the same as the data type of SVMModel.ClassNames. (The
software treats string arrays as cell arrays of character vectors.)

The length of Y must equal the number of rows in Tbl or the number of rows in X.

More About
Classification Edge

The edge is the weighted mean of the classification margins.

The weights are the prior class probabilities. If you supply weights, then the software normalizes
them to sum to the prior probabilities in the respective classes. The software uses the renormalized
weights to compute the weighted mean.

One way to choose among multiple classifiers, for example, to perform feature selection, is to choose
the classifier that yields the highest edge.

Classification Margin

The classification margin for binary classification is, for each observation, the difference between the
classification score for the true class and the classification score for the false class.

The software defines the classification margin for binary classification as

m = 2yf x .
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x is an observation. If the true label of x is the positive class, then y is 1, and –1 otherwise. f(x) is the
positive-class classification score for the observation x. The classification margin is commonly defined
as m = yf(x).

If the margins are on the same scale, then they serve as a classification confidence measure. Among
multiple classifiers, those that yield greater margins are better.

Classification Score

The SVM classification score for classifying observation x is the signed distance from x to the decision
boundary ranging from -∞ to +∞. A positive score for a class indicates that x is predicted to be in that
class. A negative score indicates otherwise.

The positive class classification score f (x) is the trained SVM classification function. f (x) is also the
numerical predicted response for x, or the score for predicting x into the positive class.

f (x) = ∑
j = 1

n
α jy jG(x j, x) + b,

where (α1, ..., αn, b) are the estimated SVM parameters, G(x j, x) is the dot product in the predictor
space between x and the support vectors, and the sum includes the training set observations. The
negative class classification score for x, or the score for predicting x into the negative class, is –f(x).

If G(xj,x) = xj′x (the linear kernel), then the score function reduces to

f x = x/s ′β + b .

s is the kernel scale and β is the vector of fitted linear coefficients.

For more details, see “Understanding Support Vector Machines” on page 19-151.

Algorithms
For binary classification, the software defines the margin for observation j, mj, as

m j = 2y jf (x j),

where yj ∊ {-1,1}, and f(xj) is the predicted score of observation j for the positive class. However, mj =
yjf(xj) is commonly used to define the margin.

Version History
Introduced in R2014a

References
[1] Christianini, N., and J. C. Shawe-Taylor. An Introduction to Support Vector Machines and Other

Kernel-Based Learning Methods. Cambridge, UK: Cambridge University Press, 2000.

Extended Capabilities
Tall Arrays
Calculate with arrays that have more rows than fit in memory.
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This function fully supports tall arrays. For more information, see “Tall Arrays”.

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

Usage notes and limitations:

• The margin function does not support one-class classification models.

For more information, see “Run MATLAB Functions on a GPU” (Parallel Computing Toolbox).

See Also
ClassificationSVM | CompactClassificationSVM | loss | predict | edge | fitcsvm

35 Functions

35-4698



margin
Classification margins

Syntax
m = margin(tree,TBL,ResponseVarName)
m = margin(tree,TBL,Y)
m = margin(tree,X,Y)

Description
m = margin(tree,TBL,ResponseVarName) returns the classification margins for the table of
predictors TBL and class labels TBL.ResponseVarName. For the definition, see “Margin” on page 35-
4701.

m = margin(tree,TBL,Y) returns the classification margins for the table of predictors TBL and
class labels Y.

m = margin(tree,X,Y) returns the classification margins for the matrix of predictors X and class
labels Y.

Input Arguments
tree — Trained classification tree
ClassificationTree model object | CompactClassificationTree model object

Trained classification tree, specified as a ClassificationTree or CompactClassificationTree
model object. That is, tree is a trained classification model returned by fitctree or compact.

TBL — Sample data
table

Sample data, specified as a table. Each row of TBL corresponds to one observation, and each column
corresponds to one predictor variable. Optionally, TBL can contain additional columns for the
response variable and observation weights. TBL must contain all the predictors used to train tree.
Multicolumn variables and cell arrays other than cell arrays of character vectors are not allowed.

If TBL contains the response variable used to train tree, then you do not need to specify
ResponseVarName or Y.

If you train tree using sample data contained in a table, then the input data for this method must
also be in a table.
Data Types: table

X — Data to classify
numeric matrix

Data to classify, specified as a numeric matrix. Each row of X represents one observation, and each
column represents one predictor. X must have the same number of columns as the data used to train
tree. X must have the same number of rows as the number of elements in Y.
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Data Types: single | double

ResponseVarName — Response variable name
name of a variable in TBL

Response variable name, specified as the name of a variable in TBL. If TBL contains the response
variable used to train tree, then you do not need to specify ResponseVarName.

If you specify ResponseVarName, then you must do so as a character vector or string scalar. For
example, if the response variable is stored as TBL.Response, then specify it as 'Response'.
Otherwise, the software treats all columns of TBL, including TBL.ResponseVarName, as predictors.

The response variable must be a categorical, character, or string array, logical or numeric vector, or
cell array of character vectors. If the response variable is a character array, then each element must
correspond to one row of the array.
Data Types: char | string

Y — Class labels
categorical array | character array | string array | logical vector | numeric vector | cell array of
character vectors

Class labels, specified as a categorical, character, or string array, a logical or numeric vector, or a cell
array of character vectors. Y must be of the same type as the classification used to train tree, and its
number of elements must equal the number of rows of X.
Data Types: categorical | char | string | logical | single | double | cell

Output Arguments
m — Margin
numeric column vector

Margin, returned as a numeric column vector of length size(X,1). Each entry in m represents the
margin for the corresponding rows of X and (true class) Y, computed using tree.

Examples
Compute the classification margin for the Fisher iris data, trained on its first two columns of data,
and view the last 10 entries.

load fisheriris
X = meas(:,1:2);
tree = fitctree(X,species);
M = margin(tree,X,species);
M(end-10:end)

ans =
    0.1111
    0.1111
    0.1111
   -0.2857
    0.6364
    0.6364
    0.1111
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    0.7500
    1.0000
    0.6364
    0.2000

The classification tree trained on all the data is better.

tree = fitctree(meas,species);
M = margin(tree,meas,species);
M(end-10:end)

ans =
    0.9565
    0.9565
    0.9565
    0.9565
    0.9565
    0.9565
    0.9565
    0.9565
    0.9565
    0.9565
    0.9565

More About
Margin

The classification margin is the difference between the classification score for the true class and
maximal classification score for the false classes. Margin is a column vector with the same number of
rows as in the matrix X.

Score (tree)

For trees, the score of a classification of a leaf node is the posterior probability of the classification at
that node. The posterior probability of the classification at a node is the number of training sequences
that lead to that node with the classification, divided by the number of training sequences that lead to
that node.

For an example, see “Posterior Probability Definition for Classification Tree” on page 35-6715.

Extended Capabilities
Tall Arrays
Calculate with arrays that have more rows than fit in memory.

This function fully supports tall arrays. For more information, see “Tall Arrays”.

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

Usage notes and limitations:

• The margin function does not support decision tree models trained with surrogate splits.

For more information, see “Run MATLAB Functions on a GPU” (Parallel Computing Toolbox).
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See Also
predict | loss | edge | fitctree
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margin
Classification margin

Syntax
mar = margin(B,TBLnew,Ynew)
mar = margin(B,Xnew,Ynew)
mar = margin(B,TBLnew,Ynew,'param1',val1,'param2',val2,...)
mar = margin(B,Xnew,Ynew,'param1',val1,'param2',val2,...)

Description
mar = margin(B,TBLnew,Ynew) computes the classification margins for the predictors contained
in the table TBLnew given true response Ynew. You can omit Ynew if TBLnew contains the response
variable. If you trained B using sample data contained in a table, then the input data for this method
must also be in a table.

mar = margin(B,Xnew,Ynew) computes the classification margins for the predictors contained in
the matrix Xnew given true response Ynew.

Ynew can be a numeric vector, character matrix, string array, cell array of character vectors,
categorical vector or logical vector. mar is a numeric array of size Nobs-by-NTrees, where Nobs is
the number of rows of TBLnew and Ynew, and NTrees is the number of trees in the ensemble B. For
observation I and tree J, mar(I,J) is the difference between the score for the true class and the
largest score for other classes. This method is available for classification ensembles only.

mar = margin(B,TBLnew,Ynew,'param1',val1,'param2',val2,...) or mar =
margin(B,Xnew,Ynew,'param1',val1,'param2',val2,...) specifies optional parameter
name-value pairs:

'Mode' How the method computes errors. If set to 'cumulative' (default), margin
computes cumulative errors and mar is an Nobs-by-NTrees matrix, where the
first column gives error from trees(1), second column gives error
fromtrees(1:2) etc., up to trees(1:NTrees). If set to 'individual',
mar is a Nobs-by-NTrees matrix, where each element is an error from each
tree in the ensemble. If set to 'ensemble', mar a single column of length
Nobs showing the cumulative margins for the entire ensemble.

'Trees' Vector of indices indicating what trees to include in this calculation. By
default, this argument is set to 'all' and the method uses all trees. If
'Trees' is a numeric vector, the method returns a vector of length NTrees
for 'cumulative' and 'individual' modes, where NTrees is the number
of elements in the input vector, and a scalar for 'ensemble' mode. For
example, in the 'cumulative' mode, the first element gives error from
trees(1), the second element gives error from trees(1:2) etc.

'TreeWeights' Vector of tree weights. This vector must have the same length as the 'Trees'
vector. The method uses these weights to combine output from the specified
trees by taking a weighted average instead of the simple non-weighted
majority vote. You cannot use this argument in the 'individual' mode.
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'UseInstanceForT
ree'

Logical matrix of size Nobs-by-NTrees indicating which trees should be used
to make predictions for each observation. By default the method uses all trees
for all observations.

See Also
margin
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margin
Classification margin

Syntax
mar = margin(B,TBLnew,Ynew)
mar = margin(B,Xnew,Ynew)
mar = margin(B,TBLnew,Ynew,'param1',val1,'param2',val2,...)
mar = margin(B,Xnew,Ynew,'param1',val1,'param2',val2,...)

Description
mar = margin(B,TBLnew,Ynew) computes the classification margins for the predictors contained
in the table TBLnew given true response Ynew. You can omit Ynew if TBLnew contains the response
variable. If you trained B using sample data contained in a table, then the input data for this method
must also be in a table.

mar = margin(B,Xnew,Ynew) computes the classification margins for the predictors contained in
the matrix Xnew given true response Ynew. If you trained B using sample data contained in a matrix,
then the input data for this method must also be in a matrix.

Ynew can be a numeric vector, character matrix, string array, cell array of character vectors,
categorical vector or logical vector. mar is a numeric array of size Nobs-by-NTrees, where Nobs is
the number of rows of TBLnew and Ynew, and NTrees is the number of trees in the ensemble B. For
observation I and tree J, mar(I,J) is the difference between the score for the true class and the
largest score for other classes. This method is available for classification ensembles only.

mar = margin(B,TBLnew,Ynew,'param1',val1,'param2',val2,...) or mar =
margin(B,Xnew,Ynew,'param1',val1,'param2',val2,...) specifies optional parameter
name-value pairs:

'Mode' Character vector or string scalar indicating how the method computes errors.
If set to 'cumulative' (default), margin computes cumulative errors and
mar is an Nobs-by-NTrees matrix, where the first column gives error from
trees(1), second column gives error fromtrees(1:2) etc., up to
trees(1:NTrees). If set to 'individual', mar is a Nobs-by-NTrees
matrix, where each element is an error from each tree in the ensemble. If set
to 'ensemble', mar a single column of length Nobs showing the cumulative
margins for the entire ensemble.

'Trees' Vector of indices indicating what trees to include in this calculation. By
default, this argument is set to 'all' and the method uses all trees. If
'Trees' is a numeric vector, the method returns a vector of length NTrees
for 'cumulative' and 'individual' modes, where NTrees is the number
of elements in the input vector, and a scalar for 'ensemble' mode. For
example, in the 'cumulative' mode, the first element gives error from
trees(1), the second element gives error from trees(1:2) etc.
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'TreeWeights' Vector of tree weights. This vector must have the same length as the 'Trees'
vector. The method uses these weights to combine output from the specified
trees by taking a weighted average instead of the simple non-weighted
majority vote. You cannot use this argument in the 'individual' mode.

'UseInstanceForT
ree'

Logical matrix of size Nobs-by-NTrees indicating which trees should be used
to make predictions for each observation. By default the method uses all trees
for all observations.

See Also
margin
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margmean
Class: RepeatedMeasuresModel

Estimate marginal means

Syntax
tbl = margmean(rm,vars)
tbl = margmean(rm,vars,'alpha',alpha)

Description
tbl = margmean(rm,vars) returns the estimated marginal means for the variables vars, in the
table tbl.

tbl = margmean(rm,vars,'alpha',alpha) returns the 100*(1–alpha)% confidence intervals
for the marginal means.

Input Arguments
rm — Repeated measures model
RepeatedMeasuresModel object

Repeated measures model, returned as a RepeatedMeasuresModel object.

For properties and methods of this object, see RepeatedMeasuresModel.

vars — Variables for which to compute the marginal means
character vector | string scalar | string array | cell array of character vectors

Variables for which to compute the marginal means, specified as a character vector or string scalar
representing the name of a between or within-subjects factor in rm, or a string array or cell array of
character vectors representing the names of multiple variables. Each between-subjects factor must
be categorical.

For example, if you want to compute the marginal means for the variables Drug and Gender, then you
can specify as follows.
Example: {'Drug','Gender'}
Data Types: char | string | cell

alpha — Significance level
0.05 (default) | scalar value in the range of 0 to 1

Significance level of the confidence intervals for population marginal means, specified as a scalar
value in the range of 0 to 1. The confidence level is 100*(1–alpha)%.

For example, you can specify a 99% confidence level as follows.
Example: 'alpha',0.01
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Data Types: double | single

Output Arguments
tbl — Estimated marginal means
table

Estimated marginal means, returned as a table. tbl contains one row for each combination of the
groups of the variables you specify in vars, one column for each variable, and the following columns.

Column name Description
Mean Estimated marginal means
StdErr Standard errors of the estimates
Lower Lower limit of a 95% confidence interval for the true population mean
Upper Upper limit of a 95% confidence interval for the true population mean

Examples

Compute Marginal Means Grouped by Two Factors

Load the sample data.

load repeatedmeas

The table between includes the between-subject variables age, IQ, group, gender, and eight repeated
measures y1 to y8 as responses. The table within includes the within-subject variables w1 and w2.
This is simulated data.

Fit a repeated measures model, where the repeated measures y1 to y8 are the responses, and age,
IQ, group, gender, and the group-gender interaction are the predictor variables. Also specify the
within-subject design matrix.

rm = fitrm(between,'y1-y8 ~ Group*Gender + Age + IQ','WithinDesign',within);

Compute the marginal means grouped by the factors Group and Gender.

M = margmean(rm,{'Group' 'Gender'})

M=6×6 table
    Group    Gender     Mean      StdErr     Lower       Upper 
    _____    ______    _______    ______    ________    _______

      A      Female     15.946    5.6153      4.3009     27.592
      A      Male       8.0726    5.7236     -3.7973     19.943
      B      Female     11.758    5.7091    -0.08189     23.598
      B      Male       2.2858    5.6748      -9.483     14.055
      C      Female    -8.6183     5.871     -20.794     3.5574
      C      Male      -13.551    5.7283     -25.431    -1.6712

Display the description for table M.

M.Properties.Description
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ans = 
    'Estimated marginal means
     Means computed with Age=13.7, IQ=98.2667'

Compute Estimated Marginal Means and Confidence Intervals

Load the sample data.

load fisheriris

The column vector, species, consists of iris flowers of three different species, setosa, versicolor,
virginica. The double matrix meas consists of four types of measurements on the flowers, the length
and width of sepals and petals in centimeters, respectively.

Store the data in a table array.

t = table(species,meas(:,1),meas(:,2),meas(:,3),meas(:,4),...
'VariableNames',{'species','meas1','meas2','meas3','meas4'});
Meas = dataset([1 2 3 4]','VarNames',{'Measurements'});

Fit a repeated measures model, where the measurements are the responses and the species is the
predictor variable.

rm = fitrm(t,'meas1-meas4~species','WithinDesign',Meas);

Compute the marginal means grouped by the factor species.

margmean(rm,'species')

ans=3×5 table
       species         Mean      StdErr     Lower     Upper 
    ______________    ______    ________    ______    ______

    {'setosa'    }    2.5355    0.042807    2.4509    2.6201
    {'versicolor'}     3.573    0.042807    3.4884    3.6576
    {'virginica' }     4.285    0.042807    4.2004    4.3696

StdError field shows the standard errors of the estimated marginal means. The Lower and Upper
fields show the lower and upper bounds for the 95% confidence intervals of the group marginal
means, respectively. None of the confidence intervals overlap, which indicates that marginal means
differ with species. You can also plot the estimated marginal means using the plotprofile method.

Compute the 99% confidence intervals for the marginal means.

margmean(rm,'species','alpha',0.01)

ans=3×5 table
       species         Mean      StdErr     Lower     Upper 
    ______________    ______    ________    ______    ______

    {'setosa'    }    2.5355    0.042807    2.4238    2.6472
    {'versicolor'}     3.573    0.042807    3.4613    3.6847
    {'virginica' }     4.285    0.042807    4.1733    4.3967
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See Also
plotprofile | fitrm | multcompare
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mauchly
Class: RepeatedMeasuresModel

Mauchly’s test for sphericity

Syntax
tbl = mauchly(rm)
tbl = mauchly(rm,C)

Description
tbl = mauchly(rm) returns the result of the Mauchly’s test for sphericity for the repeated
measures model rm.

It tests the null hypothesis that the sphericity assumption is true for the response variables in rm.

For more information, see “Mauchly’s Test of Sphericity” on page 9-57.

tbl = mauchly(rm,C) returns the result of the Mauchly’s test based on the contrast matrix C.

Input Arguments
rm — Repeated measures model
RepeatedMeasuresModel object

Repeated measures model, returned as a RepeatedMeasuresModel object.

For properties and methods of this object, see RepeatedMeasuresModel.

C — Contrasts
matrix

Contrasts, specified as a matrix. The default value of C is the Q factor in a QR decomposition of the
matrix M, where M is defined so that Y*M is the difference between all successive pairs of columns of
the repeated measures matrix Y.
Data Types: single | double

Output Arguments
tbl — Results of Mauchly’s test of sphericity
table

Results of Mauchly’s test for sphericity for the repeated measures model rm, returned as a table.

tbl contains the following columns.
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Column Name Definition
W Value of Mauchly’s W statistic
ChiStat Chi-square statistic value
DF Degrees of freedom of the Chi-square statistic
pValue p-value corresponding to the Chi-square statistic

Data Types: table

Examples

Perform Mauchly’s Test

Load the sample data.

load fisheriris

The column vector species consists of iris flowers of three different species: setosa, versicolor, and
virginica. The double matrix meas consists of four types of measurements on the flowers: the length
and width of sepals and petals in centimeters, respectively.

Store the data in a table array.

t = table(species,meas(:,1),meas(:,2),meas(:,3),meas(:,4),...
'VariableNames',{'species','meas1','meas2','meas3','meas4'});
Meas = dataset([1 2 3 4]','VarNames',{'Measurements'});

Fit a repeated measures model, where the measurements are the responses and the species is the
predictor variable.

rm = fitrm(t,'meas1-meas4~species','WithinDesign',Meas);

Perform Mauchly’s test to assess the sphericity assumption.

mauchly(rm)

ans=1×4 table
       W       ChiStat    DF      pValue  
    _______    _______    __    __________

    0.55814    84.976     5     7.6149e-17

The small p-value (in the pValue field) indicates that the sphericity, hence the compound symmetry
assumption, does not hold. You should use epsilon corrections to compute the p-values for a repeated
measures anova. You can compute the epsilon corrections using the epsilon method and perform
the repeated measures anova with the corrected p-values using the ranova method.

See Also
epsilon | ranova | fitrm

Topics
“Mauchly’s Test of Sphericity” on page 9-57
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“Compound Symmetry Assumption and Epsilon Corrections” on page 9-55
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mat2dataset
(Not Recommended) Convert matrix to dataset array

Note The dataset data type is not recommended. To work with heterogeneous data, use the
MATLAB® table data type instead. See MATLAB table documentation for more information.

Syntax
ds = mat2dataset(X)
ds = mat2dataset(X,Name,Value)

Description
ds = mat2dataset(X) converts a matrix to a dataset array.

ds = mat2dataset(X,Name,Value) performs the conversion using additional options specified by
one or more Name,Value pair arguments.

Examples

Convert Matrix to Dataset Array

Convert a matrix to a dataset array using the default options.

Load sample data.

load('fisheriris')
X = meas;
size(X)

ans = 1×2

   150     4

Convert the matrix to a dataset array.

ds = mat2dataset(X);
size(ds)

ans = 1×2

   150     4

ds(1:5,:)

ans = 
    X1     X2     X3     X4 
    5.1    3.5    1.4    0.2
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    4.9      3    1.4    0.2
    4.7    3.2    1.3    0.2
    4.6    3.1    1.5    0.2
      5    3.6    1.4    0.2

When you do not specify variable names, mat2dataset uses the matrix name and column numbers
to create default variable names.

Convert Matrix to Dataset Array with Variable Names

Load sample data.

load('fisheriris')
X = meas;
size(X)

ans = 1×2

   150     4

Convert the matrix to a dataset array, providing a variable name for each of the four column of X.

ds = mat2dataset(X,'VarNames',{'SLength',...
'SWidth','PLength','PWidth'});
size(ds)

ans = 1×2

   150     4

ds(1:5,:)

ans = 
    SLength    SWidth    PLength    PWidth
    5.1        3.5       1.4        0.2   
    4.9          3       1.4        0.2   
    4.7        3.2       1.3        0.2   
    4.6        3.1       1.5        0.2   
      5        3.6       1.4        0.2   

Create a Dataset Array with Multicolumn Variables

Convert a matrix to a dataset array containing multicolumn variables.

Load sample data.

load('fisheriris')
X = meas;
size(X)
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ans = 1×2

   150     4

Convert the matrix to a dataset array, combining the sepal measurements (the first two columns) into
one variable named SepalMeas, and the petal measurements (third and fourth columns) into one
variable names PetalMeas.

ds = mat2dataset(X,'NumCols',[2,2],...
'VarNames',{'SepalMeas','PetalMeas'});
ds(1:5,:)

ans = 
    SepalMeas          PetalMeas      
    5.1         3.5    1.4         0.2
    4.9           3    1.4         0.2
    4.7         3.2    1.3         0.2
    4.6         3.1    1.5         0.2
      5         3.6    1.4         0.2

The output dataset array has 150 observations and 2 variables.

size(ds)

ans = 1×2

   150     2

Input Arguments
X — Input matrix
matrix

Input matrix to convert to a dataset array, specified as an M-by-N numeric matrix. Each column of X
becomes a variable in the output M-by-N dataset array.
Data Types: single | double

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: 'NumCols',[1,1,2,1] specifies that the 3rd and 4th columns of the input matrix should
be combined into a single variable.

VarNames — Variable names for output dataset array
string array | cell array of character vectors
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Variable names for the output dataset array, specified as the comma-separated pair consisting of
'VarNames' and a string array or cell array of character vectors. You must provide a variable name
for each variable in ds. The names must be valid MATLAB identifiers, and must be unique.
Example: 'VarNames',{'myVar1','myVar2','myVar3'}

ObsNames — Observation names for output dataset array
string array | cell array of character vectors

Observation names for the output dataset array, specified as the comma-separated pair consisting of
'ObsNames' and a string array or cell array of character vectors. The names do not need to be valid
MATLAB identifiers, but they must be unique.

NumCols — Number of columns for each variable
vector of nonnegative integers

Number of columns for each variable in ds, specified as the comma-separated pair consisting of
'NumCols' and a vector of nonnegative integers. When the number of columns for a variable is
greater than one, mat2dataset combines multiple columns in X into a single variable in ds. The
vector you assign to NumCols must sum to size(X,2).

For example, to convert a matrix with eight columns into a dataset array with five variables, specify a
vector with five elements that sum to eight, such as 'NumCols',[1,1,3,1,2].

Output Arguments
ds — Output dataset array
dataset array

Output dataset array, returned by default with a variable for each column of X, and an observation for
each row of X. If you specify NumCols, then the number of variables in ds is equal to the length of the
specified vector of column numbers.

Version History
Introduced in R2012b

See Also
cell2dataset | dataset | struct2dataset

Topics
“Create a Dataset Array from Workspace Variables” on page 2-58
“Create a Dataset Array from a File” on page 2-63
“Dataset Arrays” on page 2-113
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mdscale
Nonclassical multidimensional scaling

Syntax
Y = mdscale(D,p)
[Y,stress] = mdscale(D,p)
[Y,stress,disparities] = mdscale(D,p)
[...] = mdscale(D,p,'Name',value)

Description
Y = mdscale(D,p) performs nonmetric multidimensional scaling on the n-by-n dissimilarity matrix
D, and returns Y, a configuration of n points (rows) in p dimensions (columns). The Euclidean
distances between points in Y approximate a monotonic transformation of the corresponding
dissimilarities in D. By default, mdscale uses Kruskal's normalized stress1 criterion.

You can specify D as either a full n-by-n matrix, or in upper triangle form such as is output by pdist.
A full dissimilarity matrix must be real and symmetric, and have zeros along the diagonal and non-
negative elements everywhere else. A dissimilarity matrix in upper triangle form must have real, non-
negative entries. mdscale treats NaNs in D as missing values, and ignores those elements. Inf is not
accepted.

You can also specify D as a full similarity matrix, with ones along the diagonal and all other elements
less than one. mdscale transforms a similarity matrix to a dissimilarity matrix in such a way that
distances between the points returned in Y approximate sqrt(1-D). To use a different
transformation, transform the similarities prior to calling mdscale.

[Y,stress] = mdscale(D,p) returns the minimized stress, i.e., the stress evaluated at Y.

[Y,stress,disparities] = mdscale(D,p) returns the disparities, that is, the monotonic
transformation of the dissimilarities D.

[...] = mdscale(D,p,'Name',value) specifies one or more optional parameter name/value
pairs that control further details of mdscale. Specify Name in single quotes. Available parameters are

• Criterion— The goodness-of-fit criterion to minimize. This also determines the type of scaling,
either non-metric or metric, that mdscale performs. Choices for non-metric scaling are:

• 'stress' — Stress normalized by the sum of squares of the inter-point distances, also known
as stress1. This is the default.

• 'sstress' — Squared stress, normalized with the sum of 4th powers of the inter-point
distances.

Choices for metric scaling are:

• 'metricstress' — Stress, normalized with the sum of squares of the dissimilarities.
• 'metricsstress' — Squared stress, normalized with the sum of 4th powers of the

dissimilarities.
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• 'sammon' — Sammon's nonlinear mapping criterion. Off-diagonal dissimilarities must be
strictly positive with this criterion.

• 'strain' — A criterion equivalent to that used in classical multidimensional scaling.
• Weights — A matrix or vector the same size as D, containing nonnegative dissimilarity weights.

You can use these to weight the contribution of the corresponding elements of D in computing and
minimizing stress. Elements of D corresponding to zero weights are effectively ignored.

Note When you specify weights as a full matrix, its diagonal elements are ignored and have no
effect, since the corresponding diagonal elements of D do not enter into the stress calculation.

• Start — Method used to choose the initial configuration of points for Y. The choices are

• 'cmdscale' — Use the classical multidimensional scaling solution. This is the default.
'cmdscale' is not valid when there are zero weights.

• 'random' — Choose locations randomly from an appropriately scaled p-dimensional normal
distribution with uncorrelated coordinates.

• An n-by-p matrix of initial locations, where n is the size of the matrix D and p is the number of
columns of the output matrix Y. In this case, you can pass in [] for p and mdscale infers p
from the second dimension of the matrix. You can also supply a 3-D array, implying a value for
'Replicates' from the array's third dimension.

• Replicates — Number of times to repeat the scaling, each with a new initial configuration. The
default is 1.

• Options — Options for the iterative algorithm used to minimize the fitting criterion. Pass in an
options structure created by statset. For example,

opts = statset(param1,val1,param2,val2, ...);
[...] = mdscale(...,'Options',opts)

The choices of statset parameters are

• 'Display' — Level of display output. The choices are 'off' (the default), 'iter', and
'final'.

• 'MaxIter' — Maximum number of iterations allowed. The default is 200.
• 'TolFun' — Termination tolerance for the stress criterion and its gradient. The default is

1e-4.
• 'TolX'— Termination tolerance for the configuration location step size. The default is 1e-4.

Examples
load cereal.mat
X = [Calories Protein Fat Sodium Fiber ...
     Carbo Sugars Shelf Potass Vitamins];

% Take a subset from a single manufacturer.
X = X(strcmp('K',cellstr(Mfg)),:);

% Create a dissimilarity matrix.
dissimilarities = pdist(X);
 
% Use non-metric scaling to recreate the data in 2D,
% and make a Shepard plot of the results.
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[Y,stress,disparities] = mdscale(dissimilarities,2);
distances = pdist(Y);
[dum,ord] = sortrows([disparities(:) dissimilarities(:)]);
plot(dissimilarities,distances,'bo', ...
dissimilarities(ord),disparities(ord),'r.-');
xlabel('Dissimilarities'); ylabel('Distances/Disparities')
legend({'Distances' 'Disparities'},'Location','NW');

% Do metric scaling on the same dissimilarities.
figure
[Y,stress] = ... 
mdscale(dissimilarities,2,'criterion','metricsstress');
distances = pdist(Y);
plot(dissimilarities,distances,'bo', ...
[0 max(dissimilarities)],[0 max(dissimilarities)],'r.-');
xlabel('Dissimilarities'); ylabel('Distances')
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Version History
Introduced before R2006a

See Also
cmdscale | pdist | statset
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mdsprox
Multidimensional scaling of proximity matrix

Syntax
[SC,EIGEN] = mdsprox(B,X)
[SC,EIGEN] = mdsprox(B,X,'param1',val1,'param2',val2,...)

Description
[SC,EIGEN] = mdsprox(B,X) applies classical multidimensional scaling to the proximity matrix
computed for the data in the matrix X, and returns scaled coordinates SC and eigenvalues EIGEN of
the scaling transformation. The method applies multidimensional scaling to the matrix of distances
defined as 1-prox, where prox is the proximity matrix returned by the proximity method.

You can supply the proximity matrix directly by using the 'Data' parameter.

[SC,EIGEN] = mdsprox(B,X,'param1',val1,'param2',val2,...) specifies optional
parameter name/value pairs:

'Data' Flag indicating how the method treats the X input argument. If set to
'predictors' (default), mdsprox assumes X to be a matrix of predictors and
used for computation of the proximity matrix. If set to 'proximity', the method
treats X as a proximity matrix returned by the proximity method.

'Colors' If you supply this argument, mdsprox makes overlaid scatter plots of two scaled
coordinates using specified colors for different classes. You must supply the colors
as a character vector or a string scalar with one letter for each color. If there are
more classes in the data than letters in the supplied value, mdsprox plots only the
first C classes, where C is the number of letters in the supplied value. For
regression or if you do not provide the vector of true class labels, the method uses
the first color for all observations in X.

'Labels' Vector of true class labels for a classification ensemble. True class labels can be a
numeric vector, character matrix, string array, or cell array of character vectors. If
supplied, this vector must have as many elements as there are observations (rows)
in X. This argument has no effect unless you also supply the 'Colors' argument.

'MDSCoordinate
s'

Indices of the two scaled coordinates to plot. By default, mdsprox makes a scatter
plot of the first and second scaled coordinates which correspond to the two largest
eigenvalues. You can specify any other two or three indices not exceeding the
dimensionality of the scaled data. This argument has no effect unless you also
supply the 'Colors' argument.

See Also
cmdscale | mdsprox | proximity
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mdsprox
Multidimensional scaling of proximity matrix

Syntax
[S,E] = mdsprox(B)
[S,E] = mdsprox(B,'param1',val1,'param2',val2,...)

Description
[S,E] = mdsprox(B) returns scaled coordinates, S, and eigenvalues, E, for the proximity matrix in
the ensemble B. An earlier call to fillprox(B) must create the proximity matrix.

[S,E] = mdsprox(B,'param1',val1,'param2',val2,...) specifies optional parameter name/
value pairs:

'Keep' Array of indices of observations in the training data to use for
multidimensional scaling. By default, this argument is set to 'all'. If you
provide numeric or logical indices, the method uses only the subset of the
training data specified by these indices to compute the scaled coordinates and
eigenvalues.

'Colors' If you supply this argument, mdsprox makes overlaid scatter plots of two
scaled coordinates using specified colors for different classes. You must supply
the colors as a character vector or a string scalar with one letter for each
color. If there are more classes in the data than letters in the supplied value,
mdsprox plots only the first C classes, where C is the number of letters in the
supplied value. For regression, the method uses the first color for all
observations in X.

'MDSCoordinates' Indices of the two scaled coordinates to plot. By default, mdsprox makes a
scatter plot of the first and second scaled coordinates which correspond to the
two largest eigenvalues. You can specify any other two or three indices not
exceeding the dimensionality of the scaled data. This argument has no effect
unless you also supply the 'Colors' argument.

See Also
cmdscale | mdsprox | fillprox
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mean
Package: prob

Mean of probability distribution

Syntax
m = mean(pd)

Description
m = mean(pd) returns the mean m of the probability distribution pd.

Examples

Mean of Fitted Distribution

Load the sample data. Create a vector containing the first column of students’ exam grade data.

load examgrades
x = grades(:,1);

Create a normal distribution object by fitting it to the data.

pd = fitdist(x,'Normal')

pd = 
  NormalDistribution

  Normal distribution
       mu = 75.0083   [73.4321, 76.5846]
    sigma =  8.7202   [7.7391, 9.98843]

The distribution object display includes the parameter estimates for the mean (mu) and standard
deviation (sigma), and the 95% confidence intervals for the parameters.

Compute the mean of the fitted distribution.

m = mean(pd)

m = 75.0083

The mean of the normal distribution is equal to the parameter mu.

Mean of Skewed Distribution

Create a Weibull probability distribution object.
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pd = makedist('Weibull','A',5,'B',2)

pd = 
  WeibullDistribution

  Weibull distribution
    A = 5
    B = 2

Compute the mean of the distribution.

mean = mean(pd)

mean = 4.4311

Mean of a Uniform Distribution

Create a uniform distribution object

pd = makedist('Uniform','lower',-3,'upper',5)

pd = 
  UniformDistribution

  Uniform distribution
    Lower = -3
    Upper =  5

Compute the mean of the distribution.

m = mean(pd)

m = 1

Mean of a Kernel Distribution

Load the sample data. Create a probability distribution object by fitting a kernel distribution to the
miles per gallon (MPG) data.

load carsmall;
pd = fitdist(MPG,'Kernel')

pd = 
  KernelDistribution

    Kernel = normal
    Bandwidth = 4.11428
    Support = unbounded

Compute the mean of the distribution.

mean(pd)

ans = 23.7181

 mean

35-4725



Input Arguments
pd — Probability distribution
probability distribution object

Probability distribution, specified as one of the probability distribution objects in the following table.

Distribution Object Function or App Used to Create Probability
Distribution Object

BetaDistribution makedist, fitdist, Distribution Fitter
BinomialDistribution makedist, fitdist, Distribution Fitter
BirnbaumSaundersDistribution makedist, fitdist, Distribution Fitter
BurrDistribution makedist, fitdist, Distribution Fitter
ExponentialDistribution makedist, fitdist, Distribution Fitter
ExtremeValueDistribution makedist, fitdist, Distribution Fitter
GammaDistribution makedist, fitdist, Distribution Fitter
GeneralizedExtremeValueDistribution makedist, fitdist, Distribution Fitter
GeneralizedParetoDistribution makedist, fitdist, Distribution Fitter
HalfNormalDistribution makedist, fitdist, Distribution Fitter
InverseGaussianDistribution makedist, fitdist, Distribution Fitter
KernelDistribution fitdist, Distribution Fitter
LogisticDistribution makedist, fitdist, Distribution Fitter
LoglogisticDistribution makedist, fitdist, Distribution Fitter
LognormalDistribution makedist, fitdist, Distribution Fitter
LoguniformDistribution makedist
MultinomialDistribution makedist
NakagamiDistribution makedist, fitdist, Distribution Fitter
NegativeBinomialDistribution makedist, fitdist, Distribution Fitter
NormalDistribution makedist, fitdist, Distribution Fitter
PiecewiseLinearDistribution makedist
PoissonDistribution makedist, fitdist, Distribution Fitter
RayleighDistribution makedist, fitdist, Distribution Fitter
RicianDistribution makedist, fitdist, Distribution Fitter
StableDistribution makedist, fitdist, Distribution Fitter
tLocationScaleDistribution makedist, fitdist, Distribution Fitter
TriangularDistribution makedist
UniformDistribution makedist
WeibullDistribution makedist, fitdist, Distribution Fitter
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Output Arguments
m — Mean
scalar value

Mean of the probability distribution, returned as a scalar value.

Version History
Introduced in R2013a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• The input argument pd can be a fitted probability distribution object for beta, exponential,
extreme value, lognormal, normal, and Weibull distributions. Create pd by fitting a probability
distribution to sample data from the fitdist function. For an example, see “Code Generation for
Probability Distribution Objects” on page 34-94.

For more information on code generation, see “Introduction to Code Generation” on page 34-2 and
“General Code Generation Workflow” on page 34-5.

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

This function fully supports GPU arrays. For more information, see “Run MATLAB Functions on a
GPU” (Parallel Computing Toolbox).

See Also
median | std | makedist | fitdist | Distribution Fitter

Topics
“Working with Probability Distributions” on page 5-3
“Supported Distributions” on page 5-16
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meanEffectSize
One-sample or two-sample effect size computations

Syntax
Effect = meanEffectSize(X)
Effect = meanEffectSize(X,Y)
Effect = meanEffectSize(X,Y,Name=Value)

Description
Effect = meanEffectSize(X) computes the mean difference effect size for a single sample X
against the default mean value of 0.

Effect = meanEffectSize(X,Y) computes the mean difference effect size for two samples X and
Y.

Effect = meanEffectSize(X,Y,Name=Value) computes the mean difference effect size for
options specified using one or more of the Name=Value arguments.

Examples

Compare Against Known Mean

Load the stock returns data and define the variable for which to compare the mean effect size.

load stockreturns
x = stocks(:,1);

Compute the mean difference effect size of the stock returns compared to the default mean value of 0
and compute the 95% confidence intervals for the effect size.

effect = meanEffectSize(x)

effect=1×2 table
                       Effect      ConfidenceIntervals  
                      ________    ______________________

    MeanDifference    -0.20597    -0.41283    0.00087954

meanEffectSize uses the exact method to estimate the confidence intervals when you use mean
difference effect size.

You can also specify the mean value you want to compare against.

effect = meanEffectSize(x,Mean=-1)

effect=1×2 table
                      Effect     ConfidenceIntervals
                      _______    ___________________
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    MeanDifference    0.79403    0.58717     1.0009 

Compute Mean Effect Size for Two Independent Samples

Load Fisher's iris data and define the variables for which to compare.

load fisheriris
species2 = categorical(species);
x = meas(species2=='setosa');
y = meas(species2=='virginica');

Compute the median difference effect size of the observations from two independent samples.

effect = meanEffectSize(x,y,Effect="mediandiff")

effect=1×2 table
                        Effect    ConfidenceIntervals
                        ______    ___________________

    MedianDifference     -1.5     -1.8259       -1.3 

meanEffectSize by default assumes independent samples (that is, Paired=false). The function
uses bootstrapping to estimate the confidence intervals when effect type is median difference.

Visualize the median difference effect size using Gardner-Altman plot.

gardnerAltmanPlot(x,y,Effect="mediandiff");
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Gardner-Altman plot displays the two sample data on the left. The median of the sample Y
corresponds to the zero effect size on the effect size axis, which is the yellow axis line on the right.
The median of the sample X corresponds to the value of the effect size on the effect size axis. The plot
displays the actual median difference effect size value and the confidence intervals with the vertical
error bar.

Specify Bootstrap Options

Load Fisher's iris data and define the variables for which to compare.

load fisheriris
species2 = categorical(species);
x = meas(species2=='setosa');
y = meas(species2=='virginica');

Compute the Cohen's d effect size for the observations from two independent samples and compute
the 95% confidence intervals for the effect size. meanEffectSize by default uses the exact formula
based on the noncentral t-distribution to estimate the confidence intervals when the effect type is
Cohen's d. Specify the bootstrapping options:

• Tell meanEffectSize to use bootstrapping for confidence interval computation.
• Use parallel computing for bootstrapping computations. You need Parallel Computing Toolbox™

for this option.
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• Use 3000 bootstrap replicas.

rng(123) % For reproducibility
effect = meanEffectSize(x,y,Effect="cohen",ConfidenceIntervalType="bootstrap", ...
      BootstrapOptions=statset(UseParallel=true),NumBootstraps=3000)

Starting parallel pool (parpool) using the 'local' profile ...
Connected to the parallel pool (number of workers: 6).

effect=1×2 table
               Effect     ConfidenceIntervals
               _______    ___________________

    CohensD    -3.0536    -3.5611    -2.3219 

Use the same options in Gardner-Altman plot to visualize the effect size.

gardnerAltmanPlot(x,y,Effect="cohen",ConfidenceIntervalType="bootstrap", ...
      BootstrapOptions=statset(UseParallel=true),NumBootstraps=3000);

Gardner-Altman plot displays the two sample data on the left. The mean of the sample Y corresponds
to the zero effect size on the effect size axis, which is the yellow axis line on the right. The mean of
the sample X corresponds to the value of the effect size on the effect size axis. The plot displays the
Cohen's d effect size value and the confidence intervals with the vertical error bar.
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Compare Paired Sample Means

Load exam grades data and define the variables for which to compare.

load examgrades
x = grades(:,1);
y = grades(:,2);

Compute the mean difference effect size of the grades from the paired samples and 95% confidence
intervals for the effect size.

effect = meanEffectSize(x,y,Paired=true)

effect=1×2 table
                       Effect     ConfidenceIntervals
                      ________    ___________________

    MeanDifference    0.016667    -1.3311     1.3644 

meanEffectSize uses the exact method to estimate the confidence intervals when you use mean
difference effect size.

You can use a different effect size type (note that you can't use Glass's delta for paired samples). Use
robust Cohen's d to compare the paired-sample means. Compute the 97% confidence intervals for the
effect size.

effect = meanEffectSize(x,y,Paired=true,Effect="robustcohen",Alpha=0.03)

effect=1×2 table
                      Effect     ConfidenceIntervals
                     ________    ___________________

    RobustCohensD    0.059128    -0.1405    0.26573 

meanEffectSize uses bootstrapping to estimate the confidence intervals when you use robust
Cohen's d as the effect size.

Visualize the effect size using Gardner-Altman plot. Again use robust Cohen's d as the effect size and
compute the 97% confidence intervals.

gardnerAltmanPlot(x,y,Paired=true,Effect="robustcohen",Alpha=0.03);
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Gardner-Altman plot displays the paired data on the left. Blue lines show the values that are
increasing and the red lines show the values that are decreasing from the first sample to the
corresponding values in the paired sample, respectively. On the right side of the plot, you see the
robust Cohen's d effect size with the 97% confidence intervals.

Input Arguments
X — Input data
numeric vector

Input data, specified as a numeric vector.
Data Types: single | double

Y — Input data
numeric vector

Input data, specified as a numeric vector.
Data Types: single | double

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.
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Example:
Effect="cliff",Alpha=0.03,ConfidenceIntervalType="bootstrap",VarianceType=une
qual specifies to use the Cliff's Delta effect size, compute the 97% confidence intervals using
bootstrapping, and assume the samples come from populations with unequal variances.

Alpha — Confidence level
0.05 (default) | value from 0 to 1

Confidence level, specified as a numeric value from 0 to 1. Default value of Alpha, 0.05, corresponds
to 95% confidence level.
Example: Alpha=0.025
Data Types: single | double

BootstrapOptions — Options for bootstrap confidence interval computation in parallel
structure

Options for bootstrap confidence interval computation in parallel, specified as a structure generated
by using statset('bootci'). meanEffectSize uses the following fields:

Field Description
'Streams' A RandStream object or cell array of such

objects. If you do not specify Streams,
meanEffectSize uses the default stream or
streams. If you specify Streams, use a single
object except when all of the following conditions
exist:

• You have an open parallel pool.
• UseParallel is true.
• UseSubstreams is false.

In this case, use a cell array the same size as the
parallel pool. If a parallel pool is not open, then
Streams must supply a single random number
stream.

'UseParallel' The default is false, indicating serial
computation.

'UseSubstreams' Set to true to compute in parallel in a
reproducible fashion. The default is false. To
compute reproducibly, set Streams to a type
allowing substreams: 'mlfg6331_64' or
'mrg32k3a'.

Computing bootstrap confidence intervals in parallel requires Parallel Computing Toolbox.
Example: BootstrapOptions=options
Data Types: struct

ConfidenceIntervalType — Type of confidence interval
"exact" | "bootstrap" | "none"
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Type of confidence interval to compute, specified as "exact", "bootstrap", or "none". The default
is "exact" when there is an exact formula for the effect size or "bootstrap" otherwise. "none" is
for not computing any confidence intervals.

Default is "exact" for Cliff's Delta, Glass's delta, mean difference, and Cohen's d and "bootstrap"
for Kolmogorov-Smirnov statistic, median difference, and Robust Cohen's d. If you specify confidence
interval type as "exact" for Kolmogorov-Smirnov statistic, median difference, and Robust Cohen's d,
meanEffectSize returns an error.
Example: ConfidenceIntervalType="none"
Data Types: string | char

Effect — Effect size type to compute
"meandiff" (default) | "cohen" | "cliff" | "glass" | "kstest" | "mediandiff" |
"robustcohen"

Effect size type to compute, specified as one of or a cell array of the following built-in options.

Options for single-sample input

Effect size option Definition
"cohen" Cohen's d for single-sample input.
"meandiff" Mean difference.
"robustcohen" Robust Cohen's d for single-sample input.

Options for two-sample input

Effect size option Definition
"cohen" Cohen's d for two-sample input.
"cliff" Cliff's Delta.
"glass" Glass's delta. meanEffectSize doesn't support

this option for paired data.
"kstest" Kolmogorov-Smirnov statistic.
"mediandiff" Median difference.
"meandiff" Mean difference.
"robustcohen" Robust Cohen's d for two-sample input.

For more information on the effect sizes, see “Algorithms” on page 35-4736.
Example: Effect="glass"
Data Types: string | char | cell

Mean — Known population mean value
scalar value

Known population mean value to compare against, specified as a scalar value. This option is only for
single-sample data.
Example: Mean=10
Data Types: single | double
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NumBootstraps — Number of bootstrap replicas
1000 (default) | positive integer

Number of bootstrap replicas to use when computing the bootstrap confidence intervals, specified as
a positive integer.
Example: NumBootstraps=1500
Data Types: single | double

Paired — Indicator for paired samples
false (default) | true

Indicator for paired samples, specified as a logical value.

• If Paired is "true", then VarianceType must be "equal".
• If Paired is "true", then Effect cannot be "glass".

Example: Paired="true"
Data Types: logical

VarianceType — Population variance assumption for two samples
"equal" (default) | "unequal"

Population variance assumption for two samples, specified as either "equal" or "unequal". If
Paired is "true", then VarianceType must be "equal".
Example: VarianceType="unequal"
Data Types: string | char

Output Arguments
Effect — Effect size information
table

Effect size information, returned as a table. Effect has a row for each effect size computed and a
column for the value of the effect size, and a column for the confidence intervals for that effect size, if
they are computed.
Data Types: table

Algorithms
Effect Sizes

• Cliff's Delta

• Unpaired data

δ =
∑

i, j = 1

n1, n2
xi > y j − xi < y j

n1 * n2
,

where n1 is the size of the first sample and n2 is the size of the second sample.
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• Paired data

meanEffectSize uses the between-group delta, which is comparing the differences from x
and y, but excluding comparisons of paired data. For n paired samples, this results in n(n-1)
comparisons [3].

• Cohen's d

meanEffectSize computes the unbiased estimate of Cohen's d, which is also known as Hedge's
g.

• One-sample

d = J df * x − μ
s

• Two-sample

d = J df * x − y
s

where df is the degrees of freedom, μ is the known population mean to compare against, s is the
pooled standard deviation, and J(df) is the bias correction term. The pooled standard deviation and
the bias correction term are defined as follows, respectively.

s =
n1− 1 s1

2 + n2− 1 s2
2

n1 + n2− 2 ,

where n1 is the size of the first sample and n2 is the size of the second sample.

J df = Γ df /2
df /2Γ df − 1 /2 ,

where Γ  is the gamma function.

Cohen's d follows a noncentral t-distribution, and uses that to derive the confidence intervals.
Hence, meanEffectSize by default uses "exact" to compute the confidence intervals for the
effect size. See [1] and [4] to see the derivation of the confidence intervals for paired versus
unpaired input data.

• Glass's Delta

D = x − y
sx

,

where sx is the standard deviation of the control group. meanEffectSize uses the data in x as
the control group. If you wish to use the other sample as the control group, you can swap the data
in x and y and swap the sign of the test result.

Similar to Cohen's d, Glass's delta also follows a noncentral t-distribution, and uses that to derive
the confidence intervals. Hence, meanEffectSize by default uses "exact" to compute the
confidence intervals for the effect size [4]. You can't use this effect size for paired samples.

• Kolmogorov-Smirnov Test Statistic

This two-sample test statistic is the same as given in “Two-Sample Kolmogorov-Smirnov Test” on
page 35-4099. meanEffectSize uses bootstrapping to compute the confidence intervals.
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• Mean Difference

• One-sample

m = x − μ
• Two-sample

m = x − y

meanEffectSize computes the confidence intervals using the t-distribution (using pooled
standard deviation in the two-sample case. In case of unequal variance assumption for two
samples, the confidence intervals are called Welch-Satterthwaite confidence intervals). The
function by default uses the "exact" method to compute the confidence intervals.

• Median Difference

M = median x −median y

meanEffectSize computes the confidence intervals using bootstrapping for this effect size.
• Robust Cohen's d

d = 0.643 * J df *
xt− yt

sw
,

where xt and yt are the 20% trimmed mean of data in x and y, respectively. sw is the pooled 20%
Winsorized variance [2].

meanEffectSize computes the confidence intervals using bootstrapping for this effect size.

Version History
Introduced in R2022a

References
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Extended Capabilities
Automatic Parallel Support
Accelerate code by automatically running computation in parallel using Parallel Computing Toolbox™.

To run in parallel, specify the 'Options' name-value argument in the call to this function and set the
'UseParallel' field of the options structure to true using statset.

For example: 'Options',statset('UseParallel',true)

For more information about parallel computing, see “Run MATLAB Functions with Automatic Parallel
Support” (Parallel Computing Toolbox).

See Also
gardnerAltmanPlot
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meanMargin
Mean classification margin

Syntax
mar = meanMargin(B,TBLnew,Ynew)
mar = meanMargin(B,Xnew,Ynew)
mar = meanMargin(B,TBLnew,Ynew,'param1',val1,'param2',val2,...)
mar = meanMargin(B,Xnew,Ynew,'param1',val1,'param2',val2,...)

Description
mar = meanMargin(B,TBLnew,Ynew) computes average classification margins for the predictors
contained in the table TBLnew given the true response Ynew. You can omit Ynew if TBLnew contains
the response variable. If you trained B using sample data contained in a table, then the input data for
this method must also be in a table.

mar = meanMargin(B,Xnew,Ynew) computes average classification margins for the predictors
contained in the matrix Xnew given true response Ynew. If you trained B using sample data contained
in a matrix, then the input data for this method must also be in a matrix.

Ynew can be a numeric vector, character matrix, string array, cell array of character vectors,
categorical vector, or logical vector. meanMargin averages the margins over all observations (rows)
in TBLnew or Xnew for each tree. mar is a matrix of size 1-by-NTrees, where NTrees is the number
of trees in the ensemble B. This method is available for classification ensembles only.

mar = meanMargin(B,TBLnew,Ynew,'param1',val1,'param2',val2,...) or mar =
meanMargin(B,Xnew,Ynew,'param1',val1,'param2',val2,...) specifies optional parameter
name-value pairs:

'Mode' How meanMargin computes errors. If set to 'cumulative' (default), is a
vector of length NTrees where the first element gives mean margin from
trees(1), second column gives mean margins from trees(1:2) etc., up to
trees(1:NTrees). If set to 'individual', mar is a vector of length
NTrees, where each element is a mean margin from each tree in the
ensemble . If set to 'ensemble', mar is a scalar showing the cumulative
mean margin for the entire ensemble.

'Trees' Vector of indices indicating what trees to include in this calculation. By
default, this argument is set to 'all' and the method uses all trees. If
'Trees' is a numeric vector, the method returns a vector of length NTrees
for 'cumulative' and 'individual' modes, where NTrees is the number
of elements in the input vector, and a scalar for 'ensemble' mode. For
example, in the 'cumulative' mode, the first element gives mean margin
from trees(1), the second element gives mean margin from trees(1:2)
etc.
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'TreeWeights' Vector of tree weights. This vector must have the same length as the 'Trees'
vector. meanMargin uses these weights to combine output from the specified
trees by taking a weighted average instead of the simple nonweighted
majority vote. You cannot use this argument in the 'individual' mode.

'UseInstanceForT
ree'

Logical matrix of size Nobs-by-NTrees indicating which trees to use to make
predictions for each observation. By default, the method uses all trees for all
observations.

'Weights' Vector of observation weights to use for margin averaging. By default, the
weight of each observation is set to 1. The length of this vector must be equal
to the number of rows in X.

See Also
meanMargin
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meanMargin
Mean classification margin

Syntax
mar = meanMargin(B,TBLnew,Ynew)
mar = meanMargin(B,Xnew,Ynew)
mar = meanMargin(B,TBLnew,Ynew,'param1',val1,'param2',val2,...)
mar = meanMargin(B,Xnew,Ynew,'param1',val1,'param2',val2,...)

Description
mar = meanMargin(B,TBLnew,Ynew) computes average classification margins for the predictors
contained in the table TBLnew given the true response Ynew. You can omit Ynew if TBLnew contains
the response variable. If you trained B using sample data contained in a table, then the input data for
this method must also be in a table.

mar = meanMargin(B,Xnew,Ynew) computes average classification margins for the predictors
contained in the matrix Xnew given true response Ynew. If you trained B using sample data contained
in a matrix, then the input data for this method must also be in a matrix.

Ynew can be a numeric vector, character matrix, string array, cell array of character vectors,
categorical vector or logical vector. meanMargin averages the margins over all observations (rows) in
TBLnew or Xnew for each tree. mar is a matrix of size 1-by-NTrees, where NTrees is the number of
trees in the ensemble B. This method is available for classification ensembles only.

mar = meanMargin(B,TBLnew,Ynew,'param1',val1,'param2',val2,...) or mar =
meanMargin(B,Xnew,Ynew,'param1',val1,'param2',val2,...) specifies optional parameter
name-value pairs:

'Mode' Character vector or string scalar indicating how meanMargin computes
errors. If set to 'cumulative' (default), is a vector of length NTrees where
the first element gives mean margin from trees(1), second column gives
mean margins from trees(1:2) etc, up to trees(1:NTrees). If set to
'individual', mar is a vector of length NTrees, where each element is a
mean margin from each tree in the ensemble . If set to 'ensemble', mar is a
scalar showing the cumulative mean margin for the entire ensemble .

'Trees' Vector of indices indicating what trees to include in this calculation. By
default, this argument is set to 'all' and the method uses all trees. If
'Trees' is a numeric vector, the method returns a vector of length NTrees
for 'cumulative' and 'individual' modes, where NTrees is the number
of elements in the input vector, and a scalar for 'ensemble' mode. For
example, in the 'cumulative' mode, the first element gives mean margin
from trees(1), the second element gives mean margin from trees(1:2)
etc.
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'TreeWeights' Vector of tree weights. This vector must have the same length as the 'Trees'
vector. meanMargin uses these weights to combine output from the specified
trees by taking a weighted average instead of the simple nonweighted
majority vote. You cannot use this argument in the 'individual' mode.

'UseInstanceForT
ree'

Logical matrix of size Nobs-by-NTrees indicating which trees to use to make
predictions for each observation. By default, the method uses all trees for all
observations.

'Weights' Vector of observation weights to use for margin averaging. By default, the
weight of each observation is set to 1. The length of this vector must be equal
to the number of rows in X.

See Also
meanMargin
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surrogateAssociation
Mean predictive measure of association for surrogate splits in classification tree

Syntax
ma = surrogateAssociation(tree)
ma = surrogateAssociation(tree,N)

Description
ma = surrogateAssociation(tree) returns a matrix of predictive measures of association for
the predictors in tree.

ma = surrogateAssociation(tree,N) returns a matrix of predictive measures of association
averaged over the nodes in vector N.

Input Arguments
tree

A classification tree constructed with fitctree, or a compact regression tree constructed with
compact.

N

Vector of node numbers in tree.

Output Arguments
ma

• ma = surrogateAssociation(tree) returns a P-by-P matrix, where P is the number of
predictors in tree. ma(i,j) is the predictive measure of association on page 35-4745 between
the optimal split on variable i and a surrogate split on variable j. For more details, see
“Algorithms” on page 35-4746.

• ma = surrogateAssociation(tree,N) returns a P-by-P representing the predictive measure
of association between variables averaged over nodes in the vector N. N contains node numbers
from 1 to max(tree.NumNodes).

Examples

Estimate Predictive Measures of Association for Surrogate Splits

Load Fisher's iris data set.

load fisheriris
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Grow a classification tree using species as the response. Specify to use surrogate splits for missing
values.

tree = fitctree(meas,species,'surrogate','on');

Find the mean predictive measure of association between the predictor variables.

ma = surrogateAssociation(tree)

ma = 4×4

    1.0000         0         0         0
         0    1.0000         0         0
    0.4633    0.2500    1.0000    0.5000
    0.2065    0.1413    0.4022    1.0000

Find the mean predictive measure of association averaged over the odd-numbered nodes in tree.

N = 1:2:tree.NumNodes;
ma = surrogateAssociation(tree,N)

ma = 4×4

    1.0000         0         0         0
         0    1.0000         0         0
    0.7600    0.5000    1.0000    1.0000
    0.4130    0.2826    0.8043    1.0000

More About
Predictive Measure of Association

The predictive measure of association is a value that indicates the similarity between decision rules
that split observations. Among all possible decision splits that are compared to the optimal split
(found by growing the tree), the best surrogate decision split on page 35-2272 yields the maximum
predictive measure of association. The second-best surrogate split has the second-largest predictive
measure of association.

Suppose xj and xk are predictor variables j and k, respectively, and j ≠ k. At node t, the predictive
measure of association between the optimal split xj < u and a surrogate split xk < v is

λ jk =
min PL, PR − 1− PLjLk− PRjRk

min PL, PR
.

• PL is the proportion of observations in node t, such that xj < u. The subscript L stands for the left
child of node t.

• PR is the proportion of observations in node t, such that xj ≥ u. The subscript R stands for the right
child of node t.

• PLjLk is the proportion of observations at node t, such that xj < u and xk < v.

• PRjRk is the proportion of observations at node t, such that xj ≥ u and xk ≥ v.
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• Observations with missing values for xj or xk do not contribute to the proportion calculations.

λjk is a value in (–∞,1]. If λjk > 0, then xk < v is a worthwhile surrogate split for xj < u.

Surrogate Decision Splits

A surrogate decision split is an alternative to the optimal decision split at a given node in a decision
tree. The optimal split is found by growing the tree; the surrogate split uses a similar or correlated
predictor variable and split criterion.

When the value of the optimal split predictor for an observation is missing, the observation is sent to
the left or right child node using the best surrogate predictor. When the value of the best surrogate
split predictor for the observation is also missing, the observation is sent to the left or right child
node using the second-best surrogate predictor, and so on. Candidate splits are sorted in descending
order by their predictive measure of association on page 35-2794.

Algorithms
Element ma(i,j) is the predictive measure of association averaged over surrogate splits on
predictor j for which predictor i is the optimal split predictor. This average is computed by summing
positive values of the predictive measure of association over optimal splits on predictor i and
surrogate splits on predictor j and dividing by the total number of optimal splits on predictor i,
including splits for which the predictive measure of association between predictors i and j is
negative.

Extended Capabilities
GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

This function fully supports GPU arrays. For more information, see “Run MATLAB Functions on a
GPU” (Parallel Computing Toolbox).

See Also
ClassificationTree | fitctree
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surrogateAssociation
Mean predictive measure of association for surrogate splits in regression tree

Syntax
ma = surrogateAssociation(tree)
ma = surrogateAssociation(tree,N)

Description
ma = surrogateAssociation(tree) returns a matrix of predictive measures of association for
the predictors in tree.

ma = surrogateAssociation(tree,N) returns a matrix of predictive measures of association
averaged over the nodes in vector N.

Input Arguments
tree

A regression tree constructed with fitrtree, or a compact regression tree constructed with
compact.

N

Vector of node numbers in tree.

Output Arguments
ma

• ma = surrogateAssociation(tree) returns a P-by-P matrix, where P is the number of
predictors in tree. ma(i,j) is the predictive measure of association on page 35-4748 between
the optimal split on variable i and a surrogate split on variable j. For more details, see
“Algorithms” on page 35-4749.

• ma = surrogateAssociation(tree,N) returns a P-by-P representing the predictive measure
of association between variables averaged over nodes in the vector N. N contains node numbers
from 1 to max(tree.NumNodes).

Examples

Estimate Predictive Measures of Association for Surrogate Splits

Load the carsmall data set. Specify Displacement, Horsepower, and Weight as predictor
variables.

load carsmall
X = [Displacement Horsepower Weight];
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Grow a regression tree using MPG as the response. Specify to use surrogate splits for missing values.

tree = fitrtree(X,MPG,'surrogate','on');

Find the mean predictive measure of association between the predictor variables.

ma = surrogateAssociation(tree)

ma = 3×3

    1.0000    0.2167    0.5083
    0.4521    1.0000    0.3769
    0.2540    0.2659    1.0000

Find the mean predictive measure of association averaged over the odd-numbered nodes in tree.

N = 1:2:tree.NumNodes;
ma = surrogateAssociation(tree,N)

ma = 3×3

    1.0000    0.1250    0.6875
    0.5632    1.0000    0.5861
    0.3333    0.3148    1.0000

More About
Predictive Measure of Association

The predictive measure of association is a value that indicates the similarity between decision rules
that split observations. Among all possible decision splits that are compared to the optimal split
(found by growing the tree), the best surrogate decision split on page 35-2272 yields the maximum
predictive measure of association. The second-best surrogate split has the second-largest predictive
measure of association.

Suppose xj and xk are predictor variables j and k, respectively, and j ≠ k. At node t, the predictive
measure of association between the optimal split xj < u and a surrogate split xk < v is

λ jk =
min PL, PR − 1− PLjLk− PRjRk

min PL, PR
.

• PL is the proportion of observations in node t, such that xj < u. The subscript L stands for the left
child of node t.

• PR is the proportion of observations in node t, such that xj ≥ u. The subscript R stands for the right
child of node t.

• PLjLk is the proportion of observations at node t, such that xj < u and xk < v.

• PRjRk is the proportion of observations at node t, such that xj ≥ u and xk ≥ v.

• Observations with missing values for xj or xk do not contribute to the proportion calculations.

λjk is a value in (–∞,1]. If λjk > 0, then xk < v is a worthwhile surrogate split for xj < u.
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Surrogate Decision Splits

A surrogate decision split is an alternative to the optimal decision split at a given node in a decision
tree. The optimal split is found by growing the tree; the surrogate split uses a similar or correlated
predictor variable and split criterion.

When the value of the optimal split predictor for an observation is missing, the observation is sent to
the left or right child node using the best surrogate predictor. When the value of the best surrogate
split predictor for the observation is also missing, the observation is sent to the left or right child
node using the second-best surrogate predictor, and so on. Candidate splits are sorted in descending
order by their predictive measure of association on page 35-2794.

Algorithms
Element ma(i,j) is the predictive measure of association averaged over surrogate splits on
predictor j for which predictor i is the optimal split predictor. This average is computed by summing
positive values of the predictive measure of association over optimal splits on predictor i and
surrogate splits on predictor j and dividing by the total number of optimal splits on predictor i,
including splits for which the predictive measure of association between predictors i and j is
negative.

Extended Capabilities
GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

This function fully supports GPU arrays. For more information, see “Run MATLAB Functions on a
GPU” (Parallel Computing Toolbox).

See Also
prune | RegressionTree | fitrtree
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median
Package: prob

Median of probability distribution

Syntax
m = median(pd)

Description
m = median(pd) returns the median m for the probability distribution pd

Examples

Median of a Fitted Distribution

Load the sample data. Create a vector containing the first column of students' exam grade data.

load examgrades
x = grades(:,1);

Create a normal distribution object by fitting it to the data.

pd = fitdist(x,'Normal')

pd = 
  NormalDistribution

  Normal distribution
       mu = 75.0083   [73.4321, 76.5846]
    sigma =  8.7202   [7.7391, 9.98843]

Compute the median of the fitted distribution.

m = median(pd)

m = 75.0083

For a symmetrical distribution such as the normal distribution, the median is equal to the mean, mu.

Median of Skewed Distribution

Create a Weibull probability distribution object.

pd = makedist('Weibull','A',5,'B',2)

pd = 
  WeibullDistribution
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  Weibull distribution
    A = 5
    B = 2

Compute the median of the distribution.

m = median(pd)

m = 4.1628

For a skewed distribution such as the Weibull distribution, the median and the mean may not be
equal.

Calculate the mean of the Weibull distribution and compare it to the median.

mean = mean(pd)

mean = 4.4311

The mean of the distribution is greater than the median.

Plot the pdf to visualize the distribution.

x = [0:.1:15];
pdf = pdf(pd,x);
plot(x,pdf)
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Input Arguments
pd — Probability distribution
probability distribution object

Probability distribution, specified as one of the probability distribution objects in the following table.

Distribution Object Function or App Used to Create Probability
Distribution Object

BetaDistribution makedist, fitdist, Distribution Fitter
BinomialDistribution makedist, fitdist, Distribution Fitter
BirnbaumSaundersDistribution makedist, fitdist, Distribution Fitter
BurrDistribution makedist, fitdist, Distribution Fitter
ExponentialDistribution makedist, fitdist, Distribution Fitter
ExtremeValueDistribution makedist, fitdist, Distribution Fitter
GammaDistribution makedist, fitdist, Distribution Fitter
GeneralizedExtremeValueDistribution makedist, fitdist, Distribution Fitter
GeneralizedParetoDistribution makedist, fitdist, Distribution Fitter
HalfNormalDistribution makedist, fitdist, Distribution Fitter
InverseGaussianDistribution makedist, fitdist, Distribution Fitter
KernelDistribution fitdist, Distribution Fitter
LogisticDistribution makedist, fitdist, Distribution Fitter
LoglogisticDistribution makedist, fitdist, Distribution Fitter
LognormalDistribution makedist, fitdist, Distribution Fitter
LoguniformDistribution makedist
MultinomialDistribution makedist
NakagamiDistribution makedist, fitdist, Distribution Fitter
NegativeBinomialDistribution makedist, fitdist, Distribution Fitter
NormalDistribution makedist, fitdist, Distribution Fitter
PiecewiseLinearDistribution makedist
PoissonDistribution makedist, fitdist, Distribution Fitter
RayleighDistribution makedist, fitdist, Distribution Fitter
RicianDistribution makedist, fitdist, Distribution Fitter
StableDistribution makedist, fitdist, Distribution Fitter
tLocationScaleDistribution makedist, fitdist, Distribution Fitter
TriangularDistribution makedist
UniformDistribution makedist
WeibullDistribution makedist, fitdist, Distribution Fitter
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Output Arguments
m — Median
scalar value

Median of the probability distribution, returned as a scalar value. The value of m is the 50th
percentile of the probability distribution.

Version History
Introduced in R2013a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• The input argument pd can be a fitted probability distribution object for beta, exponential,
extreme value, lognormal, normal, and Weibull distributions. Create pd by fitting a probability
distribution to sample data from the fitdist function. For an example, see “Code Generation for
Probability Distribution Objects” on page 34-94.

For more information on code generation, see “Introduction to Code Generation” on page 34-2 and
“General Code Generation Workflow” on page 34-5.

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

This function fully supports GPU arrays. For more information, see “Run MATLAB Functions on a
GPU” (Parallel Computing Toolbox).

See Also
mean | makedist | fitdist | Distribution Fitter

Topics
“Working with Probability Distributions” on page 5-3
“Supported Distributions” on page 5-16
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mergelevels
(Not Recommended) Merge levels of nominal or ordinal arrays

Note The nominal and ordinal array data types are not recommended. To represent ordered and
unordered discrete, nonnumeric data, use the “Categorical Arrays” data type instead.

Syntax
B = mergelevels(A,oldlevels)
B = mergelevels(A,oldlevels,newlevel)

Description
B = mergelevels(A,oldlevels) merges two or more levels of A.

• If A is a nominal array, mergelevels uses the first label in oldlevels as the new level.
• If A is an ordinal array, the levels specified by oldlevels must be consecutive, and

mergelevels uses the label corresponding to the lowest level in oldlevels as the label for the
new level.

B = mergelevels(A,oldlevels,newlevel) merges two or more levels into the new level with
label newlevel.

Examples

Create New Category From Merged Levels

Create a nominal array from data in a cell array.

colors = nominal({'r','b','g';'g','r','b';'b','r','g'},...
                 {'blue','green','red'})

colors = 3x3 nominal
     red        blue      green 
     green      red       blue  
     blue       red       green 

Merge the elements of the 'red' and 'blue' levels into a new level labeled 'purple'.

colors = mergelevels(colors,{'red','blue'},'purple')

colors = 3x3 nominal
     purple      purple      green  
     green       purple      purple 
     purple      purple      green  

Display the levels of colors.
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getlevels(colors)

ans = 1x2 nominal
     purple      green 

Input Arguments
A — Nominal or ordinal array
nominal array | ordinal array

Nominal or ordinal array, specified as a nominal or ordinal array object created with nominal or
ordinal.

oldlevels — Levels to merge
string array | cell array of character vectors | 2-D character array

Levels to merge, specified as a string array, cell array of character vectors, or 2-D character array.
For ordinal arrays, the levels in oldlevels must be consecutive.
Data Types: char | string | cell

newlevel — Level to create
character vector | string scalar

Level to create from the merged levels, specified as a character vector or string scalar that gives the
label for the new level.
Data Types: char | string

Output Arguments
B — Nominal or ordinal array
nominal array | ordinal array

Nominal or ordinal array, returned as a nominal or ordinal array object.

Version History
Introduced in R2007a

See Also
addlevels | droplevels | reorderlevels | nominal | ordinal

Topics
“Merge Category Levels” on page 2-16
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mhsample
Metropolis-Hastings sample

Syntax
smpl = mhsample(start,nsamples,'pdf',pdf,'proppdf',proppdf,
'proprnd',proprnd)
smpl = mhsample(...,'symmetric',sym)
smpl = mhsample(...,'burnin',K)
smpl = mhsample(...,'thin',m)
smpl = mhsample(...,'nchain',n)
[smpl,accept] = mhsample(...)

Description
smpl = mhsample(start,nsamples,'pdf',pdf,'proppdf',proppdf,
'proprnd',proprnd) draws nsamples random samples from a target stationary distribution pdf
using the Metropolis-Hastings algorithm.

start is a row vector containing the start value of the Markov Chain, nsamples is an integer
specifying the number of samples to be generated, and pdf, proppdf, and proprnd are function
handles created using @. proppdf defines the proposal distribution density, and proprnd defines the
random number generator for the proposal distribution. pdf and proprnd take one argument as an
input with the same type and size as start. proppdf takes two arguments as inputs with the same
type and size as start.

smpl is a column vector or matrix containing the samples. If the log density function is preferred,
'pdf' and 'proppdf' can be replaced with 'logpdf' and 'logproppdf'. The density functions
used in Metropolis-Hastings algorithm are not necessarily normalized.

The proposal distribution q(x,y) gives the probability density for choosing x as the next point when y
is the current point. It is sometimes written as q(x|y).

If the proppdf or logproppdf satisfies q(x,y) = q(y,x), that is, the proposal distribution is
symmetric, mhsample implements Random Walk Metropolis-Hastings sampling. If the proppdf or
logproppdf satisfies q(x,y) = q(x), that is, the proposal distribution is independent of current values,
mhsample implements Independent Metropolis-Hastings sampling.

smpl = mhsample(...,'symmetric',sym) draws nsamples random samples from a target
stationary distribution pdf using the Metropolis-Hastings algorithm. sym is a logical value that
indicates whether the proposal distribution is symmetric. The default value is false, which
corresponds to the asymmetric proposal distribution. If sym is true, for example, the proposal
distribution is symmetric, proppdf and logproppdf are optional.

smpl = mhsample(...,'burnin',K) generates a Markov chain with values between the starting
point and the kth point omitted in the generated sequence. Values beyond the kth point are kept. k is a
nonnegative integer with default value of 0.

smpl = mhsample(...,'thin',m) generates a Markov chain with m-1 out of m values omitted in
the generated sequence. m is a positive integer with default value of 1.
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smpl = mhsample(...,'nchain',n) generates n Markov chains using the Metropolis-Hastings
algorithm. n is a positive integer with a default value of 1. smpl is a matrix containing the samples.
The last dimension contains the indices for individual chains.

[smpl,accept] = mhsample(...) also returns accept, the acceptance rate of the proposed
distribution. accept is a scalar if a single chain is generated and is a vector if multiple chains are
generated.

Examples

Estimate Moments Using Independent Metropolis-Hastings Sampling

Use Independent Metropolis-Hastings sampling to estimate the second order moment of a Gamma
distribution.

rng default;  % For reproducibility
alpha = 2.43;
beta = 1;
pdf = @(x)gampdf(x,alpha,beta); % Target distribution
proppdf = @(x,y)gampdf(x,floor(alpha),floor(alpha)/alpha);
proprnd = @(x)sum(...
              exprnd(floor(alpha)/alpha,floor(alpha),1));
nsamples = 5000;
smpl = mhsample(1,nsamples,'pdf',pdf,'proprnd',proprnd,...
                'proppdf',proppdf);

Plot the results.

xxhat = cumsum(smpl.^2)./(1:nsamples)';
figure;
plot(1:nsamples,xxhat)
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Random Walk Metropolis-Hastings Sampling

Use Random Walk Metropolis-Hastings sampling to generate sample data from a standard normal
distribution.

rng default  % For reproducibility
delta = .5;
pdf = @(x) normpdf(x);
proppdf = @(x,y) unifpdf(y-x,-delta,delta);
proprnd = @(x) x + rand*2*delta - delta;   
nsamples = 15000;
x = mhsample(1,nsamples,'pdf',pdf,'proprnd',proprnd,'symmetric',1);

Plot the sample data.

figure;
h = histfit(x,50);
h(1).FaceColor = [.8 .8 1];
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Version History
Introduced in R2006a

See Also
slicesample | rand

Topics
“Using the Metropolis-Hastings Algorithm” on page 7-9
“Representing Sampling Distributions Using Markov Chain Samplers” on page 7-9
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mle
Maximum likelihood estimates

Syntax
phat = mle(data)
phat = mle(data,Name,Value)
[phat,pci] = mle( ___ )

Description
phat = mle(data) returns maximum likelihood estimates (MLEs) for the parameters of a normal
distribution, using the sample data data.

phat = mle(data,Name,Value) specifies options using one or more name-value arguments.

For example, you can specify the distribution type by using one of these name-value arguments:
Distribution, pdf, logpdf, or nloglf.

• To compute MLEs for a built-in distribution, specify the distribution type by using Distribution.
For example, 'Distribution','Beta' specifies to compute the MLEs for the beta distribution.

• To compute MLEs for a custom distribution, define the distribution by using pdf, logpdf, or
nloglf, and specify the initial parameter values by using Start.

[phat,pci] = mle( ___ ) also returns the confidence intervals for the parameters using any of the
input argument combinations in the previous syntaxes.

Examples

Find MLEs for Built-in Distribution

Find MLEs for a built-in distribution that you specify using the Distribution name-value argument.

Load the sample data.

load carbig

The variable MPG contains the miles per gallon for different models of cars.

Draw a histogram of the MPG data.

 histogram(MPG)
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The distribution is somewhat right skewed. A symmetric distribution, such as a normal distribution,
might not be a good fit.

Estimate the parameters of the Burr Type XII distribution for the MPG data.

phat = mle(MPG,'Distribution','burr')

phat = 1×3

   34.6447    3.7898    3.5722

The MLE for the scale parameter α is 34.6447. The estimates for the two shape parameters c and k of
the Burr Type XII distribution are 3.7898 and 3.5722, respectively.

Compute MLE and Confidence Interval

Generate 100 random observations from a binomial distribution with the number of trials n = 20 and
the probability of success p = 0.75.

rng('default') % For reproducibility
data = binornd(20,0.75,100,1);

Estimate the probability of success and 99% confidence limits using the simulated sample data. You
must specify the number of trials (NTrials) for the binomial distribution.
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[phat,pci] = mle(data,'Distribution','binomial','NTrials',20, ...
    'Alpha',.01)

phat = 0.7615

pci = 2×1

    0.7361
    0.7856

The estimate of the probability of success is 0.7615, and the lower and upper limits of the 99%
confidence interval are 0.7361 and 0.7856, respectively. This interval covers the true value used to
simulate the data.

Fit Custom Probability Density Function (pdf)

Generate sample data of size 1000 from a noncentral chi-square distribution with degrees of freedom
8 and noncentrality parameter 3.

rng default % for reproducibility
x = ncx2rnd(8,3,1000,1);

Estimate the parameters of the noncentral chi-square distribution from the sample data. The
Distribution name-value argument does not support the noncentral chi-square distribution.
Therefore, you need to define a custom noncentral chi-square pdf using the pdf name-value
argument and the ncx2pdf function. You must also specify the initial parameter values (Start name-
value argument) for the custom distribution.

[phat,pci] = mle(x,'pdf',@(x,v,d)ncx2pdf(x,v,d),'Start',[1,1])

phat = 1×2

    8.1052    2.6693

pci = 2×2

    7.1120    1.6025
    9.0983    3.7362

The estimate for the degrees of freedom is 8.1052 and the noncentrality parameter is 2.6693. The
95% confidence interval for the degrees of freedom is (7.1120,9.0983), and the interval for the
noncentrality parameter is (1.6025,3.7362). The confidence intervals include the true parameter
values of 8 and 3, respectively.

Fit Custom Log Probability Density Function (pdf)

Load the sample data.

load('readmissiontimes.mat');
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The data includes ReadmissionTime, which has readmission times for 100 patients. This data is
simulated.

Define a custom log pdf for a Weibull distribution with the scale parameter lambda and the shape
parameter k.

custlogpdf = @(data,lambda,k) ...
    log(k) - k*log(lambda) + (k-1)*log(data) - (data/lambda).^k;

Estimate the parameters of the custom distribution and specify its initial parameter values (Start
name-value argument).

phat = mle(ReadmissionTime,'logpdf',custlogpdf,'Start',[1,0.75])

phat = 1×2

    7.5727    1.4540

The scale and shape parameters of the custom distribution are 7.5727 and 1.4540, respectively.

Fit Custom Negative Loglikelihood Function

Load the sample data.

load('readmissiontimes.mat')

The data includes ReadmissionTime, which has readmission times for 100 patients. This data is
simulated.

Define a custom negative loglikelihood function for a Poisson distribution with the parameter
lambda, where 1/lambda is the mean of the distribution. You must define the function to accept a
logical vector of censorship information and an integer vector of data frequencies, even if you do not
use these values in the custom function.

custnloglf = @(lambda,data,cens,freq) ...
    - length(data)*log(lambda) + sum(lambda*data,'omitnan');

Estimate the parameter of the custom distribution and specify its initial parameter value (Start
name-value argument).

phat = mle(ReadmissionTime,'nloglf',custnloglf,'Start',0.05)

phat = 0.1462

Fit Distribution with Known Parameter

Generate sample data of size 1000 from a noncentral chi-square distribution with degrees of freedom
10 and noncentrality parameter 5.

rng('default') % For reproducibility
x = ncx2rnd(10,5,1000,1);
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Suppose the noncentrality parameter is fixed at the value 5. Estimate the degrees of freedom of the
noncentral chi-square distribution from the sample data. To do this, define a custom noncentral chi-
square pdf using the pdf name-value argument.

[phat,pci] = mle(x,'pdf',@(x,v)ncx2pdf(x,v,5),'Start',1)

phat = 9.9307

pci = 2×1

    9.5626
   10.2989

The estimate for the noncentrality parameter is 9.9307, and the lower and upper limits of the 95%
confidence interval are 9.5626 and 10.2989. The confidence interval includes the true parameter
value of 10.

Fit Distribution with Additional Parameter

Add a scale parameter to the chi-square distribution for adapting to the scale of data, and fit the
distribution.

Generate sample data of size 1000 from a chi-square distribution with degrees of freedom 5, and
scale the data by a factor of 100.

rng default % For reproducibility
x = 100*chi2rnd(5,1000,1);

Estimate the degrees of freedom and the scaling factor. To do this, define a custom chi-square
probability density function using the pdf name-value argument. The density function requires a 1/s
factor for data scaled by s.

[phat,pci] = mle(x,'pdf',@(x,v,s)chi2pdf(x/s,v)/s,'Start',[1,200])

phat = 1×2

    5.1079   99.1681

pci = 2×2

    4.6862   90.1215
    5.5297  108.2146

The estimate for the degrees of freedom is 5.1079 and the scale is 99.1681. The 95% confidence
interval for the degrees of freedom is (4.6862,5.5279), and the interval for the scale parameter is
(90.1215,108.2146). The confidence intervals include the true parameter values of 5 and 100,
respectively.
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Fit Custom Distribution to Right-Censored Data

Load the sample data.

load('readmissiontimes.mat');

The data includes ReadmissionTime, which has readmission times for 100 patients. The column
vector Censored contains the censorship information for each patient, where 1 indicates a right-
censored observation, and 0 indicates that the exact readmission time is observed. This data is
simulated.

Define a custom probability density function (pdf) and a cumulative distribution function (cdf) for an
exponential distribution with the parameter lambda, where 1/lambda is the mean of the
distribution. To fit the distribution to a censored data set, you must pass both the pdf and cdf to the
mle function.

custpdf = @(data,lambda) lambda*exp(-lambda*data);
custcdf = @(data,lambda) 1-exp(-lambda*data);

Estimate the parameter lambda of the custom distribution for the censored sample data. Specify the
initial parameter value (Start name-value argument) for the custom distribution.

phat = mle(ReadmissionTime,'pdf',custpdf,'cdf',custcdf, ...
    'Start',0.05,'Censoring',Censored)

phat = 0.1096

Find MLEs for Double-Censored Data

Generate double-censored survival data and find the MLEs for a built-in distribution of the data.
Then, use the MLEs to create a probability distribution object.

Generate failure times from a Birnbaum-Saunders distribution.

rng('default')  % For reproducibility
failuretime = random('BirnbaumSaunders',0.3,1,[100,1]);

Assume that the study starts at time 0.1 and ends at time 0.9. The assumption implies that failure
times less than 0.1 are left censored, and failure times greater than 0.9 are right censored.

Create a vector in which each element indicates the censorship status of the corresponding
observation in failuretime. Use –1, 1, and 0 to indicate left-censored, right-censored, and fully
observed observations, respectively.

L = 0.1;
U = 0.9;
left_censored = (failuretime<L);
right_censored = (failuretime>U);
c = right_censored - left_censored;

Find MLEs for the double-censored data. Specify the censorship information by using the Censoring
name-value argument.

phat = mle(failuretime,'Distribution','BirnbaumSaunders','Censoring',c)
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phat = 1×2

    0.2632    1.3040

Create a probability distribution object with the MLEs by using the makedist function.

pd = makedist('BirnbaumSaunders','beta',phat(1),'gamma',phat(2))

pd = 
  BirnbaumSaundersDistribution

  Birnbaum-Saunders distribution
     beta = 0.263184
    gamma =    1.304

pd is a BirnbaumSaundersDistribution object. You can use the object functions of pd to evaluate
the distribution and generate random numbers. Display the supported object functions.

methods(pd)

Methods for class prob.BirnbaumSaundersDistribution:

cdf        iqr        negloglik  plot       std        
gather     mean       paramci    proflik    truncate   
icdf       median     pdf        random     var        

For example, compute the mean and the variance of the distribution by using the mean and var
functions, respectively.

mean(pd)

ans = 0.4869

var(pd)

ans = 0.3681

Find MLEs for Interval-Censored Data

Generate sample data that represents machine failure times following the Weibull distribution.

rng('default') % For reproducibility
failureTimes = wblrnd(5,2,[200,1]);

Specify that observed failure times are values rounded to the nearest second.

observed = round(failureTimes);

observed is interval-censored data. An observation t in observed indicates that the event occurred
after time t–0.5 and before time t+0.5.

Create a two-column matrix that includes the censorship information.

intervalTimes = [observed-0.5 observed+0.5];
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The failure time must be positive. Find values smaller than eps, and change them to eps.

intervalTimes(intervalTimes < eps) = eps;

Find the MLEs for the Weibull distribution parameters by using intervalTimes.

params = mle(intervalTimes,'Distribution','Weibull')

params = 1×2

    5.0067    2.0049

Plot the results.

figure
histogram(observed,'Normalization','pdf')
hold on
x = linspace(0,max(observed));
plot(x,wblpdf(x,params(1),params(2)))
legend('Observed Samples','Fitted Distribution')
hold off
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Find MLEs for Distribution with Finite Support

Generate samples from a distribution with finite support, and find the MLEs with customized options
for the iterative estimation process.

For a distribution with a region that has zero probability density, mle might try some parameters that
have zero density, causing the function to fail to find MLEs. To avoid this problem, you can turn off
the option that checks for invalid function values and specify the parameter bounds when you call the
mle function.

Generate sample data of size 1000 from a Weibull distribution with the scale parameter 1 and shape
parameter 1. Shift the samples by adding 10.

rng('default') % For reproducibility
data = wblrnd(1,1,[1000,1]) + 10;
histogram(data,'Normalization','pdf')

The histogram shows no samples smaller than 10, indicating that the distribution has zero probability
in the region smaller than 10. This distribution is a three-parameter Weibull distribution, which
includes a third parameter for location (see “Three-Parameter Weibull Distribution” on page 5-96).

Define a probability density function (pdf) for the three-parameter Weibull distribution.

custompdf = @(x,a,b,c) wblpdf(x-c,a,b);

Find the MLEs by using the mle function. Specify the Options name-value argument to turn off the
option that checks for invalid function values. Also, specify the parameter bounds by using the
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LowerBound and UpperBound name-value arguments. The scale and shape parameters must be
positive, and the location parameter must be smaller than the minimum of the sample data.

params = mle(data,'pdf',custompdf,'Start',[5 5 5], ...
     'Options',statset('FunValCheck','off'), ...
     'LowerBound',[0 0 -Inf],'UpperBound',[Inf Inf min(data)])

params = 1×3

    1.0258    1.0618   10.0004

The mle function finds accurate estimates for the three parameters. For more details on specifying
custom options for the iterative process, see the example “Three-Parameter Weibull Distribution” on
page 5-96.

Input Arguments
data — Sample data and censorship information
vector | two-column matrix

Sample data and censorship information, specified as a vector of sample data or a two-column matrix
of sample data and censorship information.

You can specify the censorship information for the sample data by using either the data argument or
the Censoring name-value argument. mle ignores the Censoring argument value if data is a two-
column matrix.

Specify data as a vector or a two-column matrix depending on the censorship types of the
observations in data.

• Fully observed data — Specify data as a vector of sample data.
• Data that contains fully observed, left-censored, or right-censored observations — Specify data as

a vector of sample data, and specify the Censoring name-value argument as a vector that
contains the censorship information for each observation. The Censoring vector can contain 0, –
1, and 1, which refer to fully observed, left-censored, and right-censored observations,
respectively.

• Data that includes interval-censored observations — Specify data as a two-column matrix of
sample data and censorship information. Each row of data specifies the range of possible survival
or failure times for each observation, and can have one of these values:

• [t,t] — Fully observed at t
• [–Inf,t] — Left-censored at t
• [t,Inf] — Right-censored at t
• [t1,t2] — Interval-censored between [t1,t2], where t1 < t2

For the list of built-in distributions that support censored observations, see Censoring.

mle ignores NaN values in data. Additionally, any NaN values in the censoring vector (Censoring)
or frequency vector (Frequency) cause mle to ignore the corresponding rows in data.

Data Types: single | double
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Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: 'Censoring',Cens,'Alpha',0.01,'Options',Opt instructs mle to estimate the
parameters for the distribution of censored data specified by the array Cens, compute the 99%
confidence limits for the parameter estimates, and use the algorithm control parameters specified by
the structure Opt.

Options to Specify Built-in Distribution

Distribution — Distribution type
'normal' (default) | character vector or string scalar of distribution type

Distribution type for which to estimate parameters, specified as one of the values in this table.

Distribution Value Distribution Type First
Parameter

Second
Parameter

Third
Parameter

Fourth
Parameter

'Bernoulli' “Bernoulli
Distribution” on page
B-2

p: probability
of success for
each trial

N/A N/A N/A

'Beta' “Beta Distribution” on
page B-6

a: first shape
parameter

b: second
shape
parameter

N/A N/A

'Binomial' “Binomial
Distribution” on page
B-10

p: probability
of success for
each trial

N/A N/A N/A

'BirnbaumSaunders
'

“Birnbaum-Saunders
Distribution” on page
B-18

β: scale
parameter

γ: shape
parameter

N/A N/A

'Burr' “Burr Type XII
Distribution” on page
B-19

α: scale
parameter

c: first shape
parameter

k: second
shape
parameter

N/A

'Discrete
Uniform' or 'unid'

“Uniform Distribution
(Discrete)” on page B-
175

n: maximum
observable
value

N/A N/A N/A

'Exponential' “Exponential
Distribution” on page
B-34

μ: mean N/A N/A N/A

'Extreme Value' or
'ev'

“Extreme Value
Distribution” on page
B-41

μ: location
parameter

σ: scale
parameter

N/A N/A

'Gamma' “Gamma Distribution”
on page B-48

a: shape
parameter

b: scale
parameter

N/A N/A
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Distribution Value Distribution Type First
Parameter

Second
Parameter

Third
Parameter

Fourth
Parameter

'Generalized
Extreme Value' or
'gev'

“Generalized Extreme
Value Distribution” on
page B-56

k: shape
parameter

σ: scale
parameter

μ: location
parameter

N/A

'Generalized
Pareto' or 'gp'

“Generalized Pareto
Distribution” on page
B-60

k: tail index
(shape)
parameter

σ: scale
parameter

N/A N/A

'Geometric' “Geometric
Distribution” on page
B-64

p: probability
parameter

N/A N/A N/A

'Half Normal' or
'hn'

“Half-Normal
Distribution” on page
B-69

σ: scale
parameter

N/A N/A N/A

'InverseGaussian' “Inverse Gaussian
Distribution” on page
B-76

μ: scale
parameter

λ: shape
parameter

N/A N/A

'Logistic' “Logistic Distribution”
on page B-86

μ: mean σ: scale
parameter

N/A N/A

'LogLogistic' “Loglogistic
Distribution” on page
B-87

μ: mean of
logarithmic
values

σ: scale
parameter of
logarithmic
values

N/A N/A

'LogNormal' “Lognormal
Distribution” on page
B-89

μ: mean of
logarithmic
values

σ: standard
deviation of
logarithmic
values

N/A N/A

'Nakagami' “Nakagami
Distribution” on page
B-114

μ: shape
parameter

ω: scale
parameter

N/A N/A

'Negative
Binomial' or 'nbin'

“Negative Binomial
Distribution” on page
B-115

r: number of
successes

p: probability
of success in a
single trial

N/A N/A

'Normal' “Normal Distribution”
on page B-125

μ: mean σ: standard
deviation

N/A N/A

'Poisson' “Poisson Distribution”
on page B-137

λ: mean N/A N/A N/A

'Rayleigh' “Rayleigh
Distribution” on page
B-143

b: scale
parameter

N/A N/A N/A

'Rician' “Rician Distribution”
on page B-145

s:
noncentrality
parameter

σ: scale
parameter

N/A N/A

'Stable' “Stable Distribution”
on page B-147

α: first shape
parameter

β: second
shape
parameter

γ: scale
parameter

δ: location
parameter
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Distribution Value Distribution Type First
Parameter

Second
Parameter

Third
Parameter

Fourth
Parameter

'tLocationScale' “t Location-Scale
Distribution” on page
B-163

μ: location
parameter

σ: scale
parameter

ν: shape
parameter

N/A

'Uniform' “Uniform Distribution
(Continuous)” on page
B-170

a: lower
endpoint
(minimum)

b: upper
endpoint
(maximum)

N/A N/A

'Weibull' or 'wbl' “Weibull Distribution”
on page B-177

a: scale
parameter

b: shape
parameter

N/A N/A

mle does not estimate these distribution parameters:

• Number of trials for the binomial distribution. Specify the parameter by using the NTrials name-
value argument.

• Location parameter of the half-normal distribution. Specify the parameter by using the mu name-
value argument.

• Location parameter of the generalized Pareto distribution. Specify the parameter by using the
theta name-value argument.

If the sample data is truncated or includes left-censored or interval-censored observations, you must
specify the Start name-value argument for the Burr distribution and the stable distribution.
Example: 'Distribution','Rician'

NTrials — Number of trials for binomial distribution
scalar | vector

Number of trials for the corresponding element of data for the binomial distribution, specified as a
scalar or a vector with the same number of rows as data.

This argument is required when Distribution is 'Binomial' (binomial distribution).
Example: 'Ntrials',10
Data Types: single | double

theta — Location (threshold) parameter for generalized Pareto distribution
scalar

Location (threshold) parameter for the generalized Pareto distribution, specified as a scalar.

This argument is valid only when Distribution is 'Generalized Pareto' (generalized Pareto
distribution).

The default value is 0 when the sample data data includes only nonnegative values. You must specify
theta if data includes negative values.
Example: 'theta',1
Data Types: single | double

mu — Location parameter for half-normal distribution
scalar
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Location parameter for the half-normal distribution, specified as a scalar.

This argument is valid only when Distribution is 'Half Normal' (half-normal distribution).

The default value is 0 when the sample data data includes only nonnegative values. You must specify
mu if data includes negative values.
Example: 'mu',1
Data Types: single | double

Options to Define Custom Distribution

pdf — Custom probability density function
function handle | cell array

Custom probability distribution function (pdf), specified as a function handle or a cell array
containing a function handle and additional arguments to the function.

The custom function accepts a vector containing sample data, one or more individual distribution
parameters, and any additional arguments passed by a cell array as input parameters. The function
returns a vector of probability density values.
Example: 'pdf',@newpdf
Data Types: function_handle | cell

cdf — Custom cumulative distribution function
function handle | cell array

Custom cumulative distribution function (cdf), specified as a function handle or a cell array
containing a function handle and additional arguments to the function.

The custom function accepts a vector containing sample data, one or more individual distribution
parameters, and any additional arguments passed by a cell array as input parameters. The function
returns a vector of cdf values.

To compute MLEs for censored or truncated observations, you must define both cdf and pdf. For
fully observed and untruncated observations, mle does not use cdf. You can specify the censorship
information by using either data or Censoring and specify the truncation bounds by using
TruncationBounds.
Example: 'cdf',@newcdf
Data Types: function_handle | cell

logpdf — Custom log probability density function
function handle | cell array

Custom log probability density function, specified as a function handle or a cell array containing a
function handle and additional arguments to the function.

The custom function accepts a vector containing sample data, one or more individual distribution
parameters, and any additional arguments passed by a cell array as input parameters. The function
returns a vector of log probability values.
Example: 'logpdf',@customlogpdf
Data Types: function_handle | cell
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logsf — Custom log survival function
function handle | cell array

Custom log survival function on page 35-4780, specified as a function handle or a cell array
containing a function handle and additional arguments to the function.

The custom function accepts a vector containing sample data, one or more individual distribution
parameters, and any additional arguments passed by a cell array as input parameters. The function
returns a vector of log survival probability values.

To compute MLEs for censored or truncated observations, you must define both logsf and logpdf.
For fully observed and untruncated observations, mle does not use logsf. You can specify the
censorship information by using either data or Censoring and specify the truncation bounds by
using TruncationBounds.
Example: 'logsf',@logsurvival
Data Types: function_handle | cell

nloglf — Custom negative loglikelihood function
function handle | cell array

Custom negative loglikelihood function, specified as a function handle or a cell array containing a
function handle and additional arguments to the function.

The custom function accepts the following input arguments, in the order listed in the table.

Input Argument of Custom Function Description
params Vector of distribution parameter values. mle

detects the number of parameters from the
number of elements in Start.

data Sample data. The data value is a vector of
sample data or a two-column matrix of sample
data and censorship information.

cens Logical vector of censorship information. nloglf
must accept cens even if you do not use the
Censoring name-value argument. In this case,
you can write nloglf to ignore cens.

freq Integer vector of data frequencies. nloglf must
accept freq even if you do not use the
Frequency name-value argument. In this case,
you can write nloglf to ignore freq.

trunc Two-element numeric vector of truncation
bounds. nloglf must accept trunc if you use
the TruncationBounds name-value argument.

nloglf can optionally accept the additional arguments passed by a cell array as input parameters.

nloglf returns a scalar negative loglikelihood value and, optionally, a negative loglikelihood gradient
vector (see the GradObj field in the Options name-value argument).
Example: 'nloglf',@negloglik
Data Types: function_handle | cell
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Other Options

Censoring — Indicator of censored data
vector of 0s (default) | vector consisting of 0, –1, and 1

Indicator of censored data, specified as a vector consisting of 0, –1, and 1, which indicate fully
observed, left-censored, and right-censored observations, respectively. Each element of the
Censoring value indicates the censorship status of the corresponding observation in data. The
Censoring value must have the same size as data. The default is a vector of 0s, indicating all
observations are fully observed.

You cannot specify interval-censored observations using this argument. If the sample data includes
interval-censored observations, specify data using a two-column matrix. mle ignores the Censoring
value if data is a two-column matrix.

mle supports censoring for the following built-in distributions and a custom distribution.

Distribution Value Distribution Type
'BirnbaumSaunders' Birnbaum-Saunders
'Burr' Burr Type XII
'Exponential' Exponential
'Extreme Value' or 'ev' Extreme value
'Gamma' Gamma
'InverseGaussian' Inverse Gaussian
'Logistic' Logistic
'LogLogistic' Loglogistic
'LogNormal' Lognormal
'Nakagami' Nakagami
'Normal' Normal
'Rician' Rician
'tLocationScale' t location-scale
'Weibull' or 'wbl' Weibull

For a custom distribution, you must define the distribution by using pdf and cdf, logpdf and
logsf, or nloglf.

mle ignores any NaN values in the censoring vector. Additionally, any NaN values in data or the
frequency vector (Frequency) cause mle to ignore the corresponding values in the censoring vector.
Example: 'Censoring',censored, where censored is a vector that contains censorship
information.
Data Types: logical | single | double

TruncationBounds — Truncation bounds
[-Inf,Inf] (default) | vector of two elements

Truncation bounds, specified as a vector of two elements.

mle supports truncated observations for the following built-in distributions and a custom distribution.
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Distribution Value Distribution Type
'Beta' Beta
'BirnbaumSaunders' Birnbaum-Saunders
'Burr' Burr
'Exponential' Exponential
'Extreme Value' or 'ev' Extreme value
'Gamma' Gamma
'Generalized Extreme Value' or 'gev' Generalized extreme value
'Generalized Pareto' or 'gp' Generalized Pareto
'Half Normal' or 'hn' Half-normal
'InverseGaussian' Inverse Gaussian
'Logistic' Logistic
'LogLogistic' Loglogistic
'LogNormal' Lognormal
'Nakagami' Nakagami
'Normal' Normal
'Poisson' Poisson
'Rayleigh' Rayleigh
'Rician' Rician
'Stable' Stable
'tLocationScale' t location-scale
'Weibull' or 'wbl' Weibull

For a custom distribution, you must define the distribution by using pdf and cdf, logpdf and
logsf, or nloglf.
Example: 'TruncationBounds',[0,10]
Data Types: single | double

Frequency — Frequency of observations
vector of 1s (default) | vector of nonnegative integer counts

Frequency of observations, specified as a vector of nonnegative integer counts that has the same
number of rows as data. The jth element of the Frequency value gives the number of times the jth
row of data was observed. The default is a vector of 1s, indicating one observation per row of data.

mle ignores any NaN values in this frequency vector. Additionally, any NaN values in data or the
censoring vector (Censoring) cause mle to ignore the corresponding values in the frequency vector.
Example: 'Frequency',freq, where freq is a vector that contains the observation frequencies.
Data Types: single | double

Alpha — Significance level
0.05 (default) | scalar in the range (0,1)

35 Functions

35-4776



Significance level for the confidence interval pci of parameter estimates, specified as a scalar in the
range (0,1). The confidence level of pci is 100(1–Alpha)%. The default is 0.05 for 95% confidence.
Example: 'Alpha',0.01 specifies the confidence level as 99%.
Data Types: single | double

Options — Options for iterative algorithm
statset('mlecustom') (default) | structure

Options for the iterative algorithm, specified as a structure returned by statset.

Use this argument to control details of the maximum likelihood optimization. This argument is valid
in the following cases:

• The sample data is truncated.
• The sample data includes left-censored or interval-censored observations.
• You fit a custom distribution.

The mle function interprets the following statset options for optimization.

Field Name Description Default Value
GradObj Flag indicating whether fmincon can expect the

nloglf custom function to return the gradient
vector of the negative loglikelihood as a second
output, specified as 'on' or 'off'.

For an example of supplying a gradient to
fmincon, see “Avoid Numerical Issues When
Fitting Custom Distributions” on page 5-186.

mle ignores GradObj when using fminsearch.
You can specify the optimization function by using
the OptimFun name-value argument. The default
optimization function is fminsearch.

'off'

DerivStep Relative difference, specified as a vector of the
same size as Start and used in finite difference
derivative approximations when mle uses
fmincon and GradObj is 'off'.

mle ignores DerivStep when using
fminsearch.

eps^(1/3)

FunValCheck Flag indicating whether mle checks the values
returned by the distribution functions for validity,
specified as 'on' or 'off'.

A poor choice for the starting point can cause the
distribution functions to return NaNs, infinite
values, or out-of-range values if you define the
function without suitable error checking.

'on'
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Field Name Description Default Value
TolBnd Offset for lower and upper bounds when mle uses

fmincon, specified as a positive scalar.

mle treats lower and upper bounds as strict
inequalities, or open bounds. When using
fmincon, mle approximates the bounds by
including the offset specified by TolBnd for the
lower and upper bounds.

1e-6

TolFun Termination tolerance on the function value,
specified as a positive scalar.

1e-6

TolX Termination tolerance for the parameters,
specified as a positive scalar.

1e-6

MaxFunEvals Maximum number of function evaluations
allowed, specified as a positive integer.

400

MaxIter Maximum number of iterations allowed, specified
as a positive integer.

200

Display Level of display, specified as 'off', 'final', or
'iter'.

• 'off' — Display no information.
• 'final' — Display the final information.
• 'iter' — Display information at each

iteration

'off'

For examples of the Options name-value argument, see “Find MLEs for Distribution with Finite
Support” on page 35-4767 and “Three-Parameter Weibull Distribution” on page 5-96.

For more details, see the options input argument of fminsearch and fmincon.
Example: 'Options',statset('FunValCheck','off')
Data Types: struct

Start — Initial parameter values
row vector

Initial parameter values for the Burr distribution, stable distribution, and custom distributions,
specified as a row vector. The length of the Start value must be the same as the number of
parameters estimated by mle.

If the sample data is truncated or includes left-censored or interval-censored observations, the Start
argument is required for the Burr and stable distributions. This argument is always required when
you fit a custom distribution, that is, when you use the pdf, logpdf, or nloglf name-value
argument. For other cases, mle can either find initial values or compute MLEs without initial values.
Example: 0.05
Example: [100,2]
Data Types: single | double
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LowerBound — Lower bounds for distribution parameters
vector of -Infs (default) | row vector

Lower bounds for the distribution parameters, specified as a row vector of the same length as Start.

This argument is valid in the following cases:

• The sample data is truncated.
• The sample data includes left-censored or interval-censored observations.
• You fit a custom distribution.

Example: 'Lowerbound',0
Data Types: single | double

UpperBound — Upper bounds for distribution parameters
vector of Infs (default) | row vector

Upper bounds for the distribution parameters, specified as a row vector of the same length as Start.

This argument is valid in the following cases:

• The sample data is truncated.
• The sample data includes left-censored or interval-censored observations.
• You fit a custom distribution.

Example: 'Upperbound',1
Data Types: single | double

OptimFun — Optimization function
'fminsearch' (default) | 'fmincon'

Optimization function used by mle to maximize the likelihood, specified as either 'fminsearch' or
'fmincon'. The 'fmincon' option requires Optimization Toolbox.

• The sample data is truncated.
• The sample data includes left-censored or interval-censored observations.
• You fit a custom distribution.

Example: 'Optimfun','fmincon'

Output Arguments
phat — Parameter estimates
row vector

Parameter estimates, returned as a row vector. For a description of parameter estimates for the built-
in distributions, see Distribution.

pci — Confidence intervals for parameter estimates
2-by-k matrix
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Confidence intervals for parameter estimates, returned as a 2-by-k matrix, where k is the number of
parameters estimated by mle. The first and second rows of the pci show the lower and upper
confidence limits, respectively.

You can specify the significance level for the confidence interval by using the Alpha name-value
argument.

More About
Censorship Types

mle supports left-censored, right-censored, and interval-censored observations.

• Left-censored observation at time t — The event occurred before time t, and the exact event time
is unknown.

• Right-censored observation at time t — The event occurred after time t, and the exact event time
is unknown.

• Interval-censored observation within the interval [t1,t2] — The event occurred after time t1 and
before time t2, and the exact event time is unknown.

Double-censored data includes both left-censored and right-censored observations.

Survival Function

The survival function is the probability of survival as a function of time. It is also called the survivor
function.

The survival function gives the probability that the survival time of an individual exceeds a certain
value. Because the cumulative distribution function F(t) is the probability that the survival time is less
than or equal to a given point t in time, the survival function for a continuous distribution S(t) is the
complement of the cumulative distribution function: S(t) = 1 – F(t).

Tips
• When you supply custom distribution functions or use built-in distributions for left-censored,

double-censored, interval-censored, or truncated observations, mle computes the parameter
estimates using an iterative maximization algorithm. With some models and data, a poor choice
for the starting point (Start) can cause mle to converge to a local optimum that is not the global
maximizer, or to fail to converge entirely. Even in cases for which the loglikelihood is well behaved
near the global maximum, the choice of starting point is often crucial to convergence of the
algorithm. In particular, if the initial parameter values are far from the MLEs, underflow in the
distribution functions can lead to infinite loglikelihoods.

Algorithms
• The mle function finds MLEs by minimizing the negative loglikelihood function (that is,

maximizing the loglikelihood function) or by using a closed-form solution, if available. The
objective function is the negative logarithm value of the product of the sample data (X)
probabilities, given the distribution parameters (θ):

Objective Function = − log ∏
x ∈ X

P(x θ)
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The probability function P depends on the censorship information for each observation.

• Fully observed observation — P(x|θ) = f(x), where f is the probability density function (pdf)
with the parameters θ.

• Left-censored observation — P(x|θ) = F(x), where F is the cumulative distribution function (cdf)
with the parameters θ.

• Right-censored observation — P(x|θ) = 1 – F(x).
• Interval-censored observation between xL and xU — P(x|θ) = F(xU) – F(xL).

For truncated data, mle scales the distribution functions so that all the probabilities lie in the
truncation bounds [L,U].

f truncation(x) =
f (x)

F(U)− F(L) , if L ≤ x ≤ U,

0, Otherwise .

Ftruncation(x) =

F(x)− F(L)
F(U)− F(L) , if L ≤ x ≤ U,

0,
1,

if x < L,
if x > U .

• The mle function computes the confidence intervals pci using an exact method when it is
available, and when the sample data is not truncated and does not include left-censored or
interval-censored observations. Otherwise, the function uses the Wald method. An exact method is
available for these distributions: binomial, discrete uniform, exponential, normal, lognormal,
Poisson, Rayleigh, and continuous uniform.

Version History
Introduced before R2006a

Extended Capabilities
GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

Usage notes and limitations:

• You cannot specify the name-value argument Distribution as 'Rician' or 'Stable'.
• If you fit a custom distribution by using the pdf and cdf, logpdf and logsf, or nloglf name-

value arguments, the custom distribution function must support GPU arrays.

For more information, see “Run MATLAB Functions on a GPU” (Parallel Computing Toolbox).

See Also
fitdist | mlecov | statset | Distribution Fitter

Topics
“Maximum Likelihood Estimation” on page 5-23
“What Is Survival Analysis?” on page 15-2
“Fit Custom Distributions” on page 5-173
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“Avoid Numerical Issues When Fitting Custom Distributions” on page 5-186
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mlecov
Asymptotic covariance of maximum likelihood estimators

Syntax
acov = mlecov(params,data,'pdf',pdf)
acov = mlecov(params,data,'logpdf',logpdf)
acov = mlecov(params,data,'nloglf',nloglf)
acov = mlecov( ___ ,Name,Value)

Description
acov = mlecov(params,data,'pdf',pdf) returns an approximation to the asymptotic
covariance matrix of the maximum likelihood estimators of the parameters for a distribution specified
by the custom probability density function pdf. The output acov is a p-by-p matrix, where p is the
number of parameters in params.

mlecov computes a finite difference approximation to the Hessian of the loglikelihood at the
maximum likelihood estimates params, given the observed data, and returns the negative inverse of
that Hessian.

acov = mlecov(params,data,'logpdf',logpdf) returns acov for a distribution specified by
the custom log probability density function logpdf.

acov = mlecov(params,data,'nloglf',nloglf) returns acov for a distribution specified by
the custom negative loglikelihood function nloglf.

acov = mlecov( ___ ,Name,Value) specifies options using one or more name-value arguments in
addition to any of the input argument combinations in previous syntaxes. For example, you can
specify the censored data and frequency of observations.

Examples

Custom Probability Density Function (pdf)

Load the sample data.

load carbig

The vector Weight contains the weights of 406 cars.

Define a custom function that returns the pdf of a lognormal distribution. Save the file in your current
folder as lognormpdf.m.

function newpdf = lognormpdf(data,mu,sigma)
newpdf = exp((-(log(data)-mu).^2)/(2*sigma^2))./(data*sigma*sqrt(2*pi));

Estimate the parameters mu and sigma of the custom distribution.

[phat,pci] = mle(Weight,'pdf',@lognormpdf,'Start',[4.5 0.3])
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phat = 1×2

    7.9600    0.2804

pci = 2×2

    7.9327    0.2611
    7.9872    0.2997

Compute the approximate covariance matrix of the parameter estimates.

acov = mlecov(phat,Weight,'pdf',@lognormpdf)

acov = 2×2
10-3 ×

    0.1937   -0.0000
   -0.0000    0.0968

Estimate the standard errors of the estimates.

se = sqrt(diag(acov))'

se = 1×2

    0.0139    0.0098

The standard error of the estimates of mu and sigma are 0.0139 and 0.0098, respectively.

Recalculate the confidence intervals pci from the standard error se by using the Wald method
(normal approximation).

alpha = 0.05;
probs = [alpha/2; 1-alpha/2];
pci2 = norminv(repmat(probs,1,numel(phat)),[phat; phat],[se; se])

pci2 = 2×2

    7.9327    0.2611
    7.9872    0.2997

Custom Log Probability Density Function (pdf)

Define a custom function that returns the log pdf of a beta distribution. Save the file in your current
folder as betalogpdf.m.

function logpdf = betalogpdf(x,a,b)
logpdf = (a-1)*log(x)+(b-1)*log(1-x)-betaln(a,b);

Generate sample data from a beta distribution with parameters 1.23 and 3.45, and estimate the
parameters using the simulated data.
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rng('default') % For reproducibility
x = betarnd(1.23,3.45,25,1);
phat = mle(x,'Distribution','beta')

phat = 1×2

    1.1213    2.7182

Compute the approximate covariance matrix of the parameter estimates.

acov = mlecov(phat,x,'logpdf',@betalogpdf)

acov = 2×2

    0.0810    0.1646
    0.1646    0.6074

Custom Negative Loglikelihood Function

Load the sample data.

load('readmissiontimes.mat')

The data includes ReadmissionTime, which has readmission times for 100 patients. This data is
simulated.

Define a custom negative loglikelihood function for a Poisson distribution with the parameter
lambda, where 1/lambda is the mean of the distribution. You must define the function to accept a
logical vector of censorship information and an integer vector of data frequencies, even if you do not
use these values in the custom function.

custnloglf = @(lambda,data,cens,freq) ...
    - length(data)*log(lambda) + sum(lambda*data,'omitnan');

Estimate the parameter of the custom distribution and specify its initial parameter value (Start
name-value argument).

phat = mle(ReadmissionTime,'nloglf',custnloglf,'Start',0.05)

phat = 0.1462

Compute the variance of the parameter estimate.

acov = mlecov(phat,ReadmissionTime,'nloglf',custnloglf)

acov = 2.1374e-04

Compute the standard error.

sqrt(acov)

ans = 0.0146
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Specify Right-Censored Data

Load the sample data.

load('readmissiontimes.mat');

The data includes ReadmissionTime, which has readmission times for 100 patients. The column
vector Censored contains the censorship information for each patient, where 1 indicates a right-
censored observation, and 0 indicates that the exact readmission time is observed. This data is
simulated.

Define a custom log probability density function (pdf) and log survival function for a Weibull
distribution with the scale parameter lambda and the shape parameter k. When the data contains
censored observations, you must pass both the log pdf and log survival function to mle and mlecov.

custlogpdf = @(data,lambda,k) ...
    log(k) - k*log(lambda) + (k-1)*log(data) - (data/lambda).^k;
custlogsf = @(data,lambda,k) - (data/lambda).^k;

Estimate the parameters of the custom distribution for the censored sample data. Specify the initial
parameter values (Start name-value argument) for the custom distribution.

phat = mle(ReadmissionTime,'logpdf',custlogpdf,'logsf',custlogsf, ...
    'Start',[1,0.75],'Censoring',Censored)

phat = 1×2

    9.2090    1.4223

The scale and shape parameters of the custom distribution are 9.2090 and 1.4223, respectively.

Compute the approximate covariance matrix of the parameter estimates.

acov = mlecov(phat,ReadmissionTime, ...
    'logpdf',custlogpdf,'logsf',custlogsf,'Censoring',Censored)

acov = 2×2

    0.5653    0.0102
    0.0102    0.0163

Input Arguments
params — Parameter estimates
vector

Parameter estimates, specified as a vector. These parameter estimates must be maximum likelihood
estimates. For example, you can specify parameter estimates returned by mle.
Data Types: single | double

data — Sample data and censorship information
vector | two-column matrix
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Sample data and censorship information used to estimate the distribution parameters params,
specified as a vector of sample data or a two-column matrix of sample data and censorship
information.

You can specify the censorship information for the sample data by using either the data argument or
the Censoring name-value argument. mlecov ignores the Censoring argument value if data is a
two-column matrix.

Specify data as a vector or a two-column matrix depending on the censorship types of the
observations in data.

• Fully observed data — Specify data as a vector of sample data.
• Data that contains fully observed, left-censored, or right-censored observations — Specify data as

a vector of sample data, and specify the Censoring name-value argument as a vector that
contains the censorship information for each observation. The Censoring vector can contain 0, –
1, and 1, which refer to fully observed, left-censored, and right-censored observations,
respectively.

• Data that includes interval-censored observations — Specify data as a two-column matrix of
sample data and censorship information. Each row of data specifies the range of possible survival
or failure times for each observation, and can have one of these values:

• [t,t] — Fully observed at t
• [–Inf,t] — Left-censored at t
• [t,Inf] — Right-censored at t
• [t1,t2] — Interval-censored between [t1,t2], where t1 < t2

mlecov ignores NaN values in data. Additionally, any NaN values in the censoring vector
(Censoring) or frequency vector (Frequency) cause mlecov to ignore the corresponding rows in
data.
Data Types: single | double

pdf — Custom probability density function
function handle | cell array

Custom probability distribution function (pdf), specified as a function handle or a cell array
containing a function handle and additional arguments to the function.

The custom function accepts a vector containing sample data, one or more individual distribution
parameters, and any additional arguments passed by a cell array as input parameters. The function
returns a vector of probability density values.
Example: @newpdf
Data Types: function_handle | cell

logpdf — Custom log probability density function
function handle | cell array

Custom log probability density function, specified as a function handle or a cell array containing a
function handle and additional arguments to the function.

The custom function accepts a vector containing sample data, one or more individual distribution
parameters, and any additional arguments passed by a cell array as input parameters. The function
returns a vector of log probability values.
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Example: @customlogpdf
Data Types: function_handle | cell

nloglf — Custom negative loglikelihood function
function handle | cell array

Custom negative loglikelihood function, specified as a function handle or a cell array containing a
function handle and additional arguments to the function.

The custom function accepts the following input arguments, in the order listed in the table.

Input Argument of Custom Function Description
params Vector of distribution parameter values params.
data Sample data. The data value is a vector of

sample data or a two-column matrix of sample
data and censorship information.

cens Logical vector of censorship information. nloglf
must accept cens even if you do not use the
Censoring name-value argument. In this case,
you can write nloglf to ignore cens.

freq Integer vector of data frequencies. nloglf must
accept freq even if you do not use the
Frequency name-value argument. In this case,
you can write nloglf to ignore freq.

trunc Two-element numeric vector of truncation
bounds. nloglf must accept trunc if you use
the TruncationBounds name-value argument.

nloglf can optionally accept the additional arguments passed by a cell array as input parameters.

nloglf returns a scalar negative loglikelihood value and, optionally, a negative loglikelihood gradient
vector (see the GradObj field in the Options name-value argument).
Example: @negloglik
Data Types: function_handle | cell

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: 'Censoring',cens,'Options',opt instructs mlecov to read the censored data
information from the vector cens and perform according to the new options structure opt.

cdf — Custom cumulative distribution function
function handle | cell array

Custom cumulative distribution function (cdf), specified as a function handle or a cell array
containing a function handle and additional arguments to the function.
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The custom function accepts a vector containing sample data, one or more individual distribution
parameters, and any additional arguments passed by a cell array as input parameters. The function
returns a vector of cdf values.

For censored or truncated observations, you must define both cdf and pdf. For fully observed and
untruncated observations, mlecov does not use cdf. You can specify the censorship information by
using either data or Censoring and specify the truncation bounds by using TruncationBounds.
Example: 'cdf',@newcdf
Data Types: function_handle | cell

logsf — Custom log survival function
function handle | cell array

Custom log survival function on page 35-4791, specified as a function handle or a cell array
containing a function handle and additional arguments to the function.

The custom function accepts a vector containing sample data, one or more individual distribution
parameters, and any additional arguments passed by a cell array as input parameters. The function
returns a vector of log survival probability values.

For censored or truncated observations, you must define both logsf and logpdf. For fully observed
and untruncated observations, mlecov does not use logsf. You can specify the censorship
information by using either data or Censoring and specify the truncation bounds by using
TruncationBounds.
Example: 'logsf',@logsurvival
Data Types: function_handle | cell

Censoring — Indicator of censored data
vector of 0s (default) | vector consisting of 0, –1, and 1

Indicator of censored data, specified as a vector consisting of 0, –1, and 1, which indicate fully
observed, left-censored, and right-censored observations, respectively. Each element of the
Censoring value indicates the censorship status of the corresponding observation in data. The
Censoring value must have the same size as data. The default is a vector of 0s, indicating all
observations are fully observed.

You cannot specify interval-censored observations using this argument. If the sample data includes
interval-censored observations, specify data using a two-column matrix. mlecov ignores the
Censoring value if data is a two-column matrix.

For censored data, you must define the custom distribution by using pdf and cdf, logpdf and
logsf, or nloglf.

mlecov ignores any NaN values in the censoring vector. Additionally, any NaN values in data or the
frequency vector (Frequency) cause mlecov to ignore the corresponding values in the censoring
vector.
Example: 'Censoring',censored, where censored is a vector that contains censorship
information.
Data Types: logical | single | double

TruncationBounds — Truncation bounds
[-Inf,Inf] (default) | vector of two elements
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Truncation bounds, specified as a vector of two elements.

For censored data, you must define the custom distribution by using pdf and cdf, logpdf and
logsf, or nloglf.
Example: 'TruncationBounds',[0,10]
Data Types: single | double

Frequency — Frequency of observations
vector of 1s (default) | vector of nonnegative integer counts

Frequency of observations, specified as a vector of nonnegative integer counts that has the same
number of rows as data. The jth element of the Frequency value gives the number of times the jth
row of data was observed. The default is a vector of 1s, indicating one observation per row of data.

mlecov ignores any NaN values in this frequency vector. Additionally, any NaN values in data or the
censoring vector (Censoring) cause mlecov to ignore the corresponding values in the frequency
vector.
Example: 'Frequency',freq, where freq is a vector that contains the observation frequencies.
Data Types: single | double

Options — Numerical options
statset('mlecov') (default) | structure

Numerical options for the finite difference Hessian calculation, specified as a structure returned by
statset.

The mlecov function interprets the following statset options.

Field Name Description
GradObj Flag indicating whether the function provided by the nloglf input argument

can return the gradient vector of the negative loglikelihood as a second
output, specified as 'on' or 'off' (default).

DerivStep Relative step size used in the finite difference for Hessian calculations,
specified as a vector of the same size as params.

The default value is eps^(1/4). A smaller value than the default might be
appropriate if 'GradObj' is 'on'.

Example: 'Options',statset('GradObj','on')
Data Types: struct

More About
Censorship Types

mlecov supports left-censored, right-censored, and interval-censored observations.

• Left-censored observation at time t — The event occurred before time t, and the exact event time
is unknown.
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• Right-censored observation at time t — The event occurred after time t, and the exact event time
is unknown.

• Interval-censored observation within the interval [t1,t2] — The event occurred after time t1 and
before time t2, and the exact event time is unknown.

Double-censored data includes both left-censored and right-censored observations.

Survival Function

The survival function is the probability of survival as a function of time. It is also called the survivor
function.

The survival function gives the probability that the survival time of an individual exceeds a certain
value. Because the cumulative distribution function F(t) is the probability that the survival time is less
than or equal to a given point t in time, the survival function for a continuous distribution S(t) is the
complement of the cumulative distribution function: S(t) = 1 – F(t).

Version History
Introduced before R2006a

See Also
mle

Topics
“Maximum Likelihood Estimation” on page 5-23
“What Is Survival Analysis?” on page 15-2
“Fit Custom Distributions” on page 5-173
“Avoid Numerical Issues When Fitting Custom Distributions” on page 5-186
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mnpdf
Multinomial probability density function

Syntax
Y = mnpdf(X,PROB)

Description
Y = mnpdf(X,PROB) returns the pdf for the multinomial distribution with probabilities PROB,
evaluated at each row of X. X and PROB are m-by-k matrices or 1-by-k vectors, where k is the number
of multinomial bins or categories. Each row of PROB must sum to one, and the sample sizes for each
observation (rows of X) are given by the row sums sum(X,2). Y is an m-by-1 vector, and mnpdf
computes each row of Y using the corresponding rows of the inputs, or replicates them if needed.

Examples

Compute the Multinomial Distribution pdf

Compute the pdf of a multinomial distribution with a sample size of n = 10. The probabilities are p
= 1/2 for outcome 1, p = 1/3 for outcome 2, and p = 1/6 for outcome 3.

p = [1/2 1/3 1/6];
n = 10;
x1 = 0:n;
x2 = 0:n;
[X1,X2] = meshgrid(x1,x2);
X3 = n-(X1+X2);

Compute the pdf of the distribution.

Y = mnpdf([X1(:),X2(:),X3(:)],repmat(p,(n+1)^2,1));

Plot the pdf on a 3-dimensional figure.

Y = reshape(Y,n+1,n+1);
bar3(Y)
h = gca;
h.XTickLabel = [0:n];
h.YTickLabel = [0:n];
xlabel('x_1')
ylabel('x_2')
zlabel('Probability Mass')
title('Trinomial Distribution')
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Note that the visualization does not show x3, which is determined by the constraint x1 + x2 + x3
= n.

Version History
Introduced in R2006b

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
mnrnd

Topics
“Multinomial Distribution” on page B-102
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mnrfit
Multinomial logistic regression

Syntax
B = mnrfit(X,Y)
B = mnrfit(X,Y,Name,Value)
[B,dev,stats] = mnrfit( ___ )

Description
B = mnrfit(X,Y) returns a matrix, B, of coefficient estimates for a multinomial logistic regression
of the nominal responses in Y on the predictors in X.

B = mnrfit(X,Y,Name,Value) returns a matrix, B, of coefficient estimates for a multinomial
model fit with additional options specified by one or more Name,Value pair arguments.

For example, you can fit a nominal, an ordinal, or a hierarchical model, or change the link function.

[B,dev,stats] = mnrfit( ___ ) also returns the deviance of the fit, dev, and the structure
stats for any of the previous input arguments. stats contains model statistics such as degrees of
freedom, standard errors for coefficient estimates, and residuals.

Examples

Multinomial Regression for Nominal Responses

Fit a multinomial regression for nominal outcomes and interpret the results.

Load the sample data.

load fisheriris

The column vector, species, consists of iris flowers of three different species, setosa, versicolor,
virginica. The double matrix meas consists of four types of measurements on the flowers, the length
and width of sepals and petals in centimeters, respectively.

Define the nominal response variable using a categorical array.

sp = categorical(species);

Fit a multinomial regression model to predict the species using the measurements.

[B,dev,stats] = mnrfit(meas,sp);
B

B = 5×2
103 ×

    2.0184    0.0426
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    0.6739    0.0025
   -0.5682    0.0067
   -0.5164   -0.0094
   -2.7609   -0.0183

This is a nominal model for the response category relative risks, with separate slopes on all four
predictors, that is, each category of meas. The first row of B contains the intercept terms for the
relative risk of the first two response categories, setosa and versicolor versus the reference category,
virginica. The last four rows contain the slopes for the models for the first two categories. mnrfit
accepts the third category as the reference category.

The relative risk of an iris flower being species 2 (versicolor) versus species 3 (virginica) is the ratio
of the two probabilities (the probability of being species 2 and the probability of being species 3). The
model for the relative risk is

ln
πversicolor
πvirginica

= 42 . 6 + 2 . 5X1 + 6 . 7X2− 9 . 4X3− 18 . 3X4 .

The coefficients express both the effects of the predictor variables on the relative risk and the log
odds of being in one category versus the reference category. For example, the estimated coefficient
2.5 indicates that the relative risk of being species 2 (versicolor) versus species 3 (virginica)
increases exp(2.5) times for each unit increase in X1, the first measurement, given all else is equal.
The relative log odds of being versicolor versus virginica increases 2.5 times with a one-unit increase
in X1, given all else is equal.

If the coefficients are converging toward infinity or negative infinity, the estimated coefficients can
vary slightly depending on your operating system.

Check the statistical significance of the model coefficients.

stats.p

ans = 5×2

         0    0.0000
         0    0.0281
         0    0.0000
         0    0.0000
         0    0.0000

The small p-values indicate that all measures are significant on the relative risk of being a setosa
versus a virginica (species 1 compared to species 3) and being a versicolor versus a virginica (species
2 compared to species 3).

Request the standard errors of coefficient estimates.

stats.se

ans = 5×2

   12.4038    5.2719
    3.5783    1.1228
    3.1760    1.4789
    3.5403    1.2934
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    7.1203    2.0967

Calculate the 95% confidence limits for the coefficients.

LL = stats.beta - 1.96.*stats.se;
UL = stats.beta + 1.96.*stats.se;

Display the confidence intervals for the coefficients of the model for the relative risk of being a setosa
versus a virginica (the first column of coefficients in B).

[LL(:,1) UL(:,1)]

ans = 5×2
103 ×

    1.9941    2.0427
    0.6668    0.6809
   -0.5744   -0.5620
   -0.5234   -0.5095
   -2.7749   -2.7470

Find the confidence intervals for the coefficients of the model for the relative risk of being a
versicolor versus a virginica (the second column of coefficients in B).

[LL(:,2) UL(:,2)]

ans = 5×2

   32.3049   52.9707
    0.2645    4.6660
    3.7823    9.5795
  -11.9644   -6.8944
  -22.3957  -14.1766

Multinomial Regression for Ordinal Responses

Fit a multinomial regression model for categorical responses with natural ordering among categories.

Load the sample data and define the predictor variables.

load carbig
X = [Acceleration Displacement Horsepower Weight];

The predictor variables are the acceleration, engine displacement, horsepower, and weight of the
cars. The response variable is miles per gallon (mpg).

Create an ordinal response variable categorizing MPG into four levels from 9 to 48 mpg by labeling
the response values in the range 9-19 as 1, 20-29 as 2, 30-39 as 3, and 40-48 as 4.

miles = ordinal(MPG,{'1','2','3','4'},[],[9,19,29,39,48]);

Fit an ordinal response model for the response variable miles.
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[B,dev,stats] = mnrfit(X,miles,'model','ordinal');
B

B = 7×1

  -16.6895
  -11.7208
   -8.0606
    0.1048
    0.0103
    0.0645
    0.0017

The first three elements of B are the intercept terms for the models, and the last four elements of B
are the coefficients of the covariates, assumed common across all categories. This model corresponds
to parallel regression, which is also called the proportional odds model, where there is a different
intercept but common slopes among categories. You can specify this using the
'interactions','off' name-value pair argument, which is the default for ordinal models.

[B(1:3)'; repmat(B(4:end),1,3)]

ans = 5×3

  -16.6895  -11.7208   -8.0606
    0.1048    0.1048    0.1048
    0.0103    0.0103    0.0103
    0.0645    0.0645    0.0645
    0.0017    0.0017    0.0017

The link function in the model is logit ('link','logit'), which is the default for an ordinal model.
The coefficients express the relative risk or log odds of the mpg of a car being less than or equal to
one value versus greater than that value.

The proportional odds model in this example is

ln P mpg ≤ 19
P mpg > 19 = − 16 . 6895 + 0 . 1048XA + 0 . 0103XD + 0 . 0645XH + 0 . 0017XW

ln P mpg ≤ 29
P mpg > 29 = − 11 . 7208 + 0 . 1048XA + 0 . 0103XD + 0 . 0645XH + 0 . 0017XW

ln P mpg ≤ 39
P mpg > 39 = − 8 . 0606 + 0 . 1048XA + 0 . 0103XD + 0 . 0645XH + 0 . 0017XW

For example, the coefficient estimate of 0.1048 indicates that a unit change in acceleration would
impact the odds of the mpg of a car being less than or equal to 19 versus more than 19, or being less
than or equal to 29 versus greater than 29, or being less than or equal to 39 versus greater than 39,
by a factor of exp(0.01048) given all else is equal.

Assess the significance of the coefficients.

stats.p

ans = 7×1

    0.0000
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    0.0000
    0.0000
    0.1899
    0.0350
    0.0000
    0.0118

The p-values of 0.035, 0.0000, and 0.0118 for engine displacement, horsepower, and weight of a car,
respectively, indicate that these factors are significant on the odds of mpg of a car being less than or
equal to a certain value versus being greater than that value.

Hierarchical Multinomial Regression Model

Fit a hierarchical multinomial regression model.

Load the sample data.

load('smoking.mat');

The data set smoking contains five variables: sex, age, weight, and systolic and diastolic blood
pressure. Sex is a binary variable where 1 indicates female patients, and 0 indicates male patients.

Define the response variable.

Y = categorical(smoking.Smoker);

The data in Smoker has four categories:

• 0: Nonsmoker, 0 cigarettes a day
• 1: Smoker, 1–5 cigarettes a day
• 2: Smoker, 6–10 cigarettes a day
• 3: Smoker, 11 or more cigarettes a day

Define the predictor variables.

X = [smoking.Sex smoking.Age smoking.Weight...
    smoking.SystolicBP smoking.DiastolicBP];

Fit a hierarchical multinomial model.

[B,dev,stats] = mnrfit(X,Y,'model','hierarchical');
B

B = 6×3

   43.8148    5.9571   44.0712
    1.8709   -0.0230    0.0662
    0.0188    0.0625    0.1335
    0.0046   -0.0072   -0.0130
   -0.2170    0.0416   -0.0324
   -0.2273   -0.1449   -0.4824

35 Functions

35-4798



The first column of B includes the intercept and the coefficient estimates for the model of the relative
risk of being a nonsmoker versus a smoker. The second column includes the parameter estimates for
modeling the log odds of smoking 1–5 cigarettes a day versus more than five cigarettes a day given
that a person is a smoker. Finally, the third column includes the parameter estimates for modeling the
log odds of a person smoking 6–10 cigarettes a day versus more than 10 cigarettes a day given he/she
smokes more than 5 cigarettes a day.

The coefficients differ across categories. You can specify this using the 'interactions','on'
name-value pair argument, which is the default for hierarchical models. So, the model in this example
is

ln P y = 0
P y > 0 = 43 . 8148 + 1 . 8709XS + 0 . 0188XA + 0 . 0046XW − 0 . 2170XSBP − 0 . 2273XDBP

ln P 1 ≤ y ≤ 5
P y > 5 = 5 . 9571− 0 . 0230XS + 0 . 0625XA− 0 . 0072XW + 0 . 0416XSBP − 0 . 1449XDBP

ln P 6 ≤ y ≤ 10
P y > 10 = 44 . 0712 + 0 . 0662XS + 0 . 1335XA− 0 . 0130XW − 0 . 0324XSBP − 0

. 4824XDBP

For example, the coefficient estimate of 1.8709 indicates that the likelihood of being a smoker versus
a nonsmoker increases by exp(1.8709) = 6.49 times as the gender changes from female to male given
everything else held constant.

Assess the statistical significance of the terms.

stats.p

ans = 6×3

    0.0000    0.5363    0.2149
    0.3549    0.9912    0.9835
    0.6850    0.2676    0.2313
    0.9032    0.8523    0.8514
    0.0009    0.5187    0.8165
    0.0004    0.0483    0.0545

Sex, age, or weight don’t appear significant on any level. The p-values of 0.0009 and 0.0004 indicate
that both types of blood pressure are significant on the relative risk of a person being a smoker
versus a nonsmoker. The p-value of 0.0483 shows that only diastolic blood pressure is significant on
the odds of a person smoking 0–5 cigarettes a day versus more than 5 cigarettes a day. Similarly, the
p-value of 0.0545 indicates that diastolic blood pressure is significant on the odds of a person
smoking 6–10 cigarettes a day versus more than 10 cigarettes a day.

Check if any nonsignificant factors are correlated to each other. Draw a scatterplot of age versus
weight grouped by sex.

figure()
gscatter(smoking.Age,smoking.Weight,smoking.Sex)
legend('Male','Female')
xlabel('Age')
ylabel('Weight')
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The range of weight of an individual seems to differ according to gender. Age does not seem to have
any obvious correlation with sex or weight. Age is insignificant and weight seems to be correlated
with sex, so you can eliminate both and reconstruct the model.

Eliminate age and weight from the model and fit a hierarchical model with sex, systolic blood
pressure, and diastolic blood pressure as the predictor variables.

X = double([smoking.Sex smoking.SystolicBP...
smoking.DiastolicBP]);
[B,dev,stats] = mnrfit(X,Y,'model','hierarchical');
B

B = 4×3

   44.8456    5.3230   25.0248
    1.6045    0.2330    0.4982
   -0.2161    0.0497    0.0179
   -0.2222   -0.1358   -0.3092

Here, a coefficient estimate of 1.6045 indicates that the likelihood of being a nonsmoker versus a
smoker increases by exp(1.6045) = 4.97 times as sex changes from male to female. A unit increase in
the systolic blood pressure indicates an exp(–.2161) = 0.8056 decrease in the likelihood of being a
nonsmoker versus a smoker. Similarly, a unit increase in the diastolic blood pressure indicates an
exp(–.2222) = 0.8007 decrease in the relative rate of being a nonsmoker versus being a smoker.

Assess the statistical significance of the terms.
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stats.p

ans = 4×3

    0.0000    0.4715    0.2325
    0.0210    0.7488    0.6362
    0.0010    0.4107    0.8899
    0.0003    0.0483    0.0718

The p-values of 0.0210, 0.0010, and 0.0003 indicate that the terms sex and both types of blood
pressure are significant on the relative risk of a person being a nonsmoker versus a smoker, given the
other terms in the model. Based on the p-value of 0.0483, diastolic blood pressure appears significant
on the relative risk of a person smoking 1–5 cigarettes versus more than 5 cigarettes a day, given that
this person is a smoker. Because none of the p-values on the third column are less than 0.05, you can
say that none of the variables are statistically significant on the relative risk of a person smoking from
6–10 cigarettes versus more than 10 cigarettes, given that this person smokes more than 5 cigarettes
a day.

Input Arguments
X — Observations on predictor variables
n-by-p matrix

Observations on predictor variables, specified as an n-by-p matrix. X contains n observations for p
predictors.

Note mnrfit automatically includes a constant term (intercept) in all models. Do not include a
column of 1s in X.

Data Types: single | double

Y — Response values
n-by-k matrix | n-by-1 column vector

Response values, specified as a column vector or a matrix. Y can be one of the following:

• An n-by-k matrix, where Y(i,j) is the number of outcomes of the multinomial category j for the
predictor combinations given by X(i,:). In this case, the number of observations are made at each
predictor combination.

• An n-by-1 column vector of scalar integers from 1 to k indicating the value of the response for
each observation. In this case, all sample sizes are 1.

• An n-by-1 categorical array indicating the nominal or ordinal value of the response for each
observation. In this case, all sample sizes are 1.

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
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Example: 'Model','ordinal','Link','probit' specifies an ordinal model with a probit link
function.

Model — Type of model to fit
'nominal' (default) | 'ordinal' | 'hierarchical'

Type of model to fit, specified as the comma-separated pair consisting of 'Model' and one of the
following.

'nominal' Default. There is no ordering among the response categories.
'ordinal' There is a natural ordering among the response categories.
'hierarchical' The choice of response category is sequential/nested.

Example: 'Model','ordinal'

Interactions — Indicator for interaction between multinomial categories and coefficients
'on' | 'off'

Indicator for an interaction between the multinomial categories and coefficients, specified as the
comma-separated pair consisting of 'Interactions' and one of the following.

'on' Default for nominal and hierarchical models. Fit a model with different coefficients
across categories.

'off' Default for ordinal models. Fit a model with a common set of coefficients for the
predictor variables, across all multinomial categories. This is often described as
parallel regression or the proportional odds model.

In all cases, the model has different intercepts across categories. The choice of 'Interactions'
determines the dimensions of the output array B.
Example: 'Interactions','off'

Link — Link function
'logit' (default) | 'probit' | 'comploglog' | 'loglog'

Link function to use for ordinal and hierarchical models, specified as the comma-separated pair
consisting of 'Link' and one of the following.

'logit' Default. f(γ) = ln(γ/(1 –γ))
'probit' f(γ) = Φ-1(γ) — error term is normally distributed with variance 1
'comploglog' Complementary log-log

f(γ) = ln(–ln(1 – γ))
'loglog' f(γ) = ln(–ln(γ))

The link function defines the relationship between response probabilities and the linear combination
of predictors, Xβ. The link functions might be functions of cumulative or conditional probabilities
based on whether the model is for an ordinal or a sequential/nested response. For example, for an
ordinal model, γ represents the cumulative probability of being in categories 1 to j and the model
with a logit link function as follows:

ln γ
1− γ = ln

π1 + π2 +⋯+ π j
π j + 1 +⋯+ πk

= β0 j + β1X1 + β2X2 +⋯+ βpXp,
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where k represents the last category.

You cannot specify the 'Link' parameter for nominal models; these always use a multinomial logit
link,

ln
π j
πr

= β j0 + β j1X j1 + β j2X j2 +⋯+ β jpX jp, j = 1, …, k− 1,

where π stands for a categorical probability, and r corresponds to the reference category. mnrfit
uses the last category as the reference category for nominal models.
Example: 'Link','loglog'

EstDisp — Indicator for estimating dispersion parameter
'off' (default) | 'on'

Indicator for estimating a dispersion parameter, specified as the comma-separated pair consisting of
'EstDisp' and one of the following.

'off' Default. Use the theoretical dispersion value of 1.
'on' Estimate a dispersion parameter for the multinomial distribution in computing

standard errors.

Example: 'EstDisp','on'

Output Arguments
B — Coefficient estimates
vector | matrix

Coefficient estimates for a multinomial logistic regression of the responses in Y, returned as a vector
or a matrix.

• If 'Interaction' is 'off', then B is a k – 1 + p vector. The first k – 1 rows of B correspond to
the intercept terms, one for each k – 1 multinomial categories, and the remaining p rows
correspond to the predictor coefficients, which are common for all of the first k – 1 categories.

• If 'Interaction' is 'on', then B is a (p + 1)-by-(k – 1) matrix. Each column of B corresponds to
the estimated intercept term and predictor coefficients, one for each of the first k – 1 multinomial
categories.

The estimates for the kth category are taken to be zero as mnrfit takes the last category as the
reference category.

dev — Deviance of the fit
scalar value

Deviance of the fit, returned as a scalar value. It is twice the difference between the maximum
achievable log likelihood and that attained under the fitted model. This corresponds to the sum of
deviance residuals,

dev = 2 *∑
i

n
∑
j

k
yi j * log

yi j
π i j * mi

= ∑
i

n
rdi,

where rdi are the deviance residuals. For deviance residuals see stats.
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stats — Model statistics
structure

Model statistics, returned as a structure that contains the following fields.

beta The coefficient estimates. These are the same as B.
dfe Degrees of freedom for error

• If 'Interactions' is 'off', then degrees of freedom is
n*(k – 1) – (k – 1 + p).

• If 'Interactions' is 'on', then degrees of freedom is (n –
p + 1)*(k – 1).

sfit Estimated dispersion parameter.
s Theoretical or estimated dispersion parameter.

• If 'Estdisp' is 'off', then s is the theoretical dispersion
parameter, 1.

• If 'Estdisp' is 'on', then s is equal to the estimated
dispersion parameter, sfit.

estdisp Indicator for a theoretical or estimated dispersion parameter.
se Standard errors of coefficient estimates, B.
coeffcorr Estimated correlation matrix for B.
covb Estimated covariance matrix for B.
t t statistics for B.
p p-values for B.
resid Raw residuals. Observed minus fitted values,

ri j = yi j− π i j * mi,
i = 1,⋯, n
j = 1,⋯, k

,

where πij is the categorical, cumulative or conditional probability,
and mi is the corresponding sample size.

residp Pearson residuals, which are the raw residuals scaled by the
estimated standard deviation:

rpi j =
ri j
σ i j

=
yi j− π i j * mi

π i j * 1− π i j * mi
,

i = 1,⋯, n
j = 1,⋯, k

,

where πij is the categorical, cumulative, or conditional
probability, and mi is the corresponding sample size.

residd Deviance residuals:

rdi = 2 *∑ j
k yi j * log

yi j
π i j * mi

, i = 1,⋯, n .

where πij is the categorical, cumulative, or conditional
probability, and mi is the corresponding sample size.
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Algorithms
mnrfit treats NaNs in either X or Y as missing values, and ignores them.

Version History
Introduced in R2006b

References
[1] McCullagh, P., and J. A. Nelder. Generalized Linear Models. New York: Chapman & Hall, 1990.

[2] Long, J. S. Regression Models for Categorical and Limited Dependent Variables. Sage
Publications, 1997.

[3] Dobson, A. J., and A. G. Barnett. An Introduction to Generalized Linear Models. Chapman and
Hall/CRC. Taylor & Francis Group, 2008.

See Also
fitglm | mnrval | glmfit | glmval

Topics
“Multinomial Distribution” on page B-102
“Multinomial Models for Nominal Responses” on page 12-2
“Multinomial Models for Ordinal Responses” on page 12-4
“Hierarchical Multinomial Models” on page 12-7
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mnrnd
Multinomial random numbers

Syntax
r = mnrnd(n,p)
R = mnrnd(n,p,m)
R = mnrnd(N,P)

Description
r = mnrnd(n,p) returns random values r from the multinomial distribution with parameters n and
p. n is a positive integer specifying the number of trials (sample size) for each multinomial outcome.
p is a 1-by-k vector of multinomial probabilities, where k is the number of multinomial bins or
categories. p must sum to one. (If p does not sum to one, r consists entirely of NaN values.) r is a 1-
by-k vector, containing counts for each of the k multinomial bins.

R = mnrnd(n,p,m) returns m random vectors from the multinomial distribution with parameters n
and p. R is a m-by-k matrix, where k is the number of multinomial bins or categories. Each row of R
corresponds to one multinomial outcome.

R = mnrnd(N,P) generates outcomes from different multinomial distributions. P is a m-by-k matrix,
where k is the number of multinomial bins or categories and each of the m rows contains a different
set of multinomial probabilities. Each row of P must sum to one. (If any row of P does not sum to one,
the corresponding row of R consists entirely of NaN values.) N is a m-by-1 vector of positive integers
or a single positive integer (replicated by mnrnd to a m-by-1 vector). R is a m-by-k matrix. Each row of
R is generated using the corresponding rows of N and P.

Examples
Generate 2 random vectors with the same probabilities:

n = 1e3;
p = [0.2,0.3,0.5];
R = mnrnd(n,p,2)
R =
   215   282   503
   194   303   503

Generate 2 random vectors with different probabilities:

n = 1e3;
P = [0.2, 0.3, 0.5; ...
     0.3, 0.4, 0.3;];
R = mnrnd(n,P)
R =
   186   290   524
   290   389   321
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Version History
Introduced in R2006b

See Also
mnpdf

Topics
“Multinomial Distribution” on page B-102
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mnrval
Multinomial logistic regression values

Syntax
pihat = mnrval(B,X)
[pihat,dlow,dhi] = mnrval(B,X,stats)
[pihat,dlow,dhi] = mnrval(B,X,stats,Name,Value)

yhat = mnrval(B,X,ssize)
[yhat,dlow,dhi] = mnrval(B,X,ssize,stats)
[yhat,dlow,dhi] = mnrval(B,X,ssize,stats,Name,Value)

Description
pihat = mnrval(B,X) returns the predicted probabilities for the multinomial logistic regression
model with predictors, X, and the coefficient estimates, B.

pihat is an n-by-k matrix of predicted probabilities for each multinomial category. B is the vector or
matrix that contains the coefficient estimates returned by mnrfit. And X is an n-by-p matrix which
contains n observations for p predictors.

Note mnrval automatically includes a constant term in all models. Do not enter a column of 1s in X.

[pihat,dlow,dhi] = mnrval(B,X,stats) also returns 95% error bounds on the predicted
probabilities, pihat, using the statistics in the structure, stats, returned by mnrfit.

The lower and upper confidence bounds for pihat are pihat minus dlow and pihat plus dhi,
respectively. Confidence bounds are nonsimultaneous and only apply to the fitted curve, not to new
observations.

[pihat,dlow,dhi] = mnrval(B,X,stats,Name,Value) returns the predicted probabilities and
95% error bounds on the predicted probabilities pihat, with additional options specified by one or
more Name,Value pair arguments.

For example, you can specify the model type, link function, and the type of probabilities to return.

yhat = mnrval(B,X,ssize) returns the predicted category counts for sample sizes, ssize.

[yhat,dlow,dhi] = mnrval(B,X,ssize,stats) also computes 95% error bounds on the
predicted counts yhat, using the statistics in the structure, stats, returned by mnrfit.

The lower and upper confidence bounds for yhat are yhat minus dlo and yhat plus dhi,
respectively. Confidence bounds are nonsimultaneous and they apply to the fitted curve, not to new
observations.

[yhat,dlow,dhi] = mnrval(B,X,ssize,stats,Name,Value) returns the predicted category
counts and 95% error bounds on the predicted counts yhat, with additional options specified by one
or more Name,Value pair arguments.
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For example, you can specify the model type, link function, and the type of predicted counts to return.

Examples

Estimate Category Probabilities for Nominal Responses

Fit a multinomial regression for nominal outcomes and estimate the category probabilities.

Load the sample data.

load fisheriris

The column vector, species, consists of iris flowers of three different species, setosa, versicolor,
virginica. The double matrix meas consists of four types of measurements on the flowers, the length
and width of sepals and petals in centimeters, respectively.

Define the nominal response variable.

sp = nominal(species);
sp = double(sp);

Now in sp, 1, 2, and 3 indicate the species setosa, versicolor, and virginica, respectively.

Fit a nominal model to estimate the species using the flower measurements as the predictor
variables.

[B,dev,stats] = mnrfit(meas,sp);

Estimate the probability of being a certain kind of species for an iris flower having the measurements
(6.3, 2.8, 4.9, 1.7).

x = [6.3, 2.8, 4.9, 1.7];
pihat = mnrval(B,x);
pihat

pihat = 1×3

         0    0.3977    0.6023

The probability of an iris flower having the measurements (6.3, 2.8, 4.9, 1.7) being a setosa is 0, a
versicolor is 0.3977, and a virginica is 0.6023.

Estimate Upper and Lower Error Bounds for Probability Estimates of Ordinal Responses

Fit a multinomial regression model for categorical responses with natural ordering among categories.
Then estimate the upper and lower confidence bounds for the category probability estimates.

Load the sample data and define the predictor variables.

load('carbig.mat')
X = [Acceleration Displacement Horsepower Weight];
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The predictor variables are the acceleration, engine displacement, horsepower, and the weight of the
cars. The response variable is miles per gallon (MPG).

Create an ordinal response variable categorizing MPG into four levels from 9 to 48 mpg.

miles = ordinal(MPG,{'1','2','3','4'},[],[9,19,29,39,48]);
miles = double(miles);

Now in miles, 1 indicates the cars with miles per gallon from 9 to 19, and 2 indicates the cars with
miles per gallon from 20 to 29. Similarly, 3 and 4 indicate the cars with miles per gallon from 30 to 39
and 40 to 48, respectively.

Fit a multinomial regression model for the response variable miles. For an ordinal model, the default
'link' is logit and the default 'interactions' is 'off'.

[B,dev,stats] = mnrfit(X,miles,'model','ordinal');

Compute the probability estimates and 95% error bounds for probability confidence intervals for
miles per gallon of a car with x = (12, 113, 110, 2670).

x = [12,113,110,2670];
[pihat,dlow,hi] = mnrval(B,x,stats,'model','ordinal');
pihat

pihat = 1×4

    0.0615    0.8426    0.0932    0.0027

Calculate the confidence bounds for the category probability estimates.

LL = pihat - dlow;
UL = pihat + hi;
[LL;UL]

ans = 2×4

    0.0073    0.7829    0.0283   -0.0003
    0.1157    0.9022    0.1580    0.0057

Estimate Category Counts and Error Bounds for Nominal Responses

Fit a multinomial regression for nominal outcomes and estimate the category counts.

Load the sample data.

load fisheriris

The column vector, species, consists of iris flowers of three different species, setosa, versicolor, and
virginica. The double matrix meas consists of four types of measurements on the flowers, the length
and width of sepals and petals in centimeters, respectively.

Define the nominal response variable.
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sp = nominal(species);
sp = double(sp);

Now in sp, 1, 2, and 3 indicate the species setosa, versicolor, and virginica, respectively.

Fit a nominal model to estimate the species based on the flower measurements.

[B,dev,stats] = mnrfit(meas,sp);

Estimate the number in each species category for a sample of 100 iris flowers all with the
measurements (6.3, 2.8, 4.9, 1.7).

x = [6.3, 2.8, 4.9, 1.7];
yhat = mnrval(B,x,18)

yhat = 1×3

         0    7.1578   10.8422

Estimate the error bounds for the counts.

[yhat,dlow,hi] = mnrval(B,x,18,stats,'model','nominal');

Calculate the confidence bounds for the category probability estimates.

LL = yhat - dlow;
UL = yhat + hi;
[LL;UL]

ans = 2×3

         0    3.3019    6.9863
         0   11.0137   14.6981

Plot the Count Estimates

Create sample data with one predictor variable and a categorical response variable with three
categories.

x = [-3 -2 -1 0 1 2 3]';
Y = [1 11 13; 2 9 14; 6 14 5; 5 10 10;...
         5 14 6; 7 13 5; 8 11 6];
[Y x]

ans = 7×4

     1    11    13    -3
     2     9    14    -2
     6    14     5    -1
     5    10    10     0
     5    14     6     1
     7    13     5     2
     8    11     6     3
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There are observations on seven different values of the predictor variable x . The response variable Y
has three categories and the data shows how many of the 25 individuals are in each category of Y for
each observation of x. For example, when x is -3, 1 of 25 individuals is observed in category 1, 11
observed in category 2, and 13 observed in category 3. Similarly, when x is 1, 5 of the individuals are
observed in category 1, 14 are observed in category 2, and 6 are observed in category 3.

Plot the number in each category versus the x values, on a stacked bar graph.

bar(x,Y,'stacked'); 
ylim([0 25]);

Fit a nominal model for the individual response category probabilities, with separate slopes on the
single predictor variable, x, for each category.

betaHatNom = mnrfit(x,Y,'model','nominal',...
    'interactions','on')

betaHatNom = 2×2

   -0.6028    0.3832
    0.4068    0.1948

The first row of betaHatOrd contains the intercept terms for the first two response categories. The
second row contains the slopes. mnrfit accepts the third category as the reference category and
hence assumes the coefficients for the third category are zero.

Compute the predicted probabilities for the three response categories.
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xx = linspace(-4,4)';
piHatNom = mnrval(betaHatNom,xx,'model','nominal',...
    'interactions','on');

The probability of being in the third category is simply 1 - P(y = 1) - P(y = 2).

Plot the estimated cumulative number in each category on the bar graph.

line(xx,cumsum(25*piHatNom,2),'LineWidth',2);

The cumulative probability for the third category is always 1.

Now, fit a "parallel" ordinal model for the cumulative response category probabilities, with a common
slope on the single predictor variable, x, across all categories:

betaHatOrd = mnrfit(x,Y,'model','ordinal',...
    'interactions','off')

betaHatOrd = 3×1

   -1.5001
    0.7266
    0.2642

The first two elements of betaHatOrd are the intercept terms for the first two response categories.
The last element of betaHatOrd is the common slope.
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Compute the predicted cumulative probabilities for the first two response categories. The cumulative
probability for the third category is always 1.

piHatOrd = mnrval(betaHatOrd,xx,'type','cumulative',...
    'model','ordinal','interactions','off');

Plot the estimated cumulative number on the bar graph of the observed cumulative number.

figure()
bar(x,cumsum(Y,2),'grouped'); 
ylim([0 25]);
line(xx,25*piHatOrd,'LineWidth',2);

Input Arguments
B — Coefficient estimates
vector or matrix returned by mnrfit

Coefficient estimates for the multinomial logistic regression model, specified as a vector or matrix
returned by mnrfit. It is a vector or matrix depending on the model and interactions.
Example: B = mnrfit(X,y); pihat = mnrval(B,X)
Data Types: single | double

X — Sample data
matrix
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Sample data on predictors, specified as an n-by-p. X contains n observations for p predictors.

Note mnrval automatically includes a constant term in all models. Do not enter a column of 1s in X.

Example: pihat = mnrval(B,X)
Data Types: single | double

stats — Model statistics
structure returned by mnrfit

Model statistics, specified as a structure returned by mnrfit. You must use the stats input
argument in mnrval to compute the lower and upper error bounds on the category probabilities and
counts.
Example: [B,dev,stats] = mnrfit(X,y);[pihat,dlo,dhi] = mnrval(B,X,stats)

ssize — Sample sizes
column vector of positive integers

Sample sizes to return the number of items in response categories for each combination of the
predictor variables, specified as an n-by-1 column vector of positive integers.

For example, for a response variable having three categories, if an observation of the number of
individuals in each category is y1, y2, and y3, respectively, then the sample size, m, for that
observation is m = y1 + y2 + y3.

If the sample sizes for n observations are in vector sample, then you can enter the sample sizes as
follows.
Example: yhat = mnrval(B,X,sample)
Data Types: single | double

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: 'model','ordinal','link','probit','type','cumulative' specifies that mnrval
returns the estimates for cumulative probabilities for an ordinal model with a probit link function.

model — Type of multinomial model
'nominal' (default) | 'ordinal' | 'hierarchical'

Type of multinomial model fit by mnrfit, specified as the comma-separated pair consisting of
'model' and one of the following.

'nominal' Default. Specify when there is no ordering among the response categories.
'ordinal' Specify when there is a natural ordering among the response categories.
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'hierarchical
'

Specify when the choice of response category is sequential.

Example: 'model','ordinal'

interactions — Indicator for interaction between multinomial categories and coefficients
'on' | 'off'

Indicator for an interaction between the multinomial categories and coefficients in the model fit by
mnrfit, specified as the comma-separated pair consisting of 'interactions' and one of the
following.

'on' Default for nominal and hierarchical models. Specify to fit a model with different
intercepts and coefficients across categories.

'off' Default for ordinal models. Specify to fit a model with different intercepts, but a
common set of coefficients for the predictor variables, across all multinomial
categories. This is often described as parallel regression or proportional odds model.

Example: 'interactions','off'
Data Types: logical

link — Link function
'logit' (default) | 'probit' | 'comploglog' | 'loglog'

Link function mnrfit uses for ordinal and hierarchical models, specified as the comma-separated
pair consisting of 'link' and one of the following.

'logit' Default. f(γ) = ln(γ/(1 – γ))
'probit' f(γ) = Φ-1(γ) — error term is normally distributed with variance 1
'comploglog' Complementary log-log

f(γ) = ln(–ln(1 –γ))
'loglog' f(γ) = ln(–ln(γ))

The link function defines the relationship between response probabilities and the linear combination
of predictors, Xβ.

γ might be cumulative or conditional probabilities based on whether the model is for an ordinal or a
sequential/nested response.

You cannot specify the 'link' parameter for nominal models; these always use a multinomial logit
link,

ln
π j
πr

= β j0 + β j1X j1 + β j2X j2 +⋯+ β jpX jp, j = 1, …, k− 1,

where π stands for a categorical probability, and r corresponds to the reference category, k is the
total number of response categories, p is the number of predictor variables. mnrfit uses the last
category as the reference category for nominal models.
Example: 'link','loglog'

35 Functions

35-4816



type — Type of probabilities or counts to estimate
'category' (default) | 'cumulative' | 'conditional'

Type of probabilities or counts to estimate, specified as the comma-separated pair including 'type'
and one of the following.

'category' Default. Specify to return predictions and error bounds for the
probabilities (or counts) of the k multinomial categories.

'cumulative' Specify to return predictions and confidence bounds for the cumulative
probabilities (or counts) of the first k – 1 multinomial categories, as an
n-by-(k – 1) matrix. The predicted cumulative probability for the kth
category is always 1.

'conditional' Specify to return predictions and error bounds in terms of the first k – 1
conditional category probabilities (counts), i.e., the probability (count)
for category j, given an outcome in category j or higher. When 'type'
is 'conditional', and you supply the sample size argument ssize,
the predicted counts at each row of X are conditioned on the
corresponding element of ssize, across all categories.

Example: 'type','cumulative'

confidence — Confidence level
0.95 (default) | scalar value in the range (0,1)

Confidence level for the error bounds, specified as the comma-separated pair consisting of
'confidence' and a scalar value in the range (0,1).

For example, for 99% error bounds, you can specify the confidence as follows:
Example: 'confidence',0.99
Data Types: single | double

Output Arguments
pihat — Probability estimates
n-by-(k – 1) matrix

Probability estimates for each multinomial category, returned as an n-by-(k – 1) matrix, where n is the
number of observations, and k is the number of response categories.

yhat — Count estimates
n-by-k– 1 matrix

Count estimates for the number in each response category, returned as an n-by-k – 1 matrix, where n
is the number of observations, and k is the number of response categories.

dlow — Lower error bound
column vector

Lower error bound to compute the lower confidence bound for pihat or yhat, returned as a column
vector.
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The lower confidence bound for pihat is pihat minus dlow. Similarly, the lower confidence bound
for yhat is yhat minus dlow. Confidence bounds are nonsimultaneous and only apply to the fitted
curve, not to new observations.

dhi — Upper error bound
column vector

Upper error bound to compute the upper confidence bound for pihat or yhat, returned as a column
vector.

The upper confidence bound for pihat is pihat plus dhi. Similarly, the upper confidence bound for
yhat is yhat plus dhi. Confidence bounds are nonsimultaneous and only apply to the fitted curve,
not to new observations.

Version History
Introduced in R2006b

References
[1] McCullagh, P., and J. A. Nelder. Generalized Linear Models. New York: Chapman & Hall, 1990.

See Also
fitglm | mnrfit | glmfit | glmval

Topics
“Multinomial Models for Nominal Responses” on page 12-2
“Multinomial Models for Ordinal Responses” on page 12-4
“Hierarchical Multinomial Models” on page 12-7
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moment
Central moment

Syntax
m = moment(X,order)
m = moment(X,order,'all')
m = moment(X,order,dim)
m = moment(X,order,vecdim)

Description
m = moment(X,order) returns the central moment of X for the order specified by order.

• If X is a vector, then moment(X,order) returns a scalar value that is the k-order central moment
of the elements in X.

• If X is a matrix, then moment(X,order) returns a row vector containing the k-order central
moment of each column in X.

• If X is a multidimensional array, then moment(X,order) operates along the first nonsingleton
dimension of X.

m = moment(X,order,'all') returns the central moment of the specified order for all elements of
X.

m = moment(X,order,dim) takes the central moment along the operating dimension dim of X.

m = moment(X,order,vecdim) returns the central moment over the dimensions specified in the
vector vecdim. For example, if X is a 2-by-3-by-4 array, then moment(X,1,[1 2]) returns a 1-by-1-
by-4 array. Each element of the output array is the first-order central moment of the elements on the
corresponding page of X.

Examples

Find Central Moment for Specified Order

Set the random seed for reproducibility of the results.

rng('default')

Generate a matrix with 6 rows and 5 columns.

X = randn(6,5)

X = 6×5

    0.5377   -0.4336    0.7254    1.4090    0.4889
    1.8339    0.3426   -0.0631    1.4172    1.0347
   -2.2588    3.5784    0.7147    0.6715    0.7269
    0.8622    2.7694   -0.2050   -1.2075   -0.3034
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    0.3188   -1.3499   -0.1241    0.7172    0.2939
   -1.3077    3.0349    1.4897    1.6302   -0.7873

Find the third-order central moment of X.

m = moment(X,3)

m = 1×5

   -1.1143   -0.9973    0.1234   -1.1023   -0.1045

m is a row vector containing the third-order central moment of each column in X.

Find Central Moment Along Given Dimension

Find the central moment along different dimensions for a multidimensional array.

Set the random seed for reproducibility of the results.

rng('default') 

Create a 4-by-3-by-2 array of random numbers.

X = randn([4,3,2])

X = 
X(:,:,1) =

    0.5377    0.3188    3.5784
    1.8339   -1.3077    2.7694
   -2.2588   -0.4336   -1.3499
    0.8622    0.3426    3.0349

X(:,:,2) =

    0.7254   -0.1241    0.6715
   -0.0631    1.4897   -1.2075
    0.7147    1.4090    0.7172
   -0.2050    1.4172    1.6302

Find the fourth-order central moment of X along the default dimension.

m1 = moment(X,4)

m1 = 
m1(:,:,1) =

   11.4427    0.3553   33.6733

m1(:,:,2) =
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    0.0360    0.4902    2.3821

By default, moment operates along the first dimension of X whose size does not equal 1. In this case,
this dimension is the first dimension of X. Therefore, m1 is a 1-by-3-by-2 array.

Find the fourth-order central moment of X along the second dimension.

m2 = moment(X,4,2)

m2 = 
m2(:,:,1) =

    7.3476
   13.8702
    0.4625
    2.7741

m2(:,:,2) =

    0.0341
    2.2389
    0.0171
    0.6766

m2 is a 4-by-1-by-2 array.

Find the fourth-order central moment of X along the third dimension.

m3 = moment(X,4,3)

m3 = 4×3

    0.0001    0.0024    4.4627
    0.8093    3.8273   15.6340
    4.8866    0.7205    1.1412
    0.0811    0.0833    0.2433

m3 is a 4-by-3 matrix.

Find Central Moment Along Vector of Dimensions

Find the central moment over multiple dimensions by using the 'all' and vecdim input arguments.

Set the random seed for reproducibility of the results.

rng('default')

Create a 4-by-3-by-2 array of random numbers.

X = randn([4 3 2])

X = 
X(:,:,1) =
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    0.5377    0.3188    3.5784
    1.8339   -1.3077    2.7694
   -2.2588   -0.4336   -1.3499
    0.8622    0.3426    3.0349

X(:,:,2) =

    0.7254   -0.1241    0.6715
   -0.0631    1.4897   -1.2075
    0.7147    1.4090    0.7172
   -0.2050    1.4172    1.6302

Find the third-order central moment of X.

mall = moment(X,3,'all')

mall = 0.2431

mall is the third-order central moment of the entire input data set X.

Find the third-order moment of each page of X by specifying the first and second dimensions.

mpage = moment(X,3,[1 2])

mpage = 
mpage(:,:,1) =

    0.6002

mpage(:,:,2) =

   -0.3475

For example, mpage(1,1,2) is the third-order central moment of the elements in X(:,:,2).

Find the third-order moment of the elements in each X(i,:,:) slice by specifying the second and
third dimensions.

mrow = moment(X,3,[2 3])

mrow = 4×1

    2.7552
    0.0443
   -0.7585
    0.5340

For example, mrow(1) is the third-order central moment of the elements in X(1,:,:).

35 Functions

35-4822



Input Arguments
X — Input data
vector | matrix | multidimensional array

Input data that represents a sample from a population, specified as a vector, matrix, or
multidimensional array.

• If X is a vector, then moment(X,order) returns a scalar value that is the k-order central moment
of the elements in X.

• If X is a matrix, then moment(X,order) returns a row vector containing the k-order central
moment of each column in X.

• If X is a multidimensional array, then moment(X,order) operates along the first nonsingleton
dimension of X.

To specify the operating dimension when X is a matrix or an array, use the dim input argument.
Data Types: single | double

order — Order of central moment
positive integer

Order of the central moment, specified as a positive integer.
Data Types: single | double

dim — Dimension
positive integer

Dimension along which to operate, specified as a positive integer. If you do not specify a value for
dim, then the default is the first nonsingleton dimension of X.

Consider the third-order central moment of a matrix X:

• If dim is equal to 1, then moment(X,3,1) returns a row vector that contains the third-order
central moment of each column in X.

• If dim is equal to 2, then moment(X,3,2) returns a column vector that contains the third-order
central moment of each row in X.

If dim is greater than ndims(X) or if size(X,dim) is 1, then moment returns an array of zeros the
same size as X.
Data Types: single | double

vecdim — Vector of dimensions
positive integer vector

Vector of dimensions, specified as a positive integer vector. Each element of vecdim represents a
dimension of the input array X. The output m has length 1 in the specified operating dimensions. The
other dimension lengths are the same for X and m.

For example, if X is a 2-by-3-by-3 array, then moment(X,1,[1 2]) returns a 1-by-1-by-3 array. Each
element of the output array is the first-order central moment of the elements on the corresponding
page of X.
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Data Types: single | double

Output Arguments
m — Central moments
scalar | vector | matrix | multidimensional array

Central moments, returned as a scalar, vector, matrix, or multidimensional array.

Algorithms
The central moment of order k for a distribution is defined as

mk = E(x− μ)k,

where µ is the mean of x, and E(t) represents the expected value of the quantity t. The moment
function computes a sample version of this population value.

mk = 1
n ∑i = 1

n
xi− x k .

Note that the first-order central moment is zero, and the second-order central moment is the variance
computed using a divisor of n rather than n – 1, where n is the length of the vector x or the number of
rows in the matrix X.

Version History
Introduced before R2006a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• The 'all' and vecdim input arguments are not supported.
• The dim input argument must be a compile-time constant.
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• If you do not specify the dim input argument, the working (or operating) dimension can be
different in the generated code. As a result, run-time errors can occur. For more details, see
“Automatic dimension restriction” (MATLAB Coder).

• If order is nonintegral and X is real, use moment(complex(X),order).

For more information on code generation, see “Introduction to Code Generation” on page 34-2 and
“General Code Generation Workflow” on page 34-5.

Thread-Based Environment
Run code in the background using MATLAB® backgroundPool or accelerate code with Parallel
Computing Toolbox™ ThreadPool.

This function fully supports thread-based environments. For more information, see “Run MATLAB
Functions in Thread-Based Environment”.

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

Usage notes and limitations:

• The 'all' and vecdim input arguments are not supported.

For more information, see “Run MATLAB Functions on a GPU” (Parallel Computing Toolbox).

See Also
kurtosis | mean | skewness | std | var
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multcompare
Multiple comparison test

Syntax
c = multcompare(stats)
c = multcompare(stats,Name,Value)
[c,m] = multcompare( ___ )
[c,m,h] = multcompare( ___ )
[c,m,h,gnames] = multcompare( ___ )

Description
c = multcompare(stats) returns a matrix c of the pairwise comparison results from a multiple
comparison test using the information contained in the stats structure. multcompare also displays
an interactive graph of the estimates and comparison intervals. Each group mean is represented by a
symbol, and the interval is represented by a line extending out from the symbol. Two group means
are significantly different if their intervals are disjoint; they are not significantly different if their
intervals overlap. If you use your mouse to select any group, then the graph will highlight all other
groups that are significantly different, if any.

c = multcompare(stats,Name,Value) specifies options using one or more name-value
arguments. For example, you can specify the confidence interval, or the type of critical value to use in
the multiple comparison test.

[c,m] = multcompare( ___ ) also returns a matrix, m, which contains estimated values of the
means (or whatever statistics are being compared) for each group and the corresponding standard
errors. You can use any of the previous syntaxes.

[c,m,h] = multcompare( ___ ) also returns a handle, h, to the comparison graph.

[c,m,h,gnames] = multcompare( ___ ) also returns a cell array, gnames, which contains the
names of the groups.

Examples

Multiple Comparisons of Group Means

Load the carsmall data set.

load carsmall

The data contains miles per gallon (MPG) measurements for different makes and models of cars,
grouped by the country of origin (Origin) and other vehicle characteristics.

Perform a one-way analysis of variance (ANOVA) to see if the MPG values of the cars are different
depending on the country of origin.

[p,t,stats] = anova1(MPG,Origin);
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The small p-value (value in the column Prob>F) indicates that group mean differences are significant.
However, the ANOVA results do not indicate which groups have different means. You can perform
pairwise comparisons using a multiple comparison test to identify the groups that have significantly
different means.

Perform a multiple comparison test of the group means.

[c,m,h,gnames] = multcompare(stats);
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multcompare displays the estimates with comparison intervals around them. You can click the graph
of any country to compare its mean to those of other countries.

Display the mean estimates, standard errors, and corresponding group names in a table.

tbl = array2table(m,"RowNames",gnames, ...
    "VariableNames",["Mean","Standard Error"])

tbl=6×2 table
                Mean     Standard Error
               ______    ______________

    USA        21.133       0.88141    
    Japan        31.8        1.8206    
    Germany    28.444        2.3504    
    France     23.667        4.0711    
    Sweden       22.5         4.986    
    Italy          28        7.0513    

Multiple Comparisons Against Control Group

Perform a multiple comparison test against a control group using Dunnett's test, and compare the
results to the pairwise comparison results from Tukey’s honestly significant difference procedure.
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Load the carsmall data set.

load carsmall

The data contains miles per gallon (MPG) measurements for different makes and models of cars,
grouped by the country of origin (Origin) and other vehicle characteristics.

Perform a one-way ANOVA to compare the mileage of the cars across the groups defined by their
countries of origin.

[~,~,stats] = anova1(MPG,Origin,"off");

Display the names of the groups.

stats.gnames

ans = 6x1 cell
    {'USA'    }
    {'Japan'  }
    {'Germany'}
    {'France' }
    {'Sweden' }
    {'Italy'  }

According to the multiple comparison results for all distinct pairs of groups in the “Multiple
Comparisons of Group Means” on page 35-4826 example, USA and Japan have significantly different
means. The example uses the default test, Tukey’s honestly significant difference procedure.

Compare the group means against a control group by using Dunnett's test.

Specify “CriticalValueType” on page 35-0  as "dunnett" to perform Dunnett's test. multcompare
selects the first group (USA) as the control group by default. You can select a different control group
by using the “ControlGroup” on page 35-0  name-value argument.

[results,~,~,gnames] = multcompare(stats,"CriticalValueType","dunnett");

 multcompare

35-4829



In the figure, the blue circle indicates the mean of the control group. The red circles and bars
represent the means and confidence intervals for the groups with significantly different means from
the mean of the control group. Note that the red bars do not cross the dotted vertical line
representing the mean of the control group. Groups that do not have significantly different means
appear in grey.

Dunnett's test identifies that two groups, Japan and Germany, have means that are significantly
different from the mean of the USA (control group). Note that the default procedure (Tukey’s
honestly significant difference procedure) did not identify Germany in the “Multiple Comparisons of
Group Means” on page 35-4826 example. The difference in the results is related to the different
levels of conservativeness in the two comparison tests. Dunnett's test is less conservative than the
default procedure because the test considers only the comparisons against a control group. The
default procedure performs pairwise comparisons for all distinct pairs of groups.

Display the multiple comparison results and the corresponding group names in a table.

tbl = array2table(results,"VariableNames", ...
    ["Group","Control Group","Lower Limit","Difference","Upper Limit","P-value"]);
tbl.("Group") = gnames(tbl.("Group"));
tbl.("Control Group") = gnames(tbl.("Control Group"))

tbl=5×6 table
       Group       Control Group    Lower Limit    Difference    Upper Limit     P-value 
    ___________    _____________    ___________    __________    ___________    _________

    {'Japan'  }       {'USA'}          5.3649        10.667        15.969       4.727e-06
    {'Germany'}       {'USA'}         0.73151        7.3116        13.892        0.022346
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    {'France' }       {'USA'}         -8.3848        2.5339        13.453         0.97912
    {'Sweden' }       {'USA'}         -11.905        1.3672         14.64         0.99953
    {'Italy'  }       {'USA'}          -11.76        6.8672        25.495         0.86579

Multiple Comparisons for Two-Way ANOVA

Load the sample data.

load popcorn
popcorn

popcorn = 6×3

    5.5000    4.5000    3.5000
    5.5000    4.5000    4.0000
    6.0000    4.0000    3.0000
    6.5000    5.0000    4.0000
    7.0000    5.5000    5.0000
    7.0000    5.0000    4.5000

The data is from a study of popcorn brands and popper types (Hogg 1987). The columns of the matrix
popcorn are brands (Gourmet, National, and Generic). The rows are popper types oil and air. The
first three rows correspond to the oil popper, and the last three rows correspond to the air popper. In
the study, researchers popped a batch of each brand three times with each popper. The values are the
yield in cups of popped popcorn.

Perform a two-way ANOVA. Also compute the statistics that you need to perform a multiple
comparison test on the main effects.

[~,~,stats] = anova2(popcorn,3,"off")

stats = struct with fields:
      source: 'anova2'
     sigmasq: 0.1389
    colmeans: [6.2500 4.7500 4]
        coln: 6
    rowmeans: [4.5000 5.5000]
        rown: 9
       inter: 1
        pval: 0.7462
          df: 12

The stats structure includes

• The mean squared error (sigmasq)
• The estimates of the mean yield for each popcorn brand (colmeans)
• The number of observations for each popcorn brand (coln)
• The estimate of the mean yield for each popper type (rowmeans)
• The number of observations for each popper type (rown)
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• The number of interactions (inter)
• The p-value that shows the significance level of the interaction term (pval)
• The error degrees of freedom (df).

Perform a multiple comparison test to see if the popcorn yield differs between pairs of popcorn
brands (columns).

c1 = multcompare(stats);

Note: Your model includes an interaction term.  A test of main effects can be 
difficult to interpret when the model includes interactions.

The figure shows the multiple comparisons of the means. By default, the group 1 mean is highlighted
and the comparison interval is in blue. Because the comparison intervals for the other two groups do
not intersect with the intervals for the group 1 mean, they are highlighted in red. This lack of
intersection indicates that both means are different than group 1 mean. Select other group means to
confirm that all group means are significantly different from each other.

Display the multiple comparison results in a table.

tbl1 = array2table(c1,"VariableNames", ...
    ["Group A","Group B","Lower Limit","A-B","Upper Limit","P-value"])

tbl1=3×6 table
    Group A    Group B    Lower Limit    A-B     Upper Limit     P-value  
    _______    _______    ___________    ____    ___________    __________
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       1          2         0.92597       1.5       2.074       4.1188e-05
       1          3           1.676      2.25       2.824       6.1588e-07
       2          3         0.17597      0.75       1.324         0.011591

The first two columns of c1 show the groups that are compared. The fourth column shows the
difference between the estimated group means. The third and fifth columns show the lower and upper
limits for 95% confidence intervals for the true mean difference. The sixth column contains the p-
value for a hypothesis test that the corresponding mean difference is equal to zero. All p-values are
very small, which indicates that the popcorn yield differs across all three brands.

Perform a multiple comparison test to see the popcorn yield differs between the two popper types
(rows).

c2 = multcompare(stats,"Estimate","row");

Note: Your model includes an interaction term.  A test of main effects can be 
difficult to interpret when the model includes interactions.

tbl2 = array2table(c2,"VariableNames", ...
    ["Group A","Group B","Lower Limit","A-B","Upper Limit","P-value"])

tbl2=1×6 table
    Group A    Group B    Lower Limit    A-B    Upper Limit     P-value  
    _______    _______    ___________    ___    ___________    __________

       1          2         -1.3828      -1      -0.61722      0.00010037
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The small p-value indicates that the popcorn yield differs between the two popper types (air and oil).
The figure shows the same results. The disjoint comparison intervals indicate that the group means
are significantly different from each other.

Multiple Comparisons for Three-Way ANOVA

Load the sample data.

y = [52.7 57.5 45.9 44.5 53.0 57.0 45.9 44.0]';
g1 = [1 2 1 2 1 2 1 2];
g2 = ["hi" "hi" "lo" "lo" "hi" "hi" "lo" "lo"];
g3 = ["may" "may" "may" "may" "june" "june" "june" "june"];

y is the response vector and g1, g2, and g3 are the grouping variables (factors). Each factor has two
levels, and every observation in y is identified by a combination of factor levels. For example,
observation y(1) is associated with level 1 of factor g1, level hi of factor g2, and level may of factor
g3. Similarly, observation y(6) is associated with level 2 of factor g1, level hi of factor g2, and level
june of factor g3.

Test if the response is the same for all factor levels. Also compute the statistics required for multiple
comparison tests.

[~,~,stats] = anovan(y,{g1 g2 g3},"Model","interaction", ...
    "Varnames",["g1","g2","g3"]);

The p-value of 0.2578 indicates that the mean responses for levels may and june of factor g3 are not
significantly different. The p-value of 0.0347 indicates that the mean responses for levels 1 and 2 of
factor g1 are significantly different. Similarly, the p-value of 0.0048 indicates that the mean responses
for levels hi and lo of factor g2 are significantly different.

Perform a multiple comparison test to find out which groups of factors g1 and g2 are significantly
different.

[results,~,~,gnames] = multcompare(stats,"Dimension",[1 2]);
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You can test the other groups by clicking on the corresponding comparison interval for the group. The
bar you click on turns to blue. The bars for the groups that are significantly different are red. The
bars for the groups that are not significantly different are gray. For example, if you click on the
comparison interval for the combination of level 1 of g1 and level lo of g2, the comparison interval
for the combination of level 2 of g1 and level lo of g2 overlaps, and is therefore gray. Conversely, the
other comparison intervals are red, indicating significant difference.

Display the multiple comparison results and the corresponding group names in a table.

tbl = array2table(results,"VariableNames", ...
    ["Group A","Group B","Lower Limit","A-B","Upper Limit","P-value"]);
tbl.("Group A")=gnames(tbl.("Group A"));
tbl.("Group B")=gnames(tbl.("Group B"))

tbl=6×6 table
       Group A           Group B        Lower Limit     A-B     Upper Limit     P-value 
    ______________    ______________    ___________    _____    ___________    _________

    {'g1=1,g2=hi'}    {'g1=2,g2=hi'}      -6.8604       -4.4      -1.9396       0.027249
    {'g1=1,g2=hi'}    {'g1=1,g2=lo'}       4.4896       6.95       9.4104       0.016983
    {'g1=1,g2=hi'}    {'g1=2,g2=lo'}       6.1396        8.6        11.06       0.013586
    {'g1=2,g2=hi'}    {'g1=1,g2=lo'}       8.8896      11.35        13.81       0.010114
    {'g1=2,g2=hi'}    {'g1=2,g2=lo'}        10.54         13        15.46      0.0087375
    {'g1=1,g2=lo'}    {'g1=2,g2=lo'}      -0.8104       1.65       4.1104        0.07375
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The multcompare function compares the combinations of groups (levels) of the two grouping
variables, g1 and g2. For example, the first row of the matrix shows that the combination of level 1 of
g1 and level hi of g2 has the same mean response values as the combination of level 2 of g1 and
level hi of g2. The p-value corresponding to this test is 0.0272, which indicates that the mean
responses are significantly different. You can also see this result in the figure. The blue bar shows the
comparison interval for the mean response for the combination of level 1 of g1 and level hi of g2.
The red bars are the comparison intervals for the mean response for other group combinations. None
of the red bars overlap with the blue bar, which means the mean response for the combination of
level 1 of g1 and level hi of g2 is significantly different from the mean response for other group
combinations.

Input Arguments
stats — Test data
structure

Test data, specified as a structure. You can create a structure using one of the following functions:

• anova1 — One-way analysis of variance.
• anova2 — Two-way analysis of variance.
• anovan — N-way analysis of variance.
• aoctool — Interactive analysis of covariance tool.
• friedman — Friedman’s test.
• kruskalwallis — Kruskal-Wallis test.

multcompare does not support multiple comparisons using anovan output for a model that includes
random or nested effects. The calculations for a random effects model produce a warning that all
effects are treated as fixed. Nested models are not accepted.
Data Types: struct

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.
Example: Alpha=0.01,CriticalValueType="bonferroni",Display="off" computes the
Bonferroni critical values, conducts the hypothesis tests at the 1% significance level, and omits the
interactive display.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: "Alpha",0.01,"CriticalValueType","bonferroni","Display","off"

Alpha — Significance level
0.05 (default) | scalar value in the range (0,1)

Significance level of the multiple comparison test, specified as a scalar value in the range (0,1). The
value specified for Alpha determines the 100 × (1 – α) confidence levels of the intervals returned in
the matrix c and in the figure.
Example: "Alpha",0.01
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Data Types: single | double

Approximate — Flag to compute critical value for Dunnett's test using approximate method
true or 1 | false or 0

Flag to compute a critical value for Dunnett's test using an approximate method, specified as logical
1 (true) or 0 (false).

The multcompare function finds a critical value for Dunnett's test by integrating the multivariate t
distribution. The computation can be slow for multiway (n-way) ANOVA if n is large. To speed up the
computation, you can use an approximate method ([5]) by specifying Approximate as true. The
approximate method involves randomness. If you want to reproduce the results, set the random seed
by using the rng function before calling multcompare.

The default value is true if the source of stats is anovan. Otherwise, the default value is false.

This argument is valid only when CriticalValueType is "dunnett".
Example: "Approximate",true
Data Types: logical

ControlGroup — Index of control group for Dunnett's test
1 (default) | positive integer value

Index of the control group for Dunnett's test, specified as a positive integer value.

Specify one of the groups compared by the multcompare function as the control group. Assume that
you specify ControlGroup as idx. This table shows the control group value, which depends on the
source of stats.

Source of stats Control Group
anova1 multcompare uses stats.gnames(idx), the

group corresponding to stats.means(idx), as
the control group.

anova2 multcompare uses the group corresponding to
stats.colmeans(idx) (if Estimate is
"column" (default)) or stats.rowmeans(idx)
(if Estimate is "row") as the control group.

anovan If you specify Dimension as d, then
multcompare uses stats.grpnames{d}(idx)
as the control group.

aoctool multcompare uses stats.gnames(idx) as the
control group.

friedman multcompare uses the group corresponding to
stats.meanranks(idx) as the control group.

kruskalwallis multcompare uses stats.gnames(idx), the
group corresponding to
stats.meanranks(idx), as the control group.

This argument is valid only when CriticalValueType is "dunnett".
Example: "ControlGroup",3
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Data Types: single | double

CriticalValueType — Type of critical value
"tukey-kramer" (default) | "lsd" | "dunnett" | "dunn-sidak" | "bonferroni" | "scheffe"

Type of the critical value to use for the multiple comparison test, specified as one of the following.

Value Description
"lsd" Fisher's least significant difference procedure
"dunnett" Dunnett's test
"tukey-kramer" or "hsd" (default) Tukey’s honestly significant difference procedure
"dunn-sidak" Dunn & Sidák’s approach
"bonferroni" Bonferroni method
"scheffe" Scheffe’s procedure

The table lists the critical value types in order of conservativeness, from least to most conservative.
Each test provides a different level of protection against the multiple comparison problem.

• "lsd" does not provide any protection.
• "dunnett" provides protection for comparisons against a control group.
• "tukey-kramer", "dunn-sidak", and "bonferroni" provide protection for pairwise

comparisons.
• "scheffe" provides protection for pairwise comparisons and comparisons of all linear

combinations of the estimates.

For more information, see “Multiple Comparison Procedures” on page 9-22.
Example: "CriticalValueType","bonferroni"
Data Types: string | char

Display — Display toggle
"on" (default) | "off"

Display toggle, specified as either "on" or "off". If you specify "on", then multcompare displays a
graph of the estimates and their comparison intervals. If you specify "off", then multcompare
omits the graph.
Example: "Display","off"
Data Types: string | char

Dimension — Dimension over which to calculate marginal means
1 (default) | positive integer value | vector of positive integer values

Dimension or dimensions over which to calculate the population marginal means, specified as a
positive integer value, or a vector of such values. If you specify CriticalValueType as "dunnett",
then you can specify only one dimension.

This argument is valid only when you create the input structure stats using the function anovan.

For example, if you specify Dimension as 1, then multcompare compares the means for each value
of the first grouping variable, adjusted by removing effects of the other grouping variables as if the
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design were balanced. If you specify Dimension as [1,3], then multcompare computes the
population marginal means for each combination of the first and third grouping variables, removing
effects of the second grouping variable. If you fit a singular model, some cell means may not be
estimable and any population marginal means that depend on those cell means will have the value
NaN.

Population marginal means are described by Milliken and Johnson (1992) and by Searle, Speed, and
Milliken (1980). The idea behind population marginal means is to remove any effect of an unbalanced
design by fixing the values of the factors specified by Dimension, and averaging out the effects of
other factors as if each factor combination occurred the same number of times. The definition of
population marginal means does not depend on the number of observations at each factor
combination. For designed experiments where the number of observations at each factor combination
has no meaning, population marginal means can be easier to interpret than simple means ignoring
other factors. For surveys and other studies where the number of observations at each combination
does have meaning, population marginal means may be harder to interpret.
Example: "Dimension",[1,3]
Data Types: single | double

Estimate — Estimates to be compared
"column" (default) | "row" | "slope" | "intercept" | "pmm"

Estimates to be compared, specified as an allowable value. The allowable values for Estimate
depend on the function used to generate the input structure stats, according to the following table.

Function Values
anova1 None. multcompare ignores this argument and

always compares the group means.
anova2 Either "column" to compare column means or

"row" to compare row means.
anovan None. multcompare ignores this argument and

always compares the population marginal means
as specified by the Dimension name-value
argument.

aoctool "slope", "intercept", or "pmm" to compare
slopes, intercepts, or population marginal means,
respectively. If the analysis of covariance model
does not include separate slopes, then "slope"
is not allowed. If the model does not include
separate intercepts, then no comparisons are
possible.

friedman None. multcompare ignores this argument and
always compares the average column ranks.

kruskalwallis None. multcompare ignores this argument and
always compares the average group ranks.

Example: "Estimate","row"
Data Types: string | char
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Output Arguments
c — Matrix of multiple comparison results
matrix of scalar values

Matrix of multiple comparison results, returned as an p-by-6 matrix of scalar values, where p is the
number of pairs of groups. Each row of the matrix contains the result of one paired comparison test.
Columns 1 and 2 contain the indices of the two samples being compared. Column 3 contains the
lower confidence interval, column 4 contains the estimate, and column 5 contains the upper
confidence interval. Column 6 contains the p-value for the hypothesis test that the corresponding
mean difference is not equal to 0.

For example, suppose one row contains the following entries.

2.0000  5.0000  1.9442  8.2206  14.4971 0.0432

These numbers indicate that the mean of group 2 minus the mean of group 5 is estimated to be
8.2206, and a 95% confidence interval for the true difference of the means is [1.9442, 14.4971]. The
p-value for the corresponding hypothesis test that the difference of the means of groups 2 and 5 is
significantly different from zero is 0.0432.

In this example the confidence interval does not contain 0, so the difference is significant at the 5%
significance level. If the confidence interval did contain 0, the difference would not be significant. The
p-value of 0.0432 also indicates that the difference of the means of groups 2 and 5 is significantly
different from 0.

m — Matrix of estimates
matrix of scalar values

Matrix of the estimates, returned as a matrix of scalar values. The first column of m contains the
estimated values of the means (or whatever statistics are being compared) for each group, and the
second column contains their standard errors.

h — Handle to the figure
handle

Handle to the figure containing the interactive graph, returned as a handle. The title of this graph
contains instructions for interacting with the graph, and the x-axis label contains information about
which means are significantly different from the selected mean. If you plan to use this graph for
presentation, you may want to omit the title and the x-axis label. You can remove them using
interactive features of the graph window, or you can use the following commands.

title("")
xlabel("")

gnames — Group names
cell array of character vectors

Group names, returned as a cell array of character vectors. Each row of gnames contains the name of
a group.
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More About
Multiple Comparison Tests

Analysis of variance compares the means of several groups to test the hypothesis that they are all
equal, against the general alternative that they are not all equal. Sometimes this alternative may be
too general. You may need information about which pairs of means are significantly different, and
which are not. A multiple comparison test can provide this information.

When you perform a simple t-test of one group mean against another, you specify a significance level
that determines the cutoff value of the t-statistic. For example, you can specify the value
alpha = 0.05 to insure that when there is no real difference, you will incorrectly find a significant
difference no more than 5% of the time. When there are many group means, there are also many
pairs to compare. If you applied an ordinary t-test in this situation, the alpha value would apply to
each comparison, so the chance of incorrectly finding a significant difference would increase with the
number of comparisons. Multiple comparison procedures are designed to provide an upper bound on
the probability that any comparison will be incorrectly found significant.

Null and Alternative Hypotheses

The multcompare function examines different sets of null hypotheses (H0) and alternative
hypotheses (H1) depending on the type of critical value specified by the CriticalValueType name-
value argument.

• Dunnett's test (CriticalValueType is "dunnett") performs multiple comparisons against a
control group. Therefore, the null and alternative hypotheses for a comparison against the control
group are

H0:  mi = m0,
H1:  mi ≠ m0,

where mi and m0 are estimates for group i and the control group, respectively. The function
examines H0 and H1 multiple times for all noncontrol groups.

• For the other tests, multcompare performs multiple pairwise comparisons for all distinct pairs of
groups. The null and alternative hypotheses of a pairwise comparison between group i and j are

H0:  mi = m j,
H1:  mi ≠ m j .

Version History
Introduced before R2006a

CType has been renamed to CriticalValueType
Behavior changed in R2022a

The CType name-value argument has been renamed to CriticalValueType to better indicate its
functionality.
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See Also
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Topics
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35 Functions

35-4842



multcompare
Multiple comparison of means for analysis of variance (ANOVA)

Syntax
m = multcompare(aov)
m = multcompare(aov,factors)
m = multcompare( ___ ,Name=Value)

Description
m = multcompare(aov) returns a table of results m from a multiple comparison of means for a one-
way anova object.

m = multcompare(aov,factors) performs the multiple comparison of means over the
combinations of values for the factors listed in factors. This syntax is valid for a one-, two-, or N-
way ANOVA.

m = multcompare( ___ ,Name=Value) specifies additional options using one or more name-value
arguments. For example, you can specify the confidence level and the type of critical value used to
determine if the means are significantly different.

Examples

Compare Group Means of One-Way ANOVA

Load popcorn yield data.

load popcorn.mat

The columns of the 6-by-3 matrix popcorn contain popcorn yield observations in cups for the brands
Gourmet, National, and Generic.

Convert popcorn to a vector.

popcorn = popcorn(:);

Create a string array of values for the factor Brand using the function repmat.

brand = [repmat("Gourmet",6,1); repmat("National",6,1); repmat("Generic",6,1)];

Perform a one-way ANOVA to test the null hypothesis that the mean yields are the same across the
three brands.

aov = anova(brand,popcorn,FactorNames="Brand")

aov = 
1-way anova, constrained (Type III) sums of squares.

Y ~ 1 + Brand
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             SumOfSquares    DF    MeanSquares     F        pValue  
             ____________    __    ___________    ____    __________

    Brand       15.75         2        7.875      18.9    7.9603e-05
    Error        6.25        15      0.41667                        
    Total          22        17                                     

  Properties, Methods

The small p-value indicates that the null hypothesis can be rejected at the 99% confidence level.
Therefore, the difference in mean popcorn yield is statistically significant for at least one brand.
Perform Dunnett's Test to determine if the mean yields of Gourmet and National differ significantly
from the mean yield of Generic.

m = multcompare(aov,CriticalValueType="dunnett",ControlGroup=3)

m=2×6 table
      Group1       Group2      MeanDifference    MeanDifferenceLower    MeanDifferenceUpper     pValue  
    __________    _________    ______________    ___________________    ___________________    _________

    "Gourmet"     "Generic"         2.25                 1.341                 3.159           4.402e-05
    "National"    "Generic"         0.75              -0.15904                 1.659             0.11012

Each row of m contains a p-value for the null hypothesis that the means of the groups in columns
Group1 and Group2 are not significantly different. The p-value in the first row is small enough to
reject the null hypothesis that the mean popcorn yield of Gourmet is not significantly different from
that of Generic.The p-value in the second row is too large to reject the null hypothesis that the mean
popcorn yield of National is not significantly different from that of Generic. The value for
MeanDifference is positive in the first row; therefore, the mean popcorn yield of Gourmet is
significantly higher than that of Generic.

Compare Group Means of Two-Way ANOVA

Load the patients data.

load patients.mat

Create a table containing variables with factor values for the smoking status and physical location of
patients, and the response data for systolic blood pressure.

tbl = table(Smoker,Location,Systolic)

tbl=100×3 table
    Smoker              Location               Systolic
    ______    _____________________________    ________

    true      {'County General Hospital'  }      124   
    false     {'VA Hospital'              }      109   
    false     {'St. Mary's Medical Center'}      125   
    false     {'VA Hospital'              }      117   
    false     {'County General Hospital'  }      122   
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    false     {'St. Mary's Medical Center'}      121   
    true      {'VA Hospital'              }      130   
    false     {'VA Hospital'              }      115   
    false     {'St. Mary's Medical Center'}      115   
    false     {'County General Hospital'  }      118   
    false     {'County General Hospital'  }      114   
    false     {'St. Mary's Medical Center'}      115   
    false     {'VA Hospital'              }      127   
    true      {'VA Hospital'              }      130   
    false     {'St. Mary's Medical Center'}      114   
    true      {'VA Hospital'              }      130   
      ⋮

Perform a two-way ANOVA to test the null hypothesis that systolic blood pressure is not significantly
different between smokers and non-smokers or locations.

aov = anova(tbl,"Systolic")

aov = 
2-way anova, constrained (Type III) sums of squares.

Systolic ~ 1 + Smoker + Location

                SumOfSquares    DF    MeanSquares      F         pValue  
                ____________    __    ___________    ______    __________

    Smoker         2154.4        1      2154.4       94.462    5.9678e-16
    Location       46.064        2      23.032       1.0099       0.36811
    Error          2189.5       96      22.807                           
    Total          4461.2       99                                       

  Properties, Methods

The p-values indicate that enough evidence exists to conclude that smoking status has a significant
effect on blood pressure. However, not enough evidence exists to conclude that physical location has
a significant effect.

Investigate the mean differences between the response data from each group.

m = multcompare(aov,["Smoker","Location"])

m=15×6 table
                    Group1                                     Group2                     MeanDifference    MeanDifferenceLower    MeanDifferenceUpper      pValue  
    Smoker              Location               Smoker              Location                                                                                         
    _______________________________________    _______________________________________    ______________    ___________________    ___________________    __________

    false     {'County General Hospital'  }    true      {'County General Hospital'  }        -9.935              -12.908                -6.9623          7.6385e-15
    false     {'County General Hospital'  }    false     {'VA Hospital'              }         1.516              -1.6761                  4.708             0.73817
    false     {'County General Hospital'  }    true      {'VA Hospital'              }        -8.419              -12.899                -3.9394          5.3456e-06
    false     {'County General Hospital'  }    false     {'St. Mary's Medical Center'}        0.3721              -3.2806                 4.0248             0.99968
    false     {'County General Hospital'  }    true      {'St. Mary's Medical Center'}       -9.5629              -14.637                -4.4886          5.0113e-06
    true      {'County General Hospital'  }    false     {'VA Hospital'              }        11.451               7.2101                 15.692          8.3835e-11
    true      {'County General Hospital'  }    true      {'VA Hospital'              }         1.516              -1.6761                  4.708             0.73817
    true      {'County General Hospital'  }    false     {'St. Mary's Medical Center'}        10.307               5.9931                 14.621          6.5271e-09
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    true      {'County General Hospital'  }    true      {'St. Mary's Medical Center'}        0.3721              -3.2806                 4.0248             0.99968
    false     {'VA Hospital'              }    true      {'VA Hospital'              }        -9.935              -12.908                -6.9623          7.6385e-15
    false     {'VA Hospital'              }    false     {'St. Mary's Medical Center'}       -1.1439              -4.8086                 2.5209             0.94367
    false     {'VA Hospital'              }    true      {'St. Mary's Medical Center'}       -11.079              -16.058                -6.0994          6.0817e-08
    true      {'VA Hospital'              }    false     {'St. Mary's Medical Center'}        8.7911               4.3482                 13.234          1.5297e-06
    true      {'VA Hospital'              }    true      {'St. Mary's Medical Center'}       -1.1439              -4.8086                 2.5209             0.94367
    false     {'St. Mary's Medical Center'}    true      {'St. Mary's Medical Center'}        -9.935              -12.908                -6.9623          7.6385e-15

Each p-value corresponds to the null hypothesis that the means of groups in the same row are not
significantly different. The table includes six p-values greater than 0.05, corresponding to the six
pairs of groups with the same smoking status value. Therefore, systolic blood pressure is not
significantly different between groups with the same smoking status value.

Input Arguments
aov — Analysis of variance results
anova object

Analysis of variance results, specified as an anova object. The properties of aov contain the factors
and response data used by multcompare to compute the difference in means.

factors — Factors used to group response data
string vector | cell array of character vectors

Factors used to group the response data, specified as a string vector or cell array of character
vectors. The multcompare function groups the response data by the combinations of values for the
factors in factors. The factors argument must be one or more of the names in
aov.FactorNames.
Example: ["g1","g2"]
Data Types: string | cell

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.
Example: Alpha=0.01,CriticalValueType="dunnett",Approximate=true sets the
significance level of the confidence intervals to 0.01 and uses an approximation of Dunnett's critical
value to calculate the p-values.

Alpha — Significance level
0.05 (default) | scalar value in the range (0,1)

Significance level for the estimates, specified as a scalar value in the range (0,1). The confidence level
of the confidence intervals is 100(1− α)%. The default value for Alpha is 0.05, which returns 95%
confidence intervals for the estimates.
Example: Alpha=0.01
Data Types: single | double
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CriticalValueType — Critical value type
"tukey-kramer" (default) | "hsd" | "dunn-sidak" | "bonferroni" | "scheffe" | "dunnett" |
"lsd"

Critical value type used by the multcompare function to calculate p-values, specified as one of the
options in the following table. Each option specifies the statistical test that multcompare uses to
calculate the critical value.

Option Statistical Test
"tukey-kramer" (default) Tukey-Kramer test
"hsd" Honestly Significant Difference test — Same as

"tukey-kramer"
"dunn-sidak" Dunn-Sidak correction
"bonferroni" Bonferroni correction
"scheffe" Scheffe test
"dunnett" Dunnett's test — Can be used only when aov is a

one-way anova object or when a single factor is
specified in factors. For Dunnett's test, the
control group is selected in the generated plot
and cannot be changed.

"lsd" Stands for Least Significant Difference and uses
the critical value for a plain t-test. This option
does not protect against the multiple
comparisons problem unless it follows a
preliminary overall test such as an F-test.

Example: CriticalValueType="dunn-sidak"
Data Types: char | string

Approximate — Indicator to compute Dunnett critical value approximately
true or 1 | false or 0

Indicator to compute the Dunnett critical value approximately, specified as a numeric or logical 1
(true) or 0 (false). You can compute the Dunnett critical value approximately for speed. The default
for Approximate is true for an N-way ANOVA with N greater than two, and false otherwise. This
argument is valid only when CriticalValueType is "dunnett".
Example: Approximate=true
Data Types: logical

ControlGroup — Index of control group factor value
1 (default) | positive integer

Index of the control group factor value for Dunnett's test, specified as a positive integer. Factor values
are indexed by the order in which they appear in aov.ExpandedFactorNames. This argument is
valid only when CriticalValueType is "dunnett".
Example: ControlGroup=3
Data Types: single | double
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Output Arguments
m — Multiple comparison procedure results
table

Multiple comparison procedure results, returned as a table. The table m has the following variables:

• Group1 — Values of the factors in the first comparison group
• Group2 — Values of the factors in the second comparison group
• MeanDifference — Difference in mean response between the observations in Group1 and the

observations in Group2
• MeanDifferenceLower — 95% lower confidence bound on the mean difference
• MeanDifferenceUpper — 95% upper confidence bound on the mean difference
• pValue — p-value indicating whether or not the mean of Group1 is significantly different from the

mean of Group2

If two or more factors are provided in factors, the columns Group1 and Group2 contain tables of
values for the factors of the groups being compared.

Version History
Introduced in R2022b

References
[1] Hochberg, Y., and A. C. Tamhane. Multiple Comparison Procedures. Hoboken, NJ: John Wiley &

Sons, 1987.

[2] Milliken, G. A., and D. E. Johnson. Analysis of Messy Data, Volume I: Designed Experiments. Boca
Raton, FL: Chapman & Hall/CRC Press, 1992.

[3] Searle, S. R., F. M. Speed, and G. A. Milliken. “Population marginal means in the linear model: an
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See Also
plotComparisons | groupmeans | anova | “One-Way ANOVA” on page 9-2 | “Two-Way ANOVA” on
page 9-11 | “N-Way ANOVA” on page 9-26
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multcompare
Class: RepeatedMeasuresModel

Multiple comparison of estimated marginal means

Syntax
tbl = multcompare(rm,var)
tbl = multcompare(rm,var,Name,Value)

Description
tbl = multcompare(rm,var) returns multiple comparisons of the estimated marginal means
based on the variable var in the repeated measures model rm.

tbl = multcompare(rm,var,Name,Value) returns multiple comparisons of the estimated
marginal means with additional options specified by one or more Name,Value pair arguments.

For example, you can specify the comparison type or which variable to group by.

Input Arguments
rm — Repeated measures model
RepeatedMeasuresModel object

Repeated measures model, returned as a RepeatedMeasuresModel object.

For properties and methods of this object, see RepeatedMeasuresModel.

var — Variables for which to compute marginal means
character vector | string scalar

Variables for which to compute the marginal means, specified as a character vector or string scalar
representing the name of a between- or within-subjects factor in rm. If var is a between-subjects
factor, it must be categorical.
Data Types: char | string

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.

Alpha — Significance level
0.05 (default) | scalar value in the range of 0 through 1
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Significance level of the confidence intervals for population marginal means, specified as the comma-
separated pair consisting of 'alpha' and a scalar value in the range of 0 through 1. The confidence
level is 100*(1–alpha)%.
Example: 'alpha',0.01
Data Types: double | single

By — Factor to perform comparisons by
character vector | string scalar

Factor to do the comparisons by, specified as the comma-separated pair consisting of 'By' and a
character vector or string scalar. The comparison between levels of var occurs separately for each
value of the factor you specify.

If you have more than one between-subjects factors, A, B, and C, and if you want to do the
comparisons of A levels separately for each level of C, then specify A as the var argument and specify
C using the 'By' argument as follows.
Example: 'By',C
Data Types: char | string

ComparisonType — Type of critical value to use
'tukey-kramer' (default) | 'dunn-sidak' | 'bonferroni' | 'scheffe' | 'lsd'

Type of critical value to use, specified as the comma-separated pair consisting of
'ComparisonType' and one of the following.

Comparison Type Definition
'tukey-kramer' Default. Also called Tukey’s Honest Significant

Difference procedure. It is based on the
Studentized range distribution. According to the
unproven Tukey-Kramer conjecture, it is also
accurate for problems where the quantities being
compared are correlated, as in analysis of
covariance with unbalanced covariate values.

'dunn-sidak' Use critical values from the t distribution, after
an adjustment for multiple comparisons that was
proposed by Dunn and proved accurate by Sidák.
The critical value is

t =
yi− y j

MSE 1
ni

+ 1
nj

> t1− η/2, v,

where

η = 1− 1− α
1

k
2

and ng is the number of groups (marginal
means). This procedure is similar to, but less
conservative than, the Bonferroni procedure.
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Comparison Type Definition
'bonferroni' Use critical values from the t distribution, after a

Bonferroni adjustment to compensate for multiple
comparisons. The critical value is

tα/2
ng
2

, v,

where ng is the number of groups (marginal
means), and v is the error degrees of freedom.
This procedure is conservative, but usually less so
than the Scheffé procedure.

'scheffe' Use critical values from Scheffé's S procedure,
derived from the F distribution. The critical value
is

ng− 1 Fα, ng− 1, v,

where ng is the number of groups (marginal
means), and v is the error degrees of freedom.
This procedure provides a simultaneous
confidence level for comparisons of all linear
combinations of the means, and it is conservative
for comparisons of simple differences of pairs.

'lsd' Least significant difference. This option uses
plain t-tests. The critical value is

tα/2, v,

where v is the error degrees of freedom. It
provides no protection against the multiple
comparison problem.

Example: 'ComparisonType','dunn-sidak'

Output Arguments
tbl — Results of multiple comparison
table

Results of multiple comparisons of estimated marginal means, returned as a table. tbl has the
following columns.

Column Name Description
Difference Estimated difference between the corresponding two marginal means
StdErr Standard error of the estimated difference between the corresponding two

marginal means
pValue p-value for a test that the difference between the corresponding two marginal

means is 0
Lower Lower limit of simultaneous 95% confidence intervals for the true difference
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Column Name Description
Upper Upper limit of simultaneous 95% confidence intervals for the true difference

Examples

Multiple Comparison of Estimated Marginal Means

Load the sample data.

load fisheriris

The column vector species consists of iris flowers of three different species: setosa, versicolor, and
virginica. The double matrix meas consists of four types of measurements on the flowers: the length
and width of sepals and petals in centimeters, respectively.

Store the data in a table array.

t = table(species,meas(:,1),meas(:,2),meas(:,3),meas(:,4),...
'VariableNames',{'species','meas1','meas2','meas3','meas4'});
Meas = dataset([1 2 3 4]','VarNames',{'Measurements'});

Fit a repeated measures model, where the measurements are the responses and the species is the
predictor variable.

rm = fitrm(t,'meas1-meas4~species','WithinDesign',Meas);

Perform a multiple comparison of the estimated marginal means of species.

tbl = multcompare(rm,'species')

tbl=6×7 table
      species_1         species_2       Difference     StdErr       pValue       Lower       Upper  
    ______________    ______________    __________    ________    __________    ________    ________

    {'setosa'    }    {'versicolor'}     -1.0375      0.060539    9.5606e-10     -1.1794    -0.89562
    {'setosa'    }    {'virginica' }     -1.7495      0.060539    9.5606e-10     -1.8914     -1.6076
    {'versicolor'}    {'setosa'    }      1.0375      0.060539    9.5606e-10     0.89562      1.1794
    {'versicolor'}    {'virginica' }      -0.712      0.060539    9.5606e-10    -0.85388    -0.57012
    {'virginica' }    {'setosa'    }      1.7495      0.060539    9.5606e-10      1.6076      1.8914
    {'virginica' }    {'versicolor'}       0.712      0.060539    9.5606e-10     0.57012     0.85388

The small p-values (in the pValue field) indicate that the estimated marginal means for the three
species significantly differ from each other.

Perform Multiple Comparisons with Specified Options

Load the sample data.

load repeatedmeas
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The table between includes the between-subject variables age, IQ, group, gender, and eight repeated
measures y1 through y8 as responses. The table within includes the within-subject variables w1 and
w2. This is simulated data.

Fit a repeated measures model, where the repeated measures y1 through y8 are the responses, and
age, IQ, group, gender, and the group-gender interaction are the predictor variables. Also specify the
within-subject design matrix.

R = fitrm(between,'y1-y8 ~ Group*Gender + Age + IQ','WithinDesign',within);

Perform a multiple comparison of the estimated marginal means based on the variable Group.

T = multcompare(R,'Group')

T=6×7 table
    Group_1    Group_2    Difference    StdErr     pValue       Lower      Upper 
    _______    _______    __________    ______    _________    _______    _______

       A          B         4.9875      5.6271      0.65436    -9.1482     19.123
       A          C         23.094      5.9261    0.0021493     8.2074     37.981
       B          A        -4.9875      5.6271      0.65436    -19.123     9.1482
       B          C         18.107      5.8223     0.013588     3.4805     32.732
       C          A        -23.094      5.9261    0.0021493    -37.981    -8.2074
       C          B        -18.107      5.8223     0.013588    -32.732    -3.4805

The small p-value of 0.0021493 indicates that there is significant difference between the marginal
means of groups A and C. The p-value of 0.65436 indicates that the difference between the marginal
means for groups A and B is not significantly different from 0.

multcompare uses the Tukey-Kramer test statistic by default. Change the comparison type to the
Scheffe procedure.

T = multcompare(R,'Group','ComparisonType','Scheffe')

T=6×7 table
    Group_1    Group_2    Difference    StdErr     pValue       Lower      Upper 
    _______    _______    __________    ______    _________    _______    _______

       A          B         4.9875      5.6271      0.67981    -9.7795     19.755
       A          C         23.094      5.9261    0.0031072     7.5426     38.646
       B          A        -4.9875      5.6271      0.67981    -19.755     9.7795
       B          C         18.107      5.8223     0.018169     2.8273     33.386
       C          A        -23.094      5.9261    0.0031072    -38.646    -7.5426
       C          B        -18.107      5.8223     0.018169    -33.386    -2.8273

The Scheffe test produces larger p-values, but similar conclusions.

Perform multiple comparisons of estimated marginal means based on the variable Group for each
gender separately.

T = multcompare(R,'Group','By','Gender')

T=12×8 table
    Gender    Group_1    Group_2    Difference    StdErr     pValue       Lower        Upper   
    ______    _______    _______    __________    ______    ________    _________    __________
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    Female       A          B         4.1883      8.0177     0.86128      -15.953        24.329
    Female       A          C         24.565      8.2083    0.017697       3.9449        45.184
    Female       B          A        -4.1883      8.0177     0.86128      -24.329        15.953
    Female       B          C         20.376      8.1101    0.049957    0.0033459        40.749
    Female       C          A        -24.565      8.2083    0.017697      -45.184       -3.9449
    Female       C          B        -20.376      8.1101    0.049957      -40.749    -0.0033459
    Male         A          B         5.7868      7.9498     0.74977      -14.183        25.757
    Male         A          C         21.624      8.1829    0.038022       1.0676        42.179
    Male         B          A        -5.7868      7.9498     0.74977      -25.757        14.183
    Male         B          C         15.837      8.0511     0.14414      -4.3881        36.062
    Male         C          A        -21.624      8.1829    0.038022      -42.179       -1.0676
    Male         C          B        -15.837      8.0511     0.14414      -36.062        4.3881

The results indicate that the difference between marginal means for groups A and B is not significant
from 0 for either gender (corresponding p-values are 0.86128 for females and 0.74977 for males).
The difference between marginal means for groups A and C is significant for both genders
(corresponding p-values are 0.017697 for females and 0.038022 for males). While the difference
between marginal means for groups B and C is significantly different from 0 for females (p-value is
0.049957), it is not significantly different from 0 for males (p-value is 0.14414).

References

[1] G. A. Milliken, and Johnson, D. E. Analysis of Messy Data. Volume I: Designed Experiments. New
York, NY: Chapman & Hall, 1992.

See Also
margmean | plotprofile | fitrm
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multivarichart
Multivari chart for grouped data

Syntax
multivarichart(y,GROUP)
multivarichart(Y)
multivarichart(...,param1,val1,param2,val2,...)
[charthandle,AXESH] = multivarichart(...)

Description
multivarichart(y,GROUP) displays the multivari chart for the vector y grouped by entries in
GROUP that can be a cell array or a matrix. If GROUP is a cell array, then each cell in GROUP must
contain a grouping variable that is a categorical vector, numeric vector, character matrix, string
array, or single-column cell array of character vectors. If GROUP is a numeric matrix, then its columns
represent different grouping variables. Each grouping variable must have the same number of
elements as y. The number of grouping variables must be 2, 3, or 4.

Each subplot of the plot matrix contains a multivari chart for the first and second grouping variables.
The x-axis in each subplot indicates values of the first grouping variable. The legend at the bottom of
the figure window indicates values of the second grouping variable. The subplot at position (i,j) is the
multivari chart for the subset of y at the ith level of the third grouping variable and the jth level of
the fourth grouping variable. If the third or fourth grouping variable is absent, it is considered to
have only one level.

multivarichart(Y) displays the multivari chart for a matrix Y. The data in different columns
represent changes in one factor. The data in different rows represent changes in another factor.

multivarichart(...,param1,val1,param2,val2,...) specifies one or more of the following
name/value pairs:

• 'varnames' — Grouping variable names in a character matrix, a string array, or a cell array of
character vectors, one per grouping variable. Default names are 'X1', 'X2', ... .

• 'plotorder' — 'sorted' or a vector containing a permutation of the integers from 1 to the
number of grouping variables.

If 'plotorder' is 'sorted', the grouping variables are rearranged in descending order
according to the number of levels in each variable.

If 'plotorder' is a vector, it indicates the order in which each grouping variable should be
plotted. For example, [2,3,1,4] indicates that the second grouping variable should be used as
the x-axis of each subplot, the third grouping variable should be used as the legend, the first
grouping variable should be used as the columns of the plot, and the fourth grouping variable
should be used as the rows of the plot.

[charthandle,AXESH] = multivarichart(...) returns a handle charthandle to the figure
window and a matrix AXESH of handles to the subplot axes.
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Examples

Multivari Chart for Grouped Data

Display a multivari chart for data with two grouping variables.

rng default; % For reproducibility
y = randn(100,1); % Randomly generate response 
group = [ceil(3*rand(100,1)) ceil(2*rand(100,1))]; 
multivarichart(y,group)

Display a multivari chart for data with four grouping variables.

y = randn(1000,1); % Randomly generate response
group = {ceil(2*rand(1000,1)),ceil(3*rand(1000,1)), ...
         ceil(2*rand(1000,1)),ceil(3*rand(1000,1))};
multivarichart(y,group)
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Version History
Introduced in R2006b

See Also
maineffectsplot | interactionplot

Topics
“Grouping Variables” on page 2-46
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mvksdensity
Kernel smoothing function estimate for multivariate data

Syntax
f = mvksdensity(x,pts,'Bandwidth',bw)
f = mvksdensity(x,pts,'Bandwidth',bw,Name,Value)

Description
f = mvksdensity(x,pts,'Bandwidth',bw) computes a probability density estimate of the
sample data in the n-by-d matrix x, evaluated at the points in pts using the required name-value pair
argument value bw for the bandwidth value. The estimation is based on a product Gaussian kernel
function.

For univariate or bivariate data, use ksdensity instead.

f = mvksdensity(x,pts,'Bandwidth',bw,Name,Value) returns any of the previous output
arguments, using additional options specified by one or more Name,Value pair arguments. For
example, you can define the function type that mvksdensity evaluates, such as probability density,
cumulative probability, or survivor function. You can also assign weights to the input values.

Examples

Estimate Multivariate Kernel Density

Load the Hald cement data.

load hald

The data measures the heat of hardening for 13 different cement compositions. The predictor matrix
ingredients contains the percent composition for each of four cement ingredients. The response
matrix heat contains the heat of hardening (in cal\g) after 180 days.

Estimate the kernel density for the first three observations in ingredients.

xi = ingredients(1:3,:);
f = mvksdensity(ingredients,xi,'Bandwidth',0.8);

Estimate Multivariate Kernel Density Using Grids

Load the Hald cement data.

load hald

The data measures the heat of hardening for 13 different cement compositions. The predictor matrix
ingredients contains the percent composition for each of four cement ingredients. The response
matrix heat contains the heat of hardening (in cal/g) after 180 days.
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Create a array of points at which to estimate the density. First, define the range and spacing for each
variable, using a similar number of points in each dimension.

gridx1 = 0:2:22;
gridx2 = 20:5:80;
gridx3 = 0:2:24;
gridx4 = 5:5:65;

Next, use ndgrid to generate a full grid of points using the defined range and spacing.

[x1,x2,x3,x4] = ndgrid(gridx1,gridx2,gridx3,gridx4);

Finally, transform and concatenate to create an array that contains the points at which to estimate
the density. This array has one column for each variable.

x1 = x1(:,:)';
x2 = x2(:,:)';
x3 = x3(:,:)';
x4 = x4(:,:)';
xi = [x1(:) x2(:) x3(:) x4(:)];

Estimate the density.

f = mvksdensity(ingredients,xi,...
    'Bandwidth',[4.0579 10.7345 4.4185 11.5466],...
    'Kernel','normpdf');

View the size of xi and f to confirm that mvksdensity calculates the density at each point in xi.

size_xi = size(xi)

size_xi = 1×2

       26364           4

size_f = size(f)

size_f = 1×2

       26364           1

Input Arguments
x — Sample data
numeric matrix

Sample data for which mvksdensity returns the probability density estimate, specified as an n-by-d
matrix of numeric values. n is the number of data points (rows) in x, and d is the number of
dimensions (columns).
Data Types: single | double

pts — Points at which to evaluate f
matrix
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Points at which to evaluate the probability density estimate f, specified as a matrix with the same
number of columns as x. The returned estimate f and pts have the same number of rows.
Data Types: single | double

bw — Value for the bandwidth of the kernel smoothing window
scalar value | d-element vector

Value for the bandwidth of the kernel-smoothing window, specified as a scalar value or d-element
vector. d is the number of dimensions (columns) in the sample data x. If bw is a scalar value, it applies
to all dimensions.

If you specify 'BoundaryCorrection' as 'log'(default) and 'Support' as either 'positive' or
a two-row matrix, mvksdensity converts bounded data to be unbounded by using log
transformation. The value of bw is on the scale of the transformed values.

Silverman's rule of thumb for the bandwidth is

bi = σi
4

d + 2 n
1 d + 4 , i = 1, 2, ..., d,

where d is the number of dimensions, n is the number of observations, and σi is the standard
deviation of the ith variate [4].
Example: 'Bandwidth',0.8
Data Types: single | double

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: 'Kernel','triangle','Function,'cdf' specifies that mvksdensity estimates the
cdf of the sample data using the triangle kernel function.

BoundaryCorrection — Boundary correction method
'log' (default) | 'reflection'

Boundary correction method, specified as the comma-separated pair consisting of
'BoundaryCorrection' and either 'log' or 'reflection'.
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Value Description
'log' mvksdensity converts bounded data to be unbounded by using one of the

following transformations. Then, it transforms back to the original bounded
scale after density estimation.

• If you specify 'Support','positive', then mvksdensity applies log(xj)
for each dimension, where xj is the jth column of the input argument x.

• If you specify 'Support' as a two-row matrix consisting of the lower and
upper limits for each dimension, then mvksdensity applies log((xj-Lj)/(Uj-
xj)) for each dimension, where Lj and Uj are the lower and upper limits of the
jth dimension, respectively.

The value of bw is on the scale of the transformed values.
'reflection' mvksdensity augments bounded data by adding reflected data near the

boundaries, then it returns estimates corresponding to the original support. For
details, see “Reflection Method” on page 35-4863.

mvksdensity applies boundary correction only when you specify 'Support' as a value other than
'unbounded'.
Example: 'BoundaryCorrection','reflection'

Function — Function to estimate
'pdf' (default) | 'cdf' | 'survivor'

Function to estimate, specified as the comma-separated pair consisting of 'Function' and one of
the following.

Value Description
'pdf' Probability density function
'cdf' Cumulative distribution function
'survivor' Survivor function

Example: 'Function','cdf'

Kernel — Type of kernel smoother
'normal' (default) | 'box' | 'triangle' | 'epanechnikov' | function handle | character vector |
string scalar

Type of kernel smoother, specified as the comma-separated pair consisting of 'Kernel' and one of
the following.

Value Description
'normal' Normal (Gaussian) kernel
'box' Box kernel
'triangle' Triangular kernel
'epanechnikov' Epanechnikov kernel

You can also specify a kernel function that is a custom or built-in function. Specify the function as a
function handle (for example, @myfunction or @normpdf) or as a character vector or string scalar
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(for example, 'myfunction' or 'normpdf'). The software calls the specified function with one
argument that is an array of distances between data values and locations where the density is
evaluated, normalized by the bandwidth in that dimension. The function must return an array of the
same size containing the corresponding values of the kernel function.

mvksdensity applies the same kernel to each dimension.
Example: 'Kernel','box'

Support — Support for the density
'unbounded' (default) | 'positive' | 2-by-d matrix

Support for the density, specified as the comma-separated pair consisting of 'support' and one of
the following.

Value Description
'unbounded' Allow the density to extend over the whole real

line
'positive' Restrict the density to positive values
2-by-d matrix Specify the finite lower and upper bounds for the

support of the density. The first row contains the
lower limits and the second row contains the
upper limits. Each column contains the limits for
one dimension of x.

'Support' can also be a combination of positive, unbounded, and bounded variables specified as [0
-Inf L; Inf Inf U].
Example: 'Support','positive'
Data Types: single | double | char | string

Weights — Weights for sample data
vector

Weights for sample data, specified as the comma-separated pair consisting of 'Weights' and a
vector of length size(x,1), where x is the sample data.
Example: 'Weights',xw
Data Types: single | double

Output Arguments
f — Estimated function values
vector

Estimated function values, returned as a vector. f and pts have the same number of rows.

More About
Multivariate Kernel Distribution

A multivariate kernel distribution is a nonparametric representation of the probability density
function (pdf) of a random vector. You can use a kernel distribution when a parametric distribution
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cannot properly describe the data, or when you want to avoid making assumptions about the
distribution of the data. A multivariate kernel distribution is defined by a smoothing function and a
bandwidth matrix, which control the smoothness of the resulting density curve.

The multivariate kernel density estimator is the estimated pdf of a random vector. Let x = (x1, x2, …,
xd)' be a d-dimensional random vector with a density function f and let yi = (yi1, yi2, …, yid)' be a
random sample drawn from f for i = 1, 2, …, n, where n is the number of random samples. For any
real vectors of x, the multivariate kernel density estimator is given by

f H x = 1
n ∑i = 1

n
KH x− yi ,

where KH x = H −1/2K(H−1/2x), K ·  is the kernel smoothing function, and H is the d-by-d
bandwidth matrix.

mvksdensity uses a diagonal bandwidth matrix and a product kernel. That is, H1/2 is a square
diagonal matrix with the elements of vector (h1, h2, …, hd) on the main diagonal. K(x) takes the
product form K(x) = k(x1)k(x2) ⋯k(xd), where k ·  is a one-dimensional kernel smoothing function.
Then, the multivariate kernel density estimator becomes

f H x = 1
n ∑i = 1

n
KH x− yi = 1

nh1h2⋯hd
∑

i = 1

n
K

x1− yi1
h1

,
x2− yi2

h2
,⋯,

xd− yid
hd

= 1
nh1h2⋯hd

∑
i = 1

n
∏

j = 1

d
k

x j− yi j
h j

.

The kernel estimator for the cumulative distribution function (cdf), for any real vectors of x, is given
by

F H x =∫−∞
x1∫−∞

x2
⋯∫−∞

xd
f H(t)dtd⋯dt2dt1 = 1

n ∑i = 1

n
∏

j = 1

d
G

x j− yi j
h j

,

where G(x j) =∫−∞
x j

k(t j)dt j.

Reflection Method

The reflection method is a boundary correction method that accurately finds kernel density
estimators when a random variable has bounded support. If you specify
'BoundaryCorrection','reflection', mvksdensity uses the reflection method.

If you additionally specify 'Support' as a two-row matrix consisting of the lower and upper limits
for each dimension, then mvksdensity finds the kernel estimator as follows.

• If 'Function' is 'pdf', then the kernel density estimator is

     f H x = 1
nh1h2⋯hd

∑
i = 1

n
∏

j = 1

d
k

x j− yi j
−

h j
+ k

x j− yi j
h j

+ k
x j− yi j

+

h j
 for Lj ≤ xj ≤ Uj,

where yi j
− = 2L j− yi j, yi j

+ = 2U j− yi j, and yij is the jth element of the ith sample data
corresponding to x(i,j) of the input argument x. Lj and Uj are the lower and upper limits of the
jth dimension, respectively.
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• If 'Function' is 'cdf', then the kernel estimator for cdf is

     

F H(x) = 1
n ∑i = 1

n
∏

j = 1

d
G

x j− yi j
−

h j
+ G

x j− yi j
h j

+ G
x j− yi j

+

h j
− G

L j− yi j
−

h j
− G

L j− yi j
h j

− G
L j− yi j

+

h j
 for Lj ≤ xj ≤ Uj.

• To obtain a kernel estimator for a survivor function (when 'Function' is 'survivor'),
mvksdensity uses both f H(x) and F H(x).

If you additionally specify 'Support' as 'positive' or a matrix including [0 inf], then
mvksdensity finds the kernel density estimator by replacing [Lj Uj] with [0 inf] in the above
equations.

Version History
Introduced in R2016a
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Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• Names in name-value pair arguments, including 'Bandwidth', must be compile-time constants.
• Values in the following name-value pair arguments must also be compile-time constants:

'BoundaryCorrection', 'Function', and 'Kernel'. For example, to use the
'Function','cdf' name-value pair argument in the generated code, include
{coder.Constant('Function'),coder.Constant('cdf')} in the -args value of codegen.

• The value of the 'Kernel' name-value pair argument cannot be a custom function handle. To
specify a custom kernel function, use a character vector or string scalar.

• For the value of the 'Support' name-value pair argument, the compile-time data type must
match the runtime data type.
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For more information on code generation, see “Introduction to Code Generation” on page 34-2 and
“General Code Generation Workflow” on page 34-5.

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

This function fully supports GPU arrays. For more information, see “Run MATLAB Functions on a
GPU” (Parallel Computing Toolbox).

See Also
ksdensity

Topics
“Working with Probability Distributions” on page 5-3
“Nonparametric and Empirical Probability Distributions” on page 5-31
“Supported Distributions” on page 5-16
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mvncdf
Multivariate normal cumulative distribution function

Syntax
p = mvncdf(X)
p = mvncdf(X,mu,Sigma)

p = mvncdf(xl,xu,mu,Sigma)

p = mvncdf( ___ ,options)

[p,err] = mvncdf( ___ )

Description
p = mvncdf(X) returns the cumulative distribution function (cdf) of the multivariate normal
distribution with zero mean and identity covariance matrix, evaluated at each row of X. For more
information, see “Multivariate Normal Distribution” on page 35-4872.

p = mvncdf(X,mu,Sigma) returns the cdf of the multivariate normal distribution with mean mu and
covariance Sigma, evaluated at each row of X.

Specify [] for mu to use its default value of zero when you want to specify only Sigma.

p = mvncdf(xl,xu,mu,Sigma) returns the multivariate normal cdf evaluated over the
multidimensional rectangle with lower and upper limits defined by xl and xu, respectively.

p = mvncdf( ___ ,options) specifies control parameters for the numerical integration used to
compute p, using any of the input argument combinations in the previous syntaxes. Create the
options argument using the statset function with any combination of the parameters 'TolFun',
'MaxFunEvals', and 'Display'.

[p,err] = mvncdf( ___ ) additionally returns an estimate of the error in p. For more information,
see “Algorithms” on page 35-4872.

Examples

Standard Multivariate Normal Distribution cdf

Evaluate the cdf of a standard four-dimensional multivariate normal distribution at points with
increasing coordinates in every dimension.

Create a matrix X of five four-dimensional points with increasing coordinates.

firstDim = (-2:2)';
X = repmat(firstDim,1,4)

X = 5×4
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    -2    -2    -2    -2
    -1    -1    -1    -1
     0     0     0     0
     1     1     1     1
     2     2     2     2

Evaluate the cdf at the points in X.

p = mvncdf(X)

p = 5×1

    0.0000
    0.0006
    0.0625
    0.5011
    0.9121

The cdf values increase because the coordinates of the points are increasing in every dimension.

Bivariate Normal Distribution cdf

Compute and plot the cdf of a bivariate normal distribution.

Define the mean vector mu and the covariance matrix Sigma.

mu = [1 -1];
Sigma = [.9 .4; .4 .3];

Create a grid of 625 evenly spaced points in two-dimensional space.

[X1,X2] = meshgrid(linspace(-1,3,25)',linspace(-3,1,25)');
X = [X1(:) X2(:)];

Evaluate the cdf of the normal distribution at the grid points.

p = mvncdf(X,mu,Sigma);

Plot the cdf values.

Z = reshape(p,25,25);
surf(X1,X2,Z)
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Probability over Rectangular Region

Compute the probability over the unit square of a bivariate normal distribution, and create a contour
plot of the results.

Define the bivariate normal distribution parameters mu and Sigma.

mu = [0 0];
Sigma = [0.25 0.3; 0.3 1];

Compute the probability over the unit square.

p = mvncdf([0 0],[1 1],mu,Sigma)

p = 0.2097

To visualize the result, first create a grid of evenly spaced points in two-dimensional space.

x1 = -3:.2:3;
x2 = -3:.2:3;
[X1,X2] = meshgrid(x1,x2);
X = [X1(:) X2(:)];

Then, evaluate the pdf of the normal distribution at the grid points.
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y = mvnpdf(X,mu,Sigma);
y = reshape(y,length(x2),length(x1));

Finally, create a contour plot of the multivariate normal distribution that includes the unit square.

contour(x1,x2,y,[0.0001 0.001 0.01 0.05 0.15 0.25 0.35])
xlabel('x')
ylabel('y')
line([0 0 1 1 0],[1 0 0 1 1],'Linestyle','--','Color','k')

Computing a multivariate cumulative probability requires significantly more work than computing a
univariate probability. By default, the mvncdf function computes values to less than full machine
precision, and returns an estimate of the error as an optional second output. View the error estimate
in this case.

[p,err] = mvncdf([0 0],[1 1],mu,Sigma)

p = 0.2097

err = 1.0000e-08

Error Estimates in cdf Calculation

Evaluate the cdf of a multivariate normal distribution at random points, and display the error
estimates associated with the cdf calculation.
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Generate four random points from a five-dimensional multivariate normal distribution with mean
vector mu and covariance matrix Sigma.

mu = [0.5 -0.3 0.2 0.1 -0.4];
Sigma = 0.5*eye(5);
rng('default')  % For reproducibility
X = mvnrnd(mu,Sigma,4);

Find the cdf values p at the points in X and the associated error estimates err. Display a summary of
the numerical calculations.

[p,err] = mvncdf(X,mu,Sigma,statset('Display','final'))

Successfully satisfied error tolerance of 0.0001 in 8650 function evaluations.
Successfully satisfied error tolerance of 0.0001 in 8650 function evaluations.
Successfully satisfied error tolerance of 0.0001 in 8650 function evaluations.
Successfully satisfied error tolerance of 0.0001 in 8650 function evaluations.

p = 4×1

    0.1520
    0.0407
    0.0002
    0.1970

err = 4×1
10-16 ×

    0.5949
    0.1487
         0
    0.1983

Input Arguments
X — Evaluation points
numeric matrix

Evaluation points, specified as an n-by-d numeric matrix, where n is a positive scalar integer and d is
the dimension of a single multivariate normal distribution. The rows of X correspond to observations
(or points), and the columns correspond to variables (or coordinates).
Data Types: single | double

mu — Mean vector of multivariate normal distribution
vector of zeros (default) | numeric vector | numeric scalar

Mean vector of a multivariate normal distribution, specified as a 1-by-d numeric vector or a numeric
scalar, where d is the dimension of the multivariate normal distribution. If mu is a scalar, then mvncdf
replicates the scalar to match the size of X.
Data Types: single | double

Sigma — Covariance matrix of multivariate normal distribution
identity matrix (default) | symmetric, positive definite matrix | numeric vector of diagonal entries
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Covariance matrix of a multivariate normal distribution, specified as a d-by-d symmetric, positive
definite matrix, where d is the dimension of the multivariate normal distribution. If the covariance
matrix is diagonal, containing variances along the diagonal and zero covariances off it, then you can
also specify Sigma as a 1-by-d vector containing just the diagonal entries.
Data Types: single | double

xl — Rectangle lower limit
numeric vector

Rectangle lower limit, specified as a 1-by-d numeric vector.
Data Types: single | double

xu — Rectangle upper limit
numeric vector

Rectangle upper limit, specified as a 1-by-d numeric vector.
Data Types: single | double

options — Numerical integration options
structure

Numerical integration options, specified as a structure. Create the options argument by calling the
statset function with any combination of the following parameters:

• 'TolFun' — Maximum absolute error tolerance. The default value is 1e-8 when d < 4, and 1e-4
when d ≥ 4.

• 'MaxFunEvals' — Maximum number of integrand evaluations allowed when d ≥ 4. The default
value is 1e7. The function ignores 'MaxFunEvals' when d < 4.

• 'Display' — Level of display output. The choices are 'off' (the default), 'iter', and
'final'. The function ignores 'Display' when d < 4.

Example: statset('TolFun',1e-7,'Display','final')
Data Types: struct

Output Arguments
p — cdf values
numeric vector | numeric scalar

cdf values, returned as either an n-by-1 numeric vector, where n is the number of rows in X, or a
numeric scalar representing the probability over the rectangular region specified by xl and xu.

err — Absolute error tolerance
positive numeric scalar

Absolute error tolerance, returned as a positive numeric scalar. For bivariate and trivariate
distributions, the default absolute error tolerance is 1e-8. For four or more dimensions, the default
absolute error tolerance is 1e-4. For more information, see “Algorithms” on page 35-4872.
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More About
Multivariate Normal Distribution

The multivariate normal distribution is a generalization of the univariate normal distribution to two or
more variables. It has two parameters, a mean vector μ and a covariance matrix Σ, that are analogous
to the mean and variance parameters of a univariate normal distribution. The diagonal elements of Σ
contain the variances for each variable, and the off-diagonal elements of Σ contain the covariances
between variables.

The probability density function (pdf) of the d-dimensional multivariate normal distribution is

y = f (x, μ, Σ) =  1
Σ (2π)d

exp −1
2(x‐μ) Σ‐1(x‐μ)'

where x and μ are 1-by-d vectors and Σ is a d-by-d symmetric, positive definite matrix. Only mvnrnd
allows positive semi-definite Σ matrices, which can be singular. The pdf cannot have the same form
when Σ is singular.

The multivariate normal cumulative distribution function (cdf) evaluated at x is the probability that a
random vector v, distributed as multivariate normal, lies within the semi-infinite rectangle with upper
limits defined by x:

Pr v(1) ≤ x(1), v(2) ≤ x(2), ..., v(d) ≤ x(d) .

Although the multivariate normal cdf does not have a closed form, mvncdf can compute cdf values
numerically.

Tips
• In the one-dimensional case, Sigma is the variance, not the standard deviation. For example,

mvncdf(1,0,4) is the same as normcdf(1,0,2), where 4 is the variance and 2 is the standard
deviation.

Algorithms
For bivariate and trivariate distributions, mvncdf uses adaptive quadrature on a transformation of
the t density, based on methods developed by Drezner and Wesolowsky [1] [2] and by Genz [3]. For
four or more dimensions, mvncdf uses a quasi-Monte Carlo integration algorithm based on methods
developed by Genz and Bretz [4] [5].

Version History
Introduced in R2006a
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Extended Capabilities
GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

This function fully supports GPU arrays. For more information, see “Run MATLAB Functions on a
GPU” (Parallel Computing Toolbox).

See Also
mvnpdf | mvnrnd

Topics
“Multivariate Normal Distribution” on page B-104
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mvnpdf
Multivariate normal probability density function

Syntax
y = mvnpdf(X)
y = mvnpdf(X,mu)
y = mvnpdf(X,mu,Sigma)

Description
y = mvnpdf(X) returns an n-by-1 vector y containing the probability density function (pdf) values
for the d-dimensional multivariate normal distribution with zero mean and identity covariance matrix,
evaluated at each row of the n-by-d matrix X. For more information, see “Multivariate Normal
Distribution” on page 35-4880.

y = mvnpdf(X,mu) returns pdf values of points in X, where mu determines the mean of each
associated multivariate normal distribution.

y = mvnpdf(X,mu,Sigma) returns pdf values of points in X, where Sigma determines the
covariance of each associated multivariate normal distribution.

Specify [] for mu to use its default value of zero when you want to specify only Sigma.

Examples

Standard Multivariate Normal pdf

Evaluate the pdf of a standard five-dimensional normal distribution at a set of random points.

Randomly sample eight points from the standard five-dimensional normal distribution.

mu = zeros(1,5);
Sigma = eye(5);
rng('default')  % For reproducibility
X = mvnrnd(mu,Sigma,8)

X = 8×5

    0.5377    3.5784   -0.1241    0.4889   -1.0689
    1.8339    2.7694    1.4897    1.0347   -0.8095
   -2.2588   -1.3499    1.4090    0.7269   -2.9443
    0.8622    3.0349    1.4172   -0.3034    1.4384
    0.3188    0.7254    0.6715    0.2939    0.3252
   -1.3077   -0.0631   -1.2075   -0.7873   -0.7549
   -0.4336    0.7147    0.7172    0.8884    1.3703
    0.3426   -0.2050    1.6302   -1.1471   -1.7115

Evaluate the pdf of the distribution at the points in X.
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y = mvnpdf(X)

y = 8×1

    0.0000
    0.0000
    0.0000
    0.0000
    0.0054
    0.0011
    0.0015
    0.0003

Find the point in X with the greatest pdf value.

[maxpdf,idx] = max(y)

maxpdf = 0.0054

idx = 5

maxPoint = X(idx,:)

maxPoint = 1×5

    0.3188    0.7254    0.6715    0.2939    0.3252

The fifth point in X has a greater pdf value than any of the other randomly selected points.

Multivariate Normal pdfs Evaluated at Different Points

Create six three-dimensional normal distributions, each with a distinct mean. Evaluate the pdf of each
distribution at a different random point.

Specify the means mu and covariances Sigma of the distributions. Each distribution has the same
covariance matrix—the identity matrix.

firstDim = (1:6)';
mu = repmat(firstDim,1,3)

mu = 6×3

     1     1     1
     2     2     2
     3     3     3
     4     4     4
     5     5     5
     6     6     6

Sigma = eye(3)

Sigma = 3×3
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     1     0     0
     0     1     0
     0     0     1

Randomly sample once from each of the six distributions.

rng('default')  % For reproducibility
X = mvnrnd(mu,Sigma)

X = 6×3

    1.5377    0.5664    1.7254
    3.8339    2.3426    1.9369
    0.7412    6.5784    3.7147
    4.8622    6.7694    3.7950
    5.3188    3.6501    4.8759
    4.6923    9.0349    7.4897

Evaluate the pdfs of the distributions at the points in X. The pdf of the first distribution is evaluated at
the point X(1,:), the pdf of the second distribution is evaluated at the point X(2,:), and so on.

y = mvnpdf(X,mu)

y = 6×1

    0.0384
    0.0111
    0.0000
    0.0009
    0.0241
    0.0001

Multivariate Normal pdf

Evaluate the pdf of a two-dimensional normal distribution at a set of given points.

Specify the mean mu and covariance Sigma of the distribution.

mu = [1 -1];
Sigma = [0.9 0.4; 0.4 0.3];

Randomly sample from the distribution 100 times. Specify X as the matrix of sampled points.

rng('default')  % For reproducibility
X = mvnrnd(mu,Sigma,100);

Evaluate the pdf of the distribution at the points in X.

y = mvnpdf(X,mu,Sigma);

Plot the probability density values.

scatter3(X(:,1),X(:,2),y)
xlabel('X1')
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ylabel('X2')
zlabel('Probability Density')

Multivariate Normal pdfs Evaluated at Same Point

Create ten different five-dimensional normal distributions, and compare the values of their pdfs at a
specified point.

Set the dimensions n and d equal to 10 and 5, respectively.

n = 10;
d = 5;

Specify the means mu and the covariances Sigma of the multivariate normal distributions. Let all the
distributions have the same mean vector, but vary the covariance matrices.

mu = ones(1,d)

mu = 1×5

     1     1     1     1     1

mat = eye(d);
nMat = repmat(mat,1,1,n);

 mvnpdf

35-4877



var = reshape(1:n,1,1,n);
Sigma = nMat.*var;

Display the first two covariance matrices in Sigma.

Sigma(:,:,1:2)

ans = 
ans(:,:,1) =

     1     0     0     0     0
     0     1     0     0     0
     0     0     1     0     0
     0     0     0     1     0
     0     0     0     0     1

ans(:,:,2) =

     2     0     0     0     0
     0     2     0     0     0
     0     0     2     0     0
     0     0     0     2     0
     0     0     0     0     2

Set x to be a random point in five-dimensional space.

rng('default')  % For reproducibility
x = normrnd(0,1,1,5)

x = 1×5

    0.5377    1.8339   -2.2588    0.8622    0.3188

Evaluate the pdf at x for each of the ten distributions.

y = mvnpdf(x,mu,Sigma)

y = 10×1
10-4 ×

    0.2490
    0.8867
    0.8755
    0.7035
    0.5438
    0.4211
    0.3305
    0.2635
    0.2134
    0.1753

Plot the results.

scatter(1:n,y,'filled')
xlabel('Distribution Index')
ylabel('Probability Density at x')
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Input Arguments
X — Evaluation points
numeric vector | numeric matrix

Evaluation points, specified as a 1-by-d numeric vector or an n-by-d numeric matrix, where n is a
positive scalar integer and d is the dimension of a single multivariate normal distribution. The rows of
X correspond to observations (or points), and the columns correspond to variables (or coordinates).

If X is a vector, then mvnpdf replicates it to match the leading dimension of mu or the trailing
dimension of Sigma.
Data Types: single | double

mu — Means of multivariate normal distributions
vector of zeros (default) | numeric vector | numeric matrix

Means of multivariate normal distributions, specified as a 1-by-d numeric vector or an n-by-d numeric
matrix.

• If mu is a vector, then mvnpdf replicates the vector to match the trailing dimension of Sigma.
• If mu is a matrix, then each row of mu is the mean vector of a single multivariate normal

distribution.

Data Types: single | double
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Sigma — Covariances of multivariate normal distributions
identity matrix (default) | symmetric, positive definite matrix | numeric array

Covariances of multivariate normal distributions, specified as a d-by-d symmetric, positive definite
matrix or a d-by-d-by-n numeric array.

• If Sigma is a matrix, then mvnpdf replicates the matrix to match the number of rows in mu.
• If Sigma is an array, then each page of Sigma, Sigma(:,:,i), is the covariance matrix of a

single multivariate normal distribution and, therefore, is a symmetric, positive definite matrix.

If the covariance matrices are diagonal, containing variances along the diagonal and zero covariances
off it, then you can also specify Sigma as a 1-by-d vector or a 1-by-d-by-n array containing just the
diagonal entries.
Data Types: single | double

Output Arguments
y — pdf values
numeric vector

pdf values, returned as an n-by-1 numeric vector, where n is one of the following:

• Number of rows in X if X is a matrix
• Number of times X is replicated if X is a vector

If X is a matrix, mu is a matrix, and Sigma is an array, then mvnpdf computes y(i) using X(i,:),
mu(i,:), and Sigma(:,:,i).
Data Types: double

More About
Multivariate Normal Distribution

The multivariate normal distribution is a generalization of the univariate normal distribution to two or
more variables. It has two parameters, a mean vector μ and a covariance matrix Σ, that are analogous
to the mean and variance parameters of a univariate normal distribution. The diagonal elements of Σ
contain the variances for each variable, and the off-diagonal elements of Σ contain the covariances
between variables.

The probability density function (pdf) of the d-dimensional multivariate normal distribution is

y = f (x, μ, Σ) =  1
Σ (2π)d

exp −1
2(x‐μ) Σ‐1(x‐μ)'

where x and μ are 1-by-d vectors and Σ is a d-by-d symmetric, positive definite matrix. Only mvnrnd
allows positive semi-definite Σ matrices, which can be singular. The pdf cannot have the same form
when Σ is singular.

The multivariate normal cumulative distribution function (cdf) evaluated at x is the probability that a
random vector v, distributed as multivariate normal, lies within the semi-infinite rectangle with upper
limits defined by x:
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Pr v(1) ≤ x(1), v(2) ≤ x(2), ..., v(d) ≤ x(d) .

Although the multivariate normal cdf does not have a closed form, mvncdf can compute cdf values
numerically.

Tips
• In the one-dimensional case, Sigma is the variance, not the standard deviation. For example,

mvnpdf(1,0,4) is the same as normpdf(1,0,2), where 4 is the variance and 2 is the standard
deviation.

Version History
Introduced before R2006a

References
[1] Kotz, S., N. Balakrishnan, and N. L. Johnson. Continuous Multivariate Distributions: Volume 1:

Models and Applications. 2nd ed. New York: John Wiley & Sons, Inc., 2000.

Extended Capabilities
GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

This function fully supports GPU arrays. For more information, see “Run MATLAB Functions on a
GPU” (Parallel Computing Toolbox).

See Also
mvncdf | mvnrnd | normpdf

Topics
“Multivariate Normal Distribution” on page B-104
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mvregress
Multivariate linear regression

Syntax
beta = mvregress(X,Y)
beta = mvregress(X,Y,Name,Value)
[beta,Sigma] = mvregress( ___ )
[beta,Sigma,E,CovB,logL] = mvregress( ___ )

Description
beta = mvregress(X,Y) returns the estimated coefficients for a multivariate normal regression on
page 35-4893 of the d-dimensional responses in Y on the design matrices in X.

beta = mvregress(X,Y,Name,Value) returns the estimated coefficients using additional options
specified by one or more name-value pair arguments. For example, you can specify the estimation
algorithm, initial estimate values, or maximum number of iterations for the regression.

[beta,Sigma] = mvregress( ___ ) also returns the estimated d-by-d variance-covariance matrix
of Y, using any of the input arguments from the previous syntaxes.

[beta,Sigma,E,CovB,logL] = mvregress( ___ ) also returns a matrix of residuals E, estimated
variance-covariance matrix of the regression coefficients CovB, and the value of the log likelihood
objective function after the last iteration logL.

Examples

Multivariate Regression Model for Panel Data with Different Intercepts

Fit a multivariate regression model to panel data, assuming different intercepts and common slopes.

Load the sample data.

load('flu')

The dataset array flu contains national CDC flu estimates, and nine separate regional estimates
based on Google® query data.

Extract the response and predictor data.

Y = double(flu(:,2:end-1));
[n,d] = size(Y);
x = flu.WtdILI;

The responses in Y are the nine regional flu estimates. Observations exist for every week over a one-
year period, so n = 52. The dimension of the responses corresponds to the regions, so d = 9. The
predictors in x are the weekly national flu estimates.

Plot the flu data, grouped by region.
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figure;
regions = flu.Properties.VarNames(2:end-1);
plot(x,Y,'x')
legend(regions,'Location','NorthWest')

Fit the multivariate regression model yi j = α j + βxi j + ϵi j, where i = 1, …, n and j = 1, …, d, with
between-region concurrent correlation COV(ϵi j, ϵi j) = σ j j.

There are K = 10 regression coefficients to estimate: nine intercept terms and a common slope. The
input argument X should be an n-element cell array of d -by- K design matrices.

X = cell(n,1);
for i = 1:n
    X{i} = [eye(d) repmat(x(i),d,1)];
end
[beta,Sigma] = mvregress(X,Y);

beta contains estimates of the K-dimensional coefficient vector (α1, α2, …, α9, β)′.

Sigma contains estimates of the d -by- d variance-covariance matrix (σi j)d × d, i, j = 1, …, d for the
between-region concurrent correlations.

Plot the fitted regression model.

B = [beta(1:d)';repmat(beta(end),1,d)];
xx = linspace(.5,3.5)';
fits = [ones(size(xx)),xx]*B;
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figure;
h = plot(x,Y,'x',xx,fits,'-');
for i = 1:d
    set(h(d+i),'color',get(h(i),'color'));
end
legend(regions,'Location','NorthWest');

The plot shows that each regression line has a different intercept but the same slope. Upon visual
inspection, some regression lines appear to fit the data better than others.

Multivariate Regression for Panel Data with Different Slopes

Fit a multivariate regression model to panel data using least squares, assuming different intercepts
and slopes.

Load the sample data.

load('flu');

The dataset array flu contains national CDC flu estimates, and nine separate regional estimates
based on Google® queries.

Extract the response and predictor data.
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Y = double(flu(:,2:end-1));
[n,d] = size(Y);
x = flu.WtdILI;

The responses in Y are the nine regional flu estimates. Observations exist for every week over a one-
year period, so n = 52. The dimension of the responses corresponds to the regions, so d = 9. The
predictors in x are the weekly national flu estimates.

Fit the multivariate regression model yi j = α j + β jxi j + ϵi j, where i = 1, …, n and j = 1, …, d, with
between-region concurrent correlation COV(ϵi j, ϵi j) = σ j j.

There are K = 18 regression coefficients to estimate: nine intercept terms, and nine slope terms. X is
an n-element cell array of d -by- K design matrices.

X = cell(n,1);
for i = 1:n
    X{i} = [eye(d) x(i)*eye(d)];
end
[beta,Sigma] = mvregress(X,Y,'algorithm','cwls');

beta contains estimates of the K-dimensional coefficient vector (α1, α2, …, α9, β1, β2, …, β9)′.

Plot the fitted regression model.

B = [beta(1:d)';beta(d+1:end)'];
xx = linspace(.5,3.5)';
fits = [ones(size(xx)),xx]*B;

figure;
h = plot(x,Y,'x',xx,fits,'-');
for i = 1:d
    set(h(d+i),'color',get(h(i),'color'));
end

regions = flu.Properties.VarNames(2:end-1);
legend(regions,'Location','NorthWest');
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The plot shows that each regression line has a different intercept and slope.

Multivariate Regression With a Single Design Matrix

Fit a multivariate regression model using a single n-by-P design matrix for all response dimensions.

Load the sample data.

load('flu')

The dataset array flu contains national CDC flu estimates, and nine separate regional estimates
based on Google® queries.

Extract the response and predictor data.

Y = double(flu(:,2:end-1));
[n,d] = size(Y);
x = flu.WtdILI;

The responses in Y are the nine regional flu estimates. Observations exist for every week over a one-
year period, so n = 52. The dimension of the responses corresponds to the regions, so d = 9. The
predictors in x are the weekly national flu estimates.

Create an n -by- P design matrix X. Add a column of ones to include a constant term in the regression.
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X = [ones(size(x)),x];

Fit the multivariate regression model

yi j = α j + β jxi j + ϵi j,

where i = 1, …, n and j = 1, …, d, with between-region concurrent correlation

COV(ϵi j, ϵi j) = σ j j .

There are 18 regression coefficients to estimate: nine intercept terms, and nine slope terms.

[beta,Sigma,E,CovB,logL] = mvregress(X,Y);

beta contains estimates of the P-by-d coefficient matrix. Sigma contains estimates of the d-by-d
variance-covariance matrix for the between-region concurrent correlations. E is a matrix of the
residuals. CovB is the estimated variance-covariance matrix of the regression coefficients. logL is the
value of the log likelihood objective function after the last iteration.

Plot the fitted regression model.

B = beta;
xx = linspace(.5,3.5)';
fits = [ones(size(xx)),xx]*B;

figure
h = plot(x,Y,'x', xx,fits,'-');
for i = 1:d
    set(h(d+i),'color',get(h(i),'color'))
end

regions = flu.Properties.VarNames(2:end-1);
legend(regions,'Location','NorthWest')
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The plot shows that each regression line has a different intercept and slope.

Input Arguments
X — Design matrices
matrix | cell array of matrices

Design matrices for the multivariate regression, specified as a matrix or cell array of matrices. n is
the number of observations in the data, K is the number of regression coefficients to estimate, p is the
number of predictor variables, and d is the number of dimensions in the response variable matrix Y.

• If d = 1, then specify X as a single n-by-K design matrix.
• If d > 1 and all d dimensions have the same design matrix, then you can specify X as a single n-by-

p design matrix (not in a cell array).
• If d > 1 and all n observations have the same design matrix, then you can specify X as a cell array

containing a single d-by-K design matrix.
• If d > 1 and all n observations do not have the same design matrix, then specify X as a cell array of

length n containing d-by-K design matrices.

To include a constant term in the regression model, each design matrix should contain a column of
ones.

mvregress treats NaN values in X as missing values, and ignores rows in X with missing values.
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Data Types: single | double | cell

Y — Response variables
matrix

Response variables, specified as an n-by-d matrix. n is the number of observations in the data, and d
is the number of dimensions in the response. When d = 1, mvregress treats the values in Y like n
independent response values.

mvregress treats NaN values in Y as missing values, and handles them according to the estimation
algorithm specified using the name-value pair argument algorithm.
Data Types: single | double

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: 'algorithm','cwls','covar0',C specifies covariance-weighted least squares
estimation using the covariance matrix C.

algorithm — Estimation algorithm
'mvn' | 'ecm' | 'cwls'

Estimation algorithm, specified as the comma-separated pair consisting of 'algorithm' and one of
the following.

'mvn' Ordinary multivariate normal maximum likelihood estimation.
'ecm' Maximum likelihood estimation via the ECM algorithm.
'cwls' Covariance-weighted least squares estimation.

The default algorithm depends on the presence of missing data.

• For complete data, the default is 'mvn'.
• If there are any missing responses (indicated by NaN), the default is 'ecm', provided the sample

size is sufficient to estimate all parameters. Otherwise, the default algorithm is 'cwls'.

Note If algorithm has the value 'mvn', then mvregress removes observations with missing
response values before estimation.

Example: 'algorithm','ecm'

beta0 — Initial estimates for regression coefficients
vector

Initial estimates for the regression coefficients, specified as the comma-separated pair consisting of
'beta0' and a vector with K elements. The default value is a vector of 0s.

The beta0 argument is not used if the estimation algorithm is 'mvn'.
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covar0 — Initial estimate for variance-covariance matrix
matrix

Initial estimate for the variance-covariance matrix, Sigma, specified as the comma-separated pair
consisting of 'covar0' and a symmetric, positive definite, d-by-d matrix. The default value is the
identity matrix.

If the estimation algorithm is 'cwls', then mvregress uses covar0 as the weighting matrix at
each iteration, without changing it.

covtype — Type of variance-covariance matrix
'full' (default) | 'diagonal'

Type of variance-covariance matrix to estimate for Y, specified as the comma-separated pair
consisting of 'covtype' and one of the following.

'full' Estimate all d(d + 1)/2 variance-covariance elements.
'diagonal' Estimate only the d diagonal elements of the variance-

covariance matrix.

Example: 'covtype','diagonal'

maxiter — Maximum number of iterations
100 (default) | positive integer

Maximum number of iterations for the estimation algorithm, specified as the comma-separated pair
consisting of 'maxiter' and a positive integer.

Iterations continue until estimates are within the convergence tolerances tolbeta and tolobj, or
the maximum number of iterations specified by maxiter is reached. If both tolbeta and tolobj
are 0, then mvregress performs maxiter iterations with no convergence tests.
Example: 'maxiter',50

outputfcn — Function to evaluate each iteration
function handle

Function to evaluate at each iteration, specified as the comma-separated pair consisting of
'outputfcn' and a function handle. The function must return a logical true or false. At each
iteration, mvregress evaluates the function. If the result is true, iterations stop. Otherwise,
iterations continue. For example, you could specify a function that plots or displays current iteration
results, and returns true if you close the figure.

The function must accept three input arguments, in this order:

• Vector of current coefficient estimates
• Structure containing these three fields:

Covar Current value of the variance-covariance matrix
iteration Current iteration number
fval Current value of the loglikelihood objective function

• Text that takes these three values:
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'init' When the function is called during initialization
'iter' When the function is called after an iteration
'done' When the function is called after completion

tolbeta — Convergence tolerance for regression coefficients
sqrt(eps) (default) | positive scalar value

Convergence tolerance for regression coefficients, specified as the comma-separated pair consisting
of 'tolbeta' and a positive scalar value.

Let bt denote the estimate of the coefficient vector at iteration t, and τβ be the tolerance specified by
tolbeta. The convergence criterion for regression coefficient estimation is

bt − bt − 1 < τβ K 1 + bt ,

where K is the length of bt and v  is the norm of a vector v .

Iterations continue until estimates are within the convergence tolerances tolbeta and tolobj, or
the maximum number of iterations specified by maxiter is reached. If both tolbeta and tolobj
are 0, then mvregress performs maxiter iterations with no convergence tests.
Example: 'tolbeta',1e-5

tolobj — Convergence tolerance for loglikelihood objective function
eps^(3/4) (default) | positive scalar value

Convergence tolerance for the loglikelihood objective function, specified as the comma-separated pair
consisting of 'tolobj' and a positive scalar value.

Let Lt denote the value of the loglikelihood objective function at iteration t, and τℓ be the tolerance
specified by tolobj. The convergence criterion for the objective function is

Lt− Lt − 1 < τℓ 1 + Lt .

Iterations continue until estimates are within the convergence tolerances tolbeta and tolobj, or
the maximum number of iterations specified by maxiter is reached. If both tolbeta and tolobj
are 0, then mvregress performs maxiter iterations with no convergence tests.
Example: 'tolobj',1e-5

varformat — Format for parameter estimate variance-covariance matrix
'beta' (default) | 'full'

Format for the parameter estimate variance-covariance matrix, CovB, specified as the comma-
separated pair consisting of 'varformat' and one of the following.

'beta' Return the variance-covariance matrix for only the regression
coefficient estimates, beta.

'full' Return the variance-covariance matrix for both the regression
coefficient estimates, beta, and the variance-covariance matrix
estimate, Sigma.

Example: 'varformat','full'
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vartype — Type of variance-covariance matrix for parameter estimates
'hessian' (default) | 'fisher'

Type of variance-covariance matrix for parameter estimates, specified as the comma-separated pair
consisting of 'vartype' and either 'hessian' or 'fisher'.

• If the value is 'hessian', then mvregress uses the Hessian, or observed information, matrix to
compute CovB.

• If the value is 'fisher', then mvregress uses the complete-data Fisher, or expected
information, matrix to compute CovB.

The 'hessian' method takes into account the increase uncertainties due to missing data, while the
'fisher' method does not.
Example: 'vartype','fisher'

Output Arguments
beta — Estimated regression coefficients
column vector | matrix

Estimated regression coefficients, returned as a column vector or matrix.

• If you specify X as a single n-by-K design matrix, then mvregress returns beta as a column
vector of length K. For example, if X is a 20-by-5 design matrix, then beta is a 5-by-1 column
vector.

• If you specify X as a cell array containing one or more d-by-K design matrices, then mvregress
returns beta as a column vector of length K. For example, if X is a cell array containing 2-by-10
design matrices, then beta is a 10-by-1 column vector.

• If you specify X as a single n-by-p design matrix (not in a cell array), and Y has dimension d > 1,
then mvregress returns beta as a p-by-d matrix. For example, if X is a 20-by-5 design matrix, and
Y has two dimensions such that d = 2, then beta is a 5-by-2 matrix, and the fitted Y values are X ×
beta.

Sigma — Estimated variance-covariance matrix
square matrix

Estimated variance-covariance matrix for the responses in Y, returned as a d-by-d square matrix.

Note The estimated variance-covariance matrix, Sigma, is not the sample covariance matrix of the
residual matrix, E.

E — Residuals
matrix

Residuals for the fitted regression model, returned as an n-by-d matrix.

If algorithm has the value 'ecm' or 'cwls', then mvregress computes the residual values
corresponding to missing values in Y as the difference between the conditionally imputed values on
page 35-4893 and the fitted values.

35 Functions

35-4892



Note If algorithm has the value 'mvn', then mvregress removes observations with missing
response values before estimation.

CovB — Parameter estimate variance-covariance matrix
square matrix

Parameter estimate variance-covariance matrix, returned as a square matrix.

• If varformat has the value 'beta' (default), then CovB is the estimated variance-covariance
matrix of the coefficient estimates in beta.

• If varformat has the value 'full', then CovB is the estimated variance-covariance matrix of the
combined estimates in beta and Sigma.

logL — Loglikelihood objective function value
scalar value

Loglikelihood objective function value after the last iteration, returned as a scalar value.

More About
Multivariate Normal Regression

Multivariate normal regression is the regression of a d-dimensional response on a design matrix of
predictor variables, with normally distributed errors. The errors can be heteroscedastic and
correlated.

The model is

yi = Xiβ + ei, i = 1, …, n,

where

• yi is a d-dimensional vector of responses.
• Xi is a design matrix of predictor variables.
• β is vector or matrix of regression coefficients.
• ei is a d-dimensional vector of error terms, with multivariate normal distribution

ei MVNd(0, Σ) .

Conditionally Imputed Values

The expectation/conditional maximization ('ecm') and covariance-weighted least squares ('cwls')
estimation algorithms include imputation of missing response values.

Let y denote missing observations. The conditionally imputed values are the expected value of the
missing observation given the observed data, Ε y y .

The joint distribution of the missing and observed responses is a multivariate normal distribution,

y
y

MVN Xβ
Xβ

,
Σy Σyy
Σyy Σy

.
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Using properties of the multivariate normal distribution, the imputed conditional expectation is given
by

Ε y y = Xβ + ΣyyΣy
−1(y − Xβ) .

Note mvregress only imputes missing response values. Observations with missing values in the
design matrix are removed.

Version History
Introduced in R2006b

References
[1] Little, Roderick J. A., and Donald B. Rubin. Statistical Analysis with Missing Data. 2nd ed.,

Hoboken, NJ: John Wiley & Sons, Inc., 2002.

[2] Meng, Xiao-Li, and Donald B. Rubin. “Maximum Likelihood Estimation via the ECM Algorithm.”
Biometrika. Vol. 80, No. 2, 1993, pp. 267–278.

[3] Sexton, Joe, and A. R. Swensen. “ECM Algorithms that Converge at the Rate of EM.” Biometrika.
Vol. 87, No. 3, 2000, pp. 651–662.

[4] Dempster, A. P., N. M. Laird, and D. B. Rubin. “Maximum Likelihood from Incomplete Data via the
EM Algorithm.” Journal of the Royal Statistical Society. Series B, Vol. 39, No. 1, 1977, pp. 1–
37.

See Also
manova1 | mvregresslike

Topics
“Set Up Multivariate Regression Problems” on page 16-11
“Multivariate General Linear Model” on page 16-20
“Fixed Effects Panel Model with Concurrent Correlation” on page 16-24
“Longitudinal Analysis” on page 16-30
“Multivariate Linear Regression” on page 16-2
“Estimation of Multivariate Regression Models” on page 16-5
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mvregresslike
Negative log-likelihood for multivariate regression

Syntax
nlogL = mvregresslike(X,Y,b,SIGMA,alg)
[nlogL,COVB] = mvregresslike(...)
[nlogL,COVB] = mvregresslike(...,type,format)

Description
nlogL = mvregresslike(X,Y,b,SIGMA,alg) computes the negative log-likelihood nlogL for a
multivariate regression of the d-dimensional multivariate observations in the n-by-d matrix Y on the
predictor variables in the matrix or cell array X, evaluated for the p-by-1 column vector b of
coefficient estimates and the d-by-d matrix SIGMA specifying the covariance of a row of Y. If d = 1, X
can be an n-by-p design matrix of predictor variables. For any value of d, X can also be a cell array of
length n, with each cell containing a d-by-p design matrix for one multivariate observation. If all
observations have the same d-by-p design matrix, X can be a single cell.

NaN values in X or Y are taken as missing. Observations with missing values in X are ignored.
Treatment of missing values in Y depends on the algorithm specified by alg.

alg should match the algorithm used by mvregress to obtain the coefficient estimates b, and must
be one of the following:

• 'ecm' — ECM algorithm
• 'cwls' — Least squares conditionally weighted by SIGMA
• 'mvn' — Multivariate normal estimates computed after omitting rows with any missing values in

Y

[nlogL,COVB] = mvregresslike(...) also returns an estimated covariance matrix COVB of the
parameter estimates b.

[nlogL,COVB] = mvregresslike(...,type,format) specifies the type and format of COVB.

type is either:

• 'hessian' — To use the Hessian or observed information. This method takes into account the
increased uncertainties due to missing data. This is the default.

• 'fisher' — To use the Fisher or expected information. This method uses the complete data
expected information, and does not include uncertainty due to missing data.

format is either:

• 'beta' — To compute COVB for b only. This is the default.
• 'full' — To compute COVB for both b and SIGMA.

 mvregresslike
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Version History
Introduced in R2007a

See Also
mvregress | manova1

Topics
“Multivariate Normal Distribution” on page B-104
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mvnrnd
Multivariate normal random numbers

Syntax
R = mvnrnd(mu,Sigma,n)
R = mvnrnd(mu,Sigma)

Description
R = mvnrnd(mu,Sigma,n) returns a matrix R of n random vectors chosen from the same
multivariate normal distribution, with mean vector mu and covariance matrix Sigma. For more
information, see “Multivariate Normal Distribution” on page 35-4900.

R = mvnrnd(mu,Sigma) returns an m-by-d matrix R of random vectors sampled from m separate d-
dimensional multivariate normal distributions, with means and covariances specified by mu and
Sigma, respectively. Each row of R is a single multivariate normal random vector.

Examples

Generate Multivariate Normal Random Numbers

Generate random numbers from the same multivariate normal distribution.

Define mu and Sigma, and generate 100 random numbers.

mu = [2 3];
Sigma = [1 1.5; 1.5 3];
rng('default')  % For reproducibility
R = mvnrnd(mu,Sigma,100);

Plot the random numbers.

plot(R(:,1),R(:,2),'+')
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Sample from Different Multivariate Normal Distributions

Randomly sample from five different three-dimensional normal distributions.

Specify the means mu and the covariances Sigma of the distributions. Let all the distributions share
the same covariance matrix, but vary the mean vectors.

firstDim = (1:5)';
mu = repmat(firstDim,1,3)

mu = 5×3

     1     1     1
     2     2     2
     3     3     3
     4     4     4
     5     5     5

Sigma = eye(3)

Sigma = 3×3

     1     0     0
     0     1     0
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     0     0     1

Randomly sample once from each of the five distributions.

rng('default')  % For reproducibility
R = mvnrnd(mu,Sigma)

R = 5×3

    1.5377   -0.3077   -0.3499
    3.8339    1.5664    5.0349
    0.7412    3.3426    3.7254
    4.8622    7.5784    3.9369
    5.3188    7.7694    5.7147

Plot the results.

scatter3(R(:,1),R(:,2),R(:,3))

Input Arguments
mu — Means of multivariate normal distributions
numeric vector | numeric matrix

 mvnrnd
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Means of multivariate normal distributions, specified as a 1-by-d numeric vector or an m-by-d
numeric matrix.

• If mu is a vector, then mvnrnd replicates the vector to match the trailing dimension of Sigma.
• If mu is a matrix, then each row of mu is the mean vector of a single multivariate normal

distribution.

Data Types: single | double

Sigma — Covariances of multivariate normal distributions
symmetric, positive semi-definite matrix | numeric array

Covariances of multivariate normal distributions, specified as a d-by-d symmetric, positive semi-
definite matrix or a d-by-d-by-m numeric array.

• If Sigma is a matrix, then mvnrnd replicates the matrix to match the number of rows in mu.
• If Sigma is an array, then each page of Sigma, Sigma(:,:,i), is the covariance matrix of a

single multivariate normal distribution and, therefore, is a symmetric, positive semi-definite
matrix.

If the covariance matrices are diagonal, containing variances along the diagonal and zero covariances
off it, then you can also specify Sigma as a 1-by-d vector or a 1-by-d-by-m array containing just the
diagonal entries.
Data Types: single | double

n — Number of multivariate random numbers
positive scalar integer

Number of multivariate random numbers, specified as a positive scalar integer. n specifies the
number of rows in R.
Data Types: single | double

Output Arguments
R — Multivariate normal random numbers
numeric matrix

Multivariate normal random numbers, returned as one of the following:

• m-by-d numeric matrix, where m and d are the dimensions specified by mu and Sigma
• n-by-d numeric matrix, where n is the specified input argument and d is the dimension specified

by mu and Sigma

If mu is a matrix and Sigma is an array, then mvnrnd computes R(i,:) using mu(i,:) and
Sigma(:,:,i).

More About
Multivariate Normal Distribution

The multivariate normal distribution is a generalization of the univariate normal distribution to two or
more variables. It has two parameters, a mean vector μ and a covariance matrix Σ, that are analogous
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to the mean and variance parameters of a univariate normal distribution. The diagonal elements of Σ
contain the variances for each variable, and the off-diagonal elements of Σ contain the covariances
between variables.

The probability density function (pdf) of the d-dimensional multivariate normal distribution is

y = f (x, μ, Σ) =  1
Σ (2π)d

exp −1
2(x‐μ) Σ‐1(x‐μ)'

where x and μ are 1-by-d vectors and Σ is a d-by-d symmetric, positive definite matrix. Only mvnrnd
allows positive semi-definite Σ matrices, which can be singular. The pdf cannot have the same form
when Σ is singular.

The multivariate normal cumulative distribution function (cdf) evaluated at x is the probability that a
random vector v, distributed as multivariate normal, lies within the semi-infinite rectangle with upper
limits defined by x:

Pr v(1) ≤ x(1), v(2) ≤ x(2), ..., v(d) ≤ x(d) .

Although the multivariate normal cdf does not have a closed form, mvncdf can compute cdf values
numerically.

Tips
• mvnrnd requires the matrix Sigma to be symmetric. If Sigma has only minor asymmetry, you can

use (Sigma + Sigma')/2 instead to resolve the asymmetry.
• In the one-dimensional case, Sigma is the variance, not the standard deviation. For example,

mvnrnd(0,4) is the same as normrnd(0,2), where 4 is the variance and 2 is the standard
deviation.

Version History
Introduced before R2006a

References
[1] Kotz, S., N. Balakrishnan, and N. L. Johnson. Continuous Multivariate Distributions: Volume 1:

Models and Applications. 2nd ed. New York: John Wiley & Sons, Inc., 2000.

Extended Capabilities
GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

This function fully supports GPU arrays. For more information, see “Run MATLAB Functions on a
GPU” (Parallel Computing Toolbox).

See Also
mvnpdf | mvncdf | normrnd
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Topics
“Multivariate Normal Distribution” on page B-104
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mvtcdf
Multivariate t cumulative distribution function

Syntax
y = mvtcdf(X,C,DF)
y = mvtcdf(xl,xu,C,DF)
[y,err] = mvtcdf(...)
[...] = mvntdf(...,options)

Description
y = mvtcdf(X,C,DF) returns the cumulative probability of the multivariate t distribution with
correlation parameters C and degrees of freedom DF, evaluated at each row of X. Rows of the n-by-d
matrix X correspond to observations or points, and columns correspond to variables or coordinates. y
is an n-by-1 vector.

C is a symmetric, positive definite, d-by-d matrix, typically a correlation matrix. If its diagonal
elements are not 1, mvtcdf scales C to correlation form. mvtcdf does not rescale X. DF is a scalar, or
a vector with n elements.

The multivariate t cumulative probability at X is defined as the probability that a random vector T,
distributed as multivariate t, will fall within the semi-infinite rectangle with upper limits defined by X,
i.e., Pr{T(1)≤X(1),T(2)≤X(2),...T(d)≤X(d)}.

y = mvtcdf(xl,xu,C,DF) returns the multivariate t cumulative probability evaluated over the
rectangle with lower and upper limits defined by xl and xu, respectively.

[y,err] = mvtcdf(...) returns an estimate of the error in y. For bivariate and trivariate
distributions, mvtcdf uses adaptive quadrature on a transformation of the t density, based on
methods developed by Genz, as described in the references. The default absolute error tolerance for
these cases is 1e-8. For four or more dimensions, mvtcdf uses a quasi-Monte Carlo integration
algorithm based on methods developed by Genz and Bretz, as described in the references. The
default absolute error tolerance for these cases is 1e-4.

[...] = mvntdf(...,options) specifies control parameters for the numerical integration used to
compute y. This argument can be created by a call to statset. Choices of statset parameters are:

• 'TolFun' — Maximum absolute error tolerance. Default is 1e-8 when d < 4, or 1e-4 when d ≥
4.

• 'MaxFunEvals' — Maximum number of integrand evaluations allowed when d ≥ 4. Default is
1e7. 'MaxFunEvals' is ignored when d < 4.

• 'Display' — Level of display output. Choices are 'off' (the default), 'iter', and 'final'.
'Display' is ignored when d < 4.

Examples
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Compute the Multivariate t Distribution cdf

Compute the cdf of a multivariate t distribution with correlation parameters C = [1 .4; .4 1] and
2 degrees of freedom.

C = [1 .4; .4 1];
df = 2;
[X1,X2] = meshgrid(linspace(-2,2,25)',linspace(-2,2,25)');
X = [X1(:) X2(:)];
p = mvtcdf(X,C,df);

Plot the cdf.

figure;
surf(X1,X2,reshape(p,25,25));

Version History
Introduced in R2006a

References

[1] Genz, A. “Numerical Computation of Rectangular Bivariate and Trivariate Normal and t
Probabilities.” Statistics and Computing. Vol. 14, No. 3, 2004, pp. 251–260.
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[2] Genz, A., and F. Bretz. “Numerical Computation of Multivariate t Probabilities with Application to
Power Calculation of Multiple Contrasts.” Journal of Statistical Computation and Simulation.
Vol. 63, 1999, pp. 361–378.

[3] Genz, A., and F. Bretz. “Comparison of Methods for the Computation of Multivariate t
Probabilities.” Journal of Computational and Graphical Statistics. Vol. 11, No. 4, 2002, pp.
950–971.

See Also
mvtpdf | mvtrnd

Topics
“Multivariate t Distribution” on page B-110
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mvtpdf
Multivariate t probability density function

Syntax
y = mvtpdf(X,C,df)

Description
y = mvtpdf(X,C,df) returns the probability density of the multivariate t distribution with
correlation parameters C and degrees of freedom df, evaluated at each row of X. Rows of the n-by-d
matrix X correspond to observations or points, and columns correspond to variables or coordinates. C
is a symmetric, positive definite, d-by-d matrix, typically a correlation matrix. If its diagonal elements
are not 1, mvtpdf scales C to correlation form. mvtcdf does not rescale X. df is a scalar, or a vector
with n elements. y is an n-by-1 vector.

Examples

Compute the Multivariate t Distribution pdf

Compute the pdf of a multivariate t distribution with correlation parameters C = [1 .4; .4 1] and
2 degrees of freedom.

[X1,X2] = meshgrid(linspace(-2,2,25)',linspace(-2,2,25)');
X = [X1(:) X2(:)];
C = [1 .4; .4 1]; 
df = 2;
p = mvtpdf(X,C,df);

Plot the pdf.

figure;
surf(X1,X2,reshape(p,25,25))
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Version History
Introduced in R2006b

See Also
mvtcdf | mvtrnd

Topics
“Multivariate t Distribution” on page B-110
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mvtrnd
Multivariate t random numbers

Syntax
R = mvtrnd(C,df,cases)
R = mvtrnd(C,df)

Description
R = mvtrnd(C,df,cases) returns a matrix of random numbers chosen from the multivariate t
distribution, where C is a correlation matrix. df is the degrees of freedom and is either a scalar or is
a vector with cases elements. If p is the number of columns in C, then the output R has cases rows
and p columns.

Let t represent a row of R. Then the distribution of t is that of a vector having a multivariate normal
distribution with mean 0, variance 1, and covariance matrix C, divided by an independent chi-square
random value having df degrees of freedom. The rows of R are independent.

C must be a square, symmetric and positive definite matrix. If its diagonal elements are not all 1 (that
is, if C is a covariance matrix rather than a correlation matrix), mvtrnd rescales C to transform it to a
correlation matrix before generating the random numbers.

R = mvtrnd(C,df) returns a single random number from the multivariate t distribution.

Examples

Generate Multivariate t Distribution Random Numbers

Generate random numbers from a multivariate t distribution with correlation parameters SIGMA =
[1 0.8;0.8 1] and 3 degrees of freedom.

rng default;  % For reproducibility
SIGMA = [1 0.8;0.8 1];
R = mvtrnd(SIGMA,3,100);

Plot the random numbers.

figure;
plot(R(:,1),R(:,2),'+')
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Version History
Introduced before R2006a

See Also
mvtpdf | mvtcdf

Topics
“Multivariate t Distribution” on page B-110
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nancov
(Not recommended) Covariance ignoring NaN values

Note nancov is not recommended. Use the MATLAB® function cov instead. With the cov function,
you can specify whether to include or omit NaN values for the calculation. For more information, see
“Compatibility Considerations”.

Syntax
Y = nancov(X)
Y = nancov(X1,X2)
Y = nancov(...,1)
Y = nancov(...,'pairwise')

Description
Y = nancov(X) is the covariance cov of X, computed after removing observations with NaN values.

For vectors x, nancov(x) is the sample variance of the remaining elements, once NaN values are
removed. For matrices X, nancov(X) is the sample covariance of the remaining observations, once
observations (rows) containing any NaN values are removed.

Y = nancov(X1,X2), where X1 and X2 are matrices with the same number of elements, is
equivalent to nancov(X), where X = [X1(:) X2(:)].

nancov removes the mean from each variable (column for matrix X) before calculating Y. If n is the
number of remaining observations after removing observations with NaN values, nancov normalizes
Y by either n – 1 or n , depending on whether n > 1 or n = 1, respectively. To specify normalization by
n, use Y = nancov(...,1).

Y = nancov(...,'pairwise') computes Y(i,j) using rows with no NaN values in columns i or
j. The result Y may not be a positive definite matrix.

Examples
Generate random data for two variables (columns) with random missing values:

X = rand(10,2);
p = randperm(numel(X));
X(p(1:5)) = NaN
X =
    0.8147    0.1576
       NaN       NaN
    0.1270    0.9572
    0.9134       NaN
    0.6324       NaN
    0.0975    0.1419
    0.2785    0.4218
    0.5469    0.9157
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    0.9575    0.7922
    0.9649       NaN

Establish a correlation between a third variable and the other two variables:

X(:,3) = sum(X,2)
X =
    0.8147    0.1576    0.9723
       NaN       NaN       NaN
    0.1270    0.9572    1.0842
    0.9134       NaN       NaN
    0.6324       NaN       NaN
    0.0975    0.1419    0.2394
    0.2785    0.4218    0.7003
    0.5469    0.9157    1.4626
    0.9575    0.7922    1.7497
    0.9649       NaN       NaN

Compute the covariance matrix for the three variables after removing observations (rows) with NaN
values:

Y = nancov(X)
Y =
    0.1311    0.0096    0.1407
    0.0096    0.1388    0.1483
    0.1407    0.1483    0.2890

Version History
Introduced before R2006a

nancov is not recommended
Not recommended starting in R2020b

nancov is not recommended. Use the MATLAB function cov instead. There are no plans to remove
nancov.

To update your code, change instances of the function name nancov to cov. Then specify the
'omitrows' option for the nanflag input argument. The 'pairwise' option of nancov
corresponds to the 'partialrows' option of cov.

The cov function offers more extended capabilities for supporting tall arrays, GPU arrays,
distribution arrays, and C/C++ code generation.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• If the input is variable-size and is [] at run time, the generated code returns [] not NaN.

For more information on code generation, see “Introduction to Code Generation” on page 34-2 and
“General Code Generation Workflow” on page 34-5.

 nancov
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See Also
NaN | cov | var
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nanmax
(Not recommended) Maximum, ignoring NaN values

Note nanmax is not recommended. Use the MATLAB® function max instead. With the max function,
you can specify whether to include or omit NaN values for the calculation. For more information, see
“Compatibility Considerations”.

Syntax
y = nanmax(X)
y = nanmax(X,[],dim)
[y,indices] = nanmax( ___ )

y = nanmax(X,[],'all')
y = nanmax(X,[],vecdim)

Y = nanmax(X1,X2)

Description
y = nanmax(X) is the maximum max of X, computed after removing NaN values.

For vectors x, nanmax(x) is the maximum of the remaining elements, once NaN values are removed.
For matrices X, nanmax(X) is a row vector of column maxima, once NaN values are removed. For
multidimensional arrays X, nanmax operates along the first nonsingleton dimension.

y = nanmax(X,[],dim) operates along the dimension dim of X.

[y,indices] = nanmax( ___ ) also returns the row indices of the maximum values for each
column in the vector indices.

y = nanmax(X,[],'all') returns the maximum of all elements of X, computed after removing NaN
values.

y = nanmax(X,[],vecdim) returns the maximum over the dimensions specified in the vector
vecdim, computed after removing NaN values. Each element of vecdim represents a dimension of
the input array X. The output y has length 1 in the specified operating dimensions. The other
dimension lengths are the same for X and y. For example, if X is a 2-by-3-by-4 array, then nanmax(X,
[],[1 2]) returns a 1-by-1-by-4 array. Each element of the output array is the maximum of the
elements on the corresponding page of X.

Y = nanmax(X1,X2) returns an array Y the same size as X1 and X2 with Y(i,j) =
nanmax(X1(i,j),X2(i,j)). Scalar inputs are expanded to an array of the same size as the other
input.

Examples
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Maximum of Matrix Data

Find the column maximum values and their indices for matrix data with missing values.

X = magic(3);
X([1 6:9]) = NaN

X = 3×3

   NaN     1   NaN
     3     5   NaN
     4   NaN   NaN

[y,indices] = nanmax(X)

y = 1×3

     4     5   NaN

indices = 1×3

     3     2     1

Maximum of All Values

Find the maximum of all the values in an array, ignoring missing values.

Create a 2-by-5-by-3 array X with some missing values.

X = reshape(1:30,[2 5 3]);
X([10:12 25]) = NaN

X = 
X(:,:,1) =

     1     3     5     7     9
     2     4     6     8   NaN

X(:,:,2) =

   NaN    13    15    17    19
   NaN    14    16    18    20

X(:,:,3) =

    21    23   NaN    27    29
    22    24    26    28    30

Find the maximum of the elements of X.

y = nanmax(X,[],'all')
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y = 30

Version History
Introduced before R2006a

nanmax is not recommended
Not recommended starting in R2020b

nanmax is not recommended. Use the MATLAB function max instead. There are no plans to remove
nanmax.

To update your code, change instances of the function name nanmax to max. You do not need to
change the input arguments. If you want to include NaN values, then specify the 'includenan'
option for the nanflag input argument.

The max function has these advantages over the nanmax function:

• max offers more extended capabilities for supporting tall arrays, GPU arrays, distribution arrays,
C/C++ code generation, and GPU code generation.

• When you specify the 'linear' option, max returns the linear index into the input array that
corresponds to the maximum value.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• The 'all' and vecdim input arguments are not supported.
• The dim input argument must be a compile-time constant.
• If you do not specify the dim input argument, the working (or operating) dimension can be
different in the generated code. As a result, run-time errors can occur. For more details, see
“Automatic dimension restriction” (MATLAB Coder).

For more information on code generation, see “Introduction to Code Generation” on page 34-2 and
“General Code Generation Workflow” on page 34-5.

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

Usage notes and limitations:

• The 'all' and vecdim input arguments are not supported.

For more information, see “Run MATLAB Functions on a GPU” (Parallel Computing Toolbox).

See Also
NaN | max
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nanmean
(Not recommended) Mean, ignoring NaN values

Note nanmean is not recommended. Use the MATLAB® function mean instead. With the mean
function, you can specify whether to include or omit NaN values for the calculation. For more
information, see “Compatibility Considerations”.

Syntax
y = nanmean(X)
y = nanmean(X,'all')
y = nanmean(X,dim)
y = nanmean(X,vecdim)

Description
y = nanmean(X) returns the mean of the elements of X, computed after removing all NaN values.

• If X is a vector, then nanmean(X) is the mean of all the non-NaN elements of X.
• If X is a matrix, then nanmean(X) is a row vector of column means, computed after removing NaN

values.
• If X is a multidimensional array, then nanmean operates along the first nonsingleton dimension of

X. The size of this dimension becomes 1 while the sizes of all other dimensions remain the same.
nanmean removes all NaN values.

For information on how nanmean treats arrays of all NaN values, see “Tips” on page 35-4920.

y = nanmean(X,'all') returns the mean of all elements of X, computed after removing NaN
values.

y = nanmean(X,dim) returns the mean along the operating dimension dim of X, computed after
removing NaN values.

y = nanmean(X,vecdim) returns the mean over the dimensions specified in the vector vecdim.
The function computes the means after removing NaN values. For example, if X is a matrix, then
nanmean(X,[1 2]) is the mean of all non-NaN elements of X because every element of a matrix is
contained in the array slice defined by dimensions 1 and 2.

Examples

Mean of Matrix Data

Find the column means for matrix data with missing values.

X = magic(3);
X([1 6:9]) = NaN
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X = 3×3

   NaN     1   NaN
     3     5   NaN
     4   NaN   NaN

y = nanmean(X)

y = 1×3

    3.5000    3.0000       NaN

Mean of All Values

Find the mean of all the values in an array, ignoring missing values.

Create a 2-by-5-by-3 array X with some missing values.

X = reshape(1:30,[2 5 3]);
X([10:12 25]) = NaN

X = 
X(:,:,1) =

     1     3     5     7     9
     2     4     6     8   NaN

X(:,:,2) =

   NaN    13    15    17    19
   NaN    14    16    18    20

X(:,:,3) =

    21    23   NaN    27    29
    22    24    26    28    30

Find the mean of the elements of X.

y = nanmean(X,'all')

y = 15.6538

Mean Along Scalar Dimension

Find the row means for matrix data with missing values by specifying to compute the means along
the second dimension.
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X = magic(3);
X([1 6:9]) = NaN

X = 3×3

   NaN     1   NaN
     3     5   NaN
     4   NaN   NaN

y = nanmean(X,2)

y = 3×1

     1
     4
     4

Mean Along Vector Dimension

Find the mean of a multidimensional array over multiple dimensions.

Create a 2-by-5-by-3 array X with some missing values.

X = reshape(1:30,[2 5 3]);
X([10:12 25]) = NaN

X = 
X(:,:,1) =

     1     3     5     7     9
     2     4     6     8   NaN

X(:,:,2) =

   NaN    13    15    17    19
   NaN    14    16    18    20

X(:,:,3) =

    21    23   NaN    27    29
    22    24    26    28    30

Find the mean of each page of X by specifying dimensions 1 and 2 as the operating dimensions.

ypage = nanmean(X,[1 2])

ypage = 
ypage(:,:,1) =

     5
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ypage(:,:,2) =

   16.5000

ypage(:,:,3) =

   25.5556

For example, ypage(1,1,1) is the mean of the non-NaN elements in X(:,:,1).

Find the mean of the elements in each X(i,:,:) slice by specifying dimensions 2 and 3 as the
operating dimensions.

yrow = nanmean(X,[2 3])

yrow = 2×1

   14.5385
   16.7692

For example, yrow(2) is the mean of the non-NaN elements in X(2,:,:).

Input Arguments
X — Input data
scalar | vector | matrix | multidimensional array

Input data, specified as a scalar, vector, matrix, or multidimensional array.

If X is an empty array, then nanmean(X) is NaN. For more details, see “Tips” on page 35-4920.
Data Types: single | double

dim — Dimension to operate along
positive integer scalar

Dimension to operate along, specified as a positive integer scalar. If you do not specify a value, then
the default value is the first array dimension whose size does not equal 1.

dim indicates the dimension whose length reduces to 1. size(y,dim) is 1 while the sizes of all other
dimensions remain the same.

Consider a two-dimensional array X:

• If dim is equal to 1, then nanmean(X,1) returns a row vector containing the mean for each
column.

• If dim is equal to 2, then nanmean(X,2) returns a column vector containing the mean for each
row.

If dim is greater than ndims(X) or if size(X,dim) is 1, then nanmean returns X.
Data Types: single | double
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vecdim — Vector of dimensions
positive integer vector

Vector of dimensions, specified as a positive integer vector. Each element of vecdim represents a
dimension of the input array X. The output y has length 1 in the specified operating dimensions. The
other dimension lengths are the same for X and y.

For example, if X is a 2-by-3-by-3 array, then nanmean(X,[1 2]) returns a 1-by-1-by-3 array. Each
element of the output is the mean of the elements on the corresponding page of X.

Data Types: single | double

Output Arguments
y — Mean values
scalar | vector | matrix | multidimensional array

Mean values, returned as a scalar, vector, matrix, or multidimensional array.

Tips
• When nanmean computes the mean of an array of all NaN values, the array is empty once the NaN

values are removed and, therefore, the sum of the remaining elements is 0. Because the mean
calculation involves division by 0, the mean value is NaN. The output NaN is not a mean of NaN
values.

Version History
Introduced before R2006a

nanmean is not recommended
Not recommended starting in R2020b

nanmean is not recommended. Use the MATLAB function mean instead. There are no plans to remove
nanmean.

To update your code, change instances of the function name nanmean to mean. Then specify the
'omitnan' option for the nanflag input argument.

The mean function has these advantages over the nanmean function:

35 Functions

35-4920



• mean offers more extended capabilities for supporting tall arrays, GPU arrays, distribution arrays,
C/C++ code generation, and GPU code generation.

• mean returns an output value with a specified data type.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• The 'all' and vecdim input arguments are not supported.
• The dim input argument must be a compile-time constant.
• If you do not specify the dim input argument, the working (or operating) dimension can be
different in the generated code. As a result, run-time errors can occur. For more details, see
“Automatic dimension restriction” (MATLAB Coder).

For more information on code generation, see “Introduction to Code Generation” on page 34-2 and
“General Code Generation Workflow” on page 34-5.

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

Usage notes and limitations:

• The 'all' and vecdim input arguments are not supported.

For more information, see “Run MATLAB Functions on a GPU” (Parallel Computing Toolbox).

See Also
NaN | mean
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nanmedian
(Not recommended) Median, ignoring NaN values

Note nanmedian is not recommended. Use the MATLAB® function median instead. With the
median function, you can specify whether to include or omit NaN values for the calculation. For more
information, see “Compatibility Considerations”.

Syntax
y = nanmedian(X)
y = nanmedian(X,'all')
y = nanmedian(X,dim)
y = nanmedian(X,vecdim)

Description
y = nanmedian(X) is the median of X, computed after removing NaN values.

For vectors x, nanmedian(x) is the median of the remaining elements, once NaN values are
removed. For matrices X, nanmedian(X) is a row vector of column medians, once NaN values are
removed. For multidimensional arrays X, nanmedian operates along the first nonsingleton dimension.

y = nanmedian(X,'all') returns the median of all elements of X, computed after removing NaN
values.

y = nanmedian(X,dim) takes the median along the operating dimension dim of X.

y = nanmedian(X,vecdim) returns the median over the dimensions specified in the vector
vecdim, computed after removing NaN values. Each element of vecdim represents a dimension of
the input array X. The output y has length 1 in the specified operating dimensions. The other
dimension lengths are the same for X and y. For example, if X is a 2-by-3-by-4 array, then
nanmedian(X,[1 2]) returns a 1-by-1-by-4 array. Each element of the output array is the median of
the elements on the corresponding page of X.

Examples

Median of Matrix Data

Find the column medians for matrix data with missing values.

X = magic(3);
X([1 6:9]) = NaN

X = 3×3

   NaN     1   NaN
     3     5   NaN
     4   NaN   NaN
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y = nanmedian(X)

y = 1×3

    3.5000    3.0000       NaN

Median Along Vector Dimension

Find the median of a multidimensional array over multiple dimensions.

Create a 3-by-5-by-2 array X with some missing values.

X = reshape(1:30,[3 5 2]);
X([10:12 25]) = NaN

X = 
X(:,:,1) =

     1     4     7   NaN    13
     2     5     8   NaN    14
     3     6     9   NaN    15

X(:,:,2) =

    16    19    22   NaN    28
    17    20    23    26    29
    18    21    24    27    30

Find the median of each page of X by specifying dimensions 1 and 2 as the operating dimensions.

ypage = nanmedian(X,[1 2])

ypage = 
ypage(:,:,1) =

    6.5000

ypage(:,:,2) =

   22.5000

For example, ypage(1,1,1) is the median of the non-NaN elements in X(:,:,1).

Find the median of the elements in each X(:,i,:) slice by specifying dimensions 1 and 3 as the
operating dimensions.

ycol = nanmedian(X,[1 3])

ycol = 1×5

    9.5000   12.5000   15.5000   26.5000   21.5000
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For example, ycol(4) is the median of the non-NaN elements in X(:,4,:).

Version History
Introduced before R2006a

nanmedian is not recommended
Not recommended starting in R2020b

nanmedian is not recommended. Use the MATLAB function median instead. There are no plans to
remove nanmedian.

To update your code, change instances of the function name nanmedian to median. Then specify the
'omitnan' option for the nanflag input argument.

median offers more extended capabilities for supporting tall arrays, GPU arrays, distribution arrays,
and C/C++ code generation.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• The 'all' and vecdim input arguments are not supported.
• The dim input argument must be a compile-time constant.
• If you do not specify the dim input argument, the working (or operating) dimension can be
different in the generated code. As a result, run-time errors can occur. For more details, see
“Automatic dimension restriction” (MATLAB Coder).

For more information on code generation, see “Introduction to Code Generation” on page 34-2 and
“General Code Generation Workflow” on page 34-5.

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

Usage notes and limitations:

• The 'all' and vecdim input arguments are not supported.

For more information, see “Run MATLAB Functions on a GPU” (Parallel Computing Toolbox).

See Also
NaN | median
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nanmin
(Not recommended) Minimum, ignoring NaN values

Note nanmin is not recommended. Use the MATLAB® function min instead. With the min function,
you can specify whether to include or omit NaN values for the calculation. For more information, see
“Compatibility Considerations”.

Syntax
y = nanmin(X)
y = nanmin(X,[],dim)
[y,indices] = nanmin( ___ )

y = nanmin(X,[],'all')
y = nanmin(X,[],vecdim)

Y = nanmin(X1,X2)

Description
y = nanmin(X) is the minimum min of X, computed after removing NaN values.

For vectors x, nanmin(x) is the minimum of the remaining elements, once NaN values are removed.
For matrices X, nanmin(X) is a row vector of column minima, once NaN values are removed. For
multidimensional arrays X, nanmin operates along the first nonsingleton dimension.

y = nanmin(X,[],dim) operates along the dimension dim of X.

[y,indices] = nanmin( ___ ) also returns the row indices of the minimum values for each
column in the vector indices.

y = nanmin(X,[],'all') returns the minimum of all elements of X, computed after removing NaN
values.

y = nanmin(X,[],vecdim) returns the minimum over the dimensions specified in the vector
vecdim, computed after removing NaN values. Each element of vecdim represents a dimension of
the input array X. The output y has length 1 in the specified operating dimensions. The other
dimension lengths are the same for X and y. For example, if X is a 2-by-3-by-4 array, then nanmin(X,
[],[1 2]) returns a 1-by-1-by-4 array. Each element of the output array is the minimum of the
elements on the corresponding page of X.

Y = nanmin(X1,X2) returns an array Y the same size as X1 and X2 with Y(i,j) =
nanmin(X1(i,j),X2(i,j)). Scalar inputs are expanded to an array of the same size as the other
input.

Examples
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Minimum of Matrix Data

Find the column minimum values and their indices for matrix data with missing values.

X = magic(3);
X([1 6:9]) = NaN

X = 3×3

   NaN     1   NaN
     3     5   NaN
     4   NaN   NaN

[y,indices] = nanmin(X)

y = 1×3

     3     1   NaN

indices = 1×3

     2     1     1

Minimum of All Values

Find the minimum of all the values in an array, ignoring missing values.

Create a 2-by-5-by-3 array X with some missing values.

X = reshape(1:30,[2 5 3]);
X([10:12 25]) = NaN

X = 
X(:,:,1) =

     1     3     5     7     9
     2     4     6     8   NaN

X(:,:,2) =

   NaN    13    15    17    19
   NaN    14    16    18    20

X(:,:,3) =

    21    23   NaN    27    29
    22    24    26    28    30

Find the minimum of the elements of X.

y = nanmin(X,[],'all')
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y = 1

Version History
Introduced before R2006a

nanmin is not recommended
Not recommended starting in R2020b

nanmin is not recommended. Use the MATLAB function min instead. There are no plans to remove
nanmin.

To update your code, change instances of the function name nanmin to min. You do not need to
change the input arguments. If you want to include NaN values, then specify the 'includenan'
option for the nanflag input argument.

The min function has these advantages over the nanmin function:

• min offers more extended capabilities for supporting tall arrays, GPU arrays, distribution arrays,
C/C++ code generation, and GPU code generation.

• When you specify the 'linear' option, min returns the linear index into the input array that
corresponds to the minimum value.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• The 'all' and vecdim input arguments are not supported.
• The dim input argument must be a compile-time constant.
• If you do not specify the dim input argument, the working (or operating) dimension can be
different in the generated code. As a result, run-time errors can occur. For more details, see
“Automatic dimension restriction” (MATLAB Coder).

For more information on code generation, see “Introduction to Code Generation” on page 34-2 and
“General Code Generation Workflow” on page 34-5.

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

Usage notes and limitations:

• The 'all' and vecdim input arguments are not supported.

For more information, see “Run MATLAB Functions on a GPU” (Parallel Computing Toolbox).

See Also
NaN | min
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nanstd
(Not recommended) Standard deviation, ignoring NaN values

Note nanstd is not recommended. Use the MATLAB® function std instead. With the std function,
you can specify whether to include or omit NaN values for the calculation. For more information, see
“Compatibility Considerations”.

Syntax
y = nanstd(X)
y = nanstd(X,flag)
y = nanstd(X,flag,'all')
y = nanstd(X,flag,dim)
y = nanstd(X,flag,vecdim)

Description
y = nanstd(X) is the standard deviation std of X, computed after removing all NaN values.

• If X is a vector, then nanstd(X) is the sample standard deviation of all the non-NaN elements of X.
• If X is a matrix, then nanstd(X) is a row vector of column sample standard deviations, computed

after removing NaN values.
• If X is a multidimensional array, then nanstd operates along the first nonsingleton dimension of X.

The size of this dimension becomes 1 while the sizes of all other dimensions remain the same.
nanstd removes all NaN values.

• By default, nanstd normalizes y by n – 1, where n is the number of remaining observations after
removing observations with NaN values.

y = nanstd(X,flag) returns the standard deviation of X based on the normalization specified by
flag. The flag is 0 (default) or 1 to specify normalization by n – 1 or n, respectively, where n is the
number of remaining observations after removing observations with NaN values.

y = nanstd(X,flag,'all') returns the standard deviation of all elements of X, computed after
removing NaN values.

y = nanstd(X,flag,dim) returns the standard deviation along the operating dimension dim of X,
computed after removing NaN values.

y = nanstd(X,flag,vecdim) returns the standard deviation over the dimensions specified in the
vector vecdim. The function computes the standard deviations after removing NaN values. For
example, if X is a matrix, then nanstd(X,0,[1 2]) is the sample standard deviation of all non-NaN
elements of X because every element of a matrix is contained in the array slice defined by dimensions
1 and 2.

Examples
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Standard Deviation of Matrix Data

Find the column standard deviations for matrix data with missing values.

X = magic(3);
X([1 6:9]) = NaN

X = 3×3

   NaN     1   NaN
     3     5   NaN
     4   NaN   NaN

y = nanstd(X)

y = 1×3

    0.7071    2.8284       NaN

Standard Deviation for Population vs. Sample

Load the carsmall data set.

load carsmall

Compute the population and sample standard deviations for the Horsepower data. The nanstd
function ignores the missing value in Horsepower.

y1 = nanstd(Horsepower,1)   % Population formula

y1 = 45.2963

y2 = nanstd(Horsepower,0)   % Sample formula

y2 = 45.5268

Standard Deviation of All Values

Find the standard deviation of all the values in an array, ignoring missing values.

Create a 3-by-4-by-2 array X with some missing values.

X = reshape(1:24,[3 4 2]);
X([8:10 18]) = NaN

X = 
X(:,:,1) =

     1     4     7   NaN
     2     5   NaN    11
     3     6   NaN    12
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X(:,:,2) =

    13    16    19    22
    14    17    20    23
    15   NaN    21    24

Find the sample standard deviation of the elements of X.

y = nanstd(X,0,'all')

y = 7.5385

Standard Deviation Along Scalar Dimension

Find the row standard deviations for matrix data with missing values. Specify to compute the sample
standard deviations along the second dimension.

X = magic(3);
X([1 6:9]) = NaN

X = 3×3

   NaN     1   NaN
     3     5   NaN
     4   NaN   NaN

y = nanstd(X,0,2)

y = 3×1

         0
    1.4142
         0

Standard Deviation Along Vector Dimension

Find the standard deviation of a multidimensional array over multiple dimensions.

Create a 3-by-4-by-2 array X with some missing values.

X = reshape(1:24,[3 4 2]);
X([8:10 18]) = NaN

X = 
X(:,:,1) =

     1     4     7   NaN
     2     5   NaN    11
     3     6   NaN    12

35 Functions

35-4930



X(:,:,2) =

    13    16    19    22
    14    17    20    23
    15   NaN    21    24

Find the sample standard deviation of each page of X by specifying dimensions 1 and 2 as the
operating dimensions.

ypage = nanstd(X,0,[1 2])

ypage = 
ypage(:,:,1) =

    3.8079

ypage(:,:,2) =

    3.7779

For example, ypage(1,1,2) is the sample standard deviation of the non-NaN elements in X(:,:,2).

Find the sample standard deviation of the elements in each X(i,:,:) slice by specifying dimensions
2 and 3 as the operating dimensions.

yrow = nanstd(X,0,[2 3])

yrow = 3×1

    7.9102
    7.6904
    8.2158

For example, yrow(3) is the sample standard deviation of the non-NaN elements in X(3,:,:).

Input Arguments
X — Input data
scalar | vector | matrix | multidimensional array

Input data, specified as a scalar, vector, matrix, or multidimensional array.
Data Types: single | double

flag — Indicator for normalization
0 (default) | 1

Indicator for the normalization used to compute the standard deviation, specified as 0 or 1.

• If flag is 0 (default), then nanstd returns the sample standard deviation on page 35-4933 of X.
nanstd(X,0) is the same as nanstd(X).
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• If flag is 1, then nanstd returns the population standard deviation on page 35-4933 of X.

Data Types: single | double

dim — Dimension to operate along
positive integer scalar

Dimension to operate along, specified as a positive integer scalar. If you do not specify a value, then
the default value is the first array dimension whose size does not equal 1.

dim indicates the dimension whose length reduces to 1. size(y,dim) is 1 while the sizes of all other
dimensions remain the same.

Consider a two-dimensional array X:

• If dim is equal to 1, then nanstd(X,0,1) returns a row vector containing the sample standard
deviation for each column.

• If dim is equal to 2, then nanstd(X,0,2) returns a column vector containing the sample
standard deviation for each row.

If dim is greater than ndims(X) or if size(X,dim) is 1, then nanstd returns an array of zeros with
the same dimensions and missing values as X.
Data Types: single | double

vecdim — Vector of dimensions
positive integer vector

Vector of dimensions, specified as a positive integer vector. Each element of vecdim represents a
dimension of the input array X. The output y has length 1 in the specified operating dimensions. The
other dimension lengths are the same for X and y.

For example, if X is a 2-by-3-by-3 array, then nanstd(X,0,[1 2]) returns a 1-by-1-by-3 array. Each
element of the output array is the sample standard deviation of the elements on the corresponding
page of X.

Data Types: single | double

Output Arguments
y — Standard deviation values
scalar | vector | matrix | multidimensional array
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Standard deviation values, returned as a scalar, vector, matrix, or multidimensional array.

More About
Sample Standard Deviation

The sample standard deviation S is given by

S =
∑i = 1

n xi− X 2

n− 1 .

S is the square root of an unbiased estimator of the variance of the population from which X is drawn,
as long as X consists of independent, identically distributed samples. X is the sample mean.

Notice that the denominator in this variance formula is n – 1.

Population Standard Deviation

If the data is the entire population of values, then you can use the population standard deviation,

σ =
∑i = 1

n xi− μ 2

n .

If X is a random sample from a population, then the mean μ is estimated by the sample mean, and σ is
the biased maximum likelihood estimator of the population standard deviation.

Notice that the denominator in this variance formula is n.

Version History
Introduced before R2006a

nanstd is not recommended
Not recommended starting in R2020b

nanstd is not recommended. Use the MATLAB function std instead. There are no plans to remove
nanstd.

To update your code, change instances of the function name nanstd to std. Then specify the
'omitnan' option for the nanflag input argument.

std offers more extended capabilities for supporting tall arrays, GPU arrays, distribution arrays, C/C
++ code generation, and GPU code generation.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• The 'all' and vecdim input arguments are not supported.
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• The dim input argument must be a compile-time constant.
• If you do not specify the dim input argument, the working (or operating) dimension can be
different in the generated code. As a result, run-time errors can occur. For more details, see
“Automatic dimension restriction” (MATLAB Coder).

For more information on code generation, see “Introduction to Code Generation” on page 34-2 and
“General Code Generation Workflow” on page 34-5.

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

Usage notes and limitations:

• The 'all' and vecdim input arguments are not supported.

For more information, see “Run MATLAB Functions on a GPU” (Parallel Computing Toolbox).

See Also
NaN | std
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nansum
(Not recommended) Sum, ignoring NaN values

Note nansum is not recommended. Use the MATLAB® function sum instead. With the sum function,
you can specify whether to include or omit NaN values for the calculation. For more information, see
“Compatibility Considerations”.

Syntax
y = nansum(X)
y = nansum(X,'all')
y = nansum(X,dim)
y = nansum(X,vecdim)

Description
y = nansum(X) returns the sum of the elements of X, computed after removing all NaN values.

• If X is a vector, then nansum(X) is the sum of all the non-NaN elements of X.
• If X is a matrix, then nansum(X) is a row vector of column sums, computed after removing NaN

values.
• If X is a multidimensional array, then nansum operates along the first nonsingleton dimension of X.

The size of this dimension becomes 1 while the sizes of all other dimensions remain the same.
nansum removes all NaN values.

For information on how nansum treats arrays of all NaN values, see “Tips” on page 35-4939.

y = nansum(X,'all') returns the sum of all elements of X, computed after removing NaN values.

y = nansum(X,dim) returns the sum along the operating dimension dim of X, computed after
removing NaN values.

y = nansum(X,vecdim) returns the sum over the dimensions specified in the vector vecdim. The
function computes the sums after removing NaN values. For example, if X is a matrix, then
nansum(X,[1 2]) is the sum of all non-NaN elements of X because every element of a matrix is
contained in the array slice defined by dimensions 1 and 2.

Examples

Sum of Matrix Data

Find the column sums for matrix data with missing values.

X = magic(3);
X([1 6:9]) = NaN

X = 3×3
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   NaN     1   NaN
     3     5   NaN
     4   NaN   NaN

y = nansum(X)

y = 1×3

     7     6     0

Sum of All Values

Find the sum of all the values in an array, ignoring missing values.

Create a 2-by-4-by-3 array X with some missing values.

X = reshape(1:24,[2 4 3]);
X([5:6 20]) = NaN

X = 
X(:,:,1) =

     1     3   NaN     7
     2     4   NaN     8

X(:,:,2) =

     9    11    13    15
    10    12    14    16

X(:,:,3) =

    17    19    21    23
    18   NaN    22    24

Find the sum of the elements of X.

y = nansum(X,'all')

y = 269

Sum Along Scalar Dimension

Find the row sums for matrix data with missing values by specifying to compute the sums along the
second dimension.

X = magic(3);
X([1 6:9]) = NaN
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X = 3×3

   NaN     1   NaN
     3     5   NaN
     4   NaN   NaN

y = nansum(X,2)

y = 3×1

     1
     8
     4

Sum Along Vector Dimension

Find the sum of a multidimensional array over multiple dimensions.

Create a 2-by-4-by-3 array X with some missing values.

X = reshape(1:24,[2 4 3]);
X([5:6 20]) = NaN

X = 
X(:,:,1) =

     1     3   NaN     7
     2     4   NaN     8

X(:,:,2) =

     9    11    13    15
    10    12    14    16

X(:,:,3) =

    17    19    21    23
    18   NaN    22    24

Find the sum of each page of X by specifying dimensions 1 and 2 as the operating dimensions.

ypage = nansum(X,[1 2])

ypage = 
ypage(:,:,1) =

    25

ypage(:,:,2) =
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   100

ypage(:,:,3) =

   144

For example, ypage(1,1,1) is the sum of the non-NaN elements in X(:,:,1).

Find the sum of the elements in each X(i,:,:) slice by specifying dimensions 2 and 3 as the
operating dimensions.

yrow = nansum(X,[2 3])

yrow = 2×1

   139
   130

For example, yrow(2) is the sum of the non-NaN elements in X(2,:,:).

Input Arguments
X — Input data
scalar | vector | matrix | multidimensional array

Input data, specified as a scalar, vector, matrix, or multidimensional array.

If X is an empty array, then nansum(X) is 0.
Data Types: single | double

dim — Dimension to operate along
positive integer scalar

Dimension to operate along, specified as a positive integer scalar. If you do not specify a value, then
the default value is the first array dimension whose size does not equal 1.

dim indicates the dimension whose length reduces to 1. size(y,dim) is 1 while the sizes of all other
dimensions remain the same.

Consider a two-dimensional array X:

• If dim is equal to 1, then nansum(X,1) returns a row vector containing the sum for each column.
• If dim is equal to 2, then nansum(X,2) returns a column vector containing the sum for each row.

If dim is greater than ndims(X) or if size(X,dim) is 1, then nansum returns X, with 0 values in the
place of any missing values.
Data Types: single | double

vecdim — Vector of dimensions
positive integer vector
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Vector of dimensions, specified as a positive integer vector. Each element of vecdim represents a
dimension of the input array X. The output y has length 1 in the specified operating dimensions. The
other dimension lengths are the same for X and y.

For example, if X is a 2-by-3-by-3 array, then nansum(X,[1 2]) returns a 1-by-1-by-3 array. Each
element of the output array is the sum of the elements on the corresponding page of X.

Data Types: single | double

Output Arguments
y — Sum values
scalar | vector | matrix | multidimensional array

Sum values, returned as a scalar, vector, matrix, or multidimensional array.

Tips
• When nansum computes the sum of an array of all NaN values, the array is empty once the NaN

values are removed and, therefore, the sum of the remaining elements is 0. The output 0 is not a
sum of NaN values.

Version History
Introduced before R2006a

nansum is not recommended
Not recommended starting in R2020b

nansum is not recommended. Use the MATLAB function sum instead. There are no plans to remove
nansum.

To update your code, change instances of the function name nansum to sum. Then specify the
'omitnan' option for the nanflag input argument.

The sum function has these advantages over the nansum function:

• sum offers more extended capabilities for supporting tall arrays, GPU arrays, distribution arrays,
C/C++ code generation, and GPU code generation.

• sum returns an output value with a specified data type.
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Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• The 'all' and vecdim input arguments are not supported.
• The dim input argument must be a compile-time constant.
• If you do not specify the dim input argument, the working (or operating) dimension can be
different in the generated code. As a result, run-time errors can occur. For more details, see
“Automatic dimension restriction” (MATLAB Coder).

For more information on code generation, see “Introduction to Code Generation” on page 34-2 and
“General Code Generation Workflow” on page 34-5.

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

Usage notes and limitations:

• The 'all' and vecdim input arguments are not supported.

For more information, see “Run MATLAB Functions on a GPU” (Parallel Computing Toolbox).

See Also
NaN | sum
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nanvar
(Not recommended) Variance, ignoring NaN values

Note nanvar is not recommended. Use the MATLAB® function var instead. With the var function,
you can specify whether to include or omit NaN values for the calculation. For more information, see
“Compatibility Considerations”.

Syntax
y = nanvar(X)
y = nanvar(X,w)
y = nanvar(X,w,'all')
y = nanvar(X,w,dim)
y = nanvar(X,w,vecdim)

Description
y = nanvar(X) is the variance var of X, computed after removing NaN values.

For vectors x, nanvar(x) is the sample variance of the remaining elements, once NaN values are
removed. For matrices X, nanvar(X) is a row vector of column sample variances, once NaN values
are removed. For multidimensional arrays X, nanvar operates along the first nonsingleton dimension.

nanvar removes the mean from each variable (column for matrix X) before calculating y. If n is the
number of remaining observations after removing observations with NaN values, nanvar normalizes
y by either n – 1 or n, depending on whether n > 1 or n = 1, respectively.

y = nanvar(X,w) computes the variance of X according to the weighting scheme w. When w is 0
(default), X is normalized by n – 1, where n is the number of non-NaN observations. When w is 1, w is
normalized by the number of non-NaN observations. Otherwise, w can be a weight vector containing
nonnegative elements. The length of w must equal the length of the dimension over which nanvar
operates. Elements of X corresponding to NaN values of w are ignored.

y = nanvar(X,w,'all') returns the variance over all elements of X when w = 0 or w = 1. The
nanvar function computes the variance after removing NaN values.

y = nanvar(X,w,dim) returns the variance along the operating dimension dim of X.

y = nanvar(X,w,vecdim) returns the variance over the dimensions specified in the vector
vecdim, computed after removing NaN values. Each element of vecdim represents a dimension of
the input array X. The output y has length 1 in the specified operating dimensions. The other
dimension lengths are the same for X and y. For example, if X is a 2-by-3-by-4 array, then nanvar(X,
[],[1 2]) returns a 1-by-1-by-4 array. Each element of the output array is the variance of the
elements on the corresponding page of X. This syntax is supported when w = 0 or w = 1.

Examples
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Variance of Matrix Data

Find the column variances for matrix data with missing values.

X = magic(3);
X([1 6:9]) = NaN

X = 3×3

   NaN     1   NaN
     3     5   NaN
     4   NaN   NaN

y = nanvar(X)

y = 1×3

    0.5000    8.0000       NaN

Variance Along Vector Dimension

Find the variance of a multidimensional array over multiple dimensions.

Create a 3-by-4-by-2 array X with some missing values.

X = reshape(1:24,[3 4 2]);
X([8:10 18]) = NaN

X = 
X(:,:,1) =

     1     4     7   NaN
     2     5   NaN    11
     3     6   NaN    12

X(:,:,2) =

    13    16    19    22
    14    17    20    23
    15   NaN    21    24

Find the sample variance of each page of X by specifying dimensions 1 and 2 as the operating
dimensions.

ypage = nanvar(X,0,[1 2])

ypage = 
ypage(:,:,1) =

   14.5000
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ypage(:,:,2) =

   14.2727

For example, ypage(1,1,2) is the sample variance of the non-NaN elements in X(:,:,2).

Find the sample variance of the elements in each X(:,i,:) slice by specifying dimensions 1 and 3 as
the operating dimensions.

ycol = nanvar(X,0,[1 3])

ycol = 1×4

   44.0000   40.3000   42.9167   40.3000

For example, ycol(4) is the sample variance of the non-NaN elements in X(:,4,:).

Version History
Introduced before R2006a

nanvar is not recommended
Not recommended starting in R2020b

nanvar is not recommended. Use the MATLAB function var instead. There are no plans to remove
nanvar.

To update your code, change instances of the function name nanvar to var. Then specify the
'omitnan' option for the nanflag input argument.

var offers more extended capabilities for supporting tall arrays, GPU arrays, distribution arrays, C/C
++ code generation, and GPU code generation.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• The 'all' and vecdim input arguments are not supported.
• The dim input argument must be a compile-time constant.
• If you do not specify the dim input argument, the working (or operating) dimension can be
different in the generated code. As a result, run-time errors can occur. For more details, see
“Automatic dimension restriction” (MATLAB Coder).

For more information on code generation, see “Introduction to Code Generation” on page 34-2 and
“General Code Generation Workflow” on page 34-5.

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.
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Usage notes and limitations:

• The 'all' and vecdim input arguments are not supported.

For more information, see “Run MATLAB Functions on a GPU” (Parallel Computing Toolbox).

See Also
NaN | var
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nearcorr
Compute nearest correlation matrix by minimizing Frobenius distance

Syntax
Y = nearcorr(A)
Y = nearcorr( ___ ,Name,Value)

Description
Y = nearcorr(A) returns the nearest correlation matrix Y by minimizing the Frobenius distance.

Y = nearcorr( ___ ,Name,Value) specifies options using one or more name-value pair arguments
in addition to the input arguments in the previous syntax.

Examples

Compute the Nearest Correlation Matrix

Find the nearest correlation matrix in the Frobenius norm for a given nonpositive semidefinite matrix.

Specify an N-by-N symmetric matrix with all elements in the interval [-1, 1] and unit diagonal.

A =  [1.0000   0         0         0   -0.9360 
      0    1.0000   -0.5500   -0.3645   -0.5300 
      0   -0.5500    1.0000   -0.0351    0.0875 
      0   -0.3645   -0.0351    1.0000    0.4557 
     -0.9360   -0.5300    0.0875    0.4557    1.0000]; 

Compute the eigenvalues of A using eig.

eig(A)

ans = 5×1

   -0.1244
    0.3396
    1.0284
    1.4457
    2.3107

The smallest eigenvalue is less than 0, which indicates that A is not a positive semidefinite matrix.

Compute the nearest correlation matrix using nearcorr with the default Newton algorithm.

B = nearcorr(A)

B = 5×5

    1.0000    0.0372    0.0100   -0.0219   -0.8478
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    0.0372    1.0000   -0.5449   -0.3757   -0.4849
    0.0100   -0.5449    1.0000   -0.0381    0.0996
   -0.0219   -0.3757   -0.0381    1.0000    0.4292
   -0.8478   -0.4849    0.0996    0.4292    1.0000

Compute the eigenvalues of B.

eig(B)

ans = 5×1

    0.0000
    0.3266
    1.0146
    1.4113
    2.2475

All of the eigenvalues are greater than or equal to 0, which means that B is a positive semidefinite
matrix.

When you use nearcorr, you can specify the alternating projections algorithm by setting the name-
value pair argument 'method' to 'projection'.

nearcorr(A,'method','projection') 

ans = 5×5

    1.0000    0.0372    0.0100   -0.0219   -0.8478
    0.0372    1.0000   -0.5449   -0.3757   -0.4849
    0.0100   -0.5449    1.0000   -0.0381    0.0996
   -0.0219   -0.3757   -0.0381    1.0000    0.4292
   -0.8478   -0.4849    0.0996    0.4292    1.0000

You can also impose elementwise weights by specifying the 'Weights' name-value pair argument.
For more information on elementwise weights, see “Weights” on page 35-0 .

W = [0.0000  1.0000  0.1000  0.1500  0.2500 
     1.0000  0.0000  0.0500  0.0250  0.1500 
     0.1000  0.0500  0.0000  0.2500  1 
     0.1500  0.0250  0.2500  0.0000  0.2500 
     0.2500  0.1500  1  0.2500  0.0000];
nearcorr(A,'Weights',W) 

ans = 5×5

    1.0000    0.0014    0.0287   -0.0222   -0.8777
    0.0014    1.0000   -0.4980   -0.7268   -0.4567
    0.0287   -0.4980    1.0000   -0.0358    0.0878
   -0.0222   -0.7268   -0.0358    1.0000    0.4465
   -0.8777   -0.4567    0.0878    0.4465    1.0000

In addition, you can impose N-by-1 vectorized weights by specifying the 'Weights' name-value pair
argument. For more information on vectorized weights, see “Weights” on page 35-0 .

W = linspace(0.1,0.01,5)'
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W = 5×1

    0.1000
    0.0775
    0.0550
    0.0325
    0.0100

C = nearcorr(A,'Weights', W) 

C = 5×5

    1.0000    0.0051    0.0021   -0.0056   -0.8490
    0.0051    1.0000   -0.5486   -0.3684   -0.4691
    0.0021   -0.5486    1.0000   -0.0367    0.1119
   -0.0056   -0.3684   -0.0367    1.0000    0.3890
   -0.8490   -0.4691    0.1119    0.3890    1.0000

Compute the eigenvalues of C.

eig(C)

ans = 5×1

    0.0000
    0.3350
    1.0272
    1.4308
    2.2070

All of the eigenvalues are greater than or equal to 0, which means that C is a positive semidefinite
matrix.

Generate a Correlation Matrix for Stocks with Missing Values

Use nearcorr to create a positive semidefinite matrix for a correlation matrix for stocks with
missing values.

Assume that you have stock values with missing values.

Stock_Missing = [59.875 42.734 47.938 60.359 NaN 69.625 61.500 62.125
                53.188 49.000 39.500 64.813 34.750 56.625 83.000 44.500
                55.750 50.000 38.938 62.875 30.188 43.375 NaN 29.938
                65.500 51.063 45.563 69.313 48.250 62.375 85.250 46.875
                69.938 47.000 52.313 71.016 37.500 59.359 61.188 48.219
                61.500 44.188 NaN 57.000 35.313 55.813 51.500 62.188
                59.230 48.210 62.190 61.390 54.310 70.170 61.750 91.080
                NaN 48.700 60.300 68.580 61.250 70.340 61.590 90.350
                52.900 52.690 54.230 61.670 68.170 NaN 57.870 88.640
                57.370 59.040 59.870 62.090 61.620 66.470 65.370 85.840];

Use corr to compute the correlation matrix and then use eig to check if the correlation matrix is
positive semidefinite.
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A = corr(Stock_Missing, 'Rows','pairwise');
eig(A)

ans = 8×1

   -0.1300
   -0.0398
    0.0473
    0.2325
    0.6278
    1.6276
    1.7409
    3.8936

A has eigenvalues that are less than 0, which indicates that the correlation matrix is not positive
semidefinite.

Use nearcorr with this correlation matrix to generate a positive semidefinite matrix where all
eigenvalues are greater than or equal to 0.

B = nearcorr(A);
eigenvalues = eig(B)

eigenvalues = 8×1

    0.0000
    0.0000
    0.0180
    0.2205
    0.5863
    1.6026
    1.7258
    3.8469

Copyright 2019 The MathWorks, Inc.

Input Arguments
A — Input correlation matrix
matrix

Input correlation matrix, specified as an N-by-N symmetric approximate correlation matrix with all
elements in the interval [-1 1] and unit diagonal. The A input may or may not be a positive
semidefinite matrix.
Example: A = [1.0000 0 0 0 -0.9360 0 1.0000 -0.5500 -0.3645 -0.5300 0 -0.5500
1.0000 -0.0351 0.0875 0 -0.3645 -0.0351 1.0000 0.4557 -0.9360 -0.5300 0.0875
0.4557 1.0000]

Data Types: single | double
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Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example:
nearcorr(A,'Tolerance',1e-7,'MaxIterations',500,'Method','newton','Weights',w
eight_vector) returns a nearest correlation matrix by minimizing the Frobenius distance.

Tolerance — Termination tolerance for algorithm
1e-6 (default) | positive scalar

Termination tolerance for the algorithm, specified as the comma-separated pair consisting of
'Tolerance' and a positive scalar.
Example: 'Tolerance',1e-7
Data Types: single | double

MaxIterations — Maximum number of solver iterations
200 (default) | positive integer

Maximum number of solver iterations, specified as the comma-separated pair consisting of
'MaxIterations' and a positive integer.
Example: 'MaxIterations',500
Data Types: single | double

Method — Method for solving nearest correlation matrix problem
'newton' (default) | 'projection'

Method for solving nearest correlation matrix problem, specified as the comma-separated pair
consisting of 'Method' and one of the values in the following table.

Value Description
'newton' The Newton algorithm is quadratically convergent.

If you specify the 'newton' method, Weights can be either a
symmetric matrix or an N-by-1 vector.

'projection' The alternating projections algorithm can converge to the nearest
correlation matrix with high accuracy, at best linearly.

If you specify the 'projection' method, Weights must be an N-by-1
vector.

Example: 'Method','projection'
Data Types: char | string

Weights — Weights for confidence levels of entries in input matrix
[ ] (default) | matrix | vector
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Weights for confidence levels of entries in the input matrix, specified as the comma-separated pair
consisting of 'Weights' and either a symmetric matrix or an N-by-1 vector.

• Symmetric matrix — When you specify Weights as a symmetric matrix W with all elements >= 0
to do elementwise weighting, the nearest correlation matrix Y is computed by minimizing the
norm of (W ⚬ (A-Y)). Larger weight values place greater importance on the corresponding
elements in A.

• N-by-1 vector — When you specify Weights as an N-by-1 vector w with positive numeric values,
the nearest correlation matrix Y is computed by minimizing the norm of (diag(w)0.5 × (A-Y) ×
diag(w)0.5).

Note Matrix weights put weight on individual entries of the correlation matrix. A full matrix must be
specified, but you can control which entries are more important to match. Alternatively, vector
weights put weight on a full column (and the corresponding row). Fewer weights need to be specified
as compared to the matrix weights, but an entire column (and the corresponding row) is weighted by
a single weight.

Example: 'Weights',W
Data Types: single | double

Output Arguments
Y — Nearest correlation matrix to input A
positive semidefinite matrix

Nearest correlation matrix to the input A, returned as a positive semidefinite matrix.

Version History
Introduced in R2019b

References
[1] Higham, N. J. "Computing the Nearest Correlation Matrix — A Problem from Finance." IMA

Journal of Numerical Analysis. Vol. 22, Issue 3, 2002.

[2] Qi, H. and D. Sun. "An Augmented Lagrangian Dual Approach for the H-Weighted Nearest
Correlation Matrix Problem." IMA Journal of Numerical Analysis. Vol. 31, Issue 2, 2011.

[3] Pang, J. S., D. Sun, and J. Sun. "Semismooth Homeomorphisms and Strong Stability of Semidefinite
and Lorentz Complementarity Problems." Mathematics of Operation Research. Vol. 28,
Number 1, 2003.

Extended Capabilities
Thread-Based Environment
Run code in the background using MATLAB® backgroundPool or accelerate code with Parallel
Computing Toolbox™ ThreadPool.
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This function fully supports thread-based environments. For more information, see “Run MATLAB
Functions in Thread-Based Environment”.

See Also
corrcoef | partialcorr | corrcov
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nbincdf
Negative binomial cumulative distribution function

Syntax
y = nbincdf(x,R,p)
y = nbincdf(x,R,p,'upper')

Description
y = nbincdf(x,R,p) computes the negative binomial cdf at each of the values in x using the
corresponding number of successes, R and probability of success in a single trial, p. x, R, and p can
be vectors, matrices, or multidimensional arrays that all have the same size, which is also the size of
y. A scalar input for x, R, or p is expanded to a constant array with the same dimensions as the other
inputs.

y = nbincdf(x,R,p,'upper') returns the complement of the negative binomial cdf at each value
in x, using an algorithm that more accurately computes the extreme upper tail probabilities.

The negative binomial cdf is

y = F(x r, p) = ∑
i = 0

x r + i− 1
i

prqiI(0, 1, ...)(i)

The simplest motivation for the negative binomial is the case of successive random trials, each having
a constant probability p of success. The number of extra trials you must perform in order to observe a
given number R of successes has a negative binomial distribution. However, consistent with a more
general interpretation of the negative binomial, nbincdf allows R to be any positive value, including
nonintegers. When R is noninteger, the binomial coefficient in the definition of the cdf is replaced by
the equivalent expression

Γ(r + i)
Γ(r)Γ(i + 1)

Examples

Compute Negative Binomial Distribution CDF

x = (0:15);
p = nbincdf(x,3,0.5);
stairs(x,p)
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Version History
Introduced before R2006a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

This function fully supports GPU arrays. For more information, see “Run MATLAB Functions on a
GPU” (Parallel Computing Toolbox).

See Also
cdf | nbinpdf | nbininv | nbinstat | nbinfit | nbinrnd

Topics
“Negative Binomial Distribution” on page B-115
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nbinfit
Negative binomial parameter estimates

Syntax
parmhat = nbinfit(data)
[parmhat,parmci] = nbinfit(data,alpha)
[...] = nbinfit(data,alpha,options)

Description
parmhat = nbinfit(data) returns the maximum likelihood estimates (MLEs) of the parameters of
the negative binomial distribution given the data in the vector data.

[parmhat,parmci] = nbinfit(data,alpha) returns MLEs and 100(1-alpha) percent
confidence intervals. By default, alpha = 0.05, which corresponds to 95% confidence intervals.

[...] = nbinfit(data,alpha,options) accepts a structure, options, that specifies control
parameters for the iterative algorithm the function uses to compute maximum likelihood estimates.
The negative binomial fit function accepts an options structure which you can create using the
function statset. Enter statset('nbinfit') to see the names and default values of the
parameters that nbinfit accepts in the options structure. See the reference page for statset for
more information about these options.

Note The variance of a negative binomial distribution is greater than its mean. If the sample
variance of the data in data is less than its sample mean, nbinfit cannot compute MLEs. You
should use the poissfit function instead.

Version History
Introduced before R2006a

Extended Capabilities
GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

This function fully supports GPU arrays. For more information, see “Run MATLAB Functions on a
GPU” (Parallel Computing Toolbox).

See Also
nbincdf | nbininv | nbinpdf | nbinrnd | nbinstat | mle | statset

Topics
“Negative Binomial Distribution” on page B-115
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nbininv
Negative binomial inverse cumulative distribution function

Syntax
X = nbininv(Y,R,P)

Description
X = nbininv(Y,R,P) returns the inverse of the negative binomial cdf with corresponding number
of successes, R and probability of success in a single trial, P. Since the binomial distribution is
discrete, nbininv returns the least integer X such that the negative binomial cdf evaluated at X
equals or exceeds Y. Y, R, and P can be vectors, matrices, or multidimensional arrays that all have the
same size, which is also the size of X. A scalar input for Y, R, or P is expanded to a constant array with
the same dimensions as the other inputs.

The simplest motivation for the negative binomial is the case of successive random trials, each having
a constant probability P of success. The number of extra trials you must perform in order to observe a
given number R of successes has a negative binomial distribution. However, consistent with a more
general interpretation of the negative binomial, nbininv allows R to be any positive value, including
nonintegers.

Examples
How many times would you need to flip a fair coin to have a 99% probability of having observed 10
heads?

flips = nbininv(0.99,10,0.5) + 10
flips =
  33

Note that you have to flip at least 10 times to get 10 heads. That is why the second term on the right
side of the equals sign is a 10.

Version History
Introduced before R2006a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

This function fully supports GPU arrays. For more information, see “Run MATLAB Functions on a
GPU” (Parallel Computing Toolbox).
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See Also
icdf | nbincdf | nbinpdf | nbinstat | nbinfit | nbinrnd

Topics
“Negative Binomial Distribution” on page B-115
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nbinpdf
Negative binomial probability density function

Syntax
Y = nbinpdf(X,R,P)

Description
Y = nbinpdf(X,R,P) returns the negative binomial pdf at each of the values in X using the
corresponding number of successes, R and probability of success in a single trial, P. X, R, and P can
be vectors, matrices, or multidimensional arrays that all have the same size, which is also the size of
Y. A scalar input for X, R, or P is expanded to a constant array with the same dimensions as the other
inputs. Note that the density function is zero unless the values in X are integers.

The negative binomial pdf is

y = f (x r, p) =
r + x− 1

x
prqxI(0, 1, ...)(x)

The simplest motivation for the negative binomial is the case of successive random trials, each having
a constant probability P of success. The number of extra trials you must perform in order to observe a
given number R of successes has a negative binomial distribution. However, consistent with a more
general interpretation of the negative binomial, nbinpdf allows R to be any positive value, including
nonintegers. When R is noninteger, the binomial coefficient in the definition of the pdf is replaced by
the equivalent expression

Γ(r + x)
Γ(r)Γ(x + 1)

Examples

Compute the Negative Binomial Distribution pdf

Compute the pdf of a negative binomial distribution with parameters R = 3 and p = 0.5.

x = (0:10);
y = nbinpdf(x,3,0.5);

Plot the pdf.

figure;
plot(x,y,'+')
xlim([-0.5,10.5])
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Version History
Introduced before R2006a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

This function fully supports GPU arrays. For more information, see “Run MATLAB Functions on a
GPU” (Parallel Computing Toolbox).

See Also
pdf | nbincdf | nbininv | nbinstat | nbinfit | nbinrnd

Topics
“Negative Binomial Distribution” on page B-115
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nbinrnd
Negative binomial random numbers

Syntax
RND = nbinrnd(R,P)
RND = nbinrnd(R,P,m,n,...)
RND = nbinrnd(R,P,[m,n,...])

Description
RND = nbinrnd(R,P) is a matrix of random numbers chosen from a negative binomial distribution
with corresponding number of successes, R and probability of success in a single trial, P. R and P can
be vectors, matrices, or multidimensional arrays that have the same size, which is also the size of
RND. A scalar input for R or P is expanded to a constant array with the same dimensions as the other
input.

RND = nbinrnd(R,P,m,n,...) or RND = nbinrnd(R,P,[m,n,...]) generates an m-by-n-by-...
array. The R, P parameters can each be scalars or arrays of the same size as R.

The simplest motivation for the negative binomial is the case of successive random trials, each having
a constant probability P of success. The number of extra trials you must perform in order to observe a
given number R of successes has a negative binomial distribution. However, consistent with a more
general interpretation of the negative binomial, nbinrnd allows R to be any positive value, including
nonintegers.

Examples
Suppose you want to simulate a process that has a defect probability of 0.01. How many units might
Quality Assurance inspect before finding three defective items?

r = nbinrnd(3,0.01,1,6)+3
r =
  496  142  420  396  851  178

Version History
Introduced before R2006a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

The generated code can return a different sequence of numbers than MATLAB if either of the
following is true:

 nbinrnd

35-4959



• The output is nonscalar.
• An input parameter is invalid for the distribution.

For more information on code generation, see “Introduction to Code Generation” on page 34-2 and
“General Code Generation Workflow” on page 34-5.

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

This function fully supports GPU arrays. For more information, see “Run MATLAB Functions on a
GPU” (Parallel Computing Toolbox).

See Also
random | nbinpdf | nbincdf | nbininv | nbinstat | nbinfit

Topics
“Negative Binomial Distribution” on page B-115
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nbinstat
Negative binomial mean and variance

Syntax
[M,V] = nbinstat(R,P)

Description
[M,V] = nbinstat(R,P) returns the mean of and variance for the negative binomial distribution
with corresponding number of successes, R and probability of success in a single trial, P. R and P can
be vectors, matrices, or multidimensional arrays that all have the same size, which is also the size of
M and V. A scalar input for R or P is expanded to a constant array with the same dimensions as the
other input.

The mean of the negative binomial distribution with parameters r and p is rq / p, where q = 1 – p. The
variance is rq / p2.

The simplest motivation for the negative binomial is the case of successive random trials, each having
a constant probability P of success. The number of extra trials you must perform in order to observe a
given number R of successes has a negative binomial distribution. However, consistent with a more
general interpretation of the negative binomial, nbinstat allows R to be any positive value,
including nonintegers.

Examples
p = 0.1:0.2:0.9;
r = 1:5;
[R,P] = meshgrid(r,p);
[M,V] = nbinstat(R,P)
M =
  9.0000  18.0000  27.0000  36.0000  45.0000
  2.3333  4.6667  7.0000  9.3333  11.6667
  1.0000  2.0000  3.0000  4.0000  5.0000
  0.4286  0.8571  1.2857  1.7143  2.1429
  0.1111  0.2222  0.3333  0.4444  0.5556

V =
  90.0000 180.0000 270.0000 360.0000 450.0000
  7.7778  15.5556  23.3333  31.1111  38.8889
  2.0000  4.0000  6.0000  8.0000  10.0000
  0.6122  1.2245  1.8367  2.4490  3.0612
  0.1235  0.2469  0.3704  0.4938  0.6173

Version History
Introduced before R2006a
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Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

This function fully supports GPU arrays. For more information, see “Run MATLAB Functions on a
GPU” (Parallel Computing Toolbox).

See Also
nbinpdf | nbincdf | nbininv | nbinfit | nbinrnd

Topics
“Negative Binomial Distribution” on page B-115
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FeatureSelectionNCAClassification class
Feature selection for classification using neighborhood component analysis (NCA)

Description
FeatureSelectionNCAClassification object contains the data, fitting information, feature
weights, and other parameters of a neighborhood component analysis (NCA) model. fscnca learns
the feature weights using a diagonal adaptation of NCA and returns an instance of a
FeatureSelectionNCAClassification object. The function achieves feature selection by
regularizing the feature weights.

Construction
Create a FeatureSelectionNCAClassification object using fscnca.

Properties
NumObservations — Number of observations in the training data
scalar

Number of observations in the training data (X and Y) after removing NaN or Inf values, stored as a
scalar.
Data Types: double

ModelParameters — Model parameters
structure

Model parameters used for training the model, stored as a structure.

You can access the fields of ModelParameters using dot notation.

For example, for a FeatureSelectionNCAClassification object named mdl, you can access the
LossFunction value using mdl.ModelParameters.LossFunction.
Data Types: struct

Lambda — Regularization parameter
scalar

Regularization parameter used for training this model, stored as a scalar. For n observations, the best
Lambda value that minimizes the generalization error of the NCA model is expected to be a multiple
of 1/n.
Data Types: double

FitMethod — Name of fitting method
'exact' | 'none' | 'average'

Name of the fitting method used to fit this model, stored as one of the following:
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• 'exact' — Perform fitting using all of the data.
• 'none' — No fitting. Use this option to evaluate the generalization error of the NCA model using

the initial feature weights supplied in the call to fscnca.
• 'average' — Divide the data into partitions (subsets), fit each partition using the exact method,

and return the average of the feature weights. You can specify the number of partitions using the
NumPartitions name-value pair argument.

Solver — Name of the solver used to fit this model
'lbfgs' | 'sgd' | 'minibatch-lbfgs'

Name of the solver used to fit this model, stored as one of the following:

• 'lbfgs' — Limited memory Broyden-Fletcher-Goldfarb-Shanno (LBFGS) algorithm
• 'sgd' — Stochastic gradient descent (SGD) algorithm
• 'minibatch-lbfgs' — stochastic gradient descent with LBFGS algorithm applied to mini-

batches

GradientTolerance — Relative convergence tolerance on gradient norm
positive scalar

Relative convergence tolerance on the gradient norm for the 'lbfgs' and 'minibatch-lbfgs'
solvers, stored as a positive scalar value.
Data Types: double

IterationLimit — Maximum number of iterations for optimization
positive integer

Maximum number of iterations for optimization, stored as a positive integer value.
Data Types: double

PassLimit — Maximum number of passes
positive integer

Maximum number of passes for 'sgd' and 'minibatch-lbfgs' solvers. Every pass processes all of
the observations in the data.
Data Types: double

InitialLearningRate — Initial learning rate
positive real scalar

Initial learning rate for the 'sgd' and 'minibatch-lbfgs' solvers, stored as a positive real scalar.
The learning rate decays over iterations starting at the value specified for InitialLearningRate.

Use the NumTuningIterations and TuningSubsetSize name-value pair arguments to control the
automatic tuning of initial learning rate in the call to fscnca.
Data Types: double

Verbose — Verbosity level indicator
nonnegative integer

Verbosity level indicator, stored as a nonnegative integer. Possible values are:
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• 0 — No convergence summary
• 1 — Convergence summary, including norm of gradient and objective function value
• >1 — More convergence information, depending on the fitting algorithm. When you use the

'minibatch-lbfgs' solver and verbosity level > 1, the convergence information includes the
iteration log from intermediate mini-batch LBFGS fits.

Data Types: double

InitialFeatureWeights — Initial feature weights
p-by-1 vector of positive real scalars

Initial feature weights, stored as a p-by-1 vector of positive real scalars, where p is the number of
predictors in X.
Data Types: double

FeatureWeights — Feature weights
p-by-1 vector of real scalars

Feature weights, stored as a p-by-1 vector of real scalars, where p is the number of predictors in X.

If FitMethod is 'average', then FeatureWeights is a p-by-m matrix. m is the number of
partitions specified via the 'NumPartitions' name-value pair argument in the call to fscnca.

The absolute value of FeatureWeights(k) is a measure of the importance of predictor k. A
FeatureWeights(k) value that is close to 0 indicates that predictor k does not influence the
response in Y.
Data Types: double

FitInfo — Fit information
structure

Fit information, stored as a structure with the following fields.

Field Name Meaning
Iteration Iteration index
Objective Regularized objective function for minimization
UnregularizedObjective Unregularized objective function for minimization
Gradient Gradient of regularized objective function for

minimization

• For classification, UnregularizedObjective represents the negative of the leave-one-out
accuracy of the NCA classifier on the training data.

• For regression, UnregularizedObjective represents the leave-one-out loss between the true
response and the predicted response when using the NCA regression model.

• For the 'lbfgs' solver, Gradient is the final gradient. For the 'sgd' and 'minibatch-lbfgs'
solvers, Gradient is the final mini-batch gradient.

• If FitMethod is 'average', then FitInfo is an m-by-1 structure array, where m is the number
of partitions specified via the 'NumPartitions' name-value pair argument.
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You can access the fields of FitInfo using dot notation. For example, for a
FeatureSelectionNCAClassificationobject named mdl, you can access the Objective field using
mdl.FitInfo.Objective.
Data Types: struct

Mu — Predictor means
p-by-1 vector | []

Predictor means, stored as a p-by-1 vector for standardized training data. In this case, the predict
method centers predictor matrix X by subtracting the respective element of Mu from every column.

If data is not standardized during training, then Mu is empty.
Data Types: double

Sigma — Predictor standard deviations
p-by-1 vector | []

Predictor standard deviations, stored as a p-by-1 vector for standardized training data. In this case,
the predict method scales predictor matrix X by dividing every column by the respective element of
Sigma after centering the data using Mu.

If data is not standardized during training, then Sigma is empty.
Data Types: double

X — Predictor values
n-by-p matrix

Predictor values used to train this model, stored as an n-by-p matrix. n is the number of observations
and p is the number of predictor variables in the training data.
Data Types: double

Y — Response values
numeric vector of size n

Response values used to train this model, stored as a numeric vector of size n, where n is the number
of observations.
Data Types: double

W — Observation weights
numeric vector of size n

Observation weights used to train this model, stored as a numeric vector of size n. The sum of
observation weights is n.
Data Types: double
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Methods
loss Evaluate accuracy of learned feature weights on test data
predict Predict responses using neighborhood component analysis (NCA) classifier
refit Refit neighborhood component analysis (NCA) model for classification

Examples

Explore FeatureSelectionNCAClassification Object

Load the sample data.

load ionosphere

The data set has 34 continuous predictors. The response variable is the radar returns, labeled as b
(bad) or g (good).

Fit a neighborhood component analysis (NCA) model for classification to detect the relevant features.

mdl = fscnca(X,Y);

The returned NCA model, mdl, is a FeatureSelectionNCAClassification object. This object
stores information about the training data, model, and optimization. You can access the object
properties, such as the feature weights, using dot notation.

Plot the feature weights.

figure()
plot(mdl.FeatureWeights,'ro')
xlabel('Feature Index')
ylabel('Feature Weight')
grid on
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The weights of the irrelevant features are zero. The 'Verbose',1 option in the call to fscnca
displays the optimization information on the command line. You can also visualize the optimization
process by plotting the objective function versus the iteration number.

figure
plot(mdl.FitInfo.Iteration,mdl.FitInfo.Objective,'ro-')
grid on
xlabel('Iteration Number')
ylabel('Objective')
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The ModelParameters property is a struct that contains more information about the model. You
can access the fields of this property using dot notation. For example, see if the data was
standardized or not.

mdl.ModelParameters.Standardize

ans = logical
   0

0 means that the data was not standardized before fitting the NCA model. You can standardize the
predictors when they are on very different scales using the 'Standardize',1 name-value pair
argument in the call to fscnca .

Copy Semantics
Value. To learn how value classes affect copy operations, see Copying Objects.

Version History
Introduced in R2016b

See Also
predict | fscnca | refit | loss
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Topics
Class Attributes
Property Attributes
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FeatureSelectionNCARegression class
Feature selection for regression using neighborhood component analysis (NCA)

Description
FeatureSelectionNCARegression contains the data, fitting information, feature weights, and
other model parameters of a neighborhood component analysis (NCA) model. fsrnca learns the
feature weights using a diagonal adaptation of NCA and returns an instance of
FeatureSelectionNCARegression object. The function achieves feature selection by regularizing
the feature weights.

Construction
Create a FeatureSelectionNCAClassification object using fsrnca.

Properties
NumObservations — Number of observations in the training data
scalar

Number of observations in the training data (X and Y) after removing NaN or Inf values, stored as a
scalar.
Data Types: double

ModelParameters — Model parameters
structure

Model parameters used for training the model, stored as a structure.

You can access the fields of ModelParameters using dot notation.

For example, for a FeatureSelectionNCARegression object named mdl, you can access the
LossFunction value using mdl.ModelParameters.LossFunction.
Data Types: struct

Lambda — Regularization parameter
scalar

Regularization parameter used for training this model, stored as a scalar. For n observations, the best
Lambda value that minimizes the generalization error of the NCA model is expected to be a multiple
of 1/n.
Data Types: double

FitMethod — Name of the fitting method used to fit this model
'exact' | 'none' | 'average'

Name of the fitting method used to fit this model, stored as one of the following:
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• 'exact' — Perform fitting using all of the data.
• 'none' — No fitting. Use this option to evaluate the generalization error of the NCA model using

the initial feature weights supplied in the call to fsrnca.
• 'average' — The software divides the data into partitions (subsets), fits each partition using the

exact method, and returns the average of the feature weights. You can specify the number of
partitions using the NumPartitions name-value pair argument.

Solver — Name of the solver used to fit this model
'lbfgs' | 'sgd' | 'minibatch-lbfgs'

Name of the solver used to fit this model, stored as one of the following:

• 'lbfgs' — Limited memory Broyden-Fletcher-Goldfarb-Shanno (LBFGS) algorithm
• 'sgd' — Stochastic gradient descent (SGD) algorithm
• 'minibatch-lbfgs' — stochastic gradient descent with LBFGS algorithm applied to mini-

batches

GradientTolerance — Relative convergence tolerance on gradient norm
positive scalar

Relative convergence tolerance on the gradient norm for the 'lbfgs' and 'minibatch-lbfgs'
solvers, stored as a positive scalar value.
Data Types: double

IterationLimit — Maximum number of iterations for optimization
positive integer

Maximum number of iterations for optimization, stored as a positive integer value.
Data Types: double

PassLimit — Maximum number of passes
positive integer

Maximum number of passes for 'sgd' and 'minibatch-lbfgs' solvers. Every pass processes all of
the observations in the data.
Data Types: double

InitialLearningRate — Initial learning rate
positive real scalar

Initial learning rate for 'sgd' and 'minibatch-lbfgs' solvers. The learning rate decays over
iterations starting at the value specified for InitialLearningRate.

Use the NumTuningIterations and TuningSubsetSize to control the automatic tuning of initial
learning rate in the call to fsrnca.
Data Types: double

Verbose — Verbosity level indicator
nonnegative integer

Verbosity level indicator, stored as a nonnegative integer. Possible values are:
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• 0 — No convergence summary
• 1 — Convergence summary, including norm of gradient and objective function value
• >1 — More convergence information, depending on the fitting algorithm. When you use the

'minibatch-lbfgs' solver and verbosity level > 1, the convergence information includes the
iteration log from intermediate mini-batch LBFGS fits.

Data Types: double

InitialFeatureWeights — Initial feature weights
p-by-1 vector of positive real scalars

Initial feature weights, stored as a p-by-1 vector of positive real scalars, where p is the number of
predictors in X.
Data Types: double

FeatureWeights — Feature weights
p-by-1 vector of real scalar values

Feature weights, stored as a p-by-1 vector of real scalar values, where p is the number of predictors
in X.

For 'FitMethod' equal to 'average', FeatureWeights is a p-by-m matrix, where m is the
number of partitions specified via the 'NumPartitions' name-value pair argument in the call to
fsrnca.

The absolute value of FeatureWeights(k) is a measure of the importance of predictor k. If
FeatureWeights(k) is close to 0, then this indicates that predictor k does not influence the
response in Y.
Data Types: double

FitInfo — Fit information
structure

Fit information, stored as a structure with the following fields.

Field Name Meaning
Iteration Iteration index
Objective Regularized objective function for minimization
UnregularizedObjective Unregularized objective function for minimization
Gradient Gradient of regularized objective function for

minimization

• For classification, UnregularizedObjective represents the negative of the leave-one-out
accuracy of the NCA classifier on the training data.

• For regression, UnregularizedObjective represents the leave-one-out loss between the true
response and the predicted response when using the NCA regression model.

• For the 'lbfgs' solver, Gradient is the final gradient. For the 'sgd' and 'minibatch-lbfgs'
solvers, Gradient is the final mini-batch gradient.

• If FitMethod is 'average', then FitInfo is an m-by-1 structure array, where m is the number
of partitions specified via the 'NumPartitions' name-value pair argument.
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You can access the fields of FitInfo using dot notation. For example, for a
FeatureSelectionNCARegressionobject named mdl, you can access the Objective field using
mdl.FitInfo.Objective.
Data Types: struct

Mu — Predictor means
p-by-1 vector | []

Predictor means, stored as a p-by-1 vector for standardized training data. In this case, the predict
method centers predictor matrix X by subtracting the respective element of Mu from every column.

If data is not standardized during training, then Mu is empty.
Data Types: double

Sigma — Predictor standard deviations
p-by-1 vector | []

Predictor standard deviations, stored as a p-by-1 vector for standardized training data. In this case,
the predict method scales predictor matrix X by dividing every column by the respective element of
Sigma after centering the data using Mu.

If data is not standardized during training, then Sigma is empty.
Data Types: double

X — Predictor values
n-by-p matrix

Predictor values used to train this model, stored as an n-by-p matrix. n is the number of observations
and p is the number of predictor variables in the training data.
Data Types: double

Y — Response values
numeric vector of size n

Response values used to train this model, stored as a numeric vector of size n, where n is the number
of observations.
Data Types: double

W — Observation weights
numeric vector of size n

Observation weights used to train this model, stored as a numeric vector of size n. The sum of
observation weights is n.
Data Types: double
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Methods
loss Evaluate accuracy of learned feature weights on test data
predict Predict responses using neighborhood component analysis (NCA) regression model
refit Refit neighborhood component analysis (NCA) model for regression

Examples

Explore FeatureSelectionNCARegression Object

Load the sample data.

load imports-85

The first 15 columns contain the continuous predictor variables, whereas the 16th column contains
the response variable, which is the price of a car. Define the variables for the neighborhood
component analysis model.

Predictors = X(:,1:15);
Y = X(:,16);

Fit a neighborhood component analysis (NCA) model for regression to detect the relevant features.

mdl = fsrnca(Predictors,Y);

The returned NCA model, mdl, is a FeatureSelectionNCARegression object. This object stores
information about the training data, model, and optimization. You can access the object properties,
such as the feature weights, using dot notation.

Plot the feature weights.

figure()
plot(mdl.FeatureWeights,'ro')
xlabel('Feature Index')
ylabel('Feature Weight')
grid on
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The weights of the irrelevant features are zero. The 'Verbose',1 option in the call to fsrnca
displays the optimization information on the command line. You can also visualize the optimization
process by plotting the objective function versus the iteration number.

figure()
plot(mdl.FitInfo.Iteration,mdl.FitInfo.Objective,'ro-')
grid on
xlabel('Iteration Number')
ylabel('Objective')
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The ModelParameters property is a struct that contains more information about the model. You
can access the fields of this property using dot notation. For example, see if the data was
standardized or not.

mdl.ModelParameters.Standardize

ans = logical
   0

0 means that the data was not standardized before fitting the NCA model. You can standardize the
predictors when they are on very different scales using the 'Standardize',1 name-value pair
argument in the call to fsrnca .

Copy Semantics
Value. To learn how value classes affect copy operations, see Copying Objects.

Version History
Introduced in R2016b

See Also
predict | fsrnca | refit | loss
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Topics
Class Attributes
Property Attributes
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ncfcdf
Noncentral F cumulative distribution function

Syntax
p = ncfcdf(x,nu1,nu2,delta)
p = ncfcdf(x,nu1,nu2,delta,'upper')

Description
p = ncfcdf(x,nu1,nu2,delta) computes the noncentral F cdf at each value in x using the
corresponding numerator degrees of freedom in nu1, denominator degrees of freedom in nu2, and
positive noncentrality parameters in delta. nu1, nu2, and delta can be vectors, matrices, or
multidimensional arrays that have the same size, which is also the size of p. A scalar input for x, nu1,
nu2, or delta is expanded to a constant array with the same dimensions as the other inputs.

p = ncfcdf(x,nu1,nu2,delta,'upper') returns the complement of the noncentral F cdf at each
value in x, using an algorithm that more accurately computes the extreme upper tail probabilities.

The noncentral F cdf is

F(x ν1, ν2, δ) = ∑
j = 0

∞ 1
2δ j

j! e
−δ
2 I

ν1 ⋅ x
ν2 + ν1 ⋅ x

ν1
2 + j,

ν2
2

where I(x|a,b) is the incomplete beta function with parameters a and b.

Examples

Compute Noncentral F Distribution cdf

Compare the noncentral F cdf with δ = 10 to the F cdf with the same number of numerator and
denominator degrees of freedom (5 and 20 respectively).

x = (0.01:0.1:10.01)';
p1 = ncfcdf(x,5,20,10);
p = fcdf(x,5,20);
plot(x,p,'-',x,p1,'-')
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Version History
Introduced before R2006a

References

[1] Johnson, N., and S. Kotz. Distributions in Statistics: Continuous Univariate Distributions-2.
Hoboken, NJ: John Wiley & Sons, Inc., 1970, pp. 189–200.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
cdf | ncfpdf | ncfinv | ncfstat | ncfrnd

Topics
“Noncentral F Distribution” on page B-121
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ncfinv
Noncentral F inverse cumulative distribution function

Syntax
X = ncfinv(P,NU1,NU2,DELTA)

Description
X = ncfinv(P,NU1,NU2,DELTA) returns the inverse of the noncentral F cdf with numerator
degrees of freedom NU1, denominator degrees of freedom NU2, and positive noncentrality parameter
DELTA for the corresponding probabilities in P. P, NU1, NU2, and DELTA can be vectors, matrices, or
multidimensional arrays that all have the same size, which is also the size of X. A scalar input for P,
NU1, NU2, or DELTA is expanded to a constant array with the same dimensions as the other inputs.

Examples
One hypothesis test for comparing two sample variances is to take their ratio and compare it to an F
distribution. If the numerator and denominator degrees of freedom are 5 and 20 respectively, then
you reject the hypothesis that the first variance is equal to the second variance if their ratio is less
than that computed below.

critical = finv(0.95,5,20)
critical =
  2.7109

Suppose the truth is that the first variance is twice as big as the second variance. How likely is it that
you would detect this difference?

prob = 1 - ncfcdf(critical,5,20,2)
prob =
  0.1297

If the true ratio of variances is 2, what is the typical (median) value you would expect for the F
statistic?

ncfinv(0.5,5,20,2)
ans = 
    1.2786 

Version History
Introduced before R2006a

References

[1] Evans, M., N. Hastings, and B. Peacock. Statistical Distributions. Hoboken, NJ: Wiley-Interscience,
2000.
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[2] Johnson, N., and S. Kotz. Distributions in Statistics: Continuous Univariate Distributions-2.
Hoboken, NJ: John Wiley & Sons, Inc., 1970, pp. 189–200.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
icdf | ncfcdf | ncfpdf | ncfstat | ncfrnd

Topics
“Noncentral F Distribution” on page B-121
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ncfpdf
Noncentral F probability density function

Syntax
Y = ncfpdf(X,NU1,NU2,DELTA)

Description
Y = ncfpdf(X,NU1,NU2,DELTA) computes the noncentral F pdf at each of the values in X using
the corresponding numerator degrees of freedom in NU1, denominator degrees of freedom in NU2,
and positive noncentrality parameters in DELTA. X, NU1, N2, and B can be vectors, matrices, or
multidimensional arrays that all have the same size, which is also the size of Y. A scalar input for P,
NU1, NU2, or DELTA is expanded to a constant array with the same dimensions as the other inputs.

The F distribution is a special case of the noncentral F where δ = 0. As δ increases, the distribution
flattens like the plot in the example.

Examples

Compute Noncentral F Distribution pdf

Compute the pdf of a noncentral F distribution with degrees of freedom NU1 = 5 and NU2 = 20, and
noncentrality parameter DELTA = 10. For comparison, also compute the pdf of an F distribution with
the same degrees of freedom.

x = (0.01:0.1:10.01)';
p1 = ncfpdf(x,5,20,10);
p = fpdf(x,5,20);

Plot the pdf of the noncentral F distribution and the pdf of the F distribution on the same figure.

figure;
plot(x,p1,'b-','LineWidth',2)
hold on
plot(x,p,'g--','LineWidth',2)
legend('Noncentral F','F distribution')
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Version History
Introduced before R2006a

References

[1] Johnson, N., and S. Kotz. Distributions in Statistics: Continuous Univariate Distributions-2.
Hoboken, NJ: John Wiley & Sons, Inc., 1970, pp. 189–200.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
pdf | ncfcdf | ncfinv | ncfstat | ncfrnd

Topics
“Noncentral F Distribution” on page B-121
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ncfrnd
Noncentral F random numbers

Syntax
R = ncfrnd(NU1,NU2,DELTA)
R = ncfrnd(NU1,NU2,DELTA,m,n,...)
R = ncfrnd(NU1,NU2,DELTA,[m,n,...])

Description
R = ncfrnd(NU1,NU2,DELTA) returns a matrix of random numbers chosen from the noncentral F
distribution with corresponding numerator degrees of freedom in NU1, denominator degrees of
freedom in NU2, and positive noncentrality parameters in DELTA. NU1, NU2, and DELTA can be
vectors, matrices, or multidimensional arrays that have the same size, which is also the size of R. A
scalar input for NU1, NU2, or DELTA is expanded to a constant matrix with the same dimensions as the
other inputs.

R = ncfrnd(NU1,NU2,DELTA,m,n,...) or R = ncfrnd(NU1,NU2,DELTA,[m,n,...])
generates an m-by-n-by-... array. The NU1, NU2, DELTA parameters can each be scalars or arrays of the
same size as R.

Examples
Compute six random numbers from a noncentral F distribution with 10 numerator degrees of
freedom, 100 denominator degrees of freedom and a noncentrality parameter, δ, of 4.0. Compare this
to the F distribution with the same degrees of freedom.

r = ncfrnd(10,100,4,1,6)
r =
  2.5995  0.8824  0.8220  1.4485  1.4415  1.4864

r1 = frnd(10,100,1,6)
r1 =
  0.9826  0.5911  1.0967  0.9681  2.0096  0.6598

Version History
Introduced before R2006a

References

[1] Johnson, N., and S. Kotz. Distributions in Statistics: Continuous Univariate Distributions-2.
Hoboken, NJ: John Wiley & Sons, Inc., 1970, pp. 189–200.
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Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

The generated code can return a different sequence of numbers than MATLAB if either of the
following is true:

• The output is nonscalar.
• An input parameter is invalid for the distribution.

For more information on code generation, see “Introduction to Code Generation” on page 34-2 and
“General Code Generation Workflow” on page 34-5.

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

This function fully supports GPU arrays. For more information, see “Run MATLAB Functions on a
GPU” (Parallel Computing Toolbox).

See Also
random | ncfpdf | ncfcdf | ncfinv | ncfstat

Topics
“Noncentral F Distribution” on page B-121

35 Functions

35-4986



ncfstat
Noncentral F mean and variance

Syntax
[M,V] = ncfstat(NU1,NU2,DELTA)

Description
[M,V] = ncfstat(NU1,NU2,DELTA) returns the mean of and variance for the noncentral F pdf
with corresponding numerator degrees of freedom in NU1, denominator degrees of freedom in NU2,
and positive noncentrality parameters in DELTA. NU1, NU2, and DELTA can be vectors, matrices, or
multidimensional arrays that all have the same size, which is also the size of M and V. A scalar input
for NU1, NU2, or DELTA is expanded to a constant array with the same dimensions as the other input.

The mean of the noncentral F distribution with parameters ν1, ν2, and δ is

ν2(δ + ν1)
ν1(ν2− 2)

where ν2 > 2.

The variance is

2
ν2
ν1

2 (δ + ν1)2 + (2δ + ν1)(ν2− 2)
(ν2− 2)2(ν2− 4)

where ν2 > 4.

Examples
[m,v]= ncfstat(10,100,4)
m =
  1.4286
v =
  0.4252

Version History
Introduced before R2006a

References

[1] Evans, M., N. Hastings, and B. Peacock. Statistical Distributions. 2nd ed., Hoboken, NJ: John Wiley
& Sons, Inc., 1993, pp. 73–74.

[2] Johnson, N., and S. Kotz. Distributions in Statistics: Continuous Univariate Distributions-2.
Hoboken, NJ: John Wiley & Sons, Inc., 1970, pp. 189–200.
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Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
ncfpdf | ncfcdf | ncfinv | ncfrnd

Topics
“Noncentral F Distribution” on page B-121
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nctcdf
Noncentral t cumulative distribution function

Syntax
p = nctcdf(x,nu,delta)
p = nctcdf(x,nu,delta,'upper')

Description
p = nctcdf(x,nu,delta) computes the noncentral t cdf at each value in x using the
corresponding degrees of freedom in nu and noncentrality parameters in delta. x, nu, and delta
can be vectors, matrices, or multidimensional arrays that have the same size, which is also the size of
p. A scalar input for x, nu, or delta is expanded to a constant array with the same dimensions as the
other inputs.

p = nctcdf(x,nu,delta,'upper') returns the complement of the noncentral t cdf at each value
in x, using an algorithm that more accurately computes the extreme upper tail probabilities.

Examples

Compute Noncentral t Distribution cdf

Compare the noncentral t cdf with DELTA = 1 to the t cdf with the same number of degrees of
freedom (10).

x = (-5:0.1:5)';
p1 = nctcdf(x,10,1);
p = tcdf(x,10);
plot(x,p,'-',x,p1,':')
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Version History
Introduced before R2006a

References

[1] Evans, M., N. Hastings, and B. Peacock. Statistical Distributions. 2nd ed., Hoboken, NJ: John Wiley
& Sons, Inc., 1993, pp. 147–148.

[2] Johnson, N., and S. Kotz. Distributions in Statistics: Continuous Univariate Distributions-2.
Hoboken, NJ: John Wiley & Sons, Inc., 1970, pp. 201–219.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
cdf | nctpdf | nctinv | nctstat | nctrnd
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Topics
“Noncentral t Distribution” on page B-123
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nctinv
Noncentral t inverse cumulative distribution function

Syntax
X = nctinv(P,NU,DELTA)

Description
X = nctinv(P,NU,DELTA) returns the inverse of the noncentral t cdf with NU degrees of freedom
and noncentrality parameter DELTA for the corresponding probabilities in P. P, NU, and DELTA can be
vectors, matrices, or multidimensional arrays that all have the same size, which is also the size of X. A
scalar input for P, NU, or DELTA is expanded to a constant array with the same dimensions as the
other inputs.

Examples
x = nctinv([0.1 0.2],10,1)
x =
  -0.2914  0.1618

Version History
Introduced before R2006a

References

[1] Evans, M., N. Hastings, and B. Peacock. Statistical Distributions. 2nd ed., Hoboken, NJ: John Wiley
& Sons, Inc., 1993, pp. 147–148.

[2] Johnson, N., and S. Kotz. Distributions in Statistics: Continuous Univariate Distributions-2.
Hoboken, NJ: John Wiley & Sons, Inc., 1970, pp. 201–219.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
icdf | nctcdf | nctpdf | nctstat | nctrnd

Topics
“Noncentral t Distribution” on page B-123
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nctpdf
Noncentral t probability density function

Syntax
Y = nctpdf(X,V,DELTA)

Description
Y = nctpdf(X,V,DELTA) computes the noncentral t pdf at each of the values in X using the
corresponding degrees of freedom in V and noncentrality parameters in DELTA. Vector or matrix
inputs for X, V, and DELTA must have the same size, which is also the size of Y. A scalar input for X, V,
or DELTA is expanded to a constant matrix with the same dimensions as the other inputs.

Examples

Compute Noncentral t Distribution pdf

Compute the pdf of a noncentral t distribution with degrees of freedom V = 10 and noncentrality
parameter DELTA = 1. For comparison, also compute the pdf of a t distribution with the same
degrees of freedom.

x = (-5:0.1:5)';
nct = nctpdf(x,10,1);
t = tpdf(x,10);

Plot the pdf of the noncentral t distribution and the pdf of the t distribution on the same figure.

plot(x,nct,'b-','LineWidth',2)
hold on
plot(x,t,'g--','LineWidth',2)
legend('nct','t')

 nctpdf
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Version History
Introduced before R2006a

References

[1] Evans, M., N. Hastings, and B. Peacock. Statistical Distributions. 2nd ed., Hoboken, NJ: John Wiley
& Sons, Inc., 1993, pp. 147–148.

[2] Johnson, N., and S. Kotz. Distributions in Statistics: Continuous Univariate Distributions-2.
Hoboken, NJ: John Wiley & Sons, Inc., 1970, pp. 201–219.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
pdf | nctcdf | nctinv | nctstat | nctrnd
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Topics
“Noncentral t Distribution” on page B-123
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nctrnd
Noncentral t random numbers

Syntax
R = nctrnd(V,DELTA)
R = nctrnd(V,DELTA,m,n,...)
R = nctrnd(V,DELTA,[m,n,...])

Description
R = nctrnd(V,DELTA) returns a matrix of random numbers chosen from the noncentral T
distribution using the corresponding degrees of freedom in V and noncentrality parameters in DELTA.
V and DELTA can be vectors, matrices, or multidimensional arrays. A scalar input for V or DELTA is
expanded to a constant array with the same dimensions as the other input.

R = nctrnd(V,DELTA,m,n,...) or R = nctrnd(V,DELTA,[m,n,...]) generates an m-by-n-
by-... array. The V, DELTA parameters can each be scalars or arrays of the same size as R.

Examples
nctrnd(10,1,5,1)
ans =
  1.6576
  1.0617
  1.4491
  0.2930
  3.6297

Version History
Introduced before R2006a

References

[1] Evans, M., N. Hastings, and B. Peacock. Statistical Distributions. 2nd ed., Hoboken, NJ: John Wiley
& Sons, Inc., 1993, pp. 147–148.

[2] Johnson, N., and S. Kotz. Distributions in Statistics: Continuous Univariate Distributions-2.
Hoboken, NJ: John Wiley & Sons, Inc., 1970, pp. 201–219.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:
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The generated code can return a different sequence of numbers than MATLAB if either of the
following is true:

• The output is nonscalar.
• An input parameter is invalid for the distribution.

For more information on code generation, see “Introduction to Code Generation” on page 34-2 and
“General Code Generation Workflow” on page 34-5.

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

This function fully supports GPU arrays. For more information, see “Run MATLAB Functions on a
GPU” (Parallel Computing Toolbox).

See Also
random | nctpdf | nctcdf | nctinv | nctstat

Topics
“Noncentral t Distribution” on page B-123
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nctstat
Noncentral t mean and variance

Syntax
[M,V] = nctstat(NU,DELTA)

Description
[M,V] = nctstat(NU,DELTA) returns the mean of and variance for the noncentral t pdf with NU
degrees of freedom and noncentrality parameter DELTA. NU and DELTA can be vectors, matrices, or
multidimensional arrays that all have the same size, which is also the size of M and V. A scalar input
for NU or DELTA is expanded to a constant array with the same dimensions as the other input.

The mean of the noncentral t distribution with parameters ν and δ is

δ(ν/2)1/2Γ((ν− 1)/2)
Γ(ν/2)

where ν > 1.

The variance is

ν
ν− 2 (1 + δ2)− ν

2δ2 Γ((ν− 1)/2)
Γ(ν/2)

2

where ν > 2.

Examples
[m,v] = nctstat(10,1)

m =
  1.0837

v =
  1.3255

Version History
Introduced before R2006a

References

[1] Evans, M., N. Hastings, and B. Peacock. Statistical Distributions. 2nd ed., Hoboken, NJ: John Wiley
& Sons, Inc., 1993, pp. 147–148.

[2] Johnson, N., and S. Kotz. Distributions in Statistics: Continuous Univariate Distributions-2.
Hoboken, NJ: John Wiley & Sons, Inc., 1970, pp. 201–219.
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Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
nctpdf | nctcdf | nctinv | nctrnd

Topics
“Noncentral t Distribution” on page B-123

 nctstat

35-4999



ncx2cdf
Noncentral chi-square cumulative distribution function

Syntax
p = ncx2cdf(x,v,delta)
p = ncx2cdf(x,v,delta,'upper')

Description
p = ncx2cdf(x,v,delta) computes the noncentral chi-square cdf at each value in x using the
corresponding degrees of freedom in v and positive noncentrality parameters in delta. x, v, and
delta can be vectors, matrices, or multidimensional arrays that all have the same size, which is also
the size of p. A scalar input for x, v, or delta is expanded to a constant array with the same
dimensions as the other inputs.

p = ncx2cdf(x,v,delta,'upper') returns the complement of the noncentral chi-square cdf at
each value in x, using an algorithm that more accurately computes the extreme upper tail
probabilities.

Some texts refer to this distribution as the generalized Rayleigh, Rayleigh-Rice, or Rice distribution.

The noncentral chi-square cdf is

F(x ν, δ) = ∑
j = 0

∞ 1
2δ j

j! e
−δ
2 Pr χν + 2 j

2 ≤ x

Examples

Compute Noncentral Chi-Square cdf

Compare the noncentral chi-square cdf with DELTA = 2 to the chi-square cdf with the same number
of degrees of freedom (4):

x = (0:0.1:10)';
ncx2 = ncx2cdf(x,4,2);
chi2 = chi2cdf(x,4);

plot(x,ncx2,'b-','LineWidth',2)
hold on
plot(x,chi2,'g--','LineWidth',2)
legend('ncx2','chi2','Location','NW')
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Version History
Introduced before R2006a

References

[1] Johnson, N., and S. Kotz. Distributions in Statistics: Continuous Univariate Distributions-2.
Hoboken, NJ: John Wiley & Sons, Inc., 1970, pp. 130–148.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
cdf | ncx2pdf | ncx2inv | ncx2stat | ncx2rnd

Topics
“Noncentral Chi-Square Distribution” on page B-119
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ncx2inv
Noncentral chi-square inverse cumulative distribution function

Syntax
X = ncx2inv(P,V,DELTA)

Description
X = ncx2inv(P,V,DELTA) returns the inverse of the noncentral chi-square cdf using the
corresponding degrees of freedom in V and positive noncentrality parameters in DELTA, at the
corresponding probabilities in P. P, V, and DELTA can be vectors, matrices, or multidimensional
arrays that all have the same size, which is also the size of X. A scalar input for P, V, or DELTA is
expanded to a constant array with the same dimensions as the other inputs.

Examples
ncx2inv([0.01 0.05 0.1],4,2)
ans =
  0.4858  1.1498  1.7066

Algorithms
ncx2inv uses Newton's method to converge to the solution.

Version History
Introduced before R2006a

References

[1] Evans, M., N. Hastings, and B. Peacock. Statistical Distributions. 2nd ed., Hoboken, NJ: John Wiley
& Sons, Inc., 1993, pp. 50–52.

[2] Johnson, N., and S. Kotz. Distributions in Statistics: Continuous Univariate Distributions-2.
Hoboken, NJ: John Wiley & Sons, Inc., 1970, pp. 130–148.

See Also
icdf | ncx2cdf | ncx2pdf | ncx2stat | ncx2rnd

Topics
“Noncentral Chi-Square Distribution” on page B-119
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ncx2pdf
Noncentral chi-square probability density function

Syntax
Y = ncx2pdf(X,V,DELTA)

Description
Y = ncx2pdf(X,V,DELTA) computes the noncentral chi-square pdf at each of the values in X using
the corresponding degrees of freedom in V and positive noncentrality parameters in DELTA. Vector or
matrix inputs for X, V, and DELTA must have the same size, which is also the size of Y. A scalar input
for X, V, or DELTA is expanded to a constant array with the same dimensions as the other inputs.

Some texts refer to this distribution as the generalized Rayleigh, Rayleigh-Rice, or Rice distribution.

Examples

Compute Noncentral Chi-Square Distribution pdf

Compute the pdf of a noncentral chi-square distribution with degrees of freedom V = 4 and
noncentrality parameter DELTA = 2. For comparison, also compute the pdf of a chi-square
distribution with the same degrees of freedom.

x = (0:0.1:10)';
ncx2 = ncx2pdf(x,4,2);
chi2 = chi2pdf(x,4);

Plot the pdf of the noncentral chi-square distribution on the same figure as the pdf of the chi-square
distribution.

figure;
plot(x,ncx2,'b-','LineWidth',2)
hold on
plot(x,chi2,'g--','LineWidth',2)
legend('ncx2','chi2')
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Version History
Introduced before R2006a

References

[1] Johnson, N., and S. Kotz. Distributions in Statistics: Continuous Univariate Distributions-2.
Hoboken, NJ: John Wiley & Sons, Inc., 1970, pp. 130–148.

See Also
pdf | ncx2cdf | ncx2inv | ncx2stat | ncx2rnd

Topics
“Noncentral Chi-Square Distribution” on page B-119
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ncx2rnd
Noncentral chi-square random numbers

Syntax
R = ncx2rnd(V,DELTA)
R = ncx2rnd(V,DELTA,m,n,...)
R = ncx2rnd(V,DELTA,[m,n,...])

Description
R = ncx2rnd(V,DELTA) returns a matrix of random numbers chosen from the noncentral chi-
square distribution using the corresponding degrees of freedom in V and positive noncentrality
parameters in DELTA. V and DELTA can be vectors, matrices, or multidimensional arrays that have
the same size, which is also the size of R. A scalar input for V or DELTA is expanded to a constant
array with the same dimensions as the other input.

R = ncx2rnd(V,DELTA,m,n,...) or R = ncx2rnd(V,DELTA,[m,n,...]) generates an m-by-n-
by-... array. The V, DELTA parameters can each be scalars or arrays of the same size as R.

Examples
ncx2rnd(4,2,6,3)
ans =
  6.8552  5.9650  11.2961
  5.2631  4.2640  5.9495
  9.1939  6.7162  3.8315
 10.3100  4.4828  7.1653
  2.1142  1.9826  4.6400
  3.8852  5.3999  0.9282

Version History
Introduced before R2006a

References

[1] Evans, M., N. Hastings, and B. Peacock. Statistical Distributions. 2nd ed., Hoboken, NJ: John Wiley
& Sons, Inc., 1993, pp. 50–52.

[2] Johnson, N., and S. Kotz. Distributions in Statistics: Continuous Univariate Distributions-2.
Hoboken, NJ: John Wiley & Sons, Inc., 1970, pp. 130–148.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

 ncx2rnd
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Usage notes and limitations:

The generated code can return a different sequence of numbers than MATLAB if either of the
following is true:

• The output is nonscalar.
• An input parameter is invalid for the distribution.

For more information on code generation, see “Introduction to Code Generation” on page 34-2 and
“General Code Generation Workflow” on page 34-5.

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

This function fully supports GPU arrays. For more information, see “Run MATLAB Functions on a
GPU” (Parallel Computing Toolbox).

See Also
random | ncx2pdf | ncx2cdf | ncx2inv | ncx2stat

Topics
“Noncentral Chi-Square Distribution” on page B-119
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ncx2stat
Noncentral chi-square mean and variance

Syntax
[M,V] = ncx2stat(NU,DELTA)

Description
[M,V] = ncx2stat(NU,DELTA) returns the mean of and variance for the noncentral chi-square pdf
with NU degrees of freedom and noncentrality parameter DELTA. NU and DELTA can be vectors,
matrices, or multidimensional arrays that all have the same size, which is also the size of M and V. A
scalar input for NU or DELTA is expanded to a constant array with the same dimensions as the other
input.

The mean of the noncentral chi-square distribution with parameters ν and δ is ν+δ, and the variance
is 2(ν+2δ).

Examples
[m,v] = ncx2stat(4,2)
m =
   6
v =
  16

Version History
Introduced before R2006a

References

[1] Evans, M., N. Hastings, and B. Peacock. Statistical Distributions. 2nd ed., Hoboken, NJ: John Wiley
& Sons, Inc., 1993, pp. 50–52.

[2] Johnson, N., and S. Kotz. Distributions in Statistics: Continuous Univariate Distributions-2.
Hoboken, NJ: John Wiley & Sons, Inc., 1970, pp. 130–148.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
ncx2pdf | ncx2cdf | ncx2inv | ncx2rnd
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Topics
“Noncentral Chi-Square Distribution” on page B-119
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ndims
Class: dataset

(Not Recommended) Number of dimensions of dataset array

Note The dataset data type is not recommended. To work with heterogeneous data, use the
MATLAB® table data type instead. See MATLAB table documentation for more information.

Syntax
n = ndims(A)

Description
n = ndims(A) returns the number of dimensions in the dataset A. The number of dimensions in an
array is always 2.

See Also
size

 ndims
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ne
Class: qrandstream

Not equal relation for handles

Syntax
h1 ~= h2

Description
Handles are equal if they are handles for the same object and are unequal otherwise.

h1 ~= h2 performs element-wise comparisons between handle arrays h1 and h2. h1 and h2 must be
of the same dimensions unless one is a scalar. The result is a logical array of the same dimensions,
where each element is an element-wise ~= result.

If one of h1 or h2 is scalar, scalar expansion is performed and the result will match the dimensions of
the array that is not scalar.

tf = ne(h1, h2) stores the result in a logical array of the same dimensions.

See Also
qrandstream | eq | ge | gt | le | lt
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negloglik
Package: prob

Negative loglikelihood of probability distribution

Syntax
nll = negloglik(pd)

Description
nll = negloglik(pd) returns the value of the negative loglikelihood function for the data used to
fit the probability distribution pd.

Examples

Negative Log Likelihood for a Fitted Distribution

Load the sample data.

load carsmall

Create a Weibull distribution object by fitting it to the mile per gallon (MPG) data.

pd = fitdist(MPG,'Weibull')

pd = 
  WeibullDistribution

  Weibull distribution
    A = 26.5079   [24.8333, 28.2954]
    B = 3.27193   [2.79441, 3.83104]

Compute the negative log likelihood for the fitted Weibull distribution.

wnll = negloglik(pd)

wnll = 327.4942

Negative Loglikelihood for a Kernel Distribution

Load the sample data. Fit a kernel distribution to the miles per gallon (MPG) data.

load carsmall;
pd = fitdist(MPG,'Kernel')

pd = 
  KernelDistribution

    Kernel = normal

 negloglik
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    Bandwidth = 4.11428
    Support = unbounded

Compute the negative loglikelihood.

nll = negloglik(pd)

nll = 327.3139

Input Arguments
pd — Probability distribution
probability distribution object

Probability distribution, specified as one of the following probability distribution objects created by
fitdist or Distribution Fitter:

• BetaDistribution
• BinomialDistribution
• BirnbaumSaundersDistribution
• BurrDistribution
• ExponentialDistribution
• ExtremeValueDistribution
• GammaDistribution
• GeneralizedExtremeValueDistribution
• GeneralizedParetoDistribution
• HalfNormalDistribution
• InverseGaussianDistribution
• KernelDistribution
• LogisticDistribution
• LoglogisticDistribution
• LognormalDistribution
• NakagamiDistribution
• NegativeBinomialDistribution
• NormalDistribution
• PoissonDistribution
• RayleighDistribution
• RicianDistribution
• StableDistribution
• tLocationScaleDistribution
• WeibullDistribution
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Output Arguments
nll — Negative loglikelihood
numeric value

Negative loglikelihood value for the data used to fit the distribution, returned as a numeric value.

Version History
Introduced in R2013a

Extended Capabilities
GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

This function fully supports GPU arrays. For more information, see “Run MATLAB Functions on a
GPU” (Parallel Computing Toolbox).

See Also
mle | paramci | proflik | fitdist | Distribution Fitter

Topics
“Negative Loglikelihood Functions” on page 5-25
“Working with Probability Distributions” on page 5-3
“Supported Distributions” on page 5-16
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net
Generate quasirandom point set

Syntax
X = net(p,n)

Description
X = net(p,n) returns the first n points from the point set p, which is either a haltonset or
sobolset object. X is an n-by-d matrix, where d is the number of dimensions of the points in p.

The object p encapsulates properties of a specified quasirandom sequence. Values of the point set are
generated whenever you access p using net or parenthesis indexing. Values are not stored within p.

Examples

Create Halton Point Set

Generate a three-dimensional Halton point set, skip the first 1000 values, and then retain every 101st
point.

p = haltonset(3,'Skip',1e3,'Leap',1e2)

p = 
Halton point set in 3 dimensions (89180190640991 points)

Properties:
              Skip : 1000
              Leap : 100
    ScrambleMethod : none

Apply reverse-radix scrambling by using scramble.

p = scramble(p,'RR2')

p = 
Halton point set in 3 dimensions (89180190640991 points)

Properties:
              Skip : 1000
              Leap : 100
    ScrambleMethod : RR2

Generate the first four points by using net.

X0 = net(p,4)

X0 = 4×3

35 Functions
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    0.0928    0.6950    0.0029
    0.6958    0.2958    0.8269
    0.3013    0.6497    0.4141
    0.9087    0.7883    0.2166

Generate every third point, up to the eleventh point, by using parenthesis indexing.

X = p(1:3:11,:)

X = 4×3

    0.0928    0.6950    0.0029
    0.9087    0.7883    0.2166
    0.3843    0.9840    0.9878
    0.6831    0.7357    0.7923

Input Arguments
p — Point set
haltonset object | sobolset object

Point set, specified as either a haltonset or sobolset object.
Example: haltonset(4)

n — Number of points to return
positive integer scalar

Number of points to return from the point set, specified as a positive integer scalar. n must be
between 1 and length(p), the number of points in p.

net always returns the first n points in p. To select a different set of n points from the quasirandom
sequence, you can change p by using its Leap and Skip properties or the scramble object function.
Alternatively, you can access points in p by using parenthesis indexing rather than the net object
function.
Example: 1024
Data Types: single | double

Version History
Introduced in R2008a

See Also
qrandstream | haltonset | sobolset | scramble | reduceDimensions
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nLinearCoeffs
Number of nonzero linear coefficients

Syntax
ncoeffs = nLinearCoeffs(obj)
ncoeffs = nLinearCoeffs(obj,delta)

Description
ncoeffs = nLinearCoeffs(obj) returns the number of nonzero linear coefficients in the linear
discriminant model obj.

ncoeffs = nLinearCoeffs(obj,delta) returns the number of nonzero linear coefficients for
threshold parameter delta.

Input Arguments
obj

Discriminant analysis classifier, produced using fitcdiscr.

delta

Scalar or vector value of the Delta parameter. See “Gamma and Delta” on page 35-5017.

Output Arguments
ncoeffs

Nonnegative integer, the number of nonzero coefficients in the discriminant analysis model obj.

If you call nLinearCoeffs with a delta argument, ncoeffs is the number of nonzero linear
coefficients for threshold parameter delta. If delta is a vector, ncoeffs is a vector with the same
number of elements.

If obj is a quadratic discriminant model, ncoeffs is the number of predictors in obj.

Examples

Find the Number of Nonzero Coefficients in a Discriminant Analysis Classifier

Find the number of nonzero coefficients in a discriminant analysis classifier for various Delta values.

Create a discriminant analysis classifier from the fishseriris data.

load fisheriris
obj = fitcdiscr(meas,species);
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Find the number of nonzero coefficients in obj.

ncoeffs = nLinearCoeffs(obj)

ncoeffs = 4

Find the number of nonzero coefficients for delta = 1, 2, 4, and 8.

delta = [1 2 4 8];
ncoeffs = nLinearCoeffs(obj,delta)

ncoeffs = 4×1

     4
     4
     3
     0

The DeltaPredictor property gives the values of delta where the number of nonzero coefficients
changes.

ncoeffs2 = nLinearCoeffs(obj,obj.DeltaPredictor)

ncoeffs2 = 4×1

     4
     3
     1
     2

More About
Gamma and Delta

Regularization is the process of finding a small set of predictors that yield an effective predictive
model. For linear discriminant analysis, there are two parameters, γ and δ, that control regularization
as follows. cvshrink helps you select appropriate values of the parameters.

Let Σ represent the covariance matrix of the data X, and let X  be the centered data (the data X minus
the mean by class). Define

D = diag X T * X .

The regularized covariance matrix Σ is

Σ = 1− γ Σ + γD .

Whenever γ ≥ MinGamma, Σ is nonsingular.

Let μk be the mean vector for those elements of X in class k, and let μ0 be the global mean vector (the
mean of the rows of X). Let C be the correlation matrix of the data X, and let C be the regularized
correlation matrix:

 nLinearCoeffs
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C = 1− γ C + γI,

where I is the identity matrix.

The linear term in the regularized discriminant analysis classifier for a data point x is

x− μ0
TΣ−1 μk− μ0 = x− μ0

TD−1/2 C−1D−1/2 μk− μ0 .

The parameter δ enters into this equation as a threshold on the final term in square brackets. Each
component of the vector C−1D−1/2 μk− μ0  is set to zero if it is smaller in magnitude than the
threshold δ. Therefore, for class k, if component j is thresholded to zero, component j of x does not
enter into the evaluation of the posterior probability.

The DeltaPredictor property is a vector related to this threshold. When
δ ≥ DeltaPredictor(i), all classes k have

C−1D−1/2 μk− μ0 ≤ δ .

Therefore, when δ ≥ DeltaPredictor(i), the regularized classifier does not use predictor i.

See Also
CompactClassificationDiscriminant | cvshrink | fitcdiscr

Topics
“Discriminant Analysis Classification” on page 21-2
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nlinfit
Nonlinear regression

Syntax
beta = nlinfit(X,Y,modelfun,beta0)
beta = nlinfit(X,Y,modelfun,beta0,options)
beta = nlinfit( ___ ,Name,Value)
[beta,R,J,CovB,MSE,ErrorModelInfo] = nlinfit( ___ )

Description
beta = nlinfit(X,Y,modelfun,beta0) returns a vector of estimated coefficients for the
nonlinear regression of the responses in Y on the predictors in X using the model specified by
modelfun. The coefficients are estimated using iterative least squares estimation, with initial values
specified by beta0.

beta = nlinfit(X,Y,modelfun,beta0,options) fits the nonlinear regression using the
algorithm control parameters in the structure options. You can return any of the output arguments
in the previous syntaxes.

beta = nlinfit( ___ ,Name,Value) uses additional options specified by one or more name-value
pair arguments. For example, you can specify observation weights or a nonconstant error model. You
can use any of the input arguments in the previous syntaxes.

[beta,R,J,CovB,MSE,ErrorModelInfo] = nlinfit( ___ ) additionally returns the residuals,
R, the Jacobian of modelfun, J, the estimated variance-covariance matrix for the estimated
coefficients, CovB, an estimate of the variance of the error term, MSE, and a structure containing
details about the error model, ErrorModelInfo.

Examples

Nonlinear Regression Model Using Default Options

Load sample data.

S = load('reaction');
X = S.reactants;
y = S.rate;
beta0 = S.beta;

Fit the Hougen-Watson model to the rate data using the initial values in beta0.

beta = nlinfit(X,y,@hougen,beta0)

beta = 5×1

    1.2526
    0.0628
    0.0400
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    0.1124
    1.1914

Nonlinear Regression Using Robust Options

Generate sample data from the nonlinear regression model y = b1 + b2 ⋅ exp{− b3x} + ϵ, where b1,
b2, and b3 are coefficients, and the error term is normally distributed with mean 0 and standard
deviation 0.1.

modelfun = @(b,x)(b(1)+b(2)*exp(-b(3)*x));

rng('default') % for reproducibility
b = [1;3;2];
x = exprnd(2,100,1);
y = modelfun(b,x) + normrnd(0,0.1,100,1);

Set robust fitting options.

opts = statset('nlinfit');
opts.RobustWgtFun = 'bisquare';

Fit the nonlinear model using the robust fitting options.

beta0 = [2;2;2];
beta = nlinfit(x,y,modelfun,beta0,opts)

beta = 3×1

    1.0041
    3.0997
    2.1483

Nonlinear Regression Using Observation Weights

Load sample data.

S = load('reaction');
X = S.reactants;
y = S.rate;
beta0 = S.beta;

Specify a vector of known observation weights.

W = [8 2 1 6 12 9 12 10 10 12 2 10 8]';

Fit the Hougen-Watson model to the rate data using the specified observation weights.

[beta,R,J,CovB] = nlinfit(X,y,@hougen,beta0,'Weights',W);
beta

beta = 5×1
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    2.2068
    0.1077
    0.0766
    0.1818
    0.6516

Display the coefficient standard errors.

sqrt(diag(CovB))

ans = 5×1

    2.5721
    0.1251
    0.0950
    0.2043
    0.7735

Nonlinear Regression Using Weights Function Handle

Load sample data.

S = load('reaction');
X = S.reactants;
y = S.rate;
beta0 = S.beta;

Specify a function handle for observation weights. The function accepts the model fitted values as
input, and returns a vector of weights.

 a = 1; b = 1;
 weights = @(yhat) 1./((a + b*abs(yhat)).^2);

Fit the Hougen-Watson model to the rate data using the specified observation weights function.

[beta,R,J,CovB] = nlinfit(X,y,@hougen,beta0,'Weights',weights);
beta

beta = 5×1

    0.8308
    0.0409
    0.0251
    0.0801
    1.8261

Display the coefficient standard errors.

sqrt(diag(CovB))

ans = 5×1

    0.5822
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    0.0297
    0.0197
    0.0578
    1.2810

Nonlinear Regression Using Nonconstant Error Model

Load sample data.

S = load('reaction');
X = S.reactants;
y = S.rate;
beta0 = S.beta;

Fit the Hougen-Watson model to the rate data using the combined error model.

[beta,R,J,CovB,MSE,ErrorModelInfo] = nlinfit(X,y,@hougen,beta0,'ErrorModel','combined');
beta

beta = 5×1

    1.2526
    0.0628
    0.0400
    0.1124
    1.1914

Display the error model information.

ErrorModelInfo

ErrorModelInfo = struct with fields:
              ErrorModel: 'combined'
         ErrorParameters: [0.1517 5.6783e-08]
           ErrorVariance: [function_handle]
                     MSE: 1.6245
          ScheffeSimPred: 6
          WeightFunction: 0
            FixedWeights: 0
    RobustWeightFunction: 0

Input Arguments
X — Predictor variables
matrix

Predictor variables for the nonlinear regression function, specified as a matrix. Typically, X is a design
matrix of predictor (independent variable) values, with one row for each value in Y, and one column
for each predictor. However, X can be any array that modelfun can accept.
Data Types: single | double
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Y — Response values
vector

Response values (dependent variable) for fitting the nonlinear regression function, specified as a
vector with the same number of rows as X.
Data Types: single | double

modelfun — Nonlinear regression model function
function handle

Nonlinear regression model function, specified as a function handle. modelfun must accept two
input arguments, a coefficient vector and an array X—in that order—and return a vector of fitted
response values.

For example, to specify the hougen nonlinear regression function, use the function handle @hougen.
Data Types: function_handle

beta0 — Initial coefficient values
vector

Initial coefficient values for the least squares estimation algorithm, specified as a vector.

Note Poor starting values can lead to a solution with large residual error.

Data Types: single | double

options — Estimation algorithm options
structure created using statset

Estimation algorithm options, specified as a structure you create using statset. The following
statset parameters are applicable to nlinfit.

DerivStep — Relative difference for finite difference gradient
eps^(1/3) (default) | positive scalar value | vector

Relative difference for the finite difference gradient calculation, specified as a positive scalar value,
or a vector the same size as beta. Use a vector to specify a different relative difference for each
coefficient.

Display — Level of output display
'off' (default) | 'iter' | 'final'

Level of output display during estimation, specified as one of 'off', 'iter', or 'final'. If you
specify 'iter', output is displayed at each iteration. If you specify 'final', output is displayed
after the final iteration.

FunValCheck — Indicator for whether to check for invalid values
'on' (default) | 'off'

Indicator for whether to check for invalid values such as NaN or Inf from the objective function,
specified as 'on' or 'off'.
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MaxIter — Maximum number of iterations
100 (default) | positive integer

Maximum number of iterations for the estimation algorithm, specified as a positive integer. Iterations
continue until estimates are within the convergence tolerance, or the maximum number of iterations
specified by MaxIter is reached.

RobustWgtFun — Weight function
character vector | string scalar | function handle | []

Weight function for robust fitting, specified as a valid character vector, string scalar, or function
handle.

Note RobustWgtFun must have value [] when you use observation weights, W.

The following table describes the possible character vectors and string scalars. Let r denote
normalized residuals and w denote robust weights. The indicator function I[x] is equal to 1 if the
expression x is true, and 0 otherwise.

Weight Function Equation Default Tuning Constant
'' (default) No robust fitting —
'andrews' w = I r < π × sin(r)/r 1.339
'bisquare' w = I r < 1 × 1− r2 2 4.685

'cauchy' w = 1
1 + r2

2.385

'fair' w = 1 1 + r 1.400

'huber' w = 1 max 1, r 1.345

'logistic' w = tanh(r) r 1.205

'talwar' w = I r < 1 2.795
'welsch' w = exp −r2 2.985

You can alternatively specify a function handle that accepts a vector of normalized residuals as input,
and returns a vector of robust weights as output. If you use a function handle, you must provide a
Tune constant.

Tune — Tuning constant
positive scalar value

Tuning constant for robust fitting, specified as a positive scalar value. The tuning constant is used to
normalize residuals before applying a robust weight function. The default tuning constant depends on
the function specified by RobustWgtFun.

If you use a function handle to specify RobustWgtFun, then you must specify a value for Tune.

TolFun — Termination tolerance on residual sum of squares
1e-8 (default) | positive scalar value
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Termination tolerance for the residual sum of squares, specified as a positive scalar value. Iterations
continue until estimates are within the convergence tolerance, or the maximum number of iterations
specified by MaxIter is reached.

TolX — Termination tolerance on estimated coefficients
1e-8 (default) | positive scalar value

Termination tolerance on the estimated coefficients, beta, specified as a positive scalar value.
Iterations continue until estimates are within the convergence tolerance, or the maximum number of
iterations specified by MaxIter is reached.

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: 'ErrorModel','proportional','ErrorParameters',0.5 specifies a proportional
error model, with initial value 0.5 for the error parameter estimation

ErrorModel — Form of error term
'constant' (default) | 'proportional' | 'combined'

Form of the error term, specified as the comma-separated pair consisting of 'ErrorModel' and
'constant', 'proportional', or 'combined' indicating the error model. Each model defines the
error using a standard mean-zero and unit-variance variable e in combination with independent
components: the function value f, and one or two parameters a and b.

'constant' (default) y = f + ae
'proportional' y = f + bfe
'combined' y = f + a + b f e

The only allowed error model when using Weights is 'constant'.

Note options.RobustWgtFun must have value [] when using an error model other than
'constant'.

ErrorParameters — Initial estimates for error model parameters
1 or [1,1] (default) | scalar value | two-element vector

Initial estimates for the error model parameters in the chosen ErrorModel, specified as the comma-
separated pair consisting of 'ErrorParameters' and a scalar value or two-element vector.

Error Model Parameters Default Values
'constant' a 1
'proportional' b 1
'combined' a, b [1,1]
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For example, if 'ErrorModel' has the value 'combined', you can specify the starting value 1 for a
and the starting value 2 for b as follows.
Example: 'ErrorParameters',[1,2]

You can only use the 'constant' error model when using Weights.

Note options.RobustWgtFun must have value [] when using an error model other than
'constant'.

Data Types: double | single

Weights — Observation weights
vector | function handle

Observation weights, specified as the comma-separated pair consisting of 'Weights' and a vector of
real positive weights or a function handle. You can use observation weights to down-weight the
observations that you want to have less influence on the fitted model.

• If W is a vector, then it must be the same size as Y.
• If W is a function handle, then it must accept a vector of predicted response values as input, and

return a vector of real positive weights as output.

Note options.RobustWgtFun must have value [] when you use observation weights.

Data Types: double | single | function_handle

Output Arguments
beta — Estimated regression coefficients
vector

Estimated regression coefficients, returned as a vector. The number of elements in beta equals the
number of elements in beta0.

Let f (Xi, b) denote the nonlinear function specified by modelfun, where xi are the predictors for
observation i, i = 1,...,N, and b are the regression coefficients. The vector of coefficients returned in
beta minimizes the weighted least squares equation,

∑i = 1
N wi yi− f (xi, b) 2 .

For unweighted nonlinear regression, all of the weight terms are equal to 1.

R — Residuals
vector

Residuals for the fitted model, returned as a vector.

• If you specify observation weights using the name-value pair argument Weights, then R contains
weighted residuals on page 35-5028.
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• If you specify an error model other than 'constant' using the name-value pair argument
ErrorModel, then you can no longer interpret R as model fit residuals.

J — Jacobian
matrix

Jacobian of the nonlinear regression model, modelfun, returned as an N-by-p matrix, where N is the
number of observations and p is the number of estimated coefficients.

• If you specify observation weights using the name-value pair argument Weights, then J is the
weighted model function Jacobian on page 35-5028.

• If you specify an error model other than 'constant' using the name-value pair argument
ErrorModel, then you can no longer interpret J as the model function Jacobian.

CovB — Estimated variance-covariance matrix
matrix

Estimated variance-covariance matrix for the fitted coefficients, beta, returned as a p-by-p matrix,
where p is the number of estimated coefficients. If the model Jacobian, J, has full column rank, then
CovB = inv(J'*J)*MSE, where MSE is the mean squared error.

MSE — Mean squared error
scalar value

Mean squared error (MSE) of the fitted model, returned as a scalar value. MSE is an estimate of the
variance of the error term. If the model Jacobian, J, has full column rank, then MSE = (R'*R)/(N-
p), where N is the number of observations, and p is the number of estimated coefficients.

ErrorModelInfo — Information about error model fit
structure

Information about the error model fit, returned as a structure with the following fields:

ErrorModel Chosen error model
ErrorParameters Estimated error parameters
ErrorVariance Function handle that accepts an N-by-p matrix, X, and returns

an N-by-1 vector of error variances using the estimated error
model

MSE Mean squared error
ScheffeSimPred Scheffé parameter for simultaneous prediction intervals when

using the estimated error model
WeightFunction Logical with value true if you used a custom weight function

previously in nlinfit
FixedWeights Logical with value true if you used fixed weights previously

in nlinfit
RobustWeightFunction Logical with value true if you used robust fitting previously

in nlinfit
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More About
Weighted Residuals

A weighted residual is a residual multiplied by the square root of the corresponding observation
weight.

Given estimated regression coefficients, b, the residual for observation i is

ri = yi− f (xi, b),

where yi is the observed response and f (xi, b) is the fitted response at predictors xi .

When you fit a weighted nonlinear regression with weights wi, i = 1,...,N, nlinfit returns the
weighted residuals,

ri* = wi yi− f (xi, b) .

Weighted Model Function Jacobian

The weighted model function Jacobian is the nonlinear model Jacobian multiplied by the square root
of the observation weight matrix.

Given estimated regression coefficients, b, the estimated model Jacobian, J,for the nonlinear function
f (xi, b) has elements

Ji j =
∂ f (xi, b)
∂b j

,

where bj is the jth element of b .

When you fit a weighted nonlinear regression with diagonal weights matrix W,nlinfit returns the
weighted Jacobian matrix,

J* = W1/2J .

Tips
• To produce error estimates on predictions, use the optional output arguments R, J, CovB, or MSE

as inputs to nlpredci.
• To produce error estimates on the estimated coefficients, beta, use the optional output arguments

R, J, CovB, or MSE as inputs to nlparci.
• If you use the robust fitting option, RobustWgtFun, you must use CovB—and might need MSE—as

inputs to nlpredci or nlparci to ensure that the confidence intervals take the robust fit
properly into account.

Algorithms
• nlinfit treats NaN values in Y or modelfun(beta0,X) as missing data, and ignores the

corresponding observations.
• For nonrobust estimation, nlinfit uses the Levenberg-Marquardt nonlinear least squares

algorithm [1].
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• For robust estimation, nlinfit uses the algorithm of “Iteratively Reweighted Least Squares” on
page 11-106 ([2], [3]). At each iteration, the robust weights are recalculated based on each
observation’s residual from the previous iteration. These weights downweight outliers, so that
their influence on the fit is decreased. Iterations continue until the weights converge.

• When you specify a function handle for observation weights, the weights depend on the fitted
model. In this case, nlinfit uses an iterative generalized least squares algorithm to fit the
nonlinear regression model.

Version History
Introduced before R2006a

References
[1] Seber, G. A. F., and C. J. Wild. Nonlinear Regression. Hoboken, NJ: Wiley-Interscience, 2003.

[2] DuMouchel, W. H., and F. L. O'Brien. “Integrating a Robust Option into a Multiple Regression
Computing Environment.” Computer Science and Statistics: Proceedings of the 21st
Symposium on the Interface. Alexandria, VA: American Statistical Association, 1989.

[3] Holland, P. W., and R. E. Welsch. “Robust Regression Using Iteratively Reweighted Least-Squares.”
Communications in Statistics: Theory and Methods, A6, 1977, pp. 813–827.

See Also
fitnlm | nlparci | nlpredci | nlintool

Topics
“Nonlinear Regression” on page 13-2
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nlintool
Interactive nonlinear regression

Syntax
nlintool(X,y,fun,beta0)
nlintool(X,y,fun,beta0,alpha)
nlintool(X,y,fun,beta0,alpha,'xname','yname')

Description
nlintool(X,y,fun,beta0) is a graphical user interface to the nlinfit function, and uses the
same input arguments. The interface displays plots of the fitted response against each predictor, with
the other predictors held fixed. The fixed values are in the text boxes below each predictor axis.
Change the fixed values by typing in a new value or by dragging the vertical lines in the plots to new
positions. When you change the value of a predictor, all plots update to display the model at the new
point in predictor space. Dashed red curves show 95% simultaneous confidence bands for the
function.

nlintool(X,y,fun,beta0,alpha) shows 100(1-alpha)% confidence bands. These are
simultaneous confidence bounds for the function value. Using the Bounds menu you can switch
between simultaneous and non-simultaneous bounds, and between bounds on the function and
bounds for predicting a new observation.

nlintool(X,y,fun,beta0,alpha,'xname','yname') labels the plots using the character
matrix or string array 'xname' for the predictors and the character vector or string scalar 'yname'
for the response.

Examples

The data in reaction.mat are partial pressures of three chemical reactants and the corresponding
reaction rates. The function hougen implements the nonlinear Hougen-Watson model for reaction
rates. The following fits the model to the data:

load reaction
nlintool(reactants,rate,@hougen,beta,0.01,xn,yn)

35 Functions

35-5030



Version History
Introduced before R2006a

See Also
nlinfit | polytool | rstool
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nlmefit
Nonlinear mixed-effects estimation

Syntax
beta = nlmefit(X,y,group,V,fun,beta0)
[beta,PSI] = nlmefit(X,y,group,V,fun,beta0)
[beta,PSI,stats] = nlmefit(X,y,group,V,fun,beta0)
[beta,PSI,stats,B] = nlmefit(X,y,group,V,fun,beta0)
[beta,PSI,stats,B] = nlmefit(X,y,group,V,fun,beta0,'Name',value)

Description
beta = nlmefit(X,y,group,V,fun,beta0) fits a nonlinear mixed-effects regression model and
returns estimates of the fixed effects in beta. By default, nlmefit fits a model in which each
parameter is the sum of a fixed and a random effect, and the random effects are uncorrelated (their
covariance matrix is diagonal).

X is an n-by-h matrix of n observations on h predictors.

y is an n-by-1 vector of responses.

group is a grouping variable indicating m groups in the observations. group is a categorical
variable, a numeric vector, a character matrix with rows for group names, a string array, or a cell
array of character vectors. For more information on grouping variables, see “Grouping Variables” on
page 2-46.

V is an m-by-g matrix or cell array of g group-specific predictors. These are predictors that take the
same value for all observations in a group. The rows of V are assigned to groups using grp2idx,
according to the order specified by grp2idx(group). Use a cell array for V if group predictors vary
in size across groups. Use [] for V if there are no group-specific predictors.

fun is a handle to a function that accepts predictor values and model parameters and returns fitted
values. fun has the form

yfit = modelfun(PHI,XFUN,VFUN)

The arguments are:

• PHI — A 1-by-p vector of model parameters.
• XFUN — A k-by-h array of predictors, where:

• k = 1 if XFUN is a single row of X.
• k = ni if XFUN contains the rows of X for a single group of size ni.
• k = n if XFUN contains all rows of X.

• VFUN — Group-specific predictors given by one of:

• A 1-by-g vector corresponding to a single group and a single row of V.
• An n-by-g array, where the jth row is V(I,:) if the jth observation is in group I.
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If V is empty, nlmefit calls modelfun with only two inputs.
• yfit — A k-by-1 vector of fitted values

When either PHI or VFUN contains a single row, it corresponds to all rows in the other two input
arguments.

Note If modelfun can compute yfit for more than one vector of model parameters per call, use the
'Vectorization' parameter (described later) for improved performance.

beta0 is a q-by-1 vector with initial estimates for q fixed effects. By default, q is the number of model
parameters p.

nlmefit fits the model by maximizing an approximation to the marginal likelihood with random
effects integrated out, assuming that:

• Random effects are multivariate normally distributed and independent between groups.
• Observation errors are independent, identically normally distributed, and independent of the

random effects.

[beta,PSI] = nlmefit(X,y,group,V,fun,beta0) also returns PSI, an r-by-r estimated
covariance matrix for the random effects. By default, r is equal to the number of model parameters p.

[beta,PSI,stats] = nlmefit(X,y,group,V,fun,beta0) also returns stats, a structure with
fields:

• dfe — The error degrees of freedom for the model
• logl — The maximized loglikelihood for the fitted model
• rmse — The square root of the estimated error variance (computed on the log scale for the

exponential error model)
• errorparam — The estimated parameters of the error variance model
• aic — The Akaike information criterion, calculated as aic = -2 * logl + 2 * numParam, where

numParam is the number of fitting parameters, including the degree of freedom for covariance
matrix of the random effects, the number of fixed effects and the number of parameters of the
error model, and logl is a field in the stats structure

• bic — The Bayesian information criterion, calculated as bic = –2*logl + log(M) * numParam

• M is the number of groups.
• numParam and logl are defined as in aic.

Note that some literature suggests that the computation of bic should be , bic = –2*logl +
log(N) * numParam, where N is the number of observations.

• covb — The estimated covariance matrix of the parameter estimates
• sebeta — The standard errors for beta
• ires — The population residuals (y-y_population), where y_population is the individual

predicted values
• pres — The population residuals (y-y_population), where y_population is the population

predicted values
• iwres — The individual weighted residuals
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• pwres — The population weighted residuals
• cwres — The conditional weighted residuals

[beta,PSI,stats,B] = nlmefit(X,y,group,V,fun,beta0) also returns B, an r-by-m matrix of
estimated random effects for the m groups. By default, r is equal to the number of model parameters
p.

[beta,PSI,stats,B] = nlmefit(X,y,group,V,fun,beta0,'Name',value) specifies one or
more optional parameter name/value pairs. Specify Name inside single quotes.

Use the following parameters to fit a model different from the default. (The default model is obtained
by setting both FEConstDesign and REConstDesign to eye(p), or by setting both
FEParamsSelect and REParamsSelect to 1:p.) Use at most one parameter with an 'FE' prefix
and one parameter with an 'RE' prefix. The nlmefit function requires you to specify at least one
fixed effect and one random effect.

Parameter Value
FEParamsSelect A vector specifying which elements of the parameter vector

PHI include a fixed effect, given as a numeric vector of indices
from 1 to p or as a 1-by-p logical vector. If q is the specified
number of elements, then the model includes q fixed effects.

FEConstDesign A p-by-q design matrix ADESIGN, where ADESIGN*beta are
the fixed components of the p elements of PHI.

FEGroupDesign A p-by-q-by-m array specifying a different p-by-q fixed-effects
design matrix for each of the m groups.

FEObsDesign A p-by-q-by-n array specifying a different p-by-q fixed-effects
design matrix for each of the n observations.

REParamsSelect A vector specifying which elements of the parameter vector
PHI include a random effect, given as a numeric vector of
indices from 1 to p or as a 1-by-p logical vector. The model
includes r random effects, where r is the specified number of
elements.

REConstDesign A p-by-r design matrix BDESIGN, where BDESIGN*B are the
random components of the p elements of PHI.

REGroupDesign A p-by-r-by-m array specifying a different p-by-r random-effects
design matrix for each of m groups.

REObsDesign A p-by-r-by-n array specifying a different p-by-r random-effects
design matrix for each of n observations.

Use the following parameters to control the iterative algorithm for maximizing the likelihood:

Parameter Value
RefineBeta0 Determines whether nlmefit makes an initial refinement of

beta0 by first fitting modelfun without random effects and
replacing beta0 with beta. Choices are 'on' and 'off'. The
default value is 'on'.
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Parameter Value
ErrorModel A character vector or string scalar specifying the form of the

error term. Default is 'constant'. Each model defines the
error using a standard normal (Gaussian) variable e, the
function value f, and one or two parameters a and b. Choices
are:

• 'constant': y = f + a*e
• 'proportional': y = f + b*f*e
• 'combined': y = f + (a+b*f)*e
• 'exponential': y = f*exp(a*e), or equivalently log(y) =

log(f) + a*e

If this parameter is given, the output stats.errorparam
field has the value

• a for 'constant' and 'exponential'
• b for 'proportional'
• [a b] for 'combined'

ApproximationType The method used to approximate the likelihood of the model.
Choices are:

• 'LME' — Use the likelihood for the linear mixed-effects
model at the current conditional estimates of beta and B.
This is the default.

• 'RELME' — Use the restricted likelihood for the linear
mixed-effects model at the current conditional estimates of
beta and B.

• 'FO' — First-order Laplacian approximation without
random effects.

• 'FOCE' — First-order Laplacian approximation at the
conditional estimates of B.
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Parameter Value
Vectorization Indicates acceptable sizes for the PHI, XFUN, and VFUN input

arguments to modelfun. Choices are:

• 'SinglePhi' — modelfun can only accept a single set of
model parameters at a time, so PHI must be a single row
vector in each call. nlmefit calls modelfun in a loop, if
necessary, with a single PHI vector and with XFUN
containing rows for a single observation or group at a time.
VFUN may be a single row that applies to all rows of XFUN,
or a matrix with rows corresponding to rows in XFUN. This
is the default.

• 'SingleGroup' — modelfun can only accept inputs
corresponding to a single group in the data, so XFUN must
contain rows of X from a single group in each call.
Depending on the model, PHI is a single row that applies to
the entire group or a matrix with one row for each
observation. VFUN is a single row.

• 'Full' — modelfun can accept inputs for multiple
parameter vectors and multiple groups in the data. Either
PHI or VFUN may be a single row that applies to all rows of
XFUN or a matrix with rows corresponding to rows in XFUN.
This option can improve performance by reducing the
number of calls to modelfun, but may require modelfun
to perform singleton expansion on PHI or V.

CovParameterization Specifies the parameterization used internally for the scaled
covariance matrix. Choices are 'chol' for the Cholesky
factorization or 'logm' the matrix logarithm. The default is
'logm'.

CovPattern Specifies an r-by-r logical or numeric matrix P that defines the
pattern of the random-effects covariance matrix PSI. nlmefit
estimates the variances along the diagonal of PSI and the
covariances specified by nonzeros in the off-diagonal elements
of P. Covariances corresponding to zero off-diagonal elements
in P are constrained to be zero. If P does not specify a row-
column permutation of a block diagonal matrix, nlmefit adds
nonzero elements to P as needed. The default value of P is
eye(r), corresponding to uncorrelated random effects.

Alternatively, P may be a 1-by-r vector containing values in
1:r, with equal values specifying groups of random effects. In
this case, nlmefit estimates covariances only within groups,
and constrains covariances across groups to be zero.
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Parameter Value
ParamTransform A vector of p-values specifying a transformation function f() for

each of the P parameters: XB = ADESIGN*BETA + BDESIGN*B
PHI = f(XB). Each element of the vector must be one of the
following integer codes specifying the transformation for the
corresponding value of PHI:

• 0: PHI = XB (default for all parameters)
• 1: log(PHI) = XB
• 2: probit(PHI) = XB
• 3: logit(PHI) = XB

Options A structure of the form returned by statset. nlmefit uses
the following statset parameters:

• 'DerivStep' — Relative difference used in finite
difference gradient calculation. May be a scalar, or a vector
whose length is the number of model parameters p. The
default is eps^(1/3).

• 'Display' — Level of iterative display during estimation.
Choices are:

• 'off' (default) — Displays no information
• 'final' — Displays information after the final iteration
• 'iter' — Displays information at each iteration

• 'FunValCheck' — Check for invalid values, such as NaN
or Inf, from modelfun. Choices are 'on' and 'off'. The
default is 'on'.

• 'MaxIter' — Maximum number of iterations allowed. The
default is 200.

• 'OutputFcn' — Function handle specified using @, a cell
array with function handles or an empty array (default).
The solver calls all output functions after each iteration.

• 'TolFun' — Termination tolerance on the loglikelihood
function. The default is 1e-4.

• 'TolX' — Termination tolerance on the estimated fixed
and random effects. The default is 1e-4.

OptimFun Optimization function for the estimation process that
maximizes a likelihood function, specified as 'fminsearch'
(default) or 'fminunc'. Use of 'fminunc' requires
Optimization Toolbox. The fminsearch function uses a direct
search method that uses only function evaluations. The
fminunc function uses gradient methods and is generally
more efficient for an optimization problem that maximizes the
likelihood function.

Examples
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Nonlinear Mixed-Effects Model

Enter and display data on the growth of five orange trees.

CIRC = [30 58 87 115 120 142 145;
        33 69 111 156 172 203 203;
        30 51 75 108 115 139 140;
        32 62 112 167 179 209 214;
        30 49 81 125 142 174 177];
time = [118 484 664 1004 1231 1372 1582];

h = plot(time,CIRC','o','LineWidth',2);
xlabel('Time (days)')
ylabel('Circumference (mm)')
title('{\bf Orange Tree Growth}')
legend([repmat('Tree ',5,1),num2str((1:5)')],...
       'Location','NW')
grid on
hold on

Use an anonymous function to specify a logistic growth model.

model = @(PHI,t)(PHI(:,1))./(1+exp(-(t-PHI(:,2))./PHI(:,3)));

Fit the model using nlmefit with default settings (that is, assuming each parameter is the sum of a
fixed and a random effect, with no correlation among the random effects):
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TIME = repmat(time,5,1);
NUMS = repmat((1:5)',size(time));

beta0 = [100 100 100];
[beta1,PSI1,stats1] = nlmefit(TIME(:),CIRC(:),NUMS(:),...
                              [],model,beta0)

beta1 = 3×1

  191.3189
  723.7608
  346.2517

PSI1 = 3×3

  962.1535         0         0
         0    0.0000         0
         0         0  297.9880

stats1 = struct with fields:
           dfe: 28
          logl: -131.5457
           mse: 59.7882
          rmse: 7.9016
    errorparam: 7.7323
           aic: 277.0913
           bic: 274.3574
          covb: [3x3 double]
        sebeta: [15.2249 33.1579 26.8235]
          ires: [35x1 double]
          pres: [35x1 double]
         iwres: [35x1 double]
         pwres: [35x1 double]
         cwres: [35x1 double]

The negligible variance of the second random effect, PSI1(2,2), suggests that it can be removed to
simplify the model.

[beta2,PSI2,stats2,b2] = nlmefit(TIME(:),CIRC(:),...
    NUMS(:),[],model,beta0,'REParamsSelect',[1 3])

beta2 = 3×1

  191.3193
  723.7629
  346.2532

PSI2 = 2×2

  962.4847         0
         0  297.9930

stats2 = struct with fields:
           dfe: 29
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          logl: -131.5456
           mse: 59.7847
          rmse: 7.7642
    errorparam: 7.7321
           aic: 275.0913
           bic: 272.7479
          covb: [3x3 double]
        sebeta: [15.2270 33.1573 26.8230]
          ires: [35x1 double]
          pres: [35x1 double]
         iwres: [35x1 double]
         pwres: [35x1 double]
         cwres: [35x1 double]

b2 = 2×5

  -28.5262   31.6066  -36.5078   39.0748   -5.6474
    9.9981   -0.7623    6.0046   -9.4579   -5.7824

The loglikelihood logl is unaffected, and both the Akaike and Bayesian information criteria ( aic
and bic ) are reduced, supporting the decision to drop the second random effect from the model.

Use the estimated fixed effects in beta2 and the estimated random effects for each tree in b2 to plot
the model through the data.

PHI = repmat(beta2,1,5) + ...          % Fixed effects
      [b2(1,:);zeros(1,5);b2(2,:)];    % Random effects

tplot = 0:0.1:1600;
for I = 1:5
  fitted_model=@(t)(PHI(1,I))./(1+exp(-(t-PHI(2,I))./ ... 
       PHI(3,I)));
  plot(tplot,fitted_model(tplot),'Color',h(I).Color, ...
       'LineWidth',2)
end
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Version History
Introduced in R2008b

References

[1] Lindstrom, M. J., and D. M. Bates. “Nonlinear mixed-effects models for repeated measures data.”
Biometrics. Vol. 46, 1990, pp. 673–687.

[2] Davidian, M., and D. M. Giltinan. Nonlinear Models for Repeated Measurements Data. New York:
Chapman & Hall, 1995.

[3] Pinheiro, J. C., and D. M. Bates. “Approximations to the log-likelihood function in the nonlinear
mixed-effects model.” Journal of Computational and Graphical Statistics. Vol. 4, 1995, pp. 12–
35.

[4] Demidenko, E. Mixed Models: Theory and Applications. Hoboken, NJ: John Wiley & Sons, Inc.,
2004.

See Also
nlinfit | nlpredci | nlmefitsa
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Topics
“Mixed-Effects Models” on page 13-18
“Grouping Variables” on page 2-46
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nlmefitsa
Fit nonlinear mixed-effects model with stochastic EM algorithm

Syntax
[BETA,PSI,STATS,B] = nlmefitsa(X,Y,GROUP,V,MODELFUN,BETA0)
[BETA,PSI,STATS,B] = nlmefitsa(X,Y,GROUP,V,MODELFUN,BETA0,'Name',Value)

Description
[BETA,PSI,STATS,B] = nlmefitsa(X,Y,GROUP,V,MODELFUN,BETA0) fits a nonlinear mixed-
effects regression model and returns estimates of the fixed effects in BETA. By default, nlmefitsa
fits a model where each model parameter is the sum of a corresponding fixed and random effect, and
the covariance matrix of the random effects is diagonal, i.e., uncorrelated random effects.

The BETA, PSI, and other values this function returns are the result of a random (Monte Carlo)
simulation designed to converge to the maximum likelihood estimates of the parameters. Because the
results are random, it is advisable to examine the plot of simulation to results to be sure that the
simulation has converged. It may also be helpful to run the function multiple times, using multiple
starting values, or use the 'Replicates' parameter to perform multiple simulations.

[BETA,PSI,STATS,B] = nlmefitsa(X,Y,GROUP,V,MODELFUN,BETA0,'Name',Value) accepts
one or more comma-separated parameter name/value pairs. Specify Name inside single quotes.

Input Arguments
Definitions:

In the following list of arguments, the following variable definitions apply:

• n — number of observations
• h — number of predictor variables
• m — number of groups
• g — number of group-specific predictor variables
• p — number of parameters
• f — number of fixed effects

X

An n-by-h matrix of n observations on h predictor variables.

Y

An n-by-1 vector of responses.
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GROUP

A grouping variable indicating to which of m groups each observation belongs. GROUP can be a
categorical variable, a numeric vector, a character matrix with rows for group names, a string array,
or a cell array of character vectors.

V

An m-by-g matrix of g group-specific predictor variables for each of the m groups in the data. These
are predictor values that take on the same value for all observations in a group. Rows of V are
ordered according to GRP2IDX(GROUP). Use an m-by-g cell array for V if any of the group-specific
predictor values vary in size across groups. Specify [] for V if there are no group predictors.

MODELFUN

A handle to a function that accepts predictor values and model parameters, and returns fitted values.
MODELFUN has the form YFIT = MODELFUN(PHI,XFUN,VFUN) with input arguments

• PHI — A 1-by-p vector of model parameters.
• XFUN — An l-by-h array of predictor variables where

• l is 1 if XFUN is a single row of X
• l is ni if XFUN contains the rows of X for a single group of size ni

• l is n if XFUN contains all rows of X.
• VFUN — Either

• A 1-by-g vector of group-specific predictors for a single group, corresponding to a single row of
V

• An n-by-g matrix, where the k-th row of VFUN is V(i,:) if the k-th observation is in group i.

If V is empty, nlmefitsa calls MODELFUN with only two inputs.

MODELFUN returns an l-by-1 vector of fitted values YFIT. When either PHI or VFUN contains a single
row, that one row corresponds to all rows in the other two input arguments. For improved
performance, use the 'Vectorization' parameter name/value pair (described below) if MODELFUN
can compute YFIT for more than one vector of model parameters in one call.

BETA0

An f-by-1 vector with initial estimates for the f fixed effects. By default, f is equal to the number of
model parameters p. BETA0 can also be an f-by-REPS matrix, and the estimation is repeated REPS
times using each column of BETA0 as a set of starting values.

Name-Value Pair Arguments

By default, nlmefitsa fits a model where each model parameter is the sum of a corresponding fixed
and random effect. Use the following parameter name/value pairs to fit a model with a different
number of or dependence on fixed or random effects. Use at most one parameter name with an 'FE'
prefix and one parameter name with an 'RE' prefix. Note that some choices change the way
nlmefitsa calls MODELFUN, as described further below.
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FEParamsSelect

A vector specifying which elements of the model parameter vector PHI include a fixed effect, as a
numeric vector with elements in 1:p, or as a 1-by-p logical vector. The model will include f fixed
effects, where f is the specified number of elements.

FEConstDesign

A p-by-f design matrix ADESIGN, where ADESIGN*BETA are the fixed components of the p elements of
PHI.

FEGroupDesign

A p-by-f-by-m array specifying a different p-by-f fixed effects design matrix for each of the m groups.

REParamsSelect

A vector specifying which elements of the model parameter vector PHI include a random effect, as a
numeric vector with elements in 1:p, or as a 1-by-p logical vector. The model will include r random
effects, where r is the specified number of elements.

REConstDesign

A p-by-r design matrix BDESIGN, where BDESIGN*B are the random components of the p elements of
PHI. This matrix must consist of 0s and 1s, with at most one 1 per row.

The default model is equivalent to setting both FEConstDesign and REConstDesign to eye(p), or
to setting both FEParamsSelect and REParamsSelect to 1:p.

Additional optional parameter name/value pairs control the iterative algorithm used to maximize the
likelihood:

CovPattern

Specifies an r-by-r logical or numeric matrix PAT that defines the pattern of the random effects
covariance matrix PSI. nlmefitsa computes estimates for the variances along the diagonal of PSI
as well as covariances that correspond to non-zeroes in the off-diagonal of PAT. nlmefitsa
constrains the remaining covariances, i.e., those corresponding to off-diagonal zeroes in PAT, to be
zero. PAT must be a row-column permutation of a block diagonal matrix, and nlmefitsa adds non-
zero elements to PAT as needed to produce such a pattern. The default value of PAT is eye(r),
corresponding to uncorrelated random effects.

Alternatively, specify PAT as a 1-by-r vector containing values in 1:r. In this case, elements of PAT
with equal values define groups of random effects, nlmefitsa estimates covariances only within
groups, and constrains covariances across groups to be zero.

Cov0

Initial value for the covariance matrix PSI. Must be an r-by-r positive definite matrix. If empty, the
default value depends on the values of BETA0.

ComputeStdErrors

true to compute standard errors for the coefficient estimates and store them in the output STATS
structure, or false (default) to omit this computation.
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ErrorModel

A character vector or string scalar specifying the form of the error term. Default is 'constant'.
Each model defines the error using a standard normal (Gaussian) variable e, the function value f, and
one or two parameters a and b. Choices are

• 'constant' — y = f + a*e
• 'proportional' — y = f + b*f*e
• 'combined' — y = f + (a+b*f)*e
• 'exponential' — y = f*exp(a*e), or equivalently log(y) = log(f) + a*e

If this parameter is given, the output STATS.errorparam field has the value

• a for 'constant' and 'exponential'
• b for 'proportional'
• [a b] for 'combined'

ErrorParameters

A scalar or two-element vector specifying starting values for parameters of the error model. This
specifies the a, b, or [a b] values depending on the ErrorModel parameter.

LogLikMethod

Specifies the method for approximating the loglikelihood. Choices are:

• 'is' — Importance sampling
• 'gq' — Gaussian quadrature
• 'lin' — Linearization
• 'none' — Omit the loglikelihood approximation (default)

NBurnIn

Number of initial burn-in iterations during which the parameter estimates are not recomputed.
Default is 5.

NChains

Number c of "chains" simulated. Default is 1. Setting c>1 causes c simulated coefficient vectors to be
computed for each group during each iteration. Default depends on the data, and is chosen to provide
about 100 groups across all chains.

NIterations

Number of iterations. This can be a scalar or a three-element vector. Controls how many iterations
are performed for each of three phases of the algorithm:

1 simulated annealing
2 full step size
3 reduced step size

Default is [150 150 100]. A scalar is distributed across the three phases in the same proportions as
the default.
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NMCMCIterations

Number of Markov Chain Monte Carlo (MCMC) iterations. This can be a scalar or a three-element
vector. Controls how many of three different types of MCMC updates are performed during each
phase of the main iteration:

1 full multivariate update
2 single coordinate update
3 multiple coordinate update

Default is [2 2 2]. A scalar value is treated as a three-element vector with all elements equal to the
scalar.

OptimFun

Optimization function for the estimation process that maximizes a likelihood function, specified as
'fminsearch' (default) or 'fminunc'. Use of 'fminunc' requires Optimization Toolbox. The
fminsearch function uses a direct search method that uses only function evaluations. The fminunc
function uses gradient methods and is generally more efficient for an optimization problem that
maximizes the likelihood function.

Options

A structure created by a call to statset. nlmefitsa uses the following statset parameters:

• 'DerivStep' — Relative difference used in finite difference gradient calculation. May be a scalar,
or a vector whose length is the number of model parameters p. The default is eps^(1/3).

• Display — Level of display during estimation.

• 'off' (default) — Displays no information
• 'final' — Displays information after the final iteration of the estimation algorithm
• 'iter' — Displays information at each iteration

• FunValCheck

• 'on' (default) — Check for invalid values (such as NaN or Inf) from MODELFUN
• 'off' — Skip this check

• OutputFcn — Function handle specified using @, a cell array with function handles or an empty
array. nlmefitsa calls all output functions after each iteration. See nlmefitoutputfcn.m (the
default output function for nlmefitsa) for an example of an output function.

• TolX — Termination tolerance on the estimated fixed and random effects. The default is 1e-4.

ParamTransform

A vector of p-values specifying a transformation function f() for each of the p parameters:

XB = ADESIGN*BETA + BDESIGN*B 
PHI = f(XB) 

Each element of the vector must be one of the following integer codes specifying the transformation
for the corresponding value of PHI:

• 0: PHI = XB (default for all parameters)
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• 1: log(PHI) = XB
• 2: probit(PHI) = XB
• 3: logit(PHI) = XB

Replicates

Number REPS of estimations to perform starting from the starting values in the vector BETA0. If
BETA0 is a matrix, REPS must match the number of columns in BETA0. Default is the number of
columns in BETA0.

Vectorization

Determines the possible sizes of the PHI, XFUN, and VFUN input arguments to MODELFUN. Possible
values are:

• 'SinglePhi' — MODELFUN is a function (such as an ODE solver) that can only compute YFIT for
a single set of model parameters at a time, i.e., PHI must be a single row vector in each call.
nlmefitsa calls MODELFUN in a loop if necessary using a single PHI vector and with XFUN
containing rows for a single observation or group at a time. VFUN may be a single row that applies
to all rows of XFUN, or a matrix with rows corresponding to rows in XFUN.

• 'SingleGroup' — MODELFUN can only accept inputs corresponding to a single group in the data,
i.e., XFUN must contain rows of X from a single group in each call. Depending on the model, PHI is
a single row that applies to the entire group, or a matrix with one row for each observation. VFUN
is a single row.

• 'Full' — MODELFUN can accept inputs for multiple parameter vectors and multiple groups in the
data. Either PHI or VFUN may be a single row that applies to all rows of XFUN, or a matrix with
rows corresponding to rows in XFUN. Using this option can improve performance by reducing the
number of calls to MODELFUN, but may require MODELFUN to perform singleton expansion on PHI
or V.

The default for 'Vectorization' is 'SinglePhi'. In all cases, if V is empty, nlmefitsa calls
MODELFUN with only two inputs.

Output Arguments
BETA

Estimates of the fixed effects

PSI

An r-by-r estimated covariance matrix for the random effects. By default, r is equal to the number of
model parameters p.

STATS

A structure with the following fields:

• logl — The maximized loglikelihood for the fitted model; empty if the LogLikMethod parameter
has its default value of 'none'

• rmse — The square root of the estimated error variance (computed on the log scale for the
exponential error model)
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• errorparam — The estimated parameters of the error variance model
• aic — The Akaike information criterion (empty if logl is empty), calculated as aic = –2 * logl +

2 * numParam, where

• logl is the maximized loglikelihood.
• numParam is the number of fitting parameters, including the degree of freedom for covariance

matrix of the random effects, the number of fixed effects and the number of parameters of the
error model.

• bic — The Bayesian information criterion (empty if logl is empty), calculated as bic = -2*logl
+ log(M) * numParam

• M is the number of groups.
• logl and numParam are defined as in aic.

Note that some literature suggests that the computation of bic should be , bic = -2*logl +
log(N) * numParam, where N is the number of observations. To adjust the value of the output you
can redefine bic as follows: bic = bic - numel(unique(group)) + numel(Y)

• sebeta — The standard errors for BETA (empty if the ComputeStdErrors parameter has its
default value of false)

• covb — The estimated covariance of the parameter estimates (empty if ComputeStdErrors is
false)

• dfe — The error degrees of freedom
• pres — The population residuals (y-y_population), where y_population is the population

predicted values
• ires — The population residuals (y-y_population), where y_population is the individual

predicted values
• pwres — The population weighted residuals
• cwres — The conditional weighted residuals
• iwres — The individual weighted residuals

Examples

Nonlinear Mixed-Effects Model with Stochastic EM Algorithm

Load the sample data.

load indomethacin

Fit a model to data on concentrations of the drug indomethacin in the bloodstream of six subjects
over eight hours.

model = @(phi,t)(phi(:,1).*exp(-phi(:,2).*t)+phi(:,3).*exp(-phi(:,4).*t));
phi0 = [1 1 1 1];
xform = [0 1 0 1]; % log transform for 2nd and 4th parameters
[beta,PSI,stats,br] = nlmefitsa(time,concentration, ...
   subject,[],model,phi0,'ParamTransform',xform)
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beta = 4×1

    0.8630
   -0.7897
    2.7762
    1.0785

PSI = 4×4

    0.0585         0         0         0
         0    0.0248         0         0
         0         0    0.5068         0
         0         0         0    0.0139

stats = struct with fields:
          logl: []
           aic: []
           bic: []
        sebeta: []
           dfe: 57
          covb: []
    errorparam: 0.0811
          rmse: 0.0772
          ires: [66x1 double]
          pres: [66x1 double]
         iwres: [66x1 double]
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         pwres: [66x1 double]
         cwres: [66x1 double]

br = 4×6

   -0.2302   -0.0033    0.1625    0.1774   -0.3334    0.1129
    0.0363   -0.1502    0.0071    0.0471    0.0068   -0.0481
   -0.7631   -0.0553    0.8780   -0.8120    0.5429    0.1695
   -0.0030   -0.0223    0.0192   -0.0830    0.0505   -0.0066

Plot the data along with an overall population fit.

figure
phi = [beta(1),exp(beta(2)),beta(3),exp(beta(4))]; 
h = gscatter(time,concentration,subject);
xlabel('Time (hours)')
ylabel('Concentration (mcg/ml)')
title('{\bf Indomethacin Elimination}')
xx = linspace(0,8);
line(xx,model(phi,xx),'linewidth',2,'color','k')

Plot individual curves based on random-effect estimates.

for j=1:6
    phir = [beta(1)+br(1,j), exp(beta(2)+br(2,j)), ...
            beta(3)+br(3,j), exp(beta(4)+br(4,j))];
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    line(xx,model(phir,xx),'color',get(h(j),'color'))
end

Algorithms
In order to estimate the parameters of a nonlinear mixed effects model, we would like to choose the
parameter values that maximize a likelihood function. These values are called the maximum
likelihood estimates. The likelihood function can be written in the form

p y β, σ2, Σ =∫p y β, b, σ2 p b Σ db

where

• y is the response data
• β is the vector of population coefficients
• σ2 is the residual variance
• ∑ is the covariance matrix for the random effects
• b is the set of unobserved random effects

Each p() function on the right-hand-side is a normal (Gaussian) likelihood function that may depend
on covariates.

Since the integral does not have a closed form, it is difficult to find parameters that maximize it.
Delyon, Lavielle, and Moulines [1] proposed to find the maximum likelihood estimates using an
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Expectation-Maximization (EM) algorithm in which the E step is replaced by a stochastic procedure.
They called their algorithm SAEM, for Stochastic Approximation EM. They demonstrated that this
algorithm has desirable theoretical properties, including convergence under practical conditions and
convergence to a local maximum of the likelihood function. Their proposal involves three steps:

1 Simulation: Generate simulated values of the random effects b from the posterior density p(b|Σ)
given the current parameter estimates.

2 Stochastic approximation: Update the expected value of the loglikelihood function by taking its
value from the previous step, and moving part way toward the average value of the loglikelihood
calculated from the simulated random effects.

3 Maximization step: Choose new parameter estimates to maximize the loglikelihood function given
the simulated values of the random effects.

Version History
Introduced in R2010a

References

[1] Delyon, B., M. Lavielle, and E. Moulines, "Convergence of a stochastic approximation version of
the EM algorithm." Annals of Statistics, 27, 94-128, 1999.
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See Also
nlinfit | nlpredci | nlmefit

Topics
“Mixed-Effects Models” on page 13-18
“Grouping Variables” on page 2-46
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nlparci
Nonlinear regression parameter confidence intervals

Syntax
ci = nlparci(beta,resid,'covar',sigma)
ci = nlparci(beta,resid,'jacobian',J)
ci = nlparci(...,'alpha',alpha)

Description
ci = nlparci(beta,resid,'covar',sigma) returns the 95% confidence intervals ci for the
nonlinear least squares parameter estimates beta. Before calling nlparci, use nlinfit to fit a
nonlinear regression model and get the coefficient estimates beta, residuals resid, and estimated
coefficient covariance matrix sigma.

ci = nlparci(beta,resid,'jacobian',J) is an alternative syntax that also computes 95%
confidence intervals. J is the Jacobian computed by nlinfit. If the 'robust' option is used with
nlinfit, use the 'covar' input rather than the 'jacobian' input so that the required sigma
parameter takes the robust fitting into account.

ci = nlparci(...,'alpha',alpha) returns 100(1-alpha)% confidence intervals.

nlparci treats NaNs in resid or J as missing values, and ignores the corresponding observations.

The confidence interval calculation is valid for systems where the length of resid exceeds the length
of beta and J has full column rank. When J is ill-conditioned, confidence intervals may be inaccurate.

Examples

Fit to Exponential Decay

Suppose you have data, and want to fit a model of the form

yi = a1 + a2exp −a3xi + ϵi.

ai are the parameters you want to estimate, xi are the data points, yi are the responses, and εi are
noise terms.

Write a function handle that represents the model:

mdl = @(a,x)(a(1) + a(2)*exp(-a(3)*x));

Generate synthetic data with parameters a = [1;3;2], with the x data points distributed
exponentially with parameter 2, and normally distributed noise with standard deviation 0.1:

rng(9845,'twister') % for reproducibility
a = [1;3;2];
x = exprnd(2,100,1);
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epsn = normrnd(0,0.1,100,1);
y = mdl(a,x) + epsn;

Fit the model to data starting from the arbitrary guess a0 = [2;2;2]:

a0 = [2;2;2];
[ahat,r,J,cov,mse] = nlinfit(x,y,mdl,a0);
ahat

ahat = 3×1

    1.0153
    3.0229
    2.1070

Check whether [1;3;2] is in a 95% confidence interval using the Jacobian argument in nlparci:

ci = nlparci(ahat,r,'Jacobian',J)

ci = 3×2

    0.9869    1.0438
    2.9401    3.1058
    1.9963    2.2177

You can obtain the same result using the covariance argument:

ci = nlparci(ahat,r,'covar',cov)

ci = 3×2

    0.9869    1.0438
    2.9401    3.1058
    1.9963    2.2177

Version History
Introduced before R2006a

See Also
nlinfit | nlpredci
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nlpredci
Nonlinear regression prediction confidence intervals

Syntax
[Ypred,delta] = nlpredci(modelfun,X,beta,R,'Covar',CovB)
[Ypred,delta] = nlpredci(modelfun,X,beta,R,'Covar',CovB,Name,Value)

[Ypred,delta] = nlpredci(modelfun,X,beta,R,'Jacobian',J)
[Ypred,delta] = nlpredci(modelfun,X,beta,R,'Jacobian',J,Name,Value)

Description
[Ypred,delta] = nlpredci(modelfun,X,beta,R,'Covar',CovB) returns predictions, Ypred,
and 95% confidence interval half-widths, delta, for the nonlinear regression model modelfun at
input values X. Before calling nlpredci, use nlinfit to fit modelfun and get the estimated
coefficients, beta, residuals, R, and variance-covariance matrix, CovB.

[Ypred,delta] = nlpredci(modelfun,X,beta,R,'Covar',CovB,Name,Value) uses
additional options specified by one or more name-value pair arguments.

[Ypred,delta] = nlpredci(modelfun,X,beta,R,'Jacobian',J) returns predictions, Ypred,
and 95% confidence interval half-widths, delta, for the nonlinear regression model modelfun at
input values X. Before calling nlpredci, use nlinfit to fit modelfun and get the estimated
coefficients, beta, residuals, R, and Jacobian, J.

If you use a robust option with nlinfit, then you should use the Covar syntax rather than the
Jacobian syntax. The variance-covariance matrix, CovB, is required to properly take the robust
fitting into account.

[Ypred,delta] = nlpredci(modelfun,X,beta,R,'Jacobian',J,Name,Value) uses
additional options specified by one or more name-value pair arguments.

Examples

Confidence Interval for Nonlinear Regression Curve

Load sample data.

S = load('reaction');
X = S.reactants;
y = S.rate;
beta0 = S.beta;

Fit the Hougen-Watson model to the rate data using the initial values in beta0.

[beta,R,J] = nlinfit(X,y,@hougen,beta0);

Obtain the predicted response and 95% confidence interval half-width for the value of the curve at
average reactant levels.
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[ypred,delta] = nlpredci(@hougen,mean(X),beta,R,'Jacobian',J)

ypred = 5.4622

delta = 0.1921

Compute the 95% confidence interval for the value of the curve.

[ypred-delta,ypred+delta]

ans = 1×2

    5.2702    5.6543

Prediction Interval for New Observation

Load sample data.

S = load('reaction');
X = S.reactants;
y = S.rate;
beta0 = S.beta;

Fit the Hougen-Watson model to the rate data using the initial values in beta0.

[beta,R,J] = nlinfit(X,y,@hougen,beta0);

Obtain the predicted response and 95% prediction interval half-width for a new observation with
reactant levels [100,100,100].

[ypred,delta] = nlpredci(@hougen,[100,100,100],beta,R,'Jacobian',J,...
                         'PredOpt','observation')

ypred = 1.8346

delta = 0.5101

Compute the 95% prediction interval for the new observation.

[ypred-delta,ypred+delta]

ans = 1×2

    1.3245    2.3447

Simultaneous Confidence Intervals for Robust Fit Curve

Generate sample data from the nonlinear regression model y = b1 + b2 ⋅ exp{b3x} + ϵ, where b1, b2,
and b3 are coefficients, and the error term is normally distributed with mean 0 and standard
deviation 0.5.
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modelfun = @(b,x)(b(1)+b(2)*exp(-b(3)*x));

rng('default') % for reproducibility
b = [1;3;2];
x = exprnd(2,100,1);
y = modelfun(b,x) + normrnd(0,0.5,100,1);

Fit the nonlinear model using robust fitting options.

opts = statset('nlinfit');
opts.RobustWgtFun = 'bisquare';
beta0 = [2;2;2];
[beta,R,J,CovB,MSE] = nlinfit(x,y,modelfun,beta0,opts);

Plot the fitted regression model and simultaneous 95% confidence bounds.

xrange = min(x):.01:max(x);
[ypred,delta] = nlpredci(modelfun,xrange,beta,R,'Covar',CovB,...
                         'MSE',MSE,'SimOpt','on');
lower = ypred - delta;
upper = ypred + delta;

figure()
plot(x,y,'ko') % observed data
hold on
plot(xrange,ypred,'k','LineWidth',2)
plot(xrange,[lower;upper],'r--','LineWidth',1.5)
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Confidence Interval Using Observation Weights

Load sample data.

S = load('reaction');
X = S.reactants;
y = S.rate;
beta0 = S.beta;

Specify a function handle for observation weights, then fit the Hougen-Watson model to the rate data
using the specified observation weights function.

a = 1; b = 1;
weights = @(yhat) 1./((a + b*abs(yhat)).^2);
[beta,R,J,CovB] = nlinfit(X,y,@hougen,beta0,'Weights',weights);

Compute the 95% prediction interval for a new observation with reactant levels [100,100,100]
using the observation weight function.

[ypred,delta] = nlpredci(@hougen,[100,100,100],beta,R,'Jacobian',J,...
                         'PredOpt','observation','Weights',weights);
[ypred-delta,ypred+delta]

ans = 1×2

    1.5264    2.1033

Confidence Interval Using Nonconstant Error Model

Load sample data.

S = load('reaction');
X = S.reactants;
y = S.rate;
beta0 = S.beta;

Fit the Hougen-Watson model to the rate data using the combined error variance model.

[beta,R,J,CovB,MSE,S] = nlinfit(X,y,@hougen,beta0,'ErrorModel','combined');

Compute the 95% prediction interval for a new observation with reactant levels [100,100,100]
using the fitted error variance model.

[ypred,delta] = nlpredci(@hougen,[100,100,100],beta,R,'Jacobian',J,...
                         'PredOpt','observation','ErrorModelInfo',S);
[ypred-delta,ypred+delta]

ans = 1×2

    1.3245    2.3447
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Input Arguments
modelfun — Nonlinear regression model function
function handle

Nonlinear regression model function, specified as a function handle. modelfun must accept two
input arguments, a coefficient vector and an array X—in that order—and return a vector of fitted
response values.

For example, to specify the hougen nonlinear regression function, use the function handle @hougen.
Data Types: function_handle

X — Input values for predictions
matrix

Input values for predictions, specified as a matrix. nlpredci makes a prediction for the covariates in
each row of X. There should be a column in X for each coefficient in the model.
Data Types: single | double

beta — Estimated regression coefficients
vector returned by nlinfit

Estimated regression coefficients, specified as the vector of fitted coefficients returned by a previous
call to nlinfit.
Data Types: single | double

R — Residuals
vector returned by nlinfit

Residuals for the fitted modelfun, specified as the vector of residuals returned by a previous call to
nlinfit.

CovB — Estimated variance-covariance matrix
matrix returned by nlinfit

Estimated variance-covariance matrix for the fitted coefficients, beta, specified as the variance-
covariance matrix returned by a previous call to nlinfit.

J — Estimated Jacobian
matrix returned by nlinfit

Estimated Jacobian of the nonlinear regression model, modelfun, specified as the Jacobian matrix
returned by a previous call to nlinfit.

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: 'Alpha',0.1,'PredOpt','observation' specifies 90% prediction intervals for new
observations.
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Alpha — Significance level
0.05 (default) | scalar value in the range (0,1)

Significance level for the confidence interval, specified as the comma-separated pair consisting of
'Alpha' and a scalar value in the range (0,1). If Alpha has value α, then nlpredci returns intervals
with 100×(1–α)% confidence level.

The default confidence level is 95% (α = 0.05).
Example: 'Alpha',0.1
Data Types: single | double

ErrorModelInfo — Information about error model fit
structure returned by nlinfit

Information about the error model fit, specified as the comma-separated pair consisting of
'ErrorModelInfo' and a structure returned by a previous call to nlinfit.

ErrorModelInfo only has an effect on the returned prediction interval when PredOpt has the value
'observation'. If you do not use ErrorModelInfo, then nlpredci assumes the error variance
model is 'constant'.

The error model structure returned by nlinfit has the following fields:

ErrorModel Chosen error model
ErrorParameters Estimated error parameters
ErrorVariance Function handle that accepts an N-by-p matrix, X, and returns

an N-by-1 vector of error variances using the estimated error
model

MSE Mean squared error
ScheffeSimPred Scheffé parameter for simultaneous prediction intervals when

using the estimated error model
WeightFunction Logical with value true if you used a custom weight function

previously in nlinfit
FixedWeights Logical with value true if you used fixed weights previously

in nlinfit
RobustWeightFunction Logical with value true if you used robust fitting previously

in nlinfit

MSE — Mean squared error
MSE returned by nlinfit

Mean squared error (MSE) for the fitted nonlinear regression model, specified as the comma-
separated pair consisting of 'MSE' and the MSE value returned by a previous call to nlinfit.

If you use a robust option with nlinfit, then you must specify the MSE when predicting new
observations to properly take the robust fitting into account. If you do not specify the MSE, then
nlpredci computes the MSE from the residuals, R, and does not take the robust fitting into account.

For example, if mse is the MSE value returned by nlinfit, then you can specify 'MSE',mse.
Data Types: single | double
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PredOpt — Prediction interval to compute
'curve' (default) | 'observation'

Prediction interval to compute, specified as the comma-separated pair consisting of 'PredOpt' and
either 'curve' or 'observation'.

• If you specify the value 'curve', then nlpredci returns confidence intervals for the estimated
curve (function value) at the observations X.

• If you specify the value 'observation', then nlpredci returns prediction intervals for new
observations at X.

If you specify 'observation' after using a robust option with nlinfit, then you must also specify
a value for MSE to provide the robust estimate of the mean squared error.
Example: 'PredOpt','observation'

SimOpt — Indicator for specifying simultaneous bounds
'off' (default) | 'on'

Indicator for specifying simultaneous bounds, specified as the comma-separated pair consisting of
'SimOpt' and either 'off' or 'on'. Use the value 'off' to compute nonsimultaneous bounds, and
'on' for simultaneous bounds.

Weights — Observation weights
vector | function handle

Observation weights, specified as the comma-separated pair consisting of 'Weights' and a vector of
positive scalar values or a function handle. The default is no weights.

• If you specify a vector of weights, then it must have the same number of elements as the number
of observations (rows) in X.

• If you specify a function handle for the weights, then it must accept a vector of predicted response
values as input, and return a vector of real positive weights as output.

Given weights, W, nlpredci estimates the error variance at observation i by mse*(1/W(i)), where
mse is the mean squared error value specified using MSE.
Example: 'Weights',@WFun
Data Types: double | single | function_handle

Output Arguments
Ypred — Predicted responses
vector

Predicted responses, returned as a vector with the same number of rows as X.

delta — Confidence interval half-widths
vector

Confidence interval half-widths, returned as a vector with the same number of rows as X. By default,
delta contains the half-widths for nonsimultaneous 95% confidence intervals for modelfun at the
observations in X. You can compute the lower and upper bounds of the confidence intervals as
Ypred-delta and Ypred+delta, respectively.
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If 'PredOpt' has value 'observation', then delta contains the half-widths for prediction
intervals of new observations at the values in X.

More About
Confidence Intervals for Estimable Predictions

When the estimated model Jacobian is not of full rank, then it might not be possible to construct
sensible confidence intervals at all prediction points. In this case, nlpredci still tries to construct
confidence intervals for any estimable prediction points.

For example, suppose you fit the linear function f (xi, β) = β1xi1 + β2xi2 + β3xi3 at the points in the
design matrix

X =

1 1 0
1 1 0
1 1 0
1 0 1
1 0 1
1 0 1

.

The estimated Jacobian at the values in X is the design matrix itself, J = X . Thus, the Jacobian is not
of full rank:

rng('default') % For reproducibility
y = randn(6,1);

linfun = @(b,x) x*b;
beta0 = [1;1;1];
X = [repmat([1 1 0],3,1); repmat([1 0 1],3,1)];   

[beta,R,J]  = nlinfit(X,y,linfun,beta0);

Warning: The Jacobian at the solution is ill-conditioned, and
some model parameters may not be estimated well (they are not
identifiable).  Use caution in making predictions. 
> In nlinfit at 283 

In this example, nlpredci can only compute prediction intervals at points that satisfy the linear
relationship

xi1 = xi2 + xi3 .

If you try to compute confidence intervals for predictions at nonidentifiable points, nlpredci returns
NaN for the corresponding interval half-widths:

xpred = [1 1 1;0 1 -1;2 1 1];
[ypred,delta] = nlpredci(linfun,xpred,beta,R,'Jacobian',J)

ypred =

   -0.0035
    0.0798
   -0.0047
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delta =

       NaN
    3.8102
    3.8102

Here, the first element of delta is NaN because the first row in xpred does not satisfy the required
linear dependence, and is therefore not an estimable contrast.

Tips
• To compute confidence intervals for complex parameters or data, you need to split the problem

into its real and imaginary parts. When calling nlinfit:

1 Define your parameter vector beta as the concatenation of the real and imaginary parts of
the original parameter vector.

2 Concatenate the real and imaginary parts of the response vector Y as a single vector.
3 Modify your model function modelfun to accept X and the purely real parameter vector, and

return a concatenation of the real and imaginary parts of the fitted values.

With the problem formulated this way, nlinfit computes real estimates, and confidence intervals
are feasible.

Algorithms
• nlpredci treats NaN values in the residuals, R, or the Jacobian, J, as missing values, and ignores

the corresponding observations.
• If the Jacobian, J, does not have full column rank, then some of the model parameters might be
nonidentifiable. In this case, nlpredci tries to construct confidence intervals for estimable
predictions on page 35-5063, and returns NaN for those that are not.

Version History
Introduced before R2006a

References
[1] Lane, T. P. and W. H. DuMouchel. “Simultaneous Confidence Intervals in Multiple Regression.” The

American Statistician. Vol. 48, No. 4, 1994, pp. 315–321.

[2] Seber, G. A. F., and C. J. Wild. Nonlinear Regression. Hoboken, NJ: Wiley-Interscience, 2003.

See Also
nlinfit | nlparci | NonLinearModel
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nnmf
Nonnegative matrix factorization

Syntax
[W,H] = nnmf(A,k)
[W,H] = nnmf(A,k,Name,Value)
[W,H,D] = nnmf( ___ )

Description
[W,H] = nnmf(A,k) factors the n-by-m matrix A into nonnegative factors W (n-by-k) and H (k-by-m).
The factorization is not exact; W*H is a lower-rank approximation to A. The factors W and H minimize
the root mean square residual D between A and W*H.

D = norm(A - W*H,'fro')/sqrt(n*m)

The factorization uses an iterative algorithm starting with random initial values for W and H. Because
the root mean square residual D might have local minima, repeated factorizations might yield
different W and H. Sometimes the algorithm converges to a solution of lower rank than k, which can
indicate that the result is not optimal.

[W,H] = nnmf(A,k,Name,Value) modifies the factorization using one or more name-value pair
arguments. For example, you can request repeated factorizations by setting 'Replicates' to an
integer value greater than 1.

[W,H,D] = nnmf( ___ ) also returns the root mean square residual D using any of the input
argument combinations in the previous syntaxes.

Examples

Nonnegative Rank-Two Approximation and Biplot

Load the sample data.

load fisheriris

Compute a nonnegative rank-two approximation of the measurements of the four variables in Fisher's
iris data.

rng(1) % For reproducibility
[W,H] = nnmf(meas,2);
H

H = 2×4

    0.6945    0.2856    0.6220    0.2218
    0.8020    0.5683    0.1834    0.0149
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The first and third variables in meas (sepal length and petal length, with coefficients 0.6945 and
0.6220, respectively) provide relatively strong weights to the first column of W . The first and second
variables in meas (sepal length and sepal width, with coefficients 0.8020 and 0.5683, respectively)
provide relatively strong weights to the second column of W .

Create a biplot of the data and the variables in meas in the column space of W .

biplot(H','Scores',W,'VarLabels',{'sl','sw','pl','pw'});
axis([0 1.1 0 1.1])
xlabel('Column 1')
ylabel('Column 2')

Change Algorithm

Starting from a random array X with rank 20, try a few iterations at several replicates using the
multiplicative algorithm.

rng default % For reproducibility
X = rand(100,20)*rand(20,50);
opt = statset('MaxIter',5,'Display','final');
[W0,H0] = nnmf(X,5,'Replicates',10,...
                   'Options',opt,...
                   'Algorithm','mult');
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    rep       iteration       rms resid      |delta x|
      1           5        0.560887       0.0245182
      2           5         0.66418       0.0364471
      3           5        0.609125       0.0358355
      4           5        0.608894       0.0415491
      5           5        0.619291       0.0455135
      6           5        0.621549       0.0299965
      7           5        0.640549       0.0438758
      8           5        0.673015       0.0366856
      9           5        0.606835       0.0318931
     10           5        0.633526       0.0319591
Final root mean square residual = 0.560887

Continue with more iterations from the best of these results using alternating least squares.

opt = statset('Maxiter',1000,'Display','final');
[W,H] = nnmf(X,5,'W0',W0,'H0',H0,...
                 'Options',opt,...
                 'Algorithm','als');

    rep       iteration       rms resid      |delta x|
      1          24        0.257336      0.00271859
Final root mean square residual = 0.257336

Input Arguments
A — Matrix to factorize
real matrix

Matrix to factorize, specified as a real matrix.
Example: rand(20,30)
Data Types: single | double

k — Rank of factors
positive integer

Rank of factors, specified as a positive integer. The resulting factors W and H have k columns and
rows, respectively.
Example: 3
Data Types: single | double

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: [W,H] = nnmf(A,k,'Algorithm','mult','Replicates',10) chooses the
multiplicative update algorithm and ten replicates to improve the result

Algorithm — Factorization algorithm
'als' (default) | 'mult'

 nnmf
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Factorization algorithm, specified as the comma-separated pair consisting of 'Algorithm' and
'als' (alternating least squares) or 'mult' (a multiplicative update algorithm).

The 'als' algorithm typically is more stable and converges in fewer iterations. Each iteration takes
longer. Therefore, the default maximum is 50, which usually gives satisfactory results in internal
testing.

The 'mult' algorithm typically has faster iterations and requires more of them. The default
maximum is 100. This algorithm tends to be more sensitive to starting values and, therefore, seems to
benefit more from running multiple replications.
Example: 'Algorithm','mult'
Data Types: char | string

W0 — Initial value of W
n-by-k matrix

Initial value of W, specified as the comma-separated pair consisting of 'W0' and an n-by-k matrix,
where n is the number of rows of A, and k is the second input argument of nnmf.
Data Types: single | double

H0 — Initial value of H
k-by-m matrix

Initial value of H, specified as the comma-separated pair consisting of 'H0' and a k-by-m matrix,
where k is the second input argument of nnmf, and m is the number of columns of A.
Data Types: single | double

Options — Algorithm options
[] (default) | structure returned by statset

Algorithm options, specified as the comma-separated pair consisting of 'Options' and a structure
returned by the statset function. nnmf uses the following fields of the options structure.

Field Description Values
Display Level of iterative display • 'off' (default) — No display

• 'final' — Display of final result
• 'iter' — Iterative display of

intermediate results
MaxIter Maximum number of iterations Positive integer. The default is 50 for the

'als' algorithm and 100 for the 'mult'
algorithm. Unlike in optimization settings,
reaching MaxIter iterations is treated as
convergence.

TolFun Termination tolerance on the
change in size of the residual

Nonnegative value. The default is 1e-4.

TolX Termination tolerance on the
relative change in the elements
of W and H

Nonnegative value. The default is 1e-4.
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Field Description Values
UseParallel Indication to compute in parallel Logical value. The default false indicates

not to compute in parallel, and true
indicates to compute in parallel.
Computing in parallel requires a Parallel
Computing Toolbox license.

UseSubstreams Type of reproducibility when
computing in parallel

• false (default) — Do not compute
reproducibly

• 'mlfg6331_64'
• 'mrg32k3a'

For details, see “Reproducibility in Parallel
Statistical Computations” on page 33-16.

Streams A RandStream object or cell
array of such objects

• If you do not specify Streams, nnmf
uses the default stream or streams.

• If UseParallel is true and
UseSubstreams is false, specify a
cell array of RandStream objects the
same size as the Parallel pool.
Otherwise, specify a single
RandStream object.

Example: 'Options',statset('Display','iter','MaxIter',50)
Data Types: struct

Replicates — Number of times to repeat factorization
1 (default) | positive integer

Number of times to repeat the factorization, specified as the comma-separated pair consisting of
'Replicates' and a positive integer. The algorithm chooses new random starting values for W and H
at each replication, except at the first replication if you specify 'W0' and 'H0'. If you specify a value
greater than 1, you can obtain better results by setting Algorithm to 'mult'. See “Change
Algorithm” on page 35-5066.
Example: 10
Data Types: single | double

Output Arguments
W — Nonnegative left factor of A
n-by-k matrix

Nonnegative left factor of A, returned as an n-by-k matrix. n is the number of rows of A, and k is the
second input argument of nnmf.

W and H are normalized so that the rows of H have unit length. The columns of W are ordered by
decreasing length.

H — Nonnegative right factor of A
k-by-m matrix

 nnmf
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Nonnegative right factor of A, returned as a k-by-m matrix. k is the second input argument of nnmf,
and m is the number of columns of A.

W and H are normalized so that the rows of H have unit length. The columns of W are ordered by
decreasing length.

D — Root mean square residual
nonnegative scalar

Root mean square residual, returned as a nonnegative scalar.

D = norm(A - W*H,'fro')/sqrt(n*m)

Version History
Introduced in R2008a

References
[1] Berry, Michael W., Murray Browne, Amy N. Langville, V. Paul Pauca, and Robert J. Plemmons.

“Algorithms and Applications for Approximate Nonnegative Matrix Factorization.”
Computational Statistics & Data Analysis 52, no. 1 (September 2007): 155–73. https://doi.org/
10.1016/j.csda.2006.11.006.

Extended Capabilities
Automatic Parallel Support
Accelerate code by automatically running computation in parallel using Parallel Computing Toolbox™.

To run in parallel, specify the 'Options' name-value argument in the call to this function and set the
'UseParallel' field of the options structure to true using statset.

For example: 'Options',statset('UseParallel',true)

For more information about parallel computing, see “Run MATLAB Functions with Automatic Parallel
Support” (Parallel Computing Toolbox).

See Also
pca | factoran | statset | biplot

Topics
“Perform Nonnegative Matrix Factorization” on page 16-64
“Quick Start Parallel Computing for Statistics and Machine Learning Toolbox” on page 33-2
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nodeVariableRange
Package: classreg.learning.classif

Retrieve variable range of decision tree node

Syntax
varRange = nodeVariableRange(tree,nodeID)
varRange = nodeVariableRange(tree,nodeID,OmitUnusedVariables=omitUnusedVars)

Description
varRange = nodeVariableRange(tree,nodeID) returns the range of predictor variables
varRange at the tree node specified by nodeID.

varRange = nodeVariableRange(tree,nodeID,OmitUnusedVariables=omitUnusedVars)
also specifies whether to omit the unused predictor variables from the returned varRange.

Examples

Variable Range of Decision Tree Node

Create a decision tree for classification, and retrieve the range of variables at a specified node of the
decision tree.

Load the census1994 data set. The table adultdata contains six numeric and eight categorical
variables.

load census1994

Train a classification tree based on the features contained in adultdata and the class labels in
adultdata.salary. Limit the number of splits in the tree by specifying the name-value argument
MaxNumSplits.

tree = fitctree(adultdata,"salary",MaxNumSplits=31)

tree = 
  ClassificationTree
           PredictorNames: {1x14 cell}
             ResponseName: 'salary'
    CategoricalPredictors: [2 4 6 7 8 9 10 14]
               ClassNames: [<=50K    >50K]
           ScoreTransform: 'none'
          NumObservations: 32561

  Properties, Methods

tree is a trained ClassificationTree model for classification.

 nodeVariableRange
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View the graphical display of the trained classification tree.

view(tree,Mode="graph")

Retrieve the range of predictor variables at node 10.

varRange = nodeVariableRange(tree,10)

varRange = struct with fields:
             age: [-Inf 20.5000]
    relationship: [Not-in-family    Other-relative    Own-child    Unmarried]
    capital_gain: [7.0735e+03 Inf]

Input Arguments
tree — Decision tree model
ClassificationTree object | CompactClassificationTree object | RegressionTree object |
CompactRegressionTree object

Decision tree model, specified as one of the following:
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• ClassificationTree object returned by fitctree
• CompactClassificationTree object returned by the ClassificationTree object function

compact
• RegressionTree object returned by fitrtree
• CompactRegressionTree object returned by the RegressionTree object function compact

nodeID — Node in decision tree
positive integer scalar

Node in the decision tree, specified as a positive integer scalar. nodeID must be less than or equal to
the number of nodes in the decision tree.
Data Types: single | double

omitUnusedVars — Indicator to omit unused predictor variables
true or 1 (default) | false or 0

Indicator to omit unused predictor variables from varRange, specified as a numeric or logical 1
(true) or 0 (false).

Output Arguments
varRange — Variable range at decision tree node
structure

Variable range at the decision tree node, returned as a structure. If a predictor variable is numeric,
the corresponding field of varRange is a 1-by-2 numeric vector containing the lower and upper
bounds. If a predictor variable is categorical, the corresponding field of varRange is a categorical
array containing the categories subgroup.

Version History
Introduced in R2020a

Extended Capabilities
GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

This function fully supports GPU arrays. For more information, see “Run MATLAB Functions on a
GPU” (Parallel Computing Toolbox).

See Also
ClassificationTree | CompactClassificationTree | RegressionTree |
CompactRegressionTree | fitctree | fitrtree | view | view
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nominal
(Not Recommended) Arrays for nominal data

Note The nominal and ordinal array data types are not recommended. To represent ordered and
unordered discrete, nonnumeric data, use the “Categorical Arrays” data type instead.

Description
Nominal data are discrete, nonnumeric values that do not have a natural ordering. nominal array
objects provide efficient storage and convenient manipulation of such data, while also maintaining
meaningful labels for the values.

You can manipulate nominal arrays like ordinary numeric arrays, by subscripting, concatenating,
and reshaping. Use nominal arrays as grouping variables when the elements indicate the group to
which an observation belongs.

Creation

Syntax
B = nominal(X)
B = nominal(X,labels)
B = nominal(X,labels,levels)

B = nominal(X,labels,[],edges)

Description

B = nominal(X) creates a nominal array B from the array X. nominal creates the levels of B from
the sorted unique values in X, and creates default labels for the levels.

B = nominal(X,labels) labels the levels in B according to labels.

B = nominal(X,labels,levels) creates a nominal array with possible levels defined by levels.

B = nominal(X,labels,[],edges) creates a nominal array by binning the numeric array X with
bin edges given by the numeric vector edges.

Input Arguments

X — Input array
numeric | logical | character | string | categorical | cell array of character vectors

Input array to convert to nominal, specified as a numeric, logical, character, string, or categorical
array, or a cell array of character vectors. The levels of the resulting nominal array correspond to
the sorted unique values in X.
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labels — Labels for discrete levels
character array | string array | cell array of character vectors

Labels for the discrete levels, specified as a character array, string array, or cell array of character
vectors. By default, nominal assigns labels to the levels in B in order of the sorted unique values in
X.

You can include duplicate labels in labels to merge multiple values in X into a single level in B.
Data Types: char | string | cell

levels — Possible nominal levels
vector

Possible nominal levels for the output nominal array, specified as a vector whose values can be
compared to those in X using the equality operator. nominal assigns labels to each level from the
corresponding elements of labels. If X contains any values not present in levels, the levels of the
corresponding elements of B are undefined.

edges — Bin edges
numeric vector

Bin edges used to create the nominal array by binning a numeric array, specified as a numeric vector.
The uppermost bin includes values equal to the rightmost edge. nominal assigns labels to each level
in the resulting nominal array from the corresponding elements of labels. When you specify the
edges input argument, it must have one more element than labels.

Output Arguments

B — Nominal array
nominal array object

Nominal array, returned as a nominal array object.

By default, an element of B is undefined if the corresponding element of X is NaN (when X is numeric),
an empty character vector (when X is a character), an empty or missing string (when X is a string), or
undefined (when X is categorical). nominal treats such elements as undefined or missing and does
not include entries for them among the possible levels. To create an explicit level for such elements
instead of treating them as undefined, use the levels input argument and include NaN, the empty
character vector, the empty or missing string, or an undefined element.

Object Functions
addlevels (Not Recommended) Add levels to nominal or ordinal arrays
droplevels (Not Recommended) Drop levels from a nominal or ordinal array
getlabels (Not Recommended) Access nominal or ordinal array labels
getlevels (Not Recommended) Access nominal or ordinal array levels
islevel (Not Recommended) Determine if levels are in nominal or ordinal array
levelcounts (Not Recommended) Element counts by level of a nominal or ordinal array
mergelevels (Not Recommended) Merge levels of nominal or ordinal arrays
reorderlevels (Not Recommended) Reorder levels of nominal or ordinal arrays
setlabels (Not Recommended) Assign labels to levels of nominal or ordinal arrays
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The following is a partial list of the many other MATLAB array functions you can use with nominal
arrays. For a complete list, see “Other MATLAB Functions Supporting Nominal and Ordinal Arrays”
on page 2-2.
double Double-precision arrays
histogram Histogram plot
isequal Determine array equality
isundefined Find undefined elements in categorical array
pie Pie chart
summary Print summary of table, timetable, or categorical array
times Multiplication

Examples

Create and Label Nominal Arrays

Create nominal arrays from a cell array of character vectors and from integer data. Provide explicit
labels.

Create a nominal array from a cell array of character vectors with values 'r', 'g', and 'b'. Label
these levels 'red', 'green', and 'blue', respectively. nominal assigns the labels according to the
sorted (alphabetical) order of the elements in X.

X = {'r' 'b' 'g';'g' 'r' 'b';'b' 'r' 'g'}

X = 3x3 cell
    {'r'}    {'b'}    {'g'}
    {'g'}    {'r'}    {'b'}
    {'b'}    {'r'}    {'g'}

labels = {'blue','green','red'};
B = nominal(X,labels)

B = 3x3 nominal
     red        blue      green 
     green      red       blue  
     blue       red       green 

Create a nominal array from integer data with values 1 to 4, merging odd and even values into two
nominal levels with the labels 'odd' and 'even'. Merge the values by duplicating the labels.

X = randi([1 4],5,2)

X = 5×2

     4     1
     4     2
     1     3
     4     4
     3     4

labels = {'odd','even','odd','even'};
B = nominal(X,labels)
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B = 5x2 nominal
     even      odd  
     even      even 
     odd       odd  
     even      even 
     odd       even 

Create and Manipulate Nominal Arrays

Create a nominal array from data in a cell array.

X = {'r','b','g';'g','r','b';'b','r','g'};
labels = {'blue','green','red'};
colors = nominal(X,labels)

colors = 3x3 nominal
     red        blue      green 
     green      red       blue  
     blue       red       green 

Identify the elements in colors that are members of the level 'red'. A value of 1 in the resulting
array indicates that the corresponding element of colors is a member of 'red'.

colors == 'red'

ans = 3x3 logical array

   1   0   0
   0   1   0
   0   1   0

Identify the elements in colors that are members of either the level 'red' or 'blue'.

ismember(colors,{'red','blue'})

ans = 3x3 logical array

   1   1   0
   0   1   1
   1   1   0

Merge the elements of the 'red' and 'blue' levels into a new level labeled 'purple'.

colors = mergelevels(colors,{'red','blue'},'purple')

colors = 3x3 nominal
     purple      purple      green  
     green       purple      purple 
     purple      purple      green  

Display the levels of colors.
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getlevels(colors)

ans = 1x2 nominal
     purple      green 

Summarize the number of elements in each level. By default, summary returns counts for each
column of the input array.

summary(colors)

     purple      2      3      1 
     green       1      0      2 

Create a pie chart for the data in colors.

pie(colors)

Version History
Introduced in R2007a

See Also
ordinal
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Topics
“Create Nominal and Ordinal Arrays” on page 2-3
“Add and Drop Category Levels” on page 2-18
“Plot Data Grouped by Category” on page 2-21
“Summary Statistics Grouped by Category” on page 2-33
“Advantages of Using Nominal and Ordinal Arrays” on page 2-39
“Index and Search Using Nominal and Ordinal Arrays” on page 2-42
“Grouping Variables” on page 2-46
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notify
Class: qrandstream

Notify listeners of event

Syntax
notify(h,'eventname')
notify(h,'eventname',data)

Description
notify(h,'eventname') notifies listeners added to the event named eventname on handle object
array h that the event is taking place. h is the array of handles to objects triggering the event, and
eventname must be a character vector.

notify(h,'eventname',data) provides a way of encapsulating information about an event which
can then be accessed by each registered listener. data must belong to the event.eventdata class.

See Also
addlistener | events | qrandstream | event.EventData
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NonLinearModel class

Nonlinear regression model class

Description
An object comprising training data, model description, diagnostic information, and fitted coefficients
for a nonlinear regression. Predict model responses with the predict or feval methods.

Construction
Create a NonLinearModel object using fitnlm.

Properties
CoefficientCovariance — Covariance matrix of coefficient estimates
numeric matrix

This property is read-only.

Covariance matrix of coefficient estimates, specified as a p-by-p matrix of numeric values. p is the
number of coefficients in the fitted model.

For details, see “Coefficient Standard Errors and Confidence Intervals” on page 11-60.
Data Types: single | double

CoefficientNames — Coefficient names
cell array of character vectors

This property is read-only.

Coefficient names, specified as a cell array of character vectors, each containing the name of the
corresponding term.
Data Types: cell

Coefficients — Coefficient values
table

This property is read-only.

Coefficient values, specified as a table. Coefficients contains one row for each coefficient and
these columns:

• Estimate — Estimated coefficient value
• SE — Standard error of the estimate
• tStat — t-statistic for a two-sided test with the null hypothesis that the coefficient is zero
• pValue — p-value for the t-statistic
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Use anova (only for a linear regression model) or coefTest to perform other tests on the
coefficients. Use coefCI to find the confidence intervals of the coefficient estimates.

To obtain any of these columns as a vector, index into the property using dot notation. For example,
obtain the estimated coefficient vector in the model mdl:

beta = mdl.Coefficients.Estimate

Data Types: table

Diagnostics — Diagnostic information
table

This property is read-only.

Diagnostic information for the model, specified as a table. Diagnostics can help identify outliers and
influential observations. Diagnostics contains the following fields.

Field Meaning Utility
Leverage Diagonal elements of

HatMatrix
Leverage indicates to what extent the predicted value for an
observation is determined by the observed value for that
observation. A value close to 1 indicates that the prediction
is largely determined by that observation, with little
contribution from the other observations. A value close to 0
indicates the fit is largely determined by the other
observations. For a model with P coefficients and N
observations, the average value of Leverage is P/N. An
observation with Leverage larger than 2*P/N can be
regarded as having high leverage.

CooksDistance Cook's measure of scaled
change in fitted values

CooksDistance is a measure of scaled change in fitted
values. An observation with CooksDistance larger than
three times the mean Cook's distance can be an outlier.

HatMatrix Projection matrix to
compute fitted from
observed responses

HatMatrix is an N-by-N matrix such that
Fitted = HatMatrix*Y, where Y is the response vector
and Fitted is the vector of fitted response values.

Data Types: table

DFE — Degrees of freedom for error
positive integer

This property is read-only.

Degrees of freedom for the error (residuals), equal to the number of observations minus the number
of estimated coefficients, specified as a positive integer.
Data Types: double

Fitted — Fitted response values based on input data
numeric vector

This property is read-only.
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Fitted (predicted) values based on the input data, specified as a numeric vector. fitnlm attempts to
make Fitted as close as possible to the response data.
Data Types: single | double

Formula — Model information
NonLinearFormula object

This property is read-only.

Model information, specified as a NonLinearFormula object.

Display the formula of the fitted model mdl by using dot notation.

mdl.Formula

Iterative — Information about fitting process
structure

This property is read-only.

Information about the fitting process, specified as a structure with the following fields:

• InitialCoefs — Initial coefficient values (the beta0 vector)
• IterOpts — Options included in the Options name-value pair argument for fitnlm.

Data Types: struct

LogLikelihood — Loglikelihood
numeric value

This property is read-only.

Loglikelihood of the model distribution at the response values, specified as a numeric value. The
mean is fitted from the model, and other parameters are estimated as part of the model fit.
Data Types: single | double

ModelCriterion — Criterion for model comparison
structure

This property is read-only.

Criterion for model comparison, specified as a structure with these fields:

• AIC — Akaike information criterion. AIC = –2*logL + 2*m, where logL is the loglikelihood and
m is the number of estimated parameters.

• AICc — Akaike information criterion corrected for the sample size. AICc = AIC + (2*m*(m +
1))/(n – m – 1), where n is the number of observations.

• BIC — Bayesian information criterion. BIC = –2*logL + m*log(n).
• CAIC — Consistent Akaike information criterion. CAIC = –2*logL + m*(log(n) + 1).

Information criteria are model selection tools that you can use to compare multiple models fit to the
same data. These criteria are likelihood-based measures of model fit that include a penalty for
complexity (specifically, the number of parameters). Different information criteria are distinguished
by the form of the penalty.
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When you compare multiple models, the model with the lowest information criterion value is the best-
fitting model. The best-fitting model can vary depending on the criterion used for model comparison.

To obtain any of the criterion values as a scalar, index into the property using dot notation. For
example, obtain the AIC value aic in the model mdl:

aic = mdl.ModelCriterion.AIC

Data Types: struct

ModelFitVsNullModel — F-statistic of regression model
structure

This property is read-only.

F-statistic of the regression model, specified as a structure. The ModelFitVsNullModel structure
contains these fields:

• Fstats — F-statistic of the fitted model versus the null model
• Pvalue — p-value for the F-statistic
• NullModel — null model type

Data Types: struct

MSE — Mean squared error
numeric value

This property is read-only.

Mean squared error, specified as a numeric value. The mean squared error is an estimate of the
variance of the error term in the model.
Data Types: single | double

NumCoefficients — Number of model coefficients
positive integer

This property is read-only.

Number of coefficients in the fitted model, specified as a positive integer. NumCoefficients is the
same as NumEstimatedCoefficients for NonLinearModel objects.
NumEstimatedCoefficients is equal to the degrees of freedom for regression.
Data Types: double

NumEstimatedCoefficients — Number of estimated coefficients
positive integer

This property is read-only.

Number of estimated coefficients in the fitted model, specified as a positive integer.
NumEstimatedCoefficients is the same as NumCoefficients for NonLinearModel objects.
NumEstimatedCoefficients is equal to the degrees of freedom for regression.
Data Types: double
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NumPredictors — Number of predictor variables
positive integer

This property is read-only.

Number of predictor variables used to fit the model, specified as a positive integer.
Data Types: double

NumVariables — Number of variables
positive integer

This property is read-only.

Number of variables in the input data, specified as a positive integer. NumVariables is the number
of variables in the original table or dataset, or the total number of columns in the predictor matrix
and response vector.

NumVariables also includes any variables that are not used to fit the model as predictors or as the
response.
Data Types: double

ObservationInfo — Observation information
table

This property is read-only.

Observation information, specified as an n-by-4 table, where n is equal to the number of rows of input
data. ObservationInfo contains the columns described in this table.

Column Description
Weights Observation weights, specified as a numeric value. The default value is 1.
Excluded Indicator of excluded observations, specified as a logical value. The value

is true if you exclude the observation from the fit by using the
'Exclude' name-value pair argument.

Missing Indicator of missing observations, specified as a logical value. The value
is true if the observation is missing.

Subset Indicator of whether or not the fitting function uses the observation,
specified as a logical value. The value is true if the observation is not
excluded or missing, meaning the fitting function uses the observation.

To obtain any of these columns as a vector, index into the property using dot notation. For example,
obtain the weight vector w of the model mdl:

w = mdl.ObservationInfo.Weights

Data Types: table

ObservationNames — Observation names
cell array of character vectors

This property is read-only.
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Observation names, specified as a cell array of character vectors containing the names of the
observations used in the fit.

• If the fit is based on a table or dataset containing observation names, ObservationNames uses
those names.

• Otherwise, ObservationNames is an empty cell array.

Data Types: cell

PredictorNames — Names of predictors used to fit model
cell array of character vectors

This property is read-only.

Names of predictors used to fit the model, specified as a cell array of character vectors.
Data Types: cell

Residuals — Residuals for fitted model
table

This property is read-only.

Residuals for the fitted model, specified as a table that contains one row for each observation and the
columns described in this table.

Column Description
Raw Observed minus fitted values
Pearson Raw residuals divided by the root mean squared error (RMSE)
Standardized Raw residuals divided by their estimated standard deviation
Studentized Raw residual divided by an independent estimate of the residual

standard deviation. The residual for observation i is divided by an
estimate of the error standard deviation based on all observations except
observation i.

Use plotResiduals to create a plot of the residuals. For details, see “Residuals” on page 11-82.

Rows not used in the fit because of missing values (in ObservationInfo.Missing) or excluded
values (in ObservationInfo.Excluded) contain NaN values.

To obtain any of these columns as a vector, index into the property using dot notation. For example,
obtain the raw residual vector r in the model mdl:

r = mdl.Residuals.Raw

Data Types: table

ResponseName — Response variable name
character vector

This property is read-only.

Response variable name, specified as a character vector.
Data Types: char
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RMSE — Root mean squared error
numeric value

This property is read-only.

Root mean squared error, specified as a numeric value. The root mean squared error is an estimate of
the standard deviation of the error term in the model.
Data Types: single | double

Robust — Robust fit information
structure

This property is read-only.

Robust fit information, specified as a structure with the following fields:

Field Description
WgtFun Robust weighting function, such as 'bisquare' (see robustfit)
Tune Value specified for tuning parameter (can be [])
Weights Vector of weights used in final iteration of robust fit

This structure is empty unless fitnlm constructed the model using robust regression.
Data Types: struct

Rsquared — R-squared value for model
structure

This property is read-only.

R-squared value for the model, specified as a structure with two fields:

• Ordinary — Ordinary (unadjusted) R-squared
• Adjusted — R-squared adjusted for the number of coefficients

The R-squared value is the proportion of the total sum of squares explained by the model. The
ordinary R-squared value relates to the SSR and SST properties:

Rsquared = SSR/SST,
where SST is the total sum of squares, and SSR is the regression sum of squares.

For details, see “Coefficient of Determination (R-Squared)” on page 11-63.

To obtain either of these values as a scalar, index into the property using dot notation. For example,
obtain the adjusted R-squared value in the model mdl:

r2 = mdl.Rsquared.Adjusted

Data Types: struct

SSE — Sum of squared errors
numeric value

This property is read-only.
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Sum of squared errors (residuals), specified as a numeric value. If the model was trained with
observation weights, the sum of squares in the SSE calculation is the weighted sum of squares.
Data Types: single | double

SSR — Regression sum of squares
numeric value

This property is read-only.

Regression sum of squares, specified as a numeric value. SSR is equal to the sum of the squared
deviations between the fitted values and the mean of the response. If the model was trained with
observation weights, the sum of squares in the SSR calculation is the weighted sum of squares.
Data Types: single | double

SST — Total sum of squares
numeric value

This property is read-only.

Total sum of squares, specified as a numeric value. SST is equal to the sum of squared deviations of
the response vector y from the mean(y). If the model was trained with observation weights, the sum
of squares in the SST calculation is the weighted sum of squares.
Data Types: single | double

VariableInfo — Information about variables
table

This property is read-only.

Information about variables contained in Variables, specified as a table with one row for each
variable and the columns described in this table.

Column Description
Class Variable class, specified as a cell array of character vectors, such as

'double' and 'categorical'
Range Variable range, specified as a cell array of vectors

• Continuous variable — Two-element vector [min,max], the minimum
and maximum values

• Categorical variable — Vector of distinct variable values
InModel Indicator of which variables are in the fitted model, specified as a logical

vector. The value is true if the model includes the variable.
IsCategorical Indicator of categorical variables, specified as a logical vector. The value

is true if the variable is categorical.

VariableInfo also includes any variables that are not used to fit the model as predictors or as the
response.
Data Types: table

VariableNames — Names of variables
cell array of character vectors
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This property is read-only.

Names of variables, specified as a cell array of character vectors.

• If the fit is based on a table or dataset, this property provides the names of the variables in the
table or dataset.

• If the fit is based on a predictor matrix and response vector, VariableNames contains the values
specified by the 'VarNames' name-value pair argument of the fitting method. The default value of
'VarNames' is {'x1','x2',...,'xn','y'}.

VariableNames also includes any variables that are not used to fit the model as predictors or as the
response.
Data Types: cell

Variables — Input data
table

This property is read-only.

Input data, specified as a table. Variables contains both predictor and response values. If the fit is
based on a table or dataset array, Variables contains all the data from the table or dataset array.
Otherwise, Variables is a table created from the input data matrix X and the response vector y.

Variables also includes any variables that are not used to fit the model as predictors or as the
response.
Data Types: table

Object Functions
coefCI Confidence intervals of coefficient estimates of nonlinear regression model
coefTest Linear hypothesis test on nonlinear regression model coefficients
feval Evaluate nonlinear regression model prediction
partialDependence Compute partial dependence
plotPartialDependence Create partial dependence plot (PDP) and individual conditional expectation

(ICE) plots
plotDiagnostics Plot diagnostics of nonlinear regression model
plotResiduals Plot residuals of nonlinear regression model
plotSlice Plot of slices through fitted nonlinear regression surface
predict Predict response of nonlinear regression model
random Simulate responses for nonlinear regression model

Copy Semantics
Value. To learn how value classes affect copy operations, see Copying Objects.

Examples

Fit a Nonlinear Regression Model

Fit a nonlinear regression model for auto mileage based on the carbig data. Predict the mileage of
an average car.
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Load the sample data. Create a matrix X containing the measurements for the horsepower
(Horsepower) and weight (Weight) of each car. Create a vector y containing the response values in
miles per gallon (MPG).

load carbig
X = [Horsepower,Weight];
y = MPG;

Fit a nonlinear regression model.

modelfun = @(b,x)b(1) + b(2)*x(:,1).^b(3) + ...
    b(4)*x(:,2).^b(5);
beta0 = [-50 500 -1 500 -1];
mdl = fitnlm(X,y,modelfun,beta0)

mdl = 
Nonlinear regression model:
    y ~ b1 + b2*x1^b3 + b4*x2^b5

Estimated Coefficients:
          Estimate      SE        tStat       pValue 
          ________    _______    ________    ________

    b1     -49.383     119.97    -0.41164     0.68083
    b2      376.43     567.05     0.66384     0.50719
    b3    -0.78193    0.47168     -1.6578    0.098177
    b4      422.37     776.02     0.54428     0.58656
    b5    -0.24127    0.48325    -0.49926     0.61788

Number of observations: 392, Error degrees of freedom: 387
Root Mean Squared Error: 3.96
R-Squared: 0.745,  Adjusted R-Squared 0.743
F-statistic vs. constant model: 283, p-value = 1.79e-113

Find the predicted mileage of an average car. Because the sample data contains some missing (NaN)
observations, compute the mean using mean with the 'omitnan' option.

Xnew = mean(X,'omitnan')  

Xnew = 1×2
103 ×

    0.1051    2.9794

MPGnew = predict(mdl,Xnew)

MPGnew = 21.8073

More About
Hat Matrix

The hat matrix H is defined in terms of the data matrix X and the Jacobian matrix J:

Ji, j = ∂ f
∂β j xi, β
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Here f is the nonlinear model function, and β is the vector of model coefficients.

The Hat Matrix H is

H = J(JTJ)–1JT.

The diagonal elements Hii satisfy

0 ≤ hii ≤ 1

∑
i = 1

n
hii = p,

where n is the number of observations (rows of X), and p is the number of coefficients in the
regression model.

Leverage

Leverage is a measure of the effect of a particular observation on the regression predictions due to
the position of that observation in the space of the inputs.

The leverage of observation i is the value of the ith diagonal term hii of the hat matrix H. Because the
sum of the leverage values is p (the number of coefficients in the regression model), an observation i
can be considered an outlier if its leverage substantially exceeds p/n, where n is the number of
observations.

Cook’s Distance

The Cook’s distance Di of observation i is

Di =
∑

j = 1

n
y j− y j(i)

2

p MSE ,

where

• y j is the jth fitted response value.
• y j(i) is the jth fitted response value, where the fit does not include observation i.
• MSE is the mean squared error.
• p is the number of coefficients in the regression model.

Cook’s distance is algebraically equivalent to the following expression:

Di =
ri

2

p MSE
hii

1− hii
2 ,

where ei is the ith residual.

See Also
GeneralizedLinearModel | LinearModel | nlinfit | fitnlm | predict

Topics
“Nonlinear Regression Workflow” on page 13-13
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“Nonlinear Regression” on page 13-2
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normcdf
Normal cumulative distribution function

Syntax
p = normcdf(x)
p = normcdf(x,mu)
p = normcdf(x,mu,sigma)

[p,pLo,pUp] = normcdf(x,mu,sigma,pCov)
[p,pLo,pUp] = normcdf(x,mu,sigma,pCov,alpha)

___  = normcdf( ___ ,'upper')

Description
p = normcdf(x) returns the cumulative distribution function (cdf) of the standard normal
distribution, evaluated at the values in x.

p = normcdf(x,mu) returns the cdf of the normal distribution with mean mu and unit standard
deviation, evaluated at the values in x.

p = normcdf(x,mu,sigma) returns the cdf of the normal distribution with mean mu and standard
deviation sigma, evaluated at the values in x.

[p,pLo,pUp] = normcdf(x,mu,sigma,pCov) also returns the 95% confidence bounds [pLo,pUp]
of p when mu and sigma are estimates. pCov is the covariance matrix of the estimated parameters.

[p,pLo,pUp] = normcdf(x,mu,sigma,pCov,alpha) specifies the confidence level for the
confidence interval [pLo,pUp] to be 100(1–alpha)%.

___  = normcdf( ___ ,'upper') returns the complement of the cdf, evaluated at the values in x,
using an algorithm that more accurately computes the extreme upper-tail probabilities. 'upper' can
follow any of the input arguments in the previous syntaxes.

Examples

Standard Normal Distribution cdf

Compute the probability that an observation from a standard normal distribution falls on the interval
[–1 1].

p = normcdf([-1 1]);
p(2)-p(1)

ans = 0.6827

About 68% of the observations from a normal distribution fall within one standard deviation of the
mean 0.
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Normal Distribution cdf

Compute the cdf values evaluated at the values in x for the normal distribution with mean mu and
standard deviation sigma.

x = [-2,-1,0,1,2];
mu = 2;
sigma = 1;
p = normcdf(x,mu,sigma)

p = 1×5

    0.0000    0.0013    0.0228    0.1587    0.5000

Compute the cdf values evaluated at zero for various normal distributions with different mean
parameters.

mu = [-2,-1,0,1,2];
sigma = 1;
p = normcdf(0,mu,sigma)

p = 1×5

    0.9772    0.8413    0.5000    0.1587    0.0228

Confidence Interval of Normal cdf Value

Find the maximum likelihood estimates (MLEs) of the normal distribution parameters, and then find
the confidence interval of the corresponding cdf value.

Generate 1000 normal random numbers from the normal distribution with mean 5 and standard
deviation 2.

rng('default') % For reproducibility
n = 1000; % Number of samples
x = normrnd(5,2,n,1);

Find the MLEs for the distribution parameters (mean and standard deviation) by using mle.

phat = mle(x)

phat = 1×2

    4.9347    1.9969

muHat = phat(1);
sigmaHat = phat(2);

Estimate the covariance of the distribution parameters by using normlike. The function normlike
returns an approximation to the asymptotic covariance matrix if you pass the MLEs and the samples
used to estimate the MLEs.
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[~,pCov] = normlike([muHat,sigmaHat],x)

pCov = 2×2

    0.0040   -0.0000
   -0.0000    0.0020

Find the cdf value at zero and its 95% confidence interval.

[p,pLo,pUp] = normcdf(0,muHat,sigmaHat,pCov)

p = 0.0067

pLo = 0.0047

pUp = 0.0095

p is the cdf value using the normal distribution with the parameters muHat and sigmaHat. The
interval [pLo,pUp] is the 95% confidence interval of the cdf evaluated at 0, considering the
uncertainty of muHat and sigmaHat using pCov. The 95% confidence interval means the probability
that [pLo,pUp] contains the true cdf value is 0.95.

Complementary cdf (Tail Distribution)

Determine the probability that an observation from a standard normal distribution will fall on the
interval [10,Inf].

p1 = 1 - normcdf(10)

p1 = 0

normcdf(10) is nearly 1, so p1 becomes 0. Specify 'upper' so that normcdf computes the extreme
upper-tail probabilities more accurately.

p2 = normcdf(10,'upper')

p2 = 7.6199e-24

You can also use 'upper' to compute a right-tailed p-value.

Test for Normal Distribution Using Function Handle

Use the probability distribution function normcdf as a function handle in the chi-square goodness-of-
fit test (chi2gof).

Test the null hypothesis that the sample data in the input vector x comes from a normal distribution
with parameters µ and σ equal to the mean (mean) and standard deviation (std) of the sample data,
respectively.

rng('default') % For reproducibility
x = normrnd(50,5,100,1);
h = chi2gof(x,'cdf',{@normcdf,mean(x),std(x)})

h = 0
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The returned result h = 0 indicates that chi2gof does not reject the null hypothesis at the default
5% significance level.

Input Arguments
x — Values at which to evaluate cdf
scalar value | array of scalar values

Values at which to evaluate the cdf, specified as a scalar value or an array of scalar values.

If you specify pCov to compute the confidence interval [pLo,pUp], then x must be a scalar value.

To evaluate the cdf at multiple values, specify x using an array. To evaluate the cdfs of multiple
distributions, specify mu and sigma using arrays. If one or more of the input arguments x, mu, and
sigma are arrays, then the array sizes must be the same. In this case, normcdf expands each scalar
input into a constant array of the same size as the array inputs. Each element in p is the cdf value of
the distribution specified by the corresponding elements in mu and sigma, evaluated at the
corresponding element in x.
Example: [-1,0,3,4]
Data Types: single | double

mu — Mean
0 (default) | scalar value | array of scalar values

Mean of the normal distribution, specified as a scalar value or an array of scalar values.

If you specify pCov to compute the confidence interval [pLo,pUp], then mu must be a scalar value.

To evaluate the cdf at multiple values, specify x using an array. To evaluate the cdfs of multiple
distributions, specify mu and sigma using arrays. If one or more of the input arguments x, mu, and
sigma are arrays, then the array sizes must be the same. In this case, normcdf expands each scalar
input into a constant array of the same size as the array inputs. Each element in p is the cdf value of
the distribution specified by the corresponding elements in mu and sigma, evaluated at the
corresponding element in x.
Example: [0 1 2; 0 1 2]
Data Types: single | double

sigma — Standard deviation
1 (default) | nonnegative scalar value | array of nonnegative scalar values

Standard deviation of the normal distribution, specified as a nonnegative scalar value or an array of
nonnegative scalar values.

If sigma is zero, then the output p is either 0 or 1. p is 0 if x is smaller than mu, or 1 otherwise.

If you specify pCov to compute the confidence interval [pLo,pUp], then sigma must be a scalar
value.

To evaluate the cdf at multiple values, specify x using an array. To evaluate the cdfs of multiple
distributions, specify mu and sigma using arrays. If one or more of the input arguments x, mu, and
sigma are arrays, then the array sizes must be the same. In this case, normcdf expands each scalar
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input into a constant array of the same size as the array inputs. Each element in p is the cdf value of
the distribution specified by the corresponding elements in mu and sigma, evaluated at the
corresponding element in x.
Example: [1 1 1; 2 2 2]
Data Types: single | double

pCov — Covariance of estimates
2-by-2 numeric matrix

Covariance of the estimates mu and sigma, specified as a 2-by-2 matrix.

If you specify pCov to compute the confidence interval [pLo,pUp], then x, mu, and sigma must be
scalar values.

You can estimate mu and sigma by using mle, and estimate the covariance of mu and sigma by using
normlike. For an example, see “Confidence Interval of Normal cdf Value” on page 35-5094.
Data Types: single | double

alpha — Significance level
0.05 (default) | scalar in the range (0,1)

Significance level for the confidence interval, specified as a scalar in the range (0,1). The confidence
level is 100(1–alpha)%, where alpha is the probability that the confidence interval does not
contain the true value.
Example: 0.01
Data Types: single | double

Output Arguments
p — cdf values
scalar value | array of scalar values

cdf values, evaluated at the values in x, returned as a scalar value or an array of scalar values. p is
the same size as x, mu, and sigma after any necessary scalar expansion. Each element in p is the cdf
value of the distribution specified by the corresponding elements in mu and sigma, evaluated at the
corresponding element in x.

pLo — Lower confidence bound for p
scalar value | array of scalar values

Lower confidence bound for p, returned as a scalar value or an array of scalar values. pLo has the
same size as p.

pUp — Upper confidence bound for p
scalar value | array of scalar values

Upper confidence bound for p, returned as a scalar value or an array of scalar values. pUp has the
same size as p.
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More About
Normal Distribution

The normal distribution is a two-parameter family of curves. The first parameter, µ, is the mean. The
second parameter, σ, is the standard deviation.

The standard normal distribution has zero mean and unit standard deviation.

The normal cumulative distribution function (cdf) is

p = F(x μ, σ) = 1
σ 2π∫−∞

x
e
−(t − μ)2

2σ2 dt, for x ∈ ℝ .

p is the probability that a single observation from a normal distribution with parameters μ and σ falls
in the interval (-∞,x].

Algorithms
• The normcdf function uses the complementary error function erfc. The relationship between

normcdf and erfc is

normcdf(x) = 1
2erfc − x

2 .

The complementary error function erfc(x) is defined as

erfc(x) = 1− erf(x) = 2
π∫x

∞
e−t2dt .

• The normcdf function computes confidence bounds for p by using the delta method.
normcdf(x,mu,sigma) is equivalent to normcdf((x–mu)/sigma,0,1). Therefore, the
normcdf function estimates the variance of (x–mu)/sigma using the covariance matrix of mu and
sigma by the delta method, and finds the confidence bounds of (x–mu)/sigma using the
estimates of this variance. Then, the function transforms the bounds to the scale of p. The
computed bounds give approximately the desired confidence level when you estimate mu, sigma,
and pCov from large samples.

Alternative Functionality
• normcdf is a function specific to normal distribution. Statistics and Machine Learning Toolbox

also offers the generic function cdf, which supports various probability distributions. To use cdf,
create a NormalDistribution probability distribution object and pass the object as an input
argument or specify the probability distribution name and its parameters. Note that the
distribution-specific function normcdf is faster than the generic function cdf.

• Use the Probability Distribution Function app to create an interactive plot of the cumulative
distribution function (cdf) or probability density function (pdf) for a probability distribution.

Version History
Introduced before R2006a
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Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

This function fully supports GPU arrays. For more information, see “Run MATLAB Functions on a
GPU” (Parallel Computing Toolbox).

See Also
cdf | normpdf | norminv | normfit | normlike | NormalDistribution | erfc

Topics
“Normal Distribution” on page B-125
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normfit
Normal parameter estimates

Syntax
[muHat,sigmaHat] = normfit(x)

[muHat,sigmaHat,muCI,sigmaCI] = normfit(x)
[muHat,sigmaHat,muCI,sigmaCI] = normfit(x,alpha)

[ ___ ] = normfit(x,alpha,censoring)
[ ___ ] = normfit(x,alpha,censoring,freq)
[ ___ ] = normfit(x,alpha,censoring,freq,options)

Description
[muHat,sigmaHat] = normfit(x) returns estimates of normal distribution parameters (the mean
muHat and standard deviation sigmaHat), given the sample data in x. muHat is the sample mean,
and sigmaHat is the square root of the unbiased estimator of the variance.

[muHat,sigmaHat,muCI,sigmaCI] = normfit(x) also returns 95% confidence intervals for the
parameter estimates on the mean and standard deviation in the arrays muCI and sigmaCI,
respectively.

[muHat,sigmaHat,muCI,sigmaCI] = normfit(x,alpha) specifies the confidence level for the
confidence intervals to be 100(1–alpha)%.

[ ___ ] = normfit(x,alpha,censoring) specifies whether each value in x is right-censored or
not. Use the logical vector censoring in which 1 indicates observations that are right-censored and
0 indicates observations that are fully observed. With censoring, muHat and sigmaHat are the
maximum likelihood estimates (MLEs).

[ ___ ] = normfit(x,alpha,censoring,freq) specifies the frequency or weights of
observations.

[ ___ ] = normfit(x,alpha,censoring,freq,options) specifies optimization options for the
iterative algorithm normfit to use to compute MLEs with censoring. Create options by using the
function statset.

You can pass in [] for alpha, censoring, and freq to use their default values.

Examples

Estimate Parameters and Confidence Intervals

Generate 1000 normal random numbers from the normal distribution with mean 3 and standard
deviation 5.

rng('default') % For reproducibility
x = normrnd(3,5,[1000,1]);
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Find the parameter estimates and the 99% confidence intervals.

[muHat,sigmaHat,muCI,sigmaCI] = normfit(x,0.01)

muHat = 2.8368

sigmaHat = 4.9948

muCI = 2×1

    2.4292
    3.2445

sigmaCI = 2×1

    4.7218
    5.2989

muHat is the sample mean, and sigmaHat is the square root of the unbiased estimator of the
variance. muCI and sigmaCI contain the 99% confidence intervals of the mean and standard
deviation parameters, respectively. The first row is the lower bound, and the second row is the upper
bound.

Change Algorithm Options

Find the MLEs of a data set with censoring by using normfit. Use statset to specify the iterative
algorithm options that normfit uses to compute MLEs for censored data, and then find the MLEs
again.

Load the sample data.

load lightbulb

The first column of the data contains the lifetime (in hours) of two types of bulbs. The second column
contains the binary variable indicating whether the bulb is fluorescent or incandescent. 1 indicates
that the bulb is fluorescent, and 0 indicates that the bulb is incandescent. The third column contains
the censorship information, where 0 indicates the bulb is observed until failure, and 1 indicates the
item (bulb) is censored.

Find the indices for fluorescent bulbs.

idx = find(lightbulb(:,2) == 0);

Assume that the lifetime follows the normal distribution, and find the MLEs of the normal distribution
parameters. The second input argument of normfit specifies the confidence level. Pass in [] to use
its default value 0.05. The third input argument specifies the censorship information.

censoring = lightbulb(idx,3) == 1;
[muHat1,sigmaHat1] = normfit(lightbulb(idx,1),[],censoring)

muHat1 = 9.4966e+03

sigmaHat1 = 3.0640e+03
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Display the default algorithm parameters that normfit uses to estimate the normal distribution
parameters.

statset('normfit')

ans = struct with fields:
          Display: 'off'
      MaxFunEvals: 200
          MaxIter: 100
           TolBnd: 1.0000e-06
           TolFun: 1.0000e-08
       TolTypeFun: []
             TolX: 1.0000e-08
         TolTypeX: []
          GradObj: []
         Jacobian: []
        DerivStep: []
      FunValCheck: []
           Robust: []
     RobustWgtFun: []
           WgtFun: []
             Tune: []
      UseParallel: []
    UseSubstreams: []
          Streams: {}
        OutputFcn: []

Save the options using a different name. Change how the results are displayed (Display) and the
termination tolerance for the objective function (TolFun).

options = statset('normfit');
options.Display = 'final';
options.TolFun = 1e-10;

Alternatively, you can specify algorithm parameters by using the name-value pair arguments of the
function statset.

options = statset('Display','final','TolFun',1e-10);

Find the MLEs with the new algorithm parameters.

[muHat2,sigmaHat2] = normfit(lightbulb(idx,1),[],censoring,[],options)

Successful convergence: Norm of gradient less than OPTIONS.TolFun

muHat2 = 9.4966e+03

sigmaHat2 = 3.0640e+03

normfit displays a report on the final iteration.

Convert Unbiased Estimator to MLE

The function normfit finds the sample mean and the square root of the unbiased estimator of the
variance with no censoring. The sample mean is equal to the MLE of the mean parameter, but the
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square root of the unbiased estimator of the variance is not equal to the MLE of the standard
deviation parameter.

Find the normal distribution parameters by using normfit, convert them into MLEs, and then
compare the negative log likelihoods of the estimates by using normlike.

Generate 100 normal random numbers from the standard normal distribution.

rng('default') % For reproducibility
n = 100;
x = normrnd(0,1,[n,1]);

Find the sample mean and the square root of the unbiased estimator of the variance.

[muHat,sigmaHat] = normfit(x)

muHat = 0.1231

sigmaHat = 1.1624

Convert the square root of the unbiased estimator of the variance into the MLE of the standard
deviation parameter.

sigmaHat_MLE = sqrt((n-1)/n)*sigmaHat

sigmaHat_MLE = 1.1566

The difference between sigmaHat and sigmaHat_MLE is negligible for large n.

Alternatively, you can find the MLEs by using the function mle.

phat = mle(x)

phat = 1×2

    0.1231    1.1566

phat(1) and phat(2) are the MLEs of the mean and the standard deviation parameter, respectively.

Confirm that the log likelihood of the MLEs (muHat and sigmaHat_MLE) is greater than the log
likelihood of the unbiased estimators (muHat and sigmaHat) by using the normlike function.

logL = -normlike([muHat,sigmaHat],x)

logL = -156.4424

logL_MLE = -normlike([muHat,sigmaHat_MLE],x)

logL_MLE = -156.4399

Input Arguments
x — Sample data
vector

Sample data, specified as a vector.
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Data Types: single | double

alpha — Significance level
0.05 (default) | scalar in the range (0,1)

Significance level for the confidence intervals, specified as a scalar in the range (0,1). The confidence
level is 100(1—alpha)%, where alpha is the probability that the confidence intervals do not contain
the true value.
Example: 0.01
Data Types: single | double

censoring — Indicator for censoring
array of 0s (default) | logical vector

Indicator for the censoring of each value in x, specified as a logical vector of the same size as x. Use
1 for observations that are right-censored and 0 for observations that are fully observed.

The default is an array of 0s, meaning that all observations are fully observed.
Data Types: logical

freq — Frequency or weights of observations
array of 1s (default) | nonnegative vector

Frequency or weights of observations, specified as a nonnegative vector that is the same size as x.
The freq input argument typically contains nonnegative integer counts for the corresponding
elements in x, but can contain any nonnegative values.

To obtain the weighted MLEs for a data set with censoring, specify weights of observations,
normalized to the number of observations in x.

The default is an array of 1s, meaning one observation per element of x.
Data Types: single | double

options — Optimization options
statset('normfit') (default) | structure

Optimization options, specified as a structure. options determines the control parameters for the
iterative algorithm that normfit uses to compute MLEs for censored data.

Create options by using the function statset or by creating a structure array containing the fields
and values described in this table.

Field Name Value Default Value
Display Amount of information displayed by the

algorithm.

• 'off' — Displays no information.
• 'final' — Displays the final output.

'off'

MaxFunEvals Maximum number of objective function
evaluations allowed, specified as a positive
integer.

200
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Field Name Value Default Value
MaxIter Maximum number of iterations allowed, specified

as a positive integer.
100

TolBnd Lower bound of the standard deviation parameter
estimate, specified as a positive scalar.

The bounds for the mean and standard deviation
parameter estimates are [–Inf,Inf] and
[TolBnd,Inf], respectively.

1e-6

TolFun Termination tolerance for the objective function
value, specified as a positive scalar.

1e-8

TolX Termination tolerance for the parameters,
specified as a positive scalar.

1e-8

You can also enter statset('normfit') in the Command Window to see the names and default
values of the fields that normfit accepts in the options structure.
Example: statset('Display','final','MaxIter',1000) specifies to display the final
information of the iterative algorithm results, and change the maximum number of iterations allowed
to 1000.
Data Types: struct

Output Arguments
muHat — Estimate of mean
scalar

Estimate of the mean parameter of the normal distribution, returned as a scalar.

• With no censoring, muHat is the sample mean.
• With censoring, muHat is the MLE. To compute the weighted MLE, specify the weights of

observations by using freq.

sigmaHat — Estimate of standard deviation
scalar

Estimate of the standard deviation parameter of the normal distribution, returned as a scalar.

• With no censoring, sigmaHat is the square root of the unbiased estimator of the variance. To
compute the MLE with no censoring, use the mle function.

• With censoring, sigmaHat is the MLE. To compute the weighted MLE, specify the weights of
observations by using freq.

muCI — Confidence interval for mean
2-by-1 column vector

Confidence interval for the mean parameter of the normal distribution, returned as a 2-by-1 column
vector containing the lower and upper bounds of the 100(1–alpha)% confidence interval.

The first and second rows correspond to the lower and upper bounds of the confidence intervals,
respectively.
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sigmaCI — Confidence interval for standard deviation
2-by-1 column vector

Confidence interval for the standard deviation parameter of the normal distribution, returned as a 2-
by-1 column vector containing the lower and upper bounds of the 100(1–alpha)% confidence
interval.

The first and second rows correspond to the lower and upper bounds of the confidence intervals,
respectively.

Algorithms
To compute the confidence intervals, normfit uses the exact method for uncensored data and the
Wald method for censored data. The exact method provides exact coverage for uncensored samples
based on t and chi-square distributions.

Alternative Functionality
normfit is a function specific to normal distribution. Statistics and Machine Learning Toolbox also
offers the generic functions mle, fitdist, and paramci and the Distribution Fitter app, which
support various probability distributions.

• mle returns MLEs and the confidence intervals of MLEs for the parameters of various probability
distributions. You can specify the probability distribution name or a custom probability density
function.

• Create a NormalDistribution probability distribution object by fitting the distribution to data
using the fitdist function or the Distribution Fitter app. The object properties mu and sigma
store the parameter estimates. To obtain the confidence intervals for the parameter estimates,
pass the object to paramci.

Version History
Introduced before R2006a

References
[1] Evans, M., N. Hastings, and B. Peacock. Statistical Distributions. 2nd ed. Hoboken, NJ: John Wiley

& Sons, Inc., 1993.

[2] Lawless, J. F. Statistical Models and Methods for Lifetime Data. Hoboken, NJ: Wiley-Interscience,
1982.

[3] Meeker, W. Q., and L. A. Escobar. Statistical Methods for Reliability Data. Hoboken, NJ: John Wiley
& Sons, Inc., 1998.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.
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GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

This function fully supports GPU arrays. For more information, see “Run MATLAB Functions on a
GPU” (Parallel Computing Toolbox).

See Also
mle | normlike | normcdf | norminv | NormalDistribution | paramci | statset | fitdist |
Distribution Fitter

Topics
“Normal Distribution” on page B-125
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norminv
Normal inverse cumulative distribution function

Syntax
x = norminv(p)
x = norminv(p,mu)
x = norminv(p,mu,sigma)

[x,xLo,xUp] = norminv(p,mu,sigma,pCov)
[x,xLo,xUp] = norminv(p,mu,sigma,pCov,alpha)

Description
x = norminv(p) returns the inverse of the standard normal cumulative distribution function (cdf),
evaluated at the probability values in p.

x = norminv(p,mu) returns the inverse of the normal cdf with mean mu and the unit standard
deviation, evaluated at the probability values in p.

x = norminv(p,mu,sigma) returns the inverse of the normal cdf with mean mu and standard
deviation sigma, evaluated at the probability values in p.

[x,xLo,xUp] = norminv(p,mu,sigma,pCov) also returns the 95% confidence bounds [xLo,xUp]
of x when mu and sigma are estimates. pCov is the covariance matrix of the estimated parameters.

[x,xLo,xUp] = norminv(p,mu,sigma,pCov,alpha) specifies the confidence level for the
confidence interval [xLo,xUp] to be 100(1–alpha)%.

Examples

Inverse of Standard Normal cdf

Find an interval that contains 95% of the values from a standard normal distribution.

x = norminv([0.025 0.975])

x = 1×2

   -1.9600    1.9600

Note that the interval x is not the only such interval, but it is the shortest. Find another interval.

xl = norminv([0.01 0.96])

xl = 1×2

   -2.3263    1.7507

35 Functions

35-5108



The interval x1 also contains 95% of the probability, but it is longer than x.

Inverse of Normal Distribution cdf

Compute the inverse of cdf values evaluated at the probability values in p for the normal distribution
with mean mu and standard deviation sigma.

p = 0:0.25:1;
mu = 2;
sigma = 1;
x = norminv(p,mu,sigma)

x = 1×5

      -Inf    1.3255    2.0000    2.6745       Inf

Compute the inverse of cdf values evaluated at 0.5 for various normal distributions with different
mean parameters.

mu = [-2,-1,0,1,2];
sigma = 1;
x = norminv(0.5,mu,sigma)

x = 1×5

    -2    -1     0     1     2

Confidence Interval of Inverse Normal cdf Value

Find the maximum likelihood estimates (MLEs) of the normal distribution parameters, and then find
the confidence interval of the corresponding inverse cdf value.

Generate 1000 normal random numbers from the normal distribution with mean 5 and standard
deviation 2.

rng('default') % For reproducibility
n = 1000; % Number of samples
x = normrnd(5,2,[n,1]);

Find the MLEs for the distribution parameters (mean and standard deviation) by using mle.

phat = mle(x)

phat = 1×2

    4.9347    1.9969

muHat = phat(1);
sigmaHat = phat(2);
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Estimate the covariance of the distribution parameters by using normlike. The function normlike
returns an approximation to the asymptotic covariance matrix if you pass the MLEs and the samples
used to estimate the MLEs.

[~,pCov] = normlike([muHat,sigmaHat],x)

pCov = 2×2

    0.0040   -0.0000
   -0.0000    0.0020

Find the inverse cdf value at 0.5 and its 99% confidence interval.

[x,xLo,xUp] = norminv(0.5,muHat,sigmaHat,pCov,0.01)

x = 4.9347

xLo = 4.7721

xUp = 5.0974

x is the inverse cdf value using the normal distribution with the parameters muHat and sigmaHat.
The interval [xLo,xUp] is the 99% confidence interval of the inverse cdf value evaluated at 0.5,
considering the uncertainty of muHat and sigmaHat using pCov. The 99% confidence interval means
the probability that [xLo,xUp] contains the true inverse cdf value is 0.99.

Input Arguments
p — Probability values at which to evaluate inverse of cdf
scalar value in [0,1] | array of scalar values

Probability values at which to evaluate the inverse of the cdf (icdf), specified as a scalar value or an
array of scalar values, where each element is in the range [0,1].

If you specify pCov to compute the confidence interval [xLo,xUp], then p must be a scalar value.

To evaluate the icdf at multiple values, specify p using an array. To evaluate the icdfs of multiple
distributions, specify mu and sigma using arrays. If one or more of the input arguments p, mu, and
sigma are arrays, then the array sizes must be the same. In this case, norminv expands each scalar
input into a constant array of the same size as the array inputs. Each element in x is the icdf value of
the distribution specified by the corresponding elements in mu and sigma, evaluated at the
corresponding element in p.
Example: [0.1,0.5,0.9]
Data Types: single | double

mu — Mean
0 (default) | scalar value | array of scalar values

Mean of the normal distribution, specified as a scalar value or an array of scalar values.

If you specify pCov to compute the confidence interval [xLo,xUp], then mu must be a scalar value.

To evaluate the icdf at multiple values, specify p using an array. To evaluate the icdfs of multiple
distributions, specify mu and sigma using arrays. If one or more of the input arguments p, mu, and
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sigma are arrays, then the array sizes must be the same. In this case, norminv expands each scalar
input into a constant array of the same size as the array inputs. Each element in x is the icdf value of
the distribution specified by the corresponding elements in mu and sigma, evaluated at the
corresponding element in p.
Example: [0 1 2; 0 1 2]
Data Types: single | double

sigma — Standard deviation
1 (default) | positive scalar value | array of positive scalar values

Standard deviation of the normal distribution, specified as a positive scalar value or an array of
positive scalar values.

If you specify pCov to compute the confidence interval [xLo,xUp], then sigma must be a scalar
value.

To evaluate the icdf at multiple values, specify p using an array. To evaluate the icdfs of multiple
distributions, specify mu and sigma using arrays. If one or more of the input arguments p, mu, and
sigma are arrays, then the array sizes must be the same. In this case, norminv expands each scalar
input into a constant array of the same size as the array inputs. Each element in x is the icdf value of
the distribution specified by the corresponding elements in mu and sigma, evaluated at the
corresponding element in p.
Example: [1 1 1; 2 2 2]
Data Types: single | double

pCov — Covariance of estimates
2-by-2 numeric matrix

Covariance of the estimates mu and sigma, specified as a 2-by-2 matrix.

If you specify pCov to compute the confidence interval [xLo,xUp], then p, mu, and sigma must be
scalar values.

You can estimate mu and sigma by using mle, and estimate the covariance of mu and sigma by using
normlike. For an example, see “Confidence Interval of Inverse Normal cdf Value” on page 35-5109.
Data Types: single | double

alpha — Significance level
0.05 (default) | scalar in the range (0,1)

Significance level for the confidence interval, specified as a scalar in the range (0,1). The confidence
level is 100(1–alpha)%, where alpha is the probability that the confidence interval does not
contain the true value.
Example: 0.01
Data Types: single | double

Output Arguments
x — icdf values
scalar value | array of scalar values
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icdf values, evaluated at the probability values in p, returned as a scalar value or an array of scalar
values. x is the same size as p, mu, and sigma after any necessary scalar expansion. Each element in
x is the icdf value of the distribution specified by the corresponding elements in mu and sigma,
evaluated at the corresponding element in p.

xLo — Lower confidence bound for x
scalar value | array of scalar values

Lower confidence bound for x, returned as a scalar value or an array of scalar values. xLo has the
same size as x.

xUp — Upper confidence bound for x
scalar value | array of scalar values

Upper confidence bound for x, returned as a scalar value or an array of scalar values. xUp has the
same size as x.

More About
Normal Distribution

The normal distribution is a two-parameter family of curves. The first parameter, µ, is the mean. The
second parameter, σ, is the standard deviation.

The standard normal distribution has zero mean and unit standard deviation.

The normal inverse function is defined in terms of the normal cdf as

x = F−1(p μ, σ) = x:F(x μ, σ) = p ,

where

p = F(x μ, σ) = 1
σ 2π∫−∞

x
e
−(t − μ)2

2σ2 dt .

The result x is the solution of the integral equation where you supply the desired probability p.

Algorithms
• The norminv function uses the inverse complementary error function erfcinv. The relationship

between norminv and erfcinv is

norminv(p) = − 2erfcinv(2p)

The inverse complementary error function erfcinv(x) is defined as erfcinv(erfc(x))=x, and
the complementary error function erfc(x) is defined as

erfc(x) = 1− erf(x) = 2
π∫x

∞
e−t2dt .

• The norminv function computes confidence bounds for x by using the delta method.
norminv(p,mu,sigma) is equivalent to mu + sigma*norminv(p,0,1). Therefore, the
norminv function estimates the variance of mu + sigma*norminv(p,0,1) using the covariance
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matrix of mu and sigma by the delta method, and finds the confidence bounds using the estimates
of this variance. The computed bounds give approximately the desired confidence level when you
estimate mu, sigma, and pCov from large samples.

Alternative Functionality
• norminv is a function specific to normal distribution. Statistics and Machine Learning Toolbox

also offers the generic function icdf, which supports various probability distributions. To use
icdf, create a NormalDistribution probability distribution object and pass the object as an
input argument or specify the probability distribution name and its parameters. Note that the
distribution-specific function norminv is faster than the generic function icdf.

Version History
Introduced before R2006a

References
[1] Abramowitz, M., and I. A. Stegun. Handbook of Mathematical Functions. New York: Dover, 1964.

[2] Evans, M., N. Hastings, and B. Peacock. Statistical Distributions. 2nd ed. Hoboken, NJ: John Wiley
& Sons, Inc., 1993.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

This function fully supports GPU arrays. For more information, see “Run MATLAB Functions on a
GPU” (Parallel Computing Toolbox).

See Also
icdf | normcdf | normfit | normlike | NormalDistribution | erfcinv | normspec

Topics
“Normal Distribution” on page B-125
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normlike
Normal negative loglikelihood

Syntax
nlogL = normlike(params,x)
nlogL = normlike(params,x,censoring)
nlogL = normlike(params,x,censoring,freq)

[nlogL,aVar] = normlike( ___ )

Description
nlogL = normlike(params,x) returns the normal negative loglikelihood of the distribution
parameters (params) given the sample data (x). params(1) and params(2) correspond to the mean
and standard deviation of the normal distribution, respectively.

nlogL = normlike(params,x,censoring) specifies whether each value in x is right-censored or
not. Use the logical vector censoring in which 1 indicates observations that are right-censored and
0 indicates observations that are fully observed.

nlogL = normlike(params,x,censoring,freq) specifies the frequency or weights of
observations. To specify freq without specifying censoring, you can pass [] for censoring.

[nlogL,aVar] = normlike( ___ ) also returns the inverse of the Fisher information matrix aVar,
using any of the input argument combinations in the previous syntaxes. If values in params are the
maximum likelihood estimates (MLEs) of the parameters, aVar is an approximation to the asymptotic
covariance matrix.

Examples

Negative Loglikelihood of MLEs

Find the MLEs of a data set with censoring by using normfit, and then find the negative
loglikelihood of the MLEs by using normlike.

Load the sample data.

load lightbulb

The first column of the data contains the lifetime (in hours) of two types of bulbs. The second column
contains the binary variable indicating whether the bulb is fluorescent or incandescent. 1 indicates
that the bulb is fluorescent, and 0 indicates that the bulb is incandescent. The third column contains
the censorship information, where 0 indicates the bulb is observed until failure, and 1 indicates the
item (bulb) is censored.

Find the indices for fluorescent bulbs.

idx = find(lightbulb(:,2) == 0);
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Find the MLEs of the normal distribution parameters. The second input argument of normfit
specifies the confidence level. Pass in [] to use its default value 0.05. The third input argument
specifies the censorship information.

censoring = lightbulb(idx,3) == 1;
[muHat,sigmaHat] = normfit(lightbulb(idx,1),[],censoring)

muHat = 9.4966e+03

sigmaHat = 3.0640e+03

Find the negative loglikelihood of the MLEs.

nlogL = normlike([muHat,sigmaHat],lightbulb(idx,1),censoring)

nlogL = 376.2305

Convert Unbiased Estimator to MLE

The function normfit finds the sample mean and the square root of the unbiased estimator of the
variance with no censoring. The sample mean is equal to the MLE of the mean parameter, but the
square root of the unbiased estimator of the variance is not equal to the MLE of the standard
deviation parameter.

Find the normal distribution parameters by using normfit, convert them into MLEs, and then
compare the negative log likelihoods of the estimates by using normlike.

Generate 100 normal random numbers from the standard normal distribution.

rng('default') % For reproducibility
n = 100;
x = normrnd(0,1,[n,1]);

Find the sample mean and the square root of the unbiased estimator of the variance.

[muHat,sigmaHat] = normfit(x)

muHat = 0.1231

sigmaHat = 1.1624

Convert the square root of the unbiased estimator of the variance into the MLE of the standard
deviation parameter.

sigmaHat_MLE = sqrt((n-1)/n)*sigmaHat

sigmaHat_MLE = 1.1566

The difference between sigmaHat and sigmaHat_MLE is negligible for large n.

Alternatively, you can find the MLEs by using the function mle.

phat = mle(x)

phat = 1×2
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    0.1231    1.1566

phat(1) and phat(2) are the MLEs of the mean and the standard deviation parameter, respectively.

Confirm that the log likelihood of the MLEs (muHat and sigmaHat_MLE) is greater than the log
likelihood of the unbiased estimators (muHat and sigmaHat) by using the normlike function.

logL = -normlike([muHat,sigmaHat],x)

logL = -156.4424

logL_MLE = -normlike([muHat,sigmaHat_MLE],x)

logL_MLE = -156.4399

Confidence Interval of Inverse Normal cdf Value

Find the maximum likelihood estimates (MLEs) of the normal distribution parameters, and then find
the confidence interval of the corresponding inverse cdf value.

Generate 1000 normal random numbers from the normal distribution with mean 5 and standard
deviation 2.

rng('default') % For reproducibility
n = 1000; % Number of samples
x = normrnd(5,2,[n,1]);

Find the MLEs for the distribution parameters (mean and standard deviation) by using mle.

phat = mle(x)

phat = 1×2

    4.9347    1.9969

muHat = phat(1);
sigmaHat = phat(2);

Estimate the covariance of the distribution parameters by using normlike. The function normlike
returns an approximation to the asymptotic covariance matrix if you pass the MLEs and the samples
used to estimate the MLEs.

[~,pCov] = normlike([muHat,sigmaHat],x)

pCov = 2×2

    0.0040   -0.0000
   -0.0000    0.0020

Find the inverse cdf value at 0.5 and its 99% confidence interval.

[x,xLo,xUp] = norminv(0.5,muHat,sigmaHat,pCov,0.01)

x = 4.9347
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xLo = 4.7721

xUp = 5.0974

x is the inverse cdf value using the normal distribution with the parameters muHat and sigmaHat.
The interval [xLo,xUp] is the 99% confidence interval of the inverse cdf value evaluated at 0.5,
considering the uncertainty of muHat and sigmaHat using pCov. The 99% confidence interval means
the probability that [xLo,xUp] contains the true inverse cdf value is 0.99.

Input Arguments
params — Normal distribution parameters
vector of two numeric values

Normal distribution parameters consisting of the mean and standard deviation, specified as a vector
of two numeric values. params(1) and params(2) correspond to the mean and standard deviation
of the normal distribution, respectively. params(2) must be positive.
Example: [0,1]
Data Types: single | double

x — Sample data
vector

Sample data, specified as a vector.
Data Types: single | double

censoring — Indicator for censoring
array of 0s (default) | logical vector

Indicator for the censoring of each value in x, specified as a logical vector of the same size as x. Use
1 for observations that are right-censored and 0 for observations that are fully observed.

The default is an array of 0s, meaning that all observations are fully observed.
Data Types: logical

freq — Frequency or weights of observations
array of 1s (default) | nonnegative vector

Frequency or weights of observations, specified as a nonnegative vector that is the same size as x.
The freq input argument typically contains nonnegative integer counts for the corresponding
elements in x, but can contain any nonnegative values.

To obtain the weighted negative loglikelihood for a data set with censoring, specify weights of
observations, normalized to the number of observations in x.

The default is an array of 1s, meaning one observation per element of x.
Data Types: single | double
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Output Arguments
nlogL — Negative loglikelihood
numeric scalar

Negative loglikelihood value of the distribution parameters (params) given the sample data (x),
returned as a numeric scalar.

aVar — Inverse of Fisher information matrix
numeric matrix

Inverse of the Fisher information matrix, returned as a 2-by-2 numeric matrix. aVar is based on the
observed Fisher information given the observed data (x), not the expected information.

If values in params are the MLEs of the parameters, aVar is an approximation to the asymptotic
variance-covariance matrix (also known as the asymptotic covariance matrix). To find the MLEs, use
mle.

Alternative Functionality
normlike is a function specific to normal distribution. Statistics and Machine Learning Toolbox also
offers the generic functions mlecov, fitdist, negloglik, and proflik and the Distribution
Fitter app, which support various probability distributions.

• mlecov returns the asymptotic covariance matrix of the MLEs of the parameters for a distribution
specified by a custom probability density function. For example,
mlecov(params,x,'pdf',@normpdf) returns the asymptotic covariance matrix of the MLEs for
the normal distribution.

• Create a NormalDistribution probability distribution object by fitting the distribution to data
using the fitdist function or the Distribution Fitter app. The object property
ParameterCovariance stores the covariance matrix of the parameter estimates. To obtain the
negative loglikelihood of the parameter estimates and the profile of the likelihood function, pass
the object to negloglik and proflik, respectively.

Version History
Introduced before R2006a

References
[1] Evans, M., N. Hastings, and B. Peacock. Statistical Distributions. 2nd ed. Hoboken, NJ: John Wiley

& Sons, Inc., 1993.

[2] Lawless, J. F. Statistical Models and Methods for Lifetime Data. Hoboken, NJ: Wiley-Interscience,
1982.

[3] Meeker, W. Q., and L. A. Escobar. Statistical Methods for Reliability Data. Hoboken, NJ: John Wiley
& Sons, Inc., 1998.
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Extended Capabilities
GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

This function fully supports GPU arrays. For more information, see “Run MATLAB Functions on a
GPU” (Parallel Computing Toolbox).

See Also
normfit | normcdf | norminv | NormalDistribution | mlecov | mle | proflik | Distribution
Fitter | negloglik

Topics
“Negative Loglikelihood Functions” on page 5-25
“Normal Distribution” on page B-125
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normpdf
Normal probability density function

Syntax
y = normpdf(x)
y = normpdf(x,mu)
y = normpdf(x,mu,sigma)

Description
y = normpdf(x) returns the probability density function (pdf) of the standard normal distribution,
evaluated at the values in x.

y = normpdf(x,mu) returns the pdf of the normal distribution with mean mu and the unit standard
deviation, evaluated at the values in x.

y = normpdf(x,mu,sigma) returns the pdf of the normal distribution with mean mu and standard
deviation sigma, evaluated at the values in x.

Examples

Standard Normal Distribution pdf

Compute the pdf values for the standard normal distribution at the values in x.

x = [-2,-1,0,1,2];
y = normpdf(x)

y = 1×5

    0.0540    0.2420    0.3989    0.2420    0.0540

Normal Distribution pdf

Compute the pdf values evaluated at the values in x for the normal distribution with mean mu and
standard deviation sigma.

x = [-2,-1,0,1,2];
mu = 2;
sigma = 1;
y = normpdf(x,mu,sigma)

y = 1×5

    0.0001    0.0044    0.0540    0.2420    0.3989

35 Functions

35-5120



Compute the pdf values evaluated at zero for various normal distributions with different mean
parameters.

mu = [-2,-1,0,1,2];
sigma = 1;
y = normpdf(0,mu,sigma)

y = 1×5

    0.0540    0.2420    0.3989    0.2420    0.0540

Input Arguments
x — Values at which to evaluate pdf
scalar value | array of scalar values

Values at which to evaluate the pdf, specified as a scalar value or an array of scalar values.

To evaluate the pdf at multiple values, specify x using an array. To evaluate the pdfs of multiple
distributions, specify mu and sigma using arrays. If one or more of the input arguments x, mu, and
sigma are arrays, then the array sizes must be the same. In this case, normpdf expands each scalar
input into a constant array of the same size as the array inputs. Each element in y is the pdf value of
the distribution specified by the corresponding elements in mu and sigma, evaluated at the
corresponding element in x.
Example: [-1,0,3,4]
Data Types: single | double

mu — Mean
0 (default) | scalar value | array of scalar values

Mean of the normal distribution, specified as a scalar value or an array of scalar values.

To evaluate the pdf at multiple values, specify x using an array. To evaluate the pdfs of multiple
distributions, specify mu and sigma using arrays. If one or more of the input arguments x, mu, and
sigma are arrays, then the array sizes must be the same. In this case, normpdf expands each scalar
input into a constant array of the same size as the array inputs. Each element in y is the pdf value of
the distribution specified by the corresponding elements in mu and sigma, evaluated at the
corresponding element in x.
Example: [0 1 2; 0 1 2]
Data Types: single | double

sigma — Standard deviation
1 (default) | positive scalar value | array of positive scalar values

Standard deviation of the normal distribution, specified as a positive scalar value or an array of
positive scalar values.

To evaluate the pdf at multiple values, specify x using an array. To evaluate the pdfs of multiple
distributions, specify mu and sigma using arrays. If one or more of the input arguments x, mu, and
sigma are arrays, then the array sizes must be the same. In this case, normpdf expands each scalar
input into a constant array of the same size as the array inputs. Each element in y is the pdf value of
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the distribution specified by the corresponding elements in mu and sigma, evaluated at the
corresponding element in x.
Example: [1 1 1; 2 2 2]
Data Types: single | double

Output Arguments
y — pdf values
scalar value | array of scalar values

pdf values, evaluated at the values in x, returned as a scalar value or an array of scalar values. y is
the same size as x, mu, and sigma after any necessary scalar expansion. Each element in y is the pdf
value of the distribution specified by the corresponding elements in mu and sigma, evaluated at the
corresponding element in x.

More About
Normal Distribution

The normal distribution is a two-parameter family of curves. The first parameter, µ, is the mean. The
second parameter, σ, is the standard deviation.

The standard normal distribution has zero mean and unit standard deviation.

The normal probability density function (pdf) is

y = f (x μ, σ) = 1
σ 2πe

−(x− μ)2

2σ2 , for x ∈ ℝ .

The likelihood function is the pdf viewed as a function of the parameters. The maximum likelihood
estimates (MLEs) are the parameter estimates that maximize the likelihood function for fixed values
of x.

Alternative Functionality
• normpdf is a function specific to normal distribution. Statistics and Machine Learning Toolbox

also offers the generic function pdf, which supports various probability distributions. To use pdf,
create a NormalDistribution probability distribution object and pass the object as an input
argument or specify the probability distribution name and its parameters. Note that the
distribution-specific function normpdf is faster than the generic function pdf.

• Use the Probability Distribution Function app to create an interactive plot of the cumulative
distribution function (cdf) or probability density function (pdf) for a probability distribution.

Version History
Introduced before R2006a
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References
[1] Evans, M., N. Hastings, and B. Peacock. Statistical Distributions. 2nd ed. Hoboken, NJ: John Wiley

& Sons, Inc., 1993.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

This function fully supports GPU arrays. For more information, see “Run MATLAB Functions on a
GPU” (Parallel Computing Toolbox).

See Also
pdf | normcdf | norminv | normrnd | mvnpdf | NormalDistribution | normspec

Topics
“Normal Distribution” on page B-125
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normplot
Normal probability plot

Syntax
normplot(x)
normplot(ax,x)
h = normplot( ___ )

Description
normplot(x) creates a normal probability plot comparing the distribution of the data in x to the
normal distribution.

normplot plots each data point in x using plus sign ('+') markers and draws two reference lines
that represent the theoretical distribution. A solid reference line connects the first and third quartiles
of the data, and a dashed reference line extends the solid line to the ends of the data. If the sample
data has a normal distribution, then the data points appear along the reference line. A distribution
other than normal introduces curvature in the data plot.

normplot(ax,x) adds a normal probability plot into the axes specified by ax.

h = normplot( ___ ) returns graphics handles corresponding to the plotted lines, using any of the
previous syntaxes.

Examples

Generate a Normal Probability Plot

Generate random sample data from a normal distribution with mu = 10 and sigma = 1.

rng default;  % For reproducibility
x = normrnd(10,1,25,1);

Create a normal probability plot of the sample data.

figure;
normplot(x)
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The plot indicates that the data follows a normal distribution.

Assess Normality Using a Normal Probability Plot

Generate 50 random numbers from each of four different distributions: A standard normal
distribution; a Student's-t distribution with five degrees of freedom (a "fat-tailed" distribution); a set
of Pearson random numbers with mu equal to 0, sigma equal to 1, skewness equal to 0.5, and kurtosis
equal to 3 (a "right-skewed" distribution); and a set of Pearson random numbers with mu equal to 0,
sigma equal to 1, skewness equal to -0.5, and kurtosis equal to 3 (a "left-skewed" distribution).

rng(11)  % For reproducibility
x1 = normrnd(0,1,[50,1]);
x2 = trnd(5,[50,1]);
x3 = pearsrnd(0,1,0.5,3,[50,1]);
x4 = pearsrnd(0,1,-0.5,3,[50,1]);

Plot four histograms on the same figure for a visual comparison of the pdf of each distribution.

figure
subplot(2,2,1)
histogram(x1,10)
title('Normal')
axis([-4,4,0,15])
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subplot(2,2,2)
histogram(x2,10)
title('Fat Tails')
axis([-4,4,0,15])

subplot(2,2,3)
histogram(x3,10)
title('Right-Skewed')
axis([-4,4,0,15])

subplot(2,2,4)
histogram(x4,10)
title('Left-Skewed')
axis([-4,4,0,15])

The histograms show how each sample differs from the normal distribution.

Create a normal probability plot for each sample.

figure
subplot(2,2,1)
normplot(x1)
title('Normal')

subplot(2,2,2)
normplot(x2)
title('Fat Tails')
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subplot(2,2,3)
normplot(x3)
title('Right-Skewed')

subplot(2,2,4)
normplot(x4)
title('Left-Skewed')

Adjust Normal Probability Plot Line Properties

Create a 50-by-2 matrix containing 50 random numbers from each of two different distributions: A
standard normal distribution in column 1, and a set of Pearson random numbers with mu equal to 0,
sigma equal to 1, skewness equal to 0.5, and kurtosis equal to 3 (a "right-skewed" distribution) in
column 2.

rng default  % For reproducibility
x = [normrnd(0,1,[50,1]) pearsrnd(0,1,0.5,3,[50,1])];

Create a normal probability plot for both samples on the same figure. Return the plot line graphic
handles.

figure
h = normplot(x)

h = 
  6x1 Line array:
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  Line
  Line
  Line
  Line
  Line
  Line

legend({'Normal','Right-Skewed'},'Location','southeast')

The handles h(1) and h(2) correspond to the data points for the normal and skewed distributions,
respectively. The handles h(3) and h(4) correspond to the second and third quartile line fit to the
sample data. The handles h(5) and h(6) correspond to the extrapolated line that extends to the
minimum and maximum of each set of sample data.

To illustrate, increase the line width of the second and third quartile line for the normally distributed
data sample (represented by h(3)) to 2.

h(3).LineWidth = 2;
h(4).LineWidth = 2;
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Input Arguments
x — Sample data
numeric vector | numeric matrix

Sample data, specified as a numeric vector or numeric matrix. normplot displays each value in x
using the symbol '+'. If x is a matrix, then normplot displays a separate line for each column of x.
Data Types: single | double

ax — Target axes
Axes object | UIAxes object

Target axes, specified as an Axes object or a UIAxes object. normplot adds an additional plot into
the axes specified by ax. For details, see Axes Properties and UIAxes Properties.

Use gca to return the current axes for the current figure.

Output Arguments
h — Graphics handles for line objects
vector of Line graphics handles
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Graphics handles for line objects, returned as a vector of Line graphics handles. Graphics handles
are unique identifiers that you can use to query and modify the properties of a specific line on the
plot. For each column of x, normplot returns three handles:

• The line representing the data points. normplot represents each data point in x using plus sign
('+') markers.

• The line joining the first and third quartiles of each column of x, represented as a solid line.
• The extrapolation of the quartile line, extended to the minimum and maximum values of x,

represented as a dashed line.

To view and set properties of line objects, use dot notation. For information on using dot notation, see
“Access Property Values”. For information on the Line properties that you can set, see Primitive Line.

Algorithms
normplot matches the quantiles of sample data to the quantiles of a normal distribution. The sample
data is sorted and plotted on the x-axis. The y-axis represents the quantiles of the normal distribution,
converted into probability values. Therefore, the y-axis scaling is not linear.

Where the x-axis value is the ith sorted value from a sample of size N, the y-axis value is the midpoint
between evaluation points of the empirical cumulative distribution function of the data. The midpoint
is equal to i− 0.5

N .

normplot superimposes a reference line to assess the linearity of the plot. The line goes through the
first and third quartiles of the data.

Alternative Functionality
You can use the probplot function to create a probability plot. The probplot function enables you
to indicate censored data and specify the distribution for a probability plot.

Version History
Introduced before R2006a

See Also
probplot | cdfplot | wblplot | ecdf

Topics
“Distribution Plots” on page 4-7
“Hypothesis Testing” on page 8-5
“Normal Distribution” on page B-125
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normrnd
Normal random numbers

Syntax
r = normrnd(mu,sigma)
r = normrnd(mu,sigma,sz1,...,szN)
r = normrnd(mu,sigma,sz)

Description
r = normrnd(mu,sigma) generates a random number from the normal distribution with mean
parameter mu and standard deviation parameter sigma.

r = normrnd(mu,sigma,sz1,...,szN) generates an array of normal random numbers, where
sz1,...,szN indicates the size of each dimension.

r = normrnd(mu,sigma,sz) generates an array of normal random numbers, where vector sz
specifies size(r).

Examples

Generate Normal Random Number

Generate a single random value from the standard normal distribution.

rng('default') % For reproducibility
r = normrnd(0,1)

r = 0.5377

Reset Random Number Generator

Save the current state of the random number generator. Then create a 1-by-5 vector of normal
random numbers from the normal distribution with mean 3 and standard deviation 10.

s = rng;
r = normrnd(3,10,[1,5])

r = 1×5

    8.3767   21.3389  -19.5885   11.6217    6.1877

Restore the state of the random number generator to s, and then create a new 1-by-5 vector of
random numbers. The values are the same as before.

rng(s);
r1 = normrnd(3,10,[1,5])
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r1 = 1×5

    8.3767   21.3389  -19.5885   11.6217    6.1877

Clone Size from Existing Array

Create a matrix of normally distributed random numbers with the same size as an existing array.

A = [3 2; -2 1];
sz = size(A);
R = normrnd(0,1,sz)

R = 2×2

    0.5377   -2.2588
    1.8339    0.8622

You can combine the previous two lines of code into a single line.

R = normrnd(1,0,size(A));

Input Arguments
mu — Mean
scalar value | array of scalar values

Mean of the normal distribution, specified as a scalar value or an array of scalar values.

To generate random numbers from multiple distributions, specify mu and sigma using arrays. If both
mu and sigma are arrays, then the array sizes must be the same. If either mu or sigma is a scalar,
then normrnd expands the scalar argument into a constant array of the same size as the other
argument. Each element in r is the random number generated from the distribution specified by the
corresponding elements in mu and sigma.
Example: [0 1 2; 0 1 2]
Data Types: single | double

sigma — Standard deviation
nonnegative scalar value | array of nonnegative scalar values

Standard deviation of the normal distribution, specified as a nonnegative scalar value or an array of
nonnegative scalar values.

If sigma is zero, then the output r is always equal to mu.

To generate random numbers from multiple distributions, specify mu and sigma using arrays. If both
mu and sigma are arrays, then the array sizes must be the same. If either mu or sigma is a scalar,
then normrnd expands the scalar argument into a constant array of the same size as the other
argument. Each element in r is the random number generated from the distribution specified by the
corresponding elements in mu and sigma.
Example: [1 1 1; 2 2 2]
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Data Types: single | double

sz1,...,szN — Size of each dimension (as separate arguments)
integers

Size of each dimension, specified as integers. For example, specifying 5,3,2 generates a 5-by-3-by-2
array of random numbers from the probability distribution.

If either mu or sigma is an array, then the specified dimensions sz1,...,szN must match the
common dimensions of mu and sigma after any necessary scalar expansion. The default values of
sz1,...,szN are the common dimensions.

• If you specify a single value sz1, then r is a square matrix of size sz1-by-sz1.
• If the size of any dimension is 0 or negative, then r is an empty array.
• Beyond the second dimension, normrnd ignores trailing dimensions with a size of 1. For example,

specifying 3,1,1,1 produces a 3-by-1 vector of random numbers.

Example: 5,3,2
Data Types: single | double

sz — Size of each dimension (as a row vector)
row vector of integers

Size of each dimension, specified as a row vector of integers. For example, specifying [5,3,2]
generates a 5-by-3-by-2 array of random numbers from the probability distribution.

If either mu or sigma is an array, then the specified dimensions sz must match the common
dimensions of mu and sigma after any necessary scalar expansion. The default values of sz are the
common dimensions.

• If you specify a single value [sz1], then r is a square matrix of size sz1-by-sz1.
• If the size of any dimension is 0 or negative, then r is an empty array.
• Beyond the second dimension, normrnd ignores trailing dimensions with a size of 1. For example,

specifying [3,1,1,1] produces a 3-by-1 vector of random numbers.

Example: [5,3,2]
Data Types: single | double

Output Arguments
r — Normal random numbers
scalar value | array of scalar values

Normal random numbers, returned as a scalar value or an array of scalar values with the dimensions
specified by sz1,...,szN or sz. Each element in r is the random number generated from the
distribution specified by the corresponding elements in mu and sigma.

Alternative Functionality
• normrnd is a function specific to normal distribution. Statistics and Machine Learning Toolbox

also offers the generic function random, which supports various probability distributions. To use
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random, create a NormalDistribution probability distribution object and pass the object as an
input argument or specify the probability distribution name and its parameters. Note that the
distribution-specific function normrnd is faster than the generic function random.

• Use randn to generate random numbers from the standard normal distribution.
• To generate random numbers interactively, use randtool, a user interface for random number

generation.

Version History
Introduced before R2006a

References
[1] Marsaglia, G, and W. W. Tsang. “A Fast, Easily Implemented Method for Sampling from Decreasing

or Symmetric Unimodal Density Functions.” SIAM Journal on Scientific and Statistical
Computing. Vol. 5, Number 2, 1984, pp. 349–359.

[2] Evans, M., N. Hastings, and B. Peacock. Statistical Distributions. 2nd ed. Hoboken, NJ: John Wiley
& Sons, Inc., 1993.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

The generated code can return a different sequence of numbers than MATLAB if either of the
following is true:

• The output is nonscalar.
• An input parameter is invalid for the distribution.

For more information on code generation, see “Introduction to Code Generation” on page 34-2 and
“General Code Generation Workflow” on page 34-5.

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

This function fully supports GPU arrays. For more information, see “Run MATLAB Functions on a
GPU” (Parallel Computing Toolbox).

See Also
random | mvnrnd | lognrnd | NormalDistribution | randn | normcdf | normpdf

Topics
“Random Number Generation” on page 5-28
“Normal Distribution” on page B-125
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normspec
Normal density plot shading between specifications

Syntax
p = normspec(specs)
p = normspec(specs,mu,sigma)
p = normspec(specs,mu,sigma,region)
[p,h] = normspec( ___ )

Description
p = normspec(specs) plots the standard normal density, shading the portion inside the
specification limits given by the two-element vector specs, and returns the probability p of the
shaded area. If spec has no lower limit, then set specs(1) to –Inf; if spec has no upper limit, then
set specs(2) to Inf.

p = normspec(specs,mu,sigma) uses a normal density with parameters mu and sigma.

p = normspec(specs,mu,sigma,region) specifies the shading region as either 'inside' or
'outside' the specification limits. The default is 'inside'.

[p,h] = normspec( ___ ) also returns a column vector of chart line objects using any of the input
arguments in the previous syntaxes. Use h to modify properties of a specific chart line after you
create it. For a list of properties, see Line.

Examples

Create Standard Normal Density Plot Shading Inside of Limits

Create a standard normal density plot, shading the portion inside the specification limits [-1,1].

p = normspec([-1,1])
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p = 0.6827

Create Normal Density Plot Shading Outside of Limits

Create a normal density plot, shading the portion outside the specification limits.

For example, consider a production process that fills cans of paint. The average amount of paint in
any can is 1 gallon, but variability in the process produces a standard deviation of 2 ounces (2/128
gallons). Create a normal density plot, shading the portion corresponding to the probability that the
cans will be filled under specification by 3 or more ounces.

p = normspec([1-3/128,Inf],1,2/128,'outside')
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p = 0.0668

Input Arguments
specs — Specification limits
two-element numeric vector

Specification limits, specified as a two-element numeric vector. Set specs(1) to –Inf if there is no
lower limit; set specs(2) to Inf if there is no upper limit.
Data Types: single | double

mu — Mean
0 (default) | scalar value

Mean of the normal distribution, specified as a scalar value.
Data Types: single | double

sigma — Standard deviation
1 (default) | positive scalar value

Standard deviation of the normal distribution, specified as a positive scalar value.
Data Types: single | double
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region — Shading region
'inside' (default) | 'outside'

Shading region, specified as either 'inside' or 'outside'. The function normspec shades the
region either 'inside' or 'outside' the specification limits.

Output Arguments
p — Probability of shaded area
nonnegative scalar value

Probability of the shaded area, returned as a nonnegative scalar value.

h — One or more chart line objects
scalar | vector

One or more chart line objects, returned as a scalar or vector. These objects are unique identifiers
that you use to query and modify properties of a specific chart line. For a list of properties, see Chart
Line.

Version History
Introduced before R2006a

See Also
capaplot | histfit

Topics
“Normal Distribution” on page B-125
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normstat
Normal mean and variance

Syntax
[m,v] = normstat(mu,sigma)

Description
[m,v] = normstat(mu,sigma) returns the mean and variance of the normal distribution with
mean mu and standard deviation sigma.

The mean of the normal distribution with parameters µ and σ is µ, and the variance is σ2.

Examples

Compute Mean and Variance

Compute the mean and variance of the normal distribution with parameters mu and sigma.

mu = 1;
sigma = 1:5;
[m,v] = normstat(mu,sigma)

m = 1×5

     1     1     1     1     1

v = 1×5

     1     4     9    16    25

Input Arguments
mu — Mean
scalar value | array of scalar values

Mean of the normal distribution, specified as a scalar value or an array of scalar values.

To compute the means and variances of multiple distributions, specify distribution parameters using
an array of scalar values. If both mu and sigma are arrays, then the array sizes must be the same. If
either mu or sigma is a scalar, then normstat expands the scalar argument into a constant array of
the same size as the other argument. Each element in m and v is the mean and variance of the
distribution specified by the corresponding elements in mu and sigma.
Example: [0 1 2; 0 1 2]
Data Types: single | double
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sigma — Standard deviation
positive scalar value | array of positive scalar values

Standard deviation of the normal distribution, specified as a positive scalar value or an array of
positive scalar values.

To compute the means and variances of multiple distributions, specify distribution parameters using
an array of scalar values. If both mu and sigma are arrays, then the array sizes must be the same. If
either mu or sigma is a scalar, then normstat expands the scalar argument into a constant array of
the same size as the other argument. Each element in m and v is the mean and variance of the
distribution specified by the corresponding elements in mu and sigma.
Example: [1 1 1; 2 2 2]
Data Types: single | double

Output Arguments
m — Mean
scalar value | array of scalar values

Mean of the normal distribution, returned as a scalar value or an array of scalar values. m is the same
size as mu and sigma after any necessary scalar expansion. Each element in m is the mean of the
normal distribution specified by the corresponding elements in mu and sigma.

v — Variance
scalar value | array of scalar values

Variance of the normal distribution, returned as a scalar value or an array of scalar values. v is the
same size as mu and sigma after any necessary scalar expansion. Each element in v is the variance of
the normal distribution specified by the corresponding elements in mu and sigma.

Alternative Functionality
• normstat is a function specific to normal distribution. Statistics and Machine Learning Toolbox

also offers generic functions to compute summary statistics, including mean (mean), median
(median), interquartile range (iqr), variance (var), and standard deviation (std). These generic
functions support various probability distributions. To use these functions, create a
NormalDistribution probability distribution object and pass the object as an input argument.

Version History
Introduced before R2006a

References
[1] Evans, M., N. Hastings, and B. Peacock. Statistical Distributions. 2nd ed. Hoboken, NJ: John Wiley

& Sons, Inc., 1993.
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Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

This function fully supports GPU arrays. For more information, see “Run MATLAB Functions on a
GPU” (Parallel Computing Toolbox).

See Also
normpdf | normcdf | normrnd | NormalDistribution | mean | std | var

Topics
“Normal Distribution” on page B-125
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nsegments
Number of segments in piecewise distribution

Syntax
n = nsegments(pd)

Description
n = nsegments(pd) returns the number of segments in the piecewise distribution object pd.

Examples

Number of Segments in paretotails Object

Generate a sample data set and fit a piecewise distribution with a Pareto tail to the data by using
paretotails. Find the number of segments in the fitted distribution by using the object function
nsegments.

Generate a sample data set containing 10% outliers in the right tail.

rng('default');  % For reproducibility
right_tail = exprnd(5,100,1);
center = randn(900,1);
x = [center;right_tail];

Create a paretotails object by fitting a piecewise distribution to x. Specify the boundaries of the
tails using the lower and upper tail cumulative probabilities. Pass in 0 and 0.9 so that a fitted object
does not contain a lower tail segment, and consists of the empirical distribution for the lower 90% of
the data set and a generalized Pareto distribution (GPD) for the upper 10% of the data set.

pd = paretotails(x,0,0.9)

pd = 
Piecewise distribution with 2 segments
   -Inf < x < 1.73931  (0 < p < 0.9): interpolated empirical cdf
    1.73931 < x < Inf  (0.9 < p < 1): upper tail, GPD(0.643752,1.62246)

Return the number of segments in pd by using the nsegments function.

n = nsegments(pd)

n = 2

You can also get the number of segments by using the NumSegments property. Access the
NumSegments property by using dot notation.

pd.NumSegments

ans = 2
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Input Arguments
pd — Piecewise distribution with Pareto tails
paretotails object

Piecewise distribution with Pareto tails, specified as a paretotails object.

Version History
Introduced in R2007a

See Also
paretotails | boundary | segment | upperparams | lowerparams

Topics
“Fit a Nonparametric Distribution with Pareto Tails” on page 5-44
“Nonparametric and Empirical Probability Distributions” on page 5-31
“Nonparametric Estimates of Cumulative Distribution Functions and Their Inverses” on page 5-192
“Generalized Pareto Distribution” on page B-60
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numel
Class: dataset

(Not Recommended) Number of elements in dataset array

Note The dataset data type is not recommended. To work with heterogeneous data, use the
MATLAB® table data type instead. See MATLAB table documentation for more information.

Syntax
n = numel(A)
n = numel(A, varargin)

Description
n = numel(A) returns 1. To find the number of elements, n, in the dataset array A, use
prod(size(A)) or numel(A,':',':').

n = numel(A, varargin) returns the number of subscripted elements, n, in A(index1,
index2, ..., indexn), where varargin is a string array or cell array whose elements are
index1, index2, ... indexn.

See Also
length | size
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ocsvm
Fit one-class support vector machine (SVM) model for anomaly detection

Syntax
Mdl = ocsvm(Tbl)
Mdl = ocsvm(X)
Mdl = ocsvm( ___ ,Name=Value)
[Mdl,tf] = ocsvm( ___ )
[Mdl,tf,scores] = ocsvm( ___ )

Description
Use the ocsvm function to fit a one-class support vector machine (SVM) model for outlier detection
and novelty detection.

• Outlier detection (detecting anomalies in training data) — Use the output argument tf of ocsvm
to identify anomalies in training data.

• Novelty detection (detecting anomalies in new data with uncontaminated training data) — Create
a OneClassSVM object by passing uncontaminated training data (data with no outliers) to ocsvm.
Detect anomalies in new data by passing the object and the new data to the object function
isanomaly.

Mdl = ocsvm(Tbl) returns a OneClassSVM object (one-class SVM model object) for predictor data
in the table Tbl.

Mdl = ocsvm(X) uses predictor data in the matrix X.

Mdl = ocsvm( ___ ,Name=Value) specifies options using one or more name-value arguments in
addition to any of the input argument combinations in the previous syntaxes. For example,
ContaminationFraction=0.1 instructs the function to process 10% of the training data as
anomalies.

[Mdl,tf] = ocsvm( ___ ) also returns the logical array tf, whose elements are true when an
anomaly is detected in the corresponding row of Tbl or X.

[Mdl,tf,scores] = ocsvm( ___ ) also returns an anomaly score in the range (–inf,inf) for
each observation in Tbl or X. A negative score value with large magnitude indicates a normal
observation, and a large positive value indicates an anomaly.

Examples

Detect Outliers

Detect outliers (anomalies in training data) by using the ocsvm function.

Load the sample data set NYCHousing2015.

load NYCHousing2015
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The data set includes 10 variables with information on the sales of properties in New York City in
2015. Display a summary of the data set.

summary(NYCHousing2015)

Variables:

    BOROUGH: 91446×1 double

        Values:

            Min          1    
            Median       3    
            Max          5    

    NEIGHBORHOOD: 91446×1 cell array of character vectors

    BUILDINGCLASSCATEGORY: 91446×1 cell array of character vectors

    RESIDENTIALUNITS: 91446×1 double

        Values:

            Min            0  
            Median         1  
            Max         8759  

    COMMERCIALUNITS: 91446×1 double

        Values:

            Min           0   
            Median        0   
            Max         612   

    LANDSQUAREFEET: 91446×1 double

        Values:

            Min                0
            Median          1700
            Max       2.9306e+07

    GROSSSQUAREFEET: 91446×1 double

        Values:

            Min                0
            Median          1056
            Max       8.9422e+06

    YEARBUILT: 91446×1 double

        Values:

            Min            0  
            Median      1939  
            Max         2016  
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    SALEPRICE: 91446×1 double

        Values:

            Min                0
            Median    3.3333e+05
            Max       4.1111e+09

    SALEDATE: 91446×1 datetime

        Values:

            Min       01-Jan-2015
            Median    09-Jul-2015
            Max       31-Dec-2015

The SALEDATE column is a datetime array, which is not supported by ocsvm. Create columns for the
month and day numbers of the datetime values, and delete the SALEDATE column.

[~,NYCHousing2015.MM,NYCHousing2015.DD] = ymd(NYCHousing2015.SALEDATE);
NYCHousing2015.SALEDATE = [];

Train a one-class SVM model for NYCHousing2015. Specify the fraction of anomalies in the training
observations as 0.1, and specify the first variable (BOROUGH) as a categorical predictor. The first
variable is a numeric array, so ocsvm assumes it is a continuous variable unless you specify the
variable as a categorical variable. In addition, specify StandardizeData as true to standardize the
input data, because the predictors have largely different scales.

rng("default") % For reproducibility 
[Mdl,tf,scores] = ocsvm(NYCHousing2015,ContaminationFraction=0.1, ...
    CategoricalPredictors=1,StandardizeData=true);

Mdl is a OneClassSVM object. ocsvm also returns the anomaly indicators (tf) and anomaly scores
(scores) for the training data NYCHousing2015.

Plot a histogram of the score values. Create a vertical line at the score threshold corresponding to the
specified fraction.

histogram(scores)
xline(Mdl.ScoreThreshold,"r-",["Threshold" Mdl.ScoreThreshold])
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If you want to identify anomalies with a different contamination fraction (for example, 0.01), you can
train a new one-class SVM model.

rng("default") % For reproducibility 
[newMdl,newtf,scores] = ocsvm(NYCHousing2015, ...
    ContaminationFraction=0.01,CategoricalPredictors=1);

If you want to identify anomalies with a different score threshold value (for example, 0.65), you can
pass the OneClassSVM object, the training data, and a new threshold value to the isanomaly
function.

[newtf,scores] = isanomaly(Mdl,NYCHousing2015,ScoreThreshold=0.65);

Note that changing the contamination fraction or score threshold changes the anomaly indicators
only, and does not affect the anomaly scores. Therefore, if you do not want to compute the anomaly
scores again by using ocsvm or isanomaly, you can obtain a new anomaly indicator with the
existing score values.

Change the fraction of anomalies in the training data to 0.01.

newContaminationFraction = 0.01;

Find a new score threshold by using the quantile function.

newScoreThreshold = quantile(scores,1-newContaminationFraction)

newScoreThreshold = 0.0480

Obtain a new anomaly indicator.

newtf = scores > newScoreThreshold;
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Detect Novelties

Create a OneClassSVM object for uncontaminated training observations by using the ocsvm function.
Then detect novelties (anomalies in new data) by passing the object and the new data to the object
function isanomaly.

Load the 1994 census data stored in census1994.mat. The data set consists of demographic data
from the US Census Bureau to predict whether an individual makes over $50,000 per year.

load census1994

census1994 contains the training data set adultdata and the test data set adulttest.

ocsvm does not use observations with missing values. Remove missing values in the data sets to
reduce memory consumption and speed up training.

adultdata = rmmissing(adultdata);
adulttest = rmmissing(adulttest);

Train a one-class SVM for adultdata. Assume that adultdata does not contain outliers. Specify
StandardizeData as true to standardize the input data, and set KernelScale to "auto" to let
the function select an appropriate kernel scale parameter using a heuristic procedure.

rng("default") % For reproducibility
[Mdl,~,s] = ocsvm(adultdata,StandardizeData=true,KernelScale="auto");

Mdl is a OneClassSVM object. If you do not specify the ContaminationFraction name-value
argument as a value greater than 0, then ocsvm treats all training observations as normal
observations. The function sets the score threshold to the maximum score value. Display the
threshold value.

Mdl.ScoreThreshold

ans = 0.0322

Find anomalies in adulttest by using the trained one-class SVM model.

[tf_test,s_test] = isanomaly(Mdl,adulttest);

The isanomaly function returns the anomaly indicators tf_test and scores s_test for
adulttest. By default, isanomaly identifies observations with scores above the threshold
(Mdl.ScoreThreshold) as anomalies.

Create histograms for the anomaly scores s and s_test. Create a vertical line at the threshold of the
anomaly scores.

h1 = histogram(s,NumBins=50,Normalization="probability");
hold on
h2 = histogram(s_test,h1.BinEdges,Normalization="probability");
xline(Mdl.ScoreThreshold,"r-",join(["Threshold" Mdl.ScoreThreshold]))
h1.Parent.YScale = 'log';
h2.Parent.YScale = 'log';
legend("Training Data","Test Data",Location="north")
hold off
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Display the observation index of the anomalies in the test data.

find(tf_test)

ans =

  0x1 empty double column vector

The anomaly score distribution of the test data is similar to that of the training data, so isanomaly
does not detect any anomalies in the test data with the default threshold value. You can specify a
different threshold value by using the ScoreThreshold name-value argument. For an example, see
“Specify Anomaly Score Threshold” on page 35-3705.

Input Arguments
Tbl — Predictor data
table

Predictor data, specified as a table. Each row of Tbl corresponds to one observation, and each
column corresponds to one predictor variable. Multicolumn variables and cell arrays other than cell
arrays of character vectors are not allowed.

To use a subset of the variables in Tbl, specify the variables by using the PredictorNames name-
value argument.
Data Types: table
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X — Predictor data
numeric matrix

Predictor data, specified as a numeric matrix. Each row of X corresponds to one observation, and
each column corresponds to one predictor variable.

You can use the PredictorNames name-value argument to assign names to the predictor variables
in X.
Data Types: single | double

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.
Example: NumExpansionDimensions=2^15,KernelScale="auto" maps the predictor data to the
2^15 dimensional space using feature expansion with a kernel scale parameter selected by a
heuristic procedure.

Anomaly Detection Options

ContaminationFraction — Fraction of anomalies in training data
0 (default) | numeric scalar in the range [0,1]

Fraction of anomalies in the training data, specified as a numeric scalar in the range [0,1].

• If the ContaminationFraction value is 0 (default), then ocsvm treats all training observations
as normal observations, and sets the score threshold (ScoreThreshold property value of Mdl) to
the maximum value of scores.

• If the ContaminationFraction value is in the range (0,1], then ocsvm determines the threshold
value so that the function detects the specified fraction of training observations as anomalies.

Example: ContaminationFraction=0.1
Data Types: single | double

Kernel Classification Options

BlockSize — Maximum amount of allocated memory
4e^3 (4GB) (default) | positive scalar

Maximum amount of allocated memory (in megabytes), specified as a positive scalar.

If ocsvm requires more memory than the value of BlockSize to hold the transformed predictor data,
then the software uses a block-wise strategy. For details about the block-wise strategy, see
“Algorithms” on page 35-5156.
Example: BlockSize=1e4
Data Types: single | double

KernelScale — Kernel scale parameter
1 (default) | "auto" | positive scalar
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Kernel scale parameter, specified as "auto" or a positive scalar. The software obtains a random basis
for random feature expansion by using the kernel scale parameter. For details, see “Random Feature
Expansion” on page 35-5156.

If you specify "auto", then the software selects an appropriate kernel scale parameter using a
heuristic procedure. This heuristic procedure uses subsampling, so estimates can vary from one call
to another. Therefore, to reproduce results, set a random number seed by using rng before training.
Example: KernelScale="auto"
Data Types: char | string | single | double

Lambda — Regularization term strength
"auto" (default) | nonnegative scalar

Regularization term strength, specified as "auto" or a nonnegative scalar.

If you specify "auto", then the software selects an appropriate regularization parameter using a
heuristic procedure.
Example: Lambda=0.01
Data Types: char | string | single | double

NumExpansionDimensions — Number of dimensions of expanded space
"auto" (default) | positive integer

Number of dimensions of the expanded space, specified as "auto" or a positive integer.

If you specify "auto", then the software selects an appropriate number of dimensions using a
heuristic procedure.
Example: NumExpansionDimensions=2^15
Data Types: char | string | single | double

RandomStream — Random number stream
global stream (default) | random stream object

Random number stream for reproducibility of data transformation, specified as a random stream
object. For details, see “Random Feature Expansion” on page 35-5156.

Use RandomStream to reproduce the random basis functions used by ocsvm to transform the
predictor data to a high-dimensional space. For details, see “Managing the Global Stream Using
RandStream” and “Creating and Controlling a Random Number Stream”.
Example: RandomStream=RandStream("mlfg6331_64")

Other Classification Options

CategoricalPredictors — List of categorical predictors
vector of positive integers | logical vector | character matrix | string array | cell array of character
vectors | "all"

List of categorical predictors, specified as one of the values in this table.

35 Functions

35-5152



Value Description
Vector of positive
integers

Each entry in the vector is an index value indicating that the corresponding
predictor is categorical. The index values are between 1 and p, where p is
the number of predictors used to train the model.

If ocsvm uses a subset of input variables as predictors, then the function
indexes the predictors using only the subset. The
CategoricalPredictors values do not count any variables that the
function does not use.

Logical vector A true entry means that the corresponding predictor is categorical. The
length of the vector is p.

Character matrix Each row of the matrix is the name of a predictor variable. The names must
match the entries in PredictorNames. Pad the names with extra blanks
so each row of the character matrix has the same length.

String array or cell
array of character
vectors

Each element in the array is the name of a predictor variable. The names
must match the entries in PredictorNames.

"all" All predictors are categorical.

By default, if the predictor data is in a table (Tbl), ocsvm assumes that a variable is categorical if it is
a logical vector, categorical vector, character array, string array, or cell array of character vectors. If
the predictor data is a matrix (X), ocsvm assumes that all predictors are continuous. To identify any
other predictors as categorical predictors, specify them by using the CategoricalPredictors
name-value argument.

For the identified categorical predictors, ocsvm creates dummy variables using two different
schemes, depending on whether a categorical variable is unordered or ordered. For an unordered
categorical variable, ocsvm creates one dummy variable for each level of the categorical variable. For
an ordered categorical variable, ocsvm creates one less dummy variable than the number of
categories. For details, see “Automatic Creation of Dummy Variables” on page 2-50.
Example: CategoricalPredictors="all"
Data Types: single | double | logical | char | string | cell

PredictorNames — Predictor variable names
string array of unique names | cell array of unique character vectors

Predictor variable names, specified as a string array of unique names or cell array of unique
character vectors. The functionality of PredictorNames depends on how you supply the predictor
data.

• If you supply Tbl, then you can use PredictorNames to specify which predictor variables to use.
That is, ocsvm uses only the predictor variables in PredictorNames.

• PredictorNames must be a subset of Tbl.Properties.VariableNames.
• By default, PredictorNames contains the names of all predictor variables in Tbl.

• If you supply X, then you can use PredictorNames to assign names to the predictor variables in
X.
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• The order of the names in PredictorNames must correspond to the column order of X. That
is, PredictorNames{1} is the name of X(:,1), PredictorNames{2} is the name of
X(:,2), and so on. Also, size(X,2) and numel(PredictorNames) must be equal.

• By default, PredictorNames is {'x1','x2',...}.

Example: PredictorNames=["SepalLength" "SepalWidth" "PetalLength" "PetalWidth"]
Data Types: string | cell

StandardizeData — Flag to standardize predictor data
false or 0 (default) | true or 1

Flag to standardize the predictor data, specified as a logical 1 (true) or 0 (false).

If you set StandardizeData=true, the ocsvm function centers and scales each predictor variable
(X or Tbl) by the corresponding column mean and standard deviation. The function does not
standardize the data contained in the dummy variable columns generated for categorical predictors.
Example: StandardizeData=true
Data Types: logical

Verbose — Verbosity level
0 (default) | 1

Verbosity level, specified as 0 or 1. Verbose controls the display of diagnostic information at the
command line.

Value Description
0 ocsvm does not display diagnostic information.
1 ocsvm displays the value of the objective function, gradient magnitude, and

other diagnostic information.

Example: Verbose=1
Data Types: single | double

Convergence Options

BetaTolerance — Relative tolerance on linear coefficients and bias term
1e–4 (default) | nonnegative scalar

Relative tolerance on the linear coefficients and the bias term (intercept), specified as a nonnegative
scalar.

Let Bt = βt′ bt , that is, the vector of the coefficients and the bias term at optimization iteration t. If
Bt − Bt − 1

Bt 2
< BetaTolerance, then optimization terminates.

If you also specify GradientTolerance, then optimization terminates when the software satisfies
either stopping criterion.
Example: BetaTolerance=1e–6
Data Types: single | double
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GradientTolerance — Absolute gradient tolerance
1e–6 (default) | nonnegative scalar

Absolute gradient tolerance, specified as a nonnegative scalar.

Let ∇ℒ t be the gradient vector of the objective function with respect to the coefficients and bias term
at optimization iteration t. If ∇ℒ t ∞ = max ∇ℒ t < GradientTolerance, then optimization terminates.

If you also specify BetaTolerance, then optimization terminates when the software satisfies either
stopping criterion.
Example: GradientTolerance=1e–5
Data Types: single | double

IterationLimit — Maximum number of optimization iterations
positive integer

Maximum number of optimization iterations, specified as a positive integer.

The default value is 1000 if the transformed data fits in memory, as specified by the BlockSize
name-value argument. Otherwise, the default value is 100.
Example: IterationLimit=500
Data Types: single | double

Output Arguments
Mdl — Trained one-class SVM model
OneClassSVM object

Trained one-class SVM model, returned as a OneClassSVM object.

You can use the object function isanomaly with Mdl to find anomalies in new data.

tf — Anomaly indicators
logical column vector

Anomaly indicators, returned as a logical column vector. An element of tf is true when the
observation in the corresponding row of Tbl or X is an anomaly, and false otherwise. tf has the
same length as Tbl or X.

ocsvm identifies observations with scores above the threshold (ScoreThreshold property value of
Mdl) as anomalies. The function determines the threshold value to detect the specified fraction
(ContaminationFraction name-value argument) of training observations as anomalies.

scores — Anomaly scores
numeric column vector

Anomaly scores, returned as a numeric column vector whose values are between –Inf and Inf.
scores has the same length as Tbl or X, and each element of scores contains an anomaly score for
the observation in the corresponding row of Tbl or X. A negative score value with large magnitude
indicates a normal observation, and a large positive value indicates an anomaly.
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More About
One-Class SVM

One-class SVM, or unsupervised SVM, is an algorithm used for anomaly detection. The algorithm
tries to separate data from the origin in the transformed high-dimensional predictor space. ocsvm
finds the decision boundary based on the primal form of SVM with the Gaussian kernel approximation
method.

Random Feature Expansion

Random feature expansion, such as Random Kitchen Sinks[1] or Fastfood[2], is a scheme to
approximate Gaussian kernels of the kernel classification algorithm to use for big data in a
computationally efficient way. Random feature expansion is more practical for big data applications
that have large training sets, but can also be applied to smaller data sets that fit in memory.

The kernel classification algorithm searches for an optimal hyperplane that separates the data into
two classes after mapping features into a high-dimensional space. Nonlinear features that are not
linearly separable in a low-dimensional space can be separable in the expanded high-dimensional
space. All the calculations for hyperplane classification use only dot products. You can obtain a
nonlinear classification model by replacing the dot product x1x2' with the nonlinear kernel function
G(x1, x2) = φ(x1), φ(x2) , where xi is the ith observation (row vector) and φ(xi) is a transformation
that maps xi to a high-dimensional space (called the “kernel trick”). However, evaluating G(x1,x2)
(Gram matrix) for each pair of observations is computationally expensive for a large data set (large
n).

The random feature expansion scheme finds a random transformation so that its dot product
approximates the Gaussian kernel. That is,

G(x1, x2) = φ(x1), φ(x2) ≈ T(x1)T(x2)′,

where T(x) maps x in ℝp to a high-dimensional space (ℝm). The Random Kitchen Sinks scheme uses
the random transformation

T(x) = m−1/2exp iZx′ ′,

where Z ∈ ℝm × p is a sample drawn from N 0, σ−2  and σ is a kernel scale. This scheme requires
O(mp) computation and storage.

The Fastfood scheme introduces another random basis V instead of Z using Hadamard matrices
combined with Gaussian scaling matrices. This random basis reduces the computation cost to
O(mlogp) and reduces storage to O(m).

You can specify values for m and σ using the NumExpansionDimensions and KernelScale name-
value arguments of ocsvm, respectively.

The ocsvm function uses the Fastfood scheme for random feature expansion, and uses linear
classification to train a one-class Gaussian kernel classification model.

Algorithms
• ocsvm considers NaN, '' (empty character vector), "" (empty string), <missing>, and

<undefined> values in Tbl and NaN values in X to be missing values.
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• ocsvm removes observations with all missing values.
• ocsvm does not use observations with some missing values. The function assigns the anomaly

score of NaN and anomaly indicator of false (logical 0) to the observations.
• ocsvm minimizes the regularized objective function using a Limited-memory Broyden-Fletcher-

Goldfarb-Shanno (LBFGS) solver with ridge (L2) regularization. If ocsvm requires more memory
than the value of BlockSize to hold the transformed predictor data, then the function uses a
block-wise strategy.

• When ocsvm uses a block-wise strategy, it implements LBFGS by distributing the calculation of
the loss and gradient among different parts of the data at each iteration. Also, ocsvm refines
the initial estimates of the linear coefficients and the bias term by fitting the model locally to
parts of the data and combining the coefficients by averaging. If you specify Verbose=1, then
ocsvm displays diagnostic information for each data pass.

• When ocsvm does not use a block-wise strategy, the initial estimates are zeros. If you specify
Verbose=1, then ocsvm displays diagnostic information for each iteration.

Alternative Functionality
You can also use the fitcsvm function to train a one-class SVM model for anomaly detection.

• The ocsvm function provides a simpler and preferred workflow for anomaly detection than the
fitcsvm function.

• The ocsvm function returns a OneClassSVM object, anomaly indicators, and anomaly scores.
You can use the outputs to identify anomalies in training data. To find anomalies in new data,
you can use the isanomaly object function of OneClassSVM. The isanomaly function returns
anomaly indicators and scores for the new data.

• The fitcsvm function supports both one-class and binary classification. If the class label
variable contains only one class (for example, a vector of ones), fitcsvm trains a model for
one-class classification and returns a ClassificationSVM object. To identify anomalies, you
must first compute anomaly scores by using the resubPredict or predict object function of
ClassificationSVM, and then identify anomalies by finding observations that have negative
scores.

• Note that a large positive anomaly score indicates an anomaly in ocsvm, whereas a negative
score indicates an anomaly in predict of ClassificationSVM.

• The ocsvm function finds the decision boundary based on the primal form of SVM, whereas the
fitcsvm function finds the decision boundary based on the dual form of SVM.

• The solver in ocsvm is computationally less expensive than the solver in fitcsvm for a large data
set (large n). Unlike solvers in fitcsvm, which require computation of the n-by-n Gram matrix,
the solver in ocsvm only needs to form a matrix of size n-by-m. Here, m is the number of
dimensions of expanded space, which is typically much less than n for big data.

Version History
Introduced in R2022b

References
[1] Rahimi, A., and B. Recht. “Random Features for Large-Scale Kernel Machines.” Advances in

Neural Information Processing Systems. Vol. 20, 2008, pp. 1177–1184.
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[2] Le, Q., T. Sarlós, and A. Smola. “Fastfood — Approximating Kernel Expansions in Loglinear Time.”
Proceedings of the 30th International Conference on Machine Learning. Vol. 28, No. 3, 2013,
pp. 244–252.

See Also
OneClassSVM | isanomaly | iforest | lof | robustcov

Topics
“Unsupervised Anomaly Detection” on page 17-91
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OneClassSVM
One-class support vector machine (SVM) for anomaly detection

Description
Use a one-class support vector machine model object OneClassSVM for outlier detection and novelty
detection.

• Outlier detection (detecting anomalies in training data) — Detect anomalies in training data by
using the ocsvm function. The ocsvm function trains a OneClassSVM object and returns anomaly
indicators and scores for the training data.

• Novelty detection (detecting anomalies in new data with uncontaminated training data) — Create
a OneClassSVM object by passing uncontaminated training data (data with no outliers) to ocsvm,
and detect anomalies in new data by passing the object and the new data to the object function
isanomaly. The isanomaly function returns anomaly indicators and scores for the new data.

Creation
Create a OneClassSVM object by using the ocsvm function.

Properties
CategoricalPredictors — Categorical predictor indices
vector of positive integers | []

This property is read-only.

Categorical predictor indices, specified as a vector of positive integers. CategoricalPredictors
contains index values indicating that the corresponding predictors are categorical. The index values
are between 1 and p, where p is the number of predictors used to train the model. If none of the
predictors are categorical, then this property is empty ([]).

ContaminationFraction — Fraction of anomalies in training data
numeric scalar in the range [0,1]

This property is read-only.

Fraction of anomalies in the training data, specified as a numeric scalar in the range [0,1].

• If the ContaminationFraction value is 0, then ocsvm treats all training observations as normal
observations, and sets the score threshold (ScoreThreshold property value) to the maximum
anomaly score value of the training data.

• If the ContaminationFraction value is in the range (0,1], then ocsvm determines the threshold
value (ScoreThreshold property value) so that the function detects the specified fraction of
training observations as anomalies.

KernelScale — Kernel scale parameter
positive scalar
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This property is read-only.

Kernel scale parameter, specified as a positive scalar.

Lambda — Regularization term strength
nonnegative scalar

This property is read-only.

Regularization term strength, specified as a nonnegative scalar.

Mu — Predictor means
numeric vector | []

This property is read-only.

Predictor means, specified as a numeric vector.

• If you specify StandardizeData=true when you train a one-class SVM model using ocsvm, the
length of Mu is equal to the number of predictors.

• The ocsvm function does not standardize columns that contain categorical variables. The
elements in Mu for categorical variables contain NaN values.

• The isanomaly function standardizes the input data by using the predictor means in Mu and
standard deviations in Sigma.

• If you set StandardizeData=false, then Mu is an empty vector ([]).

NumExpansionDimensions — Number of dimensions of expanded space
positive integer

This property is read-only.

Number of dimensions of the expanded space, specified as a positive integer.

ObjectiveValue — Value of objective function
scalar

This property is read-only.

Value of the objective function that the Limited-memory Broyden-Fletcher-Goldfarb-Shanno (LBFGS)
solver minimizes to solve the one-class SVM problem, specified as a scalar.

PredictorNames — Predictor variable names
cell array of character vectors

This property is read-only.

Predictor variable names, specified as a cell array of character vectors. The order of the elements of
PredictorNames corresponds to the order in which the predictor names appear in the training data.

ScoreThreshold — Threshold for anomaly score
numeric scalar in the range (–Inf,Inf)

This property is read-only.
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Threshold for the anomaly score used to identify anomalies in the training data, specified as a
numeric scalar in the range (–Inf,Inf).

The software identifies observations with anomaly scores above the threshold as anomalies.

• The ocsvm function determines the threshold value to detect the specified fraction
(ContaminationFraction property) of training observations as anomalies.

• The isanomaly object function uses the ScoreThreshold property value as the default value of
the ScoreThreshold name-value argument.

Sigma — Predictor standard deviations
numeric vector | []

This property is read-only.

Predictor standard deviations, specified as a numeric vector.

• If you specify StandardizeData=true when you train a one-class SVM model using ocsvm, then
the length of Sigma is equal to the number of predictors.

• The ocsvm function does not standardize columns that contain categorical variables. The
elements in Sigma for categorical variables contain NaN values.

• The isanomaly function standardizes the input data by using the predictor means in Mu and
standard deviations in Sigma.

• If you set StandardizeData=false, then Sigma is an empty vector ([]).

Object Functions
isanomaly Find anomalies in data using one-class support vector machine (SVM)

Examples

Detect Outliers

Detect outliers (anomalies in training data) by using the ocsvm function.

Load the sample data set NYCHousing2015.

load NYCHousing2015

The data set includes 10 variables with information on the sales of properties in New York City in
2015. Display a summary of the data set.

summary(NYCHousing2015)

Variables:

    BOROUGH: 91446×1 double

        Values:

            Min          1    
            Median       3    
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            Max          5    

    NEIGHBORHOOD: 91446×1 cell array of character vectors

    BUILDINGCLASSCATEGORY: 91446×1 cell array of character vectors

    RESIDENTIALUNITS: 91446×1 double

        Values:

            Min            0  
            Median         1  
            Max         8759  

    COMMERCIALUNITS: 91446×1 double

        Values:

            Min           0   
            Median        0   
            Max         612   

    LANDSQUAREFEET: 91446×1 double

        Values:

            Min                0
            Median          1700
            Max       2.9306e+07

    GROSSSQUAREFEET: 91446×1 double

        Values:

            Min                0
            Median          1056
            Max       8.9422e+06

    YEARBUILT: 91446×1 double

        Values:

            Min            0  
            Median      1939  
            Max         2016  

    SALEPRICE: 91446×1 double

        Values:

            Min                0
            Median    3.3333e+05
            Max       4.1111e+09

    SALEDATE: 91446×1 datetime

        Values:
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            Min       01-Jan-2015
            Median    09-Jul-2015
            Max       31-Dec-2015

The SALEDATE column is a datetime array, which is not supported by ocsvm. Create columns for the
month and day numbers of the datetime values, and delete the SALEDATE column.

[~,NYCHousing2015.MM,NYCHousing2015.DD] = ymd(NYCHousing2015.SALEDATE);
NYCHousing2015.SALEDATE = [];

Train a one-class SVM model for NYCHousing2015. Specify the fraction of anomalies in the training
observations as 0.1, and specify the first variable (BOROUGH) as a categorical predictor. The first
variable is a numeric array, so ocsvm assumes it is a continuous variable unless you specify the
variable as a categorical variable. In addition, specify StandardizeData as true to standardize the
input data, because the predictors have largely different scales.

rng("default") % For reproducibility 
[Mdl,tf,scores] = ocsvm(NYCHousing2015,ContaminationFraction=0.1, ...
    CategoricalPredictors=1,StandardizeData=true);

Mdl is a OneClassSVM object. ocsvm also returns the anomaly indicators (tf) and anomaly scores
(scores) for the training data NYCHousing2015.

Plot a histogram of the score values. Create a vertical line at the score threshold corresponding to the
specified fraction.

histogram(scores)
xline(Mdl.ScoreThreshold,"r-",["Threshold" Mdl.ScoreThreshold])

If you want to identify anomalies with a different contamination fraction (for example, 0.01), you can
train a new one-class SVM model.

rng("default") % For reproducibility 
[newMdl,newtf,scores] = ocsvm(NYCHousing2015, ...
    ContaminationFraction=0.01,CategoricalPredictors=1);
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If you want to identify anomalies with a different score threshold value (for example, 0.65), you can
pass the OneClassSVM object, the training data, and a new threshold value to the isanomaly
function.

[newtf,scores] = isanomaly(Mdl,NYCHousing2015,ScoreThreshold=0.65);

Note that changing the contamination fraction or score threshold changes the anomaly indicators
only, and does not affect the anomaly scores. Therefore, if you do not want to compute the anomaly
scores again by using ocsvm or isanomaly, you can obtain a new anomaly indicator with the
existing score values.

Change the fraction of anomalies in the training data to 0.01.

newContaminationFraction = 0.01;

Find a new score threshold by using the quantile function.

newScoreThreshold = quantile(scores,1-newContaminationFraction)

newScoreThreshold = 0.0480

Obtain a new anomaly indicator.

newtf = scores > newScoreThreshold;

Detect Novelties

Create a OneClassSVM object for uncontaminated training observations by using the ocsvm function.
Then detect novelties (anomalies in new data) by passing the object and the new data to the object
function isanomaly.

Load the 1994 census data stored in census1994.mat. The data set consists of demographic data
from the US Census Bureau to predict whether an individual makes over $50,000 per year.

load census1994

census1994 contains the training data set adultdata and the test data set adulttest.

ocsvm does not use observations with missing values. Remove missing values in the data sets to
reduce memory consumption and speed up training.

adultdata = rmmissing(adultdata);
adulttest = rmmissing(adulttest);

Train a one-class SVM for adultdata. Assume that adultdata does not contain outliers. Specify
StandardizeData as true to standardize the input data, and set KernelScale to "auto" to let
the function select an appropriate kernel scale parameter using a heuristic procedure.

rng("default") % For reproducibility
[Mdl,~,s] = ocsvm(adultdata,StandardizeData=true,KernelScale="auto");

Mdl is a OneClassSVM object. If you do not specify the ContaminationFraction name-value
argument as a value greater than 0, then ocsvm treats all training observations as normal
observations. The function sets the score threshold to the maximum score value. Display the
threshold value.
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Mdl.ScoreThreshold

ans = 0.0322

Find anomalies in adulttest by using the trained one-class SVM model.

[tf_test,s_test] = isanomaly(Mdl,adulttest);

The isanomaly function returns the anomaly indicators tf_test and scores s_test for
adulttest. By default, isanomaly identifies observations with scores above the threshold
(Mdl.ScoreThreshold) as anomalies.

Create histograms for the anomaly scores s and s_test. Create a vertical line at the threshold of the
anomaly scores.

h1 = histogram(s,NumBins=50,Normalization="probability");
hold on
h2 = histogram(s_test,h1.BinEdges,Normalization="probability");
xline(Mdl.ScoreThreshold,"r-",join(["Threshold" Mdl.ScoreThreshold]))
h1.Parent.YScale = 'log';
h2.Parent.YScale = 'log';
legend("Training Data","Test Data",Location="north")
hold off

Display the observation index of the anomalies in the test data.

find(tf_test)
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ans =

  0x1 empty double column vector

The anomaly score distribution of the test data is similar to that of the training data, so isanomaly
does not detect any anomalies in the test data with the default threshold value. You can specify a
different threshold value by using the ScoreThreshold name-value argument. For an example, see
“Specify Anomaly Score Threshold” on page 35-3705.

More About
One-Class SVM

One-class SVM, or unsupervised SVM, is an algorithm used for anomaly detection. The algorithm
tries to separate data from the origin in the transformed high-dimensional predictor space. ocsvm
finds the decision boundary based on the primal form of SVM with the Gaussian kernel approximation
method.

Random Feature Expansion

Random feature expansion, such as Random Kitchen Sinks[1] or Fastfood[2], is a scheme to
approximate Gaussian kernels of the kernel classification algorithm to use for big data in a
computationally efficient way. Random feature expansion is more practical for big data applications
that have large training sets, but can also be applied to smaller data sets that fit in memory.

The kernel classification algorithm searches for an optimal hyperplane that separates the data into
two classes after mapping features into a high-dimensional space. Nonlinear features that are not
linearly separable in a low-dimensional space can be separable in the expanded high-dimensional
space. All the calculations for hyperplane classification use only dot products. You can obtain a
nonlinear classification model by replacing the dot product x1x2' with the nonlinear kernel function
G(x1, x2) = φ(x1), φ(x2) , where xi is the ith observation (row vector) and φ(xi) is a transformation
that maps xi to a high-dimensional space (called the “kernel trick”). However, evaluating G(x1,x2)
(Gram matrix) for each pair of observations is computationally expensive for a large data set (large
n).

The random feature expansion scheme finds a random transformation so that its dot product
approximates the Gaussian kernel. That is,

G(x1, x2) = φ(x1), φ(x2) ≈ T(x1)T(x2)′,

where T(x) maps x in ℝp to a high-dimensional space (ℝm). The Random Kitchen Sinks scheme uses
the random transformation

T(x) = m−1/2exp iZx′ ′,

where Z ∈ ℝm × p is a sample drawn from N 0, σ−2  and σ is a kernel scale. This scheme requires
O(mp) computation and storage.

The Fastfood scheme introduces another random basis V instead of Z using Hadamard matrices
combined with Gaussian scaling matrices. This random basis reduces the computation cost to
O(mlogp) and reduces storage to O(m).
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The ocsvm function uses the Fastfood scheme for random feature expansion, and uses linear
classification to train a one-class Gaussian kernel classification model.

Version History
Introduced in R2022b

References
[1] Rahimi, A., and B. Recht. “Random Features for Large-Scale Kernel Machines.” Advances in

Neural Information Processing Systems. Vol. 20, 2008, pp. 1177–1184.

[2] Le, Q., T. Sarlós, and A. Smola. “Fastfood — Approximating Kernel Expansions in Loglinear Time.”
Proceedings of the 30th International Conference on Machine Learning. Vol. 28, No. 3, 2013,
pp. 244–252.

See Also
ocsvm | iforest | lof | robustcov

Topics
“Unsupervised Anomaly Detection” on page 17-91
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onehotdecode
Decode probability vectors into class labels

Syntax
A = onehotdecode(B,classes,featureDim)
A = onehotdecode(B,classes,featureDim,typename)

Description
A = onehotdecode(B,classes,featureDim) decodes each probability vector in B to the most
probable class label from the labels specified by classes. featureDim specifies the dimension
along which the probability vectors are defined. The function decodes the probability vectors into
class labels by matching the position of the highest value in the vector with the class label in the
corresponding position in classes. Each probability vector in A is replaced with the value of
classes that corresponds to the highest value in the probability vector.

A = onehotdecode(B,classes,featureDim,typename) decodes each probability vector in B to
the most probable class label and returns the result with data type typename. Use this syntax to
obtain decoded class labels with a specific data type.

Examples

One-Hot Encode and Decode Labels

Encode a set of labels into probability vectors, and then decode them back into labels.

Create a vector of categorical labels specifying color types.

colorsOriginal = ["red","blue","red","green","yellow","blue"];
colorsOriginal = categorical(colorsOriginal)

colorsOriginal = 1x6 categorical
     red      blue      red      green      yellow      blue 

Determine the classes in the categorical vector.

classes = categories(colorsOriginal)

classes = 4x1 cell
    {'blue'  }
    {'green' }
    {'red'   }
    {'yellow'}

One-hot encode the labels into probability vectors by using the onehotencode function. Encode the
labels into the first dimension, so that each row corresponds to a class and each column corresponds
to a probability vector.
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colorsEncoded = onehotencode(colorsOriginal,1)

colorsEncoded = 4×6

     0     1     0     0     0     1
     0     0     0     1     0     0
     1     0     1     0     0     0
     0     0     0     0     1     0

Decode the probability vectors by using the onehotdecode function.

colorsDecoded = onehotdecode(colorsEncoded,classes,1)

colorsDecoded = 1x6 categorical
     red      blue      red      green      yellow      blue 

The decoded labels match the original labels.

One-Hot Decode Dummy Variables

Create dummy variables, and then decode them back into the original data.

Create a column vector of categorical data specifying color types.

colorsOriginal = ["red";"blue";"red";"green";"yellow";"blue"];
colorsOriginal = categorical(colorsOriginal)

colorsOriginal = 6x1 categorical
     red 
     blue 
     red 
     green 
     yellow 
     blue 

Determine the classes in the categorical vector.

classes = categories(colorsOriginal);

Create dummy variables for each color type by using the dummyvar function.

dummyColors = dummyvar(colorsOriginal)

dummyColors = 6×4

     0     0     1     0
     1     0     0     0
     0     0     1     0
     0     1     0     0
     0     0     0     1
     1     0     0     0

Decode the dummy variables in the second dimension by using the onehotdecode function.
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colorsDecoded = onehotdecode(dummyColors,classes,2)

colorsDecoded = 6x1 categorical
     red 
     blue 
     red 
     green 
     yellow 
     blue 

The decoded variables match the original color types.

Decode Probability Vectors into Most Probable Classes

Decode a set of probability vectors into the most probable class for each observation.

Create a set of 10 random probability vectors. The vectors express the probability that an observation
belongs to one of five classes.

numObs = 10;
numClasses = 5;

prob = rand(numObs,numClasses);

tot = sum(prob,2);
prob = prob./tot

prob = 10×5

    0.2938    0.0568    0.2365    0.2546    0.1582
    0.3895    0.4174    0.0154    0.0137    0.1641
    0.0427    0.3217    0.2854    0.0931    0.2573
    0.2878    0.1529    0.2943    0.0145    0.2505
    0.2640    0.3341    0.2834    0.0405    0.0780
    0.0422    0.0614    0.3280    0.3564    0.2120
    0.1078    0.1632    0.2876    0.2689    0.1725
    0.1940    0.3249    0.1392    0.1125    0.2293
    0.2356    0.1949    0.1613    0.2338    0.1745
    0.3345    0.3326    0.0593    0.0119    0.2616

Define the set of five classes.

classes = ["Red","Yellow","Green","Blue","Purple"];

Decode the probabilities into the most probable classes by using the onehotdecode function. The
probability vectors are encoded into the second dimension (each column corresponds to a unique
class), so specify the dimension containing encoded probabilities as 2. Obtain the most probable
classes as a string vector.

result = onehotdecode(prob,classes,2,"string")

result = 10x1 string
    "Red"
    "Yellow"
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    "Yellow"
    "Green"
    "Yellow"
    "Blue"
    "Green"
    "Yellow"
    "Red"
    "Red"

One-Hot Decode Classification Scores

Decode predicted class scores into predicted labels.

Load the fisheriris data set. Create X as a numeric matrix that contains four petal measurements
for 150 irises. Create S as a vector of categorical labels that contains the corresponding iris species.

load fisheriris
X = meas;
S = categorical(species);

One-hot encode the labels into probability vectors by using the onehotencode function. Encode the
probability vectors into the second dimension.

Y = onehotencode(S,2);

Compute the fitted coefficients of a simple linear classifier.

B = X\Y

B = 4×3

    0.0834    0.2117   -0.1481
    0.2533   -0.3059    0.1412
   -0.2270    0.1888    0.0181
   -0.0635   -0.5749    0.5873

Predict the class scores from the fitted coefficients, and ensure that the scores are in the range [0,1].

scores = X*B;
scores = min(1,max(0,scores));

Decode the predicted class scores into predicted labels by using the onehotdecode function. Then,
create a confusion chart to compare the true labels S with the predicted labels label.

label = onehotdecode(scores,categories(S),2);
confusionchart(S,label)
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Input Arguments
B — Probability vectors
numeric array

Probability vectors to decode, specified as a numeric array.

Values in B must be between 0 and 1. If a probability vector in B contains NaN values, the function
decodes that observation to the class with the largest probability that is not NaN. If an observation
contains only NaN values, the function decodes that observation to the first class label in classes.
Data Types: single | double

classes — Classes
cell array | string vector | numeric vector | character array

Classes, specified as a cell array of character vectors, a string vector, a numeric vector, or a two-
dimensional character array.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
string | cell | char

featureDim — Dimension containing probability vectors
positive integer

Dimension containing probability vectors, specified as a positive integer.
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Use featureDim to specify the dimension in B that contains the probability vectors. The function
replaces each vector in B along the specified dimension with the element of classes in the same
position as the highest value along the vector.

The dimension of B specified by featureDim must have length equal to the number of classes
specified by classes.

typename — Data type of decoded labels
'categorical' (default) | character vector | string scalar

Data type of decoded labels, specified as a character vector or a string scalar.

Valid values of typename are 'categorical', 'string', and numeric types such as 'single' and
'int64'. If you specify a numeric type, classes must be a numeric vector.
Example: 'double'
Data Types: char | string

Output Arguments
A — Decoded class labels
categorical array (default) | string array | numeric array

Decoded class labels, returned as a categorical array, a string array, or a numeric array.

Version History
Introduced in R2021b

See Also
onehotencode | dummyvar | categorical | categories
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onehotencode
Encode data labels into one-hot vectors

Syntax
B = onehotencode(A,featureDim)
tblB = onehotencode(tblA)
___  = onehotencode( ___ ,typename)
___  = onehotencode( ___ ,'ClassNames',classes)

Description
B = onehotencode(A,featureDim) encodes data labels in categorical array A into a one-hot
encoded array B. The function replaces each element of A with a numeric vector of length equal to
the number of unique classes in A along the dimension specified by featureDim. The vector contains
a 1 in the position corresponding to the class of the label in A, and a 0 in every other position. Any
<undefined> values are encoded to NaN values.

tblB = onehotencode(tblA) encodes categorical data labels in table tblA into a table of one-hot
encoded numeric values. The function replaces the single variable of tblA with as many variables as
the number of unique classes in tblA. Each row in tblB contains a 1 in the variable corresponding
to the class of the label in tlbA, and a 0 in all other variables.

___  = onehotencode( ___ ,typename) encodes the labels into numeric values of data type
typename. Use this syntax with any of the input and output arguments in previous syntaxes.

___  = onehotencode( ___ ,'ClassNames',classes) also specifies the names of the classes to
use for encoding. Use this syntax when A or tblA does not contain categorical values, when you want
to exclude any class labels from being encoded, or when you want to encode the vector elements in a
specific order. Any label in A or tblA of a class that does not exist in classes is encoded to a vector
of NaN values.

Examples

One-Hot Encode Vector of Labels

Encode a categorical vector of class labels into one-hot vectors representing the labels.

Create a column vector of labels, where each row of the vector represents a single observation.
Convert the labels to a categorical array.

labels = ["red";"blue";"red";"green";"yellow";"blue"];
labels = categorical(labels);

View the order of the categories.

categories(labels)

ans = 4x1 cell
    {'blue'  }
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    {'green' }
    {'red'   }
    {'yellow'}

Encode the labels into one-hot vectors by using the onehotencode function. Expand the labels into
vectors in the second dimension to encode the classes. Each column of onehotLabels corresponds
to a unique label.

onehotLabels = onehotencode(labels,2)

onehotLabels = 6×4

     0     0     1     0
     1     0     0     0
     0     0     1     0
     0     1     0     0
     0     0     0     1
     1     0     0     0

Each observation in labels is now a row vector with a 1 in the position corresponding to the
category of the class label, and a 0 in all other positions. The function encodes the labels in the same
order as the categories, so that a 1 in position 1 represents the first category in the list (in this case,
blue). For example, because the second row in onehotLabels has a 1 in the first column, that
observation is in the blue category.

You can also use dummyvar to encode the labels. dummyvar creates dummy variables, which in this
case are the same as the encoded labels onehotLabels. For a comparison between the functions
onehotencode and dummyvar, see “Alternative Functionality” on page 35-5180.

One-Hot Encode Numeric Vector of Labels

Encode a categorical vector of area codes into one-hot vectors representing the codes.

Create a numeric row vector of area codes, where each column of the vector represents a single
observation. Convert the numeric vector to a categorical vector.

codes = [802 802 603 802 603 802];
categCodes = categorical(codes);

View the order of the categories.

categories(categCodes)

ans = 2x1 cell
    {'603'}
    {'802'}

Encode the area codes into one-hot vectors by using the onehotencode function. Expand the codes
into vectors in the first dimension, so that each row corresponds to a unique label.

labels = onehotencode(categCodes,1)
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labels = 2×6

     0     0     1     0     1     0
     1     1     0     1     0     1

Each observation in labels is now a column vector with a 1 in the position corresponding to the
category of the area code, and a 0 in all other positions. The function encodes the area codes in the
same order as the categories, so that a 1 in position 1 (first row) represents the first category in the
list.

One-Hot Encode Table

One-hot encode a table of categorical values.

Create a table of categorical data labels. Each row in the table contains a single observation.

color = ["blue";"red";"blue";"green";"yellow";"red"];
color = categorical(color);
color = table(color);

One-hot encode the table of class labels by using the onehotencode function.

color = onehotencode(color)

color=6×4 table
    blue    green    red    yellow
    ____    _____    ___    ______

     1        0       0       0   
     0        0       1       0   
     1        0       0       0   
     0        1       0       0   
     0        0       0       1   
     0        0       1       0   

Each column of the table represents a class. The function encodes the data labels with a 1 in the
column of the corresponding class, and a 0 everywhere else.

One-Hot Encode Subset of Classes

Encode data labels when not all classes in the data are relevant by using only a subset of the classes.

Create a row vector of data labels, where each column of the vector represents a single observation

pets = ["dog","fish","cat","dog","cat","bird"];

Define the list of classes to encode. These classes are a subset of the classes in the observations.

animalClasses = ["bird";"cat";"dog"];
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One-hot encode the observations into the first dimension, so that each row of encPets corresponds
to a unique class. Specify the classes to encode.

encPets = onehotencode(pets,1,"ClassNames",animalClasses)

encPets = 3×6

     0   NaN     0     0     0     1
     0   NaN     1     0     1     0
     1   NaN     0     1     0     0

Observations of a class not in the list of classes to encode are encoded to a vector of NaN values.

One-Hot Encode Table with Several Variables

Encode a table that contains several types of class variables by encoding each variable separately.

Create a table containing observations of several types of categorical data.

color = ["blue";"red";"blue";"green";"yellow";"red"];
color = categorical(color);

pets = ["dog";"fish";"cat";"dog";"cat";"bird"];
pets = categorical(pets);

location = ["USA";"CAN";"CAN";"USA";"AUS";"USA"];
location = categorical(location);

data = table(color,pets,location)

data=6×3 table
    color     pets    location
    ______    ____    ________

    blue      dog       USA   
    red       fish      CAN   
    blue      cat       CAN   
    green     dog       USA   
    yellow    cat       AUS   
    red       bird      USA   

Use a for-loop to one-hot encode each table variable and append it to a new table containing the
encoded data.

encData = table();

for i=1:width(data)
 encData = [encData onehotencode(data(:,i))];
end

encData

encData=6×11 table
    blue    green    red    yellow    bird    cat    dog    fish    AUS    CAN    USA
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    ____    _____    ___    ______    ____    ___    ___    ____    ___    ___    ___

     1        0       0       0        0       0      1      0       0      0      1 
     0        0       1       0        0       0      0      1       0      1      0 
     1        0       0       0        0       1      0      0       0      1      0 
     0        1       0       0        0       0      1      0       0      0      1 
     0        0       0       1        0       1      0      0       1      0      0 
     0        0       1       0        1       0      0      0       0      0      1 

Each row of encData encodes the three different categorical classes for each observation.

Compare the encoded data created by using onehotencode to the dummy variables created by using
dummyvar. The dummyvar function does not accept table inputs. Combine the class variables into the
cell array group.

group = {color,pets,location};
dummyData = dummyvar(group)

dummyData = 6×11

     1     0     0     0     0     0     1     0     0     0     1
     0     0     1     0     0     0     0     1     0     1     0
     1     0     0     0     0     1     0     0     0     1     0
     0     1     0     0     0     0     1     0     0     0     1
     0     0     0     1     0     1     0     0     1     0     0
     0     0     1     0     1     0     0     0     0     0     1

The encoded data encData and dummy variables dummyData have the same encoding but different
data type. For more information on the differences between the onehotencode and dummyvar
functions, see “Alternative Functionality” on page 35-5180.

Input Arguments
A — Array of data labels
categorical array | numeric array | string array

Array of data labels to encode, specified as a categorical array, a numeric array, or a string array.

• If A is a categorical array, the elements of the one-hot encoded vectors match the same order in
categories(A).

• If A is not a categorical array, you must specify the classes to encode using the 'ClassNames'
name-value argument. The function encodes the vectors in the order that the classes appear in
classes.

• If A contains undefined values or values not present in classes, the function encodes those
values as a vector of NaN values. typename must be 'double' or 'single'.

Data Types: categorical | numeric | string

featureDim — Dimension to expand
positive integer

Dimension to expand to encode the labels, specified as a positive integer.
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featureDim must specify a singleton dimension of A, or be larger than n where n is the number of
dimensions of A.

tblA — Table of data labels
table

Table of data labels to encode, specified as a table. The table must contain a single variable and one
row for each observation. Each entry must contain a categorical scalar, a numeric scalar, or a string
scalar.

• If tblA contains categorical values, the elements of the one-hot encoded vectors match the order
of the categories; for example, the same order as categories(tbl(1,n)).

• If tblA does not contain categorical values, you must specify the classes to encode using the
'ClassNames' name-value argument. The function encodes the vectors in the order that the
classes appear in classes.

• If tblA contains undefined values or values not present in classes, the function encodes those
values as NaN values. typename must be 'double' or 'single'.

Data Types: table

typename — Data type of encoded labels
'double' (default) | character vector | string scalar

Data type of the encoded labels, specified as a character vector or a string scalar.

• If the classification label input is a categorical array, a numeric array, or a string array, then the
encoded labels are returned as an array of data type typename.

• If the classification label input is a table, then the encoded labels are returned as a table where
each entry has data type typename.

Valid values of typename are floating point, signed and unsigned integer, and logical types.
Example: 'int64'
Data Types: char | string

classes — Classes to encode
cell array | string vector | numeric vector | character array

Classes to encode, specified as a cell array of character vectors, a string vector, a numeric vector, or a
two-dimensional character array.

• If the input A or tblA does not contain categorical values, then you must specify classes. You
can also use the classes argument to exclude any class labels from being encoded, or to encode
the vector elements in a specific order.

• If A or tblA contains undefined values or values not present in classes, the function encodes
those values to a vector of NaN values. typename must be 'double' or 'single'.

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
string | cell
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Output Arguments
B — Encoded labels
numeric array

Encoded labels, returned as a numeric array.

tblB — Encoded labels
table

Encoded labels, returned as a table.

Each row of tblB contains the one-hot encoded label for a single observation, in the same order as in
tblA. Each row contains a 1 in the variable corresponding to the class of the label in tlbA, and a 0 in
all other variables.

Alternative Functionality
To encode data labels, you can also use dummyvar, which creates dummy variables from grouping
variables. The following table compares the onehotencode and dummyvar functions for different use
cases.

Use Case When to Use onehotencode When to Use dummyvar
Encoding multiple variables Use onehotencode in a loop.

For an example, see “One-Hot
Encode Table with Several
Variables” on page 35-5177.

Specify the input argument
group as a cell array or positive
integer matrix. For examples,
see “Create Dummy Variables
from Multiple Grouping
Variables” on page 35-1482 and
“Create Dummy Variables from
Numeric Grouping Variables” on
page 35-1481.

Encoding a variable in cell array
format

Convert the cell array variable
to a categorical array.

Specify the input argument
group as a cell array containing
one or more grouping variables.

Encoding noncategorical data
labels

Specify the data labels as a
categorical array or specify the
classes to encode using the
ClassNames name-value
argument. For an example, see
“One-Hot Encode Subset of
Classes” on page 35-5176.

You do not need to convert the
data labels, because dummyvar
accepts noncategorical grouping
variables as input.

Encoding an array of data labels Specify the dimension to expand
(featureDim).

The software automatically
determines the dimension to
expand. dummyvar returns
dummy variables as a numeric
array with columns created
from the columns of the input
grouping variables.
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In many cases, you do not need to use the onehotencode or dummyvar function for encoding. Most
Statistics and Machine Learning Toolbox functions can operate directly on categorical response data.
Most classification and regression functions also accept categorical predictors.

Version History
Introduced in R2021b

See Also
onehotdecode | dummyvar | categorical | categories
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optimalleaforder
Optimal leaf ordering for hierarchical clustering

Syntax
leafOrder = optimalleaforder(tree,D)
leafOrder = optimalleaforder(tree,D,Name,Value)

Description
leafOrder = optimalleaforder(tree,D) returns an optimal leaf ordering for the hierarchical
binary cluster tree, tree, using the distances, D. An optimal leaf ordering of a binary tree maximizes
the sum of the similarities between adjacent leaves by flipping tree branches without dividing the
clusters.

leafOrder = optimalleaforder(tree,D,Name,Value) returns the optimal leaf ordering using
one or more name-value pair arguments.

Examples

Plot Dendrogram With Optimal Leaf Order

Create a hierarchical binary cluster tree using linkage. Then, compare the dendrogram plot with
the default ordering to a dendrogram with an optimal leaf ordering.

Generate sample data.

rng('default') % For reproducibility
X = rand(10,2);

Create a distance vector and a hierarchical binary clustering tree. Use the distances and clustering
tree to determine an optimal leaf order.

D = pdist(X);
tree = linkage(D,'average');
leafOrder = optimalleaforder(tree,D);

Plot the dendrogram with the default ordering and the dendrogram with the optimal leaf ordering.

figure()
subplot(2,1,1)
dendrogram(tree)
title('Default Leaf Order')

subplot(2,1,2)
dendrogram(tree,'reorder',leafOrder)
title('Optimal Leaf Order')
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The order of the leaves in the bottom figure corresponds to the elements in leafOrder.

leafOrder

leafOrder = 1×10

     1     4     9    10     2     5     8     3     7     6

Optimal Leaf Order Using Inverse Distance Similarity

Generate sample data.

rng('default') % For reproducibility
X = rand(10,2);

Create a distance vector and a hierarchical binary clustering tree.

D = pdist(X);
tree = linkage(D,'average');

Use the inverse distance similarity transformation to determine an optimal leaf order.

leafOrder = optimalleaforder(tree,D,'Transformation','inverse')
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leafOrder = 1×10

     1     4     9    10     2     5     8     3     7     6

Input Arguments
tree — Hierarchical binary cluster tree
matrix returned by linkage

Hierarchical binary cluster tree, specified as an (M – 1)-by-3 matrix that you generate using linkage,
where M is the number of leaves.

D — Distances
matrix | vector

Distances for determining similarities between leaves, specified as a matrix or vector of distances.
For example, you can generate distances using pdist.

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: 'Criteria','group','Transformation','inverse' specifies that the sum of
similarities be maximized between every leaf and all other leaves in adjacent clusters, using an
inverse similarity transformation.

Criteria — Optimization criterion
'adjacent' (default) | 'group'

Optimization criterion for determining an optimal leaf ordering, specified as the comma-separated
pair consisting of 'criteria' and one of these values:

'adjacent' Maximize the sum of similarities between adjacent leaves.
'group' Maximize the sum of similarities between every leaf and all other leaves in

the adjacent clusters at the same level of the dendrogram.

Example: 'Criteria','group'

Transformation — Method for transforming distances to similarities
'linear' (default) | 'inverse' | function handle

Method for transforming distances to similarities, specified as the comma-separated pair consisting of
'Transformation' and one of 'linear', 'inverse', or a function handle.

Let di,j and Simi,j denote the distance and similarity between leaves i and j, respectively. The included
similarity transformations are:

'linear' Simi,j = maxi,j (di,j ) – di,j
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'inverse' Simi,j = 1/di,j

To use a custom transformation function, specify a handle to a function that accepts a matrix of
distances, D, and returns a matrix of similarities, S. The function should be monotonic decreasing in
the range of distance values. S must have the same size as D, with S(i,j) being the similarity
computed based on D(i,j).
Example: 'Transformation',@myTransform

Output Arguments
leafOrder — Optimal leaf order
vector

Optimal leaf order, returned as a length-M vector, where M is the number of leaves. leafOrder is a
permutation of the vector 1:M, giving an optimal leaf ordering based on the specified distances and
similarity transformation.

Version History
Introduced in R2012b

References
[1] Bar-Joseph, Z., Gifford, D.K., and Jaakkola, T.S. (2001). "Fast optimal leaf ordering for hierarchical

clustering." Bioinformatics Vol. 17, Suppl 1:S22–9. PMID: 11472989.

See Also
dendrogram | linkage | pdist
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oobEdge
Out-of-bag classification edge

Syntax
edge = oobEdge(ens)
edge = oobEdge(ens,Name,Value)

Description
edge = oobEdge(ens) returns out-of-bag classification edge for ens.

edge = oobEdge(ens,Name,Value) computes classification edge with additional options specified
by one or more Name,Value pair arguments. You can specify several name-value pair arguments in
any order as Name1,Value1,…,NameN,ValueN.

Input Arguments
ens

A classification bagged ensemble, constructed with fitcensemble.

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.

learners

Indices of weak learners in the ensemble ranging from 1 to ens.NumTrained. oobEdge uses only
these learners for calculating loss.

Default: 1:NumTrained

mode

Character vector or string scalar representing the meaning of the output L:

• 'ensemble' — L is a scalar value, the loss for the entire ensemble.
• 'individual' — L is a vector with one element per trained learner.
• 'cumulative' — L is a vector in which element J is obtained by using learners 1:J from the

input list of learners.

Default: 'ensemble'
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UseParallel

Indication to perform inference in parallel, specified as false (compute serially) or true (compute in
parallel). Parallel computation requires Parallel Computing Toolbox. Parallel inference can be faster
than serial inference, especially for large datasets. Parallel computation is supported only for tree
learners.

Default: false

Output Arguments
edge

Classification edge, a weighted average of the classification margin.

Examples

Estimate Out-of-Bag Edge

Load Fisher's iris data set.

load fisheriris

Train an ensemble of 100 bagged classification trees using the entire data set.

Mdl = fitcensemble(meas,species,'Method','Bag');

Estimate the out-of-bag edge.

edge = oobEdge(Mdl)

edge = 0.8767

More About
Edge

The edge is the weighted mean value of the classification margin. The weights are the class
probabilities in ens.Prior.

Margin

The classification margin is the difference between the classification score for the true class and
maximal classification score for the false classes. Margin is a column vector with the same number of
rows as in the matrix ens.X.

Out of Bag

Bagging, which stands for “bootstrap aggregation”, is a type of ensemble learning. To bag a weak
learner such as a decision tree on a dataset, fitcensemble generates many bootstrap replicas of the
dataset and grows decision trees on these replicas. fitcensemble obtains each bootstrap replica by
randomly selecting N observations out of N with replacement, where N is the dataset size. To find the
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predicted response of a trained ensemble, predict take an average over predictions from individual
trees.

Drawing N out of N observations with replacement omits on average 37% (1/e) of observations for
each decision tree. These are "out-of-bag" observations. For each observation, oobLoss estimates the
out-of-bag prediction by averaging over predictions from all trees in the ensemble for which this
observation is out of bag. It then compares the computed prediction against the true response for this
observation. It calculates the out-of-bag error by comparing the out-of-bag predicted responses
against the true responses for all observations used for training. This out-of-bag average is an
unbiased estimator of the true ensemble error.

Version History
oobEdge returns a different value for a model with a nondefault cost matrix
Behavior changed in R2022a

If you specify a nondefault cost matrix when you train the input model object, the oobEdge function
returns a different value compared to previous releases.

The oobEdge function uses the observation weights stored in the W property. The way the function
uses the W property value has not changed. However, the property value stored in the input model
object has changed for a model with a nondefault cost matrix, so the function can return a different
value.

For details about the property value change, see “Cost property stores the user-specified cost matrix”
on page 35-387.

If you want the software to handle the cost matrix, prior probabilities, and observation weights as in
previous releases, adjust the prior probabilities and observation weights for the nondefault cost
matrix, as described in “Adjust Prior Probabilities and Observation Weights for Misclassification Cost
Matrix” on page 19-9. Then, when you train a classification model, specify the adjusted prior
probabilities and observation weights by using the Prior and Weights name-value arguments,
respectively, and use the default cost matrix.

Extended Capabilities
Automatic Parallel Support
Accelerate code by automatically running computation in parallel using Parallel Computing Toolbox™.

To run in parallel, set the UseParallel name-value argument to true in the call to this function.

For more general information about parallel computing, see “Run MATLAB Functions with Automatic
Parallel Support” (Parallel Computing Toolbox).

See Also
oobMargin | oobPredict | oobLoss
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oobError
Out-of-bag error

Syntax
err = oobError(B)
err = oobError(B,'param1',val1,'param2',val2,...)

Description
err = oobError(B) computes the misclassification probability (for classification trees) or mean
squared error (for regression trees) for out-of-bag observations in the training data, using the trained
bagger B. err is a vector of length NTrees, where NTrees is the number of trees in the ensemble.

err = oobError(B,'param1',val1,'param2',val2,...) specifies optional parameter name/
value pairs:

'Mode' Character vector or string scalar indicating how oobError computes
errors. If set to 'cumulative' (default), the method computes cumulative
errors and err is a vector of length NTrees, where the first element gives
error from trees(1), second element gives error from trees(1:2) etc.,
up to trees(1:NTrees). If set to 'individual', err is a vector of
length NTrees, where each element is an error from each tree in the
ensemble. If set to 'ensemble', err is a scalar showing the cumulative
error for the entire ensemble.

'Trees' Vector of indices indicating what trees to include in this calculation. By
default, this argument is set to 'all' and the method uses all trees. If
'Trees' is a numeric vector, the method returns a vector of length
NTrees for 'cumulative' and 'individual' modes, where NTrees is
the number of elements in the input vector, and a scalar for 'ensemble'
mode. For example, in the 'cumulative' mode, the first element gives
error from trees(1), the second element gives error from trees(1:2)
etc.

'TreeWeights' Vector of tree weights. This vector must have the same length as the
'Trees' vector. oobError uses these weights to combine output from the
specified trees by taking a weighted average instead of the simple
nonweighted majority vote. You cannot use this argument in the
'individual' mode.

Algorithms
oobError estimates the weighted ensemble error for out-of-bag observations. That is, oobError
applies error to the training data stored in the input TreeBagger model B, and selects the out-of-
bag observations for each tree to compose the ensemble error.

• B.X and B.Y are the training data predictors and responses, respectively.
• B.OOBIndices specifies which observations are out-of-bag for each tree in the ensemble.
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• B.W specifies the observation weights.
• Optionally:

• Using the 'Mode' name-value pair argument, you can specify to return the individual,
weighted ensemble error for each tree, or the entire, weighted ensemble error. By default,
oobError returns the cumulative, weighted ensemble error.

• Using the 'Trees' name-value pair argument, you can choose which trees to use in the
ensemble error calculations.

• Using the 'TreeWeights' name-value pair argument, you can attribute each tree with a
weight.

oobError applies the algorithms described below. For more details, see error and predict.

For regression problems, oobError returns the weighted MSE.

1 oobError predicts responses for all out-of-bag observations.
2 The MSE estimate depends on the value of 'Mode'.

• If you specify 'Mode','Individual', then oobError sets any in bag observations within a
selected tree to the weighted sample average of the observed, training data responses. Then,
oobError computes the weighted MSE for each selected tree.

• If you specify 'Mode','Cumulative', then ooError returns a vector of cumulative,
weighted MSEs, where MSEt is the cumulative, weighted MSE for selected tree t. To compute
MSEt, for each observation that is out of bag for at least one tree through tree t, oobError
computes the cumulative, weighted mean of the predicted responses through tree t.
oobError sets observations that are in bag for all selected trees through tree t to the
weighted sample average of the observed, training data responses. Then, oobError
computes MSEt.

• If you specify 'Mode','Ensemble', then, for each observation that is out of bag for at least
one tree, oobError computes the weighted mean over all selected trees. oobError sets
observations that are in bag for all selected trees to the weighted sample average of the
observed, training data responses. Then, oobError computes the weighted MSE, which is the
same as the final, cumulative, weighted MSE.

In classification problems, oobError returns the weighted misclassification rate.

1 oobError predicts classes for all out-of-bag observations.
2 The weighted misclassification rate estimate depends on the value of 'Mode'.

• If you specify 'Mode','Individual', then oobError sets any in bag observations within a
selected tree to the predicted, weighted, most popular class over all training responses. If
there are multiple most popular classes, error considers the one listed first in the
ClassNames property of the TreeBagger model the most popular. Then, oobError
computes the weighted misclassification rate for each selected tree.

• If you specify 'Mode','Cumulative', then ooError returns a vector of cumulative,
weighted misclassification rates, where et

* is the cumulative, weighted misclassification rate
for selected tree t. To compute et

*, for each observation that is out of bag for at least one tree
through tree t, oobError finds the predicted, cumulative, weighted most popular class
through tree t. oobError sets observations that are in bag for all selected trees through tree
t to the weighted, most popular class over all training responses. If there are multiple most
popular classes, error considers the one listed first in the ClassNames property of the
TreeBagger model the most popular. Then, oobError computes et

*.
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• If you specify 'Mode','Ensemble', then, for each observation that is out of bag for at least
one tree, oobError computes the weighted, most popular class over all selected trees.
oobError sets observations that are in bag for all selected trees through tree t to the
predicted, weighted, most popular class over all training responses. If there are multiple most
popular classes, error considers the one listed first in the ClassNames property of the
TreeBagger model the most popular. Then, oobError computes the weighted
misclassification rate , which is the same as the final, cumulative, weighted misclassification
rate.

Version History
oobError returns a different value for a model with a nondefault cost matrix
Behavior changed in R2022a

If you specify a nondefault cost matrix when you train the input model object, the oobError function
returns a different value compared to previous releases.

The oobError function uses the observation weights stored in the W property. The way the function
uses the W property value has not changed. However, the property value stored in the input model
object has changed for a model with a nondefault cost matrix, so the function can return a different
value.

For details about the property value change, see “Cost property stores the user-specified cost matrix”
on page 35-7401.

If you want the software to handle the cost matrix, prior probabilities, and observation weights as in
previous releases, adjust the prior probabilities and observation weights for the nondefault cost
matrix, as described in “Adjust Prior Probabilities and Observation Weights for Misclassification Cost
Matrix” on page 19-9. Then, when you train a classification model, specify the adjusted prior
probabilities and observation weights by using the Prior and Weights name-value arguments,
respectively, and use the default cost matrix.

See Also
error | oobQuantileError | predict | oobPredict | TreeBagger

Topics
“Bootstrap Aggregation (Bagging) of Regression Trees Using TreeBagger” on page 19-114
“Bootstrap Aggregation (Bagging) of Classification Trees Using TreeBagger” on page 19-125
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oobLoss
Out-of-bag classification error

Syntax
L = oobLoss(ens)
L = oobLoss(ens,Name,Value)

Description
L = oobLoss(ens) returns the classification error for ens computed for out-of-bag data.

L = oobLoss(ens,Name,Value) computes error with additional options specified by one or more
Name,Value pair arguments. You can specify several name-value pair arguments in any order as
Name1,Value1,…,NameN,ValueN.

Input Arguments
ens

A classification bagged ensemble, constructed with fitcensemble.

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.

learners

Indices of weak learners in the ensemble ranging from 1 to ens.NumTrained. oobLoss uses only
these learners for calculating loss.

Default: 1:NumTrained

lossfun

Loss function, specified as the comma-separated pair consisting of 'LossFun' and a built-in loss
function name or function handle.

• The following table lists the available loss functions. Specify one using its corresponding character
vector or string scalar.

Value Description
'binodeviance' Binomial deviance
'classifcost' Observed misclassification cost
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Value Description
'classiferror' Misclassified rate in decimal
'exponential' Exponential loss
'hinge' Hinge loss
'logit' Logistic loss
'mincost' Minimal expected misclassification cost (for

classification scores that are posterior
probabilities)

'quadratic' Quadratic loss

'mincost' is appropriate for classification scores that are posterior probabilities. Bagged
ensembles return posterior probabilities as classification scores by default.

• Specify your own function using function handle notation.

Suppose that n be the number of observations in X and K be the number of distinct classes
(numel(ens.ClassNames), ens is the input model). Your function must have this signature

lossvalue = lossfun(C,S,W,Cost)

where:

• The output argument lossvalue is a scalar.
• You choose the function name (lossfun).
• C is an n-by-K logical matrix with rows indicating which class the corresponding observation

belongs. The column order corresponds to the class order in ens.ClassNames.

Construct C by setting C(p,q) = 1 if observation p is in class q, for each row. Set all other
elements of row p to 0.

• S is an n-by-K numeric matrix of classification scores. The column order corresponds to the
class order in ens.ClassNames. S is a matrix of classification scores, similar to the output of
predict.

• W is an n-by-1 numeric vector of observation weights. If you pass W, the software normalizes
them to sum to 1.

• Cost is a K-by-K numeric matrix of misclassification costs. For example, Cost = ones(K) -
eye(K) specifies a cost of 0 for correct classification, and 1 for misclassification.

Specify your function using 'LossFun',@lossfun.

For more details on loss functions, see “Classification Loss” on page 35-5195.

Default: 'classiferror'

mode

Character vector or string scalar representing the meaning of the output L:

• 'ensemble' — L is a scalar value, the loss for the entire ensemble.
• 'individual' — L is a vector with one element per trained learner.
• 'cumulative' — L is a vector in which element J is obtained by using learners 1:J from the

input list of learners.
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Default: 'ensemble'

UseParallel

Indication to perform inference in parallel, specified as false (compute serially) or true (compute in
parallel). Parallel computation requires Parallel Computing Toolbox. Parallel inference can be faster
than serial inference, especially for large datasets. Parallel computation is supported only for tree
learners.

Default: false

Output Arguments
L

Classification loss on page 35-5195 of the out-of-bag observations, a scalar. L can be a vector, or can
represent a different quantity, depending on the name-value settings.

Examples

Estimate Out-Of-Bag Error

Load Fisher's iris data set.

load fisheriris

Grow a bag of 100 classification trees.

ens = fitcensemble(meas,species,'Method','Bag');

Estimate the out-of-bag classification error.

L = oobLoss(ens)

L = 0.0400

More About
Out of Bag

Bagging, which stands for “bootstrap aggregation”, is a type of ensemble learning. To bag a weak
learner such as a decision tree on a dataset, fitcensemble generates many bootstrap replicas of the
dataset and grows decision trees on these replicas. fitcensemble obtains each bootstrap replica by
randomly selecting N observations out of N with replacement, where N is the dataset size. To find the
predicted response of a trained ensemble, predict take an average over predictions from individual
trees.

Drawing N out of N observations with replacement omits on average 37% (1/e) of observations for
each decision tree. These are "out-of-bag" observations. For each observation, oobLoss estimates the
out-of-bag prediction by averaging over predictions from all trees in the ensemble for which this
observation is out of bag. It then compares the computed prediction against the true response for this
observation. It calculates the out-of-bag error by comparing the out-of-bag predicted responses
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against the true responses for all observations used for training. This out-of-bag average is an
unbiased estimator of the true ensemble error.

Classification Loss

Classification loss functions measure the predictive inaccuracy of classification models. When you
compare the same type of loss among many models, a lower loss indicates a better predictive model.

Consider the following scenario.

• L is the weighted average classification loss.
• n is the sample size.

• For binary classification:

• yj is the observed class label. The software codes it as –1 or 1, indicating the negative or
positive class (or the first or second class in the ClassNames property), respectively.

• f(Xj) is the positive-class classification score for observation (row) j of the predictor data X.
• mj = yjf(Xj) is the classification score for classifying observation j into the class corresponding

to yj. Positive values of mj indicate correct classification and do not contribute much to the
average loss. Negative values of mj indicate incorrect classification and contribute significantly
to the average loss.

• For algorithms that support multiclass classification (that is, K ≥ 3):

• yj
* is a vector of K – 1 zeros, with 1 in the position corresponding to the true, observed class yj.

For example, if the true class of the second observation is the third class and K = 4, then y2
* =

[0 0 1 0]′. The order of the classes corresponds to the order in the ClassNames property of
the input model.

• f(Xj) is the length K vector of class scores for observation j of the predictor data X. The order of
the scores corresponds to the order of the classes in the ClassNames property of the input
model.

• mj = yj
*′f(Xj). Therefore, mj is the scalar classification score that the model predicts for the true,

observed class.
• The weight for observation j is wj. The software normalizes the observation weights so that they

sum to the corresponding prior class probability stored in the Prior property. Therefore,

∑
j = 1

n
w j = 1.

Given this scenario, the following table describes the supported loss functions that you can specify by
using the LossFun name-value argument.

Loss Function Value of LossFun Equation
Binomial deviance 'binodeviance'

L = ∑
j = 1

n
w jlog 1 + exp −2m j .
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Loss Function Value of LossFun Equation
Observed
misclassification cost

'classifcost'
L = ∑

j = 1

n
w jcy jy j,

where y j is the class label corresponding to the
class with the maximal score, and cy jy j is the
user-specified cost of classifying an observation
into class y j when its true class is yj.

Misclassified rate in
decimal

'classiferror'
L = ∑

j = 1

n
w jI y j ≠ y j ,

where I{·} is the indicator function.
Cross-entropy loss 'crossentropy' 'crossentropy' is appropriate only for neural

network models.

The weighted cross-entropy loss is

L = − ∑
j = 1

n w jlog(m j)
Kn ,

where the weights w j are normalized to sum to n
instead of 1.

Exponential loss 'exponential'
L = ∑

j = 1

n
w jexp −m j .

Hinge loss 'hinge'

L =∑
j = 1

n

w jmax 0, 1−m j .

Logit loss 'logit'
L = ∑

j = 1

n
w jlog 1 + exp −m j .

35 Functions

35-5196



Loss Function Value of LossFun Equation
Minimal expected
misclassification cost

'mincost' 'mincost' is appropriate only if classification
scores are posterior probabilities.

The software computes the weighted minimal
expected classification cost using this procedure
for observations j = 1,...,n.

1 Estimate the expected misclassification cost
of classifying the observation Xj into the class
k:

γ jk = f X j ′C k .

f(Xj) is the column vector of class posterior
probabilities for the observation Xj. C is the
cost matrix stored in the Cost property of
the model.

2 For observation j, predict the class label
corresponding to the minimal expected
misclassification cost:

y j = argmin
k = 1, ..., K

γ jk .

3 Using C, identify the cost incurred (cj) for
making the prediction.

The weighted average of the minimal expected
misclassification cost loss is

L = ∑
j = 1

n
w jc j .

Quadratic loss 'quadratic'
L = ∑

j = 1

n
w j 1−m j

2 .

If you use the default cost matrix (whose element value is 0 for correct classification and 1 for
incorrect classification), then the loss values for 'classifcost', 'classiferror', and
'mincost' are identical. For a model with a nondefault cost matrix, the 'classifcost' loss is
equivalent to the 'mincost' loss most of the time. These losses can be different if prediction into the
class with maximal posterior probability is different from prediction into the class with minimal
expected cost. Note that 'mincost' is appropriate only if classification scores are posterior
probabilities.

This figure compares the loss functions (except 'classifcost', 'crossentropy', and
'mincost') over the score m for one observation. Some functions are normalized to pass through
the point (0,1).
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Version History
oobLoss returns a different value for a model with a nondefault cost matrix
Behavior changed in R2022a

If you specify a nondefault cost matrix when you train the input model object, the oobLoss function
returns a different value compared to previous releases.

The oobLoss function uses the observation weights stored in the W property. Also, the function uses
the cost matrix stored in the Cost property if you specify the LossFun name-value argument as
"classifcost" or "mincost". The way the function uses the W and Cost property values has not
changed. However, the property values stored in the input model object have changed for a model
with a nondefault cost matrix, so the function can return a different value.

For details about the property value change, see “Cost property stores the user-specified cost matrix”
on page 35-387.

If you want the software to handle the cost matrix, prior probabilities, and observation weights as in
previous releases, adjust the prior probabilities and observation weights for the nondefault cost
matrix, as described in “Adjust Prior Probabilities and Observation Weights for Misclassification Cost
Matrix” on page 19-9. Then, when you train a classification model, specify the adjusted prior
probabilities and observation weights by using the Prior and Weights name-value arguments,
respectively, and use the default cost matrix.
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Extended Capabilities
Automatic Parallel Support
Accelerate code by automatically running computation in parallel using Parallel Computing Toolbox™.

To run in parallel, set the UseParallel name-value argument to true in the call to this function.

For more general information about parallel computing, see “Run MATLAB Functions with Automatic
Parallel Support” (Parallel Computing Toolbox).

See Also
loss | oobEdge | oobMargin | oobPredict
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oobLoss
Out-of-bag regression error

Syntax
L = oobLoss(ens)
L = oobLoss(ens,Name,Value)

Description
L = oobLoss(ens) returns the mean squared error for ens computed for out-of-bag data.

L = oobLoss(ens,Name,Value) computes error with additional options specified by one or more
Name,Value pair arguments. You can specify several name-value pair arguments in any order as
Name1,Value1,…,NameN,ValueN.

Input Arguments
ens

A regression bagged ensemble, constructed with fitrensemble.

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.

learners

Indices of weak learners in the ensemble ranging from 1 to ens.NumTrained. oobLoss uses only
these learners for calculating loss.

Default: 1:NumTrained

lossfun

Function handle for loss function, or 'mse', meaning mean squared error. If you pass a function
handle fun, oobLoss calls it as

FUN(Y,Yfit,W)

where Y, Yfit, and W are numeric vectors of the same length. Y is the observed response, Yfit is the
predicted response, and W is the observation weights.

Default: 'mse'
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mode

Character vector or string scalar representing the meaning of the output L:

• 'ensemble' — L is a scalar value, the loss for the entire ensemble.
• 'individual' — L is a vector with one element per trained learner.
• 'cumulative' — L is a vector in which element J is obtained by using learners 1:J from the

input list of learners.

Default: 'ensemble'

UseParallel

Indication to perform inference in parallel, specified as false (compute serially) or true (compute in
parallel). Parallel computation requires Parallel Computing Toolbox. Parallel inference can be faster
than serial inference, especially for large datasets. Parallel computation is supported only for tree
learners.

Default: false

Output Arguments
L

Mean squared error of the out-of-bag observations, a scalar. L can be a vector, or can represent a
different quantity, depending on the name-value settings.

Examples
Find Out-of-Bag Regression Error

Compute the out-of-bag error for the carsmall data.

Load the carsmall data set and select engine displacement, horsepower, and vehicle weight as
predictors.

load carsmall
X = [Displacement Horsepower Weight];

Train an ensemble of bagged regression trees.

ens = fitrensemble(X,MPG,'Method','Bag');

Find the out-of-bag error.

L = oobLoss(ens)

L = 16.9551
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More About
Out of Bag

Bagging, which stands for “bootstrap aggregation”, is a type of ensemble learning. To bag a weak
learner such as a decision tree on a dataset, fitrensemble generates many bootstrap replicas of the
dataset and grows decision trees on these replicas. fitrensemble obtains each bootstrap replica by
randomly selecting N observations out of N with replacement, where N is the dataset size. To find the
predicted response of a trained ensemble, predict takes an average over predictions from individual
trees.

Drawing N out of N observations with replacement omits on average 37% (1/e) of observations for
each decision tree. These are "out-of-bag" observations. For each observation, oobLoss estimates the
out-of-bag prediction by averaging over predictions from all trees in the ensemble for which this
observation is out of bag. It then compares the computed prediction against the true response for this
observation. It calculates the out-of-bag error by comparing the out-of-bag predicted responses
against the true responses for all observations used for training. This out-of-bag average is an
unbiased estimator of the true ensemble error.

Extended Capabilities
Automatic Parallel Support
Accelerate code by automatically running computation in parallel using Parallel Computing Toolbox™.

To run in parallel, set the UseParallel name-value argument to true in the call to this function.

For more general information about parallel computing, see “Run MATLAB Functions with Automatic
Parallel Support” (Parallel Computing Toolbox).

See Also
oobPredict | loss
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oobMargin
Out-of-bag classification margins

Syntax
margin = oobMargin(ens)
margin = oobMargin(ens,Name,Value)

Description
margin = oobMargin(ens) returns out-of-bag classification margins.

margin = oobMargin(ens,Name,Value) calculates margins with additional options specified by
one or more Name,Value pair arguments.

Input Arguments
ens

A classification bagged ensemble, constructed with fitcensemble.

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.

learners

Indices of weak learners in the ensemble ranging from 1 to ens.NumTrained. oobMargin uses only
these learners for calculating loss.

Default: 1:NumTrained

UseParallel

Indication to perform inference in parallel, specified as false (compute serially) or true (compute in
parallel). Parallel computation requires Parallel Computing Toolbox. Parallel inference can be faster
than serial inference, especially for large datasets. Parallel computation is supported only for tree
learners.

Default: false

Output Arguments
margin

A numeric column vector of length size(ens.X,1).
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Examples
Find Out-of-Bag Classification Margins

Find the out-of-bag margins for a bagged ensemble from the Fisher iris data.

Load the sample data set.

load fisheriris

Train an ensemble of bagged classification trees.

ens = fitcensemble(meas,species,'Method','Bag');

Find the number of out-of-bag margins that are equal to 1.

margin = oobMargin(ens);
sum(margin == 1)

ans = 109

More About
Out of Bag

Bagging, which stands for “bootstrap aggregation”, is a type of ensemble learning. To bag a weak
learner such as a decision tree on a dataset, fitrensemble generates many bootstrap replicas of the
dataset and grows decision trees on these replicas. fitrensemble obtains each bootstrap replica by
randomly selecting N observations out of N with replacement, where N is the dataset size. To find the
predicted response of a trained ensemble, predict takes an average over predictions from individual
trees.

Drawing N out of N observations with replacement omits on average 37% (1/e) of observations for
each decision tree. These are "out-of-bag" observations. For each observation, oobLoss estimates the
out-of-bag prediction by averaging over predictions from all trees in the ensemble for which this
observation is out of bag. It then compares the computed prediction against the true response for this
observation. It calculates the out-of-bag error by comparing the out-of-bag predicted responses
against the true responses for all observations used for training. This out-of-bag average is an
unbiased estimator of the true ensemble error.

Margin

The classification margin is the difference between the classification score for the true class and
maximal classification score for the false classes. Margin is a column vector with the same number of
rows as in the matrix ens.X.

Extended Capabilities
Automatic Parallel Support
Accelerate code by automatically running computation in parallel using Parallel Computing Toolbox™.

To run in parallel, set the UseParallel name-value argument to true in the call to this function.

35 Functions

35-5204



For more general information about parallel computing, see “Run MATLAB Functions with Automatic
Parallel Support” (Parallel Computing Toolbox).

See Also
oobPredict | oobLoss | oobEdge | margin
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oobMargin
Out-of-bag margins

Syntax
mar = oobMargin(B)
mar = oobMargin(B,'param1',val1,'param2',val2,...)

Description
mar = oobMargin(B) computes an Nobs-by-NTrees matrix of classification margins for out-of-bag
observations in the training data, using the trained bagger B.

mar = oobMargin(B,'param1',val1,'param2',val2,...) specifies optional parameter name/
value pairs:

'Mode' Character vector or string scalar indicating how oobMargin computes
errors. If set to 'cumulative' (default), the method computes cumulative
margins and mar is an Nobs-by-NTrees matrix, where the first column
gives margins from trees(1), second column gives margins from
trees(1:2) etc., up to trees(1:NTrees). If set to 'individual', mar
is an Nobs-by-NTrees matrix, where each column gives margins from each
tree in the ensemble. If set to 'ensemble', mar is a single column of
length Nobs showing the cumulative margins for the entire ensemble.

'Trees' Vector of indices indicating what trees to include in this calculation. By
default, this argument is set to 'all' and the method uses all trees. If
'Trees' is a numeric vector, the method returns an Nobs-by-NTrees
matrix for 'cumulative' and 'individual' modes, where NTrees is
the number of elements in the input vector, and a single column for
'ensemble' mode. For example, in the 'cumulative' mode, the first
column gives margins from trees(1), the second column gives margins
from trees(1:2) etc.

'TreeWeights' Vector of tree weights. This vector must have the same length as the
'Trees' vector. oobMargin uses these weights to combine output from
the specified trees by taking a weighted average instead of the simple
nonweighted majority vote. You cannot use this argument in the
'individual' mode.

See Also
margin
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oobMeanMargin
Out-of-bag mean margins

Syntax
mar = oobMeanMargin(B)
mar = oobMeanMargin(B,'param1',val1,'param2',val2,...)

Description
mar = oobMeanMargin(B) computes average classification margins for out-of-bag observations in
the training data, using the trained bagger B. oobMeanMargin averages the margins over all out-of-
bag observations. mar is a row-vector of length NTrees, where NTrees is the number of trees in the
ensemble.

mar = oobMeanMargin(B,'param1',val1,'param2',val2,...) specifies optional parameter
name/value pairs:

'Mode' Character vector or string scalar indicating how oobMeanMargin computes
errors. If set to 'cumulative' (default), is a vector of length NTrees where
the first element gives mean margin from trees(1), second column gives
mean margins from trees(1:2) etc., up to trees(1:NTrees). If set to
'individual', mar is a vector of length NTrees, where each element is a
mean margin from each tree in the ensemble. If set to 'ensemble', mar is a
scalar showing the cumulative mean margin for the entire ensemble.

'Trees' Vector of indices indicating what trees to include in this calculation. By
default, this argument is set to 'all' and the method uses all trees. If
'Trees' is a numeric vector, the method returns a vector of length NTrees
for 'cumulative' and 'individual' modes, where NTrees is the number
of elements in the input vector, and a scalar for 'ensemble' mode. For
example, in the 'cumulative' mode, the first element gives mean margin
from trees(1), the second element gives mean margin from trees(1:2)
etc.

'TreeWeights' Vector of tree weights. This vector must have the same length as the 'Trees'
vector. oobMeanMargin uses these weights to combine output from the
specified trees by taking a weighted average instead of the simple
nonweighted majority vote. You cannot use this argument in the
'individual' mode.

Version History
oobMeanMargin returns a different value for a model with a nondefault cost matrix
Behavior changed in R2022a

If you specify a nondefault cost matrix when you train the input model object, the oobMeanMargin
function returns a different value compared to previous releases.
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The oobMeanMargin function uses the observation weights stored in the W property. The way the
function uses the W property value has not changed. However, the property value stored in the input
model object has changed for a model with a nondefault cost matrix, so the function can return a
different value.

For details about the property value change, see “Cost property stores the user-specified cost matrix”
on page 35-7401.

If you want the software to handle the cost matrix, prior probabilities, and observation weights as in
previous releases, adjust the prior probabilities and observation weights for the nondefault cost
matrix, as described in “Adjust Prior Probabilities and Observation Weights for Misclassification Cost
Matrix” on page 19-9. Then, when you train a classification model, specify the adjusted prior
probabilities and observation weights by using the Prior and Weights name-value arguments,
respectively, and use the default cost matrix.

See Also
meanMargin
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oobPermutedPredictorImportance
Predictor importance estimates by permutation of out-of-bag predictor observations for random forest
of classification trees

Syntax
Imp = oobPermutedPredictorImportance(Mdl)
Imp = oobPermutedPredictorImportance(Mdl,Name,Value)

Description
Imp = oobPermutedPredictorImportance(Mdl) returns a vector of out-of-bag, predictor
importance estimates by permutation on page 35-5214 using the random forest of classification trees
Mdl. Mdl must be a ClassificationBaggedEnsemble model object.

Imp = oobPermutedPredictorImportance(Mdl,Name,Value) uses additional options specified
by one or more Name,Value pair arguments. For example, you can speed up computation using
parallel computing or indicate which trees to use in the predictor importance estimation.

Input Arguments
Mdl — Random forest of classification trees
ClassificationBaggedEnsemble model object

Random forest of classification trees, specified as a ClassificationBaggedEnsemble model object
created by fitcensemble.

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.

Learners — Indices of learners to use in predictor importance estimation
1:Mdl.NumTrained (default) | numeric vector of positive integers

Indices of learners to use in predictor importance estimation, specified as the comma-separated pair
consisting of 'Learners' and a numeric vector of positive integers. Values must be at most
Mdl.NumTrained. When oobPermutedPredictorImportance estimates the predictor importance,
it includes the learners in Mdl.Trained(learners) only, where learners is the value of
'Learners'.
Example: 'Learners',[1:2:Mdl.NumTrained]

Options — Parallel computing options
[] (default) | structure array returned by statset

Parallel computing options, specified as the comma-separated pair consisting of 'Options' and a
structure array returned by statset. 'Options' requires a Parallel Computing Toolbox license.
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oobPermutedPredictorImportance uses the 'UseParallel' field only.
statset('UseParallel',true) invokes a pool of workers.
Example: 'Options',statset('UseParallel',true)

Output Arguments
Imp — Out-of-bag, predictor importance estimates by permutation
numeric vector

Out-of-bag, predictor importance estimates by permutation on page 35-5214, returned as a 1-by-p
numeric vector. p is the number of predictor variables in the training data (size(Mdl.X,2)).
Imp(j) is the predictor importance of the predictor Mdl.PredictorNames(j).

Examples

Estimate Importance of Predictors

Load the census1994 data set. Consider a model that predicts a person's salary category given their
age, working class, education level, martial status, race, sex, capital gain and loss, and number of
working hours per week.

load census1994
X = adultdata(:,{'age','workClass','education_num','marital_status','race',...
    'sex','capital_gain','capital_loss','hours_per_week','salary'});

You can train a random forest of 50 classification trees using the entire data set.

Mdl = fitcensemble(X,'salary','Method','Bag','NumLearningCycles',50);

fitcensemble uses a default template tree object templateTree() as a weak learner when
'Method' is 'Bag'. In this example, for reproducibility, specify 'Reproducible',true when you
create a tree template object, and then use the object as a weak learner.

rng('default') % For reproducibility
t = templateTree('Reproducible',true); % For reproducibiliy of random predictor selections
Mdl = fitcensemble(X,'salary','Method','Bag','NumLearningCycles',50,'Learners',t);

Mdl is a ClassificationBaggedEnsemble model.

Estimate predictor importance measures by permuting out-of-bag observations. Compare the
estimates using a bar graph.

imp = oobPermutedPredictorImportance(Mdl);

figure;
bar(imp);
title('Out-of-Bag Permuted Predictor Importance Estimates');
ylabel('Estimates');
xlabel('Predictors');
h = gca;
h.XTickLabel = Mdl.PredictorNames;
h.XTickLabelRotation = 45;
h.TickLabelInterpreter = 'none';
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imp is a 1-by-9 vector of predictor importance estimates. Larger values indicate predictors that have
a greater influence on predictions. In this case, marital_status is the most important predictor,
followed by capital_gain.

Unbiased Estimates of Predictor Importance Using Parallel Computing

Load the census1994 data set. Consider a model that predicts a person's salary category given their
age, working class, education level, martial status, race, sex, capital gain and loss, and number of
working hours per week.

load census1994
X = adultdata(:,{'age','workClass','education_num','marital_status','race', ...
    'sex','capital_gain','capital_loss','hours_per_week','salary'});

Display the number of categories represented in the categorical variables using summary.

summary(X)

Variables:

    age: 32561×1 double

        Values:

            Min        17  
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            Median     37  
            Max        90  

    workClass: 32561×1 categorical

        Values:

            Federal-gov              960   
            Local-gov               2093   
            Never-worked               7   
            Private                22696   
            Self-emp-inc            1116   
            Self-emp-not-inc        2541   
            State-gov               1298   
            Without-pay               14   
            NumMissing              1836   

    education_num: 32561×1 double

        Values:

            Min              1       
            Median          10       
            Max             16       

    marital_status: 32561×1 categorical

        Values:

            Divorced                       4443      
            Married-AF-spouse                23      
            Married-civ-spouse            14976      
            Married-spouse-absent           418      
            Never-married                 10683      
            Separated                      1025      
            Widowed                         993      

    race: 32561×1 categorical

        Values:

            Amer-Indian-Eskimo      311 
            Asian-Pac-Islander     1039 
            Black                  3124 
            Other                   271 
            White                 27816 

    sex: 32561×1 categorical

        Values:

            Female    10771
            Male      21790

    capital_gain: 32561×1 double

        Values:
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            Min               0     
            Median            0     
            Max           99999     

    capital_loss: 32561×1 double

        Values:

            Min               0     
            Median            0     
            Max            4356     

    hours_per_week: 32561×1 double

        Values:

            Min               1       
            Median           40       
            Max              99       

    salary: 32561×1 categorical

        Values:

            <=50K     24720  
            >50K       7841  

Because there are few categories represented in the categorical variables compared to levels in the
continuous variables, the standard CART, predictor-splitting algorithm prefers splitting a continuous
predictor over the categorical variables.

Train a random forest of 50 classification trees using the entire data set. To grow unbiased trees,
specify usage of the curvature test for splitting predictors. Because there are missing values in the
data, specify usage of surrogate splits. To reproduce random predictor selections, set the seed of the
random number generator by using rng and specify 'Reproducible',true.

rng('default') % For reproducibility
t = templateTree('PredictorSelection','curvature','Surrogate','on', ...
    'Reproducible',true); % For reproducibility of random predictor selections
Mdl = fitcensemble(X,'salary','Method','bag','NumLearningCycles',50, ...
    'Learners',t);

Estimate predictor importance measures by permuting out-of-bag observations. Perform calculations
in parallel.

options = statset('UseParallel',true);
imp = oobPermutedPredictorImportance(Mdl,'Options',options);

Starting parallel pool (parpool) using the 'local' profile ...
Connected to the parallel pool (number of workers: 6).

Compare the estimates using a bar graph.

figure
bar(imp)
title('Out-of-Bag Permuted Predictor Importance Estimates')
ylabel('Estimates')
xlabel('Predictors')
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h = gca;
h.XTickLabel = Mdl.PredictorNames;
h.XTickLabelRotation = 45;
h.TickLabelInterpreter = 'none';

In this case, capital_gain is the most important predictor, followed by martial_status.
Compare these results to the results in “Estimate Importance of Predictors” on page 35-5210.

More About
Out-of-Bag, Predictor Importance Estimates by Permutation

Out-of-bag, predictor importance estimates by permutation measure how influential the predictor
variables in the model are at predicting the response. The influence of a predictor increases with the
value of this measure.

If a predictor is influential in prediction, then permuting its values should affect the model error. If a
predictor is not influential, then permuting its values should have little to no effect on the model
error.

The following process describes the estimation of out-of-bag predictor importance values by
permutation. Suppose that R is a random forest of T learners and p is the number of predictors in the
training data.

1 For tree t, t = 1,...,T:
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a Identify the out-of-bag observations and the indices of the predictor variables that were split
to grow tree t, st ⊆ {1,...,p}.

b Estimate the out-of-bag error εt.
c For each predictor variable xj, j ∊ st:

i Randomly permute the observations of xj.
ii Estimate the model error, εtj, using the out-of-bag observations containing the permuted

values of xj.
iii Take the difference dtj = εtj – εt. Predictor variables not split when growing tree t are

attributed a difference of 0.
2 For each predictor variable in the training data, compute the mean, d j, and standard deviation,

σj, of the differences over the learners, j = 1,...,p.
3 The out-of-bag predictor importance by permutation for xj is d j/σ j.

Tips
When growing a random forest using fitcensemble:

• Standard CART tends to select split predictors containing many distinct values, e.g., continuous
variables, over those containing few distinct values, e.g., categorical variables [3]. If the predictor
data set is heterogeneous, or if there are predictors that have relatively fewer distinct values than
other variables, then consider specifying the curvature or interaction test.

• Trees grown using standard CART are not sensitive to predictor variable interactions. Also, such
trees are less likely to identify important variables in the presence of many irrelevant predictors
than the application of the interaction test. Therefore, to account for predictor interactions and
identify importance variables in the presence of many irrelevant variables, specify the interaction
test [2].

• If the training data includes many predictors and you want to analyze predictor importance, then
specify 'NumVariablesToSample' of the templateTree function as 'all' for the tree
learners of the ensemble. Otherwise, the software might not select some predictors,
underestimating their importance.

For more details, see templateTree and “Choose Split Predictor Selection Technique” on page 20-
14.

Version History
Introduced in R2016b
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Extended Capabilities
Automatic Parallel Support
Accelerate code by automatically running computation in parallel using Parallel Computing Toolbox™.

To run in parallel, specify the 'Options' name-value argument in the call to this function and set the
'UseParallel' field of the options structure to true using statset.

For example: 'Options',statset('UseParallel',true)

For more information about parallel computing, see “Run MATLAB Functions with Automatic Parallel
Support” (Parallel Computing Toolbox).

See Also
predictorImportance | ClassificationBaggedEnsemble | fitcensemble

Topics
“Choose Split Predictor Selection Technique” on page 20-14
“Select Predictors for Random Forests” on page 19-62
“Introduction to Feature Selection” on page 16-47
“Interpret Machine Learning Models” on page 27-2
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oobPermutedPredictorImportance
Predictor importance estimates by permutation of out-of-bag predictor observations for random forest
of regression trees

Syntax
Imp = oobPermutedPredictorImportance(Mdl)
Imp = oobPermutedPredictorImportance(Mdl,Name,Value)

Description
Imp = oobPermutedPredictorImportance(Mdl) returns a vector of out-of-bag, predictor
importance estimates by permutation on page 35-5221 using the random forest of regression trees
Mdl. Mdl must be a RegressionBaggedEnsemble model object.

Imp = oobPermutedPredictorImportance(Mdl,Name,Value) uses additional options specified
by one or more Name,Value pair arguments. For example, you can speed up computation using
parallel computing or indicate which trees to use in the predictor importance estimation.

Input Arguments
Mdl — Random forest of regression trees
RegressionBaggedEnsemble model object

Random forest of regression trees, specified as a RegressionBaggedEnsemble model object
created by fitrensemble.

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.

Learners — Indices of learners to use in predictor importance estimation
1:Mdl.NumTrained (default) | numeric vector of positive integers

Indices of learners to use in predictor importance estimation, specified as the comma-separated pair
consisting of 'Learners' and a numeric vector of positive integers. Values must be at most
Mdl.NumTrained. When oobPermutedPredictorImportance estimates the predictor importance,
it includes the learners in Mdl.Trained(learners) only, where learners is the value of
'Learners'.
Example: 'Learners',[1:2:Mdl.NumTrained]

Options — Parallel computing options
[] (default) | structure array returned by statset

Parallel computing options, specified as the comma-separated pair consisting of 'Options' and a
structure array returned by statset. 'Options' requires a Parallel Computing Toolbox license.
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oobPermutedPredictorImportance uses the 'UseParallel' field only.
statset('UseParallel',true) invokes a pool of workers.
Example: 'Options',statset('UseParallel',true)

Output Arguments
Imp — Out-of-bag, predictor importance estimates by permutation
numeric vector

Out-of-bag, predictor importance estimates by permutation on page 35-5221, returned as a 1-by-p
numeric vector. p is the number of predictor variables in the training data (size(Mdl.X,2)).
Imp(j) is the predictor importance of the predictor Mdl.PredictorNames(j).

Examples

Estimate Importance of Predictors

Load the carsmall data set. Consider a model that predicts the mean fuel economy of a car given its
acceleration, number of cylinders, engine displacement, horsepower, manufacturer, model year, and
weight. Consider Cylinders, Mfg, and Model_Year as categorical variables.

load carsmall
Cylinders = categorical(Cylinders);
Mfg = categorical(cellstr(Mfg));
Model_Year = categorical(Model_Year);
X = table(Acceleration,Cylinders,Displacement,Horsepower,Mfg,...
    Model_Year,Weight,MPG);

You can train a random forest of 500 regression trees using the entire data set.

Mdl = fitrensemble(X,'MPG','Method','Bag','NumLearningCycles',500);

fitrensemble uses a default template tree object templateTree() as a weak learner when
'Method' is 'Bag'. In this example, for reproducibility, specify 'Reproducible',true when you
create a tree template object, and then use the object as a weak learner.

rng('default') % For reproducibility
t = templateTree('Reproducible',true); % For reproducibiliy of random predictor selections
Mdl = fitrensemble(X,'MPG','Method','Bag','NumLearningCycles',500,'Learners',t);

Mdl is a RegressionBaggedEnsemble model.

Estimate predictor importance measures by permuting out-of-bag observations. Compare the
estimates using a bar graph.

imp = oobPermutedPredictorImportance(Mdl);

figure;
bar(imp);
title('Out-of-Bag Permuted Predictor Importance Estimates');
ylabel('Estimates');
xlabel('Predictors');
h = gca;
h.XTickLabel = Mdl.PredictorNames;

35 Functions

35-5218



h.XTickLabelRotation = 45;
h.TickLabelInterpreter = 'none';

imp is a 1-by-7 vector of predictor importance estimates. Larger values indicate predictors that have
a greater influence on predictions. In this case, Weight is the most important predictor, followed by
Model_Year.

Unbiased Estimates of Predictor Importance Using Parallel Computing

Load the carsmall data set. Consider a model that predicts the mean fuel economy of a car given its
acceleration, number of cylinders, engine displacement, horsepower, manufacturer, model year, and
weight. Consider Cylinders, Mfg, and Model_Year as categorical variables.

load carsmall
Cylinders = categorical(Cylinders);
Mfg = categorical(cellstr(Mfg));
Model_Year = categorical(Model_Year);
X = table(Acceleration,Cylinders,Displacement,Horsepower,Mfg,...
    Model_Year,Weight,MPG);

Display the number of categories represented in the categorical variables.

numCylinders = numel(categories(Cylinders))

numCylinders = 3
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numMfg = numel(categories(Mfg))

numMfg = 28

numModelYear = numel(categories(Model_Year))

numModelYear = 3

Because there are 3 categories only in Cylinders and Model_Year, the standard CART, predictor-
splitting algorithm prefers splitting a continuous predictor over these two variables.

Train a random forest of 500 regression trees using the entire data set. To grow unbiased trees,
specify usage of the curvature test for splitting predictors. Because there are missing values in the
data, specify usage of surrogate splits. To reproduce random predictor selections, set the seed of the
random number generator by using rng and specify 'Reproducible',true.

rng('default'); % For reproducibility
t = templateTree('PredictorSelection','curvature','Surrogate','on', ...
    'Reproducible',true); % For reproducibility of random predictor selections
Mdl = fitrensemble(X,'MPG','Method','bag','NumLearningCycles',500, ...
    'Learners',t);

Estimate predictor importance measures by permuting out-of-bag observations. Perform calculations
in parallel.

options = statset('UseParallel',true);
imp = oobPermutedPredictorImportance(Mdl,'Options',options);

Starting parallel pool (parpool) using the 'local' profile ...
Connected to the parallel pool (number of workers: 6).

Compare the estimates using a bar graph.

figure;
bar(imp);
title('Out-of-Bag Permuted Predictor Importance Estimates');
ylabel('Estimates');
xlabel('Predictors');
h = gca;
h.XTickLabel = Mdl.PredictorNames;
h.XTickLabelRotation = 45;
h.TickLabelInterpreter = 'none';
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In this case, Model_Year is the most important predictor, followed by Cylinders. Compare these
results to the results in “Estimate Importance of Predictors” on page 35-5218.

More About
Out-of-Bag, Predictor Importance Estimates by Permutation

Out-of-bag, predictor importance estimates by permutation measure how influential the predictor
variables in the model are at predicting the response. The influence of a predictor increases with the
value of this measure.

If a predictor is influential in prediction, then permuting its values should affect the model error. If a
predictor is not influential, then permuting its values should have little to no effect on the model
error.

The following process describes the estimation of out-of-bag predictor importance values by
permutation. Suppose that R is a random forest of T learners and p is the number of predictors in the
training data.

1 For tree t, t = 1,...,T:

a Identify the out-of-bag observations and the indices of the predictor variables that were split
to grow tree t, st ⊆ {1,...,p}.

b Estimate the out-of-bag error εt.
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c For each predictor variable xj, j ∊ st:

i Randomly permute the observations of xj.
ii Estimate the model error, εtj, using the out-of-bag observations containing the permuted

values of xj.
iii Take the difference dtj = εtj – εt. Predictor variables not split when growing tree t are

attributed a difference of 0.
2 For each predictor variable in the training data, compute the mean, d j, and standard deviation,

σj, of the differences over the learners, j = 1,...,p.
3 The out-of-bag predictor importance by permutation for xj is d j/σ j.

Tips
When growing a random forest using fitrensemble:

• Standard CART tends to select split predictors containing many distinct values, e.g., continuous
variables, over those containing few distinct values, e.g., categorical variables [3]. If the predictor
data set is heterogeneous, or if there are predictors that have relatively fewer distinct values than
other variables, then consider specifying the curvature or interaction test.

• Trees grown using standard CART are not sensitive to predictor variable interactions. Also, such
trees are less likely to identify important variables in the presence of many irrelevant predictors
than the application of the interaction test. Therefore, to account for predictor interactions and
identify importance variables in the presence of many irrelevant variables, specify the interaction
test [2].

• If the training data includes many predictors and you want to analyze predictor importance, then
specify 'NumVariablesToSample' of the templateTree function as 'all' for the tree
learners of the ensemble. Otherwise, the software might not select some predictors,
underestimating their importance.

For more details, see templateTree and “Choose Split Predictor Selection Technique” on page 20-
14.

Version History
Introduced in R2016b
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Extended Capabilities
Automatic Parallel Support
Accelerate code by automatically running computation in parallel using Parallel Computing Toolbox™.

To run in parallel, specify the 'Options' name-value argument in the call to this function and set the
'UseParallel' field of the options structure to true using statset.

For example: 'Options',statset('UseParallel',true)

For more information about parallel computing, see “Run MATLAB Functions with Automatic Parallel
Support” (Parallel Computing Toolbox).

See Also
predictorImportance | RegressionBaggedEnsemble | fitrensemble |
plotPartialDependence

Topics
“Choose Split Predictor Selection Technique” on page 20-14
“Select Predictors for Random Forests” on page 19-62
“Introduction to Feature Selection” on page 16-47
“Interpret Machine Learning Models” on page 27-2
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oobPredict
Predict out-of-bag response of ensemble

Syntax
[label,score] = oobPredict(ens)
[label,score] = oobPredict(ens,Name,Value)

Description
[label,score] = oobPredict(ens) returns class labels and scores for ens for out-of-bag data.

[label,score] = oobPredict(ens,Name,Value) computes labels and scores with additional
options specified by one or more Name,Value pair arguments.

Input Arguments
ens

A classification bagged ensemble, constructed with fitcensemble.

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.

learners

Indices of weak learners in the ensemble ranging from 1 to ens.NumTrained. oobPredict uses
only these learners for calculating loss.

Default: 1:NumTrained

UseParallel

Indication to perform inference in parallel, specified as false (compute serially) or true (compute in
parallel). Parallel computation requires Parallel Computing Toolbox. Parallel inference can be faster
than serial inference, especially for large datasets. Parallel computation is supported only for tree
learners.

Default: false

Output Arguments
label

Classification labels of the same data type as the training data Y. (The software treats string arrays as
cell arrays of character vectors.) There are N elements or rows, where N is the number of training
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observations. The label is the class with the highest score. In case of a tie, the label is earliest in
ens.ClassNames.

score

An N-by-K numeric matrix for N observations and K classes. A high score indicates that an observation
is likely to come from this class. Scores are in the range 0 to 1.

Examples
Find Out-of-Bag Response of Classification Ensemble

Find the out-of-bag predictions and scores for the Fisher iris data. Find the scores with notable
uncertainty in the resulting classifications.

Load the sample data set.

load fisheriris

Train an ensemble of bagged classification trees.

ens = fitcensemble(meas,species,'Method','Bag');

Find the out-of-bag predictions and scores.

[label,score] = oobPredict(ens);

Find the scores in the range (0.2,0.8). These scores have notable uncertainty in the resulting
classifications.

unsure = ((score > .2) & (score < .8));
sum(sum(unsure))  % Number of uncertain predictions

ans = 16

More About
Out of Bag

Bagging, which stands for “bootstrap aggregation”, is a type of ensemble learning. To bag a weak
learner such as a decision tree on a dataset, fitcensemble generates many bootstrap replicas of the
dataset and grows decision trees on these replicas. fitcensemble obtains each bootstrap replica by
randomly selecting N observations out of N with replacement, where N is the dataset size. To find the
predicted response of a trained ensemble, predict take an average over predictions from individual
trees.

Drawing N out of N observations with replacement omits on average 37% (1/e) of observations for
each decision tree. These are "out-of-bag" observations. For each observation, oobLoss estimates the
out-of-bag prediction by averaging over predictions from all trees in the ensemble for which this
observation is out of bag. It then compares the computed prediction against the true response for this
observation. It calculates the out-of-bag error by comparing the out-of-bag predicted responses
against the true responses for all observations used for training. This out-of-bag average is an
unbiased estimator of the true ensemble error.
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Score (ensemble)

For ensembles, a classification score represents the confidence of a classification into a class. The
higher the score, the higher the confidence.

Different ensemble algorithms have different definitions for their scores. Furthermore, the range of
scores depends on ensemble type. For example:

• AdaBoostM1 scores range from –∞ to ∞.
• Bag scores range from 0 to 1.

Extended Capabilities
Automatic Parallel Support
Accelerate code by automatically running computation in parallel using Parallel Computing Toolbox™.

To run in parallel, set the UseParallel name-value argument to true in the call to this function.

For more general information about parallel computing, see “Run MATLAB Functions with Automatic
Parallel Support” (Parallel Computing Toolbox).

See Also
oobMargin | oobLoss | oobEdge | predict
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oobPredict
Predict out-of-bag response of ensemble

Syntax
Yfit = oobPredict(ens)
Yfit = oobPredict(ens,Name,Value)

Description
Yfit = oobPredict(ens) returns the predicted responses for the out-of-bag data in ens.

Yfit = oobPredict(ens,Name,Value) predicts responses with additional options specified by
one or more Name,Value pair arguments.

Input Arguments
ens

A regression bagged ensemble, constructed with fitrensemble.

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.

learners

Indices of weak learners in the ensemble ranging from 1 to ens.NumTrained. oobPredict uses
only these learners for calculating loss.

Default: 1:NumTrained

UseParallel

Indication to perform inference in parallel, specified as false (compute serially) or true (compute in
parallel). Parallel computation requires Parallel Computing Toolbox. Parallel inference can be faster
than serial inference, especially for large datasets. Parallel computation is supported only for tree
learners.

Default: false

Output Arguments
Yfit

A vector of predicted responses for out-of-bag data. Yfit has size(ens.X,1) elements.
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You can find the indices of out-of-bag observations for weak learner L with the command

~ens.UseObsForLearner(:,L)

Examples
Find Out-of-Bag Response of Regression Ensemble

Compute the out-of-bag predictions for the carsmall data set. Display the first three terms of the fit.

Load the carsmall data set and select displacement, horsepower, and vehicle weight as predictors.

load carsmall
X = [Displacement Horsepower Weight];

Train an ensemble of bagged regression trees.

ens = fitrensemble(X,MPG,'Method','Bag');

Find the out-of-bag predictions, and display the first three terms of the fit.

Yfit = oobPredict(ens);
Yfit(1:3) % First three terms

ans = 3×1

   15.5200
   14.5558
   15.0231

More About
Out of Bag

Bagging, which stands for “bootstrap aggregation”, is a type of ensemble learning. To bag a weak
learner such as a decision tree on a dataset, fitrensemble generates many bootstrap replicas of the
dataset and grows decision trees on these replicas. fitrensemble obtains each bootstrap replica by
randomly selecting N observations out of N with replacement, where N is the dataset size. To find the
predicted response of a trained ensemble, predict takes an average over predictions from individual
trees.

Drawing N out of N observations with replacement omits on average 37% (1/e) of observations for
each decision tree. These are "out-of-bag" observations. For each observation, oobLoss estimates the
out-of-bag prediction by averaging over predictions from all trees in the ensemble for which this
observation is out of bag. It then compares the computed prediction against the true response for this
observation. It calculates the out-of-bag error by comparing the out-of-bag predicted responses
against the true responses for all observations used for training. This out-of-bag average is an
unbiased estimator of the true ensemble error.

Extended Capabilities
Automatic Parallel Support
Accelerate code by automatically running computation in parallel using Parallel Computing Toolbox™.
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To run in parallel, set the UseParallel name-value argument to true in the call to this function.

For more general information about parallel computing, see “Run MATLAB Functions with Automatic
Parallel Support” (Parallel Computing Toolbox).

See Also
oobLoss | predict
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oobPredict
Ensemble predictions for out-of-bag observations

Syntax
Y = oobPredict(B)
Y = oobPredict(B,Name,Value)
[Y,stdevs] = oobPredict( ___ )
[Y,scores] = oobPredict( ___ )
[Y,scores,stdevs] = oobPredict( ___ )

Description
Y = oobPredict(B) computes predicted responses using the trained bagger B for out-of-bag
observations in the training data. The output has one prediction for each observation in the training
data. The returned Y is a cell array of character vectors for classification and a numeric array for
regression.

Y = oobPredict(B,Name,Value) specifies additional options using one or both name-value pair
arguments:

• 'Trees' — Array of tree indices to use for computation of responses. The default is 'all'.
• 'TreeWeights' — Array of NTrees weights for weighting votes from the specified trees, where

NTrees is the number of trees in the ensemble.

For regression, [Y,stdevs] = oobPredict( ___ ) also returns standard deviations of the
computed responses over the ensemble of the grown trees using any of the input argument
combinations in previous syntaxes.

For classification, [Y,scores] = oobPredict( ___ ) also returns scores for all classes. scores is
a matrix with one row per observation and one column per class. For each out-of-bag observation and
each class, the score generated by each tree is the probability of the observation originating from the
class, computed as the fraction of observations of the class in a tree leaf. oobPredict averages these
scores over all trees in the ensemble.

[Y,scores,stdevs] = oobPredict( ___ ) also returns standard deviations of the computed
scores for classification. stdevs is a matrix with one row per observation and one column per class,
with standard deviations taken over the ensemble of the grown trees.

Algorithms
oobPredict and predict similarly predict classes and responses.

• In regression problems:

• For each observation that is out of bag for at least one tree, oobPredict composes the
weighted mean by selecting responses of trees in which the observation is out of bag. For this
computation, the 'TreeWeights' name-value pair argument specifies the weights.
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• For each observation that is in bag for all trees, the predicted response is the weighted mean
of all of the training responses. For this computation, the W property of the TreeBagger model
(i.e., the observation weights) specify the weights.

• In classification problems:

• For each observation that is out of bag for at least one tree, oobPredict composes the
weighted mean of the class posterior probabilities by selecting the trees in which the
observation is out of bag. Consequently, the predicted class is the class corresponding to the
largest weighted mean. For this computation, the 'TreeWeights' name-value pair argument
specifies the weights.

• For each observation that is in bag for all trees, the predicted class is the weighted, most
popular class over all training responses. For this computation, the W property of the
TreeBagger model (i.e., the observation weights) specify the weights. If there are multiple
most popular classes, oobPredict considers the one listed first in the ClassNames property
of the TreeBagger model the most popular.

See Also
predict | oobQuantilePredict | compact | TreeBagger

Topics
“Bootstrap Aggregation (Bagging) of Regression Trees Using TreeBagger” on page 19-114
“Bootstrap Aggregation (Bagging) of Classification Trees Using TreeBagger” on page 19-125
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oobQuantileError
Out-of-bag quantile loss of bag of regression trees

Syntax
err = oobQuantileError(Mdl)
err = oobQuantileError(Mdl,Name,Value)

Description
err = oobQuantileError(Mdl) returns half of the out-of-bag on page 35-5236 mean absolute
deviation (MAD) from comparing the true responses in Mdl.Y to the predicted, out-of-bag medians at
Mdl.X, the predictor data, and using the bag of regression trees Mdl. Mdl must be a TreeBagger
model object.

err = oobQuantileError(Mdl,Name,Value) uses additional options specified by one or more
Name,Value pair arguments. For example, specify quantile probabilities, the error type, or which
trees to include in the quantile-regression-error estimation.

Input Arguments
Mdl — Bag of regression trees
TreeBagger model object (default)

Bag of regression trees, specified as a TreeBagger model object created by the TreeBagger
function.

• The value of Mdl.Method must be regression.
• When you train Mdl using the TreeBagger function, you must specify the name-value pair

'OOBPrediction','on'. Consequently, TreeBagger saves required out-of-bag observation
index matrix in Mdl.OOBIndices.

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.

Mode — Ensemble error type
'ensemble' (default) | 'cumulative' | 'individual'

Ensemble error type, specified as the comma-separated pair consisting of 'Mode' and a value in this
table. Suppose tau is the value of Quantile.
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Value Description
'cumulative' err is a Mdl.NumTrees-by-numel(tau) numeric matrix of cumulative quantile

regression errors. err(j,k) is the tau(k) quantile regression error using the
learners in Mdl.Trees(1:j) only.

'ensemble' err is a 1-by-numel(tau) numeric vector of cumulative quantile regression
errors for the entire ensemble. err(k) is the tau(k) ensemble quantile
regression error.

'individual' err is a Mdl.NumTrees-by-numel(tau) numeric matrix of quantile regression
errors from individual learners. err(j,k) is the tau(k) quantile regression
error using the learner in Mdl.Trees(j) only.

For 'cumulative' and 'individual', if you choose to include fewer trees in quantile estimation
using Trees, then this action affects the number of rows in err and corresponding row indices.
Example: 'Mode','cumulative'

Quantile — Quantile probability
0.5 (default) | numeric vector containing values in [0,1]

Quantile probability, specified as the comma-separated pair consisting of 'Quantile' and a numeric
vector containing values in the interval [0,1]. For each observation (row) in Mdl.X,
oobQuantileError estimates corresponding quantiles for all probabilities in Quantile.
Example: 'Quantile',[0 0.25 0.5 0.75 1]
Data Types: single | double

Trees — Indices of trees to use in response estimation
'all' (default) | numeric vector of positive integers

Indices of trees to use in response estimation, specified as the comma-separated pair consisting of
'Trees' and 'all' or a numeric vector of positive integers. Indices correspond to the cells of
Mdl.Trees; each cell therein contains a tree in the ensemble. The maximum value of Trees must be
less than or equal to the number of trees in the ensemble (Mdl.NumTrees).

For 'all', oobQuantileError uses all trees in the ensemble (that is, the indices
1:Mdl.NumTrees).

Values other than the default can affect the number of rows in err.
Example: 'Trees',[1 10 Mdl.NumTrees]
Data Types: char | string | single | double

TreeWeights — Weights to attribute to responses from individual trees
ones(Mdl.NumTrees,1) (default) | numeric vector of nonnegative values

Weights to attribute to responses from individual trees, specified as the comma-separated pair
consisting of 'TreeWeights' and a numeric vector of numel(trees) nonnegative values. trees is
the value of Trees.

If you specify 'Mode','individual', then oobQuantileError ignores TreeWeights.
Data Types: single | double
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Output Arguments
err — Half of out-of-bag quantile regression error
numeric scalar | numeric matrix

Half of the out-of-bag quantile regression error on page 35-5236, returned as a numeric scalar or T-
by-numel(tau) matrix. tau is the value of Quantile.

T depends on the values of Mode, Trees, and Quantile. Suppose that you specify 'Quantile',tau
and 'Trees',trees.

• For 'Mode','cumulative', err is a numel(trees)-by-numel(tau) numeric matrix.
err(j,k) is the tau(k) cumulative, out-of-bag quantile regression error using the learners in
Mdl.Trees(trees(1:j)).

• For 'Mode','ensemble', err is a 1-by-numel(tau) numeric vector. err(k) is the tau(k)
cumulative, out-of-bag quantile regression error using the learners in Mdl.Trees(trees).

• For 'Mode','individual', err is a numel(trees)-by-numel(tau) numeric matrix.
err(j,k) is the tau(k) out-of-bag quantile regression error using the learner in
Mdl.Trees(trees(j)).

Examples

Estimate Out-of-Bag Quantile Regression Error

Load the carsmall data set. Consider a model that predicts the fuel economy of a car given its
engine displacement, weight, and number of cylinders. Consider Cylinders a categorical variable.

load carsmall
Cylinders = categorical(Cylinders);
X = table(Displacement,Weight,Cylinders,MPG);

Train an ensemble of bagged regression trees using the entire data set. Specify 100 weak learners
and save the out-of-bag indices.

rng(1); % For reproducibility
Mdl = TreeBagger(100,X,'MPG','Method','regression','OOBPrediction','on');

Mdl is a TreeBagger ensemble.

Perform quantile regression, and out-of-bag estimate the MAD of the entire ensemble using the
predicted conditional medians.

oobErr = oobQuantileError(Mdl)

oobErr = 1.5349

oobErr is an unbiased estimate of the quantile regression error for the entire ensemble.
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Find Appropriate Ensemble Size Using Out-of-Bag Quantile Regression Error

Load the carsmall data set. Consider a model that predicts the fuel economy of a car given its
engine displacement, weight, and number of cylinders.

load carsmall
X = table(Displacement,Weight,Cylinders,MPG);

Train an ensemble of bagged regression trees using the entire data set. Specify 250 weak learners
and save the out-of-bag indices.

rng('default'); % For reproducibility
Mdl = TreeBagger(250,X,'MPG','Method','regression',...
    'OOBPrediction','on');

Estimate the cumulative; out-of-bag; 0.25, 0.5, and 0.75 quantile regression errors.

err = oobQuantileError(Mdl,'Quantile',[0.25 0.5 0.75],'Mode','cumulative');

err is an 250-by-3 matrix of cumulative, out-of-bag, quantile regression errors. Columns correspond
to quantile probabilities and rows correspond to trees in the ensemble. The errors are cumulative, so
they incorporate aggregated predictions from previous trees.

Plot the cumulative, out-of-bag, quantile errors on the same plot.

figure;
plot(err);
legend('0.25 quantile error','0.5 quantile error','0.75 quantile error');
ylabel('Out-of-bag quantile error');
xlabel('Tree index');
title('Cumulative, Out-of-Bag, Quantile Regression Error')
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All quantile error curves appear to level off after training about 50 trees. So, training 50 trees
appears to be sufficient to achieve minimal quantile error for the three quantile probabilities.

More About
Out-of-Bag

In a bagged ensemble, observations are out-of-bag when they are left out of the training sample for a
particular learner. Observations are in-bag when they are used to train a particular learner.

When bagging learners, a practitioner takes a bootstrap sample (that is, a random sample with
replacement) of size n for each learner, and then trains the learners using their respective bootstrap
samples. Drawing n out of n observations with replacement omits on average about 37% of
observations for each learner.

The out-of-bag ensemble error, the ensemble error estimated using out-of-bag observations only, is an
unbiased estimator of the true ensemble error.

Quantile Regression Error

The quantile regression error of a model given observed predictor data and responses is the weighted
mean absolute deviation (MAD). If the model under-predicts the response, then deviation weights are
τ, the quantile probability. If the model over-predicts, then deviation weights are 1 – τ.

That is, the τ quantile regression error is
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Lτ = τ

∑
j: y j ≥ y τ, j

w j y j− y τ, j

∑
j = 1

n
w j

+ 1− τ

∑
j: y j < y τ, j

w j y τ, j− y j

∑
j = 1

n
w j

.

yj is true response j, y τ, j is the τ quantile that the model predicts, and wj is observation weight j.

Tip
The out-of-bag ensemble error estimator is unbiased for the true ensemble error. So, to tune
parameters of a random forest, estimate the out-of-bag ensemble error instead of implementing cross-
validation.

Version History
Introduced in R2016b

References

[1] Breiman, L. "Random Forests." Machine Learning 45, pp. 5–32, 2001.

[2] Meinshausen, N. “Quantile Regression Forests.” Journal of Machine Learning Research, Vol. 7,
2006, pp. 983–999.

See Also
error | quantileError | oobQuantilePredict | TreeBagger

Topics
“Tune Random Forest Using Quantile Error and Bayesian Optimization” on page 19-146
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oobQuantilePredict
Quantile predictions for out-of-bag observations from bag of regression trees

Syntax
YFit = oobQuantilePredict(Mdl)
YFit = oobQuantilePredict(Mdl,Name,Value)
[YFit,YW] = oobQuantilePredict( ___ )

Description
YFit = oobQuantilePredict(Mdl) returns a vector of medians of the predicted responses at all
out-of-bag on page 35-5245 observations in Mdl.X, the predictor data, and using Mdl, which is a bag
of regression trees. Mdl must be a TreeBagger model object and Mdl.OOBIndices must be
nonempty.

YFit = oobQuantilePredict(Mdl,Name,Value) uses additional options specified by one or
more Name,Value pair arguments. For example, specify quantile probabilities or trees to include for
quantile estimation.

[YFit,YW] = oobQuantilePredict( ___ ) also returns a sparse matrix of response weights on
page 35-5246 using any of the previous syntaxes.

Input Arguments
Mdl — Bag of regression trees
TreeBagger model object (default)

Bag of regression trees, specified as a TreeBagger model object created by the TreeBagger
function.

• The value of Mdl.Method must be regression.
• When you train Mdl using the TreeBagger function, you must specify the name-value pair

'OOBPrediction','on'. Consequently, TreeBagger saves required out-of-bag observation
index matrix in Mdl.OOBIndices.

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.

Quantile — Quantile probability
0.5 (default) | numeric vector containing values in [0,1]

Quantile probability, specified as the comma-separated pair consisting of 'Quantile' and a numeric
vector containing values in the interval [0,1]. For each observation (row) in Mdl.X,
oobQuantilePredict estimates corresponding quantiles for all probabilities in Quantile.
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Example: 'Quantile',[0 0.25 0.5 0.75 1]
Data Types: single | double

Trees — Indices of trees to use in response estimation
'all' (default) | numeric vector of positive integers

Indices of trees to use in response estimation, specified as the comma-separated pair consisting of
'Trees' and 'all' or a numeric vector of positive integers. Indices correspond to the cells of
Mdl.Trees; each cell therein contains a tree in the ensemble. The maximum value of Trees must be
less than or equal to the number of trees in the ensemble (Mdl.NumTrees).

For 'all', oobQuantilePredict uses the indices 1:Mdl.NumTrees.
Example: 'Trees',[1 10 Mdl.NumTrees]
Data Types: char | string | single | double

TreeWeights — Weights to attribute to responses from individual trees
numeric vector of nonnegative values

Weights to attribute to responses from individual trees, specified as the comma-separated pair
consisting of 'TreeWeights' and a numeric vector of numel(trees) nonnegative values. trees is
the value of the Trees name-value pair argument.

The default is ones(size(trees)).
Data Types: single | double

Output Arguments
YFit — Estimated quantiles
numeric matrix

Estimated quantiles for out-of-bag observations, returned as an n-by-numel(tau) numeric matrix. n
is the number of observations in the training data (numel(Mdl.Y)) and tau is the value of the
Quantile name-value pair argument. That is, YFit(j,k) is the estimated 100*tau(k) percentile
of the response distribution given X(j,:) and using Mdl.

YW — Response weights
sparse matrix

Response weights on page 35-5246, returned as an n-by-n sparse matrix. n is the number of
responses in the training data (numel(Mdl.Y)). YW(:,j) specifies the response weights for the
observation in Mdl.X(j,:).

oobQuantilePredict predicts quantiles using linear interpolation of the empirical cumulative
distribution function (cdf). For a particular observation, you can use its response weights to estimate
quantiles using alternative methods, such as approximating the cdf using kernel smoothing on page
B-79.

Examples
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Predict Out-of-Bag Medians Using Quantile Regression

Load the carsmall data set. Consider a model that predicts the fuel economy (in MPG) of a car given
its engine displacement.

load carsmall

Train an ensemble of bagged regression trees using the entire data set. Specify 100 weak learners
and save out-of-bag indices.

rng(1); % For reproducibility
Mdl = TreeBagger(100,Displacement,MPG,'Method','regression',...
    'OOBPrediction','on');

Mdl is a TreeBagger ensemble.

Perform quantile regression to predict the out-of-bag median fuel economy for all training
observations.

oobMedianMPG = oobQuantilePredict(Mdl);

oobMedianMPG is an n-by-1 numeric vector of medians corresponding to the conditional distribution
of the response given the sorted observations in Mdl.X. n is the number of observations,
size(Mdl.X,1).

Sort the observations in ascending order. Plot the observations and the estimated medians on the
same figure. Compare the out-of-bag median and mean responses.

[sX,idx] = sort(Mdl.X);
oobMeanMPG = oobPredict(Mdl);

figure;
plot(Displacement,MPG,'k.');
hold on
plot(sX,oobMedianMPG(idx));
plot(sX,oobMeanMPG(idx),'r--');
ylabel('Fuel economy');
xlabel('Engine displacement');
legend('Data','Out-of-bag median','Out-of-bag mean');
hold off;
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Estimate Out-of-Bag Prediction Intervals Using Percentiles

Load the carsmall data set. Consider a model that predicts the fuel economy of a car (in MPG) given
its engine displacement.

load carsmall

Train an ensemble of bagged regression trees using the entire data set. Specify 100 weak learners
and save out-of-bag indices.

rng(1); % For reproducibility
Mdl = TreeBagger(100,Displacement,MPG,'Method','regression',...
    'OOBPrediction','on');

Perform quantile regression to predict the out-of-bag 2.5% and 97.5% percentiles.

oobQuantPredInts = oobQuantilePredict(Mdl,'Quantile',[0.025,0.975]);

oobQuantPredInts is an n-by-2 numeric matrix of prediction intervals corresponding to the out-of-
bag observations in Mdl.X. n is number of observations, size(Mdl.X,1). The first column contains
the 2.5% percentiles and the second column contains the 97.5% percentiles.

Plot the observations and the estimated medians on the same figure. Compare the percentile
prediction intervals and the 95% prediction intervals, assuming the conditional distribution of MPG is
Gaussian.

 oobQuantilePredict

35-5241



[oobMeanMPG,oobSTEMeanMPG] = oobPredict(Mdl);
STDNPredInts = oobMeanMPG + [-1 1]*norminv(0.975).*oobSTEMeanMPG;
[sX,idx] = sort(Mdl.X);

figure;
h1 = plot(Displacement,MPG,'k.');
hold on
h2 = plot(sX,oobQuantPredInts(idx,:),'b');
h3 = plot(sX,STDNPredInts(idx,:),'r--');
ylabel('Fuel economy');
xlabel('Engine displacement');
legend([h1,h2(1),h3(1)],{'Data','95% percentile prediction intervals',...
    '95% Gaussian prediction intervals'});
hold off;

Estimate Out-of-Bag Conditional Cumulative Distribution Using Quantile Regression

Load the carsmall data set. Consider a model that predicts the fuel economy of a car (in MPG) given
its engine displacement.

load carsmall

Train an ensemble of bagged regression trees using the entire data set. Specify 100 weak learners
and save the out-of-bag indices.
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rng(1); % For reproducibility
Mdl = TreeBagger(100,Displacement,MPG,'Method','regression',...
    'OOBPrediction','on');

Estimate the out-of-bag response weights.

[~,YW] = oobQuantilePredict(Mdl);

YW is an n-by-n sparse matrix containing the response weights. n is the number of training
observations, numel(Y). The response weights for the observation in Mdl.X(j,:) are in YW(:,j).
Response weights are independent of any specified quantile probabilities.

Estimate the out-of-bag, conditional cumulative distribution function (ccdf) of the responses by:

1 Sorting the responses is ascending order, and then sorting the response weights using the
indices induced by sorting the responses.

2 Computing the cumulative sums over each column of the sorted response weights.

[sortY,sortIdx] = sort(Mdl.Y);
cpdf = full(YW(sortIdx,:));
ccdf = cumsum(cpdf);

ccdf(:,j) is the empirical out-of-bag ccdf of the response, given observation j.

Choose a random sample of four training observations. Plot the training sample and identify the
chosen observations.

[randX,idx] = datasample(Mdl.X,4);
figure;
plot(Mdl.X,Mdl.Y,'o');
hold on
plot(randX,Mdl.Y(idx),'*','MarkerSize',10);
text(randX-10,Mdl.Y(idx)+1.5,{'obs. 1' 'obs. 2' 'obs. 3' 'obs. 4'});
legend('Training Data','Chosen Observations');
xlabel('Engine displacement')
ylabel('Fuel economy')
hold off
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Plot the out-of-bag ccdf for the four chosen responses in the same figure.

figure;
plot(sortY,ccdf(:,idx));
legend('ccdf given obs. 1','ccdf given obs. 2',...
    'ccdf given obs. 3','ccdf given obs. 4',...
    'Location','SouthEast')
title('Out-of-Bag Conditional Cumulative Distribution Functions')
xlabel('Fuel economy')
ylabel('Empirical CDF')
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More About
Out-of-Bag

In a bagged ensemble, observations are out-of-bag when they are left out of the training sample for a
particular learner. Observations are in-bag when they are used to train a particular learner.

When bagging learners, a practitioner takes a bootstrap sample (that is, a random sample with
replacement) of size n for each learner, and then trains the learners using their respective bootstrap
samples. Drawing n out of n observations with replacement omits on average about 37% of
observations for each learner.

The out-of-bag ensemble error, the ensemble error estimated using out-of-bag observations only, is an
unbiased estimator of the true ensemble error.

Quantile Random Forest

Quantile random forest [2] is a quantile-regression method that uses a random forest [1] of
regression trees to model the conditional distribution of a response variable, given the value of
predictor variables. You can use a fitted model to estimate quantiles in the conditional distribution of
the response.

Besides quantile estimation, you can use quantile regression to estimate prediction intervals or detect
outliers. For example:
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• To estimate 95% quantile prediction intervals, estimate the 0.025 and 0.975 quantiles.
• To detect outliers, estimate the 0.01 and 0.99 quantiles. All observations smaller than the 0.01

quantile and larger than the 0.99 quantile are outliers. All observations that are outside the
interval [L,U] can be considered outliers:

L = Q1− 1.5 * IQR

and

U = Q3 + 1.5 * IQR,

where:

• Q1 is the 0.25 quantile.
• Q3 is the 0.75 quantile.
• IQR = Q3 – Q1 (the interquartile range).

Response Weights

Response weights are scalars that represent the conditional distribution of the response given a value
in the predictor space. The observations in the bootstrap samples and the leaves that the training and
test observations share induce response weights.

Given the observation x, the response weight for observation j in the training sample using tree t in
the ensemble is

wt j(x) =
I X j ∈ St(x)

∑
k = 1

ntrain
I Xk ∈ St(x)

,

where:

• I{h} is the indicator function.
• St(x) is the leaf of tree t containing x.
• ntrain is the number of training observations.

In other words, the response weights of a particular tree form the conditional relative frequency
distribution of the response.

The response weights for the entire ensemble are averaged over the trees:

w j
∗(x) = 1

T ∑t = 1

T
wt j(x) .

Algorithms
oobQuantilePredict estimates out-of-bag quantiles by applying quantilePredict to all
observations in the training data (Mdl.X). For each observation, the method uses only the trees for
which the observation is out-of-bag.

For observations that are in-bag for all trees in the ensemble, oobQuantilePredict assigns the
sample quantile of the response data. In other words, oobQuantilePredict does not use quantile
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regression for out-of-bag observations. Instead, it assigns quantile(Mdl.Y,tau), where tau is the
value of the Quantile name-value pair argument.

Version History
Introduced in R2016b

References

[1] Meinshausen, N. “Quantile Regression Forests.” Journal of Machine Learning Research, Vol. 7,
2006, pp. 983–999.

[2] Breiman, L. “Random Forests.” Machine Learning. Vol. 45, 2001, pp. 5–32.

See Also
predict | quantilePredict | oobQuantileError | TreeBagger

Topics
“Conditional Quantile Estimation Using Kernel Smoothing” on page 19-143
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optimizableVariable
Variable description for bayesopt or other optimizers

Description
Create variables for optimizers.

Creation

Syntax
variable = optimizableVariable(Name,Range)
variable = optimizableVariable(Name,Range,Name,Value)

Description

variable = optimizableVariable(Name,Range) creates a variable with the specified name
and range of values.

variable = optimizableVariable(Name,Range,Name,Value) sets properties on page 35-
5248 using name-value arguments. For example, optimizableVariable('xvar',[1
1000],'Type','integer') creates an integer variable from 1 to 1000. You can specify multiple
name-value arguments. Enclose each property name in quotes.

Properties
Name — Variable name
character vector | string scalar

Variable name, specified as a character vector or string scalar. The name must be unique, meaning
different from those of other variables in the optimization.

Note

• There are two names associated with an optimizableVariable:

• The MATLAB workspace variable name
• The name of the variable in the optimization

For example,

xvar = optimizableVariable('spacevar',[1,100]);

xvar is the MATLAB workspace variable, and 'spacevar' is the variable in the optimization.

Use these names as follows:
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• Use xvar as an element in the vector of variables you pass to bayesopt. For example,

results = bayesopt(fun,[xvar,tvar])
• Use 'spacevar' as the name of the variable in the optimization. For example, in an objective

function,

function objective = mysvmfun(x,cdata,grp)
SVMModel = fitcsvm(cdata,grp,'KernelFunction','rbf',...
    'BoxConstraint',x.spacevar,...
    'KernelScale',x.tvar);
objective = kfoldLoss(crossval(SVMModel));

Example: 'X1'
Data Types: char | string

Range — Variable range
2-element increasing real vector | string array or cell array of names of categorical variables

Variable range, specified as a 2-element finite increasing real vector, or as a string array or cell array
of names of categorical variables:

• For real or integer variables, Range gives the lower bound and upper bound of that variable.
• For categorical variables, Range gives the possible values.

Example: [-10,1]
Example: {'red','blue','black'}
Data Types: double | string | cell

Type — Variable type
'real' (default) | 'integer' | 'categorical'

Variable type, specified as 'real' (real variable), 'integer' (integer variable), or 'categorical'
(categorical variable).

Note The MATLAB data type of both 'real' and 'integer' variables is the standard double-
precision floating point number. The data type of 'categorical' variables is categorical. So, for
example, to read a value of a categorical variable named 'colorv' in a table of variables named x,
use the command char(x.colorv). For an example, see the objective function in “Custom Output
Functions” on page 10-19.

Example: 'Type','categorical'

Transform — Transform applied to variable
'none' (default) | 'log'

Transform applied to the variable, specified as 'none' (no transform) or 'log' (logarithmic
transform).

For 'log', the variable must be a positive real variable ('Type','real') or a nonnegative integer
variable ('Type','integer'). The software searches and models the variable on a log scale.
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Example: 'Transform','log'

Optimize — Indication to use variable in optimization
true (default) | false

Indication to use variable in optimization, specified as true (use the variable) or false (do not use
the variable).
Example: 'Optimize',false
Data Types: logical

Note You can use dot notation to change the following properties after creation.

• Range of real or integer variables. For example,

xvar = optimizableVariable('x',[-10,10]);
% Modify the range:
xvar.Range = [1,5];

• Type between 'integer' and 'real'. For example,

xvar.Type = 'integer';

• Transform of real or integer variables between 'log' and 'none'. For example,

xvar.Transform = 'log';

You can use this flexibility, for example, to tweak an optimization that you want to continue. Update
the range or transform using dot notation and then call resume.

Object Functions
bayesopt Select optimal machine learning hyperparameters using Bayesian optimization

Examples

Variables for Optimization Examples

Real variable from 0 to 1:

var1 = optimizableVariable('xvar',[0 1])

var1 = 
  optimizableVariable with properties:

         Name: 'xvar'
        Range: [0 1]
         Type: 'real'
    Transform: 'none'
     Optimize: 1

Integer variable from 0 to 1000 on a log scale:

var2 = optimizableVariable('ivar',[0 1000],'Type','integer','Transform','log')
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var2 = 
  optimizableVariable with properties:

         Name: 'ivar'
        Range: [0 1000]
         Type: 'integer'
    Transform: 'log'
     Optimize: 1

Categorical variable of rainbow colors:

var3 = optimizableVariable('rvar',{'r' 'o' 'y' 'g' 'b' 'i' 'v'},'Type','categorical')

var3 = 
  optimizableVariable with properties:

         Name: 'rvar'
        Range: {'r'  'o'  'y'  'g'  'b'  'i'  'v'}
         Type: 'categorical'
    Transform: 'none'
     Optimize: 1

Version History
Introduced in R2016b

See Also
BayesianOptimization | bayesopt

Topics
“Optimize Cross-Validated Classifier Using bayesopt” on page 10-46
“Bayesian Optimization Using bayesopt” on page 10-26
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ordinal
(Not Recommended) Arrays for ordinal data

Note The nominal and ordinal array data types are not recommended. To represent ordered and
unordered discrete, nonnumeric data, use the “Categorical Arrays” data type instead.

Description
Ordinal data are discrete, nonnumeric values that have a natural ordering. ordinal array objects
provide efficient storage and convenient manipulation of such data, while also maintaining
meaningful labels for the values.

You can manipulate ordinal arrays like ordinary numeric arrays, by subscripting, concatenating,
and reshaping. Use ordinal arrays as grouping variables when the elements indicate the group to
which an observation belongs.

Creation

Syntax
B = ordinal(X)
B = ordinal(X,labels)
B = ordinal(X,labels,levels)

B = ordinal(X,labels,[],edges)

Description

B = ordinal(X) creates an ordinal array B from the array X. ordinal creates the levels of B from
the sorted unique values in X, and creates default labels for the levels.

B = ordinal(X,labels) labels the levels in B according to labels.

B = ordinal(X,labels,levels) creates an ordinal array with possible levels defined by levels.

B = ordinal(X,labels,[],edges) creates an ordinal array by binning the numeric array X with
bin edges given by the numeric vector edges.

Input Arguments

X — Input array
numeric | logical | character | string | categorical | cell array of character vectors

Input array to convert to ordinal, specified as a numeric, logical, character, string, or categorical
array, or a cell array of character vectors. The levels of the resulting ordinal array correspond to
the sorted unique values in X.
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labels — Labels for discrete levels
character array | string array | cell array of character vectors

Labels for the discrete levels, specified as a character array, string array, or cell array of character
vectors. By default, ordinal assigns labels to the levels in B in order of the sorted unique values in
X.

You can include duplicate labels in labels to merge multiple values in X into a single level in B.
Data Types: char | string | cell

levels — Possible ordinal levels
vector

Possible ordinal levels for the output ordinal array, specified as a vector whose values can be
compared to those in X using the equality operator. ordinal assigns labels to each level from the
corresponding elements of labels. If X contains any values not present in levels, the levels of the
corresponding elements of B are undefined.

edges — Bin edges
numeric vector

Bin edges used to create the ordinal array by binning a numeric array, specified as a numeric vector.
The uppermost bin includes values equal to the rightmost edge. ordinal assigns labels to each level
in the resulting ordinal array from the corresponding elements of labels. When you specify the
edges input argument, it must have one more element than labels.

Output Arguments

B — Ordinal array
ordinal array object

Ordinal array, returned as an ordinal array object.

By default, an element of B is undefined if the corresponding element of X is NaN (when X is numeric),
an empty character vector (when X is a character), an empty or missing string (when X is a string), or
undefined (when X is categorical). ordinal treats such elements as undefined or missing and does
not include entries for them among the possible levels. To create an explicit level for such elements
instead of treating them as undefined, use the levels input argument and include NaN, the empty
character vector, the empty or missing string, or an undefined element.

Object Functions
addlevels (Not Recommended) Add levels to nominal or ordinal arrays
droplevels (Not Recommended) Drop levels from a nominal or ordinal array
getlabels (Not Recommended) Access nominal or ordinal array labels
getlevels (Not Recommended) Access nominal or ordinal array levels
islevel (Not Recommended) Determine if levels are in nominal or ordinal array
levelcounts (Not Recommended) Element counts by level of a nominal or ordinal array
mergelevels (Not Recommended) Merge levels of nominal or ordinal arrays
reorderlevels (Not Recommended) Reorder levels of nominal or ordinal arrays
setlabels (Not Recommended) Assign labels to levels of nominal or ordinal arrays
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The following is a partial list of the many other MATLAB array functions you can use with ordinal
arrays. For a complete list, see “Other MATLAB Functions Supporting Nominal and Ordinal Arrays”
on page 2-2.
double Double-precision arrays
histogram Histogram plot
isequal Determine array equality
isundefined Find undefined elements in categorical array
pie Pie chart
summary Print summary of table, timetable, or categorical array
times Multiplication

Examples

Create and Label Ordinal Arrays

Create an ordinal array from integer data, providing explicit labels.

quality = ordinal([1 2 3 3 2 1 2 1 3],...
   {'low' 'medium' 'high'})

quality = 1x9 ordinal
  Columns 1 through 7

     low      medium      high      high      medium      low      medium 

  Columns 8 through 9

     low      high 

Show that the first element is less than the second element (low is less than medium).

quality(1) < quality(2)

ans = logical
   1

Create an ordinal array by binning values between 0 and 1 into thirds with labels 'small',
'medium', and 'large'.

X = rand(5,2)

X = 5×2

    0.8147    0.0975
    0.9058    0.2785
    0.1270    0.5469
    0.9134    0.9575
    0.6324    0.9649

A = ordinal(X,{'small' 'medium' 'large'},[],[0 1/3 2/3 1])

A = 5x2 ordinal
     large       small  
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     large       small  
     small       medium 
     large       large  
     medium      large  

Create and Manipulate Ordinal Arrays

Create an ordinal array from integer data.

quality = ordinal([1 2 3; 3 2 1; 2 1 3],{'low' 'medium' 'high'})

quality = 3x3 ordinal
     low         medium      high 
     high        medium      low  
     medium      low         high 

Identify the elements in quality that are members of a level greater than or equal to 'medium'. A
value of 1 in the resulting array indicates that the corresponding element of quality is a member of
this level.

quality >= 'medium'

ans = 3x3 logical array

   0   1   1
   1   1   0
   1   0   1

Identify the elements in quality that are members of either the level 'low' or 'high'.

ismember(quality,{'low' 'high'})

ans = 3x3 logical array

   1   0   1
   1   0   1
   0   1   1

Merge the elements of the 'medium' and 'high' levels into a new level labeled 'ok'.

quality = mergelevels(quality,{'medium','high'},'ok')

quality = 3x3 ordinal
     low      ok       ok  
     ok       ok       low 
     ok       low      ok  

Display the levels of quality.

getlevels(quality)

 ordinal

35-5255



ans = 1x2 ordinal
     low      ok 

Summarize the number of elements in each level. By default, summary returns counts for each
column of the input array.

summary(quality)

     low      1      1      1 
     ok       2      2      2 

Version History
Introduced in R2007a

See Also
nominal

Topics
“Create Nominal and Ordinal Arrays” on page 2-3
“Reorder Category Levels” on page 2-9
“Categorize Numeric Data” on page 2-13
“Merge Category Levels” on page 2-16
“Sort Ordinal Arrays” on page 2-35
“Advantages of Using Nominal and Ordinal Arrays” on page 2-39
“Index and Search Using Nominal and Ordinal Arrays” on page 2-42
“Grouping Variables” on page 2-46
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outlierMeasure
Outlier measure for data in ensemble of decision trees

Syntax
out = outlierMeasure(B,X)
out = outlierMeasure(B,X,'param1',val1,'param2',val2,...)

Description
out = outlierMeasure(B,X) computes outlier measures for predictors X using trees in the
ensemble B. The method computes the outlier measure for a given observation by taking an inverse of
the average squared proximity between this observation and other observations. outlierMeasure
then normalizes these outlier measures by subtracting the median of their distribution, taking the
absolute value of this difference, and dividing by the median absolute deviation. A high value of the
outlier measure indicates that this observation is an outlier.

You can supply the proximity matrix directly by using the 'Data' parameter.

out = outlierMeasure(B,X,'param1',val1,'param2',val2,...) specifies optional
parameter name/value pairs:

'Data' Flag indicating how to treat the X input argument. If set to 'predictors'
(default), the method assumes X is a matrix of predictors and uses it for
computation of the proximity matrix. If set to 'proximity', the method
treats X as a proximity matrix returned by the proximity method. If you do
not supply the proximity matrix, outlierMeasure computes it internally. If
you use the proximity method to compute a proximity matrix, supplying it as
input to outlierMeasure reduces computing time.

'Labels' Vector of true class labels. True class labels can be a numeric vector,
character matrix, string array, or cell array of character vectors. When you
supply this parameter, the method performs the outlier calculation for any
observations using only other observations from the same class. This
parameter must specify one label for each observation (row) in X.

See Also
proximity

Topics
“Model-Specific Anomaly Detection” on page 17-107

 outlierMeasure

35-5257



parallelcoords
Parallel coordinates plot

Syntax
parallelcoords(x)
parallelcoords(x,Name,Value)

parallelcoords(ax, ___ )

h = parallelcoords( ___ )

Description
parallelcoords(x) creates a parallel coordinates plot of the multivariate data in the matrix x. Use
a parallel coordinates plot to visualize high dimensional data, where each observation is represented
by the sequence of its coordinate values plotted against their coordinate indices.

parallelcoords(x,Name,Value) creates a parallel coordinates plot with additional options
specified by one or more Name,Value pair arguments. For example, you can standardize the data in
x or label the coordinate tick marks along the horizontal axis of the plot.

parallelcoords(ax, ___ ) creates a parallel coordinates plot using the axes specified by the axes
graphic object ax, using any of the previous syntaxes.

h = parallelcoords( ___ ) returns a column vector of handles to the Line objects created by
parallelcoords, with one handle for each row of x.

Examples

Parallel Coordinates Plot for Grouped Data

Load the Fisher iris sample data.

load fisheriris

The data contains four measurements (sepal length, sepal width, petal length, and petal width) from
three species of iris flowers. The matrix meas contains all four measurements for each of 150 flowers.
The cell array species contains the species name for each of the 150 flowers.

Create a cell array that contains the name of each measurement variable in the sample data.

labels = {'Sepal Length','Sepal Width','Petal Length','Petal Width'};

Create a parallel coordinate plot using the measurement data in meas. Use a different color for each
group as identified in species, and label the horizontal axis using the variable names.

parallelcoords(meas,'Group',species,'Labels',labels)
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The resulting plot contains one line for each observation (flower). The color of each line indicates the
flower species.

Parallel Coordinates Plot with Quantile Values

Load the Fisher iris sample data.

load fisheriris

The data contains four measurements (sepal length, sepal width, petal length, and petal width) from
three species of iris flowers. The matrix meas contains all four measurements for each of 150 flowers.
The cell array species contains the species name for each of the 150 flowers.

Create a cell array that contains the name of each measurement variable in the sample data.

labels = {'Sepal Length','Sepal Width','Petal Length','Petal Width'};

Create a parallel coordinates plot using the measurement data in meas. Plot only the median, 25
percent, and 75 percent quartile values for each group identified in species. Label the horizontal
axis using the variable names.

parallelcoords(meas,'group',species,'labels',labels,... 
               'quantile',.25)
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The plot shows the median values for each group as a solid line and the quartile values as dotted lines
of the same color. For example, the solid blue line shows the median value measured for each variable
on setosa irises. The dotted blue line below the solid blue line shows the 25th percentile of
measurements for each variable on setosa irises. The dotted blue line above the solid blue line
shows the 75th percentile of measurements for each variable on setosa irises.

Adjust Line Properties in Parallel Coordinates Plot

Load the Fisher iris sample data.

load fisheriris

The data contains four measurements (sepal length, sepal width, petal length, and petal width) from
three species of iris flowers. The matrix meas contains all four measurements for each of 150 flowers.
The cell array species contains the species name for each of the 150 flowers.

Create a cell array that contains the name of each measurement variable in the sample data.

labels = {'Sepal Length','Sepal Width','Petal Length','Petal Width'};

Create a parallel coordinates plot using the measurement data in meas. Plot only the median, 25
percent, and 75 percent quartile values for each group identified in species. Label the horizontal
axis using the variable names. Set the line width to 2.
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parallelcoords(meas,'group',species,'labels',labels,... 
               'quantile',.25,'LineWidth',2)

Specifying 'LineWidth' in this way sets the width of every line in the plot to 2.

Recreate the parallel coordinates plot, but this time, use handles to increase the width of only the line
representing the median value for each measurement made on irises in the setosa group.

h = parallelcoords(meas,'group',species,'labels',labels,... 
               'quantile',.25)
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h = 
  9x1 Line array:

  Line    (median)
  Line    (lower quantile)
  Line    (upper quantile)
  Line    (median)
  Line    (lower quantile)
  Line    (upper quantile)
  Line    (median)
  Line    (lower quantile)
  Line    (upper quantile)

The returned column vector h contains handles that correspond to each line object created by
parallelcoords. For example, h(1) corresponds to the median line for the first grouping variable
(setosa).

Use dot notation to increase the width of the line showing the median value for each measurement
made on irises in the setosa group.

h(1).LineWidth = 2;
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Input Arguments
x — Multivariate input data
numeric matrix

Multivariate input data, specified as an n-by-p matrix of numeric values. n is the number of rows of x,
and each row corresponds to an observation in x. p is the number of columns in x, and each column
corresponds to a variable in x.

parallelcoords treats NaN values in x as missing values and does not plot those coordinate values.
Data Types: single | double

ax — Axes for plot
axes graphic object

Axes for plot, specified as an axes graphic object. If you do not specify ax, then parallelcoords
creates the plot using the current axis. For more information on creating an axes graphic object, see
axes and Axes.

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.
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Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: 'Group',species,'Quantile',.25 plots the median, 25 percent, and 75 percent
quartile values for the input data, using a different color for each group identified in the variable
species.

Group — Grouping variable for input data
numeric array | categorical variable | character matrix | string array | cell array

Grouping variable for input data, specified as the comma-separated pair consisting of 'Group' and a
numeric array containing a group index for each observation. Alternatively, the array can be a
categorical variable, character matrix, string array, or cell array containing a group name for each
observation.
Data Types: single | double | categorical | char | string | cell

Labels — Horizontal axis labels
character array | string array | cell array

Horizontal axis labels, specified as the comma-separated pair consisting of 'Labels' and a character
array, string array, or cell array containing the label names.
Example: 'Labels',{'Sepal Width','Sepal Length'}
Data Types: char | string | cell

Quantile — Quantiles of input data to plot
numeric value in the range (0,1)

Quantiles of input data to plot, specified as the comma-separated pair consisting of 'Quantile' and
a numeric value in the range (0,1). If you specify a value alpha for 'Quantile', then
parallelcoords plots only the median, alpha, and 1 – alpha quantiles for each of the variables
(columns) in x.

The quantile plot option provides a useful summary of the data when x contains many observations.
Example: 'Quantile',.25
Data Types: single | double

Standardize — Method to standardize input data
'on' | 'PCA' | 'PCAStd'

Method to standardize input data, specified as the comma-separated pair consisting of
'Standardize' and one of the following.

'on' Scale each column of x to have a mean equal to 0 and a standard
deviation equal to 1 before plotting.

'PCA' Create plot from the principal component scores of x, in order of
decreasing eigenvalues. parallelcoords removes rows of x
containing missing values (NaN) for PCA standardization.

'PCAStd' Create plot using the standardized principal component scores.

Example: 'Standardize','on'
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Tips

• You can modify certain aspects of the plot lines by specifying a property name and value for any of
the properties listed in Primitive Line. However, this approach applies the modification to all the
lines in the plot. To modify only certain plot lines, use the syntax that returns graphics handles
and use dot notation to adjust each line property individually. For an illustration, see “Adjust Line
Properties in Parallel Coordinates Plot” on page 35-5260.

Output Arguments
h — Graphic handles for line objects
vector of Line graphic handles

Graphic handles for line objects, returned as a vector of Line graphic handles. Graphic handles are
unique identifiers that you can use to query and modify the properties of a specific line on the plot. To
view and set properties of line objects, use dot notation. For information on using dot notation,
see“Access Property Values”. For information on the Line properties that you can set, see Primitive
Line.

If you use the 'Quantile' name-value pair argument, then h contains one handle for each of the
three lines objects created. If you use both the 'Quantile' and the 'Group' name-value pair
arguments, then h contains three handles for each group.

Alternative Functionality
Alternatively, you can create a ParallelCoordinatesPlot object by using the parallelplot
function.

• Unlike the parallelcoords function, parallelplot allows you to plot tabular data that
includes categorical variables.

• parallelplot does not support the plotting of quantiles for numeric data. However, the
ParallelCoordinatesPlot object contains the DataNormalization property, which provides
several data normalization methods for coordinates with numeric values.

To control the appearance and behavior of the object, change the ParallelCoordinatesPlot.

Version History
Introduced before R2006a

See Also
andrewsplot | glyphplot | parallelplot

Topics
“Grouping Variables” on page 2-46
“Access Property Values”
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paramci
Package: prob

Confidence intervals for probability distribution parameters

Syntax
ci = paramci(pd)
ci = paramci(pd,Name,Value)

Description
ci = paramci(pd) returns the array ci containing the lower and upper boundaries of the 95%
confidence interval for each parameter in probability distribution pd.

ci = paramci(pd,Name,Value) returns confidence intervals with additional options specified by
one or more name-value pair arguments. For example, you can specify a different percentage for the
confidence interval, or compute confidence intervals only for selected parameters.

Examples

Parameter Confidence Intervals

Load the sample data. Create a vector containing the first column of students’ exam grade data.

load examgrades
x = grades(:,1);

Fit a normal distribution object to the data.

pd = fitdist(x,'Normal')

pd = 
  NormalDistribution

  Normal distribution
       mu = 75.0083   [73.4321, 76.5846]
    sigma =  8.7202   [7.7391, 9.98843]

The intervals next to the parameter estimates are the 95% confidence intervals for the distribution
parameters.

You can also obtain these intervals by using the function paramci.

ci = paramci(pd)

ci = 2×2

   73.4321    7.7391
   76.5846    9.9884
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Column 1 of ci contains the lower and upper 95% confidence interval boundaries for the mu
parameter, and column 2 contains the boundaries for the sigma parameter.

Change Parameter Confidence Intervals

Load the sample data. Create a vector containing the first column of students’ exam grade data.

load examgrades
x = grades(:,1);

Fit a normal distribution object to the data.

pd = fitdist(x,'Normal')

pd = 
  NormalDistribution

  Normal distribution
       mu = 75.0083   [73.4321, 76.5846]
    sigma =  8.7202   [7.7391, 9.98843]

Compute the 99% confidence interval for the distribution parameters.

ci = paramci(pd,'Alpha',.01)

ci = 2×2

   72.9245    7.4627
   77.0922   10.4403

Column 1 of ci contains the lower and upper 99% confidence interval boundaries for the mu
parameter, and column 2 contains the boundaries for the sigma parameter.

Input Arguments
pd — Probability distribution
probability distribution object

Probability distribution, specified as one of the probability distribution objects in the following table.

Distribution Object Function or App Used to Create Probability
Distribution Object

BetaDistribution makedist, fitdist, Distribution Fitter
BinomialDistribution makedist, fitdist, Distribution Fitter
BirnbaumSaundersDistribution makedist, fitdist, Distribution Fitter
BurrDistribution makedist, fitdist, Distribution Fitter
ExponentialDistribution makedist, fitdist, Distribution Fitter
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Distribution Object Function or App Used to Create Probability
Distribution Object

ExtremeValueDistribution makedist, fitdist, Distribution Fitter
GammaDistribution makedist, fitdist, Distribution Fitter
GeneralizedExtremeValueDistribution makedist, fitdist, Distribution Fitter
GeneralizedParetoDistribution makedist, fitdist, Distribution Fitter
HalfNormalDistribution makedist, fitdist, Distribution Fitter
InverseGaussianDistribution makedist, fitdist, Distribution Fitter
KernelDistribution fitdist, Distribution Fitter
LogisticDistribution makedist, fitdist, Distribution Fitter
LoglogisticDistribution makedist, fitdist, Distribution Fitter
LognormalDistribution makedist, fitdist, Distribution Fitter
LoguniformDistribution makedist
MultinomialDistribution makedist
NakagamiDistribution makedist, fitdist, Distribution Fitter
NegativeBinomialDistribution makedist, fitdist, Distribution Fitter
NormalDistribution makedist, fitdist, Distribution Fitter
PiecewiseLinearDistribution makedist
PoissonDistribution makedist, fitdist, Distribution Fitter
RayleighDistribution makedist, fitdist, Distribution Fitter
RicianDistribution makedist, fitdist, Distribution Fitter
StableDistribution makedist, fitdist, Distribution Fitter
tLocationScaleDistribution makedist, fitdist, Distribution Fitter
TriangularDistribution makedist
UniformDistribution makedist
WeibullDistribution makedist, fitdist, Distribution Fitter

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: 'Alpha',0.01 specifies a 99% confidence interval.

Alpha — Significance level
0.05 (default) | scalar value in the range (0,1)

Significance level for the confidence interval, specified as the comma-separated pair consisting of
'Alpha' and a scalar value in the range (0,1). The confidence level of ci is 100(1–Alpha)%. The
default value 0.05 corresponds to a 95% confidence interval.
Example: 'Alpha',0.01
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Data Types: single | double

Parameter — Parameter list
character vector | string array | cell array of character vectors

Parameter list for which to compute confidence intervals, specified as the comma-separated pair
consisting of 'Parameter' and a character vector, string array, or cell array of character vectors
containing the parameter names. By default, paramci computes confidence intervals for all
distribution parameters.
Example: 'Parameter','mu'
Data Types: char | string | cell

Type — Computation method
'exact' | 'Wald' | 'lr'

Computation method for the confidence intervals, specified as the comma-separated pair consisting of
'Type' and 'exact', 'Wald', or 'lr'.

'exact' computes the confidence intervals using an exact method, and is available for the following
distributions.

Distribution Computation Method
Binomial Compute using the Clopper-Pearson method

based on exact probability calculations. This
method does not provide exact coverage
probabilities.

Exponential Compute using a method based on a chi-square
distribution. This method provides exact coverage
for complete and Type 2 censored samples.

Normal Computation method based on t and chi-square
distributions for uncensored samples provides
exact coverage for uncensored samples. For
censored samples, paramci uses the Wald
method if Type is exact.

Lognormal Computation method based on t and chi-square
distributions for uncensored samples provides
exact coverage. For censored samples, paramci
uses the Wald method if Type is exact.

Poisson Computation method based on a chi-square
distribution provides exact coverage. For large
degrees of freedom, the chi-square is
approximated by a normal distribution for
numerical efficiency.

Rayleigh Computation method based on a chi-square
distribution provides exact coverage
probabilities.

Alternatively, you can specify 'Wald' to compute the confidence intervals using the Wald method, or
'lr' to compute the confidence intervals using the likelihood ratio method.
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'exact' is the default when it is available. Otherwise, the default is 'Wald'.
Example: 'Type','Wald'

LogFlag — Boolean flag for log scale
vector

Boolean flag for the log scale, specified as the comma-separated pair consisting of 'LogFlag' and a
vector containing Boolean values corresponding to each distribution parameter. The flag specifies
which Wald intervals to compute on a log scale. The default values depend on the distribution.
Example: 'LogFlag',[0,1]
Data Types: logical

Output Arguments
ci — Confidence interval
array

Confidence interval, returned as a p-by-2 array containing the lower and upper bounds of the 100(1–
Alpha)% confidence interval for each distribution parameter. p is the number of distribution
parameters.

If you create pd by using makedist and specifying the distribution parameters, the lower and upper
bounds are equal to the specified parameters.

Version History
Introduced in R2013a

Extended Capabilities
GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

This function fully supports GPU arrays. For more information, see “Run MATLAB Functions on a
GPU” (Parallel Computing Toolbox).

See Also
mle | negloglik | proflik | makedist | fitdist | Distribution Fitter

Topics
“Working with Probability Distributions” on page 5-3
“Supported Distributions” on page 5-16
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paretotails
Piecewise distribution with Pareto tails

Description
A paretotails object is a piecewise distribution with generalized Pareto distributions (GPDs) in the
tails.

A paretotails object consists of one or two GPDs in the tails and another distribution in the center.
You can specify the distribution type for the center by using the cdffun argument of paretotails
when you create an object. Valid values are 'ecdf', 'kernel', and a function handle.

paretotails fits a distribution of type cdffun to the observations (x) and finds the quantiles
corresponding to the lower and upper tail cumulative probabilities (pl and pu, respectively). Then,
paretotails fits two GPDs to the lower 100*pl percent of the observations and the upper
100*(1–pu) percent of the observations, respectively. If x does not have at least two distinct
observations in a tail, then paretotails does not create the corresponding tail segment.

Use the object functions boundary, segment, upperparams, and lowerparams to find distribution
characteristics. lowerparams and upperparams return the parameters of the GPDs in the tails.
boundary returns the boundary points between piecewise distribution segments, segment returns
the segment of a piecewise distribution containing input values, and nsegments returns the number
of segments in an object.

Use the object functions cdf, icdf, pdf, and random to evaluate the distribution. These functions
are well suited to copula and other Monte Carlo simulations. pdf returns the GPD density in the tails
and the slope of the cumulative distribution function (cdf) in the center. These probability density
function (pdf) values in the center are generally not good estimates of the underlying density of the
original data.

Creation
Create a piecewise distribution object using paretotails.

Syntax
pd = paretotails(x,pl,pu)
pd = paretotails(x,pl,pu,cdffun)

Description

pd = paretotails(x,pl,pu) returns the piecewise distribution object pd, which consists of the
empirical distribution in the center and generalized Pareto distributions in the tails. Specify the
boundaries of the tails using the lower and upper tail cumulative probabilities pl and pu,
respectively.

pd = paretotails(x,pl,pu,cdffun) specifies the type of center distribution segment using
cdffun.
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Input Arguments

x — Input data
numeric vector

Input data, specified as a numeric vector.
Data Types: double

pl — Lower tail cumulative probability
numeric scalar in the range [0,1]

Lower tail cumulative probability, specified as a numeric scalar in the range [0,1]. The quantile of
pl is the boundary of the lower tail observations.

If pl is 0 or x does not have at least two distinct observations in the lower tail, then paretotails
divides the input data in x into two groups, center and upper tail. In this case, the fitted piecewise
distribution object pd consists of two segments: the empirical distribution in the center and GPD in
the upper tail.
Example: 0.1
Data Types: single | double

pu — Upper tail cumulative probability
numeric scalar in the range [0,1]

Upper tail cumulative probability, specified as a numeric scalar in the range [0,1]. The quantile of
pu is the boundary of the upper tail observations.

If pu is 1 or x does not have at least two distinct observations in the upper tail, then paretotails
divides the input data in x into two groups, center and lower tail. In this case, the fitted piecewise
distribution object pd consists of two segments: the empirical distribution in the center and GPD in
the lower tail.
Example: 0.9
Data Types: single | double

cdffun — Type of center distribution segment
'ecdf' (default) | 'kernel' | function handle

Type of center distribution segment, specified as 'ecdf', 'kernel', or a function handle.

Value Description
'ecdf' Interpolated empirical cdf.

paretotails uses values in x as the midpoints in the vertical steps of the
empirical cdf, and computes the estimates for the points between the
values in x by linear interpolation. For details about how to find the
interpolated empirical cdf, see A Piecewise Linear Nonparametric CDF
Estimate on page 5-192.
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Value Description
'kernel' Interpolated kernel smoothing estimate of the cdf.

paretotails uses the ksdensity function to find cdf estimates for 100
points in the range of x, and uses linear interpolation to compute the
estimates for the points between the 100 points.

'kernel' is equivalent to specifying a function handle fun =
@(x)ksdensity(x,'function','cdf');.

function handle Interpolated estimates using a specified function.

paretotails uses a handle to a function of the form [p,xi] = fun(x)
that accepts the input data vector x and returns a vector p of cdf values
and a vector xi of evaluation points. Values in xi must be sorted and
distinct but do not have to equal the values in x. The paretotails
function computes the cdf estimates for the points between the values in
xi by linear interpolation.

paretotails uses cdffun to compute the quantiles corresponding to pl and pu.
Example: 'kernel'

Properties
NumSegments — Number of segments
3 | 2 | 1

This property is read-only.

Number of segments, including the center segment and tail segments in a paretotail object,
specified as a scalar. NumSegments is 3, 2, or 1 if the number of the tail segments in the object is 2,
1, or 0, respectively.
Data Types: double

LowerParameters — Lower tail GPD parameters
numeric vector

This property is read-only.

Lower tail GPD parameters, fit to the lower extreme observations in x, specified as a numeric vector.
The first value is the shape parameter and the second value is the scale parameter of the GPD.

The location parameter of the lower tail GPD is equal to the quantile of pl. Use the boundary
function to return the location parameter. For example, run [p,q] = boundary(pd), where pd is a
paretotails object. q(1) is the location parameter.
Data Types: single | double

UpperParameters — Upper tail GPD parameters
numeric vector

This property is read-only.
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Upper tail GPD parameters, fit to the upper extreme observations in x, specified as a numeric vector.
The first value is the shape parameter and the second value is the scale parameter of the GPD.

The location parameter of the upper tail GPD is equal to the quantile of pu. Use the boundary
function to return the location parameter. For example, run [p,q] = boundary(pd), where pd is a
paretotails object. q(2) is the location parameter.
Data Types: single | double

Object Functions
boundary Piecewise distribution boundaries
cdf Cumulative distribution function
icdf Inverse cumulative distribution function
lowerparams Lower Pareto tail parameters
nsegments Number of segments in piecewise distribution
pdf Probability density function
random Random numbers
segment Piecewise distribution segments containing input values
upperparams Upper Pareto tail parameters

Examples

Create paretotails with Empirical Distribution

Generate a sample data set and fit a piecewise distribution with Pareto tails to the data. Specify an
empirical distribution for the center by using paretotails with its default settings.

Generate a sample data set containing 100 random numbers from a t distribution with 3 degrees of
freedom.

rng('default');  % For reproducibility
t = trnd(3,100,1);

Create a paretotails object by fitting a piecewise distribution to t. Specify the boundaries of the
tails using the lower and upper tail cumulative probabilities so that a fitted object consists of the
empirical distribution for the middle 80% of the data set and GPDs for the lower and upper 10% of
the data set.

pd = paretotails(t,0.1,0.9)

pd = 
Piecewise distribution with 3 segments
      -Inf < x < -1.84875    (0 < p < 0.1): lower tail, GPD(0.183032,1.00347)
   -1.84875 < x < 2.07662  (0.1 < p < 0.9): interpolated empirical cdf
        2.07662 < x < Inf    (0.9 < p < 1): upper tail, GPD(0.333239,1.19705)

Each line of the object display shows the summary of each segment, including the GPD parameters
(shape and scale parameters) and the boundary values in the quantiles and cumulative probabilities.
Use the object functions boundary, lowerparams, and upperparams to return these values.

You can use the nsegments function to return the number of segments and the segment function to
return the segment that contains input values.
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You can also use the distribution functions cdf, icdf, pdf, and random to evaluate the distribution
and generate random samples.

Plot the cdf of the t distribution and the cdf of the paretotails object on the same figure.

x = linspace(-5,5);
plot(x,tcdf(x,3),'r--')
hold on
plot(x,cdf(pd,x),'b-')

Find the boundary points between the segments of the paretotails object by using boundary, and
mark the points on the figure.

[p,q] = boundary(pd);
plot(q,p,'bo')
legend('t Distribution','Pareto Tails Object','Boundary Points','Location','best')
hold off

Create paretotails with Function Handle

Generate a sample data set and fit a piecewise distribution with Pareto tails to the data. Fit a center
segment by using paretotails with a function handle.

Generate a sample data set containing 20% outliers.
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rng('default');  % For reproducibility
left_tail = -exprnd(1,100,1);
right_tail = exprnd(5,100,1);
center = randn(800,1);
x = [left_tail;center;right_tail];

Define a function handle using ksdensity to specify a nondefault value of the bandwidth.

myfun1 = @(x)ksdensity(x,'Bandwidth',.1,'Function','cdf');

Create a paretotails object by fitting a piecewise distribution with the specified kernel smoothing
estimator to x. Specify the boundaries of the tails using the lower and upper tail cumulative
probabilities so that a fitted object consists of the kernel estimator for the middle 80% of the data set
and GPDs for the lower and upper 10% of the data set.

pd1 = paretotails(x,0.1,0.9,myfun1)

pd1 = 
Piecewise distribution with 3 segments
      -Inf < x < -1.35204    (0 < p < 0.1): lower tail, GPD(0.0104112,0.54947)
   -1.35204 < x < 1.80824  (0.1 < p < 0.9): function: @(x)ksdensity(x,'Bandwidth',.1,'Function','cdf')
        1.80824 < x < Inf    (0.9 < p < 1): upper tail, GPD(0.227542,3.10586)

You can also use a parametric distribution for the center segment. Define a function that fits a normal
distribution to data and returns the cdf values, and pass the function handle when you create a
paretotails object.

pd2 = paretotails(x,0.1,0.9,@myfun2)

pd2 = 
Piecewise distribution with 3 segments
      -Inf < x < -2.70875    (0 < p < 0.1): lower tail, GPD(-0.358104,0.831855)
   -2.70875 < x < 3.52195  (0.1 < p < 0.9): function: myfun2
        3.52195 < x < Inf    (0.9 < p < 1): upper tail, GPD(-0.0661815,5.04694)

function [p,xi] = myfun2(x)
    pd = fitdist(x,'Normal');
    xi = linspace(min(x),max(x),length(x)*2);
    p = cdf(pd,xi);
end

Version History
Introduced in R2007a

See Also
ecdf | gpfit | ksdensity

Topics
“Fit a Nonparametric Distribution with Pareto Tails” on page 5-44
“Nonparametric and Empirical Probability Distributions” on page 5-31
“Nonparametric Estimates of Cumulative Distribution Functions and Their Inverses” on page 5-192
“Generalized Pareto Distribution” on page B-60
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partialcorr
Linear or rank partial correlation coefficients

Syntax
rho = partialcorr(x)
rho = partialcorr(x,z)
rho = partialcorr(x,y,z)
rho = partialcorr( ___ ,Name,Value)
[rho,pval] = partialcorr( ___ )

Description
rho = partialcorr(x) returns the sample linear partial correlation coefficients between pairs of
variables in x, controlling for the remaining variables in x.

rho = partialcorr(x,z) returns the sample linear partial correlation coefficients between pairs
of variables in x, controlling for the variables in z.

rho = partialcorr(x,y,z) returns the sample linear partial correlation coefficients between
pairs of variables in x and y, controlling for the variables in z.

rho = partialcorr( ___ ,Name,Value) returns the sample linear partial correlation coefficients
with additional options specified by one or more name-value pair arguments, using input arguments
from any of the previous syntaxes. For example, you can specify whether to use Pearson or Spearman
partial correlations, or specify how to treat missing values.

[rho,pval] = partialcorr( ___ ) also returns a matrix pval of p-values for testing the
hypothesis of no partial correlation against the one- or two-sided alternative that there is a nonzero
partial correlation.

Examples

Compute Partial Correlation Coefficients

Compute partial correlation coefficients between pairs of variables in the input matrix.

Load the sample data. Convert the genders in hospital.Sex to numeric group identifiers.

load hospital;
hospital.SexID = grp2idx(hospital.Sex);

Create an input matrix containing the sample data.

x = [hospital.SexID hospital.Age hospital.Smoker hospital.Weight];

Each row in x contains a patient’s gender, age, smoking status, and weight.

Compute partial correlation coefficients between pairs of variables in x, while controlling for the
effects of the remaining variables in x.
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rho = partialcorr(x)

rho = 4×4

    1.0000   -0.0105    0.0273    0.9421
   -0.0105    1.0000    0.0419    0.0369
    0.0273    0.0419    1.0000    0.0451
    0.9421    0.0369    0.0451    1.0000

The matrix rho indicates, for example, a correlation of 0.9421 between gender and weight after
controlling for all other variables in x. You can return the p-values as a second output, and examine
them to confirm whether these correlations are statistically significant.

For a clearer display, create a table with appropriate variable and row labels.

rho = array2table(rho, ...
    'VariableNames',{'SexID','Age','Smoker','Weight'},...
    'RowNames',{'SexID','Age','Smoker','Weight'});

disp('Partial Correlation Coefficients')

Partial Correlation Coefficients

disp(rho)

               SexID        Age        Smoker      Weight 
              ________    ________    ________    ________

    SexID            1    -0.01052    0.027324      0.9421
    Age       -0.01052           1    0.041945    0.036873
    Smoker    0.027324    0.041945           1    0.045106
    Weight      0.9421    0.036873    0.045106           1

Test for Partial Correlations with Controlled Variables

Test for partial correlation between pairs of variables in the input matrix, while controlling for the
effects of a second set of variables.

Load the sample data. Convert the genders in hospital.Sex to numeric group identifiers.

load hospital;
hospital.SexID = grp2idx(hospital.Sex);

Create two matrices containing the sample data.

x = [hospital.Age hospital.BloodPressure];
z = [hospital.SexID hospital.Smoker hospital.Weight];

The x matrix contains the variables to test for partial correlation. The z matrix contains the variables
to control for. The measurements for BloodPressure are contained in two columns: The first column
contains the upper (systolic) number, and the second column contains the lower (diastolic) number.
partialcorr treats each column as a separate variable.

Test for partial correlation between pairs of variables in x, while controlling for the effects of the
variables in z. Compute the correlation coefficients.
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[rho,pval] = partialcorr(x,z)

rho = 3×3

    1.0000    0.1300    0.0462
    0.1300    1.0000    0.0012
    0.0462    0.0012    1.0000

pval = 3×3

         0    0.2044    0.6532
    0.2044         0    0.9903
    0.6532    0.9903         0

The large values in pval indicate that there is no significant correlation between age and either
blood pressure measurement after controlling for gender, smoking status, and weight.

For a clearer display, create tables with appropriate variable and row labels.

rho = array2table(rho, ...
    'VariableNames',{'Age','BPTop','BPBottom'},...
    'RowNames',{'Age','BPTop','BPBottom'});

pval = array2table(pval, ...
    'VariableNames',{'Age','BPTop','BPBottom'},...
    'RowNames',{'Age','BPTop','BPBottom'});

disp('Partial Correlation Coefficients')

Partial Correlation Coefficients

disp(rho)

                  Age         BPTop      BPBottom 
                ________    _________    _________

    Age                1         0.13     0.046202
    BPTop           0.13            1    0.0012475
    BPBottom    0.046202    0.0012475            1

disp('p-values')

p-values

disp(pval)

                  Age       BPTop     BPBottom
                _______    _______    ________

    Age               0    0.20438    0.65316 
    BPTop       0.20438          0    0.99032 
    BPBottom    0.65316    0.99032          0 
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Test for Paired Partial Correlation Coefficients

Test for partial correlation between pairs of variables in the x and y input matrices, while controlling
for the effects of a third set of variables.

Load the sample data. Convert the genders in hospital.Sex to numeric group identifiers.

load hospital;
hospital.SexID = grp2idx(hospital.Sex);

Create three matrices containing the sample data.

x = [hospital.BloodPressure];
y = [hospital.Weight hospital.Age];
z = [hospital.SexID hospital.Smoker];

partialcorr can test for partial correlation between the pairs of variables in x (the systolic and
diastolic blood pressure measurements) and y (weight and age), while controlling for the variables in
z (gender and smoking status). The measurements for BloodPressure are contained in two
columns: The first column contains the upper (systolic) number, and the second column contains the
lower (diastolic) number. partialcorr treats each column as a separate variable.

Test for partial correlation between pairs of variables in x and y, while controlling for the effects of
the variables in z. Compute the correlation coefficients.

[rho,pval] = partialcorr(x,y,z)

rho = 2×2

   -0.0257    0.1289
    0.0292    0.0472

pval = 2×2

    0.8018    0.2058
    0.7756    0.6442

The results in pval indicate that, after controlling for gender and smoking status, there is no
significant correlation between either of a patient’s blood pressure measurements and that patient’s
weight or age.

For a clearer display, create tables with appropriate variable and row labels.

rho = array2table(rho, ...
    'RowNames',{'BPTop','BPBottom'},...
    'VariableNames',{'Weight','Age'});

pval = array2table(pval, ...
    'RowNames',{'BPTop','BPBottom'},...
    'VariableNames',{'Weight','Age'});

disp('Partial Correlation Coefficients')

Partial Correlation Coefficients

disp(rho)
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                 Weight       Age   
                ________    ________

    BPTop       -0.02568     0.12893
    BPBottom    0.029168    0.047226

disp('p-values')

p-values

disp(pval)

                Weight       Age  
                _______    _______

    BPTop       0.80182     0.2058
    BPBottom    0.77556    0.64424

One-Tailed Partial Correlation Test

Test the hypothesis that pairs of variables have no correlation, against the alternative hypothesis that
the correlation is greater than 0.

Load the sample data. Convert the genders in hospital.Sex to numeric group identifiers.

load hospital;
hospital.SexID = grp2idx(hospital.Sex);

Create three matrices containing the sample data.

x = [hospital.BloodPressure];
y = [hospital.Weight hospital.Age];
z = [hospital.SexID hospital.Smoker];

partialcorr can test for partial correlation between the pairs of variables in x (the systolic and
diastolic blood pressure measurements) and y (weight and age), while controlling for the variables in
z (gender and smoking status). The measurements for BloodPressure are contained in two
columns: The first column contains the upper (systolic) number, and the second column contains the
lower (diastolic) number. partialcorr treats each column as a separate variable.

Compute the correlation coefficients using a right-tailed test.

[rho,pval] = partialcorr(x,y,z,'Tail','right')

rho = 2×2

   -0.0257    0.1289
    0.0292    0.0472

pval = 2×2

    0.5991    0.1029
    0.3878    0.3221
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The results in pval indicate that partialcorr does not reject the null hypothesis of nonzero
correlations between the variables in x and y, after controlling for the variables in z, when the
alternative hypothesis is that the correlations are greater than 0.

For a clearer display, create tables with appropriate variable and row labels.

rho = array2table(rho, ...
    'RowNames',{'BPTop','BPBottom'},...
    'VariableNames',{'Weight','Age'});

pval = array2table(pval, ...
    'RowNames',{'BPTop','BPBottom'},...
    'VariableNames',{'Weight','Age'});

disp('Partial Correlation Coefficients')

Partial Correlation Coefficients

disp(rho)

                 Weight       Age   
                ________    ________

    BPTop       -0.02568     0.12893
    BPBottom    0.029168    0.047226

disp('p-values')

p-values

disp(pval)

                Weight       Age  
                _______    _______

    BPTop       0.59909     0.1029
    BPBottom    0.38778    0.32212

Input Arguments
x — Data matrix
matrix

Data matrix, specified as an n-by-px matrix. The rows of x correspond to observations, and the
columns correspond to variables.
Data Types: single | double

y — Data matrix
matrix

Data matrix, specified as an n-by-py matrix. The rows of y correspond to observations, and the
columns correspond to variables.
Data Types: single | double

z — Data matrix
matrix
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Data matrix, specified as an n-by-pz matrix. The rows of z correspond to observations, and columns
correspond to variables.
Data Types: single | double

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: 'Type','Spearman','Rows','complete' computes Spearman partial correlations
using only the data in rows that contain no missing values.

Type — Type of partial correlations
'Pearson' (default) | 'Spearman'

Type of partial correlations to compute, specified as the comma-separated pair consisting of 'Type'
and one of the following.

'Pearson' Compute Pearson (linear) partial correlations.
'Spearman' Compute Spearman (rank) partial correlations.

Example: 'Type','Spearman'

Rows — Rows to use in computation
'all' (default) | 'complete' | 'pairwise'

Rows to use in computation, specified as the comma-separated pair consisting of 'Rows' and one of
the following.

'all' Use all rows of the input regardless of missing values (NaNs).
'complete' Use only rows of the input with no missing values.
'pairwise' Compute rho(i,j) using rows with no missing values in column i or j.

Example: 'Rows','complete'

Tail — Alternative hypothesis
'both' (default) | 'right' | 'left'

Alternative hypothesis to test against, specified as the comma-separated pair consisting of 'Tail'
and one of the following.

'both' Test the alternative hypothesis that the correlation is not 0.
'right' Test the alternative hypothesis that the correlation is greater than 0.
'left' Test the alternative hypothesis that the correlation is less than 0.

Example: 'Tail','right'
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Output Arguments
rho — Sample linear partial correlation coefficients
matrix

Sample linear partial correlation coefficients, returned as a matrix.

• If you input only an x matrix, rho is a symmetric px-by-px matrix. The (i,j)th entry is the sample
linear partial correlation between the i-th and j-th columns in x.

• If you input x and z matrices, rho is a symmetric px-by-px matrix. The (i,j)th entry is the sample
linear partial correlation between the ith and jth columns in x, controlled for the variables in z.

• If you input x, y, and z matrices, rho is a px-by-py matrix, where the (i,j)th entry is the sample
linear partial correlation between the ith column in x and the jth column in y, controlled for the
variables in z.

If the covariance matrix of [x,z] is

S =
Sxx Sxz
SxzT Szz

,

then the partial correlation matrix of x, controlling for z, can be defined formally as a normalized
version of the covariance matrix: Sxx – (SxzSzz

–1Sxz
T).

pval — p-values
matrix

p-values, returned as a matrix. Each element of pval is the p-value for the corresponding element of
rho.

If pval(i,j) is small, then the corresponding partial correlation rho(i,j) is statistically
significantly different from 0.

partialcorr computes p-values for linear and rank partial correlations using a Student's t
distribution for a transformation of the correlation. This is exact for linear partial correlation when x
and z are normal, but is a large-sample approximation otherwise.

Version History
Introduced before R2006a

References
[1] Stuart, Alan, K. Ord, and S. Arnold. Kendall's Advanced Theory of Statistics. 6th edition, Volume

2A, Chapter 28, Wiley, 2004.

[2] Fisher, Ronald A. "The Distribution of the Partial Correlation Coefficient." Metron 3 (1924):
329-332
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Extended Capabilities
Thread-Based Environment
Run code in the background using MATLAB® backgroundPool or accelerate code with Parallel
Computing Toolbox™ ThreadPool.

This function fully supports thread-based environments. For more information, see “Run MATLAB
Functions in Thread-Based Environment”.

See Also
corr | tiedrank | corrcoef | partialcorri

 partialcorr

35-5285



partialcorri
Partial correlation coefficients adjusted for internal variables

Syntax
rho = partialcorri(y,x)
rho = partialcorri(y,x,z)
rho = partialcorri( ___ ,Name,Value)
[rho,pval] = partialcorri( ___ )

Description
rho = partialcorri(y,x) returns the sample linear partial correlation coefficients between pairs
of variables in y and x, adjusting for the remaining variables in x.

rho = partialcorri(y,x,z) returns the sample linear partial correlation coefficients between
pairs of variables in y and x, adjusting for the remaining variables in x, after first controlling both x
and y for the variables in z.

rho = partialcorri( ___ ,Name,Value) returns the sample linear partial correlation
coefficients with additional options specified by one or more name-value pair arguments, using input
arguments from any of the previous syntaxes. For example, you can specify whether to use Pearson or
Spearman partial correlations, or specify how to treat missing values.

[rho,pval] = partialcorri( ___ ) also returns a matrix pval of p-values for testing the
hypothesis of no partial correlation against the one- or two-sided alternative that there is a nonzero
partial correlation.

Examples

Compute Partial Correlation Coefficients

Compute partial correlation coefficients for each pair of variables in the x and y input matrices, while
controlling for the effects of the remaining variables in x.

Load the sample data.

load carsmall;

The data contains measurements from cars manufactured in 1970, 1976, and 1982. It includes MPG
and Acceleration as performance measures, and Displacement, Horsepower, and Weight as
design variables. Acceleration is the time required to accelerate from 0 to 60 miles per hour, so a
high value for Acceleration corresponds to a vehicle with low acceleration.

Define the input matrices. The y matrix includes the performance measures, and the x matrix
includes the design variables.

y = [MPG,Acceleration];
x = [Displacement,Horsepower,Weight];
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Compute the correlation coefficients. Include only rows with no missing values in the computation.

rho = partialcorri(y,x,'Rows','complete')

rho = 2×3

   -0.0537   -0.1520   -0.4856
   -0.3994   -0.4008    0.4912

The results suggest, for example, a 0.4912 correlation between weight and acceleration after
controlling for the effects of displacement and horsepower. You can return the p-values as a second
output, and examine them to confirm whether these correlations are statistically significant.

For a clearer display, create a table with appropriate variable and row labels.

rho = array2table(rho, ...
   'VariableNames',{'Displacement','Horsepower','Weight'}, ...
   'RowNames',{'MPG','Acceleration'});

disp('Partial Correlation Coefficients')

Partial Correlation Coefficients

disp(rho)

                    Displacement    Horsepower     Weight 
                    ____________    __________    ________

    MPG              -0.053684       -0.15199     -0.48563
    Acceleration      -0.39941       -0.40075      0.49123

Test Partial Correlations While Controlling for Additional Variables

Test for partial correlation between pairs of variables in the x and y input matrices, while controlling
for the effects of the remaining variables in x plus additional variables in matrix z.

Load the sample data.

load carsmall;

The data contains measurements from cars manufactured in 1970, 1976, and 1982. It includes MPG
and Acceleration as performance measures, and Displacement, Horsepower, and Weight as
design variables. Acceleration is the time required to accelerate from 0 to 60 miles per hour, so a
high value for Acceleration corresponds to a vehicle with low acceleration.

Create a new variable Headwind, and randomly generate data to represent the notion of an average
headwind along the performance measurement route.

rng('default');  % For reproducibility
Headwind = (10:-0.2:-9.8)' + 5*randn(100,1);

Since headwind can affect the performance measures, control for its effects when testing for partial
correlation between the remaining variables.
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Define the input matrices. The y matrix includes the performance measures, and the x matrix
includes the design variables. The z matrix contains additional variables to control for when
computing the partial correlations, such as headwind.

y = [MPG,Acceleration];
x = [Displacement,Horsepower,Weight];
z = Headwind;

Compute the partial correlation coefficients. Include only rows with no missing values in the
computation.

[rho,pval] = partialcorri(y,x,z,'Rows','complete')

rho = 2×3

    0.0572   -0.1055   -0.5736
   -0.3845   -0.3966    0.4674

pval = 2×3

    0.5923    0.3221    0.0000
    0.0002    0.0001    0.0000

The small returned p-value of 0.001 in pval indicates, for example, a significant negative correlation
between horsepower and acceleration, after controlling for displacement, weight, and headwind.

For a clearer display, create tables with appropriate variable and row labels.

rho = array2table(rho, ...
   'VariableNames',{'Displacement','Horsepower','Weight'}, ...
   'RowNames',{'MPG','Acceleration'});
 
pval = array2table(pval, ...
   'VariableNames',{'Displacement','Horsepower','Weight'}, ...
   'RowNames',{'MPG','Acceleration'});

disp('Partial Correlation Coefficients, Accounting for Headwind')

Partial Correlation Coefficients, Accounting for Headwind

disp(rho)

                    Displacement    Horsepower     Weight 
                    ____________    __________    ________

    MPG               0.057197       -0.10555     -0.57358
    Acceleration      -0.38452       -0.39658       0.4674

disp('p-values, Accounting for Headwind')

p-values, Accounting for Headwind

disp(pval)

                    Displacement    Horsepower      Weight  
                    ____________    __________    __________
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    MPG                 0.59233        0.32212    3.4401e-09
    Acceleration     0.00018272     0.00010902    3.4091e-06

Input Arguments
x — Data matrix
matrix

Data matrix, specified as an n-by-px matrix. The rows of x correspond to observations, and the
columns correspond to variables.
Data Types: single | double

y — Data matrix
matrix

Data matrix, specified as an n-by-py matrix. The rows of y correspond to observations, and the
columns correspond to variables.
Data Types: single | double

z — Data matrix
matrix

Data matrix, specified as an n-by-pz matrix. The rows of z correspond to observations, and the
columns correspond to variables.
Data Types: single | double

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: 'Type','Spearman','Rows','complete' computes Spearman partial correlations
using only the data in rows that contain no missing values.

Type — Type of partial correlations
'Pearson' (default) | 'Spearman'

Type of partial correlations to compute, specified as the comma-separated pair consisting of 'Type'
and either 'Pearson' or 'Spearman'. Pearson computes the Pearson (linear) partial correlations.
Spearman computes the Spearman (rank) partial correlations.
Example: 'Type','Spearman'

Rows — Rows to use in computation
'all' (default) | 'complete' | 'pairwise'

Rows to use in computation, specified as the comma-separated pair consisting of 'Rows' and one of
the following.
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'all' Use all rows regardless of missing (NaN) values.
'complete' Use only rows with no missing values.
'pairwise' Use all available values in each column of y when

computing the partial correlation coefficients and p-values
corresponding to that column. For each column of y, rows
will be dropped corresponding to missing values in x
(and/or z, if supplied). However, remaining rows with valid
values in that column of y are used, even if there are
missing values in other columns of y.

Example: 'Rows','complete'

Tail — Alternative hypothesis
'both' (default) | 'right' | 'left'

Alternative hypothesis to test against, specified as the comma-separated pair consisting of 'Tail'
and one of the following.

'both' Test the alternative hypothesis that the correlation is not
zero.

'right' Test the alternative hypothesis that the correlation is
greater than 0.

'left' Test the alternative hypothesis that the correlation is less
than 0.

Example: 'Tail','right'

Output Arguments
rho — Sample linear partial correlation coefficients
matrix

Sample linear partial correlation coefficients, returned as a py-by-px matrix.

• If you input x and y matrices, the (i,j)th entry is the sample linear partial correlation between the
ith column in y and the jth column in x, controlled for all the columns of x except column j.

• If you input x, y, and z matrices, the (i,j)th entry is the sample linear partial correlation between
the ith column in y and the jth column in x, adjusted for all the columns of x except column j, after
first controlling both x and y for the variables in z.

pval — p-values
matrix

p-values, returned as a matrix. Each element of pval is the p-value for the corresponding element of
rho. If pval(i,j) is small, then the corresponding partial correlation rho(i,j) is statistically
significantly different from zero.

partialcorri computes p-values for linear and rank partial correlations using a Student's t
distribution for a transformation of the correlation. This is exact for linear partial correlation when x
and z are normal, but is a large-sample approximation otherwise.

35 Functions

35-5290



Version History
Introduced in R2013b

References
[1] Stuart, Alan, K. Ord, and S. Arnold. Kendall's Advanced Theory of Statistics. 6th edition, Volume

2A, Chapter 28, Wiley, 2004.

[2] Fisher, Ronald A. "The Distribution of the Partial Correlation Coefficient." Metron 3 (1924):
329-332

Extended Capabilities
Thread-Based Environment
Run code in the background using MATLAB® backgroundPool or accelerate code with Parallel
Computing Toolbox™ ThreadPool.

This function fully supports thread-based environments. For more information, see “Run MATLAB
Functions in Thread-Based Environment”.

See Also
partialcorr | corr
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partialDependence
Package: 

Compute partial dependence

Syntax
pd = partialDependence(RegressionMdl,Vars)
pd = partialDependence(ClassificationMdl,Vars,Labels)
pd = partialDependence( ___ ,Data)

pd = partialDependence(fun,Vars,Data)

pd = partialDependence( ___ ,Name,Value)
[pd,x,y] = partialDependence( ___ )

Description
pd = partialDependence(RegressionMdl,Vars) computes the partial dependence pd between
the predictor variables listed in Vars and the responses predicted by using the regression model
RegressionMdl, which contains predictor data.

pd = partialDependence(ClassificationMdl,Vars,Labels) computes the partial
dependence pd between the predictor variables listed in Vars and the scores for the classes specified
in Labels by using the classification model ClassificationMdl, which contains predictor data.

pd = partialDependence( ___ ,Data) uses new predictor data in Data. You can specify Data in
addition to any of the input argument combinations in the previous syntaxes.

pd = partialDependence(fun,Vars,Data) computes the partial dependence between the
predictor variables listed in Vars and the outputs returned by the custom model fun, using the
predictor data Data.

pd = partialDependence( ___ ,Name,Value) uses additional options specified by one or more
name-value arguments. For example, if you specify "UseParallel","true", the
partialDependence function uses parallel computing to perform the partial dependence
calculations.

[pd,x,y] = partialDependence( ___ ) also returns x and y, which contain the query points of
the first and second predictor variables in Vars, respectively. If you specify one variable in Vars,
then partialDependence returns an empty matrix ([]) for y.

Examples

Compute and Plot Partial Dependence on One Variable

Train a naive Bayes classification model with the fisheriris data set, and compute partial
dependence values that show the relationship between the predictor variable and the predicted
scores (posterior probabilities) for multiple classes.
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Load the fisheriris data set, which contains species (species) and measurements (meas) on
sepal length, sepal width, petal length, and petal width for 150 iris specimens. The data set contains
50 specimens from each of three species: setosa, versicolor, and virginica.

load fisheriris

Train a naive Bayes classification model with species as the response and meas as predictors.

Mdl = fitcnb(meas,species,"PredictorNames",["Sepal Length","Sepal Width","Petal Length","Petal Width"]);

Compute partial dependence values on the third predictor variable (petal length) of the scores
predicted by Mdl for all three classes of species. Specify the class labels by using the ClassNames
property of Mdl.

[pd,x] = partialDependence(Mdl,3,Mdl.ClassNames);

pd contains the partial dependence values for the query points x. You can plot the computed partial
dependence values by using plotting functions such as plot and bar. Plot pd against x by using the
bar function.

bar(x,pd)
legend(Mdl.ClassNames)
xlabel("Petal Length")
ylabel("Scores")
title("Partial Dependence Plot")
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According to this model, the probability of virginica increases with petal length. The probability of
setosa is about 0.33, from where petal length is 0 to around 2.5, and then the probability drops to
almost 0.

Alternatively, you can use the plotPartialDependence function to compute and plot partial
dependence values.

plotPartialDependence(Mdl,3,Mdl.ClassNames)

Compute and Plot Partial Dependence on Two Variables for Multiple Classes

Train an ensemble of classification models and compute partial dependence values on two variables
for multiple classes. Then plot the partial dependence values for each class.

Load the census1994 data set, which contains US yearly salary data, categorized as <=50K or >50K,
and several demographic variables.

load census1994

Extract a subset of variables to analyze from the table adultdata.

X = adultdata(1:500,["age","workClass","education_num","marital_status","race", ...
   "sex","capital_gain","capital_loss","hours_per_week","salary"]);
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Train a random forest of classification trees by using fitcensemble and specifying Method as
"Bag". For reproducibility, use a template of trees created by using templateTree with the
Reproducible option.

rng("default")
t = templateTree("Reproducible",true);
Mdl = fitcensemble(X,"salary","Method","Bag","Learners",t);

Inspect the class names in Mdl.

Mdl.ClassNames

ans = 2x1 categorical
     <=50K 
     >50K 

Compute partial dependence values of the scores on the predictors age and education_num for
both classes (<=50K and >50K). Specify the number of observations to sample as 100.

[pd,x,y] = partialDependence(Mdl,["age","education_num"],Mdl.ClassNames,"NumObservationsToSample",100);

Create a surface plot of the partial dependence values for the first class (<=50K) by using the surf
function.

figure
surf(x,y,squeeze(pd(1,:,:)))
xlabel("age")
ylabel("education\_num")
zlabel("Score of class <=50K")
title("Partial Dependence Plot")
view([130 30]) % Modify the viewing angle
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Create a surface plot of the partial dependence values for the second class (>50K).

figure
surf(x,y,squeeze(pd(2,:,:)))
xlabel("age")
ylabel("education\_num")
zlabel("Score of class >50K")
title("Partial Dependence Plot")
view([130 30]) % Modify the viewing angle
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The two plots show different partial dependence patterns depending on the class.

Compute and Plot Partial Dependence on Multiple Variables for Regression

Train a support vector machine (SVM) regression model using the carsmall data set, and compute
the partial dependence on two predictor variables. Then, create a figure that shows the partial
dependence on the two variables along with the histogram on each variable.

Load the carsmall data set.

load carsmall

Create a table that contains Weight, Cylinders, Displacement, and Horsepower.

Tbl = table(Weight,Cylinders,Displacement,Horsepower);

Train an SVM regression model using the predictor variables in Tbl and the response variable MPG.
Use a Gaussian kernel function with an automatic kernel scale.

Mdl = fitrsvm(Tbl,MPG,"ResponseName","MPG", ...
    "CategoricalPredictors","Cylinders","Standardize",true, ...
    "KernelFunction","gaussian","KernelScale","auto");
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Compute the partial dependence of the predicted response (MPG) on the predictor variables Weight
and Horsepower. Specify query points to compute the partial dependence by using the
QueryPoints name-value argument.

numPoints = 10;
ptX = linspace(min(Weight),max(Weight),numPoints)';
ptY = linspace(min(Horsepower),max(Horsepower),numPoints)';
[pd,x,y] = partialDependence(Mdl,["Weight","Horsepower"],"QueryPoints",[ptX ptY]);

Create a figure that contains a 5-by-5 tiled chart layout. Plot the partial dependence on the two
variables by using the imagesc function. Then draw the histogram for each variable by using the
histogram function. Specify the edges of the histograms so that the centers of the histogram bars
align with the query points. Change the axes properties to align the axes of the plots.

t = tiledlayout(5,5,"TileSpacing","compact");

ax1 = nexttile(2,[4,4]);
imagesc(x,y,pd)
title("Partial Dependence Plot")
colorbar("eastoutside")
ax1.YDir = "normal";

ax2 = nexttile(22,[1,4]);
dX = diff(ptX(1:2));
edgeX = [ptX-dX/2;ptX(end)+dX];
histogram(Weight,edgeX);
xlabel("Weight")
xlim(ax1.XLim);

ax3 = nexttile(1,[4,1]);
dY = diff(ptY(1:2));
edgeY = [ptY-dY/2;ptY(end)+dY];
histogram(Horsepower,edgeY)
xlabel("Horsepower")
xlim(ax1.YLim);
ax3.XDir = "reverse";
camroll(-90)
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Each element of pd specifies the color for one pixel of the image plot. The histograms aligned with
the axes of the image show the distribution of the predictors.

Specify Model Using Function Handle

Compute the partial dependence of label scores on predictor variables for a
SemiSupervisedSelfTrainingModel object. You cannot pass a
SemiSupervisedSelfTrainingModel object directly to the partialDependence function.
Instead, define a custom function that returns label scores for the object, and then pass the function
to partialDependence.

Randomly generate 15 observations of labeled data, with five observations in each of three classes.

rng("default") % For reproducibility
labeledX = [randn(5,2)*0.25 + ones(5,2);
            randn(5,2)*0.25 - ones(5,2);
            randn(5,2)*0.5];
Y = [ones(5,1); ones(5,1)*2; ones(5,1)*3];

Randomly generate 300 additional observations of unlabeled data, with 100 observations per class.

unlabeledX = [randn(100,2)*0.25 + ones(100,2);
              randn(100,2)*0.25 - ones(100,2);
              randn(100,2)*0.5];
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Fit labels to the unlabeled data by using a semi-supervised self-training method. The function
fitsemiself returns a SemiSupervisedSelfTrainingModel object.

Mdl = fitsemiself(labeledX,Y,unlabeledX);

Define the custom function myLabelScores, which returns label scores computed by the predict
function of SemiSupervisedSelfTrainingModel; the custom function definition appears at the
end of this example on page 35-5301.

Compute the partial dependence of the scores for unlabeledX on each variable for all classes.
partialDependence accepts a custom model in the form of a function handle. The function
represented by the function handle must accept predictor data and return a column vector or matrix
with one row for each observation. Specify the custom model as @(X)myLabelScores(Mdl,X) so
that the custom function uses the trained model Mdl and accepts predictor data.

[pd1,x1] = partialDependence(@(X)myLabelScores(Mdl,X),1,unlabeledX);
[pd2,x2] = partialDependence(@(X)myLabelScores(Mdl,X),2,unlabeledX);

You can plot the computed partial dependence values by using plotting functions such as plot and
bar. Alternatively, you can use the plotPartialDependence function to compute and plot partial
dependence values.

Create partial dependence plots for the first variable and all classes.

plotPartialDependence(@(X)myLabelScores(Mdl,X),1,unlabeledX)
xlabel("1st Variable of unlabeledX")
ylabel("Scores")
legend("Class 1","Class 2","Class 3")
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Custom Function myLabelScores

function scores = myLabelScores(Mdl,X)
[~,scores] = predict(Mdl,X);
end

Input Arguments
RegressionMdl — Regression model
regression model object

Regression model, specified as a full or compact regression model object, as given in the following
tables of supported models.

Model Full or Compact Model Object
Generalized linear model GeneralizedLinearModel,

CompactGeneralizedLinearModel
Generalized linear mixed-effect
model

GeneralizedLinearMixedModel

Linear regression LinearModel, CompactLinearModel
Linear mixed-effect model LinearMixedModel
Nonlinear regression NonLinearModel
Ensemble of regression models RegressionEnsemble, RegressionBaggedEnsemble,

CompactRegressionEnsemble
Generalized additive model
(GAM)

RegressionGAM, CompactRegressionGAM

Gaussian process regression RegressionGP, CompactRegressionGP
Gaussian kernel regression
model using random feature
expansion

RegressionKernel

Linear regression for high-
dimensional data

RegressionLinear

Neural network regression
model

RegressionNeuralNetwork,
CompactRegressionNeuralNetwork

Support vector machine (SVM)
regression

RegressionSVM, CompactRegressionSVM

Regression tree RegressionTree, CompactRegressionTree
Bootstrap aggregation for
ensemble of decision trees

TreeBagger, CompactTreeBagger

If RegressionMdl is a model object that does not contain predictor data (for example, a compact
model), you must provide the input argument Data.

partialDependence does not support a model object trained with a sparse matrix. When you train
a model, use a full numeric matrix or table for predictor data where rows correspond to individual
observations.
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ClassificationMdl — Classification model
classification model object

Classification model, specified as a full or compact classification model object, as given in the
following tables of supported models.

Model Full or Compact Model Object
Discriminant analysis classifier ClassificationDiscriminant,

CompactClassificationDiscriminant
Multiclass model for support
vector machines or other
classifiers

ClassificationECOC, CompactClassificationECOC

Ensemble of learners for
classification

ClassificationEnsemble,
CompactClassificationEnsemble,
ClassificationBaggedEnsemble

Generalized additive model
(GAM)

ClassificationGAM, CompactClassificationGAM

Gaussian kernel classification
model using random feature
expansion

ClassificationKernel

k-nearest neighbor classifier ClassificationKNN
Linear classification model ClassificationLinear
Multiclass naive Bayes model ClassificationNaiveBayes,

CompactClassificationNaiveBayes
Neural network classifier ClassificationNeuralNetwork,

CompactClassificationNeuralNetwork
Support vector machine (SVM)
classifier for one-class and
binary classification

ClassificationSVM, CompactClassificationSVM

Binary decision tree for
multiclass classification

ClassificationTree, CompactClassificationTree

Bagged ensemble of decision
trees

TreeBagger, CompactTreeBagger

If ClassificationMdl is a model object that does not contain predictor data (for example, a
compact model), you must provide the input argument Data.

partialDependence does not support a model object trained with a sparse matrix. When you train
a model, use a full numeric matrix or table for predictor data where rows correspond to individual
observations.

fun — Custom model
function handle

Custom model, specified as a function handle. The function handle fun must represent a function that
accepts the predictor data Data and returns an output in the form of a column vector or matrix. Each
row of the output must correspond to each observation (row) in the predictor data.
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By default, partialDependence uses all output columns of fun for the partial dependence
computation. You can specify which output columns to use by setting the OutputColumns name-
value argument.

If the predictor data (Data) is in a table, partialDependence assumes that a variable is categorical
if it is a logical vector, categorical vector, character array, string array, or cell array of character
vectors. If the predictor data is a matrix, partialDependence assumes that all predictors are
continuous. To identify any other predictors as categorical predictors, specify them by using the
CategoricalPredictors name-value argument.
Data Types: function_handle

Vars — Predictor variables
vector of positive integers | character vector | string scalar | string array | cell array of character
vectors

Predictor variables, specified as a vector of positive integers, character vector, string scalar, string
array, or cell array of character vectors. You can specify one or two predictor variables, as shown in
the following tables.

One Predictor Variable

Value Description
positive integer Index value corresponding to the column of the predictor data.
character vector or
string scalar

Name of the predictor variable. The name must match the entry in the
PredictorNames property for RegressionMdl and
ClassificationMdl or the variable name of Data in a table for a custom
model fun.

Two Predictor Variables

Value Description
vector of two positive
integers

Index values corresponding to the columns of the predictor data.

string array or cell
array of character
vectors

Names of the predictor variables. Each element in the array is the name of
a predictor variable. The names must match the entries in the
PredictorNames property for RegressionMdl and
ClassificationMdl or the variable names of Data in a table for a
custom model fun.

Example: ["x1","x3"]
Data Types: single | double | char | string | cell

Labels — Class labels
categorical array | character array | logical vector | numeric vector | cell array of character vectors

Class labels, specified as a categorical or character array, logical or numeric vector, or cell array of
character vectors. The values and data types in Labels must match those of the class names in the
ClassNames property of ClassificationMdl (ClassificationMdl.ClassNames).

You can specify one or multiple class labels.

This argument is valid only when you specify a classification model object ClassificationMdl.
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Example: ["red","blue"]
Example: ClassificationMdl.ClassNames([1 3]) specifies Labels as the first and third
classes in ClassificationMdl.
Data Types: single | double | logical | char | cell | categorical

Data — Predictor data
numeric matrix | table

Predictor data, specified as a numeric matrix or table. Each row of Data corresponds to one
observation, and each column corresponds to one variable.

For both a regression model (RegressionMdl) and a classification model (ClassificationMdl),
Data must be consistent with the predictor data that trained the model, stored in either the X or
Variables property.

• If you trained the model using a numeric matrix, then Data must be a numeric matrix. The
variables that make up the columns of Data must have the same number and order as the
predictor variables that trained the model.

• If you trained the model using a table (for example, Tbl), then Data must be a table. All predictor
variables in Data must have the same variable names and data types as the names and types in
Tbl. However, the column order of Data does not need to correspond to the column order of Tbl.

• Data must not be sparse.

If you specify a regression or classification model that does not contain predictor data, you must
provide Data. If the model is a full model object that contains predictor data and you specify the
Data argument, then partialDependence ignores the predictor data in the model and uses Data
only.

If you specify a custom model fun, you must provide Data.
Data Types: single | double | table

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example:
partialDependence(Mdl,Vars,Data,"NumObservationsToSample",100,"UseParallel",t
rue) computes the partial dependence values by using 100 sampled observations in Data and
executing for-loop iterations in parallel.

IncludeInteractions — Flag to include interaction terms
true | false

Flag to include interaction terms of the generalized additive model (GAM) in the partial dependence
computation, specified as true or false. This argument is valid only for a GAM. That is, you can
specify this argument only when RegressionMdl is RegressionGAM or CompactRegressionGAM,
or ClassificationMdl is ClassificationGAM or CompactClassificationGAM.
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The default IncludeInteractions value is true if the model contains interaction terms. The value
must be false if the model does not contain interaction terms.
Example: "IncludeInteractions",false
Data Types: logical

IncludeIntercept — Flag to include intercept term
true (default) | false

Flag to include an intercept term of the generalized additive model (GAM) in the partial dependence
computation, specified as true or false. This argument is valid only for a GAM. That is, you can
specify this argument only when RegressionMdl is RegressionGAM or CompactRegressionGAM,
or ClassificationMdl is ClassificationGAM or CompactClassificationGAM.
Example: "IncludeIntercept",false
Data Types: logical

NumObservationsToSample — Number of observations to sample
number of total observations (default) | positive integer

Number of observations to sample, specified as a positive integer. The default value is the number of
total observations in Data or the model (RegressionMdl or ClassificationMdl). If you specify a
value larger than the number of total observations, then partialDependence uses all observations.

partialDependence samples observations without replacement by using the datasample function
and uses the sampled observations to compute partial dependence.
Example: "NumObservationsToSample",100
Data Types: single | double

QueryPoints — Points to compute partial dependence
numeric column vector | numeric two-column matrix | cell array of two numeric column vectors

Points to compute partial dependence for numeric predictors, specified as a numeric column vector, a
numeric two-column matrix, or a cell array of two numeric column vectors.

• If you select one predictor variable in Vars, use a numeric column vector.
• If you select two predictor variables in Vars:

• Use a numeric two-column matrix to specify the same number of points for each predictor
variable.

• Use a cell array of two numeric column vectors to specify a different number of points for each
predictor variable.

The default value is a numeric column vector or a numeric two-column matrix, depending on the
number of selected predictor variables. Each column contains 100 evenly spaced points between the
minimum and maximum values of the sampled observations for the corresponding predictor variable.

You cannot modify QueryPoints for a categorical variable. The partialDependence function uses
all categorical values in the selected variable.

If you select one numeric variable and one categorical variable, you can specify QueryPoints for a
numeric variable by using a cell array consisting of a numeric column vector and an empty array.
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Example: "QueryPoints",{pt,[]}
Data Types: single | double | cell

UseParallel — Flag to run in parallel
false (default) | true

Flag to run in parallel, specified as true or false. If you specify "UseParallel",true, the
partialDependence function executes for-loop iterations in parallel by using parfor when
predicting responses or scores for each observation and averaging them. This option requires Parallel
Computing Toolbox.
Example: "UseParallel",true
Data Types: logical

CategoricalPredictors — Categorical predictors list for custom model
vector of positive integers | logical vector | character matrix | string array | cell array of character
vectors | "all"

Categorical predictors list for the custom model fun, specified as one of the values in this table.

Value Description
Vector of positive
integers

Each entry in the vector is an index value indicating that the corresponding
predictor is categorical. The index values are between 1 and p, where p is
the number of variables in Data.

Logical vector A true entry means that the corresponding predictor is categorical. The
length of the vector is p.

Character matrix Each row of the matrix is the name of a predictor variable. The names must
match the variable names of the predictor data Data in a table. Pad the
names with extra blanks so each row of the character matrix has the same
length.

String array or cell
array of character
vectors

Each element in the array is the name of a predictor variable. The names
must match the variable names of the predictor data Data in a table.

"all" All predictors are categorical.

By default, if the predictor data Data is in a table, partialDependence assumes that a variable is
categorical if it is a logical vector, categorical vector, character array, string array, or cell array of
character vectors. If the predictor data is a matrix, partialDependence assumes that all predictors
are continuous. To identify any other predictors as categorical predictors, specify them by using the
CategoricalPredictors name-value argument.

This argument is valid only when you specify a custom model by using fun.
Example: "CategoricalPredictors","all"
Data Types: single | double | logical | char | string | cell

OutputColumns — Output columns of custom model
"all" (default) | vector of positive integers | logical vector

Output columns of the custom model fun to use for the partial dependence computation, specified as
one of the values in this table.
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Value Description
Vector of positive
integers

Each entry in the vector is an index value indicating that
partialDependence uses the corresponding output column for the
partial dependence computation. The index values are between 1 and q,
where q is the number of columns in the output matrix returned by the
custom model fun.

Logical vector A true entry means that partialDependence uses the corresponding
output column for the partial dependence computation. The length of the
vector is q.

"all" partialDependence uses all output columns for the partial dependence
computation.

This argument is valid only when you specify a custom model by using fun.
Example: "OutputColumns",[1 2]
Data Types: single | double | logical | char | string

Output Arguments
pd — Partial dependence values
numeric array

Partial dependence values, returned as a numeric array.

The dimension of pd depends on the type of model (regression, classification or custom), number of
variables specified in Vars, number of classes specified in Labels (classification model only), and
number of columns specified in OutputColumns (custom model only).

For a regression model (RegressionMdl), the following conditions apply:

• If you specify two variables in Vars, pd is a numY-by-numX matrix, where numY and numX are the
number of query points of the second and first variables in Vars, respectively. The value in
pd(i,j) is the partial dependence value of the query point corresponding to y(i) and x(j).
y(i) is the ith query point of the second predictor variable, and x(j) is the jth query point of
the first predictor variable.

• If you specify one variable in Vars, pd is a 1-by-numX vector.

For a classification model (ClassificationMdl), the following conditions apply:

• If you specify two variables in Vars, pd is a num-by-numY-by-numX array, where num is the number
of class labels in Labels. The value in pd(i,j,k) is the partial dependence value of the query
point y(j) and x(k) for the ith class label in Labels.

• If you specify one variable in Vars, pd is a num-by-numX matrix.
• If you specify one class in Labels, pd is a numY-by-numX matrix.
• If you specify one variable and one class, pd is a 1-by-numX vector.

For a custom model (fun), the following conditions apply:

• If you specify two variables in Vars, pd is a num-by-numY-by-numX array, where num is the number
of output columns in OutputColumns. The value in pd(i,j,k) is the partial dependence value of
the query point y(j) and x(k) for the ith column in OutputColumns.
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• If you specify one variable in Vars, pd is a num-by-numX matrix.
• If you specify one column in OutputColumns, pd is a numY-by-numX matrix.
• If you specify one variable and one column, pd is a 1-by-numX vector.

x — Query points of first predictor variable
numeric column vector | categorical column vector

Query points of the first predictor variable in Vars, returned as a numeric or categorical column
vector.

If the predictor variable is numeric, then you can specify the query points by using the QueryPoints
name-value argument.
Data Types: single | double | categorical

y — Query points of second predictor variable
numeric column vector | categorical column vector | []

Query points of the second predictor variable in Vars, returned as a numeric or categorical column
vector. This output argument is empty ([]) if you specify only one variable in Vars.

If the predictor variable is numeric, then you can specify the query points by using the QueryPoints
name-value argument.
Data Types: single | double | categorical

More About
Partial Dependence for Regression Models

Partial dependence[1] represents the relationships between predictor variables and predicted
responses in a trained regression model. partialDependence computes the partial dependence of
predicted responses on a subset of predictor variables by marginalizing over the other variables.

Consider partial dependence on a subset XS of the whole predictor variable set X = {x1, x2, …, xm}. A
subset XS includes either one variable or two variables: XS = {xS1} or XS = {xS1, xS2}. Let XC be the
complementary set of XS in X. A predicted response f(X) depends on all variables in X:

f(X) = f(XS, XC).

The partial dependence of predicted responses on XS is defined by the expectation of predicted
responses with respect to XC:

f S XS = EC f XS, XC =∫ f XS, XC pC XC dXC,

where pC(XC) is the marginal probability of XC, that is, pC XC ≈∫p XS, XC dXS. Assuming that each
observation is equally likely, and the dependence between XS and XC and the interactions of XS and XC

in responses is not strong, partialDependence estimates the partial dependence by using observed
predictor data as follows:

f S XS ≈ 1
N ∑i = 1

N
f XS, XiC ,  (35-1)
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where N is the number of observations and Xi = (Xi
S, Xi

C) is the ith observation.

When you call the partialDependence function, you can specify a trained model (f(·)) and select
variables (XS) by using the input arguments RegressionMdl and Vars, respectively.
partialDependence computes the partial dependence at 100 evenly spaced points of XS or the
points that you specify by using the QueryPoints name-value argument. You can specify the number
(N) of observations to sample from given predictor data by using the NumObservationsToSample
name-value argument.

Partial Dependence Classification Models

In the case of classification models, partialDependence computes the partial dependence in the
same way as for regression models, with one exception: instead of using the predicted responses
from the model, the function uses the predicted scores for the classes specified in Labels.

Weighted Traversal Algorithm

The weighted traversal algorithm[1] is a method to estimate partial dependence for a tree-based
model. The estimated partial dependence is the weighted average of response or score values
corresponding to the leaf nodes visited during the tree traversal.

Let XS be a subset of the whole variable set X and XC be the complementary set of XS in X. For each XS

value to compute partial dependence, the algorithm traverses a tree from the root (beginning) node
down to leaf (terminal) nodes and finds the weights of leaf nodes. The traversal starts by assigning a
weight value of one at the root node. If a node splits by XS, the algorithm traverses to the appropriate
child node depending on the XS value. The weight of the child node becomes the same value as its
parent node. If a node splits by XC, the algorithm traverses to both child nodes. The weight of each
child node becomes a value of its parent node multiplied by the fraction of observations
corresponding to each child node. After completing the tree traversal, the algorithm computes the
weighted average by using the assigned weights.

For an ensemble of bagged trees, the estimated partial dependence is an average of the weighted
averages over the individual trees.

Algorithms
For both a regression model (RegressionMdl) and a classification model (ClassificationMdl),
partialDependence uses a predict function to predict responses or scores.
partialDependence chooses the proper predict function according to the model and runs
predict with its default settings. For details about each predict function, see the predict
functions in the following two tables. If the specified model is a tree-based model (not including a
boosted ensemble of trees), then partialDependence uses the weighted traversal algorithm instead
of the predict function. For details, see “Weighted Traversal Algorithm” on page 35-5309.
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Regression Model Object

Model Type Full or Compact Regression Model Object Function to Predict
Responses

Bootstrap aggregation
for ensemble of decision
trees

CompactTreeBagger predict

Bootstrap aggregation
for ensemble of decision
trees

TreeBagger predict

Ensemble of regression
models

RegressionEnsemble,
RegressionBaggedEnsemble,
CompactRegressionEnsemble

predict

Gaussian kernel
regression model using
random feature
expansion

RegressionKernel predict

Gaussian process
regression

RegressionGP, CompactRegressionGP predict

Generalized additive
model

RegressionGAM, CompactRegressionGAM predict

Generalized linear
mixed-effect model

GeneralizedLinearMixedModel predict

Generalized linear
model

GeneralizedLinearModel,
CompactGeneralizedLinearModel

predict

Linear mixed-effect
model

LinearMixedModel predict

Linear regression LinearModel, CompactLinearModel predict
Linear regression for
high-dimensional data

RegressionLinear predict

Neural network
regression model

RegressionNeuralNetwork,
CompactRegressionNeuralNetwork

predict

Nonlinear regression NonLinearModel predict
Regression tree RegressionTree, CompactRegressionTree predict
Support vector machine RegressionSVM, CompactRegressionSVM predict
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Classification Model Object

Model Type Full or Compact Classification Model Object Function to Predict
Labels and Scores

Discriminant analysis
classifier

ClassificationDiscriminant,
CompactClassificationDiscriminant

predict

Multiclass model for
support vector
machines or other
classifiers

ClassificationECOC,
CompactClassificationECOC

predict

Ensemble of learners
for classification

ClassificationEnsemble,
CompactClassificationEnsemble,
ClassificationBaggedEnsemble

predict

Gaussian kernel
classification model
using random feature
expansion

ClassificationKernel predict

Generalized additive
model

ClassificationGAM,
CompactClassificationGAM

predict

k-nearest neighbor
model

ClassificationKNN predict

Linear classification
model

ClassificationLinear predict

Naive Bayes model ClassificationNaiveBayes,
CompactClassificationNaiveBayes

predict

Neural network
classifier

ClassificationNeuralNetwork,
CompactClassificationNeuralNetwork

predict

Support vector machine
for one-class and binary
classification

ClassificationSVM,
CompactClassificationSVM

predict

Binary decision tree for
multiclass classification

ClassificationTree,
CompactClassificationTree

predict

Bagged ensemble of
decision trees

TreeBagger, CompactTreeBagger predict

Alternative Functionality
• plotPartialDependence computes and plots partial dependence values. The function can also

create individual conditional expectation on page 35-5608 (ICE) plots.

Version History
Introduced in R2020b
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Extended Capabilities
Automatic Parallel Support
Accelerate code by automatically running computation in parallel using Parallel Computing Toolbox™.

To run in parallel, set the UseParallel name-value argument to true in the call to this function.

For more general information about parallel computing, see “Run MATLAB Functions with Automatic
Parallel Support” (Parallel Computing Toolbox).

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

Usage notes and limitations:

• This function fully supports GPU arrays for the following regression models:

• LinearModel and CompactLinearModel objects
• GeneralizedLinearModel and CompactGeneralizedLinearModel objects

• This function supports GPU arrays with limitations for the regression and classification models
described in this table.

Full or Compact Model Object Limitations
ClassificationECOC or
CompactClassificationECOC

• Surrogate splits are not supported for
decision tree learners.

• For KNN learners, you cannot set the
following options to the values shown:

• "NSMethod","kdtree"
• "Distance",function handle
• "IncludeTies",true

ClassificationEnsemble or
CompactClassificationEnsemble

Surrogate splits are not supported for decision
tree learners.

ClassificationKNN You cannot set the following options to the
values shown:

• "NSMethod","kdtree"
• "Distance",function handle
• "IncludeTies",true

ClassificationSVM or
CompactClassificationSVM

One-class classification is not supported.
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Full or Compact Model Object Limitations
ClassificationTree or
CompactClassificationTree

Surrogate splits are not supported for decision
trees.

RegressionEnsemble or
CompactRegressionEnsemble

Surrogate splits are not supported for decision
tree learners.

RegressionTree or
CompactRegressionTree

Surrogate splits are not supported for decision
trees.

• This function fully supports GPU arrays for a custom function if the custom function supports GPU
arrays.

For more information, see “Run MATLAB Functions on a GPU” (Parallel Computing Toolbox).

See Also
plotPartialDependence | lime | shapley | oobPermutedPredictorImportance |
predictorImportance (RegressionEnsemble) | predictorImportance (RegressionTree)
| relieff | sequentialfs

Topics
“Introduction to Feature Selection” on page 16-47
“Interpret Machine Learning Models” on page 27-2
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pca
Principal component analysis of raw data

Syntax
coeff = pca(X)
coeff = pca(X,Name,Value)
[coeff,score,latent] = pca( ___ )
[coeff,score,latent,tsquared] = pca( ___ )
[coeff,score,latent,tsquared,explained,mu] = pca( ___ )

Description
coeff = pca(X) returns the principal component coefficients, also known as loadings, for the n-by-
p data matrix X. Rows of X correspond to observations and columns correspond to variables. The
coefficient matrix is p-by-p. Each column of coeff contains coefficients for one principal component,
and the columns are in descending order of component variance. By default, pca centers the data
and uses the singular value decomposition (SVD) algorithm.

coeff = pca(X,Name,Value) returns any of the output arguments in the previous syntaxes using
additional options for computation and handling of special data types, specified by one or more
Name,Value pair arguments.

For example, you can specify the number of principal components pca returns or an algorithm other
than SVD to use.

[coeff,score,latent] = pca( ___ ) also returns the principal component scores in score and
the principal component variances in latent. You can use any of the input arguments in the previous
syntaxes.

Principal component scores are the representations of X in the principal component space. Rows of
score correspond to observations, and columns correspond to components.

The principal component variances are the eigenvalues of the covariance matrix of X.

[coeff,score,latent,tsquared] = pca( ___ ) also returns the Hotelling's T-squared statistic
for each observation in X.

[coeff,score,latent,tsquared,explained,mu] = pca( ___ ) also returns explained, the
percentage of the total variance explained by each principal component and mu, the estimated mean
of each variable in X.

Examples

Principal Components of a Data Set

Load the sample data set.

load hald
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The ingredients data has 13 observations for 4 variables.

Find the principal components for the ingredients data.

 coeff = pca(ingredients)

coeff = 4×4

   -0.0678   -0.6460    0.5673    0.5062
   -0.6785   -0.0200   -0.5440    0.4933
    0.0290    0.7553    0.4036    0.5156
    0.7309   -0.1085   -0.4684    0.4844

The rows of coeff contain the coefficients for the four ingredient variables, and its columns
correspond to four principal components.

PCA in the Presence of Missing Data

Find the principal component coefficients when there are missing values in a data set.

Load the sample data set.

load imports-85

Data matrix X has 13 continuous variables in columns 3 to 15: wheel-base, length, width, height,
curb-weight, engine-size, bore, stroke, compression-ratio, horsepower, peak-rpm, city-mpg, and
highway-mpg. The variables bore and stroke are missing four values in rows 56 to 59, and the
variables horsepower and peak-rpm are missing two values in rows 131 and 132.

Perform principal component analysis.

coeff = pca(X(:,3:15));

By default, pca performs the action specified by the 'Rows','complete' name-value pair
argument. This option removes the observations with NaN values before calculation. Rows of NaNs are
reinserted into score and tsquared at the corresponding locations, namely rows 56 to 59, 131, and
132.

Use 'pairwise' to perform the principal component analysis.

coeff = pca(X(:,3:15),'Rows','pairwise');

In this case, pca computes the (i,j) element of the covariance matrix using the rows with no NaN
values in the columns i or j of X. Note that the resulting covariance matrix might not be positive
definite. This option applies when the algorithm pca uses is eigenvalue decomposition. When you
don’t specify the algorithm, as in this example, pca sets it to 'eig'. If you require 'svd' as the
algorithm, with the 'pairwise' option, then pca returns a warning message, sets the algorithm to
'eig' and continues.

If you use the 'Rows','all' name-value pair argument, pca terminates because this option
assumes there are no missing values in the data set.

coeff = pca(X(:,3:15),'Rows','all');
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Error using pca (line 180)
Raw data contains NaN missing value while 'Rows' option is set to 'all'. Consider using 'complete' or pairwise' option instead.

Weighted PCA

Use the inverse variable variances as weights while performing the principal components analysis.

Load the sample data set.

load hald

Perform the principal component analysis using the inverse of variances of the ingredients as variable
weights.

[wcoeff,~,latent,~,explained] = pca(ingredients,'VariableWeights','variance')

wcoeff = 4×4

   -2.7998    2.9940   -3.9736    1.4180
   -8.7743   -6.4411    4.8927    9.9863
    2.5240   -3.8749   -4.0845    1.7196
    9.1714    7.5529    3.2710   11.3273

latent = 4×1

    2.2357
    1.5761
    0.1866
    0.0016

explained = 4×1

   55.8926
   39.4017
    4.6652
    0.0406

Note that the coefficient matrix wcoeff is not orthonormal.

Calculate the orthonormal coefficient matrix.

coefforth = diag(std(ingredients))\wcoeff

coefforth = 4×4

   -0.4760    0.5090   -0.6755    0.2411
   -0.5639   -0.4139    0.3144    0.6418
    0.3941   -0.6050   -0.6377    0.2685
    0.5479    0.4512    0.1954    0.6767

Check orthonormality of the new coefficient matrix, coefforth.

 coefforth*coefforth'
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ans = 4×4

    1.0000    0.0000   -0.0000    0.0000
    0.0000    1.0000    0.0000    0.0000
   -0.0000    0.0000    1.0000    0.0000
    0.0000    0.0000    0.0000    1.0000

PCA Using ALS for Missing Data

Find the principal components using the alternating least squares (ALS) algorithm when there are
missing values in the data.

Load the sample data.

load hald

The ingredients data has 13 observations for 4 variables.

Perform principal component analysis using the ALS algorithm and display the component
coefficients.

[coeff,score,latent,tsquared,explained] = pca(ingredients);
coeff

coeff = 4×4

   -0.0678   -0.6460    0.5673    0.5062
   -0.6785   -0.0200   -0.5440    0.4933
    0.0290    0.7553    0.4036    0.5156
    0.7309   -0.1085   -0.4684    0.4844

Introduce missing values randomly.

y = ingredients;
rng('default'); % for reproducibility
ix = random('unif',0,1,size(y))<0.30; 
y(ix) = NaN

y = 13×4

     7    26     6   NaN
     1    29    15    52
   NaN   NaN     8    20
    11    31   NaN    47
     7    52     6    33
   NaN    55   NaN   NaN
   NaN    71   NaN     6
     1    31   NaN    44
     2   NaN   NaN    22
    21    47     4    26
      ⋮

Approximately 30% of the data has missing values now, indicated by NaN.
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Perform principal component analysis using the ALS algorithm and display the component
coefficients.

[coeff1,score1,latent,tsquared,explained,mu1] = pca(y,...
'algorithm','als');
coeff1

coeff1 = 4×4

   -0.0362    0.8215   -0.5252    0.2190
   -0.6831   -0.0998    0.1828    0.6999
    0.0169    0.5575    0.8215   -0.1185
    0.7292   -0.0657    0.1261    0.6694

Display the estimated mean.

mu1

mu1 = 1×4

    8.9956   47.9088    9.0451   28.5515

Reconstruct the observed data.

t = score1*coeff1' + repmat(mu1,13,1)

t = 13×4

    7.0000   26.0000    6.0000   51.5250
    1.0000   29.0000   15.0000   52.0000
   10.7819   53.0230    8.0000   20.0000
   11.0000   31.0000   13.5500   47.0000
    7.0000   52.0000    6.0000   33.0000
   10.4818   55.0000    7.8328   17.9362
    3.0982   71.0000   11.9491    6.0000
    1.0000   31.0000   -0.5161   44.0000
    2.0000   53.7914    5.7710   22.0000
   21.0000   47.0000    4.0000   26.0000
      ⋮

The ALS algorithm estimates the missing values in the data.

Another way to compare the results is to find the angle between the two spaces spanned by the
coefficient vectors. Find the angle between the coefficients found for complete data and data with
missing values using ALS.

subspace(coeff,coeff1)

ans = 4.2187e-16

This is a small value. It indicates that the results if you use pca with 'Rows','complete' name-
value pair argument when there is no missing data and if you use pca with 'algorithm','als'
name-value pair argument when there is missing data are close to each other.

Perform the principal component analysis using 'Rows','complete' name-value pair argument and
display the component coefficients.
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[coeff2,score2,latent,tsquared,explained,mu2] = pca(y,...
'Rows','complete');
coeff2

coeff2 = 4×3

   -0.2054    0.8587    0.0492
   -0.6694   -0.3720    0.5510
    0.1474   -0.3513   -0.5187
    0.6986   -0.0298    0.6518

In this case, pca removes the rows with missing values, and y has only four rows with no missing
values. pca returns only three principal components. You cannot use the 'Rows','pairwise'
option because the covariance matrix is not positive semidefinite and pca returns an error message.

Find the angle between the coefficients found for complete data and data with missing values using
listwise deletion (when 'Rows','complete').

subspace(coeff(:,1:3),coeff2)

ans = 0.3576

The angle between the two spaces is substantially larger. This indicates that these two results are
different.

Display the estimated mean.

mu2

mu2 = 1×4

    7.8889   46.9091    9.8750   29.6000

In this case, the mean is just the sample mean of y.

Reconstruct the observed data.

score2*coeff2'

ans = 13×4

       NaN       NaN       NaN       NaN
   -7.5162  -18.3545    4.0968   22.0056
       NaN       NaN       NaN       NaN
       NaN       NaN       NaN       NaN
   -0.5644    5.3213   -3.3432    3.6040
       NaN       NaN       NaN       NaN
       NaN       NaN       NaN       NaN
       NaN       NaN       NaN       NaN
       NaN       NaN       NaN       NaN
   12.8315   -0.1076   -6.3333   -3.7758
      ⋮

This shows that deleting rows containing NaN values does not work as well as the ALS algorithm.
Using ALS is better when the data has too many missing values.
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Principal Component Coefficients, Scores, and Variances

Find the coefficients, scores, and variances of the principal components.

Load the sample data set.

load hald

The ingredients data has 13 observations for 4 variables.

Find the principal component coefficients, scores, and variances of the components for the
ingredients data.

[coeff,score,latent] = pca(ingredients)

coeff = 4×4

   -0.0678   -0.6460    0.5673    0.5062
   -0.6785   -0.0200   -0.5440    0.4933
    0.0290    0.7553    0.4036    0.5156
    0.7309   -0.1085   -0.4684    0.4844

score = 13×4

   36.8218   -6.8709   -4.5909    0.3967
   29.6073    4.6109   -2.2476   -0.3958
  -12.9818   -4.2049    0.9022   -1.1261
   23.7147   -6.6341    1.8547   -0.3786
   -0.5532   -4.4617   -6.0874    0.1424
  -10.8125   -3.6466    0.9130   -0.1350
  -32.5882    8.9798   -1.6063    0.0818
   22.6064   10.7259    3.2365    0.3243
   -9.2626    8.9854   -0.0169   -0.5437
   -3.2840  -14.1573    7.0465    0.3405
      ⋮

latent = 4×1

  517.7969
   67.4964
   12.4054
    0.2372

Each column of score corresponds to one principal component. The vector, latent, stores the
variances of the four principal components.

Reconstruct the centered ingredients data.

Xcentered = score*coeff'

Xcentered = 13×4

   -0.4615  -22.1538   -5.7692   30.0000
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   -6.4615  -19.1538    3.2308   22.0000
    3.5385    7.8462   -3.7692  -10.0000
    3.5385  -17.1538   -3.7692   17.0000
   -0.4615    3.8462   -5.7692    3.0000
    3.5385    6.8462   -2.7692   -8.0000
   -4.4615   22.8462    5.2308  -24.0000
   -6.4615  -17.1538   10.2308   14.0000
   -5.4615    5.8462    6.2308   -8.0000
   13.5385   -1.1538   -7.7692   -4.0000
      ⋮

The new data in Xcentered is the original ingredients data centered by subtracting the column
means from corresponding columns.

Visualize both the orthonormal principal component coefficients for each variable and the principal
component scores for each observation in a single plot.

biplot(coeff(:,1:2),'scores',score(:,1:2),'varlabels',{'v_1','v_2','v_3','v_4'});

All four variables are represented in this biplot by a vector, and the direction and length of the vector
indicate how each variable contributes to the two principal components in the plot. For example, the
first principal component, which is on the horizontal axis, has positive coefficients for the third and
fourth variables. Therefore, vectors v3 and v4 are directed into the right half of the plot. The largest
coefficient in the first principal component is the fourth, corresponding to the variable v4.
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The second principal component, which is on the vertical axis, has negative coefficients for the
variables v1, v2, and v4, and a positive coefficient for the variable v3.

This 2-D biplot also includes a point for each of the 13 observations, with coordinates indicating the
score of each observation for the two principal components in the plot. For example, points near the
left edge of the plot have the lowest scores for the first principal component. The points are scaled
with respect to the maximum score value and maximum coefficient length, so only their relative
locations can be determined from the plot.

T-Squared Statistic

Find the Hotelling’s T-squared statistic values.

Load the sample data set.

load hald

The ingredients data has 13 observations for 4 variables.

Perform the principal component analysis and request the T-squared values.

[coeff,score,latent,tsquared] = pca(ingredients);
tsquared

tsquared = 13×1

    5.6803
    3.0758
    6.0002
    2.6198
    3.3681
    0.5668
    3.4818
    3.9794
    2.6086
    7.4818
      ⋮

Request only the first two principal components and compute the T-squared values in the reduced
space of requested principal components.

[coeff,score,latent,tsquared] = pca(ingredients,'NumComponents',2);
tsquared

tsquared = 13×1

    5.6803
    3.0758
    6.0002
    2.6198
    3.3681
    0.5668
    3.4818
    3.9794

35 Functions

35-5322



    2.6086
    7.4818
      ⋮

Note that even when you specify a reduced component space, pca computes the T-squared values in
the full space, using all four components.

The T-squared value in the reduced space corresponds to the Mahalanobis distance in the reduced
space.

tsqreduced = mahal(score,score)

tsqreduced = 13×1

    3.3179
    2.0079
    0.5874
    1.7382
    0.2955
    0.4228
    3.2457
    2.6914
    1.3619
    2.9903
      ⋮

Calculate the T-squared values in the discarded space by taking the difference of the T-squared values
in the full space and Mahalanobis distance in the reduced space.

tsqdiscarded = tsquared - tsqreduced

tsqdiscarded = 13×1

    2.3624
    1.0679
    5.4128
    0.8816
    3.0726
    0.1440
    0.2362
    1.2880
    1.2467
    4.4915
      ⋮

Percent Variability Explained by Principal Components

Find the percent variability explained by the principal components. Show the data representation in
the principal components space.

Load the sample data set.

load imports-85
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Data matrix X has 13 continuous variables in columns 3 to 15: wheel-base, length, width, height,
curb-weight, engine-size, bore, stroke, compression-ratio, horsepower, peak-rpm, city-mpg, and
highway-mpg.

Find the percent variability explained by principal components of these variables.

[coeff,score,latent,tsquared,explained] = pca(X(:,3:15));

explained

explained = 13×1

   64.3429
   35.4484
    0.1550
    0.0379
    0.0078
    0.0048
    0.0013
    0.0011
    0.0005
    0.0002
      ⋮

The first three components explain 99.95% of all variability.

Visualize the data representation in the space of the first three principal components.

scatter3(score(:,1),score(:,2),score(:,3))
axis equal
xlabel('1st Principal Component')
ylabel('2nd Principal Component')
zlabel('3rd Principal Component')
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The data shows the largest variability along the first principal component axis. This is the largest
possible variance among all possible choices of the first axis. The variability along the second
principal component axis is the largest among all possible remaining choices of the second axis. The
third principal component axis has the third largest variability, which is significantly smaller than the
variability along the second principal component axis. The fourth through thirteenth principal
component axes are not worth inspecting, because they explain only 0.05% of all variability in the
data.

To skip any of the outputs, you can use ~ instead in the corresponding element. For example, if you
don’t want to get the T-squared values, specify

[coeff,score,latent,~,explained] = pca(X(:,3:15));

Apply PCA to New Data and Generate C/C++ Code

Find the principal components for one data set and apply the PCA to another data set. This procedure
is useful when you have a training data set and a test data set for a machine learning model. For
example, you can preprocess the training data set by using PCA and then train a model. To test the
trained model using the test data set, you need to apply the PCA transformation obtained from the
training data to the test data set.

This example also describes how to generate C/C++ code. Because pca supports code generation,
you can generate code that performs PCA using a training data set and applies the PCA to a test data
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set. Then deploy the code to a device. In this workflow, you must pass training data, which can be of
considerable size. To save memory on the device, you can separate training and prediction. Use pca
in MATLAB® and apply PCA to new data in the generated code on the device.

Generating C/C++ code requires MATLAB® Coder™.

Apply PCA to New Data

Load the data set into a table by using readtable. The data set is in the file
CreditRating_Historical.dat, which contains the historical credit rating data.

creditrating = readtable('CreditRating_Historical.dat');
creditrating(1:5,:)

ans=5×8 table
     ID      WC_TA    RE_TA    EBIT_TA    MVE_BVTD    S_TA     Industry    Rating 
    _____    _____    _____    _______    ________    _____    ________    _______

    62394    0.013    0.104     0.036      0.447      0.142        3       {'BB' }
    48608    0.232    0.335     0.062      1.969      0.281        8       {'A'  }
    42444    0.311    0.367     0.074      1.935      0.366        1       {'A'  }
    48631    0.194    0.263     0.062      1.017      0.228        4       {'BBB'}
    43768    0.121    0.413     0.057      3.647      0.466       12       {'AAA'}

The first column is an ID of each observation, and the last column is a rating. Specify the second to
seventh columns as predictor data and specify the last column (Rating) as the response.

X = table2array(creditrating(:,2:7));
Y = creditrating.Rating;

Use the first 100 observations as test data and the rest as training data.

XTest = X(1:100,:);
XTrain = X(101:end,:);
YTest = Y(1:100);
YTrain = Y(101:end);

Find the principal components for the training data set XTrain.

[coeff,scoreTrain,~,~,explained,mu] = pca(XTrain);

This code returns four outputs: coeff, scoreTrain, explained, and mu. Use explained
(percentage of total variance explained) to find the number of components required to explain at least
95% variability. Use coeff (principal component coefficients) and mu (estimated means of XTrain) to
apply the PCA to a test data set. Use scoreTrain (principal component scores) instead of XTrain
when you train a model.

Display the percent variability explained by the principal components.

explained

explained = 6×1

   58.2614
   41.2606
    0.3875
    0.0632
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    0.0269
    0.0005

The first two components explain more than 95% of all variability. Find the number of components
required to explain at least 95% variability.

idx = find(cumsum(explained)>95,1)

idx = 2

Train a classification tree using the first two components.

scoreTrain95 = scoreTrain(:,1:idx);
mdl = fitctree(scoreTrain95,YTrain);

mdl is a ClassificationTree model.

To use the trained model for the test set, you need to transform the test data set by using the PCA
obtained from the training data set. Obtain the principal component scores of the test data set by
subtracting mu from XTest and multiplying by coeff. Only the scores for the first two components
are necessary, so use the first two coefficients coeff(:,1:idx).

scoreTest95 = (XTest-mu)*coeff(:,1:idx);

Pass the trained model mdl and the transformed test data set scoreTest to the predict function to
predict ratings for the test set.

YTest_predicted = predict(mdl,scoreTest95);

Generate Code

Generate code that applies PCA to data and predicts ratings using the trained model. Note that
generating C/C++ code requires MATLAB® Coder™.

Save the classification model to the file myMdl.mat by using saveLearnerForCoder.

saveLearnerForCoder(mdl,'myMdl');

Define an entry-point function named myPCAPredict that accepts a test data set (XTest) and PCA
information (coeff and mu) and returns the ratings of the test data.

Add the %#codegen compiler directive (or pragma) to the entry-point function after the function
signature to indicate that you intend to generate code for the MATLAB algorithm. Adding this
directive instructs the MATLAB Code Analyzer to help you diagnose and fix violations that would
cause errors during code generation.

function label = myPCAPredict(XTest,coeff,mu) %#codegen
% Transform data using PCA
scoreTest = bsxfun(@minus,XTest,mu)*coeff;

% Load trained classification model
mdl = loadLearnerForCoder('myMdl');
% Predict ratings using the loaded model  
label = predict(mdl,scoreTest);

myPCAPredict applies PCA to new data using coeff and mu, and then predicts ratings using the
transformed data. In this way, you do not pass training data, which can be of considerable size.
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Note: If you click the button located in the upper-right section of this page and open this example in
MATLAB®, then MATLAB® opens the example folder. This folder includes the entry-point function
file.

Generate code by using codegen (MATLAB Coder). Because C and C++ are statically typed
languages, you must determine the properties of all variables in the entry-point function at compile
time. To specify the data type and exact input array size, pass a MATLAB® expression that represents
the set of values with a certain data type and array size by using the -args option. If the number of
observations is unknown at compile time, you can also specify the input as variable-size by using
coder.typeof (MATLAB Coder). For details, see “Specify Variable-Size Arguments for Code
Generation” on page 34-56.

codegen myPCAPredict -args {coder.typeof(XTest,[Inf,6],[1,0]),coeff(:,1:idx),mu}

Code generation successful.

codegen generates the MEX function myPCAPredict_mex with a platform-dependent extension.

Verify the generated code.

YTest_predicted_mex = myPCAPredict_mex(XTest,coeff(:,1:idx),mu);
isequal(YTest_predicted,YTest_predicted_mex)

ans = logical
   1

isequal returns logical 1 (true), which means all the inputs are equal. The comparison confirms
that the predict function of mdl and the myPCAPredict_mex function return the same ratings.

For more information on code generation, see “Introduction to Code Generation” on page 34-2and
“Code Generation and Classification Learner App” on page 34-32. The latter describes how to
perform PCA and train a model by using the Classification Learner app, and how to generate C/C++
code that predicts labels for new data based on the trained model.

Input Arguments
X — Input data
matrix

Input data for which to compute the principal components, specified as an n-by-p matrix. Rows of X
correspond to observations and columns to variables.
Data Types: single | double

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: 'Algorithm','eig','Centered',false,'Rows','all','NumComponents',3
specifies that pca uses eigenvalue decomposition algorithm, not center the data, use all of the
observations, and return only the first three principal components.
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Algorithm — Principal component algorithm
'svd' (default) | 'eig' | 'als'

Principal component algorithm that pca uses to perform the principal component analysis, specified
as the comma-separated pair consisting of 'Algorithm' and one of the following.

Value Description
'svd' Default. Singular value decomposition (SVD) of X.
'eig' Eigenvalue decomposition (EIG) of the covariance matrix. The EIG algorithm is faster

than SVD when the number of observations, n, exceeds the number of variables, p, but
is less accurate because the condition number of the covariance is the square of the
condition number of X.

'als' Alternating least squares (ALS) algorithm. This algorithm finds the best rank-k
approximation by factoring X into a n-by-k left factor matrix, L, and a p-by-k right
factor matrix, R, where k is the number of principal components. The factorization
uses an iterative method starting with random initial values.

ALS is designed to better handle missing values. It is preferable to pairwise deletion
('Rows','pairwise') and deals with missing values without listwise deletion
('Rows','complete'). It can work well for data sets with a small percentage of
missing data at random, but might not perform well on sparse data sets.

Example: 'Algorithm','eig'

Centered — Indicator for centering columns
true (default) | false

Indicator for centering the columns, specified as the comma-separated pair consisting of
'Centered' and one of these logical expressions.

Value Description
true Default. pca centers X by subtracting column means before computing singular value

decomposition or eigenvalue decomposition. If X contains NaN missing values,
mean(X,'omitnan') is used to find the mean with any available data. You can
reconstruct the centered data using score*coeff'.

false In this case pca does not center the data. You can reconstruct the original data using
score*coeff'.

Example: 'Centered',false
Data Types: logical

Economy — Indicator for economy size output
true (default) | false

Indicator for the economy size output when the degrees of freedom on page 35-5333, d, is smaller
than the number of variables, p, specified as the comma-separated pair consisting of 'Economy' and
one of these logical expressions.
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Value Description
true Default. pca returns only the first d elements of latent and the corresponding

columns of coeff and score.

This option can be significantly faster when the number of variables p is much larger
than d.

false pca returns all elements of latent. The columns of coeff and score corresponding
to zero elements in latent are zeros.

Note that when d < p, score(:,d+1:p) and latent(d+1:p) are necessarily zero, and the columns
of coeff(:,d+1:p) define directions that are orthogonal to X.
Example: 'Economy',false
Data Types: logical

NumComponents — Number of components requested
number of variables (default) | scalar integer

Number of components requested, specified as the comma-separated pair consisting of
'NumComponents' and a scalar integer k satisfying 0 < k ≤ p, where p is the number of original
variables in X. When specified, pca returns the first k columns of coeff and score.
Example: 'NumComponents',3
Data Types: single | double

Rows — Action to take for NaN values
'complete' (default) | 'pairwise' | 'all'

Action to take for NaN values in the data matrix X, specified as the comma-separated pair consisting
of 'Rows' and one of the following.

Value Description
'complete' Default. Observations with NaN values are removed before calculation. Rows of NaNs

are reinserted into score and tsquared at the corresponding locations.
'pairwise' This option only applies when the algorithm is 'eig'. If you don’t specify the

algorithm along with 'pairwise', then pca sets it to 'eig'. If you specify 'svd' as
the algorithm, along with the option 'Rows','pairwise', then pca returns a
warning message, sets the algorithm to 'eig' and continues.

When you specify the 'Rows','pairwise' option, pca computes the (i,j) element of
the covariance matrix using the rows with no NaN values in the columns i or j of X.

Note that the resulting covariance matrix might not be positive definite. In that case,
pca terminates with an error message.

'all' X is expected to have no missing values. pca uses all of the data and terminates if any
NaN value is found.

Example: 'Rows','pairwise'

Weights — Observation weights
ones (default) | row vector
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Observation weights, specified as the comma-separated pair consisting of 'Weights' and a vector of
length n containing all positive elements.
Data Types: single | double

VariableWeights — Variable weights
row vector | 'variance'

Variable weights on page 35-5333, specified as the comma-separated pair consisting of
'VariableWeights' and one of the following.

Value Description
row vector Vector of length p containing all positive elements.
'variance' The variable weights are the inverse of sample variance. If you also assign weights to

observations using 'Weights', then the variable weights become the inverse of
weighted sample variance.

If 'Centered' is set to true at the same time, the data matrix X is centered and
standardized. In this case, pca returns the principal components based on the
correlation matrix.

Example: 'VariableWeights','variance'
Data Types: single | double | char | string

Coeff0 — Initial value for coefficients
matrix of random values (default) | p-by-k matrix

Initial value for the coefficient matrix coeff, specified as the comma-separated pair consisting of
'Coeff0' and a p-by-k matrix, where p is the number of variables, and k is the number of principal
components requested.

Note You can use this name-value pair only when 'algorithm' is 'als'.

Data Types: single | double

Score0 — Initial value for scores
matrix of random values (default) | k-by-m matrix

Initial value for scores matrix score, specified as a comma-separated pair consisting of 'Score0'
and an n-by-k matrix, where n is the number of observations and k is the number of principal
components requested.

Note You can use this name-value pair only when 'algorithm' is 'als'.

Data Types: single | double

Options — Options for iterations
structure

Options for the iterations, specified as a comma-separated pair consisting of 'Options' and a
structure created by the statset function. pca uses the following fields in the options structure.
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Field Name Description
'Display' Level of display output. Choices are 'off', 'final', and 'iter'.
'MaxIter' Maximum number steps allowed. The default is 1000. Unlike in

optimization settings, reaching the MaxIter value is regarded as
convergence.

'TolFun' Positive number giving the termination tolerance for the cost function. The
default is 1e-6.

'TolX' Positive number giving the convergence threshold for the relative change
in the elements of the left and right factor matrices, L and R, in the ALS
algorithm. The default is 1e-6.

Note You can use this name-value pair only when 'algorithm' is 'als'.

You can change the values of these fields and specify the new structure in pca using the 'Options'
name-value pair argument.
Example: opt = statset('pca'); opt.MaxIter = 2000; coeff =
pca(X,'Options',opt);

Data Types: struct

Output Arguments
coeff — Principal component coefficients
matrix

Principal component coefficients, returned as a p-by-p matrix. Each column of coeff contains
coefficients for one principal component. The columns are in the order of descending component
variance, latent.

score — Principal component scores
matrix

Principal component scores, returned as a matrix. Rows of score correspond to observations, and
columns to components.

latent — Principal component variances
column vector

Principal component variances, that is the eigenvalues of the covariance matrix of X, returned as a
column vector.

tsquared — Hotelling’s T-squared statistic
column vector

“Hotelling’s T-Squared Statistic” on page 35-5333, which is the sum of squares of the standardized
scores for each observation, returned as a column vector.

explained — Percentage of total variance explained
column vector
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Percentage of the total variance explained by each principal component, returned as a column vector.

mu — Estimated means
row vector

Estimated means of the variables in X, returned as a row vector when Centered is set to true. When
Centered is false, the software does not compute the means and returns a vector of zeros.

More About
Hotelling’s T-Squared Statistic

Hotelling’s T-squared statistic is a statistical measure of the multivariate distance of each observation
from the center of the data set.

Even when you request fewer components than the number of variables, pca uses all principal
components to compute the T-squared statistic (computes it in the full space). If you want the T-
squared statistic in the reduced or the discarded space, do one of the following:

• For the T-squared statistic in the reduced space, use mahal(score,score).
• For the T-squared statistic in the discarded space, first compute the T-squared statistic using

[coeff,score,latent,tsquared] = pca(X,'NumComponents',k,...), compute the T-
squared statistic in the reduced space using tsqreduced = mahal(score,score), and then
take the difference: tsquared - tsqreduced.

Degrees of Freedom

The degrees of freedom, d, is equal to n – 1, if data is centered and n otherwise, where:

• n is the number of rows without any NaNs if you use 'Rows','complete'.
• n is the number of rows without any NaNs in the column pair that has the maximum number of

rows without NaNs if you use 'Rows','pairwise'.

Variable Weights

Note that when variable weights are used, the coefficient matrix is not orthonormal. Suppose the
variable weights vector you used is called varwei, and the principal component coefficients vector
pca returned is wcoeff. You can then calculate the orthonormal coefficients using the transformation
diag(sqrt(varwei))*wcoeff.

Algorithms
The pca function imposes a sign convention, forcing the element with the largest magnitude in each
column of coefs to be positive. Changing the sign of a coefficient vector does not change its
meaning.

Alternative Functionality
App

To run pca interactively in the Live Editor, use the Reduce Dimensionality Live Editor task.
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Extended Capabilities
Tall Arrays
Calculate with arrays that have more rows than fit in memory.

This function supports tall arrays for out-of-memory data with some limitations.

• pca works directly with tall arrays by computing the covariance matrix and using the in-memory
pcacov function to compute the principle components.

• Supported syntaxes are:

• coeff = pca(X)
• [coeff,score,latent] = pca(X)
• [coeff,score,latent,explained] = pca(X)
• [coeff,score,latent,tsquared] = pca(X)
• [coeff,score,latent,tsquared,explained] = pca(X)

• Name-value pair arguments are not supported.

For more information, see “Tall Arrays for Out-of-Memory Data”.

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• When 'Algorithm' is 'als', the 'Display' value for 'Options' is ignored.
• The values for the 'Weights' and 'VariableWeights' name-value pair arguments must be

real.
• The value for the 'Economy' name-value pair argument must be a compile-time constant. For

example, to use the 'Economy',false name-value pair argument in the generated code, include
{coder.Constant('Economy'),coder.Constant(false)} in the -args value of codegen.
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• Names in name-value arguments must be compile-time constants.
• The generated code always returns the fifth output explained as a column vector.
• The generated code always returns the sixth output mu as a row vector.
• If mu is empty, pca returns mu as a 1-by-0 array. pca does not convert mu to a 0-by-0 empty array.
• The generated code does not treat an input matrix X that has all NaN values as a special case. The

output dimensions are commensurate with corresponding finite inputs.
• To save memory on the device to which you deploy generated code, you can separate training

(constructing PCA components from input data) and prediction (performing PCA transformation).
Construct PCA components in MATLAB. Then, define an entry-point function that performs PCA
transformation using the principal component coefficients (coeff) and estimated means (mu),
which are the outputs of pca. Finally, generate code for the entry-point function. For an example,
see “Apply PCA to New Data and Generate C/C++ Code” on page 35-5325.

For more information on code generation, see “Introduction to Code Generation” on page 34-2 and
“General Code Generation Workflow” on page 34-5.

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

Usage notes and limitations:

• You cannot specify the name-value argument Algorithm as "als".
• The EIG algorithm is generally faster than SVD when the number of variables is large.

For more information, see “Run MATLAB Functions on a GPU” (Parallel Computing Toolbox).

See Also
barttest | biplot | canoncorr | factoran | pcacov | pcares | rotatefactors | ppca |
Reduce Dimensionality

Topics
“Analyze Quality of Life in U.S. Cities Using PCA” on page 16-67
“Principal Component Analysis (PCA)” on page 16-66
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pcacov
Principal component analysis on covariance matrix

Syntax
coeff = pcacov(V)
[coeff,latent] = pcacov(V)
[coeff,latent,explained] = pcacov(V)

Description
coeff = pcacov(V) performs principal component analysis on the square covariance matrix V and
returns the principal component coefficients, also known as loadings.

pcacov does not standardize V to have unit variances. To perform principal component analysis on
standardized variables, use the correlation matrix R = V./(SD*SD'), where SD =
sqrt(diag(V)), in place of V. To perform principal component analysis directly on the data matrix,
use pca.

[coeff,latent] = pcacov(V) also returns a vector containing the principal component
variances, meaning the eigenvalues of V.

[coeff,latent,explained] = pcacov(V) also returns a vector containing the percentage of the
total variance explained by each principal component.

Examples

Perform Principal Component Analysis on Covariance Matrix

Create a covariance matrix from the hald dataset.

load hald
covx = cov(ingredients);

Perform principal component analysis on the covx variable.

[coeff,latent,explained] = pcacov(covx)

coeff = 4×4

   -0.0678   -0.6460    0.5673    0.5062
   -0.6785   -0.0200   -0.5440    0.4933
    0.0290    0.7553    0.4036    0.5156
    0.7309   -0.1085   -0.4684    0.4844

latent = 4×1

  517.7969
   67.4964
   12.4054
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    0.2372

explained = 4×1

   86.5974
   11.2882
    2.0747
    0.0397

The first component explains over 85% of the total variance. The first two components explain nearly
98% of the total variance.

Input Arguments
V — Covariance matrix
square, symmetric, positive semidefinite matrix

Covariance matrix, specified as a square, symmetric, positive semidefinite matrix.
Data Types: single | double

Output Arguments
coeff — Principal component coefficients
matrix

Principal component coefficients, returned as a matrix the same size as V. Each column of coeff
contains coefficients for one principal component. The columns are in order of decreasing component
variance.

latent — Principal component variances
vector

Principal component variances, returned as a vector with length equal to size(coeff,1). The
vector latent contains the eigenvalues of V.

explained — Percentage of total variance explained by each principal component
vector

Percentage of the total variance explained by each principal component, returned as a vector the
same size as latent. The entries in explained range from 0 (none of the variance is explained) to
100 (all of the variance is explained).

Version History
Introduced before R2006a

References
[1] Jackson, J. E. A User's Guide to Principal Components. Hoboken, NJ: John Wiley and Sons, 1991.
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[2] Jolliffe, I. T. Principal Component Analysis. 2nd ed. New York: Springer-Verlag, 2002.

[3] Krzanowski, W. J. Principles of Multivariate Analysis: A User's Perspective. New York: Oxford
University Press, 1988.

[4] Seber, G. A. F. Multivariate Observations, Wiley, 1984.

Extended Capabilities
Tall Arrays
Calculate with arrays that have more rows than fit in memory.

pcacov and factoran do not work directly on tall arrays. Instead, use C = gather(cov(X)) to
compute the covariance matrix of a tall array. Then, you can use pcacov or factoran to work on the
in-memory covariance matrix. Alternatively, you can use pca directly on a tall array.

For more information, see “Tall Arrays for Out-of-Memory Data”.

See Also
barttest | biplot | factoran | pcares | pca
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perObservationLoss
Per observation classification error of model for incremental learning

Syntax
Err = perObservationLoss(Mdl,X,Y)
Err = perObservationLoss(Mdl,X,Y,Name=Value)

Description
Err = perObservationLoss(Mdl,X,Y) returns per observation classification error for model Mdl
trained using predictors in X and true labels in Y.

Err is an n-by-1 vector, where n is the number of observations.

Err = perObservationLoss(Mdl,X,Y,Name=Value) specifies additional options using one or
more Name=Value arguments.

Examples

Compute Per Observation Loss for Incremental Classification Model

Load the human activity data set. Randomly shuffle the data.

load humanactivity
n = numel(actid);
rng(1); % For reproducibility
idx = randsample(n,n);
X = feat(idx,:);
Y = actid(idx);

For details on the data set, enter Description at the command line.

Responses can be one of five classes: Sitting, Standing, Walking, Running, or Dancing. Dichotomize
the response by identifying whether the subject is moving (actid > 2).

Y = Y > 2;

Create an incremental linear SVM model for binary classification. Configure it for loss by specifying
the class names, prior class distribution (uniform), and arbitrary coefficient and bias values. Specify a
metrics window size of 1000 observations.

p = size(X,2);
Beta = randn(p,1);
Bias = randn(1);
Mdl = incrementalClassificationLinear('Beta',Beta,'Bias',Bias,...
    'ClassNames',unique(Y),'Prior','uniform','MetricsWindowSize',1000,'Metrics','classiferror');

Mdl is an incrementalClassificationLinear model. All its properties are read-only.
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Preallocate the number of variables in each chunk for creating a stream of data and variables to store
the performance metrics.

numObsPerChunk = 50;
nchunk = floor(n/numObsPerChunk);
L = zeros(nchunk,1); % To store loss values
PoL = zeros(nchunk,50); % To store per observation loss values

Simulate a data stream with incoming chunks of 50 observations each. At each iteration:

1 Call updateMetricsAndFit to update the performance metrics and fit the model to the
incoming data. Overwrite the previous incremental model with the new one.

2 Call loss to measure the model performance on the incoming data and perObservationLoss
to compute the classification error for each observation in the chunk of data and store the
performance metrics.

for j = 1:nchunk
    ibegin = min(n,numObsPerChunk*(j-1) + 1);
    iend   = min(n,numObsPerChunk*j);
    idx = ibegin:iend;    
    Mdl = updateMetricsAndFit(Mdl,X(idx,:),Y(idx));
    L(j) = loss(Mdl,X(idx,:),Y(idx));
    PoL(j,:) = perObservationLoss(Mdl,X(idx,:),Y(idx));
end

PerObservationLoss computes the loss for each observation in each chunk of data after the
warmup period (after IsWarm property is 1 (or true)). PoL is a nchunk-by-numObsPerChunk matrix,
which, in this example, corresponds to a 481-by-50 matrix. Each row corresponds to a chunk of
observation in the stream and each column corresponds to an observation in the corresponding
chunk. The default warmup period is 1000 observations, which corresponds to 20 chunks of incoming
data. Hence, first 20 rows of PoL only has NaN values. loss starts computing the classification error
for each chunk of data, whether the model is warm or not, so L has a loss value for the first 20 as
well.

Input Arguments
Mdl — Incremental learning model
incrementalClassificationKernel model object | incrementalClassificationLinear
model object | incrementalClassificationECOC model object |
incrementalClassificationNaiveBayes model object

Incremental learning model, specified as an incrementalClassificationKernel,
incrementalClassificationLinear, incrementalClassificationECOC, or
incrementalClassificationNaiveBayes model object. You can create Mdl directly or by
converting a supported, traditionally trained machine learning model using the
incrementalLearner function. For more details, see the corresponding reference page.

X — Chunk of predictor data
floating-point matrix

Chunk of predictor data with which to compute the per observation loss, specified as a floating-point
matrix of n observations and Mdl.NumPredictors predictor variables. The value of the
ObservationsIn name-value argument determines the orientation of the variables and
observations.
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The length of the observation labels Y and the number of observations in X must be equal; Y(j) is the
label of observation j (row or column) in X.

Note

perObservationLoss supports only floating-point input predictor data. If your input data includes
categorical data, you must prepare an encoded version of the categorical data. Use dummyvar to
convert each categorical variable to a numeric matrix of dummy variables. Then, concatenate all
dummy variable matrices and any other numeric predictors. For more details, see “Dummy Variables”
on page 2-49.

Data Types: single | double

Y — Chunk of labels
categorical array | character array | string array | logical vector | cell array of character vectors

Chunk of labels with which to compute the per observation loss, specified as a categorical, character,
or string array, logical vector, or cell array of character vectors.

The length of the observation labels Y and the number of observations in X must be equal; Y(j) is the
label of observation j (row or column) in X.

For classification problems:

• If Y contains a label that is not a member of Mdl.ClassNames, perObservationLoss issues an
error.

• The data type of Y and Mdl.ClassNames must be the same.

Data Types: char | string | cell | categorical | logical

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.
Example: ObservationsIn="columns",LossFun="hinge" specifies that the observations are in
columns and the loss function is the built-in hinge loss.

ObservationsIn — Orientation of data in X
"rows" (default) | "columns"

Orientation of data in X, specified as either "rows" or "columns".
Example: ObservationsIn="columns"

LossFun — Loss function
"classiferror" | "binodeviance" | "exponential" | "hinge" | "logit" | "quadratic" |
"mincost" | function handle

Loss function, specified as a built-in loss function name or function handle.

The following table lists the built-in loss function names.
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Name Description
"binodeviance" Binomial deviance
"classiferror" Misclassification error rate
"exponential" Exponential
"hinge" Hinge
"logit" Logistic
"quadratic" Quadratic
"mincost" Minimal expected misclassification cost (for

incrementalClassificationNaiveBayes
only)

Default is "mincost" for incrementalClassificationNaiveBayes model object and
"classiferror" for other objects.

Note You can only specify "classiferror" for incrementalClassificationECOC.

To specify a custom loss function, use function handle notation. The function must have this form:

lossval = lossfcn(C,S)

• The output argument lossval is an n-by-1 floating-point vector, where n is the number of
observations in X. The value in lossval(j) is the classification loss of observation j.

• You specify the function name (lossfcn).
• C is an n-by-K logical matrix with rows indicating the class to which the corresponding observation

belongs. K is the number of distinct classes (numel(Mdl.ClassNames)), and the column order
corresponds to the class order in the ClassNames property. Create C by setting C(p,q) = 1, if
observation p is in class q, for each observation in the specified data. Set the other elements in
row p to 0.

• S is an n-by-K numeric matrix of predicted classification scores. S is similar to the Score output of
predict, where rows correspond to observations in the data and the column order corresponds
to the class order in the ClassNames property. S(p,q) is the classification score of observation p
being classified in class q.

Example: LossFun="logit"
Example: LossFun=@lossfcn
Data Types: char | string | function_handle

Version History
Introduced in R2022a

See Also
reset | incrementalClassificationKernel | incrementalClassificationLinear |
incrementalClassificationECOC | incrementalClassificationNaiveBayes
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perObservationLoss
Per observation regression or classification error of incremental drift-aware learner

Syntax
Err = perObservationLoss(Mdl,X,Y)
Err = perObservationLoss(Mdl,X,Y,Name=Value)

Description
Err = perObservationLoss(Mdl,X,Y) returns the per observation regression or classification
error for model Mdl trained using the predictors in X and true observed values in Y.

Err is an n-by-1 vector, where n is the number of observations.

The fit function internally calls perObservationLoss during incremental drift-aware learning on
page 35-7737. perObservationLoss is suitable for using in custom workflows.

Err = perObservationLoss(Mdl,X,Y,Name=Value) specifies additional options using one or
more name-value arguments. For example, you can specify the dimension of the predictor data and
the loss function to compute.

Examples

Measure and Visualize Model Performance During Incremental Learning

Load the human activity dataset. Randomly shuffle the data.

load humanactivity;
n = numel(actid);
rng(123) % For reproducibility
idx = randsample(n,n);

For details on the data set, enter Description at the command line.

Define the predictor and response variables.

X = feat(idx,:);
Y = actid(idx);

Responses can be one of five classes: Sitting, Standing, Walking, Running, or Dancing.

Dichotomize the response by identifying whether the subject is moving (actid > 2).

Y = Y > 2;

Flip labels for the second half of the dataset to simulate drift.

Y(floor(numel(Y)/2):end,:) = ~Y(floor(numel(Y)/2):end,:);

Initiate a default incremental drift-aware model for classification as follows:
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1 Create a default incremental linear SVM model for binary classification.
2 Initiate a default incremental drift-aware model using the incremental linear SVM model as the

base learner.

BaseLearner = incrementalClassificationLinear();
idaMdl = incrementalDriftAwareLearner(BaseLearner);

idaMdl is an incrementalDriftAwareLearner model. All its properties are read-only.

Preallocate the number of variables in each chunk for creating a stream of data and the variable to
store the classification error.

numObsPerChunk = 50;
nchunk = floor(n/numObsPerChunk);
ce = array2table(zeros(nchunk,3),VariableNames=["Cumulative" "Window" "Loss"]);
PoL = zeros(nchunk,numObsPerChunk); % To store per observation loss values
driftTimes = [];

Simulate a data stream with incoming chunks of 50 observations each. At each iteration:

1 Call updateMetrics to measure the cumulative performance and the performance within a
window of observations. Overwrite the previous incremental model with a new one to track
performance metrics.

2 Call fit to fit the model to the incoming chunk. Overwrite the previous incremental model with a
new one fitted to the incoming observations.

3 Call perObservationLoss to compute classification error on each observation in the incoming
chunk of data.

4 Call loss to measure the model performance on the incoming chunk.
5 Store all performance metrics in ce to see how they evolve during incremental learning. The

Metrics property of idaMdl stores the cumulative and window classification error, which is
updated at each iteration. Store the loss values for each chunk in the third column of ce.

for j = 1:nchunk

 ibegin = min(n,numObsPerChunk*(j-1)+1);
 iend   = min(n,numObsPerChunk*j);
 idx = ibegin:iend;   

 idaMdl = updateMetrics(idaMdl,X(idx,:),Y(idx));
 idaMdl = fit(idaMdl,X(idx,:),Y(idx));

 PoL(j,:) = perObservationLoss(idaMdl,X(idx,:),Y(idx));
 ce{j,["Cumulative" "Window"]} = idaMdl.Metrics{"ClassificationError",:};
 ce{j,"Loss"} = loss(idaMdl,X(idx,:),Y(idx));
 if idaMdl.DriftDetected
    driftTimes(end+1) = j; 
 end
end

The updateMetrics function evaluates the performance of the model as it processes incoming
observations. The function writes specified metrics, measured cumulatively and within a specified
window of processed observations, to the Metrics model property. The fit function fits the model by
updating the base learner and monitoring for drift given an incoming batch of data.
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Plot the cumulative and per window classification error. Mark the warmup and training periods, and
where the drift was introduced.

h = plot(ce.Variables);
xlim([0 nchunk])
ylim([0 0.07])
ylabel("Classification Error")
xlabel("Iteration")

xline(idaMdl.MetricsWarmupPeriod/numObsPerChunk,"g-.","Warmup Period",LineWidth= 1.5)
xline(idaMdl.TrainingPeriod/numObsPerChunk,"b-.","Training Period",LabelVerticalAlignment="middle",LineWidth= 1.5)
%xline(floor(numel(Y)/2)/numObsPerChunk,"m--","Drift",LabelVerticalAlignment="middle",LineWidth= 1.5)

xline(driftTimes,"m--","Drift",LabelVerticalAlignment="middle",LineWidth=1.5)
legend(h,ce.Properties.VariableNames)
legend(h,Location="best")

The yellow line represents the classification error on each incoming chunk of data. loss is agnostic
of the metrics warm-up period, so it measures the classification error for all iterations. After the
metrics warm-up period, idaMdl tracks the cumulative and window metrics.

Plot the per observation loss.

figure()
plot(PoL,'b.');
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perObservationLoss computes the classification loss for each observation in the incoming chunk
of data.

Compute Custom Loss on Incoming Chunks of Data

Create the random concept data and the concept drift generator using the helper functions
HelperRegrGenerator and HelperConceptDriftGenerator, respectively.

concept1 = HelperRegrGenerator(NumFeatures=100,NonZeroFeatures=[1,20,40,50,55], ...
        FeatureCoefficients=[4,5,10,-2,-6],NoiseStd=1.1);
concept2 = HelperRegrGenerator(NumFeatures=100,NonZeroFeatures=[1,20,40,50,55], ...
        FeatureCoefficients=[4,7,10,-1,-5],NoiseStd=1.1);
driftGenerator = HelperConceptDriftGenerator(concept1,concept2,15000,1250);

HelperRegrGenerator generates streaming data using features and feature coefficients for
regression specified in the call to the function. At each step, the function samples the predictors from
a normal distribution. Then, it computes the response using the feature coefficients and predictor
values and adding a random noise from a normal distribution with mean zero and specified noise
standard deviation.

HelperConceptDriftGenerator establishes the concept drift. The object uses a sigmoid function
1./(1+exp(-4*(numobservations-position)./width)) to decide the probability of choosing
the first stream when generating data [3]. In this case, the position argument is 15000 and the width
argument is 1250. As the number of observations exceeds the position value minus half of the width,
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the probability of sampling from the first stream when generating data decreases. The sigmoid
function allows a smooth transition from one stream to the other. Larger width values indicate a
larger transition period where both streams are approximately equally likely to be selected.

Configure an incremental drift-aware model for regression as follows:

1 Create an incremental linear model for regression: Track the mean absolute deviation (MAD) to
measure the performance of the model. Create an anonymous function that measures the
absolute error of each new observation. Create a structure array containing the name
MeanAbsoluteError and its corresponding function. Specify a metrics warm-up period of 1000
observations. Specify a metrics window size of 500 observations.

2 Initiate an incremental concept drift detector for continuous data. Use the Hoeffding's Bounds
Drift Detection Method with moving average (HDDMA).

3 Using the incremental linear model and the concept drift detector, instantiate an incremental
drift-aware model. Specify the training period as 1000 observations.

maefcn = @(z,zfit,w)(abs(z - zfit)); % Mean absolute deviation function
maemetric = struct(MeanAbsoluteError=maefcn);

baseMdl = incrementalRegressionLinear(MetricsWarmupPeriod=1000,MetricsWindowSize=400,Metrics=maemetric,EstimationPeriod=0);
dd = incrementalConceptDriftDetector("hddma",Alternative="greater",InputType="continuous");
idaMdl = incrementalDriftAwareLearner(baseMdl,DriftDetector=dd,TrainingPeriod=2000);

Generate an initial sample of 20 observations and configure the model to predict responses by fitting
it to the initial sample.

initobs = 20;
rng(1234); % For reproducibility
[driftGenerator,X,Y] = hgenerate(driftGenerator,initobs); 
idaMdl = fit(idaMdl,X,Y);

Preallocate the number of variables in each chunk and number of iterations for creating a stream of
data, the variables to store the classification error, drift status, and drift time(s).

numObsPerChunk = 50;
numIterations = 500;

mae = array2table(zeros(numIterations,3),VariableNames=["Cumulative" "Window" "Chunk"]);
PoL = zeros(numIterations,numObsPerChunk); % Per observation loss values

driftTimes = [];
dstatus = zeros(numIterations,1);
statusname = strings(numIterations,1);

Simulate a data stream with incoming chunks of 50 observations each and perform incremental drift-
aware learning. At each iteration:

1 Simulate predictor data and labels, and update the drift generator using the helper function
hgenerate.

2 Call updateMetrics to compute cumulative and window metrics on the incoming chunk of data.
Overwrite the previous incremental model with a new one fitted to overwrite the previous
metrics.

3 Call loss to compute the MAD on the incoming chunk of data. Whereas the cumulative and
window metrics require that custom losses return the loss for each observation, loss requires
the loss on the entire chunk. Compute the mean of the absolute deviation.
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4 Call perObservationLoss to compute the per observation regression error.
5 Call fit to fit the incremental model to the incoming chunk of data.
6 Store the cumulative, window, and chunk metrics and per observation loss to see how they evolve

during incremental learning.

for j = 1:numIterations
  
  % Generate data
    [driftGenerator,X,Y] = hgenerate(driftGenerator,numObsPerChunk); 

  % Perform incremental fitting and store performance metrics  
    idaMdl = updateMetrics(idaMdl,X,Y);
    PoL(j,:) = perObservationLoss(idaMdl,X,Y,'LossFun',@(x,y,w)(maefcn(x,y)));
    mae{j,1:2} = idaMdl.Metrics{"MeanAbsoluteError",:};
    mae{j,3} = loss(idaMdl,X,Y,LossFun=@(x,y,w)mean(maefcn(x,y,w)));
    idaMdl = fit(idaMdl,X,Y);

    statusname(j) = string(idaMdl.DriftStatus);
    if idaMdl.DriftDetected
       driftTimes(end+1) = j; 
       dstatus(j) = 2;
    elseif idaMdl.WarningDetected
       dstatus(j) = 1;
    else 
       dstatus(j) = 0;
    end   

end

idaMdl is an incrementalDriftAwareLearner model object trained on all the data in the stream.
During incremental learning and after the model is warm, updateMetrics checks the performance
of the model on the incoming observations, and the fit function fits the model to those observations.

Plot the drift status.

gscatter(1:numIterations,dstatus,statusname,'gmr','*',4,'on',"Iteration","Drift Status")
xlim([0 numIterations])
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Plot the performance metrics to see how they evolved during incremental learning.

figure
h = plot(mae.Variables);
xlim([0 numIterations])
ylim([0 4])
ylabel("Mean Absolute Deviation")
xlabel("Iteration")

xline(idaMdl.MetricsWarmupPeriod/numObsPerChunk,"g-.","Warmup Period",LineWidth= 1.5)
xline(idaMdl.TrainingPeriod/numObsPerChunk,"b-.","Training Period",LabelVerticalAlignment="middle",LineWidth= 1.5)
xline(driftTimes,"m--","Drift",LabelVerticalAlignment="middle",LineWidth=1.5)
legend(h,mae.Properties.VariableNames)
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The plot suggests the following:

• updateMetrics computes the performance metrics after the metrics warm-up period only.
• updateMetrics computes the cumulative metrics during each iteration.
• updateMetrics computes the window metrics after processing 400 observations
• Because idaMdl was configured to predict observations from the beginning of incremental

learning, loss can compute the MAD on each incoming chunk of data.

Plot the per observation loss.

figure()
plot(PoL,'b.');
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perObservationLoss computes the classification loss for each observation in the incoming chunk
of data after the metrics warm-up period.

Input Arguments
Mdl — Incremental drift-aware learning model
incrementalDriftAwareLearner model object

Incremental drift-aware learning model fit to streaming data, specified as an
incrementalDriftAwareLearner model object. You can create Mdl using the
incrementalDriftAwareLearner function. For more details, see the object reference page.

X — Chunk of predictor data
floating-point matrix

Chunk of predictor data used to compute per observation loss, specified as a floating-point matrix of n
observations and Mdl.BaseLearner.NumPredictors predictor variables.

When Mdl.BaseLearner accepts the ObservationsIn name-value argument, the value of
ObservationsIn determines the orientation of the variables and observations. The default
ObservationsIn value is "rows", which indicates that observations in the predictor data are
oriented along the rows of X.

The length of the observation responses (or labels) Y and the number of observations in X must be
equal; Y(j) is the response (or label) of observation j (row or column) in X.
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Note

perObservationLoss supports only floating-point input predictor data. If your input data includes
categorical data, you must prepare an encoded version of the categorical data. Use dummyvar to
convert each categorical variable to a numeric matrix of dummy variables. Then, concatenate all
dummy variable matrices and any other numeric predictors. For more details, see “Dummy Variables”
on page 2-49.

Data Types: single | double

Y — Chunk of responses or labels
floating-point vector | categorical array | character array | string array | logical vector | cell array of
character vectors

Chunk of responses or labels used to compute per observation loss, specified as one of the following.

• Floating-point vector of n elements for regression models, where n is the number of rows in X.
• Categorical, character, or string array, logical vector, or cell array of character vectors for
classification models. If Y is a character array, it must have one class label per row. Otherwise, it
must be a vector with n elements.

The length of Y and the number of observations in X must be equal; Y(j) is the response (or label) of
observation j (row or column) in X.

For classification problems:

• If Y contains a label that is not a member of Mdl.BaseLearner.ClassNames,
perObservationLoss issues an error.

• The data type of Y and Mdl.BaseLearner.ClassNames must be the same.

Data Types: single | double | categorical | char | string | logical | cell

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.
Example: ObservationsIn="columns",LossFun="hinge" specifies that the observations are in
columns and the loss function is the built-in hinge loss.

ObservationsIn — Orientation of data in X
"rows" (default) | "columns"

Orientation of the data in X, specified as "rows" or "columns". perObservationLoss supports
ObservationsIn only if Mdl.BaseLearner supports the ObservationsIn name-value argument.
Example: ObservationsIn="columns"
Data Types: char | string

LossFun — Loss function
"squarederror" | "epsiloninsensitive" | "classiferror" | "binodeviance" |
"exponential" | "hinge" | "logit" | "quadratic" | "mincost" | function handle
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Loss function, specified as a built-in loss function name or a function handle.

The following table lists the built-in loss function names.

• For Regression Models:

Name Description
"squarederror" Squared error
"epsiloninsensitive" Epsilon-insensitive error

Default is "squarederror" for regression models.
• For Classification Models:

Name Description
"binodeviance" Binomial deviance
"classiferror" Misclassification error rate
"exponential" Exponential
"hinge" Hinge
"logit" Logistic
"quadratic" Quadratic
"mincost" Minimal expected misclassification cost (for

incrementalClassificationNaiveBayes
only)

Default is "mincost" for incrementalClassificationNaiveBayes model object and
"classiferror" for other classification objects.

Note You can only specify "classiferror" for incrementalClassificationECOC.

To specify a custom loss function, use function handle notation. The function must have one of these
forms:

• For Regression Models:

lossval = lossfcn(Y,YFit)

• The output argument lossval is a floating-point scalar.
• You specify the function name (lossfcn).
• Y is a length n numeric vector of observed responses.
• YFit is a length n numeric vector of corresponding predicted responses.

• For Classification Models:

lossval = lossfcn(C,S)

• The output argument lossval is an n-by-1 floating-point vector, where n is the number of
observations in X. The value in lossval(j) is the classification loss of observation j.

• You specify the function name (lossfcn).
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• C is an n-by-K logical matrix with rows indicating the class to which the corresponding
observation belongs. K is the number of distinct classes
(numel(Mdl.BaseLearner.ClassNames)), and the column order corresponds to the class
order in the Mdl.BaseLearner.ClassNames property. Create C by setting C(p,q) = 1, if
observation p is in class q, for each observation in the specified data. Set the other elements in
row p to 0.

• S is an n-by-K numeric matrix of predicted classification scores. S is similar to the Score
output of predict, where rows correspond to observations in the data and the column order
corresponds to the class order in the Mdl.BaseLearner.ClassNames property. S(p,q) is
the classification score of observation p being classified in class q.

Example: LossFun="logit"
Example: LossFun=@lossfcn
Data Types: char | string | function_handle

Version History
Introduced in R2022b
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See Also
fit | incrementalDriftAwareLearner | loss | updateMetrics | updateMetricsAndFit
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perObservationLoss
Per observation regression error of model for incremental learning

Syntax
Err = perObservationLoss(Mdl,X,Y)
Err = perObservationLoss(Mdl,X,Y,Name=Value)

Description
Err = perObservationLoss(Mdl,X,Y) returns per observation squared error for model Mdl
trained using predictors in X and true labels in Y.

Err is an n-by-1 vector, where n is the number of observations.

Err = perObservationLoss(Mdl,X,Y,Name=Value) specifies additional options using one or
more Name=Value arguments.

Examples

Compute Per Observation Loss for Incremental Regression Model

Load the robot arm data set. Obtain the sample size n and the number of predictor variables p.

load robotarm
n = numel(ytrain);
p = size(Xtrain,2);

For details on the data set, enter Description at the command line.

Create an incremental linear model for regression. Configure the model as follows:

• Specify a metrics warm-up period of 1000 observations.
• Specify a metrics window size of 500 observations.
• Configure the model to predict responses by specifying that all regression coefficients and the

bias are 0.

Mdl = incrementalRegressionLinear('MetricsWarmupPeriod',1000,'MetricsWindowSize',500,...
   'Beta',zeros(p,1),'Bias',0,'EstimationPeriod',0)

Mdl = 
  incrementalRegressionLinear

               IsWarm: 0
              Metrics: [1x2 table]
    ResponseTransform: 'none'
                 Beta: [32x1 double]
                 Bias: 0
              Learner: 'svm'
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  Properties, Methods

Mdl is an incrementalRegressionLinear model object configured for incremental learning. All
properties are read-only.

Preallocate the number of variables in each chunk for creating a stream of data and variables to store
the performance metrics.

numObsPerChunk = 50;
nchunk = floor(n/numObsPerChunk);
L = zeros(nchunk,1); % To store loss values
PoL = zeros(nchunk,50); % To store per observation loss values

Simulate a data stream with incoming chunks of 50 observations each. For each iteration:

1 Call updateMetricsandFit to measure the cumulative performance and the performance
within a window of observations and fit the model to the incoming data. Overwrite the previous
incremental model with the new one.

2 Call loss to compute the mean squared error on the incoming data and perObservationLoss
to compute the squared error for each observation and store the performance metrics.

for j = 1:nchunk
    ibegin = min(n,numObsPerChunk*(j-1) + 1);
    iend   = min(n,numObsPerChunk*j);
    idx = ibegin:iend;    
    Mdl = updateMetricsAndFit(Mdl,Xtrain(idx,:),ytrain(idx));
    L(j) = loss(Mdl,Xtrain(idx,:),ytrain(idx));
    PoL(j,:) = perObservationLoss(Mdl,Xtrain(idx,:),ytrain(idx));
end

PerObservationLoss computes the regression loss (squared error) for each observation in each
chunk of data after the warm up period (after IsWarm property is 1 (or true)). PoL is an nchunk-by-
numObsPerChunk matrix, which, in this example corresponds to a 143-by-50 matrix. Each row
corresponds to a window of observation in the stream and each column corresponds to an
observation in the corresponding window. The default warmup period is 1000 observations, which
corresponds to 20 chunks of incoming data. Hence, first 19 rows of PoL only has NaN values. loss
starts computing the mean squared error for each window of data, whether the model is warm or not,
so computes the regression error for the first 19 chunks as well. L is a 143-by-1 vector. Each value in
L corresponds to the mean of the squared error values in each row of PoL.

Compute the difference between L and the row mean of PoL, and display the values 20 to 25.

diff = abs(L-mean(PoL,2));
diff(20:25)

ans = 6×1
10-15 ×

    0.2220
         0
    0.2220
    0.1110
    0.1110
    0.2220
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The difference between the two vectors is negligible.

Input Arguments
Mdl — Incremental learning model
incrementalRegressionLinear model object | incrementalRegressionKernel model object

Incremental learning model, specified as an incrementalRegressionKernel or
incrementalRegressionLinear model object. You can create Mdl directly or by converting a
supported, traditionally trained machine learning model using the incrementalLearner function.
For more details, see the corresponding reference page.

X — Batch of predictor data
floating-point matrix

Batch of predictor data with which to compute the per observation loss, specified as a floating-point
matrix of n observations and Mdl.NumPredictors predictor variables. The value of the
ObservationsIn name-value argument determines the orientation of the variables and
observations.

The length of the observation labels Y and the number of observations in X must be equal; Y(j) is the
label of observation j (row or column) in X.

Note

perObservationLoss supports only floating-point input predictor data. If your input data includes
categorical data, you must prepare an encoded version of the categorical data. Use dummyvar to
convert each categorical variable to a numeric matrix of dummy variables. Then, concatenate all
dummy variable matrices and any other numeric predictors. For more details, see “Dummy Variables”
on page 2-49.

Data Types: single | double

Y — Batch of responses
floating-point vector

Batch of responses with which to compute the per observation loss, specified as a floating-point
vector.

The length of Y and the number of observations in X must be equal; Y(j) is the response for
observation j (row or column) in X.
Data Types: single | double

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.
Example: ObservationsIn="columns",LossFun="epsiloninsensitive" specifies that the
observations are in columns and the loss function is the built-in epsilon insensitive loss.
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ObservationsIn — Orientation of data in X
"rows" (default) | "columns"

Orientation of data in X, specified as either "rows" or "columns".
Example: ObservationsIn="columns"

LossFun — Loss function
"squarederror" (default) | "epsiloninsensitive" | function handle

Loss function, specified as a built-in loss function name or function handle.

Available built-in loss functions for regression are "squarederror" or "epsiloninsensitive".

To specify a custom loss function, use function handle notation. The function must have this form:

lossval = lossfcn(Y,YFit)

• The output argument lossval is a floating-point scalar.
• You specify the function name (lossfcn).
• Y is a length n numeric vector of observed responses.
• YFit is a length n numeric vector of corresponding predicted responses.

Example: LossFun="epsiloninsensitive"
Example: LossFun=@lossfcn
Data Types: char | string | function_handle

Version History
Introduced in R2022a

See Also
reset | incrementalRegressionKernel | incrementalRegressionLinear
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pcares
Residuals from principal component analysis

Syntax
residuals = pcares(X,ndim)
[residuals,reconstructed] = pcares(X,ndim)

Description
residuals = pcares(X,ndim) returns the residuals obtained by retaining ndim principal
components of the n-by-p matrix X. Rows of X correspond to observations, columns to variables. ndim
is a scalar and must be less than or equal to p. residuals is a matrix of the same size as X. Use the
data matrix, not the covariance matrix, with this function.

pcares does not normalize the columns of X. To perform the principal components analysis based on
standardized variables, that is, based on correlations, use pcares(zscore(X), ndim). You can
perform principal components analysis directly on a covariance or correlation matrix, but without
constructing residuals, by using pcacov.

[residuals,reconstructed] = pcares(X,ndim) returns the reconstructed observations; that
is, the approximation to X obtained by retaining its first ndim principal components.

Examples
This example shows the drop in the residuals from the first row of the Hald data as the number of
component dimensions increases from one to three.

load hald
r1 = pcares(ingredients,1);
r2 = pcares(ingredients,2);
r3 = pcares(ingredients,3);

r11 = r1(1,:)
r11 =
  2.0350  2.8304  -6.8378  3.0879

r21 = r2(1,:)
r21 =
  -2.4037  2.6930  -1.6482  2.3425

r31 = r3(1,:)
r31 =
  0.2008  0.1957  0.2045  0.1921

Version History
Introduced before R2006a
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See Also
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ppca
Probabilistic principal component analysis

Syntax
[coeff,score,pcvar] = ppca(Y,K)
[coeff,score,pcvar] = ppca(Y,K,Name,Value)
[coeff,score,pcvar,mu] = ppca( ___ )
[coeff,score,pcvar,mu,v,S] = ppca( ___ )

Description
[coeff,score,pcvar] = ppca(Y,K) returns the principal component coefficients for the n-by-p
data matrix Y based on a probabilistic principal component analysis on page 35-5367 (PPCA). It also
returns the principal component scores, which are the representations of Y in the principal
component space, and the principal component variances, which are the eigenvalues of the
covariance matrix of Y, in pcvar.

Each column of coeff contains coefficients for one principal component, and the columns are in
descending order of component variance. Rows of score correspond to observations, and columns
correspond to components. Rows of Y correspond to observations and columns correspond to
variables.

Probabilistic principal component analysis might be preferable to other algorithms that handle
missing data, such as the alternating least squares algorithm when any data vector has one or more
missing values. It assumes that the values are missing at random through the data set. An
expectation-maximization algorithm is used for both complete and missing data.

[coeff,score,pcvar] = ppca(Y,K,Name,Value) returns the principal component coefficients,
scores, and variances using additional options for computation and handling of special data types,
specified by one or more Name,Value pair arguments.

For example, you can introduce initial values for the residual variance, v, or change the termination
criteria.

[coeff,score,pcvar,mu] = ppca( ___ ) also returns the estimated mean of each variable in Y.
You can use any of the input arguments in the previous syntaxes.

[coeff,score,pcvar,mu,v,S] = ppca( ___ ) also returns the isotropic residual variance in v
and the final results at convergence in structure S.

Examples

Perform Probabilistic Principal Component Analysis

Load the sample data.

load fisheriris

 ppca

35-5361



The double matrix meas consists of four types of measurements on the flowers, which, respectively,
are the length and width of sepals and petals.

Introduce missing values randomly.

y = meas;
rng('default'); % for reproducibility
ix = random('unif',0,1,size(y))<0.20;
y(ix) = NaN;

Now, approximately 20% of the data is missing, indicated by NaN.

Perform probabilistic principal component analysis and request the component coefficients and
variances.

[coeff,score,pcvar,mu] = ppca(y,3);
coeff

coeff = 4×3

    0.3562    0.6709   -0.5518
   -0.0765    0.7120    0.6332
    0.8592   -0.1597    0.0596
    0.3592   -0.1318    0.5395

pcvar

pcvar = 3×1

    4.0914
    0.2125
    0.0617

Perform principal component analysis using the alternating least squares algorithm and request the
component coefficients and variances.

[coeff2,score2,pcvar2,mu2] = pca(y,'algorithm','als',...
'NumComponents',3);
coeff2

coeff2 = 4×3

    0.3376    0.4952    0.7406
   -0.0731    0.8609   -0.4476
    0.8657   -0.1168   -0.1233
    0.3623   -0.0086   -0.4857

pcvar2

pcvar2 = 3×1

    4.0733
    0.2652
    0.1222
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The coefficients and the variances of the first two principal components are similar.

Another way to compare the results is to find the angle between the two spaces spanned by the
coefficient vectors.

subspace(coeff,coeff2)

ans = 0.0884

The angle between the two spaces is pretty small. This indicates that these two results are close to
each other.

Change the Termination Criteria for Probabilistic Principal Component Analysis

Load the sample data set.

load imports-85

Data matrix X has 13 continuous variables in columns 3 to 15: wheel-base, length, width, height,
curb-weight, engine-size, bore, stroke, compression-ratio, horsepower, peak-rpm, city-mpg, and
highway-mpg. The variables bore and stroke are missing four values in rows 56 to 59, and the
variables horsepower and peak-rpm are missing two values in rows 131 and 132.

Perform probabilistic principal component analysis and display the first three principal components.

[coeff,score,pcvar] = ppca(X(:,3:15),3);

Warning: Maximum number of iterations 1000 reached.

Change the termination tolerance for the cost function to 0.01.

opt = statset('ppca');
opt.TolFun = 0.01;

Perform probabilistic principal component analysis.

[coeff,score,pcvar] = ppca(X(:,3:15),3,'Options',opt);

Warning: Maximum number of iterations 1000 reached.

ppca now terminates before the maximum number of iterations is reached because it meets the
tolerance for the cost function.

Reconstruct Observations

Load the sample data.

load hald
y = ingredients;

The ingredients data has 13 observations for 4 variables.

Introduce missing values to the data.
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y(2:16:end) = NaN;

Every 16th value is NaN. This corresponds to 7.69% of the data.

Find the first three principal components of data using PPCA and display the reconstructed
observations.

[coeff,score,pcvar,mu,v,S] = ppca(y,3);

Warning: Maximum number of iterations 1000 reached.

S.Recon

ans = 13×4

    6.8536   25.8700    5.8389   59.8730
    1.0433   28.9710   14.9654   51.9738
   11.5770   56.5067    8.6352   20.5076
   11.0835   31.0722    8.0920   47.0748
    7.0679   52.2556    6.0748   33.0598
   11.0486   55.0430    9.0534   22.0423
    2.8493   70.8691   16.8339    5.8656
    1.0333   31.0281   19.6907   44.0306
    2.0400   54.0354   18.0440   22.0349
   20.7822   46.8091    3.7603   25.8081
      ⋮

You can also reconstruct the observations using the principal components and the estimated mean.

t = score*coeff' + repmat(mu,13,1);

Results at Convergence

Load the data.

load hald

Here, ingredients is a real-valued matrix of predictor variables.

Perform the probabilistic principal components analysis and display coefficients.

[coeff,score,pcvariance,mu,v,S] = ppca(ingredients,3);

Warning: Maximum number of iterations 1000 reached.

coeff

coeff = 4×3

   -0.0693   -0.6459    0.5673
   -0.6786   -0.0184   -0.5440
    0.0308    0.7552    0.4036
    0.7306   -0.1102   -0.4684

Display the algorithm results at convergence of the PPCA.
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S

S = struct with fields:
           W: [4x3 double]
        Xexp: [13x3 double]
       Recon: [13x4 double]
           v: 0.2372
     NumIter: 1000
    RMSResid: 0.2340
      nloglk: 149.3388

Display the matrix W.

S.W

ans = 4×3

    0.5624    2.0279    5.4075
    4.8320  -10.3894    5.9202
   -3.7521   -3.0555   -4.1552
   -1.5144   11.7122   -7.2564

Orthogonalizing W recovers the coefficients.

orth(S.W)

ans = 4×3

   -0.0693    0.6459    0.5673
   -0.6786    0.0184   -0.5440
    0.0308   -0.7552    0.4036
    0.7306    0.1102   -0.4684

Input Arguments
Y — Input data
n-by-p matrix

Input data for which to compute the principal components, specified as an n-by-p matrix. Rows of Y
correspond to observations and columns correspond to variables.
Data Types: single | double

K — Number of principal components
positive integer value less than rank

Number of principal components to return, specified as an integer value less than the rank of data.
The maximum possible rank is min(n,p), where n is the number of observations and p is the number
of variables. However, if the data is correlated, the rank might be smaller than min(n,p).

ppca orders the components based on their variance.

If K is min(n,p), ppca sets K equal to min(n,p) – 1, and 'W0' is truncated to min(p,n) – 1 columns if
you specify a p-by-p W0 matrix.
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For example, you can request only the first three components, based on the component variance as
follows.
Example: coeff = ppca(Y,3)
Data Types: single | double

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: 'W0',init,'Options',opt specifies that the initial values for 'W0' are in matrix init
and ppca uses the options defined by opt.

W0 — Initial value of W
matrix of random values (default) | p-by-k matrix

Initial value of W in the probabilistic principal component analysis on page 35-5367 algorithm,
specified as a comma-separated pair consisting of 'W0' and a p-by-k matrix.
Data Types: single | double

v0 — Initial value of residual variance
random number (default) | positive scalar value

Initial value of residual variance, specified as the comma-separated pair consisting of 'v0' and a
positive scalar value.
Data Types: single | double

Options — Options for iterations
structure

Options for the iterations, specified as a comma-separated pair 'Options' and a structure created
by the statset function. ppca uses the following fields in the options structure.

'Display' Level of display output. Choices are 'off', 'final', and 'iter'.
'MaxIter' Maximum number of steps allowed. The default is 1000. Unlike in

optimization settings, reaching the MaxIter value is regarded as
convergence.

'TolFun' Positive integer stating the termination tolerance for the cost function. The
default is 1e-6.

'TolX' Positive integer stating the convergence threshold for the relative change
in the elements of W. The default is 1e-6.

You can change the values of these fields and specify the new structure in ppca using the 'Options'
name-value pair argument.
Example: opt = statset('ppca'); opt.MaxIter = 2000; coeff =
ppca(Y,3,'Options',opt);

Data Types: struct
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Output Arguments
coeff — Principal component coefficients
p-by-k matrix

Principal component coefficients, returned as a p-by-k matrix. Each column of coeff contains
coefficients for one principal component. The columns are in the order of descending component
variance, pcvar.

score — Principal component scores
n-by-k matrix

Principal component scores, returned as an n-by-k matrix. Rows of score correspond to
observations, and columns correspond to components.

pcvar — Principal component variances
column vector

Principal component variances, which are the eigenvalues of the covariance matrix of Y, returned as
a column vector.

mu — Estimated mean
row vector

Estimated mean of each variable in Y, returned as a row vector.

v — Isotropic residual variance
scalar value

Isotropic residual variance, returned as a scalar value.

S — Final results at convergence
structure

Final results at convergence, returned as a structure containing the following fields.

W W at convergence.
Xexp Conditional expectation of the estimated latent variable x.
Recon Reconstructed observations using k principal components. This is a low

dimension approximation of the input data Y, and is equal to mu +
score*coeff'.

v Residual variance.
RMSResid Root mean square of residuals.
NumIter Number of iteration counts.
nloglk Negative loglikelihood function value.

More About
Probabilistic Principal Component Analysis

Probabilistic principal component analysis (PPCA) is a method to estimate the principal axes when
any data vector has one or more missing values.

 ppca

35-5367



PPCA is based on an isotropic error model. It seeks to relate a p-dimensional observation vector y to a
corresponding k-dimensional vector of latent (or unobserved) variable x, which is normal with mean
zero and covariance I(k). The relationship is

yT = W ∗ xT + μ + ε,

where y is the row vector of observed variable, x is the row vector of latent variables, and ε is the
isotropic error term. ε is Gaussian with mean zero and covariance of v*I(k), where v is the residual
variance. Here, k needs to be smaller than the rank for the residual variance to be greater than 0
(v>0). Standard principal component analysis, where the residual variance is zero, is the limiting
case of PPCA. The observed variables, y, are conditionally independent given the values of the latent
variables, x. So, the latent variables explain the correlations between the observation variables and
the error explains the variability unique to a particular yi. The p-by-k matrix W relates the latent and
observation variables, and the vector μ permits the model to have a nonzero mean. PPCA assumes
that the values are missing at random through the data set. This means that whether a data value is
missing or not does not depend on the latent variable given the observed data values.

Under this model,

y N μ, W * WT + v * I k .

There is no closed-form analytical solution for W and v, so their estimates are determined by iterative
maximization of the corresponding loglikelihood using an expectation-maximization (EM) algorithm.
This EM algorithm handles missing values by treating them as additional latent variables. At
convergence, the columns of W spans the subspace, but they are not orthonormal. ppca obtains the
orthonormal coefficients, coeff, for the components by orthogonalization of W.

Version History
Introduced in R2013a

References
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See Also
pca | pcacov | pcares | biplot | barttest | canoncorr | factoran | rotatefactors
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pdf
Package: prob

Probability density function

Syntax
y = pdf(name,x,A)
y = pdf(name,x,A,B)
y = pdf(name,x,A,B,C)
y = pdf(name,x,A,B,C,D)

y = pdf(pd,x)

Description
y = pdf(name,x,A) returns the probability density function (pdf) for the one-parameter
distribution family specified by name and the distribution parameter A, evaluated at the values in x.

y = pdf(name,x,A,B) returns the pdf for the two-parameter distribution family specified by name
and the distribution parameters A and B, evaluated at the values in x.

y = pdf(name,x,A,B,C) returns the pdf for the three-parameter distribution family specified by
name and the distribution parameters A, B, and C, evaluated at the values in x.

y = pdf(name,x,A,B,C,D) returns the pdf for the four-parameter distribution family specified by
name and the distribution parameters A, B, C, and D, evaluated at the values in x.

y = pdf(pd,x) returns the pdf of the probability distribution object pd, evaluated at the values in
x.

Examples

Compute Normal Distribution pdf by Specifying Distribution Name and Parameters

Compute the pdf values for a normal distribution by specifying the distribution name 'Normal' and
the distribution parameters.

Define the input vector x to contain the values at which to calculate the pdf.

x = [-2 -1 0 1 2];

Compute the pdf values for the normal distribution with the mean μ equal to 1 and the standard
deviation σ equal to 5.

mu = 1;
sigma = 5;
y = pdf('Normal',x,mu,sigma)

y = 1×5

 pdf
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    0.0666    0.0737    0.0782    0.0798    0.0782

Each value in y corresponds to a value in the input vector x. For example, at the value x equal to 1,
the corresponding pdf value y is equal to 0.0798.

Compute Normal Distribution pdf Using Distribution Object

Create a normal distribution object and compute the pdf values of the normal distribution using the
object.

Create a normal distribution object with the mean μ equal to 1 and the standard deviation σ equal to
5.

mu = 1;
sigma = 5;
pd = makedist('Normal','mu',mu,'sigma',sigma);

Define the input vector x to contain the values at which to calculate the pdf.

x = [-2 -1 0 1 2];

Compute the pdf values for the normal distribution at the values in x.

y = pdf(pd,x)

y = 1×5

    0.0666    0.0737    0.0782    0.0798    0.0782

Each value in y corresponds to a value in the input vector x. For example, at the value x equal to 1,
the corresponding pdf value y is equal to 0.0798.

Compute the Poisson Distribution pdf

Create a Poisson distribution object with the rate parameter, λ, equal to 2.

lambda = 2;
pd = makedist('Poisson','lambda',lambda);

Define the input vector x to contain the values at which to calculate the pdf.

x = [0 1 2 3 4];

Compute the pdf values for the Poisson distribution at the values in x.

y = pdf(pd,x)

y = 1×5

    0.1353    0.2707    0.2707    0.1804    0.0902
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Each value in y corresponds to a value in the input vector x. For example, at the value x equal to 3,
the corresponding pdf value in y is equal to 0.1804.

Alternatively, you can compute the same pdf values without creating a probability distribution object.
Use the pdf function, and specify a Poisson distribution using the same value for the rate parameter,
λ.

y2 = pdf('Poisson',x,lambda)

y2 = 1×5

    0.1353    0.2707    0.2707    0.1804    0.0902

The pdf values are the same as those computed using the probability distribution object.

Plot the pdf of a Standard Normal Distribution

Create a standard normal distribution object.

pd = makedist('Normal')

pd = 
  NormalDistribution

  Normal distribution
       mu = 0
    sigma = 1

Specify the x values and compute the pdf.

x = -3:.1:3;
pdf_normal = pdf(pd,x);

Plot the pdf.

plot(x,pdf_normal,'LineWidth',2)
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Plot pdf of Weibull Distribution

Create a Weibull probability distribution object.

pd = makedist('Weibull','A',5,'B',2)

pd = 
  WeibullDistribution

  Weibull distribution
    A = 5
    B = 2

Specify the x values and compute the pdf.

x = 0:.1:15;
y = pdf(pd,x);

Plot the pdf.

plot(x,y,'LineWidth',2)
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Input Arguments
name — Probability distribution name
character vector or string scalar of probability distribution name

Probability distribution name, specified as one of the probability distribution names in this table.

name Distribution Input
Parameter A

Input
Parameter B

Input
Parameter C

Input
Parameter D

'Beta' “Beta Distribution” on
page B-6

a first shape
parameter

b second
shape
parameter

N/A N/A

'Binomial' “Binomial
Distribution” on page
B-10

n number of
trials

p probability
of success for
each trial

N/A N/A

'BirnbaumSaunders
'

“Birnbaum-Saunders
Distribution” on page
B-18

β scale
parameter

γ shape
parameter

N/A N/A

'Burr' “Burr Type XII
Distribution” on page
B-19

α scale
parameter

c first shape
parameter

k second
shape
parameter

N/A
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name Distribution Input
Parameter A

Input
Parameter B

Input
Parameter C

Input
Parameter D

'Chisquare' or
'chi2'

“Chi-Square
Distribution” on page
B-29

ν degrees of
freedom

N/A N/A N/A

'Exponential' “Exponential
Distribution” on page
B-34

μ mean N/A N/A N/A

'Extreme Value' or
'ev'

“Extreme Value
Distribution” on page
B-41

μ location
parameter

σ scale
parameter

N/A N/A

'F' “F Distribution” on
page B-46

ν1 numerator
degrees of
freedom

ν2
denominator
degrees of
freedom

N/A N/A

'Gamma' “Gamma Distribution”
on page B-48

a shape
parameter

b scale
parameter

N/A N/A

'Generalized
Extreme Value' or
'gev'

“Generalized Extreme
Value Distribution” on
page B-56

k shape
parameter

σ scale
parameter

μ location
parameter

N/A

'Generalized
Pareto' or 'gp'

“Generalized Pareto
Distribution” on page
B-60

k tail index
(shape)
parameter

σ scale
parameter

μ threshold
(location)
parameter

N/A

'Geometric' “Geometric
Distribution” on page
B-64

p probability
parameter

N/A N/A N/A

'Half Normal' or
'hn'

“Half-Normal
Distribution” on page
B-69

μ location
parameter

σ scale
parameter

N/A N/A

'Hypergeometric'
or 'hyge'

“Hypergeometric
Distribution” on page
B-74

m size of the
population

k number of
items with the
desired
characteristic
in the
population

n number of
samples drawn

N/A

'InverseGaussian' “Inverse Gaussian
Distribution” on page
B-76

μ scale
parameter

λ shape
parameter

N/A N/A

'Logistic' “Logistic Distribution”
on page B-86

μ mean σ scale
parameter

N/A N/A

'LogLogistic' “Loglogistic
Distribution” on page
B-87

μ mean of
logarithmic
values

σ scale
parameter of
logarithmic
values

N/A N/A
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name Distribution Input
Parameter A

Input
Parameter B

Input
Parameter C

Input
Parameter D

'LogNormal' “Lognormal
Distribution” on page
B-89

μ mean of
logarithmic
values

σ standard
deviation of
logarithmic
values

N/A N/A

'Loguniform' “Loguniform
Distribution” on page
B-97

a lower
endpoint
(minimum)

b upper
endpoint
(maximum)

N/A N/A

'Nakagami' “Nakagami
Distribution” on page
B-114

μ shape
parameter

ω scale
parameter

N/A N/A

'Negative
Binomial' or 'nbin'

“Negative Binomial
Distribution” on page
B-115

r number of
successes

p probability
of success in a
single trial

N/A N/A

'Noncentral F' or
'ncf'

“Noncentral F
Distribution” on page
B-121

ν1 numerator
degrees of
freedom

ν2
denominator
degrees of
freedom

δ noncentrality
parameter

N/A

'Noncentral t' or
'nct'

“Noncentral t
Distribution” on page
B-123

ν degrees of
freedom

δ noncentrality
parameter

N/A N/A

'Noncentral Chi-
square' or 'ncx2'

“Noncentral Chi-
Square Distribution”
on page B-119

ν degrees of
freedom

δ noncentrality
parameter

N/A N/A

'Normal' “Normal Distribution”
on page B-125

μ mean σ standard
deviation

N/A N/A

'Poisson' “Poisson Distribution”
on page B-137

λ mean N/A N/A N/A

'Rayleigh' “Rayleigh
Distribution” on page
B-143

b scale
parameter

N/A N/A N/A

'Rician' “Rician Distribution”
on page B-145

s noncentrality
parameter

σ scale
parameter

N/A N/A

'Stable' “Stable Distribution”
on page B-147

α first shape
parameter

β second
shape
parameter

γ scale
parameter

δ location
parameter

'T' “Student's t
Distribution” on page
B-156

ν degrees of
freedom

N/A N/A N/A

'tLocationScale' “t Location-Scale
Distribution” on page
B-163

μ location
parameter

σ scale
parameter

ν shape
parameter

N/A

'Uniform' “Uniform Distribution
(Continuous)” on page
B-170

a lower
endpoint
(minimum)

b upper
endpoint
(maximum)

N/A N/A
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name Distribution Input
Parameter A

Input
Parameter B

Input
Parameter C

Input
Parameter D

'Discrete
Uniform' or 'unid'

“Uniform Distribution
(Discrete)” on page B-
175

n maximum
observable
value

N/A N/A N/A

'Weibull' or 'wbl' “Weibull Distribution”
on page B-177

a scale
parameter

b shape
parameter

N/A N/A

Example: 'Normal'

x — Values at which to evaluate pdf
scalar value | array of scalar values

Values at which to evaluate the pdf, specified as a scalar value or an array of scalar values.

If one or more of the input arguments x, A, B, C, and D are arrays, then the array sizes must be the
same. In this case, pdf expands each scalar input into a constant array of the same size as the array
inputs. See name for the definitions of A, B, C, and D for each distribution.
Example: [-1,0,3,4]
Data Types: single | double

A — First probability distribution parameter
scalar value | array of scalar values

First probability distribution parameter, specified as a scalar value or an array of scalar values.

If one or more of the input arguments x, A, B, C, and D are arrays, then the array sizes must be the
same. In this case, pdf expands each scalar input into a constant array of the same size as the array
inputs. See name for the definitions of A, B, C, and D for each distribution.
Data Types: single | double

B — Second probability distribution parameter
scalar value | array of scalar values

Second probability distribution parameter, specified as a scalar value or an array of scalar values.

If one or more of the input arguments x, A, B, C, and D are arrays, then the array sizes must be the
same. In this case, pdf expands each scalar input into a constant array of the same size as the array
inputs. See name for the definitions of A, B, C, and D for each distribution.
Data Types: single | double

C — Third probability distribution parameter
scalar value | array of scalar values

Third probability distribution parameter, specified as a scalar value or an array of scalar values.

If one or more of the input arguments x, A, B, C, and D are arrays, then the array sizes must be the
same. In this case, pdf expands each scalar input into a constant array of the same size as the array
inputs. See name for the definitions of A, B, C, and D for each distribution.
Data Types: single | double
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D — Fourth probability distribution parameter
scalar value | array of scalar values

Fourth probability distribution parameter, specified as a scalar value or an array of scalar values.

If one or more of the input arguments x, A, B, C, and D are arrays, then the array sizes must be the
same. In this case, pdf expands each scalar input into a constant array of the same size as the array
inputs. See name for the definitions of A, B, C, and D for each distribution.
Data Types: single | double

pd — Probability distribution
probability distribution object

Probability distribution, specified as one of the probability distribution objects in this table.

Distribution Object Function or App to Create Probability
Distribution Object

BetaDistribution makedist, fitdist, Distribution Fitter
BinomialDistribution makedist, fitdist, Distribution Fitter
BirnbaumSaundersDistribution makedist, fitdist, Distribution Fitter
BurrDistribution makedist, fitdist, Distribution Fitter
ExponentialDistribution makedist, fitdist, Distribution Fitter
ExtremeValueDistribution makedist, fitdist, Distribution Fitter
GammaDistribution makedist, fitdist, Distribution Fitter
GeneralizedExtremeValueDistribution makedist, fitdist, Distribution Fitter
GeneralizedParetoDistribution makedist, fitdist, Distribution Fitter
HalfNormalDistribution makedist, fitdist, Distribution Fitter
InverseGaussianDistribution makedist, fitdist, Distribution Fitter
KernelDistribution fitdist, Distribution Fitter
LogisticDistribution makedist, fitdist, Distribution Fitter
LoglogisticDistribution makedist, fitdist, Distribution Fitter
LognormalDistribution makedist, fitdist, Distribution Fitter
LoguniformDistribution makedist
MultinomialDistribution makedist
NakagamiDistribution makedist, fitdist, Distribution Fitter
NegativeBinomialDistribution makedist, fitdist, Distribution Fitter
NormalDistribution makedist, fitdist, Distribution Fitter
Piecewise distribution with generalized Pareto
distributions in the tails

paretotails

PiecewiseLinearDistribution makedist
PoissonDistribution makedist, fitdist, Distribution Fitter
RayleighDistribution makedist, fitdist, Distribution Fitter
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Distribution Object Function or App to Create Probability
Distribution Object

RicianDistribution makedist, fitdist, Distribution Fitter
StableDistribution makedist, fitdist, Distribution Fitter
tLocationScaleDistribution makedist, fitdist, Distribution Fitter
TriangularDistribution makedist
UniformDistribution makedist
WeibullDistribution makedist, fitdist, Distribution Fitter

Output Arguments
y — pdf values
scalar value | array of scalar values

pdf values, returned as a scalar value or an array of scalar values. y is the same size as x after any
necessary scalar expansion. Each element in y is the pdf value of the distribution, specified by the
corresponding elements in the distribution parameters (A, B, C, and D) or specified by the probability
distribution object (pd), evaluated at the corresponding element in x.

Alternative Functionality
• pdf is a generic function that accepts either a distribution by its name name or a probability

distribution object pd. It is faster to use a distribution-specific function, such as normpdf for the
normal distribution and binopdf for the binomial distribution. For a list of distribution-specific
functions, see “Supported Distributions” on page 5-16.

• Use the Probability Distribution Function app to create an interactive plot of the cumulative
distribution function (cdf) or probability density function (pdf) for a probability distribution.

Version History
Introduced before R2006a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• The input argument name must be a compile-time constant. For example, to use the normal
distribution, include coder.Constant('Normal') in the -args value of codegen.

• The input argument pd can be a fitted probability distribution object for beta, exponential,
extreme value, lognormal, normal, and Weibull distributions. Create pd by fitting a probability
distribution to sample data from the fitdist function. For an example, see “Code Generation for
Probability Distribution Objects” on page 34-94.

For more information on code generation, see “Introduction to Code Generation” on page 34-2 and
“General Code Generation Workflow” on page 34-5.
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GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

This function fully supports GPU arrays. For more information, see “Run MATLAB Functions on a
GPU” (Parallel Computing Toolbox).

See Also
cdf | icdf | mle | random | makedist | fitdist | Distribution Fitter | paretotails

Topics
“Working with Probability Distributions” on page 5-3
“Supported Distributions” on page 5-16
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pdf
Probability density function for Gaussian mixture distribution

Syntax
y = pdf(gm,X)

Description
y = pdf(gm,X) returns the probability density function (pdf) of the Gaussian mixture distribution
gm, evaluated at the values in X.

Examples

Compute pdf Values

Create a gmdistribution object and compute its pdf values.

Define the distribution parameters (means and covariances) of a two-component bivariate Gaussian
mixture distribution.

mu = [1 2;-3 -5];
sigma = [1 1]; % shared diagonal covariance matrix

Create a gmdistribution object by using the gmdistribution function. By default, the function
creates an equal proportion mixture.

gm = gmdistribution(mu,sigma)

gm = 

Gaussian mixture distribution with 2 components in 2 dimensions
Component 1:
Mixing proportion: 0.500000
Mean:     1     2

Component 2:
Mixing proportion: 0.500000
Mean:    -3    -5

Compute the pdf values of gm.

X = [0 0;1 2;3 3;5 3];
pdf(gm,X)

ans = 4×1

    0.0065
    0.0796
    0.0065
    0.0000
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Plot pdf

Create a gmdistribution object and plot its pdf.

Define the distribution parameters (means, covariances, and mixing proportions) of two bivariate
Gaussian mixture components.

p = [0.4 0.6];               % Mixing proportions     
mu = [1 2;-3 -5];            % Means
sigma = cat(3,[2 .5],[1 1])  % Covariances 1-by-2-by-2 array

sigma = 
sigma(:,:,1) =

    2.0000    0.5000

sigma(:,:,2) =

     1     1

The cat function concatenates the covariances along the third array dimension. The defined
covariance matrices are diagonal matrices. sigma(1,:,i) contains the diagonal elements of the
covariance matrix of component i.

Create a gmdistribution object by using the gmdistribution function.

gm = gmdistribution(mu,sigma)

gm = 

Gaussian mixture distribution with 2 components in 2 dimensions
Component 1:
Mixing proportion: 0.500000
Mean:     1     2

Component 2:
Mixing proportion: 0.500000
Mean:    -3    -5

Plot the pdf of the Gaussian mixture distribution by using fsurf.

gmPDF = @(x,y) arrayfun(@(x0,y0) pdf(gm,[x0 y0]),x,y);
fsurf(gmPDF,[-10 10])
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Input Arguments
gm — Gaussian mixture distribution
gmdistribution object

Gaussian mixture distribution, also called Gaussian mixture model (GMM), specified as a
gmdistribution object.

You can create a gmdistribution object using gmdistribution or fitgmdist. Use the
gmdistribution function to create a gmdistribution object by specifying the distribution
parameters. Use the fitgmdist function to fit a gmdistribution model to data given a fixed
number of components.

X — Values at which to evaluate pdf
n-by-m numeric matrix

Values at which to evaluate the pdf, specified as an n-by-m numeric matrix, where n is the number of
observations and m is the number of variables in each observation.
Data Types: single | double

Output Arguments
y — pdf values
n-by-1 numeric vector
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pdf values of the Gaussian mixture distribution gm, evaluated at X, returned as an n-by-1 numeric
vector, where n is the number of observations in X.

The pdf function computes the pdf values by using the likelihood of each component given each
observation and the component probabilities.

y(i) = ∑
j = 1

k
L(C j Oi)P(C j),

where L(Cj|Oj) is the likelihood of component j given observation i, and P(Cj) is the probability of
component j. The pdf function computes the likelihood term by using the multivariate normal pdf of
the jth Gaussian mixture component evaluated at observation i. The component probabilities are the
mixing proportions of mixture components, the ComponentProportion property of gm.

Version History
Introduced in R2007b

See Also
gmdistribution | fitgmdist | cdf | mvnpdf | random

Topics
“Create Gaussian Mixture Model” on page 5-120
“Fit Gaussian Mixture Model to Data” on page 5-123
“Simulate Data from Gaussian Mixture Model” on page 5-127
“Cluster Using Gaussian Mixture Model” on page 17-39
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pdist
Pairwise distance between pairs of observations

Syntax
D = pdist(X)
D = pdist(X,Distance)
D = pdist(X,Distance,DistParameter)

Description
D = pdist(X) returns the Euclidean distance between pairs of observations in X.

D = pdist(X,Distance) returns the distance by using the method specified by Distance.

D = pdist(X,Distance,DistParameter) returns the distance by using the method specified by
Distance and DistParameter. You can specify DistParameter only when Distance is
'seuclidean', 'minkowski', or 'mahalanobis'.

Examples

Compute Euclidean Distance and Convert Distance Vector to Matrix

Compute the Euclidean distance between pairs of observations, and convert the distance vector to a
matrix using squareform.

Create a matrix with three observations and two variables.

rng('default') % For reproducibility
X = rand(3,2);

Compute the Euclidean distance.

D = pdist(X)

D = 1×3

    0.2954    1.0670    0.9448

The pairwise distances are arranged in the order (2,1), (3,1), (3,2). You can easily locate the distance
between observations i and j by using squareform.

Z = squareform(D)

Z = 3×3

         0    0.2954    1.0670
    0.2954         0    0.9448
    1.0670    0.9448         0
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squareform returns a symmetric matrix where Z(i,j) corresponds to the pairwise distance
between observations i and j. For example, you can find the distance between observations 2 and 3.

Z(2,3)

ans = 0.9448

Pass Z to the squareform function to reproduce the output of the pdist function.

y = squareform(Z)

y = 1×3

    0.2954    1.0670    0.9448

The outputs y from squareform and D from pdist are the same.

Compute Minkowski Distance

Create a matrix with three observations and two variables.

rng('default') % For reproducibility
X = rand(3,2);

Compute the Minkowski distance with the default exponent 2.

D1 = pdist(X,'minkowski')

D1 = 1×3

    0.2954    1.0670    0.9448

Compute the Minkowski distance with an exponent of 1, which is equal to the city block distance.

D2 = pdist(X,'minkowski',1)

D2 = 1×3

    0.3721    1.5036    1.3136

D3 = pdist(X,'cityblock')

D3 = 1×3

    0.3721    1.5036    1.3136

Compute Pairwise Distance with Missing Elements Using a Custom Distance Function

Define a custom distance function that ignores coordinates with NaN values, and compute pairwise
distance by using the custom distance function.
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Create a matrix with three observations and two variables.

rng('default') % For reproducibility
X = rand(3,2);

Assume that the first element of the first observation is missing.

X(1,1) = NaN;

Compute the Euclidean distance.

D1 = pdist(X)

D1 = 1×3

       NaN       NaN    0.9448

If observation i or j contains NaN values, the function pdist returns NaN for the pairwise distance
between i and j. Therefore, D1(1) and D1(2), the pairwise distances (2,1) and (3,1), are NaN values.

Define a custom distance function naneucdist that ignores coordinates with NaN values and returns
the Euclidean distance.

function D2 = naneucdist(XI,XJ)  
%NANEUCDIST Euclidean distance ignoring coordinates with NaNs
n = size(XI,2);
sqdx = (XI-XJ).^2;
nstar = sum(~isnan(sqdx),2); % Number of pairs that do not contain NaNs
nstar(nstar == 0) = NaN; % To return NaN if all pairs include NaNs
D2squared = sum(sqdx,2,'omitnan').*n./nstar; % Correction for missing coordinates
D2 = sqrt(D2squared);

Compute the distance with naneucdist by passing the function handle as an input argument of
pdist.

D2 = pdist(X,@naneucdist)

D2 = 1×3

    0.3974    1.1538    0.9448

Input Arguments
X — Input data
numeric matrix

Input data, specified as a numeric matrix of size m-by-n. Rows correspond to individual observations,
and columns correspond to individual variables.
Data Types: single | double

Distance — Distance metric
character vector | string scalar | function handle
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Distance metric, specified as a character vector, string scalar, or function handle, as described in the
following table.

Value Description
'euclidean' Euclidean distance (default).
'squaredeuclidean' Squared Euclidean distance. (This option is provided for efficiency only.

It does not satisfy the triangle inequality.)
'seuclidean' Standardized Euclidean distance. Each coordinate difference between

observations is scaled by dividing by the corresponding element of the
standard deviation, S = std(X,'omitnan'). Use DistParameter
to specify another value for S.

'mahalanobis' Mahalanobis distance using the sample covariance of X, C =
cov(X,'omitrows'). Use DistParameter to specify another value
for C, where the matrix C is symmetric and positive definite.

'cityblock' City block distance.
'minkowski' Minkowski distance. The default exponent is 2. Use DistParameter

to specify a different exponent P, where P is a positive scalar value of
the exponent.

'chebychev' Chebychev distance (maximum coordinate difference).
'cosine' One minus the cosine of the included angle between points (treated as

vectors).
'correlation' One minus the sample correlation between points (treated as

sequences of values).
'hamming' Hamming distance, which is the percentage of coordinates that differ.
'jaccard' One minus the Jaccard coefficient, which is the percentage of nonzero

coordinates that differ.
'spearman' One minus the sample Spearman's rank correlation between

observations (treated as sequences of values).
@distfun Custom distance function handle. A distance function has the form

function D2 = distfun(ZI,ZJ)
% calculation of distance
...

where

• ZI is a 1-by-n vector containing a single observation.
• ZJ is an m2-by-n matrix containing multiple observations. distfun

must accept a matrix ZJ with an arbitrary number of observations.
• D2 is an m2-by-1 vector of distances, and D2(k) is the distance

between observations ZI and ZJ(k,:).

If your data is not sparse, you can generally compute distance more
quickly by using a built-in distance instead of a function handle.

For definitions, see “Distance Metrics” on page 35-5388.
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When you use 'seuclidean', 'minkowski', or 'mahalanobis', you can specify an additional
input argument DistParameter to control these metrics. You can also use these metrics in the same
way as the other metrics with a default value of DistParameter.
Example: 'minkowski'

DistParameter — Distance metric parameter values
positive scalar | numeric vector | numeric matrix

Distance metric parameter values, specified as a positive scalar, numeric vector, or numeric matrix.
This argument is valid only when you specify Distance as 'seuclidean', 'minkowski', or
'mahalanobis'.

• If Distance is 'seuclidean', DistParameter is a vector of scaling factors for each dimension,
specified as a positive vector. The default value is std(X,'omitnan').

• If Distance is 'minkowski', DistParameter is the exponent of Minkowski distance, specified
as a positive scalar. The default value is 2.

• If Distance is 'mahalanobis', DistParameter is a covariance matrix, specified as a numeric
matrix. The default value is cov(X,'omitrows'). DistParameter must be symmetric and
positive definite.

Example: 'minkowski',3
Data Types: single | double

Output Arguments
D — Pairwise distances
numeric row vector

Pairwise distances, returned as a numeric row vector of length m(m–1)/2, corresponding to pairs of
observations, where m is the number of observations in X.

The distances are arranged in the order (2,1), (3,1), ..., (m,1), (3,2), ..., (m,2), ..., (m,m–1), i.e., the
lower-left triangle of the m-by-m distance matrix in column order. The pairwise distance between
observations i and j is in D((i-1)*(m-i/2)+j-i) for i≤j.

You can convert D into a symmetric matrix by using the squareform function. Z = squareform(D)
returns an m-by-m matrix where Z(i,j) corresponds to the pairwise distance between observations i
and j.

If observation i or j contains NaNs, then the corresponding value in D is NaN for the built-in distance
functions.

D is commonly used as a dissimilarity matrix in clustering or multidimensional scaling. For details,
see “Hierarchical Clustering” on page 17-6 and the function reference pages for cmdscale,
cophenet, linkage, mdscale, and optimalleaforder. These functions take D as an input
argument.

More About
Distance Metrics

A distance metric is a function that defines a distance between two observations. pdist supports
various distance metrics: Euclidean distance, standardized Euclidean distance, Mahalanobis distance,
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city block distance, Minkowski distance, Chebychev distance, cosine distance, correlation distance,
Hamming distance, Jaccard distance, and Spearman distance.

Given an m-by-n data matrix X, which is treated as m (1-by-n) row vectors x1, x2, ..., xm, the various
distances between the vector xs and xt are defined as follows:

• Euclidean distance

dst
2 = (xs− xt)(xs− xt)′ .

The Euclidean distance is a special case of the Minkowski distance, where p = 2.
• Standardized Euclidean distance

dst
2 = (xs− xt)V−1(xs− xt)′,

where V is the n-by-n diagonal matrix whose jth diagonal element is (S(j))2, where S is a vector of
scaling factors for each dimension.

• Mahalanobis distance

dst
2 = (xs− xt)C−1(xs− xt)′,

where C is the covariance matrix.
• City block distance

dst = ∑
j = 1

n
xs j− xt j .

The city block distance is a special case of the Minkowski distance, where p = 1.
• Minkowski distance

dst = ∑
j = 1

n
xs j− xt j

pp .

For the special case of p = 1, the Minkowski distance gives the city block distance. For the special
case of p = 2, the Minkowski distance gives the Euclidean distance. For the special case of p = ∞,
the Minkowski distance gives the Chebychev distance.

• Chebychev distance

dst = max j xs j− xt j .

The Chebychev distance is a special case of the Minkowski distance, where p = ∞.
• Cosine distance

dst = 1−
xsx′t

xsx′s xtx′t
.

• Correlation distance

dst = 1−
xs− xs xt − xt ′

xs− xs xs− xs ′ xt− xt xt − xt ′ ,
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where

xs = 1
n∑j xs j and xt = 1

n∑j xt j.

• Hamming distance

dst = ( # (xs j ≠ xt j)/n) .

• Jaccard distance

dst =
# xs j ≠ xt j ∩ xs j ≠ 0 ∪ xt j ≠ 0

# xs j ≠ 0 ∪ xt j ≠ 0
.

• Spearman distance

dst = 1−
rs− r s rt − r t ′

rs− r s rs− r s ′ rt − r t rt− r t ′ ,

where

• rsj is the rank of xsj taken over x1j, x2j, ...xmj, as computed by tiedrank.
• rs and rt are the coordinate-wise rank vectors of xs and xt, i.e., rs = (rs1, rs2, ... rsn).
• r s = 1

n∑j rs j = n + 1
2 .

• r t = 1
n∑j rt j = n + 1

2 .

Version History
Introduced before R2006a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• The distance input argument value (Distance) must be a compile-time constant. For example, to
use the Minkowski distance, include coder.Constant('Minkowski') in the -args value of
codegen.

• The distance input argument value (Distance) cannot be a custom distance function.
• The generated code of pdist uses parfor to create loops that run in parallel on supported

shared-memory multicore platforms in the generated code. If your compiler does not support the
Open Multiprocessing (OpenMP) application interface or you disable OpenMP library, MATLAB
Coder treats the parfor-loops as for-loops. To find supported compilers, see https://
www.mathworks.com/support/compilers/current_release/. To disable OpenMP library,
set the EnableOpenMP property of the configuration object to false. For details, see
coder.CodeConfig.
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For more information on code generation, see “Introduction to Code Generation” on page 34-2 and
“General Code Generation Workflow” on page 34-5.

GPU Code Generation
Generate CUDA® code for NVIDIA® GPUs using GPU Coder™.

Usage notes and limitations:

• The supported distance input argument values (Distance) for optimized CUDA code are
'euclidean', 'squaredeuclidean', 'seuclidean', 'cityblock', 'minkowski',
'chebychev', 'cosine', 'correlation', 'hamming', and 'jaccard'.

• Distance cannot be a custom distance function.
• Distance must be a compile-time constant.

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

Usage notes and limitations:

• The distance input argument value (Distance) cannot be a custom distance function.

For more information, see “Run MATLAB Functions on a GPU” (Parallel Computing Toolbox).

See Also
cluster | clusterdata | cmdscale | cophenet | dendrogram | inconsistent | linkage |
pdist2 | silhouette | squareform

Topics
“Choose Cluster Analysis Method” on page 17-2
“Hierarchical Clustering” on page 17-6
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pdist2
Pairwise distance between two sets of observations

Syntax
D = pdist2(X,Y,Distance)

D = pdist2(X,Y,Distance,DistParameter)

D = pdist2( ___ ,Name,Value)
[D,I] = pdist2( ___ ,Name,Value)

Description
D = pdist2(X,Y,Distance) returns the distance between each pair of observations in X and Y
using the metric specified by Distance.

D = pdist2(X,Y,Distance,DistParameter) returns the distance using the metric specified by
Distance and DistParameter. You can specify DistParameter only when Distance is
'seuclidean', 'minkowski', or 'mahalanobis'.

D = pdist2( ___ ,Name,Value) specifies an additional option using one of the name-value pair
arguments 'Smallest' or 'Largest' in addition to any of the arguments in the previous syntaxes.

For example,

• D = pdist2(X,Y,Distance,'Smallest',K) computes the distance using the metric specified
by Distance and returns the K smallest pairwise distances to observations in X for each
observation in Y in ascending order.

• D = pdist2(X,Y,Distance,DistParameter,'Largest',K) computes the distance using the
metric specified by Distance and DistParameter and returns the K largest pairwise distances
in descending order.

[D,I] = pdist2( ___ ,Name,Value) also returns the matrix I. The matrix I contains the indices
of the observations in X corresponding to the distances in D.

Examples

Compute Euclidean Distance

Create two matrices with three observations and two variables.

rng('default') % For reproducibility
X = rand(3,2);
Y = rand(3,2);

Compute the Euclidean distance. The default value of the input argument Distance is
'euclidean'. When computing the Euclidean distance without using a name-value pair argument,
you do not need to specify Distance.
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D = pdist2(X,Y)

D = 3×3

    0.5387    0.8018    0.1538
    0.7100    0.5951    0.3422
    0.8805    0.4242    1.2050

D(i,j) corresponds to the pairwise distance between observation i in X and observation j in Y.

Compute Minkowski Distance

Create two matrices with three observations and two variables.

rng('default') % For reproducibility
X = rand(3,2);
Y = rand(3,2);

Compute the Minkowski distance with the default exponent 2.

D1 = pdist2(X,Y,'minkowski')

D1 = 3×3

    0.5387    0.8018    0.1538
    0.7100    0.5951    0.3422
    0.8805    0.4242    1.2050

Compute the Minkowski distance with an exponent of 1, which is equal to the city block distance.

D2 = pdist2(X,Y,'minkowski',1)

D2 = 3×3

    0.5877    1.0236    0.2000
    0.9598    0.8337    0.3899
    1.0189    0.4800    1.7036

D3 = pdist2(X,Y,'cityblock')

D3 = 3×3

    0.5877    1.0236    0.2000
    0.9598    0.8337    0.3899
    1.0189    0.4800    1.7036

Find the Two Smallest Pairwise Distances

Create two matrices with three observations and two variables.
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rng('default') % For reproducibility
X = rand(3,2);
Y = rand(3,2);

Find the two smallest pairwise Euclidean distances to observations in X for each observation in Y.

[D,I] = pdist2(X,Y,'euclidean','Smallest',2)

D = 2×3

    0.5387    0.4242    0.1538
    0.7100    0.5951    0.3422

I = 2×3

     1     3     1
     2     2     2

For each observation in Y, pdist2 finds the two smallest distances by computing and comparing the
distance values to all the observations in X. The function then sorts the distances in each column of D
in ascending order. I contains the indices of the observations in X corresponding to the distances in
D.

Compute Pairwise Distance with Missing Elements Using a Custom Distance Function

Define a custom distance function that ignores coordinates with NaN values, and compute pairwise
distance by using the custom distance function.

Create two matrices with three observations and three variables.

rng('default') % For reproducibility
X = rand(3,3)
Y = [X(:,1:2) rand(3,1)]

X =

    0.8147    0.9134    0.2785
    0.9058    0.6324    0.5469
    0.1270    0.0975    0.9575

Y =

    0.8147    0.9134    0.9649
    0.9058    0.6324    0.1576
    0.1270    0.0975    0.9706

The first two columns of X and Y are identical. Assume that X(1,1) is missing.

X(1,1) = NaN

X =
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       NaN    0.9134    0.2785
    0.9058    0.6324    0.5469
    0.1270    0.0975    0.9575

Compute the Hamming distance.

D1 = pdist2(X,Y,'hamming')

D1 =

       NaN       NaN       NaN
    1.0000    0.3333    1.0000
    1.0000    1.0000    0.3333

If observation i in X or observation j in Y contains NaN values, the function pdist2 returns NaN for
the pairwise distance between i and j. Therefore, D1(1,1), D1(1,2), and D1(1,3) are NaN values.

Define a custom distance function nanhamdist that ignores coordinates with NaN values and
computes the Hamming distance. When working with a large number of observations, you can
compute the distance more quickly by looping over coordinates of the data.

function D2 = nanhamdist(XI,XJ)  
%NANHAMDIST Hamming distance ignoring coordinates with NaNs
[m,p] = size(XJ);
nesum = zeros(m,1);
pstar = zeros(m,1);
for q = 1:p
    notnan = ~(isnan(XI(q)) | isnan(XJ(:,q)));
    nesum = nesum + ((XI(q) ~= XJ(:,q)) & notnan);
    pstar = pstar + notnan;
end
D2 = nesum./pstar; 

Compute the distance with nanhamdist by passing the function handle as an input argument of
pdist2.

D2 = pdist2(X,Y,@nanhamdist)

D2 =

    0.5000    1.0000    1.0000
    1.0000    0.3333    1.0000
    1.0000    1.0000    0.3333

Assign New Data to Existing Clusters and Generate C/C++ Code

kmeans performs k-means clustering to partition data into k clusters. When you have a new data set
to cluster, you can create new clusters that include the existing data and the new data by using
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kmeans. The kmeans function supports C/C++ code generation, so you can generate code that
accepts training data and returns clustering results, and then deploy the code to a device. In this
workflow, you must pass training data, which can be of considerable size. To save memory on the
device, you can separate training and prediction by using kmeans and pdist2, respectively.

Use kmeans to create clusters in MATLAB® and use pdist2 in the generated code to assign new
data to existing clusters. For code generation, define an entry-point function that accepts the cluster
centroid positions and the new data set, and returns the index of the nearest cluster. Then, generate
code for the entry-point function.

Generating C/C++ code requires MATLAB® Coder™.

Perform k-Means Clustering

Generate a training data set using three distributions.

rng('default') % For reproducibility
X = [randn(100,2)*0.75+ones(100,2);
    randn(100,2)*0.5-ones(100,2);
    randn(100,2)*0.75];

Partition the training data into three clusters by using kmeans.

[idx,C] = kmeans(X,3);

Plot the clusters and the cluster centroids.

figure
gscatter(X(:,1),X(:,2),idx,'bgm')
hold on
plot(C(:,1),C(:,2),'kx')
legend('Cluster 1','Cluster 2','Cluster 3','Cluster Centroid')

35 Functions

35-5396



Assign New Data to Existing Clusters

Generate a test data set.

Xtest = [randn(10,2)*0.75+ones(10,2);
    randn(10,2)*0.5-ones(10,2);
    randn(10,2)*0.75];

Classify the test data set using the existing clusters. Find the nearest centroid from each test data
point by using pdist2.

[~,idx_test] = pdist2(C,Xtest,'euclidean','Smallest',1);

Plot the test data and label the test data using idx_test by using gscatter.

gscatter(Xtest(:,1),Xtest(:,2),idx_test,'bgm','ooo')
legend('Cluster 1','Cluster 2','Cluster 3','Cluster Centroid', ...
    'Data classified to Cluster 1','Data classified to Cluster 2', ...
    'Data classified to Cluster 3')
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Generate Code

Generate C code that assigns new data to the existing clusters. Note that generating C/C++ code
requires MATLAB® Coder™.

Define an entry-point function named findNearestCentroid that accepts centroid positions and
new data, and then find the nearest cluster by using pdist2.

Add the %#codegen compiler directive (or pragma) to the entry-point function after the function
signature to indicate that you intend to generate code for the MATLAB algorithm. Adding this
directive instructs the MATLAB Code Analyzer to help you diagnose and fix violations that would
cause errors during code generation.

type findNearestCentroid % Display contents of findNearestCentroid.m

function idx = findNearestCentroid(C,X) %#codegen
[~,idx] = pdist2(C,X,'euclidean','Smallest',1); % Find the nearest centroid

Note: If you click the button located in the upper-right section of this page and open this example in
MATLAB®, then MATLAB® opens the example folder. This folder includes the entry-point function
file.

Generate code by using codegen (MATLAB Coder). Because C and C++ are statically typed
languages, you must determine the properties of all variables in the entry-point function at compile
time. To specify the data type and array size of the inputs of findNearestCentroid, pass a
MATLAB expression that represents the set of values with a certain data type and array size by using
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the -args option. For details, see “Specify Variable-Size Arguments for Code Generation” on page
34-56.

codegen findNearestCentroid -args {C,Xtest}

Code generation successful.

codegen generates the MEX function findNearestCentroid_mex with a platform-dependent
extension.

Verify the generated code.

myIndx = findNearestCentroid(C,Xtest);
myIndex_mex = findNearestCentroid_mex(C,Xtest);
verifyMEX = isequal(idx_test,myIndx,myIndex_mex)

verifyMEX = logical
   1

isequal returns logical 1 (true), which means all the inputs are equal. The comparison confirms
that the pdist2 function, the findNearestCentroid function, and the MEX function return the
same index.

You can also generate optimized CUDA® code using GPU Coder™.

cfg = coder.gpuConfig('mex');
codegen -config cfg findNearestCentroid -args {C,Xtest}

For more information on code generation, see “General Code Generation Workflow” on page 34-5. For
more information on GPU coder, see “Get Started with GPU Coder” (GPU Coder) and “Supported
Functions” (GPU Coder).

Input Arguments
X,Y — Input data
numeric matrix

Input data, specified as a numeric matrix. X is an mx-by-n matrix and Y is an my-by-n matrix. Rows
correspond to individual observations, and columns correspond to individual variables.
Data Types: single | double

Distance — Distance metric
character vector | string scalar | function handle

Distance metric, specified as a character vector, string scalar, or function handle, as described in the
following table.

Value Description
'euclidean' Euclidean distance (default).
'squaredeuclidean' Squared Euclidean distance. (This option is provided for efficiency only.

It does not satisfy the triangle inequality.)
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Value Description
'seuclidean' Standardized Euclidean distance. Each coordinate difference between

observations is scaled by dividing by the corresponding element of the
standard deviation, S = std(X,'omitnan'). Use DistParameter
to specify another value for S.

'mahalanobis' Mahalanobis distance using the sample covariance of X, C =
cov(X,'omitrows'). Use DistParameter to specify another value
for C, where the matrix C is symmetric and positive definite.

'cityblock' City block distance.
'minkowski' Minkowski distance. The default exponent is 2. Use DistParameter

to specify a different exponent P, where P is a positive scalar value of
the exponent.

'chebychev' Chebychev distance (maximum coordinate difference).
'cosine' One minus the cosine of the included angle between points (treated as

vectors).
'correlation' One minus the sample correlation between points (treated as

sequences of values).
'hamming' Hamming distance, which is the percentage of coordinates that differ.
'jaccard' One minus the Jaccard coefficient, which is the percentage of nonzero

coordinates that differ.
'spearman' One minus the sample Spearman's rank correlation between

observations (treated as sequences of values).
@distfun Custom distance function handle. A distance function has the form

function D2 = distfun(ZI,ZJ)
% calculation of distance
...

where

• ZI is a 1-by-n vector containing a single observation.
• ZJ is an m2-by-n matrix containing multiple observations. distfun

must accept a matrix ZJ with an arbitrary number of observations.
• D2 is an m2-by-1 vector of distances, and D2(k) is the distance

between observations ZI and ZJ(k,:).

If your data is not sparse, you can generally compute distance more
quickly by using a built-in distance instead of a function handle.

For definitions, see “Distance Metrics” on page 35-5402.

When you use 'seuclidean', 'minkowski', or 'mahalanobis', you can specify an additional
input argument DistParameter to control these metrics. You can also use these metrics in the same
way as the other metrics with a default value of DistParameter.
Example: 'minkowski'

DistParameter — Distance metric parameter values
positive scalar | numeric vector | numeric matrix
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Distance metric parameter values, specified as a positive scalar, numeric vector, or numeric matrix.
This argument is valid only when you specify Distance as 'seuclidean', 'minkowski', or
'mahalanobis'.

• If Distance is 'seuclidean', DistParameter is a vector of scaling factors for each dimension,
specified as a positive vector. The default value is std(X,'omitnan').

• If Distance is 'minkowski', DistParameter is the exponent of Minkowski distance, specified
as a positive scalar. The default value is 2.

• If Distance is 'mahalanobis', DistParameter is a covariance matrix, specified as a numeric
matrix. The default value is cov(X,'omitrows'). DistParameter must be symmetric and
positive definite.

Example: 'minkowski',3
Data Types: single | double

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: Either 'Smallest',K or 'Largest',K. You cannot use both 'Smallest' and
'Largest'.

Smallest — Number of smallest distances to find
positive integer

Number of smallest distances to find, specified as the comma-separated pair consisting of
'Smallest' and a positive integer. If you specify 'Smallest', then pdist2 sorts the distances in
each column of D in ascending order.
Example: 'Smallest',3
Data Types: single | double

Largest — Number of largest distances to find
positive integer

Number of largest distances to find, specified as the comma-separated pair consisting of 'Largest'
and a positive integer. If you specify 'Largest', then pdist2 sorts the distances in each column of
D in descending order.
Example: 'Largest',3
Data Types: single | double

Output Arguments
D — Pairwise distances
numeric matrix

Pairwise distances, returned as a numeric matrix.
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If you do not specify either 'Smallest' or 'Largest', then D is an mx-by-my matrix, where mx and
my are the number of observations in X and Y, respectively. D(i,j) is the distance between
observation i in X and observation j in Y. If observation i in X or observation j in Y contains NaN, then
D(i,j) is NaN for the built-in distance functions.

If you specify either 'Smallest' or 'Largest' as K, then D is a K-by-my matrix. D contains either
the K smallest or K largest pairwise distances to observations in X for each observation in Y. For each
observation in Y, pdist2 finds the K smallest or largest distances by computing and comparing the
distance values to all the observations in X. If K is greater than mx, pdist2 returns an mx-by-my
matrix.

I — Sort index
positive integer matrix

Sort index, returned as a positive integer matrix. I is the same size as D. I contains the indices of the
observations in X corresponding to the distances in D.

More About
Distance Metrics

A distance metric is a function that defines a distance between two observations. pdist2 supports
various distance metrics: Euclidean distance, standardized Euclidean distance, Mahalanobis distance,
city block distance, Minkowski distance, Chebychev distance, cosine distance, correlation distance,
Hamming distance, Jaccard distance, and Spearman distance.

Given an mx-by-n data matrix X, which is treated as mx (1-by-n) row vectors x1, x2, ..., xmx, and an my-
by-n data matrix Y, which is treated as my (1-by-n) row vectors y1, y2, ...,ymy, the various distances
between the vector xs and yt are defined as follows:

• Euclidean distance

dst
2 = (xs− yt)(xs− yt)′ .

The Euclidean distance is a special case of the Minkowski distance, where p = 2.
• Standardized Euclidean distance

dst
2 = (xs− yt)V−1(xs− yt)′,

where V is the n-by-n diagonal matrix whose jth diagonal element is (S(j))2, where S is a vector of
scaling factors for each dimension.

• Mahalanobis distance

dst
2 = (xs− yt)C−1(xs− yt)′,

where C is the covariance matrix.
• City block distance

dst = ∑
j = 1

n
xs j− yt j .

The city block distance is a special case of the Minkowski distance, where p = 1.
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• Minkowski distance

dst = ∑
j = 1

n
xs j− yt j

pp .

For the special case of p = 1, the Minkowski distance gives the city block distance. For the special
case of p = 2, the Minkowski distance gives the Euclidean distance. For the special case of p = ∞,
the Minkowski distance gives the Chebychev distance.

• Chebychev distance

dst = max j xs j− yt j .

The Chebychev distance is a special case of the Minkowski distance, where p = ∞.
• Cosine distance

dst = 1−
xsy′t

xsx′s yty′t
.

• Correlation distance

dst = 1−
xs− xs yt− yt ′

xs− xs xs− xs ′ yt − yt yt − yt ′ ,

where

xs = 1
n∑j xs j

and

yt = 1
n∑j yt j .

• Hamming distance

dst = ( # (xs j ≠ yt j)/n) .
• Jaccard distance

dst =
# xs j ≠ yt j ∩ xs j ≠ 0 ∪ yt j ≠ 0

# xs j ≠ 0 ∪ yt j ≠ 0
.

• Spearman distance

dst = 1−
rs− r s rt − r t ′

rs− r s rs− r s ′ rt − r t rt− r t ′ ,

where

• rsj is the rank of xsj taken over x1j, x2j, ...xmx,j, as computed by tiedrank.
• rtj is the rank of ytj taken over y1j, y2j, ...ymy,j, as computed by tiedrank.
• rs and rt are the coordinate-wise rank vectors of xs and yt, that is, rs = (rs1, rs2, ... rsn) and rt =

(rt1, rt2, ... rtn).
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• r s = 1
n∑j rs j = n + 1

2 .

• r t = 1
n∑j rt j = n + 1

2 .

Version History
Introduced in R2010a

Extended Capabilities
Tall Arrays
Calculate with arrays that have more rows than fit in memory.

Usage notes and limitations:

• The first input X must be a tall array. Input Y cannot be a tall array.

For more information, see “Tall Arrays”.

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• The distance input argument value (Distance) must be a compile-time constant. For example, to
use the Minkowski distance, include coder.Constant('Minkowski') in the -args value of
codegen.

• The distance input argument value (Distance) cannot be a custom distance function.
• Names in name-value arguments must be compile-time constants. For example, to use the

'Smallest' name-value pair argument in the generated code, include
{coder.Constant('Smallest'),0} in the -args value of codegen.

• The sorted order of tied distances in the generated code can be different from the order in
MATLAB due to numerical precision.

• The generated code of pdist2 uses parfor to create loops that run in parallel on supported
shared-memory multicore platforms in the generated code. If your compiler does not support the
Open Multiprocessing (OpenMP) application interface or you disable OpenMP library, MATLAB
Coder treats the parfor-loops as for-loops. To find supported compilers, see https://
www.mathworks.com/support/compilers/current_release/. To disable OpenMP library,
set the EnableOpenMP property of the configuration object to false. For details, see
coder.CodeConfig.

• Starting in R2020a, pdist2 returns integer-type (int32) indices, rather than double-precision
indices, in generated standalone C/C++ code. Therefore, the function allows for strict single-
precision support when you use single-precision inputs. For MEX code generation, the function
still returns double-precision indices to match the MATLAB behavior.

For more information on code generation, see “Introduction to Code Generation” on page 34-2 and
“General Code Generation Workflow” on page 34-5.

GPU Code Generation
Generate CUDA® code for NVIDIA® GPUs using GPU Coder™.
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Usage notes and limitations:

• The supported distance input argument values (Distance) for optimized CUDA code are
'euclidean', 'squaredeuclidean', 'seuclidean', 'cityblock', 'minkowski',
'chebychev', 'cosine', 'correlation', 'hamming', and 'jaccard'.

• Distance cannot be a custom distance function.
• Distance must be a compile-time constant.
• Names in name-value pair arguments must be compile-time constants.
• The sorted order of tied distances in the generated code can be different from the order in

MATLAB due to numerical precision.

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

Usage notes and limitations:

• The distance input argument value (Distance) cannot be a custom distance function.

For more information, see “Run MATLAB Functions on a GPU” (Parallel Computing Toolbox).

See Also
pdist | createns | knnsearch | ExhaustiveSearcher | KDTreeSearcher
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pearsrnd
Pearson system random numbers

Syntax
r = pearsrnd(mu,sigma,skew,kurt,m,n)
r = pearsrnd(mu,sigma,skew,kurt)
r = pearsrnd(mu,sigma,skew,kurt,m,n,...)
r = pearsrnd(mu,sigma,skew,kurt,[m,n,...])
[r,type] = pearsrnd(...)
[r,type,coefs] = pearsrnd(...)

Description
r = pearsrnd(mu,sigma,skew,kurt,m,n) returns an m-by-n matrix of random numbers drawn
from the distribution in the Pearson system with mean mu, standard deviation sigma, skewness skew,
and kurtosis kurt. The parameters mu, sigma, skew, and kurt must be scalars.

Note Because r is a random sample, its sample moments, especially the skewness and kurtosis,
typically differ somewhat from the specified distribution moments.

pearsrnd uses the definition of kurtosis for which a normal distribution has a kurtosis of 3. Some
definitions of kurtosis subtract 3, so that a normal distribution has a kurtosis of 0. The pearsrnd
function does not use this convention.

Some combinations of moments are not valid; in particular, the kurtosis must be greater than the
square of the skewness plus 1. The kurtosis of the normal distribution is defined to be 3.

r = pearsrnd(mu,sigma,skew,kurt) returns a scalar value.

r = pearsrnd(mu,sigma,skew,kurt,m,n,...) or r = pearsrnd(mu,sigma,skew,kurt,
[m,n,...]) returns an m-by-n-by-... array.

[r,type] = pearsrnd(...) returns the type of the specified distribution within the Pearson
system. type is a scalar integer from 0 to 7. Set m and n to 0 to identify the distribution type without
generating any random values.

The seven distribution types in the Pearson system correspond to the following distributions:

• 0 — Normal on page B-125 distribution
• 1 — Four-parameter beta on page B-6 distribution
• 2 — Symmetric four-parameter beta on page B-6 distribution
• 3 — Three-parameter gamma on page B-48 distribution
• 4 — Not related to any standard distribution. The density is proportional to:

(1 + ((x – a)/b)2)–c exp(–d arctan((x – a)/b)).
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• 5 — Inverse gamma on page B-48 location-scale distribution
• 6 — F on page B-46 location-scale distribution
• 7 — Student's t location-scale on page B-163 distribution

[r,type,coefs] = pearsrnd(...) returns the coefficients coefs of the quadratic polynomial
that defines the distribution via the differential equation

d
dx log(p(x)) = −(a + x)

c(0) + c(1)x + c(2)x2 .

Examples
Generate random values from the standard normal distribution:

r = pearsrnd(0,1,0,3,100,1);  % Equivalent to randn(100,1)

Determine the distribution type:

[r,type] = pearsrnd(0,1,1,4,0,0);
r =
     []
type =
     1

Version History
Introduced in R2006a

References

[1] Johnson, N.L., S. Kotz, and N. Balakrishnan (1994) Continuous Univariate Distributions, Volume 1,
Wiley-Interscience, Pg 15, Eqn 12.33.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

The generated code matches MATLAB only when generated output r is scalar.

For more information on code generation, see “Introduction to Code Generation” on page 34-2 and
“General Code Generation Workflow” on page 34-5.

See Also
random | johnsrnd

Topics
“Generating Data Using Flexible Families of Distributions” on page 7-20
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perfcurve
Receiver operating characteristic (ROC) curve or other performance curve for classifier output

Syntax
[X,Y] = perfcurve(labels,scores,posclass)
[X,Y,T] = perfcurve(labels,scores,posclass)
[X,Y,T,AUC] = perfcurve(labels,scores,posclass)
[X,Y,T,AUC,OPTROCPT] = perfcurve(labels,scores,posclass)
[X,Y,T,AUC,OPTROCPT,SUBY] = perfcurve(labels,scores,posclass)
[X,Y,T,AUC,OPTROCPT,SUBY,SUBYNAMES] = perfcurve(labels,scores,posclass)
[ ___ ] = perfcurve(labels,scores,posclass,Name,Value)

Description
[X,Y] = perfcurve(labels,scores,posclass) returns the X and Y coordinates of an ROC
curve for a vector of classifier predictions, scores, given true class labels, labels, and the positive
class label, posclass. You can visualize the performance curve using plot(X,Y).

[X,Y,T] = perfcurve(labels,scores,posclass) returns an array of thresholds on classifier
scores for the computed values of X and Y.

[X,Y,T,AUC] = perfcurve(labels,scores,posclass) returns the area under the curve for
the computed values of X and Y.

[X,Y,T,AUC,OPTROCPT] = perfcurve(labels,scores,posclass) returns the optimal
operating point of the ROC curve.

[X,Y,T,AUC,OPTROCPT,SUBY] = perfcurve(labels,scores,posclass) returns the Y values
for negative subclasses.

[X,Y,T,AUC,OPTROCPT,SUBY,SUBYNAMES] = perfcurve(labels,scores,posclass) returns
the negative class names.

[ ___ ] = perfcurve(labels,scores,posclass,Name,Value) returns the coordinates of a
ROC curve and any other output argument from the previous syntaxes, with additional options
specified by one or more Name,Value pair arguments.

For example, you can provide a list of negative classes, change the X or Y criterion, compute
pointwise confidence bounds on page 35-5432 using cross validation or bootstrap, specify the
misclassification cost, or compute the confidence bounds in parallel.

Examples

Plot ROC Curve for Classification by Logistic Regression

Load the sample data.

load fisheriris
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Use only the first two features as predictor variables. Define a binary classification problem by using
only the measurements that correspond to the species versicolor and virginica.

pred = meas(51:end,1:2);

Define the binary response variable.

resp = (1:100)'>50;  % Versicolor = 0, virginica = 1

Fit a logistic regression model.

mdl = fitglm(pred,resp,'Distribution','binomial','Link','logit');

Compute the ROC curve. Use the probability estimates from the logistic regression model as scores.

scores = mdl.Fitted.Probability;
[X,Y,T,AUC] = perfcurve(species(51:end,:),scores,'virginica');

perfcurve stores the threshold values in the array T.

Display the area under the curve.

AUC

AUC = 0.7918

The area under the curve is 0.7918. The maximum AUC is 1, which corresponds to a perfect classifier.
Larger AUC values indicate better classifier performance.

Plot the ROC curve.

plot(X,Y)
xlabel('False positive rate') 
ylabel('True positive rate')
title('ROC for Classification by Logistic Regression')
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Alternatively, you can compute and plot the ROC curve by creating a rocmetrics object and using
the object function plot.

rocObj = rocmetrics(species(51:end,:),scores,'virginica');
plot(rocObj)
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The plot function displays a filled circle at the model operating point, and the legend displays the
class name and AUC value for the curve.

Compare Classification Methods Using ROC Curve

Load the sample data.

load ionosphere

X is a 351x34 real-valued matrix of predictors. Y is a character array of class labels: 'b' for bad radar
returns and 'g' for good radar returns.

Reformat the response to fit a logistic regression. Use the predictor variables 3 through 34.

resp = strcmp(Y,'b'); % resp = 1, if Y = 'b', or 0 if Y = 'g' 
pred = X(:,3:34);

Fit a logistic regression model to estimate the posterior probabilities for a radar return to be a bad
one.

mdl = fitglm(pred,resp,'Distribution','binomial','Link','logit');
score_log = mdl.Fitted.Probability; % Probability estimates

Compute the standard ROC curve using the probabilities for scores.
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[Xlog,Ylog,Tlog,AUClog] = perfcurve(resp,score_log,'true');

Train an SVM classifier on the same sample data. Standardize the data.

mdlSVM = fitcsvm(pred,resp,'Standardize',true);

Compute the posterior probabilities (scores).

mdlSVM = fitPosterior(mdlSVM);
[~,score_svm] = resubPredict(mdlSVM);

The second column of score_svm contains the posterior probabilities of bad radar returns.

Compute the standard ROC curve using the scores from the SVM model.

[Xsvm,Ysvm,Tsvm,AUCsvm] = perfcurve(resp,score_svm(:,mdlSVM.ClassNames),'true');

Fit a naive Bayes classifier on the same sample data.

mdlNB = fitcnb(pred,resp);

Compute the posterior probabilities (scores).

[~,score_nb] = resubPredict(mdlNB);

Compute the standard ROC curve using the scores from the naive Bayes classification.

[Xnb,Ynb,Tnb,AUCnb] = perfcurve(resp,score_nb(:,mdlNB.ClassNames),'true');

Plot the ROC curves on the same graph.

plot(Xlog,Ylog)
hold on
plot(Xsvm,Ysvm)
plot(Xnb,Ynb)
legend('Logistic Regression','Support Vector Machines','Naive Bayes','Location','Best')
xlabel('False positive rate'); ylabel('True positive rate');
title('ROC Curves for Logistic Regression, SVM, and Naive Bayes Classification')
hold off
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Although SVM produces better ROC values for higher thresholds, logistic regression is usually better
at distinguishing the bad radar returns from the good ones. The ROC curve for naive Bayes is
generally lower than the other two ROC curves, which indicates worse in-sample performance than
the other two classifier methods.

Compare the area under the curve for all three classifiers.

AUClog

AUClog = 0.9659

AUCsvm

AUCsvm = 0.9489

AUCnb

AUCnb = 0.9393

Logistic regression has the highest AUC measure for classification and naive Bayes has the lowest.
This result suggests that logistic regression has better in-sample average performance for this
sample data.
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Determine the Parameter Value for Custom Kernel Function

This example shows how to determine the better parameter value for a custom kernel function in a
classifier using the ROC curves.

Generate a random set of points within the unit circle.

rng(1);  % For reproducibility
n = 100; % Number of points per quadrant

r1 = sqrt(rand(2*n,1));                     % Random radii
t1 = [pi/2*rand(n,1); (pi/2*rand(n,1)+pi)]; % Random angles for Q1 and Q3
X1 = [r1.*cos(t1) r1.*sin(t1)];             % Polar-to-Cartesian conversion

r2 = sqrt(rand(2*n,1));
t2 = [pi/2*rand(n,1)+pi/2; (pi/2*rand(n,1)-pi/2)]; % Random angles for Q2 and Q4
X2 = [r2.*cos(t2) r2.*sin(t2)];

Define the predictor variables. Label points in the first and third quadrants as belonging to the
positive class, and those in the second and fourth quadrants in the negative class.

pred = [X1; X2];
resp = ones(4*n,1);
resp(2*n + 1:end) = -1; % Labels

Create the function mysigmoid.m , which accepts two matrices in the feature space as inputs, and
transforms them into a Gram matrix using the sigmoid kernel.

function G = mysigmoid(U,V)
% Sigmoid kernel function with slope gamma and intercept c
gamma = 1;
c = -1;
G = tanh(gamma*U*V' + c);
end

Train an SVM classifier using the sigmoid kernel function. It is good practice to standardize the data.

SVMModel1 = fitcsvm(pred,resp,'KernelFunction','mysigmoid',...
                'Standardize',true);
SVMModel1 = fitPosterior(SVMModel1);
[~,scores1] = resubPredict(SVMModel1);

Set gamma = 0.5 ; within mysigmoid.m and save as mysigmoid2.m. And, train an SVM classifier
using the adjusted sigmoid kernel.

function G = mysigmoid2(U,V)
% Sigmoid kernel function with slope gamma and intercept c
gamma = 0.5;
c = -1;
G = tanh(gamma*U*V' + c);
end

SVMModel2 = fitcsvm(pred,resp,'KernelFunction','mysigmoid2',...
                'Standardize',true);
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SVMModel2 = fitPosterior(SVMModel2);
[~,scores2] = resubPredict(SVMModel2);

Compute the ROC curves and the area under the curve (AUC) for both models.

[x1,y1,~,auc1] = perfcurve(resp,scores1(:,2),1);
[x2,y2,~,auc2] = perfcurve(resp,scores2(:,2),1);

Plot the ROC curves.

plot(x1,y1)
hold on
plot(x2,y2)
hold off
legend('gamma = 1','gamma = 0.5','Location','SE');
xlabel('False positive rate'); ylabel('True positive rate');
title('ROC for classification by SVM');

The kernel function with the gamma parameter set to 0.5 gives better in-sample results.

Compare the AUC measures.

auc1
auc2

auc1 =
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    0.9518

auc2 =

    0.9985

The area under the curve for gamma set to 0.5 is higher than that for gamma set to 1. This also
confirms that gamma parameter value of 0.5 produces better results. For visual comparison of the
classification performance with these two gamma parameter values, see “Train SVM Classifier Using
Custom Kernel” on page 19-160.

Plot ROC Curve for Classification Tree

Load the sample data.

load fisheriris

The column vector, species, consists of iris flowers of three different species: setosa, versicolor,
virginica. The double matrix meas consists of four types of measurements on the flowers: sepal
length, sepal width, petal length, and petal width. All measures are in centimeters.

Train a classification tree using the sepal length and width as the predictor variables. It is a good
practice to specify the class names.

Model = fitctree(meas(:,1:2),species, ...
    'ClassNames',{'setosa','versicolor','virginica'});

Predict the class labels and scores for the species based on the tree Model.

[~,score] = resubPredict(Model);

The scores are the posterior probabilities that an observation (a row in the data matrix) belongs to a
class. The columns of score correspond to the classes specified by 'ClassNames'. So, the first
column corresponds to setosa, the second corresponds to versicolor, and the third column
corresponds to virginica.

Compute the ROC curve for the predictions that an observation belongs to versicolor, given the true
class labels species. Also compute the optimal operating point and y values for negative subclasses.
Return the names of the negative classes.

Because this is a multiclass problem, you cannot merely supply score(:,2) as input to perfcurve.
Doing so would not give perfcurve enough information about the scores for the two negative
classes (setosa and virginica). This problem is unlike a binary classification problem, where knowing
the scores of one class is enough to determine the scores of the other class. Therefore, you must
supply perfcurve with a function that factors in the scores of the two negative classes. One such
function is score(: , 2)−max(score(: , 1), score(: , 3)), which corresponds to the one-versus-all coding
design.

diffscore1 = score(:,2) - max(score(:,1),score(:,3));

The values in diffscore are classification scores for a binary problem that treats the second class
as a positive class and the rest as negative classes.
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[X,Y,T,~,OPTROCPT,suby,subnames] = perfcurve(species,diffscore1,'versicolor');

X, by default, is the false positive rate (fallout or 1-specificity) and Y, by default, is the true positive
rate (recall or sensitivity). The positive class label is versicolor. Because a negative class is not
defined, perfcurve assumes that the observations that do not belong to the positive class are in one
class. The function accepts it as the negative class.

OPTROCPT

OPTROCPT = 1×2

    0.1000    0.8000

suby

suby = 12×2

         0         0
    0.1800    0.1800
    0.4800    0.4800
    0.5800    0.5800
    0.6200    0.6200
    0.8000    0.8000
    0.8800    0.8800
    0.9200    0.9200
    0.9600    0.9600
    0.9800    0.9800
      ⋮

subnames

subnames = 1x2 cell
    {'setosa'}    {'virginica'}

Plot the ROC curve and the optimal operating point on the ROC curve.

plot(X,Y)
hold on
plot(OPTROCPT(1),OPTROCPT(2),'ro')
xlabel('False positive rate') 
ylabel('True positive rate')
title('ROC Curve for Classification by Classification Trees')
hold off
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Find the threshold that corresponds to the optimal operating point.

T((X==OPTROCPT(1))&(Y==OPTROCPT(2)))

ans = 0.2857

Specify virginica as the negative class and compute and plot the ROC curve for versicolor.

Again, you must supply perfcurve with a function that factors in the scores of the negative class. An
example of a function to use is score(: , 2)− score(: , 3).

diffscore2 = score(:,2) - score(:,3);
[X,Y,~,~,OPTROCPT] = perfcurve(species,diffscore2,'versicolor', ...
    'negClass','virginica');
OPTROCPT

OPTROCPT = 1×2

    0.1800    0.8200

figure, plot(X,Y)
hold on
plot(OPTROCPT(1),OPTROCPT(2),'ro')
xlabel('False positive rate') 
ylabel('True positive rate')
title('ROC Curve for Classification by Classification Trees')
hold off
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Alternatively, you can use a rocmetrics object to create the ROC curve. rocmetrics supports
multiclass classification problems using the one-versus-all coding design, which reduces a multiclass
problem into a set of binary problems. You can examine the performance of a multiclass problem on
each class by plotting a one-versus-all ROC curve for each class.

Compute the performance metrics by creating a rocmetrics object. Specify the true labels,
classification scores, and class names.

rocObj = rocmetrics(species,score,Model.ClassNames);

Plot the ROC curve for each class by using the plot function of rocmetrics.

figure
plot(rocObj)
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The plot function displays a filled circle at the model operating point for each class, and the legend
shows the class name and AUC value for each curve. You can find the optimal operating points by
using the properties stored in the rocmetrics object rocObj. For an example, see “Find Model
Operating Point and Optimal Operating Point” on page 35-6841.

Compute Pointwise Confidence Intervals for ROC Curve

Load the sample data.

load fisheriris

The column vector species consists of iris flowers of three different species: setosa, versicolor,
virginica. The double matrix meas consists of four types of measurements on the flowers: sepal
length, sepal width, petal length, and petal width. All measures are in centimeters.

Use only the first two features as predictor variables. Define a binary problem by using only the
measurements that correspond to the versicolor and virginica species.

pred = meas(51:end,1:2);

Define the binary response variable.

resp = (1:100)'>50;  % Versicolor = 0, virginica = 1

Fit a logistic regression model.
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mdl = fitglm(pred,resp,'Distribution','binomial','Link','logit');

Compute the pointwise confidence intervals on the true positive rate (TPR) by vertical averaging (VA)
and sampling using bootstrap.

[X,Y,T] = perfcurve(species(51:end,:),mdl.Fitted.Probability,...
       'virginica','NBoot',1000,'XVals',[0:0.05:1]);

'NBoot',1000 sets the number of bootstrap replicas to 1000. 'XVals','All' prompts perfcurve
to return X, Y, and T values for all scores, and average the Y values (true positive rate) at all X values
(false positive rate) using vertical averaging. If you do not specify XVals, then perfcurve computes
the confidence bounds using threshold averaging by default.

Plot the pointwise confidence intervals.

errorbar(X,Y(:,1),Y(:,1)-Y(:,2),Y(:,3)-Y(:,1));
xlim([-0.02,1.02]); ylim([-0.02,1.02]);
xlabel('False positive rate') 
ylabel('True positive rate')
title('ROC Curve with Pointwise Confidence Bounds')
legend('PCBwVA','Location','Best')

It might not always be possible to control the false positive rate (FPR, the X value in this example). So
you might want to compute the pointwise confidence intervals on true positive rates (TPR) by
threshold averaging.

[X1,Y1,T1] = perfcurve(species(51:end,:),mdl.Fitted.Probability,...
    'virginica','NBoot',1000);
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If you set 'TVals' to 'All', or if you do not specify 'TVals' or 'Xvals', then perfcurve returns
X, Y, and T values for all scores and computes pointwise confidence bounds for X and Y using
threshold averaging.

Plot the confidence bounds.

figure()
errorbar(X1(:,1),Y1(:,1),Y1(:,1)-Y1(:,2),Y1(:,3)-Y1(:,1));
xlim([-0.02,1.02]); ylim([-0.02,1.02]);
xlabel('False positive rate')
ylabel('True positive rate')
title('ROC Curve with Pointwise Confidence Bounds')
legend('PCBwTA','Location','Best')

Specify the threshold values to fix and compute the ROC curve. Then plot the curve.

[X1,Y1,T1] = perfcurve(species(51:end,:),mdl.Fitted.Probability,...
    'virginica','NBoot',1000,'TVals',0:0.05:1);
figure()
errorbar(X1(:,1),Y1(:,1),Y1(:,1)-Y1(:,2),Y1(:,3)-Y1(:,1));
xlim([-0.02,1.02]); ylim([-0.02,1.02]);
xlabel('False positive rate')
ylabel('True positive rate')
title('ROC Curve with Pointwise Confidence Bounds')
legend('PCBwTA','Location','Best')
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Input Arguments
labels — True class labels
numeric vector | logical vector | character matrix | string array | cell array of character vectors |
categorical array

True class labels, specified as a numeric vector, logical vector, character matrix, string array, cell
array of character vectors, or categorical array. For more information, see “Grouping Variables” on
page 2-46.
Example: {'hi','mid','hi','low',...,'mid'}
Example: ['H','M','H','L',...,'M']
Data Types: single | double | logical | char | string | cell | categorical

scores — Scores returned by a classifier
vector of floating points

Scores returned by a classifier for some sample data, specified as a vector of floating points. scores
must have the same number of elements as labels.
Data Types: single | double

posclass — Positive class label
numeric scalar | logical scalar | character vector | string scalar | cell containing a character vector |
categorical scalar
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Positive class label, specified as a numeric scalar, logical scalar, character vector, string scalar, cell
containing a character vector, or categorical scalar. The positive class must be a member of the input
labels. The value of posclass that you can specify depends on the value of labels.

labels value posclass value
Numeric vector Numeric scalar
Logical vector Logical scalar
Character matrix Character vector
String array String scalar
Cell array of character vectors Character vector or cell containing character

vector
Categorical vector Categorical scalar

For example, in a cancer diagnosis problem, if a malignant tumor is the positive class, then specify
posclass as 'malignant'.
Data Types: single | double | logical | char | string | cell | categorical

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: 'NegClass','versicolor','XCrit','fn','NBoot',1000,'BootType','per'
specifies the species versicolor as the negative class, the criterion for the X-coordinate as false
negative, the number of bootstrap samples as 1000. It also specifies that the pointwise confidence
bounds are computed using the percentile method.

NegClass — List of negative classes
'all' (default) | numeric array | categorical array | string array | cell array of character vectors

List of negative classes, specified as the comma-separated pair consisting of 'NegClass', and a
numeric array, a categorical array, a string array, or a cell array of character vectors. By default,
perfcurve sets NegClass to 'all' and considers all nonpositive classes found in the input array of
labels to be negative.

If NegClass is a subset of the classes found in the input array of labels, then perfcurve discards
the instances with labels that do not belong to either positive or negative classes.
Example: 'NegClass',{'versicolor','setosa'}
Data Types: single | double | categorical | char | string | cell

XCrit — Criterion to compute for X
'fpr' (default) | 'fnr' | 'tnr' | 'ppv' | 'ecost' | ...

Criterion to compute for X, specified as the comma-separated pair consisting of 'XCrit' and one of
the following.
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Criterion Description
tp Number of true positive instances.
fn Number of false negative instances.
fp Number of false positive instances.
tn Number of true negative instances.
tp+fp Sum of true positive and false positive instances.
rpp Rate of positive predictions.

rpp = (tp+fp)/(tp+fn+fp+tn)
rnp Rate of negative predictions.

rnp = (tn+fn)/(tp+fn+fp+tn)
accu Accuracy.

accu = (tp+tn)/(tp+fn+fp+tn)
tpr, or sens, or reca True positive rate, or sensitivity, or recall.

tpr= sens = reca = tp/(tp+fn)
fnr, or miss False negative rate, or miss.

fnr = miss = fn/(tp+fn)
fpr, or fall False positive rate, or fallout, or 1 – specificity.

fpr = fall = fp/(tn+fp)
tnr, or spec True negative rate, or specificity.

tnr = spec = tn/(tn+fp)
ppv, or prec Positive predictive value, or precision.

ppv = prec = tp/(tp+fp)
npv Negative predictive value.

npv = tn/(tn+fn)
ecost Expected cost.

ecost = (tp*Cost(P|P)+fn*Cost(N|P)+fp* Cost(P|
N)+tn*Cost(N|N))/(tp+fn+fp+tn)

Custom criterion A custom-defined function with the input arguments
(C,scale,cost), where C is a 2-by-2 confusion matrix,
scale is a 2-by-1 array of class scales, and cost is a 2-by-2
misclassification cost matrix.

Caution Some of these criteria return NaN values at one of the two special thresholds, 'reject
all' and 'accept all'.

Example: 'XCrit','ecost'

YCrit — Criterion to compute for Y
'tpr' (default) | same criteria options for X

Criterion to compute for Y, specified as the comma-separated pair consisting of 'YCrit' and one of
the same criteria options as for X. This criterion does not have to be a monotone function of the
positive class score.
Example: 'YCrit','ecost'
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XVals — Values for the X criterion
'all' (default) | numeric array

Values for the X criterion, specified as the comma-separated pair consisting of 'XVals' and a
numeric array.

• If you specify XVals, then perfcurve computes X and Y and the pointwise confidence bounds on
page 35-5432 for Y (when applicable) only for the specified XVals.

• If you do not specify XVals, then perfcurve, computes X and Y and the values for all scores by
default.

Note You cannot set XVals and TVals at the same time.

Example: 'XVals',[0:0.05:1]
Data Types: single | double | char | string

TVals — Thresholds for the positive class score
'all' (default) | numeric array

Thresholds for the positive class score, specified as the comma-separated pair consisting of 'TVals'
and either 'all' or a numeric array.

• If TVals is set to 'all' or not specified, and XVals is not specified, then perfcurve returns X,
Y, and T values for all scores and computes pointwise confidence bounds on page 35-5432 for X
and Y using threshold averaging.

• If TVals is set to a numeric array, then perfcurve returns X, Y, and T values for the specified
thresholds and computes pointwise confidence bounds for X and Y at these thresholds using
threshold averaging.

Note You cannot set XVals and TVals at the same time.

Example: 'TVals',[0:0.05:1]
Data Types: single | double | char | string

UseNearest — Indicator to use the nearest values in the data
'on' (default) | 'off'

Indicator to use the nearest values in the data instead of the specified numeric XVals or TVals,
specified as the comma-separated pair consisting of 'UseNearest' and either 'on' or 'off'.

• If you specify numeric XVals and set UseNearest to 'on', then perfcurve returns the nearest
unique X values found in the data, and it returns the corresponding values of Y and T.

• If you specify numeric XVals and set UseNearest to 'off', then perfcurve returns the sorted
XVals.

• If you compute confidence bounds by cross validation or bootstrap, then this parameter is always
'off'.

Example: 'UseNearest','off'
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ProcessNaN — perfcurve method for processing NaN scores
'ignore' (default) | 'addtofalse'

perfcurve method for processing NaN scores, specified as the comma-separated pair consisting of
'ProcessNaN' and 'ignore' or 'addtofalse'.

• If ProcessNaN is 'ignore', then perfcurve removes observations with NaN scores from the
data.

• If ProcessNaN is 'addtofalse', then perfcurve adds instances with NaN scores to false
classification counts in the respective class. That is, perfcurve always counts instances from the
positive class as false negative (FN), and it always counts instances from the negative class as
false positive (FP).

Example: 'ProcessNaN','addtofalse'

Prior — Prior probabilities for positive and negative classes
'empirical' (default) | 'uniform' | array with two elements

Prior probabilities for positive and negative classes, specified as the comma-separated pair consisting
of 'Prior' and 'empirical', 'uniform', or an array with two elements.

If Prior is 'empirical', then perfcurve derives prior probabilities from class frequencies.

If Prior is 'uniform' , then perfcurve sets all prior probabilities to be equal.
Example: 'Prior',[0.3,0.7]
Data Types: single | double | char | string

Cost — Misclassification costs
[0 1;1 0] (default) | 2-by-2 matrix

Misclassification costs, specified as the comma-separated pair consisting of 'Cost' and a 2-by-2
matrix, containing [Cost(P|P),Cost(N|P);Cost(P|N),Cost(N|N)].

Cost(N|P) is the cost of misclassifying a positive class as a negative class. Cost(P|N) is the cost of
misclassifying a negative class as a positive class. Usually, Cost(P|P) = 0 and Cost(N|N) = 0, but
perfcurve allows you to specify nonzero costs for correct classification as well.
Example: 'Cost',[0 0.7;0.3 0]
Data Types: single | double

Alpha — Significance level
0.05 (default) | scalar value in the range 0 through 1

Significance level for the confidence bounds, specified as the comma-separated pair consisting of
'Alpha' and a scalar value in the range 0 through 1. perfcurve computes 100*(1 – α) percent
pointwise confidence bounds on page 35-5432 for X, Y, T, and AUC for a confidence level of 1 – α.
Example: 'Alpha',0.01 specifies 99% confidence bounds.
Data Types: single | double

Weights — Observation weights
vector of nonnegative scalar values | cell array of vectors of nonnegative scalar values
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Observation weights, specified as the comma-separated pair consisting of 'Weights' and a vector of
nonnegative scalar values. This vector must have as many elements as scores or labels do.

If scores and labels are in cell arrays and you need to supply Weights, the weights must be in a
cell array as well. In this case, every element in Weights must be a numeric vector with as many
elements as the corresponding element in scores. For example, numel(weights{1}) ==
numel(scores{1}).

When perfcurve computes the X, Y and T or confidence bounds using cross-validation, it uses these
observation weights instead of observation counts.

When perfcurve computes confidence bounds using bootstrap, it samples N out of N observations
with replacement, using these weights as multinomial sampling probabilities.

The default is a vector of 1s or a cell array in which each element is a vector of 1s.
Data Types: single | double | cell

NBoot — Number of bootstrap replicas
0 (default) | positive integer

Number of bootstrap replicas for computation of confidence bounds, specified as the comma-
separated pair consisting of 'NBoot' and a positive integer. The default value 0 means the
confidence bounds are not computed.

If labels and scores are cell arrays, this parameter must be 0 because perfcurve can use either
cross-validation or bootstrap to compute confidence bounds.
Example: 'NBoot',500
Data Types: single | double

BootType — Confidence interval type for bootci
'bca' (default) | 'norm | 'per' | 'cper' | 'stud'

Confidence interval type for bootci to use to compute confidence intervals, specified as the comma-
separated pair consisting of 'BootType' and one of the following:

• 'bca' — Bias corrected and accelerated percentile method
• 'norm or 'normal' — Normal approximated interval with bootstrapped bias and standard error
• 'per' or 'percentile' — Percentile method
• 'cper' or 'corrected percentile' — Bias corrected percentile method
• 'stud' or 'student' — Studentized confidence interval

Example: 'BootType','cper'

BootArg — Optional input arguments for bootci
[ ] (default) | {'Nbootstd',nbootstd}

Optional input arguments for bootci to compute confidence bounds, specified as the comma-
separated pair consisting of 'BootArg' and {'Nbootstd',nbootstd}.

When you compute the studentized bootstrap confidence intervals ('BootType' is 'student'), you
can additionally specify the 'Nbootstd' name-value pair argument of bootci by using 'BootArg'.
For example, 'BootArg',{'Nbootstd',nbootstd} estimates the standard error of the bootstrap
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statistics using bootstrap with nbootstd data samples. nbootstd is a positive integer and its default
is 100.
Example: 'BootArg',{'Nbootstd',nbootstd}
Data Types: cell

Options — Options for controlling the computation of confidence intervals
[] (default) | structure array returned by statset

Options for controlling the computation of confidence intervals, specified as the comma-separated
pair consisting of 'Options' and a structure array returned by statset. These options require
Parallel Computing Toolbox. perfcurve uses this argument for computing pointwise confidence
bounds only. To compute these bounds, you must pass cell arrays for labels and scores or set
NBoot to a positive integer.

This table summarizes the available options.

Option Description
'UseParallel' • false — Serial computation (default).

• true — Parallel computation. You need
Parallel Computing Toolbox for this option to
work.

'UseSubstreams' • false — Do not use a separate substream for
each iteration (default).

• true — Use a separate substream for each
iteration to compute in parallel in a
reproducible fashion. To compute
reproducibly, set Streams to a type allowing
substreams: 'mlfg6331_64' or
'mrg32k3a'.

'Streams' A RandStream object, or a cell array of such
objects. If you specify Streams, use a single
object, except when:

• UseParallel is true.
• UseSubstreams is false.

In that case, use a cell array of the same size as
the parallel pool. If a parallel pool is not open,
then Streams must supply a single random
number stream.

If 'UseParallel' is true and 'UseSubstreams' is false, then the length of 'Streams' must
equal the number of workers used by perfcurve. If a parallel pool is already open, then the length
of 'Streams' is the size of the parallel pool. If a parallel pool is not already open, then MATLAB
might open a pool for you, depending on your installation and preferences. To ensure more
predictable results, use parpool and explicitly create a parallel pool before invoking perfcurve and
setting 'Options',statset('UseParallel',true).
Example: 'Options',statset('UseParallel',true)
Data Types: struct
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Output Arguments
X — x-coordinates for the performance curve
vector, fpr (default) | m-by-3 matrix

x-coordinates for the performance curve, returned as a vector or an m-by-3 matrix. By default, X
values are the false positive rate, FPR (fallout or 1 – specificity). To change X, use the XCrit name-
value pair argument.

• If perfcurve does not compute the pointwise confidence bounds on page 35-5432, or if it
computes them using vertical averaging, then X is a vector.

• If perfcurve computes the confidence bounds using threshold averaging, then X is an m-by-3
matrix, where m is the number of fixed threshold values. The first column of X contains the mean
value. The second and third columns contain the lower bound and the upper bound, respectively,
of the pointwise confidence bounds.

Y — y-coordinates for the performance curve
vector, tpr (default) | m-by-3 matrix

y-coordinates for the performance curve, returned as a vector or an m-by-3 matrix. By default, Y
values are the true positive rate, TPR (recall or sensitivity). To change Y, use YCrit name-value pair
argument.

• If perfcurve does not compute the pointwise confidence bounds on page 35-5432, then Y is a
vector.

• If perfcurve computes the confidence bounds, then Y is an m-by-3 matrix, where m is the
number of fixed X values or thresholds (T values). The first column of Y contains the mean value.
The second and third columns contain the lower bound and the upper bound, respectively, of the
pointwise confidence bounds.

T — Thresholds on classifier scores
vector | m-by-3 matrix

Thresholds on classifier scores for the computed values of X and Y, returned as a vector or m-by-3
matrix.

• If perfcurve does not compute the pointwise confidence bounds on page 35-5432, or computes
them using threshold averaging, then T is a vector.

• If perfcurve computes the confidence bounds using vertical averaging, T is an m-by-3 matrix,
where m is the number of fixed X values. The first column of T contains the mean value. The
second and third columns contain the lower bound, and the upper bound, respectively, of the
pointwise confidence bounds.

For each threshold, TP is the count of true positive observations with scores greater than or equal to
this threshold, and FP is the count of false positive observations with scores greater than or equal to
this threshold. perfcurve defines negative counts, TN and FN, in a similar way. The function then
sorts the thresholds in the descending order that corresponds to the ascending order of positive
counts.

For the m distinct thresholds found in the array of scores, perfcurve returns the X, Y and T arrays
with m + 1 rows. perfcurve sets elements T(2:m+1) to the distinct thresholds, and T(1) replicates
T(2). By convention, T(1) represents the highest 'reject all' threshold, and perfcurve
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computes the corresponding values of X and Y for TP = 0 and FP = 0. The T(end) value is the
lowest 'accept all' threshold for which TN = 0 and FN = 0.

AUC — Area under the curve
scalar value | 3-by-1 vector

Area under the curve (AUC) for the computed values of X and Y, returned as a scalar value or a 3-by-1
vector.

• If perfcurve does not compute the pointwise confidence bounds on page 35-5432, AUC is a scalar
value.

• If perfcurve computes the confidence bounds using vertical averaging, AUC is a 3-by-1 vector.
The first column of AUC contains the mean value. The second and third columns contain the lower
bound and the upper bound, respectively, of the confidence bound.

For a perfect classifier, AUC = 1. For a classifier that randomly assigns observations to classes, AUC
= 0.5.

If you set XVals to 'all' (default), then perfcurve computes AUC using the returned X and Y
values.

If XVals is a numeric array, then perfcurve computes AUC using X and Y values from all distinct
scores in the interval, which are specified by the smallest and largest elements of XVals. More
precisely, perfcurve finds X values for all distinct thresholds as if XVals were set to 'all', and
then uses a subset of these (with corresponding Y values) between min(XVals) and max(XVals) to
compute AUC.

perfcurve uses trapezoidal approximation to estimate the area. If the first or last value of X or Y are
NaNs, then perfcurve removes them to allow calculation of AUC. This takes care of criteria that
produce NaNs for the special 'reject all' or 'accept all' thresholds, for example, positive
predictive value (PPV) or negative predictive value (NPV).

OPTROCPT — Optimal operating point of the ROC curve
1-by-2 array

Optimal operating point of the ROC curve, returned as a 1-by-2 array with false positive rate (FPR)
and true positive rate (TPR) values for the optimal ROC operating point.

perfcurve computes OPTROCPT for the standard ROC curve only, and sets to NaNs otherwise. To
obtain the optimal operating point for the ROC curve, perfcurve first finds the slope, S, using

S = Cost(P N)− Cost(N N)
Cost(N P)− Cost(P P) * N

P

• Cost(N|P) is the cost of misclassifying a positive class as a negative class. Cost(P|N) is the cost of
misclassifying a negative class as a positive class.

• P = TP + FN and N = TN + FP. They are the total instance counts in the positive and negative
class, respectively.

perfcurve then finds the optimal operating point by moving the straight line with slope S from the
upper left corner of the ROC plot (FPR = 0, TPR = 1) down and to the right, until it intersects the
ROC curve.

SUBY — Values for negative subclasses
array
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Values for negative subclasses, returned as an array.

• If you specify only one negative class, then SUBY is identical to Y.
• If you specify k negative classes, then SUBY is a matrix of size m-by-k, where m is the number of

returned values for X and Y, and k is the number of negative classes. perfcurve computes Y
values by summing counts over all negative classes.

SUBY gives values of the Y criterion for each negative class separately. For each negative class,
perfcurve places a new column in SUBY and fills it with Y values for true negative (TN) and false
positive (FP) counted just for this class.

SUBYNAMES — Negative class names
cell array

Negative class names, returned as a cell array.

• If you provide an input array of negative class names NegClass, then perfcurve copies names
into SUBYNAMES.

• If you do not provide NegClass, then perfcurve extracts SUBYNAMES from the input labels. The
order of SUBYNAMES is the same as the order of columns in SUBY. That is, SUBY(:,1) is for
negative class SUBYNAMES{1}, SUBY(:,2) is for negative class SUBYNAMES{2}, and so on.

Algorithms
Pointwise Confidence Bounds

If you supply cell arrays for labels and scores, or if you set NBoot to a positive integer, then
perfcurve returns pointwise confidence bounds for X,Y,T, and AUC. You cannot supply cell arrays for
labels and scores and set NBoot to a positive integer at the same time.

perfcurve resamples data to compute confidence bounds using either cross validation or bootstrap.

• Cross-validation — If you supply cell arrays for labels and scores, then perfcurve uses cross-
validation and treats elements in the cell arrays as cross-validation folds. labels can be a cell
array of numeric vectors, logical vectors, character matrices, cell arrays of character vectors, or
categorical vectors. All elements in labels must have the same type. scores can be a cell array
of numeric vectors. The cell arrays for labels and scores must have the same number of
elements. The number of labels in cell j of labels must be equal to the number of scores in cell j
of scores for any j in the range from 1 to the number of elements in scores.

• Bootstrap — If you set NBoot to a positive integer n, perfcurve generates n bootstrap replicas to
compute pointwise confidence bounds. If you use XCrit or YCrit to set the criterion for X or Y to
an anonymous function, perfcurve can compute confidence bounds only using bootstrap.

perfcurve estimates the confidence bounds using one of two methods:

• Vertical averaging (VA) — perfcurve estimates confidence bounds on Y and T at fixed values of
X. That is, perfcurve takes samples of the ROC curves for fixed X values, averages the
corresponding Y and T values, and computes the standard errors. You can use the XVals name-
value pair argument to fix the X values for computing confidence bounds. If you do not specify
XVals, then perfcurve computes the confidence bounds at all X values.

• Threshold averaging (TA) — perfcurve takes samples of the ROC curves at fixed thresholds T for
the positive class score, averages the corresponding X and Y values, and estimates the confidence
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bounds. You can use the TVals name-value pair argument to use this method for computing
confidence bounds. If you set TVals to 'all' or do not specify TVals or XVals, then perfcurve
returns X, Y, and T values for all scores and computes pointwise confidence bounds for Y and X
using threshold averaging.

When you compute the confidence bounds, Y is an m-by-3 array, where m is the number of fixed X
values or thresholds (T values). The first column of Y contains the mean value. The second and third
columns contain the lower bound and the upper bound, respectively, of the pointwise confidence
bounds. AUC is a row vector with three elements, following the same convention. If perfcurve
computes the confidence bounds using VA, then T is an m-by-3 matrix, and X is a column vector. If
perfcurve uses TA, then X is an m-by-3 matrix and T is a column-vector.

perfcurve returns pointwise confidence bounds. It does not return a simultaneous confidence band
for the entire curve.

Alternative Functionality
• You can compute the performance metrics for a ROC curve and other performance curves by

creating a rocmetrics object. rocmetrics supports both binary and multiclass classification
problems. You can pass classification scores returned by the predict function of a classification
model object (such as predict of ClassificationTree) to rocmetrics without adjusting
scores for a multiclass model.

rocmetrics provides object functions to plot a ROC curve (plot), find an average ROC curve for
multiclass problems (average), and compute additional metrics after creating an object
(addMetrics). For more details, see the reference pages and “ROC Curve and Performance
Metrics” on page 18-3.

Version History
Introduced in R2009a

Default Cost value has changed
Behavior changed in R2022a

Starting in R2022a, the default value for the Cost name-value argument is [0 1; 1 0], which is the
same as the default misclassification cost matrix value for the new feature rocmetrics and the
classifier training functions, such as fitcsvm, fitctree, and so on. In previous releases, the default
Cost value is [0 0.5; 0.5 0].

If you specify the XCrit or YCrit name-value argument as 'ecost' (expected cost) and use the
default Cost value, the function returns values in the output argument X or Y that are doubled
compared to the values in previous releases.

If you specify the XCrit or YCrit name-value argument as a custom metric and use the default Cost
value, the corresponding output argument value can be different depending on how the custom
metric uses a cost matrix.
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Extended Capabilities
Automatic Parallel Support
Accelerate code by automatically running computation in parallel using Parallel Computing Toolbox™.

To run in parallel, specify the 'Options' name-value argument in the call to this function and set the
'UseParallel' field of the options structure to true using statset.

For example: 'Options',statset('UseParallel',true)

For more information about parallel computing, see “Run MATLAB Functions with Automatic Parallel
Support” (Parallel Computing Toolbox).

See Also
rocmetrics | bootci | glmfit | mnrfit | classify | fitcnb | fitctree | fitrtree

Topics
“ROC Curve and Performance Metrics” on page 18-3
“Performance Curves by perfcurve” on page 18-19
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plot
Package: prob

Plot probability distribution object

Syntax
plot(pd)
plot(ax,pd)
plot( ___ ,Name=Value)
H = plot( ___ )

Description
plot(pd) plots a probability density function (pdf) of the probability distribution object pd. If pd is
created by fitting a probability distribution to the data, the pdf is superimposed over a histogram of
the data.

plot(ax,pd) plots into the axes specified by the Axes graphics object ax.

plot( ___ ,Name=Value) specifies options using one or more name-value arguments in addition to
any of the input argument combinations in the previous syntaxes. For example, you can indicate
whether to plot a cumulative distribution function (cdf) or a probability plot instead of a pdf.

H = plot( ___ ) returns handles to the plotted graphics objects.

Examples

Plot Normal Distribution

Generate random data points from a normal distribution with mean 0 and standard deviation 1.

rng("default")  % Set the seed for reproducibility.

Fit a normal distribution to the data.

normaldata = normrnd(0,1,100,1);
normalpd = fitdist(normaldata,"Normal")

normalpd = 
  NormalDistribution

  Normal distribution
       mu = 0.123085   [-0.10756, 0.353731]
    sigma =   1.1624   [1.02059, 1.35033]

normalpd is a NormalDistribution object that contains the parameter values for the normal
distribution fit to the data, and the data. Plot a pdf for the normal distribution with a histogram of the
data.
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plot(normalpd)

Plot a cdf of the normal distribution fit to the data and a stairs plot of a cdf for the data.

plot(normalpd,PlotType="cdf")
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Display a probability plot for the normal distribution fit to the data.

plot(normalpd,PlotType="probability")
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The vertical axis is scaled so that the cdf for the fitted probability distribution is represented by a
straight line.

Multinomial Distribution Plots

Create a multinomial distribution that has five outcomes with probabilities of 0.1, 0.2, 0.4, 0.2, and
0.1.

multinomialpd = makedist("Multinomial",probabilities=[0.1 0.2 0.4 0.2 0.1])

multinomialpd = 
  MultinomialDistribution

  Probabilities:
    0.1000    0.2000    0.4000    0.2000    0.1000

Plot a pdf for the multinomial distribution.
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plot(multinomialpd)

The plot contains a Stem object that represents the probabilities for the data.

Plot the pdf as a continuous distribution.

plot(multinomialpd,Discrete=0)
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Plot the cdf of the fitted multinomial distribution as a stairs plot.

plot(multinomialpd,PlotType="cdf")
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Plot the cdf as a continuous distribution.

plot(multinomialpd,PlotType="cdf",Discrete=0)
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Input Arguments
pd — Probability distribution
probability distribution object

Probability distribution, specified as one of the probability distribution objects in the following table.

Distribution Object Function or App Used to Create Probability
Distribution Object

BetaDistribution makedist, fitdist, Distribution Fitter
BinomialDistribution makedist, fitdist, Distribution Fitter
BirnbaumSaundersDistribution makedist, fitdist, Distribution Fitter
BurrDistribution makedist, fitdist, Distribution Fitter
ExponentialDistribution makedist, fitdist, Distribution Fitter
ExtremeValueDistribution makedist, fitdist, Distribution Fitter
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Distribution Object Function or App Used to Create Probability
Distribution Object

GammaDistribution makedist, fitdist, Distribution Fitter
GeneralizedExtremeValueDistribution makedist, fitdist, Distribution Fitter
GeneralizedParetoDistribution makedist, fitdist, Distribution Fitter
HalfNormalDistribution makedist, fitdist, Distribution Fitter
InverseGaussianDistribution makedist, fitdist, Distribution Fitter
KernelDistribution fitdist, Distribution Fitter
LogisticDistribution makedist, fitdist, Distribution Fitter
LoglogisticDistribution makedist, fitdist, Distribution Fitter
LognormalDistribution makedist, fitdist, Distribution Fitter
LoguniformDistribution makedist
MultinomialDistribution makedist
NakagamiDistribution makedist, fitdist, Distribution Fitter
NegativeBinomialDistribution makedist, fitdist, Distribution Fitter
NormalDistribution makedist, fitdist, Distribution Fitter
PiecewiseLinearDistribution makedist
PoissonDistribution makedist, fitdist, Distribution Fitter
RayleighDistribution makedist, fitdist, Distribution Fitter
RicianDistribution makedist, fitdist, Distribution Fitter
StableDistribution makedist, fitdist, Distribution Fitter
tLocationScaleDistribution makedist, fitdist, Distribution Fitter
TriangularDistribution makedist
UniformDistribution makedist
WeibullDistribution makedist, fitdist, Distribution Fitter

ax — Axes for plot
Axes graphics object

Axes for plot, specified as an Axes graphics object. If you do not specify the axes by using the ax
input argument or the Parent name-value argument, the plot function plots into the current axes or
creates an Axes object if one does not exist. For more information on creating an Axes graphics
object, see axes and Axes.

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.
Example: Discrete=1,PlotType="cdf" plots a cumulative distribution function (cdf) of the
probability distribution as a stairs plot.

PlotType — Plot type
"pdf" (default) | "cdf" | "probability"
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Plot type for the probability distribution, specified as one of the following.

"pdf" Plot the probability density function (pdf). When
pd is fit to data, the pdf is superimposed on a
histogram of the data.

"cdf" Plot the cumulative distribution function (cdf).
When pd is fit to data, the cdf is superimposed
over an empirical cdf.

"probability" Display a probability plot using a cdf of the data
and a cdf of the fitted probability distribution.
This option is available only when pd is
parametric and fit to data.

Example: PlotType="probability"
Data Types: char | string

Discrete — Indicator to plot as discrete function
1 (true) | 0 (false)

Indicator to plot as a discrete function, specified as 1 (true) or 0 (false). Specify Discrete=0
to display the pdf or cdf as a line plot. Specify Discrete=1 to display the pdf as a stem plot or to
display the cdf as a stairs plot.

The default value for Discrete is 1 when pd is a discrete probability distribution object and 0 when
pd is a continuous probability distribution object. If pd is continuous, plot ignores the user-specified
input for Discrete and plots continuous functions.
Example: Discrete=0
Data Types: logical

Parent — Axes for plot
Axes graphics object

Axes for plot, specified as an Axes graphics object. If you do not specify the axes by using the ax
input argument or the Parent name-value argument, the plot function plots into the current axes or
creates an Axes object if one does not exist. For more information on creating an Axes graphics
object, see axes and Axes.

Output Arguments
H — Handles to plotted graphics objects
Line object | Stem object | Stairs object | graphics array

Handles to the plotted graphics objects, returned as a Line object, Stem object, Stairs object, or
graphics array.

• When PlotType is set to "pdf" or "cdf", and pd is not fit to data, H is a single handle
corresponding to the pdf or cdf for the distribution.

• When PlotType is set to "pdf" or "cdf", and pd is fit to data, H is a 1-by-2 graphics array. The
first entry of the graphics array corresponds to the pdf or cdf for the distribution, and the second
entry corresponds to the data.
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• When PlotType is set to "probability", H is a 2-by-1 graphics array with entries
corresponding to the data and the distribution.

The table below shows how the returned graphics object depends on whether the distribution is
discrete, whether pd is fit to data, and the specified values for the name-value arguments Discrete
and PlotType.

Distribution Type Fit to Data Discrete value PlotType value Returned
Graphics Object

Discrete No 1 "pdf" Stem
"cdf" Stairs

0 "pdf" Line
"cdf" Line

Yes 1 "pdf" [Stem Patch]
"cdf" [Stairs

Stairs]
"probability" [Line

FunctionLine]
0 "pdf" [Line Patch]

"cdf" [Line Stairs]
"probability" [Line

FunctionLine]
Continuous No 0 "pdf" Line

"cdf" Line
Yes 0 "pdf" [Line

Histogram]
"cdf" [Line Stairs]
"probability" [Line

FunctionLine]

Version History
Introduced in R2022b

See Also
makedist | fitdist | pdf | cdf

Topics
“Working with Probability Distributions” on page 5-3
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plot
Package: clustering.evaluation

Plot clustering evaluation object criterion values

Syntax
plot(evaluation)
h = plot(evaluation)

Description
plot(evaluation) displays a plot of the criterion values versus the number of clusters, based on
the values in the clustering evaluation object evaluation.

h = plot(evaluation) returns a Line object. Use this object to inspect and adjust the properties
of the plot line. For a list of properties, see Line Properties.

Examples

Plot Clustering Evaluation Criterion Values

Plot the criterion values versus the number of clusters for each clustering solution stored in a
clustering evaluation object.

Load the fisheriris data set. The data contains length and width measurements from the sepals
and petals of three species of iris flowers.

load fisheriris

Create a clustering evaluation object. Cluster the data using kmeans, and evaluate the optimal
number of clusters using the Calinski-Harabasz criterion.

rng("default") % For reproducibility
evaluation = evalclusters(meas,"kmeans","CalinskiHarabasz","KList",1:6);

Plot the Calinski-Harabasz criterion values for each number of clusters tested.

plot(evaluation)
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The plot shows that the highest Calinski-Harabasz value occurs at three clusters, suggesting that the
optimal number of clusters is three.

Plot Optimal Number of Clusters Using Different Criteria

Cluster data using each of the four clustering evaluation criteria. For each criterion, create a plot of
the criterion values and indicate the optimal number of clusters.

Generate sample data containing random numbers from three multivariate distributions with
different parameter values.

rng("default") % For reproducibility
n = 200;

mu1 = [2 2];
sigma1 = [0.9 -0.0255; -0.0255 0.9];

mu2 = [5 5];
sigma2 = [0.5 0; 0 0.3];

mu3 = [-2 -2];
sigma3 = [1 0; 0 0.9];

X = [mvnrnd(mu1,sigma1,n); ...
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     mvnrnd(mu2,sigma2,n); ...
     mvnrnd(mu3,sigma3,n)];

Cluster the data using kmeans, and evaluate the optimal number of clusters using the Calinski-
Harabasz, Davies-Bouldin, gap, and silhouette criteria.

calinskiEvaluation = evalclusters(X,"kmeans","CalinskiHarabasz", ...
    "KList",1:6);
daviesEvaluation = evalclusters(X,"kmeans","DaviesBouldin", ...
    "KList",1:6);
gapEvaluation = evalclusters(X,"kmeans","gap","KList",1:6);
silhouetteEvaluation = evalclusters(X,"kmeans","silhouette", ...
    "KList",1:6);

For each clustering evaluation object, plot the criterion values for the number of proposed clusters. In
each plot, change the color of the plot line and add a vertical line indicating the optimal number of
clusters.

t = tiledlayout(2,2);
title(t,"Optimal Number of Clusters for Different Criteria")
colors = lines(4);

% Calinski-Harabasz Criterion Plot
nexttile
h1 = plot(calinskiEvaluation);
h1.Color = colors(1,:);
hold on
xline(calinskiEvaluation.OptimalK,"--","Optimal K", ...
    "LabelVerticalAlignment","middle")
hold off

% Davies-Bouldin Criterion Plot
nexttile
h2 = plot(daviesEvaluation);
h2.Color = colors(2,:);
hold on
xline(daviesEvaluation.OptimalK,"--","Optimal K", ...
    "LabelVerticalAlignment","middle")
hold off

% Gap Criterion Plot
nexttile
h3 = plot(gapEvaluation);
h3.Color = colors(3,:);
hold on
xline(gapEvaluation.OptimalK,"--","Optimal K", ...
    "LabelVerticalAlignment","middle")
hold off

% Silhouette Criterion Plot
nexttile
h4 = plot(silhouetteEvaluation);
h4.Color = colors(4,:);
hold on
xline(silhouetteEvaluation.OptimalK,"--","Optimal K", ...
    "LabelVerticalAlignment","middle")
hold off
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The four plots indicate that the optimal number of clusters is three, regardless of the clustering
criterion.

Input Arguments
evaluation — Clustering evaluation data
CalinskiHarabaszEvaluation object | DaviesBouldinEvaluation object | GapEvaluation
object | SilhouetteEvaluation object

Clustering evaluation data, specified as a CalinskiHarabaszEvaluation,
DaviesBouldinEvaluation, GapEvaluation, or SilhouetteEvaluation clustering evaluation
object. Create a clustering evaluation object by using evalclusters.

Version History
Introduced in R2013b

See Also
evalclusters | CalinskiHarabaszEvaluation | DaviesBouldinEvaluation |
GapEvaluation | SilhouetteEvaluation
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plot
Plot bar graph of fairness metric

Syntax
plot(evaluator,metric)
plot(evaluator,metric,SensitiveAttributeName=name)
b = plot( ___ )

Description
plot(evaluator,metric) creates a bar graph of the specified metric (metric), stored in either
the BiasMetrics or GroupMetrics property of the fairnessMetrics object (evaluator). By
default, the function creates a graph for the first attribute stored in the SensitiveAttributeNames
property of evaluator.

plot(evaluator,metric,SensitiveAttributeName=name) specifies a sensitive attribute to
plot.

b = plot( ___ ) returns a Bar object. Use b to query or modify Bar Properties after displaying the
bar graph.

Examples

Specify Fairness Metric to Plot

Compute fairness metrics for true labels with respect to sensitive attributes by creating a
fairnessMetrics object. Then, plot a bar graph of a specified metric by using the plot function.

Read the sample file CreditRating_Historical.dat into a table. The predictor data consists of
financial ratios and industry sector information for a list of corporate customers. The response
variable consists of credit ratings assigned by a rating agency.

creditrating = readtable("CreditRating_Historical.dat");

Because each value in the ID variable is a unique customer ID—that is,
length(unique(creditrating.ID)) is equal to the number of observations in creditrating—
the ID variable is a poor predictor. Remove the ID variable from the table, and convert the Industry
variable to a categorical variable.

creditrating.ID = [];
creditrating.Industry = categorical(creditrating.Industry);

In the Rating response variable, combine the AAA, AA, A, and BBB ratings into a category of "good"
ratings, and the BB, B, and CCC ratings into a category of "poor" ratings.

Rating = categorical(creditrating.Rating);
Rating = mergecats(Rating,["AAA","AA","A","BBB"],"good");
Rating = mergecats(Rating,["BB","B","CCC"],"poor");
creditrating.Rating = Rating;
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Compute fairness metrics with respect to the sensitive attribute Industry for the labels in the
Rating variable.

evaluator = fairnessMetrics(creditrating,"Rating", ...
    SensitiveAttributeNames="Industry");

fairnessMetrics computes metrics for all supported bias and group metrics. Display the names of
the metrics stored in the BiasMetrics and GroupMetrics properties.

evaluator.BiasMetrics.Properties.VariableNames(3:end)'

ans = 2x1 cell
    {'StatisticalParityDifference'}
    {'DisparateImpact'            }

evaluator.GroupMetrics.Properties.VariableNames(3:end)'

ans = 2x1 cell
    {'GroupCount'    }
    {'GroupSizeRatio'}

Create a bar graph of the disparate impact values.

plot(evaluator,"DisparateImpact")
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Specify Sensitive Attribute to Plot

Compute fairness metrics for predicted labels with respect to sensitive attributes by creating a
fairnessMetrics object. Then, plot a bar graph of a specified metric and sensitive attribute by
using the plot function.

Load the sample data census1994, which contains the training data adultdata and the test data
adulttest. The data sets consist of demographic information from the US Census Bureau that can
be used to predict whether an individual makes over $50,000 per year. Preview the first few rows of
the training data set.

load census1994
head(adultdata)

    age       workClass          fnlwgt      education    education_num       marital_status           occupation        relationship     race      sex      capital_gain    capital_loss    hours_per_week    native_country    salary
    ___    ________________    __________    _________    _____________    _____________________    _________________    _____________    _____    ______    ____________    ____________    ______________    ______________    ______

    39     State-gov                77516    Bachelors         13          Never-married            Adm-clerical         Not-in-family    White    Male          2174             0                40          United-States     <=50K 
    50     Self-emp-not-inc         83311    Bachelors         13          Married-civ-spouse       Exec-managerial      Husband          White    Male             0             0                13          United-States     <=50K 
    38     Private             2.1565e+05    HS-grad            9          Divorced                 Handlers-cleaners    Not-in-family    White    Male             0             0                40          United-States     <=50K 
    53     Private             2.3472e+05    11th               7          Married-civ-spouse       Handlers-cleaners    Husband          Black    Male             0             0                40          United-States     <=50K 
    28     Private             3.3841e+05    Bachelors         13          Married-civ-spouse       Prof-specialty       Wife             Black    Female           0             0                40          Cuba              <=50K 
    37     Private             2.8458e+05    Masters           14          Married-civ-spouse       Exec-managerial      Wife             White    Female           0             0                40          United-States     <=50K 
    49     Private             1.6019e+05    9th                5          Married-spouse-absent    Other-service        Not-in-family    Black    Female           0             0                16          Jamaica           <=50K 
    52     Self-emp-not-inc    2.0964e+05    HS-grad            9          Married-civ-spouse       Exec-managerial      Husband          White    Male             0             0                45          United-States     >50K  

Each row contains the demographic information for one adult. The information includes sensitive
attributes, such as age, marital_status, relationship, race, and sex. The third column
flnwgt contains observation weights, and the last column salary shows whether a person has a
salary less than or equal to $50,000 per year (<=50K) or greater than $50,000 per year (>50K).

Train a classification tree using the training data set adultdata. Specify the response variable,
predictor variables, and observation weights by using the variable names in the adultdata table.

predictorNames = ["capital_gain","capital_loss","education", ...
    "education_num","hours_per_week","occupation","workClass"];
Mdl = fitctree(adultdata,"salary", ...
    PredictorNames=predictorNames,Weights="fnlwgt");

Predict the test sample labels by using the trained tree Mdl.

adulttest.predictions = predict(Mdl,adulttest);

This example evaluates the fairness of the predicted labels with respect to age and marital status.
Group the age variable into four bins.

ageGroups = ["Age<30","30<=Age<45","45<=Age<60","Age>=60"];
adulttest.age_group = discretize(adulttest.age, ...
    [min(adulttest.age) 30 45 60 max(adulttest.age)], ...
    categorical=ageGroups);

Compute fairness metrics for the predictions with respect to the age_group and marital_status
variables by using fairnessMetrics.

MdlEvaluator = fairnessMetrics(adulttest,"salary", ...
    SensitiveAttributeNames=["age_group","marital_status"], ...
    Predictions="predictions",Weights="fnlwgt")
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MdlEvaluator = 
  fairnessMetrics with properties:

    SensitiveAttributeNames: {'age_group'  'marital_status'}
             ReferenceGroup: {'30<=Age<45'  'Married-civ-spouse'}
               ResponseName: 'salary'
              PositiveClass: >50K
                BiasMetrics: [11x6 table]
               GroupMetrics: [11x19 table]

Create bar graphs of the true positive rate (TPR), false positive rate (FPR), equal opportunity
difference (EOD), and average absolute odds difference (AAOD) values for the sensitive attribute
marital_status. The default value of the SensitiveAttributeName argument is the first
element in the SensitiveAttributeNames property of the fairnessMetrics object. In this case,
the first element is age_group. Specify SensitiveAttributeName as marital_status.

t = tiledlayout(2,2);
nexttile
plot(MdlEvaluator,"tpr",SensitiveAttributeName="marital_status")
xlabel("")
ylabel("")
nexttile
plot(MdlEvaluator,"fpr",SensitiveAttributeName="marital_status")
yticklabels("")
xlabel("")
ylabel("")
nexttile
plot(MdlEvaluator,"eod",SensitiveAttributeName="marital_status")
xlabel("")
ylabel("")
title("EOD")
nexttile
plot(MdlEvaluator,"aaod",SensitiveAttributeName="marital_status")
yticklabels("")
xlabel("")
ylabel("")
title("AAOD")
xlabel(t,"Fairness Metric Value")
ylabel(t,"Marital Status")
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Input Arguments
evaluator — Object containing fairness metrics
fairnessMetrics object

Object containing fairness metrics, specified as a fairnessMetrics object.

metric — Fairness metric to plot
string scalar | character vector

Fairness metric to plot, specified as a bias or group metric stored in either the BiasMetrics or
GroupMetrics property of the fairnessMetrics object (evaluator). The properties in
evaluator use full names for the table variable names. However, you can use either the full name or
short name given in the following tables to specify the metric argument.

• Bias metrics

Metric Name Description Evaluation Type
"StatisticalParityDiffe
rence" or "spd"

Statistical parity difference
(SPD)

Data-level or model-level
evaluation

"DisparateImpact" or
"di"

Disparate impact (DI) Data-level or model-level
evaluation
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Metric Name Description Evaluation Type
"EqualOpportunityDiffer
ence" or "eod"

Equal opportunity difference
(EOD)

Model-level evaluation

"AverageAbsoluteOddsDif
ference" or "aaod"

Average absolute odds
difference (AAOD)

Model-level evaluation

For definitions of the bias metrics, see “Bias Metrics” on page 35-5456.
• Group metrics

Metric Name Description Evaluation Type
"GroupCount" Group count, or number of

samples in the group
Data-level or model-level
evaluation

"GroupSizeRatio" Group count divided by the
total number of samples

Data-level or model-level
evaluation

"TruePositives" or "tp" Number of true positives (TP) Model-level evaluation
"TrueNegatives" or "tn" Number of true negatives

(TN)
Model-level evaluation

"FalsePositives" or "fp" Number of false positives (FP) Model-level evaluation
"FalseNegatives" or "fn" Number of false negatives

(FN)
Model-level evaluation

"TruePositiveRate" or
"tpr"

True positive rate (TPR), also
known as recall or sensitivity,
TP/(TP+FN)

Model-level evaluation

"TrueNegativeRate",
"tnr", or "spec"

True negative rate (TNR), or
specificity, TN/(TN+FP)

Model-level evaluation

"FalsePositiveRate" or
"fpr"

False positive rate (FPR), also
known as fallout or 1-
specificity, FP/(TN+FP)

Model-level evaluation

"FalseNegativeRate",
"fnr", or "miss"

False negative rate (FNR), or
miss rate, FN/(TP+FN)

Model-level evaluation

"FalseDiscoveryRate" or
"fdr"

False discovery rate (FDR),
FP/(TP+FP)

Model-level evaluation

"FalseOmissionRate" or
"for"

False omission rate (FOR),
FN/(TN+FN)

Model-level evaluation

"PositivePredictiveValu
e", "ppv", or "prec"

Positive predictive value
(PPV), or precision, TP/(TP
+FP)

Model-level evaluation

"NegativePredictiveValu
e" or "npv"

Negative predictive value
(NPV), TN/(TN+FN)

Model-level evaluation

"RateOfPositivePredicti
ons" or "rpp"

Rate of positive predictions
(RPP), (TP+FP)/(TP+FN+FP
+TN)

Model-level evaluation
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Metric Name Description Evaluation Type
"RateOfNegativePredicti
ons" or "rnp"

Rate of negative predictions
(RNP), (TN+FN)/(TP+FN+FP
+TN)

Model-level evaluation

"Accuracy" or "accu" Accuracy, (TP+TN)/(TP+FN
+FP+TN)

Model-level evaluation

A fairnessMetrics object stores bias and group metrics in the BiasMetrics and GroupMetrics
properties, respectively. The supported metrics depend on whether you specify predicted labels by
using the Predictions argument when you create the fairnessMetrics object.

• Data-level evaluation — If you specify true labels and do not specify predicted labels, the
BiasMetrics property contains only StatisticalParityDifference and
DisparateImpact, and the GroupMetrics property contains only GroupCount and
GroupSizeRatio.

• Model-level evaluation — If you specify both true labels and predicted labels, BiasMetrics and
GroupMetrics contain all metrics listed in the tables.

Data Types: char | string

SensitiveAttributeName — Name of sensitive attribute to plot
evaluator.SensitiveAttributeNames{1} (default) | character vector | string scalar

Name of the sensitive attribute to plot, specified as a character vector or string scalar. The sensitive
attribute name must be a name in the SensitiveAttributeNames property of evaluator.
Example: SensitiveAttributeName="race"
Data Types: char | string

More About
Bias Metrics

The fairnessMetrics object supports four bias metrics: statistical parity difference (SPD),
disparate impact (DI), equal opportunity difference (EOD), and average absolute odds difference
(AAOD). The object supports EOD and AAOD only for evaluating model predictions.

A fairnessMetrics object computes bias metrics for each group in each sensitive attribute with
respect to the reference group of the attribute.

• Statistical parity (or demographic parity) difference (SPD)

The SPD value of the ith sensitive attribute (Si) for the group sij with respect to the reference
group sir is defined by

SPDi j = P Y = + Si = si j − P Y = + Si = sir .

The SPD value is the difference between the probability of being in the positive class when the
sensitive attribute value is sij and the probability of being in the positive class when the sensitive
attribute value is sir (reference group). This metric assumes that the two probabilities (statistical
parities) are equal if the labels are unbiased with respect to the sensitive attribute.
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If you specify the Predictions argument, the software computes SPD for the probabilities of the
model predictions Y  instead of the true labels Y.

• Disparate impact (DI)

The DI value of the ith sensitive attribute (Si) for the group sij with respect to the reference group
sir is defined by

DIi j =
P Y = + Si = si j
P Y = + Si = sir

.

The DI value is the ratio of the probability of being in the positive class when the sensitive
attribute value is sij to the probability of being in the positive class when the sensitive attribute
value is sir (reference group). This metric assumes that the two probabilities are equal if the labels
are unbiased with respect to the sensitive attribute. In general, a DI value less than 0.8 or
greater than 1.25 indicates bias with respect to the reference group [2].

If you specify the Predictions argument, the software computes DI for the probabilities of the
model predictions Y  instead of the true labels Y.

• Equal opportunity difference (EOD)

The EOD value of the ith sensitive attribute (Si) for the group sij with respect to the reference
group sir is defined by

EODi j = TPR Si = si j − TPR Si = sir

= P Y = + Y = + , Si = si j − P Y = + Y = + , Si = sir .

The EOD value is the difference in the true positive rate (TPR) between the group sij and the
reference group sir. This metric assumes that the two rates are equal if the predicted labels are
unbiased with respect to the sensitive attribute.

• Average absolute odds difference (AAOD)

The AAOD value of the ith sensitive attribute (Si) for the group sij with respect to the reference
group sir is defined by

AAODi j = 1
2 FPR Si = si j − FPR Si = sir + TPR Si = si j − TPR Si = sir .

The AAOD value represents the difference in the true positive rates (TPR) and false positive rates
(FPR) between the group sij and the reference group sir. This metric assumes no difference in TPR
and FPR if the predicted labels are unbiased with respect to the sensitive attribute.

Version History
Introduced in R2022b

References
[1] Mehrabi, Ninareh, et al. “A Survey on Bias and Fairness in Machine Learning.” ArXiv:1908.09635

[cs.LG], Sept. 2019. arXiv.org.
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[2] Saleiro, Pedro, et al. “Aequitas: A Bias and Fairness Audit Toolkit.” ArXiv:1811.05577 [cs.LG], April
2019. arXiv.org.

See Also
fairnessMetrics | report
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plot
Plot results of local interpretable model-agnostic explanations (LIME)

Syntax
f = plot(results)

Description
f = plot(results) visualizes the LIME results in the lime object results. The function returns
the Figure object f. Use f to query or modify Figure Properties of the figure after it is created.

• The figure contains a horizontal bar graph that shows the coefficient values of a linear simple
model or predictor importance values of a decision tree simple model, depending on the simple
model in results (SimpleModel property of results).

• The figure displays two predictions for the query point computed using the machine learning
model and the simple model, respectively. These values correspond to the BlackboxFitted
property and the SimpleModelFitted property of results.

Examples

Explain Prediction with Decision Tree Simple Model

Train a classification model and create a lime object that uses a decision tree simple model. When
you create a lime object, specify a query point and the number of important predictors so that the
software generates samples of a synthetic data set and fits a simple model for the query point with
important predictors. Then display the estimated predictor importance in the simple model by using
the object function plot.

Load the CreditRating_Historical data set. The data set contains customer IDs and their
financial ratios, industry labels, and credit ratings.

tbl = readtable('CreditRating_Historical.dat');

Display the first three rows of the table.

head(tbl,3)

     ID      WC_TA    RE_TA    EBIT_TA    MVE_BVTD    S_TA     Industry    Rating
    _____    _____    _____    _______    ________    _____    ________    ______

    62394    0.013    0.104     0.036      0.447      0.142       3        {'BB'}
    48608    0.232    0.335     0.062      1.969      0.281       8        {'A' }
    42444    0.311    0.367     0.074      1.935      0.366       1        {'A' }

Create a table of predictor variables by removing the columns of customer IDs and ratings from tbl.

tblX = removevars(tbl,["ID","Rating"]);

Train a blackbox model of credit ratings by using the fitcecoc function.
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blackbox = fitcecoc(tblX,tbl.Rating,'CategoricalPredictors','Industry');

Create a lime object that explains the prediction for the last observation using a decision tree simple
model. Specify 'NumImportantPredictors' as six to find at most 6 important predictors. If you
specify the 'QueryPoint' and 'NumImportantPredictors' values when you create a lime
object, then the software generates samples of a synthetic data set and fits a simple interpretable
model to the synthetic data set.

queryPoint = tblX(end,:)

queryPoint=1×6 table
    WC_TA    RE_TA    EBIT_TA    MVE_BVTD    S_TA    Industry
    _____    _____    _______    ________    ____    ________

    0.239    0.463     0.065      2.924      0.34       2    

rng('default') % For reproducibility
results = lime(blackbox,'QueryPoint',queryPoint,'NumImportantPredictors',6, ...
    'SimpleModelType','tree')

results = 
  lime with properties:

             BlackboxModel: [1x1 ClassificationECOC]
              DataLocality: 'global'
     CategoricalPredictors: 6
                      Type: 'classification'
                         X: [3932x6 table]
                QueryPoint: [1x6 table]
    NumImportantPredictors: 6
          NumSyntheticData: 5000
             SyntheticData: [5000x6 table]
                    Fitted: {5000x1 cell}
               SimpleModel: [1x1 ClassificationTree]
       ImportantPredictors: [2x1 double]
            BlackboxFitted: {'AA'}
         SimpleModelFitted: {'AA'}

Plot the lime object results by using the object function plot. To display an existing underscore in
any predictor name, change the TickLabelInterpreter value of the axes to 'none'.

f = plot(results);
f.CurrentAxes.TickLabelInterpreter = 'none';
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The plot displays two predictions for the query point, which correspond to the “BlackboxFitted” on
page 35-0  property and the “SimpleModelFitted” on page 35-0  property of results.

The horizontal bar graph shows the sorted predictor importance values. lime finds the financial ratio
variables MVE_BVTD and RE_TA as important predictors for the query point.

You can read the bar lengths by using data tips or Bar Properties. For example, you can find Bar
objects by using the findobj function and add labels to the ends of the bars by using the text
function.

b = findobj(f,'Type','bar');
text(b.YEndPoints+0.001,b.XEndPoints,string(b.YData))
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Alternatively, you can display the coefficient values in a table with the predictor variable names.

imp = b.YData;
flipud(array2table(imp', ...
    'RowNames',f.CurrentAxes.YTickLabel,'VariableNames',{'Predictor Importance'}))

ans=2×1 table
                Predictor Importance
                ____________________

    MVE_BVTD          0.088412      
    RE_TA            0.0018061      

Explain Prediction with Linear Simple Model

Train a regression model and create a lime object that uses a linear simple model. When you create
a lime object, if you do not specify a query point and the number of important predictors, then the
software generates samples of a synthetic data set but does not fit a simple model. Use the object
function fit to fit a simple model for a query point. Then display the coefficients of the fitted linear
simple model by using the object function plot.

Load the carbig data set, which contains measurements of cars made in the 1970s and early 1980s.

load carbig
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Create a table containing the predictor variables Acceleration, Cylinders, and so on, as well as
the response variable MPG.

tbl = table(Acceleration,Cylinders,Displacement,Horsepower,Model_Year,Weight,MPG);

Removing missing values in a training set can help reduce memory consumption and speed up
training for the fitrkernel function. Remove missing values in tbl.

tbl = rmmissing(tbl);

Create a table of predictor variables by removing the response variable from tbl.

tblX = removevars(tbl,'MPG');

Train a blackbox model of MPG by using the fitrkernel function.

rng('default') % For reproducibility
mdl = fitrkernel(tblX,tbl.MPG,'CategoricalPredictors',[2 5]);

Create a lime object. Specify a predictor data set because mdl does not contain predictor data.

results = lime(mdl,tblX)

results = 
  lime with properties:

             BlackboxModel: [1x1 RegressionKernel]
              DataLocality: 'global'
     CategoricalPredictors: [2 5]
                      Type: 'regression'
                         X: [392x6 table]
                QueryPoint: []
    NumImportantPredictors: []
          NumSyntheticData: 5000
             SyntheticData: [5000x6 table]
                    Fitted: [5000x1 double]
               SimpleModel: []
       ImportantPredictors: []
            BlackboxFitted: []
         SimpleModelFitted: []

results contains the generated synthetic data set. The SimpleModel property is empty ([]).

Fit a linear simple model for the first observation in tblX. Specify the number of important
predictors to find as 3.

queryPoint = tblX(1,:)

queryPoint=1×6 table
    Acceleration    Cylinders    Displacement    Horsepower    Model_Year    Weight
    ____________    _________    ____________    __________    __________    ______

         12             8            307            130            70         3504 

results = fit(results,queryPoint,3);
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Plot the lime object results by using the object function plot. To display an existing underscore in
any predictor name, change the TickLabelInterpreter value of the axes to 'none'.

f = plot(results);
f.CurrentAxes.TickLabelInterpreter = 'none';

The plot displays two predictions for the query point, which correspond to the “BlackboxFitted” on
page 35-0  property and the “SimpleModelFitted” on page 35-0  property of results.

The horizontal bar graph shows the coefficient values of the simple model, sorted by their absolute
values. LIME finds Horsepower, Model_Year, and Cylinders as important predictors for the query
point.

Model_Year and Cylinders are categorical predictors that have multiple categories. For a linear
simple model, the software creates one less dummy variable than the number of categories for each
categorical predictor. The bar graph displays only the most important dummy variable. You can check
the coefficients of the other dummy variables using the SimpleModel property of results. Display
the sorted coefficient values, including all categorical dummy variables.

[~,I] = sort(abs(results.SimpleModel.Beta),'descend');
table(results.SimpleModel.ExpandedPredictorNames(I)',results.SimpleModel.Beta(I), ...
    'VariableNames',{'Exteded Predictor Name','Coefficient'})

ans=17×2 table
      Exteded Predictor Name      Coefficient
    __________________________    ___________
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    {'Horsepower'            }    -3.4485e-05
    {'Model_Year (74 vs. 70)'}    -6.1279e-07
    {'Model_Year (80 vs. 70)'}     -4.015e-07
    {'Model_Year (81 vs. 70)'}     3.4176e-07
    {'Model_Year (82 vs. 70)'}    -2.2483e-07
    {'Cylinders (6 vs. 8)'   }    -1.9024e-07
    {'Model_Year (76 vs. 70)'}     1.8136e-07
    {'Cylinders (5 vs. 8)'   }     1.7461e-07
    {'Model_Year (71 vs. 70)'}      1.558e-07
    {'Model_Year (75 vs. 70)'}     1.5456e-07
    {'Model_Year (77 vs. 70)'}      1.521e-07
    {'Model_Year (78 vs. 70)'}     1.4272e-07
    {'Model_Year (72 vs. 70)'}     6.7001e-08
    {'Model_Year (73 vs. 70)'}     4.7214e-08
    {'Cylinders (4 vs. 8)'   }     4.5118e-08
    {'Model_Year (79 vs. 70)'}    -2.2598e-08
      ⋮

Input Arguments
results — LIME results
lime object

LIME results, specified as a lime object. The SimpleModel property of results must contain a
fitted simple model.

Version History
Introduced in R2020b

References
[1] Ribeiro, Marco Tulio, S. Singh, and C. Guestrin. "'Why Should I Trust You?': Explaining the

Predictions of Any Classifier." In Proceedings of the 22nd ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, 1135–44. San Francisco, California:
ACM, 2016.

See Also
lime | fit | plotPartialDependence

Topics
“Interpret Machine Learning Models” on page 27-2
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plot
Scatter plot or added variable plot of linear regression model

Syntax
plot(mdl)
plot(ax,mdl)
h = plot( ___ )

Description
plot(mdl) creates a plot of the linear regression model mdl. The plot type depends on the number
of predictor variables.

• If mdl includes multiple predictor variables, plot creates an “Added Variable Plot” on page 35-
5471 for the whole model except the constant (intercept) term, equivalent to plotAdded(mdl).

• If mdl includes a single predictor variable, plot creates a scatter plot of the data along with a
fitted curve and confidence bounds.

• If mdl does not include a predictor, plot creates a histogram of the residuals, equivalent to
plotResiduals(mdl).

plot(ax,mdl) creates the plot in the axes specified by ax instead of the current axes.

h = plot( ___ ) returns graphics objects for the lines or patch in the plot, using any of the input
argument combinations in the previous syntaxes. Use h to modify the properties of a specific line or
patch after you create the plot. For a list of properties, see Chart Line and Patch Properties.

Examples

Create Added Variable Plot

Create a linear regression model of car mileage as a function of weight and model year. Then create
an added variable plot to see the significance of the model.

Create a linear regression model of mileage from the carsmall data set.

load carsmall
Year = categorical(Model_Year);
tbl = table(MPG,Weight,Year);
mdl = fitlm(tbl,'MPG ~ Year + Weight^2');

Create an added variable plot of the model.

plot(mdl)
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The plot illustrates that the model is significant because a horizontal line does not fit between the
confidence bounds.

Create the same plot by using the plotAdded function.

plotAdded(mdl)
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Create Scatter Plot for Simple Linear Regression

Create a scatter plot of data along with a fitted curve and confidence bounds for a simple linear
regression model. A simple linear regression model includes only one predictor variable.

Create a simple linear regression model of mileage from the carsmall data set.

load carsmall
tbl = table(MPG,Weight);
mdl = fitlm(tbl,'MPG ~ Weight')

mdl = 
Linear regression model:
    MPG ~ 1 + Weight

Estimated Coefficients:
                    Estimate        SE         tStat       pValue  
                   __________    _________    _______    __________

    (Intercept)        49.238       1.6411     30.002    2.7015e-49
    Weight         -0.0086119    0.0005348    -16.103    1.6434e-28

Number of observations: 94, Error degrees of freedom: 92
Root Mean Squared Error: 4.13
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R-squared: 0.738,  Adjusted R-Squared: 0.735
F-statistic vs. constant model: 259, p-value = 1.64e-28

pValue of the Weight variable is very small, which means that the variable is statistically significant
in the model. Visualize this result by creating a scatter plot of the data, along with a fitted curve and
its 95% confidence bounds, using the plot function.

plot(mdl)

The plot illustrates that the model is significant because a horizontal line does not fit between the
confidence bounds, which is consistent with the pValue result.

Create the same plot by using the plotAdded function.

plotAdded(mdl)
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When a model includes only one term in addition to the constant term, an adjusted value is equivalent
to its original value. Therefore, this added variable plot is the same as the scatter plot created by the
plot function.

Input Arguments
mdl — Linear regression model
LinearModel object

Linear regression model, specified as a LinearModel object created using fitlm or stepwiselm.

ax — Target axes
Axes object

Target axes, specified as an Axes object.

If you do not specify the axes and the current axes are Cartesian, then plot uses the current axes
(gca). For more information on creating an Axes object, see axes and gca.

Output Arguments
h — Graphics objects
graphics array
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Graphics objects corresponding to the lines or patch in the plot, returned as a graphics array. Use dot
notation to query and set properties of graphics objects. For details, see Line Properties and Patch
Properties.

If mdl includes one or more predictors, then h(1), h(2), h(3), and h(4) correspond to adjusted
data points, the fitted line, and the lower and upper bounds of the fitted line, respectively.

If mdl does not include a predictor, then h corresponds to the histogram of residuals.

More About
Added Variable Plot

An added variable plot, also known as a partial regression leverage plot, illustrates the incremental
effect on the response of specified terms caused by removing the effects of all other terms.

An added variable plot created by plotAdded with a single selected term corresponding to a single
predictor variable includes these plots:

• Scatter plot of adjusted response values against adjusted predictor variable values
• Fitted line for adjusted response values as a function of adjusted predictor variable values
• 95% confidence bounds of the fitted line

The adjusted values are equal to the average of the variable plus the residuals of the variable fit to all
predictors except the selected predictor. For example, consider an added variable plot for the first
predictor variable x1. Fit the response variable y and the selected predictor variable x1 to all
predictors except x1 as follows:

yi = gy(x2i, x3i, …, xpi) + ryi,
x1i = gx(x2i, x3i, …, xpi) + rxi,

where gy and gx are the fit of y and x1, respectively, against all predictors except the selected
predictor (x1). ry and rx are the corresponding residual vectors. The subscript i represents the
observation number. The adjusted value is the sum of the average value and the residual for each
observation.

yi = y + ryi,
x1i = x1 + rxi,

where x1 and y represent the average of x1 and y, respectively.

plotAdded plots a scatter plot of (x1i, yi), a fitted line for y as a function of x1 (that is, β1x1), and the
95% confidence bounds of the fitted line. The coefficient β1 is the same as the coefficient estimate of
x1 in the full model, which includes all predictors.

ryi represents the part of the response values unexplained by the predictors (except x1), and rxi
represents the part of the x1 values unexplained by the other predictors. Therefore, the fitted line
represents how the new information introduced by adding x1 can explain the unexplained part of the
response values. If the slope of the fitted line is close to zero and the confidence bounds can include a
horizontal line, then the plot indicates that the new information from x1 does not explain the
unexplained part of the response values well. That is, x1 is not significant in the model fit.

plotAdded also supports an extension of the added variable plot so that you can select multiple
terms instead of a single term. Therefore, you can also specify a categorical predictor, all terms that
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involve a specific predictor, or the model as a whole (except a constant (intercept) term). Consider a
set of predictors X with a coefficient vector β, where βi is the coefficient estimate of xi in the full
model if you specify the ith coefficient for an added variable plot; otherwise, βi is zero. Define a unit
direction vector u as u = β/s where s = norm(β). Then, Xβ = (Xu)s. Treat Xu as a single predictor with
a coefficient s, and create an added variable plot for Xu in the same way as creating the plot for a
single term. The coefficient of the fitted line in the added variable plot corresponds to s.

plot creates an added variable plot for the model as a whole (except a constant term ) if the model
includes multiple terms.

Tips
• The data cursor displays the values of the selected plot point in a data tip (small text box located

next to the data point). The data tip includes the x-axis and y-axis values for the selected point,
along with the observation name or number.

Alternative Functionality
• A LinearModel object provides multiple plotting functions.

• When creating a model, use plotAdded to understand the effect of adding or removing a
predictor variable.

• When verifying a model, use plotDiagnostics to find questionable data and to understand
the effect of each observation. Also, use plotResiduals to analyze the residuals of the model.

• After fitting a model, use plotAdjustedResponse, plotPartialDependence, and
plotEffects to understand the effect of a particular predictor. Use plotInteraction to
understand the interaction effect between two predictors. Also, use plotSlice to plot slices
through the prediction surface.

• The plot function creates an added variable plot for the model as a whole (except a constant
term) if the model includes multiple terms. Use plotAdded to select particular predictors for an
added variable plot.

Version History
Introduced in R2012a

Extended Capabilities
GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

This function fully supports GPU arrays. For more information, see “Run MATLAB Functions on a
GPU” (Parallel Computing Toolbox).

See Also
LinearModel | plotAdded | plotResiduals

Topics
“Linear Regression Workflow” on page 11-35
“Interpret Linear Regression Results” on page 11-52
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“Linear Regression” on page 11-9
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plot
Class: RepeatedMeasuresModel

Plot data with optional grouping

Syntax
plot(rm)
plot(rm,Name,Value)
H = plot( ___ )

Description
plot(rm) plots the measurements in the repeated measures model rm for each subject as a function
of time. If there is a single numeric within-subjects factor, plot uses the values of that factor as the
time values. Otherwise, plot uses the discrete values 1 through r as the time values, where r is the
number of repeated measurements.

plot(rm,Name,Value) also plots the measurements in the repeated measures model rm, with
additional options specified by one or more Name,Value pair arguments.

For example, you can specify the factors to group by or change the line colors.

H = plot( ___ ) returns handles, H, to the plotted lines.

Input Arguments
rm — Repeated measures model
RepeatedMeasuresModel object

Repeated measures model, returned as a RepeatedMeasuresModel object.

For properties and methods of this object, see RepeatedMeasuresModel.

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.

Group — Name of between-subject factor or factors
character vector | string array | cell array of character vectors

Name of between-subject factor or factors, specified as the comma-separated pair consisting of
'Group' and a character vector, string array, or cell array of character vectors. This name-value pair
argument groups the lines according to the factor values.

For example, if you have two between-subject factors, drug and sex, and you want to group the lines
in the plot according to them, you can specify these factors as follows.
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Example: 'Group',{'Drug','Sex'}
Data Types: char | string | cell

Marker — Marker to use for each group
string array | cell array of character vectors

Marker to use for each group, specified as the comma-separated pair consisting of 'Marker' and a
string array or cell array of character vectors.

For example, if you have two between-subject factors, drug and sex, with each having two groups,
you can specify o as the marker for the groups of drug and x as the marker for the groups of sex as
follows.
Example: 'Marker',{'o','o','x','x'}
Data Types: string | cell

Color — Color for each group
character vector | string array | cell array of character vectors | rows of a three-column RGB matrix

Color for each group, specified as the comma-separated pair consisting of 'Color' and a character
vector, string array, cell array of character vectors, or rows of a three-column RGB matrix.

For example, if you have two between-subject factors, drug and sex, with each having two groups,
you can specify red as the color for the groups of drug and blue as the color for the groups of sex as
follows.
Example: 'Color','rrbb'
Data Types: single | double | char | string | cell

LineStyle — Line style for each group
string array | cell array of character vectors

Line style for each group, specified as the comma-separated pair consisting of 'LineStyle' and a
string array or cell array of character vectors.

For example, if you have two between-subject factors, drug and sex, with each having two groups,
you can specify - as the line style of one group and : as the line style for the other group as follows.
Example: 'LineStyle',{'-' ':' '-' ':'}
Data Types: string | cell

Output Arguments
H — Handle to plotted lines
handle

Handle to plotted lines, returned as a handle.

Examples
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Plot Data by Group

Load the sample data.

load fisheriris

The column vector species consists of iris flowers of three different species: setosa, versicolor, and
virginica. The double matrix meas consists of four types of measurements on the flowers: the length
and width of sepals and petals in centimeters, respectively.

Store the data in a table array.

t = table(species,meas(:,1),meas(:,2),meas(:,3),meas(:,4),...
'VariableNames',{'species','meas1','meas2','meas3','meas4'});
Meas = dataset([1 2 3 4]','VarNames',{'Measurements'});

Fit a repeated measures model, where the measurements are the responses and the species is the
predictor variable.

rm = fitrm(t,'meas1-meas4~species','WithinDesign',Meas);

Plot data grouped by the factor species.

plot(rm,'group','species')

Change the line style for each group.

plot(rm,'group','species','LineStyle',{'-','--',':'})
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Plot Data Grouped by Two Factors

Load the sample data.

load repeatedmeas

The table between includes the between-subject variables age, IQ, group, gender, and eight repeated
measures y1 through y8 as responses. The table within includes the within-subject variables w1 and
w2. This is simulated data.

Fit a repeated measures model, where the repeated measures y1 through y8 are the responses, and
age, IQ, group, gender, and the group-gender interaction are the predictor variables. Also specify the
within-subject design matrix.

rm = fitrm(between,'y1-y8 ~ Group*Gender + Age + IQ','WithinDesign',within);

Plot data with Group coded by color and Gender coded by line type.

plot(rm,'group',{'Group' 'Gender'},'Color','rrbbgg',...
              'LineStyle',{'-' ':' '-' ':' '-' ':'},'Marker','.')
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See Also
plotprofile | fitrm | multcompare
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plot
Plot Shapley values

Syntax
plot(explainer)
plot(explainer,Name,Value)
b = plot( ___ )

Description
plot(explainer) creates a horizontal bar graph of the Shapley values of the shapley object
explainer. These values are stored in the object's ShapleyValues property. Each bar shows the
Shapley value of each feature in the blackbox model (explainer.BlackboxModel) for the query
point (explainer.QueryPoint).

plot(explainer,Name,Value) specifies additional options using one or more name-value
arguments. For example, specify 'NumImportantPredictors',5 to plot the Shapley values of the
five features with the highest absolute Shapley values.

b = plot( ___ ) returns a bar graph object b using any of the input argument combinations in the
previous syntaxes. Use b to query or modify Bar Properties of the bar graph after it is created.

Examples

Plot Shapley Values for All Classes

Train a classification model and create a shapley object. Then plot the Shapley values by using the
object function plot.

Load the CreditRating_Historical data set. The data set contains customer IDs and their
financial ratios, industry labels, and credit ratings.

tbl = readtable('CreditRating_Historical.dat');

Display the first three rows of the table.

head(tbl,3)

     ID      WC_TA    RE_TA    EBIT_TA    MVE_BVTD    S_TA     Industry    Rating
    _____    _____    _____    _______    ________    _____    ________    ______

    62394    0.013    0.104     0.036      0.447      0.142       3        {'BB'}
    48608    0.232    0.335     0.062      1.969      0.281       8        {'A' }
    42444    0.311    0.367     0.074      1.935      0.366       1        {'A' }

Train a blackbox model of credit ratings by using the fitcecoc function. Use the variables from the
second through seventh columns in tbl as the predictor variables. A recommended practice is to
specify the class names to set the order of the classes.

 plot
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blackbox = fitcecoc(tbl,'Rating', ...
    'PredictorNames',tbl.Properties.VariableNames(2:7), ...
    'CategoricalPredictors','Industry', ...
    'ClassNames',{'AAA' 'AA' 'A' 'BBB' 'BB' 'B' 'CCC'});

Create a shapley object that explains the prediction for the last observation. For faster computation,
subsample 25% of the observations from tbl with stratification and use the samples to compute the
Shapley values.

queryPoint = tbl(end,:)

queryPoint=1×8 table
     ID      WC_TA    RE_TA    EBIT_TA    MVE_BVTD    S_TA    Industry    Rating
    _____    _____    _____    _______    ________    ____    ________    ______

    73104    0.239    0.463     0.065      2.924      0.34       2        {'AA'}

rng('default') % For reproducibility
c = cvpartition(tbl.Rating,'Holdout',0.25);
tbl_s = tbl(test(c),:);
explainer = shapley(blackbox,tbl_s,'QueryPoint',queryPoint);

For a classification model, shapley computes Shapley values using the predicted class score for each
class. Display the values in the ShapleyValues property.

explainer.ShapleyValues

ans=6×8 table
    Predictor        AAA           AA            A            BBB            BB             B            CCC    
    __________    _________    __________    __________    __________    ___________    __________    __________

    "WC_TA"        0.051042      0.022649     0.0096091     0.0015954      -0.027857      -0.04134     -0.039475
    "RE_TA"         0.16729      0.094743      0.053106     -0.011178       -0.08769      -0.20847      -0.29204
    "EBIT_TA"     0.0012014    0.00053332    0.00043346    0.00012321    -0.00066995    -0.0013388    -0.0011793
    "MVE_BVTD"       1.3377         1.338       0.67837     -0.027654       -0.55142      -0.75326      -0.59578
    "S_TA"        -0.012482    -0.0090998    -0.0007421    -0.0035582    -7.3338e-05     0.0014495     -0.002061
    "Industry"      -0.0991     -0.046854     0.0031129      0.080071       0.089728       0.09966       0.15692

The ShapleyValues property contains the Shapley values of all features for each class.

Plot the Shapley values for the predicted class by using the plot function.

plot(explainer)
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The horizontal bar graph shows the Shapley values for all variables, sorted by their absolute values.
Each Shapley value explains the deviation of the score for the query point from the average score of
the predicted class, due to the corresponding variable.

Plot the Shapley values for all classes by specifying all class names in explainer.BlackboxModel.

plot(explainer,'ClassNames',explainer.BlackboxModel.ClassNames)
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Specify Number of Important Predictors to Plot

Train a regression model and create a shapley object. Use the object function fit to compute the
Shapley values for the specified query point. Then plot the Shapley values of the predictors by using
the object function plot. Specify the number of important predictors to plot when you call the plot
function.

Load the carbig data set, which contains measurements of cars made in the 1970s and early 1980s.

load carbig

Create a table containing the predictor variables Acceleration, Cylinders, and so on, as well as
the response variable MPG.

tbl = table(Acceleration,Cylinders,Displacement,Horsepower,Model_Year,Weight,MPG);

Removing missing values in a training set can help reduce memory consumption and speed up
training for the fitrkernel function. Remove missing values in tbl.

tbl = rmmissing(tbl);

Train a blackbox model of MPG by using the fitrkernel function

rng('default') % For reproducibility
mdl = fitrkernel(tbl,'MPG','CategoricalPredictors',[2 5]);
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Create a shapley object. Specify the data set tbl, because mdl does not contain training data.

explainer = shapley(mdl,tbl)

explainer = 
  shapley with properties:

            BlackboxModel: [1x1 RegressionKernel]
               QueryPoint: []
           BlackboxFitted: []
            ShapleyValues: []
               NumSubsets: 64
                        X: [392x7 table]
    CategoricalPredictors: [2 5]
                   Method: 'interventional-kernel'
                Intercept: 22.6202

explainer stores the training data tbl in the X property.

Compute the Shapley values of all predictor variables for the first observation in tbl.

queryPoint = tbl(1,:)

queryPoint=1×7 table
    Acceleration    Cylinders    Displacement    Horsepower    Model_Year    Weight    MPG
    ____________    _________    ____________    __________    __________    ______    ___

         12             8            307            130            70         3504     18 

explainer = fit(explainer,queryPoint);

For a regression model, shapley computes Shapley values using the predicted response, and stores
them in the ShapleyValues property. Display the values in the ShapleyValues property.

explainer.ShapleyValues

ans=6×2 table
      Predictor       ShapleyValue
    ______________    ____________

    "Acceleration"       -0.1561  
    "Cylinders"         -0.18306  
    "Displacement"      -0.34203  
    "Horsepower"        -0.27291  
    "Model_Year"         -0.2926  
    "Weight"            -0.32402  

Plot the Shapley values for the query point by using the plot function. Specify
'NumImportantPredictors',5 to plot only the five most important predictors for the predicted
response.

plot(explainer,'NumImportantPredictors',5)
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The horizontal bar graph shows the Shapley values for the five most important predictors, sorted by
their absolute values. Each Shapley value explains the deviation of the prediction for the query point
from the average, due to the corresponding variable.

Input Arguments
explainer — Object explaining blackbox model
shapley object

Object explaining the blackbox model, specified as a shapley object.

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: plot(explainer,'NumImportantPredictors',5,'ClassNames',c) creates a bar
graph containing the Shapley values of the five most important predictors for the class c.

NumImportantPredictors — Number of important predictors to plot
min(M,10) where M is the number of predictors (default) | positive integer
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Number of important predictors to plot, specified as a positive integer. The plot function plots the
Shapley values of the specified number of predictors with the highest absolute Shapley values.
Example: 'NumImportantPredictors',5 specifies to plot the five most important predictors. The
plot function determines the order of importance by using the absolute Shapley values.
Data Types: single | double

ClassNames — Class labels to plot
explainer.BlackboxFitted (default) | categorical array | character array | logical vector |
numeric vector | cell array of character vectors

Class labels to plot, specified as a categorical or character array, logical or numeric vector, or cell
array of character vectors. The values and data types in the 'ClassNames' value must match those
of the class names in the ClassNames property of the machine learning model in explainer
(explainer.BlackboxModel.ClassNames).

You can specify one or more labels. If you specify multiple class labels, the function plots multiple
bars for each feature with different colors.

The default value is the predicted class for the query point (the BlackboxFitted property of
explainer).

This argument is valid only when the machine learning model (BlackboxModel) in explainer is a
classification model.
Example: 'ClassNames',{'red','blue'}
Example: 'ClassNames',explainer.BlackboxModel.ClassNames specifies 'ClassNames' as
all classes in BlackboxModel.
Data Types: single | double | logical | char | cell | categorical

More About
Shapley Values

In game theory, the Shapley value of a player is the average marginal contribution of the player in a
cooperative game. In the context of machine learning prediction, the Shapley value of a feature for a
query point explains the contribution of the feature to a prediction (response for regression or score
of each class for classification) at the specified query point.

The Shapley value of a feature for a query point is the contribution of the feature to the deviation
from the average prediction. For a query point, the sum of the Shapley values for all features
corresponds to the total deviation of the prediction from the average. That is, the sum of the average
prediction and the Shapley values for all features corresponds to the prediction for the query point.

For more details, see “Shapley Values for Machine Learning Model” on page 27-18.

Version History
Introduced in R2021a
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plot
Plot receiver operating characteristic (ROC) curves and other performance curves

Syntax
plot(rocObj)
plot(ax,rocObj)
plot( ___ ,Name=Value)
curveObj = plot( ___ )
[curveObj,graphicsObjs] = plot( ___ )

Description
plot(rocObj) creates a receiver operating characteristic (ROC) curve on page 35-5502, which is a
plot of the true positive rate (TPR) versus the false positive rate (FPR), for each class in the
ClassNames property of the rocmetrics object rocObj. The function marks the model operating
point on page 35-5503 for each curve, and displays the value of the area under the ROC curve (AUC
on page 35-5502) and the class name for the curve in the legend.

plot(ax,rocObj) creates the plot on the axes specified by ax instead of the current axes.

plot( ___ ,Name=Value) specifies additional options using one or more name-value arguments in
addition to any of the input argument combinations in the previous syntaxes. For example,
AverageROCType="macro",ClassNames=[] computes the average performance metrics using the
macro-averaging method and plots the average ROC curve only.

curveObj = plot( ___ ) returns a ROCCurve object for each performance curve.

[curveObj,graphicsObjs] = plot( ___ ) also returns graphics objects for the model operating
points and diagonal line.

Examples

Plot ROC Curves

Create a rocmetrics object for a multiclass classification problem, and plot a ROC curve for each
class.

Load the fisheriris data set. The matrix meas contains flower measurements for 150 different
flowers. The vector species lists the species for each flower. species contains three distinct flower
names.

load fisheriris

Train a classification tree that classifies observations into one of the three labels. Cross-validate the
model using 10-fold cross-validation.

rng("default") % For reproducibility
Mdl = fitctree(meas,species,Crossval="on");
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Compute the classification scores for validation-fold observations.

[~,Scores] = kfoldPredict(Mdl);
size(Scores)

ans = 1×2

   150     3

Scores is a matrix of size 150-by-3. The column order of Scores follows the class order in Mdl.
Display the class order stored in Mdl.ClassNames.

Mdl.ClassNames

ans = 3x1 cell
    {'setosa'    }
    {'versicolor'}
    {'virginica' }

Create a rocmetrics object by using the true labels in species and the classification scores in
Scores. Specify the column order of Scores using Mdl.ClassNames.

rocObj = rocmetrics(species,Scores,Mdl.ClassNames);

Plot the ROC curve for each class.

plot(rocObj)
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For each class, the plot function plots a ROC curve and displays a filled circle marker at the model
operating point. The legend displays the class name and AUC value for each curve.

Plot Average ROC Curve for Multiclass Classifier

Plot the average ROC curve by using the plot function. Use a ROCCurve object, an output of the
plot function, to obtain the average metric values.

Load the fisheriris data set. The matrix meas contains flower measurements for 150 different
flowers. The vector species lists the species for each flower. species contains three distinct flower
names.

load fisheriris

Train a classification tree that classifies observations into one of the three labels. Cross-validate the
model using 10-fold cross-validation.

rng("default") % For reproducibility
Mdl = fitctree(meas,species,Crossval="on");

Compute the classification scores for validation-fold observations.

[~,Scores] = kfoldPredict(Mdl);

Create a rocmetrics object.

rocObj = rocmetrics(species,Scores,Mdl.ClassNames);

Plot the ROC curve for each class. Specify AverageROCType="macro" to compute metrics for the
average ROC curve using the macro-averaging method.

curveObj = plot(rocObj,AverageROCType="macro")
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curveObj = 
  4x1 ROCCurve array:

  ROCCurve    (setosa (AUC = 1))
  ROCCurve    (versicolor (AUC = 0.9636))
  ROCCurve    (virginica (AUC = 0.9636))
  ROCCurve    (Macro-average (AUC = 0.9788))

The plot function returns a ROCCurve object for each performance curve. You can use the object to
query and set properties of the plot after creating it.

Display the data points of the average ROC curve stored in the fourth element of curveObj.

tbl_average = table(curveObj(4).Thresholds,curveObj(4).XData,curveObj(4).YData, ...
    VariableNames=["Threshold",curveObj(4).XAxisMetric,curveObj(4).YAxisMetric])

tbl_average=32×3 table
    Threshold    FalsePositiveRate    TruePositiveRate
    _________    _________________    ________________

           1                 0                  0     
           1         0.0066667            0.60667     
     0.95455              0.01               0.64     
     0.95349              0.01               0.68     
     0.95238          0.013333            0.72667     
     0.95122          0.013333            0.82667     
     0.91304          0.016667               0.86     
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     0.91111          0.023333            0.88667     
     0.86957          0.026667            0.91333     
         0.6          0.026667            0.92667     
     0.33333          0.026667               0.94     
         0.2          0.026667            0.94667     
        -0.2              0.03            0.94667     
    -0.33333          0.036667            0.94667     
        -0.6          0.046667            0.94667     
    -0.66667          0.053333            0.94667     
      ⋮

Plot Precision-Recall Curve and Detection Error Tradeoff (DET) Graph

Create a rocmetrics object and plot performance curves by using the plot function. Specify the
XAxisMetric and YAxisMetric name-value arguments of the plot function to plot different types
of performance curves other than the ROC curve. If you specify new metrics when you call the plot
function, the function computes the new metrics and then uses them to plot the curve.

Load the ionosphere data set. This data set has 34 predictors (X) and 351 binary responses (Y) for
radar returns, either bad ('b') or good ('g').

load ionosphere

Partition the data into training and test sets. Use approximately 80% of the observations to train a
support vector machine (SVM) model, and 20% of the observations to test the performance of the
trained model on new data. Partition the data using cvpartition.

rng("default") % For reproducibility of the partition
c = cvpartition(Y,Holdout=0.20);
trainingIndices = training(c); % Indices for the training set
testIndices = test(c); % Indices for the test set
XTrain = X(trainingIndices,:);
YTrain = Y(trainingIndices);
XTest = X(testIndices,:);
YTest = Y(testIndices);

Train an SVM classification model.

Mdl = fitcsvm(XTrain,YTrain);

Compute the classification scores for the test set.

[~,Scores] = predict(Mdl,XTest);

Create a rocmetrics object. The rocmetrics function computes the FPR and TPR at different
thresholds.

rocObj = rocmetrics(YTest,Scores,Mdl.ClassNames);

Plot the precision-recall curve for the first class. Specify the y-axis metric as precision (or positive
predictive value) and the x-axis metric as recall (or true positive rate). The plot function computes
the new metric values and plots the curve. Display a filled circle at the model operating point. Also,
compute the area under the precision-recall curve using the trapezoidal method of the trapz
function, and display the value in the legend.
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curveObj = plot(rocObj,ClassNames=Mdl.ClassNames(1), ...
    YAxisMetric="PositivePredictiveValue",XAxisMetric="TruePositiveRate");
hold on
idx = find(curveObj.Thresholds>=0,1,'last');
scatter(curveObj.XData(idx),curveObj.YData(idx),[],curveObj.Color,"filled")
xyData = rmmissing([curveObj.XData curveObj.YData]);
auc = trapz(xyData(:,1),xyData(:,2));
legend(join([string(Mdl.ClassNames(1)) " (AUC = " string(auc) ")"],""), ...
    join([string(Mdl.ClassNames(1)) "Model Operating Point"]), ...
    Location="southwest")
xlabel("Recall")
ylabel("Precision")
title("Precision-Recall Curve")
hold off

Plot the detection error tradeoff (DET) graph for the first class. Specify the y-axis metric as the false
negative rate and the x-axis metric as the false positive rate. Use a log scale for the x-axis and y-axis.

f = figure;
plot(rocObj,ClassNames=Mdl.ClassNames(1), ...
    YAxisMetric="FalseNegativeRate",XAxisMetric="FalsePositiveRate")
f.CurrentAxes.XScale = "log";
f.CurrentAxes.YScale = "log";
title("DET Graph")
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Plot Confidence Intervals

Compute the confidence intervals for FPR and TPR for fixed threshold values by using bootstrap
samples, and plot the confidence intervals for TPR on the ROC curve.

Load the fisheriris data set. The matrix meas contains flower measurements for 150 different
flowers. The vector species lists the species for each flower. species contains three distinct flower
names.

load fisheriris

Train a naive Bayes model that classifies observations into one of the three labels. Cross-validate the
model using 10-fold cross-validation.

rng("default") % For reproducibility
Mdl = fitcnb(meas,species,Crossval="on");

Compute the classification scores for validation-fold observations.

[~,Scores] = kfoldPredict(Mdl);

Create a rocmetrics object. Specify NumBootstraps as 100 to use 100 bootstrap samples to
compute the confidence intervals.
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rocObj = rocmetrics(species,Scores,Mdl.ClassNames, ...
    NumBootstraps=100);

Plot the ROC curve and the confidence intervals for TPR. Specify
ShowConfidenceIntervals=true to show the confidence intervals.

plot(rocObj,ShowConfidenceIntervals=true)

The shaded area around each curve indicates the confidence intervals. The widths of the confidence
intervals for setosa are 0 for nonzero false positive rates, so the plot does not have a shaded area
for setosa.

rocmetrics computes the ROC curves from the cross-validated scores. Therefore, each ROC curve
represents an estimate of a ROC curve on unseen test data for a model trained on the full data set
(meas and species). The confidence intervals represent the estimates of uncertainty for the curve.
This uncertainty is due to the variance in unseen test data for the model trained on the full data set.

Display Data Tip at Model Operating Point

Compute the performance metrics (FPR and TPR) for a binary classification problem by creating a
rocmetrics object, and plot a ROC curve by using the plot function. The plot function displays a
filled circle at the model operating point. Display a data tip at the model operating point.
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Load the ionosphere data set. This data set has 34 predictors (X) and 351 binary responses (Y) for
radar returns, either bad ('b') or good ('g').

load ionosphere

Partition the data into training and test sets. Use approximately 80% of the observations to train a
support vector machine (SVM) model, and 20% of the observations to test the performance of the
trained model on new data. Partition the data using cvpartition.

rng("default") % For reproducibility of the partition
c = cvpartition(Y,Holdout=0.20);
trainingIndices = training(c); % Indices for the training set
testIndices = test(c); % Indices for the test set
XTrain = X(trainingIndices,:);
YTrain = Y(trainingIndices);
XTest = X(testIndices,:);
YTest = Y(testIndices);

Train an SVM classification model.

Mdl = fitcsvm(XTrain,YTrain);

Compute the classification scores for the test set.

[~,Scores] = predict(Mdl,XTest);

Create a rocmetrics object.

rocObj = rocmetrics(YTest,Scores,Mdl.ClassNames);

The rocmetrics function computes the FPR and TPR at different thresholds and finds the AUC
value.

Plot the ROC curve. Specify ClassNames to plot the curve for the first class.

curveObj = plot(rocObj,ClassNames=Mdl.ClassNames(1));
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The plot function returns a ROCCurve object for each performance curve. You can use the object to
query and set the properties of the plot after creating it.

The filled circle marker indicates the model operating point at which the threshold value is 0. The
function chooses a point that has the largest threshold value less than or equal to 0. The legend
displays the class name and AUC value for the curve.

You can create data tips by clicking data points on the curve. Alternatively, you can create data tips
using the datatip function.

Find the model operating point in the Metrics property of rocObj for class b. The predict function
classifies an observation into the class yielding a larger score, which corresponds to the class with a
nonnegative adjusted score. That is, the typical threshold value used by the predict function is 0.
Among the rows in the Metrics property of rocObj for class b, find the point that has the smallest
nonnegative threshold value. The point on the curve indicates identical performance to the
performance of the threshold value 0.

idx_b = strcmp(rocObj.Metrics.ClassName,"b");
t = rocObj.Metrics(idx_b,:);
X = rocObj.Metrics(idx_b,:).FalsePositiveRate;
Y = rocObj.Metrics(idx_b,:).TruePositiveRate;
T = rocObj.Metrics(idx_b,:).Threshold;
idx_model = find(T>=0,1,"last");
modelpt = [T(idx_model) X(idx_model) Y(idx_model)]

modelpt = 1×3
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    0.1042    0.0222    0.6800

Display a data tip at the model operating point. Specify the target graph object as the output object of
the plot function.

datatip(curveObj,DataIndex=idx_model,Location="southeast");

Input Arguments
rocObj — Object evaluating classification performance
rocmetrics object

Object evaluating classification performance, specified as a rocmetrics object.

ax — Target axes
Axes object

Target axes, specified as an Axes object.

If you do not specify the axes and the current axes are Cartesian, then plot uses the current axes
(gca). For more information on creating an Axes object, see axes and gca.
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Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.
Example: YAxisMetric="PositivePredictiveValue",XAxisMetric="TruePositiveRate"
plots the precision (positive predictive value) versus the recall (true positive rate), which represents a
precision-recall curve.

AverageROCType — Method for averaging ROC curves
"none" (default) | "micro" | "macro" | "weighted" | string array | cell array of character vectors

Method for averaging ROC curves, specified as "none", "micro", "macro", "weighted", a string
array of method names, or a cell array of method names.

• If you specify "none" (default), the plot function does not create the average ROC curve. The
AverageROCType value must be "none" if plot creates performance curves other than a ROC
curve.

• If you specify multiple methods as a string array or a cell array of character vectors, then the
plot function plots multiple average ROC curves using the specified methods.

• If you specify one or more averaging methods and specify ClassNames=[], then the plot
function plots only the average ROC curves.

plot computes the averages of performance metrics for a multiclass classification problem, and plots
the average ROC curves using these methods:

• "micro" (micro-averaging) — plot finds the average performance metrics by treating all one-
versus-all on page 35-5502 binary classification problems as one binary classification problem.
The function computes the confusion matrix components for the combined binary classification
problem, and then computes the average FPR and TPR using the values of the confusion matrix.

• "macro" (macro-averaging) — plot computes the average values for FPR and TPR by averaging
the values of all one-versus-all binary classification problems.

• "weighted" (weighted macro-averaging) — plot computes the weighted average values for FPR
and TPR using the macro-averaging method and using the prior class probabilities (the Prior
property of rocObj) as weights.

The algorithm type determines the length of the vectors in the XData, YData, and Thresholds
properties of a ROCCurve object, returned by plot, for the average ROC curve. For more details, see
“Average of Performance Metrics” on page 18-10.
Example: AverageROCType="macro"
Example: AverageROCType=["micro","macro"]
Data Types: char | string

ClassNames — Class labels to plot
rocObj.ClassNames (default) | categorical array | character array | string array | logical vector |
numeric vector | cell array of character vectors

Class labels to plot, specified as a categorical, character, or string array, logical or numeric vector, or
cell array of character vectors. The values and data types in ClassNames must match those of the
class names in the ClassNames property of rocObj. (The software treats character or string arrays
as cell arrays of character vectors.)
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• If you specify multiple class labels, the plot function plots a ROC curve for each class.
• If you specify ClassNames=[] and specify one or more averaging methods using

AverageROCType, then the plot function plots only the average ROC curves.

Example: ClassNames=["red","blue"]
Data Types: single | double | logical | char | string | cell | categorical

ShowConfidenceIntervals — Flag to show confidence intervals of y-axis metric
false or 0 (default) | true or 1

Flag to show the confidence intervals of the y-axis metric (YAxisMetric), specified as logical 0
(false) or 1 (true).

The ShowConfidenceIntervals value can be true only if the Metrics property of rocObj
contains the confidence intervals for the y-axis metric.
Example: ShowConfidenceIntervals=true

Data Types: logical

ShowDiagonalLine — Flag to show diagonal line
true or 1 | false or 0

Flag to show the diagonal line that extends from [0,0] to [1,1], specified as logical 1 (true) or 0
(false).

The default value is true if you plot a ROC curve or an average ROC curve, and false otherwise.

In the ROC curve plot, the diagonal line represents a random classifier, and the line passing through
[0,0], [0,1], and [1,1] represents a perfect classifier.
Example: ShowDiagonalLine=false
Data Types: logical

ShowModelOperatingPoint — Flag to show model operating point
true or 1 | false or 0

Flag to show the model operating point on page 35-5503, specified as logical 1 (true) or 0 (false).

The default value is true for a ROC curve, and false for an average ROC curve. The
ShowModelOperatingPoint value must be false for performance curves other than ROC.
Example: ShowModelOperatingPoint=false
Data Types: logical

XAxisMetric — Metric for x-axis
"FalsePositiveRate" (default) | name of performance metric | function handle

Metric for the x-axis, specified as a character vector or string scalar of the built-in metric name or a
custom metric name, or a function handle (@metricName).

• Built-in metrics — Specify one of the following built-in metric names by using a character vector
or string scalar.
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Name Description
"TruePositives" or "tp" Number of true positives (TP)
"FalseNegatives" or "fn" Number of false negatives (FN)
"FalsePositives" or "fp" Number of false positives (FP)
"TrueNegatives" or "tn" Number of true negatives (TN)
"SumOfTrueAndFalsePosit
ives" or "tp+fp"

Sum of TP and FP

"RateOfPositivePredicti
ons" or "rpp"

Rate of positive predictions (RPP), (TP+FP)/(TP+FN+FP+TN)

"RateOfNegativePredicti
ons" or "rnp"

Rate of negative predictions (RNP), (TN+FN)/(TP+FN+FP
+TN)

"Accuracy" or "accu" Accuracy, (TP+TN)/(TP+FN+FP+TN)
"TruePositiveRate" or
"tpr"

True positive rate (TPR), also known as recall or sensitivity,
TP/(TP+FN)

"FalseNegativeRate",
"fnr", or "miss"

False negative rate (FNR), or miss rate, FN/(TP+FN)

"FalsePositiveRate" or
"fpr"

False positive rate (FPR), also known as fallout or 1-specificity,
FP/(TN+FP)

"TrueNegativeRate",
"tnr", or "spec"

True negative rate (TNR), or specificity, TN/(TN+FP)

"PositivePredictiveValu
e", "ppv", or "prec"

Positive predictive value (PPV), or precision, TP/(TP+FP)

"NegativePredictiveValu
e" or "npv"

Negative predictive value (NPV), TN/(TN+FN)

"ExpectedCost" or
"ecost"

Expected cost, (TP*cost(P|P)+FN*cost(N|P)
+FP*cost(P|N)+TN*cost(N|N))/(TP+FN+FP+TN), where
cost is a 2-by-2 misclassification cost matrix containing
[0,cost(N|P);cost(P|N),0]. cost(N|P) is the cost of
misclassifying a positive class (P) as a negative class (N), and
cost(P|N) is the cost of misclassifying a negative class as a
positive class.

The software converts the K-by-K matrix specified by the Cost
name-value argument of rocmetrics to a 2-by-2 matrix for
each one-versus-all binary problem. For details, see
“Misclassification Cost Matrix” on page 18-12.

The software computes the scale vector using the prior class probabilities (Prior) and the
number of classes in Labels, and then scales the performance metrics according to this scale
vector. For details, see “Performance Metrics” on page 18-11.

• Custom metric stored in the Metrics property — Specify the name of a custom metric stored in
the Metrics property of the input object rocObj. The rocmetrics function names a custom
metric "CustomMetricN", where N is the number that refers to the custom metric. For example,
specify XAxisMetric="CustomMetric1" to use the first custom metric in Metrics as a metric
for the x-axis.

35 Functions

35-5500



• Custom metric — Specify a new custom metric by using a function handle. A custom function that
returns a performance metric must have this form:

metric = customMetric(C,scale,cost)

• The output argument metric is a scalar value.
• A custom metric is a function of the confusion matrix (C), scale vector (scale), and cost matrix

(cost). The software finds these input values for each one-versus-all binary problem. For
details, see “Performance Metrics” on page 18-11.

• C is a 2-by-2 confusion matrix consisting of [TP,FN;FP,TN].
• scale is a 2-by-1 scale vector.
• cost is a 2-by-2 misclassification cost matrix.

The plot function names a custom metric "Custom Metric" for the axis label.

The software does not support cross-validation for a custom metric. Instead, you can specify to use
bootstrap when you create a rocmetrics object.

If you specify a new metric instead of one in the Metrics property of the input object rocObj, the
plot function computes and plots the metric values. If you compute confidence intervals when you
create rocObj, the plot function also computes confidence intervals for the new metric.

The plot function ignores NaNs in the performance metric values. Note that the positive predictive
value (PPV) is NaN for the reject-all threshold for which TP = FP = 0, and the negative predictive
value (NPV) is NaN for the accept-all threshold for which TN = FN = 0. For more details, see
“Thresholds, Fixed Metric, and Fixed Metric Values” on page 18-15.
Example: XAxisMetric="FalseNegativeRate"
Data Types: char | string | function_handle

YAxisMetric — Metric for y-axis
"TruePositiveRate" (default) | name of performance metric | function handle

Metric for the y-axis, specified as a character vector or string scalar of the built-in metric name or
custom metric name, or a function handle (@metricName). For details, see XAxisMetric.
Example: YAxisMetric="FalseNegativeRate"
Data Types: char | string | function_handle

Output Arguments
curveObj — Object for performance curve
ROCCurve object | array of ROCCurve objects

Object for the performance curve, returned as a ROCCurve object or an array of ROCCurve objects.
plot returns a ROCCurve object for each performance curve.

Use curveObj to query and modify properties of the plot after creating it. For a list of properties, see
ROCCurve Properties.

graphicsObjs — Graphics objects
graphics array
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Graphics objects for the model operating points and diagonal line, returned as a graphics array
containing Scatter and Line objects.

graphicsObjs contains a Scatter object for each model operating point (if
ShowModelOperatingPoint=true) and a Line object for the diagonal line (if
ShowDiagonalLine=true). Use graphicsObjs to query and modify properties of the model
operating points and diagonal line after creating the plot. For a list of properties, see Scatter
Properties and Line Properties.

More About
Receiver Operating Characteristic (ROC) Curve

A ROC curve shows the true positive rate versus the false positive rate for different thresholds of
classification scores.

The true positive rate and the false positive rate are defined as follows:

• True positive rate (TPR), also known as recall or sensitivity — TP/(TP+FN), where TP is the
number of true positives and FN is the number of false negatives

• False positive rate (FPR), also known as fallout or 1-specificity — FP/(TN+FP), where FP is the
number of false positives and TN is the number of true negatives

Each point on a ROC curve corresponds to a pair of TPR and FPR values for a specific threshold
value. You can find different pairs of TPR and FPR values by varying the threshold value, and then
create a ROC curve using the pairs. For each class, rocmetrics uses all distinct adjusted score on
page 35-5503 values as threshold values to create a ROC curve.

For a multiclass classification problem, rocmetrics formulates a set of one-versus-all on page 35-
5502 binary classification problems to have one binary problem for each class, and finds a ROC curve
for each class using the corresponding binary problem. Each binary problem assumes one class as
positive and the rest as negative.

For a binary classification problem, if you specify the classification scores as a matrix, rocmetrics
formulates two one-versus-all binary classification problems. Each of these problems treats one class
as a positive class and the other class as a negative class, and rocmetrics finds two ROC curves.
Use one of the curves to evaluate the binary classification problem.

For more details, see “ROC Curve and Performance Metrics” on page 18-3.

Area Under ROC Curve (AUC)

The area under a ROC curve (AUC) corresponds to the integral of a ROC curve (TPR values) with
respect to FPR from FPR = 0 to FPR = 1.

The AUC provides an aggregate performance measure across all possible thresholds. The AUC values
are in the range 0 to 1, and larger AUC values indicate better classifier performance.

One-Versus-All (OVA) Coding Design

The one-versus-all (OVA) coding design reduces a multiclass classification problem to a set of binary
classification problems. In this coding design, each binary classification treats one class as positive
and the rest of the classes as negative. rocmetrics uses the OVA coding design for multiclass
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classification and evaluates the performance on each class by using the binary classification that the
class is positive.

For example, the OVA coding design for three classes formulates three binary classifications:

Binary 1 Binary 2 Binary 3
Class 1 1 −1 −1
Class 2 −1 1 −1
Class 3 −1 −1 1

Each row corresponds to a class, and each column corresponds to a binary classification problem.
The first binary classification assumes that class 1 is a positive class and the rest of the classes are
negative. rocmetrics evaluates the performance on the first class by using the first binary
classification problem.

Model Operating Point

The model operating point represents the FPR and TPR corresponding to the typical threshold value.

The typical threshold value depends on the input format of the Scores argument (classification
scores) specified when you create a rocmetrics object:

• If you specify Scores as a matrix, rocmetrics assumes that the values in Scores are the scores
for a multiclass classification problem and uses adjusted score on page 35-5503 values. A
multiclass classification model classifies an observation into a class that yields the largest score,
which corresponds to a nonnegative score in the adjusted scores. Therefore, the threshold value is
0.

• If you specify Scores as a column vector, rocmetrics assumes that the values in Scores are
posterior probabilities of the class specified in ClassNames. A binary classification model
classifies an observation into a class that yields a higher posterior probability, that is, a posterior
probability greater than 0.5. Therefore, the threshold value is 0.5.

For a binary classification problem, you can specify Scores as a two-column matrix or a column
vector. However, if the classification scores are not posterior probabilities, you must specify Scores
as a matrix. A binary classifier classifies an observation into a class that yields a larger score, which
is equivalent to a class that yields a nonnegative adjusted score. Therefore, if you specify Scores as a
matrix for a binary classifier, rocmetrics can find a correct model operating point using the same
scheme that it applies to a multiclass classifier. If you specify classification scores that are not
posterior probabilities as a vector, rocmetrics cannot identify a correct model operating point
because it always uses 0.5 as a threshold for the model operating point.

The plot function displays a filled circle marker at the model operating point for each ROC curve
(see ShowModelOperatingPoint). The function chooses a point corresponding to the typical
threshold value. If the curve does not have a data point for the typical threshold value, the function
finds a point that has the smallest threshold value greater than the typical threshold. The point on the
curve indicates identical performance to the performance of the typical threshold value.

Algorithms
Adjusted Scores for Multiclass Classification Problem

For each class, rocmetrics adjusts the classification scores (input argument Scores of
rocmetrics) relative to the scores for the rest of the classes if you specify Scores as a matrix.
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Specifically, the adjusted score for a class given an observation is the difference between the score
for the class and the maximum value of the scores for the rest of the classes.

For example, if you have [s1,s2,s3] in a row of Scores for a classification problem with three classes,
the adjusted score values are [s1-max(s2,s3),s2-max(s1,s3),s3-max(s1,s2)].

rocmetrics computes the performance metrics using the adjusted score values for each class.

For a binary classification problem, you can specify Scores as a two-column matrix or a column
vector. Using a two-column matrix is a simpler option because the predict function of a
classification object returns classification scores as a matrix, which you can pass to rocmetrics. If
you pass scores in a two-column matrix, rocmetrics adjusts scores in the same way that it adjusts
scores for multiclass classification, and it computes performance metrics for both classes. You can
use the metric values for one of the two classes to evaluate the binary classification problem. The
metric values for a class returned by rocmetrics when you pass a two-column matrix are equivalent
to the metric values returned by rocmetrics when you specify classification scores for the class as a
column vector.

Version History
Introduced in R2022a

References
[1] Sebastiani, Fabrizio. "Machine Learning in Automated Text Categorization." ACM Computing

Surveys 34, no. 1 (March 2002): 1–47.

See Also
rocmetrics | ROCCurve Properties | addMetrics | average

Topics
“ROC Curve and Performance Metrics” on page 18-3
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plotAdded
Added variable plot of linear regression model

Syntax
plotAdded(mdl)
plotAdded(mdl,coef)
plotAdded(mdl,coef,Name,Value)

plotAdded(ax, ___ )

h = plotAdded( ___ )

Description
plotAdded(mdl) creates an added variable plot on page 35-5514 for the whole model mdl except
the constant (intercept) term.

plotAdded(mdl,coef) creates an added variable plot for the specified terms coef.

plotAdded(mdl,coef,Name,Value) specifies graphical properties of adjusted data points using
one or more name-value pair arguments. For example, you can specify the marker symbol and size for
the data points.

plotAdded(ax, ___ ) creates the plot in the axes specified by ax instead of the current axes, using
any of the input argument combinations in the previous syntaxes.

h = plotAdded( ___ ) returns line objects for the plot. Use h to modify the properties of a specific
line after you create the plot. For a list of properties, see Line Properties.

Examples

Create Added Variable Plot

Create a linear regression model of car mileage as a function of weight and model year. Then create
an added variable plot to see the significance of the model.

Create a linear regression model of mileage from the carsmall data set.

load carsmall
Year = categorical(Model_Year);
tbl = table(MPG,Weight,Year);
mdl = fitlm(tbl,'MPG ~ Year + Weight^2');

Create an added variable plot of the model.

plot(mdl)
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The plot illustrates that the model is significant because a horizontal line does not fit between the
confidence bounds.

Create the same plot by using the plotAdded function.

plotAdded(mdl)
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Create Added Variable Plot for Specified Variables

Create a linear regression model of car mileage as a function of weight and model year. Then create
an added variable plot to see the effect of the weight terms (Weight and Weight^2).

Create the linear regression model using the carsmall data set.

load carsmall
Year = categorical(Model_Year);
tbl = table(MPG,Weight,Year);
mdl = fitlm(tbl,'MPG ~ Year + Weight^2');

Find the terms in the model corresponding to Weight and Weight^2.

mdl.CoefficientNames

ans = 1x5 cell
    {'(Intercept)'}    {'Weight'}    {'Year_76'}    {'Year_82'}    {'Weight^2'}

The weight terms are 2 and 5.

Create an added variable plot with the weight terms.
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coef = [2 5];
plotAdded(mdl,coef)

The plot illustrates that the weight terms are significant because a horizontal line does not fit
between the confidence bounds.

Create Scatter Plot for Simple Linear Regression

Create a scatter plot of data along with a fitted curve and confidence bounds for a simple linear
regression model. A simple linear regression model includes only one predictor variable.

Create a simple linear regression model of mileage from the carsmall data set.

load carsmall
tbl = table(MPG,Weight);
mdl = fitlm(tbl,'MPG ~ Weight')

mdl = 
Linear regression model:
    MPG ~ 1 + Weight

Estimated Coefficients:
                    Estimate        SE         tStat       pValue  
                   __________    _________    _______    __________
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    (Intercept)        49.238       1.6411     30.002    2.7015e-49
    Weight         -0.0086119    0.0005348    -16.103    1.6434e-28

Number of observations: 94, Error degrees of freedom: 92
Root Mean Squared Error: 4.13
R-squared: 0.738,  Adjusted R-Squared: 0.735
F-statistic vs. constant model: 259, p-value = 1.64e-28

pValue of the Weight variable is very small, which means that the variable is statistically significant
in the model. Visualize this result by creating a scatter plot of the data, along with a fitted curve and
its 95% confidence bounds, using the plot function.

plot(mdl)

The plot illustrates that the model is significant because a horizontal line does not fit between the
confidence bounds, which is consistent with the pValue result.

Create the same plot by using the plotAdded function.

plotAdded(mdl)
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When a model includes only one term in addition to the constant term, an adjusted value is equivalent
to its original value. Therefore, this added variable plot is the same as the scatter plot created by the
plot function.

Input Arguments
mdl — Linear regression model
LinearModel object

Linear regression model, specified as a LinearModel object created using fitlm or stepwiselm.

coef — Coefficients in regression model
character vector | string scalar | vector of positive integers

Coefficients in the regression model mdl, specified as one of the following:

• Character vector or string scalar of a single coefficient name in mdl.CoefficientNames
(CoefficientNames property of mdl).

• Vector of positive integers representing the indexes of coefficients in mdl.CoefficientNames.
Use a vector to specify multiple coefficients.

Data Types: char | string | single | double

ax — Target axes
Axes object
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Target axes, specified as an Axes object.

If you do not specify the axes and the current axes are Cartesian, then plotAdded uses the current
axes (gca). For more information on creating an Axes object, see axes and gca.

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: 'Color','blue','Marker','*'

Note The graphical properties listed here are only a subset. For a complete list, see Line Properties.
The specified properties determine the appearance of adjusted data points.

Color — Line color
RGB triplet | hexadecimal color code | color name | short name

Line color, specified as the comma-separated pair consisting of 'Color' and an RGB triplet,
hexadecimal color code, color name, or short name for one of the color options listed in the following
table.

The 'Color' name-value pair argument also determines marker outline color and marker fill color if
'MarkerEdgeColor' is 'auto' (default) and 'MarkerFaceColor' is 'auto'.

For a custom color, specify an RGB triplet or a hexadecimal color code.

• An RGB triplet is a three-element row vector whose elements specify the intensities of the red,
green, and blue components of the color. The intensities must be in the range [0,1], for example,
[0.4 0.6 0.7].

• A hexadecimal color code is a character vector or a string scalar that starts with a hash symbol (#)
followed by three or six hexadecimal digits, which can range from 0 to F. The values are not case
sensitive. Therefore, the color codes "#FF8800", "#ff8800", "#F80", and "#f80" are
equivalent.

Alternatively, you can specify some common colors by name. This table lists the named color options,
the equivalent RGB triplets, and hexadecimal color codes.

Color Name Short Name RGB Triplet Hexadecimal
Color Code

Appearance

"red" "r" [1 0 0] "#FF0000"
"green" "g" [0 1 0] "#00FF00"
"blue" "b" [0 0 1] "#0000FF"
"cyan" "c" [0 1 1] "#00FFFF"
"magenta" "m" [1 0 1] "#FF00FF"
"yellow" "y" [1 1 0] "#FFFF00"

 plotAdded

35-5511



Color Name Short Name RGB Triplet Hexadecimal
Color Code

Appearance

"black" "k" [0 0 0] "#000000"
"white" "w" [1 1 1] "#FFFFFF"
"none" Not

applicable
Not applicable Not applicable No color

Here are the RGB triplets and hexadecimal color codes for the default colors MATLAB uses in many
types of plots.

RGB Triplet Hexadecimal Color Code Appearance
[0 0.4470 0.7410] "#0072BD"
[0.8500 0.3250 0.0980] "#D95319"
[0.9290 0.6940 0.1250] "#EDB120"
[0.4940 0.1840 0.5560] "#7E2F8E"
[0.4660 0.6740 0.1880] "#77AC30"
[0.3010 0.7450 0.9330] "#4DBEEE"
[0.6350 0.0780 0.1840] "#A2142F"

Example: 'Color','blue'

LineWidth — Line width
positive value

Line width, specified as the comma-separated pair consisting of 'LineWidth' and a positive value in
points. If the line has markers, then the line width also affects the marker edges.
Example: 'LineWidth',0.75

Marker — Marker symbol
'o' | '+' | '*' | '.' | 'x' | ...

Marker symbol, specified as the comma-separated pair consisting of 'Marker' and one of the values
in this table.

Marker Description Resulting Marker
"o" Circle

"+" Plus sign

"*" Asterisk

"." Point

"x" Cross

"_" Horizontal line
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Marker Description Resulting Marker
"|" Vertical line

"square" Square

"diamond" Diamond

"^" Upward-pointing triangle

"v" Downward-pointing triangle

">" Right-pointing triangle

"<" Left-pointing triangle

"pentagram" Pentagram

"hexagram" Hexagram

"none" No markers Not applicable

Example: 'Marker','+'

MarkerEdgeColor — Marker outline color
'auto' (default) | 'none' | RGB triplet | hexadecimal color code | color name | short name

Marker outline color, specified as the comma-separated pair consisting of 'MarkerEdgeColor' and
an RGB triplet, hexadecimal color code, color name, or short name for one of the color options listed
in the Color name-value pair argument.

The default value of 'auto' uses the same color specified by using 'Color'.
Example: 'MarkerEdgeColor','blue'

MarkerFaceColor — Marker fill color
'none' (default) | 'auto' | RGB triplet | hexadecimal color code | color name | short name

Marker fill color, specified as the comma-separated pair consisting of 'MarkerFaceColor' and an
RGB triplet, hexadecimal color code, color name, or short name for one of the color options listed in
the Color name-value pair argument.

The 'auto' value uses the same color specified by using 'Color'.
Example: 'MarkerFaceColor','blue'

MarkerSize — Marker size
6 (default) | positive value

Marker size, specified as the comma-separated pair consisting of 'MarkerSize' and a positive value
in points.
Example: 'MarkerSize',2
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Output Arguments
h — Line objects
vector

Line objects, returned as a 3-by-1 vector. h(1), h(2), and h(3) correspond to the adjusted data
points, fitted line, and 95% confidence bounds of the fitted line, respectively. Use dot notation to
query and set properties of the line objects. For details, see Line Properties.

You can use name-value pair arguments to specify the appearance of adjusted data points
corresponding to the first graphics object h(1).

More About
Added Variable Plot

An added variable plot, also known as a partial regression leverage plot, illustrates the incremental
effect on the response of specified terms caused by removing the effects of all other terms.

An added variable plot created by plotAdded with a single selected term corresponding to a single
predictor variable includes these plots:

• Scatter plot of adjusted response values against adjusted predictor variable values
• Fitted line for adjusted response values as a function of adjusted predictor variable values
• 95% confidence bounds of the fitted line

The adjusted values are equal to the average of the variable plus the residuals of the variable fit to all
predictors except the selected predictor. For example, consider an added variable plot for the first
predictor variable x1. Fit the response variable y and the selected predictor variable x1 to all
predictors except x1 as follows:

yi = gy(x2i, x3i, …, xpi) + ryi,
x1i = gx(x2i, x3i, …, xpi) + rxi,

where gy and gx are the fit of y and x1, respectively, against all predictors except the selected
predictor (x1). ry and rx are the corresponding residual vectors. The subscript i represents the
observation number. The adjusted value is the sum of the average value and the residual for each
observation.

yi = y + ryi,
x1i = x1 + rxi,

where x1 and y represent the average of x1 and y, respectively.

plotAdded plots a scatter plot of (x1i, yi), a fitted line for y as a function of x1 (that is, β1x1), and the
95% confidence bounds of the fitted line. The coefficient β1 is the same as the coefficient estimate of
x1 in the full model, which includes all predictors.

ryi represents the part of the response values unexplained by the predictors (except x1), and rxi
represents the part of the x1 values unexplained by the other predictors. Therefore, the fitted line
represents how the new information introduced by adding x1 can explain the unexplained part of the
response values. If the slope of the fitted line is close to zero and the confidence bounds can include a
horizontal line, then the plot indicates that the new information from x1 does not explain the
unexplained part of the response values well. That is, x1 is not significant in the model fit.
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plotAdded also supports an extension of the added variable plot so that you can select multiple
terms instead of a single term. Therefore, you can also specify a categorical predictor, all terms that
involve a specific predictor, or the model as a whole (except a constant (intercept) term). Consider a
set of predictors X with a coefficient vector β, where βi is the coefficient estimate of xi in the full
model if you specify the ith coefficient for an added variable plot; otherwise, βi is zero. Define a unit
direction vector u as u = β/s where s = norm(β). Then, Xβ = (Xu)s. Treat Xu as a single predictor with
a coefficient s, and create an added variable plot for Xu in the same way as creating the plot for a
single term. The coefficient of the fitted line in the added variable plot corresponds to s.

Tips
• The data cursor displays the values of the selected plot point in a data tip (small text box located

next to the data point). The data tip includes the x-axis and y-axis values for the selected point,
along with the observation name or number.

Alternative Functionality
• A LinearModel object provides multiple plotting functions.

• When creating a model, use plotAdded to understand the effect of adding or removing a
predictor variable.

• When verifying a model, use plotDiagnostics to find questionable data and to understand
the effect of each observation. Also, use plotResiduals to analyze the residuals of the model.

• After fitting a model, use plotAdjustedResponse, plotPartialDependence, and
plotEffects to understand the effect of a particular predictor. Use plotInteraction to
understand the interaction effect between two predictors. Also, use plotSlice to plot slices
through the prediction surface.

• plotAdded shows the incremental effect on the response of specified terms by removing the
effects of the other terms, whereas plotAdjustedResponse shows the effect of a selected
predictor in the model fit with the other predictors averaged out by averaging the fitted values.
Note that the definitions of adjusted values in plotAdded and plotAdjustedResponse are not
the same.

Version History
Introduced in R2012a

Extended Capabilities
GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

This function fully supports GPU arrays. For more information, see “Run MATLAB Functions on a
GPU” (Parallel Computing Toolbox).

See Also
LinearModel | plot

Topics
“Linear Regression Workflow” on page 11-35
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“Interpret Linear Regression Results” on page 11-52
“Linear Regression” on page 11-9
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plotAdjustedResponse
Adjusted response plot of linear regression model

Syntax
plotAdjustedResponse(mdl,var)
plotAdjustedResponse(mdl,var,Name,Value)
h = plotAdjustedResponse( ___ )

Description
plotAdjustedResponse(mdl,var) creates an adjusted response on page 35-5523 plot for the
variable var in the linear regression model mdl.

plotAdjustedResponse(mdl,var,Name,Value) specifies graphical properties of adjusted
response data points using one or more name-value pair arguments. For example, you can specify the
marker symbol and size for the data points.

h = plotAdjustedResponse( ___ ) returns line objects using any of the input argument
combinations in the previous syntaxes. Use h to modify the properties of a specific line after you
create the plot. For a list of properties, see Line Properties.

Examples

Plot Adjusted Responses

Load the carsmall data set and fit a linear model of the mileage as a function of model year, weight,
and weight squared.

load carsmall
tbl = table(MPG,Weight);
tbl.Year = categorical(Model_Year);
mdl = fitlm(tbl,'MPG ~ Year + Weight^2');

Plot the effect of Weight averaged over Year.

plotAdjustedResponse(mdl,'Weight')
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Plot the effect of Year averaged over Weight.

plotAdjustedResponse(mdl,'Year');
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Input Arguments
mdl — Linear regression model
LinearModel object

Linear regression model, specified as a LinearModel object created using fitlm or stepwiselm.

var — Variable for adjusted response plot
character vector | string array | positive integer

Variable for the adjusted response plot, specified as a character vector or string array of the variable
name in mdl.VariableNames, or a positive integer representing the index of a variable in
mdl.VariableNames.
Data Types: char | string | single | double

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: 'Color','blue','Marker','*'
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Note The graphical properties listed here are only a subset. For a complete list, see Line Properties.
The specified properties determine the appearance of adjusted response data points.

Color — Line color
RGB triplet | hexadecimal color code | color name | short name

Line color, specified as the comma-separated pair consisting of 'Color' and an RGB triplet,
hexadecimal color code, color name, or short name for one of the color options listed in the following
table.

The 'Color' name-value pair argument also determines marker outline color and marker fill color if
'MarkerEdgeColor' is 'auto' (default) and 'MarkerFaceColor' is 'auto'.

For a custom color, specify an RGB triplet or a hexadecimal color code.

• An RGB triplet is a three-element row vector whose elements specify the intensities of the red,
green, and blue components of the color. The intensities must be in the range [0,1], for example,
[0.4 0.6 0.7].

• A hexadecimal color code is a character vector or a string scalar that starts with a hash symbol (#)
followed by three or six hexadecimal digits, which can range from 0 to F. The values are not case
sensitive. Therefore, the color codes "#FF8800", "#ff8800", "#F80", and "#f80" are
equivalent.

Alternatively, you can specify some common colors by name. This table lists the named color options,
the equivalent RGB triplets, and hexadecimal color codes.

Color Name Short Name RGB Triplet Hexadecimal
Color Code

Appearance

"red" "r" [1 0 0] "#FF0000"
"green" "g" [0 1 0] "#00FF00"
"blue" "b" [0 0 1] "#0000FF"
"cyan" "c" [0 1 1] "#00FFFF"
"magenta" "m" [1 0 1] "#FF00FF"
"yellow" "y" [1 1 0] "#FFFF00"
"black" "k" [0 0 0] "#000000"
"white" "w" [1 1 1] "#FFFFFF"
"none" Not

applicable
Not applicable Not applicable No color

Here are the RGB triplets and hexadecimal color codes for the default colors MATLAB uses in many
types of plots.

RGB Triplet Hexadecimal Color Code Appearance
[0 0.4470 0.7410] "#0072BD"
[0.8500 0.3250 0.0980] "#D95319"
[0.9290 0.6940 0.1250] "#EDB120"
[0.4940 0.1840 0.5560] "#7E2F8E"
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RGB Triplet Hexadecimal Color Code Appearance
[0.4660 0.6740 0.1880] "#77AC30"
[0.3010 0.7450 0.9330] "#4DBEEE"
[0.6350 0.0780 0.1840] "#A2142F"

Example: 'Color','blue'

LineWidth — Line width
positive value

Line width, specified as the comma-separated pair consisting of 'LineWidth' and a positive value in
points. If the line has markers, then the line width also affects the marker edges.
Example: 'LineWidth',0.75

Marker — Marker symbol
'o' | '+' | '*' | '.' | 'x' | ...

Marker symbol, specified as the comma-separated pair consisting of 'Marker' and one of the values
in this table.

Marker Description Resulting Marker
"o" Circle

"+" Plus sign

"*" Asterisk

"." Point

"x" Cross

"_" Horizontal line

"|" Vertical line

"square" Square

"diamond" Diamond

"^" Upward-pointing triangle

"v" Downward-pointing triangle

">" Right-pointing triangle

"<" Left-pointing triangle

"pentagram" Pentagram
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Marker Description Resulting Marker
"hexagram" Hexagram

"none" No markers Not applicable

Example: 'Marker','+'

MarkerEdgeColor — Marker outline color
'auto' (default) | 'none' | RGB triplet | hexadecimal color code | color name | short name

Marker outline color, specified as the comma-separated pair consisting of 'MarkerEdgeColor' and
an RGB triplet, hexadecimal color code, color name, or short name for one of the color options listed
in the Color name-value pair argument.

The default value of 'auto' uses the same color specified by using 'Color'.
Example: 'MarkerEdgeColor','blue'

MarkerFaceColor — Marker fill color
'none' (default) | 'auto' | RGB triplet | hexadecimal color code | color name | short name

Marker fill color, specified as the comma-separated pair consisting of 'MarkerFaceColor' and an
RGB triplet, hexadecimal color code, color name, or short name for one of the color options listed in
the Color name-value pair argument.

The 'auto' value uses the same color specified by using 'Color'.
Example: 'MarkerFaceColor','blue'

MarkerSize — Marker size
6 (default) | positive value

Marker size, specified as the comma-separated pair consisting of 'MarkerSize' and a positive value
in points.
Example: 'MarkerSize',2

Output Arguments
h — Line objects
vector

Line objects, returned as a 2-by-1 vector. h(1) corresponds to the adjusted response data points, and
h(2) corresponds to the adjusted response function. Use dot notation to query and set properties of
the line objects. For details, see Line Properties.

You can use name-value pair arguments to specify the appearance of adjusted response data points
corresponding to the first graphics object h(1).

35 Functions

35-5522



More About
Adjusted Response

An adjusted response function describes the relationship between the fitted response and a single
predictor, with the other predictors averaged out by averaging the fitted values over the data used in
the fit.

A regression model for the predictor variables (x1, x2, …, xp) and the response variable y has the form
yi = f(x1i, x2i, …, xpi) + ri,

where f is a fitted regression function and r is a residual. The subscript i represents the observation
number.

The adjusted response function for the first predictor variable x1, for example, is defined as

g x1 = 1
n ∑i = 1

n
f x1, x2i, x3i, ..., xpi ,

where n is the number of observations. The adjusted response data value is the sum of the adjusted
fitted value and the residual for each observation.

yi = g x1i + ri .

plotAdjustedResponse plots the adjusted response function and the adjusted response data values
for a selected predictor variable.

Tips
• The data cursor displays the values of the selected plot point in a data tip (small text box located

next to the data point). The data tip includes the x-axis and y-axis values for the selected point,
along with the observation name or number.

Alternative Functionality
• A LinearModel object provides multiple plotting functions.

• When creating a model, use plotAdded to understand the effect of adding or removing a
predictor variable.

• When verifying a model, use plotDiagnostics to find questionable data and to understand
the effect of each observation. Also, use plotResiduals to analyze the residuals of the model.

• After fitting a model, use plotAdjustedResponse, plotPartialDependence, and
plotEffects to understand the effect of a particular predictor. Use plotInteraction to
understand the interaction effect between two predictors. Also, use plotSlice to plot slices
through the prediction surface.

• plotPartialDependence creates either a line plot or a surface plot of predicted responses
against a single feature or a pair of features, respectively, by marginalizing over the other
variables. A line plot for a single feature from plotPartialDependence and an adjusted
response function plot from plotAdjustedResponse are the same within numerical precision.

• plotEffects creates a summary plot that shows separate effects for all predictors.
• plotAdded shows the incremental effect on the response of specified terms by removing the
effects of the other terms, whereas plotAdjustedResponse shows the effect of a selected
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predictor in the model fit with the other predictors averaged out by averaging the fitted values.
Note that the definitions of adjusted values in plotAdded and plotAdjustedResponse are not
the same.

Version History
Introduced in R2012a

Extended Capabilities
GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

This function fully supports GPU arrays. For more information, see “Run MATLAB Functions on a
GPU” (Parallel Computing Toolbox).

See Also
LinearModel | plotAdded | plotEffects | plotInteraction | plotPartialDependence

Topics
“Linear Regression Workflow” on page 11-35
“Interpret Linear Regression Results” on page 11-52
“Linear Regression” on page 11-9
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plot
Plot Bayesian optimization results

Syntax
plot(results,'all')
plot(results,plotFcn1,plotFcn2,...)

Description
plot(results,'all') calls all predefined plot functions on results.

plot(results,plotFcn1,plotFcn2,...) calls the listed plot functions on results.

Examples

Plot After Optimization

This example shows how to plot the error model and the best objective trace after the optimization
has finished. The objective function for this example throws an error for points with norm larger than
2.

function f = makeanerror(x)
f = x.x1 - x.x2 - sqrt(4-x.x1^2-x.x2^2);

fun = @makeanerror;

Create the variables for optimization.

var1 = optimizableVariable('x1',[-5,5]);
var2 = optimizableVariable('x2',[-5,5]);
vars = [var1,var2];

Run the optimization without any plots. For reproducibility, set the random seed and use the
'expected-improvement-plus' acquisition function. Optimize for 60 iterations so the error model
becomes well-trained.

rng default
results = bayesopt(fun,vars,'MaxObjectiveEvaluations',60,...
    'AcquisitionFunctionName','expected-improvement-plus',...
    'PlotFcn',[],'Verbose',0);

Plot the error model and the best objective trace.

plot(results,@plotConstraintModels,@plotMinObjective)
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Input Arguments
results — Bayesian optimization results
BayesianOptimization object

Bayesian optimization results, specified as a BayesianOptimization object.

plotFcn — Plot function
function handle

Plot function, specified as a function handle.

There are several built-in plot functions:

Model Plots — Apply When D ≤ 2 Description
@plotAcquisitionFunction Plot the acquisition function surface.
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Model Plots — Apply When D ≤ 2 Description
@plotConstraintModels Plot each constraint model surface. Negative values indicate

feasible points.

Also plot a P(feasible) surface.

Also plot the error model, if it exists, which ranges from –1 to 1.
Negative values mean that the model probably does not error,
positive values mean that it probably does error. The model is:

Plotted error = 2*Probability(error) – 1.
@plotObjectiveEvaluationTime
Model

Plot the objective function evaluation time model surface.

@plotObjectiveModel Plot the fun model surface, the estimated location of the
minimum, and the location of the next proposed point to
evaluate. For one-dimensional problems, plot envelopes one
credible interval above and below the mean function, and
envelopes one noise standard deviation above and below the
mean.

Trace Plots — Apply to All D Description
@plotObjective Plot each observed function value versus the number of

function evaluations.
@plotObjectiveEvaluationTime Plot each observed function evaluation run time versus the

number of function evaluations.
@plotMinObjective Plot the minimum observed and estimated function values

versus the number of function evaluations.
@plotElapsedTime Plot three curves: the total elapsed time of the optimization, the

total function evaluation time, and the total modeling and point
selection time, all versus the number of function evaluations.

You can include a handle to your own plot functions. For details, see “Bayesian Optimization Plot
Functions” on page 10-11.
Example: @plotObjective
Data Types: function_handle

Alternative Functionality
You can specify plot functions in the bayesopt PlotFcn name-value pair. This allows you to monitor
the progress of the optimization.

Version History
Introduced in R2016b

See Also
BayesianOptimization | bayesopt
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plotComparisons
Interactive plot of multiple comparisons of means for analysis of variance (ANOVA)

Syntax
plotComparisons(aov)
plotComparisons(aov,factors)
plotComparisons(ax, ___ )
plotComparisons( ___ ,Name=Value)
f = plotComparisons( ___ )

Description
plotComparisons(aov) creates an interactive plot of the mean responses for each value of the
factor in a one-way anova object with comparison intervals.

To a close approximation, the difference between two mean estimates is statistically significant if
their comparison intervals are disjoint, and is not statistically significant if their comparison intervals
overlap. You can click an estimate to display its mean and comparison interval in blue, statistically
different means and comparison intervals in red, and statistically similar means and comparison
intervals in gray.

plotComparisons(aov,factors) groups the response data by the values of the factors listed in
factors for a one-, two-, or N-way ANOVA.

plotComparisons(ax, ___ ) plots into the axes ax using any of the input argument combinations
in the previous syntaxes.

plotComparisons( ___ ,Name=Value) specifies additional options using one or more name-value
arguments. For example, you can specify the confidence level for the bounds of the comparison
interval.

f = plotComparisons( ___ ) returns a Figure object f. Use f to query or modify properties of
the figure after it is created.

Examples

Compare Group Means of One-Way ANOVA

Load popcorn yield data.

load popcorn.mat

The columns of the 6-by-3 matrix popcorn contain popcorn yield observations in cups for the brands
Gourmet, National, and Generic, respectively.

Perform a one-way ANOVA to test the null hypothesis that the mean yields are the same across the
three brands. Use the function repmat to create a string vector containing factor values for the
brand.
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factors = [repmat("Gourmet",6,1); repmat("National",6,1); repmat("Generic",6,1)];
aov = anova(factors,popcorn(:),"FactorNames","Brand")

aov = 
1-way anova, constrained (Type III) sums of squares.

Y ~ 1 + Brand

             SumOfSquares    DF    MeanSquares     F        pValue  
             ____________    __    ___________    ____    __________

    Brand       15.75         2        7.875      18.9    7.9603e-05
    Error        6.25        15      0.41667                        
    Total          22        17                                     

  Properties, Methods

aov is an anova object that contains the results of the one-way ANOVA.

The small p-value for Brand indicates that the null hypothesis can be rejected at the 99% confidence
level. Enough evidence exists to conclude that at least one brand has a statistically significant
difference in mean popcorn yield. You can this difference by plotting the group means with
comparison intervals.

plotComparisons(aov);
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The figure shows the Gourmet comparison interval in blue and the comparison intervals of National
and Generic in red. The colors indicate that Gourmet is statistically different from Generic and
National.

Click on the mean of Generic. The plot now shows the Generic comparison interval in blue, the
National comparison interval in gray, and the Gourmet comparison interval in red. The colors
indicate that the difference in the mean popcorn yields of Generic and National is not statistically
significant.

Input Arguments
aov — Analysis of variance results
anova object

Analysis of variance results, specified as an anova object. The properties of aov contain the factors
and response data used by plotComparisons to compute the difference in means.

factors — Factors used to group response data
string vector | cell array of character vectors
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Factors used to group the response data, specified as a string vector or cell array of character
vectors. The plotComparisons function groups the response data by the combinations of values for
the factors in factors. The factors argument must be one or more of the names in
aov.FactorNames.
Example: ["g1","g2"]
Data Types: string | cell

ax — Target axes
Axes object

Target axes, specified as an Axes object. If you do not specify the axes, then plotComparisons uses
the current axes (gca).

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.
Example: Alpha=0.01,CriticalValueType="dunnett",Approximate=true sets the
significance level of the confidence intervals to 0.01 and uses an approximation of Dunnett's critical
value to calculate the p-values for the null hypothesis that group means are not significantly different.

Alpha — Significance level
single | double

Significance level for the comparison intervals, specified as a single or double between 0 and 1. The
confidence level of the comparison intervals is the probability that the difference between two mean
estimates with overlapping intervals is not statistically significant. The value of Alpha is given by the
formula 100(1− α)%. The default value for Alpha is 0.05.
Example: Alpha=0.01
Data Types: single | double

CriticalValueType — Critical value type
"tukey-kramer" (default) | "hsd" | "dunn-sidak" | "bonferroni" | "scheffe" | "dunnett" |
"lsd"

Critical value type used by the plotComparisons function to calculate p-values, specified as one of
the options in the following table. Each option specifies the statistical test that plotComparisons
uses to calculate the critical value.

Option Statistical Test
"tukey-kramer" (default) Tukey-Kramer test
"hsd" Honestly Significant Difference test — Same as

"tukey-kramer"
"dunn-sidak" Dunn-Sidak correction
"bonferroni" Bonferroni correction
"scheffe" Scheffe test
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Option Statistical Test
"dunnett" Dunnett's test — Can be used only when aov is a

one-way anova object or when a single factor is
specified in factors. For Dunnett's test, the
control group is selected in the generated plot
and cannot be changed.

"lsd" Stands for Least Significant Difference and uses
the critical value for a plain t-test. This option
does not protect against the multiple
comparisons problem unless it follows a
preliminary overall test such as an F-test.

Example: CriticalValueType="dunn-sidak"
Data Types: char | string

Approximate — Indicator to compute Dunnett critical value approximately
true or 1 | false or 0

Indicator to compute the Dunnett critical value approximately, specified as a numeric or logical 1
(true) or 0 (false). You can compute the Dunnett critical value approximately for speed. The default
for Approximate is true for an N-way ANOVA with N greater than two, and false otherwise. This
argument is valid only when CriticalValueType is "dunnett".
Example: Approximate=true
Data Types: logical

ControlGroup — Index of control group factor value
1 (default) | positive integer

Index of the control group factor value for Dunnett's test, specified as a positive integer. Factor values
are indexed by the order in which they appear in aov.ExpandedFactorNames. This argument is
valid only when CriticalValueType is "dunnett".
Example: ControlGroup=3
Data Types: single | double

Output Arguments
f — Target figure
Figure object

Target figure, returned as a Figure object. Use f to query or modify properties of the figure after it
is created. For a full list of figure properties, see Figure Properties.

Version History
Introduced in R2022b
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plotDiagnostics
Plot observation diagnostics of generalized linear regression model

Syntax
plotDiagnostics(mdl)
plotDiagnostics(mdl,plottype)
plotDiagnostics(mdl,plottype,Name,Value)
h = plotDiagnostics( ___ )

Description
plotDiagnostics creates a plot of observation diagnostics, such as leverage and Cook's distance,
to identify outliers and influential observations.

plotDiagnostics(mdl) creates a leverage plot of the generalized linear regression model (mdl)
observations. A dotted line in the plot represents the recommended threshold values.

plotDiagnostics(mdl,plottype) specifies the type of observation diagnostics plottype.

plotDiagnostics(mdl,plottype,Name,Value) specifies the graphical properties of diagnostic
data points using one or more name-value pair arguments. For example, you can specify the marker
symbol and size for the data points.

h = plotDiagnostics( ___ ) returns graphics objects for the lines or contour in the plot using any
of the input argument combinations in the previous syntaxes. Use h to modify the properties of a
specific line or contour after you create the plot. For a list of properties, see Line Properties and
Contour Properties.

Examples

Find Outliers Using Leverage and Cook's Distance

Create leverage and Cook's distance plots of a fitted generalized linear model, and find the outliers.

Generate sample data using Poisson random numbers with two underlying predictors X(:,1) and
X(:,2).

rng('default') % For reproducibility
rndvars = randn(100,2);
X = [2 + rndvars(:,1),rndvars(:,2)];
mu = exp(1 + X*[1;2]);
y = poissrnd(mu);

Create a generalized linear regression model of Poisson data.

mdl = fitglm(X,y,'y ~ x1 + x2','Distribution','poisson');

Create a leverage plot.
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plotDiagnostics(mdl)
legend('show') % Show the legend

The dotted line represents the recommended threshold value 2*p/n, where p is the number of
coefficients, and n is the number of observations. Find the threshold value using the
NumCoefficients and NumObservations properties.

t_leverage = 2*mdl.NumCoefficients/mdl.NumObservations

t_leverage = 0.0600

Find the observations with leverage values that exceed the threshold value.

find(mdl.Diagnostics.Leverage > t_leverage)

ans = 5×1

     9
    21
    64
    65
    70

You can also find an observation number by using a data tip. Select the data points above the
threshold line to display their data tips. The data tip includes the x-axis and y-axis values for the
selected point, along with the observation number.
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Plot the Cook's distance values.

plotDiagnostics(mdl,'cookd')

The dotted line represents the recommended threshold value. Compute the threshold value t_cookd.

t_cookd = 3*mean(mdl.Diagnostics.CooksDistance')

t_cookd = 0.0294

Find the observations with the Cook's distance values that exceed the threshold value.

find(mdl.Diagnostics.CooksDistance > t_cookd)

ans = 5×1

    15
    21
    27
    65
    70

Three observations (21, 65, and 70) are outliers by both measures, but some points (9, 15, 27, and 64)
are outliers by only one measure.
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Input Arguments
mdl — Generalized linear regression model
GeneralizedLinearModel object

Generalized linear regression model, specified as a GeneralizedLinearModel object created using
fitglm or stepwiseglm.

plottype — Type of plot
'leverage' (default) | 'contour' | 'cookd'

Type of plot, specified as one of the values in this table.

Value Plot Type Dotted Reference
Line in Plot

Purpose

'contour' Residual vs. leverage
with overlaid contours
of Cook's distance

Contours of Cook's
distance

Identify observations
with large residual
values, high leverage,
and large Cook's
distance values.

'cookd' Cook's distance Recommended
threshold, computed by
3*mean(mdl.Diagnos
tics.CooksDistance
)

Identify observations
with large Cook's
distance values.

'leverage' Leverage Recommended
threshold, computed by
2*p/n, where p is the
number of coefficients
(mdl.NumCoefficient
s) and n is the number
of observations
(mdl.NumObservation
s)

Identify high leverage
observations.

For 'cookd' and 'leverage', the x-axis is the row number (case order) of observations.

The Diagnostics property of mdl contains the diagnostic values used by plotDiagnostics to
create plots.

For more information about observation diagnostics, see “Cook’s Distance” on page 35-5542 and
“Leverage” on page 35-5543.

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: 'Color','blue','Marker','o'
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Note The graphical properties listed here are only a subset. For a complete list, see Line Properties.
The specified properties determine the appearance of diagnostic data points.

Color — Line color
RGB triplet | hexadecimal color code | color name | short name

Line color, specified as the comma-separated pair consisting of 'Color' and an RGB triplet,
hexadecimal color code, color name, or short name for one of the color options listed in the following
table.

The 'Color' name-value pair argument also determines marker outline color and marker fill color if
'MarkerEdgeColor' is 'auto' (default) and 'MarkerFaceColor' is 'auto'.

For a custom color, specify an RGB triplet or a hexadecimal color code.

• An RGB triplet is a three-element row vector whose elements specify the intensities of the red,
green, and blue components of the color. The intensities must be in the range [0,1], for example,
[0.4 0.6 0.7].

• A hexadecimal color code is a character vector or a string scalar that starts with a hash symbol (#)
followed by three or six hexadecimal digits, which can range from 0 to F. The values are not case
sensitive. Therefore, the color codes "#FF8800", "#ff8800", "#F80", and "#f80" are
equivalent.

Alternatively, you can specify some common colors by name. This table lists the named color options,
the equivalent RGB triplets, and hexadecimal color codes.

Color Name Short Name RGB Triplet Hexadecimal
Color Code

Appearance

"red" "r" [1 0 0] "#FF0000"
"green" "g" [0 1 0] "#00FF00"
"blue" "b" [0 0 1] "#0000FF"
"cyan" "c" [0 1 1] "#00FFFF"
"magenta" "m" [1 0 1] "#FF00FF"
"yellow" "y" [1 1 0] "#FFFF00"
"black" "k" [0 0 0] "#000000"
"white" "w" [1 1 1] "#FFFFFF"
"none" Not

applicable
Not applicable Not applicable No color

Here are the RGB triplets and hexadecimal color codes for the default colors MATLAB uses in many
types of plots.

RGB Triplet Hexadecimal Color Code Appearance
[0 0.4470 0.7410] "#0072BD"
[0.8500 0.3250 0.0980] "#D95319"
[0.9290 0.6940 0.1250] "#EDB120"
[0.4940 0.1840 0.5560] "#7E2F8E"
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RGB Triplet Hexadecimal Color Code Appearance
[0.4660 0.6740 0.1880] "#77AC30"
[0.3010 0.7450 0.9330] "#4DBEEE"
[0.6350 0.0780 0.1840] "#A2142F"

Example: 'Color','blue'

LineWidth — Line width
positive value

Line width, specified as the comma-separated pair consisting of 'LineWidth' and a positive value in
points. If the line has markers, then the line width also affects the marker edges.
Example: 'LineWidth',0.75

Marker — Marker symbol
'o' | '+' | '*' | '.' | 'x' | ...

Marker symbol, specified as the comma-separated pair consisting of 'Marker' and one of the values
in this table.

Marker Description Resulting Marker
"o" Circle

"+" Plus sign

"*" Asterisk

"." Point

"x" Cross

"_" Horizontal line

"|" Vertical line

"square" Square

"diamond" Diamond

"^" Upward-pointing triangle

"v" Downward-pointing triangle

">" Right-pointing triangle

"<" Left-pointing triangle

"pentagram" Pentagram
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Marker Description Resulting Marker
"hexagram" Hexagram

"none" No markers Not applicable

Example: 'Marker','+'

MarkerEdgeColor — Marker outline color
'auto' (default) | 'none' | RGB triplet | hexadecimal color code | color name | short name

Marker outline color, specified as the comma-separated pair consisting of 'MarkerEdgeColor' and
an RGB triplet, hexadecimal color code, color name, or short name for one of the color options listed
in the Color name-value pair argument.

The default value of 'auto' uses the same color specified by using 'Color'.
Example: 'MarkerEdgeColor','blue'

MarkerFaceColor — Marker fill color
'none' (default) | 'auto' | RGB triplet | hexadecimal color code | color name | short name

Marker fill color, specified as the comma-separated pair consisting of 'MarkerFaceColor' and an
RGB triplet, hexadecimal color code, color name, or short name for one of the color options listed in
the Color name-value pair argument.

The 'auto' value uses the same color specified by using 'Color'.
Example: 'MarkerFaceColor','blue'

MarkerSize — Marker size
6 (default) | positive value

Marker size, specified as the comma-separated pair consisting of 'MarkerSize' and a positive value
in points.
Example: 'MarkerSize',2

Output Arguments
h — Graphics objects
graphics array

Graphics objects corresponding to the lines or contour in the plot, returned as a graphics array. Use
dot notation to query and set properties of the graphics objects. For details, see Line Properties and
Contour Properties.

You can use name-value pair arguments to specify the appearance of diagnostic data points
corresponding to the first graphics object h(1).

More About
Cook’s Distance

Cook’s distance is the scaled change in fitted values, which is useful for identifying outliers in the
observations for predictor variables. Cook’s distance shows the influence of each observation on the
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fitted response values. An observation with Cook’s distance larger than three times the mean Cook’s
distance might be an outlier.

The Cook’s distance Di of observation i is

Di = wi
ei

2

pφ
hii

1− hii
2 ,

where

• φ  is the dispersion parameter (estimated or theoretical).
• ei is the linear predictor residual, g yi − xiβ , where

• g is the link function.
• yi is the observed response.
• xi is the observation.
• β  is the estimated coefficient vector.

• p is the number of coefficients in the regression model.
• hii is the ith diagonal element of the Hat Matrix on page 35-5543 H.

Leverage

Leverage is a measure of the effect of a particular observation on the regression predictions due to
the position of that observation in the space of the inputs.

The leverage of observation i is the value of the ith diagonal term hii of the hat matrix H. Because the
sum of the leverage values is p (the number of coefficients in the regression model), an observation i
can be considered an outlier if its leverage substantially exceeds p/n, where n is the number of
observations.

Hat Matrix

The hat matrix is a projection matrix that projects the vector of response observations onto the vector
of predictions.

The hat matrix H is defined in terms of the data matrix X and a diagonal weight matrix W:

H = X(XTWX)–1XTWT.

W has diagonal elements wi:

wi =
g′ μi
V μi

,

where

• g is the link function mapping yi to xib.
• g′ is the derivative of the link function g.
• V is the variance function.
• μi is the ith mean.
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The diagonal elements Hii satisfy

0 ≤ hii ≤ 1

∑
i = 1

n
hii = p,

where n is the number of observations (rows of X), and p is the number of coefficients in the
regression model.

Tips
• The data cursor displays the values of the selected plot point in a data tip (small text box located

next to the data point). The data tip includes the x-axis and y-axis values for the selected point,
along with the observation name or number.

• Use legend('show') to show the pre-populated legend.

Alternative Functionality
A GeneralizedLinearModel object provides multiple plotting functions.

• When verifying a model, use plotDiagnostics to find questionable data and to understand the
effect of each observation. Also, use plotResiduals to analyze the residuals of the model.

• After fitting a model, use plotPartialDependence to understand the effect of a particular
predictor. Also, use plotSlice to plot slices through the prediction surface.

Version History
Introduced in R2012a

References
[1] Neter, J., M. H. Kutner, C. J. Nachtsheim, and W. Wasserman. Applied Linear Statistical Models,

Fourth Edition. Chicago: McGraw-Hill Irwin, 1996.

Extended Capabilities
GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

This function fully supports GPU arrays. For more information, see “Run MATLAB Functions on a
GPU” (Parallel Computing Toolbox).

See Also
GeneralizedLinearModel | plotResiduals | plotPartialDependence | plotSlice

Topics
“Diagnostic Plots” on page 12-17
“Generalized Linear Models” on page 12-9
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plotDiagnostics
Plot observation diagnostics of linear regression model

Syntax
plotDiagnostics(mdl)
plotDiagnostics(mdl,plottype)
plotDiagnostics(mdl,plottype,Name,Value)
h = plotDiagnostics( ___ )

Description
plotDiagnostics creates a plot of observation diagnostics such as leverage, Cook's distance, and
delete-1 statistics to identify outliers and influential observations.

plotDiagnostics(mdl) creates a leverage plot of the linear regression model (mdl) observations.
A dotted line in the plot represents the recommended threshold values.

plotDiagnostics(mdl,plottype) specifies the type of observation diagnostics plottype.

plotDiagnostics(mdl,plottype,Name,Value) specifies the graphical properties of diagnostic
data points using one or more name-value pair arguments. For example, you can specify the marker
symbol and size for the data points.

h = plotDiagnostics( ___ ) returns graphics objects for the lines or contour in the plot using any
of the input argument combination in the previous syntaxes. Use h to modify the properties of a
specific line or contour after you create the plot. For a list of properties, see Line Properties and
Contour Properties.

Examples

Find Outliers Using Leverage and Cook's Distance

Plot the leverage values and Cook's distances of observations and find the outliers.

Load the carsmall data set and fit a linear regression model of the mileage as a function of model
year, weight, and weight squared.

load carsmall
tbl = table(MPG,Weight);
tbl.Year = categorical(Model_Year);
mdl = fitlm(tbl,'MPG ~ Year + Weight^2');

Plot the leverage values.

plotDiagnostics(mdl)
legend('show') % Show the legend

 plotDiagnostics

35-5545



The dotted line represents the recommended threshold value 2*p/n, where p is the number of
coefficients, and n is the number of observations. Find the threshold value using the
NumCoefficients and NumObservations properties.

t_leverage = 2*mdl.NumCoefficients/mdl.NumObservations

t_leverage = 0.1064

Find the observations with leverage values that exceed the threshold value.

find(mdl.Diagnostics.Leverage > t_leverage)

ans = 3×1

    26
    32
    35

You can also find an observation number by using a data tip. Select the data points above the
threshold line to display their data tips. The data tip includes the x-axis and y-axis values for the
selected point, along with the observation number.

Plot the Cook's distance values.

plotDiagnostics(mdl,'cookd')

35 Functions

35-5546



The dotted line represents the recommended threshold value. Compute the threshold value t_cookd.

t_cookd = 3*mean(mdl.Diagnostics.CooksDistance,'omitnan')

t_cookd = 0.0320

Find the observations with the Cook's distance values that exceed the threshold value.

find(mdl.Diagnostics.CooksDistance > t_cookd)

ans = 6×1

    26
    35
    80
    90
    92
    97

Two observations (26 and 35) are outliers by both measures, but some points (32, 80, 90, 92, and 97)
are outliers by only one measure.

Input Arguments
mdl — Linear regression model
LinearModel object
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Linear regression model, specified as a LinearModel object created using fitlm or stepwiselm.

plottype — Type of plot
'leverage' (default) | 'contour' | 'cookd' | 'covratio' | 'dfbetas' | 'dffits' | 's2_i'

Type of plot, specified as one of the values in this table.

Value Plot Type Dotted Reference Line in
Plot

Purpose

'contour' Residual vs. leverage with
overlaid contours of Cook's
distance

Contours of Cook's distance Identify observations with
large residual values, high
leverage, and large Cook's
distance values.

'cookd' Cook's distance Recommended threshold,
computed by
3*mean(mdl.Diagnostic
s.CooksDistance)

Identify observations with
large Cook's distance
values.

'covratio' Delete-1 ratio of
determinant of covariance

Recommended thresholds,
computed by 1±3*p/n,
where p is the number of
coefficients
(mdl.NumCoefficients)
and n is the number of
observations
(mdl.NumObservations)

Identify observations where
the delete-1 statistic value
is not in the range of the
recommended thresholds.

'dfbetas' Delete-1 scaled differences
in coefficient estimates

Recommended threshold,
computed by 3/sqrt(n)

Identify observations with
large delete-1 statistic
values.

'dffits' Delete-1 scaled differences
in fitted values

Recommended threshold,
computed by 2*sqrt(p/n)
in an absolute value

Identify observations with
large delete-1 statistic
values in an absolute value.

'leverage' Leverage Recommended threshold,
computed by 2*p/n

Identify high leverage
observations.

's2_i' Delete-1 variance Mean squared error
(mdl.MSE)

Compare the delete-1
variance with the mean
squared error.

For all plot types except 'contour', the x-axis is the row number (case order) of observations.

The Diagnostics property of mdl contains the diagnostic values used by plotDiagnostics to
create plots.

For more information about observation diagnostics, see “Cook’s Distance” on page 35-5552,
“Delete-1 Statistics” on page 35-5552, and “Leverage” on page 35-5552.

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.
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Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: 'Color','blue','Marker','o'

Note The graphical properties listed here are only a subset. For a complete list, see Line Properties.
The specified properties determine the appearance of diagnostic data points.

Color — Line color
RGB triplet | hexadecimal color code | color name | short name

Line color, specified as the comma-separated pair consisting of 'Color' and an RGB triplet,
hexadecimal color code, color name, or short name for one of the color options listed in the following
table.

The 'Color' name-value pair argument also determines marker outline color and marker fill color if
'MarkerEdgeColor' is 'auto' (default) and 'MarkerFaceColor' is 'auto'.

For a custom color, specify an RGB triplet or a hexadecimal color code.

• An RGB triplet is a three-element row vector whose elements specify the intensities of the red,
green, and blue components of the color. The intensities must be in the range [0,1], for example,
[0.4 0.6 0.7].

• A hexadecimal color code is a character vector or a string scalar that starts with a hash symbol (#)
followed by three or six hexadecimal digits, which can range from 0 to F. The values are not case
sensitive. Therefore, the color codes "#FF8800", "#ff8800", "#F80", and "#f80" are
equivalent.

Alternatively, you can specify some common colors by name. This table lists the named color options,
the equivalent RGB triplets, and hexadecimal color codes.

Color Name Short Name RGB Triplet Hexadecimal
Color Code

Appearance

"red" "r" [1 0 0] "#FF0000"
"green" "g" [0 1 0] "#00FF00"
"blue" "b" [0 0 1] "#0000FF"
"cyan" "c" [0 1 1] "#00FFFF"
"magenta" "m" [1 0 1] "#FF00FF"
"yellow" "y" [1 1 0] "#FFFF00"
"black" "k" [0 0 0] "#000000"
"white" "w" [1 1 1] "#FFFFFF"
"none" Not

applicable
Not applicable Not applicable No color

Here are the RGB triplets and hexadecimal color codes for the default colors MATLAB uses in many
types of plots.

RGB Triplet Hexadecimal Color Code Appearance
[0 0.4470 0.7410] "#0072BD"
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RGB Triplet Hexadecimal Color Code Appearance
[0.8500 0.3250 0.0980] "#D95319"
[0.9290 0.6940 0.1250] "#EDB120"
[0.4940 0.1840 0.5560] "#7E2F8E"
[0.4660 0.6740 0.1880] "#77AC30"
[0.3010 0.7450 0.9330] "#4DBEEE"
[0.6350 0.0780 0.1840] "#A2142F"

Example: 'Color','blue'

LineWidth — Line width
positive value

Line width, specified as the comma-separated pair consisting of 'LineWidth' and a positive value in
points. If the line has markers, then the line width also affects the marker edges.
Example: 'LineWidth',0.75

Marker — Marker symbol
'o' | '+' | '*' | '.' | 'x' | ...

Marker symbol, specified as the comma-separated pair consisting of 'Marker' and one of the values
in this table.

Marker Description Resulting Marker
"o" Circle

"+" Plus sign

"*" Asterisk

"." Point

"x" Cross

"_" Horizontal line

"|" Vertical line

"square" Square

"diamond" Diamond

"^" Upward-pointing triangle

"v" Downward-pointing triangle

">" Right-pointing triangle
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Marker Description Resulting Marker
"<" Left-pointing triangle

"pentagram" Pentagram

"hexagram" Hexagram

"none" No markers Not applicable

Example: 'Marker','+'

MarkerEdgeColor — Marker outline color
'auto' (default) | 'none' | RGB triplet | hexadecimal color code | color name | short name

Marker outline color, specified as the comma-separated pair consisting of 'MarkerEdgeColor' and
an RGB triplet, hexadecimal color code, color name, or short name for one of the color options listed
in the Color name-value pair argument.

The default value of 'auto' uses the same color specified by using 'Color'.
Example: 'MarkerEdgeColor','blue'

MarkerFaceColor — Marker fill color
'none' (default) | 'auto' | RGB triplet | hexadecimal color code | color name | short name

Marker fill color, specified as the comma-separated pair consisting of 'MarkerFaceColor' and an
RGB triplet, hexadecimal color code, color name, or short name for one of the color options listed in
the Color name-value pair argument.

The 'auto' value uses the same color specified by using 'Color'.
Example: 'MarkerFaceColor','blue'

MarkerSize — Marker size
6 (default) | positive value

Marker size, specified as the comma-separated pair consisting of 'MarkerSize' and a positive value
in points.
Example: 'MarkerSize',2

Output Arguments
h — Graphics objects
graphics array

Graphics objects corresponding to the lines or contour in the plot, returned as a graphics array. Use
dot notation to query and set properties of the graphics objects. For details, see Line Properties and
Contour Properties.

You can use name-value pair arguments to specify the appearance of diagnostic data points
corresponding to the first graphics object h(1). If plottype is 'dfbetas', the plot includes a line
object for each coefficient. Name-value pair arguments specify the line object properties of all
coefficients. You can modify the properties of each coefficient separately by using the corresponding
graphics object.
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More About
Cook’s Distance

Cook’s distance is the scaled change in fitted values, which is useful for identifying outliers in the X
values (observations for predictor variables). Cook’s distance shows the influence of each observation
on the fitted response values. An observation with Cook’s distance larger than three times the mean
Cook’s distance might be an outlier.

Each element in the Cook's distance D is the normalized change in the fitted response values due to
the deletion of an observation. The Cook’s distance of observation i is

Di =
∑

j = 1

n
y j− y j(i)

2

p MSE ,

where

• y j is the jth fitted response value.

• y j(i) is the jth fitted response value, where the fit does not include observation i.

• MSE is the mean squared error.
• p is the number of coefficients in the regression model.

Cook’s distance is algebraically equivalent to the following expression:

Di =
ri

2

p MSE
hii

1− hii
2 ,

where ri is the ith residual, and hii is the ith leverage value.

For more details, see “Cook’s Distance” on page 11-57.

Delete-1 Statistics

Delete-1 statistics are useful for finding the influence of each observation. These statistics capture
the changes that would result from excluding each observation in turn from the fit. If the delete-1
statistics differ significantly from the model using all observations, then the observation is influential.

See “Delete-1 Statistics” on page 11-65 for the definitions and usages of the delete-1 statistics.

Leverage

Leverage is a measure of the effect of a particular observation on the regression predictions due to
the position of that observation in the space of the inputs.

The leverage of observation i is the value of the ith diagonal term hii of the hat matrix H. The hat
matrix H is defined in terms of the data matrix X:

H = X(XTX)–1XT.
The hat matrix is also known as the projection matrix because it projects the vector of observations y
onto the vector of predictions y , thus putting the "hat" on y.
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Because the sum of the leverage values is p (the number of coefficients in the regression model), an
observation i can be considered an outlier if its leverage substantially exceeds p/n, where n is the
number of observations.

For more details, see “Hat Matrix and Leverage” on page 11-79.

Tips
• The data cursor displays the values of the selected plot point in a data tip (small text box located

next to the data point). The data tip includes the x-axis and y-axis values for the selected point,
along with the observation name or number.

• Use legend('show') to show the pre-populated legend.

Alternative Functionality
• A LinearModel object provides multiple plotting functions.

• When creating a model, use plotAdded to understand the effect of adding or removing a
predictor variable.

• When verifying a model, use plotDiagnostics to find questionable data and to understand
the effect of each observation. Also, use plotResiduals to analyze the residuals of the model.

• After fitting a model, use plotAdjustedResponse, plotPartialDependence, and
plotEffects to understand the effect of a particular predictor. Use plotInteraction to
understand the interaction effect between two predictors. Also, use plotSlice to plot slices
through the prediction surface.

Version History
Introduced in R2012a

References
[1] Neter, J., M. H. Kutner, C. J. Nachtsheim, and W. Wasserman. Applied Linear Statistical Models,

Fourth Edition. Chicago: McGraw-Hill Irwin, 1996.

Extended Capabilities
GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

This function fully supports GPU arrays. For more information, see “Run MATLAB Functions on a
GPU” (Parallel Computing Toolbox).

See Also
LinearModel | plotResiduals

Topics
“Cook’s Distance” on page 11-57
“Delete-1 Statistics” on page 11-65
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“Hat Matrix and Leverage” on page 11-79
“Interpret Linear Regression Results” on page 11-52
“Linear Regression Workflow” on page 11-35
“Linear Regression” on page 11-9
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plotDiagnostics
Class: NonLinearModel

Plot diagnostics of nonlinear regression model

Syntax
plotDiagnostics(mdl)
plotDiagnostics(mdl,plottype)
plotDiagnostics(mdl,plottype,Name,Value)
h = plotDiagnostics( ___ )

Description
plotDiagnostics(mdl) creates a leverage plot of the nonlinear regression model (mdl)
observations. A dotted line in the plot represents the recommended threshold values.

plotDiagnostics(mdl,plottype) specifies the type of observation diagnostics plottype.

plotDiagnostics(mdl,plottype,Name,Value) specifies the graphical properties of diagnostic
data points using one or more name-value arguments. For example, you can specify the marker
symbol and size for the data points.

h = plotDiagnostics( ___ ) returns graphics objects for the lines or contour in the plot using any
of the input argument combinations in the previous syntaxes. Use h to modify the properties of a
specific line or contour after you create the plot. For a list of properties, see Line Properties and
Contour Properties.

Input Arguments
mdl

Nonlinear regression model, constructed by fitnlm.

plottype

Character vector or string scalar specifying the type of plot:

'contour' Residual vs. leverage with overlaid Cook's contours
'cookd' Cook's distance
'leverage' Leverage (diagonal of Hat matrix)

Default: 'leverage'

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.
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Before R2021a, use commas to separate each name and value, and enclose Name in quotes.

Note The graphical properties listed here are only a subset. For a complete list, see Line Properties.
The specified properties determine the appearance of diagnostic data points.

Color

Color of the line or marker, specified as an RGB triplet, hexadecimal color code, color name, or short
name for one of the color options listed in the following table.

For a custom color, specify an RGB triplet or a hexadecimal color code.

• An RGB triplet is a three-element row vector whose elements specify the intensities of the red,
green, and blue components of the color. The intensities must be in the range [0,1], for example,
[0.4 0.6 0.7].

• A hexadecimal color code is a character vector or a string scalar that starts with a hash symbol (#)
followed by three or six hexadecimal digits, which can range from 0 to F. The values are not case
sensitive. Therefore, the color codes "#FF8800", "#ff8800", "#F80", and "#f80" are
equivalent.

Alternatively, you can specify some common colors by name. This table lists the named color options,
the equivalent RGB triplets, and hexadecimal color codes.

Color Name Short Name RGB Triplet Hexadecimal
Color Code

Appearance

"red" "r" [1 0 0] "#FF0000"
"green" "g" [0 1 0] "#00FF00"
"blue" "b" [0 0 1] "#0000FF"
"cyan" "c" [0 1 1] "#00FFFF"
"magenta" "m" [1 0 1] "#FF00FF"
"yellow" "y" [1 1 0] "#FFFF00"
"black" "k" [0 0 0] "#000000"
"white" "w" [1 1 1] "#FFFFFF"

Here are the RGB triplets and hexadecimal color codes for the default colors MATLAB uses in many
types of plots.

RGB Triplet Hexadecimal Color Code Appearance
[0 0.4470 0.7410] "#0072BD"
[0.8500 0.3250 0.0980] "#D95319"
[0.9290 0.6940 0.1250] "#EDB120"
[0.4940 0.1840 0.5560] "#7E2F8E"
[0.4660 0.6740 0.1880] "#77AC30"
[0.3010 0.7450 0.9330] "#4DBEEE"
[0.6350 0.0780 0.1840] "#A2142F"
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LineWidth

Width of the line or edges of filled area, in points, a positive scalar. One point is 1/72 inch.

Default: 0.5

Marker

Marker symbol, specified as one of the values in this table.

Marker Description Resulting Marker
"o" Circle

"+" Plus sign

"*" Asterisk

"." Point

"x" Cross

"_" Horizontal line

"|" Vertical line

"square" Square

"diamond" Diamond

"^" Upward-pointing triangle

"v" Downward-pointing triangle

">" Right-pointing triangle

"<" Left-pointing triangle

"pentagram" Pentagram

"hexagram" Hexagram

"none" No markers Not applicable

MarkerEdgeColor

Marker outline color, specified as an RGB triplet, hexadecimal color code, color name, or short name
for one of the color options listed in the Color name-value argument.

MarkerFaceColor

Fill color for filled markers, specified as an RGB triplet, hexadecimal color code, color name, or short
name for one of the color options listed in the Color name-value argument.

 plotDiagnostics

35-5557



MarkerSize

Size of the marker in points, a strictly positive scalar. One point is 1/72 inch.

Output Arguments
h

Graphics objects corresponding to the lines or contour in the plot, returned as a graphics array. Use
dot notation to query and set properties of the graphics objects. For details, see Line Properties and
Contour Properties.

You can use name-value arguments to specify the appearance of diagnostic data points corresponding
to the first graphics object h(1).

Examples

Nonlinear Model Leverage Plot

Create a leverage plot of a fitted nonlinear model, and find the points with high leverage.

Load the reaction data and fit a model of the reaction rate as a function of reactants.

load reaction
mdl = fitnlm(reactants,rate,@hougen,[1 .05 .02 .1 2]);

Create a leverage plot of the fitted model.

plotDiagnostics(mdl)
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Use data tips to examine the observation with high leverage. A data tip appears when you hover over
a data point.
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Alternatively, find the high-leverage observation at the command line.

find(mdl.Diagnostics.Leverage > 0.8)

ans =

     6

More About
Hat Matrix

The hat matrix H is defined in terms of the data matrix X and the Jacobian matrix J:

Ji, j = ∂ f
∂β j xi, β

Here f is the nonlinear model function, and β is the vector of model coefficients.

The Hat Matrix H is

H = J(JTJ)–1JT.

The diagonal elements Hii satisfy
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0 ≤ hii ≤ 1

∑
i = 1

n
hii = p,

where n is the number of observations (rows of X), and p is the number of coefficients in the
regression model.

Leverage

Leverage is a measure of the effect of a particular observation on the regression predictions due to
the position of that observation in the space of the inputs.

The leverage of observation i is the value of the ith diagonal term hii of the hat matrix H. Because the
sum of the leverage values is p (the number of coefficients in the regression model), an observation i
can be considered an outlier if its leverage substantially exceeds p/n, where n is the number of
observations.

Cook’s Distance

The Cook’s distance Di of observation i is

Di =
∑

j = 1

n
y j− y j(i)

2

p MSE ,

where

• y j is the jth fitted response value.
• y j(i) is the jth fitted response value, where the fit does not include observation i.
• MSE is the mean squared error.
• p is the number of coefficients in the regression model.

Cook’s distance is algebraically equivalent to the following expression:

Di =
ri

2

p MSE
hii

1− hii
2 ,

where ei is the ith residual.

Tips
• The data cursor displays the values of the selected plot point in a data tip (small text box located

next to the data point). The data tip includes the x-axis and y-axis values for the selected point,
along with the observation name or number.

References

[1] Neter, J., M. H. Kutner, C. J. Nachtsheim, and W. Wasserman. Applied Linear Statistical Models,
Fourth Edition. Irwin, Chicago, 1996.
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See Also
NonLinearModel | plotResiduals

Topics
“Examine Quality and Adjust the Fitted Nonlinear Model” on page 13-6
“Nonlinear Regression Workflow” on page 13-13
“Nonlinear Regression” on page 13-2
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plotEffects
Package: 

Plot main effects of predictors in linear regression model

Syntax
plotEffects(mdl)
h = plotEffects(mdl)

Description
plotEffects(mdl) creates an effects plot of the predictors in the linear regression model mdl. An
effects plot shows the estimated main effect on page 35-5565 on the response from changing each
predictor value, averaging out the effects of the other predictors. A horizontal line through an effect
value indicates the 95% confidence interval for the effect value.

h = plotEffects(mdl) returns line objects. Use h to modify the properties of a specific line after
you create the plot. For a list of properties, see Line Properties.

Examples

Effects Plot for Linear Regression Model

Load the carsmall data set and fit a linear regression model of the mileage as a function of model
year, weight, and weight squared.

load carsmall
tbl = table(MPG,Weight);
tbl.Year = categorical(Model_Year);
mdl = fitlm(tbl,'MPG ~ Year + Weight^2');

Create an effects plot.

plotEffects(mdl)
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The length of each horizontal line in the figure shows a 95% confidence interval for the effect on the
response of the change shown for each predictor. For example, the estimated effect of changing Year
from 70 to 82 is an increase of about 8, and is between 6 and 10 with 95% confidence.

Input Arguments
mdl — Linear regression model object
LinearModel object | CompactLinearModel object

Linear regression model object, specified as a LinearModel object created by using fitlm or
stepwiselm, or a CompactLinearModel object created by using compact.

Output Arguments
h — Line objects
vector

Line objects, returned as a vector. h(1) corresponds to the circles that represent the effect
estimates, and h(j+1) corresponds to the 95% confidence interval for the effect of predictor j. Use
dot notation to query and set properties of line objects. For details, see Line Properties.
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More About
Main Effect

An effect, or main effect, of a predictor represents an effect of one predictor on the response from
changing the predictor value while averaging out the effects of the other predictors.

For a predictor variable xs, the effect is defined by
g(xsi) – g(xsj) ,

where g is an “Adjusted Response” on page 35-5565 function. The plotEffects function chooses the
observations i and j as follows. For a categorical variable that is not ordinal, xsi and xsj are the
predictor values that produce the maximum and minimum adjusted responses, respectively, so that
the effect value is always positive. For a numeric variable or an ordinal categorical variable, the
function chooses two predictor values that produce the minimum and maximum adjusted responses
where xsi < xsj.

plotEffects plots the effect value and the 95% confidence interval of the effect value for each
predictor variable.

Adjusted Response

An adjusted response function describes the relationship between the fitted response and a single
predictor, with the other predictors averaged out by averaging the fitted values over the data used in
the fit.

A regression model for the predictor variables (x1, x2, …, xp) and the response variable y has the form
yi = f(x1i, x2i, …, xpi) + ri,

where f is a fitted regression function and r is a residual. The subscript i represents the observation
number.

The adjusted response function for the first predictor variable x1, for example, is defined as

g x1 = 1
n ∑i = 1

n
f x1, x2i, x3i, ..., xpi ,

where n is the number of observations. The adjusted response data value is the sum of the adjusted
fitted value and the residual for each observation.

yi = g x1i + ri .

plotAdjustedResponse plots the adjusted response function and the adjusted response data values
for a selected predictor variable.

Tips
• The data cursor displays the values of the selected plot point in a data tip (small text box located

next to the data point). The data tip includes the x-axis and y-axis values for the selected point.
Use the x-axis values to view an estimated effect value and its confidence bounds.

Alternative Functionality
• A LinearModel object provides multiple plotting functions.
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• When creating a model, use plotAdded to understand the effect of adding or removing a
predictor variable.

• When verifying a model, use plotDiagnostics to find questionable data and to understand
the effect of each observation. Also, use plotResiduals to analyze the residuals of the model.

• After fitting a model, use plotAdjustedResponse, plotPartialDependence, and
plotEffects to understand the effect of a particular predictor. Use plotInteraction to
understand the interaction effect between two predictors. Also, use plotSlice to plot slices
through the prediction surface.

Version History
Introduced in R2012a

Extended Capabilities
GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

This function fully supports GPU arrays. For more information, see “Run MATLAB Functions on a
GPU” (Parallel Computing Toolbox).

See Also
CompactLinearModel | LinearModel | plotAdjustedResponse | plotInteraction

Topics
“Linear Regression with Interaction Effects” on page 11-46
“Interpret Linear Regression Results” on page 11-52
“Linear Regression Workflow” on page 11-35
“Linear Regression” on page 11-9
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plotInteraction
Package: 

Plot interaction effects of two predictors in linear regression model

Syntax
plotInteraction(mdl,var1,var2)
plotInteraction(mdl,var1,var2,ptype)
h = plotInteraction( ___ )

Description
plotInteraction(mdl,var1,var2) creates a plot of the main effects on page 35-5574 of the two
selected predictors var1 and var2 and their conditional effects on page 35-5575 in the linear
regression model mdl. Horizontal lines through the effect values indicate their 95% confidence
intervals.

plotInteraction(mdl,var1,var2,ptype) specifies the plot type ptype. For example, if ptype
is 'predictions', then plotInteraction plots the adjusted response function as a function of the
second predictor, with the first predictor fixed at specific values. For details, see “Conditional Effect”
on page 35-5575.

h = plotInteraction( ___ ) returns line objects using any of the input argument combinations in
the previous syntaxes. Use h to modify the properties of a specific line after you create the plot. For a
list of properties, see Line Properties.

Examples

Interaction Plot of Main Effects and Conditional Effects

Fit a model with an interaction term and create an interaction plot that shows the main effects and
conditional effects.

Using the data in the carsmall data set, create response values that include an interaction term.
First, load the data set and normalize the predictor data.

load carsmall
Acceleration = normalize(Acceleration); 
Horsepower = normalize(Horsepower);
Displacement = normalize(Displacement);

Define a response variable that includes the interaction term Acceleration*Horsepower.

y = Acceleration + 4*Horsepower + Acceleration.*Horsepower + Displacement;

Add some noise to the response values.

rng('default') % For reproducibility
y = y + normrnd(10,0.25*std(y,'omitnan'),size(y));
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Create a table that includes the predictor data and response values.

tbl = table(Acceleration,Horsepower,Displacement,y);

Fit a linear regression model.

mdl = fitlm(tbl,'y ~ Acceleration + Horsepower + Acceleration*Horsepower + Displacement + Horsepower*Displacement')

mdl = 
Linear regression model:
    y ~ 1 + Acceleration*Horsepower + Horsepower*Displacement

Estimated Coefficients:
                                Estimate       SE         tStat        pValue  
                               __________    _______    _________    __________

    (Intercept)                    9.8652    0.16177       60.982     8.587e-77
    Acceleration                  0.63726     0.1626       3.9191    0.00016967
    Horsepower                     3.6168       0.34       10.638     9.273e-18
    Displacement                  0.95032    0.31828       2.9858     0.0036144
    Acceleration:Horsepower       0.60108     0.1851       3.2473     0.0016209
    Horsepower:Displacement    -0.0096069    0.20947    -0.045863       0.96352

Number of observations: 99, Error degrees of freedom: 93
Root Mean Squared Error: 1.07
R-squared: 0.93,  Adjusted R-Squared: 0.927
F-statistic vs. constant model: 249, p-value = 3.3e-52

pValue of the interaction term Acceleration*Horsepower is very small, meaning that the
interaction term is statistically significant.

Create an interaction plot that shows the main effects and conditional effects of Horsepower and
Acceleration.

plotInteraction(mdl,'Horsepower','Acceleration')
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For each predictor, the main effect point and its conditional effect points are not vertically aligned.
Therefore, you cannot find any vertical lines that pass through the confidence intervals of the main
and conditional effect points for each predictor. This plot indicates the existence of interaction effects
on the response variable.

For comparison, create an interaction plot for Displacement and Horsepower. This p-value of this
interaction term (Displacement*Horsepower) is large, meaning that the interaction term is not
statistically significant.

plotInteraction(mdl,'Displacement','Horsepower')
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For each predictor, the main effect point and its conditional effect points are aligned vertically. This
plot indicates no interaction.

Interaction Plot of Adjusted Response Curve

Fit a model with an interaction term and create an interaction plot of adjusted response curves.

Using the data in the carsmall data set, create response values that include an interaction term.
First, load the data set and normalize the predictor data.

load carsmall
Acceleration = normalize(Acceleration); 
Horsepower = normalize(Horsepower);
Displacement = normalize(Displacement);

Define a response variable that includes the interaction term Acceleration*Horsepower.

y = Acceleration + 4*Horsepower + Acceleration.*Horsepower + Displacement;

Add some noise to the response values.

rng('default') % For reproducibility
y = y + normrnd(10,0.25*std(y,'omitnan'),size(y));

Create a table that includes the predictor data and response values.
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tbl = table(Acceleration,Horsepower,Displacement,y);

Fit a linear regression model.

mdl = fitlm(tbl,'y ~ Acceleration + Horsepower + Acceleration*Horsepower + Displacement + Horsepower*Displacement')

mdl = 
Linear regression model:
    y ~ 1 + Acceleration*Horsepower + Horsepower*Displacement

Estimated Coefficients:
                                Estimate       SE         tStat        pValue  
                               __________    _______    _________    __________

    (Intercept)                    9.8652    0.16177       60.982     8.587e-77
    Acceleration                  0.63726     0.1626       3.9191    0.00016967
    Horsepower                     3.6168       0.34       10.638     9.273e-18
    Displacement                  0.95032    0.31828       2.9858     0.0036144
    Acceleration:Horsepower       0.60108     0.1851       3.2473     0.0016209
    Horsepower:Displacement    -0.0096069    0.20947    -0.045863       0.96352

Number of observations: 99, Error degrees of freedom: 93
Root Mean Squared Error: 1.07
R-squared: 0.93,  Adjusted R-Squared: 0.927
F-statistic vs. constant model: 249, p-value = 3.3e-52

pValue of the interaction term Acceleration*Horsepower is very small, meaning that the
interaction term is statistically significant.

Create an interaction plot that shows the adjusted response function as a function of Acceleration,
with Horsepower fixed at specific values.

plotInteraction(mdl,'Horsepower','Acceleration','predictions')
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The curves are not parallel. This plot indicates interactions between the predictors.

For comparison, create an interaction plot for the Displacement and Horsepower. The p-value of
this interaction term (Displacement*Horsepower) is large, meaning that the interaction term is
not statistically significant.

plotInteraction(mdl,'Displacement','Horsepower','predictions')
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The curves are parallel, indicating no interaction.

Input Arguments
mdl — Linear regression model object
LinearModel object | CompactLinearModel object

Linear regression model object, specified as a LinearModel object created by using fitlm or
stepwiselm, or a CompactLinearModel object created by using compact.

var1 — First variable for plot
character vector | string array | positive integer

First variable for the plot, specified as a character vector or string array of the variable name in
mdl.VariableNames (VariableNames property of mdl), or a positive integer representing the
index of a variable in mdl.VariableNames.
Data Types: char | string | single | double

var2 — Second variable for plot
character vector | string array | positive integer

Second variable for the plot, specified as a character vector or string array of the variable name in
mdl.VariableNames (VariableNames property of mdl), or a positive integer representing the
index of a variable in mdl.VariableNames.
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Data Types: char | string | single | double

ptype — Plot type
'effects' (default) | 'predictions'

Plot type, specified as one of these values:

• 'effects' — plotInteraction creates a plot of the main effects of the two selected predictors
var1 and var2 and their conditional effects. Horizontal lines through the effect values indicate
their 95% confidence intervals.

• 'predictions' — plotInteraction plots the adjusted response function as a function of
var2, with var1 fixed at specific values.

For details, see “Main Effect” on page 35-5574 and “Conditional Effect” on page 35-5575.

Output Arguments
h — Line objects
vector

Line objects, returned as a vector. Use dot notation to query and set properties of the line objects. For
details, see Line Properties.

If the plot type is 'effects' (default), h(1) corresponds to the circles that represent the main
effect estimates, and h(2) and h(3) correspond to the 95% confidence intervals for the two main
effects. The remaining entries in h correspond to the conditional effects and their confidence
intervals. The line objects associated with the main effects have the tag 'main'. The line objects
associated with the conditional effects of var1 and var2 have the tags 'conditional1' and
'conditional2', respectively.

If the plot type is 'predictions', each entry in h corresponds to each curve on the plot.

More About
Main Effect

An effect, or main effect, of a predictor represents an effect of one predictor on the response from
changing the predictor value while averaging out the effects of the other predictors.

For a predictor variable xs, the effect is defined by
g(xsi) – g(xsj) ,

where g is an “Adjusted Response” on page 35-5575 function. The plotEffects function chooses the
observations i and j as follows. For a categorical variable that is not ordinal, xsi and xsj are the
predictor values that produce the maximum and minimum adjusted responses, respectively, so that
the effect value is always positive. For a numeric variable or an ordinal categorical variable, the
function chooses two predictor values that produce the minimum and maximum adjusted responses
where xsi < xsj.

plotEffects plots the effect value and the 95% confidence interval of the effect value for each
predictor variable.
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Adjusted Response

An adjusted response function describes the relationship between the fitted response and a single
predictor, with the other predictors averaged out by averaging the fitted values over the data used in
the fit.

A regression model for the predictor variables (x1, x2, …, xp) and the response variable y has the form
yi = f(x1i, x2i, …, xpi) + ri,

where f is a fitted regression function and r is a residual. The subscript i represents the observation
number.

The adjusted response function for the first predictor variable x1, for example, is defined as

g x1 = 1
n ∑i = 1

n
f x1, x2i, x3i, ..., xpi ,

where n is the number of observations. The adjusted response data value is the sum of the adjusted
fitted value and the residual for each observation.

yi = g x1i + ri .

plotAdjustedResponse plots the adjusted response function and the adjusted response data values
for a selected predictor variable.

Conditional Effect

When a model contains an interaction term, the main effect of one predictor depends on the value of
another predictor that interacts with it. In this case, a conditional effect of one predictor given a
specific value of another is helpful in understanding the actual effect of both predictors. You can
examine whether the effect of one predictor depends on the value of another by using conditional
effect values.

To define a conditional effect, define the adjusted response function as a function of two predictor
variables. For example, the adjusted response function of x1 and x2 is

h x1, x2 = 1
n ∑i = 1

n
f x1, x2, x3i, ..., xpi ,

where f is a fitted regression function, and n is the number of observations.

The conditional effect of one predictor (x2) given a specific value of another predictor (x1k) is defined
by

h(x1k,x2i) - h(x1k,x2j).
To compute conditional effect values, plotInteraction chooses the observations i and j of x2 in the
same way as when the function computes the “Main Effect” on page 35-5574 and chooses the x1k
values. If x1 is a categorical variable, then plotInteraction computes the conditional effect for all
levels of x1. If x1 is a numeric variable, then plotInteraction computes the conditional effect for
three values of x1: the minimum value of x1, the maximum value of x1, and the average value of the
minimum and maximum.

If the plot type is 'effects' (default), plotInteraction plots the main effects of the two selected
predictors, their conditional effects, and the 95% confidence bounds for the effect values.

If the plot type is 'predictions', plotInteraction plots the adjusted response function as a
function of the second predictor, with the first predictor fixed at specific values. For example,
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plotInteraction(mdl,'x1','x2','predictions') plots the curve of h(x1k, x2) for each x1k
value.

Tips
• The data cursor displays the values of the selected plot point in a data tip (small text box located

next to the data point). The data tip includes the x-axis and y-axis values for the selected point,
along with the observation name or number.

Alternative Functionality
• A LinearModel object provides multiple plotting functions.

• When creating a model, use plotAdded to understand the effect of adding or removing a
predictor variable.

• When verifying a model, use plotDiagnostics to find questionable data and to understand
the effect of each observation. Also, use plotResiduals to analyze the residuals of the model.

• After fitting a model, use plotAdjustedResponse, plotPartialDependence, and
plotEffects to understand the effect of a particular predictor. Use plotInteraction to
understand the interaction effect between two predictors. Also, use plotSlice to plot slices
through the prediction surface.

Version History
Introduced in R2012a

Extended Capabilities
GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

This function fully supports GPU arrays. For more information, see “Run MATLAB Functions on a
GPU” (Parallel Computing Toolbox).

See Also
CompactLinearModel | LinearModel | plotAdjustedResponse | plotEffects

Topics
“Linear Regression with Interaction Effects” on page 11-46
“Interpret Linear Regression Results” on page 11-52
“Linear Regression Workflow” on page 11-35
“Linear Regression” on page 11-9

35 Functions

35-5576



plotLocalEffects
Package: 

Plot local effects of terms in generalized additive model (GAM)

Syntax
plotLocalEffects(Mdl,queryPoint)
plotLocalEffects(Mdl,queryPoint,Name,Value)
plotLocalEffects( ___ )

Description
plotLocalEffects(Mdl,queryPoint) creates a bar graph showing the local effects of the terms
in the generalized additive model Mdl on the prediction at the specified query point queryPoint.

plotLocalEffects(Mdl,queryPoint,Name,Value) specifies additional options using one or
more name-value arguments. For example, 'IncludeIntercept',true specifies to include an
intercept term in the bar graph.

b = plotLocalEffects( ___ ) returns a bar graph object b using any of the input argument
combinations in the previous syntaxes. Use b to query or modify Bar Properties of the bar graph after
it is created.

Examples

Plot Local Effects

Train a univariate generalized additive classification model, which contains linear terms for
predictors. Classify a new observation using a memory-efficient model object. Then, interpret the
prediction for a specified data instance by using the plotLocalEffects function.

Load the ionosphere data set. This data set has 34 predictors and 351 binary responses for radar
returns, either bad ('b') or good ('g').

load ionosphere

Train a univariate GAM that identifies whether the radar return is bad ('b') or good ('g').

Mdl = fitcgam(X,Y);

Mdl is a ClassificationGAM model object.

Conserve memory by reducing the size of the trained model.

CMdl = compact(Mdl);

Classify the first observation of the training data, and plot the local effects of the terms in Mdl on the
prediction.

label = predict(CMdl,X(1,:))
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label = 1x1 cell array
    {'g'}

plotLocalEffects(CMdl,X(1,:))

The predict function classifies the first observation X(1,:) as 'g'. The plotLocalEffects
function creates a horizontal bar graph that shows the local effects of the 10 most important terms on
the prediction. Each local effect value shows the contribution of each term to the classification score
for 'g', which is the logit of the posterior probability that the classification is 'g' for the
observation.

Compare Local Effects in GAMs

Train a GAM for binary classification with both linear and interaction terms for predictors. Create
local effects plot using both linear and interaction terms in the model, and then create a plot using
only linear terms in the model. Specify whether to include interaction terms when creating the local
effects plot.

Load the ionosphere data set. This data set has 34 predictors and 351 binary responses for radar
returns, either bad ('b') or good ('g').

load ionosphere
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Train a GAM using the predictors X and class labels Y. A recommended practice is to specify the class
names. Specify to include the 10 most important interaction terms.

Mdl = fitcgam(X,Y,'ClassNames',{'b','g'},'Interactions',10);

Mdl is a ClassificationGAM model object.

Create local effects plots for the 10th observation. Use both the linear and interaction terms in Mdl
for the first plot, and use only the linear terms in Mdl for the second plot. To exclude interaction
terms, specify 'IncludeInteractions',false.

t = tiledlayout(2,1);
title(t,'Local Effects Plots for 10th Observation')
nexttile
plotLocalEffects(Mdl,X(10,:))
title('GAM with linear and interaction terms')
nexttile
plotLocalEffects(Mdl,X(10,:),'IncludeInteractions',false)
title('GAM with only linear terms')

The plots display the 10 most important terms. Both plots include nine common terms and one
uncommon term. The first plot includes the interaction term for x1 and x5, whereas the second plot
includes the linear term for x14.
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Include Intercept Term in Local Effects Plot

Train a univariate GAM for regression, which contains linear terms for predictors. Then, interpret the
prediction for a specified data instance by using the plotLocalEffects function.

Load the data set NYCHousing2015.

load NYCHousing2015

The data set includes 10 variables with information on the sales of properties in New York City in
2015. This example uses these variables to analyze the sale prices (SALEPRICE).

Preprocess the data set. Remove outliers, convert the datetime array (SALEDATE) to the month
numbers, and move the response variable (SALEPRICE) to the last column.

idx = isoutlier(NYCHousing2015.SALEPRICE);
NYCHousing2015(idx,:) = [];
NYCHousing2015.SALEDATE = month(NYCHousing2015.SALEDATE);
NYCHousing2015 = movevars(NYCHousing2015,'SALEPRICE','After','SALEDATE');

Display the first three rows of the table.

head(NYCHousing2015,3)

    BOROUGH    NEIGHBORHOOD       BUILDINGCLASSCATEGORY        RESIDENTIALUNITS    COMMERCIALUNITS    LANDSQUAREFEET    GROSSSQUAREFEET    YEARBUILT    SALEDATE    SALEPRICE
    _______    ____________    ____________________________    ________________    _______________    ______________    _______________    _________    ________    _________

       2       {'BATHGATE'}    {'01  ONE FAMILY DWELLINGS'}           1                   0                4750              2619            1899           8           0    
       2       {'BATHGATE'}    {'01  ONE FAMILY DWELLINGS'}           1                   0                4750              2619            1899           8           0    
       2       {'BATHGATE'}    {'01  ONE FAMILY DWELLINGS'}           1                   1                1287              2528            1899          12           0    

Train a univariate GAM for the sale prices. Specify the variables for BOROUGH, NEIGHBORHOOD,
BUILDINGCLASSCATEGORY, and SALEDATE as categorical predictors.

Mdl = fitrgam(NYCHousing2015,'SALEPRICE','CategoricalPredictors',[1 2 3 9]);

Mdl is a RegressionGAM model object.

Display the estimated intercept (constant) term of Mdl.

Mdl.Intercept

ans = 3.7518e+05

The intercept term value is close to the average of the response variable in a regression GAM if the
training data does not include NaN values. Compute average of the response variable.

mean(NYCHousing2015.SALEPRICE)

ans = 3.7518e+05

Predict the sale price for the first observation of the training data, and plot the local effects of the
terms in Mdl on the prediction. Specify 'IncludeIntercept',true to include the intercept term in
the plot.

yFit = predict(Mdl,NYCHousing2015(1,:))

yFit = 4.4421e+05
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plotLocalEffects(Mdl,NYCHousing2015(1,:),'IncludeIntercept',true)

The predict function predicts the sale price for the first observation as 4.4421e5. The
plotLocalEffects function creates a horizontal bar graph that shows the local effects of the terms
in Mdl on the prediction. Each local effect value shows the contribution of each term to the predicted
sale price.

Input Arguments
Mdl — Generalized additive model
ClassificationGAM model object | CompactClassificationGAM model object | RegressionGAM
model object | CompactRegressionGAM model object

Generalized additive model, specified as a ClassificationGAM, CompactClassificationGAM,
RegressionGAM, or CompactRegressionGAM model object.

queryPoint — Query point
row vector of numeric values | single-row table

Query point at which plotLocalEffects plots the local effects, specified as a row vector of numeric
values or a single-row table.

• For a row vector of numeric values:
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• The variables that makes up the columns of queryPoint must have the same order as the
predictor variables that trained Mdl.

• If you trained Mdl using a table (for example, Tbl), then queryPoint can be a numeric matrix
if Tbl contains all numeric variables.

• For a single-row table:

• If you trained Mdl using a table (for example, Tbl), then all predictor variables in queryPoint
must have the same variable names and data types as those in Tbl. However, the column order
of queryPoint does not need to correspond to the column order of Tbl.

• If you trained Mdl using a numeric matrix, then the predictor names in Mdl.PredictorNames
and the corresponding predictor variable names in queryPoint must be the same. To specify
predictor names during training, use the 'PredictorNames' name-value argument. All
predictor variables in queryPoint must be numeric vectors.

• queryPoint can contain additional variables (response variables, observation weights, and so
on), but plotLocalEffects ignores them.

• plotLocalEffects does not support multicolumn variables or cell arrays other than cell
arrays of character vectors.

Data Types: single | double | table

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example:
plotLocalEffects(Mdl,queryPoint,'IncludeInteractions',false,'NumTerms',5)
specifies to create a bar plot containing the five most important linear terms for predictors in Mdl
excluding the interaction terms in Mdl.

IncludeInteractions — Flag to include interaction terms
true | false

Flag to include interaction terms of the model in the plot, specified as true or false.

The default 'IncludeInteractions' value is true if Mdl contains interaction terms. The value
must be false if the model does not contain interaction terms.
Example: 'IncludeInteractions',false
Data Types: logical

IncludeIntercept — Flag to include intercept term
false (default) | true

Flag to include an intercept term of the model in the plot, specified as true or false.
Example: 'IncludeIntercept',true
Data Types: logical

NumTerms — Number of terms to plot
min(M,10) where M is the number of terms in Mdl (default) | positive integer scalar
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Number of terms to plot, specified as a positive integer scalar. plotLocalEffects plots the
specified number of terms with the highest absolute local effect values.
Example: 'NumTerms',5 specifies to plot the five most important terms. plotLocalEffects
determines the order of importance by using the absolute local effect values.
Data Types: single | double

Version History
Introduced in R2021a

See Also
plotPartialDependence | RegressionGAM | ClassificationGAM

Topics
“Train Generalized Additive Model for Binary Classification” on page 12-77
“Train Generalized Additive Model for Regression” on page 12-86
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plotPartialDependence
Package: 

Create partial dependence plot (PDP) and individual conditional expectation (ICE) plots

Syntax
plotPartialDependence(RegressionMdl,Vars)
plotPartialDependence(ClassificationMdl,Vars,Labels)
plotPartialDependence( ___ ,Data)

plotPartialDependence(fun,Vars,Data)

plotPartialDependence( ___ ,Name,Value)
ax = plotPartialDependence( ___ )

Description
plotPartialDependence(RegressionMdl,Vars) computes and plots the partial dependence
between the predictor variables listed in Vars and the responses predicted by using the regression
model RegressionMdl, which contains predictor data.

• If you specify one variable in Vars, the function creates a line plot of the partial dependence
against the variable.

• If you specify two variables in Vars, the function creates a surface plot of the partial dependence
against the two variables.

plotPartialDependence(ClassificationMdl,Vars,Labels) computes and plots the partial
dependence between the predictor variables listed in Vars and the scores for the classes specified in
Labels by using the classification model ClassificationMdl, which contains predictor data.

• If you specify one variable in Vars, the function creates a line plot of the partial dependence
against the variable for each class in Labels.

• If you specify two variables in Vars, the function creates a surface plot of the partial dependence
against the two variables. You must specify one class in Labels.

plotPartialDependence( ___ ,Data) uses new predictor data Data. You can specify Data in
addition to any of the input argument combinations in the previous syntaxes.

plotPartialDependence(fun,Vars,Data) computes and plots the partial dependence between
the predictor variables listed in Vars and the outputs returned by the custom model fun, using the
predictor data Data.

• If you specify one variable in Vars, the function creates a line plot of the partial dependence
against the variable for each column of the output returned by fun.

• If you specify two variables in Vars, the function creates a surface plot of the partial dependence
against the two variables. When you specify two variables, fun must return a column vector or
you must specify which output column to use by setting the OutputColumns name-value
argument.
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plotPartialDependence( ___ ,Name,Value) uses additional options specified by one or more
name-value arguments. For example, if you specify "Conditional","absolute", the
plotPartialDependence function creates a figure including a PDP, a scatter plot of the selected
predictor variable and predicted responses or scores, and an ICE plot for each observation.

ax = plotPartialDependence( ___ ) returns the axes of the plot.

Examples

Create Partial Dependence Plot

Train a regression tree using the carsmall data set, and create a PDP that shows the relationship
between a feature and the predicted responses in the trained regression tree.

Load the carsmall data set.

load carsmall

Specify Weight, Cylinders, and Horsepower as the predictor variables (X), and MPG as the
response variable (Y).

X = [Weight,Cylinders,Horsepower];
Y = MPG;

Train a regression tree using X and Y.

Mdl = fitrtree(X,Y);

View a graphical display of the trained regression tree.

view(Mdl,"Mode","graph")
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Create a PDP of the first predictor variable, Weight.

plotPartialDependence(Mdl,1)
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The plotted line represents averaged partial relationships between Weight (labeled as x1) and MPG
(labeled as Y) in the trained regression tree Mdl. The x-axis minor ticks represent the unique values
in x1.

The regression tree viewer shows that the first decision is whether x1 is smaller than 3085.5. The
PDP also shows a large change near x1 = 3085.5. The tree viewer visualizes each decision at each
node based on predictor variables. You can find several nodes split based on the values of x1, but
determining the dependence of Y on x1 is not easy. However, the plotPartialDependence plots
average predicted responses against x1, so you can clearly see the partial dependence of Y on x1.

The labels x1 and Y are the default values of the predictor names and the response name. You can
modify these names by specifying the name-value arguments PredictorNames and ResponseName
when you train Mdl using fitrtree. You can also modify axis labels by using the xlabel and
ylabel functions.

Create Partial Dependence Plot for Multiple Classes

Train a naive Bayes classification model with the fisheriris data set, and create a PDP that shows
the relationship between the predictor variable and the predicted scores (posterior probabilities) for
multiple classes.

Load the fisheriris data set, which contains species (species) and measurements (meas) on
sepal length, sepal width, petal length, and petal width for 150 iris specimens. The data set contains
50 specimens from each of three species: setosa, versicolor, and virginica.
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load fisheriris

Train a naive Bayes classification model with species as the response and meas as predictors.

Mdl = fitcnb(meas,species);

Create a PDP of the scores predicted by Mdl for all three classes of species against the third
predictor variable x3. Specify the class labels by using the ClassNames property of Mdl.

plotPartialDependence(Mdl,3,Mdl.ClassNames);

According to this model, the probability of virginica increases with x3. The probability of setosa
is about 0.33, from where x3 is 0 to around 2.5, and then the probability drops to almost 0.

Create Individual Conditional Expectation Plots

Train a Gaussian process regression model using generated sample data where a response variable
includes interactions between predictor variables. Then, create ICE plots that show the relationship
between a feature and the predicted responses for each observation.

Generate sample predictor data x1 and x2.

rng("default") % For reproducibility
n = 200;
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x1 = rand(n,1)*2-1;
x2 = rand(n,1)*2-1;

Generate response values that include interactions between x1 and x2.

Y = x1-2*x1.*(x2>0)+0.1*rand(n,1);

Create a Gaussian process regression model using [x1 x2] and Y.

Mdl = fitrgp([x1 x2],Y);

Create a figure including a PDP (red line) for the first predictor x1, a scatter plot (circle markers) of
x1 and predicted responses, and a set of ICE plots (gray lines) by specifying Conditional as
"centered".

plotPartialDependence(Mdl,1,"Conditional","centered")

When Conditional is "centered", plotPartialDependence offsets plots so that all plots start
from zero, which is helpful in examining the cumulative effect of the selected feature.

A PDP finds averaged relationships, so it does not reveal hidden dependencies especially when
responses include interactions between features. However, the ICE plots clearly show two different
dependencies of responses on x1.
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Use New Predictor Data for Partial Dependence Plot

Train an ensemble of classification models and create two PDPs, one using the training data set and
the other using a new data set.

Load the census1994 data set, which contains US yearly salary data, categorized as <=50K or >50K,
and several demographic variables.

load census1994

Extract a subset of variables to analyze from the tables adultdata and adulttest.

X = adultdata(:,["age","workClass","education_num","marital_status","race", ...
   "sex","capital_gain","capital_loss","hours_per_week","salary"]);
Xnew = adulttest(:,["age","workClass","education_num","marital_status","race", ...
   "sex","capital_gain","capital_loss","hours_per_week","salary"]);

Train an ensemble of classifiers with salary as the response and the remaining variables as
predictors by using the function fitcensemble. For binary classification, fitcensemble
aggregates 100 classification trees using the LogitBoost method.

Mdl = fitcensemble(X,"salary");

Inspect the class names in Mdl.

Mdl.ClassNames

ans = 2x1 categorical
     <=50K 
     >50K 

Create a partial dependence plot of the scores predicted by Mdl for the second class of salary
(>50K) against the predictor age using the training data.

plotPartialDependence(Mdl,"age",Mdl.ClassNames(2))
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Create a PDP of the scores for class >50K against age using new predictor data from the table Xnew.

plotPartialDependence(Mdl,"age",Mdl.ClassNames(2),Xnew)
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The two plots show similar shapes for the partial dependence of the predicted score of high salary
(>50K) on age. Both plots indicate that the predicted score of high salary rises fast until the age of
30, then stays almost flat until the age of 60, and then drops fast. However, the plot based on the new
data produces slightly higher scores for ages over 65.

Specify Model Using Function Handle

Create a PDP to analyze relationships between predictors and anomaly scores for an
isolationForest object. You cannot pass an isolationForest object directly to the
plotPartialDependence function. Instead, define a custom function that returns anomaly scores
for the object, and then pass the function to plotPartialDependence.

Load the 1994 census data stored in census1994.mat. The data set consists of demographic data
from the US Census Bureau.

load census1994

census1994 contains the two data sets adultdata and adulttest.

Train an isolation forest model for adulttest. The function iforest returns an IsolationForest
object.

rng("default") % For reproducibility
Mdl = iforest(adulttest);
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Define the custom function myAnomalyScores, which returns anomaly scores computed by the
isanomaly function of IsolationForest; the custom function definition appears at the end of this
example on page 35-5593.

Create a PDP of the anomaly scores against the variable age for the adulttest data set.
plotPartialDependence accepts a custom model in the form of a function handle. The function
represented by the function handle must accept predictor data and return a column vector or matrix
with one row for each observation. Specify the custom model as
@(tbl)myAnomalyScores(Mdl,tbl) so that the custom function uses the trained model Mdl and
accepts predictor data.

plotPartialDependence(@(tbl)myAnomalyScores(Mdl,tbl),"age",adulttest)
xlabel("Age")
ylabel("Anomaly Score")

Custom Function myAnomalyScores

function scores = myAnomalyScores(Mdl,tbl)
[~,scores] = isanomaly(Mdl,tbl);
end
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Compare Importance of Predictor Variables

Train a regression ensemble using the carsmall data set, and create a PDP plot and ICE plots for
each predictor variable using a new data set, carbig. Then, compare the figures to analyze the
importance of predictor variables. Also, compare the results with the estimates of predictor
importance returned by the predictorImportance function.

Load the carsmall data set.

load carsmall

Specify Weight, Cylinders, Horsepower, and Model_Year as the predictor variables (X), and MPG
as the response variable (Y).

X = [Weight,Cylinders,Horsepower,Model_Year];
Y = MPG;

Train a regression ensemble using X and Y.

Mdl = fitrensemble(X,Y, ...
    "PredictorNames",["Weight","Cylinders","Horsepower","Model Year"], ...
    "ResponseName","MPG");

Create the importance of predictor variables by using the plotPartialDependence and
predictorImportance functions. The plotPartialDependence function visualizes the
relationships between a selected predictor and predicted responses. predictorImportance
summarizes the importance of a predictor with a single value.

Create a figure including a PDP plot (red line) and ICE plots (gray lines) for each predictor by using
plotPartialDependence and specifying "Conditional","absolute". Each figure also includes
a scatter plot (circle markers) of the selected predictor and predicted responses. Also, load the
carbig data set and use it as new predictor data, Xnew. When you provide Xnew, the
plotPartialDependence function uses Xnew instead of the predictor data in Mdl.

load carbig
Xnew = [Weight,Cylinders,Horsepower,Model_Year];

figure
t = tiledlayout(2,2,"TileSpacing","compact");
title(t,"Individual Conditional Expectation Plots")

for i = 1 : 4
    nexttile
    plotPartialDependence(Mdl,i,Xnew,"Conditional","absolute")
    title("")
end
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Compute estimates of predictor importance by using predictorImportance. This function sums
changes in the mean squared error (MSE) due to splits on every predictor, and then divides the sum
by the number of branch nodes.

imp = predictorImportance(Mdl);
figure
bar(imp)
title("Predictor Importance Estimates")
ylabel("Estimates")
xlabel("Predictors")
ax = gca;
ax.XTickLabel = Mdl.PredictorNames;
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The variable Weight has the most impact on MPG according to predictor importance. The PDP of
Weight also shows that MPG has high partial dependence on Weight. The variable Cylinders has
the least impact on MPG according to predictor importance. The PDP of Cylinders also shows that
MPG does not change much depending on Cylinders.

Compare Partial Dependence of Generalized Additive Model

Train a generalized additive model (GAM) with both linear and interaction terms for predictors. Then,
create a PDP with both linear and interaction terms and a PDP with only linear terms. Specify
whether to include interaction terms when creating the PDPs.

Load the ionosphere data set. This data set has 34 predictors and 351 binary responses for radar
returns, either bad ('b') or good ('g').

load ionosphere

Train a GAM using the predictors X and class labels Y. A recommended practice is to specify the class
names. Specify to include the 10 most important interaction terms.

Mdl = fitcgam(X,Y,"ClassNames",{'b','g'},"Interactions",10);

Mdl is a ClassificationGAM model object.

List the interaction terms in Mdl.
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Mdl.Interactions

ans = 10×2

     1     5
     7     8
     6     7
     5     6
     5     7
     5     8
     3     5
     4     7
     1     7
     4     5

Each row of Interactions represents one interaction term and contains the column indexes of the
predictor variables for the interaction term.

Find the most frequent predictor in the interaction terms.

mode(Mdl.Interactions,"all")

ans = 5

The most frequent predictor in the interaction terms is the 5th predictor (x5). Create PDPs for the
5th predictor. To exclude interaction terms from the computation, specify
"IncludeInteractions",false for the second PDP.

plotPartialDependence(Mdl,5,Mdl.ClassNames(1))
hold on
plotPartialDependence(Mdl,5,Mdl.ClassNames(1),"IncludeInteractions",false)
grid on
legend("Linear and interaction terms","Linear terms only")
title("PDPs of Posterior Probabilities for 5th Predictor")
hold off
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The plot shows that the partial dependence of the scores (posterior probabilities) on x5 varies
depending on whether the model includes the interaction terms, especially where x5 is between 0.2
and 0.45.

Extract Partial Dependence Estimates from Plots

Train a support vector machine (SVM) regression model using the carsmall data set, and create a
PDP for two predictor variables. Then, extract partial dependence estimates from the output of
plotPartialDependence. Alternatively, you can get the partial dependence values by using the
partialDependence function.

Load the carsmall data set.

load carsmall

Specify Weight, Cylinders, Displacement, and Horsepower as the predictor variables (Tbl).

Tbl = table(Weight,Cylinders,Displacement,Horsepower);

Construct an SVM regression model using Tbl and the response variable MPG. Use a Gaussian kernel
function with an automatic kernel scale.

Mdl = fitrsvm(Tbl,MPG,"ResponseName","MPG", ...
    "CategoricalPredictors","Cylinders","Standardize",true, ...
    "KernelFunction","gaussian","KernelScale","auto");
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Create a PDP that visualizes partial dependence of predicted responses (MPG) on the predictor
variables Weight and Cylinders. Specify query points to compute the partial dependence for
Weight by using the QueryPoints name-value argument. You cannot specify the QueryPoints
value for Cylinders because it is a categorical variable. plotPartialDependence uses all
categorical values.

pt = linspace(min(Weight),max(Weight),50)';
ax = plotPartialDependence(Mdl,["Weight","Cylinders"],"QueryPoints",{pt,[]});
view(140,30) % Modify the viewing angle

The PDP shows an interaction effect between Weight and Cylinders. The partial dependence of
MPG on Weight changes depending on the value of Cylinders.

Extract the estimated partial dependence of MPG on Weight and Cylinders. The XData, YData, and
ZData values of ax.Children are x-axis values (the first selected predictor values), y-axis values
(the second selected predictor values), and z-axis values (the corresponding partial dependence
values), respectively.

xval = ax.Children.XData;
yval = ax.Children.YData;
zval = ax.Children.ZData;

Alternatively, you can get the partial dependence values by using the partialDependence function.

[pd,x,y] = partialDependence(Mdl,["Weight","Cylinders"],"QueryPoints",{pt,[]});

pd contains the partial dependence values for the query points x and y.
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If you specify Conditional as "absolute", plotPartialDependence creates a figure including a
PDP, a scatter plot, and a set of ICE plots. ax.Children(1) and ax.Children(2) correspond to
the PDP and scatter plot, respectively. The remaining elements of ax.Children correspond to the
ICE plots. The XData and YData values of ax.Children(i) are x-axis values (the selected predictor
values) and y-axis values (the corresponding partial dependence values), respectively.

Input Arguments
RegressionMdl — Regression model
regression model object

Regression model, specified as a full or compact regression model object, as given in the following
tables of supported models.

Model Full or Compact Model Object
Generalized linear model GeneralizedLinearModel,

CompactGeneralizedLinearModel
Generalized linear mixed-effect
model

GeneralizedLinearMixedModel

Linear regression LinearModel, CompactLinearModel
Linear mixed-effect model LinearMixedModel
Nonlinear regression NonLinearModel
Ensemble of regression models RegressionEnsemble, RegressionBaggedEnsemble,

CompactRegressionEnsemble
Generalized additive model
(GAM)

RegressionGAM, CompactRegressionGAM

Gaussian process regression RegressionGP, CompactRegressionGP
Gaussian kernel regression
model using random feature
expansion

RegressionKernel

Linear regression for high-
dimensional data

RegressionLinear

Neural network regression
model

RegressionNeuralNetwork,
CompactRegressionNeuralNetwork

Support vector machine (SVM)
regression

RegressionSVM, CompactRegressionSVM

Regression tree RegressionTree, CompactRegressionTree
Bootstrap aggregation for
ensemble of decision trees

TreeBagger, CompactTreeBagger

If RegressionMdl is a model object that does not contain predictor data (for example, a compact
model), you must provide the input argument Data.

plotPartialDependence does not support a model object trained with a sparse matrix. When you
train a model, use a full numeric matrix or table for predictor data where rows correspond to
individual observations.
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ClassificationMdl — Classification model
classification model object

Classification model, specified as a full or compact classification model object, as given in the
following tables of supported models.

Model Full or Compact Model Object
Discriminant analysis classifier ClassificationDiscriminant,

CompactClassificationDiscriminant
Multiclass model for support
vector machines or other
classifiers

ClassificationECOC, CompactClassificationECOC

Ensemble of learners for
classification

ClassificationEnsemble,
CompactClassificationEnsemble,
ClassificationBaggedEnsemble

Generalized additive model
(GAM)

ClassificationGAM, CompactClassificationGAM

Gaussian kernel classification
model using random feature
expansion

ClassificationKernel

k-nearest neighbor classifier ClassificationKNN
Linear classification model ClassificationLinear
Multiclass naive Bayes model ClassificationNaiveBayes,

CompactClassificationNaiveBayes
Neural network classifier ClassificationNeuralNetwork,

CompactClassificationNeuralNetwork
Support vector machine (SVM)
classifier for one-class and
binary classification

ClassificationSVM, CompactClassificationSVM

Binary decision tree for
multiclass classification

ClassificationTree, CompactClassificationTree

Bagged ensemble of decision
trees

TreeBagger, CompactTreeBagger

If ClassificationMdl is a model object that does not contain predictor data (for example, a
compact model), you must provide the input argument Data.

plotPartialDependence does not support a model object trained with a sparse matrix. When you
train a model, use a full numeric matrix or table for predictor data where rows correspond to
individual observations.

fun — Custom model
function handle

Custom model, specified as a function handle. The function handle fun must represent a function that
accepts the predictor data Data and returns an output in the form of a column vector or matrix. Each
row of the output must correspond to each observation (row) in the predictor data.
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By default, plotPartialDependence uses all output columns of fun for the partial dependence
computation. You can specify which output columns to use by setting the OutputColumns name-
value argument.

If the predictor data (Data) is in a table, plotPartialDependence assumes that a variable is
categorical if it is a logical vector, categorical vector, character array, string array, or cell array of
character vectors. If the predictor data is a matrix, plotPartialDependence assumes that all
predictors are continuous. To identify any other predictors as categorical predictors, specify them by
using the CategoricalPredictors name-value argument.
Data Types: function_handle

Vars — Predictor variables
vector of positive integers | character vector | string scalar | string array | cell array of character
vectors

Predictor variables, specified as a vector of positive integers, character vector, string scalar, string
array, or cell array of character vectors. You can specify one or two predictor variables, as shown in
the following tables.

One Predictor Variable

Value Description
positive integer Index value corresponding to the column of the predictor data.
character vector or
string scalar

Name of the predictor variable. The name must match the entry in the
PredictorNames property for RegressionMdl and
ClassificationMdl or the variable name of Data in a table for a custom
model fun.

Two Predictor Variables

Value Description
vector of two positive
integers

Index values corresponding to the columns of the predictor data.

string array or cell
array of character
vectors

Names of the predictor variables. Each element in the array is the name of
a predictor variable. The names must match the entries in the
PredictorNames property for RegressionMdl and
ClassificationMdl or the variable names of Data in a table for a
custom model fun.

If you specify two predictor variables, you must specify one class in Labels for
ClassificationMdl or specify one output column in OutputColumns for a custom model fun.
Example: ["x1","x3"]
Data Types: single | double | char | string | cell

Labels — Class labels
categorical array | character array | logical vector | numeric vector | cell array of character vectors

Class labels, specified as a categorical or character array, logical or numeric vector, or cell array of
character vectors. The values and data types in Labels must match those of the class names in the
ClassNames property of ClassificationMdl (ClassificationMdl.ClassNames).
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• You can specify multiple class labels only when you specify one variable in Vars and specify
Conditional as "none" (default).

• Use partialDependence if you want to compute the partial dependence for two variables and
multiple class labels in one function call.

This argument is valid only when you specify a classification model object ClassificationMdl.
Example: ["red","blue"]
Example: ClassificationMdl.ClassNames([1 3]) specifies Labels as the first and third
classes in ClassificationMdl.
Data Types: single | double | logical | char | cell | categorical

Data — Predictor data
numeric matrix | table

Predictor data, specified as a numeric matrix or table. Each row of Data corresponds to one
observation, and each column corresponds to one variable.

For both a regression model (RegressionMdl) and a classification model (ClassificationMdl),
Data must be consistent with the predictor data that trained the model, stored in either the X or
Variables property.

• If you trained the model using a numeric matrix, then Data must be a numeric matrix. The
variables that make up the columns of Data must have the same number and order as the
predictor variables that trained the model.

• If you trained the model using a table (for example, Tbl), then Data must be a table. All predictor
variables in Data must have the same variable names and data types as the names and types in
Tbl. However, the column order of Data does not need to correspond to the column order of Tbl.

• Data must not be sparse.

If you specify a regression or classification model that does not contain predictor data, you must
provide Data. If the model is a full model object that contains predictor data and you specify the
Data argument, then plotPartialDependence ignores the predictor data in the model and uses
Data only.

If you specify a custom model fun, you must provide Data.
Data Types: single | double | table

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example:
plotPartialDependence(Mdl,Vars,Data,"NumObservationsToSample",100,"UseParalle
l",true) creates a PDP by using 100 sampled observations in Data and executing for-loop
iterations in parallel.

Conditional — Plot type
"none" (default) | "absolute" | "centered"
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Plot type, specified as "none", "absolute", or "centered".

Value Description
"none" plotPartialDependence creates a PDP. The plot type depends

on the number of predictor variables specified in Vars.

• One predictor variable — plotPartialDependence creates a
2-D line plot of the partial dependence. If you provide a
classification model (ClassificationMdl), the function
creates a line plot for each class label specified in Labels. If
you provide a custom model (fun), the function creates a line
plot for each column of the output returned by fun. You can
specify which output columns to use by setting the
OutputColumns name-value argument.

• Two predictor variables — plotPartialDependence creates
a surface plot of partial dependence against the two variables.
For a classification model, you must specify one class label in
Labels. For a custom model, you must provide a model that
returns a column vector or specify which output column to use
by setting the OutputColumns name-value argument.

"absolute" plotPartialDependence creates a figure that includes three
types of plots:

• PDP with a red line
• Scatter plot of the selected predictor variable and predicted

responses or scores with circle markers
• ICE plot for each observation with a gray line

To use the "absolute" option, you must specify one predictor
variable in Vars. In addition, for a classification model, you must
specify one class label in Labels. For a custom model, you must
provide a model that returns a column vector or specify which
output column to use by setting the OutputColumns name-value
argument.

"centered" plotPartialDependence creates a figure that includes the same
three types of plots as "absolute". The function offsets plots so
that all plots start from zero.

To use the "centered" option, you must specify one predictor
variable in Vars. In addition, for a classification model, you must
specify one class label in Labels. For a custom model, you must
provide a model that returns a column vector or specify which
output column to use by setting the OutputColumns name-value
argument.

Example: "Conditional","absolute"

IncludeInteractions — Flag to include interaction terms
true | false
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Flag to include interaction terms of the generalized additive model (GAM) in the partial dependence
computation, specified as true or false. This argument is valid only for a GAM. That is, you can
specify this argument only when RegressionMdl is RegressionGAM or CompactRegressionGAM,
or ClassificationMdl is ClassificationGAM or CompactClassificationGAM.

The default IncludeInteractions value is true if the model contains interaction terms. The value
must be false if the model does not contain interaction terms.
Example: "IncludeInteractions",false
Data Types: logical

IncludeIntercept — Flag to include intercept term
true (default) | false

Flag to include an intercept term of the generalized additive model (GAM) in the partial dependence
computation, specified as true or false. This argument is valid only for a GAM. That is, you can
specify this argument only when RegressionMdl is RegressionGAM or CompactRegressionGAM,
or ClassificationMdl is ClassificationGAM or CompactClassificationGAM.
Example: "IncludeIntercept",false
Data Types: logical

NumObservationsToSample — Number of observations to sample
number of total observations (default) | positive integer

Number of observations to sample, specified as a positive integer. The default value is the number of
total observations in Data or the model (RegressionMdl or ClassificationMdl). If you specify a
value larger than the number of total observations, then plotPartialDependence uses all
observations.

plotPartialDependence samples observations without replacement by using the datasample
function and uses the sampled observations to compute partial dependence.

plotPartialDependence displays minor tick marks at the unique values of the sampled
observations.

If you specify Conditional as either "absolute" or "centered", plotPartialDependence
creates a figure including an ICE plot for each sampled observation.
Example: "NumObservationsToSample",100
Data Types: single | double

Parent — Axes in which to plot
gca (default) | axes object

Axes in which to plot, specified as an axes object. If you do not specify the axes and if the current
axes are Cartesian, then plotPartialDependence uses the current axes (gca). If axes do not exist,
plotPartialDependence plots in a new figure.
Example: "Parent",ax

QueryPoints — Points to compute partial dependence
numeric column vector | numeric two-column matrix | cell array of two numeric column vectors
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Points to compute partial dependence for numeric predictors, specified as a numeric column vector, a
numeric two-column matrix, or a cell array of two numeric column vectors.

• If you select one predictor variable in Vars, use a numeric column vector.
• If you select two predictor variables in Vars:

• Use a numeric two-column matrix to specify the same number of points for each predictor
variable.

• Use a cell array of two numeric column vectors to specify a different number of points for each
predictor variable.

The default value is a numeric column vector or a numeric two-column matrix, depending on the
number of selected predictor variables. Each column contains 100 evenly spaced points between the
minimum and maximum values of the sampled observations for the corresponding predictor variable.

If Conditional is "absolute" or "centered", then the software adds the predictor data values
(Data or predictor data in RegressionMdl or ClassificationMdl) of the selected predictors to
the query points.

You cannot modify QueryPoints for a categorical variable. The plotPartialDependence function
uses all categorical values in the selected variable.

If you select one numeric variable and one categorical variable, you can specify QueryPoints for a
numeric variable by using a cell array consisting of a numeric column vector and an empty array.
Example: "QueryPoints",{pt,[]}
Data Types: single | double | cell

UseParallel — Flag to run in parallel
false (default) | true

Flag to run in parallel, specified as true or false. If you specify "UseParallel",true, the
plotPartialDependence function executes for-loop iterations in parallel by using parfor when
predicting responses or scores for each observation and averaging them. This option requires Parallel
Computing Toolbox.
Example: "UseParallel",true
Data Types: logical

CategoricalPredictors — Categorical predictors list for custom model
vector of positive integers | logical vector | character matrix | string array | cell array of character
vectors | "all"

Categorical predictors list for the custom model fun, specified as one of the values in this table.

Value Description
Vector of positive
integers

Each entry in the vector is an index value indicating that the corresponding
predictor is categorical. The index values are between 1 and p, where p is
the number of variables in Data.

Logical vector A true entry means that the corresponding predictor is categorical. The
length of the vector is p.
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Value Description
Character matrix Each row of the matrix is the name of a predictor variable. The names must

match the variable names of the predictor data Data in a table. Pad the
names with extra blanks so each row of the character matrix has the same
length.

String array or cell
array of character
vectors

Each element in the array is the name of a predictor variable. The names
must match the variable names of the predictor data Data in a table.

"all" All predictors are categorical.

By default, if the predictor data Data is in a table, plotPartialDependence assumes that a
variable is categorical if it is a logical vector, categorical vector, character array, string array, or cell
array of character vectors. If the predictor data is a matrix, plotPartialDependence assumes that
all predictors are continuous. To identify any other predictors as categorical predictors, specify them
by using the CategoricalPredictors name-value argument.

This argument is valid only when you specify a custom model by using fun.
Example: "CategoricalPredictors","all"
Data Types: single | double | logical | char | string | cell

OutputColumns — Output columns of custom model
"all" (default) | vector of positive integers | logical vector

Output columns of the custom model fun to use for the partial dependence computation, specified as
one of the values in this table.

Value Description
Vector of positive
integers

Each entry in the vector is an index value indicating that
plotPartialDependence uses the corresponding output column for the
partial dependence computation. The index values are between 1 and q,
where q is the number of columns in the output matrix returned by the
custom model fun.

Logical vector A true entry means that plotPartialDependence uses the
corresponding output column for the partial dependence computation. The
length of the vector is q.

"all" plotPartialDependence uses all output columns for the partial
dependence computation.

• You can specify multiple output columns only when you specify one variable in Vars and specify
Conditional as "none" (default).

• Use partialDependence if you want to compute the partial dependence for two variables and
multiple output columns in one function call.

This argument is valid only when you specify a custom model by using fun.
Example: "OutputColumns",[1 2]
Data Types: single | double | logical | char | string
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Output Arguments
ax — Axes of the plot
axes object

Axes of the plot, returned as an axes object. For details on how to modify the appearance of the axes
and extract data from plots, see “Axes Appearance” and “Extract Partial Dependence Estimates from
Plots” on page 35-5598.

More About
Partial Dependence for Regression Models

Partial dependence[1] represents the relationships between predictor variables and predicted
responses in a trained regression model. plotPartialDependence computes the partial
dependence of predicted responses on a subset of predictor variables by marginalizing over the other
variables.

Consider partial dependence on a subset XS of the whole predictor variable set X = {x1, x2, …, xm}. A
subset XS includes either one variable or two variables: XS = {xS1} or XS = {xS1, xS2}. Let XC be the
complementary set of XS in X. A predicted response f(X) depends on all variables in X:

f(X) = f(XS, XC).

The partial dependence of predicted responses on XS is defined by the expectation of predicted
responses with respect to XC:

f S XS = EC f XS, XC =∫ f XS, XC pC XC dXC,

where pC(XC) is the marginal probability of XC, that is, pC XC ≈∫p XS, XC dXS. Assuming that each
observation is equally likely, and the dependence between XS and XC and the interactions of XS and XC

in responses is not strong, plotPartialDependence estimates the partial dependence by using
observed predictor data as follows:

f S XS ≈ 1
N ∑i = 1

N
f XS, XiC ,  (35-2)

where N is the number of observations and Xi = (Xi
S, Xi

C) is the ith observation.

When you call the plotPartialDependence function, you can specify a trained model (f(·)) and
select variables (XS) by using the input arguments RegressionMdl and Vars, respectively.
plotPartialDependence computes the partial dependence at 100 evenly spaced points of XS or the
points that you specify by using the QueryPoints name-value argument. You can specify the number
(N) of observations to sample from given predictor data by using the NumObservationsToSample
name-value argument.

Individual Conditional Expectation for Regression Models

An individual conditional expectation (ICE) [2], as an extension of partial dependence, represents the
relationship between a predictor variable and the predicted responses for each observation. While
partial dependence shows the averaged relationship between predictor variables and predicted
responses, a set of ICE plots disaggregates the averaged information and shows an individual
dependence for each observation.
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plotPartialDependence creates an ICE plot for each observation. A set of ICE plots is useful to
investigate heterogeneities of partial dependence originating from different observations.
plotPartialDependence can also create ICE plots with any predictor data provided through the
input argument Data. You can use this feature to explore predicted response space.

Consider an ICE plot for a selected predictor variable xS with a given observation Xi
C, where XS =

{xS}, XC is the complementary set of XS in the whole variable set X, and Xi = (Xi
S, Xi

C) is the ith
observation. The ICE plot corresponds to the summand of the summation in “Equation 35-2”:

f S
i XS = f XS, XiC .

plotPartialDependence plots f S
i XS  for each observation i when you specify Conditional as

"absolute". If you specify Conditional as "centered", plotPartialDependence draws all
plots after removing level effects due to different observations:

f S
i, centered XS = f XS, XiC − f min XS , XiC .

This subtraction ensures that each plot starts from zero, so that you can examine the cumulative
effect of XS and the interactions between XS and XC.

Partial Dependence and ICE for Classification Models

In the case of classification models, plotPartialDependence computes the partial dependence and
individual conditional expectation in the same way as for regression models, with one exception:
instead of using the predicted responses from the model, the function uses the predicted scores for
the classes specified in Labels.

Weighted Traversal Algorithm

The weighted traversal algorithm[1] is a method to estimate partial dependence for a tree-based
model. The estimated partial dependence is the weighted average of response or score values
corresponding to the leaf nodes visited during the tree traversal.

Let XS be a subset of the whole variable set X and XC be the complementary set of XS in X. For each XS

value to compute partial dependence, the algorithm traverses a tree from the root (beginning) node
down to leaf (terminal) nodes and finds the weights of leaf nodes. The traversal starts by assigning a
weight value of one at the root node. If a node splits by XS, the algorithm traverses to the appropriate
child node depending on the XS value. The weight of the child node becomes the same value as its
parent node. If a node splits by XC, the algorithm traverses to both child nodes. The weight of each
child node becomes a value of its parent node multiplied by the fraction of observations
corresponding to each child node. After completing the tree traversal, the algorithm computes the
weighted average by using the assigned weights.

For an ensemble of bagged trees, the estimated partial dependence is an average of the weighted
averages over the individual trees.

Algorithms
For both a regression model (RegressionMdl) and a classification model (ClassificationMdl),
plotPartialDependence uses a predict function to predict responses or scores.
plotPartialDependence chooses the proper predict function according to the model and runs
predict with its default settings. For details about each predict function, see the predict
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functions in the following two tables. If the specified model is a tree-based model (not including a
boosted ensemble of trees) and Conditional is "none", then plotPartialDependence uses the
weighted traversal algorithm instead of the predict function. For details, see “Weighted Traversal
Algorithm” on page 35-5609.

Regression Model Object

Model Type Full or Compact Regression Model Object Function to Predict
Responses

Bootstrap aggregation
for ensemble of decision
trees

CompactTreeBagger predict

Bootstrap aggregation
for ensemble of decision
trees

TreeBagger predict

Ensemble of regression
models

RegressionEnsemble,
RegressionBaggedEnsemble,
CompactRegressionEnsemble

predict

Gaussian kernel
regression model using
random feature
expansion

RegressionKernel predict

Gaussian process
regression

RegressionGP, CompactRegressionGP predict

Generalized additive
model

RegressionGAM, CompactRegressionGAM predict

Generalized linear
mixed-effect model

GeneralizedLinearMixedModel predict

Generalized linear
model

GeneralizedLinearModel,
CompactGeneralizedLinearModel

predict

Linear mixed-effect
model

LinearMixedModel predict

Linear regression LinearModel, CompactLinearModel predict
Linear regression for
high-dimensional data

RegressionLinear predict

Neural network
regression model

RegressionNeuralNetwork,
CompactRegressionNeuralNetwork

predict

Nonlinear regression NonLinearModel predict
Regression tree RegressionTree, CompactRegressionTree predict
Support vector machine RegressionSVM, CompactRegressionSVM predict

35 Functions

35-5610



Classification Model Object

Model Type Full or Compact Classification Model Object Function to Predict
Labels and Scores

Discriminant analysis
classifier

ClassificationDiscriminant,
CompactClassificationDiscriminant

predict

Multiclass model for
support vector
machines or other
classifiers

ClassificationECOC,
CompactClassificationECOC

predict

Ensemble of learners
for classification

ClassificationEnsemble,
CompactClassificationEnsemble,
ClassificationBaggedEnsemble

predict

Gaussian kernel
classification model
using random feature
expansion

ClassificationKernel predict

Generalized additive
model

ClassificationGAM,
CompactClassificationGAM

predict

k-nearest neighbor
model

ClassificationKNN predict

Linear classification
model

ClassificationLinear predict

Naive Bayes model ClassificationNaiveBayes,
CompactClassificationNaiveBayes

predict

Neural network
classifier

ClassificationNeuralNetwork,
CompactClassificationNeuralNetwork

predict

Support vector machine
for one-class and binary
classification

ClassificationSVM,
CompactClassificationSVM

predict

Binary decision tree for
multiclass classification

ClassificationTree,
CompactClassificationTree

predict

Bagged ensemble of
decision trees

TreeBagger, CompactTreeBagger predict

Alternative Functionality
• partialDependence computes partial dependence without visualization. The function can

compute partial dependence for two variables and multiple classes in one function call.

Version History
Introduced in R2017b
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Extended Capabilities
Automatic Parallel Support
Accelerate code by automatically running computation in parallel using Parallel Computing Toolbox™.

To run in parallel, set the UseParallel name-value argument to true in the call to this function.

For more general information about parallel computing, see “Run MATLAB Functions with Automatic
Parallel Support” (Parallel Computing Toolbox).

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

Usage notes and limitations:

• This function fully supports GPU arrays for the following regression models:

• LinearModel and CompactLinearModel objects
• GeneralizedLinearModel and CompactGeneralizedLinearModel objects

• This function supports GPU arrays with limitations for the regression and classification models
described in this table.

Full or Compact Model Object Limitations
ClassificationECOC or
CompactClassificationECOC

• Surrogate splits are not supported for
decision tree learners.

• For KNN learners, you cannot set the
following options to the values shown:

• "NSMethod","kdtree"
• "Distance",function handle
• "IncludeTies",true

ClassificationEnsemble or
CompactClassificationEnsemble

Surrogate splits are not supported for decision
tree learners.
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Full or Compact Model Object Limitations
ClassificationKNN You cannot set the following options to the

values shown:

• "NSMethod","kdtree"
• "Distance",function handle
• "IncludeTies",true

ClassificationSVM or
CompactClassificationSVM

One-class classification is not supported.

ClassificationTree or
CompactClassificationTree

Surrogate splits are not supported for decision
trees.

RegressionEnsemble or
CompactRegressionEnsemble

Surrogate splits are not supported for decision
tree learners.

RegressionTree or
CompactRegressionTree

Surrogate splits are not supported for decision
trees.

• This function fully supports GPU arrays for a custom function if the custom function supports GPU
arrays.

For more information, see “Run MATLAB Functions on a GPU” (Parallel Computing Toolbox).

See Also
partialDependence | lime | shapley | oobPermutedPredictorImportance |
predictorImportance (RegressionEnsemble) | predictorImportance (RegressionTree)
| relieff | sequentialfs

Topics
“Introduction to Feature Selection” on page 16-47
“Interpret Machine Learning Models” on page 27-2

 plotPartialDependence

35-5613



plotprofile
Class: RepeatedMeasuresModel

Plot expected marginal means with optional grouping

Syntax
plotprofile(rm,X)
plotprofile(rm,Name,Value)
H = plotprofile( ___ )

Description
plotprofile(rm,X) plots the expected marginal means computed from the repeated measures
model rm as a function of the variable X.

plotprofile(rm,Name,Value) plots the expected marginal means computed from the repeated
measures model rm with additional options specified by one or more Name,Value pair arguments.

For example, you can specify the factors to group by or change the line colors.

H = plotprofile( ___ ) returns handles, H, to the plotted lines.

Input Arguments
rm — Repeated measures model
RepeatedMeasuresModel object

Repeated measures model, returned as a RepeatedMeasuresModel object.

For properties and methods of this object, see RepeatedMeasuresModel.

X — Name of between-subjects or within-subjects factor
character vector | string scalar

Name of a between-subjects or within-subjects factor, specified as a character vector or string scalar.

For example, if you want to plot the marginal means as a function of the groups of a between-subjects
variable drug, you can specify it as follows.
Example: 'Drug'
Data Types: char | string

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
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Group — Name of between-subject factor or factors
character vector | string array | cell array of character vectors

Name of between-subject factor or factors, specified as the comma-separated pair consisting of
'Group' and a character vector, string array, or cell array of character vectors. This name-value pair
argument groups the lines according to the factor values.

For example, if you have two between-subject factors, drug and sex, and you want to group the lines
in the plot according to them, you can specify these factors as follows.
Example: 'Group',{'Drug','Sex'}
Data Types: char | string | cell

Marker — Marker to use for each group
string array | cell array of character vectors

Marker to use for each group, specified as the comma-separated pair consisting of 'Marker' and a
string array or cell array of character vectors.

For example, if you have two between-subject factors, drug and sex, with each having two groups,
you can specify o as the marker for the groups of drug and x as the marker for the groups of sex as
follows.
Example: 'Marker',{'o','o','x','x'}
Data Types: string | cell

Color — Color for each group
character vector | string array | cell array of character vectors | rows of a three-column RGB matrix

Color for each group, specified as the comma-separated pair consisting of 'Color' and a character
vector, string array, cell array of character vectors, or rows of a three-column RGB matrix.

For example, if you have two between-subject factors, drug and sex, with each having two groups,
you can specify red as the color for the groups of drug and blue as the color for the groups of sex as
follows.
Example: 'Color','rrbb'
Data Types: single | double | char | string | cell

LineStyle — Line style for each group
string array | cell array of character vectors

Line style for each group, specified as the comma-separated pair consisting of 'LineStyle' and a
string array or cell array of character vectors.

For example, if you have two between-subject factors, drug and sex, with each having two groups,
you can specify - as the line style of one group and : as the line style for the other group as follows.
Example: 'LineStyle',{'-' ':' '-' ':'}
Data Types: string | cell
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Output Arguments
H — Handle to plotted lines
handle

Handle to plotted lines, returned as a handle.

Examples

Plot Expected Marginal Means

Load the sample data.

load fisheriris

The column vector species consists of iris flowers of three different species: setosa, versicolor, and
virginica. The double matrix meas consists of four types of measurements on the flowers: the length
and width of sepals and petals in centimeters, respectively.

Store the data in a table array.

t = table(species,meas(:,1),meas(:,2),meas(:,3),meas(:,4),...
'VariableNames',{'species','meas1','meas2','meas3','meas4'});
Meas = dataset([1 2 3 4]','VarNames',{'Measurements'});

Fit a repeated measures model, where the measurements are the responses and the species is the
predictor variable.

rm = fitrm(t,'meas1-meas4~species','WithinDesign',Meas);

Perform data grouped by the factor species.

plotprofile(rm,'species')
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The estimated marginal means seem to differ with group. You can compute the standard error and
the 95% confidence intervals for the marginal means using the margmean method.

Plot Marginal Means for Two Groups

Load the sample data.

load repeatedmeas

The table between includes the between-subject variables age, IQ, group, gender, and eight repeated
measures y1 through y8 as responses. The table within includes the within-subject variables w1 and
w2. This is simulated data.

Fit a repeated measures model, where the repeated measures y1 through y8 are the responses, and
age, IQ, group, gender, and the group-gender interaction are the predictor variables. Also specify the
within-subject design matrix.

rm = fitrm(between,'y1-y8 ~ Group*Gender + Age + IQ','WithinDesign',within);

Plot the estimated marginal means based on the factors Group and Gender.

ax1 = subplot(1,2,1);
plotprofile(rm,'Group')
ax2 = subplot(1,2,2);
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plotprofile(rm,'Gender')
linkaxes([ax1 ax2],'y')

Plot the estimated marginal means based on the factor Group and grouped by Gender.

figure()
plotprofile(rm,'Group','Group','Gender')
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See Also
plot | fitrm | margmean
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plotResiduals
Plot residuals of generalized linear regression model

Syntax
plotResiduals(mdl)
plotResiduals(mdl,plottype)
plotResiduals(mdl,plottype,Name,Value)
h = plotResiduals( ___ )

Description
plotResiduals(mdl) creates a histogram plot of the generalized linear regression model (mdl)
residuals.

plotResiduals(mdl,plottype) specifies the residual plot type plottype.

plotResiduals(mdl,plottype,Name,Value) specifies additional options using one or more
name-value pair arguments. For example, you can specify the residual type and the graphical
properties of residual data points.

h = plotResiduals( ___ ) returns graphics objects for the lines or patch in the plot using any of
the input argument combinations in the previous syntaxes. Use h to modify the properties of a
specific line or patch after you create the plot. For a list of properties, see Chart Line and Patch
Properties.

Examples

Create Residual Plots for Generalized Linear Regression Model

Create three plots of a fitted generalized linear regression model: a histogram of raw residuals, a
normal probability plot of raw residuals, a normal probability plot of Anscombe type residuals.

Generate sample data using Poisson random numbers with two underlying predictors X(:,1) and
X(:,2).

rng('default') % For reproducibility
rndvars = randn(100,2);
X = [2 + rndvars(:,1),rndvars(:,2)];
mu = exp(1 + X*[1;2]);
y = poissrnd(mu);

Create a generalized linear regression model of Poisson data.

mdl = fitglm(X,y,'y ~ x1 + x2','Distribution','poisson');

Create a histogram of the raw residuals using probability density function scaling.

plotResiduals(mdl)

35 Functions

35-5620



The area of each bar is the relative number of observations. The sum of the bar areas is equal to 1.

Create a normal probability plot of the raw residuals.

plotResiduals(mdl,'probability')
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The residuals do not match a normal distribution in the tails because the residuals are more spread
out.

Create a normal probability plot of the Anscombe type residuals.

plotResiduals(mdl,'probability','ResidualType','Anscombe')
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The Anscombe type residuals match a normal distribution.

Input Arguments
mdl — Generalized linear regression model
GeneralizedLinearModel object

Generalized linear regression model, specified as a GeneralizedLinearModel object created using
fitglm or stepwiseglm.

plottype — Plot type
'histogram' (default) | 'caseorder' | 'fitted' | 'lagged' | 'probability' | 'symmetry'

Plot type, specified as one of the values in this table.

Value Description
'caseorder' Residuals vs. case order (row number)
'fitted' Residuals vs. fitted values
'histogram' Histogram of residuals using probability density function scaling.

The area of each bar is the relative number of observations. The
sum of the bar areas is equal to 1.

'lagged' Residuals vs. lagged residuals (r(t) vs. r(t – 1))
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Value Description
'probability' Normal probability plot of residuals. For details, see probplot.
'symmetry' Symmetry plot of residuals around their median (residuals in upper

tail – median vs. median – residuals in lower tail). This plot
includes a dotted reference line of y = x to examine the symmetry
of residuals.

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: 'Color','blue','Marker','o'

Note The graphical properties listed here are only a subset. For a complete list, see Chart Line for
lines and Patch Properties for histogram. The specified properties apply to the appearance of residual
data points or the appearance of the histogram.

ResidualType — Type of residual
'Raw' (default) | 'Anscombe' | 'Deviance' | 'LinearPredictor' | 'Pearson'

Type of residual used in the plot, specified as the comma-separated pair consisting of
'ResidualType' and one of the values in this table.

Value Description
'Raw' Observed minus fitted values
'LinearPredictor' Residuals on the linear predictor scale, equal to

the adjusted response value minus the fitted
linear combination of the predictors

'Pearson' Raw residuals divided by the estimated standard
deviation of the response

'Anscombe' Residuals defined on transformed data with the
transformation selected to remove skewness

'Deviance' Residuals based on the contribution of each
observation to the deviance

The Residuals property of mdl contains the residual values used by plotResiduals to create
plots.
Example: 'ResidualType','Pearson'

Color — Line color
RGB triplet | hexadecimal color code | color name | short name

Line color, specified as the comma-separated pair consisting of 'Color' and an RGB triplet,
hexadecimal color code, color name, or short name for one of the color options listed in the following
table.
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The 'Color' name-value pair argument also determines marker outline color and marker fill color if
'MarkerEdgeColor' is 'auto' (default) and 'MarkerFaceColor' is 'auto'.

For a custom color, specify an RGB triplet or a hexadecimal color code.

• An RGB triplet is a three-element row vector whose elements specify the intensities of the red,
green, and blue components of the color. The intensities must be in the range [0,1], for example,
[0.4 0.6 0.7].

• A hexadecimal color code is a character vector or a string scalar that starts with a hash symbol (#)
followed by three or six hexadecimal digits, which can range from 0 to F. The values are not case
sensitive. Therefore, the color codes "#FF8800", "#ff8800", "#F80", and "#f80" are
equivalent.

Alternatively, you can specify some common colors by name. This table lists the named color options,
the equivalent RGB triplets, and hexadecimal color codes.

Color Name Short Name RGB Triplet Hexadecimal
Color Code

Appearance

"red" "r" [1 0 0] "#FF0000"
"green" "g" [0 1 0] "#00FF00"
"blue" "b" [0 0 1] "#0000FF"
"cyan" "c" [0 1 1] "#00FFFF"
"magenta" "m" [1 0 1] "#FF00FF"
"yellow" "y" [1 1 0] "#FFFF00"
"black" "k" [0 0 0] "#000000"
"white" "w" [1 1 1] "#FFFFFF"
"none" Not

applicable
Not applicable Not applicable No color

Here are the RGB triplets and hexadecimal color codes for the default colors MATLAB uses in many
types of plots.

RGB Triplet Hexadecimal Color Code Appearance
[0 0.4470 0.7410] "#0072BD"
[0.8500 0.3250 0.0980] "#D95319"
[0.9290 0.6940 0.1250] "#EDB120"
[0.4940 0.1840 0.5560] "#7E2F8E"
[0.4660 0.6740 0.1880] "#77AC30"
[0.3010 0.7450 0.9330] "#4DBEEE"
[0.6350 0.0780 0.1840] "#A2142F"

Example: 'Color','blue'

LineWidth — Line width
positive value
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Line width, specified as the comma-separated pair consisting of 'LineWidth' and a positive value in
points. If the line has markers, then the line width also affects the marker edges.
Example: 'LineWidth',0.75

Marker — Marker symbol
'o' | '+' | '*' | '.' | 'x' | ...

Marker symbol, specified as the comma-separated pair consisting of 'Marker' and one of the values
in this table.

Marker Description Resulting Marker
"o" Circle

"+" Plus sign

"*" Asterisk

"." Point

"x" Cross

"_" Horizontal line

"|" Vertical line

"square" Square

"diamond" Diamond

"^" Upward-pointing triangle

"v" Downward-pointing triangle

">" Right-pointing triangle

"<" Left-pointing triangle

"pentagram" Pentagram

"hexagram" Hexagram

"none" No markers Not applicable

Example: 'Marker','+'

MarkerEdgeColor — Marker outline color
'auto' (default) | 'none' | RGB triplet | hexadecimal color code | color name | short name

Marker outline color, specified as the comma-separated pair consisting of 'MarkerEdgeColor' and
an RGB triplet, hexadecimal color code, color name, or short name for one of the color options listed
in the Color name-value pair argument.
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The default value of 'auto' uses the same color specified by using 'Color'.
Example: 'MarkerEdgeColor','blue'

MarkerFaceColor — Marker fill color
'none' (default) | 'auto' | RGB triplet | hexadecimal color code | color name | short name

Marker fill color, specified as the comma-separated pair consisting of 'MarkerFaceColor' and an
RGB triplet, hexadecimal color code, color name, or short name for one of the color options listed in
the Color name-value pair argument.

The 'auto' value uses the same color specified by using 'Color'.
Example: 'MarkerFaceColor','blue'

MarkerSize — Marker size
6 (default) | positive value

Marker size, specified as the comma-separated pair consisting of 'MarkerSize' and a positive value
in points.
Example: 'MarkerSize',2

Output Arguments
h — Graphics objects
graphics array

Graphics objects corresponding to the lines or patch in the plot, returned as a graphics array. Use dot
notation to query and set properties of the graphics objects. For details, see Line Properties and
Patch Properties.

You can use name-value pair arguments to specify the appearance of residual data points or the
appearance of the histogram, corresponding to the first graphics object h(1).

More About
Deviance

Deviance is twice the loglikelihood of the model. Because this overall loglikelihood is a sum of
loglikelihoods for each observation, a residual plot with the deviance type shows the loglikelihood per
observation.

Tips
• The data cursor displays the values of the selected plot point in a data tip (small text box located

next to the data point). The data tip includes the x-axis and y-axis values for the selected point,
along with the observation name or number.

Alternative Functionality
A GeneralizedLinearModel object provides multiple plotting functions.
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• When verifying a model, use plotDiagnostics to find questionable data and to understand the
effect of each observation. Also, use plotResiduals to analyze the residuals of the model.

• After fitting a model, use plotPartialDependence to understand the effect of a particular
predictor. Also, use plotSlice to plot slices through the prediction surface.

Version History
Introduced in R2012a

Extended Capabilities
GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

This function fully supports GPU arrays. For more information, see “Run MATLAB Functions on a
GPU” (Parallel Computing Toolbox).

See Also
GeneralizedLinearModel | plotDiagnostics | plotPartialDependence | plotSlice

Topics
“Residuals — Model Quality for Training Data” on page 12-19
“Generalized Linear Models” on page 12-9
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plotResiduals
Class: GeneralizedLinearMixedModel

Plot residuals of generalized linear mixed-effects model

Syntax
plotResiduals(glme,plottype)
plotResiduals(glme,plottype,Name,Value)

h = plotResiduals( ___ )

Description
plotResiduals(glme,plottype) plots the raw conditional residuals of the generalized linear
mixed-effects model glme in a plot of the type specified by plottype.

plotResiduals(glme,plottype,Name,Value) plots the conditional residuals of glme using
additional options specified by one or more Name,Value pair arguments. For example, you can
specify to plot the Pearson residuals.

h = plotResiduals( ___ ) returns a handle, h, to the lines or patches in the plot of residuals.

Input Arguments
glme — Generalized linear mixed-effects model
GeneralizedLinearMixedModel object

Generalized linear mixed-effects model, specified as a GeneralizedLinearMixedModel object. For
properties and methods of this object, see GeneralizedLinearMixedModel.

plottype — Type of residual plot
'histogram' (default) | 'caseorder' | 'fitted' | 'lagged' | 'probability' | 'symmetry'

Type of residual plot, specified as one of the following.

Value Description
'histogram' Histogram of residuals
'caseorder' Residuals versus case order. Case order is the

same as the row order used in the input data tbl
when fitting the model using fitglme.

'fitted' Residuals versus fitted values
'lagged' Residuals versus lagged residual (r(t) versus r(t –

1))
'probability' Normal probability plot
'symmetry' Symmetry plot

Example: plotResiduals(glme,'lagged')
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Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.

ResidualType — Residual type
'raw' (default) | 'Pearson'

Residual type, specified by the comma-separated pair consisting of ResidualType and one of the
following.

Residual Type Formula
'raw' rci = yi− g−1 xi

Tβ + zi
Tb + δi

'Pearson'
rci

pearson =
rci

σ2
wi

vi μi β , b

In each of these equations:

• yi is the ith element of the n-by-1 response vector, y, where i = 1, ..., n.
• g-1 is the inverse link function for the model.
• xi

T is the ith row of the fixed-effects design matrix X.
• zi

T is the ith row of the random-effects design matrix Z.
• δi is the ith offset value.
• σ2 is the dispersion parameter.
• wi is the ith observation weight.
• vi is the variance term for the ith observation.
• μi is the mean of the response for the ith observation.
• β  and b  are estimated values of β and b.

Raw residuals from a generalized linear mixed-effects model have nonconstant variance. Pearson
residuals are expected to have an approximately constant variance, and are generally used for
analysis.
Example: 'ResidualType','Pearson'

Output Arguments
h — Handle to residual plot
graphics object

Handle to the residual plot, returned as a graphics object. You can use dot notation to change certain
property values of the object, including face color for a histogram, and marker style and color for a
scatterplot. For more information, see “Access Property Values”.
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Examples

Create Plots of Residuals

Load the sample data.

load mfr

This simulated data is from a manufacturing company that operates 50 factories across the world,
with each factory running a batch process to create a finished product. The company wants to
decrease the number of defects in each batch, so it developed a new manufacturing process. To test
the effectiveness of the new process, the company selected 20 of its factories at random to participate
in an experiment: Ten factories implemented the new process, while the other ten continued to run
the old process. In each of the 20 factories, the company ran five batches (for a total of 100 batches)
and recorded the following data:

• Flag to indicate whether the batch used the new process (newprocess)
• Processing time for each batch, in hours (time)
• Temperature of the batch, in degrees Celsius (temp)
• Categorical variable indicating the supplier (A, B, or C) of the chemical used in the batch

(supplier)
• Number of defects in the batch (defects)

The data also includes time_dev and temp_dev, which represent the absolute deviation of time and
temperature, respectively, from the process standard of 3 hours at 20 degrees Celsius.

Fit a generalized linear mixed-effects model using newprocess, time_dev, temp_dev, and
supplier as fixed-effects predictors. Include a random-effects term for intercept grouped by
factory, to account for quality differences that might exist due to factory-specific variations. The
response variable defects has a Poisson distribution, and the appropriate link function for this
model is log. Use the Laplace fit method to estimate the coefficients. Specify the dummy variable
encoding as 'effects', so the dummy variable coefficients sum to 0.

The number of defects can be modeled using a Poisson distribution:

defectsi j ∼ Poisson(μi j)

This corresponds to the generalized linear mixed-effects model

log(μi j) = β0 + β1newprocessi j + β2time_devi j + β3temp_devi j + β4supplier_Ci j + β5supplier_Bi j
+ bi,

where

• defectsi j is the number of defects observed in the batch produced by factory i during batch j.
• μi j is the mean number of defects corresponding to factory i (where i = 1, 2, . . . , 20) during batch

j (where j = 1, 2, . . . , 5).
• newprocessi j, time_devi j, and temp_devi j are the measurements for each variable that correspond

to factory i during batch j. For example, newprocessi j indicates whether the batch produced by
factory i during batch j used the new process.
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• supplier_Ci j and supplier_Bi j are dummy variables that use effects (sum-to-zero) coding to indicate
whether company C or B, respectively, supplied the process chemicals for the batch produced by
factory i during batch j.

• bi ∼ N(0, σb
2) is a random-effects intercept for each factory i that accounts for factory-specific

variation in quality.

glme = fitglme(mfr,'defects ~ 1 + newprocess + time_dev + temp_dev + supplier + (1|factory)','Distribution','Poisson','Link','log','FitMethod','Laplace','DummyVarCoding','effects');

Create diagnostic plots using Pearson residuals to test the model assumptions.

Plot a histogram to visually confirm that the mean of the Pearson residuals is equal to 0. If the model
is correct, we expect the Pearson residuals to be centered at 0.

plotResiduals(glme,'histogram','ResidualType','Pearson')

The histogram shows that the Pearson residuals are centered at 0.

Plot the Pearson residuals versus the fitted values, to check for signs of nonconstant variance among
the residuals (heteroscedasticity). We expect the conditional Pearson residuals to have a constant
variance. Therefore, a plot of conditional Pearson residuals versus conditional fitted values should not
reveal any systematic dependence on the conditional fitted values.

plotResiduals(glme,'fitted','ResidualType','Pearson')
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The plot does not show a systematic dependence on the fitted values, so there are no signs of
nonconstant variance among the residuals.

Plot the Pearson residuals versus lagged residuals, to check for correlation among the residuals. The
conditional independence assumption in GLME implies that the conditional Pearson residuals are
approximately uncorrelated.

plotResiduals(glme,'lagged','ResidualType','Pearson')
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There is no pattern to the plot, so there are no signs of correlation among the residuals.

See Also
GeneralizedLinearMixedModel | fitglme | fitted | plot | residuals
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plotResiduals
Plot residuals of linear regression model

Syntax
plotResiduals(mdl)
plotResiduals(mdl,plottype)
plotResiduals(mdl,plottype,Name,Value)

plotResiduals(ax, ___ )

h = plotResiduals( ___ )

Description
plotResiduals(mdl) creates a histogram plot of the linear regression model (mdl) residuals.

plotResiduals(mdl,plottype) specifies the residual plot type plottype.

plotResiduals(mdl,plottype,Name,Value) specifies additional options using one or more
name-value pair arguments. For example, you can specify the residual type and the graphical
properties of residual data points.

plotResiduals(ax, ___ ) creates the plot in the axes specified by ax instead of the current axes,
using any of the input argument combinations in the previous syntaxes.

h = plotResiduals( ___ ) returns graphics objects for the lines or patch in the plot. Use h to
modify the properties of a specific line or patch after you create the plot. For a list of properties, see
Chart Line and Patch Properties.

Examples

Histogram of Residuals

Plot a histogram of the residuals of a fitted linear regression model.

Load the carsmall data set and fit a linear regression model of the mileage as a function of model
year, weight, and weight squared.

load carsmall
tbl = table(MPG,Weight);
tbl.Year = categorical(Model_Year);
mdl = fitlm(tbl,'MPG ~ Year + Weight^2');

Create a histogram of the raw residuals using probability density function scaling.

plotResiduals(mdl)
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The area of each bar is the relative number of observations. The sum of the bar areas is equal to 1.

Normal Probability Plot of Residuals

Create a normal probability plot of the residuals of a fitted linear regression model.

Load the carsmall data set and fit a linear regression model of the mileage as a function of model
year, weight, and weight squared.

load carsmall
X = [Weight,Model_Year];
mdl = fitlm(X,MPG,...
    'y ~ x2 + x1^2','Categorical',2);

Create a normal probability plot of the residuals of the fitted model.

plotResiduals(mdl,'probability')
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Input Arguments
mdl — Linear regression model
LinearModel object

Linear regression model, specified as a LinearModel object created using fitlm or stepwiselm.

plottype — Plot type
'histogram' (default) | 'caseorder' | 'fitted' | 'lagged' | 'probability' | 'symmetry'

Plot type, specified as one of the values in this table.

Value Description
'caseorder' Residuals vs. case order (row number)
'fitted' Residuals vs. fitted values
'histogram' Histogram of residuals using probability density function scaling.

The area of each bar is the relative number of observations. The
sum of the bar areas is equal to 1.

'lagged' Residuals vs. lagged residuals (r(t) vs. r(t – 1))
'probability' Normal probability plot of residuals. For details, see probplot.
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Value Description
'symmetry' Symmetry plot of residuals around their median (residuals in upper

tail – median vs. median – residuals in lower tail). This plot
includes a dotted reference line of y = x to examine the symmetry
of residuals.

ax — Target axes
Axes object

Target axes, specified as an Axes object.

If you do not specify the axes and the current axes are Cartesian, then plotResiduals uses the
current axes (gca). For more information on creating an Axes object, see axes and gca.

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: 'Color','blue','Marker','o'

Note The graphical properties listed here are only a subset. For a complete list, see Chart Line for
lines and Patch Properties for histogram. The specified properties apply to the appearance of residual
data points or the appearance of the histogram.

ResidualType — Type of residual
'raw' (default) | 'pearson' | 'standardized' | 'studentized'

Type of residual used in the plot, specified as the comma-separated pair consisting of
'ResidualType' and one of these values:

Value Description
'raw' Observed minus fitted values
'pearson' Raw residuals divided by the root mean squared error (RMSE)
'standardized' Raw residuals divided by their estimated standard deviation
'studentized' Raw residuals divided by an independent (delete-1) estimate of

their standard deviation

The Residuals property of mdl contains the residual values used by plotResiduals to create
plots.

For details, see “Residuals” on page 11-82.
Example: 'ResidualType','Pearson'

Color — Line color
RGB triplet | hexadecimal color code | color name | short name
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Line color, specified as the comma-separated pair consisting of 'Color' and an RGB triplet,
hexadecimal color code, color name, or short name for one of the color options listed in the following
table.

The 'Color' name-value pair argument also determines marker outline color and marker fill color if
'MarkerEdgeColor' is 'auto' (default) and 'MarkerFaceColor' is 'auto'.

For a custom color, specify an RGB triplet or a hexadecimal color code.

• An RGB triplet is a three-element row vector whose elements specify the intensities of the red,
green, and blue components of the color. The intensities must be in the range [0,1], for example,
[0.4 0.6 0.7].

• A hexadecimal color code is a character vector or a string scalar that starts with a hash symbol (#)
followed by three or six hexadecimal digits, which can range from 0 to F. The values are not case
sensitive. Therefore, the color codes "#FF8800", "#ff8800", "#F80", and "#f80" are
equivalent.

Alternatively, you can specify some common colors by name. This table lists the named color options,
the equivalent RGB triplets, and hexadecimal color codes.

Color Name Short Name RGB Triplet Hexadecimal
Color Code

Appearance

"red" "r" [1 0 0] "#FF0000"
"green" "g" [0 1 0] "#00FF00"
"blue" "b" [0 0 1] "#0000FF"
"cyan" "c" [0 1 1] "#00FFFF"
"magenta" "m" [1 0 1] "#FF00FF"
"yellow" "y" [1 1 0] "#FFFF00"
"black" "k" [0 0 0] "#000000"
"white" "w" [1 1 1] "#FFFFFF"
"none" Not

applicable
Not applicable Not applicable No color

Here are the RGB triplets and hexadecimal color codes for the default colors MATLAB uses in many
types of plots.

RGB Triplet Hexadecimal Color Code Appearance
[0 0.4470 0.7410] "#0072BD"
[0.8500 0.3250 0.0980] "#D95319"
[0.9290 0.6940 0.1250] "#EDB120"
[0.4940 0.1840 0.5560] "#7E2F8E"
[0.4660 0.6740 0.1880] "#77AC30"
[0.3010 0.7450 0.9330] "#4DBEEE"
[0.6350 0.0780 0.1840] "#A2142F"

Example: 'Color','blue'
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LineWidth — Line width
positive value

Line width, specified as the comma-separated pair consisting of 'LineWidth' and a positive value in
points. If the line has markers, then the line width also affects the marker edges.
Example: 'LineWidth',0.75

Marker — Marker symbol
'o' | '+' | '*' | '.' | 'x' | ...

Marker symbol, specified as the comma-separated pair consisting of 'Marker' and one of the values
in this table.

Marker Description Resulting Marker
"o" Circle

"+" Plus sign

"*" Asterisk

"." Point

"x" Cross

"_" Horizontal line

"|" Vertical line

"square" Square

"diamond" Diamond

"^" Upward-pointing triangle

"v" Downward-pointing triangle

">" Right-pointing triangle

"<" Left-pointing triangle

"pentagram" Pentagram

"hexagram" Hexagram

"none" No markers Not applicable

Example: 'Marker','+'

MarkerEdgeColor — Marker outline color
'auto' (default) | 'none' | RGB triplet | hexadecimal color code | color name | short name
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Marker outline color, specified as the comma-separated pair consisting of 'MarkerEdgeColor' and
an RGB triplet, hexadecimal color code, color name, or short name for one of the color options listed
in the Color name-value pair argument.

The default value of 'auto' uses the same color specified by using 'Color'.
Example: 'MarkerEdgeColor','blue'

MarkerFaceColor — Marker fill color
'none' (default) | 'auto' | RGB triplet | hexadecimal color code | color name | short name

Marker fill color, specified as the comma-separated pair consisting of 'MarkerFaceColor' and an
RGB triplet, hexadecimal color code, color name, or short name for one of the color options listed in
the Color name-value pair argument.

The 'auto' value uses the same color specified by using 'Color'.
Example: 'MarkerFaceColor','blue'

MarkerSize — Marker size
6 (default) | positive value

Marker size, specified as the comma-separated pair consisting of 'MarkerSize' and a positive value
in points.
Example: 'MarkerSize',2

Output Arguments
h — Graphics objects
graphics array

Graphics objects corresponding to the lines or patch in the plot, returned as a graphics array. Use dot
notation to query and set properties of the graphics objects. For details, see Line Properties and
Patch Properties.

You can use name-value pair arguments to specify the appearance of residual data points or the
appearance of the histogram, corresponding to the first graphics object h(1).

Tips
• The data cursor displays the values of the selected plot point in a data tip (small text box located

next to the data point). The data tip includes the x-axis and y-axis values for the selected point,
along with the observation name or number.

Alternative Functionality
• A LinearModel object provides multiple plotting functions.

• When creating a model, use plotAdded to understand the effect of adding or removing a
predictor variable.

• When verifying a model, use plotDiagnostics to find questionable data and to understand
the effect of each observation. Also, use plotResiduals to analyze the residuals of the model.
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• After fitting a model, use plotAdjustedResponse, plotPartialDependence, and
plotEffects to understand the effect of a particular predictor. Use plotInteraction to
understand the interaction effect between two predictors. Also, use plotSlice to plot slices
through the prediction surface.

Version History
Introduced in R2012a

Extended Capabilities
GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

This function fully supports GPU arrays. For more information, see “Run MATLAB Functions on a
GPU” (Parallel Computing Toolbox).

See Also
LinearModel | plotDiagnostics

Topics
“Residuals” on page 11-82
“Compare large and small stepwise models” on page 11-101
“Compare Results of Standard and Robust Least-Squares Fit” on page 11-107
“Interpret Linear Regression Results” on page 11-52
“Linear Regression Workflow” on page 11-35
“Linear Regression” on page 11-9
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plotResiduals
Class: LinearMixedModel

Plot residuals of linear mixed-effects model

Syntax
plotResiduals(lme,plottype)
plotResiduals(lme,plottype,Name,Value)

h = plotResiduals( ___ )

Description
plotResiduals(lme,plottype) plots the raw conditional residuals of the linear mixed-effects
model lme in a plot of the type specified by plottype.

plotResiduals(lme,plottype,Name,Value) also plots the residuals of the linear mixed-effects
model lme with additional options specified by one or more name-value pair arguments. For example,
you can specify the residual type to plot.

plotResiduals also accepts some other name-value pair arguments that specify the properties of
the primary line in the plot. For those name-value pairs, see plot.

h = plotResiduals( ___ ) returns a handle, h, to the lines or patches in the plot of residuals.

Input Arguments
lme — Linear mixed-effects model
LinearMixedModel object

Linear mixed-effects model, specified as a LinearMixedModel object constructed using fitlme or
fitlmematrix.

plottype — Type of residual plot
'histogram' (default) | 'caseorder' | 'fitted' | 'lagged' | 'probability' | 'symmetry'

Type of residual plot, specified as one of the following.

'histogram' Default. Histogram of residuals
'caseorder' Residuals versus case (row) order
'fitted' Residuals versus fitted values
'lagged' Residuals versus lagged residual (r(t) versus r(t –

1))
'probability' Normal probability plot
'symmetry' Symmetry plot

Example: plotResiduals(lme,'lagged')
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Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.

ResidualType — Residual type
'Raw' (default) | 'Pearson' | 'Standardized'

Residual type, specified by the comma-separated pair consisting of ResidualType and one of the
following.

Residual Type Conditional Marginal
'Raw' ri

C = y − Xβ − Zb i ri
M = y − Xβ i

'Pearson'
pri

C

=
ri

C

Vary, b y − Xβ− Zb ii

pri
M =

ri
M

Vary y − Xβ ii

'Standardized'
stiC =

ri
C

Vary rC
ii

stiM =
ri

M

Vary rM
ii

For more information on the conditional and marginal residuals and residual variances, see
Definitions at the end of this page.
Example: 'ResidualType','Standardized'

Output Arguments
h — Handle to residual plot
handle

Handle to the residual plot, returned as a handle.

Examples

Examine Residuals

Load the sample data.

load('weight.mat')

weight contains data from a longitudinal study, where 20 subjects are randomly assigned to 4
exercise programs, and their weight loss is recorded over six 2-week time periods. This is simulated
data.

Store the data in a table. Define Subject and Program as categorical variables.
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tbl = table(InitialWeight,Program,Subject,Week,y);
tbl.Subject = categorical(tbl.Subject);
tbl.Program = categorical(tbl.Program);

Fit a linear mixed-effects model where the initial weight, type of program, week, and the interaction
between the week and type of program are the fixed effects. The intercept and week vary by subject.

lme = fitlme(tbl,'y ~ InitialWeight + Program*Week + (Week|Subject)');

Plot the histogram of the raw residuals.

plotResiduals(lme)

Plot the residuals versus the fitted values.

plotResiduals(lme,'fitted')
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There is no obvious pattern, so there are no immediate signs of heteroscedasticity.

Create the normal probability plot of residuals.

plotResiduals(lme,'probability')

35 Functions

35-5646



Data appears to be normal.

Find the observation number for the data that appears to be an outlier to the right of the plot.

find(residuals(lme)>0.25)

ans = 101

Create a box plot of the raw, Pearson, and standardized residuals.

r = residuals(lme);
pr = residuals(lme,'ResidualType','Pearson');
st = residuals(lme,'ResidualType','Standardized');
X = [r pr st];
boxplot(X,'labels',{'Raw','Pearson','Standardized'})
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All three box plots point out the outlier on the right tail of the distribution. The box plots of raw and
Pearson residuals also point out a second possible outlier on the left tail. Find the corresponding
observation number.

find(pr<-2)

ans = 10

Plot the raw residuals versus lagged residuals.

plotResiduals(lme,'lagged')
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There is no obvious pattern in the graph. The residuals do not appear to be correlated.

See Also
LinearMixedModel | residuals | fitted
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plotResiduals
Class: NonLinearModel

Plot residuals of nonlinear regression model

Syntax
plotResiduals(mdl)
plotResiduals(mdl,plottype)
plotResiduals(mdl,plottype,Name,Value)
h = plotResiduals( ___ )

Description
plotResiduals(mdl) creates a histogram plot of the nonlinear regression model (mdl) residuals.

plotResiduals(mdl,plottype) specifies the residual plot type plottype.

plotResiduals(mdl,plottype,Name,Value) specifies additional options using one or more
name-value arguments. For example, you can specify the residual type and the graphical properties of
residual data points.

h = plotResiduals( ___ ) returns graphics objects for the lines or patch in the plot using any of
the input argument combinations in the previous syntaxes. Use h to modify the properties of a
specific line or patch after you create the plot. For a list of properties, see Chart Line and Patch
Properties.

Input Arguments
mdl

Nonlinear regression model, constructed by fitnlm.

plottype

Character vector or string scalar specifying the type of plot:

'caseorder' Residuals vs. case (row) order
'fitted' Residuals vs. fitted values
'histogram' Histogram
'lagged' Residuals vs. lagged residual (r(t) vs. r(t–1))
'probability' Normal probability plot
'symmetry' Symmetry plot

Default: 'histogram'
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Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.

Note The graphical properties listed here are only a subset. For a complete list, see Chart Line for
lines and Patch Properties for histogram. The specified properties apply to the appearance of residual
data points or the appearance of the histogram.

Color

Color of the line or marker, specified as an RGB triplet, hexadecimal color code, color name, or short
name for one of the color options listed in the following table.

For a custom color, specify an RGB triplet or a hexadecimal color code.

• An RGB triplet is a three-element row vector whose elements specify the intensities of the red,
green, and blue components of the color. The intensities must be in the range [0,1], for example,
[0.4 0.6 0.7].

• A hexadecimal color code is a character vector or a string scalar that starts with a hash symbol (#)
followed by three or six hexadecimal digits, which can range from 0 to F. The values are not case
sensitive. Therefore, the color codes "#FF8800", "#ff8800", "#F80", and "#f80" are
equivalent.

Alternatively, you can specify some common colors by name. This table lists the named color options,
the equivalent RGB triplets, and hexadecimal color codes.

Color Name Short Name RGB Triplet Hexadecimal
Color Code

Appearance

"red" "r" [1 0 0] "#FF0000"
"green" "g" [0 1 0] "#00FF00"
"blue" "b" [0 0 1] "#0000FF"
"cyan" "c" [0 1 1] "#00FFFF"
"magenta" "m" [1 0 1] "#FF00FF"
"yellow" "y" [1 1 0] "#FFFF00"
"black" "k" [0 0 0] "#000000"
"white" "w" [1 1 1] "#FFFFFF"

Here are the RGB triplets and hexadecimal color codes for the default colors MATLAB uses in many
types of plots.

RGB Triplet Hexadecimal Color Code Appearance
[0 0.4470 0.7410] "#0072BD"
[0.8500 0.3250 0.0980] "#D95319"

 plotResiduals

35-5651



RGB Triplet Hexadecimal Color Code Appearance
[0.9290 0.6940 0.1250] "#EDB120"
[0.4940 0.1840 0.5560] "#7E2F8E"
[0.4660 0.6740 0.1880] "#77AC30"
[0.3010 0.7450 0.9330] "#4DBEEE"
[0.6350 0.0780 0.1840] "#A2142F"

LineWidth

Width of the line or edges of filled area, in points, a positive scalar. One point is 1/72 inch.

Default: 0.5

Marker

Marker symbol, specified as one of the values in this table.

Marker Description Resulting Marker
"o" Circle

"+" Plus sign

"*" Asterisk

"." Point

"x" Cross

"_" Horizontal line

"|" Vertical line

"square" Square

"diamond" Diamond

"^" Upward-pointing triangle

"v" Downward-pointing triangle

">" Right-pointing triangle

"<" Left-pointing triangle

"pentagram" Pentagram

"hexagram" Hexagram

"none" No markers Not applicable

35 Functions

35-5652



MarkerEdgeColor

Marker outline color, specified as an RGB triplet, hexadecimal color code, color name, or short name
for one of the color options listed in the Color name-value argument.

MarkerFaceColor

Fill color for filled markers, specified as an RGB triplet, hexadecimal color code, color name, or short
name for one of the color options listed in the Color name-value argument.

MarkerSize

Size of the marker in points, a strictly positive scalar. One point is 1/72 inch.

ResidualType

Type of residual used in the plot:

'Raw' Observed minus fitted values
'Pearson' Raw residuals divided by RMSE
'Standardized' Raw residuals divided by their estimated standard deviation
'Studentized' Raw residuals divided by an independent (delete-1) estimate of

their standard deviation

Default: 'Raw'

Output Arguments
h

Graphics objects corresponding to the lines or patch in the plot, returned as a graphics array. Use dot
notation to query and set properties of the graphics objects. For details, see Line Properties and
Patch Properties.

You can use name-value arguments to specify the appearance of residual data points or the
appearance of the histogram, corresponding to the first graphics object h(1).

Examples

Residual Plot

Plot the residuals of a fitted nonlinear model.

Load the reaction data and fit a model of the reaction rate as a function of reactants.

load reaction
mdl = fitnlm(reactants,rate,@hougen,[1 .05 .02 .1 2]);

Plot the residuals of the fitted model.

plotResiduals(mdl)
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Residual Probability Plot

Create a normal probability plot of the residuals of a fitted nonlinear model.

Load the reaction data and fit a model of the reaction rate as a function of reactants.

load reaction
mdl = fitnlm(reactants,rate,@hougen,[1 .05 .02 .1 2]);

Create a normal probability plot of the residuals of the fitted model.

plotResiduals(mdl,'probability')
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Tips
• The data cursor displays the values of the selected plot point in a data tip (small text box located

next to the data point). The data tip includes the x-axis and y-axis values for the selected point,
along with the observation name or number.

See Also
NonLinearModel | plotDiagnostics

Topics
“Examine Quality and Adjust the Fitted Nonlinear Model” on page 13-6
“Nonlinear Regression Workflow” on page 13-13
“Nonlinear Regression” on page 13-2
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plotSlice
Package: 

Plot of slices through fitted generalized linear regression surface

Syntax
plotSlice(mdl)

Description
plotSlice(mdl) creates a figure containing one or more plots, each representing a slice through
the regression surface predicted by mdl. Each plot shows the fitted response values as a function of a
single predictor variable, with the other predictor variables held constant.

plotSlice also displays the 95% confidence bounds for the response values. Use the Bounds menu
to choose the type of confidence bounds, and use the Predictors menu to select which predictors to
use for each slice plot. For details, see “Tips” on page 35-5658.

Examples

Slice Plot for Generalized Linear Regression Model

Plot slices through a fitted generalized linear regression model surface.

Generate sample data using Poisson random numbers with two underlying predictors X(:,1) and
X(:,2).

rng('default') % For reproducibility
rndvars = randn(100,2);
X = [2 + rndvars(:,1),rndvars(:,2)];
mu = exp(1 + X*[1;2]);
y = poissrnd(mu);

Create a generalized linear regression model of Poisson data.

mdl = fitglm(X,y,'y ~ x1 + x2','Distribution','poisson');

Create a slice plot.

plotSlice(mdl)
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The green line in each plot represents the predicted response values as a function of a single
predictor variable, with the other predictor variables held constant. The red dotted lines are the 95%
confidence bounds. The y-axis label includes the predicted response value and the corresponding
confidence bound for the point selected by the vertical and horizontal lines. The x-axis label shows
the predictor variable name and the predictor value for the selected point.

Move the vertical line in the x1 plot to the right and observe the change in the y-axis label and the
changes in the x2 plot.
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Input Arguments
mdl — Generalized linear regression model
GeneralizedLinearModel object | CompactGeneralizedLinearModel object

Generalized linear regression model, specified as a GeneralizedLinearModel object created using
fitglm or stepwiseglm, or a CompactGeneralizedLinearModel object created using compact.

Tips
• Use the Bounds menu in the figure window to choose the type of confidence bounds. You can

choose Simultaneous or Non-Simultaneous. You can also choose No Bounds to have no
confidence bounds.

• Simultaneous (default) — plotSlice computes confidence bounds for the curve of the
response values using Scheffe's method. The range between the upper and lower confidence
bounds contains the curve consisting of true response values with 95% confidence.

• Non-Simultaneous — plotSlice computes confidence bounds for the response value at each
observation. The confidence interval for a response value at a specific predictor value contains
the true response value with 95% confidence.

Simultaneous bounds are wider than separate bounds, because requiring the entire curve of
response values to be within the bounds is stricter than requiring the response value at a single
predictor value to be within the bounds.

• Use the Predictors menu in the figure window to select which predictors to use for each slice
plot. If the regression model mdl includes more than eight predictors, plotSlice creates plots
for the first five predictors by default.
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Alternative Functionality
• Use predict to return the predicted response values and confidence bounds. You can also specify

the confidence level for confidence bounds by using the 'Alpha' name-value pair argument of the
predict function. Note that predict finds nonsimultaneous bounds by default, whereas
plotSlice finds simultaneous bounds by default.

• A GeneralizedLinearModel object provides multiple plotting functions.

• When verifying a model, use plotDiagnostics to find questionable data and to understand
the effect of each observation. Also, use plotResiduals to analyze the residuals of the model.

• After fitting a model, use plotPartialDependence to understand the effect of a particular
predictor. Also, use plotSlice to plot slices through the prediction surface.

Version History
Introduced in R2012a

Extended Capabilities
GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

This function fully supports GPU arrays. For more information, see “Run MATLAB Functions on a
GPU” (Parallel Computing Toolbox).

See Also
GeneralizedLinearModel | CompactGeneralizedLinearModel | predict | plotDiagnostics
| plotPartialDependence | plotResiduals

Topics
“Diagnostic Plots” on page 12-17
“Plots to Understand Predictor Effects and How to Modify a Model” on page 12-21
“Generalized Linear Models” on page 12-9
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plotSlice
Package: 

Plot of slices through fitted linear regression surface

Syntax
plotSlice(mdl)

Description
plotSlice(mdl) creates a figure containing one or more plots, each representing a slice through
the regression surface predicted by mdl. Each plot shows the fitted response values as a function of a
single predictor variable, with the other predictor variables held constant.

plotSlice also displays the 95% confidence bounds for the response values. Use the Bounds menu
to choose the type of confidence bounds, and use the Predictors menu to select which predictors to
use for each slice plot. For details, see “Tips” on page 35-5662.

Examples

Slice Plot for Linear Regression Model

Plot slices through a fitted linear regression model surface.

Load the carsmall data set and fit a linear regression model of the mileage as a function of model
year, weight, and weight squared.

load carsmall
Year = categorical(Model_Year);
tbl = table(MPG,Weight,Year);
mdl = fitlm(tbl,'MPG ~ Year + Weight^2');

Create a slice plot.

plotSlice(mdl)
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The green line in each plot represents the predicted response values as a function of a single
predictor variable, with the other predictor variables held constant. The red dotted lines are the 95%
confidence bounds. The y-axis label includes the predicted response value and the corresponding
confidence bound for the point selected by the vertical and horizontal lines. The x-axis label shows
the predictor variable name and the predictor value for the selected point.

Note that mdl includes both the Weight and Weight^2 terms, but plotSlice creates only one plot
for the Weight term.

Move the vertical line in the Weight plot to the right and observe the change in the y-axis label and
the changes in the Year plot.

Input Arguments
mdl — Linear regression model object
LinearModel object | CompactLinearModel object

Linear regression model object, specified as a LinearModel object created by using fitlm or
stepwiselm, or a CompactLinearModel object created by using compact.
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Tips
• Use the Bounds menu in the figure window to choose the type of confidence bounds. You can

choose Simultaneous or Non-Simultaneous, and Curve or Observation. You can also choose
No Bounds to have no confidence bounds.

• Simultaneous or Non-Simultaneous

• Simultaneous (default) — plotSlice computes confidence bounds for the curve of the
response values using Scheffe's method. The range between the upper and lower
confidence bounds contains the curve consisting of true response values with 95%
confidence.

• Non-Simultaneous — plotSlice computes confidence bounds for the response value at
each observation. The confidence interval for a response value at a specific predictor value
contains the true response value with 95% confidence.

Simultaneous bounds are wider than separate bounds, because requiring the entire curve of
response values to be within the bounds is stricter than requiring the response value at a
single predictor value to be within the bounds.

• Curve or Observation

A regression model for the predictor variables X and the response variable y has the form
y = f(X) + ε,

where f is a function of X and ε is a random noise term.

• Curve (default) — plotSlice predicts confidence bounds for the fitted responses f(X).
• Observation — plotSlice predicts confidence bounds for the response observations y.

The bounds for y are wider than the bounds for f(X) because of the additional variability of the
noise term.

• Use the Predictors menu in the figure window to select which predictors to use for each slice
plot. If the regression model mdl includes more than eight predictors, plotSlice creates plots
for the first five predictors by default.

Alternative Functionality
• Use predict to return the predicted response values and confidence bounds. You can also specify

the confidence level for confidence bounds by using the 'Alpha' name-value pair argument of the
predict function. Note that predict finds nonsimultaneous bounds by default whereas
plotSlice finds simultaneous bounds by default.

• A LinearModel object provides multiple plotting functions.

• When creating a model, use plotAdded to understand the effect of adding or removing a
predictor variable.

• When verifying a model, use plotDiagnostics to find questionable data and to understand
the effect of each observation. Also, use plotResiduals to analyze the residuals of the model.

• After fitting a model, use plotAdjustedResponse, plotPartialDependence, and
plotEffects to understand the effect of a particular predictor. Use plotInteraction to
understand the interaction effect between two predictors. Also, use plotSlice to plot slices
through the prediction surface.
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Version History
Introduced in R2012a

Extended Capabilities
GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

This function fully supports GPU arrays. For more information, see “Run MATLAB Functions on a
GPU” (Parallel Computing Toolbox).

See Also
CompactLinearModel | LinearModel | predict

Topics
“Linear Regression with Interaction Effects” on page 11-46
“Interpret Linear Regression Results” on page 11-52
“Linear Regression Workflow” on page 11-35
“Linear Regression” on page 11-9
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plotSlice
Class: NonLinearModel

Plot of slices through fitted nonlinear regression surface

Syntax
plotSlice(mdl)

Description
plotSlice(mdl) creates a new figure containing a series of plots, each representing a slice through
the regression surface predicted by mdl. For each plot, the surface slice is shown as a function of a
single predictor variable, with the other predictor variables held constant.

Input Arguments
mdl

Nonlinear regression model, constructed by fitnlm.

Examples

Slice Plot

Plot slices of a fitted nonlinear model.

Load the reaction data and fit a model of the reaction rate as a function of reactants.

load reaction
mdl = fitnlm(reactants,rate,@hougen,[1 .05 .02 .1 2]);

Create a slice plot.

plotSlice(mdl)
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Drag the X1 prediction line to the right, and observe the change in the predicted response y and in
the predicted response curves to X2 and X3.
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Tips
• If there are more than eight predictors, plotSlice selects the first five for plotting. Use the

Predictors menu to control which predictors are plotted.
• The Bounds menu lets you choose between simultaneous or non-simultaneous bounds, and

between bounds on the function or bounds on a new observation.

See Also
NonLinearModel | predict

Topics
“Examine Quality and Adjust the Fitted Nonlinear Model” on page 13-6
“Predict or Simulate Responses Using a Nonlinear Model” on page 13-9
“Nonlinear Regression Workflow” on page 13-13
“Nonlinear Regression” on page 13-2
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plotSurvival
Plot survival function of Cox proportional hazards model

Syntax
plotSurvival(coxMdl)
plotSurvival(coxMdl,X)
plotSurvival(coxMdl,X,Stratification)
plotSurvival(coxMdl,ax, ___ )
plotSurvival( ___ ,Name,Value)
graphics = plotSurvival( ___ )

Description
plotSurvival(coxMdl) plots the baseline survival function of a Cox proportional hazards model
coxMdl. The survival function at time t is the estimated probability of survival until time t. The term
baseline refers to the survival function at the determined baseline of the predictors. This value is
stored in coxMdl.Baseline, and the default value is the mean of the data set used for training.

plotSurvival(coxMdl,X) plots the survival function when the predictors have the values in X. The
plot includes one line for each row of X.

plotSurvival(coxMdl,X,Stratification) plots the survival function for the given value of the
stratification variable Stratification. You must have one row in Stratification for each row in
X.

Note When you train coxMdl using stratification variables and pass predictor variables X,
plotSurvival also requires you to pass stratification variables.

plotSurvival(coxMdl,ax, ___ ) plots in the specified graphics axes ax using any of the input
argument combinations in the previous syntaxes.

plotSurvival( ___ ,Name,Value) specifies additional options using one or more name-value
arguments. For example, plotSurvival(CoxMdl,"Time",T) plots the survival function at times T.

graphics = plotSurvival( ___ ) returns an array of Stair graphics objects. See Stair
Properties.

Examples

Plot Survival

Perform a Cox proportional hazards regression on the lightbulb data set, which contains simulated
lifetimes of light bulbs. The first column of the light bulb data contains the lifetime (in hours) of two
different types of bulbs. The second column contains a binary variable indicating whether the bulb is
fluorescent or incandescent; 0 indicates the bulb is fluorescent, and 1 indicates it is incandescent.
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The third column contains the censoring information, where 0 indicates the bulb was observed until
failure, and 1 indicates the observation was censored.

Fit a Cox proportional hazards model for the lifetime of the light bulbs, accounting for censoring. The
predictor variable is the type of bulb.

load lightbulb
coxMdl = fitcox(lightbulb(:,2),lightbulb(:,1), ...
    'Censoring',lightbulb(:,3));

Plot the baseline survival function as a function of time t, meaning the probability that a light bulb
fails after time t. By default, the baseline is calculated for the mean of the predictor, which in this
case is mean(lightbulb(:,2)) = 0.5.

plotSurvival(coxMdl)

Plot the survival for fluorescent bulbs (predictor = 0) and incandescent bulbs (predictor = 1).

plotSurvival(coxMdl,[0;1])
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To calculate the survival without plotting, use survival.

Survival Plot with Stratification Variables

Load the coxModel data. (This simulated data is generated in the example “Cox Proportional
Hazards Model Object” on page 15-39.) The model named coxMdl has three stratification levels (1, 2,
and 3) and a predictor X with three categorical values (1, 1/20, and 1/100).

load coxModel

Plot the survival for X = 1 at the three stratification levels.

c1 = categorical(1);
X = [c1;c1;c1];
stratification = [1;2;3];
plotSurvival(coxMdl,X,stratification)
xlim([1,30])
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Log-Scaled Survival Plot

Load the coxModel data. (This simulated data is generated in the example “Cox Proportional
Hazards Model Object” on page 15-39.) The model named coxMdl has three stratification levels (1, 2,
and 3) and a predictor X with three categorical values (1, 1/20, and 1/100).

load coxModel

To enable programmatic editing of a survival plot, create an axes.

h = figure;
axes1 = axes('Parent',h);

Plot the survival function for the X predictor value categorical(1) and stratification level 3. This
stratification level represents a constant hazard rate. When log-scaled, the resulting survival plot
should, therefore, be close to a straight line. Plot for times 1 through 30.

oo = categorical(1);
plotSurvival(coxMdl,axes1,oo,3,'Time',linspace(1,30,300));
axes1.YScale = 'log';
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Input Arguments
coxMdl — Fitted Cox proportional hazards model
CoxModel object

Fitted Cox proportional hazards model, specified as a CoxModel object. Create coxMdl using
fitcox.

X — Predictors for model
mean of predictors used for training, but 0 for all categorical predictors (default) | array of predictors
of type used for training

Predictors for the model, specified as an array of predictors of the same type used for training
coxMdl. Each row of X represents one set of predictors.
Data Types: double | table | categorical

Stratification — Stratification level
variable or variables of type used for training

Stratification level, specified as a variable or variables of the same type used for training coxMdl.
Specify the same number of rows in Stratification as in X.
Data Types: single | double | logical | char | string | table | cell | categorical
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ax — Axes for plotting
graphics axes object

Axes for plotting, specified as a graphics axes object.

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: plotSurvival(CoxMdl,Time=T)

ExtrapolationMethod — Extrapolation method for survival in out-of-range times
'nearest' (default) | 'linear' | 'next' | 'none' | 'previous'

Extrapolation method to compute the survival for out-of-range times, specified as one of the listed
values. A CoxModel object uses the cumulative baseline hazard, stored in CoxModel.Hazard, to
compute the baseline survival function in the survival or plotSurvival functions. For times
within the range (defined next), results are from linear interpolation of the baseline survival function.

For a nonstratified model, the range is [T1,T2], where T1 is (1 - eps) times the earliest training
time, and T2 is the latest training time. The ExtrapolationMethod for a time T gives the following
result:

• 'nearest' (default) — If T < T1, the result is for time T1. If T > T2, the result is for time T2.
• 'linear' — The result is a linear extrapolation from the nearest time in the range. Extrapolated

survival values are truncated to lie in [0,1]. In other words, if val is the returned survival value
and extrapval is the linear extrapolation, then
val = max(0, min(1,extrapval)).

• 'next' — If T < T1, the result is for time T1. If T > T2, the result is NaN.
• 'none' — If T < T1 or T > T2, the result is NaN.
• 'previous' — If T < T1, the result is NaN. If T > T2, the result is for time T2.

For each stratum in a stratified model, define the time range exactly as for a nonstratified model,
using the event times in that stratum. The extrapolated values of survival in each stratum use the
ExtrapolationMethod applied to the stratum range.
Example: 'next'
Data Types: char | string

Time — Times for survival estimates
coxMdl.Hazard(:,1) (default) | real vector

Times for survival estimates, specified as a real vector. plotSurvival sorts the specified times and
converts them to a column vector, if necessary. For an unstratified model and times in the range of
coxMdl.Hazard(:,1), the resulting values are linearly interpolated from times in the training data.
For Time values outside the fitting data range, the survival is extrapolated using the extrapolation
method specified in ExtrapolationMethod.
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For stratified models, distinct time ranges for each stratum in coxMdl.Hazard(:,1) are separated
by 0s in coxMdl.Hazard(:,2). plotSurvival estimates the survival in each stratum using the
same procedure as for an unstratified model.
Example: 0:40
Data Types: double

Version History
Introduced in R2021a

See Also
CoxModel | survival | hazardratio | fitcox

Topics
“Cox Proportional Hazards Model Object” on page 15-39
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plsregress
Partial least-squares (PLS) regression

Syntax
[XL,YL] = plsregress(X,Y,ncomp)
[XL,YL,XS,YS,BETA,PCTVAR,MSE,stats] = plsregress(X,Y,ncomp)
[XL,YL,XS,YS,BETA,PCTVAR,MSE,stats] = plsregress( ___ ,Name,Value)

Description
[XL,YL] = plsregress(X,Y,ncomp) returns the predictor and response loadings XL and YL,
respectively, for a partial least-squares (PLS) regression of the responses in matrix Y on the
predictors in matrix X, using ncomp PLS components.

[XL,YL,XS,YS,BETA,PCTVAR,MSE,stats] = plsregress(X,Y,ncomp) also returns:

• The predictor scores XS. Predictor scores are PLS components that are linear combinations of the
variables in X.

• The response scores YS. Response scores are linear combinations of the responses with which the
PLS components XS have maximum covariance.

• A matrix BETA of coefficient estimates for PLS regression. plsregress adds a column of ones in
the matrix X to compute coefficient estimates for a model with constant terms (intercept).

• The percentage of variance PCTVAR explained by the regression model.
• The estimated mean squared errors MSE for PLS models with ncomp components.
• A structure stats that contains the PLS weights, T2 statistic, and predictor and response

residuals.

[XL,YL,XS,YS,BETA,PCTVAR,MSE,stats] = plsregress( ___ ,Name,Value) specifies
options using one or more name-value arguments in addition to any of the input argument
combinations in previous syntaxes. The name-value arguments specify MSE calculation parameters.
For example, 'cv',5 calculates the MSE using 5-fold cross-validation.

Examples

Perform Partial Least-Squares Regression

Load the spectra data set. Create the predictor X as a numeric matrix that contains the near
infrared (NIR) spectral intensities of 60 samples of gasoline at 401 wavelengths. Create the response
y as a numeric vector that contains the corresponding octane ratings.

load spectra
X = NIR;
y = octane;

Perform PLS regression with 10 components of the responses in y on the predictors in X.

[XL,yl,XS,YS,beta,PCTVAR] = plsregress(X,y,10);
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Plot the percent of variance explained in the response variable (PCTVAR) as a function of the number
of components.

plot(1:10,cumsum(100*PCTVAR(2,:)),'-bo');
xlabel('Number of PLS components');
ylabel('Percent Variance Explained in y');

Compute the fitted response and display the residuals.

yfit = [ones(size(X,1),1) X]*beta;
residuals = y - yfit;
stem(residuals)
xlabel('Observations');
ylabel('Residuals');
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Calculate Variable Importance in Projection for PLS Regression

Calculate variable importance in projection (VIP) scores for a partial least-squares (PLS) regression
model. You can use VIP to select predictor variables when multicollinearity exists among variables.
Variables with a VIP score greater than 1 are considered important for the projection of the PLS
regression model [3].

Load the spectra data set. Create the predictor X as a numeric matrix that contains the near
infrared (NIR) spectral intensities of 60 samples of gasoline at 401 wavelengths. Create the response
y as a numeric vector that contains the corresponding octane ratings. Specify the number of
components ncomp.

load spectra
X = NIR;
y = octane;
ncomp = 10;

Perform PLS regression with 10 components of the responses in y on the predictors in X.

[XL,yl,XS,YS,beta,PCTVAR,MSE,stats] = plsregress(X,y,ncomp);

Calculate the normalized PLS weights.

W0 = stats.W ./ sqrt(sum(stats.W.^2,1));
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Calculate the VIP scores for ncomp components.

p = size(XL,1);
sumSq = sum(XS.^2,1).*sum(yl.^2,1);
vipScore = sqrt(p* sum(sumSq.*(W0.^2),2) ./ sum(sumSq,2));

Find variables with a VIP score greater than or equal to 1.

indVIP = find(vipScore >= 1);

Plot the VIP scores.

scatter(1:length(vipScore),vipScore,'x')
hold on
scatter(indVIP,vipScore(indVIP),'rx')
plot([1 length(vipScore)],[1 1],'--k')
hold off
axis tight
xlabel('Predictor Variables')
ylabel('VIP Scores')

Input Arguments
X — Predictor variables
numeric matrix
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Predictor variables, specified as a numeric matrix. X is an n-by-p matrix, where n is the number of
observations and p is the number of predictor variables. Each row of X represents one observation,
and each column represents one variable. X must have the same number of rows as Y.
Data Types: single | double

Y — Response variables
numeric matrix

Response variables, specified as a numeric matrix. Y is an n-by-m matrix, where n is the number of
observations and m is the number of response variables. Each row of Y represents one observation,
and each column represents one variable. Each row in Y is the response for the corresponding row in
X.
Data Types: single | double

ncomp — Number of components
numeric vector

Number of components, specified as a numeric vector. If you do not specify ncomp, the default value
is min(size(X,1) – 1,size(X,2)).
Data Types: single | double

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: 'cv',10,'Options',statset('UseParallel',true) calculates the MSE using 10-fold
cross-validation, where computations run in parallel.

cv — MSE calculation method
'resubstitution' (default) | positive integer | cvpartition object

MSE calculation method, specified as 'resubstitution', a positive integer, or a cvpartition
object.

• Specify 'cv' as 'resubstitution' to use both X and Y to fit the model and estimate the mean
squared errors, without cross-validation.

• Specify 'cv' as a positive integer k to use k-fold cross-validation.
• Specify 'cv' as a cvpartition object to specify another type of cross-validation partition.

Example: 'cv',5
Example: 'cv',cvpartition(n,'Holdout',0.3)
Data Types: single | double | char | string

mcreps — Number of Monte Carlo repetitions
1 (default) | positive integer

Number of Monte Carlo repetitions for cross-validation, specified as a positive integer. If you specify
'cv' as 'resubstitution', then 'mcreps' must be 1.
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Example: 'mcreps',5
Data Types: single | double

Options — Options for running in parallel and setting random streams
structure

Options for running computations in parallel and setting random streams, specified as a structure.
Create the Options structure with statset. This table lists the option fields and their values.

Field Name Value Default
UseParallel Set this value to true to run

computations in parallel.
false

UseSubstreams Set this value to true to run
computations in parallel in a
reproducible manner.

To compute reproducibly, set
Streams to a type that allows
substreams: 'mlfg6331_64' or
'mrg32k3a'.

false

Streams Specify this value as a
RandStream object or a cell
array consisting of one such
object.

If you do not specify Streams,
then plsregress uses the
default stream.

Note You need Parallel Computing Toolbox to run computations in parallel.

Example: 'Options',statset('UseParallel',true)
Data Types: struct

Output Arguments
XL — Predictor loadings
numeric matrix

Predictor loadings, returned as a numeric matrix. XL is a p-by-ncomp matrix, where p is the number
of predictor variables and ncomp is the number of PLS components. Each row of XL contains
coefficients that define a linear combination of PLS components approximating the original predictor
variables.
Data Types: single | double

YL — Response loadings
numeric matrix

Response loadings, returned as a numeric matrix. YL is an m-by-ncomp matrix, where m is the
number of response variables and ncomp is the number of PLS components. Each row of YL contains
coefficients that define a linear combination of PLS components approximating the original response
variables.
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Data Types: single | double

XS — Predictor scores
numeric matrix

Predictor scores, returned as a numeric matrix. XS is an n-by-ncomp orthonormal matrix, where n is
the number of observations and ncomp is the number of PLS components. Each row of XS
corresponds to one observation, and each column corresponds to one component.
Data Types: single | double

YS — Response scores
numeric matrix

Response scores, returned as a numeric matrix. YS is an n-by-ncomp matrix, where n is the number of
observations and ncomp is the number of PLS components. Each row of YS corresponds to one
observation, and each column corresponds to one component. YS is not orthogonal or normalized.
Data Types: single | double

BETA — Coefficient estimates for PLS regression
numeric matrix

Coefficient estimates for PLS regression, returned as a numeric matrix. BETA is a (p + 1)-by-m
matrix, where p is the number of predictor variables and m is the number of response variables. The
first row of BETA contains coefficient estimates for the constant terms.
Data Types: single | double

PCTVAR — Percentage of variance
numeric matrix

Percentage of variance explained by the model, returned as a numeric matrix. PCTVAR is a 2-by-
ncomp matrix, where ncomp is the number of PLS components. The first row of PCTVAR contains the
percentage of variance explained in X by each PLS component, and the second row contains the
percentage of variance explained in Y.
Data Types: single | double

MSE — Mean squared error
numeric matrix

Mean squared error, returned as a numeric matrix. MSE is a 2-by-(ncomp + 1) matrix, where ncomp is
the number of PLS components. MSE contains the estimated mean squared errors for a PLS model
with ncomp components. The first row of MSE contains mean squared errors for the predictor
variables in X, and the second row contains mean squared errors for the response variables in Y. The
column j of MSE contains mean squared errors for j – 1 components.
Data Types: single | double

stats — Model statistics
structure

Model statistics, returned as a structure with the fields described in this table.
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Field Description
W p-by-ncomp matrix of PLS weights so that XS =

X0*W
T2 T2 statistic for each point in XS
Xresiduals Predictor residuals, X0 – XS*XL'
Yresiduals Response residuals, Y0 – XS*YL'

For more information about the centered predictor and response variables X0 and Y0, see
“Algorithms” on page 35-5681.

Algorithms
plsregress uses the SIMPLS algorithm [1]. The function first centers X and Y by subtracting the
column means to get the centered predictor and response variables X0 and Y0, respectively. However,
the function does not rescale the columns. To perform PLS regression with standardized variables,
use zscore to normalize X and Y (columns of X0 and Y0 are centered to have mean 0 and scaled to
have standard deviation 1).

After centering X and Y, plsregress computes the singular value decomposition (SVD) on X0'*Y0.
The predictor and response loadings XL and YL are the coefficients obtained from regressing X0 and
Y0 on the predictor score XS. You can reconstruct the centered data X0 and Y0 using XS*XL' and
XS*YL', respectively.

plsregress initially computes YS as YS = Y0*YL. By convention [1], however, plsregress then
orthogonalizes each column of YS with respect to preceding columns of XS, so that XS'*YS is a lower
triangular matrix.

Version History
Introduced in R2008a

References
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Extended Capabilities
Automatic Parallel Support
Accelerate code by automatically running computation in parallel using Parallel Computing Toolbox™.

To run in parallel, specify the 'Options' name-value argument in the call to this function and set the
'UseParallel' field of the options structure to true using statset.

For example: 'Options',statset('UseParallel',true)

For more information about parallel computing, see “Run MATLAB Functions with Automatic Parallel
Support” (Parallel Computing Toolbox).

See Also
regress | sequentialfs | pca

Topics
“Partial Least Squares” on page 11-128
“Partial Least Squares Regression and Principal Components Regression” on page 11-190
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PointSet property
Class: qrandstream

Point set from which stream is drawn

Description
The PointSet property contains a copy of the point set from which the stream is providing points.
The point set is specified during construction of a quasi-random stream and cannot subsequently be
altered.

Examples
Q = qrandstream('sobol', 5, 'Skip', 8);
% Create a new stream based on the same sequence as that in Q
Q2 = qrandstream(Q.PointSet);
u1 = qrand(Q, 10)
u2 = qrand(Q2, 10) % contains exactly the same values as u1 
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poisscdf
Poisson cumulative distribution function

Syntax
y = poisscdf(x,lambda)
y = poisscdf(x,lambda,'upper')

Description
y = poisscdf(x,lambda) computes the Poisson cumulative distribution function at each of the
values in x using the rate parameters in lambda.

x and lambda can be scalars, vectors, matrices, or multidimensional arrays that all have the same
size. If only one argument is a scalar, poisscdf expands it to a constant array with the same
dimensions as the other argument.

y = poisscdf(x,lambda,'upper') returns the complement of the Poisson cumulative
distribution function at each value in x, using an algorithm that computes the extreme upper tail
probabilities more accurately.

Examples

Compute and Plot Poisson Cumulative Distribution Function

Compute and plot the Poisson cumulative distribution function for the specified range of integer
values and average rate.

A computer hard disk manufacturing facility performs random tests of individual hard disks. The
policy is to shut down the manufacturing process if an inspector finds more than four bad sectors on
a disk. Assuming that on average a disk has two bad sectors, find the probability of a manufacturing
process shutdown after the first inspection.

1 - poisscdf(4,2)

ans = 0.0527

Compute the probabilities a manufacturing process shutdown after the first inspection if on average a
disk has 0, 1, 2, ..., 10 bad sectors.

lambda = 0:10;
y = 1 - poisscdf(4,lambda);

Plot the results.

scatter(lambda,y,'Marker',"o")
grid on
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Compute Extreme Upper Tail Probabilities

Compute the complement of the Poisson cumulative distribution function with more accurate upper
tail probabilities.

A computer hard disk manufacturing facility performs random tests of individual hard disks.
Assuming that on average a disk has 10 bad sectors, find the probability that a disk has more than
100 bad sectors.

format long
1 - poisscdf(100,10)

ans = 
     0

This result shows that poisscdf(100,10) is so close to 1 (within eps) that subtracting it from 1
gives 0. To approximate the extreme upper tail probabilities better, compute the complement of the
Poisson cumulative distribution function directly instead of computing the difference.

poisscdf(100,10,'upper')

ans = 
     5.339405460719755e-64
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Input Arguments
x — Values at which to evaluate Poisson cdf
scalar value | array of scalar values

Values at which to evaluate the Poisson cdf, specified as a scalar value or array of scalar values.
Example: [0,1,3,4]
Data Types: single | double

lambda — Rate parameters
positive value | array of positive values

Rate parameters, specified as a positive value or array of positive values. The rate parameter
indicates the average number of events in a given time interval.
Example: 2
Data Types: single | double

Output Arguments
y — Poisson cdf values
scalar value | array of scalar values

Poisson cdf values, returned as a scalar value or array of scalar values. Each element in y is the
Poisson cdf value of the distribution evaluated at the corresponding element in x.

More About
Poisson Cumulative Distribution Function

The Poisson cumulative distribution function lets you obtain the probability of an event occurring
within a given time or space interval less than or equal to x times if on average the event occurs λ
times within that interval.

The Poisson cumulative distribution function for the given values x and λ is

p = F(x λ) = e−λ ∑
i = 0

f loor(x) λi

i! .

Alternative Functionality
• poisscdf is a function specific to Poisson distribution. Statistics and Machine Learning Toolbox

also offers the generic function cdf, which supports various probability distributions. To use cdf,
specify the probability distribution name and its parameters. Alternatively, create a
PoissonDistribution probability distribution object and pass the object as an input argument.
Note that the distribution-specific function poisscdf is faster than the generic function cdf.

• Use the Probability Distribution Function app to create an interactive plot of the cumulative
distribution function (cdf) or probability density function (pdf) for a probability distribution.
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Version History
Introduced before R2006a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

This function fully supports GPU arrays. For more information, see “Run MATLAB Functions on a
GPU” (Parallel Computing Toolbox).

See Also
cdf | poisspdf | poissinv | poisstat | poissfit | poissrnd | PoissonDistribution

Topics
“Poisson Distribution” on page B-137
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poissfit
Poisson parameter estimates

Syntax
lambdahat = poissfit(data)
[lambdahat,lambdaci] = poissfit(data)
[lambdahat,lambdaci] = poissfit(data,alpha)

Description
lambdahat = poissfit(data) returns the maximum likelihood estimate (MLE) of the parameter
of the Poisson distribution, λ, given the data data.

[lambdahat,lambdaci] = poissfit(data) also gives 95% confidence intervals in lambdaci.

[lambdahat,lambdaci] = poissfit(data,alpha) gives 100(1 - alpha)% confidence
intervals. For example alpha = 0.001 yields 99.9% confidence intervals.

The sample mean is the MLE of λ.

λ = 1
n ∑i = 1

n
xi

Examples
r = poissrnd(5,10,2);
[l,lci] = poissfit(r)
l =
    7.4000    6.3000
lci =
    5.8000    4.8000
    9.1000    7.9000

Version History
Introduced before R2006a

See Also
mle | poisspdf | poisscdf | poissinv | poisstat | poissrnd

Topics
“Poisson Distribution” on page B-137
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poissinv
Poisson inverse cumulative distribution function

Syntax
X = poissinv(P,lambda)

Description
X = poissinv(P,lambda) returns the smallest value X such that the Poisson cdf evaluated at X
equals or exceeds P, using mean parameters in lambda. P and lambda can be vectors, matrices, or
multidimensional arrays that all have the same size. A scalar input is expanded to a constant array
with the same dimensions as the other input.

Examples
If the average number of defects (λ) is two, what is the 95th percentile of the number of defects?

poissinv(0.95,2)
ans =
   5

What is the median number of defects?

median_defects = poissinv(0.50,2)
median_defects =
   2

Version History
Introduced before R2006a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

This function fully supports GPU arrays. For more information, see “Run MATLAB Functions on a
GPU” (Parallel Computing Toolbox).

See Also
icdf | poisscdf | poisspdf | poisstat | poissfit | poissrnd

Topics
“Poisson Distribution” on page B-137
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poisspdf
Poisson probability density function

Syntax
y = poisspdf(x,lambda)

Description
y = poisspdf(x,lambda) computes the Poisson probability density function at each of the values
in x using the rate parameters in lambda.

x and lambda can be scalars, vectors, matrices, or multidimensional arrays that all have the same
size. If only one argument is a scalar, poisspdf expands it to a constant array with the same
dimensions as the other argument.

Examples

Compute and Plot Poisson Probability Density Function

Compute and plot the Poisson probability density function for the specified range of integer values
and average rate.

In the computer hard disk manufacturing process, flaws occur randomly. Assuming that on average a
4 GB hard disk has two flaws, compute the probability that a disk has no flaws.

poisspdf(0,2)

ans = 0.1353

Compute the Poisson probability density function values at each value from 0 to 10. These values
correspond to the probabilities that a disk has 0, 1, 2, ..., 10 flaws.

flaws = 0:10;
y = poisspdf(flaws,2);

Plot the resulting probability values.

scatter(flaws,y,'Marker',"o")
grid on
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Input Arguments
x — Values at which to evaluate Poisson pdf
scalar value | array of scalar values

Values at which to evaluate the Poisson pdf, specified as a scalar value or array of scalar values. For
noninteger values x, the Poisson probability density function is zero.
Example: [0,1,3,4]
Data Types: single | double

lambda — Rate parameters
positive value | array of positive values

Rate parameters, specified as a positive value or array of positive values. The rate parameter
indicates the average number of events in a given time interval.
Example: 2
Data Types: single | double

Output Arguments
y — Poisson pdf values
scalar value | array of scalar values
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Poisson pdf values, returned as a scalar value or array of scalar values. Each element in y is the
Poisson pdf value of the distribution evaluated at the corresponding element in x.
Data Types: single | double

More About
Poisson Probability Density Function

The Poisson probability density function lets you obtain the probability of an event occurring within a
given time or space interval exactly x times if on average the event occurs λ times within that
interval.

The Poisson probability density function for the given values x and λ is

f (x λ) = λx

x! e−λ ; x = 0, 1, 2, …,∞ .

Alternative Functionality
• poisspdf is a function specific to Poisson distribution. Statistics and Machine Learning Toolbox

also offers the generic function pdf, which supports various probability distributions. To use pdf,
specify the probability distribution name and its parameters. Alternatively, create a
PoissonDistribution probability distribution object and pass the object as an input argument.
Note that the distribution-specific function poisspdf is faster than the generic function pdf.

• Use the Probability Distribution Function app to create an interactive plot of the cumulative
distribution function (cdf) or probability density function (pdf) for a probability distribution.

Version History
Introduced before R2006a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

This function fully supports GPU arrays. For more information, see “Run MATLAB Functions on a
GPU” (Parallel Computing Toolbox).

See Also
pdf | poisscdf | poissinv | poisstat | poissfit | poissrnd | PoissonDistribution

Topics
“Poisson Distribution” on page B-137
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poissrnd
Random numbers from Poisson distribution

Syntax
r = poissrnd(lambda)
r = poissrnd(lambda,sz1,...,szN)
r = poissrnd(lambda,sz)

Description
r = poissrnd(lambda) generates random numbers from the Poisson distribution specified by the
rate parameter lambda.

lambda can be a scalar, vector, matrix, or multidimensional array.

r = poissrnd(lambda,sz1,...,szN) generates an array of random numbers from the Poisson
distribution with the scalar rate parameter lambda, where sz1,...,szN indicates the size of each
dimension.

r = poissrnd(lambda,sz) generates an array of random numbers from the Poisson distribution
with the scalar rate parameter lambda, where vector sz specifies size(r).

Examples

Array of Random Numbers from Several Poisson Distributions

Generate an array of random numbers from the Poisson distributions. Specify the average rate for
each distribution.

lambda = 10:2:20

lambda = 1×6

    10    12    14    16    18    20

Generate random numbers from the Poisson distributions.

r = poissrnd(lambda)

r = 1×6

    14    13    14     9    14    31
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Array of Random Numbers from One Poisson Distribution

Generate an array of random numbers from one Poisson distribution. Here, the distribution
parameter lambda is a scalar.

Use the poissrnd function to generate random numbers from the Poisson distribution with the
average rate 20. The function returns one number.

r_scalar = poissrnd(20)

r_scalar = 9

Generate a 2-by-3 array of random numbers from the same distribution by specifying the required
array dimensions.

r_array = poissrnd(20,2,3)

r_array = 2×3

    13    14    18
    26    16    21

Alternatively, specify the required array dimensions as a vector.

r_array = poissrnd(20,[2 3])

r_array = 2×3

    22    27    22
    25    19    21

Input Arguments
lambda — Rate parameters
positive value | array of positive values

Rate parameters, specified as a positive value or array of positive values. The rate parameter
indicates the average number of events in a given time interval.
Example: 2
Data Types: single | double

sz1,...,szN — Size of each dimension (as separate arguments)
integers

Size of each dimension, specified as separate arguments of integers. For example, specifying 5,3,2
generates a 5-by-3-by-2 array of random numbers from the Poisson probability distribution.

If lambda is an array, then the specified dimensions sz1,...,szN must match the dimensions of
lambda.

• If you specify a single value sz1, then r is a square matrix of size sz1-by-sz1.
• If the size of any dimension is 0 or negative, then r is an empty array.
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• Beyond the second dimension, poissrnd ignores trailing dimensions with a size of 1. For
example, poissrnd(5,3,1,1,1) produces a 3-by-1 vector of random numbers from the Poisson
distribution with rate parameter 5.

Example: 5,3,2
Data Types: single | double

sz — Size of each dimension (as a row vector)
row vector of integers

Size of each dimension, specified as a row vector of integers. For example, specifying [5 3 2]
generates a 5-by-3-by-2 array of random numbers from the Poisson probability distribution.

If lambda is an array, then the specified dimensions sz must match the dimensions of lambda.

• If you specify a single value [sz1], then r is a square matrix of size sz1-by-sz1.
• If the size of any dimension is 0 or negative, then r is an empty array.
• Beyond the second dimension, poissrnd ignores trailing dimensions with a size of 1. For

example, poissrnd(5,[3,1,1,1]) produces a 3-by-1 vector of random numbers from the
Poisson distribution with rate parameter 5.

Example: [5 3 2]
Data Types: single | double

Output Arguments
r — Random numbers from Poisson distribution
scalar value | array of scalar values

Random numbers from the Poisson distribution, returned as a scalar value or an array of scalar
values.
Data Types: single | double

Alternative Functionality
• poissrnd is a function specific to Poisson distribution. Statistics and Machine Learning Toolbox

also offers the generic function random, which supports various probability distributions. To use
random, specify the probability distribution name and its parameters. Alternatively, create a
PoissonDistribution probability distribution object and pass the object as an input argument.
Note that the distribution-specific function poissrnd is faster than the generic function random.

• To generate random numbers interactively, use randtool, a user interface for random number
generation.

Version History
Introduced before R2006a
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Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

The generated code can return a different sequence of numbers than MATLAB if either of the
following is true:

• The output is nonscalar.
• An input parameter is invalid for the distribution.

For more information on code generation, see “Introduction to Code Generation” on page 34-2 and
“General Code Generation Workflow” on page 34-5.

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

This function fully supports GPU arrays. For more information, see “Run MATLAB Functions on a
GPU” (Parallel Computing Toolbox).

See Also
random | poisspdf | poisscdf | poissinv | poisstat | poissfit

Topics
“Poisson Distribution” on page B-137
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poisstat
Poisson mean and variance

Syntax
M = poisstat(lambda)
[M,V] = poisstat(lambda)

Description
M = poisstat(lambda) returns the mean of the Poisson distribution using mean parameters in
lambda. The size of M is the size of lambda.

[M,V] = poisstat(lambda) also returns the variance V of the Poisson distribution.

For the Poisson distribution with parameter λ, both the mean and variance are equal to λ.

Examples
Find the mean and variance for the Poisson distribution with λ = 2.

[m,v] = poisstat([1 2; 3 4])
m =
   1   2
   3   4
v =
   1   2
   3   4

Version History
Introduced before R2006a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

This function fully supports GPU arrays. For more information, see “Run MATLAB Functions on a
GPU” (Parallel Computing Toolbox).

See Also
poisspdf | poisscdf | poissinv | poissfit | poissrnd
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Topics
“Poisson Distribution” on page B-137
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polyconf
Polynomial confidence intervals

Syntax
Y = polyconf(p,X)
[Y,DELTA] = polyconf(p,X,S)
[Y,DELTA] = polyconf(p,X,S,param1,val1,param2,val2,...)

Description
Y = polyconf(p,X) evaluates the polynomial p at the values in X. p is a vector of coefficients in
descending powers.

[Y,DELTA] = polyconf(p,X,S) takes outputs p and S from polyfit and generates 95%
prediction intervals Y ± DELTA for new observations at the values in X.

[Y,DELTA] = polyconf(p,X,S,param1,val1,param2,val2,...) specifies optional parameter
name/value pairs chosen from the following list.

Parameter Value
'alpha' A value between 0 and 1 specifying a confidence level of 100*(1-alpha)%.

The default is 0.05.
'mu' A two-element vector containing centering and scaling parameters. With this

option, polyconf uses (X-mu(1))/mu(2) in place of X.
'predopt' Either 'observation' (the default) to compute prediction intervals for new

observations at the values in X, or 'curve' to compute confidence intervals
for the fit evaluated at the values in X. See below.

'simopt' Either 'off' (the default) for nonsimultaneous bounds, or 'on' for
simultaneous bounds. See below.

The 'predopt' and 'simopt' parameters can be understood in terms of the following functions:

• p(x) — the unknown mean function estimated by the fit
• l(x) — the lower confidence bound
• u(x) — the upper confidence bound

Suppose you make a new observation yn+1 at xn+1, so that

yn+1(xn+1) = p(xn+1) + εn+1

By default, the interval [ln+1(xn+1), un+1(xn+1)] is a 95% confidence bound on yn+1(xn+1).

The following combinations of the 'predopt' and 'simopt' parameters allow you to specify other
bounds.
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'simopt' 'predopt' Bounded Quantity
'off' 'observation' yn+1(xn+1) (default)
'off' 'curve' p(xn+1)
'on' 'observation' yn+1(x), for all x
'on' 'curve' p(x), for all x

In general, 'observation' intervals are wider than 'curve' intervals, because of the additional
uncertainty of predicting a new response value (the curve plus random errors). Likewise,
simultaneous intervals are wider than nonsimultaneous intervals, because of the additional
uncertainty of bounding values for all predictors x.

Examples

Plot Polynomial Fit and Prediction Intervals

Fit a polynomial to a sample data set, and estimate the 95% prediction intervals and the roots of the
fitted polynomial. Plot the data and the estimations, and display the fitted polynomial expression
using the helper function polystr, whose code appears at the end of this example.

Generate sample data points (x,y) with a quadratic trend.
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rng('default') % For reproducibility
x = -5:5;
y = x.^2 - 20*x - 3 + 5*randn(size(x));

Fit a second degree polynomial to the data by using polyfit.

degree = 2; % Degree of the fit
[p,S] = polyfit(x,y,degree);

Estimate the 95% prediction intervals by using polyconf.

alpha = 0.05; % Significance level
[yfit,delta] = polyconf(p,x,S,'alpha',alpha);

Plot the data, fitted polynomial, and prediction intervals. Display the fitted polynomial expression
using the helper function polystr.

plot(x,y,'b+')
hold on
plot(x,yfit,'g-')
plot(x,yfit-delta,'r--',x,yfit+delta,'r--')
legend('Data','Fit','95% Prediction Intervals')
title(['Fit: ',texlabel(polystr(round(p,2)))])
hold off

Find the roots of the polynomial p.

r = roots(p)
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r = 2×1

   17.5152
   -0.1017

Because the roots are real values, you can plot them as well. Estimate the fitted values and prediction
intervals for the x interval that includes the roots. Then, plot the roots and the estimations.

if isreal(r)
    xmin = min([r(:);x(:)]);
    xrange = range([r(:);x(:)]);
    xExtended = linspace(xmin - 0.1*xrange, xmin + 1.1*xrange,1000);
    [yfitExtended,deltaExtended] = polyconf(p,xExtended,S,'alpha',alpha);

    plot(x,y,'b+')
    hold on
    plot(xExtended,yfitExtended,'g-')
    plot(r,zeros(size(r)),'ko')
    plot(xExtended,yfitExtended-deltaExtended,'r--')
    plot(xExtended,yfitExtended+deltaExtended,'r--')
    plot(xExtended,zeros(size(xExtended)),'k-')
    legend('Data','Fit','Roots of Fit','95% Prediction Intervals')
    title(['Fit: ',texlabel(polystr(round(p,2)))])
    axis tight
    hold off
end
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Alternatively, you can use polytool for interactive polynomial fitting.

polytool(x,y,degree,alpha)

Helper Function

The polystr.m file defines the polystr helper function.

type polystr.m % Display contents of polystr.m file

function s = polystr(p)
% POLYSTR Converts a vector of polynomial coefficients to a character string.
% S is the string representation of P.

if all(p == 0) % All coefficients are 0.
    s = '0';
else
    d = length(p) - 1; % Degree of polynomial.
    s = []; % Initialize s.
    for a = p
        if a ~= 0 % Coefficient is nonzero.
            if ~isempty(s) % String is not empty.
                if a > 0

 polyconf

35-5703



                    s = [s ' + ']; % Add next term.
                else
                    s = [s ' - ']; % Subtract next term.
                    a = -a; % Value to subtract.
                end
            end
            if a ~= 1 || d == 0 % Add coefficient if it is ~=1 or polynomial is constant.
                s = [s num2str(a)];
                if d > 0 % For nonconstant polynomials, add *.
                    s = [s '*'];
                end
            end
            if d >= 2 % For terms of degree > 1, add power of x.
                s = [s 'x^' int2str(d)];
            elseif d == 1 % No power on x term.
                s = [s 'x'];
            end
        end
        d = d - 1; % Increment loop: Add term of next lowest degree.
    end
end
end

Version History
Introduced before R2006a

See Also
polyfit | polyval | polytool
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polytool
Interactive polynomial fitting

Syntax
polytool(x,y)
polytool(x,y,n)
polytool(x,y,n,alpha)
polytool(x,y,n,alpha,xname,yname)
h = polytool(...)

Description
polytool(x,y) fits a line to the vectors x and y and displays an interactive plot of the result in a
graphical interface. You can use the interface to explore the effects of changing the parameters of the
fit and to export fit results to the workspace.

polytool(x,y,n) initially fits a polynomial of degree n. The default is 1, which produces a linear
fit.

polytool(x,y,n,alpha) initially plots 100(1 - alpha)% confidence intervals on the predicted
values. The default is 0.05 which results in 95% confidence intervals.

polytool(x,y,n,alpha,xname,yname) labels the x and y values on the graphical interface using
xname and yname. Specify n and alpha as [] to use their default values.

h = polytool(...) outputs a vector of handles, h, to the line objects in the plot. The handles are
returned in the degree: data, fit, lower bounds, upper bounds.

Examples

Interactive polynomial fitting

This example shows how to start an interactive fitting session with polytool.

Generate data from a quadratic curve with added noise.

rng('default') % for reproducibility
x = -5:5;
y = x.^2 - 5*x - 3 + 5*randn(size(x));

Fit a quadratic (degree-2) model with 0.90 confidence intervals.

n = 2;
alpha = 0.1;
polytool(x,y,n,alpha)
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Version History
Introduced before R2006a

See Also
polyfit | polyval | polyconf | invpred
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posterior
Posterior probability of Gaussian mixture component

Syntax
P = posterior(gm,X)
[P,nlogL] = posterior(gm,X)

Description
P = posterior(gm,X) returns the posterior probability of each Gaussian mixture component in gm
given each observation in X.

[P,nlogL] = posterior(gm,X) also returns the negative loglikelihood of the Gaussian mixture
model gm given the data X.

Examples

Compute Posterior Probabilities

Generate random variates that follow a mixture of two bivariate Gaussian distributions by using the
mvnrnd function. Fit a Gaussian mixture model (GMM) to the generated data by using the
fitgmdist function, and then compute the posterior probabilities of the mixture components.

Define the distribution parameters (means and covariances) of two bivariate Gaussian mixture
components.

mu1 = [2 2];          % Mean of the 1st component
sigma1 = [2 0; 0 1];  % Covariance of the 1st component
mu2 = [-2 -1];        % Mean of the 2nd component
sigma2 = [1 0; 0 1];  % Covariance of the 2nd component

Generate an equal number of random variates from each component, and combine the two sets of
random variates.

rng('default') % For reproducibility
r1 = mvnrnd(mu1,sigma1,1000);
r2 = mvnrnd(mu2,sigma2,1000);
X = [r1; r2];

The combined data set X contains random variates following a mixture of two bivariate Gaussian
distributions.

Fit a two-component GMM to X.

gm = fitgmdist(X,2)

gm = 

Gaussian mixture distribution with 2 components in 2 dimensions
Component 1:
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Mixing proportion: 0.500765
Mean:   -1.9675   -0.9654

Component 2:
Mixing proportion: 0.499235
Mean:    1.9657    2.0342

Plot X by using scatter. Visualize the fitted model gm by using pdf and fcontour.

figure
scatter(X(:,1),X(:,2),10,'.') % Scatter plot with points of size 10
hold on
gmPDF = @(x,y) arrayfun(@(x0,y0) pdf(gm,[x0 y0]),x,y);
fcontour(gmPDF,[-6 8 -4 6])
c1 = colorbar;
ylabel(c1,'Probability Density Function')

Compute the posterior probabilities of the components.

P = posterior(gm,X);

P(i,j) is the posterior probability of the jth Gaussian mixture component given observation i.

Plot the posterior probabilities of Component 1 by using the scatter function. Use the circle colors
to visualize the posterior probability values.

figure
scatter(X(:,1),X(:,2),10,P(:,1))
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c2 = colorbar;
ylabel(c2,'Posterior Probability of Component 1')

Plot the posterior probabilities of Component 2.

figure
scatter(X(:,1),X(:,2),10,P(:,2))
c3 = colorbar;
ylabel(c3,'Posterior Probability of Component 2')
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Input Arguments
gm — Gaussian mixture distribution
gmdistribution object

Gaussian mixture distribution, also called Gaussian mixture model (GMM), specified as a
gmdistribution object.

You can create a gmdistribution object using gmdistribution or fitgmdist. Use the
gmdistribution function to create a gmdistribution object by specifying the distribution
parameters. Use the fitgmdist function to fit a gmdistribution model to data given a fixed
number of components.

X — Data
n-by-m numeric matrix

Data, specified as an n-by-m numeric matrix, where n is the number of observations and m is the
number of variables in each observation.

If a row of X contains NaNs, then posterior excludes the row from the computation. The
corresponding value in P is NaN.
Data Types: single | double
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Output Arguments
P — Posterior probability
n-by-k numeric vector

Posterior probability of each Gaussian mixture component in gm given each observation in X, returned
as an n-by-k numeric vector, where n is the number of observations in X and k is the number of
mixture components in gm.

P(i,j) is the posterior probability of the jth Gaussian mixture component given observation i,
Probability(component j | observation i).

nlogL — Negative loglikelihood
numeric value

Negative loglikelihood value of the Gaussian mixture model gm given the data X, returned as a
numeric value.

Version History
Introduced in R2007b

See Also
gmdistribution | fitgmdist | cluster | mahal

Topics
“Cluster Using Gaussian Mixture Model” on page 17-39
“Cluster Gaussian Mixture Data Using Hard Clustering” on page 17-46
“Cluster Gaussian Mixture Data Using Soft Clustering” on page 17-52

 posterior

35-5711



postFitStatistics
Class: RegressionGP

Compute post-fit statistics for the exact Gaussian process regression model

Syntax
loores = postFitStatistics(gprMdl)
[loores,neff] = postFitStatistics(gprMdl)

Description
loores = postFitStatistics(gprMdl) returns the leave-one-out residuals, loores, for the
trained Gaussian process regression (GPR) model.

[loores,neff] = postFitStatistics(gprMdl) also returns the number of effective
parameters, neff.

Input Arguments
gprMdl — Gaussian process regression model
RegressionGP object

Gaussian process regression model, specified as a RegressionGP object.

Output Arguments
loores — Leave-one-out residuals
n-by-1 matrix

Leave-one-out residuals, returned as an n-by-1 matrix, where n is the number of observations in the
training data.

neff — Number of effective parameters
n-by-1 matrix

Number of effective parameters, returned as an n-by-1 matrix, where n is the number of observations
in the training data.

Examples

Compute Post-Fit Statistics

Generate sample data.

rng(0,'twister'); % For reproducibility
n = 1500;
x = linspace(-10,10,n)';
y = sin(3*x).*cos(3*x) + sin(2*x).*cos(2*x) + sin(x) + cos(x) + 0.2*randn(n,1);
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Fit a GPR model using the exact method for fitting and prediction.

gprMdl = fitrgp(x,y,'Basis','linear','FitMethod','exact',...
'PredictMethod','exact','KernelFunction','matern52');

Compute the leave-one-out residuals and the effective number of parameters in the trained model.

[loores,neff] = postFitStatistics(gprMdl);

Predict the responses using the trained model.

ypred = resubPredict(gprMdl);

Plot the true and predicted responses, and display effective number of parameters in the fit.

figure()
plot(x,y,'r.');
hold on;
plot(x,ypred,'b'); 
xlabel('x');
ylabel('y');
legend('Data','GPR prediction','Location','Best');
title(['Effective number of parameters = ',num2str(neff)]);
hold off

Plot leave-one-out residuals.

figure()
plot(x,loores,'r.-');

 postFitStatistics

35-5713



xlabel('x');
ylabel('leave-one-out residuals');

Tips
• You can only compute the post-fit statistics when PredictMethod is 'exact'.
• If FitMethod is 'exact', then postFitStatistics accounts for the fact that the fixed basis

function coefficients are estimated from the data.
• If FitMethod is different than 'exact', then postFitStatistics treats the fixed basis

function coefficients as known.
• For all PredictMethod and FitMethod options, postFitStatistics treats the estimated

kernel parameters and noise standard deviation as known.

Version History
Introduced in R2015b

See Also
fitrgp | RegressionGP
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predict
Package: 

Classify observations using generalized additive model (GAM)

Syntax
label = predict(Mdl,X)
label = predict(Mdl,X,'IncludeInteractions',includeInteractions)
[label,score] = predict( ___ )

Description
label = predict(Mdl,X) returns a vector of “Predicted Class Labels” on page 35-5722 for the
predictor data in the table or matrix X, based on the generalized additive model Mdl for binary
classification. The trained model can be either full or compact.

For each observation in X, the predicted class label corresponds to the minimum “Expected
Misclassification Cost” on page 35-5722.

label = predict(Mdl,X,'IncludeInteractions',includeInteractions) specifies
whether to include interaction terms in computations.

[label,score] = predict( ___ ) also returns classification scores using any of the input
argument combinations in the previous syntaxes.

Examples

Label Test Sample Observations of GAM

Train a generalized additive model using training samples, and then label the test samples.

Load the fisheriris data set. Create X as a numeric matrix that contains sepal and petal
measurements for versicolor and virginica irises. Create Y as a cell array of character vectors that
contains the corresponding iris species.

load fisheriris
inds = strcmp(species,'versicolor') | strcmp(species,'virginica');
X = meas(inds,:);
Y = species(inds,:);

Randomly partition observations into a training set and a test set with stratification, using the class
information in Y. Specify a 30% holdout sample for testing.

rng('default') % For reproducibility
cv = cvpartition(Y,'HoldOut',0.30);

Extract the training and test indices.

trainInds = training(cv);
testInds = test(cv);
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Specify the training and test data sets.

XTrain = X(trainInds,:);
YTrain = Y(trainInds);
XTest = X(testInds,:);
YTest = Y(testInds);

Train a generalized additive model using the predictors XTrain and class labels YTrain. A
recommended practice is to specify the class names.

Mdl = fitcgam(XTrain,YTrain,'ClassNames',{'versicolor','virginica'})

Mdl = 
  ClassificationGAM
             ResponseName: 'Y'
    CategoricalPredictors: []
               ClassNames: {'versicolor'  'virginica'}
           ScoreTransform: 'logit'
                Intercept: -1.1090
          NumObservations: 70

  Properties, Methods

Mdl is a ClassificationGAM model object.

Predict the test sample labels.

label = predict(Mdl,XTest);

Create a table containing the true labels and predicted labels. Display the table for a random set of
10 observations.

t = table(YTest,label,'VariableNames',{'True Label','Predicted Label'});
idx = randsample(sum(testInds),10);
t(idx,:)

ans=10×2 table
      True Label      Predicted Label
    ______________    _______________

    {'virginica' }    {'virginica' } 
    {'virginica' }    {'virginica' } 
    {'versicolor'}    {'virginica' } 
    {'virginica' }    {'virginica' } 
    {'virginica' }    {'virginica' } 
    {'versicolor'}    {'versicolor'} 
    {'versicolor'}    {'versicolor'} 
    {'versicolor'}    {'versicolor'} 
    {'versicolor'}    {'versicolor'} 
    {'virginica' }    {'virginica' } 

Create a confusion chart from the true labels YTest and the predicted labels label.

cm = confusionchart(YTest,label);
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Compare Logit of Posterior Probabilities

Estimate the logit of posterior probabilities for new observations using a classification GAM that
contains both linear and interaction terms for predictors. Classify new observations using a memory-
efficient model object. Specify whether to include interaction terms when classifying new
observations.

Load the ionosphere data set. This data set has 34 predictors and 351 binary responses for radar
returns, either bad ('b') or good ('g').

load ionosphere

Partition the data set into two sets: one containing training data, and the other containing new,
unobserved test data. Reserve 10 observations for the new test data set.

rng('default') % For reproducibility
n = size(X,1);
newInds = randsample(n,10);
inds = ~ismember(1:n,newInds);
XNew = X(newInds,:);
YNew = Y(newInds);

Train a GAM using the predictors X and class labels Y. A recommended practice is to specify the class
names. Specify to include the 10 most important interaction terms.
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Mdl = fitcgam(X(inds,:),Y(inds),'ClassNames',{'b','g'},'Interactions',10);

Mdl is a ClassificationGAM model object.

Conserve memory by reducing the size of the trained model.

CMdl = compact(Mdl);
whos('Mdl','CMdl')

  Name      Size              Bytes  Class                                                 Attributes

  CMdl      1x1             1081091  classreg.learning.classif.CompactClassificationGAM              
  Mdl       1x1             1282650  ClassificationGAM                                               

CMdl is a CompactClassificationGAM model object.

Predict the labels using both linear and interaction terms, and then using only linear terms. To
exclude interaction terms, specify 'IncludeInteractions',false. Estimate the logit of posterior
probabilities by specifying the ScoreTransform property as 'none'.

CMdl.ScoreTransform = 'none';
[labels,scores] = predict(CMdl,XNew);
[labels_nointeraction,scores_nointeraction] = predict(CMdl,XNew,'IncludeInteractions',false);
t = table(YNew,labels,scores,labels_nointeraction,scores_nointeraction, ...
    'VariableNames',{'True Labels','Predicted Labels','Scores' ...
    'Predicted Labels Without Interactions','Scores Without Interactions'})

t=10×5 table
    True Labels    Predicted Labels          Scores          Predicted Labels Without Interactions    Scores Without Interactions
    ___________    ________________    __________________    _____________________________________    ___________________________

       {'g'}            {'g'}           -40.23      40.23                    {'g'}                        -37.484     37.484     
       {'g'}            {'g'}          -41.215     41.215                    {'g'}                        -38.737     38.737     
       {'g'}            {'g'}          -44.413     44.413                    {'g'}                        -42.186     42.186     
       {'g'}            {'b'}           3.0658    -3.0658                    {'b'}                         1.4338    -1.4338     
       {'g'}            {'g'}          -84.637     84.637                    {'g'}                        -81.269     81.269     
       {'g'}            {'g'}           -27.44      27.44                    {'g'}                        -24.831     24.831     
       {'g'}            {'g'}          -62.989     62.989                    {'g'}                          -60.4       60.4     
       {'g'}            {'g'}          -77.109     77.109                    {'g'}                        -75.937     75.937     
       {'g'}            {'g'}          -48.519     48.519                    {'g'}                        -47.067     47.067     
       {'g'}            {'g'}          -56.256     56.256                    {'g'}                        -53.373     53.373     

The predicted labels for the test data Xnew do not vary depending on the inclusion of interaction
terms, but the estimated score values are different.

Plot Posterior Probability Regions

Train a generalized additive model, and then plot the posterior probability regions using the
probability values of the first class.

Load the fisheriris data set. Create X as a numeric matrix that contains two petal measurements
for versicolor and virginica irises. Create Y as a cell array of character vectors that contains the
corresponding iris species.
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load fisheriris
inds = strcmp(species,'versicolor') | strcmp(species,'virginica');
X = meas(inds,3:4);
Y = species(inds,:);

Train a generalized additive model using the predictors X and class labels Y. A recommended practice
is to specify the class names.

Mdl = fitcgam(X,Y,'ClassNames',{'versicolor','virginica'});

Mdl is a ClassificationGAM model object.

Define a grid of values in the observed predictor space.

xMax = max(X);
xMin = min(X);
x1 = linspace(xMin(1),xMax(1),250);
x2 = linspace(xMin(2),xMax(2),250);
[x1Grid,x2Grid] = meshgrid(x1,x2);

Predict the posterior probabilities for each instance in the grid.

[~,PosteriorRegion] = predict(Mdl,[x1Grid(:),x2Grid(:)]);

Plot the posterior probability regions using the probability values of the first class 'versicolor'.

h = scatter(x1Grid(:),x2Grid(:),1,PosteriorRegion(:,1));
h.MarkerEdgeAlpha = 0.3;

Plot the training data.

hold on
gh = gscatter(X(:,1),X(:,2),Y,'k','dx');
title('Iris Petal Measurements and Posterior Probabilities')
xlabel('Petal length (cm)')
ylabel('Petal width (cm)')
legend(gh,'Location','Best')
colorbar
hold off
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Input Arguments
Mdl — Generalized additive model
ClassificationGAM model object | CompactClassificationGAM model object

Generalized additive model, specified as a ClassificationGAM or CompactClassificationGAM
model object.

X — Predictor data
numeric matrix | table

Predictor data, specified as a numeric matrix or table.

Each row of X corresponds to one observation, and each column corresponds to one variable.

• For a numeric matrix:

• The variables that make up the columns of X must have the same order as the predictor
variables that trained Mdl.

• If you trained Mdl using a table, then X can be a numeric matrix if the table contains all
numeric predictor variables.

• For a table:
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• If you trained Mdl using a table (for example, Tbl), then all predictor variables in X must have
the same variable names and data types as those in Tbl. However, the column order of X does
not need to correspond to the column order of Tbl.

• If you trained Mdl using a numeric matrix, then the predictor names in Mdl.PredictorNames
and the corresponding predictor variable names in X must be the same. To specify predictor
names during training, use the 'PredictorNames' name-value argument. All predictor
variables in X must be numeric vectors.

• X can contain additional variables (response variables, observation weights, and so on), but
predict ignores them.

• predict does not support multicolumn variables or cell arrays other than cell arrays of
character vectors.

Data Types: table | double | single

includeInteractions — Flag to include interaction terms
true | false

Flag to include interaction terms of the model, specified as true or false.

The default includeInteractions value is true if Mdl contains interaction terms. The value must
be false if the model does not contain interaction terms.
Data Types: logical

Output Arguments
label — Predicted class labels
categorical array | character array | logical vector | numeric vector | cell array of character vectors

“Predicted Class Labels” on page 35-5722, returned as a categorical or character array, logical or
numeric vector, or cell array of character vectors.

If Mdl.ScoreTransform is 'logit'(default), then each entry of label corresponds to the class
with the minimal “Expected Misclassification Cost” on page 35-5722 for the corresponding row of X.
Otherwise, each entry corresponds to the class with the maximal score.

label has the same data type as the observed class labels that trained Mdl, and its length is equal to
the number of rows in X. (The software treats string arrays as cell arrays of character vectors.)

score — Predicted posterior probabilities or class scores
two-column numeric matrix

Predicted posterior probabilities or class scores, returned as a two-column numeric matrix with the
same number of rows as X. The first and second columns of score contain the first class (or negative
class, Mdl.ClassNames(1)) and second class (or positive class, Mdl.ClassNames(2)) score values
for the corresponding observations, respectively.

If Mdl.ScoreTransform is 'logit'(default), then the score values are posterior probabilities. If
Mdl.ScoreTransform is 'none', then the score values are the logit of posterior probabilities. The
software provides several built-in score transformation functions. For more details, see the
ScoreTransform property of Mdl.

You can change the score transformation by specifying the 'ScoreTransform' argument of
fitcgam during training, or by changing the ScoreTransform property after training.
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More About
Predicted Class Labels

predict classifies by minimizing the expected misclassification cost:

y = argmin
y = 1, ..., K

∑
j = 1

K
P j x C y j ,

where:

• y  is the predicted classification.
• K is the number of classes.
• P j x  is the posterior probability of class j for observation x.
• C y j  is the cost of classifying an observation as y when its true class is j.

Expected Misclassification Cost

The expected misclassification cost per observation is an averaged cost of classifying the observation
into each class.

Suppose you have Nobs observations that you want to classify with a trained classifier, and you have
K classes. You place the observations into a matrix X with one observation per row.

The expected cost matrix CE has size Nobs-by-K. Each row of CE contains the expected (average) cost
of classifying the observation into each of the K classes. CE(n,k) is

∑
i = 1

K
P i X(n) C k i ,

where:

• K is the number of classes.
• P i X(n)  is the posterior probability of class i for observation X(n).
• C k i  is the true misclassification cost of classifying an observation as k when its true class is i.

True Misclassification Cost

The true misclassification cost is the cost of classifying an observation into an incorrect class.

You can set the true misclassification cost per class by using the 'Cost' name-value argument when
you create the classifier. Cost(i,j) is the cost of classifying an observation into class j when its
true class is i. By default, Cost(i,j)=1 if i~=j, and Cost(i,j)=0 if i=j. In other words, the cost
is 0 for correct classification and 1 for incorrect classification.

Version History
Introduced in R2021a

See Also
loss | margin | edge | resubPredict

35 Functions

35-5722



Topics
“Train Generalized Additive Model for Binary Classification” on page 12-77
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predict
Predict labels using k-nearest neighbor classification model

Syntax
label = predict(mdl,X)
[label,score,cost] = predict(mdl,X)

Description
label = predict(mdl,X) returns a vector of predicted class labels for the predictor data in the
table or matrix X, based on the trained k-nearest neighbor classification model mdl. See “Predicted
Class Label” on page 35-5726.

[label,score,cost] = predict(mdl,X) also returns:

• A matrix of classification scores (score) indicating the likelihood that a label comes from a
particular class. For k-nearest neighbor, scores are posterior probabilities. See “Posterior
Probability” on page 35-5727.

• A matrix of expected classification cost (cost). For each observation in X, the predicted class label
corresponds to the minimum expected classification costs among all classes. See “Expected Cost”
on page 35-5727.

Examples

k-Nearest Neighbor Classification Predictions

Create a k-nearest neighbor classifier for Fisher's iris data, where k = 5. Evaluate some model
predictions on new data.

Load the Fisher iris data set.

load fisheriris
X = meas;
Y = species;

Create a classifier for five nearest neighbors. Standardize the noncategorical predictor data.

mdl = fitcknn(X,Y,'NumNeighbors',5,'Standardize',1);

Predict the classifications for flowers with minimum, mean, and maximum characteristics.

Xnew = [min(X);mean(X);max(X)];
[label,score,cost] = predict(mdl,Xnew)

label = 3x1 cell
    {'versicolor'}
    {'versicolor'}
    {'virginica' }
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score = 3×3

    0.4000    0.6000         0
         0    1.0000         0
         0         0    1.0000

cost = 3×3

    0.6000    0.4000    1.0000
    1.0000         0    1.0000
    1.0000    1.0000         0

The second and third rows of the score and cost matrices have binary values, which means all five
nearest neighbors of the mean and maximum flower measurements have identical classifications.

Input Arguments
mdl — k-nearest neighbor classifier model
ClassificationKNN object

k-nearest neighbor classifier model, specified as a ClassificationKNN object.

X — Predictor data to be classified
numeric matrix | table

Predictor data to be classified, specified as a numeric matrix or table.

Each row of X corresponds to one observation, and each column corresponds to one variable.

• For a numeric matrix:

• The variables that make up the columns of X must have the same order as the predictor
variables used to train mdl.

• If you train mdl using a table (for example, Tbl), then X can be a numeric matrix if Tbl
contains all numeric predictor variables. k-nearest neighbor classification requires
homogeneous predictors. Therefore, to treat all numeric predictors in Tbl as categorical
during training, set 'CategoricalPredictors','all' when you train using fitcknn. If
Tbl contains heterogeneous predictors (for example, numeric and categorical data types) and
X is a numeric matrix, then predict throws an error.

• For a table:

• predict does not support multicolumn variables and cell arrays other than cell arrays of
character vectors.

• If you train mdl using a table (for example, Tbl), then all predictor variables in X must have
the same variable names and data types as those used to train mdl (stored in
mdl.PredictorNames). However, the column order of X does not need to correspond to the
column order of Tbl. Both Tbl and X can contain additional variables (response variables,
observation weights, and so on), but predict ignores them.

• If you train mdl using a numeric matrix, then the predictor names in mdl.PredictorNames
and corresponding predictor variable names in X must be the same. To specify predictor names
during training, see the PredictorNames name-value pair argument of fitcknn. All
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predictor variables in X must be numeric vectors. X can contain additional variables (response
variables, observation weights, and so on), but predict ignores them.

If you set 'Standardize',true in fitcknn to train mdl, then the software standardizes the
columns of X using the corresponding means in mdl.Mu and standard deviations in mdl.Sigma.
Data Types: double | single | table

Output Arguments
label — Predicted class labels
categorical array | character array | logical vector | vector of numeric values | cell array of character
vectors

Predicted class labels for the observations (rows) in X, returned as a categorical array, character
array, logical vector, vector of numeric values, or cell array of character vectors. label has length
equal to the number of rows in X.

For each observation, the label is the class with minimal expected cost. For an observation with NaN
scores, the function classifies the observation into the majority class, which makes up the largest
proportion of the training labels.

See “Predicted Class Label” on page 35-5726.

score — Predicted class scores or posterior probabilities
numeric matrix

Predicted class scores or posterior probabilities, returned as a numeric matrix of size n-by-K. n is the
number of observations (rows) in X, and K is the number of classes (in mdl.ClassNames).
score(i,j) is the posterior probability that observation i in X is of class j in mdl.ClassNames.
See “Posterior Probability” on page 35-5727.
Data Types: single | double

cost — Expected classification costs
numeric matrix

Expected classification costs, returned as a numeric matrix of size n-by-K. n is the number of
observations (rows) in X, and K is the number of classes (in mdl.ClassNames). cost(i,j) is the
cost of classifying row i of X as class j in mdl.ClassNames. See “Expected Cost” on page 35-5727.
Data Types: single | double

Algorithms
Predicted Class Label

predict classifies by minimizing the expected misclassification cost:

y = argmin
y = 1, ..., K

∑
j = 1

K
P j x C y j ,

where:
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• y  is the predicted classification.
• K is the number of classes.
• P j x  is the posterior probability of class j for observation x.
• C y j  is the cost of classifying an observation as y when its true class is j.

Posterior Probability

Consider a vector (single query point) xnew and a model mdl.

• k is the number of nearest neighbors used in prediction, mdl.NumNeighbors.
• nbd(mdl,xnew) specifies the k nearest neighbors to xnew in mdl.X.
• Y(nbd) specifies the classifications of the points in nbd(mdl,xnew), namely mdl.Y(nbd).
• W(nbd) specifies the weights of the points in nbd(mdl,xnew).
• prior specifies the priors of the classes in mdl.Y.

If the model contains a vector of prior probabilities, then the observation weights W are normalized by
class to sum to the priors. This process might involve a calculation for the point xnew, because
weights can depend on the distance from xnew to the points in mdl.X.

The posterior probability p(j|xnew) is

p j xnew =
∑

i ∈ nbd
W(i)1Y(X(i)) = j

∑
i ∈ nbd

W(i)
.

Here, 1Y(X(i)) = j is 1 when mdl.Y(i) = j, and 0 otherwise.

True Misclassification Cost

Two costs are associated with KNN classification: the true misclassification cost per class and the
expected misclassification cost per observation.

You can set the true misclassification cost per class by using the 'Cost' name-value pair argument
when you run fitcknn. The value Cost(i,j) is the cost of classifying an observation into class j if
its true class is i. By default, Cost(i,j) = 1 if i ~= j, and Cost(i,j) = 0 if i = j. In other
words, the cost is 0 for correct classification and 1 for incorrect classification.

Expected Cost

Two costs are associated with KNN classification: the true misclassification cost per class and the
expected misclassification cost per observation. The third output of predict is the expected
misclassification cost per observation.

Suppose you have Nobs observations that you want to classify with a trained classifier mdl, and you
have K classes. You place the observations into a matrix Xnew with one observation per row. The
command

[label,score,cost] = predict(mdl,Xnew)

returns a matrix cost of size Nobs-by-K, among other outputs. Each row of the cost matrix contains
the expected (average) cost of classifying the observation into each of the K classes. cost(n,j) is

 predict

35-5727



∑
i = 1

K
P i Xnew(n) C j i ,

where

• K is the number of classes.
• P i X(n)  is the posterior probability on page 35-5727 of class i for observation Xnew(n).
• C j i  is the true misclassification cost of classifying an observation as j when its true class is i.

Alternative Functionality
Simulink Block

To integrate the prediction of a nearest-neighbor classification model into Simulink, you can use the
ClassificationKNN Predict block in the Statistics and Machine Learning Toolbox library or a MATLAB
Function block with the predict function. For examples, see “Predict Class Labels Using
ClassificationKNN Predict Block” on page 34-170 and “Predict Class Labels Using MATLAB Function
Block” on page 34-51.

When deciding which approach to use, consider the following:

• If you use the Statistics and Machine Learning Toolbox library block, you can use the Fixed-Point
Tool to convert a floating-point model to fixed point.

• Support for variable-size arrays must be enabled for a MATLAB Function block with the predict
function.

• If you use a MATLAB Function block, you can use MATLAB functions for preprocessing or post-
processing before or after predictions in the same MATLAB Function block.

Version History
Introduced in R2012a

Extended Capabilities
Tall Arrays
Calculate with arrays that have more rows than fit in memory.

This function fully supports tall arrays. For more information, see “Tall Arrays”.

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• Use saveLearnerForCoder, loadLearnerForCoder, and codegen to generate code for the
predict function. Save a trained model by using saveLearnerForCoder. Define an entry-point
function that loads the saved model by using loadLearnerForCoder and calls the predict
function. Then use codegen to generate code for the entry-point function.

• To generate single-precision C/C++ code for predict, specify the name-value argument
"DataType","single" when you call the loadLearnerForCoder function.
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• This table contains notes about the arguments of predict. Arguments not included in this table
are fully supported.

Argument Notes and Limitations
mdl • A ClassificationKNN model object is a full object that does not

have a corresponding compact object. For this model,
saveLearnerForCoder saves a compact version that does not
include the hyperparameter optimization properties.

• If mdl is a model trained using the kd-tree search algorithm, and
the code generation build type is a MEX function, then codegen
generates a MEX function using Intel Threading Building Blocks
(TBB) for parallel computation. Otherwise, codegen generates code
using parfor.

• MEX function for the kd-tree search algorithm — codegen
generates an optimized MEX function using Intel TBB for
parallel computation on multicore platforms. You can use the
MEX function to accelerate MATLAB algorithms. For details on
Intel TBB, see https://www.intel.com/content/www/us/en/
developer/tools/oneapi/onetbb.html.

If you generate the MEX function to test the generated code of
the parfor version, you can disable the usage of Intel TBB. Set
the ExtrinsicCalls property of the MEX configuration object
to false. For details, see coder.MexCodeConfig.

• MEX function for the exhaustive search algorithm and
standalone C/C++ code for both algorithms — The generated
code of predict uses parfor to create loops that run in
parallel on supported shared-memory multicore platforms in the
generated code. If your compiler does not support the Open
Multiprocessing (OpenMP) application interface or you disable
OpenMP library, MATLAB Coder treats the parfor-loops as for-
loops. To find supported compilers, see https://
www.mathworks.com/support/compilers/
current_release/. To disable OpenMP library, set the
EnableOpenMP property of the configuration object to false.
For details, see coder.CodeConfig.

• For the usage notes and limitations of the model object, see “Code
Generation” on page 35-466 of the ClassificationKNN object.
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Argument Notes and Limitations
X • X must be a single-precision or double-precision matrix or a table

containing numeric variables, categorical variables, or both.
• The number of rows, or observations, in X can be a variable size,

but the number of columns in X must be fixed.
• If you want to specify X as a table, then your model must be trained

using a table, and your entry-point function for prediction must do
the following:

• Accept data as arrays.
• Create a table from the data input arguments and specify the

variable names in the table.
• Pass the table to predict.

For an example of this table workflow, see “Generate Code to
Classify Data in Table” on page 34-112. For more information on
using tables in code generation, see “Code Generation for Tables”
(MATLAB Coder) and “Table Limitations for Code Generation”
(MATLAB Coder).

For more information, see “Introduction to Code Generation” on page 34-2.

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

Usage notes and limitations:

• predict does not support GPU arrays for ClassificationKNN models with the following
specifications:

• The 'NSMethod' property is specified as 'kdtree'.
• The 'Distance' property is specified as a function handle.
• The 'IncludeTies' property is specified as true.

For more information, see “Run MATLAB Functions on a GPU” (Parallel Computing Toolbox).

See Also
ClassificationKNN | fitcknn

Topics
“Predict Classification Using KNN Classifier” on page 19-31
“Classification Using Nearest Neighbors” on page 19-14
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predict
Class: ClassificationLinear

Predict labels for linear classification models

Syntax
Label = predict(Mdl,X)
Label = predict(Mdl,X,'ObservationsIn',dimension)
[Label,Score] = predict( ___ )

Description
Label = predict(Mdl,X) returns predicted class labels for each observation in the predictor data
X based on the trained, binary, linear classification model Mdl. Label contains class labels for each
regularization strength in Mdl.

Label = predict(Mdl,X,'ObservationsIn',dimension) specifies the predictor data
observation dimension, either 'rows' (default) or 'columns'. For example, specify
'ObservationsIn','columns' to indicate that columns in the predictor data correspond to
observations.

[Label,Score] = predict( ___ ) also returns classification scores on page 35-5740 for both
classes using any of the input argument combinations in the previous syntaxes. Score contains
classification scores for each regularization strength in Mdl.

Input Arguments
Mdl — Binary, linear classification model
ClassificationLinear model object

Binary, linear classification model, specified as a ClassificationLinear model object. You can
create a ClassificationLinear model object using fitclinear.

X — Predictor data to be classified
full numeric matrix | sparse numeric matrix | table

Predictor data to be classified, specified as a full or sparse numeric matrix or a table.

By default, each row of X corresponds to one observation, and each column corresponds to one
variable.

• For a numeric matrix:

• The variables in the columns of X must have the same order as the predictor variables that
trained Mdl.

• If you train Mdl using a table (for example, Tbl) and Tbl contains only numeric predictor
variables, then X can be a numeric matrix. To treat numeric predictors in Tbl as categorical
during training, identify categorical predictors by using the CategoricalPredictors name-
value pair argument of fitclinear. If Tbl contains heterogeneous predictor variables (for
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example, numeric and categorical data types) and X is a numeric matrix, then predict throws
an error.

• For a table:

• predict does not support multicolumn variables or cell arrays other than cell arrays of
character vectors.

• If you train Mdl using a table (for example, Tbl), then all predictor variables in X must have
the same variable names and data types as the variables that trained Mdl (stored in
Mdl.PredictorNames). However, the column order of X does not need to correspond to the
column order of Tbl. Also, Tbl and X can contain additional variables (response variables,
observation weights, and so on), but predict ignores them.

• If you train Mdl using a numeric matrix, then the predictor names in Mdl.PredictorNames
must be the same as the corresponding predictor variable names in X. To specify predictor
names during training, use the PredictorNames name-value pair argument of fitclinear.
All predictor variables in X must be numeric vectors. X can contain additional variables
(response variables, observation weights, and so on), but predict ignores them.

Note If you orient your predictor matrix so that observations correspond to columns and specify
'ObservationsIn','columns', then you might experience a significant reduction in optimization
execution time. You cannot specify 'ObservationsIn','columns' for predictor data in a table.

Data Types: table | double | single

dimension — Predictor data observation dimension
'rows' (default) | 'columns'

Predictor data observation dimension, specified as 'columns' or 'rows'.

Note If you orient your predictor matrix so that observations correspond to columns and specify
'ObservationsIn','columns', then you might experience a significant reduction in optimization
execution time. You cannot specify 'ObservationsIn','columns' for predictor data in a table.

Output Arguments
Label — Predicted class labels
categorical array | character array | logical matrix | numeric matrix | cell array of character vectors

Predicted class labels, returned as a categorical or character array, logical or numeric matrix, or cell
array of character vectors.

The predict function classifies an observation into the class yielding the highest score. For an
observation with NaN scores, the function classifies the observation into the majority class, which
makes up the largest proportion of the training labels.

In most cases, Label is an n-by-L array of the same data type as the observed class labels (Y) used to
train Mdl. (The software treats string arrays as cell arrays of character vectors.) n is the number of
observations in X and L is the number of regularization strengths in Mdl.Lambda. That is,
Label(i,j) is the predicted class label for observation i using the linear classification model that
has regularization strength Mdl.Lambda(j).

35 Functions

35-5732



If Y is a character array and L > 1, then Label is a cell array of class labels.

Score — Classification scores
numeric array

Classification scores on page 35-5740, returned as a n-by-2-by-L numeric array. n is the number of
observations in X and L is the number of regularization strengths in Mdl.Lambda. Score(i,k,j) is
the score for classifying observation i into class k using the linear classification model that has
regularization strength Mdl.Lambda(j). Mdl.ClassNames stores the order of the classes.

If Mdl.Learner is 'logistic', then classification scores are posterior probabilities.

Examples

Predict Training-Sample Labels

Load the NLP data set.

load nlpdata

X is a sparse matrix of predictor data, and Y is a categorical vector of class labels. There are more
than two classes in the data.

The models should identify whether the word counts in a web page are from the Statistics and
Machine Learning Toolbox™ documentation. So, identify the labels that correspond to the Statistics
and Machine Learning Toolbox™ documentation web pages.

Ystats = Y == 'stats';

Train a binary, linear classification model using the entire data set, which can identify whether the
word counts in a documentation web page are from the Statistics and Machine Learning Toolbox™
documentation.

rng(1); % For reproducibility 
Mdl = fitclinear(X,Ystats);

Mdl is a ClassificationLinear model.

Predict the training-sample, or resubstitution, labels.

label = predict(Mdl,X);

Because there is one regularization strength in Mdl, label is column vectors with lengths equal to
the number of observations.

Construct a confusion matrix.

ConfusionTrain = confusionchart(Ystats,label);
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The model misclassifies only one 'stats' documentation page as being outside of the Statistics and
Machine Learning Toolbox documentation.

Predict Test-Sample Labels

Load the NLP data set and preprocess it as in “Predict Training-Sample Labels” on page 35-5733.
Transpose the predictor data matrix.

load nlpdata
Ystats = Y == 'stats';
X = X';

Train a binary, linear classification model that can identify whether the word counts in a
documentation web page are from the Statistics and Machine Learning Toolbox™ documentation.
Specify to hold out 30% of the observations. Optimize the objective function using SpaRSA.

rng(1) % For reproducibility 
CVMdl = fitclinear(X,Ystats,'Solver','sparsa','Holdout',0.30,...
    'ObservationsIn','columns');
Mdl = CVMdl.Trained{1};

CVMdl is a ClassificationPartitionedLinear model. It contains the property Trained, which
is a 1-by-1 cell array holding a ClassificationLinear model that the software trained using the
training set.

Extract the training and test data from the partition definition.

trainIdx = training(CVMdl.Partition);
testIdx = test(CVMdl.Partition);

Predict the training- and test-sample labels.
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labelTrain = predict(Mdl,X(:,trainIdx),'ObservationsIn','columns');
labelTest = predict(Mdl,X(:,testIdx),'ObservationsIn','columns');

Because there is one regularization strength in Mdl, labelTrain and labelTest are column
vectors with lengths equal to the number of training and test observations, respectively.

Construct a confusion matrix for the training data.

ConfusionTrain = confusionchart(Ystats(trainIdx),labelTrain);

The model misclassifies only three documentation pages as being outside of Statistics and Machine
Learning Toolbox documentation.

Construct a confusion matrix for the test data.

ConfusionTest = confusionchart(Ystats(testIdx),labelTest);
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The model misclassifies three documentation pages as being outside the Statistics and Machine
Learning Toolbox, and two pages as being inside.

Estimate Posterior Class Probabilities

Estimate test-sample, posterior class probabilities, and determine the quality of the model by plotting
a receiver operating characteristic (ROC) curve. Linear classification models return posterior
probabilities for logistic regression learners only.

Load the NLP data set and preprocess it as in “Predict Test-Sample Labels” on page 35-5734.

load nlpdata
Ystats = Y == 'stats';
X = X';

Randomly partition the data into training and test sets by specifying a 30% holdout sample. Identify
the test-set indices.

cvp = cvpartition(Ystats,'Holdout',0.30);
idxTest = test(cvp);

Train a binary linear classification model. Fit logistic regression learners using SpaRSA. To hold out
the test set, specify the partitioned model.
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CVMdl = fitclinear(X,Ystats,'ObservationsIn','columns','CVPartition',cvp,...
    'Learner','logistic','Solver','sparsa');
Mdl = CVMdl.Trained{1};

Mdl is a ClassificationLinear model trained using the training set specified in the partition cvp
only.

Predict the test-sample posterior class probabilities.

[~,posterior] = predict(Mdl,X(:,idxTest),'ObservationsIn','columns');

Because there is one regularization strength in Mdl, posterior is a matrix with 2 columns and rows
equal to the number of test-set observations. Column i contains posterior probabilities of
Mdl.ClassNames(i) given a particular observation.

Compute the performance metrics (true positive rates and false positive rates) for a ROC curve and
find the area under the ROC curve (AUC) value by creating a rocmetrics object.

rocObj = rocmetrics(Ystats(idxTest),posterior,Mdl.ClassNames);

Plot the ROC curve for the second class by using the plot function of rocmetrics.

plot(rocObj,ClassNames=Mdl.ClassNames(2))

The ROC curve indicates that the model classifies the test-sample observations almost perfectly.
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Find Good Lasso Penalty Using AUC

To determine a good lasso-penalty strength for a linear classification model that uses a logistic
regression learner, compare test-sample values of the AUC.

Load the NLP data set. Preprocess the data as in “Predict Test-Sample Labels” on page 35-5734.

load nlpdata
Ystats = Y == 'stats';
X = X';

Create a data partition that specifies to holdout 10% of the observations. Extract test-sample indices.

rng(10); % For reproducibility
Partition = cvpartition(Ystats,'Holdout',0.10);
testIdx = test(Partition);
XTest = X(:,testIdx);
n = sum(testIdx)

n = 3157

YTest = Ystats(testIdx);

There are 3157 observations in the test sample.

Create a set of 11 logarithmically-spaced regularization strengths from 10−6 through 10−0 . 5.

Lambda = logspace(-6,-0.5,11);

Train binary, linear classification models that use each of the regularization strengths. Optimize the
objective function using SpaRSA. Lower the tolerance on the gradient of the objective function to
1e-8.

CVMdl = fitclinear(X,Ystats,'ObservationsIn','columns',...
    'CVPartition',Partition,'Learner','logistic','Solver','sparsa',...
    'Regularization','lasso','Lambda',Lambda,'GradientTolerance',1e-8)

CVMdl = 
  ClassificationPartitionedLinear
    CrossValidatedModel: 'Linear'
           ResponseName: 'Y'
        NumObservations: 31572
                  KFold: 1
              Partition: [1x1 cvpartition]
             ClassNames: [0 1]
         ScoreTransform: 'none'

  Properties, Methods

Extract the trained linear classification model.

Mdl1 = CVMdl.Trained{1}

Mdl1 = 
  ClassificationLinear
      ResponseName: 'Y'
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        ClassNames: [0 1]
    ScoreTransform: 'logit'
              Beta: [34023x11 double]
              Bias: [-11.8937 -11.8937 -11.8937 -11.8937 -10.5683 ... ]
            Lambda: [1.0000e-06 3.5481e-06 1.2589e-05 4.4668e-05 ... ]
           Learner: 'logistic'

  Properties, Methods

Mdl is a ClassificationLinear model object. Because Lambda is a sequence of regularization
strengths, you can think of Mdl as 11 models, one for each regularization strength in Lambda.

Estimate the test-sample predicted labels and posterior class probabilities.

[label,posterior] = predict(Mdl1,XTest,'ObservationsIn','columns');
Mdl1.ClassNames;
posterior(3,1,5)

ans = 1.0000

label is a 3157-by-11 matrix of predicted labels. Each column corresponds to the predicted labels of
the model trained using the corresponding regularization strength. posterior is a 3157-by-2-by-11
matrix of posterior class probabilities. Columns correspond to classes and pages correspond to
regularization strengths. For example, posterior(3,1,5) indicates that the posterior probability
that the first class (label 0) is assigned to observation 3 by the model that uses Lambda(5) as a
regularization strength is 1.0000.

For each model, compute the AUC by using rocmetrics.

auc = 1:numel(Lambda);  % Preallocation
for j = 1:numel(Lambda)
    rocObj = rocmetrics(YTest,posterior(:,:,j),Mdl1.ClassNames);
    auc(j) = rocObj.AUC(1);
end

Higher values of Lambda lead to predictor variable sparsity, which is a good quality of a classifier. For
each regularization strength, train a linear classification model using the entire data set and the same
options as when you trained the model. Determine the number of nonzero coefficients per model.

Mdl = fitclinear(X,Ystats,'ObservationsIn','columns',...
    'Learner','logistic','Solver','sparsa','Regularization','lasso',...
    'Lambda',Lambda,'GradientTolerance',1e-8);
numNZCoeff = sum(Mdl.Beta~=0);

In the same figure, plot the test-sample error rates and frequency of nonzero coefficients for each
regularization strength. Plot all variables on the log scale.

figure
yyaxis left
plot(log10(Lambda),log10(auc),'o-')
ylabel('log_{10} AUC')
yyaxis right
plot(log10(Lambda),log10(numNZCoeff + 1),'o-')
ylabel('log_{10} nonzero-coefficient frequency')
xlabel('log_{10} Lambda')

 predict

35-5739



title('Test-Sample Statistics')
hold off

Choose the index of the regularization strength that balances predictor variable sparsity and high
AUC. In this case, a value between 10−2 to 10−1 should suffice.

idxFinal = 9;

Select the model from Mdl with the chosen regularization strength.

MdlFinal = selectModels(Mdl,idxFinal);

MdlFinal is a ClassificationLinear model containing one regularization strength. To estimate
labels for new observations, pass MdlFinal and the new data to predict.

More About
Classification Score

For linear classification models, the raw classification score for classifying the observation x, a row
vector, into the positive class is defined by

f j(x) = xβ j + b j .

For the model with regularization strength j, β j is the estimated column vector of coefficients (the
model property Beta(:,j)) and b j is the estimated, scalar bias (the model property Bias(j)).
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The raw classification score for classifying x into the negative class is –f(x). The software classifies
observations into the class that yields the positive score.

If the linear classification model consists of logistic regression learners, then the software applies the
'logit' score transformation to the raw classification scores (see ScoreTransform).

Version History
Introduced in R2016a

Extended Capabilities
Tall Arrays
Calculate with arrays that have more rows than fit in memory.

Usage notes and limitations:

• predict does not support tall table data.

For more information, see “Tall Arrays”.

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• You can generate C/C++ code for both predict and update by using a coder configurer. Or,
generate code only for predict by using saveLearnerForCoder, loadLearnerForCoder, and
codegen.

• Code generation for predict and update — Create a coder configurer by using
learnerCoderConfigurer and then generate code by using generateCode. Then you can
update model parameters in the generated code without having to regenerate the code.

• Code generation for predict — Save a trained model by using saveLearnerForCoder.
Define an entry-point function that loads the saved model by using loadLearnerForCoder
and calls the predict function. Then use codegen to generate code for the entry-point
function.

• To generate single-precision C/C++ code for predict, specify the name-value argument
"DataType","single" when you call the loadLearnerForCoder function.

• This table contains notes about the arguments of predict. Arguments not included in this table
are fully supported.

Argument Notes and Limitations
Mdl For the usage notes and limitations of the model object, see “Code

Generation” on page 35-489 of the ClassificationLinear object.
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Argument Notes and Limitations
X • For general code generation, X must be a single-precision or

double-precision matrix or a table containing numeric variables,
categorical variables, or both.

• In the coder configurer workflow, X must be a single-precision or
double-precision matrix.

• The number of observations in X can be a variable size, but the
number of variables in X must be fixed.

• If you want to specify X as a table, then your model must be trained
using a table, and your entry-point function for prediction must do
the following:

• Accept data as arrays.
• Create a table from the data input arguments and specify the

variable names in the table.
• Pass the table to predict.

For an example of this table workflow, see “Generate Code to
Classify Data in Table” on page 34-112. For more information on
using tables in code generation, see “Code Generation for Tables”
(MATLAB Coder) and “Table Limitations for Code Generation”
(MATLAB Coder).

Name-value pair
arguments

• Names in name-value arguments must be compile-time constants.
• The value for the 'ObservationsIn' name-value pair argument

must be a compile-time constant. For example, to use the
'ObservationsIn','columns' name-value pair argument in the
generated code, include
{coder.Constant('ObservationsIn'),coder.Constant('co
lumns')} in the -args value of codegen.

For more information, see “Introduction to Code Generation” on page 34-2.

See Also
ClassificationLinear | loss | fitclinear | confusionchart | rocmetrics | testcholdout

35 Functions

35-5742



predict
Predict labels using discriminant analysis classification model

Syntax
label = predict(Mdl,X)
[label,score,cost] = predict(Mdl,X)

Description
label = predict(Mdl,X) returns a vector of predicted class labels for the predictor data in the
table or matrix X, based on the trained discriminant analysis classification model Mdl.

[label,score,cost] = predict(Mdl,X) also returns:

• A matrix of classification scores (score) indicating the likelihood that a label comes from a
particular class. For discriminant analysis, scores are posterior probabilities on page 35-5747.

• A matrix of expected classification cost on page 35-5748 (cost). For each observation in X, the
predicted class label corresponds to the minimum expected classification cost among all classes.

Input Arguments
Mdl — Discriminant analysis classification model
ClassificationDiscriminant model object | CompactClassificationDiscriminant model
object

Discriminant analysis classification model, specified as a ClassificationDiscriminant or
CompactClassificationDiscriminant model object returned by fitcdiscr.

X — Predictor data to be classified
numeric matrix | table

Predictor data to be classified, specified as a numeric matrix or table.

Each row of X corresponds to one observation, and each column corresponds to one variable. All
predictor variables in X must be numeric vectors.

• For a numeric matrix, the variables that compose the columns of X must have the same order as
the predictor variables that trained Mdl.

• For a table:

• predict does not support multicolumn variables and cell arrays other than cell arrays of
character vectors.

• If you trained Mdl using a table (for example, Tbl), then all predictor variables in X must have
the same variable names and data types as those that trained Mdl (stored in
Mdl.PredictorNames). However, the column order of X does not need to correspond to the
column order of Tbl. Tbl and X can contain additional variables (response variables,
observation weights, etc.), but predict ignores them.
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• If you trained Mdl using a numeric matrix, then the predictor names in Mdl.PredictorNames
and corresponding predictor variable names in X must be the same. To specify predictor names
during training, see the PredictorNames name-value pair argument of fitcdiscr. X can
contain additional variables (response variables, observation weights, etc.), but predict
ignores them.

Data Types: table | double | single

Output Arguments
label — Predicted class labels
categorical array | character array | logical vector | vector of numeric values | cell array of character
vectors

Predicted class labels on page 35-5748, returned as a categorical or character array, logical or
numeric vector, or cell array of character vectors.

For each observation in X, the predicted class label corresponds to the minimum expected
classification cost among all classes. For an observation with NaN scores, the function classifies the
observation into the majority class, which makes up the largest proportion of the training labels.

label:

• Is the same data type as the observed class labels (Y) that trained Mdl. (The software treats string
arrays as cell arrays of character vectors.)

• Has length equal to the number of rows of X.

score — Predicted class posterior probabilities
numeric matrix

Predicted class posterior probabilities on page 35-5747, returned as a numeric matrix of size N-by-K.
N is the number of observations (rows) in X, and K is the number of classes (in Mdl.ClassNames).
score(i,j) is the posterior probability that observation i in X is of class j in Mdl.ClassNames.

cost — Expected classification costs
numeric matrix

Expected classification costs on page 35-5748, returned as a matrix of size N-by-K. N is the number of
observations (rows) in X, and K is the number of classes (in Mdl.ClassNames). cost(i,j) is the
cost of classifying row i of X as class j in Mdl.ClassNames.

Examples

Predict Class Labels Using Discriminant Analysis Model

Load Fisher's iris data set. Determine the sample size.

load fisheriris
N = size(meas,1);

Partition the data into training and test sets. Hold out 10% of the data for testing.

rng(1); % For reproducibility
cvp = cvpartition(N,'Holdout',0.1);
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idxTrn = training(cvp); % Training set indices
idxTest = test(cvp);    % Test set indices

Store the training data in a table.

tblTrn = array2table(meas(idxTrn,:));
tblTrn.Y = species(idxTrn);

Train a discriminant analysis model using the training set and default options.

Mdl = fitcdiscr(tblTrn,'Y');

Predict labels for the test set. You trained Mdl using a table of data, but you can predict labels using a
matrix.

labels = predict(Mdl,meas(idxTest,:));

Construct a confusion matrix for the test set.

confusionchart(species(idxTest),labels)

Mdl misclassifies one versicolor iris as virginica in the test set.

Plot Class Posterior Probability Regions

Load Fisher's iris data set. Consider training using the petal lengths and widths only.
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load fisheriris
X = meas(:,3:4);

Train a quadratic discriminant analysis model using the entire data set.

Mdl = fitcdiscr(X,species,'DiscrimType','quadratic');

Define a grid of values in the observed predictor space. Predict the posterior probabilities for each
instance in the grid.

xMax = max(X);
xMin = min(X);
d = 0.01;
[x1Grid,x2Grid] = meshgrid(xMin(1):d:xMax(1),xMin(2):d:xMax(2));

[~,score] = predict(Mdl,[x1Grid(:),x2Grid(:)]);
Mdl.ClassNames

ans = 3x1 cell
    {'setosa'    }
    {'versicolor'}
    {'virginica' }

score is a matrix of class posterior probabilities. The columns correspond to the classes in
Mdl.ClassNames. For example, score(j,1) is the posterior probability that observation j is a
setosa iris.

Plot the posterior probability of versicolor classification for each observation in the grid and plot the
training data.

figure;
contourf(x1Grid,x2Grid,reshape(score(:,2),size(x1Grid,1),size(x1Grid,2)));
h = colorbar;
caxis([0 1]);
colormap jet;
hold on
gscatter(X(:,1),X(:,2),species,'mcy','.x+');
axis tight
title('Posterior Probability of versicolor'); 
hold off
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The posterior probability region exposes a portion of the decision boundary.

More About
Posterior Probability

The posterior probability that a point x belongs to class k is the product of the prior probability and
the multivariate normal density. The density function of the multivariate normal with 1-by-d mean μk
and d-by-d covariance Σk at a 1-by-d point x is

P x k = 1
2π d Σk

1/2exp −1
2 x− μk Σk

−1 x− μk
T ,

where Σk  is the determinant of Σk, and Σk
−1 is the inverse matrix.

Let P(k) represent the prior probability of class k. Then the posterior probability that an observation x
is of class k is

P k x = P x k P k
P x ,

where P(x) is a normalization constant, the sum over k of P(x|k)P(k).
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Prior Probability

The prior probability is one of three choices:

• 'uniform' — The prior probability of class k is one over the total number of classes.
• 'empirical' — The prior probability of class k is the number of training samples of class k

divided by the total number of training samples.
• Custom — The prior probability of class k is the kth element of the prior vector. See fitcdiscr.

After creating a classification model (Mdl) you can set the prior using dot notation:

Mdl.Prior = v;

where v is a vector of positive elements representing the frequency with which each element occurs.
You do not need to retrain the classifier when you set a new prior.

Cost

The matrix of expected costs per observation is defined in “Cost” on page 21-7.

Predicted Class Label

predict classifies so as to minimize the expected classification cost:

y = argmin
y = 1, ..., K

∑
k = 1

K
P k x C y k ,

where

• y  is the predicted classification.
• K is the number of classes.
• P k x  is the posterior probability on page 21-6 of class k for observation x.
• C y k  is the cost on page 21-7 of classifying an observation as y when its true class is k.

Version History
Introduced in R2011b

Extended Capabilities
Tall Arrays
Calculate with arrays that have more rows than fit in memory.

This function fully supports tall arrays. You can use models trained on either in-memory or tall data
with this function.

For more information, see “Tall Arrays”.

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:
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• Use saveLearnerForCoder, loadLearnerForCoder, and codegen to generate code for the
predict function. Save a trained model by using saveLearnerForCoder. Define an entry-point
function that loads the saved model by using loadLearnerForCoder and calls the predict
function. Then use codegen to generate code for the entry-point function.

• To generate single-precision C/C++ code for predict, specify the name-value argument
"DataType","single" when you call the loadLearnerForCoder function.

• This table contains notes about the arguments of predict. Arguments not included in this table
are fully supported.

Argument Notes and Limitations
Mdl For the usage notes and limitations of the model object, see “Code

Generation” on page 35-853 of the
CompactClassificationDiscriminant object.

X • X must be a single-precision or double-precision matrix or a table
containing numeric variables.

• The number of rows, or observations, in X can be a variable size,
but the number of columns in X must be fixed.

• If you want to specify X as a table, then your model must be trained
using a table, and your entry-point function for prediction must do
the following:

• Accept data as arrays.
• Create a table from the data input arguments and specify the

variable names in the table.
• Pass the table to predict.

For an example of this table workflow, see “Generate Code to
Classify Data in Table” on page 34-112. For more information on
using tables in code generation, see “Code Generation for Tables”
(MATLAB Coder) and “Table Limitations for Code Generation”
(MATLAB Coder).

For more information, see “Introduction to Code Generation” on page 34-2.

See Also
ClassificationDiscriminant | CompactClassificationDiscriminant | fitcdiscr | edge |
loss | margin

Topics
“Discriminant Analysis Classification” on page 21-2
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predict
Package: 

Classify observations using multiclass error-correcting output codes (ECOC) model

Syntax
label = predict(Mdl,X)
label = predict(Mdl,X,Name,Value)
[label,NegLoss,PBScore] = predict( ___ )
[label,NegLoss,PBScore,Posterior] = predict( ___ )

Description
label = predict(Mdl,X) returns a vector of predicted class labels (label) for the predictor data
in the table or matrix X, based on the trained multiclass error-correcting output codes (ECOC) model
Mdl. The trained ECOC model can be either full or compact.

label = predict(Mdl,X,Name,Value) uses additional options specified by one or more name-
value pair arguments. For example, you can specify the posterior probability estimation method,
decoding scheme, and verbosity level.

[label,NegLoss,PBScore] = predict( ___ ) uses any of the input argument combinations in
the previous syntaxes and additionally returns:

• An array of negated average binary losses on page 35-5763 (NegLoss). For each observation in X,
predict assigns the label of the class yielding the largest negated average binary loss (or,
equivalently, the smallest average binary loss).

• An array of positive-class scores (PBScore) for the observations classified by each binary learner.

[label,NegLoss,PBScore,Posterior] = predict( ___ ) additionally returns posterior class
probability estimates for the observations (Posterior).

To obtain posterior class probabilities, you must set 'FitPosterior',true when training the
ECOC model using fitcecoc. Otherwise, predict throws an error.

Examples

Predict Test-Sample Labels of Training Data Using ECOC Model

Load Fisher's iris data set. Specify the predictor data X, the response data Y, and the order of the
classes in Y.

load fisheriris
X = meas;
Y = categorical(species);
classOrder = unique(Y);
rng(1); % For reproducibility

35 Functions

35-5750



Train an ECOC model using SVM binary classifiers. Specify a 30% holdout sample, standardize the
predictors using an SVM template, and specify the class order.

t = templateSVM('Standardize',true);
PMdl = fitcecoc(X,Y,'Holdout',0.30,'Learners',t,'ClassNames',classOrder);
Mdl = PMdl.Trained{1};           % Extract trained, compact classifier

PMdl is a ClassificationPartitionedECOC model. It has the property Trained, a 1-by-1 cell
array containing the CompactClassificationECOC model that the software trained using the
training set.

Predict the test-sample labels. Print a random subset of true and predicted labels.

testInds = test(PMdl.Partition);  % Extract the test indices
XTest = X(testInds,:);
YTest = Y(testInds,:);
labels = predict(Mdl,XTest);

idx = randsample(sum(testInds),10);
table(YTest(idx),labels(idx),...
    'VariableNames',{'TrueLabels','PredictedLabels'})

ans=10×2 table
    TrueLabels    PredictedLabels
    __________    _______________

    setosa          setosa       
    versicolor      virginica    
    setosa          setosa       
    virginica       virginica    
    versicolor      versicolor   
    setosa          setosa       
    virginica       virginica    
    virginica       virginica    
    setosa          setosa       
    setosa          setosa       

Mdl correctly labels all except one of the test-sample observations with indices idx.

Predict Test-Sample Labels of ECOC Model Using Custom Binary Loss Function

Load Fisher's iris data set. Specify the predictor data X, the response data Y, and the order of the
classes in Y.

load fisheriris
X = meas;
Y = categorical(species);
classOrder = unique(Y); % Class order
rng(1); % For reproducibility

Train an ECOC model using SVM binary classifiers and specify a 30% holdout sample. Standardize
the predictors using an SVM template, and specify the class order.
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t = templateSVM('Standardize',true);
PMdl = fitcecoc(X,Y,'Holdout',0.30,'Learners',t,'ClassNames',classOrder);
Mdl = PMdl.Trained{1};           % Extract trained, compact classifier

PMdl is a ClassificationPartitionedECOC model. It has the property Trained, a 1-by-1 cell
array containing the CompactClassificationECOC model that the software trained using the
training set.

SVM scores are signed distances from the observation to the decision boundary. Therefore,
(− ∞ , ∞ ) is the domain. Create a custom binary loss function that does the following:

• Map the coding design matrix (M) and positive-class classification scores (s) for each learner to
the binary loss for each observation.

• Use linear loss.
• Aggregate the binary learner loss using the median.

You can create a separate function for the binary loss function, and then save it on the MATLAB®
path. Or, you can specify an anonymous binary loss function. In this case, create a function handle
(customBL) to an anonymous binary loss function.

customBL = @(M,s) median(1 - bsxfun(@times,M,s),2,'omitnan')/2;

Predict test-sample labels and estimate the median binary loss per class. Print the median negative
binary losses per class for a random set of 10 test-sample observations.

testInds = test(PMdl.Partition);  % Extract the test indices
XTest = X(testInds,:);
YTest = Y(testInds,:);
[label,NegLoss] = predict(Mdl,XTest,'BinaryLoss',customBL);

idx = randsample(sum(testInds),10);
classOrder

classOrder = 3x1 categorical
     setosa 
     versicolor 
     virginica 

table(YTest(idx),label(idx),NegLoss(idx,:),'VariableNames',...
    {'TrueLabel','PredictedLabel','NegLoss'})

ans=10×3 table
    TrueLabel     PredictedLabel                 NegLoss              
    __________    ______________    __________________________________

    setosa          versicolor        0.1858       1.9877      -3.6735
    versicolor      virginica        -1.3315     -0.12343    -0.045018
    setosa          versicolor       0.13891       1.9262      -3.5651
    virginica       virginica         -1.513     -0.38289      0.39594
    versicolor      versicolor      -0.87221      0.74785      -1.3756
    setosa          versicolor       0.48413        1.997      -3.9811
    virginica       virginica         -1.936      -0.6755       1.1115
    virginica       virginica        -1.5786     -0.83372      0.91236
    setosa          versicolor       0.51027       2.1206      -4.1309
    setosa          versicolor       0.36128       2.0594      -3.9207
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The order of the columns corresponds to the elements of classOrder. The software predicts the
label based on the maximum negated loss. The results indicate that the median of the linear losses
might not perform as well as other losses.

Estimate Posterior Probabilities Using ECOC Classifier

Train an ECOC classifier using SVM binary learners. First predict the training-sample labels and class
posterior probabilities. Then predict the maximum class posterior probability at each point in a grid.
Visualize the results.

Load Fisher's iris data set. Specify the petal dimensions as the predictors and the species names as
the response.

load fisheriris
X = meas(:,3:4);
Y = species;
rng(1); % For reproducibility

Create an SVM template. Standardize the predictors, and specify the Gaussian kernel.

t = templateSVM('Standardize',true,'KernelFunction','gaussian');

t is an SVM template. Most of its properties are empty. When the software trains the ECOC classifier,
it sets the applicable properties to their default values.

Train the ECOC classifier using the SVM template. Transform classification scores to class posterior
probabilities (which are returned by predict or resubPredict) using the 'FitPosterior' name-
value pair argument. Specify the class order using the 'ClassNames' name-value pair argument.
Display diagnostic messages during training by using the 'Verbose' name-value pair argument.

Mdl = fitcecoc(X,Y,'Learners',t,'FitPosterior',true,...
    'ClassNames',{'setosa','versicolor','virginica'},...
    'Verbose',2);

Training binary learner 1 (SVM) out of 3 with 50 negative and 50 positive observations.
Negative class indices: 2
Positive class indices: 1

Fitting posterior probabilities for learner 1 (SVM).
Training binary learner 2 (SVM) out of 3 with 50 negative and 50 positive observations.
Negative class indices: 3
Positive class indices: 1

Fitting posterior probabilities for learner 2 (SVM).
Training binary learner 3 (SVM) out of 3 with 50 negative and 50 positive observations.
Negative class indices: 3
Positive class indices: 2

Fitting posterior probabilities for learner 3 (SVM).

Mdl is a ClassificationECOC model. The same SVM template applies to each binary learner, but
you can adjust options for each binary learner by passing in a cell vector of templates.
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Predict the training-sample labels and class posterior probabilities. Display diagnostic messages
during the computation of labels and class posterior probabilities by using the 'Verbose' name-
value pair argument.

[label,~,~,Posterior] = resubPredict(Mdl,'Verbose',1);

Predictions from all learners have been computed.
Loss for all observations has been computed.
Computing posterior probabilities...

Mdl.BinaryLoss

ans = 
'quadratic'

The software assigns an observation to the class that yields the smallest average binary loss. Because
all binary learners are computing posterior probabilities, the binary loss function is quadratic.

Display a random set of results.

idx = randsample(size(X,1),10,1);
Mdl.ClassNames

ans = 3x1 cell
    {'setosa'    }
    {'versicolor'}
    {'virginica' }

table(Y(idx),label(idx),Posterior(idx,:),...
    'VariableNames',{'TrueLabel','PredLabel','Posterior'})

ans=10×3 table
      TrueLabel         PredLabel                     Posterior               
    ______________    ______________    ______________________________________

    {'virginica' }    {'virginica' }     0.0039319     0.0039866       0.99208
    {'virginica' }    {'virginica' }      0.017066      0.018262       0.96467
    {'virginica' }    {'virginica' }      0.014947      0.015855        0.9692
    {'versicolor'}    {'versicolor'}    2.2197e-14       0.87318       0.12682
    {'setosa'    }    {'setosa'    }         0.999    0.00025091    0.00074639
    {'versicolor'}    {'virginica' }    2.2195e-14      0.059427       0.94057
    {'versicolor'}    {'versicolor'}    2.2194e-14       0.97002      0.029984
    {'setosa'    }    {'setosa'    }         0.999     0.0002499    0.00074741
    {'versicolor'}    {'versicolor'}     0.0085638       0.98259     0.0088482
    {'setosa'    }    {'setosa'    }         0.999    0.00025013    0.00074718

The columns of Posterior correspond to the class order of Mdl.ClassNames.

Define a grid of values in the observed predictor space. Predict the posterior probabilities for each
instance in the grid.

xMax = max(X);
xMin = min(X);

x1Pts = linspace(xMin(1),xMax(1));
x2Pts = linspace(xMin(2),xMax(2));
[x1Grid,x2Grid] = meshgrid(x1Pts,x2Pts);
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[~,~,~,PosteriorRegion] = predict(Mdl,[x1Grid(:),x2Grid(:)]);

For each coordinate on the grid, plot the maximum class posterior probability among all classes.

contourf(x1Grid,x2Grid,...
        reshape(max(PosteriorRegion,[],2),size(x1Grid,1),size(x1Grid,2)));
h = colorbar;
h.YLabel.String = 'Maximum posterior';
h.YLabel.FontSize = 15;

hold on
gh = gscatter(X(:,1),X(:,2),Y,'krk','*xd',8);
gh(2).LineWidth = 2;
gh(3).LineWidth = 2;

title('Iris Petal Measurements and Maximum Posterior')
xlabel('Petal length (cm)')
ylabel('Petal width (cm)')
axis tight
legend(gh,'Location','NorthWest')
hold off
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Estimate Test-Sample Posterior Probabilities Using Parallel Computing

Train a multiclass ECOC model and estimate posterior probabilities using parallel computing.

Load the arrhythmia data set. Examine the response data Y, and determine the number of classes.

load arrhythmia
Y = categorical(Y);
tabulate(Y)

  Value    Count   Percent
      1      245     54.20%
      2       44      9.73%
      3       15      3.32%
      4       15      3.32%
      5       13      2.88%
      6       25      5.53%
      7        3      0.66%
      8        2      0.44%
      9        9      1.99%
     10       50     11.06%
     14        4      0.88%
     15        5      1.11%
     16       22      4.87%

K = numel(unique(Y));

Several classes are not represented in the data, and many of the other classes have low relative
frequencies.

Specify an ensemble learning template that uses the GentleBoost method and 50 weak classification
tree learners.

t = templateEnsemble('GentleBoost',50,'Tree');

t is a template object. Most of its properties are empty ([]). The software uses default values for all
empty properties during training.

Because the response variable contains many classes, specify a sparse random coding design.

rng(1); % For reproducibility
Coding = designecoc(K,'sparserandom');

Train an ECOC model using parallel computing. Specify a 15% holdout sample, and fit posterior
probabilities.

pool = parpool;                    % Invokes workers

Starting parallel pool (parpool) using the 'local' profile ...
Connected to the parallel pool (number of workers: 6).

options = statset('UseParallel',true);
PMdl = fitcecoc(X,Y,'Learner',t,'Options',options,'Coding',Coding,...
    'FitPosterior',true,'Holdout',0.15);
Mdl = PMdl.Trained{1};            % Extract trained, compact classifier

PMdl is a ClassificationPartitionedECOC model. It has the property Trained, a 1-by-1 cell
array containing the CompactClassificationECOC model that the software trained using the
training set.
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The pool invokes six workers, although the number of workers might vary among systems.

Estimate posterior probabilities, and display the posterior probability of being classified as not having
arrhythmia (class 1) given the data for a random set of test-sample observations.

testInds = test(PMdl.Partition);  % Extract the test indices
XTest = X(testInds,:);
YTest = Y(testInds,:);
[~,~,~,posterior] = predict(Mdl,XTest,'Options',options);

idx = randsample(sum(testInds),10);
table(idx,YTest(idx),posterior(idx,1),...
    'VariableNames',{'TestSampleIndex','TrueLabel','PosteriorNoArrhythmia'})

ans=10×3 table
    TestSampleIndex    TrueLabel    PosteriorNoArrhythmia
    _______________    _________    _____________________

          11              6                0.60631       
          41              4                0.23674       
          51              2                0.13802       
          33              10               0.43831       
          12              1                0.94332       
           8              1                0.97278       
          37              1                0.62807       
          24              10               0.96876       
          56              16               0.29375       
          30              1                0.64512       

Input Arguments
Mdl — Full or compact multiclass ECOC model
ClassificationECOC model object | CompactClassificationECOC model object

Full or compact multiclass ECOC model, specified as a ClassificationECOC or
CompactClassificationECOC model object.

To create a full or compact ECOC model, see ClassificationECOC or
CompactClassificationECOC.

X — Predictor data to be classified
numeric matrix | table

Predictor data to be classified, specified as a numeric matrix or table.

By default, each row of X corresponds to one observation, and each column corresponds to one
variable.

• For a numeric matrix:

• The variables that constitute the columns of X must have the same order as the predictor
variables that train Mdl.

• If you train Mdl using a table (for example, Tbl), then X can be a numeric matrix if Tbl
contains all numeric predictor variables. To treat numeric predictors in Tbl as categorical
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during training, identify categorical predictors using the CategoricalPredictors name-
value pair argument of fitcecoc. If Tbl contains heterogeneous predictor variables (for
example, numeric and categorical data types) and X is a numeric matrix, then predict throws
an error.

• For a table:

• predict does not support multicolumn variables or cell arrays other than cell arrays of
character vectors.

• If you train Mdl using a table (for example, Tbl), then all predictor variables in X must have
the same variable names and data types as the predictor variables that train Mdl (stored in
Mdl.PredictorNames). However, the column order of X does not need to correspond to the
column order of Tbl. Both Tbl and X can contain additional variables (response variables,
observation weights, and so on), but predict ignores them.

• If you train Mdl using a numeric matrix, then the predictor names in Mdl.PredictorNames
and the corresponding predictor variable names in X must be the same. To specify predictor
names during training, see the PredictorNames name-value pair argument of fitcecoc. All
predictor variables in X must be numeric vectors. X can contain additional variables (response
variables, observation weights, and so on), but predict ignores them.

Note If Mdl.BinaryLearners contains linear classification models (ClassificationLinear),
then you can orient your predictor matrix so that observations correspond to columns and specify
'ObservationsIn','columns'. However, you cannot specify 'ObservationsIn','columns'
for predictor data in a table.

When training Mdl, assume that you set 'Standardize',true for a template object specified in the
'Learners' name-value pair argument of fitcecoc. In this case, for the corresponding binary
learner j, the software standardizes the columns of the new predictor data using the corresponding
means in Mdl.BinaryLearner{j}.Mu and standard deviations in
Mdl.BinaryLearner{j}.Sigma.
Data Types: table | double | single

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: predict(Mdl,X,'BinaryLoss','quadratic','Decoding','lossbased') specifies
a quadratic binary learner loss function and a loss-based decoding scheme for aggregating the binary
losses.

BinaryLoss — Binary learner loss function
'hamming' | 'linear' | 'logit' | 'exponential' | 'binodeviance' | 'hinge' | 'quadratic'
| function handle

Binary learner loss function, specified as the comma-separated pair consisting of 'BinaryLoss' and
a built-in loss function name or function handle.

• This table describes the built-in functions, where yj is the class label for a particular binary learner
(in the set {–1,1,0}), sj is the score for observation j, and g(yj,sj) is the binary loss formula.
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Value Description Score Domain g(yj,sj)
'binodeviance' Binomial deviance (–∞,∞) log[1 + exp(–2yjsj)]/

[2log(2)]
'exponential' Exponential (–∞,∞) exp(–yjsj)/2
'hamming' Hamming [0,1] or (–∞,∞) [1 – sign(yjsj)]/2
'hinge' Hinge (–∞,∞) max(0,1 – yjsj)/2
'linear' Linear (–∞,∞) (1 – yjsj)/2
'logit' Logistic (–∞,∞) log[1 + exp(–yjsj)]/

[2log(2)]
'quadratic' Quadratic [0,1] [1 – yj(2sj – 1)]2/2

The software normalizes binary losses so that the loss is 0.5 when yj = 0. Also, the software
calculates the mean binary loss for each class.

• For a custom binary loss function, for example customFunction, specify its function handle
'BinaryLoss',@customFunction.

customFunction has this form:

bLoss = customFunction(M,s)

• M is the K-by-B coding matrix stored in Mdl.CodingMatrix.
• s is the 1-by-B row vector of classification scores.
• bLoss is the classification loss. This scalar aggregates the binary losses for every learner in a

particular class. For example, you can use the mean binary loss to aggregate the loss over the
learners for each class.

• K is the number of classes.
• B is the number of binary learners.

For an example of passing a custom binary loss function, see “Predict Test-Sample Labels of ECOC
Model Using Custom Binary Loss Function” on page 35-5751.

The default BinaryLoss value depends on the score ranges returned by the binary learners. This
table identifies what some default BinaryLoss values are when you use the default score transform
(ScoreTransform property of the model is 'none').

Assumption Default Value
All binary learners are any of the following:

• Classification decision trees
• Discriminant analysis models
• k-nearest neighbor models
• Linear or kernel classification models of logistic regression

learners
• Naive Bayes models

'quadratic'

All binary learners are SVMs or linear or kernel classification
models of SVM learners.

'hinge'
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Assumption Default Value
All binary learners are ensembles trained by AdaboostM1 or
GentleBoost.

'exponential'

All binary learners are ensembles trained by LogitBoost. 'binodeviance'
You specify to predict class posterior probabilities by setting
'FitPosterior',true in fitcecoc.

'quadratic'

Binary learners are heterogeneous and use different loss functions. 'hamming'

To check the default value, use dot notation to display the BinaryLoss property of the trained model
at the command line.
Example: 'BinaryLoss','binodeviance'
Data Types: char | string | function_handle

Decoding — Decoding scheme
'lossweighted' (default) | 'lossbased'

Decoding scheme that aggregates the binary losses, specified as the comma-separated pair consisting
of 'Decoding' and 'lossweighted' or 'lossbased'. For more information, see “Binary Loss” on
page 35-5763.
Example: 'Decoding','lossbased'

NumKLInitializations — Number of random initial values
0 (default) | nonnegative integer scalar

Number of random initial values for fitting posterior probabilities by Kullback-Leibler divergence
minimization, specified as the comma-separated pair consisting of 'NumKLInitializations' and a
nonnegative integer scalar.

If you do not request the fourth output argument (Posterior) and set 'PosteriorMethod','kl'
(the default), then the software ignores the value of NumKLInitializations.

For more details, see “Posterior Estimation Using Kullback-Leibler Divergence” on page 35-5764.
Example: 'NumKLInitializations',5
Data Types: single | double

ObservationsIn — Predictor data observation dimension
'rows' (default) | 'columns'

Predictor data observation dimension, specified as the comma-separated pair consisting of
'ObservationsIn' and 'columns' or 'rows'. Mdl.BinaryLearners must contain
ClassificationLinear models.

Note If you orient your predictor matrix so that observations correspond to columns and specify
'ObservationsIn','columns', you can experience a significant reduction in execution time. You
cannot specify 'ObservationsIn','columns' for predictor data in a table.

Options — Estimation options
[] (default) | structure array returned by statset
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Estimation options, specified as the comma-separated pair consisting of 'Options' and a structure
array returned by statset.

To invoke parallel computing:

• You need a Parallel Computing Toolbox license.
• Specify 'Options',statset('UseParallel',true).

PosteriorMethod — Posterior probability estimation method
'kl' (default) | 'qp'

Posterior probability estimation method, specified as the comma-separated pair consisting of
'PosteriorMethod' and 'kl' or 'qp'.

• If PosteriorMethod is 'kl', then the software estimates multiclass posterior probabilities by
minimizing the Kullback-Leibler divergence between the predicted and expected posterior
probabilities returned by binary learners. For details, see “Posterior Estimation Using Kullback-
Leibler Divergence” on page 35-5764.

• If PosteriorMethod is 'qp', then the software estimates multiclass posterior probabilities by
solving a least-squares problem using quadratic programming. You need an Optimization Toolbox
license to use this option. For details, see “Posterior Estimation Using Quadratic Programming” on
page 35-5765.

• If you do not request the fourth output argument (Posterior), then the software ignores the
value of PosteriorMethod.

Example: 'PosteriorMethod','qp'

Verbose — Verbosity level
0 (default) | 1

Verbosity level, specified as the comma-separated pair consisting of 'Verbose' and 0 or 1. Verbose
controls the number of diagnostic messages that the software displays in the Command Window.

If Verbose is 0, then the software does not display diagnostic messages. Otherwise, the software
displays diagnostic messages.
Example: 'Verbose',1
Data Types: single | double

Output Arguments
label — Predicted class labels
categorical array | character array | logical array | numeric array | cell array of character vectors

Predicted class labels, returned as a categorical, character, logical, or numeric array, or a cell array of
character vectors.

The predict function predicts the classification of an observation by assigning the observation to
the class yielding the largest negated average binary loss (or, equivalently, the smallest average
binary loss). For an observation with NaN loss values, the function classifies the observation into the
majority class, which makes up the largest proportion of the training labels.

label has the same data type as the class labels used to train Mdl and has the same number of rows
as X. (The software treats string arrays as cell arrays of character vectors.)
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If Mdl.BinaryLearners contains ClassificationLinear models, then label is an m-by-L
matrix, where m is the number of observations in X, and L is the number of regularization strengths
in the linear classification models (numel(Mdl.BinaryLearners{1}.Lambda)). The value
label(i,j) is the predicted label of observation i for the model trained using regularization
strength Mdl.BinaryLearners{1}.Lambda(j).

Otherwise, label is a column vector of length m.

NegLoss — Negated average binary losses
numeric matrix | numeric array

Negated average binary losses on page 35-5763, returned as a numeric matrix or array.

• If Mdl.BinaryLearners contains ClassificationLinear models, then NegLoss is an m-by-K-
by-L array.

• m is the number of observations in X.
• K is the number of distinct classes in the training data (numel(Mdl.ClassNames)).
• L is the number of regularization strengths in the linear classification models

(numel(Mdl.BinaryLearners{1}.Lambda)).

NegLoss(i,k,j) is the negated average binary loss for observation i, corresponding to class
Mdl.ClassNames(k), for the model trained using regularization strength
Mdl.BinaryLearners{1}.Lambda(j).

• If Decoding is 'lossbased', then NegLoss(i,k,j) is the sum of the binary losses divided
by the number of binary learners.

• If Decoding is 'lossweighted', then NegLoss(i,k,j) is the sum of the binary losses
divided by the number of binary learners for the kth class.

For more details, see “Binary Loss” on page 35-5763.
• Otherwise, NegLoss is an m-by-K matrix.

PBScore — Positive-class scores
numeric matrix | numeric array

Positive-class scores for each binary learner, returned as a numeric matrix or array.

• If Mdl.BinaryLearners contains ClassificationLinear models, then PBScore is an m-by-B-
by-L array.

• m is the number of observations in X.
• B is the number of binary learners (numel(Mdl.BinaryLearners)).
• L is the number of regularization strengths in the linear classification models

(numel(Mdl.BinaryLearners{1}.Lambda)).

PBScore(i,b,j) is the positive-class score for observation i, using binary learner b, for the
model trained using regularization strength Mdl.BinaryLearners{1}.Lambda(j).

• Otherwise, PBScore is an m-by-B matrix.

Posterior — Posterior class probabilities
numeric matrix | numeric array
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Posterior class probabilities, returned as a numeric matrix or array.

• If Mdl.BinaryLearners contains ClassificationLinear models, then Posterior is an m-
by-K-by-L array. For dimension definitions, see NegLoss. Posterior(i,k,j) is the posterior
probability that observation i comes from class Mdl.ClassNames(k), for the model trained
using regularization strength Mdl.BinaryLearners{1}.Lambda(j).

• Otherwise, Posterior is an m-by-K matrix.

More About
Binary Loss

The binary loss is a function of the class and classification score that determines how well a binary
learner classifies an observation into the class.

Suppose the following:

• mkj is element (k,j) of the coding design matrix M—that is, the code corresponding to class k of
binary learner j. M is a K-by-B matrix, where K is the number of classes, and B is the number of
binary learners.

• sj is the score of binary learner j for an observation.
• g is the binary loss function.
• k  is the predicted class for the observation.

The decoding scheme of an ECOC model specifies how the software aggregates the binary losses and
determines the predicted class for each observation. The software supports two decoding schemes:

• Loss-based decoding [3] (Decoding is 'lossbased') — The predicted class of an observation
corresponds to the class that produces the minimum average of the binary losses over all binary
learners.

k = argmin
k

1
B ∑j = 1

B
mk j g(mk j, s j) .

• Loss-weighted decoding [4] (Decoding is 'lossweighted') — The predicted class of an
observation corresponds to the class that produces the minimum average of the binary losses over
the binary learners for the corresponding class.

k = argmin
k

∑
j = 1

B
mk j g(mk j, s j)

∑ j = 1

B

mk j

.

The denominator corresponds to the number of binary learners for class k. [1] suggests that loss-
weighted decoding improves classification accuracy by keeping loss values for all classes in the
same dynamic range.

The predict, resubPredict, and kfoldPredict functions return the negated value of the
objective function of argmin as the second output argument (NegLoss) for each observation and
class.
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This table summarizes the supported binary loss functions, where yj is a class label for a particular
binary learner (in the set {–1,1,0}), sj is the score for observation j, and g(yj,sj) is the binary loss
function.

Value Description Score Domain g(yj,sj)
"binodeviance" Binomial deviance (–∞,∞) log[1 + exp(–2yjsj)]/

[2log(2)]
"exponential" Exponential (–∞,∞) exp(–yjsj)/2
"hamming" Hamming [0,1] or (–∞,∞) [1 – sign(yjsj)]/2
"hinge" Hinge (–∞,∞) max(0,1 – yjsj)/2
"linear" Linear (–∞,∞) (1 – yjsj)/2
"logit" Logistic (–∞,∞) log[1 + exp(–yjsj)]/

[2log(2)]
"quadratic" Quadratic [0,1] [1 – yj(2sj – 1)]2/2

The software normalizes binary losses so that the loss is 0.5 when yj = 0, and aggregates using the
average of the binary learners.

Do not confuse the binary loss with the overall classification loss (specified by the LossFun name-
value argument of the loss and predict object functions), which measures how well an ECOC
classifier performs as a whole.

Algorithms
The software can estimate class posterior probabilities by minimizing the Kullback-Leibler divergence
or by using quadratic programming. For the following descriptions of the posterior estimation
algorithms, assume that:

• mkj is the element (k,j) of the coding design matrix M.
• I is the indicator function.
• p k is the class posterior probability estimate for class k of an observation, k = 1,...,K.
• rj is the positive-class posterior probability for binary learner j. That is, rj is the probability that

binary learner j classifies an observation into the positive class, given the training data.

Posterior Estimation Using Kullback-Leibler Divergence

By default, the software minimizes the Kullback-Leibler divergence to estimate class posterior
probabilities. The Kullback-Leibler divergence between the expected and observed positive-class
posterior probabilities is

Δ(r, r ) = ∑
j = 1

L
w j r jlog

r j
r j

+ 1− r j log
1− r j
1− r j

,

where w j = ∑
Sj

wi
∗ is the weight for binary learner j.

• Sj is the set of observation indices on which binary learner j is trained.
• wi

∗ is the weight of observation i.
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The software minimizes the divergence iteratively. The first step is to choose initial values
p k

(0); k = 1, ..., K for the class posterior probabilities.

• If you do not specify 'NumKLIterations', then the software tries both sets of deterministic
initial values described next, and selects the set that minimizes Δ.

• p k
(0) = 1/K; k = 1, ..., K .

• p k
(0); k = 1, ..., K is the solution of the system

M01p (0) = r,

where M01 is M with all mkj = –1 replaced with 0, and r is a vector of positive-class posterior
probabilities returned by the L binary learners [Dietterich et al.] on page 19-285. The software
uses lsqnonneg to solve the system.

• If you specify 'NumKLIterations',c, where c is a natural number, then the software does the
following to choose the set p k

(0); k = 1, ..., K, and selects the set that minimizes Δ.

• The software tries both sets of deterministic initial values as described previously.
• The software randomly generates c vectors of length K using rand, and then normalizes each

vector to sum to 1.

At iteration t, the software completes these steps:

1 Compute

r j
(t) =

∑
k = 1

K
p k

(t)I(mk j = + 1)

∑
k = 1

K
p k

(t)I(mk j = + 1∪mk j = − 1)
.

2 Estimate the next class posterior probability using

p k
(t + 1) = p k

(t)
∑

j = 1

L
w j r jI mk j = + 1 + 1− r j I mk j = − 1

∑
j = 1

L
w j r j

(t)I mk j = + 1 + 1− r j
(t) I mk j = − 1

.

3 Normalize p k
(t + 1); k = 1, ..., K so that they sum to 1.

4 Check for convergence.

For more details, see [Hastie et al.] on page 19-286 and [Zadrozny] on page 19-287.

Posterior Estimation Using Quadratic Programming

Posterior probability estimation using quadratic programming requires an Optimization Toolbox
license. To estimate posterior probabilities for an observation using this method, the software
completes these steps:

1 Estimate the positive-class posterior probabilities, rj, for binary learners j = 1,...,L.
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2 Using the relationship between rj and p k [Wu et al.] on page 19-287, minimize

∑
j = 1

L

−r j ∑
k = 1

K
p kI mk j = − 1 + 1− r j ∑

k = 1

K
p kI mk j = + 1

2

with respect to p k and the restrictions

0 ≤ p k ≤ 1

∑
k

p k = 1.

The software performs minimization using quadprog.

Version History
Introduced in R2014b
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Extended Capabilities
Tall Arrays
Calculate with arrays that have more rows than fit in memory.

Usage notes and limitations:

• predict does not support tall table data when Mdl contains kernel or linear binary learners.

For more information, see “Tall Arrays”.
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C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• You can generate C/C++ code for both predict and update by using a coder configurer. Or,
generate code only for predict by using saveLearnerForCoder, loadLearnerForCoder, and
codegen.

• Code generation for predict and update — Create a coder configurer by using
learnerCoderConfigurer and then generate code by using generateCode. Then you can
update model parameters in the generated code without having to regenerate the code.

• Code generation for predict — Save a trained model by using saveLearnerForCoder.
Define an entry-point function that loads the saved model by using loadLearnerForCoder
and calls the predict function. Then use codegen to generate code for the entry-point
function.

• To generate single-precision C/C++ code for predict, specify the name-value argument
"DataType","single" when you call the loadLearnerForCoder function.

• This table contains notes about the arguments of predict. Arguments not included in this table
are fully supported.

Argument Notes and Limitations
Mdl • If you use saveLearnerForCoder to save a model that is

equipped to predict posterior probabilities, and use
loadLearnerForCoder to load the model, then
loadLearnerForCoder cannot restore the ScoreTransform
property into the MATLAB Workspace. However,
loadLearnerForCoder can load the model, including the
ScoreTransform property, within an entry-point function at
compile time for code generation.

• For the usage notes and limitations of the model object, see “Code
Generation” on page 35-865 of the
CompactClassificationECOC object.
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Argument Notes and Limitations
X • For general code generation, X must be a single-precision or

double-precision matrix or a table containing numeric variables,
categorical variables, or both.

• In the coder configurer workflow, X must be a single-precision or
double-precision matrix.

• The number of observations in X can be a variable size, but the
number of variables in X must be fixed.

• If you want to specify X as a table, then your model must be
trained using a table, and your entry-point function for prediction
must do the following:

• Accept data as arrays.
• Create a table from the data input arguments and specify the

variable names in the table.
• Pass the table to predict.

For an example of this table workflow, see “Generate Code to
Classify Data in Table” on page 34-112. For more information on
using tables in code generation, see “Code Generation for Tables”
(MATLAB Coder) and “Table Limitations for Code Generation”
(MATLAB Coder).

Posterior This output argument is not supported.
Name-value pair
arguments

Names in name-value arguments must be compile-time constants.

BinaryLoss • The value for the 'BinaryLoss' name-value pair argument must
be a compile-time constant. For example, to use the
'BinaryLoss','logit' name-value pair argument in the
generated code, include
{coder.Constant('BinaryLoss'),coder.Constant('logit
')} in the -args value of codegen.

• To set the 'BinaryLoss' name-value pair argument to a custom
binary loss function in the generated code, define a custom
function on the MATLAB search path, and specify the name of the
custom function instead of its function handle. The custom function
name must be a compile-time constant. For example, if you define
a custom function named customFunction, then include
{coder.Constant('BinaryLoss'),coder.Constant('custo
mFunction')} in the -args value of codegen.

NumKLInitializati
ons

This name-value pair argument is not supported.

ObservationsIn The value for the ObservationsIn name-value argument must be a
compile-time constant. For example, to use the
"ObservationsIn","columns" name-value argument in the
generated code, include
{coder.Constant("ObservationsIn"),coder.Constant("col
umns")} in the -args value of codegen.
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Argument Notes and Limitations
Options This name-value pair argument is not supported.
PosteriorMethod This name-value pair argument is not supported.
Verbose If you plan to generate a MEX file without using a coder configurer,

then you can specify Verbose. Otherwise, codegen does not support
Verbose.

For more information, see “Introduction to Code Generation” on page 34-2.

Automatic Parallel Support
Accelerate code by automatically running computation in parallel using Parallel Computing Toolbox™.

To run in parallel, specify the 'Options' name-value argument in the call to this function and set the
'UseParallel' field of the options structure to true using statset.

For example: 'Options',statset('UseParallel',true)

For more information about parallel computing, see “Run MATLAB Functions with Automatic Parallel
Support” (Parallel Computing Toolbox).

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

Usage notes and limitations:

• The predict function does not support models trained using decision tree learners with
surrogate splits.

• The predict function does not support models trained using SVM learners.

For more information, see “Run MATLAB Functions on a GPU” (Parallel Computing Toolbox).

See Also
CompactClassificationECOC | ClassificationECOC | fitcecoc | statset | resubPredict |
quadprog | loss

Topics
“Quick Start Parallel Computing for Statistics and Machine Learning Toolbox” on page 33-2
“Reproducibility in Parallel Statistical Computations” on page 33-16
“Concepts of Parallel Computing in Statistics and Machine Learning Toolbox” on page 33-6
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predict
Classify observations using ensemble of classification models

Syntax
labels = predict(Mdl,X)
labels = predict(Mdl,X,Name,Value)
[labels,scores] = predict( ___ )

Description
labels = predict(Mdl,X) returns a vector of predicted class labels for the predictor data in the
table or matrix X, based on the full or compact, trained classification ensemble Mdl.

labels = predict(Mdl,X,Name,Value) uses additional options specified by one or more
Name,Value pair arguments.

[labels,scores] = predict( ___ ) also returns a matrix of classification scores on page 35-
5776 (scores), indicating the likelihood that a label comes from a particular class, using any of the
input arguments in the previous syntaxes. For each observation in X, the predicted class label
corresponds to the maximum score among all classes.

Input Arguments
Mdl

A classification ensemble created by fitcensemble or a compact classification ensemble created by
compact.

X

Predictor data to be classified, specified as a numeric matrix or table.

Each row of X corresponds to one observation, and each column corresponds to one variable.

• For a numeric matrix:

• The variables making up the columns of X must have the same order as the predictor variables
that trained Mdl.

• If you trained Mdl using a table (for example, Tbl), then X can be a numeric matrix if Tbl
contains all numeric predictor variables. To treat numeric predictors in Tbl as categorical
during training, identify categorical predictors using the CategoricalPredictors name-
value pair argument of fitcensemble. If Tbl contains heterogeneous predictor variables (for
example, numeric and categorical data types) and X is a numeric matrix, then predict throws
an error.

• For a table:

• predict does not support multicolumn variables or cell arrays other than cell arrays of
character vectors.
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• If you trained Mdl using a table (for example, Tbl), then all predictor variables in X must have
the same variable names and be of the same data types as those that trained Mdl (stored in
Mdl.PredictorNames). However, the column order of X does not need to correspond to the
column order of Tbl. Tbl and X can contain additional variables (response variables,
observation weights, etc.), but predict ignores them.

• If you trained Mdl using a numeric matrix, then the predictor names in Mdl.PredictorNames
and corresponding predictor variable names in X must be the same. To specify predictor names
during training, see the PredictorNames name-value pair argument of fitcensemble. All
predictor variables in X must be numeric vectors. X can contain additional variables (response
variables, observation weights, etc.), but predict ignores them.

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.

Learners

Indices of weak learners predict uses for computation of responses, a numeric vector.

Default: 1:T, where T is the number of weak learners in Mdl

UseObsForLearner

A logical matrix of size N-by-T, where:

• N is the number of rows of X.
• T is the number of weak learners in Mdl.

When UseObsForLearner(i,j) is true, learner j is used in predicting the class of row i of X.

Default: true(N,T)

UseParallel

Indication to perform inference in parallel, specified as false (compute serially) or true (compute in
parallel). Parallel computation requires Parallel Computing Toolbox. Parallel inference can be faster
than serial inference, especially for large datasets. Parallel computation is supported only for tree
learners.

Default: false

Output Arguments
labels

Vector of classification labels. labels has the same data type as the labels used in training Mdl. (The
software treats string arrays as cell arrays of character vectors.)
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The predict function classifies an observation into the class yielding the highest score. For an
observation with NaN scores, the function classifies the observation into the majority class, which
makes up the largest proportion of the training labels.

scores

A matrix with one row per observation and one column per class. For each observation and each
class, the score represents the confidence that the observation originates from that class. A higher
score indicates a higher confidence. For more information, see “Score (ensemble)” on page 35-5776.

Examples

Predict Class Labels Using Classification Ensemble

Load Fisher's iris data set. Determine the sample size.

load fisheriris
N = size(meas,1);

Partition the data into training and test sets. Hold out 10% of the data for testing.

rng(1); % For reproducibility
cvp = cvpartition(N,'Holdout',0.1);
idxTrn = training(cvp); % Training set indices
idxTest = test(cvp);    % Test set indices

Store the training data in a table.

tblTrn = array2table(meas(idxTrn,:));
tblTrn.Y = species(idxTrn);

Train a classification ensemble using AdaBoostM2 and the training set. Specify tree stumps as the
weak learners.

t = templateTree('MaxNumSplits',1);
Mdl = fitcensemble(tblTrn,'Y','Method','AdaBoostM2','Learners',t);

Predict labels for the test set. You trained model using a table of data, but you can predict labels
using a matrix.

labels = predict(Mdl,meas(idxTest,:));

Construct a confusion matrix for the test set.

confusionchart(species(idxTest),labels)
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Mdl misclassifies one versicolor iris as virginica in the test set.

Assess Performance of Ensemble of Boosted Trees

Create an ensemble of boosted trees and inspect the importance of each predictor. Using test data,
assess the classification accuracy of the ensemble.

Load the arrhythmia data set. Determine the class representations in the data.

load arrhythmia
Y = categorical(Y);
tabulate(Y)

  Value    Count   Percent
      1      245     54.20%
      2       44      9.73%
      3       15      3.32%
      4       15      3.32%
      5       13      2.88%
      6       25      5.53%
      7        3      0.66%
      8        2      0.44%
      9        9      1.99%
     10       50     11.06%
     14        4      0.88%
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     15        5      1.11%
     16       22      4.87%

The data set contains 16 classes, but not all classes are represented (for example, class 13). Most
observations are classified as not having arrhythmia (class 1). The data set is highly discrete with
imbalanced classes.

Combine all observations with arrhythmia (classes 2 through 15) into one class. Remove those
observations with an unknown arrhythmia status (class 16) from the data set.

idx = (Y ~= "16");
Y = Y(idx);
X = X(idx,:);
Y(Y ~= "1") = "WithArrhythmia";
Y(Y == "1") = "NoArrhythmia";
Y = removecats(Y);

Create a partition that evenly splits the data into training and test sets.

rng("default") % For reproducibility
cvp = cvpartition(Y,"Holdout",0.5);
idxTrain = training(cvp);
idxTest = test(cvp);

cvp is a cross-validation partition object that specifies the training and test sets.

Train an ensemble of 100 boosted classification trees using AdaBoostM1. Specify to use tree stumps
as the weak learners. Also, because the data set contains missing values, specify to use surrogate
splits.

t = templateTree("MaxNumSplits",1,"Surrogate","on");
numTrees = 100;
mdl = fitcensemble(X(idxTrain,:),Y(idxTrain),"Method","AdaBoostM1", ...
    "NumLearningCycles",numTrees,"Learners",t);

mdl is a trained ClassificationEnsemble model.

Inspect the importance measure for each predictor.

predImportance = predictorImportance(mdl);
bar(predImportance)
title("Predictor Importance")
xlabel("Predictor")
ylabel("Importance Measure")
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Identify the top ten predictors in terms of their importance.

[~,idxSort] = sort(predImportance,"descend");
idx10 = idxSort(1:10)

idx10 = 1×10

   228   233   238    93    15   224    91   177   260   277

Classify the test set observations. View the results using a confusion matrix. Blue values indicate
correct classifications, and red values indicate misclassified observations.

predictedValues = predict(mdl,X(idxTest,:));
confusionchart(Y(idxTest),predictedValues)
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Compute the accuracy of the model on the test data.

error = loss(mdl,X(idxTest,:),Y(idxTest), ...
    "LossFun","classiferror");
accuracy = 1 - error

accuracy = 0.7731

accuracy estimates the fraction of correctly classified observations.

More About
Score (ensemble)

For ensembles, a classification score represents the confidence that an observation originates from a
specific class. The higher the score, the higher the confidence.

Different ensemble algorithms have different definitions for their scores. Furthermore, the range of
scores depends on ensemble type. For example:

• Bag scores range from 0 to 1. You can interpret these scores as probabilities averaged over all the
trees in the ensemble.

• AdaBoostM1, GentleBoost, and LogitBoost scores range from –∞ to ∞. You can convert these
scores to probabilities by setting the ScoreTransform property of Mdl to 'doublelogit'
before passing Mdl to predict:
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Mdl.ScoreTransform = 'doublelogit';
[labels,scores] = predict(Mdl,X);

Alternatively, you can specify 'ScoreTransform','doublelogit' in the call to fitcensemble
when you create Mdl.

For more information on the different ensemble algorithms and how they compute scores, see
“Ensemble Algorithms” on page 19-41.

Alternative Functionality
Simulink Block

To integrate the prediction of an ensemble into Simulink, you can use the ClassificationEnsemble
Predict block in the Statistics and Machine Learning Toolbox library or a MATLAB Function block
with the predict function. For examples, see “Predict Class Labels Using ClassificationEnsemble
Predict Block” on page 34-142 and “Predict Class Labels Using MATLAB Function Block” on page 34-
51.

When deciding which approach to use, consider the following:

• If you use the Statistics and Machine Learning Toolbox library block, you can use the Fixed-Point
Tool to convert a floating-point model to fixed point.

• Support for variable-size arrays must be enabled for a MATLAB Function block with the predict
function.

• If you use a MATLAB Function block, you can use MATLAB functions for preprocessing or post-
processing before or after predictions in the same MATLAB Function block.

Version History
Introduced in R2011a

Extended Capabilities
Tall Arrays
Calculate with arrays that have more rows than fit in memory.

Usage notes and limitations:

• You cannot use UseParallel with tall arrays.

For more information, see “Tall Arrays”.

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• Use saveLearnerForCoder, loadLearnerForCoder, and codegen to generate code for the
predict function. Save a trained model by using saveLearnerForCoder. Define an entry-point
function that loads the saved model by using loadLearnerForCoder and calls the predict
function. Then use codegen to generate code for the entry-point function.
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• To generate single-precision C/C++ code for predict, specify the name-value argument
"DataType","single" when you call the loadLearnerForCoder function.

• You can also generate fixed-point C/C++ code for predict. Fixed-point code generation requires
an additional step that defines the fixed-point data types of the variables required for prediction.
Create a fixed-point data type structure by using the data type function on page 35-3041
generated by generateLearnerDataTypeFcn, and use the structure as an input argument of
loadLearnerForCoder in an entry-point function. Generating fixed-point C/C++ code requires
MATLAB Coder and Fixed-Point Designer.

• Generating fixed-point code for predict includes propagating data types for individual learners
and, therefore, can be time consuming.

• This table contains notes about the arguments of predict. Arguments not included in this table
are fully supported.

Argument Notes and Limitations
Mdl For the usage notes and limitations of the model object, see “Code

Generation” on page 35-873 of the
CompactClassificationEnsemble object.

X • For general code generation, X must be a single-precision or
double-precision matrix or a table containing numeric variables,
categorical variables, or both.

• For fixed-point code generation, X must be a fixed-point matrix.
• The number of rows, or observations, in X can be a variable size,

but the number of columns in X must be fixed.
• If you want to specify X as a table, then your model must be trained

using a table, and your entry-point function for prediction must do
the following:

• Accept data as arrays.
• Create a table from the data input arguments and specify the

variable names in the table.
• Pass the table to predict.

For an example of this table workflow, see “Generate Code to
Classify Data in Table” on page 34-112. For more information on
using tables in code generation, see “Code Generation for Tables”
(MATLAB Coder) and “Table Limitations for Code Generation”
(MATLAB Coder).

Name-value pair
arguments

Names in name-value arguments must be compile-time constants. For
example, to allow user-defined indices up to 5 weak learners in the
generated code, include
{coder.Constant('Learners'),coder.typeof(0,[1,5],
[0,1])} in the -args value of codegen.

'Learners' For fixed-point code generation, the 'Learners' value must have an
integer data type.

For more information, see “Introduction to Code Generation” on page 34-2.

Automatic Parallel Support
Accelerate code by automatically running computation in parallel using Parallel Computing Toolbox™.
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To run in parallel, set the UseParallel name-value argument to true in the call to this function.

For more general information about parallel computing, see “Run MATLAB Functions with Automatic
Parallel Support” (Parallel Computing Toolbox).

You cannot use UseParallel with tall or GPU arrays or in code generation.

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

Usage notes and limitations:

• The predict function does not support ensembles trained using decision tree learners with
surrogate splits.

For more information, see “Run MATLAB Functions on a GPU” (Parallel Computing Toolbox).

See Also
ClassificationBaggedEnsemble | CompactClassificationEnsemble |
ClassificationEnsemble | fitcensemble | margin | edge | loss
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predict
Classify observations using naive Bayes classifier

Syntax
label = predict(Mdl,X)
[label,Posterior,Cost] = predict(Mdl,X)

Description
label = predict(Mdl,X) returns a vector of predicted class labels for the predictor data in the
table or matrix X, based on the trained naive Bayes classification model Mdl. The trained naive Bayes
model can either be full or compact.

[label,Posterior,Cost] = predict(Mdl,X) also returns the “Posterior Probability” on page
35-5787 (Posterior) and predicted (expected) “Misclassification Cost” on page 35-5787 (Cost)
corresponding to the observations (rows) in Mdl.X. For each observation in X, the predicted class
label corresponds to the minimum expected classification cost among all classes.

Examples

Label Test Sample Observations of Naive Bayes Classifier

Load the fisheriris data set. Create X as a numeric matrix that contains four petal measurements
for 150 irises. Create Y as a cell array of character vectors that contains the corresponding iris
species.

load fisheriris
X = meas;
Y = species;
rng('default')  % for reproducibility

Randomly partition observations into a training set and a test set with stratification, using the class
information in Y. Specify a 30% holdout sample for testing.

cv = cvpartition(Y,'HoldOut',0.30);

Extract the training and test indices.

trainInds = training(cv);
testInds = test(cv);

Specify the training and test data sets.

XTrain = X(trainInds,:);
YTrain = Y(trainInds);
XTest = X(testInds,:);
YTest = Y(testInds);
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Train a naive Bayes classifier using the predictors XTrain and class labels YTrain. A recommended
practice is to specify the class names. fitcnb assumes that each predictor is conditionally and
normally distributed.

Mdl = fitcnb(XTrain,YTrain,'ClassNames',{'setosa','versicolor','virginica'})

Mdl = 
  ClassificationNaiveBayes
              ResponseName: 'Y'
     CategoricalPredictors: []
                ClassNames: {'setosa'  'versicolor'  'virginica'}
            ScoreTransform: 'none'
           NumObservations: 105
         DistributionNames: {'normal'  'normal'  'normal'  'normal'}
    DistributionParameters: {3x4 cell}

  Properties, Methods

Mdl is a trained ClassificationNaiveBayes classifier.

Predict the test sample labels.

idx = randsample(sum(testInds),10);
label = predict(Mdl,XTest);

Display the results for a random set of 10 observations in the test sample.

table(YTest(idx),label(idx),'VariableNames',...
    {'TrueLabel','PredictedLabel'})

ans=10×2 table
      TrueLabel       PredictedLabel
    ______________    ______________

    {'virginica' }    {'virginica' }
    {'versicolor'}    {'versicolor'}
    {'versicolor'}    {'versicolor'}
    {'virginica' }    {'virginica' }
    {'setosa'    }    {'setosa'    }
    {'virginica' }    {'virginica' }
    {'setosa'    }    {'setosa'    }
    {'versicolor'}    {'versicolor'}
    {'versicolor'}    {'virginica' }
    {'versicolor'}    {'versicolor'}

Create a confusion chart from the true labels YTest and the predicted labels label.

cm = confusionchart(YTest,label);
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Estimate Posterior Probabilities and Misclassification Costs

Estimate posterior probabilities and misclassification costs for new observations using a naive Bayes
classifier. Classify new observations using a memory-efficient pretrained classifier.

Load the fisheriris data set. Create X as a numeric matrix that contains four petal measurements
for 150 irises. Create Y as a cell array of character vectors that contains the corresponding iris
species.

load fisheriris
X = meas;
Y = species;
rng('default')  % for reproducibility

Partition the data set into two sets: one contains the training set, and the other contains new,
unobserved data. Reserve 10 observations for the new data set.

n = size(X,1);
newInds = randsample(n,10);
inds = ~ismember(1:n,newInds);
XNew = X(newInds,:);
YNew = Y(newInds);
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Train a naive Bayes classifier using the predictors X and class labels Y. A recommended practice is to
specify the class names. fitcnb assumes that each predictor is conditionally and normally
distributed.

Mdl = fitcnb(X(inds,:),Y(inds),...
    'ClassNames',{'setosa','versicolor','virginica'});

Mdl is a trained ClassificationNaiveBayes classifier.

Conserve memory by reducing the size of the trained naive Bayes classifier.

CMdl = compact(Mdl);
whos('Mdl','CMdl')

  Name      Size            Bytes  Class                                                        Attributes

  CMdl      1x1              5406  classreg.learning.classif.CompactClassificationNaiveBayes              
  Mdl       1x1             12731  ClassificationNaiveBayes                                               

CMdl is a CompactClassificationNaiveBayes classifier. It uses less memory than Mdl because
Mdl stores the data.

Display the class names of CMdl using dot notation.

CMdl.ClassNames

ans = 3x1 cell
    {'setosa'    }
    {'versicolor'}
    {'virginica' }

Predict the labels. Estimate the posterior probabilities and expected class misclassification costs.

[labels,PostProbs,MisClassCost] = predict(CMdl,XNew);

Compare the true labels with the predicted labels.

table(YNew,labels,PostProbs,MisClassCost,'VariableNames',...
    {'TrueLabels','PredictedLabels',...
    'PosteriorProbabilities','MisclassificationCosts'})

ans=10×4 table
      TrueLabels      PredictedLabels             PosteriorProbabilities                      MisclassificationCosts        
    ______________    _______________    _________________________________________    ______________________________________

    {'virginica' }    {'virginica' }     4.0832e-268     4.6422e-09              1             1             1    4.6422e-09
    {'setosa'    }    {'setosa'    }               1     3.0706e-18     4.6719e-25    3.0706e-18             1             1
    {'virginica' }    {'virginica' }     1.0007e-246     5.8758e-10              1             1             1    5.8758e-10
    {'versicolor'}    {'versicolor'}      1.2022e-61        0.99995     4.9859e-05             1    4.9859e-05       0.99995
    {'virginica' }    {'virginica' }      2.687e-226     1.7905e-08              1             1             1    1.7905e-08
    {'versicolor'}    {'versicolor'}      3.3431e-76        0.99971     0.00028983             1    0.00028983       0.99971
    {'virginica' }    {'virginica' }       4.05e-166      0.0028527        0.99715             1       0.99715     0.0028527
    {'setosa'    }    {'setosa'    }               1     1.1272e-14     2.0308e-23    1.1272e-14             1             1
    {'virginica' }    {'virginica' }     1.3292e-228     8.3604e-10              1             1             1    8.3604e-10
    {'setosa'    }    {'setosa'    }               1     4.5023e-17     2.1724e-24    4.5023e-17             1             1
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PostProbs and MisClassCost are 10-by-3 numeric matrices, where each row corresponds to a new
observation and each column corresponds to a class. The order of the columns corresponds to the
order of CMdl.ClassNames.

Plot Posterior Probability Regions for Naive Bayes Classifier

Load the fisheriris data set. Create X as a numeric matrix that contains petal length and width
measurements for 150 irises. Create Y as a cell array of character vectors that contains the
corresponding iris species.

load fisheriris
X = meas(:,3:4);
Y = species;

Train a naive Bayes classifier using the predictors X and class labels Y. A recommended practice is to
specify the class names. fitcnb assumes that each predictor is conditionally and normally
distributed.

Mdl = fitcnb(X,Y,'ClassNames',{'setosa','versicolor','virginica'});

Mdl is a trained ClassificationNaiveBayes classifier.

Define a grid of values in the observed predictor space.

xMax = max(X);
xMin = min(X);
h = 0.01;
[x1Grid,x2Grid] = meshgrid(xMin(1):h:xMax(1),xMin(2):h:xMax(2));

Predict the posterior probabilities for each instance in the grid.

[~,PosteriorRegion] = predict(Mdl,[x1Grid(:),x2Grid(:)]);

Plot the posterior probability regions and the training data.

h = scatter(x1Grid(:),x2Grid(:),1,PosteriorRegion);
h.MarkerEdgeAlpha = 0.3;

Plot the data.

hold on
gh = gscatter(X(:,1),X(:,2),Y,'k','dx*');
title 'Iris Petal Measurements and Posterior Probabilities';
xlabel 'Petal length (cm)';
ylabel 'Petal width (cm)';
axis tight
legend(gh,'Location','Best')
hold off
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Input Arguments
Mdl — Naive Bayes classification model
ClassificationNaiveBayes model object | CompactClassificationNaiveBayes model object

Naive Bayes classification model, specified as a ClassificationNaiveBayes model object or
CompactClassificationNaiveBayes model object returned by fitcnb or compact, respectively.

X — Predictor data to be classified
numeric matrix | table

Predictor data to be classified, specified as a numeric matrix or table.

Each row of X corresponds to one observation, and each column corresponds to one variable.

• For a numeric matrix:

• The variables that make up the columns of X must have the same order as the predictor
variables that trained Mdl.

• If you train Mdl using a table (for example, Tbl), then X can be a numeric matrix if Tbl
contains only numeric predictor variables. To treat numeric predictors in Tbl as categorical
during training, identify categorical predictors using the 'CategoricalPredictors' name-
value pair argument of fitcnb. If Tbl contains heterogeneous predictor variables (for
example, numeric and categorical data types) and X is a numeric matrix, then predict throws
an error.
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• For a table:

• predict does not support multicolumn variables or cell arrays other than cell arrays of
character vectors.

• If you train Mdl using a table (for example, Tbl), then all predictor variables in X must have
the same variable names and data types as the variables that trained Mdl (stored in
Mdl.PredictorNames). However, the column order of X does not need to correspond to the
column order of Tbl. Tbl and X can contain additional variables (response variables,
observation weights, and so on), but predict ignores them.

• If you train Mdl using a numeric matrix, then the predictor names in Mdl.PredictorNames
must be the same as the corresponding predictor variable names in X. To specify predictor
names during training, use the 'PredictorNames' name-value pair argument of fitcnb. All
predictor variables in X must be numeric vectors. X can contain additional variables (response
variables, observation weights, and so on), but predict ignores them.

Data Types: table | double | single

Notes:

• If Mdl.DistributionNames is 'mn', then the software returns NaNs corresponding to rows of X
that contain at least one NaN.

• If Mdl.DistributionNames is not 'mn', then the software ignores NaN values when estimating
misclassification costs and posterior probabilities. Specifically, the software computes the
conditional density of the predictors given the class by leaving out the factors corresponding to
missing predictor values.

• For predictor distribution specified as 'mvmn', if X contains levels that are not represented in the
training data (that is, not in Mdl.CategoricalLevels for that predictor), then the conditional
density of the predictors given the class is 0. For those observations, the software returns the
corresponding value of Posterior as a NaN. The software determines the class label for such
observations using the class prior probability stored in Mdl.Prior.

Output Arguments
label — Predicted class labels
categorical vector | character array | logical vector | numeric vector | cell array of character vectors

Predicted class labels, returned as a categorical vector, character array, logical or numeric vector, or
cell array of character vectors.

The predicted class labels have the following:

• Same data type as the observed class labels (Mdl.Y). (The software treats string arrays as cell
arrays of character vectors.)

• Length equal to the number of rows of Mdl.X.
• Class yielding the lowest expected misclassification cost (Cost).

Posterior — Class posterior probability
numeric matrix
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Class “Posterior Probability” on page 35-5787, returned as a numeric matrix. Posterior has rows
equal to the number of rows of Mdl.X and columns equal to the number of distinct classes in the
training data (size(Mdl.ClassNames,1)).

Posterior(j,k) is the predicted posterior probability of class k (in class Mdl.ClassNames(k))
given the observation in row j of Mdl.X.

Cost — Expected misclassification costs
numeric matrix

Expected “Misclassification Cost” on page 35-5787, returned as a numeric matrix. Cost has rows
equal to the number of rows of Mdl.X and columns equal to the number of distinct classes in the
training data (size(Mdl.ClassNames,1)).

Cost(j,k) is the expected misclassification cost of the observation in row j of Mdl.X predicted into
class k (in class Mdl.ClassNames(k)).

More About
Misclassification Cost

A misclassification cost is the relative severity of a classifier labeling an observation into the wrong
class.

Two types of misclassification cost exist: true and expected. Let K be the number of classes.

• True misclassification cost — A K-by-K matrix, where element (i,j) indicates the cost of classifying
an observation into class j if its true class is i. The software stores the misclassification cost in the
property Mdl.Cost, and uses it in computations. By default, Mdl.Cost(i,j) = 1 if i ≠ j, and
Mdl.Cost(i,j) = 0 if i = j. In other words, the cost is 0 for correct classification and 1 for any
incorrect classification.

• Expected misclassification cost — A K-dimensional vector, where element k is the weighted
average cost of classifying an observation into class k, weighted by the class posterior
probabilities.

ck = ∑
j = 1

K
P Y = j x1, ..., xP Cost jk .

In other words, the software classifies observations into the class with the lowest expected
misclassification cost.

Posterior Probability

The posterior probability is the probability that an observation belongs in a particular class, given the
data.

For naive Bayes, the posterior probability that a classification is k for a given observation (x1,...,xP) is

P Y = k x1, .., xP =
P X1, ..., XP y = k π Y = k

P X1, ..., XP
,

where:
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• P X1, ..., XP y = k  is the conditional joint density of the predictors given they are in class k.
Mdl.DistributionNames stores the distribution names of the predictors.

• π(Y = k) is the class prior probability distribution. Mdl.Prior stores the prior distribution.
• P X1, .., XP  is the joint density of the predictors. The classes are discrete, so

P(X1, ..., XP) = ∑
k = 1

K
P(X1, ..., XP y = k)π(Y = k) .

Prior Probability

The prior probability of a class is the assumed relative frequency with which observations from that
class occur in a population.

Version History
Introduced in R2014b

Extended Capabilities
Tall Arrays
Calculate with arrays that have more rows than fit in memory.

This function fully supports tall arrays. You can use models trained on either in-memory or tall data
with this function.

For more information, see “Tall Arrays”.

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• Use saveLearnerForCoder, loadLearnerForCoder, and codegen to generate code for the
predict function. Save a trained model by using saveLearnerForCoder. Define an entry-point
function that loads the saved model by using loadLearnerForCoder and calls the predict
function. Then use codegen to generate code for the entry-point function.

• To generate single-precision C/C++ code for predict, specify the name-value argument
"DataType","single" when you call the loadLearnerForCoder function.

• This table contains notes about the arguments of predict. Arguments not included in this table
are fully supported.

Argument Notes and Limitations
Mdl For the usage notes and limitations of the model object, see “Code

Generation” on page 35-898 of the
CompactClassificationNaiveBayes object.
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Argument Notes and Limitations
X • X must be a single-precision or double-precision matrix or a table

containing numeric variables, categorical variables, or both.
• The number of rows, or observations, in X can be a variable size,

but the number of columns in X must be fixed.
• If you want to specify X as a table, then your model must be trained

using a table, and your entry-point function for prediction must do
the following:

• Accept data as arrays.
• Create a table from the data input arguments and specify the

variable names in the table.
• Pass the table to predict.

For an example of this table workflow, see “Generate Code to
Classify Data in Table” on page 34-112. For more information on
using tables in code generation, see “Code Generation for Tables”
(MATLAB Coder) and “Table Limitations for Code Generation”
(MATLAB Coder).

For more information, see “Introduction to Code Generation” on page 34-2.

See Also
ClassificationNaiveBayes | CompactClassificationNaiveBayes | loss | resubPredict |
fitcnb

Topics
“Naive Bayes Classification” on page 22-2
“Grouping Variables” on page 2-46
“Plot Posterior Classification Probabilities” on page 22-5
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predict
Package: 

Classify observations using neural network classifier

Syntax
label = predict(Mdl,X)
label = predict(Mdl,X,'ObservationsIn',dimension)
[label,Score] = predict( ___ )

Description
label = predict(Mdl,X) returns predicted class labels for the predictor data in the table or
matrix X using the trained neural network classification model Mdl.

label = predict(Mdl,X,'ObservationsIn',dimension) specifies the predictor data
observation dimension, either 'rows' (default) or 'columns'. For example, specify
'ObservationsIn','columns' to indicate that columns in the predictor data correspond to
observations.

[label,Score] = predict( ___ ) also returns a matrix of classification scores on page 35-5798
indicating the likelihood that a label comes from a particular class, using any of the input argument
combinations in the previous syntaxes. For each observation in X, the predicted class label
corresponds to the maximum score among all classes.

Examples

Classify Test Set Observations Using Neural Network

Predict labels for test set observations using a neural network classifier.

Load the patients data set. Create a table from the data set. Each row corresponds to one patient,
and each column corresponds to a diagnostic variable. Use the Smoker variable as the response
variable, and the rest of the variables as predictors.

load patients
tbl = table(Diastolic,Systolic,Gender,Height,Weight,Age,Smoker);

Separate the data into a training set tblTrain and a test set tblTest by using a stratified holdout
partition. The software reserves approximately 30% of the observations for the test data set and uses
the rest of the observations for the training data set.

rng("default") % For reproducibility of the partition
c = cvpartition(tbl.Smoker,"Holdout",0.30);
trainingIndices = training(c);
testIndices = test(c);
tblTrain = tbl(trainingIndices,:);
tblTest = tbl(testIndices,:);
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Train a neural network classifier using the training set. Specify the Smoker column of tblTrain as
the response variable. Specify to standardize the numeric predictors.

Mdl = fitcnet(tblTrain,"Smoker", ...
    "Standardize",true);

Classify the test set observations. Visualize the results using a confusion matrix.

label = predict(Mdl,tblTest);
confusionchart(tblTest.Smoker,label)

The neural network model correctly classifies all but two of the test set observations.

Select Features to Include in Neural Network Classifier

Perform feature selection by comparing test set classification margins, edges, errors, and predictions.
Compare the test set metrics for a model trained using all the predictors to the test set metrics for a
model trained using only a subset of the predictors.

Load the sample file fisheriris.csv, which contains iris data including sepal length, sepal width,
petal length, petal width, and species type. Read the file into a table.

fishertable = readtable('fisheriris.csv');
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Separate the data into a training set trainTbl and a test set testTbl by using a stratified holdout
partition. The software reserves approximately 30% of the observations for the test data set and uses
the rest of the observations for the training data set.

rng("default")
c = cvpartition(fishertable.Species,"Holdout",0.3);
trainTbl = fishertable(training(c),:);
testTbl = fishertable(test(c),:);

Train one neural network classifier using all the predictors in the training set, and train another
classifier using all the predictors except PetalWidth. For both models, specify Species as the
response variable, and standardize the predictors.

allMdl = fitcnet(trainTbl,"Species","Standardize",true);
subsetMdl = fitcnet(trainTbl,"Species ~ SepalLength + SepalWidth + PetalLength", ...
    "Standardize",true);

Calculate the test set classification margins for the two models. Because the test set includes only 45
observations, display the margins using bar graphs.

For each observation, the classification margin is the difference between the classification score for
the true class and the maximal score for the false classes. Because neural network classifiers return
classification scores that are posterior probabilities, margin values close to 1 indicate confident
classifications and negative margin values indicate misclassifications.

tiledlayout(2,1)

% Top axes
ax1 = nexttile;
allMargins = margin(allMdl,testTbl);
bar(ax1,allMargins)
xlabel(ax1,"Observation")
ylabel(ax1,"Margin")
title(ax1,"All Predictors")

% Bottom axes
ax2 = nexttile;
subsetMargins = margin(subsetMdl,testTbl);
bar(ax2,subsetMargins)
xlabel(ax2,"Observation")
ylabel(ax2,"Margin")
title(ax2,"Subset of Predictors")
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Compare the test set classification edge, or mean of the classification margins, of the two models.

allEdge = edge(allMdl,testTbl)

allEdge = 0.8198

subsetEdge = edge(subsetMdl,testTbl)

subsetEdge = 0.9556

Based on the test set classification margins and edges, the model trained on a subset of the
predictors seems to outperform the model trained on all the predictors.

Compare the test set classification error of the two models.

allError = loss(allMdl,testTbl);
allAccuracy = 1-allError

allAccuracy = 0.9111

subsetError = loss(subsetMdl,testTbl);
subsetAccuracy = 1-subsetError

subsetAccuracy = 0.9778

Again, the model trained using only a subset of the predictors seems to perform better than the
model trained using all the predictors.

Visualize the test set classification results using confusion matrices.
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allLabels = predict(allMdl,testTbl);
figure
confusionchart(testTbl.Species,allLabels)
title("All Predictors")

subsetLabels = predict(subsetMdl,testTbl);
figure
confusionchart(testTbl.Species,subsetLabels)
title("Subset of Predictors")
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The model trained using all the predictors misclassifies four of the test set observations. The model
trained using a subset of the predictors misclassifies only one of the test set observations.

Given the test set performance of the two models, consider using the model trained using all the
predictors except PetalWidth.

Predict Using Layer Structure of Neural Network Classifier

See how the layers of a neural network classifier work together to predict the label and classification
scores for a single observation.

Load the sample file fisheriris.csv, which contains iris data including sepal length, sepal width,
petal length, petal width, and species type. Read the file into a table.

fishertable = readtable('fisheriris.csv');

Train a neural network classifier using the data set. Specify the Species column of fishertable as
the response variable.

Mdl = fitcnet(fishertable,"Species");

Select the fifteenth observation from the data set. See how the layers of the neural network classifier
take the observation and return a predicted class label newPointLabel and classification scores
newPointScores.
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newPoint = Mdl.X{15,:}

newPoint = 1×4

    5.8000    4.0000    1.2000    0.2000

firstFCStep = (Mdl.LayerWeights{1})*newPoint' + Mdl.LayerBiases{1};
reluStep = max(firstFCStep,0);

finalFCStep = (Mdl.LayerWeights{end})*reluStep + Mdl.LayerBiases{end};
finalSoftmaxStep = softmax(finalFCStep);

[~,classIdx] = max(finalSoftmaxStep);
newPointLabel = Mdl.ClassNames{classIdx}

newPointLabel = 
'setosa'

newPointScores = finalSoftmaxStep'

newPointScores = 1×3

    1.0000    0.0000    0.0000

Check that the predictions match those returned by the predict object function.

[predictedLabel,predictedScores] = predict(Mdl,newPoint)

predictedLabel = 1x1 cell array
    {'setosa'}

predictedScores = 1×3

    1.0000    0.0000    0.0000

Input Arguments
Mdl — Trained neural network classifier
ClassificationNeuralNetwork model object | CompactClassificationNeuralNetwork
model object

Trained neural network classifier, specified as a ClassificationNeuralNetwork model object or
CompactClassificationNeuralNetwork model object returned by fitcnet or compact,
respectively.

X — Predictor data to be classified
numeric matrix | table

Predictor data to be classified, specified as a numeric matrix or table.

By default, each row of X corresponds to one observation, and each column corresponds to one
variable.
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• For a numeric matrix:

• The variables in the columns of X must have the same order as the predictor variables that
trained Mdl.

• If you train Mdl using a table (for example, Tbl) and Tbl contains only numeric predictor
variables, then X can be a numeric matrix. To treat numeric predictors in Tbl as categorical
during training, identify categorical predictors by using the CategoricalPredictors name-
value argument of fitcnet. If Tbl contains heterogeneous predictor variables (for example,
numeric and categorical data types) and X is a numeric matrix, then predict throws an error.

• For a table:

• predict does not support multicolumn variables or cell arrays other than cell arrays of
character vectors.

• If you train Mdl using a table (for example, Tbl), then all predictor variables in X must have
the same variable names and data types as the variables that trained Mdl (stored in
Mdl.PredictorNames). However, the column order of X does not need to correspond to the
column order of Tbl. Also, Tbl and X can contain additional variables (response variables,
observation weights, and so on), but predict ignores them.

• If you train Mdl using a numeric matrix, then the predictor names in Mdl.PredictorNames
must be the same as the corresponding predictor variable names in X. To specify predictor
names during training, use the PredictorNames name-value argument of fitcnet. All
predictor variables in X must be numeric vectors. X can contain additional variables (response
variables, observation weights, and so on), but predict ignores them.

If you set 'Standardize',true in fitcnet when training Mdl, then the software standardizes the
numeric columns of the predictor data using the corresponding means and standard deviations.

Note If you orient your predictor matrix so that observations correspond to columns and specify
'ObservationsIn','columns', then you might experience a significant reduction in computation
time. You cannot specify 'ObservationsIn','columns' for predictor data in a table.

Data Types: single | double | table

dimension — Predictor data observation dimension
'rows' (default) | 'columns'

Predictor data observation dimension, specified as 'rows' or 'columns'.

Note If you orient your predictor matrix so that observations correspond to columns and specify
'ObservationsIn','columns', then you might experience a significant reduction in computation
time. You cannot specify 'ObservationsIn','columns' for predictor data in a table.

Data Types: char | string

Output Arguments
label — Predicted class labels
numeric vector | categorical vector | logical vector | character array | string array | cell array of
character vectors
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Predicted class labels, returned as a numeric, categorical, or logical vector; a character or string
array; or a cell array of character vectors. The software predicts the classification of an observation
by assigning the observation to the class yielding the largest classification score or posterior
probability.

label has the same data type as the observed class labels that trained Mdl, and its length is equal to
the number of observations in X. (The software treats string arrays as cell arrays of character
vectors.)

Score — Classification scores
numeric matrix

Classification scores on page 35-5798, returned as an n-by-K matrix, where n is the number of
observations in X and K is the number of unique classes. The classification score Score(i,j)
represents the posterior probability that the ith observation belongs to class j.

More About
Classification Scores

The classification scores for a neural network classifier are computed using the softmax activation
function that follows the final fully connected layer in the network. The scores correspond to
posterior probabilities.

The posterior probability that an observation x is of class k is

P (k x) = P(x k)P(k)

∑
j = 1

K
P(x j)P( j)

=
exp(ak(x))

∑
j = 1

K
exp(a j(x))

where

• P(x|k) is the conditional probability of x given class k.
• P(k) is the prior probability for class k.
• K is the number of classes in the response variable.
• ak(x) is the k output from the final fully connected layer for observation x.

Alternative Functionality
Simulink Block

To integrate the prediction of a neural network classification model into Simulink, you can use the
ClassificationNeuralNetwork Predict block in the Statistics and Machine Learning Toolbox library or
a MATLAB Function block with the predict function. For examples, see “Predict Class Labels Using
ClassificationNeuralNetwork Predict Block” on page 34-156 and “Predict Class Labels Using MATLAB
Function Block” on page 34-51.

When deciding which approach to use, consider the following:

• If you use the Statistics and Machine Learning Toolbox library block, you can use the Fixed-Point
Tool to convert a floating-point model to fixed point.

35 Functions

35-5798



• Support for variable-size arrays must be enabled for a MATLAB Function block with the predict
function.

• If you use a MATLAB Function block, you can use MATLAB functions for preprocessing or post-
processing before or after predictions in the same MATLAB Function block.

Version History
Introduced in R2021a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• Use saveLearnerForCoder, loadLearnerForCoder, and codegen to generate code for the
predict function. Save a trained model by using saveLearnerForCoder. Define an entry-point
function that loads the saved model by using loadLearnerForCoder and calls the predict
function. Then use codegen to generate code for the entry-point function.

• To generate single-precision C/C++ code for predict, specify the name-value argument
"DataType","single" when you call the loadLearnerForCoder function.

• This table contains notes about the arguments of predict. Arguments not included in this table
are fully supported.

Argument Notes and Limitations
Mdl For the usage notes and limitations of the model object, see “Code

Generation” on page 35-906 of the
CompactClassificationNeuralNetwork object.

X • X must be a single-precision or double-precision matrix or a table
containing numeric variables, categorical variables, or both.

• The number of rows, or observations, in X can be a variable size,
but the number of columns in X must be fixed.

• If you want to specify X as a table, then your model must be trained
using a table, and your entry-point function for prediction must do
the following:

• Accept data as arrays.
• Create a table from the data input arguments and specify the

variable names in the table.
• Pass the table to predict.

For an example of this table workflow, see “Generate Code to
Classify Data in Table” on page 34-112. For more information on
using tables in code generation, see “Code Generation for Tables”
(MATLAB Coder) and “Table Limitations for Code Generation”
(MATLAB Coder).
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Argument Notes and Limitations
ObservationsIn The dimension value for the ObservationsIn name-value argument

must be a compile-time constant. For example, to use
"ObservationsIn","columns" in the generated code, include
{coder.Constant("ObservationsIn"),coder.Constant("colu
mns")} in the -args value of codegen.

For more information, see “Introduction to Code Generation” on page 34-2.

See Also
fitcnet | ClassificationNeuralNetwork | CompactClassificationNeuralNetwork | edge |
margin | loss

Topics
“Assess Neural Network Classifier Performance” on page 19-181
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predict
Package: classreg.learning.classif

Classify observations using support vector machine (SVM) classifier

Syntax
label = predict(SVMModel,X)
[label,score] = predict(SVMModel,X)

Description
label = predict(SVMModel,X) returns a vector of predicted class labels for the predictor data in
the table or matrix X, based on the trained support vector machine (SVM) classification model
SVMModel. The trained SVM model can either be full or compact.

[label,score] = predict(SVMModel,X) also returns a matrix of scores (score) indicating the
likelihood that a label comes from a particular class. For SVM, likelihood measures are either
classification scores on page 35-5805 or class posterior probabilities on page 35-5806. For each
observation in X, the predicted class label corresponds to the maximum score among all classes.

Examples

Label Test Sample Observations of SVM Classifiers

Load the ionosphere data set.

load ionosphere
rng(1); % For reproducibility

Train an SVM classifier. Specify a 15% holdout sample for testing, standardize the data, and specify
that 'g' is the positive class.

CVSVMModel = fitcsvm(X,Y,'Holdout',0.15,'ClassNames',{'b','g'},...
    'Standardize',true);
CompactSVMModel = CVSVMModel.Trained{1}; % Extract trained, compact classifier
testInds = test(CVSVMModel.Partition);   % Extract the test indices
XTest = X(testInds,:);
YTest = Y(testInds,:);

CVSVMModel is a ClassificationPartitionedModel classifier. It contains the property Trained,
which is a 1-by-1 cell array holding a CompactClassificationSVM classifier that the software
trained using the training set.

Label the test sample observations. Display the results for the first 10 observations in the test sample.

[label,score] = predict(CompactSVMModel,XTest);
table(YTest(1:10),label(1:10),score(1:10,2),'VariableNames',...
    {'TrueLabel','PredictedLabel','Score'})
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ans=10×3 table
    TrueLabel    PredictedLabel     Score  
    _________    ______________    ________

      {'b'}          {'b'}          -1.7176
      {'g'}          {'g'}           2.0002
      {'b'}          {'b'}          -9.6851
      {'g'}          {'g'}           2.5618
      {'b'}          {'b'}          -1.5481
      {'g'}          {'g'}           2.0983
      {'b'}          {'b'}          -2.7012
      {'b'}          {'b'}         -0.66312
      {'g'}          {'g'}           1.6045
      {'g'}          {'g'}           1.7729

Predict Labels and Posterior Probabilities of SVM Classifiers

Label new observations using an SVM classifier.

Load the ionosphere data set. Assume that the last 10 observations become available after you train
the SVM classifier.

load ionosphere
rng(1); % For reproducibility
n = size(X,1);       % Training sample size 
isInds = 1:(n-10);   % In-sample indices 
oosInds = (n-9):n;   % Out-of-sample indices

Train an SVM classifier. Standardize the data and specify that 'g' is the positive class. Conserve
memory by reducing the size of the trained SVM classifier.

SVMModel = fitcsvm(X(isInds,:),Y(isInds),'Standardize',true,...
    'ClassNames',{'b','g'});
CompactSVMModel = compact(SVMModel);
whos('SVMModel','CompactSVMModel')

  Name                 Size             Bytes  Class                                                 Attributes

  CompactSVMModel      1x1              30482  classreg.learning.classif.CompactClassificationSVM              
  SVMModel             1x1             137582  ClassificationSVM                                               

The CompactClassificationSVM classifier (CompactSVMModel) uses less space than the
ClassificationSVM classifier (SVMModel) because SVMModel stores the data.

Estimate the optimal score-to-posterior-probability transformation function.

CompactSVMModel = fitPosterior(CompactSVMModel,...
    X(isInds,:),Y(isInds))

CompactSVMModel = 
  CompactClassificationSVM
             ResponseName: 'Y'
    CategoricalPredictors: []
               ClassNames: {'b'  'g'}
           ScoreTransform: '@(S)sigmoid(S,-1.968445e+00,3.121617e-01)'
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                    Alpha: [88x1 double]
                     Bias: -0.2142
         KernelParameters: [1x1 struct]
                       Mu: [0.8886 0 0.6365 0.0457 0.5933 0.1200 0.5414 ... ]
                    Sigma: [0.3151 0 0.5032 0.4476 0.5251 0.4668 0.4966 ... ]
           SupportVectors: [88x34 double]
      SupportVectorLabels: [88x1 double]

  Properties, Methods

The optimal score transformation function (CompactSVMModel.ScoreTransform) is the sigmoid
function because the classes are inseparable.

Predict the out-of-sample labels and positive class posterior probabilities. Because true labels are
available, compare them with the predicted labels.

[labels,PostProbs] = predict(CompactSVMModel,X(oosInds,:));
table(Y(oosInds),labels,PostProbs(:,2),'VariableNames',...
    {'TrueLabels','PredictedLabels','PosClassPosterior'})

ans=10×3 table
    TrueLabels    PredictedLabels    PosClassPosterior
    __________    _______________    _________________

      {'g'}            {'g'}              0.98419     
      {'g'}            {'g'}              0.95545     
      {'g'}            {'g'}              0.67789     
      {'g'}            {'g'}              0.94447     
      {'g'}            {'g'}              0.98744     
      {'g'}            {'g'}               0.9248     
      {'g'}            {'g'}               0.9711     
      {'g'}            {'g'}              0.96986     
      {'g'}            {'g'}              0.97803     
      {'g'}            {'g'}               0.9436     

PostProbs is a 10-by-2 matrix, where the first column is the negative class posterior probabilities,
and the second column is the positive class posterior probabilities corresponding to the new
observations.

Input Arguments
SVMModel — SVM classification model
ClassificationSVM model object | CompactClassificationSVM model object

SVM classification model, specified as a ClassificationSVM model object or
CompactClassificationSVM model object returned by fitcsvm or compact, respectively.

X — Predictor data to be classified
numeric matrix | table

Predictor data to be classified, specified as a numeric matrix or table.

Each row of X corresponds to one observation, and each column corresponds to one variable.
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• For a numeric matrix:

• The variables in the columns of X must have the same order as the predictor variables that
trained SVMModel.

• If you trained SVMModel using a table (for example, Tbl) and Tbl contains all numeric
predictor variables, then X can be a numeric matrix. To treat numeric predictors in Tbl as
categorical during training, identify categorical predictors by using the
CategoricalPredictors name-value pair argument of fitcsvm. If Tbl contains
heterogeneous predictor variables (for example, numeric and categorical data types) and X is a
numeric matrix, then predict throws an error.

• For a table:

• predict does not support multicolumn variables or cell arrays other than cell arrays of
character vectors.

• If you trained SVMModel using a table (for example, Tbl), then all predictor variables in X
must have the same variable names and data types as those that trained SVMModel (stored in
SVMModel.PredictorNames). However, the column order of X does not need to correspond to
the column order of Tbl. Also, Tbl and X can contain additional variables (response variables,
observation weights, and so on), but predict ignores them.

• If you trained SVMModel using a numeric matrix, then the predictor names in
SVMModel.PredictorNames and corresponding predictor variable names in X must be the
same. To specify predictor names during training, see the PredictorNames name-value pair
argument of fitcsvm. All predictor variables in X must be numeric vectors. X can contain
additional variables (response variables, observation weights, and so on), but predict ignores
them.

If you set 'Standardize',true in fitcsvm to train SVMModel, then the software standardizes the
columns of X using the corresponding means in SVMModel.Mu and the standard deviations in
SVMModel.Sigma.
Data Types: table | double | single

Output Arguments
label — Predicted class labels
categorical array | character array | logical vector | numeric vector | cell array of character vectors

Predicted class labels, returned as a categorical or character array, logical or numeric vector, or cell
array of character vectors.

label has the same data type as the observed class labels (Y) that trained SVMModel, and its length
is equal to the number of rows in X. (The software treats string arrays as cell arrays of character
vectors.)

The predict function classifies an observation into the class yielding the highest score. For an
observation with NaN scores, the function classifies the observation into the majority class, which
makes up the largest proportion of the training labels.

For one-class learning, each value in label is the same—the one class in the training data. Use
score to identify anomalies.

score — Predicted class scores or posterior probabilities
numeric column vector | numeric matrix
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Predicted class scores on page 35-5805 or posterior probabilities on page 35-5806, returned as a
numeric column vector or numeric matrix.

• For one-class learning, score is a column vector with the same number of rows as the
observations (X). The elements of score are anomaly scores for the corresponding observations.
Negative score values indicate that the corresponding observations are outliers. You cannot obtain
posterior probabilities for one-class learning.

• For two-class learning, score is a two-column matrix with the same number of rows as X.

• If you fit the optimal score-to-posterior-probability transformation function using
fitPosterior or fitSVMPosterior, then score contains class posterior probabilities. That
is, if the value of SVMModel.ScoreTransform is not none, then the first and second columns
of score contain the negative class (SVMModel.ClassNames{1}) and positive class
(SVMModel.ClassNames{2}) posterior probabilities for the corresponding observations,
respectively.

• Otherwise, the first column contains the negative class scores and the second column contains
the positive class scores for the corresponding observations.

If SVMModel.KernelParameters.Function is 'linear', then the classification score for the
observation x is

f x = x/s ′β + b .

SVMModel stores β, b, and s in the properties Beta, Bias, and KernelParameters.Scale,
respectively.

To estimate classification scores manually, you must first apply any transformations to the predictor
data that were applied during training. Specifically, if you specify 'Standardize',true when using
fitcsvm, then you must standardize the predictor data manually by using the mean SVMModel.Mu
and standard deviation SVMModel.Sigma, and then divide the result by the kernel scale in
SVMModel.KernelParameters.Scale.

All SVM functions, such as resubPredict and predict, apply any required transformation before
estimation.

If SVMModel.KernelParameters.Function is not 'linear', then Beta is empty ([]).

More About
Classification Score

The SVM classification score for classifying observation x is the signed distance from x to the decision
boundary ranging from -∞ to +∞. A positive score for a class indicates that x is predicted to be in that
class. A negative score indicates otherwise.

The positive class classification score f (x) is the trained SVM classification function. f (x) is also the
numerical predicted response for x, or the score for predicting x into the positive class.

f (x) = ∑
j = 1

n
α jy jG(x j, x) + b,
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where (α1, ..., αn, b) are the estimated SVM parameters, G(x j, x) is the dot product in the predictor
space between x and the support vectors, and the sum includes the training set observations. The
negative class classification score for x, or the score for predicting x into the negative class, is –f(x).

If G(xj,x) = xj′x (the linear kernel), then the score function reduces to

f x = x/s ′β + b .

s is the kernel scale and β is the vector of fitted linear coefficients.

For more details, see “Understanding Support Vector Machines” on page 19-151.

Posterior Probability

The posterior probability is the probability that an observation belongs in a particular class, given the
data.

For SVM, the posterior probability is a function of the score P(s) that observation j is in class k =
{-1,1}.

• For separable classes, the posterior probability is the step function

P s j =

0; s < max
yk = − 1

sk

π; max
yk = − 1

sk ≤ s j ≤ min
yk = + 1

sk

1; s j > min
yk = + 1

sk

,

where:

• sj is the score of observation j.
• +1 and –1 denote the positive and negative classes, respectively.
• π is the prior probability that an observation is in the positive class.

• For inseparable classes, the posterior probability is the sigmoid function

P(s j) = 1
1 + exp(As j + B) ,

where the parameters A and B are the slope and intercept parameters, respectively.

Prior Probability

The prior probability of a class is the assumed relative frequency with which observations from that
class occur in a population.

Tips
• If you are using a linear SVM model for classification and the model has many support vectors,

then using predict for the prediction method can be slow. To efficiently classify observations
based on a linear SVM model, remove the support vectors from the model object by using
discardSupportVectors.
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Algorithms
• By default and irrespective of the model kernel function, MATLAB uses the dual representation of

the score function to classify observations based on trained SVM models, specifically

f (x) = ∑
j = 1

n
α jy jG(x, x j) + b .

This prediction method requires the trained support vectors and α coefficients (see the
SupportVectors and Alpha properties of the SVM model).

• By default, the software computes optimal posterior probabilities using Platt’s method [1]:

1 Perform 10-fold cross-validation.
2 Fit the sigmoid function parameters to the scores returned from the cross-validation.
3 Estimate the posterior probabilities by entering the cross-validation scores into the fitted

sigmoid function.
• The software incorporates prior probabilities in the SVM objective function during training.
• For SVM, predict and resubPredict classify observations into the class yielding the largest

score (the largest posterior probability). The software accounts for misclassification costs by
applying the average-cost correction before training the classifier. That is, given the class prior
vector P, misclassification cost matrix C, and observation weight vector w, the software defines a
new vector of observation weights (W) such that

W j = w jP j ∑
k = 1

K
C jk .

Alternative Functionality
Simulink Block

To integrate the prediction of an SVM classification model into Simulink, you can use the
ClassificationSVM Predict block in the Statistics and Machine Learning Toolbox library or a MATLAB
Function block with the predict function. For examples, see “Predict Class Labels Using
ClassificationSVM Predict Block” on page 34-123 and “Predict Class Labels Using MATLAB Function
Block” on page 34-51.

When deciding which approach to use, consider the following:

• If you use the Statistics and Machine Learning Toolbox library block, you can use the Fixed-Point
Tool to convert a floating-point model to fixed point.

• Support for variable-size arrays must be enabled for a MATLAB Function block with the predict
function.

• If you use a MATLAB Function block, you can use MATLAB functions for preprocessing or post-
processing before or after predictions in the same MATLAB Function block.

Version History
Introduced in R2014a
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[1] Platt, J. “Probabilistic outputs for support vector machines and comparisons to regularized

likelihood methods.” Advances in Large Margin Classifiers. MIT Press, 1999, pages 61–74.

Extended Capabilities
Tall Arrays
Calculate with arrays that have more rows than fit in memory.

This function fully supports tall arrays. For more information, see “Tall Arrays”.

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• You can generate C/C++ code for both predict and update by using a coder configurer. Or,
generate code only for predict by using saveLearnerForCoder, loadLearnerForCoder, and
codegen.

• Code generation for predict and update — Create a coder configurer by using
learnerCoderConfigurer and then generate code by using generateCode. Then you can
update model parameters in the generated code without having to regenerate the code.

• Code generation for predict — Save a trained model by using saveLearnerForCoder.
Define an entry-point function that loads the saved model by using loadLearnerForCoder
and calls the predict function. Then use codegen to generate code for the entry-point
function.

• For single-precision code generation, use standardized data by specifying 'Standardize',true
when you train the model. To generate single-precision C/C++ code for predict, specify the
name-value argument "DataType","single" when you call the loadLearnerForCoder
function.

• You can also generate fixed-point C/C++ code for predict. Fixed-point code generation requires
an additional step that defines the fixed-point data types of the variables required for prediction.
Create a fixed-point data type structure by using the data type function on page 35-3041
generated by generateLearnerDataTypeFcn, and use the structure as an input argument of
loadLearnerForCoder in an entry-point function. Generating fixed-point C/C++ code requires
MATLAB Coder and Fixed-Point Designer.

• This table contains notes about the arguments of predict. Arguments not included in this table
are fully supported.
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Argument Notes and Limitations
SVMModel • If you use saveLearnerForCoder to save a model that is

equipped to predict posterior probabilities, and use
loadLearnerForCoder to load the model, then
loadLearnerForCoder cannot restore the ScoreTransform
property into the MATLAB Workspace. However,
loadLearnerForCoder can load the model, including the
ScoreTransform property, within an entry-point function at
compile time for code generation.

• For the usage notes and limitations of the model object, see “Code
Generation” on page 35-921 of the CompactClassificationSVM
object.

X • For general code generation, X must be a single-precision or
double-precision matrix or a table containing numeric variables,
categorical variables, or both.

• In the coder configurer workflow, X must be a single-precision or
double-precision matrix.

• For fixed-point code generation, X must be a fixed-point matrix.
• The number of rows, or observations, in X can be a variable size,

but the number of columns in X must be fixed.
• If you want to specify X as a table, then your model must be

trained using a table, and your entry-point function for prediction
must do the following:

• Accept data as arrays.
• Create a table from the data input arguments and specify the

variable names in the table.
• Pass the table to predict.

For an example of this table workflow, see “Generate Code to
Classify Data in Table” on page 34-112. For more information on
using tables in code generation, see “Code Generation for Tables”
(MATLAB Coder) and “Table Limitations for Code Generation”
(MATLAB Coder).

For more information, see “Introduction to Code Generation” on page 34-2.

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

Usage notes and limitations:

• The predict function does not support one-class classification models.

For more information, see “Run MATLAB Functions on a GPU” (Parallel Computing Toolbox).

See Also
ClassificationSVM | CompactClassificationSVM | fitcsvm | fitSVMPosterior | loss |
resubPredict
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Topics
“Support Vector Machines for Binary Classification” on page 19-151
“Analyze Images Using Linear Support Vector Machines” on page 19-176
“Train SVM Classifier Using Custom Kernel” on page 19-160
“Plot Posterior Probability Regions for SVM Classification Models” on page 19-174
“Unsupervised Anomaly Detection” on page 17-91
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predict
Predict labels using classification tree

Syntax
label = predict(Mdl,X)
label = predict(Mdl,X,Name,Value)
[label,score,node,cnum] = predict( ___ )

Description
label = predict(Mdl,X) returns a vector of predicted class labels for the predictor data in the
table or matrix X, based on the trained, full or compact classification tree Mdl.

label = predict(Mdl,X,Name,Value) uses additional options specified by one or more
Name,Value pair arguments. For example, you can specify to prune Mdl to a particular level before
predicting labels.

[label,score,node,cnum] = predict( ___ ) uses any of the input argument in the previous
syntaxes and additionally returns:

• A matrix of classification scores (score) indicating the likelihood that a label comes from a
particular class. For classification trees, scores are posterior probabilities. For each observation in
X, the predicted class label on page 35-5816 corresponds to the minimum expected
misclassification cost on page 35-5817 among all classes.

• A vector of predicted node numbers for the classification (node).
• A vector of predicted class number for the classification (cnum).

Input Arguments
Mdl — Trained classification tree
ClassificationTree model object | CompactClassificationTree model object

Trained classification tree, specified as a ClassificationTree or CompactClassificationTree
model object. That is, Mdl is a trained classification model returned by fitctree or compact.

X — Predictor data to be classified
numeric matrix | table

Predictor data to be classified, specified as a numeric matrix or table.

Each row of X corresponds to one observation, and each column corresponds to one variable.

• For a numeric matrix:

• The variables making up the columns of X must have the same order as the predictor variables
that trained Mdl.

• If you trained Mdl using a table (for example, Tbl), then X can be a numeric matrix if Tbl
contains all numeric predictor variables. To treat numeric predictors in Tbl as categorical
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during training, identify categorical predictors using the CategoricalPredictors name-
value pair argument of fitctree. If Tbl contains heterogeneous predictor variables (for
example, numeric and categorical data types) and X is a numeric matrix, then predict throws
an error.

• For a table:

• predict does not support multicolumn variables or cell arrays other than cell arrays of
character vectors.

• If you trained Mdl using a table (for example, Tbl), then all predictor variables in X must have
the same variable names and data types as those that trained Mdl (stored in
Mdl.PredictorNames). However, the column order of X does not need to correspond to the
column order of Tbl. Tbl and X can contain additional variables (response variables,
observation weights, etc.), but predict ignores them.

• If you trained Mdl using a numeric matrix, then the predictor names in Mdl.PredictorNames
and corresponding predictor variable names in X must be the same. To specify predictor names
during training, see the PredictorNames name-value pair argument of fitctree. All
predictor variables in X must be numeric vectors. X can contain additional variables (response
variables, observation weights, etc.), but predict ignores them.

Data Types: table | double | single

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.

Subtrees — Pruning level
0 (default) | vector of nonnegative integers | 'all'

Pruning level, specified as the comma-separated pair consisting of 'Subtrees' and a vector of
nonnegative integers in ascending order or 'all'.

If you specify a vector, then all elements must be at least 0 and at most max(Mdl.PruneList). 0
indicates the full, unpruned tree and max(Mdl.PruneList) indicates the completely pruned tree
(i.e., just the root node).

If you specify 'all', then predict operates on all subtrees (i.e., the entire pruning sequence). This
specification is equivalent to using 0:max(Mdl.PruneList).

predict prunes Mdl to each level indicated in Subtrees, and then estimates the corresponding
output arguments. The size of Subtrees determines the size of some output arguments.

To invoke Subtrees, the properties PruneList and PruneAlpha of Mdl must be nonempty. In other
words, grow Mdl by setting 'Prune','on', or by pruning Mdl using prune.
Example: 'Subtrees','all'
Data Types: single | double | char | string
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Output Arguments
label — Predicted class labels
vector | array

Predicted class labels on page 35-5816, returned as a vector or array. Each entry of label
corresponds to the class with minimal expected cost for the corresponding row of X.

Suppose Subtrees is a numeric vector containing T elements (for 'all', see Subtrees), and X has
N rows.

• If the response data type is char and:

• T = 1, then label is a character matrix containing N rows. Each row contains the predicted
label produced by subtree Subtrees.

• T > 1, then label is an N-by-T cell array.
• Otherwise, label is an N-by-T array having the same data type as the response. (The software

treats string arrays as cell arrays of character vectors.)

In the latter two cases, column j of label contains the vector of predicted labels produced by
subtree Subtrees(j).

score — Posterior probabilities
numeric matrix

Posterior probabilities, returned as a numeric matrix of size N-by-K, where N is the number of
observations (rows) in X, and K is the number of classes (in Mdl.ClassNames). score(i,j) is the
posterior probability that row i of X is of class j.

If Subtrees has T elements, and X has N rows, then score is an N-by-K-by-T array, and node and
cnum are N-by-T matrices.

node — Node numbers
numeric vector

Node numbers for the predicted classes, returned as a numeric vector. Each entry corresponds to the
predicted node in Mdl for the corresponding row of X.

cnum — Class numbers
numeric vector

Class numbers corresponding to the predicted labels, returned as a numeric vector. Each entry of
cnum corresponds to a predicted class number for the corresponding row of X.

Examples

Predict Labels Using a Classification Tree

Examine predictions for a few rows in a data set left out of training.

Load Fisher's iris data set.

load fisheriris
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Partition the data into training (50%) and validation (50%) sets.

n = size(meas,1);
rng(1) % For reproducibility
idxTrn = false(n,1);
idxTrn(randsample(n,round(0.5*n))) = true; % Training set logical indices
idxVal = idxTrn == false;                  % Validation set logical indices

Grow a classification tree using the training set.

Mdl = fitctree(meas(idxTrn,:),species(idxTrn));

Predict labels for the validation data. Count the number of misclassified observations.

label = predict(Mdl,meas(idxVal,:));
label(randsample(numel(label),5)) % Display several predicted labels

ans = 5x1 cell
    {'setosa'    }
    {'setosa'    }
    {'setosa'    }
    {'virginica' }
    {'versicolor'}

numMisclass = sum(~strcmp(label,species(idxVal)))

numMisclass = 3

The software misclassifies three out-of-sample observations.

Estimate Class Posterior Probabilities Using a Classification Tree

Load Fisher's iris data set.

load fisheriris

Partition the data into training (50%) and validation (50%) sets.

n = size(meas,1);
rng(1) % For reproducibility
idxTrn = false(n,1);
idxTrn(randsample(n,round(0.5*n))) = true; % Training set logical indices
idxVal = idxTrn == false;                  % Validation set logical indices

Grow a classification tree using the training set, and then view it.

Mdl = fitctree(meas(idxTrn,:),species(idxTrn));
view(Mdl,'Mode','graph')
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The resulting tree has four levels.

Estimate posterior probabilities for the test set using subtrees pruned to levels 1 and 3.

[~,Posterior] = predict(Mdl,meas(idxVal,:),'SubTrees',[1 3]);
Mdl.ClassNames

ans = 3x1 cell
    {'setosa'    }
    {'versicolor'}
    {'virginica' }

Posterior(randsample(size(Posterior,1),5),:,:),...
    % Display several posterior probabilities

ans = 
ans(:,:,1) =

    1.0000         0         0
    1.0000         0         0
    1.0000         0         0
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         0         0    1.0000
         0    0.8571    0.1429

ans(:,:,2) =

    0.3733    0.3200    0.3067
    0.3733    0.3200    0.3067
    0.3733    0.3200    0.3067
    0.3733    0.3200    0.3067
    0.3733    0.3200    0.3067

The elements of Posterior are class posterior probabilities:

• Rows correspond to observations in the validation set.
• Columns correspond to the classes as listed in Mdl.ClassNames.
• Pages correspond to the subtrees.

The subtree pruned to level 1 is more sure of its predictions than the subtree pruned to level 3 (i.e.,
the root node).

More About
Predicted Class Label

predict classifies by minimizing the expected misclassification cost:

y = argmin
y = 1, ..., K

∑
j = 1

K
P j x C y j ,

where:

• y  is the predicted classification.
• K is the number of classes.
• P j x  is the posterior probability of class j for observation x.
• C y j  is the cost of classifying an observation as y when its true class is j.

Score (tree)

For trees, the score of a classification of a leaf node is the posterior probability of the classification at
that node. The posterior probability of the classification at a node is the number of training sequences
that lead to that node with the classification, divided by the number of training sequences that lead to
that node.

For an example, see “Posterior Probability Definition for Classification Tree” on page 35-6715.

True Misclassification Cost

The true misclassification cost is the cost of classifying an observation into an incorrect class.

You can set the true misclassification cost per class by using the 'Cost' name-value argument when
you create the classifier. Cost(i,j) is the cost of classifying an observation into class j when its

35 Functions

35-5816



true class is i. By default, Cost(i,j)=1 if i~=j, and Cost(i,j)=0 if i=j. In other words, the cost
is 0 for correct classification and 1 for incorrect classification.

Expected Cost

The expected misclassification cost per observation is an averaged cost of classifying the observation
into each class.

Suppose you have Nobs observations that you want to classify with a trained classifier, and you have
K classes. You place the observations into a matrix X with one observation per row.

The expected cost matrix CE has size Nobs-by-K. Each row of CE contains the expected (average) cost
of classifying the observation into each of the K classes. CE(n,k) is

∑
i = 1

K
P i X(n) C k i ,

where:

• K is the number of classes.
• P i X(n)  is the posterior probability of class i for observation X(n).
• C k i  is the true misclassification cost of classifying an observation as k when its true class is i.

Predictive Measure of Association

The predictive measure of association is a value that indicates the similarity between decision rules
that split observations. Among all possible decision splits that are compared to the optimal split
(found by growing the tree), the best surrogate decision split on page 35-2272 yields the maximum
predictive measure of association. The second-best surrogate split has the second-largest predictive
measure of association.

Suppose xj and xk are predictor variables j and k, respectively, and j ≠ k. At node t, the predictive
measure of association between the optimal split xj < u and a surrogate split xk < v is

λ jk =
min PL, PR − 1− PLjLk− PRjRk

min PL, PR
.

• PL is the proportion of observations in node t, such that xj < u. The subscript L stands for the left
child of node t.

• PR is the proportion of observations in node t, such that xj ≥ u. The subscript R stands for the right
child of node t.

• PLjLk is the proportion of observations at node t, such that xj < u and xk < v.

• PRjRk is the proportion of observations at node t, such that xj ≥ u and xk ≥ v.

• Observations with missing values for xj or xk do not contribute to the proportion calculations.

λjk is a value in (–∞,1]. If λjk > 0, then xk < v is a worthwhile surrogate split for xj < u.

Algorithms
predict generates predictions by following the branches of Mdl until it reaches a leaf node or a
missing value. If predict reaches a leaf node, it returns the classification of that node.
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If predict reaches a node with a missing value for a predictor, its behavior depends on the setting of
the Surrogate name-value pair when fitctree constructs Mdl.

• Surrogate = 'off' (default) — predict returns the label with the largest number of training
samples that reach the node.

• Surrogate = 'on' — predict uses the best surrogate split at the node. If all surrogate split
variables with positive predictive measure of association are missing, predict returns the label
with the largest number of training samples that reach the node. For a definition, see “Predictive
Measure of Association” on page 35-5817.

Alternative Functionality
Simulink Block

To integrate the prediction of a classification tree model into Simulink, you can use the
ClassificationTree Predict block in the Statistics and Machine Learning Toolbox library or a MATLAB
Function block with the predict function. For examples, see “Predict Class Labels Using
ClassificationTree Predict Block” on page 34-133 and “Predict Class Labels Using MATLAB Function
Block” on page 34-51.

When deciding which approach to use, consider the following:

• If you use the Statistics and Machine Learning Toolbox library block, you can use the Fixed-Point
Tool to convert a floating-point model to fixed point.

• Support for variable-size arrays must be enabled for a MATLAB Function block with the predict
function.

• If you use a MATLAB Function block, you can use MATLAB functions for preprocessing or post-
processing before or after predictions in the same MATLAB Function block.

Version History
Introduced in R2011a

Extended Capabilities
Tall Arrays
Calculate with arrays that have more rows than fit in memory.

This function fully supports tall arrays. You can use models trained on either in-memory or tall data
with this function.

For more information, see “Tall Arrays”.

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• You can generate C/C++ code for both predict and update by using a coder configurer. Or,
generate code only for predict by using saveLearnerForCoder, loadLearnerForCoder, and
codegen.
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• Code generation for predict and update — Create a coder configurer by using
learnerCoderConfigurer and then generate code by using generateCode. Then you can
update model parameters in the generated code without having to regenerate the code.

• Code generation for predict — Save a trained model by using saveLearnerForCoder.
Define an entry-point function that loads the saved model by using loadLearnerForCoder
and calls the predict function. Then use codegen to generate code for the entry-point
function.

• To generate single-precision C/C++ code for predict, specify the name-value argument
"DataType","single" when you call the loadLearnerForCoder function.

• You can also generate fixed-point C/C++ code for predict. Fixed-point code generation requires
an additional step that defines the fixed-point data types of the variables required for prediction.
Create a fixed-point data type structure by using the data type function on page 35-3041
generated by generateLearnerDataTypeFcn, and use the structure as an input argument of
loadLearnerForCoder in an entry-point function. Generating fixed-point C/C++ code requires
MATLAB Coder and Fixed-Point Designer.

• This table contains notes about the arguments of predict. Arguments not included in this table
are fully supported.

Argument Notes and Limitations
Mdl For the usage notes and limitations of the model object, see “Code

Generation” on page 35-930 of the CompactClassificationTree
object.

X • For general code generation, X must be a single-precision or
double-precision matrix or a table containing numeric variables,
categorical variables, or both.

• In the coder configurer workflow, X must be a single-precision or
double-precision matrix.

• For fixed-point code generation, X must be a fixed-point matrix.
• The number of rows, or observations, in X can be a variable size,

but the number of columns in X must be fixed.
• If you want to specify X as a table, then your model must be trained

using a table, and your entry-point function for prediction must do
the following:

• Accept data as arrays.
• Create a table from the data input arguments and specify the

variable names in the table.
• Pass the table to predict.

For an example of this table workflow, see “Generate Code to
Classify Data in Table” on page 34-112. For more information on
using tables in code generation, see “Code Generation for Tables”
(MATLAB Coder) and “Table Limitations for Code Generation”
(MATLAB Coder).

label If the response data type is char and codegen cannot determine that
the value of Subtrees is a scalar, then label is a cell array of
character vectors.
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Argument Notes and Limitations
'Subtrees' • Names in name-value arguments must be compile-time constants.

For example, to allow user-defined pruning levels in the generated
code, include
{coder.Constant('Subtrees'),coder.typeof(0,[1,n],
[0,1])} in the -args value of codegen, where n is
max(Mdl.PruneList).

• The 'Subtrees' name-value pair argument is not supported in the
coder configurer workflow.

• For fixed-point code generation, the 'Subtrees' value must be
coder.Constant('all') or have an integer data type.

For more information, see “Introduction to Code Generation” on page 34-2.

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

Usage notes and limitations:

• The predict function does not support decision tree models trained with surrogate splits.

For more information, see “Run MATLAB Functions on a GPU” (Parallel Computing Toolbox).

See Also
fitctree | compact | prune | loss | edge | margin | CompactClassificationTree |
ClassificationTree

Topics
“Specify Variable-Size Arguments for Code Generation” on page 34-56
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predict
Predict responses using ensemble of regression models

Syntax
Yfit = predict(Mdl,X)
Yfit = predict(Mdl,X,Name,Value)

Description
Yfit = predict(Mdl,X) returns predicted responses to the predictor data in the table or matrix X,
based on the regression ensemble model Mdl.

Yfit = predict(Mdl,X,Name,Value) uses additional options specified by one or more
Name,Value pair arguments.

Input Arguments
Mdl

Regression ensemble created by fitrensemble, or by the compact method.

X

Predictor data used to generate responses, specified as a numeric matrix or table.

Each row of X corresponds to one observation, and each column corresponds to one variable.

• For a numeric matrix:

• The variables making up the columns of X must have the same order as the predictor variables
that trained Mdl.

• If you trained Mdl using a table (for example, Tbl), then X can be a numeric matrix if Tbl
contains all numeric predictor variables. To treat numeric predictors in Tbl as categorical
during training, identify categorical predictors using the CategoricalPredictors name-
value pair argument of fitrensemble. If Tbl contains heterogeneous predictor variables (for
example, numeric and categorical data types) and X is a numeric matrix, then predict throws
an error.

• For a table:

• predict does not support multicolumn variables or cell arrays other than cell arrays of
character vectors.

• If you trained Mdl using a table (for example, Tbl), then all predictor variables in X must have
the same variable names and data types as those that trained Mdl (stored in
Mdl.PredictorNames). However, the column order of X does not need to correspond to the
column order of Tbl. Tbl and X can contain additional variables (response variables,
observation weights, etc.), but predict ignores them.

• If you trained Mdl using a numeric matrix, then the predictor names in Mdl.PredictorNames
and corresponding predictor variable names in X must be the same. To specify predictor names
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during training, see the PredictorNames name-value pair argument of fitrensemble. All
predictor variables in X must be numeric vectors. X can contain additional variables (response
variables, observation weights, etc.), but predict ignores them.

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.

Learners

Indices of weak learners in the ensemble ranging from 1 to NumTrained, where NumTrained is the
number of weak learners.

Default: 1:NumTrained

UseObsForLearner

A logical matrix of size N-by-NumTrained, where N is the number of observations in X, and
NumTrained is the number of weak learners. When UseObsForLearner(I,J) is true, predict
uses learner J in predicting observation I.

Default: true(N,NumTrained)

UseParallel

Indication to perform inference in parallel, specified as false (compute serially) or true (compute in
parallel). Parallel computation requires Parallel Computing Toolbox. Parallel inference can be faster
than serial inference, especially for large datasets. Parallel computation is supported only for tree
learners.

Default: false

Output Arguments
Yfit

A numeric column vector with the same number of rows as TBLdata or Xdata. Each row of Yfit
gives the predicted response to the corresponding row of TBLdata or Xdata, based on the ens
regression model.

Examples
Predict Responses Based on Regression Ensemble

Find the predicted mileage for a car based on regression ensemble trained on the carsmall data.

Load the carsmall data set and select the number of cylinders, engine displacement, horsepower,
and vehicle weight as predictors.

load carsmall
X = [Cylinders Displacement Horsepower Weight];
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Train an ensemble of regression trees and predict MPG for a four-cylinder car, with 200 cubic inch
engine displacement, 150 horsepower, weighing 3000 lbs.

rens = fitrensemble(X,MPG);
Mileage = predict(rens,[4 200 150 3000])

Mileage = 25.6467

Alternative Functionality
Simulink Block

To integrate the prediction of an ensemble into Simulink, you can use the RegressionEnsemble
Predict block in the Statistics and Machine Learning Toolbox library or a MATLAB Function block
with the predict function. For examples, see “Predict Responses Using RegressionEnsemble Predict
Block” on page 34-149 and “Predict Class Labels Using MATLAB Function Block” on page 34-51.

When deciding which approach to use, consider the following:

• If you use the Statistics and Machine Learning Toolbox library block, you can use the Fixed-Point
Tool to convert a floating-point model to fixed point.

• Support for variable-size arrays must be enabled for a MATLAB Function block with the predict
function.

• If you use a MATLAB Function block, you can use MATLAB functions for preprocessing or post-
processing before or after predictions in the same MATLAB Function block.

Extended Capabilities
Tall Arrays
Calculate with arrays that have more rows than fit in memory.

Usage notes and limitations:

• You cannot use UseParallel with tall arrays.

For more information, see “Tall Arrays”.

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• Use saveLearnerForCoder, loadLearnerForCoder, and codegen to generate code for the
predict function. Save a trained model by using saveLearnerForCoder. Define an entry-point
function that loads the saved model by using loadLearnerForCoder and calls the predict
function. Then use codegen to generate code for the entry-point function.

• To generate single-precision C/C++ code for predict, specify the name-value argument
"DataType","single" when you call the loadLearnerForCoder function.

• You can also generate fixed-point C/C++ code for predict. Fixed-point code generation requires
an additional step that defines the fixed-point data types of the variables required for prediction.
Create a fixed-point data type structure by using the data type function on page 35-3041
generated by generateLearnerDataTypeFcn, and use the structure as an input argument of
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loadLearnerForCoder in an entry-point function. Generating fixed-point C/C++ code requires
MATLAB Coder and Fixed-Point Designer.

• Generating fixed-point code for predict includes propagating data types for individual learners
and, therefore, can be time consuming.

• This table contains notes about the arguments of predict. Arguments not included in this table
are fully supported.

Argument Notes and Limitations
Mdl For the usage notes and limitations of the model object, see “Code

Generation” on page 35-956 of the CompactRegressionEnsemble
object.

X • For general code generation, X must be a single-precision or
double-precision matrix or a table containing numeric variables,
categorical variables, or both.

• For fixed-point code generation, X must be a fixed-point matrix.
• The number of rows, or observations, in X can be a variable size,

but the number of columns in X must be fixed.
• If you want to specify X as a table, then your model must be trained

using a table, and your entry-point function for prediction must do
the following:

• Accept data as arrays.
• Create a table from the data input arguments and specify the

variable names in the table.
• Pass the table to predict.

For an example of this table workflow, see “Generate Code to
Classify Data in Table” on page 34-112. For more information on
using tables in code generation, see “Code Generation for Tables”
(MATLAB Coder) and “Table Limitations for Code Generation”
(MATLAB Coder).

Name-value pair
arguments

Names in name-value arguments must be compile-time constants. For
example, to allow user-defined indices up to 5 weak learners in the
generated code, include
{coder.Constant('Learners'),coder.typeof(0,[1,5],
[0,1])} in the -args value of codegen.

'Learners' For fixed-point code generation, the 'Learners' value must have an
integer data type.

For more information, see “Introduction to Code Generation” on page 34-2.

Automatic Parallel Support
Accelerate code by automatically running computation in parallel using Parallel Computing Toolbox™.

To run in parallel, set the UseParallel name-value argument to true in the call to this function.

For more general information about parallel computing, see “Run MATLAB Functions with Automatic
Parallel Support” (Parallel Computing Toolbox).

You cannot use UseParallel with tall or GPU arrays or in code generation.
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GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

Usage notes and limitations:

• The predict function does not support ensembles trained using decision tree learners with
surrogate splits.

• You cannot use UseParallel with GPU arrays.

For more information, see “Run MATLAB Functions on a GPU” (Parallel Computing Toolbox).

See Also
loss | fitrensemble | CompactRegressionEnsemble | RegressionEnsemble |
RegressionBaggedEnsemble

 predict

35-5825



predict
Predict response of Gaussian process regression model

Syntax
ypred = predict(gprMdl,Xnew)
[ypred,ysd,yint] = predict(gprMdl,Xnew)
[ypred,ysd,yint] = predict(gprMdl,Xnew,'Alpha',alpha)

Description
ypred = predict(gprMdl,Xnew) returns the predicted responses ypred for the Gaussian process
regression (GPR) model gprMdl and the predictor values in Xnew.

[ypred,ysd,yint] = predict(gprMdl,Xnew) also returns the standard deviations ysd and 95%
prediction intervals yint of the response variable, evaluated at each observation in Xnew using the
trained GPR model.

[ypred,ysd,yint] = predict(gprMdl,Xnew,'Alpha',alpha) specifies the significance level
for the confidence level of the prediction intervals yint. The confidence level of yint is equal to
100(1 – Alpha)%.

Input Arguments
gprMdl — Gaussian process regression model
RegressionGP object | CompactRegressionGP object

Gaussian process regression model, specified as a RegressionGP (full) or CompactRegressionGP
(compact) object.

Xnew — New values for the predictors
table | m-by-d matrix

New values for the predictors that fitrgp uses in training the GPR model, specified as a table or
an m-by-d matrix. m is the number of observations and d is the number of predictor variables in the
training data.

If you trained gprMdl on a table, then Xnew must be a table that contains all the predictor
variables used to train gprMdl.

If you trained gprMdl on a matrix, then Xnew must be a numeric matrix with d columns.
Data Types: single | double | table

alpha — Significance level
0.05 (default) | numeric scalar in [0,1]

Significance level for the confidence level of the prediction intervals yint, specified as a numeric
scalar in the range [0,1]. The confidence level of yint is equal to 100(1 – Alpha)%.
Example: 'Alpha',0.01 specifies to return 99% prediction intervals.
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Data Types: single | double

Output Arguments
ypred — Predicted responses
column vector

Predicted responses, returned as a column vector of length n, where n is the number of observations
in the predictor data Xnew.

ysd — Standard deviations of response variable
column vector

Standard deviations of the response variable, evaluated at each observation in the predictor data
Xnew, returned as a column vector of length n, where n is the number of observations in Xnew. The
ith element ysd(i) contains the standard deviation of the ith response for the ith observation
Xnew(i,:), estimated using the trained GPR model gprMdl.

yint — Prediction intervals of response variable
n-by-2 matrix

Prediction intervals of the response variable, evaluated at each observation in the predictor data
Xnew, returned as an n-by-2 matrix, where n is the number of observations in Xnew. The ith row
yint(i,:) contains the 100(1 – Alpha)% prediction interval of the ith response for the ith
observation Xnew(i,:). The Alpha value is the probability that the prediction interval does not
contain the true response value for Xnew(i,:). The first column of yint contains the lower limits of
the prediction intervals, and the second column contains the upper limits.

Examples

Compute Predicted Responses

Generate the sample data.

n = 10000;
rng(1) % For reproducibility
x = linspace(0.5,2.5,n)';
y = sin(10*pi.*x) ./ (2.*x)+(x-1).^4 + 1.5*rand(n,1);

Fit a GPR model using the Matern 3/2 kernel function with separate length scale for each predictor
and an active set size of 100. Use the subset of regressors approximation method for parameter
estimation and fully independent conditional method for prediction.

gprMdl = fitrgp(x,y,'KernelFunction','ardmatern32', ...
    'ActiveSetSize',100,'FitMethod','sr','PredictMethod','fic');

Compute the predictions.

[ypred,~,yci] = predict(gprMdl,x);

Plot the data along with the predictions and prediction intervals.

plot(x,y,'r.')
hold on
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plot(x,ypred,'b-')
plot(x,yci(:,1),'k--')
plot(x,yci(:,2),'k--')
xlabel('x')
ylabel('y')
legend('True responses','GPR predictions', ...
    'Prediction interval limits','Location','best')

Compute Predictions When Data in Table

Load the sample data and store in a table.

load fisheriris
tbl = table(meas(:,1),meas(:,2),meas(:,3),meas(:,4),species,...
'VariableNames',{'meas1','meas2','meas3','meas4','species'});

Fit a GPR model using the first measurement as the response and the other variables as the
predictors.

mdl = fitrgp(tbl,'meas1');

Compute the predictions and the 99% confidence intervals.

[ypred,~,yci] = predict(mdl,tbl,'Alpha',0.01);

Plot the true response and the predictions along with the prediction intervals.
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figure();
plot(mdl.Y,'r.');
hold on;
plot(ypred);
plot(yci(:,1),'k:');
plot(yci(:,2),'k:');
legend('True response','GPR predictions',...
'Lower prediction limit','Upper prediction limit',...
'Location','Best');

Plot Predicted Response for Test Data

Load the sample data.

load('gprdata.mat');

The data contains training and test data. There are 500 observations in training data and 100
observations in test data. The data has 6 predictor variables. This is simulated data.

Fit a GPR model using the squared exponential kernel function with a separate length scale for each
predictor. Standardize predictors in the training data. Use the exact fitting and prediction methods.

gprMdl = fitrgp(Xtrain,ytrain,'Basis','constant',...
'FitMethod','exact','PredictMethod','exact',...
'KernelFunction','ardsquaredexponential','Standardize',1);
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Predict the responses for test data.

[ytestpred,~,ytestci] = predict(gprMdl,Xtest);

Plot the test response along with the predictions.

figure;
plot(ytest,'r');
hold on;
plot(ytestpred,'b');
plot(ytestci(:,1),'k:');
plot(ytestci(:,2),'k:');
legend('Actual response','GPR predictions',...
'95% lower','95% upper','Location','Best');
hold off

Tips
• You can choose the prediction method while training the GPR model using the PredictMethod

name-value pair argument in fitrgp. The default prediction method is 'exact' for n ≤ 10000,
where n is the number of observations in the training data, and 'bcd' (block coordinate descent),
otherwise.

• Computation of standard deviations, ysd, and prediction intervals, yint, is not supported when
PredictMethod is 'bcd'.
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• If gprMdl is a CompactRegressionGP object, you cannot compute standard deviations, ysd, or
prediction intervals, yint, for PredictMethod equal to 'sr' or 'fic'. To compute ysd and
yint for PredictMethod equal to 'sr' or 'fic', use the full regression (RegressionGP)
object.

Alternatives
You can use resubPredict to compute the predicted responses for the trained GPR model at the
observations in the training data.

Simulink Block

To integrate the prediction of a Gaussian process regression model into Simulink, you can use the
RegressionGP Predict block in the Statistics and Machine Learning Toolbox library or a MATLAB
Function block with the predict function. For examples, see “Predict Responses Using
RegressionGP Predict Block” on page 34-164 and “Predict Class Labels Using MATLAB Function
Block” on page 34-51.

When deciding which approach to use, consider the following:

• If you use the Statistics and Machine Learning Toolbox library block, you can use the Fixed-Point
Tool to convert a floating-point model to fixed point.

• Support for variable-size arrays must be enabled for a MATLAB Function block with the predict
function.

• If you use a MATLAB Function block, you can use MATLAB functions for preprocessing or post-
processing before or after predictions in the same MATLAB Function block.

Version History
Introduced in R2015b

Extended Capabilities
Tall Arrays
Calculate with arrays that have more rows than fit in memory.

This function fully supports tall arrays. For more information, see “Tall Arrays”.

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• Use saveLearnerForCoder, loadLearnerForCoder, and codegen to generate code for the
predict function. Save a trained model by using saveLearnerForCoder. Define an entry-point
function that loads the saved model by using loadLearnerForCoder and calls the predict
function. Then use codegen to generate code for the entry-point function.

• For single-precision code generation, use standardized data by specifying 'Standardize',true
when you train the model. To generate single-precision C/C++ code for predict, specify the
name-value argument "DataType","single" when you call the loadLearnerForCoder
function.
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• This table contains notes about the arguments of predict. Arguments not included in this table
are fully supported.

Argument Notes and Limitations
Mdl For the usage notes and limitations of the model object, see “Code

Generation” on page 35-968 of the CompactRegressionGP object.
Xnew • Xnew must be a single-precision or double-precision matrix or a

table containing numeric variables, categorical variables, or both.
• The number of rows, or observations, in Xnew can be a variable

size, but the number of columns in Xnew must be fixed.
• If you want to specify Xnew as a table, then your model must be

trained using a table, and you must ensure that your entry-point
function for prediction:

• Accepts data as arrays
• Creates a table from the data input arguments and specifies the

variable names in the table
• Passes the table to predict

For an example of this table workflow, see “Generate Code to
Classify Data in Table” on page 34-112. For more information on
using tables in code generation, see “Code Generation for Tables”
(MATLAB Coder) and “Table Limitations for Code Generation”
(MATLAB Coder).

Name-value pair
arguments

Names in name-value arguments must be compile-time constants. For
example, to allow a user-defined significance level in the generated
code, include {coder.Constant('Alpha'),0} in the -args value of
codegen.

For more information, see “Introduction to Code Generation” on page 34-2.

See Also
fitrgp | RegressionGP | CompactRegressionGP | compact | resubPredict | loss
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predict
Package: 

Predict responses using regression neural network

Syntax
yfit = predict(Mdl,X)
yfit = predict(Mdl,X,'ObservationsIn',dimension)

Description
yfit = predict(Mdl,X) returns predicted response values for the predictor data in the table or
matrix X using the trained regression neural network model Mdl.

yfit is returned as a numeric vector, whose ith entry corresponds to the ith observation in X.

yfit = predict(Mdl,X,'ObservationsIn',dimension) specifies the predictor data
observation dimension, either 'rows' (default) or 'columns'. For example, specify
'ObservationsIn','columns' to indicate that columns in the predictor data correspond to
observations.

Examples

Predict Test Set Response Using Regression Neural Network

Predict test set response values by using a trained regression neural network model.

Load the patients data set. Create a table from the data set. Each row corresponds to one patient,
and each column corresponds to a diagnostic variable. Use the Systolic variable as the response
variable, and the rest of the variables as predictors.

load patients
tbl = table(Diastolic,Height,Smoker,Weight,Systolic);

Separate the data into a training set tblTrain and a test set tblTest by using a nonstratified
holdout partition. The software reserves approximately 30% of the observations for the test data set
and uses the rest of the observations for the training data set.

rng("default") % For reproducibility of the partition
c = cvpartition(size(tbl,1),"Holdout",0.30);
trainingIndices = training(c);
testIndices = test(c);
tblTrain = tbl(trainingIndices,:);
tblTest = tbl(testIndices,:);

Train a regression neural network model using the training set. Specify the Systolic column of
tblTrain as the response variable. Specify to standardize the numeric predictors, and set the
iteration limit to 50. By default, the neural network model has one fully connected layer with 10
outputs, excluding the final fully connected layer.
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Mdl = fitrnet(tblTrain,"Systolic", ...
    "Standardize",true,"IterationLimit",50);

Predict the systolic blood pressure levels for patients in the test set.

predictedY = predict(Mdl,tblTest);

Visualize the results by using a scatter plot with a reference line. Plot the predicted values along the
vertical axis and the true response values along the horizontal axis. Points on the reference line
indicate correct predictions.

plot(tblTest.Systolic,predictedY,".")
hold on
plot(tblTest.Systolic,tblTest.Systolic)
hold off
xlabel("True Systolic Blood Pressure Levels")
ylabel("Predicted Systolic Blood Pressure Levels")

Because many of the points are far from the reference line, the default neural network model with a
fully connected layer of size 10 does not seem to be a great predictor of systolic blood pressure
levels.
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Select Features to Include in Regression Neural Network

Perform feature selection by comparing test set losses and predictions. Compare the test set metrics
for a regression neural network model trained using all the predictors to the test set metrics for a
model trained using only a subset of the predictors.

Load the sample file fisheriris.csv, which contains iris data including sepal length, sepal width,
petal length, petal width, and species type. Read the file into a table.

fishertable = readtable('fisheriris.csv');

Separate the data into a training set trainTbl and a test set testTbl by using a nonstratified
holdout partition. The software reserves approximately 30% of the observations for the test data set
and uses the rest of the observations for the training data set.

rng("default")
c = cvpartition(size(fishertable,1),"Holdout",0.3);
trainTbl = fishertable(training(c),:);
testTbl = fishertable(test(c),:);

Train one regression neural network model using all the predictors in the training set, and train
another model using all the predictors except PetalWidth. For both models, specify PetalLength
as the response variable, and standardize the predictors.

allMdl = fitrnet(trainTbl,"PetalLength","Standardize",true);
subsetMdl = fitrnet(trainTbl,"PetalLength ~ SepalLength + SepalWidth + Species", ...
    "Standardize",true);

Compare the test set mean squared error (MSE) of the two models. Smaller MSE values indicate
better performance.

allMSE = loss(allMdl,testTbl)

allMSE = 0.0831

subsetMSE = loss(subsetMdl,testTbl)

subsetMSE = 0.0884

For each model, compare the test set predicted petal lengths to the true petal lengths. Plot the
predicted petal lengths along the vertical axis and the true petal lengths along the horizontal axis.
Points on the reference line indicate correct predictions.

tiledlayout(2,1)

% Top axes
ax1 = nexttile;
allPredictedY = predict(allMdl,testTbl);
plot(ax1,testTbl.PetalLength,allPredictedY,".")
hold on
plot(ax1,testTbl.PetalLength,testTbl.PetalLength)
hold off
xlabel(ax1,"True Petal Length")
ylabel(ax1,"Predicted Petal Length")
title(ax1,"All Predictors")

% Bottom axes
ax2 = nexttile;
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subsetPredictedY = predict(subsetMdl,testTbl);
plot(ax2,testTbl.PetalLength,subsetPredictedY,".")
hold on
plot(ax2,testTbl.PetalLength,testTbl.PetalLength)
hold off
xlabel(ax2,"True Petal Length")
ylabel(ax2,"Predicted Petal Length")
title(ax2,"Subset of Predictors")

Because both models seems to perform well, with predictions scattered near the reference line,
consider using the model trained using all predictors except PetalWidth.

Predict Using Layer Structure of Regression Neural Network Model

See how the layers of a regression neural network model work together to predict the response value
for a single observation.

Load the sample file fisheriris.csv, which contains iris data including sepal length, sepal width,
petal length, petal width, and species type. Read the file into a table, and display the first few rows of
the table.

fishertable = readtable('fisheriris.csv');
head(fishertable)
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    SepalLength    SepalWidth    PetalLength    PetalWidth     Species  
    ___________    __________    ___________    __________    __________

        5.1           3.5            1.4           0.2        {'setosa'}
        4.9             3            1.4           0.2        {'setosa'}
        4.7           3.2            1.3           0.2        {'setosa'}
        4.6           3.1            1.5           0.2        {'setosa'}
          5           3.6            1.4           0.2        {'setosa'}
        5.4           3.9            1.7           0.4        {'setosa'}
        4.6           3.4            1.4           0.3        {'setosa'}
          5           3.4            1.5           0.2        {'setosa'}

Train a regression neural network model using the data set. Specify the PetalLength variable as
the response and use the other numeric variables as predictors.

Mdl = fitrnet(fishertable,"PetalLength ~ SepalLength + SepalWidth + PetalWidth");

Select the fifteenth observation from the data set. See how the layers of the neural network take the
observation and return a predicted response value newPointResponse.

newPoint = Mdl.X{15,:}

newPoint = 1×3

    5.8000    4.0000    0.2000

firstFCStep = (Mdl.LayerWeights{1})*newPoint' + Mdl.LayerBiases{1};
reluStep = max(firstFCStep,0);

finalFCStep = (Mdl.LayerWeights{end})*reluStep + Mdl.LayerBiases{end};

newPointResponse = finalFCStep

newPointResponse = 1.6716

Check that the prediction matches the one returned by the predict object function.

predictedY = predict(Mdl,newPoint)

predictedY = 1.6716

isequal(newPointResponse,predictedY)

ans = logical
   1

The two results match.

Input Arguments
Mdl — Trained regression neural network
RegressionNeuralNetwork model object | CompactRegressionNeuralNetwork model object

Trained regression neural network, specified as a RegressionNeuralNetwork model object or
CompactRegressionNeuralNetwork model object returned by fitrnet or compact, respectively.
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X — Predictor data used to generate responses
numeric matrix | table

Predictor data used to generate responses, specified as a numeric matrix or table.

By default, each row of X corresponds to one observation, and each column corresponds to one
variable.

• For a numeric matrix:

• The variables in the columns of X must have the same order as the predictor variables that
trained Mdl.

• If you train Mdl using a table (for example, Tbl) and Tbl contains only numeric predictor
variables, then X can be a numeric matrix. To treat numeric predictors in Tbl as categorical
during training, identify categorical predictors by using the CategoricalPredictors name-
value argument of fitrnet. If Tbl contains heterogeneous predictor variables (for example,
numeric and categorical data types) and X is a numeric matrix, then predict throws an error.

• For a table:

• predict does not support multicolumn variables or cell arrays other than cell arrays of
character vectors.

• If you train Mdl using a table (for example, Tbl), then all predictor variables in X must have
the same variable names and data types as the variables that trained Mdl (stored in
Mdl.PredictorNames). However, the column order of X does not need to correspond to the
column order of Tbl. Also, Tbl and X can contain additional variables (response variables,
observation weights, and so on), but predict ignores them.

• If you train Mdl using a numeric matrix, then the predictor names in Mdl.PredictorNames
must be the same as the corresponding predictor variable names in X. To specify predictor
names during training, use the PredictorNames name-value argument of fitrnet. All
predictor variables in X must be numeric vectors. X can contain additional variables (response
variables, observation weights, and so on), but predict ignores them.

If you set 'Standardize',true in fitrnet when training Mdl, then the software standardizes the
numeric columns of the predictor data using the corresponding means and standard deviations.

Note If you orient your predictor matrix so that observations correspond to columns and specify
'ObservationsIn','columns', then you might experience a significant reduction in computation
time. You cannot specify 'ObservationsIn','columns' for predictor data in a table.

Data Types: single | double | table

dimension — Predictor data observation dimension
'rows' (default) | 'columns'

Predictor data observation dimension, specified as 'rows' or 'columns'.

Note If you orient your predictor matrix so that observations correspond to columns and specify
'ObservationsIn','columns', then you might experience a significant reduction in computation
time. You cannot specify 'ObservationsIn','columns' for predictor data in a table.
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Data Types: char | string

Alternative Functionality
Simulink Block

To integrate the prediction of a neural network regression model into Simulink, you can use the
RegressionNeuralNetwork Predict block in the Statistics and Machine Learning Toolbox library or a
MATLAB Function block with the predict function. For examples, see “Predict Responses Using
RegressionNeuralNetwork Predict Block” on page 34-160 and “Predict Class Labels Using MATLAB
Function Block” on page 34-51.

When deciding which approach to use, consider the following:

• If you use the Statistics and Machine Learning Toolbox library block, you can use the Fixed-Point
Tool to convert a floating-point model to fixed point.

• Support for variable-size arrays must be enabled for a MATLAB Function block with the predict
function.

• If you use a MATLAB Function block, you can use MATLAB functions for preprocessing or post-
processing before or after predictions in the same MATLAB Function block.

Version History
Introduced in R2021a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• Use saveLearnerForCoder, loadLearnerForCoder, and codegen to generate code for the
predict function. Save a trained model by using saveLearnerForCoder. Define an entry-point
function that loads the saved model by using loadLearnerForCoder and calls the predict
function. Then use codegen to generate code for the entry-point function.

• To generate single-precision C/C++ code for predict, specify the name-value argument
"DataType","single" when you call the loadLearnerForCoder function.

• This table contains notes about the arguments of predict. Arguments not included in this table
are fully supported.

Argument Notes and Limitations
Mdl For the usage notes and limitations of the model object, see “Code

Generation” on page 35-973 of the
CompactRegressionNeuralNetwork object.
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Argument Notes and Limitations
X • X must be a single-precision or double-precision matrix or a table

containing numeric variables, categorical variables, or both.
• The number of rows, or observations, in X can be a variable size,

but the number of columns in X must be fixed.
• If you want to specify X as a table, then your model must be trained

using a table, and your entry-point function for prediction must do
the following:

• Accept data as arrays.
• Create a table from the data input arguments and specify the

variable names in the table.
• Pass the table to predict.

For an example of this table workflow, see “Generate Code to
Classify Data in Table” on page 34-112. For more information on
using tables in code generation, see “Code Generation for Tables”
(MATLAB Coder) and “Table Limitations for Code Generation”
(MATLAB Coder).

ObservationsIn The dimension value for the ObservationsIn name-value argument
must be a compile-time constant. For example, to use
"ObservationsIn","columns" in the generated code, include
{coder.Constant("ObservationsIn"),coder.Constant("colu
mns")} in the -args value of codegen.

For more information, see “Introduction to Code Generation” on page 34-2.

See Also
fitrnet | RegressionNeuralNetwork | loss | CompactRegressionNeuralNetwork

Topics
“Assess Regression Neural Network Performance” on page 19-188
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predict
Predict responses using support vector machine regression model

Syntax
yfit = predict(Mdl,X)

Description
yfit = predict(Mdl,X) returns a vector of predicted responses for the predictor data in the table
or matrix X, based on the full or compact, trained support vector machine (SVM) regression model
Mdl.

Input Arguments
Mdl — SVM regression model
RegressionSVM object | CompactRegressionSVM object

SVM regression model, specified as a RegressionSVM model or a CompactRegressionSVM model,
returned by fitrsvm or compact, respectively.

X — Predictor data used to generate responses
numeric matrix | table

Predictor data used to generate responses, specified as a numeric matrix or table.

Each row of X corresponds to one observation, and each column corresponds to one variable.

• For a numeric matrix:

• The variables making up the columns of X must have the same order as the predictor variables
that trained Mdl.

• If you trained Mdl using a table (for example, Tbl), then X can be a numeric matrix if Tbl
contains all numeric predictor variables. To treat numeric predictors in Tbl as categorical
during training, identify categorical predictors using the CategoricalPredictors name-
value pair argument of fitrsvm. If Tbl contains heterogeneous predictor variables (for
example, numeric and categorical data types) and X is a numeric matrix, then predict throws
an error.

• For a table:

• predict does not support multicolumn variables or cell arrays other than cell arrays of
character vectors.

• If you trained Mdl using a table (for example, Tbl), then all predictor variables in X must have
the same variable names and data types as those that trained Mdl (stored in
Mdl.PredictorNames). However, the column order of X does not need to correspond to the
column order of Tbl. Tbl and X can contain additional variables (response variables,
observation weights, etc.), but predict ignores them.

• If you trained Mdl using a numeric matrix, then the predictor names in Mdl.PredictorNames
and corresponding predictor variable names in X must be the same. To specify predictor names
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during training, see the PredictorNames name-value pair argument of fitrsvm. All
predictor variables in X must be numeric vectors. X can contain additional variables (response
variables, observation weights, etc.), but predict ignores them.

If you set 'Standardize',true in fitrsvm to train Mdl, then the software standardizes the
columns of X using the corresponding means in Mdl.Mu and standard deviations in Mdl.Sigma.
Data Types: table | double | single

Output Arguments
yfit — Predicted responses
vector

Predicted responses, returned as a vector of length n, where n is the number of observations in the
training data.

For details about how to predict responses, see “Equation 25-1” and “Equation 25-2” in
“Understanding Support Vector Machine Regression” on page 25-2.

Examples

Predict Test Sample Response for SVM Regression Model

Load the carsmall data set. Consider a model that predicts a car's fuel efficiency given its
horsepower and weight. Determine the sample size.

load carsmall
tbl = table(Horsepower,Weight,MPG);
N = size(tbl,1);

Partition the data into training and test sets. Hold out 10% of the data for testing.

rng(10); % For reproducibility
cvp = cvpartition(N,'Holdout',0.1);
idxTrn = training(cvp); % Training set indices
idxTest = test(cvp);    % Test set indices

Train a linear SVM regression model. Standardize the data.

Mdl = fitrsvm(tbl(idxTrn,:),'MPG','Standardize',true);

Mdl is a RegressionSVM model.

Predict responses for the test set.

YFit = predict(Mdl,tbl(idxTest,:));

Create a table containing the observed response values and the predicted response values side by
side.

table(tbl.MPG(idxTest),YFit,'VariableNames',...
    {'ObservedValue','PredictedValue'})

ans=10×2 table
    ObservedValue    PredictedValue
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    _____________    ______________

          14             9.4833    
          27             28.938    
          10              7.765    
          28             27.155    
          22             21.054    
          29             31.484    
        24.5             30.306    
        18.5              19.12    
          32             28.225    
          28             26.632    

Tips
• If mdl is a cross-validated RegressionPartitionedSVM model, use kfoldPredict instead of

predict to predict new response values.

Alternative Functionality
Simulink Block

To integrate the prediction of an SVM regression model into Simulink, you can use the
RegressionSVM Predict block in the Statistics and Machine Learning Toolbox library or a MATLAB
Function block with the predict function. For examples, see “Predict Responses Using
RegressionSVM Predict Block” on page 34-127 and “Predict Class Labels Using MATLAB Function
Block” on page 34-51.

When deciding which approach to use, consider the following:

• If you use the Statistics and Machine Learning Toolbox library block, you can use the Fixed-Point
Tool to convert a floating-point model to fixed point.

• Support for variable-size arrays must be enabled for a MATLAB Function block with the predict
function.

• If you use a MATLAB Function block, you can use MATLAB functions for preprocessing or post-
processing before or after predictions in the same MATLAB Function block.

Version History
Introduced in R2015b

Extended Capabilities
Tall Arrays
Calculate with arrays that have more rows than fit in memory.

This function fully supports tall arrays. For more information, see “Tall Arrays”.

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.
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Usage notes and limitations:

• You can generate C/C++ code for both predict and update by using a coder configurer. Or,
generate code only for predict by using saveLearnerForCoder, loadLearnerForCoder, and
codegen.

• Code generation for predict and update — Create a coder configurer by using
learnerCoderConfigurer and then generate code by using generateCode. Then you can
update model parameters in the generated code without having to regenerate the code.

• Code generation for predict — Save a trained model by using saveLearnerForCoder.
Define an entry-point function that loads the saved model by using loadLearnerForCoder
and calls the predict function. Then use codegen to generate code for the entry-point
function.

• For single-precision code generation, use standardized data by specifying 'Standardize',true
when you train the model. To generate single-precision C/C++ code for predict, specify the
name-value argument "DataType","single" when you call the loadLearnerForCoder
function.

• You can also generate fixed-point C/C++ code for predict. Fixed-point code generation requires
an additional step that defines the fixed-point data types of the variables required for prediction.
Create a fixed-point data type structure by using the data type function on page 35-3041
generated by generateLearnerDataTypeFcn, and use the structure as an input argument of
loadLearnerForCoder in an entry-point function. Generating fixed-point C/C++ code requires
MATLAB Coder and Fixed-Point Designer.

• This table contains notes about the arguments of predict. Arguments not included in this table
are fully supported.

Argument Notes and Limitations
Mdl For the usage notes and limitations of the model object, see “Code

Generation” on page 35-979 of the CompactRegressionSVM object.
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Argument Notes and Limitations
X • For general code generation, X must be a single-precision or

double-precision matrix or a table containing numeric variables,
categorical variables, or both.

• In the coder configurer workflow, X must be a single-precision or
double-precision matrix.

• For fixed-point code generation, X must be a fixed-point matrix.
• The number of rows, or observations, in X can be a variable size,

but the number of columns in X must be fixed.
• If you want to specify X as a table, then your model must be trained

using a table, and your entry-point function for prediction must do
the following:

• Accept data as arrays.
• Create a table from the data input arguments and specify the

variable names in the table.
• Pass the table to predict.

For an example of this table workflow, see “Generate Code to
Classify Data in Table” on page 34-112. For more information on
using tables in code generation, see “Code Generation for Tables”
(MATLAB Coder) and “Table Limitations for Code Generation”
(MATLAB Coder).

For more information, see “Introduction to Code Generation” on page 34-2.

See Also
RegressionSVM | CompactRegressionSVM | fitrsvm | kfoldPredict
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predict
Predict responses using regression tree

Syntax
Yfit = predict(Mdl,X)
Yfit = predict(Mdl,X,Name,Value)
[Yfit,node] = predict( ___ )

Description
Yfit = predict(Mdl,X) returns a vector of predicted responses for the predictor data in the table
or matrix X, based on the full or compact regression tree Mdl.

Yfit = predict(Mdl,X,Name,Value) predicts response values with additional options specified
by one or more Name,Value pair arguments. For example, you can specify to prune Mdl to a
particular level before predicting responses.

[Yfit,node] = predict( ___ ) also returns a vector of predicted node numbers for the
responses, using any of the input arguments in the previous syntaxes.

Input Arguments
Mdl — Trained regression tree
RegressionTree model object | CompactRegressionTree model object

Trained classification tree, specified as a RegressionTree or CompactRegressionTree model
object. That is, Mdl is a trained classification model returned by fitrtree or compact.

X — Predictor data to be classified
numeric matrix | table

Predictor data to be classified, specified as a numeric matrix or table.

Each row of X corresponds to one observation, and each column corresponds to one variable.

• For a numeric matrix:

• The variables making up the columns of X must have the same order as the predictor variables
that trained Mdl.

• If you trained Mdl using a table (for example, Tbl), then X can be a numeric matrix if Tbl
contains all numeric predictor variables. To treat numeric predictors in Tbl as categorical
during training, identify categorical predictors using the CategoricalPredictors name-
value pair argument of fitrtree. If Tbl contains heterogeneous predictor variables (for
example, numeric and categorical data types) and X is a numeric matrix, then predict throws
an error.

• For a table:

• predict does not support multicolumn variables or cell arrays other than cell arrays of
character vectors.
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• If you trained Mdl using a table (for example, Tbl), then all predictor variables in X must have
the same variable names and data types as those that trained Mdl (stored in
Mdl.PredictorNames). However, the column order of X does not need to correspond to the
column order of Tbl. Tbl and X can contain additional variables (response variables,
observation weights, etc.), but predict ignores them.

• If you trained Mdl using a numeric matrix, then the predictor names in Mdl.PredictorNames
and corresponding predictor variable names in X must be the same. To specify predictor names
during training, see the PredictorNames name-value pair argument of fitrtree. All
predictor variables in X must be numeric vectors. X can contain additional variables (response
variables, observation weights, etc.), but predict ignores them.

Data Types: table | double | single

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.

Subtrees — Pruning level
0 (default) | vector of nonnegative integers | 'all'

Pruning level, specified as the comma-separated pair consisting of 'Subtrees' and a vector of
nonnegative integers in ascending order or 'all'.

If you specify a vector, then all elements must be at least 0 and at most max(Mdl.PruneList). 0
indicates the full, unpruned tree and max(Mdl.PruneList) indicates the completely pruned tree
(i.e., just the root node).

If you specify 'all', then predict operates on all subtrees (i.e., the entire pruning sequence). This
specification is equivalent to using 0:max(Mdl.PruneList).

predict prunes Mdl to each level indicated in Subtrees, and then estimates the corresponding
output arguments. The size of Subtrees determines the size of some output arguments.

To invoke Subtrees, the properties PruneList and PruneAlpha of Mdl must be nonempty. In other
words, grow Mdl by setting 'Prune','on', or by pruning Mdl using prune.
Example: 'Subtrees','all'
Data Types: single | double | char | string

Output Arguments
Yfit — Predicted response values
numeric column vector

Predicted response values, returned as a numeric column vector with the same number of rows as X.
Each row of Yfit gives the predicted response to the corresponding row of X, based on the Mdl.

node — Node numbers
numeric vector
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Node numbers for the predictions, specified as a numeric vector. Each entry corresponds to the
predicted leaf node in Mdl for the corresponding row of X.

Examples

Predict a Response Using a Regression Tree

Load the carsmall data set. Consider Displacement, Horsepower, and Weight as predictors of
the response MPG.

load carsmall
X = [Displacement Horsepower Weight];

Grow a regression tree using the entire data set.

Mdl = fitrtree(X,MPG);

Predict the MPG for a car with 200 cubic inch engine displacement, 150 horsepower, and that weighs
3000 lbs.

X0 = [200 150 3000];
MPG0 = predict(Mdl,X0)

MPG0 = 21.9375

The regression tree predicts the car's efficiency to be 21.94 mpg.

Alternative Functionality
Simulink Block

To integrate the prediction of a regression tree model into Simulink, you can use the RegressionTree
Predict block in the Statistics and Machine Learning Toolbox library or a MATLAB Function block
with the predict function. For examples, see “Predict Responses Using RegressionTree Predict
Block” on page 34-139 and “Predict Class Labels Using MATLAB Function Block” on page 34-51.

When deciding which approach to use, consider the following:

• If you use the Statistics and Machine Learning Toolbox library block, you can use the Fixed-Point
Tool to convert a floating-point model to fixed point.

• Support for variable-size arrays must be enabled for a MATLAB Function block with the predict
function.

• If you use a MATLAB Function block, you can use MATLAB functions for preprocessing or post-
processing before or after predictions in the same MATLAB Function block.

Version History
Introduced in R2011a
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Extended Capabilities
Tall Arrays
Calculate with arrays that have more rows than fit in memory.

This function fully supports tall arrays. You can use models trained on either in-memory or tall data
with this function.

For more information, see “Tall Arrays”.

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• You can generate C/C++ code for both predict and update by using a coder configurer. Or,
generate code only for predict by using saveLearnerForCoder, loadLearnerForCoder, and
codegen.

• Code generation for predict and update — Create a coder configurer by using
learnerCoderConfigurer and then generate code by using generateCode. Then you can
update model parameters in the generated code without having to regenerate the code.

• Code generation for predict — Save a trained model by using saveLearnerForCoder.
Define an entry-point function that loads the saved model by using loadLearnerForCoder
and calls the predict function. Then use codegen to generate code for the entry-point
function.

• To generate single-precision C/C++ code for predict, specify the name-value argument
"DataType","single" when you call the loadLearnerForCoder function.

• You can also generate fixed-point C/C++ code for predict. Fixed-point code generation requires
an additional step that defines the fixed-point data types of the variables required for prediction.
Create a fixed-point data type structure by using the data type function on page 35-3041
generated by generateLearnerDataTypeFcn, and use the structure as an input argument of
loadLearnerForCoder in an entry-point function. Generating fixed-point C/C++ code requires
MATLAB Coder and Fixed-Point Designer.

• This table contains notes about the arguments of predict. Arguments not included in this table
are fully supported.

Argument Notes and Limitations
Mdl For the usage notes and limitations of the model object, see “Code

Generation” on page 35-985 of the CompactRegressionTree object.
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Argument Notes and Limitations
X • For general code generation, X must be a single-precision or

double-precision matrix or a table containing numeric variables,
categorical variables, or both.

• In the coder configurer workflow, X must be a single-precision or
double-precision matrix.

• For fixed-point code generation, X must be a fixed-point matrix.
• The number of rows, or observations, in X can be a variable size,

but the number of columns in X must be fixed.
• If you want to specify X as a table, then your model must be trained

using a table, and your entry-point function for prediction must do
the following:

• Accept data as arrays.
• Create a table from the data input arguments and specify the

variable names in the table.
• Pass the table to predict.

For an example of this table workflow, see “Generate Code to
Classify Data in Table” on page 34-112. For more information on
using tables in code generation, see “Code Generation for Tables”
(MATLAB Coder) and “Table Limitations for Code Generation”
(MATLAB Coder).

Subtrees • Names in name-value arguments must be compile-time constants.
For example, to allow user-defined pruning levels in the generated
code, include
{coder.Constant('Subtrees'),coder.typeof(0,[1,n],
[0,1])} in the -args value of codegen, where n is
max(Mdl.PruneList).

• The 'Subtrees' name-value pair argument is not supported in the
coder configurer workflow.

• For fixed-point code generation, the 'Subtrees' value must be
coder.Constant('all') or have an integer data type.

For more information, see “Introduction to Code Generation” on page 34-2.

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

Usage notes and limitations:

• The predict function does not support decision tree models trained with surrogate splits.

For more information, see “Run MATLAB Functions on a GPU” (Parallel Computing Toolbox).

See Also
CompactRegressionTree | RegressionTree | fitrtree | compact | loss

Topics
“Predict Out-of-Sample Responses of Subtrees” on page 20-10
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“Decision Trees” on page 20-2
“Prediction Using Classification and Regression Trees” on page 20-9
“Specify Variable-Size Arguments for Code Generation” on page 34-56
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predict
Predict responses for new observations from incremental drift-aware learning model

Syntax
yfit = predict(Mdl,X)
yfit = predict(Mdl,X,ObservationsIn=dimension)
[yfit,m] = predict( ___ )
[yfit,m,cost] = predict( ___ )

Description
yfit = predict(Mdl,X) returns the predicted responses (or labels) yfit of the observations in
the predictor data X from the incremental drift-aware learning model Mdl.

yfit = predict(Mdl,X,ObservationsIn=dimension) specifies the observation dimension of
the predictor data, either "rows" (default) or "columns". For example, specify
ObservationsIn="columns" to indicate that observations in the predictor data are oriented along
the columns of X.

[yfit,m] = predict( ___ ) also returns the classification scores, posterior probabilities, or the
negated average binary losses in m when Mdl.BaseLearner is an incremental learning model for
classification, using any of the input argument combinations in the previous syntaxes. What m
contains depends on the type of the Mdl.BaseLearner model object.

[yfit,m,cost] = predict( ___ ) returns the predicted (expected) misclassification cost when
Mdl.BaseLearner is an incrementalClassificationNaiveBayes model object, using any of
the input argument combinations in the previous syntaxes.

Examples

Specify Observation Orientation and Predict Responses on New Data

Create the random concept data and the concept drift generator using the helper functions
HelperRegrGenerator and HelperConceptDriftGenerator, respectively.

concept1 = HelperRegrGenerator(NumFeatures=100,NonZeroFeatures=[1,20,40,50,55], ...
    FeatureCoefficients=[4,5,10,-2,-6],NoiseStd=1.1,TableOutput=false);
concept2 = HelperRegrGenerator(NumFeatures=100,NonZeroFeatures=[10,20,45,56,80], ...
    FeatureCoefficients=[4,5,10,-2,-6],NoiseStd=1.1,TableOutput=false);
driftGenerator = HelperConceptDriftGenerator(concept1,concept2,15000,1000);

HelperRegrGenerator generates streaming data using features and feature coefficients for
regression specified in the call to the function. At each step, the function samples the predictors from
a normal distribution. Then, the function computes the response using the feature coefficients and
predictor values and adding a random noise from a normal distribution with mean zero and specified
noise standard deviation. The software returns the data in matrices for using in incremental learners.

HelperConceptDriftGenerator establishes the concept drift. The object uses a sigmoid function
1./(1+exp(-4*(numobservations-position)./width)) to decide the probability of choosing
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the first stream when generating data [3]. In this case, the position argument is 15000 and the width
argument is 1000. As the number of observations exceeds the position value minus half of the width,
the probability of sampling from the first stream when generating data decreases. The sigmoid
function allows a smooth transition from one stream to the other. Larger width values indicate a
larger transition period where both streams are approximately equally likely to be selected.

Initiate an incremental drift-aware model for regression as follows:

1 Create an incremental linear model for regression. Specify the linear regression model type and
solver type.

2 Initiate an incremental concept drift detector that uses the Hoeffding's Bounds Drift Detection
Method with moving average (HDDMA).

3 Using the incremental linear model and the concept drift detector, instantiate an incremental
drift-aware model. Specify the training period as 6000 observations.

baseMdl = incrementalRegressionLinear(Learner="leastsquares",Solver="sgd",EstimationPeriod=1000,Standardize=false);
dd = incrementalConceptDriftDetector("hddma",Alternative="greater",InputType="continuous",WarmupPeriod=1000);
idaMdl = incrementalDriftAwareLearner(baseMdl,DriftDetector=dd,TrainingPeriod=6000);

Preallocate the number of variables in each chunk and the number of iterations for creating a stream
of data.

numObsPerChunk = 10;
numIterations = 4000;

Preallocate the variables for tracking the drift status and drift time, and storing the regression error.

dstatus = zeros(numIterations,1);
statusname = strings(numIterations,1);
driftTimes = [];
ce = array2table(zeros(numIterations,2),VariableNames=["Cumulative" "Window"]);

Simulate a data stream with incoming chunks of 10 observations each and perform incremental drift-
aware learning. At each iteration:

1 Simulate predictor data and labels, and update the drift generator using the helper function
hgenerate.

2 Call updateMetrics to update the performance metrics and fit to fit the incremental drift-
aware model to the incoming data.

3 Track and record the drift status and the regression error for visualization purposes.

rng(12); % For reproducibility

for j = 1:numIterations
 
 % Generate data
 [driftGenerator,X,Y] = hgenerate(driftGenerator,numObsPerChunk); 

 % Update performance metrics and fit
 idaMdl = updateMetrics(idaMdl,X,Y); 
 idaMdl = fit(idaMdl,X,Y);

 % Record drift status and regression error
 statusname(j) = string(idaMdl.DriftStatus); 
 ce{j,:} = idaMdl.Metrics{"MeanSquaredError",:};
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    if idaMdl.DriftDetected
       dstatus(j) = 2;
       driftTimes(end+1) = j;
    elseif idaMdl.WarningDetected
       dstatus(j) = 1;
    else 
       dstatus(j) = 0;
    end   
 
end

Plot the drift status versus the iteration number.

figure()
gscatter(1:numIterations,dstatus,statusname,'gmr','o',5,'on',"Iteration","Drift Status","filled")

Plot the cumulative and per window regression error. Mark the warmup and training periods, and
where the drift was introduced.

figure()
h = plot(ce.Variables);

xlim([0 numIterations])
ylim([0 20])
ylabel("Mean Squared Error")
xlabel("Iteration")

xline((idaMdl.MetricsWarmupPeriod+idaMdl.BaseLearner.EstimationPeriod)/numObsPerChunk,"g-.","Estimation Period + Warmup Period",LineWidth=1.5)
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xline((idaMdl.MetricsWarmupPeriod+idaMdl.BaseLearner.EstimationPeriod)/numObsPerChunk+driftTimes,"g-.","Estimation Period + Warmup Period",LineWidth=1.5)
xline(idaMdl.TrainingPeriod/numObsPerChunk,"b-.","Training Period",LabelVerticalAlignment="middle",LineWidth=1.5)
xline(driftTimes,"m--","Drift",LabelVerticalAlignment="middle",LineWidth=1.5)

legend(h,ce.Properties.VariableNames)
legend(h,Location="best")

After the detection of drift, the fit function calls the reset function to reset the incremental drift-
aware learner, hence the base learner and the drift detector. The updateMetrics function waits for
idaMdl.BaseLearner.EstimationPeriod+idaMdl.MetricsWarmupPeriod observations to
start updating model performance metrics again.

Generate new data. Reorient the predictor variables in columns.

[driftGenerator,X,Y] = hgenerate(driftGenerator,500); 
X = X';

Predict responses on new data. Specify the orientation of the predictor variables.

yhat = predict(idaMdl,X,ObservationsIn="columns");

Compute and plot the residuals.

res = Y - yhat;
plot(res)
ylabel("Residuals")
xlabel("New data points")
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The residuals appear symmetrically spread around 0 for new data.

Predict Classes and Compute Classification Scores on New Data

Create the random concept data using the HelperSineGenerator and concept drift generator
HelperConceptDriftGenerator.

concept1 = HelperSineGenerator("ClassificationFunction",1,"IrrelevantFeatures",true,"TableOutput",false);
concept2 = HelperSineGenerator("ClassificationFunction",3,"IrrelevantFeatures",true,"TableOutput",false);
driftGenerator = HelperConceptDriftGenerator(concept1,concept2,15000,1000);

When ClassificationFunction is 1, HelperSineGenerator labels all points that satisfy x1 <
sin(x2) as 1, otherwise the function labels them as 0. When ClassificationFunction is 3, this is
reversed. That is, HelperSineGenerator labels all points that satisfy x1 >= sin(x2) as 1, otherwise
the function labels them as 0.

HelperConceptDriftGenerator establishes the concept drift. The object uses a sigmoid function
1./(1+exp(-4*(numobservations-position)./width)) to decide the probability of choosing
the first stream when generating data [1]. In this case, the position argument is 15000 and the width
argument is 1000. As the number of observations exceeds the position value minus half of the width,
the probability of sampling from the first stream when generating data decreases. The sigmoid
function allows a smooth transition from one stream to the other. Larger width values indicate a
larger transition period where both streams are approximately equally likely to be selected.
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Instantiate an incremental drift-aware model as follows:

1 Create an incremental Naive Bayes classification model for binary classification.
2 Initiate an incremental concept drift detector that uses the Hoeffding's Bounds Drift Detection

Method with moving average (HDDMA).
3 Using the incremental linear model and the concept drift detector, instantiate an incremental

drift-aware model. Specify the training period as 5000 observations.

BaseLearner = incrementalClassificationLinear(Solver="sgd");
dd = incrementalConceptDriftDetector("hddma");
idaMdl = incrementalDriftAwareLearner(BaseLearner,DriftDetector=dd,TrainingPeriod=5000);

Preallocate the number of variables in each chunk and number of iterations for creating a stream of
data.

numObsPerChunk = 10;
numIterations = 4000;

Preallocate the variables for tracking the drift status and drift time, and storing the classification
error.

dstatus = zeros(numIterations,1);
statusname = strings(numIterations,1);
ce = array2table(zeros(numIterations,2),VariableNames=["Cumulative" "Window"]);
driftTimes = [];

Simulate a data stream with incoming chunks of 10 observations each and perform incremental drift-
aware learning. At each iteration:

1 Simulate predictor data and labels, and update the drift generator using the helper function
hgenerate.

2 Call updateMetricsAndFit to update the performance metrics and fit the incremental drift-
aware model to the incoming data.

3 Track and record the drift status and the classification error for visualization purposes.

rng(12); % For reproducibility

for j = 1:numIterations
 
 % Generate data
 [driftGenerator,X,Y] = hgenerate(driftGenerator,numObsPerChunk); 

 % Update performance metrics and fit
 idaMdl = updateMetricsAndFit(idaMdl,X,Y); 

 % Record drift status and classification error
 statusname(j) = string(idaMdl.DriftStatus); 
 ce{j,:} = idaMdl.Metrics{"ClassificationError",:};
 if idaMdl.DriftDetected
       dstatus(j) = 2;  
       driftTimes(end+1) = j; 
    elseif idaMdl.WarningDetected
       dstatus(j) = 1;
    else 
       dstatus(j) = 0;
    end   
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end

Plot the cumulative and per window classification error. Mark the warmup and training periods, and
where the drift was introduced.

h = plot(ce.Variables);

xlim([0 numIterations])
ylim([0 0.08])
ylabel("Classification Error")
xlabel("Iteration")

xline((idaMdl.BaseLearner.EstimationPeriod+idaMdl.MetricsWarmupPeriod)/numObsPerChunk,"g-.","Estimation + Warmup Period",LineWidth=1.5)
xline(idaMdl.TrainingPeriod/numObsPerChunk,"b-.","Training Period",LabelVerticalAlignment="middle",LineWidth=1.5)
xline(driftTimes,"m--","Drift",LabelVerticalAlignment="middle",LineWidth=1.5)

legend(h,ce.Properties.VariableNames)
legend(h,Location="best")

Plot the drift status versus the iteration number.

gscatter(1:numIterations,dstatus,statusname,'gmr','o',4,'on',"Iteration","Drift Status","Filled")
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Generate new data of 500 observations. Predict class labels and classification scores for new data.

numnewdata = 500;
[driftGenerator,X,Y] = hgenerate(driftGenerator,numnewdata); 
[yhat,cscores] = predict(idaMdl,X);

Compute ROC and plot the results.

roc = rocmetrics(Y,cscores,idaMdl.BaseLearner.ClassNames);
plot(roc)
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For each class, the plot function plots a ROC curve and displays a filled circle marker at the model
operating point. The legend displays the class name and AUC value for each curve. In a binary
classification problem, the two ROC curves are symmetric, and the AUC values are identical.

Compute the accuracy of the model.

accuracy = sum(Y==yhat)/500

accuracy = 0.9820

The model predicts the new class labels with high accuracy.

Input Arguments
Mdl — Incremental drift-aware learning model
incrementalDriftAwareLearner model object

Incremental drift-aware learning model fit to streaming data, specified as an
incrementalDriftAwareLearner model object. You can create Mdl using the
incrementalDriftAwareLearner function. For more details, see the object reference page.

X — Chunk of predictor data
floating-point matrix

Chunk of predictor data for which to predict responses or labels, specified as a floating-point matrix
of n observations and Mdl.BaseLearner.NumPredictors predictor variables.
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When Mdl.BaseLearner accepts the ObservationsIn name-value argument, the value of
ObservationsIn determines the orientation of the variables and observations. The default
ObservationsIn value is "rows", which indicates that observations in the predictor data are
oriented along the rows of X.

Note

predict supports only floating-point input predictor data. If your input data includes categorical
data, you must prepare an encoded version of the categorical data. Use dummyvar to convert each
categorical variable to a numeric matrix of dummy variables. Then, concatenate all dummy variable
matrices and any other numeric predictors. For more details, see “Dummy Variables” on page 2-49.

Data Types: single | double

dimension — Predictor data observation dimension
"rows" (default) | "columns"

Predictor data observation dimension, specified as "columns" or "rows".

predict supports ObservationsIn=dimension only if Mdl.BaseLearner supports the
ObservationsIn name-value argument.
Data Types: char | string

Output Arguments
yfit — Predicted responses (labels)
floating-point vector | categorical array | character array | string vector | logical vector | cell array of
character vectors

Predicted responses (labels), returned as a floating-point vector, categorical or character array, string
or logical vector, or cell array of character vectors with n rows. n is the number of observations in X,
and yfit(j) is the predicted response (label) for observation j.

• For classification problems, yfit has the same data type as the class names stored in
Mdl.BaseLearner.ClassNames. The software treats string arrays as cell arrays of character
vectors.

• For regression problems, yfit is a floating-point vector.

m — Classification scores, posterior probabilities, or negated average binary losses
floating-point matrix

Classification scores, posterior probabilities, or negated average binary losses, returned as a floating-
point matrix when Mdl.BaseLearner is an incremental classification model.

• When Mdl.BaseLearner is an incrementalClassificationLinear or
incrementalClassificationKernel model object, m contains the raw classification scores or
posterior probabilities depending on the learner type. For more information, see predict
(incrementalClassificationLinear) or predict (incrementalClassificationKernel).

• When Mdl.BaseLearner is an incrementalClassificationNaiveBayes model object, m
contains the posterior probabilities. For more information, see predict
(incrementalClassificationNaiveBayes).
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• When Mdl.BaseLearner is an incrementalClassificationECOC model object, m contains
the negated average binary losses. For more information, see predict
(incrementalClassificationECOC).

cost — Expected misclassification costs
floating-point matrix

Expected misclassification costs, returned as an n-by-numel(Mdl.BaseLearner.ClassNames)
floating-point matrix when Mdl.BaseLearner is an incrementalClassificationNaiveBayes
model. For more information, see predict (incrementalClassificationNaiveBayes).

Version History
Introduced in R2022b

References
[1] Barros, Roberto S.M. , et al. "RDDM: Reactive drift detection method." Expert Systems with

Applications. vol. 90, Dec. 2017, pp. 344-55. https://doi.org/10.1016/j.eswa.2017.08.023

[2] Bifet, Albert, et al. "New Ensemble Methods for Evolving Data Streams." Proceedings of the 15th
ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM
Press, 2009, p. 139. https://doi.org/10.1145/1557019.1557041.

[3] Gama, João, et al. "Learning with drift detection". Advances in Artificial Intelligence – SBIA 2004,
edited by Ana L. C. Bazzan and Sofiane Labidi, vol. 3171, Springer Berlin Heidelberg, 2004,
pp. 286–95. https://doi.org/10.1007/978-3-540-28645-5_29.

See Also
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predict
Predict responses for new observations from ECOC incremental learning classification model

Syntax
label = predict(Mdl,X)
label = predict(Mdl,X,Name=Value)
[label,NegLoss,PBScore] = predict( ___ )

Description
label = predict(Mdl,X) returns the predicted responses (or labels) label of the observations in
the predictor data X from the multiclass error-correcting output codes (ECOC) classification model
for incremental learning Mdl.

label = predict(Mdl,X,Name=Value) specifies additional options using one or more name-value
arguments. For example, specify ObservationsIn=columns to indicate that observations in the
predictor data are oriented along the columns of X.

[label,NegLoss,PBScore] = predict( ___ ) uses any of the input argument combinations in
the previous syntaxes and additionally returns:

• An array of negated average binary losses on page 35-5868 (NegLoss). For each observation in X,
predict assigns the label of the class yielding the largest negated average binary loss (or,
equivalently, the smallest average binary loss).

• An array of positive-class scores (PBScore) for the observations classified by each binary learner.

Examples

Predict Class Labels

Create an incremental learning model by converting a traditionally trained ECOC model, and predict
class labels using both models.

Load the human activity data set.

load humanactivity

For details on the data set, enter Description at the command line.

Fit a multiclass ECOC classification model to the entire data set.

Mdl = fitcecoc(feat,actid);

Mdl is a ClassificationECOC model object representing a traditionally trained ECOC classification
model.

Convert the traditionally trained ECOC classification model to a model for incremental learning.

IncrementalMdl = incrementalLearner(Mdl) 
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IncrementalMdl = 
  incrementalClassificationECOC

            IsWarm: 1
           Metrics: [1x2 table]
        ClassNames: [1 2 3 4 5]
    ScoreTransform: 'none'
    BinaryLearners: {10x1 cell}
        CodingName: 'onevsone'
          Decoding: 'lossweighted'

  Properties, Methods

IncrementalMdl is an incrementalClassificationECOC model object prepared for incremental
learning.

The incrementalLearner function initializes the incremental learner by passing the coding design
and model parameters for binary learners to it, along with other information Mdl extracts from the
training data. IncrementalMdl is warm (IsWarm is 1), which means that incremental learning
functions can track performance metrics and make predictions.

An incremental learner created from converting a traditionally trained model can generate
predictions without further processing.

Predict class labels for all observations using both models.

ttlabels = predict(Mdl,feat);
illables = predict(IncrementalMdl,feat);
isequal(ttlabels,illables)

ans = logical
   1

Both models predict the same labels for each observation.

Compute Negated Average Binary Losses

Prepare an incremental ECOC model for predict by fitting the model to a chunk of observations.
Compute negated average binary losses for streaming data by using the predict function, and
evaluate the model performance using the area under the receiver operating characteristic (ROC)
curve, or AUC.

Load the human activity data set. Randomly shuffle the data.

load humanactivity
n = numel(actid);
rng(10) % For reproducibility
idx = randsample(n,n);
X = feat(idx,:);
Y = actid(idx);

For details on the data set, enter Description at the command line.
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Create an ECOC model for incremental learning. Specify the class names. Prepare the model for
predict by fitting the model to the first 10 observations.

Mdl = incrementalClassificationECOC(ClassNames=unique(Y));
initobs = 10;
Mdl = fit(Mdl,X(1:initobs,:),Y(1:initobs));

Mdl is an incrementalClassificationECOC model. All its properties are read-only. The model is
configured to generate predictions.

Simulate a data stream, and perform the following actions on each incoming chunk of 100
observations.

1 Call predict to compute negated average binary losses for each observation in the incoming
chunk of data. Specify to use the "lossbased" decoding scheme.

2 Call rocmetrics to compute the AUC using the negated average binary losses, and store the
AUC value, averaged over all classes. This AUC is an incremental measure of how well the model
predicts the activities on average.

3 Call fit to fit the model to the incoming chunk. Overwrite the previous incremental model with a
new one fitted to the incoming observations.

numObsPerChunk = 100;
nchunk = floor((n - initobs)/numObsPerChunk);
auc = zeros(nchunk,1);

% Incremental learning
for j = 1:nchunk
    ibegin = min(n,numObsPerChunk*(j-1) + 1 + initobs);
    iend   = min(n,numObsPerChunk*j + initobs);
    idx = ibegin:iend;    
    [~,NegLoss] = predict(Mdl,X(idx,:),Decoding="lossbased");  
    mdlROC = rocmetrics(Y(idx),NegLoss,Mdl.ClassNames);
    [~,~,~,auc(j)] = average(mdlROC,"micro");
    Mdl = fit(Mdl,X(idx,:),Y(idx));
end

Mdl is an incrementalClassificationECOC model object trained on all the data in the stream.

Plot the AUC values for each incoming chunk of data.

plot(auc)
xlim([0 nchunk])
ylabel("AUC")
xlabel("Iteration")

The plot suggests that the classifier predicts the activities well during incremental learning.

Input Arguments
Mdl — ECOC classification model for incremental learning
incrementalClassificationECOC model object

ECOC classification model for incremental learning, specified as an
incrementalClassificationECOC model object. You can create Mdl by calling

 predict
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incrementalClassificationECOC directly, or by converting a supported, traditionally trained
machine learning model using the incrementalLearner function.

You must configure Mdl to predict labels for a batch of observations.

• If Mdl is a converted, traditionally trained model, you can predict labels without any
modifications.

• Otherwise, you must fit Mdl to data using fit or updateMetricsAndFit.

X — Batch of predictor data
floating-point matrix

Batch of predictor data, specified as a floating-point matrix of n observations and
Mdl.NumPredictors predictor variables. The value of the ObservationsIn name-value argument
determines the orientation of the variables and observations. The default ObservationsIn value is
"rows", which indicates that observations in the predictor data are oriented along the rows of X.

Note

predict supports only floating-point input predictor data. If your input data includes categorical
data, you must prepare an encoded version of the categorical data. Use dummyvar to convert each
categorical variable to a numeric matrix of dummy variables. Then, concatenate all dummy variable
matrices and any other numeric predictors. For more details, see “Dummy Variables” on page 2-49.

Data Types: single | double

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.
Example: BinaryLoss="quadratic",Decoding="lossbased" specifies the quadratic binary
learner loss function and the loss-based decoding scheme for aggregating the binary losses.

BinaryLoss — Binary learner loss function
Mdl.BinaryLoss (default) | "hamming" | "linear" | "logit" | "exponential" |
"binodeviance" | "hinge" | "quadratic" | function handle

Binary learner loss function, specified as a built-in loss function name or function handle.

• This table describes the built-in functions, where yj is the class label for a particular binary learner
(in the set {–1,1,0}), sj is the score for observation j, and g(yj,sj) is the binary loss formula.

Value Description Score Domain g(yj,sj)
"binodeviance" Binomial deviance (–∞,∞) log[1 + exp(–2yjsj)]/

[2log(2)]
"exponential" Exponential (–∞,∞) exp(–yjsj)/2
"hamming" Hamming [0,1] or (–∞,∞) [1 – sign(yjsj)]/2
"hinge" Hinge (–∞,∞) max(0,1 – yjsj)/2

35 Functions

35-5866



Value Description Score Domain g(yj,sj)
"linear" Linear (–∞,∞) (1 – yjsj)/2
"logit" Logistic (–∞,∞) log[1 + exp(–yjsj)]/

[2log(2)]
"quadratic" Quadratic [0,1] [1 – yj(2sj – 1)]2/2

The software normalizes binary losses so that the loss is 0.5 when yj = 0. Also, the software
calculates the mean binary loss for each class.

• For a custom binary loss function, for example customFunction, specify its function handle
BinaryLoss=@customFunction.

customFunction has this form:

bLoss = customFunction(M,s)

• M is the K-by-B coding matrix stored in Mdl.CodingMatrix.
• s is the 1-by-B row vector of classification scores.
• bLoss is the classification loss. This scalar aggregates the binary losses for every learner in a

particular class. For example, you can use the mean binary loss to aggregate the loss over the
learners for each class.

• K is the number of classes.
• B is the number of binary learners.

For an example of a custom binary loss function, see “Predict Test-Sample Labels of ECOC Model
Using Custom Binary Loss Function” on page 35-5751. This example is for a traditionally trained
model. You can define a custom loss function for incremental learning as shown in the example.

For more information, see “Binary Loss” on page 35-5868.
Data Types: char | string | function_handle

Decoding — Decoding scheme
Mdl.Decoding (default) | "lossweighted" | "lossbased"

Decoding scheme, specified as "lossweighted" or "lossbased".

The decoding scheme of an ECOC model specifies how the software aggregates the binary losses and
determines the predicted class for each observation. The software supports two decoding schemes:

• "lossweighted" — The predicted class of an observation corresponds to the class that produces
the minimum sum of the binary losses over binary learners.

• "lossbased" — The predicted class of an observation corresponds to the class that produces the
minimum average of the binary losses over binary learners.

For more information, see “Binary Loss” on page 35-5868.
Example: Decoding="lossbased"
Data Types: char | string

ObservationsIn — Predictor data observation dimension
"rows" (default) | "columns"

 predict
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Predictor data observation dimension, specified as "rows" or "columns".
Example: ObservationsIn="columns"
Data Types: char | string

Output Arguments
label — Predicted responses (labels)
categorical array | floating-point vector | character array | logical vector | string vector | cell array of
character vectors

Predicted responses (labels), returned as a categorical or character array; floating-point, logical, or
string vector; or cell array of character vectors with n rows. n is the number of observations in X, and
label(j) is the predicted response for observation j.

label has the same data type as the class names stored in Mdl.ClassNames. (The software treats
string arrays as cell arrays of character vectors.)

The predict function predicts the classification of an observation by assigning the observation to
the class yielding the largest negated average binary loss (or, equivalently, the smallest average
binary loss). For an observation with NaN loss values, the function classifies the observation into the
majority class, which makes up the largest proportion of the training labels.

NegLoss — Negated average binary losses
numeric matrix

Negated average binary losses, returned as an n-by-K numeric matrix. n is the number of
observations in X, and K is the number of distinct classes in the training data
(numel(Mdl.ClassNames)).

NegLoss(i,k) is the negated average binary loss for classifying observation i into the kth class.

• If Decoding is 'lossbased', then NegLoss(i,k) is the negated sum of the binary losses
divided by the total number of binary learners.

• If Decoding is 'lossweighted', then NegLoss(i,k) is the negated sum of the binary losses
divided by the number of binary learners for the kth class.

For more details, see “Binary Loss” on page 35-5868.

PBScore — Positive-class scores
numeric matrix

Positive-class scores for each binary learner, returned as an n-by-B numeric matrix. n is the number of
observations in X, and B is the number of binary learners (numel(Mdl.BinaryLearners)).

More About
Binary Loss

The binary loss is a function of the class and classification score that determines how well a binary
learner classifies an observation into the class.

Suppose the following:

35 Functions

35-5868



• mkj is element (k,j) of the coding design matrix M—that is, the code corresponding to class k of
binary learner j. M is a K-by-B matrix, where K is the number of classes, and B is the number of
binary learners.

• sj is the score of binary learner j for an observation.
• g is the binary loss function.
• k  is the predicted class for the observation.

The decoding scheme of an ECOC model specifies how the software aggregates the binary losses and
determines the predicted class for each observation. The software supports two decoding schemes:

• Loss-based decoding [2] (Decoding is 'lossbased') — The predicted class of an observation
corresponds to the class that produces the minimum average of the binary losses over all binary
learners.

k = argmin
k

1
B ∑j = 1

B
mk j g(mk j, s j) .

• Loss-weighted decoding [3] (Decoding is 'lossweighted') — The predicted class of an
observation corresponds to the class that produces the minimum average of the binary losses over
the binary learners for the corresponding class.

k = argmin
k

∑
j = 1

B
mk j g(mk j, s j)

∑ j = 1

B

mk j

.

The denominator corresponds to the number of binary learners for class k. [1] suggests that loss-
weighted decoding improves classification accuracy by keeping loss values for all classes in the
same dynamic range.

The predict, resubPredict, and kfoldPredict functions return the negated value of the
objective function of argmin as the second output argument (NegLoss) for each observation and
class.

This table summarizes the supported binary loss functions, where yj is a class label for a particular
binary learner (in the set {–1,1,0}), sj is the score for observation j, and g(yj,sj) is the binary loss
function.

Value Description Score Domain g(yj,sj)
"binodeviance" Binomial deviance (–∞,∞) log[1 + exp(–2yjsj)]/

[2log(2)]
"exponential" Exponential (–∞,∞) exp(–yjsj)/2
"hamming" Hamming [0,1] or (–∞,∞) [1 – sign(yjsj)]/2
"hinge" Hinge (–∞,∞) max(0,1 – yjsj)/2
"linear" Linear (–∞,∞) (1 – yjsj)/2
"logit" Logistic (–∞,∞) log[1 + exp(–yjsj)]/

[2log(2)]
"quadratic" Quadratic [0,1] [1 – yj(2sj – 1)]2/2
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The software normalizes binary losses so that the loss is 0.5 when yj = 0, and aggregates using the
average of the binary learners.

Do not confuse the binary loss with the overall classification loss (specified by the LossFun name-
value argument of the loss and predict object functions), which measures how well an ECOC
classifier performs as a whole.

Algorithms
Observation Weights

If the prior class probability distribution is known (in other words, the prior distribution is not
empirical), predict normalizes observation weights to sum to the prior class probabilities in the
respective classes. This action implies that the default observation weights are the respective prior
class probabilities.

If the prior class probability distribution is empirical, the software normalizes the specified
observation weights to sum to 1 each time you call predict.

Version History
Introduced in R2022a
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Functions
fit | updateMetrics | updateMetricsAndFit | loss

Objects
incrementalClassificationECOC

Topics
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“Configure Incremental Learning Model” on page 28-9
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predict
Predict responses for new observations from kernel incremental learning model

Syntax
label = predict(Mdl,X)
[label,score] = predict(Mdl,X)

Description
label = predict(Mdl,X) returns the predicted responses (or labels) label of the observations in
the predictor data X from the incremental learning model Mdl.

[label,score] = predict(Mdl,X) also returns classification scores on page 35-5876 for all
classes when Mdl is an incremental learning model for classification.

Examples

Predict Responses

Create an incremental learning model by converting a traditionally trained kernel model, and predict
responses using both models.

Load the 2015 NYC housing data set. For more details on the data, see NYC Open Data.

load NYCHousing2015

Extract the response variable SALEPRICE from the table. For numerical stability, scale SALEPRICE by
1e6.

Y = NYCHousing2015.SALEPRICE/1e6;
NYCHousing2015.SALEPRICE = [];

To reduce computational cost for this example, remove the NEIGHBORHOOD column, which contains a
categorical variable with 254 categories.

NYCHousing2015.NEIGHBORHOOD = [];

Create dummy variable matrices from the other categorical predictors.

catvars = ["BOROUGH","BUILDINGCLASSCATEGORY"];
dumvarstbl = varfun(@(x)dummyvar(categorical(x)),NYCHousing2015, ...
    InputVariables=catvars);
dumvarmat = table2array(dumvarstbl);
NYCHousing2015(:,catvars) = [];

Treat all other numeric variables in the table as predictors of sales price. Concatenate the matrix of
dummy variables to the rest of the predictor data.

idxnum = varfun(@isnumeric,NYCHousing2015,OutputFormat="uniform");
X = [dumvarmat NYCHousing2015{:,idxnum}];

 predict
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Fit a kernel regression model to the entire data set.

Mdl = fitrkernel(X,Y)

Mdl = 
  RegressionKernel
              ResponseName: 'Y'
                   Learner: 'svm'
    NumExpansionDimensions: 2048
               KernelScale: 1
                    Lambda: 1.0935e-05
             BoxConstraint: 1
                   Epsilon: 0.0549

  Properties, Methods

Mdl is a RegressionKernel model object representing a traditionally trained kernel regression
model.

Convert the traditionally trained kernel regression model to a model for incremental learning.

IncrementalMdl = incrementalLearner(Mdl)

IncrementalMdl = 
  incrementalRegressionKernel

                    IsWarm: 1
                   Metrics: [1x2 table]
         ResponseTransform: 'none'
    NumExpansionDimensions: 2048
               KernelScale: 1

  Properties, Methods

IncrementalMdl is an incrementalRegressionKernel model object prepared for incremental
learning.

The incrementalLearner function initializes the incremental learner by passing model parameters
to it, along with other information Mdl extracted from the training data. IncrementalMdl is warm
(IsWarm is 1), which means that incremental learning functions can start tracking performance
metrics.

An incremental learner created from converting a traditionally trained model can generate
predictions without further processing.

Predict sales prices for all observations using both models.

ttyfit = predict(Mdl,X);
ilyfit = predict(IncrementalMdl,X);
compareyfit = norm(ttyfit - ilyfit)

compareyfit = 0

The difference between the fitted values generated by the models is 0.
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Compute Posterior Class Probabilities

To compute posterior class probabilities, specify a logistic regression incremental learner.

Load the human activity data set. Randomly shuffle the data.

load humanactivity
n = numel(actid);
rng(10) % For reproducibility
idx = randsample(n,n);
X = feat(idx,:);
Y = actid(idx);

For details on the data set, enter Description at the command line.

Responses can be one of five classes: Sitting, Standing, Walking, Running, or Dancing. Dichotomize
the response by identifying whether the subject is moving (actid > 2).

Y = Y > 2;

Create an incremental logistic regression model for binary classification. Prepare it for predict by
fitting the model to the first 10 observations.

Mdl = incrementalClassificationKernel(Learner="logistic");
initobs = 10;
Mdl = fit(Mdl,X(1:initobs,:),Y(1:initobs));

Mdl is an incrementalClassificationKernel model. All its properties are read-only.

Simulate a data stream, and perform the following actions on each incoming chunk of 50
observations:

1 Call predict to predict classification scores for the observations in the incoming chunk of data.
The classification scores are posterior class probabilities for logistic regression learners.

2 Call rocmetrics to compute the area under the ROC curve (AUC) using the classification
scores, and store the result.

3 Call fit to fit the model to the incoming chunk. Overwrite the previous incremental model with a
new one fitted to the incoming observations.

numObsPerChunk = 50;
nchunk = floor((n - initobs)/numObsPerChunk);
auc = zeros(nchunk,1);

% Incremental learning
for j = 1:nchunk
    ibegin = min(n,numObsPerChunk*(j-1) + 1 + initobs);
    iend   = min(n,numObsPerChunk*j + initobs);
    idx = ibegin:iend; 
    [~,posteriorProb] = predict(Mdl,X(idx,:));  
    mdlROC = rocmetrics(Y(idx),posteriorProb,Mdl.ClassNames);
    auc(j) = mdlROC.AUC(2);  
    Mdl = fit(Mdl,X(idx,:),Y(idx));
end

 predict
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Mdl is an incrementalClassificationKernel model object trained on all the data in the stream.

Plot the AUC for the incoming chunks of data.

plot(auc)
xlim([0 nchunk])
ylabel("AUC")
xlabel("Iteration")

The plot suggests that the classifier predicts moving subjects well during incremental learning.

Input Arguments
Mdl — Incremental learning model
incrementalClassificationKernel model object | incrementalRegressionKernel model
object

Incremental learning model, specified as an incrementalClassificationKernel or
incrementalRegressionKernel model object. You can create Mdl directly or by converting a
supported, traditionally trained machine learning model using the incrementalLearner function.
For more details, see the corresponding reference page.

You must configure Mdl to predict labels for a batch of observations.

• If Mdl is a converted, traditionally trained model, you can predict labels without any
modifications.
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• Otherwise, you must fit Mdl to data using fit or updateMetricsAndFit.

X — Batch of predictor data
floating-point matrix

Batch of predictor data, specified as a floating-point matrix of n observations and
Mdl.NumPredictors predictor variables.

Note

predict supports only floating-point input predictor data. If your input data includes categorical
data, you must prepare an encoded version of the categorical data. Use dummyvar to convert each
categorical variable to a numeric matrix of dummy variables. Then, concatenate all dummy variable
matrices and any other numeric predictors. For more details, see “Dummy Variables” on page 2-49.

Data Types: single | double

Output Arguments
label — Predicted responses (labels)
categorical array | character array | string vector | logical vector | cell array of character vectors |
floating-point vector

Predicted responses (labels), returned as a categorical or character array; floating-point, logical, or
string vector; or cell array of character vectors with n rows. n is the number of observations in X, and
label(j) is the predicted response for observation j.

• For regression problems, label is a floating-point vector.
• For classification problems, label has the same data type as the class names stored in

Mdl.ClassNames. (The software treats string arrays as cell arrays of character vectors.)

The predict function classifies an observation into the class yielding the highest score. For an
observation with NaN scores, the function classifies the observation into the majority class, which
makes up the largest proportion of the training labels.

score — Classification scores
floating-point matrix

Classification scores on page 35-5876, returned as an n-by-2 floating-point matrix when Mdl is an
incrementalClassificationKernel model. n is the number of observations in X. score(j,k) is
the score for classifying observation j into class k. Mdl.ClassNames specifies the order of the
classes.

If Mdl.Learner is 'svm', predict returns raw classification scores. If Mdl.Learner is
'logistic', classification scores are posterior probabilities.

 predict
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More About
Classification Score

For kernel incremental learning models for binary classification, the raw classification score for
classifying the observation x, a row vector, into the positive class (second class in Mdl.ClassNames)
is

f x = β0 + T(x)β,

where

• T ·  is a transformation of an observation for feature expansion.
• β0 is the scalar bias.
• β is the column vector of coefficients.

The raw classification score for classifying x into the negative class (first class in Mdl.ClassNames)
is –f(x). The software classifies observations into the class that yields the positive score.

If the kernel classification model consists of logistic regression learners, then the software applies the
"logit" score transformation to the raw classification scores.

Version History
Introduced in R2022a

See Also
Objects
incrementalClassificationKernel | incrementalRegressionKernel

Functions
loss | fit | updateMetrics | updateMetricsAndFit

Topics
“Incremental Learning Overview” on page 28-2
“Configure Incremental Learning Model” on page 28-9
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predict
Predict responses for new observations from linear incremental learning model

Syntax
label = predict(Mdl,X)
label = predict(Mdl,X,'ObservationsIn',dimension)

[label,score] = predict( ___ )

Description
label = predict(Mdl,X) returns the predicted responses (or labels) label of the observations in
the predictor data X from the incremental learning model Mdl.

label = predict(Mdl,X,'ObservationsIn',dimension) specifies the observation dimension
of the predictor data, either 'rows' (default) or 'columns'. For example, specify
'ObservationsIn','columns' to indicate that observations in the predictor data are oriented
along the columns of X.

[label,score] = predict( ___ ) also returns classification scores on page 35-5884 for all
classes when Mdl is an incremental learning model for classification, using any of the input argument
combinations in the previous syntaxes.

Examples

Predict Class Labels

Load the human activity data set.

load humanactivity

For details on the data set, enter Description at the command line.

Responses can be one of five classes: Sitting, Standing, Walking, Running, or Dancing. Dichotomize
the response by identifying whether the subject is moving (actid > 2).

Y = actid > 2;

Fit a linear classification model to the entire data set.

TTMdl = fitclinear(feat,Y)

TTMdl = 
  ClassificationLinear
      ResponseName: 'Y'
        ClassNames: [0 1]
    ScoreTransform: 'none'
              Beta: [60x1 double]
              Bias: -0.2005

 predict
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            Lambda: 4.1537e-05
           Learner: 'svm'

  Properties, Methods

TTMdl is a ClassificationLinear model object representing a traditionally trained linear
classification model.

Convert the traditionally trained linear classification model to a binary classification linear model for
incremental learning.

IncrementalMdl = incrementalLearner(TTMdl)

IncrementalMdl = 
  incrementalClassificationLinear

            IsWarm: 1
           Metrics: [1x2 table]
        ClassNames: [0 1]
    ScoreTransform: 'none'
              Beta: [60x1 double]
              Bias: -0.2005
           Learner: 'svm'

  Properties, Methods

IncrementalMdl is an incrementalClassificationLinear model object prepared for
incremental learning using SVM.

• The incrementalLearner function initializes the incremental learner by passing learned
coefficients to it, along with other information TTMdl learned from the training data.

• IncrementalMdl is warm (IsWarm is 1), which means that incremental learning functions can
start tracking performance metrics.

• The incrementalLearner configures the model to be trained using the adaptive scale-invariant
solver, whereas fitclinear trained TTMdl using the BFGS solver

An incremental learner created from converting a traditionally trained model can generate
predictions without further processing.

Predict class labels for all observations using both models.

ttlabels = predict(TTMdl,feat);
illables = predict(IncrementalMdl,feat);
sameLabels = sum(ttlabels ~= illables) == 0

sameLabels = logical
   1

Both models predict the same labels for each observation.
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Specify Observation Orientation in Data

If you orient the observations along the columns of the predictor data matrix, you can experience an
efficiency boost during incremental learning.

Load and shuffle the 2015 NYC housing data set. For more details on the data, see NYC Open Data.

load NYCHousing2015

rng(1) % For reproducibility
n = size(NYCHousing2015,1);
shuffidx = randsample(n,n);
NYCHousing2015 = NYCHousing2015(shuffidx,:);

Extract the response variable SALEPRICE from the table. Apply the log transform to SALEPRICE.

Y = log(NYCHousing2015.SALEPRICE + 1); % Add 1 to avoid log of 0
NYCHousing2015.SALEPRICE = [];

Create dummy variable matrices from the categorical predictors.

catvars = ["BOROUGH" "BUILDINGCLASSCATEGORY" "NEIGHBORHOOD"];
dumvarstbl = varfun(@(x)dummyvar(categorical(x)),NYCHousing2015,...
    'InputVariables',catvars);
dumvarmat = table2array(dumvarstbl);
NYCHousing2015(:,catvars) = [];

Treat all other numeric variables in the table as linear predictors of sales price. Concatenate the
matrix of dummy variables to the rest of the predictor data, and transpose the data to speed up
computations.

idxnum = varfun(@isnumeric,NYCHousing2015,'OutputFormat','uniform');
X = [dumvarmat NYCHousing2015{:,idxnum}]';

Configure a linear regression model for incremental learning with no estimation period.

Mdl = incrementalRegressionLinear('Learner','leastsquares','EstimationPeriod',0);

Mdl is an incrementalRegressionLinear model object.

Perform incremental learning and prediction by following this procedure for each iteration:

• Simulate a data stream by processing a chunk of 100 observations at a time.
• Fit the model to the incoming chunk of data. Specify that the observations are oriented along the

columns of the data. Overwrite the previous incremental model with the new model.
• Predict responses using the fitted model and the incoming chunk of data. Specify that the

observations are oriented along the columns of the data.

% Preallocation
numObsPerChunk = 100;
n = numel(Y);
nchunk = floor(n/numObsPerChunk);
r = nan(n,1);

figure
h = plot(r);
h.YDataSource = 'r'; 

 predict
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ylabel('Residuals')
xlabel('Iteration')

% Incremental fitting
for j = 2:nchunk
    ibegin = min(n,numObsPerChunk*(j-1) + 1);
    iend   = min(n,numObsPerChunk*j);
    idx = ibegin:iend;
    Mdl = fit(Mdl,X(:,idx),Y(idx),'ObservationsIn','columns');
    yhat = predict(Mdl,X(:,idx),'ObservationsIn','columns');
    r(idx) = Y(idx) - yhat;
    refreshdata
    drawnow
end

Mdl is an incrementalRegressionLinear model object trained on all the data in the stream.

The residuals appear symmetrically spread around 0 throughout incremental learning.

Compute Posterior Class Probabilities

To compute posterior class probabilities, specify a logistic regression incremental learner.

Load the human activity data set. Randomly shuffle the data.
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load humanactivity
n = numel(actid);
rng(10); % For reproducibility
idx = randsample(n,n);
X = feat(idx,:);
Y = actid(idx);

For details on the data set, enter Description at the command line.

Responses can be one of five classes: Sitting, Standing, Walking, Running, or Dancing. Dichotomize
the response by identifying whether the subject is moving (actid > 2).

Y = Y > 2;

Create an incremental logistic regression model for binary classification. Prepare it for predict by
specifying the class names and arbitrary coefficient and bias values.

p = size(X,2);
Beta = randn(p,1);
Bias = randn(1);
Mdl = incrementalClassificationLinear('Learner','logistic','Beta',Beta,...
    'Bias',Bias,'ClassNames',unique(Y));

Mdl is an incrementalClassificationLinear model. All its properties are read-only. Instead of
specifying arbitrary values, you can take either of these actions to prepare the model:

• Train a logistic regression model for binary classification using fitclinear on a subset of the
data (if available), and then convert the model to an incremental learner by using
incrementalLearner.

• Incrementally fit Mdl to data by using fit.

Simulate a data stream, and perform the following actions on each incoming chunk of 50
observations.

1 Call predict to predict classification scores for the observations in the incoming chunk of data.
The classification scores are posterior class probabilities for logistic regression learners.

2 Call rocmetrics to compute the area under the ROC curve (AUC) using the incoming chunk of
data, and store the result.

3 Call fit to fit the model to the incoming chunk. Overwrite the previous incremental model with a
new one fitted to the incoming observations.

numObsPerChunk = 50;
nchunk = floor(n/numObsPerChunk);
auc = zeros(nchunk,1);

% Incremental learning
for j = 1:nchunk
    ibegin = min(n,numObsPerChunk*(j-1) + 1);
    iend   = min(n,numObsPerChunk*j);
    idx = ibegin:iend;    
    [~,posteriorProb] = predict(Mdl,X(idx,:));
    rocObj = rocmetrics(Y(idx),posteriorProb,Mdl.ClassNames);
    auc(j) = rocObj.AUC(1);
    Mdl = fit(Mdl,X(idx,:),Y(idx));
end

Mdl is an incrementalClassificationLinear model object trained on all the data in the stream.

 predict
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Plot the AUC on the incoming chunks of data.

plot(auc)
ylabel('AUC')
xlabel('Iteration')

The plot suggests that the classifier predicts moving subjects well during incremental learning.

Input Arguments
Mdl — Incremental learning model
incrementalClassificationLinear model object | incrementalRegressionLinear model
object

Incremental learning model, specified as an incrementalClassificationLinear or
incrementalRegressionLinear model object. You can create Mdl directly or by converting a
supported, traditionally trained machine learning model using the incrementalLearner function.
For more details, see the corresponding reference page.

You must configure Mdl to predict labels for a batch of observations.

• If Mdl is a converted, traditionally trained model, you can predict labels without any
modifications.

• Otherwise, Mdl must satisfy the following criteria, which you can specify directly or by fitting Mdl
to data using fit or updateMetricsAndFit.
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• If Mdl is an incrementalRegressionLinear model, its model coefficients Mdl.Beta and
bias Mdl.Bias must be nonempty arrays.

• If Mdl is an incrementalClassificationLinear model, its model coefficients Mdl.Beta
and bias Mdl.Bias must be nonempty arrays and the class names in Mdl.ClassNames must
contain two classes.

• Regardless of object type, if you configure the model so that functions standardize predictor
data, the predictor means Mdl.Mu and standard deviations Mdl.Sigma must be nonempty
arrays.

X — Batch of predictor data
floating-point matrix

Batch of predictor data for which to predict labels, specified as a floating-point matrix of n
observations and Mdl.NumPredictors predictor variables. The value of dimension determines the
orientation of the variables and observations.

Note

predict supports only floating-point input predictor data. If your input data includes categorical
data, you must prepare an encoded version of the categorical data. Use dummyvar to convert each
categorical variable to a numeric matrix of dummy variables. Then, concatenate all dummy variable
matrices and any other numeric predictors. For more details, see “Dummy Variables” on page 2-49.

Data Types: single | double

dimension — Predictor data observation dimension
'rows' (default) | 'columns'

Predictor data observation dimension, specified as 'columns' or 'rows'.
Example: 'ObservationsIn','columns'
Data Types: char | string

Output Arguments
label — Predicted responses (labels)
categorical array | character array | string vector | logical vector | cell array of character vectors |
floating-point vector

Predicted responses (labels), returned as a categorical or character array; floating-point, logical, or
string vector; or cell array of character vectors with n rows. n is the number of observations in X, and
label(j) is the predicted response for observation j.

• For regression problems, label is a floating-point vector.
• For classification problems, label has the same data type as the class names stored in

Mdl.ClassNames. (The software treats string arrays as cell arrays of character vectors.)

The predict function classifies an observation into the class yielding the highest score. For an
observation with NaN scores, the function classifies the observation into the majority class, which
makes up the largest proportion of the training labels.
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score — Classification scores
floating-point matrix

Classification scores on page 35-5884, returned as an n-by-2 floating-point matrix when Mdl is an
incrementalClassificationLinear model. n is the number of observations in X. score(j,k) is
the score for classifying observation j into class k. Mdl.ClassNames specifies the order of the
classes.

If Mdl.Learner is 'svm', predict returns raw classification scores. If Mdl.Learner is
'logistic', classification scores are posterior probabilities.

More About
Classification Score

For linear incremental learning models for binary classification, the raw classification score for
classifying the observation x, a row vector, into the positive class is

f (x) = β0 + xβ,

where

• β0 is the scalar bias Mdl.Bias.
• β is the column vector of coefficients Mdl.Beta.

The raw classification score for classifying x into the negative class is –f(x). The software classifies
observations into the class that yields the positive score.

If the linear classification model consists of logistic regression learners, then the software applies the
'logit' score transformation to the raw classification scores.

Version History
Introduced in R2020b

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• Use saveLearnerForCoder, loadLearnerForCoder, and codegen to generate code for the
predict function. Save a trained model by using saveLearnerForCoder. Define an entry-point
function that loads the saved model by using loadLearnerForCoder and calls the predict
function. Then use codegen to generate code for the entry-point function.

• To generate single-precision C/C++ code for predict, specify the name-value argument
"DataType","single" when you call the loadLearnerForCoder function.

• This table contains notes about the arguments of predict. Arguments not included in this table
are fully supported.
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Argument Notes and Limitations
Mdl For usage notes and limitations of the model

object, see
incrementalClassificationLinear or
incrementalRegressionLinear.

X • Batch-to-batch, the number of observations
can be a variable size.

• The number of predictor variables must
equal to Mdl.NumPredictors.

• X must be single or double.

• The following restrictions apply:

• If you configure Mdl to shuffle data (Mdl.Shuffle is true, or Mdl.Solver is 'sgd' or
'asgd'), the predict function randomly shuffles each incoming batch of observations before
it fits the model to the batch. The order of the shuffled observations might not match the order
generated by MATLAB. Therefore, if you fit Mdl before generating predictions, the predictions
computed in MATLAB and those computed by the generated code might not be equal.

• Use a homogeneous data type for all floating-point input arguments and object properties,
specifically, either single or double.

For more information, see “Introduction to Code Generation” on page 34-2.

See Also
Objects
incrementalClassificationLinear | incrementalRegressionLinear

Functions
fit | updateMetricsAndFit

Topics
“Incremental Learning Overview” on page 28-2
“Configure Incremental Learning Model” on page 28-9

 predict

35-5885



predict
Predict responses for new observations from naive Bayes incremental learning classification model

Syntax
label = predict(Mdl,X)
label = predict(Mdl,X,Name,Value)
[label,Posterior,Cost] = predict( ___ )

Description
label = predict(Mdl,X) returns the predicted responses (or labels) label of the observations in
the predictor data X from the naive Bayes classification model for incremental learning Mdl.

label = predict(Mdl,X,Name,Value) specifies additional options using one or more name-value
arguments. For example, you can specify a custom misclassification cost matrix (in other words,
override the value Mdl.Cost) for computing predictions by specifying the Cost argument.

[label,Posterior,Cost] = predict( ___ ) also returns the posterior probabilities on page 35-
5894 (Posterior) and predicted (expected) misclassification costs on page 35-5894 (Cost)
corresponding to the observations (rows) in X using any of the input argument combinations in the
previous syntaxes. For each observation in X, the predicted class label corresponds to the minimum
expected classification cost among all classes.

Examples

Predict Class Labels

Load the human activity data set.

load humanactivity

For details on the data set, enter Description at the command line.

Fit a naive Bayes classification model to the entire data set.

TTMdl = fitcnb(feat,actid)

TTMdl = 
  ClassificationNaiveBayes
              ResponseName: 'Y'
     CategoricalPredictors: []
                ClassNames: [1 2 3 4 5]
            ScoreTransform: 'none'
           NumObservations: 24075
         DistributionNames: {1x60 cell}
    DistributionParameters: {5x60 cell}

  Properties, Methods
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TTMdl is a ClassificationNaiveBayes model object representing a traditionally trained model.

Convert the traditionally trained model to a naive Bayes classification model for incremental learning.

IncrementalMdl = incrementalLearner(TTMdl)

IncrementalMdl = 
  incrementalClassificationNaiveBayes

                    IsWarm: 1
                   Metrics: [1x2 table]
                ClassNames: [1 2 3 4 5]
            ScoreTransform: 'none'
         DistributionNames: {1x60 cell}
    DistributionParameters: {5x60 cell}

  Properties, Methods

IncrementalMdl is an incrementalClassificationNaiveBayes model object prepared for
incremental learning.

The incrementalLearner function initializes the incremental learner by passing learned
conditional predictor distribution parameters to it, along with other information TTMdl learned from
the training data. IncrementalMdl is warm (IsWarm is 1), which means that incremental learning
functions can start tracking performance metrics.

An incremental learner created from converting a traditionally trained model can generate
predictions without further processing.

Predict class labels for all observations using both models.

ttlabels = predict(TTMdl,feat);
illables = predict(IncrementalMdl,feat);
sameLabels = sum(ttlabels ~= illables) == 0

sameLabels = logical
   1

Both models predict the same labels for each observation.

Predict Labels Using Chunk-Specific Misclassification Cost

This example shows how to apply misclassification costs for label prediction on incoming chunks of
data, while maintaining a balanced misclassification cost for training.

Load the human activity data set. Randomly shuffle the data.

load humanactivity
n = numel(actid);
rng(10); % For reproducibility
idx = randsample(n,n);
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X = feat(idx,:);
Y = actid(idx);

Create a naive Bayes classification model for incremental learning. Specify the class names. Prepare
the model for predict by fitting the model to the first 10 observations.

Mdl = incrementalClassificationNaiveBayes(ClassNames=unique(Y));
initobs = 10;
Mdl = fit(Mdl,X(1:initobs,:),Y(1:initobs));
canPredict = size(Mdl.DistributionParameters,1) == numel(Mdl.ClassNames)

canPredict = logical
   1

Consider severely penalizing the model for misclassifying "running" (class 4). Create a cost matrix
that applies 100 times the penalty for misclassifying running as compared to misclassifying any other
class. Rows correspond to the true class, and columns correspond to the predicted class.

k = numel(Mdl.ClassNames);
Cost = ones(k) - eye(k);
Cost(4,:) = Cost(4,:)*100; % Penalty for misclassifying "running"
Cost

Cost = 5×5

     0     1     1     1     1
     1     0     1     1     1
     1     1     0     1     1
   100   100   100     0   100
     1     1     1     1     0

Simulate a data stream, and perform the following actions on each incoming chunk of 100
observations.

1 Call predict to predict labels for each observation in the incoming chunk of data.
2 Call predict again, but specify the misclassification costs by using the Cost argument.
3 Call fit to fit the model to the incoming chunk. Overwrite the previous incremental model with a

new one fitted to the incoming observations.

numObsPerChunk = 100;
nchunk = ceil((n - initobs)/numObsPerChunk);
labels = zeros(n,1);
cslabels = zeros(n,1);
cst = zeros(n,5);
cscst = zeros(n,5);

% Incremental learning
for j = 1:nchunk
    ibegin = min(n,numObsPerChunk*(j-1) + 1 + initobs);
    iend   = min(n,numObsPerChunk*j + initobs);
    idx = ibegin:iend;    
    [labels(idx),~,cst(idx,:)] = predict(Mdl,X(idx,:));  
    [cslabels(idx),~,cscst(idx,:)] = predict(Mdl,X(idx,:),Cost=Cost);
    Mdl = fit(Mdl,X(idx,:),Y(idx));
end
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labels = labels((initobs + 1):end);
cslabels = cslabels((initobs + 1):end);

Compare the predicted class distributions between the prediction methods by plotting histograms.

figure;
histogram(labels);
hold on
histogram(cslabels);
legend(["Default-cost prediction" "Cost-sensitive prediction"])

Because the cost-sensitive prediction method penalizes misclassifying class 4 so severely, more
predictions into class 4 result as compared to the prediction method that uses the default, balanced
cost.

Compute Posterior Class Probabilities

Load the human activity data set. Randomly shuffle the data.

load humanactivity
n = numel(actid);
rng(10) % For reproducibility
idx = randsample(n,n);
X = feat(idx,:);
Y = actid(idx);
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For details on the data set, enter Description at the command line.

Create a naive Bayes classification model for incremental learning. Specify the class names. Prepare
the model for predict by fitting the model to the first 10 observations.

Mdl = incrementalClassificationNaiveBayes('ClassNames',unique(Y));
initobs = 10;
Mdl = fit(Mdl,X(1:initobs,:),Y(1:initobs));
canPredict = size(Mdl.DistributionParameters,1) == numel(Mdl.ClassNames)

canPredict = logical
   1

Mdl is an incrementalClassificationNaiveBayes model. All its properties are read-only. The
model is configured to generate predictions.

Simulate a data stream, and perform the following actions on each incoming chunk of 100
observations.

1 Call predict to compute class posterior probabilities for each observation in the incoming
chunk of data.

2 Call rocmetrics to compute the area under the ROC curve (AUC) using the class posterior
probabilities, and store the AUC value, averaged over all classes. This AUC is an incremental
measure of how well the model predicts the activities on average.

3 Call fit to fit the model to the incoming chunk. Overwrite the previous incremental model with a
new one fitted to the incoming observations.

numObsPerChunk = 100;
nchunk = floor((n - initobs)/numObsPerChunk);
auc = zeros(nchunk,1);
classauc = 5;

% Incremental learning
for j = 1:nchunk
    ibegin = min(n,numObsPerChunk*(j-1) + 1 + initobs);
    iend   = min(n,numObsPerChunk*j + initobs);
    idx = ibegin:iend;    
    [~,posterior] = predict(Mdl,X(idx,:));  
    mdlROC = rocmetrics(Y(idx),posterior,Mdl.ClassNames);
    [~,~,~,auc(j)] = average(mdlROC,'micro');
    Mdl = fit(Mdl,X(idx,:),Y(idx));
end

Now, Mdl is an incrementalClassificationNaiveBayes model object trained on all the data in
the stream.

Plot the AUC values for each incoming chunk of data.

plot(auc)
xlim([0 nchunk])
ylabel('AUC')
xlabel('Iteration')
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The plot suggests that the classifier predicts the activities well during incremental learning.

Input Arguments
Mdl — Naive Bayes classification model for incremental learning
incrementalClassificationNaiveBayes model object

Naive Bayes classification model for incremental learning, specified as an
incrementalClassificationNaiveBayes model object. You can create Mdl directly or by
converting a supported, traditionally trained machine learning model using the
incrementalLearner function. For more details, see the corresponding reference page.

You must configure Mdl to predict labels for a batch of observations.

• If Mdl is a converted, traditionally trained model, you can predict labels without any
modifications.

• Otherwise, Mdl.DistributionParameters must be a cell matrix with Mdl.NumPredictors >
0 columns and at least one row, where each row corresponds to each class name in
Mdl.ClassNames.

X — Batch of predictor data
floating-point matrix

Batch of predictor data for which to predict labels, specified as an n-by-Mdl.NumPredictors
floating-point matrix.
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Data Types: single | double

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.
Example: Cost=[0 2;1 0] attributes double the penalty for misclassifying observations with true
class Mdl.ClassNames(1), than for misclassifying observations with true class
Mdl.ClassNames(2).

Cost — Cost of misclassifying an observation
Mdl.Cost (default) | square matrix | structure array

Cost of misclassifying an observation, specified as a value in the table, where c is the number of
classes in Mdl.ClassNames. The specified value overrides the value of Mdl.Cost.

Value Description
c-by-c numeric matrix Cost(i,j) is the cost of classifying an

observation into class j when its true class is i,
for classes Mdl.ClassNames(i) and
Mdl.ClassNames(j). In other words, the rows
correspond to the true class and the columns
correspond to the predicted class. For example,
Cost = [0 2;1 0] applies double the penalty
for misclassifying Mdl.ClassNames(1) than for
misclassifying Mdl.ClassNames(2).

Structure array A structure array having two fields:

• ClassNames containing the class names, the
same value as Mdl.ClassNames

• ClassificationCosts containing the cost
matrix, as previously described.

Example: Cost=struct('ClassNames',Mdl.ClassNames,'ClassificationCosts',[0 2; 1
0])

Data Types: single | double | struct

Prior — Prior class probabilities
Mdl.Prior (default) | numeric vector

Prior class probabilities, specified as a value in this numeric vector. Prior has the same length as the
number of classes in Mdl.ClassNames, and the order of the elements corresponds to the class order
in Mdl.ClassNames. predict normalizes the vector so that the sum of the result is 1.

The specified value overrides the value of Mdl.Prior.
Data Types: single | double

ScoreTransform — Score transformation function
Mdl.ScoreTransform (default) | string scalar | character vector
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Score transformation function describing how incremental learning functions transform raw response
values, specified as a character vector, string scalar, or function handle. The specified value overrides
the value of Mdl.ScoreTransform.

This table describes the available built-in functions for score transformation.

Value Description
"doublelogit" 1/(1 + e–2x)
"invlogit" log(x / (1 – x))
"ismax" Sets the score for the class with the largest score to 1,

and sets the scores for all other classes to 0
"logit" 1/(1 + e–x)
"none" or "identity" x (no transformation)
"sign" –1 for x < 0

0 for x = 0
1 for x > 0

"symmetric" 2x – 1
"symmetricismax" Sets the score for the class with the largest score to 1,

and sets the scores for all other classes to –1
"symmetriclogit" 2/(1 + e–x) – 1

Data Types: char | string

Output Arguments
label — Predicted responses (labels)
categorical array | floating-point vector | character array | logical vector | string vector | cell array of
character vectors

Predicted responses (labels), returned as a categorical or character array; floating-point, logical, or
string vector; or cell array of character vectors with n rows. n is the number of observations in X, and
label(j) is the predicted response for observation j.

label has the same data type as the class names stored in Mdl.ClassNames. (The software treats
string arrays as cell arrays of character vectors.)

Posterior — Class posterior probabilities
floating-point matrix

Class posterior probabilities on page 35-5894, returned as an n-by-numel(Mdl.ClassNames)
floating-point matrix. Posterior(j,k) is the posterior probability that observation j is in class k.
Mdl.ClassNames specifies the order of the classes.

Cost — Expected misclassification costs
floating-point matrix

Expected misclassification costs on page 35-5894, returned as an n-by-numel(Mdl.ClassNames)
floating-point matrix.
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Cost(j,k) is the expected cost of the observation in row j of X being classified into class k
(Mdl.ClassNames(k)).

More About
Misclassification Cost

A misclassification cost is the relative severity of a classifier labeling an observation into the wrong
class.

Two types of misclassification cost exist: true and expected. Let K be the number of classes.

• True misclassification cost — A K-by-K matrix, where element (i,j) indicates the cost of classifying
an observation into class j if its true class is i. The software stores the misclassification cost in the
property Mdl.Cost, and uses it in computations. By default, Mdl.Cost(i,j) = 1 if i ≠ j, and
Mdl.Cost(i,j) = 0 if i = j. In other words, the cost is 0 for correct classification and 1 for any
incorrect classification.

• Expected misclassification cost — A K-dimensional vector, where element k is the weighted
average cost of classifying an observation into class k, weighted by the class posterior
probabilities.

ck = ∑
j = 1

K
P Y = j x1, ..., xP Cost jk .

In other words, the software classifies observations into the class with the lowest expected
misclassification cost.

Posterior Probability

The posterior probability is the probability that an observation belongs in a particular class, given the
data.

For naive Bayes, the posterior probability that a classification is k for a given observation (x1,...,xP) is

P Y = k x1, .., xP =
P X1, ..., XP y = k π Y = k

P X1, ..., XP
,

where:

• P X1, ..., XP y = k  is the conditional joint density of the predictors given they are in class k.
Mdl.DistributionNames stores the distribution names of the predictors.

• π(Y = k) is the class prior probability distribution. Mdl.Prior stores the prior distribution.
• P X1, .., XP  is the joint density of the predictors. The classes are discrete, so

P(X1, ..., XP) = ∑
k = 1

K
P(X1, ..., XP y = k)π(Y = k) .

Version History
Introduced in R2021a
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See Also
Objects
incrementalClassificationNaiveBayes

Functions
fit | updateMetricsAndFit | updateMetrics

Topics
“Incremental Learning Overview” on page 28-2
“Configure Incremental Learning Model” on page 28-9
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predict
Package: 

Predict responses using generalized additive model (GAM)

Syntax
yFit = predict(Mdl,X)
yFit = predict(Mdl,X,Name,Value)
[yFit,ySD,yInt] = predict( ___ )

Description
yFit = predict(Mdl,X) returns a vector of predicted responses for the predictor data in the table
or matrix X, based on the generalized additive model Mdl for regression. The trained model can be
either full or compact.

yFit = predict(Mdl,X,Name,Value) specifies options using one or more name-value arguments.
For example, 'IncludeInteractions',true specifies to include interaction terms in
computations.

[yFit,ySD,yInt] = predict( ___ ) also returns the standard deviations and prediction intervals
of the response variable, evaluated at each observation in the predictor data X, using any of the input
argument combinations in the previous syntaxes. This syntax is valid only when you specify
'FitStandardDeviation' of fitrgam as true for training Mdl and the
IsStandardDeviationFit property of Mdl is true.

Examples

Predict Test Sample Response

Train a generalized additive model using training samples, and then predict the test sample
responses.

Load the patients data set.

load patients

Create a table that contains the predictor variables (Age, Diastolic, Smoker, Weight, Gender,
SelfAssessedHealthStatus) and the response variable (Systolic).

tbl = table(Age,Diastolic,Smoker,Weight,Gender,SelfAssessedHealthStatus,Systolic);

Randomly partition observations into a training set and a test set. Specify a 10% holdout sample for
testing.

rng('default') % For reproducibility
cv = cvpartition(size(tbl,1),'HoldOut',0.10);

Extract the training and test indices.
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trainInds = training(cv);
testInds = test(cv);

Train a univariate GAM that contains the linear terms for the predictors in tbl.

Mdl = fitrgam(tbl(trainInds,:),'Systolic')

Mdl = 
  RegressionGAM
            PredictorNames: {1x6 cell}
              ResponseName: 'Systolic'
     CategoricalPredictors: [3 5 6]
         ResponseTransform: 'none'
                 Intercept: 122.7444
    IsStandardDeviationFit: 0
           NumObservations: 90

  Properties, Methods

Mdl is a RegressionGAM model object.

Predict responses for the test set.

yFit = predict(Mdl,tbl(testInds,:));

Create a table containing the observed response values and the predicted response values.

table(tbl.Systolic(testInds),yFit, ...
    'VariableNames',{'Observed Value','Predicted Value'})

ans=10×2 table
    Observed Value    Predicted Value
    ______________    _______________

         124              126.58     
         121              123.95     
         130              116.72     
         115              117.35     
         121              117.45     
         116               118.5     
         123              126.16     
         132              124.14     
         125              127.36     
         124              115.99     

Compare Predicted Responses

Predict responses for new observations using a generalized additive model that contains both linear
and interaction terms for predictors. Use a memory-efficient model object, and specify whether to
include interaction terms when predicting responses.

Load the carbig data set, which contains measurements of cars made in the 1970s and early 1980s.
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load carbig

Specify Acceleration, Displacement, Horsepower, and Weight as the predictor variables (X)
and MPG as the response variable (Y).

X = [Acceleration,Displacement,Horsepower,Weight];
Y = MPG;

Partition the data set into two sets: one containing training data, and the other containing new,
unobserved test data. Reserve 10 observations for the new test data set.

rng('default')
n = size(X,1);
newInds = randsample(n,10);
inds = ~ismember(1:n,newInds);
XNew = X(newInds,:);
YNew = Y(newInds);

Train a GAM that contains all the available linear and interaction terms in X.

Mdl = fitrgam(X(inds,:),Y(inds),'Interactions','all');

Mdl is a RegressionGAM model object.

Conserve memory by reducing the size of the trained model.

CMdl = compact(Mdl);
whos('Mdl','CMdl')

  Name      Size              Bytes  Class                                          Attributes

  CMdl      1x1             1228131  classreg.learning.regr.CompactRegressionGAM              
  Mdl       1x1             1262153  RegressionGAM                                            

CMdl is a CompactRegressionGAM model object.

Predict the responses using both linear and interaction terms, and then using only linear terms. To
exclude interaction terms, specify 'IncludeInteractions',false.

yFit = predict(CMdl,XNew);
yFit_nointeraction = predict(CMdl,XNew,'IncludeInteractions',false);

Create a table containing the observed response values and the predicted response values.

t = table(YNew,yFit,yFit_nointeraction, ...
    'VariableNames',{'Observed Response', ...
    'Predicted Response','Predicted Response Without Interactions'})

t=10×3 table
    Observed Response    Predicted Response    Predicted Response Without Interactions
    _________________    __________________    _______________________________________

          27.9                  23.04                          23.649                 
           NaN                 37.163                          35.779                 
           NaN                 25.876                          21.978                 
            13                 12.786                          14.141                 
            36                 28.889                          27.281                 
          19.9                 22.199                          18.451                 
          24.2                 23.995                          24.885                 
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            12                 14.247                          13.982                 
            38                 33.797                          33.528                 
            13                 12.225                          11.127                 

Plot Prediction Intervals

Train a generalized additive model (GAM), and then compute and plot the prediction intervals of
response values.

Load the patients data set.

load patients

Create a table that contains the predictor variables (Age, Diastolic, Smoker, Weight, Gender,
SelfAssessedHealthStatus) and the response variable (Systolic).

tbl = table(Age,Diastolic,Smoker,Weight,Gender,SelfAssessedHealthStatus,Systolic);

Train a univariate GAM that contains the linear terms for the predictors in tbl. Specify the
FitStandardDeviation name-value argument as true so that you can use the trained model to
compute prediction intervals. A recommended practice is to use optimal hyperparameters when you
fit the standard deviation model for the accuracy of the standard deviation estimates. Specify
'OptimizeHyperparameters' as 'all-univariate'. For reproducibility, use the 'expected-
improvement-plus' acquisition function. Specify 'ShowPlots' as false and 'Verbose' as 0 to
disable plot and message displays, respectively.

rng('default') % For reproducibility
Mdl = fitrgam(tbl,'Systolic','FitStandardDeviation',true, ...
    'OptimizeHyperparameters','all-univariate', ...
    'HyperparameterOptimizationOptions',struct('AcquisitionFunctionName','expected-improvement-plus', ...
    'ShowPlots',false,'Verbose',0))

Mdl = 
  RegressionGAM
                       PredictorNames: {1x6 cell}
                         ResponseName: 'Systolic'
                CategoricalPredictors: [3 5 6]
                    ResponseTransform: 'none'
                            Intercept: 122.7800
               IsStandardDeviationFit: 1
                      NumObservations: 100
    HyperparameterOptimizationResults: [1x1 BayesianOptimization]

  Properties, Methods

Mdl is a RegressionGAM model object that uses the best estimated feasible point. The best
estimated feasible point indicates the set of hyperparameters that minimizes the upper confidence
bound of the objective function value based on the underlying objective function model of the
Bayesian optimization process. For more details on the optimization process, see “Optimize GAM
Using OptimizeHyperparameters” on page 35-2469.
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Predict responses for the training data in tbl, and compute the 99% prediction intervals of the
response variable. Specify the significance level ('Alpha') as 0.01 to set the confidence level of the
prediction intervals to 99%.

[yFit,~,yInt] = predict(Mdl,tbl,'Alpha',0.01);

Plot the sorted true responses together with the predicted responses and prediction intervals.

figure
yTrue = tbl.Systolic;
[sortedYTrue,I] = sort(yTrue); 
plot(sortedYTrue,'o')
hold on
plot(yFit(I))
plot(yInt(I,1),'k:')
plot(yInt(I,2),'k:')
legend('True responses','Predicted responses', ...
    'Prediction interval limits','Location','best')
hold off

Input Arguments
Mdl — Generalized additive model
RegressionGAM model object | CompactRegressionGAM model object
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Generalized additive model, specified as a RegressionGAM or a CompactRegressionGAM model
object.

X — Predictor data
numeric matrix | table

Predictor data, specified as a numeric matrix or table.

Each row of X corresponds to one observation, and each column corresponds to one variable.

• For a numeric matrix:

• The variables that make up the columns of X must have the same order as the predictor
variables that trained Mdl.

• If you trained Mdl using a table, then X can be a numeric matrix if the table contains all
numeric predictor variables.

• For a table:

• If you trained Mdl using a table (for example, Tbl), then all predictor variables in X must have
the same variable names and data types as those in Tbl. However, the column order of X does
not need to correspond to the column order of Tbl.

• If you trained Mdl using a numeric matrix, then the predictor names in Mdl.PredictorNames
and the corresponding predictor variable names in X must be the same. To specify predictor
names during training, use the 'PredictorNames' name-value argument. All predictor
variables in X must be numeric vectors.

• X can contain additional variables (response variables, observation weights, and so on), but
predict ignores them.

• predict does not support multicolumn variables or cell arrays other than cell arrays of
character vectors.

Data Types: table | double | single

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: 'Alpha',0.01,'IncludeInteractions',false specifies the confidence level as 99%
and excludes interaction terms from computations.

Alpha — Significance level
0.05 (default) | numeric scalar in [0,1]

Significance level for the confidence level of the prediction intervals yInt, specified as a numeric
scalar in the range [0,1]. The confidence level of yInt is equal to 100(1 – Alpha)%.

This argument is valid only when the IsStandardDeviationFit property of Mdl is true. Specify
the 'FitStandardDeviation' name-value argument of fitrgam as true to fit the model for the
standard deviation.
Example: 'Alpha',0.01 specifies to return 99% prediction intervals.
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Data Types: single | double

IncludeInteractions — Flag to include interaction terms
true | false

Flag to include interaction terms of the model, specified as true or false.

The default 'IncludeInteractions' value is true if Mdl contains interaction terms. The value
must be false if the model does not contain interaction terms.
Example: 'IncludeInteractions',false
Data Types: logical

Output Arguments
yFit — Predicted responses
column vector

Predicted responses, returned as a column vector of length n, where n is the number of observations
in the predictor data X.

ySD — Standard deviations of response variable
column vector

Standard deviations of the response variable, evaluated at each observation in the predictor data X,
returned as a column vector of length n, where n is the number of observations in X. The ith element
ySD(i) contains the standard deviation of the ith response for the ith observation X(i,:),
estimated using the trained standard deviation model in Mdl.

This argument is valid only when the IsStandardDeviationFit property of Mdl is true. Specify
the 'FitStandardDeviation' name-value argument of fitrgam as true to fit the model for the
standard deviation.

yInt — Prediction intervals of response variable
two-column matrix

Prediction intervals of the response variable, evaluated at each observation in the predictor data X,
returned as an n-by-2 matrix, where n is the number of observations in X. The ith row yInt(i,:)
contains the 100(1–Alpha)% prediction interval of the ith response for the ith observation X(i,:).
The Alpha value is the probability that the prediction interval does not contain the true response
value for X(i,:). The first column of yInt contains the lower limits of the prediction intervals, and
the second column contains the upper limits.

This argument is valid only when the IsStandardDeviationFit property of Mdl is true. Specify
the 'FitStandardDeviation' name-value argument of fitrgam as true to fit the model for the
standard deviation.

Algorithms
Standard Deviation and Prediction Interval

predict returns the predicted responses (yFit) and, optionally, the standard deviations (ySD) and
prediction intervals (yInt) of the response variable, estimated at each observation in X.
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A “Generalized Additive Model (GAM) for Regression” on page 35-2492 assumes that the response
variable y follows the normal distribution with mean μ and standard deviation σ. If you specify
'FitStandardDeviation' of fitrgam as false (default), then fitrgam trains a model for μ. If
you specify 'FitStandardDeviation' as true, then fitrgam trains an additional model for σ and
sets the IsStandardDeviationFit property of the GAM object to true. The outputs yFit and ySD
correspond to the estimated mean μ and standard deviation σ, respectively.

Version History
Introduced in R2021a

See Also
loss | resubPredict

Topics
“Train Generalized Additive Model for Regression” on page 12-86
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predict
Class: RegressionLinear

Predict response of linear regression model

Syntax
YHat = predict(Mdl,X)
YHat = predict(Mdl,X,'ObservationsIn',dimension)

Description
YHat = predict(Mdl,X) returns predicted responses for each observation in the predictor data X
based on the trained linear regression model Mdl. YHat contains responses for each regularization
strength in Mdl.

YHat = predict(Mdl,X,'ObservationsIn',dimension) specifies the predictor data
observation dimension, either 'rows' (default) or 'columns'. For example, specify
'ObservationsIn','columns' to indicate that columns in the predictor data correspond to
observations.

Input Arguments
Mdl — Linear regression model
RegressionLinear model object

Linear regression model, specified as a RegressionLinear model object. You can create a
RegressionLinear model object using fitrlinear.

X — Predictor data used to generate responses
full numeric matrix | sparse numeric matrix | table

Predictor data used to generate responses, specified as a full or sparse numeric matrix or a table.

By default, each row of X corresponds to one observation, and each column corresponds to one
variable.

• For a numeric matrix:

• The variables in the columns of X must have the same order as the predictor variables that
trained Mdl.

• If you train Mdl using a table (for example, Tbl) and Tbl contains only numeric predictor
variables, then X can be a numeric matrix. To treat numeric predictors in Tbl as categorical
during training, identify categorical predictors by using the CategoricalPredictors name-
value pair argument of fitrlinear. If Tbl contains heterogeneous predictor variables (for
example, numeric and categorical data types) and X is a numeric matrix, then predict throws
an error.

• For a table:
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• predict does not support multicolumn variables or cell arrays other than cell arrays of
character vectors.

• If you train Mdl using a table (for example, Tbl), then all predictor variables in X must have
the same variable names and data types as the variables that trained Mdl (stored in
Mdl.PredictorNames). However, the column order of X does not need to correspond to the
column order of Tbl. Also, Tbl and X can contain additional variables (response variables,
observation weights, and so on), but predict ignores them.

• If you train Mdl using a numeric matrix, then the predictor names in Mdl.PredictorNames
must be the same as the corresponding predictor variable names in X. To specify predictor
names during training, use the PredictorNames name-value pair argument of fitrlinear.
All predictor variables in X must be numeric vectors. X can contain additional variables
(response variables, observation weights, and so on), but predict ignores them.

Note If you orient your predictor matrix so that observations correspond to columns and specify
'ObservationsIn','columns', then you might experience a significant reduction in optimization
execution time. You cannot specify 'ObservationsIn','columns' for predictor data in a table.

Data Types: double | single | table

dimension — Predictor data observation dimension
'rows' (default) | 'columns'

Predictor data observation dimension, specified as 'columns' or 'rows'.

Note If you orient your predictor matrix so that observations correspond to columns and specify
'ObservationsIn','columns', then you might experience a significant reduction in optimization
execution time. You cannot specify 'ObservationsIn','columns' for predictor data in a table.

Output Arguments
YHat — Predicted responses
numeric matrix

Predicted responses, returned as a n-by-L numeric matrix. n is the number of observations in X and L
is the number of regularization strengths in Mdl.Lambda. YHat(i,j) is the response for observation
i using the linear regression model that has regularization strength Mdl.Lambda(j).

The predicted response using the model with regularization strength j is y j = xβ j + b j .

• x is an observation from the predictor data matrix X, and is row vector.
• β j is the estimated column vector of coefficients. The software stores this vector in

Mdl.Beta(:,j).
• b j is the estimated, scalar bias, which the software stores in Mdl.Bias(j).

Examples
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Predict Test-Sample Responses

Simulate 10000 observations from this model

y = x100 + 2x200 + e .

• X = x1, . . . , x1000 is a 10000-by-1000 sparse matrix with 10% nonzero standard normal elements.
• e is random normal error with mean 0 and standard deviation 0.3.

rng(1) % For reproducibility
n = 1e4;
d = 1e3;
nz = 0.1;
X = sprandn(n,d,nz);
Y = X(:,100) + 2*X(:,200) + 0.3*randn(n,1);

Train a linear regression model. Reserve 30% of the observations as a holdout sample.

CVMdl = fitrlinear(X,Y,'Holdout',0.3);
Mdl = CVMdl.Trained{1}

Mdl = 
  RegressionLinear
         ResponseName: 'Y'
    ResponseTransform: 'none'
                 Beta: [1000x1 double]
                 Bias: -0.0066
               Lambda: 1.4286e-04
              Learner: 'svm'

  Properties, Methods

CVMdl is a RegressionPartitionedLinear model. It contains the property Trained, which is a 1-
by-1 cell array holding a RegressionLinear model that the software trained using the training set.

Extract the training and test data from the partition definition.

trainIdx = training(CVMdl.Partition);
testIdx = test(CVMdl.Partition);

Predict the training- and test-sample responses.

yHatTrain = predict(Mdl,X(trainIdx,:));
yHatTest = predict(Mdl,X(testIdx,:));

Because there is one regularization strength in Mdl, yHatTrain and yHatTest are numeric vectors.

Predict from Best-Performing Model

Predict responses from the best-performing, linear regression model that uses a lasso-penalty and
least squares.

Simulate 10000 observations as in “Predict Test-Sample Responses” on page 35-5905.
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rng(1) % For reproducibility
n = 1e4;
d = 1e3;
nz = 0.1;
X = sprandn(n,d,nz);
Y = X(:,100) + 2*X(:,200) + 0.3*randn(n,1);

Create a set of 15 logarithmically-spaced regularization strengths from 10−5 through 10−1.

Lambda = logspace(-5,-1,15);

Cross-validate the models. To increase execution speed, transpose the predictor data and specify that
the observations are in columns. Optimize the objective function using SpaRSA.

X = X'; 
CVMdl = fitrlinear(X,Y,'ObservationsIn','columns','KFold',5,'Lambda',Lambda,...
    'Learner','leastsquares','Solver','sparsa','Regularization','lasso');

numCLModels = numel(CVMdl.Trained)

numCLModels = 5

CVMdl is a RegressionPartitionedLinear model. Because fitrlinear implements 5-fold cross-
validation, CVMdl contains 5 RegressionLinear models that the software trains on each fold.

Display the first trained linear regression model.

Mdl1 = CVMdl.Trained{1}

Mdl1 = 
  RegressionLinear
         ResponseName: 'Y'
    ResponseTransform: 'none'
                 Beta: [1000x15 double]
                 Bias: [-0.0049 -0.0049 -0.0049 -0.0049 -0.0049 -0.0048 ... ]
               Lambda: [1.0000e-05 1.9307e-05 3.7276e-05 7.1969e-05 ... ]
              Learner: 'leastsquares'

  Properties, Methods

Mdl1 is a RegressionLinear model object. fitrlinear constructed Mdl1 by training on the first
four folds. Because Lambda is a sequence of regularization strengths, you can think of Mdl1 as 11
models, one for each regularization strength in Lambda.

Estimate the cross-validated MSE.

mse = kfoldLoss(CVMdl);

Higher values of Lambda lead to predictor variable sparsity, which is a good quality of a regression
model. For each regularization strength, train a linear regression model using the entire data set and
the same options as when you cross-validated the models. Determine the number of nonzero
coefficients per model.

Mdl = fitrlinear(X,Y,'ObservationsIn','columns','Lambda',Lambda,...
    'Learner','leastsquares','Solver','sparsa','Regularization','lasso');
numNZCoeff = sum(Mdl.Beta~=0);
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In the same figure, plot the cross-validated MSE and frequency of nonzero coefficients for each
regularization strength. Plot all variables on the log scale.

figure;
[h,hL1,hL2] = plotyy(log10(Lambda),log10(mse),...
    log10(Lambda),log10(numNZCoeff)); 
hL1.Marker = 'o';
hL2.Marker = 'o';
ylabel(h(1),'log_{10} MSE')
ylabel(h(2),'log_{10} nonzero-coefficient frequency')
xlabel('log_{10} Lambda')
hold off

Choose the index of the regularization strength that balances predictor variable sparsity and low
MSE (for example, Lambda(10)).

idxFinal = 10;

Extract the model with corresponding to the minimal MSE.

MdlFinal = selectModels(Mdl,idxFinal)

MdlFinal = 
  RegressionLinear
         ResponseName: 'Y'
    ResponseTransform: 'none'
                 Beta: [1000x1 double]
                 Bias: -0.0050
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               Lambda: 0.0037
              Learner: 'leastsquares'

  Properties, Methods

idxNZCoeff = find(MdlFinal.Beta~=0)

idxNZCoeff = 2×1

   100
   200

EstCoeff = Mdl.Beta(idxNZCoeff)

EstCoeff = 2×1

    1.0051
    1.9965

MdlFinal is a RegressionLinear model with one regularization strength. The nonzero coefficients
EstCoeff are close to the coefficients that simulated the data.

Simulate 10 new observations, and predict corresponding responses using the best-performing
model.

XNew = sprandn(d,10,nz);
YHat = predict(MdlFinal,XNew,'ObservationsIn','columns');

Version History
Introduced in R2016a

Extended Capabilities
Tall Arrays
Calculate with arrays that have more rows than fit in memory.

Usage notes and limitations:

• predict does not support tall table data.

For more information, see “Tall Arrays”.

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• You can generate C/C++ code for both predict and update by using a coder configurer. Or,
generate code only for predict by using saveLearnerForCoder, loadLearnerForCoder, and
codegen.
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• Code generation for predict and update — Create a coder configurer by using
learnerCoderConfigurer and then generate code by using generateCode. Then you can
update model parameters in the generated code without having to regenerate the code.

• Code generation for predict — Save a trained model by using saveLearnerForCoder.
Define an entry-point function that loads the saved model by using loadLearnerForCoder
and calls the predict function. Then use codegen to generate code for the entry-point
function.

• To generate single-precision C/C++ code for predict, specify the name-value argument
"DataType","single" when you call the loadLearnerForCoder function.

• This table contains notes about the arguments of predict. Arguments not included in this table
are fully supported.

Argument Notes and Limitations
Mdl For the usage notes and limitations of the model object, see “Code

Generation” on page 35-6346 of the RegressionLinear object.
X • For general code generation, X must be a single-precision or

double-precision matrix or a table containing numeric variables,
categorical variables, or both.

• In the coder configurer workflow, X must be a single-precision or
double-precision matrix.

• The number of observations in X can be a variable size, but the
number of variables in X must be fixed.

• If you want to specify X as a table, then your model must be trained
using a table, and your entry-point function for prediction must do
the following:

• Accept data as arrays.
• Create a table from the data input arguments and specify the

variable names in the table.
• Pass the table to predict.

For an example of this table workflow, see “Generate Code to
Classify Data in Table” on page 34-112. For more information on
using tables in code generation, see “Code Generation for Tables”
(MATLAB Coder) and “Table Limitations for Code Generation”
(MATLAB Coder).

Name-value pair
arguments

• Names in name-value arguments must be compile-time constants.
• The value for the 'ObservationsIn' name-value pair argument

must be a compile-time constant. For example, to use the
'ObservationsIn','columns' name-value pair argument in the
generated code, include
{coder.Constant('ObservationsIn'),coder.Constant('co
lumns')} in the -args value of codegen.

For more information, see “Introduction to Code Generation” on page 34-2.
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See Also
RegressionLinear | fitrlinear
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predict
Predict responses using ensemble of bagged decision trees

Syntax
Yfit = predict(B,X)
Yfit = predict(B,X,Name,Value)
[Yfit,stdevs] = predict( ___ )
[Yfit,scores] = predict( ___ )
[Yfit,scores,stdevs] = predict( ___ )

Description
Yfit = predict(B,X) returns a vector of predicted responses for the predictor data in the table or
matrix X, based on the compact ensemble of bagged decision trees B. Yfit is a cell array of character
vectors for classification and a numeric array for regression. By default, predict takes a democratic
(nonweighted) average vote from all trees in the ensemble.

B is a trained CompactTreeBagger model object, that is, a model returned by compact.

X is a table or matrix of predictor data used to generate responses. Rows represent observations and
columns represent variables.

• If X is a numeric matrix:

• The variables making up the columns of X must have the same order as the predictor variables
that trained B.

• If you trained B using a table (for example, Tbl), then X can be a numeric matrix if Tbl
contains all numeric predictor variables. To treat numeric predictors in Tbl as categorical
during training, identify categorical predictors using the CategoricalPredictors name-
value pair argument of the TreeBagger function. If Tbl contains heterogeneous predictor
variables (for example, numeric and categorical data types) and X is a numeric matrix, then
predict throws an error.

• If X is a table:

• predict does not support multicolumn variables or cell arrays other than cell arrays of
character vectors.

• If you trained B using a table (for example, Tbl), then all predictor variables in X must have the
same variable names and be of the same data types as those that trained B (stored in
B.PredictorNames). However, the column order of X does not need to correspond to the
column order of Tbl. Tbl and X can contain additional variables (response variables,
observation weights, etc.), but predict ignores them.

• If you trained B using a numeric matrix, then the predictor names in B.PredictorNames and
corresponding predictor variable names in X must be the same. To specify predictor names
during training, see the PredictorNames name-value pair argument of TreeBagger. All
predictor variables in X must be numeric vectors. X can contain additional variables (response
variables, observation weights, etc.), but predict ignores them.
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Yfit = predict(B,X,Name,Value) specifies additional options using one or more name-value
pair arguments:

• 'Trees' — Array of tree indices to use for computation of responses. The default is 'all'.
• 'TreeWeights' — Array of NTrees weights for weighting votes from the specified trees, where

NTrees is the number of trees in the ensemble.
• 'UseInstanceForTree' — Logical matrix of size Nobs-by-NTrees indicating which trees to use

to make predictions for each observation, where Nobs is the number of observations. By default
all trees are used for all observations.

For regression, [Yfit,stdevs] = predict( ___ ) also returns standard deviations of the
computed responses over the ensemble of the grown trees using any of the input argument
combinations in previous syntaxes.

For classification, [Yfit,scores] = predict( ___ ) also returns scores for all classes. scores is
a matrix with one row per observation and one column per class. For each observation and each
class, the score generated by each tree is the probability of the observation originating from the
class, computed as the fraction of observations of the class in a tree leaf. predict averages these
scores over all trees in the ensemble.

[Yfit,scores,stdevs] = predict( ___ ) also returns standard deviations of the computed
scores for classification. stdevs is a matrix with one row per observation and one column per class,
with standard deviations taken over the ensemble of the grown trees.

Algorithms
• For regression problems, the predicted response for an observation is the weighted average of the

predictions using selected trees only. That is,

y bag = 1

∑
t = 1

T
αtI(t ∈ S)

∑
t = 1

T
αty tI(t ∈ S) .

• y t is the prediction from tree t in the ensemble.
• S is the set of indices of selected trees that comprise the prediction (see 'Trees' and

'UseInstanceForTree'). I(t ∈ S) is 1 if t is in the set S, and 0 otherwise.
• αt is the weight of tree t (see 'TreeWeights').

• For classification problems, the predicted class for an observation is the class that yields the
largest weighted average of the class posterior probabilities (i.e., classification scores) computed
using selected trees only. That is,

1 For each class c ∊ C and each tree t = 1,...,T, predict computes P t c x , which is the
estimated posterior probability of class c given observation x using tree t. C is the set of all
distinct classes in the training data. For more details on classification tree posterior
probabilities, see fitctree and predict.

2 predict computes the weighted average of the class posterior probabilities over the selected
trees.

P bag c x = 1

∑
t = 1

T
αtI(t ∈ S)

∑
t = 1

T
αtP t c x I(t ∈ S) .
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3 The predicted class is the class that yields the largest weighted average.

y bag = argmax
c ∈ C

P bag c x .

See Also
error | CompactTreeBagger

Topics
“Bootstrap Aggregation (Bagging) of Regression Trees Using TreeBagger” on page 19-114
“Bootstrap Aggregation (Bagging) of Classification Trees Using TreeBagger” on page 19-125
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predict
Package: 

Predict responses of generalized linear regression model

Syntax
ypred = predict(mdl,Xnew)
[ypred,yci] = predict(mdl,Xnew)
[ypred,yci] = predict(mdl,Xnew,Name,Value)

Description
ypred = predict(mdl,Xnew) returns the predicted response values of the generalized linear
regression model mdl to the points in Xnew.

[ypred,yci] = predict(mdl,Xnew) also returns confidence intervals for the responses at Xnew.

[ypred,yci] = predict(mdl,Xnew,Name,Value) specifies additional options using one or more
name-value pair arguments. For example, you can specify the confidence level of the confidence
interval.

Examples

Predict Response Values

Create a generalized linear regression model, and predict its response to new data.

Generate sample data using Poisson random numbers with two underlying predictors X(:,1) and
X(:,2).

rng('default') % For reproducibility
rndvars = randn(100,2);
X = [2 + rndvars(:,1),rndvars(:,2)];
mu = exp(1 + X*[1;2]);
y = poissrnd(mu);

Create a generalized linear regression model of Poisson data.

mdl = fitglm(X,y,'y ~ x1 + x2','Distribution','poisson');

Create data points for prediction.

[Xtest1,Xtest2] = meshgrid(-1:.5:3,-2:.5:2);
Xnew = [Xtest1(:),Xtest2(:)];

Predict responses at the data points.

ypred = predict(mdl,Xnew);

Plot the predictions.
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surf(Xtest1,Xtest2,reshape(ypred,9,9))

Generate C/C++ Code for Prediction

Fit a generalized linear regression model, and then save the model by using saveLearnerForCoder.
Define an entry-point function that loads the model by using loadLearnerForCoder and calls the
predict function of the fitted model. Then use codegen (MATLAB Coder) to generate C/C++ code.
Note that generating C/C++ code requires MATLAB® Coder™.

This example briefly explains the code generation workflow for the prediction of linear regression
models at the command line. For more details, see “Code Generation for Prediction of Machine
Learning Model at Command Line” on page 34-9. You can also generate code using the MATLAB
Coder app. For details, see “Code Generation for Prediction of Machine Learning Model Using
MATLAB Coder App” on page 34-23.

Train Model

Generate sample data using Poisson random numbers with two underlying predictors X(:,1) and
X(:,2).

rng('default') % For reproducibility
rndvars = randn(100,2);
X = [2 + rndvars(:,1),rndvars(:,2)];
mu = exp(1 + X*[1;2]);
y = poissrnd(mu);
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Create a generalized linear regression model. Specify the Poisson distribution for the response.

mdl = fitglm(X,y,'y ~ x1 + x2','Distribution','poisson');

Save Model

Save the fitted generalized linear regression model to the file GLMMdl.mat by using
saveLearnerForCoder.

saveLearnerForCoder(mdl,'GLMMdl');

Define Entry-Point Function

In your current folder, define an entry-point function named mypredictGLM.m that does the
following:

• Accept new predictor input and valid name-value pair arguments.
• Load the fitted generalized linear regression model in GLMMdl.mat by using

loadLearnerForCoder.
• Return predictions and confidence interval bounds.

function [yhat,ci] = mypredictGLM(x,varargin) %#codegen
%MYPREDICTGLM Predict responses using GLM model 
%   MYPREDICTGLM predicts responses for the n observations in the n-by-1
%   vector x using the GLM model stored in the MAT-file GLMMdl.mat,
%   and then returns the predictions in the n-by-1 vector yhat.
%   MYPREDICTGLM also returns confidence interval bounds for the
%   predictions in the n-by-2 vector ci.
CompactMdl = loadLearnerForCoder('GLMMdl');
narginchk(1,Inf);
[yhat,ci] = predict(CompactMdl,x,varargin{:});
end

Add the %#codegen compiler directive (or pragma) to the entry-point function after the function
signature to indicate that you intend to generate code for the MATLAB algorithm. Adding this
directive instructs the MATLAB Code Analyzer to help you diagnose and fix violations that would
result in errors during code generation.

Generate Code

Generate code for the entry-point function using codegen (MATLAB Coder). Because C and C++ are
statically typed languages, you must determine the properties of all variables in the entry-point
function at compile time. To specify the data type and exact input array size, pass a MATLAB®
expression that represents the set of values with a certain data type and array size. Use
coder.Constant (MATLAB Coder) for the names of name-value pair arguments.

Create points for prediction.

[Xtest1,Xtest2] = meshgrid(-1:.5:3,-2:.5:2);
Xnew = [Xtest1(:),Xtest2(:)];

Generate code and specify returning 90% simultaneous confidence intervals on the predictions.

codegen mypredictGLM -args {Xnew,coder.Constant('Alpha'),0.1,coder.Constant('Simultaneous'),true}

Code generation successful.
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codegen generates the MEX function mypredictGLM_mex with a platform-dependent extension.

If the number of observations is unknown at compile time, you can also specify the input as variable-
size by using coder.typeof (MATLAB Coder). For details, see “Specify Variable-Size Arguments for
Code Generation” on page 34-56 and “Specify Properties of Entry-Point Function Inputs” (MATLAB
Coder).

Verify Generated Code

Compare predictions and confidence intervals using predict and mypredictGLM_mex. Specify
name-value pair arguments in the same order as in the -args argument in the call to codegen.

[yhat1,ci1] = predict(mdl,Xnew,'Alpha',0.1,'Simultaneous',true);
[yhat2,ci2] = mypredictGLM_mex(Xnew,'Alpha',0.1,'Simultaneous',true);

The returned values from mypredictGLM_mex might include round-off differences compared to the
values from predict. In this case, compare the values allowing a small tolerance.

find(abs(yhat1-yhat2) > 1e-6)

ans =

  0x1 empty double column vector

find(abs(ci1-ci2) > 1e-6)

ans =

  0x1 empty double column vector

The comparison confirms that the returned values are equal within the tolerance 1e–6.

Input Arguments
mdl — Generalized linear regression model
GeneralizedLinearModel object | CompactGeneralizedLinearModel object

Generalized linear regression model, specified as a GeneralizedLinearModel object created using
fitglm or stepwiseglm, or a CompactGeneralizedLinearModel object created using compact.

Xnew — New predictor input values
table | dataset array | matrix

New predictor input values, specified as a table, dataset array, or matrix. Each row of Xnew
corresponds to one observation, and each column corresponds to one variable.

• If Xnew is a table or dataset array, it must contain predictors that have the same predictor names
as in the PredictorNames property of mdl.

• If Xnew is a matrix, it must have the same number of variables (columns) in the same order as the
predictor input used to create mdl. Note that Xnew must also contain any predictor variables that
are not used as predictors in the fitted model. Also, all variables used in creating mdl must be
numeric. To treat numerical predictors as categorical, identify the predictors using the
'CategoricalVars' name-value pair argument when you create mdl.

Data Types: single | double | table
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Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: [ypred,yci] = predict(Mdl,Xnew,'Alpha',0.01,'Simultaneous',true) returns
the confidence interval yci with a 99% confidence level, computed simultaneously for all predictor
values.

Alpha — Significance level
0.05 (default) | numeric value in the range [0,1]

Significance level for the confidence interval, specified as the comma-separated pair consisting of
'Alpha' and a numeric value in the range [0,1]. The confidence level of yci is equal to 100(1 –
Alpha)%. Alpha is the probability that the confidence interval does not contain the true value.
Example: 'Alpha',0.01
Data Types: single | double

BinomialSize — Number of trials for binomial distribution
1 (default) | scalar | vector

Number of trials for the binomial distribution, specified as the comma-separated pair consisting of
'BinomialSize' and a scalar or vector of the same length as the response. predict expands the
scalar input into a constant array of the same size as the response. The scalar input means that all
observations have the same number of trials.

The meaning of the output values in ypred depends on the value of 'BinomialSize'.

• If 'BinomialSize' is 1 (default), then each value in the output ypred is the probability of
success.

• If 'BinomialSize' is not 1, then each value in the output ypred is the predicted number of
successes in the trials.

Data Types: single | double

Offset — Offset value
zeros(size(Xnew,1)) (default) | scalar | vector

Offset value for each row in Xnew, specified as the comma-separated pair consisting of 'Offset' and
a scalar or vector with the same length as the response. predict expands the scalar input into a
constant array of the same size as the response.

Note that the default value of this argument is a vector of zeros even if you specify the 'Offset'
name-value pair argument when fitting a model. If you specify 'Offset' for fitting, the software
treats the offset as an additional predictor with a coefficient value fixed at 1. In other words, the
formula for fitting is

f(μ) = Offset + X*b,
where f is the link function, μ is the mean response, and X*b is the linear combination of predictors X.
The Offset predictor has coefficient 1.
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Data Types: single | double

Simultaneous — Flag to compute simultaneous confidence bounds
false (default) | true

Flag to compute simultaneous confidence bounds, specified as the comma-separated pair consisting
of 'Simultaneous' and either true or false.

• true — predict computes confidence bounds for the curve of response values corresponding to
all predictor values in Xnew, using Scheffe's method. The range between the upper and lower
bounds contains the curve consisting of true response values with 100(1 – α)% confidence.

• false — predict computes confidence bounds for the response value at each observation in
Xnew. The confidence interval for a response value at a specific predictor value contains the true
response value with 100(1 – α)% confidence.

Simultaneous bounds are wider than separate bounds, because requiring the entire curve of response
values to be within the bounds is stricter than requiring the response value at a single predictor value
to be within the bounds.
Example: 'Simultaneous',true

Output Arguments
ypred — Predicted response values
numeric vector

Predicted response values at Xnew, returned as a numeric vector.

For a binomial model, the meaning of the output values in ypred depends on the value of the
'BinomialSize' name-value pair argument.

• If 'BinomialSize' is 1 (default), then each value in the output ypred is the probability of
success.

• If 'BinomialSize' is not 1, then each value in the output ypred is the predicted number of
successes in the trials.

For a model with an offset, specify the offset value by using the 'Offset' name-value pair argument.
Otherwise, predict uses 0 as the offset value.

yci — Confidence intervals for responses
two-column numeric matrix

Confidence intervals for the responses, returned as a two-column matrix with each row providing one
interval. The meaning of the confidence interval depends on the settings of the name-value pair
arguments 'Alpha' and 'Simultaneous'.

Alternative Functionality
• feval returns the same predictions as predict. The feval function does not support the

'Offset' and 'BinomialSize' name-value pair arguments . feval uses 0 as the offset value,
and the output values in ypred are predicted probabilities. The feval function can take multiple
input arguments for new predictor input values, with one input for each predictor variable, which
is simpler to use with a model created from a table or dataset array. Note that the feval function
does not give confidence intervals on its predictions.
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• random returns predictions with added noise.

Version History
Introduced in R2012a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• Use saveLearnerForCoder, loadLearnerForCoder, and codegen to generate code for the
predict function. Save a trained model by using saveLearnerForCoder. Define an entry-point
function that loads the saved model by using loadLearnerForCoder and calls the predict
function. Then use codegen to generate code for the entry-point function.

• This table contains notes about the arguments of predict. Arguments not included in this table
are fully supported.

Argument Notes and Limitations
mdl For the usage notes and limitations of the model object, see “Code Generation”

on page 35-951 of the CompactGeneralizedLinearModel object.
Xnew • Xnew must be a single-precision or double-precision matrix or a table

containing numeric variables, categorical variables, or both.
• The number of rows, or observations, in Xnew can be a variable size, but the

number of columns in Xnew must be fixed.
• If you want to specify Xnew as a table, then your model must be trained

using a table, and you must ensure that your entry-point function for
prediction:

• Accepts data as arrays
• Creates a table from the data input arguments and specifies the variable

names in the table
• Passes the table to predict

For an example of this table workflow, see “Generate Code to Classify Data
in Table” on page 34-112. For more information on using tables in code
generation, see “Code Generation for Tables” (MATLAB Coder) and “Table
Limitations for Code Generation” (MATLAB Coder).

Name-value
pair
arguments

Names in name-value arguments must be compile-time constants. For example,
to allow a user-defined significance level in the generated code, include
{coder.Constant('Alpha'),0} in the -args value of codegen.

For more information, see “Introduction to Code Generation” on page 34-2.

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.
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This function fully supports GPU arrays. For more information, see “Run MATLAB Functions on a
GPU” (Parallel Computing Toolbox).

See Also
GeneralizedLinearModel | CompactGeneralizedLinearModel | fitglm | random | feval

Topics
“Predict or Simulate Responses to New Data” on page 12-23
“Generalized Linear Model Workflow” on page 12-28
“Generalized Linear Models” on page 12-9
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predict
Class: GeneralizedLinearMixedModel

Predict response of generalized linear mixed-effects model

Syntax
ypred = predict(glme)
ypred = predict(glme,tblnew)
ypred = predict( ___ ,Name,Value)
[ypred,ypredCI] = predict( ___ )
[ypred,ypredCI,DF] = predict( ___ )

Description
ypred = predict(glme) returns the predicted conditional means of the response, ypred, using
the original predictor values used to fit the generalized linear mixed-effects model glme.

ypred = predict(glme,tblnew) returns the predicted conditional means using the new predictor
values specified in tblnew.

If a grouping variable in tblnew has levels that are not in the original data, then the random effects
for that grouping variable do not contribute to the 'Conditional' prediction at observations where
the grouping variable has new levels.

ypred = predict( ___ ,Name,Value) returns the predicted conditional means of the response
using additional options specified by one or more Name,Value pair arguments. For example, you can
specify the confidence level, simultaneous confidence bounds, or contributions from only fixed effects.
You can use any of the input arguments in the previous syntaxes.

[ypred,ypredCI] = predict( ___ ) also returns 95% point-wise confidence intervals, ypredCI,
for each predicted value.

[ypred,ypredCI,DF] = predict( ___ ) also returns the degrees of freedom, DF, used to
compute the confidence intervals.

Input Arguments
glme — Generalized linear mixed-effects model
GeneralizedLinearMixedModel object

Generalized linear mixed-effects model, specified as a GeneralizedLinearMixedModel object. For
properties and methods of this object, see GeneralizedLinearMixedModel.

tblnew — New input data
table | dataset array

New input data, which includes the response variable, predictor variables, and grouping variables on
page 2-46, specified as a table or dataset array. The predictor variables can be continuous or
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grouping variables. tblnew must have the same variables as the original table or dataset array used
in fitglme to fit the generalized linear mixed-effects model glme.

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.

Alpha — Significance level
0.05 (default) | scalar value in the range [0,1]

Significance level, specified as the comma-separated pair consisting of 'Alpha' and a scalar value in
the range [0,1]. For a value α, the confidence level is 100 × (1 – α)%.

For example, for 99% confidence intervals, you can specify the confidence level as follows.
Example: 'Alpha',0.01
Data Types: single | double

Conditional — Indicator for conditional predictions
true (default) | false

Indicator for conditional predictions, specified as the comma-separated pair consisting of
'Conditional' and one of the following.

Value Description
true Contributions from both fixed effects and random

effects (conditional)
false Contribution from only fixed effects (marginal)

Example: 'Conditional',false

DFMethod — Method for computing approximate degrees of freedom
'residual' (default) | 'none'

Method for computing approximate degrees of freedom, specified as the comma-separated pair
consisting of 'DFMethod' and one of the following.

Value Description
'residual' The degrees of freedom value is assumed to be

constant and equal to n – p, where n is the
number of observations and p is the number of
fixed effects.

'none' The degrees of freedom is set to infinity.

Example: 'DFMethod','none'

Offset — Model offset
zeros(m,1) (default) | m-by-1 vector of scalar values
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Model offset, specified as a vector of scalar values of length m, where m is the number of rows in
tblnew. The offset is used as an additional predictor and has a coefficient value fixed at 1.

Simultaneous — Type of confidence bounds
false (default) | true

Type of confidence bounds, specified as the comma-separated pair consisting of 'Simultaneous'
and either false or true.

• If 'Simultaneous' is false, then predict computes nonsimultaneous confidence bounds.
• If 'Simultaneous' is true, predict returns simultaneous confidence bounds.

Example: 'Simultaneous',true

Output Arguments
ypred — Predicted responses
vector

Predicted responses, returned as a vector. If the 'Conditional' name-value pair argument is
specified as true, ypred contains predictions for the conditional means of the responses given the
random effects. Conditional predictions include contributions from both fixed and random effects.
Marginal predictions include only contributions from fixed effects.

To compute marginal predictions, predict computes conditional predictions, but substitutes a vector
of zeros in place of the empirical Bayes predictors (EBPs) of the random effects.

ypredCI — Point-wise confidence intervals
two-column matrix

Point-wise confidence intervals for the predicted values, returned as a two-column matrix. The first
column of ypredCI contains the lower bound, and the second column contains the upper bound. By
default, ypredCI contains the 95% nonsimultaneous confidence intervals for the predictions. You can
change the confidence level using the Alpha name-value pair argument, and make them
simultaneous using the Simultaneous name-value pair argument.

When fitting a GLME model using fitglme and one of the maximum likelihood fit methods
('Laplace' or 'ApproximateLaplace'), predict computes the confidence intervals using the
conditional mean squared error of prediction (CMSEP) approach conditional on the estimated
covariance parameters and the observed response. Alternatively, you can interpret the confidence
intervals as approximate Bayesian credible intervals conditional on the estimated covariance
parameters and the observed response.

When fitting a GLME model using fitglme and one of the pseudo likelihood fit methods ('MPL' or
'REMPL'), predict bases the computations on the fitted linear mixed-effects model from the final
pseudo likelihood iteration.

DF — Degrees of freedom
vector | scalar value

Degrees of freedom used in computing the confidence intervals, returned as a vector or a scalar
value.
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• If 'Simultaneous' is false, then DF is a vector.
• If 'Simultaneous' is true, then DF is a scalar value.

Examples

Predict Responses at Original Design Values

Load the sample data.

load mfr

This simulated data is from a manufacturing company that operates 50 factories across the world,
with each factory running a batch process to create a finished product. The company wants to
decrease the number of defects in each batch, so it developed a new manufacturing process. To test
the effectiveness of the new process, the company selected 20 of its factories at random to participate
in an experiment: Ten factories implemented the new process, while the other ten continued to run
the old process. In each of the 20 factories, the company ran five batches (for a total of 100 batches)
and recorded the following data:

• Flag to indicate whether the batch used the new process (newprocess)
• Processing time for each batch, in hours (time)
• Temperature of the batch, in degrees Celsius (temp)
• Categorical variable indicating the supplier (A, B, or C) of the chemical used in the batch

(supplier)
• Number of defects in the batch (defects)

The data also includes time_dev and temp_dev, which represent the absolute deviation of time and
temperature, respectively, from the process standard of 3 hours at 20 degrees Celsius.

Fit a generalized linear mixed-effects model using newprocess, time_dev, temp_dev, and
supplier as fixed-effects predictors. Include a random-effects term for intercept grouped by
factory, to account for quality differences that might exist due to factory-specific variations. The
response variable defects has a Poisson distribution, and the appropriate link function for this
model is log. Use the Laplace fit method to estimate the coefficients. Specify the dummy variable
encoding as 'effects', so the dummy variable coefficients sum to 0.

The number of defects can be modeled using a Poisson distribution:

defectsi j ∼ Poisson(μi j)

This corresponds to the generalized linear mixed-effects model

log(μi j) = β0 + β1newprocessi j + β2time_devi j + β3temp_devi j + β4supplier_Ci j + β5supplier_Bi j
+ bi,

where

• defectsi j is the number of defects observed in the batch produced by factory i during batch j.
• μi j is the mean number of defects corresponding to factory i (where i = 1, 2, . . . , 20) during batch

j (where j = 1, 2, . . . , 5).

35 Functions

35-5926



• newprocessi j, time_devi j, and temp_devi j are the measurements for each variable that correspond
to factory i during batch j. For example, newprocessi j indicates whether the batch produced by
factory i during batch j used the new process.

• supplier_Ci j and supplier_Bi j are dummy variables that use effects (sum-to-zero) coding to indicate
whether company C or B, respectively, supplied the process chemicals for the batch produced by
factory i during batch j.

• bi ∼ N(0, σb
2) is a random-effects intercept for each factory i that accounts for factory-specific

variation in quality.

glme = fitglme(mfr,'defects ~ 1 + newprocess + time_dev + temp_dev + supplier + (1|factory)','Distribution','Poisson','Link','log','FitMethod','Laplace','DummyVarCoding','effects');

Predict the response values at the original design values. Display the first ten predictions along with
the observed response values.

ypred = predict(glme);
[ypred(1:10),mfr.defects(1:10)]

ans = 10×2

    4.9883    6.0000
    5.9423    7.0000
    5.1318    6.0000
    5.6295    5.0000
    5.3499    6.0000
    5.2134    5.0000
    4.6430    4.0000
    4.5342    4.0000
    5.3903    9.0000
    4.6529    4.0000

Column 1 contains the predicted response values at the original design values. Column 2 contains the
observed response values.

Predict Responses at Values in New Table

Load the sample data.

load mfr

This simulated data is from a manufacturing company that operates 50 factories across the world,
with each factory running a batch process to create a finished product. The company wants to
decrease the number of defects in each batch, so it developed a new manufacturing process. To test
the effectiveness of the new process, the company selected 20 of its factories at random to participate
in an experiment: Ten factories implemented the new process, while the other ten continued to run
the old process. In each of the 20 factories, the company ran five batches (for a total of 100 batches)
and recorded the following data:

• Flag to indicate whether the batch used the new process (newprocess)
• Processing time for each batch, in hours (time)
• Temperature of the batch, in degrees Celsius (temp)
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• Categorical variable indicating the supplier (A, B, or C) of the chemical used in the batch
(supplier)

• Number of defects in the batch (defects)

The data also includes time_dev and temp_dev, which represent the absolute deviation of time and
temperature, respectively, from the process standard of 3 hours at 20 degrees Celsius.

Fit a generalized linear mixed-effects model using newprocess, time_dev, temp_dev, and
supplier as fixed-effects predictors. Include a random-effects term for intercept grouped by
factory, to account for quality differences that might exist due to factory-specific variations. The
response variable defects has a Poisson distribution, and the appropriate link function for this
model is log. Use the Laplace fit method to estimate the coefficients. Specify the dummy variable
encoding as 'effects', so the dummy variable coefficients sum to 0.

The number of defects can be modeled using a Poisson distribution:

defectsi j ∼ Poisson(μi j)

This corresponds to the generalized linear mixed-effects model

log(μi j) = β0 + β1newprocessi j + β2time_devi j + β3temp_devi j + β4supplier_Ci j + β5supplier_Bi j
+ bi,

where

• defectsi j is the number of defects observed in the batch produced by factory i during batch j.
• μi j is the mean number of defects corresponding to factory i (where i = 1, 2, . . . , 20) during batch

j (where j = 1, 2, . . . , 5).
• newprocessi j, time_devi j, and temp_devi j are the measurements for each variable that correspond

to factory i during batch j. For example, newprocessi j indicates whether the batch produced by
factory i during batch j used the new process.

• supplier_Ci j and supplier_Bi j are dummy variables that use effects (sum-to-zero) coding to indicate
whether company C or B, respectively, supplied the process chemicals for the batch produced by
factory i during batch j.

• bi ∼ N(0, σb
2) is a random-effects intercept for each factory i that accounts for factory-specific

variation in quality.

glme = fitglme(mfr,'defects ~ 1 + newprocess + time_dev + temp_dev + supplier + (1|factory)','Distribution','Poisson','Link','log','FitMethod','Laplace','DummyVarCoding','effects');

Predict the response values at the original design values.

ypred = predict(glme);

Create a new table by copying the first 10 rows of mfr into tblnew.

tblnew = mfr(1:10,:);

The first 10 rows of mfr include data collected from trials 1 through 5 for factories 1 and 2. Both
factories used the old process for all of their trials during the experiment, so newprocess = 0 for all
10 observations.

Change the value of newprocess to 1 for the observations in tblnew.
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tblnew.newprocess = ones(height(tblnew),1);

Compute predicted response values and nonsimultaneous 99% confidence intervals using tblnew.
Display the first 10 rows of the predicted values based on tblnew, the predicted values based on
mfr, and the observed response values.

[ypred_new,ypredCI] = predict(glme,tblnew,'Alpha',0.01);
[ypred_new,ypred(1:10),mfr.defects(1:10)]

ans = 10×3

    3.4536    4.9883    6.0000
    4.1142    5.9423    7.0000
    3.5530    5.1318    6.0000
    3.8976    5.6295    5.0000
    3.7040    5.3499    6.0000
    3.6095    5.2134    5.0000
    3.2146    4.6430    4.0000
    3.1393    4.5342    4.0000
    3.7320    5.3903    9.0000
    3.2214    4.6529    4.0000

Column 1 contains predicted response values based on the data in tblnew, where newprocess = 1.
Column 2 contains predicted response values based on the original data in mfr, where newprocess
= 0. Column 3 contains the observed response values in mfr. Based on these results, if all other
predictors retain their original values, the predicted number of defects appears to be smaller when
using the new process.

Display the 99% confidence intervals for rows 1 through 10 corresponding to the new predicted
response values.

ypredCI(1:10,1:2)

ans = 10×2

    1.6983    7.0235
    1.9191    8.8201
    1.8735    6.7380
    2.0149    7.5395
    1.9034    7.2079
    1.8918    6.8871
    1.6776    6.1597
    1.5404    6.3976
    1.9574    7.1154
    1.6892    6.1436

References
[1] Booth, J.G., and J.P. Hobert. “Standard Errors of Prediction in Generalized Linear Mixed Models.”

Journal of the American Statistical Association, Vol. 93, 1998, pp. 262–272.
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See Also
GeneralizedLinearMixedModel | fitglme | fitted | random
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predict
Package: 

Predict responses of linear regression model

Syntax
ypred = predict(mdl,Xnew)
[ypred,yci] = predict(mdl,Xnew)
[ypred,yci] = predict(mdl,Xnew,Name,Value)

Description
ypred = predict(mdl,Xnew) returns the predicted response values of the linear regression model
mdl to the points in Xnew.

[ypred,yci] = predict(mdl,Xnew) also returns confidence intervals for the responses at Xnew.

[ypred,yci] = predict(mdl,Xnew,Name,Value) specifies additional options using one or more
name-value pair arguments. For example, you can specify the confidence level of the confidence
interval and the prediction type.

Examples

Predict Response Values

Create a quadratic model of car mileage as a function of weight from the carsmall data set.

load carsmall
X = Weight;
y = MPG;
mdl = fitlm(X,y,'quadratic');

Create predicted responses to the data.

ypred = predict(mdl,X);

Plot the original responses and the predicted responses to see how they differ.

plot(X,y,'o',X,ypred,'x')
legend('Data','Predictions')
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Generate C/C++ Code for Prediction

Fit a linear regression model, and then save the model by using saveLearnerForCoder. Define an
entry-point function that loads the model by using loadLearnerForCoder and calls the predict
function of the fitted model. Then use codegen (MATLAB Coder) to generate C/C++ code. Note that
generating C/C++ code requires MATLAB® Coder™.

This example briefly explains the code generation workflow for the prediction of linear regression
models at the command line. For more details, see “Code Generation for Prediction of Machine
Learning Model at Command Line” on page 34-9. You can also generate code using the MATLAB
Coder app. For details, see “Code Generation for Prediction of Machine Learning Model Using
MATLAB Coder App” on page 34-23.

Train Model

Load the carsmall data set, and then fit the quadratic regression model.

load carsmall
X = Weight;
y = MPG;
mdl = fitlm(X,y,'quadratic');

Save Model

Save the fitted quadratic model to the file QLMMdl.mat by using saveLearnerForCoder.
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saveLearnerForCoder(mdl,'QLMMdl');

Define Entry-Point Function

Define an entry-point function named mypredictQLM that does the following:

• Accept measurements corresponding to X and optional, valid name-value pair arguments.
• Load the fitted quadratic model in QLMMdl.mat.
• Return predictions and confidence interval bounds.

function [yhat,ci] = mypredictQLM(x,varargin) %#codegen
%MYPREDICTQLM Predict response using linear model
%   MYPREDICTQLM predicts responses for the n observations in the n-by-1
%   vector x using the linear model stored in the MAT-file QLMMdl.mat, and
%   then returns the predictions in the n-by-1 vector yhat. MYPREDICTQLM
%   also returns confidence interval bounds for the predictions in the
%   n-by-2 vector ci.
CompactMdl = loadLearnerForCoder('QLMMdl');
[yhat,ci] = predict(CompactMdl,x,varargin{:});
end

Add the %#codegen compiler directive (or pragma) to the entry-point function after the function
signature to indicate that you intend to generate code for the MATLAB algorithm. Adding this
directive instructs the MATLAB Code Analyzer to help you diagnose and fix violations that would
result in errors during code generation.

Note: If you click the button located in the upper-right section of this example and open the example
in MATLAB®, then MATLAB opens the example folder. This folder includes the entry-point function
file.

Generate Code

Generate code for the entry-point function using codegen (MATLAB Coder). Because C and C++ are
statically typed languages, you must determine the properties of all variables in the entry-point
function at compile time. To specify the data type and exact input array size, pass a MATLAB®
expression that represents the set of values with a certain data type and array size. Use
coder.Constant (MATLAB Coder) for the names of name-value pair arguments.

If the number of observations is unknown at compile time, you can also specify the input as variable-
size by using coder.typeof (MATLAB Coder). For details, see “Specify Variable-Size Arguments for
Code Generation” on page 34-56 and “Specify Properties of Entry-Point Function Inputs” (MATLAB
Coder).

codegen mypredictQLM -args {X,coder.Constant('Alpha'),0.1,coder.Constant('Simultaneous'),true}

Code generation successful.

codegen generates the MEX function mypredictQLM_mex with a platform-dependent extension.

Verify Generated Code

Compare predictions and confidence intervals using predict and mypredictQLM_mex. Specify
name-value pair arguments in the same order as in the -args argument in the call to codegen.

Xnew = sort(X);
[yhat1,ci1] = predict(mdl,Xnew,'Alpha',0.1,'Simultaneous',true);
[yhat2,ci2] = mypredictQLM_mex(Xnew,'Alpha',0.1,'Simultaneous',true);
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The returned values from mypredictQLM_mex might include round-off differences compared to the
values from predict. In this case, compare the values allowing a small tolerance.

find(abs(yhat1-yhat2) > 1e-6)

ans =

  0x1 empty double column vector

find(abs(ci1-ci2) > 1e-6)

ans =

  0x1 empty double column vector

The comparison confirms that the returned values are equal within the tolerance 1e–6.

Plot the returned values for comparison.

h1 = plot(X,y,'k.');
hold on
h2 = plot(Xnew,yhat1,'ro',Xnew,yhat2,'gx');
h3 = plot(Xnew,ci1,'r-','LineWidth',4);
h4 = plot(Xnew,ci2,'g--','LineWidth',2);
legend([h1; h2; h3(1); h4(1)], ...
    {'Data','predict estimates','MEX estimates','predict CIs','MEX CIs'});
xlabel('Weight');
ylabel('MPG');

35 Functions

35-5934



Input Arguments
mdl — Linear regression model object
LinearModel object | CompactLinearModel object

Linear regression model object, specified as a LinearModel object created by using fitlm or
stepwiselm, or a CompactLinearModel object created by using compact.

Xnew — New predictor input values
table | dataset array | matrix

New predictor input values, specified as a table, dataset array, or matrix. Each row of Xnew
corresponds to one observation, and each column corresponds to one variable.

• If Xnew is a table or dataset array, it must contain predictors that have the same predictor names
as in the PredictorNames property of mdl.

• If Xnew is a matrix, it must have the same number of variables (columns) in the same order as the
predictor input used to create mdl. Note that Xnew must also contain any predictor variables that
are not used as predictors in the fitted model. Also, all variables used in creating mdl must be
numeric. To treat numerical predictors as categorical, identify the predictors using the
'CategoricalVars' name-value pair argument when you create mdl.

Data Types: single | double | table
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Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: [ypred,yci] = predict(Mdl,Xnew,'Alpha',0.01,'Simultaneous',true) returns
the confidence interval yci with a 99% confidence level, computed simultaneously for all predictor
values.

Alpha — Significance level
0.05 (default) | numeric value in the range [0,1]

Significance level for the confidence interval, specified as the comma-separated pair consisting of
'Alpha' and a numeric value in the range [0,1]. The confidence level of yci is equal to 100(1 –
Alpha)%. Alpha is the probability that the confidence interval does not contain the true value.
Example: 'Alpha',0.01
Data Types: single | double

Prediction — Prediction type
'curve' (default) | 'observation'

Prediction type, specified as the comma-separated pair consisting of 'Prediction' and either
'curve' or 'observation'.

A regression model for the predictor variables X and the response variable y has the form
y = f(X) + ε,

where f is a fitted regression function and ε is a random noise term.

• If 'Prediction' is 'curve', then predict predicts confidence bounds for f(Xnew), the fitted
responses at Xnew.

• If 'Prediction' is 'observation', then predict predicts confidence bounds for y, the
response observations at Xnew.

The bounds for y are wider than the bounds for f(X) because of the additional variability of the noise
term.
Example: 'Prediction','observation'

Simultaneous — Flag to compute simultaneous confidence bounds
false (default) | true

Flag to compute simultaneous confidence bounds, specified as the comma-separated pair consisting
of 'Simultaneous' and either true or false.

• true — predict computes confidence bounds for the curve of response values corresponding to
all predictor values in Xnew, using Scheffe's method. The range between the upper and lower
bounds contains the curve consisting of true response values with 100(1 – α)% confidence.

• false — predict computes confidence bounds for the response value at each observation in
Xnew. The confidence interval for a response value at a specific predictor value contains the true
response value with 100(1 – α)% confidence.
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Simultaneous bounds are wider than separate bounds, because requiring the entire curve of response
values to be within the bounds is stricter than requiring the response value at a single predictor value
to be within the bounds.
Example: 'Simultaneous',true

Output Arguments
ypred — Predicted response values
numeric vector

Predicted response values evaluated at Xnew, returned as a numeric vector.

yci — Confidence intervals for responses
two-column numeric matrix

Confidence intervals for the responses, returned as a two-column matrix with each row providing one
interval. The meaning of the confidence interval depends on the settings of the name-value pair
arguments 'Alpha', 'Prediction', and 'Simultaneous'.

Alternative Functionality
• feval returns the same predictions as predict. The feval function can take multiple input

arguments, with one input for each predictor variable, which is simpler to use with a model
created from a table or dataset array. Note that the feval function does not give confidence
intervals on its predictions.

• random returns predictions with added noise.
• Use plotSlice to create a figure containing a series of plots, each representing a slice through

the predicted regression surface. Each plot shows the fitted response values as a function of a
single predictor variable, with the other predictor variables held constant.

Version History
Introduced in R2012a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• Use saveLearnerForCoder, loadLearnerForCoder, and codegen to generate code for the
predict function. Save a trained model by using saveLearnerForCoder. Define an entry-point
function that loads the saved model by using loadLearnerForCoder and calls the predict
function. Then use codegen to generate code for the entry-point function.

• This table contains notes about the arguments of predict. Arguments not included in this table
are fully supported.
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Argument Notes and Limitations
mdl • Suppose you train a linear model by using fitlm and specifying

'RobustOpts' as a structure with an anonymous function handle for the
RobustWgtFun field, use saveLearnerForCoder to save the model, and
then use loadLearnerForCoder to load the model. In this case,
loadLearnerForCoder cannot restore the Robust property into the
MATLAB Workspace. However, loadLearnerForCoder can load the model
at compile time within an entry-point function for code generation.

• For the usage notes and limitations of the model object, see “Code
Generation” on page 35-940 of the CompactLinearModel object.

Xnew • Xnew must be a single-precision or double-precision matrix or a table
containing numeric variables, categorical variables, or both.

• The number of rows, or observations, in Xnew can be a variable size, but the
number of columns in Xnew must be fixed.

• If you want to specify Xnew as a table, then your model must be trained
using a table, and you must ensure that your entry-point function for
prediction:

• Accepts data as arrays
• Creates a table from the data input arguments and specifies the variable

names in the table
• Passes the table to predict

For an example of this table workflow, see “Generate Code to Classify Data
in Table” on page 34-112. For more information on using tables in code
generation, see “Code Generation for Tables” (MATLAB Coder) and “Table
Limitations for Code Generation” (MATLAB Coder).

Name-value
pair
arguments

Names in name-value arguments must be compile-time constants. For example,
to allow a user-defined significance level in the generated code, include
{coder.Constant('Alpha'),0} in the -args value of codegen.

For more information, see “Introduction to Code Generation” on page 34-2.

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

This function fully supports GPU arrays. For more information, see “Run MATLAB Functions on a
GPU” (Parallel Computing Toolbox).

See Also
CompactLinearModel | LinearModel | feval | random | plotSlice

Topics
“Predict or Simulate Responses to New Data” on page 11-31
“Linear Regression Workflow” on page 11-35
“Interpret Linear Regression Results” on page 11-52
“Linear Regression” on page 11-9
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predict
Class: LinearMixedModel

Predict response of linear mixed-effects model

Syntax
ypred = predict(lme)
ypred = predict(lme,tblnew)
ypred = predict(lme,Xnew,Znew)
ypred = predict(lme,Xnew,Znew,Gnew)
ypred = predict( ___ ,Name,Value)
[ypred,ypredCI] = predict( ___ )
[ypred,ypredCI,DF] = predict( ___ )

Description
ypred = predict(lme) returns a vector of conditional predicted responses on page 35-5949
ypred at the original predictors used to fit the linear mixed-effects model lme.

ypred = predict(lme,tblnew) returns a vector of conditional predicted responses ypred from
the fitted linear mixed-effects model lme at the values in the new table or dataset array tblnew. Use
a table or dataset array for predict if you use a table or dataset array for fitting the model lme.

If a particular grouping variable in tblnew has levels that are not in the original data, then the
random effects for that grouping variable do not contribute to the 'Conditional' prediction at
observations where the grouping variable has new levels.

ypred = predict(lme,Xnew,Znew) returns a vector of conditional predicted responses ypred
from the fitted linear mixed-effects model lme at the values in the new fixed- and random-effects
design matrices, Xnew and Znew, respectively. Znew can also be a cell array of matrices. In this case,
the grouping variable G is ones(n,1), where n is the number of observations used in the fit.

Use the matrix format for predict if using design matrices for fitting the model lme.

ypred = predict(lme,Xnew,Znew,Gnew) returns a vector of conditional predicted responses
ypred from the fitted linear mixed-effects model lme at the values in the new fixed- and random-
effects design matrices, Xnew and Znew, respectively, and the grouping variable Gnew.

Znew and Gnew can also be cell arrays of matrices and grouping variables, respectively.

ypred = predict( ___ ,Name,Value) returns a vector of predicted responses ypred from the
fitted linear mixed-effects model lme with additional options specified by one or more Name,Value
pair arguments.

For example, you can specify the confidence level, simultaneous confidence bounds, or contributions
from only fixed effects.

[ypred,ypredCI] = predict( ___ ) also returns confidence intervals ypredCI for the
predictions ypred for any of the input arguments in the previous syntaxes.
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[ypred,ypredCI,DF] = predict( ___ ) also returns the degrees of freedom DF used in
computing the confidence intervals for any of the input arguments in the previous syntaxes.

Input Arguments
lme — Linear mixed-effects model
LinearMixedModel object

Linear mixed-effects model, specified as a LinearMixedModel object constructed using fitlme or
fitlmematrix.

tblnew — New input data
table | dataset array

New input data, which includes the response variable, predictor variables, and grouping variables on
page 2-46, specified as a table or dataset array. The predictor variables can be continuous or
grouping variables. tblnew must have the same variables as in the original table or dataset array
used to fit the linear mixed-effects model lme.

Xnew — New fixed-effects design matrix
n-by-p matrix

New fixed-effects design matrix, specified as an n-by-p matrix, where n is the number of observations
and p is the number of fixed predictor variables. Each row of X corresponds to one observation and
each column of X corresponds to one variable.
Data Types: single | double

Znew — New random-effects design
n-by-q matrix | cell array of length R

New random-effects design, specified as an n-by-q matrix or a cell array of R design matrices Z{r},
where r = 1, 2, ..., R. If Znew is a cell array, then each Z{r} is an n-by-q(r) matrix, where n is the
number of observations, and q(r) is the number of random predictor variables.
Data Types: single | double | cell

Gnew — New grouping variable or variables
vector | cell array of grouping variables of length R

New grouping variable or variables on page 2-46, specified as a vector or a cell array, of length R, of
grouping variables with the same levels or groups as the original grouping variables used to fit the
linear mixed-effects model lme.
Data Types: single | double | categorical | logical | char | string | cell

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.

Alpha — Significance level
0.05 (default) | scalar value in the range 0 to 1
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Significance level, specified as the comma-separated pair consisting of 'Alpha' and a scalar value in
the range 0 to 1. For a value α, the confidence level is 100*(1–α)%.

For example, for 99% confidence intervals, you can specify the confidence level as follows.
Example: 'Alpha',0.01
Data Types: single | double

Conditional — Indicator for conditional predictions
true (default) | false

Indicator for conditional prediction on page 35-5949s, specified as the comma-separated pair
consisting of 'Conditional' and one of the following.

true Contributions from both fixed effects and random
effects (conditional)

false Contribution from only fixed effects (marginal)

Example: 'Conditional,false

DFMethod — Method for computing approximate degrees of freedom
'residual' (default) | 'satterthwaite' | 'none'

Method for computing approximate degrees of freedom to use in the confidence interval computation,
specified as the comma-separated pair consisting of 'DFMethod' and one of the following.

'residual' Default. The degrees of freedom are assumed to
be constant and equal to n – p, where n is the
number of observations and p is the number of
fixed effects.

'satterthwaite' Satterthwaite approximation.
'none' All degrees of freedom are set to infinity.

For example, you can specify the Satterthwaite approximation as follows.
Example: 'DFMethod','satterthwaite'

Simultaneous — Type of confidence bounds
false (default) | true

Type of confidence bounds, specified as the comma-separated pair consisting of 'Simultaneous'
and one of the following.

false Default. Nonsimultaneous bounds.
true Simultaneous bounds.

Example: 'Simultaneous',true

Prediction — Type of prediction
'curve' (default) | 'observation'

Type of prediction, specified as the comma-separated pair consisting of 'Prediction' and one of
the following.
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'curve' Default. Confidence bounds for the predictions
based on the fitted function.

'observation' Variability due to observation error for the new
observations is also included in the confidence
bound calculations and this results in wider
bounds.

Example: 'Prediction','observation'

Output Arguments
ypred — Predicted responses
vector

Predicted responses, returned as a vector. ypred can contain the conditional or marginal responses,
depending on the value choice of the 'Conditional' name-value pair argument. Conditional
predictions include contributions from both fixed and random effects.

ypredCI — Point-wise confidence intervals
two-column matrix

Point-wise confidence intervals for the predicted values, returned as a two-column matrix. The first
column of yCI contains the lower bounds, and the second column contains the upper bound. By
default, yCI contains the 95% confidence intervals for the predictions. You can change the confidence
level using the Alpha name-value pair argument, make them simultaneous using the Simultaneous
name-value pair argument, and also make them for a new observation rather than for the curve using
the Prediction name-value pair argument.

DF — Degrees of freedom
vector | scalar value

Degrees of freedom used in computing the confidence intervals, returned as a vector or a scalar
value.

• If the 'Simultaneous' name-value pair argument is false, then DF is a vector.
• If the 'Simultaneous' name-value pair argument is true, then DF is a scalar value.

Examples

Predict Responses at the Original Design Values

Load the sample data.

load('fertilizer.mat');

The dataset array includes data from a split-plot experiment, where soil is divided into three blocks
based on the soil type: sandy, silty, and loamy. Each block is divided into five plots, where five
different types of tomato plants (cherry, heirloom, grape, vine, and plum) are randomly assigned to
these plots. The tomato plants in the plots are then divided into subplots, where each subplot is
treated by one of four fertilizers. This is simulated data.
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Store the data in a dataset array called ds, for practical purposes, and define Tomato, Soil, and
Fertilizer as categorical variables.

ds = fertilizer;
ds.Tomato = nominal(ds.Tomato);
ds.Soil = nominal(ds.Soil);
ds.Fertilizer = nominal(ds.Fertilizer);

Fit a linear mixed-effects model, where Fertilizer and Tomato are the fixed-effects variables, and
the mean yield varies by the block (soil type), and the plots within blocks (tomato types within soil
types) independently.

lme = fitlme(ds,'Yield ~ Fertilizer * Tomato + (1|Soil) + (1|Soil:Tomato)');

Predict the response values at the original design values. Display the first five predictions with the
observed response values.

yhat = predict(lme);
[yhat(1:5) ds.Yield(1:5)]

ans = 5×2

  115.4788  104.0000
  135.1455  136.0000
  152.8121  158.0000
  160.4788  174.0000
   58.0839   57.0000

Plot Predictions vs. Observed Responses

Load the sample data.

load carsmall

Fit a linear mixed-effects model, with a fixed effect for Weight, and a random intercept grouped by
Model_Year. First, store the data in a table.

tbl = table(MPG,Weight,Model_Year);
lme = fitlme(tbl,'MPG ~ Weight + (1|Model_Year)');

Create predicted responses to the data.

yhat = predict(lme,tbl);

Plot the original responses and the predicted responses to see how they differ. Group them by model
year.

figure()
gscatter(Weight,MPG,Model_Year)
hold on
gscatter(Weight,yhat,Model_Year,[],'o+x')
legend('70-data','76-data','82-data','70-pred','76-pred','82-pred')
hold off
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Predict Responses at Values in a New Dataset Array

Load the sample data.

load('fertilizer.mat');

The dataset array includes data from a split-plot experiment, where soil is divided into three blocks
based on the soil type: sandy, silty, and loamy. Each block is divided into five plots, where five
different types of tomato plants (cherry, heirloom, grape, vine, and plum) are randomly assigned to
these plots. The tomato plants in the plots are then divided into subplots, where each subplot is
treated by one of four fertilizers. This is simulated data.

Store the data in a dataset array called ds, for practical purposes, and define Tomato, Soil, and
Fertilizer as categorical variables.

ds = fertilizer;
ds.Tomato = nominal(ds.Tomato);
ds.Soil = nominal(ds.Soil);
ds.Fertilizer = nominal(ds.Fertilizer);

Fit a linear mixed-effects model, where Fertilizer and Tomato are the fixed-effects variables, and
the mean yield varies by the block (soil type), and the plots within blocks (tomato types within soil
types) independently.

lme = fitlme(ds,'Yield ~ Fertilizer * Tomato + (1|Soil) + (1|Soil:Tomato)');
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Create a new dataset array with design values. The new dataset array must have the same variables
as the original dataset array you use for fitting the model lme.

dsnew = dataset();
dsnew.Soil = nominal({'Sandy';'Silty'});
dsnew.Tomato = nominal({'Cherry';'Vine'});
dsnew. Fertilizer = nominal([2;2]);

Predict the conditional and marginal responses at the original design points.

yhatC = predict(lme,dsnew);
yhatM = predict(lme,dsnew,'Conditional',false);
[yhatC yhatM]

ans = 2×2

   92.7505  111.6667
   87.5891   82.6667

Predict Responses at the Values in New Design Matrices

Load the sample data.

load carbig

Fit a linear mixed-effects model for miles per gallon (MPG), with fixed effects for acceleration,
horsepower, and cylinders, and potentially correlated random effects for intercept and acceleration
grouped by model year.

First, prepare the design matrices for fitting the linear mixed-effects model.

X = [ones(406,1) Acceleration Horsepower];
Z = [ones(406,1) Acceleration];
Model_Year = nominal(Model_Year);
G = Model_Year;

Now, fit the model using fitlmematrix with the defined design matrices and grouping variables.

lme = fitlmematrix(X,MPG,Z,G,'FixedEffectPredictors',....
{'Intercept','Acceleration','Horsepower'},'RandomEffectPredictors',...
{{'Intercept','Acceleration'}},'RandomEffectGroups',{'Model_Year'});

Create the design matrices that contain the data at which to predict the response values. Xnew must
have three columns as in X. The first column must be a column of 1s. And the values in the last two
columns must correspond to Acceleration and Horsepower, respectively. The first column of Znew
must be a column of 1s, and the second column must contain the same Acceleration values as in
Xnew. The original grouping variable in G is the model year. So, Gnew must contain values for the
model year. Note that Gnew must contain nominal values.

Xnew = [1,13.5,185; 1,17,205; 1,21.2,193];
Znew = [1,13.5; 1,17; 1,21.2]; % alternatively Znew = Xnew(:,1:2);
Gnew = nominal([73 77 82]);

Predict the responses for the data in the new design matrices.
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yhat = predict(lme,Xnew,Znew,Gnew)

yhat = 3×1

    8.7063
    5.4423
   12.5384

Now, repeat the same for a linear mixed-effects model with uncorrelated random-effects terms for
intercept and acceleration. First, change the original random effects design and the random effects
grouping variables. Then, refit the model.

Z = {ones(406,1),Acceleration};
G = {Model_Year,Model_Year};

lme = fitlmematrix(X,MPG,Z,G,'FixedEffectPredictors',....
{'Intercept','Acceleration','Horsepower'},'RandomEffectPredictors',...
{{'Intercept'},{'Acceleration'}},'RandomEffectGroups',{'Model_Year','Model_Year'});

Now, recreate the new random effects design, Znew, and the grouping variable design, Gnew, using
which to predict the response values.

Znew = {[1;1;1],[13.5;17;21.2]};
MY = nominal([73 77 82]);
Gnew = {MY,MY};

Predict the responses using the new design matrices.

yhat = predict(lme,Xnew,Znew,Gnew)

yhat = 3×1

    8.6365
    5.9199
   12.1247

Compute Confidence Intervals for Predictions

Load the sample data.

load carbig

Fit a linear mixed-effects model for miles per gallon (MPG), with fixed effects for acceleration,
horsepower, and cylinders, and potentially correlated random effects for intercept and acceleration
grouped by model year. First, store the variables in a table.

tbl = table(MPG,Acceleration,Horsepower,Model_Year);

Now, fit the model using fitlme with the defined design matrices and grouping variables.

lme = fitlme(tbl,'MPG ~ Acceleration + Horsepower + (Acceleration|Model_Year)');

Create the new data and store it in a new table.
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tblnew = table();
tblnew.Acceleration = linspace(8,25)';
tblnew.Horsepower = linspace(min(Horsepower),max(Horsepower))';
tblnew.Model_Year = repmat(70,100,1);

linspace creates 100 equally distanced values between the lower and the upper input limits.
Model_Year is fixed at 70. You can repeat this for any model year.

Compute and plot the predicted values and 95% confidence limits (nonsimultaneous).

[ypred,yCI,DF] = predict(lme,tblnew);
figure(); 
h1 = line(tblnew.Acceleration,ypred);
hold on;
h2 = plot(tblnew.Acceleration,yCI,'g-.');

Display the degrees of freedom.

DF(1)

ans = 389

Compute and plot the simultaneous confidence bounds.

[ypred,yCI,DF] = predict(lme,tblnew,'Simultaneous',true);
h3 = plot(tblnew.Acceleration,yCI,'r--');
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Display the degrees of freedom.

DF

DF = 389

Compute the simultaneous confidence bounds using the Satterthwaite method to compute the
degrees of freedom.

[ypred,yCI,DF] = predict(lme,tblnew,'Simultaneous',true,'DFMethod','satterthwaite');
h4 = plot(tblnew.Acceleration,yCI,'k:');
hold off
xlabel('Acceleration')
ylabel('Response')
ylim([-50,60])
xlim([8,25])
legend([h1,h2(1),h3(1),h4(1)],'Predicted response','95%','95% Sim',...
'95% Sim-Satt','Location','Best')
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Display the degrees of freedom.

DF

DF = 3.6001

More About
Conditional and Marginal Predictions

A conditional prediction includes contributions from both fixed and random effects, whereas a
marginal model includes contribution from only fixed effects.

Suppose the linear mixed-effects model lme has an n-by-p fixed-effects design matrix X and an n-by-q
random-effects design matrix Z. Also, suppose the estimated p-by-1 fixed-effects vector is β , and the
q-by-1 estimated best linear unbiased predictor (BLUP) vector of random effects is b . The predicted
conditional response is

y Cond = Xβ + Zb ,

which corresponds to the 'Conditional','true' name-value pair argument.

The predicted marginal response is

y Mar = Xβ ,
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which corresponds to the 'Conditional','false' name-value pair argument.

When making predictions, if a particular grouping variable has new levels (1s that were not in the
original data), then the random effects for the grouping variable do not contribute to the
'Conditional' prediction at observations where the grouping variable has new levels.

See Also
LinearMixedModel | fitted | random
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predict
Class: FeatureSelectionNCAClassification

Predict responses using neighborhood component analysis (NCA) classifier

Syntax
[labels,postprobs,classnames] = predict(mdl,X)

Description
[labels,postprobs,classnames] = predict(mdl,X) computes the predicted labels, labels,
corresponding to the rows of X, using the model mdl.

Input Arguments
mdl — Neighborhood component analysis model for classification
FeatureSelectionNCAClassification object

Neighborhood component analysis model for classification, specified as a
FeatureSelectionNCAClassification object.

X — Predictor variable values
n-by-p matrix

Predictor variable values, specified as an n-by-p matrix, where n is the number of observations and p
is the number of predictor variables.
Data Types: single | double

Output Arguments
labels — Predicted class labels
categorical vector | logical vector | numeric vector | cell array of character vectors | character array

Predicted class labels corresponding to the rows of X, returned as a categorical, logical, or numeric
vector, a cell array of character vectors of length n, or a character array with n rows. n is the number
of observations. The type of labels is the same as Y used in training.

postprobs — Posterior probabilities
n-by-c matrix

Posterior probabilities, returned as an n-by-c matrix, where n is the number of observations and c is
the number of classes. A posterior probability, postprobs(i,:), represents the membership of an
observation in X(i,:) in classes 1 through c.

classnames — Class names
cell array of character vectors
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Class names corresponding to posterior probabilities, returned as a cell array of character vectors.
Each character vector is the class name corresponding to a column of postprobs.

Examples

Tune NCA Model for Classification

Load the sample data.

load('twodimclassdata.mat');

This data set is simulated using the scheme described in [1]. This is a two-class classification problem
in two dimensions. Data from the first class (class –1) are drawn from two bivariate normal
distributions  or  with equal probability, where , ,
and . Similarly, data from the second class (class 1) are drawn from two bivariate normal
distributions  or  with equal probability, where , ,
and . The normal distribution parameters used to create this data set result in tighter clusters
in data than the data used in [1].

Create a scatter plot of the data grouped by the class.

figure
gscatter(X(:,1),X(:,2),y)
xlabel('x1')
ylabel('x2')
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Add 100 irrelevant features to . First generate data from a Normal distribution with a mean of 0
and a variance of 20.

n = size(X,1);
rng('default')
XwithBadFeatures = [X,randn(n,100)*sqrt(20)];

Normalize the data so that all points are between 0 and 1.

XwithBadFeatures = bsxfun(@rdivide,...
    bsxfun(@minus,XwithBadFeatures,min(XwithBadFeatures,[],1)), ...
    range(XwithBadFeatures,1));
X = XwithBadFeatures;

Fit a neighborhood component analysis (NCA) model to the data using the default Lambda
(regularization parameter, ) value. Use the LBFGS solver and display the convergence information.

ncaMdl = fscnca(X,y,'FitMethod','exact','Verbose',1, ...
              'Solver','lbfgs');

 o Solver = LBFGS, HessianHistorySize = 15, LineSearchMethod = weakwolfe

|====================================================================================================|
|   ITER   |   FUN VALUE   |  NORM GRAD  |  NORM STEP  |  CURV  |    GAMMA    |    ALPHA    | ACCEPT |
|====================================================================================================|
|        0 |  9.519258e-03 |   1.494e-02 |   0.000e+00 |        |   4.015e+01 |   0.000e+00 |   YES  |
|        1 | -3.093574e-01 |   7.186e-03 |   4.018e+00 |    OK  |   8.956e+01 |   1.000e+00 |   YES  |
|        2 | -4.809455e-01 |   4.444e-03 |   7.123e+00 |    OK  |   9.943e+01 |   1.000e+00 |   YES  |
|        3 | -4.938877e-01 |   3.544e-03 |   1.464e+00 |    OK  |   9.366e+01 |   1.000e+00 |   YES  |
|        4 | -4.964759e-01 |   2.901e-03 |   6.084e-01 |    OK  |   1.554e+02 |   1.000e+00 |   YES  |
|        5 | -4.972077e-01 |   1.323e-03 |   6.129e-01 |    OK  |   1.195e+02 |   5.000e-01 |   YES  |
|        6 | -4.974743e-01 |   1.569e-04 |   2.155e-01 |    OK  |   1.003e+02 |   1.000e+00 |   YES  |
|        7 | -4.974868e-01 |   3.844e-05 |   4.161e-02 |    OK  |   9.835e+01 |   1.000e+00 |   YES  |
|        8 | -4.974874e-01 |   1.417e-05 |   1.073e-02 |    OK  |   1.043e+02 |   1.000e+00 |   YES  |
|        9 | -4.974874e-01 |   4.893e-06 |   1.781e-03 |    OK  |   1.530e+02 |   1.000e+00 |   YES  |
|       10 | -4.974874e-01 |   9.404e-08 |   8.947e-04 |    OK  |   1.670e+02 |   1.000e+00 |   YES  |

         Infinity norm of the final gradient = 9.404e-08
              Two norm of the final step     = 8.947e-04, TolX   = 1.000e-06
Relative infinity norm of the final gradient = 9.404e-08, TolFun = 1.000e-06
EXIT: Local minimum found.

Plot the feature weights. The weights of the irrelevant features should be very close to zero.

figure
semilogx(ncaMdl.FeatureWeights,'ro')
xlabel('Feature index')
ylabel('Feature weight')
grid on
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Predict the classes using the NCA model and compute the confusion matrix.

ypred = predict(ncaMdl,X);
confusionchart(y,ypred)
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Confusion matrix shows that 40 of the data that are in class –1 are predicted as belonging to class –1.
60 of the data from class –1 are predicted to be in class 1. Similarly, 94 of the data from class 1 are
predicted to be from class 1 and 6 of them are predicted to be from class –1. The prediction accuracy
for class –1 is not good.

All weights are very close to zero, which indicates that the value of  used in training the model is too
large. When , all features weights approach to zero. Hence, it is important to tune the
regularization parameter in most cases to detect the relevant features.

Use five-fold cross-validation to tune  for feature selection by using fscnca. Tuning  means finding
the  value that will produce the minimum classification loss. To tune  using cross-validation:

1. Partition the data into five folds. For each fold, cvpartition assigns four-fifths of the data as a
training set and one-fifth of the data as a test set. Again for each fold, cvpartition creates a
stratified partition, where each partition has roughly the same proportion of classes.

cvp = cvpartition(y,'kfold',5);
numtestsets = cvp.NumTestSets;
lambdavalues = linspace(0,2,20)/length(y);
lossvalues = zeros(length(lambdavalues),numtestsets);

2. Train the neighborhood component analysis (nca) model for each  value using the training set in
each fold.

3. Compute the classification loss for the corresponding test set in the fold using the nca model.
Record the loss value.
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4. Repeat this process for all folds and all  values.

for i = 1:length(lambdavalues)
    for k = 1:numtestsets

        % Extract the training set from the partition object
        Xtrain = X(cvp.training(k),:);
        ytrain = y(cvp.training(k),:);

        % Extract the test set from the partition object
        Xtest  = X(cvp.test(k),:);
        ytest  = y(cvp.test(k),:);

        % Train an NCA model for classification using the training set
        ncaMdl = fscnca(Xtrain,ytrain,'FitMethod','exact', ...
            'Solver','lbfgs','Lambda',lambdavalues(i));

        % Compute the classification loss for the test set using the NCA
        % model
        lossvalues(i,k) = loss(ncaMdl,Xtest,ytest, ...
            'LossFunction','quadratic');

    end
end

Plot the average loss values of the folds versus the  values. If the  value that corresponds to the
minimum loss falls on the boundary of the tested  values, the range of  values should be
reconsidered.

figure
plot(lambdavalues,mean(lossvalues,2),'ro-')
xlabel('Lambda values')
ylabel('Loss values')
grid on

35 Functions

35-5956



Find the  value that corresponds to the minimum average loss.

[~,idx] = min(mean(lossvalues,2)); % Find the index
bestlambda = lambdavalues(idx) % Find the best lambda value

bestlambda =

    0.0037

Fit the NCA model to all of the data using the best  value. Use the LBFGS solver and display the
convergence information.

ncaMdl = fscnca(X,y,'FitMethod','exact','Verbose',1, ...
        'Solver','lbfgs','Lambda',bestlambda);

 o Solver = LBFGS, HessianHistorySize = 15, LineSearchMethod = weakwolfe

|====================================================================================================|
|   ITER   |   FUN VALUE   |  NORM GRAD  |  NORM STEP  |  CURV  |    GAMMA    |    ALPHA    | ACCEPT |
|====================================================================================================|
|        0 | -1.246913e-01 |   1.231e-02 |   0.000e+00 |        |   4.873e+01 |   0.000e+00 |   YES  |
|        1 | -3.411330e-01 |   5.717e-03 |   3.618e+00 |    OK  |   1.068e+02 |   1.000e+00 |   YES  |
|        2 | -5.226111e-01 |   3.763e-02 |   8.252e+00 |    OK  |   7.825e+01 |   1.000e+00 |   YES  |
|        3 | -5.817731e-01 |   8.496e-03 |   2.340e+00 |    OK  |   5.591e+01 |   5.000e-01 |   YES  |
|        4 | -6.132632e-01 |   6.863e-03 |   2.526e+00 |    OK  |   8.228e+01 |   1.000e+00 |   YES  |
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|        5 | -6.135264e-01 |   9.373e-03 |   7.341e-01 |    OK  |   3.244e+01 |   1.000e+00 |   YES  |
|        6 | -6.147894e-01 |   1.182e-03 |   2.933e-01 |    OK  |   2.447e+01 |   1.000e+00 |   YES  |
|        7 | -6.148714e-01 |   6.392e-04 |   6.688e-02 |    OK  |   3.195e+01 |   1.000e+00 |   YES  |
|        8 | -6.149524e-01 |   6.521e-04 |   9.934e-02 |    OK  |   1.236e+02 |   1.000e+00 |   YES  |
|        9 | -6.149972e-01 |   1.154e-04 |   1.191e-01 |    OK  |   1.171e+02 |   1.000e+00 |   YES  |
|       10 | -6.149990e-01 |   2.922e-05 |   1.983e-02 |    OK  |   7.365e+01 |   1.000e+00 |   YES  |
|       11 | -6.149993e-01 |   1.556e-05 |   8.354e-03 |    OK  |   1.288e+02 |   1.000e+00 |   YES  |
|       12 | -6.149994e-01 |   1.147e-05 |   7.256e-03 |    OK  |   2.332e+02 |   1.000e+00 |   YES  |
|       13 | -6.149995e-01 |   1.040e-05 |   6.781e-03 |    OK  |   2.287e+02 |   1.000e+00 |   YES  |
|       14 | -6.149996e-01 |   9.015e-06 |   6.265e-03 |    OK  |   9.974e+01 |   1.000e+00 |   YES  |
|       15 | -6.149996e-01 |   7.763e-06 |   5.206e-03 |    OK  |   2.919e+02 |   1.000e+00 |   YES  |
|       16 | -6.149997e-01 |   8.374e-06 |   1.679e-02 |    OK  |   6.878e+02 |   1.000e+00 |   YES  |
|       17 | -6.149997e-01 |   9.387e-06 |   9.542e-03 |    OK  |   1.284e+02 |   5.000e-01 |   YES  |
|       18 | -6.149997e-01 |   3.250e-06 |   5.114e-03 |    OK  |   1.225e+02 |   1.000e+00 |   YES  |
|       19 | -6.149997e-01 |   1.574e-06 |   1.275e-03 |    OK  |   1.808e+02 |   1.000e+00 |   YES  |

|====================================================================================================|
|   ITER   |   FUN VALUE   |  NORM GRAD  |  NORM STEP  |  CURV  |    GAMMA    |    ALPHA    | ACCEPT |
|====================================================================================================|
|       20 | -6.149997e-01 |   5.764e-07 |   6.765e-04 |    OK  |   2.905e+02 |   1.000e+00 |   YES  |

         Infinity norm of the final gradient = 5.764e-07
              Two norm of the final step     = 6.765e-04, TolX   = 1.000e-06
Relative infinity norm of the final gradient = 5.764e-07, TolFun = 1.000e-06
EXIT: Local minimum found.

Plot the feature weights.

figure
semilogx(ncaMdl.FeatureWeights,'ro')
xlabel('Feature index')
ylabel('Feature weight')
grid on
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fscnca correctly figures out that the first two features are relevant and that the rest are not. The
first two features are not individually informative, but when taken together result in an accurate
classification model.

Predict the classes using the new model and compute the accuracy.

ypred = predict(ncaMdl,X);
confusionchart(y,ypred)
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Confusion matrix shows that prediction accuracy for class –1 has improved. 88 of the data from class
–1 are predicted to be from –1, and 12 of them are predicted to be from class 1. 92 of the data from
class 1 are predicted to be from class 1 and 8 of them are predicted to be from class –1.

References

[1] Yang, W., K. Wang, W. Zuo. "Neighborhood Component Feature Selection for High-Dimensional
Data." Journal of Computers. Vol. 7, Number 1, January, 2012.

Version History
Introduced in R2016b

See Also
FeatureSelectionNCAClassification | loss | fscnca | refit
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predict
Class: FeatureSelectionNCARegression

Predict responses using neighborhood component analysis (NCA) regression model

Syntax
ypred = predict(mdl,X)

Description
ypred = predict(mdl,X) computes the predicted response values, ypred, corresponding to rows
of X, using the model mdl.

Input Arguments
mdl — Neighborhood component analysis model for regression
FeatureSelectionNCARegression object

Neighborhood component analysis model for regression, specified as a
FeatureSelectionNCARegression object.

X — Predictor variable values
n-by-p matrix

Predictor variable values, specified as an n-by-p matrix, where n is the number of observations and p
is the number of predictor variables.
Data Types: single | double

Output Arguments
ypred — Predicted response values
n-by-1 vector

Predicted response values, specified as an n-by-1 vector, where n is the number of observations.

Examples

Tune NCA Model for Regression Using loss and predict

Load the sample data.

Download the housing data [1], from the UCI Machine Learning Repository [2]. The dataset has 506
observations. The first 13 columns contain the predictor values and the last column contains the
response values. The goal is to predict the median value of owner-occupied homes in suburban
Boston as a function of 13 predictors.

Load the data and define the response vector and the predictor matrix.

 predict
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load('housing.data');
X = housing(:,1:13);
y = housing(:,end);

Divide the data into training and test sets using the 4th predictor as the grouping variable for a
stratified partitioning. This ensures that each partition includes similar amount of observations from
each group.

rng(1) % For reproducibility
cvp = cvpartition(X(:,4),'Holdout',56);
Xtrain = X(cvp.training,:);
ytrain = y(cvp.training,:);
Xtest  = X(cvp.test,:);
ytest  = y(cvp.test,:);

cvpartition randomly assigns 56 observations into a test set and the rest of the data into a training
set.

Perform Feature Selection Using Default Settings

Perform feature selection using NCA model for regression. Standardize the predictor values.

nca = fsrnca(Xtrain,ytrain,'Standardize',1);

Plot the feature weights.

figure()
plot(nca.FeatureWeights,'ro')
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The weights of irrelevant features are expected to approach zero. fsrnca identifies two features as
irrelevant.

Compute the regression loss.

L = loss(nca,Xtest,ytest,'LossFunction','mad')

L = 2.5394

Compute the predicted response values for the test set and plot them versus the actual response.

ypred = predict(nca,Xtest);
figure()
plot(ypred,ytest,'bo')
xlabel('Predicted response')
ylabel('Actual response')

A perfect fit versus the actual values forms a 45 degree straight line. In this plot, the predicted and
actual response values seem to be scattered around this line. Tuning λ (regularization parameter)
value usually helps improve the performance.

Tune the regularization parameter using 10-fold cross-validation

Tuning λ means finding the λ value that will produce the minimum regression loss. Here are the
steps for tuning λ using 10-fold cross-validation:

1. First partition the data into 10 folds. For each fold, cvpartition assigns 1/10th of the data as a
training set, and 9/10th of the data as a test set.
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n = length(ytrain);
cvp = cvpartition(Xtrain(:,4),'kfold',10);
numvalidsets = cvp.NumTestSets;

Assign the λ values for the search. Create an array to store the loss values.

lambdavals = linspace(0,2,30)*std(ytrain)/n;
lossvals = zeros(length(lambdavals),numvalidsets);

2. Train the neighborhood component analysis (nca) model for each λ value using the training set in
each fold.

3. Fit a Gaussian process regression (gpr) model using the selected features. Next, compute the
regression loss for the corresponding test set in the fold using the gpr model. Record the loss value.

4. Repeat this for each λ value and each fold.

 for i = 1:length(lambdavals)
    for k = 1:numvalidsets
        X = Xtrain(cvp.training(k),:);
        y = ytrain(cvp.training(k),:);
        Xvalid  = Xtrain(cvp.test(k),:);
        yvalid  = ytrain(cvp.test(k),:);

        nca = fsrnca(X,y,'FitMethod','exact',...
             'Lambda',lambdavals(i),...
             'Standardize',1,'LossFunction','mad');

        % Select features using the feature weights and a relative
        % threshold.
        tol    = 1e-3;
        selidx = nca.FeatureWeights > tol*max(1,max(nca.FeatureWeights));

        % Fit a non-ARD GPR model using selected features.
        gpr = fitrgp(X(:,selidx),y,'Standardize',1,...
              'KernelFunction','squaredexponential','Verbose',0);

        lossvals(i,k) = loss(gpr,Xvalid(:,selidx),yvalid);

    end
 end

Compute the average loss obtained from the folds for each λ value. Plot the mean loss versus the λ
values.

meanloss = mean(lossvals,2);
figure;
plot(lambdavals,meanloss,'ro-');
xlabel('Lambda');
ylabel('Loss (MSE)');
grid on;
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Find the λ value that produces the minimum loss value.

[~,idx] = min(meanloss);
bestlambda = lambdavals(idx)

bestlambda = 0.0251

Perform feature selection for regression using the best λ value. Standardize the predictor values.

nca2 = fsrnca(Xtrain,ytrain,'Standardize',1,'Lambda',bestlambda,...
    'LossFunction','mad');

Plot the feature weights.

figure()
plot(nca.FeatureWeights,'ro')
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Compute the loss using the new nca model on the test data, which is not used to select the features.

L2 = loss(nca2,Xtest,ytest,'LossFunction','mad')

L2 = 2.0560

Tuning the regularization parameter helps identify the relevant features and reduces the loss.

Plot the predicted versus the actual response values in the test set.

ypred = predict(nca2,Xtest);
figure;
plot(ypred,ytest,'bo');
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The predicted response values seem to be closer to the actual values as well.

References

[1] Harrison, D. and D.L., Rubinfeld. "Hedonic prices and the demand for clean air." J. Environ.
Economics & Management. Vol.5, 1978, pp. 81-102.

[2] Lichman, M. UCI Machine Learning Repository, Irvine, CA: University of California, School of
Information and Computer Science, 2013. https://archive.ics.uci.edu/ml.

Version History
Introduced in R2016b

See Also
loss | fsrnca | refit | FeatureSelectionNCARegression
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predict
Class: NonLinearModel

Predict response of nonlinear regression model

Syntax
ypred = predict(mdl,Xnew)
[ypred,yci] = predict(mdl,Xnew)
[ypred,yci] = predict(mdl,Xnew,Name,Value)

Description
ypred = predict(mdl,Xnew) returns the predicted response of the mdl nonlinear regression
model to the points in Xnew.

[ypred,yci] = predict(mdl,Xnew) returns confidence intervals for the true mean responses.

[ypred,yci] = predict(mdl,Xnew,Name,Value) predicts responses with additional options
specified by one or more Name,Value pair arguments.

Input Arguments
mdl

Nonlinear regression model, constructed by fitnlm.

Xnew

Points at which mdl predicts responses.

• If Xnew is a table or dataset array, it must contain the predictor names in mdl.
• If Xnew is a numeric matrix, it must have the same number of variables (columns) as was used to

create mdl. Furthermore, all variables used in creating mdl must be numeric.

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.

Alpha

Positive scalar from 0 to 1. Confidence level of yci is 100(1 – alpha)%.

Default: 0.05, meaning a 95% confidence interval.
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Prediction

Type of prediction:

• 'curve' — predict predicts confidence bounds for the fitted mean values.
• 'observation' — predict predicts confidence bounds for the new observations. This results in

wider bounds because the error in a new observation is equal to the error in the estimated mean
value, plus the variability in the observation from the true mean.

For details, see polyconf.

Default: 'curve'

Simultaneous

Logical value specifying whether the confidence bounds are for all predictor values simultaneously
(true), or hold for each individual predictor value (false). Simultaneous bounds are wider than
separate bounds, because it is more stringent to require that the entire curve be within the bounds
than to require that the curve at a single predictor value be within the bounds.

For details, see polyconf.

Default: false

Weights

Vector of real, positive value weights or a function handle.

• If you specify a vector, then it must have the same number of elements as the number of
observations (or rows) in Xnew.

• If you specify a function handle, then the function must accept a vector of predicted response
values as input, and return a vector of real positive weights as output.

Given weights, W, predict estimates the error variance at observation i by MSE*(1/W(i)), where
MSE is the mean squared error.

Default: No weights

Output Arguments
ypred

Predicted mean values at Xnew. ypred is the same size as each component of Xnew.

yci

Confidence intervals, a two-column matrix with each row providing one interval. The meaning of the
confidence interval depends on the settings of the name-value pairs.

Examples
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35-5969



Predict Responses

Create a nonlinear model of car mileage as a function of weight, and predict the response.

Create an exponential model of car mileage as a function of weight from the carsmall data. Scale
the weight by a factor of 1000 so all the variables are roughly equal in size.

load carsmall
X = Weight;
y = MPG;
modelfun = 'y ~ b1 + b2*exp(-b3*x/1000)';
beta0 = [1 1 1];
mdl = fitnlm(X,y,modelfun,beta0);

Create predicted responses to the data.

Xnew = X;
ypred = predict(mdl,Xnew);

Plot the original responses and the predicted responses to see how they differ.

plot(X,y,'o',X,ypred,'x')
legend('Data','Predicted')
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Confidence Intervals for Predictions

Create a nonlinear model of car mileage as a function of weight, and examine confidence intervals of
some responses.

Create an exponential model of car mileage as a function of weight from the carsmall data. Scale
the weight by a factor of 1000 so all the variables are roughly equal in size.

load carsmall
X = Weight;
y = MPG;
modelfun = 'y ~ b1 + b2*exp(-b3*x/1000)';
beta0 = [1 1 1];
mdl = fitnlm(X,y,modelfun,beta0);

Create predicted responses to the smallest, mean, and largest data points.

Xnew = [min(X);mean(X);max(X)];
[ypred,yci] = predict(mdl,Xnew)

ypred = 3×1

   34.9469
   22.6868
   10.0617

yci = 3×2

   32.5212   37.3726
   21.4061   23.9674
    7.0148   13.1086

Simultaneous Confidence Intervals for Robust Fit Curve

Generate sample data from the nonlinear regression model

y = b1 + b2exp(− b3x) + ϵ

where b1, b2, and b3 are coefficients, and the error term ϵ is normally distributed with mean 0 and
standard deviation 0.5.

modelfun = @(b,x)(b(1)+b(2)*exp(-b(3)*x));

rng('default') % For reproducibility
b = [1;3;2];
x = exprnd(2,100,1);
y = modelfun(b,x) + normrnd(0,0.5,100,1);

Fit the nonlinear model using robust fitting options.

opts = statset('nlinfit');
opts.RobustWgtFun = 'bisquare';
b0 = [2;2;2];
mdl = fitnlm(x,y,modelfun,b0,'Options',opts);
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Plot the fitted regression model and simultaneous 95% confidence bounds.

xrange = [min(x):.01:max(x)]';
[ypred,yci] = predict(mdl,xrange,'Simultaneous',true);

figure()
plot(x,y,'ko') % observed data
hold on
plot(xrange,ypred,'k','LineWidth',2)
plot(xrange,yci','r--','LineWidth',1.5)

Confidence Interval Using Observation Weights

Load sample data.

S = load('reaction');
X = S.reactants;
y = S.rate;
beta0 = S.beta;

Specify a function handle for observation weights, then fit the Hougen-Watson model to the rate data
using the specified observation weights function.
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a = 1; b = 1;
weights = @(yhat) 1./((a + b*abs(yhat)).^2);
mdl = fitnlm(X,y,@hougen,beta0,'Weights',weights);

Compute the 95% prediction interval for a new observation with reactant levels [100,100,100] using
the observation weight function.

[ypred,yci] = predict(mdl,[100,100,100],'Prediction','observation', ...
    'Weights',weights)

ypred = 1.8149

yci = 1×2

    1.5264    2.1033

Tips
• For predictions with added noise, use random.
• For a syntax that can be easier to use with models created from tables or dataset arrays, try

feval.

References
[1] Lane, T. P. and W. H. DuMouchel. “Simultaneous Confidence Intervals in Multiple Regression.” The

American Statistician. Vol. 48, No. 4, 1994, pp. 315–321.

[2] Seber, G. A. F., and C. J. Wild. Nonlinear Regression. Hoboken, NJ: Wiley-Interscience, 2003.

See Also
NonLinearModel | random

Topics
“Predict or Simulate Responses Using a Nonlinear Model” on page 13-9
“Nonlinear Regression Workflow” on page 13-13
“Nonlinear Regression” on page 13-2
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predict
Class: RepeatedMeasuresModel

Compute predicted values given predictor values

Syntax
ypred = predict(rm,tnew)
ypred = predict(rm,tnew,Name,Value)
[ypred,yci] = predict( ___ )

Description
ypred = predict(rm,tnew) returns the predicted values from the repeated measures model rm
using the predictor values from the table t.

ypred = predict(rm,tnew,Name,Value) returns the predicted values from the repeated
measures model rm with additional options specified by one or more Name,Value pair arguments.

For example, you can specify the within-subjects design matrix.

[ypred,yci] = predict( ___ ) also returns the 95% confidence interval for the predicted values.

Input Arguments
rm — Repeated measures model
RepeatedMeasuresModel object

Repeated measures model, returned as a RepeatedMeasuresModel object.

For properties and methods of this object, see RepeatedMeasuresModel.

tnew — New data
table used to create rm (default) | table

New data including the values of the response variables and the between-subject factors used as
predictors in the repeated measures model, rm, specified as a table. tnew must contain all of the
between-subject factors used to create rm.

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.

Alpha — Significance level
0.05 (default) | scalar value in the range of 0 through 1
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Significance level of the confidence intervals for the predicted values, specified as the comma-
separated pair consisting of 'alpha' and a scalar value in the range of 0 to 1. The confidence level is
100*(1–alpha)%.
Example: 'alpha',0.01
Data Types: double | single

WithinModel — Model for within-subject factors
'separatemeans' | 'orthogonalcontrats' | character vector | string scalar

Model for the within-subject factors, specified as the comma-separated pair consisting of
'WithinModel' and one of the following:

• 'separatemeans' — Compute a separate mean for each group.
• 'orthogonalcontrasts' — Valid when the within-subject design consists of a single numeric

factor T. This specifies a model consisting of orthogonal polynomials up to order T(r-1), where r is
the number of repeated measures.

• A character vector or string scalar that defines a model specification in the within-subject factors.

Example: 'WithinModel','orthogonalcontrasts'
Data Types: char | string

WithinDesign — Design for within-subject factors
vector | matrix | table

Design for within-subject factors, specified as the comma-separated pair consisting of
'WithinDesign' and a vector, matrix, or a table. It provides the values of the within-subject factors
in the same form as the RM.WithinDesign property.
Example: 'WithinDesign','Time'
Data Types: single | double | table

Output Arguments
ypred — Predicted values
n-by-r matrix

Predicted values from the repeated measures model rm, returned as an n-by-r matrix, where n is the
number of rows in tnew and r is the number of repeated measures in rm.

yci — Confidence intervals for predicted values
n-by-r-by-2 matrix

Confidence intervals for predicted values from the repeated measures model rm, returned as an n-by-
r-by-2 matrix.

These are nonsimultaneous intervals for predicting the mean response at the specified predictor
values. For predicted value ypred(i,j), the lower limit of the interval is yci(i,j,1) and the upper
limit is yci(i,j,2).

Examples
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Predict Response Values

Load the sample data.

load fisheriris

The column vector, species consists of iris flowers of three different species: setosa, versicolor, and
virginica. The double matrix meas consists of four types of measurements on the flowers: the length
and width of sepals and petals in centimeters, respectively.

Store the data in a table array.

t = table(species,meas(:,1),meas(:,2),meas(:,3),meas(:,4), ...
    'VariableNames',{'species','meas1','meas2','meas3','meas4'});
Meas = dataset([1 2 3 4]','VarNames',{'Measurements'});

Fit a repeated measures model, where the measurements are the responses and the species is the
predictor variable.

rm = fitrm(t,'meas1-meas4~species','WithinDesign',Meas);

Predict responses for the three species.

Y = predict(rm,t([1 51 101],:))

Y = 3×4

    5.0060    3.4280    1.4620    0.2460
    5.9360    2.7700    4.2600    1.3260
    6.5880    2.9740    5.5520    2.0260

Predict Response Values and Plot Predictions

Load the sample data.

load longitudinalData

The matrix Y contains response data for 16 individuals. The response is the blood level of a drug
measured at five time points (time = 0, 2, 4, 6, and 8). Each row of Y corresponds to an individual,
and each column corresponds to a time point. The first eight subjects are female, and the second
eight subjects are male. This is simulated data.

Define a variable that stores gender information.

Gender = ['F' 'F' 'F' 'F' 'F' 'F' 'F' 'F' 'M' 'M' 'M' 'M' 'M' 'M' 'M' 'M']';

Store the data in a proper table array format to perform repeated measures analysis.

t = table(Gender,Y(:,1),Y(:,2),Y(:,3),Y(:,4),Y(:,5), ...
    'VariableNames',{'Gender','t0','t2','t4','t6','t8'});

Define the within-subjects variable.

Time = [0 2 4 6 8]';
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Fit a repeated measures model, where the blood levels are the responses and gender is the predictor
variable.

rm = fitrm(t,'t0-t8 ~ Gender','WithinDesign',Time);

Predict the responses at intermediate times.

time = linspace(0,8)';
Y = predict(rm,t([1 5 8 12],:), ...
    'WithinModel','orthogonalcontrasts','WithinDesign',time);

Plot the predictions along with the estimated marginal means.

plotprofile(rm,'Time','Group',{'Gender'})
hold on; 
plot(time,Y,'Color','k','LineStyle',':');
legend('Gender=F','Gender=M','Predictions')
hold off

Compute and Plot Confidence Intervals

Load the sample data.

load longitudinalData
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The matrix Y contains response data for 16 individuals. The response is the blood level of a drug
measured at five time points (time = 0, 2, 4, 6, and 8). Each row of Y corresponds to an individual,
and each column corresponds to a time point. The first eight subjects are female, and the second
eight subjects are male. This is simulated data.

Define a variable that stores gender information.

Gender = ['F' 'F' 'F' 'F' 'F' 'F' 'F' 'F' 'M' 'M' 'M' 'M' 'M' 'M' 'M' 'M']';

Store the data in a proper table array format to perform repeated measures analysis.

t = table(Gender,Y(:,1),Y(:,2),Y(:,3),Y(:,4),Y(:,5), ...
    'VariableNames',{'Gender','t0','t2','t4','t6','t8'});

Define the within-subjects variable.

Time = [0 2 4 6 8]';

Fit a repeated measures model, where the blood levels are the responses and gender is the predictor
variable.

rm = fitrm(t,'t0-t8 ~ Gender','WithinDesign',Time);

Predict the responses at intermediate times.

time = linspace(0,8)';
[ypred,ypredci] = predict(rm,t([1 5 8 12],:), ...
    'WithinModel','orthogonalcontrasts','WithinDesign',time);

Plot the predictions and the confidence intervals for predictions along with the estimated marginal
means.

p1 = plotprofile(rm,'Time','Group',{'Gender'});
hold on; 
p2 = plot(time,ypred,'Color','k','LineStyle',':');
p3 = plot(time,ypredci(:,:,1),'k--');
p4 = plot(time,ypredci(:,:,2),'k--');
legend([p1;p2(1);p3(1)],'Gender=F','Gender=M','Predictions','Confidence Intervals')
hold off
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See Also
fitrm | random
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predict
Label new data using semi-supervised graph-based classifier

Syntax
label = predict(Mdl,X)
[label,score] = predict(Mdl,X)

Description
label = predict(Mdl,X) returns a vector of predicted class labels for the data in the table or
matrix X, based on the semi-supervised graph-based classifier Mdl.

[label,score] = predict(Mdl,X) also returns a matrix of scores indicating the likelihood that a
label comes from a particular class. For each observation in X, the predicted class label corresponds
to the maximum score among all classes.

Examples

Classify New Data Using Model Trained on Labeled and Unlabeled Data

Use both labeled and unlabeled data to train a SemiSupervisedGraphModel object. Label new data
using the trained model.

Randomly generate 15 observations of labeled data, with 5 observations in each of three classes.

rng('default') % For reproducibility
labeledX = [randn(5,2)*0.25 + ones(5,2);
            randn(5,2)*0.25 - ones(5,2);
            randn(5,2)*0.5];
Y = [ones(5,1); ones(5,1)*2; ones(5,1)*3];

Randomly generate 300 additional observations of unlabeled data, with 100 observations per class.

unlabeledX = [randn(100,2)*0.25 + ones(100,2);
              randn(100,2)*0.25 - ones(100,2);
              randn(100,2)*0.5];

Fit labels to the unlabeled data by using a semi-supervised graph-based method. Specify label
spreading as the labeling algorithm, and use an automatically selected kernel scale factor. The
function fitsemigraph returns a SemiSupervisedGraphModel object whose FittedLabels
property contains the fitted labels for the unlabeled data and whose LabelScores property contains
the associated label scores.

Mdl = fitsemigraph(labeledX,Y,unlabeledX,'Method','labelspreading', ...
    'KernelScale','auto')

Mdl = 
  SemiSupervisedGraphModel with properties:
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             FittedLabels: [300x1 double]
              LabelScores: [300x3 double]
               ClassNames: [1 2 3]
             ResponseName: 'Y'
    CategoricalPredictors: []
                   Method: 'labelspreading'

  Properties, Methods

Randomly generate 150 observations of new data, with 50 observations per class. For the purposes of
validation, keep track of the true labels for the new data.

newX = [randn(50,2)*0.25 + ones(50,2);
        randn(50,2)*0.25 - ones(50,2);
        randn(50,2)*0.5];
trueLabels = [ones(50,1); ones(50,1)*2; ones(50,1)*3];

Predict the labels for the new data by using the predict function of the
SemiSupervisedGraphModel object. Compare the true labels to the predicted labels by using a
confusion matrix.

predictedLabels = predict(Mdl,newX);
confusionchart(trueLabels,predictedLabels)

Only 3 of the 150 observations in newX are mislabeled.
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Input Arguments
Mdl — Semi-supervised graph-based classifier
SemiSupervisedGraphModel object

Semi-supervised graph-based classifier, specified as a SemiSupervisedGraphModel object returned
by fitsemigraph.

X — Predictor data to be classified
numeric matrix | table

Predictor data to be classified, specified as a numeric matrix or table. Each row of X corresponds to
one observation, and each column corresponds to one variable.

If you trained Mdl using matrix data (X and UnlabeledX in the call to fitsemigraph), then specify
X as a numeric matrix.

• The variables in the columns of X must have the same order as the predictor variables that trained
Mdl.

• The software treats the predictors in X whose indices match Mdl.CategoricalPredictors as
categorical predictors.

If you trained Mdl using tabular data (Tbl and UnlabeledTbl in the call to fitsemigraph), then
specify X as a table.

• All predictor variables in X must have the same variable names and data types as those that
trained Mdl (stored in Mdl.PredictorNames). However, the column order of X does not need to
correspond to the column order of Tbl. Also, Tbl and X can contain additional variables (for
example, response variables), but predict ignores them.

• predict does not support multicolumn variables, cell arrays other than cell arrays of character
vectors, or ordinal categorical variables.

If you set 'Standardize',true in fitsemigraph to train Mdl, then the software standardizes the
columns of X using the corresponding means and standard deviations computed on the training data.
Data Types: single | double | table

Output Arguments
label — Predicted class labels
categorical array | character array | logical vector | numeric vector | cell array of character vectors

Predicted class labels, returned as a categorical or character array, logical or numeric vector, or cell
array of character vectors. label has the same data type as the fitted class labels
Mdl.FittedLabels, and its length is equal to the number of rows in X.

For more information on how predict predicts class labels, see “Algorithms” on page 35-5983.

score — Predicted class scores
numeric matrix

Predicted class scores, returned as a numeric matrix. score has size m-by-K, where m is the number
of observations (or rows) in X and K is the number of classes in Mdl.ClassNames.
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score(m,k) is the likelihood that observation m in X belongs to class k, where a higher score value
indicates a higher likelihood.

For more information on how predict predicts class scores, see “Algorithms” on page 35-5983.

More About
Similarity Graph

A similarity graph models the local neighborhood relationships between observations in the predictor
data, both labeled and unlabeled, as an undirected graph. The nodes in the graph represent
observations, and the edges, which are directionless, represent the connections between the
observations.

If the pairwise distance Disti,j between any two nodes i and j is positive (or larger than a certain
threshold), then the similarity graph connects the two nodes using an edge. The edge between the

two nodes is weighted by the pairwise similarity Si,j, where Si, j = exp −
Disti, j

σ
2

, for a specified

kernel scale σ value.

Similarity Matrix

A similarity matrix is a matrix representation of a similarity graph on page 35-5983. The n-by-n
matrix S = (Si, j)i, j = 1, …, n contains pairwise similarity values between connected nodes in the
similarity graph. The similarity matrix of a graph is also called an adjacency matrix.

The similarity matrix is symmetric because the edges of the similarity graph are directionless. A value
of Si,j = 0 means that nodes i and j of the similarity graph are not connected.

Algorithms
To fit labels to unlabeled training data, fitsemigraph constructs a similarity graph with both
labeled and unlabeled observations as nodes, and distributes the label information from labeled
observations to unlabeled observations by using either label propagation or label spreading. The
resulting SemiSupervisedGraphModel object stores the fitted labels and label scores for the
unlabeled data in its FittedLabels and LabelScores properties, respectively.

To predict the label of a new observation x, the predict function uses a weighted average of

neighboring observation scores to compute the label scores for x, namely Fx =
∑

j = 1

n
S(x, x j)Fx j

∑
j = 1

n
S(x, x j)

.

• n is the number of observations in the training data.
• Fxj

 is the row vector of label scores for the training observation xj (or node j). For more information
on the computation of label scores for training observations, see “Algorithms” on page 35-2408.

• S(x,xj) is the pairwise similarity between the new observation x and the training observation xj,
where S(xi,xj) = Si,j is as defined in “Similarity Graph” on page 35-5983.

The column with the maximum score in Fx corresponds to the predicted class label for x. For more
information, see [1].
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Version History
Introduced in R2020b

References
[1] Delalleau, Olivier, Yoshua Bengio, and Nicolas Le Roux. “Efficient Non-Parametric Function

Induction in Semi-Supervised Learning.” Proceedings of the Tenth International Workshop on
Artificial Intelligence and Statistics. 2005.

See Also
fitsemigraph | SemiSupervisedGraphModel
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predict
Label new data using semi-supervised self-trained classifier

Syntax
label = predict(Mdl,X)
[label,score] = predict(Mdl,X)

Description
label = predict(Mdl,X) returns a vector of predicted class labels for the data in the table or
matrix X, based on the semi-supervised self-trained classifier Mdl.

[label,score] = predict(Mdl,X) also returns a matrix of scores indicating the likelihood that a
label comes from a particular class. For each observation in X, the predicted class label corresponds
to the maximum score among all classes.

Examples

Classify New Data Using Model Trained on Labeled and Unlabeled Data

Use both labeled and unlabeled data to train a SemiSupervisedSelfTrainingModel object. Label
new data using the trained model.

Randomly generate 15 observations of labeled data, with 5 observations in each of three classes.

rng('default') % For reproducibility
labeledX = [randn(5,2)*0.25 + ones(5,2);
            randn(5,2)*0.25 - ones(5,2);
            randn(5,2)*0.5];
Y = [ones(5,1); ones(5,1)*2; ones(5,1)*3];

Randomly generate 300 additional observations of unlabeled data, with 100 observations per class.

unlabeledX = [randn(100,2)*0.25 + ones(100,2);
              randn(100,2)*0.25 - ones(100,2);
              randn(100,2)*0.5];

Fit labels to the unlabeled data by using a semi-supervised self-training method. The function
fitsemiself returns a SemiSupervisedSelfTrainingModel object whose FittedLabels
property contains the fitted labels for the unlabeled data and whose LabelScores property contains
the associated label scores.

Mdl = fitsemiself(labeledX,Y,unlabeledX)

Mdl = 
  SemiSupervisedSelfTrainingModel with properties:

             FittedLabels: [300x1 double]
              LabelScores: [300x3 double]
               ClassNames: [1 2 3]

 predict

35-5985



             ResponseName: 'Y'
    CategoricalPredictors: []
                  Learner: [1x1 classreg.learning.classif.CompactClassificationECOC]

  Properties, Methods

Randomly generate 150 observations of new data, with 50 observations per class. For the purposes of
validation, keep track of the true labels for the new data.

newX = [randn(50,2)*0.25 + ones(50,2);
        randn(50,2)*0.25 - ones(50,2);
        randn(50,2)*0.5];
trueLabels = [ones(50,1); ones(50,1)*2; ones(50,1)*3];

Predict the labels for the new data by using the predict function of the
SemiSupervisedSelfTrainingModel object. Compare the true labels to the predicted labels by
using a confusion matrix.

predictedLabels = predict(Mdl,newX);
confusionchart(trueLabels,predictedLabels)

Only 8 of the 150 observations in newX are mislabeled.
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Input Arguments
Mdl — Semi-supervised self-training classifier
SemiSupervisedSelfTrainingModel object

Semi-supervised self-training classifier, specified as a SemiSupervisedSelfTrainingModel object
returned by fitsemiself.

X — Predictor data to be classified
numeric matrix | table

Predictor data to be classified, specified as a numeric matrix or table. Each row of X corresponds to
one observation, and each column corresponds to one variable.

If you trained Mdl using matrix data (X and UnlabeledX in the call to fitsemiself), then specify X
as a numeric matrix.

• The variables in the columns of X must have the same order as the predictor variables that trained
Mdl.

• The software treats the predictors in X whose indices match Mdl.CategoricalPredictors as
categorical predictors.

If you trained Mdl using tabular data (Tbl and UnlabeledTbl in the call to fitsemiself), then
specify X as a table.

• All predictor variables in X must have the same variable names and data types as those that
trained Mdl (stored in Mdl.PredictorNames). However, the column order of X does not need to
correspond to the column order of Tbl. Also, Tbl and X can contain additional variables (for
example, response variables), but predict ignores them.

• predict does not support multicolumn variables or cell arrays other than cell arrays of character
vectors.

Data Types: single | double | table

Output Arguments
label — Predicted class labels
categorical array | character array | logical vector | numeric vector | cell array of character vectors

Predicted class labels, returned as a categorical or character array, logical or numeric vector, or cell
array of character vectors. label has the same data type as the fitted class labels
Mdl.FittedLabels, and its length is equal to the number of rows in X.

score — Predicted class scores
numeric matrix

Predicted class scores, returned as a numeric matrix. score has size m-by-K, where m is the number
of observations (or rows) in X and K is the number of classes in Mdl.ClassNames.

score(m,k) is the likelihood that observation m in X belongs to class k, where a higher score value
indicates a higher likelihood. The range of score values depends on the underlying classifier
Mdl.Learner.
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Version History
Introduced in R2020b

See Also
fitsemiself | SemiSupervisedSelfTrainingModel
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predict
Predict responses using ensemble of bagged decision trees

Syntax
Yfit = predict(B,X)
Yfit = predict(B,X,Name,Value)
[Yfit,stdevs] = predict( ___ )
[Yfit,scores] = predict( ___ )
[Yfit,scores,stdevs] = predict( ___ )

Description
Yfit = predict(B,X) returns a vector of predicted responses for the predictor data in the table or
matrix X, based on the ensemble of bagged decision trees B. Yfit is a cell array of character vectors
for classification and a numeric array for regression. By default, predict takes a democratic
(nonweighted) average vote from all trees in the ensemble.

B is a trained TreeBagger model object, that is, a model returned by the TreeBagger function.

X is a table or matrix of predictor data used to generate responses. Rows represent observations and
columns represent variables.

• If X is a numeric matrix:

• The variables making up the columns of X must have the same order as the predictor variables
that trained B.

• If you trained B using a table (for example, Tbl), then X can be a numeric matrix if Tbl
contains all numeric predictor variables. To treat numeric predictors in Tbl as categorical
during training, identify categorical predictors using the CategoricalPredictors name-
value pair argument of the TreeBagger function. If Tbl contains heterogeneous predictor
variables (for example, numeric and categorical data types) and X is a numeric matrix, then
predict throws an error.

• If X is a table:

• predict does not support multicolumn variables or cell arrays other than cell arrays of
character vectors.

• If you trained B using a table (for example, Tbl), then all predictor variables in X must have the
same variable names and be of the same data types as those that trained B (stored in
B.PredictorNames). However, the column order of X does not need to correspond to the
column order of Tbl. Tbl and X can contain additional variables (response variables,
observation weights, etc.), but predict ignores them.

• If you trained B using a numeric matrix, then the predictor names in B.PredictorNames and
corresponding predictor variable names in X must be the same. To specify predictor names
during training, see the PredictorNames name-value pair argument of TreeBagger. All
predictor variables in X must be numeric vectors. X can contain additional variables (response
variables, observation weights, etc.), but predict ignores them.
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Yfit = predict(B,X,Name,Value) specifies additional options using one or more name-value
pair arguments:

• 'Trees' — Array of tree indices to use for computation of responses. The default is 'all'.
• 'TreeWeights' — Array of NTrees weights for weighting votes from the specified trees, where

NTrees is the number of trees in the ensemble.
• 'UseInstanceForTree' — Logical matrix of size Nobs-by-NTrees indicating which trees to use

to make predictions for each observation, where Nobs is the number of observations. By default
all trees are used for all observations.

For regression, [Yfit,stdevs] = predict( ___ ) also returns standard deviations of the
computed responses over the ensemble of the grown trees using any of the input argument
combinations in previous syntaxes.

For classification, [Yfit,scores] = predict( ___ ) also returns scores for all classes. scores is
a matrix with one row per observation and one column per class. For each observation and each
class, the score generated by each tree is the probability of the observation originating from the
class, computed as the fraction of observations of the class in a tree leaf. predict averages these
scores over all trees in the ensemble.

[Yfit,scores,stdevs] = predict( ___ ) also returns standard deviations of the computed
scores for classification. stdevs is a matrix with one row per observation and one column per class,
with standard deviations taken over the ensemble of the grown trees.

Algorithms
• For regression problems, the predicted response for an observation is the weighted average of the

predictions using selected trees only. That is,

y bag = 1

∑
t = 1

T
αtI(t ∈ S)

∑
t = 1

T
αty tI(t ∈ S) .

• y t is the prediction from tree t in the ensemble.
• S is the set of indices of selected trees that comprise the prediction (see 'Trees' and

'UseInstanceForTree'). I(t ∈ S) is 1 if t is in the set S, and 0 otherwise.
• αt is the weight of tree t (see 'TreeWeights').

• For classification problems, the predicted class for an observation is the class that yields the
largest weighted average of the class posterior probabilities (i.e., classification scores) computed
using selected trees only. That is,

1 For each class c ∊ C and each tree t = 1,...,T, predict computes P t c x , which is the
estimated posterior probability of class c given observation x using tree t. C is the set of all
distinct classes in the training data. For more details on classification tree posterior
probabilities, see fitctree and predict.

2 predict computes the weighted average of the class posterior probabilities over the selected
trees.

P bag c x = 1

∑
t = 1

T
αtI(t ∈ S)

∑
t = 1

T
αtP t c x I(t ∈ S) .
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3 The predicted class is the class that yields the largest weighted average.

y bag = argmax
c ∈ C

P bag c x .

See Also
predict | oobPredict | quantilePredict | error | TreeBagger

Topics
“Bootstrap Aggregation (Bagging) of Regression Trees Using TreeBagger” on page 19-114
“Bootstrap Aggregation (Bagging) of Classification Trees Using TreeBagger” on page 19-125
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predictConstraints
Predict coupled constraint violations at a set of points

Syntax
ConstraintViolations = predictConstraints(results,XTable)
[ConstraintViolations,sigma] = predictConstraints(results,XTable)

Description
ConstraintViolations = predictConstraints(results,XTable) returns the coupled
constraint function violations at the points in XTable.

[ConstraintViolations,sigma] = predictConstraints(results,XTable) also returns the
standard deviations of the coupled constraint functions.

Examples

Predict Coupled Constraints

This example shows how to predict the coupled constraints of an optimized SVM model. For details of
this model, see “Optimize Cross-Validated Classifier Using bayesopt” on page 10-46.

rng default
grnpop = mvnrnd([1,0],eye(2),10);
redpop = mvnrnd([0,1],eye(2),10);
redpts = zeros(100,2);
grnpts = redpts;
for i = 1:100
    grnpts(i,:) = mvnrnd(grnpop(randi(10),:),eye(2)*0.02);
    redpts(i,:) = mvnrnd(redpop(randi(10),:),eye(2)*0.02);
end
cdata = [grnpts;redpts];
grp = ones(200,1);
grp(101:200) = -1;
c = cvpartition(200,'KFold',10);
sigma = optimizableVariable('sigma',[1e-5,1e5],'Transform','log');
box = optimizableVariable('box',[1e-5,1e5],'Transform','log');

The objective function is the cross-validation loss of the SVM model for the partition c. The coupled
constraint is the number of support vectors in the model minus 100. The model has 200 data points,
so the coupled constraint values range from -100 to 100. Positive values mean the constraint is not
satisfied.

function [objective,constraint] = mysvmfun(x,cdata,grp,c)
SVMModel = fitcsvm(cdata,grp,'KernelFunction','rbf',...
    'BoxConstraint',x.box,...
    'KernelScale',x.sigma);
cvModel = crossval(SVMModel,'CVPartition',c);
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objective = kfoldLoss(cvModel);
constraint = sum(SVMModel.IsSupportVector)-100.5;

Call the optimizer using this function and its one coupled constraint.

fun = @(x)mysvmfun(x,cdata,grp,c);
results = bayesopt(fun,[sigma,box],'IsObjectiveDeterministic',true,...
    'NumCoupledConstraints',1,'PlotFcn',...
    {@plotMinObjective,@plotConstraintModels,@plotObjectiveModel},...
    'AcquisitionFunctionName','expected-improvement-plus','Verbose',0);
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The constraint model plot shows that most parameters in the range are infeasible, and are feasible
only for relatively high values of the box parameter and a small range of the sigma parameter.
Predict the coupled constraint values for several values of the control variables box and sigma.

sigma = logspace(-2,2,11)';
box = logspace(0,5,11)';
XTable = table(sigma,box);
cons = predictConstraints(results,XTable);
[XTable,table(cons)]

ans =

  11x3 table

     sigma       box       cons  
    ________    ______    _______

        0.01         1     99.443
    0.025119    3.1623     106.49
    0.063096        10     94.468

35 Functions

35-5996



     0.15849    31.623     25.134
     0.39811       100    -38.732
           1    316.23    -55.156
      2.5119      1000    -34.181
      6.3096    3162.3     5.0153
      15.849     10000     39.465
      39.811     31623       60.9
         100     1e+05     71.906

Input Arguments
results — Bayesian optimization results
BayesianOptimization object

Bayesian optimization results, specified as a BayesianOptimization object.

XTable — Prediction points
table with D columns

Prediction points, specified as a table with D columns, where D is the number of variables in the
problem. The function performs its predictions on these points.
Data Types: table

Output Arguments
ConstraintViolations — Constraint violations
N-by-K matrix

Constraint violations, returned as an N-by-K matrix, where there are N rows in XTable and K coupled
constraints. The constraint violations are the posterior means of the Gaussian process model of the
coupled constraints at the points in XTable.

sigma — Constraint standard deviations
N-by-K matrix

Constraint standard deviations, returned as an N-by-K matrix, where there are N rows in XTable and
K coupled constraints. The standard deviations represent those of the posterior distribution at the
points in XTable.

Version History
Introduced in R2016b

See Also
BayesianOptimization | bayesopt
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predictError
Predict error value at a set of points

Syntax
error = predictError(results,XTable)
[error,sigma] = predictError(results,XTable)

Description
error = predictError(results,XTable) returns the posterior mean of the error coupled
constraint at the points in XTable.

[error,sigma] = predictError(results,XTable) also returns the posterior standard
deviations.

Examples

Error Prediction

This example shows optimizing a function that throws an error when the evaluation point has norm
larger than 2. The error model for the objective function learns this behavior.

Create variables named x1 and x2 that range from -5 to 5.

var1 = optimizableVariable('x1',[-5,5]);
var2 = optimizableVariable('x2',[-5,5]);
vars = [var1,var2];

The following objective function throws an error when the norm of x = [x1,x2] exceeds 2:

function f = makeanerror(x)
f = x.x1 - x.x2 - sqrt(4-x.x1^2-x.x2^2);

fun = @makeanerror;

Plot the error model and minimum objective as the optimization proceeds. Optimize for 60 iterations
so the error model becomes well-trained. For reproducibility, set the random seed and use the
'expected-improvement-plus' acquisition function.

rng default
results = bayesopt(fun,vars,'Verbose',0,'MaxObjectiveEvaluations',60,...
    'AcquisitionFunctionName','expected-improvement-plus',...
    'PlotFcn',{@plotMinObjective,@plotConstraintModels});
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Predict the error at points on the line x1 = x2. If the error model were perfect, it would have value
-1 at every point where the norm of x is no more than 2, and value 1 at all other points.

x1 = (-5:0.5:5)';
x2 = x1;
XTable = table(x1,x2);
error = predictError(results,XTable);
normx = sqrt(x1.^2 + x2.^2);
[XTable,table(normx,error)]

ans =

  21x4 table

     x1      x2      normx       error  
    ____    ____    _______    _________

      -5      -5     7.0711      0.94663
    -4.5    -4.5      6.364      0.97396
      -4      -4     5.6569      0.99125
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    -3.5    -3.5     4.9497       1.0033
      -3      -3     4.2426       1.0018
    -2.5    -2.5     3.5355      0.99627
      -2      -2     2.8284       1.0043
    -1.5    -1.5     2.1213      0.89886
      -1      -1     1.4142       0.4746
    -0.5    -0.5    0.70711    0.0042389
       0       0          0     -0.16004
     0.5     0.5    0.70711    -0.012397
       1       1     1.4142      0.30187
     1.5     1.5     2.1213      0.88588
       2       2     2.8284       1.0872
     2.5     2.5     3.5355        0.997
       3       3     4.2426      0.99861
     3.5     3.5     4.9497      0.98894
       4       4     5.6569      0.98941
     4.5     4.5      6.364      0.98956
       5       5     7.0711      0.95549

Input Arguments
results — Bayesian optimization results
BayesianOptimization object

Bayesian optimization results, specified as a BayesianOptimization object.

XTable — Prediction points
table with D columns

Prediction points, specified as a table with D columns, where D is the number of variables in the
problem. The function performs its predictions on these points.
Data Types: table

Output Arguments
error — Mean of error coupled constraint
N-by-1 vector

Mean of error coupled constraint, returned as an N-by-1 vector, where N is the number of rows of
XTable. The mean is the posterior mean of the error coupled constraint at the points in XTable.

bayesopt deems your objective function to return an error if it returns anything other than a finite
real scalar. See “Objective Function Errors” on page 10-37.

sigma — Standard deviation of error coupled constraint
N-by-1 vector

Standard deviation of error coupled constraint, returned as an N-by-1 vector, where N is the number
of rows of XTable.

Version History
Introduced in R2016b
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See Also
BayesianOptimization | bayesopt
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predictObjective
Predict objective function at a set of points

Syntax
objective = predictObjective(results,XTable)
[objective,sigma] = predictObjective(results,XTable)

Description
objective = predictObjective(results,XTable) returns the estimated objective function
value at the points in XTable.

[objective,sigma] = predictObjective(results,XTable) also returns estimated standard
deviations.

Examples

Predict Cross-Validation Loss of an Optimized Classifier

This example shows how to estimate the cross-validation loss of an optimized classifier.

Optimize a KNN classifier for the ionosphere data, meaning find parameters that minimize the
cross-validation loss. Minimize over nearest-neighborhood sizes from 1 to 30, and over the distance
functions 'chebychev', 'euclidean', and 'minkowski'.

For reproducibility, set the random seed, and set the AcquisitionFunctionName option to
'expected-improvement-plus'.

load ionosphere
rng default
num = optimizableVariable('n',[1,30],'Type','integer');
dst = optimizableVariable('dst',{'chebychev','euclidean','minkowski'},'Type','categorical');
c = cvpartition(351,'Kfold',5);
fun = @(x)kfoldLoss(fitcknn(X,Y,'CVPartition',c,'NumNeighbors',x.n,...
    'Distance',char(x.dst),'NSMethod','exhaustive'));
results = bayesopt(fun,[num,dst],'Verbose',0,...
    'AcquisitionFunctionName','expected-improvement-plus');
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Create a table of points to estimate.

b = categorical({'chebychev','euclidean','minkowski'});
n = [1;1;1;4;2;2];
dst = [b(1);b(2);b(3);b(1);b(1);b(3)];
XTable = table(n,dst);

Estimate the objective and standard deviation of the objective at these points.

[objective,sigma] = predictObjective(results,XTable);
[XTable,table(objective,sigma)]

ans=6×4 table
    n       dst       objective      sigma  
    _    _________    _________    _________

    1    chebychev     0.12132     0.0068029
    1    euclidean     0.14052     0.0079128
    1    minkowski     0.14057     0.0079117
    4    chebychev      0.1227     0.0068805
    2    chebychev     0.12176     0.0066739
    2    minkowski      0.1437     0.0075448
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Input Arguments
results — Bayesian optimization results
BayesianOptimization object

Bayesian optimization results, specified as a BayesianOptimization object.

XTable — Prediction points
table with D columns

Prediction points, specified as a table with D columns, where D is the number of variables in the
problem. The function performs its predictions on these points.
Data Types: table

Output Arguments
objective — Objective estimates
N-by-1 vector

Objective estimates, returned as an N-by-1 vector, where N is the number of rows of XTable. The
estimates are the mean values of the posterior distribution of the Gaussian process model of the
objective function.

sigma — Standard deviations of objective function
N-by-1 vector

Standard deviations of objective function, returned as an N-by-1 vector, where N is the number of
rows of XTable. The standard deviations are those of the posterior distribution of the Gaussian
process model of the objective function.

Version History
Introduced in R2016b

See Also
BayesianOptimization | bayesopt
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predictObjectiveEvaluationTime
Predict objective function run times at a set of points

Syntax
time = predictObjectiveEvaluationTime(results,XTable)

Description
time = predictObjectiveEvaluationTime(results,XTable) returns estimated objective
evaluation times at the points in XTable.

Examples

Predict Evaluation Time of Objective In an Optimized Model

This example shows how to estimate the objective function evaluation time in an optimized Bayesian
model of SVM classification.

Create an optimized SVM model. For details of this model, see “Optimize Cross-Validated Classifier
Using bayesopt” on page 10-46.

rng default
grnpop = mvnrnd([1,0],eye(2),10);
redpop = mvnrnd([0,1],eye(2),10);
redpts = zeros(100,2);
grnpts = redpts;
for i = 1:100
    grnpts(i,:) = mvnrnd(grnpop(randi(10),:),eye(2)*0.02);
    redpts(i,:) = mvnrnd(redpop(randi(10),:),eye(2)*0.02);
end
cdata = [grnpts;redpts];
grp = ones(200,1);
grp(101:200) = -1;
c = cvpartition(200,'KFold',10);
sigma = optimizableVariable('sigma',[1e-5,1e5],'Transform','log');
box = optimizableVariable('box',[1e-5,1e5],'Transform','log');
minfn = @(z)kfoldLoss(fitcsvm(cdata,grp,'CVPartition',c,...
    'KernelFunction','rbf','BoxConstraint',z.box,...
    'KernelScale',z.sigma));
results = bayesopt(minfn,[sigma,box],'IsObjectiveDeterministic',true,...
    'AcquisitionFunctionName','expected-improvement-plus','Verbose',0);
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Predict the evaluation time for various points.

sigma = logspace(-5,5,11)';
box = 1e5*ones(size(sigma));
XTable = table(sigma,box);
time = predictObjectiveEvaluationTime(results,XTable);
[XTable,table(time)]

ans=11×3 table
    sigma      box      time  
    ______    _____    _______

     1e-05    1e+05    0.49254
    0.0001    1e+05     0.5321
     0.001    1e+05    0.48024
      0.01    1e+05    0.38375
       0.1    1e+05    0.32132
         1    1e+05    0.84758
        10    1e+05     3.0381
       100    1e+05     1.0736
      1000    1e+05    0.35959
     10000    1e+05    0.34942
     1e+05    1e+05    0.37855
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Input Arguments
results — Bayesian optimization results
BayesianOptimization object

Bayesian optimization results, specified as a BayesianOptimization object.

XTable — Prediction points
table with D columns

Prediction points, specified as a table with D columns, where D is the number of variables in the
problem. The function performs its predictions on these points.
Data Types: table

Output Arguments
time — Estimated objective evaluation times
N-by-1 vector

Estimated objective evaluation times, returned as an N-by-1 vector, where N is the number of rows of
XTable. The estimated values are the means of the posterior distribution of the Gaussian process
model of the evaluation times of the objective function.

Version History
Introduced in R2016b

See Also
BayesianOptimization | bayesopt
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predictorImportance
Estimates of predictor importance for classification ensemble of decision trees

Syntax
imp = predictorImportance(ens)
[imp,ma] = predictorImportance(ens)

Description
imp = predictorImportance(ens) computes estimates of predictor importance for ens by
summing these estimates over all weak learners in the ensemble. imp has one element for each input
predictor in the data used to train this ensemble. A high value indicates that this predictor is
important for ens.

[imp,ma] = predictorImportance(ens) returns a P-by-P matrix with predictive measures of
association for P predictors, when the learners in ens contain surrogate splits. See “More About” on
page 35-6014.

Input Arguments
ens

A classification ensemble of decision trees, created by fitcensemble, or by the compact method.

Output Arguments
imp

A row vector with the same number of elements as the number of predictors (columns) in ens.X. The
entries are the estimates of predictor importance, with 0 representing the smallest possible
importance.

ma

A P-by-P matrix of predictive measures of association for P predictors. Element ma(I,J) is the
predictive measure of association averaged over surrogate splits on predictor J for which predictor I
is the optimal split predictor. predictorImportance averages this predictive measure of
association over all trees in the ensemble.

Examples

Estimate Predictor Importance

Estimate the predictor importance for all variables in the Fisher iris data.

Load Fisher's iris data set.
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load fisheriris

Train a classification ensemble using AdaBoostM2. Specify tree stumps as the weak learners.

t = templateTree('MaxNumSplits',1);
ens = fitcensemble(meas,species,'Method','AdaBoostM2','Learners',t);

Estimate the predictor importance for all predictor variables.

imp = predictorImportance(ens)

imp = 1×4

    0.0004    0.0016    0.1266    0.0324

The first two predictors are not very important in the ensemble.

Predictor Importance and Surrogate Splits

Estimate the predictor importance for all variables in the Fisher iris data for an ensemble where the
trees contain surrogate splits.

Load Fisher's iris data set.

load fisheriris

Grow an ensemble of 100 classification trees using AdaBoostM2. Specify tree stumps as the weak
learners, and also identify surrogate splits.

t = templateTree('MaxNumSplits',1,'Surrogate','on');
ens = fitcensemble(meas,species,'Method','AdaBoostM2','Learners',t);

Estimate the predictor importance and predictive measures of association for all predictor variables.

[imp,ma] = predictorImportance(ens)

imp = 1×4

    0.0674    0.0417    0.1582    0.1537

ma = 4×4

    1.0000         0         0         0
    0.0115    1.0000    0.0022    0.0054
    0.3186    0.2137    1.0000    0.6391
    0.0392    0.0073    0.1137    1.0000

The first two predictors show much more importance than the analysis in “Estimate Predictor
Importance” on page 35-6012.
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More About
Predictor Importance

predictorImportance estimates predictor importance for each tree learner in the ensemble ens
and returns the weighted average imp computed using ens.TrainedWeight. The output imp has
one element for each predictor.

predictorImportance computes importance measures of the predictors in a tree by summing
changes in the node risk due to splits on every predictor, and then dividing the sum by the total
number of branch nodes. The change in the node risk is the difference between the risk for the parent
node and the total risk for the two children. For example, if a tree splits a parent node (for example,
node 1) into two child nodes (for example, nodes 2 and 3), then predictorImportance increases
the importance of the split predictor by

(R1 – R2 – R3)/Nbranch,
where Ri is the node risk of node i, and Nbranch is the total number of branch nodes. A node risk is
defined as a node error or node impurity weighted by the node probability:

Ri = PiEi,
where Pi is the node probability of node i, and Ei is either the node error (for a tree grown by
minimizing the twoing criterion) or node impurity (for a tree grown by minimizing an impurity
criterion, such as the Gini index or deviance) of node i.

The estimates of predictor importance depend on whether you use surrogate splits for training.

• If you use surrogate splits, predictorImportance sums the changes in the node risk over all
splits at each branch node, including surrogate splits. If you do not use surrogate splits, then the
function takes the sum over the best splits found at each branch node.

• Estimates of predictor importance do not depend on the order of predictors if you use surrogate
splits, but do depend on the order if you do not use surrogate splits.

Impurity and Node Error

A decision tree splits nodes based on either impurity or node error.

Impurity means one of several things, depending on your choice of the SplitCriterion name-value
pair argument:

• Gini's Diversity Index (gdi) — The Gini index of a node is

1− ∑
i

p2(i),

where the sum is over the classes i at the node, and p(i) is the observed fraction of classes with
class i that reach the node. A node with just one class (a pure node) has Gini index 0; otherwise
the Gini index is positive. So the Gini index is a measure of node impurity.

• Deviance ('deviance') — With p(i) defined the same as for the Gini index, the deviance of a node
is

−∑
i

p(i)log2p(i) .

A pure node has deviance 0; otherwise, the deviance is positive.
• Twoing rule ('twoing') — Twoing is not a purity measure of a node, but is a different measure

for deciding how to split a node. Let L(i) denote the fraction of members of class i in the left child
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node after a split, and R(i) denote the fraction of members of class i in the right child node after a
split. Choose the split criterion to maximize

P(L)P(R) ∑
i

L(i)− R(i)
2
,

where P(L) and P(R) are the fractions of observations that split to the left and right respectively. If
the expression is large, the split made each child node purer. Similarly, if the expression is small,
the split made each child node similar to each other, and therefore similar to the parent node. The
split did not increase node purity.

• Node error — The node error is the fraction of misclassified classes at a node. If j is the class with
the largest number of training samples at a node, the node error is

1 – p(j).

Predictive Measure of Association

The predictive measure of association is a value that indicates the similarity between decision rules
that split observations. Among all possible decision splits that are compared to the optimal split
(found by growing the tree), the best surrogate decision split on page 35-2272 yields the maximum
predictive measure of association. The second-best surrogate split has the second-largest predictive
measure of association.

Suppose xj and xk are predictor variables j and k, respectively, and j ≠ k. At node t, the predictive
measure of association between the optimal split xj < u and a surrogate split xk < v is

λ jk =
min PL, PR − 1− PLjLk− PRjRk

min PL, PR
.

• PL is the proportion of observations in node t, such that xj < u. The subscript L stands for the left
child of node t.

• PR is the proportion of observations in node t, such that xj ≥ u. The subscript R stands for the right
child of node t.

• PLjLk is the proportion of observations at node t, such that xj < u and xk < v.

• PRjRk is the proportion of observations at node t, such that xj ≥ u and xk ≥ v.

• Observations with missing values for xj or xk do not contribute to the proportion calculations.

λjk is a value in (–∞,1]. If λjk > 0, then xk < v is a worthwhile surrogate split for xj < u.

Algorithms
Element ma(i,j) is the predictive measure of association averaged over surrogate splits on
predictor j for which predictor i is the optimal split predictor. This average is computed by summing
positive values of the predictive measure of association over optimal splits on predictor i and
surrogate splits on predictor j and dividing by the total number of optimal splits on predictor i,
including splits for which the predictive measure of association between predictors i and j is
negative.
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Extended Capabilities
GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

This function fully supports GPU arrays. For more information, see “Run MATLAB Functions on a
GPU” (Parallel Computing Toolbox).

See Also
predictorImportance (ClassificationTree) | templateTree

Topics
“Choose Split Predictor Selection Technique” on page 20-14
“Introduction to Feature Selection” on page 16-47
“Interpret Machine Learning Models” on page 27-2
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predictorImportance
Estimates of predictor importance for classification tree

Syntax
imp = predictorImportance(tree)

Description
imp = predictorImportance(tree) computes estimates of predictor importance for tree by
summing changes in the risk due to splits on every predictor and dividing the sum by the number of
branch nodes.

Input Arguments
tree

A classification tree created by fitctree, or by the compact method.

Output Arguments
imp

A row vector with the same number of elements as the number of predictors (columns) in tree.X.
The entries are the estimates of predictor importance, with 0 representing the smallest possible
importance.

Examples

Estimate Predictor Importance Values

Load Fisher's iris data set.

load fisheriris

Grow a classification tree.

Mdl = fitctree(meas,species);

Compute predictor importance estimates for all predictor variables.

imp = predictorImportance(Mdl)

imp = 1×4

         0         0    0.0907    0.0682

The first two elements of imp are zero. Therefore, the first two predictors do not enter into Mdl
calculations for classifying irises.
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Estimates of predictor importance do not depend on the order of predictors if you use surrogate
splits, but do depend on the order if you do not use surrogate splits.

Permute the order of the data columns in the previous example, grow another classification tree, and
then compute predictor importance estimates.

measPerm  = meas(:,[4 1 3 2]);
MdlPerm = fitctree(measPerm,species);
impPerm = predictorImportance(MdlPerm)

impPerm = 1×4

    0.1515         0    0.0074         0

The estimates of predictor importance are not a permutation of imp.

Surrogate Splits and Predictor Importance

Load Fisher's iris data set.

load fisheriris

Grow a classification tree. Specify usage of surrogate splits.

Mdl = fitctree(meas,species,'Surrogate','on');

Compute predictor importance estimates for all predictor variables.

imp = predictorImportance(Mdl)

imp = 1×4

    0.0791    0.0374    0.1530    0.1529

All predictors have some importance. The first two predictors are less important than the final two.

Permute the order of the data columns in the previous example, grow another classification tree
specifying usage of surrogate splits, and then compute predictor importance estimates.

measPerm  = meas(:,[4 1 3 2]);
MdlPerm = fitctree(measPerm,species,'Surrogate','on');
impPerm = predictorImportance(MdlPerm)

impPerm = 1×4

    0.1529    0.0791    0.1530    0.0374

The estimates of predictor importance are a permutation of imp.
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Unbiased Predictor Importance Estimates

Load the census1994 data set. Consider a model that predicts a person's salary category given their
age, working class, education level, martial status, race, sex, capital gain and loss, and number of
working hours per week.

load census1994
X = adultdata(:,{'age','workClass','education_num','marital_status','race',...
    'sex','capital_gain','capital_loss','hours_per_week','salary'});

Display the number of categories represented in the categorical variables using summary.

summary(X)

Variables:

    age: 32561x1 double

        Values:

            Min          17   
            Median       37   
            Max          90   

    workClass: 32561x1 categorical

        Values:

            Federal-gov            960  
            Local-gov             2093  
            Never-worked             7  
            Private              22696  
            Self-emp-inc          1116  
            Self-emp-not-inc      2541  
            State-gov             1298  
            Without-pay             14  
            NumMissing            1836  

    education_num: 32561x1 double

        Values:

            Min           1   
            Median       10   
            Max          16   

    marital_status: 32561x1 categorical

        Values:

            Divorced                   4443  
            Married-AF-spouse            23  
            Married-civ-spouse        14976  
            Married-spouse-absent       418  
            Never-married             10683  
            Separated                  1025  
            Widowed                     993  
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    race: 32561x1 categorical

        Values:

            Amer-Indian-Eskimo       311  
            Asian-Pac-Islander      1039  
            Black                   3124  
            Other                    271  
            White                  27816  

    sex: 32561x1 categorical

        Values:

            Female     10771  
            Male       21790  

    capital_gain: 32561x1 double

        Values:

            Min            0  
            Median         0  
            Max        99999  

    capital_loss: 32561x1 double

        Values:

            Min            0  
            Median         0  
            Max         4356  

    hours_per_week: 32561x1 double

        Values:

            Min           1   
            Median       40   
            Max          99   

    salary: 32561x1 categorical

        Values:

            <=50K     24720  
            >50K       7841  

Because there are few categories represented in the categorical variables compared to levels in the
continuous variables, the standard CART, predictor-splitting algorithm prefers splitting a continuous
predictor over the categorical variables.

Train a classification tree using the entire data set. To grow unbiased trees, specify usage of the
curvature test for splitting predictors. Because there are missing observations in the data, specify
usage of surrogate splits.

Mdl = fitctree(X,'salary','PredictorSelection','curvature',...
    'Surrogate','on');
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Estimate predictor importance values by summing changes in the risk due to splits on every predictor
and dividing the sum by the number of branch nodes. Compare the estimates using a bar graph.

imp = predictorImportance(Mdl);

figure;
bar(imp);
title('Predictor Importance Estimates');
ylabel('Estimates');
xlabel('Predictors');
h = gca;
h.XTickLabel = Mdl.PredictorNames;
h.XTickLabelRotation = 45;
h.TickLabelInterpreter = 'none';

In this case, capital_gain is the most important predictor, followed by education_num.

More About
Predictor Importance

predictorImportance computes importance measures of the predictors in a tree by summing
changes in the node risk due to splits on every predictor, and then dividing the sum by the total
number of branch nodes. The change in the node risk is the difference between the risk for the parent
node and the total risk for the two children. For example, if a tree splits a parent node (for example,
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node 1) into two child nodes (for example, nodes 2 and 3), then predictorImportance increases
the importance of the split predictor by

(R1 – R2 – R3)/Nbranch,
where Ri is the node risk of node i, and Nbranch is the total number of branch nodes. A node risk is
defined as a node error or node impurity weighted by the node probability:

Ri = PiEi,
where Pi is the node probability of node i, and Ei is either the node error (for a tree grown by
minimizing the twoing criterion) or node impurity (for a tree grown by minimizing an impurity
criterion, such as the Gini index or deviance) of node i.

The estimates of predictor importance depend on whether you use surrogate splits for training.

• If you use surrogate splits, predictorImportance sums the changes in the node risk over all
splits at each branch node, including surrogate splits. If you do not use surrogate splits, then the
function takes the sum over the best splits found at each branch node.

• Estimates of predictor importance do not depend on the order of predictors if you use surrogate
splits, but do depend on the order if you do not use surrogate splits.

• If you use surrogate splits, predictorImportance computes estimates before the tree is
reduced by pruning (or merging leaves). If you do not use surrogate splits,
predictorImportance computes estimates after the tree is reduced by pruning. Therefore,
pruning affects the predictor importance for a tree grown without surrogate splits, and does not
affect the predictor importance for a tree grown with surrogate splits.

Impurity and Node Error

A decision tree splits nodes based on either impurity or node error.

Impurity means one of several things, depending on your choice of the SplitCriterion name-value
pair argument:

• Gini's Diversity Index (gdi) — The Gini index of a node is

1− ∑
i

p2(i),

where the sum is over the classes i at the node, and p(i) is the observed fraction of classes with
class i that reach the node. A node with just one class (a pure node) has Gini index 0; otherwise
the Gini index is positive. So the Gini index is a measure of node impurity.

• Deviance ('deviance') — With p(i) defined the same as for the Gini index, the deviance of a node
is

−∑
i

p(i)log2p(i) .

A pure node has deviance 0; otherwise, the deviance is positive.
• Twoing rule ('twoing') — Twoing is not a purity measure of a node, but is a different measure

for deciding how to split a node. Let L(i) denote the fraction of members of class i in the left child
node after a split, and R(i) denote the fraction of members of class i in the right child node after a
split. Choose the split criterion to maximize

P(L)P(R) ∑
i

L(i)− R(i)
2
,
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where P(L) and P(R) are the fractions of observations that split to the left and right respectively. If
the expression is large, the split made each child node purer. Similarly, if the expression is small,
the split made each child node similar to each other, and therefore similar to the parent node. The
split did not increase node purity.

• Node error — The node error is the fraction of misclassified classes at a node. If j is the class with
the largest number of training samples at a node, the node error is

1 – p(j).

Extended Capabilities
GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

This function fully supports GPU arrays. For more information, see “Run MATLAB Functions on a
GPU” (Parallel Computing Toolbox).

See Also
predictorImportance (ClassificationEnsemble) | oobPermutedPredictorImportance |
fitctree | fitcensemble

Topics
“Choose Split Predictor Selection Technique” on page 20-14
“Introduction to Feature Selection” on page 16-47
“Interpret Machine Learning Models” on page 27-2
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predictorImportance
Estimates of predictor importance for regression ensemble

Syntax
imp = predictorImportance(ens)
[imp,ma] = predictorImportance(ens)

Description
imp = predictorImportance(ens) computes estimates of predictor importance for ens by
summing these estimates over all weak learners in the ensemble. imp has one element for each input
predictor in the data used to train this ensemble. A high value indicates that this predictor is
important for ens.

[imp,ma] = predictorImportance(ens) returns a P-by-P matrix with predictive measures of
association for P predictors.

Input Arguments
ens

A regression ensemble, created by fitrensemble, or by the compact method.

Output Arguments
imp

A row vector with the same number of elements as the number of predictors (columns) in ens.X. The
entries are the estimates of predictor importance, with 0 representing the smallest possible
importance.

ma

A P-by-P matrix of predictive measures of association for P predictors. Element ma(I,J) is the
predictive measure of association averaged over surrogate splits on predictor J for which predictor I
is the optimal split predictor. predictorImportance averages this predictive measure of
association over all trees in the ensemble.

Examples

Estimate Predictor Importance

Estimate the predictor importance for all predictor variables in the data.

Load the carsmall data set.

load carsmall
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Grow an ensemble of 100 regression trees for MPG using Acceleration, Cylinders,
Displacement, Horsepower, Model_Year, and Weight as predictors. Specify tree stumps as the
weak learners.

X = [Acceleration Cylinders Displacement Horsepower Model_Year Weight];
t = templateTree('MaxNumSplits',1);
ens = fitrensemble(X,MPG,'Method','LSBoost','Learners',t);

Estimate the predictor importance for all predictor variables.

imp = predictorImportance(ens)

imp = 1×6

    0.0150         0    0.0066    0.1111    0.0437    0.5181

Weight, the last predictor, has the most impact on mileage. The second predictor has importance 0,
which means that the number of cylinders has no impact on predictions made with ens.

Predictor Importance and Surrogate Splits

Estimate the predictor importance for all variables in the data and where the regression tree
ensemble contains surrogate splits.

Load the carsmall data set.

load carsmall

Grow an ensemble of 100 regression trees for MPG using Acceleration, Cylinders,
Displacement, Horsepower, Model_Year, and Weight as predictors. Specify tree stumps as the
weak learners, and also identify surrogate splits.

X = [Acceleration Cylinders Displacement Horsepower Model_Year Weight];
t = templateTree('MaxNumSplits',1,'Surrogate','on');
ens = fitrensemble(X,MPG,'Method','LSBoost','Learners',t);

Estimate the predictor importance and predictive measures of association for all predictor variables.

[imp,ma] = predictorImportance(ens)

imp = 1×6

    0.2141    0.3798    0.4369    0.6498    0.3728    0.5700

ma = 6×6

    1.0000    0.0098    0.0102    0.0098    0.0033    0.0067
         0    1.0000         0         0         0         0
    0.0056    0.0084    1.0000    0.0078    0.0022    0.0084
    0.3537    0.4769    0.5834    1.0000    0.1612    0.5827
    0.0061    0.0070    0.0063    0.0064    1.0000    0.0056
    0.0154    0.0296    0.0533    0.0447    0.0070    1.0000
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Comparing imp to the results in “Estimate Predictor Importance” on page 35-6024, Horsepower has
the greatest impact on mileage, with Weight having the second greatest impact.

More About
Predictor Importance

predictorImportance estimates predictor importance of the predictors for each tree learner in the
ensemble ens and returns the weighted average imp computed using ens.TrainedWeight. The
output imp has one element for each predictor.

predictorImportance computes importance measures of the predictors in a tree by summing
changes in the node risk due to splits on every predictor, and then dividing the sum by the total
number of branch nodes. The change in the node risk is the difference between the risk for the parent
node and the total risk for the two children. For example, if a tree splits a parent node (for example,
node 1) into two child nodes (for example, nodes 2 and 3), then predictorImportance increases
the importance of the split predictor by

(R1 – R2 – R3)/Nbranch,
where Ri is node risk of node i, and Nbranch is the total number of branch nodes. A node risk is defined
as a node error weighted by the node probability:

Ri = PiEi,
where Pi is the node probability of node i, and Ei is the mean squared error of node i.

The estimates of predictor importance depend on whether you use surrogate splits for training.

• If you use surrogate splits, predictorImportance sums the changes in the node risk over all
splits at each branch node, including surrogate splits. If you do not use surrogate splits, then the
function takes the sum over the best splits found at each branch node.

• Estimates of predictor importance do not depend on the order of predictors if you use surrogate
splits, but do depend on the order if you do not use surrogate splits.

Predictive Measure of Association

The predictive measure of association is a value that indicates the similarity between decision rules
that split observations. Among all possible decision splits that are compared to the optimal split
(found by growing the tree), the best surrogate decision split on page 35-2272 yields the maximum
predictive measure of association. The second-best surrogate split has the second-largest predictive
measure of association.

Suppose xj and xk are predictor variables j and k, respectively, and j ≠ k. At node t, the predictive
measure of association between the optimal split xj < u and a surrogate split xk < v is

λ jk =
min PL, PR − 1− PLjLk− PRjRk

min PL, PR
.

• PL is the proportion of observations in node t, such that xj < u. The subscript L stands for the left
child of node t.

• PR is the proportion of observations in node t, such that xj ≥ u. The subscript R stands for the right
child of node t.

• PLjLk is the proportion of observations at node t, such that xj < u and xk < v.
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• PRjRk is the proportion of observations at node t, such that xj ≥ u and xk ≥ v.

• Observations with missing values for xj or xk do not contribute to the proportion calculations.

λjk is a value in (–∞,1]. If λjk > 0, then xk < v is a worthwhile surrogate split for xj < u.

Algorithms
Element ma(i,j) is the predictive measure of association averaged over surrogate splits on
predictor j for which predictor i is the optimal split predictor. This average is computed by summing
positive values of the predictive measure of association over optimal splits on predictor i and
surrogate splits on predictor j and dividing by the total number of optimal splits on predictor i,
including splits for which the predictive measure of association between predictors i and j is
negative.

Extended Capabilities
GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

This function fully supports GPU arrays. For more information, see “Run MATLAB Functions on a
GPU” (Parallel Computing Toolbox).

See Also
predictorImportance (RegressionTree) | templateTree | plotPartialDependence

Topics
“Choose Split Predictor Selection Technique” on page 20-14
“Introduction to Feature Selection” on page 16-47
“Interpret Machine Learning Models” on page 27-2
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predictorImportance
Estimates of predictor importance for regression tree

Syntax
imp = predictorImportance(tree)

Description
imp = predictorImportance(tree) computes estimates of predictor importance for tree by
summing changes in the mean squared error due to splits on every predictor and dividing the sum by
the number of branch nodes.

Input Arguments
tree

A regression tree created by fitrtree, or by the compact method.

Output Arguments
imp

A row vector with the same number of elements as the number of predictors (columns) in tree.X.
The entries are the estimates of predictor importance, with 0 representing the smallest possible
importance.

Examples

Estimate Predictor Importance

Estimate the predictor importance for all predictor variables in the data.

Load the carsmall data set.

load carsmall

Grow a regression tree for MPG using Acceleration, Cylinders, Displacement, Horsepower,
Model_Year, and Weight as predictors.

X = [Acceleration Cylinders Displacement Horsepower Model_Year Weight];
tree = fitrtree(X,MPG);

Estimate the predictor importance for all predictor variables.

imp = predictorImportance(tree)

imp = 1×6
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    0.0647    0.1068    0.1155    0.1411    0.3348    2.6565

Weight, the last predictor, has the most impact on mileage. The predictor with the minimal impact on
making predictions is the first variable, which is Acceleration.

Predictor Importance and Surrogate Splits

Estimate the predictor importance for all variables in the data and where the regression tree contains
surrogate splits.

Load the carsmall data set.

load carsmall

Grow a regression tree for MPG using Acceleration, Cylinders, Displacement, Horsepower,
Model_Year, and Weight as predictors. Specify to identify surrogate splits.

X = [Acceleration Cylinders Displacement Horsepower Model_Year Weight];
tree = fitrtree(X,MPG,'Surrogate','on');

Estimate the predictor importance for all predictor variables.

imp = predictorImportance(tree)

imp = 1×6

    1.0449    2.4560    2.5570    2.5788    2.0832    2.8938

Comparing imp to the results in “Estimate Predictor Importance” on page 35-6028, Weight still has
the most impact on mileage, but Cylinders is the fourth most important predictor.

Unbiased Predictor Importance Estimates

Load the carsmall data set. Consider a model that predicts the mean fuel economy of a car given its
acceleration, number of cylinders, engine displacement, horsepower, manufacturer, model year, and
weight. Consider Cylinders, Mfg, and Model_Year as categorical variables.

load carsmall
Cylinders = categorical(Cylinders);
Mfg = categorical(cellstr(Mfg));
Model_Year = categorical(Model_Year);
X = table(Acceleration,Cylinders,Displacement,Horsepower,Mfg,...
    Model_Year,Weight,MPG);

Display the number of categories represented in the categorical variables.

numCylinders = numel(categories(Cylinders))

numCylinders = 3

numMfg = numel(categories(Mfg))
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numMfg = 28

numModelYear = numel(categories(Model_Year))

numModelYear = 3

Because there are 3 categories only in Cylinders and Model_Year, the standard CART, predictor-
splitting algorithm prefers splitting a continuous predictor over these two variables.

Train a regression tree using the entire data set. To grow unbiased trees, specify usage of the
curvature test for splitting predictors. Because there are missing values in the data, specify usage of
surrogate splits.

Mdl = fitrtree(X,'MPG','PredictorSelection','curvature','Surrogate','on');

Estimate predictor importance values by summing changes in the risk due to splits on every predictor
and dividing the sum by the number of branch nodes. Compare the estimates using a bar graph.

imp = predictorImportance(Mdl);

figure;
bar(imp);
title('Predictor Importance Estimates');
ylabel('Estimates');
xlabel('Predictors');
h = gca;
h.XTickLabel = Mdl.PredictorNames;
h.XTickLabelRotation = 45;
h.TickLabelInterpreter = 'none';
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In this case, Displacement is the most important predictor, followed by Horsepower.

More About
Predictor Importance

predictorImportance computes importance measures of the predictors in a tree by summing
changes in the node risk due to splits on every predictor, and then dividing the sum by the total
number of branch nodes. The change in the node risk is the difference between the risk for the parent
node and the total risk for the two children. For example, if a tree splits a parent node (for example,
node 1) into two child nodes (for example, nodes 2 and 3), then predictorImportance increases
the importance of the split predictor by

(R1 – R2 – R3)/Nbranch,
where Ri is node risk of node i, and Nbranch is the total number of branch nodes. A node risk is defined
as a node error weighted by the node probability:

Ri = PiEi,
where Pi is the node probability of node i, and Ei is the mean squared error of node i.

The estimates of predictor importance depend on whether you use surrogate splits for training.

• If you use surrogate splits, predictorImportance sums the changes in the node risk over all
splits at each branch node, including surrogate splits. If you do not use surrogate splits, then the
function takes the sum over the best splits found at each branch node.

• Estimates of predictor importance do not depend on the order of predictors if you use surrogate
splits, but do depend on the order if you do not use surrogate splits.

• If you use surrogate splits, predictorImportance computes estimates before the tree is
reduced by pruning (or merging leaves). If you do not use surrogate splits,
predictorImportance computes estimates after the tree is reduced by pruning. Therefore,
pruning affects the predictor importance for a tree grown without surrogate splits, and does not
affect the predictor importance for a tree grown with surrogate splits.

Extended Capabilities
GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

This function fully supports GPU arrays. For more information, see “Run MATLAB Functions on a
GPU” (Parallel Computing Toolbox).

See Also
predictorImportance (RegressionEnsemble) | oobPermutedPredictorImportance |
fitrtree | fitrensemble | plotPartialDependence

Topics
“Choose Split Predictor Selection Technique” on page 20-14
“Introduction to Feature Selection” on page 16-47
“Interpret Machine Learning Models” on page 27-2
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probplot
Probability plots

Syntax
probplot(y)
probplot(y,cens)
probplot(y,cens,freq)
probplot(dist, ___ )

probplot(ax, ___ )
probplot(ax,pd)
probplot(ax,fun,params)

probplot( ___ ,'noref')

h = probplot( ___ )

Description
probplot(y) creates a normal probability plot comparing the distribution of the data in y to the
normal distribution.

probplot plots each data point in y using marker symbols and draws a reference line that
represents the theoretical distribution. If the sample data has a normal distribution, then the data
points appear along the reference line. The reference line connects the first and third quartiles of the
data and extends to the ends of the data. A distribution other than normal introduces curvature in the
data plot.

probplot(y,cens) creates a probability plot using the censoring data in cens.

probplot(y,cens,freq) creates a probability plot using the censoring data in cens and the
frequency data in freq.

probplot(dist, ___ ) creates a probability plot for the distribution specified by dist, using any of
the input arguments in the previous syntaxes.

probplot(ax, ___ ) adds a probability plot into the existing probability plot axes specified by ax,
using any of the input arguments in the previous syntaxes.

probplot(ax,pd) adds a fitted line on the existing probability plot axes specified by ax to represent
the probability distribution pd.

probplot(ax,fun,params) adds a fitted line on the existing probability plot axes specified by ax
to represent the function fun with the parameters params.

probplot( ___ ,'noref') omits the reference line from the plot.

h = probplot( ___ ) returns graphics handles corresponding to the plotted lines.
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Examples

Create Weibull Probability Plot

Generate sample data and create a probability plot.

Generate sample data. The sample x1 contains 500 random numbers from a Weibull distribution with
scale parameter A = 3 and shape parameter B = 3. The sample x2 contains 500 random numbers
from a Rayleigh distribution with scale parameter B = 3.

rng('default');  % For reproducibility
x1 = wblrnd(3,3,[500,1]);
x2 = raylrnd(3,[500,1]);

Create a probability plot to assess whether the data in x1 and x2 comes from a Weibull distribution.

figure
probplot('weibull',[x1 x2])
legend('Weibull Sample','Rayleigh Sample','Location','best')

The probability plot shows that the data in x1 comes from a Weibull distribution, while the data in x2
does not.

Alternatively, you can use wblplot to create a Weibull probability plot.
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Add Fitted Line to Probability Plot

Create a probability plot and an additional fitted line on the same figure.

Generate sample data containing about 20% outliers in the tails. The left tail of the sample data
contains 10 values randomly generated from an exponential distribution with parameter mu = 1. The
right tail contains 10 values randomly generated from an exponential distribution with parameter mu
= 5. The center of the sample data contains 80 values randomly generated from a standard normal
distribution.

rng('default')  % For reproducibility
left_tail = -exprnd(1,10,1);
right_tail = exprnd(5,10,1);
center = randn(80,1);
data = [left_tail;center;right_tail];

Create a probability plot to assess whether the sample data comes from a normal distribution.

probplot(data)

Plot a t location-scale curve on the same figure to compare with data.

p = mle(data,'distribution','tLocationScale');
t = @(data,mu,sig,df)cdf('tLocationScale',data,mu,sig,df);
h = probplot(gca,t,p);
h.Color = 'r';
h.LineStyle = '-';
title('{\bf Probability Plot}')
legend('Normal','Data','t','Location','NW')
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The plot shows that neither the normal line nor the t location-scale curve fits the tails very well
because of the outliers.

Identify Significant Effects with Half-Normal Probability Plot

Create a half-normal probability distribution plot to identify significant effects in an experiment to
study factors that might influence flow rate in a chemical manufacturing process. The four factors are
reactants A, B, C, and D. Each factor is present at two levels (high and low concentration). The
experiment contains only one replication at each factor level.

Load the sample data.

load flowrate

The first four columns of the table flowrate contain the design matrix for the factors and their
interactions. The design matrix is coded to use 1 for the high factor level and -1 for the low factor
level. The fifth column of flowrate contains the measured flow rate.

Fit a linear regression model using rate as the response variable. Use predictor variables A, B, C, D,
and all of their interaction terms.

mdl = fitlm(flowrate,'rate ~ A*B*C*D');

Calculate and store the absolute value of the factor effect estimates. To obtain the factor effect
estimates, multiply the coefficient estimates obtained during the model fitting by two. This step is
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necessary because the regression coefficients measure the effect of a one-unit change in x on the
mean of y. However, the effects estimates measure a two-unit change in x due to the design matrix
coding of -1 and 1. Exclude the baseline measurement. Note that the factor order in mdl may be
different from the order in the original design matrix.

effects = abs(mdl.Coefficients{2:end,1}*2);

Create a half-normal probability plot using the absolute value of the effects estimates, excluding the
baseline.

figure
h = probplot('halfnormal',effects);

Label the points and format the plot. First, return the index values for the sorted effects estimates
(from lowest to highest). Then use these index values to sort the probability values stored in the
graphics handle (h(1).YData).

[b,i] = sort(effects);
prob(i) = h(1).YData;

Add text labels to the plot at each point. For each point, the x-value is the effects estimate and the y-
value is the corresponding probability.

text(effects,prob,mdl.CoefficientNames(2:end),'FontSize',8,...
    'VerticalAlignment','top')
h(1).Color = 'r';
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The points located far from the reference line represent the significant effects.

Create a Normal Probability Plot Using Frequency Data

Generate simulated frequency data.

y = 1:10;
freq = [2 4 6 7 9 8 7 7 6 5];

Create a normal probability plot using the frequency data.

probplot(y,[],freq)
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The normal probability plot shows that the data do not have a normal distribution.

Input Arguments
y — Sample data
numeric vector | numeric matrix

Sample data, specified as a numeric vector or numeric matrix. probplot displays each value in y
using marker symbols including 'x' and 'o'. If y is a matrix, then probplot displays a separate line
for each column of y.

Not all distributions are appropriate for all data sets. probplot errors if the data set is inappropriate
for a specified distribution. See dist for appropriate data ranges for each distribution.

dist — Distribution for probability plot
probability distribution object | 'normal' | 'exponential' | 'extreme value' | 'half normal'
| 'lognormal' | ...

Distribution for probability plot, specified as a probability distribution object or one of the following
distribution names:

Name Plot Type Data Range
'normal' Normal probability plot All values
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Name Plot Type Data Range
'exponential' Exponential probability plot Nonnegative values
'extreme value' Extreme value probability plot All values
'half normal' Half-normal probability plot All values
'lognormal' Lognormal probability plot Positive values
'logistic' Logistic probability plot All values
'loglogistic' Loglogistic probability plot Positive values
'rayleigh' Rayleigh probability plot Positive values
'weibull' Weibull probability plot Positive values

The default is 'normal' if you create a probability plot in a new figure. If you add a probability plot
to a figure that already includes one by using the ax input argument, then the default is the plot type
of the existing probability plot.

You can create a probability distribution object with specified parameter values using makedist.
Alternatively, fit a probability distribution object to sample data using fitdist. For more information
on probability distribution objects, see “Working with Probability Distributions” on page 5-3.

The y-axis scale is based on the selected distribution. The x-axis has a log scale for the Weibull,
loglogistic, and lognormal distributions, and a linear scale for the others.

Not all distributions are appropriate for all data sets. probplot errors if the data set is inappropriate
for a specified distribution.
Example: 'weibull'

cens — Censoring data
numeric vector

Censoring data, specified as a numeric vector. cens must be the same length as y, and contain a 1
value for observations that are right-censored and a 0 value for observations that are measured
exactly.
Data Types: single | double

freq — Frequency data
vector of integer values

Frequency data, specified as a vector of integer values. freq must be the same length as y. freq
contains the integer frequencies for the corresponding elements in y.

To create a probability plot using frequency data but not censoring data, specify empty brackets ([])
for cens.
Data Types: single | double

ax — Target axes
Axes object | UIAxes object

Target axes, specified as an Axes object or a UIAxes object. probplot adds an additional plot into
the axes specified by ax. For details, see Axes Properties and UIAxes Properties.

Use gca to return the current axes for the current figure.
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pd — Probability distribution for reference line
probability distribution object

Probability distribution for reference line, specified as a probability distribution object. probplot
adds a fitted line to the axes specified by ax to represent the probability distribution specified by pd.

Create a probability distribution object with specified parameter values using makedist.
Alternatively, fit a probability distribution object to sample data using fitdist. For more information
on probability distribution objects, see “Working with Probability Distributions” on page 5-3.

fun — Function for reference line
function handle

Function for reference line, specified as a function handle. probplot adds a fitted line to the axes
specified by ax to represent the function specified by fun, evaluated at the parameters specified by
params.

fun is a function handle to a cdf function, specified using the function handle operator @. The
function must accept a vector of input values as its first argument, and return a vector containing the
cdf evaluated at each input value. Specify the parameter values required to evaluate fun using the
params argument. For more information on function handles, see “Create Function Handle”.
Example: @wblpdf
Data Types: function_handle

params — Reference line function parameters
vector of numeric values | cell array

Reference line function parameters, specified as a vector of numeric values or a cell array. probplot
adds a fitted line to the axes specified by ax to represent the function specified by fun, evaluated at
the parameters specified by params.

fun is a function handle to a cdf function, specified using the function handle operator @. The
function must accept a vector of values as its first argument, and return a vector of cdf values
evaluated at each value. Specify the parameter values required to evaluate fun using the params
argument. For more information on function handles, see “Create Function Handle”.

Output Arguments
h — Graphic handles for line objects
vector of Line graphic handles

Graphic handles for line objects, returned as a vector of Line graphic handles. Graphic handles are
unique identifiers that you can use to query and modify the properties of a specific line on the plot.
For each column of y, probplot returns two handles:

• The line representing the data points. probplot represents each data point in y using marker
symbols such as '+' and 'o'.

• The line showing the theoretical distribution for the probability plot, represented as a dashed line.

To view and set properties of line objects, use dot notation. For information on using dot notation, see
“Access Property Values”. For information on the Line properties that you can set, see Primitive Line.
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Algorithms
probplot matches the quantiles of sample data to the quantiles of a given probability distribution.
The sample data is sorted, scaled according to the choice of dist, and plotted on the x-axis. When
dist is 'lognormal', 'loglogistic', or 'weibull', the scaling is logarithmic. Otherwise, the
scaling is linear. The y-axis represents the quantiles of the distribution specified in dist, converted
into probability values. The scaling depends on the given distribution and is not linear.

Where the x-axis value is the ith sorted value from a sample of size N, the y-axis value is the midpoint
between evaluation points of the empirical cumulative distribution function of the data. In the case of
uncensored data, the midpoint is equal to i− 0.5

N .

probplot superimposes a reference line to assess the linearity of the plot. If the data is uncensored,
then the line goes through the first and third quartiles of the data. If the data is censored, then the
line shifts accordingly. If the data is uncensored and dist is 'half normal', then probplot uses
the zeroth and second quartiles instead.

Version History
Introduced before R2006a

See Also
normplot | wblplot | ecdf

Topics
“Distribution Plots” on page 4-7
“Hypothesis Testing” on page 8-5

 probplot

35-6041



procrustes
Procrustes analysis

Syntax
d = procrustes(X,Y)
d = procrustes(X,Y,Name,Value)
[d,Z] = procrustes( ___ )
[d,Z,transform] = procrustes( ___ )

Description
d = procrustes(X,Y) returns the “Procrustes Distance” on page 35-6055 between the shapes of X
and Y, which are represented by configurations of landmark points.

d = procrustes(X,Y,Name,Value) specifies additional options using one or more name-value
arguments. For example, you can restrict the Procrustes transformation by disabling reflection and
scaling.

[d,Z] = procrustes( ___ ) also returns Z, the shape resulting from performing the Procrustes
transformation on Y, using any of the input argument combinations in the previous syntaxes

[d,Z,transform] = procrustes( ___ ) also returns the Procrustes transformation.

Examples

Find Procrustes Distance and Plot Superimposed Shape

Construct matrices containing landmark points for two shapes, and visualize the shapes by plotting
their landmark points.

X = [40 88; 51 88; 35 78; 36 75; 39 72; 44 71; 48 71; 52 74; 55 77];
Y = [36 43; 48 42; 31 26; 33 28; 37 30; 40 31; 45 30; 48 28; 51 24];
plot(X(:,1),X(:,2),"x")
hold on
plot(Y(:,1),Y(:,2),"o")
xlim([0 100])
ylim([0 100])
legend("Target shape (X)","Comparison shape (Y)")
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Compare the shapes and view their Procrustes distance.

[d,Z] = procrustes(X,Y)

d = 0.2026

Z = 9×2

   39.7694   87.5089
   50.5616   86.8011
   35.5487   72.1631
   37.3131   73.9909
   40.8735   75.8503
   43.5517   76.7959
   48.0577   75.9771
   50.7835   74.2286
   53.5410   70.6841

Visualize the shape that results from superimposing Y onto X.

plot(Z(:,1),Z(:,2),"s")
legend("Target shape (X)","Comparison shape (Y)", ...
    "Transformed shape (Z)")
hold off
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Analyze Procrustes Transformation Including Rotation

Use the Procrustes transformation returned by procrustes to analyze how it superimposes the
comparison shape onto the target shape.

Generate sample data in two dimensions.

rng("default")
n = 10;  
Y = normrnd(0,1,[n 2]);

Create the target shape X by rotating Y 60 degrees (pi/3 in radians), scaling the size of Y by factor
0.5, and then translating the points by adding 2. Also, add some noise to the landmark points in X.

S = [cos(pi/3) -sin(pi/3); sin(pi/3) cos(pi/3)]

S = 2×2

    0.5000   -0.8660
    0.8660    0.5000

X = normrnd(0.5*Y*S+2,0.05,n,2);

Find the Procrustes transformation that can transform Y to X.
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[~,Z,transform] = procrustes(X,Y);

Display the components of the Procrustes transformation.

transform

transform = struct with fields:
    T: [2x2 double]
    b: 0.4845
    c: [10x2 double]

transform.T

ans = 2×2

    0.4832   -0.8755
    0.8755    0.4832

transform.c

ans = 10×2

    2.0325    1.9836
    2.0325    1.9836
    2.0325    1.9836
    2.0325    1.9836
    2.0325    1.9836
    2.0325    1.9836
    2.0325    1.9836
    2.0325    1.9836
    2.0325    1.9836
    2.0325    1.9836

transform.T is similar to the matrix S. Also, the scale component (transform.b) is close to 0.5,
and the translation component values (transform.c) are close to 2.

Determine whether transform.T indicates a rotation or reflection by computing the determinant of
transform.T. The determinant of a rotation matrix is 1, and the determinant of a reflection matrix is
–1.

det(transform.T) 

ans = 1.0000

In two-dimensional space, a rotation matrix that rotates a point by an angle of θ degrees about the
origin has the form

cosθ −sinθ
sinθ cosθ

.

If you use either cosθ or sinθ, the rotation angle has two possible values between –180 and 180. Use
both the cosθ and sinθ values to determine the rotation angle of the matrix without ambiguity. Using
the atan2d function, you can determine the tanθ value from cosθ and sinθ, and also determine the
angle.

theta = atan2d(transform.T(2,1),transform.T(1,1))
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theta = 61.1037

transform.T is a rotation matrix of 61 degrees.

Analyze Procrustes Transformation Including Reflection

Use the Procrustes transformation returned by procrustes to analyze how it superimposes the
comparison shape onto the target shape.

Create matrices with landmark points for two separate shapes.

X = [20 13; 20 20; 20, 29; 20 40; 12 36];
Y = [36 7; 36 10; 36 14; 36 20; 39 18];

Plot the landmark points to visualize the shapes.

plot(X(:,1),X(:,2),"-x")
hold on
plot(Y(:,1),Y(:,2),"-o")
xlim([0 50])
ylim([0 50])
legend("Target shape (X)","Comparison shape (Y)")
hold off

Obtain the Procrustes transformation by using procrustes.
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[d,Z,transform] = procrustes(X,Y)

d = 0.0064

Z = 5×2

   20.1177   13.3935
   19.9145   19.6790
   19.6435   28.0597
   19.2371   40.6306
   13.0871   36.2371

transform = struct with fields:
    T: [2x2 double]
    b: 2.0963
    c: [5x2 double]

transform.T

ans = 2×2

   -0.9995   -0.0323
   -0.0323    0.9995

transform.c

ans = 5×2

   96.0177    1.1661
   96.0177    1.1661
   96.0177    1.1661
   96.0177    1.1661
   96.0177    1.1661

The scale component of the transformation b indicates that the scale of X is about twice the scale of
Y.

Find the determinant of the rotation and reflection component of the transformation.

det(transform.T)

ans = -1.0000

The determinant is –1, which means that the transformation contains a reflection.

In two-dimensional space, a reflection matrix has the form

cos2θ sin2θ
sin2θ −cos2θ

,

which indicates a reflection over a line that makes an angle θ with the x-axis.

If you use either cos2θ or sin2θ, the angle for the line of reflection has two possible values between –
90 and 90. Use both the cos2θ and sin2θ values to determine the angle for the line of reflection
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without ambiguity. Using the atan2d function, you can determine the tan2θ value from cos2θ and
sin2θ, and also determine the angle.

theta = atan2d(transform.T(2,1),transform.T(1,1))/2

theta = -89.0741

transform.T reflects points across a line that makes roughly a –90 degree angle with the x-axis; this
line indicates the y-axis. The plots of X and Y show that reflecting across the y-axis is required to
superimpose Y onto X.

Apply Procrustes Transformation to Larger Set of Points

Find the Procrustes transformation for landmark points, and apply the transformation to more points
on the comparison shape than just the landmark points.

Create matrices with landmark points for two triangles X (target shape) and Y (comparison shape).

X = [5 0; 5 5; 8 5];
Y = [0 0; 1 0; 1 1];

Create a matrix with more points on the triangle Y.

Y_points = [linspace(Y(1,1),Y(2,1),10)' linspace(Y(1,2),Y(2,2),10)'
            linspace(Y(2,1),Y(3,1),10)' linspace(Y(2,2),Y(3,2),10)'
            linspace(Y(3,1),Y(1,1),10)' linspace(Y(3,2),Y(1,2),10)'];

Plot both shapes, including the larger set of points for the comparison shape.

plot([X(:,1); X(1,1)],[X(:,2); X(1,2)],"bx-")
hold on
plot([Y(:,1); Y(1,1)],[Y(:,2); Y(1,2)],"ro-","MarkerFaceColor","r")
plot(Y_points(:,1),Y_points(:,2),"ro")
xlim([-1 10])
ylim([-1 6])
legend("Target shape (X)","Comparison shape (Y)", ...
    "Additional points on Y","Location","northwest")
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Call procrustes to obtain the Procrustes transformation from the comparison shape to the target
shape.

[d,Z,transform] = procrustes(X,Y)

d = 0.0441

Z = 3×2

    5.0000    0.5000
    4.5000    4.5000
    8.5000    5.0000

transform = struct with fields:
    T: [2x2 double]
    b: 4.0311
    c: [3x2 double]

Use the Procrustes transformation to superimpose the other points (Y_points) on the comparison
shape onto the target shape, and then visualize the results.

Z_points = transform.b*Y_points*transform.T + transform.c(1,:);
plot([Z(:,1); Z(1,1)],[Z(:,2); Z(1,2)],"ks-","MarkerFaceColor","k")
plot(Z_points(:,1),Z_points(:,2),"ks")
legend("Target shape (X)","Comparison shape (Y)", ...
    "Additional points on Y","Transformed shape (Z)", ...
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    "Transformed additional points","Location","best")
hold off

Compare Shapes Without Reflection

Construct the shapes of the handwritten letters d and b using landmark points, and then plot the
points to visualize the letters.

D = [33 93; 33 87; 33 80; 31 72; 32 65; 32 58; 30 72;
     28 72; 25 69; 22 64; 23 59; 26 57; 30 57];
B = [48 83; 48 77; 48 70; 48 65; 49 59; 49 56; 50 66;
     52 66; 56 65; 58 61; 57 57; 54 56; 51 55];
plot(D(:,1),D(:,2),"x-")
hold on
plot(B(:,1),B(:,2),"o-")
legend("Target shape (d)","Comparison shape (b)")
hold off
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Use procrustes to compare the letters with reflection turned off, because reflection would turn the
b into a d and not accurately preserve the shape you want to compare.

d = procrustes(D,B,"reflection",false)

d = 0.3425

Try using procrustes with reflection on to see how the Procrustes distance differs.

d = procrustes(D,B,"reflection","best")

d = 0.0204

This reflection setting results in a smaller Procrustes distance because reflecting b better aligns it
with d.

Compare Shapes Without Scaling

Construct two shapes represented by their landmark points, and then plot the points to visualize
them.

X = [20 13; 20 20; 20 29; 20 40; 12 36];
Y = [36  7; 36 10; 36 14; 36 20; 39 18];
plot(X(:,1),X(:,2),"-x")
hold on

 procrustes

35-6051



plot(Y(:,1),Y(:,2),"-o")
xlim([0 50])
ylim([0 50])
legend("Target shape (X)","Comparison shape (Y)")

Compare the two shapes using Procrustes analysis with scaling turned off.

[d,Z] = procrustes(X,Y,"scaling",false)

d = 0.2781

Z = 5×2

   19.2194   20.8229
   19.1225   23.8214
   18.9932   27.8193
   18.7993   33.8162
   15.8655   31.7202

Visualize the superimposed landmark points.

plot(Z(:,1),Z(:,2),"-s")
legend("Target shape (X)","Comparison shape (Y)", ...
    "Transformed shape (Z)")
hold off
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The superimposed shape Z does not differ in scale from the original shape Y.

Input Arguments
X — Target shape
matrix

Target shape, specified as an n-by-p matrix where each of the n rows contains a p-dimensional
landmark point. The landmark points represent the shape that is the target of the comparison.
Data Types: single | double

Y — Comparison shape
matrix

Comparison shape, specified as an n-by-q matrix where each of the n rows contains a q-dimensional
landmark point with q ≤ p. The landmark points represent the shape to be compared with the target
shape.

Y must have the same number of points (rows) as X, where each point in Y, Y(i,:) corresponds to
the point in the same row in X, X(i,:).

Points in Y can have fewer dimensions (number of columns) than points in X. In this case,
procrustes appends columns of zeros to Y to match the dimensions of X.
Data Types: single | double
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Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: d = procrustes(X,Y,"Scaling",false,"reflection",false) performs Procrustes
analysis without scaling or reflection in the transformation.

Scaling — Flag to enable scaling
true or 1 (default) | false or 0

Flag to enable scaling in the Procrustes transformation, specified as logical 1 (true) or 0 (false). A
value of false prevents scaling in the transformation. A value of true allows scaling if it minimizes
the differences between the landmark points in X and Y.

Set Scaling to false to compare Y to X without scaling Y to match the scale of X. This option
causes shapes of different scales to have a greater Procrustes distance.
Example: "Scaling",false
Data Types: logical

Reflection — Flag to enable reflection
"best" (default) | true or 1 | false or 0

Flag to enable reflection in the Procrustes transformation, specified as "best", logical 1 (true), or
logical 0 (false).

• "best" — Find the optimal Procrustes transformation, regardless of whether or not it contains a
reflection.

• 1 (true) — Force the Procrustes transformation to reflect Y, whether or not the transformation
minimizes the differences between the landmark points.

• 0 (false) — Prevent the Procrustes transformation from reflecting Y. This option does not
prevent rotation in the transformation.

Set Reflection to false to compare Y to X without reflecting Y to match the shape of X. This
option causes shapes that are reflections of each other to have a greater Procrustes distance.
Example: "Reflection",true
Data Types: logical | string | char

Output Arguments
d — Procrustes distance
numeric scalar in the range [0,1]

Procrustes distance, a measure of dissimilarity between two shapes, returned as a numeric scalar in
the range [0,1]. If Scaling is set to false, the Procrustes distance can be outside of the range
[0,1].

procrustes computes the distance using the sum of squared differences between the corresponding
points in X and Z. The function then standardizes the Procrustes distance by the scale of X. The scale
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of X is sum(sum((X-mean(X)).^2)), which is the sum of squared elements of a centered version of
X where the columns of X have mean 0.
Data Types: single | double

Z — Transformed shape
numeric matrix

Transformed shape of the landmark points in Y, returned as an n-by-p numeric matrix that is the
same size as X. The output Z is the result of applying the Procrustes transformation to Y.
Data Types: single | double

transform — Procrustes transformation
structure

Procrustes transformation, returned as a structure with three fields:

• T — Rotation and reflection component, specified by a p-by-p transformation matrix that rotates or
reflects Y to match the orientation of the landmark points in X.

• If T is a rotation matrix, then det(T) is 1.
• If T is a reflection matrix, then det(T) is –1.

• b — Scale component, specified by a scalar to stretch (b > 1), conserve (b = 1), or shrink (b < 1)
the scale of Y to match the scale of X.

• c — Translation component, specified by an n-by-p matrix where each row is the p-dimensional
vector to add to the points in Y to shift it onto X.

The Procrustes transformation superimposes Y onto X by performing the following transformation:
Z = bYT + c.

Set the Reflection name-value argument to false to ensure that transform.T does not contain a
reflection.

Set the Scaling name-value argument to false to remove the scale component, fixing
transform.b to 1.
Data Types: struct

More About
Procrustes Distance

The Procrustes distance is a measure of dissimilarity between shapes based on Procrustes analysis.

The procrustes function finds the Procrustes transformation, which is the best shape-preserving
Euclidean transformation (consisting of rotation, reflection, scaling, and translation) between the two
shapes X and Y. The Procrustes transformation is an optimal transformation that minimizes the sum
of squared differences between the landmark points in X and Z, where Z is the transformed shape of
Y that results from superimposing Y onto X.

The procrustes function returns the Procrustes distance (d), transformed shape (Z), and Procrustes
transformation (transform). The Procrustes distance is the sum of squared differences between X
and Z.
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Tips
• Procrustes analysis is appropriate when all dimensions in X and Y have similar scales. If the

columns of X and Y have different scales, standardize the columns by using zscore or
normalize.

• Procrustes analysis is useful in conjunction with multidimensional scaling. Two different
applications of multidimensional scaling can produce reconstructed points that are similar in
principle, but look different because they have different orientations. Also, the reconstructed
points can have a different orientation than the original points. The procrustes function
transforms one set of points to make them more comparable to the other. For an example, see
“Classical Multidimensional Scaling Applied to Nonspatial Distances” on page 16-186.

Version History
Introduced before R2006a

References
[1] Kendall, David G. “A Survey of the Statistical Theory of Shape.” Statistical Science. Vol. 4, No. 2,

1989, pp. 87–99.

[2] Bookstein, Fred L. Morphometric Tools for Landmark Data. Cambridge, UK: Cambridge University
Press, 1991.

[3] Seber, G. A. F. Multivariate Observations. Hoboken, NJ: John Wiley & Sons, Inc., 1984.

See Also
cmdscale | factoran

Topics
“Compare Handwritten Shapes Using Procrustes Analysis” on page 16-42
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proflik
Package: prob

Profile likelihood function for probability distribution

Syntax
[ll,param] = proflik(pd,pnum)
[ll,param] = proflik(pd,pnum,'Display',display)
[ll,param] = proflik(pd,pnum,setparam)
[ll,param] = proflik(pd,pnum,setparam,'Display',display)
[ll,param,other] = proflik( ___ )

Description
[ll,param] = proflik(pd,pnum) returns a vector ll of loglikelihood values and a vector param
of corresponding parameter values for the parameter in the position indicated by pnum.

[ll,param] = proflik(pd,pnum,'Display',display) returns the loglikelihood values and
corresponding parameter values, and plots the profile likelihood overlaid on an approximation of the
loglikelihood.

[ll,param] = proflik(pd,pnum,setparam) returns the loglikelihood values and corresponding
parameter values as specified by setparam.

[ll,param] = proflik(pd,pnum,setparam,'Display',display) returns the loglikelihood
values and corresponding parameter values as specified by setparam, and plots the profile likelihood
overlaid on an approximation of the loglikelihood.

[ll,param,other] = proflik( ___ ) also returns a matrix other containing the values of the
other parameters that maximize the likelihood, using any of the input arguments from the previous
syntaxes.

Examples

Profile Likelihood of a Distribution Parameter

Load the sample data. Create a probability distribution object by fitting a Weibull distribution to the
miles per gallon (MPG) data.

load carsmall
pd = fitdist(MPG,'Weibull')

pd = 
  WeibullDistribution

  Weibull distribution
    A = 26.5079   [24.8333, 28.2954]
    B = 3.27193   [2.79441, 3.83104]
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View the parameter names for the distribution.

pd.ParameterNames

ans = 1x2 cell
    {'A'}    {'B'}

For the Weibull distribution, A is in position 1, and B is in position 2.

Compute the profile likelihood for B, which is in position pnum = 2.

[ll,param] = proflik(pd,2);

Display the loglikelihood values for the estimated values of B.

[ll',param']

ans = 21×2

 -329.9688    2.7132
 -329.4312    2.7748
 -328.9645    2.8365
 -328.5661    2.8981
 -328.2340    2.9597
 -327.9658    3.0213
 -327.7596    3.0830
 -327.6135    3.1446
 -327.5256    3.2062
 -327.4943    3.2678
      ⋮

These results show that the profile log likelihood is maximized between the estimated B values of
3.2678 and 3.3295, which correspond to loglikelihood values -327.4943 and -327.5178. From the
earlier fit, the MLE of B is 3.27193, which is in this interval as expected.

Profile Likelihood With Restricted Parameter Values

Load the sample data. Create a probability distribution object by fitting a generalized extreme value
distribution to the miles per gallon (MPG) data.

load carsmall
pd = fitdist(MPG,'GeneralizedExtremeValue')

pd = 
  GeneralizedExtremeValueDistribution

  Generalized Extreme Value distribution
        k = -0.207765   [-0.381674, -0.0338563]
    sigma =   7.49674   [6.31755, 8.89604]
       mu =   20.6233   [18.8859, 22.3606]

View the parameter names for the distribution.
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pd.ParameterNames

ans = 1x3 cell
    {'k'}    {'sigma'}    {'mu'}

For the generalized extreme value distribution, k is in position 1, sigma is in position 2, and mu is in
position 3.

Compute the profile likelihood for mu, which is in position pnum = 3. Restrict the computation to
parameter values from 20 to 22, and display the plot.

[ll,param,other] = proflik(pd,3,20:.1:22,'display','on');

The plot shows the estimated value for the parameter mu that maximizes the loglikelihood.

Display the loglikelihood values for the estimated values of mu, and the values of the other
distribution parameters that maximize the corresponding loglikelihood.

[ll',param',other]

ans = 21×4

 -327.5706   20.0000   -0.1803    7.4087
 -327.4971   20.1000   -0.1846    7.4218
 -327.4364   20.2000   -0.1890    7.4354
 -327.3887   20.3000   -0.1934    7.4493
 -327.3538   20.4000   -0.1978    7.4636
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 -327.3317   20.5000   -0.2023    7.4783
 -327.3223   20.6000   -0.2067    7.4932
 -327.3257   20.7000   -0.2112    7.5084
 -327.3418   20.8000   -0.2156    7.5240
 -327.3706   20.9000   -0.2201    7.5399
      ⋮

The first column contains the log likelihood value that corresponds to the estimate of mu in the second
column. The log likelihood is maximized between the parameter values 20.6000 and 20.7000,
corresponding to log likelihood values -327.3223 and -327.3257. The third column contains the value
of k that maximizes the corresponding log likelihood for mu. The fourth column contains the value of
sigma that maximizes the corresponding log likelihood for mu.

Input Arguments
pd — Probability distribution
probability distribution object

Probability distribution, specified as one of the following probability distribution objects created by
fitdist or Distribution Fitter:

• BetaDistribution
• BinomialDistribution
• BirnbaumSaundersDistribution
• BurrDistribution
• ExponentialDistribution
• ExtremeValueDistribution
• GammaDistribution
• GeneralizedExtremeValueDistribution
• GeneralizedParetoDistribution
• HalfNormalDistribution
• InverseGaussianDistribution
• KernelDistribution
• LogisticDistribution
• LoglogisticDistribution
• LognormalDistribution
• NakagamiDistribution
• NegativeBinomialDistribution
• NormalDistribution
• PoissonDistribution
• RayleighDistribution
• RicianDistribution
• StableDistribution
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• tLocationScaleDistribution
• WeibullDistribution

pnum — Parameter number
positive integer value

Parameter number for which to compute the profile likelihood, specified as a positive integer value
corresponding to the position of the desired parameter in the parameter name vector. For example, a
Weibull distribution has a parameter name vector {'A','B'}, so specify pnum as 2 to compute the
profile likelihood for B.
Data Types: single | double

setparam — Parameter value restriction
scalar value | vector of scalar values

Parameter value restriction, specified as a scalar value or a vector of such values. If you do not
specify setparam, proflik chooses the values for output vector param based on the default
confidence interval method for the probability distribution pd. If the parameter can take only
restricted values, and if the confidence interval violates that restriction, you can use setparam to
specify valid values.
Example: [3,3.5,4]

display — Display toggle
'off' (default) | 'on'

Display toggle, specified as either 'on' or 'off'. Specify 'on' to display the profile of the exact
loglikelihood overlaid on the Wald approximation of the loglikelihood. Specify 'off' to omit the
display. The Wald approximation is based on a Taylor series expansion around the estimated
parameter value, as a function of the parameter in position pnum or its logarithm. The intersection of
the curves with the horizontal dotted line marks the endpoints of 95% confidence intervals.

Output Arguments
ll — Loglikelihood values
vector

Loglikelihood values, returned as a vector. The loglikelihood is the value of the likelihood with the
parameter in position pnum set to the values in param, maximized over the remaining parameters.

param — Parameter values
vector

Parameter values corresponding to the loglikelihood values in ll, returned as a vector. If you specify
parameter values using setparam, then param is equal to setparam.

other — Other parameter values
matrix

Other parameter values that maximize the likelihood, returned as a matrix. Each row of other
contains the values for all parameters except the parameter in position pnum.
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Version History
Introduced in R2013a

Extended Capabilities
GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

This function fully supports GPU arrays. For more information, see “Run MATLAB Functions on a
GPU” (Parallel Computing Toolbox).

See Also
mle | paramci | negloglik | fitdist | Distribution Fitter

Topics
“Working with Probability Distributions” on page 5-3
“Supported Distributions” on page 5-16
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proximity
Proximity matrix for data in ensemble of decision trees

Syntax
prox = proximity(B,X)

Description
prox = proximity(B,X) computes a numeric matrix of size Nobs-by-Nobs of proximities for data
X, where Nobs is the number of observations (rows) in X. Proximity between any two observations in
the input data is defined as a fraction of trees in the ensemble B for which these two observations
land on the same leaf. This is a symmetric matrix with ones on the diagonal and off-diagonal elements
ranging from 0 to 1.

See Also
outlierMeasure

Topics
“Model-Specific Anomaly Detection” on page 17-107
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prune
Class: ClassificationTree

Produce sequence of classification subtrees by pruning

Syntax
tree1 = prune(tree)
tree1 = prune(tree,Name,Value)

Description
tree1 = prune(tree) creates a copy of the classification tree tree with its optimal pruning
sequence filled in.

tree1 = prune(tree,Name,Value) creates a pruned tree with additional options specified by one
Name,Value pair argument. You can specify several name-value pair arguments in any order as
Name1,Value1,…,NameN,ValueN.

Input Arguments
tree

A classification tree created with fitctree.

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.

Alpha

A numeric scalar. prune prunes tree to the specified value of the pruning cost.

Level

A numeric scalar from 0 (no pruning) to the largest pruning level of this tree
max(tree.PruneList). prune returns the tree pruned to this level.

Nodes

A numeric vector with elements from 1 to tree.NumNodes. Any tree branch nodes listed in nodes
become leaf nodes in tree1, unless their parent nodes are also pruned.
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Output Arguments
tree1

A classification tree.

Examples

Prune and Display a Classification Tree

Construct and display a full classification tree for Fisher's iris data.

load fisheriris;
varnames = {'SL','SW','PL','PW'};
t1 = fitctree(meas,species,'MinParentSize',5,'PredictorNames',varnames);
view(t1,'Mode','graph');

Construct and display the next largest tree from the optimal pruning sequence.
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t2 = prune(t1,'Level',1);
view(t2,'Mode','graph');

Tips
• tree1 = prune(tree) returns the decision tree tree1 that is the full, unpruned tree, but with

optimal pruning information added. This is useful only if you created tree by pruning another
tree, or by using the fitctree function with pruning set 'off'. If you plan to prune a tree
multiple times along the optimal pruning sequence, it is more efficient to create the optimal
pruning sequence first.

Extended Capabilities
GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

Usage notes and limitations:
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• prune does not execute pruning (estimation of the optimal sequence of pruned subtrees) on a
GPU.

For more information, see “Run MATLAB Functions on a GPU” (Parallel Computing Toolbox).

See Also
fitctree
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prune
Class: RegressionTree

Produce sequence of regression subtrees by pruning

Syntax
tree1 = prune(tree)
tree1 = prune(tree,Name,Value)

Description
tree1 = prune(tree) creates a copy of the regression tree tree with its optimal pruning
sequence filled in.

tree1 = prune(tree,Name,Value) creates a pruned tree with additional options specified by one
Name,Value pair argument. You can specify several name-value pair arguments in any order as
Name1,Value1,…,NameN,ValueN.

Input Arguments
tree

A regression tree created with fitrtree.

Name-Value Pair Arguments

Optional comma-separated pair of Name,Value arguments, where Name is the argument name and
Value is the corresponding value. Name must appear inside single quotes (''). You can specify only
one name-value pair argument.

Alpha

A numeric scalar from 0 (no pruning) to 1 (prune to one node). Prunes to minimize the sum of (Alpha
times the number of leaf nodes) and a cost (mean squared error).

Level

A numeric scalar from 0 (no pruning) to the largest pruning level of this tree
max(tree.PruneList). prune returns the tree pruned to this level.

Nodes

A numeric vector with elements from 1 to tree.NumNodes. Any tree branch nodes listed in Nodes
become leaf nodes in tree1, unless their parent nodes are also pruned.
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Output Arguments
tree1

A regression tree.

Examples

Prune Regression Tree

Load the carsmall data set. Consider Horsepower and Weight as predictor variables.

load carsmall;
X = [Weight Horsepower];
varNames = {'Weight' 'Horsepower'};

Grow a regression tree using the entire data set. View the tree.

Mdl = fitrtree(X,MPG,'PredictorNames',varNames)

Mdl = 
  RegressionTree
           PredictorNames: {'Weight'  'Horsepower'}
             ResponseName: 'Y'
    CategoricalPredictors: []
        ResponseTransform: 'none'
          NumObservations: 94

  Properties, Methods

view(Mdl,'Mode','graph');
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The regression tree has 16 pruning levels.

Prune the regression tree to pruning-level 10. View the pruned tree.

MdlPruned = prune(Mdl,'Level',10);
view(MdlPruned,'Mode','graph');
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The pruned tree has six pruning levels.

Alternatively, you can use the pruning-level field in the Regression tree viewer to prune the tree.

Tips
• tree1 = prune(tree) returns the decision tree tree1 that is the full, unpruned tree, but with

optimal pruning information added. This is useful only if you created tree by pruning another
tree, or by using fitrtree with pruning set 'off'. If you plan to prune a tree multiple times
along the optimal pruning sequence, it is more efficient to create the optimal pruning sequence
first.

Extended Capabilities
GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

Usage notes and limitations:
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• prune does not execute pruning (estimation of the optimal sequence of pruned subtrees) on a
GPU.

For more information, see “Run MATLAB Functions on a GPU” (Parallel Computing Toolbox).

See Also
fitrtree
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qrand
Class: qrandstream

Generate quasi-random points from stream

Syntax
x = qrand(q)
X = qrand(q,n)

Description
x = qrand(q) returns the next value x in the quasi-random number stream q of the qrandstream
on page 35-6075 class. x is a 1-by-d vector, where d is the dimension of the stream. The command
sets q.State to the index in the underlying point set of the next value to be returned.

X = qrand(q,n) returns the next n values X in an n-by-d matrix.

Objects q of the qrandstream class encapsulate properties of a specified quasi-random number
stream. Values of the stream are not generated and stored in memory until q is accessed using
qrand.

Examples
Use qrandstream to construct a 3-D Halton stream, based on a point set that skips the first 1000
values and then retains every 101st point:

q = qrandstream('halton',3,'Skip',1e3,'Leap',1e2)
q = 
   Halton quasi-random stream in 3 dimensions
   Point set properties:
              Skip : 1000
              Leap : 100
    ScrambleMethod : none

nextIdx = q.State
nextIdx =
     1

Use qrand to generate two samples of size four:

X1 = qrand(q,4)
X1 =
    0.0928    0.3475    0.0051
    0.6958    0.2035    0.2371
    0.3013    0.8496    0.4307
    0.9087    0.5629    0.6166
nextIdx = q.State
nextIdx =
     5

X2 = qrand(q,4)
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X2 =
    0.2446    0.0238    0.8102
    0.5298    0.7540    0.0438
    0.3843    0.5112    0.2758
    0.8335    0.2245    0.4694
nextIdx = q.State
nextIdx =
     9

Use reset to reset the stream, then generate another sample:

reset(q)
nextIdx = q.State
nextIdx =
     1

X = qrand(q,4)
X =
    0.0928    0.3475    0.0051
    0.6958    0.2035    0.2371
    0.3013    0.8496    0.4307
    0.9087    0.5629    0.6166

See Also
qrandstream | reset
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qrandstream class

Quasi-random number streams

Construction

qrandstream Construct quasi-random number stream

Methods

addlistener Add listener for event
delete Delete handle object
disp Display qrandstream object
eq Test handle equality
findobj Find objects matching specified conditions
findprop Find property of MATLAB handle object
ge Greater than or equal relation for handles
gt Greater than relation for handles
isvalid Test handle validity
le Less than or equal relation for handles
lt Less than relation for handles
ne Not equal relation for handles
notify Notify listeners of event
qrand Generate quasi-random points from stream
rand Generate quasi-random points from stream
reset Reset state

Properties

PointSet Point set from which stream is drawn
State Current state of the stream

Copy Semantics
Handle. To learn how this affects your use of the class, see Comparing Handle and Value Classes in
the MATLAB Object-Oriented Programming documentation.
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qrandstream
Class: qrandstream

Construct quasi-random number stream

Syntax
q = qrandstream(type,d)
q = qrandstream(type,d,prop1,val1,prop2,val2,...)
q = qrandstream(p)

Description
q = qrandstream(type,d) constructs a d-dimensional quasi-random number stream q of the
qrandstream on page 35-6075 class, of type specified by type. type is either 'halton' or
'sobol', and q is based on a point set from either the haltonset class or sobolset class,
respectively, with default property settings.

q = qrandstream(type,d,prop1,val1,prop2,val2,...) specifies property name/value pairs
for the point set on which the stream is based. Applicable properties depend on type.

q = qrandstream(p) constructs a stream based on the specified point set p. p must be a point set
from either the haltonset class or sobolset class.

Examples
Construct a 3-D Halton stream, based on a point set that skips the first 1000 values and then retains
every 101st point:

q = qrandstream('halton',3,'Skip',1e3,'Leap',1e2)
q = 
   Halton quasi-random stream in 3 dimensions
   Point set properties:
              Skip : 1000
              Leap : 100
    ScrambleMethod : none

nextIdx = q.State
nextIdx =
     1

Use qrand to generate two samples of size four:

X1 = qrand(q,4)
X1 =
    0.0928    0.3475    0.0051
    0.6958    0.2035    0.2371
    0.3013    0.8496    0.4307
    0.9087    0.5629    0.6166
nextIdx = q.State
nextIdx =
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     5

X2 = qrand(q,4)
X2 =
    0.2446    0.0238    0.8102
    0.5298    0.7540    0.0438
    0.3843    0.5112    0.2758
    0.8335    0.2245    0.4694
nextIdx = q.State
nextIdx =
     9

Use reset to reset the stream, and then generate another sample:

reset(q)
nextIdx = q.State
nextIdx =
     1

X = qrand(q,4)
X =
    0.0928    0.3475    0.0051
    0.6958    0.2035    0.2371
    0.3013    0.8496    0.4307
    0.9087    0.5629    0.6166

Version History
Introduced in R2008a

See Also
haltonset | qrand | reset | sobolset
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qqplot
Quantile-quantile plot

Syntax
qqplot(x)
qqplot(x,pd)

qqplot(x,y)

qqplot( ___ ,pvec)
qqplot(ax, ___ )
h = qqplot( ___ )

Description
qqplot(x) displays a quantile-quantile plot of the quantiles of the sample data x versus the
theoretical quantile values from a normal distribution. If the distribution of x is normal, then the data
plot appears linear.

qqplot plots each data point in x using plus sign ('+') markers and draws two reference lines that
represent the theoretical distribution. A solid reference line connects the first and third quartiles of
the data, and a dashed reference line extends the solid line to the ends of the data.

qqplot(x,pd) displays a quantile-quantile plot of the quantiles of the sample data x versus the
theoretical quantiles of the distribution specified by the probability distribution object pd. If the
distribution of x is the same as the distribution specified by pd, then the plot appears linear.

qqplot(x,y) displays a quantile-quantile plot of the quantiles of the sample data x versus the
quantiles of the sample data y. If the samples come from the same distribution, then the plot appears
linear.

qqplot( ___ ,pvec) displays a quantile-quantile plot with the quantiles specified in the vector
pvec. Specify pvec after any of the input argument combinations in the previous syntaxes.

qqplot(ax, ___ ) uses the plot axes specified by the Axes object ax. The option ax can precede any
of the input argument combinations in the previous syntaxes.

h = qqplot( ___ ) returns the handles (h) to the lines in the quantile-quantile plot.

Examples

Quantile-Quantile Plot for Normal Distribution

Use a quantile-quantile plot to determine whether gas prices in Massachusetts follow a normal
distribution.

Load the sample data.

load gas
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The sample data in price1 and price2 represent gasoline prices at 20 different gas stations in
Massachusetts. The samples were collected during two different months.

Create a quantile-quantile plot to determine if the gas prices in price1 follow a normal distribution.

figure
qqplot(price1)

The plot produces an approximately straight line, suggesting that the gas prices follow a normal
distribution.

Quantile-Quantile Plot With Two Samples

Use a quantile-quantile plot to determine whether two sets of sample data come from the same
distribution.

Load the sample data.

load gas

The sample data in price1 and price2 represent gasoline prices at 20 different gas stations in
Massachusetts. The samples were collected during two different months.

Create a quantile-quantile plot using both sets of sample data, to assess whether prices at different
times have the same distribution.
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qqplot(price1,price2);

The plot produces an approximately straight line, suggesting that the two sets of sample data have
the same distribution.

Quantile-Quantile Plot for Weibull Distribution

Use a quantile-quantile plot to determine whether sample data comes from a Weibull distribution.

Load the sample data.

load lightbulb

The first column of the data has the lifetime (in hours) of two types of light bulbs. The second column
has information about the type of light bulb. 1 indicates fluorescent bulbs whereas 0 indicates the
incandescent bulbs. The third column has censoring information. 1 indicates censored data, and 0
indicates the exact failure time. This is simulated data.

Remove the censored data.

lightbulb = [lightbulb(lightbulb(:,3)==0,1),...
    lightbulb(lightbulb(:,3)==0,2)];

Create a variable for each light bulb type. Include only uncensored data.
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fluo = [lightbulb(lightbulb(:,2)==0,1)];
insc = [lightbulb(lightbulb(:,2)==1,1)];

Create a Weibull probability distribution object using the default parameters of A = 1 and B = 1.

pd = makedist('Weibull');

Create a q-q plot to determine whether the lifetime of fluorescent bulbs has a Weibull distribution.

figure
qqplot(fluo,pd)

The plot is not a straight line, suggesting that the lifetime data for fluorescent bulbs does not follow a
Weibull distribution.

Specify Axes for Quantile-Quantile Plots

Display a side-by-side pair of quantile-quantile plots using the tiledlayout and nexttile
functions.

Load the patients data set. Separate the patient diastolic blood pressure levels into two data sets:
one containing the diastolic blood pressure levels of smokers and one containing the diastolic levels
of nonsmokers.

load patients
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smokerIndices = (Smoker == 1);
nonsmokerIndices = (Smoker == 0);

smokerDiastolic = Diastolic(smokerIndices);
nonsmokerDiastolic = Diastolic(nonsmokerIndices);

Create a 2-by-1 tiled chart layout using the tiledlayout function. Create the first set of axes ax1
within the chart layout by calling the nexttile function. In the axes, display a q-q plot to determine
whether the diastolic blood pressure levels of smokers come from a normal distribution. Create the
second set of axes ax2 within the tiled chart layout by calling the nexttile function. In the axes,
display a q-q plot to determine whether the diastolic blood pressure levels of nonsmokers come from
a normal distribution.

tiledlayout(2,1)

% Top axes
ax1 = nexttile;
qqplot(ax1,smokerDiastolic)
ylabel(ax1,'Diastolic Quantiles for Smokers')
title(ax1,'QQ Plot of Smoker Diastolic Levels vs. Standard Normal')

% Bottom axes
ax2 = nexttile;
qqplot(ax2,nonsmokerDiastolic)
ylabel(ax2,'Diastolic Quantiles for Nonsmokers')
title(ax2,'QQ Plot of Nonsmoker Diastolic Levels vs. Standard Normal')
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The second plot more closely follows a straight line, suggesting that the sample of nonsmoker blood
pressure values has an approximately normal distribution. In contrast, the first plot has points below
the line to the left, suggesting a heavier tail (more outliers) than a normal distribution.

Input Arguments
x — Sample data
numeric vector | numeric matrix

Sample data, specified as a numeric vector or numeric matrix. If x is a matrix, then qqplot displays
a separate line for each column.

qqplot displays the sample data using the plot symbol '+'. A line joining the first and third quartiles
of each distribution is superimposed on the plot. The line represents a robust linear fit of the order
statistics for the data in x. This line is extrapolated out to the minimum and maximum values in x to
help evaluate the linearity of the data.
Data Types: single | double

y — Second set of sample data
numeric vector | numeric matrix

Second set of sample data, specified as a numeric vector or numeric matrix. x and y do not need to
be the same length. However, if x and y are matrices, they must contain the same number of
columns. If x and y are matrices, then qqplot displays a separate line for each pair of columns.

qqplot selects the quantiles to plot based on the size of the smaller data set.
Data Types: single | double

pd — Hypothesized probability distribution
probability distribution object

Hypothesized probability distribution, specified as a probability distribution object. qqplot plots the
quantiles of the input data x versus the theoretical quartiles of the distribution specified by pd.

Create a probability distribution object with specified parameter values using makedist, or fit a
probability distribution object to data using fitdist.

pvec — Quantiles for plot
numeric value in the range [0,100] | vector of numeric values in the range [0,100]

Quantiles for plot, specified as a numeric value, or vector of numeric values, in the range [0,100].

For a single set of sample data (x), qqplot uses the quantiles in x. For two sets of sample data (x and
y), qqplot uses the quantiles in the smaller of the two data sets.
Data Types: single | double

ax — Axes for plot
Axes object

Axes for the plot, specified as an Axes object. If you do not specify ax, then qqplot creates the plot
using the current axes. For more information on creating an Axes object, see axes.
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Output Arguments
h — Graphics handles for line objects
vector of Line graphics handles

Graphics handles for line objects, returned as a vector of Line graphics handles. Graphics handles
are unique identifiers that you can use to query and modify the properties of a specific line on the
plot. For each column of x, qqplot returns three handles:

• The line representing the data points. qqplot represents each data point in x using plus sign
('+') markers.

• The line joining the first and third quartiles of each column of x, represented as a solid line.
• The extrapolation of the quartile line, extended to the minimum and maximum values of x,

represented as a dashed line.

To view and set properties of line objects, use dot notation. For information on using dot notation, see
“Access Property Values”. For information on the Line properties that you can set, see Primitive Line.

More About
Quantile-Quantile Plot

A quantile-quantile plot (also called a q-q plot) visually assesses whether sample data comes from a
specified distribution. Alternatively, a q-q plot assesses whether two sets of sample data come from
the same distribution.

A q-q plot orders the sample data values from smallest to largest, then plots these values against the
expected value for the specified distribution at each quantile in the sample data. The quantile values
of the input sample appear along the y-axis, and the theoretical values of the specified distribution at
the same quantiles appear along the x-axis. If the resulting plot is linear, then the sample data likely
comes from the specified distribution.

The q-q plot selects quantiles based on the number of values in the sample data. If the sample data
contains n values, then the plot uses n quantiles. Plot the ith ordered value (also called the ith order
statistic) against the i− 0.5

n th quantile of the specified distribution.

A q-q plot can also assess whether two sets of sample data have the same distribution, even if you do
not know the underlying distribution. The quantile values for the first data set appear on the x-axis
and the corresponding quantile values for the second data set appear on the y-axis. Since q-q plots
rely on quantiles, the number of data points in the two samples does not need to be equal. If the
sample sizes are unequal, the q-q plot chooses the quantiles based on the smaller data set. If the
resulting plot is linear, then the two sets of sample data likely come from the same distribution.

Version History
Introduced before R2006a

See Also
normplot | probplot

35 Functions

35-6084



Topics
“Distribution Plots” on page 4-7
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rand
Class: qrandstream

Generate quasi-random points from stream

Syntax
rand
rand(q,n)
rand(q)
rand(q,m,n)
rand(q,[m,n])
rand(q,m,n,p,...)
rand(q,[m,n,p,...])

Description
rand returns a matrix of quasi-random values and is intended to allow objects of the qrandstream
on page 35-6075 class to be used in code that contains calls to the rand method of the MATLAB
pseudo-random randstream class. Due to the multidimensional nature of quasi-random numbers,
only some syntaxes of rand are supported by the qrandstream class.

rand(q,n) returns an n-by-n matrix only when n is equal to the number of dimensions. Any other
value of n produces an error.

rand(q) returns a scalar only when the stream is in one dimension. Having more than one dimension
in q produces an error.

rand(q,m,n) or rand(q,[m,n]) returns an m-by-n matrix only when n is equal to the number of
dimensions in the stream. Any other value of n produces an error.

rand(q,m,n,p,...) or rand(q,[m,n,p,...]) produces an error unless p and all following
dimensions sizes are equal to one.

Examples
Generate the first 256 points from a 5-D Sobol sequence:

q = qrandstream('sobol',5);
X = rand(q,256,5);

See Also
qrandstream | qrand | rand
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quantileError
Quantile loss using bag of regression trees

Syntax
err = quantileError(Mdl,X)
err = quantileError(Mdl,X,ResponseVarName)
err = quantileError(Mdl,X,Y)
err = quantileError( ___ ,Name,Value)

Description
err = quantileError(Mdl,X) returns half of the mean absolute deviation (MAD) from comparing
the true responses in the table X to the predicted medians resulting from applying the bag of
regression trees Mdl to the observations of the predictor data in X.

• Mdl must be a TreeBagger model object.
• The response variable name in X must have the same name as the response variable in the table

containing the training data.

err = quantileError(Mdl,X,ResponseVarName) uses the true response and predictor
variables contained in the table X. ResponseVarName is the name of the response variable and
Mdl.PredictorNames contain the names of the predictor variables.

err = quantileError(Mdl,X,Y) uses the predictor data in the table or matrix X and the response
data in the vector Y.

err = quantileError( ___ ,Name,Value) uses any of the previous syntaxes and additional
options specified by one or more Name,Value pair arguments. For example, specify quantile
probabilities, the error type, or which trees to include in the quantile-regression-error estimation.

Input Arguments
Mdl — Bag of regression trees
TreeBagger model object (default)

Bag of regression trees, specified as a TreeBagger model object created by the TreeBagger
function. The value of Mdl.Method must be regression.

X — Sample data
numeric matrix | table

Sample data used to estimate quantiles, specified as a numeric matrix or table.

Each row of X corresponds to one observation, and each column corresponds to one variable. If you
specify Y, then the number of rows in X must be equal to the length of Y.

• For a numeric matrix:
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• The variables making up the columns of X must have the same order as the predictor variables
that trained Mdl (stored in Mdl.PredictorNames).

• If you trained Mdl using a table (for example, Tbl), then X can be a numeric matrix if Tbl
contains all numeric predictor variables. If Tbl contains heterogeneous predictor variables (for
example, numeric and categorical data types), then quantileError throws an error.

• Specify Y for the true responses.
• For a table:

• quantileError does not support multicolumn variables or cell arrays other than cell arrays
of character vectors.

• If you trained Mdl using a table (for example, Tbl), then all predictor variables in X must have
the same variable names and data types as those variables that trained Mdl (stored in
Mdl.PredictorNames). However, the column order of X does not need to correspond to the
column order of Tbl. Tbl and X can contain additional variables (response variables,
observation weights, etc.).

• If you trained Mdl using a numeric matrix, then the predictor names in Mdl.PredictorNames
and corresponding predictor variable names in X must be the same. To specify predictor names
during training, see the PredictorNames name-value pair argument of the TreeBagger
function. All predictor variables in X must be numeric vectors. X can contain additional
variables (response variables, observation weights, etc.).

• If X contains the response variable:

• If the response variable has the same name as the response variable that trained Mdl, then
you do not have to supply the response variable name or vector of true responses.
quantileError uses that variable for the true responses by default.

• You can specify ResponseVarName or Y for the true responses.

Data Types: table | double | single

ResponseVarName — Response variable name
character vector | string scalar

Response variable name, specified as a character vector or string scalar. ResponseVarName must be
the name of the response variable in the table of sample data X.

If the table X contains the response variable, and it has the same name as the response variable used
to train Mdl, then you do not have to specify ResponseVarName. quantileError uses that variable
for the true responses by default.
Data Types: char | string

Y — True responses
numeric vector

True responses, specified as a numeric vector. The number of rows in X must be equal to the length of
Y.
Data Types: double | single
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Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.

Mode — Ensemble error type
'ensemble' (default) | 'cumulative' | 'individual'

Ensemble error type, specified as the comma-separated pair consisting of 'Mode' and a value in this
table. Suppose tau is the value of Quantile.

Value Description
'cumulative' err is a Mdl.NumTrees-by-numel(tau) numeric matrix of cumulative quantile

regression errors. err(j,k) is the tau(k) quantile regression error using the
learners in Mdl.Trees(1:j) only.

'ensemble' err is a 1-by-numel(tau) numeric vector of cumulative quantile regression
errors for the entire ensemble. err(k) is the tau(k) ensemble quantile
regression error.

'individual' err is a Mdl.NumTrees-by-numel(tau) numeric matrix of quantile regression
errors from individual learners. err(j,k) is the tau(k) quantile regression
error using the learner in Mdl.Trees(j) only.

For 'cumulative' and 'individual', if you include fewer trees in quantile estimation using
Trees or UseInstanceForTree, then the number of rows in err decreases from Mdl.NumTrees.
Example: 'Mode','cumulative'

Weights — Observation weights
ones(size(X,1),1) (default) | numeric vector of positive values

Observation weights, specified as the comma-separated pair consisting of 'Weights' and a numeric
vector of positive values with length equal to size(X,1). quantileError uses Weights to
compute the weighted average of the deviations when estimating the quantile regression error.

By default, quantileError attributes a weight of 1 to each observation, which yields an unweighted
average of the deviations.

Quantile — Quantile probability
0.5 (default) | numeric vector containing values in [0,1]

Quantile probability, specified as the comma-separated pair consisting of 'Quantile' and a numeric
vector containing values in the interval [0,1]. For each element in Quantile, quantileError
returns corresponding quantile regression errors for all probabilities in Quantile.
Example: 'Quantile',[0 0.25 0.5 0.75 1]
Data Types: single | double

Trees — Indices of trees to use in response estimation
'all' (default) | numeric vector of positive integers
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Indices of trees to use in response estimation, specified as the comma-separated pair consisting of
'Trees' and 'all' or a numeric vector of positive integers. Indices correspond to the cells of
Mdl.Trees; each cell therein contains a tree in the ensemble. The maximum value of Trees must be
less than or equal to the number of trees in the ensemble (Mdl.NumTrees).

For 'all', quantileError uses all trees in the ensemble (that is, the indices 1:Mdl.NumTrees).

Values other than the default can affect the number of rows in err.
Example: 'Trees',[1 10 Mdl.NumTrees]
Data Types: char | string | single | double

TreeWeights — Weights to attribute to responses from individual trees
ones(Mdl.NumTrees,1) (default) | numeric vector of nonnegative values

Weights to attribute to responses from individual trees, specified as the comma-separated pair
consisting of 'TreeWeights' and a numeric vector of numel(trees) nonnegative values. trees is
the value of Trees.

If you specify 'Mode','individual', then quantileError ignores TreeWeights.
Data Types: single | double

UseInstanceForTree — Indicators specifying which trees to use to make predictions for
each observation
'all' (default) | logical matrix

Indicators specifying which trees to use to make predictions for each observation, specified as the
comma-separated pair consisting of 'UseInstanceForTree' and an n-by-Mdl.Trees logical
matrix. n is the number of observations (rows) in X. Rows of UseInstanceForTree correspond to
observations and columns correspond to learners in Mdl.Trees. 'all' indicates to use all trees for
all observations when estimating the quantiles.

If UseInstanceForTree(j,k) = true, then quantileError uses the tree in Mdl.Trees(k)
when it predicts the response for the observation X(j,:).

You can estimate quantiles using the response data in Mdl.Y directly instead of using the predictions
from the random forest by specifying a row composed entirely of false values. For example, to
estimate the quantile for observation j using the response data, and to use the predictions from the
random forest for all other observations, specify this matrix:

UseInstanceForTree = true(size(Mdl.X,2),Mdl.NumTrees);
UseInstanceForTree(j,:) = false(1,Mdl.NumTrees);

Values other than the default can affect the number of rows in err. Also, the value of Trees affects
the value of UseInstanceForTree. Suppose that U is the value of UseInstanceForTree.
quantileError ignores the columns of U corresponding to trees not being used in estimation from
the specification of Trees. That is, quantileError resets the value of 'UseInstanceForTree' to
U(:,trees), where trees is the value of 'Trees'.
Data Types: char | string | logical
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Output Arguments
err — Half of quantile regression error
numeric scalar | numeric matrix

Half of the quantile regression error on page 35-6093, returned as a numeric scalar or T-by-
numel(tau) matrix. tau is the value of Quantile.

T depends on the values of Mode, Trees, UseInstanceForTree, and Quantile. Suppose that you
specify 'Trees',trees and you use the default value of 'UseInstanceForTree'.

• For 'Mode','cumulative', err is a numel(trees)-by-numel(tau) numeric matrix.
err(j,k) is the tau(k) cumulative quantile regression error using the learners in
Mdl.Trees(trees(1:j)).

• For 'Mode','ensemble', err is a 1-by-numel(tau) numeric vector. err(k) is the tau(k)
cumulative quantile regression error using the learners in Mdl.Trees(trees).

• For 'Mode','individual', err is a numel(trees)-by-numel(tau) numeric matrix.
err(j,k) is the tau(k) quantile regression error using the learner in Mdl.Trees(trees(j)).

Examples

Estimate In-Sample Quantile Regression Error

Load the carsmall data set. Consider a model that predicts the fuel economy of a car given its
engine displacement, weight, and number of cylinders. Consider Cylinders a categorical variable.

load carsmall
Cylinders = categorical(Cylinders);
X = table(Displacement,Weight,Cylinders,MPG);

Train an ensemble of bagged regression trees using the entire data set. Specify 100 weak learners.

rng(1); % For reproducibility
Mdl = TreeBagger(100,X,'MPG','Method','regression');

Mdl is a TreeBagger ensemble.

Perform quantile regression, and estimate the MAD of the entire ensemble using the predicted
conditional medians.

err = quantileError(Mdl,X)

err = 1.2339

Because X is a table containing the response and commensurate variable names, you do not have to
specify the response variable name or data. However, you can specify the response using this syntax.

err = quantileError(Mdl,X,'MPG')

err = 1.2339
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Find Appropriate Ensemble Size Using Quantile Regression Error

Load the carsmall data set. Consider a model that predicts the fuel economy of a car given its
engine displacement, weight, and number of cylinders.

load carsmall
X = table(Displacement,Weight,Cylinders,MPG);

Randomly split the data into two sets: 75% training and 25% testing. Extract the subset indices.

rng(1); % For reproducibility 
cvp = cvpartition(size(X,1),'Holdout',0.25);
idxTrn = training(cvp);
idxTest = test(cvp);

Train an ensemble of bagged regression trees using the training set. Specify 250 weak learners.

Mdl = TreeBagger(250,X(idxTrn,:),'MPG','Method','regression');

Estimate the cumulative 0.25, 0.5, and 0.75 quantile regression errors for the test set. Pass the
predictor data in as a numeric matrix, and the response data in as a vector.

err = quantileError(Mdl,X{idxTest,1:3},MPG(idxTest),'Quantile',[0.25 0.5 0.75],...
    'Mode','cumulative');

err is a 250-by-3 matrix of cumulative quantile regression errors. Columns correspond to quantile
probabilities and rows correspond to trees in the ensemble. The errors are cumulative, so they
incorporate aggregated predictions from previous trees. Although, Mdl was trained using a table, if
all predictor variables in the table are numeric, then you can supply a matrix of predictor data
instead.

Plot the cumulative quantile errors on the same plot.

figure;
plot(err);
legend('0.25 quantile error','0.5 quantile error','0.75 quantile error');
ylabel('Quantile error');
xlabel('Tree index');
title('Cumulative Quantile Regression Error')
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Training using about 60 trees appears to be enough for the first two quartiles, but the third quartile
requires about 150 trees.

More About
Quantile Regression Error

The quantile regression error of a model given observed predictor data and responses is the weighted
mean absolute deviation (MAD). If the model under-predicts the response, then deviation weights are
τ, the quantile probability. If the model over-predicts, then deviation weights are 1 – τ.

That is, the τ quantile regression error is

Lτ = τ

∑
j: y j ≥ y τ, j

w j y j− y τ, j

∑
j = 1

n
w j

+ 1− τ

∑
j: y j < y τ, j

w j y τ, j− y j

∑
j = 1

n
w j

.

yj is true response j, y τ, j is the τ quantile that the model predicts, and wj is observation weight j.
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Tips
• To tune the number of trees in the ensemble, set 'Mode','cumulative' and plot the quantile

regression errors with respect to tree indices. The maximal number of required trees is the tree
index where the quantile regression error appears to level off.

• To investigate the performance of a model when the training sample is small, use
oobQuantileError instead.

Version History
Introduced in R2016b

References

[1] Breiman, L. Random Forests. Machine Learning 45, pp. 5–32, 2001.

[2] Meinshausen, N. “Quantile Regression Forests.” Journal of Machine Learning Research, Vol. 7,
2006, pp. 983–999.

See Also
error | oobQuantileError | quantilePredict | TreeBagger
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quantilePredict
Predict response quantile using bag of regression trees

Syntax
YFit = quantilePredict(Mdl,X)
YFit = quantilePredict(Mdl,X,Name,Value)
[YFit,YW] = quantilePredict( ___ )

Description
YFit = quantilePredict(Mdl,X) returns a vector of medians of the predicted responses at X, a
table or matrix of predictor data, and using the bag of regression trees Mdl. Mdl must be a
TreeBagger model object.

YFit = quantilePredict(Mdl,X,Name,Value) uses additional options specified by one or more
Name,Value pair arguments. For example, specify quantile probabilities or which trees to include for
quantile estimation.

[YFit,YW] = quantilePredict( ___ ) also returns a sparse matrix of response weights on page
35-6102.

Input Arguments
Mdl — Bag of regression trees
TreeBagger model object (default)

Bag of regression trees, specified as a TreeBagger model object created by the TreeBagger
function. The value of Mdl.Method must be regression.

X — Predictor data
numeric matrix | table

Predictor data used to estimate quantiles, specified as a numeric matrix or table.

Each row of X corresponds to one observation, and each column corresponds to one variable.

• For a numeric matrix:

• The variables making up the columns of X must have the same order as the predictor variables
that trained Mdl.

• If you trained Mdl using a table (for example, Tbl), then X can be a numeric matrix if Tbl
contains all numeric predictor variables. If Tbl contains heterogeneous predictor variables (for
example, numeric and categorical data types) and X is a numeric matrix, then
quantilePredict throws an error.

• For a table:

• quantilePredict does not support multicolumn variables and cell arrays other than cell
arrays of character vectors.
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• If you trained Mdl using a table (for example, Tbl), then all predictor variables in X must have
the same variable names and data types as those variables that trained Mdl (stored in
Mdl.PredictorNames). However, the column order of X does not need to correspond to the
column order of Tbl. Tbl and X can contain additional variables (response variables,
observation weights, etc.), but quantilePredict ignores them.

• If you trained Mdl using a numeric matrix, then the predictor names in Mdl.PredictorNames
and corresponding predictor variable names in X must be the same. To specify predictor names
during training, see the PredictorNames name-value pair argument of the TreeBagger
function. All predictor variables in X must be numeric vectors. X can contain additional
variables (response variables, observation weights, etc.), but quantilePredict ignores them.

Data Types: table | double | single

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.

Quantile — Quantile probability
0.5 (default) | numeric vector containing values in [0,1]

Quantile probability, specified as the comma-separated pair consisting of 'Quantile' and a numeric
vector containing values in the interval [0,1]. For each observation (row) in X, quantilePredict
returns corresponding quantiles for all probabilities in Quantile.
Example: 'Quantile',[0 0.25 0.5 0.75 1]
Data Types: single | double

Trees — Indices of trees to use in response estimation
'all' (default) | numeric vector of positive integers

Indices of trees to use in response estimation, specified as the comma-separated pair consisting of
'Trees' and 'all' or a numeric vector of positive integers. Indices correspond to the cells of
Mdl.Trees; each cell therein contains a tree in the ensemble. The maximum value of Trees must be
less than or equal to the number of trees in the ensemble (Mdl.NumTrees).

For 'all', quantilePredict uses the indices 1:Mdl.NumTrees.
Example: 'Trees',[1 10 Mdl.NumTrees]
Data Types: char | string | single | double

TreeWeights — Weights to attribute to responses from individual trees
numeric vector of nonnegative values

Weights to attribute to responses from individual trees, specified as the comma-separated pair
consisting of 'TreeWeights' and a numeric vector of numel(trees) nonnegative values. trees is
the value of the Trees name-value pair argument.

The default is ones(size(trees)).
Data Types: single | double
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UseInstanceForTree — Indicators specifying which trees to use to make predictions for
each observation
'all' (default) | logical matrix

Indicators specifying which trees to use to make predictions for each observation, specified as the
comma-separated pair consisting of 'UseInstanceForTree' and an n-by-Mdl.Trees logical
matrix. n is the number of observations (rows) in X. Rows of UseInstanceForTree correspond to
observations and columns correspond to learners in Mdl.Trees. 'all' indicates to use all trees for
all observations when estimating the quantiles.

If UseInstanceForTree(j,k) = true, then quantilePredict uses the tree in
Mdl.Trees(trees(k)) when it predicts the response for the observation X(j,:).

You can estimate the quantile using the response data in Mdl.Y directly instead of using the
predictions from the random forest by specifying a row composed entirely of false values. For
example, to estimate the quantile for observation j using the response data, and to use the
predictions from the random forest for all other observations, specify this matrix:

UseInstanceForTree = true(size(Mdl.X,2),Mdl.NumTrees);
UseInstanceForTree(j,:) = false(1,Mdl.NumTrees);

Data Types: char | string | logical

Output Arguments
YFit — Estimated quantiles
numeric matrix

Estimated quantiles, returned as an n-by-numel(tau) numeric matrix. n is the number of
observations in X (size(X,1)) and tau is the value of Quantile. That is, YFit(j,k) is the
estimated 100*tau(k)% percentile of the response distribution given X(j,:) and using Mdl.

YW — Response weights
sparse matrix

Response weights on page 35-6102, returned as an ntrain-by-n sparse matrix. ntrain is the number of
responses in the training data (numel(Mdl.Y)) and n is the number of observations in X
(size(X,1)).

quantilePredict predicts quantiles using linear interpolation of the empirical cumulative
distribution function (C.D.F.). For a particular observation, you can use its response weights to
estimate quantiles using alternative methods, such as approximating the C.D.F. using kernel
smoothing.

Note quantilePredict derives response weights by passing an observation through the trees in
the ensemble. If you specify UseInstanceForTree and you compose row j entirely of false values,
then YW(:,j) = Mdl.W instead, that is, the observation weights.

Examples

 quantilePredict

35-6097



Predict Training Sample Medians

Load the carsmall data set. Consider a model that predicts the fuel economy of a car given its
engine displacement.

load carsmall

Train an ensemble of bagged regression trees using the entire data set. Specify 100 weak learners.

rng(1); % For reproducibility
Mdl = TreeBagger(100,Displacement,MPG,'Method','regression');

Mdl is a TreeBagger ensemble.

Perform quantile regression to predict the median MPG for all sorted training observations.

medianMPG = quantilePredict(Mdl,sort(Displacement));

medianMPG is an n-by-1 numeric vector of medians corresponding to the conditional distribution of
the response given the sorted observations in Displacement. n is the number of observations in
Displacement.

Plot the observations and the estimated medians on the same figure. Compare the median and mean
responses.

meanMPG = predict(Mdl,sort(Displacement));

figure;
plot(Displacement,MPG,'k.');
hold on
plot(sort(Displacement),medianMPG);
plot(sort(Displacement),meanMPG,'r--');
ylabel('Fuel economy');
xlabel('Engine displacement');
legend('Data','Median','Mean');
hold off;
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Estimate Prediction Intervals Using Percentiles

Load the carsmall data set. Consider a model that predicts the fuel economy of a car given its
engine displacement.

load carsmall

Train an ensemble of bagged regression trees using the entire data set. Specify 100 weak learners.

rng(1); % For reproducibility
Mdl = TreeBagger(100,Displacement,MPG,'Method','regression');

Perform quantile regression to predict the 2.5% and 97.5% percentiles for ten equally-spaced engine
displacements between the minimum and maximum in-sample displacement.

predX = linspace(min(Displacement),max(Displacement),10)';
quantPredInts = quantilePredict(Mdl,predX,'Quantile',[0.025,0.975]);

quantPredInts is a 10-by-2 numeric matrix of prediction intervals corresponding to the
observations in predX. The first column contains the 2.5% percentiles and the second column
contains the 97.5% percentiles.

Plot the observations and the estimated medians on the same figure. Compare the percentile
prediction intervals and the 95% prediction intervals assuming the conditional distribution of MPG is
Gaussian.
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[meanMPG,steMeanMPG] = predict(Mdl,predX);
stndPredInts = meanMPG + [-1 1]*norminv(0.975).*steMeanMPG;

figure;
h1 = plot(Displacement,MPG,'k.');
hold on
h2 = plot(predX,quantPredInts,'b');
h3 = plot(predX,stndPredInts,'r--');
ylabel('Fuel economy');
xlabel('Engine displacement');
legend([h1,h2(1),h3(1)],{'Data','95% percentile prediction intervals',...
    '95% Gaussian prediction intervals'});
hold off;

Estimate Conditional Cumulative Distribution Using Quantile Regression

Load the carsmall data set. Consider a model that predicts the fuel economy of a car given its
engine displacement.

load carsmall

Train an ensemble of bagged regression trees using the entire data set. Specify 100 weak learners.

rng(1); % For reproducibility
Mdl = TreeBagger(100,Displacement,MPG,'Method','regression');
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Estimate the response weights for a random sample of four training observations. Plot the training
sample and identify the chosen observations.

[predX,idx] = datasample(Mdl.X,4);
[~,YW] = quantilePredict(Mdl,predX);
n = numel(Mdl.Y);

figure;
plot(Mdl.X,Mdl.Y,'o');
hold on
plot(predX,Mdl.Y(idx),'*','MarkerSize',10);
text(predX-10,Mdl.Y(idx)+1.5,{'obs. 1' 'obs. 2' 'obs. 3' 'obs. 4'});
legend('Training Data','Chosen Observations');
xlabel('Engine displacement')
ylabel('Fuel economy')
hold off

YW is an n-by-4 sparse matrix containing the response weights. Columns correspond to test
observations and rows correspond to responses in the training sample. Response weights are
independent of the specified quantile probability.

Estimate the conditional cumulative distribution function (C.C.D.F.) of the responses by:

1 Sorting the responses is ascending order, and then sorting the response weights using the
indices induced by sorting the responses.

2 Computing the cumulative sums over each column of the sorted response weights.
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[sortY,sortIdx] = sort(Mdl.Y);
cpdf = full(YW(sortIdx,:));
ccdf = cumsum(cpdf);

ccdf(:,j) is the empirical C.C.D.F. of the response given test observation j.

Plot the four empirical C.C.D.F. in the same figure.

figure;
plot(sortY,ccdf);
legend('C.C.D.F. given test obs. 1','C.C.D.F. given test obs. 2',...
    'C.C.D.F. given test obs. 3','C.C.D.F. given test obs. 4',...
    'Location','SouthEast')
title('Conditional Cumulative Distribution Functions')
xlabel('Fuel economy')
ylabel('Empirical CDF')

More About
Response Weights

Response weights are scalars that represent the conditional distribution of the response given a value
in the predictor space. The observations in the bootstrap samples and the leaves that the training and
test observations share induce response weights.
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Given the observation x, the response weight for observation j in the training sample using tree t in
the ensemble is

wt j(x) =
I X j ∈ St(x)

∑
k = 1

ntrain
I Xk ∈ St(x)

,

where:

• I{h} is the indicator function.
• St(x) is the leaf of tree t containing x.
• ntrain is the number of training observations.

In other words, the response weights of a particular tree form the conditional relative frequency
distribution of the response.

The response weights for the entire ensemble are averaged over the trees:

w j
∗(x) = 1

T ∑t = 1

T
wt j(x) .

Quantile Random Forest

Quantile random forest [2] is a quantile-regression method that uses a random forest [1] of
regression trees to model the conditional distribution of a response variable, given the value of
predictor variables. You can use a fitted model to estimate quantiles in the conditional distribution of
the response.

Besides quantile estimation, you can use quantile regression to estimate prediction intervals or detect
outliers. For example:

• To estimate 95% quantile prediction intervals, estimate the 0.025 and 0.975 quantiles.
• To detect outliers, estimate the 0.01 and 0.99 quantiles. All observations smaller than the 0.01

quantile and larger than the 0.99 quantile are outliers. All observations that are outside the
interval [L,U] can be considered outliers:

L = Q1− 1.5 * IQR

and

U = Q3 + 1.5 * IQR,

where:

• Q1 is the 0.25 quantile.
• Q3 is the 0.75 quantile.
• IQR = Q3 – Q1 (the interquartile range).

Tip
quantilePredict estimates the conditional distribution of the response using the training data
every time you call it. To predict many quantiles efficiently, or quantiles for many observations
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efficiently, you should pass X as a matrix or table of observations and specify all quantiles in a vector
using the Quantile name-value pair argument. That is, avoid calling quantilePredict within a
loop.

Algorithms
• The TreeBagger grows a random forest of regression trees using the training data. Then, to

implement quantile random forest on page 35-6103, quantilePredict predicts quantiles using
the empirical conditional distribution of the response given an observation from the predictor
variables. To obtain the empirical conditional distribution of the response:

1 quantilePredict passes all the training observations in Mdl.X through all the trees in the
ensemble, and stores the leaf nodes of which the training observations are members.

2 quantilePredict similarly passes each observation in X through all the trees in the
ensemble.

3 For each observation in X, quantilePredict:

a Estimates the conditional distribution of the response by computing response weights on
page 35-6102 for each tree.

b For observation k in X, aggregates the conditional distributions for the entire ensemble:

F y X = xk = ∑
j = 1

n
∑

t = 1

T 1
T wt j xk I Y j ≤ y .

n is the number of training observations (size(Y,1)) and T is the number of trees in the
ensemble (Mdl.NumTrees).

4 For observation k in X, the τ quantile or, equivalently, the 100τ% percentile, is
Qτ(xk) = inf y:F y X = xk ≥ τ .

• This process describes how quantilePredict uses all specified weights.

1 For all training observations j = 1,...,n and all chosen trees t = 1,...,T,

quantilePredict attributes the product vtj = btjwj,obs to training observation j (stored in
Mdl.X(j,:) and Mdl.Y(j)). btj is the number of times observation j is in the bootstrap
sample for tree t. wj,obs is the observation weight in Mdl.W(j).

2 For each chosen tree, quantilePredict identifies the leaves in which each training
observation falls. Let St(xj) be the set of all observations contained in the leaf of tree t of
which observation j is a member.

3 For each chosen tree, quantilePredict normalizes all weights within a particular leaf to
sum to 1, that is,

vt j
∗ =

vt j
∑

i ∈ St(x j)
vti

.

4 For each training observation and tree, quantilePredict incorporates tree weights (wt,tree)
specified by TreeWeights, that is, w*

tj,tree = wt,treevtj
*Trees not chosen for prediction have 0

weight.
5 For all test observations k = 1,...,K in X and all chosen trees t = 1,...,TquantilePredict

predicts the unique leaves in which the observations fall, and then identifies all training
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observations within the predicted leaves. quantilePredict attributes the weight utj such
that

ut j = wt j, tree
∗ ; if xk ∈ St(x j)

0; otherwise
.

6 quantilePredict sums the weights over all chosen trees, that is,

u j = ∑
t = 1

T
ut j .

7 quantilePredict creates response weights by normalizing the weights so that they sum to
1, that is,

w j
∗ =

u j

∑ j = 1
n u j

.

Version History
Introduced in R2016b

References

[1] Breiman, L. "Random Forests." Machine Learning 45, pp. 5–32, 2001.

[2] Meinshausen, N. “Quantile Regression Forests.” Journal of Machine Learning Research, Vol. 7,
2006, pp. 983–999.

See Also
predict | oobQuantilePredict | quantileError | TreeBagger

Topics
“Detect Outliers Using Quantile Regression” on page 19-138
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randg
Gamma random numbers with unit scale

Syntax
Y = randg
Y = randg(A)
Y = randg(A,m)
Y = randg(A,m,n,p,...)
Y = randg(A,[m,n,p,...])
Y = randg(...,classname)
Y = randg(...,'like',X)
Y = randg(...,'like',classname)

Description
Y = randg returns a scalar random value chosen from a gamma distribution with unit scale and
shape.

Y = randg(A) returns a matrix of random values chosen from gamma distributions with unit scale.
Y is the same size as A, and randg generates each element of Y using a shape parameter equal to the
corresponding element of A.

Y = randg(A,m) returns an m-by-m matrix of random values chosen from gamma distributions with
shape parameters A. A is either an m-by-m matrix or a scalar. If A is a scalar, randg uses that single
shape parameter value to generate all elements of Y.

Y = randg(A,m,n,p,...) or Y = randg(A,[m,n,p,...]) returns an m-by-n-by-p-by-... array
of random values chosen from gamma distributions with shape parameters A. A is either an m-by-n-by-
p-by-... array or a scalar.

Y = randg(...,classname) returns an array of random values chosen from gamma distributions
of the specified class. classname can be double or single.

Y = randg(...,'like',X) or Y = randg(...,'like',classname) returns an array of
random values chosen from gamma distributions of the same class as X or classname, respectively. X
is a numeric array.

randg produces pseudo-random numbers using the MATLAB functions rand and randn. The
sequence of numbers generated is determined by the settings of the uniform random number
generator that underlies rand and randn. Control that shared random number generator using rng.
See the rng documentation for more information.

Note To generate gamma random numbers and specify both the scale and shape parameters, you
should call gamrnd.
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Examples
Example 1

Generate a 100-by-1 array of values drawn from a gamma distribution with shape parameter 3.

r = randg(3,100,1);

Example 2

Generate a 100-by-2 array of values drawn from gamma distributions with shape parameters 3 and 2.

A = [ones(100,1)*3,ones(100,1)*2];
r = randg(A,[100,2]);

Example 3

To create reproducible output from randg, reset the random number generator used by rand and
randn to its default startup settings. This way randg produces the same random numbers as if you
restarted MATLAB.

rng('default')
randg(3,1,5)

ans =

    6.9223    4.3369    1.0505    3.2662   11.3269

Example 4

Save the settings for the random number generator used by rand and randn, generate 5 values from
randg, restore the settings, and repeat those values.

s = rng; % Obtain the current state of the random stream
r1 = randg(10,1,5)

r1 =

    9.4719    9.0433   15.0774   14.7763    6.3775

rng(s); % Reset the stream to the previous state
r2 = randg(10,1,5)

r2 =

    9.4719    9.0433   15.0774   14.7763    6.3775

r2 contains exactly the same values as r1.

Example 5

Reinitialize the random number generator used by rand and randn with a seed based on the current
time. randg returns different values each time you do this. Note that it is usually not necessary to do
this more than once per MATLAB session.

rng('shuffle');
randg(2,1,5);
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Version History
Introduced before R2006a

References

[1] Marsaglia, G., and W. W. Tsang. “A Simple Method for Generating Gamma Variables.” ACM
Transactions on Mathematical Software. Vol. 26, 2000, pp. 363–372.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

This function fully supports GPU arrays. For more information, see “Run MATLAB Functions on a
GPU” (Parallel Computing Toolbox).

See Also
gamrnd
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random
Package: prob

Random numbers

Syntax
R = random(name,A)
R = random(name,A,B)
R = random(name,A,B,C)
R = random(name,A,B,C,D)

R = random(pd)

R = random( ___ ,sz1,...,szN)
R = random( ___ ,sz)

Description
R = random(name,A) returns a random number from the one-parameter distribution family
specified by name and the distribution parameter A.

R = random(name,A,B) returns a random number from the two-parameter distribution family
specified by name and the distribution parameters A and B.

R = random(name,A,B,C) returns a random number from the three-parameter distribution family
specified by name and the distribution parameters A, B, and C.

R = random(name,A,B,C,D) returns a random number from the four-parameter distribution family
specified by name and the distribution parameters A, B, C, and D.

R = random(pd) returns a random number from the probability distribution object pd.

R = random( ___ ,sz1,...,szN) generates an array of random numbers from the specified
probability distribution using input arguments from any of the previous syntaxes, where
sz1,...,szN indicates the size of each dimension.

R = random( ___ ,sz) generates an array of random numbers from the specified probability
distribution using input arguments from any of the previous syntaxes, where vector sz specifies
size(r).

Examples

Generate One Random Number by Specifying Distribution Name and Parameters

Generate one random number from the normal distribution with the mean μ equal to 1 and the
standard deviation σ equal to 5. Specify the distribution name 'Normal' and the distribution
parameters.
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rng('default') % For reproducibility
mu = 1;
sigma = 5;
r = random('Normal',mu,sigma)

r = 3.6883

Generate One Random Number Using Distribution Object

Create a normal distribution object and generate one random number using the object.

Create a normal distribution object with the mean μ equal to 1 and the standard deviation σ equal to
5.

mu = 1;
sigma = 5;
pd = makedist('Normal','mu',mu,'sigma',sigma);

Generate one random number from the distribution.

rng('default') % For reproducibility
r = random(pd)

r = 3.6883

Reset Random Number Generator

Save the current state of the random number generator. Then generate a random number from the
Poisson distribution with rate parameter 5.

s = rng;
r = random('Poisson',5)

r = 5

Restore the state of the random number generator to s, and then create a new random number. The
value is the same as before.

rng(s);
r1 = random('Poisson',5)

r1 = 5

Clone Size from Existing Array

Create a matrix of random numbers with the same size as an existing array. Use the stable
distribution with shape parameters 2 and 0, scale parameter 1, and location parameter 0.

A = [3 2; -2 1];
sz = size(A);
R = random('Stable',2,0,1,0,sz)
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R = 2×2

    0.7604   -3.1945
    2.5935    1.2193

You can combine the previous two lines of code into a single line.

R = random('Stable',2,0,1,0,size(A))

R = 2×2

    0.4508   -0.6132
   -1.8494    0.4845

Generate Multiple Random Numbers

Create a Weibull probability distribution object using the default parameter values.

pd = makedist('Weibull')

pd = 
  WeibullDistribution

  Weibull distribution
    A = 1
    B = 1

Generate random numbers from the distribution.

rng('default')  % For reproducibility
r = random(pd,10000,1);

Construct a histogram using 100 bins with a Weibull distribution fit.

histfit(r,100,'weibull')
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Generate Multidimensional Array of Random Numbers

Create a standard normal probability distribution object.

pd = makedist('Normal')

pd = 
  NormalDistribution

  Normal distribution
       mu = 0
    sigma = 1

Generate a 2-by-3-by-2 array of random numbers from the distribution.

r = random(pd,[2,3,2])

r = 
r(:,:,1) =

    0.5377   -2.2588    0.3188
    1.8339    0.8622   -1.3077
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r(:,:,2) =

   -0.4336    3.5784   -1.3499
    0.3426    2.7694    3.0349

Input Arguments
name — Probability distribution name
character vector or string scalar of probability distribution name

Probability distribution name, specified as one of the probability distribution names in this table.

name Distribution Input
Parameter A

Input
Parameter B

Input
Parameter C

Input
Parameter D

'Beta' “Beta Distribution” on
page B-6

a first shape
parameter

b second
shape
parameter

— —

'Binomial' “Binomial
Distribution” on page
B-10

n number of
trials

p probability
of success for
each trial

— —

'BirnbaumSaunders
'

“Birnbaum-Saunders
Distribution” on page
B-18

β scale
parameter

γ shape
parameter

— —

'Burr' “Burr Type XII
Distribution” on page
B-19

α scale
parameter

c first shape
parameter

k second
shape
parameter

—

'Chisquare' or
'chi2'

“Chi-Square
Distribution” on page
B-29

ν degrees of
freedom

— — —

'Exponential' “Exponential
Distribution” on page
B-34

μ mean — — —

'Extreme Value' or
'ev'

“Extreme Value
Distribution” on page
B-41

μ location
parameter

σ scale
parameter

— —

'F' “F Distribution” on
page B-46

ν1 numerator
degrees of
freedom

ν2
denominator
degrees of
freedom

— —

'Gamma' “Gamma Distribution”
on page B-48

a shape
parameter

b scale
parameter

— —

'Generalized
Extreme Value' or
'gev'

“Generalized Extreme
Value Distribution” on
page B-56

k shape
parameter

σ scale
parameter

μ location
parameter

—
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name Distribution Input
Parameter A

Input
Parameter B

Input
Parameter C

Input
Parameter D

'Generalized
Pareto' or 'gp'

“Generalized Pareto
Distribution” on page
B-60

k tail index
(shape)
parameter

σ scale
parameter

μ threshold
(location)
parameter

—

'Geometric' “Geometric
Distribution” on page
B-64

p probability
parameter

— — —

'Half Normal' or
'hn'

“Half-Normal
Distribution” on page
B-69

μ location
parameter

σ scale
parameter

— —

'Hypergeometric'
or 'hyge'

“Hypergeometric
Distribution” on page
B-74

m size of the
population

k number of
items with the
desired
characteristic
in the
population

n number of
samples drawn

—

'InverseGaussian' “Inverse Gaussian
Distribution” on page
B-76

μ scale
parameter

λ shape
parameter

— —

'Logistic' “Logistic Distribution”
on page B-86

μ mean σ scale
parameter

— —

'LogLogistic' “Loglogistic
Distribution” on page
B-87

μ mean of
logarithmic
values

σ scale
parameter of
logarithmic
values

— —

'LogNormal' “Lognormal
Distribution” on page
B-89

μ mean of
logarithmic
values

σ standard
deviation of
logarithmic
values

— —

'Nakagami' “Nakagami
Distribution” on page
B-114

μ shape
parameter

ω scale
parameter

— —

'Negative
Binomial' or 'nbin'

“Negative Binomial
Distribution” on page
B-115

r number of
successes

p probability
of success in a
single trial

— —

'Noncentral F' or
'ncf'

“Noncentral F
Distribution” on page
B-121

ν1 numerator
degrees of
freedom

ν2
denominator
degrees of
freedom

δ noncentrality
parameter

—

'Noncentral t' or
'nct'

“Noncentral t
Distribution” on page
B-123

ν degrees of
freedom

δ noncentrality
parameter

— —

'Noncentral Chi-
square' or 'ncx2'

“Noncentral Chi-
Square Distribution”
on page B-119

ν degrees of
freedom

δ noncentrality
parameter

— —
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name Distribution Input
Parameter A

Input
Parameter B

Input
Parameter C

Input
Parameter D

'Normal' “Normal Distribution”
on page B-125

μ mean σ standard
deviation

— —

'Poisson' “Poisson Distribution”
on page B-137

λ mean — — —

'Rayleigh' “Rayleigh
Distribution” on page
B-143

b scale
parameter

— — —

'Rician' “Rician Distribution”
on page B-145

s noncentrality
parameter

σ scale
parameter

— —

'Stable' “Stable Distribution”
on page B-147

α first shape
parameter

β second
shape
parameter

γ scale
parameter

δ location
parameter

'T' “Student's t
Distribution” on page
B-156

ν degrees of
freedom

— — —

'tLocationScale' “t Location-Scale
Distribution” on page
B-163

μ location
parameter

σ scale
parameter

ν shape
parameter

—

'Uniform' “Uniform Distribution
(Continuous)” on page
B-170

a lower
endpoint
(minimum)

b upper
endpoint
(maximum)

— —

'Discrete
Uniform' or 'unid'

“Uniform Distribution
(Discrete)” on page B-
175

n maximum
observable
value

— — —

'Weibull' or 'wbl' “Weibull Distribution”
on page B-177

a scale
parameter

b shape
parameter

— —

Example: 'Normal'

A — First probability distribution parameter
scalar value | array of scalar values

First probability distribution parameter, specified as a scalar value or an array of scalar values.

If one or more of the input arguments A, B, C, and D are arrays, then the array sizes must be the
same. In this case, random expands each scalar input into a constant array of the same size as the
array inputs. See name for the definitions of A, B, C, and D for each distribution.
Data Types: single | double

B — Second probability distribution parameter
scalar value | array of scalar values

Second probability distribution parameter, specified as a scalar value or an array of scalar values.

If one or more of the input arguments A, B, C, and D are arrays, then the array sizes must be the
same. In this case, random expands each scalar input into a constant array of the same size as the
array inputs. See name for the definitions of A, B, C, and D for each distribution.
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Data Types: single | double

C — Third probability distribution parameter
scalar value | array of scalar values

Third probability distribution parameter, specified as a scalar value or an array of scalar values.

If one or more of the input arguments A, B, C, and D are arrays, then the array sizes must be the
same. In this case, random expands each scalar input into a constant array of the same size as the
array inputs. See name for the definitions of A, B, C, and D for each distribution.
Data Types: single | double

D — Fourth probability distribution parameter
scalar value | array of scalar values

Fourth probability distribution parameter, specified as a scalar value or an array of scalar values.

If one or more of the input arguments A, B, C, and D are arrays, then the array sizes must be the
same. In this case, random expands each scalar input into a constant array of the same size as the
array inputs. See name for the definitions of A, B, C, and D for each distribution.
Data Types: single | double

pd — Probability distribution
probability distribution object

Probability distribution, specified as one of the probability distribution objects in this table.

Distribution Object Function or App to Create Probability
Distribution Object

BetaDistribution makedist, fitdist, Distribution Fitter
BinomialDistribution makedist, fitdist, Distribution Fitter
BirnbaumSaundersDistribution makedist, fitdist, Distribution Fitter
BurrDistribution makedist, fitdist, Distribution Fitter
ExponentialDistribution makedist, fitdist, Distribution Fitter
ExtremeValueDistribution makedist, fitdist, Distribution Fitter
GammaDistribution makedist, fitdist, Distribution Fitter
GeneralizedExtremeValueDistribution makedist, fitdist, Distribution Fitter
GeneralizedParetoDistribution makedist, fitdist, Distribution Fitter
HalfNormalDistribution makedist, fitdist, Distribution Fitter
InverseGaussianDistribution makedist, fitdist, Distribution Fitter
KernelDistribution fitdist, Distribution Fitter
LogisticDistribution makedist, fitdist, Distribution Fitter
LoglogisticDistribution makedist, fitdist, Distribution Fitter
LognormalDistribution makedist, fitdist, Distribution Fitter
LoguniformDistribution makedist
MultinomialDistribution makedist
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Distribution Object Function or App to Create Probability
Distribution Object

NakagamiDistribution makedist, fitdist, Distribution Fitter
NegativeBinomialDistribution makedist, fitdist, Distribution Fitter
NormalDistribution makedist, fitdist, Distribution Fitter
Piecewise distribution with generalized Pareto
distributions in the tails

paretotails

PiecewiseLinearDistribution makedist
PoissonDistribution makedist, fitdist, Distribution Fitter
RayleighDistribution makedist, fitdist, Distribution Fitter
RicianDistribution makedist, fitdist, Distribution Fitter
StableDistribution makedist, fitdist, Distribution Fitter
tLocationScaleDistribution makedist, fitdist, Distribution Fitter
TriangularDistribution makedist
UniformDistribution makedist
WeibullDistribution makedist, fitdist, Distribution Fitter

sz1,...,szN — Size of each dimension (as separate arguments)
integer values

Size of each dimension, specified as integer values. For example, specifying 5,3,2 generates a 5-
by-3-by-2 array of random numbers from the specified probability distribution.

If one or more of the input arguments A, B, C, and D are arrays, then the specified dimensions
sz1,...,szN must match the common dimensions of A, B, C, and D after any necessary scalar
expansion. The default values of sz1,...,szN are the common dimensions.

• If you specify a single value sz1, then R is a square matrix of size sz1-by-sz1.
• If the size of any dimension is 0 or negative, then R is an empty array.
• Beyond the second dimension, random ignores trailing dimensions with a size of 1. For example,

specifying 3,1,1,1 produces a 3-by-1 vector of random numbers.

Example: 5,3,2
Data Types: single | double

sz — Size of each dimension (as a row vector)
row vector of integers

Size of each dimension, specified as a row vector of integers. For example, specifying [5 3 2]
generates a 5-by-3-by-2 array of random numbers from the specified probability distribution.

If one or more of the input arguments A, B, C, and D are arrays, then the specified dimensions sz
must match the common dimensions of A, B, C, and D after any necessary scalar expansion. The
default values of sz are the common dimensions.

• If you specify a single value [sz1], then R is a square matrix of size sz1-by-sz1.
• If the size of any dimension is 0 or negative, then R is an empty array.
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• Beyond the second dimension, random ignores trailing dimensions with a size of 1. For example,
specifying [3 1 1 1] produces a 3-by-1 vector of random numbers.

Example: [5 3 2]
Data Types: single | double

Output Arguments
R — Random number
scalar value | array of scalar values

Random number generated from the specified probability distribution, returned as a scalar value or
an array of scalar values with the dimensions specified by sz1,...,szN or sz.

If you specify distribution parameters A, B, C, or D, then each element in R is the random number
generated from the distribution specified by the corresponding elements in A, B, C, and D.

Alternative Functionality
• random is a generic function that accepts either a distribution by its name name or a probability

distribution object pd. It is faster to use a distribution-specific function, such as randn and
normrnd for the normal distribution and binornd for the binomial distribution. For a list of
distribution-specific functions, see “Supported Distributions” on page 5-16.

• To generate random numbers interactively, use randtool, a user interface for random number
generation.

Version History
Introduced before R2006a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• The input argument name must be a compile-time constant. For example, to use the normal
distribution, include coder.Constant('Normal') in the -args value of codegen.

• Code generation does not support the probability distribution object (pd) input argument.

For more information on code generation, see “Introduction to Code Generation” on page 34-2 and
“General Code Generation Workflow” on page 34-5.

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

This function fully supports GPU arrays. For more information, see “Run MATLAB Functions on a
GPU” (Parallel Computing Toolbox).
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See Also
cdf | pdf | icdf | mle | makedist | fitdist | Distribution Fitter | paretotails

Topics
“Random Number Generation” on page 5-28
“Generate Random Numbers Using the Triangular Distribution” on page 5-48
“Working with Probability Distributions” on page 5-3
“Supported Distributions” on page 5-16
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random
Package: 

Simulate responses with random noise for generalized linear regression model

Syntax
ysim = random(mdl,Xnew)
ysim = random(mdl,Xnew,Name,Value)

Description
ysim = random(mdl,Xnew) simulates responses to the predictor data in Xnew using the
generalized linear regression model mdl, adding random noise.

ysim = random(mdl,Xnew,Name,Value) specifies additional options using one or more name-
value pair arguments. For example, you can specify the number of trials for binomial distribution or
the offset value used for fitting.

Examples

Simulate Response Data with Random Noise

Create a generalized linear regression model, and simulate its response with random noise to new
data.

Generate sample data using Poisson random numbers with one underlying predictor X.

rng('default') % For reproducibility
X = rand(20,1);
mu = exp(1 + 2*X);
y = poissrnd(mu);

Create a generalized linear regression model of Poisson data.

mdl = fitglm(X,y,'y ~ x1','Distribution','poisson');

Create data points for prediction.

Xnew = (0:.05:1)';

Simulate responses with random noise at the data points.

ysim = random(mdl,Xnew);

Plot the simulated values and the original values.

plot(X,y,'rx',Xnew,ysim,'bo',Xnew,feval(mdl,Xnew),'g-')
legend('Data','Simulated Response with Noise','Predicted Response', ...
    'Location','best')
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Generate C/C++ Code That Simulates Responses

Fit a generalized linear regression model, and then save the model by using saveLearnerForCoder.
Define an entry-point function that loads the model by using loadLearnerForCoder and calls the
predict function of the fitted model. Then use codegen (MATLAB Coder) to generate C/C++ code.
Note that generating C/C++ code requires MATLAB® Coder™.

This example briefly explains the code generation workflow for the prediction of linear regression
models at the command line. For more details, see “Code Generation for Prediction of Machine
Learning Model at Command Line” on page 34-9. You can also generate code using the MATLAB
Coder app. For details, see “Code Generation for Prediction of Machine Learning Model Using
MATLAB Coder App” on page 34-23.

Train Model

Generate sample data of the predictor x and response y with the following distributions:

• x ∼ N(1, 0 . 52).
• β0 = 1 and β = − 2.

• y ∼ Binomial 10, exp(1 + xβ)
1 + exp(1 + xβ) .
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rng('default') % For reproducibility
x = 1 + randn(100,1)*0.5;
beta = -2;
p = exp(1 + x*beta)./(1 + exp(1 + x*beta)); % Inverse logit
n = 10;
y = binornd(n,p,100,1);

Create a generalized linear regression model of binomial data. Specify a binomial sample size of 10.

mdl = fitglm(x,y,'y ~ x1','Distribution','Binomial','BinomialSize',n);

Save Model

Save the fitted generalized linear regression model to the file GLMMdl.mat by using
saveLearnerForCoder.

saveLearnerForCoder(mdl,'GLMMdl');

Define Entry-Point Function

In your current folder, define an entry-point function named myrandomGLM.m that does the following:

• Accept new predictor input and valid name-value pair arguments.
• Load the fitted generalized linear regression model in GLMMdl.mat by using

loadLearnerForCoder.
• Simulate responses from the loaded GLM model.

function y = myrandomGLM(x,varargin) %#codegen
%MYRANDOMGLM Simulate responses using GLM model 
%   MYRANDOMGLM simulates responses for the n observations in the n-by-1
%   vector x using the GLM model stored in the MAT-file GLMMdl.mat, and
%   then returns the simulations in the n-by-1 vector y.
CompactMdl = loadLearnerForCoder('GLMMdl');
narginchk(1,Inf);
y = random(CompactMdl,x,varargin{:});
end

Add the %#codegen compiler directive (or pragma) to the entry-point function after the function
signature to indicate that you intend to generate code for the MATLAB algorithm. Adding this
directive instructs the MATLAB Code Analyzer to help you diagnose and fix violations that would
result in errors during code generation.

Generate Code

Generate code for the entry-point function using codegen (MATLAB Coder). Because C and C++ are
statically typed languages, you must determine the properties of all variables in the entry-point
function at compile time. To specify the data type and exact input array size, pass a MATLAB®
expression that represents the set of values with a certain data type and array size. Use
coder.Constant (MATLAB Coder) for the names of name-value pair arguments.

Specify the predictor data x and binomial parameter n.

codegen -config:mex myrandomGLM -args {x,coder.Constant('BinomialSize'),coder.Constant(n)}

Code generation successful.

codegen generates the MEX function myrandomGLM_mex with a platform-dependent extension.
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If the number of observations is unknown at compile time, you can also specify the input as variable-
size by using coder.typeof (MATLAB Coder). For details, see “Specify Variable-Size Arguments for
Code Generation” on page 34-56 and “Specify Properties of Entry-Point Function Inputs” (MATLAB
Coder).

Verify Generated Code

Simulate responses using the MEX function. Specify the predictor data x and binomial parameter n.

ysim = myrandomGLM_mex(x,'BinomialSize',n);

Plot the simulated values and the data in the same figure.

figure
plot(x,y,'bo',x,ysim,'r*')
legend('Observed responses','Simulated responses')
xlabel('x')
ylabel('y')

The observed and simulated responses appear to be similarly distributed.

Input Arguments
mdl — Generalized linear regression model
GeneralizedLinearModel object | CompactGeneralizedLinearModel object
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Generalized linear regression model, specified as a GeneralizedLinearModel object created using
fitglm or stepwiseglm, or a CompactGeneralizedLinearModel object created using compact.

Xnew — New predictor input values
table | dataset array | matrix

New predictor input values, specified as a table, dataset array, or matrix. Each row of Xnew
corresponds to one observation, and each column corresponds to one variable.

• If Xnew is a table or dataset array, it must contain predictors that have the same predictor names
as in the PredictorNames property of mdl.

• If Xnew is a matrix, it must have the same number of variables (columns) in the same order as the
predictor input used to create mdl. Note that Xnew must also contain any predictor variables that
are not used as predictors in the fitted model. Also, all variables used in creating mdl must be
numeric. To treat numerical predictors as categorical, identify the predictors using the
'CategoricalVars' name-value pair argument when you create mdl.

Data Types: single | double | table

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: ysim = random(Mdl,Xnew,'BinomialSize',50) returns the numbers of success,
perturbed by random noise, using the number of trials specified by 'BinomialSize'.

BinomialSize — Number of trials for binomial distribution
1 (default) | scalar | vector

Number of trials for the binomial distribution, specified as the comma-separated pair consisting of
'BinomialSize' and a scalar or vector of the same length as the response. random expands the
scalar input into a constant array of the same size as the response. The scalar input means that all
observations have the same number of trials.

The meaning of the output values in ysim depends on the value of 'BinomialSize'.

• If 'BinomialSize' is 1 (default), then each value in the output ysim is the probability of
success.

• If 'BinomialSize' is not 1, then each value in the output ysim is the predicted number of
successes in the trials.

Data Types: single | double

Offset — Offset value
zeros(size(Xnew,1)) (default) | scalar | vector

Offset value for each row in Xnew, specified as the comma-separated pair consisting of 'Offset' and
a scalar or vector with the same length as the response. random expands the scalar input into a
constant array of the same size as the response.

Note that the default value of this argument is a vector of zeros even if you specify the 'Offset'
name-value pair argument when fitting a model. If you specify 'Offset' for fitting, the software
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treats the offset as an additional predictor with a coefficient value fixed at 1. In other words, the
formula for fitting is

f(μ) = Offset + X*b,
where f is the link function, μ is the mean response, and X*b is the linear combination of predictors X.
The Offset predictor has coefficient 1.
Data Types: single | double

Output Arguments
ysim — Simulated response values
numeric vector

Simulated response values, returned as a numeric vector. The simulated values are the predicted
response values at Xnew perturbed by random noise with the distribution given by the fitted model.
The values in ysim are independent, conditional on the predictors. For binomial and Poisson fits,
random generates ysim with the specified distribution and no adjustment for any estimated
dispersion.

• If 'BinomialSize' is 1 (default), then each value in the output ysim is the probability of
success.

• If 'BinomialSize' is not 1, then each value in the output ysim is the predicted number of
successes in the trials.

Alternative Functionality
For predictions without random noise, use predict or feval.

• predict accepts a single input argument containing all predictor variables, and gives confidence
intervals on its predictions.

• feval accepts multiple input arguments with one input for each predictor variable, which is
simpler to use with a model created from a table or dataset array. The feval function does not
support the name-value pair arguments 'Offset' and 'BinomialSize'. The function uses 0 as
the offset value, and the output values are predicted probabilities.

Version History
Introduced in R2012a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• Use saveLearnerForCoder, loadLearnerForCoder, and codegen to generate code for the
random function. Save a trained model by using saveLearnerForCoder. Define an entry-point
function that loads the saved model by using loadLearnerForCoder and calls the random
function. Then use codegen to generate code for the entry-point function.
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• random can return a different sequence of numbers than MATLAB if either of the following is
true:

• The output is nonscalar.
• An input parameter is invalid for the distribution.

• This table contains notes about the arguments of random. Arguments not included in this table
are fully supported.

Argument Notes and Limitations
mdl For the usage notes and limitations of the model object, see “Code Generation”

on page 35-951 of the CompactGeneralizedLinearModel object.
Xnew • Xnew must be a single-precision or double-precision matrix or a table

containing numeric variables, categorical variables, or both.
• The number of rows, or observations, in Xnew can be a variable size, but the

number of columns in Xnew must be fixed.
• If you want to specify Xnew as a table, then your model must be trained

using a table, and you must ensure that your entry-point function for
prediction:

• Accepts data as arrays
• Creates a table from the data input arguments and specifies the variable

names in the table
• Passes the table to predict

For an example of this table workflow, see “Generate Code to Classify Data
in Table” on page 34-112. For more information on using tables in code
generation, see “Code Generation for Tables” (MATLAB Coder) and “Table
Limitations for Code Generation” (MATLAB Coder).

Name-value
pair
arguments

Names in name-value arguments must be compile-time constants. For example,
to use the 'BinomialSize' name-value pair argument in the generated code,
include {coder.Constant('BinomialSize'),0} in the -args value of
codegen.

For more information, see “Introduction to Code Generation” on page 34-2.

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

This function fully supports GPU arrays. For more information, see “Run MATLAB Functions on a
GPU” (Parallel Computing Toolbox).

See Also
GeneralizedLinearModel | CompactGeneralizedLinearModel | predict | feval

Topics
“Predict or Simulate Responses to New Data” on page 12-23
“Generalized Linear Models” on page 12-9
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random
Class: GeneralizedLinearMixedModel

Generate random responses from fitted generalized linear mixed-effects model

Syntax
ysim = random(glme)
ysim = random(glme,tblnew)
ysim = random( ___ ,Name,Value)

Description
ysim = random(glme) returns simulated responses, ysim, from the fitted generalized linear
mixed-effects model glme, at the original design points.

ysim = random(glme,tblnew) returns simulated responses using new input values specified in
the table or dataset array, tblnew.

ysim = random( ___ ,Name,Value) returns simulated responses using additional options specified
by one or more Name,Value pair arguments, using any of the previous syntaxes. For example, you
can specify observation weights, binomial sizes, or offsets for the model.

Input Arguments
glme — Generalized linear mixed-effects model
GeneralizedLinearMixedModel object

Generalized linear mixed-effects model, specified as a GeneralizedLinearMixedModel object. For
properties and methods of this object, see GeneralizedLinearMixedModel.

tblnew — New input data
table | dataset array

New input data, which includes the response variable, predictor variables, and grouping variables on
page 2-46, specified as a table or dataset array. The predictor variables can be continuous or
grouping variables. tblnew must contain the same variables as the original table or dataset array,
tbl, used to fit the generalized linear mixed-effects model glme.

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.

BinomialSize — Number of trials for binomial distribution
ones(m,1) (default) | m-by-1 vector of positive integer values
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Number of trials for binomial distribution, specified as the comma-separated pair consisting of
'BinomialSize' and an m-by-1 vector of positive integer values, where m is the number of rows in
tblnew. The 'BinomialSize' name-value pair applies only to the binomial distribution. The value
specifies the number of binomial trials when generating the random response values.
Data Types: single | double

Offset — Model offset
zeros(m,1) (default) | vector of scalar values

Model offset, specified as a vector of scalar values of length m, where m is the number of rows in
tblnew. The offset is used as an additional predictor and has a coefficient value fixed at 1.

Weights — Observation weights
m-by-1 vector of nonnegative scalar values

Observation weights, specified as the comma-separated pair consisting of 'Weights' and an m-by-1
vector of nonnegative scalar values, where m is the number of rows in tblnew. If the response
distribution is binomial or Poisson, then 'Weights' must be a vector of positive integers.
Data Types: single | double

Output Arguments
ysim — Simulated response values
m-by-1 vector

Simulated response values, returned as an m-by-1 vector, where m is the number of rows in tblnew.
random creates ysim by first generating the random-effects vector based on its fitted prior
distribution. random then generates ysim from its fitted conditional distribution given the random
effects. random takes into account the effect of observation weights specified when fitting the model
using fitglme, if any.

Examples

Simulate Random Responses From a GLME Model

Load the sample data.

load mfr

This simulated data is from a manufacturing company that operates 50 factories across the world,
with each factory running a batch process to create a finished product. The company wants to
decrease the number of defects in each batch, so it developed a new manufacturing process. To test
the effectiveness of the new process, the company selected 20 of its factories at random to participate
in an experiment: Ten factories implemented the new process, while the other ten continued to run
the old process. In each of the 20 factories, the company ran five batches (for a total of 100 batches)
and recorded the following data:

• Flag to indicate whether the batch used the new process (newprocess)
• Processing time for each batch, in hours (time)
• Temperature of the batch, in degrees Celsius (temp)
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• Categorical variable indicating the supplier (A, B, or C) of the chemical used in the batch
(supplier)

• Number of defects in the batch (defects)

The data also includes time_dev and temp_dev, which represent the absolute deviation of time and
temperature, respectively, from the process standard of 3 hours at 20 degrees Celsius.

Fit a generalized linear mixed-effects model using newprocess, time_dev, temp_dev, and
supplier as fixed-effects predictors. Include a random-effects term for intercept grouped by
factory, to account for quality differences that might exist due to factory-specific variations. The
response variable defects has a Poisson distribution, and the appropriate link function for this
model is log. Use the Laplace fit method to estimate the coefficients. Specify the dummy variable
encoding as 'effects', so the dummy variable coefficients sum to 0.

The number of defects can be modeled using a Poisson distribution

defectsi j ∼ Poisson(μi j)

This corresponds to the generalized linear mixed-effects model

log(μi j) = β0 + β1newprocessi j + β2time_devi j + β3temp_devi j + β4supplier_Ci j + β5supplier_Bi j
+ bi,

where

• defectsi j is the number of defects observed in the batch produced by factory i during batch j.
• μi j is the mean number of defects corresponding to factory i (where i = 1, 2, . . . , 20) during batch

j (where j = 1, 2, . . . , 5).
• newprocessi j, time_devi j, and temp_devi j are the measurements for each variable that correspond

to factory i during batch j. For example, newprocessi j indicates whether the batch produced by
factory i during batch j used the new process.

• supplier_Ci j and supplier_Bi j are dummy variables that use effects (sum-to-zero) coding to indicate
whether company C or B, respectively, supplied the process chemicals for the batch produced by
factory i during batch j.

• bi ∼ N(0, σb
2) is a random-effects intercept for each factory i that accounts for factory-specific

variation in quality.

glme = fitglme(mfr,'defects ~ 1 + newprocess + time_dev + temp_dev + supplier + (1|factory)','Distribution','Poisson','Link','log','FitMethod','Laplace','DummyVarCoding','effects');

Use random to simulate a new response vector from the fitted model.

rng(0,'twister');  % For reproducibility
ynew = random(glme);

Display the first 10 rows of the simulated response vector.

ynew(1:10)

ans = 10×1

     3
     3
     1
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     7
     5
     8
     7
     9
     5
     9

Simulate a new response vector using new input values. Create a new table by copying the first 10
rows of mfr into tblnew.

tblnew = mfr(1:10,:);

The first 10 rows of mfr include data collected from trials 1 through 5 for factories 1 and 2. Both
factories used the old process for all of their trials during the experiment, so newprocess = 0 for all
10 observations.

Change the value of newprocess to 1 for the observations in tblnew.

tblnew.newprocess = ones(height(tblnew),1);

Simulate new responses using the new input values in tblnew.

ynew2 = random(glme,tblnew)

ynew2 = 10×1

     2
     3
     5
     4
     2
     2
     2
     1
     2
     0

More About
Conditional Distribution Method

random generates random data from the fitted generalized linear mixed-effects model as follows:

• Sample bsim ∼ P b θ , σ 2 , where P b θ , σ 2  is the estimated prior distribution of random effects,

and θ  is a vector of estimated covariance parameters, and σ 2 is the estimated dispersion
parameter.

• Given bsim, for i = 1 to m, sample ysim_i ∼ P ynew_i bsim, β , θ , σ 2 , where P ynew_i bsim, β , θ , σ 2  is
the conditional distribution of the ith new response ynew_i given bsim and the model parameters.
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See Also
GeneralizedLinearMixedModel | fitglme | predict | fitted

 random

35-6131



random
Random variate from Gaussian mixture distribution

Syntax
Y = random(gm)
Y = random(gm,n)
[Y,compIdx] = random( ___ )

Description
Y = random(gm) generates a 1-by-m random variate from the m-dimensional Gaussian mixture
distribution gm.

Y = random(gm,n) returns n random variates. Each row of Y is a random variate generated from
the m-dimensional Gaussian mixture distribution gm.

[Y,compIdx] = random( ___ ) also returns an n-by-1 index vector compIdx for any of the input
arguments in previous syntaxes. compIdx(i) indicates the mixture component used to generate the
ith random variate Y(i,:).

Examples

Generate Random Variates

Create a gmdistribution object and generate random variates.

Define the distribution parameters (means and covariances) of a two-component bivariate Gaussian
mixture distribution.

mu = [1 2;-3 -5];
sigma = [1 1]; % shared diagonal covariance matrix

Create a gmdistribution object by using the gmdistribution function. By default, the function
creates an equal proportion mixture.

gm = gmdistribution(mu,sigma)

gm = 

Gaussian mixture distribution with 2 components in 2 dimensions
Component 1:
Mixing proportion: 0.500000
Mean:     1     2

Component 2:
Mixing proportion: 0.500000
Mean:    -3    -5

Generate 1000 random variates.
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rng('default'); % For reproducibility
[Y,compIdx] = random(gm,1000);

compIdx(i) indicates the mixture component used to generate the ith random variate Y(i,:).
Count the number of random variates generated by Component 1.

numIdx1 = sum(compIdx == 1)

numIdx1 = 512

random generates about half of the random variates using Component 1 because gm has equal
mixing proportions.

Plot the generated random variates by using scatter.

scatter(Y(:,1),Y(:,2),10,'.') % Scatter plot with points of size 10

Reset Random Number Generator

Reset the random number generator to generate the same random variate.

Define the distribution parameters (means, covariances, and mixing proportions) of two bivariate
Gaussian mixture components.
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p = [0.4 0.6];               % Mixing proportions     
mu = [1 2;-3 -5];            % Means
sigma = cat(3,[2 .5],[1 1])  % Covariances 1-by-2-by-2 array

sigma = 
sigma(:,:,1) =

    2.0000    0.5000

sigma(:,:,2) =

     1     1

The cat function concatenates the covariances along the third array dimension. The defined
covariance matrices are diagonal matrices. sigma(1,:,i) contains the diagonal elements of the
covariance matrix of component i.

Create a gmdistribution object by using the gmdistribution function.

gm = gmdistribution(mu,sigma);

Save the current state of the random number generator, and then generate a random variate using
gm.

s = rng;
r = random(gm)

r = 1×2

   -1.1661   -7.2588

Restore the state of the random number generator to s, and then generate a random variate using
gm. The values are the same as before.

rng(s);
r1 = random(gm)

r1 = 1×2

   -1.1661   -7.2588

Input Arguments
gm — Gaussian mixture distribution
gmdistribution object

Gaussian mixture distribution, also called Gaussian mixture model (GMM), specified as a
gmdistribution object.

You can create a gmdistribution object using gmdistribution or fitgmdist. Use the
gmdistribution function to create a gmdistribution object by specifying the distribution
parameters. Use the fitgmdist function to fit a gmdistribution model to data given a fixed
number of components.
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n — Number of random variates
1 (default) | positive integer

Number of random variates to generate, specified as a positive integer.
Data Types: single | double

Output Arguments
Y — Random variate
1-by-m numeric vector | n-by-m numeric matrix

Random variate, returned as a 1-by-m numeric vector or an n-by-m numeric matrix. Each row of Y is a
random variate generated from the m-dimensional Gaussian mixture distribution gm.

compIdx — Component index
positive integer | n-by-1 numeric vector

Component index, returned as a positive integer or an n-by-1 index vector, where compIdx(i)
indicates the mixture component used to generate the ith random variate Y(i,:).

Version History
Introduced in R2007b

See Also
gmdistribution | fitgmdist | mvnrnd | pdf | cdf

Topics
“Create Gaussian Mixture Model” on page 5-120
“Fit Gaussian Mixture Model to Data” on page 5-123
“Simulate Data from Gaussian Mixture Model” on page 5-127
“Cluster Using Gaussian Mixture Model” on page 17-39
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random
Package: 

Simulate responses with random noise for linear regression model

Syntax
ysim = random(mdl,Xnew)

Description
ysim = random(mdl,Xnew) simulates responses to the predictor data in Xnew using the linear
model mdl, adding random noise.

Examples

Simulate Response Data with Random Noise

Create a quadratic model of car mileage as a function of weight from the carsmall data set.

load carsmall
X = Weight;
y = MPG;
mdl = fitlm(X,y,'quadratic');

Create simulated responses to the data with random noise.

ysim = random(mdl,X);

Plot the original responses and the simulated responses to see how they differ.

plot(X,y,'o',X,ysim,'x')
legend('Data','Simulated')
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Input Arguments
mdl — Linear regression model object
LinearModel object | CompactLinearModel object

Linear regression model object, specified as a LinearModel object created by using fitlm or
stepwiselm, or a CompactLinearModel object created by using compact.

Xnew — New predictor input values
table | dataset array | matrix

New predictor input values, specified as a table, dataset array, or matrix. Each row of Xnew
corresponds to one observation, and each column corresponds to one variable.

• If Xnew is a table or dataset array, it must contain predictors that have the same predictor names
as in the PredictorNames property of mdl.

• If Xnew is a matrix, it must have the same number of variables (columns) in the same order as the
predictor input used to create mdl. Note that Xnew must also contain any predictor variables that
are not used as predictors in the fitted model. Also, all variables used in creating mdl must be
numeric. To treat numerical predictors as categorical, identify the predictors using the
'CategoricalVars' name-value pair argument when you create mdl.

Data Types: single | double | table
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Output Arguments
ysim — Simulated response values
numeric vector

Simulated response value, returned as a numeric vector. The simulated value is the predicted
response values at Xnew perturbed by random noise. The noise is independent and normally
distributed, with mean equal to zero and variance equal to the estimated error variance of the model.

Alternative Functionality
For predictions without random noise, use predict or feval. These two functions give the same
predictions.

• predict accepts a single input argument containing all predictor variables, and gives confidence
intervals on its predictions.

• feval accepts multiple input arguments with one input for each predictor variable.

Version History
Introduced in R2012a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• Use saveLearnerForCoder, loadLearnerForCoder, and codegen to generate code for the
random function. Save a trained model by using saveLearnerForCoder. Define an entry-point
function that loads the saved model by using loadLearnerForCoder and calls the random
function. Then use codegen to generate code for the entry-point function.

• random can return a different sequence of numbers than MATLAB if either of the following is
true:

• The output is nonscalar.
• An input parameter is invalid for the distribution.

• This table contains notes about the arguments of random. Arguments not included in this table
are fully supported.
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Argument Notes and Limitations
mdl • Suppose you train a linear model by using fitlm and specifying

'RobustOpts' as a structure with an anonymous function handle for the
RobustWgtFun field, use saveLearnerForCoder to save the model, and
then use loadLearnerForCoder to load the model. In this case,
loadLearnerForCoder cannot restore the Robust property into the
MATLAB Workspace. However, loadLearnerForCoder can load the model
at compile time within an entry-point function for code generation.

• For the usage notes and limitations of the model object, see “Code
Generation” on page 35-940 of the CompactLinearModel object.

Xnew • Xnew must be a single-precision or double-precision matrix or a table
containing numeric variables, categorical variables, or both.

• The number of rows, or observations, in Xnew can be a variable size, but the
number of columns in Xnew must be fixed.

• If you want to specify Xnew as a table, then your model must be trained
using a table, and you must ensure that your entry-point function for
prediction:

• Accepts data as arrays
• Creates a table from the data input arguments and specifies the variable

names in the table
• Passes the table to predict

For an example of this table workflow, see “Generate Code to Classify Data
in Table” on page 34-112. For more information on using tables in code
generation, see “Code Generation for Tables” (MATLAB Coder) and “Table
Limitations for Code Generation” (MATLAB Coder).

For more information, see “Introduction to Code Generation” on page 34-2.

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

This function fully supports GPU arrays. For more information, see “Run MATLAB Functions on a
GPU” (Parallel Computing Toolbox).

See Also
CompactLinearModel | LinearModel | predict | feval

Topics
“Predict or Simulate Responses to New Data” on page 11-31
“Linear Regression Workflow” on page 11-35
“Interpret Linear Regression Results” on page 11-52
“Linear Regression” on page 11-9
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random
Class: LinearMixedModel

Generate random responses from fitted linear mixed-effects model

Syntax
ysim = random(lme)
ysim = random(lme,tblnew)
ysim = random(lme,Xnew,Znew)
ysim = random(lme,Xnew,Znew,Gnew)

Description
ysim = random(lme) returns a vector of simulated responses ysim from the fitted linear mixed-
effects model lme at the original fixed- and random-effects design points, used to fit lme.

random simulates new random-effects vector and new observation errors. So, the simulated response
is

ysim = Xβ + Zb + ε,

where β  is the estimated fixed-effects coefficients, b  is the new random effects, and ε is the new
observation error.

random also accounts for the effect of observation weights, if you use any when fitting the model.

ysim = random(lme,tblnew) returns a vector of simulated responses ysim from the fitted linear
mixed-effects model lme at the values in the new table or dataset array tblnew. Use a table or
dataset array for random if you use a table or dataset array for fitting the model lme.

ysim = random(lme,Xnew,Znew) returns a vector of simulated responses ysim from the fitted
linear mixed-effects model lme at the values in the new fixed- and random-effects design matrices,
Xnew and Znew, respectively. Znew can also be a cell array of matrices. Use the matrix format for
random if you use design matrices for fitting the model lme.

ysim = random(lme,Xnew,Znew,Gnew) returns a vector of simulated responses ysim from the
fitted linear mixed-effects model lme at the values in the new fixed- and random-effects design
matrices, Xnew and Znew, respectively, and the grouping variable Gnew.

Znew and Gnew can also be cell arrays of matrices and grouping variables, respectively.

Input Arguments
lme — Linear mixed-effects model
LinearMixedModel object

Linear mixed-effects model, specified as a LinearMixedModel object constructed using fitlme or
fitlmematrix.
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tblnew — New input data
table | dataset array

New input data, which includes the response variable, predictor variables, and grouping variables on
page 2-46, specified as a table or dataset array. The predictor variables can be continuous or
grouping variables. tblnew must have the same variables as in the original table or dataset array
used to fit the linear mixed-effects model lme.

Xnew — New fixed-effects design matrix
n-by-p matrix

New fixed-effects design matrix, specified as an n-by-p matrix, where n is the number of observations
and p is the number of fixed predictor variables. Each row of X corresponds to one observation and
each column of X corresponds to one variable.
Data Types: single | double

Znew — New random-effects design
n-by-q matrix | cell array of length R

New random-effects design, specified as an n-by-q matrix or a cell array of R design matrices Z{r},
where r = 1, 2, ..., R. If Znew is a cell array, then each Z{r} is an n-by-q(r) matrix, where n is the
number of observations, and q(r) is the number of random predictor variables.
Data Types: single | double | cell

Gnew — New grouping variable or variables
vector | cell array of grouping variables of length R

New grouping variable or variables on page 2-46, specified as a vector or a cell array, of length R, of
grouping variables used to fit the linear mixed-effects model, lme.

random treats all levels of each grouping variable as new levels. It draws an independent random
effects vector for each level of each grouping variable.
Data Types: single | double | categorical | logical | char | string | cell

Output Arguments
ysim — Simulated response values
n-by-1 vector

Simulated response values, returned as an n-by-1 vector, where n is the number of observations.

Examples

Generate Random Responses at the Original Design Values

Load the sample data.

load('fertilizer.mat');

The dataset array includes data from a split-plot experiment, where soil is divided into three blocks
based on the soil type: sandy, silty, and loamy. Each block is divided into five plots, where five
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different types of tomato plants (cherry, heirloom, grape, vine, and plum) are randomly assigned to
these plots. The tomato plants in the plots are then divided into subplots, where each subplot is
treated by one of four fertilizers. This is simulated data.

Store the data in a dataset array called ds, for practical purposes, and define Tomato, Soil, and
Fertilizer as categorical variables.

ds = fertilizer;
ds.Tomato = nominal(ds.Tomato);
ds.Soil = nominal(ds.Soil);
ds.Fertilizer = nominal(ds.Fertilizer);

Fit a linear mixed-effects model, where Fertilizer and Tomato are the fixed-effects variables, and
the mean yield varies by the block (soil type), and the plots within blocks (tomato types within soil
types) independently.

lme = fitlme(ds,'Yield ~ Fertilizer * Tomato + (1|Soil) + (1|Soil:Tomato)');

Generate random response values at the original design points. Display the first five values.

rng(123,'twister') % For reproducibility
ysim = random(lme);
ysim(1:5)

ans = 5×1

  114.8785
  134.2018
  154.2818
  169.7554
   84.6089

Plot Randomly Generated vs. Observed Response Values

Load the sample data.

load carsmall

Fit a linear mixed-effects model, with a fixed-effects for Weight, and a random intercept grouped by
Model_Year. First, store the data in a table.

tbl = table(MPG,Weight,Model_Year);
lme = fitlme(tbl,'MPG ~ Weight + (1|Model_Year)');

Randomly generate responses using the original data.

rng(123,'twister') % For reproducibility
ysim = random(lme,tbl);

Plot the original and the randomly generated responses to see how they differ. Group them by model
year.

figure()
gscatter(Weight,MPG,Model_Year)

35 Functions

35-6142



hold on
gscatter(Weight,ysim,Model_Year,[],'o+x')
legend('70-data','76-data','82-data','70-sim','76-sim','82-sim')
hold off

Note that the simulated random response values for year 82 are lower than the original data for that
year. This might be due to a lower simulated random effect for year 82 than the estimated random
effect in the original data.

Generate Responses Using a New Dataset Array

Load the sample data.

load('fertilizer.mat');

The dataset array includes data from a split-plot experiment, where soil is divided into three blocks
based on the soil type: sandy, silty, and loamy. Each block is divided into five plots, where five
different types of tomato plants (cherry, heirloom, grape, vine, and plum) are randomly assigned to
these plots. The tomato plants in the plots are then divided into subplots, where each subplot is
treated by one of four fertilizers. This is simulated data.

Store the data in a dataset array called ds, for practical purposes, and define Tomato, Soil, and
Fertilizer as categorical variables.
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ds = fertilizer;
ds.Tomato = nominal(ds.Tomato);
ds.Soil = nominal(ds.Soil);
ds.Fertilizer = nominal(ds.Fertilizer);

Fit a linear mixed-effects model, where Fertilizer and Tomato are the fixed-effects variables, and
the mean yield varies by the block (soil type), and the plots within blocks (tomato types within soil
types) independently.

lme = fitlme(ds,'Yield ~ Fertilizer * Tomato + (1|Soil) + (1|Soil:Tomato)');

Create a new dataset array with design values. The new dataset array must have the same variables
as the original dataset array you use for fitting the model lme.

dsnew = dataset();
dsnew.Soil = nominal({'Sandy';'Silty';'Silty'});
dsnew.Tomato = nominal({'Cherry';'Vine';'Plum'});
dsnew.Fertilizer = nominal([2;2;4]);

Generate random responses at the new points.

rng(123,'twister') % For reproducibility
ysim = random(lme,dsnew)

ysim = 3×1

   99.6006
  101.9911
  161.4026

Generate Random Responses Using New Design Matrices

Load the sample data.

load carbig

Fit a linear mixed-effects model for miles per gallon (MPG), with fixed effects for acceleration,
horsepower, and cylinders, and potentially correlated random effect for intercept and acceleration
grouped by model year.

First, prepare the design matrices for fitting the linear mixed-effects model.

X = [ones(406,1) Acceleration Horsepower];
Z = [ones(406,1) Acceleration];
Model_Year = nominal(Model_Year);
G = Model_Year;

Now, fit the model using fitlmematrix with the defined design matrices and grouping variables.

lme = fitlmematrix(X,MPG,Z,G,'FixedEffectPredictors',....
{'Intercept','Acceleration','Horsepower'},'RandomEffectPredictors',...
{{'Intercept','Acceleration'}},'RandomEffectGroups',{'Model_Year'});

Create the design matrices that contain the data at which to predict the response values. Xnew must
have three columns as in X. The first column must be a column of 1s. And the values in the last two
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columns must correspond to Acceleration and Horsepower, respectively. The first column of Znew
must be a column of 1s, and the second column must contain the same Acceleration values as in
Xnew. The original grouping variable in G is the model year. So, Gnew must contain values for the
model year. Note that Gnew must contain nominal values.

Xnew = [1,13.5,185; 1,17,205; 1,21.2,193];
Znew = [1,13.5; 1,17; 1,21.2];
Gnew = nominal([73 77 82]);

Generate random responses for the data in the new design matrices.

rng(123,'twister') % For reproducibility
ysim = random(lme,Xnew,Znew,Gnew)

ysim = 3×1

   15.7416
   10.6085
    6.8796

Now, repeat the same for a linear mixed-effects model with uncorrelated random-effects terms for
intercept and acceleration. First, change the original random effects design and the random effects
grouping variables. Then, fit the model.

Z = {ones(406,1),Acceleration};
G = {Model_Year,Model_Year};

lme = fitlmematrix(X,MPG,Z,G,'FixedEffectPredictors',....
{'Intercept','Acceleration','Horsepower'},'RandomEffectPredictors',...
{{'Intercept'},{'Acceleration'}},'RandomEffectGroups',{'Model_Year','Model_Year'});

Now, recreate the new random effects design, Znew, and the grouping variable design, Gnew, using
which to predict the response values.

Znew = {[1;1;1],[13.5;17;21.2]};
MY = nominal([73 77 82]);
Gnew = {MY,MY};

Generate random responses using the new design matrices.

rng(123,'twister') % For reproducibility
ysim = random(lme,Xnew,Znew,Gnew)

ysim = 3×1

   16.8280
   10.4375
    4.1027

See Also
predict | fitlme | fitlmematrix | LinearMixedModel
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random
Class: NonLinearModel

Simulate responses for nonlinear regression model

Syntax
ysim = random(mdl)
ysim = random(mdl,Xnew)
ysim = random(mdl,Xnew,'Weights',W)

Description
ysim = random(mdl) simulates responses from the fitted nonlinear model mdl at the original
design points.

ysim = random(mdl,Xnew) simulates responses from the fitted nonlinear model mdl to the data in
Xnew, adding random noise.

ysim = random(mdl,Xnew,'Weights',W) simulates responses using the observation weights, W.

Input Arguments
mdl

Nonlinear regression model, constructed by fitnlm.

Xnew

Points at which mdl predicts responses.

• If Xnew is a table or dataset array, it must contain the predictor names in mdl.
• If Xnew is a numeric matrix, it must have the same number of variables (columns) as was used to

create mdl. Furthermore, all variables used in creating mdl must be numeric.

W

Vector of real, positive value weights or a function handle.

• If you specify a vector, then it must have the same number of elements as the number of
observations (or rows) in Xnew.

• If you specify a function handle, the function must accept a vector of predicted response values as
input, and returns a vector of real positive weights as output.

Given weights, W, random estimates the error variance at observation i by MSE*(1/W(i)), where
MSE is the mean squared error.

Default: No weights
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Output Arguments
ysim

Vector of predicted mean values at Xnew, perturbed by random noise. The noise is independent,
normally distributed, with mean zero, and variance equal to the estimated error variance of the
model.

Examples

Simulate Responses

Create a nonlinear model of car mileage as a function of weight, and simulate the response.

Create an exponential model of car mileage as a function of weight from the carsmall data. Scale
the weight by a factor of 1000 so all the variables are roughly equal in size.

load carsmall
X = Weight;
y = MPG;
modelfun = 'y ~ b1 + b2*exp(-b3*x/1000)';
beta0 = [1 1 1];
mdl = fitnlm(X,y,modelfun,beta0);

Create simulated responses to the data.

Xnew = X;
ysim = random(mdl,Xnew);

Plot the original responses and the simulated responses to see how they differ.

plot(X,y,'o',X,ysim,'x')
legend('Data','Simulated')
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Alternatives
For predictions without added noise, use predict.

See Also
feval | NonLinearModel | predict

Topics
“Predict or Simulate Responses Using a Nonlinear Model” on page 13-9
“Nonlinear Regression” on page 13-2
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random
Class: RepeatedMeasuresModel

Generate new random response values given predictor values

Syntax
ysim = random(rm,tnew)

Description
ysim = random(rm,tnew) generates random response values from the repeated measures model
rm using the predictor variables from table tnew.

Input Arguments
rm — Repeated measures model
RepeatedMeasuresModel object

Repeated measures model, returned as a RepeatedMeasuresModel object.

For properties and methods of this object, see RepeatedMeasuresModel.

tnew — New data
table used to create rm (default) | table

New data including the values of the response variables and the between-subject factors used as
predictors in the repeated measures model, rm, specified as a table. tnew must contain all of the
between-subject factors used to create rm.

Output Arguments
ysim — Random response values
n-by-r matrix

Random response values random generates, returned as an n-by-r matrix, where n is the number of
rows in tnew, and r is the number of repeated measures in rm.

Examples

Randomly Generate New Response Values

Load the sample data.

load fisheriris

The column vector species consists of iris flowers of three different species: setosa, versicolor, and
virginica. The double matrix meas consists of four types of measurements on the flowers: the length
and width of sepals and petals in centimeters, respectively.
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Store the data in a table array.

t = table(species,meas(:,1),meas(:,2),meas(:,3),meas(:,4),...
'VariableNames',{'species','meas1','meas2','meas3','meas4'});
Meas = dataset([1 2 3 4]','VarNames',{'Measurements'});

Fit a repeated measures model, where the measurements are the responses and the species is the
predictor variable.

  rm = fitrm(t,'meas1-meas4~species','WithinDesign',Meas);

Randomly generate new response values.

ysim = random(rm);

random uses the predictor values in the original sample data you use to fit the repeated measures
model rm in table t.

Randomly Generate Response Values Using New Data

Load the sample data.

load repeatedmeas

The table between includes the between-subject variables age, IQ, group, gender, and eight repeated
measures y1 through y8 as responses. The table within includes the within-subject variables w1 and
w2. This is simulated data.

Fit a repeated measures model, where the repeated measures y1 through y8 are the responses, and
age, IQ, group, gender, and the group-gender interaction are the predictor variables. Also specify the
within-subject design matrix.

rm = fitrm(between,'y1-y8 ~ Group*Gender + Age + IQ','WithinDesign',within);

Define a table with new values for the predictor variables.

tnew = table(16,93,{'B'},{'Male'},'VariableNames',{'Age','IQ','Group','Gender'})

tnew=1×4 table
    Age    IQ    Group     Gender 
    ___    __    _____    ________

    16     93    {'B'}    {'Male'}

Randomly generate new response values using the values in the new table tnew.

ysim = random(rm,tnew)

ysim = 1×8

   46.2252   66.8003  -40.4987   -1.9930   27.5213  -37.9809    4.8905   -3.7568
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Algorithms
random computes ysim by creating predicted values and adding random noise values. For each row,
the noise has a multivariate normal distribution with covariance the same as rm.Covariance.

See Also
fitrm | predict
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randomEffects
Class: GeneralizedLinearMixedModel

Estimates of random effects and related statistics

Syntax
B = randomEffects(glme)
[B,BNames] = randomEffects(glme)
[B,BNames,stats] = randomEffects(glme)
[B,BNames,stats] = randomEffects(glme,Name,Value)

Description
B = randomEffects(glme) returns the estimates of the empirical Bayes predictors (EBPs) of
random effects in the generalized linear mixed-effects model glme conditional on the estimated
covariance parameters and the observed response.

[B,BNames] = randomEffects(glme) also returns the names of the coefficients, BNames. Each
name corresponds to a coefficient in B.

[B,BNames,stats] = randomEffects(glme) also returns related statistics, stats, for the
estimated EBPs of random effects in glme.

[B,BNames,stats] = randomEffects(glme,Name,Value) returns any of the above output
arguments using additional options specified by one or more Name,Value pair arguments. For
example, you can specify the confidence interval level, or the method for computing the approximate
degrees of freedom.

Input Arguments
glme — Generalized linear mixed-effects model
GeneralizedLinearMixedModel object

Generalized linear mixed-effects model, specified as a GeneralizedLinearMixedModel object. For
properties and methods of this object, see GeneralizedLinearMixedModel.

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.

Alpha — Significance level
0.05 (default) | scalar value in the range [0,1]

Significance level, specified as the comma-separated pair consisting of 'Alpha' and a scalar value in
the range [0,1]. For a value α, the confidence level is 100 × (1 – α)%.
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For example, for 99% confidence intervals, you can specify the confidence level as follows.
Example: 'Alpha',0.01
Data Types: single | double

DFMethod — Method for computing approximate degrees of freedom
'residual' (default) | 'none'

Method for computing approximate degrees of freedom, specified as the comma-separated pair
consisting of 'DFMethod' and one of the following.

Value Description
'residual' The degrees of freedom value is assumed to be

constant and equal to n – p, where n is the
number of observations and p is the number of
fixed effects.

'none' The degrees of freedom is set to infinity.

Example: 'DFMethod','none'

Output Arguments
B — Estimated empirical Bayes predictors for the random effects
column vector

Estimated empirical Bayes predictors (EBPs) for the random effects in the generalized linear mixed-
effects model glme, returned as a column vector. The EBPs in B are approximated by the mode of the
empirical posterior distribution of the random effects given the estimated covariance parameters and
the observed response.

Suppose glme has R grouping variables g1, g2, ..., gR, with levels m1, m2, ..., mR, respectively. Also
suppose q1, q2, ..., qR are the lengths of the random-effects vectors that are associated with g1, g2, ...,
gR, respectively. Then, B is a column vector of length q1*m1 + q2*m2 + ... + qR*mR.

randomEffects creates B by concatenating the empirical Bayes predictors of random-effects vectors
corresponding to each level of each grouping variable as [g1level1; g1level2; ...; g1levelm1;
g2level1; g2level2; ...; g2levelm2; ...; gRlevel1; gRlevel2; ...; gRlevelmR]'.

BNames — Names of random-effects coefficients
table

Names of random-effects coefficients in B, returned as a table.

stats — Estimated empirical Bayes predictors and related statistics
table

Estimated empirical Bayes predictors (EBPs) and related statistics for the random effects in the
generalized linear mixed-effects model glme, returned as a table. stats has one row for each of the
random effects, and one column for each of the following statistics.
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Column Name Description
Group Grouping variable associated with the random

effect
Level Level within the grouping variable corresponding

to the random effect
Name Name of the random-effect coefficient
Estimate Empirical Bayes predictor (EBP) of random effect
SEPred Square root of the conditional mean squared

error of prediction (CMSEP) given covariance
parameters and response

tStat t-statistic for a test that the random-effects
coefficient is equal to 0

DF Estimated degrees of freedom for the t-statistic
pValue p-value for the t-statistic
Lower Lower limit of a 95% confidence interval for the

random-effects coefficient
Upper Upper limit of a 95% confidence interval for the

random-effects coefficient

randomEffects computes the confidence intervals using the conditional mean squared error of
prediction (CMSEP) approach conditional on the estimated covariance parameters and the observed
response. An alternative interpretation of the confidence intervals is that they are approximate
Bayesian credible intervals conditional on the estimated covariance parameters and the observed
response.

When fitting a GLME model using fitglme and one of the pseudo likelihood fit methods ('MPL' or
'REMPL'), randomEffects computes confidence intervals and related statistics based on the fitted
linear mixed-effects model from the final pseudo likelihood iteration.

Examples

Compute and Plot Estimated Random Effects

Load the sample data.

load mfr

This simulated data is from a manufacturing company that operates 50 factories across the world,
with each factory running a batch process to create a finished product. The company wants to
decrease the number of defects in each batch, so it developed a new manufacturing process. To test
the effectiveness of the new process, the company selected 20 of its factories at random to participate
in an experiment: Ten factories implemented the new process, while the other ten continued to run
the old process. In each of the 20 factories, the company ran five batches (for a total of 100 batches)
and recorded the following data:

• Flag to indicate whether the batch used the new process (newprocess)
• Processing time for each batch, in hours (time)
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• Temperature of the batch, in degrees Celsius (temp)
• Categorical variable indicating the supplier (A, B, or C) of the chemical used in the batch

(supplier)
• Number of defects in the batch (defects)

The data also includes time_dev and temp_dev, which represent the absolute deviation of time and
temperature, respectively, from the process standard of 3 hours at 20 degrees Celsius.

Fit a generalized linear mixed-effects model using newprocess, time_dev, temp_dev, and
supplier as fixed-effects predictors. Include a random-effects term for intercept grouped by
factory, to account for quality differences that might exist due to factory-specific variations. The
response variable defects has a Poisson distribution, and the appropriate link function for this
model is log. Use the Laplace fit method to estimate the coefficients. Specify the dummy variable
encoding as 'effects', so the dummy variable coefficients sum to 0.

The number of defects can be modeled using a Poisson distribution

defectsi j ∼ Poisson(μi j)

This corresponds to the generalized linear mixed-effects model

log(μi j) = β0 + β1newprocessi j + β2time_devi j + β3temp_devi j + β4supplier_Ci j + β5supplier_Bi j
+ bi,

where

• defectsi j is the number of defects observed in the batch produced by factory i during batch j.
• μi j is the mean number of defects corresponding to factory i (where i = 1, 2, . . . , 20) during batch

j (where j = 1, 2, . . . , 5).
• newprocessi j, time_devi j, and temp_devi j are the measurements for each variable that correspond

to factory i during batch j. For example, newprocessi j indicates whether the batch produced by
factory i during batch j used the new process.

• supplier_Ci j and supplier_Bi j are dummy variables that use effects (sum-to-zero) coding to indicate
whether company C or B, respectively, supplied the process chemicals for the batch produced by
factory i during batch j.

• bi ∼ N(0, σb
2) is a random-effects intercept for each factory i that accounts for factory-specific

variation in quality.

glme = fitglme(mfr,'defects ~ 1 + newprocess + time_dev + temp_dev + supplier + (1|factory)','Distribution','Poisson','Link','log','FitMethod','Laplace','DummyVarCoding','effects');

Compute and display the names and estimated values of the empirical Bayes predictors (EBPs) for the
random effects.

[B,BNames] = randomEffects(glme)

B = 20×1

    0.2913
    0.1542
   -0.2633
   -0.4257
    0.5453
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   -0.1069
    0.3040
   -0.1653
   -0.1458
   -0.0816
      ⋮

BNames=20×3 table
       Group       Level          Name      
    ___________    ______    _______________

    {'factory'}    {'1' }    {'(Intercept)'}
    {'factory'}    {'2' }    {'(Intercept)'}
    {'factory'}    {'3' }    {'(Intercept)'}
    {'factory'}    {'4' }    {'(Intercept)'}
    {'factory'}    {'5' }    {'(Intercept)'}
    {'factory'}    {'6' }    {'(Intercept)'}
    {'factory'}    {'7' }    {'(Intercept)'}
    {'factory'}    {'8' }    {'(Intercept)'}
    {'factory'}    {'9' }    {'(Intercept)'}
    {'factory'}    {'10'}    {'(Intercept)'}
    {'factory'}    {'11'}    {'(Intercept)'}
    {'factory'}    {'12'}    {'(Intercept)'}
    {'factory'}    {'13'}    {'(Intercept)'}
    {'factory'}    {'14'}    {'(Intercept)'}
    {'factory'}    {'15'}    {'(Intercept)'}
    {'factory'}    {'16'}    {'(Intercept)'}
      ⋮

Each row of B contains the estimated EPB for the random-effects coefficient named in the
corresponding row of Bnames. For example, the value –0.2633 in row 3 of B is the estimated EPB for
'(Intercept)' for level '3' of factory.

Compute 99% Confidence Intervals for Random Effects

Load the sample data.

load mfr

This simulated data is from a manufacturing company that operates 50 factories across the world,
with each factory running a batch process to create a finished product. The company wants to
decrease the number of defects in each batch, so it developed a new manufacturing process. To test
the effectiveness of the new process, the company selected 20 of its factories at random to participate
in an experiment: Ten factories implemented the new process, while the other ten continued to run
the old process. In each of the 20 factories, the company ran five batches (for a total of 100 batches)
and recorded the following data:

• Flag to indicate whether the batch used the new process (newprocess)
• Processing time for each batch, in hours (time)
• Temperature of the batch, in degrees Celsius (temp)
• Categorical variable indicating the supplier (A, B, or C) of the chemical used in the batch

(supplier)
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• Number of defects in the batch (defects)

The data also includes time_dev and temp_dev, which represent the absolute deviation of time and
temperature, respectively, from the process standard of 3 hours at 20 degrees Celsius.

Fit a generalized linear mixed-effects model using newprocess, time_dev, temp_dev, and
supplier as fixed-effects predictors. Include a random-effects term for intercept grouped by
factory, to account for quality differences that might exist due to factory-specific variations. The
response variable defects has a Poisson distribution, and the appropriate link function for this
model is log. Use the Laplace fit method to estimate the coefficients. Specify the dummy variable
encoding as 'effects', so the dummy variable coefficients sum to 0.

The number of defects can be modeled using a Poisson distribution

defectsi j ∼ Poisson(μi j)

This corresponds to the generalized linear mixed-effects model

log(μi j) = β0 + β1newprocessi j + β2time_devi j + β3temp_devi j + β4supplier_Ci j + β5supplier_Bi j
+ bi,

where

• defectsi j is the number of defects observed in the batch produced by factory i during batch j.
• μi j is the mean number of defects corresponding to factory i (where i = 1, 2, . . . , 20) during batch

j (where j = 1, 2, . . . , 5).
• newprocessi j, time_devi j, and temp_devi j are the measurements for each variable that correspond

to factory i during batch j. For example, newprocessi j indicates whether the batch produced by
factory i during batch j used the new process.

• supplier_Ci j and supplier_Bi j are dummy variables that use effects (sum-to-zero) coding to indicate
whether company C or B, respectively, supplied the process chemicals for the batch produced by
factory i during batch j.

• bi ∼ N(0, σb
2) is a random-effects intercept for each factory i that accounts for factory-specific

variation in quality.

glme = fitglme(mfr,'defects ~ 1 + newprocess + time_dev + temp_dev + supplier + (1|factory)',...
    'Distribution','Poisson','Link','log','FitMethod','Laplace','DummyVarCoding','effects');

Compute and display the 99% confidence intervals for the random-effects coefficients.

[B,BNames,stats] = randomEffects(glme,'Alpha',0.01);
stats

stats = 
    Random effect coefficients: DFMethod = 'residual', Alpha = 0.01

    Group              Level         Name                   Estimate     SEPred 
    {'factory'}        {'1' }        {'(Intercept)'}          0.29131    0.19163
    {'factory'}        {'2' }        {'(Intercept)'}          0.15423    0.19216
    {'factory'}        {'3' }        {'(Intercept)'}         -0.26325    0.21249
    {'factory'}        {'4' }        {'(Intercept)'}         -0.42568    0.21667
    {'factory'}        {'5' }        {'(Intercept)'}           0.5453    0.17963
    {'factory'}        {'6' }        {'(Intercept)'}         -0.10692    0.20133
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    {'factory'}        {'7' }        {'(Intercept)'}          0.30404    0.18397
    {'factory'}        {'8' }        {'(Intercept)'}         -0.16527    0.20505
    {'factory'}        {'9' }        {'(Intercept)'}         -0.14577      0.203
    {'factory'}        {'10'}        {'(Intercept)'}        -0.081632    0.20256
    {'factory'}        {'11'}        {'(Intercept)'}         0.014529    0.21421
    {'factory'}        {'12'}        {'(Intercept)'}          0.17706    0.20721
    {'factory'}        {'13'}        {'(Intercept)'}          0.24872    0.20522
    {'factory'}        {'14'}        {'(Intercept)'}          0.21145    0.20678
    {'factory'}        {'15'}        {'(Intercept)'}           0.2777    0.20345
    {'factory'}        {'16'}        {'(Intercept)'}         -0.25175    0.22568
    {'factory'}        {'17'}        {'(Intercept)'}         -0.13507    0.22301
    {'factory'}        {'18'}        {'(Intercept)'}          -0.1627    0.22269
    {'factory'}        {'19'}        {'(Intercept)'}         -0.32083    0.23294
    {'factory'}        {'20'}        {'(Intercept)'}         0.058418    0.21481

    tStat       DF    pValue       Lower       Upper  
      1.5202    94      0.13182    -0.21251    0.79514
     0.80259    94      0.42423      -0.351    0.65946
     -1.2389    94      0.21846    -0.82191    0.29541
     -1.9646    94     0.052408    -0.99534    0.14398
      3.0356    94    0.0031051    0.073019     1.0176
    -0.53105    94      0.59664    -0.63625    0.42241
      1.6527    94      0.10173    -0.17964    0.78771
    -0.80597    94      0.42229    -0.70438    0.37385
    -0.71806    94       0.4745    -0.67949    0.38795
      -0.403    94      0.68786    -0.61419    0.45093
    0.067826    94      0.94607    -0.54866    0.57772
     0.85446    94      0.39502    -0.36774    0.72185
       1.212    94      0.22857    -0.29083    0.78827
      1.0226    94      0.30913    -0.33221    0.75511
       1.365    94      0.17552    -0.25719    0.81259
     -1.1156    94      0.26746    -0.84509    0.34158
    -0.60568    94      0.54619     -0.7214    0.45125
    -0.73061    94      0.46684    -0.74817    0.42278
     -1.3773    94      0.17168    -0.93325    0.29159
     0.27195    94      0.78626    -0.50635    0.62319

The first three columns of stats contain the group name, level, and random-effects coefficient name.
Column 4 contains the estimated EBP of the random-effects coefficient. The last two columns of
stats, Lower and Upper, contain the lower and upper bounds of the 99% confidence interval,
respectively. For example, for the coefficient for '(Intercept)' for level 3 of factory, the
estimated EBP is -0.26325, and the 99% confidence interval is [-0.82191,0.29541].

References
[1] Booth, J.G., and J.P. Hobert. “Standard Errors of Prediction in Generalized Linear Mixed Models.”

Journal of the American Statistical Association, Vol. 93, 1998, pp. 262–272.

See Also
GeneralizedLinearMixedModel | coefCI | coefTest | fixedEffects
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randomEffects
Class: LinearMixedModel

Estimates of random effects and related statistics

Syntax
B = randomEffects(lme)
[B,Bnames] = randomEffects(lme)
[B,Bnames,stats] = randomEffects(lme)
[B,Bnames,stats] = randomEffects(lme,Name,Value)

Description
B = randomEffects(lme) returns the estimates of the best linear unbiased predictors (BLUPs) of
random effects in the linear mixed-effects model lme.

[B,Bnames] = randomEffects(lme) also returns the names of the coefficients in Bnames. Each
name corresponds to a coefficient in B.

[B,Bnames,stats] = randomEffects(lme) also returns the estimated BLUPs of random effects
in the linear mixed-effects model lme and related statistics.

[B,Bnames,stats] = randomEffects(lme,Name,Value) also returns the BLUPs of random
effects in the linear mixed-effects model lme and related statistics with additional options specified
by one or more Name,Value pair arguments.

Input Arguments
lme — Linear mixed-effects model
LinearMixedModel object

Linear mixed-effects model, specified as a LinearMixedModel object constructed using fitlme or
fitlmematrix.

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.

Alpha — Significance level
0.05 (default) | scalar value in the range 0 to 1

Significance level, specified as the comma-separated pair consisting of 'Alpha' and a scalar value in
the range 0 to 1. For a value α, the confidence level is 100*(1–α)%.

For example, for 99% confidence intervals, you can specify the confidence level as follows.
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35-6159



Example: 'Alpha',0.01
Data Types: single | double

DFMethod — Method for computing approximate degrees of freedom
'residual' (default) | 'satterthwaite' | 'none'

Method for computing approximate degrees of freedom for the t-statistics that test the random-
effects coefficients against 0, specified as the comma-separated pair consisting of 'DFMethod' and
one of the following.

'residual' Default. The degrees of freedom are assumed to
be constant and equal to n – p, where n is the
number of observations and p is the number of
fixed effects.

'satterthwaite' Satterthwaite approximation.
'none' All degrees of freedom are set to infinity.

For example, you can specify the Satterthwaite approximation as follows.
Example: 'DFMethod','satterthwaite'

Output Arguments
B — Estimated best linear unbiased predictors of random effects
column vector

Estimated best linear unbiased predictors of random effects of linear mixed-effects model lme,
returned as a column vector.

Suppose lme has R grouping variables g1, g2, ..., gR, with levels m1, m2, ..., mR, respectively. Also
suppose q1, q2, ..., qR are the lengths of the random-effects vectors that are associated with g1, g2, ...,
gR, respectively. Then, B is a column vector of length q1*m1 + q2*m2 + ... + qR*mR.

randomEffects creates B by concatenating the best linear unbiased predictors of random-effects
vectors corresponding to each level of each grouping variable as [g1level1; g1level2; ...;
g1levelm1; g2level1; g2level2; ...; g2levelm2; ...; gRlevel1; gRlevel2; ...;
gRlevelmR]'.

Bnames — Names of random-effects coefficients
table

Names of random-effects coefficients in B, returned as a table.

stats — Estimates of random effects BLUPs and related statistics
dataset array

Estimates of random effects BLUPs and related statistics, returned as a dataset array that has one
row for each of the fixed effects and one column for each of the following statistics.

Group Grouping variable associated with the random
effect
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Level Level within the grouping variable corresponding
to the random effect

Name Name of the random-effect coefficient
Estimate Best linear unbiased predictor (BLUP) of random

effect
SEPred Standard error of the estimate (BLUP minus

random effect)
tStat t-statistic for a test that the random effect is zero
DF Estimated degrees of freedom for the t-statistic
pValue p-value for the t-statistic
Lower Lower limit of a 95% confidence interval for the

random effect
Upper Upper limit of a 95% confidence interval for the

random effect

Examples

Display Random-Effects Estimates and Coefficient Names

Load the sample data.

load carbig

Fit a linear mixed-effects model for miles per gallon (MPG), with fixed effects for acceleration and
horsepower, and potentially correlated random effects for intercept and acceleration, grouped by the
model year. First, store the data in a table.

tbl = table(Acceleration,Horsepower,Model_Year,MPG);

Fit the model.

lme = fitlme(tbl, 'MPG ~ Acceleration + Horsepower + (Acceleration|Model_Year)');

Compute the BLUPs of the random-effects coefficients and display the names of the corresponding
random effects.

[B,Bnames] = randomEffects(lme)

B = 26×1

    3.1270
   -0.2426
   -1.6532
   -0.0086
    1.2075
   -0.2179
    4.4107
   -0.4887
   -1.3103
   -0.0208
      ⋮
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Bnames=26×3 table
        Group         Level           Name      
    ______________    ______    ________________

    {'Model_Year'}    {'70'}    {'(Intercept)' }
    {'Model_Year'}    {'70'}    {'Acceleration'}
    {'Model_Year'}    {'71'}    {'(Intercept)' }
    {'Model_Year'}    {'71'}    {'Acceleration'}
    {'Model_Year'}    {'72'}    {'(Intercept)' }
    {'Model_Year'}    {'72'}    {'Acceleration'}
    {'Model_Year'}    {'73'}    {'(Intercept)' }
    {'Model_Year'}    {'73'}    {'Acceleration'}
    {'Model_Year'}    {'74'}    {'(Intercept)' }
    {'Model_Year'}    {'74'}    {'Acceleration'}
    {'Model_Year'}    {'75'}    {'(Intercept)' }
    {'Model_Year'}    {'75'}    {'Acceleration'}
    {'Model_Year'}    {'76'}    {'(Intercept)' }
    {'Model_Year'}    {'76'}    {'Acceleration'}
    {'Model_Year'}    {'77'}    {'(Intercept)' }
    {'Model_Year'}    {'77'}    {'Acceleration'}
      ⋮

Since intercept and acceleration have potentially correlated random effects, grouped by model year
of the cars, randomEffects creates a separate row for intercept and acceleration at each level of
the grouping variable.

Compute the covariance parameters of the random effects.

[~,~,stats] = covarianceParameters(lme)

stats=2×1 cell array
    {3x7 classreg.regr.lmeutils.titleddataset}
    {1x5 classreg.regr.lmeutils.titleddataset}

stats{1}

ans = 
    Covariance Type: FullCholesky

    Group         Name1                   Name2                   Type        
    Model_Year    {'(Intercept)' }        {'(Intercept)' }        {'std' }    
    Model_Year    {'Acceleration'}        {'(Intercept)' }        {'corr'}    
    Model_Year    {'Acceleration'}        {'Acceleration'}        {'std' }    

    Estimate    Lower       Upper   
      3.3475      1.2862      8.7119
    -0.87971    -0.98501    -0.29675
     0.33789      0.1825     0.62558

The correlation value suggests that random effects seem negatively correlated. Plot the random
effects for intercept versus acceleration to confirm this.

plot(B(1:2:end),B(2:2:end),'r*')

35 Functions

35-6162



Compute Random-Effects Estimates and Related Statistics

Load the sample data.

load('fertilizer.mat');

The dataset array includes data from a split-plot experiment, where soil is divided into three blocks
based on the soil type: sandy, silty, and loamy. Each block is divided into five plots, where five
different types of tomato plants (cherry, heirloom, grape, vine, and plum) are randomly assigned to
these plots. The tomato plants in the plots are then divided into subplots, where each subplot is
treated by one of four fertilizers. This is simulated data.

Store the data in a dataset array called ds, for practical purposes, and define Tomato, Soil, and
Fertilizer as categorical variables.

ds = fertilizer;
ds.Tomato = nominal(ds.Tomato);
ds.Soil = nominal(ds.Soil);
ds.Fertilizer = nominal(ds.Fertilizer);

Fit a linear mixed-effects model, where Fertilizer and Tomato are the fixed-effects variables, and
the mean yield varies by the block (soil type), and the plots within blocks (tomato types within soil
types) independently.

lme = fitlme(ds,'Yield ~ Fertilizer * Tomato + (1|Soil) + (1|Soil:Tomato)');
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Compute the BLUPs and related statistics for random effects.

[~,~,stats] = randomEffects(lme)

stats = 
    Random effect coefficients: DFMethod = 'Residual', Alpha = 0.05

    Group                  Level                     Name               
    {'Soil'       }        {'Loamy'         }        {'(Intercept)'}    
    {'Soil'       }        {'Sandy'         }        {'(Intercept)'}    
    {'Soil'       }        {'Silty'         }        {'(Intercept)'}    
    {'Soil:Tomato'}        {'Loamy Cherry'  }        {'(Intercept)'}    
    {'Soil:Tomato'}        {'Loamy Grape'   }        {'(Intercept)'}    
    {'Soil:Tomato'}        {'Loamy Heirloom'}        {'(Intercept)'}    
    {'Soil:Tomato'}        {'Loamy Plum'    }        {'(Intercept)'}    
    {'Soil:Tomato'}        {'Loamy Vine'    }        {'(Intercept)'}    
    {'Soil:Tomato'}        {'Sandy Cherry'  }        {'(Intercept)'}    
    {'Soil:Tomato'}        {'Sandy Grape'   }        {'(Intercept)'}    
    {'Soil:Tomato'}        {'Sandy Heirloom'}        {'(Intercept)'}    
    {'Soil:Tomato'}        {'Sandy Plum'    }        {'(Intercept)'}    
    {'Soil:Tomato'}        {'Sandy Vine'    }        {'(Intercept)'}    
    {'Soil:Tomato'}        {'Silty Cherry'  }        {'(Intercept)'}    
    {'Soil:Tomato'}        {'Silty Grape'   }        {'(Intercept)'}    
    {'Soil:Tomato'}        {'Silty Heirloom'}        {'(Intercept)'}    
    {'Soil:Tomato'}        {'Silty Plum'    }        {'(Intercept)'}    
    {'Soil:Tomato'}        {'Silty Vine'    }        {'(Intercept)'}    

    Estimate    SEPred    tStat       DF    pValue      Lower      Upper  
     1.0061     2.3374     0.43044    40     0.66918     -3.718     5.7303
    -1.5236     2.3374    -0.65181    40     0.51825    -6.2477     3.2006
    0.51744     2.3374     0.22137    40     0.82593    -4.2067     5.2416
      12.46     7.1765      1.7362    40    0.090224    -2.0443     26.964
    -2.6429     7.1765    -0.36827    40     0.71461    -17.147     11.861
     16.681     7.1765      2.3244    40    0.025269     2.1766     31.185
    -5.0172     7.1765    -0.69911    40     0.48853    -19.522     9.4872
    -4.6874     7.1765    -0.65316    40     0.51739    -19.192     9.8169
    -17.393     7.1765     -2.4235    40    0.019987    -31.897    -2.8882
    -7.3679     7.1765     -1.0267    40     0.31075    -21.872     7.1364
     -8.621     7.1765     -1.2013    40     0.23671    -23.125     5.8833
      7.669     7.1765      1.0686    40     0.29165    -6.8353     22.173
    0.28246     7.1765    0.039359    40      0.9688    -14.222     14.787
     4.9326     7.1765     0.68732    40     0.49585    -9.5718     19.437
     10.011     7.1765      1.3949    40     0.17073    -4.4935     24.515
    -8.0599     7.1765     -1.1231    40      0.2681    -22.564     6.4444
    -2.6519     7.1765    -0.36952    40     0.71369    -17.156     11.852
      4.405     7.1765      0.6138    40     0.54282    -10.099     18.909

The first three rows contain the random-effects estimates and the statistics for the three levels,
Loamy, Sandy, and Silty of the grouping variable Soil. The corresponding p-values 0.66918,
0.51825, and 0.82593 indicate that these random-effects are not significantly different from 0. The
following 15 rows include the BLUPS of random-effects estimates for the intercept, grouped by the
variable Tomato nested in Soil, i.e. interaction of Tomato and Soil.
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Compute Confidence Intervals with Specified Options

Load the sample data.

load shift

Fit a linear mixed-effects model with a random intercept grouped by operator, to assess if there is a
significant difference in the performance according to the time of the shift. Use the restricted
maximum likelihood method.

lme = fitlme(shift,'QCDev ~ Shift + (1|Operator)');

Compute the 99% confidence intervals for random effects using the residuals option to compute the
degrees of freedom. This is the default method.

[~,~,stats] = randomEffects(lme,'Alpha',0.01)

stats = 
    Random effect coefficients: DFMethod = 'Residual', Alpha = 0.01

    Group               Level        Name                   Estimate    SEPred 
    {'Operator'}        {'1'}        {'(Intercept)'}        0.57753     0.90378
    {'Operator'}        {'2'}        {'(Intercept)'}         1.1757     0.90378
    {'Operator'}        {'3'}        {'(Intercept)'}        -2.1715     0.90378
    {'Operator'}        {'4'}        {'(Intercept)'}         2.3655     0.90378
    {'Operator'}        {'5'}        {'(Intercept)'}        -1.9472     0.90378

    tStat      DF    pValue      Lower       Upper  
    0.63902    12     0.53482     -2.1831     3.3382
     1.3009    12     0.21772     -1.5849     3.9364
    -2.4027    12    0.033352     -4.9322    0.58909
     2.6174    12    0.022494    -0.39511     5.1261
    -2.1546    12    0.052216     -4.7079    0.81337

Compute the 99% confidence intervals for random effects using the Satterthwaite approximation to
compute the degrees of freedom.

[~,~,stats] = randomEffects(lme,'DFMethod','satterthwaite','Alpha',0.01)

stats = 
    Random effect coefficients: DFMethod = 'Satterthwaite', Alpha = 0.01

    Group               Level        Name                   Estimate    SEPred 
    {'Operator'}        {'1'}        {'(Intercept)'}        0.57753     0.90378
    {'Operator'}        {'2'}        {'(Intercept)'}         1.1757     0.90378
    {'Operator'}        {'3'}        {'(Intercept)'}        -2.1715     0.90378
    {'Operator'}        {'4'}        {'(Intercept)'}         2.3655     0.90378
    {'Operator'}        {'5'}        {'(Intercept)'}        -1.9472     0.90378

    tStat      DF        pValue      Lower       Upper 
    0.63902    6.4253      0.5449      -2.684     3.839
     1.3009    6.4253     0.23799     -2.0858    4.4372
    -2.4027    6.4253    0.050386      -5.433      1.09
     2.6174    6.4253    0.037302    -0.89598     5.627
    -2.1546    6.4253    0.071626     -5.2087    1.3142
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The Satterthwaite method usually produces smaller values for the degrees of freedom (DF), which
results in larger p-values (pValue) and larger confidence intervals (Lower and Upper) for the
random-effects estimates.

See Also
LinearMixedModel | fitlme | coefCI | coefTest | fixedEffects
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randsample
Random sample

Syntax
y = randsample(n,k)
y = randsample(population,k)
y = randsample( ___ ,replacement)
y = randsample(n,k,true,w)
y = randsample(population,k,true,w)
y = randsample(s, ___ )

Description
y = randsample(n,k) returns k values sampled uniformly at random, without replacement, from
the integers 1 to n.

y = randsample(population,k) returns a vector of k values sampled uniformly at random,
without replacement, from the values in the vector population.

y = randsample( ___ ,replacement) returns a sample taken with replacement if replacement
is true, or without replacement if replacement is false. Specify replacement following any of
the input argument combinations in the previous syntaxes.

y = randsample(n,k,true,w) uses a vector of non-negative weights, w, whose length is n, to
determine the probability that an integer i is selected as an entry for y.

y = randsample(population,k,true,w) uses a vector of nonnegative weights, w, of the same
length as the vector population, to determine the probability that a value population(i) is
selected as an entry for y.

y = randsample(s, ___ ) uses the stream s for random number generation. The option s can
precede any of the input arguments in the previous syntaxes. s is a member of the RandStream
class.

Examples

Sample Unique Value from Range

Draw a single value from the integers 1 through 10.

n = 10;
x = randsample(n,1)

x = 9
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Sample from Population Vector

Create the random seed for reproducibility of the results.

s = RandStream('mlfg6331_64'); 

Draw a single value from the vector [10:20].

population = 10:20;
y = randsample(s,population,1)

y = 17

Generate Random Sequence for Specified Probabilities

Create the random number stream for reproducibility.

s = RandStream('mlfg6331_64');

Choose 48 characters randomly and with replacement from the sequence ACGT, according to the
specified probabilities.

R = randsample(s,'ACGT',48,true,[0.15 0.35 0.35 0.15])

R = 
'GGCGGCGCAAGGCGCCGGACCTGGCTGCACGCCGTTCCCTGCTACTCG'

Set Random Number Stream

Create the random number stream for reproducibility.

s = RandStream('mlfg6331_64'); 

Draw five values with replacement from the integers 1:10.

y = randsample(s,10,5,true)

y = 5×1

     7
     8
     5
     7
     8

Input Arguments
n — Upper limit of range
positive integer
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Upper limit of the range (1 to n) from which to sample, specified as a positive integer. By default,
randsample samples uniformly at random, without replacement, from the values in the range 1 to n.
Data Types: single | double

population — Input data
vector

Input data from which to sample, specified as a vector. By default, randsample samples uniformly at
random, without replacement, from the values in population. The orientation of y (row or column)
is the same as that of population.

If population is a numeric vector containing only nonnegative integer values, and population can
have the length 1, then use y = population(randsample(length(population),k)) or y =
datasample(population,k,'Replace',false) instead of y = randsample(population,k).
Example: y = randsample([50:100],20) returns a vector of 20 values sampled uniformly at
random, without replacement, from the population vector consisting of integers from 50 to 100.
Data Types: single | double | logical | char | string | categorical

k — Number of samples
positive integer

Number of samples, specified as a positive integer.
Example: randsample(20,10) returns a vector of 10 values sampled uniformly at random, without
replacement, from the integers 1 to 20.
Data Types: single | double

replacement — Indicator for sampling with replacement
false (default) | true

Indicator for sampling with replacement, specified as either false or true.
Example: randsample(10,2,true) returns two values with replacement from the integers 1 to 10.
Data Types: logical

w — Sampling weights
ones(n,1) (default) | vector of nonnegative scalar values

Sampling weights, specified as a vector of nonnegative scalar values. The length of w must be equal
to the range of integers to sample or the length of population. The vector w must have at least one
positive value. If w contains negative values or NaN values, randsample displays an error message.
The randsample function samples with probability proportional to w(i)/sum(w). Usually, w is a
vector of probabilities. The randsample function supports specifying weights only for sampling with
replacement.
Example: [0.1 0.5 0.35 0.46]
Data Types: single | double

s — Random number stream
MATLAB default random number stream (default) | RandStream

Random number stream, specified as the MATLAB default random number stream or RandStream.
For details, see “Creating and Controlling a Random Number Stream”.
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Example: s = RandStream('mlfg6331_64') creates a random number stream that uses the
multiplicative lagged Fibonacci generator algorithm.

Output Arguments
y — Sample
vector | scalar

Sample, returned as a vector or scalar.

• If k = 1, then y is a scalar.
• If k > 1, then y is a k-by-1 vector.

Alternative Functionality
To sample data randomly, with or without replacement, use datasample.

Version History
Introduced before R2006a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• When you sample without replacement, the order of the output values might not match the order
in MATLAB.

• Code generation does not support the random number stream input argument s.

For more information on code generation, see “Introduction to Code Generation” on page 34-2 and
“General Code Generation Workflow” on page 34-5.

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

This function fully supports GPU arrays. For more information, see “Run MATLAB Functions on a
GPU” (Parallel Computing Toolbox).

See Also
datasample | rand | randperm | RandStream
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randtool
Interactive random number generation

Syntax
randtool

Description
randtool opens the Random Number Generation Tool.

The Random Number Generation Tool is a graphical user interface that generates random samples
from specified probability distributions and displays the samples as histograms. Use the tool to
explore the effects of changing parameters and sample size on the distributions.
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Start by selecting a distribution, then enter the desired sample size.

You can also

• Use the controls at the bottom of the window to set parameter values for the distribution and to
change their upper and lower bounds.

• Draw another sample from the same distribution, with the same size and parameters.
• Export the current sample to your workspace. A dialog box enables you to provide a name for the

sample.

randttool does not provide printing functionality in MATLAB Online.
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Version History
Introduced before R2006a
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range
Range of values

Syntax
y = range(X)
y = range(X,'all')
y = range(X,dim)
y = range(X,vecdim)

Description
y = range(X) returns the difference between the maximum and minimum values of sample data in
X.

• If X is a vector, then range(X) is the range of the values in X.
• If X is a matrix, then range(X) is a row vector containing the range of each column in X.
• If X is a multidimensional array, then range operates along the first nonsingleton dimension of X,

treating the values as vectors. The size of this dimension becomes 1 while the sizes of all other
dimensions remain the same. If X is an empty array with first dimension 0, then range(X) returns
an empty array with the same size as X.

y = range(X,'all') returns the range of all elements in X.

y = range(X,dim) returns the range along the operating dimension dim of X. For example, if X is a
matrix, then range(X,2) is a column vector containing the range value of each row.

y = range(X,vecdim) returns the range over the dimensions specified in the vector vecdim. For
example, if X is a matrix, then range(X,[1 2]) is the range of all elements in X because every
element of a matrix is contained in the array slice defined by dimensions 1 and 2.

Examples

Range of Standard Normal Random Numbers

Generate five large samples of standard normal random numbers.

rng('default') % For reproducibility
rv = normrnd(0,1,1000,5);

Find the range values of the samples.

near6 = range(rv)

near6 = 1×5

    6.8104    6.6420    6.9578    6.0860    6.8165

The range value is approximately 6 for each sample.
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Range of Exam Scores

Find the range of exam scores over the course of five exams.

Load the examgrades data set.

load examgrades

Find the range of all exam scores.

y = range(grades,'all')

y = 46

Range of Exam Scores by Student

Find the range of exam scores for each student over the course of five exams.

Load the examgrades data set.

load examgrades

Find the range of exam scores for the first 10 students. For example, the difference between the
eighth student's best and worst exam scores is 7 points.

X = grades(1:10,:);
y = range(X,2)

y = 10×1

    12
    13
    10
    12
     8
    16
    14
     7
    12
    10

Range Along Vector Dimension

Find the range of a multidimensional array over multiple dimensions.

Create a 3-by-5-by-2 array of normal random numbers with mean mu = 2 and standard deviation
sigma = 7.

rng('default') % For reproducibility
mu = 2;

 range

35-6175



sigma = 7;
X = normrnd(mu,sigma,[3 5 2])

X = 
X(:,:,1) =

    5.7637    8.0352   -1.0351   21.3861    7.0778
   14.8372    4.2314    4.3984   -7.4492    1.5586
  -13.8119   -7.1538   27.0488   23.2445    7.0032

X(:,:,2) =

    0.5652   11.8632   -6.4524    5.4223   -0.1241
    1.1310   11.9203    7.0207    9.2429    4.0571
   12.4279    6.7005   13.4116    7.0882   -3.5110

Find the range of each page of X by specifying dimensions 1 and 2 as the operating dimensions.

ypage = range(X,[1 2])

ypage = 
ypage(:,:,1) =

   40.8607

ypage(:,:,2) =

   19.8641

For example, ypage(1,1,2) is the range of all the elements in X(:,:,2).

Find the range of the elements in each X(i,:,:) slice by specifying dimensions 2 and 3 as the
operating dimensions.

yrow = range(X,[2 3])

yrow = 3×1

   27.8385
   22.2864
   40.8607

For example, yrow(3) is the range of all the elements in X(3,:,:).

Input Arguments
X — Data sample
scalar | vector | matrix | multidimensional array

Data sample, specified as a scalar, vector, matrix, or multidimensional array.
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• If X is a scalar, then range(X) is 0.
• If X is a 0-by-0 empty array, then range(X) is also an empty array.

Data Types: single | double | logical | datetime | duration

dim — Dimension to operate along
positive integer scalar

Dimension to operate along, specified as a positive integer scalar. If you do not specify a value, then
the default value is the first array dimension whose size does not equal 1.

dim indicates the dimension whose length reduces to 1. size(y,dim) is 1, while the sizes of all
other dimensions remain the same unless size(X,dim) is 0. If size(X,dim) is 0, then
range(X,dim) returns an empty array of the same size as X.

Consider a two-dimensional data sample X:

• If dim is equal to 1, then range(X,1) returns a row vector containing the range for each column.
• If dim is equal to 2, then range(X,2) returns a column vector containing the range for each row.

If dim is greater than ndims(X), range returns an array of zeros with the same dimensions and
missing values as X.
Data Types: single | double

vecdim — Vector of dimensions
positive integer vector

Vector of dimensions, specified as a positive integer vector. Each element of vecdim represents a
dimension of the input array X. The output y has length 1 in the specified operating dimensions. The
other dimension lengths are the same for X and y.

For example, if X is a 2-by-3-by-3 array, then range(X,[1 2]) returns a 1-by-1-by-3 array. Each
element of the output array is the range of the elements on the corresponding page of X.

Data Types: single | double

Output Arguments
y — Difference between maximum and minimum values
scalar | vector | matrix | multidimensional array
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Difference between the maximum and minimum values, returned as a scalar, vector, matrix, or
multidimensional array.

Tips
• range treats NaNs as missing values and ignores them.
• range provides an easily calculated estimate of the spread of a sample. Avoid using range with

data that has outliers because they have an undue influence on this statistic.

Version History
Introduced before R2006a

Extended Capabilities
Tall Arrays
Calculate with arrays that have more rows than fit in memory.

This function fully supports tall arrays. For more information, see “Tall Arrays”.

Thread-Based Environment
Run code in the background using MATLAB® backgroundPool or accelerate code with Parallel
Computing Toolbox™ ThreadPool.

This function fully supports thread-based environments. For more information, see “Run MATLAB
Functions in Thread-Based Environment”.

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

Usage notes and limitations:

• The 'all' and vecdim input arguments are not supported.

For more information, see “Run MATLAB Functions on a GPU” (Parallel Computing Toolbox).

See Also
std | iqr | mad
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rangesearch
Find all neighbors within specified distance using searcher object

Syntax
Idx = rangesearch(Mdl,Y,r)
Idx = rangesearch(Mdl,Y,r,Name,Value)
[Idx,D] = rangesearch( ___ )

Description
Idx = rangesearch(Mdl,Y,r) searches for all neighbors (i.e., points, rows, or observations) in
Mdl.X within radius r of each point (i.e., row or observation) in the query data Y using an exhaustive
search or a Kd-tree. rangesearch returns Idx, which is a column vector of the indices of Mdl.X
within r units.

Idx = rangesearch(Mdl,Y,r,Name,Value) returns the indices of the observation in Mdl.X
within radius r of each observation in Y with additional options specified by one or more
Name,Value pair arguments. For example, you can specify to use a different distance metric than is
stored in Mdl.Distance or a different distance metric parameter than is stored in
Mdl.DistParameter.

[Idx,D] = rangesearch( ___ ) additionally returns the matrix D using any of the input arguments
in the previous syntaxes. D contains the distances between the observations in Mdl.X within radius r
of each observation in Y. By default, the function arranges the columns of D in ascending order by
closeness, with respect to the distance metric.

Examples

Search for Neighbors Within a Radius Using Kd-tree and Exhaustive Search

rangesearch accepts ExhaustiveSearcher or KDTreeSearcher model objects to search the
training data for the nearest neighbors to the query data. An ExhaustiveSearcher model invokes
the exhaustive searcher algorithm, and a KDTreeSearcher model defines a Kd-tree, which
rangesearch uses to search for nearest neighbors.

Load Fisher's iris data set. Randomly reserve five observations from the data for query data. Focus on
the petal dimensions.

load fisheriris
rng(1); % For reproducibility
n = size(meas,1);
idx = randsample(n,5);
X = meas(~ismember(1:n,idx),3:4); % Training data
Y = meas(idx,3:4);                % Query data

Grow a default two-dimensional Kd-tree.

MdlKDT = KDTreeSearcher(X)
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MdlKDT = 
  KDTreeSearcher with properties:

       BucketSize: 50
         Distance: 'euclidean'
    DistParameter: []
                X: [145x2 double]

MdlKDT is a KDTreeSearcher model object. You can alter its writable properties using dot notation.

Prepare an exhaustive nearest neighbor searcher.

MdlES = ExhaustiveSearcher(X)

MdlES = 
  ExhaustiveSearcher with properties:

         Distance: 'euclidean'
    DistParameter: []
                X: [145x2 double]

MdlES is an ExhaustiveSearcher model object. It contains the options, such as the distance
metric, to use to find nearest neighbors.

Alternatively, you can grow a Kd-tree or prepare an exhaustive nearest neighbor searcher using
createns.

Search training data for the nearest neighbor indices that correspond to each query observation that
are within a 0.5 cm radius. Conduct both types of searches and use the default settings.

r = 0.15; % Search radius
IdxKDT = rangesearch(MdlKDT,Y,r);
IdxES = rangesearch(MdlES,Y,r);
[IdxKDT IdxES]

ans=5×2 cell array
    {[1 4 8 27 32 45 47 2 35 37 ... ]}    {[1 4 8 27 32 45 47 2 35 37 ... ]}
    {[                            13]}    {[                            13]}
    {[6 17 39 40 1 4 8 27 32 45 ... ]}    {[6 17 39 40 1 4 8 27 32 45 ... ]}
    {[                         64 66]}    {[                         64 66]}
    {1x0 double                      }    {1x0 double                      }

IdxKDT and IdxES are cell arrays of vectors corresponding to the indices of X that are within 0.15
cm of the observations in Y. Each row of the index matrices corresponds to a query observation.

Compare the results between the methods.

cellfun(@isequal,IdxKDT,IdxES)

ans = 5x1 logical array

   1
   1
   1
   1

35 Functions

35-6180



   1

In this case, the results are the same.

Plot the results for the setosa irises.

setosaIdx = strcmp(species(~ismember(1:n,idx)),'setosa');
XSetosa = X(setosaIdx,:);
ySetosaIdx = strcmp(species(idx),'setosa');
YSetosa = Y(ySetosaIdx,:);

figure;
plot(XSetosa(:,1),XSetosa(:,2),'.k');
hold on;
plot(YSetosa(:,1),YSetosa(:,2),'*r');
for j = 1:sum(ySetosaIdx)
    c = YSetosa(j,:);
    circleFun = @(x1,x2)r^2 - (x1 - c(1)).^2 - (x2 - c(2)).^2;
    fimplicit(circleFun,[c(1) + [-1 1]*r, c(2) + [-1 1]*r],'b-')
end
xlabel 'Petal length (cm)';
ylabel 'Petal width (cm)';
title 'Setosa Petal Measurements';
legend('Observations','Query Data','Search Radius');
axis equal
hold off
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Search for Neighbors Within a Radius Using the Mahalanobis Distance

Load Fisher's iris data set.

load fisheriris

Remove five irises randomly from the predictor data to use as a query set.

rng(1);                     % For reproducibility
n = size(meas,1);           % Sample size
qIdx = randsample(n,5);     % Indices of query data
X = meas(~ismember(1:n,qIdx),:);
Y = meas(qIdx,:);

Prepare a default exhaustive nearest neighbor searcher.

Mdl = ExhaustiveSearcher(X)

Mdl = 
  ExhaustiveSearcher with properties:

         Distance: 'euclidean'
    DistParameter: []
                X: [145x4 double]

Mdl is an ExhaustiveSearcher model.

Find the indices of the training data (X) that are within 0.15 cm of each point in the query data (Y).
Specify that the distances are with respect to the Mahalanobis metric.

r = 1;
Idx = rangesearch(Mdl,Y,r,'Distance','mahalanobis')

Idx=5×1 cell array
    {[26 38 7 17 47 4 27 46 25 10 39 20 21 2 33]}
    {[                             6 21 25 4 19]}
    {[                          1 34 33 22 24 2]}
    {[                                       84]}
    {[                                       69]}

Idx{3}

ans = 1×6

     1    34    33    22    24     2

Each cell of Idx corresponds to a query data observation and contains in X a vector of indices of the
neighbors within 0.15cm of the query data. rangesearch arranges the indices in ascending order by
distance. For example, using the Mahalanobis distance, the second nearest neighbor of Y(3,:) is
X(34,:).
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Compute Distances of Neighbors Within a Radius

Load Fisher's iris data set.

load fisheriris

Remove five irises randomly from the predictor data to use as a query set.

rng(4);                     % For reproducibility
n = size(meas,1);           % Sample size
qIdx = randsample(n,5);     % Indices of query data
X = meas(~ismember(1:n,qIdx),:);
Y = meas(qIdx,:);

Grow a four-dimensional Kd-tree using the training data. Specify to use the Minkowski distance for
finding nearest neighbors.

Mdl = KDTreeSearcher(X);

Mdl is a KDTreeSearcher model. By default, the distance metric for finding nearest neighbors is the
Euclidean metric.

Find the indices of the training data (X) that are within 0.5 cm from each point in the query data (Y).

r = 0.5;
[Idx,D] = rangesearch(Mdl,Y,r);

Idx and D are five-element cell arrays of vectors. The vector values in Idx are the indices in X. The X
indices represent the observations that are within 0.5 cm of the query data, Y. D contains the
distances that correspond to the observations.

Display the results for query observation 3.

Idx{3}

ans = 1×2

   127   122

D{3}

ans = 1×2

    0.2646    0.4359

The closest observation to Y(3,:) is X(127,:), which is 0.2646 cm away. The next closest is
X(122,:), which is 0.4359 cm away. All other observations are greater than 0.5 cm away from
Y(5,:).

Input Arguments
Mdl — Nearest neighbor searcher
ExhaustiveSearcher model object | KDTreeSearcher model object

 rangesearch

35-6183



Nearest neighbor searcher, specified as an ExhaustiveSearcher or KDTreeSearcher model
object, respectively.

If Mdl is an ExhaustiveSearcher model, then rangesearch searches for nearest neighbors using
an exhaustive search. Otherwise, rangesearch uses the grown Kd-tree to search for nearest
neighbors.

Y — Query data
numeric matrix

Query data, specified as a numeric matrix.

Y is an m-by-K matrix. Rows of Y correspond to observations (i.e., examples), and columns correspond
to predictors (i.e., variables or features). Y must have the same number of columns as the training
data stored in Mdl.X.
Data Types: single | double

r — Search radius
nonnegative scalar

Search radius around each point in the query data, specified as a nonnegative scalar.

rangesearch finds all observations in Mdl.X that are within distance r of each observation in Y. The
property Mdl.Distance stores the distance.
Data Types: single | double

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: 'Distance','minkowski','P',3 specifies to find all observations in Mdl.X within
distance r of each observation in Y, using the Minkowski distance metric with exponent 3.

For Both Nearest Neighbor Searchers

Distance — Distance metric
Mdl.Distance (default) | 'cityblock' | 'euclidean' | 'mahalanobis' | 'minkowski' |
'seuclidean' | function handle | ...

Distance metric used to find neighbors of the training data to the query observations, specified as the
comma-separated pair consisting of 'Distance' and a character vector, string scalar, or function
handle.

For both types of nearest neighbor searchers, rangesearch supports these distance metrics.

Value Description
'chebychev' Chebychev distance (maximum coordinate difference).
'cityblock' City block distance.
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Value Description
'euclidean' Euclidean distance.
'minkowski' Minkowski distance. The default exponent is 2. To specify a different

exponent, use the 'P' name-value pair argument.

If Mdl is an ExhaustiveSearcher model object, then rangesearch also supports these distance
metrics.

Value Description
'correlation' One minus the sample linear correlation between

observations (treated as sequences of values).
'cosine' One minus the cosine of the included angle

between observations (treated as row vectors).
'hamming' Hamming distance, which is the percentage of

coordinates that differ.
'jaccard' One minus the Jaccard coefficient, which is the

percentage of nonzero coordinates that differ.
'mahalanobis' Mahalanobis distance, computed using a positive

definite covariance matrix. To change the value of
the covariance matrix, use the 'Cov' name-value
pair argument.

'seuclidean' Standardized Euclidean distance. Each
coordinate difference between rows in Mdl.X and
the query matrix is scaled by dividing by the
corresponding element of the standard deviation
computed from Mdl.X. To specify another
scaling, use the 'Scale' name-value pair
argument.

'spearman' One minus the sample Spearman's rank
correlation between observations (treated as
sequences of values).

If Mdl is an ExhaustiveSearcher model object, then you can also specify a function handle for a
custom distance metric by using @ (for example, @distfun). The custom distance function must:

• Have the form function D2 = distfun(ZI,ZJ).
• Take as arguments:

• A 1-by-K vector ZI containing a single row from Mdl.X or Y, where K is the number of columns
of Mdl.X.

• An m-by-K matrix ZJ containing multiple rows of Mdl.X or Y, where m is a positive integer.
• Return an m-by-1 vector of distances D2, where D2(j) is the distance between the observations

ZI and ZJ(j,:).

For more details, see “Distance Metrics” on page 19-14.
Example: 'Distance','minkowski'

P — Exponent for Minkowski distance metric
2 (default) | positive scalar
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Exponent for the Minkowski distance metric, specified as the comma-separated pair consisting of 'P'
and a positive scalar. This argument is valid only if 'Distance' is 'minkowski'.
Example: 'P',3
Data Types: single | double

SortIndices — Flag to sort returned indices according to distance
true (1) (default) | false (0)

Flag to sort returned indices according to distance, specified as the comma-separated pair consisting
of 'SortIndices' and either true (1) or false (0).

For faster performance when Y contains many observations that have many nearest points, you can
set SortIndices to false. In this case, rangesearch returns the indices of the nearest points in
no particular order. When SortIndices is true, the function arranges the indices of the nearest
points in ascending order by distance.
Example: 'SortIndices',false
Data Types: logical

For Exhaustive Nearest Neighbor Searchers

Cov — Covariance matrix for Mahalanobis distance metric
cov(Mdl.X,'omitrows') (default) | positive definite matrix

Covariance matrix for the Mahalanobis distance metric, specified as the comma-separated pair
consisting of 'Cov' and a positive definite matrix. Cov is a K-by-K matrix, where K is the number of
columns of Mdl.X. If you specify Cov and do not specify 'Distance','mahalanobis', then
rangesearch returns an error message.
Example: 'Cov',eye(3)
Data Types: single | double

Scale — Scale parameter value for standardized Euclidean distance metric
std(Mdl.X,'omitnan') (default) | nonnegative numeric vector

Scale parameter value for the standardized Euclidean distance metric, specified as the comma-
separated pair consisting of 'Scale' and a nonnegative numeric vector. Scale has length K, where
K is the number of columns of Mdl.X.

The software scales each difference between the training and query data using the corresponding
element of Scale. If you specify Scale and do not specify 'Distance','seuclidean', then
rangesearch returns an error message.
Example: 'Scale',quantile(Mdl.X,0.75) - quantile(Mdl.X,0.25)
Data Types: single | double

Note If you specify 'Distance', 'Cov', 'P', or 'Scale', then Mdl.Distance and
Mdl.DistParameter do not change value.
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Output Arguments
Idx — Training data indices of nearest neighbors
cell array of numeric vectors

Training data indices of nearest neighbors, returned as a cell array of numeric vectors.

Idx is an m-by-1 cell array such that cell j (Idx{j}) contains an mj-dimensional vector of indices of
the observations in Mdl.X that are within r units to the query observation Y(j,:). If SortIndices
is true, then rangesearch arranges the elements of the vectors in ascending order by distance.

D — Distances of nearest neighbors to the query data
cell array of numeric vectors

Distances of the neighbors to the query data, returned as a numeric matrix or cell array of numeric
vectors.

D is an m-by-1 cell array such that cell j (D{j}) contains an mj-dimensional vector of the distances
that the observations in Mdl.X are from the query observation Y(j,:). All elements of the vector are
less than r. If SortIndices is true, then rangesearch arranges the elements of the vectors in
ascending order.

Tips
knnsearch finds the k (positive integer) points in Mdl.X that are k-nearest for each Y point. In
contrast, rangesearch finds all the points in Mdl.X that are within distance r (positive scalar) of
each Y point.

Alternative Functionality
rangesearch is an object function that requires an ExhaustiveSearcher or a KDTreeSearcher
model object, query data, and a distance. Under equivalent conditions, rangesearch returns the
same results as rangesearch when you specify the name-value pair argument
'NSMethod','exhaustive' or 'NSMethod','kdtree', respectively.

Version History
Introduced in R2011b

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• This table contains notes about the arguments of rangesearch. Arguments not included in this
table are fully supported.
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Argument Notes and Limitations
Mdl There are two ways to use Mdl in code generation. For an example, see

“Code Generation for Nearest Neighbor Searcher” on page 34-20.

• Use saveLearnerForCoder, loadLearnerForCoder, and
codegen to generate code for the rangesearch function. Save a
trained model by using saveLearnerForCoder. Define an entry-
point function that loads the saved model by using
loadLearnerForCoder and calls the rangesearch function.
Then use codegen to generate code for the entry-point function.

• Include coder.Constant(Mdl) in the -args value of codegen.

If Mdl is a KDTreeSearcher object, and the code generation build
type is a MEX function, then codegen generates a MEX function using
Intel Threading Building Blocks (TBB) for parallel computation.
Otherwise, codegen generates code using parfor.

• MEX function for the kd-tree search algorithm — codegen
generates an optimized MEX function using Intel TBB for parallel
computation on multicore platforms. You can use the MEX function
to accelerate MATLAB algorithms. For details on Intel TBB, see
https://www.intel.com/content/www/us/en/developer/tools/oneapi/
onetbb.html.

If you generate the MEX function to test the generated code of the
parfor version, you can disable the usage of Intel TBB. Set the
ExtrinsicCalls property of the MEX configuration object to
false. For details, see coder.MexCodeConfig.

• MEX function for the exhaustive search algorithm and standalone
C/C++ code for both algorithms — The generated code of
rangesearch uses parfor to create loops that run in parallel on
supported shared-memory multicore platforms in the generated
code. If your compiler does not support the Open Multiprocessing
(OpenMP) application interface or you disable OpenMP library,
MATLAB Coder treats the parfor-loops as for-loops. To find
supported compilers, see https://www.mathworks.com/
support/compilers/current_release/. To disable OpenMP
library, set the EnableOpenMP property of the configuration object
to false. For details, see coder.CodeConfig.

'Distance' • Cannot be a custom distance function.
• Must be a compile-time constant; its value cannot change in the

generated code.
'SortIndices' Not supported. The output arguments are always sorted.
Name-value pair
arguments

Names in name-value arguments must be compile-time constants. For
example, to allow a user-defined exponent for the Minkowski distance
in the generated code, include
{coder.Constant('Distance'),coder.Constant('Minkowski'
),coder.Constant('P'),0} in the -args value of codegen.
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Argument Notes and Limitations
Idx • The sorted order of tied distances in the generated code can be

different from the order in MATLAB due to numerical precision.
• Starting in R2020a, rangesearch returns integer-type (int32)

indices, rather than double-precision indices, in generated
standalone C/C++ code. Therefore, the function allows for strict
single-precision support when you use single-precision inputs. For
MEX code generation, the function still returns double-precision
indices to match the MATLAB behavior.

For more information, see “Introduction to Code Generation” on page 34-2 and “Code Generation for
Nearest Neighbor Searcher” on page 34-20.

See Also
createns | ExhaustiveSearcher | KDTreeSearcher | knnsearch | rangesearch

Topics
“k-Nearest Neighbor Search and Radius Search” on page 19-16
“Distance Metrics” on page 19-14
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rangesearch
Find all neighbors within specified distance using input data

Syntax
Idx = rangesearch(X,Y,r)
[Idx,D] = rangesearch(X,Y,r)
[Idx,D] = rangesearch(X,Y,r,Name,Value)

Description
Idx = rangesearch(X,Y,r) finds all the X points that are within distance r of the Y points. The
rows of X and Y correspond to observations, and the columns correspond to variables.

[Idx,D] = rangesearch(X,Y,r) also returns the distances between the Y points and the X points
that are within a distance of r.

[Idx,D] = rangesearch(X,Y,r,Name,Value) specifies additional options using one or more
name-value pair arguments. For example, you can specify the nearest neighbor search method and
the distance metric used in the search.

Examples

Find All Points Within Specified Distance

Find the X points that are within a Euclidean distance 1.5 of each Y point. Both X and Y are samples
of five-dimensional normally distributed variables.

rng('default') % For reproducibility
X = randn(100,5);
Y = randn(10,5);
[Idx,D] = rangesearch(X,Y,1.5)

Idx=10×1 cell array
    {[             25 62 33 99 87 92 16]}
    {[                            92 25]}
    {[ 93 42 31 73 60 28 78 83 48 89 85]}
    {[                            92 41]}
    {[44 7 28 78 75 42 69 31 1 26 83 93]}
    {[       15 31 89 41 27 17 29 60 34]}
    {[                               89]}
    {1x0 double                         }
    {1x0 double                         }
    {1x0 double                         }

D=10×1 cell array
    {[                   0.9546 1.0987 1.2730 1.3981 1.4140 1.4249 1.4822]}
    {[                                                      1.4203 1.4558]}
    {[0.7114 0.7552 1.0081 1.1324 1.1424 1.1637 1.2108 1.3824 1.3944 ... ]}
    {[                                                      1.1244 1.4672]}
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    {[0.7863 0.9326 0.9773 1.0508 1.1722 1.1934 1.3218 1.3623 1.3869 ... ]}
    {[     1.2824 1.2843 1.3342 1.3469 1.4154 1.4237 1.4625 1.4626 1.4744]}
    {[                                                             1.1739]}
    {1x0 double                                                           }
    {1x0 double                                                           }
    {1x0 double                                                           }

In this case, the last three Y points are more than 1.5 distance away from any X point. X(89,:) is
1.1739 distance away from Y(7,:), and no other X point is within distance 1.5 of Y(7,:). X
contains 12 points within distance 1.5 of Y(5,:).

Find Nearest Points in Clustered Data

Generate 5000 random points from each of three distinct multivariate normal distributions. Shift the
means of the distributions so that the randomly generated points are likely to form three separate
clusters.

rng('default')  % For reproducibility
N = 5000;
dist = 10;
X = [mvnrnd([0 0],eye(2),N);
     mvnrnd(dist*[1 1],eye(2),N);
     mvnrnd(dist*[-1 -1],eye(2),N)];

For each point in X, find the points in X that are within a radius dist away from the point. For faster
computation, specify to keep the indices of the nearest neighbors unsorted. Select the first point in X,
and find its nearest neighbors.

Idx = rangesearch(X,X,dist,'SortIndices',false);
x = X(1,:);
nearestPoints = X(Idx{1},:);

Find the values in X that are not the nearest neighbors of x. Display those points in one color and the
nearest neighbors of x in a different color. Label the point x with a black, filled circle.

nonNearestIdx = true(size(X,1),1);
nonNearestIdx(Idx{1}) = false;

scatter(X(nonNearestIdx,1),X(nonNearestIdx,2))
hold on
scatter(nearestPoints(:,1),nearestPoints(:,2))
scatter(x(1),x(2),'black','filled')
hold off
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Find Nearest Points Using Custom Distance Function

Find the patients in the patients data set that are within a certain age and weight range of the
patients in Y.

Load the patients data set. The Age values are in years, and the Weight values are in pounds.

load patients
X = [Age Weight];
Y = [20 162; 30 169; 40 168];   % New patients

Create a custom distance function distfun that determines the distance between patients in terms
of age and weight. For example, according to distfun, two patients that are one year apart in age
and have the same weight are one distance unit apart. Similarly, two patients that have the same age
and are five pounds apart in weight are also one distance unit apart.

type distfun.m % Display contents of distfun.m file

function D2 = distfun(ZI,ZJ)
ageDifference = abs(ZI(1)-ZJ(:,1));
weightDifference = abs(ZI(2)-ZJ(:,2));
D2 = ageDifference + 0.2*weightDifference;
end
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Note: If you click the button located in the upper-right section of this example and open the example
in MATLAB®, then MATLAB opens the example folder. This folder includes the function file
distfun.m.

Find the patients in X that are within the distance 2 of the patients in Y.

[Idx,D] = rangesearch(X,Y,2,'Distance',@distfun)

Idx=3×1 cell array
    {1x0 double}
    {1x0 double}
    {[      41]}

D=3×1 cell array
    {1x0 double}
    {1x0 double}
    {[  1.8000]}

The third patient in Y is the only one to have a patient in X within a distance of 2.

Display the Age and Weight values for the nearest patient in X to the patient with age 40 and weight
168.

X(Idx{3},:)

ans = 1×2

    39   164

Input Arguments
X — Input data
numeric matrix

Input data, specified as an mx-by-n numeric matrix, where each row represents one n-dimensional
point. The number of columns n must equal the number of columns in Y.
Data Types: single | double

Y — Query points
numeric matrix

Query points, specified as an my-by-n numeric matrix, where each row represents one n-dimensional
point. The number of columns n must equal the number of columns in X.
Data Types: single | double

r — Search radius
nonnegative scalar

Search radius around each query point, specified as a nonnegative scalar. rangesearch finds all X
points (rows) that are within distance r of each Y point. The meaning of distance depends on the
'Distance' name-value pair argument.
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Data Types: single | double

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: rangesearch(X,Y,1.4,'Distance','seuclidean','Scale',iqr(X)) specifies to
find all the observations in X within distance 1.4 of each observation in Y, using a standardized
Euclidean distance scaled by the interquartile range of X.

NSMethod — Nearest neighbor search method
'kdtree' | 'exhaustive'

Nearest neighbor search method, specified as the comma-separated pair consisting of 'NSMethod'
and one of these values.

Value Description
'kdtree' Create and use a Kd-tree to find nearest neighbors. 'kdtree' is

valid only when the distance metric is one of these options:

• 'chebychev'
• 'cityblock'
• 'euclidean'
• 'minkowski'

'exhaustive' Use the exhaustive search algorithm. The software computes the
distances from all X points to each Y point to find nearest neighbors.

'kdtree' is the default value when the number of columns in X is less than or equal to 10, X is not
sparse, and the distance metric is one of the valid 'kdtree' metrics. Otherwise, the default value is
'exhaustive'.
Example: 'NSMethod','exhaustive'

Distance — Distance metric
'euclidean' (default) | 'seuclidean' | 'mahalanobis' | 'cityblock' | 'minkowski' |
'chebychev' | function handle | ...

Distance metric that rangesearch uses, specified as the comma-separated pair consisting of
'Distance' and one of the values in this table.

Value Description
'euclidean' Euclidean distance.
'seuclidean' Standardized Euclidean distance. Each coordinate difference

between a row in X and a query point is scaled by dividing by the
corresponding element of the standard deviation computed from X,
std(X,'omitnan'). To specify another scaling, use the 'Scale'
name-value pair argument.
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Value Description
'mahalanobis' Mahalanobis distance, computed using a positive definite

covariance matrix C. The default value of C is the sample covariance
matrix of X, as computed by cov(X,'omitrows'). To specify a
different value for C, use the 'Cov' name-value pair argument.

'cityblock' City block distance.
'minkowski' Minkowski distance. The default exponent is 2. To specify a

different exponent, use the 'P' name-value pair argument.
'chebychev' Chebychev distance (maximum coordinate difference).
'cosine' One minus the cosine of the included angle between observations

(treated as vectors).
'correlation' One minus the sample linear correlation between observations

(treated as sequences of values).
'hamming' Hamming distance, the percentage of coordinates that differ.
'jaccard' One minus the Jaccard coefficient, the percentage of nonzero

coordinates that differ.
'spearman' One minus the sample Spearman's rank correlation between

observations (treated as sequences of values).
@distfun Custom distance function handle. A distance function has the form

function D2 = distfun(ZI,ZJ)
% calculation of distance
...

where

• ZI is a 1-by-n vector containing one row of X or Y.
• ZJ is an m-by-n matrix containing multiple rows of X or Y.
• D2 is an m-by-1 vector of distances, and D2(j) is the distance

between the observations ZI and ZJ(j,:).

For more information, see “Distance Metrics” on page 19-14.
Example: 'Distance','minkowski'

P — Exponent for Minkowski distance metric
2 (default) | positive scalar

Exponent for the Minkowski distance metric, specified as the comma-separated pair consisting of 'P'
and a positive scalar. This argument is valid only if 'Distance' is 'minkowski'.
Example: 'P',4
Data Types: single | double

Cov — Covariance matrix for Mahalanobis distance metric
cov(X,'omitrows') (default) | positive definite matrix

Covariance matrix for the Mahalanobis distance metric, specified as the comma-separated pair
consisting of 'Cov' and a positive definite matrix. This argument is valid only when 'Distance' is
'mahalanobis'.
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Example: 'Cov',eye(4)
Data Types: single | double

Scale — Scale parameter value for standardized Euclidean distance metric
std(X,'omitnan') (default) | nonnegative vector

Scale parameter value for the standardized Euclidean distance metric, specified as the comma-
separated pair consisting of 'Scale' and a nonnegative vector. Scale has length equal to the
number of columns in X. Each coordinate difference between a row in X and a query point is scaled by
the corresponding element of Scale. This argument is valid only when 'Distance' is
'seuclidean'.
Example: 'Scale',iqr(X)
Data Types: single | double

BucketSize — Maximum number of data points in leaf node of Kd-tree
50 (default) | positive integer scalar

Maximum number of data points in the leaf node of the Kd-tree, specified as the comma-separated
pair consisting of 'BucketSize' and a positive integer scalar. This argument is valid only when
NSMethod is 'kdtree'.
Example: 'BucketSize',20
Data Types: single | double

SortIndices — Flag to sort returned indices according to distance
true (1) (default) | false (0)

Flag to sort returned indices according to distance, specified as the comma-separated pair consisting
of 'SortIndices' and either true (1) or false (0).

For faster performance when Y contains many observations that have many nearest points in X, you
can set SortIndices to false. In this case, rangesearch returns the indices of the nearest points
in no particular order. When SortIndices is true, the function arranges the indices of the nearest
points in ascending order by distance.
Example: 'SortIndices',false
Data Types: logical

Output Arguments
Idx — Indices of nearest points
cell array of numeric vectors

Indices of nearest points, returned as a cell array of numeric vectors.

Idx is an my-by-1 cell array, where my is the number of rows in Y. The vector Idx{j} contains the
indices of points (rows) in X whose distances to Y(j,:) are not greater than r. If SortIndices is
true, then rangesearch arranges the indices in ascending order by distance.

D — Distances of nearest points to query points
cell array of numeric vectors

Distances of the nearest points to the query points, returned as a cell array of numeric vectors.
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D is an my-by-1 cell array, where my is the number of rows in Y. D{j} contains the distance values
between Y(j,:) and the points (rows) in X(Idx{j},:). If SortIndices is true, then
rangesearch arranges the distances in ascending order.

Tips
• For a fixed positive real value r, rangesearch finds all the X points that are within a distance r of

each Y point. To find the k points in X that are nearest to each Y point, for a fixed positive integer
k, use knnsearch.

• rangesearch does not save a search object. To create a search object, use createns.

Algorithms
• For an overview of the kd-tree algorithm, see “k-Nearest Neighbor Search Using a Kd-Tree” on

page 19-17.
• The exhaustive search algorithm finds the distance from each point in X to each point in Y.

Alternative Functionality
If you set the rangesearch function 'NSMethod' name-value pair argument to the appropriate
value ('exhaustive' for an exhaustive search algorithm or 'kdtree' for a Kd-tree algorithm), then
the search results are equivalent to the results obtained by conducting a distance search using the
rangesearch object function. Unlike the rangesearch function, the rangesearch object function
requires an ExhaustiveSearcher or KDTreeSearcher model object.

Version History
Introduced in R2011b

Extended Capabilities
Tall Arrays
Calculate with arrays that have more rows than fit in memory.

Usage notes and limitations:

• If X is a tall array, then Y cannot be a tall array. Similarly, if Y is a tall array, then X cannot be a tall
array.

For more information, see “Tall Arrays”.

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• For code generation, the default value of the 'NSMethod' name-value pair argument is
'exhaustive' when the number of columns in X is greater than 7.

• The value of the 'Distance' name-value pair argument must be a compile-time constant and
cannot be a custom distance function.
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• The 'SortIndices' name-value pair argument is not supported. The output arguments are
always sorted.

• Names in name-value arguments must be compile-time constants. For example, to allow a user-
defined exponent for the Minkowski distance in the generated code, include
{coder.Constant('Distance'),coder.Constant('Minkowski'),coder.Constant('P')
,0} in the -args value of codegen.

• The sorted order of tied distances in the generated code can be different from the order in
MATLAB due to numerical precision.

• When rangesearch uses the kd-tree search algorithm, and the code generation build type is a
MEX function, codegen generates a MEX function using Intel Threading Building Blocks (TBB)
for parallel computation. Otherwise, codegen generates code using parfor.

• MEX function for the kd-tree search algorithm — codegen generates an optimized MEX
function using Intel TBB for parallel computation on multicore platforms. You can use the MEX
function to accelerate MATLAB algorithms. For details on Intel TBB, see https://www.intel.com/
content/www/us/en/developer/tools/oneapi/onetbb.html.

If you generate the MEX function to test the generated code of the parfor version, you can
disable the usage of Intel TBB. Set the ExtrinsicCalls property of the MEX configuration
object to false. For details, see coder.MexCodeConfig.

• MEX function for the exhaustive search algorithm and standalone C/C++ code for both
algorithms — The generated code of rangesearch uses parfor to create loops that run in
parallel on supported shared-memory multicore platforms in the generated code. If your
compiler does not support the Open Multiprocessing (OpenMP) application interface or you
disable OpenMP library, MATLAB Coder treats the parfor-loops as for-loops. To find
supported compilers, see https://www.mathworks.com/support/compilers/
current_release/. To disable OpenMP library, set the EnableOpenMP property of the
configuration object to false. For details, see coder.CodeConfig.

• Starting in R2020a, rangesearch returns integer-type (int32) indices, rather than double-
precision indices, in generated standalone C/C++ code. Therefore, the function allows for strict
single-precision support when you use single-precision inputs. For MEX code generation, the
function still returns double-precision indices to match the MATLAB behavior.

For more information on code generation, see “Introduction to Code Generation” on page 34-2 and
“General Code Generation Workflow” on page 34-5.

See Also
createns | ExhaustiveSearcher | KDTreeSearcher | knnsearch | pdist2 | rangesearch

Topics
“k-Nearest Neighbor Search and Radius Search” on page 19-16
“Distance Metrics” on page 19-14
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ranksum
Wilcoxon rank sum test

Syntax
p = ranksum(x,y)
[p,h] = ranksum(x,y)
[p,h,stats] = ranksum(x,y)
[ ___ ] = ranksum(x,y,Name,Value)

Description
p = ranksum(x,y) returns the p-value of a two-sided Wilcoxon rank sum test on page 35-6203.
ranksum tests the null hypothesis that data in x and y are samples from continuous distributions
with equal medians, against the alternative that they are not. The test assumes that the two samples
are independent. x and y can have different lengths.

This test is equivalent to a Mann-Whitney U-test.

[p,h] = ranksum(x,y) also returns a logical value indicating the test decision. The result h = 1
indicates a rejection of the null hypothesis, and h = 0 indicates a failure to reject the null hypothesis
at the 5% significance level.

[p,h,stats] = ranksum(x,y) also returns the structure stats with information about the test
statistic.

[ ___ ] = ranksum(x,y,Name,Value) returns any of the output arguments in the previous
syntaxes, for a rank sum test with additional options specified by one or more Name,Value pair
arguments.

Examples

Test for Equal Median of Two Populations

Test the hypothesis of equal medians for two independent unequal-sized samples.

Generate sample data.

rng('default') % for reproducibility
x = unifrnd(0,1,10,1);
y = unifrnd(0.25,1.25,15,1);

These samples come from populations with identical distributions except for a shift of 0.25 in the
location.

Test the equality of medians of x and y.

p = ranksum(x,y)

p = 0.0375
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The p-value of 0.0375 indicates that ranksum rejects the null hypothesis of equal medians at the
default 5% significance level.

Statistics of the Test for Two Population Medians

Obtain the statistics of the test for the equality of two population medians.

Load the sample data.

load mileage

Test if the mileage per gallon is the same for the first and second type of cars.

[p,h,stats] = ranksum(mileage(:,1),mileage(:,2))

p = 0.0043

h = logical
   1

stats = struct with fields:
    ranksum: 21.5000

Both the p-value, 0.043, and h = 1 indicate the rejection of the null hypothesis of equal medians at
the default 5% significance level. Because the sample sizes are small (six each), ranksum calculates
the p-value using the exact method. The structure stats includes only the value of the rank sum test
statistic.

Increase in the Median

Test the hypothesis of an increase in the population median.

Load the sample data.

load('weather.mat');

The weather data shows the daily high temperatures taken in the same month in two consecutive
years.

Perform a left-sided test to assess the increase in the median at the 1% significance level.

[p,h,stats] = ranksum(year1,year2,'alpha',0.01,...
'tail','left')

p = 0.1271

h = logical
   0

stats = struct with fields:
       zval: -1.1403
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    ranksum: 837.5000

Based on the p-value of 0.1271 and the logical value h = 0, there is not enough evidence to reject the
null hypothesis. That is, the results do not show the existence of a positive shift in the month's median
high temperature from year 1 to year 2 at the 1% significance level. Notice that ranksum uses the
approximate method to calculate the p-value due to the large sample sizes.

Use the exact method to calculate the p-value.

[p,h,stats] = ranksum(year1,year2,'alpha',0.01,...
'tail','left','method','exact')

p = 0.1273

h = logical
   0

stats = struct with fields:
    ranksum: 837.5000

The results of the approximate and exact methods are consistent with each other.

Input Arguments
x — Sample data
vector

Sample data, specified as a vector.
Data Types: single | double

y — Sample data
vector

Sample data, specified as a vector. The length of y does not have to be the same as the length of x.
Data Types: single | double

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: 'alpha',0.01,'method','approximate','tail','right' specifies a right-tailed
rank sum test with 1% significance level, which returns the approximate p-value.

alpha — Significance level
0.05 (default) | scalar value in the range 0 to 1
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Significance level of the decision of a hypothesis test, specified as the comma-separated pair
consisting of 'alpha' and a scalar value in the range 0 to 1. The significance level of h is 100 *
alpha%.
Example: 'alpha', 0.01
Data Types: double | single

method — Computation method of the p-value
'exact' | 'approximate'

Computation method of the p-value, p, specified as the comma-separated pair consisting of 'method'
and one of the following:

'exact' Exact computation of the p-value, p.
'approximate' Normal approximation while computing the p-value, p.

When 'method' is unspecified, the default is:

• 'exact' if min(nx,ny) < 10 and nx + ny < 20
• 'approximate' otherwise

nx and ny are the sizes of the samples in x and y, respectively.
Example: 'method','exact'

tail — Type of test
'both' (default) | 'right' | 'left'

Type of test, specified as the comma-separated pair consisting of 'tail' and one of the following:

'both' Two-sided hypothesis test, where the alternative hypothesis states that x and y have
different medians. Default test type if 'tail' is not specified.

'right' Right-tailed hypothesis test, where the alternative hypothesis states that the median
of x is greater than the median of y.

'left' Left-tailed hypothesis test, where the alternative hypothesis states that the median of
x is less than the median of y.

Example: 'tail','left'

Output Arguments
p — p-value of the test
nonnegative scalar

p-value of the test, returned as a positive scalar from 0 to 1. p is the probability of observing a test
statistic as or more extreme than the observed value under the null hypothesis. ranksum computes
the two-sided p-value by doubling the most significant one-sided value.

h — Result of the hypothesis test
1 | 0

Result of the hypothesis test, returned as a logical value.
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• If h = 1, this indicates rejection of the null hypothesis at the 100 * alpha% significance level.
• If h = 0, this indicates a failure to reject the null hypothesis at the 100 * alpha% significance

level.

stats — Test statistics
structure

Test statistics, returned as a structure. The test statistics stored in stats are:

• ranksum : Value of the rank sum test statistic
• zval: Value of the z-statistic on page 35-6203 (computed when 'method' is 'approximate')

More About
Wilcoxon Rank Sum Test

The Wilcoxon rank sum test is a nonparametric test for two populations when samples are
independent. If X and Y are independent samples with different sample sizes, the test statistic which
ranksum returns is the rank sum of the first sample.

The Wilcoxon rank sum test is equivalent to the Mann-Whitney U-test. The Mann-Whitney U-test is a
nonparametric test for equality of population medians of two independent samples X and Y.

The Mann-Whitney U-test statistic, U, is the number of times a y precedes an x in an ordered
arrangement of the elements in the two independent samples X and Y. It is related to the Wilcoxon
rank sum statistic in the following way: If X is a sample of size nX, then

U = W −
nX nX + 1

2 .

z-Statistic

For large samples, ranksum uses a z-statistic to compute the approximate p-value of the test.

If X and Y are two independent samples of size nX and nY, where nX < nY the z-statistic is

z = W − E W
V(W) =

W −
nXnY + nX nX + 1

2 − 0.5 ∗ sign(W − E(W))
nXnY nX + nY + 1− tiescor

12

,

with continuity correction and tie adjustment. Here tiescor is given by

tiescor = 2 ∗ tiead j
nX + nY nX + nY − 1 ,

where ranksum uses [ranks,tieadj] = tiedrank(x,y) to obtain tie adjustments. The standard
normal distribution gives the p-value for this z-statistic.

Algorithms
ranksum treats NaNs in x and y as missing values and ignores them.
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For a two-sided test of medians with unequal sample sizes, the test statistic that ranksum returns is
the rank sum of the first sample.

Version History
Introduced before R2006a

References
[1] Gibbons, J. D., and S. Chakraborti. Nonparametric Statistical Inference, 5th Ed., Boca Raton, FL:

Chapman & Hall/CRC Press, Taylor & Francis Group, 2011.

[2] Hollander, M., and D. A. Wolfe. Nonparametric Statistical Methods. Hoboken, NJ: John Wiley &
Sons, Inc., 1999.

See Also
kruskalwallis | signrank | signtest | ttest2
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ranova
Class: RepeatedMeasuresModel

Repeated measures analysis of variance

Syntax
ranovatbl = ranova(rm)
ranovatbl = ranova(rm,'WithinModel',WM)
[ranovatbl,A,C,D] = ranova( ___ )

Description
ranovatbl = ranova(rm) returns the results of repeated measures analysis of variance for a
repeated measures model rm in table ranovatbl.

ranovatbl = ranova(rm,'WithinModel',WM) returns the results of repeated measures analysis
of variance using the responses specified by the within-subject model WM.

[ranovatbl,A,C,D] = ranova( ___ ) also returns arrays A, C, and D for the hypotheses tests of
the form A*B*C = D, where D is zero.

Input Arguments
rm — Repeated measures model
RepeatedMeasuresModel object

Repeated measures model, returned as a RepeatedMeasuresModel object.

For properties and methods of this object, see RepeatedMeasuresModel.

WM — Model specifying responses
'separatemeans' (default) | r-by-nc contrast matrix | character vector or string scalar that defines
a model specification

Model specifying the responses, specified as one of the following:

• 'separatemeans' — Compute a separate mean for each group.
• C — r-by-nc contrast matrix specifying the nc contrasts among the r repeated measures. If Y

represents a matrix of repeated measures, ranova tests the hypothesis that the means of Y*C are
zero.

• A character vector or string scalar that defines a model specification in the within-subject factors.
You can define the model based on the rules for the terms in the modelspec argument of fitrm.
Also see “Model Specification for Repeated Measures Models” on page 9-54.

For example, if there are three within-subject factors w1, w2, and w3, then you can specify a model for
the within-subject factors as follows.
Example: 'WithinModel','w1+w2+w2*w3'
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Data Types: single | double | char | string

Output Arguments
ranovatbl — Results of repeated measures anova
table

Results of repeated measures anova, returned as a table.

ranovatbl includes a term representing all differences across the within-subjects factors. This term
has either the name of the within-subjects factor if specified while fitting the model, or the name
Time if the name of the within-subjects factor is not specified while fitting the model or there are
more than one within-subjects factors. ranovatbl also includes all interactions between the terms in
the within-subject model and all between-subject model terms. It contains the following columns.

Column Name Definition
SumSq Sum of squares.
DF Degrees of freedom.
MeanSq Mean squared error.
F F-statistic.
pValue p-value for the corresponding F-statistic. A small p-

value indicates significant term effect.
pValueGG p-value with Greenhouse-Geisser adjustment.
pValueHF p-value with Huynh-Feldt adjustment.
pValueLB p-value with Lower bound adjustment.

The last three p-values are the adjusted p-values for use when the compound symmetry assumption is
not satisfied. For details, see “Compound Symmetry Assumption and Epsilon Corrections” on page 9-
55. The mauchy method tests for sphericity (hence, compound symmetry) and epsilon method
returns the epsilon adjustment values.

A — Specification based on between-subjects model
matrix | cell array

Specification based on the between-subjects model, returned as a matrix or a cell array. It permits the
hypothesis on the elements within given columns of B (within time hypothesis). If ranovatbl
contains multiple hypothesis tests, A might be a cell array.
Data Types: single | double | cell

C — Specification based on within-subjects model
matrix | cell array

Specification based on the within-subjects model, returned as a matrix or a cell array. It permits the
hypotheses on the elements within given rows of B (between time hypotheses). If ranovatbl
contains multiple hypothesis tests, C might be a cell array.
Data Types: single | double | cell

D — Hypothesis value
0
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Hypothesis value, returned as 0.

Examples

Repeated Measures Analysis of Variance

Load the sample data.

load fisheriris

The column vector species consists of iris flowers of three different species: setosa, versicolor,
virginica. The double matrix meas consists of four types of measurements on the flowers: the length
and width of sepals and petals in centimeters, respectively.

Store the data in a table array.

t = table(species,meas(:,1),meas(:,2),meas(:,3),meas(:,4),...
'VariableNames',{'species','meas1','meas2','meas3','meas4'});
Meas = table([1 2 3 4]','VariableNames',{'Measurements'});

Fit a repeated measures model, where the measurements are the responses and the species is the
predictor variable.

rm = fitrm(t,'meas1-meas4~species','WithinDesign',Meas);

Perform repeated measures analysis of variance.

ranovatbl = ranova(rm)

ranovatbl=3×8 table
                                SumSq     DF      MeanSq       F         pValue        pValueGG       pValueHF       pValueLB  
                                ______    ___    ________    ______    ___________    ___________    ___________    ___________

    (Intercept):Measurements    1656.3      3      552.09    6873.3              0    9.4491e-279    2.9213e-283    2.5871e-125
    species:Measurements        282.47      6      47.078     586.1    1.4271e-206    4.9313e-156    1.5406e-158     9.0151e-71
    Error(Measurements)         35.423    441    0.080324                                                                      

There are four measurements, three types of species, and 150 observations. So, degrees of freedom
for measurements is (4–1) = 3, for species-measurements interaction it is (4–1)*(3–1) = 6, and for
error it is (150–3)*(4–1) = 441. ranova computes the last three p-values using Greenhouse-Geisser,
Huynh-Feldt, and Lower bound corrections, respectively. You can check the compound symmetry
(sphericity) assumption using the mauchly method, and display the epsilon corrections using the
epsilon method.

Longitudinal Data

Load the sample data.

load('longitudinalData.mat');

The matrix Y contains response data for 16 individuals. The response is the blood level of a drug
measured at five time points (time = 0, 2, 4, 6, and 8). Each row of Y corresponds to an individual,
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and each column corresponds to a time point. The first eight subjects are female, and the second
eight subjects are male. This is simulated data.

Define a variable that stores gender information.

Gender = ['F' 'F' 'F' 'F' 'F' 'F' 'F' 'F' 'M' 'M' 'M' 'M' 'M' 'M' 'M' 'M']';

Store the data in a proper table array format to do repeated measures analysis.

t = table(Gender,Y(:,1),Y(:,2),Y(:,3),Y(:,4),Y(:,5),...
'VariableNames',{'Gender','t0','t2','t4','t6','t8'});

Define the within-subjects variable.

Time = [0 2 4 6 8]';

Fit a repeated measures model, where the blood levels are the responses and gender is the predictor
variable.

rm = fitrm(t,'t0-t8 ~ Gender','WithinDesign',Time);

Perform repeated measures analysis of variance.

ranovatbl = ranova(rm)

ranovatbl=3×8 table
                        SumSq     DF    MeanSq       F         pValue       pValueGG      pValueHF      pValueLB 
                        ______    __    ______    _______    __________    __________    __________    __________

    (Intercept):Time     881.7     4    220.43     37.539    3.0348e-15    4.7325e-09    2.4439e-10    2.6198e-05
    Gender:Time          17.65     4    4.4125    0.75146       0.56126        0.4877       0.50707       0.40063
    Error(Time)         328.83    56     5.872                                                                   

There are 5 time points, 2 genders, and 16 observations. So, the degrees of freedom for time is (5–1)
= 4, for gender-time interaction it is (5–1)*(2–1) = 4, and for error it is (16–2)*(5–1) = 56. The small
p-value of 2.6198e–05 indicates that there is a significant effect of time on blood pressure. The p -
value of 0.40063 indicates that there is no significant gender-time interaction.

Specify the Within-Subjects Model

Load the sample data.

load repeatedmeas

The table between includes the between-subject variables age, IQ, group, gender, and eight repeated
measures y1 through y8 as responses. The table within includes the within-subject variables w1 and
w2. This is simulated data. Hypothetically, the response can be results of a memory test. The within-
subject variable w1 can be the type of exercise the subject does before the test and w2 can be the
different points in the day the subject takes the memory test. So, one subject does two different type
of exercises A and B before taking the test and takes the test at four different times on different days.
For each subject, the measurements are taken under these conditions:

Exercise to perform before the test: A B A B A B A B
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Test time: 1 1 2 2 3 3 4 4

Fit a repeated measures model, where the repeated measures y1 through y8 are the responses, and
age, IQ, group, gender, and the group-gender interaction are the predictor variables. Also specify the
within-subject design matrix.

rm = fitrm(between,'y1-y8 ~ Group*Gender + Age + IQ','WithinDesign',within);

Perform repeated measures analysis of variance.

ranovatbl = ranova(rm)

ranovatbl=7×8 table
                         SumSq     DF     MeanSq       F        pValue      pValueGG    pValueHF     pValueLB
                         ______    ___    ______    _______    _________    ________    _________    ________

    (Intercept):Time     6645.2      7    949.31     2.2689     0.031674    0.071235     0.056257     0.14621
    Age:Time             5824.3      7    832.05     1.9887     0.059978     0.10651     0.090128     0.17246
    IQ:Time              5188.3      7    741.18     1.7715     0.096749     0.14492      0.12892     0.19683
    Group:Time            15800     14    1128.6     2.6975    0.0014425    0.011884    0.0064346    0.089594
    Gender:Time          4455.8      7    636.55     1.5214      0.16381     0.20533      0.19258     0.23042
    Group:Gender:Time    4247.3     14    303.38    0.72511      0.74677       0.663      0.69184     0.49549
    Error(Time)           64433    154    418.39                                                             

Specify the model for the within-subject factors. Also display the matrices used in the hypothesis test.

[ranovatbl,A,C,D] = ranova(rm,'WithinModel','w1+w2')

ranovatbl=21×8 table
                       SumSq     DF    MeanSq       F         pValue      pValueGG     pValueHF     pValueLB 
                       ______    __    ______    ________    _________    _________    _________    _________

    (Intercept)        3141.7     1    3141.7      2.5034      0.12787      0.12787      0.12787      0.12787
    Age                537.48     1    537.48     0.42828      0.51962      0.51962      0.51962      0.51962
    IQ                 2975.9     1    2975.9      2.3712      0.13785      0.13785      0.13785      0.13785
    Group               20836     2     10418      8.3012    0.0020601    0.0020601    0.0020601    0.0020601
    Gender             3036.3     1    3036.3      2.4194      0.13411      0.13411      0.13411      0.13411
    Group:Gender        211.8     2     105.9    0.084385      0.91937      0.91937      0.91937      0.91937
    Error               27609    22      1255           1          0.5          0.5          0.5          0.5
    (Intercept):w1     146.75     1    146.75     0.23326      0.63389      0.63389      0.63389      0.63389
    Age:w1             942.02     1    942.02      1.4974      0.23402      0.23402      0.23402      0.23402
    IQ:w1              11.563     1    11.563     0.01838      0.89339      0.89339      0.89339      0.89339
    Group:w1           4481.9     2    2240.9       3.562     0.045697     0.045697     0.045697     0.045697
    Gender:w1          270.65     1    270.65      0.4302      0.51869      0.51869      0.51869      0.51869
    Group:Gender:w1    240.37     2    120.19     0.19104      0.82746      0.82746      0.82746      0.82746
    Error(w1)           13841    22    629.12           1          0.5          0.5          0.5          0.5
    (Intercept):w2     3663.8     3    1221.3      3.8381     0.013513     0.020339      0.01575     0.062894
    Age:w2             1199.9     3    399.95      1.2569       0.2964      0.29645      0.29662      0.27432
      ⋮

A=6×1 cell array
    {[1 0 0 0 0 0 0 0]}
    {[0 1 0 0 0 0 0 0]}
    {[0 0 1 0 0 0 0 0]}
    {2x8 double       }
    {[0 0 0 0 0 1 0 0]}

 ranova

35-6209



    {2x8 double       }

C=1×3 cell array
    {8x1 double}    {8x1 double}    {8x3 double}

D = 0

Display the contents of A.

[A{1};A{2};A{3};A{4};A{5};A{6}]

ans = 8×8

     1     0     0     0     0     0     0     0
     0     1     0     0     0     0     0     0
     0     0     1     0     0     0     0     0
     0     0     0     1     0     0     0     0
     0     0     0     0     1     0     0     0
     0     0     0     0     0     1     0     0
     0     0     0     0     0     0     1     0
     0     0     0     0     0     0     0     1

Display the contents of C.

[C{1} C{2} C{3}]

ans = 8×5

     1     1     1     0     0
     1     1     0     1     0
     1     1     0     0     1
     1     1    -1    -1    -1
     1    -1     1     0     0
     1    -1     0     1     0
     1    -1     0     0     1
     1    -1    -1    -1    -1

Algorithms
ranova computes the regular p-value (in the pValue column of the rmanova table) using the F-
statistic cumulative distribution function:

p-value = 1 – fcdf(F,v1,v2).

When the compound symmetry assumption is not satisfied, ranova uses a correction factor epsilon,
ε, to compute the corrected p-values as follows:

p-value_corrected = 1 – fcdf(F,ε*v1,ε*v2).

The mauchly method tests for sphericity (hence, compound symmetry) and epsilon method returns
the epsilon adjustment values.
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See Also
fitrm | mauchly | epsilon | anova | manova

Topics
“Model Specification for Repeated Measures Models” on page 9-54
“Compound Symmetry Assumption and Epsilon Corrections” on page 9-55
“Mauchly’s Test of Sphericity” on page 9-57
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raylcdf
Rayleigh cumulative distribution function

Syntax
p = raylcdf(x,b)
p = raylcdf(x,b,'upper')

Description
p = raylcdf(x,b) returns the Rayleigh cdf at each value in x using the corresponding scale
parameter, b. x and b can be vectors, matrices, or multidimensional arrays that all have the same
size. A scalar input for x or b is expanded to a constant array with the same dimensions as the other
input.

p = raylcdf(x,b,'upper') returns the complement of the Rayleigh cdf at each value in x, using
an algorithm that more accurately computes the extreme upper tail probabilities.

The Rayleigh cdf is

y = F(x b) =∫0 x t
b2e

−t2

2b2 dt

Examples

Compute and Plot Rayleigh Distribution cdf

Compute the cdf of a Rayleigh distribution with parameter B = 1.

x = 0:0.1:3;
p = raylcdf(x,1);

Plot the cdf.

figure;
plot(x,p)
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Version History
Introduced before R2006a

References

[1] Evans, M., N. Hastings, and B. Peacock. Statistical Distributions. Hoboken, NJ: Wiley-Interscience,
2000. pp. 134–136.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

This function fully supports GPU arrays. For more information, see “Run MATLAB Functions on a
GPU” (Parallel Computing Toolbox).

See Also
cdf | raylpdf | raylinv | raylstat | raylfit | raylrnd
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Topics
“Rayleigh Distribution” on page B-143
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raylfit
Rayleigh parameter estimates

Syntax
raylfit(data,alpha)
[phat,pci] = raylfit(data,alpha)

Description
raylfit(data,alpha) returns the maximum likelihood estimates of the parameter of the Rayleigh
distribution given the data in the vector data.

[phat,pci] = raylfit(data,alpha) returns the maximum likelihood estimate and 100(1 -
 alpha)% confidence interval given the data. The default value of the optional parameter alpha is
0.05, corresponding to 95% confidence intervals.

Version History
Introduced before R2006a

See Also
mle | raylpdf | raylcdf | raylinv | raylstat | raylrnd

Topics
“Rayleigh Distribution” on page B-143
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raylinv
Rayleigh inverse cumulative distribution function

Syntax
X = raylinv(P,B)

Description
X = raylinv(P,B) returns the inverse of the Rayleigh cumulative distribution function using the
corresponding scale parameter, B at the corresponding probabilities in P. P and B can be vectors,
matrices, or multidimensional arrays that all have the same size. A scalar input for P or B is expanded
to a constant array with the same dimensions as the other input.

Examples
x = raylinv(0.9,1)
x =
  2.1460

Version History
Introduced before R2006a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

This function fully supports GPU arrays. For more information, see “Run MATLAB Functions on a
GPU” (Parallel Computing Toolbox).

See Also
raylcdf | raylpdf | raylrnd | raylstat

Topics
“Rayleigh Distribution” on page B-143
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raylpdf
Rayleigh probability density function

Syntax
Y = raylpdf(X,B)

Description
Y = raylpdf(X,B) computes the Rayleigh pdf at each of the values in X using the corresponding
scale parameter, B. X and B can be vectors, matrices, or multidimensional arrays that all have the
same size, which is also the size of Y. A scalar input for X or B is expanded to a constant array with
the same dimensions as the other input.

The Rayleigh pdf is

y = f (x b) = x
b2e

−x2

2b2

Examples

Compute and Plot Rayleigh Distribution pdf

Compute the pdf of a Rayleigh distribution with parameter B = 0.5.

x = [0:0.01:2];
p = raylpdf(x,0.5);

Plot the pdf.

figure;
plot(x,p)
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Version History
Introduced before R2006a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

This function fully supports GPU arrays. For more information, see “Run MATLAB Functions on a
GPU” (Parallel Computing Toolbox).

See Also
pdf | raylcdf | raylinv | raylstat | raylfit | raylrnd

Topics
“Rayleigh Distribution” on page B-143
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raylrnd
Rayleigh random numbers

Syntax
r = raylrnd(b)
r = raylrnd(b,sz1,...,szN)
r = raylrnd(b,sz)

Description
r = raylrnd(b) generates a random number from each Rayleigh distribution specified by the scale
parameter b. You can specify b as a scalar, vector, matrix, or multidimensional array.

r = raylrnd(b,sz1,...,szN) generates an array of Rayleigh random numbers, where
sz1,...,szN indicates the size of each dimension.

r = raylrnd(b,sz) generates an array of Rayleigh random numbers, where vector sz specifies
size(r).

Examples

Generate Rayleigh Random Numbers

Generate random numbers from multiple Rayleigh distributions.

Generate a single random number from the Rayleigh distribution with scale parameter 6.

r = raylrnd(6)

r = 11.4665

Generate a vector of random numbers from Rayleigh distributions with different scale parameters.

b = [6 4 1];
r = raylrnd(b)

r = 1×3

   15.6604    3.8602    0.4680

Generate Vector of Random Numbers from Same Rayleigh Distribution

Generate a vector of random numbers drawn from the Rayleigh distribution with scale parameter 2.

r = raylrnd(2,50,1)
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r = 50×1

    2.0347
    3.6710
    5.1289
    2.8165
    0.6377
    4.0294
    1.7668
    1.0106
    7.1710
    5.9727
      ⋮

Plot a histogram of the result with a probability density function.

histfit(r,8,"rayleigh")

Generate Multidimensional Array of Rayleigh Random Numbers

Generate a 4-by-3-by-2 multidimensional array of random numbers from the Rayleigh distribution
with scale parameter 0.5.

raylrnd(0.5,[4 3 2])

35 Functions

35-6220



ans = 
ans(:,:,1) =

    0.3634    0.2168    1.8673
    1.0528    0.7632    1.4427
    1.1865    0.4943    1.6195
    0.4570    0.5986    1.6793

ans(:,:,2) =

    0.3975    0.0804    0.5475
    0.3788    0.7546    0.6039
    0.7728    0.7224    0.3680
    0.8619    0.7257    0.8735

Input Arguments
b — Scale parameter
positive scalar value | array of positive scalar values

Scale parameter of the Rayleigh distribution, specified as a positive scalar value or an array of
positive scalar values.

To generate random numbers from multiple distributions, specify b using an array. If b is a scalar,
then raylrnd expands the scalar argument into a constant array whose size matches the dimensions
sz1,...,szN or sz. Each element in r is a random number generated from the distribution
specified by the corresponding element in b.
Example: 2.5
Example: [3 4 5]
Data Types: single | double

sz1,...,szN — Size of each dimension (as separate arguments)
integers

Size of each dimension, specified as separate arguments of integers. If b is an array, then the
specified dimensions sz1,...,szN must match the dimensions of b. The default values of
sz1,...,szN are the dimensions of b.

• If you specify a single value sz1, then r is a square matrix of size sz1-by-sz1.
• If the size of any dimension is 0 or negative, then r is an empty array.
• Beyond the second dimension, raylrnd ignores trailing dimensions with a size of 1. For example,

raylrnd(0.4,1,4,1,1,1,1) produces a 1-by-4 vector of random numbers from the Rayleigh
distribution with scale 0.4.

Example: 7,6
Data Types: single | double

sz — Size of each dimension (as a row vector)
row vector of integers
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Size of each dimension, specified as a row vector of integers. If b is an array, then the specified
dimensions sz must match the dimensions of b. The default values of sz are the dimensions of b.

• If you specify a single value [sz1], then r is a square matrix of size sz1-by-sz1.
• If the size of any dimension is 0 or negative, then r is an empty array.
• Beyond the second dimension, raylrnd ignores any trailing dimensions with a size of 1. For

example, raylrnd(0.4,[1 4 1 1 1 1]) produces a 1-by-4 vector of random numbers from the
Rayleigh distribution with scale 0.4.

Example: [7 6]
Data Types: single | double

Output Arguments
r — Rayleigh random numbers
nonnegative scalar value | array of nonnegative scalar values

Rayleigh random numbers, returned as a nonnegative scalar value or an array of nonnegative scalar
values with the dimensions determined by b, sz1,...,szN, or sz. Each element in r is a random
number generated from the distribution specified by the corresponding scale parameter in b.

Alternative Functionality
• raylrnd is a function specific to the Rayleigh distribution. Statistics and Machine Learning

Toolbox also offers the generic function random, which supports various probability distributions.
To use random, create a RayleighDistribution probability distribution object and pass the
object as an input argument or specify the probability distribution name and its parameter. Note
that the distribution-specific function raylrnd is faster than the generic function random.

• To generate random numbers interactively, use randtool, a user interface for random number
generation.

Version History
Introduced before R2006a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

The generated code can return a different sequence of numbers from the sequence returned by
MATLAB if either of the following is true:

• The output is nonscalar.
• An input parameter is invalid for the distribution.

For more information on code generation, see “Introduction to Code Generation” on page 34-2 and
“General Code Generation Workflow” on page 34-5.

35 Functions

35-6222



GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

This function fully supports GPU arrays. For more information, see “Run MATLAB Functions on a
GPU” (Parallel Computing Toolbox).

See Also
random | raylpdf | raylcdf | raylinv | raylstat | raylfit | RayleighDistribution

Topics
“Rayleigh Distribution” on page B-143
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raylstat
Rayleigh mean and variance

Syntax
[M,V] = raylstat(B)

Description
[M,V] = raylstat(B) returns the mean of and variance for the Rayleigh distribution with scale
parameter B.

The mean of the Rayleigh distribution with parameter b is b π/2and the variance is

4− π
2 b2

Examples
[mn,v] = raylstat(1)
mn =
  1.2533
v =
  0.4292

Version History
Introduced before R2006a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

This function fully supports GPU arrays. For more information, see “Run MATLAB Functions on a
GPU” (Parallel Computing Toolbox).

See Also
raylpdf | raylcdf | raylinv | raylfit | raylrnd

Topics
“Rayleigh Distribution” on page B-143
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rcoplot
Residual case order plot

Syntax
rcoplot(r,rint)

Description
rcoplot(r,rint) displays an error bar plot of the confidence intervals on the residuals from a
regression. The residuals appear in the plot in case order. Inputs r and rint are outputs from the
regress function.

Examples
The following plots residuals and prediction intervals from a regression of a linearly additive model to
the data in moore.mat:

load moore
X = [ones(size(moore,1),1) moore(:,1:5)];
y = moore(:,6);
alpha = 0.05;
[betahat,Ibeta,res,Ires,stats] = regress(y,X,alpha);
rcoplot(res,Ires)

The interval around the first residual, shown in red, does not contain zero. This indicates that the
residual is larger than expected in 95% of new observations, and suggests the data point is an outlier.
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Version History
Introduced before R2006a

See Also
regress
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ReconstructionICA
Feature extraction by reconstruction ICA

Description
ReconstructionICA applies reconstruction independent component analysis (RICA) to learn a
transformation that maps input predictors to new predictors.

Creation
Create a ReconstructionICA object by using the rica function.

Properties
FitInfo — Fitting history
structure

This property is read-only.

Fitting history, returned as a structure with two fields:

• Iteration — Iteration numbers from 0 through the final iteration.
• Objective — Objective function value at each corresponding iteration. Iteration 0 corresponds to

the initial values, before any fitting.

Data Types: struct

InitialTransformWeights — Initial feature transformation weights
p-by-q matrix

This property is read-only.

Initial feature transformation weights, returned as a p-by-q matrix, where p is the number of
predictors passed in X and q is the number of features that you want. These weights are the initial
weights passed to the creation function. The data type is single when the training data X is single.
Data Types: single | double

ModelParameters — Parameters for training model
structure

This property is read-only.

Parameters for training the model, returned as a structure. The structure contains a subset of the
fields that correspond to the rica name-value pairs that were in effect during model creation:

• IterationLimit
• VerbosityLevel
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• Lambda
• Standardize
• ContrastFcn
• GradientTolerance
• StepTolerance

For details, see the rica Name,Value on page 35-6768 pairs.
Data Types: struct

Mu — Predictor means when standardizing
p-by-1 vector

This property is read-only.

Predictor means when standardizing, returned as a p-by-1 vector. This property is nonempty when
the Standardize name-value pair is true at model creation. The value is the vector of predictor
means in the training data. The data type is single when the training data X is single.
Data Types: single | double

NonGaussianityIndicator — Non-Gaussianity of sources
length-q vector of ±1

This property is read-only.

Non-Gaussianity of sources, returned as a length-q vector of ±1.

• NonGaussianityIndicator(k) = 1 means rica models the kth source as sub-Gaussian.
• NonGaussianityIndicator(k) = -1 means rica models the kth source as super-Gaussian,

with a sharp peak at 0.

Data Types: double

NumLearnedFeatures — Number of output features
positive integer

This property is read-only.

Number of output features, returned as a positive integer. This value is the q argument passed to the
creation function, which is the requested number of features to learn.
Data Types: double

NumPredictors — Number of input predictors
positive integer

This property is read-only.

Number of input predictors, returned as a positive integer. This value is the number of predictors
passed in X to the creation function.
Data Types: double

Sigma — Predictor standard deviations when standardizing
p-by-1 vector
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This property is read-only.

Predictor standard deviations when standardizing, returned as a p-by-1 vector. This property is
nonempty when the Standardize name-value pair is true at model creation. The value is the vector
of predictor standard deviations in the training data. The data type is single when the training data X
is single.
Data Types: single | double

TransformWeights — Feature transformation weights
p-by-q matrix

This property is read-only.

Feature transformation weights, returned as a p-by-q matrix, where p is the number of predictors
passed in X and q is the number of features that you want. The data type is single when the training
data X is single.
Data Types: single | double

Object Functions
transform Transform predictors into extracted features

Examples

Create Reconstruction ICA Object

Create a ReconstructionICA object by using the rica function.

Load the SampleImagePatches image patches.

data = load('SampleImagePatches');
size(data.X)

ans = 1×2

        5000         363

There are 5,000 image patches, each containing 363 features.

Extract 100 features from the data.

rng default % For reproducibility
q = 100;
Mdl = rica(data.X,q,'IterationLimit',100)

Warning: Solver LBFGS was not able to converge to a solution.

Mdl = 
  ReconstructionICA
            ModelParameters: [1x1 struct]
              NumPredictors: 363
         NumLearnedFeatures: 100
                         Mu: []
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                      Sigma: []
                    FitInfo: [1x1 struct]
           TransformWeights: [363x100 double]
    InitialTransformWeights: []
    NonGaussianityIndicator: [100x1 double]

  Properties, Methods

rica issues a warning because it stopped due to reaching the iteration limit, instead of reaching a
step-size limit or a gradient-size limit. You can still use the learned features in the returned object by
calling the transform function.

Version History
Introduced in R2017a

See Also
sparsefilt | rica | transform | SparseFiltering

Topics
“Feature Extraction Workflow” on page 16-132
“Extract Mixed Signals” on page 16-161
“Feature Extraction” on page 16-127
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Reduce Dimensionality
Reduce dimensionality using Principal Component Analysis (PCA) in Live Editor

Description
The Reduce Dimensionality Live Editor task enables you to interactively perform Principal
Component Analysis (PCA). The task generates MATLAB code for your live script and returns the
resulting transformed data to the MATLAB workspace.

Using the Reduce Dimensionality Live Editor task, you can:

• Determine the number of components required to explain the variance of a fixed percentage of the
data, such as 95% or 99%.

• Create a scree plot of explained variances of the principal components.
• Create a scatter plot of two principal components.
• Create a biplot of two principal components.
• Obtain the transformed data.

For general information about Live Editor tasks, see “Add Interactive Tasks to a Live Script”.
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Open the Task
To add the Reduce Dimensionality task to a live script, perform one of these actions:

• On the Live Editor tab, select Task > Reduce Dimensionality; or on the Insert tab, select Task
> Reduce Dimensionality.

• In a code block in the live script, type a relevant keyword, such as pca or reduce. Select Reduce
Dimensionality from the suggested command completions.

Examples

Reduce Dimensionality of Data in Numeric Matrix

Load the cities data set.

load cities

In the File section of the Home tab, click New Live Script.

In the Code section of the Live Editor tab, click Task to open the task gallery. Under Statistics and
Machine Learning, click Reduce Dimensionality.

Select Input data > ratings.

Run the task by the diagonal striped bar on the left of the Live Editor window, or by pressing Ctrl
+Enter. By default, the task creates three plots.
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The software returns the transformed data to the workspace as a variable named transformedData
(by default). You can edit this name.

Reduce Dimensionality of Data in Table

Load the moore data set.

load moore

Convert the data into a table.

tbl = array2table(moore);

In the File section of the Home tab, click New Live Script.
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In the Code section of the Live Editor tab, click Task to open the task gallery. Under Statistics and
Machine Learning, click Reduce Dimensionality.

Select Input data > tbl.

Run the task by clicking the diagonal striped bar on the left of the Live Editor window, or by pressing
Ctrl+Enter. By default, the task creates three plots.
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• “Dimensionality Reduction and Feature Extraction”
• “Add Interactive Tasks to a Live Script”

Parameters
Input data — Data to reduce
numeric matrix | table

Specify the data to reduce by selecting a variable from the available workspace variables. The
variable can be a numeric matrix or a table.

Reduction criterion — Dimensionality reduction criterion
Explained variance (%) (default) | Number of components

Specify the criterion for reducing the dimensionality of the data.

• Explained variance (%) — Specify the percentage of variance to explain, a nonnegative
scalar from 0 through 100. If you specify 100, then the result retains all principal components.

• Number of components— Specify from 1 through the number of columns of data. If you specify
the number of columns of data, then the result retains all principal components.

Regardless of the criterion you specify, you can plot all the principal components. The reduction
criterion changes only the number of columns in the returned, transformed data; the plots can use all
the transformed data before reduction.
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Display results — Plots to return
on (default) | off

To display plots of the principal components, select from the available options:

• Select Scree plot to display the percentage of the variance explained by each principal
component as a bar chart. The cumulative percentages appear as a line plot above the bars. The
task uses the bar function to create the bar chart and the plot function to plot the cumulative
percentages.

• Select 2D scatter plot to display the principal components of the data in a 2D scatter plot. The
task uses either the scatter function or the gscatter function to create the scatter plot,
depending on whether you specify a grouping variable.

• Select 2D biplot to plot the data as a 2D biplot. The task uses the biplot function to create the
biplot.

Tips
• By default, the Reduce Dimensionality task does not run automatically when you modify the

task parameters. To have the task run automatically after any change, select the Autorun 
button at the top right of the task. If your data set is large, enabling this option can cause the task
to run slowly.

Version History
Introduced in R2022b

See Also
pca | gscatter | scatter | biplot | bar

Topics
“Dimensionality Reduction and Feature Extraction”
“Add Interactive Tasks to a Live Script”
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refcurve
Add reference curve to plot

Syntax
refcurve(p)
refcurve
refcurve(ax,p)
hcurve = refcurve(...)

Description
refcurve(p) adds a polynomial reference curve with coefficients p to the current axes. If p is a
vector with n+1 elements, the curve is:

y = p(1)*x^n + p(2)*x^(n-1) + ... + p(n)*x + p(n+1)

refcurve with no input arguments adds a line along the x axis.

refcurve(ax,p) uses the plot axes specified in ax, an Axes object. For more information, see axes.

hcurve = refcurve(...) returns the handle hcurve to the curve using any of the input argument
combinations in the previous syntaxes.

Examples

Add Population and Fitted Mean Functions

Generate data with a polynomial trend.

p = [1 -2 -1 0];
t = 0:0.1:3;
rng default  % For reproducibility
y = polyval(p,t) + 0.5*randn(size(t));

Plot data and add the population mean function using refcurve .

plot(t,y,'ro')
h = refcurve(p);
h.Color = 'r';
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Also add the fitted mean function.

q = polyfit(t,y,3);
refcurve(q)
legend('Data','Population Mean','Fitted Mean',...
       'Location','NW')
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Plot Trajectories of a Batted Baseball Using refcurve

Introduce the relevant physical constants.

M = 0.145;      % Mass (kg)
R = 0.0366;     % Radius (m)
A = pi*R^2;     % Area (m^2)
rho = 1.2;      % Density of air (kg/m^3)
C = 0.5;        % Drag coefficient
D = rho*C*A/2;  % Drag proportional to the square of the speed
g = 9.8;        % Acceleration due to gravity (m/s^2)

Simulate the trajectory with drag proportional to the square of the speed, assuming constant
acceleration in each time interval.

dt = 1e-2;      % Simulation time interval (s)
r0 = [0 1];     % Initial position (m)
s0 = 50;        % Initial speed (m/s)
alpha0 = 35;    % Initial angle (deg)
v0 = s0*[cosd(alpha0) sind(alpha0)]; % Initial velocity (m/s)

r = r0;
v = v0;
trajectory = r0;
while r(2) > 0
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    a = [0 -g] - (D/M)*norm(v)*v;
    v = v + a*dt;
    r = r + v*dt + (1/2)*a*(dt^2);
    trajectory = [trajectory;r];
end

Plot trajectory and use refcurve to add the drag-free parabolic trajectory (found analytically) to
the plot of trajectory.

figure
plot(trajectory(:,1),trajectory(:,2),'m','LineWidth',2)
xlim([0,250])
h = refcurve([-g/(2*v0(1)^2),...
    (g*r0(1)/v0(1)^2) + (v0(2)/v0(1)),...
    (-g*r0(1)^2/(2*v0(1)^2)) - (v0(2)*r0(1)/v0(1)) + r0(2)]);
h.Color = 'c';
h.LineWidth = 2;
axis equal
ylim([0,50])
grid on
xlabel('Distance (m)')
ylabel('Height (m)')
title('{\bf Baseball Trajectories}')
legend('With Drag','Without Drag')
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Version History
Introduced before R2006a

See Also
refline | lsline | gline | polyfit
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refit
Class: GeneralizedLinearMixedModel

Refit generalized linear mixed-effects model

Syntax
glmenew = refit(glme,ynew)

Description
glmenew = refit(glme,ynew) returns a refitted generalized linear mixed-effects model,
glmenew, based on the input model glme, using a new response vector, ynew.

Input Arguments
glme — Generalized linear mixed-effects model
GeneralizedLinearMixedModel object

Generalized linear mixed-effects model, specified as a GeneralizedLinearMixedModel object. For
properties and methods of this object, see GeneralizedLinearMixedModel.

ynew — New response vector
n-by-1 vector of scalar values

New response vector, specified as an n-by-1 vector of scalar values, where n is the number of
observations used to fit glme.

For an observation i with prior weights wi
p and binomial size ni (when applicable), the response

values yi contained in ynew can have the following values.

Distribution Permitted Values Notes
Binomial

0, 1
wi

pni
, 2
wi

pni
, . …, 1

wi
p and ni are integer values > 0

Poisson
0, 1

wi
p , 2

wi
p ,⋯, 1

wi
p is an integer value > 0

Gamma (0,∞) wi
p ≥ 0

InverseGaussian (0,∞) wi
p ≥ 0

Normal (–∞,∞) wi
p ≥ 0

You can access the prior weights property wi
p using dot notation.

glme.ObservationInfo.Weights

Data Types: single | double
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Output Arguments
glmenew — Generalized linear mixed-effects model
GeneralizedLinearMixedModel object

Generalized linear mixed-effects model, returned as a GeneralizedLinearMixedModel object.
glmenew is an updated version of the generalized linear mixed-effects model glme, refit to the values
in the response vector ynew.

For properties and methods of this object, see GeneralizedLinearMixedModel.

Examples

Refit Model to New Response Vector

Load the sample data.

load mfr

This simulated data is from a manufacturing company that operates 50 factories across the world,
with each factory running a batch process to create a finished product. The company wants to
decrease the number of defects in each batch, so it developed a new manufacturing process. To test
the effectiveness of the new process, the company selected 20 of its factories at random to participate
in an experiment: Ten factories implemented the new process, while the other ten continued to run
the old process. In each of the 20 factories, the company ran five batches (for a total of 100 batches)
and recorded the following data:

• Flag to indicate whether the batch used the new process (newprocess)
• Processing time for each batch, in hours (time)
• Temperature of the batch, in degrees Celsius (temp)
• Categorical variable indicating the supplier (A, B, or C) of the chemical used in the batch

(supplier)
• Number of defects in the batch (defects)

The data also includes time_dev and temp_dev, which represent the absolute deviation of time and
temperature, respectively, from the process standard of 3 hours at 20 degrees Celsius.

Fit a generalized linear mixed-effects model using newprocess, time_dev, temp_dev, and
supplier as fixed-effects predictors. Include a random-effects term for intercept grouped by
factory, to account for quality differences that might exist due to factory-specific variations. The
response variable defects has a Poisson distribution, and the appropriate link function for this
model is log. Use the Laplace fit method to estimate the coefficients. Specify the dummy variable
encoding as 'effects', so the dummy variable coefficients sum to 0.

The number of defects can be modeled using a Poisson distribution

defectsi j ∼ Poisson(μi j)

This corresponds to the generalized linear mixed-effects model

log(μi j) = β0 + β1newprocessi j + β2time_devi j + β3temp_devi j + β4supplier_Ci j + β5supplier_Bi j
+ bi,
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where

• defectsi j is the number of defects observed in the batch produced by factory i during batch j.
• μi j is the mean number of defects corresponding to factory i (where i = 1, 2, . . . , 20) during batch

j (where j = 1, 2, . . . , 5).
• newprocessi j, time_devi j, and temp_devi j are the measurements for each variable that correspond

to factory i during batch j. For example, newprocessi j indicates whether the batch produced by
factory i during batch j used the new process.

• supplier_Ci j and supplier_Bi j are dummy variables that use effects (sum-to-zero) coding to indicate
whether company C or B, respectively, supplied the process chemicals for the batch produced by
factory i during batch j.

• bi ∼ N(0, σb
2) is a random-effects intercept for each factory i that accounts for factory-specific

variation in quality.

glme = fitglme(mfr,'defects ~ 1 + newprocess + time_dev + temp_dev + supplier + (1|factory)','Distribution','Poisson','Link','log','FitMethod','Laplace','DummyVarCoding','effects');

Use random to simulate a new response vector from the fitted model.

rng(0,'twister');  % For reproducibility
ynew = random(glme);

Refit the model using the new response vector.

glme = refit(glme,ynew)

glme = 
Generalized linear mixed-effects model fit by ML

Model information:
    Number of observations             100
    Fixed effects coefficients           6
    Random effects coefficients         20
    Covariance parameters                1
    Distribution                    Poisson
    Link                            Log   
    FitMethod                       Laplace

Formula:
    defects ~ 1 + newprocess + time_dev + temp_dev + supplier + (1 | factory)

Model fit statistics:
    AIC       BIC       LogLikelihood    Deviance
    469.24    487.48    -227.62          455.24  

Fixed effects coefficients (95% CIs):
    Name                   Estimate    SE          tStat       DF    pValue    
    {'(Intercept)'}          1.5738     0.18674      8.4276    94    4.0158e-13
    {'newprocess' }        -0.21089      0.2306    -0.91455    94       0.36277
    {'time_dev'   }        -0.13769     0.77477    -0.17772    94       0.85933
    {'temp_dev'   }         0.24339     0.84657      0.2875    94       0.77436
    {'supplier_C' }        -0.12102     0.07323     -1.6526    94       0.10175
    {'supplier_B' }        0.098254    0.066943      1.4677    94       0.14551

    Lower        Upper   
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        1.203      1.9445
     -0.66875     0.24696
       -1.676      1.4006
      -1.4375      1.9243
     -0.26642    0.024381
    -0.034662     0.23117

Random effects covariance parameters:
Group: factory (20 Levels)
    Name1                  Name2                  Type           Estimate
    {'(Intercept)'}        {'(Intercept)'}        {'std'}        0.46587 

Group: Error
    Name                        Estimate
    {'sqrt(Dispersion)'}        1       

Tips
• You can use refit and random to conduct a simulated likelihood ratio test or parametric

bootstrap.

See Also
GeneralizedLinearMixedModel | fitted | residuals | designMatrix
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refit
Class: FeatureSelectionNCAClassification

Refit neighborhood component analysis (NCA) model for classification

Syntax
mdlrefit = refit(mdl,Name,Value)

Description
mdlrefit = refit(mdl,Name,Value) refits the model mdl, with modified parameters specified
by one or more Name,Value pair arguments.

Input Arguments
mdl — Neighborhood component analysis model for classification
FeatureSelectionNCAClassification object

Neighborhood component analysis model or classification, specified as a
FeatureSelectionNCAClassification object.

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.

Fitting Options

FitMethod — Method for fitting the model
mdl.FitMethod (default) | 'exact' | 'none' | 'average'

Method for fitting the model, specified as the comma-separated pair consisting of 'FitMethod' and
one of the following.

• 'exact' — Performs fitting using all of the data.
• 'none' — No fitting. Use this option to evaluate the generalization error of the NCA model using

the initial feature weights supplied in the call to fscnca.
• 'average' — The function divides the data into partitions (subsets), fits each partition using the

exact method, and returns the average of the feature weights. You can specify the number of
partitions using the NumPartitions name-value pair argument.

Example: 'FitMethod','none'

Lambda — Regularization parameter
mdl.Lambda (default) | non-negative scalar value
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Regularization parameter, specified as the comma-separated pair consisting of 'Lambda' and a non-
negative scalar value.

For n observations, the best Lambda value that minimizes the generalization error of the NCA model
is expected to be a multiple of 1/n
Example: 'Lambda',0.01
Data Types: double | single

Solver — Solver type
mdl.Solver (default) | 'lbfgs' | 'sgd' | 'minibatch-lbfgs'

Solver type for estimating feature weights, specified as the comma-separated pair consisting of
'Solver' and one of the following.

• 'lbfgs' — Limited memory BFGS (Broyden-Fletcher-Goldfarb-Shanno) algorithm (LBFGS
algorithm)

• 'sgd' — Stochastic gradient descent
• 'minibatch-lbfgs' — Stochastic gradient descent with LBFGS algorithm applied to mini-

batches

Example: 'solver','minibatch-lbfgs'

InitialFeatureWeights — Initial feature weights
mdl.InitialFeatureWeights (default) | p-by-1 vector of real positive scalar values

Initial feature weights, specified as the comma-separated pair consisting of
'InitialFeatureWeights' and a p-by-1 vector of real positive scalar values.
Data Types: double | single

Verbose — Indicator for verbosity level
mdl.Verbose (default) | 0 | 1 | >1

Indicator for verbosity level for the convergence summary display, specified as the comma-separated
pair consisting of 'Verbose' and one of the following.

• 0 — No convergence summary
• 1 — Convergence summary including iteration number, norm of the gradient, and objective

function value.
• >1 — More convergence information depending on the fitting algorithm

When using solver 'minibatch-lbfgs' and verbosity level >1, the convergence information
includes iteration log from intermediate mini-batch LBFGS fits.

Example: 'Verbose',2
Data Types: double | single

LBFGS or Mini-Batch LBFGS Options

GradientTolerance — Relative convergence tolerance
mdl.GradientTolerance (default) | positive real scalar value
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Relative convergence tolerance on the gradient norm for solver lbfgs, specified as the comma-
separated pair consisting of 'GradientTolerance' and a positive real scalar value.
Example: 'GradientTolerance',0.00001
Data Types: double | single

SGD or Mini-Batch LBFGS Options

InitialLearningRate — Initial learning rate for solver sgd
mdl.InitialLearningRate (default) | positive real scalar value

Initial learning rate for solver sgd, specified as the comma-separated pair consisting of
'InitialLearningRate' and a positive scalar value.

When using solver type 'sgd', the learning rate decays over iterations starting with the value
specified for 'InitialLearningRate'.
Example: 'InitialLearningRate',0.8
Data Types: double | single

PassLimit — Maximum number of passes for solver 'sgd'
mdl.PassLimit (default) | positive integer value

Maximum number of passes for solver 'sgd' (stochastic gradient descent), specified as the comma-
separated pair consisting of 'PassLimit' and a positive integer. Every pass processes
size(mdl.X,1) observations.
Example: 'PassLimit',10
Data Types: double | single

SGD or LBFGS or Mini-Batch LBFGS Options

IterationLimit — Maximum number of iterations
mdl.IterationLimit (default) | positive integer value

Maximum number of iterations, specified as the comma-separated pair consisting of
'IterationLimit' and a positive integer.
Example: 'IterationLimit',250
Data Types: double | single

Output Arguments
mdlrefit — Neighborhood component analysis model for classification
FeatureSelectionNCAClassification object

Neighborhood component analysis model for classification, returned as a
FeatureSelectionNCAClassification object. You can either save the results as a new model or
update the existing model as mdl = refit(mdl,Name,Value).

Examples
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Refit NCA Model for Classification with Modified Settings

Generate checkerboard data using the generateCheckerBoardData.m function.

rng(2016,'twister'); % For reproducibility
pps = 1375;
[X,y] = generateCheckerBoardData(pps);
X = X + 2;

Plot the data.

figure
plot(X(y==1,1),X(y==1,2),'rx')
hold on
plot(X(y==-1,1),X(y==-1,2),'bx')

[n,p] = size(X)

n =

       22000

p =

     2
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Add irrelevant predictors to the data.

Q = 98;
Xrnd = unifrnd(0,4,n,Q);
Xobs = [X,Xrnd];

This piece of code creates 98 additional predictors, all uniformly distributed between 0 and 4.

Partition the data into training and test sets. To create stratified partitions, so that each partition has
similar proportion of classes, use y instead of length(y) as the partitioning criteria.

cvp = cvpartition(y,'holdout',2000);

cvpartition randomly chooses 2000 of the observations to add to the test set and the rest of the
data to add to the training set. Create the training and validation sets using the assignments stored in
the cvpartition object cvp .

Xtrain = Xobs(cvp.training(1),:);
ytrain = y(cvp.training(1),:);

Xval = Xobs(cvp.test(1),:);
yval = y(cvp.test(1),:);

Compute the misclassification error without feature selection.

nca = fscnca(Xtrain,ytrain,'FitMethod','none','Standardize',true, ...
    'Solver','lbfgs');
loss_nofs = loss(nca,Xval,yval)

loss_nofs =

    0.5165

'FitMethod','none' option uses the default weights (all 1s), which means all features are equally
important.

This time, perform feature selection using neighborhood component analysis for classification, with
.

w0 = rand(100,1);
n = length(ytrain)
lambda = 1/n;
nca = refit(nca,'InitialFeatureWeights',w0,'FitMethod','exact', ...
       'Lambda',lambda,'solver','sgd');

n =

       20000

Plot the objective function value versus the iteration number.

figure()
plot(nca.FitInfo.Iteration,nca.FitInfo.Objective,'ro')
hold on
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plot(nca.FitInfo.Iteration,movmean(nca.FitInfo.Objective,10),'k.-')
xlabel('Iteration number')
ylabel('Objective value')

Compute the misclassification error with feature selection.

loss_withfs = loss(nca,Xval,yval)

loss_withfs =

    0.0115

Plot the selected features.

figure
semilogx(nca.FeatureWeights,'ro')
xlabel('Feature index')
ylabel('Feature weight')
grid on
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Select features using the feature weights and a relative threshold.

tol = 0.15;
selidx = find(nca.FeatureWeights > tol*max(1,max(nca.FeatureWeights)))

selidx =

     1
     2

Feature selection improves the results and fscnca detects the correct two features as relevant.

Version History
Introduced in R2016b

See Also
FeatureSelectionNCAClassification | loss | fscnca | predict

 refit

35-6257



refit
Class: FeatureSelectionNCARegression

Refit neighborhood component analysis (NCA) model for regression

Syntax
mdlrefit = refit(mdl,Name,Value)

Description
mdlrefit = refit(mdl,Name,Value) refits the model mdl, with modified parameters specified
by one or more Name,Value pair arguments.

Input Arguments
mdl — Neighborhood component analysis model for regression
FeatureSelectionNCARegression object

Neighborhood component analysis model or classification, specified as a
FeatureSelectionNCARegression object.

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.

Fitting Options

FitMethod — Method for fitting the model
mdl.FitMethod (default) | 'exact' | 'none' | 'average'

Method for fitting the model, specified as the comma-separated pair consisting of 'FitMethod' and
one of the following.

• 'exact' — Performs fitting using all of the data.
• 'none' — No fitting. Use this option to evaluate the generalization error of the NCA model using

the initial feature weights supplied in the call to fsrnca.
• 'average' — The function divides the data into partitions (subsets), fits each partition using the

exact method, and returns the average of the feature weights. You can specify the number of
partitions using the NumPartitions name-value pair argument.

Example: 'FitMethod','none'

Lambda — Regularization parameter
mdl.Lambda (default) | non-negative scalar value
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Regularization parameter, specified as the comma-separated pair consisting of 'Lambda' and a non-
negative scalar value.

For n observations, the best Lambda value that minimizes the generalization error of the NCA model
is expected to be a multiple of 1/n
Example: 'Lambda',0.01
Data Types: double | single

Solver — Solver type
mdl.Solver (default) | 'lbfgs' | 'sgd' | 'minibatch-lbfgs'

Solver type for estimating feature weights, specified as the comma-separated pair consisting of
'Solver' and one of the following.

• 'lbfgs' — Limited memory BFGS (Broyden-Fletcher-Goldfarb-Shanno) algorithm (LBFGS
algorithm)

• 'sgd' — Stochastic gradient descent
• 'minibatch-lbfgs' — Stochastic gradient descent with LBFGS algorithm applied to mini-

batches

Example: 'solver','minibatch-lbfgs'

InitialFeatureWeights — Initial feature weights
mdl.InitialFeatureWeights (default) | p-by-1 vector of real positive scalar values

Initial feature weights, specified as the comma-separated pair consisting of
'InitialFeatureWeights' and a p-by-1 vector of real positive scalar values.
Data Types: double | single

Verbose — Indicator for verbosity level
mdl.Verbose (default) | 0 | 1 | >1

Indicator for verbosity level for the convergence summary display, specified as the comma-separated
pair consisting of 'Verbose' and one of the following.

• 0 — No convergence summary
• 1 — Convergence summary including iteration number, norm of the gradient, and objective

function value.
• >1 — More convergence information depending on the fitting algorithm

When using solver 'minibatch-lbfgs' and verbosity level >1, the convergence information
includes iteration log from intermediate mini-batch LBFGS fits.

Example: 'Verbose',2
Data Types: double | single

LBFGS or Mini-Batch LBFGS Options

GradientTolerance — Relative convergence tolerance
mdl.GradientTolerance (default) | positive real scalar value
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Relative convergence tolerance on the gradient norm for solver lbfgs, specified as the comma-
separated pair consisting of 'GradientTolerance' and a positive real scalar value.
Example: 'GradientTolerance',0.00001
Data Types: double | single

SGD or Mini-Batch LBFGS Options

InitialLearningRate — Initial learning rate for solver sgd
mdl.InitialLearningRate (default) | positive real scalar value

Initial learning rate for solver sgd, specified as the comma-separated pair consisting of
'InitialLearningRate' and a positive scalar value.

When using solver type 'sgd', the learning rate decays over iterations starting with the value
specified for 'InitialLearningRate'.
Example: 'InitialLearningRate',0.8
Data Types: double | single

PassLimit — Maximum number of passes for solver 'sgd'
mdl.PassLimit (default) | positive integer value

Maximum number of passes for solver 'sgd' (stochastic gradient descent), specified as the comma-
separated pair consisting of 'PassLimit' and a positive integer. Every pass processes
size(mdl.X,1) observations.
Example: 'PassLimit',10
Data Types: double | single

SGD or LBFGS or Mini-Batch LBFGS Options

IterationLimit — Maximum number of iterations
mdl.IterationLimit (default) | positive integer value

Maximum number of iterations, specified as the comma-separated pair consisting of
'IterationLimit' and a positive integer.
Example: 'IterationLimit',250
Data Types: double | single

Output Arguments
mdlrefit — Neighborhood component analysis model for regression
FeatureSelectionNCARegression object

Neighborhood component analysis model or classification, returned as a
FeatureSelectionNCARegression object. You can either save the results as a new model or
update the existing model as mdl = refit(mdl,Name,Value).

Examples
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Refit NCA Model for Regression with Modified Settings

Load the sample data.

load('robotarm.mat')

The robotarm (pumadyn32nm) dataset is created using a robot arm simulator with 7168 training
and 1024 test observations with 32 features [1], [2]. This is a preprocessed version of the original
data set. Data are preprocessed by subtracting off a linear regression fit followed by normalization of
all features to unit variance.

Compute the generalization error without feature selection.

nca = fsrnca(Xtrain,ytrain,'FitMethod','none','Standardize',1);
L = loss(nca,Xtest,ytest)

L = 0.9017

Now, refit the model and compute the prediction loss with feature selection, with λ = 0 (no
regularization term) and compare to the previous loss value, to determine feature selection seems
necessary for this problem. For the settings that you do not change, refit uses the settings of the
initial model nca. For example, it uses the feature weights found in nca as the initial feature weights.

nca2 = refit(nca,'FitMethod','exact','Lambda',0);
L2 = loss(nca2,Xtest,ytest)

L2 = 0.1088

The decrease in the loss suggests that feature selection is necessary.

Plot the feature weights.

figure()
plot(nca2.FeatureWeights,'ro')
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Tuning the regularization parameter usually improves the results. Suppose that, after tuning λ using
cross-validation as in “Tune Regularization Parameter in NCA for Regression” on page 35-2886, the
best λ value found is 0.0035. Refit the nca model using this λ value and stochastic gradient descent
as the solver. Compute the prediction loss.

nca3 = refit(nca2,'FitMethod','exact','Lambda',0.0035,...
          'Solver','sgd');
L3 = loss(nca3,Xtest,ytest)

L3 = 0.0573

Plot the feature weights.

figure()
plot(nca3.FeatureWeights,'ro')
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After tuning the regularization parameter, the loss decreased even more and the software identified
four of the features as relevant.

References

[1] Rasmussen, C. E., R. M. Neal, G. E. Hinton, D. van Camp, M. Revow, Z. Ghahramani, R. Kustra,
and R. Tibshirani. The DELVE Manual, 1996, https://mlg.eng.cam.ac.uk/pub/pdf/RasNeaHinetal96.pdf

[2] https://www.cs.toronto.edu/~delve/data/datasets.html

Version History
Introduced in R2016b

See Also
loss | fsrnca | predict | FeatureSelectionNCARegression
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reduceDimensions
Reduce dimensions of Sobol point set

Syntax
pr = reduceDimensions(p,d)

Description
pr = reduceDimensions(p,d) reduces the Sobol quasirandom point set p to the first d
dimensions. d must be less than or equal to the number of dimensions in p.

The reduced point set pr is a sobolset object.

Examples

Reduce Dimensions of Sobol Point Set

Generate a seven-dimensional Sobol point set and scramble the points.

p = sobolset(7);
ps = scramble(p,'MatousekAffineOwen')

ps = 
Sobol point set in 7 dimensions (9007199254740992 points)

Properties:
              Skip : 0
              Leap : 0
    ScrambleMethod : MatousekAffineOwen
        PointOrder : standard

Split the first 7168 points in ps into seven levels of 1024 points each. Reduce the first 1024 points to
be one-dimensional, the second 1024 points to be two-dimensional, and so on. For each level,
compute the variance of the point values in each dimension.

variance = NaN(7);
for level = 1:7
    pr = reduceDimensions(ps,level);
    pr.Skip = (level-1)*1024;
    pts = pr(1:1024,:);
    variance(level,1:level) = var(pts);
end

Plot the variances. The dark blue bars show the variance of the points in the first dimension, the dark
orange bars show the variance of the points in the second dimension, and so on.

bar(variance)
xlabel('Level')
ylabel('Variances')
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Input Arguments
p — Sobol point set
sobolset object

Sobol point set, specified as a sobolset object.

d — Number of dimensions to retain
positive integer scalar

Number of dimensions to retain from the point set p, specified as a positive integer scalar between 1
and the number of dimensions in p. The function always retains the first d dimensions of p.
Data Types: single | double

Version History
Introduced in R2019a

See Also
sobolset | net | scramble
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refline
Add reference line to plot

Syntax
refline(m,b)
refline(coeffs)
refline
refline(ax, ___ )
hline = refline( ___ )

Description
refline(m,b) adds a reference line with slope m and intercept b to the current axes.

refline(coeffs) adds the line defined by the elements of the vector coeffs to the figure.

refline with no input arguments is equivalent to lsline.

refline(ax, ___ ) adds a reference line to the plot in the axis specified by ax, using any of the
input arguments in the previous syntaxes.

hline = refline( ___ ) returns the reference line object hline using any of the input arguments
in the previous syntaxes. Use hline to modify properties of a specific reference line after you create
it. For a list of properties, see Line Properties.

Examples

Add Reference Line at the Mean

Generate sample data for an independent variable x and a dependent variable y .

x = 1:10;
y = x + randn(1,10);

Create a scatter plot of x and y .

scatter(x,y,25,'b','*')
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Superimpose a least-squares line on the scatter plot.

refline
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Add a reference line at the mean of the scatter plot.

mu = mean(y);
hline = refline([0 mu]);
hline.Color = 'r';
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The red line is the reference line at the mean of the data.

Specify Axes for Least-Squares and Reference Lines

Define the x-variable and two different y-variables to use for the plots.

rng default  % For reproducibility
x = 1:10;
y1 = x + randn(1,10);
y2 = 2*x + randn(1,10);

Define ax1 as the top half of the figure, and ax2 as the bottom half of the figure. Create the first
scatter plot on the top axis using y1, and the second scatter plot on the bottom axis using y2.

figure
ax1 = subplot(2,1,1);
ax2 = subplot(2,1,2);

scatter(ax1,x,y1)
scatter(ax2,x,y2)
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Superimpose a least-squares line on the top plot, and a reference line at the mean of the y2 values in
the bottom plot.

lsline(ax1) % This is equivalent to refline(ax1)

mu = mean(y2);
refline(ax2,[0 mu])
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Input Arguments
m — Slope of reference line
numeric scalar

Slope of the reference line, specified as a numeric scalar. The function uses m to define the line

   y = m*x + b. 

Example: refline(-1,1)
Data Types: single | double

b — Intercept of reference line
numeric scalar

Intercept of the reference line, specified as a numeric scalar. The function uses b to define the line

   y = m*x + b. 

Example: refline(2,-10)
Data Types: single | double

coeffs — Linear coefficients
length-two numeric vector
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Linear coefficients, specified as a length-two numeric vector. coeffs contains the coefficients of a
line defined as

   y = coeffs(1)*x + coeffs(2). 

Example: refline([-1,2])
Data Types: single | double

ax — Target axes
gca (default) | axes object

Target axes, specified as an axes object. If you do not specify the axes and if the current axes are
Cartesian axes, then the refline function uses the current axes.

Output Arguments
hline — One or more reference line objects
scalar | vector

One or more reference line objects, returned as a scalar or a vector. These objects are unique
identifiers, which you can use to query and modify properties of a specific reference line. For a list of
properties, see Chart Line.

Version History
Introduced before R2006a

See Also
refcurve | lsline | gline
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regress
Multiple linear regression

Syntax
b = regress(y,X)
[b,bint] = regress(y,X)
[b,bint,r] = regress(y,X)
[b,bint,r,rint] = regress(y,X)
[b,bint,r,rint,stats] = regress(y,X)
[ ___ ] = regress(y,X,alpha)

Description
b = regress(y,X) returns a vector b of coefficient estimates for a multiple linear regression of the
responses in vector y on the predictors in matrix X. To compute coefficient estimates for a model with
a constant term (intercept), include a column of ones in the matrix X.

[b,bint] = regress(y,X) also returns a matrix bint of 95% confidence intervals for the
coefficient estimates.

[b,bint,r] = regress(y,X) also returns an additional vector r of residuals.

[b,bint,r,rint] = regress(y,X) also returns a matrix rint of intervals that can be used to
diagnose outliers.

[b,bint,r,rint,stats] = regress(y,X) also returns a vector stats that contains the R2

statistic, the F-statistic and its p-value, and an estimate of the error variance. The matrix X must
include a column of ones for the software to compute the model statistics correctly.

[ ___ ] = regress(y,X,alpha) uses a 100*(1-alpha)% confidence level to compute bint and
rint. Specify any of the output argument combinations in the previous syntaxes.

Examples

Estimate Multiple Linear Regression Coefficients

Load the carsmall data set. Identify weight and horsepower as predictors and mileage as the
response.

load carsmall
x1 = Weight;
x2 = Horsepower;    % Contains NaN data
y = MPG;

Compute the regression coefficients for a linear model with an interaction term.

X = [ones(size(x1)) x1 x2 x1.*x2];
b = regress(y,X)    % Removes NaN data

 regress

35-6273



b = 4×1

   60.7104
   -0.0102
   -0.1882
    0.0000

Plot the data and the model.

scatter3(x1,x2,y,'filled')
hold on
x1fit = min(x1):100:max(x1);
x2fit = min(x2):10:max(x2);
[X1FIT,X2FIT] = meshgrid(x1fit,x2fit);
YFIT = b(1) + b(2)*X1FIT + b(3)*X2FIT + b(4)*X1FIT.*X2FIT;
mesh(X1FIT,X2FIT,YFIT)
xlabel('Weight')
ylabel('Horsepower')
zlabel('MPG')
view(50,10)
hold off
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Diagnose Outliers Using Residuals

Load the examgrades data set.

load examgrades

Use the last exam scores as response data and the first two exam scores as predictor data.

y = grades(:,5);
X = [ones(size(grades(:,1))) grades(:,1:2)];

Perform multiple linear regression with alpha = 0.01.

[~,~,r,rint] = regress(y,X,0.01);

Diagnose outliers by finding the residual intervals rint that do not contain 0.

contain0 = (rint(:,1)<0 & rint(:,2)>0);
idx = find(contain0==false)

idx = 2×1

    53
    54

Observations 53 and 54 are possible outliers.

Create a scatter plot of the residuals. Fill in the points corresponding to the outliers.

hold on
scatter(y,r)
scatter(y(idx),r(idx),'b','filled')
xlabel("Last Exam Grades")
ylabel("Residuals")
hold off
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Determine Significance of Linear Regression Relationship

Load the hald data set. Use heat as the response variable and ingredients as the predictor data.

load hald
y = heat;
X1 = ingredients;
x1 = ones(size(X1,1),1);
X = [x1 X1];    % Includes column of ones

Perform multiple linear regression and generate model statistics.

[~,~,~,~,stats] = regress(y,X)

stats = 1×4

    0.9824  111.4792    0.0000    5.9830

Because the R2 value of 0.9824 is close to 1, and the p-value of 0.0000 is less than the default
significance level of 0.05, a significant linear regression relationship exists between the response y
and the predictor variables in X.
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Input Arguments
y — Response data
numeric vector

Response data, specified as an n-by-1 numeric vector. Rows of y correspond to different observations.
y must have the same number of rows as X.
Data Types: single | double

X — Predictor data
numeric matrix

Predictor data, specified as an n-by-p numeric matrix. Rows of X correspond to observations, and
columns correspond to predictor variables. X must have the same number of rows as y.
Data Types: single | double

alpha — Significance level
0.05 (default) | positive scalar

Significance level, specified as a positive scalar. alpha must be between 0 and 1.
Data Types: single | double

Output Arguments
b — Coefficient estimates for multiple linear regression
numeric vector

Coefficient estimates for multiple linear regression, returned as a numeric vector. b is a p-by-1 vector,
where p is the number of predictors in X. If the columns of X are linearly dependent, regress sets
the maximum number of elements of b to zero.
Data Types: double

bint — Lower and upper confidence bounds for coefficient estimates
numeric matrix

Lower and upper confidence bounds for coefficient estimates, returned as a numeric matrix. bint is
a p-by-2 matrix, where p is the number of predictors in X. The first column of bint contains lower
confidence bounds for each of the coefficient estimates; the second column contains upper confidence
bounds. If the columns of X are linearly dependent, regress returns zeros in elements of bint
corresponding to the zero elements of b.
Data Types: double

r — Residuals
numeric vector

Residuals, returned as a numeric vector. r is an n-by-1 vector, where n is the number of observations,
or rows, in X.
Data Types: single | double

rint — Intervals to diagnose outliers
numeric matrix
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Intervals to diagnose outliers, returned as a numeric matrix. rint is an n-by-2 matrix, where n is the
number of observations, or rows, in X. If the interval rint(i,:) for observation i does not contain
zero, the corresponding residual is larger than expected in 100*(1-alpha)% of new observations,
suggesting an outlier. For more information, see “Algorithms” on page 35-6278.
Data Types: single | double

stats — Model statistics
numeric vector

Model statistics, returned as a numeric vector including the R2 statistic, the F-statistic and its p-
value, and an estimate of the error variance.

• X must include a column of ones so that the model contains a constant term. The F-statistic and its
p-value are computed under this assumption and are not correct for models without a constant.

• The F-statistic is the test statistic of the F-test on the regression model. The F-test looks for a
significant linear regression relationship between the response variable and the predictor
variables.

• The R2 statistic can be negative for models without a constant, indicating that the model is not
appropriate for the data.

Data Types: single | double

Tips
• regress treats NaN values in X or y as missing values. regress omits observations with missing

values from the regression fit.

Algorithms
Residual Intervals

In a linear model, observed values of y and their residuals are random variables. Residuals have
normal distributions with zero mean but with different variances at different values of the predictors.
To put residuals on a comparable scale, regress “Studentizes” the residuals. That is, regress
divides the residuals by an estimate of their standard deviation that is independent of their value.
Studentized residuals have t-distributions with known degrees of freedom. The intervals returned in
rint are shifts of the 100*(1-alpha)% confidence intervals of these t-distributions, centered at the
residuals.

Alternative Functionality
regress is useful when you simply need the output arguments of the function and when you want to
repeat fitting a model multiple times in a loop. If you need to investigate a fitted regression model
further, create a linear regression model object LinearModel by using fitlm or stepwiselm. A
LinearModel object provides more features than regress.

• Use the properties of LinearModel to investigate a fitted linear regression model. The object
properties include information about coefficient estimates, summary statistics, fitting method, and
input data.

• Use the object functions of LinearModel to predict responses and to modify, evaluate, and
visualize the linear regression model.
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• Unlike regress, the fitlm function does not require a column of ones in the input data. A model
created by fitlm always includes an intercept term unless you specify not to include it by using
the 'Intercept' name-value pair argument.

• You can find the information in the output of regress using the properties and object functions of
LinearModel.

Output of regress Equivalent Values in LinearModel
b See the Estimate column of the

Coefficients property.
bint Use the coefCI function.
r See the Raw column of the Residuals

property.
rint Not supported. Instead, use studentized

residuals (Residuals property) and
observation diagnostics (Diagnostics
property) to find outliers.

stats See the model display in the Command
Window. You can find the statistics in the
model properties (MSE and Rsquared) and by
using the anova function.

Version History
Introduced before R2006a

References
[1] Chatterjee, S., and A. S. Hadi. “Influential Observations, High Leverage Points, and Outliers in

Linear Regression.” Statistical Science. Vol. 1, 1986, pp. 379–416.

See Also
LinearModel | fitlm | stepwiselm | mvregress | rcoplot

Topics
“Interpret Linear Regression Results” on page 11-52
“Linear Regression Workflow” on page 11-35
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RegressionBaggedEnsemble
Package: classreg.learning.regr
Superclasses: RegressionEnsemble

Regression ensemble grown by resampling

Description
RegressionBaggedEnsemble combines a set of trained weak learner models and data on which
these learners were trained. It can predict ensemble response for new data by aggregating
predictions from its weak learners.

Construction
Create a bagged regression ensemble object using fitrensemble. Set the name-value pair
argument 'Method' of fitrensemble to 'Bag' to use bootstrap aggregation (bagging, for
example, random forest).

Properties
BinEdges

Bin edges for numeric predictors, specified as a cell array of p numeric vectors, where p is the
number of predictors. Each vector includes the bin edges for a numeric predictor. The element in the
cell array for a categorical predictor is empty because the software does not bin categorical
predictors.

The software bins numeric predictors only if you specify the 'NumBins' name-value argument as a
positive integer scalar when training a model with tree learners. The BinEdges property is empty if
the 'NumBins' value is empty (default).

You can reproduce the binned predictor data Xbinned by using the BinEdges property of the trained
model mdl.

X = mdl.X; % Predictor data
Xbinned = zeros(size(X));
edges = mdl.BinEdges;
% Find indices of binned predictors.
idxNumeric = find(~cellfun(@isempty,edges));
if iscolumn(idxNumeric)
    idxNumeric = idxNumeric';
end
for j = idxNumeric 
    x = X(:,j);
    % Convert x to array if x is a table.
    if istable(x) 
        x = table2array(x);
    end
    % Group x into bins by using the discretize function.
    xbinned = discretize(x,[-inf; edges{j}; inf]); 
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    Xbinned(:,j) = xbinned;
end

Xbinned contains the bin indices, ranging from 1 to the number of bins, for numeric predictors.
Xbinned values are 0 for categorical predictors. If X contains NaNs, then the corresponding Xbinned
values are NaNs.

CategoricalPredictors

Categorical predictor indices, specified as a vector of positive integers. CategoricalPredictors
contains index values indicating that the corresponding predictors are categorical. The index values
are between 1 and p, where p is the number of predictors used to train the model. If none of the
predictors are categorical, then this property is empty ([]).

CombineWeights

A character vector describing how the ensemble combines learner predictions.

ExpandedPredictorNames

Expanded predictor names, stored as a cell array of character vectors.

If the model uses encoding for categorical variables, then ExpandedPredictorNames includes the
names that describe the expanded variables. Otherwise, ExpandedPredictorNames is the same as
PredictorNames.

FitInfo

A numeric array of fit information. The FitInfoDescription property describes the content of this
array.

FitInfoDescription

Character vector describing the meaning of the FitInfo array.

FResample

A numeric scalar between 0 and 1. FResample is the fraction of training data fitrensemble
resampled at random for every weak learner when constructing the ensemble.

HyperparameterOptimizationResults

Description of the cross-validation optimization of hyperparameters, stored as a
BayesianOptimization object or a table of hyperparameters and associated values. Nonempty
when the OptimizeHyperparameters name-value pair is nonempty at creation. Value depends on
the setting of the HyperparameterOptimizationOptions name-value pair at creation:

• 'bayesopt' (default) — Object of class BayesianOptimization
• 'gridsearch' or 'randomsearch' — Table of hyperparameters used, observed objective

function values (cross-validation loss), and rank of observations from lowest (best) to highest
(worst)
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LearnerNames

Cell array of character vectors with names of the weak learners in the ensemble. The name of each
learner appears just once. For example, if you have an ensemble of 100 trees, LearnerNames is
{'Tree'}.

Method

A character vector with the name of the algorithm fitrensemble used for training the ensemble.

ModelParameters

Parameters used in training ens.

NumObservations

Numeric scalar containing the number of observations in the training data.

NumTrained

Number of trained learners in the ensemble, a positive scalar.

PredictorNames

A cell array of names for the predictor variables, in the order in which they appear in X.

ReasonForTermination

A character vector describing the reason fitrensemble stopped adding weak learners to the
ensemble.

Regularization

A structure containing the result of the regularize method. Use Regularization with shrink to
lower resubstitution error and shrink the ensemble.

Replace

Boolean flag indicating if training data for weak learners in this ensemble were sampled with
replacement. Replace is true for sampling with replacement, false otherwise.

ResponseName

A character vector with the name of the response variable Y.

ResponseTransform

Function handle for transforming scores, or character vector representing a built-in transformation
function. 'none' means no transformation; equivalently, 'none' means @(x)x.

Add or change a ResponseTransform function using dot notation:

ens.ResponseTransform = @function

Trained

The trained learners, a cell array of compact regression models.
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TrainedWeights

A numeric vector of weights the ensemble assigns to its learners. The ensemble computes predicted
response by aggregating weighted predictions from its learners.

UseObsForLearner

A logical matrix of size N-by-NumTrained, where N is the number of rows (observations) in the
training data X, and NumTrained is the number of trained weak learners. UseObsForLearner(I,J)
is true if observation I was used for training learner J, and is false otherwise.

W

The scaled weights, a vector with length n, the number of rows in X. The sum of the elements of W is
1.

X

The matrix or table of predictor values that trained the ensemble. Each column of X represents one
variable, and each row represents one observation.

Y

The numeric column vector with the same number of rows as X that trained the ensemble. Each entry
in Y is the response to the data in the corresponding row of X.

Object Functions
compact Create compact regression ensemble
crossval Cross validate ensemble
cvshrink Cross-validate shrinking (pruning) ensemble
gather Gather properties of Statistics and Machine Learning Toolbox

object from GPU
lime Local interpretable model-agnostic explanations (LIME)
loss Regression error
oobLoss Out-of-bag regression error
oobPermutedPredictorImportance Predictor importance estimates by permutation of out-of-bag

predictor observations for random forest of regression trees
oobPredict Predict out-of-bag response of ensemble
partialDependence Compute partial dependence
plotPartialDependence Create partial dependence plot (PDP) and individual conditional

expectation (ICE) plots
predict Predict responses using ensemble of regression models
predictorImportance Estimates of predictor importance for regression ensemble
regularize Find weights to minimize resubstitution error plus penalty term
removeLearners Remove members of compact regression ensemble
resubLoss Regression error by resubstitution
resubPredict Predict response of ensemble by resubstitution
resume Resume training ensemble
shapley Shapley values
shrink Prune ensemble
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Copy Semantics
Value. To learn how value classes affect copy operations, see Copying Objects.

Examples

Train Bagged Ensemble of Regression Trees

Load the carsmall data set. Consider a model that explains a car's fuel economy (MPG) using its
weight (Weight) and number of cylinders (Cylinders).

load carsmall
X = [Weight Cylinders];
Y = MPG;

Train a bagged ensemble of 100 regression trees using all measurements.

Mdl = fitrensemble(X,Y,'Method','bag')

Mdl = 
  RegressionBaggedEnsemble
             ResponseName: 'Y'
    CategoricalPredictors: []
        ResponseTransform: 'none'
          NumObservations: 94
               NumTrained: 100
                   Method: 'Bag'
             LearnerNames: {'Tree'}
     ReasonForTermination: 'Terminated normally after completing the requested number of training cycles.'
                  FitInfo: []
       FitInfoDescription: 'None'
           Regularization: []
                FResample: 1
                  Replace: 1
         UseObsForLearner: [94x100 logical]

  Properties, Methods

Mdl is a RegressionBaggedEnsemble model object.

Mdl.Trained is the property that stores a 100-by-1 cell vector of the trained, compact regression
trees (CompactRegressionTree model objects) that compose the ensemble.

Plot a graph of the first trained regression tree.

view(Mdl.Trained{1},'Mode','graph')
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By default, fitrensemble grows deep trees for bags of trees.

Estimate the in-sample mean-squared error (MSE).

L = resubLoss(Mdl)

L = 12.4048

Tip
For a bagged ensemble of regression trees, the Trained property of ens stores a cell vector of
ens.NumTrained CompactRegressionTree model objects. For a textual or graphical display of
tree t in the cell vector, enter

view(ens.Trained{t})

Version History
Introduced in R2011a
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Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• The predict function supports code generation.
• To integrate the prediction of an ensemble into Simulink, you can use the RegressionEnsemble

Predict block in the Statistics and Machine Learning Toolbox library or a MATLAB Function block
with the predict function.

• When you train an ensemble by using fitrensemble, code generation limitations for regression
trees also apply to ensembles of regression trees. For more details, see “Code Generation” on
page 35-985 of the CompactRegressionTree class.

For more information, see “Introduction to Code Generation” on page 34-2.

See Also
RegressionEnsemble | fitrensemble | view

35 Functions

35-6286



RegressionEnsemble
Package: classreg.learning.regr
Superclasses: CompactRegressionEnsemble

Ensemble regression

Description
RegressionEnsemble combines a set of trained weak learner models and data on which these
learners were trained. It can predict ensemble response for new data by aggregating predictions
from its weak learners.

Construction
Create a regression ensemble object using fitrensemble.

Properties
BinEdges

Bin edges for numeric predictors, specified as a cell array of p numeric vectors, where p is the
number of predictors. Each vector includes the bin edges for a numeric predictor. The element in the
cell array for a categorical predictor is empty because the software does not bin categorical
predictors.

The software bins numeric predictors only if you specify the 'NumBins' name-value argument as a
positive integer scalar when training a model with tree learners. The BinEdges property is empty if
the 'NumBins' value is empty (default).

You can reproduce the binned predictor data Xbinned by using the BinEdges property of the trained
model mdl.

X = mdl.X; % Predictor data
Xbinned = zeros(size(X));
edges = mdl.BinEdges;
% Find indices of binned predictors.
idxNumeric = find(~cellfun(@isempty,edges));
if iscolumn(idxNumeric)
    idxNumeric = idxNumeric';
end
for j = idxNumeric 
    x = X(:,j);
    % Convert x to array if x is a table.
    if istable(x) 
        x = table2array(x);
    end
    % Group x into bins by using the discretize function.
    xbinned = discretize(x,[-inf; edges{j}; inf]); 
    Xbinned(:,j) = xbinned;
end
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Xbinned contains the bin indices, ranging from 1 to the number of bins, for numeric predictors.
Xbinned values are 0 for categorical predictors. If X contains NaNs, then the corresponding Xbinned
values are NaNs.

CategoricalPredictors

Categorical predictor indices, specified as a vector of positive integers. CategoricalPredictors
contains index values indicating that the corresponding predictors are categorical. The index values
are between 1 and p, where p is the number of predictors used to train the model. If none of the
predictors are categorical, then this property is empty ([]).

CombineWeights

A character vector describing how the ensemble combines learner predictions.

ExpandedPredictorNames

Expanded predictor names, stored as a cell array of character vectors.

If the model uses encoding for categorical variables, then ExpandedPredictorNames includes the
names that describe the expanded variables. Otherwise, ExpandedPredictorNames is the same as
PredictorNames.

FitInfo

A numeric array of fit information. The FitInfoDescription property describes the content of this
array.

FitInfoDescription

Character vector describing the meaning of the FitInfo array.

LearnerNames

Cell array of character vectors with names of the weak learners in the ensemble. The name of each
learner appears just once. For example, if you have an ensemble of 100 trees, LearnerNames is
{'Tree'}.

HyperparameterOptimizationResults

Description of the cross-validation optimization of hyperparameters, stored as a
BayesianOptimization object or a table of hyperparameters and associated values. Nonempty
when the OptimizeHyperparameters name-value pair is nonempty at creation. Value depends on
the setting of the HyperparameterOptimizationOptions name-value pair at creation:

• 'bayesopt' (default) — Object of class BayesianOptimization
• 'gridsearch' or 'randomsearch' — Table of hyperparameters used, observed objective

function values (cross-validation loss), and rank of observations from lowest (best) to highest
(worst)

Method

A character vector with the name of the algorithm fitrensemble used for training the ensemble.
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ModelParameters

Parameters used in training ens.

NumObservations

Numeric scalar containing the number of observations in the training data.

NumTrained

Number of trained learners in the ensemble, a positive scalar.

PredictorNames

A cell array of names for the predictor variables, in the order in which they appear in X.

ReasonForTermination

A character vector describing the reason fitrensemble stopped adding weak learners to the
ensemble.

Regularization

A structure containing the result of the regularize method. Use Regularization with shrink to
lower resubstitution error and shrink the ensemble.

ResponseName

A character vector with the name of the response variable Y.

ResponseTransform

Function handle for transforming scores, or character vector representing a built-in transformation
function. 'none' means no transformation; equivalently, 'none' means @(x)x.

Add or change a ResponseTransform function using dot notation:

ens.ResponseTransform = @function

Trained

The trained learners, a cell array of compact regression models.

TrainedWeights

A numeric vector of weights the ensemble assigns to its learners. The ensemble computes predicted
response by aggregating weighted predictions from its learners.

W

The scaled weights, a vector with length n, the number of rows in X. The sum of the elements of W is
1.

X

The matrix or table of predictor values that trained the ensemble. Each column of X represents one
variable, and each row represents one observation.
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Y

The numeric column vector with the same number of rows as X that trained the ensemble. Each entry
in Y is the response to the data in the corresponding row of X.

Object Functions
compact Create compact regression ensemble
crossval Cross validate ensemble
cvshrink Cross-validate shrinking (pruning) ensemble
gather Gather properties of Statistics and Machine Learning Toolbox object from

GPU
lime Local interpretable model-agnostic explanations (LIME)
loss Regression error
partialDependence Compute partial dependence
plotPartialDependence Create partial dependence plot (PDP) and individual conditional expectation

(ICE) plots
predict Predict responses using ensemble of regression models
predictorImportance Estimates of predictor importance for regression ensemble
regularize Find weights to minimize resubstitution error plus penalty term
removeLearners Remove members of compact regression ensemble
resubLoss Regression error by resubstitution
resubPredict Predict response of ensemble by resubstitution
resume Resume training ensemble
shapley Shapley values
shrink Prune ensemble

Copy Semantics
Value. To learn how value classes affect copy operations, see Copying Objects.

Examples

Train Boosted Regression Ensemble

Load the carsmall data set. Consider a model that explains a car's fuel economy (MPG) using its
weight (Weight) and number of cylinders (Cylinders).

load carsmall
X = [Weight Cylinders];
Y = MPG;

Train a boosted ensemble of 100 regression trees using the LSBoost method. Specify that
Cylinders is a categorical variable.

Mdl = fitrensemble(X,Y,'Method','LSBoost',...
    'PredictorNames',{'W','C'},'CategoricalPredictors',2)

Mdl = 
  RegressionEnsemble
           PredictorNames: {'W'  'C'}
             ResponseName: 'Y'
    CategoricalPredictors: 2
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        ResponseTransform: 'none'
          NumObservations: 94
               NumTrained: 100
                   Method: 'LSBoost'
             LearnerNames: {'Tree'}
     ReasonForTermination: 'Terminated normally after completing the requested number of training cycles.'
                  FitInfo: [100x1 double]
       FitInfoDescription: {2x1 cell}
           Regularization: []

  Properties, Methods

Mdl is a RegressionEnsemble model object that contains the training data, among other things.

Mdl.Trained is the property that stores a 100-by-1 cell vector of the trained regression trees
(CompactRegressionTree model objects) that compose the ensemble.

Plot a graph of the first trained regression tree.

view(Mdl.Trained{1},'Mode','graph')

 RegressionEnsemble

35-6291



By default, fitrensemble grows shallow trees for boosted ensembles of trees.

Predict the fuel economy of 4,000 pound cars with 4, 6, and 8 cylinders.

XNew = [4000*ones(3,1) [4; 6; 8]];
mpgNew = predict(Mdl,XNew)

mpgNew = 3×1

   19.5926
   18.6388
   15.4810

Tip
For an ensemble of regression trees, the Trained property contains a cell vector of
ens.NumTrained CompactRegressionTree model objects. For a textual or graphical display of
tree t in the cell vector, enter

35 Functions

35-6292



view(ens.Trained{t})

Version History
Introduced in R2011a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• The predict function supports code generation.
• To integrate the prediction of an ensemble into Simulink, you can use the RegressionEnsemble

Predict block in the Statistics and Machine Learning Toolbox library or a MATLAB Function block
with the predict function.

• When you train an ensemble by using fitrensemble, code generation limitations for regression
trees also apply to ensembles of regression trees. For more details, see “Code Generation” on
page 35-985 of the CompactRegressionTree class.

For more information, see “Introduction to Code Generation” on page 34-2.

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

Usage notes and limitations:

• The following object functions fully support GPU arrays:

• compact
• crossval
• cvshrink
• gather
• predictorImportance
• regularize
• removeLearners
• resume
• shrink

• The following object functions offer limited support for GPU arrays:

• loss
• partialDependence
• plotPartialDependence
• predict
• resubLoss
• resubPredict
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• The object functions execute on a GPU if any of the following apply:

• The model was fitted with GPU arrays.
• The predictor data that you pass to the object function is a GPU array.
• The response data that you pass to the object function is a GPU array.

For more information, see “Run MATLAB Functions on a GPU” (Parallel Computing Toolbox).

See Also
ClassificationEnsemble | fitrensemble | CompactRegressionEnsemble | templateTree |
view
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RegressionEnsemble Predict
Predict responses using ensemble of decision trees for regression
Library: Statistics and Machine Learning Toolbox / Regression

Description
The RegressionEnsemble Predict block predicts responses using an ensemble of decision trees
(RegressionEnsemble, RegressionBaggedEnsemble, or CompactRegressionEnsemble).

Import a trained regression object into the block by specifying the name of a workspace variable that
contains the object. The input port x receives an observation (predictor data), and the output port yfit
returns a predicted response for the observation.

Ports
Input

x — Predictor data
row vector | column vector

Predictor data, specified as a row or column vector of one observation.

Dependencies

The variables in x must have the same order as the predictor variables that trained the model
specified by Select trained machine learning model.
Data Types: single | double | half | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 |
uint64 | Boolean | fixed point

Output

yfit — Predicted response
scalar

Predicted response, returned as a scalar.
Data Types: single | double | half | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 |
uint64 | Boolean | fixed point

Parameters
Main

Select trained machine learning model — Regression ensemble model
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ensMdl (default) | RegressionEnsemble object | RegressionBaggedEnsemble object |
CompactRegressionEnsemble object

Specify the name of a workspace variable that contains a RegressionEnsemble object,
RegressionBaggedEnsemble object, or CompactRegressionEnsemble object.

When you train the model by using fitrensemble, the following restrictions apply:

• The predictor data cannot include categorical predictors (logical, categorical, char,
string, or cell). If you supply training data in a table, the predictors must be numeric (double
or single). Also, you cannot use the CategoricalPredictors name-value argument. To
include categorical predictors in a model, preprocess the categorical predictors by using
dummyvar before fitting the model.

• The value of the 'ResponseTransform' name-value argument must be 'none' (default).
• You cannot use surrogate splits for tree weak learners, that is, the value of the 'Surrogate'

name-value argument must be 'off' (default) when you define tree weak learners by using the
templateTree function.

Programmatic Use
Block Parameter: TrainedLearner
Type: workspace variable
Values: RegressionEnsemble object | RegressionBaggedEnsemble object |
CompactRegressionEnsemble object
Default: 'ensMdl'

Data Types

Fixed-Point Operational Parameters

Integer rounding mode — Rounding mode for fixed-point operations

Floor (default) | Ceiling | Convergent | Nearest | Round | Simplest | Zero

Specify the rounding mode for fixed-point operations. For more information, see “Rounding” (Fixed-
Point Designer).

Block parameters always round to the nearest representable value. To control the rounding of a block
parameter, enter an expression into the mask field using a MATLAB rounding function.

Programmatic Use
Block Parameter: RndMeth
Type: character vector
Values: 'Ceiling' | 'Convergent' | 'Floor' | 'Nearest' | 'Round' | 'Simplest' |
'Zero'
Default: 'Floor'

Saturate on integer overflow — Method of overflow action

off (default) | on

Specify whether overflows saturate or wrap.
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Action Rationale Impact on Overflows Example
Select this check
box (on).

Your model has possible
overflow, and you want
explicit saturation protection
in the generated code.

Overflows saturate to either
the minimum or maximum
value that the data type can
represent.

The maximum value that the
int8 (signed 8-bit integer)
data type can represent is
127. Any block operation
result greater than this
maximum value causes
overflow of the 8-bit integer.
With the check box selected,
the block output saturates at
127. Similarly, the block
output saturates at a
minimum output value of –
128.

Clear this check
box (off).

You want to optimize
efficiency of your generated
code.

You want to avoid
overspecifying how a block
handles out-of-range signals.
For more information, see
“Troubleshoot Signal Range
Errors” (Simulink).

Overflows wrap to the
appropriate value that the
data type can represent.

The maximum value that the
int8 (signed 8-bit integer)
data type can represent is
127. Any block operation
result greater than this
maximum value causes
overflow of the 8-bit integer.
With the check box cleared,
the software interprets the
value causing the overflow as
int8, which can produce an
unintended result. For
example, a block result of 130
(binary 1000 0010) expressed
as int8 is –126.

Programmatic Use
Block Parameter: SaturateOnIntegerOverflow
Type: character vector
Values: 'off' | 'on'
Default: 'off'

Lock output data type setting against changes by the fixed-point tools —
Prevention of fixed-point tools from overriding data type

off (default) | on

Select this parameter to prevent the fixed-point tools from overriding the data type you specify for
the block. For more information, see “Use Lock Output Data Type Setting” (Fixed-Point Designer).

Programmatic Use
Block Parameter: LockScale
Type: character vector
Values: 'off' | 'on'
Default: 'off'
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Data Type

Output data type — Data type of yfit output

Inherit: auto (default) | double | single | half | int8 | uint8 | int16 | uint16 | int32 |
uint32 | int64 | uint64 | boolean | fixdt(1,16) | fixdt(1,16,0) | fixdt(1,16,2^0,0) |
<data type expression>

Specify the data type of the yfit output. The type can be inherited, specified directly, or expressed as
a data type object such as Simulink.NumericType.

When you select Inherit: auto, the block uses a rule that inherits a data type.

For more information about data types, see “Control Data Types of Signals” (Simulink).

Click the Show data type assistant button  to display the Data Type Assistant, which helps
you set the data type attributes. For more information, see “Specify Data Types Using Data Type
Assistant” (Simulink).

Programmatic Use
Block Parameter: OutDataTypeStr
Type: character vector
Values: 'Inherit: auto' | 'double' | 'single' | 'half' | 'int8' | 'uint8' | 'int16' |
'uint16' | 'int32' | 'uint32' | 'int64' | 'uint64' | 'boolean' | 'fixdt(1,16)' |
'fixdt(1,16,0)' | 'fixdt(1,16,2^0,0)' | '<data type expression>'
Default: 'Inherit: auto'

Output minimum — Minimum value of yfit output for range checking
[] (default) | scalar

Specify the lower value of the yfit output range that Simulink checks.

Simulink uses the minimum value to perform:

• Parameter range checking for some blocks (see “Specify Minimum and Maximum Values for Block
Parameters” (Simulink)).

• Simulation range checking (see “Specify Signal Ranges” (Simulink) and “Enable Simulation Range
Checking” (Simulink)).

• Automatic scaling of fixed-point data types.
• Optimization of the code that you generate from the model. This optimization can remove

algorithmic code and affect the results of some simulation modes, such as SIL or external mode.
For more information, see Optimize using the specified minimum and maximum values (Embedded
Coder).

Note The Output minimum parameter does not saturate or clip the actual yfit signal. Use the
Saturation block instead.

Programmatic Use
Block Parameter: OutMin
Type: character vector
Values: '[]' | scalar
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Default: '[]'

Output maximum — Maximum value of yfit output for range checking
[] (default) | scalar

Specify the upper value of the yfit output range that Simulink checks.

Simulink uses the maximum value to perform:

• Parameter range checking for some blocks (see “Specify Minimum and Maximum Values for Block
Parameters” (Simulink)).

• Simulation range checking (see “Specify Signal Ranges” (Simulink) and “Enable Simulation Range
Checking” (Simulink)).

• Automatic scaling of fixed-point data types.
• Optimization of the code that you generate from the model. This optimization can remove

algorithmic code and affect the results of some simulation modes, such as SIL or external mode.
For more information, see Optimize using the specified minimum and maximum values (Embedded
Coder).

Note The Output maximum parameter does not saturate or clip the actual yfit signal. Use the
Saturation block instead.

Programmatic Use
Block Parameter: OutMax
Type: character vector
Values: '[]' | scalar
Default: '[]'

Weak learner data type — Data type of weak learner outputs

Inherit: auto (default) | double | single | half | int8 | uint8 | int16 | uint16 | int32 |
uint32 | int64 | uint64 | boolean | fixdt(1,16) | fixdt(1,16,0) | fixdt(1,16,2^0,0) |
<data type expression>

Specify the data type for the outputs from weak learners. The type can be inherited, specified
directly, or expressed as a data type object such as Simulink.NumericType.

When you select Inherit: auto, the block uses a rule that inherits a data type.

For more information about data types, see “Control Data Types of Signals” (Simulink).

Click the Show data type assistant button  to display the Data Type Assistant, which helps
you set the data type attributes. For more information, see “Specify Data Types Using Data Type
Assistant” (Simulink).

Programmatic Use
Block Parameter: WeakLearnerDataTypeStr
Type: character vector
Values: 'Inherit: auto' | 'double' | 'single' | 'half' | 'int8' | 'uint8' | 'int16' |
'uint16' | 'int32' | 'uint32' | 'int64' | 'uint64' | 'boolean' | 'fixdt(1,16)' |
'fixdt(1,16,0)' | 'fixdt(1,16,2^0,0)' | '<data type expression>'
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Default: 'Inherit: auto'

Weak learner minimum — Minimum value of weak learner outputs for range checking
[] (default) | scalar

Lower value of the weak learner output range that Simulink checks.

Simulink uses the minimum value to perform:

• Parameter range checking for some blocks (see “Specify Minimum and Maximum Values for Block
Parameters” (Simulink)).

• Simulation range checking (see “Specify Signal Ranges” (Simulink) and “Enable Simulation Range
Checking” (Simulink)).

• Automatic scaling of fixed-point data types.
• Optimization of the code that you generate from the model. This optimization can remove

algorithmic code and affect the results of some simulation modes, such as SIL or external mode.
For more information, see Optimize using the specified minimum and maximum values (Embedded
Coder).

Note The Weak learner minimum parameter does not saturate or clip the actual weak learner
output signals.

Programmatic Use
Block Parameter: WeakLearnerOutMin
Type: character vector
Values: '[]' | scalar
Default: '[]'

Weak learner maximum — Maximum value of weak learner outputs for range checking
[] (default) | scalar

Upper value of the weak learner output range that Simulink checks.

Simulink uses the maximum value to perform:

• Parameter range checking for some blocks (see “Specify Minimum and Maximum Values for Block
Parameters” (Simulink)).

• Simulation range checking (see “Specify Signal Ranges” (Simulink) and “Enable Simulation Range
Checking” (Simulink)).

• Automatic scaling of fixed-point data types.
• Optimization of the code that you generate from the model. This optimization can remove

algorithmic code and affect the results of some simulation modes, such as SIL or external mode.
For more information, see Optimize using the specified minimum and maximum values (Embedded
Coder).

Note The Weak learner maximum parameter does not saturate or clip the actual weak learner
output signals.
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Programmatic Use
Block Parameter: WeakLearnerOutMax
Type: character vector
Values: '[]' | scalar
Default: '[]'

Block Characteristics
Data Types Boolean | double | fixed point | half | integer | single
Direct Feedthrough yes
Multidimensional
Signals

no

Variable-Size Signals no
Zero-Crossing
Detection

no

Alternative Functionality
You can use a MATLAB Function block with the predict object function of an ensemble of decision
trees (RegressionEnsemble, RegressionBaggedEnsemble, or CompactRegressionEnsemble).
For an example, see “Predict Class Labels Using MATLAB Function Block” on page 34-51.

When deciding whether to use the RegressionEnsemble Predict block in the Statistics and Machine
Learning Toolbox library or a MATLAB Function block with the predict function, consider the
following:

• If you use the Statistics and Machine Learning Toolbox library block, you can use the Fixed-Point
Tool to convert a floating-point model to fixed point.

• Support for variable-size arrays must be enabled for a MATLAB Function block with the predict
function.

• If you use a MATLAB Function block, you can use MATLAB functions for preprocessing or post-
processing before or after predictions in the same MATLAB Function block.

Version History
Introduced in R2021a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

Fixed-Point Conversion
Design and simulate fixed-point systems using Fixed-Point Designer™.
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See Also
Blocks
RegressionSVM Predict | RegressionTree Predict | RegressionNeuralNetwork Predict | RegressionGP
Predict | ClassificationEnsemble Predict

Objects
RegressionEnsemble | RegressionBaggedEnsemble | CompactRegressionEnsemble

Functions
fitrensemble | predict

Topics
“Predict Responses Using RegressionSVM Predict Block” on page 34-127
“Predict Responses Using RegressionTree Predict Block” on page 34-139
“Predict Responses Using RegressionNeuralNetwork Predict Block” on page 34-160
“Predict Responses Using RegressionGP Predict Block” on page 34-164
“Predict Class Labels Using MATLAB Function Block” on page 34-51
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RegressionGAM
Generalized additive model (GAM) for regression

Description
A RegressionGAM object is a generalized additive model on page 35-6314 (GAM) object for
regression. It is an interpretable model that explains a response variable using a sum of univariate
and bivariate shape functions.

You can predict responses for new observations by using the predict function, and plot the effect of
each shape function on the prediction (response value) for an observation by using the
plotLocalEffects function. For the full list of object functions for RegressionGAM, see “Object
Functions” on page 35-6308.

Creation
Create a RegressionGAM object by using fitrgam. You can specify both linear terms and interaction
terms for predictors to include univariate shape functions (predictor trees) and bivariate shape
functions (interaction trees) in a trained model, respectively.

You can update a trained model by using resume or addInteractions.

• The resume function resumes training for the existing terms in a model.
• The addInteractions function adds interaction terms to a model that contains only linear

terms.

Properties
GAM Properties

BinEdges — Bin edges for numeric predictors
cell array of numeric vectors | []

This property is read-only.

Bin edges for numeric predictors, specified as a cell array of p numeric vectors, where p is the
number of predictors. Each vector includes the bin edges for a numeric predictor. The element in the
cell array for a categorical predictor is empty because the software does not bin categorical
predictors.

The software bins numeric predictors only if you specify the 'NumBins' name-value argument as a
positive integer scalar when training a model with tree learners. The BinEdges property is empty if
the 'NumBins' value is empty (default).

You can reproduce the binned predictor data Xbinned by using the BinEdges property of the trained
model mdl.

X = mdl.X; % Predictor data
Xbinned = zeros(size(X));
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edges = mdl.BinEdges;
% Find indices of binned predictors.
idxNumeric = find(~cellfun(@isempty,edges));
if iscolumn(idxNumeric)
    idxNumeric = idxNumeric';
end
for j = idxNumeric 
    x = X(:,j);
    % Convert x to array if x is a table.
    if istable(x) 
        x = table2array(x);
    end
    % Group x into bins by using the discretize function.
    xbinned = discretize(x,[-inf; edges{j}; inf]); 
    Xbinned(:,j) = xbinned;
end

Xbinned contains the bin indices, ranging from 1 to the number of bins, for numeric predictors.
Xbinned values are 0 for categorical predictors. If X contains NaNs, then the corresponding Xbinned
values are NaNs.
Data Types: cell

Interactions — Interaction term indices
two-column matrix of positive integers | []

This property is read-only.

Interaction term indices, specified as a t-by-2 matrix of positive integers, where t is the number of
interaction terms in the model. Each row of the matrix represents one interaction term and contains
the column indexes of the predictor data X for the interaction term. If the model does not include an
interaction term, then this property is empty ([]).

The software adds interaction terms to the model in the order of importance based on the p-values.
Use this property to check the order of the interaction terms added to the model.
Data Types: double

Intercept — Intercept term of model
numeric scalar

This property is read-only.

Intercept (constant) term of the model, which is the sum of the intercept terms in the predictor trees
and interaction trees, specified as a numeric scalar.
Data Types: single | double

IsStandardDeviationFit — Flag indicating whether standard deviation model is fit
false | true

Flag indicating whether a model for the standard deviation of the response variable is fit, specified as
false or true. Specify the 'FitStandardDeviation' name-value argument of fitrgam as true
to fit the model for the standard deviation.

If IsStandardDeviationFit is true, then you can evaluate the standard deviation at a new
observation or at a training observation of predictor values by using predict or resubPredict,
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respectively. These functions also return the prediction intervals of the response variable, evaluated
at given observations.
Data Types: logical

ModelParameters — Parameters used to train model
model parameter object

This property is read-only.

Parameters used to train the model, specified as a model parameter object. ModelParameters
contains parameter values such as those for the name-value arguments used to train the model.
ModelParameters does not contain estimated parameters.

Access the fields of ModelParameters by using dot notation. For example, access the maximum
number of decision splits per interaction tree by using
Mdl.ModelParameters.MaxNumSplitsPerInteraction.

PairDetectionBinEdges — Bin edges for interaction term detection
cell array of numeric vectors

This property is read-only.

Bin edges for interaction term detection for numeric predictors, specified as a cell array of p numeric
vectors, where p is the number of predictors. Each vector includes the bin edges for a numeric
predictor. The element in the cell array for a categorical predictor is empty because the software does
not bin categorical predictors.

To speed up the interaction term detection process, the software bins numeric predictors into at most
8 equiprobable bins. The number of bins can be less than 8 if a predictor has fewer than 8 unique
values.
Data Types: cell

ReasonForTermination — Reason training stops
structure

This property is read-only.

Reason training the model stops, specified as a structure with two fields, PredictorTrees and
InteractionTrees.

Use this property to check if the model contains the specified number of trees for each linear term
('NumTreesPerPredictor') and for each interaction term ('NumTreesPerInteraction'). If the
fitrgam function terminates training before adding the specified number of trees, this property
contains the reason for the termination.
Data Types: struct

Other Regression Properties

CategoricalPredictors — Categorical predictor indices
vector of positive integers | []

This property is read-only.

 RegressionGAM

35-6305



Categorical predictor indices, specified as a vector of positive integers. CategoricalPredictors
contains index values indicating that the corresponding predictors are categorical. The index values
are between 1 and p, where p is the number of predictors used to train the model. If none of the
predictors are categorical, then this property is empty ([]).
Data Types: double

ExpandedPredictorNames — Expanded predictor names
cell array of character vectors

This property is read-only.

Expanded predictor names, specified as a cell array of character vectors.

ExpandedPredictorNames is the same as PredictorNames for a generalized additive model.
Data Types: cell

NumObservations — Number of observations
numeric scalar

This property is read-only.

Number of observations in the training data stored in X and Y, specified as a numeric scalar.
Data Types: double

PredictorNames — Predictor variable names
cell array of character vectors

This property is read-only.

Predictor variable names, specified as a cell array of character vectors. The order of the elements of
PredictorNames corresponds to the order in which the predictor names appear in the training data.
Data Types: cell

ResponseName — Response variable name
character vector

This property is read-only.

Response variable name, specified as a character vector.
Data Types: char

ResponseTransform — Response transformation function
'none' | function handle

Response transformation function, specified as 'none' or a function handle. ResponseTransform
describes how the software transforms raw response values.

For a MATLAB function or a function that you define, enter its function handle. For example, you can
enter Mdl.ResponseTransform = @function, where function accepts a numeric vector of the
original responses and returns a numeric vector of the same size containing the transformed
responses.
Data Types: char | function_handle
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RowsUsed — Rows used in fitting
[] | logical vector

This property is read-only.

Rows of the original training data used in fitting the RegressionGAM model, specified as a logical
vector. This property is empty if all rows are used.
Data Types: logical

W — Observation weights
numeric vector

This property is read-only.

Observation weights used to train the model, specified as an n-by-1 numeric vector. n is the number
of observations (NumObservations).

The software normalizes the observation weights specified in the 'Weights' name-value argument
so that the elements of W sum up to 1.
Data Types: double

X — Predictors
numeric matrix | table

This property is read-only.

Predictors used to train the model, specified as a numeric matrix or table.

Each row of X corresponds to one observation, and each column corresponds to one variable.
Data Types: single | double | table

Y — Response
numeric vector

This property is read-only.

Response, specified as a numeric vector.

Each row of Y represents the observed response of the corresponding row of X.
Data Types: single | double

Hyperparameter Optimization Properties

HyperparameterOptimizationResults — Description of cross-validation optimization of
hyperparameters
BayesianOptimization object | table

This property is read-only.

Description of the cross-validation optimization of hyperparameters, specified as a
BayesianOptimization object or a table of hyperparameters and associated values. This property
is nonempty when the 'OptimizeHyperparameters' name-value argument of fitrgam is not
'none' (default) when the object is created. The value of HyperparameterOptimizationResults
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depends on the setting of the Optimizer field in the HyperparameterOptimizationOptions
structure of fitrgam when the object is created.

Value of Optimizer Field Value of
HyperparameterOptimizationResults

'bayesopt' (default) Object of class BayesianOptimization
'gridsearch' or 'randomsearch' Table of hyperparameters used, observed

objective function values (cross-validation loss),
and rank of observations from lowest (best) to
highest (worst)

Object Functions

Create CompactRegressionGAM
compact Reduce size of machine learning model

Create RegressionPartitionedGAM
crossval Cross-validate machine learning model

Update GAM
addInteractions Add interaction terms to univariate generalized additive model (GAM)
resume Resume training of generalized additive model (GAM)

Interpret Prediction
lime Local interpretable model-agnostic explanations (LIME)
partialDependence Compute partial dependence
plotLocalEffects Plot local effects of terms in generalized additive model (GAM)
plotPartialDependence Create partial dependence plot (PDP) and individual conditional expectation

(ICE) plots
shapley Shapley values

Assess Predictive Performance on New Observations
predict Predict responses using generalized additive model (GAM)
loss Regression loss for generalized additive model (GAM)

Assess Predictive Performance on Training Data
resubPredict Predict responses for training data using trained regression model
resubLoss Resubstitution regression loss

Examples

Train Generalized Additive Model

Train a univariate GAM, which contains linear terms for predictors. Then, interpret the prediction for
a specified data instance by using the plotLocalEffects function.
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Load the data set NYCHousing2015.

load NYCHousing2015

The data set includes 10 variables with information on the sales of properties in New York City in
2015. This example uses these variables to analyze the sale prices (SALEPRICE).

Preprocess the data set. Remove outliers, convert the datetime array (SALEDATE) to the month
numbers, and move the response variable (SALEPRICE) to the last column.

idx = isoutlier(NYCHousing2015.SALEPRICE);
NYCHousing2015(idx,:) = [];
NYCHousing2015.SALEDATE = month(NYCHousing2015.SALEDATE);
NYCHousing2015 = movevars(NYCHousing2015,'SALEPRICE','After','SALEDATE');

Display the first three rows of the table.

head(NYCHousing2015,3)

    BOROUGH    NEIGHBORHOOD       BUILDINGCLASSCATEGORY        RESIDENTIALUNITS    COMMERCIALUNITS    LANDSQUAREFEET    GROSSSQUAREFEET    YEARBUILT    SALEDATE    SALEPRICE
    _______    ____________    ____________________________    ________________    _______________    ______________    _______________    _________    ________    _________

       2       {'BATHGATE'}    {'01  ONE FAMILY DWELLINGS'}           1                   0                4750              2619            1899           8           0    
       2       {'BATHGATE'}    {'01  ONE FAMILY DWELLINGS'}           1                   0                4750              2619            1899           8           0    
       2       {'BATHGATE'}    {'01  ONE FAMILY DWELLINGS'}           1                   1                1287              2528            1899          12           0    

Train a univariate GAM for the sale prices. Specify the variables for BOROUGH, NEIGHBORHOOD,
BUILDINGCLASSCATEGORY, and SALEDATE as categorical predictors.

Mdl = fitrgam(NYCHousing2015,'SALEPRICE','CategoricalPredictors',[1 2 3 9])

Mdl = 
  RegressionGAM
            PredictorNames: {1x9 cell}
              ResponseName: 'SALEPRICE'
     CategoricalPredictors: [1 2 3 9]
         ResponseTransform: 'none'
                 Intercept: 3.7518e+05
    IsStandardDeviationFit: 0
           NumObservations: 83517

  Properties, Methods

Mdl is a RegressionGAM model object. The model display shows a partial list of the model
properties. To view the full list of properties, double-click the variable name Mdl in the Workspace.
The Variables editor opens for Mdl. Alternatively, you can display the properties in the Command
Window by using dot notation. For example, display the estimated intercept (constant) term of Mdl.

Mdl.Intercept

ans = 3.7518e+05

Predict the sale price for the first observation of the training data, and plot the local effects of the
terms in Mdl on the prediction.

yFit = predict(Mdl,NYCHousing2015(1,:))
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yFit = 4.4421e+05

plotLocalEffects(Mdl,NYCHousing2015(1,:))

The predict function predicts the sale price for the first observation as 4.4421e5. The
plotLocalEffects function creates a horizontal bar graph that shows the local effects of the terms
in Mdl on the prediction. Each local effect value shows the contribution of each term to the predicted
sale price.

Train GAM with Interaction Terms

Train a generalized additive model that contains linear and interaction terms for predictors in three
different ways:

• Specify the interaction terms using the formula input argument.
• Specify the 'Interactions' name-value argument.
• Build a model with linear terms first and add interaction terms to the model by using the

addInteractions function.

Load the carbig data set, which contains measurements of cars made in the 1970s and early 1980s.

load carbig
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Create a table that contains the predictor variables (Acceleration, Displacement, Horsepower,
and Weight) and the response variable (MPG).

tbl = table(Acceleration,Displacement,Horsepower,Weight,MPG);

Specify formula

Train a GAM that contains the four linear terms (Acceleration, Displacement, Horsepower, and
Weight) and two interaction terms (Acceleration*Displacement and
Displacement*Horsepower). Specify the terms using a formula in the form 'Y ~ terms'.

Mdl1 = fitrgam(tbl,'MPG ~ Acceleration + Displacement + Horsepower + Weight + Acceleration:Displacement + Displacement:Horsepower');

The function adds interaction terms to the model in the order of importance. You can use the
Interactions property to check the interaction terms in the model and the order in which fitrgam
adds them to the model. Display the Interactions property.

Mdl1.Interactions

ans = 2×2

     2     3
     1     2

Each row of Interactions represents one interaction term and contains the column indexes of the
predictor variables for the interaction term.

Specify 'Interactions'

Pass the training data (tbl) and the name of the response variable in tbl to fitrgam, so that the
function includes the linear terms for all the other variables as predictors. Specify the
'Interactions' name-value argument using a logical matrix to include the two interaction terms,
x1*x2 and x2*x3.

Mdl2 = fitrgam(tbl,'MPG','Interactions',logical([1 1 0 0; 0 1 1 0]));
Mdl2.Interactions

ans = 2×2

     2     3
     1     2

You can also specify 'Interactions' as the number of interaction terms or as 'all' to include all
available interaction terms. Among the specified interaction terms, fitrgam identifies those whose p-
values are not greater than the 'MaxPValue' value and adds them to the model. The default
'MaxPValue' is 1 so that the function adds all specified interaction terms to the model.

Specify 'Interactions','all' and set the 'MaxPValue' name-value argument to 0.05.

Mdl3 = fitrgam(tbl,'MPG','Interactions','all','MaxPValue',0.05);

Warning: Model does not include interaction terms because all interaction terms have p-values greater than the 'MaxPValue' value, or the software was unable to improve the model fit.

Mdl3.Interactions
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ans =

  0x2 empty double matrix

Mdl3 includes no interaction terms, which implies one of the following: all interaction terms have p-
values greater than 0.05, or adding the interaction terms does not improve the model fit.

Use addInteractions Function

Train a univariate GAM that contains linear terms for predictors, and then add interaction terms to
the trained model by using the addInteractions function. Specify the second input argument of
addInteractions in the same way you specify the 'Interactions' name-value argument of
fitrgam. You can specify the list of interaction terms using a logical matrix, the number of
interaction terms, or 'all'.

Specify the number of interaction terms as 3 to add the three most important interaction terms to the
trained model.

Mdl4 = fitrgam(tbl,'MPG');
UpdatedMdl4 = addInteractions(Mdl4,3);
UpdatedMdl4.Interactions

ans = 3×2

     2     3
     1     2
     3     4

Mdl4 is a univariate GAM, and UpdatedMdl4 is an updated GAM that contains all the terms in Mdl4
and three additional interaction terms.

Resume Training Interaction Trees in GAM

Train a regression GAM that contains both linear and interaction terms. Specify to train the
interaction terms for a small number of iterations. After training the interaction terms for more
iterations, compare the resubstitution loss.

Load the carbig data set, which contains measurements of cars made in the 1970s and early 1980s.

load carbig

Specify Acceleration, Displacement, Horsepower, and Weight as the predictor variables (X)
and MPG as the response variable (Y).

X = [Acceleration,Displacement,Horsepower,Weight];
Y = MPG;

Train a GAM that includes all available linear and interaction terms in X. Specify the number of trees
per interaction term as 2. fitrgam iterates the boosting algorithm 300 times (default) for linear
terms, and iterates the algorithm the specified number of iterations for interaction terms. For each
boosting iteration, the function adds one tree per linear term or one tree per interaction term.
Specify 'Verbose' as 1 to display diagnostic messages at every 10 iterations.

Mdl = fitrgam(X,Y,'Interactions','all','NumTreesPerInteraction',2,'Verbose',1);

35 Functions

35-6312



|========================================================|
| Type | NumTrees |  Deviance  |   RelTol   | LearnRate  |
|========================================================|
|    1D|         0|  2.4432e+05|      -     |      -     |
|    1D|         1|      9507.4|         Inf|           1|
|    1D|        10|      4470.6|  0.00025206|           1|
|    1D|        20|      3895.3|  0.00011448|           1|
|    1D|        30|      3617.7|  3.5365e-05|           1|
|    1D|        40|      3402.5|  3.7992e-05|           1|
|    1D|        50|      3257.1|  2.4983e-05|           1|
|    1D|        60|      3131.8|  2.3873e-05|           1|
|    1D|        70|      3019.8|  2.2967e-05|           1|
|    1D|        80|      2925.9|  2.8071e-05|           1|
|    1D|        90|      2845.3|  1.6811e-05|           1|
|    1D|       100|      2772.7|   1.852e-05|           1|
|    1D|       110|      2707.8|  1.6754e-05|           1|
|    1D|       120|      2649.8|   1.651e-05|           1|
|    1D|       130|      2596.6|  1.1723e-05|           1|
|    1D|       140|      2547.4|   1.813e-05|           1|
|    1D|       150|      2501.1|  1.8659e-05|           1|
|    1D|       160|      2455.7|   1.386e-05|           1|
|    1D|       170|      2416.9|  1.0615e-05|           1|
|    1D|       180|      2377.2|   8.534e-06|           1|
|    1D|       190|        2339|  7.6771e-06|           1|
|    1D|       200|      2303.3|  9.5866e-06|           1|
|    1D|       210|      2270.7|  8.4276e-06|           1|
|    1D|       220|      2240.1|  8.5778e-06|           1|
|    1D|       230|      2209.2|  9.6761e-06|           1|
|    1D|       240|      2178.7|  7.0622e-06|           1|
|    1D|       250|      2150.3|  8.3082e-06|           1|
|    1D|       260|      2122.3|  7.9542e-06|           1|
|    1D|       270|      2097.7|  7.6328e-06|           1|
|    1D|       280|      2070.4|  9.4322e-06|           1|
|    1D|       290|      2044.3|  7.5722e-06|           1|
|    1D|       300|      2019.7|  6.6719e-06|           1|
|========================================================|
| Type | NumTrees |  Deviance  |   RelTol   | LearnRate  |
|========================================================|
|    2D|         0|      2019.7|      -     |      -     |
|    2D|         1|      1795.5|   0.0005975|           1|
|    2D|         2|      1523.4|   0.0010079|           1|

To check whether fitrgam trains the specified number of trees, display the
ReasonForTermination property of the trained model and view the displayed messages.

Mdl.ReasonForTermination

ans = struct with fields:
      PredictorTrees: 'Terminated after training the requested number of trees.'
    InteractionTrees: 'Terminated after training the requested number of trees.'

Compute the regression loss for the training data.

resubLoss(Mdl)

ans = 3.8277
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Resume training the model for another 100 iterations. Because Mdl contains both linear and
interaction terms, the resume function resumes training for the interaction terms and adds more
trees for them (interaction trees).

UpdatedMdl = resume(Mdl,100);

|========================================================|
| Type | NumTrees |  Deviance  |   RelTol   | LearnRate  |
|========================================================|
|    2D|         0|      1523.4|      -     |      -     |
|    2D|         1|      1363.9|  0.00039695|           1|
|    2D|        10|      594.04|  8.0295e-05|           1|
|    2D|        20|      359.44|  4.3201e-05|           1|
|    2D|        30|      238.51|  2.6869e-05|           1|
|    2D|        40|      153.98|  2.6271e-05|           1|
|    2D|        50|      91.464|  8.0936e-06|           1|
|    2D|        60|      61.882|  3.8528e-06|           1|
|    2D|        70|      43.206|  5.9888e-06|           1|

UpdatedMdl.ReasonForTermination

ans = struct with fields:
      PredictorTrees: 'Terminated after training the requested number of trees.'
    InteractionTrees: 'Unable to improve the model fit.'

resume terminates training when adding more trees does not improve the deviance of the model fit.

Compute the regression loss using the updated model.

resubLoss(UpdatedMdl)

ans = 0.0944

The regression loss decreases after resume updates the model with more iterations.

More About
Generalized Additive Model (GAM) for Regression

A generalized additive model (GAM) is an interpretable model that explains a response variable using
a sum of univariate and bivariate shape functions of predictors.

fitrgam uses a boosted tree as a shape function for each predictor and, optionally, each pair of
predictors; therefore, the function can capture a nonlinear relation between a predictor and the
response variable. Because contributions of individual shape functions to the prediction (response
value) are well separated, the model is easy to interpret.

The standard GAM uses a univariate shape function for each predictor.

y N μ, σ2

g(μ) = μ = c + f1(x1) + f2(x2) +⋯+ fp(xp),

where y is a response variable that follows the normal distribution with mean μ and standard
deviation σ. g(μ) is an identity link function, and c is an intercept (constant) term. fi(xi) is a univariate
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shape function for the ith predictor, which is a boosted tree for a linear term for the predictor
(predictor tree).

You can include interactions between predictors in a model by adding bivariate shape functions of
important interaction terms to the model.

μ = c + f1(x1) + f2(x2) +⋯+ fp(xp) + ∑
i, j ∈ 1, 2,⋯, p

f i j(xix j),

where fij(xixj) is a bivariate shape function for the ith and jth predictors, which is a boosted tree for an
interaction term for the predictors (interaction tree).

fitrgam finds important interaction terms based on the p-values of F-tests. For details, see
“Interaction Term Detection” on page 35-2493.

If you specify 'FitStandardDeviation' of fitrgam as false (default), then fitrgam trains a
model for the mean μ. If you specify 'FitStandardDeviation' as true, then fitrgam trains an
additional model for the standard deviation σ and sets the IsStandardDeviationFit property of
the GAM object to true.

Version History
Introduced in R2021a
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addInteractions

Topics
“Train Generalized Additive Model for Regression” on page 12-86
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RegressionGP class
Superclasses: CompactRegressionGP

Gaussian process regression model class

Description
RegressionGP is a Gaussian process regression (GPR) model. You can train a GPR model, using
fitrgp. Using the trained model, you can

• Predict responses for training data using resubPredict or new predictor data using predict.
You can also compute the prediction intervals.

• Compute the regression loss for training data using resubLoss or new data using loss.

Construction
Create a RegressionGP object by using fitrgp.

Properties
Fitting

FitMethod — Method used to estimate the parameters
'none' | 'exact' | 'sd' | 'sr' | 'fic'

Method used to estimate the basis function coefficients, β; noise standard deviation, σ; and kernel
parameters, θ, of the GPR model, stored as a character vector. It can be one of the following.

Fit Method Description
'none' No estimation. fitrgp uses the initial parameter

values as the parameter values.
'exact' Exact Gaussian process regression.
'sd' Subset of data points approximation.
'sr' Subset of regressors approximation.
'fic' Fully independent conditional approximation.

BasisFunction — Explicit basis function
'none' | 'constant' | 'linear' | 'pureQuadratic' | function handle

Explicit basis function used in the GPR model, stored as a character vector or a function handle. It
can be one of the following. If n is the number of observations, the basis function adds the term H*β
to the model, where H is the basis matrix and β is a p-by-1 vector of basis coefficients.

Explicit Basis Basis Matrix
'none' Empty matrix.
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Explicit Basis Basis Matrix
'constant' H = 1

(n-by-1 vector of 1s, where n is the number of
observations)

'linear' H = [1, X]
'pureQuadratic' H = 1, X, X2 ,

where

X2 =

x11
2 x12

2 ⋯ x1d
2

x21
2 x22

2 ⋯ x2d
2

⋮ ⋮ ⋮ ⋮
xn1

2 xn2
2 ⋯ xnd

2

.

Function handle Function handle, hfcn, that fitrgp calls as:

H = hfcn(X),

where X is an n-by-d matrix of predictors and H is
an n-by-p matrix of basis functions.

Data Types: char | function_handle

Beta — Estimated coefficients
vector

Estimated coefficients for the explicit basis functions, stored as a vector. You can define the explicit
basis function by using the BasisFunction name-value pair argument in fitrgp.
Data Types: double

Sigma — Estimated noise standard deviation
scalar value

Estimated noise standard deviation of the GPR model, stored as a scalar value.
Data Types: double

CategoricalPredictors — Indices of categorical predictors
vector of positive integers | []

Categorical predictor indices, specified as a vector of positive integers. CategoricalPredictors
contains index values indicating that the corresponding predictors are categorical. The index values
are between 1 and p, where p is the number of predictors used to train the model. If none of the
predictors are categorical, then this property is empty ([]).
Data Types: single | double

HyperparameterOptimizationResults — Cross-validation optimization of hyperparameters
BayesianOptimization object | table

This property is read-only.
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Cross-validation optimization of hyperparameters, specified as a BayesianOptimization object or
a table of hyperparameters and associated values. This property is nonempty if the
'OptimizeHyperparameters' name-value pair argument is nonempty when you create the model.
The value of HyperparameterOptimizationResults depends on the setting of the Optimizer
field in the HyperparameterOptimizationOptions structure when you create the model.

Value of Optimizer Field Value of
HyperparameterOptimizationResults

'bayesopt' (default) Object of class BayesianOptimization
'gridsearch' or 'randomsearch' Table of hyperparameters used, observed

objective function values (cross-validation loss),
and rank of observations from lowest (best) to
highest (worst)

LogLikelihood — Maximized marginal log likelihood
scalar value | []

Maximized marginal log likelihood of the GPR model, stored as a scalar value if the FitMethod is
different from 'none'. If FitMethod is 'none', then LogLikelihood is empty.

If FitMethod is 'sd', 'sr', or 'fic', then LogLikelihood is the maximized approximation of the
marginal log likelihood of the GPR model.
Data Types: double

ModelParameters — Parameters used for training
GPParams object

Parameters used for training the GPR model, stored as a GPParams object.

Kernel Function

KernelFunction — Form of the covariance function
'squaredExponential' | 'matern32' | 'matern52' | 'ardsquaredexponential' |
'ardmatern32' | 'ardmatern52' | function handle

Form of the covariance function used in the GPR model, stored as a character vector containing the
name of the built-in covariance function or a function handle. It can be one of the following.

Function Description
'squaredexponential' Squared exponential kernel.
'matern32' Matern kernel with parameter 3/2.
'matern52' Matern kernel with parameter 5/2.
'ardsquaredexponential' Squared exponential kernel with a separate

length scale per predictor.
'ardmatern32' Matern kernel with parameter 3/2 and a separate

length scale per predictor.
'ardmatern52' Matern kernel with parameter 5/2 and a separate

length scale per predictor.
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Function Description
Function handle A function handle that fitrgp can call like this:

Kmn = kfcn(Xm,Xn,theta)
where Xm is an m-by-d matrix, Xn is an n-by-d
matrix and Kmn is an m-by-n matrix of kernel
products such that Kmn(i,j) is the kernel product
between Xm(i,:) and Xn(j,:).
theta is the r-by-1 unconstrained parameter
vector for kfcn.

Data Types: char | function_handle

KernelInformation — Information about the parameters of the kernel function
structure

Information about the parameters of the kernel function used in the GPR model, stored as a structure
with the following fields.

Field Name Description
Name Name of the kernel function
KernelParameters Vector of the estimated kernel parameters
KernelParameterNames Names associated with the elements of

KernelParameters.

Data Types: struct

Prediction

PredictMethod — Method used to make predictions
'exact' | 'bcd' | 'sd' | 'sr' | 'fic'

Method that predict uses to make predictions from the GPR model, stored as a character vector. It
can be one of the following.

PredictMethod Description
'exact' Exact Gaussian process regression
'bcd' Block Coordinate Descent
'sd' Subset of Data points approximation
'sr' Subset of Regressors approximation
'fic' Fully Independent Conditional approximation

Alpha — Weights
numeric vector

Weights used to make predictions from the trained GPR model, stored as a numeric vector. predict
computes the predictions for a new predictor matrix Xnew by using the product

K Xnew, A * α .

K Xnew, A  is the matrix of kernel products between Xnew and active set vector A and α is a vector of
weights.
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Data Types: double

BCDInformation — Information on BCD-based computation of Alpha
structure | []

Information on block coordinate descent (BCD)-based computation of Alpha when PredictMethod
is 'bcd', stored as a structure containing the following fields.

Field Name Description
Gradient n-by-1 vector containing the gradient of the BCD

objective function at convergence.
Objective Scalar containing the BCD objective function at

convergence.
SelectionCounts n-by-1 integer vector indicating the number of

times each point was selected into a block during
BCD.

Alpha property contains the Alpha vector computed from BCD.

If PredictMethod is not 'bcd', then BCDInformation is empty.
Data Types: struct

ResponseTransform — Transformation applied to predicted response
'none' (default)

Transformation applied to the predicted response, stored as a character vector describing how the
response values predicted by the model are transformed. In RegressionGP, ResponseTransform is
'none' by default, and RegressionGP does not use ResponseTransform when making
predictions.

Active Set Selection

ActiveSetVectors — Subset of training data
matrix

Subset of training data used to make predictions from the GPR model, stored as a matrix.

predict computes the predictions for a new predictor matrix Xnew by using the product

K Xnew, A * α .

K Xnew, A  is the matrix of kernel products between Xnew and active set vector A and α is a vector of
weights.

ActiveSetVectors is equal to the training data X for exact GPR fitting and a subset of the training
data X for sparse GPR methods. When there are categorical predictors in the model,
ActiveSetVectors contains dummy variables for the corresponding predictors.
Data Types: double

ActiveSetHistory — History of active set selection and parameter estimation
structure
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History of interleaved active set selection and parameter estimation on page 35-6323 for FitMethod
equal to 'sd', 'sr', or 'fic', stored as a structure with the following fields.

Field Name Description
ParameterVector Cell array containing the parameter vectors:

basis function coefficients, β, kernel function
parameters θ, and noise standard deviation σ.

ActiveSetIndices Cell array containing the active set indices.
Loglikelihood Vector containing the maximized log likelihoods.
CriterionProfile Cell array containing the active set selection

criterion values as the active set grows from size
0 to its final size.

Data Types: struct

ActiveSetMethod — Method used to select the active set
'sgma' | 'entropy' | 'likelihood' | 'random'

Method used to select the active set for sparse methods ('sd','sr', or 'fic'), stored as a character
vector. It can be one of the following.

ActiveSetMethod Description
'sgma' Sparse greedy matrix approximation
'entropy' Differential entropy-based selection
'likelihood' Subset of regressors log likelihood-based

selection
'random' Random selection

The selected active set is used in parameter estimation or prediction, depending on the choice of
FitMethod and PredictMethod in fitrgp.

ActiveSetSize — Size of the active set
integer value

Size of the active set for sparse methods ('sd','sr', or 'fic'), stored as an integer value.
Data Types: double

IsActiveSetVector — Indicators for selected active set
logical vector

Indicators for selected active set for making predictions from the trained GPR model, stored as a
logical vector. These indicators mark the subset of training data that fitrgp selects as the active set.
For example, if X is the original training data, then ActiveSetVectors =
X(IsActiveSetVector,:).
Data Types: logical

Training Data

NumObservations — Number of observations in training data
scalar value
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Number of observations in training data, stored as a scalar value.
Data Types: double

X — Training data
n-by-d table | n-by-d matrix

Training data, stored as an n-by-d table or matrix, where n is the number of observations and d is the
number of predictor variables (columns) in the training data. If the GPR model is trained on a table,
then X is a table. Otherwise, X is a matrix.
Data Types: double | table

Y — Observed response values
n-by-1 vector

Observed response values used to train the GPR model, stored as an n-by-1 vector, where n is the
number of observations.
Data Types: double

PredictorNames — Names of predictors
cell array of character vectors

Names of predictors used in the GPR model, stored as a cell array of character vectors. Each name
(cell) corresponds to a column in X.
Data Types: cell

ExpandedPredictorNames — Names of expanded predictors
cell array of character vectors

Names of expanded predictors for the GPR model, stored as a cell array of character vectors. Each
name (cell) corresponds to a column in ActiveSetVectors.

If the model uses dummy variables for categorical variables, then ExpandedPredictorNames
includes the names that describe the expanded variables. Otherwise, ExpandedPredictorNames is
the same as PredictorNames.
Data Types: cell

ResponseName — Name of the response variable
character vector

Name of the response variable in the GPR model, stored as a character vector.
Data Types: char

PredictorLocation — Means of predictors
1-by-d vector | []

Means of predictors used for training the GPR model if the training data is standardized, stored as a
1-by-d vector. If the training data is not standardized, PredictorLocation is empty.

If PredictorLocation is not empty, then the predict method centers the predictor values by
subtracting the respective element of PredictorLocation from every column of X.
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If there are categorical predictors, then PredictorLocation includes a 0 for each dummy variable
corresponding to those predictors. The dummy variables are not centered or scaled.
Data Types: double

PredictorScale — Standard deviations of predictors
1-by-d vector | []

Standard deviations of predictors used for training the GPR model if the training data is standardized,
stored as a 1-by-d vector. If the training data is not standardized, PredictorScale is empty.

If PredictorScale is not empty, the predict method scales the predictors by dividing every
column of X by the respective element of PredictorScale (after centering using
PredictorLocation).

If there are categorical predictors, then PredictorLocation includes a 1 for each dummy variable
corresponding to those predictors. The dummy variables are not centered or scaled.
Data Types: double

RowsUsed — Indicators for rows used in training
logical vector | []

Indicators for rows used in training the GPR model, stored as a logical vector. If all rows are used in
training the model, then RowsUsed is empty.
Data Types: logical

Object Functions
compact Reduce size of machine learning model
crossval Cross-validate machine learning model
lime Local interpretable model-agnostic explanations (LIME)
loss Regression error for Gaussian process regression model
partialDependence Compute partial dependence
plotPartialDependence Create partial dependence plot (PDP) and individual conditional expectation

(ICE) plots
postFitStatistics Compute post-fit statistics for the exact Gaussian process regression model
predict Predict response of Gaussian process regression model
resubLoss Resubstitution regression loss
resubPredict Predict responses for training data using trained regression model
shapley Shapley values

More About
Active Set Selection and Parameter Estimation

For subset of data, subset of regressors, or fully independent conditional approximation fitting
methods (FitMethod equal to 'sd', 'sr', or 'fic'), if you do not provide the active set (or
inducing input set), fitrgp selects the active set and computes the parameter estimates in a series
of iterations.

In the first iteration, the software uses the initial parameter values in vector η0 = [β0,σ0,θ0] to select
an active set A1. It maximizes the GPR marginal log likelihood or its approximation using η0 as the
initial values and A1 to compute the new parameter estimates η1. Next, it computes the new log
likelihood L1 using η1 and A1.
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In the second iteration, the software selects the active set A2 using the parameter values in η1. Then,
using η1 as the initial values and A2, it maximizes the GPR marginal log likelihood or its
approximation and estimates the new parameter values η2. Then using η2 and A2, computes the new
log likelihood value L2.

The following table summarizes the iterations and what is computed at each iteration.

Iteration Number Active Set Parameter Vector Log Likelihood
1 A1 η1 L1

2 A2 η2 L2

3 A3 η3 L3

… … … …

The software iterates similarly for a specified number of repetitions. You can specify the number of
replications for active set selection using the NumActiveSetRepeats name-value pair argument.

Tips
• You can access the properties of this class using dot notation. For example, KernelInformation

is a structure holding the kernel parameters and their names. Hence, to access the kernel function
parameters of the trained model gprMdl, use
gprMdl.KernelInformation.KernelParameters.

Version History
Introduced in R2015b

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• The predict function supports code generation.

For more information, see “Introduction to Code Generation” on page 34-2.

See Also
fitrgp | CompactRegressionGP | compact

Topics
Class Attributes
Property Attributes
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RegressionGP Predict
Predict responses using Gaussian process (GP) regression model
Library: Statistics and Machine Learning Toolbox / Regression

Description
The RegressionGP Predict block predicts responses using a Gaussian process (GP) regression object
(RegressionGP or CompactRegressionGP).

Import a trained regression object into the block by specifying the name of a workspace variable that
contains the object. The input port x receives an observation (predictor data), and the output port yfit
returns a predicted response for the observation. The optional outputs ysd and yint return the
standard deviation and prediction intervals of the response, respectively.

Ports
Input

x — Predictor data
row vector | column vector

Predictor data, specified as a row or column vector of one observation.
Dependencies

The variables in x must have the same order as the predictor variables that trained the model
specified by Select trained machine learning model.
Data Types: single | double | half | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 |
uint64 | Boolean | fixed point

Output

yfit — Predicted response
scalar

Predicted response, returned as a scalar.
Data Types: single | double | half | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 |
uint64 | Boolean | fixed point

ysd — Standard deviation of response
scalar

Standard deviation of the predicted response from the predictor data, returned as a scalar.
Data Types: single | double | half | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 |
uint64 | Boolean | fixed point
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yint — Prediction intervals of response
1-by-2 vector

Prediction intervals of the predicted response, returned as a 1-by-2 vector. yint contains the 100(1 –
Alpha)% prediction interval of the predicted response yfit for the predictor data x. The Alpha value
is the probability that the prediction interval does not contain the true response value for x. The first
column of yint contains the lower limits of the prediction intervals, and the second column contains
the upper limits.
Data Types: single | double | half | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 |
uint64 | Boolean | fixed point

Parameters
Main

Select trained machine learning model — Gaussian process regression model

gpMdl (default) | RegressionGP | CompactRegressionGP

Specify the name of a workspace variable that contains a RegressionGP object or
CompactRegressionGP object.

When you train the model by using fitrgp, the following restriction applies:

• The predictor data cannot include categorical predictors (logical, categorical, char,
string, or cell). If you supply training data in a table, the predictors must be numeric (double
or single). Also, you cannot use the CategoricalPredictors name-value argument. To
include categorical predictors in a model, preprocess the categorical predictors by using
dummyvar before fitting the model.

Programmatic Use
Block Parameter: TrainedLearner
Type: workspace variable
Values: RegressionGP object | CompactRegressionGP object
Default: 'gpMdl'

Add output port for estimated standard deviation — Optional output port for
standard deviation

off (default) | on

Select the check box to include the optional output port ysd in the RegressionGP Predict block.

Programmatic Use
Block Parameter: ShowOutputSD
Type: character vector
Values: 'off' | 'on'
Default: 'off'

Add output port for prediction intervals — Optional output port for prediction
intervals

off (default) | on
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Select the check box to include the optional output port yint in the RegressionGP Predict block.

Programmatic Use
Block Parameter: ShowOutputIntervals
Type: character vector
Values: 'off' | 'on'
Default: 'off'

Alpha — Significance level

0.05 (default) | scalar in [0 1]

Specify the significance level for the confidence level of the prediction intervals yint. The confidence
level of yint is equal to 100(1 – Alpha)%. For example, specify Alpha as 0.01 to return 99%
prediction intervals.

Programmatic Use
Block Parameter: Alpha
Type: character vector
Values: scalar in [0 1]
Default: 0.05

Data Types

Fixed-Point Operational Parameters

Integer rounding mode — Rounding mode for fixed-point operations

Floor (default) | Ceiling | Convergent | Nearest | Round | Simplest | Zero

Specify the rounding mode for fixed-point operations. For more information, see “Rounding” (Fixed-
Point Designer).

Block parameters always round to the nearest representable value. To control the rounding of a block
parameter, enter an expression into the mask field using a MATLAB rounding function.

Programmatic Use
Block Parameter: RndMeth
Type: character vector
Values: 'Ceiling' | 'Convergent' | 'Floor' | 'Nearest' | 'Round' | 'Simplest' |
'Zero'
Default: 'Floor'

Saturate on integer overflow — Method of overflow action

off (default) | on

Specify whether overflows saturate or wrap.

 RegressionGP Predict

35-6327



Action Rationale Impact on Overflows Example
Select this check
box (on).

Your model has possible
overflow, and you want
explicit saturation protection
in the generated code.

Overflows saturate to either
the minimum or maximum
value that the data type can
represent.

The maximum value that the
int8 (signed 8-bit integer)
data type can represent is
127. Any block operation
result greater than this
maximum value causes
overflow of the 8-bit integer.
With the check box selected,
the block output saturates at
127. Similarly, the block
output saturates at a
minimum output value of –
128.

Clear this check
box (off).

You want to optimize
efficiency of your generated
code.

You want to avoid
overspecifying how a block
handles out-of-range signals.
For more information, see
“Troubleshoot Signal Range
Errors” (Simulink).

Overflows wrap to the
appropriate value that the
data type can represent.

The maximum value that the
int8 (signed 8-bit integer)
data type can represent is
127. Any block operation
result greater than this
maximum value causes
overflow of the 8-bit integer.
With the check box cleared,
the software interprets the
value causing the overflow as
int8, which can produce an
unintended result. For
example, a block result of 130
(binary 1000 0010) expressed
as int8 is –126.

Programmatic Use
Block Parameter: SaturateOnIntegerOverflow
Type: character vector
Values: 'off' | 'on'
Default: 'off'

Lock output data type setting against changes by the fixed-point tools —
Prevention of fixed-point tools from overriding data type

off (default) | on

Select this parameter to prevent the fixed-point tools from overriding the data type you specify for
the block. For more information, see “Use Lock Output Data Type Setting” (Fixed-Point Designer).

Programmatic Use
Block Parameter: LockScale
Type: character vector
Values: 'off' | 'on'
Default: 'off'
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Data Type

Output data type — Data type of yfit output

Inherit: auto (default) | double | single | half | int8 | uint8 | int16 | uint16 | int32 |
uint32 | int64 | uint64 | boolean | fixdt(1,16) | fixdt(1,16,0) | fixdt(1,16,2^0,0) |
<data type expression>

Specify the data type of the yfit output. The type can be inherited, specified directly, or expressed as
a data type object such as Simulink.NumericType.

When you select Inherit: auto, the block uses a rule that inherits a data type.

For more information about data types, see “Control Data Types of Signals” (Simulink).

Click the Show data type assistant button  to display the Data Type Assistant, which helps
you set the data type attributes. For more information, see “Specify Data Types Using Data Type
Assistant” (Simulink).

Programmatic Use
Block Parameter: OutDataTypeStr
Type: character vector
Values: 'Inherit: auto' | 'double' | 'single' | 'half' | 'int8' | 'uint8' | 'int16' |
'uint16' | 'int32' | 'uint32' | 'int64' | 'uint64' | 'boolean' | 'fixdt(1,16)' |
'fixdt(1,16,0)' | 'fixdt(1,16,2^0,0)' | '<data type expression>'
Default: 'Inherit: auto'

Output minimum — Minimum value of yfit output for range checking
[] (default) | scalar

Specify the lower value of the yfit output range that Simulink checks.

Simulink uses the minimum value to perform:

• Parameter range checking for some blocks (see “Specify Minimum and Maximum Values for Block
Parameters” (Simulink)).

• Simulation range checking (see “Specify Signal Ranges” (Simulink) and “Enable Simulation Range
Checking” (Simulink)).

• Automatic scaling of fixed-point data types.
• Optimization of the code that you generate from the model. This optimization can remove

algorithmic code and affect the results of some simulation modes, such as SIL or external mode.
For more information, see Optimize using the specified minimum and maximum values (Embedded
Coder).

Note The Output minimum parameter does not saturate or clip the actual yfit signal. Use the
Saturation block instead.

Programmatic Use
Block Parameter: OutMin
Type: character vector
Values: '[]' | scalar
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Default: '[]'

Output maximum — Maximum value of yfit output for range checking
[] (default) | scalar

Specify the upper value of the yfit output range that Simulink checks.

Simulink uses the maximum value to perform:

• Parameter range checking for some blocks (see “Specify Minimum and Maximum Values for Block
Parameters” (Simulink)).

• Simulation range checking (see “Specify Signal Ranges” (Simulink) and “Enable Simulation Range
Checking” (Simulink)).

• Automatic scaling of fixed-point data types.
• Optimization of the code that you generate from the model. This optimization can remove

algorithmic code and affect the results of some simulation modes, such as SIL or external mode.
For more information, see Optimize using the specified minimum and maximum values (Embedded
Coder).

Note The Output maximum parameter does not saturate or clip the actual yfit signal. Use the
Saturation block instead.

Programmatic Use
Block Parameter: OutMax
Type: character vector
Values: '[]' | scalar
Default: '[]'

Output standard deviation data type — Data type of ysd output

Inherit: auto (default) | double | single | half | int8 | uint8 | int16 | uint16 | int32 |
uint32 | int64 | uint64 | boolean | fixdt(1,16) | fixdt(1,16,0) | fixdt(1,16,2^0,0) |
<data type expression>

Specify the data type of the ysd output. The type can be inherited, specified directly, or expressed as
a data type object such as Simulink.NumericType.

When you select Inherit: auto, the block uses a rule that inherits a data type.

For more information about data types, see “Control Data Types of Signals” (Simulink).

Click the Show data type assistant button  to display the Data Type Assistant, which helps
you set the data type attributes. For more information, see “Specify Data Types Using Data Type
Assistant” (Simulink).

Programmatic Use
Block Parameter: SDDataTypeStr
Type: character vector
Values: 'Inherit: auto' | 'double' | 'single' | 'half' | 'int8' | 'uint8' | 'int16' |
'uint16' | 'int32' | 'uint32' | 'int64' | 'uint64' | 'boolean' | 'fixdt(1,16)' |
'fixdt(1,16,0)' | 'fixdt(1,16,2^0,0)' | '<data type expression>'
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Default: 'Inherit: auto'

Output standard deviation minimum — Minimum value of ysd output for range checking
[] (default) | scalar

Specify the lower value of the ysd output range that Simulink checks.

Simulink uses the minimum value to perform:

• Parameter range checking for some blocks (see “Specify Minimum and Maximum Values for Block
Parameters” (Simulink)).

• Simulation range checking (see “Specify Signal Ranges” (Simulink) and “Enable Simulation Range
Checking” (Simulink)).

• Automatic scaling of fixed-point data types.
• Optimization of the code that you generate from the model. This optimization can remove

algorithmic code and affect the results of some simulation modes, such as SIL or external mode.
For more information, see Optimize using the specified minimum and maximum values (Embedded
Coder).

Note The Output standard deviation minimum parameter does not saturate or clip the actual ysd
signal. Use the Saturation block instead.

Programmatic Use
Block Parameter: SDOutMin
Type: character vector
Values: '[]' | scalar
Default: '[]'

Output standard deviation maximum — Maximum value of ysd output for range checking
[] (default) | scalar

Specify the upper value of the ysd output range that Simulink checks.

Simulink uses the maximum value to perform:

• Parameter range checking for some blocks (see “Specify Minimum and Maximum Values for Block
Parameters” (Simulink)).

• Simulation range checking (see “Specify Signal Ranges” (Simulink) and “Enable Simulation Range
Checking” (Simulink)).

• Automatic scaling of fixed-point data types.
• Optimization of the code that you generate from the model. This optimization can remove

algorithmic code and affect the results of some simulation modes, such as SIL or external mode.
For more information, see Optimize using the specified minimum and maximum values (Embedded
Coder).

Note The Output standard deviation maximum parameter does not saturate or clip the actual
ysd signal. Use the Saturation block instead.
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Programmatic Use
Block Parameter: SDOutMax
Type: character vector
Values: '[]' | scalar
Default: '[]'

Output prediction intervals data type — Data type of yint output

Inherit: auto (default) | double | single | half | int8 | uint8 | int16 | uint16 | int32 |
uint32 | int64 | uint64 | boolean | fixdt(1,16) | fixdt(1,16,0) | fixdt(1,16,2^0,0) |
<data type expression>

Specify the data type of the yint output. The type can be inherited, specified directly, or expressed as
a data type object such as Simulink.NumericType.

When you select Inherit: auto, the block uses a rule that inherits a data type.

For more information about data types, see “Control Data Types of Signals” (Simulink).

Click the Show data type assistant button  to display the Data Type Assistant, which helps
you set the data type attributes. For more information, see “Specify Data Types Using Data Type
Assistant” (Simulink).

Programmatic Use
Block Parameter: IntervalsDataTypeStr
Type: character vector
Values: 'Inherit: auto' | 'double' | 'single' | 'half' | 'int8' | 'uint8' | 'int16' |
'uint16' | 'int32' | 'uint32' | 'int64' | 'uint64' | 'boolean' | 'fixdt(1,16)' |
'fixdt(1,16,0)' | 'fixdt(1,16,2^0,0)' | '<data type expression>'
Default: 'Inherit: auto'

Output prediction intervals minimum — Minimum value of yint output for range
checking
[] (default) | scalar

Specify the lower value of the yint output range that Simulink checks.

Simulink uses the minimum value to perform:

• Parameter range checking for some blocks (see “Specify Minimum and Maximum Values for Block
Parameters” (Simulink)).

• Simulation range checking (see “Specify Signal Ranges” (Simulink) and “Enable Simulation Range
Checking” (Simulink)).

• Automatic scaling of fixed-point data types.
• Optimization of the code that you generate from the model. This optimization can remove

algorithmic code and affect the results of some simulation modes, such as SIL or external mode.
For more information, see Optimize using the specified minimum and maximum values (Embedded
Coder).

Note The Output prediction intervals minimum parameter does not saturate or clip the actual
yint signal. Use the Saturation block instead.
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Programmatic Use
Block Parameter: IntervalsOutMin
Type: character vector
Values: '[]' | scalar
Default: '[]'

Output prediction intervals maximum — Maximum value of yint output for range
checking
[] (default) | scalar

Specify the upper value of the yint output range that Simulink checks.

Simulink uses the maximum value to perform:

• Parameter range checking for some blocks (see “Specify Minimum and Maximum Values for Block
Parameters” (Simulink)).

• Simulation range checking (see “Specify Signal Ranges” (Simulink) and “Enable Simulation Range
Checking” (Simulink)).

• Automatic scaling of fixed-point data types.
• Optimization of the code that you generate from the model. This optimization can remove

algorithmic code and affect the results of some simulation modes, such as SIL or external mode.
For more information, see Optimize using the specified minimum and maximum values (Embedded
Coder).

Note The Output prediction intervals maximum parameter does not saturate or clip the actual
yint signal. Use the Saturation block instead.

Programmatic Use
Block Parameter: IntervalsOutMax
Type: character vector
Values: '[]' | scalar
Default: '[]'

Kernel data type — Data type of kernel function

Inherit: auto (default) | double | single | half | int8 | uint8 | int16 | uint16 | int32 |
uint32 | int64 | uint64 | boolean | fixdt(1,16) | fixdt(1,16,0) | fixdt(1,16,2^0,0) |
<data type expression>

Specify the data type of the kernel function. The type can be inherited, specified directly, or
expressed as a data type object such as Simulink.NumericType.

When you select Inherit: auto, the block uses a rule that inherits a data type.

For more information about data types, see “Control Data Types of Signals” (Simulink).

Click the Show data type assistant button  to display the Data Type Assistant, which helps
you set the data type attributes. For more information, see “Specify Data Types Using Data Type
Assistant” (Simulink).
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Tips

The Kernel data type parameter specifies the data type of the kernel function in the RegressionGP
model. When you use the fitrgp function to train the model, you can set the KernelFunction
name-value argument to one of the values in this table.

KernelFunction Value Kernel Function Description
"exponential" Exponential kernel
"squaredexponential" Squared exponential kernel
"matern32" Matern kernel with parameter 3/2
"matern52" Matern kernel with parameter 5/2
"rationalquadratic" Rational quadratic kernel
"ardexponential" Exponential kernel with a separate length scale

per predictor
"ardsquaredexponential" Squared exponential kernel with a separate

length scale per predictor
"ardmatern32" Matern kernel with parameter 3/2 and a separate

length scale per predictor
"ardmatern52" Matern kernel with parameter 5/2 and a separate

length scale per predictor
"ardrationalquadratic" Rational quadratic kernel with a separate length

scale per predictor

Programmatic Use
Block Parameter: KernelDataTypeStr
Type: character vector
Values: 'Inherit: auto' | 'double' | 'single' | 'half' | 'int8' | 'uint8' | 'int16' |
'uint16' | 'int32' | 'uint32' | 'int64' | 'uint64' | 'boolean' | 'fixdt(1,16)' |
'fixdt(1,16,0)' | 'fixdt(1,16,2^0,0)' | '<data type expression>'
Default: 'Inherit: auto'

Kernel minimum — Minimum value of kernel function
[] (default) | scalar

Specify the lower value of the kernel function's internal variable range checked by Simulink.

Simulink uses the minimum value to perform:

• Parameter range checking for some blocks (see “Specify Minimum and Maximum Values for Block
Parameters” (Simulink)).

• Simulation range checking (see “Specify Signal Ranges” (Simulink) and “Enable Simulation Range
Checking” (Simulink)).

• Automatic scaling of fixed-point data types.
• Optimization of the code that you generate from the model. This optimization can remove

algorithmic code and affect the results of some simulation modes, such as SIL or external mode.
For more information, see Optimize using the specified minimum and maximum values (Embedded
Coder).
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Note The Kernel minimum parameter does not saturate or clip the actual kernel function signal.

Programmatic Use
Block Parameter: KernelOutMin
Type: character vector
Values: '[]' | scalar
Default: '[]'

Kernel maximum — Maximum value of kernel function
[] (default) | scalar

Specify the upper value of the kernel output's internal variable range checked by Simulink.

Simulink uses the maximum value to perform:

• Parameter range checking for some blocks (see “Specify Minimum and Maximum Values for Block
Parameters” (Simulink)).

• Simulation range checking (see “Specify Signal Ranges” (Simulink) and “Enable Simulation Range
Checking” (Simulink)).

• Automatic scaling of fixed-point data types.
• Optimization of the code that you generate from the model. This optimization can remove

algorithmic code and affect the results of some simulation modes, such as SIL or external mode.
For more information, see Optimize using the specified minimum and maximum values (Embedded
Coder).

Note The Kernel maximum parameter does not saturate or clip the actual kernel function signal.

Programmatic Use
Block Parameter: KernelOutMax
Type: character vector
Values: '[]' | scalar
Default: '[]'

Distance data type — Data type of method for computing kernel distance

Inherit: Inherit via internal rule (default) | double | single | half | int8 | uint8 |
int16 | uint16 | int32 | uint32 | int64 | uint64 | boolean | fixdt(1,16) | fixdt(1,16,0) |
fixdt(1,16,2^0,0) | <data type expression>

Specify the data type of the method for computing kernel distance. The type can be inherited,
specified directly, or expressed as a data type object such as Simulink.NumericType.

When you select Inherit: Inherit via internal rule, the block uses an internal rule to
determine the output data type. The internal rule chooses a data type that optimizes numerical
accuracy, performance, and generated code size, while taking into account the properties of the
embedded target hardware. The software cannot always optimize efficiency and numerical accuracy
at the same time.

For more information about data types, see “Control Data Types of Signals” (Simulink).
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Click the Show data type assistant button  to display the Data Type Assistant, which helps
you set the data type attributes. For more information, see “Specify Data Types Using Data Type
Assistant” (Simulink).

Tips

The Distance data type parameter specifies the data type of the method for computing inter-point
distances to evaluate built-in kernel functions. For more information, see the DistanceMethod
name-value argument of the fitrgp function. The block always uses the value "accurate" for
DistanceMethod, which does not compromise the calculation speed compared to the value "fast".

Programmatic Use
Block Parameter: DistanceDataTypeStr
Type: character vector
Values: 'Inherit: Inherit via internal rule' | 'double' | 'single' | 'half' | 'int8' |
'uint8' | 'int16' | 'uint16' | 'int32' | 'uint32' | 'int64' | 'uint64' | 'boolean' |
'fixdt(1,16)' | 'fixdt(1,16,0)' | 'fixdt(1,16,2^0,0)' | '<data type expression>'
Default: 'Inherit: Inherit via internal rule'

Distance minimum — Minimum value of kernel distance
[] (default) | scalar

Specify the lower value of the kernel distance's internal variable range checked by Simulink.

Simulink uses the minimum value to perform:

• Parameter range checking for some blocks (see “Specify Minimum and Maximum Values for Block
Parameters” (Simulink)).

• Simulation range checking (see “Specify Signal Ranges” (Simulink) and “Enable Simulation Range
Checking” (Simulink)).

• Automatic scaling of fixed-point data types.
• Optimization of the code that you generate from the model. This optimization can remove

algorithmic code and affect the results of some simulation modes, such as SIL or external mode.
For more information, see Optimize using the specified minimum and maximum values (Embedded
Coder).

Note The Distance minimum parameter does not saturate or clip the actual kernel distance signal.

Programmatic Use
Block Parameter: DistanceOutMin
Type: character vector
Values: '[]' | scalar
Default: '[]'

Distance maximum — Maximum value of kernel distance
[] (default) | scalar

Specify the upper value of the kernel distance's internal variable range checked by Simulink.

Simulink uses the maximum value to perform:
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• Parameter range checking for some blocks (see “Specify Minimum and Maximum Values for Block
Parameters” (Simulink)).

• Simulation range checking (see “Specify Signal Ranges” (Simulink) and “Enable Simulation Range
Checking” (Simulink)).

• Automatic scaling of fixed-point data types.
• Optimization of the code that you generate from the model. This optimization can remove

algorithmic code and affect the results of some simulation modes, such as SIL or external mode.
For more information, see Optimize using the specified minimum and maximum values (Embedded
Coder).

Note The Distance maximum parameter does not saturate or clip the actual kernel distance signal.

Programmatic Use
Block Parameter: DistanceOutMax
Type: character vector
Values: '[]' | scalar
Default: '[]'

Basis data type — Data type of basis function

Inherit: auto (default) | double | single | half | int8 | uint8 | int16 | uint16 | int32 |
uint32 | int64 | uint64 | boolean | fixdt(1,16) | fixdt(1,16,0) | fixdt(1,16,2^0,0) |
<data type expression>

Specify the data type of the basis function. The type can be inherited, specified directly, or expressed
as a data type object such as Simulink.NumericType.

When you select Inherit: auto, the block uses a rule that inherits a data type.

For more information about data types, see “Control Data Types of Signals” (Simulink).

Click the Show data type assistant button  to display the Data Type Assistant, which helps
you set the data type attributes. For more information, see “Specify Data Types Using Data Type
Assistant” (Simulink).

Tips

The Basis data type parameter specifies the data type of the explicit basis in the RegressionGP
model. You can set the BasisFunction name-value argument when you use the fitrgp function to
train the model.

Programmatic Use
Block Parameter: BasisDataTypeStr
Type: character vector
Values: 'Inherit: auto' | 'double' | 'single' | 'half' | 'int8' | 'uint8' | 'int16' |
'uint16' | 'int32' | 'uint32' | 'int64' | 'uint64' | 'boolean' | 'fixdt(1,16)' |
'fixdt(1,16,0)' | 'fixdt(1,16,2^0,0)' | '<data type expression>'
Default: 'Inherit: auto'

Basis minimum — Minimum value of basis function
[] (default) | scalar
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Specify the lower value of the basis function's internal variable range checked by Simulink.

Simulink uses the minimum value to perform:

• Parameter range checking for some blocks (see “Specify Minimum and Maximum Values for Block
Parameters” (Simulink)).

• Simulation range checking (see “Specify Signal Ranges” (Simulink) and “Enable Simulation Range
Checking” (Simulink)).

• Automatic scaling of fixed-point data types.
• Optimization of the code that you generate from the model. This optimization can remove

algorithmic code and affect the results of some simulation modes, such as SIL or external mode.
For more information, see Optimize using the specified minimum and maximum values (Embedded
Coder).

Note The Basis minimum parameter does not saturate or clip the actual basis function signal.

Programmatic Use
Block Parameter: BasisOutMin
Type: character vector
Values: '[]' | scalar
Default: '[]'

Basis maximum — Maximum value of basis function
[] (default) | scalar

Specify the upper value of the basis function's internal variable range checked by Simulink.

Simulink uses the maximum value to perform:

• Parameter range checking for some blocks (see “Specify Minimum and Maximum Values for Block
Parameters” (Simulink)).

• Simulation range checking (see “Specify Signal Ranges” (Simulink) and “Enable Simulation Range
Checking” (Simulink)).

• Automatic scaling of fixed-point data types.
• Optimization of the code that you generate from the model. This optimization can remove

algorithmic code and affect the results of some simulation modes, such as SIL or external mode.
For more information, see Optimize using the specified minimum and maximum values (Embedded
Coder).

Note The Basis maximum parameter does not saturate or clip the actual basis function signal.

Programmatic Use
Block Parameter: BasisOutMax
Type: character vector
Values: '[]' | scalar
Default: '[]'
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Block Characteristics
Data Types Boolean | double | fixed point | half | integer | single
Direct Feedthrough yes
Multidimensional
Signals

no

Variable-Size Signals no
Zero-Crossing
Detection

no

Alternative Functionality
You can use a MATLAB Function block with the predict object function of a Gaussian process
regression object (RegressionGP or CompactRegressionGP). For an example, see “Predict Class
Labels Using MATLAB Function Block” on page 34-51.

When deciding whether to use the RegressionGP Predict block in the Statistics and Machine Learning
Toolbox library or a MATLAB Function block with the predict function, consider the following:

• If you use the Statistics and Machine Learning Toolbox library block, you can use the Fixed-Point
Tool to convert a floating-point model to fixed point.

• Support for variable-size arrays must be enabled for a MATLAB Function block with the predict
function.

• If you use a MATLAB Function block, you can use MATLAB functions for preprocessing or post-
processing before or after predictions in the same MATLAB Function block.

Version History
Introduced in R2022a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

Fixed-Point Conversion
Design and simulate fixed-point systems using Fixed-Point Designer™.

See Also
Blocks
RegressionSVM Predict | RegressionTree Predict | RegressionEnsemble Predict |
RegressionNeuralNetwork Predict

Objects
RegressionGP | CompactRegressionGP

Functions
predict | fitrgp
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Topics
“Predict Responses Using RegressionSVM Predict Block” on page 34-127
“Predict Responses Using RegressionTree Predict Block” on page 34-139
“Predict Responses Using RegressionEnsemble Predict Block” on page 34-149
“Predict Responses Using RegressionNeuralNetwork Predict Block” on page 34-160
“Predict Class Labels Using MATLAB Function Block” on page 34-51
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RegressionLinear class
Linear regression model for high-dimensional data

Description
RegressionLinear is a trained linear model object for regression; the linear model is a support
vector machine regression (SVM) or linear regression model. fitrlinear fits a RegressionLinear
model by minimizing the objective function using techniques that reduce computation time for high-
dimensional data sets (e.g., stochastic gradient descent). The regression loss plus the regularization
term compose the objective function.

Unlike other regression models, and for economical memory usage, RegressionLinear model
objects do not store the training data. However, they do store, for example, the estimated linear
model coefficients, estimated coefficients, and the regularization strength.

You can use trained RegressionLinear models to predict responses for new data. For details, see
predict.

Construction
Create a RegressionLinear object by using fitrlinear.

Properties
Linear Regression Properties

Epsilon — Half of width of epsilon-insensitive band
nonnegative scalar

Half of the width of the epsilon insensitive band, specified as a nonnegative scalar.

If Learner is not 'svm', then Epsilon is an empty array ([]).
Data Types: single | double

Lambda — Regularization term strength
nonnegative scalar | vector of nonnegative values

Regularization term strength, specified as a nonnegative scalar or vector of nonnegative values.
Data Types: double | single

Learner — Linear regression model type
'leastsquares' | 'svm'

Linear regression model type, specified as 'leastsquares' or 'svm'.

In this table, f x = xβ + b .

• β is a vector of p coefficients.
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• x is an observation from p predictor variables.
• b is the scalar bias.

Value Algorithm Loss Function FittedLoss Value
'svm' Support vector machine

regression
Epsilon insensitive:
ℓ y, f x = max
0, y − f x − ε

'epsiloninsensitiv
e'

'leastsquares' Linear regression
through ordinary least
squares

Mean squared error
(MSE):
ℓ y, f x = 1

2 y − f x 2

'mse'

Beta — Linear coefficient estimates
numeric vector

Linear coefficient estimates, specified as a numeric vector with length equal to the number of
predictors.
Data Types: double

Bias — Estimated bias term
numeric scalar

Estimated bias term or model intercept, specified as a numeric scalar.
Data Types: double

FittedLoss — Loss function used to fit the linear model
'epsiloninsensitive' | 'mse'

Loss function used to fit the model, specified as 'epsiloninsensitive' or 'mse'.

Value Algorithm Loss Function Learner Value
'epsiloninsensitiv
e'

Support vector machine
regression

Epsilon insensitive:
ℓ y, f x = max
0, y − f x − ε

'svm'

'mse' Linear regression
through ordinary least
squares

Mean squared error
(MSE):
ℓ y, f x = 1

2 y − f x 2

'leastsquares'

Regularization — Complexity penalty type
'lasso (L1)' | 'ridge (L2)'

Complexity penalty type, specified as 'lasso (L1)' or 'ridge (L2)'.

The software composes the objective function for minimization from the sum of the average loss
function (see FittedLoss) and a regularization value from this table.
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Value Description
'lasso (L1)'

Lasso (L1) penalty: λ ∑
j = 1

p
β j

'ridge (L2)'
Ridge (L2) penalty: λ2 ∑j = 1

p
β j

2

λ specifies the regularization term strength (see Lambda).

The software excludes the bias term (β0) from the regularization penalty.

Other Regression Properties

CategoricalPredictors — Categorical predictor indices
vector of positive integers | []

Categorical predictor indices, specified as a vector of positive integers. CategoricalPredictors
contains index values indicating that the corresponding predictors are categorical. The index values
are between 1 and p, where p is the number of predictors used to train the model. If none of the
predictors are categorical, then this property is empty ([]).
Data Types: single | double

ModelParameters — Parameters used for training model
structure

Parameters used for training the RegressionLinear model, specified as a structure.

Access fields of ModelParameters using dot notation. For example, access the relative tolerance on
the linear coefficients and the bias term by using Mdl.ModelParameters.BetaTolerance.
Data Types: struct

PredictorNames — Predictor names
cell array of character vectors

Predictor names in order of their appearance in the predictor data, specified as a cell array of
character vectors. The length of PredictorNames is equal to the number of variables in the training
data X or Tbl used as predictor variables.
Data Types: cell

ExpandedPredictorNames — Expanded predictor names
cell array of character vectors

Expanded predictor names, specified as a cell array of character vectors.

If the model uses encoding for categorical variables, then ExpandedPredictorNames includes the
names that describe the expanded variables. Otherwise, ExpandedPredictorNames is the same as
PredictorNames.
Data Types: cell

ResponseName — Response variable name
character vector
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Response variable name, specified as a character vector.
Data Types: char

ResponseTransform — Response transformation function
'none' | function handle

Response transformation function, specified as 'none' or a function handle. ResponseTransform
describes how the software transforms raw response values.

For a MATLAB function or a function that you define, enter its function handle. For example, you can
enter Mdl.ResponseTransform = @function, where function accepts a numeric vector of the
original responses and returns a numeric vector of the same size containing the transformed
responses.
Data Types: char | function_handle

Object Functions
incrementalLearner Convert linear regression model to incremental learner
lime Local interpretable model-agnostic explanations (LIME)
loss Regression loss for linear regression models
partialDependence Compute partial dependence
plotPartialDependence Create partial dependence plot (PDP) and individual conditional expectation

(ICE) plots
predict Predict response of linear regression model
selectModels Select fitted regularized linear regression models
shapley Shapley values
update Update model parameters for code generation

Copy Semantics
Value. To learn how value classes affect copy operations, see Copying Objects.

Examples

Train Linear Regression Model

Train a linear regression model using SVM, dual SGD, and ridge regularization.

Simulate 10000 observations from this model

y = x100 + 2x200 + e .

• X = x1, . . . , x1000 is a 10000-by-1000 sparse matrix with 10% nonzero standard normal elements.
• e is random normal error with mean 0 and standard deviation 0.3.

rng(1) % For reproducibility
n = 1e4;
d = 1e3;
nz = 0.1;
X = sprandn(n,d,nz);
Y = X(:,100) + 2*X(:,200) + 0.3*randn(n,1);
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Train a linear regression model. By default, fitrlinear uses support vector machines with a ridge
penalty, and optimizes using dual SGD for SVM. Determine how well the optimization algorithm fit
the model to the data by extracting a fit summary.

[Mdl,FitInfo] = fitrlinear(X,Y)

Mdl = 
  RegressionLinear
         ResponseName: 'Y'
    ResponseTransform: 'none'
                 Beta: [1000x1 double]
                 Bias: -0.0056
               Lambda: 1.0000e-04
              Learner: 'svm'

  Properties, Methods

FitInfo = struct with fields:
                    Lambda: 1.0000e-04
                 Objective: 0.2725
                 PassLimit: 10
                 NumPasses: 10
                BatchLimit: []
             NumIterations: 100000
              GradientNorm: NaN
         GradientTolerance: 0
      RelativeChangeInBeta: 0.4907
             BetaTolerance: 1.0000e-04
             DeltaGradient: 1.5816
    DeltaGradientTolerance: 0.1000
           TerminationCode: 0
         TerminationStatus: {'Iteration limit exceeded.'}
                     Alpha: [10000x1 double]
                   History: []
                   FitTime: 0.1097
                    Solver: {'dual'}

Mdl is a RegressionLinear model. You can pass Mdl and the training or new data to loss to
inspect the in-sample mean-squared error. Or, you can pass Mdl and new predictor data to predict
to predict responses for new observations.

FitInfo is a structure array containing, among other things, the termination status
(TerminationStatus) and how long the solver took to fit the model to the data (FitTime). It is
good practice to use FitInfo to determine whether optimization-termination measurements are
satisfactory. In this case, fitrlinear reached the maximum number of iterations. Because training
time is fast, you can retrain the model, but increase the number of passes through the data. Or, try
another solver, such as LBFGS.

Predict Responses Using Linear Regression Model

Simulate 10000 observations from this model
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y = x100 + 2x200 + e .

• X = {x1, . . . , x1000} is a 10000-by-1000 sparse matrix with 10% nonzero standard normal
elements.

• e is random normal error with mean 0 and standard deviation 0.3.

rng(1) % For reproducibility
n = 1e4;
d = 1e3;
nz = 0.1;
X = sprandn(n,d,nz);
Y = X(:,100) + 2*X(:,200) + 0.3*randn(n,1);

Hold out 5% of the data.

rng(1); % For reproducibility
cvp = cvpartition(n,'Holdout',0.05)

cvp = 
Hold-out cross validation partition
   NumObservations: 10000
       NumTestSets: 1
         TrainSize: 9500
          TestSize: 500

cvp is a CVPartition object that defines the random partition of n data into training and test sets.

Train a linear regression model using the training set. For faster training time, orient the predictor
data matrix so that the observations are in columns.

idxTrain = training(cvp); % Extract training set indices
X = X';
Mdl = fitrlinear(X(:,idxTrain),Y(idxTrain),'ObservationsIn','columns');

Predict observations and the mean squared error (MSE) for the hold out sample.

idxTest = test(cvp); % Extract test set indices
yHat = predict(Mdl,X(:,idxTest),'ObservationsIn','columns');
L = loss(Mdl,X(:,idxTest),Y(idxTest),'ObservationsIn','columns')

L = 0.1851

The hold-out sample MSE is 0.1852.

Version History
Introduced in R2016a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:
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• The predict and update functions support code generation.
• When you train a linear regression model by using fitrlinear, the following restrictions apply.

• If the predictor data input argument value is a matrix, it must be a full, numeric matrix. Code
generation does not support sparse data.

• You can specify only one regularization strength, either 'auto' or a nonnegative scalar for the
'Lambda' name-value pair argument.

• The value of the 'ResponseTransform' name-value pair argument cannot be an anonymous
function.

• Code generation with a coder configurer does not support categorical predictors (logical,
categorical, char, string, or cell). You cannot use the 'CategoricalPredictors'
name-value argument. To include categorical predictors in a model, preprocess them by using
dummyvar before fitting the model.

For more information, see “Introduction to Code Generation” on page 34-2.

See Also
predict | fitrlinear | RegressionPartitionedLinear
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RegressionLinearCoderConfigurer
Coder configurer for linear regression model with high-dimensional data

Description
A RegressionLinearCoderConfigurer object is a coder configurer of a linear regression model
(RegressionLinear) with high-dimensional data.

A coder configurer offers convenient features to configure code generation options, generate C/C++
code, and update model parameters in the generated code.

• Configure code generation options and specify the coder attributes for linear model parameters by
using object properties.

• Generate C/C++ code for the predict and update functions of the linear regression model by
using generateCode. Generating C/C++ code requires MATLAB Coder.

• Update model parameters in the generated C/C++ code without having to regenerate the code.
This feature reduces the effort required to regenerate, redeploy, and reverify C/C++ code when
you retrain the linear model with new data or settings. Before updating model parameters, use
validatedUpdateInputs to validate and extract the model parameters to update.

This flow chart shows the code generation workflow using a coder configurer.

For the code generation usage notes and limitations of a linear regression model, see the Code
Generation sections of RegressionLinear, predict, and update.

Creation
After training a linear regression model by using fitrlinear, create a coder configurer for the
model by using learnerCoderConfigurer. Use the properties of a coder configurer to specify the
coder attributes of the predict and update arguments. Then, use generateCode to generate C/C+
+ code based on the specified coder attributes.

Properties
predict Arguments

The properties listed in this section specify the coder attributes of the predict function arguments
in the generated code.
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X — Coder attributes of predictor data
LearnerCoderInput object

Coder attributes of the predictor data to pass to the generated C/C++ code for the predict function
of the linear regression model, specified as a LearnerCoderInput on page 35-6359 object.

When you create a coder configurer by using the learnerCoderConfigurer function, the input
argument X determines the default values of the LearnerCoderInput coder attributes:

• SizeVector — The default value is the array size of the input X.

• If the Value attribute of the ObservationsIn property for the
RegressionLinearCoderConfigurer is 'rows', then this SizeVector value is [n p],
where n corresponds to the number of observations and p corresponds to the number of
predictors.

• If the Value attribute of the ObservationsIn property for the
RegressionLinearCoderConfigurer is 'columns', then this SizeVector value is [p n].

To switch the elements of SizeVector (for example, to change [n p] to [p n]), modify the
Value attribute of the ObservationsIn property for the
RegressionLinearCoderConfigurer accordingly. You cannot modify the SizeVector value
directly.

• VariableDimensions — The default value is [0 0], which indicates that the array size is fixed
as specified in SizeVector.

You can set this value to [1 0] if the SizeVector value is [n p] or to [0 1] if it is [p n],
which indicates that the array has variable-size rows and fixed-size columns. For example, [1 0]
specifies that the first value of SizeVector (n) is the upper bound for the number of rows, and
the second value of SizeVector (p) is the number of columns.

• DataType — This value is single or double. The default data type depends on the data type of
the input X.

• Tunability — This value must be true, meaning that predict in the generated C/C++ code
always includes predictor data as an input.

You can modify the coder attributes by using dot notation. For example, to generate C/C++ code that
accepts predictor data with 100 observations (in rows) of three predictor variables (in columns),
specify these coder attributes of X for the coder configurer configurer:

configurer.X.SizeVector = [100 3];
configurer.X.DataType = 'double';
configurer.X.VariableDimensions = [0 0];

[0 0] indicates that the first and second dimensions of X (number of observations and number of
predictor variables, respectively) have fixed sizes.

To allow the generated C/C++ code to accept predictor data with up to 100 observations, specify
these coder attributes of X:

configurer.X.SizeVector = [100 3];
configurer.X.DataType = 'double';
configurer.X.VariableDimensions = [1 0];

[1 0] indicates that the first dimension of X (number of observations) has a variable size and the
second dimension of X (number of predictor variables) has a fixed size. The specified number of
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observations, 100 in this example, becomes the maximum allowed number of observations in the
generated C/C++ code. To allow any number of observations, specify the bound as Inf.

ObservationsIn — Coder attributes of predictor data observation dimension
EnumeratedInput object

Coder attributes of the predictor data observation dimension ('ObservationsIn' name-value pair
argument of predict), specified as an EnumeratedInput on page 35-6359 object.

When you create a coder configurer by using the learnerCoderConfigurer function, the
'ObservationsIn' name-value pair argument determines the default values of the
EnumeratedInput coder attributes:

• Value — The default value is the predictor data observation dimension you use when creating the
coder configurer, specified as 'rows' or 'columns'. If you do not specify 'ObservationsIn'
when creating the coder configurer, the default value is 'rows'.

• SelectedOption — This value is always 'Built-in'. This attribute is read-only.
• BuiltInOptions — Cell array of 'rows' and 'columns'. This attribute is read-only.
• IsConstant — This value must be true.
• Tunability — The default value is false if you specify 'ObservationsIn','rows' when

creating the coder configurer, and true if you specify 'ObservationsIn','columns'. If you
set Tunability to false, the software sets Value to 'rows'. If you specify other attribute
values when Tunability is false, the software sets Tunability to true.

NumOutputs — Number of outputs in predict
1 (default)

Number of output arguments to return from the generated C/C++ code for the predict function of
the linear regression model, specified as 1. predict returns YHat (predicted responses) in the
generated C/C++ code.

The NumOutputs property is equivalent to the '-nargout' compiler option of codegen. This option
specifies the number of output arguments in the entry-point function of code generation. The object
function generateCode generates two entry-point functions—predict.m and update.m for the
predict and update functions of a linear regression model, respectively—and generates C/C++
code for the two entry-point functions. The specified value for the NumOutputs property corresponds
to the number of output arguments in the entry-point function predict.m.
Data Types: double

update Arguments

The properties listed in this section specify the coder attributes of the update function arguments in
the generated code. The update function takes a trained model and new model parameters as input
arguments, and returns an updated version of the model that contains the new parameters. To enable
updating the parameters in the generated code, you need to specify the coder attributes of the
parameters before generating code. Use a LearnerCoderInput on page 35-6359 object to specify
the coder attributes of each parameter. The default attribute values are based on the model
parameters in the input argument Mdl of learnerCoderConfigurer.

Beta — Coder attributes of linear predictor coefficients
LearnerCoderInput object
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Coder attributes of the linear predictor coefficients (Beta of a linear regression model), specified as a
LearnerCoderInput on page 35-6359 object.

The default attribute values of the LearnerCoderInput object are based on the input argument Mdl
of learnerCoderConfigurer:

• SizeVector — This value must be [p 1], where p is the number of predictors in Mdl.
• VariableDimensions — This value must be [0 0], indicating that the array size is fixed as
specified in SizeVector.

• DataType — This value is 'single' or 'double'. The default data type is consistent with the
data type of the training data you use to train Mdl.

• Tunability — This value must be true.

Bias — Coder attributes of bias term
LearnerCoderInput object

Coder attributes of the bias term (Bias of a linear regression model), specified as a
LearnerCoderInput on page 35-6359 object.

The default attribute values of the LearnerCoderInput object are based on the input argument Mdl
of learnerCoderConfigurer:

• SizeVector — This value must be [1 1].
• VariableDimensions — This value must be [0 0], indicating that the array size is fixed as
specified in SizeVector.

• DataType — This value is 'single' or 'double'. The default data type is consistent with the
data type of the training data you use to train Mdl.

• Tunability — This value must be true.

Other Configurer Options

OutputFileName — File name of generated C/C++ code
'RegressionLinearModel' (default) | character vector

File name of the generated C/C++ code, specified as a character vector.

The object function generateCode of RegressionLinearCoderConfigurer generates C/C++
code using this file name.

The file name must not contain spaces because they can lead to code generation failures in certain
operating system configurations. Also, the name must be a valid MATLAB function name.

After creating the coder configurer configurer, you can specify the file name by using dot notation.

configurer.OutputFileName = 'myModel';

Data Types: char

Verbose — Verbosity level
true (logical 1) (default) | false (logical 0)

Verbosity level, specified as true (logical 1) or false (logical 0). The verbosity level controls the
display of notification messages at the command line.
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Value Description
true (logical 1) The software displays notification messages when your changes to the

coder attributes of a parameter result in changes for other dependent
parameters.

false (logical 0) The software does not display notification messages.

To enable updating machine learning model parameters in the generated code, you need to configure
the coder attributes of the parameters before generating code. The coder attributes of parameters
are dependent on each other, so the software stores the dependencies as configuration constraints. If
you modify the coder attributes of a parameter by using a coder configurer, and the modification
requires subsequent changes to other dependent parameters to satisfy configuration constraints,
then the software changes the coder attributes of the dependent parameters. The verbosity level
determines whether or not the software displays notification messages for these subsequent changes.

After creating the coder configurer configurer, you can modify the verbosity level by using dot
notation.

configurer.Verbose = false;

Data Types: logical

Options for Code Generation Customization

To customize the code generation workflow, use the generateFiles function and the following three
properties with codegen, instead of using the generateCode function.

After generating the two entry-point function files (predict.m and update.m) by using the
generateFiles function, you can modify these files according to your code generation workflow.
For example, you can modify the predict.m file to include data preprocessing, or you can add these
entry-point functions to another code generation project. Then, you can generate C/C++ code by
using the codegen function and the codegen arguments appropriate for the modified entry-point
functions or code generation project. Use the three properties described in this section as a starting
point to set the codegen arguments.

CodeGenerationArguments — codegen arguments
cell array

This property is read-only.

codegen arguments, specified as a cell array.

This property enables you to customize the code generation workflow. Use the generateCode
function if you do not need to customize your workflow.

Instead of using generateCode with the coder configurer configurer, you can generate C/C++
code as follows:

generateFiles(configurer)
cgArgs = configurer.CodeGenerationArguments;
codegen(cgArgs{:})

If you customize the code generation workflow, modify cgArgs accordingly before calling codegen.

If you modify other properties of configurer, the software updates the
CodeGenerationArguments property accordingly.
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Data Types: cell

PredictInputs — List of tunable input arguments of predict
cell array

This property is read-only.

List of tunable input arguments of the entry-point function predict.m for code generation, specified
as a cell array. The cell array contains another cell array that includes coder.PrimitiveType
objects and coder.Constant objects.

If you modify the coder attributes of predict arguments on page 35-6348, then the software updates
the corresponding objects accordingly. If you specify the Tunability attribute as false, then the
software removes the corresponding objects from the PredictInputs list.

The cell array in PredictInputs is equivalent to configurer.CodeGenerationArguments{6}
for the coder configurer configurer.
Data Types: cell

UpdateInputs — List of tunable input arguments of update
cell array of a structure including coder.PrimitiveType objects

This property is read-only.

List of the tunable input arguments of the entry-point function update.m for code generation,
specified as a cell array of a structure including coder.PrimitiveType objects. Each
coder.PrimitiveType object includes the coder attributes of a tunable machine learning model
parameter.

If you modify the coder attributes of a model parameter by using the coder configurer properties
(update Arguments on page 35-6350 properties), then the software updates the corresponding
coder.PrimitiveType object accordingly. If you specify the Tunability attribute of a machine
learning model parameter as false, then the software removes the corresponding
coder.PrimitiveType object from the UpdateInputs list.

The structure in UpdateInputs is equivalent to configurer.CodeGenerationArguments{3} for
the coder configurer configurer.
Data Types: cell

Object Functions
generateCode Generate C/C++ code using coder configurer
generateFiles Generate MATLAB files for code generation using coder configurer
validatedUpdateInputs Validate and extract machine learning model parameters to update

Examples

Generate Code Using Coder Configurer

Train a machine learning model, and then generate code for the predict and update functions of
the model by using a coder configurer.

Simulate 10,000 observations from the model
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y = x100 + 2x200 + e .

• X = x1, . . . , x1000 is a 10,000-by-1000 numeric matrix with standard normal elements.
• e is a random normal error with mean 0 and standard deviation 0.3.

rng('default') % For reproducibility
n = 10000;
p = 1000;
X = randn(n,p);
Y = X(:,100) + 2*X(:,200) + 0.3*randn(n,1);

Train a linear regression model using the simulated data. Pass the transposed predictor matrix Xnew
to fitrlinear, and use the 'ObservationsIn' name-value pair argument to specify that the
columns of Xnew correspond to observations.

Xnew = X';
Mdl = fitrlinear(Xnew,Y,'ObservationsIn','columns');

Mdl is a RegressionLinear object.

Create a coder configurer for the RegressionLinear model by using learnerCoderConfigurer.
Specify the predictor data Xnew, and use the 'ObservationsIn' name-value pair argument to
specify the observation dimension of Xnew. The learnerCoderConfigurer function uses these
input arguments to configure the coder attributes of the corresponding input arguments of predict.

configurer = learnerCoderConfigurer(Mdl,Xnew,'ObservationsIn','columns')

configurer = 
  RegressionLinearCoderConfigurer with properties:

   Update Inputs:
              Beta: [1x1 LearnerCoderInput]
              Bias: [1x1 LearnerCoderInput]

   Predict Inputs:
                 X: [1x1 LearnerCoderInput]
    ObservationsIn: [1x1 EnumeratedInput]

   Code Generation Parameters:
        NumOutputs: 1
    OutputFileName: 'RegressionLinearModel'

  Properties, Methods

configurer is a RegressionLinearCoderConfigurer object, which is a coder configurer of a
RegressionLinear object.

To generate C/C++ code, you must have access to a C/C++ compiler that is configured properly.
MATLAB Coder locates and uses a supported, installed compiler. You can use mex -setup to view and
change the default compiler. For more details, see “Change Default Compiler”.

Generate code for the predict and update functions of the linear regression model (Mdl) with
default settings.

generateCode(configurer)
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generateCode creates these files in output folder:
'initialize.m', 'predict.m', 'update.m', 'RegressionLinearModel.mat'
Code generation successful.

The generateCode function completes these actions:

• Generate the MATLAB files required to generate code, including the two entry-point functions
predict.m and update.m for the predict and update functions of Mdl, respectively.

• Create a MEX function named RegressionLinearModel for the two entry-point functions.
• Create the code for the MEX function in the codegen\mex\RegressionLinearModel folder.
• Copy the MEX function to the current folder.

Display the contents of the predict.m, update.m, and initialize.m files by using the type
function.

type predict.m

function varargout = predict(X,varargin) %#codegen
% Autogenerated by MATLAB, 01-Sep-2022 11:20:54
[varargout{1:nargout}] = initialize('predict',X,varargin{:});
end

type update.m

function update(varargin) %#codegen
% Autogenerated by MATLAB, 01-Sep-2022 11:20:54
initialize('update',varargin{:});
end

type initialize.m

function [varargout] = initialize(command,varargin) %#codegen
% Autogenerated by MATLAB, 01-Sep-2022 11:20:54
coder.inline('always')
persistent model
if isempty(model)
    model = loadLearnerForCoder('RegressionLinearModel.mat');
end
switch(command)
    case 'update'
        % Update struct fields: Beta
        %                       Bias
        model = update(model,varargin{:});
    case 'predict'
        % Predict Inputs: X, ObservationsIn
        X = varargin{1};
        if nargin == 2
            [varargout{1:nargout}] = predict(model,X);
        else
            PVPairs = cell(1,nargin-2);
            for i = 1:nargin-2
                PVPairs{1,i} = varargin{i+1};
            end
            [varargout{1:nargout}] = predict(model,X,PVPairs{:});
        end
end
end
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Update Parameters of Linear Regression Model in Generated Code

Train a linear regression model using a partial data set, and create a coder configurer for the model.
Use the properties of the coder configurer to specify coder attributes of the linear regression model
parameters. Use the object function of the coder configurer to generate C code that predicts
responses for new predictor data. Then retrain the model using the entire data set, and update
parameters in the generated code without regenerating the code.

Train Model

Simulate 10,000 observations from the model

y = x100 + 2x200 + e .

• X = x1, . . . , x1000 is a 10,000-by-1000 numeric matrix with standard normal elements.
• e is a random normal error with mean 0 and standard deviation 0.3.

rng('default') % For reproducibility
n = 10000;
p = 1000;
X = randn(n,p);
Y = X(:,100) + 2*X(:,200) + 0.3*randn(n,1);

Train a linear regression model using the first 500 observations. Transpose the predictor data, and
use the 'ObservationsIn' name-value pair argument to specify that the columns of XTrain
correspond to observations.

XTrain = X(1:500,:)';
YTrain = Y(1:500);
Mdl = fitrlinear(XTrain,YTrain,'ObservationsIn','columns');

Mdl is a RegressionLinear object.

Create Coder Configurer

Create a coder configurer for the RegressionLinear model by using learnerCoderConfigurer.
Specify the predictor data XTrain, and use the 'ObservationsIn' name-value pair argument to
specify the observation dimension of XTrain. The learnerCoderConfigurer function uses these
input arguments to configure the coder attributes of the corresponding input arguments of predict.

configurer = learnerCoderConfigurer(Mdl,XTrain,'ObservationsIn','columns');

configurer is a RegressionLinearCoderConfigurer object, which is a coder configurer of a
RegressionLinear object.

Specify Coder Attributes of Parameters

Specify the coder attributes of the linear regression model parameters so that you can update the
parameters in the generated code after retraining the model. This example specifies the coder
attributes of the predictor data that you want to pass to the generated code.

Specify the coder attributes of the X property of configurer so that the generated code accepts any
number of observations. Modify the SizeVector and VariableDimensions attributes. The
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SizeVector attribute specifies the upper bound of the predictor data size, and the
VariableDimensions attribute specifies whether each dimension of the predictor data has a
variable size or fixed size.

configurer.X.SizeVector = [1000 Inf];
configurer.X.VariableDimensions

ans = 1x2 logical array

   0   1

The size of the first dimension is the number of predictor variables. This value must be fixed for a
machine learning model. Because the predictor data contains 1000 predictors, the value of the
SizeVector attribute must be 1000 and the value of the VariableDimensions attribute must be 0.

The size of the second dimension is the number of observations. Setting the value of the SizeVector
attribute to Inf causes the software to change the value of the VariableDimensions attribute to 1.
In other words, the upper bound of the size is Inf and the size is variable, meaning that the predictor
data can have any number of observations. This specification is convenient if you do not know the
number of observations when generating code.

The order of the dimensions in SizeVector and VariableDimensions depends on the coder
attributes of ObservationsIn.

configurer.ObservationsIn

ans = 
  EnumeratedInput with properties:

             Value: 'columns'
    SelectedOption: 'Built-in'
    BuiltInOptions: {'rows'  'columns'}
        IsConstant: 1
        Tunability: 1

When the Value attribute of the ObservationsIn property is 'columns', the first dimension of the
SizeVector and VariableDimensions attributes of X corresponds to the number of predictors,
and the second dimension corresponds to the number of observations. When the Value attribute of
ObservationsIn is 'rows', the order of the dimensions is switched.

Generate Code

To generate C/C++ code, you must have access to a C/C++ compiler that is configured properly.
MATLAB Coder locates and uses a supported, installed compiler. You can use mex -setup to view and
change the default compiler. For more details, see “Change Default Compiler”.

Generate code for the predict and update functions of the linear regression model (Mdl).

generateCode(configurer)

generateCode creates these files in output folder:
'initialize.m', 'predict.m', 'update.m', 'RegressionLinearModel.mat'
Code generation successful.

The generateCode function completes these actions:
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• Generate the MATLAB files required to generate code, including the two entry-point functions
predict.m and update.m for the predict and update functions of Mdl, respectively.

• Create a MEX function named RegressionLinearModel for the two entry-point functions.
• Create the code for the MEX function in the codegen\mex\RegressionLinearModel folder.
• Copy the MEX function to the current folder.

Verify Generated Code

Pass some predictor data to verify whether the predict function of Mdl and the predict function in
the MEX function return the same predicted responses. To call an entry-point function in a MEX
function that has more than one entry point, specify the function name as the first input argument.

YHat = predict(Mdl,XTrain,'ObservationsIn','columns');
YHat_mex = RegressionLinearModel('predict',XTrain,'ObservationsIn','columns');

Compare YHat and YHat_mex.

max(abs(YHat-YHat_mex))

ans = 0

In general, YHat_mex might include round-off differences compared to YHat. In this case, the
comparison confirms that YHat and YHat_mex are equal.

Retrain Model and Update Parameters in Generated Code

Retrain the model using the entire data set.

retrainedMdl = fitrlinear(X',Y,'ObservationsIn','columns');

Extract parameters to update by using validatedUpdateInputs. This function detects the modified
model parameters in retrainedMdl and validates whether the modified parameter values satisfy the
coder attributes of the parameters.

params = validatedUpdateInputs(configurer,retrainedMdl);

Update parameters in the generated code.

RegressionLinearModel('update',params)

Verify Generated Code

Compare the outputs from the predict function of retrainedMdl and the predict function in the
updated MEX function.

YHat = predict(retrainedMdl,X','ObservationsIn','columns');
YHat_mex = RegressionLinearModel('predict',X','ObservationsIn','columns');
max(abs(YHat-YHat_mex))

ans = 0
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The comparison confirms that YHat and YHat_mex are equal.

More About
LearnerCoderInput Object

A coder configurer uses a LearnerCoderInput object to specify the coder attributes of predict
and update input arguments.

A LearnerCoderInput object has the following attributes to specify the properties of an input
argument array in the generated code.

Attribute Name Description
SizeVector Array size if the corresponding VariableDimensions value is

false.

Upper bound of the array size if the corresponding
VariableDimensions value is true. To allow an unbounded
array, specify the bound as Inf.

VariableDimensions Indicator specifying whether each dimension of the array has a
variable size or fixed size, specified as true (logical 1) or false
(logical 0):

• A value of true (logical 1) means that the corresponding
dimension has a variable size.

• A value of false (logical 0) means that the corresponding
dimension has a fixed size.

DataType Data type of the array
Tunability Indicator specifying whether or not predict or update includes

the argument as an input in the generated code, specified as true
(logical 1) or false (logical 0).

If you specify other attribute values when Tunability is false,
the software sets Tunability to true.

After creating a coder configurer, you can modify the coder attributes by using dot notation. For
example, specify the data type of the bias term Bias of the coder configurer configurer:

configurer.Bias.DataType = 'single';

If you specify the verbosity level (Verbose) as true (default), then the software displays notification
messages when you modify the coder attributes of a machine learning model parameter and the
modification changes the coder attributes of other dependent parameters.

EnumeratedInput Object

A coder configurer uses an EnumeratedInput object to specify the coder attributes of predict
input arguments that have a finite set of available values.

An EnumeratedInput object has the following attributes to specify the properties of an input
argument array in the generated code.
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Attribute Name Description
Value Value of the predict argument in the generated code, specified as

a character vector or a LearnerCoderInput on page 35-6359
object.

• Character vector in BuiltInOptions — You can specify one of
the BuiltInOptions using either the option name or its index
value. For example, to choose the first option, specify Value as
either the first character vector in BuiltInOptions or 1.

• Character vector designating a custom function name — To use
a custom option, define a custom function on the MATLAB
search path, and specify Value as the name of the custom
function.

• LearnerCoderInput on page 35-6359 object — If you set
IsConstant to false (logical 0), then the software changes
Value to a LearnerCoderInput on page 35-6359 object with
the following read-only coder attribute values. These values
indicate that the input in the generated code is a variable-size,
tunable character vector that is one of the available values in
BuiltInOptions.

• SizeVector — [1 c], indicating the upper bound of the
array size, where c is the length of the longest available
character vector in Option

• VariableDimensions — [0 1], indicating that the array
is a variable-size vector

• DataType — 'char'
• Tunability — 1

The default value of Value is consistent with the default value of
the corresponding predict argument, which is one of the
character vectors in BuiltInOptions.

SelectedOption Status of the selected option, specified as 'Built-in',
'Custom', or 'NonConstant'. The software sets
SelectedOption according to Value:

• 'Built-in'(default) — When Value is one of the character
vectors in BuiltInOptions

• 'Custom' — When Value is a character vector that is not in
BuiltInOptions

• 'NonConstant' — When Value is a LearnerCoderInput on
page 35-6359 object

This attribute is read-only.
BuiltInOptions List of available character vectors for the corresponding predict

argument, specified as a cell array.

This attribute is read-only.
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Attribute Name Description
IsConstant Indicator specifying whether or not the array value is a compile-

time constant (coder.Constant) in the generated code, specified
as true (logical 1, default) or false (logical 0).

If you set this value to false, then the software changes Value to
a LearnerCoderInput on page 35-6359 object.

Tunability Indicator specifying whether or not predict includes the
argument as an input in the generated code, specified as true
(logical 1) or false (logical 0, default).

If you specify other attribute values when Tunability is false,
the software sets Tunability to true.

After creating a coder configurer, you can modify the coder attributes by using dot notation. For
example, specify the coder attributes of ObservationsIn of the coder configurer configurer:

configurer.ObservationsIn.Value = 'columns';

Version History
Introduced in R2019b

See Also
learnerCoderConfigurer | RegressionLinear | update | predict

Topics
“Introduction to Code Generation” on page 34-2
“Code Generation for Prediction and Update Using Coder Configurer” on page 34-92
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RegressionNeuralNetwork
Neural network model for regression

Description
A RegressionNeuralNetwork object is a trained, feedforward, and fully connected neural network
for regression. The first fully connected layer of the neural network has a connection from the
network input (predictor data X), and each subsequent layer has a connection from the previous layer.
Each fully connected layer multiplies the input by a weight matrix (LayerWeights) and then adds a
bias vector (LayerBiases). An activation function follows each fully connected layer, excluding the
last (Activations and OutputLayerActivation). The final fully connected layer produces the
network's output, namely predicted response values. For more information, see “Neural Network
Structure” on page 35-2614.

Creation
Create a RegressionNeuralNetwork object by using fitrnet.

Properties
Neural Network Properties

LayerSizes — Sizes of fully connected layers
positive integer vector

This property is read-only.

Sizes of the fully connected layers in the neural network model, returned as a positive integer vector.
The ith element of LayerSizes is the number of outputs in the ith fully connected layer of the neural
network model.

LayerSizes does not include the size of the final fully connected layer. This layer always has one
output.
Data Types: single | double

LayerWeights — Learned layer weights
cell array

This property is read-only.

Learned layer weights for fully connected layers, returned as a cell array. The ith entry in the cell
array corresponds to the layer weights for the ith fully connected layer. For example,
Mdl.LayerWeights{1} returns the weights for the first fully connected layer of the model Mdl.

LayerWeights includes the weights for the final fully connected layer.
Data Types: cell
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LayerBiases — Learned layer biases
cell array

This property is read-only.

Learned layer biases for fully connected layers, returned as a cell array. The ith entry in the cell array
corresponds to the layer biases for the ith fully connected layer. For example, Mdl.LayerBiases{1}
returns the biases for the first fully connected layer of the model Mdl.

LayerBiases includes the biases for the final fully connected layer.
Data Types: cell

Activations — Activation functions for fully connected layers
'relu' | 'tanh' | 'sigmoid' | 'none' | cell array of character vectors

This property is read-only.

Activation functions for the fully connected layers of the neural network model, returned as a
character vector or cell array of character vectors with values from this table.

Value Description
'relu' Rectified linear unit (ReLU) function — Performs

a threshold operation on each element of the
input, where any value less than zero is set to
zero, that is,

f x =
x, x ≥ 0
0, x < 0

'tanh' Hyperbolic tangent (tanh) function — Applies the
tanh function to each input element

'sigmoid' Sigmoid function — Performs the following
operation on each input element:

f (x) = 1
1 + e−x

'none' Identity function — Returns each input element
without performing any transformation, that is,
f(x) = x

• If Activations contains only one activation function, then it is the activation function for every
fully connected layer of the neural network model, excluding the final fully connected layer, which
does not have an activation function (OutputLayerActivation).

• If Activations is an array of activation functions, then the ith element is the activation function
for the ith layer of the neural network model.

Data Types: char | cell

OutputLayerActivation — Activation function for final fully connected layer
'none'

This property is read-only.
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Activation function for final fully connected layer, returned as 'none'.

ModelParameters — Parameter values used to train model
NeuralNetworkParams object

This property is read-only.

Parameter values used to train the RegressionNeuralNetwork model, returned as a
NeuralNetworkParams object. ModelParameters contains parameter values such as the name-
value arguments used to train the regression neural network model.

Access the properties of ModelParameters by using dot notation. For example, access the function
used to initialize the fully connected layer weights of a model Mdl by using
Mdl.ModelParameters.LayerWeightsInitializer.

Convergence Control Properties

ConvergenceInfo — Convergence information
structure array

This property is read-only.

Convergence information, returned as a structure array.

Field Description
Iterations Number of training iterations used to train the

neural network model
TrainingLoss Training mean squared error (MSE) for the

returned model, or resubLoss(Mdl) for model
Mdl

Gradient Gradient of the loss function with respect to the
weights and biases at the iteration corresponding
to the returned model

Step Step size at the iteration corresponding to the
returned model

Time Total time spent across all iterations (in seconds)
ValidationLoss Validation MSE for the returned model
ValidationChecks Maximum number of times in a row that the

validation loss was greater than or equal to the
minimum validation loss

ConvergenceCriterion Criterion for convergence
History See TrainingHistory

Data Types: struct

TrainingHistory — Training history
table

This property is read-only.

Training history, returned as a table.
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Column Description
Iteration Training iteration
TrainingLoss Training mean squared error (MSE) for the model

at this iteration
Gradient Gradient of the loss function with respect to the

weights and biases at this iteration
Step Step size at this iteration
Time Time spent during this iteration (in seconds)
ValidationLoss Validation MSE for the model at this iteration
ValidationChecks Running total of times that the validation loss is

greater than or equal to the minimum validation
loss

Data Types: table

Solver — Solver used to train neural network model
'LBFGS'

This property is read-only.

Solver used to train the neural network model, returned as 'LBFGS'. To create a
RegressionNeuralNetwork model, fitrnet uses a limited-memory Broyden-Fletcher-Goldfarb-
Shanno quasi-Newton algorithm (LBFGS) as its loss function minimization technique, where the
software minimizes the mean squared error (MSE).

Predictor Properties

PredictorNames — Predictor variable names
cell array of character vectors

This property is read-only.

Predictor variable names, returned as a cell array of character vectors. The order of the elements of
PredictorNames corresponds to the order in which the predictor names appear in the training data.
Data Types: cell

CategoricalPredictors — Categorical predictor indices
vector of positive integers | []

This property is read-only.

Categorical predictor indices, returned as a vector of positive integers. Assuming that the predictor
data contains observations in rows, CategoricalPredictors contains index values corresponding
to the columns of the predictor data that contain categorical predictors. If none of the predictors are
categorical, then this property is empty ([]).
Data Types: double

ExpandedPredictorNames — Expanded predictor names
cell array of character vectors

This property is read-only.
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Expanded predictor names, returned as a cell array of character vectors. If the model uses encoding
for categorical variables, then ExpandedPredictorNames includes the names that describe the
expanded variables. Otherwise, ExpandedPredictorNames is the same as PredictorNames.
Data Types: cell

X — Unstandardized predictors
numeric matrix | table

This property is read-only.

Unstandardized predictors used to train the neural network model, returned as a numeric matrix or
table. X retains its original orientation, with observations in rows or columns depending on the value
of the ObservationsIn name-value argument in the call to fitrnet.
Data Types: single | double | table

Response Properties

ResponseName — Response variable name
character vector

This property is read-only.

Response variable name, returned as a character vector.
Data Types: char

Y — Response values
numeric vector

This property is read-only.

Response values used to train the model, returned as a numeric vector. Each row of Y represents the
response value of the corresponding observation in X.
Data Types: single | double

ResponseTransform — Response transformation function
'none'

This property is read-only.

Response transformation function, returned as 'none'. The software does not transform the raw
response values.

Other Data Properties

HyperparameterOptimizationResults — Cross-validation optimization of hyperparameters
BayesianOptimization object | table

This property is read-only.

Cross-validation optimization of hyperparameters, specified as a BayesianOptimization object or
a table of hyperparameters and associated values. This property is nonempty if the
'OptimizeHyperparameters' name-value pair argument is nonempty when you create the model.
The value of HyperparameterOptimizationResults depends on the setting of the Optimizer
field in the HyperparameterOptimizationOptions structure when you create the model.
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Value of Optimizer Field Value of
HyperparameterOptimizationResults

'bayesopt' (default) Object of class BayesianOptimization
'gridsearch' or 'randomsearch' Table of hyperparameters used, observed

objective function values (cross-validation loss),
and rank of observations from lowest (best) to
highest (worst)

NumObservations — Number of observations
positive numeric scalar

This property is read-only.

Number of observations in the training data stored in X and Y, returned as a positive numeric scalar.
Data Types: double

RowsUsed — Rows used in fitting
[] | logical vector

This property is read-only.

Rows of the original training data used in fitting the model, returned as a logical vector. This property
is empty if all rows are used.
Data Types: logical

W — Observation weights
numeric vector

This property is read-only.

Observation weights used to train the model, returned as an n-by-1 numeric vector. n is the number of
observations (NumObservations).

The software normalizes the observation weights specified in the Weights name-value argument so
that the elements of W sum up to 1.
Data Types: single | double

Object Functions

Create CompactRegressionNeuralNetwork
compact Reduce size of machine learning model

Create RegressionPartitionedModel
crossval Cross-validate machine learning model

Interpret Prediction
lime Local interpretable model-agnostic explanations (LIME)
partialDependence Compute partial dependence

 RegressionNeuralNetwork

35-6367



plotPartialDependence Create partial dependence plot (PDP) and individual conditional expectation
(ICE) plots

shapley Shapley values

Assess Predictive Performance on New Observations
loss Loss for regression neural network
predict Predict responses using regression neural network

Assess Predictive Performance on Training Data
resubLoss Resubstitution regression loss
resubPredict Predict responses for training data using trained regression model

Examples

Train Neural Network Regression Model

Train a neural network regression model, and assess the performance of the model on a test set.

Load the carbig data set, which contains measurements of cars made in the 1970s and early 1980s.
Create a table containing the predictor variables Acceleration, Displacement, and so on, as well
as the response variable MPG.

load carbig
cars = table(Acceleration,Displacement,Horsepower, ...
    Model_Year,Origin,Weight,MPG);

Remove rows of cars where the table has missing values.

cars = rmmissing(cars);

Categorize the cars based on whether they were made in the USA.

cars.Origin = categorical(cellstr(cars.Origin));
cars.Origin = mergecats(cars.Origin,["France","Japan",...
    "Germany","Sweden","Italy","England"],"NotUSA");

Partition the data into training and test sets. Use approximately 80% of the observations to train a
neural network model, and 20% of the observations to test the performance of the trained model on
new data. Use cvpartition to partition the data.

rng("default") % For reproducibility of the data partition
c = cvpartition(height(cars),"Holdout",0.20);
trainingIdx = training(c); % Training set indices
carsTrain = cars(trainingIdx,:);
testIdx = test(c); % Test set indices
carsTest = cars(testIdx,:);

Train a neural network regression model by passing the carsTrain training data to the fitrnet
function. For better results, specify to standardize the predictor data.

Mdl = fitrnet(carsTrain,"MPG","Standardize",true)

Mdl = 
  RegressionNeuralNetwork
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           PredictorNames: {1x6 cell}
             ResponseName: 'MPG'
    CategoricalPredictors: 5
        ResponseTransform: 'none'
          NumObservations: 314
               LayerSizes: 10
              Activations: 'relu'
    OutputLayerActivation: 'none'
                   Solver: 'LBFGS'
          ConvergenceInfo: [1x1 struct]
          TrainingHistory: [1000x7 table]

  Properties, Methods

Mdl is a trained RegressionNeuralNetwork model. You can use dot notation to access the
properties of Mdl. For example, you can specify Mdl.TrainingHistory to get more information
about the training history of the neural network model.

Evaluate the performance of the regression model on the test set by computing the test mean
squared error (MSE). Smaller MSE values indicate better performance.

testMSE = loss(Mdl,carsTest,"MPG")

testMSE = 6.9047

Specify Neural Network Regression Model Architecture

Specify the structure of the neural network regression model, including the size of the fully
connected layers.

Load the carbig data set, which contains measurements of cars made in the 1970s and early 1980s.
Create a matrix X containing the predictor variables Acceleration, Cylinders, and so on. Store
the response variable MPG in the variable Y.

load carbig
X = [Acceleration Cylinders Displacement Weight];
Y = MPG;

Delete rows of X and Y where either array has missing values.

R = rmmissing([X Y]);
X = R(:,1:end-1);
Y = R(:,end);

Partition the data into training data (XTrain and YTrain) and test data (XTest and YTest). Reserve
approximately 20% of the observations for testing, and use the rest of the observations for training.

rng("default") % For reproducibility of the partition
c = cvpartition(length(Y),"Holdout",0.20);
trainingIdx = training(c); % Indices for the training set
XTrain = X(trainingIdx,:);
YTrain = Y(trainingIdx);
testIdx = test(c); % Indices for the test set
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XTest = X(testIdx,:);
YTest = Y(testIdx);

Train a neural network regression model. Specify to standardize the predictor data, and to have 30
outputs in the first fully connected layer and 10 outputs in the second fully connected layer. By
default, both layers use a rectified linear unit (ReLU) activation function. You can change the
activation functions for the fully connected layers by using the Activations name-value argument.

Mdl = fitrnet(XTrain,YTrain,"Standardize",true, ...
    "LayerSizes",[30 10])

Mdl = 
  RegressionNeuralNetwork
             ResponseName: 'Y'
    CategoricalPredictors: []
        ResponseTransform: 'none'
          NumObservations: 319
               LayerSizes: [30 10]
              Activations: 'relu'
    OutputLayerActivation: 'none'
                   Solver: 'LBFGS'
          ConvergenceInfo: [1x1 struct]
          TrainingHistory: [1000x7 table]

  Properties, Methods

Access the weights and biases for the fully connected layers of the trained model by using the
LayerWeights and LayerBiases properties of Mdl. The first two elements of each property
correspond to the values for the first two fully connected layers, and the third element corresponds to
the values for the final fully connected layer for regression. For example, display the weights and
biases for the first fully connected layer.

Mdl.LayerWeights{1}

ans = 30×4

    0.0124    0.0115   -0.0095    0.1173
   -0.4389   -0.9227   -0.5970   -2.2574
    0.7602    0.0472   -2.0497   -0.0335
   -3.1052   -3.0258   -1.2699   -1.7047
    0.6316    1.8326    1.3469    0.5265
   -0.1678    1.7469   -2.0219   -1.1101
    1.0289   -0.1726   -0.3063   -0.5306
    1.9924   -0.0611   -1.4048    0.7963
   -0.8603   -0.8336    0.3769    1.4827
   -0.0033   -2.2616    1.1424    1.5113
      ⋮

Mdl.LayerBiases{1}

ans = 30×1

   -0.4451
   -0.8453
   -0.6520
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   -1.2144
    0.3787
   -1.5853
    2.0479
    1.3661
   -1.3556
    0.1510
      ⋮

The final fully connected layer has one output. The number of layer outputs corresponds to the first
dimension of the layer weights and layer biases.

size(Mdl.LayerWeights{end})

ans = 1×2

     1    10

size(Mdl.LayerBiases{end})

ans = 1×2

     1     1

To estimate the performance of the trained model, compute the test set mean squared error (MSE)
for Mdl. Smaller MSE values indicate better performance.

testMSE = loss(Mdl,XTest,YTest)

testMSE = 17.3486

Compare the predicted test set response values to the true response values. Plot the predicted miles
per gallon (MPG) along the vertical axis and the true MPG along the horizontal axis. Points on the
reference line indicate correct predictions. A good model produces predictions that are scattered
near the line.

testPredictions = predict(Mdl,XTest);
plot(YTest,testPredictions,".")
hold on
plot(YTest,YTest)
hold off
xlabel("True MPG")
ylabel("Predicted MPG")
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Version History
Introduced in R2021a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• The predict object function supports code generation.

For more information, see “Introduction to Code Generation” on page 34-2.

See Also
fitrnet | predict | loss | RegressionPartitionedModel |
CompactRegressionNeuralNetwork

Topics
“Assess Regression Neural Network Performance” on page 19-188
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RegressionNeuralNetwork Predict
Predict responses using neural network regression model
Library: Statistics and Machine Learning Toolbox / Regression

Description
The RegressionNeuralNetwork Predict block predicts responses using a neural network regression
object (RegressionNeuralNetwork or CompactRegressionNeuralNetwork).

Import a trained regression object into the block by specifying the name of a workspace variable that
contains the object. The input port x receives an observation (predictor data), and the output port yfit
returns a predicted response for the observation.

Ports
Input

x — Predictor data
row vector | column vector

Predictor data, specified as a row or column vector of one observation.

Dependencies

The variables in x must have the same order as the predictor variables that trained the model
specified by Select trained machine learning model.
Data Types: single | double | half | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 |
uint64 | Boolean | fixed point

Output

yfit — Predicted response
scalar

Predicted response, returned as a scalar.
Data Types: single | double | half | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 |
uint64 | Boolean | fixed point

Parameters
Main

Select trained machine learning model — Neural network regression model
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nnetMdl (default) | RegressionNeuralNetwork | CompactRegressionNeuralNetwork

Specify the name of a workspace variable that contains a RegressionNeuralNetwork object or
CompactRegressionNeuralNetwork object.

When you train the model by using fitrnet, the following restrictions apply:

• The predictor data cannot include categorical predictors (logical, categorical, char,
string, or cell). If you supply training data in a table, the predictors must be numeric (double
or single). Also, you cannot use the CategoricalPredictors name-value argument. To
include categorical predictors in a model, preprocess the categorical predictors by using
dummyvar before fitting the model.

Programmatic Use
Block Parameter: TrainedLearner
Type: workspace variable
Values: RegressionNeuralNetwork object | CompactRegressionNeuralNetwork object
Default: 'nnetMdl'

Data Types

Fixed-Point Operational Parameters

Integer rounding mode — Rounding mode for fixed-point operations

Floor (default) | Ceiling | Convergent | Nearest | Round | Simplest | Zero

Specify the rounding mode for fixed-point operations. For more information, see “Rounding” (Fixed-
Point Designer).

Block parameters always round to the nearest representable value. To control the rounding of a block
parameter, enter an expression into the mask field using a MATLAB rounding function.

Programmatic Use
Block Parameter: RndMeth
Type: character vector
Values: 'Ceiling' | 'Convergent' | 'Floor' | 'Nearest' | 'Round' | 'Simplest' |
'Zero'
Default: 'Floor'

Saturate on integer overflow — Method of overflow action

off (default) | on

Specify whether overflows saturate or wrap.
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Action Rationale Impact on Overflows Example
Select this check
box (on).

Your model has possible
overflow, and you want
explicit saturation protection
in the generated code.

Overflows saturate to either
the minimum or maximum
value that the data type can
represent.

The maximum value that the
int8 (signed 8-bit integer)
data type can represent is
127. Any block operation
result greater than this
maximum value causes
overflow of the 8-bit integer.
With the check box selected,
the block output saturates at
127. Similarly, the block
output saturates at a
minimum output value of –
128.

Clear this check
box (off).

You want to optimize
efficiency of your generated
code.

You want to avoid
overspecifying how a block
handles out-of-range signals.
For more information, see
“Troubleshoot Signal Range
Errors” (Simulink).

Overflows wrap to the
appropriate value that the
data type can represent.

The maximum value that the
int8 (signed 8-bit integer)
data type can represent is
127. Any block operation
result greater than this
maximum value causes
overflow of the 8-bit integer.
With the check box cleared,
the software interprets the
value causing the overflow as
int8, which can produce an
unintended result. For
example, a block result of 130
(binary 1000 0010) expressed
as int8 is –126.

Programmatic Use
Block Parameter: SaturateOnIntegerOverflow
Type: character vector
Values: 'off' | 'on'
Default: 'off'

Lock output data type setting against changes by the fixed-point tools —
Prevention of fixed-point tools from overriding data type

off (default) | on

Select this parameter to prevent the fixed-point tools from overriding the data type you specify for
the block. For more information, see “Use Lock Output Data Type Setting” (Fixed-Point Designer).

Programmatic Use
Block Parameter: LockScale
Type: character vector
Values: 'off' | 'on'
Default: 'off'
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Data Type

Output data type — Data type of yfit output

Inherit: auto (default) | double | single | half | int8 | uint8 | int16 | uint16 | int32 |
uint32 | int64 | uint64 | boolean | fixdt(1,16) | fixdt(1,16,0) | fixdt(1,16,2^0,0) |
<data type expression>

Specify the data type of the yfit output. The type can be inherited, specified directly, or expressed as
a data type object such as Simulink.NumericType.

When you select Inherit: auto, the block uses a rule that inherits a data type.

For more information about data types, see “Control Data Types of Signals” (Simulink).

Click the Show data type assistant button  to display the Data Type Assistant, which helps
you set the data type attributes. For more information, see “Specify Data Types Using Data Type
Assistant” (Simulink).

Programmatic Use
Block Parameter: OutDataTypeStr
Type: character vector
Values: 'Inherit: auto' | 'double' | 'single' | 'half' | 'int8' | 'uint8' | 'int16' |
'uint16' | 'int32' | 'uint32' | 'int64' | 'uint64' | 'boolean' | 'fixdt(1,16)' |
'fixdt(1,16,0)' | 'fixdt(1,16,2^0,0)' | '<data type expression>'
Default: 'Inherit: auto'

Output minimum — Minimum value of yfit output for range checking
[] (default) | scalar

Specify the lower value of the yfit output range that Simulink checks.

Simulink uses the minimum value to perform:

• Parameter range checking for some blocks (see “Specify Minimum and Maximum Values for Block
Parameters” (Simulink)).

• Simulation range checking (see “Specify Signal Ranges” (Simulink) and “Enable Simulation Range
Checking” (Simulink)).

• Automatic scaling of fixed-point data types.
• Optimization of the code that you generate from the model. This optimization can remove

algorithmic code and affect the results of some simulation modes, such as SIL or external mode.
For more information, see Optimize using the specified minimum and maximum values (Embedded
Coder).

Note The Output minimum parameter does not saturate or clip the actual yfit signal. Use the
Saturation block instead.

Programmatic Use
Block Parameter: OutMin
Type: character vector
Values: '[]' | scalar
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Default: '[]'

Output maximum — Maximum value of yfit output for range checking
[] (default) | scalar

Specify the upper value of the yfit output range that Simulink checks.

Simulink uses the maximum value to perform:

• Parameter range checking for some blocks (see “Specify Minimum and Maximum Values for Block
Parameters” (Simulink)).

• Simulation range checking (see “Specify Signal Ranges” (Simulink) and “Enable Simulation Range
Checking” (Simulink)).

• Automatic scaling of fixed-point data types.
• Optimization of the code that you generate from the model. This optimization can remove

algorithmic code and affect the results of some simulation modes, such as SIL or external mode.
For more information, see Optimize using the specified minimum and maximum values (Embedded
Coder).

Note The Output maximum parameter does not saturate or clip the actual yfit signal. Use the
Saturation block instead.

Programmatic Use
Block Parameter: OutMax
Type: character vector
Values: '[]' | scalar
Default: '[]'

Output layer data type — Data type of final fully connected layer

Inherit: Inherit via internal rule (default) | double | single | half | int8 | uint8 |
int16 | uint16 | int32 | uint32 | int64 | uint64 | boolean | fixdt(1,16) | fixdt(1,16,0) |
fixdt(1,16,2^0,0) | <data type expression>

Specify the data type for the output layer. The type can be inherited, specified directly, or expressed
as a data type object such as Simulink.NumericType.

When you select Inherit: Inherit via internal rule, the block uses an internal rule to
determine the output data type. The internal rule chooses a data type that optimizes numerical
accuracy, performance, and generated code size, while taking into account the properties of the
embedded target hardware. The software cannot always optimize efficiency and numerical accuracy
at the same time.

For more information about data types, see “Control Data Types of Signals” (Simulink).

Click the Show data type assistant button  to display the Data Type Assistant, which helps
you set the data type attributes. For more information, see “Specify Data Types Using Data Type
Assistant” (Simulink).

Programmatic Use
Block Parameter: OutputLayerDataTypeStr
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Type: character vector
Values: 'Inherit: Inherit via internal rule' | 'double' | 'single' | 'half' | 'int8' |
'uint8' | 'int16' | 'uint16' | 'int32' | 'uint32' | 'int64' | 'uint64' | 'boolean' |
'fixdt(1,16)' | 'fixdt(1,16,0)' | 'fixdt(1,16,2^0,0)' | '<data type expression>'
Default: 'Inherit: Inherit via internal rule'

Output layer minimum — Minimum value for final fully connected layer
[] (default) | scalar

Lower value of the output layer's internal variable range checked by Simulink.

Simulink uses the minimum value to perform:

• Parameter range checking for some blocks (see “Specify Minimum and Maximum Values for Block
Parameters” (Simulink)).

• Simulation range checking (see “Specify Signal Ranges” (Simulink) and “Enable Simulation Range
Checking” (Simulink)).

• Automatic scaling of fixed-point data types.
• Optimization of the code that you generate from the model. This optimization can remove

algorithmic code and affect the results of some simulation modes, such as SIL or external mode.
For more information, see Optimize using the specified minimum and maximum values (Embedded
Coder).

Note The Output layer minimum parameter does not saturate or clip the output layer value signal.

Programmatic Use
Block Parameter: OutputLayerOutMin
Type: character vector
Values: '[]' | scalar
Default: '[]'

Output layer maximum — Maximum value for final fully connected layer
[] (default) | scalar

Upper value of the output layer's internal variable range checked by Simulink.

Simulink uses the maximum value to perform:

• Parameter range checking for some blocks (see “Specify Minimum and Maximum Values for Block
Parameters” (Simulink)).

• Simulation range checking (see “Specify Signal Ranges” (Simulink) and “Enable Simulation Range
Checking” (Simulink)).

• Automatic scaling of fixed-point data types.
• Optimization of the code that you generate from the model. This optimization can remove

algorithmic code and affect the results of some simulation modes, such as SIL or external mode.
For more information, see Optimize using the specified minimum and maximum values (Embedded
Coder).

Note The Output layer maximum parameter does not saturate or clip the output layer value signal.
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Programmatic Use
Block Parameter: OutputLayerOutMax
Type: character vector
Values: '[]' | scalar
Default: '[]'

Layer 1 data type — Data type of first fully connected layer

Inherit: Inherit via internal rule (default) | double | single | half | int8 | uint8 |
int16 | uint16 | int32 | uint32 | int64 | uint64 | boolean | fixdt(1,16) | fixdt(1,16,0) |
fixdt(1,16,2^0,0) | <data type expression>

Specify the data type for the first layer. The type can be inherited, specified directly, or expressed as a
data type object such as Simulink.NumericType.

When you select Inherit: Inherit via internal rule, the block uses an internal rule to
determine the data type. The internal rule chooses a data type that optimizes numerical accuracy,
performance, and generated code size, while taking into account the properties of the embedded
target hardware. The software cannot always optimize efficiency and numerical accuracy at the same
time.

For more information about data types, see “Control Data Types of Signals” (Simulink).

Click the Show data type assistant button  to display the Data Type Assistant, which helps
you set the data type attributes. For more information, see “Specify Data Types Using Data Type
Assistant” (Simulink).

Tips

A trained neural network can have more than one fully connected layer, excluding the output layer.

• You can specify the data type for each individual layer for the first 10 layers. Specify the data type
Layer n data type for each layer. The data type of the first layer is Layer 1 data type, the data
type of the second layer is Layer 2 data type, and so on.

• You can specify the data type for layers 11 to k, where k is the total number of layers, by using the
data type Additional layer(s) data type. The Block Parameter for Additional layer(s) data
type is Layer11DataTypeStr.

• The data types Layer n data type and Additional layer(s) data type can be inherited, specified
directly, or expressed as a data type object such as Simulink.NumericType. These data types
support the same values as Layer 1 data type.

Programmatic Use
Block Parameter: Layer1DataTypeStr
Type: character vector
Values: 'Inherit: Inherit via internal rule' | 'double' | 'single' | 'half' | 'int8' |
'uint8' | 'int16' | 'uint16' | 'int32' | 'uint32' | 'int64' | 'uint64' | 'boolean' |
'fixdt(1,16)' | 'fixdt(1,16,0)' | 'fixdt(1,16,2^0,0)' | '<data type expression>'
Default: 'Inherit: Inherit via internal rule'

Layer 1 minimum — Minimum value for first fully connected layer
[] (default) | scalar

Lower value of the first layer's internal variable range checked by Simulink.
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Simulink uses the minimum value to perform:

• Parameter range checking for some blocks (see “Specify Minimum and Maximum Values for Block
Parameters” (Simulink)).

• Simulation range checking (see “Specify Signal Ranges” (Simulink) and “Enable Simulation Range
Checking” (Simulink)).

• Automatic scaling of fixed-point data types.
• Optimization of the code that you generate from the model. This optimization can remove

algorithmic code and affect the results of some simulation modes, such as SIL or external mode.
For more information, see Optimize using the specified minimum and maximum values (Embedded
Coder).

Note The Layer 1 minimum parameter does not saturate or clip the first layer value signal.

Tips

A trained neural network can have more than one fully connected layer, excluding the output layer.

• You can specify the lower value of each individual layer's internal variable range checked by
Simulink for the first 10 layers. Specify the lower value Layer n minimum for each layer. The
minimum value of the first layer is Layer 1 minimum, the minimum value of the second layer is
Layer 2 minimum, and so on.

• You can specify the lower value for layers 11 to k, where k is the total number of layers, by using
Additional layer(s) minimum. The Block Parameter for Additional layer(s) minimum is
Layer11OutMin.

• Layer n minimum and Additional layer(s) minimum support the same values as Layer 1
minimum.

Programmatic Use
Block Parameter: Layer1OutMin
Type: character vector
Values: '[]' | scalar
Default: '[]'

Layer 1 maximum — Maximum value for first fully connected layer
[] (default) | scalar

Upper value of the first layer's internal variable range checked by Simulink.

Simulink uses the maximum value to perform:

• Parameter range checking for some blocks (see “Specify Minimum and Maximum Values for Block
Parameters” (Simulink)).

• Simulation range checking (see “Specify Signal Ranges” (Simulink) and “Enable Simulation Range
Checking” (Simulink)).

• Automatic scaling of fixed-point data types.
• Optimization of the code that you generate from the model. This optimization can remove

algorithmic code and affect the results of some simulation modes, such as SIL or external mode.
For more information, see Optimize using the specified minimum and maximum values (Embedded
Coder).
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Note The Layer 1 maximum parameter does not saturate or clip the first layer value signal.

Tips

A trained neural network can have more than one fully connected layer, excluding the output layer.

• You can specify the upper value of each individual layer's internal variable range checked by
Simulink for the first 10 layers. Specify the upper value Layer n maximum for each layer. The
maximum value of the first layer is Layer 1 maximum, the maximum value of the second layer is
Layer 2 maximum, and so on.

• You can specify the upper value for layers 11 to k, where k is the total number of layers, by using
Additional layer(s) maximum. The Block Parameter for Additional layer(s) maximum is
Layer11OutMax.

• Layer n maximum and Additional layer(s) maximum support the same values as Layer 1
maximum.

Programmatic Use
Block Parameter: Layer1OutMax
Type: character vector
Values: '[]' | scalar
Default: '[]'

Block Characteristics
Data Types Boolean | double | fixed point | half | integer | single
Direct Feedthrough yes
Multidimensional
Signals

no

Variable-Size Signals no
Zero-Crossing
Detection

no

Alternative Functionality
You can use a MATLAB Function block with the predict object function of a neural network
regression object (RegressionNeuralNetwork or CompactRegressionNeuralNetwork). For an
example, see “Predict Class Labels Using MATLAB Function Block” on page 34-51.

When deciding whether to use the RegressionNeuralNetwork Predict block in the Statistics and
Machine Learning Toolbox library or a MATLAB Function block with the predict function, consider
the following:

• If you use the Statistics and Machine Learning Toolbox library block, you can use the Fixed-Point
Tool to convert a floating-point model to fixed point.

• Support for variable-size arrays must be enabled for a MATLAB Function block with the predict
function.

• If you use a MATLAB Function block, you can use MATLAB functions for preprocessing or post-
processing before or after predictions in the same MATLAB Function block.
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Version History
Introduced in R2021b

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

Fixed-Point Conversion
Design and simulate fixed-point systems using Fixed-Point Designer™.

See Also
Blocks
RegressionSVM Predict | RegressionTree Predict | RegressionEnsemble Predict | RegressionGP
Predict | ClassificationNeuralNetwork Predict

Objects
RegressionNeuralNetwork | CompactRegressionNeuralNetwork

Functions
predict | fitrnet

Topics
“Predict Responses Using RegressionSVM Predict Block” on page 34-127
“Predict Responses Using RegressionTree Predict Block” on page 34-139
“Predict Responses Using RegressionEnsemble Predict Block” on page 34-149
“Predict Responses Using RegressionGP Predict Block” on page 34-164
“Predict Class Labels Using MATLAB Function Block” on page 34-51
“Deploy Neural Network Regression Model to FPGA/ASIC Platform” on page 34-40
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RegressionPartitionedEnsemble
Package: classreg.learning.partition
Superclasses: RegressionPartitionedModel

Cross-validated regression ensemble

Description
RegressionPartitionedEnsemble is a set of regression ensembles trained on cross-validated
folds. Estimate the quality of classification by cross validation using one or more “kfold” methods:
kfoldfun, kfoldLoss, or kfoldPredict. Every “kfold” method uses models trained on in-fold
observations to predict response for out-of-fold observations. For example, suppose you cross validate
using five folds. In this case, every training fold contains roughly 4/5 of the data and every test fold
contains roughly 1/5 of the data. The first model stored in Trained{1} was trained on X and Y with
the first 1/5 excluded, the second model stored in Trained{2} was trained on X and Y with the
second 1/5 excluded, and so on. When you call kfoldPredict, it computes predictions for the first
1/5 of the data using the first model, for the second 1/5 of data using the second model and so on. In
short, response for every observation is computed by kfoldPredict using the model trained without
this observation.

Construction
cvens = crossval(ens) creates a cross-validated ensemble from ens, a regression ensemble. For
syntax details, see the crossval method reference page.

cvens = fitrensemble(X,Y,Name,Value) creates a cross-validated ensemble when Name is one
of 'crossval', 'kfold', 'holdout', 'leaveout', or 'cvpartition'. For syntax details, see the
fitrensemble function reference page.

Input Arguments

ens

A regression ensemble constructed with fitrensemble.

Properties
BinEdges

Bin edges for numeric predictors, specified as a cell array of p numeric vectors, where p is the
number of predictors. Each vector includes the bin edges for a numeric predictor. The element in the
cell array for a categorical predictor is empty because the software does not bin categorical
predictors.

The software bins numeric predictors only if you specify the 'NumBins' name-value argument as a
positive integer scalar when training a model with tree learners. The BinEdges property is empty if
the 'NumBins' value is empty (default).

You can reproduce the binned predictor data Xbinned by using the BinEdges property of the trained
model mdl.
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X = mdl.X; % Predictor data
Xbinned = zeros(size(X));
edges = mdl.BinEdges;
% Find indices of binned predictors.
idxNumeric = find(~cellfun(@isempty,edges));
if iscolumn(idxNumeric)
    idxNumeric = idxNumeric';
end
for j = idxNumeric 
    x = X(:,j);
    % Convert x to array if x is a table.
    if istable(x) 
        x = table2array(x);
    end
    % Group x into bins by using the discretize function.
    xbinned = discretize(x,[-inf; edges{j}; inf]); 
    Xbinned(:,j) = xbinned;
end

Xbinned contains the bin indices, ranging from 1 to the number of bins, for numeric predictors.
Xbinned values are 0 for categorical predictors. If X contains NaNs, then the corresponding Xbinned
values are NaNs.

CategoricalPredictors

Categorical predictor indices, specified as a vector of positive integers. CategoricalPredictors
contains index values indicating that the corresponding predictors are categorical. The index values
are between 1 and p, where p is the number of predictors used to train the model. If none of the
predictors are categorical, then this property is empty ([]).

CrossValidatedModel

Name of the cross-validated model, a character vector.

Kfold

Number of folds used in a cross-validated tree, a positive integer.

ModelParameters

Object holding parameters of tree.

NumObservations

Numeric scalar containing the number of observations in the training data.

NumTrainedPerFold

Vector of Kfold elements. Each entry contains the number of trained learners in this cross-validation
fold.

Partition

The partition of class cvpartition used in creating the cross-validated ensemble.
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PredictorNames

A cell array of names for the predictor variables, in the order in which they appear in X.

ResponseName

Name of the response variable Y, a character vector.

ResponseTransform

Function handle for transforming scores, or character vector representing a built-in transformation
function. 'none' means no transformation; equivalently, 'none' means @(x)x.

Add or change a ResponseTransform function using dot notation:

ens.ResponseTransform = @function

Trainable

Cell array of ensembles trained on cross-validation folds. Every ensemble is full, meaning it contains
its training data and weights.

Trained

Cell array of compact ensembles trained on cross-validation folds.

W

The scaled weights, a vector with length n, the number of rows in X.

X

A matrix or table of predictor values. Each column of X represents one variable, and each row
represents one observation.

Y

A numeric column vector with the same number of rows as X. Each entry in Y is the response to the
data in the corresponding row of X.

Object Functions
gather Gather properties of Statistics and Machine Learning Toolbox object from GPU
kfoldLoss Loss for cross-validated partitioned regression model
kfoldPredict Predict responses for observations in cross-validated regression model
kfoldfun Cross-validate function for regression
resume Resume training ensemble

Copy Semantics
Value. To learn how value classes affect copy operations, see Copying Objects.
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Examples
Construct Partitioned Regression Ensemble

Construct a partitioned regression ensemble, and examine the cross-validation losses for the folds.

Load the carsmall data set.

load carsmall;

Create a subset of variables.

XX = [Cylinders Displacement Horsepower Weight];
YY = MPG;

Construct the ensemble model.

rens = fitrensemble(XX,YY);

Create a cross-validated ensemble from rens.

rng(10,'twister') % For reproducibility
cvrens = crossval(rens);

Examine the cross-validation losses.

L = kfoldLoss(cvrens,'mode','individual')

L = 10×1

   21.4489
   48.4388
   28.2560
   17.5354
   29.9441
   49.5254
   51.2372
   31.0152
   31.6388
    8.9607

L is a vector containing the cross-validation loss for each trained learner in the ensemble.

Extended Capabilities
GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

The object functions of the RegressionPartitionedEnsemble model fully support GPU arrays. For
more information, see “Run MATLAB Functions on a GPU” (Parallel Computing Toolbox).

See Also
ClassificationPartitionedEnsemble | RegressionPartitionedModel |
RegressionEnsemble | fitrtree
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RegressionPartitionedGAM
Cross-validated generalized additive model (GAM) for regression

Description
RegressionPartitionedGAM is a set of generalized additive models trained on cross-validated
folds. Estimate the quality of the cross-validated regression by using one or more kfold functions:
kfoldPredict, kfoldLoss, and kfoldfun.

Every kfold object function uses models trained on training-fold (in-fold) observations to predict the
response for validation-fold (out-of-fold) observations. For example, suppose you cross-validate using
five folds. The software randomly assigns each observation into five groups of equal size (roughly).
The training fold contains four of the groups (roughly 4/5 of the data), and the validation fold contains
the other group (roughly 1/5 of the data). In this case, cross-validation proceeds as follows:

1 The software trains the first model (stored in CVMdl.Trained{1}) by using the observations in
the last four groups, and reserves the observations in the first group for validation.

2 The software trains the second model (stored in CVMdl.Trained{2}) by using the observations
in the first group and the last three groups. The software reserves the observations in the second
group for validation.

3 The software proceeds in a similar manner for the third, fourth, and fifth models.

If you validate by using kfoldPredict, the software computes predictions for the observations in
group i by using the ith model. In short, the software estimates a response for every observation by
using the model trained without that observation.

Creation
You can create a RegressionPartitionedGAM model in two ways:

• Create a cross-validated model from a GAM object RegressionGAM by using the crossval object
function.

• Create a cross-validated model by using the fitrgam function and specifying one of the name-
value arguments 'CrossVal', 'CVPartition', 'Holdout', 'KFold', or 'Leaveout'.

Properties
GAM Properties

IsStandardDeviationFit — Flag indicating whether standard deviation model is fit
false | true

Flag indicating whether a model for the standard deviation of the response variable is fit, specified as
false or true. Specify the 'FitStandardDeviation' name-value argument of fitrgam as true
to fit the model for the standard deviation.
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If IsStandardDeviationFit is true, then you can evaluate the standard deviation at the predictor
data X by using kfoldPredict. This function also returns the prediction intervals of the response
variable, evaluated at X.
Data Types: logical

Cross-Validation Properties

CrossValidatedModel — Cross-validated model name
'GAM'

This property is read-only.

Cross-validated model name, specified as 'GAM'.

KFold — Number of cross-validated folds
positive integer

This property is read-only.

Number of cross-validated folds, specified as a positive integer.
Data Types: double

ModelParameters — Cross-validation parameter values
object

This property is read-only.

Cross-validation parameter values, specified as an object. The parameter values correspond to the
values of the name-value arguments used to cross-validate the generalized additive model.
ModelParameters does not contain estimated parameters.

You can access the properties of ModelParameters using dot notation.

Partition — Data partition
cvpartition model

This property is read-only.

Data partition indicating how the software splits the data into cross-validation folds, specified as a
cvpartition model.

Trained — Compact models trained on cross-validation folds
cell array of CompactRegressionGAM models

This property is read-only.

Compact models trained on cross-validation folds, specified as a cell array of
CompactRegressionGAM model objects. Trained has k cells, where k is the number of folds.
Data Types: cell

Other Regression Properties

CategoricalPredictors — Categorical predictor indices
vector of positive integers | []
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This property is read-only.

Categorical predictor indices, specified as a vector of positive integers. CategoricalPredictors
contains index values indicating that the corresponding predictors are categorical. The index values
are between 1 and p, where p is the number of predictors used to train the model. If none of the
predictors are categorical, then this property is empty ([]).
Data Types: double

NumObservations — Number of observations
numeric scalar

This property is read-only.

Number of observations in the training data stored in X and Y, specified as a numeric scalar.
Data Types: double

PredictorNames — Predictor variable names
cell array of character vectors

This property is read-only.

Predictor variable names, specified as a cell array of character vectors. The order of the elements of
PredictorNames corresponds to the order in which the predictor names appear in the training data.
Data Types: cell

ResponseName — Response variable name
character vector

This property is read-only.

Response variable name, specified as a character vector.
Data Types: char

ResponseTransform — Response transformation function
'none' | function handle

Response transformation function, specified as 'none' or a function handle. ResponseTransform
describes how the software transforms raw response values.

For a MATLAB function or a function that you define, enter its function handle. For example, you can
enter Mdl.ResponseTransform = @function, where function accepts a numeric vector of the
original responses and returns a numeric vector of the same size containing the transformed
responses.
Data Types: char | function_handle

W — Observation weights
numeric vector

This property is read-only.

Observation weights used to train the model, specified as an n-by-1 numeric vector. n is the number
of observations (NumObservations).
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The software normalizes the observation weights specified in the 'Weights' name-value argument
so that the elements of W sum up to 1.
Data Types: double

X — Predictors
numeric matrix | table

This property is read-only.

Predictors used to cross-validate the model, specified as a numeric matrix or table.

Each row of X corresponds to one observation, and each column corresponds to one variable.
Data Types: single | double | table

Y — Response
numeric vector

This property is read-only.

Response used to cross-validate the model, specified as a numeric vector.

Each row of Y represents the observed response of the corresponding row of X.
Data Types: single | double

Object Functions
kfoldPredict Predict responses for observations in cross-validated regression model
kfoldLoss Loss for cross-validated partitioned regression model
kfoldfun Cross-validate function for regression

Examples

Create Cross-Validated GAM Using fitrgam

Train a cross-validated GAM with 10 folds, which is the default cross-validation option, by using
fitrgam. Then, use kfoldPredict to predict responses for validation-fold observations using a
model trained on training-fold observations.

Load the carbig data set, which contains measurements of cars made in the 1970s and early 1980s.

load carbig

Create a table that contains the predictor variables (Acceleration, Displacement, Horsepower,
and Weight) and the response variable (MPG).

tbl = table(Acceleration,Displacement,Horsepower,Weight,MPG);

Create a cross-validated GAM by using the default cross-validation option. Specify the 'CrossVal'
name-value argument as 'on'.

rng('default') % For reproducibility
CVMdl = fitrgam(tbl,'MPG','CrossVal','on')
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CVMdl = 
  RegressionPartitionedGAM
       CrossValidatedModel: 'GAM'
            PredictorNames: {1x4 cell}
              ResponseName: 'MPG'
           NumObservations: 398
                     KFold: 10
                 Partition: [1x1 cvpartition]
         NumTrainedPerFold: [1x1 struct]
         ResponseTransform: 'none'
    IsStandardDeviationFit: 0

  Properties, Methods

The fitrgam function creates a RegressionPartitionedGAM model object CVMdl with 10 folds.
During cross-validation, the software completes these steps:

1 Randomly partition the data into 10 sets.
2 For each set, reserve the set as validation data, and train the model using the other 9 sets.
3 Store the 10 compact, trained models a in a 10-by-1 cell vector in the Trained property of the

cross-validated model object RegressionPartitionedGAM.

You can override the default cross-validation setting by using the 'CVPartition', 'Holdout',
'KFold', or 'Leaveout' name-value argument.

Predict responses for the observations in tbl by using kfoldPredict. The function predicts
responses for every observation using the model trained without that observation.

yHat = kfoldPredict(CVMdl);

yHat is a numeric vector. Display the first five predicted responses.

yHat(1:5)

ans = 5×1

   19.4848
   15.7203
   15.5742
   15.3185
   17.8223

Compute the regression loss (mean squared error).

L = kfoldLoss(CVMdl)

L = 17.7248

kfoldLoss returns the average mean squared error over 10 folds.

 RegressionPartitionedGAM

35-6391



Create Cross-Validated Regression GAM Using crossval

Train a regression generalized additive model (GAM) by using fitrgam, and create a cross-validated
GAM by using crossval and the holdout option. Then, use kfoldPredict to predict responses for
validation-fold observations using a model trained on training-fold observations.

Load the patients data set.

load patients

Create a table that contains the predictor variables (Age, Diastolic, Smoker, Weight, Gender,
SelfAssessedHealthStatus) and the response variable (Systolic).

tbl = table(Age,Diastolic,Smoker,Weight,Gender,SelfAssessedHealthStatus,Systolic);

Train a GAM that contains linear terms for predictors.

Mdl = fitrgam(tbl,'Systolic');

Mdl is a RegressionGAM model object.

Cross-validate the model by specifying a 30% holdout sample.

rng('default') % For reproducibility
CVMdl = crossval(Mdl,'Holdout',0.3)

CVMdl = 
  RegressionPartitionedGAM
       CrossValidatedModel: 'GAM'
            PredictorNames: {1x6 cell}
     CategoricalPredictors: [3 5 6]
              ResponseName: 'Systolic'
           NumObservations: 100
                     KFold: 1
                 Partition: [1x1 cvpartition]
         NumTrainedPerFold: [1x1 struct]
         ResponseTransform: 'none'
    IsStandardDeviationFit: 0

  Properties, Methods

The crossval function creates a RegressionPartitionedGAM model object CVMdl with the
holdout option. During cross-validation, the software completes these steps:

1 Randomly select and reserve 30% of the data as validation data, and train the model using the
rest of the data.

2 Store the compact, trained model in the Trained property of the cross-validated model object
RegressionPartitionedGAM.

You can choose a different cross-validation setting by using the 'CrossVal', 'CVPartition',
'KFold', or 'Leaveout' name-value argument.

Predict responses for the validation-fold observations by using kfoldPredict. The function predicts
responses for the validation-fold observations by using the model trained on the training-fold
observations. The function assigns NaN to the training-fold observations.
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yFit = kfoldPredict(CVMdl);

Find the validation-fold observation indexes, and create a table containing the observation index,
observed response values, and predicted response values. Display the first eight rows of the table.

idx = find(~isnan(yFit));
t = table(idx,tbl.Systolic(idx),yFit(idx), ...
    'VariableNames',{'Obseraction Index','Observed Value','Predicted Value'});
head(t)

    Obseraction Index    Observed Value    Predicted Value
    _________________    ______________    _______________

            1                 124              130.22     
            6                 121              124.38     
            7                 130              125.26     
           12                 115              117.05     
           20                 125              121.82     
           22                 123              116.99     
           23                 114                 107     
           24                 128              122.52     

Compute the regression error (mean squared error) for the validation-fold observations.

L = kfoldLoss(CVMdl)

L = 43.8715

Find Optimal Number of Trees for GAM Using kfoldLoss

Train a cross-validated generalized additive model (GAM) with 10 folds. Then, use kfoldLoss to
compute the cumulative cross-validation regression loss (mean squared errors). Use the errors to
determine the optimal number of trees per predictor (linear term for predictor) and the optimal
number of trees per interaction term.

Alternatively, you can find optimal values of fitrgam name-value arguments by using the
“OptimizeHyperparameters” on page 35-0  name-value argument. For an example, see “Optimize
GAM Using OptimizeHyperparameters” on page 35-2469.

Load the patients data set.

load patients

Create a table that contains the predictor variables (Age, Diastolic, Smoker, Weight, Gender, and
SelfAssessedHealthStatus) and the response variable (Systolic).

tbl = table(Age,Diastolic,Smoker,Weight,Gender,SelfAssessedHealthStatus,Systolic);

Create a cross-validated GAM by using the default cross-validation option. Specify the 'CrossVal'
name-value argument as 'on'. Also, specify to include 5 interaction terms.

rng('default') % For reproducibility
CVMdl = fitrgam(tbl,'Systolic','CrossVal','on','Interactions',5);
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If you specify 'Mode' as 'cumulative' for kfoldLoss, then the function returns cumulative
errors, which are the average errors across all folds obtained using the same number of trees for
each fold. Display the number of trees for each fold.

CVMdl.NumTrainedPerFold 

ans = struct with fields:
      PredictorTrees: [300 300 300 300 300 300 300 300 300 300]
    InteractionTrees: [76 100 100 100 100 42 100 100 59 100]

kfoldLoss can compute cumulative errors using up to 300 predictor trees and 42 interaction trees.

Plot the cumulative, 10-fold cross-validated, mean squared errors. Specify
'IncludeInteractions' as false to exclude interaction terms from the computation.

L_noInteractions = kfoldLoss(CVMdl,'Mode','cumulative','IncludeInteractions',false);
figure
plot(0:min(CVMdl.NumTrainedPerFold.PredictorTrees),L_noInteractions)

The first element of L_noInteractions is the average error over all folds obtained using only the
intercept (constant) term. The (J+1)th element of L_noInteractions is the average error obtained
using the intercept term and the first J predictor trees per linear term. Plotting the cumulative loss
allows you to monitor how the error changes as the number of predictor trees in the GAM increases.

Find the minimum error and the number of predictor trees used to achieve the minimum error.

[M,I] = min(L_noInteractions)
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M = 28.0506

I = 6

The GAM achieves the minimum error when it includes 5 predictor trees.

Compute the cumulative mean squared error using both linear terms and interaction terms.

L = kfoldLoss(CVMdl,'Mode','cumulative');
figure
plot(0:min(CVMdl.NumTrainedPerFold.InteractionTrees),L)

The first element of L is the average error over all folds obtained using the intercept (constant) term
and all predictor trees per linear term. The (J+1)th element of L is the average error obtained using
the intercept term, all predictor trees per linear term, and the first J interaction trees per interaction
term. The plot shows that the error increases when interaction terms are added.

If you are satisfied with the error when the number of predictor trees is 5, you can create a predictive
model by training the univariate GAM again and specifying 'NumTreesPerPredictor',5 without
cross-validation.
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More About
Generalized Additive Model (GAM) for Regression

A generalized additive model (GAM) is an interpretable model that explains a response variable using
a sum of univariate and bivariate shape functions of predictors.

fitrgam uses a boosted tree as a shape function for each predictor and, optionally, each pair of
predictors; therefore, the function can capture a nonlinear relation between a predictor and the
response variable. Because contributions of individual shape functions to the prediction (response
value) are well separated, the model is easy to interpret.

The standard GAM uses a univariate shape function for each predictor.

y N μ, σ2

g(μ) = μ = c + f1(x1) + f2(x2) +⋯+ fp(xp),

where y is a response variable that follows the normal distribution with mean μ and standard
deviation σ. g(μ) is an identity link function, and c is an intercept (constant) term. fi(xi) is a univariate
shape function for the ith predictor, which is a boosted tree for a linear term for the predictor
(predictor tree).

You can include interactions between predictors in a model by adding bivariate shape functions of
important interaction terms to the model.

μ = c + f1(x1) + f2(x2) +⋯+ fp(xp) + ∑
i, j ∈ 1, 2,⋯, p

f i j(xix j),

where fij(xixj) is a bivariate shape function for the ith and jth predictors, which is a boosted tree for an
interaction term for the predictors (interaction tree).

fitrgam finds important interaction terms based on the p-values of F-tests. For details, see
“Interaction Term Detection” on page 35-2493.

If you specify 'FitStandardDeviation' of fitrgam as false (default), then fitrgam trains a
model for the mean μ. If you specify 'FitStandardDeviation' as true, then fitrgam trains an
additional model for the standard deviation σ and sets the IsStandardDeviationFit property of
the GAM object to true.

Version History
Introduced in R2021a

See Also
RegressionGAM | crossval

Topics
“Train Generalized Additive Model for Regression” on page 12-86
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RegressionPartitionedGP
Cross-validated Gaussian process regression (GPR) model

Description
RegressionPartitionedGP is a set of Gaussian process regression models trained on cross-
validated folds. Estimate the quality of the cross-validated regression by using one or more kfold
functions: kfoldPredict, kfoldLoss, and kfoldfun.

Every kfold object function uses models trained on training-fold (in-fold) observations to predict the
response for validation-fold (out-of-fold) observations. For example, suppose you cross-validate using
five folds. The software randomly assigns each observation into five groups of equal size (roughly).
The training fold contains four of the groups (roughly 4/5 of the data), and the validation fold contains
the other group (roughly 1/5 of the data). In this case, cross-validation proceeds as follows:

1 The software trains the first model (stored in CVMdl.Trained{1}) by using the observations in
the last four groups, and reserves the observations in the first group for validation.

2 The software trains the second model (stored in CVMdl.Trained{2}) by using the observations
in the first group and the last three groups. The software reserves the observations in the second
group for validation.

3 The software proceeds in a similar manner for the third, fourth, and fifth models.

If you validate by using kfoldPredict, the software computes predictions for the observations in
group i by using the ith model. In short, the software estimates a response for every observation by
using the model trained without that observation.

Creation
You can create a RegressionPartitionedGP object in two ways:

• Create a cross-validated model from a GPR model object RegressionGP by using the crossval
object function.

• Create a cross-validated model by using the fitrgp function and specifying one of the name-
value arguments CrossVal, CVPartition, Holdout, KFold, or Leaveout.

Regardless of whether you train a full or cross-validated GPR model first, you cannot specify an
ActiveSet value in the call to fitrgp.

Properties
Cross-Validation Properties

CrossValidatedModel — Cross-validated model name
'GP'

This property is read-only.

Cross-validated model name, specified as 'GP'.
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Data Types: char

KFold — Number of cross-validated folds
positive integer

This property is read-only.

Number of cross-validated folds, specified as a positive integer.
Data Types: double

ModelParameters — Cross-validation parameter values
EnsembleParams object

This property is read-only.

Cross-validation parameter values, specified as an EnsembleParams object. The parameter values
correspond to the values of the name-value arguments used to cross-validate the GPR model.
ModelParameters does not contain estimated parameters.

You can access the properties of ModelParameters using dot notation.

Partition — Data partition
cvpartition model

This property is read-only.

Data partition indicating how the software splits the data into cross-validation folds, specified as a
cvpartition model.

Trained — Compact models trained on cross-validation folds
cell array of CompactRegressionGP model objects

This property is read-only.

Compact models trained on cross-validation folds, specified as a cell array of
CompactRegressionGP model objects. Trained has k cells, where k is the number of folds.
Data Types: cell

Other Regression Properties

CategoricalPredictors — Categorical predictor indices
vector of positive integers | []

This property is read-only.

Categorical predictor indices, specified as a vector of positive integers. CategoricalPredictors
contains index values indicating that the corresponding predictors are categorical. The index values
are between 1 and p, where p is the number of predictors used to train the model. If none of the
predictors are categorical, then this property is empty ([]).
Data Types: double

NumObservations — Number of observations
numeric scalar
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This property is read-only.

Number of observations in the training data stored in X and Y, specified as a numeric scalar.
Data Types: double

PredictorNames — Predictor variable names
cell array of character vectors

This property is read-only.

Predictor variable names, specified as a cell array of character vectors. The order of the elements of
PredictorNames corresponds to the order in which the predictor names appear in the training data.
Data Types: cell

ResponseName — Response variable name
character vector

This property is read-only.

Response variable name, specified as a character vector.
Data Types: char

ResponseTransform — Response transformation function
'none' (default) | function handle

Response transformation function, specified as 'none' or a function handle. In general,
ResponseTransform describes how the software transforms raw response values.

For GPR model objects, ResponseTransform is 'none' by default. Regardless of the
ResponseTransform value, the software does not use a response transformation when making
predictions.
Data Types: char | function_handle

W — Observation weights
numeric vector

This property is read-only.

Observation weights, specified as an n-by-1 numeric vector, where n is the number of observations
(NumObservations). The software normalizes the observation weights so that the elements of W sum
to 1.

For GPR model objects, the software ignores observation weights when training a model or making
predictions.
Data Types: double

X — Predictors
numeric matrix | table

This property is read-only.

Predictors used to cross-validate the model, specified as a numeric matrix or table.
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Each row of X corresponds to one observation, and each column corresponds to one variable.
Data Types: single | double | table

Y — Response
numeric vector

This property is read-only.

Response used to cross-validate the model, specified as a numeric vector.

Each row of Y represents the observed response of the corresponding row of X.
Data Types: single | double

Object Functions
kfoldLoss Loss for cross-validated partitioned regression model
kfoldPredict Predict responses for observations in cross-validated regression model
kfoldfun Cross-validate function for regression

Examples

Cross-Validate Gaussian Process Regression Model

Compute the cross-validation mean squared error of a Gaussian process regression (GPR) model.
Compare the predicted response values to the true response values.

Simulate 1000 observations from the model y = 1 + 0 . 05x + sin(x)/x + 0 . 2ϵ where:

• x is a 1000-by-1 vector of evenly spaced values between –10 and 10.
• ϵ is a 1000-by-1 vector of random normal errors with mean 0 and standard deviation 0.2.

rng("default"); % For reproducibility
n = 1000;
x = linspace(-10,10,n)';
y = 1 + 0.05*x + sin(x)./x + 0.2*randn(n,1);

Create a 5-fold cross-validated GPR model. Use a linear basis function, the exact fitting method to
estimate model parameters, and the exact method to make predictions.

cvMdl = fitrgp(x,y,Basis="linear", ...
      FitMethod="exact",PredictMethod="exact", ...
      KFold=5);

cvMdl is a RegressionPartitionedGP object that contains five trained CompactRegressionGP
model objects (cvMdl.Trained). Each of the five GPR models is trained using approximately 4/5 of
the observations in x.

Compute the average mean squared error.

kfoldLoss(cvMdl)

ans = 0.0401
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Predict the response values using the cross-validated model. The predicted response values are the
predictions on the holdout (validation) observations. In other words, the software obtains each
prediction by using a model that was trained without the corresponding observation.

ypred = kfoldPredict(cvMdl);

Plot the true response values and the predicted response values for the cross-validated model.

plot(x,y,".");
hold on
plot(x,ypred,".");
xlabel("x")
ylabel("y")
title("Cross-Validation Predictions")
legend(["True","Predicted"])
hold off

The five CompactRegressionGP models seem generally to agree, but some of the predictions differ
close to the endpoints of the predictor data range (around –10 and 10).

You cannot use the cross-validated model directly to make predictions on new data. If you want to
predict response values for a new data set, you can train a new GPR model using all the data in x and
then use the predict object function. For example, predict response values for each even integer
between –10 and 10.

mdl = fitrgp(x,y,Basis="linear", ...
    FitMethod="exact",PredictMethod="exact");
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xnew = (-10:2:10)';
prednew = predict(mdl,xnew)

prednew = 11×1

    0.5473
    0.7012
    0.6395
    0.5945
    1.3450
    2.0073
    1.5643
    0.9842
    1.2214
    1.4962
      ⋮

Alternatively, you can use the individual compact models in the Trained property of the cross-
validated model and then combine the predictions (for example, through averaging). For example,
predict average response values for each even integer between –10 and 10.

preds = zeros(length(xnew),cvMdl.KFold);
for i = 1:cvMdl.KFold
    preds(:,i) = predict(cvMdl.Trained{i},xnew);
end
meanpreds = mean(preds,2)

meanpreds = 11×1

    0.5462
    0.7012
    0.6395
    0.5949
    1.3451
    2.0067
    1.5640
    0.9851
    1.2213
    1.4963
      ⋮

Version History
Introduced in R2022b

See Also
RegressionGP | CompactRegressionGP | crossval | fitrgp

Topics
“Gaussian Process Regression Models” on page 6-2
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RegressionPartitionedLinear
Package: classreg.learning.partition
Superclasses: RegressionPartitionedModel

Cross-validated linear regression model for high-dimensional data

Description
RegressionPartitionedLinear is a set of linear regression models trained on cross-validated
folds. To obtain a cross-validated, linear regression model, use fitrlinear and specify one of the
cross-validation options. You can estimate the predictive quality of the model, or how well the linear
regression model generalizes, using one or more of these “kfold” methods: kfoldPredict and
kfoldLoss.

Every “kfold” method uses models trained on in-fold observations to predict the response for out-of-
fold observations. For example, suppose that you cross-validate using five folds. In this case, the
software randomly assigns each observation into five roughly equally sized groups. The training fold
contains four of the groups (that is, roughly 4/5 of the data) and the test fold contains the other group
(that is, roughly 1/5 of the data). In this case, cross-validation proceeds as follows:

1 The software trains the first model (stored in CVMdl.Trained{1}) using the observations in the
last four groups and reserves the observations in the first group for validation.

2 The software trains the second model (stored in CVMdl.Trained{2}) using the observations in
the first group and last three groups. The software reserves the observations in the second group
for validation.

3 The software proceeds in a similar fashion for the third through fifth models.

If you validate by calling kfoldPredict, it computes predictions for the observations in group 1
using the first model, group 2 for the second model, and so on. In short, the software estimates a
response for every observation using the model trained without that observation.

Note Unlike other cross-validated, regression models, RegressionPartitionedLinear model
objects do not store the predictor data set.

Construction
CVMdl = fitrlinear(X,Y,Name,Value) creates a cross-validated, linear regression model when
Name is either 'CrossVal', 'CVPartition', 'Holdout', or 'KFold'. For more details, see
fitrlinear.

Properties
Cross-Validation Properties

CrossValidatedModel — Cross-validated model name
character vector

Cross-validated model name, specified as a character vector.
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For example, 'Linear' specifies a cross-validated linear model for binary classification or
regression.
Data Types: char

KFold — Number of cross-validated folds
positive integer

Number of cross-validated folds, specified as a positive integer.
Data Types: double

ModelParameters — Cross-validation parameter values
object

Cross-validation parameter values, e.g., the name-value pair argument values used to cross-validate
the linear model, specified as an object. ModelParameters does not contain estimated parameters.

Access properties of ModelParameters using dot notation.

NumObservations — Number of observations
positive numeric scalar

Number of observations in the training data, specified as a positive numeric scalar.
Data Types: double

Partition — Data partition
cvpartition model

Data partition indicating how the software splits the data into cross-validation folds, specified as a
cvpartition model.

Trained — Linear regression models trained on cross-validation folds
cell array of RegressionLinear model objects

Linear regression models trained on cross-validation folds, specified as a cell array of
RegressionLinear models. Trained has k cells, where k is the number of folds.
Data Types: cell

W — Observation weights
numeric vector

Observation weights used to cross-validate the model, specified as a numeric vector. W has
NumObservations elements.

The software normalizes the weights used for training so that sum(W,'omitnan') is 1.
Data Types: single | double

Y — Observed responses
numeric vector

Observed responses used to cross-validate the model, specified as a numeric vector containing
NumObservations elements.
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Each row of Y represents the observed response of the corresponding observation in the predictor
data.
Data Types: single | double

Other Regression Properties

CategoricalPredictors — Categorical predictor indices
vector of positive integers | []

Categorical predictor indices, specified as a vector of positive integers. CategoricalPredictors
contains index values indicating that the corresponding predictors are categorical. The index values
are between 1 and p, where p is the number of predictors used to train the model. If none of the
predictors are categorical, then this property is empty ([]).
Data Types: single | double

PredictorNames — Predictor names
cell array of character vectors

Predictor names in order of their appearance in the predictor data, specified as a cell array of
character vectors. The length of PredictorNames is equal to the number of variables in the training
data X or Tbl used as predictor variables.
Data Types: cell

ResponseName — Response variable name
character vector

Response variable name, specified as a character vector.
Data Types: char

ResponseTransform — Response transformation function
'none' | function handle

Response transformation function, specified as 'none' or a function handle. ResponseTransform
describes how the software transforms raw response values.

For a MATLAB function or a function that you define, enter its function handle. For example, you can
enter Mdl.ResponseTransform = @function, where function accepts a numeric vector of the
original responses and returns a numeric vector of the same size containing the transformed
responses.
Data Types: char | function_handle

Methods

kfoldLoss Regression loss for observations not used in training
kfoldPredict Predict responses for observations not used for training

Copy Semantics
Value. To learn how value classes affect copy operations, see Copying Objects.
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Examples

Create Cross-Validated Linear Regression Model

Simulate 10000 observations from this model

y = x100 + 2x200 + e .

• X = {x1, . . . , x1000} is a 10000-by-1000 sparse matrix with 10% nonzero standard normal
elements.

• e is random normal error with mean 0 and standard deviation 0.3.

rng(1) % For reproducibility
n = 1e4;
d = 1e3;
nz = 0.1;
X = sprandn(n,d,nz);
Y = X(:,100) + 2*X(:,200) + 0.3*randn(n,1);

Cross-validate a linear regression model. To increase execution speed, transpose the predictor data
and specify that the observations are in columns.

X = X';
CVMdl = fitrlinear(X,Y,'CrossVal','on','ObservationsIn','columns');

CVMdl is a RegressionPartitionedLinear cross-validated model. Because fitrlinear
implements 10-fold cross-validation by default, CVMdl.Trained contains a cell vector of ten
RegressionLinear models. Each cell contains a linear regression model trained on nine folds, and
then tested on the remaining fold.

Predict responses for out-of-fold observations and estimate the generalization error by passing CVMdl
to kfoldPredict and kfoldLoss, respectively.

oofYHat = kfoldPredict(CVMdl);
ge = kfoldLoss(CVMdl)

ge = 0.1748

The estimated, generalization, mean squared error is 0.1748.

Find Good Lasso Penalty Using Cross-Validation

To determine a good lasso-penalty strength for a linear regression model that uses least squares,
implement 5-fold cross-validation.

Simulate 10000 observations from this model

y = x100 + 2x200 + e .

• X = {x1, . . . , x1000} is a 10000-by-1000 sparse matrix with 10% nonzero standard normal
elements.
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• e is random normal error with mean 0 and standard deviation 0.3.

rng(1) % For reproducibility
n = 1e4;
d = 1e3;
nz = 0.1;
X = sprandn(n,d,nz);
Y = X(:,100) + 2*X(:,200) + 0.3*randn(n,1);

Create a set of 15 logarithmically-spaced regularization strengths from 10−5 through 10−1.

Lambda = logspace(-5,-1,15);

Cross-validate the models. To increase execution speed, transpose the predictor data and specify that
the observations are in columns. Optimize the objective function using SpaRSA.

X = X'; 
CVMdl = fitrlinear(X,Y,'ObservationsIn','columns','KFold',5,'Lambda',Lambda,...
    'Learner','leastsquares','Solver','sparsa','Regularization','lasso');

numCLModels = numel(CVMdl.Trained)

numCLModels = 5

CVMdl is a RegressionPartitionedLinear model. Because fitrlinear implements 5-fold cross-
validation, CVMdl contains 5 RegressionLinear models that the software trains on each fold.

Display the first trained linear regression model.

Mdl1 = CVMdl.Trained{1}

Mdl1 = 
  RegressionLinear
         ResponseName: 'Y'
    ResponseTransform: 'none'
                 Beta: [1000x15 double]
                 Bias: [-0.0049 -0.0049 -0.0049 -0.0049 -0.0049 -0.0048 ... ]
               Lambda: [1.0000e-05 1.9307e-05 3.7276e-05 7.1969e-05 ... ]
              Learner: 'leastsquares'

  Properties, Methods

Mdl1 is a RegressionLinear model object. fitrlinear constructed Mdl1 by training on the first
four folds. Because Lambda is a sequence of regularization strengths, you can think of Mdl1 as 15
models, one for each regularization strength in Lambda.

Estimate the cross-validated MSE.

mse = kfoldLoss(CVMdl);

Higher values of Lambda lead to predictor variable sparsity, which is a good quality of a regression
model. For each regularization strength, train a linear regression model using the entire data set and
the same options as when you cross-validated the models. Determine the number of nonzero
coefficients per model.
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Mdl = fitrlinear(X,Y,'ObservationsIn','columns','Lambda',Lambda,...
    'Learner','leastsquares','Solver','sparsa','Regularization','lasso');
numNZCoeff = sum(Mdl.Beta~=0);

In the same figure, plot the cross-validated MSE and frequency of nonzero coefficients for each
regularization strength. Plot all variables on the log scale.

figure
[h,hL1,hL2] = plotyy(log10(Lambda),log10(mse),...
    log10(Lambda),log10(numNZCoeff)); 
hL1.Marker = 'o';
hL2.Marker = 'o';
ylabel(h(1),'log_{10} MSE')
ylabel(h(2),'log_{10} nonzero-coefficient frequency')
xlabel('log_{10} Lambda')
hold off

Choose the index of the regularization strength that balances predictor variable sparsity and low
MSE (for example, Lambda(10)).

idxFinal = 10;

Extract the model with corresponding to the minimal MSE.

MdlFinal = selectModels(Mdl,idxFinal)

MdlFinal = 
  RegressionLinear
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         ResponseName: 'Y'
    ResponseTransform: 'none'
                 Beta: [1000x1 double]
                 Bias: -0.0050
               Lambda: 0.0037
              Learner: 'leastsquares'

  Properties, Methods

idxNZCoeff = find(MdlFinal.Beta~=0)

idxNZCoeff = 2×1

   100
   200

EstCoeff = Mdl.Beta(idxNZCoeff)

EstCoeff = 2×1

    1.0051
    1.9965

MdlFinal is a RegressionLinear model with one regularization strength. The nonzero coefficients
EstCoeff are close to the coefficients that simulated the data.

Version History
Introduced in R2016a

See Also
RegressionLinear | fitrlinear | kfoldPredict | kfoldLoss
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RegressionPartitionedModel
Package: classreg.learning.partition

Cross-validated regression model

Description
RegressionPartitionedModel is a set of regression models trained on cross-validated folds.
Estimate the quality of regression by cross validation using one or more “kfold” methods:
kfoldPredict, kfoldLoss, and kfoldfun. Every “kfold” method uses models trained on in-fold
observations to predict response for out-of-fold observations. For example, suppose you cross validate
using five folds. In this case, every training fold contains roughly 4/5 of the data and every test fold
contains roughly 1/5 of the data. The first model stored in Trained{1} was trained on X and Y with
the first 1/5 excluded, the second model stored in Trained{2} was trained on X and Y with the
second 1/5 excluded, and so on. When you call kfoldPredict, it computes predictions for the first
1/5 of the data using the first model, for the second 1/5 of data using the second model and so on. In
short, response for every observation is computed by kfoldPredict using the model trained without
this observation.

Construction
CVMdl = crossval(Mdl) creates a cross-validated regression model from a regression model
(Mdl).

Alternatively:

• CVNetMdl = fitrnet(X,Y,Name,Value)
• CVTreeMdl = fitrtree(X,Y,Name,Value)

Create a cross-validated model when Name is 'CrossVal', 'KFold', 'Holdout', 'Leaveout', or
'CVPartition'. For syntax details, see fitrnet and fitrtree.

Input Arguments

Mdl

A regression model, specified as one of the following:

• A neural network regression model trained using fitrnet
• A regression tree trained using fitrtree

Properties
BinEdges

Bin edges for numeric predictors, specified as a cell array of p numeric vectors, where p is the
number of predictors. Each vector includes the bin edges for a numeric predictor. The element in the
cell array for a categorical predictor is empty because the software does not bin categorical
predictors.
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The software bins numeric predictors only if you specify the 'NumBins' name-value argument as a
positive integer scalar when training a model with tree learners. The BinEdges property is empty if
the 'NumBins' value is empty (default).

You can reproduce the binned predictor data Xbinned by using the BinEdges property of the trained
model mdl.

X = mdl.X; % Predictor data
Xbinned = zeros(size(X));
edges = mdl.BinEdges;
% Find indices of binned predictors.
idxNumeric = find(~cellfun(@isempty,edges));
if iscolumn(idxNumeric)
    idxNumeric = idxNumeric';
end
for j = idxNumeric 
    x = X(:,j);
    % Convert x to array if x is a table.
    if istable(x) 
        x = table2array(x);
    end
    % Group x into bins by using the discretize function.
    xbinned = discretize(x,[-inf; edges{j}; inf]); 
    Xbinned(:,j) = xbinned;
end

Xbinned contains the bin indices, ranging from 1 to the number of bins, for numeric predictors.
Xbinned values are 0 for categorical predictors. If X contains NaNs, then the corresponding Xbinned
values are NaNs.

CategoricalPredictors

Categorical predictor indices, specified as a vector of positive integers. Assuming that the predictor
data contains observations in rows, CategoricalPredictors contains index values corresponding
to the columns of the predictor data that contain categorical predictors. If none of the predictors are
categorical, then this property is empty ([]).

CrossValidatedModel

Name of the cross-validated model, a character vector.

Kfold

Number of folds used in the cross-validated model, a positive integer.

ModelParameters

Object holding parameters of Mdl.

NumObservations

Number of observations in the training data stored in X and Y, specified as a numeric scalar.

Partition

The partition of class cvpartition used in the cross-validated model.
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PredictorNames

A cell array of names for the predictor variables, in the order in which they appear in X.

ResponseName

Name of the response variable Y, a character vector.

ResponseTransform

Function handle for transforming the raw response values (mean squared error). The function handle
should accept a matrix of response values and return a matrix of the same size. The default character
vector 'none' means @(x)x, or no transformation.

Add or change a ResponseTransform function using dot notation:

CVMdl.ResponseTransform = @function

Trained

The trained learners, a cell array of compact regression models.

W

The scaled weights, a vector with length n, the number of observations in X.

X

A matrix or table of predictor values.

Y

A numeric column vector. Each entry in Y is the response value of the corresponding observation in X.

Object Functions
gather Gather properties of Statistics and Machine Learning Toolbox object from GPU
kfoldLoss Loss for cross-validated partitioned regression model
kfoldPredict Predict responses for observations in cross-validated regression model
kfoldfun Cross-validate function for regression

Copy Semantics
Value. To learn how value classes affect copy operations, see Copying Objects.

Examples

Evaluate Cross-Validation Error

Load the sample data. Create a variable X containing the Horsepower and Weight data.

load carsmall
X = [Horsepower Weight];

Construct a regression tree using the sample data.

35 Functions

35-6412



cvtree = fitrtree(X,MPG,'crossval','on');

Evaluate the cross-validation error of the carsmall data using Horsepower and Weight as
predictor variables for mileage (MPG).

L = kfoldLoss(cvtree)

L = 25.5338

Extended Capabilities
GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

Usage notes and limitations:

• RegressionPartitionedModel can be a cross-validated regression tree trained by using
fitrtree with GPU array input arguments.

• The object functions of the RegressionPartitionedModel model fully support GPU arrays.

For more information, see “Run MATLAB Functions on a GPU” (Parallel Computing Toolbox).

See Also
RegressionPartitionedEnsemble | ClassificationPartitionedModel | fitrtree |
RegressionTree | fitrnet | RegressionNeuralNetwork
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RegressionPartitionedSVM
Package: classreg.learning.partition
Superclasses: RegressionPartitionedModel

Cross-validated support vector machine regression model

Description
RegressionPartitionedSVM is a set of support vector machine (SVM) regression models trained
on cross-validated folds.

Construction
CVMdl = crossval(mdl) returns a cross-validated (partitioned) support vector machine regression
model, CVMdl, from a trained SVM regression model, mdl.

CVMdl = crossval(mdl,Name,Value) returns a cross-validated model with additional options
specified by one or more Name,Value pair arguments. Name can also be a property name on page 35-
6414 and Value is the corresponding value. Name must appear inside single quotes (''). You can
specify several name-value pair arguments in any order as Name1,Value1,...,NameN,ValueN.

Input Arguments

mdl — Full, trained SVM regression model
RegressionSVM model

Full, trained SVM regression model, specified as a RegressionSVM model returned by fitrsvm.

Properties
CategoricalPredictors — Indices of categorical predictors
vector of positive integers | []

Categorical predictor indices, specified as a vector of positive integers. CategoricalPredictors
contains index values indicating that the corresponding predictors are categorical. The index values
are between 1 and p, where p is the number of predictors used to train the model. If none of the
predictors are categorical, then this property is empty ([]).
Data Types: single | double

CrossValidatedModel — Name of the cross-validated model
character vector

Name of the cross-validated model, stored as a character vector.
Data Types: char

KFold — Number of cross-validation folds
positive integer value

Number of cross-validation folds, stored as a positive integer value.
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Data Types: single | double

ModelParameters — Cross-validation parameters
object

Cross-validation parameters, stored as an object.

NumObservations — Number of observations
positive integer value

Number of observations in the training data, stored as a positive integer value.
Data Types: single | double

Partition — Data partition for cross-validation
cvpartition object

Data partition for cross-validation, stored as a cvpartition object.

PredictorNames — Predictor names
cell array of character vectors

Predictor names, stored as a cell array of character vectors containing the name of each predictor in
the order in which they appear in X. PredictorNames has a length equal to the number of columns
in X.
Data Types: cell

ResponseName — Response variable name
character vector

Response variable name, stored as a character vector.
Data Types: char

ResponseTransform — Response transformation function
'none' | function handle

Response transformation function, specified as 'none' or a function handle. ResponseTransform
describes how the software transforms raw response values.

For a MATLAB function or a function that you define, enter its function handle. For example, you can
enter Mdl.ResponseTransform = @function, where function accepts a numeric vector of the
original responses and returns a numeric vector of the same size containing the transformed
responses.
Data Types: char | function_handle

Trained — Trained, compact regression models
cell array of CompactRegressionSVM models

Trained, compact regression models, stored as a cell array of CompactRegressionSVM models.
Data Types: cell

W — Observation weights
vector of numeric values
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Observation weights used to train the model, stored as a numeric vector containing
NumObservation number of elements. fitrsvm normalizes the weights used for training so that
they sum to 1.
Data Types: single | double

X — Predictor values
matrix of numeric values | table of numeric values

Predictor values used to train the model, stored as a matrix of numeric values if the model is trained
on a matrix, or a table if the model is trained on a table. X has size n-by-p, where n is the number of
rows and p is the number of predictor variables or columns in the training data.
Data Types: single | double | table

Y — Observed responses
numeric vector

Observed responses used to cross-validate the model, specified as a numeric vector containing
NumObservations elements.

Each row of Y represents the observed classification of the corresponding row of X.
Data Types: single | double

Object Functions
kfoldLoss Loss for cross-validated partitioned regression model
kfoldPredict Predict responses for observations in cross-validated regression model
kfoldfun Cross-validate function for regression

Examples

Train Cross-Validated SVM Regression Model Using crossval

This example shows how to train a cross-validated SVM regression model using crossval.

This example uses the abalone data from the UCI Machine Learning Repository. Download the data
and save it in your current directory with the name 'abalone.data'. Read the data into a table.

tbl = readtable('abalone.data','Filetype','text','ReadVariableNames',false);
rng default  % for reproducibility

The sample data contains 4177 observations. All of the predictor variables are continuous except for
sex, which is a categorical variable with possible values 'M' (for males), 'F' (for females), and 'I'
(for infants). The goal is to predict the number of rings on the abalone, and thereby determine its age,
using physical measurements.

Train an SVM regression model, using a Gaussian kernel function with a kernel scale equal to 2.2.
Standardize the data.

mdl = fitrsvm(tbl,'Var9','KernelFunction','gaussian','KernelScale',2.2,'Standardize',true);

mdl is a trained RegressionSVM regression model.

Cross validate the model using 10-fold cross validation.
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CVMdl = crossval(mdl)

CVMdl = 

  classreg.learning.partition.RegressionPartitionedSVM
      CrossValidatedModel: 'SVM'
           PredictorNames: {1x8 cell}
    CategoricalPredictors: 1
             ResponseName: 'Var9'
          NumObservations: 4177
                    KFold: 10
                Partition: [1x1 cvpartition]
        ResponseTransform: 'none'

  Properties, Methods

CVMdl is a RegressionPartitionedSVM cross-validated regression model. The software:

1. Randomly partitions the data into ten equally-sized sets.

2. Trains an SVM regression model on nine of the ten sets.

3. Repeats steps 1 and 2 k = 10 times. It leaves out one of the partitions each time, and trains on the
other nine partitions.

4. Combines generalization statistics for each fold.

Display the first of the 10 trained models.

FirstModel = CVMdl.Trained{1}

FirstModel = 

  classreg.learning.regr.CompactRegressionSVM
       PredictorNames: {1x8 cell}
         ResponseName: 'Var9'
    ResponseTransform: 'none'
                Alpha: [3553x1 double]
                 Bias: 11.0623
     KernelParameters: [1x1 struct]
                   Mu: [0 0 0 0.5242 0.4080 0.1393 0.8300 0.3599 0.1811 0.2392]
                Sigma: [1 1 1 0.1205 0.0995 0.0392 0.4907 0.2217 0.1103 0.1392]
       SupportVectors: [3553x10 double]

  Properties, Methods

FirstModel is the first of the 10 trained CompactRegressionSVM models.

Specify Cross-Validation Holdout Proportion for SVM Regression

This example shows how to specify a holdout proportion for training a cross-validated SVM
regression model.
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This example uses the abalone data from the UCI Machine Learning Repository. Download the data
and save it in your current directory with the name 'abalone.data'. Read the data into a table.

tbl = readtable('abalone.data','Filetype','text','ReadVariableNames',false);
rng default  % for reproducibility

The sample data contains 4177 observations. All of the predictor variables are continuous except for
sex, which is a categorical variable with possible values 'M' (for males), 'F' (for females), and 'I'
(for infants). The goal is to predict the number of rings on the abalone, and thereby determine its age,
using physical measurements.

Train an SVM regression model, using a Gaussian kernel function with a kernel scale equal to 2.2.
Standardize the data.

mdl = fitrsvm(tbl,'Var9','KernelFunction','gaussian','KernelScale',2.2,'Standardize',true);

mdl is a trained RegressionSVM regression model.

Cross validate the regression model by specifying a 10% holdout sample.

CVMdl = crossval(mdl,'Holdout',0.1)

CVMdl = 

  classreg.learning.partition.RegressionPartitionedSVM
      CrossValidatedModel: 'SVM'
           PredictorNames: {1x8 cell}
    CategoricalPredictors: 1
             ResponseName: 'Var9'
          NumObservations: 4177
                    KFold: 1
                Partition: [1x1 cvpartition]
        ResponseTransform: 'none'

  Properties, Methods

CVMdl is a RegressionPartitionedSVM model object.

Extract and display the trained, compact SVM regression model from CVMdl.

CVMdl.Trained{1}

TrainedModel = 

  classreg.learning.regr.CompactRegressionSVM
       PredictorNames: {1x8 cell}
         ResponseName: 'Var9'
    ResponseTransform: 'none'
                Alpha: [3530x1 double]
                 Bias: 11.2646
     KernelParameters: [1x1 struct]
                   Mu: [0 0 0 0.5244 0.4080 0.1393 0.8282 0.3595 0.1805 0.2386]
                Sigma: [1 1 1 0.1198 0.0989 0.0388 0.4891 0.2218 0.1093 0.1390]
       SupportVectors: [3530x10 double]

  Properties, Methods
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TrainedModel is a CompactRegressionSVM regression model that was trained using 90% of the
data.

Alternatives
You can create a RegressionPartitionedSVM model using the following techniques:

• Use the training function fitrsvm and specify one of the 'CrossVal', 'Holdout', 'KFold', or
'Leaveout' name-value pairs.

• Train a model using fitrsvm, then cross validate the model using the crossval method.
• Create a cross validation partition using cvpartition, then pass the resulting partition object to

fitrsvm during training using the 'CVPartition' name-value pair.

Version History
Introduced in R2015b
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RegressionSVM class
Superclasses: CompactRegressionSVM

Support vector machine regression model

Description
RegressionSVM is a support vector machine (SVM) regression model. Train a RegressionSVM
model using fitrsvm and the sample data.

RegressionSVM models store data, parameter values, support vectors, and algorithmic
implementation information. You can use these models to:

• Estimate resubstitution predictions. For details, see resubPredict.
• Predict values for new data. For details, see predict.
• Compute resubstitution loss. For details, see resubLoss.
• Compute the mean square error or epsilon-insensitive loss. For details, see loss.

Construction
Create a RegressionSVM object by using fitrsvm.

Properties
Alpha — Dual problem coefficients
vector of numeric values

Dual problem coefficients, specified as a vector of numeric values. Alpha contains m elements, where
m is the number of support vectors in the trained SVM regression model. The dual problem
introduces two Lagrange multipliers for each support vector. The values of Alpha are the differences
between the two estimated Lagrange multipliers for the support vectors. For more details, see
“Understanding Support Vector Machine Regression” on page 25-2.

If you specified to remove duplicates using RemoveDuplicates, then, for a particular set of
duplicate observations that are support vectors, Alpha contains one coefficient corresponding to the
entire set. That is, MATLAB attributes a nonzero coefficient to one observation from the set of
duplicates and a coefficient of 0 to all other duplicate observations in the set.
Data Types: single | double

Beta — Primal linear problem coefficients
vector of numeric values | '[]'

Primal linear problem coefficients, stored as a numeric vector of length p, where p is the number of
predictors in the SVM regression model.

The values in Beta are the linear coefficients for the primal optimization problem.

If the model is obtained using a kernel function other than 'linear', this property is empty ('[]').
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The predict method computes predicted response values for the model as YFIT = (X/S)×Beta +
Bias, where S is the value of the kernel scale stored in the KernelParameters.Scale property.
Data Types: single | double

Bias — Bias term
scalar value

Bias term in the SVM regression model, stored as a scalar value.
Data Types: single | double

BoxConstraints — Box constraints for dual problem coefficients
vector of numeric values

Box constraints for dual problem alpha coefficients, stored as a numeric vector containing n
elements, where n is the number of observations in X (Mdl.NumObservations).

The absolute value of the dual coefficient Alpha for observation i cannot exceed
BoxConstraints(i).

If you specify removing duplicates using 'RemoveDuplicates', then for a given set of duplicate
observations, MATLAB sums the box constraints, and then attributes the sum to one observation and
box constraints of 0 to all other observations in the set.
Data Types: single | double

CacheInfo — Caching information
structure

Caching information, stored as a structure with the following fields.

Field Description
'Size' Positive scalar value indicating the cache size (in

MB) that the software reserves to store entries of
the Gram matrix. Set the cache size by using the
'CacheSize' name-value pair argument in
fitrsvm.

'Algorithm' Character vector containing the name of the
algorithm used to remove entries from the cache
when its capacity is exceeded. Currently, the only
available caching algorithm is 'Queue'. You
cannot set the caching algorithm.

Data Types: struct

CategoricalPredictors — Indices of categorical predictors
vector of positive integers | []

Categorical predictor indices, specified as a vector of positive integers. CategoricalPredictors
contains index values indicating that the corresponding predictors are categorical. The index values
are between 1 and p, where p is the number of predictors used to train the model. If none of the
predictors are categorical, then this property is empty ([]).
Data Types: single | double
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ConvergenceInfo — Convergence information
structure

Convergence information, stored as a structure with the following fields.

Field Description
Converged Logical flag indicating whether the algorithm

converged. A value of 1 indicates convergence.
ReasonForConvergence Character vector indicating the criterion the

software used to detect convergence.
Gap Scalar feasibility gap between the dual and

primal objective functions.
GapTolerance Scalar tolerance for the feasibility gap. You can

set this tolerance using the 'GapTolerance'
name-value pair argument in fitrsvm.

DeltaGradient Scalar gradient difference between upper and
lower violators.

DeltaGradientTolerance Scalar tolerance for the gradient difference. You
can set this tolerance using the
DeltaGradientTolerance name-value pair
argument in fitrsvm.

LargestKKTViolation Maximal scalar Karush-Kuhn-Tucker (KKT)
violation value.

KKTTolerance Scalar tolerance for the largest KKT violation.
You can set this tolerance using the
'KKTTolerance' name-value pair argument in
fitrsvm.

History Structure containing convergence information
recorded at periodic intervals during the model
training process. This structure contains the
following fields:

• NumIterations — Array of iteration indices
at which the software recorded convergence
criteria.

• Gap — Gap values at these iterations.
• DeltaGradient — DeltaGradient values

at these iterations.
• LargestKKTViolation —

LargestKKTViolation values at these
iterations.

• NumSupportVectors — Number of support
vectors at these iterations.

• Objective — Objective values at these
iterations.

Objective Numeric value of the dual objective.
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Data Types: struct

Epsilon — Half the width of the epsilon-insensitive band
nonnegative scalar value

Half the width of the epsilon-insensitive band, stored as a nonnegative scalar value.
Data Types: single | double

ExpandedPredictorNames — Expanded predictor names
cell array of character vectors

Expanded predictor names, stored as a cell array of character vectors.

If the model uses encoding for categorical variables, then ExpandedPredictorNames includes the
names that describe the expanded variables. Otherwise, ExpandedPredictorNames is the same as
PredictorNames.
Data Types: cell

Gradient — Gradient values in training data
vector of numeric values

Gradient values in training data, stored as a numeric vector containing 2n elements, where n is the
number of observations in the training data.

Element i of Gradient contains the gradient value for the Alpha coefficient that corresponds to the
upper boundary of the epsilon-insensitive band at observation i at the end of the optimization.

Element i + NumObservations of Gradient contains the gradient value for the Alpha coefficient
that corresponds to the lower boundary of the epsilon-insensitive band at observation i at the end of
the optimization.
Data Types: single | double

HyperparameterOptimizationResults — Cross-validation optimization of hyperparameters
BayesianOptimization object | table

This property is read-only.

Cross-validation optimization of hyperparameters, specified as a BayesianOptimization object or
a table of hyperparameters and associated values. This property is nonempty if the
'OptimizeHyperparameters' name-value pair argument is nonempty when you create the model.
The value of HyperparameterOptimizationResults depends on the setting of the Optimizer
field in the HyperparameterOptimizationOptions structure when you create the model.

Value of Optimizer Field Value of
HyperparameterOptimizationResults

'bayesopt' (default) Object of class BayesianOptimization
'gridsearch' or 'randomsearch' Table of hyperparameters used, observed

objective function values (cross-validation loss),
and rank of observations from lowest (best) to
highest (worst)
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IsSupportVector — Flag indicating whether observation is support vector
logical vector

Flag indicating whether an observation is a support vector, stored as an n-by-1 logical vector. n is the
number of observations in X (see NumObservations). A value of 1 indicates that the corresponding
observation in the training data is a support vector.

If you specify removing duplicates using RemoveDuplicates, then for a given set of duplicate
observations that are support vectors, IsSupportVector flags only one as a support vector.
Data Types: logical

KernelParameters — Kernel function parameters
structure

Kernel function parameters, stored as a structure with the following fields.

Field Description
Function Kernel function name (a character vector).
Scale Numeric scale factor used to divide predictor

values.

You can specify values for KernelParameters.Function and KernelParameters.Scale by using
the KernelFunction and KernelScale name-value pair arguments in fitrsvm, respectively.
Data Types: struct

ModelParameters — Parameter values
model parameter object

Parameter values used to train the SVM regression model, stored as a model parameter object.
Access the properties of ModelParameters using dot notation. For example, access the value of
Epsilon used to train the model as Mdl.ModelParameters.Epsilon.

Mu — Predictor means
vector of numeric values | '[]'

Predictor means, stored as a vector of numeric values.

If the predictors are standardized, then Mu is a numeric vector of length p, where p is the number of
predictors used to train the model. In this case, the predict method centers predictor matrix X by
subtracting the corresponding element of Mu from each column.

If the predictors are not standardized, then Mu is empty ('[]').

If the data contains categorical predictors, then Mu includes elements for the dummy variables for
those predictors. The corresponding entries in Mu are 0 because dummy variables are not centered or
scaled.
Data Types: single | double

NumIterations — Number of iterations required for convergence
positive integer value

Number of iterations required for the optimization routine to reach convergence, stored as a positive
integer value.
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To set a limit on the number of iterations, use the 'IterationLimit' name-value pair argument of
fitrsvm.
Data Types: single | double

NumObservations — Number of observations
positive integer value

Number of observations in the training data, stored as a positive integer value.
Data Types: single | double

PredictorNames — Predictor names
cell array of character vectors

Predictor names, stored as a cell array of character vectors containing the name of each predictor in
the order they appear in X. PredictorNames has a length equal to the number of columns in X.
Data Types: cell

OutlierFraction — Expected fraction of outliers
scalar value in the range [0,1]

Expected fraction of outliers in the training set, stored as a scalar value in the range [0,1]. You can
specify the expected fraction of outliers using the 'OutlierFraction' name-value pair argument in
fitrsvm.
Data Types: double

ResponseName — Response variable name
character vector

Response variable name, stored as a character vector.
Data Types: char

ResponseTransform — Response transformation function
'none' | function handle

Response transformation function, specified as 'none' or a function handle. ResponseTransform
describes how the software transforms raw response values.

For a MATLAB function or a function that you define, enter its function handle. For example, you can
enter Mdl.ResponseTransform = @function, where function accepts a numeric vector of the
original responses and returns a numeric vector of the same size containing the transformed
responses.
Data Types: char | function_handle

ShrinkagePeriod — Number of iterations between reductions of active set
nonnegative integer value

Number of iterations between reductions of the active set during optimization, stored as a
nonnegative integer value.

You can set the shrinkage period by using the 'ShrinkagePeriod' name-value pair argument in
fitrsvm.
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Data Types: single | double

Sigma — Predictor standard deviations
vector of numeric values | '[]'

Predictor standard deviations, stored as a vector of numeric values.

If the predictors are standardized, then Sigma is a numeric vector of length p, where p is the number
of predictors used to train the model. In this case, the predict method scales the predictor matrix X
by dividing each column by the corresponding element of Sigma, after centering each element using
Mu.

If the predictors are not standardized, then Sigma is empty ('[]').

If the data contains categorical predictors, Sigma includes elements for the dummy variables for
those predictors. The corresponding entries in Sigma are 1, because dummy variables are not
centered or scaled.
Data Types: single | double

Solver — Name of solver algorithm
character vector

Name of the solver algorithm used to solve the optimization problem, stored as a value in this table.

Value Description
'SMO' Sequential Minimal Optimization
'ISDA' Iterative Single Data Algorithm
'L1QP' L1 soft-margin minimization by quadratic

programming (requires an Optimization Toolbox
license).

SupportVectors — Support vectors
matrix of numeric values

Support vectors, stored as an m-by-p matrix of numeric values. m is the number of support vectors
(sum(Mdl.IsSupportVector)), and p is the number of predictors in X.

If you specified to remove duplicates using RemoveDuplicates, then for a given set of duplicate
observations that are support vectors, SupportVectors contains one unique support vector.
Data Types: single | double

W — Observation weights
vector of numeric values

Observation weights used to train the model, stored as a numeric vector containing
NumObservation number of elements. fitrsvm normalizes the weights used for training so that
they sum to 1.
Data Types: single | double

X — Predictor values
matrix of numeric values | table of numeric values
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Predictor values used to train the model, stored as a matrix of numeric values if the model is trained
on a matrix, or a table if the model is trained on a table. X has size n-by-p, where n is the number of
rows and p is the number of predictor variables or columns in the training data.
Data Types: single | double | table

Y — Observed response values
vector of numeric values

Observed response values, stored as a numeric vector containing NumObservations number of
elements.
Data Types: single | double

Object Functions
compact Compact support vector machine regression model
crossval Cross-validated support vector machine regression model
discardSupportVectors Discard support vectors
incrementalLearner Convert support vector machine (SVM) regression model to incremental

learner
lime Local interpretable model-agnostic explanations (LIME)
loss Regression error for support vector machine regression model
partialDependence Compute partial dependence
plotPartialDependence Create partial dependence plot (PDP) and individual conditional expectation

(ICE) plots
predict Predict responses using support vector machine regression model
resubLoss Resubstitution loss for support vector machine regression model
resubPredict Predict resubstitution response of support vector machine regression model
resume Resume training support vector machine regression model
shapley Shapley values

Copy Semantics
Value. To learn how value classes affect copy operations, see Copying Objects.

Examples

Train Linear Support Vector Machine Regression Model

This example shows how to train a linear support vector machine (SVM) regression model using
sample data stored in matrices.

Load the carsmall data set.

load carsmall
rng default  % for reproducibility

Specify Horsepower and Weight as the predictor variables (X) and MPG as the response variable (Y).

X = [Horsepower,Weight];
Y = MPG;

Train a linear SVM regression model.
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Mdl = fitrsvm(X,Y)

Mdl = 
  RegressionSVM
             ResponseName: 'Y'
    CategoricalPredictors: []
        ResponseTransform: 'none'
                    Alpha: [75x1 double]
                     Bias: 57.3800
         KernelParameters: [1x1 struct]
          NumObservations: 93
           BoxConstraints: [93x1 double]
          ConvergenceInfo: [1x1 struct]
          IsSupportVector: [93x1 logical]
                   Solver: 'SMO'

  Properties, Methods

The Command Window shows that Mdl is a trained RegressionSVM model and a list of its
properties.

Check the model for convergence.

Mdl.ConvergenceInfo.Converged

ans = logical
   0

0 indicates that the model did not converge.

MdlStd = fitrsvm(X,Y,'Standardize',true)

MdlStd = 
  RegressionSVM
             ResponseName: 'Y'
    CategoricalPredictors: []
        ResponseTransform: 'none'
                    Alpha: [77x1 double]
                     Bias: 22.9131
         KernelParameters: [1x1 struct]
                       Mu: [109.3441 2.9625e+03]
                    Sigma: [45.3545 805.9668]
          NumObservations: 93
           BoxConstraints: [93x1 double]
          ConvergenceInfo: [1x1 struct]
          IsSupportVector: [93x1 logical]
                   Solver: 'SMO'

  Properties, Methods

Check the model for convergence.

MdlStd.ConvergenceInfo.Converged
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ans = logical
   1

1 indicates that the model did converge.

Compute the resubstitution mean squared error for the new model.

lStd = resubLoss(MdlStd)

lStd = 17.0256

Train Support Vector Machine Regression Model

Train a support vector machine regression model using the abalone data from the UCI Machine
Learning Repository.

Download the data and save it in your current folder with the name 'abalone.csv'.

url = 'https://archive.ics.uci.edu/ml/machine-learning-databases/abalone/abalone.data';
websave('abalone.csv',url);

Read the data into a table. Specify the variable names.

varnames = {'Sex'; 'Length'; 'Diameter'; 'Height'; 'Whole_weight';...
    'Shucked_weight'; 'Viscera_weight'; 'Shell_weight'; 'Rings'};
Tbl = readtable('abalone.csv','Filetype','text','ReadVariableNames',false);
Tbl.Properties.VariableNames = varnames;

The sample data contains 4177 observations. All the predictor variables are continuous except for
Sex, which is a categorical variable with possible values 'M' (for males), 'F' (for females), and 'I'
(for infants). The goal is to predict the number of rings (stored in Rings) on the abalone and
determine its age using physical measurements.

Train an SVM regression model, using a Gaussian kernel function with an automatic kernel scale.
Standardize the data.

rng default  % For reproducibility
Mdl = fitrsvm(Tbl,'Rings','KernelFunction','gaussian','KernelScale','auto',...
    'Standardize',true)

Mdl = 
  RegressionSVM
           PredictorNames: {'Sex'  'Length'  'Diameter'  'Height'  'Whole_weight'  'Shucked_weight'  'Viscera_weight'  'Shell_weight'}
             ResponseName: 'Rings'
    CategoricalPredictors: 1
        ResponseTransform: 'none'
                    Alpha: [3635×1 double]
                     Bias: 10.8144
         KernelParameters: [1×1 struct]
                       Mu: [0 0 0 0.5240 0.4079 0.1395 0.8287 0.3594 0.1806 0.2388]
                    Sigma: [1 1 1 0.1201 0.0992 0.0418 0.4904 0.2220 0.1096 0.1392]
          NumObservations: 4177
           BoxConstraints: [4177×1 double]
          ConvergenceInfo: [1×1 struct]
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          IsSupportVector: [4177×1 logical]
                   Solver: 'SMO'

  Properties, Methods

The Command Window shows that Mdl is a trained RegressionSVM model and displays a property
list.

Display the properties of Mdl using dot notation. For example, check to confirm whether the model
converged and how many iterations it completed.

conv = Mdl.ConvergenceInfo.Converged

conv = logical
   1

iter = Mdl.NumIterations

iter = 2759

The returned results indicate that the model converged after 2759 iterations.

Version History
Introduced in R2015b
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Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• The predict and update functions support code generation.
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• To integrate the prediction of an SVM regression model into Simulink, you can use the
RegressionSVM Predict block in the Statistics and Machine Learning Toolbox library or a MATLAB
Function block with the predict function.

• When you train an SVM regression model by using fitrsvm, the following restrictions apply.

• The value of the 'ResponseTransform' name-value pair argument must be 'none' (default).
• For fixed-point code generation, the value of the 'KernelFunction' name-value pair

argument must be 'gaussian', 'linear', or 'polynomial'.
• Fixed-point code generation and code generation with a coder configurer do not support

categorical predictors (logical, categorical, char, string, or cell). You cannot use the
'CategoricalPredictors' name-value argument. To include categorical predictors in a
model, preprocess them by using dummyvar before fitting the model.

For more information, see “Introduction to Code Generation” on page 34-2.

See Also
fitrsvm | CompactRegressionSVM | RegressionPartitionedSVM

Topics
“Understanding Support Vector Machine Regression” on page 25-2
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RegressionSVMCoderConfigurer
Coder configurer for support vector machine (SVM) regression model

Description
A RegressionSVMCoderConfigurer object is a coder configurer of an SVM regression model
(RegressionSVM or CompactRegressionSVM).

A coder configurer offers convenient features to configure code generation options, generate C/C++
code, and update model parameters in the generated code.

• Configure code generation options and specify the coder attributes for SVM model parameters by
using object properties.

• Generate C/C++ code for the predict and update functions of the SVM regression model by
using generateCode. Generating C/C++ code requires MATLAB Coder.

• Update model parameters in the generated C/C++ code without having to regenerate the code.
This feature reduces the effort required to regenerate, redeploy, and reverify C/C++ code when
you retrain the SVM model with new data or settings. Before updating model parameters, use
validatedUpdateInputs to validate and extract the model parameters to update.

This flow chart shows the code generation workflow using a coder configurer.

For the code generation usage notes and limitations of an SVM regression model, see the Code
Generation sections of CompactRegressionSVM, predict, and update.

Creation
After training an SVM regression model by using fitrsvm, create a coder configurer for the model
by using learnerCoderConfigurer. Use the properties of a coder configurer to specify the coder
attributes of predict and update arguments. Then, use generateCode to generate C/C++ code
based on the specified coder attributes.

Properties
predict Arguments

The properties listed in this section specify the coder attributes of the predict function arguments
in the generated code.
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X — Coder attributes of predictor data
LearnerCoderInput object

Coder attributes of predictor data to pass to the generated C/C++ code for the predict function of
the SVM regression model, specified as a LearnerCoderInput on page 35-6443 object.

When you create a coder configurer by using the learnerCoderConfigurer function, the input
argument X determines the default values of the LearnerCoderInput coder attributes:

• SizeVector — The default value is the array size of the input X.
• VariableDimensions — This value is [0 0](default) or [1 0].

• [0 0] indicates that the array size is fixed as specified in SizeVector.
• [1 0] indicates that the array has variable-size rows and fixed-size columns. In this case, the
first value of SizeVector is the upper bound for the number of rows, and the second value of
SizeVector is the number of columns.

• DataType — This value is single or double. The default data type depends on the data type of
the input X.

• Tunability — This value must be true, meaning that predict in the generated C/C++ code
always includes predictor data as an input.

You can modify the coder attributes by using dot notation. For example, to generate C/C++ code that
accepts predictor data with 100 observations of three predictor variables, specify these coder
attributes of X for the coder configurer configurer:

configurer.X.SizeVector = [100 3];
configurer.X.DataType = 'double';
configurer.X.VariableDimensions = [0 0];

[0 0] indicates that the first and second dimensions of X (number of observations and number of
predictor variables, respectively) have fixed sizes.

To allow the generated C/C++ code to accept predictor data with up to 100 observations, specify
these coder attributes of X:

configurer.X.SizeVector = [100 3];
configurer.X.DataType = 'double';
configurer.X.VariableDimensions = [1 0];

[1 0] indicates that the first dimension of X (number of observations) has a variable size and the
second dimension of X (number of predictor variables) has a fixed size. The specified number of
observations, 100 in this example, becomes the maximum allowed number of observations in the
generated C/C++ code. To allow any number of observations, specify the bound as Inf.

NumOutputs — Number of outputs in predict
1 (default)

Number of output arguments to return from the generated C/C++ code for the predict function of
the SVM regression model, specified as 1. predict returns yfit (predicted responses) in the
generated C/C++ code.

The NumOutputs property is equivalent to the '-nargout' compiler option of codegen. This option
specifies the number of output arguments in the entry-point function of code generation. The object
function generateCode generates two entry-point functions—predict.m and update.m for the
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predict and update functions of an SVM regression model, respectively—and generates C/C++
code for the two entry-point functions. The specified value for the NumOutputs property corresponds
to the number of output arguments in the entry-point function predict.m.
Data Types: single | double

update Arguments

The properties listed in this section specify the coder attributes of the update function arguments in
the generated code. The update function takes a trained model and new model parameters as input
arguments, and returns an updated version of the model that contains the new parameters. To enable
updating the parameters in the generated code, you need to specify the coder attributes of the
parameters before generating code. Use a LearnerCoderInput on page 35-6443 object to specify
the coder attributes of each parameter. The default attribute values are based on the model
parameters in the input argument Mdl of learnerCoderConfigurer.

Alpha — Coder attributes of dual problem coefficients
LearnerCoderInput object

Coder attributes of the dual problem coefficients (Alpha of an SVM regression model), specified as a
LearnerCoderInput on page 35-6443 object.

The default attribute values of the LearnerCoderInput object are based on the input argument Mdl
of learnerCoderConfigurer:

• SizeVector — The default value is [s,1], where s is the number of support vectors in Mdl.
• VariableDimensions — This value is [0 0](default) or [1 0].

• [0 0] indicates that the array size is fixed as specified in SizeVector.
• [1 0] indicates that the array has variable-size rows and fixed-size columns. In this case, the
first value of SizeVector is the upper bound for the number of rows, and the second value of
SizeVector is the number of columns.

• DataType — This value is 'single' or 'double'. The default data type is consistent with the
data type of the training data you use to train Mdl.

• Tunability — If you train a model with a linear kernel function and discard support vectors by
using discardSupportVectors, this value must be false. Otherwise, this value must be true.

Beta — Coder attributes of primal linear problem coefficients
LearnerCoderInput object

Coder attributes of the primal linear problem coefficients (Beta of an SVM regression model),
specified as a LearnerCoderInput on page 35-6443 object.

The default attribute values of the LearnerCoderInput object are based on the input argument Mdl
of learnerCoderConfigurer:

• SizeVector — This value must be [p 1], where p is the number of predictors in Mdl.
• VariableDimensions — This value must be [0 0], indicating that the array size is fixed as
specified in SizeVector.

• DataType — This value is 'single' or 'double'. The default data type is consistent with the
data type of the training data you use to train Mdl.

• Tunability — If you train a model with a linear kernel function and discard support vectors by
using discardSupportVectors, this value must be true. Otherwise, this value must be false.
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Bias — Coder attributes of bias term
LearnerCoderInput object

Coder attributes of the bias term (Bias of an SVM regression model), specified as a
LearnerCoderInput on page 35-6443 object.

The default attribute values of the LearnerCoderInput object are based on the input argument Mdl
of learnerCoderConfigurer:

• SizeVector — This value must be [1 1].
• VariableDimensions — This value must be [0 0], indicating that the array size is fixed as
specified in SizeVector.

• DataType — This value is 'single' or 'double'. The default data type is consistent with the
data type of the training data you use to train Mdl.

• Tunability — This value must be true.

Mu — Coder attributes of predictor means
LearnerCoderInput object

Coder attributes of the predictor means (Mu of an SVM regression model), specified as a
LearnerCoderInput on page 35-6443 object.

The default attribute values of the LearnerCoderInput object are based on the input argument Mdl
of learnerCoderConfigurer:

• SizeVector — If you train Mdl using standardized predictor data by specifying
'Standardize',true, this value must be [1,p], where p is the number of predictors in Mdl.
Otherwise, this value must be [0,0].

• VariableDimensions — This value must be [0 0], indicating that the array size is fixed as
specified in SizeVector.

• DataType — This value is 'single' or 'double'. The default data type is consistent with the
data type of the training data you use to train Mdl.

• Tunability — If you train Mdl using standardized predictor data by specifying
'Standardize',true, the default value is true. Otherwise, this value must be false.

Scale — Coder attributes of kernel scale parameter
LearnerCoderInput object

Coder attributes of the kernel scale parameter (KernelParameters.Scale of an SVM regression
model), specified as a LearnerCoderInput on page 35-6443 object.

The default attribute values of the LearnerCoderInput object are based on the input argument Mdl
of learnerCoderConfigurer:

• SizeVector — This value must be [1 1].
• VariableDimensions — This value must be [0 0], indicating that the array size is fixed as
specified in SizeVector.

• DataType — This value is 'single' or 'double'. The default data type is consistent with the
data type of the training data you use to train Mdl.

• Tunability — The default value is true.
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Sigma — Coder attributes of predictor standard deviations
LearnerCoderInput object

Coder attributes of the predictor standard deviations (Sigma of an SVM regression model), specified
as a LearnerCoderInput on page 35-6443 object.

The default attribute values of the LearnerCoderInput object are based on the input argument Mdl
of learnerCoderConfigurer:

• SizeVector — If you train Mdl using standardized predictor data by specifying
'Standardize',true, this value must be [1,p], where p is the number of predictors in Mdl.
Otherwise, this value must be [0,0].

• VariableDimensions — This value must be [0 0], indicating that the array size is fixed as
specified in SizeVector.

• DataType — This value is 'single' or 'double'. The default data type is consistent with the
data type of the training data you use to train Mdl.

• Tunability — If you train Mdl using standardized predictor data by specifying
'Standardize',true, the default value is true. Otherwise, this value must be false.

SupportVectors — Coder attributes of support vectors
LearnerCoderInput object

Coder attributes of the support vectors (SupportVectors of an SVM regression model), specified as
a LearnerCoderInput on page 35-6443 object.

The default attribute values of the LearnerCoderInput object are based on the input argument Mdl
of learnerCoderConfigurer:

• SizeVector — The default value is [s,p], where s is the number of support vectors, and p is the
number of predictors in Mdl.

• VariableDimensions — This value is [0 0](default) or [1 0].

• [0 0] indicates that the array size is fixed as specified in SizeVector.
• [1 0] indicates that the array has variable-size rows and fixed-size columns. In this case, the
first value of SizeVector is the upper bound for the number of rows, and the second value of
SizeVector is the number of columns.

• DataType — This value is 'single' or 'double'. The default data type is consistent with the
data type of the training data you use to train Mdl.

• Tunability — If you train a model with a linear kernel function and discard support vectors by
using discardSupportVectors, this value must be false. Otherwise, this value must be true.

Other Configurer Options

OutputFileName — File name of generated C/C++ code
'RegressionSVMModel' (default) | character vector

File name of the generated C/C++ code, specified as a character vector.

The object function generateCode of RegressionSVMCoderConfigurer generates C/C++ code
using this file name.

The file name must not contain spaces because they can lead to code generation failures in certain
operating system configurations. Also, the name must be a valid MATLAB function name.
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After creating the coder configurer configurer, you can specify the file name by using dot notation.

configurer.OutputFileName = 'myModel';

Data Types: char

Verbose — Verbosity level
true (logical 1) (default) | false (logical 0)

Verbosity level, specified as true (logical 1) or false (logical 0). The verbosity level controls the
display of notification messages at the command line.

Value Description
true (logical 1) The software displays notification messages when your changes to the

coder attributes of a parameter result in changes for other dependent
parameters.

false (logical 0) The software does not display notification messages.

To enable updating machine learning model parameters in the generated code, you need to configure
the coder attributes of the parameters before generating code. The coder attributes of parameters
are dependent on each other, so the software stores the dependencies as configuration constraints. If
you modify the coder attributes of a parameter by using a coder configurer, and the modification
requires subsequent changes to other dependent parameters to satisfy configuration constraints,
then the software changes the coder attributes of the dependent parameters. The verbosity level
determines whether or not the software displays notification messages for these subsequent changes.

After creating the coder configurer configurer, you can modify the verbosity level by using dot
notation.

configurer.Verbose = false;

Data Types: logical

Options for Code Generation Customization

To customize the code generation workflow, use the generateFiles function and the following three
properties with codegen, instead of using the generateCode function.

After generating the two entry-point function files (predict.m and update.m) by using the
generateFiles function, you can modify these files according to your code generation workflow.
For example, you can modify the predict.m file to include data preprocessing, or you can add these
entry-point functions to another code generation project. Then, you can generate C/C++ code by
using the codegen function and the codegen arguments appropriate for the modified entry-point
functions or code generation project. Use the three properties described in this section as a starting
point to set the codegen arguments.

CodeGenerationArguments — codegen arguments
cell array

This property is read-only.

codegen arguments, specified as a cell array.

This property enables you to customize the code generation workflow. Use the generateCode
function if you do not need to customize your workflow.
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Instead of using generateCode with the coder configurer configurer, you can generate C/C++
code as follows:

generateFiles(configurer)
cgArgs = configurer.CodeGenerationArguments;
codegen(cgArgs{:})

If you customize the code generation workflow, modify cgArgs accordingly before calling codegen.

If you modify other properties of configurer, the software updates the
CodeGenerationArguments property accordingly.
Data Types: cell

PredictInputs — Input argument of predict
cell array of a coder.PrimitiveType object

This property is read-only.

Input argument of the entry-point function predict.m for code generation, specified as a cell array
of a coder.PrimitiveType object. The coder.PrimitiveType object includes the coder
attributes of the predictor data stored in the X property.

If you modify the coder attributes of the predictor data, then the software updates the
coder.PrimitiveType object accordingly.

The coder.PrimitiveType object in PredictInputs is equivalent to
configurer.CodeGenerationArguments{6} for the coder configurer configurer.
Data Types: cell

UpdateInputs — List of tunable input arguments of update
cell array of a structure including coder.PrimitiveType objects

This property is read-only.

List of the tunable input arguments of the entry-point function update.m for code generation,
specified as a cell array of a structure including coder.PrimitiveType objects. Each
coder.PrimitiveType object includes the coder attributes of a tunable machine learning model
parameter.

If you modify the coder attributes of a model parameter by using the coder configurer properties
(update Arguments on page 35-6434 properties), then the software updates the corresponding
coder.PrimitiveType object accordingly. If you specify the Tunability attribute of a machine
learning model parameter as false, then the software removes the corresponding
coder.PrimitiveType object from the UpdateInputs list.

The structure in UpdateInputs is equivalent to configurer.CodeGenerationArguments{3} for
the coder configurer configurer.
Data Types: cell

Object Functions
generateCode Generate C/C++ code using coder configurer
generateFiles Generate MATLAB files for code generation using coder configurer
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validatedUpdateInputs Validate and extract machine learning model parameters to update

Examples

Generate Code Using Coder Configurer

Train a machine learning model, and then generate code for the predict and update functions of
the model by using a coder configurer.

Load the carsmall data set and train a support vector machine (SVM) regression model.

load carsmall
X = [Horsepower,Weight];
Y = MPG;
Mdl = fitrsvm(X,Y);

Mdl is a RegressionSVM object.

Create a coder configurer for the RegressionSVM model by using learnerCoderConfigurer.
Specify the predictor data X. The learnerCoderConfigurer function uses the input X to configure
the coder attributes of the predict function input.

configurer = learnerCoderConfigurer(Mdl,X)

configurer = 
  RegressionSVMCoderConfigurer with properties:

   Update Inputs:
             Alpha: [1x1 LearnerCoderInput]
    SupportVectors: [1x1 LearnerCoderInput]
             Scale: [1x1 LearnerCoderInput]
              Bias: [1x1 LearnerCoderInput]

   Predict Inputs:
                 X: [1x1 LearnerCoderInput]

   Code Generation Parameters:
        NumOutputs: 1
    OutputFileName: 'RegressionSVMModel'

  Properties, Methods

configurer is a RegressionSVMCoderConfigurer object, which is a coder configurer of a
RegressionSVM object.

To generate C/C++ code, you must have access to a C/C++ compiler that is configured properly.
MATLAB Coder locates and uses a supported, installed compiler. You can use mex -setup to view and
change the default compiler. For more details, see “Change Default Compiler”.

Generate code for the predict and update functions of the SVM regression model (Mdl) with
default settings.

generateCode(configurer)
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generateCode creates these files in output folder:
'initialize.m', 'predict.m', 'update.m', 'RegressionSVMModel.mat'
Code generation successful.

The generateCode function completes these actions:

• Generate the MATLAB files required to generate code, including the two entry-point functions
predict.m and update.m for the predict and update functions of Mdl, respectively.

• Create a MEX function named RegressionSVMModel for the two entry-point functions.
• Create the code for the MEX function in the codegen\mex\RegressionSVMModel folder.
• Copy the MEX function to the current folder.

Display the contents of the predict.m, update.m, and initialize.m files by using the type
function.

type predict.m

function varargout = predict(X,varargin) %#codegen
% Autogenerated by MATLAB, 01-Sep-2022 11:20:22
[varargout{1:nargout}] = initialize('predict',X,varargin{:});
end

type update.m

function update(varargin) %#codegen
% Autogenerated by MATLAB, 01-Sep-2022 11:20:22
initialize('update',varargin{:});
end

type initialize.m

function [varargout] = initialize(command,varargin) %#codegen
% Autogenerated by MATLAB, 01-Sep-2022 11:20:22
coder.inline('always')
persistent model
if isempty(model)
    model = loadLearnerForCoder('RegressionSVMModel.mat');
end
switch(command)
    case 'update'
        % Update struct fields: Alpha
        %                       SupportVectors
        %                       Scale
        %                       Bias
        model = update(model,varargin{:});
    case 'predict'
        % Predict Inputs: X
        X = varargin{1};
        if nargin == 2
            [varargout{1:nargout}] = predict(model,X);
        else
            PVPairs = cell(1,nargin-2);
            for i = 1:nargin-2
                PVPairs{1,i} = varargin{i+1};
            end
            [varargout{1:nargout}] = predict(model,X,PVPairs{:});
        end
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end
end

Update Parameters of SVM Regression Model in Generated Code

Train a support vector machine (SVM) model using a partial data set and create a coder configurer
for the model. Use the properties of the coder configurer to specify coder attributes of the SVM
model parameters. Use the object function of the coder configurer to generate C code that predicts
responses for new predictor data. Then retrain the model using the whole data set and update
parameters in the generated code without regenerating the code.

Train Model

Load the carsmall data set and train an SVM regression model using the first 50 observations.

load carsmall
X = [Horsepower,Weight];
Y = MPG;
Mdl = fitrsvm(X(1:50,:),Y(1:50));

Mdl is a RegressionSVM object.

Create Coder Configurer

Create a coder configurer for the RegressionSVM model by using learnerCoderConfigurer.
Specify the predictor data X. The learnerCoderConfigurer function uses the input X to configure
the coder attributes of the predict function input.

configurer = learnerCoderConfigurer(Mdl,X(1:50,:));

configurer is a RegressionSVMCoderConfigurer object, which is a coder configurer of a
RegressionSVM object.

Specify Coder Attributes of Parameters

Specify the coder attributes of the SVM regression model parameters so that you can update the
parameters in the generated code after retraining the model. This example specifies the coder
attributes of predictor data that you want to pass to the generated code and the coder attributes of
the support vectors of the SVM regression model.

First, specify the coder attributes of X so that the generated code accepts any number of
observations. Modify the SizeVector and VariableDimensions attributes. The SizeVector
attribute specifies the upper bound of the predictor data size, and the VariableDimensions
attribute specifies whether each dimension of the predictor data has a variable size or fixed size.

configurer.X.SizeVector = [Inf 2];
configurer.X.VariableDimensions = [true false];

The size of the first dimension is the number of observations. In this case, the code specifies that the
upper bound of the size is Inf and the size is variable, meaning that X can have any number of
observations. This specification is convenient if you do not know the number of observations when
generating code.
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The size of the second dimension is the number of predictor variables. This value must be fixed for a
machine learning model. X contains two predictors, so the value of the SizeVector attribute must
be two and the value of the VariableDimensions attribute must be false.

If you retrain the SVM model using new data or different settings, the number of support vectors can
vary. Therefore, specify the coder attributes of SupportVectors so that you can update the support
vectors in the generated code.

configurer.SupportVectors.SizeVector = [250 2];

SizeVector attribute for Alpha has been modified to satisfy configuration constraints.

configurer.SupportVectors.VariableDimensions = [true false];

VariableDimensions attribute for Alpha has been modified to satisfy configuration constraints.

If you modify the coder attributes of SupportVectors, then the software modifies the coder
attributes of Alpha to satisfy configuration constraints. If the modification of the coder attributes of
one parameter requires subsequent changes to other dependent parameters to satisfy configuration
constraints, then the software changes the coder attributes of the dependent parameters.

Generate Code

To generate C/C++ code, you must have access to a C/C++ compiler that is configured properly.
MATLAB Coder locates and uses a supported, installed compiler. You can use mex -setup to view and
change the default compiler. For more details, see “Change Default Compiler”.

Use generateCode to generate code for the predict and update functions of the SVM regression
model (Mdl) with default settings.

generateCode(configurer)

generateCode creates these files in output folder:
'initialize.m', 'predict.m', 'update.m', 'RegressionSVMModel.mat'
Code generation successful.

generateCode generates the MATLAB files required to generate code, including the two entry-point
functions predict.m and update.m for the predict and update functions of Mdl, respectively.
Then generateCode creates a MEX function named RegressionSVMModel for the two entry-point
functions in the codegen\mex\RegressionSVMModel folder and copies the MEX function to the
current folder.

Verify Generated Code

Pass some predictor data to verify whether the predict function of Mdl and the predict function in
the MEX function return the same predicted responses. To call an entry-point function in a MEX
function that has more than one entry point, specify the function name as the first input argument.

yfit = predict(Mdl,X);
yfit_mex = RegressionSVMModel('predict',X);

yfit_mex might include round-off differences compared with yfit. In this case, compare yfit and
yfit_mex, allowing a small tolerance.

find(abs(yfit-yfit_mex) > 1e-6)
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ans =

  0x1 empty double column vector

The comparison confirms that yfit and yfit_mex are equal within the tolerance 1e–6.

Retrain Model and Update Parameters in Generated Code

Retrain the model using the entire data set.

retrainedMdl = fitrsvm(X,Y);

Extract parameters to update by using validatedUpdateInputs. This function detects the modified
model parameters in retrainedMdl and validates whether the modified parameter values satisfy the
coder attributes of the parameters.

params = validatedUpdateInputs(configurer,retrainedMdl);

Update parameters in the generated code.

RegressionSVMModel('update',params)

Verify Generated Code

Compare the outputs from the predict function of retrainedMdl and the predict function in the
updated MEX function.

yfit = predict(retrainedMdl,X);
yfit_mex = RegressionSVMModel('predict',X);
find(abs(yfit-yfit_mex) > 1e-6)

ans =

  0x1 empty double column vector

The comparison confirms that yfit and yfit_mex are equal within the tolerance 1e-6.

More About
LearnerCoderInput Object

A coder configurer uses a LearnerCoderInput object to specify the coder attributes of predict
and update input arguments.

A LearnerCoderInput object has the following attributes to specify the properties of an input
argument array in the generated code.

Attribute Name Description
SizeVector Array size if the corresponding VariableDimensions value is

false.

Upper bound of the array size if the corresponding
VariableDimensions value is true. To allow an unbounded
array, specify the bound as Inf.
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Attribute Name Description
VariableDimensions Indicator specifying whether each dimension of the array has a

variable size or fixed size, specified as true (logical 1) or false
(logical 0):

• A value of true (logical 1) means that the corresponding
dimension has a variable size.

• A value of false (logical 0) means that the corresponding
dimension has a fixed size.

DataType Data type of the array
Tunability Indicator specifying whether or not predict or update includes

the argument as an input in the generated code, specified as true
(logical 1) or false (logical 0).

If you specify other attribute values when Tunability is false,
the software sets Tunability to true.

After creating a coder configurer, you can modify the coder attributes by using dot notation. For
example, specify the coder attributes of the coefficients Alpha of the coder configurer configurer
as follows:

configurer.Alpha.SizeVector = [100 1];
configurer.Alpha.VariableDimensions = [1 0];
configurer.Alpha.DataType = 'double';

If you specify the verbosity level (Verbose) as true (default), then the software displays notification
messages when you modify the coder attributes of a machine learning model parameter and the
modification changes the coder attributes of other dependent parameters.

Version History
Introduced in R2018b

See Also
learnerCoderConfigurer | RegressionSVM | CompactRegressionSVM | update | predict

Topics
“Introduction to Code Generation” on page 34-2
“Code Generation for Prediction and Update Using Coder Configurer” on page 34-92
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RegressionSVM Predict
Predict responses using support vector machine (SVM) regression model
Library: Statistics and Machine Learning Toolbox / Regression

Description
The RegressionSVM Predict block predicts responses using an SVM regression object
(RegressionSVM or CompactRegressionSVM).

Import a trained SVM regression object into the block by specifying the name of a workspace variable
that contains the object. The input port x receives an observation (predictor data), and the output
port yfit returns a predicted response for the observation.

Ports
Input

x — Predictor data
row vector | column vector

Predictor data, specified as a column vector or row vector of one observation.

Dependencies

• The variables in x must have the same order as the predictor variables that trained the SVM
model specified by Select trained machine learning model.

• If you set 'Standardize',true in fitrsvm when training the SVM model, then the
RegressionSVM Predict block standardizes the values of x using the means and standard
deviations in the Mu and Sigma properties (respectively) of the SVM model.

Data Types: single | double | half | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 |
uint64 | Boolean | fixed point

Output

yfit — Predicted response
scalar

Predicted response, returned as a scalar.
Data Types: single | double | half | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 |
uint64 | Boolean | fixed point
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Parameters
Main

Select trained machine learning model — SVM regression model

svmMdl (default) | RegressionSVM object | CompactRegressionSVM object

Specify the name of a workspace variable that contains a RegressionSVM object or
CompactRegressionSVM object.

When you train the SVM model by using fitrsvm, the following restrictions apply:

• The predictor data cannot include categorical predictors (logical, categorical, char,
string, or cell). If you supply training data in a table, the predictors must be numeric (double
or single). Also, you cannot use the CategoricalPredictors name-value argument. To
include categorical predictors in a model, preprocess the categorical predictors by using
dummyvar before fitting the model.

• The value of the 'ResponseTransform' name-value argument must be 'none' (default).
• The value of the 'KernelFunction' name-value argument must be 'gaussian', 'linear'

(default), or 'polynomial'.

Programmatic Use
Block Parameter: TrainedLearner
Type: workspace variable
Values: RegressionSVM object | CompactRegressionSVM object
Default: 'svmMdl'

Data Types

Fixed-Point Operational Parameters

Integer rounding mode — Rounding mode for fixed-point operations

Floor (default) | Ceiling | Convergent | Nearest | Round | Simplest | Zero

Specify the rounding mode for fixed-point operations. For more information, see “Rounding” (Fixed-
Point Designer).

Block parameters always round to the nearest representable value. To control the rounding of a block
parameter, enter an expression into the mask field using a MATLAB rounding function.

Programmatic Use
Block Parameter: RndMeth
Type: character vector
Values: 'Ceiling' | 'Convergent' | 'Floor' | 'Nearest' | 'Round' | 'Simplest' |
'Zero'
Default: 'Floor'

Saturate on integer overflow — Method of overflow action

off (default) | on

Specify whether overflows saturate or wrap.
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Action Rationale Impact on Overflows Example
Select this check
box (on).

Your model has possible
overflow, and you want
explicit saturation protection
in the generated code.

Overflows saturate to either
the minimum or maximum
value that the data type can
represent.

The maximum value that the
int8 (signed 8-bit integer)
data type can represent is
127. Any block operation
result greater than this
maximum value causes
overflow of the 8-bit integer.
With the check box selected,
the block output saturates at
127. Similarly, the block
output saturates at a
minimum output value of –
128.

Clear this check
box (off).

You want to optimize
efficiency of your generated
code.

You want to avoid
overspecifying how a block
handles out-of-range signals.
For more information, see
“Troubleshoot Signal Range
Errors” (Simulink).

Overflows wrap to the
appropriate value that the
data type can represent.

The maximum value that the
int8 (signed 8-bit integer)
data type can represent is
127. Any block operation
result greater than this
maximum value causes
overflow of the 8-bit integer.
With the check box cleared,
the software interprets the
value causing the overflow as
int8, which can produce an
unintended result. For
example, a block result of 130
(binary 1000 0010) expressed
as int8 is –126.

Programmatic Use
Block Parameter: SaturateOnIntegerOverflow
Type: character vector
Values: 'off' | 'on'
Default: 'off'

Lock output data type setting against changes by the fixed-point tools —
Prevention of fixed-point tools from overriding data type

off (default) | on

Select this parameter to prevent the fixed-point tools from overriding the data type you specify for
the block. For more information, see “Use Lock Output Data Type Setting” (Fixed-Point Designer).

Programmatic Use
Block Parameter: LockScale
Type: character vector
Values: 'off' | 'on'
Default: 'off'
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Data Type

Output data type — Data type of yfit output

Inherit: auto (default) | double | single | half | int8 | uint8 | int16 | uint16 | int32 |
uint32 | int64 | uint64 | boolean | fixdt(1,16) | fixdt(1,16,0) | fixdt(1,16,2^0,0) |
<data type expression>

Specify the data type of the yfit output. The type can be inherited, specified directly, or expressed as
a data type object such as Simulink.NumericType.

When you select Inherit: auto, the block uses a rule that inherits a data type.

For more information about data types, see “Control Data Types of Signals” (Simulink).

Click the Show data type assistant button  to display the Data Type Assistant, which helps
you set the data type attributes. For more information, see “Specify Data Types Using Data Type
Assistant” (Simulink).

Programmatic Use
Block Parameter: OutDataTypeStr
Type: character vector
Values: 'Inherit: auto' | 'double' | 'single' | 'half' | 'int8' | 'uint8' | 'int16' |
'uint16' | 'int32' | 'uint32' | 'int64' | 'uint64' | 'boolean' | 'fixdt(1,16)' |
'fixdt(1,16,0)' | 'fixdt(1,16,2^0,0)' | '<data type expression>'
Default: 'Inherit: auto'

Output minimum — Minimum value of yfit output for range checking
[] (default) | scalar

Specify the lower value of the yfit output range that Simulink checks.

Simulink uses the minimum value to perform:

• Parameter range checking for some blocks (see “Specify Minimum and Maximum Values for Block
Parameters” (Simulink)).

• Simulation range checking (see “Specify Signal Ranges” (Simulink) and “Enable Simulation Range
Checking” (Simulink)).

• Automatic scaling of fixed-point data types.
• Optimization of the code that you generate from the model. This optimization can remove

algorithmic code and affect the results of some simulation modes, such as SIL or external mode.
For more information, see Optimize using the specified minimum and maximum values (Embedded
Coder).

Note The Output minimum parameter does not saturate or clip the actual yfit signal. Use the
Saturation block instead.

Programmatic Use
Block Parameter: OutMin
Type: character vector
Values: '[]' | scalar

35 Functions

35-6448



Default: '[]'

Output maximum — Maximum value of yfit output for range checking
[] (default) | scalar

Specify the upper value of the yfit output range that Simulink checks.

Simulink uses the maximum value to perform:

• Parameter range checking for some blocks (see “Specify Minimum and Maximum Values for Block
Parameters” (Simulink)).

• Simulation range checking (see “Specify Signal Ranges” (Simulink) and “Enable Simulation Range
Checking” (Simulink)).

• Automatic scaling of fixed-point data types.
• Optimization of the code that you generate from the model. This optimization can remove

algorithmic code and affect the results of some simulation modes, such as SIL or external mode.
For more information, see Optimize using the specified minimum and maximum values (Embedded
Coder).

Note The Output maximum parameter does not saturate or clip the actual yfit signal. Use the
Saturation block instead.

Programmatic Use
Block Parameter: OutMax
Type: character vector
Values: '[]' | scalar
Default: '[]'

Kernel data type — Kernel computation data type

double (default) | single | half | int8 | uint8 | int16 | uint16 | int32 | int64 | uint64 |
uint32 | boolean | fixdt(1,16) | fixdt(1,16,0) | fixdt(1,16,2^0,0) | <data type
expression>

Specify the data type of a parameter for kernel computation. The type can be specified directly or
expressed as a data type object such as Simulink.NumericType.

The Kernel data type parameter specifies the data type of a different parameter depending on the
type of kernel function of the specified SVM model. You specify the 'KernelFunction' name-value
argument when training the SVM model.

'KernelFunction'
value

Data Type

'gaussian' or 'rbf' Kernel data type specifies the data type of the squared distance
D2 = x− s 2 for the Gaussian kernel G x, s = exp −D2 , where x is the
predictor data for an observation and s is a support vector.

'linear' Kernel data type specifies the data type for the output of the linear kernel
function G x, s = xs′, where x is the predictor data for an observation and s
is a support vector.
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'KernelFunction'
value

Data Type

'polynomial' Kernel data type specifies the data type for the output of the polynomial
kernel function G x, s = 1 + xs′ p, where x is the predictor data for an
observation, s is a support vector, and p is a polynomial kernel function
order.

For more information about data types, see “Control Data Types of Signals” (Simulink).

Click the Show data type assistant button  to display the Data Type Assistant, which helps
you set the data type attributes. For more information, see “Specify Data Types Using Data Type
Assistant” (Simulink).

Programmatic Use
Block Parameter: KernelDataTypeStr
Type: character vector
Values: 'double' | 'single' | 'half' | 'int8' | 'uint8' | 'int16' | 'uint16' | 'int32' |
'uint32' | 'uint64' | 'int64' | 'boolean' | 'fixdt(1,16)' | 'fixdt(1,16,0)' |
'fixdt(1,16,2^0,0)' | '<data type expression>'
Default: 'double'

Kernel minimum — Minimum kernel computation value for range checking
[] (default) | scalar

Lower value of the kernel computation internal variable range that Simulink checks.

Simulink uses the minimum value to perform:

• Parameter range checking for some blocks (see “Specify Minimum and Maximum Values for Block
Parameters” (Simulink)).

• Simulation range checking (see “Specify Signal Ranges” (Simulink) and “Enable Simulation Range
Checking” (Simulink)).

• Automatic scaling of fixed-point data types.
• Optimization of the code that you generate from the model. This optimization can remove

algorithmic code and affect the results of some simulation modes, such as SIL or external mode.
For more information, see Optimize using the specified minimum and maximum values (Embedded
Coder).

Note The Kernel minimum parameter does not saturate or clip the actual kernel computation value
signal.

Programmatic Use
Block Parameter: KernelOutMin
Type: character vector
Values: '[]' | scalar
Default: '[]'

Kernel maximum — Maximum kernel computation value for range checking
[] (default) | scalar
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Upper value of the kernel computation internal variable range that Simulink checks.

Simulink uses the maximum value to perform:

• Parameter range checking for some blocks (see “Specify Minimum and Maximum Values for Block
Parameters” (Simulink)).

• Simulation range checking (see “Specify Signal Ranges” (Simulink) and “Enable Simulation Range
Checking” (Simulink)).

• Automatic scaling of fixed-point data types.
• Optimization of the code that you generate from the model. This optimization can remove

algorithmic code and affect the results of some simulation modes, such as SIL or external mode.
For more information, see Optimize using the specified minimum and maximum values (Embedded
Coder).

Note The Kernel maximum parameter does not saturate or clip the actual kernel computation
value signal.

Programmatic Use
Block Parameter: KernelOutMax
Type: character vector
Values: '[]' | scalar
Default: '[]'

Block Characteristics
Data Types Boolean | double | fixed point | half | integer | single
Direct Feedthrough yes
Multidimensional
Signals

no

Variable-Size Signals no
Zero-Crossing
Detection

no

Tips
• If you are using a linear SVM model and it has many support vectors, then prediction can be slow.

To efficiently predict responses based on a linear SVM model, remove the support vectors from
the RegressionSVM or CompactRegressionSVM object by using discardSupportVectors.

Alternative Functionality
You can use a MATLAB Function block with the predict object function of an SVM regression object
(RegressionSVM or CompactRegressionSVM). For an example, see “Predict Class Labels Using
MATLAB Function Block” on page 34-51.

When deciding whether to use the RegressionSVM Predict block in the Statistics and Machine
Learning Toolbox library or a MATLAB Function block with the predict function, consider the
following:
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• If you use the Statistics and Machine Learning Toolbox library block, you can use the Fixed-Point
Tool to convert a floating-point model to fixed point.

• Support for variable-size arrays must be enabled for a MATLAB Function block with the predict
function.

• If you use a MATLAB Function block, you can use MATLAB functions for preprocessing or post-
processing before or after predictions in the same MATLAB Function block.

Version History
Introduced in R2020b

Specify Kernel data type as a data type name or data type object
Behavior changed in R2021a

Starting in R2021a, the Kernel data type parameter does not support inherited options. You can
specify Kernel data type as a supported data type name or data type object.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

Fixed-Point Conversion
Design and simulate fixed-point systems using Fixed-Point Designer™.

See Also
Blocks
RegressionTree Predict | RegressionEnsemble Predict | RegressionNeuralNetwork Predict |
RegressionGP Predict | ClassificationSVM Predict

Objects
RegressionSVM | CompactRegressionSVM

Functions
predict | fitrsvm

Topics
“Predict Responses Using RegressionTree Predict Block” on page 34-139
“Predict Responses Using RegressionEnsemble Predict Block” on page 34-149
“Predict Responses Using RegressionNeuralNetwork Predict Block” on page 34-160
“Predict Responses Using RegressionGP Predict Block” on page 34-164
“Predict Class Labels Using MATLAB Function Block” on page 34-51
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RegressionTree class
Superclasses: CompactRegressionTree

Regression tree

Description
A decision tree with binary splits for regression. An object of class RegressionTree can predict
responses for new data with the predict method. The object contains the data used for training, so
can compute resubstitution predictions.

Construction
Create a RegressionTree object by using fitrtree.

Properties
BinEdges

Bin edges for numeric predictors, specified as a cell array of p numeric vectors, where p is the
number of predictors. Each vector includes the bin edges for a numeric predictor. The element in the
cell array for a categorical predictor is empty because the software does not bin categorical
predictors.

The software bins numeric predictors only if you specify the 'NumBins' name-value argument as a
positive integer scalar when training a model with tree learners. The BinEdges property is empty if
the 'NumBins' value is empty (default).

You can reproduce the binned predictor data Xbinned by using the BinEdges property of the trained
model mdl.

X = mdl.X; % Predictor data
Xbinned = zeros(size(X));
edges = mdl.BinEdges;
% Find indices of binned predictors.
idxNumeric = find(~cellfun(@isempty,edges));
if iscolumn(idxNumeric)
    idxNumeric = idxNumeric';
end
for j = idxNumeric 
    x = X(:,j);
    % Convert x to array if x is a table.
    if istable(x) 
        x = table2array(x);
    end
    % Group x into bins by using the discretize function.
    xbinned = discretize(x,[-inf; edges{j}; inf]); 
    Xbinned(:,j) = xbinned;
end
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Xbinned contains the bin indices, ranging from 1 to the number of bins, for numeric predictors.
Xbinned values are 0 for categorical predictors. If X contains NaNs, then the corresponding Xbinned
values are NaNs.

CategoricalPredictors

Categorical predictor indices, specified as a vector of positive integers. CategoricalPredictors
contains index values indicating that the corresponding predictors are categorical. The index values
are between 1 and p, where p is the number of predictors used to train the model. If none of the
predictors are categorical, then this property is empty ([]).

CategoricalSplit

An n-by-2 cell array, where n is the number of categorical splits in tree. Each row in
CategoricalSplit gives left and right values for a categorical split. For each branch node with
categorical split j based on a categorical predictor variable z, the left child is chosen if z is in
CategoricalSplit(j,1) and the right child is chosen if z is in CategoricalSplit(j,2). The
splits are in the same order as nodes of the tree. Nodes for these splits can be found by running
cuttype and selecting 'categorical' cuts from top to bottom.

Children

An n-by-2 array containing the numbers of the child nodes for each node in tree, where n is the
number of nodes. Leaf nodes have child node 0.

CutCategories

An n-by-2 cell array of the categories used at branches in tree, where n is the number of nodes. For
each branch node i based on a categorical predictor variable x, the left child is chosen if x is among
the categories listed in CutCategories{i,1}, and the right child is chosen if x is among those
listed in CutCategories{i,2}. Both columns of CutCategories are empty for branch nodes based
on continuous predictors and for leaf nodes.

CutPoint contains the cut points for 'continuous' cuts, and CutCategories contains the set of
categories.

CutPoint

An n-element vector of the values used as cut points in tree, where n is the number of nodes. For
each branch node i based on a continuous predictor variable x, the left child is chosen if
x<CutPoint(i) and the right child is chosen if x>=CutPoint(i). CutPoint is NaN for branch
nodes based on categorical predictors and for leaf nodes.

CutType

An n-element cell array indicating the type of cut at each node in tree, where n is the number of
nodes. For each node i, CutType{i} is:

• 'continuous' — If the cut is defined in the form x < v for a variable x and cut point v.
• 'categorical' — If the cut is defined by whether a variable x takes a value in a set of

categories.
• '' — If i is a leaf node.

CutPoint contains the cut points for 'continuous' cuts, and CutCategories contains the set of
categories.
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CutPredictor

An n-element cell array of the names of the variables used for branching in each node in tree, where
n is the number of nodes. These variables are sometimes known as cut variables. For leaf nodes,
CutPredictor contains an empty character vector.

CutPoint contains the cut points for 'continuous' cuts, and CutCategories contains the set of
categories.

CutPredictorIndex

An n-element array of numeric indices for the variables used for branching in each node in tree,
where n is the number of nodes. For more information, see CutPredictor.

ExpandedPredictorNames

Expanded predictor names, stored as a cell array of character vectors.

If the model uses encoding for categorical variables, then ExpandedPredictorNames includes the
names that describe the expanded variables. Otherwise, ExpandedPredictorNames is the same as
PredictorNames.

HyperparameterOptimizationResults

Description of the cross-validation optimization of hyperparameters, stored as a
BayesianOptimization object or a table of hyperparameters and associated values. Nonempty
when the OptimizeHyperparameters name-value pair is nonempty at creation. Value depends on
the setting of the HyperparameterOptimizationOptions name-value pair at creation:

• 'bayesopt' (default) — Object of class BayesianOptimization
• 'gridsearch' or 'randomsearch' — Table of hyperparameters used, observed objective

function values (cross-validation loss), and rank of observations from lowest (best) to highest
(worst)

IsBranchNode

An n-element logical vector ib that is true for each branch node and false for each leaf node of
tree.

ModelParameters

Object holding parameters of tree.

NumObservations

Number of observations in the training data, a numeric scalar. NumObservations can be less than
the number of rows of input data X when there are missing values in X or response Y.

NodeError

An n-element vector e of the errors of the nodes in tree, where n is the number of nodes. e(i) is the
mean squared error for node i.
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NodeMean

An n-element numeric array with mean values in each node of tree, where n is the number of nodes
in the tree. Every element in NodeMean is the average of the true Y values over all observations in
the node.

NodeProbability

An n-element vector p of the probabilities of the nodes in tree, where n is the number of nodes. The
probability of a node is computed as the proportion of observations from the original data that satisfy
the conditions for the node.

NodeRisk

An n-element vector of the risk of the nodes in the tree, where n is the number of nodes. The risk for
each node is the node error weighted by the node probability.

NodeSize

An n-element vector sizes of the sizes of the nodes in tree, where n is the number of nodes. The
size of a node is defined as the number of observations from the data used to create the tree that
satisfy the conditions for the node.

NumNodes

The number of nodes n in tree.

Parent

An n-element vector p containing the number of the parent node for each node in tree, where n is
the number of nodes. The parent of the root node is 0.

PredictorNames

A cell array of names for the predictor variables, in the order in which they appear in X.

PruneAlpha

Numeric vector with one element per pruning level. If the pruning level ranges from 0 to M, then
PruneAlpha has M + 1 elements sorted in ascending order. PruneAlpha(1) is for pruning level 0
(no pruning), PruneAlpha(2) is for pruning level 1, and so on.

PruneList

An n-element numeric vector with the pruning levels in each node of tree, where n is the number of
nodes. The pruning levels range from 0 (no pruning) to M, where M is the distance between the
deepest leaf and the root node.

ResponseName

A character vector that specifies the name of the response variable (Y).
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ResponseTransform

Function handle for transforming the raw response values (mean squared error). The function handle
must accept a matrix of response values and return a matrix of the same size. The default 'none'
means @(x)x, or no transformation.

Add or change a ResponseTransform function using dot notation:

tree.ResponseTransform = @function

RowsUsed

An n-element logical vector indicating which rows of the original predictor data (X) were used in
fitting. If the software uses all rows of X, then RowsUsed is an empty array ([]).

SurrogateCutCategories

An n-element cell array of the categories used for surrogate splits in tree, where n is the number of
nodes in tree. For each node k, SurrogateCutCategories{k} is a cell array. The length of
SurrogateCutCategories{k} is equal to the number of surrogate predictors found at this node.
Every element of SurrogateCutCategories{k} is either an empty character vector for a
continuous surrogate predictor, or is a two-element cell array with categories for a categorical
surrogate predictor. The first element of this two-element cell array lists categories assigned to the
left child by this surrogate split, and the second element of this two-element cell array lists categories
assigned to the right child by this surrogate split. The order of the surrogate split variables at each
node is matched to the order of variables in SurrogateCutPredictor. The optimal-split variable at
this node does not appear. For nonbranch (leaf) nodes, SurrogateCutCategories contains an
empty cell.

SurrogateCutFlip

An n-element cell array of the numeric cut assignments used for surrogate splits in tree, where n is
the number of nodes in tree. For each node k, SurrogateCutFlip{k} is a numeric vector. The
length of SurrogateCutFlip{k} is equal to the number of surrogate predictors found at this node.
Every element of SurrogateCutFlip{k} is either zero for a categorical surrogate predictor, or a
numeric cut assignment for a continuous surrogate predictor. The numeric cut assignment can be
either –1 or +1. For every surrogate split with a numeric cut C based on a continuous predictor
variable Z, the left child is chosen if Z < C and the cut assignment for this surrogate split is +1, or if
Z ≥ C and the cut assignment for this surrogate split is –1. Similarly, the right child is chosen if Z ≥ C
and the cut assignment for this surrogate split is +1, or if Z < C and the cut assignment for this
surrogate split is –1. The order of the surrogate split variables at each node is matched to the order of
variables in SurrogateCutPredictor. The optimal-split variable at this node does not appear. For
nonbranch (leaf) nodes, SurrogateCutFlip contains an empty array.

SurrogateCutPoint

An n-element cell array of the numeric values used for surrogate splits in tree, where n is the
number of nodes in tree. For each node k, SurrogateCutPoint{k} is a numeric vector. The length
of SurrogateCutPoint{k} is equal to the number of surrogate predictors found at this node. Every
element of SurrogateCutPoint{k} is either NaN for a categorical surrogate predictor, or a numeric
cut for a continuous surrogate predictor. For every surrogate split with a numeric cut C based on a
continuous predictor variable Z, the left child is chosen if Z<C and SurrogateCutFlip for this
surrogate split is +1, or if Z≥C and SurrogateCutFlip for this surrogate split is –1. Similarly, the
right child is chosen if Z ≥ C and SurrogateCutFlip for this surrogate split is +1, or if Z < C and
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SurrogateCutFlip for this surrogate split is –1. The order of the surrogate split variables at each
node is matched to the order of variables returned by SurrCutPredictor. The optimal-split variable
at this node does not appear. For nonbranch (leaf) nodes, SurrogateCutPoint contains an empty
cell.

SurrogateCutType

An n-element cell array indicating types of surrogate splits at each node in tree, where n is the
number of nodes in tree. For each node k, SurrogateCutType{k} is a cell array with the types of
the surrogate split variables at this node. The variables are sorted by the predictive measure of
association with the optimal predictor in the descending order, and only variables with the positive
predictive measure are included. The order of the surrogate split variables at each node is matched
to the order of variables in SurrogateCutPredictor. The optimal-split variable at this node does
not appear. For nonbranch (leaf) nodes, SurrogateCutType contains an empty cell. A surrogate split
type can be either 'continuous' if the cut is defined in the form Z < V for a variable Z and cut point
V or 'categorical' if the cut is defined by whether Z takes a value in a set of categories.

SurrogateCutPredictor

An n-element cell array of the names of the variables used for surrogate splits in each node in tree,
where n is the number of nodes in tree. Every element of SurrogateCutPredictor is a cell array
with the names of the surrogate split variables at this node. The variables are sorted by the predictive
measure of association with the optimal predictor in the descending order, and only variables with the
positive predictive measure are included. The optimal-split variable at this node does not appear. For
nonbranch (leaf) nodes, SurrogateCutPredictor contains an empty cell.

SurrogatePredictorAssociation

An n-element cell array of the predictive measures of association for surrogate splits in tree, where
n is the number of nodes in tree. For each node k, SurrogatePredictorAssociation{k} is a
numeric vector. The length of SurrogatePredictorAssociation{k} is equal to the number of
surrogate predictors found at this node. Every element of SurrogatePredictorAssociation{k}
gives the predictive measure of association between the optimal split and this surrogate split. The
order of the surrogate split variables at each node is the order of variables in
SurrogateCutPredictor. The optimal-split variable at this node does not appear. For nonbranch
(leaf) nodes, SurrogatePredictorAssociation contains an empty cell.

W

The scaled weights, a vector with length n, the number of rows in X.

X

A matrix or table of predictor values. Each column of X represents one variable, and each row
represents one observation.

Y

A numeric column vector with the same number of rows as X. Each entry in Y is the response to the
data in the corresponding row of X.

Object Functions
compact Compact regression tree
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crossval Cross-validated decision tree
cvloss Regression error by cross validation
gather Gather properties of Statistics and Machine Learning Toolbox object from

GPU
lime Local interpretable model-agnostic explanations (LIME)
loss Regression error
nodeVariableRange Retrieve variable range of decision tree node
partialDependence Compute partial dependence
plotPartialDependence Create partial dependence plot (PDP) and individual conditional expectation

(ICE) plots
predict Predict responses using regression tree
predictorImportance Estimates of predictor importance for regression tree
prune Produce sequence of regression subtrees by pruning
resubLoss Regression error by resubstitution
resubPredict Predict resubstitution response of tree
shapley Shapley values
surrogateAssociation Mean predictive measure of association for surrogate splits in regression

tree
view View regression tree

Copy Semantics
Value. To learn how value classes affect copy operations, see Copying Objects.

Examples

Construct Regression Tree

Load the sample data.

load carsmall

Construct a regression tree using the sample data. The response variable is miles per gallon, MPG.

tree = fitrtree([Weight, Cylinders],MPG,...
                'CategoricalPredictors',2,'MinParentSize',20,...
                'PredictorNames',{'W','C'})

tree = 
  RegressionTree
           PredictorNames: {'W'  'C'}
             ResponseName: 'Y'
    CategoricalPredictors: 2
        ResponseTransform: 'none'
          NumObservations: 94

  Properties, Methods

Predict the mileage of 4,000-pound cars with 4, 6, and 8 cylinders.

MPG4Kpred = predict(tree,[4000 4; 4000 6; 4000 8])
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MPG4Kpred = 3×1

   19.2778
   19.2778
   14.3889

Version History
Introduced in R2011a

References

[1] Breiman, L., J. Friedman, R. Olshen, and C. Stone. Classification and Regression Trees. Boca
Raton, FL: CRC Press, 1984.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• The predict and update functions support code generation.
• To integrate the prediction of a regression tree model into Simulink, you can use the

RegressionTree Predict block in the Statistics and Machine Learning Toolbox library or a MATLAB
Function block with the predict function.

• When you train a regression tree model by using fitrtree, the following restrictions apply.

• The value of the 'ResponseTransform' name-value pair argument must be 'none' (default).
• You cannot use surrogate splits, that is, the value of the 'Surrogate' name-value pair

argument must be 'off'.
• Fixed-point code generation and code generation with a coder configurer do not support

categorical predictors (logical, categorical, char, string, or cell). You cannot use the
'CategoricalPredictors' name-value argument. To include categorical predictors in a
model, preprocess them by using dummyvar before fitting the model.

For more information, see “Introduction to Code Generation” on page 34-2.

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

Usage notes and limitations:

• The following object functions fully support GPU arrays:

• compact
• crossval
• cvloss
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• gather
• nodeVariableRange
• predictorImportance
• resubLoss
• resubPredict
• surrogateAssociation

• The following object functions offer limited support for GPU arrays:

• loss
• partialDependence
• plotPartialDependence
• predict
• prune
• view

• The object functions execute on a GPU if any of the following apply:

• The model was fitted with GPU arrays.
• The predictor data that you pass to the object function is a GPU array.
• The response data that you pass to the object function is a GPU array.

For more information, see “Run MATLAB Functions on a GPU” (Parallel Computing Toolbox).

See Also
ClassificationTree | RegressionEnsemble | fitrtree | CompactRegressionTree |
predict

Topics
“Decision Trees” on page 20-2
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RegressionTree Predict
Predict responses using regression tree model
Library: Statistics and Machine Learning Toolbox / Regression

Description
The RegressionTree Predict block predicts responses using a regression tree object
(RegressionTree or CompactRegressionTree).

Import a trained regression object into the block by specifying the name of a workspace variable that
contains the object. The input port x receives an observation (predictor data), and the output port yfit
returns a predicted response for the observation.

Ports
Input

x — Predictor data
row vector | column vector

Predictor data, specified as a row or column vector of one observation.

Dependencies

The variables in x must have the same order as the predictor variables that trained the model
specified by Select trained machine learning model.
Data Types: single | double | half | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 |
uint64 | Boolean | fixed point

Output

yfit — Predicted response
scalar

Predicted response, returned as a scalar.
Data Types: single | double | half | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 |
uint64 | Boolean | fixed point

Parameters
Main

Select trained machine learning model — Regression tree model
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treeMdl (default) | RegressionTree object | CompactRegressionTree object

Specify the name of a workspace variable that contains a RegressionTree object or
CompactRegressionTree object.

When you train the model by using fitrtree, the following restrictions apply:

• The predictor data cannot include categorical predictors (logical, categorical, char,
string, or cell). If you supply training data in a table, the predictors must be numeric (double
or single). Also, you cannot use the CategoricalPredictors name-value argument. To
include categorical predictors in a model, preprocess the categorical predictors by using
dummyvar before fitting the model.

• The value of the 'ResponseTransform' name-value argument must be 'none' (default).
• You cannot use surrogate splits, that is, the value of the 'Surrogate' name-value argument must

be 'off' (default).

Programmatic Use
Block Parameter: TrainedLearner
Type: workspace variable
Values: RegressionTree object | CompactRegressionTree object
Default: 'treeMdl'

Data Types

Fixed-Point Operational Parameters

Integer rounding mode — Rounding mode for fixed-point operations

Floor (default) | Ceiling | Convergent | Nearest | Round | Simplest | Zero

Specify the rounding mode for fixed-point operations. For more information, see “Rounding” (Fixed-
Point Designer).

Block parameters always round to the nearest representable value. To control the rounding of a block
parameter, enter an expression into the mask field using a MATLAB rounding function.

Programmatic Use
Block Parameter: RndMeth
Type: character vector
Values: 'Ceiling' | 'Convergent' | 'Floor' | 'Nearest' | 'Round' | 'Simplest' |
'Zero'
Default: 'Floor'

Saturate on integer overflow — Method of overflow action

off (default) | on

Specify whether overflows saturate or wrap.
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Action Rationale Impact on Overflows Example
Select this check
box (on).

Your model has possible
overflow, and you want
explicit saturation protection
in the generated code.

Overflows saturate to either
the minimum or maximum
value that the data type can
represent.

The maximum value that the
int8 (signed 8-bit integer)
data type can represent is
127. Any block operation
result greater than this
maximum value causes
overflow of the 8-bit integer.
With the check box selected,
the block output saturates at
127. Similarly, the block
output saturates at a
minimum output value of –
128.

Clear this check
box (off).

You want to optimize
efficiency of your generated
code.

You want to avoid
overspecifying how a block
handles out-of-range signals.
For more information, see
“Troubleshoot Signal Range
Errors” (Simulink).

Overflows wrap to the
appropriate value that the
data type can represent.

The maximum value that the
int8 (signed 8-bit integer)
data type can represent is
127. Any block operation
result greater than this
maximum value causes
overflow of the 8-bit integer.
With the check box cleared,
the software interprets the
value causing the overflow as
int8, which can produce an
unintended result. For
example, a block result of 130
(binary 1000 0010) expressed
as int8 is –126.

Programmatic Use
Block Parameter: SaturateOnIntegerOverflow
Type: character vector
Values: 'off' | 'on'
Default: 'off'

Lock output data type setting against changes by the fixed-point tools —
Prevention of fixed-point tools from overriding data type

off (default) | on

Select this parameter to prevent the fixed-point tools from overriding the data type you specify for
the block. For more information, see “Use Lock Output Data Type Setting” (Fixed-Point Designer).

Programmatic Use
Block Parameter: LockScale
Type: character vector
Values: 'off' | 'on'
Default: 'off'
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Data Type

Output data type — Data type of yfit output

Inherit: auto (default) | double | single | half | int8 | uint8 | int16 | uint16 | int32 |
uint32 | int64 | uint64 | boolean | fixdt(1,16) | fixdt(1,16,0) | fixdt(1,16,2^0,0) |
<data type expression>

Specify the data type of the yfit output. The type can be inherited, specified directly, or expressed as
a data type object such as Simulink.NumericType.

When you select Inherit: auto, the block uses a rule that inherits a data type.

For more information about data types, see “Control Data Types of Signals” (Simulink).

Click the Show data type assistant button  to display the Data Type Assistant, which helps
you set the data type attributes. For more information, see “Specify Data Types Using Data Type
Assistant” (Simulink).

Programmatic Use
Block Parameter: OutDataTypeStr
Type: character vector
Values: 'Inherit: auto' | 'double' | 'single' | 'half' | 'int8' | 'uint8' | 'int16' |
'uint16' | 'int32' | 'uint32' | 'int64' | 'uint64' | 'boolean' | 'fixdt(1,16)' |
'fixdt(1,16,0)' | 'fixdt(1,16,2^0,0)' | '<data type expression>'
Default: 'Inherit: auto'

Output minimum — Minimum value of yfit output for range checking
[] (default) | scalar

Specify the lower value of the yfit output range that Simulink checks.

Simulink uses the minimum value to perform:

• Parameter range checking for some blocks (see “Specify Minimum and Maximum Values for Block
Parameters” (Simulink)).

• Simulation range checking (see “Specify Signal Ranges” (Simulink) and “Enable Simulation Range
Checking” (Simulink)).

• Automatic scaling of fixed-point data types.
• Optimization of the code that you generate from the model. This optimization can remove

algorithmic code and affect the results of some simulation modes, such as SIL or external mode.
For more information, see Optimize using the specified minimum and maximum values (Embedded
Coder).

Note The Output minimum parameter does not saturate or clip the actual yfit signal. Use the
Saturation block instead.

Programmatic Use
Block Parameter: OutMin
Type: character vector
Values: '[]' | scalar
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Default: '[]'

Output maximum — Maximum value of yfit output for range checking
[] (default) | scalar

Specify the upper value of the yfit output range that Simulink checks.

Simulink uses the maximum value to perform:

• Parameter range checking for some blocks (see “Specify Minimum and Maximum Values for Block
Parameters” (Simulink)).

• Simulation range checking (see “Specify Signal Ranges” (Simulink) and “Enable Simulation Range
Checking” (Simulink)).

• Automatic scaling of fixed-point data types.
• Optimization of the code that you generate from the model. This optimization can remove

algorithmic code and affect the results of some simulation modes, such as SIL or external mode.
For more information, see Optimize using the specified minimum and maximum values (Embedded
Coder).

Note The Output maximum parameter does not saturate or clip the actual yfit signal. Use the
Saturation block instead.

Programmatic Use
Block Parameter: OutMax
Type: character vector
Values: '[]' | scalar
Default: '[]'

Block Characteristics
Data Types Boolean | double | fixed point | half | integer | single
Direct Feedthrough yes
Multidimensional
Signals

no

Variable-Size Signals no
Zero-Crossing
Detection

no

Alternative Functionality
You can use a MATLAB Function block with the predict object function of a regression tree object
(RegressionTree or CompactRegressionTree). For an example, see “Predict Class Labels Using
MATLAB Function Block” on page 34-51.

When deciding whether to use the RegressionTree Predict block in the Statistics and Machine
Learning Toolbox library or a MATLAB Function block with the predict function, consider the
following:
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• If you use the Statistics and Machine Learning Toolbox library block, you can use the Fixed-Point
Tool to convert a floating-point model to fixed point.

• Support for variable-size arrays must be enabled for a MATLAB Function block with the predict
function.

• If you use a MATLAB Function block, you can use MATLAB functions for preprocessing or post-
processing before or after predictions in the same MATLAB Function block.

Version History
Introduced in R2021a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

Fixed-Point Conversion
Design and simulate fixed-point systems using Fixed-Point Designer™.

See Also
Blocks
RegressionSVM Predict | RegressionEnsemble Predict | RegressionNeuralNetwork Predict |
ClassificationTree Predict

Objects
RegressionTree | CompactRegressionTree

Functions
predict | fitrtree

Topics
“Predict Responses Using RegressionSVM Predict Block” on page 34-127
“Predict Responses Using RegressionEnsemble Predict Block” on page 34-149
“Predict Responses Using RegressionNeuralNetwork Predict Block” on page 34-160
“Predict Responses Using RegressionGP Predict Block” on page 34-164
“Predict Class Labels Using MATLAB Function Block” on page 34-51
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RegressionTreeCoderConfigurer
Coder configurer of binary decision tree model for regression

Description
A RegressionTreeCoderConfigurer object is a coder configurer of a binary decision tree model
for regression (RegressionTree or CompactRegressionTree).

A coder configurer offers convenient features to configure code generation options, generate C/C++
code, and update model parameters in the generated code.

• Configure code generation options and specify the coder attributes for tree model parameters by
using object properties.

• Generate C/C++ code for the predict and update functions of the regression tree model by
using generateCode. Generating C/C++ code requires MATLAB Coder.

• Update model parameters in the generated C/C++ code without having to regenerate the code.
This feature reduces the effort required to regenerate, redeploy, and reverify C/C++ code when
you retrain the tree model with new data or settings. Before updating model parameters, use
validatedUpdateInputs to validate and extract the model parameters to update.

This flow chart shows the code generation workflow using a coder configurer.

For the code generation usage notes and limitations of a regression tree model, see the Code
Generation sections of CompactRegressionTree, predict, and update.

Creation
After training a regression tree model by using fitrtree, create a coder configurer for the model by
using learnerCoderConfigurer. Use the properties of a coder configurer to specify the coder
attributes of the predict and update arguments. Then, use generateCode to generate C/C++
code based on the specified coder attributes.

Properties
predict Arguments

The properties listed in this section specify the coder attributes of the predict function arguments
in the generated code.

35 Functions

35-6468



X — Coder attributes of predictor data
LearnerCoderInput object

Coder attributes of the predictor data to pass to the generated C/C++ code for the predict function
of the regression tree model, specified as a LearnerCoderInput on page 35-6480 object.

When you create a coder configurer by using the learnerCoderConfigurer function, the input
argument X determines the default values of the LearnerCoderInput coder attributes:

• SizeVector — The default value is the array size of the input X.
• VariableDimensions — This value is [0 0](default) or [1 0].

• [0 0] indicates that the array size is fixed as specified in SizeVector.
• [1 0] indicates that the array has variable-size rows and fixed-size columns. In this case, the
first value of SizeVector is the upper bound for the number of rows, and the second value of
SizeVector is the number of columns.

• DataType — This value is single or double. The default data type depends on the data type of
the input X.

• Tunability — This value must be true, meaning that predict in the generated C/C++ code
always includes predictor data as an input.

You can modify the coder attributes by using dot notation. For example, to generate C/C++ code that
accepts predictor data with 100 observations of three predictor variables, specify these coder
attributes of X for the coder configurer configurer:

configurer.X.SizeVector = [100 3];
configurer.X.DataType = 'double';
configurer.X.VariableDimensions = [0 0];

[0 0] indicates that the first and second dimensions of X (number of observations and number of
predictor variables, respectively) have fixed sizes.

To allow the generated C/C++ code to accept predictor data with up to 100 observations, specify
these coder attributes of X:

configurer.X.SizeVector = [100 3];
configurer.X.DataType = 'double';
configurer.X.VariableDimensions = [1 0];

[1 0] indicates that the first dimension of X (number of observations) has a variable size and the
second dimension of X (number of predictor variables) has a fixed size. The specified number of
observations, 100 in this example, becomes the maximum allowed number of observations in the
generated C/C++ code. To allow any number of observations, specify the bound as Inf.

NumOutputs — Number of outputs in predict
1 (default) | 2

Number of output arguments to return from the generated C/C++ code for the predict function of
the regression tree model, specified as 1 or 2.

The output arguments of predict are Yfit (predicted responses) and node (node numbers for
predictions), in that order. predict in the generated C/C++ code returns the first n outputs of the
predict function, where n is the NumOutputs value.
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After creating the coder configurer configurer, you can specify the number of outputs by using dot
notation.

configurer.NumOutputs = 2;

The NumOutputs property is equivalent to the '-nargout' compiler option of codegen. This option
specifies the number of output arguments in the entry-point function of code generation. The object
function generateCode generates two entry-point functions—predict.m and update.m for the
predict and update functions of a regression tree model, respectively—and generates C/C++ code
for the two entry-point functions. The specified value for the NumOutputs property corresponds to
the number of output arguments in the entry-point function predict.m.
Data Types: double

update Arguments

The properties listed in this section specify the coder attributes of the update function arguments in
the generated code. The update function takes a trained model and new model parameters as input
arguments, and returns an updated version of the model that contains the new parameters. To enable
updating the parameters in the generated code, you need to specify the coder attributes of the
parameters before generating code. Use a LearnerCoderInput on page 35-6480 object to specify
the coder attributes of each parameter. The default attribute values are based on the model
parameters in the input argument Mdl of learnerCoderConfigurer.

Children — Coder attributes of child nodes for each node
LearnerCoderInput object

Coder attributes of the child nodes for each node in the tree (Children of a regression tree model),
specified as a LearnerCoderInput on page 35-6480 object.

The default attribute values of the LearnerCoderInput object are based on the input argument Mdl
of learnerCoderConfigurer:

• SizeVector — The default value is [nd 2], where nd is the number of nodes in Mdl.
• VariableDimensions — This value is [0 0](default) or [1 0].

• [0 0] indicates that the array size is fixed as specified in SizeVector.
• [1 0] indicates that the array has variable-size rows and fixed-size columns. In this case, the
first value of SizeVector is the upper bound for the number of rows, and the second value of
SizeVector is the number of columns.

• DataType — This value is 'single' or 'double'. The default data type is consistent with the
data type of the training data you use to train Mdl.

• Tunability — This value must be true.

If you modify the first dimension of SizeVector to be newnd, then the software modifies the first
dimension of the SizeVector attribute to be newnd for the properties CutPoint,
CutPredictorIndex, and NodeMean. Similarly, if you modify the first dimension of
VariableDimensions to be 1, then the software modifies the first dimension of the
VariableDimensions attribute to be 1 for these properties.

CutPoint — Coder attributes of cut point for each node
LearnerCoderInput object
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Coder attributes of the cut point for each node in the tree (CutPoint of a regression tree model),
specified as a LearnerCoderInput on page 35-6480 object.

The default attribute values of the LearnerCoderInput object are based on the input argument Mdl
of learnerCoderConfigurer:

• SizeVector — The default value is [nd 1], where nd is the number of nodes in Mdl.
• VariableDimensions — This value is [0 0](default) or [1 0].

• [0 0] indicates that the array size is fixed as specified in SizeVector.
• [1 0] indicates that the array has variable-size rows and fixed-size columns. In this case, the
first value of SizeVector is the upper bound for the number of rows, and the second value of
SizeVector is the number of columns.

• DataType — This value is 'single' or 'double'. The default data type is consistent with the
data type of the training data you use to train Mdl.

• Tunability — This value must be true.

If you modify the first dimension of SizeVector to be newnd, then the software modifies the first
dimension of the SizeVector attribute to be newnd for the properties Children,
CutPredictorIndex, and NodeMean. Similarly, if you modify the first dimension of
VariableDimensions to be 1, then the software modifies the first dimension of the
VariableDimensions attribute to be 1 for these properties.

CutPredictorIndex — Coder attributes of cut predictor index for each node
LearnerCoderInput object

Coder attributes of the cut predictor index for each node in the tree (CutPredictorIndex of a
regression tree model), specified as a LearnerCoderInput on page 35-6480 object.

The default attribute values of the LearnerCoderInput object are based on the input argument Mdl
of learnerCoderConfigurer:

• SizeVector — The default value is [nd 1], where nd is the number of nodes in Mdl.
• VariableDimensions — This value is [0 0](default) or [1 0].

• [0 0] indicates that the array size is fixed as specified in SizeVector.
• [1 0] indicates that the array has variable-size rows and fixed-size columns. In this case, the
first value of SizeVector is the upper bound for the number of rows, and the second value of
SizeVector is the number of columns.

• DataType — This value is 'single' or 'double'. The default data type is consistent with the
data type of the training data you use to train Mdl.

• Tunability — This value must be true.

If you modify the first dimension of SizeVector to be newnd, then the software modifies the first
dimension of the SizeVector attribute to be newnd for the properties Children, CutPoint, and
NodeMean. Similarly, if you modify the first dimension of VariableDimensions to be 1, then the
software modifies the first dimension of the VariableDimensions attribute to be 1 for these
properties.

NodeMean — Coder attributes of mean response value for each node
LearnerCoderInput object
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Coder attributes of the mean response value for each node in the tree (NodeMean of a regression tree
model), specified as a LearnerCoderInput on page 35-6480 object.

The default attribute values of the LearnerCoderInput object are based on the input argument Mdl
of learnerCoderConfigurer:

• SizeVector — The default value is [nd 1], where nd is the number of nodes in Mdl.
• VariableDimensions — This value is [0 0](default) or [1 0].

• [0 0] indicates that the array size is fixed as specified in SizeVector.
• [1 0] indicates that the array has variable-size rows and fixed-size columns. In this case, the
first value of SizeVector is the upper bound for the number of rows, and the second value of
SizeVector is the number of columns.

• DataType — This value is 'single' or 'double'. The default data type is consistent with the
data type of the training data you use to train Mdl.

• Tunability — This value must be true.

If you modify the first dimension of SizeVector to be newnd, then the software modifies the first
dimension of the SizeVector attribute to be newnd for the properties Children, CutPoint, and
CutPredictorIndex. Similarly, if you modify the first dimension of VariableDimensions to be 1,
then the software modifies the first dimension of the VariableDimensions attribute to be 1 for
these properties.

Other Configurer Options

OutputFileName — File name of generated C/C++ code
'RegressionTreeModel' (default) | character vector

File name of the generated C/C++ code, specified as a character vector.

The object function generateCode of RegressionTreeCoderConfigurer generates C/C++ code
using this file name.

The file name must not contain spaces because they can lead to code generation failures in certain
operating system configurations. Also, the name must be a valid MATLAB function name.

After creating the coder configurer configurer, you can specify the file name by using dot notation.

configurer.OutputFileName = 'myModel';

Data Types: char

Verbose — Verbosity level
true (logical 1) (default) | false (logical 0)

Verbosity level, specified as true (logical 1) or false (logical 0). The verbosity level controls the
display of notification messages at the command line.

Value Description
true (logical 1) The software displays notification messages when your changes to the

coder attributes of a parameter result in changes for other dependent
parameters.
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Value Description
false (logical 0) The software does not display notification messages.

To enable updating machine learning model parameters in the generated code, you need to configure
the coder attributes of the parameters before generating code. The coder attributes of parameters
are dependent on each other, so the software stores the dependencies as configuration constraints. If
you modify the coder attributes of a parameter by using a coder configurer, and the modification
requires subsequent changes to other dependent parameters to satisfy configuration constraints,
then the software changes the coder attributes of the dependent parameters. The verbosity level
determines whether or not the software displays notification messages for these subsequent changes.

After creating the coder configurer configurer, you can modify the verbosity level by using dot
notation.

configurer.Verbose = false;

Data Types: logical

Options for Code Generation Customization

To customize the code generation workflow, use the generateFiles function and the following three
properties with codegen, instead of using the generateCode function.

After generating the two entry-point function files (predict.m and update.m) by using the
generateFiles function, you can modify these files according to your code generation workflow.
For example, you can modify the predict.m file to include data preprocessing, or you can add these
entry-point functions to another code generation project. Then, you can generate C/C++ code by
using the codegen function and the codegen arguments appropriate for the modified entry-point
functions or code generation project. Use the three properties described in this section as a starting
point to set the codegen arguments.

CodeGenerationArguments — codegen arguments
cell array

This property is read-only.

codegen arguments, specified as a cell array.

This property enables you to customize the code generation workflow. Use the generateCode
function if you do not need to customize your workflow.

Instead of using generateCode with the coder configurer configurer, you can generate C/C++
code as follows:

generateFiles(configurer)
cgArgs = configurer.CodeGenerationArguments;
codegen(cgArgs{:})

If you customize the code generation workflow, modify cgArgs accordingly before calling codegen.

If you modify other properties of configurer, the software updates the
CodeGenerationArguments property accordingly.
Data Types: cell
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PredictInputs — Input argument of predict
cell array of a coder.PrimitiveType object

This property is read-only.

Input argument of the entry-point function predict.m for code generation, specified as a cell array
of a coder.PrimitiveType object. The coder.PrimitiveType object includes the coder
attributes of the predictor data stored in the X property.

If you modify the coder attributes of the predictor data, then the software updates the
coder.PrimitiveType object accordingly.

The coder.PrimitiveType object in PredictInputs is equivalent to
configurer.CodeGenerationArguments{6} for the coder configurer configurer.
Data Types: cell

UpdateInputs — List of tunable input arguments of update
cell array of a structure including coder.PrimitiveType objects

This property is read-only.

List of the tunable input arguments of the entry-point function update.m for code generation,
specified as a cell array of a structure including coder.PrimitiveType objects. Each
coder.PrimitiveType object includes the coder attributes of a tunable machine learning model
parameter.

If you modify the coder attributes of a model parameter by using the coder configurer properties
(update Arguments on page 35-6470 properties), then the software updates the corresponding
coder.PrimitiveType object accordingly. If you specify the Tunability attribute of a machine
learning model parameter as false, then the software removes the corresponding
coder.PrimitiveType object from the UpdateInputs list.

The structure in UpdateInputs is equivalent to configurer.CodeGenerationArguments{3} for
the coder configurer configurer.
Data Types: cell

Object Functions
generateCode Generate C/C++ code using coder configurer
generateFiles Generate MATLAB files for code generation using coder configurer
validatedUpdateInputs Validate and extract machine learning model parameters to update

Examples

Generate Code Using Coder Configurer

Train a machine learning model, and then generate code for the predict and update functions of
the model by using a coder configurer.

Load the carbig data set, which contains car data, and train a regression tree model.

load carbig
X = [Displacement Horsepower Weight];
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Y = MPG;
Mdl = fitrtree(X,Y);

Mdl is a RegressionTree object.

Create a coder configurer for the RegressionTree model by using learnerCoderConfigurer.
Specify the predictor data X. The learnerCoderConfigurer function uses the input X to configure
the coder attributes of the predict function input.

configurer = learnerCoderConfigurer(Mdl,X)

configurer = 
  RegressionTreeCoderConfigurer with properties:

   Update Inputs:
             Children: [1x1 LearnerCoderInput]
             NodeMean: [1x1 LearnerCoderInput]
             CutPoint: [1x1 LearnerCoderInput]
    CutPredictorIndex: [1x1 LearnerCoderInput]

   Predict Inputs:
                    X: [1x1 LearnerCoderInput]

   Code Generation Parameters:
           NumOutputs: 1
       OutputFileName: 'RegressionTreeModel'

  Properties, Methods

configurer is a RegressionTreeCoderConfigurer object, which is a coder configurer of a
RegressionTree object.

To generate C/C++ code, you must have access to a C/C++ compiler that is configured properly.
MATLAB Coder locates and uses a supported, installed compiler. You can use mex -setup to view and
change the default compiler. For more details, see “Change Default Compiler”.

Generate code for the predict and update functions of the regression tree model (Mdl) with default
settings.

generateCode(configurer)

generateCode creates these files in output folder:
'initialize.m', 'predict.m', 'update.m', 'RegressionTreeModel.mat'
Code generation successful.

The generateCode function completes these actions:

• Generate the MATLAB files required to generate code, including the two entry-point functions
predict.m and update.m for the predict and update functions of Mdl, respectively.

• Create a MEX function named RegressionTreeModel for the two entry-point functions.
• Create the code for the MEX function in the codegen\mex\RegressionTreeModel folder.
• Copy the MEX function to the current folder.

Display the contents of the predict.m, update.m, and initialize.m files by using the type
function.
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type predict.m

function varargout = predict(X,varargin) %#codegen
% Autogenerated by MATLAB, 01-Sep-2022 11:21:56
[varargout{1:nargout}] = initialize('predict',X,varargin{:});
end

type update.m

function update(varargin) %#codegen
% Autogenerated by MATLAB, 01-Sep-2022 11:21:56
initialize('update',varargin{:});
end

type initialize.m

function [varargout] = initialize(command,varargin) %#codegen
% Autogenerated by MATLAB, 01-Sep-2022 11:21:56
coder.inline('always')
persistent model
if isempty(model)
    model = loadLearnerForCoder('RegressionTreeModel.mat');
end
switch(command)
    case 'update'
        % Update struct fields: Children
        %                       NodeMean
        %                       CutPoint
        %                       CutPredictorIndex
        model = update(model,varargin{:});
    case 'predict'
        % Predict Inputs: X
        X = varargin{1};
        if nargin == 2
            [varargout{1:nargout}] = predict(model,X);
        else
            PVPairs = cell(1,nargin-2);
            for i = 1:nargin-2
                PVPairs{1,i} = varargin{i+1};
            end
            [varargout{1:nargout}] = predict(model,X,PVPairs{:});
        end
end
end

Update Parameters of Regression Tree Model in Generated Code

Train a regression tree using a partial data set and create a coder configurer for the model. Use the
properties of the coder configurer to specify coder attributes of the model parameters. Use the object
function of the coder configurer to generate C code that predicts responses for new predictor data.
Then retrain the model using the entire data set, and update parameters in the generated code
without regenerating the code.

Train Model

Load the carbig data set, and train a regression tree model using half of the observations.
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load carbig
X = [Displacement Horsepower Weight];
Y = MPG;

rng('default') % For reproducibility
n = length(Y);
idxTrain = randsample(n,n/2);
XTrain = X(idxTrain,:);
YTrain = Y(idxTrain);

Mdl = fitrtree(XTrain,YTrain);

Mdl is a RegressionTree object.

Create Coder Configurer

Create a coder configurer for the RegressionTree model by using learnerCoderConfigurer.
Specify the predictor data XTrain. The learnerCoderConfigurer function uses the input XTrain
to configure the coder attributes of the predict function input. Also, set the number of outputs to 2
so that the generated code returns predicted responses and node numbers for the predictions.

configurer = learnerCoderConfigurer(Mdl,XTrain,'NumOutputs',2);

configurer is a RegressionTreeCoderConfigurer object, which is a coder configurer of a
RegressionTree object.

Specify Coder Attributes of Parameters

Specify the coder attributes of the regression tree model parameters so that you can update the
parameters in the generated code after retraining the model.

Specify the coder attributes of the X property of configurer so that the generated code accepts any
number of observations. Modify the SizeVector and VariableDimensions attributes. The
SizeVector attribute specifies the upper bound of the predictor data size, and the
VariableDimensions attribute specifies whether each dimension of the predictor data has a
variable size or fixed size.

configurer.X.SizeVector = [Inf 3];
configurer.X.VariableDimensions

ans = 1x2 logical array

   1   0

The size of the first dimension is the number of observations. Setting the value of the SizeVector
attribute to Inf causes the software to change the value of the VariableDimensions attribute to 1.
In other words, the upper bound of the size is Inf and the size is variable, meaning that the predictor
data can have any number of observations. This specification is convenient if you do not know the
number of observations when generating code.

The size of the second dimension is the number of predictor variables. This value must be fixed for a
machine learning model. Because the predictor data contains 3 predictors, the value of the
SizeVector attribute must be 3 and the value of the VariableDimensions attribute must be 0.

If you retrain the tree model using new data or different settings, the number of nodes in the tree can
vary. Therefore, specify the first dimension of the SizeVector attribute of one of these properties so
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that you can update the number of nodes in the generated code: Children, CutPoint,
CutPredictorIndex, or NodeMean. The software then modifies the other properties automatically.

For example, set the first value of the SizeVector attribute of the NodeMean property to Inf. The
software modifies the SizeVector and VariableDimensions attributes of Children, CutPoint,
and CutPredictorIndex to match the new upper bound on the number of nodes in the tree.
Additionally, the first value of the VariableDimensions attribute of NodeMean changes to 1.

configurer.NodeMean.SizeVector = [Inf 1];

SizeVector attribute for Children has been modified to satisfy configuration constraints.
SizeVector attribute for CutPoint has been modified to satisfy configuration constraints.
SizeVector attribute for CutPredictorIndex has been modified to satisfy configuration constraints.
VariableDimensions attribute for Children has been modified to satisfy configuration constraints.
VariableDimensions attribute for CutPoint has been modified to satisfy configuration constraints.
VariableDimensions attribute for CutPredictorIndex has been modified to satisfy configuration constraints.

configurer.NodeMean.VariableDimensions

ans = 1x2 logical array

   1   0

Generate Code

To generate C/C++ code, you must have access to a C/C++ compiler that is configured properly.
MATLAB Coder locates and uses a supported, installed compiler. You can use mex -setup to view and
change the default compiler. For more details, see “Change Default Compiler”.

Generate code for the predict and update functions of the regression tree model (Mdl).

generateCode(configurer)

generateCode creates these files in output folder:
'initialize.m', 'predict.m', 'update.m', 'RegressionTreeModel.mat'
Code generation successful.

The generateCode function completes these actions:

• Generate the MATLAB files required to generate code, including the two entry-point functions
predict.m and update.m for the predict and update functions of Mdl, respectively.

• Create a MEX function named RegressionTreeModel for the two entry-point functions.
• Create the code for the MEX function in the codegen\mex\RegressionTreeModel folder.
• Copy the MEX function to the current folder.

Verify Generated Code

Pass some predictor data to verify whether the predict function of Mdl and the predict function in
the MEX function return the same predicted responses. To call an entry-point function in a MEX
function that has more than one entry point, specify the function name as the first input argument.

[Yfit,node] = predict(Mdl,XTrain);
[Yfit_mex,node_mex] = RegressionTreeModel('predict',XTrain);

Compare Yfit to Yfit_mex and node to node_mex.
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max(abs(Yfit-Yfit_mex),[],'all')

ans = 0

isequal(node,node_mex)

ans = logical
   1

In general, Yfit_mex might include round-off differences compared to Yfit. In this case, the
comparison confirms that Yfit and Yfit_mex are equal.

isequal returns logical 1 (true) if all the input arguments are equal. The comparison confirms that
the predict function of Mdl and the predict function in the MEX function return the same node
numbers.

Retrain Model and Update Parameters in Generated Code

Retrain the model using the entire data set.

retrainedMdl = fitrtree(X,Y);

Extract parameters to update by using validatedUpdateInputs. This function detects the modified
model parameters in retrainedMdl and validates whether the modified parameter values satisfy the
coder attributes of the parameters.

params = validatedUpdateInputs(configurer,retrainedMdl);

Update parameters in the generated code.

RegressionTreeModel('update',params)

Verify Generated Code

Compare the output arguments from the predict function of retrainedMdl and the predict
function in the updated MEX function.

[Yfit,node] = predict(retrainedMdl,X);
[Yfit_mex,node_mex] = RegressionTreeModel('predict',X);

max(abs(Yfit-Yfit_mex),[],'all')

ans = 0

isequal(node,node_mex)

ans = logical
   1
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The comparison confirms that the predicted responses and node numbers are equal.

More About
LearnerCoderInput Object

A coder configurer uses a LearnerCoderInput object to specify the coder attributes of predict
and update input arguments.

A LearnerCoderInput object has the following attributes to specify the properties of an input
argument array in the generated code.

Attribute Name Description
SizeVector Array size if the corresponding VariableDimensions value is

false.

Upper bound of the array size if the corresponding
VariableDimensions value is true. To allow an unbounded
array, specify the bound as Inf.

VariableDimensions Indicator specifying whether each dimension of the array has a
variable size or fixed size, specified as true (logical 1) or false
(logical 0):

• A value of true (logical 1) means that the corresponding
dimension has a variable size.

• A value of false (logical 0) means that the corresponding
dimension has a fixed size.

DataType Data type of the array
Tunability Indicator specifying whether or not predict or update includes

the argument as an input in the generated code, specified as true
(logical 1) or false (logical 0).

If you specify other attribute values when Tunability is false,
the software sets Tunability to true.

After creating a coder configurer, you can modify the coder attributes by using dot notation. For
example, specify the coder attributes of the CutPoint property of the coder configurer configurer:

configurer.CutPoint.SizeVector = [40 1];
configurer.CutPoint.VariableDimensions = [1 0];

If you specify the verbosity level (Verbose) as true (default), then the software displays notification
messages when you modify the coder attributes of a machine learning model parameter and the
modification changes the coder attributes of other dependent parameters.

Version History
Introduced in R2019b

See Also
learnerCoderConfigurer | RegressionTree | CompactRegressionTree | update | predict
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Topics
“Introduction to Code Generation” on page 34-2
“Code Generation for Prediction and Update Using Coder Configurer” on page 34-92
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regstats
Regression diagnostics

Syntax
regstats(y,X,model)
stats = regstats(...)
stats = regstats(y,X,model,whichstats)

Description
regstats(y,X,model) performs a multilinear regression of the responses in y on the predictors in
X. X is an n-by-p matrix of p predictors at each of n observations. y is an n-by-1 vector of observed
responses.

Note By default, regstats adds a first column of 1s to X, corresponding to a constant term in the
model. Do not enter a column of 1s directly into X.

The optional input model controls the regression model. By default, regstats uses a linear additive
model with a constant term. model can be any one of the following:

• 'linear' — Constant and linear terms (the default)
• 'interaction' — Constant, linear, and interaction terms
• 'quadratic' — Constant, linear, interaction, and squared terms
• 'purequadratic' — Constant, linear, and squared terms

Alternatively, model can be a matrix of model terms accepted by the x2fx function. See x2fx for a
description of this matrix and for a description of the order in which terms appear. You can use this
matrix to specify other models including ones without a constant term.

With this syntax, the function displays a graphical user interface (GUI) with a list of diagnostic
statistics, as shown in the following figure.
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When you select check boxes corresponding to the statistics you want to compute and click OK,
regstats returns the selected statistics to the MATLAB workspace. The names of the workspace
variables are displayed on the right-hand side of the interface. You can change the name of the
workspace variable to any valid MATLAB variable name.

stats = regstats(...) creates the structure stats, whose fields contain all of the diagnostic
statistics for the regression. This syntax does not open the GUI. The fields of stats are listed in the
following table.

Field Description
Q Q from the QR decomposition of the design matrix
R R from the QR decomposition of the design matrix
beta Regression coefficients
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Field Description
covb Covariance of regression coefficients
yhat Fitted values of the response data
r Residuals
mse Mean squared error
rsquare R2 statistic
adjrsquare Adjusted R2 statistic
leverage Leverage
hatmat Hat matrix
s2_i Delete-1 variance
beta_i Delete-1 coefficients
standres Standardized residuals
studres Studentized residuals
dfbetas Scaled change in regression coefficients
dffit Change in fitted values
dffits Scaled change in fitted values
covratio Change in covariance
cookd Cook's distance
tstat t statistics and p-values for coefficients
fstat F statistic and p-value
dwstat Durbin-Watson statistic and p-value

Note that the fields names of stats correspond to the names of the variables returned to the
MATLAB workspace when you use the GUI. For example, stats.beta corresponds to the variable
beta that is returned when you select Coefficients in the GUI and click OK.

stats = regstats(y,X,model,whichstats) returns only the statistics that you specify in
whichstats. whichstats can be a single character vector such as 'leverage', a string array
such as ["leverage","standres","studres"], or a cell array of character vectors such as
{'leverage','standres','studres'}. Set whichstats to 'all' to return all of the statistics.

Note The F statistic is computed under the assumption that the model contains a constant term. It is
not correct for models without a constant. The R2 statistic can be negative for models without a
constant, which indicates that the model is not appropriate for the data.

Examples
Open the regstats GUI using data from hald.mat:

load hald
regstats(heat,ingredients,'linear');

Select Fitted Values and Residuals in the GUI:
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Click OK to export the fitted values and residuals to the MATLAB workspace in variables named yhat
and r, respectively.

You can create the same variables using the stats output, without opening the GUI:

whichstats = {'yhat','r'};
stats = regstats(heat,ingredients,'linear',whichstats);
yhat = stats.yhat;
r = stats.r;

Tips
• regstats treats NaN values in X or y as missing values. regstats omits observations with

missing values from the regression fit.

Version History
Introduced before R2006a

References

[1] Belsley, D. A., E. Kuh, and R. E. Welsch. Regression Diagnostics. Hoboken, NJ: John Wiley & Sons,
Inc., 1980.

[2] Chatterjee, S., and A. S. Hadi. “Influential Observations, High Leverage Points, and Outliers in
Linear Regression.” Statistical Science. Vol. 1, 1986, pp. 379–416.

[3] Cook, R. D., and S. Weisberg. Residuals and Influence in Regression. New York: Chapman &
Hall/CRC Press, 1983.

[4] Goodall, C. R. “Computation Using the QR Decomposition.” Handbook in Statistics. Vol. 9,
Amsterdam: Elsevier/North-Holland, 1993.

See Also
LinearModel | fitlm | stepwiselm

Topics
“Interpret Linear Regression Results” on page 11-52
“Linear Regression Workflow” on page 11-35
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regularize
Find weights to minimize resubstitution error plus penalty term

Syntax
ens1 = regularize(ens)
ens1 = regularize(ens,Name,Value)

Description
ens1 = regularize(ens) finds optimal weights for learners in ens by lasso regularization.
regularize returns a regression ensemble identical to ens, but with a populated Regularization
property.

ens1 = regularize(ens,Name,Value) computes optimal weights with additional options
specified by one or more Name,Value pair arguments. You can specify several name-value pair
arguments in any order as Name1,Value1,…,NameN,ValueN.

Input Arguments
ens

A regression ensemble, created by fitrensemble.

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.

lambda

Vector of nonnegative regularization parameter values for lasso. For the default setting of lambda,
regularize calculates the smallest value lambda_max for which all optimal weights for learners are
0. The default value of lambda is a vector including 0 and nine exponentially-spaced numbers from
lambda_max/1000 to lambda_max.

Default: [0 logspace(log10(lambda_max/1000),log10(lambda_max),9)]

MaxIter

Maximum number of iterations allowed, specified as a positive integer. If the algorithm executes
MaxIter iterations before reaching the convergence tolerance, then the function stops iterating and
returns a warning message. The function can return more than one warning when either npass or
the number of lambda values is greater than 1.

Default: 1e3
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npass

Maximal number of passes for lasso optimization, a positive integer.

Default: 10

reltol

Relative tolerance on the regularized loss for lasso, a numeric positive scalar.

Default: 1e-3

verbose

Verbosity level, either 0 or 1. When set to 1, regularize displays more information as it runs.

Default: 0

Output Arguments
ens1

A regression ensemble. Usually you set ens1 to the same name as ens.

Examples
Regularize Ensemble of Bagged Trees

Regularize an ensemble of bagged trees.

Generate sample data.

rng(10,'twister') % For reproducibility
X = rand(2000,20);
Y = repmat(-1,2000,1);
Y(sum(X(:,1:5),2)>2.5) = 1;

You can create a bagged classification ensemble of 300 trees from the sample data.

bag = fitrensemble(X,Y,'Method','Bag','NumLearningCycles',300);

fitrensemble uses a default template tree object templateTree() as a weak learner when
'Method' is 'Bag'. In this example, for reproducibility, specify 'Reproducible',true when you
create a tree template object, and then use the object as a weak learner.

t = templateTree('Reproducible',true); % For reproducibiliy of random predictor selections
bag = fitrensemble(X,Y,'Method','Bag','NumLearningCycles',300,'Learners',t);

Regularize the ensemble of bagged regression trees.

bag = regularize(bag,'lambda',[0.001 0.1],'verbose',1);

Starting lasso regularization for Lambda=0.001. Initial MSE=0.109923.
    Lasso regularization completed pass 1 for Lambda=0.001
        MSE = 0.086912
        Relative change in MSE = 0.264768
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        Number of learners with nonzero weights = 15
    Lasso regularization completed pass 2 for Lambda=0.001
        MSE = 0.0670602
        Relative change in MSE = 0.296029
        Number of learners with nonzero weights = 34
    Lasso regularization completed pass 3 for Lambda=0.001
        MSE = 0.0623931
        Relative change in MSE = 0.0748019
        Number of learners with nonzero weights = 51
    Lasso regularization completed pass 4 for Lambda=0.001
        MSE = 0.0605444
        Relative change in MSE = 0.0305348
        Number of learners with nonzero weights = 70
    Lasso regularization completed pass 5 for Lambda=0.001
        MSE = 0.0599666
        Relative change in MSE = 0.00963517
        Number of learners with nonzero weights = 94
    Lasso regularization completed pass 6 for Lambda=0.001
        MSE = 0.0598835
        Relative change in MSE = 0.00138719
        Number of learners with nonzero weights = 105
    Lasso regularization completed pass 7 for Lambda=0.001
        MSE = 0.0598608
        Relative change in MSE = 0.000379227
        Number of learners with nonzero weights = 113
    Lasso regularization completed pass 8 for Lambda=0.001
        MSE = 0.0598586
        Relative change in MSE = 3.72856e-05
        Number of learners with nonzero weights = 115
    Lasso regularization completed pass 9 for Lambda=0.001
        MSE = 0.0598587
        Relative change in MSE = 6.42954e-07
        Number of learners with nonzero weights = 115
    Lasso regularization completed pass 10 for Lambda=0.001
        MSE = 0.0598587
        Relative change in MSE = 4.53658e-08
        Number of learners with nonzero weights = 115
    Completed lasso minimization for Lambda=0.001.
    Resubstitution MSE changed from 0.109923 to 0.0598587.
    Number of learners reduced from 300 to 115.
Starting lasso regularization for Lambda=0.1. Initial MSE=0.109923.
    Lasso regularization completed pass 1 for Lambda=0.1
        MSE = 0.104917
        Relative change in MSE = 0.0477191
        Number of learners with nonzero weights = 12
    Lasso regularization completed pass 2 for Lambda=0.1
        MSE = 0.0851031
        Relative change in MSE = 0.232821
        Number of learners with nonzero weights = 30
    Lasso regularization completed pass 3 for Lambda=0.1
        MSE = 0.081245
        Relative change in MSE = 0.0474877
        Number of learners with nonzero weights = 40
    Lasso regularization completed pass 4 for Lambda=0.1
        MSE = 0.0796749
        Relative change in MSE = 0.0197067
        Number of learners with nonzero weights = 53
    Lasso regularization completed pass 5 for Lambda=0.1
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        MSE = 0.0788411
        Relative change in MSE = 0.0105746
        Number of learners with nonzero weights = 64
    Lasso regularization completed pass 6 for Lambda=0.1
        MSE = 0.0784959
        Relative change in MSE = 0.00439793
        Number of learners with nonzero weights = 81
    Lasso regularization completed pass 7 for Lambda=0.1
        MSE = 0.0784429
        Relative change in MSE = 0.000676468
        Number of learners with nonzero weights = 88
    Lasso regularization completed pass 8 for Lambda=0.1
        MSE = 0.078447
        Relative change in MSE = 5.24449e-05
        Number of learners with nonzero weights = 88
    Completed lasso minimization for Lambda=0.1.
    Resubstitution MSE changed from 0.109923 to 0.078447.
    Number of learners reduced from 300 to 88.

regularize reports on its progress.

Inspect the resulting regularization structure.

bag.Regularization

ans = struct with fields:
               Method: 'Lasso'
       TrainedWeights: [300x2 double]
               Lambda: [1.0000e-03 0.1000]
    ResubstitutionMSE: [0.0599 0.0784]
       CombineWeights: @classreg.learning.combiner.WeightedSum

Check how many learners in the regularized ensemble have positive weights. These are the learners
included in a shrunken ensemble.

sum(bag.Regularization.TrainedWeights > 0)

ans = 1×2

   115    88

Shrink the ensemble using the weights from Lambda = 0.1.

cmp = shrink(bag,'weightcolumn',2)

cmp = 
  CompactRegressionEnsemble
             ResponseName: 'Y'
    CategoricalPredictors: []
        ResponseTransform: 'none'
               NumTrained: 88

  Properties, Methods

The compact ensemble contains 87 members, less than 1/3 of the original 300.
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35-6489



More About
Lasso

The lasso algorithm finds an optimal set of learner weights αt that minimize

∑n = 1

N

wng ∑t = 1

T

αtht xn , yn + λ∑t = 1

T

αt .

Here

• λ ≥ 0 is a parameter you provide, called the lasso parameter.
• ht is a weak learner in the ensemble trained on N observations with predictors xn, responses yn,

and weights wn.
• g(f,y) = (f – y)2 is the squared error.

Extended Capabilities
GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

This function fully supports GPU arrays. For more information, see “Run MATLAB Functions on a
GPU” (Parallel Computing Toolbox).

See Also
shrink | cvshrink | lasso

Topics
“Ensemble Regularization” on page 19-72
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relieff
Rank importance of predictors using ReliefF or RReliefF algorithm

Syntax
[idx,weights] = relieff(X,y,k)
[idx,weights] = relieff(X,y,k,Name,Value)

Description
[idx,weights] = relieff(X,y,k) ranks predictors using either the ReliefF or RReliefF
algorithm with k nearest neighbors. The input matrix X contains predictor variables, and the vector y
contains a response vector. The function returns idx, which contains the indices of the most
important predictors, and weights, which contains the weights of the predictors.

If y is numeric, relieff performs RReliefF analysis for regression by default. Otherwise, relieff
performs ReliefF analysis for classification using k nearest neighbors per class. For more information
on ReliefF and RReliefF, see “Algorithms” on page 35-6496.

[idx,weights] = relieff(X,y,k,Name,Value) specifies additional options using one or more
name-value pair arguments. For example, 'updates',10 sets the number of observations randomly
selected for computing weights to 10.

Examples

Determine Important Predictors

Load the sample data.

load fisheriris

Find the important predictors using 10 nearest neighbors.

[idx,weights] = relieff(meas,species,10)

idx = 1×4

     4     3     1     2

weights = 1×4

    0.1399    0.1226    0.3590    0.3754

idx shows the predictor numbers listed according to their ranking. The fourth predictor is the most
important, and the second predictor is the least important. weights gives the weight values in the
same order as the predictors. The first predictor has a weight of 0.1399, and the fourth predictor has
a weight of 0.3754.
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Rank Predictors by Importance

Load the sample data.

load ionosphere

Rank the predictors based on importance using 10 nearest neighbors.

[idx,weights] = relieff(X,Y,10);

Create a bar plot of predictor importance weights.

bar(weights(idx))
xlabel('Predictor rank')
ylabel('Predictor importance weight')

Select the top 5 most important predictors. Find the columns of these predictors in X.

idx(1:5)

ans = 1×5

    24     3     8     5    14

The 24th column of X is the most important predictor of Y.
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Determine Important Categorical Predictors

Rank categorical predictors using relieff.

Load the sample data.

load carbig

Convert the categorical predictor variables Mfg, Model, and Origin to numerical values, and
combine them into an input matrix. Specify the response variable MPG.

X = [grp2idx(Mfg) grp2idx(Model) grp2idx(Origin)];
y = MPG;

Find the ranks and weights of the predictor variables using 10 nearest neighbors and treating the
data in X as categorical.

[idx,weights] = relieff(X,y,10,'categoricalx','on')

idx = 1×3

     2     3     1

weights = 1×3

   -0.0019    0.0501    0.0114

The Model predictor is the most important in predicting MPG. The Mfg variable has a negative weight,
indicating it is not a good predictor of MPG.

Input Arguments
X — Predictor data
numeric matrix

Predictor data, specified as a numeric matrix. Each row of X corresponds to one observation, and
each column corresponds to one variable.
Data Types: single | double

y — Response data
numeric vector | categorical vector | logical vector | character array | string array | cell array of
character vectors

Response data, specified as a numeric vector, categorical vector, logical vector, character array, string
array, or cell array of character vectors.
Data Types: single | double | categorical | logical | char | string | cell

k — Number of nearest neighbors
positive integer scalar
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Number of nearest neighbors, specified as a positive integer scalar.
Data Types: single | double

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: relieff(X,y,5,'method','classification','categoricalx','on') specifies 5
nearest neighbors and treats the response variable and predictor data as categorical.

method — Method for computing weights
'regression' | 'classification'

Method for computing weights, specified as the comma-separated pair consisting of 'method' and
either 'regression' or 'classification'. If y is numeric, 'regression' is the default method.
Otherwise, 'classification' is the default.
Example: 'method','classification'

prior — Prior probabilities for each class
'empirical' (default) | 'uniform' | numeric vector | structure

Prior probabilities for each class, specified as the comma-separated pair consisting of 'prior' and a
value in this table.

Value Description
'empirical' The class probabilities are determined from class

frequencies in y.
'uniform' All class probabilities are equal.
numeric vector One value exists for each distinct group name.
structure A structure S with two fields:

• S.group contains the group names as a
variable of the same type as y.

• S.prob contains a vector of corresponding
probabilities.

Example: 'prior','uniform'
Data Types: single | double | char | string | struct

updates — Number of observations for computing weights
'all' (default) | positive integer scalar

Number of observations to select at random for computing weights, specified as the comma-
separated pair consisting of 'updates' and either 'all' or a positive integer scalar. By default,
relieff uses all observations.
Example: 'updates',25

35 Functions

35-6494



Data Types: single | double | char | string

categoricalx — Categorical predictors flag
'off' (default) | 'on'

Categorical predictors flag, specified as the comma-separated pair consisting of 'categoricalx'
and either 'on' or 'off'. If you specify 'on', then relieff treats all predictors in X as categorical.
Otherwise, it treats all predictors in X as numeric. You cannot mix numeric and categorical
predictors.
Example: 'categoricalx','on'

sigma — Distance scaling factor
numeric positive scalar

Distance scaling factor, specified as the comma-separated pair consisting of 'sigma' and a numeric
positive scalar. For observation i, influence on the predictor weight from its nearest neighbor j is

multiplied by e−(rank(i, j)/sigma)2. rank(i,j) is the position of the jth observation among the nearest
neighbors of the ith observation, sorted by distance. The default is Inf for classification (all nearest
neighbors have the same influence) and 50 for regression.
Example: 'sigma',20
Data Types: single | double

Output Arguments
idx — Indices of predictors ordered by predictor importance
numeric vector

Indices of predictors in X ordered by predictor importance, returned as a numeric vector. For
example, if idx(3) is 5, then the third most important predictor is the fifth column in X.
Data Types: double

weights — Weights of predictors
numeric vector

Weights of the predictors, returned as a numeric vector. The values in weights have the same order
as the predictors in X. weights range from –1 to 1, with large positive weights assigned to important
predictors.
Data Types: double

Tips
• Predictor ranks and weights usually depend on k. If you set k to 1, then the estimates can be

unreliable for noisy data. If you set k to a value comparable with the number of observations
(rows) in X, relieff can fail to find important predictors. You can start with k = 10 and
investigate the stability and reliability of relieff ranks and weights for various values of k.

• relieff removes observations with NaN values.
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Algorithms
ReliefF

ReliefF finds the weights of predictors in the case where y is a multiclass categorical variable. The
algorithm penalizes the predictors that give different values to neighbors of the same class, and
rewards predictors that give different values to neighbors of different classes.

ReliefF first sets all predictor weights Wj to 0. Then, the algorithm iteratively selects a random
observation xr, finds the k-nearest observations to xr for each class, and updates, for each nearest
neighbor xq, all the weights for the predictors Fj as follows:

If xr and xq are in the same class,

W ji = W ji− 1−
Δ j(xr, xq)

m ⋅ drq .

If xr and xq are in different classes,

W ji = W ji− 1 +
pyq

1− pyr
⋅

Δ j(xr, xq)
m ⋅ drq .

• Wj
i is the weight of the predictor Fj at the ith iteration step.

• pyr
 is the prior probability of the class to which xr belongs, and pyq

 is the prior probability of the
class to which xq belongs.

• m is the number of iterations specified by 'updates'.
• Δ j(xr, xq) is the difference in the value of the predictor Fj between observations xr and xq. Let xrj

denote the value of the jth predictor for observation xr, and let xqj denote the value of the jth
predictor for observation xq.

• For discrete Fj,

Δ j(xr, xq) =
0, xr j = xq j
1, xr j ≠ xq j

.

• For continuous Fj,

Δ j(xr, xq) =
xr j− xq j

max(F j)−min(F j)
.

• drq is a distance function of the form

drq =
drq

∑
l = 1

k
drl

.

The distance is subject to the scaling

drq = e−(rank(r, q)/sigma)2
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where rank(r,q) is the position of the qth observation among the nearest neighbors of the rth
observation, sorted by distance. k is the number of nearest neighbors, specified by k. You can
change the scaling by specifying 'sigma'.

RReliefF

RReliefF works with continuous y. Similar to ReliefF, RReliefF also penalizes the predictors that give
different values to neighbors with the same response values, and rewards predictors that give
different values to neighbors with different response values. However, RReliefF uses intermediate
weights to compute the final predictor weights.

Given two nearest neighbors, assume the following:

• Wdy is the weight of having different values for the response y.
• Wdj is the weight of having different values for the predictor Fj.
• Wdy ∧ d j is the weight of having different response values and different values for the predictor Fj.

RReliefF first sets the weights Wdy, Wdj, Wdy ∧ d j, and Wj equal to 0. Then, the algorithm iteratively
selects a random observation xr, finds the k-nearest observations to xr, and updates, for each nearest
neighbor xq, all the intermediate weights as follows:

Wdyi = Wdyi− 1 + Δy(xr, xq) ⋅ drq .

Wd ji = Wd ji− 1 + Δ j(xr, xq) ⋅ drq .

Wdy ∧ d ji = Wdy ∧ d ji− 1 + Δy(xr, xq) ⋅ Δ j(xr, xq) ⋅ drq .

• The i and i-1 superscripts denote the iteration step number. m is the number of iterations specified
by 'updates'.

• Δy(xr, xq) is the difference in the value of the continuous response y between observations xr and
xq. Let yr denote the value of the response for observation xr, and let yq denote the value of the
response for observation xq.

Δy(xr, xq) =
yr − yq

max(y)−min(y) .

• The Δ j(xr, xq) and drq functions are the same as for “ReliefF” on page 35-6496.

RReliefF calculates the predictor weights Wj after fully updating all the intermediate weights.

W j =
Wdy ∧ d j

Wdy
−

Wd j−Wdy ∧ d j
m−Wdy

.

For more information, see [2].

Version History
Introduced in R2010b
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See Also
fscnca | fsrnca | knnsearch | pdist2 | sequentialfs | plotPartialDependence |
fsulaplacian | fscmrmr | fsrmrmr

Topics
“Introduction to Feature Selection” on page 16-47
“Sequential Feature Selection” on page 16-59
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removeLearners
Remove members of compact classification ensemble

Syntax
cens1 = removeLearners(cens,idx)

Description
cens1 = removeLearners(cens,idx) creates a compact classification ensemble identical to
cens only without the ensemble members in the idx vector.

Input Arguments
cens

Compact classification ensemble, constructed with compact.

idx

Vector of positive integers with entries from 1 to cens.NumTrained, where cens.NumTrained is
the number of members in cens. cens1 contains all members of cens except those with indices in
idx.

Typically, you set idx = j:cens.NumTrained for some positive integer j.

Output Arguments
cens1

Compact classification ensemble, identical to cens except cens1 does not contain those members of
cens with indices in idx.

Examples

Remove Learners from an Ensemble

Create a compact classification ensemble. Compact it further by removing members of the ensemble.

Load the ionosphere data set.

load ionosphere

Train a classification ensemble for the ionosphere data using AdaBoostM1. Specify tree stumps as
the weak learners.

t = templateTree('MaxNumSplits',1);
ens = fitcensemble(X,Y,'Method','AdaBoostM1','Learners',t);
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Create a compact classification ensemble cens from ens.

cens = compact(ens);

Remove the last 50 members of the ensemble.

idx = cens.NumTrained-49:cens.NumTrained;
cens1 = removeLearners(cens,idx);

Tips
• Typically, set cens1 equal to cens to retain just one ensemble.
• Removing learners reduces the memory used by the ensemble and speeds up its predictions.

Extended Capabilities
GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

This function fully supports GPU arrays. For more information, see “Run MATLAB Functions on a
GPU” (Parallel Computing Toolbox).

See Also
CompactClassificationEnsemble

Topics
“Classification with Imbalanced Data” on page 19-81
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removeLearners
Remove members of compact regression ensemble

Syntax
cens1 = removeLearners(cens,idx)

Description
cens1 = removeLearners(cens,idx) creates a compact regression ensemble identical to cens
only without the ensemble members in the idx vector.

Input Arguments
cens

Compact regression ensemble, constructed with compact.

idx

Vector of positive integers with entries from 1 to cens.NumTrained, where cens.NumTrained is
the number of members in cens. cens1 contains the members of cens except those with indices in
idx.

Typically, you set idx = j:cens.NumTrained for some positive integer j.

Output Arguments
cens1

Compact regression ensemble, identical to cens except cens1 does not contain members of cens
with indices in idx.

Examples

Remove Learners from an Ensemble

Create a compact regression ensemble. Compact it further by removing members of the ensemble.

Load the carsmall data set and select Weight and Cylinders as predictors.

load carsmall
X = [Weight Cylinders];

Train a regression ensemble using LSBoost. Specify tree stumps as the weak learners.

t = templateTree('MaxNumSplits',1);
ens = fitrensemble(X,MPG,'Method','LSBoost','Learners',t,...
    'CategoricalPredictors',2);
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Create a compact classification ensemble cens from ens.

cens = compact(ens);

Remove the last 50 members of the ensemble.

idx = cens.NumTrained-49:cens.NumTrained;
cens1 = removeLearners(cens,idx);

Tips
• Typically, set cens1 equal to cens to retain just one ensemble.
• Removing learners reduces the memory used by the ensemble and speeds up its predictions.

Extended Capabilities
GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

This function fully supports GPU arrays. For more information, see “Run MATLAB Functions on a
GPU” (Parallel Computing Toolbox).

See Also
CompactRegressionEnsemble
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removeTerms
Remove terms from generalized linear regression model

Syntax
NewMdl = removeTerms(mdl,terms)

Description
NewMdl = removeTerms(mdl,terms) returns a generalized linear regression model fitted using
the input data and settings in mdl with the terms terms removed.

Examples

Remove Terms from Generalized Linear Regression Model

Create a generalized linear regression model using two predictors, and then remove one predictor.

Generate sample data using Poisson random numbers with two underlying predictors X(:,1) and
X(:,2).

rng('default') % For reproducibility
rndvars = randn(100,2);
X = [2 + rndvars(:,1),rndvars(:,2)];
mu = exp(1 + X*[1;2]);
y = poissrnd(mu);

Create a generalized linear regression model of Poisson data.

mdl = fitglm(X,y,'y ~ x1 + x2','Distribution','poisson')

mdl = 
Generalized linear regression model:
    log(y) ~ 1 + x1 + x2
    Distribution = Poisson

Estimated Coefficients:
                   Estimate       SE        tStat     pValue
                   ________    _________    ______    ______

    (Intercept)     1.0405      0.022122    47.034      0   
    x1              0.9968      0.003362    296.49      0   
    x2               1.987     0.0063433    313.24      0   

100 observations, 97 error degrees of freedom
Dispersion: 1
Chi^2-statistic vs. constant model: 2.95e+05, p-value = 0

Remove the second predictor from the model.

mdl1 = removeTerms(mdl,'x2')
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mdl1 = 
Generalized linear regression model:
    log(y) ~ 1 + x1
    Distribution = Poisson

Estimated Coefficients:
                   Estimate       SE        tStat     pValue
                   ________    _________    ______    ______

    (Intercept)     2.7784      0.014043    197.85      0   
    x1              1.1732     0.0033653     348.6      0   

100 observations, 98 error degrees of freedom
Dispersion: 1
Chi^2-statistic vs. constant model: 1.25e+05, p-value = 0

Input Arguments
mdl — Generalized linear regression model
GeneralizedLinearModel object

Generalized linear regression model, specified as a GeneralizedLinearModel object created using
fitglm or stepwiseglm.

terms — Terms to remove from regression model
character vector or string scalar formula in Wilkinson notation | t-by-p terms matrix

Terms to remove from the regression model mdl, specified as one of the following:

• Character vector or string scalar formula in “Wilkinson Notation” on page 35-6505 representing
one or more terms. The variable names in the formula must be valid MATLAB identifiers.

• Terms matrix T of size t-by-p, where t is the number of terms and p is the number of predictor
variables in mdl. The value of T(i,j) is the exponent of variable j in term i.

For example, suppose mdl has three variables A, B, and C in that order. Each row of T represents
one term:

• [0 0 0] — Constant term or intercept
• [0 1 0] — B; equivalently, A^0 * B^1 * C^0
• [1 0 1] — A*C
• [2 0 0] — A^2
• [0 1 2] — B*(C^2)

removeTerms treats a group of indicator variables for a categorical predictor as a single variable.
Therefore, you cannot specify an indicator variable to remove from the model. If you specify a
categorical predictor to remove from the model, removeTerms removes a group of indicator
variables for the predictor in one step.
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Output Arguments
NewMdl — Generalized linear regression model with fewer terms
GeneralizedLinearModel object

Generalized linear regression model with fewer terms, returned as a GeneralizedLinearModel
object. NewMdl is a newly fitted model that uses the input data and settings in mdl with the terms
specified in terms removed from mdl.

To overwrite the input argument mdl, assign the newly fitted model to mdl:

mdl = removeTerms(mdl,terms);

More About
Wilkinson Notation

Wilkinson notation describes the terms present in a model. The notation relates to the terms present
in a model, not to the multipliers (coefficients) of those terms.

Wilkinson notation uses these symbols:

• + means include the next variable.
• – means do not include the next variable.
• : defines an interaction, which is a product of terms.
• * defines an interaction and all lower-order terms.
• ^ raises the predictor to a power, exactly as in * repeated, so ^ includes lower-order terms as well.
• () groups terms.

This table shows typical examples of Wilkinson notation.

Wilkinson Notation Terms in Standard Notation
1 Constant (intercept) term
x1^k, where k is a positive integer x1, x12, ..., x1k

x1 + x2 x1, x2
x1*x2 x1, x2, x1*x2
x1:x2 x1*x2 only
–x2 Do not include x2
x1*x2 + x3 x1, x2, x3, x1*x2
x1 + x2 + x3 + x1:x2 x1, x2, x3, x1*x2
x1*x2*x3 – x1:x2:x3 x1, x2, x3, x1*x2, x1*x3, x2*x3
x1*(x2 + x3) x1, x2, x3, x1*x2, x1*x3

For more details, see “Wilkinson Notation” on page 11-93.
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Algorithms
• removeTerms treats a categorical predictor as follows:

• A model with a categorical predictor that has L levels (categories) includes L – 1 indicator
variables. The model uses the first category as a reference level, so it does not include the
indicator variable for the reference level. If the data type of the categorical predictor is
categorical, then you can check the order of categories by using categories and reorder
the categories by using reordercats to customize the reference level. For more details about
creating indicator variables, see “Automatic Creation of Dummy Variables” on page 2-50.

• removeTerms treats the group of L – 1 indicator variables as a single variable. If you want to
treat the indicator variables as distinct predictor variables, create indicator variables manually
by using dummyvar. Then use the indicator variables, except the one corresponding to the
reference level of the categorical variable, when you fit a model. For the categorical predictor
X, if you specify all columns of dummyvar(X) and an intercept term as predictors, then the
design matrix becomes rank deficient.

• Interaction terms between a continuous predictor and a categorical predictor with L levels
consist of the element-wise product of the L – 1 indicator variables with the continuous
predictor.

• Interaction terms between two categorical predictors with L and M levels consist of the (L –
 1)*(M – 1) indicator variables to include all possible combinations of the two categorical
predictor levels.

• You cannot specify higher-order terms for a categorical predictor because the square of an
indicator is equal to itself.

Alternative Functionality
• Use stepwiseglm to specify terms in a starting model and continue improving the model until no

single step of adding or removing a term is beneficial.
• Use addTerms to add specific terms to a model.
• Use step to optimally improve a model by adding or removing terms.

Version History
Introduced in R2012a

Extended Capabilities
GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

This function fully supports GPU arrays. For more information, see “Run MATLAB Functions on a
GPU” (Parallel Computing Toolbox).

See Also
addTerms | GeneralizedLinearModel | step | stepwiseglm

Topics
“Plots to Understand Predictor Effects and How to Modify a Model” on page 12-21
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“Generalized Linear Model Workflow” on page 12-28
“Generalized Linear Models” on page 12-9
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removeTerms
Remove terms from linear regression model

Syntax
NewMdl = removeTerms(mdl,terms)

Description
NewMdl = removeTerms(mdl,terms) returns a linear regression model fitted using the input data
and settings in mdl with the terms terms removed.

Examples

Remove Terms from Linear Regression Model

Create a linear regression model using the hald data set. Remove terms that have high p-values.

Load the data set.

load hald
X = ingredients; % predictor variables
y = heat; % response variable

Fit a linear regression model to the data.

mdl = fitlm(X,y)

mdl = 
Linear regression model:
    y ~ 1 + x1 + x2 + x3 + x4

Estimated Coefficients:
                   Estimate      SE        tStat       pValue 
                   ________    _______    ________    ________

    (Intercept)      62.405     70.071      0.8906     0.39913
    x1               1.5511    0.74477      2.0827    0.070822
    x2              0.51017    0.72379     0.70486      0.5009
    x3              0.10191    0.75471     0.13503     0.89592
    x4             -0.14406    0.70905    -0.20317     0.84407

Number of observations: 13, Error degrees of freedom: 8
Root Mean Squared Error: 2.45
R-squared: 0.982,  Adjusted R-Squared: 0.974
F-statistic vs. constant model: 111, p-value = 4.76e-07

Remove the x3 and x4 terms because their p-values are high.

terms = 'x3 + x4'; % terms to remove
NewMdl = removeTerms(mdl,terms)
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NewMdl = 
Linear regression model:
    y ~ 1 + x1 + x2

Estimated Coefficients:
                   Estimate       SE       tStat       pValue  
                   ________    ________    ______    __________

    (Intercept)     52.577       2.2862    22.998    5.4566e-10
    x1              1.4683       0.1213    12.105    2.6922e-07
    x2             0.66225     0.045855    14.442     5.029e-08

Number of observations: 13, Error degrees of freedom: 10
Root Mean Squared Error: 2.41
R-squared: 0.979,  Adjusted R-Squared: 0.974
F-statistic vs. constant model: 230, p-value = 4.41e-09

NewMdl has the same adjusted R-squared value (0.974) as the previous model, meaning the fit is as
good in the new model. All the terms in the new model have extremely low p-values.

Input Arguments
mdl — Linear regression model
LinearModel object

Linear regression model, specified as a LinearModel object created using fitlm or stepwiselm.

terms — Terms to remove from regression model
character vector or string scalar formula in Wilkinson notation | t-by-p terms matrix

Terms to remove from the regression model mdl, specified as one of the following:

• Character vector or string scalar formula in “Wilkinson Notation” on page 35-6510 representing
one or more terms. The variable names in the formula must be valid MATLAB identifiers.

• Terms matrix T of size t-by-p, where t is the number of terms and p is the number of predictor
variables in mdl. The value of T(i,j) is the exponent of variable j in term i.

For example, suppose mdl has three variables A, B, and C in that order. Each row of T represents
one term:

• [0 0 0] — Constant term or intercept
• [0 1 0] — B; equivalently, A^0 * B^1 * C^0
• [1 0 1] — A*C
• [2 0 0] — A^2
• [0 1 2] — B*(C^2)

removeTerms treats a group of indicator variables for a categorical predictor as a single variable.
Therefore, you cannot specify an indicator variable to remove from the model. If you specify a
categorical predictor to remove from the model, removeTerms removes a group of indicator
variables for the predictor in one step. See “Modify Linear Regression Model Using step” on page 35-
7098 for an example that describes how to create indicator variables manually and treat each one as
a separate variable.
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Output Arguments
NewMdl — Linear regression model with fewer terms
LinearModel object

Linear regression model with fewer terms, returned as a LinearModel object. NewMdl is a newly
fitted model that uses the input data and settings in mdl with the terms specified in terms removed
from mdl.

To overwrite the input argument mdl, assign the newly fitted model to mdl:

mdl = removeTerms(mdl,terms);

More About
Wilkinson Notation

Wilkinson notation describes the terms present in a model. The notation relates to the terms present
in a model, not to the multipliers (coefficients) of those terms.

Wilkinson notation uses these symbols:

• + means include the next variable.
• – means do not include the next variable.
• : defines an interaction, which is a product of terms.
• * defines an interaction and all lower-order terms.
• ^ raises the predictor to a power, exactly as in * repeated, so ^ includes lower-order terms as well.
• () groups terms.

This table shows typical examples of Wilkinson notation.

Wilkinson Notation Terms in Standard Notation
1 Constant (intercept) term
x1^k, where k is a positive integer x1, x12, ..., x1k

x1 + x2 x1, x2
x1*x2 x1, x2, x1*x2
x1:x2 x1*x2 only
–x2 Do not include x2
x1*x2 + x3 x1, x2, x3, x1*x2
x1 + x2 + x3 + x1:x2 x1, x2, x3, x1*x2
x1*x2*x3 – x1:x2:x3 x1, x2, x3, x1*x2, x1*x3, x2*x3
x1*(x2 + x3) x1, x2, x3, x1*x2, x1*x3

For more details, see “Wilkinson Notation” on page 11-93.
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Algorithms
• removeTerms treats a categorical predictor as follows:

• A model with a categorical predictor that has L levels (categories) includes L – 1 indicator
variables. The model uses the first category as a reference level, so it does not include the
indicator variable for the reference level. If the data type of the categorical predictor is
categorical, then you can check the order of categories by using categories and reorder
the categories by using reordercats to customize the reference level. For more details about
creating indicator variables, see “Automatic Creation of Dummy Variables” on page 2-50.

• removeTerms treats the group of L – 1 indicator variables as a single variable. If you want to
treat the indicator variables as distinct predictor variables, create indicator variables manually
by using dummyvar. Then use the indicator variables, except the one corresponding to the
reference level of the categorical variable, when you fit a model. For the categorical predictor
X, if you specify all columns of dummyvar(X) and an intercept term as predictors, then the
design matrix becomes rank deficient.

• Interaction terms between a continuous predictor and a categorical predictor with L levels
consist of the element-wise product of the L – 1 indicator variables with the continuous
predictor.

• Interaction terms between two categorical predictors with L and M levels consist of the (L –
 1)*(M – 1) indicator variables to include all possible combinations of the two categorical
predictor levels.

• You cannot specify higher-order terms for a categorical predictor because the square of an
indicator is equal to itself.

Alternative Functionality
• Use stepwiselm to specify terms in a starting model and continue improving the model until no

single step of adding or removing a term is beneficial.
• Use addTerms to add specific terms to a model.
• Use step to optimally improve a model by adding or removing terms.

Version History
Introduced in R2012a

Extended Capabilities
GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

This function fully supports GPU arrays. For more information, see “Run MATLAB Functions on a
GPU” (Parallel Computing Toolbox).

See Also
LinearModel | addTerms | stepwiselm | step

Topics
“Linear Regression Workflow” on page 11-35
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“Interpret Linear Regression Results” on page 11-52
“Linear Regression” on page 11-9
“Stepwise Regression” on page 11-101
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reorderlevels
(Not Recommended) Reorder levels of nominal or ordinal arrays

Note The nominal and ordinal array data types are not recommended. To represent ordered and
unordered discrete, nonnumeric data, use the “Categorical Arrays” data type instead.

Syntax
B = reorderlevels(A,newlevels)

Description
B = reorderlevels(A,newlevels) returns a nominal or ordinal array object of the same type
as A, but with levels in the new order specified by newlevels.

For ordinal arrays, the order of the levels has significance for relational operators, finding minimum
and maximum values, and sorting.

Input Arguments
A — Nominal or ordinal array
nominal array | ordinal array

Nominal or ordinal array, specified as a nominal or ordinal array object created with nominal or
ordinal.

newlevels — New order of levels
string array | cell array of character vectors | 2-D character matrix

New order of levels, specified as a string array, cell array of character vectors, or 2-D character
matrix. newlevels must be a reordering of the labels returned by getlabels.
Data Types: char | string | cell

Output Arguments
B — Nominal or ordinal array
nominal array | ordinal array

Nominal or ordinal array, returned as a nominal or ordinal array object.

Version History
Introduced in R2007a

See Also
addlevels | getlabels | droplevels | reorderlevels | nominal | ordinal
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Topics
“Reorder Category Levels” on page 2-9
“Sort Ordinal Arrays” on page 2-35
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repartition
Repartition data for cross-validation

Syntax
cnew = repartition(c)
cnew = repartition(c,s)

Description
cnew = repartition(c) creates a cvpartition object cnew that defines a random partition of
the same type as c, where c is also a cvpartition object. That is, repartition takes the same
observations in c and repartitions them into new training and test sets.

cnew = repartition(c,s) uses the RandStream object s as the random number generator for
the new partition.

Examples

Repartition Data for Cross-Validation

Repartition observations in a cvpartition object. The type of validation partition remains the same.

Partition 100 observations for 3-fold cross-validation.

c = cvpartition(100,'KFold',3)

c = 
K-fold cross validation partition
   NumObservations: 100
       NumTestSets: 3
         TrainSize: 67  66  67
          TestSize: 33  34  33

Repartition the observations.

cnew = repartition(c)

cnew = 
K-fold cross validation partition
   NumObservations: 100
       NumTestSets: 3
         TrainSize: 67  66  67
          TestSize: 33  34  33

Notice that the set of observations in the first test set (fold) of c is not the same as the set of
observations in the first test set of cnew.

isequal(test(c,1),test(cnew,1))
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ans = logical
   0

View the validation partition type of c and cnew. Both c and cnew are validation partitions of the
same type, 'kfold'.

isequal(c.Type,cnew.Type)

ans = logical
   1

c.Type

ans = 
'kfold'

Input Arguments
c — Validation partition
cvpartition object

Validation partition, specified as a cvpartition object. The validation partition type of c, c.Type, is
the same as the validation partition type of the new partition cnew.

s — Random number generator
RandStream object

Random number generator for the new partition, specified as a RandStream object.

Tips
• Repartitioning is useful for Monte Carlo repetitions of cross-validation analyses. crossval calls

repartition when you specify the 'MCReps' name-value pair argument.

Version History
Introduced in R2008a

See Also
cvpartition | crossval | RandStream
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RepeatedMeasuresModel class

Repeated measures model class

Description
A RepeatedMeasuresModel object represents a model fitted to data with multiple measurements
per subject. The object comprises data, fitted coefficients, covariance parameters, design matrix,
error degrees of freedom, and between- and within-subjects factor names for a repeated measures
model. You can predict model responses using the predict method and generate random data at
new design points using the random method.

Construction
You can fit a repeated measures model using fitrm(t,modelspec).

Input Arguments

t — Input data
table

Input data, which includes the values of the response variables and the between-subject factors to
use as predictors in the repeated measures model, specified as a table.
Data Types: table

modelspec — Formula for model specification
character vector or string scalar of the form 'y1-yk ~ terms'

Formula for model specification, specified as a character vector or string scalar of the form 'y1-yk
~ terms'. Specify the terms using Wilkinson notation. fitrm treats the variables used in model
terms as categorical if they are categorical (nominal or ordinal), logical, character arrays, string
arrays, or a cell array of character vectors.
Example: 'y1-y4 ~ x1 + x2 * x3'
Data Types: char | string

Properties
BetweenDesign — Design for between-subject factors
table

Design for between-subject factors and values of repeated measures, stored as a table.
Data Types: table

BetweenModel — Model for between-subjects factors
character vector

 RepeatedMeasuresModel class

35-6517



Model for between-subjects factors, stored as a character vector. This character vector is the text
representation to the right of the tilde in the model specification you provide when fitting the
repeated measures model using fitrm.
Data Types: char

BetweenFactorNames — Names of variables used as between-subject factors
cell array of character vectors

Names of variables used as between-subject factors in the repeated measures model, rm, stored as a
cell array of character vectors.
Data Types: cell

ResponseNames — Names of variables used as response variables
cell array of character vectors

Names of variables used as response variables in the repeated measures model, rm, stored as a cell
array of character vectors.
Data Types: cell

WithinDesign — Values of within-subject factors
table

Values of the within-subject factors, stored as a table.
Data Types: table

WithinModel — Model for within-subjects factors
character vector

Model for within-subjects factors, stored as a character vector.

You can specify WithinModel as a character vector or a string scalar using dot notation:
Mdl.WithinModel = newWithinModelValue.

WithinFactorNames — Names of within-subject factors
cell array of character vectors

Names of the within-subject factors, stored as a cell array of character vectors.
Data Types: cell

Coefficients — Values of estimated coefficients
table

Values of the estimated coefficients for fitting the repeated measures as a function of the terms in the
between-subjects model, stored as a table.

fitrm' defines the coefficients for a categorical term using 'effects' coding, which means coefficients
sum to 0. There is one coefficient for each level except the first. The implied coefficient for the first
level is the sum of the other coefficients for the term.

You can display the coefficient values as a matrix rather than a table using coef =
r.Coefficients{:,:}.

You can display marginal means for all levels using the margmean method.

35 Functions

35-6518



Data Types: table

Covariance — Estimated response covariances
table

Estimated response covariances, that is, covariance of the repeated measures, stored as a table.
fitrm computes the covariances around the mean returned by the fitted repeated measures model
rm.

You can display the covariance values as a matrix rather than a table using coef =
r.Covariance{:,:}.
Data Types: table

DFE — Error degrees of freedom
scalar value

Error degrees of freedom, stored as a scalar value. DFE is the number of observations minus the
number of estimated coefficients in the between-subjects model.
Data Types: double

Methods

anova Analysis of variance for between-subject effects
epsilon Epsilon adjustment for repeated measures anova
grpstats Compute descriptive statistics of repeated measures data by group
manova Multivariate analysis of variance
margmean Estimate marginal means
mauchly Mauchly’s test for sphericity
multcompare Multiple comparison of estimated marginal means
plot Plot data with optional grouping
plotprofile Plot expected marginal means with optional grouping
predict Compute predicted values given predictor values
random Generate new random response values given predictor values
ranova Repeated measures analysis of variance

Examples

Fit a Repeated Measures Model

Load the sample data.

load fisheriris

The column vector, species, consists of iris flowers of three different species: setosa, versicolor,
virginica. The double matrix meas consists of four types of measurements on the flowers: the length
and width of sepals and petals in centimeters, respectively.
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Store the data in a table array.

t = table(species,meas(:,1),meas(:,2),meas(:,3),meas(:,4),...
'VariableNames',{'species','meas1','meas2','meas3','meas4'});
Meas = table([1 2 3 4]','VariableNames',{'Measurements'});

Fit a repeated measures model, where the measurements are the responses and the species is the
predictor variable.

rm = fitrm(t,'meas1-meas4~species','WithinDesign',Meas)

rm = 
  RepeatedMeasuresModel with properties:

   Between Subjects:
         BetweenDesign: [150x5 table]
         ResponseNames: {'meas1'  'meas2'  'meas3'  'meas4'}
    BetweenFactorNames: {'species'}
          BetweenModel: '1 + species'

   Within Subjects:
          WithinDesign: [4x1 table]
     WithinFactorNames: {'Measurements'}
           WithinModel: 'separatemeans'

   Estimates:
          Coefficients: [3x4 table]
            Covariance: [4x4 table]

Display the coefficients.

rm.Coefficients

ans=3×4 table
                           meas1       meas2      meas3      meas4  
                          ________    ________    ______    ________

    (Intercept)             5.8433      3.0573     3.758      1.1993
    species_setosa        -0.83733     0.37067    -2.296    -0.95333
    species_versicolor    0.092667    -0.28733     0.502     0.12667

fitrm uses the 'effects' contrasts, which means that the coefficients sum to 0. The
rm.DesignMatrix has one column of 1s for the intercept, and two other columns species_setosa
and species_versicolor, which are as follows:

species_setosa =
1, if setosa
0, if versicolor
−1, if virginica

and

species_versicolor =
0, if setosa
1, if versicolor
−1, if virginica

.
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Display the covariance matrix.

rm.Covariance

ans=4×4 table
              meas1       meas2       meas3       meas4  
             ________    ________    ________    ________

    meas1     0.26501    0.092721     0.16751    0.038401
    meas2    0.092721     0.11539    0.055244     0.03271
    meas3     0.16751    0.055244     0.18519    0.042665
    meas4    0.038401     0.03271    0.042665    0.041882

Display the error degrees of freedom.

rm.DFE

ans = 147

The error degrees of freedom is the number of observations minus the number of estimated
coefficients in the between-subjects model, e.g. 150 – 3 = 147.

More About
Wilkinson Notation

Wilkinson notation describes the factors present in models. It does not describe the multipliers
(coefficients) of those factors.

Use these rules to specify the responses in modelspec.

Wilkinson Notation Description
Y1,Y2,Y3 Specific list of variables
Y1-Y5 All table variables from Y1 through Y5

Use these rules to specify terms in modelspec.

Wilkinson Notation Factors in Standard Notation
1 Constant (intercept) term
X^k, where k is a positive integer X, X2, ..., Xk

X1 + X2 X1, X2
X1*X2 X1, X2, X1*X2
X1:X2 X1*X2 only
-X2 Do not include X2
X1*X2 + X3 X1, X2, X3, X1*X2
X1 + X2 + X3 + X1:X2 X1, X2, X3, X1*X2
X1*X2*X3 - X1:X2:X3 X1, X2, X3, X1*X2, X1*X3, X2*X3
X1*(X2 + X3) X1, X2, X3, X1*X2, X1*X3
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Statistics and Machine Learning Toolbox notation always includes a constant term unless you
explicitly remove the term using -1.

See Also
fitrm

Topics
Class Attributes
Property Attributes
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replacedata
Class: dataset

(Not Recommended) Replace dataset variables

Note The dataset data type is not recommended. To work with heterogeneous data, use the
MATLAB® table data type instead. See MATLAB table documentation for more information.

Syntax
B = replacedata(A,X)
B = replacedata(A,X,vars)
B = replacedata(A,fun)
B = replacedata(A,fun,vars)

Description
B = replacedata(A,X) creates a dataset array B with the same variables as the dataset array A,
but with the data for those variables replaced by the data in the array X. replacedata creates each
variable in B using one or more columns from X, in order. X must have as many columns as the total
number of columns in all of the variables in A, and as many rows as A has observations.

B = replacedata(A,X,vars) creates a dataset array B with the same variables as the dataset
array A, but with the data for the variables specified in vars replaced by the data in the array X. The
remaining variables in B are copies of the corresponding variables in A. vars is a positive integer, a
vector of positive integers, a character vector, a string array, a cell array of character vectors, or a
logical vector. Each variable in B has as many columns as the corresponding variable in A. X must
have as many columns as the total number of columns in all the variables specified in vars.

B = replacedata(A,fun) or B = replacedata(A,fun,vars) creates a dataset array B by
applying the function fun to the values in A's variables. replacedata first horizontally concatenates
A's variables into a single array, then applies the function fun. The specified variables in A must have
types and sizes compatible with the concatenation. fun is a function handle that accepts a single
input array and returns an array with the same number of rows and columns as the input.

Examples
data = dataset({rand(3,3),'Var1','Var2','Var3'})

% Use ZSCORE to normalize each variable in a dataset array
% separately, by explicitly extracting and transforming the
% data, and then replacing it.
X = double(data);
X = zscore(X);
data = replacedata(data,X)

% Equivalently, provide a handle to ZSCORE.
data = replacedata(data,@zscore)
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% Use ZSCORE to normalize each observation in a dataset
% array separately by creating an anonymous function.
data = replacedata(data,@(x) zscore(x,[],2)) 

See Also
dataset
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replaceWithMissing
Class: dataset

(Not Recommended) Insert missing data indicators into a dataset array

Note The dataset data type is not recommended. To work with heterogeneous data, use the
MATLAB® table data type instead. See MATLAB table documentation for more information.

Syntax
ds2 = replaceWithMissing(ds,Name,Value)

Description
ds2 = replaceWithMissing(ds,Name,Value) replaces specified values in a dataset array with
standard missing data indicators using options specified by one or more Name,Value pair
arguments. Use replaceWithMissing to specify:

• Which numeric missing value indicators to replace with NaN.
• Which character missing value indicators to replace with ''.
• Which categorical levels to replace with <undefined>.

Input Arguments
ds

dataset array.

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.

NumericValues

Vector of numeric values that replaceWithMissing replaces with NaN.

CategoricalLevels

Character vector or cell array of character vectors naming the categorical levels that
replaceWithMissing replaces with <undefined>.

Strings

Character vector or cell array of character vectors containing the text that replaceWithMissing
replaces with ''.

 replaceWithMissing
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DataVars

Specified set of variables in ds for which replaceWithMissing replaces values. You can specify a
positive integer or vector of positive integers indicating the variable column numbers, a variable
name or a cell array of variables names, or a logical vector indicating which variables to replace
missing values in.

Default: All variables in ds.

Output Arguments
ds2

dataset array that has the specified missing value indicators, in the specified variables of ds,
replaced with standard missing value indicators.

Examples

Replace Nonstandard Missing Value Indicators

Replace nonstandard missing value indicators with standard missing value indicators.

Replace numeric missing values coded 99 with NaN, and character missing values coded '.' with ''.

ds = replaceWithMissing(ds,'NumericValues',99,'Strings','.');

See Also
dataset | ismissing

Topics
“Clean Messy and Missing Data” on page 2-98
“Dataset Arrays” on page 2-113
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report
Generate fairness metrics report

Syntax
metricsTbl = report(evaluator)
metricsTbl = report(evaluator,Name=Value)

Description
metricsTbl = report(evaluator) generates a table metricsTbl that contains the bias metrics
stored in the BiasMetrics property of the fairnessMetrics object evaluator.

metricsTbl = report(evaluator,Name=Value) specifies additional options using one or more
name-value arguments. You can specify bias metrics and group metrics to include in metricsTbl by
using the BiasMetrics and GroupMetrics name-value arguments, respectively.

Examples

Specify Metrics to Report

Compute fairness metrics for predicted labels with respect to sensitive attributes by creating a
fairnessMetrics object. Then, create a metrics table for specified fairness metrics by using the
BiasMetrics and GroupMetrics name-value arguments of the report function.

Load the sample data census1994, which contains the training data adultdata and the test data
adulttest. The data sets consist of demographic information from the US Census Bureau that can
be used to predict whether an individual makes over $50,000 per year. Preview the first few rows of
the training data set.

load census1994
head(adultdata)

    age       workClass          fnlwgt      education    education_num       marital_status           occupation        relationship     race      sex      capital_gain    capital_loss    hours_per_week    native_country    salary
    ___    ________________    __________    _________    _____________    _____________________    _________________    _____________    _____    ______    ____________    ____________    ______________    ______________    ______

    39     State-gov                77516    Bachelors         13          Never-married            Adm-clerical         Not-in-family    White    Male          2174             0                40          United-States     <=50K 
    50     Self-emp-not-inc         83311    Bachelors         13          Married-civ-spouse       Exec-managerial      Husband          White    Male             0             0                13          United-States     <=50K 
    38     Private             2.1565e+05    HS-grad            9          Divorced                 Handlers-cleaners    Not-in-family    White    Male             0             0                40          United-States     <=50K 
    53     Private             2.3472e+05    11th               7          Married-civ-spouse       Handlers-cleaners    Husband          Black    Male             0             0                40          United-States     <=50K 
    28     Private             3.3841e+05    Bachelors         13          Married-civ-spouse       Prof-specialty       Wife             Black    Female           0             0                40          Cuba              <=50K 
    37     Private             2.8458e+05    Masters           14          Married-civ-spouse       Exec-managerial      Wife             White    Female           0             0                40          United-States     <=50K 
    49     Private             1.6019e+05    9th                5          Married-spouse-absent    Other-service        Not-in-family    Black    Female           0             0                16          Jamaica           <=50K 
    52     Self-emp-not-inc    2.0964e+05    HS-grad            9          Married-civ-spouse       Exec-managerial      Husband          White    Male             0             0                45          United-States     >50K  

Each row contains the demographic information for one adult. The information includes sensitive
attributes, such as age, marital_status, relationship, race, and sex. The third column
flnwgt contains observation weights, and the last column salary shows whether a person has a
salary less than or equal to $50,000 per year (<=50K) or greater than $50,000 per year (>50K).
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Train a classification tree using the training data set adultdata. Specify the response variable,
predictor variables, and observation weights by using the variable names in the adultdata table.

predictorNames = ["capital_gain","capital_loss","education", ...
    "education_num","hours_per_week","occupation","workClass"];
Mdl = fitctree(adultdata,"salary", ...
    PredictorNames=predictorNames,Weights="fnlwgt");

Predict the test sample labels by using the trained tree Mdl.

adulttest.predictions = predict(Mdl,adulttest);

This example evaluates the fairness of the predicted labels with respect to age and marital status.
Group the age variable into four bins.

ageGroups = ["Age<30","30<=Age<45","45<=Age<60","Age>=60"];
adulttest.age_group = discretize(adulttest.age, ...
    [min(adulttest.age) 30 45 60 max(adulttest.age)], ...
    categorical=ageGroups);

Compute fairness metrics for the predictions with respect to the age_group and marital_status
variables by using fairnessMetrics.

MdlEvaluator = fairnessMetrics(adulttest,"salary", ...
    SensitiveAttributeNames=["age_group","marital_status"], ...
    Predictions="predictions",Weights="fnlwgt");

fairnessMetrics computes metrics for all supported bias and group metrics. Display the names of
the metrics stored in the BiasMetrics and GroupMetrics properties.

MdlEvaluator.BiasMetrics.Properties.VariableNames(3:end)'

ans = 4x1 cell
    {'StatisticalParityDifference'  }
    {'DisparateImpact'              }
    {'EqualOpportunityDifference'   }
    {'AverageAbsoluteOddsDifference'}

MdlEvaluator.GroupMetrics.Properties.VariableNames(3:end)'

ans = 17x1 cell
    {'GroupCount'               }
    {'GroupSizeRatio'           }
    {'TruePositives'            }
    {'TrueNegatives'            }
    {'FalsePositives'           }
    {'FalseNegatives'           }
    {'TruePositiveRate'         }
    {'TrueNegativeRate'         }
    {'FalsePositiveRate'        }
    {'FalseNegativeRate'        }
    {'FalseDiscoveryRate'       }
    {'FalseOmissionRate'        }
    {'PositivePredictiveValue'  }
    {'NegativePredictiveValue'  }
    {'RateOfPositivePredictions'}
    {'RateOfNegativePredictions'}
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    {'Accuracy'                 }

Create a table containing fairness metrics by using the report function. Specify BiasMetrics as
["eod","aaod"] to include the equal opportunity difference (EOD) and average absolute odds
difference (AAOD) metrics in the report table. fairnessMetrics computes the two metrics by using
the true positive rates (TPR) and false positive rates (FPR). Specify GroupMetrics as
["tpr","fpr"] to include TPR and FPR values in the table.

metricsTbl = report(MdlEvaluator, ...
    BiasMetrics=["eod","aaod"],GroupMetrics=["tpr","fpr"]);

Display the fairness metrics for the sensitive attribute age_group only.

metricsTbl(metricsTbl.SensitiveAttributeNames=="age_group",2:end)

ans=4×5 table
      Groups      EqualOpportunityDifference    AverageAbsoluteOddsDifference    TruePositiveRate    FalsePositiveRate
    __________    __________________________    _____________________________    ________________    _________________

    Age<30                -0.041586                        0.044576                  0.41333             0.041053     
    30<=Age<45                    0                               0                  0.45491             0.088618     
    45<=Age<60             0.061227                        0.031446                  0.51614             0.086954     
    Age>=60                0.001949                       0.0099106                  0.45686             0.070746     

Create Report with All Supported Metrics

Compute fairness metrics for true labels with respect to sensitive attributes by creating a
fairnessMetrics object. Then, create a table with all supported fairness metrics by using the
report function.

Read the sample file CreditRating_Historical.dat into a table. The predictor data consists of
financial ratios and industry sector information for a list of corporate customers. The response
variable consists of credit ratings assigned by a rating agency.

creditrating = readtable("CreditRating_Historical.dat");

Because each value in the ID variable is a unique customer ID—that is,
length(unique(creditrating.ID)) is equal to the number of observations in creditrating—
the ID variable is a poor predictor. Remove the ID variable from the table, and convert the Industry
variable to a categorical variable.

creditrating.ID = [];
creditrating.Industry = categorical(creditrating.Industry);

In the Rating response variable, combine the AAA, AA, A, and BBB ratings into a category of "good"
ratings, and the BB, B, and CCC ratings into a category of "poor" ratings.

Rating = categorical(creditrating.Rating);
Rating = mergecats(Rating,["AAA","AA","A","BBB"],"good");
Rating = mergecats(Rating,["BB","B","CCC"],"poor");
creditrating.Rating = Rating;
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Compute fairness metrics with respect to the sensitive attribute Industry for the labels in the
Rating variable.

evaluator = fairnessMetrics(creditrating,"Rating", ...
    SensitiveAttributeNames="Industry");

Display the bias metrics by using the report function. By default, the report function creates a
table with all bias metrics.

report(evaluator)

ans=12×4 table
    SensitiveAttributeNames    Groups    StatisticalParityDifference    DisparateImpact
    _______________________    ______    ___________________________    _______________

           Industry              1                 0.077242                  1.2632    
           Industry              2                 0.078577                  1.2678    
           Industry              3                        0                       1    
           Industry              4                 0.088718                  1.3023    
           Industry              5                 0.055526                  1.1892    
           Industry              6                -0.015004                 0.94887    
           Industry              7                 0.014489                  1.0494    
           Industry              8                 0.063476                  1.2163    
           Industry              9                  0.13948                  1.4753    
           Industry              10                 0.13865                  1.4725    
           Industry              11                0.009886                  1.0337    
           Industry              12                0.029338                     1.1    

Create a table with all supported bias and group metrics. Specify GroupMetrics as "all" to include
all group metrics.

report(evaluator,GroupMetrics="all")

ans=12×6 table
    SensitiveAttributeNames    Groups    StatisticalParityDifference    DisparateImpact    GroupCount    GroupSizeRatio
    _______________________    ______    ___________________________    _______________    __________    ______________

           Industry              1                 0.077242                  1.2632           348           0.088505   
           Industry              2                 0.078577                  1.2678           336           0.085453   
           Industry              3                        0                       1           351           0.089268   
           Industry              4                 0.088718                  1.3023           314           0.079858   
           Industry              5                 0.055526                  1.1892           341           0.086724   
           Industry              6                -0.015004                 0.94887           334           0.084944   
           Industry              7                 0.014489                  1.0494           315           0.080112   
           Industry              8                 0.063476                  1.2163           325           0.082655   
           Industry              9                  0.13948                  1.4753           328           0.083418   
           Industry              10                 0.13865                  1.4725           324           0.082401   
           Industry              11                0.009886                  1.0337           300           0.076297   
           Industry              12                0.029338                     1.1           316           0.080366   

Input Arguments
evaluator — Fairness evaluator
fairnessMetrics object
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Fairness evaluator, specified as a fairnessMetrics object.

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.
Example: BiasMetrics="",GroupMetrics="all" specifies to display all group metrics.

BiasMetrics — List of bias metrics
"all" (default) | [] | character vector | string array | cell array of character vectors

List of bias metrics, specified as "all", [], a character vector or string scalar of a metric name, or a
string array or cell array of character vectors containing more than one metric name.

• "all" (default) — The output table metricsTbl returned by the report function includes all
bias metrics in the BiasMetrics property of evaluator.

• [] — metricsTbl does not include any bias metrics.
• One or more bias metric names in the BiasMetrics property — The BiasMetrics property in

evaluator and the output table metricsTbl use full names for the table variable names.
However, you can use the full names or short names, as given in the following table, to specify the
BiasMetrics name-value argument.

Metric Name Description Evaluation Type
"StatisticalParityDiffer
ence" or "spd"

Statistical parity difference
(SPD)

Data-level or model-level
evaluation

"DisparateImpact" or "di" Disparate impact (DI) Data-level or model-level
evaluation

"EqualOpportunityDiffere
nce" or "eod"

Equal opportunity difference
(EOD)

Model-level evaluation

"AverageAbsoluteOddsDiff
erence" or "aaod"

Average absolute odds
difference (AAOD)

Model-level evaluation

The supported bias metrics depend on whether you specify predicted labels by using the
Predictions argument when you create a fairnessMetrics object.

• Data-level evaluation — If you specify true labels and do not specify predicted labels, the
BiasMetrics property contains only StatisticalParityDifference and
DisparateImpact.

• Model-level evaluation — If you specify both true labels and predicted labels, the BiasMetrics
property contains all metrics listed in the table.

For definitions of the bias metrics, see “Bias Metrics” on page 35-6533.
Example: BiasMetrics=["spd","eod"]
Data Types: char | string | cell

GroupMetrics — List of group metrics
[] (default) | "all" | character vector | string array | cell array of character vectors
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List of group metrics, specified as [], "all", a character vector or string scalar of a metric name, or
a string array or cell array of character vectors containing more than one metric name.

• [] (default) — The output table metricsTbl returned by the report function does not include
any group metrics.

• "all" — metricsTbl includes all group metrics in the GroupMetrics property of evaluator.
• One or more group metric names in the GroupMetrics property — The GroupMetrics property

in evaluator and the output table metricsTbl use full names for the table variable names.
However, you can use the full names or short names, as given in the following table, to specify the
GroupMetrics name-value argument.

Metric Name Description Evaluation Type
"GroupCount" Group count, or number of

samples in the group
Data-level or model-level
evaluation

"GroupSizeRatio" Group count divided by the total
number of samples

Data-level or model-level
evaluation

"TruePositives" or "tp" Number of true positives (TP) Model-level evaluation
"TrueNegatives" or "tn" Number of true negatives (TN) Model-level evaluation
"FalsePositives" or "fp" Number of false positives (FP) Model-level evaluation
"FalseNegatives" or "fn" Number of false negatives (FN) Model-level evaluation
"TruePositiveRate" or
"tpr"

True positive rate (TPR), also
known as recall or sensitivity,
TP/(TP+FN)

Model-level evaluation

"TrueNegativeRate", "tnr",
or "spec"

True negative rate (TNR), or
specificity, TN/(TN+FP)

Model-level evaluation

"FalsePositiveRate" or
"fpr"

False positive rate (FPR), also
known as fallout or 1-specificity,
FP/(TN+FP)

Model-level evaluation

"FalseNegativeRate",
"fnr", or "miss"

False negative rate (FNR), or
miss rate, FN/(TP+FN)

Model-level evaluation

"FalseDiscoveryRate" or
"fdr"

False discovery rate (FDR),
FP/(TP+FP)

Model-level evaluation

"FalseOmissionRate" or
"for"

False omission rate (FOR),
FN/(TN+FN)

Model-level evaluation

"PositivePredictiveValue
", "ppv", or "prec"

Positive predictive value (PPV),
or precision, TP/(TP+FP)

Model-level evaluation

"NegativePredictiveValue
" or "npv"

Negative predictive value
(NPV), TN/(TN+FN)

Model-level evaluation

"RateOfPositivePredictio
ns" or "rpp"

Rate of positive predictions
(RPP), (TP+FP)/(TP+FN+FP
+TN)

Model-level evaluation

"RateOfNegativePredictio
ns" or "rnp"

Rate of negative predictions
(RNP), (TN+FN)/(TP+FN+FP
+TN)

Model-level evaluation

35 Functions

35-6532



Metric Name Description Evaluation Type
"Accuracy" or "accu" Accuracy, (TP+TN)/(TP+FN+FP

+TN)
Model-level evaluation

The supported group metrics depend on whether you specify predicted labels by using the
Predictions argument when you create a fairnessMetrics object.

• Data-level evaluation — If you specify true labels and do not specify predicted labels, the
GroupMetrics property contains only GroupCount and GroupSizeRatio.

• Model-level evaluation — If you specify both true labels and predicted labels, the GroupMetrics
property contains all metrics listed in the table.

Example: GroupMetrics="all"
Data Types: char | string | cell

Output Arguments
metricsTbl — Fairness metrics
table

Fairness metrics, returned as a table.

Each row of metricsTbl contains fairness metrics for a group in a sensitive attribute. The first and
second variables in metricsTbl correspond to the sensitive attribute name
(SensitiveAttributeNames) and the group name (Groups), respectively. The rest of the variables
correspond to the bias and group metrics specified by the BiasMetrics and GroupMetrics name-
value arguments, respectively.

More About
Bias Metrics

The fairnessMetrics object supports four bias metrics: statistical parity difference (SPD),
disparate impact (DI), equal opportunity difference (EOD), and average absolute odds difference
(AAOD). The object supports EOD and AAOD only for evaluating model predictions.

A fairnessMetrics object computes bias metrics for each group in each sensitive attribute with
respect to the reference group of the attribute.

• Statistical parity (or demographic parity) difference (SPD)

The SPD value of the ith sensitive attribute (Si) for the group sij with respect to the reference
group sir is defined by

SPDi j = P Y = + Si = si j − P Y = + Si = sir .

The SPD value is the difference between the probability of being in the positive class when the
sensitive attribute value is sij and the probability of being in the positive class when the sensitive
attribute value is sir (reference group). This metric assumes that the two probabilities (statistical
parities) are equal if the labels are unbiased with respect to the sensitive attribute.
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If you specify the Predictions argument, the software computes SPD for the probabilities of the
model predictions Y  instead of the true labels Y.

• Disparate impact (DI)

The DI value of the ith sensitive attribute (Si) for the group sij with respect to the reference group
sir is defined by

DIi j =
P Y = + Si = si j
P Y = + Si = sir

.

The DI value is the ratio of the probability of being in the positive class when the sensitive
attribute value is sij to the probability of being in the positive class when the sensitive attribute
value is sir (reference group). This metric assumes that the two probabilities are equal if the labels
are unbiased with respect to the sensitive attribute. In general, a DI value less than 0.8 or
greater than 1.25 indicates bias with respect to the reference group [2].

If you specify the Predictions argument, the software computes DI for the probabilities of the
model predictions Y  instead of the true labels Y.

• Equal opportunity difference (EOD)

The EOD value of the ith sensitive attribute (Si) for the group sij with respect to the reference
group sir is defined by

EODi j = TPR Si = si j − TPR Si = sir

= P Y = + Y = + , Si = si j − P Y = + Y = + , Si = sir .

The EOD value is the difference in the true positive rate (TPR) between the group sij and the
reference group sir. This metric assumes that the two rates are equal if the predicted labels are
unbiased with respect to the sensitive attribute.

• Average absolute odds difference (AAOD)

The AAOD value of the ith sensitive attribute (Si) for the group sij with respect to the reference
group sir is defined by

AAODi j = 1
2 FPR Si = si j − FPR Si = sir + TPR Si = si j − TPR Si = sir .

The AAOD value represents the difference in the true positive rates (TPR) and false positive rates
(FPR) between the group sij and the reference group sir. This metric assumes no difference in TPR
and FPR if the predicted labels are unbiased with respect to the sensitive attribute.

Version History
Introduced in R2022b

References
[1] Mehrabi, Ninareh, et al. “A Survey on Bias and Fairness in Machine Learning.” ArXiv:1908.09635

[cs.LG], Sept. 2019. arXiv.org.
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See Also
fairnessMetrics | plot
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reset
Package: incremental.drift

Reset incremental concept drift detector

Syntax
IncCDDetector = reset(IncCDDetector)

Description
IncCDDetector = reset(IncCDDetector) resets internal states of the incremental concept drift
detector IncCDDetector, including PreviousDriftStatus and DriftStatus. Call reset after
detectdrift concludes on a drift in the data.

Examples

Reset Drift Detector After Detection of Drift

Create a random stream such that the first 500 observations come from a normal distribution with
mean 2 and standard deviation 0.75 and the next 500 come from a normal distribution with mean 4
and standard deviation 1. In an incremental drift detection application, access to data stream and
model update would happen consecutively. However, for the purpose of clarification, this example
demonstrates the simulation of data separately.

rng(1234) % For reproducibility
numObservations = 1000;
switchPeriod1 = 500;
X = zeros([numObservations 1]);
for i = 1:numObservations
    if i <= switchPeriod1
        X(i) = normrnd(2,0.75);
    else
        X(i) = normrnd(4,1);
    end
end

Initiate the incremental concept drift detector. Utilize the Hoeffding's bound method with exponential
moving average method (HDDMA). Specify the input type as continuous, a warmup of 50
observations, and an estimation period of 50 observations.

incCDDetector = incrementalConceptDriftDetector("hddma",InputType="continuous", ...
    WarmupPeriod=50,EstimationPeriod=50)

incCDDetector = 
  HoeffdingDriftDetectionMethod

        PreviousDriftStatus: 'Stable'
                DriftStatus: 'Stable'
                     IsWarm: 0
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    NumTrainingObservations: 0
                Alternative: 'greater'
                  InputType: 'continuous'
                 TestMethod: 'average'

  Properties, Methods

incDDetector is a HoeffdingDriftDetectionMethod object. When you first create the object,
properties such as DriftStatus, IsWarm, CutMean, and NumTrainingObservations are at their
initial state. detectdrift updates them as you feed the data incrementally and monitor for drift.

Simulate the data stream of one observation at a time and perform incremental drift detection until a
drift is detected.

i=1;
while incCDDetector.DriftDetected~=1
    incCDDetector = detectdrift(incCDDetector,X(i));
    i=i+1;
    if incCDDetector.DriftDetected
       sprintf("Drift detected at observation #%d.",i)
       incCDDetector
    end      
end

ans = 
"Drift detected at observation #518."

incCDDetector = 
  HoeffdingDriftDetectionMethod

        PreviousDriftStatus: 'Warning'
                DriftStatus: 'Drift'
                     IsWarm: 1
    NumTrainingObservations: 467
                Alternative: 'greater'
                  InputType: 'continuous'
                 TestMethod: 'average'

  Properties, Methods

The drift status switched from a Warning to a Drift (drift is detected) at observation 518.
detectdrift starts updating the internal statistics after the estimation period, which is 50, hence
the number of training observations is 467.

Reset and investigate the drift detector.

incCDDetector = reset(incCDDetector)

incCDDetector = 
  HoeffdingDriftDetectionMethod

        PreviousDriftStatus: 'Stable'
                DriftStatus: 'Stable'
                     IsWarm: 0

 reset
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    NumTrainingObservations: 0
                Alternative: 'greater'
                  InputType: 'continuous'
                 TestMethod: 'average'

  Properties, Methods

reset function resets the internal statistics such as CutMean, PostCutMean, InputBounds, and
NumTrainingObservations, the drift statuses PreviousDriftStatus and DriftStatus, and
the indicators IsWarm, DriftDetected, and WarningDetected.

Input Arguments
IncCDDetector — Incremental concept drift detector
DriftDetectionMethod | HoeffdingDriftDetectionMethod

Incremental concept drift detector, specified as either DriftDetectionMethod or
HoeffdingDriftDetectionMethod object. For more information on these objects and their
properties, see the corresponding reference pages.

Version History
Introduced in R2022a

See Also
incrementalConceptDriftDetector | DriftDetectionMethod |
HoeffdingDriftDetectionMethod | detectdrift
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reset
Reset incremental classification model

Syntax
Mdl = reset(Mdl)

Description
Mdl = reset(Mdl) returns the incremental model Mdl with reset learned parameters. If any
hyperparameters of Mdl are estimated during incremental training, reset function resets these
hyperparameters as well. reset always preserves Mdl.Numpredictors property.

For incremental classification models, reset always preserves Mdl.ClassNames property and resets
Mdl.Prior if it is "empirical".

Examples

Reset Incremental Classification Model

Load the human activity data set. Randomly shuffle the data.

load humanactivity
n = numel(actid);
rng(1); % For reproducibility
idx = randsample(n,n);
X = feat(idx,:);
Y = actid(idx);

For details on the data set, enter Description at the command line.

Responses can be one of five classes: Sitting, Standing, Walking, Running, or Dancing. Dichotomize
the response by identifying whether the subject is moving (actid > 2).

Y = Y > 2;

Create an incremental linear SVM model for binary classification. Configure it for loss by specifying
the class names, prior class distribution (uniform), and arbitrary coefficient and bias values. Specify a
metrics window size of 1000 observations.

p = size(X,2);
Beta = randn(p,1);
Bias = randn(1);
Mdl = incrementalClassificationLinear('Beta',Beta,'Bias',Bias,...
    'ClassNames',unique(Y),'Prior','uniform','MetricsWindowSize',1000,'Metrics','classiferror');

Mdl is an incrementalClassificationLinear model. All its properties are read-only.

Simulate a data stream with incoming chunks of 50 observations each.

 reset
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1 Call updateMetricsAndFit to update the performance metrics and fit the model to the
incoming window of data. Overwrite the previous incremental model with the new one.

2 Investigate the model.
3 Call reset to reset the learned parameters and compare to the previous model to see which

parameters are reset.

numObsPerChunk = 50;
nchunk = floor(n/numObsPerChunk);

for j = 1:nchunk
    ibegin = min(n,numObsPerChunk*(j-1) + 1);
    iend   = min(n,numObsPerChunk*j);
    idx = ibegin:iend;    
    Mdl = updateMetricsAndFit(Mdl,X(idx,:),Y(idx));
end

Display some of the model parameters.

Mdl

Mdl = 
  incrementalClassificationLinear

            IsWarm: 1
           Metrics: [1x2 table]
        ClassNames: [0 1]
    ScoreTransform: 'none'
              Beta: [60x1 double]
              Bias: -0.9069
           Learner: 'svm'

  Properties, Methods

Mdl.Metrics

ans=1×2 table
                           Cumulative    Window
                           __________    ______

    ClassificationError    0.0018185       0   

Mdl.Beta(1:10)

ans = 10×1

   -0.8806
   -0.0259
    1.6498
   12.0393
    0.4948
    8.9050
    0.1317
    0.0006
    0.1071
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    0.0092

The model is warm (IsWarm=1), you can see the value of the performance metric,
ClassificationError, estimations for the model parameters, Bias and Beta.

Reset the model and display the same parameters.

newMdl = reset(Mdl)

newMdl = 
  incrementalClassificationLinear

            IsWarm: 0
           Metrics: [1x2 table]
        ClassNames: [0 1]
    ScoreTransform: 'none'
              Beta: [60x1 double]
              Bias: 0
           Learner: 'svm'

  Properties, Methods

newMdl.Metrics

ans=1×2 table
                           Cumulative    Window
                           __________    ______

    ClassificationError       NaN         NaN  

newMdl.Beta(1:10)

ans = 10×1

     0
     0
     0
     0
     0
     0
     0
     0
     0
     0

reset function resets the warmup status of the model (IsWarm = 0), the values of the performance
metrics and the estimated model parameters. In addition to these, it resets the properties, such as
NumTrainingObservations, that the software updates at each iteration.
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Input Arguments
Mdl — Incremental learning model
incrementalClassificationKernel model object | incrementalClassificationLinear
model object | incrementalClassificationECOC model object |
incrementalClassificationNaiveBayes model object

Incremental learning model, specified as an incrementalClassificationKernel,
incrementalClassificationLinear, incrementalClassificationECOC, or
incrementalClassificationNaiveBayes model object. You can create Mdl directly or by
converting a supported, traditionally trained machine learning model using the
incrementalLearner function. For more details, see the corresponding object page.

Version History
Introduced in R2022a

See Also
perObservationLoss | incrementalClassificationKernel |
incrementalClassificationLinear | incrementalClassificationECOC |
incrementalClassificationNaiveBayes
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reset
Reset incremental drift-aware learner

Syntax
Mdl = reset(Mdl)

Description
Mdl = reset(Mdl) returns the incremental drift-aware model Mdl after resetting the learned
parameters of Mdl.BaseLearner and Mdl.DriftDetector. If any hyperparameters of
Mdl.BaseLearner are estimated during incremental training, the reset function resets these
hyperparameters as well. reset always preserves the Mdl.BaseLearner.Numpredictors
property.

For incremental classification models, reset always preserves the Mdl.BaseLearner.ClassNames
property and resets Mdl.BaseLearner.Prior if prior class probabilities are "empirical".

The fit function internally calls reset during incremental drift-aware learning on page 35-7737.
reset is suitable for using in custom workflows.

Examples

Reset Incremental Drift-Aware Model

Create the random concept data and the concept drift generator using the helper functions
HelperRegrGenerator and HelperConceptDriftGenerator, respectively.

concept1 = HelperRegrGenerator(NumFeatures=100,NonZeroFeatures=[1,20,40,50,55], ...
    FeatureCoefficients=[4,5,10,-2,-6],NoiseStd=1.1,TableOutput=false);
concept2 = HelperRegrGenerator(NumFeatures=100,NonZeroFeatures=[10,20,45,56,80], ...
    FeatureCoefficients=[4,5,10,-2,-6],NoiseStd=1.1,TableOutput=false);
driftGenerator = HelperConceptDriftGenerator(concept1,concept2,15000,1000);

HelperRegrGenerator generates streaming data using features and feature coefficients for
regression specified in the call to the function. At each step, the function samples the predictors from
a normal distribution. Then, the function computes the response using the feature coefficients and
predictor values and adding a random noise from a normal distribution with mean zero and specified
noise standard deviation. The software returns the data in matrices for using in incremental learners.

HelperConceptDriftGenerator establishes the concept drift. The object uses a sigmoid function
1./(1+exp(-4*(numobservations-position)./width)) to decide the probability of choosing
the first stream when generating data [3]. In this case, the position argument is 15000 and the width
argument is 1000. As the number of observations exceeds the position value minus half of the width,
the probability of sampling from the first stream when generating data decreases. The sigmoid
function allows a smooth transition from one stream to the other. Larger width values indicate a
larger transition period where both streams are approximately equally likely to be selected.

Initiate an incremental drift-aware model for regression as follows:

 reset
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1 Create an incremental linear model for regression. Specify the linear regression model type and
solver type.

2 Initiate an incremental concept drift detector that uses the Hoeffding's Bounds Drift Detection
Method with moving average (HDDMA).

3 Using the incremental linear model and the concept drift detector, instantiate an incremental
drift-aware model. Specify the training period as 6000 observations.

baseMdl = incrementalRegressionLinear(Learner="leastsquares",Solver="sgd",EstimationPeriod=1000,Standardize=false);
dd = incrementalConceptDriftDetector("hddma",Alternative="greater",InputType="continuous",WarmupPeriod=1000);
idal = incrementalDriftAwareLearner(baseMdl,DriftDetector=dd,TrainingPeriod=6000);

Preallocate the number of variables in each chunk and number of iterations for creating a stream of
data.

numObsPerChunk = 10;
numIterations = 1000;

Preallocate the variable for storing the regression error.

ce = array2table(zeros(numIterations,2),VariableNames=["Cumulative" "Window"]);

Simulate a data stream with incoming chunks of 10 observations each and perform incremental drift-
aware learning. At each iteration:

1 Simulate predictor data and labels, and update the drift generator using the helper function
hgenerate.

2 Call updateMetricsAndFit to update the performance metrics and fit the incremental drift-
aware model to the incoming data.

3 Track the regression error for visualization purposes.

rng(12); % For reproducibility

for j = 1:numIterations
 
 % Generate data
 [driftGenerator,X,Y] = hgenerate(driftGenerator,numObsPerChunk); 

 % Update performance metrics and fit the model
 idal = updateMetricsAndFit(idal,X,Y); 

 % Record regression error
  ce{j,:} = idal.Metrics{"MeanSquaredError",:};
 
end

Plot the cumulative and per window regression error. Mark the warmup plus estimation period.

h = plot(ce.Variables);
xlim([0 numIterations])
ylabel("Mean Squared Error")
xlabel("Iteration")
xline((idal.MetricsWarmupPeriod+idal.BaseLearner.EstimationPeriod)/numObsPerChunk,"g-.","Estimation Period+Warmup Period",LineWidth=1.5)
legend(h,ce.Properties.VariableNames)
legend(h,Location="best")
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Display the incremental drift-aware learner and the current metrics values.

idal

idal = 
  incrementalDriftAwareLearner

           IsWarm: 1
          Metrics: [1x2 table]
      BaseLearner: [1x1 incrementalRegressionLinear]
    DriftDetector: [1x1 HoeffdingDriftDetectionMethod]
       IsTraining: 0

  Properties, Methods

idal.Metrics

ans=1×2 table
                        Cumulative    Window
                        __________    ______

    MeanSquaredError      2.0976      1.826 

Display the base learner, and the drift detector.

idal.BaseLearner
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ans = 
  incrementalRegressionLinear

               IsWarm: 1
              Metrics: [1x2 table]
    ResponseTransform: 'none'
                 Beta: [100x1 double]
                 Bias: -0.0793
              Learner: 'leastsquares'

  Properties, Methods

idal.BaseLearner.Beta

ans = 100×1

    4.0221
    0.0492
    0.0046
    0.0529
   -0.0818
   -0.1161
    0.0307
   -0.0669
   -0.0103
    0.0159
      ⋮

Display the drift detector.

idal.DriftDetector

ans = 
  HoeffdingDriftDetectionMethod

        PreviousDriftStatus: 'Stable'
                DriftStatus: 'Stable'
                     IsWarm: 1
    NumTrainingObservations: 7900
                Alternative: 'greater'
                  InputType: 'continuous'
                 TestMethod: 'average'

  Properties, Methods

Reset the incremental drift-aware learner. Display the model and the metrics property.

idal = reset(idal)

idal = 
  incrementalDriftAwareLearner

           IsWarm: 0
          Metrics: [1x2 table]
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      BaseLearner: [1x1 incrementalRegressionLinear]
    DriftDetector: [1x1 HoeffdingDriftDetectionMethod]
       IsTraining: 1

  Properties, Methods

idal.Metrics

ans=1×2 table
                        Cumulative    Window
                        __________    ______

    MeanSquaredError       NaN         NaN  

The metrics are reset to NaN values. The software will wait until
idal.BaseLearner.EstimationPeriod+idal.BaseLearner.MetricsWarmUpPeriod
observations have passed before computing the metrics again.

Resetting the model resets the base learner and the underlying drift detector as well.

Display the base learner.

idal.BaseLearner

ans = 
  incrementalRegressionLinear

               IsWarm: 0
              Metrics: [1x2 table]
    ResponseTransform: 'none'
                 Beta: [100x1 double]
                 Bias: 0
              Learner: 'leastsquares'

  Properties, Methods

The Bias parameter is also reset to 0.

Display the Beta property of the base learner.

idal.BaseLearner.Beta

ans = 100×1

     0
     0
     0
     0
     0
     0
     0
     0
     0
     0
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      ⋮

Coefficient values are all set to 0.

Display the drift detector.

idal.DriftDetector

ans = 
  HoeffdingDriftDetectionMethod

        PreviousDriftStatus: 'Stable'
                DriftStatus: 'Stable'
                     IsWarm: 0
    NumTrainingObservations: 0
                Alternative: 'greater'
                  InputType: 'continuous'
                 TestMethod: 'average'

  Properties, Methods

IsWarm property and the number of training observations are both set to 0.

You can use the dot notation to explore how other properties of the drift-aware learner, the base
learner, and the drift detector change after a reset.

Input Arguments
Mdl — Incremental drift-aware learning model
incrementalDriftAwareLearner model object

Incremental drift-aware learning model fit to streaming data, specified as an
incrementalDriftAwareLearner model object. You can create Mdl using the
incrementalDriftAwareLearner function. For more details, see the object reference page.

Output Arguments
Mdl — Updated incremental drift-aware learning model
incrementalDriftAwareLearner model object

Updated incremental drift-aware learning model, returned as an incremental learning model object of
the same data type as the input model Mdl, incrementalDriftAwareLearner.

Version History
Introduced in R2022b
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reset
Reset incremental regression model

Syntax
Mdl = reset(Mdl)

Description
Mdl = reset(Mdl) returns the incremental model Mdl with reset learned parameters. If any
hyperparameters of Mdl are estimated during incremental training, reset function resets these
hyperparameters as well. reset always preserves Mdl.Numpredictors.

Examples

Reset Incremental Regression Model

Load the robot arm data set. Obtain the sample size n and the number of predictor variables p.

load robotarm
n = numel(ytrain);
p = size(Xtrain,2);

For details on the data set, enter Description at the command line.

Create an incremental linear model for regression. Configure the model as follows:

• Specify a metrics warm-up period of 1000 observations.
• Specify a metrics window size of 500 observations.
• Configure the model to predict responses by specifying that all regression coefficients and the

bias are 0.

Mdl = incrementalRegressionLinear('MetricsWarmupPeriod',1000,'MetricsWindowSize',500, ...
    'Beta',zeros(p,1),'Bias',0,'EstimationPeriod',0)

Mdl = 
  incrementalRegressionLinear

               IsWarm: 0
              Metrics: [1x2 table]
    ResponseTransform: 'none'
                 Beta: [32x1 double]
                 Bias: 0
              Learner: 'svm'

  Properties, Methods

Mdl is an incrementalRegressionLinear model object configured for incremental learning. All
properties are read-only.
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Simulate a data stream with incoming chunks of 50 observations each. For each iteration:

1 Call updateMetricsAndFit to update the performance metrics and fit the model to the
incoming window of data. Overwrite the previous incremental model with the new one.

2 Investigate the model.
3 Call reset to reset the learned parameters and compare to the previous model to see which

parameters are reset.

numObsPerChunk = 50;
nchunk = floor(n/numObsPerChunk);
for j = 1:nchunk
    ibegin = min(n,numObsPerChunk*(j-1) + 1);
    iend   = min(n,numObsPerChunk*j);
    idx = ibegin:iend;    
    Mdl = updateMetricsAndFit(Mdl,Xtrain(idx,:),ytrain(idx));
    L(j) = loss(Mdl,Xtrain(idx,:),ytrain(idx));
    PoL(j,:) = perObservationLoss(Mdl,Xtrain(idx,:),ytrain(idx));
end

Display the model.

Mdl

Mdl = 
  incrementalRegressionLinear

               IsWarm: 1
              Metrics: [1x2 table]
    ResponseTransform: 'none'
                 Beta: [32x1 double]
                 Bias: -1.9425e-04
              Learner: 'svm'

  Properties, Methods

The model is warm (IsWarm=1), you can see the values of some of the properties.

Display the Metrics property.

Mdl.Metrics

ans=1×2 table
                              Cumulative    Window 
                              __________    _______

    EpsilonInsensitiveLoss     0.68922      0.68538

This property contains the model performance metrics, which, in this case, is the epsilon insensitive
loss. It shows the cumulative loss and the loss for the latest data window.

Display the model coefficients.

Mdl.Beta(1:10)

ans = 10×1
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   -0.0002
   -0.0002
   -0.0004
    0.0000
    0.0006
    0.0000
    0.0003
   -0.0010
    0.0004
   -0.0011

Reset the model and display the same parameters.

newMdl = reset(Mdl)

newMdl = 
  incrementalRegressionLinear

               IsWarm: 0
              Metrics: [1x2 table]
    ResponseTransform: 'none'
                 Beta: [32x1 double]
                 Bias: 0
              Learner: 'svm'

  Properties, Methods

newMdl.Metrics

ans=1×2 table
                              Cumulative    Window
                              __________    ______

    EpsilonInsensitiveLoss       NaN         NaN  

newMdl.Beta(1:10)

ans = 10×1

     0
     0
     0
     0
     0
     0
     0
     0
     0
     0

reset function resets the warmup status of the model (IsWarm = 0), the values of the performance
metrics, and the estimated model parameters. In addition to these, it resets the properties, such as
NumTrainingObservations, that the software updates at each iteration.
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Input Arguments
Mdl — Incremental learning model
incrementalRegressionLinear model object | incrementalRegressionKernel model object

Incremental learning model, specified as an incrementalRegressionKernel or
incrementalRegressionLinear model object. You can create Mdl directly or by converting a
supported, traditionally trained machine learning model using the incrementalLearner function.
For more details, see the corresponding object page.

Version History
Introduced in R2022a

See Also
perObservationLoss | incrementalRegressionKernel | incrementalRegressionLinear
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reset
Class: qrandstream

Reset state

Syntax
reset(q)

Description
reset(q) resets the state of the quasi-random number stream q of the qrandstream on page 35-
6075 class back to its initial state, 1. Subsequent points drawn from the stream will be the same as
those drawn from a new stream. The command is equivalent to q.State = 1.

Examples
Use qrandstream to construct a 3-D Halton stream, based on a point set that skips the first 1000
values and then retains every 101st point:

q = qrandstream('halton',3,'Skip',1e3,'Leap',1e2)
q = 
   Halton quasi-random stream in 3 dimensions
   Point set properties:
              Skip : 1000
              Leap : 100
    ScrambleMethod : none

nextIdx = q.State
nextIdx =
     1

Use qrand to generate two samples of size four:

X1 = qrand(q,4)
X1 =
    0.0928    0.3475    0.0051
    0.6958    0.2035    0.2371
    0.3013    0.8496    0.4307
    0.9087    0.5629    0.6166
nextIdx = q.State
nextIdx =
     5

X2 = qrand(q,4)
X2 =
    0.2446    0.0238    0.8102
    0.5298    0.7540    0.0438
    0.3843    0.5112    0.2758
    0.8335    0.2245    0.4694
nextIdx = q.State
nextIdx =
     9

35 Functions

35-6554



Use reset to reset the stream, then generate another sample:

reset(q)
nextIdx = q.State
nextIdx =
     1

X = qrand(q,4)
X =
    0.0928    0.3475    0.0051
    0.6958    0.2035    0.2371
    0.3013    0.8496    0.4307
    0.9087    0.5629    0.6166

See Also
qrandstream | qrand
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residuals
Class: GeneralizedLinearMixedModel

Residuals of fitted generalized linear mixed-effects model

Syntax
r = residuals(glme)
r = residuals(glme,Name,Value)

Description
r = residuals(glme) returns the raw conditional residuals from a fitted generalized linear mixed-
effects model glme.

r = residuals(glme,Name,Value) returns the residuals using additional options specified by
one or more Name,Value pair arguments. For example, you can specify to return Pearson residuals
for the model.

Input Arguments
glme — Generalized linear mixed-effects model
GeneralizedLinearMixedModel object

Generalized linear mixed-effects model, specified as a GeneralizedLinearMixedModel object. For
properties and methods of this object, see GeneralizedLinearMixedModel.

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.

Conditional — Indicator for conditional residuals
true (default) | false

Indicator for conditional residuals, specified as the comma-separated pair consisting of
'Conditional' and one of the following.

Value Description
true Contributions from both fixed effects and random

effects (conditional)
false Contribution from only fixed effects (marginal)

Conditional residuals include contributions from both fixed- and random-effects predictors. Marginal
residuals include contribution from only fixed effects. To obtain marginal residual values, residuals

35 Functions

35-6556



computes the conditional mean of the response with the empirical Bayes predictor vector of random
effects, b, set to 0.
Example: 'Conditional',false

ResidualType — Residual type
'raw' (default) | 'Pearson'

Residual type, specified as the comma-separated pair consisting of 'ResidualType' and one of the
following.

Residual Type Conditional Marginal
'raw' rci = yi− g−1 xi

Tβ + zi
Tb

+ δi

rmi = yi− g−1 xi
Tβ + δi

'Pearson'
rci

pearson =
rci

σ2
wi

vi μi β , b
rmi

pearson =
rmi

σ2
wi

vi μi β , 0

In each of these equations:

• yi is the ith element of the n-by-1 response vector, y, where i = 1, ..., n.
• g-1 is the inverse link function for the model.
• xi

T is the ith row of the fixed-effects design matrix X.
• zi

T is the ith row of the random-effects design matrix Z.
• δi is the ith offset value.
• σ2 is the dispersion parameter.
• wi is the ith observation weight.
• vi is the variance term for the ith observation.
• μi is the mean of the response for the ith observation.
• β  and b  are estimated values of β and b.

Raw residuals from a generalized linear mixed-effects model have nonconstant variance. Pearson
residuals are expected to have an approximately constant variance, and are generally used for
analysis.
Example: 'ResidualType','Pearson'

Output Arguments
r — Residuals
n-by-1 vector

Residuals of the fitted generalized linear mixed-effects model glme returned as an n-by-1 vector,
where n is the number of observations.

Examples

 residuals
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Plot Residuals Versus Fitted Values

Load the sample data.

load mfr

This simulated data is from a manufacturing company that operates 50 factories across the world,
with each factory running a batch process to create a finished product. The company wants to
decrease the number of defects in each batch, so it developed a new manufacturing process. To test
the effectiveness of the new process, the company selected 20 of its factories at random to participate
in an experiment: Ten factories implemented the new process, while the other ten continued to run
the old process. In each of the 20 factories, the company ran five batches (for a total of 100 batches)
and recorded the following data:

• Flag to indicate whether the batch used the new process (newprocess)
• Processing time for each batch, in hours (time)
• Temperature of the batch, in degrees Celsius (temp)
• Categorical variable indicating the supplier (A, B, or C) of the chemical used in the batch

(supplier)
• Number of defects in the batch (defects)

The data also includes time_dev and temp_dev, which represent the absolute deviation of time and
temperature, respectively, from the process standard of 3 hours at 20 degrees Celsius.

Fit a generalized linear mixed-effects model using newprocess, time_dev, temp_dev, and
supplier as fixed-effects predictors. Include a random-effects term for intercept grouped by
factory, to account for quality differences that might exist due to factory-specific variations. The
response variable defects has a Poisson distribution, and the appropriate link function for this
model is log. Use the Laplace fit method to estimate the coefficients. Specify the dummy variable
encoding as 'effects', so the dummy variable coefficients sum to 0.

The number of defects can be modeled using a Poisson distribution

defectsi j ∼ Poisson(μi j)

This corresponds to the generalized linear mixed-effects model

log(μi j) = β0 + β1newprocessi j + β2time_devi j + β3temp_devi j + β4supplier_Ci j + β5supplier_Bi j
+ bi,

where

• defectsi j is the number of defects observed in the batch produced by factory i during batch j.
• μi j is the mean number of defects corresponding to factory i (where i = 1, 2, . . . , 20) during batch

j (where j = 1, 2, . . . , 5).
• newprocessi j, time_devi j, and temp_devi j are the measurements for each variable that correspond

to factory i during batch j. For example, newprocessi j indicates whether the batch produced by
factory i during batch j used the new process.

• supplier_Ci j and supplier_Bi j are dummy variables that use effects (sum-to-zero) coding to indicate
whether company C or B, respectively, supplied the process chemicals for the batch produced by
factory i during batch j.
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• bi ∼ N(0, σb
2) is a random-effects intercept for each factory i that accounts for factory-specific

variation in quality.

glme = fitglme(mfr,'defects ~ 1 + newprocess + time_dev + temp_dev + supplier + (1|factory)',...
    'Distribution','Poisson','Link','log','FitMethod','Laplace','DummyVarCoding','effects');

Generate the conditional Pearson residuals and the conditional fitted values from the model.

r = residuals(glme,'ResidualType','Pearson');
mufit = fitted(glme);

Display the first ten rows of the Pearson residuals.

r(1:10)

ans = 10×1

    0.4530
    0.4339
    0.3833
   -0.2653
    0.2811
   -0.0935
   -0.2984
   -0.2509
    1.5547
   -0.3027

Plot the Pearson residuals versus the fitted values, to check for signs of nonconstant variance among
the residuals (heteroscedasticity).

figure
scatter(mufit,r)
title('Residuals versus Fitted Values')
xlabel('Fitted Values')
ylabel('Residuals')
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The plot does not show a systematic dependence on the fitted values, so there are no signs of
nonconstant variance among the residuals.

See Also
GeneralizedLinearMixedModel | fitted | response | designMatrix
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residuals
Class: LinearMixedModel

Residuals of fitted linear mixed-effects model

Syntax
R = residuals(lme)
R = residuals(lme,Name,Value)

Description
R = residuals(lme) returns the raw conditional residuals from a fitted linear mixed-effects model
lme.

R = residuals(lme,Name,Value) returns the residuals from the linear mixed-effects model lme
with additional options specified by one or more Name,Value pair arguments.

For example, you can specify Pearson or standardized residuals, or residuals with contributions from
only fixed effects.

Input Arguments
lme — Linear mixed-effects model
LinearMixedModel object

Linear mixed-effects model, specified as a LinearMixedModel object constructed using fitlme or
fitlmematrix.

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.

Conditional — Indicator for conditional residuals
True (default) | False

Indicator for conditional residuals, specified as the comma-separated pair consisting of
'Conditional' and one of the following.

True Contribution from both fixed effects and random
effects (conditional)

False Contribution from only fixed effects (marginal)

Example: 'Conditional,'False'
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ResidualType — Residual type
'Raw' (default) | 'Pearson' | 'Standardized'

Residual type, specified by the comma-separated pair consisting of ResidualType and one of the
following.

Residual Type Conditional Marginal
'Raw' ri

C = y − Xβ − Zb i ri
M = y − Xβ i

'Pearson'
pri

C

=
ri

C

Vary, b y − Xβ− Zb ii

pri
M =

ri
M

Vary y − Xβ ii

'Standardized'
stiC =

ri
C

Vary rC
ii

stiM =
ri

M

Vary rM
ii

For more information on the conditional and marginal residuals and residual variances, see
Definitions at the end of this page.
Example: 'ResidualType','Standardized'

Output Arguments
R — Residuals
n-by-1 vector

Residuals of the fitted linear mixed-effects model lmereturned as an n-by-1 vector, where n is the
number of observations.

Examples

Plot Residuals vs. Fitted Values

Load the sample data.

load('weight.mat');

weight contains data from a longitudinal study, where 20 subjects are randomly assigned to 4
exercise programs, and their weight loss is recorded over six 2-week time periods. This is simulated
data.

Store the data in a table. Define Subject and Program as categorical variables.

tbl = table(InitialWeight,Program,Subject,Week,y);
tbl.Subject = nominal(tbl.Subject);
tbl.Program = nominal(tbl.Program);

Fit a linear mixed-effects model where the initial weight, type of program, week, and the interaction
between the week and type of program are the fixed effects. The intercept and week vary by subject.
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lme = fitlme(tbl,'y ~ InitialWeight + Program*Week + (Week|Subject)');

Compute the fitted values and raw residuals.

F = fitted(lme);
R = residuals(lme);

Plot the residuals versus the fitted values.

plot(F,R,'bx')
xlabel('Fitted Values')
ylabel('Residuals')

Now, plot the residuals versus the fitted values, grouped by program.

figure();
gscatter(F,R,Program)
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The residuals seem to behave similarly across levels of the program as expected.

Compute Conditional and Marginal Pearson Residuals

Load the sample data.

load carbig

Store the variables for miles per gallon (MPG), acceleration, horsepower, cylinders, and model year in
a table.

tbl = table(MPG,Acceleration,Horsepower,Cylinders,Model_Year);

Fit a linear mixed-effects model for miles per gallon (MPG), with fixed effects for acceleration,
horsepower, and the cylinders, and potentially correlated random effects for intercept and
acceleration grouped by model year.

lme = fitlme(tbl,'MPG ~ Acceleration + Horsepower + Cylinders + (Acceleration|Model_Year)');

Compute the conditional Pearson residuals and display the first five residuals.

PR = residuals(lme,'ResidualType','Pearson');
PR(1:5)

ans = 5×1
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   -0.0533
    0.0652
    0.3655
   -0.0106
   -0.3340

Compute the marginal Pearson residuals and display the first five residuals.

PRM = residuals(lme,'ResidualType','Pearson','Conditional',false);
PRM(1:5)

ans = 5×1

   -0.1250
    0.0130
    0.3242
   -0.0861
   -0.3006

Examine Residuals

Load the sample data.

load carbig

Store the variables for miles per gallon (MPG), acceleration, horsepower, cylinders, and model year in
a table.

tbl = table(MPG,Acceleration,Horsepower,Cylinders,Model_Year);

Fit a linear mixed-effects model for miles per gallon (MPG), with fixed effects for acceleration,
horsepower, and the cylinders, and potentially correlated random effects for intercept and
acceleration grouped by model year.

lme = fitlme(tbl,'MPG ~ Acceleration + Horsepower + Cylinders + (Acceleration|Model_Year)');

Draw a histogram of the raw residuals with a normal fit.

r = residuals(lme);
histfit(r)
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Normal distribution seems to be a good fit for the residuals.

Compute the conditional Pearson and standardized residuals and create box plots of all three types of
residuals.

pr = residuals(lme,'ResidualType','Pearson');
st = residuals(lme,'ResidualType','Standardized');
X = [r pr st];
boxplot(X)
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Red plus signs show the observations with residuals above or below q3 + 1 . 5(q3− q1) and
q1− 1 . 5(q3− q1), where q1 and q3 are the 25th and 75th percentiles, respectively.

Find the observations with residuals that are 2.5 standard deviations above and below the mean.

find(r > mean(r,'omitnan') + 2.5*std(r,'omitnan'))

ans = 7×1

    62
   252
   255
   330
   337
   341
   396

find(r < mean(r,'omitnan') - 2.5*std(r,'omitnan'))

ans = 3×1

   119
   324
   375
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More About
Conditional and Marginal Residuals

Conditional residuals include contributions from both fixed and random effects, whereas marginal
residuals include contribution from only fixed effects.

Suppose the linear mixed-effects model lmehas an n-by-p fixed-effects design matrix X and an n-by-q
random-effects design matrix Z. Also, suppose the p-by-1 estimated fixed-effects vector is β , and the
q-by-1 estimated best linear unbiased predictor (BLUP) vector of random effects is b . The fitted
conditional response is

y Cond = Xβ + Zb ,

and the fitted marginal response is

y Mar = Xβ ,

residuals can return three types of residuals: raw, Pearson, and standardized. For any type, you
can compute the conditional or the marginal residuals. For example, the conditional raw residual is

rCond = y − Xβ − Zb ,

and the marginal raw residual is

rMar = y − Xβ .

For more information on other types of residuals, see the ResidualType name-value pair argument.

See Also
LinearMixedModel | fitted | plotResiduals | response

35 Functions

35-6568



response
Class: GeneralizedLinearMixedModel

Response vector of generalized linear mixed-effects model

Syntax
y = response(glme)
[y,binomialsize] = response(glme)

Description
y = response(glme) returns the response vector y used to fit the generalized linear mixed effects
model glme.

[y,binomialsize] = response(glme) also returns the binomial size associated with each
element of y if the conditional distribution of response given the random effects is binomial.

Input Arguments
glme — Generalized linear mixed-effects model
GeneralizedLinearMixedModel object

Generalized linear mixed-effects model, specified as a GeneralizedLinearMixedModel object. For
properties and methods of this object, see GeneralizedLinearMixedModel.

Output Arguments
y — Response values
n-by-1 vector

Response values, specified as an n-by-1 vector, where n is the number of observations.

For an observation i with prior weights wi
p and binomial size ni (when applicable), the response

values yi can have the following values.

Distribution Permitted Values Notes
Binomial

0, 1
wi

pni
, 2
wi

pni
, …, 1

wi
p and ni are integer values > 0

Poisson
0, 1

wi
p , 2

wi
p , …

wi
p is an integer value > 0

Gamma (0,∞) wi
p ≥ 0

InverseGaussian (0,∞) wi
p ≥ 0

normal (-∞,∞) wi
p ≥ 0
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You can access the prior weights property wi
p using dot notation. For example, to access the prior

weights property for a model glme:

glme.ObservationInfo.Weights

binomialsize — Binomial size
vector

Binomial size associated with each element of y, returned as an n-by-1 vector, where n is the number
of observations. response only returns binomialsize if the conditional distribution of response
given the random effects is binomial. binomialsize is empty for other distributions.

Examples

Plot Response Versus Fitted Values

Load the sample data.

load mfr

This simulated data is from a manufacturing company that operates 50 factories across the world,
with each factory running a batch process to create a finished product. The company wants to
decrease the number of defects in each batch, so it developed a new manufacturing process. To test
the effectiveness of the new process, the company selected 20 of its factories at random to participate
in an experiment: Ten factories implemented the new process, while the other ten continued to run
the old process. In each of the 20 factories, the company ran five batches (for a total of 100 batches)
and recorded the following data:

• Flag to indicate whether the batch used the new process (newprocess)
• Processing time for each batch, in hours (time)
• Temperature of the batch, in degrees Celsius (temp)
• Categorical variable indicating the supplier (A, B, or C) of the chemical used in the batch

(supplier)
• Number of defects in the batch (defects)

The data also includes time_dev and temp_dev, which represent the absolute deviation of time and
temperature, respectively, from the process standard of 3 hours at 20 degrees Celsius.

Fit a generalized linear mixed-effects model using newprocess, time_dev, temp_dev, and
supplier as fixed-effects predictors. Include a random-effects term for intercept grouped by
factory, to account for quality differences that might exist due to factory-specific variations. The
response variable defects has a Poisson distribution, and the appropriate link function for this
model is log. Use the Laplace fit method to estimate the coefficients. Specify the dummy variable
encoding as 'effects', so the dummy variable coefficients sum to 0.

The number of defects can be modeled using a Poisson distribution

defectsi j ∼ Poisson(μi j)

This corresponds to the generalized linear mixed-effects model

log(μi j) = β0 + β1newprocessi j + β2time_devi j + β3temp_devi j + β4supplier_Ci j + β5supplier_Bi j
+ bi,
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where

• defectsi j is the number of defects observed in the batch produced by factory i during batch j.
• μi j is the mean number of defects corresponding to factory i (where i = 1, 2, . . . , 20) during batch

j (where j = 1, 2, . . . , 5).
• newprocessi j, time_devi j, and temp_devi j are the measurements for each variable that correspond

to factory i during batch j. For example, newprocessi j indicates whether the batch produced by
factory i during batch j used the new process.

• supplier_Ci j and supplier_Bi j are dummy variables that use effects (sum-to-zero) coding to indicate
whether company C or B, respectively, supplied the process chemicals for the batch produced by
factory i during batch j.

• bi ∼ N(0, σb
2) is a random-effects intercept for each factory i that accounts for factory-specific

variation in quality.

glme = fitglme(mfr,'defects ~ 1 + newprocess + time_dev + temp_dev + supplier + (1|factory)',...
    'Distribution','Poisson','Link','log','FitMethod','Laplace','DummyVarCoding','effects');

Extract the observed response values for the model, then use fitted to generate the fitted
conditional mean values.

y = response(glme);   % Observed response values
yfit = fitted(glme);  % Fitted response values

Create a scatterplot of the observed response values versus fitted values. Add a reference line to
improve the visualization.

figure
scatter(yfit,y)
xlim([0,12])
ylim([0,12])
refline(1,0)
title('Response versus Fitted Values')
xlabel('Fitted Values')
ylabel('Response')

 response

35-6571



The plot shows a positive correlation between the fitted values and the observed response values.

References
[1] Hox, J. Multilevel Analysis, Techniques and Applications. Lawrence Erlbaum Associates, Inc.,

2002.

See Also
GeneralizedLinearMixedModel | fitted | residuals

35 Functions

35-6572



response
Class: LinearMixedModel

Response vector of the linear mixed-effects model

Syntax
y = response(lme)

Description
y = response(lme) returns the response vector y used to fit the linear mixed-effects model lme.

Input Arguments
lme — Linear mixed-effects model
LinearMixedModel object

Linear mixed-effects model, specified as a LinearMixedModel object constructed using fitlme or
fitlmematrix.

Output Arguments
y — Response values
n-by-1 vector

Response values, specified as an n-by-1 vector, where n is the number of observations.
Data Types: single | double

Examples

Plot Response versus Fitted Values

Load the sample data.

load('weight.mat');

weight contains data from a longitudinal study, where 20 subjects are randomly assigned to 4
exercise programs, and their weight loss is recorded over two-week time periods. This is simulated
data.

Store the data in a table. Define Subject and Program as categorical variables.

tbl = table(InitialWeight,Program,Subject,Week,y);
tbl.Subject = nominal(tbl.Subject);
tbl.Program = nominal(tbl.Program);
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Fit a linear mixed-effects model where the initial weight, type of program, week, and the interaction
between the week and type of program are the fixed effects. The intercept and week vary by subject.

lme = fitlme(tbl,'y ~ InitialWeight + Program*Week + (Week|Subject)');

Compute the fitted values and the response.

F = fitted(lme);
y = response(lme);

Plot the response versus the fitted values.

plot(F,y,'bs')
xlabel('Fitted Values')
ylabel('Response')

See Also
LinearMixedModel | fitted | residuals
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resubEdge
Resubstitution classification edge

Syntax
e = resubEdge(Mdl)
e = resubEdge(Mdl,'IncludeInteractions',includeInteractions)

Description
e = resubEdge(Mdl) returns the weighted resubstitution “Classification Edge” on page 35-1529
(e) for the trained classification model Mdl using the predictor data stored in Mdl.X, the
corresponding true class labels stored in Mdl.Y, and the observation weights stored in Mdl.W.

e = resubEdge(Mdl,'IncludeInteractions',includeInteractions) specifies whether to
include interaction terms in computations. This syntax applies only to generalized additive models.

Examples

Estimate Resubstitution Edge of SVM Classifiers

Load the ionosphere data set. This data set has 34 predictors and 351 binary responses for radar
returns, either bad ('b') or good ('g').

load ionosphere

Train a support vector machine (SVM) classifier. Standardize the data and specify that 'g' is the
positive class.

SVMModel = fitcsvm(X,Y,'Standardize',true,'ClassNames',{'b','g'});

SVMModel is a trained ClassificationSVM classifier.

Estimate the resubstitution edge, which is the mean of the training sample margins.

e = resubEdge(SVMModel)

e = 5.1000

Select Naive Bayes Classifier Features by Comparing In-Sample Edges

The classifier edge measures the average of the classifier margins. One way to perform feature
selection is to compare training sample edges from multiple models. Based solely on this criterion,
the classifier with the highest edge is the best classifier.

Load the ionosphere data set. Remove the first two predictors for stability.
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load ionosphere
X = X(:,3:end);

Define these two data sets:

• fullX contains all predictors.
• partX contains the 10 most important predictors.

fullX = X;
idx = fscmrmr(X,Y);
partX = X(:,idx(1:10));

Train a naive Bayes classifier for each predictor set.

FullMdl = fitcnb(fullX,Y);
PartMdl = fitcnb(partX,Y);

FullMdl and PartMdl are trained ClassificationNaiveBayes classifiers.

Estimate the training sample edge for each classifier.

fullEdge = resubEdge(FullMdl)

fullEdge = 0.6554

partEdge = resubEdge(PartMdl)

partEdge = 0.7796

The edge of the classifier trained on the 10 most important predictors is larger. This result suggests
that the classifier trained using only those predictors has a better in-sample fit.

Compare GAMs by Examining Training Sample Margins and Edge

Compare a generalized additive model (GAM) with linear terms to a GAM with both linear and
interaction terms by examining the training sample margins and edge. Based solely on this
comparison, the classifier with the highest margins and edge is the best model.

Load the 1994 census data stored in census1994.mat. The data set consists of demographic data
from the US Census Bureau to predict whether an individual makes over $50,000 per year. The
classification task is to fit a model that predicts the salary category of people given their age, working
class, education level, marital status, race, and so on.

load census1994

census1994 contains the training data set adultdata and the test data set adulttest. To reduce
the running time for this example, subsample 500 training observations from adultdata by using
the datasample function.

rng('default') % For reproducibility
NumSamples = 5e2;
adultdata = datasample(adultdata,NumSamples,'Replace',false);

Train a GAM that contains both linear and interaction terms for predictors. Specify to include all
available interaction terms whose p-values are not greater than 0.05.
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Mdl = fitcgam(adultdata,'salary','Interactions','all','MaxPValue',0.05)

Mdl = 
  ClassificationGAM
           PredictorNames: {1x14 cell}
             ResponseName: 'salary'
    CategoricalPredictors: [2 4 6 7 8 9 10 14]
               ClassNames: [<=50K    >50K]
           ScoreTransform: 'logit'
                Intercept: -28.5594
             Interactions: [82x2 double]
          NumObservations: 500

  Properties, Methods

Mdl is a ClassificationGAM model object. Mdl includes 82 interaction terms.

Estimate the training sample margins and edge for Mdl.

M = resubMargin(Mdl);
E = resubEdge(Mdl)

E = 1.0000

Estimate the training sample margins and edge for Mdl without including interaction terms.

M_nointeractions = resubMargin(Mdl,'IncludeInteractions',false);
E_nointeractions = resubEdge(Mdl,'IncludeInteractions',false)

E_nointeractions = 0.9516

Display the distributions of the margins using box plots.

boxplot([M M_nointeractions],'Labels',{'Linear and Interaction Terms','Linear Terms Only'})
title('Box Plots of Training Sample Margins')
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When you include the interaction terms in the computation, all the resubstitution margin values for
Mdl are 1, and the resubstitution edge value (average of the margins) is 1. The margins and edge
decrease when you do not include the interaction terms in Mdl.

Input Arguments
Mdl — Classification machine learning model
full classification model object

Classification machine learning model, specified as a full classification model object, as given in the
following table of supported models.

Model Classification Model Object
Generalized additive model ClassificationGAM
k-nearest neighbor model ClassificationKNN
Naive Bayes model ClassificationNaiveBayes
Neural network model ClassificationNeuralNetwork
Support vector machine for one-class and binary
classification

ClassificationSVM

includeInteractions — Flag to include interaction terms
true | false
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Flag to include interaction terms of the model, specified as true or false. This argument is valid
only for a generalized additive model (GAM). That is, you can specify this argument only when Mdl is
ClassificationGAM.

The default value is true if Mdl contains interaction terms. The value must be false if the model
does not contain interaction terms.
Data Types: logical

More About
Classification Edge

The classification edge is the weighted mean of the classification margins.

One way to choose among multiple classifiers, for example to perform feature selection, is to choose
the classifier that yields the greatest edge.

Classification Margin

The classification margin for binary classification is, for each observation, the difference between the
classification score for the true class and the classification score for the false class. The classification
margin for multiclass classification is the difference between the classification score for the true class
and the maximal classification score for the false classes.

If the margins are on the same scale (that is, the score values are based on the same score
transformation), then they serve as a classification confidence measure. Among multiple classifiers,
those that yield greater margins are better.

Algorithms
resubEdge computes the classification edge according to the corresponding edge function of the
object (Mdl). For a model-specific description, see the edge function reference pages in the following
table.

Model Classification Model Object
(Mdl)

edge Object Function

Generalized additive model ClassificationGAM edge
k-nearest neighbor model ClassificationKNN edge
Naive Bayes model ClassificationNaiveBayes edge
Neural network model ClassificationNeuralNetw

ork
edge

Support vector machine for one-
class and binary classification

ClassificationSVM edge

Version History
Introduced in R2012a
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resubEdge returns a different value for a ClassificationSVM model with a nondefault cost
matrix
Behavior changed in R2022a

If you specify a nondefault cost matrix when you train the input model object for an SVM model, the
resubEdge function returns a different value compared to previous releases.

The resubEdge function uses the observation weights stored in the W property. The way the function
uses the W property value has not changed. However, the property value stored in the input model
object has changed for a ClassificationSVM model object with a nondefault cost matrix, so the
function can return a different value.

For details about the property value change, see “Cost property stores the user-specified cost matrix”
on page 35-634.

If you want the software to handle the cost matrix, prior probabilities, and observation weights as in
previous releases, adjust the prior probabilities and observation weights for the nondefault cost
matrix, as described in “Adjust Prior Probabilities and Observation Weights for Misclassification Cost
Matrix” on page 19-9. Then, when you train a classification model, specify the adjusted prior
probabilities and observation weights by using the Prior and Weights name-value arguments,
respectively, and use the default cost matrix.

Extended Capabilities
GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

Usage notes and limitations:

• This function fully supports GPU arrays for a trained classification model specified as a
ClassificationKNN or ClassificationSVM object.

For more information, see “Run MATLAB Functions on a GPU” (Parallel Computing Toolbox).

See Also
resubPredict | resubLoss | resubMargin
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resubEdge
Class: ClassificationDiscriminant

Classification edge by resubstitution

Syntax
edge = resubEdge(obj)

Description
edge = resubEdge(obj) returns the classification edge obtained by obj on its training data.

Input Arguments
obj

Discriminant analysis classifier, produced using fitcdiscr.

Output Arguments
edge

Classification edge obtained by resubstituting the training data into the calculation of edge.

Examples

Estimate the Resubstitution Edge of Discriminant Analysis Classifiers

Estimate the quality of a discriminant analysis classifier for Fisher's iris data by resubstitution.

Load Fisher's iris data set.

load fisheriris

Train a discriminant analysis classifier.

Mdl = fitcdiscr(meas,species);

Compute the resubstitution edge.

redge = resubEdge(Mdl)

redge = 0.9454
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More About
Edge

The edge is the weighted mean value of the classification margin. The weights are class prior
probabilities. If you supply additional weights, those weights are normalized to sum to the prior
probabilities in the respective classes, and are then used to compute the weighted average.

Margin

The classification margin is the difference between the classification score for the true class and
maximal classification score for the false classes.

The classification margin is a column vector with the same number of rows as in the matrix X. A high
value of margin indicates a more reliable prediction than a low value.

Score

For discriminant analysis, the score of a classification is the posterior probability of the classification.
For the definition of posterior probability in discriminant analysis, see “Posterior Probability” on page
21-6.

See Also
ClassificationDiscriminant | fitcdiscr | edge | resubMargin

Topics
“Discriminant Analysis Classification” on page 21-2
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resubEdge
Resubstitution classification edge for multiclass error-correcting output codes (ECOC) model

Syntax
e = resubEdge(Mdl)
e = resubEdge(Mdl,Name,Value)

Description
e = resubEdge(Mdl) returns the resubstitution classification edge on page 35-6587 (e) for the
multiclass error-correcting output codes (ECOC) model Mdl using the training data stored in Mdl.X
and the corresponding class labels stored in Mdl.Y.

The classification edge is a scalar value that represents the weighted mean of the classification
margins on page 35-6587.

e = resubEdge(Mdl,Name,Value) computes the resubstitution classification edge with additional
options specified by one or more name-value pair arguments. For example, you can specify a
decoding scheme, binary learner loss function, and verbosity level.

Examples

Resubstitution Edge of ECOC Model

Compute the resubstitution edge for an ECOC model with SVM binary learners.

Load Fisher's iris data set. Specify the predictor data X and the response data Y.

load fisheriris
X = meas;
Y = species;

Train an ECOC model using SVM binary classifiers. Standardize the predictors using an SVM
template, and specify the class order.

t = templateSVM('Standardize',true);
classOrder = unique(Y)

classOrder = 3x1 cell
    {'setosa'    }
    {'versicolor'}
    {'virginica' }

Mdl = fitcecoc(X,Y,'Learners',t,'ClassNames',classOrder);

t is an SVM template object. During training, the software uses default values for empty properties in
t. Mdl is a ClassificationECOC model.

Compute the resubstitution edge, which is the mean of the training-sample margins.
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e = resubEdge(Mdl)

e = 0.7440

Select ECOC Model Features by Comparing Training-Sample Edges

Perform feature selection by comparing training-sample edges from multiple models. Based solely on
this comparison, the classifier with the greatest edge is the best classifier.

Load Fisher's iris data set. Define two data sets:

• fullX contains all four predictors.
• partX contains the sepal measurements only.

load fisheriris
X = meas;
fullX = X; 
partX = X(:,1:2);
Y = species;

Train an ECOC model using SVM binary learners for each predictor set. Standardize the predictors
using an SVM template, specify the class order, and compute the posterior probabilities.

t = templateSVM('Standardize',true);
classOrder = unique(Y)

classOrder = 3x1 cell
    {'setosa'    }
    {'versicolor'}
    {'virginica' }

FullMdl = fitcecoc(fullX,Y,'Learners',t,'ClassNames',classOrder,... 
    'FitPosterior',true);
PartMdl = fitcecoc(partX,Y,'Learners',t,'ClassNames',classOrder,...
    'FitPosterior',true);

The default SVM score is the distance from the decision boundary. If you specify to compute posterior
probabilities, then the software uses posterior probabilities as scores.

Compute the resubstitution edge for each classifier. The quadratic loss function operates on scores in
the domain [0,1]. Specify to use quadratic loss when aggregating the binary learners for both models.

fullEdge = resubEdge(FullMdl,'BinaryLoss','quadratic')

fullEdge = 0.9896

partEdge = resubEdge(PartMdl,'BinaryLoss','quadratic')

partEdge = 0.5059

The edge for the classifier trained on the complete data set is greater, suggesting that the classifier
trained with all the predictors has a better training-sample fit.
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Input Arguments
Mdl — Full, trained multiclass ECOC model
ClassificationECOC model

Full, trained multiclass ECOC model, specified as a ClassificationECOC model trained with
fitcecoc.

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: resubEdge(Mdl,'BinaryLoss','quadratic') specifies a quadratic binary learner loss
function.

BinaryLoss — Binary learner loss function
'hamming' | 'linear' | 'logit' | 'exponential' | 'binodeviance' | 'hinge' | 'quadratic'
| function handle

Binary learner loss function, specified as the comma-separated pair consisting of 'BinaryLoss' and
a built-in loss function name or function handle.

• This table describes the built-in functions, where yj is the class label for a particular binary learner
(in the set {–1,1,0}), sj is the score for observation j, and g(yj,sj) is the binary loss formula.

Value Description Score Domain g(yj,sj)
'binodeviance' Binomial deviance (–∞,∞) log[1 + exp(–2yjsj)]/

[2log(2)]
'exponential' Exponential (–∞,∞) exp(–yjsj)/2
'hamming' Hamming [0,1] or (–∞,∞) [1 – sign(yjsj)]/2
'hinge' Hinge (–∞,∞) max(0,1 – yjsj)/2
'linear' Linear (–∞,∞) (1 – yjsj)/2
'logit' Logistic (–∞,∞) log[1 + exp(–yjsj)]/

[2log(2)]
'quadratic' Quadratic [0,1] [1 – yj(2sj – 1)]2/2

The software normalizes binary losses so that the loss is 0.5 when yj = 0. Also, the software
calculates the mean binary loss for each class.

• For a custom binary loss function, for example customFunction, specify its function handle
'BinaryLoss',@customFunction.

customFunction has this form:

bLoss = customFunction(M,s)

• M is the K-by-B coding matrix stored in Mdl.CodingMatrix.
• s is the 1-by-B row vector of classification scores.
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• bLoss is the classification loss. This scalar aggregates the binary losses for every learner in a
particular class. For example, you can use the mean binary loss to aggregate the loss over the
learners for each class.

• K is the number of classes.
• B is the number of binary learners.

For an example of passing a custom binary loss function, see “Predict Test-Sample Labels of ECOC
Model Using Custom Binary Loss Function” on page 35-5751.

The default BinaryLoss value depends on the score ranges returned by the binary learners. This
table identifies what some default BinaryLoss values are when you use the default score transform
(ScoreTransform property of the model is 'none').

Assumption Default Value
All binary learners are any of the following:

• Classification decision trees
• Discriminant analysis models
• k-nearest neighbor models
• Linear or kernel classification models of logistic regression

learners
• Naive Bayes models

'quadratic'

All binary learners are SVMs or linear or kernel classification
models of SVM learners.

'hinge'

All binary learners are ensembles trained by AdaboostM1 or
GentleBoost.

'exponential'

All binary learners are ensembles trained by LogitBoost. 'binodeviance'
You specify to predict class posterior probabilities by setting
'FitPosterior',true in fitcecoc.

'quadratic'

Binary learners are heterogeneous and use different loss functions. 'hamming'

To check the default value, use dot notation to display the BinaryLoss property of the trained model
at the command line.
Example: 'BinaryLoss','binodeviance'
Data Types: char | string | function_handle

Decoding — Decoding scheme
'lossweighted' (default) | 'lossbased'

Decoding scheme that aggregates the binary losses, specified as the comma-separated pair consisting
of 'Decoding' and 'lossweighted' or 'lossbased'. For more information, see “Binary Loss” on
page 35-6587.
Example: 'Decoding','lossbased'

Options — Estimation options
[] (default) | structure array returned by statset
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Estimation options, specified as the comma-separated pair consisting of 'Options' and a structure
array returned by statset.

To invoke parallel computing:

• You need a Parallel Computing Toolbox license.
• Specify 'Options',statset('UseParallel',true).

Verbose — Verbosity level
0 (default) | 1

Verbosity level, specified as the comma-separated pair consisting of 'Verbose' and 0 or 1. Verbose
controls the number of diagnostic messages that the software displays in the Command Window.

If Verbose is 0, then the software does not display diagnostic messages. Otherwise, the software
displays diagnostic messages.
Example: 'Verbose',1
Data Types: single | double

More About
Classification Edge

The classification edge is the weighted mean of the classification margins.

One way to choose among multiple classifiers, for example to perform feature selection, is to choose
the classifier that yields the greatest edge.

Classification Margin

The classification margin is, for each observation, the difference between the negative loss for the
true class and the maximal negative loss among the false classes. If the margins are on the same
scale, then they serve as a classification confidence measure. Among multiple classifiers, those that
yield greater margins are better.

Binary Loss

The binary loss is a function of the class and classification score that determines how well a binary
learner classifies an observation into the class.

Suppose the following:

• mkj is element (k,j) of the coding design matrix M—that is, the code corresponding to class k of
binary learner j. M is a K-by-B matrix, where K is the number of classes, and B is the number of
binary learners.

• sj is the score of binary learner j for an observation.
• g is the binary loss function.
• k  is the predicted class for the observation.

The decoding scheme of an ECOC model specifies how the software aggregates the binary losses and
determines the predicted class for each observation. The software supports two decoding schemes:
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• Loss-based decoding [2] (Decoding is 'lossbased') — The predicted class of an observation
corresponds to the class that produces the minimum average of the binary losses over all binary
learners.

k = argmin
k

1
B ∑j = 1

B
mk j g(mk j, s j) .

• Loss-weighted decoding [3] (Decoding is 'lossweighted') — The predicted class of an
observation corresponds to the class that produces the minimum average of the binary losses over
the binary learners for the corresponding class.

k = argmin
k

∑
j = 1

B
mk j g(mk j, s j)

∑ j = 1

B

mk j

.

The denominator corresponds to the number of binary learners for class k. [1] suggests that loss-
weighted decoding improves classification accuracy by keeping loss values for all classes in the
same dynamic range.

The predict, resubPredict, and kfoldPredict functions return the negated value of the
objective function of argmin as the second output argument (NegLoss) for each observation and
class.

This table summarizes the supported binary loss functions, where yj is a class label for a particular
binary learner (in the set {–1,1,0}), sj is the score for observation j, and g(yj,sj) is the binary loss
function.

Value Description Score Domain g(yj,sj)
"binodeviance" Binomial deviance (–∞,∞) log[1 + exp(–2yjsj)]/

[2log(2)]
"exponential" Exponential (–∞,∞) exp(–yjsj)/2
"hamming" Hamming [0,1] or (–∞,∞) [1 – sign(yjsj)]/2
"hinge" Hinge (–∞,∞) max(0,1 – yjsj)/2
"linear" Linear (–∞,∞) (1 – yjsj)/2
"logit" Logistic (–∞,∞) log[1 + exp(–yjsj)]/

[2log(2)]
"quadratic" Quadratic [0,1] [1 – yj(2sj – 1)]2/2

The software normalizes binary losses so that the loss is 0.5 when yj = 0, and aggregates using the
average of the binary learners.

Do not confuse the binary loss with the overall classification loss (specified by the LossFun name-
value argument of the resubLoss and resubPredict object functions), which measures how well
an ECOC classifier performs as a whole.

Tips
• To compare the margins or edges of several ECOC classifiers, use template objects to specify a

common score transform function among the classifiers during training.
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Version History
Introduced in R2014b

References
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[3] Escalera, S., O. Pujol, and P. Radeva. “On the decoding process in ternary error-correcting output
codes.” IEEE Transactions on Pattern Analysis and Machine Intelligence. Vol. 32, Issue 7,
2010, pp. 120–134.

Extended Capabilities
Automatic Parallel Support
Accelerate code by automatically running computation in parallel using Parallel Computing Toolbox™.

To run in parallel, specify the 'Options' name-value argument in the call to this function and set the
'UseParallel' field of the options structure to true using statset.

For example: 'Options',statset('UseParallel',true)

For more information about parallel computing, see “Run MATLAB Functions with Automatic Parallel
Support” (Parallel Computing Toolbox).

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

This function fully supports GPU arrays. For more information, see “Run MATLAB Functions on a
GPU” (Parallel Computing Toolbox).

See Also
ClassificationECOC | resubMargin | edge | predict | resubPredict | fitcecoc | resubLoss

Topics
“Quick Start Parallel Computing for Statistics and Machine Learning Toolbox” on page 33-2
“Reproducibility in Parallel Statistical Computations” on page 33-16
“Concepts of Parallel Computing in Statistics and Machine Learning Toolbox” on page 33-6
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resubEdge
Classification edge by resubstitution

Syntax
edge = resubEdge(ens)
edge = resubEdge(ens,Name,Value)

Description
edge = resubEdge(ens) returns the classification edge obtained by ens on its training data.

edge = resubEdge(ens,Name,Value) calculates edge with additional options specified by one or
more Name,Value pair arguments. You can specify several name-value pair arguments in any order
as Name1,Value1,…,NameN,ValueN.

Input Arguments
ens

A classification ensemble created with fitcensemble.

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.

learners

Indices of weak learners in the ensemble ranging from 1 to ens.NumTrained. resubEdge uses only
these learners for calculating loss.

Default: 1:NumTrained

mode

Character vector or string scalar representing the meaning of the output edge:

• 'ensemble' — edge is a scalar value, the loss for the entire ensemble.
• 'individual' — edge is a vector with one element per trained learner.
• 'cumulative' — edge is a vector in which element J is obtained by using learners 1:J from the

input list of learners.

Default: 'ensemble'
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UseParallel

Indication to perform inference in parallel, specified as false (compute serially) or true (compute in
parallel). Parallel computation requires Parallel Computing Toolbox. Parallel inference can be faster
than serial inference, especially for large datasets. Parallel computation is supported only for tree
learners.

Default: false

Output Arguments
edge

Classification edge obtained by ens by resubstituting the training data into the calculation of edge.
Classification edge is classification margin averaged over the entire data. edge can be a scalar or
vector, depending on the setting of the mode name-value pair.

Examples
Find Classification Edge by Resubstitution of Training Data

Find the resubstitution edge for an ensemble that classifies the Fisher iris data.

Load the sample data set.

load fisheriris

Train an ensemble of 100 boosted classification trees using AdaBoostM2.

t = templateTree('MaxNumSplits',1); % Weak learner template tree object
ens = fitcensemble(meas,species,'Method','AdaBoostM2','Learners',t);

Find the resubstitution edge.

edge = resubEdge(ens) 

edge = 3.2486

More About
Edge

The edge is the weighted mean value of the classification margin. The weights are the class
probabilities in ens.Prior.

Margin

The classification margin is the difference between the classification score for the true class and
maximal classification score for the false classes. Margin is a column vector with the same number of
rows as in the matrix ens.X.
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Score (ensemble)

For ensembles, a classification score represents the confidence of a classification into a class. The
higher the score, the higher the confidence.

Different ensemble algorithms have different definitions for their scores. Furthermore, the range of
scores depends on ensemble type. For example:

• AdaBoostM1 scores range from –∞ to ∞.
• Bag scores range from 0 to 1.

Version History
resubEdge returns a different value for a model with a nondefault cost matrix
Behavior changed in R2022a

If you specify a nondefault cost matrix when you train the input model object, the resubEdge
function returns a different value compared to previous releases.

The resubEdge function uses the observation weights stored in the W property. The way the function
uses the W property value has not changed. However, the property value stored in the input model
object has changed for a model with a nondefault cost matrix, so the function can return a different
value.

For details about the property value change, see “Cost property stores the user-specified cost matrix”
on page 35-442.

If you want the software to handle the cost matrix, prior probabilities, and observation weights as in
previous releases, adjust the prior probabilities and observation weights for the nondefault cost
matrix, as described in “Adjust Prior Probabilities and Observation Weights for Misclassification Cost
Matrix” on page 19-9. Then, when you train a classification model, specify the adjusted prior
probabilities and observation weights by using the Prior and Weights name-value arguments,
respectively, and use the default cost matrix.

Extended Capabilities
Automatic Parallel Support
Accelerate code by automatically running computation in parallel using Parallel Computing Toolbox™.

To run in parallel, set the UseParallel name-value argument to true in the call to this function.

For more general information about parallel computing, see “Run MATLAB Functions with Automatic
Parallel Support” (Parallel Computing Toolbox).

You cannot use UseParallel with GPU arrays.

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

Usage notes and limitations:

• You cannot use UseParallel with GPU arrays.
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For more information, see “Run MATLAB Functions on a GPU” (Parallel Computing Toolbox).

See Also
resubMargin | resubLoss | resubPredict | resubEdge
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resubEdge
Class: ClassificationTree

Classification edge by resubstitution

Syntax
edge = resubEdge(tree)

Description
edge = resubEdge(tree) returns the classification edge obtained by tree on its training data.

Input Arguments
tree

A classification tree created using fitctree.

Output Arguments
edge

Classification edge obtained by resubstituting the training data into the calculation of edge.

Examples
Estimate the quality of a classification tree for the Fisher iris data by resubstitution.

load fisheriris
tree = fitctree(meas,species);
redge = resubEdge(tree)

redge =
    0.9384

More About
Edge

The edge is the weighted mean value of the classification margin. The weights are the class
probabilities in tree.Prior.

Margin

The classification margin is the difference between the classification score for the true class and
maximal classification score for the false classes. Margin is a column vector with the same number of
rows as in the matrix X.
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Score (tree)

For trees, the score of a classification of a leaf node is the posterior probability of the classification at
that node. The posterior probability of the classification at a node is the number of training sequences
that lead to that node with the classification, divided by the number of training sequences that lead to
that node.

For an example, see “Posterior Probability Definition for Classification Tree” on page 35-6715.

Extended Capabilities
GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

This function fully supports GPU arrays. For more information, see “Run MATLAB Functions on a
GPU” (Parallel Computing Toolbox).

See Also
edge | resubMargin | resubLoss | resubPredict | fitctree
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resubLoss
Class: ClassificationDiscriminant

Classification error by resubstitution

Syntax
L = resubLoss(obj)
L = resubLoss(obj,Name,Value)

Description
L = resubLoss(obj) returns the resubstitution loss, meaning the loss computed for the data that
fitcdiscr used to create obj.

L = resubLoss(obj,Name,Value) returns loss statistics with additional options specified by one
or more Name,Value pair arguments.

Input Arguments
obj

Discriminant analysis classifier, produced using fitcdiscr.

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.

LossFun — Loss function
'mincost' (default) | 'binodeviance' | 'classifcost' | 'classiferror' | 'exponential' |
'hinge' | 'logit' | 'quadratic' | function handle

Loss function, specified as the comma-separated pair consisting of 'LossFun' and a built-in loss
function name or function handle.

• The following table lists the available loss functions. Specify one using the corresponding
character vector or string scalar.

Value Description
'binodeviance' Binomial deviance
'classifcost' Observed misclassification cost
'classiferror' Misclassified rate in decimal
'exponential' Exponential loss
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Value Description
'hinge' Hinge loss
'logit' Logistic loss
'mincost' Minimal expected misclassification cost (for

classification scores that are posterior
probabilities)

'quadratic' Quadratic loss

'mincost' is appropriate for classification scores that are posterior probabilities. Discriminant
analysis models return posterior probabilities as classification scores by default (see predict).

• Specify your own function using function handle notation.

Suppose that n be the number of observations in X and K be the number of distinct classes
(numel(obj.ClassNames)). Your function must have this signature

lossvalue = lossfun(C,S,W,Cost)

where:

• The output argument lossvalue is a scalar.
• You choose the function name (lossfun).
• C is an n-by-K logical matrix with rows indicating which class the corresponding observation

belongs. The column order corresponds to the class order in obj.ClassNames.

Construct C by setting C(p,q) = 1 if observation p is in class q, for each row. Set all other
elements of row p to 0.

• S is an n-by-K numeric matrix of classification scores. The column order corresponds to the
class order in obj.ClassNames. S is a matrix of classification scores, similar to the output of
predict.

• W is an n-by-1 numeric vector of observation weights. If you pass W, the software normalizes
them to sum to 1.

• Cost is a K-by-K numeric matrix of misclassification costs. For example, Cost = ones(K) -
eye(K) specifies a cost of 0 for correct classification, and 1 for misclassification.

Specify your function using 'LossFun',@lossfun.

For more details on loss functions, see “Classification Loss” on page 35-6598.
Data Types: char | string | function_handle

Output Arguments
L

Classification error, a scalar. The meaning of the error depends on the values in weights and
lossfun. See “Classification Loss” on page 35-6598.

Examples
Compute the resubstituted classification error for the Fisher iris data:
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load fisheriris
obj = fitcdiscr(meas,species);
L = resubLoss(obj)

L =
    0.0200

More About
Classification Loss

Classification loss functions measure the predictive inaccuracy of classification models. When you
compare the same type of loss among many models, a lower loss indicates a better predictive model.

Consider the following scenario.

• L is the weighted average classification loss.
• n is the sample size.

• For binary classification:

• yj is the observed class label. The software codes it as –1 or 1, indicating the negative or
positive class (or the first or second class in the ClassNames property), respectively.

• f(Xj) is the positive-class classification score for observation (row) j of the predictor data X.
• mj = yjf(Xj) is the classification score for classifying observation j into the class corresponding

to yj. Positive values of mj indicate correct classification and do not contribute much to the
average loss. Negative values of mj indicate incorrect classification and contribute significantly
to the average loss.

• For algorithms that support multiclass classification (that is, K ≥ 3):

• yj
* is a vector of K – 1 zeros, with 1 in the position corresponding to the true, observed class yj.

For example, if the true class of the second observation is the third class and K = 4, then y2
* =

[0 0 1 0]′. The order of the classes corresponds to the order in the ClassNames property of
the input model.

• f(Xj) is the length K vector of class scores for observation j of the predictor data X. The order of
the scores corresponds to the order of the classes in the ClassNames property of the input
model.

• mj = yj
*′f(Xj). Therefore, mj is the scalar classification score that the model predicts for the true,

observed class.
• The weight for observation j is wj. The software normalizes the observation weights so that they

sum to the corresponding prior class probability stored in the Prior property. Therefore,

∑
j = 1

n
w j = 1.

Given this scenario, the following table describes the supported loss functions that you can specify by
using the LossFun name-value argument.
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Loss Function Value of LossFun Equation
Binomial deviance 'binodeviance'

L = ∑
j = 1

n
w jlog 1 + exp −2m j .

Observed
misclassification cost

'classifcost'
L = ∑

j = 1

n
w jcy jy j,

where y j is the class label corresponding to the
class with the maximal score, and cy jy j is the
user-specified cost of classifying an observation
into class y j when its true class is yj.

Misclassified rate in
decimal

'classiferror'
L = ∑

j = 1

n
w jI y j ≠ y j ,

where I{·} is the indicator function.
Cross-entropy loss 'crossentropy' 'crossentropy' is appropriate only for neural

network models.

The weighted cross-entropy loss is

L = − ∑
j = 1

n w jlog(m j)
Kn ,

where the weights w j are normalized to sum to n
instead of 1.

Exponential loss 'exponential'
L = ∑

j = 1

n
w jexp −m j .

Hinge loss 'hinge'

L =∑
j = 1

n

w jmax 0, 1−m j .

Logit loss 'logit'
L = ∑

j = 1

n
w jlog 1 + exp −m j .
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Loss Function Value of LossFun Equation
Minimal expected
misclassification cost

'mincost' 'mincost' is appropriate only if classification
scores are posterior probabilities.

The software computes the weighted minimal
expected classification cost using this procedure
for observations j = 1,...,n.

1 Estimate the expected misclassification cost
of classifying the observation Xj into the class
k:

γ jk = f X j ′C k .

f(Xj) is the column vector of class posterior
probabilities for the observation Xj. C is the
cost matrix stored in the Cost property of
the model.

2 For observation j, predict the class label
corresponding to the minimal expected
misclassification cost:

y j = argmin
k = 1, ..., K

γ jk .

3 Using C, identify the cost incurred (cj) for
making the prediction.

The weighted average of the minimal expected
misclassification cost loss is

L = ∑
j = 1

n
w jc j .

Quadratic loss 'quadratic'
L = ∑

j = 1

n
w j 1−m j

2 .

If you use the default cost matrix (whose element value is 0 for correct classification and 1 for
incorrect classification), then the loss values for 'classifcost', 'classiferror', and
'mincost' are identical. For a model with a nondefault cost matrix, the 'classifcost' loss is
equivalent to the 'mincost' loss most of the time. These losses can be different if prediction into the
class with maximal posterior probability is different from prediction into the class with minimal
expected cost. Note that 'mincost' is appropriate only if classification scores are posterior
probabilities.

This figure compares the loss functions (except 'classifcost', 'crossentropy', and
'mincost') over the score m for one observation. Some functions are normalized to pass through
the point (0,1).
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Posterior Probability

The posterior probability that a point x belongs to class k is the product of the prior probability and
the multivariate normal density. The density function of the multivariate normal with 1-by-d mean μk
and d-by-d covariance Σk at a 1-by-d point x is

P x k = 1
2π d Σk

1/2exp −1
2 x− μk Σk

−1 x− μk
T ,

where Σk  is the determinant of Σk, and Σk
−1 is the inverse matrix.

Let P(k) represent the prior probability of class k. Then the posterior probability that an observation x
is of class k is

P k x = P x k P k
P x ,

where P(x) is a normalization constant, the sum over k of P(x|k)P(k).

Prior Probability

The prior probability is one of three choices:

• 'uniform' — The prior probability of class k is one over the total number of classes.
• 'empirical' — The prior probability of class k is the number of training samples of class k

divided by the total number of training samples.
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• Custom — The prior probability of class k is the kth element of the prior vector. See fitcdiscr.

After creating a classification model (Mdl) you can set the prior using dot notation:

Mdl.Prior = v;

where v is a vector of positive elements representing the frequency with which each element occurs.
You do not need to retrain the classifier when you set a new prior.

Cost

The matrix of expected costs per observation is defined in “Cost” on page 21-7.

See Also
ClassificationDiscriminant | fitcdiscr | loss

Topics
“Discriminant Analysis Classification” on page 21-2
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resubLoss
Resubstitution classification loss for multiclass error-correcting output codes (ECOC) model

Syntax
L = resubLoss(Mdl)
L = resubLoss(Mdl,Name,Value)

Description
L = resubLoss(Mdl) returns the classification loss by resubstitution (L) for the multiclass error-
correcting output codes (ECOC) model Mdl using the training data stored in Mdl.X and the
corresponding class labels stored in Mdl.Y. By default, resubLoss uses the classification error on
page 35-6608 to compute L.

The classification loss (L) is a generalization or resubstitution quality measure. Its interpretation
depends on the loss function and weighting scheme, but in general, better classifiers yield smaller
classification loss values.

L = resubLoss(Mdl,Name,Value) returns the classification loss with additional options specified
by one or more name-value pair arguments. For example, you can specify the loss function, decoding
scheme, and verbosity level.

Examples

Resubstitution Loss of ECOC Model

Compute the resubstitution loss for an ECOC model with SVM binary learners.

Load Fisher's iris data set. Specify the predictor data X and the response data Y.

load fisheriris
X = meas;
Y = species;

Train an ECOC model using SVM binary classifiers. Standardize the predictors using an SVM
template, and specify the class order.

t = templateSVM('Standardize',true);
classOrder = unique(Y)

classOrder = 3x1 cell
    {'setosa'    }
    {'versicolor'}
    {'virginica' }

Mdl = fitcecoc(X,Y,'Learners',t,'ClassNames',classOrder);

t is an SVM template object. During training, the software uses default values for empty properties in
t. Mdl is a ClassificationECOC model.
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Estimate the resubstitution classification error, which is the default classification loss.

L = resubLoss(Mdl)

L = 0.0267

The ECOC model misclassifies 2.67% of the training-sample irises.

Determine ECOC Model Quality Using Custom Resubstitution Loss

Determine the quality of an ECOC model by using a custom loss function that considers the minimal
binary loss for each observation.

Load Fisher's iris data set. Specify the predictor data X, the response data Y, and the order of the
classes in Y.

load fisheriris
X = meas;
Y = categorical(species);
classOrder = unique(Y)  % Class order

classOrder = 3x1 categorical
     setosa 
     versicolor 
     virginica 

rng(1); % For reproducibility

Train an ECOC model using SVM binary classifiers. Standardize the predictors using an SVM
template, and specify the class order.

t = templateSVM('Standardize',true);
Mdl = fitcecoc(X,Y,'Learners',t,'ClassNames',classOrder);

t is an SVM template object. During training, the software uses default values for empty properties in
t. Mdl is a ClassificationECOC model.

Create a function that takes the minimal loss for each observation, then averages the minimal losses
for all observations. S corresponds to the NegLoss output of resubPredict.

lossfun = @(~,S,~,~)mean(min(-S,[],2));

Compute the custom classification loss for the training data.

resubLoss(Mdl,'LossFun',lossfun)

ans = 0.0097

The average minimal binary loss for the training data is 0.0065.
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Input Arguments
Mdl — Full, trained multiclass ECOC model
ClassificationECOC model

Full, trained multiclass ECOC model, specified as a ClassificationECOC model trained with
fitcecoc.

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: resubLoss(Mdl,'BinaryLoss','hamming','LossFun',@lossfun) specifies
'hamming' as the binary learner loss function and the custom function handle @lossfun as the
overall loss function.

BinaryLoss — Binary learner loss function
'hamming' | 'linear' | 'logit' | 'exponential' | 'binodeviance' | 'hinge' | 'quadratic'
| function handle

Binary learner loss function, specified as the comma-separated pair consisting of 'BinaryLoss' and
a built-in loss function name or function handle.

• This table describes the built-in functions, where yj is the class label for a particular binary learner
(in the set {–1,1,0}), sj is the score for observation j, and g(yj,sj) is the binary loss formula.

Value Description Score Domain g(yj,sj)
'binodeviance' Binomial deviance (–∞,∞) log[1 + exp(–2yjsj)]/

[2log(2)]
'exponential' Exponential (–∞,∞) exp(–yjsj)/2
'hamming' Hamming [0,1] or (–∞,∞) [1 – sign(yjsj)]/2
'hinge' Hinge (–∞,∞) max(0,1 – yjsj)/2
'linear' Linear (–∞,∞) (1 – yjsj)/2
'logit' Logistic (–∞,∞) log[1 + exp(–yjsj)]/

[2log(2)]
'quadratic' Quadratic [0,1] [1 – yj(2sj – 1)]2/2

The software normalizes binary losses so that the loss is 0.5 when yj = 0. Also, the software
calculates the mean binary loss for each class.

• For a custom binary loss function, for example customFunction, specify its function handle
'BinaryLoss',@customFunction.

customFunction has this form:

bLoss = customFunction(M,s)

• M is the K-by-B coding matrix stored in Mdl.CodingMatrix.
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• s is the 1-by-B row vector of classification scores.
• bLoss is the classification loss. This scalar aggregates the binary losses for every learner in a

particular class. For example, you can use the mean binary loss to aggregate the loss over the
learners for each class.

• K is the number of classes.
• B is the number of binary learners.

For an example of passing a custom binary loss function, see “Predict Test-Sample Labels of ECOC
Model Using Custom Binary Loss Function” on page 35-5751.

The default BinaryLoss value depends on the score ranges returned by the binary learners. This
table identifies what some default BinaryLoss values are when you use the default score transform
(ScoreTransform property of the model is 'none').

Assumption Default Value
All binary learners are any of the following:

• Classification decision trees
• Discriminant analysis models
• k-nearest neighbor models
• Linear or kernel classification models of logistic regression

learners
• Naive Bayes models

'quadratic'

All binary learners are SVMs or linear or kernel classification
models of SVM learners.

'hinge'

All binary learners are ensembles trained by AdaboostM1 or
GentleBoost.

'exponential'

All binary learners are ensembles trained by LogitBoost. 'binodeviance'
You specify to predict class posterior probabilities by setting
'FitPosterior',true in fitcecoc.

'quadratic'

Binary learners are heterogeneous and use different loss functions. 'hamming'

To check the default value, use dot notation to display the BinaryLoss property of the trained model
at the command line.
Example: 'BinaryLoss','binodeviance'
Data Types: char | string | function_handle

Decoding — Decoding scheme
'lossweighted' (default) | 'lossbased'

Decoding scheme that aggregates the binary losses, specified as the comma-separated pair consisting
of 'Decoding' and 'lossweighted' or 'lossbased'. For more information, see “Binary Loss” on
page 35-6608.
Example: 'Decoding','lossbased'

LossFun — Loss function
'classiferror' (default) | 'classifcost' | function handle
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Loss function, specified as 'classiferror', 'classifcost', or a function handle.

• Specify the built-in function 'classiferror'. In this case, the loss function is the classification
error on page 35-6608, which is the proportion of misclassified observations.

• Specify the built-in function 'classifcost'. In this case, the loss function is the observed
misclassification cost on page 35-6608. If you use the default cost matrix (whose element value is
0 for correct classification and 1 for incorrect classification), then the loss values for
'classifcost' and 'classiferror' are identical.

• Or, specify your own function using function handle notation.

Assume that n = size(X,1) is the sample size and K is the number of classes. Your function
must have the signature lossvalue = lossfun(C,S,W,Cost), where:

• The output argument lossvalue is a scalar.
• You specify the function name (lossfun).
• C is an n-by-K logical matrix with rows indicating the class to which the corresponding

observation belongs. The column order corresponds to the class order in Mdl.ClassNames.

Construct C by setting C(p,q) = 1 if observation p is in class q, for each row. Set all other
elements of row p to 0.

• S is an n-by-K numeric matrix of negated loss values for the classes. Each row corresponds to
an observation. The column order corresponds to the class order in Mdl.ClassNames. The
input S resembles the output argument NegLoss of resubPredict.

• W is an n-by-1 numeric vector of observation weights. If you pass W, the software normalizes its
elements to sum to 1.

• Cost is a K-by-K numeric matrix of misclassification costs. For example, Cost = ones(K) –
eye(K) specifies a cost of 0 for correct classification and 1 for misclassification.

Specify your function using 'LossFun',@lossfun.

Data Types: char | string | function_handle

Options — Estimation options
[] (default) | structure array returned by statset

Estimation options, specified as the comma-separated pair consisting of 'Options' and a structure
array returned by statset.

To invoke parallel computing:

• You need a Parallel Computing Toolbox license.
• Specify 'Options',statset('UseParallel',true).

Verbose — Verbosity level
0 (default) | 1

Verbosity level, specified as the comma-separated pair consisting of 'Verbose' and 0 or 1. Verbose
controls the number of diagnostic messages that the software displays in the Command Window.

If Verbose is 0, then the software does not display diagnostic messages. Otherwise, the software
displays diagnostic messages.
Example: 'Verbose',1
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Data Types: single | double

More About
Classification Error

The classification error has the form

L = ∑
j = 1

n
w je j,

where:

• wj is the weight for observation j. The software renormalizes the weights to sum to 1.
• ej = 1 if the predicted class of observation j differs from its true class, and 0 otherwise.

In other words, the classification error is the proportion of observations misclassified by the classifier.

Observed Misclassification Cost

The observed misclassification cost has the form

L = ∑
j = 1

n
w jcy jy j,

where:

• wj is the weight for observation j. The software renormalizes the weights to sum to 1.
• cy jy j is the user-specified cost of classifying an observation into class y j when its true class is yj.

Binary Loss

The binary loss is a function of the class and classification score that determines how well a binary
learner classifies an observation into the class.

Suppose the following:

• mkj is element (k,j) of the coding design matrix M—that is, the code corresponding to class k of
binary learner j. M is a K-by-B matrix, where K is the number of classes, and B is the number of
binary learners.

• sj is the score of binary learner j for an observation.
• g is the binary loss function.
• k  is the predicted class for the observation.

The decoding scheme of an ECOC model specifies how the software aggregates the binary losses and
determines the predicted class for each observation. The software supports two decoding schemes:

• Loss-based decoding [2] (Decoding is 'lossbased') — The predicted class of an observation
corresponds to the class that produces the minimum average of the binary losses over all binary
learners.
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k = argmin
k

1
B ∑j = 1

B
mk j g(mk j, s j) .

• Loss-weighted decoding [3] (Decoding is 'lossweighted') — The predicted class of an
observation corresponds to the class that produces the minimum average of the binary losses over
the binary learners for the corresponding class.

k = argmin
k

∑
j = 1

B
mk j g(mk j, s j)

∑ j = 1

B

mk j

.

The denominator corresponds to the number of binary learners for class k. [1] suggests that loss-
weighted decoding improves classification accuracy by keeping loss values for all classes in the
same dynamic range.

The predict, resubPredict, and kfoldPredict functions return the negated value of the
objective function of argmin as the second output argument (NegLoss) for each observation and
class.

This table summarizes the supported binary loss functions, where yj is a class label for a particular
binary learner (in the set {–1,1,0}), sj is the score for observation j, and g(yj,sj) is the binary loss
function.

Value Description Score Domain g(yj,sj)
"binodeviance" Binomial deviance (–∞,∞) log[1 + exp(–2yjsj)]/

[2log(2)]
"exponential" Exponential (–∞,∞) exp(–yjsj)/2
"hamming" Hamming [0,1] or (–∞,∞) [1 – sign(yjsj)]/2
"hinge" Hinge (–∞,∞) max(0,1 – yjsj)/2
"linear" Linear (–∞,∞) (1 – yjsj)/2
"logit" Logistic (–∞,∞) log[1 + exp(–yjsj)]/

[2log(2)]
"quadratic" Quadratic [0,1] [1 – yj(2sj – 1)]2/2

The software normalizes binary losses so that the loss is 0.5 when yj = 0, and aggregates using the
average of the binary learners.

Do not confuse the binary loss with the overall classification loss (specified by the LossFun name-
value argument of the resubLoss and resubPredict object functions), which measures how well
an ECOC classifier performs as a whole.

Version History
Introduced in R2014b
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Extended Capabilities
Automatic Parallel Support
Accelerate code by automatically running computation in parallel using Parallel Computing Toolbox™.

To run in parallel, specify the 'Options' name-value argument in the call to this function and set the
'UseParallel' field of the options structure to true using statset.

For example: 'Options',statset('UseParallel',true)

For more information about parallel computing, see “Run MATLAB Functions with Automatic Parallel
Support” (Parallel Computing Toolbox).

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

This function fully supports GPU arrays. For more information, see “Run MATLAB Functions on a
GPU” (Parallel Computing Toolbox).

See Also
ClassificationECOC | loss | predict | resubPredict | fitcecoc

Topics
“Quick Start Parallel Computing for Statistics and Machine Learning Toolbox” on page 33-2
“Reproducibility in Parallel Statistical Computations” on page 33-16
“Concepts of Parallel Computing in Statistics and Machine Learning Toolbox” on page 33-6
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resubLoss
Classification error by resubstitution

Syntax
L = resubLoss(ens)
L = resubLoss(ens,Name,Value)

Description
L = resubLoss(ens) returns the resubstitution loss, meaning the loss computed for the data that
fitcensemble used to create ens.

L = resubLoss(ens,Name,Value) calculates loss with additional options specified by one or more
Name,Value pair arguments. You can specify several name-value pair arguments in any order as
Name1,Value1,…,NameN,ValueN.

Input Arguments
ens

A classification ensemble created with fitcensemble.

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.

learners

Indices of weak learners in the ensemble ranging from 1 to ens.NumTrained. resubLoss uses only
these learners for calculating loss.

Default: 1:NumTrained

lossfun

Loss function, specified as the comma-separated pair consisting of 'LossFun' and a built-in loss
function name or function handle.

• The following table lists the available loss functions. Specify one using its corresponding character
vector or string scalar.

Value Description
'binodeviance' Binomial deviance
'classifcost' Observed misclassification cost
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Value Description
'classiferror' Misclassified rate in decimal
'exponential' Exponential loss
'hinge' Hinge loss
'logit' Logistic loss
'mincost' Minimal expected misclassification cost (for

classification scores that are posterior
probabilities)

'quadratic' Quadratic loss

'mincost' is appropriate for classification scores that are posterior probabilities.

• Bagged and subspace ensembles return posterior probabilities by default (ens.Method is
'Bag' or 'Subspace').

• If the ensemble method is 'AdaBoostM1', 'AdaBoostM2', GentleBoost, or 'LogitBoost',
then, to use posterior probabilities as classification scores, you must specify the double-logit
score transform by entering

ens.ScoreTransform = 'doublelogit';
• For all other ensemble methods, the software does not support posterior probabilities as
classification scores.

• Specify your own function using function handle notation.

Suppose that n be the number of observations in X and K be the number of distinct classes
(numel(ens.ClassNames), ens is the input model). Your function must have this signature

lossvalue = lossfun(C,S,W,Cost)

where:

• The output argument lossvalue is a scalar.
• You choose the function name (lossfun).
• C is an n-by-K logical matrix with rows indicating which class the corresponding observation

belongs. The column order corresponds to the class order in ens.ClassNames.

Construct C by setting C(p,q) = 1 if observation p is in class q, for each row. Set all other
elements of row p to 0.

• S is an n-by-K numeric matrix of classification scores. The column order corresponds to the
class order in ens.ClassNames. S is a matrix of classification scores, similar to the output of
predict.

• W is an n-by-1 numeric vector of observation weights. If you pass W, the software normalizes
them to sum to 1.

• Cost is a K-by-K numeric matrix of misclassification costs. For example, Cost = ones(K) -
eye(K) specifies a cost of 0 for correct classification, and 1 for misclassification.

Specify your function using 'LossFun',@lossfun.

For more details on loss functions, see “Classification Loss” on page 35-6614.

Default: 'classiferror'
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mode

Character vector or string scalar representing the meaning of the output L:

• 'ensemble' — L is a scalar value, the loss for the entire ensemble.
• 'individual' — L is a vector with one element per trained learner.
• 'cumulative' — L is a vector in which element J is obtained by using learners 1:J from the

input list of learners.

Default: 'ensemble'

UseParallel

Indication to perform inference in parallel, specified as false (compute serially) or true (compute in
parallel). Parallel computation requires Parallel Computing Toolbox. Parallel inference can be faster
than serial inference, especially for large datasets. Parallel computation is supported only for tree
learners.

Default: false

Output Arguments
L

Classification loss on page 35-6614, by default the fraction of misclassified data. L can be a vector,
and can mean different things, depending on the name-value pair settings.

Examples

Estimate Classification Error for Training Observations

Load Fisher's iris data set.

load fisheriris

Train a classification ensemble of 100 decision trees using AdaBoostM2. Specify tree stumps as the
weak learners.

t = templateTree('MaxNumSplits',1);
ens = fitcensemble(meas,species,'Method','AdaBoostM2','Learners',t);

Estimate the resubstitution classification error.

loss = resubLoss(ens)

loss = 0.0333
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More About
Classification Loss

Classification loss functions measure the predictive inaccuracy of classification models. When you
compare the same type of loss among many models, a lower loss indicates a better predictive model.

Consider the following scenario.

• L is the weighted average classification loss.
• n is the sample size.

• For binary classification:

• yj is the observed class label. The software codes it as –1 or 1, indicating the negative or
positive class (or the first or second class in the ClassNames property), respectively.

• f(Xj) is the positive-class classification score for observation (row) j of the predictor data X.
• mj = yjf(Xj) is the classification score for classifying observation j into the class corresponding

to yj. Positive values of mj indicate correct classification and do not contribute much to the
average loss. Negative values of mj indicate incorrect classification and contribute significantly
to the average loss.

• For algorithms that support multiclass classification (that is, K ≥ 3):

• yj
* is a vector of K – 1 zeros, with 1 in the position corresponding to the true, observed class yj.

For example, if the true class of the second observation is the third class and K = 4, then y2
* =

[0 0 1 0]′. The order of the classes corresponds to the order in the ClassNames property of
the input model.

• f(Xj) is the length K vector of class scores for observation j of the predictor data X. The order of
the scores corresponds to the order of the classes in the ClassNames property of the input
model.

• mj = yj
*′f(Xj). Therefore, mj is the scalar classification score that the model predicts for the true,

observed class.
• The weight for observation j is wj. The software normalizes the observation weights so that they

sum to the corresponding prior class probability stored in the Prior property. Therefore,

∑
j = 1

n
w j = 1.

Given this scenario, the following table describes the supported loss functions that you can specify by
using the LossFun name-value argument.

Loss Function Value of LossFun Equation
Binomial deviance 'binodeviance'

L = ∑
j = 1

n
w jlog 1 + exp −2m j .
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Loss Function Value of LossFun Equation
Observed
misclassification cost

'classifcost'
L = ∑

j = 1

n
w jcy jy j,

where y j is the class label corresponding to the
class with the maximal score, and cy jy j is the
user-specified cost of classifying an observation
into class y j when its true class is yj.

Misclassified rate in
decimal

'classiferror'
L = ∑

j = 1

n
w jI y j ≠ y j ,

where I{·} is the indicator function.
Cross-entropy loss 'crossentropy' 'crossentropy' is appropriate only for neural

network models.

The weighted cross-entropy loss is

L = − ∑
j = 1

n w jlog(m j)
Kn ,

where the weights w j are normalized to sum to n
instead of 1.

Exponential loss 'exponential'
L = ∑

j = 1

n
w jexp −m j .

Hinge loss 'hinge'

L =∑
j = 1

n

w jmax 0, 1−m j .

Logit loss 'logit'
L = ∑

j = 1

n
w jlog 1 + exp −m j .
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Loss Function Value of LossFun Equation
Minimal expected
misclassification cost

'mincost' 'mincost' is appropriate only if classification
scores are posterior probabilities.

The software computes the weighted minimal
expected classification cost using this procedure
for observations j = 1,...,n.

1 Estimate the expected misclassification cost
of classifying the observation Xj into the class
k:

γ jk = f X j ′C k .

f(Xj) is the column vector of class posterior
probabilities for the observation Xj. C is the
cost matrix stored in the Cost property of
the model.

2 For observation j, predict the class label
corresponding to the minimal expected
misclassification cost:

y j = argmin
k = 1, ..., K

γ jk .

3 Using C, identify the cost incurred (cj) for
making the prediction.

The weighted average of the minimal expected
misclassification cost loss is

L = ∑
j = 1

n
w jc j .

Quadratic loss 'quadratic'
L = ∑

j = 1

n
w j 1−m j

2 .

If you use the default cost matrix (whose element value is 0 for correct classification and 1 for
incorrect classification), then the loss values for 'classifcost', 'classiferror', and
'mincost' are identical. For a model with a nondefault cost matrix, the 'classifcost' loss is
equivalent to the 'mincost' loss most of the time. These losses can be different if prediction into the
class with maximal posterior probability is different from prediction into the class with minimal
expected cost. Note that 'mincost' is appropriate only if classification scores are posterior
probabilities.

This figure compares the loss functions (except 'classifcost', 'crossentropy', and
'mincost') over the score m for one observation. Some functions are normalized to pass through
the point (0,1).
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Version History
resubLoss returns a different value for a model with a nondefault cost matrix
Behavior changed in R2022a

If you specify a nondefault cost matrix when you train the input model object, the resubLoss
function returns a different value compared to previous releases.

The resubLoss function uses the observation weights stored in the W property. Also, the function
uses the cost matrix stored in the Cost property if you specify the LossFun name-value argument as
"classifcost" or "mincost". The way the function uses the W and Cost property values has not
changed. However, the property values stored in the input model object have changed for a model
with a nondefault cost matrix, so the function can return a different value.

For details about the property value change, see “Cost property stores the user-specified cost matrix”
on page 35-442.

If you want the software to handle the cost matrix, prior probabilities, and observation weights as in
previous releases, adjust the prior probabilities and observation weights for the nondefault cost
matrix, as described in “Adjust Prior Probabilities and Observation Weights for Misclassification Cost
Matrix” on page 19-9. Then, when you train a classification model, specify the adjusted prior
probabilities and observation weights by using the Prior and Weights name-value arguments,
respectively, and use the default cost matrix.
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Extended Capabilities
Automatic Parallel Support
Accelerate code by automatically running computation in parallel using Parallel Computing Toolbox™.

To run in parallel, set the UseParallel name-value argument to true in the call to this function.

For more general information about parallel computing, see “Run MATLAB Functions with Automatic
Parallel Support” (Parallel Computing Toolbox).

You cannot use UseParallel with GPU arrays.

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

Usage notes and limitations:

• You cannot use UseParallel with GPU arrays.

For more information, see “Run MATLAB Functions on a GPU” (Parallel Computing Toolbox).

See Also
resubEdge | resubMargin | resubPredict | resubLoss
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resubLoss
Resubstitution classification loss

Syntax
L = resubLoss(Mdl)
L = resubLoss(Mdl,Name,Value)

Description
L = resubLoss(Mdl) returns the “Classification Loss” on page 35-6623 by resubstitution (L), or
the in-sample classification loss, for the trained classification model Mdl using the training data
stored in Mdl.X and the corresponding class labels stored in Mdl.Y.

The interpretation of L depends on the loss function ('LossFun') and weighting scheme (Mdl.W). In
general, better classifiers yield smaller classification loss values. The default 'LossFun' value varies
depending on the model object Mdl.

L = resubLoss(Mdl,Name,Value) specifies additional options using one or more name-value
arguments. For example, 'LossFun','binodeviance' sets the loss function to the binomial
deviance function.

Examples

Determine Resubstitution Loss of Naive Bayes Classifier

Determine the in-sample classification error (resubstitution loss) of a naive Bayes classifier. In
general, a smaller loss indicates a better classifier.

Load the fisheriris data set. Create X as a numeric matrix that contains four measurements for
150 irises. Create Y as a cell array of character vectors that contains the corresponding iris species.

load fisheriris
X = meas;
Y = species;

Train a naive Bayes classifier using the predictors X and class labels Y. A recommended practice is to
specify the class names. fitcnb assumes that each predictor is conditionally and normally
distributed.

Mdl = fitcnb(X,Y,'ClassNames',{'setosa','versicolor','virginica'})

Mdl = 
  ClassificationNaiveBayes
              ResponseName: 'Y'
     CategoricalPredictors: []
                ClassNames: {'setosa'  'versicolor'  'virginica'}
            ScoreTransform: 'none'
           NumObservations: 150
         DistributionNames: {'normal'  'normal'  'normal'  'normal'}
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    DistributionParameters: {3x4 cell}

  Properties, Methods

Mdl is a trained ClassificationNaiveBayes classifier.

Estimate the in-sample classification error.

L = resubLoss(Mdl)

L = 0.0400

The naive Bayes classifier misclassifies 4% of the training observations.

Determine Resubstitution Hinge Loss of SVM Classifier

Load the ionosphere data set. This data set has 34 predictors and 351 binary responses for radar
returns, either bad ('b') or good ('g').

load ionosphere

Train a support vector machine (SVM) classifier. Standardize the data and specify that 'g' is the
positive class.

SVMModel = fitcsvm(X,Y,'ClassNames',{'b','g'},'Standardize',true);

SVMModel is a trained ClassificationSVM classifier.

Estimate the in-sample hinge loss.

L = resubLoss(SVMModel,'LossFun','hinge')

L = 0.1603

The hinge loss is 0.1603. Classifiers with hinge losses close to 0 are preferred.

Compare GAMs by Examining Classification Loss

Train a generalized additive model (GAM) that contains both linear and interaction terms for
predictors, and estimate the classification loss with and without interaction terms. Specify whether to
include interaction terms when estimating the classification loss for training and test data.

Load the ionosphere data set. This data set has 34 predictors and 351 binary responses for radar
returns, either bad ('b') or good ('g').

load ionosphere

Partition the data set into two sets: one containing training data, and the other containing new,
unobserved test data. Reserve 50 observations for the new test data set.

rng('default') % For reproducibility
n = size(X,1);
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newInds = randsample(n,50);
inds = ~ismember(1:n,newInds);
XNew = X(newInds,:);
YNew = Y(newInds);

Train a GAM using the predictors X and class labels Y. A recommended practice is to specify the class
names. Specify to include the 10 most important interaction terms.

Mdl = fitcgam(X(inds,:),Y(inds),'ClassNames',{'b','g'},'Interactions',10)

Mdl = 
  ClassificationGAM
             ResponseName: 'Y'
    CategoricalPredictors: []
               ClassNames: {'b'  'g'}
           ScoreTransform: 'logit'
                Intercept: 2.0026
             Interactions: [10x2 double]
          NumObservations: 301

  Properties, Methods

Mdl is a ClassificationGAM model object.

Compute the resubstitution classification loss both with and without interaction terms in Mdl. To
exclude interaction terms, specify 'IncludeInteractions',false.

resubl = resubLoss(Mdl)

resubl = 0

resubl_nointeraction = resubLoss(Mdl,'IncludeInteractions',false)

resubl_nointeraction = 0

Estimate the classification loss both with and without interaction terms in Mdl.

l = loss(Mdl,XNew,YNew)

l = 0.0615

l_nointeraction = loss(Mdl,XNew,YNew,'IncludeInteractions',false)

l_nointeraction = 0.0615

Including interaction terms does not change the classification loss for Mdl. The trained model
classifies all training samples correctly and misclassifies approximately 6% of the test samples.

Input Arguments
Mdl — Classification machine learning model
full classification model object

Classification machine learning model, specified as a full classification model object, as given in the
following table of supported models.
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Model Classification Model Object
Generalized additive model ClassificationGAM
k-nearest neighbor model ClassificationKNN
Naive Bayes model ClassificationNaiveBayes
Neural network model ClassificationNeuralNetwork
Support vector machine for one-class and binary
classification

ClassificationSVM

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: resubLoss(Mdl,'LossFun','logit') estimates the logit resubstitution loss.

IncludeInteractions — Flag to include interaction terms
true | false

Flag to include interaction terms of the model, specified as true or false. This argument is valid
only for a generalized additive model (GAM). That is, you can specify this argument only when Mdl is
ClassificationGAM.

The default value is true if Mdl contains interaction terms. The value must be false if the model
does not contain interaction terms.
Data Types: logical

LossFun — Loss function
'binodeviance' | 'classifcost' | 'classiferror' | 'crossentropy' | 'exponential' |
'hinge' | 'logit' | 'mincost' | 'quadratic' | function handle

Loss function, specified as a built-in loss function name or a function handle.

The default value depends on the model type of Mdl.

• The default value is 'classiferror' if Mdl is a ClassificationSVM object.
• The default value is 'mincost' if Mdl is a ClassificationKNN,

ClassificationNaiveBayes, or ClassificationNeuralNetwork object.
• If Mdl is a ClassificationGAM object, the default value is 'mincost' if the ScoreTransform

property of the input model object (Mdl.ScoreTransform) is 'logit'; otherwise, the default
value is 'classiferror'.

'classiferror' and 'mincost' are equivalent when you use the default cost matrix. See
“Classification Loss” on page 35-6623 for more information.

• This table lists the available loss functions. Specify one using its corresponding character vector
or string scalar.
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Value Description
'binodeviance' Binomial deviance
'classifcost' Observed misclassification cost
'classiferror' Misclassified rate in decimal
'crossentropy' Cross-entropy loss (for neural networks only)
'exponential' Exponential loss
'hinge' Hinge loss
'logit' Logistic loss
'mincost' Minimal expected misclassification cost (for

classification scores that are posterior
probabilities)

'quadratic' Quadratic loss

• To specify a custom loss function, use function handle notation. The function must have this form:

lossvalue = lossfun(C,S,W,Cost)

• The output argument lossvalue is a scalar.
• You specify the function name (lossfun).
• C is an n-by-K logical matrix with rows indicating the class to which the corresponding

observation belongs. n is the number of observations in Tbl or X, and K is the number of
distinct classes (numel(Mdl.ClassNames). The column order corresponds to the class order
in Mdl.ClassNames. Create C by setting C(p,q) = 1, if observation p is in class q, for each
row. Set all other elements of row p to 0.

• S is an n-by-K numeric matrix of classification scores. The column order corresponds to the
class order in Mdl.ClassNames. S is a matrix of classification scores, similar to the output of
predict.

• W is an n-by-1 numeric vector of observation weights.
• Cost is a K-by-K numeric matrix of misclassification costs. For example, Cost = ones(K) –

eye(K) specifies a cost of 0 for correct classification and 1 for misclassification.

Example: 'LossFun','binodeviance'
Data Types: char | string | function_handle

More About
Classification Loss

Classification loss functions measure the predictive inaccuracy of classification models. When you
compare the same type of loss among many models, a lower loss indicates a better predictive model.

Consider the following scenario.

• L is the weighted average classification loss.
• n is the sample size.

• For binary classification:
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• yj is the observed class label. The software codes it as –1 or 1, indicating the negative or
positive class (or the first or second class in the ClassNames property), respectively.

• f(Xj) is the positive-class classification score for observation (row) j of the predictor data X.
• mj = yjf(Xj) is the classification score for classifying observation j into the class corresponding

to yj. Positive values of mj indicate correct classification and do not contribute much to the
average loss. Negative values of mj indicate incorrect classification and contribute significantly
to the average loss.

• For algorithms that support multiclass classification (that is, K ≥ 3):

• yj
* is a vector of K – 1 zeros, with 1 in the position corresponding to the true, observed class yj.

For example, if the true class of the second observation is the third class and K = 4, then y2
* =

[0 0 1 0]′. The order of the classes corresponds to the order in the ClassNames property of
the input model.

• f(Xj) is the length K vector of class scores for observation j of the predictor data X. The order of
the scores corresponds to the order of the classes in the ClassNames property of the input
model.

• mj = yj
*′f(Xj). Therefore, mj is the scalar classification score that the model predicts for the true,

observed class.
• The weight for observation j is wj. The software normalizes the observation weights so that they

sum to the corresponding prior class probability stored in the Prior property. Therefore,

∑
j = 1

n
w j = 1.

Given this scenario, the following table describes the supported loss functions that you can specify by
using the LossFun name-value argument.

Loss Function Value of LossFun Equation
Binomial deviance 'binodeviance'

L = ∑
j = 1

n
w jlog 1 + exp −2m j .

Observed
misclassification cost

'classifcost'
L = ∑

j = 1

n
w jcy jy j,

where y j is the class label corresponding to the
class with the maximal score, and cy jy j is the
user-specified cost of classifying an observation
into class y j when its true class is yj.

Misclassified rate in
decimal

'classiferror'
L = ∑

j = 1

n
w jI y j ≠ y j ,

where I{·} is the indicator function.
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Loss Function Value of LossFun Equation
Cross-entropy loss 'crossentropy' 'crossentropy' is appropriate only for neural

network models.

The weighted cross-entropy loss is

L = − ∑
j = 1

n w jlog(m j)
Kn ,

where the weights w j are normalized to sum to n
instead of 1.

Exponential loss 'exponential'
L = ∑

j = 1

n
w jexp −m j .

Hinge loss 'hinge'

L =∑
j = 1

n

w jmax 0, 1−m j .

Logit loss 'logit'
L = ∑

j = 1

n
w jlog 1 + exp −m j .

 resubLoss

35-6625



Loss Function Value of LossFun Equation
Minimal expected
misclassification cost

'mincost' 'mincost' is appropriate only if classification
scores are posterior probabilities.

The software computes the weighted minimal
expected classification cost using this procedure
for observations j = 1,...,n.

1 Estimate the expected misclassification cost
of classifying the observation Xj into the class
k:

γ jk = f X j ′C k .

f(Xj) is the column vector of class posterior
probabilities for the observation Xj. C is the
cost matrix stored in the Cost property of
the model.

2 For observation j, predict the class label
corresponding to the minimal expected
misclassification cost:

y j = argmin
k = 1, ..., K

γ jk .

3 Using C, identify the cost incurred (cj) for
making the prediction.

The weighted average of the minimal expected
misclassification cost loss is

L = ∑
j = 1

n
w jc j .

Quadratic loss 'quadratic'
L = ∑

j = 1

n
w j 1−m j

2 .

If you use the default cost matrix (whose element value is 0 for correct classification and 1 for
incorrect classification), then the loss values for 'classifcost', 'classiferror', and
'mincost' are identical. For a model with a nondefault cost matrix, the 'classifcost' loss is
equivalent to the 'mincost' loss most of the time. These losses can be different if prediction into the
class with maximal posterior probability is different from prediction into the class with minimal
expected cost. Note that 'mincost' is appropriate only if classification scores are posterior
probabilities.

This figure compares the loss functions (except 'classifcost', 'crossentropy', and
'mincost') over the score m for one observation. Some functions are normalized to pass through
the point (0,1).
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Algorithms
resubLoss computes the classification loss according to the corresponding loss function of the
object (Mdl). For a model-specific description, see the loss function reference pages in the following
table.

Model Classification Model Object
(Mdl)

loss Object Function

Generalized additive model ClassificationGAM loss
k-nearest neighbor model ClassificationKNN loss
Naive Bayes model ClassificationNaiveBayes loss
Neural network model ClassificationNeuralNetw

ork
loss

Support vector machine for one-
class and binary classification

ClassificationSVM loss

Version History
Introduced in R2012a
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resubLoss returns a different value for a ClassificationSVM model with a nondefault cost
matrix
Behavior changed in R2022a

If you specify a nondefault cost matrix when you train the input model object for an SVM model, the
resubLoss function returns a different value compared to previous releases.

The resubLoss function uses the observation weights stored in the W property. Also, the function
uses the cost matrix stored in the Cost property if you specify the LossFun name-value argument as
"classifcost" or "mincost". The way the function uses the W and Cost property values has not
changed. However, the property values stored in the input model object have changed for a
ClassificationSVM model object with a nondefault cost matrix, so the function can return a
different value.

For details about the property value change, see “Cost property stores the user-specified cost matrix”
on page 35-634.

If you want the software to handle the cost matrix, prior probabilities, and observation weights as in
previous releases, adjust the prior probabilities and observation weights for the nondefault cost
matrix, as described in “Adjust Prior Probabilities and Observation Weights for Misclassification Cost
Matrix” on page 19-9. Then, when you train a classification model, specify the adjusted prior
probabilities and observation weights by using the Prior and Weights name-value arguments,
respectively, and use the default cost matrix.

Default LossFun value has changed for ClassificationGAM and
ClassificationNeuralNetwork
Behavior changed in R2022a

Starting in R2022a, the default value of the LossFun name-value argument has changed for both a
generalized additive model (GAM) and a neural network model, so that the resubLoss function uses
the "mincost" option (minimal expected misclassification cost) as the default when a classification
object uses posterior probabilities for classification scores.

• If the input model object Mdl is a ClassificationGAM object, the default value is "mincost" if
the ScoreTransform property of Mdl (Mdl.ScoreTransform) is 'logit'; otherwise, the
default value is "classiferror".

• If Mdl is a ClassificationNeuralNetwork object, the default value is "mincost".

In previous releases, the default value was "classiferror".

You do not need to make any changes to your code if you use the default cost matrix (whose element
value is 0 for correct classification and 1 for incorrect classification). The "mincost" option is
equivalent to the "classiferror" option for the default cost matrix.

Extended Capabilities
GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

Usage notes and limitations:

• This function fully supports GPU arrays for a trained classification model specified as a
ClassificationKNN or ClassificationSVM object.
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For more information, see “Run MATLAB Functions on a GPU” (Parallel Computing Toolbox).

See Also
resubPredict | resubMargin | resubEdge
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resubLoss
Class: ClassificationTree

Classification error by resubstitution

Syntax
L = resubLoss(tree)
L = resubLoss(tree,Name,Value)
L = resubLoss(tree,'Subtrees',subtreevector)
[L,se] = resubLoss(tree,'Subtrees',subtreevector)
[L,se,NLeaf] = resubLoss(tree,'Subtrees',subtreevector)
[L,se,NLeaf,bestlevel] = resubLoss(tree,'Subtrees',subtreevector)
[L,...] = resubLoss(tree,'Subtrees',subtreevector,Name,Value)

Description
L = resubLoss(tree) returns the resubstitution loss, meaning the loss computed for the data that
fitctree used to create tree.

L = resubLoss(tree,Name,Value) returns the loss with additional options specified by one or
more Name,Value pair arguments. You can specify several name-value pair arguments in any order
as Name1,Value1,…,NameN,ValueN.

L = resubLoss(tree,'Subtrees',subtreevector) returns a vector of classification errors for
the trees in the pruning sequence subtreevector.

[L,se] = resubLoss(tree,'Subtrees',subtreevector) returns the vector of standard errors
of the classification errors.

[L,se,NLeaf] = resubLoss(tree,'Subtrees',subtreevector) returns the vector of
numbers of leaf nodes in the trees of the pruning sequence.

[L,se,NLeaf,bestlevel] = resubLoss(tree,'Subtrees',subtreevector) returns the best
pruning level as defined in the TreeSize name-value pair. By default, bestlevel is the pruning
level that gives loss within one standard deviation of minimal loss.

[L,...] = resubLoss(tree,'Subtrees',subtreevector,Name,Value) returns loss statistics
with additional options specified by one or more Name,Value pair arguments. You can specify
several name-value pair arguments in any order as Name1,Value1,…,NameN,ValueN.

Input Arguments
tree

A classification tree constructed by fitctree.
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Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.

LossFun — Loss function
'mincost' (default) | 'binodeviance' | 'classifcost' | 'classiferror' | 'exponential' |
'hinge' | 'logit' | 'quadratic' | function handle

Loss function, specified as the comma-separated pair consisting of 'LossFun' and a built-in loss
function name or function handle.

• The following table lists the available loss functions. Specify one using its corresponding character
vector or string scalar.

Value Description
'binodeviance' Binomial deviance
'classifcost' Observed misclassification cost
'classiferror' Misclassified rate in decimal
'exponential' Exponential loss
'hinge' Hinge loss
'logit' Logistic loss
'mincost' Minimal expected misclassification cost (for

classification scores that are posterior
probabilities)

'quadratic' Quadratic loss

'mincost' is appropriate for classification scores that are posterior probabilities. Classification
trees return posterior probabilities as classification scores by default (see predict).

• Specify your own function using function handle notation.

Suppose that n be the number of observations in X and K be the number of distinct classes
(numel(tree.ClassNames)). Your function must have this signature

lossvalue = lossfun(C,S,W,Cost)

where:

• The output argument lossvalue is a scalar.
• You choose the function name (lossfun).
• C is an n-by-K logical matrix with rows indicating which class the corresponding observation

belongs. The column order corresponds to the class order in tree.ClassNames.

Construct C by setting C(p,q) = 1 if observation p is in class q, for each row. Set all other
elements of row p to 0.

• S is an n-by-K numeric matrix of classification scores. The column order corresponds to the
class order in tree.ClassNames. S is a matrix of classification scores, similar to the output of
predict.
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• W is an n-by-1 numeric vector of observation weights. If you pass W, the software normalizes
them to sum to 1.

• Cost is a K-by-K numeric matrix of misclassification costs. For example, Cost = ones(K) -
eye(K) specifies a cost of 0 for correct classification, and 1 for misclassification.

Specify your function using 'LossFun',@lossfun.

For more details on loss functions, see “Classification Loss” on page 35-6636.
Data Types: char | string | function_handle

Name,Value arguments associated with pruning subtrees:

Subtrees — Pruning level
0 (default) | vector of nonnegative integers | 'all'

Pruning level, specified as the comma-separated pair consisting of 'Subtrees' and a vector of
nonnegative integers in ascending order or 'all'.

If you specify a vector, then all elements must be at least 0 and at most max(tree.PruneList). 0
indicates the full, unpruned tree and max(tree.PruneList) indicates the completely pruned tree
(i.e., just the root node).

If you specify 'all', then resubLoss operates on all subtrees (i.e., the entire pruning sequence).
This specification is equivalent to using 0:max(tree.PruneList).

resubLoss prunes tree to each level indicated in Subtrees, and then estimates the corresponding
output arguments. The size of Subtrees determines the size of some output arguments.

To invoke Subtrees, the properties PruneList and PruneAlpha of tree must be nonempty. In
other words, grow tree by setting 'Prune','on', or by pruning tree using prune.
Example: 'Subtrees','all'
Data Types: single | double | char | string

TreeSize — Tree size
'se' (default) | 'min'

Tree size, specified as the comma-separated pair consisting of 'TreeSize' and one of the following
values:

• 'se' — loss returns the highest pruning level with loss within one standard deviation of the
minimum (L+se, where L and se relate to the smallest value in Subtrees).

• 'min' — loss returns the element of Subtrees with smallest loss, usually the smallest element
of Subtrees.

Output Arguments
L

Classification loss on page 35-6636, a vector the length of Subtrees. The meaning of the error
depends on the values in Weights and LossFun.
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se

Standard error of loss, a vector the length of Subtrees.

NLeaf

Number of leaves (terminal nodes) in the pruned subtrees, a vector the length of Subtrees.

bestlevel

A scalar whose value depends on TreeSize:

• TreeSize = 'se' — loss returns the highest pruning level with loss within one standard
deviation of the minimum (L+se, where L and se relate to the smallest value in Subtrees).

• TreeSize = 'min' — loss returns the element of Subtrees with smallest loss, usually the
smallest element of Subtrees.

Examples

Compute the In-Sample Classification Error

Compute the resubstitution classification error for the ionosphere data.

load ionosphere
tree = fitctree(X,Y);
L = resubLoss(tree)

L = 0.0114

Examine the Classification Error for Each Subtree

Unpruned decision trees tend to overfit. One way to balance model complexity and out-of-sample
performance is to prune a tree (or restrict its growth) so that in-sample and out-of-sample
performance are satisfactory.

Load Fisher's iris data set. Partition the data into training (50%) and validation (50%) sets.

load fisheriris
n = size(meas,1);
rng(1) % For reproducibility
idxTrn = false(n,1);
idxTrn(randsample(n,round(0.5*n))) = true; % Training set logical indices 
idxVal = idxTrn == false;                  % Validation set logical indices

Grow a classification tree using the training set.

Mdl = fitctree(meas(idxTrn,:),species(idxTrn));

View the classification tree.

view(Mdl,'Mode','graph');
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The classification tree has four pruning levels. Level 0 is the full, unpruned tree (as displayed). Level
3 is just the root node (i.e., no splits).

Examine the training sample classification error for each subtree (or pruning level) excluding the
highest level.

m = max(Mdl.PruneList) - 1;
trnLoss = resubLoss(Mdl,'SubTrees',0:m)

trnLoss = 3×1

    0.0267
    0.0533
    0.3067

• The full, unpruned tree misclassifies about 2.7% of the training observations.
• The tree pruned to level 1 misclassifies about 5.3% of the training observations.
• The tree pruned to level 2 (i.e., a stump) misclassifies about 30.6% of the training observations.

Examine the validation sample classification error at each level excluding the highest level.
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valLoss = loss(Mdl,meas(idxVal,:),species(idxVal),'SubTrees',0:m)

valLoss = 3×1

    0.0369
    0.0237
    0.3067

• The full, unpruned tree misclassifies about 3.7% of the validation observations.
• The tree pruned to level 1 misclassifies about 2.4% of the validation observations.
• The tree pruned to level 2 (i.e., a stump) misclassifies about 30.7% of the validation observations.

To balance model complexity and out-of-sample performance, consider pruning Mdl to level 1.

pruneMdl = prune(Mdl,'Level',1);
view(pruneMdl,'Mode','graph')
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More About
Classification Loss

Classification loss functions measure the predictive inaccuracy of classification models. When you
compare the same type of loss among many models, a lower loss indicates a better predictive model.

Consider the following scenario.

• L is the weighted average classification loss.
• n is the sample size.

• For binary classification:

• yj is the observed class label. The software codes it as –1 or 1, indicating the negative or
positive class (or the first or second class in the ClassNames property), respectively.

• f(Xj) is the positive-class classification score for observation (row) j of the predictor data X.
• mj = yjf(Xj) is the classification score for classifying observation j into the class corresponding

to yj. Positive values of mj indicate correct classification and do not contribute much to the
average loss. Negative values of mj indicate incorrect classification and contribute significantly
to the average loss.

• For algorithms that support multiclass classification (that is, K ≥ 3):

• yj
* is a vector of K – 1 zeros, with 1 in the position corresponding to the true, observed class yj.

For example, if the true class of the second observation is the third class and K = 4, then y2
* =

[0 0 1 0]′. The order of the classes corresponds to the order in the ClassNames property of
the input model.

• f(Xj) is the length K vector of class scores for observation j of the predictor data X. The order of
the scores corresponds to the order of the classes in the ClassNames property of the input
model.

• mj = yj
*′f(Xj). Therefore, mj is the scalar classification score that the model predicts for the true,

observed class.
• The weight for observation j is wj. The software normalizes the observation weights so that they

sum to the corresponding prior class probability stored in the Prior property. Therefore,

∑
j = 1

n
w j = 1.

Given this scenario, the following table describes the supported loss functions that you can specify by
using the LossFun name-value argument.

Loss Function Value of LossFun Equation
Binomial deviance 'binodeviance'

L = ∑
j = 1

n
w jlog 1 + exp −2m j .
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Loss Function Value of LossFun Equation
Observed
misclassification cost

'classifcost'
L = ∑

j = 1

n
w jcy jy j,

where y j is the class label corresponding to the
class with the maximal score, and cy jy j is the
user-specified cost of classifying an observation
into class y j when its true class is yj.

Misclassified rate in
decimal

'classiferror'
L = ∑

j = 1

n
w jI y j ≠ y j ,

where I{·} is the indicator function.
Cross-entropy loss 'crossentropy' 'crossentropy' is appropriate only for neural

network models.

The weighted cross-entropy loss is

L = − ∑
j = 1

n w jlog(m j)
Kn ,

where the weights w j are normalized to sum to n
instead of 1.

Exponential loss 'exponential'
L = ∑

j = 1

n
w jexp −m j .

Hinge loss 'hinge'

L =∑
j = 1

n

w jmax 0, 1−m j .

Logit loss 'logit'
L = ∑

j = 1

n
w jlog 1 + exp −m j .
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Loss Function Value of LossFun Equation
Minimal expected
misclassification cost

'mincost' 'mincost' is appropriate only if classification
scores are posterior probabilities.

The software computes the weighted minimal
expected classification cost using this procedure
for observations j = 1,...,n.

1 Estimate the expected misclassification cost
of classifying the observation Xj into the class
k:

γ jk = f X j ′C k .

f(Xj) is the column vector of class posterior
probabilities for the observation Xj. C is the
cost matrix stored in the Cost property of
the model.

2 For observation j, predict the class label
corresponding to the minimal expected
misclassification cost:

y j = argmin
k = 1, ..., K

γ jk .

3 Using C, identify the cost incurred (cj) for
making the prediction.

The weighted average of the minimal expected
misclassification cost loss is

L = ∑
j = 1

n
w jc j .

Quadratic loss 'quadratic'
L = ∑

j = 1

n
w j 1−m j

2 .

If you use the default cost matrix (whose element value is 0 for correct classification and 1 for
incorrect classification), then the loss values for 'classifcost', 'classiferror', and
'mincost' are identical. For a model with a nondefault cost matrix, the 'classifcost' loss is
equivalent to the 'mincost' loss most of the time. These losses can be different if prediction into the
class with maximal posterior probability is different from prediction into the class with minimal
expected cost. Note that 'mincost' is appropriate only if classification scores are posterior
probabilities.

This figure compares the loss functions (except 'classifcost', 'crossentropy', and
'mincost') over the score m for one observation. Some functions are normalized to pass through
the point (0,1).
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True Misclassification Cost

The true misclassification cost is the cost of classifying an observation into an incorrect class.

You can set the true misclassification cost per class by using the 'Cost' name-value argument when
you create the classifier. Cost(i,j) is the cost of classifying an observation into class j when its
true class is i. By default, Cost(i,j)=1 if i~=j, and Cost(i,j)=0 if i=j. In other words, the cost
is 0 for correct classification and 1 for incorrect classification.

Expected Misclassification Cost

The expected misclassification cost per observation is an averaged cost of classifying the observation
into each class.

Suppose you have Nobs observations that you want to classify with a trained classifier, and you have
K classes. You place the observations into a matrix X with one observation per row.

The expected cost matrix CE has size Nobs-by-K. Each row of CE contains the expected (average) cost
of classifying the observation into each of the K classes. CE(n,k) is

∑
i = 1

K
P i X(n) C k i ,

where:
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• K is the number of classes.
• P i X(n)  is the posterior probability of class i for observation X(n).
• C k i  is the true misclassification cost of classifying an observation as k when its true class is i.

Extended Capabilities
GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

This function fully supports GPU arrays. For more information, see “Run MATLAB Functions on a
GPU” (Parallel Computing Toolbox).

See Also
loss | resubEdge | resubMargin | resubPredict | fitctree
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resubLoss
Regression error by resubstitution

Syntax
L = resubLoss(ens)
L = resubLoss(ens,Name,Value)

Description
L = resubLoss(ens) returns the resubstitution loss, meaning the mean squared error computed
for the data that fitrensemble used to create ens.

L = resubLoss(ens,Name,Value) calculates loss with additional options specified by one or more
Name,Value pair arguments. You can specify several name-value pair arguments in any order as
Name1,Value1,…,NameN,ValueN.

Input Arguments
ens

A regression ensemble created with fitrensemble.

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.

learners

Indices of weak learners in the ensemble ranging from 1 to ens.NumTrained. resubLoss uses only
these learners for calculating loss.

Default: 1:NumTrained

lossfun

Function handle for loss function, or 'mse', meaning mean squared error. If you pass a function
handle fun, resubLoss calls it as

FUN(Y,Yfit,W)

where Y, Yfit, and W are numeric vectors of the same length. Y is the observed response, Yfit is the
predicted response, and W is the observation weights.

Default: 'mse'
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mode

Character vector or string scalar representing the meaning of the output L:

• 'ensemble' — L is a scalar value, the loss for the entire ensemble.
• 'individual' — L is a vector with one element per trained learner.
• 'cumulative' — L is a vector in which element J is obtained by using learners 1:J from the

input list of learners.

Default: 'ensemble'

UseParallel

Indication to perform inference in parallel, specified as false (compute serially) or true (compute in
parallel). Parallel computation requires Parallel Computing Toolbox. Parallel inference can be faster
than serial inference, especially for large datasets. Parallel computation is supported only for tree
learners.

Default: false

Output Arguments
L

Loss, by default the mean squared error. L can be a vector, and can mean different things, depending
on the name-value pair settings.

Examples
Estimate Resubstitution Loss

Find the mean-squared difference between resubstitution predictions and training data.

Load the carsmall data set and select horsepower and vehicle weight as predictors.

load carsmall
X = [Horsepower Weight];

Train an ensemble of regression trees, and find the mean-squared difference of predictions from the
training data.

ens = fitrensemble(X,MPG);
MSE = resubLoss(ens) 

MSE = 0.5836

Extended Capabilities
Automatic Parallel Support
Accelerate code by automatically running computation in parallel using Parallel Computing Toolbox™.

To run in parallel, set the UseParallel name-value argument to true in the call to this function.
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For more general information about parallel computing, see “Run MATLAB Functions with Automatic
Parallel Support” (Parallel Computing Toolbox).

You cannot use UseParallel with GPU arrays.

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

Usage notes and limitations:

• You cannot use UseParallel with GPU arrays.

For more information, see “Run MATLAB Functions on a GPU” (Parallel Computing Toolbox).

See Also
resubPredict | resubLoss | loss
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resubLoss
Resubstitution regression loss

Syntax
L = resubLoss(Mdl)
L = resubLoss(Mdl,Name,Value)

Description
L = resubLoss(Mdl) returns the regression loss by resubstitution (L), or the in-sample regression
loss, for the trained regression model Mdl using the training data stored in Mdl.X and the
corresponding responses stored in Mdl.Y.

The interpretation of L depends on the loss function ('LossFun') and weighting scheme (Mdl.W). In
general, better models yield smaller loss values. The default 'LossFun' value is 'mse' (mean
squared error).

L = resubLoss(Mdl,Name,Value) specifies additional options using one or more name-value
arguments. For example, 'IncludeInteractions',false specifies to exclude interaction terms
from a generalized additive model Mdl.

Examples

Resubstitution Loss

Train a generalized additive model (GAM), then calculate the resubstitution loss using the mean
squared error (MSE).

Load the patients data set.

load patients

Create a table that contains the predictor variables (Age, Diastolic, Smoker, Weight, Gender,
SelfAssessedHealthStatus) and the response variable (Systolic).

tbl = table(Age,Diastolic,Smoker,Weight,Gender,SelfAssessedHealthStatus,Systolic);

Train a univariate GAM that contains the linear terms for the predictors in tbl.

Mdl = fitrgam(tbl,"Systolic")

Mdl = 
  RegressionGAM
            PredictorNames: {1x6 cell}
              ResponseName: 'Systolic'
     CategoricalPredictors: [3 5 6]
         ResponseTransform: 'none'
                 Intercept: 122.7800
    IsStandardDeviationFit: 0
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           NumObservations: 100

  Properties, Methods

Mdl is a RegressionGAM model object.

Calculate the resubstitution loss using the mean squared error (MSE).

L = resubLoss(Mdl)

L = 4.1957

Compute Custom Resubstitution Loss

Load the sample data and store in a table.

load fisheriris
tbl = table(meas(:,1),meas(:,2),meas(:,3),meas(:,4),species,...
'VariableNames',{'meas1','meas2','meas3','meas4','species'});

Fit a GPR model using the first measurement as the response and the other variables as the
predictors.

mdl = fitrgp(tbl,'meas1');

Predict the responses using the trained model.

ypred = predict(mdl,tbl);

Compute the mean absolute error.

n = height(tbl);
y = tbl.meas1;
fun = @(y,ypred,w) sum(abs(y-ypred))/n;
L = resubLoss(mdl,'lossfun',fun)

L = 0.2345

Compare GAMs by Examining Regression Loss

Train a generalized additive model (GAM) that contains both linear and interaction terms for
predictors, and estimate the regression loss (mean squared error, MSE) with and without interaction
terms for the training data and test data. Specify whether to include interaction terms when
estimating the regression loss.

Load the carbig data set, which contains measurements of cars made in the 1970s and early 1980s.

load carbig

Specify Acceleration, Displacement, Horsepower, and Weight as the predictor variables (X)
and MPG as the response variable (Y).
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X = [Acceleration,Displacement,Horsepower,Weight];
Y = MPG;

Partition the data set into two sets: one containing training data, and the other containing new,
unobserved test data. Reserve 10 observations for the new test data set.

rng('default') % For reproducibility
n = size(X,1);
newInds = randsample(n,10);
inds = ~ismember(1:n,newInds);
XNew = X(newInds,:);
YNew = Y(newInds);

Train a generalized additive model that contains all the available linear and interaction terms in X.

Mdl = fitrgam(X(inds,:),Y(inds),'Interactions','all');

Mdl is a RegressionGAM model object.

Compute the resubstitution MSEs (that is, the in-sample MSEs) both with and without interaction
terms in Mdl. To exclude interaction terms, specify 'IncludeInteractions',false.

resubl = resubLoss(Mdl)

resubl = 0.0292

resubl_nointeraction = resubLoss(Mdl,'IncludeInteractions',false)

resubl_nointeraction = 4.7330

Compute the regression MSEs both with and without interaction terms for the test data set. Use a
memory-efficient model object for the computation.

CMdl = compact(Mdl);

CMdl is a CompactRegressionGAM model object.

l = loss(CMdl,XNew,YNew)

l = 12.8604

l_nointeraction = loss(CMdl,XNew,YNew,'IncludeInteractions',false)

l_nointeraction = 15.6741

Including interaction terms achieves a smaller error for the training data set and test data set.

Input Arguments
Mdl — Regression machine learning model
full regression model object

Regression machine learning model, specified as a full regression model object, as given in the
following table of supported models.
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Model Regression Model Object
Gaussian process regression model RegressionGP
Generalized additive model (GAM) RegressionGAM
Neural network model RegressionNeuralNetwork

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: resubLoss(Mdl,'IncludeInteractions',false) excludes interaction terms from a
generalized additive model Mdl.

IncludeInteractions — Flag to include interaction terms
true | false

Flag to include interaction terms of the model, specified as true or false. This argument is valid
only for a generalized additive model. That is, you can specify this argument only when Mdl is
RegressionGAM.

The default value is true if Mdl contains interaction terms. The value must be false if the model
does not contain interaction terms.
Example: 'IncludeInteractions',false
Data Types: logical

LossFun — Loss function
'mse' (default) | function handle

Loss function, specified as 'mse' or a function handle.

• 'mse' — Weighted mean squared error.
• Function handle — To specify a custom loss function, use a function handle. The function must

have this form:

lossval = lossfun(Y,YFit,W)

• The output argument lossval is a floating-point scalar.
• You specify the function name (lossfun).
• Y is a length n numeric vector of observed responses, where n is the number of observations in

Tbl or X.
• YFit is a length n numeric vector of corresponding predicted responses.
• W is an n-by-1 numeric vector of observation weights.

Example: 'LossFun',@lossfun
Data Types: char | string | function_handle
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More About
Weighted Mean Squared Error

The weighted mean squared error measures the predictive inaccuracy of regression models. When
you compare the same type of loss among many models, a lower error indicates a better predictive
model.

The weighted mean squared error is calculated as follows:

mse =
∑

j = 1

n
w j f x j − y j

2

∑
j = 1

n
w j

,

where:

• n is the number of rows of data.
• xj is the jth row of data.
• yj is the true response to xj.
• f(xj) is the response prediction of the model Mdl to xj.
• w is the vector of observation weights.

Algorithms
resubLoss computes the regression loss according to the corresponding loss function of the object
(Mdl). For a model-specific description, see the loss function reference pages in the following table.

Model Regression Model Object
(Mdl)

loss Object Function

Gaussian process regression
model

RegressionGP loss

Generalized additive model RegressionGAM loss
Neural network model RegressionNeuralNetwork loss

Alternative Functionality
To compute the response loss for new predictor data, use the corresponding loss function of the
object (Mdl).

Version History
Introduced in R2021a

See Also
resubPredict
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resubLoss
Class: RegressionSVM

Resubstitution loss for support vector machine regression model

Syntax
L = resubLoss(mdl)
L = resubLoss(mdl,'LossFun',lossFun)

Description
L = resubLoss(mdl) returns the resubstitution loss for the support vector machine (SVM)
regression model mdl, using the training data stored in mdl.X and corresponding response values
stored in mdl.Y.

L = resubLoss(mdl,'LossFun',lossFun) specifies the loss function to use for the
resubstitution loss computation.

Input Arguments
mdl — Full, trained SVM regression model
RegressionSVM model

Full, trained SVM regression model, specified as a RegressionSVM model returned by fitrsvm.

lossFun — Loss function
'mse' (default) | 'epsiloninsensitive' | function handle

Loss function, specified as 'mse', 'epsiloninsensitive', or a function handle.

• The following table lists the available loss functions. Specify one using its corresponding value.

Value Loss Function
'mse' “Mean Squared Error” on page 35-6651
'epsiloninsensitive' “Epsilon-Insensitive Loss Function” on page

35-6651

• Specify your own function using function handle notation.

Suppose that n = size(X,1) is the sample size. Your function must have the signature
lossvalue = lossfun(Y,Yfit,W), where:

• The output argument lossvalue is a numeric value.
• You choose the function name (lossfun).
• Y is an n-by-1 numeric vector of observed response values.
• Yfit is an n-by-1 numeric vector of predicted response values, calculated using the

corresponding predictor values in X (similar to the output of predict).
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• W is an n-by-1 numeric vector of observation weights.

Specify your function using 'LossFun',@lossfun.

Example: 'LossFun','epsiloninsensitive'
Data Types: char | string | function_handle

Output Arguments
L — Resubstitution loss
scalar value

Resubstitution loss, returned as a scalar value.

The resubstitution loss is the loss calculated between the response training data and the model’s
predicted response values based on the input training data.

Resubstitution loss can be an overly optimistic estimate of the predictive error on new data. If the
resubstitution loss is high, the model’s predictions are not likely to be very good. However, having a
low resubstitution loss does not guarantee good predictions for new data.

To better assess the predictive accuracy of your model, cross validate the model using crossval.

Examples

Resubstitution Loss for SVM Regression Model

This example shows how to train an SVM regression model, then calculate the resubstitution loss
using mean square error (MSE) and epsilon-insensitive loss.

This example uses the abalone data from the UCI Machine Learning Repository. Download the data
and save it in your current directory with the name 'abalone.data'.

Read the data into a table.

tbl = readtable('abalone.data','Filetype','text','ReadVariableNames',false);
rng default  % for reproducibility

The sample data contains 4177 observations. All of the predictor variables are continuous except for
sex, which is a categorical variable with possible values 'M' (for males), 'F' (for females), and 'I'
(for infants). The goal is to predict the number of rings on the abalone, and thereby determine its age,
using physical measurements.

Train an SVM regression model to the data, using a Gaussian kernel function with an automatic
kernel scale. Standardize the data.

mdl = fitrsvm(tbl,'Var9','KernelFunction','gaussian','KernelScale','auto','Standardize',true);

Calculate the resubstitution loss using mean square error (MSE).

mse_loss = resubLoss(mdl)
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mse_loss =

    4.0603

Calculate the epsilon-insensitive loss.

eps_loss = resubLoss(mdl,'LossFun','epsiloninsensitive')

eps_loss =

    1.1027

More About
Mean Squared Error

The weighted mean squared error is calculated as follows:

mse =
∑

j = 1

n
w j f x j − y j

2

∑
j = 1

n
w j

,

where:

• n is the number of rows of data
• xj is the jth row of data
• yj is the true response to xj

• f(xj) is the response prediction of the SVM regression model mdl to xj

• w is the vector of weights.

The weights in w are all equal to one by default. You can specify different values for weights using the
'Weights' name-value pair argument. If you specify weights, each value is divided by the sum of all
weights, such that the normalized weights add to one.

Epsilon-Insensitive Loss Function

The epsilon-insensitive loss function ignores errors that are within the distance epsilon (ε) of the
function value. It is formally described as:

Lossε =
0 , if y − f x ≤ ε

y − f x − ε , otherwise .

The mean epsilon-insensitive loss is calculated as follows:

Loss =
∑

j = 1

n
w jmax 0, y j− f x j − ε

∑
j = 1

n
w j

,
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Version History
Introduced in R2015b
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See Also
fitrsvm | RegressionSVM | resubPredict | loss
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resubLoss
Class: RegressionTree

Regression error by resubstitution

Syntax
L = resubLoss(tree)
L = resubLoss(tree,Name,Value)
L = resubLoss(tree,'Subtrees',subtreevector)
[L,se] = resubLoss(tree,'Subtrees',subtreevector)
[L,se,NLeaf] = resubLoss(tree,'Subtrees',subtreevector)
[L,se,NLeaf,bestlevel] = resubLoss(tree,'Subtrees',subtreevector)
[L,...] = resubLoss(tree,'Subtrees',subtreevector,Name,Value)

Description
L = resubLoss(tree) returns the resubstitution loss, meaning the loss computed for the data that
fitrtree used to create tree.

L = resubLoss(tree,Name,Value) returns the loss with additional options specified by one or
more Name,Value pair arguments. You can specify several name-value pair arguments in any order
as Name1,Value1,…,NameN,ValueN.

L = resubLoss(tree,'Subtrees',subtreevector) returns a vector of mean squared errors for
the trees in the pruning sequence subtreevector.

[L,se] = resubLoss(tree,'Subtrees',subtreevector) returns the vector of standard errors
of the classification errors.

[L,se,NLeaf] = resubLoss(tree,'Subtrees',subtreevector) returns the vector of
numbers of leaf nodes in the trees of the pruning sequence.

[L,se,NLeaf,bestlevel] = resubLoss(tree,'Subtrees',subtreevector) returns the best
pruning level as defined in the TreeSize name-value pair. By default, bestlevel is the pruning
level that gives loss within one standard deviation of minimal loss.

[L,...] = resubLoss(tree,'Subtrees',subtreevector,Name,Value) returns loss statistics
with additional options specified by one or more Name,Value pair arguments. You can specify
several name-value pair arguments in any order as Name1,Value1,…,NameN,ValueN.

Input Arguments
tree — Regression tree
RegressionTree model object

A regression tree (RegressionTree model object) constructed using fitrtree.
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Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.

LossFun — Loss function
'mse' (default) | function handle

Loss function, specified as a function handle or 'mse' meaning mean squared error.

You can write your own loss function in the syntax described in “Loss Functions” on page 35-6658.
Data Types: char | string | function_handle

Name,Value arguments associated with pruning subtrees:

Subtrees — Pruning level
0 (default) | vector of nonnegative integers | 'all'

Pruning level, specified as the comma-separated pair consisting of 'Subtrees' and a vector of
nonnegative integers in ascending order or 'all'.

If you specify a vector, then all elements must be at least 0 and at most max(tree.PruneList). 0
indicates the full, unpruned tree and max(tree.PruneList) indicates the completely pruned tree
(i.e., just the root node).

If you specify 'all', then resubLoss operates on all subtrees (i.e., the entire pruning sequence).
This specification is equivalent to using 0:max(tree.PruneList).

resubLoss prunes tree to each level indicated in Subtrees, and then estimates the corresponding
output arguments. The size of Subtrees determines the size of some output arguments.

To invoke Subtrees, the properties PruneList and PruneAlpha of tree must be nonempty. In
other words, grow tree by setting 'Prune','on', or by pruning tree using prune.
Example: 'Subtrees','all'
Data Types: single | double | char | string

TreeSize — Tree size
'se' (default) | 'min'

Tree size, specified as one of the following:

• 'se' — loss returns the highest pruning level with loss within one standard deviation of the
minimum (L + se, where L and se relate to the smallest value in Subtrees).

• 'min' — loss returns the element of Subtrees with smallest loss, usually the smallest element
of Subtrees.

Output Arguments
L — Regression loss
numeric vector of positive values
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Regression loss (mean squared error), a vector the length of Subtrees. The meaning of the error
depends on the values in Weights and LossFun.

se — Standard error of loss
numeric vector of positive values

Standard error of loss, a vector the length of Subtrees.

NLeaf — Number of leaves
numeric vector of nonnegative integers

Number of leaves (terminal nodes) in the pruned subtrees, a vector the length of Subtrees.

bestlevel — Optimal pruning level
nonnegative numeric scalar

A scalar whose value depends on TreeSize:

• TreeSize = 'se' — loss returns the highest pruning level with loss within one standard
deviation of the minimum (L + se, where L and se relate to the smallest value in Subtrees).

• TreeSize = 'min' — loss returns the element of Subtrees with smallest loss, usually the
smallest element of Subtrees.

Examples

Compute the In-Sample MSE

Load the carsmall data set. Consider Displacement, Horsepower, and Weight as predictors of
the response MPG.

load carsmall
X = [Displacement Horsepower Weight];

Grow a regression tree using all observations.

Mdl = fitrtree(X,MPG);

Compute the resubstitution MSE.

resubLoss(Mdl)

ans = 4.8952

Examine the MSE for Each Subtree

Unpruned decision trees tend to overfit. One way to balance model complexity and out-of-sample
performance is to prune a tree (or restrict its growth) so that in-sample and out-of-sample
performance are satisfactory.

Load the carsmall data set. Consider Displacement, Horsepower, and Weight as predictors of
the response MPG.
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load carsmall
X = [Displacement Horsepower Weight];
Y = MPG;

Partition the data into training (50%) and validation (50%) sets.

n = size(X,1);
rng(1) % For reproducibility
idxTrn = false(n,1);
idxTrn(randsample(n,round(0.5*n))) = true; % Training set logical indices 
idxVal = idxTrn == false;                  % Validation set logical indices

Grow a regression tree using the training set.

Mdl = fitrtree(X(idxTrn,:),Y(idxTrn));

View the regression tree.

view(Mdl,'Mode','graph');

The regression tree has seven pruning levels. Level 0 is the full, unpruned tree (as displayed). Level 7
is just the root node (i.e., no splits).
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Examine the training sample MSE for each subtree (or pruning level) excluding the highest level.

m = max(Mdl.PruneList) - 1;
trnLoss = resubLoss(Mdl,'SubTrees',0:m)

trnLoss = 7×1

    5.9789
    6.2768
    6.8316
    7.5209
    8.3951
   10.7452
   14.8445

• The MSE for the full, unpruned tree is about 6 units.
• The MSE for the tree pruned to level 1 is about 6.3 units.
• The MSE for the tree pruned to level 6 (i.e., a stump) is about 14.8 units.

Examine the validation sample MSE at each level excluding the highest level.

valLoss = loss(Mdl,X(idxVal,:),Y(idxVal),'SubTrees',0:m)

valLoss = 7×1

   32.1205
   31.5035
   32.0541
   30.8183
   26.3535
   30.0137
   38.4695

• The MSE for the full, unpruned tree (level 0) is about 32.1 units.
• The MSE for the tree pruned to level 4 is about 26.4 units.
• The MSE for the tree pruned to level 5 is about 30.0 units.
• The MSE for the tree pruned to level 6 (i.e., a stump) is about 38.5 units.

To balance model complexity and out-of-sample performance, consider pruning Mdl to level 4.

pruneMdl = prune(Mdl,'Level',4);
view(pruneMdl,'Mode','graph')
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More About
Loss Functions

The built-in loss function is 'mse', meaning mean squared error.

To write your own loss function, create a function file of the form

function loss = lossfun(Y,Yfit,W)

• N is the number of rows of tree.X.
• Y is an N-element vector representing the observed response.
• Yfit is an N-element vector representing the predicted responses.
• W is an N-element vector representing the observation weights.
• The output loss should be a scalar.

Pass the function handle @lossfun as the value of the LossFun name-value pair.
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Extended Capabilities
GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

This function fully supports GPU arrays. For more information, see “Run MATLAB Functions on a
GPU” (Parallel Computing Toolbox).

See Also
resubPredict | loss | fitrtree
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resubMargin
Resubstitution classification margin

Syntax
m = resubMargin(Mdl)
m = resubMargin(Mdl,'IncludeInteractions',includeInteractions)

Description
m = resubMargin(Mdl) returns the resubstitution “Classification Margin” on page 35-6665 (m) for
the trained classification model Mdl using the predictor data stored in Mdl.X and the corresponding
true class labels stored in Mdl.Y.

m is returned as an n-by-1 numeric column vector, where n is the number of observations in the
predictor data.

m = resubMargin(Mdl,'IncludeInteractions',includeInteractions) specifies whether
to include interaction terms in computations. This syntax applies only to generalized additive models.

Examples

Estimate Resubstitution Classification Margins of Naive Bayes Classifier

Estimate the resubstitution (in-sample) classification margins of a naive Bayes classifier. An
observation margin is the observed true class score minus the maximum false class score among all
scores in the respective class.

Load the fisheriris data set. Create X as a numeric matrix that contains four measurements for
150 irises. Create Y as a cell array of character vectors that contains the corresponding iris species.

load fisheriris
X = meas;
Y = species;

Train a naive Bayes classifier using the predictors X and class labels Y. A recommended practice is to
specify the class names. fitcnb assumes that each predictor is conditionally and normally
distributed.

Mdl = fitcnb(X,Y,'ClassNames',{'setosa','versicolor','virginica'})

Mdl = 
  ClassificationNaiveBayes
              ResponseName: 'Y'
     CategoricalPredictors: []
                ClassNames: {'setosa'  'versicolor'  'virginica'}
            ScoreTransform: 'none'
           NumObservations: 150
         DistributionNames: {'normal'  'normal'  'normal'  'normal'}
    DistributionParameters: {3x4 cell}
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  Properties, Methods

Mdl is a trained ClassificationNaiveBayes classifier.

Estimate the resubstitution classification margins.

m = resubMargin(Mdl);
median(m)

ans = 1.0000

Display the histogram of the in-sample classification margins.

histogram(m,30,'Normalization','probability')
xlabel('In-Sample Margins')
ylabel('Probability')
title('Probability Distribution of the In-Sample Margins')

Classifiers that yield relatively large margins are preferred.
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Select SVM Classifier Features by Examining In-Sample Margins

Perform feature selection by comparing in-sample margins from multiple models. Based solely on this
comparison, the model with the highest margins is the best model.

Load the ionosphere data set. Define two data sets:

• fullX contains all predictors (except the removed column of 0s).
• partX contains the last 20 predictors.

load ionosphere
fullX = X;
partX = X(:,end-20:end);

Train a support vector machine (SVM) classifier for each predictor set.

FullSVMModel = fitcsvm(fullX,Y);
PartSVMModel = fitcsvm(partX,Y);

Estimate the in-sample margins for each classifier.

fullMargins = resubMargin(FullSVMModel);
partMargins = resubMargin(PartSVMModel);
n = size(X,1);
p = sum(fullMargins < partMargins)/n

p = 0.2222

Approximately 22% of the margins from the full model are less than those from the model with fewer
predictors. This result suggests that the model trained with all the predictors is better.

Compare GAMs by Examining Training Sample Margins and Edge

Compare a generalized additive model (GAM) with linear terms to a GAM with both linear and
interaction terms by examining the training sample margins and edge. Based solely on this
comparison, the classifier with the highest margins and edge is the best model.

Load the 1994 census data stored in census1994.mat. The data set consists of demographic data
from the US Census Bureau to predict whether an individual makes over $50,000 per year. The
classification task is to fit a model that predicts the salary category of people given their age, working
class, education level, marital status, race, and so on.

load census1994

census1994 contains the training data set adultdata and the test data set adulttest. To reduce
the running time for this example, subsample 500 training observations from adultdata by using
the datasample function.

rng('default') % For reproducibility
NumSamples = 5e2;
adultdata = datasample(adultdata,NumSamples,'Replace',false);

Train a GAM that contains both linear and interaction terms for predictors. Specify to include all
available interaction terms whose p-values are not greater than 0.05.
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Mdl = fitcgam(adultdata,'salary','Interactions','all','MaxPValue',0.05)

Mdl = 
  ClassificationGAM
           PredictorNames: {1x14 cell}
             ResponseName: 'salary'
    CategoricalPredictors: [2 4 6 7 8 9 10 14]
               ClassNames: [<=50K    >50K]
           ScoreTransform: 'logit'
                Intercept: -28.5594
             Interactions: [82x2 double]
          NumObservations: 500

  Properties, Methods

Mdl is a ClassificationGAM model object. Mdl includes 82 interaction terms.

Estimate the training sample margins and edge for Mdl.

M = resubMargin(Mdl);
E = resubEdge(Mdl)

E = 1.0000

Estimate the training sample margins and edge for Mdl without including interaction terms.

M_nointeractions = resubMargin(Mdl,'IncludeInteractions',false);
E_nointeractions = resubEdge(Mdl,'IncludeInteractions',false)

E_nointeractions = 0.9516

Display the distributions of the margins using box plots.

boxplot([M M_nointeractions],'Labels',{'Linear and Interaction Terms','Linear Terms Only'})
title('Box Plots of Training Sample Margins')
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When you include the interaction terms in the computation, all the resubstitution margin values for
Mdl are 1, and the resubstitution edge value (average of the margins) is 1. The margins and edge
decrease when you do not include the interaction terms in Mdl.

Input Arguments
Mdl — Classification machine learning model
full classification model object

Classification machine learning model, specified as a full classification model object, as given in the
following table of supported models.

Model Classification Model Object
Generalized additive model ClassificationGAM
k-nearest neighbor model ClassificationKNN
Naive Bayes model ClassificationNaiveBayes
Neural network model ClassificationNeuralNetwork
Support vector machine for one-class and binary
classification

ClassificationSVM

includeInteractions — Flag to include interaction terms
true | false
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Flag to include interaction terms of the model, specified as true or false. This argument is valid
only for a generalized additive model (GAM). That is, you can specify this argument only when Mdl is
ClassificationGAM.

The default value is true if Mdl contains interaction terms. The value must be false if the model
does not contain interaction terms.
Data Types: logical

More About
Classification Margin

The classification margin for binary classification is, for each observation, the difference between the
classification score for the true class and the classification score for the false class. The classification
margin for multiclass classification is the difference between the classification score for the true class
and the maximal classification score for the false classes.

If the margins are on the same scale (that is, the score values are based on the same score
transformation), then they serve as a classification confidence measure. Among multiple classifiers,
those that yield greater margins are better.

Algorithms
resubMargin computes the classification margin according to the corresponding margin function of
the object (Mdl). For a model-specific description, see the margin function reference pages in the
following table.

Model Classification Model Object
(Mdl)

margin Object Function

Generalized additive model ClassificationGAM margin
k-nearest neighbor model ClassificationKNN margin
Naive Bayes model ClassificationNaiveBayes margin
Neural network model ClassificationNeuralNetw

ork
margin

Support vector machine for one-
class and binary classification

ClassificationSVM margin

Version History
Introduced in R2012a

Extended Capabilities
GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

Usage notes and limitations:
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• This function fully supports GPU arrays for a trained classification model specified as a
ClassificationKNN or ClassificationSVM object.

For more information, see “Run MATLAB Functions on a GPU” (Parallel Computing Toolbox).

See Also
resubPredict | resubLoss | resubEdge

35 Functions

35-6666



resubMargin
Class: ClassificationDiscriminant

Classification margins by resubstitution

Syntax
M = resubMargin(obj)

Description
M = resubMargin(obj) returns resubstitution classification margins for obj.

Input Arguments
obj

Discriminant analysis classifier, produced using fitcdiscr.

Output Arguments
M

Numeric column-vector of length size(obj.X,1) containing the classification margins.

Examples

Estimate Resubstitution Margins for Discriminant Analysis Classifiers

Find the margins for a discriminant analysis classifier for Fisher's iris data by resubstitution. Examine
several entries.

Load Fisher's iris data set.

load fisheriris

Train a discriminant analysis classifier.

Mdl = fitcdiscr(meas,species);

Compute the resubstitution margins, and display several of them.

m = resubMargin(Mdl);
m(1:25:end)

ans = 6×1

    1.0000
    1.0000
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    0.9998
    0.9998
    1.0000
    0.9946

More About
Margin

The classification margin is the difference between the classification score for the true class and
maximal classification score for the false classes.

The classification margin is a column vector with the same number of rows as in the matrix X. A high
value of margin indicates a more reliable prediction than a low value.

Score

For discriminant analysis, the score of a classification is the posterior probability of the classification.
For the definition of posterior probability in discriminant analysis, see “Posterior Probability” on page
21-6.

See Also
ClassificationDiscriminant | fitcdiscr | margin

Topics
“Discriminant Analysis Classification” on page 21-2
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resubMargin
Resubstitution classification margins for multiclass error-correcting output codes (ECOC) model

Syntax
m = resubMargin(Mdl)
m = resubMargin(Mdl,Name,Value)

Description
m = resubMargin(Mdl) returns the resubstitution classification margins on page 35-6674 (m) for
the multiclass error-correcting output codes (ECOC) model Mdl using the training data stored in
Mdl.X and the corresponding class labels stored in Mdl.Y.

m is returned as a numeric column vector with the same length as Mdl.Y. The software estimates
each entry of m using the trained ECOC model Mdl, the corresponding row of Mdl.X, and the true
class label Mdl.Y.

m = resubMargin(Mdl,Name,Value) returns the classification margins with additional options
specified by one or more name-value pair arguments. For example, you can specify a decoding
scheme, binary learner loss function, and verbosity level.

Examples

Resubstitution Classification Margins of ECOC Model

Calculate the resubstitution classification margins for an ECOC model with SVM binary learners.

Load Fisher's iris data set. Specify the predictor data X and the response data Y.

load fisheriris
X = meas;
Y = species;

Train an ECOC model using SVM binary classifiers. Standardize the predictors using an SVM
template, and specify the class order.

t = templateSVM('Standardize',true);
classOrder = unique(Y)

classOrder = 3x1 cell
    {'setosa'    }
    {'versicolor'}
    {'virginica' }

Mdl = fitcecoc(X,Y,'Learners',t,'ClassNames',classOrder);

t is an SVM template object. During training, the software uses default values for empty properties in
t. Mdl is a ClassificationECOC model.
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Calculate the classification margins for the observations used to train Mdl. Display the distribution of
the margins using a boxplot.

m = resubMargin(Mdl);

boxplot(m)
title('In-Sample Margins')

The classification margin of an observation is the positive-class negated loss minus the maximum
negative-class negated loss. Choose classifiers that yield relatively large margins.

Select ECOC Model Features by Examining Training-Sample Margins

Perform feature selection by comparing training-sample margins from multiple models. Based solely
on this comparison, the model with the greatest margins is the best model.

Load Fisher's iris data set. Define two data sets:

• fullX contains all four predictors.
• partX contains the sepal measurements only.

load fisheriris
X = meas;
fullX = X;
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partX = X(:,1:2);
Y = species;

Train an ECOC model using SVM binary learners for each predictor set. Standardize the predictors
using an SVM template, specify the class order, and compute posterior probabilities.

t = templateSVM('Standardize',true);
classOrder = unique(Y)

classOrder = 3x1 cell
    {'setosa'    }
    {'versicolor'}
    {'virginica' }

FullMdl = fitcecoc(fullX,Y,'Learners',t,'ClassNames',classOrder,...
    'FitPosterior',true);
PartMdl = fitcecoc(partX,Y,'Learners',t,'ClassNames',classOrder,...
    'FitPosterior',true);

Compute the resubstitution margins for each classifier. For each model, display the distribution of the
margins using a boxplot.

fullMargins = resubMargin(FullMdl);
partMargins = resubMargin(PartMdl);

boxplot([fullMargins partMargins],'Labels',{'All Predictors','Two Predictors'})
title('Training-Sample Margins')
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The margin distribution of FullMdl is situated higher and has less variability than the margin
distribution of PartMdl. This result suggests that the model trained with all the predictors fits the
training data better.

Input Arguments
Mdl — Full, trained multiclass ECOC model
ClassificationECOC model

Full, trained multiclass ECOC model, specified as a ClassificationECOC model trained with
fitcecoc.

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: resubMargin(Mdl,'Verbose',1) specifies to display diagnostic messages in the
Command Window.

BinaryLoss — Binary learner loss function
'hamming' | 'linear' | 'logit' | 'exponential' | 'binodeviance' | 'hinge' | 'quadratic'
| function handle

Binary learner loss function, specified as the comma-separated pair consisting of 'BinaryLoss' and
a built-in loss function name or function handle.

• This table describes the built-in functions, where yj is the class label for a particular binary learner
(in the set {–1,1,0}), sj is the score for observation j, and g(yj,sj) is the binary loss formula.

Value Description Score Domain g(yj,sj)
'binodeviance' Binomial deviance (–∞,∞) log[1 + exp(–2yjsj)]/

[2log(2)]
'exponential' Exponential (–∞,∞) exp(–yjsj)/2
'hamming' Hamming [0,1] or (–∞,∞) [1 – sign(yjsj)]/2
'hinge' Hinge (–∞,∞) max(0,1 – yjsj)/2
'linear' Linear (–∞,∞) (1 – yjsj)/2
'logit' Logistic (–∞,∞) log[1 + exp(–yjsj)]/

[2log(2)]
'quadratic' Quadratic [0,1] [1 – yj(2sj – 1)]2/2

The software normalizes binary losses so that the loss is 0.5 when yj = 0. Also, the software
calculates the mean binary loss for each class.

• For a custom binary loss function, for example customFunction, specify its function handle
'BinaryLoss',@customFunction.

customFunction has this form:
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bLoss = customFunction(M,s)

• M is the K-by-B coding matrix stored in Mdl.CodingMatrix.
• s is the 1-by-B row vector of classification scores.
• bLoss is the classification loss. This scalar aggregates the binary losses for every learner in a

particular class. For example, you can use the mean binary loss to aggregate the loss over the
learners for each class.

• K is the number of classes.
• B is the number of binary learners.

For an example of passing a custom binary loss function, see “Predict Test-Sample Labels of ECOC
Model Using Custom Binary Loss Function” on page 35-5751.

The default BinaryLoss value depends on the score ranges returned by the binary learners. This
table identifies what some default BinaryLoss values are when you use the default score transform
(ScoreTransform property of the model is 'none').

Assumption Default Value
All binary learners are any of the following:

• Classification decision trees
• Discriminant analysis models
• k-nearest neighbor models
• Linear or kernel classification models of logistic regression

learners
• Naive Bayes models

'quadratic'

All binary learners are SVMs or linear or kernel classification
models of SVM learners.

'hinge'

All binary learners are ensembles trained by AdaboostM1 or
GentleBoost.

'exponential'

All binary learners are ensembles trained by LogitBoost. 'binodeviance'
You specify to predict class posterior probabilities by setting
'FitPosterior',true in fitcecoc.

'quadratic'

Binary learners are heterogeneous and use different loss functions. 'hamming'

To check the default value, use dot notation to display the BinaryLoss property of the trained model
at the command line.
Example: 'BinaryLoss','binodeviance'
Data Types: char | string | function_handle

Decoding — Decoding scheme
'lossweighted' (default) | 'lossbased'

Decoding scheme that aggregates the binary losses, specified as the comma-separated pair consisting
of 'Decoding' and 'lossweighted' or 'lossbased'. For more information, see “Binary Loss” on
page 35-6674.
Example: 'Decoding','lossbased'
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Options — Estimation options
[] (default) | structure array returned by statset

Estimation options, specified as the comma-separated pair consisting of 'Options' and a structure
array returned by statset.

To invoke parallel computing:

• You need a Parallel Computing Toolbox license.
• Specify 'Options',statset('UseParallel',true).

Verbose — Verbosity level
0 (default) | 1

Verbosity level, specified as the comma-separated pair consisting of 'Verbose' and 0 or 1. Verbose
controls the number of diagnostic messages that the software displays in the Command Window.

If Verbose is 0, then the software does not display diagnostic messages. Otherwise, the software
displays diagnostic messages.
Example: 'Verbose',1
Data Types: single | double

More About
Classification Margin

The classification margin is, for each observation, the difference between the negative loss for the
true class and the maximal negative loss among the false classes. If the margins are on the same
scale, then they serve as a classification confidence measure. Among multiple classifiers, those that
yield greater margins are better.

Binary Loss

The binary loss is a function of the class and classification score that determines how well a binary
learner classifies an observation into the class.

Suppose the following:

• mkj is element (k,j) of the coding design matrix M—that is, the code corresponding to class k of
binary learner j. M is a K-by-B matrix, where K is the number of classes, and B is the number of
binary learners.

• sj is the score of binary learner j for an observation.
• g is the binary loss function.
• k  is the predicted class for the observation.

The decoding scheme of an ECOC model specifies how the software aggregates the binary losses and
determines the predicted class for each observation. The software supports two decoding schemes:

• Loss-based decoding [2] (Decoding is 'lossbased') — The predicted class of an observation
corresponds to the class that produces the minimum average of the binary losses over all binary
learners.
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k = argmin
k

1
B ∑j = 1

B
mk j g(mk j, s j) .

• Loss-weighted decoding [3] (Decoding is 'lossweighted') — The predicted class of an
observation corresponds to the class that produces the minimum average of the binary losses over
the binary learners for the corresponding class.

k = argmin
k

∑
j = 1

B
mk j g(mk j, s j)

∑ j = 1

B

mk j

.

The denominator corresponds to the number of binary learners for class k. [1] suggests that loss-
weighted decoding improves classification accuracy by keeping loss values for all classes in the
same dynamic range.

The predict, resubPredict, and kfoldPredict functions return the negated value of the
objective function of argmin as the second output argument (NegLoss) for each observation and
class.

This table summarizes the supported binary loss functions, where yj is a class label for a particular
binary learner (in the set {–1,1,0}), sj is the score for observation j, and g(yj,sj) is the binary loss
function.

Value Description Score Domain g(yj,sj)
"binodeviance" Binomial deviance (–∞,∞) log[1 + exp(–2yjsj)]/

[2log(2)]
"exponential" Exponential (–∞,∞) exp(–yjsj)/2
"hamming" Hamming [0,1] or (–∞,∞) [1 – sign(yjsj)]/2
"hinge" Hinge (–∞,∞) max(0,1 – yjsj)/2
"linear" Linear (–∞,∞) (1 – yjsj)/2
"logit" Logistic (–∞,∞) log[1 + exp(–yjsj)]/

[2log(2)]
"quadratic" Quadratic [0,1] [1 – yj(2sj – 1)]2/2

The software normalizes binary losses so that the loss is 0.5 when yj = 0, and aggregates using the
average of the binary learners.

Do not confuse the binary loss with the overall classification loss (specified by the LossFun name-
value argument of the resubLoss and resubPredict object functions), which measures how well
an ECOC classifier performs as a whole.

Tips
• To compare the margins or edges of several ECOC classifiers, use template objects to specify a

common score transform function among the classifiers during training.
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Version History
Introduced in R2014b

References
[1] Allwein, E., R. Schapire, and Y. Singer. “Reducing multiclass to binary: A unifying approach for

margin classifiers.” Journal of Machine Learning Research. Vol. 1, 2000, pp. 113–141.

[2] Escalera, S., O. Pujol, and P. Radeva. “Separability of ternary codes for sparse designs of error-
correcting output codes.” Pattern Recog. Lett., Vol. 30, Issue 3, 2009, pp. 285–297.

[3] Escalera, S., O. Pujol, and P. Radeva. “On the decoding process in ternary error-correcting output
codes.” IEEE Transactions on Pattern Analysis and Machine Intelligence. Vol. 32, Issue 7,
2010, pp. 120–134.

Extended Capabilities
Automatic Parallel Support
Accelerate code by automatically running computation in parallel using Parallel Computing Toolbox™.

To run in parallel, specify the 'Options' name-value argument in the call to this function and set the
'UseParallel' field of the options structure to true using statset.

For example: 'Options',statset('UseParallel',true)

For more information about parallel computing, see “Run MATLAB Functions with Automatic Parallel
Support” (Parallel Computing Toolbox).

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

This function fully supports GPU arrays. For more information, see “Run MATLAB Functions on a
GPU” (Parallel Computing Toolbox).

See Also
ClassificationECOC | resubEdge | margin | predict | resubPredict | fitcecoc | resubLoss

Topics
“Quick Start Parallel Computing for Statistics and Machine Learning Toolbox” on page 33-2
“Reproducibility in Parallel Statistical Computations” on page 33-16
“Concepts of Parallel Computing in Statistics and Machine Learning Toolbox” on page 33-6
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resubMargin
Classification margins by resubstitution

Syntax
margin = resubMargin(ens)
margin = resubMargin(ens,Name,Value)

Description
margin = resubMargin(ens) returns the classification margin obtained by ens on its training
data.

margin = resubMargin(ens,Name,Value) calculates margins with additional options specified
by one or more Name,Value pair arguments.

Input Arguments
ens

A classification ensemble created with fitcensemble.

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.

learners

Indices of weak learners in the ensemble ranging from 1 to ens.NumTrained. resubMargin uses
only these learners for calculating loss.

Default: 1:NumTrained

UseParallel

Indication to perform inference in parallel, specified as false (compute serially) or true (compute in
parallel). Parallel computation requires Parallel Computing Toolbox. Parallel inference can be faster
than serial inference, especially for large datasets. Parallel computation is supported only for tree
learners.

Default: false
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Output Arguments
margin

A numeric column-vector of length size(ens.X,1) containing the classification margins.

Examples
Compute Resubstitution Margins for Classification Ensemble

Find the resubstitution margins for an ensemble that classifies the Fisher iris data.

Load the Fisher iris data set.

load fisheriris

Train an ensemble of 100 boosted classification trees using AdaBoostM2.

t = templateTree('MaxNumSplits',1); % Weak learner template tree object
ens = fitcensemble(meas,species,'Method','AdaBoostM2','Learners',t);

Find the resubstitution margins.

margin = resubMargin(ens);
[min(margin) mean(margin) max(margin)]

ans = 1×3

   -0.5674    3.2486    4.6245

More About
Margin

The classification margin is the difference between the classification score for the true class and
maximal classification score for the false classes. Margin is a column vector with the same number of
rows as in the matrix ens.X.

Score (ensemble)

For ensembles, a classification score represents the confidence of a classification into a class. The
higher the score, the higher the confidence.

Different ensemble algorithms have different definitions for their scores. Furthermore, the range of
scores depends on ensemble type. For example:

• AdaBoostM1 scores range from –∞ to ∞.
• Bag scores range from 0 to 1.

Extended Capabilities
Automatic Parallel Support
Accelerate code by automatically running computation in parallel using Parallel Computing Toolbox™.
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To run in parallel, set the UseParallel name-value argument to true in the call to this function.

For more general information about parallel computing, see “Run MATLAB Functions with Automatic
Parallel Support” (Parallel Computing Toolbox).

You cannot use UseParallel with GPU arrays.

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

Usage notes and limitations:

• You cannot use UseParallel with GPU arrays.

For more information, see “Run MATLAB Functions on a GPU” (Parallel Computing Toolbox).

See Also
resubEdge | resubLoss | resubPredict | resubMargin
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resubMargin
Class: ClassificationTree

Classification margins by resubstitution

Syntax
M = resubMargin(tree)

Description
M = resubMargin(tree) returns resubstitution classification margins for tree.

Input Arguments
tree

A classification tree created by fitctree.

Output Arguments
M

A numeric column-vector of length size(tree.X,1) containing the classification margins.

Examples
Find the margins for a classification tree for the Fisher iris data by resubstitution. Examine several
entries:

load fisheriris
tree = fitctree(meas,species);
M = resubMargin(tree);
M(1:25:end)

ans =
    1.0000
    1.0000
    1.0000
    1.0000
    0.9565
    0.9565

More About
Margin

Classification margin is the difference between classification score for the true class and maximal
classification score for the false classes. A high value of margin indicates a more reliable prediction
than a low value.
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Score (tree)

For trees, the score of a classification of a leaf node is the posterior probability of the classification at
that node. The posterior probability of the classification at a node is the number of training sequences
that lead to that node with the classification, divided by the number of training sequences that lead to
that node.

For an example, see “Posterior Probability Definition for Classification Tree” on page 35-6715.

Extended Capabilities
GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

This function fully supports GPU arrays. For more information, see “Run MATLAB Functions on a
GPU” (Parallel Computing Toolbox).

See Also
margin | resubLoss | resubPredict | resubEdge | fitctree
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resubPredict
Class: ClassificationDiscriminant

Predict resubstitution labels of discriminant analysis classification model

Syntax
label = resubPredict(obj)
[label,posterior] = resubPredict(obj)
[label,posterior,cost] = resubPredict(obj)

Description
label = resubPredict(obj) returns the labels obj predicts for the data obj.X. label is the
predictions of obj on the data that fitcdiscr used to create obj.

[label,posterior] = resubPredict(obj) returns the posterior class probabilities for the
predictions.

[label,posterior,cost] = resubPredict(obj) returns the predicted misclassification costs
per class for the resubstituted data.

Input Arguments
obj

Discriminant analysis classifier, produced using fitcdiscr.

Output Arguments
label

Response obj predicts for the training data. label is the same data type as the training response
data obj.Y. The predicted class labels are those with minimal expected misclassification cost; see
“Prediction Using Discriminant Analysis Models” on page 21-6.

posterior

N-by-K matrix of posterior probabilities for classes obj predicts, where N is the number of
observations and K is the number of classes.

cost

N-by-K matrix of predicted misclassification costs. Each cost is the average misclassification cost with
respect to the posterior probability.

Examples
Find the total number of misclassifications of the Fisher iris data for a discriminant analysis classifier:
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load fisheriris
obj = fitcdiscr(meas,species);
Ypredict = resubPredict(obj); % the predictions
Ysame = strcmp(Ypredict,species); % true when ==
sum(~Ysame) % how many are different?

ans =
     3

More About
Posterior Probability

posterior(i,k) is the posterior probability of class k for observation i. For the mathematical
definition, see “Posterior Probability” on page 21-6.

See Also
ClassificationDiscriminant | fitcdiscr | predict

Topics
“Discriminant Analysis Classification” on page 21-2
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resubPredict
Classify observations in multiclass error-correcting output codes (ECOC) model

Syntax
label = resubPredict(Mdl)
label = resubPredict(Mdl,Name,Value)
[label,NegLoss,PBScore] = resubPredict( ___ )
[label,NegLoss,PBScore,Posterior] = resubPredict( ___ )

Description
label = resubPredict(Mdl) returns a vector of predicted class labels (label) for the trained
multiclass error-correcting output codes (ECOC) model Mdl using the predictor data stored in Mdl.X.

The software predicts the classification of an observation by assigning the observation to the class
yielding the largest negated average binary loss (or, equivalently, the smallest average binary loss).

label = resubPredict(Mdl,Name,Value) returns predicted class labels with additional options
specified by one or more name-value pair arguments. For example, specify the posterior probability
estimation method, decoding scheme, or verbosity level.

[label,NegLoss,PBScore] = resubPredict( ___ ) uses any of the input argument
combinations in the previous syntaxes and additionally returns the negated average binary loss on
page 35-6695 per class (NegLoss) for observations, and the positive-class scores (PBScore) for the
observations classified by each binary learner.

[label,NegLoss,PBScore,Posterior] = resubPredict( ___ ) additionally returns posterior
class probability estimates for observations (Posterior).

To obtain posterior class probabilities, you must set 'FitPosterior',true when training the
ECOC model using fitcecoc. Otherwise, resubPredict throws an error.

Examples

Predict Labels of Training Data Using ECOC Model

Load Fisher's iris data set. Specify the predictor data X, the response data Y, and the order of the
classes in Y.

load fisheriris
X = meas;
Y = categorical(species);
classOrder = unique(Y);

Train an ECOC model using SVM binary classifiers. Standardize the predictors using an SVM
template, and specify the class order.

t = templateSVM('Standardize',true);
Mdl = fitcecoc(X,Y,'Learners',t,'ClassNames',classOrder);
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t is an SVM template object. During training, the software uses default values for empty properties in
t. Mdl is a ClassificationECOC model.

Predict the labels of the training data. Print a random subset of true and predicted labels.

labels = resubPredict(Mdl);

rng(1); % For reproducibility
n = numel(Y); % Sample size
idx = randsample(n,10);
table(Y(idx),labels(idx),'VariableNames',{'TrueLabels','PredictedLabels'})

ans=10×2 table
    TrueLabels    PredictedLabels
    __________    _______________

    setosa          setosa       
    versicolor      versicolor   
    virginica       virginica    
    setosa          setosa       
    versicolor      versicolor   
    setosa          setosa       
    versicolor      versicolor   
    versicolor      versicolor   
    setosa          setosa       
    setosa          setosa       

Mdl correctly labels the observations with indices idx.

Predict Resubstitution Labels of ECOC Model Using Custom Binary Loss Function

Load Fisher's iris data set. Specify the predictor data X, the response data Y, and the order of the
classes in Y.

load fisheriris
X = meas;
Y = categorical(species);
classOrder = unique(Y); % Class order

Train an ECOC model using SVM binary classifiers. Standardize the predictors using an SVM
template, and specify the class order.

t = templateSVM('Standardize',true);
Mdl = fitcecoc(X,Y,'Learners',t,'ClassNames',classOrder);

t is an SVM template object. During training, the software uses default values for empty properties in
t. Mdl is a ClassificationECOC model.

SVM scores are signed distances from the observation to the decision boundary. Therefore, the
domain is (− ∞ , ∞ ). Create a custom binary loss function that does the following:

• Map the coding design matrix (M) and positive-class classification scores (s) for each learner to
the binary loss for each observation.
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• Use linear loss.
• Aggregate the binary learner loss using the median.

You can create a separate function for the binary loss function, and then save it on the MATLAB®
path. Or, you can specify an anonymous binary loss function. In this case, create a function handle
(customBL) to an anonymous binary loss function.

customBL = @(M,s)nanmedian(1 - bsxfun(@times,M,s),2)/2;

Predict labels for the training data and estimate the median binary loss per class. Print the median
negative binary losses per class for a random set of 10 observations.

[label,NegLoss] = resubPredict(Mdl,'BinaryLoss',customBL);

rng(1); % For reproducibility
n = numel(Y); % Sample size
idx = randsample(n,10);
classOrder

classOrder = 3x1 categorical
     setosa 
     versicolor 
     virginica 

table(Y(idx),label(idx),NegLoss(idx,:),'VariableNames',...
    {'TrueLabel','PredictedLabel','NegLoss'})

ans=10×3 table
    TrueLabel     PredictedLabel                NegLoss            
    __________    ______________    _______________________________

    setosa          versicolor       0.1237       1.957     -3.5807
    versicolor      versicolor       -1.017     0.62917     -1.1122
    virginica       virginica       -1.9082    -0.21802     0.62618
    setosa          versicolor      0.43842      2.2443     -4.1827
    versicolor      versicolor      -1.0733     0.39627    -0.82294
    setosa          versicolor      0.26668      2.2004      -3.967
    versicolor      versicolor      -1.1234     0.69883     -1.0754
    versicolor      versicolor      -1.2709     0.51788    -0.74697
    setosa          versicolor      0.35181       2.068     -3.9198
    setosa          versicolor      0.23355      2.1886     -3.9221

The order of the columns corresponds to the elements of classOrder. The software predicts the
label based on the maximum negated loss. The results indicate that the median of the linear losses
might not perform as well as other losses.

Estimate Posterior Probabilities Using ECOC Classifier

Train an ECOC classifier using SVM binary learners. First predict the training-sample labels and class
posterior probabilities. Then predict the maximum class posterior probability at each point in a grid.
Visualize the results.
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Load Fisher's iris data set. Specify the petal dimensions as the predictors and the species names as
the response.

load fisheriris
X = meas(:,3:4);
Y = species;
rng(1); % For reproducibility

Create an SVM template. Standardize the predictors, and specify the Gaussian kernel.

t = templateSVM('Standardize',true,'KernelFunction','gaussian');

t is an SVM template. Most of its properties are empty. When the software trains the ECOC classifier,
it sets the applicable properties to their default values.

Train the ECOC classifier using the SVM template. Transform classification scores to class posterior
probabilities (which are returned by predict or resubPredict) using the 'FitPosterior' name-
value pair argument. Specify the class order using the 'ClassNames' name-value pair argument.
Display diagnostic messages during training by using the 'Verbose' name-value pair argument.

Mdl = fitcecoc(X,Y,'Learners',t,'FitPosterior',true,...
    'ClassNames',{'setosa','versicolor','virginica'},...
    'Verbose',2);

Training binary learner 1 (SVM) out of 3 with 50 negative and 50 positive observations.
Negative class indices: 2
Positive class indices: 1

Fitting posterior probabilities for learner 1 (SVM).
Training binary learner 2 (SVM) out of 3 with 50 negative and 50 positive observations.
Negative class indices: 3
Positive class indices: 1

Fitting posterior probabilities for learner 2 (SVM).
Training binary learner 3 (SVM) out of 3 with 50 negative and 50 positive observations.
Negative class indices: 3
Positive class indices: 2

Fitting posterior probabilities for learner 3 (SVM).

Mdl is a ClassificationECOC model. The same SVM template applies to each binary learner, but
you can adjust options for each binary learner by passing in a cell vector of templates.

Predict the training-sample labels and class posterior probabilities. Display diagnostic messages
during the computation of labels and class posterior probabilities by using the 'Verbose' name-
value pair argument.

[label,~,~,Posterior] = resubPredict(Mdl,'Verbose',1);

Predictions from all learners have been computed.
Loss for all observations has been computed.
Computing posterior probabilities...

Mdl.BinaryLoss

ans = 
'quadratic'
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The software assigns an observation to the class that yields the smallest average binary loss. Because
all binary learners are computing posterior probabilities, the binary loss function is quadratic.

Display a random set of results.

idx = randsample(size(X,1),10,1);
Mdl.ClassNames

ans = 3x1 cell
    {'setosa'    }
    {'versicolor'}
    {'virginica' }

table(Y(idx),label(idx),Posterior(idx,:),...
    'VariableNames',{'TrueLabel','PredLabel','Posterior'})

ans=10×3 table
      TrueLabel         PredLabel                     Posterior               
    ______________    ______________    ______________________________________

    {'virginica' }    {'virginica' }     0.0039319     0.0039866       0.99208
    {'virginica' }    {'virginica' }      0.017066      0.018262       0.96467
    {'virginica' }    {'virginica' }      0.014947      0.015855        0.9692
    {'versicolor'}    {'versicolor'}    2.2197e-14       0.87318       0.12682
    {'setosa'    }    {'setosa'    }         0.999    0.00025091    0.00074639
    {'versicolor'}    {'virginica' }    2.2195e-14      0.059427       0.94057
    {'versicolor'}    {'versicolor'}    2.2194e-14       0.97002      0.029984
    {'setosa'    }    {'setosa'    }         0.999     0.0002499    0.00074741
    {'versicolor'}    {'versicolor'}     0.0085638       0.98259     0.0088482
    {'setosa'    }    {'setosa'    }         0.999    0.00025013    0.00074718

The columns of Posterior correspond to the class order of Mdl.ClassNames.

Define a grid of values in the observed predictor space. Predict the posterior probabilities for each
instance in the grid.

xMax = max(X);
xMin = min(X);

x1Pts = linspace(xMin(1),xMax(1));
x2Pts = linspace(xMin(2),xMax(2));
[x1Grid,x2Grid] = meshgrid(x1Pts,x2Pts);

[~,~,~,PosteriorRegion] = predict(Mdl,[x1Grid(:),x2Grid(:)]);

For each coordinate on the grid, plot the maximum class posterior probability among all classes.

contourf(x1Grid,x2Grid,...
        reshape(max(PosteriorRegion,[],2),size(x1Grid,1),size(x1Grid,2)));
h = colorbar;
h.YLabel.String = 'Maximum posterior';
h.YLabel.FontSize = 15;

hold on
gh = gscatter(X(:,1),X(:,2),Y,'krk','*xd',8);
gh(2).LineWidth = 2;
gh(3).LineWidth = 2;
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title('Iris Petal Measurements and Maximum Posterior')
xlabel('Petal length (cm)')
ylabel('Petal width (cm)')
axis tight
legend(gh,'Location','NorthWest')
hold off

Estimate Posterior Probabilities Using Parallel Computing

Train a multiclass ECOC model and estimate the posterior probabilities using parallel computing.

Load the arrhythmia data set. Examine the response data Y, and determine the number of classes.

load arrhythmia
Y = categorical(Y);
tabulate(Y)

  Value    Count   Percent
      1      245     54.20%
      2       44      9.73%
      3       15      3.32%
      4       15      3.32%
      5       13      2.88%
      6       25      5.53%
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      7        3      0.66%
      8        2      0.44%
      9        9      1.99%
     10       50     11.06%
     14        4      0.88%
     15        5      1.11%
     16       22      4.87%

K = numel(unique(Y));

Several classes are not represented in the data, and many other classes have low relative
frequencies.

Specify an ensemble learning template that uses the GentleBoost method and 50 weak classification
tree learners.

t = templateEnsemble('GentleBoost',50,'Tree');

t is a template object. Most of its properties are empty ([]). The software uses default values for all
empty properties during training.

Because the response variable contains many classes, specify a sparse random coding design.

rng(1); % For reproducibility
Coding = designecoc(K,'sparserandom');

Train an ECOC model using parallel computing. Specify to fit posterior probabilities.

pool = parpool;                      % Invokes workers

Starting parallel pool (parpool) using the 'local' profile ...
Connected to the parallel pool (number of workers: 6).

options = statset('UseParallel',true);
Mdl = fitcecoc(X,Y,'Learner',t,'Options',options,'Coding',Coding,...
    'FitPosterior',true);

Mdl is a ClassificationECOC model. You can access its properties using dot notation.

The pool invokes six workers, although the number of workers might vary among systems.

Estimate posterior probabilities, and display the posterior probability of being classified as not having
arrhythmia (class 1) given a random subset of the training data.

[~,~,~,posterior] = resubPredict(Mdl);

n = numel(Y);
idx = randsample(n,10,1);
table(idx,Y(idx),posterior(idx,1),...
    'VariableNames',{'ObservationIndex','TrueLabel','PosteriorNoArrythmia'})

ans=10×3 table
    ObservationIndex    TrueLabel    PosteriorNoArrythmia
    ________________    _________    ____________________

           79              1                0.93436      
          248              1                0.95574      
          398              10              0.032378      
          207              1                0.97965      
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          340              1                0.93656      
          206              1                0.97795      
          345              10              0.015642      
          296              2                0.13433      
          391              1                 0.9648      
          406              1                0.94861      

Input Arguments
Mdl — Full, trained multiclass ECOC model
ClassificationECOC model

Full, trained multiclass ECOC model, specified as a ClassificationECOC model trained with
fitcecoc.

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: resubPredict(Mdl,'BinaryLoss','linear','Decoding','lossbased') specifies
a linear binary learner loss function and a loss-based decoding scheme for aggregating the binary
losses.

BinaryLoss — Binary learner loss function
'hamming' | 'linear' | 'logit' | 'exponential' | 'binodeviance' | 'hinge' | 'quadratic'
| function handle

Binary learner loss function, specified as the comma-separated pair consisting of 'BinaryLoss' and
a built-in loss function name or function handle.

• This table describes the built-in functions, where yj is the class label for a particular binary learner
(in the set {–1,1,0}), sj is the score for observation j, and g(yj,sj) is the binary loss formula.

Value Description Score Domain g(yj,sj)
'binodeviance' Binomial deviance (–∞,∞) log[1 + exp(–2yjsj)]/

[2log(2)]
'exponential' Exponential (–∞,∞) exp(–yjsj)/2
'hamming' Hamming [0,1] or (–∞,∞) [1 – sign(yjsj)]/2
'hinge' Hinge (–∞,∞) max(0,1 – yjsj)/2
'linear' Linear (–∞,∞) (1 – yjsj)/2
'logit' Logistic (–∞,∞) log[1 + exp(–yjsj)]/

[2log(2)]
'quadratic' Quadratic [0,1] [1 – yj(2sj – 1)]2/2

The software normalizes binary losses so that the loss is 0.5 when yj = 0. Also, the software
calculates the mean binary loss for each class.
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• For a custom binary loss function, for example customFunction, specify its function handle
'BinaryLoss',@customFunction.

customFunction has this form:

bLoss = customFunction(M,s)

• M is the K-by-B coding matrix stored in Mdl.CodingMatrix.
• s is the 1-by-B row vector of classification scores.
• bLoss is the classification loss. This scalar aggregates the binary losses for every learner in a

particular class. For example, you can use the mean binary loss to aggregate the loss over the
learners for each class.

• K is the number of classes.
• B is the number of binary learners.

For an example of passing a custom binary loss function, see “Predict Test-Sample Labels of ECOC
Model Using Custom Binary Loss Function” on page 35-5751.

The default BinaryLoss value depends on the score ranges returned by the binary learners. This
table identifies what some default BinaryLoss values are when you use the default score transform
(ScoreTransform property of the model is 'none').

Assumption Default Value
All binary learners are any of the following:

• Classification decision trees
• Discriminant analysis models
• k-nearest neighbor models
• Linear or kernel classification models of logistic regression

learners
• Naive Bayes models

'quadratic'

All binary learners are SVMs or linear or kernel classification
models of SVM learners.

'hinge'

All binary learners are ensembles trained by AdaboostM1 or
GentleBoost.

'exponential'

All binary learners are ensembles trained by LogitBoost. 'binodeviance'
You specify to predict class posterior probabilities by setting
'FitPosterior',true in fitcecoc.

'quadratic'

Binary learners are heterogeneous and use different loss functions. 'hamming'

To check the default value, use dot notation to display the BinaryLoss property of the trained model
at the command line.
Example: 'BinaryLoss','binodeviance'
Data Types: char | string | function_handle

Decoding — Decoding scheme
'lossweighted' (default) | 'lossbased'
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Decoding scheme that aggregates the binary losses, specified as the comma-separated pair consisting
of 'Decoding' and 'lossweighted' or 'lossbased'. For more information, see “Binary Loss” on
page 35-6695.
Example: 'Decoding','lossbased'

NumKLInitializations — Number of random initial values
0 (default) | nonnegative integer scalar

Number of random initial values for fitting posterior probabilities by Kullback-Leibler divergence
minimization, specified as the comma-separated pair consisting of 'NumKLInitializations' and a
nonnegative integer scalar.

If you do not request the fourth output argument (Posterior) and set 'PosteriorMethod','kl'
(the default), then the software ignores the value of NumKLInitializations.

For more details, see “Posterior Estimation Using Kullback-Leibler Divergence” on page 35-6696.
Example: 'NumKLInitializations',5
Data Types: single | double

Options — Estimation options
[] (default) | structure array returned by statset

Estimation options, specified as the comma-separated pair consisting of 'Options' and a structure
array returned by statset.

To invoke parallel computing:

• You need a Parallel Computing Toolbox license.
• Specify 'Options',statset('UseParallel',true).

PosteriorMethod — Posterior probability estimation method
'kl' (default) | 'qp'

Posterior probability estimation method, specified as the comma-separated pair consisting of
'PosteriorMethod' and 'kl' or 'qp'.

• If PosteriorMethod is 'kl', then the software estimates multiclass posterior probabilities by
minimizing the Kullback-Leibler divergence between the predicted and expected posterior
probabilities returned by binary learners. For details, see “Posterior Estimation Using Kullback-
Leibler Divergence” on page 35-6696.

• If PosteriorMethod is 'qp', then the software estimates multiclass posterior probabilities by
solving a least-squares problem using quadratic programming. You need an Optimization Toolbox
license to use this option. For details, see “Posterior Estimation Using Quadratic Programming” on
page 35-6697.

• If you do not request the fourth output argument (Posterior), then the software ignores the
value of PosteriorMethod.

Example: 'PosteriorMethod','qp'

Verbose — Verbosity level
0 (default) | 1
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Verbosity level, specified as the comma-separated pair consisting of 'Verbose' and 0 or 1. Verbose
controls the number of diagnostic messages that the software displays in the Command Window.

If Verbose is 0, then the software does not display diagnostic messages. Otherwise, the software
displays diagnostic messages.
Example: 'Verbose',1
Data Types: single | double

Output Arguments
label — Predicted class labels
categorical array | character array | logical vector | numeric vector | cell array of character vectors

Predicted class labels, returned as a categorical or character array, logical or numeric vector, or cell
array of character vectors.

label has the same data type as Mdl.ClassNames and has the same number of rows as Mdl.X.

The software predicts the classification of an observation by assigning the observation to the class
yielding the largest negated average binary loss (or, equivalently, the smallest average binary loss).

NegLoss — Negated average binary losses
numeric matrix

Negated average binary losses, returned as a numeric matrix. NegLoss is an n-by-K matrix, where n
is the number of observations (size(Mdl.X,1)) and K is the number of unique classes
(size(Mdl.ClassNames,1)).

NegLoss(i,k) is the negated average binary loss for classifying observation i into the kth class.

• If Decoding is 'lossbased', then NegLoss(i,k) is the negated sum of the binary losses
divided by the total number of binary learners.

• If Decoding is 'lossweighted', then NegLoss(i,k) is the negated sum of the binary losses
divided by the number of binary learners for the kth class.

For more details, see “Binary Loss” on page 35-6695.

PBScore — Positive-class scores
numeric matrix

Positive-class scores for each binary learner, returned as a numeric matrix. PBScore is an n-by-B
matrix, where n is the number of observations (size(Mdl.X,1)) and B is the number of binary
learners (size(Mdl.CodingMatrix,2)).

Posterior — Posterior class probabilities
numeric matrix

Posterior class probabilities, returned as a numeric matrix. Posterior is an n-by-K matrix, where n
is the number of observations (size(Mdl.X,1)) and K is the number of unique classes
(size(Mdl.ClassNames,1)).

To request Posterior, you must set 'FitPosterior',true when training the ECOC model using
fitcecoc. Otherwise, the software throws an error.
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More About
Binary Loss

The binary loss is a function of the class and classification score that determines how well a binary
learner classifies an observation into the class.

Suppose the following:

• mkj is element (k,j) of the coding design matrix M—that is, the code corresponding to class k of
binary learner j. M is a K-by-B matrix, where K is the number of classes, and B is the number of
binary learners.

• sj is the score of binary learner j for an observation.
• g is the binary loss function.
• k  is the predicted class for the observation.

The decoding scheme of an ECOC model specifies how the software aggregates the binary losses and
determines the predicted class for each observation. The software supports two decoding schemes:

• Loss-based decoding [3] (Decoding is 'lossbased') — The predicted class of an observation
corresponds to the class that produces the minimum average of the binary losses over all binary
learners.

k = argmin
k

1
B ∑j = 1

B
mk j g(mk j, s j) .

• Loss-weighted decoding [4] (Decoding is 'lossweighted') — The predicted class of an
observation corresponds to the class that produces the minimum average of the binary losses over
the binary learners for the corresponding class.

k = argmin
k

∑
j = 1

B
mk j g(mk j, s j)

∑ j = 1

B

mk j

.

The denominator corresponds to the number of binary learners for class k. [1] suggests that loss-
weighted decoding improves classification accuracy by keeping loss values for all classes in the
same dynamic range.

The predict, resubPredict, and kfoldPredict functions return the negated value of the
objective function of argmin as the second output argument (NegLoss) for each observation and
class.

This table summarizes the supported binary loss functions, where yj is a class label for a particular
binary learner (in the set {–1,1,0}), sj is the score for observation j, and g(yj,sj) is the binary loss
function.

Value Description Score Domain g(yj,sj)
"binodeviance" Binomial deviance (–∞,∞) log[1 + exp(–2yjsj)]/

[2log(2)]
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Value Description Score Domain g(yj,sj)
"exponential" Exponential (–∞,∞) exp(–yjsj)/2
"hamming" Hamming [0,1] or (–∞,∞) [1 – sign(yjsj)]/2
"hinge" Hinge (–∞,∞) max(0,1 – yjsj)/2
"linear" Linear (–∞,∞) (1 – yjsj)/2
"logit" Logistic (–∞,∞) log[1 + exp(–yjsj)]/

[2log(2)]
"quadratic" Quadratic [0,1] [1 – yj(2sj – 1)]2/2

The software normalizes binary losses so that the loss is 0.5 when yj = 0, and aggregates using the
average of the binary learners.

Do not confuse the binary loss with the overall classification loss (specified by the LossFun name-
value argument of the resubLoss and resubPredict object functions), which measures how well
an ECOC classifier performs as a whole.

Algorithms
The software can estimate class posterior probabilities by minimizing the Kullback-Leibler divergence
or by using quadratic programming. For the following descriptions of the posterior estimation
algorithms, assume that:

• mkj is the element (k,j) of the coding design matrix M.
• I is the indicator function.
• p k is the class posterior probability estimate for class k of an observation, k = 1,...,K.
• rj is the positive-class posterior probability for binary learner j. That is, rj is the probability that

binary learner j classifies an observation into the positive class, given the training data.

Posterior Estimation Using Kullback-Leibler Divergence

By default, the software minimizes the Kullback-Leibler divergence to estimate class posterior
probabilities. The Kullback-Leibler divergence between the expected and observed positive-class
posterior probabilities is

Δ(r, r ) = ∑
j = 1

L
w j r jlog

r j
r j

+ 1− r j log
1− r j
1− r j

,

where w j = ∑
Sj

wi
∗ is the weight for binary learner j.

• Sj is the set of observation indices on which binary learner j is trained.
• wi

∗ is the weight of observation i.

The software minimizes the divergence iteratively. The first step is to choose initial values
p k

(0); k = 1, ..., K for the class posterior probabilities.

• If you do not specify 'NumKLIterations', then the software tries both sets of deterministic
initial values described next, and selects the set that minimizes Δ.
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• p k
(0) = 1/K; k = 1, ..., K .

• p k
(0); k = 1, ..., K is the solution of the system

M01p (0) = r,

where M01 is M with all mkj = –1 replaced with 0, and r is a vector of positive-class posterior
probabilities returned by the L binary learners [Dietterich et al.] on page 19-285. The software
uses lsqnonneg to solve the system.

• If you specify 'NumKLIterations',c, where c is a natural number, then the software does the
following to choose the set p k

(0); k = 1, ..., K, and selects the set that minimizes Δ.

• The software tries both sets of deterministic initial values as described previously.
• The software randomly generates c vectors of length K using rand, and then normalizes each

vector to sum to 1.

At iteration t, the software completes these steps:

1 Compute

r j
(t) =

∑
k = 1

K
p k

(t)I(mk j = + 1)

∑
k = 1

K
p k

(t)I(mk j = + 1∪mk j = − 1)
.

2 Estimate the next class posterior probability using

p k
(t + 1) = p k

(t)
∑

j = 1

L
w j r jI mk j = + 1 + 1− r j I mk j = − 1

∑
j = 1

L
w j r j

(t)I mk j = + 1 + 1− r j
(t) I mk j = − 1

.

3 Normalize p k
(t + 1); k = 1, ..., K so that they sum to 1.

4 Check for convergence.

For more details, see [Hastie et al.] on page 19-286 and [Zadrozny] on page 19-287.

Posterior Estimation Using Quadratic Programming

Posterior probability estimation using quadratic programming requires an Optimization Toolbox
license. To estimate posterior probabilities for an observation using this method, the software
completes these steps:

1 Estimate the positive-class posterior probabilities, rj, for binary learners j = 1,...,L.
2 Using the relationship between rj and p k [Wu et al.] on page 19-287, minimize

∑
j = 1

L

−r j ∑
k = 1

K
p kI mk j = − 1 + 1− r j ∑

k = 1

K
p kI mk j = + 1

2

 resubPredict

35-6697



with respect to p k and the restrictions

0 ≤ p k ≤ 1

∑
k

p k = 1.

The software performs minimization using quadprog.

Version History
Introduced in R2014b
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Extended Capabilities
Automatic Parallel Support
Accelerate code by automatically running computation in parallel using Parallel Computing Toolbox™.

To run in parallel, specify the 'Options' name-value argument in the call to this function and set the
'UseParallel' field of the options structure to true using statset.

For example: 'Options',statset('UseParallel',true)

For more information about parallel computing, see “Run MATLAB Functions with Automatic Parallel
Support” (Parallel Computing Toolbox).

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.
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This function fully supports GPU arrays. For more information, see “Run MATLAB Functions on a
GPU” (Parallel Computing Toolbox).

See Also
ClassificationECOC | fitcecoc | statset | predict | quadprog | resubLoss

Topics
“Quick Start Parallel Computing for Statistics and Machine Learning Toolbox” on page 33-2
“Reproducibility in Parallel Statistical Computations” on page 33-16
“Concepts of Parallel Computing in Statistics and Machine Learning Toolbox” on page 33-6
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resubPredict
Classify observations in ensemble of classification models

Syntax
label = resubPredict(ens)
[label,score] = resubPredict(ens)
[label,score] = resubPredict(ens,Name,Value)

Description
label = resubPredict(ens) returns the labels ens predicts for the data ens.X. label is the
predictions of ens on the data that fitcensemble used to create ens.

[label,score] = resubPredict(ens) also returns scores for all classes.

[label,score] = resubPredict(ens,Name,Value) finds resubstitution predictions with
additional options specified by one or more Name,Value pair arguments.

Input Arguments
ens

A classification ensemble created with fitcensemble.

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.

learners

Indices of weak learners in the ensemble ranging from 1 to ens.NumTrained. resubPredict uses
only these learners for calculating loss.

Default: 1:NumTrained

UseParallel

Indication to perform inference in parallel, specified as false (compute serially) or true (compute in
parallel). Parallel computation requires Parallel Computing Toolbox. Parallel inference can be faster
than serial inference, especially for large datasets. Parallel computation is supported only for tree
learners.

Default: false
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Output Arguments
label

The response ens predicts for the training data. label is the same data type as the training response
data ens.Y, and has the same number of entries as the number of rows in ens.X.

score

An N-by-K matrix, where N is the number of rows in ens.X, and K is the number of classes in ens.
High score value indicates that an observation likely comes from this class.

Examples
Find Number of Ensemble Misclassifications

Find the total number of misclassifications of the fisheriris data for a classification ensemble.

Load the Fisher iris data set.

load fisheriris

Train an ensemble of 100 boosted classification trees using AdaBoostM2.

t = templateTree('MaxNumSplits',1); % Weak learner template tree object
ens = fitcensemble(meas,species,'Method','AdaBoostM2','Learners',t);

Find the total number of misclassifications.

Ypredict = resubPredict(ens); % The predictions
Ysame = strcmp(Ypredict,species); % True when Ypredict and species are equal
sum(~Ysame) % Number of different predictions

ans = 5

More About
Score (ensemble)

For ensembles, a classification score represents the confidence of a classification into a class. The
higher the score, the higher the confidence.

Different ensemble algorithms have different definitions for their scores. Furthermore, the range of
scores depends on ensemble type. For example:

• AdaBoostM1 scores range from –∞ to ∞.
• Bag scores range from 0 to 1.

Extended Capabilities
Automatic Parallel Support
Accelerate code by automatically running computation in parallel using Parallel Computing Toolbox™.

To run in parallel, set the UseParallel name-value argument to true in the call to this function.
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For more general information about parallel computing, see “Run MATLAB Functions with Automatic
Parallel Support” (Parallel Computing Toolbox).

You cannot use UseParallel with GPU arrays.

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

Usage notes and limitations:

• You cannot use UseParallel with GPU arrays.

For more information, see “Run MATLAB Functions on a GPU” (Parallel Computing Toolbox).

See Also
resubEdge | resubMargin | resubLoss | resubPredict
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resubPredict
Classify training data using trained classifier

Syntax
label = resubPredict(Mdl)
[label,Score] = resubPredict(Mdl)

[label,Score] = resubPredict(Mdl,'IncludeInteractions',includeInteractions)
[label,Score,Cost] = resubPredict(Mdl)

Description
label = resubPredict(Mdl) returns a vector of predicted class labels (label) for the trained
classification model Mdl using the predictor data stored in Mdl.X.

[label,Score] = resubPredict(Mdl) also returns classification scores.

[label,Score] = resubPredict(Mdl,'IncludeInteractions',includeInteractions)
specifies whether to include interaction terms in computations. This syntax applies only to
generalized additive models.

[label,Score,Cost] = resubPredict(Mdl) also returns the expected misclassification cost.
This syntax applies only to k-nearest neighbor and naive Bayes models.

Examples

Label Training Sample Observations of Naive Bayes Classifier

Load the fisheriris data set. Create X as a numeric matrix that contains four measurements for
150 irises. Create Y as a cell array of character vectors that contains the corresponding iris species.

load fisheriris
X = meas;
Y = species;
rng('default') % For reproducibility

Train a naive Bayes classifier using the predictors X and class labels Y. A recommended practice is to
specify the class names. fitcnb assumes that each predictor is conditionally and normally
distributed.

Mdl = fitcnb(X,Y,'ClassNames',{'setosa','versicolor','virginica'})

Mdl = 
  ClassificationNaiveBayes
              ResponseName: 'Y'
     CategoricalPredictors: []
                ClassNames: {'setosa'  'versicolor'  'virginica'}
            ScoreTransform: 'none'
           NumObservations: 150
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         DistributionNames: {'normal'  'normal'  'normal'  'normal'}
    DistributionParameters: {3x4 cell}

  Properties, Methods

Mdl is a trained ClassificationNaiveBayes classifier.

Predict the training sample labels.

label = resubPredict(Mdl);

Display the results for a random set of 10 observations.

idx = randsample(size(X,1),10);
table(Y(idx),label(idx),'VariableNames', ...
    {'True Label','Predicted Label'})

ans=10×2 table
      True Label      Predicted Label
    ______________    _______________

    {'virginica' }    {'virginica' } 
    {'setosa'    }    {'setosa'    } 
    {'virginica' }    {'virginica' } 
    {'versicolor'}    {'versicolor'} 
    {'virginica' }    {'virginica' } 
    {'versicolor'}    {'versicolor'} 
    {'virginica' }    {'virginica' } 
    {'setosa'    }    {'setosa'    } 
    {'virginica' }    {'virginica' } 
    {'setosa'    }    {'setosa'    } 

Create a confusion chart from the true labels Y and the predicted labels label.

cm = confusionchart(Y,label);
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Estimate In-Sample Posterior Probabilities of SVM Classifier

Load the ionosphere data set. This data set has 34 predictors and 351 binary responses for radar
returns, either bad ('b') or good ('g').

load ionosphere

Train a support vector machine (SVM) classifier. Standardize the data and specify that 'g' is the
positive class.

SVMModel = fitcsvm(X,Y,'ClassNames',{'b','g'},'Standardize',true);

SVMModel is a ClassificationSVM classifier.

Fit the optimal score-to-posterior-probability transformation function.

rng(1); % For reproducibility
ScoreSVMModel = fitPosterior(SVMModel)

ScoreSVMModel = 
  ClassificationSVM
             ResponseName: 'Y'
    CategoricalPredictors: []
               ClassNames: {'b'  'g'}
           ScoreTransform: '@(S)sigmoid(S,-9.481840e-01,-1.218721e-01)'
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          NumObservations: 351
                    Alpha: [90x1 double]
                     Bias: -0.1343
         KernelParameters: [1x1 struct]
                       Mu: [0.8917 0 0.6413 0.0444 0.6011 0.1159 0.5501 ... ]
                    Sigma: [0.3112 0 0.4977 0.4414 0.5199 0.4608 0.4927 ... ]
           BoxConstraints: [351x1 double]
          ConvergenceInfo: [1x1 struct]
          IsSupportVector: [351x1 logical]
                   Solver: 'SMO'

  Properties, Methods

Because the classes are inseparable, the score transformation function
(ScoreSVMModel.ScoreTransform) is the sigmoid function.

Estimate scores and positive class posterior probabilities for the training data. Display the results for
the first 10 observations.

[label,scores] = resubPredict(SVMModel);
[~,postProbs] = resubPredict(ScoreSVMModel);
table(Y(1:10),label(1:10),scores(1:10,2),postProbs(1:10,2),'VariableNames',...
    {'TrueLabel','PredictedLabel','Score','PosteriorProbability'})

ans=10×4 table
    TrueLabel    PredictedLabel     Score     PosteriorProbability
    _________    ______________    _______    ____________________

      {'g'}          {'g'}          1.4861           0.82215      
      {'b'}          {'b'}         -1.0002           0.30439      
      {'g'}          {'g'}          1.8686           0.86917      
      {'b'}          {'b'}         -2.6456          0.084197      
      {'g'}          {'g'}          1.2806           0.79185      
      {'b'}          {'b'}         -1.4617           0.22026      
      {'g'}          {'g'}          2.1671           0.89814      
      {'b'}          {'b'}         -5.7089         0.0050106      
      {'g'}          {'g'}          2.4796           0.92223      
      {'b'}          {'b'}         -2.7812          0.074801      

Compare GAMs by Examining Logit of Posterior Probabilities

Estimate the logit of posterior probabilities (classification scores) for training data using a
classification generalized additive model (GAM) that contains both linear and interaction terms for
predictors. Specify whether to include interaction terms when computing the classification scores.

Load the ionosphere data set. This data set has 34 predictors and 351 binary responses for radar
returns, either bad ('b') or good ('g').

load ionosphere

Train a GAM using the predictors X and class labels Y. A recommended practice is to specify the class
names. Specify to include the 10 most important interaction terms.
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Mdl = fitcgam(X,Y,'ClassNames',{'b','g'},'Interactions',10)

Mdl = 
  ClassificationGAM
             ResponseName: 'Y'
    CategoricalPredictors: []
               ClassNames: {'b'  'g'}
           ScoreTransform: 'logit'
                Intercept: 3.2565
             Interactions: [10x2 double]
          NumObservations: 351

  Properties, Methods

Mdl is a ClassificationGAM model object.

Predict the labels using both linear and interaction terms, and then using only linear terms. To
exclude interaction terms, specify 'IncludeInteractions',false. Estimate the logit of posterior
probabilities by specifying the ScoreTransform property as 'none'.

Mdl.ScoreTransform = 'none';
[labels,scores] = resubPredict(Mdl);
[labels_nointeraction,scores_nointeraction] = resubPredict(Mdl,'IncludeInteractions',false);

Create a table containing the true labels, predicted labels, and scores. Display the first eight rows of
the table.

t = table(Y,labels,scores,labels_nointeraction,scores_nointeraction, ...
    'VariableNames',{'True Labels','Predicted Labels','Scores' ...
    'Predicted Labels Without Interactions','Scores Without Interactions'});
head(t)

    True Labels    Predicted Labels          Scores          Predicted Labels Without Interactions    Scores Without Interactions
    ___________    ________________    __________________    _____________________________________    ___________________________

       {'g'}            {'g'}          -51.628     51.628                    {'g'}                        -47.676     47.676     
       {'b'}            {'b'}           37.433    -37.433                    {'b'}                         36.435    -36.435     
       {'g'}            {'g'}          -62.061     62.061                    {'g'}                        -58.357     58.357     
       {'b'}            {'b'}           37.666    -37.666                    {'b'}                         36.297    -36.297     
       {'g'}            {'g'}          -47.361     47.361                    {'g'}                        -43.373     43.373     
       {'b'}            {'b'}           106.48    -106.48                    {'b'}                         102.43    -102.43     
       {'g'}            {'g'}          -62.665     62.665                    {'g'}                        -58.377     58.377     
       {'b'}            {'b'}           201.46    -201.46                    {'b'}                         197.84    -197.84     

The predicted labels for the training data X do not vary depending on the inclusion of interaction
terms, but the estimated score values are different.

Estimate In-Sample Posterior Probabilities and Misclassification Costs of Naive Bayes
Classifier

Estimate in-sample posterior probabilities and misclassification costs using a naive Bayes classifier.
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Load the fisheriris data set. Create X as a numeric matrix that contains four petal measurements
for 150 irises. Create Y as a cell array of character vectors that contains the corresponding iris
species.

load fisheriris
X = meas;
Y = species;
rng('default') % For reproducibility

Train a naive Bayes classifier using the predictors X and class labels Y. A recommended practice is to
specify the class names. fitcnb assumes that each predictor is conditionally and normally
distributed.

Mdl = fitcnb(X,Y,'ClassNames',{'setosa','versicolor','virginica'});

Mdl is a trained ClassificationNaiveBayes classifier.

Estimate the posterior probabilities and expected misclassification costs for the training data.

[label,Posterior,MisclassCost] = resubPredict(Mdl);
Mdl.ClassNames

ans = 3x1 cell
    {'setosa'    }
    {'versicolor'}
    {'virginica' }

Display the results for 10 randomly selected observations.

idx = randsample(size(X,1),10);
table(Y(idx),label(idx),Posterior(idx,:),MisclassCost(idx,:),'VariableNames', ...
    {'TrueLabel','PredictedLabel','PosteriorProbability','MisclassificationCost'})

ans=10×4 table
      TrueLabel       PredictedLabel              PosteriorProbability                       MisclassificationCost         
    ______________    ______________    _________________________________________    ______________________________________

    {'virginica' }    {'virginica' }    6.2514e-269     1.1709e-09              1             1             1    1.1709e-09
    {'setosa'    }    {'setosa'    }              1     5.5339e-19      2.485e-25    5.5339e-19             1             1
    {'virginica' }    {'virginica' }    7.4191e-249     1.4481e-10              1             1             1    1.4481e-10
    {'versicolor'}    {'versicolor'}     3.4472e-62        0.99997      3.362e-05             1     3.362e-05       0.99997
    {'virginica' }    {'virginica' }    3.4268e-229      6.597e-09              1             1             1     6.597e-09
    {'versicolor'}    {'versicolor'}     6.0941e-77         0.9998     0.00019663             1    0.00019663        0.9998
    {'virginica' }    {'virginica' }    1.3467e-167       0.002187        0.99781             1       0.99781      0.002187
    {'setosa'    }    {'setosa'    }              1     1.5776e-15     5.7172e-24    1.5776e-15             1             1
    {'virginica' }    {'virginica' }    2.0116e-232     2.6206e-10              1             1             1    2.6206e-10
    {'setosa'    }    {'setosa'    }              1     1.8085e-17     1.9639e-24    1.8085e-17             1             1

The order of the columns of Posterior and MisclassCost corresponds to the order of the classes
in Mdl.ClassNames.

Input Arguments
Mdl — Classification machine learning model
full classification model object
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Classification machine learning model, specified as a full classification model object, as given in the
following table of supported models.

Model Classification Model Object
Generalized additive model ClassificationGAM
k-nearest neighbor model ClassificationKNN
Naive Bayes model ClassificationNaiveBayes
Neural network model ClassificationNeuralNetwork
Support vector machine for one-class and binary
classification

ClassificationSVM

includeInteractions — Flag to include interaction terms
true | false

Flag to include interaction terms of the model, specified as true or false. This argument is valid
only for a generalized additive model (GAM). That is, you can specify this argument only when Mdl is
ClassificationGAM.

The default value is true if Mdl contains interaction terms. The value must be false if the model
does not contain interaction terms.
Data Types: logical

Output Arguments
label — Predicted class labels
categorical array | character array | logical vector | numeric vector | cell array of character vectors

Predicted class labels, returned as a categorical or character array, logical or numeric vector, or cell
array of character vectors.

label has the same data type as the observed class labels that trained Mdl, and its length is equal to
the number of observations in Mdl.X. (The software treats string arrays as cell arrays of character
vectors.)

Score — Class scores
numeric matrix

Class scores, returned as a numeric matrix. Score has rows equal to the number of observations in
Mdl.X and columns equal to the number of distinct classes in the training data
(size(Mdl.ClassNames,1)).

Cost — Expected misclassification costs
numeric matrix

Expected misclassification costs, returned as a numeric matrix. This output applies only to k-nearest
neighbor and naive Bayes models. That is, resubPredict returns Cost only when Mdl is
ClassificationKNN or ClassificationNaiveBayes.

Cost has rows equal to the number of observations in Mdl.X and columns equal to the number of
distinct classes in the training data (size(Mdl.ClassNames,1)).
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Cost(j,k) is the expected misclassification cost of the observation in row j of Mdl.X predicted into
class k (in class Mdl.ClassNames(k)).

Algorithms
resubPredict computes predictions according to the corresponding predict function of the object
(Mdl). For a model-specific description, see the predict function reference pages in the following
table.

Model Classification Model Object
(Mdl)

predict Object Function

Generalized additive model ClassificationGAM predict
k-nearest neighbor model ClassificationKNN predict
Naive Bayes model ClassificationNaiveBayes predict
Neural network model ClassificationNeuralNetw

ork
predict

Support vector machine for one-
class and binary classification

ClassificationSVM predict

Version History
Introduced in R2012a

Extended Capabilities
GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

Usage notes and limitations:

• This function fully supports GPU arrays for a trained classification model specified as a
ClassificationKNN or ClassificationSVM object.

For more information, see “Run MATLAB Functions on a GPU” (Parallel Computing Toolbox).

See Also
resubLoss | resubMargin | resubEdge
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resubPredict
Class: ClassificationTree

Predict resubstitution labels of classification tree

Syntax
label = resubPredict(tree)
[label,posterior] = resubPredict(tree)
[label,posterior,node] = resubPredict(tree)
[label,posterior,node,cnum] = resubPredict(tree)
[label,...] = resubPredict(tree,Name,Value)

Description
label = resubPredict(tree) returns the labels tree predicts for the data tree.X. label is the
predictions of tree on the data that fitctree used to create tree.

[label,posterior] = resubPredict(tree) returns the posterior class probabilities for the
predictions.

[label,posterior,node] = resubPredict(tree) returns the node numbers of tree for the
resubstituted data.

[label,posterior,node,cnum] = resubPredict(tree) returns the predicted class numbers
for the predictions.

[label,...] = resubPredict(tree,Name,Value) returns resubstitution predictions with
additional options specified by one or more Name,Value pair arguments.

Input Arguments
tree

A classification tree constructed by fitctree.

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.

Subtrees — Pruning level
0 (default) | vector of nonnegative integers | 'all'

Pruning level, specified as the comma-separated pair consisting of 'Subtrees' and a vector of
nonnegative integers in ascending order or 'all'.
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If you specify a vector, then all elements must be at least 0 and at most max(tree.PruneList). 0
indicates the full, unpruned tree and max(tree.PruneList) indicates the completely pruned tree
(i.e., just the root node).

If you specify 'all', then resubPredict operates on all subtrees (i.e., the entire pruning
sequence). This specification is equivalent to using 0:max(tree.PruneList).

resubPredict prunes tree to each level indicated in Subtrees, and then estimates the
corresponding output arguments. The size of Subtrees determines the size of some output
arguments.

To invoke Subtrees, the properties PruneList and PruneAlpha of tree must be nonempty. In
other words, grow tree by setting 'Prune','on', or by pruning tree using prune.
Example: 'Subtrees','all'
Data Types: single | double | char | string

Output Arguments
label

The response tree predicts for the training data. label is the same data type as the training
response data tree.Y.

If the Subtrees name-value argument contains m>1 entries, label has m columns, each of which
represents the predictions of the corresponding subtree. Otherwise, label is a vector.

posterior

Matrix or array of posterior probabilities for classes tree predicts.

If the Subtrees name-value argument is a scalar or is missing, posterior is an n-by-k matrix,
where n is the number of rows in the training data tree.X, and k is the number of classes.

If Subtrees contains m>1 entries, posterior is an n-by-k-by-m array, where the matrix for each m
gives posterior probabilities for the corresponding subtree.

node

The node numbers of tree where each data row resolves.

If the Subtrees name-value argument is a scalar or is missing, node is a numeric column vector with
n rows, the same number of rows as tree.X.

If Subtrees contains m>1 entries, node is a n-by-m matrix. Each column represents the node
predictions of the corresponding subtree.

cnum

The class numbers that tree predicts for the resubstituted data.

If the Subtrees name-value argument is a scalar or is missing, cnum is a numeric column vector with
n rows, the same number of rows as tree.X.
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If Subtrees contains m>1 entries, cnum is a n-by-m matrix. Each column represents the class
predictions of the corresponding subtree.

Examples

Compute Number of Misclassified Observations

Find the total number of misclassifications of the Fisher iris data for a classification tree.

load fisheriris
tree = fitctree(meas,species);
Ypredict = resubPredict(tree);    % The predictions
Ysame = strcmp(Ypredict,species); % True when ==
sum(~Ysame) % How many are different?

ans = 3

Compare In-Sample Posterior Probabilities for Each Subtree

Load Fisher's iris data set. Partition the data into training (50%)

load fisheriris

Grow a classification tree using the all petal measurements.

Mdl = fitctree(meas(:,3:4),species);
n = size(meas,1); % Sample size
K = numel(Mdl.ClassNames); % Number of classes

View the classification tree.

view(Mdl,'Mode','graph');
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The classification tree has four pruning levels. Level 0 is the full, unpruned tree (as displayed). Level
4 is just the root node (i.e., no splits).

Estimate the posterior probabilities for each class using the subtrees pruned to levels 1 and 3.

[~,Posterior] = resubPredict(Mdl,'SubTrees',[1 3]);

Posterior is an n-by- K-by- 2 array of posterior probabilities. Rows of Posterior correspond to
observations, columns correspond to the classes with order Mdl.ClassNames, and pages correspond
to pruning level.

Display the class posterior probabilities for iris 125 using each subtree.

Posterior(125,:,:)

ans = 
ans(:,:,1) =

         0    0.0217    0.9783

ans(:,:,2) =
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         0    0.5000    0.5000

The decision stump (page 2 of Posterior) has trouble predicting whether iris 125 is versicolor or
virginica.

Posterior Probability Definition for Classification Tree

Classify a predictor X as true when X < 0.15 or X > 0.95, and as false otherwise.

Generate 100 uniformly distributed random numbers between 0 and 1, and classify them using a tree
model.

rng("default") % For reproducibility
X = rand(100,1);
Y = (abs(X - 0.55) > 0.4);
tree = fitctree(X,Y);
view(tree,"Mode","graph")
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Prune the tree.

tree1 = prune(tree,"Level",1);
view(tree1,"Mode","graph")

The pruned tree correctly classifies observations that are less than 0.15 as true. It also correctly
classifies observations from 0.15 to 0.95 as false. However, it incorrectly classifies observations that
are greater than 0.95 as false. Therefore, the score for observations that are greater than 0.15
should be about 0.05/0.85=0.06 for true, and about 0.8/0.85=0.94 for false.

Compute the prediction scores (posterior probabilities) for the first 10 rows of X.

[~,score] = resubPredict(tree1);
[score(1:10,:) X(1:10)]

ans = 10×3

    0.9059    0.0941    0.8147
    0.9059    0.0941    0.9058
         0    1.0000    0.1270
    0.9059    0.0941    0.9134
    0.9059    0.0941    0.6324
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         0    1.0000    0.0975
    0.9059    0.0941    0.2785
    0.9059    0.0941    0.5469
    0.9059    0.0941    0.9575
    0.9059    0.0941    0.9649

Indeed, every value of X (the right-most column) that is less than 0.15 has associated scores (the left
and center columns) of 0 and 1, while the other values of X have associated scores of approximately
0.91 and 0.09. The difference (score of 0.09 instead of the expected 0.06) is due to a statistical
fluctuation: there are 8 observations in X in the range (0.95,1) instead of the expected 5 observations.

sum(X > 0.95)

ans = 8

More About
Posterior Probability

The posterior probability of the classification at a node is the number of training sequences that lead
to that node with this classification, divided by the number of training sequences that lead to that
node.

For an example, see “Posterior Probability Definition for Classification Tree” on page 35-6715.

Extended Capabilities
GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

This function fully supports GPU arrays. For more information, see “Run MATLAB Functions on a
GPU” (Parallel Computing Toolbox).

See Also
resubEdge | resubMargin | resubLoss | predict | fitctree
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resubPredict
Predict response of ensemble by resubstitution

Syntax
Yfit = resubPredict(ens)
Yfit = resubPredict(ens,Name,Value)

Description
Yfit = resubPredict(ens) returns the response ens predicts for the data ens.X. Yfit is the
predictions of ens on the data that fitrensemble used to create ens.

Yfit = resubPredict(ens,Name,Value) predicts responses with additional options specified by
one or more Name,Value pair arguments.

Input Arguments
ens

A regression ensemble created with fitrensemble.

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.

learners

Indices of weak learners in the ensemble ranging from 1 to ens.NumTrained. resubPredict uses
only these learners for calculating loss.

Default: 1:NumTrained

UseParallel

Indication to perform inference in parallel, specified as false (compute serially) or true (compute in
parallel). Parallel computation requires Parallel Computing Toolbox. Parallel inference can be faster
than serial inference, especially for large datasets. Parallel computation is supported only for tree
learners.

Default: false
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Output Arguments
Yfit

A vector of predicted responses to the training data, with ens.X elements.

Examples
Find Mean-Squared Error of Resubstitution Predictions

Find the resubstitution predictions of mileage from the carsmall data, and look at their mean-
squared difference from the training data.

Load the carsmall data set and select horsepower and vehicle weight as predictors.

load carsmall
X = [Horsepower Weight];

Train an ensemble of regression trees.

ens = fitrensemble(X,MPG,'Method','LSBoost','Learners','Tree');

Find the resubstitution predictions of MPG.

Yfit = resubPredict(ens);

Calculate the mean-squared difference of the resubstitution predictions from the training data.

MSE = mean((Yfit - ens.Y).^2)

MSE = 0.5836

Confirm that the result is the same as the result of resubLoss.

resubLoss(ens)

ans = 0.5836

Extended Capabilities
Automatic Parallel Support
Accelerate code by automatically running computation in parallel using Parallel Computing Toolbox™.

To run in parallel, set the UseParallel name-value argument to true in the call to this function.

For more general information about parallel computing, see “Run MATLAB Functions with Automatic
Parallel Support” (Parallel Computing Toolbox).

You cannot use UseParallel with GPU arrays.

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

Usage notes and limitations:
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• You cannot use UseParallel with GPU arrays.

For more information, see “Run MATLAB Functions on a GPU” (Parallel Computing Toolbox).

See Also
resubLoss | resubPredict | predict
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resubPredict
Predict responses for training data using trained regression model

Syntax
yFit = resubPredict(Mdl)
yFit = resubPredict(Mdl,Name,Value)
[yFit,ySD,yInt] = resubPredict( ___ )

Description
yFit = resubPredict(Mdl) returns a vector of predicted responses for the trained regression
model Mdl using the predictor data stored in Mdl.X.

yFit = resubPredict(Mdl,Name,Value) specifies options using one or more name-value
arguments. For example, 'IncludeInteractions',true specifies to include interaction terms in
computations for generalized additive models. This syntax applies only to generalized additive models
and Gaussian process regression models.

[yFit,ySD,yInt] = resubPredict( ___ ) also returns the standard deviations and prediction
intervals of the response variable, evaluated at each observation in the predictor data Mdl.X, using
any of the input argument combinations in the previous syntaxes. This syntax applies only to
generalized additive models for which IsStandardDeviationFit is true, and to Gaussian process
regression models for which the PredictMethod is not 'bcd'.

Examples

Resubstitution Predictions

Train a generalized additive model (GAM), then predict responses for the training data.

Load the patients data set.

load patients

Create a table that contains the predictor variables (Age, Diastolic, Smoker, Weight, Gender,
SelfAssessedHealthStatus) and the response variable (Systolic).

tbl = table(Age,Diastolic,Smoker,Weight,Gender,SelfAssessedHealthStatus,Systolic);

Train a univariate GAM that contains the linear terms for the predictors in tbl.

Mdl = fitrgam(tbl,"Systolic")

Mdl = 
  RegressionGAM
            PredictorNames: {1x6 cell}
              ResponseName: 'Systolic'
     CategoricalPredictors: [3 5 6]
         ResponseTransform: 'none'
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                 Intercept: 122.7800
    IsStandardDeviationFit: 0
           NumObservations: 100

  Properties, Methods

Mdl is a RegressionGAM model object.

Predict responses for the training set.

yFit = resubPredict(Mdl);

Create a table containing the observed response values and the predicted response values. Display
the first eight rows of the table.

t = table(tbl.Systolic,yFit, ...
    'VariableNames',{'Observed Value','Predicted Value'});
head(t)

    Observed Value    Predicted Value
    ______________    _______________

         124              124.75     
         109              109.48     
         125              122.89     
         117              115.87     
         122              121.61     
         121              122.02     
         130              126.39     
         115              115.95     

Compute Prediction Intervals

Train a Gaussian process regression (GPR) model by using the fitrgp function. Then predict
responses for the training data and estimate prediction intervals of the responses at each observation
in the training data by using the resubPredict function.

Generate a training data set.

rng(1) % For reproducibility
n = 100000;
X = linspace(0,1,n)';
X = [X,X.^2];
y = 1 + X*[1;2] + sin(20*X*[1;-2]) + 0.2*randn(n,1);

Train a GPR model using the squared exponential kernel function. Estimate parameters by using the
subset of regressors ('sr') approximation method, and make predictions using the subset of data
('sd') method. Use 50 points in the active set, and specify 'sgma' (sparse greedy matrix
approximation) method for active set selection. Because the scales of the first and second predictors
are different, standardize the data set.

gprMdl = fitrgp(X,y,'KernelFunction','squaredExponential', ...
    'FitMethod','sr','PredictMethod','sd', ...
    'ActiveSetSize',50,'ActiveSetMethod','sgma','Standardize',true);
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fitrgp accepts any combination of fitting, prediction, and active set selection methods. However, if
you train a model using the block coordinate descent prediction method
('PredictMethod','bcd'), you cannot use the model to compute the standard deviations of the
predicted responses; therefore, you also cannot use the model to compute the prediction intervals.
For more details, see “Tips” on page 35-5830.

Use the trained model to predict responses for the training data and to estimate the prediction
intervals of the predicted responses.

[ypred,~,yci] = resubPredict(gprMdl);

Plot the true responses, predicted responses, and prediction intervals.

figure
plot(y,'r')
hold on
plot(ypred,'b')
plot(yci(:,1),'k--')
plot(yci(:,2),'k--')
legend('True responses','GPR predictions','95% prediction limits','Location','Best')
xlabel('X')
ylabel('y')
hold off

Compute the mean squared error loss on the training data using the trained GPR model.

L = resubLoss(gprMdl)
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L = 0.0523

Compare GAMs by Examining Resubstitution Predictions

Predict responses for a training data set using a generalized additive model (GAM) that contains both
linear and interaction terms for predictors. Specify whether to include interaction terms when
predicting responses.

Load the carbig data set, which contains measurements of cars made in the 1970s and early 1980s.

load carbig

Specify Acceleration, Displacement, Horsepower, and Weight as the predictor variables (X)
and MPG as the response variable (Y).

X = [Acceleration,Displacement,Horsepower,Weight];
Y = MPG;

Train a generalized additive model that contains all the available linear and interaction terms in X.

Mdl = fitrgam(X,Y,'Interactions','all');

Mdl is a RegressionGAM model object.

Predict the responses using both linear and interaction terms, and then using only linear terms. To
exclude interaction terms, specify 'IncludeInteractions',false.

yFit = resubPredict(Mdl);
yFit_nointeraction = resubPredict(Mdl,'IncludeInteractions',false);

Create a table containing the observed response values and the predicted response values. Display
the first eight rows of the table.

t = table(Mdl.Y,yFit,yFit_nointeraction, ...
    'VariableNames',{'Observed Response', ...
    'Predicted Response','Predicted Response Without Interactions'});
head(t)

    Observed Response    Predicted Response    Predicted Response Without Interactions
    _________________    __________________    _______________________________________

           18                  18.026                           17.22                 
           15                  15.003                          15.791                 
           18                  17.663                           16.18                 
           16                  16.178                          15.536                 
           17                  17.107                          17.361                 
           15                  14.943                          14.424                 
           14                  14.119                          14.981                 
           14                  13.864                          13.498                 

Input Arguments
Mdl — Regression machine learning model
full regression model object
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Regression machine learning model, specified as a full regression model object, as given in the
following table of supported models.

Model Regression Model Object
Gaussian process regression model RegressionGP
Generalized additive model (GAM) RegressionGAM
Neural network model RegressionNeuralNetwork

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: 'Alpha',0.01,'IncludeInteractions',false specifies the confidence level as 99%
and excludes interaction terms from computations for a generalized additive model.

Alpha — Significance level
0.05 (default) | numeric scalar in [0,1]

Significance level for the confidence level of the prediction intervals yInt, specified as a numeric
scalar in the range [0,1]. The confidence level of yInt is equal to 100(1 – Alpha)%.

This argument is valid only for a generalized additive model object that includes the standard
deviation fit, or a Gaussian process regression model that does not use the block coordinate descent
method for prediction. That is, you can specify this argument only in one of these situations:

• Mdl is RegressionGAM and the IsStandardDeviationFit property of Mdl is true.
• Mdl is RegressionGP and the PredictMethod property of Mdl is not 'bcd'.

Example: 'Alpha',0.01
Data Types: single | double

IncludeInteractions — Flag to include interaction terms
true | false

Flag to include interaction terms of the model, specified as true or false. This argument is valid
only for a generalized additive model. That is, you can specify this argument only when Mdl is
RegressionGAM.

The default value is true if Mdl contains interaction terms. The value must be false if the model
does not contain interaction terms.
Data Types: logical

Output Arguments
yFit — Predicted responses
vector
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Predicted responses, returned as a vector of length n, where n is the number of observations in the
predictor data (Mdl.X).

ySD — Standard deviations of response variable
column vector

Standard deviations of the response variable, evaluated at each observation in the predictor data
Mdl.X, returned as a column vector of length n, where n is the number of observations in Mdl.X. The
ith element ySD(i) contains the standard deviation of the ith response for the ith observation
Mdl.X(i,:), estimated using the trained standard deviation model in Mdl.

This argument is valid only for a generalized additive model object that includes the standard
deviation fit, or a Gaussian process regression model that does not use the block coordinate descent
method for prediction. That is, resubPredict can return this argument only in one of these
situations:

• Mdl is RegressionGAM and the IsStandardDeviationFit property of Mdl is true.
• Mdl is RegressionGP and the PredictMethod property of Mdl is not 'bcd'.

yInt — Prediction intervals of response variable
two-column matrix

Prediction intervals of the response variable, evaluated at each observation in the predictor data
Mdl.X, returned as an n-by-2 matrix, where n is the number of observations in Mdl.X. The ith row
yInt(i,:) contains the 100(1 – Alpha)% prediction interval of the ith response for the ith
observation Mdl.X(i,:). The Alpha value is the probability that the prediction interval does not
contain the true response value Mdl.Y(i). The first column of yInt contains the lower limits of the
prediction intervals, and the second column contains the upper limits.

This argument is valid only for a generalized additive model object that includes the standard
deviation fit, or a Gaussian process regression model that does not use the block coordinate descent
method for prediction. That is, resubPredict can return this argument only in one of these
situations:

• Mdl is RegressionGAM and the IsStandardDeviationFit property of Mdl is true.
• Mdl is RegressionGP and the PredictMethod property of Mdl is not 'bcd'.

Algorithms
resubPredict predicts responses according to the corresponding predict function of the object
(Mdl). For a model-specific description, see the predict function reference pages in the following
table.

Model Regression Model Object
(Mdl)

predict Object Function

Gaussian process regression
model

RegressionGP predict

Generalized additive model RegressionGAM predict
Neural network model RegressionNeuralNetwork predict
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Alternative Functionality
To compute the predicted responses for new predictor data, use the corresponding predict function
of the object (Mdl).

Version History
Introduced in R2021a

See Also
resubLoss
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resubPredict
Class: RegressionSVM

Predict resubstitution response of support vector machine regression model

Syntax
yfit = resubPredict(mdl)

Description
yfit = resubPredict(mdl) returns a vector of predicted response values, yfit, for the trained
support vector machine (SVM) regression model mdl using the predictor data stored in mdl.X.

Input Arguments
mdl — Full, trained SVM regression model
RegressionSVM model

Full, trained SVM regression model, specified as a RegressionSVM model returned by fitrsvm.

Output Arguments
yfit — Predicted response
vector of numeric values

Predicted responses, returned as a vector of numeric values. The length of yfit is equal to the
number of observations in the training data, mdl.NumObservations.

For details about how to predict responses, see “Equation 25-1” and “Equation 25-2” in
“Understanding Support Vector Machine Regression” on page 25-2.

Examples

Resubstitution Predictions for SVM Regression Model

This example shows how to train an SVM regression model, then use the model to generate predicted
response values from the training data.

This example uses the abalone data from the UCI Machine Learning Repository. Download the data
and save it in your current directory with the name 'abalone.data'. Read the data into a table.

tbl = readtable('abalone.data','Filetype','text','ReadVariableNames',false);
rng default  % for reproducibility

The sample data contains 4177 observations. All of the predictor variables are continuous except for
sex, which is a categorical variable with possible values 'M' (for males), 'F' (for females), and 'I'
(for infants). The goal is to predict the number of rings on the abalone, and thereby determine its age,
using physical measurements.
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Train an SVM regression model to the data, using a Gaussian kernel function with an automatic
kernel scale. Standardize the data.

mdl = fitrsvm(tbl,'Var9','KernelFunction','gaussian','KernelScale','auto','Standardize',true);

Use the trained model to predict response values based on the original data.

yfit = resubPredict(mdl);

Display the first ten predicted responses alongside the actual response values.

[mdl.Y(1:10),yfit(1:10)]

ans =

   15.0000    8.1836
    7.0000    8.3545
    9.0000   10.9383
   10.0000    9.3446
    7.0000    6.4042
    8.0000    7.7910
   20.0000   13.8275
   16.0000   11.7959
    9.0000    9.5724
   19.0000   13.6909

The left column shows the actual response and the right column shows the corresponding predicted
response.

Version History
Introduced in R2015b

References

[1] Nash, W.J., T. L. Sellers, S. R. Talbot, A. J. Cawthorn, and W. B. Ford. "The Population Biology of
Abalone (Haliotis species) in Tasmania. I. Blacklip Abalone (H. rubra) from the North Coast
and Islands of Bass Strait." Sea Fisheries Division, Technical Report No. 48, 1994.

[2] Waugh, S. "Extending and Benchmarking Cascade-Correlation: Extensions to the Cascade-
Correlation Architecture and Benchmarking of Feed-forward Supervised Artificial Neural
Networks." University of Tasmania Department of Computer Science thesis, 1995.

[3] Clark, D., Z. Schreter, A. "Adams. A Quantitative Comparison of Dystal and Backpropagation."
submitted to the Australian Conference on Neural Networks, 1996.

[4] Lichman, M. UCI Machine Learning Repository, [http://archive.ics.uci.edu/ml]. Irvine, CA:
University of California, School of Information and Computer Science.

See Also
fitrsvm | RegressionSVM | resubLoss | predict
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resubPredict
Class: RegressionTree

Predict resubstitution response of tree

Syntax
Yfit = resubPredict(tree)
[Yfit,node] = resubPredict(tree)
[Yfit,node] = resubPredict(tree,Name,Value)

Description
Yfit = resubPredict(tree) returns the responses tree predicts for the data tree.X. Yfit is
the predictions of tree on the data that fitrtree used to create tree.

[Yfit,node] = resubPredict(tree) returns the node numbers of tree for the resubstituted
data.

[Yfit,node] = resubPredict(tree,Name,Value) predicts with additional options specified by
one or more Name,Value pair arguments.

Input Arguments
tree

A regression tree constructed using fitrtree.

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.

Subtrees — Pruning level
0 (default) | vector of nonnegative integers | 'all'

Pruning level, specified as the comma-separated pair consisting of 'Subtrees' and a vector of
nonnegative integers in ascending order or 'all'.

If you specify a vector, then all elements must be at least 0 and at most max(tree.PruneList). 0
indicates the full, unpruned tree and max(tree.PruneList) indicates the completely pruned tree
(i.e., just the root node).

If you specify 'all', then resubPredict operates on all subtrees (i.e., the entire pruning
sequence). This specification is equivalent to using 0:max(tree.PruneList).
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resubPredict prunes tree to each level indicated in Subtrees, and then estimates the
corresponding output arguments. The size of Subtrees determines the size of some output
arguments.

To invoke Subtrees, the properties PruneList and PruneAlpha of tree must be nonempty. In
other words, grow tree by setting 'Prune','on', or by pruning tree using prune.
Example: 'Subtrees','all'
Data Types: single | double | char | string

Output Arguments
Yfit

The response tree predicts for the training data.

If the Subtrees name-value argument is a scalar or is missing, label is the same data type as the
training response data tree.Y.

If Subtrees contains m>1 entries, label has m columns, each of which represents the predictions of
the corresponding subtree.

node

The tree node numbers where tree sends each data row.

If the Subtrees name-value argument is a scalar or is missing, node is a numeric column vector with
n rows, the same number of rows as tree.X.

If Subtrees contains m>1 entries, node is a n-by-m matrix. Each column represents the node
predictions of the corresponding subtree.

Examples

Compute the In-Sample MSE

Load the carsmall data set. Consider Displacement, Horsepower, and Weight as predictors of
the response MPG.

load carsmall
X = [Displacement Horsepower Weight];

Grow a regression tree using all observations.

Mdl = fitrtree(X,MPG);

Compute the resubstitution MSE.

Yfit = resubPredict(Mdl);
mean((Yfit - Mdl.Y).^2)

ans = 4.8952

You can get the same result using resubLoss.
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resubLoss(Mdl)

ans = 4.8952

Estimate In-Sample Responses For Each Subtree

Load the carsmall data set. Consider Weight as a predictor of the response MPG.

load carsmall
idxNaN = isnan(MPG + Weight);
X = Weight(~idxNaN);
Y = MPG(~idxNaN);
n = numel(X);

Grow a regression tree using all observations.

Mdl = fitrtree(X,Y);

Compute resubstitution fitted values for the subtrees at several pruning levels.

m = max(Mdl.PruneList);
pruneLevels = 1:4:m; % Pruning levels to consider
z = numel(pruneLevels);
Yfit = resubPredict(Mdl,'SubTrees',pruneLevels);

Yfit is an n-by- z matrix of fitted values in which the rows correspond to observations and the
columns correspond to a subtree.

Plot several columns of Yfit and Y against X.

figure;
sortDat = sortrows([X Y Yfit],1); % Sort all data with respect to X
plot(repmat(sortDat(:,1),1,size(Yfit,2) + 1),sortDat(:,2:end))...
    % Vectorize for efficiency
lev = cellstr(num2str((pruneLevels)','Level %d MPG'));
legend(['Observed MPG'; lev])
title 'In-Sample Fitted Responses'
xlabel 'Weight (lbs)';
ylabel 'MPG';
h = findobj(gcf);
set(h(4:end),'LineWidth',3) % Widen all lines

35 Functions

35-6732



The values of Yfit for lower pruning levels tend to follow the data more closely than higher levels.
Higher pruning levels tend to be flat for large X intervals.

Extended Capabilities
GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

This function fully supports GPU arrays. For more information, see “Run MATLAB Functions on a
GPU” (Parallel Computing Toolbox).

See Also
resubLoss | predict | fitrtree
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resume
Resume a Bayesian optimization

Syntax
newresults = resume(results,Name,Value)

Description
newresults = resume(results,Name,Value) resumes the optimization that produced results
with additional options specified by one or more Name,Value pair arguments.

Examples

Resume a Bayesian Optimization

This example shows how to resume a Bayesian optimization. The optimization is for a deterministic
function known as Rosenbrock's function, which is a well-known test case for nonlinear optimization.
The function has a global minimum value of 0 at the point [1,1].

Create two real variables bounded by -5 and 5.

x1 = optimizableVariable('x1',[-5,5]);
x2 = optimizableVariable('x2',[-5,5]);
vars = [x1,x2];

Create the objective function.

function f = rosenbrocks(x)

f = 100*(x.x2 - x.x1^2)^2 + (1 - x.x1)^2;

fun = @rosenbrocks;

For reproducibility, set the random seed, and set the acquisition function to 'expected-
improvement-plus' in the optimization.

rng default
results = bayesopt(fun,vars,'Verbose',0,...
    'AcquisitionFunctionName','expected-improvement-plus');
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View the best point found and the best modeled objective.

results.XAtMinObjective
results.MinEstimatedObjective

ans =

  1x2 table

      x1        x2  
    ______    ______

    1.7902    3.2287

ans =

   -9.1194

The best point is somewhat close to the optimum, but the function model is inaccurate. Resume the
optimization for 30 more points (a total of 60 points), this time telling the optimizer that the objective
function is deterministic.

newresults = resume(results,'IsObjectiveDeterministic',true,'MaxObjectiveEvaluations',30);
newresults.XAtMinObjective
newresults.MinEstimatedObjective
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ans =

  1x2 table

      x1         x2   
    _______    _______

    0.96102    0.92731

ans =

   -0.0091
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The objective function model is much closer to the true function this time. The best point is closer to
the true optimum.

Input Arguments
results — Bayesian optimization results
BayesianOptimization object

Bayesian optimization results, specified as a BayesianOptimization object.

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.

You can use any name-value pair accepted by bayesopt except for those beginning with Initial.
See the bayesopt “Input Arguments” on page 35-164.

Note The MaxObjectiveEvaluations and MaxTime name-value pairs mean additional time or
evaluations, above the numbers stored in results. So, for example, the default number of
evaluations is 30 in addition to the original specification.
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Additionally, you can use the following name-value pair.
Example: resume(results,'MaxObjectiveEvaluations',60)

VariableDescriptions — Modify variable
OptimizableVariable object

Modify variable, specified as an OptimizableVariable object.

You can change only the following properties of a variable in an optimization.

• Range of real or integer variables. For example,

xvar = optimizableVariable('x',[-10,10]);
% Modify the range:
xvar.Range = [1,5];

• Type between 'integer' and 'real'. For example,

xvar.Type = 'integer';
• Transform of real or integer variables between 'log' and 'none'. For example,

xvar.Transform = 'log';

Output Arguments
newresults — Optimization results
BayesianOptimization object

Optimization results, returned as a BayesianOptimization object.

Version History
Introduced in R2016b

See Also
BayesianOptimization | bayesopt
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resume
Resume training ensemble

Syntax
ens1 = resume(ens,nlearn)
ens1 = resume(ens,nlearn,Name,Value)

Description
ens1 = resume(ens,nlearn) trains ens for nlearn more cycles. resume uses the same training
options fitcensemble used to create ens, except for parallel training options. If you want to
resume training in parallel, pass the 'Options' name-value pair.

Note You cannot resume training when ens is a Subspace ensemble created with
'AllPredictorCombinations' number of learners.

ens1 = resume(ens,nlearn,Name,Value) trains ens with additional options specified by one or
more Name,Value pair arguments.

Input Arguments
ens

A classification ensemble, created with fitcensemble.

nlearn

A positive integer, the number of cycles for additional training of ens.

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.

NPrint

Printout frequency, a positive integer scalar or 'off' (no printouts). When NPrint is a positive
integer, displays a message to the command line after training NPrint weak learners.

Tip For fastest training of some boosted decision trees, set NPrint to the default value 'off'. This
tip holds when the classification Method is 'AdaBoostM1', 'AdaBoostM2', 'GentleBoost', or
'LogitBoost', or when the regression Method is 'LSBoost'.
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Default: 'off'

Options

Options for computing in parallel and setting random numbers, specified as a structure. Create the
Options structure with statset.

Note You need Parallel Computing Toolbox to compute in parallel.

You can use the same parallel options for resume as you used for the original training. However, you
can change the parallel options as needed. This table lists the option fields and their values.

Field Name Value Default
UseParallel Set this value to true to

compute in parallel. Parallel
ensemble training requires you
to set the 'Method' name-value
argument to 'Bag'. Parallel
training is available only for tree
learners, the default type for
'Bag'.

false

UseSubstreams Set this value to true to run
computations in parallel in a
reproducible manner.

To compute reproducibly, set
Streams to a type that allows
substreams: 'mlfg6331_64' or
'mrg32k3a'.

false

Streams Specify this value as a
RandStream object or cell array
of such objects. Use a single
object except when the
UseParallel value is true
and the UseSubstreams value
is false. In that case, use a cell
array that has the same size as
the parallel pool.

If you do not specify Streams,
then resume uses the default
stream or streams.

For dual-core systems and above, resume parallelizes training using Intel Threading Building Blocks
(TBB). Therefore, specifying the UseParallel option as true might not provide a significant
speedup on a single computer. For details on Intel TBB, see https://www.intel.com/
content/www/us/en/developer/tools/oneapi/onetbb.html.
Example: 'Options',statset('UseParallel',true)

Output Arguments
ens1

The classification ensemble ens, augmented with additional training.
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Examples
Train Classification Ensemble for Additional Cycles

Train a classification ensemble for three cycles, and compare the resubstitution error obtained after
training the ensemble for more cycles.

Load the ionosphere data set.

load ionosphere

Train a classification ensemble for three cycles and examine the resubstitution error.

ens = fitcensemble(X,Y,'Method','GentleBoost','NumLearningCycles',3);
L = resubLoss(ens)

L = 0.0085

Train for three more cycles and examine the new resubstitution error.

ens1 = resume(ens,3);
L = resubLoss(ens1)

L = 0

The resubstitution error is much lower in the new ensemble than the original.

Extended Capabilities
Automatic Parallel Support
Accelerate code by automatically running computation in parallel using Parallel Computing Toolbox™.

resume supports parallel training using the 'Options' name-value argument. Create options using
statset, such as options = statset('UseParallel',true). Parallel ensemble training
requires you to set the 'Method' name-value argument to 'Bag'. Parallel training is available only
for tree learners, the default type for 'Bag'.

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

This function fully supports GPU arrays. For more information, see “Run MATLAB Functions on a
GPU” (Parallel Computing Toolbox).

See Also
fitcensemble | ClassificationEnsemble | ClassificationBaggedEnsemble
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resume
Resume training learners on cross-validation folds

Syntax
ens1 = resume(ens,nlearn)
ens1 = resume(ens,nlearn,Name,Value)

Description
ens1 = resume(ens,nlearn) trains ens in every fold for nlearn more cycles. resume uses the
same training options fitcensemble used to create ens, except for parallel training options. If you
want to resume training in parallel, pass the 'Options' name-value pair.

ens1 = resume(ens,nlearn,Name,Value) trains ens with additional options specified by one or
more Name,Value pair arguments.

Input Arguments
ens

A cross-validated classification ensemble. ens is the result of either:

• The fitcensemble function with a cross-validation name-value pair. The names are
'crossval', 'kfold', 'holdout', 'leaveout', or 'cvpartition'.

• The crossval method applied to a classification ensemble.

nlearn

A positive integer, the number of cycles for additional training of ens.

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.

NPrint

Printout frequency, a positive integer scalar or 'off' (no printouts). When NPrint is a positive
integer, displays a message to the command line after training NPrint folds.

Tip For fastest training of some boosted decision trees, set NPrint to the default value 'off'. This
tip holds when the classification Method is 'AdaBoostM1', 'AdaBoostM2', 'GentleBoost', or
'LogitBoost', or when the regression Method is 'LSBoost'.

Default: 'off'
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Options

Options for computing in parallel and setting random numbers, specified as a structure. Create the
Options structure with statset.

Note You need Parallel Computing Toolbox to compute in parallel.

You can use the same parallel options for resume as you used for the original training. However, you
can change the parallel options as needed. This table lists the option fields and their values.

Field Name Value Default
UseParallel Set this value to true to

compute in parallel. Parallel
ensemble training requires you
to set the 'Method' name-value
argument to 'Bag'. Parallel
training is available only for tree
learners, the default type for
'Bag'.

false

UseSubstreams Set this value to true to run
computations in parallel in a
reproducible manner.

To compute reproducibly, set
Streams to a type that allows
substreams: 'mlfg6331_64' or
'mrg32k3a'.

false

Streams Specify this value as a
RandStream object or cell array
of such objects. Use a single
object except when the
UseParallel value is true
and the UseSubstreams value
is false. In that case, use a cell
array that has the same size as
the parallel pool.

If you do not specify Streams,
then resume uses the default
stream or streams.

For dual-core systems and above, resume parallelizes training using Intel Threading Building Blocks
(TBB). Therefore, specifying the UseParallel option as true might not provide a significant
speedup on a single computer. For details on Intel TBB, see https://www.intel.com/
content/www/us/en/developer/tools/oneapi/onetbb.html.
Example: 'Options',statset('UseParallel',true)

Output Arguments
ens1

The cross-validated classification ensemble ens, augmented with additional training.
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Examples
Train Partitioned Classification Ensemble for More Cycles

Train a partitioned classification ensemble for 10 cycles, and compare the classification loss obtained
after training the ensemble for more cycles.

Load the ionosphere data set.

load ionosphere

Train a partitioned classification ensemble for 10 cycles and examine the error.

t = templateTree('MaxNumSplits',1); % Weak learner template tree object
cvens = fitcensemble(X,Y,'Method','GentleBoost','NumLearningCycles',10,'Learners',t,'crossval','on');
rng(10,'twister') % For reproducibility
L = kfoldLoss(cvens)

L = 0.0940

Train for 10 more cycles and examine the new error.

cvens = resume(cvens,10);
L = kfoldLoss(cvens)

L = 0.0712

The cross-validation error is lower in the ensemble after training for 10 more cycles.

Extended Capabilities
Automatic Parallel Support
Accelerate code by automatically running computation in parallel using Parallel Computing Toolbox™.

resume supports parallel training using the 'Options' name-value argument. Create options using
statset, such as options = statset('UseParallel',true). Parallel ensemble training
requires you to set the 'Method' name-value argument to 'Bag'. Parallel training is available only
for tree learners, the default type for 'Bag'.

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

This function fully supports GPU arrays. For more information, see “Run MATLAB Functions on a
GPU” (Parallel Computing Toolbox).

See Also
kfoldPredict | kfoldEdge | kfoldMargin | kfoldLoss |
ClassificationPartitionedEnsemble
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resume
Resume training support vector machine (SVM) classifier

Syntax
UpdatedSVMModel = resume(SVMModel,numIter)
UpdatedSVMModel = resume(SVMModel,numIter,Name,Value)

Description
UpdatedSVMModel = resume(SVMModel,numIter) returns an updated support vector machine
(SVM) classifier UpdatedSVMModel by training the SVM classifier SVMModel for numIter more
iterations. Like SVMModel, the updated SVM classifier is a ClassificationSVM classifier.

resume continues applying the training options set when SVMModel was trained with fitcsvm.

UpdatedSVMModel = resume(SVMModel,numIter,Name,Value) returns UpdatedSVMModel
with additional options specified by one or more name-value pair arguments. For example, you can
specify the verbosity level.

Examples

Resume Training SVM Classifier

Train an SVM classifier and intentionally cause the solver to fail to converge onto a solution. Then
resume training the classifier without having to restart the entire learning process.

Load the ionosphere data set.

load ionosphere
rng(1); % For reproducibility

Train an SVM classifier. Specify that the optimization routine uses at most 50 iterations.

SVMModel = fitcsvm(X,Y,'IterationLimit',50);
DidConverge = SVMModel.ConvergenceInfo.Converged

DidConverge = logical
   0

Reason = SVMModel.ConvergenceInfo.ReasonForConvergence

Reason = 
'NoConvergence'

DidConverge = 0 indicates that the optimization routine did not converge onto a solution. Reason
states the reason why the routine did not converge. Therefore, SVMModel is a partially trained SVM
classifier.

Resume training the SVM classifier for another 1500 iterations.
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UpdatedSVMModel = resume(SVMModel,1500);
DidConverge = UpdatedSVMModel.ConvergenceInfo.Converged

DidConverge = logical
   1

Reason = UpdatedSVMModel.ConvergenceInfo.ReasonForConvergence

Reason = 
'DeltaGradient'

DidConverge indicates that the optimization routine converged onto a solution. Reason indicates
that the gradient difference (DeltaGradient) reached its tolerance level
(DeltaGradientTolerance). Therefore, SVMModel is a fully trained SVM classifier.

Monitor Training of SVM Classifier

Train an SVM classifier and intentionally cause the solver to fail to converge onto a solution. Then
resume training the classifier without having to restart the entire learning process. Compare values
of the resubstitution loss for the partially trained classifier and the fully trained classifier.

Load the ionosphere data set.

load ionosphere

Train an SVM classifier. Specify that the optimization routine uses at most 100 iterations. Monitor the
algorithm specifying that the software prints diagnostic information every 50 iterations.

SVMModel = fitcsvm(X,Y,'IterationLimit',100,'Verbose',1,'NumPrint',50);

|===================================================================================================================================|
|   Iteration  | Set  |   Set Size   |  Feasibility  |     Delta     |      KKT      |  Number of   |   Objective   |   Constraint  |
|              |      |              |      Gap      |    Gradient   |   Violation   |  Supp. Vec.  |               |   Violation   |
|===================================================================================================================================|
|            0 |active|          351 |  9.971591e-01 |  2.000000e+00 |  1.000000e+00 |            0 |  0.000000e+00 |  0.000000e+00 |
|           50 |active|          351 |  8.064425e-01 |  3.736929e+00 |  2.161317e+00 |           60 | -3.628863e+01 |  2.498002e-16 |

 SVM optimization did not converge to the required tolerance.

The software prints an iterative display to the Command Window. The printout indicates that the
optimization routine has not converged onto a solution.

Estimate the resubstitution loss of the partially trained SVM classifier.

partialLoss = resubLoss(SVMModel)

partialLoss = 0.1054

The training sample misclassification error is approximately 12%.

Resume training the classifier for another 1500 iterations. Specify that the software print diagnostic
information every 250 iterations.

UpdatedSVMModel = resume(SVMModel,1500,'NumPrint',250)
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|===================================================================================================================================|
|   Iteration  | Set  |   Set Size   |  Feasibility  |     Delta     |      KKT      |  Number of   |   Objective   |   Constraint  |
|              |      |              |      Gap      |    Gradient   |   Violation   |  Supp. Vec.  |               |   Violation   |
|===================================================================================================================================|
|          250 |active|          351 |  1.441556e-01 |  1.701201e+00 |  1.015454e+00 |          100 | -7.671009e+01 |  4.857226e-17 |
|          500 |active|          351 |  3.277736e-03 |  9.155364e-02 |  4.830095e-02 |          103 | -7.819815e+01 |  1.110223e-16 |
|          750 |active|          351 |  3.928360e-04 |  1.367091e-02 |  9.155316e-03 |          103 | -7.820938e+01 |  5.234528e-16 |
|         1000 |active|          351 |  4.802547e-05 |  1.551900e-03 |  7.765843e-04 |          103 | -7.820959e+01 |  2.602085e-16 |
|         1044 |active|          351 |  3.602828e-05 |  9.382457e-04 |  5.182592e-04 |          103 | -7.820959e+01 |  4.623038e-16 |

 Exiting Active Set upon convergence due to DeltaGradient.

UpdatedSVMModel = 
  ClassificationSVM
             ResponseName: 'Y'
    CategoricalPredictors: []
               ClassNames: {'b'  'g'}
           ScoreTransform: 'none'
          NumObservations: 351
                    Alpha: [103x1 double]
                     Bias: -3.8828
         KernelParameters: [1x1 struct]
           BoxConstraints: [351x1 double]
          ConvergenceInfo: [1x1 struct]
          IsSupportVector: [351x1 logical]
                   Solver: 'SMO'

  Properties, Methods

The software resumes at iteration 1000 and uses the same verbosity level as the one set when you
trained the model using fitcsvm. The printout indicates that the algorithm converged. Therefore,
UpdatedSVMModel is a fully trained ClassificationSVM classifier.

updatedLoss = resubLoss(UpdatedSVMModel)

updatedLoss = 0.0769

The training sample misclassification error of the fully trained classifier is approximately 8%.

Input Arguments
SVMModel — Full, trained SVM classifier
ClassificationSVM classifier

Full, trained SVM classifier, specified as a ClassificationSVM model trained with fitcsvm.

numIter — Number of iterations
positive integer

Number of iterations to continue training the SVM classifier, specified as a positive integer.
Data Types: double
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Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: resume(SVMModel,500,'Verbose',2) trains SVMModel for 500 more iterations and
specifies displaying diagnostic messages and saving convergence criteria at every iteration.

Verbose — Verbosity level
0 | 1 | 2

Verbosity level, specified as the comma-separated pair consisting of 'Verbose' and 0, 1, or 2.
Verbose controls the amount of optimization information displayed in the Command Window and
saved as a structure to SVMModel.ConvergenceInfo.History.

This table summarizes the verbosity level values.

Value Description
0 The software does not display or save convergence information.
1 The software displays diagnostic messages and saves convergence criteria every

numprint iterations, where numprint is the value of the 'NumPrint' name-
value pair argument.

2 The software displays diagnostic messages and saves convergence criteria at
every iteration.

By default, Verbose is the value that fitcsvm uses to train SVMModel.
Example: 'Verbose',1
Data Types: single

NumPrint — Number of iterations between diagnostic message printouts
nonnegative integer

Number of iterations between diagnostic message printouts, specified as the comma-separated pair
consisting of 'NumPrint' and a nonnegative integer.

If you set 'Verbose',1 and 'NumPrint',numprint, then the software displays all optimization
diagnostic messages from SMO [1] and ISDA [2] every numprint iterations in the Command Window.

By default, NumPrint is the value that fitcsvm uses to train SVMModel.
Example: 'NumPrint',500
Data Types: single

Tips
If optimization does not converge and the solver is 'SMO' or 'ISDA', then try to resume training the
SVM classifier.
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Version History
Introduced in R2014a

References
[1] Fan, R.-E., P.-H. Chen, and C.-J. Lin. “Working set selection using second order information for

training support vector machines.” Journal of Machine Learning Research, Vol. 6, 2005, pp.
1889–1918.

[2] Kecman V., T. -M. Huang, and M. Vogt. “Iterative Single Data Algorithm for Training Kernel
Machines from Huge Data Sets: Theory and Performance.” Support Vector Machines: Theory
and Applications. Edited by Lipo Wang, 255–274. Berlin: Springer-Verlag, 2005.

Extended Capabilities
GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

This function fully supports GPU arrays. For more information, see “Run MATLAB Functions on a
GPU” (Parallel Computing Toolbox).

See Also
ClassificationSVM | fitcsvm
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resume
Resume training of generalized additive model (GAM)

Syntax
UpdatedMdl = resume(Mdl,numTrees)
UpdatedMdl = resume(Mdl,numTrees,Name,Value)

Description
UpdatedMdl = resume(Mdl,numTrees) returns an updated generalized additive model
UpdatedMdl by training Mdl for numTrees more iterations with the same options used to train Mdl.

For each iteration, resume trains one predictor tree per linear term or one interaction tree per
interaction term.

• If Mdl contains only linear terms for predictors (predictor trees), then resume trains an additional
numTrees number of trees per predictor.

• If Mdl contains both linear and interaction terms for predictors (predictor trees and interaction
trees), then resume trains an additional numTrees number of trees per interaction term.

resume does not add new terms to the model. If you want to add interaction terms to a model that
contains only linear terms, use the addInteractions function.

UpdatedMdl = resume(Mdl,numTrees,Name,Value) specifies additional options using one or
more name-value arguments. For example, 'Verbose',2 specifies the verbosity level as 2 to display
diagnostic messages at every iteration.

Examples

Resume Training Predictor Trees in GAM

Train a univariate classification GAM (which contains only linear terms) for a small number of
iterations. After training the model for more iterations, compare the resubstitution loss.

Load the ionosphere data set. This data set has 34 predictors and 351 binary responses for radar
returns, either bad ('b') or good ('g').

load ionosphere

Train a univariate GAM that identifies whether the radar return is bad ('b') or good ('g'). Specify
the number of trees per linear term as 2. fitcgam iterates the boosting algorithm for the specified
number of iterations. For each boosting iteration, the function adds one tree per linear term. Specify
'Verbose' as 2 to display diagnostic messages at every iteration.

Mdl = fitcgam(X,Y,'NumTreesPerPredictor',2,'Verbose',2);

|========================================================|
| Type | NumTrees |  Deviance  |   RelTol   | LearnRate  |
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|========================================================|
|    1D|         0|      486.59|      -     |      -     |
|    1D|         1|      166.71|         Inf|           1|
|    1D|         2|      78.336|     0.58205|           1|

To check whether fitcgam trains the specified number of trees, display the
ReasonForTermination property of the trained model and view the displayed message.

Mdl.ReasonForTermination

ans = struct with fields:
      PredictorTrees: 'Terminated after training the requested number of trees.'
    InteractionTrees: ''

Compute the classification loss for the training data.

resubLoss(Mdl)

ans = 0.0142

Resume training the model for another 100 iterations. Because Mdl contains only linear terms, the
resume function resumes training for the linear terms and adds more trees for them (predictor
trees). Specify 'Verbose' and 'NumPrint' to display diagnostic messages at every 10 iterations.

UpdatedMdl = resume(Mdl,100,'Verbose',1,'NumPrint',10);

|========================================================|
| Type | NumTrees |  Deviance  |   RelTol   | LearnRate  |
|========================================================|
|    1D|         0|      78.336|      -     |      -     |
|    1D|         1|      38.364|     0.17429|           1|
|    1D|        10|     0.16311|    0.011894|           1|
|    1D|        20|  0.00035693|   0.0025178|           1|
|    1D|        30|  8.1191e-07|   0.0011006|           1|
|    1D|        40|  1.7978e-09|  0.00074607|           1|
|    1D|        50|  3.6113e-12|  0.00034404|           1|
|    1D|        60|  1.7497e-13|  0.00016541|           1|

UpdatedMdl.ReasonForTermination

ans = struct with fields:
      PredictorTrees: 'Unable to improve the model fit.'
    InteractionTrees: ''

resume terminates training when adding more trees does not improve the deviance of the model fit.

Compute the classification loss using the updated model.

resubLoss(UpdatedMdl)

ans = 0

The classification loss decreases after resume updates the model with more iterations.
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Resume Training Interaction Trees in GAM

Train a regression GAM that contains both linear and interaction terms. Specify to train the
interaction terms for a small number of iterations. After training the interaction terms for more
iterations, compare the resubstitution loss.

Load the carbig data set, which contains measurements of cars made in the 1970s and early 1980s.

load carbig

Specify Acceleration, Displacement, Horsepower, and Weight as the predictor variables (X)
and MPG as the response variable (Y).

X = [Acceleration,Displacement,Horsepower,Weight];
Y = MPG;

Train a GAM that includes all available linear and interaction terms in X. Specify the number of trees
per interaction term as 2. fitrgam iterates the boosting algorithm 300 times (default) for linear
terms, and iterates the algorithm the specified number of iterations for interaction terms. For each
boosting iteration, the function adds one tree per linear term or one tree per interaction term.
Specify 'Verbose' as 1 to display diagnostic messages at every 10 iterations.

Mdl = fitrgam(X,Y,'Interactions','all','NumTreesPerInteraction',2,'Verbose',1);

|========================================================|
| Type | NumTrees |  Deviance  |   RelTol   | LearnRate  |
|========================================================|
|    1D|         0|  2.4432e+05|      -     |      -     |
|    1D|         1|      9507.4|         Inf|           1|
|    1D|        10|      4470.6|  0.00025206|           1|
|    1D|        20|      3895.3|  0.00011448|           1|
|    1D|        30|      3617.7|  3.5365e-05|           1|
|    1D|        40|      3402.5|  3.7992e-05|           1|
|    1D|        50|      3257.1|  2.4983e-05|           1|
|    1D|        60|      3131.8|  2.3873e-05|           1|
|    1D|        70|      3019.8|  2.2967e-05|           1|
|    1D|        80|      2925.9|  2.8071e-05|           1|
|    1D|        90|      2845.3|  1.6811e-05|           1|
|    1D|       100|      2772.7|   1.852e-05|           1|
|    1D|       110|      2707.8|  1.6754e-05|           1|
|    1D|       120|      2649.8|   1.651e-05|           1|
|    1D|       130|      2596.6|  1.1723e-05|           1|
|    1D|       140|      2547.4|   1.813e-05|           1|
|    1D|       150|      2501.1|  1.8659e-05|           1|
|    1D|       160|      2455.7|   1.386e-05|           1|
|    1D|       170|      2416.9|  1.0615e-05|           1|
|    1D|       180|      2377.2|   8.534e-06|           1|
|    1D|       190|        2339|  7.6771e-06|           1|
|    1D|       200|      2303.3|  9.5866e-06|           1|
|    1D|       210|      2270.7|  8.4276e-06|           1|
|    1D|       220|      2240.1|  8.5778e-06|           1|
|    1D|       230|      2209.2|  9.6761e-06|           1|
|    1D|       240|      2178.7|  7.0622e-06|           1|
|    1D|       250|      2150.3|  8.3082e-06|           1|
|    1D|       260|      2122.3|  7.9542e-06|           1|
|    1D|       270|      2097.7|  7.6328e-06|           1|
|    1D|       280|      2070.4|  9.4322e-06|           1|
|    1D|       290|      2044.3|  7.5722e-06|           1|
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|    1D|       300|      2019.7|  6.6719e-06|           1|
|========================================================|
| Type | NumTrees |  Deviance  |   RelTol   | LearnRate  |
|========================================================|
|    2D|         0|      2019.7|      -     |      -     |
|    2D|         1|      1795.5|   0.0005975|           1|
|    2D|         2|      1523.4|   0.0010079|           1|

To check whether fitrgam trains the specified number of trees, display the
ReasonForTermination property of the trained model and view the displayed messages.

Mdl.ReasonForTermination

ans = struct with fields:
      PredictorTrees: 'Terminated after training the requested number of trees.'
    InteractionTrees: 'Terminated after training the requested number of trees.'

Compute the regression loss for the training data.

resubLoss(Mdl)

ans = 3.8277

Resume training the model for another 100 iterations. Because Mdl contains both linear and
interaction terms, the resume function resumes training for the interaction terms and adds more
trees for them (interaction trees).

UpdatedMdl = resume(Mdl,100);

|========================================================|
| Type | NumTrees |  Deviance  |   RelTol   | LearnRate  |
|========================================================|
|    2D|         0|      1523.4|      -     |      -     |
|    2D|         1|      1363.9|  0.00039695|           1|
|    2D|        10|      594.04|  8.0295e-05|           1|
|    2D|        20|      359.44|  4.3201e-05|           1|
|    2D|        30|      238.51|  2.6869e-05|           1|
|    2D|        40|      153.98|  2.6271e-05|           1|
|    2D|        50|      91.464|  8.0936e-06|           1|
|    2D|        60|      61.882|  3.8528e-06|           1|
|    2D|        70|      43.206|  5.9888e-06|           1|

UpdatedMdl.ReasonForTermination

ans = struct with fields:
      PredictorTrees: 'Terminated after training the requested number of trees.'
    InteractionTrees: 'Unable to improve the model fit.'

resume terminates training when adding more trees does not improve the deviance of the model fit.

Compute the regression loss using the updated model.

resubLoss(UpdatedMdl)

ans = 0.0944

The regression loss decreases after resume updates the model with more iterations.
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Input Arguments
Mdl — Generalized additive model
ClassificationGAM model object | RegressionGAM model object

Generalized additive model, specified as a ClassificationGAM or RegressionGAM model object.

numTrees — Number of trees to add
positive integer scalar

Number of trees to add, specified as a positive integer scalar.
Data Types: single | double

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: 'Verbose',1,'NumPrint',100 specifies to print diagnostic messages in the Command
Window every 100 iterations.

NumPrint — Number of iterations between diagnostic message printouts
Mdl.ModelParameters.NumPrint (default) | nonnegative integer scalar

Number of iterations between diagnostic message printouts, specified as a nonnegative integer
scalar. This argument is valid only when you specify 'Verbose' as 1.

If you specify 'Verbose',1 and 'NumPrint',numPrint, then the software displays diagnostic
messages every numPrint iterations in the Command Window.

The default value is Mdl.ModelParameters.NumPrint, which is the NumPrint value that you
specify when creating the GAM object Mdl.
Example: 'NumPrint',500
Data Types: single | double

Verbose — Verbosity level
Mdl.ModelParameters.VerbosityLevel (default) | 0 | 1 | 2

Verbosity level, specified as 0, 1, or 2. The Verbose value controls the amount of information that the
software displays in the Command Window.

This table summarizes the available verbosity level options.

Value Description
0 The software displays no information.
1 The software displays diagnostic messages every numPrint iterations,

where numPrint is the 'NumPrint' value.
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Value Description
2 The software displays diagnostic messages at every iteration.

Each line of the diagnostic messages shows the information about each boosting iteration and
includes the following columns:

• Type — Type of trained trees, 1D (predictor trees, or boosted trees for linear terms for predictors)
or 2D (interaction trees, or boosted trees for interaction terms for predictors)

• NumTrees — Number of trees per linear term or interaction term that resume added to the model
so far

• Deviance — “Deviance” on page 35-6756 of the model
• RelTol — Relative change of model predictions: y k− y k− 1 ′ y k− y k− 1 /y k′y k, where y k is a

column vector of model predictions at iteration k
• LearnRate — Learning rate used for the current iteration

The default value is Mdl.ModelParameters.VerbosityLevel, which is the Verbose value that
you specify when creating the GAM object Mdl.
Example: 'Verbose',1
Data Types: single | double

Output Arguments
UpdatedMdl — Updated generalized additive model
ClassificationGAM model object | RegressionGAM model object

Updated generalized additive model, returned as a ClassificationGAM or RegressionGAM model
object. UpdatedMdl has the same object type as the input model Mdl.

To overwrite the input argument Mdl, assign the output of resume to Mdl:

Mdl = resume(Mdl,numTrees);

More About
Deviance

Deviance is a generalization of the residual sum of squares. It measures the goodness of fit compared
to the saturated model.

The deviance of a fitted model is twice the difference between the loglikelihoods of the model and the
saturated model:

-2(logL - logLs),
where L and Ls are the likelihoods of the fitted model and the saturated model, respectively. The
saturated model is the model with the maximum number of parameters that you can estimate.

resume uses the deviance to measure the goodness of model fit and finds a learning rate that reduces
the deviance at each iteration. Specify 'Verbose' as 1 or 2 to display the deviance and learning rate
in the Command Window.
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Version History
Introduced in R2021a

See Also
addInteractions | RegressionGAM | ClassificationGAM

Topics
“Train Generalized Additive Model for Binary Classification” on page 12-77
“Train Generalized Additive Model for Regression” on page 12-86
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resume
Resume training ensemble

Syntax
ens1 = resume(ens,nlearn)
ens1 = resume(ens,nlearn,Name,Value)

Description
ens1 = resume(ens,nlearn) trains ens for nlearn more cycles. resume uses the same training
options fitrensemble used to create ens, except for parallel training options. If you want to
resume training in parallel, pass the 'Options' name-value pair.

ens1 = resume(ens,nlearn,Name,Value) trains ens with additional options specified by one or
more Name,Value pair arguments.

Input Arguments
ens

A regression ensemble, created with fitrensemble.

nlearn

A positive integer, the number of cycles for additional training of ens.

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.

NPrint

Printout frequency, a positive integer scalar or 'off' (no printouts). When NPrint is a positive
integer, displays a message to the command line after training NPrint weak learners.

Tip For fastest training of some boosted decision trees, set NPrint to the default value 'off'. This
tip holds when the classification Method is 'AdaBoostM1', 'AdaBoostM2', 'GentleBoost', or
'LogitBoost', or when the regression Method is 'LSBoost'.

Default: 'off'
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Options

Options for computing in parallel and setting random numbers, specified as a structure. Create the
Options structure with statset.

Note You need Parallel Computing Toolbox to compute in parallel.

You can use the same parallel options for resume as you used for the original training. However, you
can change the parallel options as needed. This table lists the option fields and their values.

Field Name Value Default
UseParallel Set this value to true to

compute in parallel. Parallel
ensemble training requires you
to set the 'Method' name-value
argument to 'Bag'. Parallel
training is available only for tree
learners, the default type for
'Bag'.

false

UseSubstreams Set this value to true to run
computations in parallel in a
reproducible manner.

To compute reproducibly, set
Streams to a type that allows
substreams: 'mlfg6331_64' or
'mrg32k3a'.

false

Streams Specify this value as a
RandStream object or cell array
of such objects. Use a single
object except when the
UseParallel value is true
and the UseSubstreams value
is false. In that case, use a cell
array that has the same size as
the parallel pool.

If you do not specify Streams,
then resume uses the default
stream or streams.

For dual-core systems and above, resume parallelizes training using Intel Threading Building Blocks
(TBB). Therefore, specifying the UseParallel option as true might not provide a significant
speedup on a single computer. For details on Intel TBB, see https://www.intel.com/
content/www/us/en/developer/tools/oneapi/onetbb.html.
Example: 'Options',statset('UseParallel',true)

Output Arguments
ens1

The regression ensemble ens, augmented with additional training.
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Examples
Train Regression Ensemble for Additional Cycles

Train a regression ensemble for 50 cycles, and compare the resubstitution error obtained after
training the ensemble for more cycles.

Load the carsmall data set and select displacement, horsepower, and vehicle weight as predictors.

load carsmall
X = [Displacement Horsepower Weight];

Train a regression ensemble for 50 cycles and examine the resubstitution error.

ens = fitrensemble(X,MPG,'NumLearningCycles',50);
L = resubLoss(ens)

L = 0.5563

Train for 50 more cycles and examine the new resubstitution error.

ens = resume(ens,50);
L = resubLoss(ens)

L = 0.3463

The resubstitution error is lower in the new ensemble than in the original.

Extended Capabilities
Automatic Parallel Support
Accelerate code by automatically running computation in parallel using Parallel Computing Toolbox™.

resume supports parallel training using the 'Options' name-value argument. Create options using
statset, such as options = statset('UseParallel',true). Parallel ensemble training
requires you to set the 'Method' name-value argument to 'Bag'. Parallel training is available only
for tree learners, the default type for 'Bag'.

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

This function fully supports GPU arrays. For more information, see “Run MATLAB Functions on a
GPU” (Parallel Computing Toolbox).

See Also
fitrensemble | RegressionEnsemble | RegressionBaggedEnsemble
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resume
Resume training ensemble

Syntax
ens1 = resume(ens,nlearn)
ens1 = resume(ens,nlearn,Name,Value)

Description
ens1 = resume(ens,nlearn) trains ens in every fold for nlearn more cycles. resume uses the
same training options fitrensemble used to create ens, except for parallel training options. If you
want to resume training in parallel, pass the 'Options' name-value pair.

ens1 = resume(ens,nlearn,Name,Value) trains ens with additional options specified by one or
more Name,Value pair arguments.

Input Arguments
ens

A cross-validated regression ensemble. ens is the result of either:

• The fitrensemble function with a cross-validation name-value pair. The names are
'crossval', 'kfold', 'holdout', 'leaveout', or 'cvpartition'.

• The crossval method applied to a regression ensemble.

nlearn

A positive integer, the number of cycles for additional training of ens.

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.

NPrint

Printout frequency, a positive integer scalar or 'off' (no printouts). When NPrint is a positive
integer, displays a message to the command line after training NPrint folds.

Tip For fastest training of some boosted decision trees, set NPrint to the default value 'off'. This
tip holds when the classification Method is 'AdaBoostM1', 'AdaBoostM2', 'GentleBoost', or
'LogitBoost', or when the regression Method is 'LSBoost'.

Default: 'off'
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Options

Options for computing in parallel and setting random numbers, specified as a structure. Create the
Options structure with statset.

Note You need Parallel Computing Toolbox to compute in parallel.

You can use the same parallel options for resume as you used for the original training. However, you
can change the parallel options as needed. This table lists the option fields and their values.

Field Name Value Default
UseParallel Set this value to true to

compute in parallel. Parallel
ensemble training requires you
to set the 'Method' name-value
argument to 'Bag'. Parallel
training is available only for tree
learners, the default type for
'Bag'.

false

UseSubstreams Set this value to true to run
computations in parallel in a
reproducible manner.

To compute reproducibly, set
Streams to a type that allows
substreams: 'mlfg6331_64' or
'mrg32k3a'.

false

Streams Specify this value as a
RandStream object or cell array
of such objects. Use a single
object except when the
UseParallel value is true
and the UseSubstreams value
is false. In that case, use a cell
array that has the same size as
the parallel pool.

If you do not specify Streams,
then resume uses the default
stream or streams.

For dual-core systems and above, resume parallelizes training using Intel Threading Building Blocks
(TBB). Therefore, specifying the UseParallel option as true might not provide a significant
speedup on a single computer. For details on Intel TBB, see https://www.intel.com/
content/www/us/en/developer/tools/oneapi/onetbb.html.
Example: 'Options',statset('UseParallel',true)

Output Arguments
ens1

The cross-validated regression ensemble ens, augmented with additional training.
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Examples
Cross-Validate Regression Ensemble Augmented with Additional Training

Examine the cross-validation error after training a regression ensemble for more cycles.

Load the carsmall data set and select displacement, horsepower, and vehicle weight as predictors.

load carsmall
X = [Displacement Horsepower Weight];

Train a regression ensemble for 50 cycles.

ens = fitrensemble(X,MPG,'NumLearningCycles',50); 

Cross-validate the ensemble and examine the cross-validation error.

rng(10,'twister') % For reproducibility
cvens = crossval(ens);
L = kfoldLoss(cvens)

L = 27.9435

Train for 50 more cycles and examine the new cross-validation error.

cvens = resume(cvens,50);
L = kfoldLoss(cvens)

L = 28.7114

The additional training did not improve the cross-validation error.

Extended Capabilities
Automatic Parallel Support
Accelerate code by automatically running computation in parallel using Parallel Computing Toolbox™.

resume supports parallel training using the 'Options' name-value argument. Create options using
statset, such as options = statset('UseParallel',true). Parallel ensemble training
requires you to set the 'Method' name-value argument to 'Bag'. Parallel training is available only
for tree learners, the default type for 'Bag'.

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

This function fully supports GPU arrays. For more information, see “Run MATLAB Functions on a
GPU” (Parallel Computing Toolbox).

See Also
fitrensemble | kfoldLoss | RegressionPartitionedEnsemble
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resume
Class: RegressionSVM

Resume training support vector machine regression model

Syntax
updatedMdl = resume(mdl,numIter)
updatedMdl = resume(mdl,numIter,Name,Value)

Description
updatedMdl = resume(mdl,numIter) returns an updated support vector machine (SVM)
regression model, updatedMdl, by training the model for an additional number of iterations as
specified by numIter.

resume applies the same training options to updatedMdl that you set when using fitrsvm to train
mdl.

updatedMdl = resume(mdl,numIter,Name,Value) returns an updated SVM regression model
with additional options specified by one or more Name,Value pair arguments.

Input Arguments
mdl — Full, trained SVM regression model
RegressionSVM model

Full, trained SVM regression model, specified as a RegressionSVM model trained using fitrsvm.

numIter — Number of iterations
positive integer value

Number of iterations to continue training the SVM regression model, specified as a positive integer
value.
Data Types: single | double

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.

Verbose — Verbosity level
0 | 1 | 2

Verbosity level, specified as the comma-separated pair consisting of 'Verbose' and either 0, 1, or 2.
Verbose controls the amount of optimization information that the software displays to the Command
Window and is saved in the model as mdl.ModelParameters.VerbosityLevel.
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By default, Verbose is the value that fitrsvm used to train mdl.
Example: 'Verbose',1
Data Types: single | double

NumPrint — Number of iterations between diagnostic message printouts
nonnegative integer value

Number of iterations between diagnostic message printouts, specified as the comma-separated pair
consisting of 'NumPrint' and a nonnegative integer.

If you set 'Verbose',1 and 'NumPrint',numprint, then the software displays optimization
diagnostic messages to the Command Window every numprint number of iterations .

By default, NumPrint is the value that fitrsvm used to train mdl.
Example: 'NumPrint',500
Data Types: single | double

Output Arguments
updatedMdl — Updated SVM regression model
RegressionSVM model

Updated SVM regression model, returned as a RegressionSVM model.

Examples

Resume Training an SVM Regression Model

This example shows how to resume training an SVM regression model that failed to converge without
restarting the entire learning process.

Load the carsmall data set.

load carsmall
rng default  % for reproducibility

Specify Acceleration, Cylinders, Displacement, Horsepower, and Weight as the predictor
variables (X) and MPG as the response variable (Y).

X = [Acceleration,Cylinders,Displacement,Horsepower,Weight];
Y = MPG;

Train a linear SVM regression model. For illustration purposes, set the iteration limit to 50.
Standardize the data.

mdl = fitrsvm(X,Y,'IterationLimit',50,'Standardize',true);

Check to confirm whether the model converged.

mdl.ConvergenceInfo.Converged
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ans =

     0

The returned value of 0 indicates that the model did not converge.

Resume training the model for up to an additional 100 iterations.

updatedMdl = resume(mdl,100);

Check to confirm whether the updated model converged.

updatedMdl.ConvergenceInfo.Converged

ans =

     1

The returned value of 1 indicates that the updated model did converge.

Check the reason for convergence and the total number of iterations required.

updatedMdl.ConvergenceInfo.ReasonForConvergence
updatedMdl.NumIterations

ans =

FeasibilityGap

ans =

    97

The model converged because the feasibility gap reached its tolerance value after 97 iterations.

Tips
If optimization has not converged and 'Solver' is set to 'SMO' or 'ISDA', then try to resume
training the SVM regression model.

Version History
Introduced in R2015b

See Also
RegressionSVM | fitrsvm
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rica
Feature extraction by using reconstruction ICA

Syntax
Mdl = rica(X,q)
Mdl = rica(X,q,Name,Value)

Description
Mdl = rica(X,q) returns a reconstruction independent component analysis (RICA) model object
that contains the results from applying RICA to the table or matrix of predictor data X containing p
variables. q is the number of features to extract from X, therefore rica learns a p-by-q matrix of
transformation weights. For undercomplete or overcomplete feature representations, q can be less
than or greater than the number of predictor variables, respectively.

• To access the learned transformation weights, use Mdl.TransformWeights.
• To transform X to the new set of features by using the learned transformation, pass Mdl and X to

transform.

Mdl = rica(X,q,Name,Value) uses additional options specified by one or more Name,Value pair
arguments. For example, you can standardize the predictor data or specify the value of the penalty
coefficient in the reconstruction term of the objective function.

Examples

Create Reconstruction ICA Object

Create a ReconstructionICA object by using the rica function.

Load the SampleImagePatches image patches.

data = load('SampleImagePatches');
size(data.X)

ans = 1×2

        5000         363

There are 5,000 image patches, each containing 363 features.

Extract 100 features from the data.

rng default % For reproducibility
q = 100;
Mdl = rica(data.X,q,'IterationLimit',100)

Warning: Solver LBFGS was not able to converge to a solution.
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Mdl = 
  ReconstructionICA
            ModelParameters: [1x1 struct]
              NumPredictors: 363
         NumLearnedFeatures: 100
                         Mu: []
                      Sigma: []
                    FitInfo: [1x1 struct]
           TransformWeights: [363x100 double]
    InitialTransformWeights: []
    NonGaussianityIndicator: [100x1 double]

  Properties, Methods

rica issues a warning because it stopped due to reaching the iteration limit, instead of reaching a
step-size limit or a gradient-size limit. You can still use the learned features in the returned object by
calling the transform function.

Input Arguments
X — Predictor data
numeric matrix | table

Predictor data, specified as an n-by-p numeric matrix or table. Rows correspond to individual
observations and columns correspond to individual predictor variables. If X is a table, then all of its
variables must be numeric vectors.
Data Types: single | double | table

q — Number of features to extract
positive integer

Number of features to extract from the predictor data, specified as a positive integer.

rica stores a p-by-q transform weight matrix in Mdl.TransformWeights. Therefore, setting very
large values for q can result in greater memory consumption and increased computation time.
Data Types: single | double

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: Mdl = rica(X,q,'IterationLimit',200,'Standardize',true) runs rica with
optimization iterations limited to 200 and standardized predictor data.

IterationLimit — Maximum number of iterations
1000 (default) | positive integer
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Maximum number of iterations, specified as the comma-separated pair consisting of
'IterationLimit' and a positive integer.
Example: 'IterationLimit',1e6
Data Types: single | double

VerbosityLevel — Verbosity level
0 (default) | nonnegative integer

Verbosity level for monitoring algorithm convergence, specified as the comma-separated pair
consisting of 'VerbosityLevel' and a value in this table.

Value Description
0 rica does not display convergence information

at the command line.
Positive integer rica displays convergence information at the

command line.

Convergence Information

Heading Meaning
FUN VALUE Objective function value.
NORM GRAD Norm of the gradient of the objective function.
NORM STEP Norm of the iterative step, meaning the distance between the

previous point and the current point.
CURV OK means the weak Wolfe condition is satisfied. This condition is a

combination of sufficient decrease of the objective function and a
curvature condition.

GAMMA Inner product of the step times the gradient difference, divided by
the inner product of the gradient difference with itself. The gradient
difference is the gradient at the current point minus the gradient at
the previous point. Gives diagnostic information on the objective
function curvature.

ALPHA Step direction multiplier, which differs from 1 when the algorithm
performed a line search.

ACCEPT YES means the algorithm found an acceptable step to take.

Example: 'VerbosityLevel',1
Data Types: single | double

Lambda — Regularization coefficient value
1 (default) | positive numeric scalar

Regularization coefficient value for the transform weight matrix, specified as the comma-separated
pair consisting of 'Lambda' and a positive numeric scalar. If you specify 0, then there is no
regularization term in the objective function.
Example: 'Lambda',0.1
Data Types: single | double
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Standardize — Flag to standardize predictor data
false (default) | true

Flag to standardize the predictor data, specified as the comma-separated pair consisting
of 'Standardize' and true (1) or false (0).

If Standardize is true, then:

• rica centers and scales each column of the predictor data (X) by the column mean and standard
deviation, respectively.

• rica extracts new features by using the standardized predictor matrix, and stores the predictor
variable means and standard deviations in properties Mu and Sigma of Mdl.

Example: 'Standardize',true
Data Types: logical

ContrastFcn — Contrast function
'logcosh' (default) | 'exp' | 'sqrt'

Contrast function, specified as 'logcosh', 'exp', or 'sqrt'. The contrast function is a smooth
function that is similar to an absolute value function. The rica objective function contains a term

∑
j = 1

q 1
n ∑i = 1

n
g w j

Txi ,

where g represents the contrast function, the wj are the variables over which the optimization takes
place, and the xi are data.

The three available contrast functions are:

• 'logcosh' — g = 1
2log cosh 2x

•
'exp' — g = − exp − x2

2

• 'sqrt' — g = x2 + 10−8

Example: 'ContrastFcn','exp'

InitialTransformWeights — Transformation weights that initialize optimization
randn(p,q) (default) | numeric matrix

Transformation weights that initialize optimization, specified as the comma-separated pair consisting
of 'InitialTransformWeights' and a p-by-q numeric matrix. p must be the number of columns or
variables in X and q is the value of q.

Tip You can continue optimizing a previously returned transform weight matrix by passing it as an
initial value in another call to rica. The output model object Mdl stores a learned transform weight
matrix in the TransformWeights property.

Example: 'InitialTransformWeights',Mdl.TransformWeights
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Data Types: single | double

NonGaussianityIndicator — Non-Gaussianity of sources
ones(q,1) (default) | length-q vector of ±1

Non-Gaussianity of sources, specified as a length-q vector of ±1.

• NonGaussianityIndicator(k) = 1 means rica models the kth source as super-Gaussian,
with a sharp peak at 0.

• NonGaussianityIndicator(k) = -1 means rica models the kth source as sub-Gaussian.

Data Types: single | double

GradientTolerance — Relative convergence tolerance on gradient norm
1e-6 (default) | positive numeric scalar

Relative convergence tolerance on gradient norm, specified as the comma-separated pair consisting
of 'GradientTolerance' and a positive numeric scalar. This gradient is the gradient of the
objective function.
Example: 'GradientTolerance',1e-4
Data Types: single | double

StepTolerance — Absolute convergence tolerance on step size
1e-6 (default) | positive numeric scalar

Absolute convergence tolerance on the step size, specified as the comma-separated pair consisting of
'StepTolerance' and a positive numeric scalar.
Example: 'StepTolerance',1e-4
Data Types: single | double

Output Arguments
Mdl — Learned reconstruction ICA model
ReconstructionICA model object

Learned reconstruction ICA model, returned as a ReconstructionICA model object.

To access properties of Mdl, use dot notation. For example:

• To access the learned transform weights, use Mdl.TransformWeights.
• To access the structure of fitting information, use Mdl.FitInfo.

Algorithms
The rica function creates a linear transformation of input features to output features. The
transformation is based on optimizing a nonlinear objective function that roughly balances statistical
independence of the output features versus the ability to reconstruct the input data using the output
features.

For details, see “Reconstruction ICA Algorithm” on page 16-129.
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Version History
Introduced in R2017a

See Also
sparsefilt | transform | ReconstructionICA

Topics
“Feature Extraction Workflow” on page 16-132
“Extract Mixed Signals” on page 16-161
“Feature Extraction” on page 16-127
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ridge
Ridge regression

Syntax
B = ridge(y,X,k)
B = ridge(y,X,k,scaled)

Description
B = ridge(y,X,k) returns coefficient estimates for ridge regression models on page 35-6777 of
the predictor data X and the response y. Each column of B corresponds to a particular ridge
parameter k. By default, the function computes B after centering and scaling the predictors to have
mean 0 and standard deviation 1. Because the model does not include a constant term, do not add a
column of 1s to X.

B = ridge(y,X,k,scaled) specifies the scaling for the coefficient estimates in B. When scaled is
1 (default), ridge does not restore the coefficients to the original data scale. When scaled is 0,
ridge restores the coefficients to the scale of the original data. For more information, see
“Coefficient Scaling” on page 35-6778.

Examples

Ridge Regression

Perform ridge regression for a range of ridge parameters and observe how the coefficient estimates
change.

Load the acetylene data set.

load acetylene

acetylene contains observations for the predictor variables x1, x2, and x3, and the response
variable y.

Plot the predictor variables against each other. Observe any correlation between the variables.

plotmatrix([x1 x2 x3])
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For example, note the linear correlation between x1 and x3.

Compute coefficient estimates for a multilinear model with interaction terms, for a range of ridge
parameters. Use x2fx to create interaction terms and ridge to perform ridge regression.

X = [x1 x2 x3];
D = x2fx(X,'interaction');
D(:,1) = []; % No constant term
k = 0:1e-5:5e-3;
B = ridge(y,D,k);

Plot the ridge trace.

figure
plot(k,B,'LineWidth',2)
ylim([-100 100])
grid on 
xlabel('Ridge Parameter') 
ylabel('Standardized Coefficient') 
title('Ridge Trace') 
legend('x1','x2','x3','x1x2','x1x3','x2x3')
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The estimates stabilize to the right of the plot. Note that the coefficient of the x2x3 interaction term
changes sign at a value of the ridge parameter ≈ 5 * 10−4 .

Predict Values Using Ridge Regression

Predict miles per gallon (MPG) values using ridge regression.

Load the carbig data set.

load carbig
X = [Acceleration Weight Displacement Horsepower];
y = MPG;

Split the data into training and test sets.

n = length(y);
rng('default') % For reproducibility
c = cvpartition(n,'HoldOut',0.3);
idxTrain = training(c,1);
idxTest = ~idxTrain;

Find the coefficients of a ridge regression model (with k = 5).

k = 5;
b = ridge(y(idxTrain),X(idxTrain,:),k,0);
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Predict MPG values for the test data using the model.

yhat = b(1) + X(idxTest,:)*b(2:end);

Compare the predicted values to the actual miles per gallon (MPG) values using a reference line.

scatter(y(idxTest),yhat)
hold on
plot(y(idxTest),y(idxTest))
xlabel('Actual MPG')
ylabel('Predicted MPG')
hold off

Input Arguments
y — Response data
numeric vector

Response data, specified as an n-by-1 numeric vector, where n is the number of observations.
Data Types: single | double

X — Predictor data
numeric matrix

Predictor data, specified as an n-by-p numeric matrix. The rows of X correspond to the n
observations, and the columns of X correspond to the p predictors.
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Data Types: single | double

k — Ridge parameters
numeric vector

Ridge parameters, specified as a numeric vector.
Example: [0.2 0.3 0.4 0.5]
Data Types: single | double

scaled — Scaling flag
1 (default) | 0

Scaling flag that determines whether the coefficient estimates in B are restored to the scale of the
original data, specified as either 0 or 1. If scaled is 0, then ridge performs this additional
transformation. In this case, B contains p+1 coefficients for each value of k, with the first row of B
corresponding to a constant term in the model. If scaled is 1, then the software omits the additional
transformation, and B contains p coefficients without a constant term coefficient.

Output Arguments
B — Coefficient estimates
numeric matrix

Coefficient estimates, returned as a numeric matrix. The rows of B correspond to the predictors in X,
and the columns of B correspond to the ridge parameters k.

If scaled is 1, then B is a p-by-m matrix, where m is the number of elements in k. If scaled is 0,
then B is a (p+1)-by-m matrix.

More About
Ridge Regression

Ridge regression is a method for estimating coefficients of linear models that include linearly
correlated predictors.

Coefficient estimates for multiple linear regression models rely on the independence of the model
terms. When terms are correlated and the columns of the design matrix X have an approximate linear
dependence, the matrix (XTX)–1 is close to singular. Therefore, the least-squares estimate

β = (XTX)−1XTy

is highly sensitive to random errors in the observed response y, producing a large variance. This
situation of multicollinearity can arise, for example, when you collect data without an experimental
design.

Ridge regression addresses the problem of multicollinearity by estimating regression coefficients
using

β = (XTX + kI)−1XTy

where k is the ridge parameter and I is the identity matrix. Small, positive values of k improve the
conditioning of the problem and reduce the variance of the estimates. While biased, the reduced
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variance of ridge estimates often results in a smaller mean squared error when compared to least-
squares estimates.

Ridge Regularization

For a given value of λ, a nonnegative parameter, ridge solves the problem

min
β0, β

∑
i = 1

N
yi− β0− xi

Tβ 2 + λ ∑
j = 1

p
β j

2 ,

where:

• N is the number of observations.
• yi is the response at observation i.
• xi is the data, a vector of length p at observation i.
• λ is a nonnegative regularization parameter corresponding to one value of Lambda.
• The parameter β0 is a scalar, and the parameter β is a vector of length p.

The lasso problem represents the L2 regularization element of “Elastic Net” on page 35-4122.

Coefficient Scaling

The scaling of the coefficient estimates for the ridge regression models depends on the value of the
scaled input argument.

Suppose the ridge parameter k is equal to 0. The coefficients returned by ridge, when scaled is
equal to 1, are estimates of the bi

1 in the multilinear model
y – μy = b1

1z1 + ... + bp
1zp + ε

where zi = (xi – μi)/σi are the centered and scaled predictors, y – μy is the centered response, and ε is
an error term. You can rewrite the model as

y = b0
0 + b1

0x1 + ... + bp
0xp + ε

with b0
0 = μy − ∑

i = 1

p bi
1μi
σi

 and bi
0 =

bi
1

σi
. The bi

0 terms correspond to the coefficients returned by ridge

when scaled is equal to 0.

More generally, for any value of k, if B1 = ridge(y,X,k,1), then

       m = mean(X);
       s = std(X,0,1)';
       B1_scaled = B1./s;
       B0 = [mean(y)-m*B1_scaled; B1_scaled]

where B0 = ridge(y,X,k,0).

Tips
• ridge treats NaN values in X or y as missing values. ridge omits observations with missing

values from the ridge regression fit.
• In general, set scaled equal to 1 to produce plots where the coefficients are displayed on the

same scale. See “Ridge Regression” on page 35-6773 for an example using a ridge trace plot,
where the regression coefficients are displayed as a function of the ridge parameter. When making
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predictions, set scaled equal to 0. For an example, see “Predict Values Using Ridge Regression”
on page 35-6775.

Alternative Functionality
• Ridge, lasso, and elastic net regularization are all methods for estimating the coefficients of a

linear model while penalizing large coefficients. The type of penalty depends on the method (see
“More About” on page 35-4122 for more details). To perform lasso or elastic net regularization,
use lasso instead.

• If you have high-dimensional full or sparse predictor data, you can use fitrlinear instead of
ridge. When using fitrlinear, specify the 'Regularization','ridge' name-value pair
argument. Set the value of the 'Lambda' name-value pair argument to a vector of the ridge
parameters of your choice. fitrlinear returns a trained linear model Mdl. You can access the
coefficient estimates stored in the Beta property of the model by using Mdl.Beta.

Version History
Introduced before R2006a

References
[1] Hoerl, A. E., and R. W. Kennard. “Ridge Regression: Biased Estimation for Nonorthogonal

Problems.” Technometrics. Vol. 12, No. 1, 1970, pp. 55–67.

[2] Hoerl, A. E., and R. W. Kennard. “Ridge Regression: Applications to Nonorthogonal Problems.”
Technometrics. Vol. 12, No. 1, 1970, pp. 69–82.

[3] Marquardt, D. W. “Generalized Inverses, Ridge Regression, Biased Linear Estimation, and
Nonlinear Estimation.” Technometrics. Vol. 12, No. 3, 1970, pp. 591–612.

[4] Marquardt, D. W., and R. D. Snee. “Ridge Regression in Practice.” The American Statistician. Vol.
29, No. 1, 1975, pp. 3–20.

See Also
regress | stepwise | fitrlinear | lasso
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robustcov
Robust multivariate covariance and mean estimate

Syntax
sig = robustcov(x)
[sig,mu] = robustcov(x)
[sig,mu,mah] = robustcov(x)
[sig,mu,mah,outliers] = robustcov(x)
[sig,mu,mah,outliers,s] = robustcov(x)
[ ___ ] = robustcov(x,Name,Value)

Description
sig = robustcov(x) returns the robust covariance estimate sig of the multivariate data
contained in x.

[sig,mu] = robustcov(x) also returns an estimate of the robust Minimum Covariance
Determinant (MCD) mean, mu.

[sig,mu,mah] = robustcov(x) also returns the robust distances mah, computed as the
Mahalanobis distances of the observations using the robust estimates of the mean and covariance.

[sig,mu,mah,outliers] = robustcov(x) also returns the indices of the observations retained
as outliers in the sample data, outliers.

[sig,mu,mah,outliers,s] = robustcov(x) also returns a structure s that contains information
about the estimate.

[ ___ ] = robustcov(x,Name,Value) returns any of the arguments shown in the previous
syntaxes, using additional options specified by one or more Name,Value pair arguments. For
example, you can specify which robust estimator to use or the start method to use for the attractors.

Examples

Detect Outliers Using Distance-Distance Plots

Use a Gaussian copula to generate random data points from a bivariate distribution.

rng default
rho = [1,0.05;0.05,1];
u = copularnd('Gaussian',rho,50);

Modify 5 randomly selected observations to be outliers.

noise = randperm(50,5);
u(noise,1) = u(noise,1)*5;

Calculate the robust covariance matrices using the three available methods: Fast-MCD,
Orthogonalized Gnanadesikan-Kettenring (OGK), and Olive-Hawkins.
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[Sfmcd, Mfmcd, dfmcd, Outfmcd] = robustcov(u);
[Sogk, Mogk, dogk, Outogk] = robustcov(u,'Method','ogk');
[Soh, Moh, doh, Outoh] = robustcov(u,'Method','olivehawkins');

Calculate the classical distance values for the sample data using the Mahalanobis measure.

d_classical = pdist2(u, mean(u),'mahal');
p = size(u,2);
chi2quantile = sqrt(chi2inv(0.975,p));

Create DD Plots for each robust covariance calculation method.

tiledlayout(2,2)
nexttile
plot(d_classical, dfmcd, 'o')
line([chi2quantile, chi2quantile], [0, 30], 'color', 'r')
line([0, 6], [chi2quantile, chi2quantile], 'color', 'r')
hold on
plot(d_classical(Outfmcd), dfmcd(Outfmcd), 'r+')
xlabel('Mahalanobis Distance')
ylabel('Robust Distance')
title('DD Plot, FMCD method')
hold off

nexttile
plot(d_classical, dogk, 'o')
line([chi2quantile, chi2quantile], [0, 30], 'color', 'r')
line([0, 6], [chi2quantile, chi2quantile], 'color', 'r')
hold on
plot(d_classical(Outogk), dogk(Outogk), 'r+')
xlabel('Mahalanobis Distance')
ylabel('Robust Distance')
title('DD Plot, OGK method')
hold off

nexttile
plot(d_classical, doh, 'o')
line([chi2quantile, chi2quantile], [0, 30], 'color', 'r')
line([0, 6], [chi2quantile, chi2quantile], 'color', 'r')
hold on
plot(d_classical(Outoh), doh(Outoh), 'r+')
xlabel('Mahalanobis Distance')
ylabel('Robust Distance')
title('DD Plot, Olive-Hawkins method')
hold off
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In a DD plot, the data points tend to cluster in a straight line that passes through the origin. Points
that are far removed from this line are generally considered outliers. In each of the previous plots,
the red '+' symbol indicates the data points that robustcov considers to be outliers.

Evaluate Data for Multivariate Normal Distribution

This example shows how to use robustcov to evaluate sample data for multivariate normal or other
elliptically-contoured (EC) distributions.

Generate random sample data from a multivariate normal distribution. Calculate the Mahalanobis
distances for the robust covariance estimates (using the Olive-Hawkins method) and the classical
covariance estimates.

rng('default')
x1 = mvnrnd(zeros(1,3),eye(3),200);
[~, ~, d1] = robustcov(x1,'Method','olivehawkins');
d_classical1 = pdist2(x1,mean(x1),'mahalanobis');

Generate random sample data from an elliptically-contoured (EC) distribution. Calculate the
Mahalanobis distances for the robust covariance estimates (using the Olive-Hawkins method) and the
classical covariance estimates.

mu1 = [0 0 0];
sig1 = eye(3);
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mu2 = [0 0 0];
sig2 = 25*eye(3);
x2 = [mvnrnd(mu1,sig1,120);mvnrnd(mu2,sig2,80)];
[~, ~, d2] = robustcov(x2, 'Method','olivehawkins');
d_classical2 = pdist2(x2, mean(x2), 'mahalanobis');

Generate random sample data from a multivariate lognormal distribution, which is neither
multivariate normal or elliptically-contoured. Calculate the Mahalanobis distances for the robust
covariance estimates (using the Olive-Hawkins method) and the classical covariance estimates.

x3 = exp(x1);
[~, ~, d3] = robustcov(x3, 'Method','olivehawkins');
d_classical3 = pdist2(x3, mean(x3), 'mahalanobis');

Create a D-D Plot for each of the three sets of sample data to compare.

figure
subplot(2,2,1)
plot(d_classical1,d1, 'o')
line([0 4.5], [0, 4.5])
xlabel('Mahalanobis Distance')
ylabel('Robust Distance')
title('DD Plot, Multivariate Normal')

subplot(2,2,2)
plot(d_classical2, d2, 'o')
line([0 18], [0, 18])
xlabel('Mahalanobis Distance')
ylabel('Robust Distance')
title('DD Plot, Elliptically-Contoured')

subplot(2,2,3)
plot(d_classical3, d3, 'o')
line([0 18], [0, 18])
xlabel('Mahalanobis Distance')
ylabel('Robust Distance')
title('DD Plot, 200 Lognormal cases')
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For data with a multivariate normal distribution (as shown in the upper left), the plotted points follow
a straight, 45-degree line extending from the origin. For data with an elliptically-contoured
distribution (as shown in the upper right), the plotted points follow a straight line, but are not at a 45-
degree angle to the origin. For the lognormal distribution (as shown in the lower left), the plotted
points do not follow a straight line.

It is difficult to identify any pattern in the lognormal distribution plot because most of the points are
in the lower left of the plot. Use a weighted DD plot to magnify this corner and reveal features that
are obscured when large robust distances exist.

d3_weighted = d3(d3 < sqrt(chi2inv(0.975,3)));
d_classical_weighted = d_classical3(d3 < sqrt(chi2inv(0.975,3)));

Add a fourth subplot to the figure to show the results of the weighting process on the lognormally
distributed data.

subplot(2,2,4)
plot(d_classical_weighted, d3_weighted, 'o')
line([0 3], [0, 3])
xlabel('Mahalanobis Distance')
ylabel('Robust Distance')
title('Weighted DD Plot, 200 Lognormal cases')
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The scale on this plot indicates that it represents a magnified view of the original DD plot for the
lognormal data. This view more clearly shows the lack of pattern to the plot, which indicates that the
data is neither multivariate normal nor elliptically contoured.

Compute Robust Covariance and Plot the Outliers

Use a Gaussian copula to generate random data points from a bivariate distribution.

rng default
rho = [1,0.05;0.05,1];
u = copularnd('Gaussian',rho,50);

Modify 5 randomly selected observations to be outliers.

noise = randperm(50,5);
u(noise,1) = u(noise,1)*5;

Visualize the bivariate data using a scatter plot.

figure
scatter(u(:,1),u(:,2))
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Most of the data points appear on the left side of the plot. However, some of the data points appear
further to the right. These points are possible outliers that could affect the covariance matrix
calculation.

Compare the classical and robust covariance matrices.

c = cov(u)  

c = 2×2

    0.5523    0.0000
    0.0000    0.0913

rc = robustcov(u)

rc = 2×2

    0.1117    0.0364
    0.0364    0.1695

The classical and robust covariance matrices differ because the outliers present in the sample data
influence the results.

Identify and plot the data points that robustcov considers outliers.

[sig,mu,mah,outliers] = robustcov(u);
figure
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gscatter(u(:,1),u(:,2),outliers,'br','ox')
legend({'Not outliers','Outliers'})

robustcov identifies the data points on the right side of the plot as potential outliers, and treats
them accordingly when calculating the robust covariance matrix.

Input Arguments
x — Sample data
matrix of numeric values

Sample data used to estimate the robust covariance matrix, specified as a matrix of numeric values. x
is an n-by-p matrix where each row is an observation and each column is a variable.

robustcov removes any rows with missing predictor values when calculating the robust covariance
matrix.
Data Types: single | double

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
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Example: 'Method','ogk','NumOGKIterations',1 specifies the robust estimator as the
Orthogonalized Gnanadesikan-Kettenring method and sets the number of orthogonalization iterations
to 1.

For All Estimators

Method — Robust estimator
'fmcd' (default) | 'ogk' | 'olivehawkins'

Robust estimator, specified as one of the following.

Name Value
'fmcd' FAST-MCD (Minimum Covariance Determinant)

on page 35-6792 method
'ogk' Orthogonalized Gnanadesikan-Kettenring (OGK)

on page 35-6792 estimate
'olivehawkins' Concentration algorithm on page 35-6792

techniques, a family of fast, consistent and highly
outlier-resistant methods

Example: 'Method','ogk'

For the FMCD and OliveHawkins Methods Only

OutlierFraction — Outlier fraction
0.5 (default) | numeric value in the range [0,0.5]

Outlier fraction, specified as the comma-separated pair consisting of 'OutlierFraction' and a
numeric value in the range [0,0.5]. The value 1 – OutlierFraction specifies the fraction of observations
over which to minimize the covariance determinant.

The algorithm chooses a subsample of size h = ceiling(n + p + 1) / 2), where n is the number of
observations and p is the number of dimensions. OutlierFraction is the value for which the
maximum possible breakdown is achieved, and controls the size of the subsets h over which the
covariance determinant is minimized. The algorithm then chooses h to approximately equal (1 –
OutlierFraction) × n observations per subset.
Example: 'OutlierFraction',0.25
Data Types: single | double

NumTrials — Number of trials
positive integer value

Number of trials, specified as the comma-separated pair consisting of 'NumTrials' and a positive
integer value.

If 'Method' is 'fmcd', then NumTrials is the number of random subsamples of size (p + 1) drawn
from the sample data as starting points in the algorithm. p is the number of dimensions in the sample
data. In this case, the default value for NumTrials is 500.

If 'Method' is 'olivehawkins', then NumTrials is the number of trial fits, or attractors, to be
used. In this case, the default value for NumTrials is 2. This option is only useful for non-
deterministic starts.
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Example: 'NumTrials',300
Data Types: single | double

For the FMCD Method Only

BiasCorrection — Flag to apply small-sample correction factor
1 (default) | 0

Flag to apply small-sample correction factor, specified as the comma-separated pair consisting of
'BiasCorrection' and either 1 or 0. A 1 value indicates that robustcov corrects for bias in the
covariance estimate for small samples. A 0 value indicates that robustcov does not apply this
correction.
Example: 'BiasCorrection',0
Data Types: logical

For the OGK Method Only

NumOGKIterations — Number of orthogonalization iterations
2 (default) | positive integer value

Number of orthogonalization iterations, specified as the comma-separated pair consisting of
'NumOGKIterations' and a positive integer value. Generally, this value is set to 1 or 2, and further
steps are unlikely to improve the estimation.
Example: 'NumIter',1
Data Types: single | double

UnivariateEstimator — Function for computing univariate robust estimates
'tauscale' (default) | 'qn'

Function for computing univariate robust estimates, specified as the comma-separated pair consisting
of 'UnivariateEstimator' and one of the following.

Name Value
'tauscale' Use the “tau-scale” estimate of Yohai and Zamar,

which is a truncated standard deviation and a
weighted mean.

'qn' Use the Qn scale estimate of Croux and
Rousseeuw.

Example: 'UnivariateEstimator','qn'

For the OliveHawkins Method Only

ReweightingMethod — Method for reweighting
'rfch' (default) | 'rmvn'

Method for reweighting in the efficiency step, specified as the comma-separated pair consisting of
'ReweightingMethod' and one of the following.
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Name Value
'rfch' Uses two reweighting steps. This is a standard

method of reweighting to improve efficiency.
'rmvn' Reweighted multivariate normal. Uses two

reweighting steps that can be useful for
estimating the true covariance matrix under a
variety of outlier configurations when the clean
data are multivariate normal.

Example: 'ReweightingMethod','rmvn'

NumConcentrationSteps — Number of concentration steps
10 (default) | positive integer value

Number of concentration steps, specified as the comma-separated pair consisting of
'NumConcentrationSteps' and a positive integer value.
Example: 'NumConcentrationSteps',8
Data Types: single | double

StartMethod — Start method for each attractor
'classical' (default) | 'medianball' | 'elemental' | function handle | cell array

Start method for each attractor, specified as the comma-separated pair consisting of 'Start' and
one of the following.

Name Value
'classical' Use the classical estimator as the start. This is

the DGK attractor which, used on its own, is
known as the DGK estimator.

'medianball' Use the Median Ball as the start. The Median Ball
is (med(x),eye(p)). So 50% of cases furthest
in Euclidean distance from the sample median
are trimmed for computing the MB start. This is
the MB attractor which, used on its own, is
known as the MB estimator.

'elemental' The attractor is generated by concentration
where the start is a randomly selected elemental
start: the classical estimator applied to a
randomly selected “elemental set” of p + 1 cases.
This “elemental” attractor is computationally
efficient, but suffers from theoretical drawbacks,
as it is inconsistent and zero breakdown.

By default, the attractor is chosen as follows: If one of the attractors is 'medianball', then any
attractor whose location estimate has greater Euclidean distance from median(X) than half the data
(in other words, is outside the median ball) is not used. Then the final attractor is chosen based on
the MCD criterion.

You can also specify a function handle for a function that returns two output arguments used for
computing the initial location and scatter estimates..
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You can also specify a cell array containing any combination of the options given in the previous table
and function handles. The number of attractors used is equal to the length of the cell array. This
option allows more control over the algorithm and the ability to specify a custom number of attractors
and starts.
Example: 'StartMethod','medianball'

Output Arguments
sig — Robust covariance matrix estimates
numeric matrix

Robust covariance matrix estimates, returned as a p-by-p numeric matrix. p is the number of
predictors contained in the sample data.

mu — Robust mean estimates
array of numeric values

Robust mean estimates, returned as a 1-by-p array of numeric values. p is the number of predictors
contained in the sample data.

mah — Robust Mahalanobis distances
array of numeric values

Robust Mahalanobis distances on page 35-6791, returned as a 1-by-n array of numeric values.
robustcov removes any rows of x that contain missing data, so the number of rows of mah might be
smaller than the number of rows in x.

outliers — Indices of outliers
array of logical values

Indices of observations retained as outliers in the sample data x, returned as a 1-by-n array of logical
values. A 0 value indicates that the observation is not an outlier. A 1 value indicates that the
observation is an outlier.

robustcov removes any rows of x that contain missing data, so the number of rows of outliers
might be smaller than the number of rows in x.

s — Structure containing estimate information
structure

Structure containing estimate information, returned as a structure.

More About
Mahalanobis Distance

The Mahalanobis distance is a measure between a sample point and a distribution.

The Mahalanobis distance from a vector x to a distribution with mean μ and covariance Σ is

d = (x− μ)∑−1 (x− μ)′ .

The distance represents how far x is from the mean in number of standard deviations.
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robustcov returns the robust Mahalanobis distances (mah) from observations in x to the distribution
with mean mu and covariance sig.

Algorithms

Minimum Covariance Determinant Estimate

Minimum covariance determinant (MCD) is the fastest estimator of multivariate location and scatter
that is both consistent and robust. However, an exact evaluation of the MCD is impractical because it
is computationally expensive to evaluate all possible subsets of the sample data. robustcov uses the
FAST-MCD method to implement MCD [3]

The FAST-MCD method selects h observations out of n (where n/2 < h ≤ n) whose classical covariance
matrix has the lowest possible determinant. The MCD mean is the mean of the h selected
observations.

The MCD covariance is the covariance matrix of the h selected points, multiplied by a consistency
factor to obtain consistency at the multivariate normal distribution, and by a correction factor to
correct for bias at small sample sizes.

Orthogonalized Gnanadesikan-Kettenring Estimate

Orthogonalized Gnanadesikan-Kettenring (OGK) estimate is a positive definite estimate of the scatter
starting from the Gnanadesikan and Kettering (GK) estimator, a pairwise robust scatter matrix that
may be non-positive definite [1]. The estimate uses a form of principal components called an
orthogonalization iteration on the pairwise scatter matrix, replacing its eigenvalues, which could be
negative, with robust variances. This procedure can be iterated for improved results, and
convergence is usually obtained after 2 or 3 iterations.

Olive Hawkins Estimate

The Olive-Hawkins estimate uses the “concentration algorithm” techniques proposed by Olive and
Hawkins. This is a family of fast, consistent, and highly outlier-resistant methods. The estimate is a
robust root n-consistent estimator of covariance for elliptically contoured distributions with fourth
moments. This estimate is obtained by first generating trial estimates, or starts, and then using the
concentration technique from each trial fit to obtain attractors.

Suppose (T0j,C0j) is a start, then at the next iteration the classical mean and covariance estimators are
computed from the approximately n / 2 cases (where n is the number of observations) with the
smallest Mahalanobis distances based on the estimates from the previous iteration. This iteration can
be continued for a fixed number of steps k, with the estimate at the last step, k, being the attractor.
The final estimate is chosen based on a given criterion.

By default, two attractors are used. The first attractor is the Devlin-Gnanadesikan-Kettering (DGK)
attractor, where the start used is the classical estimator. The second attractor is the Median Ball (MB)
attractor, where the start used is (median(x),eye(p)), in other words the half set of data closest
to median(x) in Euclidean distance. The MB attractor is used if the location estimator of the DGK
attractor is outside of the median ball, and the attractor with the smallest determinant is used
otherwise. The final mean estimate is the mean estimate of the chosen attractor, and the final
covariance estimate is the covariance estimate of the chosen attractor, multiplied by a scaling factor
to make the estimate consistent at the normal distribution.
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Version History
Introduced in R2016a

References
[1] Maronna, R. and Zamar, R.H.. “Robust estimates of location and dispersion for high dimensional

datasets.” Technometrics, Vol. 50, 2002.

[2] Pison, S. Van Aelst and G. Willems. “Small Sample Corrections for LTS and MCD.” Metrika, Vol.
55, 2002.

[3] Rousseeuw, P.J. and Van Driessen, K. “A fast algorithm for the minimum covariance determinant
estimator.” Technometrics, Vol. 41, 1999.

[4] Olive, D.J. “A resistant estimator of multivariate location and dispersion.” Computational Statistics
and Data Analysis, Vol. 46, pp. 99–102, 2004.

Extended Capabilities
Thread-Based Environment
Run code in the background using MATLAB® backgroundPool or accelerate code with Parallel
Computing Toolbox™ ThreadPool.

This function fully supports thread-based environments. For more information, see “Run MATLAB
Functions in Thread-Based Environment”.

See Also
cov | mahal | iforest | lof | ocsvm

Topics
“Unsupervised Anomaly Detection” on page 17-91
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robustdemo
Interactive robust regression

Syntax
robustdemo
robustdemo(x,y)

Description
robustdemo shows the difference between ordinary least squares and robust regression for data
with a single predictor. With no input arguments, robustdemo displays a scatter plot of a sample of
roughly linear data with one outlier. The bottom of the figure displays equations of lines fitted to the
data using ordinary least squares and robust methods, together with estimates of the root mean
squared errors.

Use the right mouse button to click on a point and view its least-squares leverage and robust weight.

Use the left mouse button to click-and-drag a point. The displays will update.

robustdemo(x,y) uses x and y data vectors you supply, in place of the sample data supplied with
the function.

Examples
The following steps show you how to use robustdemo.

1 Start the example. To begin using robustdemo with the built-in data, simply type the function
name:

robustdemo
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The resulting figure shows a scatter plot with two fitted lines. The red line is the fit using
ordinary least-squares regression. The green line is the fit using robust regression. At the bottom
of the figure are the equations for the fitted lines, together with the estimated root mean squared
errors for each fit.

2 View leverages and robust weights. Right-click on any data point to see its least-squares
leverage and robust weight:
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In the built-in data, the right-most point has a relatively high leverage of 0.35. The point exerts a
large influence on the least-squares fit, but its small robust weight shows that it is effectively
excluded from the robust fit.

3 See how changes in the data affect the fits. With the left mouse button, click and hold on any
data point and drag it to a new location. When you release the mouse button, the displays
update:
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Bringing the right-most data point closer to the least-squares line makes the two fitted lines
nearly identical. The adjusted right-most data point has significant weight in the robust fit.

Version History
Introduced before R2006a

See Also
robustfit | leverage
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robustfit
Fit robust linear regression

Syntax
b = robustfit(X,y)
b = robustfit(X,y,wfun,tune,const)
[b,stats] = robustfit( ___ )

Description
b = robustfit(X,y) returns a vector b of coefficient estimates for a robust multiple linear
regression of the responses in vector y on the predictors in matrix X.

b = robustfit(X,y,wfun,tune,const) specifies the fitting weight function options wfun and
tune, and the indicator const, which determines if the model includes a constant term. You can pass
in [] for wfun, tune, and const to use their default values.

[b,stats] = robustfit( ___ ) also returns a structure stats containing estimated statistics,
using any of the input argument combinations in previous syntaxes.

Examples

Estimate Robust Regression Coefficients

Estimate robust regression coefficients for a multiple linear model.

Load the carsmall data set. Specify car weight and horsepower as predictors and mileage per
gallon as the response.

load carsmall
x1 = Weight;
x2 = Horsepower;
X = [x1 x2];
y = MPG;

Compute the robust regression coefficients.

b = robustfit(X,y)

b = 3×1

   47.1975
   -0.0068
   -0.0333

Plot the fitted model.

x1fit = linspace(min(x1),max(x1),20);
x2fit = linspace(min(x2),max(x2),20);
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[X1FIT,X2FIT] = meshgrid(x1fit,x2fit);
YFIT = b(1) + b(2)*X1FIT + b(3)*X2FIT;
mesh(X1FIT,X2FIT,YFIT)

Plot the data.

hold on
scatter3(x1,x2,y,'filled')
hold off
xlabel('Weight')
ylabel('Horsepower')
zlabel('MPG')
legend('Model','Data')
view(50,10)
axis tight

Tune Robust Weight Function

Tune the weight function for robust regression by using different tuning constants.

Generate data with the trend y = 10− 2x, and then change one value to simulate an outlier.

x = (1:10)';
rng ('default') % For reproducibility
y = 10 - 2*x + randn(10,1);
y(10) = 0;
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Compute the robust regression residuals using the bisquare weight function for three different tuning
constants. The default tuning constant is 4.685.

tune_const = [3 4.685 6];

for i = 1:length(tune_const)
    [~,stats] = robustfit(x,y,'bisquare',tune_const(i));
    resids(:,i) = stats.resid;
end

Create a plot of the residuals.

scatter(x,resids(:,1),'b','filled')
hold on
plot(resids(:,2),'rx','MarkerSize',10,'LineWidth',2)
scatter(x,resids(:,3),'g','filled')
plot([min(x) max(x)],[0 0],'--k')
hold off 
grid on
xlabel('x')
ylabel('Residuals')
legend('tune = 3','tune = 4.685','tune = 6','Location','best')

Compute the root mean squared error (RMSE) of residuals for the three different tuning constants.

rmse = sqrt(mean(resids.^2))

rmse = 1×3
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    3.2577    2.7576    2.7099

Because increasing the tuning constant decreases the downweight assigned to outliers, the RMSE
decreases as the tuning constant increases.

Compare Robust and Least-Squares Regression

Generate data with the trend y = 10− 2x, and then change one value to simulate an outlier.

x = (1:10)';
rng('default') % For reproducibility
y = 10 - 2*x + randn(10,1);
y(10) = 0;

Fit a straight line using ordinary least-squares regression. To compute coefficient estimates for a
model with a constant term, include a column of ones in x.

bls = regress(y,[ones(10,1) x])

bls = 2×1

    7.8518
   -1.3644

Estimate a straight-line fit using robust regression. robustfit adds a constant term to the model by
default.

[brob,stats] = robustfit(x,y);
brob

brob = 2×1

    8.4504
   -1.5278

Identify potential outliers by comparing the residuals to the median absolute deviation of the
residuals.

outliers_ind = find(abs(stats.resid)>stats.mad_s);

Plot a bar graph of the residuals for robust regression.

bar(abs(stats.resid))
hold on
yline(stats.mad_s,'k--')
hold off
xlabel('x')
ylabel('Residuals')
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Create a scatter plot of the data.

scatter(x,y,'filled')

Plot the outlier.

hold on 
plot(x(outliers_ind),y(outliers_ind),'mo','LineWidth',2)

Plot the least-squares and robust fit.

plot(x,bls(1)+bls(2)*x,'r')
plot(x,brob(1)+brob(2)*x,'g')
hold off
xlabel('x')
ylabel('y')
legend('Data','Outlier','Ordinary Least Squares','Robust Regression')
grid on
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The outlier influences the robust fit less than the least-squares fit.

Input Arguments
X — Predictor data
numeric matrix

Predictor data, specified as an n-by-p numeric matrix. Rows of X correspond to observations, and
columns correspond to predictor variables. X must have the same number of rows as y.

By default, robustfit adds a constant term to the model, unless you explicitly remove it by
specifying const as 'off'. So, do not include a column of 1s in X.
Data Types: single | double

y — Response data
numeric vector

Response data, specified as an n-by-1 numeric vector. Rows of y correspond to different observations.
y must have the same number of rows as X.
Data Types: single | double

wfun — Robust fitting weight function
'bisquare' (default) | 'andrews' | 'cauchy' | 'fair' | function handle | ...
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Robust fitting weight function, specified as the name of a weight function described in the following
table, or a function handle. robustfit uses the corresponding default tuning constant, unless
otherwise specified by tune.

Weight Function Description Default Tuning
Constant

'andrews' w = (abs(r)<pi) .* sin(r) ./ r 1.339
'bisquare' w = (abs(r)<1) .* (1 - r.^2).^2 (also called

biweight)
4.685

'cauchy' w = 1 ./ (1 + r.^2) 2.385
'fair' w = 1 ./ (1 + abs(r)) 1.400
'huber' w = 1 ./ max(1, abs(r)) 1.345
'logistic' w = tanh(r) ./ r 1.205
'ols' Ordinary least squares (no weighting function) None
'talwar' w = 1 * (abs(r)<1) 2.795
'welsch' w = exp(-(r.^2)) 2.985
function handle Custom weight function that accepts a vector r of

scaled residuals, and returns a vector of weights the
same size as r

1

The value r in the weight functions is

r = resid/(tune*s*sqrt(1–h)),

where

• resid is the vector of residuals from the previous iteration.
• tune is the tuning constant.
• h is the vector of leverage values from a least-squares fit.
• s is an estimate of the standard deviation of the error term given by s = MAD/0.6745.

MAD is the median absolute deviation of the residuals from their median. The constant 0.6745 makes
the estimate unbiased for the normal distribution. If X has p columns, the software excludes the
smallest p absolute deviations when computing the median.
Data Types: char | string | function handle

tune — Tuning constant
positive scalar

Tuning constant, specified as a positive scalar. If you do not set tune, robustfit uses the
corresponding default tuning constant for each weight function (see the table in wfun).

The default tuning constants of built-in weight functions give coefficient estimates that are
approximately 95% as statistically efficient as the ordinary least-squares estimates, provided that the
response has a normal distribution with no outliers. Decreasing the tuning constant increases the
downweight assigned to large residuals; increasing the tuning constant decreases the downweight
assigned to large residuals.
Data Types: single | double
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const — Indicator for constant term
'on' (default) | 'off'

Indicator for a constant term in the fit, specified as 'on' or 'off'. If const is 'on', then
robustfit adds a first column of 1s to the predictor matrix X, and the output b becomes a (p + 1)-
by-1 vector. If const is 'off', then X remains unchanged and b is a p-by-1 vector.
Data Types: char | string

Output Arguments
b — Coefficient estimates for robust multiple linear regression
numeric vector

Coefficient estimates for robust multiple linear regression, returned as a numeric vector. b is a p-by-1
vector, where p is the number of predictors in X.

By default, robustfit adds a constant term to the model, unless you explicitly remove it by
specifying const as 'off'.

stats — Model statistics
structure

Model statistics, returned as a structure. The following table describes the fields of the diagnostic
statistics structure from the robust regression.

Field Description
ols_s Sigma estimate (root mean squared error) from ordinary least squares
robust_s Robust estimate of sigma
mad_s Estimate of sigma computed using the median absolute deviation of the residuals

from their median; used for scaling residuals during iterative fitting
s Final estimate of sigma, the largest between robust_s and a weighted average

of ols_s and robust_s
resid Residuals, observed minus fitted values (see “Raw Residuals” on page 11-82)
rstud Studentized residuals, the residuals divided by an independent estimate of the

residual standard deviation (see “Studentized Residuals” on page 11-82)
se Standard error of the estimated coefficient value b
covb Estimated covariance matrix for coefficient estimates
coeffcorr Estimated correlation of coefficient estimates
t t-statistic for each coefficient to test the null hypothesis that the corresponding

coefficient is zero against the alternative that it is different from zero, given the
other predictors in the model. Note that t = b/se.

p p-values for the t-statistic of the hypothesis test that the corresponding
coefficient is equal to zero or not

w Vector of weights for a robust fit
R R factor in the QR decomposition of X
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Field Description
dfe Degrees of freedom for the error (residuals), equal to the number of observations

minus the number of estimated coefficients
h Vector of leverage values for a least-squares fit

More About
Leverage

Leverage is a measure of the effect of a particular observation on the regression predictions due to
the position of that observation in the space of the inputs.

The leverage of observation i is the value of the ith diagonal term hii of the hat matrix H. The hat
matrix H is defined in terms of the data matrix X:

H = X(XTX)–1XT.
The hat matrix is also known as the projection matrix because it projects the vector of observations y
onto the vector of predictions y , thus putting the "hat" on y.

Because the sum of the leverage values is p (the number of coefficients in the regression model), an
observation i can be considered an outlier if its leverage substantially exceeds p/n, where n is the
number of observations.

For more details, see “Hat Matrix and Leverage” on page 11-79.

Tips
• robustfit treats NaN values in X or y as missing values. robustfit omits observations with

missing values from the robust fit.

Algorithms
• robustfit uses iteratively reweighted least squares to compute the coefficients b. The input

wfun specifies the weights.
• robustfit estimates the variance-covariance matrix of the coefficient estimates stats.covb

using the formula inv(X'*X)*stats.s^2. This estimate produces the standard error stats.se
and correlation stats.coeffcorr.

• In a linear model, observed values of y and their residuals are random variables. Residuals have
normal distributions with zero mean but with different variances at different values of the
predictors. To put residuals on a comparable scale, robustfit “Studentizes” the residuals. That
is, robustfit divides the residuals by an estimate of their standard deviation that is independent
of their value. Studentized residuals have t-distributions with known degrees of freedom.
robustfit returns the Studentized residuals in stats.rstud.

Alternative Functionality
robustfit is useful when you simply need the output arguments of the function or when you want to
repeat fitting a model multiple times in a loop. If you need to investigate a robust fitted regression
model further, create a linear regression model object LinearModel by using fitlm. Set the value
for the name-value pair argument 'RobustOpts' to 'on'.
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Version History
Introduced before R2006a
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See Also
LinearModel | fitlm | regress | robustdemo

Topics
“What Is a Linear Regression Model?” on page 11-6
“Reduce Outlier Effects Using Robust Regression” on page 11-106
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ROCCurve Properties
Receiver operating characteristic (ROC) curve appearance and behavior

Description
ROCCurve properties control the appearance and behavior of a ROCCurve object, which the plot
function of a rocmetrics object returns for each receiver operating characteristic (ROC) curve or
other performance curve.

By changing property values, you can modify certain aspects of the ROC curve. Use dot notation to
query and set properties; for example:

rocObj = rocmetrics(Lables,Scores,ClassNames);
curveObj = plot(rocObj);
c = curveObj(1).Color;
curveObj(1).Color = "red";

Properties
ROC Curve Data

XAxisMetric — Performance metric for x-axis
name of performance metric

This property is read-only.

Performance metric for the x-axis, stored in XData, specified as a string scalar of the performance
metric name.

The XAxisMetric name-value argument of the plot function sets this property. The default value of
this argument is "FalsePositiveRate".

For details about built-in and custom metric names, see the XAxisMetric name-value argument of
the plot function.

XData — x-axis values
numeric vector

This property is read-only.

x-axis values for XAxisMetric, specified as a numeric vector.
Data Types: double

YAxisMetric — Performance metric for y-axis
name of performance metric

This property is read-only.

Performance metric for the y-axis, stored in YData, specified as a string scalar of the performance
metric name.

35 Functions

35-6808



The YAxisMetric name-value argument of the plot function sets this property. The default value of
this argument is "TruePositiveRate".

For details about built-in and custom metric names, see the XAxisMetric name-value argument of
the plot function.

YData — y-axis values
numeric vector

This property is read-only.

y-axis values for YAxisMetric, specified as a numeric vector.
Data Types: double

Thresholds — Thresholds on classification scores
numeric vector

This property is read-only.

Thresholds on classification scores at which the software finds each of the performance metric values
(XData and YData), specified as a numeric vector.
Data Types: double

ROC Curve Options

ShowConfidenceIntervals — Flag to show confidence intervals
true or 1 | false or 0

Flag to show the confidence intervals for the y-axis metric (YAxisMetric), specified as logical 1
(true) or 0 (false).

The ShowConfidenceIntervals name-value argument of the plot function sets this property. The
default value of the argument is false.

The ShowConfidenceIntervals value can be true only if the Metrics property of the
rocmetrics object contains the confidence intervals for the y-axis metric.

Color

Color — Color of line and confidence interval shading
RGB triplet | hexadecimal color code | 'r' | 'g' | 'b' | ...

Color of the line and confidence interval shading, specified as an RGB triplet, hexadecimal color code,
color name, or short name.

RGB triplets and hexadecimal color codes are useful for specifying custom colors.

• An RGB triplet is a three-element row vector whose elements specify the intensities of the red,
green, and blue components of the color. The intensities must be in the range [0,1]; for example,
[0.4 0.6 0.7].

• A hexadecimal color code is a character vector or a string scalar that starts with a hash symbol (#)
followed by three or six hexadecimal digits, which can range from 0 to F. The values are not case
sensitive. Thus, the color codes '#FF8800', '#ff8800', '#F80', and '#f80' are equivalent.
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Alternatively, you can specify some common colors by name. This table lists the named color options,
the equivalent RGB triplets, and hexadecimal color codes.

Color Name Short Name RGB Triplet Hexadecimal
Color Code

Appearance

"red" "r" [1 0 0] "#FF0000"
"green" "g" [0 1 0] "#00FF00"
"blue" "b" [0 0 1] "#0000FF"
"cyan" "c" [0 1 1] "#00FFFF"
"magenta" "m" [1 0 1] "#FF00FF"
"yellow" "y" [1 1 0] "#FFFF00"
"black" "k" [0 0 0] "#000000"
"white" "w" [1 1 1] "#FFFFFF"

Here are the RGB triplets and hexadecimal color codes for the default colors MATLAB uses in many
types of plots.

RGB Triplet Hexadecimal Color Code Appearance
[0 0.4470 0.7410] "#0072BD"
[0.8500 0.3250 0.0980] "#D95319"
[0.9290 0.6940 0.1250] "#EDB120"
[0.4940 0.1840 0.5560] "#7E2F8E"
[0.4660 0.6740 0.1880] "#77AC30"
[0.3010 0.7450 0.9330] "#4DBEEE"
[0.6350 0.0780 0.1840] "#A2142F"

Example: 'blue'
Example: [0 0 1]
Example: '#0000FF'

ColorMode — Mode for setting Color
'auto' (default) | 'manual'

Mode for setting the Color property, specified as one of these values:

• 'auto' — The software controls the value of the Color property by selecting a color from the
ColorOrder property of the axes.

• 'manual' — You control the value of the Color property manually by setting the value of the
Color property directly on the object.

If you change the value of the Color property manually, the software changes the value of the
ColorMode property to 'manual'.

Line

LineStyle — Line style
'-' (default) | '--' | ':' | '-.' | 'none'
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Line style, specified as one of the options in this table.

Line Style Description Resulting Line
"-" Solid line

"--" Dashed line

":" Dotted line

"-." Dash-dotted line

"none" No line No line

LineStyleMode — Mode for setting LineStyle
'auto' (default) | 'manual'

Mode for setting the LineStyle property, specified as one of these values:

• 'auto' — The software controls the value of the LineStyle property by selecting a line style
from the LineStyleOrder property of the axes.

• 'manual' — You control the value of the LineStyle property manually by setting the value of
the LineStyle property directly on the object.

If you change the value of the LineStyle property manually, the software changes the value of the
LineStyleMode property to 'manual'.

LineWidth — Line width
0.5 (default) | positive value

Line width, specified as a positive value in points, where 1 point = 1/72 of an inch. If the line has
markers, then the line width also affects the marker edges.

The line width cannot be thinner than the width of a pixel. If you set the line width to a value that is
less than the width of a pixel on your system, the line is displayed one pixel wide.

SeriesIndex — Series index
whole number

Series index, specified as a whole number greater than or equal to 0. This property is useful for
reassigning the colors, line styles, or markers of several ROCCurve objects so that they match each
other. By default, the SeriesIndex property of a ROCCurve object is a number that corresponds to
its order of creation, starting at 1.

The software uses the number to calculate indices for assigning color, line style, or markers when you
call plotting functions. The indices refer to the rows of the arrays stored in the ColorOrder and
LineStyleOrder properties of the axes.

The software automatically updates the color, line style, or markers of the ROCCurve object when you
change its SeriesIndex, or when you change the ColorOrder or LineStyleOrder properties of
the axes. However, the following conditions must be true for the changes to have any effect:

• At least one of these properties of the ROCCurve object is set to 'auto': ColorMode,
LineStyleMode, or MarkerMode.
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• The SeriesIndex property of the ROCCurve object is greater than 0.
• The NextSeriesIndex property of the axes object is greater than 0.

Markers

Marker — Marker symbol
'none' | 'o' | '+' | '*' | '.' | ...

Marker symbol, specified as one of the values in this table. By default, the object does not display
markers. Specifying a marker symbol adds markers at each data point or vertex.

Marker Description Resulting Marker
"o" Circle

"+" Plus sign

"*" Asterisk

"." Point

"x" Cross

"_" Horizontal line

"|" Vertical line

"square" Square

"diamond" Diamond

"^" Upward-pointing triangle

"v" Downward-pointing triangle

">" Right-pointing triangle

"<" Left-pointing triangle

"pentagram" Pentagram

"hexagram" Hexagram

"none" No markers Not applicable

MarkerMode — Mode for setting Marker
'auto' (default) | 'manual'

Mode for setting the Marker property, specified as one of these values:

• 'auto' — The software controls the value of the object's Marker property.
• 'manual' — You control the value of the Marker property manually by setting the value of the

Marker property directly on the object.
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If you change the value of the Marker property manually, the software changes the value of the
MarkerMode property to 'manual'.

Legend

DisplayName — Text used in legend
character vector

Text used in the legend, specified as a character vector.

The default value of DisplayName is the name of the class for which the curve describes the
performance. If the curve is a ROC curve, then DisplayName also contains the area under the ROC
curve (AUC) value.

Alternatively, you can specify the legend text using the legend function.

• If you specify the text as an input argument to the legend function, then the legend uses the
specified text and sets the DisplayName property to the same value.

• If you do not specify the text as an input argument to the legend function, then the legend uses
the text in the DisplayName property.

If you interactively edit the character vector in an existing legend, then the software updates the
DisplayName property to the edited character vector.

Annotation — Control for legend
Annotation object

Control for including the ROCCurve object in the legend or excluding the object from the legend,
specified as an Annotation object. Set the underlying IconDisplayStyle property to one of these
values:

• 'on' — Include the ROCCurve object in the legend (default).
• 'off' — Do not include the ROCCurve object in the legend.

For example, to exclude the ROCCurve object curveObj from the legend, set the
IconDisplayStyle property to 'off'.

curveObj.Annotation.LegendInformation.IconDisplayStyle = 'off';

Alternatively, you can control the items in a legend using the legend function. Specify the first input
argument as a vector of the graphics objects to include. If you do not specify an existing graphics
object in the first input argument, then it does not appear in the legend. However, graphics objects
added to the axes after the legend is created do appear in the legend. Consider creating the legend
after creating all the plots to avoid extra items.

Interactivity

Visible — State of visibility for object
'on' (default) | on/off logical value

State of visibility for an object, specified as 'on' or 'off', or as numeric or logical 1 (true) or 0
(false). A value of 'on' is equivalent to true, and 'off' is equivalent to false. Thus, you can use
the value of this property as a logical value. The value is stored as an on/off logical value of type
matlab.lang.OnOffSwitchState.
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• 'on' — Display the object.
• 'off' — Hide the object without deleting it. You still can access the properties of an invisible

object.

DataTipTemplate — Data tip content
DataTipTemplate object

Data tip content, specified as a DataTipTemplate object. You can control the content that appears
in a data tip by modifying the properties of the underlying DataTipTemplate object. For a list of
properties, see DataTipTemplate.

For an example of modifying data tips, see “Create Custom Data Tips”.

Note The DataTipTemplate object is not returned by findobj or findall, and it is not copied by
copyobj.

Selected — Selection state of object
'off' (default) | on/off logical value

Selection state of an object, specified as 'on' or 'off', or as numeric or logical 1 (true) or 0
(false). A value of 'on' is equivalent to true, and 'off' is equivalent to false. Thus, you can use
the value of this property as a logical value. The value is stored as an on/off logical value of type
matlab.lang.OnOffSwitchState.

• 'on' — The object is selected. If you click the object when editing the plot, the software sets the
object's Selected property to 'on'. If the SelectionHighlight property is also set to 'on',
the software displays selection handles around the object.

• 'off' — The object is not selected.

SelectionHighlight — Display of selection handles
'on' (default) | on/off logical value

Display of selection handles when an object is selected, specified as 'on' or 'off', or as numeric or
logical 1 (true) or 0 (false). A value of 'on' is equivalent to true, and 'off' is equivalent to
false. Thus, you can use the value of this property as a logical value. The value is stored as an on/off
logical value of type matlab.lang.OnOffSwitchState.

• 'on' — Display selection handles around the object when the Selected property is set to 'on'.
• 'off' — Do not display selection handles around the object, even when the Selected property is

set to 'on'.

Callback Execution Control

PickableParts — Ability to capture mouse clicks
'visible' (default) | 'all' | 'none'

Ability to capture mouse clicks, specified as one of these values:

• 'visible' — Capture mouse clicks when they are visible. The Visible property must be set to
'on' and you must click a part of the ROCCurve object that has a defined color. You cannot click a
part that has an associated color property set to 'none'. If the plot contains markers, then the
entire marker is clickable if either the edge or the fill has a defined color. The HitTest property
determines if the ROCCurve object responds to the click or if an ancestor does.
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• 'all' — Capture mouse clicks regardless of visibility. The Visible property can be set to 'on'
or 'off' and you can click a part of the ROCCurve object that has no color. The HitTest
property determines if the ROCCurve object responds to the click or if an ancestor does.

• 'none' — Mouse clicks cannot be captured. Clicking the ROCCurve object passes the click to the
object below it in the current view of the figure window. The HitTest property has no effect.

HitTest — Response to captured mouse clicks
'on' (default) | on/off logical value

Response to captured mouse clicks, specified as 'on' or 'off', or as numeric or logical 1 (true) or
0 (false). A value of 'on' is equivalent to true, and 'off' is equivalent to false. Thus, you can use
the value of this property as a logical value. The value is stored as an on/off logical value of type
matlab.lang.OnOffSwitchState.

• 'on' — Create a data tip at a data point of the ROCCurve object.
• 'off' — Trigger the callbacks for the nearest ancestor of the ROCCurve object that has one of

these:

• HitTest property set to 'on'
• PickableParts property set to a value that enables the ancestor to capture mouse clicks

Note The PickableParts property determines if the ROCCurve object can capture mouse clicks. If
it cannot, then the HitTest property has no effect.

Parent/Child

Parent — Parent
Axes object

Parent, specified as an Axes object.

Children — Children
empty GraphicsPlaceholder array | DataTip object array

Children, specified as an empty GraphicsPlaceholder array or a DataTip object array. Use this
property to view a list of data tips plotted on the performance curve.

You cannot add or remove children using the Children property. To add a child to this list, set the
Parent property of the DataTip object to the ROCCurve object.

HandleVisibility — Visibility of object handle
'on' (default) | 'off' | 'callback'

Visibility of the object handle in the Children property of the parent, specified as one of these
values:

• 'on' — The object handle is always visible.
• 'off' — The object handle is invisible at all times. This option is useful for preventing unintended

changes by another function. Set HandleVisibility to 'off' to temporarily hide the handle
during the execution of that function.
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• 'callback' — The object handle is visible from callbacks or functions invoked by callbacks, but
not from functions invoked from the command line. This option blocks access to the object at the
command line, but permits callback functions to access the object.

If the object is not listed in the Children property of the parent, then functions that obtain object
handles by searching the object hierarchy or querying handle properties cannot return the object.
Examples of such functions include the get, findobj, gca, gcf, gco, newplot, cla, clf, and
close functions.

Hidden object handles are still valid. Set the root ShowHiddenHandles property to 'on' to list all
object handles regardless of their HandleVisibility property setting.

Identifier

Type — Type of graphics object
'roccurve'

This property is read-only.

Type of graphics object, specified as 'roccurve'. Use this property to find all objects of a given type
within a plotting hierarchy, for example, searching for the type using findobj.

Tag — Object identifier
'' (default) | character vector | string scalar

Object identifier, specified as a character vector or string scalar. You can specify a unique Tag value
to serve as an identifier for an object. When you need to access the object elsewhere in your code,
you can use the findobj function to search for the object based on the Tag value.

UserData — User data
[] (default) | array

User data, specified as any MATLAB array. For example, you can specify a scalar, vector, matrix, cell
array, character array, table, or structure. Use this property to store arbitrary data on an object.

If you are working in App Designer, create public or private properties in the app to share data
instead of using the UserData property. For more information, see “Share Data Within App Designer
Apps”.

Version History
Introduced in R2022a

See Also
rocmetrics | addMetrics | average | plot

Topics
“ROC Curve and Performance Metrics” on page 18-3
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rocmetrics
Receiver operating characteristic (ROC) curve and performance metrics for binary and multiclass
classifiers

Description
Create a rocmetrics object to evaluate the performance of a classification model using receiver
operating characteristic (ROC) curves on page 35-6847 or other performance metrics. rocmetrics
supports both binary and multiclass problems.

For each class, rocmetrics computes performance metrics for a one-versus-all on page 35-6848
ROC curve. You can compute metrics for an average ROC curve by using the average function. After
computing metrics for ROC curves, you can plot them by using the plot function.

By default, rocmetrics computes the false positive rates (FPR) and the true positive rates (TPR) to
obtain a ROC curve and the area under the ROC curve (AUC) on page 35-6848. You can compute
additional metrics by specifying the AdditionalMetrics name-value argument when you create an
object or by calling the addMetrics function after you create an object. A rocmetrics object stores
the computed metrics and AUC values in the Metrics and AUC properties, respectively.

rocmetrics computes pointwise confidence intervals for the performance metrics when you set the
NumBootstraps value to a positive integer or when you specify cross-validated data for the true
class labels (Labels), classification scores (Scores), and observation weights (Weights). For
details, see “Pointwise Confidence Intervals” on page 18-17.

Creation

Syntax
rocObj = rocmetrics(Labels,Scores,ClassNames)

rocObj = rocmetrics(Labels,Scores,ClassNames,Name=Value)

Description

rocObj = rocmetrics(Labels,Scores,ClassNames) creates a rocmetrics object using the
true class labels in Labels and the classification scores in Scores. Specify Labels as a vector of
length n, and specify Scores as a matrix of size n-by-K, where n is the number of observations, and K
is the number of classes. ClassNames specifies the column order in Scores.

The Metrics and AUC properties contain the performance metrics and AUC value for each class for
which you specify Scores and ClassNames.

If you specify cross-validated data in Labels and Scores as cell arrays, then rocmetrics computes
confidence intervals for the performance metrics.
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rocObj = rocmetrics(Labels,Scores,ClassNames,Name=Value) specifies additional options
using one or more name-value arguments. For example, NumBootstraps=100 draws 100 bootstrap
samples to compute confidence intervals for the performance metrics.

Input Arguments

Labels — True class labels
numeric vector | logical vector | categorical vector | character array | string array | cell array

True class labels, specified as a numeric vector, logical vector, categorical vector, character array,
string array, or cell array of character vectors. You can also specify Labels as a cell array of one of
these types for cross-validated data.

• For data that is not cross-validated, the length of Labels and the number of rows in Scores must
be equal.

• For cross-validated data, you must specify Labels, Scores, and Weights as cell arrays with the
same number of elements. rocmetrics treats an element in the cell arrays as data from one
cross-validation fold and computes pointwise confidence intervals for the performance metrics.
The length of Labels{i} and the number of rows in Scores{i} must be equal.

Each row of Labels or Labels{i} represents the true label of one observation.

This argument sets the Labels property.
Data Types: single | double | logical | char | string | cell

Scores — Classification scores
numeric matrix | cell array of numeric matrices

Classification scores, specified as a numeric matrix or a cell array of numeric matrices.

Each row of the matrix in Scores contains the classification scores of one observation for all classes
specified in ClassNames. The column order of Scores must match the class order in ClassNames.

• For a matrix input, Score(j,k) is the classification score of observation j for class
ClassNames(k). You can specify Scores by using the second output argument of the predict
function of a classification model object for both binary classification and multiclass classification.
For example, predict of ClassificationTree returns classification scores as an n-by-K matrix,
where n is the number of observations and K is the number classes. Pass the output to
rocmetrics.

The number of rows in Scores and the length of Labels must be equal. rocmetrics adjusts
scores for each class relative to the scores for the rest of the classes. For details, see “Adjusted
Scores for Multiclass Classification Problem” on page 35-6849.

• For a vector input, Score(j) is the classification score of observation j for the class specified in
ClassNames.

• ClassNames must contain only one class.
• Prior must be a two-element vector with Prior(1) representing the prior probability for the
specified class.

• Cost must be a 2-by-2 matrix containing [Cost(P|P),Cost(N|P);Cost(P|N),Cost(N|
N)], where P is a positive class (the class for which you specify classification scores), and N is a
negative class.
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• The length of Scores and the length of Labels must be equal.

If you want to display the model operating point when you plot the ROC curve using the plot
function, the values in Score(j) must be the posterior probability. This restriction applies only to
a vector input.

• For cross-validated data, you must specify Labels, Scores, and Weights as cell arrays with the
same number of elements. rocmetrics treats an element in the cell arrays as data from one
cross-validation fold and computes pointwise confidence intervals for the performance metrics.
Score{i}(j,k) is the classification score of observation j in element i for class
ClassNames(k). The number of rows in Scores{i} and the length of Labels{i} must be equal.

For more information, see “Classification Score Input for rocmetrics” on page 18-13.

This argument sets the Scores property.
Data Types: single | double | cell

ClassNames — Class names
numeric vector | logical vector | categorical vector | character array | string array | cell array of
character vectors

Class names, specified as a numeric vector, logical vector, categorical vector, character array, string
array, or cell array of character vectors. ClassNames must have the same data type as the true labels
in Labels. The values in ClassNames must appear in Labels.

• If you specify classification scores for only one class in Scores, ClassNames specifies only the
name of this class.

• Otherwise, ClassNames specifies the order of the classes in Scores, Cost, and Prior.

This argument sets the ClassNames property.
Data Types: single | double | logical | cell | categorical

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.
Example: FixedMetric="FalsePositiveRate",FixedMetricValues=0:0.01:1 holds the FPR
values fixed at 0:0.01:1.

Performance Metrics

AdditionalMetrics — Additional model performance metrics
[] (default) | character vector | string array | function handle | cell array

Additional model performance metrics to compute, specified as a character vector or string scalar of
the built-in metric name, string array of names, function handle (@metricName), or cell array of
names or function handles. A rocmetrics object always computes the false positive rates (FPR) and
the true positive rates (TPR) to obtain a ROC curve. Therefore, you do not have to specify to compute
FPR and TPR.

• Built-in metrics — Specify one of the following built-in metric names by using a character vector
or string scalar. You can specify more than one by using a string array.
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Name Description
"TruePositives" or "tp" Number of true positives (TP)
"FalseNegatives" or "fn" Number of false negatives (FN)
"FalsePositives" or "fp" Number of false positives (FP)
"TrueNegatives" or "tn" Number of true negatives (TN)
"SumOfTrueAndFalsePosit
ives" or "tp+fp"

Sum of TP and FP

"RateOfPositivePredicti
ons" or "rpp"

Rate of positive predictions (RPP), (TP+FP)/(TP+FN+FP+TN)

"RateOfNegativePredicti
ons" or "rnp"

Rate of negative predictions (RNP), (TN+FN)/(TP+FN+FP
+TN)

"Accuracy" or "accu" Accuracy, (TP+TN)/(TP+FN+FP+TN)
"FalseNegativeRate",
"fnr", or "miss"

False negative rate (FNR), or miss rate, FN/(TP+FN)

"TrueNegativeRate",
"tnr", or "spec"

True negative rate (TNR), or specificity, TN/(TN+FP)

"PositivePredictiveValu
e", "ppv", or "prec"

Positive predictive value (PPV), or precision, TP/(TP+FP)

"NegativePredictiveValu
e" or "npv"

Negative predictive value (NPV), TN/(TN+FN)

"ExpectedCost" or
"ecost"

Expected cost, (TP*cost(P|P)+FN*cost(N|P)
+FP*cost(P|N)+TN*cost(N|N))/(TP+FN+FP+TN), where
cost is a 2-by-2 misclassification cost matrix containing
[0,cost(N|P);cost(P|N),0]. cost(N|P) is the cost of
misclassifying a positive class (P) as a negative class (N), and
cost(P|N) is the cost of misclassifying a negative class as a
positive class.

The software converts the K-by-K matrix specified by the Cost
name-value argument of rocmetrics to a 2-by-2 matrix for
each one-versus-all binary problem. For details, see
“Misclassification Cost Matrix” on page 18-12.

The software computes the scale vector using the prior class probabilities (Prior) and the
number of classes in Labels, and then scales the performance metrics according to this scale
vector. For details, see “Performance Metrics” on page 18-11.

• Custom metric — Specify a custom metric by using a function handle. A custom function that
returns a performance metric must have this form:

metric = customMetric(C,scale,cost)

• The output argument metric is a scalar value.
• A custom metric is a function of the confusion matrix (C), scale vector (scale), and cost matrix

(cost). The software finds these input values for each one-versus-all binary problem. For
details, see “Performance Metrics” on page 18-11.

• C is a 2-by-2 confusion matrix consisting of [TP,FN;FP,TN].

35 Functions

35-6820



• scale is a 2-by-1 scale vector.
• cost is a 2-by-2 misclassification cost matrix.

The software does not support cross-validation for a custom metric. Instead, you can specify to use
bootstrap when you create a rocmetrics object.

Note that the positive predictive value (PPV) is NaN for the reject-all threshold for which TP = FP = 0,
and the negative predictive value (NPV) is NaN for the accept-all threshold for which TN = FN = 0. For
more details, see “Thresholds, Fixed Metric, and Fixed Metric Values” on page 18-15.
Example: AdditionalMetrics=["Accuracy","PositivePredictiveValue"]
Example: AdditionalMetrics={"Accuracy",@m1,@m2} specifies the accuracy metric and the
custom metrics m1 and m2 as additional metrics. rocmetrics stores the custom metric values as
variables named CustomMetric1 and CustomMetric2 in the Metrics property.
Data Types: char | string | cell | function_handle

FixedMetric — Fixed metric
"Thresholds" (default) | "FalsePositiveRate" | "TruePositiveRate" | metric specified by
AdditionalMetrics

Fixed metric, specified as "Thresholds", "FalsePositiveRate" (or "fpr"),
"TruePositiveRate" (or "tpr"), or a metric specified by the AdditionalMetrics name-value
argument. To hold a custom metric fixed, specify FixedMetric as "CustomMetricN", where N is
the number that refers to the custom metric. For example, specify "CustomMetric1" to use the first
custom metric specified by AdditionalMetrics as the fixed metric.

rocmetrics finds the ROC curves and other metric values that correspond to the fixed values
(FixedMetricValues) of the fixed metric (FixedMetric), and stores the values in the Metrics
property as a table. For more details, see “Thresholds, Fixed Metric, and Fixed Metric Values” on
page 18-15.

If rocmetrics computes confidence intervals, it uses one of two methods for the computation,
depending on the FixedMetric value:

• If FixedMetric is "Thresholds" (default), rocmetrics uses threshold averaging.
• If FixedMetric is a nondefault value, rocmetrics uses vertical averaging.

For details, see “Pointwise Confidence Intervals” on page 18-17.

Example: FixedMetric="TruePositiveRate"
Data Types: char | string

FixedMetricValues — Values for fixed metric
"all" (default) | numeric vector

Values for the fixed metric (FixedMetric), specified as "all" or a numeric vector.

rocmetrics finds the ROC curves and other metric values that correspond to the fixed values
(FixedMetricValues) of the fixed metric (FixedMetric), and stores the values in the Metrics
property as a table.

The default FixedMetric value is "Thresholds", and the default FixedMetricValues value is
"all". For each class, rocmetrics uses all distinct adjusted score values on page 35-6849 as
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threshold values and computes the performance metrics using the threshold values. Depending on
the UseNearestNeighbor setting, rocmetrics uses the exact threshold values corresponding to
the fixed values or the nearest threshold values. For more details, see “Thresholds, Fixed Metric, and
Fixed Metric Values” on page 18-15.

If rocmetrics computes confidence intervals, it holds FixedMetric fixed at FixedMetricValues.

• FixedMetric value is "Thresholds", and FixedMetricValues is "all" — rocmetrics
computes confidence intervals at the values corresponding to all distinct threshold values.

• FixedMetric value is a performance metric, and FixedMetricValues is "all" — rocmetrics
finds the metric values corresponding to all distinct threshold values, and computes confidence
intervals at the values corresponding to the metric values.

For details, see “Pointwise Confidence Intervals” on page 18-17.
Example: FixedMetricValues=0:0.01:1
Data Types: single | double

NaNFlag — NaN condition
"omitnan" (default) | "includenan"

NaN condition, specified as "omitnan" or "includenan".

• "omitnan" — rocmetrics ignores all NaN score values in the input Scores and the
corresponding values in Labels and Weights.

• "includenan" — rocmetrics uses the NaN score values in the input Scores for the calculation.
The function adds the observations with NaN scores to false classification counts in the respective
class. That is, the function counts observations with NaN scores from the positive class as false
negative (FN), and counts observations with NaN scores from the negative class as false positive
(FP).

For more details, see “NaN Score Values” on page 18-16.
Example: NaNFlag="includenan"
Data Types: char | string

UseNearestNeighbor — Indicator to use nearest metric values
false or 0 | true or 1

Indicator to use the nearest metric values, specified as logical 0 (false) or 1 (true).

• logical 0 (false) — rocmetrics uses the exact threshold values corresponding to the specified
fixed metric values in FixedMetricValues for FixedMetric.

• logical 1 (true) — Among the adjusted input scores on page 35-6849, rocmetrics finds a value
that is the nearest to the threshold value corresponding to each specified fixed metric value.

For more details, see “Thresholds, Fixed Metric, and Fixed Metric Values” on page 18-15.

The UseNearestNeighbor value must be false if rocmetrics computes confidence intervals.
Otherwise, the default value is true.

Example: UseNearestNeighbor=false
Data Types: logical
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Options for Classification Model

Cost — Misclassification cost
square matrix

Misclassification cost, specified as a K-by-K square matrix C, where K is the number of unique classes
in Labels. C(i,j) is the cost of classifying a point into class j if its true class is i (that is, the rows
correspond to the true class and the columns correspond to the predicted class). ClassNames
specifies the order of the classes.

rocmetrics converts the K-by-K matrix to a 2-by-2 matrix for each one-versus-all binary problem.
For details, see “Misclassification Cost Matrix” on page 18-12.

If you specify classification scores for only one class in Scores, the Cost value must be a 2-by-2
matrix containing [0,cost(N|P);cost(P|N),0], where P is a positive class (the class for which
you specify classification scores), and N is a negative class. cost(N|P) is the cost of misclassifying a
positive class as a negative class, and cost(P|N) is the cost of misclassifying a negative class as a
positive class.

The default value is C(i,j)=1 if i~=j, and C(i,j)=0 if i=j. The diagonal entries of a cost matrix
must be zero.

This argument sets the Cost property.
Example: Cost=[0 2;1 0]
Data Types: single | double

Prior — Prior class probabilities
"empirical" (default) | "uniform" | vector of scalar values

Prior class probabilities, specified as one of the following:

• "empirical" determines class probabilities from class frequencies in the true class labels
Labels. If you pass observation weights (Weights), rocmetrics also uses the weights to
compute the class probabilities.

• "uniform" sets all class probabilities to be equal.
• Vector of scalar values, with one scalar value for each class. ClassNames specifies the order of

the classes.

If you specify classification scores for only one class in Scores, the Prior value must be a two-
element vector with Prior(1) representing the prior probability for the specified class.

This argument sets the Prior property.
Example: Prior="uniform"
Data Types: single | double | char | string

Weights — Observation weights
numeric vector of positive values | cell array containing numeric vectors of positive values

Observation weights, specified as a numeric vector of positive values or a cell array containing
numeric vectors of positive values.

• For data that is not cross-validated, specify Weights as a numeric vector that has the same length
as Labels.
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• For cross-validated data, you must specify Labels, Scores, and Weights as cell arrays with the
same number of elements. rocmetrics treats an element in the cell arrays as data from one
cross-validation fold and computes pointwise confidence intervals for the performance metrics.
The length of Weights{i} and the length of Labels{i} must be equal.

rocmetrics weighs the observations in Labels and Scores with the corresponding values in
Weights. If you set the NumBootstraps value to a positive integer, rocmetrics draws samples
with replacement, using the weights as multinomial sampling probabilities.

By default, Weights is a vector of ones or a cell array containing vectors of ones.

This argument sets the Weights property.
Data Types: single | double | cell

Options for Confidence Intervals

Alpha — Significance level
0.05 (default) | scalar in the range (0,1)

Significance level for the pointwise confidence intervals, specified as a scalar in the range (0,1).

If you specify Alpha as α, then rocmetrics computes 100×(1 – α)% pointwise confidence intervals
on page 18-17 for the performance metrics.

This argument is related to computing confidence intervals. Therefore, it is valid only when you
specify cross-validated data for Labels, Scores, and Weights, or when you set the
NumBootstraps value to a positive integer.

Example: Alpha=0.01 specifies 99% confidence intervals.
Data Types: single | double

BootstrapOptions — Bootstrap options for parallel computation
statset("rocmetrics") (default) | structure

Bootstrap options for parallel computation, specified as a structure.

You can specify options for computing bootstrap iterations in parallel and setting random numbers
during the bootstrap sampling. Create the BootstrapOptions structure with statset. This table
lists the option fields and their values.

Field Name Field Value Default
UseParallel Set this value to true to

compute bootstrap iterations in
parallel.

false

UseSubstreams Set this value to true to run
computations in parallel in a
reproducible manner.

To compute reproducibly, set
Streams to a type that allows
substreams: "mlfg6331_64" or
"mrg32k3a".

false
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Field Name Field Value Default
Streams Specify this value as a

RandStream object or cell array
of such objects. Use a single
object except when the
UseParallel value is true
and the UseSubstreams value
is false. In that case, use a cell
array that has the same size as
the parallel pool.

If you do not specify Streams,
then rocmetrics uses the
default stream or streams.

This argument is valid only when you specify NumBootstraps as a positive integer to compute
confidence intervals using bootstrapping.

This option requires Parallel Computing Toolbox.
Example: BootstrapOptions=statset(UseParallel=true)
Data Types: struct

BootstrapType — Bootstrap confidence interval type
"bca" (default) | "corrected percentile" | "normal" | "percentile" | "student"

Bootstrap confidence interval type, specified as one of the values in this table.

Value Description
"bca" Bias corrected and accelerated percentile method

[8][9]. This method Involves a z0 factor computed
using the proportion of bootstrap values that are
less than the original sample value. To produce
reasonable results when the sample is lumpy, the
software computes z0 by including half of the
bootstrap values that are the same as the original
sample value.

"corrected percentile" or "cper" Bias corrected percentile method [10]
"normal" or "norm" Normal approximated interval with bootstrapped

bias and standard error [11]
"percentile" or "per" Basic percentile method
"student" or "stud" Studentized confidence interval [8]

This argument is valid only when you specify NumBootstraps as a positive integer to compute
confidence intervals using bootstrapping.

Example: BootstrapType="student"
Data Types: char | string

NumBootstraps — Number of bootstrap samples to draw
0 (default) | nonnegative integer scalar

Number of bootstrap samples to draw for computing pointwise confidence intervals, specified as a
nonnegative integer scalar.

 rocmetrics

35-6825



If you specify NumBootstraps as a positive integer, then rocmetrics uses NumBootstraps
bootstrap samples. To create each bootstrap sample, the function randomly selects n out of the n
rows of input data with replacement. The default value 0 implies that rocmetrics does not use
bootstrapping.

rocmetrics computes confidence intervals by using either cross-validated data or bootstrap
samples. Therefore, if you specify cross-validated data for Labels, Scores, and Weights, then
NumBootstraps must be 0.

For details, see “Pointwise Confidence Intervals” on page 18-17.

Example: NumBootstraps=500
Data Types: single | double

NumBootstrapsStudentizedSE — Number of bootstrap samples to draw for studentized
standard error estimate
100 (default) | positive integer scalar

Number of bootstrap samples to draw for the studentized standard error estimate, specified as a
positive integer scalar.

This argument is valid only when you specify NumBootstraps as a positive integer and
BootstrapType as "student" to compute studentized bootstrap confidence intervals. rocmetrics
estimates the studentized standard error estimate by using NumBootstrapsStudentizedSE
bootstrap data samples.

Example: NumBootstrapsStudentizedSE=500
Data Types: single | double

Properties
Performance Metrics

AUC — Area under ROC curve
numeric vector | numeric matrix

This property is read-only.

Area under the ROC curve (AUC) on page 35-6848, specified as a numeric vector or matrix.

rocmetrics computes the AUC for each one-versus-all ROC curve (that is, for each class). The
column order of the AUC property value matches the class order in ClassNames.

For a binary problem where you specify Scores as a two-column matrix, this property is a 1-by-2
vector containing identical AUC values. The AUC values are identical because the overall model
performance on one class is identical to the performance on the other class for a binary problem.

If rocmetrics computes confidence intervals for AUC, the AUC property value is a matrix in which
the first row corresponds to the AUC values, and the second and third rows correspond to the lower
and upper bounds, respectively. rocmetrics computes confidence intervals for AUC if the function
also computes confidence intervals for the performance metrics and you set FixedMetric to
"Thresholds" (default), "FalsePositiveRate", or "TruePositiveRate".
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Data Types: single | double

Metrics — Performance metrics
table

This property is read-only.

Performance metrics, specified as a table.

The table contains performance metric values for all classes, vertically concatenated according to the
class order in ClassNames. The table has a row for each unique threshold value for each class.
rocmetrics determines the threshold values to use based on the value of FixedMetric,
FixedMetricValues, and UseNearestNeighbor. For details, see “Thresholds, Fixed Metric, and
Fixed Metric Values” on page 18-15.

The number of rows for each class in the table is the number of unique threshold values.

Each row of the table contains these variables: ClassName, Threshold, FalsePositiveRate, and
TruePositiveRate, as well as a variable for each additional metric specified in
AdditionalMetrics. If you specify a custom metric, rocmetrics names the metric
"CustomMetricN", where N is the number that refers to the custom metric. For example,
"CustomMetric1" corresponds to the first custom metric specified by AdditionalMetrics.

Each variable in the Metrics table contains a vector or a three-column matrix.

• If rocmetrics does not compute confidence intervals, each variable contains a vector.
• If rocmetrics computes confidence intervals, both ClassName and the variable for

FixedMetric (Threshold, FalsePositiveRate, TruePositiveRate, or an additional metric)
contain a vector, and the other variables contain a three-column matrix. The first column of the
matrix corresponds to the metric values, and the second and third columns correspond to the
lower and upper bounds, respectively.

Data Types: table

Classification Model Properties

You can specify the following properties when creating a rocmetrics object.

ClassNames — Class names
numeric vector | logical vector | categorical vector | cell array of character vectors

This property is read-only.

Class names, specified as a numeric vector, logical vector, categorical vector, or cell array of
character vectors.

For details, see the input argument ClassNames, which sets this property. (The software treats
character or string arrays as cell arrays of character vectors.)
Data Types: single | double | logical | cell | categorical

Cost — Misclassification cost
square matrix

This property is read-only.
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Misclassification cost, specified as a square matrix.

For details, see the Cost name-value argument, which sets this property.
Data Types: single | double

Labels — True class labels
numeric vector | logical vector | categorical vector | cell array

This property is read-only.

True class labels, specified as a numeric vector, logical vector, categorical vector, cell array of
character vectors, or cell array of one of these types for cross-validated data.

For details, see the input argument Labels, which sets this property. (The software treats character
or string arrays as cell arrays of character vectors.)
Data Types: single | double | logical | cell | categorical

Prior — Prior class probabilities
numeric vector

This property is read-only.

Prior class probabilities, specified as a numeric vector.

For details, see the Prior name-value argument, which sets this property. If you specify this
argument as a character vector or string scalar ("empirical" or "uniform"), rocmetrics
computes the prior probabilities and stores the Prior property as a numeric vector.
Data Types: single | double

Scores — Classification scores
numeric matrix | cell array of numeric matrices

This property is read-only.

Classification scores, specified as a numeric matrix or a cell array of numeric matrices.

For details, see the input argument Scores, which sets this property.
Data Types: single | double | cell

Weights — Observation weights
numeric vector of positive values | cell array containing numeric vectors of positive values

This property is read-only.

Observation weights, specified as a numeric vector of positive values or a cell array containing
numeric vectors of positive values.

For details, see the Weights name-value argument, which sets this property.
Data Types: single | double | cell
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Object Functions
addMetrics Compute additional classification performance metrics
average Compute performance metrics for average receiver operating characteristic (ROC)

curve in multiclass problem
plot Plot receiver operating characteristic (ROC) curves and other performance curves

Examples

Plot ROC Curve for Binary Classifier

Compute the performance metrics (FPR and TPR) for a binary classification problem by creating a
rocmetrics object, and plot a ROC curve by using plot function.

Load the ionosphere data set. This data set has 34 predictors (X) and 351 binary responses (Y) for
radar returns, either bad ('b') or good ('g').

load ionosphere

Partition the data into training and test sets. Use approximately 80% of the observations to train a
support vector machine (SVM) model, and 20% of the observations to test the performance of the
trained model on new data. Partition the data using cvpartition.

rng("default") % For reproducibility of the partition
c = cvpartition(Y,Holdout=0.20);
trainingIndices = training(c); % Indices for the training set
testIndices = test(c); % Indices for the test set
XTrain = X(trainingIndices,:);
YTrain = Y(trainingIndices);
XTest = X(testIndices,:);
YTest = Y(testIndices);

Train an SVM classification model.

Mdl = fitcsvm(XTrain,YTrain);

Compute the classification scores for the test set.

[~,Scores] = predict(Mdl,XTest);
size(Scores)

ans = 1×2

    70     2

The output Scores is a matrix of size 70-by-2. The column order of Scores follows the class order in
Mdl. Display the class order stored in Mdl.ClassNames.

Mdl.ClassNames

ans = 2x1 cell
    {'b'}
    {'g'}
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Create a rocmetrics object by using the true labels in YTest and the classification scores in
Scores. Specify the column order of Scores using Mdl.ClassNames.

rocObj = rocmetrics(YTest,Scores,Mdl.ClassNames);

rocObj is a rocmetrics object that stores the AUC values and performance metrics for each class
in the AUC and Metrics properties. Display the AUC property.

rocObj.AUC

ans = 1×2

    0.8587    0.8587

For a binary classification problem, the AUC values are equal to each other.

The table in Metrics contains the performance metric values for both classes, vertically
concatenated according to the class order. Find the rows for the first class in the table, and display
the first eight rows.

idx = strcmp(rocObj.Metrics.ClassName,Mdl.ClassNames(1));
head(rocObj.Metrics(idx,:))

    ClassName    Threshold    FalsePositiveRate    TruePositiveRate
    _________    _________    _________________    ________________

      {'b'}       15.544              0                     0      
      {'b'}       15.544              0                  0.04      
      {'b'}       15.104              0                  0.08      
      {'b'}       11.424              0                  0.16      
      {'b'}       10.078              0                   0.2      
      {'b'}       9.9721              0                  0.24      
      {'b'}       9.9401              0                  0.28      
      {'b'}       9.0326              0                  0.32      

Plot the ROC curve for each class by using the plot function.

plot(rocObj)
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For each class, the plot function plots a ROC curve and displays a filled circle marker at the model
operating point. The legend displays the class name and AUC value for each curve.

Note that you do not need to examine ROC curves for both classes in a binary classification problem.
The two ROC curves are symmetric, and the AUC values are identical. A TPR of one class is a true
negative rate (TNR) of the other class, and TNR is 1-FPR. Therefore, a plot of TPR versus FPR for one
class is the same as a plot of 1-FPR versus 1-TPR for the other class.

Plot the ROC curve for the first class only by specifying the ClassNames name-value argument.

plot(rocObj,ClassNames=Mdl.ClassNames(1))
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Plot ROC Curves for Multiclass Classifier

Compute the performance metrics (FPR and TPR) for a multiclass classification problem by creating a
rocmetrics object, and plot a ROC curve for each class by using the plot function. Specify the
AverageROCType name-value argument of plot to create the average ROC curve for the multiclass
problem.

Load the fisheriris data set. The matrix meas contains flower measurements for 150 different
flowers. The vector species lists the species for each flower. species contains three distinct flower
names.

load fisheriris

Train a classification tree that classifies observations into one of the three labels. Cross-validate the
model using 10-fold cross-validation.

rng("default") % For reproducibility
Mdl = fitctree(meas,species,Crossval="on");

Compute the classification scores for validation-fold observations.

[~,Scores] = kfoldPredict(Mdl);
size(Scores)
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ans = 1×2

   150     3

The output Scores is a matrix of size 150-by-3. The column order of Scores follows the class order
in Mdl. Display the class order stored in Mdl.ClassNames.

Mdl.ClassNames

ans = 3x1 cell
    {'setosa'    }
    {'versicolor'}
    {'virginica' }

Create a rocmetrics object by using the true labels in species and the classification scores in
Scores. Specify the column order of Scores using Mdl.ClassNames.

rocObj = rocmetrics(species,Scores,Mdl.ClassNames);

rocObj is a rocmetrics object that stores the AUC values and performance metrics for each class
in the AUC and Metrics properties. Display the AUC property.

rocObj.AUC

ans = 1×3

    1.0000    0.9636    0.9636

The table in Metrics contains the performance metric values for all three classes, vertically
concatenated according to the class order. Find and display the rows for the second class in the table.

idx = strcmp(rocObj.Metrics.ClassName,Mdl.ClassNames(2));
rocObj.Metrics(idx,:)

ans=13×4 table
      ClassName       Threshold    FalsePositiveRate    TruePositiveRate
    ______________    _________    _________________    ________________

    {'versicolor'}           1              0                    0      
    {'versicolor'}           1           0.01                  0.7      
    {'versicolor'}     0.95455           0.02                  0.8      
    {'versicolor'}     0.91304           0.03                  0.9      
    {'versicolor'}        -0.2           0.04                  0.9      
    {'versicolor'}    -0.33333           0.06                  0.9      
    {'versicolor'}        -0.6           0.08                  0.9      
    {'versicolor'}    -0.86957           0.12                 0.92      
    {'versicolor'}    -0.91111           0.16                 0.96      
    {'versicolor'}    -0.95122           0.31                 0.96      
    {'versicolor'}    -0.95238           0.38                 0.98      
    {'versicolor'}    -0.95349           0.44                 0.98      
    {'versicolor'}          -1              1                    1      

Plot the ROC curve for each class. Specify AverageROCType="micro" to compute the performance
metrics for the average ROC curve using the micro-averaging method.
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plot(rocObj,AverageROCType="micro")

The filled circle markers indicate the model operating points. The legend displays the class name and
AUC value for each curve.

Specify Scores as Vector

For generated samples containing outliers, train an isolation forest model and compute anomaly
scores by using the iforest function. iforest returns scores as a vector. Use the scores to create a
rocmetrics object. Plot the precision-recall curve using the anomaly scores, and find the model
operating point for the isolation forest model.

Use a Gaussian copula to generate random data points from a bivariate distribution.

rng("default")
rho = [1,0.05;0.05,1];
n = 1000;
u = copularnd("Gaussian",rho,n);

Add noise to 5% of randomly selected observations to make the observations outliers.

noise = randperm(n,0.05*n);
true_tf = false(n,1);
true_tf(noise) = true;
u(true_tf,1) = u(true_tf,1)*5;

35 Functions

35-6834



Train an isolation forest model by using the iforest function. Specify the fraction of anomalies in
the training observations as 0.05.

[f,tf,scores] = iforest(u,ContaminationFraction=0.05);

f is an IsolationForest object. iforest also returns the anomaly indicators (tf) and anomaly
scores (scores) for the training data. iforest determines the threshold value
(f.ScoreThreshold) so that the function detects the specified fraction of training observations as
anomalies.

Check the performance of the IsolationForest object by plotting the precision-recall curve and
computing the area under the curve (AUC) value. Create a rocmetrics object by using the true
anomaly indicators (true_tf) and anomaly scores (scores). A score value close to 1 indicates an
anomaly, as does the value true in true_tf. Therefore, specify the class name for scores as true.
Specify the AdditionalMetrics name-value argument to compute the precision values (or positive
predictive values).

rocObj = rocmetrics(true_tf,scores,true,AdditionalMetrics="PositivePredictiveValue");

Plot the curve by using the plot function of rocmetrics. Specify the y-axis metric as precision (or
positive predictive value) and the x-axis metric as recall (or true positive rate). Display a filled circle
at the model operating point corresponding to f.ScoreThreshold. Compute the area under the
precision-recall curve using the trapezoidal method of the trapz function, and display the value in
the legend.

r = plot(rocObj,YAxisMetric="PositivePredictiveValue",XAxisMetric="TruePositiveRate");
hold on
idx = find(rocObj.Metrics.Threshold>=f.ScoreThreshold,1,'last');
scatter(rocObj.Metrics.TruePositiveRate(idx), ...
    rocObj.Metrics.PositivePredictiveValue(idx), ...
    [],r.Color,"filled")
xyData = rmmissing([r.XData r.YData]);
auc = trapz(xyData(:,1),xyData(:,2));
legend(join([r.DisplayName " (AUC = " string(auc) ")"],""),"true Model Operating Point")
xlabel("Recall")
ylabel("Precision")
title("Precision-Recall Curve")
hold off
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Compute Confidence Intervals Using Bootstrapping

Compute the confidence intervals for FPR and TPR for fixed threshold values by using bootstrap
samples, and plot the confidence intervals for TPR on the ROC curve by using the plot function.

Load the ionosphere data set. This data set has 34 predictors (X) and 351 binary responses (Y) for
radar returns, either bad ('b') or good ('g').

load ionosphere

Partition the data into training and test sets. Use approximately 80% of the observations to train a
support vector machine (SVM) model, and 20% of the observations to test the performance of the
trained model on new data. Partition the data using cvpartition.

rng("default") % For reproducibility of the partition
c = cvpartition(Y,Holdout=0.20);
trainingIndices = training(c); % Indices for the training set
testIndices = test(c); % Indices for the test set
XTrain = X(trainingIndices,:);
YTrain = Y(trainingIndices);
XTest = X(testIndices,:);
YTest = Y(testIndices);

Train an SVM classification model.
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Mdl = fitcsvm(XTrain,YTrain);

Compute the classification scores for the test set.

[~,Scores] = predict(Mdl,XTest);

Create a rocmetrics object by using the true labels in YTest and the classification scores in
Scores. Specify the column order of Scores using Mdl.ClassNames. Specify NumBootstraps as
100 to use 100 bootstrap samples to compute the confidence intervals.

rocObj = rocmetrics(YTest,Scores,Mdl.ClassNames, ...
    NumBootstraps=100);

Find the rows for the second class in the table of the Metrics property, and display the first eight
rows.

idx = strcmp(rocObj.Metrics.ClassName,Mdl.ClassNames(2));
head(rocObj.Metrics(idx,:))

    ClassName    Threshold        FalsePositiveRate                 TruePositiveRate        
    _________    _________    __________________________    ________________________________

      {'g'}       7.1953         0          0          0           0           0           0
      {'g'}       7.1953         0          0          0    0.022222           0    0.093023
      {'g'}       6.2589         0          0          0    0.044444           0     0.11969
      {'g'}       5.5725         0          0          0    0.066667    0.020988     0.16024
      {'g'}       5.5636         0          0          0    0.088889    0.022635     0.18805
      {'g'}       5.4617      0.04          0    0.22222    0.088889    0.022635     0.18805
      {'g'}       5.3667      0.08          0       0.28    0.088889    0.022635     0.18805
      {'g'}       5.1527      0.08          0       0.28     0.11111    0.045035     0.19532

Each row of the table contains the metric value and its confidence intervals for FPR and TPR for a
fixed threshold value. The Threshold variable is a column vector, and the FalsePositiveRate and
TruePositiveRate variables are three-column matrices. The first column of the matrices
corresponds to the metric values, and the second and third columns correspond to the lower and
upper bounds, respectively.

Plot the ROC curve and the confidence intervals for TPR. Specify
ShowConfidenceIntervals=true to show the confidence intervals, and specify one class to plot by
using the ClassNames name-value argument.

plot(rocObj,ShowConfidenceIntervals=true,ClassNames=Mdl.ClassNames(2))
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The shaded area around the ROC curve indicates the confidence intervals. The confidence intervals
represent the uncertainty of the curve due to the variance in the test set for the trained model.

Compute Confidence Intervals with Cross-Validated Input Data

Compute the confidence intervals for FPR and TPR for fixed threshold values by using cross-validated
data, and plot the confidence intervals for TPR on the ROC curve by using the plot function.

Load the fisheriris data set. The matrix meas contains flower measurements for 150 different
flowers. The vector species lists the species for each flower. species contains three distinct flower
names.

load fisheriris

Train a naive Bayes model that classifies observations into one of the three labels. Cross-validate the
model using 10-fold cross-validation.

rng("default") % For reproducibility
Mdl = fitcnb(meas,species,Crossval="on");

Compute the classification scores for validation-fold observations.

[~,Scores] = kfoldPredict(Mdl);
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Store the cross-validated scores and the corresponding true labels in cell arrays, so that each element
in the cell arrays corresponds to one validation fold.

cv = Mdl.Partition;
numTestSets = cv.NumTestSets;
cvLabels = cell(numTestSets,1);
cvScores = cell(numTestSets,1);
for i = 1:numTestSets
    testIdx = test(cv,i);
    cvLabels{i} = species(testIdx);
    cvScores{i} = Scores(testIdx,:);
end

Create a rocmetrics object using the cell arrays. If you specify true labels and scores by using cell
arrays, rocmetrics computes the confidence intervals.

rocObj = rocmetrics(cvLabels,cvScores,Mdl.ClassNames);

Plot the ROC curve and the confidence intervals for TPR. Specify
ShowConfidenceIntervals=true to show the confidence intervals.

plot(rocObj,ShowConfidenceIntervals=true)

The shaded area around each curve indicates the confidence intervals. The widths of the confidence
intervals for setosa are 0 for nonzero false positive rates, so the plot does not have a shaded area
for setosa. The confidence intervals reflect the uncertainty in the model due to the variance in the
training and test sets.
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Compare Classification Models

Train three different classification models: decision tree model, generalized additive model, and naive
Bayes model. Compare the performance of the three models on a test data set using the ROC curves
and the AUC values.

Load the 1994 census data stored in census1994.mat. The data set consists of demographic data
from the US Census Bureau to predict whether an individual makes over $50,000 per year.

load census1994

census1994 contains the training data set adultdata and the test data set adulttest. Display the
unique values in the response variable salary.

classNames = unique(adultdata.salary)

classNames = 2x1 categorical
     <=50K 
     >50K 

Train the three models by passing the training data adultdata and specifying the response variable
name "salary". Specify the order of the classes by using the ClassNames name-value argument.

MdlTree = fitctree(adultdata,"salary",ClassNames=classNames);
MdlGAM = fitcgam(adultdata,"salary",ClassNames=classNames); 
MdlNB = fitcnb(adultdata,"salary",ClassNames=classNames);

Compute the classification scores for the test data set adulttest using the trained models.

[~,ScoresTree] = predict(MdlTree,adulttest);
[~,ScoresGAM] = predict(MdlGAM,adulttest);
[~,ScoresNB] = predict(MdlNB,adulttest);

Create a rocmetrics object for each model.

rocTree = rocmetrics(adulttest.salary,ScoresTree,classNames);
rocGAM = rocmetrics(adulttest.salary,ScoresGAM,classNames);
rocNB = rocmetrics(adulttest.salary,ScoresNB,classNames);

Plot the ROC curve for each model. By default, the plot function displays the class names and the
AUC values in the legend. To include the model names in the legend instead of the class names,
modify the DisplayName property of the ROCCurve object returned by the plot function.

figure
c = cell(3,1);
g = cell(3,1);
[c{1},g{1}] = plot(rocTree,ClassNames=classNames(1));
hold on
[c{2},g{2}] = plot(rocGAM,ClassNames=classNames(1));
[c{3},g{3}] = plot(rocNB,ClassNames=classNames(1));
modelNames = ["Decision Tree Model", ...
    "Generalized Additive Model","Naive Bayes Model"];
for i = 1 : 3
    c{i}.DisplayName = replace(c{i}.DisplayName, ...
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        string(classNames(1)),modelNames(i));
    g{i}(1).DisplayName = join([modelNames(i),"Operating Point"]);
end
hold off

The generalized additive model (MdlGAM) has the highest AUC value, and the decision tree model
(MdlTree) has the lowest. This result suggests that MdlGAM has better average performance for the
test data set than MdlTree and MdlNB.

Find Model Operating Point and Optimal Operating Point

Find the model operating point and the optimal operating point for a binary classification model.
Classify observations in a test data set by using a new threshold corresponding to the optimal
operating point.

Load the ionosphere data set. This data set has 34 predictors (X) and 351 binary responses (Y) for
radar returns, either bad (b) or good (g).

load ionosphere

Partition the data into training and test sets. Use approximately 75% of the observations to train a
support vector machine (SVM) model, and 25% of the observations to test the performance of the
trained model on new data. Partition the data using cvpartition.
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rng("default") % For reproducibility of the partition
c = cvpartition(Y,Holdout=0.25);
trainingIndices = training(c); % Indices for the training set
testIndices = test(c); % Indices for the test set
XTrain = X(trainingIndices,:);
YTrain = Y(trainingIndices);
XTest = X(testIndices,:);
YTest = Y(testIndices);

Train an SVM classification model.

Mdl = fitcsvm(XTrain,YTrain);

Display the class order stored in Mdl.ClassNames.

Mdl.ClassNames

ans = 2x1 cell
    {'b'}
    {'g'}

Compute the classification scores for the test set.

[Y1,Scores] = predict(Mdl,XTest);

Create a rocmetrics object by using the true labels in YTest and the classification scores in
Scores. Specify the column order of Scores using Mdl.ClassNames.

rocObj = rocmetrics(YTest,Scores,Mdl.ClassNames);

Find the model operating point in the Metrics property of rocObj for class b. The predict function
classifies an observation into the class yielding a larger score, which corresponds to the class with a
nonnegative adjusted score. That is, the typical threshold value used by the predict function is 0.
Among the rows in the Metrics property of rocObj for class b, find the point that has the smallest
nonnegative threshold value. The point on the curve indicates identical performance to the
performance of the threshold value 0.

idx_b = strcmp(rocObj.Metrics.ClassName,"b");
X = rocObj.Metrics(idx_b,:).FalsePositiveRate;
Y = rocObj.Metrics(idx_b,:).TruePositiveRate;
T = rocObj.Metrics(idx_b,:).Threshold;
idx_model = find(T>=0,1,"last");
modelpt = [T(idx_model) X(idx_model) Y(idx_model)]

modelpt = 1×3

    1.2633    0.0179    0.5806

For binary classification, an optimal operating point that minimizes the average misclassification cost
is a point at which the ROC curve intersects a straight line with slope m, where m is defined as

m = cost P |N − cost N |N
cost N |P − cost P |P ⋅ n

p .

p is the total number of observations in the positive class, and n is the total number of observations in
the negative class. The cost values are the components of the cost matrix C:
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C =
cost P |P cost N |P
cost P |N cost N |N

cost(N|P) is the cost of misclassifying a positive class as a negative class, and cost(P|N) is the
cost of misclassifying a negative class as a positive class. According to the class order in
Mdl.ClassNames, the positive class P corresponds to class b.

Among the points on the ROC curve that intersect a line with slope m, choose one that is closest to
the perfect classifier point (FPR = 0, TPR = 1), which the perfect ROC curve passes.

Find the optimal operating point for the positive class b.

p = sum(strcmp(YTest,"b"));  
n = sum(~strcmp(YTest,"b")); 
cost = Mdl.Cost;
m = (cost(2,1)-cost(2,2))/(cost(1,2)-cost(1,1))*n/p;
[~,idx_opt] = min(X - Y/m);
optpt = [T(idx_opt) X(idx_opt) Y(idx_opt)]

optpt = 1×3

   -1.1977    0.1071    0.7742

Plot the ROC curve for class b by using the plot function, and display the optimal operating point by
using the scatter function.

figure
r = plot(rocObj,ClassNames="b");
hold on 
scatter(optpt(2),optpt(3),"filled", ...
    DisplayName="b Optimal Operating Point");
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Display the model operating point and the optimal operating point.

array2table([modelpt;optpt], ...
    RowNames=["Model Operating Point" "Optimal Operating Point"], ...
    VariableNames=["Threshold" "FalsePositiveRate" "TruePositiveRate"])

ans=2×3 table
                               Threshold    FalsePositiveRate    TruePositiveRate
                               _________    _________________    ________________

    Model Operating Point        1.2633         0.017857             0.58065     
    Optimal Operating Point     -1.1977          0.10714             0.77419     

Classify XTest using the optimal operating point. Assign an observation whose adjusted score is
greater than or equal to the optimal threshold to the positive class b.

s = Scores(:,1) - Scores(:,2);
idx_b_opt = (s >= optpt(1));
Y2 = cell(size(YTest));
Y2(idx_b_opt) = {'b'};
Y2(~idx_b_opt) = {'g'};

Display the adjusted scores for the observations that have different labels in Y1 (labels from the
predict function) and Y2 (labels from the optimal threshold optpt(1)).

s(~strcmp(Y1,Y2))
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ans = 11×1

   -1.1703
   -0.8436
   -0.8237
   -0.4545
   -1.0719
   -0.4617
   -0.2191
   -1.1977
   -1.0114
   -1.1550
      ⋮

Eleven observations have adjusted scores less than 0 but greater than or equal to the optimal
threshold.

Compute Performance Metrics for Specified Classes and Thresholds

After training a model for a multiclass classification problem, create a rocmetrics object for classes
of interest only. Specify FixedMetricValues so that rocmetrics computes the performance
metrics for the specified threshold values.

Read the sample file CreditRating_Historical.dat into a table. The predictor data consists of
financial ratios and industry sector information for a list of corporate customers. The response
variable consists of credit ratings assigned by a rating agency. Preview the first few rows of the data
set.

creditrating = readtable("CreditRating_Historical.dat");
head(creditrating)

     ID      WC_TA     RE_TA     EBIT_TA    MVE_BVTD    S_TA     Industry    Rating 
    _____    ______    ______    _______    ________    _____    ________    _______

    62394     0.013     0.104     0.036      0.447      0.142        3       {'BB' }
    48608     0.232     0.335     0.062      1.969      0.281        8       {'A'  }
    42444     0.311     0.367     0.074      1.935      0.366        1       {'A'  }
    48631     0.194     0.263     0.062      1.017      0.228        4       {'BBB'}
    43768     0.121     0.413     0.057      3.647      0.466       12       {'AAA'}
    39255    -0.117    -0.799      0.01      0.179      0.082        4       {'CCC'}
    62236     0.087     0.158     0.049      0.816      0.324        2       {'BBB'}
    39354     0.005     0.181     0.034      2.597      0.388        7       {'AA' }

Because each value in the ID variable is a unique customer ID, that is,
length(unique(creditrating.ID)) is equal to the number of observations in creditrating,
the ID variable is a poor predictor. Remove the ID variable from the table, and convert the Industry
variable to a categorical variable.

creditrating = removevars(creditrating,"ID");
creditrating.Industry = categorical(creditrating.Industry);

Partition the data into training and test sets. Use approximately 80% of the observations to train a
neural network model, and 20% of the observations to test the performance of the trained model on
new data. Partition the data using cvpartition.
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rng("default") % For reproducibility of the partition
c = cvpartition(creditrating.Rating,"Holdout",0.20);
trainingIndices = training(c); % Indices for the training set
testIndices = test(c); % Indices for the test set
creditTrain = creditrating(trainingIndices,:);
creditTest = creditrating(testIndices,:);

Train a neural network classifier by passing the training data creditTrain to the fitcnet function.

Mdl = fitcnet(creditTrain,"Rating");

Compute classification scores and predict credit ratings for the test set observations.

[labels,Scores] = predict(Mdl,creditTest);

The classification scores for a neural network classifier correspond to posterior probabilities.

Assume that you want to evaluate the model only for the ratings B, BB, and BBB, and ignore the rest
of the ratings.

Display the order of the ratings in the model stored in the ClassNames property, and identify the
classes to evaluate.

Mdl.ClassNames

ans = 7x1 cell
    {'A'  }
    {'AA' }
    {'AAA'}
    {'B'  }
    {'BB' }
    {'BBB'}
    {'CCC'}

idx_Class = [4 5 6];
classesToEvaluate = Mdl.ClassNames(idx_Class);

Find the indices of the observations for the three classes (B, BB, BBB).

idx = ismember(creditTest.Rating,classesToEvaluate);

Create a rocmetrics object using the true labels and scores for the three classes. Specify
FixedMetricValues=1:-0.25:-1 so that rocmetrics computes the performance metrics for the
specified threshold values.

thresholds = 1:-0.25:-1;
rocObj = rocmetrics(creditTest.Rating(idx),Scores(idx,idx_Class), ...
    classesToEvaluate,FixedMetricValues=thresholds);

Display the computed metrics stored in the Metrics property.

rocObj.Metrics

ans=27×4 table
    ClassName    Threshold     FalsePositiveRate    TruePositiveRate
    _________    __________    _________________    ________________

     {'B' }          0.8988               0                   0     
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     {'B' }         0.75126               0               0.125     
     {'B' }          0.5018        0.010309             0.32812     
     {'B' }         0.26195        0.020619              0.4375     
     {'B' }       0.0019671        0.051546             0.57812     
     {'B' }        -0.23669         0.10309             0.65625     
     {'B' }        -0.49973         0.16753             0.76562     
     {'B' }        -0.74783         0.51031             0.85938     
     {'B' }        -0.97543               1                   1     
     {'BB'}         0.96238               0                   0     
     {'BB'}         0.75387        0.048689             0.18378     
     {'BB'}         0.50916         0.10112             0.45946     
     {'BB'}         0.25091          0.1573             0.62162     
     {'BB'}      0.00073206         0.23221             0.74595     
     {'BB'}        -0.24776         0.33333             0.86486     
     {'BB'}        -0.49841         0.46442             0.93514     
      ⋮

The Metrics property contains the performance metrics for the three ratings B, BB, and BBB and the
specified threshold values only. The default UseNearestNeighbor value is true if rocmetrics
does not compute confidence intervals. Therefore, for each specified threshold value, rocmetrics
selects an adjusted score value nearest to the specified value and uses the nearest value as a
threshold. Display the specified threshold values and the actual threshold values used for each class.

idx_B = strcmp(rocObj.Metrics.ClassName,"B");
idx_BB = strcmp(rocObj.Metrics.ClassName,"BB");
idx_BBB = strcmp(rocObj.Metrics.ClassName,"BBB");
table(thresholds',rocObj.Metrics.Threshold(idx_B), ...
    rocObj.Metrics.Threshold(idx_BB), ...
    rocObj.Metrics.Threshold(idx_BBB), ...
    VariableNames=["Fixed Threshold";string(classesToEvaluate)])

ans=9×4 table
    Fixed Threshold        B            BB          BBB   
    _______________    _________    __________    ________

             1            0.8988       0.96238     0.93525
          0.75           0.75126       0.75387     0.75415
           0.5            0.5018       0.50916     0.50463
          0.25           0.26195       0.25091     0.26794
             0         0.0019671    0.00073206    0.027878
         -0.25          -0.23669      -0.24776    -0.22993
          -0.5          -0.49973      -0.49841    -0.49955
         -0.75          -0.74783       -0.7491    -0.74927
            -1          -0.97543      -0.93525    -0.97102

More About
Receiver Operating Characteristic (ROC) Curve

A ROC curve shows the true positive rate versus the false positive rate for different thresholds of
classification scores.

The true positive rate and the false positive rate are defined as follows:
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• True positive rate (TPR), also known as recall or sensitivity — TP/(TP+FN), where TP is the
number of true positives and FN is the number of false negatives

• False positive rate (FPR), also known as fallout or 1-specificity — FP/(TN+FP), where FP is the
number of false positives and TN is the number of true negatives

Each point on a ROC curve corresponds to a pair of TPR and FPR values for a specific threshold
value. You can find different pairs of TPR and FPR values by varying the threshold value, and then
create a ROC curve using the pairs. For each class, rocmetrics uses all distinct adjusted score on
page 35-6849 values as threshold values to create a ROC curve.

For a multiclass classification problem, rocmetrics formulates a set of one-versus-all on page 35-
6848 binary classification problems to have one binary problem for each class, and finds a ROC curve
for each class using the corresponding binary problem. Each binary problem assumes one class as
positive and the rest as negative.

For a binary classification problem, if you specify the classification scores as a matrix, rocmetrics
formulates two one-versus-all binary classification problems. Each of these problems treats one class
as a positive class and the other class as a negative class, and rocmetrics finds two ROC curves.
Use one of the curves to evaluate the binary classification problem.

For more details, see “ROC Curve and Performance Metrics” on page 18-3.

Area Under ROC Curve (AUC)

The area under a ROC curve (AUC) corresponds to the integral of a ROC curve (TPR values) with
respect to FPR from FPR = 0 to FPR = 1.

The AUC provides an aggregate performance measure across all possible thresholds. The AUC values
are in the range 0 to 1, and larger AUC values indicate better classifier performance.

One-Versus-All (OVA) Coding Design

The one-versus-all (OVA) coding design reduces a multiclass classification problem to a set of binary
classification problems. In this coding design, each binary classification treats one class as positive
and the rest of the classes as negative. rocmetrics uses the OVA coding design for multiclass
classification and evaluates the performance on each class by using the binary classification that the
class is positive.

For example, the OVA coding design for three classes formulates three binary classifications:

Binary 1 Binary 2 Binary 3
Class 1 1 −1 −1
Class 2 −1 1 −1
Class 3 −1 −1 1

Each row corresponds to a class, and each column corresponds to a binary classification problem.
The first binary classification assumes that class 1 is a positive class and the rest of the classes are
negative. rocmetrics evaluates the performance on the first class by using the first binary
classification problem.

Model Operating Point

The model operating point represents the FPR and TPR corresponding to the typical threshold value.
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The typical threshold value depends on the input format of the Scores argument (classification
scores) specified when you create a rocmetrics object:

• If you specify Scores as a matrix, rocmetrics assumes that the values in Scores are the scores
for a multiclass classification problem and uses adjusted score on page 35-6849 values. A
multiclass classification model classifies an observation into a class that yields the largest score,
which corresponds to a nonnegative score in the adjusted scores. Therefore, the threshold value is
0.

• If you specify Scores as a column vector, rocmetrics assumes that the values in Scores are
posterior probabilities of the class specified in ClassNames. A binary classification model
classifies an observation into a class that yields a higher posterior probability, that is, a posterior
probability greater than 0.5. Therefore, the threshold value is 0.5.

For a binary classification problem, you can specify Scores as a two-column matrix or a column
vector. However, if the classification scores are not posterior probabilities, you must specify Scores
as a matrix. A binary classifier classifies an observation into a class that yields a larger score, which
is equivalent to a class that yields a nonnegative adjusted score. Therefore, if you specify Scores as a
matrix for a binary classifier, rocmetrics can find a correct model operating point using the same
scheme that it applies to a multiclass classifier. If you specify classification scores that are not
posterior probabilities as a vector, rocmetrics cannot identify a correct model operating point
because it always uses 0.5 as a threshold for the model operating point.

The plot function displays a filled circle marker at the model operating point for each ROC curve
(see ShowModelOperatingPoint). The function chooses a point corresponding to the typical
threshold value. If the curve does not have a data point for the typical threshold value, the function
finds a point that has the smallest threshold value greater than the typical threshold. The point on the
curve indicates identical performance to the performance of the typical threshold value.

Algorithms
Adjusted Scores for Multiclass Classification Problem

For each class, rocmetrics adjusts the classification scores (input argument Scores of
rocmetrics) relative to the scores for the rest of the classes if you specify Scores as a matrix.
Specifically, the adjusted score for a class given an observation is the difference between the score
for the class and the maximum value of the scores for the rest of the classes.

For example, if you have [s1,s2,s3] in a row of Scores for a classification problem with three classes,
the adjusted score values are [s1-max(s2,s3),s2-max(s1,s3),s3-max(s1,s2)].

rocmetrics computes the performance metrics using the adjusted score values for each class.

For a binary classification problem, you can specify Scores as a two-column matrix or a column
vector. Using a two-column matrix is a simpler option because the predict function of a
classification object returns classification scores as a matrix, which you can pass to rocmetrics. If
you pass scores in a two-column matrix, rocmetrics adjusts scores in the same way that it adjusts
scores for multiclass classification, and it computes performance metrics for both classes. You can
use the metric values for one of the two classes to evaluate the binary classification problem. The
metric values for a class returned by rocmetrics when you pass a two-column matrix are equivalent
to the metric values returned by rocmetrics when you specify classification scores for the class as a
column vector.
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Extended Capabilities
Automatic Parallel Support
Accelerate code by automatically running computation in parallel using Parallel Computing Toolbox™.

To run bootstrap iterations in parallel, specify the BootstrapOptions name-value argument when
you create a rocmetrics object and set the UseParallel field of the options structure to true
using statset.

For example: NumBootstraps=1000,BootstrapOptions=statset(UseParallel=true)

For more information about parallel computing, see “Run MATLAB Functions with Automatic Parallel
Support” (Parallel Computing Toolbox).
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See Also
ROCCurve Properties | confusionchart

Topics
“ROC Curve and Performance Metrics” on page 18-3
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rotatefactors
Rotate factor loadings

Syntax
B = rotatefactors(A)
B = rotatefactors(A,'Method','orthomax','Coeff',gamma)
B = rotatefactors(A,'Method','procrustes','Target',target)
B = rotatefactors(A,'Method','pattern','Target',target)
B = rotatefactors(A,'Method','promax')
[B,T] = rotatefactors(A,...)

Description
B = rotatefactors(A) rotates the d-by-m loadings matrix A to maximize the varimax criterion,
and returns the result in B. Rows of A and B correspond to variables and columns correspond to
factors, for example, the (i, j)th element of A is the coefficient for the i th variable on the j th factor.
The matrix A usually contains principal component coefficients created with pca or pcacov, or factor
loadings estimated with factoran.

B = rotatefactors(A,'Method','orthomax','Coeff',gamma) rotates A to maximize the
orthomax criterion with the coefficient gamma, i.e., B is the orthogonal rotation of A that maximizes

sum(D*sum(B.^4,1) - GAMMA*sum(B.^2,1).^2)

The default value of 1 for gamma corresponds to varimax rotation. Other possibilities include gamma =
0, m/2, and d(m - 1)/(d + m - 2), corresponding to quartimax, equamax, and parsimax. You can also
supply 'varimax', 'quartimax', 'equamax', or 'parsimax' for the 'method' parameter and
omit the 'Coeff' parameter.

If 'Method' is 'orthomax', 'varimax', 'quartimax', 'equamax', or 'parsimax', then
additional parameters are

• 'Normalize' — Flag indicating whether the loadings matrix should be row-normalized for
rotation. If 'on' (the default), rows of A are normalized prior to rotation to have unit Euclidean
norm, and unnormalized after rotation. If 'off', the raw loadings are rotated and returned.

• 'Reltol' — Relative convergence tolerance in the iterative algorithm used to find T. The default
is sqrt(eps).

• 'Maxit' — Iteration limit in the iterative algorithm used to find T. The default is 250.

B = rotatefactors(A,'Method','procrustes','Target',target) performs an oblique
procrustes rotation of A to the d-by-m target loadings matrix target.

B = rotatefactors(A,'Method','pattern','Target',target) performs an oblique rotation
of the loadings matrix A to the d-by-m target pattern matrix target, and returns the result in B.
target defines the "restricted" elements of B, i.e., elements of B corresponding to zero elements of
target are constrained to have small magnitude, while elements of B corresponding to nonzero
elements of target are allowed to take on any magnitude.

If 'Method' is 'procrustes' or 'pattern', an additional parameter is 'Type', the type of
rotation. If 'Type' is 'orthogonal', the rotation is orthogonal, and the factors remain
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uncorrelated. If 'Type' is 'oblique' (the default), the rotation is oblique, and the rotated factors
might be correlated.

When 'Method' is 'pattern', there are restrictions on target. If A has m columns, then for
orthogonal rotation, the jth column of target must contain at least m - j zeros. For oblique rotation,
each column of target must contain at least m - 1 zeros.

B = rotatefactors(A,'Method','promax') rotates A to maximize the promax criterion,
equivalent to an oblique Procrustes rotation with a target created by an orthomax rotation. Use the
four orthomax parameters to control the orthomax rotation used internally by promax.

An additional parameter for 'promax' is 'Power', the exponent for creating promax target matrix.
'Power' must be 1 or greater. The default is 4.

[B,T] = rotatefactors(A,...) returns the rotation matrix T used to create B, that is, B = A*T.
You can find the correlation matrix of the rotated factors by using inv(T'*T). For orthogonal
rotation, this is the identity matrix, while for oblique rotation, it has unit diagonal elements but
nonzero off-diagonal elements.

Examples
rng('default') % for reproducibility
X = randn(100,10);

% Default (normalized varimax) rotation:
% first three principal components.
LPC = pca(X);
[L1,T] = rotatefactors(LPC(:,1:3));
 
% Equamax rotation:
% first three principal components.
[L2,T] = rotatefactors(LPC(:,1:3),...
                       'method','equamax');
 
% Promax rotation:
% first three factors.
LFA = factoran(X,3,'Rotate','none');
[L3,T] = rotatefactors(LFA(:,1:3),...
                       'method','promax',...
                       'power',2);
 
% Pattern rotation:
% first three factors.
Tgt = [1 1 1 1 1 0 1 0 1 1; ...
       0 0 0 1 1 1 0 0 0 0; ...
       1 0 0 1 0 1 1 1 1 0]';
[L4,T] = rotatefactors(LFA(:,1:3),...
                       'method','pattern',...
                       'target',Tgt);
inv(T'*T) % Correlation matrix of the rotated factors
ans =

    1.0000   -0.9593   -0.7098
   -0.9593    1.0000    0.5938
   -0.7098    0.5938    1.0000
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Version History
Introduced before R2006a

References
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See Also
biplot | factoran | pca | pcacov | procrustes
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rowexch
Row exchange

Syntax
dRE = rowexch(nfactors,nruns)
[dRE,X] = rowexch(nfactors,nruns)
[dRE,X] = rowexch(nfactors,nruns,model)
[dRE,X] = rowexch(...,param1,val1,param2,val2,...)

Description
dRE = rowexch(nfactors,nruns) uses a row-exchange algorithm to generate a D-optimal design
dRE with nruns runs (the rows of dRE) for a linear additive model with nfactors factors (the
columns of dRE). The model includes a constant term.

[dRE,X] = rowexch(nfactors,nruns) also returns the associated design matrix X, whose
columns are the model terms evaluated at each treatment (row) of dRE.

[dRE,X] = rowexch(nfactors,nruns,model) uses the linear regression model specified in
model. model is one of the following:

• 'linear' — Constant and linear terms. This is the default.
• 'interaction' — Constant, linear, and interaction terms
• 'quadratic' — Constant, linear, interaction, and squared terms
• 'purequadratic' — Constant, linear, and squared terms

The order of the columns of X for a full quadratic model with n terms is:

1 The constant term
2 The linear terms in order 1, 2, ..., n
3 The interaction terms in order (1, 2), (1, 3), ..., (1, n), (2, 3), ..., (n–1, n)
4 The squared terms in order 1, 2, ..., n

Other models use a subset of these terms, in the same order.

Alternatively, model can be a matrix specifying polynomial terms of arbitrary order. In this case,
model should have one column for each factor and one row for each term in the model. The entries in
any row of model are powers for the factors in the columns. For example, if a model has factors X1,
X2, and X3, then a row [0 1 2] in model specifies the term (X1.^0).*(X2.^1).*(X3.^2). A row
of all zeros in model specifies a constant term, which can be omitted.

[dRE,X] = rowexch(...,param1,val1,param2,val2,...) specifies additional parameter/
value pairs for the design. Valid parameters and their values are listed in the following table.
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Parameter Value
'bounds' Lower and upper bounds for each factor, specified as a 2-by-nfactors

matrix. Alternatively, this value can be a cell array containing nfactors
elements, each element specifying the vector of allowable values for the
corresponding factor.

'categorical' Indices of categorical predictors.
'display' Either 'on' or 'off' to control display of the iteration counter. The default

is 'on'.
'excludefun' Handle to a function that excludes undesirable runs. If the function is f, it

must support the syntax b = f(S), where S is a matrix of treatments with
nfactors columns and b is a vector of Boolean values with the same
number of rows as S. b(i) is true if the ith row S should be excluded.

'init' Initial design as an nruns-by-nfactors matrix. The default is a randomly
selected set of points.

'levels' Vector of number of levels for each factor.
'maxiter' Maximum number of iterations. The default is 10.
options A structure that specifies whether to run in parallel, and specifies the

random stream or streams. Create the options structure with statset.
This option requires Parallel Computing Toolbox. Option fields are:

• UseParallel — Set to true to compute in parallel. Default is false.
• UseSubstreams — Set to true to compute in parallel in a reproducible

fashion. Default is false. To compute reproducibly, set Streams to a
type allowing substreams: 'mlfg6331_64' or 'mrg32k3a'.

• Streams — A RandStream object or cell array of such objects. If you do
not specify Streams, rowexch uses the default stream or streams. If
you choose to specify Streams, use a single object except in the case

• UseParallel is true
• UseSubstreams is false

In that case, use a cell array the same size as the Parallel pool.
'tries' Number of times to try to generate a design from a new starting point. The

algorithm uses random points for each try, except possibly the first. The
default is 1.

Examples
Suppose you want a design to estimate the parameters in the following three-factor, seven-term
interaction model:

y = β0 + β1x +1 β2x +2 β3x +3 β12x x1 +2 β13x x1 +3 β23x x2 +3 ε

Use rowexch to generate a D-optimal design with seven runs:

nfactors = 3;
nruns = 7;
[dRE,X] = rowexch(nfactors,nruns,'interaction','tries',10)
dRE =
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    -1    -1     1
     1    -1     1
     1    -1    -1
     1     1     1
    -1    -1    -1
    -1     1    -1
    -1     1     1
X =
     1    -1    -1     1     1    -1    -1
     1     1    -1     1    -1     1    -1
     1     1    -1    -1    -1    -1     1
     1     1     1     1     1     1     1
     1    -1    -1    -1     1     1     1
     1    -1     1    -1    -1     1    -1
     1    -1     1     1    -1    -1     1

Columns of the design matrix X are the model terms evaluated at each row of the design dRE. The
terms appear in order from left to right: constant term, linear terms (1, 2, 3), interaction terms (12,
13, 23). Use X to fit the model, as described in “Linear Regression” on page 11-9, to response data
measured at the design points in dRE.

Algorithms
Both cordexch and rowexch use iterative search algorithms. They operate by incrementally
changing an initial design matrix X to increase D = |XTX| at each step. In both algorithms, there is
randomness built into the selection of the initial design and into the choice of the incremental
changes. As a result, both algorithms may return locally, but not globally, D-optimal designs. Run each
algorithm multiple times and select the best result for your final design. Both functions have a
'tries' parameter that automates this repetition and comparison.

At each step, the row-exchange algorithm exchanges an entire row of X with a row from a design
matrix C evaluated at a candidate set of feasible treatments. The rowexch function automatically
generates a C appropriate for a specified model, operating in two steps by calling the candgen and
candexch functions in sequence. Provide your own C by calling candexch directly. In either case, if
C is large, its static presence in memory can affect computation.

Version History
Introduced before R2006a

Extended Capabilities
Automatic Parallel Support
Accelerate code by automatically running computation in parallel using Parallel Computing Toolbox™.

To run in parallel, specify the 'Options' name-value argument in the call to this function and set the
'UseParallel' field of the options structure to true using statset.

For example: 'Options',statset('UseParallel',true)

For more information about parallel computing, see “Run MATLAB Functions with Automatic Parallel
Support” (Parallel Computing Toolbox).
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See Also
candgen | candexch | cordexch
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rsmdemo
Interactive response surface demonstration

Syntax
rsmdemo

Description
rsmdemo opens a group of three graphical user interfaces for interactively investigating response
surface methodology (RSM), nonlinear fitting, and the design of experiments.

The interfaces allow you to collect and model data from a simulated chemical reaction. Experimental
predictors are concentrations of three reactants (hydrogen, n-pentane, and isopentane) and the
response is the reaction rate. The reaction rate is simulated by a Hougen-Watson model (Bates and
Watts, [2] on page C-2, pp. 271–272):

rate =
β1x2− x3/β5

1 + β2x1 + β3x2 + β4x3

where rate is the reaction rate, x1, x2, and x3 are the concentrations of hydrogen, n-pentane, and
isopentane, respectively, and β1, β2, ... , β5 are fixed parameters. Random errors are used to perturb
the reaction rate for each combination of reactants.

Collect data using one of two methods:

1 Manually set reactant concentrations in the Reaction Simulator interface by editing the text
boxes or by adjusting the associated sliders.

When you click Run, the concentrations and simulated reaction rate are recorded on the Trial
and Error Data interface.
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You are allowed up to 13 independent experimental runs for data collection.
2 Use a designed experiment to set reactant concentrations in the Experimental Data interface

by clicking the Do Experiment button.

A 13-run D-optimal design for a full quadratic model is generated by the cordexch function, and
the concentrations and simulated reaction rates are recorded on the same interface.

35 Functions

35-6860



Once data is collected, scatter plots of reaction rates vs. individual predictors are generated by
selecting one of the following from the Plot pop-up menu below the recorded data:

• Hydrogen vs. Rate
• n-Pentane vs. Rate
• Isopentane vs. Rate

Fit a response surface model to the data by clicking the Analyze button below the trial-and-error
data or the Response Surface button below the experimental data. Both buttons load the data into
the Response Surface Tool rstool. By default, trial-and-error data is fit with a linear additive model
and experimental data is fit with a full quadratic model, but the models can be adjusted in the
Response Surface Tool.

For experimental data, you have the additional option of fitting a Hougen-Watson model. Click the
Nonlinear Model button to load the data and the model in hougen into the Nonlinear Fitting Tool
nlintool.

Version History
Introduced before R2006a

See Also
hougen | cordexch | rstool | nlintool
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rstool
Interactive response surface modeling

Syntax
rstool
rstool(X,Y,model)
rstool(x,y,model,alpha)
rstool(x,y,model,alpha,xname,yname)

Description
rstool opens a graphical user interface for interactively investigating one-dimensional contours of
multidimensional response surface models.

By default, the interface opens with the data from hald.mat and a fitted response surface with
constant, linear, and interaction terms.

A sequence of plots is displayed, each showing a contour of the response surface against a single
predictor, with all other predictors held fixed. rstool plots a 95% simultaneous confidence band for
the fitted response surface as two red curves. Predictor values are displayed in the text boxes on the
horizontal axis and are marked by vertical dashed blue lines in the plots. Predictor values are
changed by editing the text boxes or by dragging the dashed blue lines. When you change the value
of a predictor, all plots update to show the new point in predictor space.

The pop-up menu at the lower left of the interface allows you to choose among the following models:
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• Linear — Constant and linear terms (the default)
• Pure Quadratic — Constant, linear, and squared terms
• Interactions — Constant, linear, and interaction terms
• Full Quadratic — Constant, linear, interaction, and squared terms

Click Export to open the following dialog box:

The dialog allows you to save information about the fit to MATLAB workspace variables with valid
names.

rstool(X,Y,model) opens the interface with the predictor data in X, the response data in Y, and
the fitted model model. Distinct predictor variables should appear in different columns of X. Y can be
a vector, corresponding to a single response, or a matrix, with columns corresponding to multiple
responses. Y must have as many elements (or rows, if it is a matrix) as X has rows.

The optional input model can be any one of the following:

• 'linear' — Constant and linear terms (the default)
• 'purequadratic' — Constant, linear, and squared terms
• 'interaction' — Constant, linear, and interaction terms
• 'quadratic' — Constant, linear, interaction, and squared terms

To specify a polynomial model of arbitrary order, or a model without a constant term, use a matrix for
model as described in x2fx.

rstool(x,y,model,alpha) uses 100(1-alpha)% global confidence intervals for new
observations in the plots.

rstool(x,y,model,alpha,xname,yname) labels the axes using xname and yname. To label each
subplot differently, xname and yname can be string arrays or cell arrays of character vectors.

Examples

The following uses rstool to visualize a quadratic response surface model of the 3-D chemical
reaction data in reaction.mat:

load reaction
alpha = 0.01; % Significance level
rstool(reactants,rate,'quadratic',alpha,xn,yn)
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The rstool interface is used by rsmdemo to visualize the results of simulated experiments with data
like that in reaction.mat. As described in “Response Surface Designs” on page 30-8, rsmdemo uses
a response surface model to generate simulated data at combinations of predictors specified by either
the user or by a designed experiment.

Version History
Introduced before R2006a

See Also
x2fx | rsmdemo | nlintool
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runstest
Run test for randomness

Syntax
h = runstest(x)
h = runstest(x,v)
h = runstest(x,'ud')
h = runstest( ___ ,Name,Value)
[h,p,stats] = runstest( ___ )

Description
h = runstest(x) returns a test decision for the null hypothesis that the values in the data vector x
come in random order, against the alternative that they do not. The test is based on the number of
runs of consecutive values above or below the mean of x. The result h is 1 if the test rejects the null
hypothesis at the 5% significance level, or 0 otherwise.

h = runstest(x,v) returns a test decision based on the number of runs of consecutive values
above or below the specified reference value v. Values exactly equal to v are discarded.

h = runstest(x,'ud') returns a test decision based on the number of runs up or down. Too few
runs indicate a trend, while too many runs indicate an oscillation. Values exactly equal to the
preceding value are discarded.

h = runstest( ___ ,Name,Value) returns a test decision using additional options specified by one
or more name-value pair arguments. For example, you can change the significance level of the test,
specify the algorithm used to calculate the p-value, or conduct a one-sided test.

[h,p,stats] = runstest( ___ ) also returns the p-value of the test p, and a structure stats
containing additional data about the test.

Examples

Test Data for Randomness Using Sample Median

Generate a vector of 40 random numbers from a standard normal distribution.

rng default;  % for reproducibility
x = randn(40,1);

Test whether the values in x appear in random order, using the sample median as the reference value.

[h,p] = runstest(x,median(x))

h = 0

p = 0.8762
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The returned value of h = 0 indicates that runstest does not reject the null hypothesis that the
values in x are in random order at the default 5% significance level.

Input Arguments
x — Data vector
vector of scalar values

Data vector, specified as a vector of scalar values. runstest treats NaN values in x as missing values,
and ignores them.
Data Types: single | double

v — Reference value
mean of x (default) | scalar value

Reference value, specified as a scalar value. If you specify a value for v, then runstest performs the
hypothesis test based on the number of runs of consecutive values above or below v. runstest
discards values exactly equal to v.
Data Types: single | double

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: 'Alpha',0.01,'Method','Approximate','Tail','right' specifies a right-tailed
test with 1% significance level, which returns the approximate p-value.

Alpha — Significance level
0.05 (default) | scalar value in the range (0,1)

Significance level of the hypothesis test, specified as the comma-separated pair consisting of
'Alpha' and a scalar value in the range (0,1).
Example: 'Alpha',0.01
Data Types: single | double

Method — Method used to compute p-value
'exact' | 'approximate'

Method used to compute p-value, specified as the comma-separated pair consisting of 'Method' and
either 'exact' to use an exact algorithm, or 'approximate' to use a normal approximation. The
default is 'exact' for runs above/below, and for runs up/down when the length of x is less than or
equal to 50. If runstest tests for runs up/down and the length of x is greater than 50, then the
default is 'approximate', and the 'exact' method is not available.
Example: 'Method','approximate'

Tail — Type of alternative hypothesis
'both' (default) | 'right' | 'left'
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Type of alternative hypothesis, specified as the comma-separated pair consisting of 'Tail' and one
of the following.

'both' Two-tailed test (sequence is not random)
'right' Right-tailed test (like values separate for runs above/below, direction alternates

for runs up/down)
'left' Left-tailed test (like values cluster for runs above/below, values trend for runs

up/down)

Example: 'Tail','right'

Output Arguments
h — Hypothesis test result
1 | 0

Hypothesis test result, returned as 1 or 0.

• If h = 1, then runstest rejects the null hypothesis at the Alpha significance level.
• If h = 0, then runstest fails to reject the null hypothesis at the Alpha significance level.

The result in runstest is based on the number of runs of consecutive values above or below the
mean of x. Too few runs indicate a tendency for high and low values to cluster. Too many runs
indicate a tendency for high and low values to alternate.

runstest uses a test statistic which is the difference between the number of runs and its mean,
divided by its standard deviation. The test statistic is approximately normally distributed when the
null hypothesis is true.

p — p-value
scalar value in the range [0,1]

p-value of the test, returned as a scalar value in the range [0,1]. p is the probability of observing a
test statistic as extreme as, or more extreme than, the observed value under the null hypothesis.
Small values of p cast doubt on the validity of the null hypothesis.

p is computed from either the test statistic or the exact distribution of the number of runs, depending
on the value specified for the 'Method' name-value pair argument.

stats — Test data
structure

Test data, returned as a structure with the following fields.

• nruns — The number of runs
• n1 — The number of values above v
• n0 — The number of values below v
• z — The test statistic

Version History
Introduced before R2006a

 runstest

35-6867



References
[1] Gibbons, Jean Dickinson, and Subhabrata Chakraborti. Nonparametric Statistical Inference. 5th

ed. Boca Raton: CRC Press, 2011.

See Also
signrank | signtest

35 Functions

35-6868



sampsizepwr
Sample size and power of test

Syntax
nout = sampsizepwr(testtype,p0,p1)
nout = sampsizepwr(testtype,p0,p1,pwr)

pwrout = sampsizepwr(testtype,p0,p1,[],n)

p1out = sampsizepwr(testtype,p0,[],pwr,n)

___  = sampsizepwr(testtype,p0,p1,pwr,n,Name,Value)

Description
sampsizepwr computes the sample size, power, or alternative parameter value for a hypothesis test,
given the other two values. For example, you can compute the sample size required to obtain a
particular power for a hypothesis test, given the parameter value of the alternative hypothesis.

nout = sampsizepwr(testtype,p0,p1) returns the sample size, nout, required for a two-sided
test of the type specified by testtype to have a power (probability of rejecting the null hypothesis
when the alternative hypothesis is true) of 0.90 when the significance level (probability of rejecting
the null hypothesis when the null hypothesis is true) is 0.05. p0 specifies parameter values under the
null hypothesis. p1 specifies the value, or an array of values, of the single parameter being tested
under the alternative hypothesis.

nout = sampsizepwr(testtype,p0,p1,pwr) returns the sample size, nout, that corresponds to
the specified power, pwr, and the parameter value under the alternative hypothesis, p1.

pwrout = sampsizepwr(testtype,p0,p1,[],n) returns the power achieved for a sample size of
n when the true parameter value is p1.

p1out = sampsizepwr(testtype,p0,[],pwr,n) returns the parameter value detectable with
the specified sample size, n, and the specified power, pwr.

___  = sampsizepwr(testtype,p0,p1,pwr,n,Name,Value) returns any of the previous
arguments using one or more name-value pair arguments. For example, you can change the
significance level of the test, or specify a right- or left-tailed test. The name-value pairs can appear in
any order but must begin in the sixth argument position.

Examples

Compute Sample Size for Selected Power Value

A company runs a manufacturing process that fills empty bottles with 100 mL of liquid. To monitor
quality, the company randomly selects several bottles and measures the volume of liquid inside.
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Determine the sample size the company must use for a t-test to detect a difference between 100 mL
and 102 mL with a power of 0.80. Assume that a standard deviation is 5 mL.

nout = sampsizepwr('t',[100 5],102,0.80)

nout = 52

The company must test 52 bottles to detect the difference between a mean volume of 100 mL and 102
mL with a power of 0.80.

Generate a power curve to visualize how the sample size affects the power of the test.

nn = 1:100;
pwrout = sampsizepwr('t',[100 5],102,[],nn);

figure;
plot(nn,pwrout,'b-',nout,0.8,'ro')
title('Power versus Sample Size')
xlabel('Sample Size')
ylabel('Power')

Compute Power and Sample Size for One-Sided Test

An employee wants to buy a house near her office. She decides to eliminate from consideration any
house that has a mean morning commute time greater than 20 minutes. The null hypothesis for this
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right-sided test is H0: μ = 20, and the alternative hypothesis is HA: μ > 20. The selected significance
level is 0.05.

To determine the mean commute time, the employee takes a test drive from the house to her office
during rush hour every morning for one week, so her total sample size is 5. She assumes that the
standard deviation, σ, is equal to 5.

The employee decides that a true mean commute time of 25 minutes is too different from her
targeted 20-minute limit, so she wants to detect a significant departure if the true mean is 25
minutes. Find the probability of incorrectly concluding that the mean commute time is no greater
than 20 minutes.

Compute the power of the test, and then subtract the power from 1 to obtain β.

power = sampsizepwr('t',[20 5],25,[],5,'Tail','right');
beta = 1 - power

beta = 0.4203

The β value indicates a probability of 0.4203 that the employee concludes incorrectly that the
morning commute is not greater than 20 minutes.

The employee decides that this risk is too high, and she wants no more than a 0.01 probability of
reaching an incorrect conclusion. Calculate the number of test drives the employee must take to
obtain a power of 0.99.

nout = sampsizepwr('t',[20 5],25,0.99,[],'Tail','right')

nout = 18

The results indicate that she must take 18 test drives from a candidate house to achieve this power
level.

The employee decides that she only has time to take 10 test drives. She also accepts a 0.05
probability of making an incorrect conclusion. Calculate the smallest true parameter value that
produces a detectable difference in mean commute time.

p1out = sampsizepwr('t',[20 5],[],0.95,10,'Tail','right')

p1out = 25.6532

Given the employee's target power level and sample size, her test detects a significant difference
from a mean commute time of at least 25.6532 minutes.

Compute Sample Size for a Binomial Test

Compute the sample size, n, required to distinguish p = 0.30 from p = 0.36, using a binomial test
with a power of 0.8.

napprox = sampsizepwr('p',0.30,0.36,0.8)

Warning: Values N>200 are approximate.  Plotting the power as a function
of N may reveal lower N values that have the required power.

napprox = 485
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The result indicates that a power of 0.8 requires a sample size of 485. However, this result is
approximate.

Make a plot to see if any smaller n values provide the required power of 0.8.

nn = 1:500;
pwrout = sampsizepwr('p',0.3,0.36,[],nn);
nexact = min(nn(pwrout>=0.8))

nexact = 462

figure
plot(nn,pwrout,'b-',[napprox nexact],pwrout([napprox nexact]),'ro')
grid on

The result indicates that a sample size of 462 also provides a power of 0.8 for this test.

Compute Power for a Two-Sample t-Test

A farmer wants to test the impact of two different types of fertilizer on the yield of his bean crops. He
currently uses Fertilizer A, but believes that Fertilizer B might improve crop yield. Because Fertilizer
B is more expensive than Fertilizer A, the farmer wants to limit the number of plants he treats with
Fertilizer B in this experiment.

The farmer uses a 2:1 ratio of plants in each treatment group. He tests 10 plants with Fertilizer A,
and 5 plants with Fertilizer B. The mean yield using Fertilizer A is 1.4 kg per plant, with a standard
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deviation of 0.2. The mean yield using Fertilizer B is 1.7 kg per plant. The significance level of the
test is 0.05.

Compute the power of the test.

pwr = sampsizepwr('t2',[1.4 0.2],1.7,[],5,'Ratio',2)

pwr = 0.7165

The farmer wants to increase the power of the test to 0.90. Calculate how many plants he must treat
with each type of fertilizer.

n = sampsizepwr('t2',[1.4 0.2],1.7,0.9,[])

n = 11

To increase the power of the test to 0.90, the farmer must test 11 plants with each type of fertilizer.

The farmer wants to reduce the number of plants he must treat with Fertilizer B, but keep the power
of the test at 0.90 and maintain the initial 2:1 ratio of plants in each treatment group

Using a 2:1 ratio of plants in each treatment group, calculate how many plants the farmer must test
to obtain a power of 0.90. Use the mean and standard deviation values obtained in the previous test.

[n1out,n2out] = sampsizepwr('t2',[1.4,0.2],1.7,0.9,[],'Ratio',2)

n1out = 8

n2out = 16

To obtain a power of 0.90, the farmer must treat 16 plants with Fertilizer A and 8 plants with
Fertilizer B.

Input Arguments
testtype — Test type
'z' | 't' | 't2' | 'var' | 'p'

Test type, specified as one of the following.

• 'z' — z-test for normally distributed data with known standard deviation.
• 't' — t-test for normally distributed data with unknown standard deviation.
• 't2' — Two-sample pooled t-test for normally distributed data with unknown standard deviation

and equal variances.
• 'var' — Chi-square test of variance for normally distributed data.
• 'p' — Test of the p parameter (success probability) for a binomial distribution. The 'p' test is a

discrete test for which increasing the sample size does not always increase the power. For n
values larger than 200, there may exist values smaller than the returned n value that also produce
the specified power.

p0 — Parameter value under null hypothesis
scalar value | two-element array of scalar values
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Parameter value under the null hypothesis, specified as a scalar value or a two-element array of
scalar values.

• If testtype is 'z'or 't', then p0 is a two-element array [mu0,sigma0] of the mean and
standard deviation, respectively, under the null hypothesis.

• If testtype is 't2', then p0 is a two-element array [mu0,sigma0] of the mean and standard
deviation, respectively, of the first sample under the null and alternative hypotheses.

• If testtype is 'var', then p0 is the variance under the null hypothesis.
• If testtype is 'p', then p0 is the value of p under the null hypothesis.

Data Types: single | double

p1 — Parameter value under alternative hypothesis
scalar value | array of scalar values | []

Parameter value under the alternative hypothesis, specified as a scalar value or as an array of scalar
values.

• If testtype is 'z' or 't', then p1 is the value of the mean under the alternative hypothesis.
• If testtype is 't2', then p1 is the value of the mean of the second sample under the alternative

hypothesis.
• If testtype is 'var', then p1 is the variance under the alternative hypothesis.
• If testtype is 'p', then p1 is the value of p under the alternative hypothesis.

If you specify p1 as an array, then sampsizepwr returns an array for nout or pwrout that is the
same length as p1.

To return the alternative parameter value, p1out, specify p1 using empty brackets ([]), as shown in
the syntax description on page 35-6869.
Data Types: single | double

pwr — Power of the test
0.90 (default) | scalar value in the range (0,1) | array of scalar values in the range (0,1) | []

Power of the test, specified as a scalar value in the range (0,1) or as an array of scalar values in the
range (0,1). The power of a test is the probability of rejecting the null hypothesis when the alternative
hypothesis is true, given a particular significance level.

If you specify pwr as an array, then sampsizepwr returns an array for nout or p1out that is the
same length as pwr.

To return a power value, pwrout, specify pwr using empty brackets ([]), as shown in the syntax
description on page 35-6869.
Data Types: single | double

n — Sample size
positive integer value | array of positive integer values

Sample size, specified as a positive integer value or as an array of positive integer values.

If testtype is 't2', then sampsizepwr assumes that the two sample sizes are equal. For unequal
sample sizes, specify n as the smaller of the two sample sizes, and use the 'Ratio' name-value pair
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argument to indicate the sample size ratio. For example, if the smaller sample size is 5 and the larger
sample size is 10, specify n as 5, and the 'Ratio' name-value pair as 2.

If you specify n as an array, then sampsizepwr returns an array for pwrout or p1out that is the
same length as n.
Data Types: single | double

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: 'Alpha',0.01,'Tail','right' specifies a right-tailed test with a 0.01 significance
level.

Alpha — Significance level
0.05 (default) | scalar value in the range (0,1)

Significance value of the test, specified as the comma-separated pair consisting of 'Alpha' and a
scalar value in the range (0,1).
Example: 'Alpha',0.01
Data Types: single | double

Ratio — Sample size ratio
1 (default) | scalar value greater than or equal to 1

Sample size ratio for a two-sample t-test, specified as the comma-separated pair consisting of
'Ratio' and a scalar value greater than or equal to 1. The value of Ratio is equal to n2/n1, where
n2 is the larger sample size, and n1 is the smaller sample size.

To return the power, pwrout, or alternative parameter value, p1out, specify the smaller of the two
sample sizes for n, and use 'Ratio' to indicate the sample size ratio.
Example: 'Ratio',2

Tail — Test type
'both' (default) | 'right' | 'left'

Test type, specified as the comma-separated pair consisting of 'Tail' and one of the following:

• 'both' — Two-sided test for an alternative not equal to p0
• 'right' — One-sided test for an alternative larger than p0
• 'left' — One-sided test for an alternative smaller than p0

Example: 'Tail','right'

Output Arguments
nout — Sample size
positive integer value | array of positive integer values
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Sample size, returned as a positive integer value or as an array of positive integer values.
sampsizepwr applies ceil to round up raw sample sizes to the next integer.

If testtype is t2, and you use the 'Ratio' name-value pair argument to specify the ratio of the two
unequal sample sizes, then nout returns the smaller of the two sample sizes.

Alternatively, to return both sample sizes, specify this argument as [n1out,n2out]. In this case,
sampsizepwr returns the smaller sample size as n1out, and the larger sample size as n2out.

If you specify pwr or p1 as an array, then sampsizepwr returns an array for nout that is the same
length as pwr or p1.

pwrout — Power
scalar value in the range (0,1) | array of scalar values in the range (0,1)

Power achieved by the test, returned as a scalar value in the range (0,1) or as an array of scalar
values in the range (0,1).

If you specify n or p1 as an array, then sampsizepwr returns an array for pwrout that is the same
length as n or p1.

p1out — Parameter value for the alternative hypothesis
scalar value | array of scalar values

Parameter value for the alternative hypothesis, returned as a scalar value or as an array of scalar
values.

When computing p1out for the 'p' test, if no alternative can be rejected for a given null hypothesis
and significance level, the function displays a warning message and returns NaN.

Version History
Introduced in R2006b

See Also
vartest | ttest | ttest2 | ztest | binocdf

35 Functions

35-6876



saveCompactModel
(Removed) Save model object in file for code generation

Note saveCompactModel has been removed. Use saveLearnerForCoder instead. To update your
code, simply replace instances of saveCompactModel with saveLearnerForCoder.

Syntax
saveCompactModel(Mdl,filename)

Description
To generate C/C++ code for the object functions (predict, random, knnsearch, or rangesearch)
of machine learning models, use saveCompactModel, loadCompactModel, and codegen. After
training a machine learning model, save the model by using saveCompactModel. Define an entry-
point function that loads the model by using loadCompactModel and calls an object function. Then
use codegen or the MATLAB Coder app to generate C/C++ code. Generating C/C++ code requires
MATLAB Coder.

This flow chart shows the code generation workflow for the object functions of machine learning
models. Use saveCompactModel for the highlighted step.

saveCompactModel(Mdl,filename) prepares a classification model, regression model, or nearest
neighbor searcher (Mdl) for code generation and saves it in the MATLAB formatted binary file (MAT-
file) named filename. You can pass filename to loadCompactModel to reconstruct the model
object from the filename file.

Examples

Generate C/C++ Code for Prediction

After training a machine learning model, save the model by using saveCompactModel. Define an
entry-point function that loads the model by using loadCompactModel and calls the predict
function of the trained model. Then use codegen (MATLAB Coder) to generate C/C++ code.

This example briefly explains the code generation workflow for the prediction of machine learning
models at the command line. For more details, see “Code Generation for Prediction of Machine
Learning Model at Command Line” on page 34-9. You can also generate code using the MATLAB
Coder app. See “Code Generation for Prediction of Machine Learning Model Using MATLAB Coder
App” on page 34-23 for details. To learn about the code generation for finding nearest neighbors
using a nearest neighbor searcher model, see “Code Generation for Nearest Neighbor Searcher” on
page 34-20.
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Load Fisher's iris data set. Remove all observed setosa irises data so that X and Y contain data for
two classes only.

load fisheriris
inds = ~strcmp(species,'setosa');
X = meas(inds,:);
Y = species(inds);

Train a support vector machine (SVM) classification model using the processed data set.

Mdl = fitcsvm(X,Y);

Mdl is a ClassificationSVM model.

Save the SVM classification model to the file SVMIris.mat by using saveCompactModel.

saveCompactModel(Mdl,'SVMIris');

Define an entry-point function named classifyIrises that does the following:

• Accept iris flower measurements with columns corresponding to meas, and return predicted
labels.

• Load a trained SVM classification model.
• Predict labels using the loaded classification model for the iris flower measurements.

function label = classifyIrises(X) %#codegen
%CLASSIFYIRISES Classify iris species using SVM Model
%   CLASSIFYIRISES classifies the iris flower measurements in X using the
%   compact SVM model in the file SVMIris.mat, and then returns class
%   labels in label.
CompactMdl = loadCompactModel('SVMIris');
label = predict(CompactMdl,X);
end

Add the %#codegen compiler directive (or pragma) to the entry-point function after the function
signature to indicate that you intend to generate code for the MATLAB algorithm. Adding this
directive instructs the MATLAB Code Analyzer to help you diagnose and fix violations that would
result in errors during code generation.

Generate code for the entry-point function using codegen (MATLAB Coder). Because C and C++ are
statically typed languages, you must determine the properties of all variables in the entry-point
function at compile time. Pass X as the value of the -args option to specify that the generated code
must accept an input that has the same data type and array size as the training data X. If the number
of observations is unknown at compile time, you can also specify the input as variable-size by using
coder.typeof (MATLAB Coder). For details, see “Specify Variable-Size Arguments for Code
Generation” on page 34-56 and “Specify Properties of Entry-Point Function Inputs” (MATLAB Coder).

codegen classifyIrises -args {X}

Code generation successful.

codegen generates the MEX function classifyIrises_mex with a platform-dependent extension.

Compare the labels classified using predict, classifyIrises, and classifyIrises_mex.

label1 = predict(Mdl,X);
label2 = classifyIrises(X);
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label3 = classifyIrises_mex(X);
verify_label = isequal(label1,label2,label3)

verify_label = logical
   1

isequal returns logical 1 (true), which means all the inputs are equal. The labels classified all three
ways are the same.

Input Arguments
Mdl — Machine learning model
full model object | compact model object

Machine learning model, specified as a full or compact model object, as given in the following tables
of supported models.

• Classification Model Object

Model Full/Compact Model
Objects

Training Function

Binary decision tree for
classification

ClassificationTree,
CompactClassificationTr
ee

fitctree

Discriminant analysis
classification

ClassificationDiscrimin
ant,
CompactClassificationDi
scriminant

fitcdiscr

Ensemble classifier ClassificationEnsemble,
CompactClassificationEn
semble,
ClassificationBaggedEns
emble

fitcensemble

k-nearest neighbor
classification

ClassificationKNN fitcknn

Linear model for binary
classification of high-
dimensional data

ClassificationLinear fitclinear

Multiclass model for support
vector machines (SVMs) or
other classifiers

ClassificationECOC,
CompactClassificationEC
OC

fitcecoc

Naive Bayes classifier ClassificationNaiveBaye
s,
CompactClassificationNa
iveBayes

fitcnb

SVM for one-class and binary
classification

ClassificationSVM,
CompactClassificationSV
M

fitcsvm
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• Regression Model Object

Model Full/Compact Model Object Training Function
Ensemble regression RegressionEnsemble,

CompactRegressionEnsemb
le,
RegressionBaggedEnsembl
e

fitrensemble

Gaussian process regression RegressionGP,
CompactRegressionGP

fitrgp

Generalized linear model GeneralizedLinearModel,
CompactGeneralizedLinea
rModel

fitglm, stepwiseglm

Linear regression model LinearModel,
CompactLinearModel

fitlm, stepwiselm

Linear regression for high-
dimensional data

RegressionLinear fitrlinear

Regression tree RegressionTree,
CompactRegressionTree

fitrtree

SVM regression RegressionSVM,
CompactRegressionSVM

fitrsvm

• Nearest Neighbor Searcher Object

Model Model Object Training Function
Exhaustive nearest neighbor
searcher

ExhaustiveSearcher ExhaustiveSearcher,
createns

Nearest neighbor searcher
using Kd-tree

KDTreeSearcher KDTreeSearcher, createns

filename — File name
character vector | string scalar

File name, specified as a character vector or string scalar.

If the filename file exists, then saveCompactModel overwrites the file.

The extension of the filename file must be .mat. If filename has no extension, then
saveCompactModel appends .mat.

If filename does not include a full path, then saveCompactModel saves the file to the current
folder.
Example: 'SVMMdl'
Data Types: char | string

Algorithms
saveCompactModel prepares a machine learning model (Mdl) for code generation. The function
removes some properties that are not required for prediction.
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• For a model that has a corresponding compact model, the saveCompactModel function applies
the appropriate compact function to the model before saving it.

• For a model that does not have a corresponding compact model, such as ClassificationKNN,
ClassificationLinear, RegressionLinear, ExhaustiveSearcher, and KDTreeSearcher,
the saveCompactModel function removes properties such as hyperparameter optimization
properties, training solver information, and others.

loadCompactModel loads the model saved by saveCompactModel.

Alternative Functionality
• Use a coder configurer created by learnerCoderConfigurer for the models listed in this table.

Model Coder Configurer Object
Binary decision tree for multiclass
classification

ClassificationTreeCoderConfigurer

SVM for one-class and binary classification ClassificationSVMCoderConfigurer
Linear model for binary classification ClassificationLinearCoderConfigurer
Multiclass model for SVMs and linear models ClassificationECOCCoderConfigurer
Binary decision tree for regression RegressionTreeCoderConfigurer
Support vector machine (SVM) regression RegressionSVMCoderConfigurer
Linear regression RegressionLinearCoderConfigurer

After training a machine learning model, create a coder configurer of the model. Use the object
functions and properties of the configurer to configure code generation options and to generate
code for the predict and update functions of the model. If you generate code using a coder
configurer, you can update model parameters in the generated code without having to regenerate
the code. For details, see “Code Generation for Prediction and Update Using Coder Configurer” on
page 34-92.

Version History
Introduced in R2016b

saveCompactModel has been removed
Errors starting in R2021b

saveCompactModel has been removed. Use saveLearnerForCoder instead.

saveLearnerForCoder and loadLearnerForCoder provide broader functionality, including fixed-
point code generation for supported models.

This table shows how to update your code to use saveLearnerForCoder.

Removed Recommended
saveCompactModel(Model,'MyModel'); saveLearnerForCoder(Model,'MyModel');

See Also
loadCompactModel | codegen | saveLearnerForCoder

 saveCompactModel

35-6881



Topics
“Introduction to Code Generation” on page 34-2
“Code Generation for Prediction of Machine Learning Model at Command Line” on page 34-9
“Code Generation for Prediction of Machine Learning Model Using MATLAB Coder App” on page 34-
23
“Code Generation for Nearest Neighbor Searcher” on page 34-20
“Specify Variable-Size Arguments for Code Generation” on page 34-56
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saveLearnerForCoder
Save model object in file for code generation

Syntax
saveLearnerForCoder(Mdl,filename)

Description
To generate C/C++ code for the object functions of machine learning models (including predict,
random, knnsearch, rangesearch, isanomaly, and incremental learning functions), use
saveLearnerForCoder, loadLearnerForCoder, and codegen. After training a machine learning
model, save the model by using saveLearnerForCoder. Define an entry-point function that loads
the model by using loadLearnerForCoder and calls an object function. Then use codegen or the
MATLAB Coder app to generate C/C++ code. Generating C/C++ code requires MATLAB Coder.

This flow chart shows the code generation workflow for the object functions of machine learning
models. Use saveLearnerForCoder for the highlighted step.

Fixed-point C/C++ code generation requires an additional step that defines the fixed-point data types
of the variables required for prediction. Create a fixed-point data type structure by using the data
type function generated by generateLearnerDataTypeFcn, and use the structure as an input
argument of loadLearnerForCoder in an entry-point function. Generating fixed-point C/C++ code
requires MATLAB Coder and Fixed-Point Designer.

This flow chart shows the fixed-point code generation workflow for the predict function of a
machine learning model. Use saveLearnerForCoder for the highlighted step.

saveLearnerForCoder(Mdl,filename) prepares a model (Mdl) for code generation and saves it
in the MATLAB formatted binary file (MAT-file) named filename. You can pass filename to
loadLearnerForCoder to reconstruct the model object from the filename file.

Examples

Generate C/C++ Code for Prediction

After training a machine learning model, save the model by using saveLearnerForCoder. Define an
entry-point function that loads the model by using loadLearnerForCoder and calls the predict
function of the trained model. Then use codegen (MATLAB Coder) to generate C/C++ code.

This example briefly explains the code generation workflow for the prediction of machine learning
models at the command line. For more details, see “Code Generation for Prediction of Machine
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Learning Model at Command Line” on page 34-9. You can also generate code using the MATLAB
Coder app. See “Code Generation for Prediction of Machine Learning Model Using MATLAB Coder
App” on page 34-23 for details. To learn about the code generation for finding nearest neighbors
using a nearest neighbor searcher model, see “Code Generation for Nearest Neighbor Searcher” on
page 34-20.

Train Model

Load Fisher's iris data set. Remove all observed setosa irises data so that X and Y contain data for
two classes only.

load fisheriris
inds = ~strcmp(species,'setosa');
X = meas(inds,:);
Y = species(inds);

Train a support vector machine (SVM) classification model using the processed data set.

Mdl = fitcsvm(X,Y);

Mdl is a ClassificationSVM model.

Save Model

Save the SVM classification model to the file SVMIris.mat by using saveLearnerForCoder.

saveLearnerForCoder(Mdl,'SVMIris');

Define Entry-Point Function

Define an entry-point function named classifyIris that does the following:

• Accept iris flower measurements with columns corresponding to meas, and return predicted
labels.

• Load a trained SVM classification model.
• Predict labels using the loaded classification model for the iris flower measurements.

type classifyIris.m % Display contents of classifyIris.m file

function label = classifyIris(X) %#codegen
%CLASSIFYIRIS Classify iris species using SVM Model
%   CLASSIFYIRIS classifies the iris flower measurements in X using the SVM
%   model in the file SVMIris.mat, and then returns class labels in label.
Mdl = loadLearnerForCoder('SVMIris');
label = predict(Mdl,X);
end

Add the %#codegen compiler directive (or pragma) to the entry-point function after the function
signature to indicate that you intend to generate code for the MATLAB algorithm. Adding this
directive instructs the MATLAB Code Analyzer to help you diagnose and fix violations that would
result in errors during code generation.

Note: If you click the button located in the upper-right section of this example and open this example
in MATLAB®, then MATLAB® opens the example folder. This folder includes the entry-point function
file.
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Generate Code

Generate code for the entry-point function using codegen (MATLAB Coder). Because C and C++ are
statically typed languages, you must determine the properties of all variables in the entry-point
function at compile time. Pass X as the value of the -args option to specify that the generated code
must accept an input that has the same data type and array size as the training data X. If the number
of observations is unknown at compile time, you can also specify the input as variable-size by using
coder.typeof (MATLAB Coder). For details, see “Specify Variable-Size Arguments for Code
Generation” on page 34-56 and “Specify Properties of Entry-Point Function Inputs” (MATLAB Coder).

codegen classifyIris -args {X}

Code generation successful.

codegen generates the MEX function classifyIris_mex with a platform-dependent extension.

Verify Generated Code

Compare the labels classified using predict, classifyIris, and classifyIris_mex.

label1 = predict(Mdl,X);
label2 = classifyIris(X);
label3 = classifyIris_mex(X);
verify_label = isequal(label1,label2,label3)

verify_label = logical
   1

isequal returns logical 1 (true), which means all the inputs are equal. The labels classified all three
ways are the same.

Generate Fixed-Point C/C++ Code for Prediction

After training a machine learning model, save the model using saveLearnerForCoder. For fixed-
point code generation, specify the fixed-point data types of the variables required for prediction by
using the data type function generated by generateLearnerDataTypeFcn. Then, define an entry-
point function that loads the model by using both loadLearnerForCoder and the specified fixed-
point data types, and calls the predict function of the model. Use codegen (MATLAB Coder) to
generate fixed-point C/C++ code for the entry-point function, and then verify the generated code.

Before generating code using codegen, you can use buildInstrumentedMex (Fixed-Point
Designer) and showInstrumentationResults (Fixed-Point Designer) to optimize the fixed-point
data types to improve the performance of the fixed-point code. Record minimum and maximum values
of named and internal variables for prediction by using buildInstrumentedMex. View the
instrumentation results using showInstrumentationResults; then, based on the results, tune the
fixed-point data type properties of the variables. For details regarding this optional step, see “Fixed-
Point Code Generation for Prediction of SVM” on page 34-99.

Train Model

Load the ionosphere data set and train a binary SVM classification model.

load ionosphere
Mdl = fitcsvm(X,Y,'KernelFunction','gaussian');
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Mdl is a ClassificationSVM model.

Save Model

Save the SVM classification model to the file myMdl.mat by using saveLearnerForCoder.

saveLearnerForCoder(Mdl,'myMdl');

Define Fixed-Point Data Types

Use generateLearnerDataTypeFcn to generate a function that defines the fixed-point data types
of the variables required for prediction of the SVM model.

generateLearnerDataTypeFcn('myMdl',X)

generateLearnerDataTypeFcn generates the myMdl_datatype function.

Create a structure T that defines the fixed-point data types by using myMdl_datatype.

T = myMdl_datatype('Fixed')

T = struct with fields:
               XDataType: [0x0 embedded.fi]
           ScoreDataType: [0x0 embedded.fi]
    InnerProductDataType: [0x0 embedded.fi]

The structure T includes the fields for the named and internal variables required to run the predict
function. Each field contains a fixed-point object, returned by fi (Fixed-Point Designer). The fixed-
point object specifies fixed-point data type properties, such as word length and fraction length. For
example, display the fixed-point data type properties of the predictor data.

T.XDataType

ans = 

[]

          DataTypeMode: Fixed-point: binary point scaling
            Signedness: Signed
            WordLength: 16
        FractionLength: 14

        RoundingMethod: Floor
        OverflowAction: Wrap
           ProductMode: FullPrecision
  MaxProductWordLength: 128
               SumMode: FullPrecision
      MaxSumWordLength: 128

Define Entry-Point Function

Define an entry-point function named myFixedPointPredict that does the following:

• Accept the predictor data X and the fixed-point data type structure T.
• Load a fixed-point version of a trained SVM classification model by using both

loadLearnerForCoder and the structure T.
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• Predict labels and scores using the loaded model.

type myFixedPointPredict.m % Display contents of myFixedPointPredict.m file

function [label,score] = myFixedPointPredict(X,T) %#codegen
Mdl = loadLearnerForCoder('myMdl','DataType',T);
[label,score] = predict(Mdl,X);
end

Note: If you click the button located in the upper-right section of this example and open the example
in MATLAB®, then MATLAB opens the example folder. This folder includes the entry-point function
file.

Generate Code

The XDataType field of the structure T specifies the fixed-point data type of the predictor data.
Convert X to the type specified in T.XDataType by using the cast (Fixed-Point Designer) function.

X_fx = cast(X,'like',T.XDataType);

Generate code for the entry-point function using codegen. Specify X_fx and constant folded T as
input arguments of the entry-point function.

codegen myFixedPointPredict -args {X_fx,coder.Constant(T)}

Code generation successful.

codegen generates the MEX function myFixedPointPredict_mex with a platform-dependent
extension.

Verify Generated Code

Pass predictor data to predict and myFixedPointPredict_mex to compare the outputs.

[labels,scores] = predict(Mdl,X);
[labels_fx,scores_fx] = myFixedPointPredict_mex(X_fx,T);

Compare the outputs from predict and myFixedPointPredict_mex.

verify_labels = isequal(labels,labels_fx)

verify_labels = logical
   1

isequal returns logical 1 (true), which means labels and labels_fx are equal. If the labels are
not equal, you can compute the percentage of incorrectly classified labels as follows.

sum(strcmp(labels_fx,labels)==0)/numel(labels_fx)*100

ans = 0

Find the maximum of the relative differences between the score outputs.

relDiff_scores = max(abs((scores_fx.double(:,1)-scores(:,1))./scores(:,1)))

relDiff_scores = 0.0055

If you are not satisfied with the comparison results and want to improve the precision of the
generated code, you can tune the fixed-point data types and regenerate the code. For details, see

 saveLearnerForCoder

35-6887



“Tips” on page 35-3042 in generateLearnerDataTypeFcn, “Data Type Function” on page 35-3041,
and “Fixed-Point Code Generation for Prediction of SVM” on page 34-99.

Input Arguments
Mdl — Machine learning model
full model object | compact model object

Machine learning model, specified as a full or compact model object, as given in the following tables
of supported models. The tables also show whether each model supports fixed-point code generation.
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• Classification Model Object

Model Full/Compact Model
Objects

Fixed-Point Code
Generation Support

Single-Precision
Code Generation
Support

Discriminant analysis
classification

ClassificationDis
criminant,
CompactClassifica
tionDiscriminant

No Yes

Multiclass model for
support vector
machines (SVMs) or
other classifiers

ClassificationECO
C,
CompactClassifica
tionECOC

No Yes

Ensemble classifier ClassificationEns
emble,
CompactClassifica
tionEnsemble,
ClassificationBag
gedEnsemble

Yes (only for
ensembles of decision
trees)

Yes

k-nearest neighbor
classification

ClassificationKNN No Yes

Linear model for
binary classification of
high-dimensional data

ClassificationLin
ear

No Yes

Naive Bayes classifier ClassificationNai
veBayes,
CompactClassifica
tionNaiveBayes

No Yes

Neural network
classifier

ClassificationNeu
ralNetwork,
CompactClassifica
tionNeuralNetwork

No Yes

SVM for one-class and
binary classification

ClassificationSVM
,
CompactClassifica
tionSVM

Yes Yes

Binary decision tree
for classification

ClassificationTre
e,
CompactClassifica
tionTree

Yes Yes

Binary classification
linear model for
incremental learning

incrementalClassi
ficationLinear

No Yes
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• Regression Model Object

Model Full/Compact Model
Object

Fixed-Point Code
Generation Support

Single-Precision
Code Generation
Support

Generalized linear
model

GeneralizedLinear
Model,
CompactGeneralize
dLinearModel

No No

Linear regression
model for incremental
learning

incrementalRegres
sionLinear

No Yes

Linear regression
model

LinearModel,
CompactLinearMode
l

No Yes

Ensemble regression RegressionEnsembl
e,
CompactRegression
Ensemble,
RegressionBaggedE
nsemble

Yes Yes

Gaussian process
regression

RegressionGP,
CompactRegression
GP

No Yes (see “Tips” on
page 35-4268)

Linear regression for
high-dimensional data

RegressionLinear No No

Neural network
regression

RegressionNeuralN
etwork,
CompactRegression
NeuralNetwork

No Yes

Regression tree RegressionTree,
CompactRegression
Tree

Yes Yes

SVM regression RegressionSVM,
CompactRegression
SVM

Yes Yes

• Nearest Neighbor Searcher Object

Model Model Object Fixed-Point Code
Generation Support

Single-Precision
Code Generation
Support

Exhaustive nearest
neighbor searcher

ExhaustiveSearche
r

No No

Nearest neighbor
searcher using Kd-tree

KDTreeSearcher No No
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• Anomaly Detection Object

Model Model Object Fixed-Point Code
Generation Support

Single-Precision
Code Generation
Support

Isolation Forest IsolationForest No Yes

filename — File name
character vector | string scalar

File name, specified as a character vector or string scalar.

If the filename file exists, then saveLearnerForCoder overwrites the file.

The extension of the filename file must be .mat. If filename has no extension, then
saveLearnerForCoder appends .mat.

If filename does not include a full path, then saveLearnerForCoder saves the file to the current
folder.
Example: 'SVMMdl'
Data Types: char | string

Algorithms
saveLearnerForCoder prepares a machine learning model (Mdl) for code generation. The function
removes some unnecessary properties.

• For a model that has a corresponding compact model, the saveLearnerForCoder function
applies the appropriate compact function to the model before saving it.

• For a model that does not have a corresponding compact model, such as ClassificationKNN,
ClassificationLinear, RegressionLinear, ExhaustiveSearcher, KDTreeSearcher, and
IsolationForest, the saveLearnerForCoder function removes properties such as
hyperparameter optimization properties, training solver information, and others.

loadLearnerForCoder loads the model saved by saveLearnerForCoder.

Alternative Functionality
• Use a coder configurer created by learnerCoderConfigurer for the models listed in this table.

Model Coder Configurer Object
Binary decision tree for multiclass
classification

ClassificationTreeCoderConfigurer

SVM for one-class and binary classification ClassificationSVMCoderConfigurer
Linear model for binary classification ClassificationLinearCoderConfigurer
Multiclass model for SVMs and linear models ClassificationECOCCoderConfigurer
Binary decision tree for regression RegressionTreeCoderConfigurer
Support vector machine (SVM) regression RegressionSVMCoderConfigurer
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Model Coder Configurer Object
Linear regression RegressionLinearCoderConfigurer

After training a machine learning model, create a coder configurer of the model. Use the object
functions and properties of the configurer to configure code generation options and to generate
code for the predict and update functions of the model. If you generate code using a coder
configurer, you can update model parameters in the generated code without having to regenerate
the code. For details, see “Code Generation for Prediction and Update Using Coder Configurer” on
page 34-92.

Version History
Introduced in R2019b

See Also
loadLearnerForCoder | codegen | generateLearnerDataTypeFcn

Topics
“Introduction to Code Generation” on page 34-2
“Code Generation for Prediction of Machine Learning Model at Command Line” on page 34-9
“Code Generation for Prediction of Machine Learning Model Using MATLAB Coder App” on page 34-
23
“Code Generation for Nearest Neighbor Searcher” on page 34-20
“Code Generation for Anomaly Detection” on page 34-179
“Fixed-Point Code Generation for Prediction of SVM” on page 34-99
“Specify Variable-Size Arguments for Code Generation” on page 34-56
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scatterhist
Scatter plot with marginal histograms

Syntax
scatterhist(x,y)
scatterhist(x,y,Name,Value)

h = scatterhist( ___ )

Description
scatterhist(x,y) creates a 2-D scatter plot of the data in vectors x and y, and displays the
marginal distributions of x and y as univariate histograms on the horizontal and vertical axes of the
scatter plot, respectively.

scatterhist(x,y,Name,Value) creates the plot using additional options specified by one or more
name-value pair arguments. For example, you can specify a grouping variable or change the display
options.

h = scatterhist( ___ ) returns a vector of three axis handles for the scatter plot, the histogram
along the horizontal axis, and the histogram along the vertical axis, respectively, using any of the
input arguments in the previous syntaxes.

Examples

Create a scatterhist Plot

Load the sample data. Create data vector x from the first column of the data matrix, which contains
sepal length measurements from iris flowers. Create data vector y from the second column of the
data matrix, which contains sepal width measurements from the same flowers.

load fisheriris
x = meas(:,1);
y = meas(:,2);

Create a scatter plot and two marginal histograms to visualize the relationship between sepal length
and sepal width.

scatterhist(x,y)
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Display a data tip for a bin in a histogram. A data tip appears when you hover over a bin in a
histogram.
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The data tip displays the probability density function estimate of the selected bin and the lower and
upper values for the bin edges.

Plot Grouped Data

Load the sample data. Create data vector x from the first column of the data matrix, which contains
sepal length measurements from three species of iris flowers. Create data vector y from the second
column of the data matrix, which contains sepal width measurements from the same flowers.

load fisheriris.mat;
x = meas(:,1);
y = meas(:,2);

Create a scatter plot and six kernel density plots to visualize the relationship between sepal length
and sepal width, grouped by species.

scatterhist(x,y,'Group',species,'Kernel','on')
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The plot shows that the relationship between sepal length and width varies depending on the flower
species.

Customize the Plot Display

Load the sample data. Create data vector x from the first column of the data matrix, which contains
sepal length measurements from three different species of iris flowers. Create data vector y from the
second column of the data matrix, which contains sepal width measurements from the same flowers.

load fisheriris.mat;
x = meas(:,1);
y = meas(:,2);

Create a scatter plot and six kernel density plots to visualize the relationship between sepal length
and sepal width as measured on three species of iris flowers, grouped by species. Customize the
appearance of the plots.

scatterhist(x,y,'Group',species,'Kernel','on','Location','SouthEast',...
    'Direction','out','Color','kbr','LineStyle',{'-','-.',':'},...
    'LineWidth',[2,2,2],'Marker','+od','MarkerSize',[4,5,6]);
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Customize Plots Using Axes Handles

Load the sample data. Create data vector x from the first column of the data matrix, which contains
sepal length measurements from three species of iris flowers. Create data vector y from the second
column of the data matrix, which contains sepal width measurements from the same flowers.

load fisheriris.mat;
x = meas(:,1);
y = meas(:,2);

Use axis handles to replace the marginal histograms with box plots.

h = scatterhist(x,y,'Group',species);
hold on;
clr = get(h(1),'colororder');
boxplot(h(2),x,species,'orientation','horizontal',...
     'label',{'','',''},'color',clr);
boxplot(h(3),y,species,'orientation','horizontal',...
     'label', {'','',''},'color',clr);
set(h(2:3),'XTickLabel','');
view(h(3),[270,90]);  % Rotate the Y plot
axis(h(1),'auto');  % Sync axes
hold off;
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Create a scatterhist Plot in a Specified Parent Container

Load the sample data. Create data vector x from the first column of the data matrix, which contains
sepal length measurements from iris flowers. Create data vector y from the second column of the
data matrix, which contains sepal width measurements from the same flowers.

load fisheriris
x = meas(:,1);
y = meas(:,2);

Create a new figure and define two uipanel objects to divide the figure into two parts. In the upper
half of the figure, plot the sample data using scatterhist. Include marginal kernel density plots
grouped by species. In the lower half of the figure, plot a histogram of the sepal length measurements
contained in x.

figure
hp1 = uipanel('position',[0 .5 1 .5]);
hp2 = uipanel('position',[0 0 1 .5]);
scatterhist(x,y,'Group',species,'Kernel','on','Parent',hp1);
axes('Parent',hp2);
hist(x);
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Input Arguments
x — Sample data
vector

Sample data, specified as a vector. The data vectors x and y must be the same length.

If x or y contain NaN values, then scatterhist:

• Removes rows with NaN values in either x or y from both data vectors when generating the
scatter plot

• Removes rows with NaN values only from the corresponding x or y data vector when generating
the marginal histograms

Data Types: single | double

y — Sample data
vector

Sample data, specified as a vector. The data vectors x and y must be the same length.

If x or y contain NaN values, then scatterhist:

• Removes rows with NaN values in either x or y from both data vectors when generating the
scatter plot
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• Removes rows with NaN values only from the corresponding x or y data vector when generating
the marginal histograms

Data Types: single | double

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: 'Location','SouthEast','Direction','out' specifies a plot with histograms
located below and to the right of the scatter plot, with the bars directed away from the scatter plot.

NBins — Number of bins for histograms
positive integer value | vector

Number of bins for histograms, specified as the comma-separated pair consisting of 'NBins' and a
positive integer value greater than or equal to 2, or vector of two such values. If the number of bins is
specified as a positive integer value, that value is the number of bins for both the x and y histograms.
If the number of bins is specified by a vector, the first value is the number of bins for the x data, and
the second value is the number of bins for the y data. By default, the number of bins is computed
based on the sample standard deviation using Scott’s rule.
Example: 'NBins',[5,7]
Data Types: single | double

Location — Location of marginal histograms
'SouthWest' (default) | 'SouthEast' | 'NorthEast' | 'NorthWest'

Location of the marginal histograms in the figure, specified as the comma-separated pair consisting
of 'Location' and one of the following.

'SouthWest
'

Plot the histograms below and to the left of the scatter plot.

'SouthEast
'

Plot the histograms below and to the right of the scatter plot.

'NorthEast
'

Plot the histograms above and to the right of the scatter plot.

'NorthWest
'

Plot the histograms above and to the left of the scatter plot.

Example: 'Location','SouthEast'

Direction — Direction of marginal histograms
'in' (default) | 'out'

Direction of the marginal histograms, specified as the comma-separated pair consisting of
'Direction' and one of the following.

'in' Plot the histograms with the bars directed toward the scatter plot.
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'out' Plot the histograms with the bars directed away from the scatter plot.

Example: 'Direction','out'

Group — Grouping variable
categorical array | logical or numeric vector | character array | string array | cell array of character
vectors

Grouping variable, specified as the comma-separated pair consisting of 'Group' and a categorical
array, logical or numeric vector, character array, string array, or cell array of character vectors. Each
unique value in a grouping variable defines a group.

For example, if Gender is a cell array of character vectors with values 'Male' and 'Female', you
can use Gender as a grouping variable to plot your data by gender.

The number of rows in the grouping variable must be equal to the length of x.
Example: 'Group',Gender
Data Types: categorical | single | double | logical | char | string | cell

PlotGroup — Grouped plot indicator
'on' | 'off'

Grouped plot indicator, specified as the comma-separated pair consisting of 'PlotGroup' and one of
the following.

'on' Display grouped histograms or grouped kernel density plots. This is the default if a
Group parameter is specified.

'off' Display histograms or kernel density plots of the whole data set. This is the default if
a Group parameter is not specified.

Example: 'PlotGroup','off'

Style — Histogram display style
'stairs' | 'bar'

Histogram display style, specified as the comma-separated pair consisting of 'PlotGroup' and one
of the following.

'stairs' Display a stairstep plot that shows the outline of the histogram without filling the
bars. This is the default if you specify a grouping variable that contains more than
one group.

'bar' Display a histogram bar plot. This is the default if you specify a grouping variable
that contains only one group or if PlotGroup is specified as 'off'.

Example: 'Style','bar'

Kernel — Kernel density plot indicator
'off' (default) | 'on' | 'overlay'

Kernel density plot indicator, specified as the comma-separated pair consisting of 'Kernel' and one
of the following.
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'off' Display the marginal distributions as histograms.
'on' Display the marginal distributions as kernel density plots.
'overlay' Display the marginal distributions as kernel density plots overlaid onto histograms,

similar to histfit.

Example: 'Kernel','overlay'

Bandwidth — Bandwidth of kernel smoothing window
matrix

Bandwidth of kernel smoothing window, specified as the comma-separated pair consisting of
'Bandwidth' and a matrix of size 2-by-K, where K is the number of unique groups. The first row of
the matrix gives the bandwidth of each group in x, and the second row gives the bandwidth of each
group in y. By default, scatterhist finds the optimal bandwidth for estimating normal densities.
Specifying a different bandwidth value changes the smoothing characteristics of the resulting kernel
density plot. The value specified is a scaling factor for the normal distribution used to generate the
kernel density plot.
Example: 'Bandwidth',[.5,.2,.1;.15,.25,.35]
Data Types: single | double

Legend — Legend visibility indicator
'on' | 'off'

Legend visibility indicator, specified as the comma-separated pair consisting of 'Legend' and one of
the following.

'on' Set legend visible. This is the default if a Group parameter is specified.
'off' Set legend invisible. This is the default if a Group parameter is not specified.

Example: 'Legend','on'

Parent — Parent container of the plot
uipanel container object | figure container object

Parent container for the plot, specified as a uipanel container object or figure container object.
You can create panel container objects using uipanel or figure, respectively.

For example, if h1 is a panel container object, specify the parent container of the plot as follows.
Example: 'Parent',h1

LineStyle — Style of kernel density plot line
valid line style | string array or cell array of line styles

Style of kernel density plot line, specified as the comma-separated pair consisting of 'LineStyle'
and a valid line style or a string array or cell array of valid line styles. See plot for valid line styles.
The default is a solid line. Use a string array or cell array to specify different line styles for each
group. When the total number of groups exceeds the number of specified values, scatterhist
cycles through the specified values.
Example: 'LineStyle',{'-',':','-.'}
Data Types: char | string | cell
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LineWidth — Width of kernel density plot line
0.5 (default) | nonnegative scalar value | vector

Width of kernel density plot line, specified as the comma-separated pair consisting of 'LineWidth'
and a nonnegative scalar value or vector of nonnegative scalar values. The specified value is the size
of the kernel density plot line measured in points. The default size is 0.5 points. Use a vector to
specify different line widths for each group. When the total number of groups is greater than the
number of specified values, scatterhist cycles through the specified values.
Example: 'LineWidth',[0.5,1,2]
Data Types: single | double

Color — Marker color for each scatter plot group
character vector or string scalar of color names | matrix of RGB values

Marker color for each scatter plot group, specified as the comma-separated pair consisting of
'Color' and a character vector or string scalar of color names, or a three-column matrix of RGB
values in the range [0,1]. If you specify colors using a matrix, then each row of the matrix is an RGB
triplet that represents a group. The three columns of the matrix represent the R value, G value, and B
value, respectively. When the total number of groups exceeds the number of specified colors,
scatterhist cycles through the specified colors.

This table lists the predefined colors and their equivalent RGB triplet values.

Option Description Equivalent RGB Triplet
'red' or 'r' Red [1 0 0]
'green' or 'g' Green [0 1 0]
'blue' or 'b' Blue [0 0 1]
'yellow' or 'y' Yellow [1 1 0]
'magenta' or 'm' Magenta [1 0 1]
'cyan' or 'c' Cyan [0 1 1]
'white' or 'w' White [1 1 1]
'black' or 'k' Black [0 0 0]

Example: 'Color','kcm'
Example: 'Color',[.5,0,1;0,.5,.5]
Data Types: single | double | char | string

Marker — Marker symbol for each scatterplot group
'o' (default) | character vector | string scalar

Marker symbol for each scatter plot group, specified as the comma-separated pair consisting of
'Marker' and a character vector or string scalar of one or more valid marker symbols. See plot for
valid symbols. The default is 'o', a circle. When the total number of groups exceeds the number of
specified symbols, scatterhist cycles through the specified symbols.
Example: 'Marker','+do'
Data Types: char | string
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MarkerSize — Marker size for each scatter plot group
6 (default) | nonnegative scalar value | vector

Marker size for each scatter plot group, specified as the comma-separated pair consisting of
'MarkerSize' and a nonnegative scalar value or a vector of nonnegative scalar values, measured in
points. When the total number of groups exceeds the number of specified values, scatterhist
cycles through the specified values.
Example: 'MarkerSize',10
Data Types: single | double

Output Arguments
h — Axes handles
vector

Axes handles for the three plots, returned as a vector. The vector contains the handles for the scatter
plot, the histogram along the horizontal axis, and the histogram along the vertical axis, respectively.

Alternative Functionality
Alternatively, you can create a ScatterHistogramChart object by using the scatterhistogram
function.

• Explore the data interactively in the object by panning, zooming, and using data tips. Unlike the
scatterhist function, scatterhistogram updates the marginal histograms based on the data
within the current scatter plot limits.

• Control the appearance and behavior of the scatter histogram chart by changing the
ScatterHistogramChart Properties.

Version History
Introduced in R2007a

See Also
histogram | gscatter | scatterhistogram

Topics
“Grouping Variables” on page 2-46
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scramble
Scramble quasirandom point set

Syntax
ps = scramble(p,type)
ps = scramble(p,'clear')
ps = scramble(p)

Description
ps = scramble(p,type) returns a scrambled copy ps of the point set p, created using the
scramble type specified by type. The point set p is either a haltonset or sobolset object, and
each type of point set supports a different scramble type.

The scrambled point set ps is the same kind of object as p.

ps = scramble(p,'clear') removes the scramble setting from p and returns the result in ps.

ps = scramble(p) reapplies the existing scramble setting to p, which typically results in a different
point set because of the randomness of the scrambling algorithms.

Examples

Create Halton Point Set

Generate a three-dimensional Halton point set, skip the first 1000 values, and then retain every 101st
point.

p = haltonset(3,'Skip',1e3,'Leap',1e2)

p = 
Halton point set in 3 dimensions (89180190640991 points)

Properties:
              Skip : 1000
              Leap : 100
    ScrambleMethod : none

Apply reverse-radix scrambling by using scramble.

p = scramble(p,'RR2')

p = 
Halton point set in 3 dimensions (89180190640991 points)

Properties:
              Skip : 1000
              Leap : 100
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    ScrambleMethod : RR2

Generate the first four points by using net.

X0 = net(p,4)

X0 = 4×3

    0.0928    0.6950    0.0029
    0.6958    0.2958    0.8269
    0.3013    0.6497    0.4141
    0.9087    0.7883    0.2166

Generate every third point, up to the eleventh point, by using parenthesis indexing.

X = p(1:3:11,:)

X = 4×3

    0.0928    0.6950    0.0029
    0.9087    0.7883    0.2166
    0.3843    0.9840    0.9878
    0.6831    0.7357    0.7923

Scramble and Unscramble Sobol Point Set

Create and scramble a five-dimensional Sobol point set. Specify the 'MatousekAffineOwen'
scramble type.

p = sobolset(5);
ps = scramble(p,'MatousekAffineOwen');

Compare the first four points in the two point sets.

X = net(p,4)

X = 4×5

         0         0         0         0         0
    0.5000    0.5000    0.5000    0.5000    0.5000
    0.2500    0.7500    0.2500    0.7500    0.2500
    0.7500    0.2500    0.7500    0.2500    0.7500

X2 = net(ps,4)

X2 = 4×5

    0.6681    0.2784    0.2476    0.5688    0.0513
    0.4485    0.6735    0.5417    0.3285    0.9719
    0.9940    0.9606    0.3515    0.1586    0.4742
    0.1550    0.1202    0.9226    0.9262    0.5491
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Remove the scramble setting from ps by using the 'clear' option. The point set clearps matches
the original point set p.

clearps = scramble(ps,'clear');
clearX = net(clearps,4)

clearX = 4×5

         0         0         0         0         0
    0.5000    0.5000    0.5000    0.5000    0.5000
    0.2500    0.7500    0.2500    0.7500    0.2500
    0.7500    0.2500    0.7500    0.2500    0.7500

Pass ps to the scramble function without additional input arguments. The software removes the
scramble setting from ps and then reapplies it. Because of the randomness of the scrambling
algorithm, the new scrambled point set newps differs from the original scrambled point set ps.

newps = scramble(ps);
newX = net(newps,4)

newX = 4×5

    0.6882    0.6261    0.9298    0.3314    0.4169
    0.2442    0.1978    0.4307    0.6286    0.8666
    0.7827    0.2868    0.5172    0.8430    0.1261
    0.2772    0.8576    0.0164    0.1404    0.5905

Input Arguments
p — Point set
haltonset object | sobolset object

Point set, specified as either a haltonset or sobolset object.
Example: sobolset(5)

type — Scramble type
'RR2' | 'MatousekAffineOwen'

Scramble type, specified as 'RR2' or 'MatousekAffineOwen'. Different point sets support
different scramble types, as indicated in this table.

Object Scramble Type
haltonset 'RR2' — A permutation of the radical inverse coefficients derived by

applying a reverse-radix operation to all of the possible coefficient values.
The scramble is described in [2].

sobolset 'MatousekAffineOwen' — A random linear scramble combined with a
random digital shift. The scramble is described in [1].

Version History
Introduced in R2008a
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See Also
haltonset | sobolset | net | reduceDimensions
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segment
Piecewise distribution segments containing input values

Syntax
s = segment(pd,x)
s = segment(pd,[],p)

Description
s = segment(pd,x) returns a vector s of positive integers indicating which segment in the
piecewise distribution pd contains each quantile value in x.

The values 1, 2, and 3 in s indicate the lower tail, center, and upper tail segments in pd, respectively.
If pd does not include a lower tail segment, then 1 and 2 indicate the center and upper tail segments,
respectively.

s = segment(pd,[],p) returns a vector s of positive integers indicating which segment in the
piecewise distribution pd contains each cumulative probability value in p.

Examples

Find Segment in paretotails Object

Generate a sample data set and create a paretotails object by fitting a piecewise distribution with
Pareto tails to the generated data. Find the segment containing the specified quantile values by using
the object function segment.

Generate a sample data set containing 20% outliers.

rng('default');  % For reproducibility
left_tail = -exprnd(1,100,1);
right_tail = exprnd(5,100,1);
center = randn(800,1);
x = [left_tail;center;right_tail];

Create a paretotails object by fitting a piecewise distribution to x. Specify the boundaries of the
tails using the lower and upper tail cumulative probabilities so that a fitted object consists of the
empirical distribution for the middle 80% of the data set and generalized Pareto distributions (GPDs)
for the lower and upper 10% of the data set.

pd = paretotails(x,0.1,0.9)

pd = 
Piecewise distribution with 3 segments
      -Inf < x < -1.33251    (0 < p < 0.1): lower tail, GPD(-0.0063504,0.567017)
   -1.33251 < x < 1.80149  (0.1 < p < 0.9): interpolated empirical cdf
        1.80149 < x < Inf    (0.9 < p < 1): upper tail, GPD(0.24874,3.00974)

Find the segment containing the specified points by using the segment function.
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xpts = -3:3;
s = segment(pd,xpts)

s = 1×7

     1     1     2     2     2     3     3

1, 2, and 3 indicate the lower tail, center, and upper tail segments in pd, respectively.

Draw the scatter plot of the points (xpts) grouped by their segments over the cumulative distribution
function (cdf) plot. Plot the cdf of pd.

xgrid = linspace(icdf(pd,.01), icdf(pd,.99));
ygrid = cdf(pd,xgrid);
plot(xgrid,ygrid)

Superimpose the scatter plot of xpts by using gscatter.

hold on
gscatter(xpts,cdf(pd,xpts),s)
legend('cdf','Lower tail','Center','Upper tail')
hold off
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Find Segment Containing Boundary Points

Generate a sample data set and create a paretotails object by fitting a piecewise distribution with
Pareto tails to the generated data. Find the segment containing the boundary points by using the
object function segment.

Generate a sample data set containing 20% outliers.

rng('default');  % For reproducibility
left_tail = -exprnd(1,100,1);
right_tail = exprnd(5,100,1);
center = randn(800,1);
x = [left_tail;center;right_tail];

Create a paretotails object by fitting a piecewise distribution to x. Specify the boundaries of the
tails using the lower and upper tail cumulative probabilities so that a fitted object consists of the
empirical distribution for the middle 80% of the data set and generalized Pareto distributions (GPDs)
for the lower and upper 10% of the data set.

pd = paretotails(x,0.1,0.9)

pd = 
Piecewise distribution with 3 segments
      -Inf < x < -1.33251    (0 < p < 0.1): lower tail, GPD(-0.0063504,0.567017)
   -1.33251 < x < 1.80149  (0.1 < p < 0.9): interpolated empirical cdf
        1.80149 < x < Inf    (0.9 < p < 1): upper tail, GPD(0.24874,3.00974)

Return the boundary values between the piecewise segments by using the boundary function.

[p,q] = boundary(pd)

p = 2×1

    0.1000
    0.9000

q = 2×1

   -1.3325
    1.8015

The values in p are the cumulative probabilities at the boundaries, and the values in q are the
corresponding quantiles.

Find the segment containing the boundary points by using the quantile values.

s1 = segment(pd,q)

s1 = 2×1

     2
     3

1, 2, and 3 indicate the lower tail, center, and upper tail segments in pd, respectively. The output s1
implies that the first boundary between the lower tail segment and the center segment belongs to the
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center segment, and the second boundary between the center segment and the upper tail segment
belongs to the upper tail segment.

You can also use the cumulative probability values to find the corresponding segments.

s2 = segment(pd,[],[0;p;1])

s2 = 4×1

     1
     2
     3
     3

Input Arguments
pd — Piecewise distribution with Pareto tails
paretotails object

Piecewise distribution with Pareto tails, specified as a paretotails object.

x — Quantile
numeric vector

Quantile values, specified as a numeric vector.
Data Types: single | double

p — Cumulative probability
numeric vector of range [0,1] values

Cumulative probability values, specified as a numeric vector of range [0,1] values.
Data Types: single | double

Version History
Introduced in R2007a

See Also
paretotails | boundary | upperparams | lowerparams | nsegments

Topics
“Fit a Nonparametric Distribution with Pareto Tails” on page 5-44
“Nonparametric and Empirical Probability Distributions” on page 5-31
“Nonparametric Estimates of Cumulative Distribution Functions and Their Inverses” on page 5-192
“Generalized Pareto Distribution” on page B-60
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selectModels
Class: ClassificationLinear

Choose subset of regularized, binary linear classification models

Syntax
SubMdl = selectModels(Mdl,idx)

Description
SubMdl = selectModels(Mdl,idx) returns a subset of trained, binary linear classification models
from a set of binary linear classification models (Mdl) trained using various regularization strengths.
The indices (idx) correspond to the regularization strengths in Mdl.Lambda, and specify which
models to return.

Input Arguments
Mdl — Binary linear classification models trained using various regularization strengths
ClassificationLinear model object

Binary linear classification models trained using various regularization strengths, specified as a
ClassificationLinear model object. You can create a ClassificationLinear model object
using fitclinear.

Although Mdl is one model object, if numel(Mdl.Lambda) = L ≥ 2, then you can think of Mdl as L
trained models.

idx — Indices corresponding to regularization strengths
numeric vector of positive integers

Indices corresponding to regularization strengths, specified as a numeric vector of positive integers.
Values of idx must be in the interval [1,L], where L = numel(Mdl.Lambda).
Data Types: double | single

Output Arguments
SubMdl — Subset of binary linear classification models trained using various regularization
strengths
ClassificationLinear model object

Subset of binary linear classification models trained using various regularization strengths, returned
as a ClassificationLinear model object.

Examples
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Find Good Lasso Penalty Using Classification Loss

To determine a good lasso-penalty strength for a linear classification model that uses a logistic
regression learner, compare test-sample classification error rates.

Load the NLP data set. Preprocess the data as in “Specify Custom Classification Loss” on page 35-
4368.

load nlpdata
Ystats = Y == 'stats';
X = X'; 

rng(10); % For reproducibility
Partition = cvpartition(Ystats,'Holdout',0.30);
testIdx = test(Partition);
XTest = X(:,testIdx);
YTest = Ystats(testIdx);

Create a set of 11 logarithmically-spaced regularization strengths from 10−6 through 10−0 . 5.

Lambda = logspace(-6,-0.5,11);

Train binary, linear classification models that use each of the regularization strengths. Optimize the
objective function using SpaRSA. Lower the tolerance on the gradient of the objective function to
1e-8.

CVMdl = fitclinear(X,Ystats,'ObservationsIn','columns',...
    'CVPartition',Partition,'Learner','logistic','Solver','sparsa',...
    'Regularization','lasso','Lambda',Lambda,'GradientTolerance',1e-8)

CVMdl = 
  ClassificationPartitionedLinear
    CrossValidatedModel: 'Linear'
           ResponseName: 'Y'
        NumObservations: 31572
                  KFold: 1
              Partition: [1x1 cvpartition]
             ClassNames: [0 1]
         ScoreTransform: 'none'

  Properties, Methods

Extract the trained linear classification model.

Mdl = CVMdl.Trained{1}

Mdl = 
  ClassificationLinear
      ResponseName: 'Y'
        ClassNames: [0 1]
    ScoreTransform: 'logit'
              Beta: [34023x11 double]
              Bias: [-12.1040 -12.1040 -12.1040 -12.1040 -12.1040 ... ]
            Lambda: [1.0000e-06 3.5481e-06 1.2589e-05 4.4668e-05 ... ]
           Learner: 'logistic'
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  Properties, Methods

Mdl is a ClassificationLinear model object. Because Lambda is a sequence of regularization
strengths, you can think of Mdl as 11 models, one for each regularization strength in Lambda.

Estimate the test-sample classification error.

ce = loss(Mdl,X(:,testIdx),Ystats(testIdx),'ObservationsIn','columns');

Because there are 11 regularization strengths, ce is a 1-by-11 vector of classification error rates.

Higher values of Lambda lead to predictor variable sparsity, which is a good quality of a classifier. For
each regularization strength, train a linear classification model using the entire data set and the same
options as when you cross-validated the models. Determine the number of nonzero coefficients per
model.

Mdl = fitclinear(X,Ystats,'ObservationsIn','columns',...
    'Learner','logistic','Solver','sparsa','Regularization','lasso',...
    'Lambda',Lambda,'GradientTolerance',1e-8);
numNZCoeff = sum(Mdl.Beta~=0);

In the same figure, plot the test-sample error rates and frequency of nonzero coefficients for each
regularization strength. Plot all variables on the log scale.

figure;
[h,hL1,hL2] = plotyy(log10(Lambda),log10(ce),...
    log10(Lambda),log10(numNZCoeff + 1)); 
hL1.Marker = 'o';
hL2.Marker = 'o';
ylabel(h(1),'log_{10} classification error')
ylabel(h(2),'log_{10} nonzero-coefficient frequency')
xlabel('log_{10} Lambda')
title('Test-Sample Statistics')
hold off
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Choose the index of the regularization strength that balances predictor variable sparsity and low
classification error. In this case, a value between 10−4 to 10−1 should suffice.

idxFinal = 7;

Select the model from Mdl with the chosen regularization strength.

MdlFinal = selectModels(Mdl,idxFinal);

MdlFinal is a ClassificationLinear model containing one regularization strength. To estimate
labels for new observations, pass MdlFinal and the new data to predict.

Tip
One way to build several predictive, binary linear classification models is:

1 Hold out a portion of the data for testing.
2 Train a binary, linear classification model using fitclinear. Specify a grid of regularization

strengths using the 'Lambda' name-value pair argument and supply the training data.
fitclinear returns one ClassificationLinear model object, but it contains a model for
each regularization strength.

3 To determine the quality of each regularized model, pass the returned model object and the held-
out data to, for example, loss.
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4 Identify the indices (idx) of a satisfactory subset of regularized models, and then pass the
returned model and the indices to selectModels. selectModels returns one
ClassificationLinear model object, but it contains numel(idx) regularized models.

5 To predict class labels for new data, pass the data and the subset of regularized models to
predict.

Version History
Introduced in R2016a

See Also
ClassificationLinear | predict | loss | fitclinear
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selectModels
Package: classreg.learning.classif

Choose subset of multiclass ECOC models composed of binary ClassificationLinear learners

Syntax
SubMdl = selectModels(Mdl,idx)

Description
SubMdl = selectModels(Mdl,idx) returns a subset of trained error-correcting output codes
(ECOC) models composed of ClassificationLinear binary models from a set of multiclass ECOC
models (Mdl) trained using various regularization strengths. The indices (idx) correspond to the
regularization strengths in Mdl.BinaryLearners{1}.Lambda and specify which models to return.

SubMdl is returned as a CompactClassificationECOC model object.

Examples

Select Best Regularized Models

Choose a subset of trained ECOC models composed of linear binary learners with various
regularization strengths.

Load the NLP data set.

load nlpdata

X is a sparse matrix of predictor data, and Y is a categorical vector of class labels.

Create a set of 11 logarithmically spaced regularization strengths from 10−8 through 10−1.

Lambda = logspace(-8,-1,11);

Create a linear classification model template that specifies optimizing the objective function using
SpaRSA. Use lasso penalties with the strengths specified in Lambda.

t = templateLinear('Solver','sparsa','Regularization','lasso',...
    'Lambda',Lambda);

Hold out 30% of the data for testing. Identify the test-sample indices.

rng(1); % For reproducibility
cvp = cvpartition(Y,'Holdout',0.30);
idxTest = test(cvp);

Train an ECOC model composed of linear classification models. For quicker execution time, orient the
predictor data so that individual observations correspond to columns.
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X = X';
PMdl = fitcecoc(X,Y,'Learners',t,'ObservationsIn','columns','CVPartition',cvp);
Mdl = PMdl.Trained{1};
numel(Mdl.BinaryLearners{1}.Lambda)

ans = 11

Mdl is a CompactClassificationECOC model object. Because Lambda is an 11-dimensional vector
of regularization strengths, you can think of Mdl as eleven trained models, each corresponding to a
regularization strength.

Estimate the test-sample misclassification rates for each regularized model.

ce = loss(Mdl,X(:,idxTest),Y(idxTest),'ObservationsIn','columns');

Plot the misclassification rates with respect to regularization strength on the log scale.

figure
plot(log10(Lambda),log10(ce),'-o')
ylabel('log_{10} misclassification rates')
xlabel('log_{10} Lambda')
[~,minCEIdx] = min(ce);
minLambda = Lambda(minCEIdx);
hold on
plot(log10(minLambda),log10(ce(minCEIdx)),'ro');
hold off

 selectModels

35-6919



Several values of Lambda yield similarly small classification error values. Consider choosing greater
values of Lambda (that still yield good classification rates) because they lead to predictor variable
sparsity.

Select the four models with regularization strengths that occur around the point at which the
classification error starts increasing.

idx = 7:10;
MdlFinal = selectModels(Mdl,idx)

MdlFinal = 
  CompactClassificationECOC
      ResponseName: 'Y'
        ClassNames: [comm    dsp    ecoder    fixedpoint    ...    ]
    ScoreTransform: 'none'
    BinaryLearners: {78x1 cell}
      CodingMatrix: [13x78 double]

  Properties, Methods

LambdaFinal = MdlFinal.BinaryLearners{1}.Lambda

LambdaFinal = 1×4

    0.0002    0.0008    0.0040    0.0200

MdlFinal is a CompactClassificationECOC model object. You can think of it as four models
trained using the four regularization strengths in LambdaFinal.

Input Arguments
Mdl — Multiclass ECOC model composed of binary linear classifiers
CompactClassificationECOC model object

Multiclass ECOC model composed of binary linear classifiers, trained using various regularization
strengths, specified as a CompactClassificationECOC model object.

When creating Mdl, you must:

• Use fitcecoc.
• Specify ClassificationLinear binary learners (see Learners).
• Specify the same regularization strengths for each linear binary learner.

Although Mdl is one model object, if numel(Mdl.BinaryLearners{1}.Lambda) = L ≥ 2, then you
can think of Mdl as L trained models.

idx — Indices corresponding to regularization strengths
positive integer vector

Indices corresponding to regularization strengths, specified as a positive integer vector. Values of idx
must be in the interval [1,L], where L = numel(Mdl.BinaryLearners{1}.Lambda).
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Data Types: double | single

Tips
• One way to build several predictive ECOC models composed of binary linear classification models

is:

1 Create a linear classification model template using templateLinear and specify a grid of
regularization strengths using the 'Lambda' name-value pair argument.

2 Hold out a portion of the data for testing.
3 Train an ECOC model using fitcecoc. Specify the template using the 'Learners' name-

value pair argument and supply the training data. fitcecoc returns one
CompactClassificationECOC model object containing ClassificationLinear binary
learners, but all binary learners contain a model for each regularization strength.

4 To determine the quality of each regularized model, pass the returned model object and the
held-out data to, for example, loss.

5 Identify the indices (idx) of a satisfactory subset of regularized models, and then pass the
returned model and the indices to selectModels. The function selectModels returns one
CompactClassificationECOC model object, but it contains numel(idx) regularized
models.

6 To predict class labels for new data, pass the data and the subset of regularized models to
predict.

Version History
Introduced in R2016a

See Also
ClassificationLinear | CompactClassificationECOC | predict | loss | fitcecoc |
templateLinear
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selectModels
Class: RegressionLinear

Select fitted regularized linear regression models

Syntax
SubMdl = selectModels(Mdl,idx)

Description
SubMdl = selectModels(Mdl,idx) returns a subset of trained linear regression models from a
set of linear regression models (Mdl) trained using various regularization strengths. The indices idx
correspond to the regularization strengths in Mdl.Lambda, and specify which models to return.

Input Arguments
Mdl — Linear regression models trained using various regularization strengths
RegressionLinear model object

Linear regression models trained using various regularization strengths, specified as a
RegressionLinear model object. You can create a RegressionLinear model object using
fitrlinear.

Although Mdl is one model object, if numel(Mdl.Lambda) = L ≥ 2, then you can think of Mdl as L
trained models.

idx — Indices corresponding to regularization strengths
numeric vector of positive integers

Indices corresponding to regularization strengths, specified as a numeric vector of positive integers.
Values of idx must be in the interval [1,L], where L = numel(Mdl.Lambda).
Data Types: double | single

Output Arguments
SubMdl — Subset of linear regression models trained using various regularization strengths
RegressionLinear model object

Subset of linear regression models trained using various regularization strengths, returned as a
RegressionLinear model object.

Examples

Find Good Lasso Penalty Using Regression Loss

Simulate 10000 observations from this model
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y = x100 + 2x200 + e .

• X = {x1, . . . , x1000} is a 10000-by-1000 sparse matrix with 10% nonzero standard normal
elements.

• e is random normal error with mean 0 and standard deviation 0.3.

rng(1) % For reproducibility
n = 1e4;
d = 1e3;
nz = 0.1;
X = sprandn(n,d,nz);
Y = X(:,100) + 2*X(:,200) + 0.3*randn(n,1);

Create a set of 15 logarithmically-spaced regularization strengths from 10−4 through 10−1.

Lambda = logspace(-4,-1,15);

Hold out 30% of the data for testing. Identify the test-sample indices.

cvp = cvpartition(numel(Y),'Holdout',0.30);
idxTest = test(cvp);

Train a linear regression model using lasso penalties with the strengths in Lambda. Specify the
regularization strengths, optimizing the objective function using SpaRSA, and the data partition. To
increase execution speed, transpose the predictor data and specify that the observations are in
columns.

X = X'; 
CVMdl = fitrlinear(X,Y,'ObservationsIn','columns','Lambda',Lambda,...
    'Solver','sparsa','Regularization','lasso','CVPartition',cvp);
Mdl1 = CVMdl.Trained{1};
numel(Mdl1.Lambda)

ans = 15

Mdl1 is a RegressionLinear model. Because Lambda is a 15-dimensional vector of regularization
strengths, you can think of Mdl1 as 15 trained models, one for each regularization strength.

Estimate the test-sample mean squared error for each regularized model.

mse = loss(Mdl1,X(:,idxTest),Y(idxTest),'ObservationsIn','columns');

Higher values of Lambda lead to predictor variable sparsity, which is a good quality of a regression
model. Retrain the model using the entire data set and all options used previously, except the data-
partition specification. Determine the number of nonzero coefficients per model.

Mdl = fitrlinear(X,Y,'ObservationsIn','columns','Lambda',Lambda,...
    'Solver','sparsa','Regularization','lasso');
numNZCoeff = sum(Mdl.Beta~=0);

In the same figure, plot the MSE and frequency of nonzero coefficients for each regularization
strength. Plot all variables on the log scale.

figure;
[h,hL1,hL2] = plotyy(log10(Lambda),log10(mse),...
    log10(Lambda),log10(numNZCoeff)); 
hL1.Marker = 'o';

 selectModels

35-6923



hL2.Marker = 'o';
ylabel(h(1),'log_{10} MSE')
ylabel(h(2),'log_{10} nonzero-coefficient frequency')
xlabel('log_{10} Lambda')
hold off

Select the index or indices of Lambda that balance minimal classification error and predictor-variable
sparsity (for example, Lambda(11)).

idx = 11;
MdlFinal = selectModels(Mdl,idx);

MdlFinal is a trained RegressionLinear model object that uses Lambda(11) as a regularization
strength.

Tip
One way to build several predictive linear regression models is:

1 Hold out a portion of the data for testing.
2 Train a linear regression model using fitrlinear. Specify a grid of regularization strengths

using the 'Lambda' name-value pair argument and supply the training data. fitrlinear
returns one RegressionLinear model object, but it contains a model for each regularization
strength.
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3 To determine the quality of each regularized model, pass the returned model object and the held-
out data to, for example, loss.

4 Identify the indices (idx) of a satisfactory subset of regularized models, and then pass the
returned model and the indices to selectModels. selectModels returns one
RegressionLinear model object, but it contains numel(idx) regularized models.

5 To predict class labels for new data, pass the data and the subset of regularized models to
predict.

Version History
Introduced in R2016a

See Also
RegressionLinear | predict | loss | fitrlinear
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SemiSupervisedGraphModel
Semi-supervised graph-based model for classification

Description
You can use a semi-supervised graph-based method to label unlabeled data by using the
fitsemigraph function. The resulting SemiSupervisedGraphModel object contains the fitted
labels for the unlabeled observations (FittedLabels) and their scores (LabelScores). You can also
use the SemiSupervisedGraphModel object as a classifier, trained on both the labeled and
unlabeled data, to classify new data by using the predict function.

Creation
Create a SemiSupervisedGraphModel object by using fitsemigraph.

Properties
FittedLabels — Labels fitted to unlabeled data
categorical array | character array | logical vector | numeric vector | cell array of character vectors

This property is read-only.

Labels fitted to the unlabeled data, specified as a categorical or character array, logical or numeric
vector, or cell array of character vectors. FittedLabels has the same data type as the class labels in
the response variable in the call to fitsemigraph. (The software treats string arrays as cell arrays
of character vectors.)

Each row of FittedLabels represents the fitted label of the corresponding row of UnlabeledX or
UnlabeledTbl.

For more information on how fitsemigraph fits labels, see “Algorithms” on page 35-2408.
Data Types: single | double | logical | char | cell | categorical

LabelScores — Scores for fitted labels
numeric matrix

This property is read-only.

Scores for the fitted labels, specified as a numeric matrix. LabelScores has size u-by-K, where u is
the number of observations (or rows) in the unlabeled data and K is the number of classes in
ClassNames.

score(u,k) is the likelihood that the observation u belongs to class k, where a higher score value
indicates a higher likelihood.

For more information on how fitsemigraph computes label scores, see “Algorithms” on page 35-
2408.
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Data Types: double

Method — Labeling technique
'labelpropagation' | 'labelpropagationexact' | 'labelspreading' |
'labelspreadingexact'

This property is read-only.

Labeling technique used to label the unlabeled data, specified as 'labelpropagation',
'labelpropagationexact', 'labelspreading', or 'labelspreadingexact'.
Data Types: char

CategoricalPredictors — Categorical predictor indices
positive integer vector | []

This property is read-only.

Categorical predictor indices, specified as a positive integer vector. CategoricalPredictors
contains index values corresponding to the columns of the predictor data that contain categorical
predictors. If none of the predictors are categorical, then this property is empty ([]).
Data Types: single | double

ClassNames — Unique class labels
categorical array | character array | logical vector | numeric vector | cell array of character vectors

This property is read-only.

Unique class labels used to label the unlabeled data, specified as a categorical or character array,
logical or numeric vector, or cell array of character vectors. The order of the elements of
ClassNames determines the order of the classes.
Data Types: single | double | logical | char | cell | categorical

PredictorNames — Predictor variable names
cell array of character vectors

This property is read-only.

Predictor variable names, specified as a cell array of character vectors. The order of the elements of
PredictorNames corresponds to the order in which the predictor names appear in the predictor
data.
Data Types: cell

ResponseName — Response variable name
character vector

This property is read-only.

Response variable name, specified as a character vector.
Data Types: char
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Object Functions
predict Label new data using semi-supervised graph-based classifier

Examples

Fit Labels to Unlabeled Data

Fit labels to unlabeled data by using a semi-supervised graph-based method.

Randomly generate 60 observations of labeled data, with 20 observations in each of three classes.

rng('default') % For reproducibility

labeledX = [randn(20,2)*0.25 + ones(20,2);
            randn(20,2)*0.25 - ones(20,2);
            randn(20,2)*0.5];
Y = [ones(20,1); ones(20,1)*2; ones(20,1)*3];

Visualize the labeled data by using a scatter plot. Observations in the same class have the same color.
Notice that the data is split into three clusters with very little overlap.

scatter(labeledX(:,1),labeledX(:,2),[],Y,'filled')
title('Labeled Data')

Randomly generate 300 additional observations of unlabeled data, with 100 observations per class.
For the purposes of validation, keep track of the true labels for the unlabeled data.
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unlabeledX = [randn(100,2)*0.25 + ones(100,2);
              randn(100,2)*0.25 - ones(100,2);
              randn(100,2)*0.5];
trueLabels = [ones(100,1); ones(100,1)*2; ones(100,1)*3];

Fit labels to the unlabeled data by using a semi-supervised graph-based method. The function
fitsemigraph returns a SemiSupervisedGraphModel object whose FittedLabels property
contains the fitted labels for the unlabeled data and whose LabelScores property contains the
associated label scores.

Mdl = fitsemigraph(labeledX,Y,unlabeledX)

Mdl = 
  SemiSupervisedGraphModel with properties:

             FittedLabels: [300x1 double]
              LabelScores: [300x3 double]
               ClassNames: [1 2 3]
             ResponseName: 'Y'
    CategoricalPredictors: []
                   Method: 'labelpropagation'

  Properties, Methods

Visualize the fitted label results by using a scatter plot. Use the fitted labels to set the color of the
observations, and use the maximum label scores to set the transparency of the observations.
Observations with less transparency are labeled with greater confidence. Notice that observations
that lie closer to the cluster boundaries are labeled with more uncertainty.

maxLabelScores = max(Mdl.LabelScores,[],2);
rescaledScores = rescale(maxLabelScores,0.05,0.95);
scatter(unlabeledX(:,1),unlabeledX(:,2),[],Mdl.FittedLabels,'filled', ...
    'MarkerFaceAlpha','flat','AlphaData',rescaledScores);
title('Fitted Labels for Unlabeled Data')
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Determine the accuracy of the labeling by using the true labels for the unlabeled data.

numWrongLabels = sum(trueLabels ~= Mdl.FittedLabels)

numWrongLabels = 10

Only 10 of the 300 observations in unlabeledX are mislabeled.

Classify New Data Using Model Trained on Labeled and Unlabeled Data

Use both labeled and unlabeled data to train a SemiSupervisedGraphModel object. Label new data
using the trained model.

Randomly generate 15 observations of labeled data, with 5 observations in each of three classes.

rng('default') % For reproducibility
labeledX = [randn(5,2)*0.25 + ones(5,2);
            randn(5,2)*0.25 - ones(5,2);
            randn(5,2)*0.5];
Y = [ones(5,1); ones(5,1)*2; ones(5,1)*3];

Randomly generate 300 additional observations of unlabeled data, with 100 observations per class.
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unlabeledX = [randn(100,2)*0.25 + ones(100,2);
              randn(100,2)*0.25 - ones(100,2);
              randn(100,2)*0.5];

Fit labels to the unlabeled data by using a semi-supervised graph-based method. Specify label
spreading as the labeling algorithm, and use an automatically selected kernel scale factor. The
function fitsemigraph returns a SemiSupervisedGraphModel object whose FittedLabels
property contains the fitted labels for the unlabeled data and whose LabelScores property contains
the associated label scores.

Mdl = fitsemigraph(labeledX,Y,unlabeledX,'Method','labelspreading', ...
    'KernelScale','auto')

Mdl = 
  SemiSupervisedGraphModel with properties:

             FittedLabels: [300x1 double]
              LabelScores: [300x3 double]
               ClassNames: [1 2 3]
             ResponseName: 'Y'
    CategoricalPredictors: []
                   Method: 'labelspreading'

  Properties, Methods

Randomly generate 150 observations of new data, with 50 observations per class. For the purposes of
validation, keep track of the true labels for the new data.

newX = [randn(50,2)*0.25 + ones(50,2);
        randn(50,2)*0.25 - ones(50,2);
        randn(50,2)*0.5];
trueLabels = [ones(50,1); ones(50,1)*2; ones(50,1)*3];

Predict the labels for the new data by using the predict function of the
SemiSupervisedGraphModel object. Compare the true labels to the predicted labels by using a
confusion matrix.

predictedLabels = predict(Mdl,newX);
confusionchart(trueLabels,predictedLabels)
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Only 3 of the 150 observations in newX are mislabeled.

Tips
• You can use interpretability features, such as lime, shapley, partialDependence, and

plotPartialDependence, to interpret how predictors contribute to predictions. You must define
a custom function and pass it to the interpretability functions. The custom function must return
labels for lime, scores of a single class for shapley, and scores of one or more classes for
partialDependence and plotPartialDependence. For an example, see “Specify Model Using
Function Handle” on page 35-5299.

Version History
Introduced in R2020b

See Also
fitsemigraph | predict | fitsemiself | SemiSupervisedSelfTrainingModel

Topics
“Label Data Using Semi-Supervised Learning Techniques” on page 19-279
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SemiSupervisedSelfTrainingModel
Semi-supervised self-trained model for classification

Description
You can use a semi-supervised self-training method to label unlabeled data by using the
fitsemiself function. The resulting SemiSupervisedSelfTrainingModel object contains the
fitted labels for the unlabeled observations (FittedLabels) and their scores (LabelScores). You
can also use the SemiSupervisedSelfTrainingModel object as a classifier, trained on both the
labeled and unlabeled data, to classify new data by using the predict function.

Creation
Create a SemiSupervisedSelfTrainingModel object by using fitsemiself.

Properties
FittedLabels — Labels fitted to unlabeled data
categorical array | character array | logical vector | numeric vector | cell array of character vectors

This property is read-only.

Labels fitted to the unlabeled data, specified as a categorical or character array, logical or numeric
vector, or cell array of character vectors. FittedLabels has the same data type as the class labels in
the response variable in the call to fitsemiself. (The software treats string arrays as cell arrays of
character vectors.)

Each row of FittedLabels represents the fitted label of the corresponding observation of
UnlabeledX or UnlabeledTbl.
Data Types: single | double | logical | char | cell | categorical

LabelScores — Scores for fitted labels
numeric matrix

This property is read-only.

Scores for the fitted labels, specified as a numeric matrix. LabelScores has size u-by-K, where u is
the number of observations in the unlabeled data and K is the number of classes in ClassNames.

score(u,k) is the likelihood that the observation u belongs to class k, where a higher score value
indicates a higher likelihood. The range of score values depends on the underlying classifier
Learner.
Data Types: single | double

Learner — Underlying classifier
classification model object
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This property is read-only.

Underlying classifier, specified as a classification model object. fitsemiself uses this classifier in a
loop to label and score the unlabeled data. You can use dot notation to display the parameter and
hyperparameter values of the underlying classifier.

For example, if you specify 'Learner','svm' in the call to fitsemiself, then you can enter
Mdl.Learner.KernelParameters to display the kernel parameters of the final support vector
machine (SVM) model trained on both the labeled and unlabeled data.

Note Because the Mdl.Learner model has some limitations (for example, lack of support for tabular
data), avoid using it directly with its object functions, such as loss and predict. To predict on new
data, use the predict object function of SemiSupervisedSelfTrainingModel.

CategoricalPredictors — Categorical predictor indices
positive integer vector | []

This property is read-only.

Categorical predictor indices, specified as a positive integer vector. Assuming that the predictor data
contains observations in rows, CategoricalPredictors contains index values corresponding to the
columns of the predictor data that contain categorical predictors. If none of the predictors are
categorical, then this property is empty ([]).
Data Types: double

ClassNames — Unique class labels
categorical array | character array | logical vector | numeric vector | cell array of character vectors

This property is read-only.

Unique class labels used to label the unlabeled data, specified as a categorical or character array,
logical or numeric vector, or cell array of character vectors. The order of the elements of
ClassNames determines the order of the classes.
Data Types: single | double | logical | char | cell | categorical

PredictorNames — Predictor variable names
cell array of character vectors

This property is read-only.

Predictor variable names, specified as a cell array of character vectors. The order of the elements of
PredictorNames corresponds to the order in which the predictor names appear in the predictor
data.
Data Types: cell

ResponseName — Response variable name
character vector

This property is read-only.

Response variable name, specified as a character vector.
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Data Types: char

Object Functions
predict Label new data using semi-supervised self-trained classifier

Examples

Fit Labels to Unlabeled Data

Fit labels to unlabeled data by using a semi-supervised self-training method.

Randomly generate 60 observations of labeled data, with 20 observations in each of three classes.

rng('default') % For reproducibility

labeledX = [randn(20,2)*0.25 + ones(20,2);
            randn(20,2)*0.25 - ones(20,2);
            randn(20,2)*0.5];
Y = [ones(20,1); ones(20,1)*2; ones(20,1)*3];

Visualize the labeled data by using a scatter plot. Observations in the same class have the same color.
Notice that the data is split into three clusters with very little overlap.

scatter(labeledX(:,1),labeledX(:,2),[],Y,'filled')
title('Labeled Data')
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Randomly generate 300 additional observations of unlabeled data, with 100 observations per class.
For the purposes of validation, keep track of the true labels for the unlabeled data.

unlabeledX = [randn(100,2)*0.25 + ones(100,2);
              randn(100,2)*0.25 - ones(100,2);
              randn(100,2)*0.5];
trueLabels = [ones(100,1); ones(100,1)*2; ones(100,1)*3];

Fit labels to the unlabeled data by using a semi-supervised self-training method. The function
fitsemiself returns a SemiSupervisedSelfTrainingModel object whose FittedLabels
property contains the fitted labels for the unlabeled data and whose LabelScores property contains
the associated label scores.

Mdl = fitsemiself(labeledX,Y,unlabeledX)

Mdl = 
  SemiSupervisedSelfTrainingModel with properties:

             FittedLabels: [300x1 double]
              LabelScores: [300x3 double]
               ClassNames: [1 2 3]
             ResponseName: 'Y'
    CategoricalPredictors: []
                  Learner: [1x1 classreg.learning.classif.CompactClassificationECOC]

  Properties, Methods

Visualize the fitted label results by using a scatter plot. Use the fitted labels to set the color of the
observations, and use the maximum label scores to set the transparency of the observations.
Observations with less transparency are labeled with greater confidence. Notice that observations
that lie closer to the cluster boundaries are labeled with more uncertainty.

maxLabelScores = max(Mdl.LabelScores,[],2);
rescaledScores = rescale(maxLabelScores,0.05,0.95);
scatter(unlabeledX(:,1),unlabeledX(:,2),[],Mdl.FittedLabels,'filled', ...
    'MarkerFaceAlpha','flat','AlphaData',rescaledScores);
title('Fitted Labels for Unlabeled Data')
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Determine the accuracy of the labeling by using the true labels for the unlabeled data.

numWrongLabels = sum(trueLabels ~= Mdl.FittedLabels)

numWrongLabels = 7

Only 8 of the 300 observations in unlabeledX are mislabeled.

Classify New Data Using Model Trained on Labeled and Unlabeled Data

Use both labeled and unlabeled data to train a SemiSupervisedSelfTrainingModel object. Label
new data using the trained model.

Randomly generate 15 observations of labeled data, with 5 observations in each of three classes.

rng('default') % For reproducibility
labeledX = [randn(5,2)*0.25 + ones(5,2);
            randn(5,2)*0.25 - ones(5,2);
            randn(5,2)*0.5];
Y = [ones(5,1); ones(5,1)*2; ones(5,1)*3];

Randomly generate 300 additional observations of unlabeled data, with 100 observations per class.
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unlabeledX = [randn(100,2)*0.25 + ones(100,2);
              randn(100,2)*0.25 - ones(100,2);
              randn(100,2)*0.5];

Fit labels to the unlabeled data by using a semi-supervised self-training method. The function
fitsemiself returns a SemiSupervisedSelfTrainingModel object whose FittedLabels
property contains the fitted labels for the unlabeled data and whose LabelScores property contains
the associated label scores.

Mdl = fitsemiself(labeledX,Y,unlabeledX)

Mdl = 
  SemiSupervisedSelfTrainingModel with properties:

             FittedLabels: [300x1 double]
              LabelScores: [300x3 double]
               ClassNames: [1 2 3]
             ResponseName: 'Y'
    CategoricalPredictors: []
                  Learner: [1x1 classreg.learning.classif.CompactClassificationECOC]

  Properties, Methods

Randomly generate 150 observations of new data, with 50 observations per class. For the purposes of
validation, keep track of the true labels for the new data.

newX = [randn(50,2)*0.25 + ones(50,2);
        randn(50,2)*0.25 - ones(50,2);
        randn(50,2)*0.5];
trueLabels = [ones(50,1); ones(50,1)*2; ones(50,1)*3];

Predict the labels for the new data by using the predict function of the
SemiSupervisedSelfTrainingModel object. Compare the true labels to the predicted labels by
using a confusion matrix.

predictedLabels = predict(Mdl,newX);
confusionchart(trueLabels,predictedLabels)
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Only 8 of the 150 observations in newX are mislabeled.

Tips
• You can use interpretability features, such as lime, shapley, partialDependence, and

plotPartialDependence, to interpret how predictors contribute to predictions. You must define
a custom function and pass it to the interpretability functions. The custom function must return
labels for lime, scores of a single class for shapley, and scores of one or more classes for
partialDependence and plotPartialDependence. For an example, see “Specify Model Using
Function Handle” on page 35-5299.

Version History
Introduced in R2020b

See Also
fitsemiself | predict | fitsemigraph | SemiSupervisedGraphModel

Topics
“Label Data Using Semi-Supervised Learning Techniques” on page 19-279
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sequentialfs
Sequential feature selection using custom criterion

Syntax
inmodel = sequentialfs(fun,X,y)
inmodel = sequentialfs(fun,X,Y,Z,...)
[inmodel,history] = sequentialfs(fun,X,...)
[] = sequentialfs(...,param1,val1,param2,val2,...)

Description
inmodel = sequentialfs(fun,X,y) selects a subset of features from the data matrix X that best
predict the data in y by sequentially selecting features until there is no improvement in prediction.
Rows of X correspond to observations; columns correspond to variables or features. y is a column
vector of response values or class labels for each observation in X. X and y must have the same
number of rows. fun is a function handle to a function that defines the criterion used to select
features and to determine when to stop. The output inmodel is a logical vector indicating which
features are finally chosen.

Starting from an empty feature set, sequentialfs creates candidate feature subsets by sequentially
adding each of the features not yet selected. For each candidate feature subset, sequentialfs
performs 10-fold cross-validation by repeatedly calling fun with different training subsets of X and y,
XTRAIN and ytrain, and test subsets of X and y, XTEST and ytest, as follows:

criterion = fun(XTRAIN,ytrain,XTEST,ytest)

XTRAIN and ytrain contain the same subset of rows of X and Y, while XTEST and ytest contain the
complementary subset of rows. XTRAIN and XTEST contain the data taken from the columns of X that
correspond to the current candidate feature set.

Each time it is called, fun must return a scalar value criterion. Typically, fun uses XTRAIN and
ytrain to train or fit a model, then predicts values for XTEST using that model, and finally returns
some measure of distance, or loss, of those predicted values from ytest. In the cross-validation
calculation for a given candidate feature set, sequentialfs sums the values returned by fun and
divides that sum by the total number of test observations. It then uses that mean value to evaluate
each candidate feature subset.

Typical loss measures include sum of squared errors for regression models (sequentialfs
computes the mean-squared error in this case), and the number of misclassified observations for
classification models (sequentialfs computes the misclassification rate in this case).

Note sequentialfs divides the sum of the values returned by fun across all test sets by the total
number of test observations. Accordingly, fun should not divide its output value by the number of test
observations.

After computing the mean criterion values for each candidate feature subset, sequentialfs
chooses the candidate feature subset that minimizes the mean criterion value. This process continues
until adding more features does not decrease the criterion.
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inmodel = sequentialfs(fun,X,Y,Z,...) allows any number of input variables X, Y, Z, ... .
sequentialfs chooses features (columns) only from X, but otherwise imposes no interpretation on
X, Y, Z, ... . All data inputs, whether column vectors or matrices, must have the same number of rows.
sequentialfs calls fun with training and test subsets of X, Y, Z, ... as follows:

criterion = fun(XTRAIN,YTRAIN,ZTRAIN,...,
                XTEST,YTEST,ZTEST,...)

sequentialfs creates XTRAIN, YTRAIN, ZTRAIN, ... , XTEST, YTEST, ZTEST, ... by selecting subsets
of the rows of X, Y, Z, ... . fun must return a scalar value criterion, but may compute that value in
any way. Elements of the logical vector inmodel correspond to columns of X and indicate which
features are finally chosen.

[inmodel,history] = sequentialfs(fun,X,...) returns information on which feature is
chosen at each step. history is a scalar structure with the following fields:

• Crit — A vector containing the criterion values computed at each step.
• In — A logical matrix in which row i indicates the features selected at step i.

[] = sequentialfs(...,param1,val1,param2,val2,...) specifies optional parameter name/
value pairs from the following table.

Parameter Value
'cv' The validation method used to compute the criterion for each candidate

feature subset.

• When the value is a positive integer k, sequentialfs uses k-fold
cross-validation without stratification.

• When the value is an object of the cvpartition class, other forms
of cross-validation can be specified.

• When the value is 'resubstitution', the original data are passed
to fun as both the training and test data to compute the criterion.

• When the value is 'none', sequentialfs calls fun as criterion
= fun(X,Y,Z,...), without separating test and training sets.

The default value is 10, that is, 10-fold cross-validation without
stratification.

So-called wrapper methods use a function fun that implements a
learning algorithm. These methods usually apply cross-validation to
select features. So-called filter methods use a function fun that
measures characteristics of the data (such as correlation) to select
features.

'mcreps' A positive integer indicating the number of Monte-Carlo repetitions for
cross-validation. The default value is 1. The value must be 1 if the value
of 'cv' is 'resubstitution' or 'none'.

'direction' The direction of the sequential search. The default is 'forward'. A
value of 'backward' specifies an initial candidate set including all
features and an algorithm that removes features sequentially until the
criterion increases.
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Parameter Value
'keepin' A logical vector or a vector of column numbers specifying features that

must be included. The default is empty.
'keepout' A logical vector or a vector of column numbers specifying features that

must be excluded. The default is empty.
'nfeatures' The number of features at which sequentialfs should stop. inmodel

includes exactly this many features. The default value is empty,
indicating that sequentialfs should stop when a local minimum of
the criterion is found. A nonempty value overrides values of 'MaxIter'
and 'TolFun' in 'options'.

'nullmodel' A logical value, indicating whether or not the null model (containing no
features from X) should be included in feature selection and in the
history output. The default is false.

'options' Options structure for the iterative sequential search algorithm, as
created by statset.

sequentialfs uses the following statset parameters:

• Display — Amount of information displayed by the algorithm. The
default is 'off'.

• MaxIter — Maximum number of iterations allowed. The default is
Inf.

• TolFun — Termination tolerance for the objective function value.
The default is 1e-6 if 'direction' is 'forward'; 0 if
'direction' is 'backward'.

• TolTypeFun — Use absolute or relative objective function
tolerances. The default is 'rel'.

• UseParallel — Set to true to compute in parallel. Default is
false.

• UseSubstreams — Set to true to compute in parallel in a
reproducible fashion. Default is false. To compute reproducibly, set
Streams to a type allowing substreams: 'mlfg6331_64' or
'mrg32k3a'.

• Streams — A RandStream object or cell array consisting of one
such object. If you do not specify Streams, sequentialfs uses the
default stream.

To compute in parallel, you need Parallel Computing Toolbox.

Examples
Perform sequential feature selection for classification of noisy features:

load fisheriris
rng('default') % For reproducibility
X = randn(150,10);
X(:,[1 3 5 7])= meas;
y = species;
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c = cvpartition(y,'k',10);
opts = statset('Display','iter');
fun = @(XT,yT,Xt,yt)loss(fitcecoc(XT,yT),Xt,yt);

[fs,history] = sequentialfs(fun,X,y,'cv',c,'options',opts)

Start forward sequential feature selection:
Initial columns included:  none
Columns that can not be included:  none
Step 1, added column 5, criterion value 0.00266667
Step 2, added column 7, criterion value 0.00222222
Step 3, added column 1, criterion value 0.00177778
Step 4, added column 3, criterion value 0.000888889
Final columns included:  1 3 5 7 

fs =

  1×10 logical array

   1   0   1   0   1   0   1   0   0   0

history = 

  struct with fields:

      In: [4×10 logical]
    Crit: [0.0027 0.0022 0.0018 8.8889e-04]

history.In

ans =

  4×10 logical array

   0   0   0   0   1   0   0   0   0   0
   0   0   0   0   1   0   1   0   0   0
   1   0   0   0   1   0   1   0   0   0
   1   0   1   0   1   0   1   0   0   0

Version History
Introduced in R2008a

Extended Capabilities
Automatic Parallel Support
Accelerate code by automatically running computation in parallel using Parallel Computing Toolbox™.

To run in parallel, specify the 'Options' name-value argument in the call to this function and set the
'UseParallel' field of the options structure to true using statset.

For example: 'Options',statset('UseParallel',true)

For more information about parallel computing, see “Run MATLAB Functions with Automatic Parallel
Support” (Parallel Computing Toolbox).
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See Also
crossval | cvpartition | stepwiselm | statset | relieff | fsrnca | fscnca | fscmrmr |
fsrmrmr | fsulaplacian

Topics
“Introduction to Feature Selection” on page 16-47
“Select Subset of Features with Comparative Predictive Power” on page 16-59
“Select Features for Classifying High-Dimensional Data” on page 16-168
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set
Class: dataset

(Not Recommended) Set and display dataset array properties

Note The dataset data type is not recommended. To work with heterogeneous data, use the
MATLAB® table data type instead. See MATLAB table documentation for more information.

Syntax
set(A)
set(A,PropertyName)
A = set(A,PropertyName,PropertyValue,...)
B = set(A,PropertyName,value)

Description
set(A) displays all properties of the dataset array A and their possible values.

set(A,PropertyName) displays possible values for the property specified by PropertyName.

A = set(A,PropertyName,PropertyValue,...) sets property name/value pairs.

B = set(A,PropertyName,value) returns a dataset array B that is a copy of A, but with the
property 'PropertyName' set to the value value.

Note Using set(A,'PropertyName',value) without assigning to a variable does not modify A's
properties. Use A = set(A,'PropertyName',value) to modify A.

Examples
Create a dataset array from Fisher's iris data and add a description:

load fisheriris
NumObs = size(meas,1);
NameObs = strcat({'Obs'},num2str((1:NumObs)','%-d'));
iris = dataset({nominal(species),'species'},...
               {meas,'SL','SW','PL','PW'},...
               'ObsNames',NameObs);
iris = set(iris,'Description','Fisher''s Iris Data');
get(iris)
   Description: 'Fisher's Iris Data'
   Units: {}
   DimNames: {'Observations' 'Variables'}
   UserData: []
   ObsNames: {150x1 cell}
   VarNames: {'species' 'SL' 'SW' 'PL' 'PW'}
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See Also
get | summary
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setDefaultYfit
Set default value for predict

Syntax
B = setDefaultYfit(B,Yfit)

Description
B = setDefaultYfit(B,Yfit) sets the default prediction for ensemble B to Yfit. The default
prediction must be specified as a character vector or string scalar for classification or as a numeric
scalar for regression. This setting controls what predicted value CompactTreeBagger returns when
no prediction is possible, for example when the predict method needs to predict for an observation
which has only false values in the matrix supplied through 'UseInstanceForTree' argument.

See Also
predict
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setdiff
Class: dataset

(Not Recommended) Set difference for dataset array observations

Note The dataset data type is not recommended. To work with heterogeneous data, use the
MATLAB® table data type instead. See MATLAB table documentation for more information.

Syntax
C = setdiff(A,B)
C = setdiff(A,B,vars)
C = setxor(A,B,vars,setOrder)
[C,iA] = setxor( ___ )

Description
C = setdiff(A,B) for dataset arrays A and B returns the set of observations that are in A but not
B, with repetitions removed. The observations in the dataset array C are sorted.

C = setdiff(A,B,vars) returns the set of observations that are in A but not B, considering only
the variables specified in vars, with repetitions removed. The observations in the dataset array C are
sorted by these variables. The values for variables not specified in vars for each observation in C are
taken from the corresponding observation in A. If there are multiple observations in A that
correspond to an observation in C, those values are taken from the first occurrence.

C = setxor(A,B,vars,setOrder) returns the observations in C in the order specified by
setOrder.

[C,iA] = setxor( ___ ) also returns the index vector iA such that C = A(iA,:). If there are
repeated observations in A, then setxor returns the index of the first occurrence. You can use any of
the previous input arguments.

Input Arguments
A,B

Input dataset arrays.

vars

String array or cell array of character vectors containing variable names, or a vector of integers
containing variable column numbers. vars indicates the variables that setdiff considers.

Specify vars as [] to use its default value of all variables.

setOrder

Flag indicating the sorting order for the observations in C. The possible values of setOrder are:
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'sorted' Observations in C are in sorted order (default).
'stable' Observations in C are in the same order that they appear in A.

Output Arguments
C

Dataset array with the observations that are in A but not B, with repetitions removed. C is in sorted
order (by default), or the order specified by setOrder.

iA

Index vector, indicating the observations from A that are in C. The vector iA contains the index to the
first occurrence of any repeated observations in A.

Examples

Set Difference of Two Dataset Arrays

Create a scalar structure array, and then convert it into two dataset arrays.

S(1,1).Name = 'CLARK';
S(1,1).Gender = 'M';
S(1,1).SystolicBP = 124;
S(1,1).DiastolicBP = 93;

S(2,1).Name = 'BROWN';
S(2,1).Gender = 'F';
S(2,1).SystolicBP = 122;
S(2,1).DiastolicBP = 80;

S(3,1).Name = 'MARTIN';
S(3,1).Gender = 'M';
S(3,1).SystolicBP = 130;
S(3,1).DiastolicBP = 92;

A = struct2dataset(S(1:2));
B = struct2dataset(S(2:3));

The intersection of A and B is the second observation, with last name BROWN.

Return the set difference of A and B.

[C,iA] = setdiff(A,B)

C = 
    Name             Gender       SystolicBP    DiastolicBP
    {'CLARK'}        {'M'}        124           93         

iA = 1

The first observation in A is not present in B.
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See Also
dataset | intersect | ismember | setxor | sortrows | union | unique

Topics
“Dataset Arrays” on page 2-113
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setlabels
(Not Recommended) Assign labels to levels of nominal or ordinal arrays

Note The nominal and ordinal array data types are not recommended. To represent ordered and
unordered discrete, nonnumeric data, use the “Categorical Arrays” data type instead.

Syntax
B = setlabels(A,labels)
B = setlabels(A,labels,levels)

Description
B = setlabels(A,labels) returns a nominal or ordinal array object of the same type as A, but
with levels labeled in the order specified by labels.

B = setlabels(A,labels,levels) labels only the levels specified in levels.

Input Arguments
A — Nominal or ordinal array
nominal array | ordinal array

Nominal or ordinal array, specified as a nominal or ordinal array object created with nominal or
ordinal.

labels — Labels to assign
string array | cell array of character vectors | 2-D character matrix

Labels to assign to levels, specified as a string array, cell array of character vectors, or 2-D character
matrix.
Data Types: char | string | cell

levels — Levels to assign labels
string array | cell array of character vectors | 2-D character matrix

Level to assign labels to, specified as a string array, cell array of character vectors, or 2-D character
matrix.
Data Types: char | string | cell

Output Arguments
B — Nominal or ordinal array
nominal array | ordinal array

Nominal or ordinal array, returned as a nominal or ordinal array object.
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Version History
Introduced in R2007a

See Also
getlabels | nominal | ordinal

Topics
“Change Category Labels” on page 2-7
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setxor
Class: dataset

(Not Recommended) Set exclusive or for dataset array observations

Note The dataset data type is not recommended. To work with heterogeneous data, use the
MATLAB® table data type instead. See MATLAB table documentation for more information.

Syntax
C = setxor(A,B)
C = setxor(A,B,vars)
C = setxor(A,B,vars,setOrder)
[C,iA,iB] = setxor( ___ )

Description
C = setxor(A,B) for dataset arrays A and B returns the set of observations that are not in the
intersection of the two arrays, with repetitions removed. The observations in the dataset array C are
sorted.

C = setxor(A,B,vars) returns the set of observations that are not in the intersection of the two
arrays, considering only the variables specified in vars, with repetitions removed. The observations
in the dataset array C are sorted by these variables. The values for variables not specified in vars for
each observation in C are taken from the corresponding observation in A or B. If there are multiple
observations in A or B that correspond to an observation in C, those values are taken from the first
occurrence.

C = setxor(A,B,vars,setOrder) returns the observations in C in the order specified by
setOrder.

[C,iA,iB] = setxor( ___ ) also returns index vectors iA and iB such that C is a sorted
combination of the values A(iA,:) and B(iB,:). If there are repeated observations in A or B, then
setxor returns the index of the first occurrence. You can use any of the previous input arguments.

Input Arguments
A,B

Input dataset arrays.

vars

String array or cell array of character vectors containing variable names, or a vector of integers
containing variable column numbers. vars indicates the variables in A and B that setxor considers.

Specify vars as [] to use its default value of all variables.
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setOrder

Flag indicating the sorting order for the observations in C. The possible values of setOrder are:

'sorted' Observations in C are in sorted order (default).
'stable' Observations in C are in the same order that they appear in A, then B.

Output Arguments
C

Dataset array with the observations not in the intersection of A and B, with repetitions removed. C is
in sorted order (by default), or the order specified by setOrder.

iA

Index vector, indicating the observations from A that are in C. The vector iA contains the index to the
first occurrence of any repeated observations in A.

iB

Index vector, indicating the observations from B that are in C. The vector iB contains the index to the
first occurrence of any repeated observations in B.

Examples

Symmetric Difference of Two Dataset Arrays

Create a scalar structure array, and then convert it into two dataset arrays.

S(1,1).Name = 'CLARK';
S(1,1).Gender = 'M';
S(1,1).SystolicBP = 124;
S(1,1).DiastolicBP = 93;

S(2,1).Name = 'BROWN';
S(2,1).Gender = 'F';
S(2,1).SystolicBP = 122;
S(2,1).DiastolicBP = 80;

S(3,1).Name = 'MARTIN';
S(3,1).Gender = 'M';
S(3,1).SystolicBP = 130;
S(3,1).DiastolicBP = 92;

A = struct2dataset(S(1:2));
B = struct2dataset(S(2:3));

The intersection of A and B is the second observation, with last name BROWN.

Return the symmetric difference of A and B.

[C,iA,iB] = setxor(A,B);
C
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C = 
    Name              Gender       SystolicBP    DiastolicBP
    {'CLARK' }        {'M'}        124           93         
    {'MARTIN'}        {'M'}        130           92         

[iA iB]

ans = 1×2

     1     2

The symmetric difference contains the first observation from A, and the second observation from B.

See Also
dataset | intersect | ismember | setdiff | sortrows | union | unique

Topics
“Dataset Arrays” on page 2-113
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shapley
Shapley values

Description
The Shapley on page 35-6969 value of a feature for a query point explains the deviation of the
prediction for the query point from the average prediction, due to the feature. For each query point,
the sum of the Shapley values for all features corresponds to the total deviation of the prediction from
the average.

You can create a shapley object for a machine learning model with a specified query point
(queryPoint). The software creates an object and computes the Shapley values of all features for
the query point.

Use the Shapley values to explain the contribution of individual features to a prediction at the
specified query point. Use the plot function to create a bar graph of the Shapley values. You can
compute the Shapley values for another query point by using the fit function.

Creation
Syntax
explainer = shapley(blackbox)
explainer = shapley(blackbox,X)

explainer = shapley( ___ ,'QueryPoint',queryPoint)

explainer = shapley( ___ ,Name,Value)

Description

explainer = shapley(blackbox) creates a shapley object using a machine learning model
object blackbox that contains predictor data. To compute Shapley values, use the fit function with
explainer.

explainer = shapley(blackbox,X) creates a shapley object using the predictor data in X.

explainer = shapley( ___ ,'QueryPoint',queryPoint) also computes the Shapley values for
the query point queryPoint and stores the computed Shapley values in the ShapleyValues
property of explainer. You can specify queryPoint in addition to any of the input argument
combinations in the previous syntaxes.

explainer = shapley( ___ ,Name,Value) specifies additional options using one or more name-
value arguments. For example, specify 'UseParallel',true to compute Shapley values in parallel.

Input Arguments

blackbox — Machine learning model to be interpreted
regression model object | classification model object | function handle
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Machine learning model to be interpreted, specified as a full or compact regression or classification
model object or a function handle.

• Full or compact model object — You can specify a full or compact regression or classification
model object, which has a predict object function. The software uses the predict function to
compute Shapley values.

• If you specify a model object that does not contain predictor data (for example, a compact
model), then you must provide the predictor data using X.

• When you train a model, use a numeric matrix or table for the predictor data where rows
correspond to individual observations.

Regression Model Object

Supported Model Full or Compact Regression Model Object
Ensemble of regression
models

RegressionEnsemble, RegressionBaggedEnsemble,
CompactRegressionEnsemble

Gaussian kernel regression
model using random feature
expansion

RegressionKernel

Gaussian process regression RegressionGP, CompactRegressionGP
Generalized additive model RegressionGAM, CompactRegressionGAM
Linear regression for high-
dimensional data

RegressionLinear

Neural network regression
model

RegressionNeuralNetwork,
CompactRegressionNeuralNetwork

Regression tree RegressionTree, CompactRegressionTree
Support vector machine
regression

RegressionSVM, CompactRegressionSVM
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Classification Model Object

Supported Model Full or Compact Classification Model Object
Discriminant analysis
classifier

ClassificationDiscriminant,
CompactClassificationDiscriminant

Multiclass model for support
vector machines or other
classifiers

ClassificationECOC, CompactClassificationECOC

Ensemble of learners for
classification

ClassificationEnsemble,
CompactClassificationEnsemble,
ClassificationBaggedEnsemble

Gaussian kernel classification
model using random feature
expansion

ClassificationKernel

Generalized additive model ClassificationGAM, CompactClassificationGAM
k-nearest neighbor classifier ClassificationKNN
Linear classification model ClassificationLinear
Multiclass naive Bayes model ClassificationNaiveBayes,

CompactClassificationNaiveBayes
Neural network classifier ClassificationNeuralNetwork,

CompactClassificationNeuralNetwork
Support vector machine
classifier for one-class and
binary classification

ClassificationSVM, CompactClassificationSVM

Binary decision tree for
multiclass classification

ClassificationTree, CompactClassificationTree

• Function handle — You can specify a function handle that accepts predictor data and returns a
column vector containing a prediction for each observation in the predictor data. The prediction is
a predicted response for regression or a predicted score of a single class for classification. You
must provide the predictor data using X.

X — Predictor data
numeric matrix | table

Predictor data, specified as a numeric matrix or table. Each row of X corresponds to one observation,
and each column corresponds to one variable.

• For a numeric matrix:

• The variables that makes up the columns of X must have the same order as the predictor
variables that trained blackbox, stored in blackbox.X.

• If you trained blackbox using a table, then X can be a numeric matrix if the table contains all
numeric predictor variables.

• For a table:

• If you trained blackbox using a table (for example, Tbl), then all predictor variables in X
must have the same variable names and data types as those in Tbl. However, the column order
of X does not need to correspond to the column order of Tbl.
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• If you trained blackbox using a numeric matrix, then the predictor names in
blackbox.PredictorNames and the corresponding predictor variable names in X must be
the same. To specify predictor names during training, use the 'PredictorNames' name-value
argument. All predictor variables in X must be numeric vectors.

• X can contain additional variables (response variables, observation weights, and so on), but
shapley ignores them.

• shapley does not support multicolumn variables or cell arrays other than cell arrays of
character vectors.

If blackbox is a model object that does not contain predictor data or a function handle, you must
provide X. If blackbox is a full machine learning model object and you specify this argument, then
shapley does not use the predictor data in blackbox; it uses the specified predictor data only.
Data Types: single | double

queryPoint — Query point
row vector of numeric values | single-row table

Query point at which shapley explains a prediction, specified as a row vector of numeric values or a
single-row table.

• For a row vector of numeric values:

• The variables that makes up the columns of queryPoint must have the same order as X or the
predictor variables that trained blackbox, stored in blackbox.X.

• If you trained blackbox using a table, then queryPoint can be a numeric vector if the table
contains all numeric variables.

• For a single-row table:

• If you trained blackbox using a table (for example, Tbl), then all predictor variables in
queryPoint must have the same variable names and data types as those in Tbl. However, the
column order of queryPoint does not need to correspond to the column order of Tbl.

• If you trained blackbox using a numeric matrix, then the predictor names in
blackbox.PredictorNames and the corresponding predictor variable names in queryPoint
must be the same. To specify predictor names during training, use the 'PredictorNames'
name-value argument. All predictor variables in queryPoint must be numeric vectors.

• queryPoint can contain additional variables (response variables, observation weights, and so
on), but shapley ignores them.

• shapley does not support multicolumn variables or cell arrays other than cell arrays of
character vectors.

If queryPoint contains NaNs for continuous predictors and 'Method' is 'conditional-kernel',
then the Shapley values (ShapleyValues) in the returned object are NaNs. Otherwise, shapley
handles NaNs in queryPoint in the same way as blackbox (the predict object function of
blackbox or the function handle specified by blackbox).
Example: blackbox.X(1,:) specifies the query point as the first observation of the predictor data
in the full machine learning model blackbox.
Data Types: single | double | table
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Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: shapley(blackbox,'QueryPoint',q,'Method','conditional-kernel') creates a
shapley object and computes the Shapley values for the query point q using the extension to the
kernelSHAP algorithm.

CategoricalPredictors — Categorical predictors list
vector of positive integers | logical vector | character matrix | string array | cell array of character
vectors | 'all'

Categorical predictors list, specified as one of the values in this table.

Value Description
Vector of positive
integers

Each entry in the vector is an index value indicating that the corresponding
predictor is categorical. The index values are between 1 and p, where p is
the number of predictors used to train the model.

If blackbox uses a subset of input variables as predictors, then the
software indexes the predictors using only the subset. The
'CategoricalPredictors' values do not count the response variable,
observation weight variable, or any other variables that the function does
not use.

Logical vector A true entry means that the corresponding predictor is categorical. The
length of the vector is p.

Character matrix Each row of the matrix is the name of a predictor variable. The names must
match the variable names of the predictor data in the form of a table. Pad
the names with extra blanks so each row of the character matrix has the
same length.

String array or cell
array of character
vectors

Each element in the array is the name of a predictor variable. The names
must match the variable names of the predictor data in the form of a table.

'all' All predictors are categorical.

• If you specify blackbox as a function handle, then shapley identifies categorical predictors from
the predictor data X. If the predictor data is in a table, shapley assumes that a variable is
categorical if it is a logical vector, unordered categorical vector, character array, string array, or
cell array of character vectors. If the predictor data is a matrix, shapley assumes that all
predictors are continuous. To identify any other predictors as categorical predictors, specify them
by using the 'CategoricalPredictors' name-value argument.

• If you specify blackbox as a regression or classification model object, then shapley identifies
categorical predictors by using the CategoricalPredictors property of the model object.

shapley supports an ordered categorical predictor when blackbox supports ordered categorical
predictors and 'Method' is 'interventional-kernel'.
Example: 'CategoricalPredictors','all'
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Data Types: single | double | logical | char | string | cell

MaxNumSubsets — Maximum number of predictor subsets
min(2^M,1024) where M is the number of predictors (default) | positive integer

Maximum number of predictor subsets to use for Shapley value computation, specified as a positive
integer.

For details on how shapley chooses the subsets to use, see “Computational Cost” on page 27-23.
Example: 'MaxNumSubsets',100
Data Types: single | double

Method — Shapley value computation algorithm
'interventional-kernel' (default) | 'conditional-kernel'

Shapley value computation algorithm, specified as 'interventional-kernel' or 'conditional-
kernel'.

• 'interventional-kernel' (default) — shapley uses the kernelSHAP algorithm [1] with an
interventional value function.

• 'conditional-kernel' — shapley uses the extension to the kernelSHAP algorithm [2] with a
conditional value function.

For details about these algorithms, see “Algorithms” on page 27-18.
Example: 'Method','conditional-kernel'
Data Types: char | string

UseParallel — Flag to run in parallel
false (default) | true

Flag to run in parallel, specified as true or false. If you specify 'UseParallel',true, the
shapley function executes for-loop iterations in parallel by using parfor. This option requires
Parallel Computing Toolbox.
Example: 'UseParallel',true
Data Types: logical

Properties
BlackboxModel — Machine learning model to be interpreted
regression model object | classification model object | function handle

This property is read-only.

Machine learning model to be interpreted, specified as a regression or classification model object or a
function handle.

The blackbox argument sets this property.

BlackboxFitted — Prediction for query point computed by machine learning model
scalar
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This property is read-only.

Prediction for the query point computed by the machine learning model (BlackboxModel), specified
as a scalar.

• If BlackboxModel is a model object, then BlackboxFitted is a predicted response for
regression or a classified label for classification.

• If BlackboxModel is a function handle, then BlackboxFitted is a value returned by the
function handle, either a predicted response for regression or a predicted score of a single class
for classification.

Data Types: single | double | categorical | logical | char | string | cell

CategoricalPredictors — Categorical predictor indices
vector of positive integers | []

This property is read-only.

Categorical predictor indices, specified as a vector of positive integers. CategoricalPredictors
contains index values indicating that the corresponding predictors are categorical. The index values
are between 1 and p, where p is the number of predictors used to train the model. If none of the
predictors are categorical, then this property is empty ([]).

• If you specify blackbox using a function handle, then shapley identifies categorical predictors
from the predictor data X. If you specify the 'CategoricalPredictors' name-value argument,
then the argument sets this property.

• If you specify blackbox as a regression or classification model object, then shapley determines
this property by using the CategoricalPredictors property of the model object.

shapley supports an ordered categorical predictor when blackbox supports ordered categorical
predictors and 'Method' is 'interventional-kernel'.
Data Types: single | double

Intercept — Average prediction
numeric vector | numeric scalar

Average prediction, averaged over the predictor data X, specified as a numeric vector or numeric
scalar.

• If BlackboxModel is a classification model object, then Intercept is a vector of the average
classification scores for each class.

• If BlackboxModel is a regression model object, then Intercept is a scalar of the average
response.

• If BlackboxModel is a function handle, then Intercept is a scalar of the average function
evaluation.

For a query point, the sum of the Shapley values for all features corresponds to the total deviation of
the prediction from the average (Intercept).
Data Types: single | double

Method — Shapley value computation algorithm
'interventional-kernel' | 'conditional-kernel'
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This property is read-only.

Shapley value computation algorithm, specified as 'interventional-kernel' or 'conditional-
kernel'.

• 'interventional-kernel' — shapley uses the kernelSHAP algorithm [1] with an
interventional value function.

• 'conditional-kernel' — shapley uses the extension to the kernelSHAP algorithm [2] with a
conditional value function.

The 'Method' argument of shapley or the 'Method' argument of fit sets this property.

For details about these algorithms, see “Algorithms” on page 27-18.
Data Types: char | string

NumSubsets — Number of predictor subsets
positive integer

This property is read-only.

Number of predictor subsets to use for Shapley value computation, specified as a positive integer.

The 'MaxNumSubsets' argument of shapley or the 'MaxNumSubsets' argument of fit sets this
property.

For details on how shapley chooses the subsets to use, see “Computational Cost” on page 27-23.
Data Types: single | double

QueryPoint — Query point
row vector of numeric values | single-row table

This property is read-only.

Query point at which shapley explains a prediction using the Shapley values (ShapleyValues),
specified as a row vector of numeric values or single-row table.

The queryPoint argument of shapley or the queryPoint argument of fit sets this property.
Data Types: single | double | table

ShapleyValues — Shapley values for query point
table

This property is read-only.

Shapley values for the query point (QueryPoint), specified as a table.

• For regression, the table has two columns. The first column contains the predictor variable names,
and the second column contains the Shapley values of the predictors.

• For classification, the table has two or more columns, depending on the number of classes in
BlackboxModel. The first column contains the predictor variable names, and the rest of the
columns contain the Shapley values of the predictors for each class.

Data Types: table
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X — Predictor data
numeric matrix | table

This property is read-only.

Predictor data, specified as a numeric matrix or table.

Each row of X corresponds to one observation, and each column corresponds to one variable.

• If you specify the X argument, then it sets this property.
• If you specify blackbox as a full machine learning model object and do not specify X, then this

property value is the predictor data used to train blackbox.

If an observation contains NaNs for continuous predictors and Method is 'conditional-kernel',
then shapley does not use the observation for the Shapley value computation. Otherwise, shapley
handles NaNs in X in the same way as BlackboxModel (the predict object function of
BlackboxModel or the function handle specified by BlackboxModel).

shapley stores all observations, including the rows with missing values, in this property.
Data Types: single | double | table

Object Functions
fit Compute Shapley values for query point
plot Plot Shapley values

Examples

Compute Shapley Values When Creating shapley Object

Train a classification model and create a shapley object. When you create a shapley object, specify
a query point so that the software computes the Shapley values for the query point. Then create a bar
graph of the Shapley values by using the object function plot.

Load the CreditRating_Historical data set. The data set contains customer IDs and their
financial ratios, industry labels, and credit ratings.

tbl = readtable('CreditRating_Historical.dat');

Display the first three rows of the table.

head(tbl,3)

     ID      WC_TA    RE_TA    EBIT_TA    MVE_BVTD    S_TA     Industry    Rating
    _____    _____    _____    _______    ________    _____    ________    ______

    62394    0.013    0.104     0.036      0.447      0.142       3        {'BB'}
    48608    0.232    0.335     0.062      1.969      0.281       8        {'A' }
    42444    0.311    0.367     0.074      1.935      0.366       1        {'A' }

Train a blackbox model of credit ratings by using the fitcecoc function. Use the variables from the
second through seventh columns in tbl as the predictor variables. A recommended practice is to
specify the class names to set the order the classes.
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blackbox = fitcecoc(tbl,'Rating', ...
    'PredictorNames',tbl.Properties.VariableNames(2:7), ...
    'CategoricalPredictors','Industry', ...
    'ClassNames',{'AAA' 'AA' 'A' 'BBB' 'BB' 'B' 'CCC'});

Create a shapley object that explains the prediction for the last observation. Specify a query point
so that the software computes Shapley values and stores them in the ShapleyValues property.

queryPoint = tbl(end,:)

queryPoint=1×8 table
     ID      WC_TA    RE_TA    EBIT_TA    MVE_BVTD    S_TA    Industry    Rating
    _____    _____    _____    _______    ________    ____    ________    ______

    73104    0.239    0.463     0.065      2.924      0.34       2        {'AA'}

explainer = shapley(blackbox,'QueryPoint',queryPoint)

Warning: Computation can be slow because the predictor data has over 1000 observations. Use a smaller sample of the training set or specify 'UseParallel' as true for faster computation.

explainer = 
  shapley with properties:

            BlackboxModel: [1x1 ClassificationECOC]
               QueryPoint: [1x8 table]
           BlackboxFitted: {'AA'}
            ShapleyValues: [6x8 table]
               NumSubsets: 64
                        X: [3932x6 table]
    CategoricalPredictors: 6
                   Method: 'interventional-kernel'
                Intercept: [-1.7642 -1.3676 -1.0980 -1.0645 -1.4758 ... ]

As the warning message indicates, the computation can be slow because the predictor data has over
1000 observations. For faster computation, use a smaller sample of the training set or specify
'UseParallel' as true.

For a classification model, shapley computes Shapley values using the predicted class score for each
class. Display the values in the ShapleyValues property.

explainer.ShapleyValues

ans=6×8 table
    Predictor        AAA           AA             A            BBB            BB             B            CCC    
    __________    _________    __________    ___________    __________    ___________    __________    __________

    "WC_TA"        0.051503      0.022537      0.0093414     0.0017109      -0.027655     -0.041443     -0.039881
    "RE_TA"         0.16771      0.094164       0.051656     -0.011019      -0.087921      -0.20974      -0.29463
    "EBIT_TA"     0.0011994    0.00052582     0.00041921    0.00011866    -0.00066237    -0.0013347    -0.0011824
    "MVE_BVTD"       1.3417        1.3081        0.61469      -0.11247        -0.6555      -0.86907      -0.68547
    "S_TA"        -0.013056    -0.0091068    -0.00031171    -0.0028624    -0.00019217     0.0016758    -0.0024151
    "Industry"     -0.10141     -0.048654      0.0036276      0.081542        0.09266       0.10461       0.15889

The ShapleyValues property contains the Shapley values of all features for each class.

Plot the Shapley values for the predicted class by using the plot function.

 shapley

35-6965



plot(explainer)

The horizontal bar graph shows the Shapley values for all variables, sorted by their absolute values.
Each Shapley value explains the deviation of the score for the query point from the average score of
the predicted class, due to the corresponding variable.

Create shapley Object and Compute Shapley Values Using fit

Train a regression model and create a shapley object. When you create a shapley object, if you do
not specify a query point, then the software does not compute Shapley values. Use the object function
fit to compute the Shapley values for the specified query point. Then create a bar graph of the
Shapley values by using the object function plot.

Load the carbig data set, which contains measurements of cars made in the 1970s and early 1980s.

load carbig

Create a table containing the predictor variables Acceleration, Cylinders, and so on, as well as
the response variable MPG.

tbl = table(Acceleration,Cylinders,Displacement,Horsepower,Model_Year,Weight,MPG);

Removing missing values in a training set can help reduce memory consumption and speed up
training for the fitrkernel function. Remove missing values in tbl.
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tbl = rmmissing(tbl);

Train a blackbox model of MPG by using the fitrkernel function

rng('default') % For reproducibility
mdl = fitrkernel(tbl,'MPG','CategoricalPredictors',[2 5]);

Create a shapley object. Specify the data set tbl, because mdl does not contain training data.

explainer = shapley(mdl,tbl)

explainer = 
  shapley with properties:

            BlackboxModel: [1x1 RegressionKernel]
               QueryPoint: []
           BlackboxFitted: []
            ShapleyValues: []
               NumSubsets: 64
                        X: [392x7 table]
    CategoricalPredictors: [2 5]
                   Method: 'interventional-kernel'
                Intercept: 22.6202

explainer stores the training data tbl in the X property.

Compute the Shapley values of all predictor variables for the first observation in tbl.

queryPoint = tbl(1,:)

queryPoint=1×7 table
    Acceleration    Cylinders    Displacement    Horsepower    Model_Year    Weight    MPG
    ____________    _________    ____________    __________    __________    ______    ___

         12             8            307            130            70         3504     18 

explainer = fit(explainer,queryPoint);

For a regression model, shapley computes Shapley values using the predicted response, and stores
them in the ShapleyValues property. Display the values in the ShapleyValues property.

explainer.ShapleyValues

ans=6×2 table
      Predictor       ShapleyValue
    ______________    ____________

    "Acceleration"       -0.1561  
    "Cylinders"         -0.18306  
    "Displacement"      -0.34203  
    "Horsepower"        -0.27291  
    "Model_Year"         -0.2926  
    "Weight"            -0.32402  

Plot the Shapley values for the query point by using the plot function.

plot(explainer)
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The horizontal bar graph shows the Shapley values for all variables, sorted by their absolute values.
Each Shapley value explains the deviation of the prediction for the query point from the average, due
to the corresponding variable.

Specify Blackbox Model Using Function Handle

Train a regression model and create a shapley object using a function handle to the predict
function of the model. Use the object function fit to compute the Shapley values for the specified
query point. Then plot the Shapley values by using the object function plot.

Load the carbig data set, which contains measurements of cars made in the 1970s and early 1980s.

load carbig

Create a table containing the predictor variables Acceleration, Cylinders, and so on.

tbl = table(Acceleration,Cylinders,Displacement,Horsepower,Model_Year,Weight);

Train a blackbox model of MPG by using the TreeBagger function.

rng('default') % For reproducibility
Mdl = TreeBagger(100,tbl,MPG,'Method','regression','CategoricalPredictors',[2 5]);

shapley does not support a TreeBagger object directly, so you cannot specify the first input
argument (blackbox model) of shapley as a TreeBagger object. Instead, you can use a function
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handle to the predict function. You can also specify options of the predict function using name-
value arguments of the function.

Create the function handle to the predict function of the TreeBagger object Mdl. Specify the array
of tree indices to use as 1:50.

f = @(tbl) predict(Mdl,tbl,'Trees',1:50);

Create a shapley object using the function handle f. When you specify a blackbox model as a
function handle, you must provide the predictor data. tbl includes categorical predictors (Cylinder
and Model_Year) with the double data type. By default, shapley does not treat variables with the
double data type as categorical predictors. Specify the second (Cylinder) and fifth (Model_Year)
variables as categorical predictors.

explainer = shapley(f,tbl,'CategoricalPredictors',[2 5]);
explainer = fit(explainer,tbl(1,:));

Plot the Shapley values.

plot(explainer)

More About
Shapley Values

In game theory, the Shapley value of a player is the average marginal contribution of the player in a
cooperative game. In the context of machine learning prediction, the Shapley value of a feature for a

 shapley

35-6969



query point explains the contribution of the feature to a prediction (response for regression or score
of each class for classification) at the specified query point.

The Shapley value of a feature for a query point is the contribution of the feature to the deviation
from the average prediction. For a query point, the sum of the Shapley values for all features
corresponds to the total deviation of the prediction from the average. That is, the sum of the average
prediction and the Shapley values for all features corresponds to the prediction for the query point.

For more details, see “Shapley Values for Machine Learning Model” on page 27-18.

Version History
Introduced in R2021a

References
[1] Lundberg, Scott M., and S. Lee. "A Unified Approach to Interpreting Model Predictions." Advances

in Neural Information Processing Systems 30 (2017): 4765–774.

[2] Aas, Kjersti, Martin. Jullum, and Anders Løland. "Explaining Individual Predictions When Features
Are Dependent: More Accurate Approximations to Shapley Values." arXiv:1903.10464 (2019).

Extended Capabilities
Automatic Parallel Support
Accelerate code by automatically running computation in parallel using Parallel Computing Toolbox™.

To run in parallel, set the UseParallel name-value argument to true in the call to this function.

For more general information about parallel computing, see “Run MATLAB Functions with Automatic
Parallel Support” (Parallel Computing Toolbox).

See Also
plotPartialDependence | lime

Topics
“Shapley Values for Machine Learning Model” on page 27-18
“Interpret Machine Learning Models” on page 27-2
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shrink
Prune ensemble

Syntax
cmp = shrink(ens)
cmp = shrink(ens,Name,Value)

Description
cmp = shrink(ens) returns a compact shrunken version of ens, a regularized ensemble. cmp
retains only learners with weights above a threshold.

cmp = shrink(ens,Name,Value) returns an ensemble with additional options specified by one or
more Name,Value pair arguments. You can specify several name-value pair arguments in any order
as Name1,Value1,…,NameN,ValueN.

Input Arguments
ens

A regression ensemble created with fitrensemble.

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.

lambda

Vector of nonnegative regularization parameter values for lasso. If ens.Regularization is
nonempty (populate it with regularize), shrink regularizes ens using lambda. If ens contains a
Regularization structure, you cannot pass lambda.

Default: []

threshold

Lower cutoff on weights for weak learners, a numeric nonnegative scalar. shrink creates cmp from
those learners with weights above threshold.

Default: 0

weightcolumn

Column index of ens.Regularization.TrainedWeights, a positive integer. shrink creates cmp
with learner weights from this column.
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Default: 1

Output Arguments
cmp

A regression ensemble of class CompactRegressionEnsemble. Use cmp for making predictions
exactly as you use ens, with the predict method.

shrink orders the members of cmp from largest to smallest.

Examples
Shrink Bagged Regression Ensemble

Shrink a 300-member bagged regression ensemble, and view the number of members of the resulting
ensemble.

Generate sample data.

X = rand(2000,20);
Y = repmat(-1,2000,1);
Y(sum(X(:,1:5),2)>2.5) = 1;

Shrink a 300-member bagged regression ensemble using 0.1 for the parameter lambda.

bag = fitrensemble(X,Y,'Method','Bag','NumLearningCycles',300);
cmp = shrink(bag,'lambda',0.1);

View the number of members of the resulting ensemble.

cmp.NumTrained

ans = 94

Extended Capabilities
GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

This function fully supports GPU arrays. For more information, see “Run MATLAB Functions on a
GPU” (Parallel Computing Toolbox).

See Also
regularize | cvshrink | predict

Topics
“Ensemble Regularization” on page 19-72

35 Functions

35-6972



signrank
Wilcoxon signed rank test

Syntax
p = signrank(x)
p = signrank(x,y)
p = signrank(x,y,Name,Value)
[p,h] = signrank( ___ )
[p,h,stats] = signrank( ___ )

[ ___ ] = signrank(x,m)
[ ___ ] = signrank(x,m,Name,Value)

Description
p = signrank(x) returns the p-value of a two-sided Wilcoxon signed rank test on page 35-6979.

signrank tests the null hypothesis that data in the vector x come from a distribution whose median
is zero at the 5% significance level. The test assumes that the data in x come from a continuous
distribution symmetric about its median.

p = signrank(x,y) returns the p-value of a paired, two-sided test for the null hypothesis that x – y
comes from a distribution with zero median.

p = signrank(x,y,Name,Value) returns the p-value for the sign test with additional options
specified by one or more Name,Value pair arguments.

[p,h] = signrank( ___ ) also returns a logical value indicating the test decision. h = 1 indicates a
rejection of the null hypothesis, and h = 0 indicates a failure to reject the null hypothesis at the 5%
significance level. You can use any of the input arguments in the previous syntaxes.

[p,h,stats] = signrank( ___ ) also returns the structure stats with information about the test
statistic.

[ ___ ] = signrank(x,m) returns any of the output arguments in the previous syntaxes for the null
hypothesis that the data in x are observations from a distribution with median m.

[ ___ ] = signrank(x,m,Name,Value) returns any of the output arguments in the previous
syntaxes for the signed rank test with additional options specified by one or more Name,Value pair
arguments.

Examples

Test for Zero Median of a Single Population

Test the hypothesis of zero median.

Generate the sample data.
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rng('default') % for reproducibility
x = randn(1,25) + 1.30;

Test the hypothesis that the data in x has zero median.

[p,h] = signrank(x)

p = 3.2229e-05

h = logical
   1

At the default 5% significance level, the value h = 1 indicates that the test rejects the null hypothesis
of zero median.

Test the Median of Differences of Paired Samples

Test the hypothesis of zero median for the difference between paired samples.

Generate the sample data.

rng('default') % for reproducibility
x = lognrnd(2,.25,10,1);
y = x + trnd(2,10,1);

Test the hypothesis that x – y has zero median.

[p,h] = signrank(x,y)

p = 0.3223

h = logical
   0

The results indicate that the test fails to reject the null hypothesis of zero median in the difference at
the default 5% significance level.

Signed Rank Test for Large Samples

Conduct a -sided test on a large sample using approximation.

Load the sample data.

load('gradespaired.mat');

Test the null hypothesis that the median of the grade differences of students before and after
participating in a tutoring program is 0 against the alternate that it is less than 0.

[p,h,stats] = signrank(gradespaired(:,1),...
        gradespaired(:,2),'tail','left')

p = 0.0047
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h = logical
   1

stats = struct with fields:
          zval: -2.5982
    signedrank: 2.0175e+03

Because the sample size is greater than 15, signrank uses an approximate method to calculate the
p-value and also returns the value of the z-statistic. The value h = 1 indicates that the test rejects the
null hypothesis that there is no difference between the grade medians at the 5% significance level.
There is enough statistical evidence to conclude that the median grade before the tutoring program is
less than the median grade after the tutoring program.

Repeat the test using the exact method.

[p,h,stats] = signrank(gradespaired(:,1),gradespaired(:,2),...
        'tail','left','method','exact')

p = 0.0045

h = logical
   1

stats = struct with fields:
    signedrank: 2.0175e+03

The results obtained using the approximate method are consistent with the exact method.

Two-Sided Test for the Median of a Single Population

Load the sample data.

load mileage

The data contains the mileages per gallon for three different types of cars in columns 1 to 3.

Test the hypothesis that the median mileage for the type of cars in the second column differs from 33.

[p,h,stats] = signrank(mileage(:,2),33)

p = 0.0313

h = logical
   1

stats = struct with fields:
    signedrank: 21

At the 5% significance level, the results indicate that the median mileage for the second type of cars
differs from 33. Note that signrank uses an exact method to calculate the p-value for small samples
and does not return the z-statistic.
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Right-Sided Test for the Median of a Single Population

Use the name-value pair arguments in signrank.

Load the sample data.

load mileage

The data contains the mileage per gallon for three different types of cars in columns 1 to 3.

Test the hypothesis that the median mileage for the type of cars in the second row are larger than 33.

[p,h,stats] = signrank(mileage(:,2),33,'tail','right')

p = 0.0156

h = logical
   1

stats = struct with fields:
    signedrank: 21

Repeat the same test at the 1% significance level using the approximate method.

[p,h,stats] = signrank(mileage(:,2),33,'tail','right',...
'alpha',0.01,'method','approximate')

p = 0.0180

h = logical
   0

stats = struct with fields:
          zval: 2.0966
    signedrank: 21

This result, h = 0, indicates that the null hypothesis cannot be rejected at the 1% significance level.

Input Arguments
x — Sample data
vector

Sample data, specified as a vector.
Data Types: single | double

y — Sample data
vector

Sample data, specified as a vector. y must be the same length as x.
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Data Types: single | double

m — Hypothesized value of the median
scalar

Hypothesized value of the median, specified as a scalar.
Example: signrank(x,10)
Data Types: single | double

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: 'alpha',0.01,'method','approximate','tail','right' specifies a right-tailed
signed rank test with 1% significance level, which returns the approximate p-value.

alpha — Significance level
0.05 (default) | scalar value in the range 0 to 1

Significance level of the decision of a hypothesis test, specified as the comma-separated pair
consisting of 'alpha' and a scalar value in the range 0 to 1. Significance level of h is 100 * alpha%.
Example: 'alpha', 0.01
Data Types: double | single

method — Computation method of p
'exact' | 'approximate'

Computation method of p, specified as the comma-separated pair consisting of 'method' and one of
the following.

'exact' Exact computation of the p-value, p. Default value for 15 or fewer observations in
x, x – m, or x – y when method is unspecified.

'approximate
'

Normal approximation while computing the p-value, p. Default value for more than
15 observations in x, x – m, or x – y when 'method' is unspecified because the
exact method can be slow on large samples.

Example: 'method','exact'

tail — Type of test
'both' (default) | 'right' | 'left'

Type of test, specified as the comma-separated pair consisting of 'tail' and one of the following:
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'both' Two-sided hypothesis test, which is the default test type.

• For a one-sample test, the alternate hypothesis states that the data in x come from a
continuous distribution with median different than 0 or m.

• For a two-sample test, the alternate hypothesis states that the data in x – y come from
a distribution with median different than 0.

'right' Right-tailed hypothesis test.

• For a one-sample test, the alternate hypothesis states that the data in x come from a
continuous distribution with median greater than 0 or m.

• For a two-sample test, the alternate hypothesis states the data in x – y come from a
distribution with median greater than 0.

'left' Left-tailed hypothesis test.

• For a one-sample test, the alternate hypothesis states that the data in x come from a
continuous distribution with median less than 0 or m.

• For a two-sample test, the alternate hypothesis states the data in x – y come from a
distribution with median less than 0.

Example: 'tail','left'

Output Arguments
p — p-value of the test
nonnegative scalar

p-value of the test, returned as a nonnegative scalar from 0 to 1. p is the probability of observing a
test statistic as or more extreme than the observed value under the null hypothesis. signrank
computes the two-sided p-value by doubling the most significant one-sided value.

h — Result of the hypothesis test
1 | 0

Result of the hypothesis test, returned as a logical value.

• If h = 1, this indicates the rejection of the null hypothesis at the 100 * alpha% significance level.
• If h = 0, this indicates a failure to reject the null hypothesis at the 100 * alpha% significance

level.

stats — Test statistics
structure

Test statistics, returned as a structure. The test statistics stored in stats are:

• signrank: Value of the sign rank test statistic.
• zval: Value of the z- statistic on page 35-6979 (computed when 'method' is 'approximate').
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More About
Wilcoxon Signed Rank Test

The Wilcoxon signed rank test is a nonparametric test for two populations when the observations are
paired. In this case, the test statistic, W, is the sum of the ranks of positive differences between the
observations in the two samples (that is, x – y). When you use the test for one sample, then W is the
sum of the ranks of positive differences between the observations and the hypothesized median value
M0 (which is 0 when you use signrank(x) and m when you use signrank(x,m)).

z-Statistic

For large samples, or when method is approximate, the signrank function calculates the p-value
using the z-statistic, given by

z = W − n n + 1 /4
n n + 1 2n + 1 − tiead j

24

,

where n is the sample size of the difference x – y or x – m. For the two-sample case, signrank uses
[tie_rank,tieadj] = tiedrank(abs(diffxy),0,0,epsdiff) to obtain the tie adjustment
value tieadj.

Algorithms
signrank treats NaNs in x and y as missing values and ignores them.

For the two-sample case, signrank uses a tolerance based on the values epsdiff = eps(x) +
eps(y). signrank computes the absolute values of the differences (abs(d(i)) where d(i) =
x(i) – y(i)) and compares them to epsdiff. Values with an absolute value less than epsdiff
(abs(d(i)) < epsdiff(i)) are treated as ties.

Version History
Introduced before R2006a

References
[1] Gibbons, J. D., and S. Chakraborti. Nonparametric Statistical Inference, 5th Ed., Boca Raton, FL:

Chapman & Hall/CRC Press, Taylor & Francis Group, 2011.

[2] Hollander, M., and D. A. Wolfe. Nonparametric Statistical Methods. Hoboken, NJ: John Wiley &
Sons, Inc., 1999.

See Also
ranksum | signtest | ttest | ztest

 signrank

35-6979



signtest
Sign test

Syntax
p = signtest(x)
p = signtest(x,y)
p = signtest(x,y,Name,Value)
[p,h] = signtest( ___ )
[p,h,stats] = signtest( ___ )

[ ___ ] = signtest(x,m)
[ ___ ] = signtest(x,m,Name,Value)

Description
p = signtest(x) returns the p-value for a two-sided sign test on page 35-6986.

signtest tests the hypothesis that data in x has a continuous distribution with zero median against
the alternative that the distribution does not have zero median at the 5% significance level.

p = signtest(x,y) returns the p-value of a two-sided sign test on page 35-6986. Here,signtest
tests for the hypothesis that the data in x – y has a distribution with zero median against the
alternative that the distribution does not have zero median. Note that a hypothesis of zero median for
x – y is not equivalent to a hypothesis of equal median for x and y.

p = signtest(x,y,Name,Value) returns the p-value for the sign test with additional options
specified by one or more Name,Value pair arguments.

[p,h] = signtest( ___ ) also returns a logical value indicating the test decision. The value h = 1
indicates a rejection of the null hypothesis, and h = 0 indicates a failure to reject the null hypothesis
at the 5% significance level. You can use any of the input arguments in the previous syntaxes.

[p,h,stats] = signtest( ___ ) also returns the structure stats containing information about
the test statistic.

[ ___ ] = signtest(x,m) returns any of the output arguments in the previous syntaxes for the test
whether the data in x are observations from a distribution with median m against the alternative that
the median is different from m.

[ ___ ] = signtest(x,m,Name,Value) returns any of the output arguments in the previous
syntaxes for the sign test with additional options specified by one or more Name,Value pair
arguments.

Examples

Test for Zero Median of a Single Population

Test the hypothesis of zero median.
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Generate the sample data.

rng('default') % for reproducibility
x = randn(1,25);

The sampling distribution of x is symmetric with zero median.

Test the null hypothesis that x comes from a distribution with a median different from zero median.

[p,h,stats] = signtest(x,0)

p = 0.1078

h = logical
   0

stats = struct with fields:
    zval: NaN
    sign: 17

At the default 5% significance level, the result h = 0 indicates that signtest fails to reject to the null
hypothesis of zero median. signtest calculates the p-value using the exact method, hence it does
not calculate zval and returns it as a NaN.

Test for Zero Median for the Difference of Paired Samples

Test the hypothesis of zero median for the difference between paired samples.

Generate the sample data.

rng('default') % for reproducibility
before = lognrnd(2,.25,10,1);
after = before + (lognrnd(0,.5,10,1) - 1);

The sampling distribution of the difference between before and after is symmetric with zero
median.

Test the null hypothesis that the difference of before and after has zero median.

[p,h] = signtest(before,after)

p = 0.7539

h = logical
   0

At the default 5% significance level, the value h = 0 indicates that signtest fails to reject to the null
hypothesis of zero median in the difference.
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Medians of Paired Samples

Test the hypothesis of zero median for the difference between two paired samples using the exact and
approximate methods.

Generate the sample data.

rng('default') % for reproducibility
x = lognrnd(2,.25,15,1);
y = x + trnd(2,15,1);
display([x y])

    8.4521    7.8047
   11.6869   11.4094
    4.2009    5.1133
    9.1664   12.1655
    8.0020   10.0300
    5.3285    6.0153
    6.6300    5.1235
    8.0499    8.6737
   18.0763   19.2164
   14.7665   15.3380
    5.2726    8.4187
   15.7798   16.2093
    8.8583    8.5575
    7.2735    7.4783
    8.8347    7.8894

Test the hypothesis that x – y has zero median.

[p,h,stats] = signtest(x,y)

p = 0.3018

h = logical
   0

stats = struct with fields:
    zval: NaN
    sign: 5

At the default 5% significance level, the value h = 0 indicates that the test fails to reject the null
hypothesis of zero median in the difference.

Repeat the test using the approximate method.

[p,h,stats] = signtest(x,y,'Method','approximate')

p = 0.3017

h = logical
   0

stats = struct with fields:
    zval: -1.0328
    sign: 5
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The approximate p-value, which signtest obtains using the z-statistic, is really close to the exact p-
value.

Test for Large Samples

Perform a left-sided sign test for large samples.

Load the sample data.

load gradespaired

Test the null hypothesis that the median of the grade differences before and after the tutoring
program is 0 against the alternate that it is less than 0.

[p,h,stats] = signtest(gradespaired(:,1),gradespaired(:,2),'Tail','left')

p = 0.0013

h = logical
   1

stats = struct with fields:
    zval: -3.0110
    sign: 37

Because the sample size is large (greater than 100), signtest uses an approximate method to
calculate the p-value and also returns the value of the z-statistic. The test rejects the null hypothesis
that there is no difference between the grade medians at the 5% significance level.

Test for Median of a Single Population

Test the hypothesis that the population median is different from a specified value.

Load the sample data.

load lawdata

The data set has 15 observations for variables gpa and lsat.

Test the hypothesis that the median lsat score is higher than 570.

[p,h,stats] = signtest(lsat,570,'Tail','right')

p = 0.0176

h = logical
   1

stats = struct with fields:
    zval: NaN

 signtest

35-6983



    sign: 12

Both the p-value, 0.0176, and h = 1 indicate that at the 5% significance level the test concludes in
favor of the alternate hypothesis.

Input Arguments
x — Sample data
vector

Sample data, specified as a vector.
Data Types: single | double

y — Sample data
vector

Sample data, specified as a vector. y must be the same length as x.
Data Types: single | double

m — Hypothesized value of the median
scalar

Hypothesized value of the median, specified as a scalar.
Example: signtest(x,35)
Data Types: single | double

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: 'Alpha',0.01,'Method','approximate','Tail','right' specifies a right-tailed
sign test with 1% significance level, which returns the approximate p-value.

Alpha — Significance level
0.05 (default) | scalar value in the range 0 to 1

Significance level of the hypothesis test, specified as the comma-separated pair consisting of
'Alpha' and a scalar value in the range 0 to 1. The default value of Alpha is 0.05. Significance level
of h is 100 * Alpha%.
Example: 'Alpha', 0.01
Data Types: double | single

Method — p-value computation method
'exact' | 'approximate'
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p-value computation method, specified as the comma-separated pair consisting of 'Method' and one
of the following:

'exact' Exact computation of the p-value, p.
'approximate' Normal approximation for computing the p-value, p.

The default computation method is 'exact', if there are fewer than 100 observations and
'approximate' if there are 100 observations or more.
Example: 'Method','exact'

Tail — Type of test
'both' (default) | 'right' | 'left'

Type of test, specified as the comma-separated pair consisting of 'Tail' and one of the following:

'both' Two-sided hypothesis test, which is the default test type.

• For a one-sample test, the alternate hypothesis states that the data in x come from a
continuous distribution with median different than zero (or m).

• For a two-sample test, the alternate hypothesis states that the data in x-y come from
a distribution with median different than zero.

'right' Right-tailed hypothesis test.

• For a one-sample test, the alternate hypothesis states that the data in x come from a
continuous distribution with median greater than zero (or m).

• For a two-sample test, the alternate hypothesis states the data in x-y come from a
distribution with median greater than zero.

'left' Left-tailed hypothesis test.

• For a one-sample test, the alternate hypothesis states that the data in x come from a
continuous distribution with median less than zero (or m).

• For a two-sample test, the alternative hypothesis states the data in x-y come from a
distribution with median less than zero.

Example: 'Tail','left'

Output Arguments
p — p-value of the test
nonnegative scalar

p-value of the test, returned as a nonnegative scalar from 0 to 1. p is the probability of observing a
test statistic as or more extreme than the observed value under the null hypothesis. signtest
computes the two-sided p-value by doubling the most significant one-sided value.

h — Result of the hypothesis test
1 | 0

Result of the hypothesis test, returned as a logical value.

• If h = 1, this indicates rejection of the null hypothesis at the 100 * Alpha% significance level.
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• If h = 0, this indicates a failure to reject the null hypothesis at the 100 * Alpha% significance
level.

stats — Test statistics
structure

Test statistics, returned as a structure. The test statistics stored in stats are:

• sign: Value of the sign test statistic.
• zval: Value of the z-statistic on page 35-6986 (computed only for large samples).

More About
Sign Test

The sign test is a nonparametric test for the median of a population or median of the difference of two
populations.

For example, for tests on a single population median:

• If the test is two-sided, then the test statistic, S, is the minimum of the number of observations
that are smaller or larger than the hypothesized median value, M0.

• If the test is right-sided, then S is the number of observations that are larger than the
hypothesized median value M0.

• If the test is left-sided, then S is the number of observations that are smaller than the
hypothesized median value M0.

z-Statistic

For a large sample, signtest uses the z-statistic to approximate the p-value.

The signtest test statistic is the number of elements that are greater than 0 (for signtest(x) or
signtest(x-y)), or m (for signtest(x,m)). Hence, the z-statistic of the sign test, with the
continuity correction, is:

z = S− E(S)
V(S) = S− (0.5)n− 0.5sign(npos− nneg)

(0.5)(0.5)n ,

where npos and nneg are the number of positive and negative differences from the hypothesized
median value, respectively.

Algorithms
For a one-sample test, signtest omits values in x that are zero or NaN.

For a two-sample test, signtest omits values in x – y that are zero or NaN.

Version History
Introduced before R2006a
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[1] Gibbons, J. D., and S. Chakraborti. Nonparametric Statistical Inference, 5th Ed. Boca Raton, FL:

Chapman & Hall/CRC Press, Taylor & Francis Group, 2011.

[2] Hollander, M., and D. A. Wolfe. Nonparametric Statistical Methods. Hoboken, NJ: John Wiley &
Sons, Inc., 1999.

See Also
ranksum | signrank | ttest | ztest
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silhouette
Silhouette plot

Syntax
silhouette(X,clust)
silhouette(X,clust,Distance)
silhouette(X,clust,Distance,DistParameter)

s = silhouette( ___ )
[s,h] = silhouette( ___ )

Description
silhouette(X,clust) plots cluster silhouettes for the n-by-p input data matrix X, given the cluster
assignment clust of each point (observation) in X.

silhouette(X,clust,Distance) plots the silhouettes using the inter-point distance metric
specified in Distance.

silhouette(X,clust,Distance,DistParameter) accepts one or more additional distance
metric parameter values when you specify Distance as a custom distance function handle
@distfun that accepts the additional parameter values.

s = silhouette( ___ ) returns the silhouette values in s for any of the input argument
combinations in the previous syntaxes without plotting the cluster silhouettes.

[s,h] = silhouette( ___ ) plots the silhouettes and returns the figure handle h in addition to the
silhouette values in s.

Examples

Create Silhouette Plot

Create silhouette plots from clustered data using different distance metrics.

Generate random sample data.

rng('default')  % For reproducibility
X = [randn(10,2)+3;randn(10,2)-3];

Create a scatter plot of the data.

scatter(X(:,1),X(:,2));
title('Randomly Generated Data');
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The scatter plot shows that the data appears to be split into two clusters of equal size.

Partition the data into two clusters using kmeans with the default squared Euclidean distance metric.

clust = kmeans(X,2);

clust contains the cluster indices of the data.

Create a silhouette plot from the clustered data using the default squared Euclidean distance metric.

silhouette(X,clust)
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The silhouette plot shows that the data is split into two clusters of equal size. All the points in the two
clusters have large silhouette values (0.8 or greater), indicating that the clusters are well separated.

Create a silhouette plot from the clustered data using the Euclidean distance metric.

silhouette(X,clust,'Euclidean')
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The silhouette plot shows that the data is split into two clusters of equal size. All the points in the two
clusters have large silhouette values (0.6 or greater), indicating that the clusters are well separated.

Compute Silhouette Values

Compute the silhouette values from clustered data.

Generate random sample data.

rng('default')  % For reproducibility
X = [randn(10,2)+1;randn(10,2)-1];

Cluster the data in X based on the sum of absolute differences in distance by using kmeans.

clust = kmeans(X,2,'distance','cityblock');

clust contains the cluster indices of the data.

Compute the silhouette values from the clustered data. Specify the distance metric as 'cityblock'
to indicate that the kmeans clustering is based on the sum of absolute differences.

s = silhouette(X,clust,'cityblock')

s = 20×1
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    0.0816
    0.5848
    0.1906
    0.2781
    0.3954
    0.4050
    0.0897
    0.5416
    0.6203
    0.6664
      ⋮

Find Silhouette Values Using Custom Distance Metric

Find silhouette values from clustered data using a custom chi-square distance metric. Verify that the
chi-square distance metric is equivalent to the Euclidean distance metric, but with an optional scaling
parameter.

Generate random sample data.

rng('default'); % For reproducibility
X = [randn(10,2)+3;randn(10,2)-3];

Cluster the data in X using kmeans with the default squared Euclidean distance metric.

clust = kmeans(X,2);

Find silhouette values and create a silhouette plot from the clustered data using the Euclidean
distance metric.

[s,h] = silhouette(X,clust,'Euclidean')
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s = 20×1

    0.6472
    0.7241
    0.5682
    0.7658
    0.7864
    0.6397
    0.7253
    0.7783
    0.7054
    0.7442
      ⋮

h = 
  Figure (1) with properties:

      Number: 1
        Name: ''
       Color: [1 1 1]
    Position: [360 502 560 420]
       Units: 'pixels'

  Show all properties

The chi-square distance between J-dimensional points x and z is
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χ(x, z) = ∑
j = 1

J
w j x j− z j

2,

where w j is the weight associated with dimension j.

Set weights for each dimension and specify the chi-square distance function. The distance function
must:

• Take as input arguments the n-by-p input data matrix X, one row of X (for example, x), and a
scaling (or weight) parameter w.

• Calculate the distance from x to each row of X.
• Return a vector of length n. Each element of the vector is the distance between the observation

corresponding to x and the observations corresponding to each row of X.

w = [0.4; 0.6]; % Set arbitrary weights for illustration
chiSqrDist = @(x,Z,w)sqrt((bsxfun(@minus,x,Z).^2)*w);

Find silhouette values from the clustered data using the custom distance metric chiSqrDist.

s1 = silhouette(X,clust,chiSqrDist,w)

s1 = 20×1

    0.6288
    0.7239
    0.6244
    0.7696
    0.7957
    0.6688
    0.7386
    0.7865
    0.7223
    0.7572
      ⋮

Set the weight for both dimensions to 1 to use chiSqrDist as the Euclidean distance metric. Find
silhouette values and verify that they are the same as the values in s.

w2 = [1; 1];
s2 = silhouette(X,clust,chiSqrDist,w2);
AreValuesEqual = isequal(s2,s)

AreValuesEqual = logical
   1

The silhouette values are the same in s and s2.

Input Arguments
X — Input data
numeric matrix
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Input data, specified as a numeric matrix of size n-by-p. Rows correspond to points, and columns
correspond to coordinates.
Data Types: single | double

clust — Cluster assignment
categorical variable | numeric vector | character matrix | string array | cell array of character vectors

Cluster assignment, specified as a categorical variable, numeric vector, character matrix, string array,
or cell array of character vectors containing a cluster name for each point in X.

silhouette treats NaNs and empty values in clust as missing values and ignores the
corresponding rows of X.
Data Types: single | double | char | string | cell | categorical

Distance — Distance metric
'sqEuclidean' (default) | 'Euclidean' | 'cityblock' | function handle | vector of pairwise
distances | ...

Distance metric, specified as a character vector, string scalar, or function handle, as described in this
table.

Metric Description
'Euclidean' Euclidean distance
'sqEuclidean' Squared Euclidean distance (default)
'cityblock' Sum of absolute differences
'cosine' One minus the cosine of the included angle between points (treated as

vectors)
'correlation' One minus the sample correlation between points (treated as sequences

of values)
'Hamming' Percentage of coordinates that differ
'Jaccard' Percentage of nonzero coordinates that differ
Vector A numeric row vector of pairwise distances, in the form created by the

pdist function. X is not used in this case, and can safely be set to [].
@distfun Custom distance function handle. A distance function has the form

function D = distfun(X0,X,DistParameter)
% calculation of distance
...

where

• X0 is a 1-by-p vector containing a single point (observation) of the
input data matrix X.

• X is an n-by-p matrix of points.
• DistParameter represents one or more additional parameter

values specific to @distfun.
• D is an n-by-1 vector of distances, and D(k) is the distance between

observations X0 and X(k,:).
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For more information, see “Distance Metrics” on page 19-14.
Example: 'cosine'
Data Types: char | string | function_handle | single | double

DistParameter — Distance metric parameter value
positive scalar | numeric vector | numeric matrix

Distance metric parameter value, specified as a positive scalar, numeric vector, or numeric matrix.
This argument is valid only when you specify a custom distance function handle @distfun that
accepts one or more parameter values in addition to the input parameters X0 and X.
Example: silhouette(X,clust,distfun,p1,p2) where p1 and p2 are additional distance metric
parameter values for @distfun
Data Types: single | double

Output Arguments
s — Silhouette values
n-by-1 vector of values ranging from –1 to 1

Silhouette values, returned as an n-by-1 vector of values ranging from –1 to 1. A silhouette value
measures how similar a point is to points in its own cluster, when compared to points in other
clusters. Values range from –1 to 1. A high silhouette value indicates that a point is well matched to
its own cluster, and poorly matched to other clusters.
Data Types: single | double

h — Figure handle
scalar

Figure handle, returned as a scalar. You can use the figure handle to query and modify figure
properties. For more information, see Figure.

More About
Silhouette Value

The silhouette value for each point is a measure of how similar that point is to other points in the
same cluster, compared to points in other clusters.

The silhouette value si for the ith point is defined as

si =
bi− ai

max ai, bi
,

where ai is the average distance from the ith point to the other points in the same cluster as i, and bi
is the minimum average distance from the ith point to points in a different cluster, minimized over the
clusters. If the ith point is the only point in its cluster, then the silhouette value si is set to 1.

The silhouette values range from –1 to 1. A high silhouette value indicates that the point is well
matched to its own cluster, and poorly matched to other clusters. If most points have a high silhouette
value, then the clustering solution is appropriate. If many points have a low or negative silhouette

35 Functions

35-6996



value, then the clustering solution might have too many or too few clusters. You can use silhouette
values as a clustering evaluation criterion with any distance metric.

Version History
Introduced before R2006a

References
[1] Kaufman L., and P. J. Rousseeuw. Finding Groups in Data: An Introduction to Cluster Analysis.

Hoboken, NJ: John Wiley & Sons, Inc., 1990.

See Also
dendrogram | kmeans | linkage | pdist | evalclusters

Topics
“Grouping Variables” on page 2-46
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SilhouetteEvaluation
Silhouette criterion clustering evaluation object

Description
SilhouetteEvaluation is an object consisting of sample data (X), clustering data (OptimalY), and
silhouette criterion values (CriterionValues) used to evaluate the optimal number of data clusters
(OptimalK). The silhouette value for each point (observation in X) is a measure of how similar that
point is to other points in the same cluster, compared to points in other clusters. If most points have a
high silhouette value, then the clustering solution is appropriate. If many points have a low or
negative silhouette value, then the clustering solution might have too many or too few clusters. For
more information, see “Silhouette Value and Criterion” on page 35-7004.

Creation
Create a silhouette criterion clustering evaluation object by using the evalclusters function and
specifying the criterion as "silhouette".

You can then use compact to create a compact version of the silhouette criterion clustering
evaluation object. The function removes the contents of the properties X, OptimalY, and Missing.

Properties
Clustering Evaluation Properties

ClusteringFunction — Clustering algorithm
'kmeans' | 'linkage' | 'gmdistribution' | function handle | []

This property is read-only.

Clustering algorithm used to cluster the sample data, returned as 'kmeans', 'linkage',
'gmdistribution', or a function handle. If you specify the clustering solutions as an input
argument to evalclusters when you create the clustering evaluation object, then
ClusteringFunction is empty.

Value Description
'kmeans' Cluster the data in X using the kmeans clustering

algorithm, with EmptyAction set to
"singleton" and Replicates set to 5.

'linkage' Cluster the data in X using the clusterdata
agglomerative clustering algorithm, with
Linkage set to "ward".
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Value Description
'gmdistribution' Cluster the data in X using the gmdistribution

Gaussian mixture distribution algorithm, with
SharedCov set to true and Replicates set to
5.

Data Types: double | char | function_handle

ClusterPriors — Prior probabilities for each cluster
'empirical' | 'equal'

This property is read-only.

Prior probabilities for each cluster, returned as 'empirical' or 'equal'.

Value Description
'empirical' Compute the silhouette criterion value for the

clustering solution by averaging the silhouette
values for all points. Each cluster contributes to
the criterion value proportionally based on its
size.

'equal' Compute the silhouette criterion value for the
clustering solution by averaging the silhouette
values for all points within each cluster, and then
averaging those values across all clusters.
Regardless of its size, each cluster contributes
equally to the criterion value.

ClusterSilhouettes — Average silhouette values
cell array of numeric vectors

This property is read-only.

Average silhouette values corresponding to each proposed number of clusters in InspectedK,
returned as a cell array of numeric vectors. For each proposed number of clusters k, the vector
ClusterSilhouettes{k} contains the average silhouette value for each cluster.

For example, suppose evaluation is a silhouette criterion clustering evaluation object and
evaluation.InspectedK is 1:5. Then, evaluation.ClusterSilhouettes{4}(3) is the
average silhouette value for the points in the third cluster of the clustering solution with four total
clusters.
Data Types: cell

CriterionName — Name of criterion
'Silhouette'

This property is read-only.

Name of the criterion used for clustering evaluation, returned as 'Silhouette'.

CriterionValues — Criterion values
numeric vector
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This property is read-only.

Criterion values, returned as a numeric vector. Each value corresponds to a proposed number of
clusters in InspectedK.
Data Types: double

Distance — Distance metric
'sqEuclidean' | 'Euclidean' | 'cityblock' | function handle | numeric vector | ...

This property is read-only.

Distance metric used for clustering data and computing the criterion values, returned as one of the
values in this table, a function handle, or a numeric vector returned by the function pdist.

Value Description
'sqEuclidean' Squared Euclidean distance
'Euclidean' Euclidean distance
'cityblock' Sum of absolute differences
'cosine' One minus the cosine of the included angle

between points (treated as vectors)
'correlation' One minus the sample correlation between points

(treated as sequences of values)
'Hamming' Percentage of coordinates that differ
'Jaccard' Percentage of nonzero coordinates that differ

Data Types: single | double | char | function_handle

InspectedK — List of number of proposed clusters
positive integer vector

This property is read-only.

List of the number of proposed clusters for which to compute criterion values, returned as a positive
integer vector.
Data Types: double

OptimalK — Optimal number of clusters
positive integer scalar

This property is read-only.

Optimal number of clusters, returned as a positive integer scalar.
Data Types: double

OptimalY — Optimal clustering solution
positive integer column vector | []

This property is read-only.

Optimal clustering solution corresponding to OptimalK, returned as a positive integer column vector.
Each row of OptimalY represents the cluster index of the corresponding observation (or row) in X. If

35 Functions

35-7000



you specify the clustering solutions as an input argument to evalclusters when you create the
clustering evaluation object, or if the clustering evaluation object is compact (see compact), then
OptimalY is empty.
Data Types: double

Sample Data Properties

Missing — Excluded data
logical column vector | []

This property is read-only.

Excluded data, returned as a logical column vector. If an element of Missing is true, then the
corresponding observation (or row) in the data matrix X is not used in the clustering solutions. If the
clustering evaluation object is compact (see compact), then Missing is empty.
Data Types: double | logical

NumObservations — Number of observations
positive integer scalar

This property is read-only.

Number of observations in the data matrix X, ignoring observations with missing (NaN) values,
returned as a positive integer scalar.
Data Types: double

X — Data used for clustering
numeric matrix | []

This property is read-only.

Data used for clustering, returned as a numeric matrix. Rows correspond to observations, and
columns correspond to variables. If the clustering evaluation object is compact (see compact), then X
is empty.
Data Types: single | double

Object Functions
addK Evaluate additional numbers of clusters
compact Compact clustering evaluation object
plot Plot clustering evaluation object criterion values

Examples

Evaluate Clustering Solution Using Silhouette Criterion

Evaluate the optimal number of clusters using the silhouette clustering evaluation criterion.

Generate sample data containing random numbers from three multivariate distributions with
different parameter values.
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rng("default") % For reproducibility
n = 200;

mu1 = [2 2];
sigma1 = [0.9 -0.0255; -0.0255 0.9];

mu2 = [5 5];
sigma2 = [0.5 0; 0 0.3];

mu3 = [-2 -2];
sigma3 = [1 0; 0 0.9];

X = [mvnrnd(mu1,sigma1,n); ...
     mvnrnd(mu2,sigma2,n); ...
     mvnrnd(mu3,sigma3,n)];

Evaluate the optimal number of clusters using the silhouette criterion. Cluster the data using
kmeans.

evaluation = evalclusters(X,"kmeans","silhouette","KList",1:6)

evaluation = 
  SilhouetteEvaluation with properties:

    NumObservations: 600
         InspectedK: [1 2 3 4 5 6]
    CriterionValues: [NaN 0.8055 0.8551 0.7155 0.6071 0.6232]
           OptimalK: 3

The OptimalK value indicates that, based on the silhouette criterion, the optimal number of clusters
is three.

Plot the silhouette criterion values for each number of clusters tested.

plot(evaluation)
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The plot shows that the highest silhouette value occurs at three clusters, suggesting that the optimal
number of clusters is three.

Create a grouped scatter plot to visually examine the suggested clusters.

clusters = evaluation.OptimalY;
gscatter(X(:,1),X(:,2),clusters,[],"xod")
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The plot shows three distinct clusters within the data: cluster 1 in the lower-left corner, cluster 2 in
the upper-right corner, and cluster 3 near the center of the plot.

More About
Silhouette Value and Criterion

The silhouette value for each point is a measure of how similar that point is to other points in the
same cluster, compared to points in other clusters.

The silhouette value si for the ith point is defined as

si =
bi− ai

max ai, bi
,

where ai is the average distance from the ith point to the other points in the same cluster as i, and bi
is the minimum average distance from the ith point to points in a different cluster, minimized over the
clusters. If the ith point is the only point in its cluster, then the silhouette value si is set to 1.

The silhouette values range from –1 to 1. A high silhouette value indicates that the point is well
matched to its own cluster, and poorly matched to other clusters. If most points have a high silhouette
value, then the clustering solution is appropriate. If many points have a low or negative silhouette
value, then the clustering solution might have too many or too few clusters. You can use silhouette
values as a clustering evaluation criterion with any distance metric.
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The ClusterPriors value determines the silhouette criterion computation. If the value is
'empirical', then the software computes the silhouette criterion value for a clustering solution by
averaging the silhouette values for all points. Each cluster contributes to the criterion value
proportionally based on its size. If the ClusterPriors value is 'equal', then the software
computes the silhouette criterion value for a clustering solution by averaging the silhouette values for
all points within each cluster, and then averaging those values across all clusters. Regardless of its
size, each cluster contributes equally to the criterion value. The optimal number of clusters
corresponds to the solution with the highest silhouette criterion value.

Version History
Introduced in R2013b

References
[1] Kaufman, L., and P. J. Rouseeuw. Finding Groups in Data: An Introduction to Cluster Analysis.

Hoboken, NJ: John Wiley & Sons, Inc., 1990.

[2] Rouseeuw, P. J. “Silhouettes: a graphical aid to the interpretation and validation of cluster
analysis.” Journal of Computational and Applied Mathematics. Vol. 20, No. 1, 1987, pp. 53–65.

See Also
evalclusters | silhouette | CalinskiHarabaszEvaluation | DaviesBouldinEvaluation |
GapEvaluation
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single
Class: dataset

(Not Recommended) Convert dataset variables to single array

Note The dataset data type is not recommended. To work with heterogeneous data, use the
MATLAB® table data type instead. See MATLAB table documentation for more information.

Syntax
B = single(A)
B = single(A,vars)

Description
B = single(A) returns the contents of the dataset A, converted to one single array. The classes of
the variables in the dataset must support the conversion.

B = single(A,vars) returns the contents of the dataset variables specified by vars. vars is a
positive integer, a vector of positive integers, a character vector, a string array, a cell array of
character vectors, or a logical vector.

See Also
dataset | double | replacedata
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size
Class: dataset

(Not Recommended) Size of dataset array

Note The dataset data type is not recommended. To work with heterogeneous data, use the
MATLAB® table data type instead. See MATLAB table documentation for more information.

Syntax
D = SIZE(A)
[NOBS,NVARS] = SIZE(A)
[M1,M2,M3,...,MN] = SIZE(A)
M = size(A,dim)

Description
D = SIZE(A) returns the two-element row vector D = [NOBS,NVARS] containing the number of
observations and number of variables in the dataset A. A dataset array always has two dimensions.

[NOBS,NVARS] = SIZE(A) returns the numbers of observations and variables in the dataset A as
separate output variables.

[M1,M2,M3,...,MN] = SIZE(A), for N > 2, returns M1 = NOBS, M2 = NVARS, and M3,..,MN = 1.

M = size(A,dim) returns the length of the dimension specified by the scalar dim:

• M = size(A,1) returns NOBS
• M = size(A,2) returns NVARS
• M = size(A,k) returns 1 for k > 2

See Also
length | ndims | numel
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slicesample
Slice sampler

Syntax
rnd = slicesample(initial,nsamples,'pdf',pdf)
rnd = slicesample(initial,nsamples,'logpdf',logpdf)
[rnd,neval] = slicesample(initial,...)
[rnd,neval] = slicesample(initial,...,Name,Value)

Description
rnd = slicesample(initial,nsamples,'pdf',pdf) generates nsamples random samples
using the slice sampling method (see “Algorithms” on page 35-7011). pdf gives the target probability
density function (pdf). initial is a row vector or scalar containing the initial value of the random
sample sequences.

rnd = slicesample(initial,nsamples,'logpdf',logpdf) generates samples using the
logarithm of the pdf.

[rnd,neval] = slicesample(initial,...) returns the average number of function evaluations
that occurred in the slice sampling.

[rnd,neval] = slicesample(initial,...,Name,Value) generates random samples with
additional options specified by one or more Name,Value pair arguments.

Input Arguments
initial

Initial point, a scalar or row vector. Set initial so pdf(initial) is a strictly positive scalar.
length(initial) is the number of dimensions of each sample.

nsamples

Positive integer, the number of samples that slicesample generates.

pdf

Handle to a function that generates the probability density function, specified with @. pdf can be
unnormalized, meaning it need not integrate to 1.

logpdf

Handle to a function that generates the logarithm of the probability density function, specified with @.
logpdf can be the logarithm of an unnormalized pdf.
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Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.

burnin

Nonnegative integer, the number of samples to generate and discard before generating the samples
to return. The slice sampling algorithm is a Markov chain whose stationary distribution is
proportional to that of the pdf argument. Set burnin to a high enough value that you believe the
Markov chain approximately reaches stationarity after burnin samples.

Default: 0

thin

Positive integer, where slicesample discards every thin - 1 samples and returns the next. The
slice sampling algorithm is a Markov chain, so the samples are serially correlated. To reduce the
serial correlation, choose a larger value of thin.

Default: 1

width

Width of the interval around the current sample, a scalar or vector of positive values. slicesample
begins with this interval and searches for an appropriate region containing the points of pdf that
evaluate to a large enough value.

• If width is a scalar and the samples have multiple dimensions, slicesample uses width for
each dimension.

• If width is a vector, it should have the same length as initial.

Default: 10

Output Arguments
rnd

nsamples-by-length(initial) matrix, where each row is one sample.

neval

Scalar, the mean number of function evaluations per sample. neval includes the burnin and thin
evaluations, not just the evaluations of samples returned in rnd. Therefore the total number of
function evaluations is

neval*(nsamples*thin + burnin).

Examples
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Generate Random Samples From a Multimodal Density

This example shows how to generate random samples from a multimodal density using
slicesample.

Define a function proportional to a multimodal density.

rng default  % For reproducibility
f = @(x) exp(-x.^2/2).*(1 + (sin(3*x)).^2).*...
    (1 + (cos(5*x).^2));
area = integral(f,-5,5);

Generate 2000 samples from the density, using a burn-in period of 1000, and keeping one in five
samples.

N = 2000;
x = slicesample(1,N,'pdf',f,'thin',5,'burnin',1000);

Plot a histogram of the sample.

[binheight,bincenter] = hist(x,50);
h = bar(bincenter,binheight,'hist');
h.FaceColor = [.8 .8 1];

Scale the density to have the same area as the histogram, and superimpose it on the histogram.

hold on
h = gca;
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xd = h.XLim;
xgrid = linspace(xd(1),xd(2),1000);
binwidth = (bincenter(2)-bincenter(1));
y = (N*binwidth/area) * f(xgrid);
plot(xgrid,y,'r','LineWidth',2)
hold off

The samples seem to fit the theoretical distribution well, so the burnin value seems adequate.

Tips
• There are no definitive suggestions for choosing appropriate values for burnin, thin, or width.

Choose starting values of burnin and thin, and increase them, if necessary, to give the requisite
independence and marginal distributions. See Neal [1] for details of the effect of adjusting width.

Algorithms
At each point in the sequence of random samples, slicesample selects the next point by “slicing”
the density to form a neighborhood around the previous point where the density is above some value.
Consequently, the sample points are not independent. Nearby points in the sequence tend to be closer
together than they would be from a sample of independent values. For many purposes, the entire set
of points can be used as a sample from the target distribution. However, when this type of serial
correlation is a problem, the burnin and thin parameters can help reduce that correlation.
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slicesample uses the slice sampling algorithm of Neal [1]. For numerical stability, it converts a pdf
function into a logpdf function. The algorithm to resize the support region for each level, called
“stepping-out” and “stepping-in,” was suggested by Neal.

Version History
Introduced in R2006a

References

[1] Neal, Radford M. "Slice Sampling." Ann. Stat. Vol. 31, No. 3, pp. 705–767, 2003. Available at
Project Euclid.

See Also
mhsample | rand | randsample

Topics
“Representing Sampling Distributions Using Markov Chain Samplers” on page 7-9
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skewness
Skewness

Syntax
y = skewness(X)
y = skewness(X,flag)
y = skewness(X,flag,'all')
y = skewness(X,flag,dim)
y = skewness(X,flag,vecdim)

Description
y = skewness(X) returns the sample skewness of X.

• If X is a vector, then skewness(X) returns a scalar value that is the skewness of the elements in
X.

• If X is a matrix, then skewness(X) returns a row vector containing the sample skewness of each
column in X.

• If X is a multidimensional array, then skewness(X) operates along the first nonsingleton
dimension of X.

y = skewness(X,flag) specifies whether to correct for bias (flag = 0) or not (flag = 1, the
default). When X represents a sample from a population, the skewness of X is biased, meaning it
tends to differ from the population skewness by a systematic amount based on the sample size. You
can set flag to 0 to correct for this systematic bias.

y = skewness(X,flag,'all') returns the skewness of all elements of X.

y = skewness(X,flag,dim) returns the skewness along the operating dimension dim of X.

y = skewness(X,flag,vecdim) returns the skewness over the dimensions specified in the vector
vecdim. For example, if X is a 2-by-3-by-4 array, then skewness(X,1,[1 2]) returns a 1-by-1-by-4
array. Each element of the output array is the biased skewness of the elements on the corresponding
page of X.

Examples

Find Skewness of Matrix

Set the random seed for reproducibility of the results.

rng('default')

Generate a matrix with 5 rows and 4 columns.

X = randn(5,4)

X = 5×4
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    0.5377   -1.3077   -1.3499   -0.2050
    1.8339   -0.4336    3.0349   -0.1241
   -2.2588    0.3426    0.7254    1.4897
    0.8622    3.5784   -0.0631    1.4090
    0.3188    2.7694    0.7147    1.4172

Find the sample skewness of X.

y = skewness(X)

y = 1×4

   -0.9362    0.2333    0.4363   -0.4075

y is a row vector containing the sample skewness of each column in X.

Correct for Bias in Sample Skewness

For an input vector, correct for bias in the calculation of skewness by specifying the flag input
argument.

Set the random seed for reproducibility of the results.

rng('default') 

Generate a vector of length 10.

x = randn(10,1)

x = 10×1

    0.5377
    1.8339
   -2.2588
    0.8622
    0.3188
   -1.3077
   -0.4336
    0.3426
    3.5784
    2.7694

Find the biased skewness of x. By default, skewness sets the value of flag to 1 for computing the
biased skewness.

y1 = skewness(x) % flag is 1 by default

y1 = 0.1061

Find the bias-corrected skewness of x by setting the value of flag to 0.

y2 = skewness(x,0)

y2 = 0.1258

35 Functions

35-7014



Find Skewness Along Given Dimension

Find the skewness along different dimensions for a multidimensional array.

Set the random seed for reproducibility of the results.

rng('default') 

Create a 4-by-3-by-2 array of random numbers.

X = randn([4,3,2])

X = 
X(:,:,1) =

    0.5377    0.3188    3.5784
    1.8339   -1.3077    2.7694
   -2.2588   -0.4336   -1.3499
    0.8622    0.3426    3.0349

X(:,:,2) =

    0.7254   -0.1241    0.6715
   -0.0631    1.4897   -1.2075
    0.7147    1.4090    0.7172
   -0.2050    1.4172    1.6302

Find the skewness of X along the default dimension.

Y1 = skewness(X)

Y1 = 
Y1(:,:,1) =

   -0.8084   -0.5578   -1.0772

Y1(:,:,2) =

   -0.0403   -1.1472   -0.6632

By default, skewness operates along the first dimension of X whose size does not equal 1. In this case,
this dimension is the first dimension of X. Therefore, Y1 is a 1-by-3-by-2 array.

Find the biased skewness of X along the second dimension.

Y2 = skewness(X,1,2)

Y2 = 
Y2(:,:,1) =

    0.6956
   -0.5575
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    0.0049
    0.6033

Y2(:,:,2) =

   -0.6969
    0.1828
    0.7071
   -0.6714

Y2 is a 4-by-1-by-2 array.

Find the biased skewness of X along the third dimension.

Y3 = skewness(X,1,3)

Y3 = 4×3
10-15 ×

         0    0.1597    0.5062
    0.1952         0         0
         0   -0.2130         0
    0.3654         0    0.4807

Y3 is a 4-by-3 matrix.

Find Skewness Along Vector of Dimensions

Find the skewness over multiple dimensions by using the 'all' and vecdim input arguments.

Set the random seed for reproducibility of the results.

rng('default')

Create a 4-by-3-by-2 array of random numbers.

X = randn([4 3 2])

X = 
X(:,:,1) =

    0.5377    0.3188    3.5784
    1.8339   -1.3077    2.7694
   -2.2588   -0.4336   -1.3499
    0.8622    0.3426    3.0349

X(:,:,2) =

    0.7254   -0.1241    0.6715
   -0.0631    1.4897   -1.2075
    0.7147    1.4090    0.7172
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   -0.2050    1.4172    1.6302

Find the biased skewness of X.

yall = skewness(X,1,'all')

yall = 0.0916

yall is the biased skewness of the entire input data set X.

Find the biased skewness of each page of X by specifying the first and second dimensions.

ypage = skewness(X,1,[1 2])

ypage = 
ypage(:,:,1) =

    0.1070

ypage(:,:,2) =

   -0.6263

For example, ypage(1,1,2) is the biased skewness of the elements in X(:,:,2).

Find the biased skewness of the elements in each X(:,i,:) slice by specifying the first and third
dimensions.

ycol = skewness(X,1,[1 3])

ycol = 1×3

   -1.0755   -0.3108   -0.2209

For example, ycol(3) is the biased skewness of the elements in X(:,3,:).

Input Arguments
X — Input data
vector | matrix | multidimensional array

Input data that represents a sample from a population, specified as a vector, matrix, or
multidimensional array.

• If X is a vector, then skewness(X) returns a scalar value that is the skewness of the elements in
X.

• If X is a matrix, then skewness(X) returns a row vector containing the sample skewness of each
column in X.

• If X is a multidimensional array, then skewness(X) operates along the first nonsingleton
dimension of X.

To specify the operating dimension when X is a matrix or an array, use the dim input argument.
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skewness treats NaN values in X as missing values and removes them.
Data Types: single | double

flag — Indicator for bias
1 (default) | 0

Indicator for the bias, specified as 0 or 1.

• If flag is 1 (default), then the skewness of X is biased, meaning it tends to differ from the
population skewness by a systematic amount based on the sample size.

• If flag is 0, then skewness corrects for the systematic bias.

Data Types: single | double | logical

dim — Dimension
positive integer

Dimension along which to operate, specified as a positive integer. If you do not specify a value for
dim, then the default is the first dimension of X whose size does not equal 1.

Consider the skewness of a matrix X:

• If dim is equal to 1, then skewness returns a row vector that contains the sample skewness of
each column in X.

• If dim is equal to 2, then skewness returns a column vector that contains the sample skewness of
each row in X.

If dim is greater than ndims(X) or if size(X,dim) is 1, then skewness returns an array of NaNs
the same size as X.
Data Types: single | double

vecdim — Vector of dimensions
positive integer vector

Vector of dimensions, specified as a positive integer vector. Each element of vecdim represents a
dimension of the input array X. The output y has length 1 in the specified operating dimensions. The
other dimension lengths are the same for X and y.

For example, if X is a 2-by-3-by-3 array, then skewness(X,1,[1 2]) returns a 1-by-1-by-3 array.
Each element of the output array is the biased skewness of the elements on the corresponding page
of X.
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Data Types: single | double

Output Arguments
y — Skewness
scalar | vector | matrix | multidimensional array

Skewness, returned as a scalar, vector, matrix, or multidimensional array.

Algorithms
Skewness is a measure of the asymmetry of the data around the sample mean. If skewness is
negative, the data spreads out more to the left of the mean than to the right. If skewness is positive,
the data spreads out more to the right. The skewness of the normal distribution on page B-125 (or
any perfectly symmetric distribution) is zero.

The skewness of a distribution is defined as

s = E x− μ 3

σ3 ,

where µ is the mean of x, σ is the standard deviation of x, and E(t) represents the expected value of
the quantity t. The skewness function computes a sample version of this population value.

When you set flag to 1, the skewness is biased, and the following equation applies:

s1 =

1
n ∑i = 1

n
xi− x 3

1
n ∑i = 1

n
xi− x 2

3 .

When you set flag to 0, skewness corrects for the systematic bias, and the following equation
applies:

s0 = n n− 1
n− 2 s1 .

This bias-corrected equation requires that X contain at least three elements.

Version History
Introduced before R2006a

Extended Capabilities
Tall Arrays
Calculate with arrays that have more rows than fit in memory.

This function fully supports tall arrays. For more information, see “Tall Arrays”.
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C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• The 'all' and vecdim input arguments are not supported.
• The dim input argument must be a compile-time constant.
• If you do not specify the dim input argument, the working (or operating) dimension can be
different in the generated code. As a result, run-time errors can occur. For more details, see
“Automatic dimension restriction” (MATLAB Coder).

For more information on code generation, see “Introduction to Code Generation” on page 34-2 and
“General Code Generation Workflow” on page 34-5.

Thread-Based Environment
Run code in the background using MATLAB® backgroundPool or accelerate code with Parallel
Computing Toolbox™ ThreadPool.

This function fully supports thread-based environments. For more information, see “Run MATLAB
Functions in Thread-Based Environment”.

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

Usage notes and limitations:

• The 'all' and vecdim input arguments are not supported.

For more information, see “Run MATLAB Functions on a GPU” (Parallel Computing Toolbox).

See Also
kurtosis | moment | mean | std | var

Topics
“Normal Distribution” on page B-125
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sobolset
Sobol quasirandom point set

Description
sobolset is a quasirandom point set object that produces points from the Sobol sequence. The Sobol
sequence is a base-2 digital sequence that fills space in a highly uniform manner.

Creation
Syntax
p = sobolset(d)
p = sobolset(d,Name,Value)

Description

p = sobolset(d) constructs a d-dimensional point set p, which is a sobolset object with default
property settings. The input argument d corresponds to the Dimensions property of p.

p = sobolset(d,Name,Value) sets properties on page 35-7021 of p using one or more name-
value pair arguments. Enclose each property name in quotes. For example, sobolset(5,'Leap',2)
creates a five-dimensional point set from the first point, fourth point, seventh point, tenth point, and
so on.

The returned object p encapsulates properties of a Sobol quasirandom sequence. The point set is
finite, with a length determined by the Skip and Leap properties and by limits on the size of the
point set indices (maximum value of 253). Values of the point set are generated whenever you access p
using net or parenthesis indexing. Values are not stored within p.

Properties
Dimensions — Number of dimensions
positive integer scalar in interval [1,1111]

This property is read-only.

Number of dimensions of the points in the point set, specified as a positive integer scalar in the
interval [1,1111]. For example, each point in the point set p with p.Dimensions = 5 has five values.

Use the d input argument to specify the number of dimensions when you create a point set using the
sobolset function.

Use the reduceDimensions object function to reduce the number of dimensions after you create a
point set.

Leap — Interval between points
0 (default) | positive integer scalar

 sobolset

35-7021



Interval between points in the sequence, specified as a positive integer scalar. In other words, the
Leap property of a point set specifies the number of points in the sequence to leap over and omit for
every point taken. The default Leap value is 0, which corresponds to taking every point from the
sequence.

Leaping is a technique used to improve the quality of a point set. However, you must choose the Leap
values with care. Many Leap values create sequences that fail to touch on large sub-hyper-rectangles
of the unit hypercube and, therefore, fail to be a uniform quasirandom point set. For more
information, see [4].
Example: p = sobolset(__,'Leap',50);
Example: p.Leap = 100;

PointOrder — Point generation method
'standard' (default) | 'graycode'

Point generation method, specified as 'standard' or 'graycode'. The PointOrder property
specifies the order in which the Sobol sequence points are produced. When PointOrder is set to
'standard', the points produced match the original Sobol sequence implementation. When
PointOrder is set to 'graycode', the sequence is generated by an implementation that uses the
Gray code of the index instead of the index itself.

You can use the 'graycode' option for faster sequence generation, but the software then changes
the order of the generated points. For more information on the Gray code implementation, see [1].
Example: p = sobolset(__,'PointOrder','graycode');
Example: p.PointOrder = 'standard';

ScrambleMethod — Settings that control scrambling
0x0 structure (default) | structure with Type and Options fields

Settings that control the scrambling of the sequence, specified as a structure with these fields:

• Type — A character vector containing the name of the scramble
• Options — A cell array of parameter values for the scramble

Use the scramble object function to set scrambles. For a list of valid scramble types, see the type
input argument of scramble. An error occurs if you set an invalid scramble type for a given point
set.

The ScrambleMethod property also accepts an empty matrix as a value. The software then clears all
scrambling and sets the property to contain a 0x0 structure.

Skip — Number of initial points in sequence to omit
0 (default) | positive integer scalar

Number of initial points in the sequence to omit from the point set, specified as a positive integer
scalar.

Initial points of a sequence sometimes exhibit undesirable properties. For example, the first point is
often (0,0,0,...), which can cause the sequence to be unbalanced because the counterpart of the
point, (1,1,1,...), never appears. Also, initial points often exhibit correlations among different
dimensions, and these correlations disappear later in the sequence.
Example: p = sobolset(__,'Skip',2e3);
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Example: p.Skip = 1e3;

Type — Sequence type
'Sobol' (default)

This property is read-only.

Sequence type on which the quasirandom point set p is based, specified as 'Sobol'.

Object Functions
net Generate quasirandom point set
reduceDimensions Reduce dimensions of Sobol point set
scramble Scramble quasirandom point set

You can also use the following MATLAB functions with a sobolset object. The software treats the
point set object like a matrix of multidimensional points.
length Length of largest array dimension
size Array size

Examples

Create Sobol Point Set

Generate a three-dimensional Sobol point set, skip the first 1000 values, and then retain every 101st
point.

p = sobolset(3,'Skip',1e3,'Leap',1e2)

p = 
Sobol point set in 3 dimensions (89180190640991 points)

Properties:
              Skip : 1000
              Leap : 100
    ScrambleMethod : none
        PointOrder : standard

Apply a random linear scramble combined with a random digital shift by using scramble.

p = scramble(p,'MatousekAffineOwen')

p = 
Sobol point set in 3 dimensions (89180190640991 points)

Properties:
              Skip : 1000
              Leap : 100
    ScrambleMethod : MatousekAffineOwen
        PointOrder : standard

Generate the first four points by using net.

X0 = net(p,4)
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X0 = 4×3

    0.7601    0.5919    0.9529
    0.1795    0.0856    0.0491
    0.5488    0.0785    0.8483
    0.3882    0.8771    0.8755

Generate every third point, up to the eleventh point, by using parenthesis indexing.

X = p(1:3:11,:)

X = 4×3

    0.7601    0.5919    0.9529
    0.3882    0.8771    0.8755
    0.6905    0.4951    0.8464
    0.1955    0.5679    0.3192

Tips
• The Skip and Leap properties are useful for parallel applications. For example, if you have a

Parallel Computing Toolbox license, you can partition a sequence of points across N different
workers by using the function labindex. On each nth worker, set the Skip property of the point
set to n – 1 and the Leap property to N – 1. The following code shows how to partition a sequence
across three workers.

Nworkers = 3;
p = sobolset(10,'Leap',Nworkers-1);
spmd(Nworkers)
    p.Skip = labindex - 1;

    % Compute something using points 1,4,7...
    % or points 2,5,8... or points 3,6,9...
end

Algorithms
Sobol Sequence Generation

Consider a default sobolset object p that contains d-dimensional points. Each p(i,:) is a point in a
Sobol sequence. The jth coordinate of the ith point, p(i,j), is equal to

0, i = 1
γi(1)v j(1)⊕ γi(2)v j(2)⊕ ..., i > 1.

• The γi(n) values are 0s or 1s such that

i− 1 = ∑
n = 1

γi(n)2n− 1 .

In other words, the γi(n) values are the binary digits of the integer i – 1.
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• The vj(n) values are called direction numbers. They are uniquely defined for each coordinate j. For
more details on these values, see “Direction Numbers Generation” on page 35-7025.

• The ⊕ operator is the bitwise exclusive-or operator. For two numbers expressed in binary, the ⊕
operator compares the digits in each position. For a given digit position, the ⊕ operator returns a
1 if the digits in that position differ and returns a 0 if the digits in that position are the same.

• For example, 19⊕ 24 = (10011)2⊕ (11000)2 = (01011)2 = 11.
• Similarly, 12 ⊕

3
4 = (0.1)2⊕ (0.11)2 = (0.01)2 = 1

4 .

For more information, see [3].

Direction Numbers Generation

The set of direction numbers vj(n) depends on the coordinate j. Define the direction numbers in terms
of mj(n) values:

v j(n): =
m j(n)

2n .

For each j, you can generate the direction numbers by selecting the following:

• A primitive polynomial in ℤ2 of some degree sj

xs j + a j(1)xs j− 1 + a j(2)xs j− 2 + ... + a j(s j− 1)x + 1.

Each coefficient in the polynomial is either 0 or 1.
• sj initial direction numbers. For each initial direction number, the corresponding mj(n) value must

be either 1 or an odd number less than 2n.

The remaining direction numbers are determined by the following recurrence relation, which uses
the coefficients of the primitive polynomial, the previous direction numbers, and the ⊕ bitwise
exclusive-or operator.

m j(n): = 2a j(1)m j(n− 1)⊕ 22a j(2)m j(n− 2)⊕ ...⊕ 2s j− 1a j(s j− 1)m j(n− s j + 1)⊕ 2s jm j(n− s j)
⊕m j(n− s j) .

sobolset uses the same primitive polynomials and initial direction numbers described in [3]. These
parameters are provided for the first 1111 dimensions.

Version History
Introduced in R2008a
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See Also
haltonset | net | reduceDimensions | scramble

Topics
“Generating Quasi-Random Numbers” on page 7-12
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sortClasses
Package: mlearnlib.graphics.chart

Sort classes of confusion matrix chart

Syntax
sortClasses(cm,order)

Description
sortClasses(cm,order) sorts the classes of the confusion matrix chart cm in the order specified
by order. You can sort the classes in their natural order, by the values along the diagonal of the
confusion matrix, or in fixed order that you specify.

Examples

Sort Classes by Precision or Recall

Create a confusion matrix chart and sort the classes of the chart according to the class-wise true
positive rate (recall) or the class-wise positive predictive value (precision).

Load and inspect the arrhythmia data set.

load arrhythmia
isLabels = unique(Y);
nLabels = numel(isLabels)

nLabels = 13

tabulate(categorical(Y))

  Value    Count   Percent
      1      245     54.20%
      2       44      9.73%
      3       15      3.32%
      4       15      3.32%
      5       13      2.88%
      6       25      5.53%
      7        3      0.66%
      8        2      0.44%
      9        9      1.99%
     10       50     11.06%
     14        4      0.88%
     15        5      1.11%
     16       22      4.87%

The data contains 16 distinct labels that describe various degrees of arrhythmia, but the response (Y)
includes only 13 distinct labels.

Train a classification tree and predict the resubstitution response of the tree.
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Mdl = fitctree(X,Y);
predictedY = resubPredict(Mdl);

Create a confusion matrix chart from the true labels Y and the predicted labels predictedY. Specify
'RowSummary' as 'row-normalized' to display the true positive rates and false positive rates in
the row summary. Also, specify 'ColumnSummary' as 'column-normalized' to display the positive
predictive values and false discovery rates in the column summary.

fig = figure;
cm = confusionchart(Y,predictedY,'RowSummary','row-normalized','ColumnSummary','column-normalized');

Resize the container of the confusion chart so percentages appear in the row summary.

fig_Position = fig.Position;
fig_Position(3) = fig_Position(3)*1.5;
fig.Position = fig_Position;

To sort the confusion matrix according to the true positive rate, normalize the cell values across each
row by setting the Normalization property to 'row-normalized' and then use sortClasses.
After sorting, reset the Normalization property back to 'absolute' to display the total number of
observations in each cell.

cm.Normalization = 'row-normalized'; 
sortClasses(cm,'descending-diagonal')
cm.Normalization = 'absolute'; 
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To sort the confusion matrix according to the positive predictive value, normalize the cell values
across each column by setting the Normalization property to 'column-normalized' and then
use sortClasses. After sorting, reset the Normalization property back to 'absolute' to display
the total number of observations in each cell.

cm.Normalization = 'column-normalized';
sortClasses(cm,'descending-diagonal')
cm.Normalization = 'absolute';  
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Sort Classes to Cluster Similar Classes

Create a confusion matrix chart by using the confusionchart function, and sort the classes to
cluster similar classes by using the 'cluster' option of the sortClasses function. This example
also shows how to cluster by using the pdist, linkage, and optimalleaforder functions.

Generate a sample data set that contains eight distinct classes.

rng('default') % For reproducibility 
trueLabels = randi(8,1000,1);
predictedLabels = trueLabels;

Insert confusion among classes {1,4,7}, {2,8}, and {5,6} for the first 200 samples.

rename = [4 8 3 7 6 5 1 2];
predictedLabels(1:100) = rename(predictedLabels(1:100));
rename = [7 8 3 1 6 5 4 2];
predictedLabels(101:200) = rename(predictedLabels(101:200));

Create a confusion matrix chart from the true labels trueLabels and the predicted labels
predictedLabels.

figure
cm1 = confusionchart(trueLabels,predictedLabels);
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Cluster Using 'cluster'

Sort the classes to cluster similar classes by using the 'cluster' option.

sortClasses(cm1,'cluster')
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Cluster Using pdist, linkage, and optimalleaforder

Instead of using the 'cluster' option, you can use the pdist, linkage, and optimalleaforder
functions to cluster confusion matrix values. You can customize clustering by using the options of
these functions. For details, see the corresponding function reference pages.

Suppose you have a confusion matrix and class labels.

m = confusionmat(trueLabels,predictedLabels);
labels = [1 2 3 4 5 6 7 8];

Compute the clustered matrix and find the corresponding class labels by using pdist, linkage, and
optimalleaforder. The pdist function computes the Euclidean distance D between pairs of the
confusion matrix values. The optimalleaforder function returns an optimal leaf ordering for the
hierarchical binary cluster tree linkage(D) using the distance D.

D = pdist(m);
idx = optimalleaforder(linkage(D),D);
clusteredM = m(idx,idx);
clusteredLabels = labels(idx);

Create a confusion matrix chart using the clustered matrix and the corresponding class labels. Then,
sort the classes using the class labels.

cm2 = confusionchart(clusteredM,clusteredLabels);
sortClasses(cm2,clusteredLabels)
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The sorted confusion matrix chart cm2, which you created by using pdist, linkage, and
optimalleaforder, is identical to the sorted confusion matrix chart cm1, which you created by
using the 'cluster' option.

Sort Classes in Fixed Order

Create a confusion matrix chart and sort the classes of the chart in a fixed order.

Load Fisher's iris data set.

load fisheriris
X = meas([51:150,1:50],:);
Y = species([51:150,1:50],:);

X is a numeric matrix that contains four petal measurements for 150 irises. Y is a cell array of
character vectors that contains the corresponding iris species.

Train a k-nearest neighbor (KNN) classifier, where the number of nearest neighbors in the predictors
(k) is 5. A good practice is to standardize numeric predictor data.

Mdl = fitcknn(X,Y,'NumNeighbors',5,'Standardize',1);

Predict the labels of the training data.

predictedY = resubPredict(Mdl);
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Create a confusion matrix chart from the true labels Y and the predicted labels predictedY.

cm = confusionchart(Y,predictedY);

By default, confusionchart sorts the classes into their natural order as defined by sort. In this
example, the class labels are character vectors, so confusionchart sorts the classes alphabetically.
Reorder the classes of the confusion matrix chart in a fixed order.

sortClasses(cm,["versicolor","setosa","virginica"])
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Input Arguments
cm — Confusion matrix chart
ConfusionMatrixChart object

Confusion matrix chart, specified as a ConfusionMatrixChart object. To create a confusion matrix
chart, use confusionchart,

order — Order in which to sort classes
'auto' | 'ascending-diagonal' | 'descending-diagonal' | 'cluster' | array

Order in which to sort the classes of the confusion matrix chart, specified as one of these values:

• 'auto' — Sorts the classes into their natural order as defined by the sort function. For example,
if the class labels of the confusion matrix chart are a string vector, then sort alphabetically. If the
class labels are an ordinal categorical vector, then use the order of the class labels.

• 'ascending-diagonal' — Sort the classes so that the values along the diagonal of the
confusion matrix increase from top left to bottom right.

• 'descending-diagonal' — Sort the classes so that the values along the diagonal of the
confusion matrix decrease from top left to bottom right.

• 'cluster' — Sort the classes to cluster similar classes. You can customize clustering by using
the pdist, linkage, and optimalleaforder functions. For details, see “Sort Classes to Cluster
Similar Classes” on page 35-7030.
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• Array — Sort the classes in a unique order specified by a categorical vector, numeric vector, string
vector, character array, cell array of character vectors, or logical vector. The array must be a
permutation of the ClassLabels property of the confusion matrix chart.

Example: sortClasses(cm,'ascending-diagonal')
Example: sortClasses(cm,["owl","cat","toad"])

Version History
Introduced in R2018b

See Also
Functions
categorical | confusionchart | pdist | optimalleaforder | linkage

Properties
ConfusionMatrixChart Properties
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sortrows
Class: dataset

(Not Recommended) Sort rows of dataset array

Note The dataset data type is not recommended. To work with heterogeneous data, use the
MATLAB® table data type instead. See MATLAB table documentation for more information.

Syntax
B = sortrows(A)
B = sortrows(A,vars)
B = sortrows(A,'obsnames')
B = sortrows(A,vars,mode)
[B,idx] = sortrows(A)

Description
B = sortrows(A) returns a copy of the dataset array A, with the observations sorted in ascending
order by all of the variables in A. The observations in B are sorted first by the first variable, next by
the second variable, and so on. Each variable in A must be a valid input to sort, or, if a variable has
multiple columns, to the MATLAB sortrows function or to its ownsortrows method.

B = sortrows(A,vars) sorts the observations in A by the variables specified by vars. vars is a
positive integer, a vector of positive integers, a character vector, a string array, a cell array of
character vectors, or a logical vector.

B = sortrows(A,'obsnames') sorts the observations in A by observation name.

B = sortrows(A,vars,mode) sorts in the direction specified by mode. When mode is 'ascend'
(the default) or 'descend', sortrows sorts A by the variables specified by vars in ascending or
descending order, respectively. mode can also be a string array or cell array containing 'ascend' or
'descend', to specify a different sorting direction for each variable in vars. Specify [] for vars to
sort using all variables.

[B,idx] = sortrows(A) also returns an index vector idx such that B = A(idx,:).

Examples
Sort the data in hospital.mat by age and then by last name:

load hospital
hospital(1:5,1:3)
ans = 
            LastName       Sex       Age
 YPL-320    'SMITH'        Male      38 
 GLI-532    'JOHNSON'      Male      43 
 PNI-258    'WILLIAMS'     Female    38 
 MIJ-579    'JONES'        Female    40 
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 XLK-030    'BROWN'        Female    49 

hospital = sortrows(hospital,{'Age','LastName'});
hospital(1:5,1:3)
ans = 
            LastName       Sex       Age
 REV-997    'ALEXANDER'    Male      25 
 FZR-250    'HALL'         Male      25 
 LIM-480    'HILL'         Female    25 
 XUE-826    'JACKSON'      Male      25 
 SCQ-914    'JAMES'        Male      25 

Sort the data in hospital by gender in ascending order, and age in descending order.

hospital = sortrows(hospital,{'Sex','Age'},{'ascend','descend'});
hospital(1:5,1:3)
ans = 

               LastName        Sex       Age
    XLK-030    'BROWN'         Female    49 
    GGU-691    'HUGHES'        Female    49 
    KKL-155    'ADAMS'         Female    48 
    HQO-561    'BRYANT'        Female    48 
    BKD-785    'CLARK'         Female    48 

hospital(end-4:end,1:3)
ans = 

               LastName           Sex     Age
    VNL-702    'MOORE'            Male    28 
    REV-997    'ALEXANDER'        Male    25 
    FZR-250    'HALL'             Male    25 
    XUE-826    'JACKSON'          Male    25 
    SCQ-914    'JAMES'            Male    25 

See Also
dataset | unique

Topics
“Sort Observations in Dataset Arrays” on page 2-83
“Dataset Arrays” on page 2-113
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sparsefilt
Feature extraction by using sparse filtering

Syntax
Mdl = sparsefilt(X,q)
Mdl = sparsefilt(X,q,Name,Value)

Description
Mdl = sparsefilt(X,q) returns a sparse filtering model object that contains the results from
applying sparse filtering to the table or matrix of predictor data X containing p variables. q is the
number of features to extract from X, therefore sparsefilt learns a p-by-q matrix of transformation
weights. For undercomplete or overcomplete feature representations, q can be less than or greater
than the number of predictor variables, respectively.

• To access the learned transformation weights, use Mdl.TransformWeights.
• To transform X to the new set of features by using the learned transformation, pass Mdl and X to

transform.

Mdl = sparsefilt(X,q,Name,Value) uses additional options specified by one or more
Name,Value pair arguments. For example, you can standardize the predictor data or apply L2

regularization.

Examples

Create Sparse Filter

Create a SparseFiltering object by using the sparsefilt function.

Load the SampleImagePatches image patches.

data = load('SampleImagePatches');
size(data.X)

ans = 1×2

        5000         363

There are 5,000 image patches, each containing 363 features.

Extract 100 features from the data.

rng default % For reproducibility
Q = 100;
obj = sparsefilt(data.X,Q,'IterationLimit',100)

Warning: Solver LBFGS was not able to converge to a solution.
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obj = 
  SparseFiltering
            ModelParameters: [1x1 struct]
              NumPredictors: 363
         NumLearnedFeatures: 100
                         Mu: []
                      Sigma: []
                    FitInfo: [1x1 struct]
           TransformWeights: [363x100 double]
    InitialTransformWeights: []

  Properties, Methods

sparsefilt issues a warning because it stopped due to reaching the iteration limit, instead of
reaching a step-size limit or a gradient-size limit. You can still use the learned features in the
returned object by calling the transform function.

Restart sparsefilt

Continue optimizing a sparse filter.

Load the SampleImagePatches image patches.

data = load('SampleImagePatches');
size(data.X)

ans = 1×2

        5000         363

There are 5,000 image patches, each containing 363 features.

Extract 100 features from the data and use an iteration limit of 20.

rng default % For reproducibility
q = 100;
Mdl = sparsefilt(data.X,q,'IterationLimit',20);

Warning: Solver LBFGS was not able to converge to a solution.

View the resulting transformation matrix as image patches.

wts = Mdl.TransformWeights;
W = reshape(wts,[11,11,3,q]);
[dx,dy,~,~] = size(W);
for f = 1:q
    Wvec = W(:,:,:,f);
    Wvec = Wvec(:);
    Wvec =(Wvec - min(Wvec))/(max(Wvec) - min(Wvec));
    W(:,:,:,f) = reshape(Wvec,dx,dy,3);
end
m   = ceil(sqrt(q));
n   = m;
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img = zeros(m*dx,n*dy,3);
f   = 1;
for i = 1:m
    for j = 1:n
        if (f <= q)
            img((i-1)*dx+1:i*dx,(j-1)*dy+1:j*dy,:) = W(:,:,:,f);
            f = f+1;
        end
    end
end
imshow(img,'InitialMagnification',300);

The image patches appear noisy. To clean up the noise, try more iterations. Restart the optimization
from where it stopped for another 40 iterations.

Mdl = sparsefilt(data.X,q,'IterationLimit',40,'InitialTransformWeights',wts);

Warning: Solver LBFGS was not able to converge to a solution.

View the updated transformation matrix as image patches.

wts = Mdl.TransformWeights;
W = reshape(wts,[11,11,3,q]);
[dx,dy,~,~] = size(W);
for f = 1:q
    Wvec = W(:,:,:,f);
    Wvec = Wvec(:);
    Wvec =(Wvec - min(Wvec))/(max(Wvec) - min(Wvec));
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    W(:,:,:,f) = reshape(Wvec,dx,dy,3);
end
m   = ceil(sqrt(q));
n   = m;
img = zeros(m*dx,n*dy,3);
f   = 1;
for i = 1:m
    for j = 1:n
        if (f <= q)
            img((i-1)*dx+1:i*dx,(j-1)*dy+1:j*dy,:) = W(:,:,:,f);
            f = f+1;
        end
    end
end
imshow(img,'InitialMagnification',300);

These images are less noisy.

Input Arguments
X — Predictor data
numeric matrix | table

Predictor data, specified as an n-by-p numeric matrix or table. Rows correspond to individual
observations and columns correspond to individual predictor variables. If X is a table, then all of its
variables must be numeric vectors.
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Data Types: single | double | table

q — Number of features to extract
positive integer

Number of features to extract from the predictor data, specified as a positive integer.

sparsefilt stores a p-by-q transform weight matrix in Mdl.TransformWeights. Therefore,
setting very large values for q can result in greater memory consumption and increased computation
time.
Data Types: single | double

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: 'Standardize',true,'Lambda',1 standardizes the predictor data and applies a penalty
of 1 to the transform weight matrix.

IterationLimit — Maximum number of iterations
1000 (default) | positive integer

Maximum number of iterations, specified as the comma-separated pair consisting of
'IterationLimit' and a positive integer.
Example: 'IterationLimit',1e6
Data Types: single | double

VerbosityLevel — Verbosity level
0 (default) | nonnegative integer

Verbosity level for monitoring algorithm convergence, specified as the comma-separated pair
consisting of 'VerbosityLevel' and a value in this table.

Value Description
0 sparsefilt does not display convergence

information at the command line.
Positive integer sparsefilt displays convergence information at

the command line.
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Convergence Information

Heading Meaning
FUN VALUE Objective function value.
NORM GRAD Norm of the gradient of the objective function.
NORM STEP Norm of the iterative step, meaning the distance between the

previous point and the current point.
CURV OK means the weak Wolfe condition is satisfied. This condition is a

combination of sufficient decrease of the objective function and a
curvature condition.

GAMMA Inner product of the step times the gradient difference, divided by
the inner product of the gradient difference with itself. The gradient
difference is the gradient at the current point minus the gradient at
the previous point. Gives diagnostic information on the objective
function curvature.

ALPHA Step direction multiplier, which differs from 1 when the algorithm
performed a line search.

ACCEPT YES means the algorithm found an acceptable step to take.

Example: 'VerbosityLevel',1
Data Types: single | double

Lambda — L2 regularization coefficient value
0 (default) | positive numeric scalar

L2 regularization coefficient value for the transform weight matrix, specified as the comma-separated
pair consisting of 'Lambda' and a positive numeric scalar. If you specify 0, the default, then there is
no regularization term in the objective function.
Example: 'Lambda',0.1
Data Types: single | double

Standardize — Flag to standardize predictor data
false (default) | true

Flag to standardize the predictor data, specified as the comma-separated pair consisting
of 'Standardize' and true (1) or false (0).

If Standardize is true, then:

• sparsefilt centers and scales each column of the predictor data (X) by the column mean and
standard deviation, respectively.

• sparsefilt extracts new features by using the standardized predictor matrix, and stores the
predictor variable means and standard deviations in properties Mu and Sigma of Mdl.

Example: 'Standardize',true
Data Types: logical

InitialTransformWeights — Transformation weights that initialize optimization
randn(p,q) (default) | numeric matrix
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Transformation weights that initialize optimization, specified as the comma-separated pair consisting
of 'InitialTransformWeights' and a p-by-q numeric matrix. p must be the number of columns or
variables in X and q is the value of q.

Tip You can continue optimizing a previously returned transform weight matrix by passing it as an
initial value in another call to sparsefilt. The output model object Mdl stores a learned transform
weight matrix in the TransformWeights property.

Example: 'InitialTransformWeights',Mdl.TransformWeights
Data Types: single | double

GradientTolerance — Relative convergence tolerance on gradient norm
1e-6 (default) | positive numeric scalar

Relative convergence tolerance on gradient norm, specified as the comma-separated pair consisting
of 'GradientTolerance' and a positive numeric scalar. This gradient is the gradient of the
objective function.
Example: 'GradientTolerance',1e-4
Data Types: single | double

StepTolerance — Absolute convergence tolerance on step size
1e-6 (default) | positive numeric scalar

Absolute convergence tolerance on the step size, specified as the comma-separated pair consisting of
'StepTolerance' and a positive numeric scalar.
Example: 'StepTolerance',1e-4
Data Types: single | double

Output Arguments
Mdl — Learned sparse filtering model
SparseFiltering model object

Learned sparse filtering model, returned as a SparseFiltering model object.

To access properties of Mdl, use dot notation. For example:

• To access the learned transform weights, use Mdl.TransformWeights.
• To access the fitting information structure, use Mdl.FitInfo.

To find sparse filtering coefficients for new data, use the transform function.

Algorithms
The sparsefilt function creates a nonlinear transformation of input features to output features.
The transformation is based on optimizing an objective function that encourages the representation
of each example by as few output features as possible while at the same time keeping the output
features equally active across examples.
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For details, see “Sparse Filtering Algorithm” on page 16-127.

Version History
Introduced in R2017a

See Also
rica | SparseFiltering | transform

Topics
“Feature Extraction Workflow” on page 16-132
“Feature Extraction” on page 16-127
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SparseFiltering
Feature extraction by sparse filtering

Description
SparseFiltering uses sparse filtering to learn a transformation that maps input predictors to new
predictors.

Creation
Create a SparseFiltering object using the sparsefilt function.

Properties
FitInfo — Fitting history
structure

This property is read-only.

Fitting history, returned as a structure with two fields:

• Iteration — Iteration numbers from 0 through the final iteration.
• Objective — Objective function value at each corresponding iteration. Iteration 0 corresponds to

the initial values, before any fitting.

Data Types: struct

InitialTransformWeights — Initial feature transformation weights
p-by-q matrix

This property is read-only.

Initial feature transformation weights, returned as a p-by-q matrix, where p is the number of
predictors passed in X and q is the number of features that you want. These weights are the initial
weights passed to the creation function. The data type is single when the training data X is single.
Data Types: single | double

ModelParameters — Parameters used for training model
structure

This property is read-only.

Parameters used for training the model, returned as a structure. The structure contains a subset of
the fields that corresponds to the sparsefilt name-value pairs that were in effect during model
creation:

• IterationLimit
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• VerbosityLevel
• Lambda
• Standardize
• GradientTolerance
• StepTolerance

For details, see the sparsefilt name-value pairs in the documentation.
Data Types: struct

Mu — Predictor means when standardizing
p-by-1 vector

This property is read-only.

Predictor means when standardizing, returned as a p-by-1 vector. This property is nonempty when
the Standardize name-value pair is true at model creation. The value is the vector of predictor
means in the training data. The data type is single when the training data X is single.
Data Types: single | double

NumLearnedFeatures — Number of output features
positive integer

This property is read-only.

Number of output features, returned as a positive integer. This value is the q argument passed to the
creation function, which is the requested number of features to learn.
Data Types: double

NumPredictors — Number of input predictors
positive integer

This property is read-only.

Number of input predictors, returned as a positive integer. This value is the number of predictors
passed in X to the creation function.
Data Types: double

Sigma — Predictor standard deviations when standardizing
p-by-1 vector

This property is read-only.

Predictor standard deviations when standardizing, returned as a p-by-1 vector. This property is
nonempty when the Standardize name-value pair is true at model creation. The value is the vector
of predictor standard deviations in the training data. The data type is single when the training data X
is single.
Data Types: single | double

TransformWeights — Feature transformation weights
p-by-q matrix
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This property is read-only.

Feature transformation weights, returned as a p-by-q matrix, where p is the number of predictors
passed in X and q is the number of features that you want. The data type is single when the training
data X is single.
Data Types: single | double

Object Functions
transform Transform predictors into extracted features

Examples

Create Sparse Filter

Create a SparseFiltering object by using the sparsefilt function.

Load the SampleImagePatches image patches.

data = load('SampleImagePatches');
size(data.X)

ans = 1×2

        5000         363

There are 5,000 image patches, each containing 363 features.

Extract 100 features from the data.

rng default % For reproducibility
Q = 100;
obj = sparsefilt(data.X,Q,'IterationLimit',100)

Warning: Solver LBFGS was not able to converge to a solution.

obj = 
  SparseFiltering
            ModelParameters: [1x1 struct]
              NumPredictors: 363
         NumLearnedFeatures: 100
                         Mu: []
                      Sigma: []
                    FitInfo: [1x1 struct]
           TransformWeights: [363x100 double]
    InitialTransformWeights: []

  Properties, Methods

sparsefilt issues a warning because it stopped due to reaching the iteration limit, instead of
reaching a step-size limit or a gradient-size limit. You can still use the learned features in the
returned object by calling the transform function.
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Version History
Introduced in R2017a

See Also
sparsefilt | rica | transform | ReconstructionICA

Topics
“Feature Extraction Workflow” on page 16-132
“Feature Extraction” on page 16-127
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spectralcluster
Spectral clustering

Syntax
idx = spectralcluster(X,k)

idx = spectralcluster(S,k,'Distance','precomputed')

idx = spectralcluster( ___ ,Name,Value)
[idx,V] = spectralcluster( ___ )
[idx,V,D] = spectralcluster( ___ )

Description
idx = spectralcluster(X,k) partitions observations in the n-by-p data matrix X into k clusters
using the spectral clustering algorithm (see Algorithms on page 35-7066). spectralcluster
returns an n-by-1 vector idx containing cluster indices of each observation.

idx = spectralcluster(S,k,'Distance','precomputed') returns a vector of cluster indices
for S, the similarity matrix on page 35-7064 (or adjacency matrix) of a similarity graph on page 35-
7064. S can be the output of adjacency.

To use a similarity matrix as the first input, you must specify 'Distance','precomputed'.

idx = spectralcluster( ___ ,Name,Value) specifies additional options using one or more
name-value pair arguments in addition to the input arguments in previous syntaxes. For example, you
can specify 'SimilarityGraph','epsilon' to construct a similarity graph using the radius
search method.

[idx,V] = spectralcluster( ___ ) also returns the eigenvectors V corresponding to the k
smallest eigenvalues of the Laplacian matrix on page 35-7065.

[idx,V,D] = spectralcluster( ___ ) also returns a vector D containing the k smallest
eigenvalues of the Laplacian matrix.

Examples

Perform Spectral Clustering on Input Data

Cluster a 2-D circular data set using spectral clustering with the default Euclidean distance metric.

Generate synthetic data that contains two noisy circles.

rng('default') % For reproducibility

% Parameters for data generation
N = 300;  % Size of each cluster
r1 = 2;   % Radius of first circle
r2 = 4;   % Radius of second circle
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theta = linspace(0,2*pi,N)';

X1 = r1*[cos(theta),sin(theta)]+ rand(N,1); 
X2 = r2*[cos(theta),sin(theta)]+ rand(N,1);
X = [X1;X2]; % Noisy 2-D circular data set

Find two clusters in the data by using spectral clustering.

idx = spectralcluster(X,2);

Visualize the result of clustering.

gscatter(X(:,1),X(:,2),idx);

The spectralcluster function correctly identifies the two clusters in the data set.

Perform Spectral Clustering on Similarity Matrix

Compute a similarity matrix from Fisher's iris data set and perform spectral clustering on the
similarity matrix.

Load Fisher's iris data set. Use the petal lengths and widths as features to consider for clustering.
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load fisheriris
X = meas(:,3:4);
gscatter(X(:,1),X(:,2),species);

Find the distance between each pair of observations in X by using the pdist and squareform
functions with the default Euclidean distance metric.

dist_temp = pdist(X);
dist = squareform(dist_temp);

Construct the similarity matrix and confirm that it is symmetric.

S = exp(-dist.^2);
issymmetric(S)

ans = logical
   1

Perform spectral clustering. Specify 'Distance','precomputed' to perform clustering using the
similarity matrix. Specify k=3 clusters, and set the 'LaplacianNormalization' name-value pair
argument to use the normalized symmetric Laplacian matrix.

k = 3; % Number of clusters
rng('default') % For reproducibility
idx = spectralcluster(S,k,'Distance','precomputed','LaplacianNormalization','symmetric');

idx contains the cluster indices for each observation in X.
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Visualize the result of clustering.

gscatter(X(:,1),X(:,2),idx);

Tabulate the clustering results.

tabulate(idx)

  Value    Count   Percent
      1       48     32.00%
      2       50     33.33%
      3       52     34.67%

The Percent column shows the percentage of data points assigned to the three clusters.

Repeat spectral clustering using the data as input to spectralcluster. Specify 'NumNeighbors'
as size(X,1), which corresponds to creating the similarity matrix S by connecting each point to all
the remaining points.

idx2 = spectralcluster(X,k,'NumNeighbors',size(X,1),'LaplacianNormalization','symmetric');
gscatter(X(:,1),X(:,2),idx2);
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tabulate(idx2)

  Value    Count   Percent
      1       50     33.33%
      2       52     34.67%
      3       48     32.00%

The clustering results for both approaches are the same. The order of cluster assignments is
different, even though the data points are clustered in the same way.

Cluster Using Radius Search for Similarity Graph

Find clusters in a data set, based on a specified search radius for creating a similarity graph.

Create data with 3 clusters, each containing 500 points.

rng('default') % For reproducibility
N = 500;
X = [mvnrnd([0 0],eye(2),N); ...
    mvnrnd(5*[1 -1],eye(2),N); ...
    mvnrnd(5*[1 1],eye(2),N)];

Specify a search radius of 2 for creating a similarity graph, and find 3 clusters in the data.

idx = spectralcluster(X,3,'SimilarityGraph','epsilon','Radius',2);

 spectralcluster

35-7055



Visualize the result of clustering.

gscatter(X(:,1),X(:,2),idx);

Find Eigenvalues and Eigenvectors of Laplacian Matrix

Find the eigenvalues and eigenvectors of the Laplacian matrix and use the values to confirm
clustering results.

Randomly generate sample data with three well-separated clusters, each containing 100 points.

rng('default'); % For reproducibility
n = 100;
X = [randn(n,2)*0.5+3;
    randn(n,2)*0.5
    randn(n,2)*0.5-3]; 

Estimate the number of clusters in the data by using the eigenvalues of the Laplacian matrix.
Compute the five smallest eigenvalues (in magnitude) of the Laplacian matrix.

[~,~,D_temp] = spectralcluster(X,5)

D_temp = 5×1

   -0.0000
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   -0.0000
   -0.0000
    0.0277
    0.0296

Only the first three eigenvalues are approximately zero. The number of zero eigenvalues is a good
indicator of the number of connected components in a similarity graph and, therefore, is a good
estimate of the number of clusters in your data. So, k=3 is a good estimate of the number of clusters
in X.

Find k=3 clusters and return the three smallest eigenvalues and corresponding eigenvectors of the
Laplacian matrix.

[idx,V,D] = spectralcluster(X,3)

idx = 300×1

     3
     3
     3
     3
     3
     3
     3
     3
     3
     3
      ⋮

V = 300×3

   -0.0000   -0.0000   -0.1000
   -0.0000   -0.0000   -0.1000
   -0.0000   -0.0000   -0.1000
   -0.0000   -0.0000   -0.1000
   -0.0000   -0.0000   -0.1000
   -0.0000   -0.0000   -0.1000
   -0.0000   -0.0000   -0.1000
   -0.0000   -0.0000   -0.1000
   -0.0000   -0.0000   -0.1000
   -0.0000   -0.0000   -0.1000
      ⋮

D = 3×1
10-16 ×

   -0.3308
   -0.3747
   -0.4167

Elements of D correspond to the three smallest eigenvalues of the Laplacian matrix. The columns of V
contain the eigenvectors corresponding to the eigenvalues in D. For well-separated clusters, the
eigenvectors are indicator vectors. The eigenvectors have values of zero (or close to zero) for points
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that do not belong to a particular cluster, and nonzero values for points that belong to a particular
cluster.

Visualize the result of clustering.

gscatter(X(:,1),X(:,2),idx);

Input Arguments
X — Input data
numeric matrix

Input data, specified as an n-by-p numeric matrix. The rows of X correspond to observations (or
points), and the columns correspond to variables.

The software treats NaNs in X as missing data and ignores any row of X containing at least one NaN.
The spectralcluster function returns NaN values for the corresponding row in the output
arguments idx and V.
Data Types: single | double

S — Similarity matrix
symmetric matrix

Similarity matrix, specified as an n-by-n symmetric matrix, where n is the number of observations. A
similarity matrix (or adjacency matrix) represents the input data by modeling local neighborhood

35 Functions

35-7058



relationships among the data points. The values in a similarity matrix represent the edges (or
connections) between nodes (data points) that are connected in a similarity graph on page 35-7064.
For more information, see “Similarity Matrix” on page 35-7064.

S must not contain any NaN values.

To use a similarity matrix as the first input of spectralcluster, you must specify
'Distance','precomputed'.
Data Types: single | double

k — Number of clusters
positive integer

Number of clusters in the data, specified as a positive integer.

For details about how to estimate the number of clusters, see “Tips” on page 35-7065.
Data Types: single | double

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: spectralcluster(X,3,'SimilarityGraph','epsilon','Radius',5) specifies 3
clusters and uses the radius search method with a search radius of 5 to construct a similarity graph.

Distance — Distance metric
character vector | string scalar | function handle

Distance metric, specified as the comma-separated pair consisting of 'Distance' and a character
vector, string scalar, or function handle, as described in this table.

Value Description
'precomputed' Precomputed distance. You must specify this option if the first input to

spectralcluster is a similarity matrix S.
'euclidean' Euclidean distance (default)
'seuclidean' Standardized Euclidean distance. Each coordinate difference between

observations is scaled by dividing by the corresponding element of the
standard deviation computed from X. Use the Scale name-value pair
argument to specify a different scaling factor.

'mahalanobis' Mahalanobis distance using the sample covariance of X, C =
cov(X,'omitrows'). Use the Cov name-value pair argument to
specify a different covariance matrix.

'cityblock' City block distance
'minkowski' Minkowski distance. The default exponent is 2. Use the P name-value

pair argument to specify a different exponent, where P is a positive
scalar value.
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Value Description
'chebychev' Chebychev distance (maximum coordinate difference)
'cosine' One minus the cosine of the included angle between observations

(treated as vectors)
'correlation' One minus the sample correlation between observations (treated as

sequences of values)
'hamming' Hamming distance, which is the percentage of coordinates that differ
'jaccard' One minus the Jaccard coefficient, which is the percentage of nonzero

coordinates that differ
'spearman' One minus the sample Spearman's rank correlation between

observations (treated as sequences of values)
@distfun Custom distance function handle. A distance function has the form

function D2 = distfun(ZI,ZJ)
% calculation of distance
...

where

• ZI is a 1-by-n vector containing a single observation.
• ZJ is an m2-by-n matrix containing multiple observations. distfun

must accept a matrix ZJ with an arbitrary number of observations.
• D2 is an m2-by-1 vector of distances, and D2(k) is the distance

between observations ZI and ZJ(k,:).

If your data is not sparse, you can generally compute distance more
quickly by using a built-in distance instead of a function handle.

For more information, see “Distance Metrics” on page 19-14.

When you use the 'seuclidean', 'minkowski', or 'mahalanobis' distance metric, you can
specify the additional name-value pair argument 'Scale', 'P', or 'Cov', respectively, to control the
distance metric.
Example: spectralcluster(X,5,'Distance','minkowski','P',3) specifies 5 clusters and
uses of the Minkowski distance metric with an exponent of 3 to perform the clustering algorithm.

P — Exponent for Minkowski distance metric
2 (default) | positive scalar

Exponent for the Minkowski distance metric, specified as the comma-separated pair consisting of 'P'
and a positive scalar.

This argument is valid only if 'Distance' is 'minkowski'.
Example: 'P',3
Data Types: single | double

Cov — Covariance matrix for Mahalanobis distance metric
cov(X,'omitrows') (default) | positive definite matrix
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Covariance matrix for the Mahalanobis distance metric, specified as the comma-separated pair
consisting of 'Cov' and a positive definite matrix.

This argument is valid only if 'Distance' is 'mahalanobis'.
Example: 'Cov',eye(4)
Data Types: single | double

Scale — Scaling factors for standardized Euclidean distance metric
std(X,'omitnan') (default) | numeric vector of nonnegative values

Scaling factors for the standardized Euclidean distance metric, specified as the comma-separated
pair consisting of 'Scale' and a numeric vector of nonnegative values.

Scale has length p (the number of columns in X), because each dimension (column) of X has a
corresponding value in Scale. For each dimension of X, spectralcluster uses the corresponding
value in Scale to standardize the difference between observations.

This argument is valid only if 'Distance' is 'seuclidean'.
Data Types: single | double

SimilarityGraph — Type of similarity graph
'knn' (default) | 'epsilon'

Type of similarity graph to construct from the input data X, specified as the comma-separated pair
consisting of 'SimilarityGraph' and one of these values.

Value Description Graph-Specific Name-Value Pair
Arguments

'knn' (Default) Construct the graph using
nearest neighbors.

'NumNeighbors' — Number of
nearest neighbors used to construct
the similarity graph

'KNNGraphType' — Type of nearest
neighbor graph

'epsilon' Construct the graph using a radius
search. You must specify a value for
Radius if you use this option.

'Radius' — Search radius for the
nearest neighbors used to construct
the similarity graph

For more information, see “Similarity Graph” on page 35-7064.

This argument is valid only if 'Distance' is not 'precomputed'.
Example: 'SimilarityGraph','epsilon'

NumNeighbors — Number of nearest neighbors
log(size(X,1)) (default) | positive integer

Number of nearest neighbors used to construct the similarity graph, specified as the comma-
separated pair consisting of 'NumNeighbors' and a positive integer.

This argument is valid only if 'SimilarityGraph' is 'knn'. For more information, see “Similarity
Graph” on page 35-7064.
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Example: 'NumNeighbors',10
Data Types: single | double

KNNGraphType — Type of nearest neighbor graph
'complete' (default) | 'mutual'

Type of nearest neighbor graph, specified as the comma-separated pair consisting of
'KNNGraphType' and one of these values.

Value Description
'complete' (Default) Connects two points i and j, when either i is a nearest neighbor of j

or j is a nearest neighbor of i.

This option leads to a denser representation of the similarity matrix.
'mutual' Connects two points i and j, when i is a nearest neighbor of j and j is a

nearest neighbor of i.

This option leads to a sparser representation of the similarity matrix.

This argument is valid only if 'SimilarityGraph' is 'knn'.
Example: 'KNNGraphType','mutual'

Radius — Search radius
nonnegative scalar

Search radius for the nearest neighbors used to construct the similarity graph, specified as the
comma-separated pair consisting of 'Radius' and a nonnegative scalar.

You must specify this argument if 'SimilarityGraph' is 'epsilon'. For more information, see
“Similarity Graph” on page 35-7064.
Example: 'Radius',5
Data Types: single | double

KernelScale — Scale factor
1 (default) | 'auto' | positive scalar

Scale factor for the kernel, specified as the comma-separated pair consisting of 'KernelScale' and
'auto' or a positive scalar. The software uses the scale factor to transform distances to similarity
measures. For more information, see “Similarity Graph” on page 35-7064.

• The 'auto' option is supported only for the 'euclidean' and 'seuclidean' distance metrics.
• If you specify 'auto', then the software selects an appropriate scale factor using a heuristic

procedure. This heuristic procedure uses subsampling, so estimates can vary from one call to
another. To reproduce results, set a random number seed using rng before calling
spectralcluster.

This argument is valid only if 'Distance' is not 'precomputed'.
Example: 'KernelScale','auto'
Data Types: double | single | char | string
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LaplacianNormalization — Method to normalize Laplacian matrix
'randomwalk' (default) | 'symmetric' | 'none'

Method to normalize the Laplacian matrix L, specified as the comma-separated pair consisting of
'LaplacianNormalization' and one of these values.

Value Description
'none' Use Laplacian matrix L without normalization.
'randomwalk' (Default) Use the normalized random-walk Laplacian matrix Lrw (Shi-Malik

[2]).

Lrw = Dg−1L .

The matrix Dg is the degree matrix on page 35-7065.
'symmetric' Use the normalized symmetric Laplacian matrix Ls (Ng-Jordan-Weiss [3]).

Ls = Dg−1/2LDg−1/2 .

The matrix Dg is the degree matrix.

For more information, see “Laplacian Matrix” on page 35-7065.
Example: 'LaplacianNormalization','randomwalk'

ClusterMethod — Clustering method
'kmeans' (default) | 'kmedoids'

Clustering method to cluster the eigenvectors of the Laplacian matrix, specified as the comma-
separated pair consisting of 'ClusterMethod' and either 'kmeans' or 'kmedoids'.

• 'kmeans' — Perform k-means clustering by using the kmeans function.
• 'kmedoids' — Perform k-medoids clustering by using the kmedoids function.

kmeans and kmedoids involve randomness in their algorithms. Therefore, to reproduce the results of
spectralcluster, you must set the seed of the random number generator by using rng.
Example: 'ClusterMethod','kmedoids'

Output Arguments
idx — Cluster indices
numeric column vector

Cluster indices, returned as a numeric column vector. idx has n rows, and each row of idx indicates
the cluster assignment of the corresponding row (or observation) in X.
Data Types: double

V — Eigenvectors
numeric matrix

Eigenvectors, returned as an n-by-k numeric matrix. The columns of V are the eigenvectors
corresponding to the k smallest eigenvalues of the Laplacian matrix on page 35-7065. These
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eigenvectors are a low-dimensional representation of the input data X in a new space where clusters
are more widely separated.

For well-separated clusters, the eigenvectors are indicator vectors. That is, the eigenvectors have
values of zero (or close to zero) for points that do not belong to a given cluster, and nonzero values
for points that belong to a particular cluster.
Data Types: single | double

D — Eigenvalues
numeric vector

Eigenvalues, returned as a k-by-1 numeric vector that contains the k smallest eigenvalues of the
Laplacian matrix. The number of zero eigenvalues in D is an indicator of the number of connected
components in the similarity graph and, therefore, is a good estimate of the number of clusters in
your data.
Data Types: single | double

More About
Similarity Graph

A similarity graph models the local neighborhood relationships between data points in X as an
undirected graph. The nodes in the graph represent data points, and the edges, which are
directionless, represent the connections between the data points.

If the pairwise distance Disti,j between any two nodes i and j is positive (or larger than a certain
threshold), then the similarity graph connects the two nodes using an edge [1]. The edge between the

two nodes is weighted by the pairwise similarity Si,j, where Si, j = exp −
Disti, j

σ
2

, for a specified

kernel scale σ value.

spectralcluster supports these two methods of constructing a similarity graph:

• Nearest neighbor method (if 'SimilarityGraph' is 'knn'(default)): spectralcluster
connects points in X that are nearest neighbors. You can use the 'NumNeighbors' and
'KNNGraphType' name-value pair arguments to specify the options for constructing the nearest
neighbor graph.

• Use 'NumNeighbors' to specify the number of nearest neighbors.
• Use 'KNNGraphType' to specify whether to make a 'complete' or 'mutual' connection of

points.
• Radius search method (if 'SimilarityGraph' is 'epsilon'): spectralcluster connects

points whose pairwise distances are smaller than a search radius. You must specify the search
radius for nearest neighbors used to construct the similarity graph by using the 'Radius' name-
value pair argument.

Similarity Matrix

A similarity matrix is a matrix representation of a similarity graph on page 35-7064. The n-by-n
matrix S = (Si, j)i, j = 1, …, n contains pairwise similarity values between connected nodes in the
similarity graph. The similarity matrix of a graph is also called an adjacency matrix.

35 Functions

35-7064



The similarity matrix is symmetric because the edges of the similarity graph are directionless. A value
of Si,j = 0 means that nodes i and j of the similarity graph are not connected.

Degree Matrix

A degree matrix Dg is an n-by-n diagonal matrix obtained by summing the rows of the similarity

matrix on page 35-7064 S. That is, the ith diagonal element of Dg is Dg(i, i) = ∑
j = 1

n
Si, j .

Laplacian Matrix

A Laplacian matrix is one way of representing a similarity graph on page 35-7064. The
spectralcluster function supports the unnormalized Laplacian matrix, the normalized Laplacian
matrix using the Shi-Malik method [2], and the normalized Laplacian matrix using the Ng-Jordan-
Weiss method [3].

• The unnormalized Laplacian matrix L is the difference between the degree matrix on page 35-
7065 and the similarity matrix on page 35-7064.

L = Dg− S .

• The normalized random-walk Laplacian matrix (Shi-Malik) is defined as:

Lrw = Dg−1L .

To derive Lrw, solve the generalized eigenvalue problem Lv = λDgv, where v is a column vector of
length n, and λ is a scalar. The values of λ that satisfy the equation are the generalized
eigenvalues of the matrix Lrw = Dg−1L .

You can use the MATLAB function eigs to solve the generalized eigenvalue problem.
• The normalized symmetric Laplacian matrix (Ng-Jordan-Weiss) is defined as:

Ls = Dg−1/2LDg−1/2 .

Use the 'LaplacianNormalization' name-value pair argument to specify the method to normalize
the Laplacian matrix.

Tips
• Consider using spectral clustering when the clusters in your data do not naturally correspond to

convex regions.
• From the spectral clustering algorithm, you can estimate the number of clusters k as:

• The number of eigenvalues of the Laplacian matrix that are equal to 0.
• The number of connected components in your similarity graph representation. Use graph to

create a similarity graph from a similarity matrix, and use conncomp to find the number of
connected components in the graph.

For an example, see “Estimate Number of Clusters and Perform Spectral Clustering” on page 17-
27.
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Algorithms
Spectral clustering is a graph-based algorithm for clustering data points (or observations in X). The
algorithm involves constructing a graph, finding its Laplacian matrix on page 35-7065, and using this
matrix to find k eigenvectors to split the graph k ways. By default, the algorithm for
spectralcluster computes the normalized random-walk Laplacian matrix using the method
described by Shi-Malik [2]. spectralcluster also supports the unnormalized Laplacian matrix and
the normalized symmetric Laplacian matrix which uses the Ng-Jordan-Weiss method [3].
spectralcluster implements clustering as follows:

1 For each data point in X, define a local neighborhood using either the radius search method or
nearest neighbor method, as specified by the 'SimilarityGraph' name-value pair argument
(see “Similarity Graph” on page 35-7064). Then, find the pairwise distances Disti, j for all points i
and j in the neighborhood.

2 Convert the distances to similarity measures using the kernel transformation

Si, j = exp −
Disti, j

σ
2

. The matrix S is the similarity matrix on page 35-7064, and σ is the scale

factor for the kernel, as specified using the 'KernelScale' name-value pair argument.
3 Calculate the unnormalized Laplacian matrix on page 35-7065 L , the normalized random-walk

Laplacian matrix Lrw, or the normalized symmetric Laplacian matrix Ls, depending on the value of
the 'LaplacianNormalization' name-value pair argument.

4 Create a matrix V ∈ ℝn × k containing columns v1, …, vk, where the columns are the k
eigenvectors that correspond to the k smallest eigenvalues of the Laplacian matrix. If using Ls,
normalize each row of V to have unit length.

5 Treating each row of V as a point, cluster the n points using k-means clustering (default) or k-
medoids clustering, as specified by the 'ClusterMethod' name-value pair argument.

6 Assign the original points in X to the same clusters as their corresponding rows in V.

Version History
Introduced in R2019b

References
[1] Von Luxburg, U. “A Tutorial on Spectral Clustering.” Statistics and Computing Journal. Vol.17,

Number 4, 2007, pp. 395–416.

[2] Shi, J., and J. Malik. “Normalized cuts and image segmentation.” IEEE Transactions on Pattern
Analysis and Machine Intelligence. Vol. 22, 2000, pp. 888–905.

[3] Ng, A.Y., M. Jordan, and Y. Weiss. “On spectral clustering: Analysis and an algorithm.” In
Proceedings of the Advances in Neural Information Processing Systems 14. MIT Press, 2001,
pp. 849–856.

See Also
eigs | kmeans | kmedoids | pdist | adjacency | squareform
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Topics
“Partition Data Using Spectral Clustering” on page 17-26
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squareform
Format distance matrix

Syntax
ZOut = squareform(yIn)
yOut = squareform(ZIn)

ZOut = squareform(yIn,'tomatrix')
yOut = squareform(ZIn,'tovector')

Description
ZOut = squareform(yIn) converts yIn, a pairwise distance vector of length m(m–1)/2 for m
observations, into ZOut, an m-by-m symmetric matrix with zeros along the diagonal.

The pairwise distances in yIn are arranged in the order (2,1), (3,1), ..., (m,1), (3,2), ..., (m,2), ...,
(m,m–1). The pairwise distance between the ith and jth observations is in ZOut(i,j) and yIn((i–
1)*(m–i/2)+j–i) for i≤j.

yOut = squareform(ZIn) converts ZIn, a square, symmetric matrix with zeros along the diagonal,
into yOut, a vector containing the ZIn elements below the diagonal.

ZOut = squareform(yIn,'tomatrix') forces squareform to treat yIn as a vector and converts
yIn into a matrix.

yOut = squareform(ZIn,'tovector') forces squareform to treat ZIn as a matrix and converts
ZIn into a vector. If ZIn is a scalar (1-by-1), then ZIn must be zero.

The previous two syntaxes are useful when the input argument is a scalar. If you do not specify either
'tomatrix' or 'tovector', then the default is 'tomatrix'.

Examples

Compute Euclidean Distance and Convert Distance Vector to Matrix

Compute the Euclidean distance between pairs of observations, and convert the distance vector to a
matrix using squareform.

Create a matrix with three observations and two variables.

rng('default') % For reproducibility
X = rand(3,2);

Compute the Euclidean distance.

D = pdist(X)

D = 1×3
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    0.2954    1.0670    0.9448

The pairwise distances are arranged in the order (2,1), (3,1), (3,2). You can easily locate the distance
between observations i and j by using squareform.

Z = squareform(D)

Z = 3×3

         0    0.2954    1.0670
    0.2954         0    0.9448
    1.0670    0.9448         0

squareform returns a symmetric matrix where Z(i,j) corresponds to the pairwise distance
between observations i and j. For example, you can find the distance between observations 2 and 3.

Z(2,3)

ans = 0.9448

Pass Z to the squareform function to reproduce the output of the pdist function.

y = squareform(Z)

y = 1×3

    0.2954    1.0670    0.9448

The outputs y from squareform and D from pdist are the same.

Input Arguments
yIn — Input distance vector
numeric vector | logical vector

Input distance vector, specified as a numeric or logical vector of length m(m–1)/2, where m is the
number of observations.

The pairwise distances in yIn are arranged in the order (2,1), (3,1), ..., (m,1), (3,2), ..., (m,2), ...,
(m,m–1), i.e., the lower-left triangle of the m-by-m distance matrix in column order. The pairwise
distance between observations i and j is in yIn((i–1)*(m–i/2)+j–i) for i≤j.

You can create yIn by using the pdist function. m is the number of observations in the input data of
pdist.
Data Types: single | double | logical

ZIn — Input distance matrix
numeric matrix | logical matrix

Input distance matrix, specified as a numeric or logical matrix. ZIn is an m-by-m symmetric matrix
with zeros along the diagonal, where m is the number of observations. ZIn(i,j) denotes the
distance between the ith and jth observations.
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Data Types: single | double | logical

Output Arguments
yOut — Distance vector
numeric vector | logical vector

Distance vector, returned as a numeric or logical vector of length m(m–1)/2, where m is the number
of observations.

The pairwise distances in yOut are arranged in the order (2,1), (3,1), ..., (m,1), (3,2), ..., (m,2), ...,
(m,m–1), i.e., the lower-left triangle of the m-by-m distance matrix in column order. The pairwise
distance between observations i and j is in yOut((i–1)*(m–i/2)+j–i) for i≤j.

yOut has the same format as the output from the pdist function.

ZOut — Distance matrix
numeric matrix | logical matrix

Distance matrix, returned as a numeric or logical matrix. ZOut is an m-by-m symmetric matrix with
zeros along the diagonal, where m is the number of observations. ZOut(i,j) denotes the distance
between the ith and jth observations.

Tips
• You can use squareform to format a vector or matrix that is similar to a distance vector or

matrix, such as the correlation coefficient matrix (corrcoef).

Version History
Introduced before R2006a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations: The conversion direction 'tomatrix' or 'tovector' must be a
compile-time constant. For example, to specify the conversion direction as 'tovector', include
coder.Constant('tovector') in the -args value of codegen.

For more information on code generation, see “Introduction to Code Generation” on page 34-2 and
“General Code Generation Workflow” on page 34-5.

See Also
pdist
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stack
Class: dataset

(Not Recommended) Stack dataset array from multiple variables into single variable

Note The dataset data type is not recommended. To work with heterogeneous data, use the
MATLAB® table data type instead. See MATLAB table documentation for more information.

Syntax
B = stack(A,datavars)
[B,iA] = stack(A,datavars)
B = stack(A,datavars,Parameter,value)

Description
B = stack(A,datavars) stacks multiple variables in dataset array A into a single variable in B. In
general, B contains fewer variables but more observations than A.

datavars specifies a group of m data variables in A. stack creates a single data variable in B by
interleaving their values, and if A has n observations, then B has m-by-n observations. In other words,
stack takes the m data values from each observation in A and stacks them up to create m
observations in B. datavars is a positive integer, a vector of positive integers, a character vector, a
string array, a cell array of character vectors, or a logical vector. stack also creates a grouping
variable in B to indicate which of the m data variables in A each observation in B corresponds to.

stack assigns values for the "per-variable properties (e.g., Units and VarDescription) for the
new data variable in B from the corresponding property values for the first variable listed in
datavars.

stack copies the remaining variables from A to B without stacking, by replicating each of their
values m times. These variables are typically grouping variables. Because their values are constant
across each group of m observations in B, they identify which observation in A an observation in B
came from.

[B,iA] = stack(A,datavars) returns an index vector iA indicating the correspondence between
observations in B and those in A. stack creates B(j,:) using A(iA(j),datavarss).

For more information on grouping variables, see “Grouping Variables” on page 2-46.

Input Arguments
B = stack(A,datavars,Parameter,value) uses the following parameter name/value pairs to
control how stack converts variables in A to variables in B:
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'ConstVars' Variables in A to copy to B without stacking.
ConstVars is a positive integer, a vector of
positive integers, a character vector, a string
array, a cell array of character vectors, or a
logical vector. The default is all variables in A not
specified in datavars.

'NewDataVarName' A name for the data variable to be created in B.
The default is a concatenation of the names of the
m variables that are stacked up.

'IndVarName' A name for the grouping variable to create in B to
indicate the source of each value in the new data
variable. The default is based on the
'NewDataVarName' parameter.

You can also specify multiple groups of data variables in A, each of which becomes a variable in B. All
groups must contain the same number of variables. Use a string array or cell array of character
vectors to contain multiple parameter values for datavars or to contain multiple values for
'NewDataVarName'.

Examples
Combine several variables for estimated influenza rates into a single variable. Then unstack the
estimated influenza rates by date.

load flu
 
% FLU has a 'Date' variable, and 10 variables for estimated influenza rates
% (in 9 different regions, estimated from Google searches, plus a
% nationwide estimate from the CDC). Combine those 10 variables into an
% array that has a single data variable, 'FluRate', and an indicator
% variable, 'Region', that says which region each estimate is from.
[flu2,iflu] = stack(flu, 2:11, 'NewDataVarName','FluRate', ...
    'IndVarName','Region')
 
% The second observation in FLU is for 10/16/2005.  Find the observations
% in FLU2 that correspond to that date.
flu(2,:)
flu2(iflu==2,:)
 
% Use the 'Date' variable from that array to split 'FluRate' into 52
% separate variables, each containing the estimated influenza rates for
% each unique date.  The new array has one observation for each region.  In
% effect, this is the original array FLU "on its side".
dateNames = cellstr(datestr(flu.Date,'mmm_DD_YYYY'));
[flu3,iflu2] = unstack(flu2, 'FluRate', 'Date', ...
    'NewDataVarNames',dateNames)
 
% Since observations in FLU3 represent regions, IFLU2 indicates the first
% occurrence in FLU2 of each region.
flu2(iflu2,:)

See Also
unstack | join
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Topics
“Grouping Variables” on page 2-46
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State property
Class: qrandstream

Current state of the stream

Description
The State property of a quasi-random stream contains the index into the associated point set of the
next point to draw in the stream. Getting and resetting the State property allows you to return a
stream to a previous state. The initial value of State is 1.

Examples
Q = qrandstream('sobol', 5);
s = Q.State;
u1 = qrand(Q, 10)
Q.State = s;
u2 = qrand(Q, 10) % contains exactly the same values as u1

See Also
qrand
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statget
Access values in statistics options structure

Syntax
val = statget(options,param)
val = statget(options,param,default)

Description
val = statget(options,param) returns the value of the parameter specified by param in the
statistics options structure options. The input param is a character vector or a string scalar of the
parameter name. If the parameter is undefined in options, statget returns []. You need to type
only enough leading characters to define the parameter name uniquely. statget ignores case for
parameter names. For available options, see Inputs.

val = statget(options,param,default) returns default if the specified parameter is
undefined in the optimization options structure options.

Input Arguments
DerivStep

Relative difference used in finite difference derivative calculations. A positive scalar, or a vector of
positive scalars the same size as the vector of parameters estimated by the Statistics and Machine
Learning Toolbox function using the options structure.

Display

Amount of information displayed by the algorithm.

• 'off' — Displays no information.
• 'final' — Displays the final output.
• 'iter' — Displays iterative output to the command window for some functions; otherwise

displays the final output.

FunValCheck

Check for invalid values, such as NaN or Inf, from the objective function.

• 'off'
• 'on'

GradObj

Flags whether the objective function returns a gradient vector as a second output.

• 'off'
• 'on'

 statget

35-7075



Jacobian

Flags whether the objective function returns a Jacobian as a second output.

• 'off'
• 'on'

MaxFunEvals

Maximum number of objective function evaluations allowed. Positive integer.

MaxIter

Maximum number of iterations allowed. Positive integer.

OutputFcn

The solver calls all output functions after each iteration.

• Function handle specified using @
• a cell array with function handles
• an empty array (default)

Robust

Invoke robust fitting option.

• 'off'
• 'on'

RobustWgtFun

A weight function for robust fitting. Valid only when Robust is 'on'. Can also be a function handle
that accepts a normalized residual as input and returns the robust weights as output.

• 'bisquare'
• 'andrews'
• 'cauchy'
• 'fair'
• 'huber'
• 'logistic'
• 'talwar'
• 'welsch'

Streams

A single instance of the RandStream class, or a cell array of RandStream instances. The Streams
option is accepted by some functions to govern what stream(s) to use in generating random numbers
within the function. If 'UseSubstreams' is true, the Streams value must be a scalar, or must be
empty. If 'UseParallel' is true and 'UseSubstreams' is false, then the Streams argument
must either be empty, or its length must match the number of processors used in the computation:
equal to the parpool size if a parpool is open, a scalar otherwise.
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TolBnd

Parameter bound tolerance. Positive scalar.

TolFun

Termination tolerance for the objective function value. Positive scalar.

TolTypeFun

Use TolFun for absolute or relative objective function tolerances.

• 'abs'
• 'rel'

TolTypeX

Use TolX for absolute or relative parameter tolerances.

• 'abs'
• 'rel'

TolX

Termination tolerance for the parameters. Positive scalar.

Tune

The tuning constant used in robust fitting to normalize the residuals before applying the weight
function. The default value depends upon the weight function. This parameter is necessary if you
specify the weight function as a function handle. Positive scalar.

UseParallel

Flag indicating whether eligible functions should use capabilities of the Parallel Computing Toolbox
(PCT), if the capabilities are available. That is, if the PCT is installed, and a PCT parpool is in effect.
Valid values are false (the default), for serial computation, and true, for parallel computation.

UseSubstreams

Flag indicating whether the random number generator in eligible functions should use Substream
property of the RandStream class. false (default) or true. When true, high level iterations within
the function will set the Substream property to the value of the iteration. This behavior helps to
generate reproducible random number streams in parallel and/or serial mode computation.

WgtFun

A weight function for robust fitting. Valid only when Robust is 'on'. Can also be a function handle
that accepts a normalized residual as input and returns the robust weights as output.

• 'bisquare'
• 'andrews'
• 'cauchy'
• 'fair'
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• 'huber'
• 'logistic'
• 'talwar'
• 'welsch'

Examples
This statement returns the value of the Display statistics options parameter from the structure
called my_options.

val = statget(my_options,'Display')

Return the value of the Display statistics options parameter from the structure called my_options
(as in the previous example). If the Display parameter is undefined, statget returns the value
'final'.

optnew = statget(my_options,'Display','final');

Version History
Introduced before R2006a

See Also
statset
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statset
Create statistics options structure

Syntax
statset
statset(statfun)
options = statset(...)
options = statset(fieldname1,val1,fieldname2,val2,...)
options = statset(oldopts,fieldname1,val1,fieldname2,val2,...)
options = statset(oldopts,newopts)

Description
statset with no input arguments and no output arguments displays all fields of a statistics options
structure and their possible values.

statset(statfun) displays fields and default values used by the Statistics and Machine Learning
Toolbox function statfun. Specify statfun using a character vector, a string scalar, or a function
handle.

options = statset(...) creates a statistics options structure options. With no input
arguments, all fields of the options structure are an empty array ([]). With a specified statfun,
function-specific fields are default values and the remaining fields are []. Function-specific fields set
to [] indicate that the function is to use its default value for that parameter. For available options,
see Inputs.

options = statset(fieldname1,val1,fieldname2,val2,...) creates an options structure
in which the named fields have the specified values. Any unspecified values are []. Use character
vectors or string scalars for field names. For named values, you must input the complete character
vector or string scalar for the value. If you provide an invalid character vector or string scalar for a
value, statset uses the default.

options = statset(oldopts,fieldname1,val1,fieldname2,val2,...) creates a copy of
oldopts with the named parameters changed to the specified values.

options = statset(oldopts,newopts) combines an existing options structure, oldopts, with a
new options structure, newopts. Any parameters in newopts with nonempty values overwrite
corresponding parameters in oldopts.

Input Arguments
DerivStep

Relative difference used in finite difference derivative calculations. A positive scalar, or a vector of
positive scalars the same size as the vector of parameters estimated by the Statistics and Machine
Learning Toolbox function using the options structure.
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Display

Amount of information displayed by the algorithm.

• 'off' — Displays no information.
• 'final' — Displays the final output.
• 'iter' — Displays iterative output to the command window for some functions; otherwise

displays the final output.

FunValCheck

Check for invalid values, such as NaN or Inf, from the objective function.

• 'off'
• 'on'

GradObj

Flags whether the objective function returns a gradient vector as a second output.

• 'off'
• 'on'

Jacobian

Flags whether the objective function returns a Jacobian as a second output.

• 'off'
• 'on'

MaxFunEvals

Maximum number of objective function evaluations allowed. Positive integer.

MaxIter

Maximum number of iterations allowed. Positive integer.

OutputFcn

The solver calls all output functions after each iteration.

• Function handle specified using @
• a cell array with function handles
• an empty array (default)

Robust

(Not recommended) Invoke robust fitting option.

• 'off'
• 'on'

Robust is not recommended. Use RobustWgtFun for robust fitting.
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RobustWgtFun

Weight function for robust fitting. Can also be a function handle that accepts a normalized residual as
input and returns the robust weights as output. If you use a function handle, give a Tune constant.
See “Robust Options” on page 35-7083.

Streams

A single instance of the RandStream class, or a cell array of RandStream instances. The Streams
option is accepted by some functions to govern what stream(s) to use in generating random numbers
within the function. If 'UseSubstreams' is true, the Streams value must be a scalar, or must be
empty. If 'UseParallel' is true and 'UseSubstreams' is false, then the Streams argument
must either be empty, or its length must match the number of processors used in the computation:
equal to the parpool size if a parpool is open, a scalar otherwise.

TolBnd

Parameter bound tolerance. Positive scalar.

TolFun

Termination tolerance for the objective function value. Positive scalar.

TolTypeFun

Use TolFun for absolute or relative objective function tolerances.

• 'abs'
• 'rel'

TolTypeX

Use TolX for absolute or relative parameter tolerances.

• 'abs'
• 'rel'

TolX

Termination tolerance for the parameters. Positive scalar.

Tune

Tuning constant used in robust fitting to normalize the residuals before applying the weight function.
The default value depends upon the weight function. This parameter is necessary if you specify the
weight function as a function handle. Positive scalar. See “Robust Options” on page 35-7083.

UseParallel

Flag indicating whether eligible functions should use capabilities of the Parallel Computing Toolbox
(PCT), if the capabilities are available. That is, if the PCT is installed, and a PCT parpool is in effect.
Valid values are false (the default), for serial computation, and true, for parallel computation.

UseSubstreams

Flag indicating whether the random number generator in eligible functions should use Substream
property of the RandStream class. false (default) or true. When true, high level iterations within
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the function will set the Substream property to the value of the iteration. This behavior helps to
generate reproducible random number streams in parallel and/or serial mode computation.

WgtFun

(Not recommended) Weight function for robust fitting. Valid only when Robust is 'on'. Can also be a
function handle that accepts a normalized residual as input and returns the robust weights as output.
See “Robust Options” on page 35-7083.

WgtFun is not recommended. Use RobustWgtFun instead.

Examples
Suppose you want to change the default parameter values for the function evfit, which fits an
extreme value distribution to data. The defaults parameter values are:

statset('evfit')
ans = 
          Display: 'off'
      MaxFunEvals: []
          MaxIter: []
           TolBnd: []
           TolFun: []
       TolTypeFun: []
             TolX: 1.0000e-06
         TolTypeX: []
          GradObj: []
         Jacobian: []
        DerivStep: []
      FunValCheck: []
           Robust: []
     RobustWgtFun: []
           WgtFun: []
             Tune: []
      UseParallel: []
    UseSubstreams: []
          Streams: []
        OutputFcn: []

The only parameters that evfit uses are Display and TolX. To create an options structure with the
value of TolX set to 1e-8, enter:

options = statset('TolX',1e-8)
% Pass options to evfit:
mu = 1;
sigma = 1;
data = evrnd(mu,sigma,1,100);

paramhat = evfit(data,[],[],[],options)
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More About
Robust Options

Weight Function Equation Default Tuning
Constant

'andrews' w = (abs(r)<pi) .* sin(r) ./ r 1.339
'bisquare'
(default)

w = (abs(r)<1) .* (1 - r.^2).^2 4.685

'cauchy' w = 1 ./ (1 + r.^2) 2.385
'fair' w = 1 ./ (1 + abs(r)) 1.400
'huber' w = 1 ./ max(1, abs(r)) 1.345
'logistic' w = tanh(r) ./ r 1.205
'talwar' w = 1 * (abs(r)<1) 2.795
'welsch' w = exp(-(r.^2)) 2.985
[] No robust fitting —

Version History
Introduced before R2006a

See Also
statget
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std
Package: prob

Standard deviation of probability distribution

Syntax
s = std(pd)

Description
s = std(pd) returns the standard deviation s of the probability distribution pd.

Examples

Standard Deviation of a Fitted Distribution

Load the sample data. Create a vector containing the first column of students' exam grade data.

load examgrades
x = grades(:,1);

Fit a normal distribution object to the data.

pd = fitdist(x,'Normal')

pd = 
  NormalDistribution

  Normal distribution
       mu = 75.0083   [73.4321, 76.5846]
    sigma =  8.7202   [7.7391, 9.98843]

Compute the standard deviation of the fitted distribution.

s = std(pd)

s = 8.7202

For a normal distribution, the standard deviation is equal to the parameter sigma.

Standard Deviation of Skewed Distribution

Create a Weibull probability distribution object

pd = makedist('Weibull','A',5,'B',2)

pd = 
  WeibullDistribution
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  Weibull distribution
    A = 5
    B = 2

Compute the standard deviation of the distribution.

s = std(pd)

s = 2.3163

Standard Deviation of Triangular Distribution

Create a triangular distribution object.

pd = makedist('Triangular','A',-3,'B',1,'C',3)

pd = 
  TriangularDistribution

A = -3, B = 1, C = 3

Compute the standard deviation of the distribution.

s = std(pd)

s = 1.2472

Standard Deviation of a Kernel Distribution

Load the sample data. Create a vector containing the first column of students’ exam grade data.

load examgrades;
x = grades(:,1);

Create a probability distribution object by fitting a kernel distribution to the data.

pd = fitdist(x,'Kernel')

pd = 
  KernelDistribution

    Kernel = normal
    Bandwidth = 3.61677
    Support = unbounded

Compute the standard deviation of the fitted distribution.

s = std(pd)

s = 9.4069
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Input Arguments
pd — Probability distribution
probability distribution object

Probability distribution, specified as one of the probability distribution objects in the following table.

Distribution Object Function or App Used to Create Probability
Distribution Object

BetaDistribution makedist, fitdist, Distribution Fitter
BinomialDistribution makedist, fitdist, Distribution Fitter
BirnbaumSaundersDistribution makedist, fitdist, Distribution Fitter
BurrDistribution makedist, fitdist, Distribution Fitter
ExponentialDistribution makedist, fitdist, Distribution Fitter
ExtremeValueDistribution makedist, fitdist, Distribution Fitter
GammaDistribution makedist, fitdist, Distribution Fitter
GeneralizedExtremeValueDistribution makedist, fitdist, Distribution Fitter
GeneralizedParetoDistribution makedist, fitdist, Distribution Fitter
HalfNormalDistribution makedist, fitdist, Distribution Fitter
InverseGaussianDistribution makedist, fitdist, Distribution Fitter
KernelDistribution fitdist, Distribution Fitter
LogisticDistribution makedist, fitdist, Distribution Fitter
LoglogisticDistribution makedist, fitdist, Distribution Fitter
LognormalDistribution makedist, fitdist, Distribution Fitter
LoguniformDistribution makedist
MultinomialDistribution makedist
NakagamiDistribution makedist, fitdist, Distribution Fitter
NegativeBinomialDistribution makedist, fitdist, Distribution Fitter
NormalDistribution makedist, fitdist, Distribution Fitter
PiecewiseLinearDistribution makedist
PoissonDistribution makedist, fitdist, Distribution Fitter
RayleighDistribution makedist, fitdist, Distribution Fitter
RicianDistribution makedist, fitdist, Distribution Fitter
StableDistribution makedist, fitdist, Distribution Fitter
tLocationScaleDistribution makedist, fitdist, Distribution Fitter
TriangularDistribution makedist
UniformDistribution makedist
WeibullDistribution makedist, fitdist, Distribution Fitter
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Output Arguments
s — Standard deviation
nonnegative scalar value

Standard deviation of the probability distribution, returned as a nonnegative scalar value.

Version History
Introduced in R2013a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• The input argument pd can be a fitted probability distribution object for beta, exponential,
extreme value, lognormal, normal, and Weibull distributions. Create pd by fitting a probability
distribution to sample data from the fitdist function. For an example, see “Code Generation for
Probability Distribution Objects” on page 34-94.

For more information on code generation, see “Introduction to Code Generation” on page 34-2 and
“General Code Generation Workflow” on page 34-5.

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

This function fully supports GPU arrays. For more information, see “Run MATLAB Functions on a
GPU” (Parallel Computing Toolbox).

See Also
var | mean | makedist | fitdist | Distribution Fitter

Topics
“Working with Probability Distributions” on page 5-3
“Supported Distributions” on page 5-16
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step
Improve generalized linear regression model by adding or removing terms

Syntax
NewMdl = step(mdl)
NewMdl = step(mdl,Name,Value)

Description
NewMdl = step(mdl) returns a generalized linear regression model based on mdl using stepwise
regression to add or remove one predictor.

NewMdl = step(mdl,Name,Value) specifies additional options using one or more name-value pair
arguments. For example, you can specify the criterion to use to add or remove terms and the
maximum number of steps to take.

Examples

Modify Generalized Linear Regression Model Using step

Fit a Poisson regression model using random data and a single predictor, and then use step to
improve the model by adding or removing predictor terms.

Generate sample data that has 20 predictor variables. Use three of the predictors to generate the
Poisson response variable.

rng('default') % For reproducibility
X = randn(100,20);
mu = exp(X(:,[5 10 15])*[.4;.2;.3] + 1);
y = poissrnd(mu);

Create a generalized linear regression model of Poisson data using X(:,2) as the only predictor.

mdl = fitglm(X,y,'y ~ x2','Distribution','poisson')

mdl = 
Generalized linear regression model:
    log(y) ~ 1 + x2
    Distribution = Poisson

Estimated Coefficients:
                   Estimate       SE        tStat       pValue  
                   ________    ________    _______    __________

    (Intercept)      1.1386    0.056722     20.073    1.2817e-89
    x2             0.010768    0.056564    0.19037       0.84902

100 observations, 98 error degrees of freedom
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Dispersion: 1
Chi^2-statistic vs. constant model: 0.0362, p-value = 0.849

Improve mdl by using step. Specify 'NSteps' as 5 to allow at most 5 steps of stepwise regression.

mdl1 = step(mdl,'NSteps',5)

1. Adding x5, Deviance = 134.4375, Chi2Stat = 52.21338, PValue = 4.978574e-13
2. Adding x15, Deviance = 106.1925, Chi2Stat = 28.24496, PValue = 1.068927e-07
3. Adding x10, Deviance = 94.708, Chi2Stat = 11.4845, PValue = 0.000701792
4. Removing x2, Deviance = 95.021, Chi2Stat = 0.31263, PValue = 0.57607

mdl1 = 
Generalized linear regression model:
    log(y) ~ 1 + x5 + x10 + x15
    Distribution = Poisson

Estimated Coefficients:
                   Estimate       SE       tStat       pValue  
                   ________    ________    ______    __________

    (Intercept)     1.0115     0.064275    15.737    8.4217e-56
    x5             0.39508     0.066665    5.9263    3.0977e-09
    x10            0.18863      0.05534    3.4085     0.0006532
    x15            0.29295     0.053269    5.4995    3.8089e-08

100 observations, 96 error degrees of freedom
Dispersion: 1
Chi^2-statistic vs. constant model: 91.7, p-value = 9.61e-20

step adds the three predictor variables used to generate the response variable to the model and
removes X(:,2) from the model.

Input Arguments
mdl — Generalized linear regression model
GeneralizedLinearModel object

Generalized linear regression model, specified as a GeneralizedLinearModel object created using
fitglm or stepwiseglm.

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: 'Criterion','aic','Upper','quadratic','Verbose',2 instructs step to use the
Akaike information criterion, include (at most) the quadratic terms in the model, and display the
evaluation process and the decision taken at each step.

Criterion — Criterion to add or remove terms
'Deviance' (default) | 'sse' | 'aic' | 'bic' | 'rsquared' | 'adjrsquared'
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Criterion to add or remove terms, specified as the comma-separated pair consisting of 'Criterion'
and one of these values:

• 'Deviance' — p-value for an F-test or chi-squared test of the change in the deviance that results
from adding or removing the term. The F-test tests a single model, and the chi-squared test
compares two different models.

• 'sse' — p-value for an F-test of the change in the sum of squared error that results from adding
or removing the term.

• 'aic' — Change in the value of the Akaike information criterion (AIC).
• 'bic' — Change in the value of the Bayesian information criterion (BIC).
• 'rsquared' — Increase in the value of R2.
• 'adjrsquared' — Increase in the value of adjusted R2.

Example: 'Criterion','bic'

Lower — Model specification describing terms that cannot be removed
'constant' (default) | character vector or string scalar naming the model | t-by-(p + 1) terms matrix
| character vector or string scalar formula in the form 'Y ~ terms'

Model specification describing terms that cannot be removed from the model, specified as the
comma-separated pair consisting of 'Lower' and one of these values:

• A character vector or string scalar naming the model.

Value Model Type
'constant' Model contains only a constant (intercept) term.
'linear' Model contains an intercept and linear term for each

predictor.
'interactions' Model contains an intercept, linear term for each predictor,

and all products of pairs of distinct predictors (no squared
terms).

'purequadratic' Model contains an intercept term and linear and squared
terms for each predictor.

'quadratic' Model contains an intercept term, linear and squared terms
for each predictor, and all products of pairs of distinct
predictors.

'polyijk' Model is a polynomial with all terms up to degree i in the
first predictor, degree j in the second predictor, and so on.
Specify the maximum degree for each predictor by using
numerals 0 though 9. The model contains interaction terms,
but the degree of each interaction term does not exceed the
maximum value of the specified degrees. For example,
'poly13' has an intercept and x1, x2, x2

2, x2
3, x1*x2, and

x1*x2
2 terms, where x1 and x2 are the first and second

predictors, respectively.
• A t-by-(p + 1) matrix, or a “Terms Matrix” on page 35-7094, specifying terms in the model, where t

is the number of terms, p is the number of predictor variables, and +1 accounts for the response
variable. A terms matrix is convenient when the number of predictors is large and you want to
generate the terms programmatically.
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• A character vector or string scalar “Formula” on page 35-7094 in the form
'Y ~ terms',

where the terms are in “Wilkinson Notation” on page 35-7094. The variable names in the formula
must be valid MATLAB identifiers.

Example: 'Lower','linear'
Data Types: char | string | single | double

NSteps — Maximum number of steps to take
1 (default) | positive integer

Maximum number of steps to take, specified as the comma-separated pair consisting of 'NSteps'
and a positive integer.
Example: 'NSteps',5
Data Types: single | double

PEnter — Threshold for criterion to add term
scalar value

Threshold for the criterion to add a term, specified as the comma-separated pair consisting of
'PEnter' and a scalar value, as described in this table.

Criterion Default Value Decision
'Deviance' 0.05 If the p-value of the F-statistic

or chi-squared statistic is less
than PEnter (p-value to enter),
add the term to the model.

'SSE' 0.05 If the p-value of the F-statistic is
less than PEnter, add the term
to the model.

'AIC' 0 If the change in the AIC of the
model is less than PEnter, add
the term to the model.

'BIC' 0 If the change in the BIC of the
model is less than PEnter, add
the term to the model.

'Rsquared' 0.1 If the increase in the R-squared
value of the model is greater
than PEnter, add the term to
the model.

'AdjRsquared' 0 If the increase in the adjusted R-
squared value of the model is
greater than PEnter, add the
term to the model.

For more information, see the Criterion name-value pair argument.
Example: 'PEnter',0.075

PRemove — Threshold for criterion to remove term
scalar value
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Threshold for the criterion to remove a term, specified as the comma-separated pair consisting of
'PRemove' and a scalar value, as described in this table.

Criterion Default Value Decision
'Deviance' 0.10 If the p-value of the F-statistic

or chi-squared statistic is
greater than PRemove (p-value
to remove), remove the term
from the model.

'SSE' 0.10 If the p-value of the F-statistic is
greater than PRemove, remove
the term from the model.

'AIC' 0.01 If the change in the AIC of the
model is greater than PRemove,
remove the term from the
model.

'BIC' 0.01 If the change in the BIC of the
model is greater than PRemove,
remove the term from the
model.

'Rsquared' 0.05 If the increase in the R-squared
value of the model is less than
PRemove, remove the term from
the model.

'AdjRsquared' -0.05 If the increase in the adjusted R-
squared value of the model is
less than PRemove, remove the
term from the model.

At each step, the step function also checks whether a term is redundant (linearly dependent) with
other terms in the current model. When a term is linearly dependent on other terms in the current
model, the step function removes the redundant term, regardless of the criterion value.

For more information, see the Criterion name-value pair argument.
Example: 'PRemove',0.05

Upper — Model specification describing largest set of terms in fit
'interactions' (default) | character vector or string scalar naming the model | t-by-(p + 1) terms
matrix | character vector or string scalar formula in the form 'Y ~ terms'

Model specification describing the largest set of terms in the fit, specified as the comma-separated
pair consisting of 'Upper' and one of these values:

• A character vector or string scalar naming the model.

Value Model Type
'constant' Model contains only a constant (intercept) term.
'linear' Model contains an intercept and linear term for each

predictor.
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Value Model Type
'interactions' Model contains an intercept, linear term for each predictor,

and all products of pairs of distinct predictors (no squared
terms).

'purequadratic' Model contains an intercept term and linear and squared
terms for each predictor.

'quadratic' Model contains an intercept term, linear and squared terms
for each predictor, and all products of pairs of distinct
predictors.

'polyijk' Model is a polynomial with all terms up to degree i in the
first predictor, degree j in the second predictor, and so on.
Specify the maximum degree for each predictor by using
numerals 0 though 9. The model contains interaction terms,
but the degree of each interaction term does not exceed the
maximum value of the specified degrees. For example,
'poly13' has an intercept and x1, x2, x2

2, x2
3, x1*x2, and

x1*x2
2 terms, where x1 and x2 are the first and second

predictors, respectively.
• A t-by-(p + 1) matrix, or a “Terms Matrix” on page 35-7094, specifying terms in the model, where t

is the number of terms, p is the number of predictor variables, and +1 accounts for the response
variable. A terms matrix is convenient when the number of predictors is large and you want to
generate the terms programmatically.

• A character vector or string scalar “Formula” on page 35-7094 in the form
'Y ~ terms',

where the terms are in “Wilkinson Notation” on page 35-7094. The variable names in the formula
must be valid MATLAB identifiers.

Example: 'Upper','quadratic'
Data Types: char | string | single | double

Verbose — Control for display of information
1 (default) | 0 | 2

Control for the display of information, specified as the comma-separated pair consisting of
'Verbose' and one of these values:

• 0 — Suppress all display.
• 1 — Display the action taken at each step.
• 2 — Display the evaluation process and the action taken at each step.

Example: 'Verbose',2

Output Arguments
NewMdl — Generalized linear regression model
GeneralizedLinearModel object

Generalized linear regression model, returned as a GeneralizedLinearModel object.

To overwrite the input argument mdl, assign the new model to mdl.
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mdl = step(mdl);

More About
Terms Matrix

A terms matrix T is a t-by-(p + 1) matrix specifying terms in a model, where t is the number of terms,
p is the number of predictor variables, and +1 accounts for the response variable. The value of
T(i,j) is the exponent of variable j in term i.

For example, suppose that an input includes three predictor variables x1, x2, and x3 and the
response variable y in the order x1, x2, x3, and y. Each row of T represents one term:

• [0 0 0 0] — Constant term or intercept
• [0 1 0 0] — x2; equivalently, x1^0 * x2^1 * x3^0
• [1 0 1 0] — x1*x3
• [2 0 0 0] — x1^2
• [0 1 2 0] — x2*(x3^2)

The 0 at the end of each term represents the response variable. In general, a column vector of zeros
in a terms matrix represents the position of the response variable. If you have the predictor and
response variables in a matrix and column vector, then you must include 0 for the response variable
in the last column of each row.

Formula

A formula for model specification is a character vector or string scalar of the form 'y ~ terms'.

• y is the response name.
• terms represents the predictor terms in a model using Wilkinson notation.

To represent predictor and response variables, use the variable names of the table input tbl or the
variable names specified by using VarNames. The default value of VarNames is
{'x1','x2',...,'xn','y'}.

For example:

• 'y ~ x1 + x2 + x3' specifies a three-variable linear model with intercept.
• 'y ~ x1 + x2 + x3 – 1' specifies a three-variable linear model without intercept. Note that

formulas include a constant (intercept) term by default. To exclude a constant term from the
model, you must include –1 in the formula.

A formula includes a constant term unless you explicitly remove the term using –1.

Wilkinson Notation

Wilkinson notation describes the terms present in a model. The notation relates to the terms present
in a model, not to the multipliers (coefficients) of those terms.

Wilkinson notation uses these symbols:

• + means include the next variable.
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• – means do not include the next variable.
• : defines an interaction, which is a product of terms.
• * defines an interaction and all lower-order terms.
• ^ raises the predictor to a power, exactly as in * repeated, so ^ includes lower-order terms as well.
• () groups terms.

This table shows typical examples of Wilkinson notation.

Wilkinson Notation Terms in Standard Notation
1 Constant (intercept) term
x1^k, where k is a positive integer x1, x12, ..., x1k

x1 + x2 x1, x2
x1*x2 x1, x2, x1*x2
x1:x2 x1*x2 only
–x2 Do not include x2
x1*x2 + x3 x1, x2, x3, x1*x2
x1 + x2 + x3 + x1:x2 x1, x2, x3, x1*x2
x1*x2*x3 – x1:x2:x3 x1, x2, x3, x1*x2, x1*x3, x2*x3
x1*(x2 + x3) x1, x2, x3, x1*x2, x1*x3

For more details, see “Wilkinson Notation” on page 11-93.

Algorithms
• Stepwise regression is a systematic method for adding and removing terms from a linear or

generalized linear model based on their statistical significance in explaining the response variable.
The method begins with an initial model, specified using modelspec, and then compares the
explanatory power of incrementally larger and smaller models.

The step function uses forward and backward stepwise regression to determine a final model. At
each step, the function searches for terms to add to the model or remove from the model based on
the value of the 'Criterion' name-value pair argument.

The default value of 'Criterion' for a linear regression model is 'sse'. In this case,
stepwiselm and step of LinearModel use the p-value of an F-statistic to test models with and
without a potential term at each step. If a term is not currently in the model, the null hypothesis is
that the term would have a zero coefficient if added to the model. If there is sufficient evidence to
reject the null hypothesis, the function adds the term to the model. Conversely, if a term is
currently in the model, the null hypothesis is that the term has a zero coefficient. If there is
insufficient evidence to reject the null hypothesis, the function removes the term from the model.

Stepwise regression takes these steps when 'Criterion' is 'sse':

1 Fit the initial model.
2 Examine a set of available terms not in the model. If any of the terms have p-values less than

an entrance tolerance (that is, if it is unlikely a term would have a zero coefficient if added to
the model), add the term with the smallest p-value and repeat this step; otherwise, go to step
3.
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3 If any of the available terms in the model have p-values greater than an exit tolerance (that is,
the hypothesis of a zero coefficient cannot be rejected), remove the term with the largest p-
value and return to step 2; otherwise, end the process.

At any stage, the function will not add a higher-order term if the model does not also include all
lower-order terms that are subsets of the higher-order term. For example, the function will not try
to add the term X1:X2^2 unless both X1 and X2^2 are already in the model. Similarly, the
function will not remove lower-order terms that are subsets of higher-order terms that remain in
the model. For example, the function will not try to remove X1 or X2^2 if X1:X2^2 remains in the
model.

The default value of 'Criterion' for a generalized linear model is 'Deviance'. stepwiseglm
and step of GeneralizedLinearModel follow a similar procedure for adding or removing
terms.

You can specify other criteria by using the 'Criterion' name-value pair argument. For example,
you can specify the change in the value of the Akaike information criterion, Bayesian information
criterion, R-squared, or adjusted R-squared as the criterion to add or remove terms.

Depending on the terms included in the initial model, and the order in which the function adds
and removes terms, the function might build different models from the same set of potential
terms. The function terminates when no single step improves the model. However, a different
initial model or a different sequence of steps does not guarantee a better fit. In this sense,
stepwise models are locally optimal, but might not be globally optimal.

• step treats a categorical predictor as follows:

• A model with a categorical predictor that has L levels (categories) includes L – 1 indicator
variables. The model uses the first category as a reference level, so it does not include the
indicator variable for the reference level. If the data type of the categorical predictor is
categorical, then you can check the order of categories by using categories and reorder
the categories by using reordercats to customize the reference level. For more details about
creating indicator variables, see “Automatic Creation of Dummy Variables” on page 2-50.

• step treats the group of L – 1 indicator variables as a single variable. If you want to treat the
indicator variables as distinct predictor variables, create indicator variables manually by using
dummyvar. Then use the indicator variables, except the one corresponding to the reference
level of the categorical variable, when you fit a model. For the categorical predictor X, if you
specify all columns of dummyvar(X) and an intercept term as predictors, then the design
matrix becomes rank deficient.

• Interaction terms between a continuous predictor and a categorical predictor with L levels
consist of the element-wise product of the L – 1 indicator variables with the continuous
predictor.

• Interaction terms between two categorical predictors with L and M levels consist of the (L –
 1)*(M – 1) indicator variables to include all possible combinations of the two categorical
predictor levels.

• You cannot specify higher-order terms for a categorical predictor because the square of an
indicator is equal to itself.

Therefore, if step adds or removes a categorical predictor, the function actually adds or removes
the group of indicator variables in one step. Similarly, if step adds or removes an interaction term
with a categorical predictor, the function actually adds or removes the group of interaction terms
including the categorical predictor.
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• step considers NaN, '' (empty character vector), "" (empty string), <missing>, and
<undefined> values in tbl, X, and Y to be missing values. step does not use observations with
missing values in the fit. The ObservationInfo property of a fitted model indicates whether or
not step uses each observation in the fit.

Alternative Functionality
• Use stepwiseglm to specify terms in a starting model and continue improving the model until no

single step of adding or removing a term is beneficial.
• Use addTerms or removeTerms to add or remove specific terms.

Version History
Introduced in R2012a

Extended Capabilities
GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

This function fully supports GPU arrays. For more information, see “Run MATLAB Functions on a
GPU” (Parallel Computing Toolbox).

See Also
addTerms | GeneralizedLinearModel | removeTerms | stepwiseglm

Topics
“Plots to Understand Predictor Effects and How to Modify a Model” on page 12-21
“Generalized Linear Models” on page 12-9
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step
Improve linear regression model by adding or removing terms

Syntax
NewMdl = step(mdl)
NewMdl = step(mdl,Name,Value)

Description
NewMdl = step(mdl) returns a linear regression model based on mdl using stepwise regression to
add or remove one predictor.

NewMdl = step(mdl,Name,Value) specifies additional options using one or more name-value pair
arguments. For example, you can specify the criterion to use to add or remove terms and the
maximum number of steps to take.

Examples

Modify Linear Regression Model Using step

Fit a linear regression model and use step to improve the model by adding or removing terms. This
example also describes how the step function treats a categorical predictor.

Load the carsmall data set, and create a table using the Weight, Model_Year, and MPG variables.

load carsmall
tbl1 = table(MPG,Weight);
tbl1.Year = categorical(Model_Year);

Create a linear regression model of MPG as a function of Weight.

mdl1 = fitlm(tbl1,'MPG ~ Weight')

mdl1 = 
Linear regression model:
    MPG ~ 1 + Weight

Estimated Coefficients:
                    Estimate        SE         tStat       pValue  
                   __________    _________    _______    __________

    (Intercept)        49.238       1.6411     30.002    2.7015e-49
    Weight         -0.0086119    0.0005348    -16.103    1.6434e-28

Number of observations: 94, Error degrees of freedom: 92
Root Mean Squared Error: 4.13
R-squared: 0.738,  Adjusted R-Squared: 0.735
F-statistic vs. constant model: 259, p-value = 1.64e-28
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Adjust the model to include up to 'quadratic' terms by using step. Specify 'NSteps' as 5 to
allow at most 5 steps of stepwise regression. Specify 'Verbose' as 2 to display the evaluation
process and the decision taken at each step.

NewMdl1 = step(mdl1,'Upper','quadratic','NSteps',5,'Verbose',2)

   pValue for adding Year is 8.2284e-15
   pValue for adding Weight^2 is 0.15454
1. Adding Year, FStat = 47.5136, pValue = 8.22836e-15
   pValue for adding Weight:Year is 0.0071637
   pValue for adding Weight^2 is 0.0022303
2. Adding Weight^2, FStat = 9.9164, pValue = 0.0022303
   pValue for adding Weight:Year is 0.19519
   pValue for removing Year is 2.9042e-16

NewMdl1 = 
Linear regression model:
    MPG ~ 1 + Weight + Year + Weight^2

Estimated Coefficients:
                    Estimate         SE         tStat       pValue  
                   __________    __________    _______    __________

    (Intercept)        54.206        4.7117     11.505    2.6648e-19
    Weight          -0.016404     0.0031249    -5.2493    1.0283e-06
    Year_76            2.0887       0.71491     2.9215     0.0044137
    Year_82            8.1864       0.81531     10.041    2.6364e-16
    Weight^2       1.5573e-06    4.9454e-07      3.149     0.0022303

Number of observations: 94, Error degrees of freedom: 89
Root Mean Squared Error: 2.78
R-squared: 0.885,  Adjusted R-Squared: 0.88
F-statistic vs. constant model: 172, p-value = 5.52e-41

step creates two indicator variables, Year_76 and Year_82, because Year includes three distinct
values. step does not consider the square terms of indicator variables because the square of an
indicator variable is itself.

Because 'Verbose' is 2, step displays the evaluation process:

• step computes the p-values for adding Year or Weight^2. The p-value for Year is less than both
the p-value for Weight^2 and the default threshold value of 0.05; therefore, step adds Year to
the model.

• step computes the p-values for adding Weight:Year or Weight^2. Because the p-value for
Weight^2 is less than the p-value for Weight:Year, the step function adds Weight^2 to the
model.

• After adding the quadratic term, step computes the p-value for adding Weight:Year again, but
the p-value is greater than the threshold value. Therefore, step does not add the term to the
model. step does not examine adding Weight^3 because of the upper bound specified by the
'Upper' name-value pair argument.

• step looks for terms to remove. step already examined Weight^2, so it computes only the p-
value for removing Year. Because the p-value is less than the default threshold value of 0.10,
step does not remove the term.

• Although the maximum allowed number of steps is 5, step terminates the process after two steps
because the model does not improve by adding or removing a term.
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step treats the two indicator variables as one predictor variable and adds Year in one step. To treat
the two indicator variables as two distinct predictor variables, use dummyvar to create separate
categorical variables.

temp_Year = dummyvar(tbl1.Year);
Year_76 = temp_Year(:,2);
Year_82 = temp_Year(:,3);

Create a table containing MPG, Weight, Year_76, and Year_82.

tbl2 = table(MPG,Weight,Year_76,Year_82);

Create a linear regression model of MPG as a function of Weight, and use step to improve the model.

mdl2 = fitlm(tbl2,'MPG ~ Weight');
NewMdl2 = step(mdl2,'Upper','quadratic','NSteps',5)

1. Adding Year_82, FStat = 83.1956, pValue = 1.76163e-14
2. Adding Weight:Year_82, FStat = 8.0641, pValue = 0.0055818
3. Adding Year_76, FStat = 8.1284, pValue = 0.0054157

NewMdl2 = 
Linear regression model:
    MPG ~ 1 + Year_76 + Weight*Year_82

Estimated Coefficients:
                       Estimate         SE         tStat       pValue  
                      __________    __________    _______    __________

    (Intercept)           38.844        1.5294     25.397     1.503e-42
    Weight             -0.006272    0.00042673    -14.698    1.5622e-25
    Year_76               2.0395       0.71537      2.851     0.0054157
    Year_82               19.607        3.8731     5.0623    2.2163e-06
    Weight:Year_82    -0.0046268     0.0014979    -3.0888     0.0026806

Number of observations: 94, Error degrees of freedom: 89
Root Mean Squared Error: 2.79
R-squared: 0.885,  Adjusted R-Squared: 0.88
F-statistic vs. constant model: 171, p-value = 6.54e-41

The model NewMdl2 includes the interaction term Weight:Year_82 instead of Weight^2, the term
included in NewMdl1.

Input Arguments
mdl — Linear regression model
LinearModel object

Linear regression model, specified as a LinearModel object created using fitlm or stepwiselm.

You can use step only if you create mdl by using fitlm with the 'RobustOpts' name-value pair
argument set to the default 'off'.
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Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: 'Criterion','aic','Upper','quadratic','Verbose',2 instructs step to use the
Akaike information criterion, include (at most) the quadratic terms in the model, and display the
evaluation process and the decision taken at each step.

Criterion — Criterion to add or remove terms
'sse' (default) | 'aic' | 'bic' | 'rsquared' | 'adjrsquared'

Criterion to add or remove terms, specified as the comma-separated pair consisting of 'Criterion'
and one of these values:

• 'sse' — p-value for an F-test of the change in the sum of squared error that results from adding
or removing the term

• 'aic' — Change in the value of Akaike information criterion (AIC)
• 'bic' — Change in the value of Bayesian information criterion (BIC)
• 'rsquared' — Increase in the value of R2

• 'adjrsquared' — Increase in the value of adjusted R2

Example: 'Criterion','bic'

Lower — Model specification describing terms that cannot be removed
'constant' (default) | character vector or string scalar naming the model | t-by-(p + 1) terms matrix
| character vector or string scalar formula in the form 'Y ~ terms'

Model specification describing terms that cannot be removed from the model, specified as the
comma-separated pair consisting of 'Lower' and one of these values:

• A character vector or string scalar naming the model.

Value Model Type
'constant' Model contains only a constant (intercept) term.
'linear' Model contains an intercept and linear term for each

predictor.
'interactions' Model contains an intercept, linear term for each predictor,

and all products of pairs of distinct predictors (no squared
terms).

'purequadratic' Model contains an intercept term and linear and squared
terms for each predictor.

'quadratic' Model contains an intercept term, linear and squared terms
for each predictor, and all products of pairs of distinct
predictors.
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Value Model Type
'polyijk' Model is a polynomial with all terms up to degree i in the

first predictor, degree j in the second predictor, and so on.
Specify the maximum degree for each predictor by using
numerals 0 though 9. The model contains interaction terms,
but the degree of each interaction term does not exceed the
maximum value of the specified degrees. For example,
'poly13' has an intercept and x1, x2, x2

2, x2
3, x1*x2, and

x1*x2
2 terms, where x1 and x2 are the first and second

predictors, respectively.

• A t-by-(p + 1) matrix, or a “Terms Matrix” on page 35-7105, specifying terms in the model, where t
is the number of terms, p is the number of predictor variables, and +1 accounts for the response
variable. A terms matrix is convenient when the number of predictors is large and you want to
generate the terms programmatically.

• A character vector or string scalar “Formula” on page 35-7105 in the form
'Y ~ terms',

where the terms are in “Wilkinson Notation” on page 35-7106. The variable names in the formula
must be valid MATLAB identifiers.

Example: 'Lower','linear'
Data Types: single | double | char | string

NSteps — Maximum number of steps to take
1 (default) | positive integer

Maximum number of steps to take, specified as the comma-separated pair consisting of 'NSteps'
and a positive integer.
Example: 'NSteps',5
Data Types: single | double

PEnter — Threshold for criterion to add term
scalar value

Threshold for the criterion to add a term, specified as the comma-separated pair consisting of
'PEnter' and a scalar value, as described in this table.

Criterion Default Value Decision
'SSE' 0.05 If the p-value of the F-statistic is

less than PEnter (p-value to
enter), add the term to the
model.

'AIC' 0 If the change in the AIC of the
model is less than PEnter, add
the term to the model.

'BIC' 0 If the change in the BIC of the
model is less than PEnter, add
the term to the model.
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Criterion Default Value Decision
'Rsquared' 0.1 If the increase in the R-squared

value of the model is greater
than PEnter, add the term to
the model.

'AdjRsquared' 0 If the increase in the adjusted R-
squared value of the model is
greater than PEnter, add the
term to the model.

For more information, see the Criterion name-value pair argument.
Example: 'PEnter',0.075

PRemove — Threshold for criterion to remove term
scalar value

Threshold for the criterion to remove a term, specified as the comma-separated pair consisting of
'PRemove' and a scalar value, as described in this table.

Criterion Default Value Decision
'SSE' 0.10 If the p-value of the F-statistic is

greater than PRemove (p-value
to remove), remove the term
from the model.

'AIC' 0.01 If the change in the AIC of the
model is greater than PRemove,
remove the term from the
model.

'BIC' 0.01 If the change in the BIC of the
model is greater than PRemove,
remove the term from the
model.

'Rsquared' 0.05 If the increase in the R-squared
value of the model is less than
PRemove, remove the term from
the model.

'AdjRsquared' -0.05 If the increase in the adjusted R-
squared value of the model is
less than PRemove, remove the
term from the model.

At each step, the step function also checks whether a term is redundant (linearly dependent) with
other terms in the current model. When any term is linearly dependent with other terms in the
current model, the step function removes the redundant term, regardless of the criterion value.

For more information, see the Criterion name-value pair argument.
Example: 'PRemove',0.05
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Upper — Model specification describing largest set of terms in fit
'interactions' (default) | character vector or string scalar naming the model | t-by-(p + 1) terms
matrix | character vector or string scalar formula in the form 'Y ~ terms'

Model specification describing the largest set of terms in the fit, specified as the comma-separated
pair consisting of 'Upper' and one of these values:

• A character vector or string scalar naming the model.

Value Model Type
'constant' Model contains only a constant (intercept) term.
'linear' Model contains an intercept and linear term for each

predictor.
'interactions' Model contains an intercept, linear term for each predictor,

and all products of pairs of distinct predictors (no squared
terms).

'purequadratic' Model contains an intercept term and linear and squared
terms for each predictor.

'quadratic' Model contains an intercept term, linear and squared terms
for each predictor, and all products of pairs of distinct
predictors.

'polyijk' Model is a polynomial with all terms up to degree i in the
first predictor, degree j in the second predictor, and so on.
Specify the maximum degree for each predictor by using
numerals 0 though 9. The model contains interaction terms,
but the degree of each interaction term does not exceed the
maximum value of the specified degrees. For example,
'poly13' has an intercept and x1, x2, x2

2, x2
3, x1*x2, and

x1*x2
2 terms, where x1 and x2 are the first and second

predictors, respectively.

• A t-by-(p + 1) matrix, or a “Terms Matrix” on page 35-7105, specifying terms in the model, where t
is the number of terms, p is the number of predictor variables, and +1 accounts for the response
variable. A terms matrix is convenient when the number of predictors is large and you want to
generate the terms programmatically.

• A character vector or string scalar “Formula” on page 35-7105 in the form
'Y ~ terms',

where the terms are in “Wilkinson Notation” on page 35-7106. The variable names in the formula
must be valid MATLAB identifiers.

Example: 'Upper','quadratic'
Data Types: single | double | char | string

Verbose — Control for display of information
1 (default) | 0 | 2

Control for the display of information, specified as the comma-separated pair consisting of
'Verbose' and one of these values:

• 0 — Suppress all display.
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• 1 — Display the action taken at each step.
• 2 — Display the evaluation process and the action taken at each step.

Example: 'Verbose',2

Output Arguments
NewMdl — Linear regression model
LinearModel object

Linear regression model, returned as a LinearModel object

To overwrite the input argument mdl, assign the new model to mdl.

mdl = step(mdl);

More About
Terms Matrix

A terms matrix T is a t-by-(p + 1) matrix specifying terms in a model, where t is the number of terms,
p is the number of predictor variables, and +1 accounts for the response variable. The value of
T(i,j) is the exponent of variable j in term i.

For example, suppose that an input includes three predictor variables x1, x2, and x3 and the
response variable y in the order x1, x2, x3, and y. Each row of T represents one term:

• [0 0 0 0] — Constant term or intercept
• [0 1 0 0] — x2; equivalently, x1^0 * x2^1 * x3^0
• [1 0 1 0] — x1*x3
• [2 0 0 0] — x1^2
• [0 1 2 0] — x2*(x3^2)

The 0 at the end of each term represents the response variable. In general, a column vector of zeros
in a terms matrix represents the position of the response variable. If you have the predictor and
response variables in a matrix and column vector, then you must include 0 for the response variable
in the last column of each row.

Formula

A formula for model specification is a character vector or string scalar of the form 'y ~ terms'.

• y is the response name.
• terms represents the predictor terms in a model using Wilkinson notation.

To represent predictor and response variables, use the variable names of the table input tbl or the
variable names specified by using VarNames. The default value of VarNames is
{'x1','x2',...,'xn','y'}.

For example:

• 'y ~ x1 + x2 + x3' specifies a three-variable linear model with intercept.
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• 'y ~ x1 + x2 + x3 – 1' specifies a three-variable linear model without intercept. Note that
formulas include a constant (intercept) term by default. To exclude a constant term from the
model, you must include –1 in the formula.

A formula includes a constant term unless you explicitly remove the term using –1.

Wilkinson Notation

Wilkinson notation describes the terms present in a model. The notation relates to the terms present
in a model, not to the multipliers (coefficients) of those terms.

Wilkinson notation uses these symbols:

• + means include the next variable.
• – means do not include the next variable.
• : defines an interaction, which is a product of terms.
• * defines an interaction and all lower-order terms.
• ^ raises the predictor to a power, exactly as in * repeated, so ^ includes lower-order terms as well.
• () groups terms.

This table shows typical examples of Wilkinson notation.

Wilkinson Notation Terms in Standard Notation
1 Constant (intercept) term
x1^k, where k is a positive integer x1, x12, ..., x1k

x1 + x2 x1, x2
x1*x2 x1, x2, x1*x2
x1:x2 x1*x2 only
–x2 Do not include x2
x1*x2 + x3 x1, x2, x3, x1*x2
x1 + x2 + x3 + x1:x2 x1, x2, x3, x1*x2
x1*x2*x3 – x1:x2:x3 x1, x2, x3, x1*x2, x1*x3, x2*x3
x1*(x2 + x3) x1, x2, x3, x1*x2, x1*x3

For more details, see “Wilkinson Notation” on page 11-93.

Algorithms
• Stepwise regression is a systematic method for adding and removing terms from a linear or

generalized linear model based on their statistical significance in explaining the response variable.
The method begins with an initial model, specified using modelspec, and then compares the
explanatory power of incrementally larger and smaller models.

The step function uses forward and backward stepwise regression to determine a final model. At
each step, the function searches for terms to add to the model or remove from the model based on
the value of the 'Criterion' name-value pair argument.

The default value of 'Criterion' for a linear regression model is 'sse'. In this case,
stepwiselm and step of LinearModel use the p-value of an F-statistic to test models with and
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without a potential term at each step. If a term is not currently in the model, the null hypothesis is
that the term would have a zero coefficient if added to the model. If there is sufficient evidence to
reject the null hypothesis, the function adds the term to the model. Conversely, if a term is
currently in the model, the null hypothesis is that the term has a zero coefficient. If there is
insufficient evidence to reject the null hypothesis, the function removes the term from the model.

Stepwise regression takes these steps when 'Criterion' is 'sse':

1 Fit the initial model.
2 Examine a set of available terms not in the model. If any of the terms have p-values less than

an entrance tolerance (that is, if it is unlikely a term would have a zero coefficient if added to
the model), add the term with the smallest p-value and repeat this step; otherwise, go to step
3.

3 If any of the available terms in the model have p-values greater than an exit tolerance (that is,
the hypothesis of a zero coefficient cannot be rejected), remove the term with the largest p-
value and return to step 2; otherwise, end the process.

At any stage, the function will not add a higher-order term if the model does not also include all
lower-order terms that are subsets of the higher-order term. For example, the function will not try
to add the term X1:X2^2 unless both X1 and X2^2 are already in the model. Similarly, the
function will not remove lower-order terms that are subsets of higher-order terms that remain in
the model. For example, the function will not try to remove X1 or X2^2 if X1:X2^2 remains in the
model.

The default value of 'Criterion' for a generalized linear model is 'Deviance'. stepwiseglm
and step of GeneralizedLinearModel follow a similar procedure for adding or removing
terms.

You can specify other criteria by using the 'Criterion' name-value pair argument. For example,
you can specify the change in the value of the Akaike information criterion, Bayesian information
criterion, R-squared, or adjusted R-squared as the criterion to add or remove terms.

Depending on the terms included in the initial model, and the order in which the function adds
and removes terms, the function might build different models from the same set of potential
terms. The function terminates when no single step improves the model. However, a different
initial model or a different sequence of steps does not guarantee a better fit. In this sense,
stepwise models are locally optimal, but might not be globally optimal.

• step treats a categorical predictor as follows:

• A model with a categorical predictor that has L levels (categories) includes L – 1 indicator
variables. The model uses the first category as a reference level, so it does not include the
indicator variable for the reference level. If the data type of the categorical predictor is
categorical, then you can check the order of categories by using categories and reorder
the categories by using reordercats to customize the reference level. For more details about
creating indicator variables, see “Automatic Creation of Dummy Variables” on page 2-50.

• step treats the group of L – 1 indicator variables as a single variable. If you want to treat the
indicator variables as distinct predictor variables, create indicator variables manually by using
dummyvar. Then use the indicator variables, except the one corresponding to the reference
level of the categorical variable, when you fit a model. For the categorical predictor X, if you
specify all columns of dummyvar(X) and an intercept term as predictors, then the design
matrix becomes rank deficient.
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• Interaction terms between a continuous predictor and a categorical predictor with L levels
consist of the element-wise product of the L – 1 indicator variables with the continuous
predictor.

• Interaction terms between two categorical predictors with L and M levels consist of the (L –
 1)*(M – 1) indicator variables to include all possible combinations of the two categorical
predictor levels.

• You cannot specify higher-order terms for a categorical predictor because the square of an
indicator is equal to itself.

Therefore, if step adds or removes a categorical predictor, the function actually adds or removes
the group of indicator variables in one step. Similarly, if step adds or removes an interaction term
with a categorical predictor, the function actually adds or removes the group of interaction terms
including the categorical predictor.

Alternative Functionality
• Use stepwiselm to specify terms in a starting model and continue improving the model until no

single step of adding or removing a term is beneficial.
• Use addTerms or removeTerms to add or remove specific terms.

Version History
Introduced in R2012a

Extended Capabilities
GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

This function fully supports GPU arrays. For more information, see “Run MATLAB Functions on a
GPU” (Parallel Computing Toolbox).

See Also
addTerms | removeTerms | stepwiselm | LinearModel

Topics
“Linear Regression Workflow” on page 11-35
“Interpret Linear Regression Results” on page 11-52
“Linear Regression” on page 11-9
“Stepwise Regression” on page 11-101
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stepwise
Interactive stepwise regression

Syntax
stepwise
stepwise(X,y)
stepwise(X,y,inmodel,penter,premove)

Description

stepwise uses the sample data in hald.mat to display a graphical user interface for performing
stepwise regression of the response values in heat on the predictive terms in ingredients.

The upper left of the interface displays estimates of the coefficients for all potential terms, with
horizontal bars indicating 90% (colored) and 95% (grey) confidence intervals. The red color indicates
that, initially, the terms are not in the model. Values displayed in the table are those that would result
if the terms were added to the model.
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The middle portion of the interface displays summary statistics for the entire model. These statistics
are updated with each step.

The lower portion of the interface, Model History, displays the RMSE for the model. The plot tracks
the RMSE from step to step, so you can compare the optimality of different models. Hover over the
blue dots in the history to see which terms were in the model at a particular step. Click on a blue dot
in the history to open a copy of the interface initialized with the terms in the model at that step.

Initial models, as well as entrance/exit tolerances for the p-values of F-statistics, are specified using
additional input arguments to stepwise. Defaults are an initial model with no terms, an entrance
tolerance of 0.05, and an exit tolerance of 0.10.

To center and scale the input data (compute z-scores) to improve conditioning of the underlying least-
squares problem, select Scale Inputs from the Stepwise menu.

You proceed through a stepwise regression in one of two ways:

1 Click Next Step to select the recommended next step. The recommended next step either adds
the most significant term or removes the least significant term. When the regression reaches a
local minimum of RMSE, the recommended next step is “Move no terms.” You can perform all of
the recommended steps at once by clicking All Steps.

2 Click a line in the plot or in the table to toggle the state of the corresponding term. Clicking a red
line, corresponding to a term not currently in the model, adds the term to the model and changes
the line to blue. Clicking a blue line, corresponding to a term currently in the model, removes the
term from the model and changes the line to red.

To call addedvarplot and produce an added variable plot from the stepwise interface, select
Added Variable Plot from the Stepwise menu. A list of terms is displayed. Select the term you want
to add, and then click OK.

Click Export to display a dialog box that allows you to select information from the interface to save to
the MATLAB workspace. Check the information you want to export and, optionally, change the names
of the workspace variables to be created. Click OK to export the information.

stepwise(X,y) displays the interface using the p predictive terms in the n-by-p matrix X and the
response values in the n-by-1 vector y. Distinct predictive terms should appear in different columns of
X.

Note stepwise automatically includes a constant term in all models. Do not enter a column of 1s
directly into X.

stepwise treats NaN values in either X or y as missing values, and ignores them.

stepwise(X,y,inmodel,penter,premove) additionally specifies the initial model (inmodel) and
the entrance (penter) and exit (premove) tolerances for the p-values of F-statistics. inmodel is
either a logical vector with length equal to the number of columns of X, or a vector of indices, with
values ranging from 1 to the number of columns in X. The value of penter must be less than or equal
to the value of premove.

Algorithms
Stepwise regression is a systematic method for adding and removing terms from a multilinear model
based on their statistical significance in a regression. The method begins with an initial model and
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then compares the explanatory power of incrementally larger and smaller models. At each step, the p
value of an F-statistic is computed to test models with and without a potential term. If a term is not
currently in the model, the null hypothesis is that the term would have a zero coefficient if added to
the model. If there is sufficient evidence to reject the null hypothesis, the term is added to the model.
Conversely, if a term is currently in the model, the null hypothesis is that the term has a zero
coefficient. If there is insufficient evidence to reject the null hypothesis, the term is removed from the
model. The method proceeds as follows:

1 Fit the initial model.
2 If any terms not in the model have p-values less than an entrance tolerance (that is, if it is

unlikely that they would have zero coefficient if added to the model), add the one with the
smallest p value and repeat this step; otherwise, go to step 3.

3 If any terms in the model have p-values greater than an exit tolerance (that is, if it is unlikely that
the hypothesis of a zero coefficient can be rejected), remove the one with the largest p value and
go to step 2; otherwise, end.

Depending on the terms included in the initial model and the order in which terms are moved in and
out, the method may build different models from the same set of potential terms. The method
terminates when no single step improves the model. There is no guarantee, however, that a different
initial model or a different sequence of steps will not lead to a better fit. In this sense, stepwise
models are locally optimal, but may not be globally optimal.

Version History
Introduced before R2006a

See Also
addedvarplot | regress | stepwisefit
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stepwiseglm
Create generalized linear regression model by stepwise regression

Syntax
mdl = stepwiseglm(tbl)
mdl = stepwiseglm(X,y)
mdl = stepwiseglm( ___ ,modelspec)
mdl = stepwiseglm( ___ ,modelspec,Name,Value)

Description
mdl = stepwiseglm(tbl) creates a generalized linear model of a table or dataset array tbl using
stepwise regression to add or remove predictors, starting from a constant model. stepwiseglm uses
the last variable of tbl as the response variable. stepwiseglm uses forward and backward stepwise
regression to determine a final model. At each step, the function searches for terms to add the model
to or remove from the model, based on the value of the 'Criterion' argument.

mdl = stepwiseglm(X,y) creates a generalized linear model of the responses y to a data matrix X.

mdl = stepwiseglm( ___ ,modelspec) specifies the starting model modelspec using any of the
input argument combinations in previous syntaxes.

mdl = stepwiseglm( ___ ,modelspec,Name,Value) specifies additional options using one or
more name-value pair arguments. For example, you can specify the categorical variables, the smallest
or largest set of terms to use in the model, the maximum number of steps to take, or the criterion that
stepwiseglm uses to add or remove terms.

Examples

Generalized Linear Model Using Stepwise Algorithm

Create response data using just three of 20 predictors, and create a generalized linear model using
stepwise algorithm to see if it uses just the correct predictors.

Create data with 20 predictors, and Poisson response using just three of the predictors, plus a
constant.

rng('default') % for reproducibility
X = randn(100,20);
mu = exp(X(:,[5 10 15])*[.4;.2;.3] + 1);
y = poissrnd(mu);

Fit a generalized linear model using the Poisson distribution.

mdl =  stepwiseglm(X,y,...
    'constant','upper','linear','Distribution','poisson')
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1. Adding x5, Deviance = 134.439, Chi2Stat = 52.24814, PValue = 4.891229e-13
2. Adding x15, Deviance = 106.285, Chi2Stat = 28.15393, PValue = 1.1204e-07
3. Adding x10, Deviance = 95.0207, Chi2Stat = 11.2644, PValue = 0.000790094

mdl = 
Generalized linear regression model:
    log(y) ~ 1 + x5 + x10 + x15
    Distribution = Poisson

Estimated Coefficients:
                   Estimate       SE       tStat       pValue  
                   ________    ________    ______    __________

    (Intercept)     1.0115     0.064275    15.737    8.4217e-56
    x5             0.39508     0.066665    5.9263    3.0977e-09
    x10            0.18863      0.05534    3.4085     0.0006532
    x15            0.29295     0.053269    5.4995    3.8089e-08

100 observations, 96 error degrees of freedom
Dispersion: 1
Chi^2-statistic vs. constant model: 91.7, p-value = 9.61e-20

The starting model is the constant model. stepwiseglm by default uses deviance of the model as the
criterion. It first adds x5 into the model, as the p-value for the test statistic, deviance (the differences
in the deviances of the two models), is less than the default threshold value 0.05. Then, it adds x15
because given x5 is in the model, when x15 is added, the p-value for chi-squared test is smaller than
0.05. It then adds x10 because given x5 and x15 are in the model, when x10 is added, the p-value for
the chi-square test statistic is again less than 0.05.

Input Arguments
tbl — Input data
table | dataset array

Input data including predictor and response variables, specified as a table or dataset array. The
predictor variables and response variable can be numeric, logical, categorical, character, or string.
The response variable can have a data type other than numeric only if 'Distribution' is
'binomial'.

• By default, stepwiseglm takes the last variable as the response variable and the others as the
predictor variables.

• To set a different column as the response variable, use the ResponseVar name-value pair
argument.

• To use a subset of the columns as predictors, use the PredictorVars name-value pair argument.
• To define a model specification, set the modelspec argument using a formula or terms matrix.

The formula or terms matrix specifies which columns to use as the predictor or response
variables.

The variable names in a table do not have to be valid MATLAB identifiers, but the names must not
contain leading or trailing blanks. If the names are not valid, you cannot use a formula when you fit or
adjust a model; for example:
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• You cannot specify modelspec using a formula.
• You cannot use a formula to specify the terms to add or remove when you use the addTerms

function or the removeTerms function, respectively.
• You cannot use a formula to specify the lower and upper bounds of the model when you use the

step or stepwiseglm function with the name-value pair arguments 'Lower' and 'Upper',
respectively.

You can verify the variable names in tbl by using the isvarname function. If the variable names are
not valid, then you can convert them by using the matlab.lang.makeValidName function.

X — Predictor variables
matrix

Predictor variables, specified as an n-by-p matrix, where n is the number of observations and p is the
number of predictor variables. Each column of X represents one variable, and each row represents
one observation.

By default, there is a constant term in the model, unless you explicitly remove it, so do not include a
column of 1s in X.
Data Types: single | double

y — Response variable
vector | matrix

Response variable, specified as a vector or matrix.

• If 'Distribution' is not 'binomial', then y must be an n-by-1 vector, where n is the number
of observations. Each entry in y is the response for the corresponding row of X. The data type
must be single or double.

• If 'Distribution' is 'binomial', then y can be an n-by-1 vector or n-by-2 matrix with counts
in column 1 and BinomialSize in column 2.

Data Types: single | double | logical | categorical

modelspec — Starting model
'constant' (default) | character vector or string scalar naming the model | t-by-(p + 1) terms matrix
| character vector or string scalar formula in the form 'y ~ terms'

Starting model for stepwiseglm, specified as one of the following:

• A character vector or string scalar naming the model.

Value Model Type
'constant' Model contains only a constant (intercept) term.
'linear' Model contains an intercept and linear term for each

predictor.
'interactions' Model contains an intercept, linear term for each predictor,

and all products of pairs of distinct predictors (no squared
terms).

'purequadratic' Model contains an intercept term and linear and squared
terms for each predictor.
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Value Model Type
'quadratic' Model contains an intercept term, linear and squared terms

for each predictor, and all products of pairs of distinct
predictors.

'polyijk' Model is a polynomial with all terms up to degree i in the
first predictor, degree j in the second predictor, and so on.
Specify the maximum degree for each predictor by using
numerals 0 though 9. The model contains interaction terms,
but the degree of each interaction term does not exceed the
maximum value of the specified degrees. For example,
'poly13' has an intercept and x1, x2, x2

2, x2
3, x1*x2, and

x1*x2
2 terms, where x1 and x2 are the first and second

predictors, respectively.

• A t-by-(p + 1) matrix, or a “Terms Matrix” on page 35-7122, specifying terms in the model, where t
is the number of terms and p is the number of predictor variables, and +1 accounts for the
response variable. A terms matrix is convenient when the number of predictors is large and you
want to generate the terms programmatically.

• A character vector or string scalar “Formula” on page 35-7123 in the form
'y ~ terms',

where the terms are in “Wilkinson Notation” on page 35-7123. The variable names in the formula
must be variable names in tbl or variable names specified by Varnames. Also, the variable names
must be valid MATLAB identifiers.

The software determines the order of terms in a fitted model by using the order of terms in tbl or
X. Therefore, the order of terms in the model can be different from the order of terms in the
specified formula.

If you want to specify the smallest or largest set of terms in the model that stepwiselm fits, use the
Lower and Upper name-value pair arguments.
Data Types: char | string | single | double

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: 'Criterion','aic','Distribution','poisson','Upper','interactions'
specifies Akaike Information Criterion as the criterion to add or remove variables to the model,
Poisson distribution as the distribution of the response variable, and a model with all possible
interactions as the largest model to consider as the fit.

BinomialSize — Number of trials for binomial distribution
1 (default) | numeric scalar | numeric vector | character vector | string scalar

Number of trials for binomial distribution, that is the sample size, specified as the comma-separated
pair consisting of 'BinomialSize' and the variable name in tbl, a numeric scalar, or a numeric
vector of the same length as the response. This is the parameter n for the fitted binomial distribution.
BinomialSize applies only when the Distribution parameter is 'binomial'.
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If BinomialSize is a scalar value, that means all observations have the same number of trials.

As an alternative to BinomialSize, you can specify the response as a two-column matrix with counts
in column 1 and BinomialSize in column 2.
Data Types: single | double | char | string

CategoricalVars — Categorical variable list
string array | cell array of character vectors | logical or numeric index vector

Categorical variable list, specified as the comma-separated pair consisting of 'CategoricalVars'
and either a string array or cell array of character vectors containing categorical variable names in
the table or dataset array tbl, or a logical or numeric index vector indicating which columns are
categorical.

• If data is in a table or dataset array tbl, then, by default, stepwiseglm treats all categorical
values, logical values, character arrays, string arrays, and cell arrays of character vectors as
categorical variables.

• If data is in matrix X, then the default value of 'CategoricalVars' is an empty matrix []. That
is, no variable is categorical unless you specify it as categorical.

For example, you can specify the second and third variables out of six as categorical using either of
the following:
Example: 'CategoricalVars',[2,3]
Example: 'CategoricalVars',logical([0 1 1 0 0 0])
Data Types: single | double | logical | string | cell

Criterion — Criterion to add or remove terms
'Deviance' (default) | 'sse' | 'aic' | 'bic' | 'rsquared' | 'adjrsquared'

Criterion to add or remove terms, specified as the comma-separated pair consisting of 'Criterion'
and one of these values:

• 'Deviance' — p-value for an F-test or chi-squared test of the change in the deviance that results
from adding or removing the term. The F-test tests a single model, and the chi-squared test
compares two different models.

• 'sse' — p-value for an F-test of the change in the sum of squared error that results from adding
or removing the term.

• 'aic' — Change in the value of the Akaike information criterion (AIC).
• 'bic' — Change in the value of the Bayesian information criterion (BIC).
• 'rsquared' — Increase in the value of R2.
• 'adjrsquared' — Increase in the value of adjusted R2.

Example: 'Criterion','bic'

DispersionFlag — Indicator to compute dispersion parameter
false for 'binomial' and 'poisson' distributions (default) | true

Indicator to compute dispersion parameter for 'binomial' and 'poisson' distributions, specified
as the comma-separated pair consisting of 'DispersionFlag' and one of the following.
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true Estimate a dispersion parameter when computing standard errors. The
estimated dispersion parameter value is the sum of squared Pearson
residuals divided by the degrees of freedom for error (DFE).

false Default. Use the theoretical value of 1 when computing standard errors.

The fitting function always estimates the dispersion for other distributions.
Example: 'DispersionFlag',true

Distribution — Distribution of the response variable
'normal' (default) | 'binomial' | 'poisson' | 'gamma' | 'inverse gaussian'

Distribution of the response variable, specified as the comma-separated pair consisting of
'Distribution' and one of the following.

'normal' Normal distribution
'binomial' Binomial distribution
'poisson' Poisson distribution
'gamma' Gamma distribution
'inverse gaussian' Inverse Gaussian distribution

Example: 'Distribution','gamma'

Exclude — Observations to exclude
logical or numeric index vector

Observations to exclude from the fit, specified as the comma-separated pair consisting of 'Exclude'
and a logical or numeric index vector indicating which observations to exclude from the fit.

For example, you can exclude observations 2 and 3 out of 6 using either of the following examples.
Example: 'Exclude',[2,3]
Example: 'Exclude',logical([0 1 1 0 0 0])
Data Types: single | double | logical

Intercept — Indicator for constant term
true (default) | false

Indicator for the constant term (intercept) in the fit, specified as the comma-separated pair consisting
of 'Intercept' and either true to include or false to remove the constant term from the model.

Use 'Intercept' only when specifying the model using a character vector or string scalar, not a
formula or matrix.
Example: 'Intercept',false

Link — Link function
canonical link function (default) | scalar value | structure

Link function to use in place of the canonical link function, specified as the comma-separated pair
consisting of 'Link' and one of the following.
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Link Function Name Link Function Mean (Inverse) Function
'identity' f(μ) = μ μ = Xb
'log' f(μ) = log(μ) μ = exp(Xb)
'logit' f(μ) = log(μ/(1–μ)) μ = exp(Xb) / (1 + exp(Xb))
'probit' f(μ) = Φ–1(μ), where Φ is the

cumulative distribution function of
the standard normal distribution.

μ = Φ(Xb)

'comploglog' f(μ) = log(–log(1 – μ)) μ = 1 – exp(–exp(Xb))
'reciprocal' f(μ) = 1/μ μ = 1/(Xb)
p (a number) f(μ) = μp μ = Xb1/p

S (a structure)
with three fields. Each field
holds a function handle that
accepts a vector of inputs and
returns a vector of the same
size:

• S.Link — The link function
• S.Inverse — The inverse

link function
• S.Derivative — The

derivative of the link
function

f(μ) = S.Link(μ) μ = S.Inverse(Xb)

The link function defines the relationship f(μ) = X*b between the mean response μ and the linear
combination of predictors X*b.

For more information on the canonical link functions, see “Canonical Function” on page 35-7124.
Example: 'Link','probit'
Data Types: char | string | single | double | struct

Lower — Model specification describing terms that cannot be removed from model
'constant' (default) | character vector | string scalar | terms matrix

Model specification describing terms that cannot be removed from the model, specified as the
comma-separated pair consisting of 'Lower' and one of the options for modelspec naming the
model.
Example: 'Lower','linear'

NSteps — Maximum number of steps to take
no limit (default) | positive integer

Maximum number of steps to take, specified as the comma-separated pair consisting of 'NSteps'
and a positive integer.
Example: 'NSteps',5
Data Types: single | double
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Offset — Offset variable
[ ] (default) | numeric vector | character vector | string scalar

Offset variable in the fit, specified as the comma-separated pair consisting of 'Offset' and the
variable name in tbl or a numeric vector with the same length as the response.

stepwiseglm uses Offset as an additional predictor with a coefficient value fixed at 1. In other
words, the formula for fitting is

f(μ) = Offset + X*b,
where f is the link function, μ is the mean response, and X*b is the linear combination of predictors X.
The Offset predictor has coefficient 1.

For example, consider a Poisson regression model. Suppose the number of counts is known for
theoretical reasons to be proportional to a predictor A. By using the log link function and by
specifying log(A) as an offset, you can force the model to satisfy this theoretical constraint.
Data Types: single | double | char | string

PEnter — Threshold for criterion to add term
scalar value

Threshold for the criterion to add a term, specified as the comma-separated pair consisting of
'PEnter' and a scalar value, as described in this table.

Criterion Default Value Decision
'Deviance' 0.05 If the p-value of the F-statistic

or chi-squared statistic is less
than PEnter (p-value to enter),
add the term to the model.

'SSE' 0.05 If the p-value of the F-statistic is
less than PEnter, add the term
to the model.

'AIC' 0 If the change in the AIC of the
model is less than PEnter, add
the term to the model.

'BIC' 0 If the change in the BIC of the
model is less than PEnter, add
the term to the model.

'Rsquared' 0.1 If the increase in the R-squared
value of the model is greater
than PEnter, add the term to
the model.

'AdjRsquared' 0 If the increase in the adjusted R-
squared value of the model is
greater than PEnter, add the
term to the model.

For more information, see the Criterion name-value pair argument.
Example: 'PEnter',0.075
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PredictorVars — Predictor variables
string array | cell array of character vectors | logical or numeric index vector

Predictor variables to use in the fit, specified as the comma-separated pair consisting of
'PredictorVars' and either a string array or cell array of character vectors of the variable names
in the table or dataset array tbl, or a logical or numeric index vector indicating which columns are
predictor variables.

The string values or character vectors should be among the names in tbl, or the names you specify
using the 'VarNames' name-value pair argument.

The default is all variables in X, or all variables in tbl except for ResponseVar.

For example, you can specify the second and third variables as the predictor variables using either of
the following examples.
Example: 'PredictorVars',[2,3]
Example: 'PredictorVars',logical([0 1 1 0 0 0])
Data Types: single | double | logical | string | cell

PRemove — Threshold for criterion to remove term
scalar value

Threshold for the criterion to remove a term, specified as the comma-separated pair consisting of
'PRemove' and a scalar value, as described in this table.

Criterion Default Value Decision
'Deviance' 0.10 If the p-value of the F-statistic

or chi-squared statistic is
greater than PRemove (p-value
to remove), remove the term
from the model.

'SSE' 0.10 If the p-value of the F-statistic is
greater than PRemove, remove
the term from the model.

'AIC' 0.01 If the change in the AIC of the
model is greater than PRemove,
remove the term from the
model.

'BIC' 0.01 If the change in the BIC of the
model is greater than PRemove,
remove the term from the
model.

'Rsquared' 0.05 If the increase in the R-squared
value of the model is less than
PRemove, remove the term from
the model.
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Criterion Default Value Decision
'AdjRsquared' -0.05 If the increase in the adjusted R-

squared value of the model is
less than PRemove, remove the
term from the model.

At each step, the stepwiseglm function also checks whether a term is redundant (linearly
dependent) with other terms in the current model. When a term is linearly dependent on other terms
in the current model, the stepwiseglm function removes the redundant term, regardless of the
criterion value.

For more information, see the Criterion name-value pair argument.
Example: 'PRemove',0.05

ResponseVar — Response variable
last column in tbl (default) | character vector or string scalar containing variable name | logical or
numeric index vector

Response variable to use in the fit, specified as the comma-separated pair consisting of
'ResponseVar' and either a character vector or string scalar containing the variable name in the
table or dataset array tbl, or a logical or numeric index vector indicating which column is the
response variable. You typically need to use 'ResponseVar' when fitting a table or dataset array
tbl.

For example, you can specify the fourth variable, say yield, as the response out of six variables, in
one of the following ways.
Example: 'ResponseVar','yield'
Example: 'ResponseVar',[4]
Example: 'ResponseVar',logical([0 0 0 1 0 0])
Data Types: single | double | logical | char | string

Upper — Model specification describing largest set of terms in fit
'interactions' (default) | character vector | string scalar | terms matrix

Model specification describing the largest set of terms in the fit, specified as the comma-separated
pair consisting of 'Upper' and one of the options for modelspec naming the model.
Example: 'Upper','quadratic'

VarNames — Names of variables
{'x1','x2',...,'xn','y'} (default) | string array | cell array of character vectors

Names of variables, specified as the comma-separated pair consisting of 'VarNames' and a string
array or cell array of character vectors including the names for the columns of X first, and the name
for the response variable y last.

'VarNames' is not applicable to variables in a table or dataset array, because those variables already
have names.

The variable names do not have to be valid MATLAB identifiers, but the names must not contain
leading or trailing blanks. If the names are not valid, you cannot use a formula when you fit or adjust
a model; for example:
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• You cannot use a formula to specify the terms to add or remove when you use the addTerms
function or the removeTerms function, respectively.

• You cannot use a formula to specify the lower and upper bounds of the model when you use the
step or stepwiseglm function with the name-value pair arguments 'Lower' and 'Upper',
respectively.

Before specifying 'VarNames',varNames, you can verify the variable names in varNames by using
the isvarname function. If the variable names are not valid, then you can convert them by using the
matlab.lang.makeValidName function.
Example: 'VarNames',{'Horsepower','Acceleration','Model_Year','MPG'}
Data Types: string | cell

Verbose — Control for display of information
1 (default) | 0 | 2

Control for the display of information, specified as the comma-separated pair consisting of
'Verbose' and one of these values:

• 0 — Suppress all display.
• 1 — Display the action taken at each step.
• 2 — Display the evaluation process and the action taken at each step.

Example: 'Verbose',2

Weights — Observation weights
ones(n,1) (default) | n-by-1 vector of nonnegative scalar values

Observation weights, specified as the comma-separated pair consisting of 'Weights' and an n-by-1
vector of nonnegative scalar values, where n is the number of observations.
Data Types: single | double

Output Arguments
mdl — Generalized linear regression model
GeneralizedLinearModel object

Generalized linear regression model, specified as a GeneralizedLinearModel object created using
fitglm or stepwiseglm.

More About
Terms Matrix

A terms matrix T is a t-by-(p + 1) matrix specifying terms in a model, where t is the number of terms,
p is the number of predictor variables, and +1 accounts for the response variable. The value of
T(i,j) is the exponent of variable j in term i.

For example, suppose that an input includes three predictor variables x1, x2, and x3 and the
response variable y in the order x1, x2, x3, and y. Each row of T represents one term:
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• [0 0 0 0] — Constant term or intercept
• [0 1 0 0] — x2; equivalently, x1^0 * x2^1 * x3^0
• [1 0 1 0] — x1*x3
• [2 0 0 0] — x1^2
• [0 1 2 0] — x2*(x3^2)

The 0 at the end of each term represents the response variable. In general, a column vector of zeros
in a terms matrix represents the position of the response variable. If you have the predictor and
response variables in a matrix and column vector, then you must include 0 for the response variable
in the last column of each row.

Formula

A formula for model specification is a character vector or string scalar of the form 'y ~ terms'.

• y is the response name.
• terms represents the predictor terms in a model using Wilkinson notation.

To represent predictor and response variables, use the variable names of the table input tbl or the
variable names specified by using VarNames. The default value of VarNames is
{'x1','x2',...,'xn','y'}.

For example:

• 'y ~ x1 + x2 + x3' specifies a three-variable linear model with intercept.
• 'y ~ x1 + x2 + x3 – 1' specifies a three-variable linear model without intercept. Note that

formulas include a constant (intercept) term by default. To exclude a constant term from the
model, you must include –1 in the formula.

A formula includes a constant term unless you explicitly remove the term using –1.

Wilkinson Notation

Wilkinson notation describes the terms present in a model. The notation relates to the terms present
in a model, not to the multipliers (coefficients) of those terms.

Wilkinson notation uses these symbols:

• + means include the next variable.
• – means do not include the next variable.
• : defines an interaction, which is a product of terms.
• * defines an interaction and all lower-order terms.
• ^ raises the predictor to a power, exactly as in * repeated, so ^ includes lower-order terms as well.
• () groups terms.

This table shows typical examples of Wilkinson notation.

Wilkinson Notation Terms in Standard Notation
1 Constant (intercept) term
x1^k, where k is a positive integer x1, x12, ..., x1k
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Wilkinson Notation Terms in Standard Notation
x1 + x2 x1, x2
x1*x2 x1, x2, x1*x2
x1:x2 x1*x2 only
–x2 Do not include x2
x1*x2 + x3 x1, x2, x3, x1*x2
x1 + x2 + x3 + x1:x2 x1, x2, x3, x1*x2
x1*x2*x3 – x1:x2:x3 x1, x2, x3, x1*x2, x1*x3, x2*x3
x1*(x2 + x3) x1, x2, x3, x1*x2, x1*x3

For more details, see “Wilkinson Notation” on page 11-93.

Canonical Function

The default link function for a generalized linear model is the canonical link function.

Distribution Canonical Link
Function Name

Link Function Mean (Inverse)
Function

'normal' 'identity' f(μ) = μ μ = Xb
'binomial' 'logit' f(μ) = log(μ/(1 – μ)) μ = exp(Xb) / (1 +

exp(Xb))
'poisson' 'log' f(μ) = log(μ) μ = exp(Xb)
'gamma' -1 f(μ) = 1/μ μ = 1/(Xb)
'inverse gaussian' -2 f(μ) = 1/μ2 μ = (Xb)–1/2

Tips
• The generalized linear model mdl is a standard linear model unless you specify otherwise with the

Distribution name-value pair.
• For other methods such as devianceTest, or properties of the GeneralizedLinearModel

object, see GeneralizedLinearModel.
• After training a model, you can generate C/C++ code that predicts responses for new data.

Generating C/C++ code requires MATLAB Coder. For details, see “Introduction to Code
Generation” on page 34-2.

Algorithms
• Stepwise regression is a systematic method for adding and removing terms from a linear or

generalized linear model based on their statistical significance in explaining the response variable.
The method begins with an initial model, specified using modelspec, and then compares the
explanatory power of incrementally larger and smaller models.

The stepwiseglm function uses forward and backward stepwise regression to determine a final
model. At each step, the function searches for terms to add to the model or remove from the
model based on the value of the 'Criterion' name-value pair argument.
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The default value of 'Criterion' for a linear regression model is 'sse'. In this case,
stepwiselm and step of LinearModel use the p-value of an F-statistic to test models with and
without a potential term at each step. If a term is not currently in the model, the null hypothesis is
that the term would have a zero coefficient if added to the model. If there is sufficient evidence to
reject the null hypothesis, the function adds the term to the model. Conversely, if a term is
currently in the model, the null hypothesis is that the term has a zero coefficient. If there is
insufficient evidence to reject the null hypothesis, the function removes the term from the model.

Stepwise regression takes these steps when 'Criterion' is 'sse':

1 Fit the initial model.
2 Examine a set of available terms not in the model. If any of the terms have p-values less than

an entrance tolerance (that is, if it is unlikely a term would have a zero coefficient if added to
the model), add the term with the smallest p-value and repeat this step; otherwise, go to step
3.

3 If any of the available terms in the model have p-values greater than an exit tolerance (that is,
the hypothesis of a zero coefficient cannot be rejected), remove the term with the largest p-
value and return to step 2; otherwise, end the process.

At any stage, the function will not add a higher-order term if the model does not also include all
lower-order terms that are subsets of the higher-order term. For example, the function will not try
to add the term X1:X2^2 unless both X1 and X2^2 are already in the model. Similarly, the
function will not remove lower-order terms that are subsets of higher-order terms that remain in
the model. For example, the function will not try to remove X1 or X2^2 if X1:X2^2 remains in the
model.

The default value of 'Criterion' for a generalized linear model is 'Deviance'. stepwiseglm
and step of GeneralizedLinearModel follow a similar procedure for adding or removing
terms.

You can specify other criteria by using the 'Criterion' name-value pair argument. For example,
you can specify the change in the value of the Akaike information criterion, Bayesian information
criterion, R-squared, or adjusted R-squared as the criterion to add or remove terms.

Depending on the terms included in the initial model, and the order in which the function adds
and removes terms, the function might build different models from the same set of potential
terms. The function terminates when no single step improves the model. However, a different
initial model or a different sequence of steps does not guarantee a better fit. In this sense,
stepwise models are locally optimal, but might not be globally optimal.

• stepwiseglm treats a categorical predictor as follows:

• A model with a categorical predictor that has L levels (categories) includes L – 1 indicator
variables. The model uses the first category as a reference level, so it does not include the
indicator variable for the reference level. If the data type of the categorical predictor is
categorical, then you can check the order of categories by using categories and reorder
the categories by using reordercats to customize the reference level. For more details about
creating indicator variables, see “Automatic Creation of Dummy Variables” on page 2-50.

• stepwiseglm treats the group of L – 1 indicator variables as a single variable. If you want to
treat the indicator variables as distinct predictor variables, create indicator variables manually
by using dummyvar. Then use the indicator variables, except the one corresponding to the
reference level of the categorical variable, when you fit a model. For the categorical predictor
X, if you specify all columns of dummyvar(X) and an intercept term as predictors, then the
design matrix becomes rank deficient.
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• Interaction terms between a continuous predictor and a categorical predictor with L levels
consist of the element-wise product of the L – 1 indicator variables with the continuous
predictor.

• Interaction terms between two categorical predictors with L and M levels consist of the (L –
 1)*(M – 1) indicator variables to include all possible combinations of the two categorical
predictor levels.

• You cannot specify higher-order terms for a categorical predictor because the square of an
indicator is equal to itself.

Therefore, if stepwiseglm adds or removes a categorical predictor, the function actually adds or
removes the group of indicator variables in one step. Similarly, if stepwiseglm adds or removes
an interaction term with a categorical predictor, the function actually adds or removes the group
of interaction terms including the categorical predictor.

• stepwiseglm considers NaN, '' (empty character vector), "" (empty string), <missing>, and
<undefined> values in tbl, X, and Y to be missing values. stepwiseglm does not use
observations with missing values in the fit. The ObservationInfo property of a fitted model
indicates whether or not stepwiseglm uses each observation in the fit.

Alternatives
• Use fitglm to create a model with a fixed specification. Use step, addTerms, or removeTerms

to adjust a fitted model.

Version History
Introduced in R2013b

References
[1] Collett, D. Modeling Binary Data. New York: Chapman & Hall, 2002.

[2] Dobson, A. J. An Introduction to Generalized Linear Models. New York: Chapman & Hall, 1990.

[3] McCullagh, P., and J. A. Nelder. Generalized Linear Models. New York: Chapman & Hall, 1990.

See Also
GeneralizedLinearModel | fitglm | predict

Topics
“Compare large and small stepwise models” on page 11-101
“Generalized Linear Models” on page 12-9
“Sequential Feature Selection” on page 16-59
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stepwiselm
Perform stepwise regression

Syntax
mdl = stepwiselm(tbl)
mdl = stepwiselm(X,y)
mdl = stepwiselm( ___ ,modelspec)
mdl = stepwiselm( ___ ,Name,Value)

Description
mdl = stepwiselm(tbl) creates a linear model for the variables in the table or dataset array tbl
using stepwise regression to add or remove predictors, starting from a constant model. stepwiselm
uses the last variable of tbl as the response variable. stepwiselm uses forward and backward
stepwise regression to determine a final model. At each step, the function searches for terms to add
the model to or remove from the model, based on the value of the 'Criterion' argument.

mdl = stepwiselm(X,y) creates a linear model of the responses y to the predictor variables in the
data matrix X.

mdl = stepwiselm( ___ ,modelspec) specifies the starting model modelspec using any of the
input argument combinations in previous syntaxes.

mdl = stepwiselm( ___ ,Name,Value) specifies additional options using one or more name-value
pair arguments. For example, you can specify the categorical variables, the smallest or largest set of
terms to use in the model, the maximum number of steps to take, or the criterion that stepwiselm
uses to add or remove terms.

Examples

Fit Linear Model Using Stepwise Regression

Load the hald data set, which measures the effect of cement composition on its hardening heat.

load hald

This data set includes the variables ingredients and heat. The matrix ingredients contains the
percent composition of four chemicals present in the cement. The vector heat contains the values for
the heat hardening after 180 days for each cement sample.

Fit a stepwise linear regression model to the data. Specify 0.06 as the threshold for the criterion to
add a term to the model.

 mdl = stepwiselm(ingredients,heat,'PEnter',0.06)

1. Adding x4, FStat = 22.7985, pValue = 0.000576232
2. Adding x1, FStat = 108.2239, pValue = 1.105281e-06
3. Adding x2, FStat = 5.0259, pValue = 0.051687
4. Removing x4, FStat = 1.8633, pValue = 0.2054
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mdl = 
Linear regression model:
    y ~ 1 + x1 + x2

Estimated Coefficients:
                   Estimate       SE       tStat       pValue  
                   ________    ________    ______    __________

    (Intercept)     52.577       2.2862    22.998    5.4566e-10
    x1              1.4683       0.1213    12.105    2.6922e-07
    x2             0.66225     0.045855    14.442     5.029e-08

Number of observations: 13, Error degrees of freedom: 10
Root Mean Squared Error: 2.41
R-squared: 0.979,  Adjusted R-Squared: 0.974
F-statistic vs. constant model: 230, p-value = 4.41e-09

By default, the starting model is a constant model. stepwiselm performs forward selection and adds
the x4, x1, and x2 terms (in that order), because the corresponding p-values are less than the
PEnter value of 0.06. stepwiselm then uses backward elimination and removes x4 from the model
because, once x2 is in the model, the p-value of x4 is greater than the default value of PRemove, 0.1.

Stepwise Regression Using Specified Model Formula and Variables

Perform stepwise regression using variables stored in a dataset array. Specify the starting model
using Wilkinson notation, and identify the response and predictor variables using optional arguments.

Load the sample data.

load hospital

The hospital dataset array includes the gender, age, weight, and smoking status of patients.

Fit a linear model with a starting model of a constant term and Smoker as the predictor variable.
Specify the response variable, Weight, and categorical predictor variables, Sex, Age, and Smoker.

mdl = stepwiselm(hospital,'Weight~1+Smoker',...
'ResponseVar','Weight','PredictorVars',{'Sex','Age','Smoker'},...
'CategoricalVar',{'Sex','Smoker'})

1. Adding Sex, FStat = 770.0158, pValue = 6.262758e-48
2. Removing Smoker, FStat = 0.21224, pValue = 0.64605

mdl = 
Linear regression model:
    Weight ~ 1 + Sex

Estimated Coefficients:
                   Estimate      SE      tStat       pValue   
                   ________    ______    ______    ___________

    (Intercept)     130.47     1.1995    108.77    5.2762e-104
    Sex_Male         50.06     1.7496    28.612     2.2464e-49
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Number of observations: 100, Error degrees of freedom: 98
Root Mean Squared Error: 8.73
R-squared: 0.893,  Adjusted R-Squared: 0.892
F-statistic vs. constant model: 819, p-value = 2.25e-49

At each step, stepwiselm searches for terms to add and remove. At first step, stepwise algorithm
adds Sex to the model with a p-value of 6.26e-48. Then, removes Smoker from the model, since given
Sex in the model, the variable Smoker becomes redundant. stepwiselm only includes Sex in the
final linear model. The weight of the patients do not seem to differ significantly according to age or
the status of smoking.

Stepwise Regression Using Terms Matrix

Load a sample data set and define the matrix of predictors.

load carsmall
X = [Acceleration,Weight];

Define the starting model and the upper model using terms matrices.

T_starting = [0 0 0] % a constant model

T_starting = 1×3

     0     0     0

T_upper = [0 0 0;1 0 0;0 1 0;1 1 0] % a linear model with interactions

T_upper = 4×3

     0     0     0
     1     0     0
     0     1     0
     1     1     0

Create a linear regression model using stepwise regression. Specify the starting model and the upper
bound of the model using the terms matrices, and specify 'Verbose' as 2 to display the evaluation
process and the decision taken at each step.

mdl = stepwiselm(X,MPG,T_starting,'upper',T_upper,'Verbose',2)

   pValue for adding x1 is 4.0973e-06
   pValue for adding x2 is 1.6434e-28
1. Adding x2, FStat = 259.3087, pValue = 1.643351e-28
   pValue for adding x1 is 0.18493
   No candidate terms to remove

mdl = 
Linear regression model:
    y ~ 1 + x2

Estimated Coefficients:
                    Estimate        SE         tStat       pValue  
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                   __________    _________    _______    __________

    (Intercept)        49.238       1.6411     30.002    2.7015e-49
    x2             -0.0086119    0.0005348    -16.103    1.6434e-28

Number of observations: 94, Error degrees of freedom: 92
Root Mean Squared Error: 4.13
R-squared: 0.738,  Adjusted R-Squared: 0.735
F-statistic vs. constant model: 259, p-value = 1.64e-28

Stepwise Regression with Categorical Predictor

Fit a linear regression model with a categorical predictor using stepwise regression. stepwiselm
adds or removes a group of indicator variables in one step to add or removes a categorical predictor.
This example also shows how to create indicator variables manually and pass them to stepwiselm so
that stepwiselm treats each indicator variable as a separate predictor.

Load the carsmall data set, and create a table using the Weight, Model_Year, and MPG variables.

load carsmall
Year = categorical(Model_Year);
tbl1 = table(MPG,Weight,Year);

Fit a linear regression model of MPG using stepwise regression. Specify the starting model as a
function of Weight. Set the upper bound of the model to 'poly21', meaning the model can include
(at most) a constant and the terms Weight, Weight^2, Year, and Weight*Year. Specify
'Verbose' as 2 to display the evaluation process and the decision taken at each step.

mdl1 = stepwiselm(tbl1,'MPG ~ Weight','Upper','poly21','Verbose',2)

   pValue for adding Year is 8.2284e-15
   pValue for adding Weight^2 is 0.15454
1. Adding Year, FStat = 47.5136, pValue = 8.22836e-15
   pValue for adding Weight^2 is 0.0022303
   pValue for adding Weight:Year is 0.0071637
2. Adding Weight^2, FStat = 9.9164, pValue = 0.0022303
   pValue for adding Weight:Year is 0.19519
   pValue for removing Year is 2.9042e-16

mdl1 = 
Linear regression model:
    MPG ~ 1 + Weight + Year + Weight^2

Estimated Coefficients:
                    Estimate         SE         tStat       pValue  
                   __________    __________    _______    __________

    (Intercept)        54.206        4.7117     11.505    2.6648e-19
    Weight          -0.016404     0.0031249    -5.2493    1.0283e-06
    Year_76            2.0887       0.71491     2.9215     0.0044137
    Year_82            8.1864       0.81531     10.041    2.6364e-16
    Weight^2       1.5573e-06    4.9454e-07      3.149     0.0022303
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Number of observations: 94, Error degrees of freedom: 89
Root Mean Squared Error: 2.78
R-squared: 0.885,  Adjusted R-Squared: 0.88
F-statistic vs. constant model: 172, p-value = 5.52e-41

stepwiselm creates two indicator variables, Year_76 and Year_82, because Year includes three
distinct values.

Because 'Verbose' is 2, stepwiselm displays the evaluation process:

• stepwiselm creates a model as a function of Weight.
• stepwiselm computes the p-values for adding Year or Weight^2. The p-value for Year is less

than both the p-value for Weight^2 and the default threshold value of 0.05; therefore,
stepwiselm adds Year to the model.

• stepwiselm computes the p-values for adding Weight:Year or Weight^2. Because the p-value
for Weight^2 is less than the p-value for Weight:Year, the stepwiselm function adds
Weight^2 to the model.

• After adding the quadratic term, stepwiselm computes the p-value for adding Weight:Year
again, but the p-value is greater than the threshold value. Therefore, stepwiselm does not add
the term to the model. stepwiselm does not examine adding Weight^3 because of the upper
bound specified by the 'Upper' name-value pair argument.

• stepwiselm looks for terms to remove. stepwiselm already examined Weight^2, so it
computes only the p-value for removing Year. Because the p-value is less than the default
threshold value of 0.10, stepwiselm does not remove the term.

• Although the maximum allowed number of steps is 5, stepwiselm terminates the process after
two steps because the model does not improve by adding or removing a term.

stepwiselm treats the two indicator variables as one predictor variable and adds Year in one step.
To treat the two indicator variables as two distinct predictor variables, use dummyvar to create
separate categorical variables.

temp_Year = dummyvar(Year);
Year_76 = logical(temp_Year(:,2));
Year_82 = logical(temp_Year(:,3));

Create a table containing MPG, Weight, Year_76, and Year_82.

tbl2 = table(MPG,Weight,Year_76,Year_82);

Create a stepwise linear regression model from the same starting model used for mdl1.

mdl2 = stepwiselm(tbl2,'MPG ~ Weight','Upper','poly211')

1. Adding Year_82, FStat = 83.1956, pValue = 1.76163e-14
2. Adding Weight:Year_82, FStat = 8.0641, pValue = 0.0055818
3. Adding Year_76, FStat = 8.1284, pValue = 0.0054157

mdl2 = 
Linear regression model:
    MPG ~ 1 + Year_76 + Weight*Year_82

Estimated Coefficients:
                         Estimate         SE         tStat       pValue  
                        __________    __________    _______    __________
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    (Intercept)             38.844        1.5294     25.397     1.503e-42
    Weight               -0.006272    0.00042673    -14.698    1.5622e-25
    Year_76_1               2.0395       0.71537      2.851     0.0054157
    Year_82_1               19.607        3.8731     5.0623    2.2163e-06
    Weight:Year_82_1    -0.0046268     0.0014979    -3.0888     0.0026806

Number of observations: 94, Error degrees of freedom: 89
Root Mean Squared Error: 2.79
R-squared: 0.885,  Adjusted R-Squared: 0.88
F-statistic vs. constant model: 171, p-value = 6.54e-41

The model mdl2 includes the interaction term Weight:Year_82_1 instead of Weight^2, the term
included in mdl1.

Input Arguments
tbl — Input data
table | dataset array

Input data including predictor and response variables, specified as a table or dataset array. The
predictor variables can be numeric, logical, categorical, character, or string. The response variable
must be numeric or logical.

• By default, stepwiselm takes the last variable as the response variable and the others as the
predictor variables.

• To set a different column as the response variable, use the ResponseVar name-value pair
argument.

• To use a subset of the columns as predictors, use the PredictorVars name-value pair argument.
• To define a model specification, set the modelspec argument using a formula or terms matrix.

The formula or terms matrix specifies which columns to use as the predictor or response
variables.

The variable names in a table do not have to be valid MATLAB identifiers, but the names must not
contain leading or trailing blanks. If the names are not valid, you cannot use a formula when you fit or
adjust a model; for example:

• You cannot specify modelspec using a formula.
• You cannot use a formula to specify the terms to add or remove when you use the addTerms

function or the removeTerms function, respectively.
• You cannot use a formula to specify the lower and upper bounds of the model when you use the

step or stepwiselm function with the name-value pair arguments 'Lower' and 'Upper',
respectively.

You can verify the variable names in tbl by using the isvarname function. If the variable names are
not valid, then you can convert them by using the matlab.lang.makeValidName function.

X — Predictor variables
matrix
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Predictor variables, specified as an n-by-p matrix, where n is the number of observations and p is the
number of predictor variables. Each column of X represents one variable, and each row represents
one observation.

By default, there is a constant term in the model, unless you explicitly remove it, so do not include a
column of 1s in X.
Data Types: single | double

y — Response variable
vector

Response variable, specified as an n-by-1 vector, where n is the number of observations. Each entry in
y is the response for the corresponding row of X.
Data Types: single | double | logical

modelspec — Starting model
'constant' (default) | character vector or string scalar naming the model | t-by-(p + 1) terms matrix
| character vector or string scalar formula in the form 'y ~ terms'

Starting model for the stepwise regression, specified as one of the following:

• A character vector or string scalar naming the model.

Value Model Type
'constant' Model contains only a constant (intercept) term.
'linear' Model contains an intercept and linear term for each

predictor.
'interactions' Model contains an intercept, linear term for each predictor,

and all products of pairs of distinct predictors (no squared
terms).

'purequadratic' Model contains an intercept term and linear and squared
terms for each predictor.

'quadratic' Model contains an intercept term, linear and squared terms
for each predictor, and all products of pairs of distinct
predictors.

'polyijk' Model is a polynomial with all terms up to degree i in the
first predictor, degree j in the second predictor, and so on.
Specify the maximum degree for each predictor by using
numerals 0 though 9. The model contains interaction terms,
but the degree of each interaction term does not exceed the
maximum value of the specified degrees. For example,
'poly13' has an intercept and x1, x2, x2

2, x2
3, x1*x2, and

x1*x2
2 terms, where x1 and x2 are the first and second

predictors, respectively.

• A t-by-(p + 1) matrix, or a “Terms Matrix” on page 35-7139, specifying terms in the model, where t
is the number of terms and p is the number of predictor variables, and +1 accounts for the
response variable. A terms matrix is convenient when the number of predictors is large and you
want to generate the terms programmatically.

• A character vector or string scalar “Formula” on page 35-7139 in the form
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'y ~ terms',
where the terms are in “Wilkinson Notation” on page 35-7140. The variable names in the formula
must be variable names in tbl or variable names specified by Varnames. Also, the variable names
must be valid MATLAB identifiers.

The software determines the order of terms in a fitted model by using the order of terms in tbl or
X. Therefore, the order of terms in the model can be different from the order of terms in the
specified formula.

If you want to specify the smallest or largest set of terms in the model that stepwiselm fits, use the
Lower and Upper name-value pair arguments.
Data Types: char | string | single | double

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: 'Criterion','aic','Upper','interactions','Verbose',1 instructs stepwiselm
to use the Akaike information criterion, display the action it takes at each step, and include at most
the interaction terms in the model.

CategoricalVars — Categorical variable list
string array | cell array of character vectors | logical or numeric index vector

Categorical variable list, specified as the comma-separated pair consisting of 'CategoricalVars'
and either a string array or cell array of character vectors containing categorical variable names in
the table or dataset array tbl, or a logical or numeric index vector indicating which columns are
categorical.

• If data is in a table or dataset array tbl, then, by default, stepwiselm treats all categorical
values, logical values, character arrays, string arrays, and cell arrays of character vectors as
categorical variables.

• If data is in matrix X, then the default value of 'CategoricalVars' is an empty matrix []. That
is, no variable is categorical unless you specify it as categorical.

For example, you can specify the second and third variables out of six as categorical using either of
the following:
Example: 'CategoricalVars',[2,3]
Example: 'CategoricalVars',logical([0 1 1 0 0 0])
Data Types: single | double | logical | string | cell

Criterion — Criterion to add or remove terms
'sse' (default) | 'aic' | 'bic' | 'rsquared' | 'adjrsquared'

Criterion to add or remove terms, specified as the comma-separated pair consisting of 'Criterion'
and one of these values:

• 'sse' — p-value for an F-test of the change in the sum of squared error that results from adding
or removing the term
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• 'aic' — Change in the value of Akaike information criterion (AIC)
• 'bic' — Change in the value of Bayesian information criterion (BIC)
• 'rsquared' — Increase in the value of R2

• 'adjrsquared' — Increase in the value of adjusted R2

Example: 'Criterion','bic'

Exclude — Observations to exclude
logical or numeric index vector

Observations to exclude from the fit, specified as the comma-separated pair consisting of 'Exclude'
and a logical or numeric index vector indicating which observations to exclude from the fit.

For example, you can exclude observations 2 and 3 out of 6 using either of the following examples.
Example: 'Exclude',[2,3]
Example: 'Exclude',logical([0 1 1 0 0 0])
Data Types: single | double | logical

Intercept — Indicator for constant term
true (default) | false

Indicator for the constant term (intercept) in the fit, specified as the comma-separated pair consisting
of 'Intercept' and either true to include or false to remove the constant term from the model.

Use 'Intercept' only when specifying the model using a character vector or string scalar, not a
formula or matrix.
Example: 'Intercept',false

Lower — Model specification describing terms that cannot be removed from model
'constant' (default) | character vector | string scalar | terms matrix

Model specification describing terms that cannot be removed from the model, specified as the
comma-separated pair consisting of 'Lower' and one of the options for modelspec naming the
model.
Example: 'Lower','linear'

NSteps — Maximum number of steps to take
no limit (default) | positive integer

Maximum number of steps to take, specified as the comma-separated pair consisting of 'NSteps'
and a positive integer.
Example: 'NSteps',5
Data Types: single | double

PEnter — Threshold for criterion to add term
scalar value

Threshold for the criterion to add a term, specified as the comma-separated pair consisting of
'PEnter' and a scalar value, as described in this table.
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Criterion Default Value Decision
'SSE' 0.05 If the p-value of the F-statistic is

less than PEnter (p-value to
enter), add the term to the
model.

'AIC' 0 If the change in the AIC of the
model is less than PEnter, add
the term to the model.

'BIC' 0 If the change in the BIC of the
model is less than PEnter, add
the term to the model.

'Rsquared' 0.1 If the increase in the R-squared
value of the model is greater
than PEnter, add the term to
the model.

'AdjRsquared' 0 If the increase in the adjusted R-
squared value of the model is
greater than PEnter, add the
term to the model.

For more information, see the Criterion name-value pair argument.
Example: 'PEnter',0.075

PredictorVars — Predictor variables
string array | cell array of character vectors | logical or numeric index vector

Predictor variables to use in the fit, specified as the comma-separated pair consisting of
'PredictorVars' and either a string array or cell array of character vectors of the variable names
in the table or dataset array tbl, or a logical or numeric index vector indicating which columns are
predictor variables.

The string values or character vectors should be among the names in tbl, or the names you specify
using the 'VarNames' name-value pair argument.

The default is all variables in X, or all variables in tbl except for ResponseVar.

For example, you can specify the second and third variables as the predictor variables using either of
the following examples.
Example: 'PredictorVars',[2,3]
Example: 'PredictorVars',logical([0 1 1 0 0 0])
Data Types: single | double | logical | string | cell

PRemove — Threshold for criterion to remove term
scalar value

Threshold for the criterion to remove a term, specified as the comma-separated pair consisting of
'PRemove' and a scalar value, as described in this table.
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Criterion Default Value Decision
'SSE' 0.10 If the p-value of the F-statistic is

greater than PRemove (p-value
to remove), remove the term
from the model.

'AIC' 0.01 If the change in the AIC of the
model is greater than PRemove,
remove the term from the
model.

'BIC' 0.01 If the change in the BIC of the
model is greater than PRemove,
remove the term from the
model.

'Rsquared' 0.05 If the increase in the R-squared
value of the model is less than
PRemove, remove the term from
the model.

'AdjRsquared' -0.05 If the increase in the adjusted R-
squared value of the model is
less than PRemove, remove the
term from the model.

At each step, the stepwiselm function also checks whether a term is redundant (linearly dependent)
with other terms in the current model. When any term is linearly dependent with other terms in the
current model, the stepwiselm function removes the redundant term, regardless of the criterion
value.

For more information, see the Criterion name-value pair argument.
Example: 'PRemove',0.05

ResponseVar — Response variable
last column in tbl (default) | character vector or string scalar containing variable name | logical or
numeric index vector

Response variable to use in the fit, specified as the comma-separated pair consisting of
'ResponseVar' and either a character vector or string scalar containing the variable name in the
table or dataset array tbl, or a logical or numeric index vector indicating which column is the
response variable. You typically need to use 'ResponseVar' when fitting a table or dataset array
tbl.

For example, you can specify the fourth variable, say yield, as the response out of six variables, in
one of the following ways.
Example: 'ResponseVar','yield'
Example: 'ResponseVar',[4]
Example: 'ResponseVar',logical([0 0 0 1 0 0])
Data Types: single | double | logical | char | string

Upper — Model specification describing largest set of terms in fit
'interactions' (default) | character vector | string scalar | terms matrix
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Model specification describing the largest set of terms in the fit, specified as the comma-separated
pair consisting of 'Upper' and one of the options for modelspec naming the model.
Example: 'Upper','quadratic'

VarNames — Names of variables
{'x1','x2',...,'xn','y'} (default) | string array | cell array of character vectors

Names of variables, specified as the comma-separated pair consisting of 'VarNames' and a string
array or cell array of character vectors including the names for the columns of X first, and the name
for the response variable y last.

'VarNames' is not applicable to variables in a table or dataset array, because those variables already
have names.

The variable names do not have to be valid MATLAB identifiers, but the names must not contain
leading or trailing blanks. If the names are not valid, you cannot use a formula when you fit or adjust
a model; for example:

• You cannot use a formula to specify the terms to add or remove when you use the addTerms
function or the removeTerms function, respectively.

• You cannot use a formula to specify the lower and upper bounds of the model when you use the
step or stepwiselm function with the name-value pair arguments 'Lower' and 'Upper',
respectively.

Before specifying 'VarNames',varNames, you can verify the variable names in varNames by using
the isvarname function. If the variable names are not valid, then you can convert them by using the
matlab.lang.makeValidName function.
Example: 'VarNames',{'Horsepower','Acceleration','Model_Year','MPG'}
Data Types: string | cell

Verbose — Control for display of information
1 (default) | 0 | 2

Control for the display of information, specified as the comma-separated pair consisting of
'Verbose' and one of these values:

• 0 — Suppress all display.
• 1 — Display the action taken at each step.
• 2 — Display the evaluation process and the action taken at each step.

Example: 'Verbose',2

Weights — Observation weights
ones(n,1) (default) | n-by-1 vector of nonnegative scalar values

Observation weights, specified as the comma-separated pair consisting of 'Weights' and an n-by-1
vector of nonnegative scalar values, where n is the number of observations.
Data Types: single | double
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Output Arguments
mdl — Linear model
LinearModel object

Linear model representing a least-squares fit of the response to the data, returned as a LinearModel
object.

For the properties and methods of the linear model object, mdl, see the LinearModel class page.

More About
Terms Matrix

A terms matrix T is a t-by-(p + 1) matrix specifying terms in a model, where t is the number of terms,
p is the number of predictor variables, and +1 accounts for the response variable. The value of
T(i,j) is the exponent of variable j in term i.

For example, suppose that an input includes three predictor variables x1, x2, and x3 and the
response variable y in the order x1, x2, x3, and y. Each row of T represents one term:

• [0 0 0 0] — Constant term or intercept
• [0 1 0 0] — x2; equivalently, x1^0 * x2^1 * x3^0
• [1 0 1 0] — x1*x3
• [2 0 0 0] — x1^2
• [0 1 2 0] — x2*(x3^2)

The 0 at the end of each term represents the response variable. In general, a column vector of zeros
in a terms matrix represents the position of the response variable. If you have the predictor and
response variables in a matrix and column vector, then you must include 0 for the response variable
in the last column of each row.

Formula

A formula for model specification is a character vector or string scalar of the form 'y ~ terms'.

• y is the response name.
• terms represents the predictor terms in a model using Wilkinson notation.

To represent predictor and response variables, use the variable names of the table input tbl or the
variable names specified by using VarNames. The default value of VarNames is
{'x1','x2',...,'xn','y'}.

For example:

• 'y ~ x1 + x2 + x3' specifies a three-variable linear model with intercept.
• 'y ~ x1 + x2 + x3 – 1' specifies a three-variable linear model without intercept. Note that

formulas include a constant (intercept) term by default. To exclude a constant term from the
model, you must include –1 in the formula.

A formula includes a constant term unless you explicitly remove the term using –1.
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Wilkinson Notation

Wilkinson notation describes the terms present in a model. The notation relates to the terms present
in a model, not to the multipliers (coefficients) of those terms.

Wilkinson notation uses these symbols:

• + means include the next variable.
• – means do not include the next variable.
• : defines an interaction, which is a product of terms.
• * defines an interaction and all lower-order terms.
• ^ raises the predictor to a power, exactly as in * repeated, so ^ includes lower-order terms as well.
• () groups terms.

This table shows typical examples of Wilkinson notation.

Wilkinson Notation Terms in Standard Notation
1 Constant (intercept) term
x1^k, where k is a positive integer x1, x12, ..., x1k

x1 + x2 x1, x2
x1*x2 x1, x2, x1*x2
x1:x2 x1*x2 only
–x2 Do not include x2
x1*x2 + x3 x1, x2, x3, x1*x2
x1 + x2 + x3 + x1:x2 x1, x2, x3, x1*x2
x1*x2*x3 – x1:x2:x3 x1, x2, x3, x1*x2, x1*x3, x2*x3
x1*(x2 + x3) x1, x2, x3, x1*x2, x1*x3

For more details, see “Wilkinson Notation” on page 11-93.

Tips
• You cannot use robust regression with stepwise regression. Check your data for outliers before

using stepwiselm.
• For other methods such as anova, or properties of the LinearModel object, see LinearModel.
• After training a model, you can generate C/C++ code that predicts responses for new data.

Generating C/C++ code requires MATLAB Coder. For details, see “Introduction to Code
Generation” on page 34-2.

Algorithms
• Stepwise regression is a systematic method for adding and removing terms from a linear or

generalized linear model based on their statistical significance in explaining the response variable.
The method begins with an initial model, specified using modelspec, and then compares the
explanatory power of incrementally larger and smaller models.
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The stepwiselm function uses forward and backward stepwise regression to determine a final
model. At each step, the function searches for terms to add to the model or remove from the
model based on the value of the 'Criterion' name-value pair argument.

The default value of 'Criterion' for a linear regression model is 'sse'. In this case,
stepwiselm and step of LinearModel use the p-value of an F-statistic to test models with and
without a potential term at each step. If a term is not currently in the model, the null hypothesis is
that the term would have a zero coefficient if added to the model. If there is sufficient evidence to
reject the null hypothesis, the function adds the term to the model. Conversely, if a term is
currently in the model, the null hypothesis is that the term has a zero coefficient. If there is
insufficient evidence to reject the null hypothesis, the function removes the term from the model.

Stepwise regression takes these steps when 'Criterion' is 'sse':

1 Fit the initial model.
2 Examine a set of available terms not in the model. If any of the terms have p-values less than

an entrance tolerance (that is, if it is unlikely a term would have a zero coefficient if added to
the model), add the term with the smallest p-value and repeat this step; otherwise, go to step
3.

3 If any of the available terms in the model have p-values greater than an exit tolerance (that is,
the hypothesis of a zero coefficient cannot be rejected), remove the term with the largest p-
value and return to step 2; otherwise, end the process.

At any stage, the function will not add a higher-order term if the model does not also include all
lower-order terms that are subsets of the higher-order term. For example, the function will not try
to add the term X1:X2^2 unless both X1 and X2^2 are already in the model. Similarly, the
function will not remove lower-order terms that are subsets of higher-order terms that remain in
the model. For example, the function will not try to remove X1 or X2^2 if X1:X2^2 remains in the
model.

The default value of 'Criterion' for a generalized linear model is 'Deviance'. stepwiseglm
and step of GeneralizedLinearModel follow a similar procedure for adding or removing
terms.

You can specify other criteria by using the 'Criterion' name-value pair argument. For example,
you can specify the change in the value of the Akaike information criterion, Bayesian information
criterion, R-squared, or adjusted R-squared as the criterion to add or remove terms.

Depending on the terms included in the initial model, and the order in which the function adds
and removes terms, the function might build different models from the same set of potential
terms. The function terminates when no single step improves the model. However, a different
initial model or a different sequence of steps does not guarantee a better fit. In this sense,
stepwise models are locally optimal, but might not be globally optimal.

• stepwiselm treats a categorical predictor as follows:

• A model with a categorical predictor that has L levels (categories) includes L – 1 indicator
variables. The model uses the first category as a reference level, so it does not include the
indicator variable for the reference level. If the data type of the categorical predictor is
categorical, then you can check the order of categories by using categories and reorder
the categories by using reordercats to customize the reference level. For more details about
creating indicator variables, see “Automatic Creation of Dummy Variables” on page 2-50.

• stepwiselm treats the group of L – 1 indicator variables as a single variable. If you want to
treat the indicator variables as distinct predictor variables, create indicator variables manually
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by using dummyvar. Then use the indicator variables, except the one corresponding to the
reference level of the categorical variable, when you fit a model. For the categorical predictor
X, if you specify all columns of dummyvar(X) and an intercept term as predictors, then the
design matrix becomes rank deficient.

• Interaction terms between a continuous predictor and a categorical predictor with L levels
consist of the element-wise product of the L – 1 indicator variables with the continuous
predictor.

• Interaction terms between two categorical predictors with L and M levels consist of the (L –
 1)*(M – 1) indicator variables to include all possible combinations of the two categorical
predictor levels.

• You cannot specify higher-order terms for a categorical predictor because the square of an
indicator is equal to itself.

Therefore, if stepwiselm adds or removes a categorical predictor, the function actually adds or
removes the group of indicator variables in one step. Similarly, if stepwiselm adds or removes an
interaction term with a categorical predictor, the function actually adds or removes the group of
interaction terms including the categorical predictor.

• stepwiselm considers NaN, '' (empty character vector), "" (empty string), <missing>, and
<undefined> values in tbl, X, and Y to be missing values. stepwiselm does not use
observations with missing values in the fit. The ObservationInfo property of a fitted model
indicates whether or not stepwiselm uses each observation in the fit.

Alternative Functionality
• You can construct a model using fitlm, and then manually adjust the model using step,

addTerms, or removeTerms.

Version History
Introduced in R2013b

See Also
LinearModel | step | fitlm

Topics
“Stepwise Regression” on page 11-101
“Linear Regression” on page 11-9
“Linear Regression Workflow” on page 11-35
“Interpret Linear Regression Results” on page 11-52
“Linear Regression with Categorical Covariates” on page 2-53
“Sequential Feature Selection” on page 16-59
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stepwisefit
Fit linear regression model using stepwise regression

Syntax
b = stepwisefit(X,y)
b = stepwisefit(X,y,Name,Value)
[b,se,pval] = stepwisefit( ___ )
[b,se,pval,finalmodel,stats] = stepwisefit( ___ )
[b,se,pval,finalmodel,stats,nextstep,history] = stepwisefit( ___ )

Description
b = stepwisefit(X,y) returns a vector b of coefficient estimates from stepwise regression of the
response vector y on the predictor variables in matrix X. stepwisefit begins with an initial
constant model and takes forward or backward steps to add or remove variables, until a stopping
criterion is satisfied.

b = stepwisefit(X,y,Name,Value) specifies additional options using one or more name-value
pair arguments. For example, you can specify a nonconstant initial model, or a maximum number of
steps that stepwisefit can take.

[b,se,pval] = stepwisefit( ___ ) returns the coefficient estimates b, standard errors se, and
p-values pval using any of the input argument combinations in previous syntaxes.

[b,se,pval,finalmodel,stats] = stepwisefit( ___ ) also returns a specification of the
variables in the final regression model finalmodel, and statistics stats about the final model.

[b,se,pval,finalmodel,stats,nextstep,history] = stepwisefit( ___ ) also returns the
recommended next step nextstep and information history about all the steps taken.

Examples

Stepwise Regression with Default Arguments

Perform a basic stepwise regression and obtain the coefficient estimates.

Load the hald data set.

load hald
whos % Check variables loaded in workspace

  Name              Size            Bytes  Class     Attributes

  Description      22x58             2552  char                
  hald             13x5               520  double              
  heat             13x1               104  double              
  ingredients      13x4               416  double              
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This data set contains observations of the heat evolved during cement hardening for various mixtures
of four cement ingredients. The response variable is heat. The matrix ingredients contains four
columns of predictors.

Run stepwisefit beginning with only a constant term in the model and using the default entry and
exit tolerances of 0.05 and 0.10, respectively.

b = stepwisefit(ingredients,heat)

Initial columns included: none
Step 1, added column 4, p=0.000576232
Step 2, added column 1, p=1.10528e-06
Final columns included:  1 4 
    {'Coeff'  }    {'Std.Err.'}    {'Status'}    {'P'         }
    {[ 1.4400]}    {[  0.1384]}    {'In'    }    {[1.1053e-06]}
    {[ 0.4161]}    {[  0.1856]}    {'Out'   }    {[    0.0517]}
    {[-0.4100]}    {[  0.1992]}    {'Out'   }    {[    0.0697]}
    {[-0.6140]}    {[  0.0486]}    {'In'    }    {[1.8149e-07]}

b = 4×1

    1.4400
    0.4161
   -0.4100
   -0.6140

The stepwisefit display shows that columns 1 and 4 are included in the final model. The output b
includes estimates for all columns, even those that do not appear in the final model. stepwisefit
computes the estimate for column 2 (or 3) by fitting a model consisting of the final model plus column
2 (or 3).

Tune the Stepwise Procedure

Load the carsmall data set, which contains various car measurements.

load carsmall
whos

  Name                Size            Bytes  Class     Attributes

  Acceleration      100x1               800  double              
  Cylinders         100x1               800  double              
  Displacement      100x1               800  double              
  Horsepower        100x1               800  double              
  MPG               100x1               800  double              
  Mfg               100x13             2600  char                
  Model             100x33             6600  char                
  Model_Year        100x1               800  double              
  Origin            100x7              1400  char                
  Weight            100x1               800  double              

Perform stepwise regression with four continuous variables and the response variable MPG.
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X = [Acceleration Cylinders Displacement Horsepower];
y = MPG;
b4_default = stepwisefit(X,y) % Stepwise regression with default arguments

Initial columns included: none
Step 1, added column 2, p=1.59001e-25
Step 2, added column 4, p=0.00364266
Step 3, added column 1, p=0.0161414
Final columns included:  1 2 4 
    {'Coeff'  }    {'Std.Err.'}    {'Status'}    {'P'         }
    {[-0.4517]}    {[  0.1842]}    {'In'    }    {[    0.0161]}
    {[-2.6407]}    {[  0.4823]}    {'In'    }    {[4.0003e-07]}
    {[ 0.0148]}    {[  0.0157]}    {'Out'   }    {[    0.3472]}
    {[-0.0772]}    {[  0.0204]}    {'In'    }    {[2.6922e-04]}

b4_default = 4×1

   -0.4517
   -2.6407
    0.0148
   -0.0772

The term Displacement never enters the model. Determine if it is highly correlated with the other
three terms by computing the term correlation matrix.

corrcoef(X,'Rows','complete') % To exclude rows with missing values from calculation

ans = 4×4

    1.0000   -0.6438   -0.6968   -0.6968
   -0.6438    1.0000    0.9517    0.8622
   -0.6968    0.9517    1.0000    0.9134
   -0.6968    0.8622    0.9134    1.0000

The third row of the correlation matrix corresponds to Displacement. This term is highly correlated
with the other three terms, especially Cylinders (0.95) and Horsepower (0.91).

Redefine the input matrix X to include Weight. Specify an initial model containing the terms
Displacement and Horsepower by using the 'InModel' name-value pair argument.

X = [Acceleration Cylinders Displacement Horsepower Weight];
inmodel = [false false true true false];
b5_inmodel = stepwisefit(X,y,'InModel',inmodel)

Initial columns included: 3 4 
Step 1, added column 5, p=1.06457e-06
Step 2, added column 2, p=0.00410234
Final columns included:  2 3 4 5 
    {'Coeff'  }    {'Std.Err.'}    {'Status'}    {'P'         }
    {[-0.0912]}    {[  0.2032]}    {'Out'   }    {[    0.6548]}
    {[-2.3223]}    {[  0.7879]}    {'In'    }    {[    0.0041]}
    {[ 0.0252]}    {[  0.0145]}    {'In'    }    {[    0.0862]}
    {[-0.0449]}    {[  0.0231]}    {'In'    }    {[    0.0555]}
    {[-0.0050]}    {[  0.0012]}    {'In'    }    {[1.0851e-04]}

b5_inmodel = 5×1
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   -0.0912
   -2.3223
    0.0252
   -0.0449
   -0.0050

The final model consists of terms 2–5. However, Displacement and Horsepower estimates have p-
values greater than 0.05 in the final model. You can tune the stepwise algorithm to behave more
conservatively by using the 'PRemove' name-value pair argument. For example, setting 'PRemove'
to 0.05 (instead of the default 0.1) results in a smaller final model with only two terms, each with a
p-value less than 0.05.

b5_inmodel_premove = stepwisefit(X,y,'InModel',inmodel,'PRemove',0.05)

Initial columns included: 3 4 
Step 1, added column 5, p=1.06457e-06
Step 2, added column 2, p=0.00410234
Step 3, removed column 3, p=0.0862131
Step 4, removed column 4, p=0.239239
Final columns included:  2 5 
    {'Coeff'  }    {'Std.Err.'}    {'Status'}    {'P'         }
    {[-0.0115]}    {[  0.1656]}    {'Out'   }    {[    0.9449]}
    {[-1.6037]}    {[  0.5146]}    {'In'    }    {[    0.0025]}
    {[ 0.0101]}    {[  0.0124]}    {'Out'   }    {[    0.4186]}
    {[-0.0234]}    {[  0.0198]}    {'Out'   }    {[    0.2392]}
    {[-0.0055]}    {[  0.0011]}    {'In'    }    {[3.9038e-06]}

b5_inmodel_premove = 5×1

   -0.0115
   -1.6037
    0.0101
   -0.0234
   -0.0055

Center and scale each column (compute the z-scores) before fitting by using the 'Scale' name-value
pair argument. The scaling does not change the model selected, the signs of coefficient estimates, or
their p-values. However, the scaling does scale the coefficient estimates.

b5_inmodel_premove_scale = stepwisefit(X,y,'InModel',inmodel,'PRemove',0.05,'Scale','on')

Initial columns included: 3 4 
Step 1, added column 5, p=1.06457e-06
Step 2, added column 2, p=0.00410234
Step 3, removed column 3, p=0.0862131
Step 4, removed column 4, p=0.239239
Final columns included:  2 5 
    {'Coeff'  }    {'Std.Err.'}    {'Status'}    {'P'         }
    {[-0.0370]}    {[  0.5339]}    {'Out'   }    {[    0.9449]}
    {[-2.8136]}    {[  0.9028]}    {'In'    }    {[    0.0025]}
    {[ 1.1155]}    {[  1.3726]}    {'Out'   }    {[    0.4186]}
    {[-1.0617]}    {[  0.8961]}    {'Out'   }    {[    0.2392]}
    {[-4.4406]}    {[  0.9028]}    {'In'    }    {[3.9038e-06]}

b5_inmodel_premove_scale = 5×1
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   -0.0370
   -2.8136
    1.1155
   -1.0617
   -4.4406

Usually, you scale to compare estimates of terms that are measured in different scales, such as
Horsepower and Weight. In this case, increasing Horsepower by one standard deviation leads to an
expected drop of 1 in MPG, whereas increasing Weight by one standard deviation leads to an
expected drop of 4.4 in MPG.

Retrieve Detailed Output from Stepwise Regression

Load the imports-85 data set. This data set contains characteristics of cars imported in 1985. For a
list of all column names, see the variable Description in the workspace or type Description at
the command line.

load imports-85
whos 

  Name               Size            Bytes  Class     Attributes

  Description        9x79             1422  char                
  X                205x26            42640  double              

Choose a subset of continuous variables to use in stepwise regression, consisting of the predictor
variables engine-size, bore, stroke, compression-ratio, horsepower, peak-rpm, city-mpg,
and highway-mpg, and the response variable price.

varnames = ["engine-size","bore","stroke","compression-ratio","horsepower","peak-rpm","city-mpg","highway-mpg","price"]; % Variable names to use in stepwise regression
dataTbl = array2table(X(:,8:16),'VariableNames',varnames); % Create data table with variable names
Xstepw = dataTbl{:,{'engine-size','bore','stroke','compression-ratio','horsepower','peak-rpm','city-mpg','highway-mpg'}}; % Input matrix
ystepw = dataTbl{:,{'price'}}; % Response vector

Run stepwisefit of the variable price on the other eight variables, first with the default constant
initial model and then with an initial model including highway-mpg. Omit the display of step
information.

[betahat_def,se_def,pval_def,finalmodel_def,stats_def] = stepwisefit(Xstepw,ystepw,'Display',"off"); 
inmodel = [false false false false false false false true]; 
[betahat_in,se_in,pval_in,finalmodel_in,stats_in] = stepwisefit(Xstepw,ystepw,'InModel',inmodel,'Display','off');

Inspect the final models returned by stepwisefit.

finalmodel_def

finalmodel_def = 1x8 logical array

   1   0   1   1   0   1   1   0

finalmodel_in

finalmodel_in = 1x8 logical array
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   1   0   1   1   0   1   0   1

The default model drops highway-mpg (term 8) from the model and includes city-mpg (term 7)
instead. Compare the root mean squared errors (RMSEs) of these two final models.

stats_def.rmse

ans = 3.3033e+03

stats_in.rmse

ans = 3.3324e+03

The model resulting from the default arguments has a slightly lower RMSE. Note that a full
specification of the final model consists of the term estimates plus the intercept estimate.

betahat_def % Term estimates

betahat_def = 8×1
103 ×

    0.1559
   -0.2242
   -2.8578
    0.3904
    0.0222
    0.0024
   -0.2414
    0.0793

stats_def.intercept % Intercept estimate

ans = -7.3506e+03

Retrieve the history of the default run of stepwisefit and the recommended next step. Omit the
display of step information.

[~,~,~,~,~,nextstep_def,history_def]=stepwisefit(Xstepw,ystepw,'Display',"off"); 
nextstep_def

nextstep_def = 0

No further steps are recommended (nextstep_def is 0).

history_def.('in') 

ans = 7x8 logical array

   1   0   0   0   0   0   0   0
   1   0   0   0   1   0   0   0
   1   0   0   1   1   0   0   0
   1   0   1   1   1   0   0   0
   1   0   1   1   1   1   0   0
   1   0   1   1   1   1   1   0
   1   0   1   1   0   1   1   0
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The algorithm performs a total of seven steps. The output shows that engine-size (term 1) is added
in step 1, horsepower (term 5) is added in step 2, and so on.

Input Arguments
X — Predictor variables
numeric matrix

Predictor variables, specified as an n-by-p numeric matrix, where n is the number of observations and
p is the number of predictor variables. Each column of X represents one variable, and each row
represents one observation.

stepwisefit always includes a constant term in the model. Therefore, do not include a column of 1s
in X.
Data Types: single | double

y — Response variable
numeric or logical vector

Response variable, specified as an n-by-1 numeric or logical vector, where n is the number of
observations. Each entry in y is the response for the corresponding row of X.
Data Types: single | double | logical

Note stepwisefit treats NaN values in either X or y as missing and ignores all rows containing
these values.

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: 'PEnter',0.10,'PRemove',0.15,'MaxIter',8 instructs stepwisefit to use entry
and exit tolerances of 0.10 and 0.15, respectively, and to take a maximum of 8 steps.

InModel — Terms for initial model
logical vector

Terms for the initial model, specified as the comma-separated pair consisting of 'InModel' and a
logical vector specifying terms to include in the initial model. The default is to include no terms.
Example: 'InModel',[true false false true]
Data Types: logical

PEnter — Tolerance for adding terms to model
0.05 (default) | positive scalar
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Tolerance for adding terms to the model, specified as the comma-separated pair consisting of
'PEnter' and a positive scalar specifying the maximum p-value for a term to be added. The default
is 0.05.
Example: 'PEnter',0.10
Data Types: single | double

PRemove — Tolerance for removing terms from model
maximum of PEnter and 0.10 (default) | positive scalar

Tolerance for removing terms from the model, specified as the comma-separated pair consisting of
'PRemove' and a positive scalar specifying the minimum p-value for a term to be removed. The
default is the maximum of PEnter and 0.10.

Note  PRemove is not allowed to be smaller than PEnter because that would cause stepwisefit to
enter an infinite loop, where a variable is repeatedly added to the model and removed from the
model.

Example: 'PRemove',0.15
Data Types: single | double

Display — Indicator for displaying step information
'on' (default) | 'off'

Indicator for displaying step information, specified as the comma-separated pair consisting of
'Display' and 'on' or 'off'.

• 'on' displays information about each step in the Command Window (default).
• 'off' omits the display.

Example: 'Display','off'

MaxIter — Maximum number of steps
Inf (default) | positive integer

Maximum number of steps, specified as the comma-separated pair consisting of 'MaxIter' and a
positive integer or Inf (default). Inf allows the algorithm to run until no single step improves the
model.
Example: 'MaxIter',12
Data Types: double

Keep — Terms to keep in their initial state
logical vector

Terms to keep in their initial state, specified as the comma-separated pair consisting of 'Keep' and a
logical vector. The value true for a term specified to be in (or out of) the initial model forces that
term to remain in (or out of) the final model. The value false for a term does not force that term to
remain in (or out of) the final model. The default is to specify no terms to keep in their initial state.
Example: 'Keep',[true true false false]
Data Types: logical
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Scale — Indicator for centering and scaling terms
'off' (default) | 'on'

Indicator for centering and scaling terms, specified as the comma-separated pair consisting of
'Scale' and 'off' or 'on'.

• 'off' does not center and scale the terms (default).
• 'on' centers and scales each column of X (computes the z-scores) before fitting.

Example: 'Scale','on'

Output Arguments
b — Estimated coefficients
numeric vector

Estimated coefficients, returned as a numeric vector corresponding to the terms in X. The
stepwisefit function calculates the values in b as follows:

• If a term is included in the final model, then its corresponding value in b is the estimate resulting
from fitting the final model.

• If a term is excluded from the final model, then its corresponding value in b is the estimate
resulting from fitting the final model plus that term.

Note To obtain a full specification of the fitted model, you also need the estimated intercept in
addition to b. The estimated intercept is provided as a field in the output argument stats. For more
details see “stepwisefit Fitted Model” on page 35-7153.

se — Standard errors
numeric vector

Standard errors, returned as a numeric vector corresponding to the estimates in b.

pval — p-values
numeric vector

p-values, returned as a numeric vector that results from testing whether elements of b are 0.

finalmodel — Final model
logical vector

Final model, returned as a logical vector with length equal to the number of columns in X, indicating
which terms are in the final model.

stats — Additional statistics
structure

Additional statistics, returned as a structure with the following fields. All statistics pertain to the final
model except where noted.
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Field Description
source Character vector 'stepwisefit'
dfe Degrees of freedom for error
df0 Degrees of freedom for the regression
SStotal Total sum of squares of the response
SSresid Sum of squares of the residuals
fstat F-statistic for testing the final model vs. no model

(mean only)
pval p-value of the F-statistic
rmse Root mean squared error
xr Residuals for terms not in the final model,

computed by subtracting from each term the
predicted response of the final model

yr Residuals for the response using predictors in the
final model

B Coefficients for terms in the final model, with the
value for each term not in the model set to the
value that would be obtained by adding that term
to the model

SE Standard errors for coefficient estimates
TSTAT t statistics for coefficient estimates
PVAL p-values for coefficient estimates
intercept Estimated intercept
wasnan Rows in the data that contain NaN values

nextstep — Recommended next step
nonnegative integer

Recommended next step, returned as a nonnegative integer equal to the index of the next term to add
to or remove from the model, or 0 if no further steps are recommended.

history — Information on steps taken
structure

Information on steps taken, returned as a structure with the following fields.

Field Description
B Matrix of regression coefficients, where each

column is one step and each row is one
coefficient vector

rmse Root mean squared errors for the model at each
step

df0 Degrees of freedom for the regression at each
step
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Field Description
in Logical array indicating which predictors are in

the model at each step, where each row is one
step and each column is one predictor

More About
stepwisefit Fitted Model

The final stepwisefit fitted model is

y = stats.intercept + X(:,finalmodel) * b(finalmodel) .

Here,

• y  is the predicted mean response.
• stats.intercept is the estimated intercept.
• X(:,finalmodel) is the input matrix for the terms in the final model.
• b(finalmodel) is the vector of coefficient estimates for the terms in the final model.

Algorithms
Stepwise regression is a method for adding terms to and removing terms from a multilinear model
based on their statistical significance. This method begins with an initial model and then takes
successive steps to modify the model by adding or removing terms. At each step, the p-value of an F-
statistic is computed to test models with and without a potential term. If a term is not currently in the
model, the null hypothesis is that the term would have a zero coefficient if added to the model. If
there is sufficient evidence to reject the null hypothesis, the term is added to the model. Conversely, if
a term is currently in the model, the null hypothesis is that the term has a zero coefficient. If there is
insufficient evidence to reject the null hypothesis, the term is removed from the model. The method
proceeds as follows:

1 Fit the initial model.
2 If any terms not in the model have p-values less than an entry tolerance, add the one with the

smallest p-value and repeat this step. For example, assume the initial model is the default
constant model and the entry tolerance is the default 0.05. The algorithm first fits all models
consisting of the constant plus another term and identifies the term that has the smallest p-value,
for example term 4. If the term 4 p-value is less than 0.05, then term 4 is added to the model.
Next, the algorithm performs a search among all models consisting of the constant, term 4, and
another term. If a term not in the model has a p-value less than 0.05, the term with the smallest
p-value is added to the model and the process is repeated. When no further terms exist that can
be added to the model, the algorithm proceeds to step 3.

3 If any terms in the model have p-values greater than an exit tolerance, remove the one with the
largest p-value and go to step 2; otherwise, end.

In each step of the algorithm, stepwisefit uses the method of least squares to estimate the model
coefficients. After adding a term to the model at an earlier stage, the algorithm might subsequently
drop that term if it is no longer helpful in combination with other terms added later. The method
terminates when no single step improves the model. However, the final model is not guaranteed to be
optimal, which means having the best fit to the data. A different initial model or a different sequence
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of steps might lead to a better fit. In this sense, stepwise models are locally optimal, but are not
necessarily globally optimal.

Alternative Functionality
• You can create a model using fitlm, and then manually adjust the model using step, addTerms,

and removeTerms.
• Use stepwiselm if you have data in a table, you have a mix of continuous and categorical

predictors, or you want to specify model formulas that can potentially include higher-order and
interaction terms.

• Use stepwiseglm to create stepwise generalized linear models (for example, if you have a binary
response variable and want to fit a classification model).

Version History
Introduced before R2006a

References
[1] Draper, Norman R., and Harry Smith. Applied Regression Analysis. Hoboken, NJ: Wiley-

Interscience, 1998. pp. 307–312.

See Also
stepwise | addedvarplot | regress | stepwiselm | stepwiseglm
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subsasgn
Class: dataset

(Not Recommended) Subscripted assignment to dataset array

Note The dataset data type is not recommended. To work with heterogeneous data, use the
MATLAB® table data type instead. See MATLAB table documentation for more information.

Description
A = subsasgn(A,S,B) is called for the syntax A(i,j)=B, A{i,j}=B, or A. var=B when A is a
dataset array. S is a structure array with the fields:

type '()', '{}', or '.' specifying the subscript type.
subs Cell array or character vector containing the

actual subscripts.

A(i,j) = B assigns the contents of the dataset array B to a subset of the observations and variables
in the dataset array A. i and j are one of the following types:

• positive integers
• vectors of positive integers
• observation/variable names
• cell arrays containing one or more observation/variable names
• logical vectors

The assignment does not use observation names, variable names, or any other properties of B to
modify properties of A; however properties of A are extended with default values if the assignment
expands the number of observations or variables in A. Elements of B are assigned into A by position,
not by matching names.

A{i,j} = B assigns the value B into an element of the dataset array A. i and J are positive integers,
or logical vectors. Cell indexing cannot assign into multiple dataset elements, that is, the subscripts i
and j must each refer to only a single observation or variable. B is cast to the type of the target
variable if necessary. If the dataset element already exists, A{i,j} may also be followed by further
subscripting as supported by the variable.

For dataset variables that are cell arrays, assignments such as A{1,'CellVar'} = B assign into the
contents of the target dataset element in the same way that {}-indexing of an ordinary cell array
does.

For dataset variables that are n-D arrays, i.e., each observation is a matrix or array, an assignment
such as A{1,'ArrayVar'} = B assigns into the second and following dimensions of the target
dataset element, i.e., the assignment adds a leading singleton dimension to B to account for the
observation dimension of the dataset variable.

A.var = B or A.(varname) = B assigns B to a dataset variable. var is a variable name literal, or
varname is a character variable containing a variable name. If the dataset variable already exists, the
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assignment completely replaces that variable. To assign into an element of the variable, A.var or A.
(varname) may be followed by further subscripting as supported by the variable. In particular,
A.var(obsnames,...) = B and A.var{obsnames,...} = B (when supported by var) provide
assignment into a dataset variable using observation names.

A.properties.propertyname = P assigns to a dataset property. propertyname is one of the
following:

• 'ObsNames'
• 'VarNames'
• 'Description'
• 'Units'
• 'DimNames'
• 'UserData'
• 'VarDescription'

To assign into an element of the property, A.properties.propertyname may also be followed by
further subscripting as supported by the property.

You cannot assign multiple values into dataset variables or properties using assignments such as
[A.CellVar{1:2}] = B, [A.StructVar(1:2).field] = B, or
[A.Properties.ObsNames{1:2}] = B. Use multiple assignments of the form A.CellVar{1} =
B instead.

Similarly, if a dataset variable is a cell array with multiple columns or is an n-D cell array, then the
contents of that variable for a single observation consists of multiple cells, and you cannot assign to
all of them using the syntax A{1,'CellVar'} = B. Use multiple assignments of the form
[A.CellVar{1,1}] = B instead.

See Also
dataset | set | subsref
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subsref
Class: dataset

(Not Recommended) Subscripted reference for dataset array

Note The dataset data type is not recommended. To work with heterogeneous data, use the
MATLAB® table data type instead. See MATLAB table documentation for more information.

Syntax
B = subsref(A,S)

Description
B = subsref(A,S) is called for the syntax A(i,j), A{i,j}, or A.var when A is a dataset array. S
is a structure array with the fields:

type Character vector containing '()', '{}', or '.' specifying the subscript
type.

subs Cell array or character vector containing the actual subscripts.

B = A(i,j) returns a dataset array that contains a subset of the observations and variables in the
dataset array A. i and j are one of the following types:

• positive integers
• vectors of positive integers
• observation/variable names
• cell arrays containing one or more observation/variable names
• logical vectors

B contains the same property values as A, subsetted for observations or variables where appropriate.

B = A{i,j} returns an element of a dataset variable. i and j are positive integers, or logical
vectors. Cell indexing cannot return multiple dataset elements, that is, the subscripts i and j must
each refer to only a single observation or variable. A{i,j} may also be followed by further
subscripting as supported by the variable.

For dataset variables that are cell arrays, expressions such as A{1,'CellVar'} return the contents
of the referenced dataset element in the same way that {}-indexing on an ordinary cell array does. If
the dataset variable is a single column of cells, the contents of a single cell is returned. If the dataset
variable has multiple columns or is n-D, multiple outputs containing the contents of multiple cells are
returned.

For dataset variables that are n-D arrays, i.e., each observation is a matrix or an array, expressions
such as A{1,'ArrayVar'} return A.ArrayVar(1,:,...) with the leading singleton dimension
squeezed out.
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B = A.var or A.(varname) returns a dataset variable. var is a variable name literal, or varname is
a character variable containing a variable name. A.var or A.(varname) may also be followed by
further subscripting as supported by the variable. In particular, A.var(obsnames,...) and
A.var{obsnames,...} (when supported by var) provide subscripting into a dataset variable using
observation names.

P = A.Properties.propertyname returns a dataset property. propertyname is one of the
following:

• 'ObsNames'
• 'VarNames'
• 'Description'
• 'Units'
• 'DimNames'
• 'UserData'
• 'VarDescription'

A.properties.propertyname may also be followed by further subscripting as supported by the
property.

Limitations

Subscripting expressions such as A.CellVar{1:2}, A.StructVar(1:2).field, or
A.Properties.ObsNames{1:2} are valid, but result in subsref returning multiple outputs in the
form of a comma-separated list. If you explicitly assign to output arguments on the left-hand side of
an assignment, for example, [cellval1,cellval2] = A.CellVar{1:2}, those variables will
receive the corresponding values. However, if there are no output arguments, only the first output in
the comma-separated list is returned.

Similarly, if a dataset variable is a cell array with multiple columns or is an n-D cell array, then
subscripting expressions such as A{1,'CellVar'} result in subsref returning the contents of
multiple cells. You should explicitly assign to output arguments on the left-hand side of an
assignment, for example, [cellval1,cellval2] = A{1,'CellVar'}.

See Also
dataset | set | subsasgn
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summary
Class: dataset

(Not Recommended) Print summary of dataset array

Note The dataset data type is not recommended. To work with heterogeneous data, use the
MATLAB® table data type instead. See MATLAB table documentation for more information.

Syntax
summary(A)
s = summary(A)

Description
summary(A) prints a summary of a dataset array and the variables that it contains.

s = summary(A) returns a scalar structure s that contains a summary of the dataset A and the
variables that A contains. For more information on the fields in s, see Outputs.

Summary information depends on the type of the variables in the data set:

• For numerical variables, summary computes a five-number summary of the data, giving the
minimum, the first quartile, the median, the third quartile, and the maximum.

• For logical variables, summary counts the number of trues and falses in the data.
• For categorical variables, summary counts the number of data at each level.

Output Arguments
The following list describes the fields in the structure s:

• Description — A character array containing the dataset description.
• Variables — A structure array with one element for each dataset variable in A. Each element

has the following fields:

• Name — A character vector containing the name of the variable.
• Description — A character vector containing the variable's description.
• Units — A character vector containing the variable's units.
• Size — A numeric vector containing the size of the variable.
• Class — A character vector containing the class of the variable.
• Data — A scalar structure containing the following fields.

For numeric variables:

• Probabilities — A numeric vector containing the probabilities [0.0 .25 .50 .75 1.0] and
NaN (if any are present in the corresponding dataset variable).

 summary

35-7159



• Quantiles — A numeric vector containing the values that correspond to 'Probabilities' for
the corresponding dataset variable, and a count of NaNs (if any are present).

For logical variables:

• Values — The logical vector [true false].
• Counts — A numeric vector of counts for each logical value.

For categorical variables:

• Levels — A cell array containing the labels for each level of the corresponding dataset
variable.

• Counts — A numeric vector of counts for each level.

'Data' is empty if variable is not numeric, categorical, or logical. If a dataset variable has
more than one column, then the corresponding 'Quantiles' or 'Counts' field is a matrix or
an array.

Examples
Summarize Fisher's iris data:

load fisheriris
species = nominal(species);
data = dataset(species,meas);
summary(data)
species: [150x1 nominal]
  setosa   versicolor   virginica
      50           50          50
meas: [150x4 double]
  min       4.3000         2         1    0.1000 
  1st Q     5.1000    2.8000    1.6000    0.3000 
  median    5.8000         3    4.3500    1.3000 
  3rd Q     6.4000    3.3000    5.1000    1.8000 
  max       7.9000    4.4000    6.9000    2.5000

Summarize the data in hospital.mat:

load hospital
summary(hospital)

Dataset array created from the data file hospital.dat.

The first column of the file ("id") is used for observation
names.  Other columns ("sex" and "smoke") have been 
converted from their original coded values into categorical
and logical variables.  Two sets of columns ("sys" and 
"dia", "trial1" through "trial4") have been combined into 
single variables with multivariate observations.  Column 
headers have been replaced with more descriptive variable 
names.  Units have been added where appropriate.

LastName: [100x1 cell array of character vectors]
Sex: [100x1 nominal]
     Female      Male 
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         53        47 

Age: [100x1 double, Units = Yrs]
     min      1st Q      median      3rd Q      max
      25         32          39         44       50

Weight: [100x1 double, Units = Lbs]
     min      1st Q         median        3rd Q        max
     111      130.5000      142.5000      180.5000     202

Smoker: [100x1 logical]
     true      false 
       34         66 

BloodPressure: [100x2 double, Units = mm Hg]
Systolic/Diastolic
     min              109           68 
     1st Q       117.5000      77.5000 
     median           122      81.5000 
     3rd Q       127.5000           89 
     max              138           99 

Trials: [100x1 cell, Units = Counts]
From zero to four measurement trials performed

See Also
get | set | grpstats
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struct2dataset
(Not Recommended) Convert structure array to dataset array

Note The dataset data type is not recommended. To work with heterogeneous data, use the
MATLAB® table data type instead. See MATLAB table documentation for more information.

Syntax
ds = struct2dataset(S)
ds = struct2dataset(S,Name,Value)

Description
ds = struct2dataset(S) converts a structure array to a dataset array.

ds = struct2dataset(S,Name,Value) performs the conversion using additional options
specified by one or more Name,Value pair arguments.

Examples

Convert Scalar Structure Array to Dataset Array

Convert a scalar structure array to a dataset array using the default options.

Create a structure array to convert.

S.Name = {'CLARK';'BROWN';'MARTIN'};
S.Gender = {'M';'F';'M'};
S.SystolicBP = [124;122;130];
S.DiastolicBP = [93;80;92];
S

S = struct with fields:
           Name: {3x1 cell}
         Gender: {3x1 cell}
     SystolicBP: [3x1 double]
    DiastolicBP: [3x1 double]

The scalar structure array has four fields, each with three rows.

Convert the structure array to a dataset array.

ds = struct2dataset(S)

ds = 
    Name              Gender       SystolicBP    DiastolicBP
    {'CLARK' }        {'M'}        124           93         
    {'BROWN' }        {'F'}        122           80         
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    {'MARTIN'}        {'M'}        130           92         

The structure field names in S become the variable names in the output dataset array. The size of ds
is 3-by-4.

Convert Nonscalar Structure Array to Dataset Array

Convert a nonscalar structure array to a dataset array, using one of the structure fields for
observation names.

Create a nonscalar structure array to convert.

S(1,1).Name = 'CLARK';
S(1,1).Gender = 'M';
S(1,1).SystolicBP = 124;
S(1,1).DiastolicBP = 93;

S(2,1).Name = 'BROWN';
S(2,1).Gender = 'F';
S(2,1).SystolicBP = 122;
S(2,1).DiastolicBP = 80;

S(3,1).Name = 'MARTIN';
S(3,1).Gender = 'M';
S(3,1).SystolicBP = 130;
S(3,1).DiastolicBP = 92;

S

S=3×1 struct array with fields:
    Name
    Gender
    SystolicBP
    DiastolicBP

This is a 3-by-1 structure array with 4 fields.

Convert the structure array to a dataset array, using the Name field for observation names.

ds = struct2dataset(S,'ReadObsNames','Name')

ds = 
              Gender       SystolicBP    DiastolicBP
    CLARK     {'M'}        124           93         
    BROWN     {'F'}        122           80         
    MARTIN    {'M'}        130           92         

The size of ds is 3-by-3 because the structure field Name is used for observation names, and not as a
dataset array variable.

ds.Properties.DimNames
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ans = 1x2 cell
    {'Name'}    {'Variables'}

ds.Properties.ObsNames

ans = 3x1 cell
    {'CLARK' }
    {'BROWN' }
    {'MARTIN'}

Input Arguments
S — Input structure array
structure array

Input structure array to convert to a dataset array, specified as a scalar structure array with N fields,
each with M rows, or a nonscalar M-by-1 structure array with N fields.
Data Types: struct

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: 'ReadObsNames','myField' specifies that the structure field, myField, contains
observation names.

ReadObsNames — Name of structure field containing observation names for dataset array
false (default) | character vector | string scalar

Name of structure field containing observation names for the output dataset array, specified as the
comma-separated pair consisting of 'ReadObsNames' and a character vector or string scalar
containing a field name from the input structure array, S. When you specify a field name,
struct2dataset uses that field to create observation names, and sets ds.Properties.DimNames
equal to {ReadObsNames,'Variables'}.

For example, to specify that observation names are in the structure field, Names, use
Example: 'ReadObsNames','Names'

By default, or if ReadObsNames is equal to false, struct2dataset does not create observation
names unless you specify names using the name-value pair argument ObsNames.

ObsNames — Observation names for dataset array
string array | cell array of character vectors

Observation names for the output dataset array, specified as the comma-separated pair consisting of
'ObsNames' and a string array or cell array of character vectors containing observation names. The
names do not need to be valid MATLAB identifiers, but they must be unique.
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AsScalar — Indicator for how to treat scalar structure
false | true

Indicator for how to treat a scalar input structure array, specified as the comma-separated pair
consisting of 'AsScalar' and either true or false. The default value is true if S is a scalar
structure array, and false otherwise.

By default, struct2dataset converts a scalar structure array with N fields, each with M rows, into
an M-by-N dataset array.

If instead you set AsScalar equal to false for a scalar input structure array, then
struct2dataset converts S to a dataset array with N observations.

Output Arguments
ds — Output dataset array
dataset array

Output dataset array, returned by default with M observations and N variables.

• If S is a scalar structure array with N fields, each with M rows, then ds is an M-by-N dataset array.
• If S is a nonscalar M-by-1 structure array with N fields, then ds is an M-by-N dataset array.
• If S is a scalar structure array with N fields, each with M rows, and AsScalar is set equal to

false, then ds is a dataset array with N observations.

Version History
Introduced in R2012b

See Also
dataset | dataset2struct | cell2dataset

Topics
“Create a Dataset Array from Workspace Variables” on page 2-58
“Create a Dataset Array from a File” on page 2-63
“Dataset Arrays” on page 2-113
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surfht
Interactive contour plot

Syntax
surfht(z)
surfht(x,y,z)

Description
surfht(z) creates an interactive contour plot of the data in matrix z. surfht treats the values in z
as the height above the plane.

surfht(x,y,z) creates an interactive contour plot of the data in matrix z, using the x-axis values
contained in x and the y-axis values contained in y.

Examples

Create an Interactive Contour Plot

This example shows how to use surfht to create an interactive contour plot.

Create a grid of the (x,y) domain from (-2,-2) to (2,2) using meshgrid.

[x,y] = meshgrid(-2:0.2:2,-2:0.2:2);

Evaluate the function z(x,y) = x × exp(-x2 – y2) over this domain.

z = x.*exp(-x.^2 - y.^2);

Open an interactive contour plot. Since meshgrid creates a grid of the x and y values, open the plot
using the first row of x and the first column of y.

surfht(x(1,:),y(:,1),z)
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The figure shows a contour plot of the z values along the specified x- and y-axes.

Click the plot to evaluate z at the (x,y) coordinates indicated by the intersecting white lines.
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For example, at x = 0.71041 and y = 0.025723, the value of z is 0.41827.

Alternatively, enter values in the fields labeled X Value and Y Value to evaluate z at the specified
coordinates. For example, evaluate z at x = 0.5 and y = 1.
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The value of z is 0.1397.

Input Arguments
z — z-axis values for contour plot
numeric matrix

z-axis values for contour plot, specified as a numeric matrix.

surfht treats the values in z as the height above the plane. By default, the x-axis values of the plot
are the column indices of z, and the y-axis values of the plot are the row indices of z. To change the x-
and y-axis values, specify x and y, respectively.
Data Types: single | double

x — x-axis values for contour plot
column indices of z (default) | numeric vector

x-axis values for contour plot, specified as a numeric vector. The length of x must match the number
of columns in z.
Data Types: single | double
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y — y-axis values for contour plot
row indices of z (default) | numeric vector

y-axis values for contour plot, specified as a numeric vector. The length of y must match the number
of rows in z.
Data Types: single | double

Tips

• The intersection of the vertical and horizontal reference lines on the interactive plot defines the
current x value and y value.

• Drag the dotted white reference lines to watch the interpolated z value (at the top of the plot)
update simultaneously.

• Alternatively, obtain a specific interpolated z value by typing the x value and y value into editable
text fields on the x-axis and y-axis, respectively.

Version History
Introduced before R2006a

See Also
surf | contour | meshgrid
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survival
Calculate survival of Cox proportional hazards model

Syntax
s = survival(coxMdl)
s = survival(coxMdl,X)
s = survival(coxMdl,X,Stratification)
s = survival( ___ ,Name,Value)
[s,Tout] = survival( ___ )

Description
s = survival(coxMdl) estimates the baseline survival function of a Cox proportional hazards
model coxMdl. The survival function at time t is the estimated probability of survival until time t.
The term baseline refers to the survival function at the determined baseline of the predictors. This
value is stored in coxMdl.Baseline, and the default value is the mean of the data set used for
training.

s = survival(coxMdl,X) estimates the survival function when the predictors have the values in
X. In this case, s is a column for each row of X.

s = survival(coxMdl,X,Stratification) estimates the survival function for the given value of
the stratification variable Stratification. You must have one row in Stratification for each
row in X.

Note When you train coxMdl using stratification variables and pass predictor variables X, survival
also requires you to pass stratification variables.

s = survival( ___ ,Name,Value) specifies additional options using one or more name-value
arguments, using any of the input argument combinations in the previous syntaxes. For example,
survival(CoxMdl,"Time",T) computes the survival at times T.

[s,Tout] = survival( ___ ) also returns the times Tout at which each survival estimate is
calculated.

Examples

Calculate Survival

Perform a Cox proportional hazards regression on the lightbulb data set, which contains simulated
lifetimes of light bulbs. The first column of the light bulb data contains the lifetime (in hours) of two
different types of bulbs. The second column contains a binary variable indicating whether the bulb is
fluorescent or incandescent; 0 indicates the bulb is fluorescent, and 1 indicates it is incandescent.
The third column contains the censoring information, where 0 indicates the bulb was observed until
failure, and 1 indicates the observation was censored.
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Fit a Cox proportional hazards model for the lifetime of the light bulbs, accounting for censoring. The
predictor variable is the type of bulb.

load lightbulb
coxMdl = fitcox(lightbulb(:,2),lightbulb(:,1), ...
    'Censoring',lightbulb(:,3));

Calculate the baseline survival function as a function of time t, meaning the probability that a light
bulb fails after time t. By default, the baseline is calculated for the mean of the predictor, which in
this case is mean(lightbulb(:,2)) = 0.5. Return the times Tout at which the survival function is
calculated.

[s,Tout] = survival(coxMdl);

Plot the survival as a stairstep graph of time. (The times Tout are also in coxMdl.Hazard(:,1).)

hold on;
stairs(Tout,s,'b-')
xlabel 'Time \it t'
ylabel 'Probability of failure after time \it t'

Overlay the plot with the survival functions for fluorescent and incandescent bulbs.

s_fluorescent = survival(coxMdl,0);
s_incandescent = survival(coxMdl,1);
stairs(Tout,s_fluorescent,'r-')
stairs(Tout,s_incandescent,'k-')
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legend('Baseline','Fluorescent','Incandescent')
hold off

To create plots without first creating the survival data, use plotSurvival.

Survival for Stratified Model

Load the coxModel data. (This simulated data is generated in the example “Cox Proportional
Hazards Model Object” on page 15-39.) The model named coxMdl has three stratification levels (1, 2,
and 3) and a predictor X with three categorical values (1, 1/20, and 1/100).

load coxModel

Calculate the survival function for X = 1 at the three stratification levels.

c1 = categorical(1);
X = [c1;c1;c1];
stratification = [1;2;3];
s = survival(coxMdl,X,stratification);

Plot the three survival functions. First, find the times for the three stratification levels.

t1 = find(coxMdl.Hazard(:,3) == 1);
t1 = coxMdl.Hazard(t1,1);
t2 = find(coxMdl.Hazard(:,3) == 2);
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t2 = coxMdl.Hazard(t2,1);
t3 = find(coxMdl.Hazard(:,3) == 3);
t3 = coxMdl.Hazard(t3,1);

Plot the survival for the three levels. View the plot for times 1 through 30.

plot(t1,s{1},t2,s{2},t3,s{3})
xlim([1,30])
legend('Stratification Level 1','Stratification Level 2','Stratification Level 3','Location','northeast')
xlabel('Time t')
ylabel('Probability of Survival Past t')

Alternatively, evaluate the survival for times 1 through 30 by specifying the Time argument.

t = linspace(1,30,300);
st = survival(coxMdl,X,stratification,'Time',t);
figure
plot(t,st{1},t,st{2},t,st{3})
legend('Stratification Level 1','Stratification Level 2','Stratification Level 3','Location','northeast')
xlabel('Time t')
ylabel('Probability of Survival Past t')
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Input Arguments
coxMdl — Fitted Cox proportional hazards model
CoxModel object

Fitted Cox proportional hazards model, specified as a CoxModel object. Create coxMdl using
fitcox.

X — Predictors for model
mean of predictors used for training, but 0 for all categorical predictors (default) | array of predictors
of type used for training

Predictors for the model, specified as an array of predictors of the same type used for training
coxMdl. Each row of X represents one set of predictors.
Data Types: double | table | categorical

Stratification — Stratification level
variable or variables of type used for training

Stratification level, specified as a variable or variables of the same type used for training coxMdl.
Specify the same number of rows in Stratification as in X.
Data Types: single | double | logical | char | string | table | cell | categorical
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Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: survival(CoxMdl,Time=T)

ExtrapolationMethod — Extrapolation method for survival in out-of-range times
'nearest' (default) | 'linear' | 'next' | 'none' | 'previous'

Extrapolation method to compute the survival for out-of-range times, specified as one of the listed
values. A CoxModel object uses the cumulative baseline hazard, stored in CoxModel.Hazard, to
compute the baseline survival function in the survival or plotSurvival functions. For times
within the range (defined next), results are from linear interpolation of the baseline survival function.

For a nonstratified model, the range is [T1,T2], where T1 is (1 - eps) times the earliest training
time, and T2 is the latest training time. The ExtrapolationMethod for a time T gives the following
result:

• 'nearest' (default) — If T < T1, the result is for time T1. If T > T2, the result is for time T2.
• 'linear' — The result is a linear extrapolation from the nearest time in the range. Extrapolated

survival values are truncated to lie in [0,1]. In other words, if val is the returned survival value
and extrapval is the linear extrapolation, then
val = max(0, min(1,extrapval)).

• 'next' — If T < T1, the result is for time T1. If T > T2, the result is NaN.
• 'none' — If T < T1 or T > T2, the result is NaN.
• 'previous' — If T < T1, the result is NaN. If T > T2, the result is for time T2.

For each stratum in a stratified model, define the time range exactly as for a nonstratified model,
using the event times in that stratum. The extrapolated values of survival in each stratum use the
ExtrapolationMethod applied to the stratum range.
Example: 'next'
Data Types: char | string

Time — Times for survival estimates
coxMdl.Hazard(:,1) (default) | real vector

Times for survival estimates, specified as a real vector. survival sorts the specified times and
converts them to a column vector, if necessary. For an unstratified model and times in the range of
coxMdl.Hazard(:,1), the resulting values are linearly interpolated from times in the training data.
For Time values outside the fitting data range, the survival is extrapolated using the extrapolation
method specified in ExtrapolationMethod.

For stratified models, distinct time ranges for each stratum in coxMdl.Hazard(:,1) are separated
by 0s in coxMdl.Hazard(:,2). survival estimates the survival in each stratum using the same
procedure as for an unstratified model.
Example: 0:40
Data Types: double
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Output Arguments
s — Survival estimates
numeric column vector | cell array of numeric column vectors

Survival estimates, returned as a numeric column vector or a cell array of numeric column vectors.

• For a nonstratified model, s is a sorted numeric column vector of estimated probabilities.
• For a stratified model, s is a cell array of sorted numeric column vectors of the estimated

probabilities for each stratification level.

survival returns a column of survival estimates for each row of X.

Tout — Times for survival estimates
mdl.Hazard(:,1) (default) | numeric column vector | cell array of numeric column vectors

Times for survival estimates, returned as one of the following.

• For a nonstratified model, Tout is a sorted numeric column vector of times in the training set.
• For a stratified model, Tout is a cell array of sorted numeric column vectors of the training times

in the training set for each stratification level.

The coxMdl.Hazard(:,1) vector contains the times for both stratified and nonstratified models. For
stratified models, the times for different stratification levels are separated by a 0 entry.
Data Types: double | cell

Version History
Introduced in R2021a

See Also
plotSurvival | CoxModel | hazardratio | fitcox

Topics
“Cox Proportional Hazards Model Object” on page 15-39
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table2dataset
(Not Recommended) Convert table to dataset array

Note The dataset data type is not recommended. To work with heterogeneous data, use the
MATLAB® table data type instead. See MATLAB table documentation for more information.

Syntax
ds = table2dataset(t)

Description
ds = table2dataset(t) converts a table to a dataset array.

Examples

Convert a Table to a Dataset Array

Load the sample data, which contains nutritional information for 77 cereals.

load cereal;

Create a table containing the calorie, protein, fat, and name data for the first five cereals. Label the
variables.

Calories = Calories(1:5);
Protein = Protein(1:5);
Fat = Fat(1:5);
Name = Name(1:5);

cereal = table(Calories,Protein,Fat,'RowNames',Name)

cereal=5×3 table
                                 Calories    Protein    Fat
                                 ________    _______    ___

    100% Bran                       70          4        1 
    100% Natural Bran              120          3        5 
    All-Bran                        70          4        1 
    All-Bran with Extra Fiber       50          4        0 
    Almond Delight                 110          2        2 

Convert the table to a dataset array.

ds = table2dataset(cereal)

ds = 
                                 Calories    Protein    Fat
    100% Bran                     70         4          1  
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    100% Natural Bran            120         3          5  
    All-Bran                      70         4          1  
    All-Bran with Extra Fiber     50         4          0  
    Almond Delight               110         2          2  

Input Arguments
t — Input table
table

Input table to convert to a dataset array, specified as a table. Each variable in t becomes a variable in
the output dataset array ds.
Data Types: table

Output Arguments
ds — Output dataset array
dataset array

Output dataset array, returned as a dataset array containing the variables from the input table t.

Version History
Introduced in R2013b

See Also
table | dataset

Topics
“Dataset Arrays” on page 2-113
“Tables”
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tabulate
Frequency table

Syntax
tabulate(x)
tbl = tabulate(x)

Description
tabulate(x) displays a frequency table of the data in the vector x. For each unique value in x, the
tabulate function shows the number of instances and percentage of that value in x. See tbl.

tbl = tabulate(x) returns the frequency table tbl as a numeric matrix when x is numeric and as
a cell array otherwise.

Examples

Tabulate Data Vector

Create a frequency table for a vector of data.

Load the patients data set. Display the first five entries of the Gender variable. Each value
indicates the gender of a patient.

load patients
Gender(1:5)

ans = 5x1 cell
    {'Male'  }
    {'Male'  }
    {'Female'}
    {'Female'}
    {'Female'}

Generate a frequency table that shows the number and percentage of Male and Female patients in
the data set.

tabulate(Gender)

   Value    Count   Percent
    Male       47     47.00%
  Female       53     53.00%

Tabulate Positive Integer Vector

Create a frequency table for a vector of positive integers. By default, if a vector x contains only
positive integers, then tabulate returns 0 counts for the integers between 1 and max(x) that do not
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appear in x. To avoid this behavior, convert the vector x to a categorical vector before calling
tabulate.

Load the patients data set. Display the first five entries of the Height variable. Each value
indicates the height, in inches, of a patient.

load patients
Height(1:5)

ans = 5×1

    71
    69
    64
    67
    64

Create a frequency table that shows, in its second and third columns, the number and percentage of
patients in the data set that have a particular height. Display the first five entries and the last five
entries of the matrix that tabulate returns. tbl contains one row for each height between 1 and 72
inches, where 72 is the maximum height value in Height.

tbl = tabulate(Height);
first = tbl(1:5,:)

first = 5×3

     1     0     0
     2     0     0
     3     0     0
     4     0     0
     5     0     0

last = tbl(end-4:end,:)

last = 5×3

    68    15    15
    69     8     8
    70    11    11
    71    10    10
    72     4     4

Generate a frequency table that shows Count and Percent values only for heights that appear in the
Height variable. Convert Height to a categorical variable, and then call the tabulate function.

newHeight = categorical(Height);
tabulate(newHeight)

  Value    Count   Percent
     60        1      1.00%
     62        3      3.00%
     63        7      7.00%
     64       12     12.00%
     65        8      8.00%
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     66       15     15.00%
     67        6      6.00%
     68       15     15.00%
     69        8      8.00%
     70       11     11.00%
     71       10     10.00%
     72        4      4.00%

Create Table Array from Tabulated Data

Create a frequency table from a character array by using tabulate. Convert the resulting cell array
to a table array, and visualize the results.

Load the carsmall data set. Tabulate the data in the Origin variable, which shows the country of
origin of each car in the data set. Convert the resulting cell array tbl to a table array t. Change the
Value column to a categorical vector.

load carsmall
tbl = tabulate(Origin);
t = cell2table(tbl,'VariableNames', ...
    {'Value','Count','Percent'});
t.Value = categorical(t.Value)

t=6×3 table
     Value     Count    Percent
    _______    _____    _______

    USA         69        69   
    France       4         4   
    Japan       15        15   
    Germany      9         9   
    Sweden       2         2   
    Italy        1         1   

Create a bar graph from the frequency table.

bar(t.Value,t.Count)
xlabel('Country of Origin')
ylabel('Number of Cars')
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Tabulate Data with Missing Values

Create a frequency table from a numeric vector with NaN values.

Load the carsmall data set. The MPG variable contains the miles per gallon measurement of 100
cars. For six of the cars, the MPG value is missing (NaN).

load carsmall
numcars = length(MPG)

numcars = 100

nanindex = isnan(MPG);
numMissingMPG = length(MPG(nanindex))

numMissingMPG = 6

Create a frequency table using MPG. Convert the matrix output from tabulate to a table, and label
the table columns.

tbl = tabulate(MPG);
t = array2table(tbl,'VariableNames', ...
    {'Value','Count','Percent'})

t=37×3 table
    Value    Count    Percent
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    _____    _____    _______

       9       1      1.0638 
      10       2      2.1277 
      11       1      1.0638 
      13       4      4.2553 
      14       5      5.3191 
    14.5       1      1.0638 
      15       5      5.3191 
    15.5       1      1.0638 
      16       2      2.1277 
    16.5       2      2.1277 
      17       1      1.0638 
    17.5       2      2.1277 
      18       4      4.2553 
    18.5       1      1.0638 
      19       2      2.1277 
      20       2      2.1277 
      ⋮

The frequency table displays data only for the 94 cars with numeric MPG values. tabulate calculates
the percentage of each MPG value in this subset of cars, not the entire set of 100 cars.

tnumcars = sum(t.Count)

tnumcars = 94

Input Arguments
x — Input data
numeric vector | logical vector | categorical vector | character array | string array | cell array of
character vectors

Input data, specified as a numeric vector, logical vector, categorical vector, character array, string
array, or cell array of character vectors.

• If x is a numeric vector, then tbl is a numeric matrix.
• If x is a logical vector, categorical vector, character array, string array, or cell array of character

vectors, then tbl is a cell array.

Note If the elements of x are positive integers, then the frequency table includes 0 counts for the
integers between 1 and max(x) that do not appear in x. For an example, see “Tabulate Positive
Integer Vector” on page 35-7180.

Data Types: single | double | logical | categorical | char | string | cell

Output Arguments
tbl — Frequency table
numeric matrix | cell array

Frequency table, returned as a numeric matrix or cell array. tbl includes the following information.
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Column Description
1st column (Value) Unique values of x
2nd column (Count) Number of instances of each value
3rd column (Percent) Percentage of each value

Version History
Introduced before R2006a

Extended Capabilities
Tall Arrays
Calculate with arrays that have more rows than fit in memory.

This function fully supports tall arrays. For more information, see “Tall Arrays”.

Thread-Based Environment
Run code in the background using MATLAB® backgroundPool or accelerate code with Parallel
Computing Toolbox™ ThreadPool.

This function fully supports thread-based environments. For more information, see “Run MATLAB
Functions in Thread-Based Environment”.

See Also
pareto | histogram | bar

Topics
“Grouping Variables” on page 2-46
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tblread
Read tabular data from file

Syntax
[data,varnames,casenames] = tblread
[data,varnames,casenames] = tblread(filename)
[data,varnames,casenames] = tblread(filename,delimiter)

Description
[data,varnames,casenames] = tblread displays the File Open dialog box for interactive
selection of a tabular data file. The file format has variable names in the first row, case names in the
first column and data starting in the (2, 2) position. Outputs are:

• data — Numeric matrix with a value for each variable-case pair
• varnames — Character matrix containing the variable names in the first row of the file
• casenames — Character matrix containing the names of each case in the first column of the file

[data,varnames,casenames] = tblread(filename) allows command line specification of the
name of a file in the current folder, or the complete path name of any file, using the character vector
or string scalar filename.

[data,varnames,casenames] = tblread(filename,delimiter) reads from the file using
delimiter as the delimiting character. Accepted values for delimiter are:

• ' '  or 'space'
• '\t' or 'tab'
• ','  or 'comma'
• ';'  or 'semi'
• '|'  or 'bar'

The default value of delimiter is 'space'.

Examples
[data,varnames,casenames] = tblread('sat.dat')
data =
  470  530
  520  480

varnames =
Male 
Female

casenames =
Verbal       
Quantitative    
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Version History
Introduced before R2006a

See Also
tblwrite | tdfread | caseread | readtable
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tblwrite
Write tabular data to file

Syntax
tblwrite(data,varnames,casenames)
tblwrite(data,varnames,casenames,filename)
tblwrite(data,varnames,casenames,filename,delimiter)

Description
tblwrite(data,varnames,casenames) displays the File Open dialog box for interactive
specification of the tabular data output file. The file format has variable names in the first row, case
names in the first column and data starting in the (2,2) position.

varnames is a character matrix or string array containing the variable names. casenames is a
character matrix or string array containing the names of each case in the first column. data is a
character matrix or string array with a value for each variable-case pair.

tblwrite(data,varnames,casenames,filename) specifies a file in the current folder, or the
complete path name of any file in the character vector or string scalar filename.

tblwrite(data,varnames,casenames,filename,delimiter) writes to the file using
delimiter as the delimiting character. The following table lists the accepted values for delimiter
and their equivalent names.

Value Name
' ' 'space'
'\t' 'tab'
',' 'comma'
';' 'semi'
'|' 'bar'

The default value of delimiter is 'space'.

Examples
Continuing the example from tblread:

tblwrite(data,varnames,casenames,'sattest.dat')
type sattest.dat
                     Male  Female
Verbal               470     530
Quantitative        520     480

Version History
Introduced before R2006a
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See Also
casewrite | tblread | writetable
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tcdf
Student's t cumulative distribution function

Syntax
p = tcdf(x,nu)

p = tcdf(x,nu,'upper')

Description
p = tcdf(x,nu) returns the cumulative distribution function (cdf) of the Student's t distribution
with nu degrees of freedom, evaluated at the values in x.

p = tcdf(x,nu,'upper') returns the complement of the cdf, evaluated at the values in x with nu
degrees of freedom, using an algorithm that more accurately computes the extreme upper-tail
probabilities than subtracting the lower tail value from 1.

Examples

Compute Student's t Distribution cdf

Generate a random sample of size 100 from a normally distributed population with mean 1 and
standard deviation 2.

rng default   % For reproducibility
mu = 1;
n = 100;
sigma = 2;
x = normrnd(mu,sigma,n,1);

Compute the sample mean, sample standard deviation, and t-score of the sample.

xbar = mean(x);
s = std(x);
t = (xbar-mu)/(s/sqrt(n))

t = 1.0589

Use tcdf to compute the probability of a sample of size 100 having a larger t-score than the t-score
of the sample.

p = 1-tcdf(t,n-1)

p = 0.1461

This probability is the same as the p value returned by a t test with null hypothesis that the sample
comes from a normal population with mean 1 and alternative hypothesis that the mean is greater
than 1.
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[h,ptest] = ttest(x,mu,0.05,'right');
ptest

ptest = 0.1461

Compute Complementary cdf (Tail Distribution)

Determine the probability that an observation from the Student's t distribution with degrees of
freedom 99 falls on the interval [10 Inf].

p1 = 1 - tcdf(10,99)

p1 = 0

tcdf(10,99) is nearly 1, so p1 becomes 0. Specify 'upper' so that tcdf computes the extreme
upper-tail probabilities more accurately.

p2 = tcdf(10,99,'upper')

p2 = 5.4699e-17

You can also use 'upper' to compute a right-tailed p-value.

Input Arguments
x — Values at which to evaluate cdf
scalar value | array of scalar values

Values at which to evaluate the cdf, specified as a scalar value or an array of scalar values.

• To evaluate the cdf at multiple values, specify x using an array.
• To evaluate the cdfs of multiple distributions, specify nu using an array.

If either or both of the input arguments x and nu are arrays, then the array sizes must be the same.
In this case, tcdf expands each scalar input into a constant array of the same size as the array
inputs. Each element in p is the cdf value of the distribution specified by the corresponding element
in nu, evaluated at the corresponding element in x.
Example: [-1,0,3,4]
Data Types: single | double

nu — Degrees of freedom
positive scalar value | array of positive scalar values

Degrees of freedom for the Student's t distribution, specified as a positive scalar value or an array of
positive scalar values.

• To evaluate the cdf at multiple values, specify x using an array.
• To evaluate the cdfs of multiple distributions, specify nu using an array.

If either or both of the input arguments x and nu are arrays, then the array sizes must be the same.
In this case, tcdf expands each scalar input into a constant array of the same size as the array
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inputs. Each element in p is the cdf value of the distribution specified by the corresponding element
in nu, evaluated at the corresponding element in x.
Example: [9,19,49,99]
Data Types: single | double

Output Arguments
p — cdf values
scalar value | array of scalar values

cdf values evaluated at the values in x, returned as a scalar value or an array of scalar values. p is the
same size as x and nu after any necessary scalar expansion. Each element in p is the cdf value of the
distribution specified by the corresponding element in nu, evaluated at the corresponding element in
x.

More About
Student’s t cdf

The Student's t distribution is a one-parameter family of curves. The parameter ν is the degrees of
freedom. The Student's t distribution has zero mean.

The cdf of the Student’s t distribution is

p = F(x ν) =∫−∞
x Γ ν + 1

2

Γ ν
2

1
νπ

1

1 + t2
ν

ν + 1
2

dt,

where ν is the degrees of freedom and Γ( · ) is the Gamma function. The result p is the probability
that a single observation from the t distribution with ν degrees of freedom falls in the interval [–∞, x].

For more information, see “Student's t Distribution” on page B-156.

Alternative Functionality
• tcdf is a function specific to the Student's t distribution. Statistics and Machine Learning Toolbox

also offers the generic function cdf, which supports various probability distributions. To use cdf,
specify the probability distribution name and its parameters. Note that the distribution-specific
function tcdf is faster than the generic function cdf.

• Use the Probability Distribution Function app to create an interactive plot of the cumulative
distribution function (cdf) or probability density function (pdf) for a probability distribution.

Version History
Introduced before R2006a
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Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

This function fully supports GPU arrays. For more information, see “Run MATLAB Functions on a
GPU” (Parallel Computing Toolbox).

See Also
cdf | tpdf | tinv | tstat | trnd | ttest | ttest2

Topics
“Student's t Distribution” on page B-156
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tdfread
Read tab-delimited file

Syntax
tdfread
tdfread(filename)
tdfread(filename,delimiter)

s = tdfread( ___ )

Description
tdfread opens the Select File to Open dialog box for interactive selection of a data file, and reads
the data from the file you select. tdfread can read data from tab-delimited text files
with .txt, .dat, or .csv file extensions.

Select a file that has variable names in the first row and values separated by tabs in the remaining
rows. tdfread creates a variable in the workspace for each column of the file, and names each
variable according to its first row value.

• If a column contains only numeric data in all rows except the first, then tdfread creates a
double variable.

• Otherwise, tdfread creates a char variable.

After importing all values, tdfread displays information about the imported variables, such as their
size, bytes, and class.

tdfread(filename) creates variables from the data in filename, which is either the name of a file
in the current folder or the complete path name of a file.

tdfread(filename,delimiter) indicates that the character specified by delimiter separates
values in the file.

s = tdfread( ___ ) returns a structure s in which each field contains a variable. Specify any of the
input argument combinations in the previous syntaxes.

Examples

Create Workspace Variables from Text File

Display the contents of the sat2.dat file. Note that the first row of the file contains the variable
names.

type sat2.dat

Test,Gender,Score
Verbal,Male,470
Verbal,Female,530

35 Functions

35-7194



Quantitative,Male,520
Quantitative,Female,480

In the workspace, create the variables Gender, Score, and Test from the columns of the file.
Because commas separate the values in the file, specify ',' as the delimiter.

tdfread('sat2.dat',',')

  Name        Size            Bytes  Class     Attributes

  Gender      4x6                48  char                
  Score       4x1                32  double              
  Test        4x12               96  char                

Input Arguments
filename — Name of file to read
character vector | string scalar

Name of the file to read, specified as a character vector or string scalar.

Depending on the location of the file, filename has one of these forms.

Location of File Form
Current folder or folder on the MATLAB path Specify the name of the file in filename.

Example: 'myTextFile.txt'
Folder that is not the current folder or a folder on
the MATLAB path

Specify the full or relative path name in
filename.

Example: 'C:\myFolder\myTextFile.txt'

Example: 'sat2.dat'
Data Types: char | string

delimiter — Delimiter character
'\t' or 'tab' (default) | 'bar' | 'comma' | 'semi' | 'space' | ...

Delimiter character, specified as one of the values in this table.

Value Description
'|'

'bar'

Vertical bar

','

'comma'

Comma

';'

'semi'

Semicolon
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Value Description
' '

'space'

Space

'\t'

'tab'

Tab

Example: ','
Data Types: char | string

Alternative Functionality
Consider using the readtable, readmatrix, or readcell MATLAB functions to import data. These
functions provide more flexible data importing options than tdfread.

Version History
Introduced before R2006a

See Also
readtable | readmatrix | readcell | textscan | Import Tool
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templateDiscriminant
Discriminant analysis classifier template

Syntax
t = templateDiscriminant()
t = templateDiscriminant(Name,Value)

Description
t = templateDiscriminant() returns a discriminant analysis learner template suitable for
training ensembles or error-correcting output code (ECOC) multiclass models.

If you specify a default template, then the software uses default values for all input arguments during
training.

Specify t as a learner in fitcensemble or fitcecoc.

t = templateDiscriminant(Name,Value) creates a template with additional options specified
by one or more name-value pair arguments.

For example, you can specify the discriminant type or the regularization parameter.

If you display t in the Command Window, then all options appear empty ([]), except those that you
specify using name-value pair arguments. During training, the software uses default values for empty
options.

Examples

Create a Discriminant Analysis Template for Ensemble Learning

Create a nondefault discriminant analysis template for use in fitcensemble.

Load Fisher's iris data set.

load fisheriris

Create a template for pseudolinear discriminant analysis.

t = templateDiscriminant('DiscrimType','pseudoLinear')

t = 
Fit template for classification Discriminant.

    DiscrimType: 'pseudoLinear'
          Gamma: []
          Delta: []
     FillCoeffs: []
     SaveMemory: []
        Version: 1
         Method: 'Discriminant'
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           Type: 'classification'

All properties of the template object are empty except for DiscrimType, Method, and Type. When
trained on, the software fills in the empty properties with their respective default values.

Specify t as a weak learner for a classification ensemble.

Mdl = fitcensemble(meas,species,'Method','Subspace','Learners',t);

Display the in-sample (resubstitution) misclassification error.

L = resubLoss(Mdl)

L = 0.0400

Input Arguments
Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: 'DiscrimType','pseudoLinear','SaveMemory','on' specifies a template for
pseudolinear discriminant analysis that does not store the full covariance matrix.

Delta — Linear coefficient threshold
0 (default) | nonnegative scalar value

Linear coefficient threshold, specified as the comma-separated pair consisting of 'Delta' and a
nonnegative scalar value. If a coefficient of Mdl has magnitude smaller than Delta, Mdl sets this
coefficient to 0, and you can eliminate the corresponding predictor from the model. Set Delta to a
higher value to eliminate more predictors.

Delta must be 0 for quadratic discriminant models.
Data Types: single | double

DiscrimType — Discriminant type
'linear' (default) | 'quadratic' | 'diaglinear' | 'diagquadratic' | 'pseudolinear' |
'pseudoquadratic'

Discriminant type, specified as the comma-separated pair consisting of 'DiscrimType' and a
character vector or string scalar in this table.
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Value Description Predictor Covariance
Treatment

'linear' Regularized linear discriminant
analysis (LDA)

• All classes have the same
covariance matrix.

• Σ γ = 1− γ Σ + γdiag Σ .

Σ  is the empirical, pooled
covariance matrix and γ is
the amount of regularization.

'diaglinear' LDA All classes have the same,
diagonal covariance matrix.

'pseudolinear' LDA All classes have the same
covariance matrix. The software
inverts the covariance matrix
using the pseudo inverse.

'quadratic' Quadratic discriminant analysis
(QDA)

The covariance matrices can
vary among classes.

'diagquadratic' QDA The covariance matrices are
diagonal and can vary among
classes.

'pseudoquadratic' QDA The covariance matrices can
vary among classes. The
software inverts the covariance
matrix using the pseudo inverse.

Note To use regularization, you must specify 'linear'. To specify the amount of regularization, use
the Gamma name-value pair argument.

Example: 'DiscrimType','quadratic'

FillCoeffs — Coeffs property flag
'on' | 'off'

Coeffs property flag, specified as the comma-separated pair consisting of 'FillCoeffs' and 'on'
or 'off'. Setting the flag to 'on' populates the Coeffs property in the classifier object. This can be
computationally intensive, especially when cross-validating. The default is 'on', unless you specify a
cross-validation name-value pair, in which case the flag is set to 'off' by default.
Example: 'FillCoeffs','off'

Gamma — Amount of regularization
scalar value in the interval [0,1]

Amount of regularization to apply when estimating the covariance matrix of the predictors, specified
as the comma-separated pair consisting of 'Gamma' and a scalar value in the interval [0,1]. Gamma
provides finer control over the covariance matrix structure than DiscrimType.

• If you specify 0, then the software does not use regularization to adjust the covariance matrix.
That is, the software estimates and uses the unrestricted, empirical covariance matrix.
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• For linear discriminant analysis, if the empirical covariance matrix is singular, then the
software automatically applies the minimal regularization required to invert the covariance
matrix. You can display the chosen regularization amount by entering Mdl.Gamma at the
command line.

• For quadratic discriminant analysis, if at least one class has an empirical covariance matrix
that is singular, then the software throws an error.

• If you specify a value in the interval (0,1), then you must implement linear discriminant analysis,
otherwise the software throws an error. Consequently, the software sets DiscrimType to
'linear'.

• If you specify 1, then the software uses maximum regularization for covariance matrix estimation.
That is, the software restricts the covariance matrix to be diagonal. Alternatively, you can set
DiscrimType to 'diagLinear' or 'diagQuadratic' for diagonal covariance matrices.

Example: 'Gamma',1
Data Types: single | double

SaveMemory — Flag to save covariance matrix
'off' (default) | 'on'

Flag to save covariance matrix, specified as the comma-separated pair consisting of 'SaveMemory'
and either 'on' or 'off'. If you specify 'on', then fitcdiscr does not store the full covariance
matrix, but instead stores enough information to compute the matrix. The predict method computes
the full covariance matrix for prediction, and does not store the matrix. If you specify 'off', then
fitcdiscr computes and stores the full covariance matrix in Mdl.

Specify SaveMemory as 'on' when the input matrix contains thousands of predictors.
Example: 'SaveMemory','on'

Output Arguments
t — Discriminant analysis classification template
template object

Discriminant analysis classification template suitable for training ensembles or error-correcting
output code (ECOC) multiclass models, returned as a template object. Pass t to fitcensemble or
fitcecoc to specify how to create the discriminant analysis classifier for the ensemble or ECOC
model, respectively.

If you display t to the Command Window, then all unspecified options appear empty ([]). However,
the software replaces empty options with their corresponding default values during training.

Version History
Introduced in R2014a

See Also
ClassificationDiscriminant | fitcensemble | predict | fitcecoc
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templateECOC
Error-correcting output codes learner template

Syntax
t = templateECOC()
t = templateECOC(Name,Value)

Description
t = templateECOC() returns an error-correcting output codes (ECOC) classification learner
template.

If you specify a default template, then the software uses default values for all input arguments during
training.

t = templateECOC(Name,Value) returns a template with additional options specified by one or
more name-value pair arguments.

For example, you can specify a coding design, whether to fit posterior probabilities, or the types of
binary learners.

If you display t in the Command Window, then all options appear empty ([]), except those that you
specify using name-value pair arguments. During training, the software uses default values for empty
options.

Examples

Create a Default ECOC Classification Learner Template

Use templateECOC to create a default ECOC template.

t = templateECOC()

t = 
Fit template for classification ECOC.

    BinaryLearners: ''
            Coding: ''
      FitPosterior: []
           Options: []
    VerbosityLevel: []
     NumConcurrent: []
           Version: 1
            Method: 'ECOC'
              Type: 'classification'

All properties of the template object are empty except for Method and Type. When you pass t to
testckfold, the software fills in the empty properties with their respective default values. For
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example, the software fills the BinaryLearners property with 'SVM'. For details on other default
values, see fitcecoc.

t is a plan for an ECOC learner. When you create it, no computation occurs. You can pass t to
testckfold to specify a plan for an ECOC classification model to statistically compare with another
model.

Statistically Compare Performance of Two ECOC Classification Models

One way to select predictors or features is to train two models where one that uses a subset of the
predictors that trained the other. Statistically compare the predictive performances of the models. If
there is sufficient evidence that model trained on fewer predictors performs better than the model
trained using more of the predictors, then you can proceed with a more efficient model.

Load Fisher's iris data set. Plot all 2-dimensional combinations of predictors.

load fisheriris
d = size(meas,2); % Number of predictors
pairs = nchoosek(1:d,2)

pairs = 6×2

     1     2
     1     3
     1     4
     2     3
     2     4
     3     4

for j = 1:size(pairs,1)
    subplot(3,2,j)
    gscatter(meas(:,pairs(j,1)),meas(:,pairs(j,2)),species)
    xlabel(sprintf('meas(:,%d)',pairs(j,1)))
    ylabel(sprintf('meas(:,%d)',pairs(j,2)))
    legend off
end
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Based on the scatterplot, meas(:,3) and meas(:,4) seem like they separate the groups well.

Create an ECOC template. Specify to use a one-versus-all coding design.

t = templateECOC('Coding','onevsall');

By default, the ECOC model uses linear SVM binary learners. You can choose other, supported
algorithms by specifying them using the 'Learners' name-value pair argument.

Test whether an ECOC model that is just trained using predictors 3 and 4 performs at most as well as
an ECOC model that is trained using all predictors. Rejecting this null hypothesis means that the
ECOC model trained using predictors 3 and 4 performs better than the ECOC model trained using all
predictors. Suppose C1 represents the classification error of the ECOC model trained using predictors
3 and 4 and C2 represents the classification error of the ECOC model trained using all predictors,
then the test is:

H0:C1 ≥ C2
H1:C1 < C2

By default, testckfold conducts a 5-by-2 k-fold F test, which is not appropriate as a one-tailed test.
Specify to conduct a 5-by-2 k-fold t test.

rng(1); % For reproducibility
[h,pValue] = testckfold(t,t,meas(:,pairs(6,:)),meas,species,...
    'Alternative','greater','Test','5x2t')
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h = logical
   0

pValue = 0.8940

The h = 0 indicates that there is not enough evidence to suggest that the model trained using
predictors 3 and 4 is more accurate than the model trained using all predictors.

Input Arguments
Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: 'Coding','ternarycomplete','FitPosterior',true,'Learners','tree'
specifies a ternary complete coding design, to transform scores to posterior probabilities, and to grow
classification trees for all binary learners.

Coding — Coding design
'onevsone' (default) | 'allpairs' | 'binarycomplete' | 'denserandom' | 'onevsall' |
'ordinal' | 'sparserandom' | 'ternarycomplete' | numeric matrix

Coding design name, specified as the comma-separated pair consisting of 'Coding' and a numeric
matrix or a value in this table.

Value Number of Binary Learners Description
'allpairs' and 'onevsone' K(K – 1)/2 For each binary learner, one

class is positive, another is
negative, and the software
ignores the rest. This design
exhausts all combinations of
class pair assignments.

'binarycomplete' 2(K − 1)− 1 This design partitions the
classes into all binary
combinations, and does not
ignore any classes. For each
binary learner, all class
assignments are –1 and 1 with
at least one positive class and
one negative class in the
assignment.
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Value Number of Binary Learners Description
'denserandom' Random, but approximately 10

log2K
For each binary learner, the
software randomly assigns
classes into positive or negative
classes, with at least one of
each type. For more details, see
“Random Coding Design
Matrices” on page 35-7208.

'onevsall' K For each binary learner, one
class is positive and the rest are
negative. This design exhausts
all combinations of positive
class assignments.

'ordinal' K – 1 For the first binary learner, the
first class is negative and the
rest are positive. For the second
binary learner, the first two
classes are negative and the
rest are positive, and so on.

'sparserandom' Random, but approximately 15
log2K

For each binary learner, the
software randomly assigns
classes as positive or negative
with probability 0.25 for each,
and ignores classes with
probability 0.5. For more
details, see “Random Coding
Design Matrices” on page 35-
7208.

'ternarycomplete' 3K − 2(K + 1) + 1 /2 This design partitions the
classes into all ternary
combinations. All class
assignments are 0, –1, and 1
with at least one positive class
and one negative class in each
assignment.

You can also specify a coding design using a custom coding matrix, which is a K-by-L matrix. Each
row corresponds to a class and each column corresponds to a binary learner. The class order (rows)
corresponds to the order in ClassNames. Create the matrix by following these guidelines:

• Every element of the custom coding matrix must be –1, 0, or 1, and the value must correspond to
a dichotomous class assignment. Consider Coding(i,j), the class that learner j assigns to
observations in class i.

Value Dichotomous Class Assignment
–1 Learner j assigns observations in class i to a negative class.
0 Before training, learner j removes observations in class i

from the data set.
1 Learner j assigns observations in class i to a positive class.
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• Every column must contain at least one –1 and one 1.
• For all column indices i,j where i ≠ j, Coding(:,i) cannot equal Coding(:,j), and

Coding(:,i) cannot equal –Coding(:,j).
• All rows of the custom coding matrix must be different.

For more details on the form of custom coding design matrices, see “Custom Coding Design
Matrices” on page 35-7208.
Example: 'Coding','ternarycomplete'
Data Types: char | string | double | single | int16 | int32 | int64 | int8

FitPosterior — Flag indicating whether to transform scores to posterior probabilities
false or 0 (default) | true or 1

Flag indicating whether to transform scores to posterior probabilities, specified as the comma-
separated pair consisting of 'FitPosterior' and a true (1) or false (0).

If FitPosterior is true, then the software transforms binary-learner classification scores to
posterior probabilities. You can obtain posterior probabilities by using kfoldPredict, predict, or
resubPredict.

fitcecoc does not support fitting posterior probabilities if:

• The ensemble method is AdaBoostM2, LPBoost, RUSBoost, RobustBoost, or TotalBoost.
• The binary learners (Learners) are linear or kernel classification models that implement SVM. To

obtain posterior probabilities for linear or kernel classification models, implement logistic
regression instead.

Example: 'FitPosterior',true
Data Types: logical

Learners — Binary learner templates
'svm' (default) | 'discriminant' | 'kernel' | 'knn' | 'linear' | 'naivebayes' | 'tree' |
template object | cell vector of template objects

Binary learner templates, specified as the comma-separated pair consisting of 'Learners' and a
character vector, string scalar, template object, or cell vector of template objects. Specifically, you can
specify binary classifiers such as SVM, and the ensembles that use GentleBoost, LogitBoost, and
RobustBoost, to solve multiclass problems. However, fitcecoc also supports multiclass models as
binary classifiers.

• If Learners is a character vector or string scalar, then the software trains each binary learner
using the default values of the specified algorithm. This table summarizes the available
algorithms.

Value Description
'discriminant' Discriminant analysis. For default options, see

templateDiscriminant.
'kernel' Kernel classification model. For default

options, see templateKernel.
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Value Description
'knn' k-nearest neighbors. For default options, see

templateKNN.
'linear' Linear classification model. For default

options, see templateLinear.
'naivebayes' Naive Bayes. For default options, see

templateNaiveBayes.
'svm' SVM. For default options, see templateSVM.
'tree' Classification trees. For default options, see

templateTree.

• If Learners is a template object, then each binary learner trains according to the stored options.
You can create a template object using:

• templateDiscriminant, for discriminant analysis.
• templateEnsemble, for ensemble learning. You must at least specify the learning method

(Method), the number of learners (NLearn), and the type of learner (Learners). You cannot
use the AdaBoostM2 ensemble method for binary learning.

• templateKernel, for kernel classification.
• templateKNN, for k-nearest neighbors.
• templateLinear, for linear classification.
• templateNaiveBayes, for naive Bayes.
• templateSVM, for SVM.
• templateTree, for classification trees.

• If Learners is a cell vector of template objects, then:

• Cell j corresponds to binary learner j (in other words, column j of the coding design matrix),
and the cell vector must have length L. L is the number of columns in the coding design matrix.
For details, see Coding.

• To use one of the built-in loss functions for prediction, then all binary learners must return a
score in the same range. For example, you cannot include default SVM binary learners with
default naive Bayes binary learners. The former returns a score in the range (-∞,∞), and the
latter returns a posterior probability as a score. Otherwise, you must provide a custom loss as
a function handle to functions such as predict and loss.

• You cannot specify linear classification model learner templates with any other template.
• Similarly, you cannot specify kernel classification model learner templates with any other

template.

By default, the software trains learners using default SVM templates.
Example: 'Learners','tree'

Output Arguments
t — ECOC classification template
template object
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ECOC classification template, returned as a template object. Pass t to testckfold to specify how to
create an ECOC classifier whose predictive performance you want to compare with another classifier.

If you display t to the Command Window, then all, unspecified options appear empty ([]). However,
the software replaces empty options with their corresponding default values during training.

Algorithms
Custom Coding Design Matrices

Custom coding matrices must have a certain form. The software validates a custom coding matrix by
ensuring:

• Every element is –1, 0, or 1.
• Every column contains as least one –1 and one 1.
• For all distinct column vectors u and v, u ≠ v and u ≠ –v.
• All row vectors are unique.
• The matrix can separate any two classes. That is, you can move from any row to any other row

following these rules:

• Move vertically from 1 to –1 or –1 to 1.
• Move horizontally from a nonzero element to another nonzero element.
• Use a column of the matrix for a vertical move only once.

If it is not possible to move from row i to row j using these rules, then classes i and j cannot be
separated by the design. For example, in the coding design

1 0
−1 0
0 1
0 −1

classes 1 and 2 cannot be separated from classes 3 and 4 (that is, you cannot move horizontally
from –1 in row 2 to column 2 because that position contains a 0). Therefore, the software rejects
this coding design.

Random Coding Design Matrices

For a given number of classes K, the software generates random coding design matrices as follows.

1 The software generates one of these matrices:

a Dense random — The software assigns 1 or –1 with equal probability to each element of the
K-by-Ld coding design matrix, where Ld ≈ 10log2K .

b Sparse random — The software assigns 1 to each element of the K-by-Ls coding design
matrix with probability 0.25, –1 with probability 0.25, and 0 with probability 0.5, where
Ls ≈ 15log2K .

2 If a column does not contain at least one 1 and one –1, then the software removes that column.
3 For distinct columns u and v, if u = v or u = –v, then the software removes v from the coding

design matrix.
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The software randomly generates 10,000 matrices by default, and retains the matrix with the largest,
minimal, pairwise row distance based on the Hamming measure ([2]) given by

Δ(k1, k2) = 0.5∑
l = 1

L

mk1l mk2l mk1l−mk2l ,

where mkjl is an element of coding design matrix j.

Version History
Introduced in R2015a

References
[1] Fürnkranz, Johannes. “Round Robin Classification.” J. Mach. Learn. Res., Vol. 2, 2002, pp. 721–

747.

[2] Escalera, S., O. Pujol, and P. Radeva. “Separability of ternary codes for sparse designs of error-
correcting output codes.” Pattern Recog. Lett., Vol. 30, Issue 3, 2009, pp. 285–297.

See Also
ClassificationECOC | fitcecoc | designecoc | templateDiscriminant |
templateEnsemble | templateKNN | templateSVM | templateTree | predict | testckfold
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templateEnsemble
Ensemble learning template

Syntax
t = templateEnsemble(Method,NLearn,Learners)
t = templateEnsemble(Method,NLearn,Learners,Name,Value)

Description
t = templateEnsemble(Method,NLearn,Learners) returns an ensemble learning template that
specifies to use the ensemble aggregation method Method, NLearn learning cycles, and weak
learners Learners.

All other options of the template (t) specific to ensemble learning appear empty, but the software
uses their corresponding default values during training.

t = templateEnsemble(Method,NLearn,Learners,Name,Value) returns an ensemble
template with additional options specified by one or more name-value pair arguments.

For example, you can specify the number of predictors in each random subspace learner, learning
rate for shrinkage, or the target classification error for RobustBoost.

If you display t in the Command Window, then all options appear empty ([]), except those options
that you specify using name-value pair arguments. During training, the software uses default values
for empty options.

Examples

Create an Ensemble Learning Template

Use templateEnsemble to specify an ensemble learning template. You must specify the ensemble
method, the number of learning cycles, and the type of weak learners. For this example, specify the
AdaBoostM1 method, 100 learners, and classification tree weak learners.

t = templateEnsemble('AdaBoostM1',100,'tree')

t = 
Fit template for classification AdaBoostM1.

                Type: 'classification'
              Method: 'AdaBoostM1'
    LearnerTemplates: 'Tree'
              NLearn: 100
           LearnRate: []

All properties of the template object are empty except for Method, Type, LearnerTemplates, and
NLearn. When trained on, the software fills in the empty properties with their respective default
values. For example, the software fills the LearnRate property with 1.
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t is a plan for an ensemble learner, and no computation takes place when you specify it. You can pass
t to fitcecoc to specify ensemble binary learners for ECOC multiclass learning.

Create an Ensemble Template for ECOC Multiclass Learning

Create an ensemble template for use in fitcecoc.

Load the arrhythmia data set.

load arrhythmia
tabulate(categorical(Y));

  Value    Count   Percent
      1      245     54.20%
      2       44      9.73%
      3       15      3.32%
      4       15      3.32%
      5       13      2.88%
      6       25      5.53%
      7        3      0.66%
      8        2      0.44%
      9        9      1.99%
     10       50     11.06%
     14        4      0.88%
     15        5      1.11%
     16       22      4.87%

rng(1); % For reproducibility

Some classes have small relative frequencies in the data.

Create a template for a AdaBoostM1 ensemble of classification trees, and specify to use 100 learners
and a shrinkage of 0.1. By default, boosting grows stumps (i.e., one node having a set of leaves).
Since there are classes with small frequencies, the trees must be leafy enough to be sensitive to the
minority classes. Specify the minimum number of leaf node observations to 3.

tTree = templateTree('MinLeafSize',20);
t = templateEnsemble('AdaBoostM1',100,tTree,'LearnRate',0.1);

All properties of the template objects are empty except for Method and Type, and the corresponding
properties of the name-value pair argument values in the function calls. When you pass t to the
training function, the software fills in the empty properties with their respective default values.

Specify t as a binary learner for an ECOC multiclass model. Train using the default one-versus-one
coding design.

Mdl = fitcecoc(X,Y,'Learners',t);

• Mdl is a ClassificationECOC multiclass model.
• Mdl.BinaryLearners is a 78-by-1 cell array of CompactClassificationEnsemble models.
• Mdl.BinaryLearners{j}.Trained is a 100-by-1 cell array of CompactClassificationTree

models, for j = 1,...,78.
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You can verify that one of the binary learners contains a weak learner that isn't a stump by using
view.

view(Mdl.BinaryLearners{1}.Trained{1},'Mode','graph')

Display the in-sample (resubstitution) misclassification error.

L = resubLoss(Mdl,'LossFun','classiferror')

L = 0.0819

Speed Up Training ECOC Classifiers Using Binning and Parallel Computing

Train a one-versus-all ECOC classifier using a GentleBoost ensemble of decision trees with
surrogate splits. To speed up training, bin numeric predictors and use parallel computing. Binning is
valid only when fitcecoc uses a tree learner. After training, estimate the classification error using
10-fold cross-validation. Note that parallel computing requires Parallel Computing Toolbox™.
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Load Sample Data

Load and inspect the arrhythmia data set.

load arrhythmia
[n,p] = size(X)

n = 452

p = 279

isLabels = unique(Y);
nLabels = numel(isLabels)

nLabels = 13

tabulate(categorical(Y))

  Value    Count   Percent
      1      245     54.20%
      2       44      9.73%
      3       15      3.32%
      4       15      3.32%
      5       13      2.88%
      6       25      5.53%
      7        3      0.66%
      8        2      0.44%
      9        9      1.99%
     10       50     11.06%
     14        4      0.88%
     15        5      1.11%
     16       22      4.87%

The data set contains 279 predictors, and the sample size of 452 is relatively small. Of the 16 distinct
labels, only 13 are represented in the response (Y). Each label describes various degrees of
arrhythmia, and 54.20% of the observations are in class 1.

Train One-Versus-All ECOC Classifier

Create an ensemble template. You must specify at least three arguments: a method, a number of
learners, and the type of learner. For this example, specify 'GentleBoost' for the method, 100 for
the number of learners, and a decision tree template that uses surrogate splits because there are
missing observations.

tTree = templateTree('surrogate','on');
tEnsemble = templateEnsemble('GentleBoost',100,tTree);

tEnsemble is a template object. Most of its properties are empty, but the software fills them with
their default values during training.

Train a one-versus-all ECOC classifier using the ensembles of decision trees as binary learners. To
speed up training, use binning and parallel computing.

• Binning ('NumBins',50) — When you have a large training data set, you can speed up training (a
potential decrease in accuracy) by using the 'NumBins' name-value pair argument. This
argument is valid only when fitcecoc uses a tree learner. If you specify the 'NumBins' value,
then the software bins every numeric predictor into a specified number of equiprobable bins, and
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then grows trees on the bin indices instead of the original data. You can try 'NumBins',50 first,
and then change the 'NumBins' value depending on the accuracy and training speed.

• Parallel computing ('Options',statset('UseParallel',true)) — With a Parallel
Computing Toolbox license, you can speed up the computation by using parallel computing, which
sends each binary learner to a worker in the pool. The number of workers depends on your system
configuration. When you use decision trees for binary learners, fitcecoc parallelizes training
using Intel® Threading Building Blocks (TBB) for dual-core systems and above. Therefore,
specifying the 'UseParallel' option is not helpful on a single computer. Use this option on a
cluster.

Additionally, specify that the prior probabilities are 1/K, where K = 13 is the number of distinct
classes.

options = statset('UseParallel',true);
Mdl = fitcecoc(X,Y,'Coding','onevsall','Learners',tEnsemble,...
                'Prior','uniform','NumBins',50,'Options',options);

Starting parallel pool (parpool) using the 'local' profile ...
Connected to the parallel pool (number of workers: 6).

Mdl is a ClassificationECOC model.

Cross-Validation

Cross-validate the ECOC classifier using 10-fold cross-validation.

CVMdl = crossval(Mdl,'Options',options);

Warning: One or more folds do not contain points from all the groups.

CVMdl is a ClassificationPartitionedECOC model. The warning indicates that some classes are
not represented while the software trains at least one fold. Therefore, those folds cannot predict
labels for the missing classes. You can inspect the results of a fold using cell indexing and dot
notation. For example, access the results of the first fold by entering CVMdl.Trained{1}.

Use the cross-validated ECOC classifier to predict validation-fold labels. You can compute the
confusion matrix by using confusionchart. Move and resize the chart by changing the inner
position property to ensure that the percentages appear in the row summary.

oofLabel = kfoldPredict(CVMdl,'Options',options);
ConfMat = confusionchart(Y,oofLabel,'RowSummary','total-normalized');
ConfMat.InnerPosition = [0.10 0.12 0.85 0.85];
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Reproduce Binned Data

Reproduce binned predictor data by using the BinEdges property of the trained model and the
discretize function.

X = Mdl.X; % Predictor data
Xbinned = zeros(size(X));
edges = Mdl.BinEdges;
% Find indices of binned predictors.
idxNumeric = find(~cellfun(@isempty,edges));
if iscolumn(idxNumeric)
    idxNumeric = idxNumeric';
end
for j = idxNumeric 
    x = X(:,j);
    % Convert x to array if x is a table.
    if istable(x)
        x = table2array(x);
    end
    % Group x into bins by using the discretize function.
    xbinned = discretize(x,[-inf; edges{j}; inf]);
    Xbinned(:,j) = xbinned;
end
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Xbinned contains the bin indices, ranging from 1 to the number of bins, for numeric predictors.
Xbinned values are 0 for categorical predictors. If X contains NaNs, then the corresponding Xbinned
values are NaNs.

Input Arguments
Method — Ensemble aggregation method
'AdaBoostM1' | 'LogitBoost' | 'GentleBoost' | 'RUSBoost' | 'Subspace' | 'Bag' |
'AdaBoostM2' | 'LSBoost' | ...

Ensemble aggregation method, specified as one of the method names in this list.

• For classification with two classes:

• 'AdaBoostM1'
• 'LogitBoost'
• 'GentleBoost'
• 'RobustBoost' (requires Optimization Toolbox)
• 'LPBoost' (requires Optimization Toolbox)
• 'TotalBoost' (requires Optimization Toolbox)
• 'RUSBoost'
• 'Subspace'
• 'Bag'

• For classification with three or more classes:

• 'AdaBoostM2'
• 'LPBoost' (requires Optimization Toolbox)
• 'TotalBoost' (requires Optimization Toolbox)
• 'RUSBoost'
• 'Subspace'
• 'Bag'

• For regression:

• 'LSBoost'
• 'Bag'

If you specify 'Method','Bag', then specify the problem type using the Type name-value pair
argument, because you can specify 'Bag' for classification and regression problems.

For details about ensemble aggregation algorithms and examples, see “Ensemble Algorithms” on
page 19-41 and “Choose an Applicable Ensemble Aggregation Method” on page 19-34.

NLearn — Number of ensemble learning cycles
positive integer | 'AllPredictorCombinations'

Number of ensemble learning cycles, specified as a positive integer or
'AllPredictorCombinations'.
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• If you specify a positive integer, then, at every learning cycle, the software trains one weak learner
for every template object in Learners. Consequently, the software trains
NLearn*numel(Learners) learners.

• If you specify 'AllPredictorCombinations', then set Method to 'Subspace' and specify one
learner only in Learners. With these settings, the software trains learners for all possible
combinations of predictors taken NPredToSample at a time. Consequently, the software trains
nchoosek(size(X,2),NPredToSample) learners.

For more details, see “Tips” on page 35-7221.
Data Types: single | double | char | string

Learners — Weak learners to use in ensemble
weak-learner name | weak-learner template object | cell vector of weak-learner template objects

Weak learners to use in the ensemble, specified as a weak-learner name, weak-learner template
object, or cell array of weak-learner template objects.

Weak Learner Weak-Learner Name Template Object
Creation Function

Method Settings

Discriminant analysis 'Discriminant' templateDiscrimina
nt

Recommended for
'Subspace'

k nearest neighbors 'KNN' templateKNN For 'Subspace' only
Decision tree 'Tree' templateTree All methods except

'Subspace'

For more details, see NLearn and “Tips” on page 35-7221.
Example: For an ensemble composed of two types of classification trees, supply {t1 t2}, where t1
and t2 are classification tree templates.

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: 'LearningRate',0.05,'NPrint',5 specifies to use 0.05 as the learning rate and to
display a message to the command line every time it trains 5 learners.

General Ensemble Options

NPrint — Printout frequency
'off' (default) | positive integer

Printout frequency, specified as the comma-separated pair consisting of 'NPrint' and a positive
integer or 'off'.

To track the number of weak learners or folds that the software trained so far, specify a positive
integer. That is, if you specify the positive integer m and:
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• Do not specify any cross-validation option of the fitting function (for example, CrossVal), then the
software displays a message to the command line every time it completes training m weak
learners.

• A cross-validation option, then the software displays a message to the command line every time it
finishes training m folds.

If you specify 'off', then the software does not display a message when it completes training weak
learners.

Tip When training an ensemble of many weak learners on a large data set, specify a positive integer
for NPrint.

Example: 'NPrint',5
Data Types: single | double | char | string

Type — Supervised learning type
'classification' | 'regression'

Supervised learning type, specified as the comma-separated pair consisting of 'Type' and
'classification' or 'regression'.

• If Method is 'bag', then the supervised learning type is ambiguous. Therefore, specify Type
when bagging.

• Otherwise, the value of Method determines the supervised learning type.

Example: 'Type','classification'

Sampling Options for Boosting Methods and Bagging

FResample — Fraction of training set to resample
1 (default) | positive scalar in (0,1]

Fraction of the training set to resample for every weak learner, specified as a positive scalar in (0,1].
To use 'FResample', set Resample to 'on'.
Example: 'FResample',0.75
Data Types: single | double

Replace — Flag indicating to sample with replacement
'on' (default) | 'off'

Flag indicating sampling with replacement, specified as the comma-separated pair consisting of
'Replace' and 'off' or 'on'.

• For 'on', the software samples the training observations with replacement.
• For 'off', the software samples the training observations without replacement. If you set

Resample to 'on', then the software samples training observations assuming uniform weights. If
you also specify a boosting method, then the software boosts by reweighting observations.

Unless you set Method to 'bag' or set Resample to 'on', Replace has no effect.
Example: 'Replace','off'
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Resample — Flag indicating to resample
'off' | 'on'

Flag indicating to resample, specified as the comma-separated pair consisting of 'Resample' and
'off' or 'on'.

• If Method is a boosting method, then:

• 'Resample','on' specifies to sample training observations using updated weights as the
multinomial sampling probabilities.

• 'Resample','off'(default) specifies to reweight observations at every learning iteration.
• If Method is 'bag', then 'Resample' must be 'on'. The software resamples a fraction of the

training observations (see FResample) with or without replacement (see Replace).

If you specify to resample using Resample, then it is good practice to resample to entire data set.
That is, use the default setting of 1 for FResample.

AdaBoostM1, AdaBoostM2, LogitBoost, GentleBoost, and LSBoost Method Options

LearnRate — Learning rate for shrinkage
1 (default) | numeric scalar in (0,1]

Learning rate for shrinkage, specified as the comma-separated pair consisting of 'LearnRate' and a
numeric scalar in the interval (0,1].

To train an ensemble using shrinkage, set LearnRate to a value less than 1, for example, 0.1 is a
popular choice. Training an ensemble using shrinkage requires more learning iterations, but often
achieves better accuracy.
Example: 'LearnRate',0.1
Data Types: single | double

RUSBoost Method Options

LearnRate — Learning rate for shrinkage
1 (default) | numeric scalar in (0,1]

Learning rate for shrinkage, specified as the comma-separated pair consisting of 'LearnRate' and a
numeric scalar in the interval (0,1].

To train an ensemble using shrinkage, set LearnRate to a value less than 1, for example, 0.1 is a
popular choice. Training an ensemble using shrinkage requires more learning iterations, but often
achieves better accuracy.
Example: 'LearnRate',0.1
Data Types: single | double

RatioToSmallest — Sampling proportion with respect to lowest-represented class
positive numeric scalar | numeric vector of positive values

Sampling proportion with respect to the lowest-represented class, specified as the comma-separated
pair consisting of 'RatioToSmallest' and a numeric scalar or numeric vector of positive values
with length equal to the number of distinct classes in the training data.
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Suppose that there are K classes in the training data and the lowest-represented class has m
observations in the training data.

• If you specify the positive numeric scalar s, then the software samples s*m observations from
each class, that is, it uses the same sampling proportion for each class. For more details, see
“Algorithms” on page 35-7222.

• If you specify the numeric vector [s1,s2,...,sK], then the software samples si*m observations
from class i, i = 1,...,K. The elements of RatioToSmallest correspond to the order of the class
names specified using the ClassNames name-value pair argument of the fitting function (see
“Tips” on page 35-7221).

The default value is ones(K,1), which specifies to sample m observations from each class.
Example: 'RatioToSmallest',[2,1]
Data Types: single | double

LPBoost and TotalBoost Method Options

MarginPrecision — Margin precision to control convergence speed
0.1 (default) | numeric scalar in [0,1]

Margin precision to control convergence speed, specified as the comma-separated pair consisting of
'MarginPrecision' and a numeric scalar in the interval [0,1]. MarginPrecision affects the
number of boosting iterations required for convergence.

Tip To train an ensemble using many learners, specify a small value for MarginPrecision. For
training using a few learners, specify a large value.

Example: 'MarginPrecision',0.5
Data Types: single | double

RobustBoost Method Options

RobustErrorGoal — Target classification error
0.1 (default) | nonnegative numeric scalar

Target classification error, specified as the comma-separated pair consisting of 'RobustErrorGoal'
and a nonnegative numeric scalar. The upper bound on possible values depends on the values of
RobustMarginSigma and RobustMaxMargin. However, the upper bound cannot exceed 1.

Tip For a particular training set, usually there is an optimal range for RobustErrorGoal. If you set
it too low or too high, then the software can produce a model with poor classification accuracy. Try
cross-validating to search for the appropriate value.

Example: 'RobustErrorGoal',0.05
Data Types: single | double

RobustMarginSigma — Classification margin distribution spread
0.1 (default) | positive numeric scalar
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Classification margin distribution spread over the training data, specified as the comma-separated
pair consisting of 'RobustMarginSigma' and a positive numeric scalar. Before specifying
RobustMarginSigma, consult the literature on RobustBoost, for example, [19].
Example: 'RobustMarginSigma',0.5
Data Types: single | double

RobustMaxMargin — Maximal classification margin
0 (default) | nonnegative numeric scalar

Maximal classification margin in the training data, specified as the comma-separated pair consisting
of 'RobustMaxMargin' and a nonnegative numeric scalar. The software minimizes the number of
observations in the training data having classification margins below RobustMaxMargin.
Example: 'RobustMaxMargin',1
Data Types: single | double

Random Subspace Method Options

NPredToSample — Number of predictors to sample
1 (default) | positive integer

Number of predictors to sample for each random subspace learner, specified as the comma-separated
pair consisting of 'NPredToSample' and a positive integer in the interval 1,...,p, where p is the
number of predictor variables (size(X,2) or size(Tbl,2)).
Data Types: single | double

Output Arguments
t — Classification template for ensemble learning
classification template object

Classification template for ensemble learning, returned as a template object. You can pass t to, for
example, fitcecoc to specify how to create the ensemble learning classifier for the ECOC model.

If you display t in the Command Window, then all, unspecified options appear empty ([]). However,
the software replaces empty options with their corresponding default values during training.

Tips
• NLearn can vary from a few dozen to a few thousand. Usually, an ensemble with good predictive

power requires from a few hundred to a few thousand weak learners. However, you do not have to
train an ensemble for that many cycles at once. You can start by growing a few dozen learners,
inspect the ensemble performance and then, if necessary, train more weak learners using resume
for classification problems, or resume for regression problems.

• Ensemble performance depends on the ensemble setting and the setting of the weak learners.
That is, if you specify weak learners with default parameters, then the ensemble can perform.
Therefore, like ensemble settings, it is good practice to adjust the parameters of the weak learners
using templates, and to choose values that minimize generalization error.

• If you specify to resample using Resample, then it is good practice to resample to entire data set.
That is, use the default setting of 1 for FResample.
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• In classification problems (that is, Type is 'classification'):

• If the ensemble aggregation method (Method) is 'bag' and:

• The misclassification cost is highly imbalanced, then, for in-bag samples, the software
oversamples unique observations from the class that has a large penalty.

• The class prior probabilities are highly skewed, the software oversamples unique
observations from the class that has a large prior probability.

For smaller sample sizes, these combinations can result in a very low relative frequency of out-
of-bag observations from the class that has a large penalty or prior probability. Consequently,
the estimated out-of-bag error is highly variable and it might be difficult to interpret. To avoid
large estimated out-of-bag error variances, particularly for small sample sizes, set a more
balanced misclassification cost matrix using the Cost name-value pair argument of the fitting
function, or a less skewed prior probability vector using Prior name-value pair argument of
the fitting function.

• Because the order of some input and output arguments correspond to the distinct classes in
the training data, it is good practice to specify the class order using the ClassNames name-
value pair argument of the fitting function.

• To quickly determine the class order, remove all observations from the training data that
are unclassified (that is, have a missing label), obtain and display an array of all the distinct
classes, and then specify the array for ClassNames. For example, suppose the response
variable (Y) is a cell array of labels. This code specifies the class order in the variable
classNames.

Ycat = categorical(Y);
classNames = categories(Ycat)

categorical assigns <undefined> to unclassified observations and categories
excludes <undefined> from its output. Therefore, if you use this code for cell arrays of
labels or similar code for categorical arrays, then you do not have to remove observations
with missing labels to obtain a list of the distinct classes.

• To specify that order should be from lowest-represented label to most-represented, then
quickly determine the class order (as in the previous bullet), but arrange the classes in the
list by frequency before passing the list to ClassNames. Following from the previous
example, this code specifies the class order from lowest- to most-represented in
classNamesLH.

Ycat = categorical(Y);
classNames = categories(Ycat);
freq = countcats(Ycat);
[~,idx] = sort(freq);
classNamesLH = classNames(idx);

Algorithms
• For details of ensemble aggregation algorithms, see “Ensemble Algorithms” on page 19-41.
• If you specify Method to be a boosting algorithm and Learners to be decision trees, then the

software grows stumps by default. A decision stump is one root node connected to two terminal,
leaf nodes. You can adjust tree depth by specifying the MaxNumSplits, MinLeafSize, and
MinParentSize name-value pair arguments using templateTree.
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• The software generates in-bag samples by oversampling classes with large misclassification costs
and undersampling classes with small misclassification costs. Consequently, out-of-bag samples
have fewer observations from classes with large misclassification costs and more observations
from classes with small misclassification costs. If you train a classification ensemble using a small
data set and a highly skewed cost matrix, then the number of out-of-bag observations per class
might be very low. Therefore, the estimated out-of-bag error can have a large variance and might
be difficult to interpret. The same phenomenon can occur for classes with large prior probabilities.

• For the RUSBoost ensemble aggregation method (Method), the name-value pair argument
RatioToSmallest specifies the sampling proportion for each class with respect to the lowest-
represented class. For example, suppose that there are 2 classes in the training data, A and B. A
have 100 observations and B have 10 observations. Also, suppose that the lowest-represented
class has m observations in the training data.

• If you set 'RatioToSmallest',2, then s*m = 2*10 = 20. Consequently, the software trains
every learner using 20 observations from class A and 20 observations from class B. If you set
'RatioToSmallest',[2 2], then you will obtain the same result.

• If you set 'RatioToSmallest',[2,1], then s1*m = 2*10 = 20 and s2*m = 1*10 = 10.
Consequently, the software trains every learner using 20 observations from class A and 10
observations from class B.

• For ensembles of decision trees, and for dual-core systems and above, fitcensemble and
fitrensemble parallelize training using Intel Threading Building Blocks (TBB). For details on
Intel TBB, see https://www.intel.com/content/www/us/en/developer/tools/oneapi/onetbb.html.

Version History
Introduced in R2014b

See Also
fitcecoc | ClassificationECOC | ClassificationEnsemble | fitcensemble |
fitrensemble | templateTree | templateKNN | templateDiscriminant

Topics
“Supervised Learning Workflow and Algorithms” on page 19-2
“Framework for Ensemble Learning” on page 19-33
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templateKernel
Kernel model template

Syntax
t = templateKernel()
t = templateKernel(Name,Value)

Description
templateKernel creates a template suitable for fitting a Gaussian kernel classification model for
nonlinear classification.

The template specifies the binary learner model, number of dimensions of expanded space, kernel
scale, box constraint, and regularization strength, among other parameters. After creating the
template, train the model by passing the template and data to fitcecoc.

t = templateKernel() returns a kernel model template.

If you create a default template, then the software uses default values for all input arguments during
training.

t = templateKernel(Name,Value) returns a template with additional options specified by one or
more name-value pair arguments. For example, you can implement logistic regression or specify the
number of dimensions of the expanded space.

If you display t in the Command Window, then some properties of t appear empty ([]). During
training, the software uses default values for the empty properties.

Examples

Create Default Kernel Model Template

Create a default kernel model template and use it to train an error-correcting output codes (ECOC)
multiclass model.

Load Fisher's iris data set.

load fisheriris

Create a default kernel model template.

t = templateKernel()

t = 
Fit template for classification Kernel.

             BetaTolerance: []
                 BlockSize: []
             BoxConstraint: []
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                   Epsilon: []
    NumExpansionDimensions: []
         GradientTolerance: []
        HessianHistorySize: []
            IterationLimit: []
               KernelScale: []
                    Lambda: []
                   Learner: 'svm'
              LossFunction: []
                    Stream: []
            VerbosityLevel: []
                   Version: 1
                    Method: 'Kernel'
                      Type: 'classification'

During training, the software fills in the empty properties with their respective default values.

Specify t as a binary learner for an ECOC multiclass model.

Mdl = fitcecoc(meas,species,'Learners',t)

Mdl = 
  CompactClassificationECOC
      ResponseName: 'Y'
        ClassNames: {'setosa'  'versicolor'  'virginica'}
    ScoreTransform: 'none'
    BinaryLearners: {3x1 cell}
      CodingMatrix: [3x3 double]

  Properties, Methods

Mdl is a CompactClassificationECOC multiclass classifier.

Specify Kernel Model Template Options

Create a kernel model template with additional options to implement logistic regression with a kernel
scale parameter selected by a heuristic procedure.

t = templateKernel('Learner','logistic','KernelScale','auto')

t = 
Fit template for classification Kernel.

             BetaTolerance: []
                 BlockSize: []
             BoxConstraint: []
                   Epsilon: []
    NumExpansionDimensions: []
         GradientTolerance: []
        HessianHistorySize: []
            IterationLimit: []
               KernelScale: 'auto'
                    Lambda: []
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                   Learner: 'logistic'
              LossFunction: []
                    Stream: []
            VerbosityLevel: []
                   Version: 1
                    Method: 'Kernel'
                      Type: 'classification'

Input Arguments
Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example:
'Learner','logistic','NumExpansionDimensions',2^15,'KernelScale','auto'
specifies to implement logistic regression after mapping the predictor data to the 2^15 dimensional
space using feature expansion with a kernel scale parameter selected by a heuristic procedure.

Kernel Classification Options

Learner — Linear classification model type
'svm' (default) | 'logistic'

Linear classification model type, specified as the comma-separated pair consisting of 'Learner' and
'svm' or 'logistic'.

In the following table, f x = T(x)β + b .

• x is an observation (row vector) from p predictor variables.
• T ·  is a transformation of an observation (row vector) for feature expansion. T(x) maps x in ℝp to

a high-dimensional space (ℝm).
• β is a vector of coefficients.
• b is the scalar bias.

Value Algorithm Response Range Loss Function
'svm' Support vector machine y ∊ {–1,1}; 1 for the

positive class and –1
otherwise

Hinge: ℓ y, f x = max
0, 1− yf x

'logistic' Logistic regression Same as 'svm' Deviance (logistic):
ℓ y, f x = log

1 + exp −yf x

Example: 'Learner','logistic'

NumExpansionDimensions — Number of dimensions of expanded space
'auto' (default) | positive integer
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Number of dimensions of the expanded space, specified as the comma-separated pair consisting of
'NumExpansionDimensions' and 'auto' or a positive integer. For 'auto', the templateKernel
function selects the number of dimensions using 2.^ceil(min(log2(p)+5,15)), where p is the
number of predictors.

For details, see “Random Feature Expansion” on page 35-7230.
Example: 'NumExpansionDimensions',2^15
Data Types: char | string | single | double

KernelScale — Kernel scale parameter
1 (default) | "auto" | positive scalar

Kernel scale parameter, specified as "auto" or a positive scalar. The software obtains a random basis
for random feature expansion by using the kernel scale parameter. For details, see “Random Feature
Expansion” on page 35-7230.

If you specify "auto", then the software selects an appropriate kernel scale parameter using a
heuristic procedure. This heuristic procedure uses subsampling, so estimates can vary from one call
to another. Therefore, to reproduce results, set a random number seed by using rng before training.
Example: KernelScale="auto"
Data Types: char | string | single | double

BoxConstraint — Box constraint
1 (default) | positive scalar

Box constraint, specified as the comma-separated pair consisting of 'BoxConstraint' and a
positive scalar.

This argument is valid only when 'Learner' is 'svm'(default) and you do not specify a value for the
regularization term strength 'Lambda'. You can specify either 'BoxConstraint' or 'Lambda'
because the box constraint (C) and the regularization term strength (λ) are related by C = 1/(λn),
where n is the number of observations.
Example: 'BoxConstraint',100
Data Types: single | double

Lambda — Regularization term strength
'auto' (default) | nonnegative scalar

Regularization term strength, specified as the comma-separated pair consisting of 'Lambda' and
'auto' or a nonnegative scalar.

For 'auto', the value of Lambda is 1/n, where n is the number of observations.

When Learner is 'svm', you can specify either BoxConstraint or Lambda because the box
constraint (C) and the regularization term strength (λ) are related by C = 1/(λn).
Example: 'Lambda',0.01
Data Types: char | string | single | double
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Convergence Controls

BetaTolerance — Relative tolerance on linear coefficients and bias term
1e–4 (default) | nonnegative scalar

Relative tolerance on the linear coefficients and the bias term (intercept), specified as a nonnegative
scalar.

Let Bt = βt′ bt , that is, the vector of the coefficients and the bias term at optimization iteration t. If
Bt − Bt − 1

Bt 2
< BetaTolerance, then optimization terminates.

If you also specify GradientTolerance, then optimization terminates when the software satisfies
either stopping criterion.
Example: BetaTolerance=1e–6
Data Types: single | double

GradientTolerance — Absolute gradient tolerance
1e–6 (default) | nonnegative scalar

Absolute gradient tolerance, specified as a nonnegative scalar.

Let ∇ℒ t be the gradient vector of the objective function with respect to the coefficients and bias term
at optimization iteration t. If ∇ℒ t ∞ = max ∇ℒ t < GradientTolerance, then optimization terminates.

If you also specify BetaTolerance, then optimization terminates when the software satisfies either
stopping criterion.
Example: GradientTolerance=1e–5
Data Types: single | double

IterationLimit — Maximum number of optimization iterations
positive integer

Maximum number of optimization iterations, specified as a positive integer.

The default value is 1000 if the transformed data fits in memory, as specified by the BlockSize
name-value argument. Otherwise, the default value is 100.
Example: IterationLimit=500
Data Types: single | double

Other Kernel Classification Options

BlockSize — Maximum amount of allocated memory
4e^3 (4GB) (default) | positive scalar

Maximum amount of allocated memory (in megabytes), specified as the comma-separated pair
consisting of 'BlockSize' and a positive scalar.

If templateKernel requires more memory than the value of 'BlockSize' to hold the transformed
predictor data, then the software uses a block-wise strategy. For details about the block-wise strategy,
see “Algorithms” on page 35-7967.
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Example: 'BlockSize',1e4
Data Types: single | double

RandomStream — Random number stream
global stream (default) | random stream object

Random number stream for reproducibility of data transformation, specified as a random stream
object. For details, see “Random Feature Expansion” on page 35-7230.

Use RandomStream to reproduce the random basis functions used by templateKernel to transform
the predictor data to a high-dimensional space. For details, see “Managing the Global Stream Using
RandStream” and “Creating and Controlling a Random Number Stream”.
Example: RandomStream=RandStream("mlfg6331_64")

HessianHistorySize — Size of history buffer for Hessian approximation
15 (default) | positive integer

Size of the history buffer for Hessian approximation, specified as the comma-separated pair
consisting of 'HessianHistorySize' and a positive integer. At each iteration, templateKernel
composes the Hessian approximation by using statistics from the latest HessianHistorySize
iterations.
Example: 'HessianHistorySize',10
Data Types: single | double

Verbose — Verbosity level
0 (default) | 1

Verbosity level, specified as the comma-separated pair consisting of 'Verbose' and either 0 or 1.
Verbose controls the display of diagnostic information at the command line.

Value Description
0 templateKernel does not display diagnostic information.
1 templateKernel displays the value of the objective function, gradient

magnitude, and other diagnostic information.

Example: 'Verbose',1
Data Types: single | double

Output Arguments
t — Kernel model template
template object

Kernel model template, returned as a template object. To train a kernel classification model for
multiclass problems, pass t to fitcecoc.

If you display t in the Command Window, then some properties appear empty ([]). The software
replaces the empty properties with their corresponding default values during training.

 templateKernel

35-7229



More About
Random Feature Expansion

Random feature expansion, such as Random Kitchen Sinks[1] or Fastfood[2], is a scheme to
approximate Gaussian kernels of the kernel classification algorithm to use for big data in a
computationally efficient way. Random feature expansion is more practical for big data applications
that have large training sets, but can also be applied to smaller data sets that fit in memory.

The kernel classification algorithm searches for an optimal hyperplane that separates the data into
two classes after mapping features into a high-dimensional space. Nonlinear features that are not
linearly separable in a low-dimensional space can be separable in the expanded high-dimensional
space. All the calculations for hyperplane classification use only dot products. You can obtain a
nonlinear classification model by replacing the dot product x1x2' with the nonlinear kernel function
G(x1, x2) = φ(x1), φ(x2) , where xi is the ith observation (row vector) and φ(xi) is a transformation
that maps xi to a high-dimensional space (called the “kernel trick”). However, evaluating G(x1,x2)
(Gram matrix) for each pair of observations is computationally expensive for a large data set (large
n).

The random feature expansion scheme finds a random transformation so that its dot product
approximates the Gaussian kernel. That is,

G(x1, x2) = φ(x1), φ(x2) ≈ T(x1)T(x2)′,

where T(x) maps x in ℝp to a high-dimensional space (ℝm). The Random Kitchen Sinks scheme uses
the random transformation

T(x) = m−1/2exp iZx′ ′,

where Z ∈ ℝm × p is a sample drawn from N 0, σ−2  and σ is a kernel scale. This scheme requires
O(mp) computation and storage.

The Fastfood scheme introduces another random basis V instead of Z using Hadamard matrices
combined with Gaussian scaling matrices. This random basis reduces the computation cost to
O(mlogp) and reduces storage to O(m).

You can specify values for m and σ using the NumExpansionDimensions and KernelScale name-
value arguments of templateKernel, respectively.

The templateKernel function uses the Fastfood scheme for random feature expansion, and uses
linear classification to train a Gaussian kernel classification model. Unlike solvers in the
templateSVM function, which require computation of the n-by-n Gram matrix, the solver in
templateKernel only needs to form a matrix of size n-by-m, with m typically much less than n for
big data.

Box Constraint

A box constraint is a parameter that controls the maximum penalty imposed on margin-violating
observations, and aids in preventing overfitting (regularization). Increasing the box constraint can
lead to longer training times.

The box constraint (C) and the regularization term strength (λ) are related by C = 1/(λn), where n is
the number of observations.
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Algorithms
templateKernel minimizes the regularized objective function using a Limited-memory Broyden-
Fletcher-Goldfarb-Shanno (LBFGS) solver with ridge (L2) regularization. To find the type of LBFGS
solver used for training, type FitInfo.Solver in the Command Window.

• 'LBFGS-fast' — LBFGS solver.
• 'LBFGS-blockwise' — LBFGS solver with a block-wise strategy. If templateKernel requires

more memory than the value of BlockSize to hold the transformed predictor data, then the
function uses a block-wise strategy.

• 'LBFGS-tall' — LBFGS solver with a block-wise strategy for tall arrays.

When templateKernel uses a block-wise strategy, it implements LBFGS by distributing the
calculation of the loss and gradient among different parts of the data at each iteration. Also,
templateKernel refines the initial estimates of the linear coefficients and the bias term by fitting
the model locally to parts of the data and combining the coefficients by averaging. If you specify
'Verbose',1, then templateKernel displays diagnostic information for each data pass and stores
the information in the History field of FitInfo.

When templateKernel does not use a block-wise strategy, the initial estimates are zeros. If you
specify 'Verbose',1, then templateKernel displays diagnostic information for each iteration and
stores the information in the History field of FitInfo.

Version History
Introduced in R2018b

References
[1] Rahimi, A., and B. Recht. “Random Features for Large-Scale Kernel Machines.” Advances in

Neural Information Processing Systems. Vol. 20, 2008, pp. 1177–1184.

[2] Le, Q., T. Sarlós, and A. Smola. “Fastfood — Approximating Kernel Expansions in Loglinear Time.”
Proceedings of the 30th International Conference on Machine Learning. Vol. 28, No. 3, 2013,
pp. 244–252.

[3] Huang, P. S., H. Avron, T. N. Sainath, V. Sindhwani, and B. Ramabhadran. “Kernel methods match
Deep Neural Networks on TIMIT.” 2014 IEEE International Conference on Acoustics, Speech
and Signal Processing. 2014, pp. 205–209.

Extended Capabilities
Tall Arrays
Calculate with arrays that have more rows than fit in memory.

Usage notes and limitations when you train a model by passing a kernel model template and tall
arrays to fitcecoc:

• The default values for these name-value pair arguments are different when you work with tall
arrays.
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• 'Verbose' — Default value is 1.
• 'BetaTolerance' — Default value is relaxed to 1e–3.
• 'GradientTolerance' — Default value is relaxed to 1e–5.
• 'IterationLimit' — Default value is relaxed to 20.

• If 'KernelScale' is 'auto', then templateKernel uses the random stream controlled by
tallrng for subsampling. For reproducibility, you must set a random number seed for both the
global stream and the random stream controlled by tallrng.

• If 'Lambda' is 'auto', then templateKernel might take an extra pass through the data to
calculate the number of observations.

• templateKernel uses a block-wise strategy. For details, see “Algorithms” on page 35-7231.

For more information, see “Tall Arrays”.

See Also
fitckernel | fitcecoc
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templateKNN
k-nearest neighbor classifier template

Syntax
t = templateKNN()
t = templateKNN(Name,Value)

Description
t = templateKNN() returns a k-nearest neighbor (KNN) learner template suitable for training
ensembles or error-correcting output code (ECOC) multiclass models.

If you specify a default template, then the software uses default values for all input arguments during
training.

Specify t as a learner in fitcensemble or fitcecoc.

t = templateKNN(Name,Value) creates a template with additional options specified by one or
more name-value pair arguments.

For example, you can specify the nearest neighbor search method, the number of nearest neighbors
to find, or the distance metric.

If you display t in the Command Window, then all options appear empty ([]), except those that you
specify using name-value pair arguments. During training, the software uses default values for empty
options.

Examples

Create a k-Nearest Neighbor Template for Ensemble

Create a nondefault k-nearest neighbor template for use in fitcensemble.

Load Fisher's iris data set.

load fisheriris

Create a template for a 5-nearest neighbor search, and specify to standardize the predictors.

t = templateKNN('NumNeighbors',5,'Standardize',1)

t = 
Fit template for classification KNN.

       NumNeighbors: 5
           NSMethod: ''
           Distance: ''
         BucketSize: ''
        IncludeTies: []
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     DistanceWeight: []
          BreakTies: []
           Exponent: []
                Cov: []
              Scale: []
    StandardizeData: 1
            Version: 1
             Method: 'KNN'
               Type: 'classification'

All properties of the template object are empty except for NumNeighbors, Method,
StandardizeData, and Type. When you specify t as a learner, the software fills in the empty
properties with their respective default values.

Specify t as a weak learner for a classification ensemble.

Mdl = fitcensemble(meas,species,'Method','Subspace','Learners',t);

Display the in-sample (resubstitution) misclassification error.

L = resubLoss(Mdl)

L = 0.0600

Create a k-Nearest Neighbor Template for ECOC Multiclass Learning

Create a nondefault k-nearest neighbor template for use in fitcecoc.

Load Fisher's iris data set.

load fisheriris

Create a template for a 5-nearest neighbor search, and specify to standardize the predictors.

t = templateKNN('NumNeighbors',5,'Standardize',1)

t = 
Fit template for classification KNN.

       NumNeighbors: 5
           NSMethod: ''
           Distance: ''
         BucketSize: ''
        IncludeTies: []
     DistanceWeight: []
          BreakTies: []
           Exponent: []
                Cov: []
              Scale: []
    StandardizeData: 1
            Version: 1
             Method: 'KNN'
               Type: 'classification'
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All properties of the template object are empty except for NumNeighbors, Method,
StandardizeData, and Type. When you specify t as a learner, the software fills in the empty
properties with their respective default values.

Specify t as a binary learner for an ECOC multiclass model.

Mdl = fitcecoc(meas,species,'Learners',t);

By default, the software trains Mdl using the one-versus-one coding design.

Display the in-sample (resubstitution) misclassification error.

L = resubLoss(Mdl,'LossFun','classiferror')

L = 0.0467

Input Arguments
Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: 'NumNeighbors',4,'Distance','minkowski' specifies a 4-nearest neighbor classifier
template using the Minkowski distance measure.

BreakTies — Tie-breaking algorithm
'smallest' (default) | 'nearest' | 'random'

Tie-breaking algorithm used by the predict method if multiple classes have the same smallest cost,
specified as the comma-separated pair consisting of 'BreakTies' and one of the following:

• 'smallest' — Use the smallest index among tied groups.
• 'nearest' — Use the class with the nearest neighbor among tied groups.
• 'random' — Use a random tiebreaker among tied groups.

By default, ties occur when multiple classes have the same number of nearest points among the k
nearest neighbors.
Example: 'BreakTies','nearest'

BucketSize — Maximum data points in node
50 (default) | positive integer value

Maximum number of data points in the leaf node of the Kd-tree, specified as the comma-separated
pair consisting of 'BucketSize' and a positive integer value. This argument is meaningful only
when NSMethod is 'kdtree'.
Example: 'BucketSize',40
Data Types: single | double
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Cov — Covariance matrix
cov(X,'omitrows') (default) | positive definite matrix of scalar values

Covariance matrix, specified as the comma-separated pair consisting of 'Cov' and a positive definite
matrix of scalar values representing the covariance matrix when computing the Mahalanobis
distance. This argument is only valid when 'Distance' is 'mahalanobis'.

You cannot simultaneously specify 'Standardize' and either of 'Scale' or 'Cov'.
Data Types: single | double

Distance — Distance metric
'cityblock' | 'chebychev' | 'correlation' | 'cosine' | 'euclidean' | 'hamming' |
function handle | ...

Distance metric, specified as the comma-separated pair consisting of 'Distance' and a valid
distance metric name or function handle. The allowable distance metric names depend on your choice
of a neighbor-searcher method (see NSMethod).

NSMethod Distance Metric Names
exhaustive Any distance metric of ExhaustiveSearcher
kdtree 'cityblock', 'chebychev', 'euclidean', or 'minkowski'

This table includes valid distance metrics of ExhaustiveSearcher.

Distance Metric Names Description
'cityblock' City block distance.
'chebychev' Chebychev distance (maximum coordinate difference).
'correlation' One minus the sample linear correlation between observations

(treated as sequences of values).
'cosine' One minus the cosine of the included angle between observations

(treated as vectors).
'euclidean' Euclidean distance.
'hamming' Hamming distance, percentage of coordinates that differ.
'jaccard' One minus the Jaccard coefficient, the percentage of nonzero

coordinates that differ.
'mahalanobis' Mahalanobis distance, computed using a positive definite

covariance matrix C. The default value of C is the sample covariance
matrix of X, as computed by cov(X,'omitrows'). To specify a
different value for C, use the 'Cov' name-value pair argument.

'minkowski' Minkowski distance. The default exponent is 2. To specify a
different exponent, use the 'Exponent' name-value pair argument.

'seuclidean' Standardized Euclidean distance. Each coordinate difference
between X and a query point is scaled, meaning divided by a scale
value S. The default value of S is the standard deviation computed
from X, S = std(X,'omitnan'). To specify another value for S,
use the Scale name-value pair argument.
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Distance Metric Names Description
'spearman' One minus the sample Spearman's rank correlation between

observations (treated as sequences of values).
@distfun Distance function handle. distfun has the form

function D2 = distfun(ZI,ZJ)
% calculation of  distance
...

where

• ZI is a 1-by-N vector containing one row of X or Y.
• ZJ is an M2-by-N matrix containing multiple rows of X or Y.
• D2 is an M2-by-1 vector of distances, and D2(k) is the distance

between observations ZI and ZJ(k,:).

If you specify CategoricalPredictors as 'all', then the default distance metric is 'hamming'.
Otherwise, the default distance metric is 'euclidean'.

For definitions, see “Distance Metrics” on page 19-14.
Example: 'Distance','minkowski'
Data Types: char | string | function_handle

DistanceWeight — Distance weighting function
'equal' (default) | 'inverse' | 'squaredinverse' | function handle

Distance weighting function, specified as the comma-separated pair consisting of
'DistanceWeight' and either a function handle or one of the values in this table.

Value Description
'equal' No weighting
'inverse' Weight is 1/distance
'squaredinverse' Weight is 1/distance2

@fcn fcn is a function that accepts a matrix of nonnegative distances,
and returns a matrix the same size containing nonnegative distance
weights. For example, 'squaredinverse' is equivalent to
@(d)d.^(-2).

Example: 'DistanceWeight','inverse'
Data Types: char | string | function_handle

Exponent — Minkowski distance exponent
2 (default) | positive scalar value

Minkowski distance exponent, specified as the comma-separated pair consisting of 'Exponent' and
a positive scalar value. This argument is only valid when 'Distance' is 'minkowski'.
Example: 'Exponent',3
Data Types: single | double
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IncludeTies — Tie inclusion flag
false (default) | true

Tie inclusion flag, specified as the comma-separated pair consisting of 'IncludeTies' and a logical
value indicating whether predict includes all the neighbors whose distance values are equal to the
kth smallest distance. If IncludeTies is true, predict includes all these neighbors. Otherwise,
predict uses exactly k neighbors.
Example: 'IncludeTies',true
Data Types: logical

NSMethod — Nearest neighbor search method
'kdtree' | 'exhaustive'

Nearest neighbor search method, specified as the comma-separated pair consisting of 'NSMethod'
and 'kdtree' or 'exhaustive'.

• 'kdtree' — Creates and uses a Kd-tree to find nearest neighbors. 'kdtree' is valid when the
distance metric is one of the following:

• 'euclidean'
• 'cityblock'
• 'minkowski'
• 'chebychev'

• 'exhaustive' — Uses the exhaustive search algorithm. When predicting the class of a new point
xnew, the software computes the distance values from all points in X to xnew to find nearest
neighbors.

The default is 'kdtree' when X has 10 or fewer columns, X is not sparse or a gpuArray, and the
distance metric is a 'kdtree' type; otherwise, 'exhaustive'.
Example: 'NSMethod','exhaustive'

NumNeighbors — Number of nearest neighbors to find
1 (default) | positive integer value

Number of nearest neighbors in X to find for classifying each point when predicting, specified as the
comma-separated pair consisting of 'NumNeighbors' and a positive integer value.
Example: 'NumNeighbors',3
Data Types: single | double

Scale — Distance scale
std(X,'omitnan') (default) | vector of nonnegative scalar values

Distance scale, specified as the comma-separated pair consisting of 'Scale' and a vector containing
nonnegative scalar values with length equal to the number of columns in X. Each coordinate
difference between X and a query point is scaled by the corresponding element of Scale. This
argument is only valid when 'Distance' is 'seuclidean'.

You cannot simultaneously specify 'Standardize' and either of 'Scale' or 'Cov'.
Data Types: single | double
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Standardize — Flag to standardize predictors
false (default) | true

Flag to standardize the predictors, specified as the comma-separated pair consisting of
'Standardize' and true (1) or false (0).

If you set 'Standardize',true, then the software centers and scales each column of the predictor
data (X) by the column mean and standard deviation, respectively.

The software does not standardize categorical predictors, and throws an error if all predictors are
categorical.

You cannot simultaneously specify 'Standardize',1 and either of 'Scale' or 'Cov'.

It is good practice to standardize the predictor data.
Example: 'Standardize',true
Data Types: logical

Output Arguments
t — kNN classification template
template object

kNN classification template suitable for training ensembles or error-correcting output code (ECOC)
multiclass models, returned as a template object. Pass t to fitcensemble or fitcecoc to specify
how to create the KNN classifier for the ensemble or ECOC model, respectively.

If you display t to the Command Window, then all, unspecified options appear empty ([]). However,
the software replaces empty options with their corresponding default values during training.

Version History
Introduced in R2014a

See Also
ClassificationKNN | ExhaustiveSearcher | fitcensemble | fitcecoc

Topics
“Random Subspace Classification” on page 19-105
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templateLinear
Linear classification learner template

Syntax
t = templateLinear()
t = templateLinear(Name,Value)

Description
templateLinear creates a template suitable for fitting a linear classification model to high-
dimensional data for multiclass problems.

The template specifies the binary learner model, regularization type and strength, and solver, among
other things. After creating the template, train the model by passing the template and data to
fitcecoc.

t = templateLinear() returns a linear classification learner template.

If you specify a default template, then the software uses default values for all input arguments during
training.

t = templateLinear(Name,Value) returns a template with additional options specified by one or
more name-value pair arguments. For example, you can specify to implement logistic regression,
specify the regularization type or strength, or specify the solver to use for objective-function
minimization.

If you display t in the Command Window, then all options appear empty ([]) except options that you
specify using name-value pair arguments. During training, the software uses default values for empty
options.

Examples

Train Multiclass Linear Classification Model

Train an ECOC model composed of multiple binary, linear classification models.

Load the NLP data set.

load nlpdata

X is a sparse matrix of predictor data, and Y is a categorical vector of class labels. There are more
than two classes in the data.

Create a default linear-classification-model template.

t = templateLinear();

To adjust the default values, see the “Name-Value Pair Arguments” on page 35-7241 on
templateLinear page.
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Train an ECOC model composed of multiple binary, linear classification models that can identify the
product given the frequency distribution of words on a documentation web page. For faster training
time, transpose the predictor data, and specify that observations correspond to columns.

X = X';
rng(1); % For reproducibility 
Mdl = fitcecoc(X,Y,'Learners',t,'ObservationsIn','columns')

Mdl = 
  CompactClassificationECOC
      ResponseName: 'Y'
        ClassNames: [comm    dsp    ecoder    fixedpoint    ...    ]
    ScoreTransform: 'none'
    BinaryLearners: {78x1 cell}
      CodingMatrix: [13x78 double]

  Properties, Methods

Alternatively, you can train an ECOC model composed of default linear classification models using
'Learners','Linear'.

To conserve memory, fitcecoc returns trained ECOC models composed of linear classification
learners in CompactClassificationECOC model objects.

Input Arguments
Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: 'Learner','logistic','Regularization','lasso','CrossVal','on' specifies to
implement logistic regression with a lasso penalty, and to implement 10-fold cross-validation.

Linear Classification Options

Lambda — Regularization term strength
'auto' (default) | nonnegative scalar | vector of nonnegative values

Regularization term strength, specified as the comma-separated pair consisting of 'Lambda' and
'auto', a nonnegative scalar, or a vector of nonnegative values.

• For 'auto', Lambda = 1/n.

• If you specify a cross-validation, name-value pair argument (e.g., CrossVal), then n is the
number of in-fold observations.

• Otherwise, n is the training sample size.
• For a vector of nonnegative values, templateLinear sequentially optimizes the objective

function for each distinct value in Lambda in ascending order.
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• If Solver is 'sgd' or 'asgd' and Regularization is 'lasso', templateLinear does not
use the previous coefficient estimates as a warm start on page 35-2093 for the next
optimization iteration. Otherwise, templateLinear uses warm starts.

• If Regularization is 'lasso', then any coefficient estimate of 0 retains its value when
templateLinear optimizes using subsequent values in Lambda.

• templateLinear returns coefficient estimates for each specified regularization strength.

Example: 'Lambda',10.^(-(10:-2:2))
Data Types: char | string | double | single

Learner — Linear classification model type
'svm' (default) | 'logistic'

Linear classification model type, specified as the comma-separated pair consisting of 'Learner' and
'svm' or 'logistic'.

In this table, f x = xβ + b .

• β is a vector of p coefficients.
• x is an observation from p predictor variables.
• b is the scalar bias.

Value Algorithm Response Range Loss Function
'svm' Support vector machine y ∊ {–1,1}; 1 for the

positive class and –1
otherwise

Hinge: ℓ y, f x = max
0, 1− yf x

'logistic' Logistic regression Same as 'svm' Deviance (logistic):
ℓ y, f x = log

1 + exp −yf x

Example: 'Learner','logistic'

Regularization — Complexity penalty type
'lasso' | 'ridge'

Complexity penalty type, specified as the comma-separated pair consisting of 'Regularization'
and 'lasso' or 'ridge'.

The software composes the objective function for minimization from the sum of the average loss
function (see Learner) and the regularization term in this table.

Value Description
'lasso'

Lasso (L1) penalty: λ ∑
j = 1

p
β j

'ridge'
Ridge (L2) penalty: λ2 ∑j = 1

p
β j

2

To specify the regularization term strength, which is λ in the expressions, use Lambda.

The software excludes the bias term (β0) from the regularization penalty.
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If Solver is 'sparsa', then the default value of Regularization is 'lasso'. Otherwise, the
default is 'ridge'.

Tip

• For predictor variable selection, specify 'lasso'. For more on variable selection, see
“Introduction to Feature Selection” on page 16-47.

• For optimization accuracy, specify 'ridge'.

Example: 'Regularization','lasso'

Solver — Objective function minimization technique
'sgd' | 'asgd' | 'dual' | 'bfgs' | 'lbfgs' | 'sparsa' | string array | cell array of character
vectors

Objective function minimization technique, specified as the comma-separated pair consisting of
'Solver' and a character vector or string scalar, a string array, or a cell array of character vectors
with values from this table.

Value Description Restrictions
'sgd' Stochastic gradient descent

(SGD) [4][2]
 

'asgd' Average stochastic gradient
descent (ASGD) [7]

 

'dual' Dual SGD for SVM [1][6] Regularization must be
'ridge' and Learner must be
'svm'.

'bfgs' Broyden-Fletcher-Goldfarb-
Shanno quasi-Newton algorithm
(BFGS) [3]

Inefficient if X is very high-
dimensional.

'lbfgs' Limited-memory BFGS (LBFGS)
[3]

Regularization must be
'ridge'.

'sparsa' Sparse Reconstruction by
Separable Approximation
(SpaRSA) [5]

Regularization must be
'lasso'.

If you specify:

• A ridge penalty (see Regularization) and the predictor data set contains 100 or fewer predictor
variables, then the default solver is 'bfgs'.

• An SVM model (see Learner), a ridge penalty, and the predictor data set contains more than 100
predictor variables, then the default solver is 'dual'.

• A lasso penalty and the predictor data set contains 100 or fewer predictor variables, then the
default solver is 'sparsa'.

Otherwise, the default solver is 'sgd'. Note that the default solver can change when you perform
hyperparameter optimization. For more information, see “Regularization method determines the
linear learner solver used during hyperparameter optimization” on page 35-1959.
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If you specify a string array or cell array of solver names, then, for each value in Lambda, the
software uses the solutions of solver j as a warm start for solver j + 1.
Example: {'sgd' 'lbfgs'} applies SGD to solve the objective, and uses the solution as a warm
start for LBFGS.

Tip

• SGD and ASGD can solve the objective function more quickly than other solvers, whereas LBFGS
and SpaRSA can yield more accurate solutions than other solvers. Solver combinations like
{'sgd' 'lbfgs'} and {'sgd' 'sparsa'} can balance optimization speed and accuracy.

• When choosing between SGD and ASGD, consider that:

• SGD takes less time per iteration, but requires more iterations to converge.
• ASGD requires fewer iterations to converge, but takes more time per iteration.

• If the predictor data is high dimensional and Regularization is 'ridge', set Solver to any of
these combinations:

• 'sgd'
• 'asgd'
• 'dual' if Learner is 'svm'
• 'lbfgs'
• {'sgd','lbfgs'}
• {'asgd','lbfgs'}
• {'dual','lbfgs'} if Learner is 'svm'

Although you can set other combinations, they often lead to solutions with poor accuracy.
• If the predictor data is moderate through low dimensional and Regularization is 'ridge', set

Solver to 'bfgs'.
• If Regularization is 'lasso', set Solver to any of these combinations:

• 'sgd'
• 'asgd'
• 'sparsa'
• {'sgd','sparsa'}
• {'asgd','sparsa'}

Example: 'Solver',{'sgd','lbfgs'}

Beta — Initial linear coefficient estimates
zeros(p,1) (default) | numeric vector | numeric matrix

Initial linear coefficient estimates (β), specified as the comma-separated pair consisting of 'Beta'
and a p-dimensional numeric vector or a p-by-L numeric matrix. p is the number of predictor
variables in X and L is the number of regularization-strength values (for more details, see Lambda).

• If you specify a p-dimensional vector, then the software optimizes the objective function L times
using this process.
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1 The software optimizes using Beta as the initial value and the minimum value of Lambda as
the regularization strength.

2 The software optimizes again using the resulting estimate from the previous optimization as a
warm start on page 35-2093, and the next smallest value in Lambda as the regularization
strength.

3 The software implements step 2 until it exhausts all values in Lambda.
• If you specify a p-by-L matrix, then the software optimizes the objective function L times. At

iteration j, the software uses Beta(:,j) as the initial value and, after it sorts Lambda in
ascending order, uses Lambda(j) as the regularization strength.

If you set 'Solver','dual', then the software ignores Beta.
Data Types: single | double

Bias — Initial intercept estimate
numeric scalar | numeric vector

Initial intercept estimate (b), specified as the comma-separated pair consisting of 'Bias' and a
numeric scalar or an L-dimensional numeric vector. L is the number of regularization-strength values
(for more details, see Lambda).

• If you specify a scalar, then the software optimizes the objective function L times using this
process.

1 The software optimizes using Bias as the initial value and the minimum value of Lambda as
the regularization strength.

2 The uses the resulting estimate as a warm start to the next optimization iteration, and uses
the next smallest value in Lambda as the regularization strength.

3 The software implements step 2 until it exhausts all values in Lambda.
• If you specify an L-dimensional vector, then the software optimizes the objective function L times.

At iteration j, the software uses Bias(j) as the initial value and, after it sorts Lambda in
ascending order, uses Lambda(j) as the regularization strength.

• By default:

• If Learner is 'logistic', then let gj be 1 if Y(j) is the positive class, and -1 otherwise.
Bias is the weighted average of the g for training or, for cross-validation, in-fold observations.

• If Learner is 'svm', then Bias is 0.

Data Types: single | double

FitBias — Linear model intercept inclusion flag
true (default) | false

Linear model intercept inclusion flag, specified as the comma-separated pair consisting of
'FitBias' and true or false.

Value Description
true The software includes the bias term b in the

linear model, and then estimates it.
false The software sets b = 0 during estimation.

Example: 'FitBias',false
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Data Types: logical

PostFitBias — Flag to fit linear model intercept after optimization
false (default) | true

Flag to fit the linear model intercept after optimization, specified as the comma-separated pair
consisting of 'PostFitBias' and true or false.

Value Description
false The software estimates the bias term b and the

coefficients β during optimization.
true To estimate b, the software:

1 Estimates β and b using the model
2 Estimates classification scores
3 Refits b by placing the threshold on the

classification scores that attains maximum
accuracy

If you specify true, then FitBias must be true.
Example: 'PostFitBias',true
Data Types: logical

Verbose — Verbosity level
0 (default) | 1

Verbosity level, specified as the comma-separated pair consisting of 'Verbose' and either 0 or 1.
Verbose controls the display of diagnostic information at the command line.

Value Description
0 templateLinear does not display diagnostic information.
1 templateLinear periodically displays the value of the objective function,

gradient magnitude, and other diagnostic information.

Example: 'Verbose',1
Data Types: single | double

SGD and ASGD Solver Options

BatchSize — Mini-batch size
positive integer

Mini-batch size, specified as the comma-separated pair consisting of 'BatchSize' and a positive
integer. At each iteration, the software estimates the gradient using BatchSize observations from
the training data.

• If the predictor data is a numeric matrix, then the default value is 10.
• If the predictor data is a sparse matrix, then the default value is max([10,ceil(sqrt(ff))]),

where ff = numel(X)/nnz(X), that is, the fullness factor of X.

35 Functions

35-7246



Example: 'BatchSize',100
Data Types: single | double

LearnRate — Learning rate
positive scalar

Learning rate, specified as the comma-separated pair consisting of 'LearnRate' and a positive
scalar. LearnRate controls the optimization step size by scaling the subgradient.

• If Regularization is 'ridge', then LearnRate specifies the initial learning rate γ0.
templateLinear determines the learning rate for iteration t, γt, using

γt =
γ0

1 + λγ0t c .

• λ is the value of Lambda.
• If Solver is 'sgd', then c = 1.
• If Solver is 'asgd', then c is 0.75 [7].

• If Regularization is 'lasso', then, for all iterations, LearnRate is constant.

By default, LearnRate is 1/sqrt(1+max((sum(X.^2,obsDim)))), where obsDim is 1 if the
observations compose the columns of the predictor data X, and 2 otherwise.
Example: 'LearnRate',0.01
Data Types: single | double

OptimizeLearnRate — Flag to decrease learning rate
true (default) | false

Flag to decrease the learning rate when the software detects divergence (that is, over-stepping the
minimum), specified as the comma-separated pair consisting of 'OptimizeLearnRate' and true or
false.

If OptimizeLearnRate is 'true', then:

1 For the few optimization iterations, the software starts optimization using LearnRate as the
learning rate.

2 If the value of the objective function increases, then the software restarts and uses half of the
current value of the learning rate.

3 The software iterates step 2 until the objective function decreases.

Example: 'OptimizeLearnRate',true
Data Types: logical

TruncationPeriod — Number of mini-batches between lasso truncation runs
10 (default) | positive integer

Number of mini-batches between lasso truncation runs, specified as the comma-separated pair
consisting of 'TruncationPeriod' and a positive integer.
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After a truncation run, the software applies a soft threshold to the linear coefficients. That is, after
processing k = TruncationPeriod mini-batches, the software truncates the estimated coefficient j
using

β j
∗ =

β j− ut if β j > ut,

0 if β j ≤ ut,

β j + ut if β j < − ut .

• For SGD, β j is the estimate of coefficient j after processing k mini-batches. ut = kγtλ . γt is the
learning rate at iteration t. λ is the value of Lambda.

• For ASGD, β j is the averaged estimate coefficient j after processing k mini-batches, ut = kλ .

If Regularization is 'ridge', then the software ignores TruncationPeriod.
Example: 'TruncationPeriod',100
Data Types: single | double

SGD and ASGD Convergence Controls

BatchLimit — Maximal number of batches
positive integer

Maximal number of batches to process, specified as the comma-separated pair consisting of
'BatchLimit' and a positive integer. When the software processes BatchLimit batches, it
terminates optimization.

• By default:

• The software passes through the data PassLimit times.
• If you specify multiple solvers, and use (A)SGD to get an initial approximation for the next

solver, then the default value is ceil(1e6/BatchSize). BatchSize is the value of the
'BatchSize' name-value pair argument.

• If you specify BatchLimit, then templateLinear uses the argument that results in processing
the fewest observations, either BatchLimit or PassLimit.

Example: 'BatchLimit',100
Data Types: single | double

BetaTolerance — Relative tolerance on linear coefficients and bias term
1e-4 (default) | nonnegative scalar

Relative tolerance on the linear coefficients and the bias term (intercept), specified as the comma-
separated pair consisting of 'BetaTolerance' and a nonnegative scalar.

Let Bt = βt′ bt , that is, the vector of the coefficients and the bias term at optimization iteration t. If
Bt − Bt − 1

Bt 2
< BetaTolerance, then optimization terminates.
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If the software converges for the last solver specified in Solver, then optimization terminates.
Otherwise, the software uses the next solver specified in Solver.
Example: 'BetaTolerance',1e-6
Data Types: single | double

NumCheckConvergence — Number of batches to process before next convergence check
positive integer

Number of batches to process before next convergence check, specified as the comma-separated pair
consisting of 'NumCheckConvergence' and a positive integer.

To specify the batch size, see BatchSize.

The software checks for convergence about 10 times per pass through the entire data set by default.
Example: 'NumCheckConvergence',100
Data Types: single | double

PassLimit — Maximal number of passes
1 (default) | positive integer

Maximal number of passes through the data, specified as the comma-separated pair consisting of
'PassLimit' and a positive integer.

The software processes all observations when it completes one pass through the data.

When the software passes through the data PassLimit times, it terminates optimization.

If you specify BatchLimit, then templateLinear uses the argument that results in processing the
fewest observations, either BatchLimit or PassLimit.
Example: 'PassLimit',5
Data Types: single | double

Dual SGD Convergence Controls

BetaTolerance — Relative tolerance on linear coefficients and bias term
1e-4 (default) | nonnegative scalar

Relative tolerance on the linear coefficients and the bias term (intercept), specified as the comma-
separated pair consisting of 'BetaTolerance' and a nonnegative scalar.

Let Bt = βt′ bt , that is, the vector of the coefficients and the bias term at optimization iteration t. If
Bt − Bt − 1

Bt 2
< BetaTolerance, then optimization terminates.

If you also specify DeltaGradientTolerance, then optimization terminates when the software
satisfies either stopping criterion.

If the software converges for the last solver specified in Solver, then optimization terminates.
Otherwise, the software uses the next solver specified in Solver.
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Example: 'BetaTolerance',1e-6
Data Types: single | double

DeltaGradientTolerance — Gradient-difference tolerance
1 (default) | nonnegative scalar

Gradient-difference tolerance between upper and lower pool Karush-Kuhn-Tucker (KKT)
complementarity conditions on page 35-2206 violators, specified as the comma-separated pair
consisting of 'DeltaGradientTolerance' and a nonnegative scalar.

• If the magnitude of the KKT violators is less than DeltaGradientTolerance, then the software
terminates optimization.

• If the software converges for the last solver specified in Solver, then optimization terminates.
Otherwise, the software uses the next solver specified in Solver.

Example: 'DeltaGapTolerance',1e-2
Data Types: double | single

NumCheckConvergence — Number of passes through entire data set to process before next
convergence check
5 (default) | positive integer

Number of passes through entire data set to process before next convergence check, specified as the
comma-separated pair consisting of 'NumCheckConvergence' and a positive integer.
Example: 'NumCheckConvergence',100
Data Types: single | double

PassLimit — Maximal number of passes
10 (default) | positive integer

Maximal number of passes through the data, specified as the comma-separated pair consisting of
'PassLimit' and a positive integer.

When the software completes one pass through the data, it has processed all observations.

When the software passes through the data PassLimit times, it terminates optimization.
Example: 'PassLimit',5
Data Types: single | double

BFGS, LBFGS, and SpaRSA Convergence Controls

BetaTolerance — Relative tolerance on linear coefficients and bias term
1e-4 (default) | nonnegative scalar

Relative tolerance on the linear coefficients and the bias term (intercept), specified as a nonnegative
scalar.

Let Bt = βt′ bt , that is, the vector of the coefficients and the bias term at optimization iteration t. If
Bt − Bt − 1

Bt 2
< BetaTolerance, then optimization terminates.
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If you also specify GradientTolerance, then optimization terminates when the software satisfies
either stopping criterion.

If the software converges for the last solver specified in Solver, then optimization terminates.
Otherwise, the software uses the next solver specified in Solver.
Example: 'BetaTolerance',1e-6
Data Types: single | double

GradientTolerance — Absolute gradient tolerance
1e-6 (default) | nonnegative scalar

Absolute gradient tolerance, specified as a nonnegative scalar.

Let ∇ℒ t be the gradient vector of the objective function with respect to the coefficients and bias term
at optimization iteration t. If ∇ℒ t ∞ = max ∇ℒ t < GradientTolerance, then optimization terminates.

If you also specify BetaTolerance, then optimization terminates when the software satisfies either
stopping criterion.

If the software converges for the last solver specified in the software, then optimization terminates.
Otherwise, the software uses the next solver specified in Solver.
Example: 'GradientTolerance',1e-5
Data Types: single | double

HessianHistorySize — Size of history buffer for Hessian approximation
15 (default) | positive integer

Size of history buffer for Hessian approximation, specified as the comma-separated pair consisting of
'HessianHistorySize' and a positive integer. That is, at each iteration, the software composes the
Hessian using statistics from the latest HessianHistorySize iterations.

The software does not support 'HessianHistorySize' for SpaRSA.
Example: 'HessianHistorySize',10
Data Types: single | double

IterationLimit — Maximal number of optimization iterations
1000 (default) | positive integer

Maximal number of optimization iterations, specified as the comma-separated pair consisting of
'IterationLimit' and a positive integer. IterationLimit applies to these values of Solver:
'bfgs', 'lbfgs', and 'sparsa'.
Example: 'IterationLimit',500
Data Types: single | double

Output Arguments
t — Linear classification model learner template
template object
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Linear classification model learner template, returned as a template object. To train a linear
classification model using high-dimensional data for multiclass problems, pass t to fitcecoc.

If you display t to the Command Window, then all, unspecified options appear empty ([]). However,
the software replaces empty options with their corresponding default values during training.

More About
Warm Start

A warm start is initial estimates of the beta coefficients and bias term supplied to an optimization
routine for quicker convergence.

Tips
• It is a best practice to orient your predictor matrix so that observations correspond to columns

and to specify 'ObservationsIn','columns'. As a result, you can experience a significant
reduction in optimization-execution time.

• If the predictor data has few observations, but many predictor variables, then:

• Specify 'PostFitBias',true.
• For SGD or ASGD solvers, set PassLimit to a positive integer that is greater than 1, for

example, 5 or 10. This setting often results in better accuracy.
• For SGD and ASGD solvers, BatchSize affects the rate of convergence.

• If BatchSize is too small, then the software achieves the minimum in many iterations, but
computes the gradient per iteration quickly.

• If BatchSize is too large, then the software achieves the minimum in fewer iterations, but
computes the gradient per iteration slowly.

• Large learning rate (see LearnRate) speed-up convergence to the minimum, but can lead to
divergence (that is, over-stepping the minimum). Small learning rates ensure convergence to the
minimum, but can lead to slow termination.

• If Regularization is 'lasso', then experiment with various values of TruncationPeriod.
For example, set TruncationPeriod to 1, 10, and then 100.

• For efficiency, the software does not standardize predictor data. To standardize the predictor data
(X), enter

X = bsxfun(@rdivide,bsxfun(@minus,X,mean(X,2)),std(X,0,2));

The code requires that you orient the predictors and observations as the rows and columns of X,
respectively. Also, for memory-usage economy, the code replaces the original predictor data the
standardized data.

Version History
Introduced in R2016a
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Extended Capabilities
Tall Arrays
Calculate with arrays that have more rows than fit in memory.

Usage notes and limitations when you train a model by passing a linear model template and tall
arrays to fitcecoc:

• The default values for these name-value pair arguments are different when you work with tall
arrays.

• 'Lambda' — Can be 'auto' (default) or a scalar
• 'Regularization' — Supports only 'ridge'
• 'Solver' — Supports only 'lbfgs'
• 'FitBias' — Supports only true
• 'Verbose' — Default value is 1
• 'BetaTolerance' — Default value is relaxed to 1e–3
• 'GradientTolerance' — Default value is relaxed to 1e–3
• 'IterationLimit' — Default value is relaxed to 20

• When fitcecoc uses a templateLinear object with tall arrays, the only available solver is
LBFGS. The software implements LBFGS by distributing the calculation of the loss and gradient
among different parts of the tall array at each iteration. If you do not specify initial values for
Beta and Bias, the software refines the initial estimates of the parameters by fitting the model
locally to parts of the data and combining the coefficients by averaging.

For more information, see “Tall Arrays”.
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See Also
fitclinear | fitrlinear | fitcecoc
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templateNaiveBayes
Naive Bayes classifier template

Syntax
t = templateNaiveBayes()
t = templateNaiveBayes(Name,Value)

Description
t = templateNaiveBayes() returns a naive Bayes on page 35-7259 template suitable for training
error-correcting output code (ECOC) multiclass models.

If you specify a default template, then the software uses default values for all input arguments during
training.

Specify t as a learner in fitcecoc.

t = templateNaiveBayes(Name,Value) returns a template with additional options specified by
one or more name-value pair arguments. All properties of t are empty, except those you specify using
Name,Value pair arguments.

For example, you can specify distributions for the predictors.

If you display t in the Command Window, then all options appear empty ([]), except those that you
specify using name-value pair arguments. During training, the software uses default values for empty
options.

Examples

Create a Default Naive Bayes Template

Use templateNaiveBayes to specify a default naive Bayes template.

t = templateNaiveBayes()

t = 
Fit template for classification NaiveBayes.

    DistributionNames: [1x0 double]
               Kernel: []
              Support: []
                Width: []
              Version: 1
               Method: 'NaiveBayes'
                 Type: 'classification'

All properties of the template object are empty except for Method and Type. When you pass t to the
training function, the software fills in the empty properties with their respective default values. For
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example, the software fills the DistributionNames property with a 1-by- D cell array of character
vectors with 'normal' in each cell, where D is the number of predictors. For details on other default
values, see fitcnb.

t is a plan for a naive Bayes learner, and no computation occurs when you specify it. You can pass t
to fitcecoc to specify naive Bayes binary learners for ECOC multiclass learning.

Create a Naive Bayes Template for ECOC Multiclass Learning

Create a nondefault naive Bayes template for use in fitcecoc.

Load Fisher's iris data set.

load fisheriris

Create a template for naive Bayes binary classifiers, and specify kernel distributions for all
predictors.

t = templateNaiveBayes('DistributionNames','kernel')

t = 
Fit template for classification NaiveBayes.

    DistributionNames: 'kernel'
               Kernel: []
              Support: []
                Width: []
              Version: 1
               Method: 'NaiveBayes'
                 Type: 'classification'

All properties of the template object are empty except for DistributionNames, Method, and Type.
When you pass t to the training function, the software fills in the empty properties with their
respective default values.

Specify t as a binary learner for an ECOC multiclass model.

Mdl = fitcecoc(meas,species,'Learners',t);

By default, the software trains Mdl using the one-versus-one coding design.

Display the in-sample (resubstitution) misclassification error.

L = resubLoss(Mdl,'LossFun','classiferror')

L = 0.0333
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Input Arguments
Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: 'DistributionNames','mn' specifies to treat all predictors as token counts for a
multinomial model.

DistributionNames — Data distributions
'kernel' | 'mn' | 'mvmn' | 'normal' | string array | cell array of character vectors

Data distributions fitcnb uses to model the data, specified as the comma-separated pair consisting
of 'DistributionNames' and a character vector or string scalar, a string array, or a cell array of
character vectors with values from this table.

Value Description
'kernel' Kernel smoothing density estimate.
'mn' Multinomial distribution. If you specify mn, then

all features are components of a multinomial
distribution. Therefore, you cannot include 'mn'
as an element of a string array or a cell array of
character vectors. For details, see “Algorithms”
on page 35-2125.

'mvmn' Multivariate multinomial distribution. For details,
see “Algorithms” on page 35-2125.

'normal' Normal (Gaussian) distribution.

If you specify a character vector or string scalar, then the software models all the features using that
distribution. If you specify a 1-by-P string array or cell array of character vectors, then the software
models feature j using the distribution in element j of the array.

By default, the software sets all predictors specified as categorical predictors (using the
CategoricalPredictors name-value pair argument) to 'mvmn'. Otherwise, the default
distribution is 'normal'.

You must specify that at least one predictor has distribution 'kernel' to additionally specify
Kernel, Support, or Width.
Example: 'DistributionNames','mn'
Example: 'DistributionNames',{'kernel','normal','kernel'}

Kernel — Kernel smoother type
'normal' (default) | 'box' | 'epanechnikov' | 'triangle' | string array | cell array of character
vectors

Kernel smoother type, specified as the comma-separated pair consisting of 'Kernel' and a character
vector or string scalar, a string array, or a cell array of character vectors.
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This table summarizes the available options for setting the kernel smoothing density region. Let I{u}
denote the indicator function.

Value Kernel Formula
'box' Box (uniform) f (x) = 0.5I x ≤ 1
'epanechnik
ov'

Epanechnikov f (x) = 0.75 1− x2 I x ≤ 1

'normal' Gaussian f (x) = 1
2πexp −0.5x2

'triangle' Triangular f (x) = 1− x I x ≤ 1

If you specify a 1-by-P string array or cell array, with each element of the array containing any value
in the table, then the software trains the classifier using the kernel smoother type in element j for
feature j in X. The software ignores elements of Kernel not corresponding to a predictor whose
distribution is 'kernel'.

You must specify that at least one predictor has distribution 'kernel' to additionally specify
Kernel, Support, or Width.
Example: 'Kernel',{'epanechnikov','normal'}

Support — Kernel smoothing density support
'unbounded' (default) | 'positive' | string array | cell array | numeric row vector

Kernel smoothing density support, specified as the comma-separated pair consisting of 'Support'
and 'positive', 'unbounded', a string array, a cell array, or a numeric row vector. The software
applies the kernel smoothing density to the specified region.

This table summarizes the available options for setting the kernel smoothing density region.

Value Description
1-by-2 numeric row vector For example, [L,U], where L and U are the finite lower and upper

bounds, respectively, for the density support.
'positive' The density support is all positive real values.
'unbounded' The density support is all real values.

If you specify a 1-by-P string array or cell array, with each element in the string array containing any
text value in the table and each element in the cell array containing any value in the table, then the
software trains the classifier using the kernel support in element j for feature j in X. The software
ignores elements of Kernel not corresponding to a predictor whose distribution is 'kernel'.

You must specify that at least one predictor has distribution 'kernel' to additionally specify
Kernel, Support, or Width.
Example: 'KSSupport',{[-10,20],'unbounded'}
Data Types: char | string | cell | double

Width — Kernel smoothing window width
matrix of numeric values | numeric column vector | numeric row vector | scalar

Kernel smoothing window width, specified as the comma-separated pair consisting of 'Width' and a
matrix of numeric values, numeric column vector, numeric row vector, or scalar.
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Suppose there are K class levels and P predictors. This table summarizes the available options for
setting the kernel smoothing window width.

Value Description
K-by-P matrix of numeric values Element (k,j) specifies the width for predictor j in class k.
K-by-1 numeric column vector Element k specifies the width for all predictors in class k.
1-by-P numeric row vector Element j specifies the width in all class levels for

predictor j.
scalar Specifies the bandwidth for all features in all classes.

By default, the software selects a default width automatically for each combination of predictor and
class by using a value that is optimal for a Gaussian distribution. If you specify Width and it contains
NaNs, then the software selects widths for the elements containing NaNs.

You must specify that at least one predictor has distribution 'kernel' to additionally specify
Kernel, Support, or Width.
Example: 'Width',[NaN NaN]
Data Types: double | struct

Output Arguments
t — Naive Bayes classification template
template object

Naive Bayes classification template suitable for training error-correcting output code (ECOC)
multiclass models, returned as a template object. Pass t to fitcecoc to specify how to create the
naive Bayes classifier for the ECOC model.

If you display t to the Command Window, then all, unspecified options appear empty ([]). However,
the software replaces empty options with their corresponding default values during training.

More About
Bag-of-Tokens Model

In the bag-of-tokens model, the value of predictor j is the nonnegative number of occurrences of
token j in the observation. The number of categories (bins) in the multinomial model is the number of
distinct tokens (number of predictors).

Naive Bayes

Naive Bayes is a classification algorithm that applies density estimation to the data.

The algorithm leverages Bayes theorem, and (naively) assumes that the predictors are conditionally
independent, given the class. Although the assumption is usually violated in practice, naive Bayes
classifiers tend to yield posterior distributions that are robust to biased class density estimates,
particularly where the posterior is 0.5 (the decision boundary) [1].

Naive Bayes classifiers assign observations to the most probable class (in other words, the maximum
a posteriori decision rule). Explicitly, the algorithm takes these steps:
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1 Estimate the densities of the predictors within each class.
2 Model posterior probabilities according to Bayes rule. That is, for all k = 1,...,K,

P Y = k X1, .., XP =
π Y = k ∏

j = 1

P
P X j Y = k

∑k = 1

K

π Y = k ∏
j = 1

P
P X j Y = k

,

where:

• Y is the random variable corresponding to the class index of an observation.
• X1,...,XP are the random predictors of an observation.
• π Y = k  is the prior probability that a class index is k.

3 Classify an observation by estimating the posterior probability for each class, and then assign the
observation to the class yielding the maximum posterior probability.

If the predictors compose a multinomial distribution, then the posterior probability
P Y = k X1, .., XP ∝ π Y = k Pmn X1, ..., XP Y = k , where Pmn X1, ..., XP Y = k  is the probability
mass function of a multinomial distribution.

Algorithms
• If predictor variable j has a conditional normal distribution (see the DistributionNames name-

value argument), the software fits the distribution to the data by computing the class-specific
weighted mean and the unbiased estimate of the weighted standard deviation. For each class k:

• The weighted mean of predictor j is

x j k =
∑

i: yi = k
wixi j

∑
i: yi = k

wi
,

where wi is the weight for observation i. The software normalizes weights within a class such
that they sum to the prior probability for that class.

• The unbiased estimator of the weighted standard deviation of predictor j is

s j k =
∑

i: yi = k
wi xi j− x j k

2

z1 k−
z2 k
z1 k

1/2

,

where z1|k is the sum of the weights within class k and z2|k is the sum of the squared weights
within class k.

• If all predictor variables compose a conditional multinomial distribution (you specify
'DistributionNames','mn'), the software fits the distribution using the bag-of-tokens model
on page 35-7259. The software stores the probability that token j appears in class k in the
property DistributionParameters{k,j}. Using additive smoothing [2], the estimated
probability is
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P(token  j class k) =
1 + c j k
P + ck

,

where:

•

c j k = nk

∑
i: yi = k

xi jwi

∑
i: yi = k

wi
, which is the weighted number of occurrences of token j in class k.

• nk is the number of observations in class k.
• wi is the weight for observation i. The software normalizes weights within a class such that

they sum to the prior probability for that class.
•

ck = ∑
j = 1

P
c j k, which is the total weighted number of occurrences of all tokens in class k.

• If predictor variable j has a conditional multivariate multinomial distribution:

1 The software collects a list of the unique levels, stores the sorted list in
CategoricalLevels, and considers each level a bin. Each predictor/class combination is a
separate, independent multinomial random variable.

2 For each class k, the software counts instances of each categorical level using the list stored
in CategoricalLevels{j}.

3 The software stores the probability that predictor j, in class k, has level L in the property
DistributionParameters{k,j}, for all levels in CategoricalLevels{j}. Using additive
smoothing [2], the estimated probability is

P predictor  j = L class k =
1 + m j k(L)

m j + mk
,

where:

•

m j k(L) = nk

∑
i: yi = k

I xi j = L wi

∑
i: yi = k

wi
, which is the weighted number of observations for which

predictor j equals L in class k.
• nk is the number of observations in class k.
• I xi j = L = 1 if xij = L, 0 otherwise.

• wi is the weight for observation i. The software normalizes weights within a class such that
they sum to the prior probability for that class.

• mj is the number of distinct levels in predictor j.
• mk is the weighted number of observations in class k.

Version History
Introduced in R2014b
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templateSVM
Support vector machine template

Syntax
t = templateSVM()
t = templateSVM(Name,Value)

Description
t = templateSVM() returns a support vector machine (SVM) learner template suitable for training
error-correcting output code (ECOC) multiclass models.

If you specify a default template, then the software uses default values for all input arguments during
training.

Specify t as a binary learner, or one in a set of binary learners, in fitcecoc to train an ECOC
multiclass classifier.

t = templateSVM(Name,Value) returns a template with additional options specified by one or
more name-value pair arguments.

For example, you can specify the box constraint, the kernel function, or whether to standardize the
predictors.

If you display t in the Command Window, then all options appear empty ([]), except those that you
specify using name-value pair arguments. During training, the software uses default values for empty
options.

Examples

Create a Default Support Vector Machine Template

Use templateSVM to specify a default SVM template.

t = templateSVM()

t = 
Fit template for classification SVM.

                     Alpha: [0x1 double]
             BoxConstraint: []
                 CacheSize: []
             CachingMethod: ''
                ClipAlphas: []
    DeltaGradientTolerance: []
                   Epsilon: []
              GapTolerance: []
              KKTTolerance: []
            IterationLimit: []
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            KernelFunction: ''
               KernelScale: []
              KernelOffset: []
     KernelPolynomialOrder: []
                  NumPrint: []
                        Nu: []
           OutlierFraction: []
          RemoveDuplicates: []
           ShrinkagePeriod: []
                    Solver: ''
           StandardizeData: []
        SaveSupportVectors: []
            VerbosityLevel: []
                   Version: 2
                    Method: 'SVM'
                      Type: 'classification'

All properties of the template object are empty except for Method and Type. When you pass t to the
training function, the software fills in the empty properties with their respective default values. For
example, the software fills the KernelFunction property with 'linear'. For details on other
default values, see fitcsvm.

t is a plan for an SVM learner, and no computation occurs when you specify it. You can pass t to
fitcecoc to specify SVM binary learners for ECOC multiclass learning. However, by default,
fitcecoc uses default SVM binary learners.

Create an SVM Template for ECOC Multiclass Learning

Create a nondefault SVM template for use in fitcecoc.

Load Fisher's iris data set.

load fisheriris

Create a template for SVM binary classifiers, and specify to use a Gaussian kernel function.

t = templateSVM('KernelFunction','gaussian')

t = 
Fit template for classification SVM.

                     Alpha: [0x1 double]
             BoxConstraint: []
                 CacheSize: []
             CachingMethod: ''
                ClipAlphas: []
    DeltaGradientTolerance: []
                   Epsilon: []
              GapTolerance: []
              KKTTolerance: []
            IterationLimit: []
            KernelFunction: 'gaussian'
               KernelScale: []
              KernelOffset: []
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     KernelPolynomialOrder: []
                  NumPrint: []
                        Nu: []
           OutlierFraction: []
          RemoveDuplicates: []
           ShrinkagePeriod: []
                    Solver: ''
           StandardizeData: []
        SaveSupportVectors: []
            VerbosityLevel: []
                   Version: 2
                    Method: 'SVM'
                      Type: 'classification'

All properties of the template object are empty except for DistributionNames, Method, and Type.
When trained on, the software fills in the empty properties with their respective default values.

Specify t as a binary learner for an ECOC multiclass model.

Mdl = fitcecoc(meas,species,'Learners',t);

Mdl is a ClassificationECOC multiclass classifier. By default, the software trains Mdl using the
one-versus-one coding design.

Display the in-sample (resubstitution) misclassification error.

L = resubLoss(Mdl,'LossFun','classiferror')

L = 0.0200

Retain and Discard Support Vectors of SVM Binary Learners

When you train an ECOC model with linear SVM binary learners, fitcecoc empties the Alpha,
SupportVectorLabels, and SupportVectors properties of the binary learners by default. You can
choose instead to retain the support vectors and related values, and then discard them from the
model later.

Load Fisher's iris data set.

load fisheriris
rng(1); % For reproducibility

Train an ECOC model using the entire data set. Specify retaining the support vectors by passing in
the appropriate SVM template.

t = templateSVM('SaveSupportVectors',true);
MdlSV = fitcecoc(meas,species,'Learners',t);

MdlSV is a trained ClassificationECOC model with linear SVM binary learners. By default,
fitcecoc implements a one-versus-one coding design, which requires three binary learners for
three-class learning.

Access the estimated α (alpha) values using dot notation.
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alpha = cell(3,1);
alpha{1} = MdlSV.BinaryLearners{1}.Alpha;
alpha{2} = MdlSV.BinaryLearners{2}.Alpha;
alpha{3} = MdlSV.BinaryLearners{3}.Alpha;
alpha

alpha=3×1 cell array
    { 3x1 double}
    { 3x1 double}
    {23x1 double}

alpha is a 3-by-1 cell array that stores the estimated values of α.

Discard the support vectors and related values from the ECOC model.

Mdl = discardSupportVectors(MdlSV);

Mdl is similar to MdlSV, except that the Alpha, SupportVectorLabels, and SupportVectors
properties of all the linear SVM binary learners are empty ([]).

areAllEmpty = @(x)isempty([x.Alpha x.SupportVectors x.SupportVectorLabels]);
cellfun(areAllEmpty,Mdl.BinaryLearners)

ans = 3x1 logical array

   1
   1
   1

Compare the sizes of the two ECOC models.

vars = whos('Mdl','MdlSV');
100*(1 - vars(1).bytes/vars(2).bytes)

ans = 4.7075

Mdl is about 5% smaller than MdlSV.

Reduce your memory usage by compacting Mdl and then clearing Mdl and MdlSV from the
workspace.

CompactMdl = compact(Mdl);
clear Mdl MdlSV;

Predict the label for a random row of the training data using the more efficient SVM model.

idx = randsample(size(meas,1),1)

idx = 63

predictedLabel = predict(CompactMdl,meas(idx,:))

predictedLabel = 1x1 cell array
    {'versicolor'}

trueLabel = species(idx)
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trueLabel = 1x1 cell array
    {'versicolor'}

Input Arguments
Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: 'BoxConstraint',0.1,'KernelFunction','gaussian','Standardize',1 specifies
a box constraint of 0.1, to use the Gaussian (RBF) kernel, and to standardize the predictors.

BoxConstraint — Box constraint
1 (default) | positive scalar

Box constraint on page 35-2206, specified as the comma-separated pair consisting of
'BoxConstraint' and a positive scalar.

For one-class learning, the software always sets the box constraint to 1.

For more details on the relationships and algorithmic behavior of BoxConstraint, Cost, Prior,
Standardize, and Weights, see “Algorithms” on page 35-2209.
Example: 'BoxConstraint',100
Data Types: double | single

CacheSize — Cache size
1000 (default) | 'maximal' | positive scalar

Cache size, specified as the comma-separated pair consisting of 'CacheSize' and 'maximal' or a
positive scalar.

If CacheSize is 'maximal', then the software reserves enough memory to hold the entire n-by-n
Gram matrix on page 35-2206.

If CacheSize is a positive scalar, then the software reserves CacheSize megabytes of memory for
training the model.
Example: 'CacheSize','maximal'
Data Types: double | single | char | string

ClipAlphas — Flag to clip alpha coefficients
true (default) | false

Flag to clip alpha coefficients, specified as the comma-separated pair consisting of 'ClipAlphas'
and either true or false.

Suppose that the alpha coefficient for observation j is αj and the box constraint of observation j is Cj, j
= 1,...,n, where n is the training sample size.
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Value Description
true At each iteration, if αj is near 0 or near Cj, then MATLAB sets αj to 0 or to Cj,

respectively.
false MATLAB does not change the alpha coefficients during optimization.

MATLAB stores the final values of α in the Alpha property of the trained SVM model object.

ClipAlphas can affect SMO and ISDA convergence.
Example: 'ClipAlphas',false
Data Types: logical

DeltaGradientTolerance — Tolerance for gradient difference
nonnegative scalar

Tolerance for the gradient difference between upper and lower violators obtained by Sequential
Minimal Optimization (SMO) or Iterative Single Data Algorithm (ISDA), specified as the comma-
separated pair consisting of 'DeltaGradientTolerance' and a nonnegative scalar.

If DeltaGradientTolerance is 0, then the software does not use the tolerance for the gradient
difference to check for optimization convergence.

The default values are:

• 1e-3 if the solver is SMO (for example, you set 'Solver','SMO')
• 0 if the solver is ISDA (for example, you set 'Solver','ISDA')

Example: 'DeltaGradientTolerance',1e-2
Data Types: double | single

GapTolerance — Feasibility gap tolerance
0 (default) | nonnegative scalar

Feasibility gap tolerance obtained by SMO or ISDA, specified as the comma-separated pair consisting
of 'GapTolerance' and a nonnegative scalar.

If GapTolerance is 0, then the software does not use the feasibility gap tolerance to check for
optimization convergence.
Example: 'GapTolerance',1e-2
Data Types: double | single

IterationLimit — Maximal number of numerical optimization iterations
1e6 (default) | positive integer

Maximal number of numerical optimization iterations, specified as the comma-separated pair
consisting of 'IterationLimit' and a positive integer.

The software returns a trained model regardless of whether the optimization routine successfully
converges. Mdl.ConvergenceInfo contains convergence information.
Example: 'IterationLimit',1e8
Data Types: double | single
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KernelFunction — Kernel function
'linear' | 'gaussian' | 'rbf' | 'polynomial' | function name

Kernel function used to compute the elements of the Gram matrix on page 35-2206, specified as the
comma-separated pair consisting of 'KernelFunction' and a kernel function name. Suppose
G(xj,xk) is element (j,k) of the Gram matrix, where xj and xk are p-dimensional vectors representing
observations j and k in X. This table describes supported kernel function names and their functional
forms.

Kernel Function Name Description Formula
'gaussian' or 'rbf' Gaussian or Radial Basis

Function (RBF) kernel, default
for one-class learning

G x j, xk = exp − x j− xk
2

'linear' Linear kernel, default for two-
class learning

G(x j, xk) = x j′xk

'polynomial' Polynomial kernel. Use
'PolynomialOrder',q to
specify a polynomial kernel of
order q.

G(x j, xk) = (1 + x j′xk)q

You can set your own kernel function, for example, kernel, by setting
'KernelFunction','kernel'. The value kernel must have this form.

function G = kernel(U,V)

where:

• U is an m-by-p matrix. Columns correspond to predictor variables, and rows correspond to
observations.

• V is an n-by-p matrix. Columns correspond to predictor variables, and rows correspond to
observations.

• G is an m-by-n Gram matrix on page 35-2206 of the rows of U and V.

kernel.m must be on the MATLAB path.

It is a good practice to avoid using generic names for kernel functions. For example, call a sigmoid
kernel function 'mysigmoid' rather than 'sigmoid'.
Example: 'KernelFunction','gaussian'
Data Types: char | string

KernelOffset — Kernel offset parameter
nonnegative scalar

Kernel offset parameter, specified as the comma-separated pair consisting of 'KernelOffset' and a
nonnegative scalar.

The software adds KernelOffset to each element of the Gram matrix.

The defaults are:

• 0 if the solver is SMO (that is, you set 'Solver','SMO')
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• 0.1 if the solver is ISDA (that is, you set 'Solver','ISDA')

Example: 'KernelOffset',0
Data Types: double | single

KernelScale — Kernel scale parameter
1 (default) | 'auto' | positive scalar

Kernel scale parameter, specified as the comma-separated pair consisting of 'KernelScale' and
'auto' or a positive scalar. The software divides all elements of the predictor matrix X by the value
of KernelScale. Then, the software applies the appropriate kernel norm to compute the Gram
matrix.

• If you specify 'auto', then the software selects an appropriate scale factor using a heuristic
procedure. This heuristic procedure uses subsampling, so estimates can vary from one call to
another. Therefore, to reproduce results, set a random number seed using rng before training.

• If you specify KernelScale and your own kernel function, for example,
'KernelFunction','kernel', then the software throws an error. You must apply scaling within
kernel.

Example: 'KernelScale','auto'
Data Types: double | single | char | string

KKTTolerance — Karush-Kuhn-Tucker complementarity conditions violation tolerance
nonnegative scalar

Karush-Kuhn-Tucker (KKT) complementarity conditions on page 35-2206 violation tolerance, specified
as the comma-separated pair consisting of 'KKTTolerance' and a nonnegative scalar.

If KKTTolerance is 0, then the software does not use the KKT complementarity conditions violation
tolerance to check for optimization convergence.

The default values are:

• 0 if the solver is SMO (for example, you set 'Solver','SMO')
• 1e-3 if the solver is ISDA (for example, you set 'Solver','ISDA')

Example: 'KKTTolerance',1e-2
Data Types: double | single

NumPrint — Number of iterations between optimization diagnostic message output
1000 (default) | nonnegative integer

Number of iterations between optimization diagnostic message output, specified as the comma-
separated pair consisting of 'NumPrint' and a nonnegative integer.

If you specify 'Verbose',1 and 'NumPrint',numprint, then the software displays all optimization
diagnostic messages from SMO and ISDA every numprint iterations in the Command Window.
Example: 'NumPrint',500
Data Types: double | single
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OutlierFraction — Expected proportion of outliers in training data
0 (default) | numeric scalar in the interval [0,1)

Expected proportion of outliers in the training data, specified as the comma-separated pair consisting
of 'OutlierFraction' and a numeric scalar in the interval [0,1).

Suppose that you set 'OutlierFraction',outlierfraction, where outlierfraction is a
value greater than 0.

• For two-class learning, the software implements robust learning. In other words, the software
attempts to remove 100*outlierfraction% of the observations when the optimization
algorithm converges. The removed observations correspond to gradients that are large in
magnitude.

• For one-class learning, the software finds an appropriate bias term such that outlierfraction
of the observations in the training set have negative scores.

Example: 'OutlierFraction',0.01
Data Types: double | single

PolynomialOrder — Polynomial kernel function order
3 (default) | positive integer

Polynomial kernel function order, specified as the comma-separated pair consisting of
'PolynomialOrder' and a positive integer.

If you set 'PolynomialOrder' and KernelFunction is not 'polynomial', then the software
throws an error.
Example: 'PolynomialOrder',2
Data Types: double | single

SaveSupportVectors — Store support vectors, their labels, and the estimated α
coefficients
true | false

Store support vectors, their labels, and the estimated α coefficients as properties of the resulting
model, specified as the comma-separated pair consisting of 'SaveSupportVectors' and true or
false.

If SaveSupportVectors is true, the resulting model stores the support vectors in the
SupportVectors property, their labels in the SupportVectorLabels property, and the estimated α
coefficients in the Alpha property of the compact, SVM learners.

If SaveSupportVectors is false and KernelFunction is 'linear', the resulting model does not
store the support vectors and the related estimates.

To reduce memory consumption by compact SVM models, specify SaveSupportVectors.

For linear, SVM binary learners in an ECOC model, the default value is false. Otherwise, the default
value is true.
Example: 'SaveSupportVectors',true
Data Types: logical
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ShrinkagePeriod — Number of iterations between reductions of active set
0 (default) | nonnegative integer

Number of iterations between reductions of the active set, specified as the comma-separated pair
consisting of 'ShrinkagePeriod' and a nonnegative integer.

If you set 'ShrinkagePeriod',0, then the software does not shrink the active set.
Example: 'ShrinkagePeriod',1000
Data Types: double | single

Solver — Optimization routine
'ISDA' | 'L1QP' | 'SMO'

Optimization routine, specified as the comma-separated pair consisting of 'Solver' and a value in
this table.

Value Description
'ISDA' Iterative Single Data Algorithm (see [30])
'L1QP' Uses quadprog to implement L1 soft-margin minimization by

quadratic programming. This option requires an Optimization Toolbox
license. For more details, see “Quadratic Programming Definition”
(Optimization Toolbox).

'SMO' Sequential Minimal Optimization (see [17])

The default value is 'ISDA' if you set 'OutlierFraction' to a positive value for two-class
learning, and 'SMO' otherwise.
Example: 'Solver','ISDA'

Standardize — Flag to standardize predictor data
false (default) | true

Flag to standardize the predictor data, specified as the comma-separated pair consisting of
'Standardize' and true (1) or false (0).

If you set 'Standardize',true:

• The software centers and scales each column of the predictor data (X) by the weighted column
mean and standard deviation, respectively (for details on weighted standardizing, see
“Algorithms” on page 35-2209). MATLAB does not standardize the data contained in the dummy
variable columns generated for categorical predictors.

• The software trains the classifier using the standardized predictor matrix, but stores the
unstandardized data in the classifier property X.

Example: 'Standardize',true
Data Types: logical

Verbose — Verbosity level
0 (default) | 1 | 2
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Verbosity level, specified as the comma-separated pair consisting of 'Verbose' and 0, 1, or 2. The
value of Verbose controls the amount of optimization information that the software displays in the
Command Window and saves the information as a structure to Mdl.ConvergenceInfo.History.

This table summarizes the available verbosity level options.

Value Description
0 The software does not display or save convergence information.
1 The software displays diagnostic messages and saves convergence criteria

every numprint iterations, where numprint is the value of the name-value
pair argument 'NumPrint'.

2 The software displays diagnostic messages and saves convergence criteria
at every iteration.

Example: 'Verbose',1
Data Types: double | single

Output Arguments
t — SVM classification template
template object

SVM classification template suitable for training error-correcting output code (ECOC) multiclass
models, returned as a template object. Pass t to fitcecoc to specify how to create the SVM
classifier for the ECOC model.

If you display t to the Command Window, then all, unspecified options appear empty ([]). However,
the software replaces empty options with their corresponding default values during training.

Tip
By default and for efficiency, fitcecoc empties the Alpha, SupportVectorLabels, and
SupportVectors properties for all linear SVM binary learners. fitcecoc lists Beta, rather than
Alpha, in the model display.

To store Alpha, SupportVectorLabels, and SupportVectors, pass a linear SVM template that
specifies storing support vectors to fitcecoc. For example, enter:

t = templateSVM('SaveSupportVectors',true)
Mdl = fitcecoc(X,Y,'Learners',t);

You can remove the support vectors and related values by passing the resulting
ClassificationECOC model to discardSupportVectors.

Version History
Introduced in R2014b
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templateTree
Create decision tree template

Syntax
t = templateTree
t = templateTree(Name,Value)

Description
t = templateTree returns a default decision tree learner template suitable for training an
ensemble (boosted and bagged decision trees) or error-correcting output code (ECOC) multiclass
model. Specify t as a learner using:

• fitcensemble for classification ensembles
• fitrensemble for regression ensembles
• fitcecoc for ECOC model classification

If you specify a default decision tree template, then the software uses default values for all input
arguments during training. It is good practice to specify the type of decision tree, e.g., for a
classification tree template, specify 'Type','classification'. If you specify the type of decision
tree and display t in the Command Window, then all options except Type appear empty ([]).

t = templateTree(Name,Value) creates a template with additional options specified by one or
more name-value pair arguments.

For example, you can specify the algorithm used to find the best split on a categorical predictor, the
split criterion, or the number of predictors selected for each split.

If you display t in the Command Window, then all options appear empty ([]), except those that you
specify using name-value pair arguments. During training, the software uses default values for empty
options.

Examples

Create a Classification Template with Surrogate Splits

Create a decision tree template with surrogate splits, and use the template to train an ensemble
using sample data.

Load Fisher's iris data set.

load fisheriris

Create a decision tree template of tree stumps with surrogate splits.

t = templateTree('Surrogate','on','MaxNumSplits',1)

t = 
Fit template for Tree.
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       Surrogate: 'on'
    MaxNumSplits: 1

Options for the template object are empty except for Surrogate and MaxNumSplits. When you pass
t to the training function, the software fills in the empty options with their respective default values.

Specify t as a weak learner for a classification ensemble.

Mdl = fitcensemble(meas,species,'Method','AdaBoostM2','Learners',t)

Mdl = 
  ClassificationEnsemble
             ResponseName: 'Y'
    CategoricalPredictors: []
               ClassNames: {'setosa'  'versicolor'  'virginica'}
           ScoreTransform: 'none'
          NumObservations: 150
               NumTrained: 100
                   Method: 'AdaBoostM2'
             LearnerNames: {'Tree'}
     ReasonForTermination: 'Terminated normally after completing the requested number of training cycles.'
                  FitInfo: [100x1 double]
       FitInfoDescription: {2x1 cell}

  Properties, Methods

Display the in-sample (resubstitution) misclassification error.

L = resubLoss(Mdl)

L = 0.0333

Optimize Regression Ensemble Using Cross-Validation

One way to create an ensemble of boosted regression trees that has satisfactory predictive
performance is to tune the decision tree complexity level using cross-validation. While searching for
an optimal complexity level, tune the learning rate to minimize the number of learning cycles as well.

This example manually finds optimal parameters by using the cross-validation option (the 'KFold'
name-value pair argument) and the kfoldLoss function. Alternatively, you can use the
'OptimizeHyperparameters' name-value pair argument to optimize hyperparameters
automatically. See “Optimize Regression Ensemble” on page 35-2693.

Load the carsmall data set. Choose the number of cylinders, volume displaced by the cylinders,
horsepower, and weight as predictors of fuel economy.

load carsmall
Tbl = table(Cylinders,Displacement,Horsepower,Weight,MPG);

The default values of the tree depth controllers for boosting regression trees are:

• 10 for MaxNumSplits.
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• 5 for MinLeafSize
• 10 for MinParentSize

To search for the optimal tree-complexity level:

1 Cross-validate a set of ensembles. Exponentially increase the tree-complexity level for
subsequent ensembles from decision stump (one split) to at most n - 1 splits. n is the sample size.
Also, vary the learning rate for each ensemble between 0.1 to 1.

2 Estimate the cross-validated mean-squared error (MSE) for each ensemble.
3 For tree-complexity level j, j = 1 . . . J, compare the cumulative, cross-validated MSE of the

ensembles by plotting them against number of learning cycles. Plot separate curves for each
learning rate on the same figure.

4 Choose the curve that achieves the minimal MSE, and note the corresponding learning cycle and
learning rate.

Cross-validate a deep regression tree and a stump. Because the data contain missing values, use
surrogate splits. These regression trees serve as benchmarks.

rng(1) % For reproducibility
MdlDeep = fitrtree(Tbl,'MPG','CrossVal','on','MergeLeaves','off', ...
    'MinParentSize',1,'Surrogate','on');
MdlStump = fitrtree(Tbl,'MPG','MaxNumSplits',1,'CrossVal','on', ...
    'Surrogate','on');

Cross-validate an ensemble of 150 boosted regression trees using 5-fold cross-validation. Using a tree
template:

• Vary the maximum number of splits using the values in the sequence {20, 21, . . . , 2m}. m is such
that 2m is no greater than n - 1.

• Turn on surrogate splits.

For each variant, adjust the learning rate using each value in the set {0.1, 0.25, 0.5, 1}.

n = size(Tbl,1);
m = floor(log2(n - 1));
learnRate = [0.1 0.25 0.5 1];
numLR = numel(learnRate);
maxNumSplits = 2.^(0:m);
numMNS = numel(maxNumSplits);
numTrees = 150;
Mdl = cell(numMNS,numLR);

for k = 1:numLR
    for j = 1:numMNS
        t = templateTree('MaxNumSplits',maxNumSplits(j),'Surrogate','on');
        Mdl{j,k} = fitrensemble(Tbl,'MPG','NumLearningCycles',numTrees, ...
            'Learners',t,'KFold',5,'LearnRate',learnRate(k));
    end
end

Estimate the cumulative, cross-validated MSE of each ensemble.

kflAll = @(x)kfoldLoss(x,'Mode','cumulative');
errorCell = cellfun(kflAll,Mdl,'Uniform',false);
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error = reshape(cell2mat(errorCell),[numTrees numel(maxNumSplits) numel(learnRate)]);
errorDeep = kfoldLoss(MdlDeep);
errorStump = kfoldLoss(MdlStump);

Plot how the cross-validated MSE behaves as the number of trees in the ensemble increases. Plot the
curves with respect to learning rate on the same plot, and plot separate plots for varying tree-
complexity levels. Choose a subset of tree complexity levels to plot.

mnsPlot = [1 round(numel(maxNumSplits)/2) numel(maxNumSplits)];
figure;
for k = 1:3
    subplot(2,2,k)
    plot(squeeze(error(:,mnsPlot(k),:)),'LineWidth',2)
    axis tight
    hold on
    h = gca;
    plot(h.XLim,[errorDeep errorDeep],'-.b','LineWidth',2)
    plot(h.XLim,[errorStump errorStump],'-.r','LineWidth',2)
    plot(h.XLim,min(min(error(:,mnsPlot(k),:))).*[1 1],'--k')
    h.YLim = [10 50];    
    xlabel('Number of trees')
    ylabel('Cross-validated MSE')
    title(sprintf('MaxNumSplits = %0.3g', maxNumSplits(mnsPlot(k))))
    hold off
end
hL = legend([cellstr(num2str(learnRate','Learning Rate = %0.2f')); ...
        'Deep Tree';'Stump';'Min. MSE']);
hL.Position(1) = 0.6;
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Each curve contains a minimum cross-validated MSE occurring at the optimal number of trees in the
ensemble.

Identify the maximum number of splits, number of trees, and learning rate that yields the lowest MSE
overall.

[minErr,minErrIdxLin] = min(error(:));
[idxNumTrees,idxMNS,idxLR] = ind2sub(size(error),minErrIdxLin);
fprintf('\nMin. MSE = %0.5f',minErr)

Min. MSE = 16.77593

fprintf('\nOptimal Parameter Values:\nNum. Trees = %d',idxNumTrees);

Optimal Parameter Values:
Num. Trees = 78

fprintf('\nMaxNumSplits = %d\nLearning Rate = %0.2f\n',...
    maxNumSplits(idxMNS),learnRate(idxLR))

MaxNumSplits = 1
Learning Rate = 0.25

Create a predictive ensemble based on the optimal hyperparameters and the entire training set.

tFinal = templateTree('MaxNumSplits',maxNumSplits(idxMNS),'Surrogate','on');
MdlFinal = fitrensemble(Tbl,'MPG','NumLearningCycles',idxNumTrees, ...
    'Learners',tFinal,'LearnRate',learnRate(idxLR))
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MdlFinal = 
  RegressionEnsemble
           PredictorNames: {1x4 cell}
             ResponseName: 'MPG'
    CategoricalPredictors: []
        ResponseTransform: 'none'
          NumObservations: 94
               NumTrained: 78
                   Method: 'LSBoost'
             LearnerNames: {'Tree'}
     ReasonForTermination: 'Terminated normally after completing the requested number of training cycles.'
                  FitInfo: [78x1 double]
       FitInfoDescription: {2x1 cell}
           Regularization: []

  Properties, Methods

MdlFinal is a RegressionEnsemble. To predict the fuel economy of a car given its number of
cylinders, volume displaced by the cylinders, horsepower, and weight, you can pass the predictor data
and MdlFinal to predict.

Instead of searching optimal values manually by using the cross-validation option ('KFold') and the
kfoldLoss function, you can use the 'OptimizeHyperparameters' name-value pair argument.
When you specify 'OptimizeHyperparameters', the software finds optimal parameters
automatically using Bayesian optimization. The optimal values obtained by using
'OptimizeHyperparameters' can be different from those obtained using manual search.

t = templateTree('Surrogate','on');
mdl = fitrensemble(Tbl,'MPG','Learners',t, ...
    'OptimizeHyperparameters',{'NumLearningCycles','LearnRate','MaxNumSplits'})

|====================================================================================================================|
| Iter | Eval   | Objective:  | Objective   | BestSoFar   | BestSoFar   | NumLearningC-|    LearnRate | MaxNumSplits |
|      | result | log(1+loss) | runtime     | (observed)  | (estim.)    | ycles        |              |              |
|====================================================================================================================|
|    1 | Best   |      3.3955 |        2.62 |      3.3955 |      3.3955 |           26 |     0.072054 |            3 |
|    2 | Accept |      6.0976 |      14.246 |      3.3955 |      3.5549 |          170 |    0.0010295 |           70 |
|    3 | Best   |      3.2914 |      24.916 |      3.2914 |      3.2917 |          273 |      0.61026 |            6 |
|    4 | Accept |      6.1839 |      7.1427 |      3.2914 |      3.2915 |           80 |    0.0016871 |            1 |
|    5 | Best   |      3.0379 |      1.8021 |      3.0379 |      3.0384 |           18 |      0.21288 |           31 |
|    6 | Accept |      3.3628 |      1.0069 |      3.0379 |      3.1888 |           10 |      0.17826 |            5 |
|    7 | Best   |      2.9646 |      1.2483 |      2.9646 |      3.1158 |           10 |      0.27613 |            4 |
|    8 | Accept |      3.0507 |      1.4507 |      2.9646 |      3.0963 |           10 |      0.28394 |           35 |
|    9 | Accept |      3.0492 |      1.2735 |      2.9646 |      2.9676 |           10 |      0.28898 |           42 |
|   10 | Accept |      3.1033 |        1.12 |      2.9646 |      3.0285 |           10 |      0.90615 |            1 |
|   11 | Accept |      3.1706 |      1.9626 |      2.9646 |      3.0819 |           22 |      0.43444 |           38 |
|   12 | Accept |      6.1123 |      1.1782 |      2.9646 |      2.9682 |           10 |     0.016627 |           31 |
|   13 | Best   |       2.921 |      5.8571 |       2.921 |       2.918 |           77 |      0.25641 |            1 |
|   14 | Accept |      5.5198 |       1.162 |       2.921 |      2.9209 |           10 |     0.046377 |           16 |
|   15 | Accept |      2.9214 |      4.1562 |       2.921 |       2.921 |           55 |      0.10477 |            1 |
|   16 | Best   |       2.913 |      1.0265 |       2.913 |      2.9111 |           10 |      0.43228 |            1 |
|   17 | Accept |      2.9208 |      3.1964 |       2.913 |      2.9113 |           34 |      0.17785 |            1 |
|   18 | Accept |      2.9303 |      1.3202 |       2.913 |      2.9121 |           13 |      0.31211 |            1 |
|   19 | Accept |      3.0504 |       4.967 |       2.913 |      2.9126 |           53 |      0.15089 |           92 |
|   20 | Best   |      2.8955 |      1.0525 |      2.8955 |       2.893 |           10 |      0.34746 |            1 |
|====================================================================================================================|
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| Iter | Eval   | Objective:  | Objective   | BestSoFar   | BestSoFar   | NumLearningC-|    LearnRate | MaxNumSplits |
|      | result | log(1+loss) | runtime     | (observed)  | (estim.)    | ycles        |              |              |
|====================================================================================================================|
|   21 | Accept |      3.0349 |       6.471 |      2.8955 |      2.8978 |           65 |      0.91977 |            1 |
|   22 | Accept |      2.9002 |      21.484 |      2.8955 |      2.8928 |          209 |     0.087708 |            1 |
|   23 | Accept |       2.926 |      9.1464 |      2.8955 |      2.8927 |           94 |     0.046573 |            1 |
|   24 | Accept |      2.9225 |      10.655 |      2.8955 |      2.9083 |          107 |     0.081223 |            1 |
|   25 | Accept |      2.9392 |      1.2238 |      2.8955 |      2.9084 |           10 |      0.35846 |            2 |
|   26 | Accept |      3.5435 |      1.3068 |      2.8955 |      2.9082 |           10 |       0.1637 |            2 |
|   27 | Accept |      2.9246 |      27.437 |      2.8955 |      2.9083 |          228 |     0.036407 |            1 |
|   28 | Accept |      2.9231 |      11.581 |      2.8955 |      2.9086 |           90 |      0.46932 |            1 |
|   29 | Best   |      2.8947 |      54.049 |      2.8947 |      2.9082 |          497 |     0.066831 |            1 |
|   30 | Accept |      2.9182 |      18.329 |      2.8947 |      2.9084 |          206 |     0.057805 |            1 |

__________________________________________________________
Optimization completed.
MaxObjectiveEvaluations of 30 reached.
Total function evaluations: 30
Total elapsed time: 280.141 seconds
Total objective function evaluation time: 244.3885

Best observed feasible point:
    NumLearningCycles    LearnRate    MaxNumSplits
    _________________    _________    ____________

           497           0.066831          1      
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Observed objective function value = 2.8947
Estimated objective function value = 2.8955
Function evaluation time = 54.0488

Best estimated feasible point (according to models):
    NumLearningCycles    LearnRate    MaxNumSplits
    _________________    _________    ____________

           10             0.34746          1      

Estimated objective function value = 2.9084
Estimated function evaluation time = 1.1711

mdl = 
  RegressionEnsemble
                       PredictorNames: {1x4 cell}
                         ResponseName: 'MPG'
                CategoricalPredictors: []
                    ResponseTransform: 'none'
                      NumObservations: 94
    HyperparameterOptimizationResults: [1x1 BayesianOptimization]
                           NumTrained: 10
                               Method: 'LSBoost'
                         LearnerNames: {'Tree'}
                 ReasonForTermination: 'Terminated normally after completing the requested number of training cycles.'
                              FitInfo: [10x1 double]
                   FitInfoDescription: {2x1 cell}
                       Regularization: []

  Properties, Methods

Unbiased Estimates of Predictor Importance Using Parallel Computing

Load the carsmall data set. Consider a model that predicts the mean fuel economy of a car given its
acceleration, number of cylinders, engine displacement, horsepower, manufacturer, model year, and
weight. Consider Cylinders, Mfg, and Model_Year as categorical variables.

load carsmall
Cylinders = categorical(Cylinders);
Mfg = categorical(cellstr(Mfg));
Model_Year = categorical(Model_Year);
X = table(Acceleration,Cylinders,Displacement,Horsepower,Mfg,...
    Model_Year,Weight,MPG);

Display the number of categories represented in the categorical variables.

numCylinders = numel(categories(Cylinders))

numCylinders = 3

numMfg = numel(categories(Mfg))

numMfg = 28

numModelYear = numel(categories(Model_Year))
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numModelYear = 3

Because there are 3 categories only in Cylinders and Model_Year, the standard CART, predictor-
splitting algorithm prefers splitting a continuous predictor over these two variables.

Train a random forest of 500 regression trees using the entire data set. To grow unbiased trees,
specify usage of the curvature test for splitting predictors. Because there are missing values in the
data, specify usage of surrogate splits. To reproduce random predictor selections, set the seed of the
random number generator by using rng and specify 'Reproducible',true.

rng('default'); % For reproducibility
t = templateTree('PredictorSelection','curvature','Surrogate','on', ...
    'Reproducible',true); % For reproducibility of random predictor selections
Mdl = fitrensemble(X,'MPG','Method','bag','NumLearningCycles',500, ...
    'Learners',t);

Estimate predictor importance measures by permuting out-of-bag observations. Perform calculations
in parallel.

options = statset('UseParallel',true);
imp = oobPermutedPredictorImportance(Mdl,'Options',options);

Starting parallel pool (parpool) using the 'local' profile ...
Connected to the parallel pool (number of workers: 6).

Compare the estimates using a bar graph.

figure;
bar(imp);
title('Out-of-Bag Permuted Predictor Importance Estimates');
ylabel('Estimates');
xlabel('Predictors');
h = gca;
h.XTickLabel = Mdl.PredictorNames;
h.XTickLabelRotation = 45;
h.TickLabelInterpreter = 'none';
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In this case, Model_Year is the most important predictor, followed by Cylinders. Compare these
results to the results in “Estimate Importance of Predictors” on page 35-5218.

Create an Ensemble Template for ECOC Multiclass Learning

Create an ensemble template for use in fitcecoc.

Load the arrhythmia data set.

load arrhythmia
tabulate(categorical(Y));

  Value    Count   Percent
      1      245     54.20%
      2       44      9.73%
      3       15      3.32%
      4       15      3.32%
      5       13      2.88%
      6       25      5.53%
      7        3      0.66%
      8        2      0.44%
      9        9      1.99%
     10       50     11.06%
     14        4      0.88%

35 Functions

35-7284



     15        5      1.11%
     16       22      4.87%

rng(1); % For reproducibility

Some classes have small relative frequencies in the data.

Create a template for a AdaBoostM1 ensemble of classification trees, and specify to use 100 learners
and a shrinkage of 0.1. By default, boosting grows stumps (i.e., one node having a set of leaves).
Since there are classes with small frequencies, the trees must be leafy enough to be sensitive to the
minority classes. Specify the minimum number of leaf node observations to 3.

tTree = templateTree('MinLeafSize',20);
t = templateEnsemble('AdaBoostM1',100,tTree,'LearnRate',0.1);

All properties of the template objects are empty except for Method and Type, and the corresponding
properties of the name-value pair argument values in the function calls. When you pass t to the
training function, the software fills in the empty properties with their respective default values.

Specify t as a binary learner for an ECOC multiclass model. Train using the default one-versus-one
coding design.

Mdl = fitcecoc(X,Y,'Learners',t);

• Mdl is a ClassificationECOC multiclass model.
• Mdl.BinaryLearners is a 78-by-1 cell array of CompactClassificationEnsemble models.
• Mdl.BinaryLearners{j}.Trained is a 100-by-1 cell array of CompactClassificationTree

models, for j = 1,...,78.

You can verify that one of the binary learners contains a weak learner that isn't a stump by using
view.

view(Mdl.BinaryLearners{1}.Trained{1},'Mode','graph')
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Display the in-sample (resubstitution) misclassification error.

L = resubLoss(Mdl,'LossFun','classiferror')

L = 0.0819

Input Arguments
Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: 'Surrogate','on','NumVariablesToSample','all' specifies a template with
surrogate splits, and uses all available predictors at each split.
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For Classification Trees and Regression Trees

MaxNumSplits — Maximal number of decision splits
positive integer

Maximal number of decision splits (or branch nodes) per tree, specified as the comma-separated pair
consisting of 'MaxNumSplits' and a positive integer. templateTree splits MaxNumSplits or fewer
branch nodes. For more details on splitting behavior, see “Algorithms” on page 35-7293.

For bagged decision trees and decision tree binary learners in ECOC models, the default is n – 1,
where n is the number of observations in the training sample. For boosted decision trees, the default
is 10.
Example: 'MaxNumSplits',5
Data Types: single | double

MergeLeaves — Leaf merge flag
'off' | 'on'

Leaf merge flag, specified as the comma-separated pair consisting of 'MergeLeaves' and either
'on' or 'off'.

When 'on', the decision tree merges leaves that originate from the same parent node, and that
provide a sum of risk values greater or equal to the risk associated with the parent node. When
'off', the decision tree does not merge leaves.

For boosted and bagged decision trees, the defaults are 'off'. For decision tree binary learners in
ECOC models, the default is 'on'.
Example: 'MergeLeaves','on'

MinLeafSize — Minimum observations per leaf
positive integer value

Minimum observations per leaf, specified as the comma-separated pair consisting of 'MinLeafSize'
and a positive integer value. Each leaf has at least MinLeafSize observations per tree leaf. If you
supply both MinParentSize and MinLeafSize, the decision tree uses the setting that gives larger
leaves: MinParentSize = max(MinParentSize,2*MinLeafSize).

For boosted and bagged decision trees, the defaults are 1 for classification and 5 for regression. For
decision tree binary learners in ECOC models, the default is 1.
Example: 'MinLeafSize',2

MinParentSize — Minimum observations per branch node
positive integer value

Minimum observations per branch node, specified as the comma-separated pair consisting of
'MinParentSize' and a positive integer value. Each branch node in the tree has at least
MinParentSize observations. If you supply both MinParentSize and MinLeafSize, the decision
tree uses the setting that gives larger leaves: MinParentSize =
max(MinParentSize,2*MinLeafSize).

• If you specify MinLeafSize, then the default value for 'MinParentSize' is 10.
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• If you do not specify MinLeafSize, then the default value changes depending on the training
model. For boosted and bagged decision trees, the default value is 2 for classification and 10 for
regression. For decision tree binary learners in ECOC models, the default value is 10.

Example: 'MinParentSize',4

NumVariablesToSample — Number of predictors to select at random for each split
positive integer value | 'all'

Number of predictors to select at random for each split, specified as the comma-separated pair
consisting of 'NumVariablesToSample' and a positive integer value. Alternatively, you can specify
'all' to use all available predictors.

If the training data includes many predictors and you want to analyze predictor importance, then
specify 'NumVariablesToSample' as 'all'. Otherwise, the software might not select some
predictors, underestimating their importance.

To reproduce the random selections, you must set the seed of the random number generator by using
rng and specify 'Reproducible',true.

For boosted decision trees and decision tree binary learners in ECOC models, the default is 'all'.
The default for bagged decision trees is the square root of the number of predictors for classification,
or one third of the number of predictors for regression.
Example: 'NumVariablesToSample',3
Data Types: single | double | char | string

PredictorSelection — Algorithm used to select the best split predictor
'allsplits' (default) | 'curvature' | 'interaction-curvature'

Algorithm used to select the best split predictor at each node, specified as the comma-separated pair
consisting of 'PredictorSelection' and a value in this table.

Value Description
'allsplits' Standard CART — Selects the split predictor that maximizes the split-

criterion gain over all possible splits of all predictors [1].
'curvature' Curvature test — Selects the split predictor that minimizes the p-value

of chi-square tests of independence between each predictor and the
response [3][4]. Training speed is similar to standard CART.

'interaction-
curvature'

Interaction test — Chooses the split predictor that minimizes the p-
value of chi-square tests of independence between each predictor and
the response, and that minimizes the p-value of a chi-square test of
independence between each pair of predictors and response [3].
Training speed can be slower than standard CART.

For 'curvature' and 'interaction-curvature', if all tests yield p-values greater than 0.05,
then MATLAB stops splitting nodes.

Tip

• The curvature and interaction tests are not recommended for boosting decision trees. To train an
ensemble of boosted trees that has greater accuracy, use standard CART instead.
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• Standard CART tends to select split predictors containing many distinct values, e.g., continuous
variables, over those containing few distinct values, e.g., categorical variables [4]. If the predictor
data set is heterogeneous, or if there are predictors that have relatively fewer distinct values than
other variables, then consider specifying the curvature or interaction test.

• If there are predictors that have relatively fewer distinct values than other predictors, for
example, if the predictor data set is heterogeneous.

• If an analysis of predictor importance is your goal. For more on predictor importance
estimation, see oobPermutedPredictorImportance for classification problems,
oobPermutedPredictorImportance for regression problems, and “Introduction to Feature
Selection” on page 16-47.

• Trees grown using standard CART are not sensitive to predictor variable interactions. Also, such
trees are less likely to identify important variables in the presence of many irrelevant predictors
than the application of the interaction test. Therefore, to account for predictor interactions and
identify importance variables in the presence of many irrelevant variables, specify the interaction
test [3].

• Prediction speed is unaffected by the value of 'PredictorSelection'.

For details on how templateTree selects split predictors, see “Node Splitting Rules” on page 35-
2272 (classification), “Node Splitting Rules” on page 35-2795 (regression), and “Choose Split
Predictor Selection Technique” on page 20-14.
Example: 'PredictorSelection','curvature'

Prune — Flag to estimate optimal sequence of pruned subtrees
'off' | 'on'

Flag to estimate the optimal sequence of pruned subtrees, specified as the comma-separated pair
consisting of 'Prune' and 'on' or 'off'.

If Prune is 'on', then the software trains the classification tree learners without pruning them, but
estimates the optimal sequence of pruned subtrees for each learner in the ensemble or decision tree
binary learner in ECOC models. Otherwise, the software trains the classification tree learners without
estimating the optimal sequence of pruned subtrees.

For boosted and bagged decision trees, the default is 'off'.

For decision tree binary learners in ECOC models, the default is 'on'.
Example: 'Prune','on'

PruneCriterion — Pruning criterion
'error' | 'impurity' | 'mse'

Pruning criterion, specified as the comma-separated pair consisting of 'PruneCriterion' and a
pruning criterion valid for the tree type.

• For classification trees, you can specify 'error' (default) or 'impurity'. If you specify
'impurity', then templateTree uses the impurity measure specified by the
'SplitCriterion' name-value pair argument.

• For regression trees, you can specify only 'mse'(default).

Example: 'PruneCriterion','impurity'
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Reproducible — Flag to enforce reproducibility
false (logical 0) (default) | true (logical 1)

Flag to enforce reproducibility over repeated runs of training a model, specified as the comma-
separated pair consisting of 'Reproducible' and either false or true.

If 'NumVariablesToSample' is not 'all', then the software selects predictors at random for each
split. To reproduce the random selections, you must specify 'Reproducible',true and set the seed
of the random number generator by using rng. Note that setting 'Reproducible' to true can slow
down training.
Example: 'Reproducible',true
Data Types: logical

SplitCriterion — Split criterion
'gdi' | 'twoing' | 'deviance' | 'mse'

Split criterion, specified as the comma-separated pair consisting of 'SplitCriterion' and a split
criterion valid for the tree type.

• For classification trees:

• 'gdi' for Gini's diversity index (default)
• 'twoing' for the twoing rule
• 'deviance' for maximum deviance reduction (also known as cross entropy)

• For regression trees:

• 'mse' for mean squared error (default)

Example: 'SplitCriterion','deviance'

Surrogate — Surrogate decision splits
'off' (default) | 'on' | 'all' | positive integer value

Surrogate decision splits flag, specified as the comma-separated pair consisting of 'Surrogate' and
one of 'off', 'on', 'all', or a positive integer value.

• When 'off', the decision tree does not find surrogate splits at the branch nodes.
• When 'on', the decision tree finds at most 10 surrogate splits at each branch node.
• When set to 'all', the decision tree finds all surrogate splits at each branch node. The 'all'

setting can consume considerable time and memory.
• When set to a positive integer value, the decision tree finds at most the specified number of

surrogate splits at each branch node.

Use surrogate splits to improve the accuracy of predictions for data with missing values. This setting
also lets you compute measures of predictive association between predictors.
Example: 'Surrogate','on'
Data Types: single | double | char | string

Type — Decision tree type
'classification' | 'regression'
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Decision tree type, specified as a value in the table

Value Description
'classification' Grow classification tree learners. The fitting

functions fitcensemble and fitcecoc set this
value when you pass t to them.

'regression' Grow regression tree learners. The fitting
function fitrensemble sets this value when you
pass t to it.

Tip Although t infers Type from the fitting function to which it is supplied, the following occur when
you set Type:

• The display of t shows all options. Each unspecified option is an empty array [].
• templateTree checks specifications for errors.

Example: 'Type','classification'
Data Types: char | string

For Classification Trees Only

AlgorithmForCategorical — Algorithm for best categorical predictor split
'Exact' | 'PullLeft' | 'PCA' | 'OVAbyClass'

Algorithm to find the best split on a categorical predictor for data with C categories for data and K ≥
3 classes, specified as the comma-separated pair consisting of 'AlgorithmForCategorical' and
one of the following.

Value Description
'Exact' Consider all 2C–1 – 1 combinations.
'PullLeft' Start with all C categories on the right branch.

Consider moving each category to the left branch
as it achieves the minimum impurity for the K
classes among the remaining categories. From
this sequence, choose the split that has the
lowest impurity.

'PCA' Compute a score for each category using the
inner product between the first principal
component of a weighted covariance matrix (of
the centered class probability matrix) and the
vector of class probabilities for that category.
Sort the scores in ascending order, and consider
all C — 1 splits.
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Value Description
'OVAbyClass' Start with all C categories on the right branch.

For each class, order the categories based on
their probability for that class. For the first class,
consider moving each category to the left branch
in order, recording the impurity criterion at each
move. Repeat for the remaining classes. From
this sequence, choose the split that has the
minimum impurity.

The software selects the optimal subset of algorithms for each split using the known number of
classes and levels of a categorical predictor. For two classes, it always performs the exact search. Use
the 'AlgorithmForCategorical' name-value pair argument to specify a particular algorithm.

For more details, see “Splitting Categorical Predictors in Classification Trees” on page 20-25.
Example: 'AlgorithmForCategorical','PCA'

MaxNumCategories — Maximum category levels in split node
10 (default) | nonnegative scalar value

Maximum category levels in the split node, specified as the comma-separated pair consisting of
'MaxNumCategories' and a nonnegative scalar value. A classification tree splits a categorical
predictor using the exact search algorithm if the predictor has at most MaxNumCategories levels in
the split node. Otherwise, it finds the best categorical split using one of the inexact algorithms. Note
that passing a small value can increase computation time and memory overload.
Example: 'MaxNumCategories',8

For Regression Trees Only

QuadraticErrorTolerance — Quadratic error tolerance
1e-6 (default) | positive scalar value

Quadratic error tolerance per node, specified as the comma-separated pair consisting of
'QuadraticErrorTolerance' and a positive scalar value. A regression tree stops splitting nodes
when the weighted mean squared error per node drops below QuadraticErrorTolerance*ε,
where ε is the weighted mean squared error of all n responses computed before growing the decision
tree.

ε = ∑
i = 1

n
wi yi− y 2 .

wi is the weight of observation i, given that the weights of all the observations sum to one

( ∑
i = 1

n
wi = 1), and

y = ∑
i = 1

n
wiyi

is the weighted average of all the responses.
Example: 'QuadraticErrorTolerance',1e-4
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Output Arguments
t — Decision tree template for classification or regression
template object

Decision tree template for classification or regression suitable for training an ensemble (boosted and
bagged decision trees) or error-correcting output code (ECOC) multiclass model, returned as a
template object. Pass t to fitcensemble, or fitrensemble, or fitcecoc to specify how to create
the decision tree for the classification ensemble, regression ensemble, or ECOC model, respectively.

If you display t in the Command Window, then all unspecified options appear empty ([]). However,
the software replaces empty options with their corresponding default values during training.

Algorithms
• To accommodate MaxNumSplits, the software splits all nodes in the current layer, and then

counts the number of branch nodes. A layer is the set of nodes that are equidistant from the root
node. If the number of branch nodes exceeds MaxNumSplits, then the software follows this
procedure.

1 Determine how many branch nodes in the current layer need to be unsplit so that there would
be at most MaxNumSplits branch nodes.

2 Sort the branch nodes by their impurity gains.
3 Unsplit the desired number of least successful branches.
4 Return the decision tree grown so far.

This procedure aims at producing maximally balanced trees.
• The software splits branch nodes layer by layer until at least one of these events occurs.

• There are MaxNumSplits + 1 branch nodes.
• A proposed split causes the number of observations in at least one branch node to be fewer

than MinParentSize.
• A proposed split causes the number of observations in at least one leaf node to be fewer than

MinLeafSize.
• The algorithm cannot find a good split within a layer (i.e., the pruning criterion (see

PruneCriterion), does not improve for all proposed splits in a layer). A special case of this
event is when all nodes are pure (i.e., all observations in the node have the same class).

• For values 'curvature' or 'interaction-curvature' of PredictorSelection, all tests
yield p-values greater than 0.05.

MaxNumSplits and MinLeafSize do not affect splitting at their default values. Therefore, if you
set 'MaxNumSplits', then splitting might stop due to the value of MinParentSize before
MaxNumSplits splits occur.

• For details on selecting split predictors and node-splitting algorithms when growing decision
trees, see “Algorithms” on page 35-2272 for classification trees and “Algorithms” on page 35-2795
for regression trees.

Version History
Introduced in R2014a
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See Also
ClassificationTree | RegressionTree | fitctree | fitcensemble | fitrensemble |
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35 Functions

35-7294



test
Test indices for cross-validation

Syntax
idx = test(c)
idx = test(c,i)

Description
idx = test(c) returns the test indices idx for a cvpartition object c of type 'holdout' or
'resubstitution'.

• If c.Type is 'holdout', then idx specifies the observations in the test set.
• If c.Type is 'resubstitution', then idx specifies all observations.

idx = test(c,i) returns the test indices for repetition i of a cvpartition object c of type
'kfold' or 'leaveout'.

• If c.Type is 'kfold', then idx specifies the observations in the ith test set or fold.
• If c.Type is 'leaveout', then idx specifies the observation reserved for testing at repetition i.

Examples

Identify Test Indices in Holdout Partition

Identify the observations that are in the test (holdout) set of a cvpartition object.

Partition 10 observations for holdout validation. Select approximately 30% of the observations to be
in the test set.

rng('default') % For reproducibility
c = cvpartition(10,'Holdout',0.30)

c = 
Hold-out cross validation partition
   NumObservations: 10
       NumTestSets: 1
         TrainSize: 7
          TestSize: 3

Identify the test set observations. Observations that correspond to 1s are in the test set.

holdout = test(c)

holdout = 10x1 logical array

   0
   0
   0
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   1
   0
   0
   0
   0
   1
   1

Visualize the results. The fourth, ninth, and tenth observations are in the test set.

h = heatmap(double(holdout),'ColorbarVisible','off');
sorty(h,'1','descend')
ylabel('Observation')
title('Test Set Observations')

Identify Test Indices in k-Fold Partition

Identify the observations that are in the test sets, or folds, of a cvpartition object for 3-fold cross-
validation.

Partition 10 observations for 3-fold cross-validation. Notice that c contains three repetitions of
training and test data.

35 Functions

35-7296



rng('default') % For reproducibility
c = cvpartition(10,'KFold',3)

c = 
K-fold cross validation partition
   NumObservations: 10
       NumTestSets: 3
         TrainSize: 7  6  7
          TestSize: 3  4  3

Identify the test set observations for each repetition of training and test data. Observations that
correspond to 1s are in the corresponding test set (fold).

fold1 = test(c,1)

fold1 = 10x1 logical array

   1
   1
   0
   0
   0
   0
   0
   0
   1
   0

fold2 = test(c,2);
fold3 = test(c,3);

Visualize the results. The first, second, and ninth observations are in the first test set. The third, sixth,
eighth, and tenth observations are in the second test set. The fourth, fifth, and seventh observations
are in the third test set.

data = [fold1,fold2,fold3];
h = heatmap(double(data),'ColorbarVisible','off');
sorty(h,{'1','2','3'},'descend')
xlabel('Repetition')
ylabel('Observation')
title('Test Set Observations')
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Input Arguments
c — Validation partition
cvpartition object

Validation partition, specified as a cvpartition object. The validation partition type of c, c.Type, is
'kfold', 'holdout', 'leaveout', or 'resubstitution'.

i — Repetition index
positive integer scalar

Repetition index, specified as a positive integer scalar. Specifying i indicates to find the observations
in the ith test set (fold).
Data Types: single | double

Output Arguments
idx — Indices for test set observations
logical vector

Indices for test set observations, returned as a logical vector. A value of 1 indicates that the
corresponding observation is in the test set. A value of 0 indicates that the corresponding observation
is in the training set.
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Version History
Introduced in R2008a

See Also
cvpartition | training
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test
Test indices for time series cross-validation

Syntax
idx = test(c)
idx = test(c,i)

Description
idx = test(c) returns the test indices idx for a tspartition object c of type 'holdout'. That
is, the logical vector idx specifies the observations in the test set.

idx = test(c,i) returns the test indices for window i of a tspartition object c of type
'expanding-window' or 'sliding-window'. That is, the logical vector idx specifies the
observations in test set i.

• If c.Type is 'expanding-window', then the training set size expands with each window while
the test set size remains fixed.

• If c.Type is 'sliding-window', then both the training set size and the test set size are fixed.

Examples

Identify Test Set Observations in Holdout Validation

Identify the observations in the test set of a tspartition object for holdout validation.

Use 30% of 20 time-dependent observations to create a test set. The corresponding training set
contains the remaining observations.

c = tspartition(20,"Holdout",0.30);

Find the test set indices. A value of 1 (true) indicates that the corresponding observation is in the
test set. A value of 0 (false) indicates that the corresponding observation is in the training set.

testIndices = test(c);

Visualize the observations in the test set by using a heat map.

h = heatmap(double(testIndices),ColorbarVisible="off");
h.XDisplayLabels = "";
ylabel("Observation")
title("Test Set Observations")
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The observations in light blue (with a value of 0) are in the training set, and the observations in dark
blue (with a value of 1) are in the test set. When you use holdout validation for time series data, the
latest observations (in this case, observations 15 through 20) are in the test set.

Sliding Window Cross-Validation

Identify the observations in the training sets and test sets of a tspartition object for sliding
window cross-validation.

Use 20 time-dependent observations to create five training sets and five test sets.

c = tspartition(20,"SlidingWindow",5);

Find the training set indices for the five windows. A value of 1 (true) indicates that the
corresponding observation is in the training set for that window.

trainWindows = zeros(c.NumObservations,c.NumTestSets);
for i = 1:c.NumTestSets
    trainWindows(:,i) = training(c,i);
end

Find the test set indices for the five windows. A value of 1 (true) indicates that the corresponding
observation is in the test set for that window.

 test

35-7301



testWindows = zeros(c.NumObservations,c.NumTestSets);
for i = 1:c.NumTestSets
    testWindows(:,i) = test(c,i);
end

Combine the training and test set indices into one matrix where a value of 1 indicates a training
observation and a value of 2 indicates a test observation.

data = trainWindows + 2*testWindows;

Visualize the different sets by using a heat map.

colormap = lines(3);
heatmap(double(data),ColorbarVisible="off", ...
    Colormap=colormap);
xlabel("Window")
ylabel("Observation")
title("Sliding Window Cross-Validation Scheme")

For each window, the observations in red (with a value of 1) are in the training set, the observations
in yellow (with a value of 2) are in the test set, and the observations in blue (with a value of 0) are
ignored. For example, observations 9 through 11 are test observations in window two and training
observations in window three. Because of the default values for the training set size, test set size,
step size, and direction for creating sliding windows, tspartition does not use some of the oldest
observations (1 and 2) in any window.

Input Arguments
c — Time series validation partition
tspartition object

Time series validation partition, specified as a tspartition object. The validation partition type
(Type) is 'expanding-window', 'holdout', or 'sliding-window'.
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i — Test set or window index
positive integer scalar

Test set or window index, specified as a positive integer scalar. When you specify i, the test function
finds the observations in test set i.
Data Types: single | double

Output Arguments
idx — Indices for test set observations
logical vector

Indices for test set observations, returned as a logical vector. A value of 1 (true) indicates that the
corresponding observation is in the test set. A value of 0 (false) indicates that the corresponding
observation is in a different set, such as the training set.

Version History
Introduced in R2022b

See Also
tspartition | training

Topics
“Time Series Forecasting Using Ensemble of Boosted Regression Trees” on page 14-2
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testcholdout
Compare predictive accuracies of two classification models

Syntax
h = testcholdout(YHat1,YHat2,Y)
h = testcholdout(YHat1,YHat2,Y,Name,Value)
[h,p,e1,e2] = testcholdout( ___ )

Description
testcholdout statistically assesses the accuracies of two classification models. The function first
compares their predicted labels against the true labels, and then it detects whether the difference
between the misclassification rates is statistically significant.

You can assess whether the accuracies of the classification models are different, or whether one
classification model performs better than another. testcholdout can conduct several McNemar test
on page 35-7314 variations, including the asymptotic test, the exact-conditional test, and the mid-p-
value test. For cost-sensitive assessment on page 35-7312, available tests include a chi-square test
(requires an Optimization Toolbox license) and a likelihood ratio test.

h = testcholdout(YHat1,YHat2,Y) returns the test decision, by conducting the mid-p-value
McNemar test on page 35-7314, from testing the null hypothesis that the predicted class labels
YHat1 and YHat2 have equal accuracy for predicting the true class labels Y. The alternative
hypothesis is that the labels have unequal accuracy.

h = 1 indicates to reject the null hypothesis at the 5% significance level. h = 0 indicates to not reject
the null hypothesis at 5% level.

h = testcholdout(YHat1,YHat2,Y,Name,Value) returns the result of the hypothesis test with
additional options specified by one or more Name,Value pair arguments. For example, you can
specify the type of alternative hypothesis, specify the type of test, or supply a cost matrix.

[h,p,e1,e2] = testcholdout( ___ ) returns the p-value for the hypothesis test (p) and the
respective classification loss on page 35-7316 of each set of predicted class labels (e1 and e2) using
any of the input arguments in the previous syntaxes.

Examples

Compare Accuracies of Two Different Classification Models

Train two classification models using different algorithms. Conduct a statistical test comparing the
misclassification rates of the two models on a held-out set.

Load the ionosphere data set.

load ionosphere

Create a partition that evenly splits the data into training and testing sets.
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rng(1);                             % For reproducibility
CVP = cvpartition(Y,'holdout',0.5);
idxTrain = training(CVP);           % Training-set indices 
idxTest = test(CVP);                % Test-set indices

CVP is a cross-validation partition object that specifies the training and test sets.

Train an SVM model and an ensemble of 100 bagged classification trees. For the SVM model, specify
to use the radial basis function kernel and a heuristic procedure to determine the kernel scale.

MdlSVM = fitcsvm(X(idxTrain,:),Y(idxTrain),'Standardize',true,...
    'KernelFunction','RBF','KernelScale','auto');
t = templateTree('Reproducible',true);  % For reproducibility of random predictor selections
MdlBag = fitcensemble(X(idxTrain,:),Y(idxTrain),'Method','Bag','Learners',t);

MdlSVM is a trained ClassificationSVM model. MdlBag is a trained
ClassificationBaggedEnsemble model.

Label the test-set observations using the trained models.

YhatSVM = predict(MdlSVM,X(idxTest,:));
YhatBag = predict(MdlBag,X(idxTest,:));

YhatSVM and YhatBag are vectors continuing the predicted class labels of the respective models.

Test whether the two models have equal predictive accuracies.

h = testcholdout(YhatSVM,YhatBag,Y(idxTest))

h = logical
   0

h = 0 indicates to not reject the null hypothesis that the two models have equal predictive
accuracies.

Assess Whether One Classification Model Classifies Better Than Another

Train two classification models using the same algorithm, but adjust a hyperparameter to make the
algorithm more complex. Conduct a statistical test to assess whether the simpler model has better
accuracy in held-out data than the more complex model.

Load the ionosphere data set.

load ionosphere;

Create a partition that evenly splits the data into training and testing sets.

rng(1);                             % For reproducibility
CVP = cvpartition(Y,'holdout',0.5);
idxTrain = training(CVP);           % Training-set indices 
idxTest = test(CVP);                % Test-set indices

CVP is a cross-validation partition object that specifies the training and test sets.
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Train two SVM models: one that uses a linear kernel (the default for binary classification) and one
that uses the radial basis function kernel. Use the default kernel scale of 1.

MdlLinear = fitcsvm(X(idxTrain,:),Y(idxTrain),'Standardize',true);
MdlRBF = fitcsvm(X(idxTrain,:),Y(idxTrain),'Standardize',true,...
    'KernelFunction','RBF');

MdlLinear and MdlRBF are trained ClassificationSVM models.

Label the test-set observations using the trained models.

YhatLinear = predict(MdlLinear,X(idxTest,:));
YhatRBF = predict(MdlRBF,X(idxTest,:));

YhatLinear and YhatRBF are vectors continuing the predicted class labels of the respective models.

Test the null hypothesis that the simpler model (MdlLinear) is at most as accurate as the more
complex model (MdlRBF). Because the test-set size is large, conduct the asymptotic McNemar test,
and compare the results with the mid- p-value test (the cost-insensitive testing default). Request to
return p-values and misclassification rates.

Asymp = zeros(4,1); % Preallocation
MidP = zeros(4,1); 

[Asymp(1),Asymp(2),Asymp(3),Asymp(4)] = testcholdout(YhatLinear,YhatRBF,Y(idxTest),...
    'Alternative','greater','Test','asymptotic');
[MidP(1),MidP(2),MidP(3),MidP(4)] = testcholdout(YhatLinear,YhatRBF,Y(idxTest),...
    'Alternative','greater');
table(Asymp,MidP,'RowNames',{'h' 'p' 'e1' 'e2'})

ans=4×2 table
            Asymp          MidP   
          __________    __________

    h              1             1
    p     7.2801e-09    2.7649e-10
    e1       0.13714       0.13714
    e2       0.33143       0.33143

The p-value is close to zero for both tests, which indicates strong evidence to reject the null
hypothesis that the simpler model is less accurate than the more complex model. No matter what test
you specify, testcholdout returns the same type of misclassification measure for both models.

Conduct Cost-Sensitive Comparison of Two Classification Models

For data sets with imbalanced class representations, or if the false-positive and false-negative costs
are imbalanced, you can statistically compare the predictive performance of two classification models
by including a cost matrix in the analysis.

Load the arrhythmia data set. Determine the class representations in the data.

load arrhythmia;
Y = categorical(Y);
tabulate(Y);
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  Value    Count   Percent
      1      245     54.20%
      2       44      9.73%
      3       15      3.32%
      4       15      3.32%
      5       13      2.88%
      6       25      5.53%
      7        3      0.66%
      8        2      0.44%
      9        9      1.99%
     10       50     11.06%
     14        4      0.88%
     15        5      1.11%
     16       22      4.87%

There are 16 classes, however some are not represented in the data set (for example, class 13). Most
observations are classified as not having arrhythmia (class 1). The data set is highly discrete with
imbalanced classes.

Combine all observations with arrhythmia (classes 2 through 15) into one class. Remove those
observations with unknown arrhythmia status (class 16) from the data set.

idx = (Y ~= '16');
Y = Y(idx);
X = X(idx,:);
Y(Y ~= '1') = 'WithArrhythmia';
Y(Y == '1') = 'NoArrhythmia';
Y = removecats(Y);

Create a partition that evenly splits the data into training and test sets.

rng(1);                             % For reproducibility
CVP = cvpartition(Y,'holdout',0.5);
idxTrain = training(CVP);           % Training-set indices 
idxTest = test(CVP);                % Test-set indices

CVP is a cross-validation partition object that specifies the training and test sets.

Create a cost matrix such that misclassifying a patient with arrhythmia into the "no arrhythmia" class
is five times worse than misclassifying a patient without arrhythmia into the arrhythmia class.
Classifying correctly incurs no cost. The rows indicate the true class and the columns indicate
predicted class. When you conduct a cost-sensitive analysis, a good practice is to specify the order of
the classes.

Cost = [0 1;5 0];
ClassNames = {'NoArrhythmia','WithArrhythmia'};

Train two boosting ensembles of 50 classification trees, one that uses AdaBoostM1 and another that
uses LogitBoost. Because there are missing values in the data set, specify to use surrogate splits.
Train the models using the cost matrix.

t = templateTree('Surrogate','on');
numTrees = 50;
MdlAda = fitcensemble(X(idxTrain,:),Y(idxTrain),'Method','AdaBoostM1',...
    'NumLearningCycles',numTrees,'Learners',t,...
    'Cost',Cost,'ClassNames',ClassNames);
MdlLogit = fitcensemble(X(idxTrain,:),Y(idxTrain),'Method','LogitBoost',...
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    'NumLearningCycles',numTrees,'Learners',t,...
    'Cost',Cost,'ClassNames',ClassNames);

MdlAda and MdlLogit are trained ClassificationEnsemble models.

Label the test-set observations using the trained models.

YhatAda = predict(MdlAda,X(idxTest,:));
YhatLogit = predict(MdlLogit,X(idxTest,:));

YhatLinear and YhatRBF are vectors containing the predicted class labels of the respective models.

Test whether the AdaBoostM1 ensemble (MdlAda) and the LogitBoost ensemble (MdlLogit) have
equal predictive accuracy. Supply the cost matrix. Conduct the asymptotic, likelihood ratio, cost-
sensitive test (the default when you pass in a cost matrix). Request to return p-values and
misclassification costs.

[h,p,e1,e2] = testcholdout(YhatAda,YhatLogit,Y(idxTest), ...
    'Cost',Cost,'ClassNames',ClassNames)

h = logical
   0

p = 0.1180

e1 = 0.6698

e2 = 0.8093

h = 0 indicates to not reject the null hypothesis that the two models have equal predictive
accuracies.

Input Arguments
YHat1 — Predicted class labels
categorical array | character array | string array | logical vector | numeric vector | cell array of
character vectors

Predicted class labels of the first classification model, specified as a categorical, character, or string
array, logical or numeric vector, or cell array of character vectors.

If YHat1 is a character array, then each element must correspond to one row of the array.

YHat1, YHat2, and Y must have equal lengths.

It is a best practice for YHat1, YHat2, and Y to share the same data type.
Data Types: categorical | char | string | logical | single | double | cell

YHat2 — Predicted class labels
categorical array | character array | string array | logical vector | numeric vector | cell array of
character vectors

Predicted class labels of the second classification model, specified as a categorical, character, or
string array, logical or numeric vector, or cell array of character vectors.
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If YHat2 is a character array, then each element must correspond to one row of the array.

YHat1, YHat2, and Y must have equal lengths.

It is a best practice for YHat1, YHat2, and Y to share the same data type.
Data Types: categorical | char | string | logical | single | double | cell

Y — True class labels
categorical array | character array | string array | logical vector | numeric vector | cell array of
character vectors

True class labels, specified as a categorical, character, or string array, logical or numeric vector, or
cell array of character vectors.

If Y is a character array, then each element must correspond to one row of the array.

YHat1, YHat2, and Y must have equal lengths.

It is a best practice for YHat1, YHat2, and Y to share the same data type.
Data Types: categorical | char | string | logical | single | double | cell

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: 'Alternative','greater','Test','asymptotic','Cost',[0 2;1 0] specifies to
test whether the first set of first predicted class labels is more accurate than the second set, to
conduct the asymptotic McNemar test, and to penalize misclassifying observations with the true label
ClassNames{1} twice as much as for misclassifying observations with the true label
ClassNames{2}.

Alpha — Hypothesis test significance level
0.05 (default) | scalar value in the interval (0,1)

Hypothesis test significance level, specified as the comma-separated pair consisting of 'Alpha' and
a scalar value in the interval (0,1).
Example: 'Alpha',0.1
Data Types: single | double

Alternative — Alternative hypothesis to assess
'unequal' (default) | 'greater' | 'less'

Alternative hypothesis to assess, specified as the comma-separated pair consisting of
'Alternative' and one of the values listed in the table.

Value Alternative hypothesis
'unequal' (default) For predicting Y, YHat1 and YHat2 have unequal accuracies.
'greater' For predicting Y, YHat1 is more accurate than YHat2.
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Value Alternative hypothesis
'less' For predicting Y, YHat1 is less accurate than YHat2.

Example: 'Alternative','greater'

ClassNames — Class names
categorical array | character array | string array | logical vector | numeric vector | cell array of
character vectors

Class names, specified as the comma-separated pair consisting of 'ClassNames' and a categorical,
character, or string array, logical or numeric vector, or cell array of character vectors. You must set
ClassNames using the data type of Y.

If ClassNames is a character array, then each element must correspond to one row of the array.

Use ClassNames to:

• Specify the order of any input argument dimension that corresponds to class order. For example,
use ClassNames to specify the order of the dimensions of Cost.

• Select a subset of classes for testing. For example, suppose that the set of all distinct class names
in Y is {'a','b','c'}. To train and test models using observations from classes 'a' and 'c'
only, specify 'ClassNames',{'a','c'}.

The default is the set of all distinct class names in Y.
Example: 'ClassNames',{'b','g'}
Data Types: single | double | logical | char | string | cell | categorical

Cost — Misclassification cost
square matrix | structure array

Misclassification cost, specified as the comma-separated pair consisting of 'Cost' and a square
matrix or structure array.

• If you specify the square matrix Cost, then Cost(i,j) is the cost of classifying a point into class
j if its true class is i. That is, the rows correspond to the true class and the columns correspond
to the predicted class. To specify the class order for the corresponding rows and columns of Cost,
additionally specify the ClassNames name-value pair argument.

• If you specify the structure S, then S must have two fields:

• S.ClassNames, which contains the class names as a variable of the same data type as Y. You
can use this field to specify the order of the classes.

• S.ClassificationCosts, which contains the cost matrix, with rows and columns ordered as
in S.ClassNames.

If you specify Cost, then testcholdout cannot conduct one-sided, exact, or mid-p tests. You must
also specify 'Alternative','unequal','Test','asymptotic'. For cost-sensitive testing
options, see the CostTest name-value pair argument.

A best practice is to supply the same cost matrix used to train the classification models.

The default is Cost(i,j) = 1 if i ~= j, and Cost(i,j) = 0 if i = j.
Example: 'Cost',[0 1 2 ; 1 0 2; 2 2 0]
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Data Types: single | double | struct

CostTest — Cost-sensitive test type
'likelihood' (default) | 'chisquare'

Cost-sensitive test type, specified as the comma-separated pair consisting of 'CostTest' and
'chisquare' or 'likelihood'. Unless you specify a cost matrix using the Cost name-value pair
argument, testcholdout ignores CostTest.

This table summarizes the available options for cost-sensitive testing.

Value Asymptotic test type Requirements
'chisquare' Chi-square test Optimization Toolbox license to

implement quadprog
'likelihood' Likelihood ratio test None

For more details, see “Cost-Sensitive Testing” on page 35-7312.
Example: 'CostTest','chisquare'

Test — Test to conduct
'asymptotic' | 'exact' | 'midp'

Test to conduct, specified as the comma-separated pair consisting of 'Test' and 'asymptotic',
'exact', and 'midp'. This table summarizes the available options for cost-insensitive testing.

Value Description
'asymptotic' Asymptotic McNemar test
'exact' Exact-conditional McNemar test
'midp' (default) Mid-p-value McNemar test

For more details, see “McNemar Tests” on page 35-7314.

For cost-sensitive testing, Test must be 'asymptotic'. When you specify the Cost name-value pair
argument, and choose a cost-sensitive test using the CostTest name-value pair argument,
'asymptotic' is the default.
Example: 'Test','asymptotic'

Note NaNs, <undefined> values, empty character vectors (''), empty strings (""), and <missing>
values indicate missing data values. testcholdout:

• Treats missing values in YHat1 and YHat2 as misclassified observations.
• Removes missing values in Y and the corresponding values of YHat1 and YHat2

Output Arguments
h — Hypothesis test result
1 | 0

Hypothesis test result, returned as a logical value.
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h = 1 indicates the rejection of the null hypothesis at the Alpha significance level.

h = 0 indicates failure to reject the null hypothesis at the Alpha significance level.
Data Types: logical

p — p-value
scalar in the interval [0,1]

p-value of the test, returned as a scalar in the interval [0,1]. p is the probability that a random test
statistic is at least as extreme as the observed test statistic, given that the null hypothesis is true.

testcholdout estimates p using the distribution of the test statistic, which varies with the type of
test. For details on test statistics derived from the available variants of the McNemar test, see
“McNemar Tests” on page 35-7314. For details on test statistics derived from cost-sensitive tests, see
“Cost-Sensitive Testing” on page 35-7312.

e1 — Classification loss
scalar

Classification loss on page 35-7316 that summarizes the accuracy of the first set of class labels
(YHat1) predicting the true class labels (Y), returned as a scalar.

For cost-insensitive testing, e1 is the misclassification rate. That is, e1 is the proportion of
misclassified observations, which is a scalar in the interval [0,1].

For cost-sensitive testing, e1 is the misclassification cost. That is, e1 is the weighted average of the
misclassification costs, in which the weights are the respective estimated proportions of misclassified
observations.

e2 — Classification loss
scalar

Classification loss on page 35-7316 that summarizes the accuracy of the second set of class labels
(YHat2) predicting the true class labels (Y), returned as a scalar.

For cost-insensitive testing, e2 is the misclassification rate. That is, e2 is the proportion of
misclassified observations, which is a scalar in the interval [0,1].

For cost-sensitive testing, e2 is the misclassification cost. That is, e2 is the weighted average of the
costs of misclassification, in which the weights are the respective estimated proportions of
misclassified observations.

More About
Cost-Sensitive Testing

Conduct cost-sensitive testing when the cost of misclassification is imbalanced. By conducting a cost-
sensitive analysis, you can account for the cost imbalance when you train the classification models
and when you statistically compare them.

If the cost of misclassification is imbalanced, then the misclassification rate tends to be a poorly
performing classification loss. Use misclassification cost instead to compare classification models.

Misclassification costs are often imbalanced in applications. For example, consider classifying
subjects based on a set of predictors into two categories: healthy and sick. Misclassifying a sick
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subject as healthy poses a danger to the subject's life. However, misclassifying a healthy subject as
sick typically causes some inconvenience, but does not pose significant danger. In this situation, you
assign misclassification costs such that misclassifying a sick subject as healthy is more costly than
misclassifying a healthy subject as sick.

The definitions that follow summarize the cost-sensitive tests. In the definitions:

• nijk and π i jk are the number and estimated proportion of test-sample observations with the
following characteristics. k is the true class, i is the label assigned by the first classification model,
and j is the label assigned by the second classification model. The unknown true value of π i jk is
πijk. The test-set sample size is ∑

i, j, k
ni jk = ntest . Additionally, ∑

i, j, k
πi jk = ∑

i, j, k
π i jk = 1.

• cij is the relative cost of assigning label j to an observation with true class i. cii = 0, cij ≥ 0, and, for
at least one (i,j) pair, cij > 0.

• All subscripts take on integer values from 1 through K, which is the number of classes.
• The expected difference in the misclassification costs of the two classification models is

δ = ∑
i = 1

K
∑

j = 1

K ∑
k = 1

K

cki− ck j πi jk .

• The hypothesis test is

H0:δ = 0
H1:δ ≠ 0

.

The available cost-sensitive tests are appropriate for two-tailed testing.

Available asymptotic tests that address imbalanced costs are a chi-square test and a likelihood ratio
test.

• Chi-square test — The chi-square test statistic is based on the Pearson and Neyman chi-square
test statistics, but with a Laplace correction factor to account for any nijk = 0. The test statistic is

tχ2
∗ = ∑

i ≠ j
∑
k

ni jk + 1− ntest + K3 π i jk
(1) 2

ni jk + 1 .

If 1− Fχ2 tχ2
∗ ; 1 < α, then reject H0.

• π i jk
(1) are estimated by minimizing tχ2

∗  under the constraint that δ = 0.

• Fχ2(x; 1) is the χ2 cdf with one degree of freedom evaluated at x.

• Likelihood ratio test — The likelihood ratio test is based on Nijk, which are binomial random
variables with sample size ntest and success probability πijk. The random variables represent the
random number of observations with: true class k, label i assigned by the first classification model,
and label j assigned by the second classification model. Jointly, the distribution of the random
variables is multinomial.

The test statistic is
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tLRT
∗ = 2log

P ∩
i, j, k

Ni jk = ni jk; ntest, π i jk = π i jk
(2)

P ∩
i, j, k

Ni jk = ni jk; ntest, π i jk = π i jk
(3) .

If 1− Fχ2 tLRT
∗ ; 1 < α, then reject H0.

•
π i jk

(2) =
ni jk
ntest

 is the unrestricted MLE of πijk.

•
π i jk

(3) =
ni jk

ntest + λ(cki− ck j)
 is the MLE under the null hypothesis that δ = 0. λ is the solution to

∑
i, j, k

ni jk(cki− ck j)
ntest + λ(cki− ck j)

= 0.

• Fχ2(x; 1) is the χ2 cdf with one degree of freedom evaluated at x.

McNemar Tests

McNemar Tests are hypothesis tests that compare two population proportions while addressing the
issues resulting from two dependent, matched-pair samples.

One way to compare the predictive accuracies of two classification models is:

1 Partition the data into training and test sets.
2 Train both classification models using the training set.
3 Predict class labels using the test set.
4 Summarize the results in a two-by-two table similar to this figure.

nii are the number of concordant pairs, that is, the number of observations that both models
classify the same way (correctly or incorrectly). nij, i ≠ j, are the number of discordant pairs, that
is, the number of observations that models classify differently (correctly or incorrectly).
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The misclassification rates for Models 1 and 2 are π 2 • = n2 • /n and π • 2 = n • 2/n, respectively. A
two-sided test for comparing the accuracy of the two models is

H0:π • 2 = π2 •
H1:π • 2 ≠ π2 •

.

The null hypothesis suggests that the population exhibits marginal homogeneity, which reduces the
null hypothesis to H0:π12 = π21 . Also, under the null hypothesis, N12 ~ Binomial(n12 + n21,0.5) [1].

These facts are the basis for the available McNemar test variants: the asymptotic, exact-conditional,
and mid-p-value McNemar tests. The definitions that follow summarize the available variants.

• Asymptotic — The asymptotic McNemar test statistics and rejection regions (for significance level
α) are:

• For one-sided tests, the test statistic is

ta1
∗ =

n12− n21
n12 + n21

.

If 1− Φ t1∗ < α, where Φ is the standard Gaussian cdf, then reject H0.
• For two-sided tests, the test statistic is

ta2
∗ =

n12− n21
2

n12 + n21
.

If 1− Fχ2 t2∗; m < α, where Fχ2(x; m) is the χm
2 cdf evaluated at x, then reject H0.

The asymptotic test requires large-sample theory, specifically, the Gaussian approximation to the
binomial distribution.

• The total number of discordant pairs, nd = n12 + n21, must be greater than 10 ([1], Ch. 10.1.4).
• In general, asymptotic tests do not guarantee nominal coverage. The observed probability of

falsely rejecting the null hypothesis can exceed α, as suggested in simulation studies in [18].
However, the asymptotic McNemar test performs well in terms of statistical power.

• Exact-Conditional — The exact-conditional McNemar test statistics and rejection regions (for
significance level α) are ([36], [38]):

• For one-sided tests, the test statistic is

t1∗ = n12 .

If FBin t1∗; nd, 0.5 < α, where FBin x; n, p  is the binomial cdf with sample size n and success
probability p evaluated at x, then reject H0.

• For two-sided tests, the test statistic is

t2∗ = min(n12, n21) .

If FBin t2∗; nd, 0.5 < α/2, then reject H0.

The exact-conditional test always attains nominal coverage. Simulation studies in [18] suggest
that the test is conservative, and then show that the test lacks statistical power compared to other
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variants. For small or highly discrete test samples, consider using the mid-p-value test ([1], Ch.
3.6.3).

• Mid-p-value test — The mid-p-value McNemar test statistics and rejection regions (for significance
level α) are ([32]):

• For one-sided tests, the test statistic is

t1∗ = n12 .

If FBin t1∗− 1; n12 + n21, 0.5 + 0.5fBin t1∗; n12 + n21, 0.5 < α, where FBin x; n, p  and fBin x; n, p
are the binomial cdf and pdf, respectively, with sample size n and success probability p
evaluated at x, then reject H0.

• For two-sided tests, the test statistic is

t2∗ = min(n12, n21) .

If FBin t2∗− 1; n12 + n21− 1, 0.5 + 0.5fBin t2∗; n12 + n21, 0.5 < α/2, then reject H0.

The mid-p-value test addresses the over-conservative behavior of the exact-conditional test. The
simulation studies in [18] demonstrate that this test attains nominal coverage, and has good
statistical power.

Classification Loss

Classification losses indicate the accuracy of a classification model or set of predicted labels. Two
classification losses are the misclassification rate and cost.

testcholdout returns the classification losses (see e1 and e2) under the alternative hypothesis
(that is, the unrestricted classification losses). nijk is the number of test-sample observations with:
true class k, label i assigned by the first classification model, and label j assigned by the second

classification model. The corresponding estimated proportion is π i jk =
ni jk
ntest

. The test-set sample size

is ∑
i, j, k

ni jk = ntest . The indices are taken from 1 through K, the number of classes.

• The misclassification rate, or classification error, is a scalar in the interval [0,1] representing the
proportion of misclassified observations. That is, the misclassification rate for the first
classification model is

e1 = ∑
j = 1

K
∑

k = 1

K
∑

i ≠ k
π i jk .

For the misclassification rate of the second classification model (e2), switch the indices i and j in
the formula.

Classification accuracy decreases as the misclassification rate increases to 1.
• The misclassification cost is a nonnegative scalar that is a measure of classification quality relative

to the values of the specified cost matrix. Its interpretation depends on the specified costs of
misclassification. The misclassification cost is the weighted average of the costs of
misclassification (specified in a cost matrix, C) in which the weights are the respective estimated
proportions of misclassified observations. The misclassification cost for the first classification
model is
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e1 = ∑
j = 1

K
∑

k = 1

K
∑

i ≠ k
π i jkcki,

where ckj is the cost of classifying an observation into class j if its true class is k. For the
misclassification cost of the second classification model (e2), switch the indices i and j in the
formula.

In general, for a fixed cost matrix, classification accuracy decreases as the misclassification cost
increases.

Tips
• It is a good practice to obtain predicted class labels by passing any trained classification model

and new predictor data to the predict method. For example, for predicted labels from an SVM
model, see predict.

• Cost-sensitive tests perform numerical optimization, which requires additional computational
resources. The likelihood ratio test conducts numerical optimization indirectly by finding the root
of a Lagrange multiplier in an interval. For some data sets, if the root lies close to the boundaries
of the interval, then the method can fail. Therefore, if you have an Optimization Toolbox license,
consider conducting the cost-sensitive chi-square test instead. For more details, see CostTest
and “Cost-Sensitive Testing” on page 35-7312.
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testckfold
Compare accuracies of two classification models by repeated cross-validation

Syntax
h = testckfold(C1,C2,X1,X2)
h = testckfold(C1,C2,X1,X2,Y)
h = testckfold( ___ ,Name,Value)
[h,p,e1,e2] = testckfold( ___ )

Description
testckfold statistically assesses the accuracies of two classification models by repeatedly cross-
validating the two models, determining the differences in the classification loss, and then formulating
the test statistic by combining the classification loss differences. This type of test is particularly
appropriate when sample size is limited.

You can assess whether the accuracies of the classification models are different, or whether one
classification model performs better than another. Available tests include a 5-by-2 paired t test, a 5-
by-2 paired F test, and a 10-by-10 repeated cross-validation t test. For more details, see “Repeated
Cross-Validation Tests” on page 35-7334. To speed up computations, testckfold supports parallel
computing (requires a Parallel Computing Toolbox license).

h = testckfold(C1,C2,X1,X2) returns the test decision that results from conducting a 5-by-2
paired F cross-validation test. The null hypothesis is the classification models C1 and C2 have equal
accuracy in predicting the true class labels using the predictor and response data in the tables X1
and X2. h = 1 indicates to reject the null hypothesis at the 5% significance level.

testckfold conducts the cross-validation test by applying C1 and C2 to all predictor variables in X1
and X2, respectively. The true class labels in X1 and X2 must be the same. The response variable
names in X1, X2, C1.ResponseName, and C2.ResponseName must be the same.

For examples of ways to compare models, see “Tips” on page 35-7337.

h = testckfold(C1,C2,X1,X2,Y) applies the full classification model or classification templates
C1 and C2 to all predictor variables in the tables or matrices of data X1 and X2, respectively. Y is the
table variable name corresponding to the true class labels, or an array of true class labels.

h = testckfold( ___ ,Name,Value) uses any of the input arguments in the previous syntaxes and
additional options specified by one or more Name,Value pair arguments. For example, you can
specify the type of alternative hypothesis, the type of test, or the use of parallel computing.

[h,p,e1,e2] = testckfold( ___ ) also returns the p-value for the hypothesis test (p) and the
respective classification losses on page 35-7336 for each cross-validation run and fold (e1 and e2).

Examples
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Compare Classification Tree Predictor-Selection Algorithms

At each node, fitctree chooses the best predictor to split using an exhaustive search by default.
Alternatively, you can choose to split the predictor that shows the most evidence of dependence with
the response by conducting curvature tests. This example statistically compares classification trees
grown via exhaustive search for the best splits and grown by conducting curvature tests with
interaction.

Load the census1994 data set.

load census1994.mat
rng(1) % For reproducibility

Grow a default classification tree using the training set, adultdata, which is a table. The response-
variable name is 'salary'.

C1 = fitctree(adultdata,'salary')

C1 = 
  ClassificationTree
           PredictorNames: {1x14 cell}
             ResponseName: 'salary'
    CategoricalPredictors: [2 4 6 7 8 9 10 14]
               ClassNames: [<=50K    >50K]
           ScoreTransform: 'none'
          NumObservations: 32561

  Properties, Methods

C1 is a full ClassificationTree model. Its ResponseName property is 'salary'. C1 uses an
exhaustive search to find the best predictor to split on based on maximal splitting gain.

Grow another classification tree using the same data set, but specify to find the best predictor to split
using the curvature test with interaction.

C2 = fitctree(adultdata,'salary','PredictorSelection','interaction-curvature')

C2 = 
  ClassificationTree
           PredictorNames: {1x14 cell}
             ResponseName: 'salary'
    CategoricalPredictors: [2 4 6 7 8 9 10 14]
               ClassNames: [<=50K    >50K]
           ScoreTransform: 'none'
          NumObservations: 32561

  Properties, Methods

C2 also is a full ClassificationTree model with ResponseName equal to 'salary'.

Conduct a 5-by-2 paired F test to compare the accuracies of the two models using the training set.
Because the response-variable names in the data sets and the ResponseName properties are all
equal, and the response data in both sets are equal, you can omit supplying the response data.
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h = testckfold(C1,C2,adultdata,adultdata)

h = logical
   0

h = 0 indicates to not reject the null hypothesis that C1 and C2 have the same accuracies at 5%
level.

Compare Accuracies of Two Different Classification Models

Conduct a statistical test comparing the misclassification rates of the two models using a 5-by-2
paired F test.

Load Fisher's iris data set.

load fisheriris;

Create a naive Bayes template and a classification tree template using default options.

C1 = templateNaiveBayes;
C2 = templateTree;

C1 and C2 are template objects corresponding to the naive Bayes and classification tree algorithms,
respectively.

Test whether the two models have equal predictive accuracies. Use the same predictor data for each
model. testckfold conducts a 5-by-2, two-sided, paired F test by default.

rng(1); % For reproducibility
h = testckfold(C1,C2,meas,meas,species)

h = logical
   0

h = 0 indicates to not reject the null hypothesis that the two models have equal predictive
accuracies.

Compare Classification Accuracies of Simple and Complex Models

Conduct a statistical test to assess whether a simpler model has better accuracy than a more complex
model using a 10-by-10 repeated cross-validation t test.

Load Fisher's iris data set. Create a cost matrix that penalizes misclassifying a setosa iris twice as
much as misclassifying a virginica iris as a versicolor.

load fisheriris;
tabulate(species)

       Value    Count   Percent
      setosa       50     33.33%
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  versicolor       50     33.33%
   virginica       50     33.33%

Cost = [0 2 2;2 0 1;2 1 0];
ClassNames  = {'setosa' 'versicolor' 'virginica'};...
    % Specifies the order of the rows and columns in Cost

The empirical distribution of the classes is uniform, and the classification cost is slightly imbalanced.

Create two ECOC templates: one that uses linear SVM binary learners and one that uses SVM binary
learners equipped with the RBF kernel.

tSVMLinear = templateSVM('Standardize',true); % Linear SVM by default
tSVMRBF = templateSVM('KernelFunction','RBF','Standardize',true);
C1 = templateECOC('Learners',tSVMLinear);
C2 = templateECOC('Learners',tSVMRBF);

C1 and C2 are ECOC template objects. C1 is prepared for linear SVM. C2 is prepared for SVM with an
RBF kernel training.

Test the null hypothesis that the simpler model (C1) is at most as accurate as the more complex
model (C2) in terms of classification costs. Conduct the 10-by-10 repeated cross-validation test.
Request to return p-values and misclassification costs.

rng(1); % For reproducibility
[h,p,e1,e2] = testckfold(C1,C2,meas,meas,species,...
    'Alternative','greater','Test','10x10t','Cost',Cost,...
    'ClassNames',ClassNames)

h = logical
   0

p = 0.1077

e1 = 10×10

         0         0         0    0.0667         0    0.0667    0.1333         0    0.1333         0
    0.0667    0.0667         0         0         0         0    0.0667         0    0.0667    0.0667
         0         0         0         0         0    0.0667    0.0667    0.0667    0.0667    0.0667
    0.0667    0.0667         0    0.0667         0    0.0667         0         0    0.0667         0
    0.0667    0.0667    0.0667         0    0.0667    0.0667         0         0         0         0
         0         0    0.1333         0         0    0.0667         0         0    0.0667    0.0667
    0.0667    0.0667         0         0    0.0667         0         0    0.0667         0    0.0667
    0.0667         0    0.0667    0.0667         0    0.1333         0    0.0667         0         0
         0    0.0667    0.1333    0.0667    0.0667         0         0         0         0         0
         0    0.0667    0.0667    0.0667    0.0667         0         0    0.0667         0         0

e2 = 10×10

         0         0         0    0.1333         0    0.0667    0.1333         0    0.2667         0
    0.0667    0.0667         0    0.1333         0         0         0    0.1333    0.1333    0.0667
    0.1333    0.1333         0         0         0    0.0667         0    0.0667    0.0667    0.0667
         0    0.1333         0    0.0667    0.1333    0.1333         0         0    0.0667         0
    0.0667    0.0667    0.0667         0    0.0667    0.1333    0.1333         0         0    0.0667
    0.0667         0    0.0667    0.0667         0    0.0667    0.1333         0    0.0667    0.0667
    0.2000    0.0667         0         0    0.0667         0         0    0.1333         0    0.0667
    0.2000         0         0    0.1333         0    0.1333         0    0.0667         0         0
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         0    0.0667    0.0667    0.0667    0.1333         0    0.2000         0         0         0
    0.0667    0.0667         0    0.0667    0.1333         0         0    0.0667    0.1333    0.0667

The p-value is slightly greater than 0.10, which indicates to retain the null hypothesis that the simpler
model is at most as accurate as the more complex model. This result is consistent for any significance
level (Alpha) that is at most 0.10.

e1 and e2 are 10-by-10 matrices containing misclassification costs. Row r corresponds to run r of the
repeated cross validation. Column k corresponds to test-set fold k within a particular cross-validation
run. For example, element (2,4) of e2 is 0.1333. This value means that in cross-validation run 2, when
the test set is fold 4, the estimated test-set misclassification cost is 0.1333.

Select Features Using Statistical Accuracy Comparison

Reduce classification model complexity by selecting a subset of predictor variables (features) from a
larger set. Then, statistically compare the accuracy between the two models.

Load the ionosphere data set.

load ionosphere

Train an ensemble of 100 boosted classification trees using AdaBoostM1 and the entire set of
predictors. Inspect the importance measure for each predictor.

t = templateTree('MaxNumSplits',1); % Weak-learner template tree object
C = fitcensemble(X,Y,'Method','AdaBoostM1','Learners',t);
predImp = predictorImportance(C);

bar(predImp)
h = gca;
h.XTick = 1:2:h.XLim(2);
title('Predictor Importances')
xlabel('Predictor')
ylabel('Importance measure')
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Identify the top five predictors in terms of their importance.

[~,idxSort] = sort(predImp,'descend');
idx5 = idxSort(1:5);

Test whether the two models have equal predictive accuracies. Specify the reduced data set and then
the full predictor data. Use parallel computing to speed up computations.

s = RandStream('mlfg6331_64');
Options = statset('UseParallel',true,'Streams',s,'UseSubstreams',true);

[h,p,e1,e2] = testckfold(C,C,X(:,idx5),X,Y,'Options',Options)

Starting parallel pool (parpool) using the 'local' profile ...
Connected to the parallel pool (number of workers: 6).

h = logical
   0

p = 0.4161

e1 = 5×2

    0.0686    0.0795
    0.0800    0.0625
    0.0914    0.0568
    0.0400    0.0739
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    0.0914    0.0966

e2 = 5×2

    0.0914    0.0625
    0.1257    0.0682
    0.0971    0.0625
    0.0800    0.0909
    0.0914    0.1193

testckfold treats trained classification models as templates, and so it ignores all fitted parameters
in C. That is, testckfold cross validates C using only the specified options and the predictor data to
estimate the out-of-fold classification losses.

h = 0 indicates to not reject the null hypothesis that the two models have equal predictive
accuracies. This result favors the simpler ensemble.

Input Arguments
C1 — Classification model template or trained classification model
classification model template object | trained classification model object

Classification model template or trained classification model, specified as any classification model
template object or trained classification model object described in these tables.

Template Type Returned By
Classification tree templateTree
Discriminant analysis templateDiscriminant
Ensemble (boosting, bagging, and random
subspace)

templateEnsemble

Error-correcting output codes (ECOC), multiclass
classification model

templateECOC

Gaussian kernel classification with support vector
machine (SVM) or logistic regression learners

templateKernel

kNN templateKNN
Linear classification with SVM or logistic
regression learners

templateLinear

Naive Bayes templateNaiveBayes
SVM templateSVM

Trained Model Type Model Object Returned By
Classification tree ClassificationTree fitctree
Discriminant analysis ClassificationDiscriminant fitcdiscr
Ensemble of bagged
classification models

ClassificationBaggedEnsemble fitcensemble
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Trained Model Type Model Object Returned By
Ensemble of classification
models

ClassificationEnsemble fitcensemble

ECOC model ClassificationECOC fitcecoc
Generalized additive model
(GAM)

ClassificationGAM fitcgam

kNN ClassificationKNN fitcknn
Naive Bayes ClassificationNaiveBayes fitcnb
Neural network ClassificationNeuralNetwork (with

observations in rows)
fitcnet

SVM ClassificationSVM fitcsvm

For efficiency, supply a classification model template object instead of a trained classification model
object.

C2 — Classification model template or trained model
classification model template object | trained classification model object

Classification model template or trained classification model, specified as any classification model
template object or trained classification model object described in these tables.

Template Type Returned By
Classification tree templateTree
Discriminant analysis templateDiscriminant
Ensemble (boosting, bagging, and random
subspace)

templateEnsemble

Error-correcting output codes (ECOC), multiclass
classification model

templateECOC

Gaussian kernel classification with support vector
machine (SVM) or logistic regression learners

templateKernel

kNN templateKNN
Linear classification with SVM or logistic
regression learners

templateLinear

Naive Bayes templateNaiveBayes
SVM templateSVM

Trained Model Type Model Object Returned By
Classification tree ClassificationTree fitctree
Discriminant analysis ClassificationDiscriminant fitcdiscr
Ensemble of bagged
classification models

ClassificationBaggedEnsemble fitcensemble

Ensemble of classification
models

ClassificationEnsemble fitcensemble

ECOC model ClassificationECOC fitcecoc
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Trained Model Type Model Object Returned By
Generalized additive model
(GAM)

ClassificationGAM fitcgam

kNN ClassificationKNN fitcknn
Naive Bayes ClassificationNaiveBayes fitcnb
Neural network ClassificationNeuralNetwork (with

observations in rows)
fitcnet

SVM ClassificationSVM fitcsvm

For efficiency, supply a classification model template object instead of a trained classification model
object.

X1 — Data used to apply to first full classification model or template
numeric matrix | table

Data used to apply to the first full classification model or template, C1, specified as a numeric matrix
or table.

Each row of X1 corresponds to one observation, and each column corresponds to one variable.
testckfold does not support multicolumn variables and cell arrays other than cell arrays of
character vectors.

X1 and X2 must be of the same data type, and X1, X2, Y must have the same number of observations.

If you specify Y as an array, then testckfold treats all columns of X1 as separate predictor
variables.
Data Types: double | single | table

X2 — Data used to apply to second full classification model or template
numeric matrix | table

Data used to apply to the second full classification model or template, C2, specified as a numeric
matrix or table.

Each row of X2 corresponds to one observation, and each column corresponds to one variable.
testckfold does not support multicolumn variables and cell arrays other than cell arrays of
character vectors.

X1 and X2 must be of the same data type, and X1, X2, Y must have the same number of observations.

If you specify Y as an array, then testckfold treats all columns of X2 as separate predictor
variables.
Data Types: double | single | table

Y — True class labels
categorical array | character array | string array | logical vector | numeric vector | cell array of
character vectors | character vector | string scalar

True class labels, specified as a categorical, character, or string array, a logical or numeric vector, a
cell array of character vectors, or a character vector or string scalar.
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• For a character vector or string scalar, X1 and X2 must be tables, their response variables must
have the same name and values, and Y must be the common variable name. For example, if
X1.Labels and X2.Labels are the response variables, then Y is 'Labels' and X1.Labels and
X2.Labels must be equivalent.

• For all other supported data types, Y is an array of true class labels.

• If Y is a character array, then each element must correspond to one row of the array.
• X1, X2, Y must have the same number of observations (rows).

• If both of these statements are true, then you can omit supplying Y.

• X1 and X2 are tables containing the same response variable (values and name).
• C1 and C2 are full classification models containing ResponseName properties specifying the

response variable names in X1 and X2.

Consequently, testckfold uses the common response variable in the tables. For example, if the
response variables in the tables are X1.Labels and X2.Labels, and the values of
C1.ResponseName and C2.ResponseName are 'Labels', then you do not have to supply Y.

Data Types: categorical | char | string | logical | single | double | cell

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example:
'Alternative','greater','Test','10x10t','Options',statsset('UseParallel',true
) specifies to test whether the first set of first predicted class labels is more accurate than the second
set, to conduct the 10-by-10 t test, and to use parallel computing for cross-validation.

Alpha — Hypothesis test significance level
0.05 (default) | scalar value in the interval (0,1)

Hypothesis test significance level, specified as the comma-separated pair consisting of 'Alpha' and
a scalar value in the interval (0,1).
Example: 'Alpha',0.1
Data Types: single | double

Alternative — Alternative hypothesis to assess
'unequal' (default) | 'greater' | 'less'

Alternative hypothesis to assess, specified as the comma-separated pair consisting of
'Alternative' and one of the values listed in the table.

Value Alternative Hypothesis Description Supported Tests
'unequal' (default) For predicting Y, the set of predictions

resulting from C1 applied to X1 and C2
applied to X2 have unequal accuracies.

'5x2F', '5x2t', and '10x10t'
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Value Alternative Hypothesis Description Supported Tests
'greater' For predicting Y, the set of predictions

resulting from C1 applied to X1 is more
accurate than C2 applied to X2.

'5x2t' and '10x10t'

'less' For predicting Y, the set of predictions
resulting from C1 applied to X1 is less
accurate than C2 applied to X2.

'5x2t' and '10x10t'

For details on supported tests, see Test.
Example: 'Alternative','greater'

X1CategoricalPredictors — Flag identifying categorical predictors
[] (default) | logical vector | numeric vector | 'all'

Flag identifying categorical predictors in the first test-set predictor data (X1), specified as the
comma-separated pair consisting of 'X1CategoricalPredictors' and one of the following:

• A numeric vector with indices from 1 through p, where p is the number of columns of X1.
• A logical vector of length p, where a true entry means that the corresponding column of X1 is a

categorical variable.
• 'all', meaning all predictors are categorical.

The default is [], which indicates that the data contains no categorical predictors.

For a kNN classification model, valid options are [] and 'all'.

You must specify X1CategoricalPredictors if X1 is a matrix and includes categorical predictors.
testckfold does not use the CategoricalPredictors property of C1 when C1 is a trained
classification model. If C1 is a trained model with categorical predictors, specify
'X1CategoricalPredictors',C1.CategoricalPredictors.
Example: 'X1CategoricalPredictors','all'
Data Types: single | double | logical | char | string

X2CategoricalPredictors — Flag identifying categorical predictors
[] (default) | logical vector | numeric vector | 'all'

Flag identifying categorical predictors in the second test-set predictor data (X2), specified as the
comma-separated pair consisting of 'X2CategoricalPredictors' and one of the following:

• A numeric vector with indices from 1 through p, where p is the number of columns of X2.
• A logical vector of length p, where a true entry means that the corresponding column of X2 is a

categorical variable.
• 'all', meaning all predictors are categorical.

The default is [], which indicates that the data contains no categorical predictors.

For a kNN classification model, valid options are [] and 'all'.

You must specify X2CategoricalPredictors if X2 is a matrix and includes categorical predictors.
testckfold does not use the CategoricalPredictors property of C2 when C2 is a trained

35 Functions

35-7328



classification model. If C2 is a trained model with categorical predictors, specify
'X2CategoricalPredictors',C2.CategoricalPredictors.
Example: 'X2CategoricalPredictors','all'
Data Types: single | double | logical | char | string

ClassNames — Class names
categorical array | character array | string array | logical vector | numeric vector | cell array of
character vectors

Class names, specified as the comma-separated pair consisting of 'ClassNames' and a categorical,
character, or string array, logical or numeric vector, or cell array of character vectors. You must set
ClassNames using the data type of Y.

If ClassNames is a character array, then each element must correspond to one row of the array.

Use ClassNames to:

• Specify the order of any input argument dimension that corresponds to class order. For example,
use ClassNames to specify the order of the dimensions of Cost.

• Select a subset of classes for testing. For example, suppose that the set of all distinct class names
in Y is {'a','b','c'}. To train and test models using observations from classes 'a' and 'c'
only, specify 'ClassNames',{'a','c'}.

The default is the set of all distinct class names in Y.
Example: 'ClassNames',{'b','g'}
Data Types: single | double | logical | char | string | cell | categorical

Cost — Classification cost
square matrix | structure array

Classification cost, specified as the comma-separated pair consisting of 'Cost' and a square matrix
or structure array.

• If you specify the square matrix Cost, then Cost(i,j) is the cost of classifying a point into class
j if its true class is i. That is, the rows correspond to the true class and the columns correspond
to the predicted class. To specify the class order for the corresponding rows and columns of Cost,
additionally specify the ClassNames name-value pair argument.

• If you specify the structure S, then S must have two fields:

• S.ClassNames, which contains the class names as a variable of the same data type as Y. You
can use this field to specify the order of the classes.

• S.ClassificationCosts, which contains the cost matrix, with rows and columns ordered as
in S.ClassNames

For cost-sensitive testing use, testcholdout.

It is a best practice to supply the same cost matrix used to train the classification models.

The default is Cost(i,j) = 1 if i ~= j, and Cost(i,j) = 0 if i = j.
Example: 'Cost',[0 1 2 ; 1 0 2; 2 2 0]
Data Types: double | single | struct
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LossFun — Loss function
'classiferror' (default) | 'binodeviance' | 'exponential' | 'hinge' | function handle

Loss function, specified as the comma-separated pair consisting of 'LossFun' and
'classiferror', 'binodeviance', 'exponential', 'hinge', or a function handle.

• The following table lists the available loss functions.

Value Loss Function
'binodeviance' Binomial deviance
'classiferror' Classification error
'exponential' Exponential loss
'hinge' Hinge loss

• Specify your own function using function handle notation.

Suppose that n = size(X,1) is the sample size and there are K unique classes. Your function
must have the signature lossvalue = lossfun(C,S,W,Cost), where:

• The output argument lossvalue is a scalar.
• lossfun is the name of your function.
• C is an n-by-K logical matrix with rows indicating which class the corresponding observation

belongs to. The column order corresponds to the class order in the ClassNames name-value
pair argument.

Construct C by setting C(p,q) = 1 if observation p is in class q, for each row. Set all other
elements of row p to 0.

• S is an n-by-K numeric matrix of classification scores. The column order corresponds to the
class order in the ClassNames name-value pair argument. S is a matrix of classification
scores.

• W is an n-by-1 numeric vector of observation weights. If you pass W, the software normalizes the
weights to sum to 1.

• Cost is a K-by-K numeric matrix of classification costs. For example, Cost = ones(K) -
eye(K) specifies a cost of 0 for correct classification and a cost of 1 for misclassification.

Specify your function using 'LossFun',@lossfun.

Options — Parallel computing options
[] (default) | structure array returned by statset

Parallel computing options, specified as the comma-separated pair consisting of 'Options' and a
structure array returned by statset. These options require Parallel Computing Toolbox.
testckfold uses 'Streams', 'UseParallel', and 'UseSubtreams' fields.

This table summarizes the available options.
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Option Description
'Streams' A RandStream object or cell array of such

objects. If you do not specify Streams, the
software uses the default stream or streams. If
you specify Streams, use a single object except
when the following are true:

• You have an open parallel pool.
• UseParallel is true.
• UseSubstreams is false.

In that case, use a cell array of the same size as
the parallel pool. If a parallel pool is not open,
then the software tries to open one (depending on
your preferences), and Streams must supply a
single random number stream.

'UseParallel' If you have Parallel Computing Toolbox, then you
can invoke a pool of workers by setting
'UseParallel',true.

'UseSubstreams' Set to true to compute in parallel using the
stream specified by 'Streams'. Default is
false. For example, set Streams to a type
allowing substreams, such as'mlfg6331_64' or
'mrg32k3a'.

Example: 'Options',statset('UseParallel',true)
Data Types: struct

Prior — Prior probabilities
'empirical' (default) | 'uniform' | numeric vector | structure

Prior probabilities for each class, specified as the comma-separated pair consisting of 'Prior' and
'empirical', 'uniform', a numeric vector, or a structure.

This table summarizes the available options for setting prior probabilities.

Value Description
'empirical' The class prior probabilities are the class relative

frequencies in Y.
'uniform' All class prior probabilities are equal to 1/K,

where K is the number of classes.
numeric vector Each element is a class prior probability. Specify

the order using the ClassNames name-value pair
argument. The software normalizes the elements
such that they sum to 1.
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Value Description
structure A structure S with two fields:

• S.ClassNames contains the class names as a
variable of the same type as Y.

• S.ClassProbs contains a vector of
corresponding prior probabilities. The
software normalizes the elements such that
they sum to 1.

Example: 'Prior',struct('ClassNames',{{'setosa','versicolor'}},'ClassProbs',
[1,2])

Data Types: char | string | single | double | struct

Test — Test to conduct
'5x2F' (default) | '5x2t' | '10x10t'

Test to conduct, specified as the comma-separated pair consisting of 'Test' and one of he following:
'5x2F', '5x2t', '10x10t'.

Value Description Supported Alternative
Hypothesis

'5x2F' (default) 5-by-2 paired F test.
Appropriate for two-sided
testing only.

'unequal'

'5x2t' 5-by-2 paired t test 'unequal', 'less',
'greater'

'10x10t' 10-by-10 repeated cross-
validation t test

'unequal', 'less',
'greater'

For details on the available tests, see “Repeated Cross-Validation Tests” on page 35-7334. For details
on supported alternative hypotheses, see Alternative.
Example: 'Test','10x10t'

Verbose — Verbosity level
0 (default) | 1 | 2

Verbosity level, specified as the comma-separated pair consisting of 'Verbose' and 0, 1, or 2.
Verbose controls the amount of diagnostic information that the software displays in the Command
Window during training of each cross-validation fold.

This table summarizes the available verbosity level options.

Value Description
0 The software does not display diagnostic

information.
1 The software displays diagnostic messages every

time it implements a new cross-validation run.
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Value Description
2 The software displays diagnostic messages every

time it implements a new cross-validation run,
and every time it trains on a particular fold.

Example: 'Verbose',1
Data Types: double | single

Weights — Observation weights
ones(size(X,1),1) (default) | numeric vector

Observation weights, specified as the comma-separated pair consisting of 'Weights' and a numeric
vector.

The size of Weights must equal the number of rows of X1. The software weighs the observations in
each row of X with the corresponding weight in Weights.

The software normalizes Weights to sum up to the value of the prior probability in the respective
class.
Data Types: double | single

Notes:

• testckfold treats trained classification models as templates. Therefore, it ignores all fitted
parameters in the model. That is, testckfold cross-validates using only the options specified in
the model and the predictor data.

• The repeated cross-validation tests depend on the assumption that the test statistics are
asymptotically normal under the null hypothesis. Highly imbalanced cost matrices (for example,
Cost = [0 100;1 0]) and highly discrete response distributions (that is, most of the
observations are in a small number of classes) might violate the asymptotic normality assumption.
For cost-sensitive testing, use testcholdout.

• NaNs, <undefined> values, empty character vectors (''), empty strings (""), and <missing>
values indicate missing data values.

• For the treatment of missing values in X1 and X2, see the appropriate classification model
training function reference page: fitctree, fitcdiscr, fitcensemble, fitcecoc,
fitcgam, fitcknn, fitcnb, fitcnet, or fitcsvm.

• Y must not contain missing values.

Output Arguments
h — Hypothesis test result
1 | 0

Hypothesis test result, returned as a logical value.

h = 1 indicates the rejection of the null hypothesis at the Alpha significance level.

h = 0 indicates failure to reject the null hypothesis at the Alpha significance level.
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Data Types: logical

p — p-value
scalar in the interval [0,1]

p-value of the test, returned as a scalar in the interval [0,1]. p is the probability that a random test
statistic is at least as extreme as the observed test statistic, given that the null hypothesis is true.

testckfold estimates p using the distribution of the test statistic, which varies with the type of test.
For details on test statistics, see “Repeated Cross-Validation Tests” on page 35-7334.

e1 — Classification losses
numeric matrix

Classification losses on page 35-7336, returned as a numeric matrix. The rows of e1 correspond to
the cross-validation run and the columns correspond to the test fold.

testckfold applies the first test-set predictor data (X1) to the first classification model (C1) to
estimate the first set of class labels.

e1 summarizes the accuracy of the first set of class labels predicting the true class labels (Y) for each
cross-validation run and fold. The meaning of the elements of e1 depends on the type of classification
loss.

e2 — Classification losses
numeric matrix

Classification losses on page 35-7336, returned as a numeric matrix. The rows of e2 correspond to
the cross-validation run and the columns correspond to the test fold.

testckfold applies the second test-set predictor data (X2) to the second classification model (C2) to
estimate the second set of class labels.

e2 summarizes the accuracy of the second set of class labels predicting the true class labels (Y) for
each cross-validation run and fold. The meaning of the elements of e2 depends on the type of
classification loss.

More About
Repeated Cross-Validation Tests

Repeated cross-validation tests form the test statistic for comparing the accuracies of two
classification models by combining the classification loss differences resulting from repeatedly cross-
validating the data. Repeated cross-validation tests are useful when sample size is limited.

To conduct an R-by-K test:

1 Randomly divide (stratified by class) the predictor data sets and true class labels into K sets, R
times. Each division is called a run and each set within a run is called a fold. Each run contains
the complete, but divided, data sets.

2 For runs r = 1 through R, repeat these steps for k = 1 through K:

a Reserve fold k as a test set, and train the two classification models using their respective
predictor data sets on the remaining K – 1 folds.

35 Functions

35-7334



b Predict class labels using the trained models and their respective fold k predictor data sets.
c Estimate the classification loss by comparing the two sets of estimated labels to the true

labels. Denote ecrk as the classification loss when the test set is fold k in run r of
classification model c.

d Compute the difference between the classification losses of the two models:

δ rk = e1rk− e2rk .

At the end of a run, there are K classification losses per classification model.
3 Combine the results of step 2. For each r = 1 through R:

•
Estimate the within-fold averages of the differences and their average: δr = 1

K ∑k = 1

K
δ kr .

•
Estimate the overall average of the differences: δ = 1

KR ∑r = 1

R
∑

k = 1

K
δ rk .

•

Estimate the within-fold variances of the differences: sr
2 = 1

K∑
k = 1

K

δ rk− δr
2 .

•
Estimate the average of the within-fold differences: s2 = 1

R ∑r = 1

R
sr

2 .

•

Estimate the overall sample variance of the differences: S2 = 1
KR− 1 ∑r = 1

R ∑
k = 1

K

δ rk− δ 2 .

Compute the test statistic. All supported tests described here assume that, under H0, the
estimated differences are independent and approximately normally distributed, with mean 0 and
a finite, common standard deviation. However, these tests violate the independence assumption,
and so the test-statistic distributions are approximate.

• For R = 2, the test is a paired test. The two supported tests are a paired t and F test.

• The test statistic for the paired t test is

tpaired
∗ =

δ 11

s2 .

tpaired
∗  has a t-distribution with R degrees of freedom under the null hypothesis.

To reduce the effects of correlation between the estimated differences, the quantity δ 11
occupies the numerator rather than δ.

5-by-2 paired t tests can be slightly conservative [4].
• The test statistic for the paired F test is

Fpaired
∗ =

1
RK ∑r = 1

R
∑

k = 1

K
δ rk

2

s2 .
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Fpaired
∗  has an F distribution with RK and R degrees of freedom.

A 5-by-2 paired F test has comparable power to the 5-by-2 t test, but is more conservative
[1].

• For R > 2, the test is a repeated cross-validation test. The test statistic is

tCV
∗ = δ

S/ ν + 1 .

tCV
∗  has a t distribution with ν degrees of freedom. If the differences were truly independent,

then ν = RK – 1. In this case, the degrees of freedom parameter must be optimized.

For a 10-by-10 repeated cross-validation t test, the optimal degrees of freedom between 8 and
11 ([2] and [3]). testckfold uses ν = 10.

The advantage of repeated cross-validation tests over paired tests is that the results are more
repeatable [3]. The disadvantage is that they require high computational resources.

Classification Loss

Classification losses indicate the accuracy of a classification model or set of predicted labels. In
general, for a fixed cost matrix, classification accuracy decreases as classification loss increases.

testckfold returns the classification losses (see e1 and e2) under the alternative hypothesis (that
is, the unrestricted classification losses). In the definitions that follow:

• The classification losses focus on the first classification model. The classification losses for the
second model are similar.

• ntest is the test-set sample size.
• I(x) is the indicator function. If x is a true statement, then I(x) = 1. Otherwise, I(x) = 0.
• p 1 j is the predicted class assignment of classification model 1 for observation j.

• yj is the true class label of observation j.

• Binomial deviance has the form

e1 =
∑

j = 1

ntest
w jlog 1 + exp −2y j′ f (X j)

∑ j = 1

ntest

w j

where:

• yj = 1 for the positive class and -1 for the negative class.
• f (X j) is the classification score.

The binomial deviance has connections to the maximization of the binomial likelihood function.
For details on binomial deviance, see [5].

• Exponential loss is similar to binomial deviance and has the form

35 Functions

35-7336



e1 =
∑

j = 1

ntest
w jexp −y jf (X j)

∑ j = 1

ntest

w j

.

yj and f (X j) take the same forms here as in the binomial deviance formula.
• Hinge loss has the form

e1 =
∑ j = 1

n

w jmax 0, 1− y j′f X j

∑ j = 1

n

w j

,

yj and f (X j) take the same forms here as in the binomial deviance formula.

Hinge loss linearly penalizes for misclassified observations and is related to the SVM objective
function used for optimization. For more details on hinge loss, see [5].

• Misclassification rate, or classification error, is a scalar in the interval [0,1] representing the
proportion of misclassified observations. That is, the misclassification rate for the first
classification model is

e1 =
∑

j = 1

ntest
w jI(p 1 j ≠ y j)

∑
j = 1

ntest
w j

.

Tips
• Examples of ways to compare models include:

• Compare the accuracies of a simple classification model and a more complex model by passing
the same set of predictor data.

• Compare the accuracies of two different models using two different sets of predictors.
• Perform various types of Feature Selection on page 16-47. For example, you can compare the

accuracy of a model trained using a set of predictors to the accuracy of one trained on a subset
or different set of predictors. You can arbitrarily choose the set of predictors, or use a feature
selection technique like PCA or sequential feature selection (see pca and sequentialfs).

• If both of these statements are true, then you can omit supplying Y.

• X1 and X2 are tables containing the response variable and use the same response variable
name.

• C1 and C2 are full classification models containing equal ResponseName properties (e.g.
strcmp(C1.ResponseName,C2.ResponseName) = 1).

Consequently, testckfold uses the common response variable in the tables.
• One way to perform cost-insensitive feature selection is:
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1 Create a classification model template that characterizes the first classification model (C1).
2 Create a classification model template that characterizes the second classification model (C2).
3 Specify two predictor data sets. For example, specify X1 as the full predictor set and X2 as a

reduced set.
4 Enter testckfold(C1,C2,X1,X2,Y,'Alternative','less'). If testckfold returns 1,

then there is enough evidence to suggest that the classification model that uses fewer
predictors performs better than the model that uses the full predictor set.

Alternatively, you can assess whether there is a significant difference between the accuracies of
the two models. To perform this assessment, remove the 'Alternative','less' specification
in step 4.testckfold conducts a two-sided test, and h = 0 indicates that there is not enough
evidence to suggest a difference in the accuracy of the two models.

• The tests are appropriate for the misclassification rate classification loss on page 35-7336, but you
can specify other loss functions (see LossFun). The key assumptions are that the estimated
classification losses are independent and normally distributed with mean 0 and finite common
variance under the two-sided null hypothesis. Classification losses other than the misclassification
rate can violate this assumption.

• Highly discrete data, imbalanced classes, and highly imbalanced cost matrices can violate the
normality assumption of classification loss differences.

Algorithms
If you specify to conduct the 10-by-10 repeated cross-validation t test using 'Test','10x10t', then
testckfold uses 10 degrees of freedom for the t distribution to find the critical region and estimate
the p-value. For more details, see [2] and [3].

Alternatives
Use testcholdout:

• For test sets with larger sample sizes
• To implement variants of the McNemar test to compare two classification model accuracies
• For cost-sensitive testing using a chi-square or likelihood ratio test. The chi-square test uses

quadprog, which requires an Optimization Toolbox license.

Version History
Introduced in R2015a

References
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Extended Capabilities
Automatic Parallel Support
Accelerate code by automatically running computation in parallel using Parallel Computing Toolbox™.

To run in parallel, specify the 'Options' name-value argument in the call to this function and set the
'UseParallel' field of the options structure to true using statset.

For example: 'Options',statset('UseParallel',true)

For more information about parallel computing, see “Run MATLAB Functions with Automatic Parallel
Support” (Parallel Computing Toolbox).

See Also
testcholdout | templateECOC | templateEnsemble | templateDiscriminant |
templateTree | templateSVM | templateNaiveBayes | templateKNN

Topics
“Hypothesis Tests”
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tiedrank
Rank adjusted for ties

Syntax
[R,TIEADJ] = tiedrank(X)
[R,TIEADJ] = tiedrank(X,1)
[R,TIEADJ] = tiedrank(X,0,1)

Description
[R,TIEADJ] = tiedrank(X) computes the ranks of the values in the vector X. If any X values are
tied, tiedrank computes their average rank. The return value TIEADJ is an adjustment for ties
required by the nonparametric tests signrank and ranksum, and for the computation of Spearman's
rank correlation.

[R,TIEADJ] = tiedrank(X,1) computes the ranks of the values in the vector X. TIEADJ is a
vector of three adjustments for ties required in the computation of Kendall's tau. tiedrank(X,0) is
the same as tiedrank(X).

[R,TIEADJ] = tiedrank(X,0,1) computes the ranks from each end, so that the smallest and
largest values get rank 1, the next smallest and largest get rank 2, etc. These ranks are used in the
Ansari-Bradley test.

Examples
Counting from smallest to largest, the two 20 values are 2nd and 3rd, so they both get rank 2.5
(average of 2 and 3):

tiedrank([10 20 30 40 20])
ans =
    1.0000    2.5000    4.0000    5.0000    2.5000 

Algorithms
tiedrank treats NaNs in X as missing values and ignores them. The rank of NaNs in the output
argument R is NaN.

Version History
Introduced before R2006a

Extended Capabilities
Thread-Based Environment
Run code in the background using MATLAB® backgroundPool or accelerate code with Parallel
Computing Toolbox™ ThreadPool.
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This function fully supports thread-based environments. For more information, see “Run MATLAB
Functions in Thread-Based Environment”.

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

This function fully supports GPU arrays. For more information, see “Run MATLAB Functions on a
GPU” (Parallel Computing Toolbox).

See Also
ansaribradley | corr | partialcorr | ranksum | signrank
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tinv
Student's t inverse cumulative distribution function

Syntax
x = tinv(p,nu)

Description
x = tinv(p,nu) returns the inverse cumulative distribution function (icdf) of the Student's t
distribution evaluated at the probability values in p using the corresponding degrees of freedom in
nu.

Examples

Compute Student's t icdf

Find the 95th percentile of the Student's t distribution with 50 degrees of freedom.

p = .95;   
nu = 50;   
x = tinv(p,nu)

x = 1.6759

Compute Student's t icdf for Multiple Distributions

Compute the 99th percentile of the Student's t distribution for 1 to 6 degrees of freedom.

percentile = tinv(0.99,1:6)

percentile = 1×6

   31.8205    6.9646    4.5407    3.7469    3.3649    3.1427

Compute Confidence Interval Using Student's t icdf

Find a 95% confidence interval estimating the mean of a population by using tinv.

Generate a random sample of size 100 drawn from a normal population with mean 10 and standard
deviation 2.

mu = 10;
sigma = 2;
n = 100;
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rng default   % For reproducibility
x = normrnd(mu,sigma,n,1);

Compute the sample mean, standard error, and degrees of freedom.

xbar = mean(x);
se = std(x)/sqrt(n);
nu = n - 1;

Find the upper and lower confidence bounds for the 95% confidence interval.

conf = 0.95;
alpha = 1 - conf;
pLo = alpha/2;
pUp = 1 - alpha/2;

Compute the critical values for the confidence bounds.

crit = tinv([pLo pUp], nu);

Determine the confidence interval for the population mean.

ci = xbar + crit*se

ci = 1×2

    9.7849   10.7075

This confidence interval is the same as the ci value returned by a t test of a null hypothesis that the
sample comes from a normal population with mean mu.

[h,p,ci2] = ttest(x,mu,'Alpha',alpha);
ci2

ci2 = 2×1

    9.7849
   10.7075

Input Arguments
p — Probability values at which to evaluate icdf
scalar value in [0,1] | array of scalar values

Probability values at which to evaluate the icdf, specified as a scalar value or an array of scalar
values, where each element is in the range [0,1].

• To evaluate the icdf at multiple values, specify p using an array.
• To evaluate the icdfs of multiple distributions, specify nu using an array.

If either or both of the input arguments p and nu are arrays, then the array sizes must be the same.
In this case, tinv expands each scalar input into a constant array of the same size as the array
inputs. Each element in x is the icdf value of the distribution specified by the corresponding element
in nu, evaluated at the corresponding probability in p.
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Example: [0.1 0.5 0.9]
Data Types: single | double

nu — Degrees of freedom
positive scalar value | array of positive scalar values

Degrees of freedom for the Student's t distribution, specified as a positive scalar value or an array of
positive scalar values.

• To evaluate the icdf at multiple values, specify p using an array.
• To evaluate the icdfs of multiple distributions, specify nu using an array.

If either or both of the input arguments p and nu are arrays, then the array sizes must be the same.
In this case, tinv expands each scalar input into a constant array of the same size as the array
inputs. Each element in x is the icdf value of the distribution specified by the corresponding element
in nu, evaluated at the corresponding probability in p.
Example: [9 19 49 99]
Data Types: single | double

Output Arguments
x — icdf values
scalar value | array of scalar values

icdf values evaluated at the probabilities in p, returned as a scalar value or an array of scalar values.
x is the same size as p and nu after any necessary scalar expansion. Each element in x is the icdf
value of the distribution specified by the corresponding element in nu, evaluated at the
corresponding probability in p.

More About
Student’s t icdf

The Student's t distribution is a one-parameter family of curves. The parameter ν is the degrees of
freedom. The Student's t distribution has zero mean.

The t inverse function is defined in terms of the Student's t cdf as

x = F−1(p ν) = x:F(x ν) = p ,

where

p = F(x ν) =∫−∞
x Γ ν + 1

2

Γ ν
2

1
νπ

1

1 + t2
ν

ν + 1
2

dt,

ν is the degrees of freedom, and Γ( · ) is the Gamma function. The result x is the solution of the
integral equation where you supply the probability p.
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For more information, see “Student's t Distribution” on page B-156.

Alternative Functionality
• tinv is a function specific to the Student's t distribution. Statistics and Machine Learning Toolbox

also offers the generic function icdf, which supports various probability distributions. To use
icdf, specify the probability distribution name and its parameters. Note that the distribution-
specific function tinv is faster than the generic function icdf.

Version History
Introduced before R2006a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

This function fully supports GPU arrays. For more information, see “Run MATLAB Functions on a
GPU” (Parallel Computing Toolbox).

See Also
icdf | tcdf | tpdf | tstat | trnd | ttest | ttest2

Topics
“Student's t Distribution” on page B-156
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tpdf
Student's t probability density function

Syntax
y = tpdf(x,nu)

Description
y = tpdf(x,nu) returns the probability density function (pdf) of the Student's t distribution with nu
degrees of freedom, evaluated at the values in x.

Examples

Compute Student's t Distribution pdf

The value of the pdf at the mode is an increasing function of the degrees of freedom.

The mode of the Student's t distribution is at x = 0. Compute the pdf at the mode for degrees of
freedom 1 to 6.

tpdf(0,1:6)

ans = 1×6

    0.3183    0.3536    0.3676    0.3750    0.3796    0.3827

The t distribution converges to the standard normal distribution as the degrees of freedom approach
infinity.

Compute the difference between the pdfs of the standard normal distribution and the Student's t
distribution pdf with 30 degrees of freedom.

difference = tpdf(-2.5:2.5,30)-normpdf(-2.5:2.5)

difference = 1×6

    0.0035   -0.0006   -0.0042   -0.0042   -0.0006    0.0035

Input Arguments
x — Values at which to evaluate pdf
scalar value | array of scalar values

Values at which to evaluate the pdf, specified as a scalar value or an array of scalar values.

• To evaluate the pdf at multiple values, specify x using an array.
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• To evaluate the pdfs of multiple distributions, specify nu using an array.

If either or both of the input arguments x and nu are arrays, then the array sizes must be the same.
In this case, tpdf expands each scalar input into a constant array of the same size as the array
inputs. Each element in y is the pdf value of the distribution specified by the corresponding element
in nu, evaluated at the corresponding element in x.
Example: [-1 0 3 4]
Data Types: single | double

nu — degrees of freedom
positive scalar value | array of positive scalar values

Degrees of freedom for the Student's t distribution, specified as a positive scalar value or an array of
positive scalar values.

• To evaluate the pdf at multiple values, specify x using an array.
• To evaluate the pdfs of multiple distributions, specify nu using an array.

If either or both of the input arguments x and nu are arrays, then the array sizes must be the same.
In this case, tpdf expands each scalar input into a constant array of the same size as the array
inputs. Each element in y is the pdf value of the distribution specified by the corresponding element
in nu, evaluated at the corresponding element in x.
Example: [9 19 49 99]
Data Types: single | double

Output Arguments
y — pdf values
scalar value | array of scalar values

pdf values evaluated at the values in x, returned as a scalar value or an array of scalar values. p is the
same size as x and nu after any necessary scalar expansion. Each element in y is the pdf value of the
distribution specified by the corresponding element in nu, evaluated at the corresponding element in
x.

More About
Student’s t pdf

The Student's t distribution is a one-parameter family of curves. The parameterν is the degrees of
freedom. The Student's t distribution has zero mean.

The pdf of the Student's t distribution is

y = f (x ν) =
Γ ν + 1

2

Γ ν
2

1
νπ

1

1 + x2
ν

ν + 1
2

,
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where ν is the degrees of freedom and Γ( · ) is the Gamma function. The result y is the probability of
observing a particular value of x from the Student’s t distribution with ν degrees of freedom.

For more information, see “Student's t Distribution” on page B-156.

Alternative Functionality
• tpdf is a function specific to the Student's t distribution. Statistics and Machine Learning Toolbox

also offers the generic function pdf, which supports various probability distributions. To use pdf,
specify the probability distribution name and its parameters. Note that the distribution-specific
function tpdf is faster than the generic function pdf.

• Use the Probability Distribution Function app to create an interactive plot of the cumulative
distribution function (cdf) or probability density function (pdf) for a probability distribution.

Version History
Introduced before R2006a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

This function fully supports GPU arrays. For more information, see “Run MATLAB Functions on a
GPU” (Parallel Computing Toolbox).

See Also
pdf | tcdf | tinv | tstat | trnd | ttest | ttest2

Topics
“Student's t Distribution” on page B-156
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training
Training indices for cross-validation

Syntax
idx = training(c)
idx = training(c,i)

Description
idx = training(c) returns the training indices idx for a cvpartition object c of type
'holdout' or 'resubstitution'.

• If c.Type is 'holdout', then idx specifies the observations in the training set.
• If c.Type is 'resubstitution', then idx specifies all observations.

idx = training(c,i) returns the training indices for repetition i of a cvpartition object c of
type 'kfold' or 'leaveout'.

• If c.Type is 'kfold', then idx specifies the observations in the ith training set.
• If c.Type is 'leaveout', then idx specifies the observations reserved for training at repetition

i.

Examples

Identify Training Indices in Holdout Partition

Identify the observations that are in the training set of a cvpartition object for holdout validation.

Partition 10 observations for holdout validation. Select approximately 30% of the observations to be
in the test (holdout) set.

rng('default') % For reproducibility
c = cvpartition(10,'Holdout',0.30)

c = 
Hold-out cross validation partition
   NumObservations: 10
       NumTestSets: 1
         TrainSize: 7
          TestSize: 3

Identify the training set observations. Observations that correspond to 1s are in the training set.

set = training(c)

set = 10x1 logical array

   1
   1
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   1
   0
   1
   1
   1
   1
   0
   0

Visualize the results. All observations except the fourth, ninth, and tenth are in the training set.

h = heatmap(double(set),'ColorbarVisible','off');
sorty(h,'1','ascend')
ylabel('Observation')
title('Training Set Observations')

Identify Training Indices in k-Fold Partition

Identify the observations that are in the training sets of a cvpartition object for 3-fold cross-
validation.

Partition 10 observations for 3-fold cross-validation. Notice that c contains three repetitions of
training and test data.
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rng('default') % For reproducibility
c = cvpartition(10,'KFold',3)

c = 
K-fold cross validation partition
   NumObservations: 10
       NumTestSets: 3
         TrainSize: 7  6  7
          TestSize: 3  4  3

Identify the training set observations for each repetition of training and test data. Observations that
correspond to 1s are in the corresponding training set.

set1 = training(c,1)

set1 = 10x1 logical array

   0
   0
   1
   1
   1
   1
   1
   1
   0
   1

set2 = training(c,2);
set3 = training(c,3);

Visualize the results. All observations except the first, second, and ninth are in the first training set.
All observations except the third, sixth, eighth, and tenth are in the second training set. All
observations except the fourth, fifth, and seventh are in the third training set.

data = [set1,set2,set3];
h = heatmap(double(data),'ColorbarVisible','off');
sorty(h,{'1','2','3'},'ascend')
xlabel('Repetition')
ylabel('Observation')
title('Training Set Observations')
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Input Arguments
c — Validation partition
cvpartition object

Validation partition, specified as a cvpartition object. The validation partition type of c, c.Type, is
'kfold', 'holdout', 'leaveout', or 'resubstitution'.

i — Repetition index
positive integer scalar

Repetition index, specified as a positive integer scalar. Specifying i indicates to find the observations
in the ith training set.
Data Types: single | double

Output Arguments
idx — Indices for training set observations
logical vector

Indices for training set observations, returned as a logical vector. A value of 1 indicates that the
corresponding observation is in the training set. A value of 0 indicates that the corresponding
observation is in the test set.
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Version History
Introduced in R2008a

See Also
cvpartition | test
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training
Training indices for time series cross-validation

Syntax
idx = training(c)
idx = training(c,i)

Description
idx = training(c) returns the training indices idx for a tspartition object c of type
'holdout'. That is, the logical vector idx specifies the observations in the training set.

idx = training(c,i) returns the training indices for window i of a tspartition object c of
type 'expanding-window' or 'sliding-window'. That is, the logical vector idx specifies the
observations in training set i.

• If c.Type is 'expanding-window', then the training set size expands with each window while
the test set size remains fixed.

• If c.Type is 'sliding-window', then both the training set size and the test set size are fixed.

Examples

Identify Training Set Observations in Holdout Validation

Identify the observations in the training set of a tspartition object for holdout validation.

Use 30% of 20 time-dependent observations to create a test set. The corresponding training set
contains the remaining observations.

c = tspartition(20,"Holdout",0.30);

Find the training set indices. A value of 1 (true) indicates that the corresponding observation is in
the training set. A value of 0 (false) indicates that the corresponding observation is in the test set.

trainingIndices = training(c);

Visualize the observations in the training set by using a heat map.

h = heatmap(double(trainingIndices),ColorbarVisible="off");
h.XDisplayLabels = "";
ylabel("Observation")
title("Training Set Observations")
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The observations in dark blue (with a value of 1) are in the training set, and the observations in light
blue (with a value of 0) are in the test set. When you use holdout validation for time series data, the
latest observations (in this case, observations 15 through 20) are in the test set.

Expanding Window Cross-Validation

Identify the observations in the training sets and test sets of a tspartition object for expanding
window cross-validation.

Use 20 time-dependent observations to create three training sets and three test sets. Specify a gap of
two observations between each training set and its corresponding test set.

c = tspartition(20,"ExpandingWindow",3, ...
    GapSize=2);

Find the training set indices for the three windows. A value of 1 (true) indicates that the
corresponding observation is in the training set for that window.

trainWindow1 = training(c,1);
trainWindow2 = training(c,2);
trainWindow3 = training(c,3);

Find the test set indices for the three windows. A value of 1 (true) indicates that the corresponding
observation is in the test set for that window.
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testWindow1 = test(c,1);
testWindow2 = test(c,2);
testWindow3 = test(c,3);

Combine the training and test set indices into one matrix where a value of 1 indicates a training
observation and a value of 2 indicates a test observation.

data = [trainWindow1 + 2*testWindow1, ...
    trainWindow2 + 2*testWindow2, ...
    trainWindow3 + 2*testWindow3];

Visualize the different sets by using a heat map.

colormap = lines(3);
heatmap(double(data),ColorbarVisible="off", ...
    Colormap=colormap);
xlabel("Window")
ylabel("Observation")
title("Expanding Window Cross-Validation Scheme")

For each window, the observations in red (with a value of 1) are in the training set, the observations
in yellow (with a value of 2) are in the test set, and the observations in blue (with a value of 0) are
ignored. For example, observation 11 is a test observation in window one, a gap observation in
window two, and a training observation in window three.
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Input Arguments
c — Time series validation partition
tspartition object

Time series validation partition, specified as a tspartition object. The validation partition type
(Type) is 'expanding-window', 'holdout', or 'sliding-window'.

i — Training set or window index
positive integer scalar

Training set or window index, specified as a positive integer scalar. When you specify i, the
training function finds the observations in training set i.
Data Types: single | double

Output Arguments
idx — Indices for training set observations
logical vector

Indices for training set observations, returned as a logical vector. A value of 1 (true) indicates that
the corresponding observation is in the training set. A value of 0 (false) indicates that the
corresponding observation is in a different set, such as the test set.

Version History
Introduced in R2022b

See Also
tspartition | test

Topics
“Time Series Forecasting Using Ensemble of Boosted Regression Trees” on page 14-2
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transform
Transform new predictor data to remove disparate impact

Syntax
transformedData = transform(remover,Tbl)
transformedData = transform(remover,X,attribute)
transformedData = transform( ___ ,Name=Value)

Description
transformedData = transform(remover,Tbl) transforms the predictor data in Tbl according
to the transformation in the disparateImpactRemover object (remover). The predictor variables
and sensitive attribute in Tbl must have the same names as the variables used to create remover. To
see the variable names, use remover.PredictorNames and remover.SensitiveAttribute.

To see the fraction of the data transformation used to return transformedData, use
remover.RepairFraction.

transformedData = transform(remover,X,attribute) returns the data X, transformed with
respect to the sensitive attribute attribute.

transformedData = transform( ___ ,Name=Value) specifies options using one or more name-
value arguments in addition to any of the input argument combinations in previous syntaxes. For
example, you can specify the extent of the data transformation by using the RepairFraction name-
value argument. A value of 1 indicates a full transformation, and a value of 0 indicates no
transformation.

Examples

Reduce Disparate Impact of Predictions

Train a binary classifier, classify test data using the model, and compute the disparate impact for
each group in the sensitive attribute. To reduce the disparate impact values, use
disparateImpactRemover, and then retrain the binary classifier. Transform the test data set,
reclassify the observations, and compute the disparate impact values.

Load the sample data census1994, which contains the training data adultdata and the test data
adulttest. The data sets consist of demographic information from the US Census Bureau that can
be used to predict whether an individual makes over $50,000 per year. Preview the first few rows of
the training data set.

load census1994
head(adultdata)

    age       workClass          fnlwgt      education    education_num       marital_status           occupation        relationship     race      sex      capital_gain    capital_loss    hours_per_week    native_country    salary
    ___    ________________    __________    _________    _____________    _____________________    _________________    _____________    _____    ______    ____________    ____________    ______________    ______________    ______

    39     State-gov                77516    Bachelors         13          Never-married            Adm-clerical         Not-in-family    White    Male          2174             0                40          United-States     <=50K 
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    50     Self-emp-not-inc         83311    Bachelors         13          Married-civ-spouse       Exec-managerial      Husband          White    Male             0             0                13          United-States     <=50K 
    38     Private             2.1565e+05    HS-grad            9          Divorced                 Handlers-cleaners    Not-in-family    White    Male             0             0                40          United-States     <=50K 
    53     Private             2.3472e+05    11th               7          Married-civ-spouse       Handlers-cleaners    Husband          Black    Male             0             0                40          United-States     <=50K 
    28     Private             3.3841e+05    Bachelors         13          Married-civ-spouse       Prof-specialty       Wife             Black    Female           0             0                40          Cuba              <=50K 
    37     Private             2.8458e+05    Masters           14          Married-civ-spouse       Exec-managerial      Wife             White    Female           0             0                40          United-States     <=50K 
    49     Private             1.6019e+05    9th                5          Married-spouse-absent    Other-service        Not-in-family    Black    Female           0             0                16          Jamaica           <=50K 
    52     Self-emp-not-inc    2.0964e+05    HS-grad            9          Married-civ-spouse       Exec-managerial      Husband          White    Male             0             0                45          United-States     >50K  

Each row contains the demographic information for one adult. The last column salary shows
whether a person has a salary less than or equal to $50,000 per year or greater than $50,000 per
year.

Remove observations from adultdata and adulttest that contain missing values.

adultdata = rmmissing(adultdata);
adulttest = rmmissing(adulttest);

Specify the continuous numeric predictors to use for model training.

predictors = ["age","education_num","capital_gain","capital_loss", ...
    "hours_per_week"];

Train an ensemble classifier using the training set adultdata. Specify salary as the response
variable and fnlwgt as the observation weights. Because the training set is imbalanced, use the
RUSBoost algorithm. After training the model, predict the salary (class label) of the observations in
the test set adulttest.

rng("default") % For reproducibility
mdl = fitcensemble(adultdata,"salary",Weights="fnlwgt", ...
    PredictorNames=predictors,Method="RUSBoost");
labels = predict(mdl,adulttest);

Transform the training set predictors by using the race sensitive attribute.

[remover,newadultdata] = disparateImpactRemover(adultdata, ...
    "race",PredictorNames=predictors);
remover

remover = 
  disparateImpactRemover with properties:

        RepairFraction: 1
        PredictorNames: {1x5 cell}
    SensitiveAttribute: 'race'

remover is a disparateImpactRemover object, which contains the transformation of the
remover.PredictorNames predictors with respect to the remover.SensitiveAttribute
variable.

Apply the same transformation stored in remover to the test set predictors. Note: You must
transform both the training and test data sets before passing them to a classifier.

newadulttest = transform(remover,adulttest, ...
    PredictorNames=predictors);

Train the same type of ensemble classifier as mdl, but use the transformed predictor data. As before,
predict the salary (class label) of the observations in the test set adulttest.
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rng("default") % For reproducibility
newMdl = fitcensemble(newadultdata,"salary",Weights="fnlwgt", ...
    PredictorNames=predictors,Method="RUSBoost");
newLabels = predict(newMdl,newadulttest);

Compare the disparate impact values for the predictions made by the original model (mdl) and the
predictions made by the model trained with the transformed data (newMdl). For each group in the
sensitive attribute, the disparate impact value is the proportion of predictions in that group with a
positive class value (pg + ) divided by the proportion of predictions in the reference group with a
positive class value (pr + ). An ideal classifier makes predictions where, for each group, pg +  is close to
pr +  (that is, where the disparate impact value is close to 1).

Compute the disparate impact values for the mdl predictions made using the original predictor data.
Include the observation weights. You can use the report object function to display bias metrics, such
as disparate impact, that are stored in the evaluator object.

evaluator = fairnessMetrics(adulttest,"salary", ...
    SensitiveAttributeNames="race",Predictions=labels, ...
    Weights="fnlwgt");
evaluator.PositiveClass

ans = categorical
     >50K 

evaluator.ReferenceGroup

ans = 
'White'

report(evaluator,BiasMetrics="DisparateImpact")

ans=5×3 table
    SensitiveAttributeNames          Groups          DisparateImpact
    _______________________    __________________    _______________

             race              Amer-Indian-Eskimo        0.41702    
             race              Asian-Pac-Islander          1.719    
             race              Black                     0.60571    
             race              Other                     0.66958    
             race              White                           1    

Several of the disparate impact values are below the industry standard of 0.8, and one value is above
1.25. These values indicate bias in the predictions with respect to the positive class >50K and the
sensitive attribute race.

Compute the disparate impact values for the newMdl predictions.

newEvaluator = fairnessMetrics(newadulttest,"salary", ...
    SensitiveAttributeNames="race",Predictions=newLabels, ...
    Weights="fnlwgt");
newEvaluator.PositiveClass

ans = categorical
     >50K 
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newEvaluator.ReferenceGroup

ans = 
'White'

report(newEvaluator,BiasMetrics="DisparateImpact")

ans=5×3 table
    SensitiveAttributeNames          Groups          DisparateImpact
    _______________________    __________________    _______________

             race              Amer-Indian-Eskimo        0.92804    
             race              Asian-Pac-Islander         0.9697    
             race              Black                     0.66629    
             race              Other                     0.86039    
             race              White                           1    

The disparate impact values for the newMdl predictions are closer to 1 than the disparate impact
values for the mdl predictions. One value is still below 0.8.

Visually compare the disparate impact values by using a bar graph.

bar([evaluator.BiasMetrics.DisparateImpact, ...
    newEvaluator.BiasMetrics.DisparateImpact])
xticklabels(evaluator.BiasMetrics.Groups)
ylabel("Disparate Impact")
legend(["Original","Transformed"], ...
    Location="eastoutside")
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The disparateImpactRemover function seems to have improved the model predictions on the test
set with respect to the disparate impact metric.

Check whether the transformed predictors negatively affect the accuracy of the model predictions.
Compute the accuracy of the test set predictions for the two models mdl and newMdl.

accuracy = 1-loss(mdl,adulttest,"salary")

accuracy = 0.8024

newAccuracy = 1-loss(newMdl,newadulttest,"salary")

newAccuracy = 0.7955

The model trained using the transformed predictors (newMdl) achieves similar test set accuracy
compared to the model trained with the original predictors (mdl).

Specify Different Repair Fractions

Specify the extent of the transformation of the continuous numeric predictors with respect to a
sensitive attribute. Use the RepairFraction name-value argument of the
disparateImpactRemover function.

Load the patients data set, which contains medical information for 100 patients. Convert the
Gender and Smoker variables to categorical variables. Specify the descriptive category names
Smoker and Nonsmoker rather than 1 and 0.

load patients
Gender = categorical(Gender);
Smoker = categorical(Smoker,logical([1 0]), ...
    ["Smoker","Nonsmoker"]);

Create a matrix containing the continuous predictors Diastolic and Systolic.

X = [Diastolic,Systolic];

Find the observations in the two groups of the sensitive attribute Gender.

femaleIdx = Gender=="Female";
maleIdx = Gender=="Male";
femaleX = X(femaleIdx,:);
maleX = X(maleIdx,:);

Transform the Diastolic and Systolic predictors in X by using the Gender sensitive attribute.
Specify a repair fraction of 0.5. Note that a value of 1 indicates a full transformation, and a value of 0
indicates no transformation.

[remover,newX50] = disparateImpactRemover(X,Gender, ...
    RepairFraction=0.5);
femaleNewX50 = newX50(femaleIdx,:);
maleNewX50 = newX50(maleIdx,:);

Fully transform the predictor variables by using the transform object function of the remover
object.
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newX100 = transform(remover,X,Gender,RepairFraction=1);
femaleNewX100 = newX100(femaleIdx,:);
maleNewX100 = newX100(maleIdx,:);

Visualize the difference in the Diastolic distributions between the original values in X, the partially
repaired values in newX50, and the fully transformed values in newX100. Compute and display the
probability density estimates by using the ksdensity function.

t = tiledlayout(1,3);
title(t,"Diastolic Distributions with Different " + ...
    "Repair Fractions")
xlabel(t,"Diastolic")
ylabel(t,"Density Estimate")

nexttile
ksdensity(femaleX(:,1))
hold on
ksdensity(maleX(:,1))
hold off
title("Fraction=0")
ylim([0,0.07])

nexttile
ksdensity(femaleNewX50{:,1})
hold on
ksdensity(maleNewX50{:,1})
hold off
title("Fraction=0.5")
ylim([0,0.07])

nexttile
ksdensity(femaleNewX100{:,1})
hold on
ksdensity(maleNewX100{:,1})
hold off
title("Fraction=1")
ylim([0,0.07])
legend(["Female","Male"],Location="eastoutside")
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As the repair fraction increases, the disparateImpactRemover function transforms the values in
the Diastolic predictor variable so that the distribution of Female values and the distribution of
Male values become more similar.

Input Arguments
remover — Predictor data transformer
disparateImpactRemover object

Predictor data transformer, specified as a disparateImpactRemover object. For a new data set, the
transform object function transforms the remover.PredictorNames predictor variables with
respect to the sensitive attribute specified by remover.SensitiveAttribute.

Note that if remover.SensitiveAttribute is a variable rather than the name of a variable, then
transform does not use the stored sensitive attribute values when transforming new data. The
function uses the values in attribute instead.

Tbl — Data set
table

Data set, specified as a table. Each row of Tbl corresponds to one observation, and each column
corresponds to one variable. If you use a table when creating the disparateImpactRemover object,
then you must use a table when using the transform object function. The table must include all
required predictor variables and the sensitive attribute. The table can include additional variables,
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such as the response variable. Multicolumn variables and cell arrays other than cell arrays of
character vectors are not allowed.
Data Types: table

X — Predictor data
numeric matrix

Predictor data, specified as a numeric matrix. Each row of X corresponds to one observation, and
each column corresponds to one predictor variable. If you use a matrix when creating the
disparateImpactRemover object, then you must use a matrix when using the transform object
function. X and attribute must have the same number of rows.
Data Types: single | double

attribute — Sensitive attribute
numeric column vector | logical column vector | character array | string array | cell array of character
vectors | categorical column vector

Sensitive attribute, specified as a numeric column vector, logical column vector, character array,
string array, cell array of character vectors, or categorical column vector.

• The data type of attribute must be the same as the data type of
remover.SensitiveAttribute. (The software treats string arrays as cell arrays of character
vectors.)

• The distinct classes in attribute must be a subset of the classes in
remover.SensitiveAttribute.

• If attribute is an array, then each row of the array must correspond to a group in the sensitive
attribute.

• attribute and X must have the same number of rows.

Data Types: single | double | logical | char | string | cell | categorical

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.
Example:
transform(remover,Tbl,RepairFraction=1,PredictorNames=["Diastolic","Systolic"
]) specifies to transform fully the Diastolic and Systolic variables in the table Tbl by using the
transformation stored in remover.

PredictorNames — Names of predictor variables to transform
remover.PredictorNames (default) | string array of unique names | cell array of unique character
vectors

Names of the predictor variables to transform, specified as a string array of unique names or cell
array of unique character vectors. The predictor variable names must be a subset of the names stored
in remover.PredictorNames.
Example: PredictorNames=["SepalLength","SepalWidth","PetalLength","PetalWidth"]
Data Types: string | cell
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RepairFraction — Fraction of data transformation
remover.RepairFraction (default) | numeric scalar in the range [0,1]

Fraction of the data transformation, specified as a numeric scalar in the range [0,1]. A value of 1
indicates a full transformation, and a value of 0 indicates no transformation.

A greater repair fraction can result in a greater loss in model prediction accuracy.
Example: RepairFraction=0.75
Data Types: single | double

Output Arguments
transformedData — Transformed predictor data
table | numeric matrix

Transformed predictor data, returned as a table or numeric matrix. Note that transformedData can
include the sensitive attribute. After you use the disparateImpactRemover function, avoid using
the sensitive attribute as a separate predictor when training your model.

For more information on how disparateImpactRemover transforms predictor data, see
“Algorithms” on page 35-1401.

Version History
Introduced in R2022b

See Also
disparateImpactRemover | fairnessMetrics | fairnessWeights

Topics
“Introduction to Fairness in Binary Classification” on page 26-2
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transform
Transform predictors into extracted features

Syntax
z = transform(Mdl,x)

Description
z = transform(Mdl,x) transforms the data x into the features z via the model Mdl.

Examples

Transform Data to Learned Features

Create a feature transformation model with 100 features from the SampleImagePatches data.

rng('default') % For reproducibility
data = load('SampleImagePatches');
q = 100;
X = data.X;
Mdl = sparsefilt(X,q)

Warning: Solver LBFGS was not able to converge to a solution.

Mdl = 
  SparseFiltering
            ModelParameters: [1x1 struct]
              NumPredictors: 363
         NumLearnedFeatures: 100
                         Mu: []
                      Sigma: []
                    FitInfo: [1x1 struct]
           TransformWeights: [363x100 double]
    InitialTransformWeights: []

  Properties, Methods

sparsefilt issues a warning because it stopped due to reaching the iteration limit, instead of
reaching a step-size limit or a gradient-size limit. You can still use the learned features in the
returned object by calling the transform function.

Transform the first five rows of the input data X to the new feature space.

y = transform(Mdl,X(1:5,:));
size(y)

ans = 1×2
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     5   100

Input Arguments
Mdl — Feature extraction model
SparseFiltering object | ReconstructionICA object

Feature extraction model, specified as a SparseFiltering object or as a ReconstructionICA
object. Create Mdl by using the sparsefilt function or the rica function.

x — Predictor data
matrix with p columns | table of numeric values with p columns

Predictor data, specified as a matrix with p columns or as a table of numeric values with p columns.
Here, p is the number of predictors in the model, which is Mdl.NumPredictors. Each row of the
input matrix or table represents one data point to transform.
Data Types: single | double | table

Output Arguments
z — Transformed data
n-by-q matrix

Transformed data, returned as an n-by-q matrix. Here, n is the number of rows in the input data x,
and q is the number of features, which is Mdl.NumLearnedFeatures.

Algorithms
transform converts data to predicted features by using the learned weight matrix W to map input
predictors to output features.

• For rica, input data X maps linearly to output features XW. See “Reconstruction ICA Algorithm”
on page 16-129.

• For sparsefilt, input data maps nonlinearly to output features F (X,W). See “Sparse Filtering
Algorithm” on page 16-127.

Caution The result of transform for sparse filtering depends on the number of data points. In
particular, the result of applying transform to each row of a matrix separately differs from the
result of applying transform to the entire matrix at once.

Version History
Introduced in R2017a

See Also
rica | sparsefilt | ReconstructionICA | SparseFiltering
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Topics
“Feature Extraction Workflow” on page 16-132
“Feature Extraction” on page 16-127
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transform
Transform new data using generated features

Syntax
NewTbl = transform(Transformer,Tbl)
NewTbl = transform(Transformer,Tbl,Index)

Description
NewTbl = transform(Transformer,Tbl) returns a table with transformed features generated by
the FeatureTransformer object Transformer. The input Tbl must contain the required variables,
whose data types must match those of the variables originally passed to gencfeatures or
genrfeatures when Transformer was created.

NewTbl = transform(Transformer,Tbl,Index) returns a subset of the transformed features,
where Index indicates the features to return.

Examples

Compute Cross-Validation Mean Squared Error Using Generated Features

Generate features to train a linear regression model. Compute the cross-validation mean squared
error (MSE) of the model by using the crossval function.

Load the patients data set, and create a table containing the predictor data.

load patients
Tbl = table(Age,Diastolic,Gender,Height,SelfAssessedHealthStatus, ...
    Smoker,Weight);

Create a random partition for 5-fold cross-validation.

rng("default") % For reproducibility of the partition
cvp = cvpartition(size(Tbl,1),KFold=5);

Compute the cross-validation MSE for a linear regression model trained on the original features in
Tbl and the Systolic response variable.

CVMdl = fitrlinear(Tbl,Systolic,CVPartition=cvp);
cvloss = kfoldLoss(CVMdl)

cvloss = 45.2594

Create the custom function myloss (shown at the end of this example). This function generates 20
features from the training data, and then applies the same training set transformations to the test
data. The function then fits a linear regression model to the training data and computes the test set
MSE.
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Note: If you use the live script file for this example, the myloss function is already included at the
end of the file. Otherwise, you need to create this function at the end of your .m file or add it as a file
on the MATLAB® path.

Compute the cross-validation MSE for a linear model trained on features generated from the
predictors in Tbl.

newcvloss = mean(crossval(@myloss,Tbl,Systolic,Partition=cvp))

newcvloss = 26.7663

function testloss = myloss(TrainTbl,trainY,TestTbl,testY)
[Transformer,NewTrainTbl] = genrfeatures(TrainTbl,trainY,20);
NewTestTbl = transform(Transformer,TestTbl);
Mdl = fitrlinear(NewTrainTbl,trainY);
testloss = loss(Mdl,NewTestTbl,testY);
end

Train Model Using Subset of Generated Features

Train a linear classifier using only the numeric generated features returned by gencfeatures.

Load the patients data set. Create a table from a subset of the variables.

load patients
Tbl = table(Age,Diastolic,Height,SelfAssessedHealthStatus, ...
    Smoker,Systolic,Weight,Gender);

Partition the data into training and test sets. Use approximately 70% of the observations as training
data, and 30% of the observations as test data. Partition the data using cvpartition.

rng("default")
c = cvpartition(Tbl.Gender,Holdout=0.30);
TrainTbl = Tbl(training(c),:);
TestTbl = Tbl(test(c),:);

Use the training data to generate 25 new features. Specify the minimum redundancy maximum
relevance (MRMR) feature selection method for selecting new features.

Transformer = gencfeatures(TrainTbl,"Gender",25, ...
    FeatureSelectionMethod="mrmr")

Transformer = 
  FeatureTransformer with properties:

                     Type: 'classification'
            TargetLearner: 'linear'
    NumEngineeredFeatures: 23
      NumOriginalFeatures: 2
         TotalNumFeatures: 25

Inspect the generated features.

Info = describe(Transformer)
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Info=25×4 table
                                      Type        IsOriginal         InputVariables                                              Transformations                                      
                                   ___________    __________    ________________________    __________________________________________________________________________________________

    zsc(Weight)                    Numeric          true        Weight                      "Standardization with z-score (mean = 153.1571, std = 26.8229)"                           
    eb5(Weight)                    Categorical      false       Weight                      "Equal-width binning (number of bins = 5)"                                                
    c(SelfAssessedHealthStatus)    Categorical      true        SelfAssessedHealthStatus    "Variable of type categorical converted from a cell data type"                            
    zsc(sqrt(Systolic))            Numeric          false       Systolic                    "sqrt( ) -> Standardization with z-score (mean = 11.086, std = 0.29694)"                  
    zsc(sin(Systolic))             Numeric          false       Systolic                    "sin( ) -> Standardization with z-score (mean = -0.1303, std = 0.72575)"                  
    zsc(Systolic./Weight)          Numeric          false       Systolic, Weight            "Systolic ./ Weight -> Standardization with z-score (mean = 0.82662, std = 0.14555)"      
    zsc(Age+Weight)                Numeric          false       Age, Weight                 "Age + Weight -> Standardization with z-score (mean = 191.1143, std = 28.6976)"           
    zsc(Age./Weight)               Numeric          false       Age, Weight                 "Age ./ Weight -> Standardization with z-score (mean = 0.25424, std = 0.062486)"          
    zsc(Diastolic.*Weight)         Numeric          false       Diastolic, Weight           "Diastolic .* Weight -> Standardization with z-score (mean = 12864.6857, std = 2731.1613)"
    q6(Height)                     Categorical      false       Height                      "Equiprobable binning (number of bins = 6)"                                               
    zsc(Systolic+Weight)           Numeric          false       Systolic, Weight            "Systolic + Weight -> Standardization with z-score (mean = 276.1429, std = 28.7111)"      
    zsc(Diastolic-Weight)          Numeric          false       Diastolic, Weight           "Diastolic - Weight -> Standardization with z-score (mean = -69.4286, std = 26.2411)"     
    zsc(Age-Weight)                Numeric          false       Age, Weight                 "Age - Weight -> Standardization with z-score (mean = -115.2, std = 27.0113)"             
    zsc(Height./Weight)            Numeric          false       Height, Weight              "Height ./ Weight -> Standardization with z-score (mean = 0.44797, std = 0.067992)"       
    zsc(Height.*Weight)            Numeric          false       Height, Weight              "Height .* Weight -> Standardization with z-score (mean = 10291.0714, std = 2111.9071)"   
    zsc(Diastolic+Weight)          Numeric          false       Diastolic, Weight           "Diastolic + Weight -> Standardization with z-score (mean = 236.8857, std = 29.2439)"     
      ⋮

Transform the training and test sets, but retain only the numeric predictors.

numericIdx = (Info.Type == "Numeric");
NewTrainTbl = transform(Transformer,TrainTbl,numericIdx);
NewTestTbl = transform(Transformer,TestTbl,numericIdx);

Train a linear model using the transformed training data. Visualize the accuracy of the model's test
set predictions by using a confusion matrix.

Mdl = fitclinear(NewTrainTbl,TrainTbl.Gender);
testLabels = predict(Mdl,NewTestTbl);
confusionchart(TestTbl.Gender,testLabels)
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Input Arguments
Transformer — Feature transformer
FeatureTransformer object

Feature transformer, specified as a FeatureTransformer object.

Tbl — Features to transform
table

Features to transform, specified as a table. The rows must correspond to observations, and the
columns must correspond to the predictors used to generate the transformed features stored in
Transformer. You can enter describe(Transformer).InputVariables to see the list of
features that Tbl must contain.
Data Types: table

Index — Features to return
numeric vector | logical vector | string array | cell array of character vectors

Features to return, specified as a numeric or logical vector indicating the position of the features, or a
string array or cell array of character vectors indicating the names of the features.
Example: 1:12
Data Types: single | double | logical | string | cell
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Output Arguments
NewTbl — Transformed features
table

Transformed features, returned as a table. Each row corresponds to an observation, and each column
corresponds to a generated feature.

Version History
Introduced in R2021a

See Also
FeatureTransformer | gencfeatures | genrfeatures | describe

Topics
“Automated Feature Engineering for Classification” on page 19-194
“Automated Feature Engineering for Regression” on page 19-201
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TreeBagger
Ensemble of bagged decision trees

Description
A TreeBagger object is an ensemble of bagged decision trees for either classification or regression.
Individual decision trees tend to overfit. Bagging, which stands for bootstrap aggregation, is an
ensemble method that reduces the effects of overfitting and improves generalization.

Creation
The TreeBagger function grows every tree in the TreeBagger ensemble model using bootstrap
samples of the input data. Observations not included in a sample are considered "out-of-bag" for that
tree. The function selects a random subset of predictors for each decision split by using the random
forest algorithm [1].

Syntax
Mdl = TreeBagger(NumTrees,Tbl,ResponseVarName)
Mdl = TreeBagger(NumTrees,Tbl,formula)
Mdl = TreeBagger(NumTrees,Tbl,Y)
Mdl = TreeBagger(NumTrees,X,Y)
Mdl = TreeBagger( ___ ,Name=Value)

Description

Tip By default, the TreeBagger function grows classification decision trees. To grow regression
decision trees, specify the name-value argument Method as "regression".

Mdl = TreeBagger(NumTrees,Tbl,ResponseVarName) returns an ensemble object (Mdl) of
NumTrees bagged classification trees, trained by the predictors in the table Tbl and the class labels
in the variable Tbl.ResponseVarName.

Mdl = TreeBagger(NumTrees,Tbl,formula) returns Mdl trained by the predictors in the table
Tbl. The input formula is an explanatory model of the response and a subset of predictor variables
in Tbl used to fit Mdl. Specify formula using “Wilkinson Notation” on page 11-93.

Mdl = TreeBagger(NumTrees,Tbl,Y) returns Mdl trained by the predictor data in the table Tbl
and the class labels in the array Y.

Mdl = TreeBagger(NumTrees,X,Y) returns Mdl trained by the predictor data in the matrix X and
the class labels in the array Y.

Mdl = TreeBagger( ___ ,Name=Value) returns Mdl with additional options specified by one or
more name-value arguments, using any of the previous input argument combinations. For example,
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you can specify the algorithm used to find the best split on a categorical predictor by using the name-
value argument PredictorSelection.

Input Arguments

NumTrees — Number of decision trees
positive integer

Number of decision trees in the bagged ensemble, specified as a positive integer.
Data Types: single | double

Tbl — Sample data
table

Sample data used to train the model, specified as a table. Each row of Tbl corresponds to one
observation, and each column corresponds to one predictor variable. Optionally, Tbl can contain one
additional column for the response variable. Multicolumn variables and cell arrays other than cell
arrays of character vectors are not allowed.

• If Tbl contains the response variable, and you want to use all remaining variables in Tbl as
predictors, then specify the response variable by using ResponseVarName.

• If Tbl contains the response variable, and you want to use only a subset of the remaining
variables in Tbl as predictors, then specify a formula by using formula.

• If Tbl does not contain the response variable, then specify a response variable by using Y. The
length of the response variable and the number of rows in Tbl must be equal.

ResponseVarName — Response variable name
name of variable in Tbl

Response variable name, specified as the name of a variable in Tbl.

You must specify ResponseVarName as a character vector or string scalar. For example, if the
response variable Y is stored as Tbl.Y, then specify it as "Y". Otherwise, the software treats all
columns of Tbl, including Y, as predictors when training the model.

The response variable must be a categorical, character, or string array; a logical or numeric vector;
or a cell array of character vectors. If Y is a character array, then each element of the response
variable must correspond to one row of the array.

A good practice is to specify the order of the classes by using the ClassNames name-value argument.
Data Types: char | string

formula — Explanatory model of response variable and subset of predictor variables
character vector | string scalar

Explanatory model of the response variable and a subset of the predictor variables, specified as a
character vector or string scalar in the form "Y~x1+x2+x3". In this form, Y represents the response
variable, and x1, x2, and x3 represent the predictor variables.

To specify a subset of variables in Tbl as predictors for training the model, use a formula. If you
specify a formula, then the software does not use any variables in Tbl that do not appear in
formula.
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The variable names in the formula must be both variable names in Tbl
(Tbl.Properties.VariableNames) and valid MATLAB identifiers. You can verify the variable
names in Tbl by using the isvarname function. If the variable names are not valid, then you can
convert them by using the matlab.lang.makeValidName function.
Data Types: char | string

Y — Class labels or response variable
categorical array | character array | string array | logical vector | numeric vector | cell array of
character vectors

Class labels or response variable to which the ensemble of bagged decision trees is trained, specified
as a categorical, character, or string array; a logical or numeric vector; or a cell array of character
vectors.

• If you specify Method as "classification", the following apply for the class labels Y:

• Each element of Y defines the class membership of the corresponding row of X.
• If Y is a character array, then each row must correspond to one class label.
• The TreeBagger function converts the class labels to a cell array of character vectors.

• If you specify Method as "regression", the response variable Y is an n-by-1 numeric vector,
where n is the number of observations. Each entry in Y is the response for the corresponding row
of X.

The length of Y and the number of rows of X must be equal.
Data Types: categorical | char | string | logical | single | double | cell

X — Predictor data
numeric matrix

Predictor data, specified as a numeric matrix.

Each row of X corresponds to one observation (also known as an instance or example), and each
column corresponds to one variable (also known as a feature).

The length of Y and the number of rows of X must be equal.
Data Types: double

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.
Example:
TreeBagger(100,X,Y,Method="regression",Surrogate="on",OOBPredictorImportance=
"on") creates a bagged ensemble of 100 regression trees, and specifies to use surrogate splits and
to store the out-of-bag information for predictor importance estimation.

ChunkSize — Number of observations in each chunk of data
50000 (default) | positive integer
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Number of observations in each chunk of data, specified as a positive integer. This option applies only
when you use TreeBagger on tall arrays. For more information, see “Extended Capabilities” on page
35-0 .
Example: ChunkSize=10000
Data Types: single | double

Cost — Misclassification cost
square matrix | structure

Misclassification cost, specified as a square matrix or structure.

• If you specify the square matrix Cost and the true class of an observation is i, then Cost(i,j) is
the cost of classifying a point into class j. That is, rows correspond to the true classes and
columns correspond to the predicted classes. To specify the class order for the corresponding
rows and columns of Cost, use the ClassNames name-value argument.

• If you specify the structure S, then it must have two fields:

• S.ClassNames, which contains the class names as a variable of the same data type as Y
• S.ClassificationCosts, which contains the cost matrix with rows and columns ordered as

in S.ClassNames

The default value is Cost(i,j)=1 if i~=j, and Cost(i,j)=0 if i=j.

For more information on the effect of a highly skewed Cost, see “Algorithms” on page 35-7400.
Example: Cost=[0,1;2,0]
Data Types: single | double | struct

CategoricalPredictors — Categorical predictors list
vector of positive integers | logical vector | character matrix | string array | cell array of character
vectors | "all"

Categorical predictors list, specified as one of the values in this table.

Value Description
Vector of positive
integers

Each entry in the vector is an index value indicating that the corresponding
predictor is categorical. The index values are between 1 and p, where p is
the number of predictors used to train the model.

If TreeBagger uses a subset of input variables as predictors, then the
function indexes the predictors using only the subset. The
CategoricalPredictors values do not count the response variable,
observation weights variable, or any other variables that the function does
not use.

Logical vector A true entry means that the corresponding predictor is categorical. The
length of the vector is p.

Character matrix Each row of the matrix is the name of a predictor variable. The names must
match the entries in PredictorNames. Pad the names with extra blanks
so each row of the character matrix has the same length.
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Value Description
String array or cell
array of character
vectors

Each element in the array is the name of a predictor variable. The names
must match the entries in PredictorNames.

"all" All predictors are categorical.

By default, if the predictor data is in a table (Tbl), TreeBagger assumes that a variable is
categorical if it is a logical vector, categorical vector, character array, string array, or cell array of
character vectors. If the predictor data is a matrix (X), TreeBagger assumes that all predictors are
continuous. To identify any other predictors as categorical predictors, specify them by using the
CategoricalPredictors name-value argument.

For the identified categorical predictors, TreeBagger creates dummy variables using two different
schemes, depending on whether a categorical variable is unordered or ordered. For an unordered
categorical variable, TreeBagger creates one dummy variable for each level of the categorical
variable. For an ordered categorical variable, TreeBagger creates one less dummy variable than the
number of categories. For details, see “Automatic Creation of Dummy Variables” on page 2-50.
Example: CategoricalPredictors="all"
Data Types: single | double | logical | char | string | cell

Method — Type of decision tree
"classification" (default) | "regression"

Type of decision tree, specified as "classification" or "regression". For regression trees, Y
must be numeric.
Example: Method="regression"

MinLeafSize — Minimum number of leaf node observations
positive integer

Minimum number of leaf node observations, specified as a positive integer. Each leaf has at least
MinLeafSize observations per tree leaf. By default, MinLeafSize is 1 for classification trees and 5
for regression trees.
Example: MinLeafSize=4
Data Types: single | double

NumPredictorsToSample — Number of predictor variables for each decision split
positive integer | "all"

Number of predictor variables (randomly selected) for each decision split, specified as a positive
integer or "all". By default, NumPredictorsToSample is the square root of the number of
variables for classification trees, and one third of the number of variables for regression trees. If the
default number is not an integer, the software rounds the number to the nearest integer in the
direction of positive infinity. If you set NumPredictorsToSample to any value except "all", the
software uses Breiman's random forest algorithm [1].
Example: NumPredictorsToSample=5
Data Types: single | double | char | string

NumPrint — Number of grown trees after which software displays message
0 (default) | positive integer
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Number of grown trees (training cycles) after which the software displays a message about the
training progress in the command window, specified as a nonnegative integer. By default, the
software displays no diagnostic messages.
Example: NumPrint=10
Data Types: single | double

InBagFraction — Fraction of input data to sample
1 (default) | positive scalar

Fraction of input data to sample with replacement from the input data for growing each new tree,
specified as a positive scalar in the range (0,1].
Example: InBagFraction=0.5
Data Types: single | double

OOBPrediction — Indicator to store out-of-bag information
"off" (default) | "on"

Indicator to store out-of-bag information in the ensemble, specified as "on" or "off". Specify
OOBPrediction as "on" to store information on which observations are out-of-bag for each tree.
TreeBagger can use this information to compute the predicted class probabilities for each tree in
the ensemble.
Example: OOBPrediction="off"

OOBPredictorImportance — Indicator to store out-of-bag estimates of feature importance
"off" (default) | "on"

Indicator to store out-of-bag estimates of feature importance in the ensemble, specified as "on" or
"off". If you specify OOBPredictorImportance as "on", the TreeBagger function sets
OOBPrediction to "on". If you want to analyze predictor importance, specify
PredictorSelection as "curvature" or "interaction-curvature".
Example: OOBPredictorImportance="on"

Options — Options for running computations in parallel and setting random streams
structure

Options for running computations in parallel and setting random streams, specified as a structure.
Create the Options structure using statset. This table lists the Options fields and their values.

Field Name Value Default
UseParallel Set this value to true to run

computations in parallel.
false

UseSubstreams Set this value to true to run
computations in parallel in a
reproducible manner.

To compute reproducibly, set
Streams to a type that allows
substreams: "mlfg6331_64" or
"mrg32k3a".

false
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Field Name Value Default
Streams Specify this value as a

RandStream object or a cell
array consisting of one such
object.

If you do not specify Streams,
then TreeBagger uses the
default stream.

Note You need Parallel Computing Toolbox to run computations in parallel.

Example: Options=statset(UseParallel=true)
Data Types: struct

PredictorNames — Predictor variable names
string array of unique names | cell array of unique character vectors

Predictor variable names, specified as a string array of unique names or cell array of unique
character vectors. The functionality of PredictorNames depends on how you supply the training
data.

• If you supply X and Y, then you can use PredictorNames to assign names to the predictor
variables in X.

• The order of the names in PredictorNames must correspond to the column order of X. That
is, PredictorNames{1} is the name of X(:,1), PredictorNames{2} is the name of
X(:,2), and so on. Also, size(X,2) and numel(PredictorNames) must be equal.

• By default, PredictorNames is {'x1','x2',...}.
• If you supply Tbl, then you can use PredictorNames to choose which predictor variables to use

in training. That is, TreeBagger uses only the predictor variables in PredictorNames and the
response variable during training.

• PredictorNames must be a subset of Tbl.Properties.VariableNames and cannot include
the name of the response variable.

• By default, PredictorNames contains the names of all predictor variables.
• A good practice is to specify the predictors for training using either PredictorNames or

formula, but not both.

Example: PredictorNames=["SepalLength","SepalWidth","PetalLength","PetalWidth"]
Data Types: string | cell

SampleWithReplacement — Indicator for sampling with replacement
"on" (default) | "off"

Indicator for sampling with replacement, specified as "on" or "off". Specify
SampleWithReplacement as "on" to sample with replacement, or as "off" to sample without
replacement. If you set SampleWithReplacement to "off", you must set the name-value argument
InBagFraction to a value less than 1.
Example: SampleWithReplacement="on"

Prior — Prior probability for each class for two-class learning
"empirical" (default) | "uniform" | numeric vector | structure array
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Prior probability for each class for two-class learning, specified as a value in this table.

Value Description
"empirical" The class prior probabilities are the class relative frequencies in Y.
"uniform" All class prior probabilities are equal to 1/K, where K is the number of

classes.
numeric vector Each element in the vector is a class prior probability. Order the

elements according to Mdl.ClassNames, or specify the order using
the ClassNames name-value argument. The software normalizes the
elements to sum to 1.

structure A structure S with two fields:

• S.ClassNames contains the class names as a variable of the same
type as Y.

• S.ClassProbs contains a vector of corresponding prior
probabilities. The software normalizes the elements of the vector
to sum to 1.

If you specify a cost matrix, the Prior property of the TreeBagger model stores the prior
probabilities adjusted for the misclassification cost. For more details, see “Algorithms” on page 35-
7400.

This argument is valid only for two-class learning.
Example: Prior=struct(ClassNames=["setosa" "versicolor"
"virginica"],ClassProbs=1:3)

Data Types: char | string | single | double | struct

Note In addition to its name-value arguments, the TreeBagger function accepts the name-value
arguments of fitctree and fitrtree listed in “Additional Name-Value Arguments of TreeBagger
Function” on page 35-7399.

Output Arguments

Mdl — Ensemble of bagged decision trees
TreeBagger object

Ensemble of bagged decision trees, returned as a TreeBagger object.

Properties
Bagging Properties

ComputeOOBPrediction — Indicator to compute out-of-bag predictions for training
observations
false or 0 (default) | true or 1

This property is read-only.
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Indicator to compute out-of-bag predictions for training observations, specified as a numeric or
logical 1 (true) or 0 (false). If this property is true:

• The TreeBagger object has the properties OOBIndices and OOBInstanceWeight.
• You can use the object functions oobError, oobMargin, and oobMeanMargin.

ComputeOOBPredictorImportance — Indicator to compute out-of-bag variable importance
false or 0 (default) | true or 1

This property is read-only.

Indicator to compute the out-of-bag variable importance, specified as a numeric or logical 1 (true) or
0 (false). If this property is true:

• The TreeBagger object has the properties OOBPermutedPredictorDeltaError,
OOBPermutedPredictorDeltaMeanMargin, and
OOBPermutedPredictorCountRaiseMargin.

• The property ComputeOOBPrediction is also true.

InBagFraction — Fraction of observations that are randomly selected
1 (default) | numeric scalar

This property is read-only.

Fraction of observations that are randomly selected with replacement (in-bag observations) for each
bootstrap replica, specified as a numeric scalar. The size of each replica is Nobs×InBagFraction,
where Nobs is the number of observations in the training data.
Data Types: single | double

OOBIndices — Out-of-bag indices
logical array

This property is read-only.

Out-of-bag indices, specified as a logical array. This property is a Nobs-by-NumTrees array, where
Nobs is the number of observations in the training data, and NumTrees is the number of trees in the
ensemble. If the OOBIndices(i,j) element is true, the observation i is out-of-bag for the tree j
(that is, the TreeBagger function did not select the observation i for the training data used to grow
the tree j).

OOBInstanceWeight — Number of out-of-bag trees for each observation
numeric vector

This property is read-only.

Number of out-of-bag trees for each observation, specified as a numeric vector. This property is a
Nobs-by-1 vector, where Nobs is the number of observations in the training data. The
OOBInstanceWeight(i) element contains the number of trees used for computing the out-of-bag
response for observation i.
Data Types: single | double

OOBPermutedPredictorCountRaiseMargin — Predictor variable importance for raising
margin
numeric vector
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This property is read-only.

Predictor variable (feature) importance for raising the margin, specified as a numeric vector. This
property is a 1-by-Nvars vector, where Nvars is the number of variables in the training data. For each
variable, the measure is the difference between the number of raised margins and the number of
lowered margins if the values of that variable are permuted across the out-of-bag observations. This
measure is computed for every tree, then averaged over the entire ensemble and divided by the
standard deviation over the entire ensemble.

This property is empty ([]) for regression trees.
Data Types: single | double

OOBPermutedPredictorDeltaError — Predictor variable importance for prediction error
numeric vector

This property is read-only.

Predictor variable (feature) importance for prediction error, specified as a numeric vector. This
property is a 1-by-Nvars vector, where Nvars is the number of variables (columns) in the training
data. For each variable, the measure is the increase in prediction error if the values of that variable
are permuted across the out-of-bag observations. This measure is computed for every tree, then
averaged over the entire ensemble and divided by the standard deviation over the entire ensemble.
Data Types: single | double

OOBPermutedPredictorDeltaMeanMargin — Predictor variable importance for classification
margin
numeric vector

This property is read-only.

Predictor variable (feature) importance for the classification margin, specified as numeric vector. This
property is a 1-by-Nvars vector, where Nvars is the number of variables (columns) in the training
data. For each variable, the measure is the decrease in the classification margin if the values of that
variable are permuted across the out-of-bag observations. This measure is computed for every tree,
then averaged over the entire ensemble and divided by the standard deviation over the entire
ensemble.

This property is empty ([]) for regression trees.
Data Types: single | double

Tree Properties

DeltaCriterionDecisionSplit — Split criterion contributions for each predictor
numeric vector

This property is read-only.

Split criterion contributions for each predictor, specified as a numeric vector. This property is a 1-by-
Nvars vector, where Nvars is the number of changes in the split criterion. The software sums the
changes in the split criterion over splits on each variable, then averages the sums across the entire
ensemble of grown trees.
Data Types: single | double
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MergeLeaves — Indicator to merge leaves
false or 0 (default) | true or 1

This property is read-only.

Indicator to merge leaves, specified as a numeric or logical 1 (true) or 0 (false). This property is
true if the software merges the decision tree leaves with the same parent, for splits that do not
decrease the total risk. Otherwise, this property is false.

MinLeafSize — Minimum number of leaf node observations
positive integer

This property is read-only.

Minimum number of leaf node observations, specified as a positive integer. Each leaf has at least
MinLeafSize observations. By default, MinLeafSize is 1 for classification trees and 5 for
regression trees. For decision tree training, fitctree and fitrtree set the name-value argument
MinParentSize to 2*MinLeafSize.
Data Types: single | double

NumTrees — Number of decision trees
positive integer

This property is read-only.

Number of decision trees in the bagged ensemble, specified as a positive integer.
Data Types: single | double

Prune — Indicator to estimate optimal sequence of pruned subtrees
false or 0 (default) | true or 1

This property is read-only.

Indicator to estimate the optimal sequence of pruned subtrees, specified as a numeric or logical 1
(true) or 0 (false). The Prune property is true if the decision trees are pruned, and false if they
are not. Pruning decision trees is not recommended for ensembles.

SampleWithReplacement — Indicator to sample decision tree with replacement
true or 1 (default) | false or 0

This property is read-only.

Indicator to sample each decision tree with replacement, specified as a numeric or logical 1 (true) or
0 (false). This property is true if the TreeBagger function samples each decision tree with
replacement, and false otherwise.

SurrogateAssociation — Predictive measures of variable association
numeric matrix

This property is read-only.

Predictive measures of variable association, specified as a numeric matrix. This property is an Nvars-
by-Nvars matrix, where Nvars is the number of predictor variables. The property contains the
predictive measures of variable association, averaged across the entire ensemble of grown trees.
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• If you grow the ensemble with the Surrogate name-value argument set to "on", this matrix, for
each tree, is filled with the predictive measures of association averaged over the surrogate splits.

• If you grow the ensemble with the Surrogate name-value argument set to "off", the
SurrogateAssociation property is an identity matrix. By default, Surrogate is set to "off".

Data Types: single | double

TreeArguments — Name-value arguments specified for TreeBagger function
cell array

This property is read-only.

Name-value arguments specified for the TreeBagger function, specified as a cell array. The
TreeBagger function uses these name-value arguments when it grows new trees for the bagged
ensemble.

Trees — Decision trees in ensemble
cell array

This property is read-only.

Decision trees in the bagged ensemble, specified as a NumTrees-by-1 cell array. Each tree is a
CompactClassificationTree or CompactRegressionTree object.

Predictor Properties

NumPredictorSplit — Number of decision splits for each predictor
numeric vector

This property is read-only.

Number of decision splits for each predictor, specified as a numeric vector. This property is a 1-by-
Nvars vector, where Nvars is the number of predictor variables. Each element of
NumPredictorSplit represents the number of splits on the predictor summed over all trees.
Data Types: single | double

NumPredictorsToSample — Number of predictor variables to select
positive integer

This property is read-only.

Number of predictor variables to select at random for each decision split, specified as a positive
integer. By default, this property is the square root of the total number of variables for classification
trees, and one third of the total number of variables for regression trees.
Data Types: single | double

OutlierMeasure — Outlier measure for each observation
numeric vector

This property is read-only.

Outlier measure for each observation, specified as a numeric vector. This property is a Nobs-by-1
vector, where Nobs is the number of observations in the training data.
Data Types: single | double
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PredictorNames — Predictor names
cell array of character vectors

This property is read-only.

Predictor names, specified as a cell array of character vectors. The order of the elements in
PredictorNames corresponds to the order in which the predictor names appear in the training data
X.

X — Predictors
numeric array

This property is read-only.

Predictors used to train the bagged ensemble, specified as a numeric array. This property is a Nobs-
by-Nvars array, where Nobs is the number of observations (rows) and Nvars is the number of
variables (columns) in the training data.
Data Types: single | double

Response Properties

DefaultYfit — Default prediction value
"" | "MostPopular" | numeric scalar

Default prediction value returned by predict or oobPredict, specified as "", "MostPopular", or
a numeric scalar. This property controls the predicted value returned by the predict or
oobPredict object function when no prediction is possible (for example, when oobPredict predicts
a response for an observation that is in-bag for all trees in the ensemble).

• For classification trees, you can set DefaultYfit to either "" or "MostPopular". If you specify
"MostPopular" (default for classification), the property value is the name of the most probable
class in the training data. If you specify "", the in-bag observations are excluded from
computation of the out-of-bag error and margin.

• For regression trees, you can set DefaultYfit to any numeric scalar. The default value for
regression is the mean of the response for the training data. If you set DefaultYfit to NaN, the
in-bag observations are excluded from computation of the out-of-bag error and margin.

Example: Mdl.DefaultYfit="MostPopular"
Data Types: single | double | char | string

Y — Class labels or response data
cell array of character vectors | numeric vector

This property is read-only.

Class labels or response data, specified as a cell array of character vectors or a numeric vector.

• If you set the Method name-value argument to "classification", this property represents
class labels. Each row of Y represents the observed classification of the corresponding row of X.

• If you set the Method name-value argument to "regression", this property represents response
data and is a numeric vector.

Data Types: single | double | cell
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Training Properties

Method — Type of ensemble
"classification" | "regression"

This property is read-only.

Type of ensemble, specified as "classification" for classification ensembles or "regression"
for regression ensembles.

Proximity — Proximity between training data observations
numeric array

This property is read-only.

Proximity between training data observations, specified as a numeric array. This property is a Nobs-
by-Nobs array, where Nobs is the number of observations in the training data. The array contains
measures of the proximity between observations. For any two observations, their proximity is defined
as the fraction of trees for which these observations land on the same leaf. The array is symmetric,
with ones on the diagonal and off-diagonal elements ranging from 0 to 1.
Data Types: single | double

W — Observation weights
vector of nonnegative values

This property is read-only.

Observation weights, specified as a vector of nonnegative values. This property has the same number
of rows as Y. Each entry in W specifies the relative importance of the corresponding observation in Y.
The TreeBagger function uses the observation weights to grow each decision tree in the ensemble.
Data Types: single | double

Classification Properties

ClassNames — Unique class names
cell array of character vectors

This property is read-only.

Unique class names used in the training model, specified as a cell array of character vectors.

This property is empty ([]) for regression trees.

Cost — Misclassification cost
numeric square matrix

This property is read-only.

Misclassification cost, specified as a numeric square matrix. The element Cost(i,j) is the cost of
classifying a point into class j if its true class is i. The rows correspond to the true class and the
columns correspond to the predicted class. The order of the rows and columns of Cost corresponds
to the order of the classes in ClassNames.

This property is empty ([]) for regression trees.
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Data Types: single | double

Prior — Prior probabilities
numeric vector

This property is read-only.

Prior probabilities, specified as a numeric vector. The order of the elements in Prior corresponds to
the order of the elements in Mdl.ClassNames.

If you specify a cost matrix by using the Cost name-value argument of the TreeBagger function, the
Prior property of the TreeBagger model object stores the prior probabilities (specified by the
Prior name-value argument) adjusted for the misclassification cost. For more details, see
“Algorithms” on page 35-7400.

This property is empty ([]) for regression trees.
Data Types: single | double

Object Functions

Create CompactTreeBagger
compact Compact ensemble of decision trees

Modify Ensemble
append Append new trees to ensemble
growTrees Train additional trees and add to ensemble

Interpret Ensemble
partialDependence Compute partial dependence
plotPartialDependence Create partial dependence plot (PDP) and individual conditional expectation

(ICE) plots

Measure Performance
error Error (misclassification probability or MSE)
meanMargin Mean classification margin
margin Classification margin
oobError Out-of-bag error
oobMeanMargin Out-of-bag mean margins
oobMargin Out-of-bag margins
oobQuantileError Out-of-bag quantile loss of bag of regression trees
quantileError Quantile loss using bag of regression trees

Predict Responses
oobPredict Ensemble predictions for out-of-bag observations
oobQuantilePredict Quantile predictions for out-of-bag observations from bag of regression trees
predict Predict responses using ensemble of bagged decision trees
quantilePredict Predict response quantile using bag of regression trees
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Measure Proximity
fillprox Proximity matrix for training data
mdsprox Multidimensional scaling of proximity matrix

Examples

Train Ensemble of Bagged Classification Trees

Create an ensemble of bagged classification trees for Fisher's iris data set. Then, view the first grown
tree, plot the out-of-bag classification error, and predict labels for out-of-bag observations.

Load the fisheriris data set. Create X as a numeric matrix that contains four petal measurements
for 150 irises. Create Y as a cell array of character vectors that contains the corresponding iris
species.

load fisheriris
X = meas;
Y = species;

Set the random number generator to default for reproducibility.

rng("default")

Train an ensemble of bagged classification trees using the entire data set. Specify 50 weak learners.
Store the out-of-bag observations for each tree. By default, TreeBagger grows deep trees.

Mdl = TreeBagger(50,X,Y,...
    Method="classification",...
    OOBPrediction="on")

Mdl = 
  TreeBagger
Ensemble with 50 bagged decision trees:
                    Training X:              [150x4]
                    Training Y:              [150x1]
                        Method:       classification
                 NumPredictors:                    4
         NumPredictorsToSample:                    2
                   MinLeafSize:                    1
                 InBagFraction:                    1
         SampleWithReplacement:                    1
          ComputeOOBPrediction:                    1
 ComputeOOBPredictorImportance:                    0
                     Proximity:                   []
                    ClassNames:        'setosa'    'versicolor'     'virginica'

  Properties, Methods

Mdl is a TreeBagger ensemble for classification trees.

The Mdl.Trees property is a 50-by-1 cell vector that contains the trained classification trees for the
ensemble. Each tree is a CompactClassificationTree object. View the graphical display of the
first trained classification tree.

view(Mdl.Trees{1},Mode="graph")
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Plot the out-of-bag classification error over the number of grown classification trees.

plot(oobError(Mdl))
xlabel("Number of Grown Trees")
ylabel("Out-of-Bag Classification Error")
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The out-of-bag error decreases as the number of grown trees increases.

Predict labels for out-of-bag observations. Display the results for a random set of 10 observations.

oobLabels = oobPredict(Mdl);
ind = randsample(length(oobLabels),10);
table(Y(ind),oobLabels(ind),...
    VariableNames=["TrueLabel" "PredictedLabel"])

ans=10×2 table
      TrueLabel       PredictedLabel
    ______________    ______________

    {'setosa'    }    {'setosa'    }
    {'virginica' }    {'virginica' }
    {'setosa'    }    {'setosa'    }
    {'virginica' }    {'virginica' }
    {'setosa'    }    {'setosa'    }
    {'virginica' }    {'virginica' }
    {'setosa'    }    {'setosa'    }
    {'versicolor'}    {'versicolor'}
    {'versicolor'}    {'virginica' }
    {'virginica' }    {'virginica' }
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Train Ensemble of Bagged Regression Trees

Create an ensemble of bagged regression trees for the carsmall data set. Then, predict conditional
mean responses and conditional quartiles.

Load the carsmall data set. Create X as a numeric vector that contains the car engine displacement
values. Create Y as a numeric vector that contains the corresponding miles per gallon.

load carsmall
X = Displacement;
Y = MPG;

Set the random number generator to default for reproducibility.

rng("default")

Train an ensemble of bagged regression trees using the entire data set. Specify 100 weak learners.

Mdl = TreeBagger(100,X,Y,...
    Method="regression")

Mdl = 
  TreeBagger
Ensemble with 100 bagged decision trees:
                    Training X:               [94x1]
                    Training Y:               [94x1]
                        Method:           regression
                 NumPredictors:                    1
         NumPredictorsToSample:                    1
                   MinLeafSize:                    5
                 InBagFraction:                    1
         SampleWithReplacement:                    1
          ComputeOOBPrediction:                    0
 ComputeOOBPredictorImportance:                    0
                     Proximity:                   []

  Properties, Methods

Mdl is a TreeBagger ensemble for regression trees.

For 10 equally spaced engine displacements between the minimum and maximum in-sample
displacement, predict conditional mean responses (YMean) and conditional quartiles (YQuartiles).

predX = linspace(min(X),max(X),10)';
YMean = predict(Mdl,predX);
YQuartiles = quantilePredict(Mdl,predX,...
    Quantile=[0.25,0.5,0.75]);

Plot the observations, estimated mean responses, and estimated quartiles.

hold on
plot(X,Y,"o");
plot(predX,YMean)
plot(predX,YQuartiles)
hold off
ylabel("Fuel Economy")
xlabel("Engine Displacement")
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legend("Data","Mean Response",...
    "First Quartile","Median",...,
    "Third Quartile")

Unbiased Predictor Importance Estimates for Bagged Regression Trees

Create two ensembles of bagged regression trees, one using the standard CART algorithm for
splitting predictors, and the other using the curvature test for splitting predictors. Then, compare the
predictor importance estimates for the two ensembles.

Load the carsmall data set and convert the variables Cylinders, Mfg, and Model_Year to
categorical variables. Then, display the number of categories represented in the categorical
variables.

load carsmall
Cylinders = categorical(Cylinders);
Mfg = categorical(cellstr(Mfg));
Model_Year = categorical(Model_Year);

numel(categories(Cylinders))

ans = 3

numel(categories(Mfg))

35 Functions

35-7394



ans = 28

numel(categories(Model_Year))

ans = 3

Create a table that contains eight car metrics.

Tbl = table(Acceleration,Cylinders,Displacement,...
    Horsepower,Mfg,Model_Year,Weight,MPG);

Set the random number generator to default for reproducibility.

rng("default")

Train an ensemble of 200 bagged regression trees using the entire data set. Because the data has
missing values, specify to use surrogate splits. Store the out-of-bag information for predictor
importance estimation.

By default, TreeBagger uses the standard CART, an algorithm for splitting predictors. Because the
variables Cylinders and Model_Year each contain only three categories, the standard CART
prefers splitting a continuous predictor over these two variables.

MdlCART = TreeBagger(200,Tbl,"MPG",...
    Method="regression",Surrogate="on",...
    OOBPredictorImportance="on");

TreeBagger stores predictor importance estimates in the property
OOBPermutedPredictorDeltaError.

impCART = MdlCART.OOBPermutedPredictorDeltaError;

Train a random forest of 200 regression trees using the entire data set. To grow unbiased trees,
specify to use the curvature test for splitting predictors.

MdlUnbiased = TreeBagger(200,Tbl,"MPG",...
    Method="regression",Surrogate="on",...
    PredictorSelection="curvature",...
    OOBPredictorImportance="on");

impUnbiased = MdlUnbiased.OOBPermutedPredictorDeltaError; 

Create bar graphs to compare the predictor importance estimates impCART and impUnbiased for
the two ensembles.

tiledlayout(1,2,Padding="compact");

nexttile
bar(impCART)
title("Standard CART")
ylabel("Predictor Importance Estimates")
xlabel("Predictors")
h = gca;
h.XTickLabel = MdlCART.PredictorNames;
h.XTickLabelRotation = 45;
h.TickLabelInterpreter = "none";

nexttile
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bar(impUnbiased);
title("Curvature Test")
ylabel("Predictor Importance Estimates")
xlabel("Predictors")
h = gca;
h.XTickLabel = MdlUnbiased.PredictorNames;
h.XTickLabelRotation = 45;
h.TickLabelInterpreter = "none";

For the CART model, the continuous predictor Weight is the second most important predictor. For
the unbiased model, the predictor importance of Weight is smaller in value and ranking.

Train Ensemble of Bagged Classification Trees on Tall Array

Train an ensemble of bagged classification trees for observations in a tall array, and find the
misclassification probability of each tree in the model for weighted observations. This example uses
the data set airlinesmall.csv, a large data set that contains a tabular file of airline flight data.

When you perform calculations on tall arrays, MATLAB® uses either a parallel pool (default if you
have Parallel Computing Toolbox™) or the local MATLAB session. To run the example using the local
MATLAB session when you have Parallel Computing Toolbox, change the global execution
environment by using the mapreducer function.

mapreducer(0)
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Create a datastore that references the location of the folder containing the data set. Select a subset
of the variables to work with, and treat "NA" values as missing data so that the datastore function
replaces them with NaN values. Create the tall table tt to contain the data in the datastore.

ds = datastore("airlinesmall.csv");
ds.SelectedVariableNames = ["Month" "DayofMonth" "DayOfWeek",...
                            "DepTime" "ArrDelay" "Distance" "DepDelay"];
ds.TreatAsMissing = "NA";
tt  = tall(ds)

tt =

  Mx7 tall table

    Month    DayofMonth    DayOfWeek    DepTime    ArrDelay    Distance    DepDelay
    _____    __________    _________    _______    ________    ________    ________

     10          21            3          642          8         308          12   
     10          26            1         1021          8         296           1   
     10          23            5         2055         21         480          20   
     10          23            5         1332         13         296          12   
     10          22            4          629          4         373          -1   
     10          28            3         1446         59         308          63   
     10           8            4          928          3         447          -2   
     10          10            6          859         11         954          -1   
      :          :             :           :          :           :           :
      :          :             :           :          :           :           :

Determine the flights that are late by 10 minutes or more by defining a logical variable that is true for
a late flight. This variable contains the class labels Y. A preview of this variable includes the first few
rows.

Y = tt.DepDelay > 10

Y =

  Mx1 tall logical array

   1
   0
   1
   1
   0
   1
   0
   0
   :
   :

Create a tall array X for the predictor data.

X = tt{:,1:end-1}

X =

  Mx6 tall double matrix

          10          21           3         642           8         308
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          10          26           1        1021           8         296
          10          23           5        2055          21         480
          10          23           5        1332          13         296
          10          22           4         629           4         373
          10          28           3        1446          59         308
          10           8           4         928           3         447
          10          10           6         859          11         954
          :           :            :          :           :           :
          :           :            :          :           :           :

Create a tall array W for the observation weights by arbitrarily assigning double weights to the
observations in class 1.

W = Y+1;

Remove the rows in X, Y, and W that contain missing data.

R = rmmissing([X Y W]);
X = R(:,1:end-2); 
Y = R(:,end-1); 
W = R(:,end);

Train an ensemble of 20 bagged classification trees using the entire data set. Specify a weight vector
and uniform prior probabilities. For reproducibility, set the seeds of the random number generators
using rng and tallrng. The results can vary depending on the number of workers and the execution
environment for the tall arrays. For details, see “Control Where Your Code Runs”.

rng("default") 
tallrng("default")
tMdl = TreeBagger(20,X,Y,...
    Weights=W,Prior="uniform")

Evaluating tall expression using the Local MATLAB Session:
- Pass 1 of 1: Completed in 2.9 sec
Evaluation completed in 3.6 sec
Evaluating tall expression using the Local MATLAB Session:
- Pass 1 of 1: Completed in 7.2 sec
Evaluation completed in 7.8 sec
Evaluating tall expression using the Local MATLAB Session:
- Pass 1 of 1: Completed in 15 sec
Evaluation completed in 15 sec

tMdl = 
  CompactTreeBagger
Ensemble with 20 bagged decision trees:
              Method:       classification
       NumPredictors:                    6
          ClassNames: '0' '1'

  Properties, Methods

tMdl is a CompactTreeBagger ensemble with 20 bagged decision trees. For tall data, the
TreeBagger function returns a CompactTreeBagger object.

Calculate the misclassification probability of each tree in the model. Attribute a weight contained in
the vector W to each observation by using the Weights name-value argument.

terr = error(tMdl,X,Y,Weights=W)
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Evaluating tall expression using the Local MATLAB Session:
- Pass 1 of 1: Completed in 17 sec
Evaluation completed in 17 sec

terr = 20×1

    0.1420
    0.1214
    0.1115
    0.1078
    0.1037
    0.1027
    0.1005
    0.0997
    0.0981
    0.0983
      ⋮

Find the average misclassification probability for the ensemble of decision trees.

avg_terr = mean(terr)

avg_terr = 0.1022

More About
Additional Name-Value Arguments of TreeBagger Function

In addition to its “Name-Value Pair Arguments” on page 35-7377, the TreeBagger function accepts
the following name-value arguments of fitctree and fitrtree.

Supported fitctree Arguments Supported fitrtree Arguments
AlgorithmForCategorical MaxNumSplits
ClassNames* MergeLeaves
MaxNumCategories PredictorSelection
MaxNumSplits Prune
MergeLeaves PruneCriterion
PredictorSelection QuadraticErrorTolerance
Prune SplitCriterion
PruneCriterion Surrogate
SplitCriterion Weights
Surrogate N/A
Weights N/A

*When you specify the ClassNames name-value argument as a logical vector, use 0 and 1 values. Do
not use false and true values. For example, you can specify ClassNames as [1 0 1].
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Tips
• For a TreeBagger model Mdl, the Trees property contains a cell vector of Mdl.NumTrees

CompactClassificationTree or CompactRegressionTree objects. View the graphical
display of the t grown tree by entering:

view(Mdl.Trees{t})

• For regression problems, TreeBagger supports mean and quantile regression (that is, quantile
regression forest [5]).

• To predict mean responses or estimate the mean squared error given data, pass a TreeBagger
model object and the data to predict or error, respectively. To perform similar operations
for out-of-bag observations, use oobPredict or oobError.

• To estimate quantiles of the response distribution or the quantile error given data, pass a
TreeBagger model object and the data to quantilePredict or quantileError,
respectively. To perform similar operations for out-of-bag observations, use
oobQuantilePredict or oobQuantileError.

• Standard CART tends to select split predictors containing many distinct values, such as
continuous variables, over those containing few distinct values, such as categorical variables [4].
Consider specifying the curvature or interaction test if either of the following is true:

• The data has predictors with relatively fewer distinct values than other predictors; for
example, the predictor data set is heterogeneous.

• Your goal is to analyze predictor importance. TreeBagger stores predictor importance
estimates in the OOBPermutedPredictorDeltaError property.

For more information on predictor selection, see the name-value argument
PredictorSelection for classification trees or the name-value argument
PredictorSelection for regression trees.

Algorithms
• If you specify the Cost, Prior, and Weights name-value arguments, the output model object

stores the specified values in the Cost, Prior, and W properties, respectively. The Cost property
stores the user-specified cost matrix (C) without modification. The Prior and W properties store
the prior probabilities and observation weights, respectively, after normalization. For model
training, the software updates the prior probabilities and observation weights to incorporate the
penalties described in the cost matrix. For details, see “Misclassification Cost Matrix, Prior
Probabilities, and Observation Weights” on page 19-8.

• The TreeBagger function generates in-bag samples by oversampling classes with large
misclassification costs and undersampling classes with small misclassification costs. Consequently,
out-of-bag samples have fewer observations from classes with large misclassification costs and
more observations from classes with small misclassification costs. If you train a classification
ensemble using a small data set and a highly skewed cost matrix, then the number of out-of-bag
observations per class might be very low. Therefore, the estimated out-of-bag error might have a
large variance and be difficult to interpret. The same phenomenon can occur for classes with large
prior probabilities.

• For details on how the TreeBagger function selects split predictors, and for information on node-
splitting algorithms when the function grows decision trees, see “Algorithms” on page 35-2272 for
classification trees and “Algorithms” on page 35-2795 for regression trees.
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Alternative Functionality
Statistics and Machine Learning Toolbox offers three objects for bagging and random forest:

• ClassificationBaggedEnsemble object created by the fitcensemble function for
classification

• RegressionBaggedEnsemble object created by the fitrensemble function for regression
• TreeBagger object created by the TreeBagger function for classification and regression

For details about the differences between TreeBagger and bagged ensembles
(ClassificationBaggedEnsemble and RegressionBaggedEnsemble), see “Comparison of
TreeBagger and Bagged Ensembles” on page 19-46.

Version History
Introduced in R2009a

Cost property stores the user-specified cost matrix
Behavior changed in R2022a

Starting in R2022a, the Cost property stores the user-specified cost matrix. The software stores
normalized prior probabilities (Prior) and observation weights (W) that do not reflect the penalties
described in the cost matrix.

Note that model training has not changed and, therefore, the decision boundaries between classes
have not changed.

For training, the fitting function updates the specified prior probabilities by incorporating the
penalties described in the specified cost matrix, and then normalizes the prior probabilities and
observation weights. This behavior has not changed. In previous releases, the software stored the
default cost matrix in the Cost property and stored the prior probabilities and observation weights
used for training in the Prior and W properties, respectively. Starting in R2022a, the software stores
the user-specified cost matrix without modification, and stores normalized prior probabilities and
observation weights that do not reflect the cost penalties. For more details, see “Misclassification
Cost Matrix, Prior Probabilities, and Observation Weights” on page 19-8.

The oobError and oobMeanMargin functions use the observation weights stored in the W property.
Therefore, if you specify a nondefault cost matrix when you train a classification model, the object
functions return a different value compared to previous releases.

If you want the software to handle the cost matrix, prior probabilities, and observation weights as in
previous releases, adjust the prior probabilities and observation weights for the nondefault cost
matrix, as described in “Adjust Prior Probabilities and Observation Weights for Misclassification Cost
Matrix” on page 19-9. Then, when you train a classification model, specify the adjusted prior
probabilities and observation weights by using the Prior and Weights name-value arguments,
respectively, and use the default cost matrix.
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Extended Capabilities
Tall Arrays
Calculate with arrays that have more rows than fit in memory.

This function supports tall arrays with the following limitations.

• The TreeBagger function supports these syntaxes for tall X, Y, and Tbl:

• B = TreeBagger(NumTrees,Tbl,Y)
• B = TreeBagger(NumTrees,X,Y)
• B = TreeBagger(___,Name=Value)

• For tall arrays, the TreeBagger function supports classification but not regression.
• The TreeBagger function supports these name-value arguments:

• NumPredictorsToSample — The default value is the square root of the number of variables
for classification.

• MinLeafSize — The default value is 1 if the number of observations is less than 50,000. If the
number of observations is 50,000 or greater, then the default value is
max(1,min(5,floor(0.01*NobsChunk))), where NobsChunk is the number of
observations in a chunk.

• ChunkSize (only for tall arrays) — The default value is 50000.

In addition, the TreeBagger function supports these name-value arguments of fitctree:

• AlgorithmForCategorical
• CategoricalPredictors
• Cost — The columns of the cost matrix C cannot contain Inf or NaN values.
• MaxNumCategories
• MaxNumSplits
• MergeLeaves
• PredictorNames
• PredictorSelection
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• Prior
• Prune
• PruneCriterion
• SplitCriterion
• Surrogate
• Weights

• For tall data, the TreeBagger function returns a CompactTreeBagger object that contains most
of the same properties as a full TreeBagger object. The main difference is that the compact
object is more memory efficient. The compact object does not contain properties that include the
data, or that include an array of the same size as the data.

• The number of trees contained in the returned CompactTreeBagger object can differ from the
number of trees specified as input to the TreeBagger function. TreeBagger determines the
number of trees to return based on factors that include the size of the input data set and the
number of data chunks available to grow trees.

• Supported CompactTreeBagger object functions are:

• combine
• error
• margin
• meanMargin
• predict
• setDefaultYfit

The error, margin, meanMargin, and predict object functions do not support the name-value
arguments Trees, TreeWeights, or UseInstanceForTree. The meanMargin function also does
not support the Weights name-value argument.

• The TreeBagger function creates a random forest by generating trees on disjoint chunks of the
data. When more data is available than is required to create the random forest, the function
subsamples the data. For a similar example, see Random Forests for Big Data [6] .

Depending on how the data is stored, some chunks of data might contain observations from only a
few classes out of all the classes. In this case, the TreeBagger function might produce inferior
results compared to the case where each chunk of data contains observations from most of the
classes.

• During training of the TreeBagger algorithm, the speed, accuracy, and memory usage depend on
a number of factors. These factors include the values for NumTrees and the name-value
arguments ChunkSize, MinLeafSize, and MaxNumSplits.

For an n-by-p tall array X, TreeBagger implements sampling during training. This sampling
depends on these variables:

• Number of trees NumTrees
• Chunk size ChunkSize
• Number of observations n
• Number of chunks r (approximately equal to n/ChunkSize)

Because the value of n is fixed for a given X, your settings for NumTrees and ChunkSize
determine how TreeBagger samples X.
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1 If r > NumTrees, then TreeBagger samples ChunkSize * NumTrees observations from X,
and trains one tree per chunk (with each chunk containing ChunkSize number of
observations). This scenario is the most common when you work with tall arrays.

2 If r ≤ NumTrees, then TreeBagger trains approximately NumTrees/r trees in each chunk,
using bootstrapping within the chunk.

3 If n ≤ ChunkSize, then TreeBagger uses bootstrapping to generate samples (each of size n)
on which to train individual trees.

• When you specify a value for NumTrees, consider the following:

• If you run your code on Apache Spark, and your data set is distributed with Hadoop®

Distributed File System (HDFS™), start by specifying a value for NumTrees that is at least
twice the number of partitions in HDFS for your data set. This setting prevents excessive data
communication among Apache Spark executors and can improve performance of the
TreeBagger algorithm.

• TreeBagger copies fitted trees into the client memory in the resulting CompactTreeBagger
model. Therefore, the amount of memory available to the client creates an upper bound on the
value you can set for NumTrees. You can tune the values of MinLeafSize and MaxNumSplits
for more efficient speed and memory usage at the expense of some predictive accuracy. After
tuning, if the value of NumTrees is less than twice the number of partitions in HDFS for your
data set, then consider repartitioning your data in HDFS to have larger partitions.

After you specify a value for NumTrees, set ChunkSize to ensure that TreeBagger uses most of
the data to grow trees. Ideally, ChunkSize * NumTrees should approximate n, the number of
rows in your data. Note that the memory available in the workers for training individual trees can
also determine an upper bound for ChunkSize.

You can adjust the Apache Spark memory properties to avoid out-of-memory errors and support
your workflow. See parallel.cluster.Hadoop (Parallel Computing Toolbox) for more
information.

For more information, see “Tall Arrays for Out-of-Memory Data”.

Automatic Parallel Support
Accelerate code by automatically running computation in parallel using Parallel Computing Toolbox™.

To run in parallel, specify the 'Options' name-value argument in the call to this function and set the
'UseParallel' field of the options structure to true using statset.

For example: 'Options',statset('UseParallel',true)

For more information about parallel computing, see “Run MATLAB Functions with Automatic Parallel
Support” (Parallel Computing Toolbox).

See Also
Objects
CompactTreeBagger | ClassificationTree | RegressionTree

Functions
predict | oobPredict | error | oobError | view | view | fitctree | fitrtree

Topics
“Bootstrap Aggregation (Bagging) of Regression Trees Using TreeBagger” on page 19-114
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“Bootstrap Aggregation (Bagging) of Classification Trees Using TreeBagger” on page 19-125
“Framework for Ensemble Learning” on page 19-33
“Decision Trees” on page 20-2
“Grouping Variables” on page 2-46
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trimmean
Mean, excluding outliers

Syntax
m = trimmean(X,percent)
m = trimmean(X,percent,flag)
m = trimmean( ___ ,'all')
m = trimmean( ___ ,dim)
m = trimmean( ___ ,vecdim)

Description
m = trimmean(X,percent) returns the mean of values of X, computed after removing the outliers
of X. For example, if X is a vector that has n values, m is the mean of X excluding the highest and
lowest k data values, where k = n*(percent/100)/2.

• If X is a vector, then trimmean(X,percent) is the mean of all the values of X, computed after
removing the outliers.

• If X is a matrix, then trimmean(X,percent) is a row vector of column means, computed after
removing the outliers.

• If X is a multidimensional array, then trimmean operates along the first nonsingleton dimension of
X.

m = trimmean(X,percent,flag) specifies how to trim when k (half the number of outliers) is not
an integer.

m = trimmean( ___ ,'all') returns the trimmed mean of all the values in X using any of the input
argument combinations in the previous syntaxes.

m = trimmean( ___ ,dim) returns the trimmed mean along the operating dimension dim of X.

m = trimmean( ___ ,vecdim) returns the trimmed mean over the dimensions specified in the
vector vecdim. For example, if X is a 2-by-3-by-4 array, then trimmean(X,10,[1 2]) returns a 1-
by-1-by-4 array. Each value of the output array is the mean of the middle 90% of the values on the
corresponding page of X.

Examples

Efficiency of Trimmed Mean

Find the relative efficiency of the 10% trimmed mean to the sample mean for a given data set.

Generate a 100-by-100 matrix of random numbers from the standard normal distribution. This matrix
represents 100 samples, each containing 100 data points.

rng default;  % For reproducibility
X = normrnd(0,1,100,100);
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Compute the sample mean and the 10% trimmed mean for each column of the data matrix.

m = mean(X); % Sample mean
trim = trimmean(X,10); % Trimmed mean

Compute the relative efficiency of the trimmed mean to the sample mean. The relative efficiency is
the variance of the sample mean divided by the variance of the trimmed mean.

vm = var(m) % Variance of the sample mean

vm = 0.0094

vtrim = var(trim) % Variance of the trimmed mean

vtrim = 0.0097

efficiency = vm/vtrim % Relative efficiency of the trimmed mean to the sample mean

efficiency = 0.9663

The sample mean has a smaller variance than the trimmed mean (efficiency < 1). Therefore, the
trimmed mean is less efficient than the sample mean.

Control Trimming for Distribution with Outliers

Control the trimming for a distribution with outliers when k (half the number of outliers to be
trimmed) is not an integer.

Generate a vector of random numbers from the Student's t distribution with degrees of freedom equal
to 1. The Student's t distribution tends to have outliers.

rng default;  % For reproducibility
nu = 1; % Degrees of freedom
n = 60; % Number of rows
m = 1;  % Number of columns
x = trnd(nu,n,m); % Vector 

Visualize the distribution using a normal probability plot.

probplot(x)
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Although the distribution is symmetric around zero, several outliers affect the mean.

Find the mean of the data.

mn = mean(x)

mn = 1.6452

Find the 33% trimmed mean of the data.

trim = trimmean(x,33)

trim = 0.4940

The 33% trimmed mean is closer to zero, which is more representative of the data. For the 33%
trimmed mean, k is not an integer (k = 60*(33/100)/2 gives a value of 9.9). Therefore, trimmean
rounds k to the nearest integer (10) by default.

Control trimming by rounding k down to the next smaller integer (9). Specify the control for trimming
to 'floor'.

trim = trimmean(x,33,'floor')

trim = 0.4933
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Find Trimmed Mean Along Given Dimension

Find the trimmed mean along different dimensions for a matrix.

Generate a matrix of random numbers from the Student's t distribution. The Student's t distribution
tends to have outliers.

rng('default')
nu = 1; % Degrees of freedom
n = 2; % Number of rows
m = 100;  % Number of columns
X = trnd(nu,n,m);

Visualize the distribution for each row of X using a normal probability plot.

for i = 1:n
    figure()
    probplot(X(i,:))
end
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Find the mean for each row of X.

mn = mean(X,2)

mn = 2×1

   -2.7379
    2.0087

Find the 30% trimmed mean for each row of X. Specify dim = 2 as the operating dimension.

trim = trimmean(X,30,2)

trim = 2×1

   -0.0868
    0.1115

The 30% trimmed mean of each row is closer to zero, which is more representative of the data.

Trimmed Mean Along Vector of Dimensions

Calculate the trimmed mean over multiple dimensions by using the 'all' and vecdim input
arguments.
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Create a 5-by-4-by-2 array with some outlier values.

X = reshape(1:40,[5 4 2]);
X([3 37]) = -100

X = 
X(:,:,1) =

     1     6    11    16
     2     7    12    17
  -100     8    13    18
     4     9    14    19
     5    10    15    20

X(:,:,2) =

    21    26    31    36
    22    27    32  -100
    23    28    33    38
    24    29    34    39
    25    30    35    40

Find the 10% trimmed mean of X.

mall = trimmean(X,10,'all')

mall = 19.4722

mall is the mean of the middle 90% of the values in X.

Find the 10% trimmed mean for each page of X.

mpage = trimmean(X,10,[1 2])

mpage = 
mpage(:,:,1) =

   10.3889

mpage(:,:,2) =

   29.6111

For example, mpage(1,1,2) is the mean of the middle 90% of the values in X(:,:,2).

Input Arguments
X — Input data
vector | matrix | multidimensional array

Input data that represents a sample from a population, specified as a vector, matrix, or
multidimensional array.
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• If X is a vector, then trimmean(X,percent) is the mean of all the values of X, computed after
removing the outliers.

• If X is a matrix, then trimmean(X,percent) is a row vector of column means, computed after
removing the outliers.

• If X is a multidimensional array, then trimmean operates along the first nonsingleton dimension of
X.

To specify the operating dimension when X is a matrix or an array, use the dim input argument.

trimmean treats NaN values in X as missing values and removes them.
Data Types: single | double

percent — Percentage
scalar

Percentage of input data to be trimmed, specified as a scalar between 0 and 100.

trimmean uses the value of percent to determine the number of outliers (highest and lowest k
values in X) to remove from X before computing the mean. For X with n values, k = n*(percent/
100)/2.
Data Types: single | double

flag — Control for trimming
'round' (default) | 'floor' | 'weighted'

Control for trimming when k (half the number of outliers) is not an integer, specified as one of the
values in this table.

Value Description
'round' Round k to the nearest integer (round to a smaller integer if k is a half integer).

This value is the default.
'floor' Round k down to the next smaller integer.
'weighted' If k = i + f, where i is an integer and f is a fraction, compute a weighted mean

with weight (1 – f) for the (i + 1)th and (n – i)th values, and full weight
for the values between them.

Data Types: char | string

dim — Dimension
positive integer scalar

Dimension along which to operate, specified as a positive integer scalar. If you do not specify a value,
then the default value is the first array dimension of X whose size does not equal 1.

Consider a two-dimensional array X:

• If dim is equal to 1, then trimmean(X,percent,1) returns a row vector containing the trimmed
mean for each column in X.

• If dim is equal to 2, then trimmean(X,percent,2) returns a column vector containing the
trimmed mean for each row in X.

If dim is greater than ndims(X) or if size(X,dim) is 1, then trimmean returns X.
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Data Types: single | double

vecdim — Vector of dimensions
positive integer vector

Vector of dimensions, specified as a positive integer vector. Each element of vecdim represents a
dimension of the input array X. The output m has length 1 in the specified operating dimensions. The
other dimension lengths are the same for X and m.

For example, if X is a 2-by-3-by-3 array, then trimmean(X,10,[1 2]) returns a 1-by-1-by-3 array.
Each element of the output is the mean of the middle 90% of the values on the corresponding page of
X.

Data Types: single | double

Output Arguments
m — Trimmed mean
scalar | vector | matrix | multidimensional array

Trimmed mean values, returned as a scalar, vector, matrix, or multidimensional array.

Tips
• The trimmed mean is a robust estimate of the location of a data sample. If the data contains

outliers, then the trimmed mean represents the center of the data better than the sample mean.
However, if all the data is from the same probability distribution, then the trimmed mean is less
efficient than the sample mean as an estimator of the data location.

Version History
Introduced before R2006a

Extended Capabilities
Thread-Based Environment
Run code in the background using MATLAB® backgroundPool or accelerate code with Parallel
Computing Toolbox™ ThreadPool.
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This function fully supports thread-based environments. For more information, see “Run MATLAB
Functions in Thread-Based Environment”.

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

Usage notes and limitations:

• The 'all' and vecdim input arguments are not supported.

For more information, see “Run MATLAB Functions on a GPU” (Parallel Computing Toolbox).

See Also
mean | median | geomean | harmmean
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trnd
Student's t random numbers

Syntax
r = trnd(nu)
r = trnd(nu,sz1,...,szN)
r = trnd(nu,sz)

Description
r = trnd(nu) generates a random number from the Student's t distribution with nu degrees of
freedom.

r = trnd(nu,sz1,...,szN) generates an array of random numbers from the Student's t
distribution, where sz1,...,szN indicates the size of each dimension.

r = trnd(nu,sz) generates an array of random numbers from the Student's t distribution, where
size vector sz specifies size(r).

Examples

Generate Student's t Distribution Random Number

Generate a single random number from the Student's t distribution with 10 degrees of freedom.

nu = 10;
r = trnd(nu)

r = 1.0585

Generate Student's t Distribution Random Numbers

Generate a 1-by-6 array of Student's t random numbers with 1 degree of freedom.

nu1 = ones(1,6); % 1-by-6 array of ones
r1 = trnd(nu1)

r1 = 1×6

    0.2108    7.8450  -11.0511    0.4134    4.3293   -0.8323

If you specify nu as a scalar, it expands into a constant array with dimensions specified by
sz1,...,szn.

Generate a 2-by-6 array of Student's t random numbers with 3 degrees of freedom
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nu2 = 3;
sz1 = 2;
sz2 = 6;
r2 = trnd(nu2,sz1,sz2)

r2 = 2×6

    0.9257    0.3379    0.6477   -2.2792   -2.8371    0.3632
   -0.2996   -0.6845   -1.2554   -0.5134    1.0458   -0.5521

If you specify both nu and sz as arrays, then the dimensions specified by sz must match the
dimension of nu.

Generate a 1-by-6 array of Student's t random numbers with 1 to 6 degrees of freedom.

nu3 = 1:6;
sz = [1 6];
r3 = trnd(nu3,sz)

r3 = 1×6

    1.3609    0.1845   -4.0246   -0.8724   -0.7507    2.3493

Input Arguments
nu — Degrees of freedom
scalar value | array of scalar values

Degrees of freedom for the Student's t distribution, specified as a scalar value or an array of scalar
values.

To generate random numbers from multiple distributions, specify nu using an array. Each element in
r is the random number generated from the distribution specified by the corresponding degrees of
freedom in nu.
Example: [9 19 49 99]
Data Types: single | double

sz1,...,szN — Size of each dimension (as separate arguments)
integers

Size of each dimension, specified as separate arguments of integers.

If nu is an array, then the specified dimensions sz1,...,szN must match the dimensions of nu. The
default values of sz1,...,szN are the dimensions of nu.

• If you specify a single value sz1, then r is a square matrix of size sz1-by-sz1.
• If the size of any dimension is 0 or negative, then r is an empty array.
• Beyond the second dimension, trnd ignores trailing dimensions with a size of 1. For example,

trnd(5,3,1,1,1) produces a 3-by-1 vector of random numbers from the distribution with 5
degrees of freedom.

Example: 3,5
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Data Types: single | double

sz — Size of each dimension (as a row vector)
row vector of integers

Size of each dimension, specified as a row vector of integers.

If nu is an array, then the specified dimensions sz must match the dimensions of nu. The default
values of sz are the dimensions of nu.

• If you specify a single value [sz1], then r is a square matrix of size sz1-by-sz1.
• If the size of any dimension is 0 or negative, then r is an empty array.
• Beyond the second dimension, trnd ignores trailing dimensions with a size of 1. For example,

trnd(5,[3 1 1 1]) produces a 3-by-1 vector of random numbers from the distribution with 5
degrees of freedom.

Example: [3 5]
Data Types: single | double

Output Arguments
r — Student's t random numbers
scalar value | array of scalar values

Student's t random numbers, returned as a scalar value or an array of scalar values with the
dimensions specified by sz1,...,szN or sz. Each element in r is the random number generated
from the distribution specified by the corresponding degrees of freedom in nu.

Alternative Functionality
• trnd is a function specific to the Student's t distribution. Statistics and Machine Learning Toolbox

also offers the generic function random, which supports various probability distributions. To use
random, specify the probability distribution name and its parameters. Note that the distribution-
specific function trnd is faster than the generic function random.

• To generate random numbers interactively, use randtool, a user interface for random number
generation.

Version History
Introduced before R2006a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

The generated code can return a different sequence of numbers from the sequence of numbers
returned by MATLAB if either of the following is true:
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• The output is nonscalar.
• An input parameter is invalid for the distribution.

For more information on code generation, see “Introduction to Code Generation” on page 34-2 and
“General Code Generation Workflow” on page 34-5.

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

This function fully supports GPU arrays. For more information, see “Run MATLAB Functions on a
GPU” (Parallel Computing Toolbox).

See Also
tpdf | tcdf | tinv | tstat | random

Topics
“Student's t Distribution” on page B-156
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truncate
Package: prob

Truncate probability distribution object

Syntax
t = truncate(pd,lower,upper)

Description
t = truncate(pd,lower,upper) returns a probability distribution t, which is the probability
distribution pd truncated to the specified interval with lower limit, lower, and upper limit, upper.

Examples

Truncate a Probability Distribution

Create a standard normal probability distribution object.

pd = makedist('Normal')

pd = 
  NormalDistribution

  Normal distribution
       mu = 0
    sigma = 1

Truncate the distribution to have a lower limit of -2 and an upper limit of 2.

t = truncate(pd,-2,2)

t = 
  NormalDistribution

  Normal distribution
       mu = 0
    sigma = 1
  Truncated to the interval [-2, 2]

Plot the pdf of the original and truncated distributions for a visual comparison.

x = linspace(-3,3,1000);
figure
plot(x,pdf(pd,x))
hold on
plot(x,pdf(t,x),'LineStyle','--')
legend('Normal','Truncated')
hold off
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Generate Random Numbers from a Truncated Distribution

Create a standard normal probability distribution object.

pd = makedist('Normal')

pd = 
  NormalDistribution

  Normal distribution
       mu = 0
    sigma = 1

Truncate the distribution by restricting it to positive values. Set the lower limit to 0 and the upper
limit to infinity.

t = truncate(pd,0,inf)

t = 
  NormalDistribution

  Normal distribution
       mu = 0
    sigma = 1
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  Truncated to the interval [0, Inf]

Generate random numbers from the truncated distribution and visualize with a histogram.

r = random(t,10000,1);
histogram(r,100)

Input Arguments
pd — Probability distribution
probability distribution object

Probability distribution, specified as one of the probability distribution objects in the following table.

Distribution Object Function or App Used to Create Probability
Distribution Object

BetaDistribution makedist, fitdist, Distribution Fitter
BinomialDistribution makedist, fitdist, Distribution Fitter
BirnbaumSaundersDistribution makedist, fitdist, Distribution Fitter
BurrDistribution makedist, fitdist, Distribution Fitter
ExponentialDistribution makedist, fitdist, Distribution Fitter
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Distribution Object Function or App Used to Create Probability
Distribution Object

ExtremeValueDistribution makedist, fitdist, Distribution Fitter
GammaDistribution makedist, fitdist, Distribution Fitter
GeneralizedExtremeValueDistribution makedist, fitdist, Distribution Fitter
GeneralizedParetoDistribution makedist, fitdist, Distribution Fitter
HalfNormalDistribution makedist, fitdist, Distribution Fitter
InverseGaussianDistribution makedist, fitdist, Distribution Fitter
KernelDistribution fitdist, Distribution Fitter
LogisticDistribution makedist, fitdist, Distribution Fitter
LoglogisticDistribution makedist, fitdist, Distribution Fitter
LognormalDistribution makedist, fitdist, Distribution Fitter
LoguniformDistribution makedist
MultinomialDistribution makedist
NakagamiDistribution makedist, fitdist, Distribution Fitter
NegativeBinomialDistribution makedist, fitdist, Distribution Fitter
NormalDistribution makedist, fitdist, Distribution Fitter
PiecewiseLinearDistribution makedist
PoissonDistribution makedist, fitdist, Distribution Fitter
RayleighDistribution makedist, fitdist, Distribution Fitter
RicianDistribution makedist, fitdist, Distribution Fitter
StableDistribution makedist, fitdist, Distribution Fitter
tLocationScaleDistribution makedist, fitdist, Distribution Fitter
TriangularDistribution makedist
UniformDistribution makedist
WeibullDistribution makedist, fitdist, Distribution Fitter

lower — Lower truncation limit
scalar value

Lower truncation limit, specified as a scalar value.
Data Types: single | double

upper — Upper truncation limit
scalar value

Upper truncation limit, specified as a scalar value.
Data Types: single | double

Output Arguments
t — Truncated distribution
probability distribution object
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Truncated distribution, returned as a probability distribution object. The probability distribution
function (pdf) of t is 0 outside the truncation interval. Inside the truncation interval, the pdf of t is
equal to the pdf of pd, but divided by the probability assigned to that interval by pd.

The object properties of t are the same as those of pd with these exceptions:

• The Truncation property of t stores the truncation interval.
• The IsTruncated property of t is 1.
• The InputData property of t is empty. For a fitted distribution object, the InputData property

stores the data used for distribution fitting. The truncated distribution object does not store the
input data.

Version History
Introduced in R2013a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• The input argument pd can be a fitted probability distribution object for beta, exponential,
extreme value, lognormal, normal, and Weibull distributions. Create pd by fitting a probability
distribution to sample data from the fitdist function. For an example, see “Code Generation for
Probability Distribution Objects” on page 34-94.

• A truncated probability distribution object cannot be an input argument of an entry-point function.
To evaluate a truncated distribution using object functions such as cdf, pdf, mean, and so on, call
truncate and one or more of these object functions within a single entry-point function.

For more information on code generation, see “Introduction to Code Generation” on page 34-2 and
“General Code Generation Workflow” on page 34-5.

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

This function fully supports GPU arrays. For more information, see “Run MATLAB Functions on a
GPU” (Parallel Computing Toolbox).

See Also
fitdist | makedist | Distribution Fitter

Topics
“Working with Probability Distributions” on page 5-3
“Supported Distributions” on page 5-16
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tsne
t-Distributed Stochastic Neighbor Embedding

Syntax
Y = tsne(X)
Y = tsne(X,Name,Value)
[Y,loss] = tsne( ___ )

Description
Y = tsne(X) returns a matrix of two-dimensional embeddings of the high-dimensional rows of X.

Y = tsne(X,Name,Value) modifies the embeddings using options specified by one or more name-
value pair arguments.

[Y,loss] = tsne( ___ ), for any input arguments, also returns the Kullback-Leibler divergence
between the joint distributions that model the data X and the embedding Y.

Examples

Visualize Fisher Iris Data

The Fisher iris data set has four-dimensional measurements of irises, and corresponding classification
into species. Visualize this data by reducing the dimension using tsne.

load fisheriris
rng default % for reproducibility
Y = tsne(meas);
gscatter(Y(:,1),Y(:,2),species)

35 Functions

35-7424



Compare Distance Metrics

Use various distance metrics to try to obtain a better separation between species in the Fisher iris
data.

load fisheriris

rng('default') % for reproducibility
Y = tsne(meas,'Algorithm','exact','Distance','mahalanobis');
subplot(2,2,1)
gscatter(Y(:,1),Y(:,2),species)
title('Mahalanobis')

rng('default') % for fair comparison
Y = tsne(meas,'Algorithm','exact','Distance','cosine');
subplot(2,2,2)
gscatter(Y(:,1),Y(:,2),species)
title('Cosine')

rng('default') % for fair comparison
Y = tsne(meas,'Algorithm','exact','Distance','chebychev');
subplot(2,2,3)
gscatter(Y(:,1),Y(:,2),species)
title('Chebychev')

 tsne

35-7425



rng('default') % for fair comparison
Y = tsne(meas,'Algorithm','exact','Distance','euclidean');
subplot(2,2,4)
gscatter(Y(:,1),Y(:,2),species)
title('Euclidean')

In this case, the cosine, Chebychev, and Euclidean distance metrics give reasonably good separation
of clusters. But the Mahalanobis distance metric does not give a good separation.

Plot Results with NaN Input Data

tsne removes input data rows that contain any NaN entries. Therefore, you must remove any such
rows from your classification data before plotting.

For example, change a few random entries in the Fisher iris data to NaN.

load fisheriris
rng default % for reproducibility
meas(rand(size(meas)) < 0.05) = NaN;

Embed the four-dimensional data into two dimensions using tsne.

Y = tsne(meas,'Algorithm','exact');

Warning: Rows with NaN missing values in X or 'InitialY' values are removed.
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Determine how many rows were eliminated from the embedding.

length(species)-length(Y)

ans = 22

Prepare to plot the result by locating the rows of meas that have no NaN values.

goodrows = not(any(isnan(meas),2));

Plot the results using only the rows of species that correspond to rows of meas with no NaN values.

gscatter(Y(:,1),Y(:,2),species(goodrows))

Compare t-SNE Loss

Find both 2-D and 3-D embeddings of the Fisher iris data, and compare the loss for each embedding.
It is likely that the loss is lower for a 3-D embedding, because this embedding has more freedom to
match the original data.

load fisheriris
rng default % for reproducibility
[Y,loss] = tsne(meas,'Algorithm','exact');
rng default % for fair comparison
[Y2,loss2] = tsne(meas,'Algorithm','exact','NumDimensions',3);
fprintf('2-D embedding has loss %g, and 3-D embedding has loss %g.\n',loss,loss2)
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2-D embedding has loss 0.1255, and 3-D embedding has loss 0.0980872.

As expected, the 3-D embedding has lower loss.

View the embeddings. Use RGB colors [1 0 0], [0 1 0], and [0 0 1].

For the 3-D plot, convert the species to numeric values using the categorical command, then
convert the numeric values to RGB colors using the sparse function as follows. If v is a vector of
positive integers 1, 2, or 3, corresponding to the species data, then the command

sparse(1:numel(v),v,ones(size(v)))

is a sparse matrix whose rows are the RGB colors of the species.

gscatter(Y(:,1),Y(:,2),species,eye(3))
title('2-D Embedding')

figure
v = double(categorical(species));
c = full(sparse(1:numel(v),v,ones(size(v)),numel(v),3));
scatter3(Y2(:,1),Y2(:,2),Y2(:,3),15,c,'filled')
title('3-D Embedding')
view(-50,8)
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Input Arguments
X — Data points
n-by-m matrix

Data points, specified as an n-by-m matrix, where each row is one m-dimensional point.

tsne removes rows of X that contain any NaN values before creating an embedding. See “Plot Results
with NaN Input Data” on page 35-7426.
Data Types: single | double

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: Y = tsne(X,'Algorithm','Exact','NumPCAComponents',50)

Algorithm Control

Algorithm — tsne algorithm
'barneshut' (default) | 'exact'

 tsne
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tsne algorithm, specified as 'barneshut' or 'exact'. The 'exact' algorithm optimizes the
Kullback-Leibler divergence of distributions between the original space and the embedded space. The
'barneshut' algorithm performs an approximate optimization that is faster and uses less memory
when the number of data rows is large.

Note For the 'barneshut' algorithm, tsne uses knnsearch to find the nearest neighbors.

Example: 'exact'

Distance — Distance metric
'euclidean' (default) | 'seuclidean' | 'cityblock' | 'chebychev' | 'minkowski' |
'mahalanobis' | 'cosine' | 'correlation' | 'spearman' | 'hamming' | 'jaccard' | function
handle

Distance metric, specified by one of the following. For definitions of the distance metrics, see pdist.

• 'euclidean' — Euclidean distance.
• 'seuclidean' — Standardized Euclidean distance. Each coordinate difference between rows in

X and the query matrix is scaled by dividing by the corresponding element of the standard
deviation computed from S = std(X,'omitnan').

• 'cityblock' — City block distance.
• 'chebychev' — Chebychev distance, which is the maximum coordinate difference.
• 'minkowski' — Minkowski distance with exponent 2. This is the same as Euclidean distance.
• 'mahalanobis' — Mahalanobis distance, computed using the positive definite covariance matrix

cov(X,'omitrows').
• 'cosine' — 1 minus the cosine of the included angle between observations (treated as vectors).
• 'correlation' — One minus the sample linear correlation between observations (treated as

sequences of values).
• 'spearman' — One minus the sample Spearman's rank correlation between observations (treated

as sequences of values).
• 'hamming' — Hamming distance, which is the percentage of coordinates that differ.
• 'jaccard' — One minus the Jaccard coefficient, which is the percentage of nonzero coordinates

that differ.
• custom distance function — A distance function specified using @ (for example, @distfun). For

details, see “More About” on page 35-7433.

In all cases, tsne uses squared pairwise distances to calculate the Gaussian kernel in the joint
distribution of X.
Example: 'mahalanobis'

Exaggeration — Size of natural clusters in data
4 (default) | scalar value 1 or greater

Size of natural clusters in data, specified as a scalar value 1 or greater.

A large exaggeration makes tsne learn larger joint probabilities of Y and creates relatively more
space between clusters in Y. tsne uses exaggeration in the first 99 optimization iterations.
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If the value of Kullback-Leibler divergence increases in the early stage of the optimization, try
reducing the exaggeration. See “tsne Settings” on page 16-115.
Example: 10
Data Types: single | double

NumDimensions — Dimension of the output Y
2 (default) | positive integer

Dimension of the output Y, specified as a positive integer. Generally, set NumDimensions to 2 or 3.
Example: 3
Data Types: single | double

NumPCAComponents — PCA dimension reduction
0 (default) | nonnegative integer

PCA dimension reduction, specified as a nonnegative integer. Before tsne embeds the high-
dimensional data, it first reduces the dimensionality of the data to NumPCAComponents using the pca
function. When NumPCAComponents is 0, tsne does not use PCA.
Example: 50
Data Types: single | double

Perplexity — Effective number of local neighbors of each point
30 (default) | positive scalar

Effective number of local neighbors of each point, specified as a positive scalar. See “t-SNE
Algorithm” on page 16-102.

Larger perplexity causes tsne to use more points as nearest neighbors. Use a larger value of
Perplexity for a large dataset. Typical Perplexity values are from 5 to 50. In the Barnes-Hut
algorithm, tsne uses min(3*Perplexity,N-1) as the number of nearest neighbors. See “tsne
Settings” on page 16-115.
Example: 10
Data Types: single | double

Standardize — Normalize input data
false (default) | true

Normalize input data, specified as false or true. When true, tsne centers and scales X by dividing
the columns by their standard deviations.

When features in X are on different scales, set 'Standardize' to true. Do this because the learning
process is based on nearest neighbors, so features with large scales can override the contribution of
features with small scales.
Example: true
Data Types: logical

Optimization Control

InitialY — Initial embedded points
1e-4*randn(N,NumDimensions) (default) | n-by-NumDimensions real matrix
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Initial embedded points, specified as an n-by-NumDimensions real matrix, where n is the number of
rows of X. The tsne optimization algorithm uses these points as initial values.
Data Types: single | double

LearnRate — Learning rate for optimization process
500 (default) | positive scalar

Learning rate for optimization process, specified as a positive scalar. Typically, set values from 100
through 1000.

When LearnRate is too small, tsne can converge to a poor local minimum. When LearnRate is too
large, the optimization can initially have the Kullback-Leibler divergence increase rather than
decrease. See “tsne Settings” on page 16-115.
Example: 1000
Data Types: single | double

NumPrint — Iterative display frequency
20 (default) | positive integer

Iterative display frequency, specified as a positive integer. When the Verbose name-value pair is not
0, tsne returns iterative display after every NumPrint iterations. If the Options name-value pair
contains a nonempty 'OutputFcn' entry, then output functions run after every NumPrint iterations.
Example: 20
Data Types: single | double

Options — Optimization options
structure containing the fields 'MaxIter', 'OutputFcn', and 'TolFun'

Optimization options, specified as a structure containing the fields 'MaxIter', 'OutputFcn', and
'TolFun'. Create 'Options' using statset or struct.

• 'MaxIter' — Positive integer specifying the maximum number of optimization iterations.
Default: 1000.

• 'OutputFcn' — Function handle or cell array of function handles specifying one or more
functions to call after every NumPrint optimization iterations. For syntax details, see “t-SNE
Output Function” on page 16-108. Default: [].

• 'TolFun' — Stopping criterion for the optimization. The optimization exits when the norm of the
gradient of the Kullback-Leibler divergence is less than 'TolFun'. Default: 1e-10.

Example: options = statset('MaxIter',500)
Data Types: struct

Theta — Barnes-Hut tradeoff parameter
0.5 (default) | scalar from 0 through 1

Barnes-Hut tradeoff parameter, specified as a scalar from 0 through 1. Higher values give a faster but
less accurate optimization. Applies only when Algorithm is 'barneshut'.
Example: 0.1
Data Types: single | double

35 Functions

35-7432



Verbose — Iterative display
0 (default) | 1 | 2

Iterative display, specified as 0, 1, or 2. When Verbose is not 0, tsne prints a summary table of the
Kullback-Leibler divergence and the norm of its gradient every NumPrint iterations.

When Verbose is 2, tsne also prints the variances of Gaussian kernels. tsne uses these kernels in
its computation of the joint probability of X. If you see a large difference in the scales of the minimum
and maximum variances, you can sometimes get more suitable results by rescaling X.
Example: 2
Data Types: single | double

Output Arguments
Y — Embedded points
n-by-NumDimensions matrix

Embedded points, returned as an n-by-NumDimensions matrix. Each row represents one embedded
point. n is the number of rows of data X that do not contain any NaN entries. See “Plot Results with
NaN Input Data” on page 35-7426.

loss — Kullback-Leibler divergence
nonnegative scalar

Kullback-Leibler divergence between modeled input and output distributions, returned as a
nonnegative scalar. For details, see “t-SNE Algorithm” on page 16-102.

More About
Custom Distance Function

The syntax of a custom distance function is as follows.

function D2 = distfun(ZI,ZJ)

tsne passes ZI and ZJ to your function, and your function computes the distance.

• ZI is a 1-by-n vector containing a single row from X or Y.
• ZJ is an m-by-n matrix containing multiple rows of X or Y.

Your function returns D2, which is an m-by-1 vector of distances. The jth element of D2 is the distance
between the observations ZI and ZJ(j,:).

Tip If your data are not sparse, then usually the built-in distance functions are faster than a function
handle.

Algorithms
tsne constructs a set of embedded points in a low-dimensional space whose relative similarities
mimic those of the original high-dimensional points. The embedded points show the clustering in the
original data.
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Roughly, the algorithm models the original points as coming from a Gaussian distribution, and the
embedded points as coming from a Student’s t distribution. The algorithm tries to minimize the
Kullback-Leibler divergence between these two distributions by moving the embedded points.

For details, see “t-SNE” on page 16-102.

Version History
Introduced in R2017a

See Also
pca | pdist | knnsearch | statset | gscatter

Topics
“Visualize High-Dimensional Data Using t-SNE” on page 16-111
“t-SNE Custom Output Function” on page 16-109
“tsne Settings” on page 16-115
“t-SNE” on page 16-102
“Dimensionality Reduction and Feature Extraction”
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tspartition
Partition time series data for cross-validation

Description
A tspartition object partitions a set of regularly sampled, time series data based on the specified
size of the data set. Use this object to define training and test sets for validating a time series
regression model with expanding window cross-validation, sliding window cross-validation, or holdout
validation. Use the training object function to extract the training indices and the test object
function to extract the test indices.

For an example that uses tspartition for time series forecasting, see “Time Series Forecasting
Using Ensemble of Boosted Regression Trees” on page 14-2.

Creation

Syntax
c = tspartition(n,"ExpandingWindow",t)
c = tspartition(n,"SlidingWindow",t)
c = tspartition(n,"Holdout",p)
c = tspartition( ___ ,Name=Value)

Description

c = tspartition(n,"ExpandingWindow",t) creates a tspartition object c that partitions n
time-dependent observations using expanding windows. tspartition splits the data set into t
windows with expanding training sets and fixed-size test sets.

c = tspartition(n,"SlidingWindow",t) creates a tspartition object c that partitions n
time-dependent observations using sliding windows. tspartition splits the data set into t windows
with fixed-size training and test sets.

c = tspartition(n,"Holdout",p) creates a tspartition object c that defines a time-based
partition for holdout validation on n observations. tspartition divides the n observations into a
training set and a test set, where p determines the fraction or number of observations in the test set.

c = tspartition( ___ ,Name=Value) specifies options using one or more name-value arguments
in addition to any of the input argument combinations in previous syntaxes. For example, you can
specify the number of observations to exclude between the end of each training set and before the
beginning of its corresponding test set by using the GapSize name-value argument.

Input Arguments

n — Number of observations
positive integer scalar

Number of observations in the time series data set, specified as a positive integer scalar.
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Example: 10000
Data Types: single | double

t — Number of test sets
10 (default) | positive integer scalar

Number of test sets to create, specified as a positive integer scalar. t must be smaller than the total
number of observations n.
Example: 5
Data Types: single | double

p — Fraction or number of observations in test set
0.1 (default) | scalar in the range (0,1) | positive integer scalar

Fraction or number of observations in the test set used for holdout validation, specified as a scalar in
the range (0,1) or a positive integer scalar.

• When p is in the range (0,1), tspartition selects approximately p*n of the latest observations
for the test set.

• When p is a positive integer, tspartition selects the p latest observations for the test set.

Data Types: single | double

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.
Example: tspartition(10000,"ExpandingWindow",5,MaxTrainSize=7500) specifies to split
10,000 observations into 5 partitions with expanding training sets and fixed-size test sets. Each
training set cannot contain more than 7500 observations.

Direction — Start direction for creating time windows
"reverse" (default) | "forward"

Start direction for creating time windows, specified as "forward" or "reverse".

• "forward" — tspartition ensures that the oldest observations are included in the first
window. Some of the latest observations might be omitted from the cross-validation.

• "reverse" — tspartition ensures that the latest observations are included in the last window.
Some older observations might be omitted from the cross-validation.

Note This name-value argument is valid for expanding window and sliding window cross-validation
only.

Example: Direction="forward"
Data Types: char | string

GapSize — Number of observations to exclude between each training and test set
0 (default) | scalar in the range [0,1) | positive integer scalar
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Number of observations to exclude between the end of each training set and before the beginning of
its corresponding test set, specified as a scalar in the range [0,1) or a positive integer scalar.

• When the GapSize value is in the range [0,1), tspartition excludes approximately GapSize*n
observations.

• When the GapSize value is a positive integer, tspartition excludes GapSize observations.

Example: GapSize=10
Data Types: single | double

MaxTrainSize — Maximum size of all training sets
n-1 (default) | scalar in the range (0,1) | positive integer scalar

Maximum size of all training sets, specified as a scalar in the range (0,1) or a positive integer scalar.

• When the MaxTrainSize value is in the range (0,1), tspartition includes at most
MaxTrainSize*n observations in each training set.

• When the MaxTrainSize value is a positive integer, tspartition includes at most
MaxTrainSize observations in each training set.

Note This name-value argument is valid for expanding window cross-validation only.

Example: MaxTrainSize=500
Data Types: single | double

MinTrainSize — Minimum size of all training sets
scalar in the range (0,1) | positive integer scalar

Minimum size of all training sets, specified as a scalar in the range (0,1) or a positive integer scalar.

• When the MinTrainSize value is in the range (0,1), tspartition includes at least
MinTrainSize*n observations in each training set.

• When the MinTrainSize value is a positive integer, tspartition includes at least
MinTrainSize observations in each training set.

If you do not specify other name-value arguments, the default value is floor(n/(t+1)) (see n and
t).

Note This name-value argument is valid for expanding window cross-validation only.

Example: MinTrainSize=100
Data Types: single | double

StepSize — Step length between windows
scalar in the range (0,1) | positive integer scalar

Step length between consecutive windows, specified as a scalar in the range (0,1) or a positive
integer scalar. More specifically, the StepSize value is the number of steps between the end of two
consecutive test sets.
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• When the StepSize value is in the range (0,1), tspartition separates consecutive test sets by
approximately StepSize*n steps.

• When the StepSize value is a positive integer, tspartition separates consecutive test sets by
StepSize steps.

If you do not specify other name-value arguments, the default value is floor(n/(t+1)) (see n and
t).

Note This name-value argument is valid for expanding window and sliding window cross-validation
only.

Example: StepSize=50
Data Types: single | double

TrainSize — Size of all training sets
scalar in the range (0,1) | positive integer scalar

Size of all training sets, specified as a scalar in the range (0,1) or a positive integer scalar.

• When the TrainSize value is in the range (0,1), tspartition includes approximately
TrainSize*n observations in each training set.

• When the TrainSize value is a positive integer, tspartition includes TrainSize observations
in each training set.

If you do not specify other name-value arguments, the default value is floor(n/(t+1)) (see n and
t).

Note This name-value argument is valid for sliding window cross-validation only.

Example: TrainSize=500
Data Types: single | double

TestSize — Size of all test sets
scalar in the range (0,1) | positive integer scalar

Size of all test sets, specified as a scalar in the range (0,1) or a positive integer scalar.

• When the TestSize value is in the range (0,1), tspartition includes approximately
TestSize*n observations in each test set.

• When the TestSize value is a positive integer, tspartition includes TestSize observations in
each test set.

If you do not specify other name-value arguments, the default value is floor(n/(t+1)) (see n and
t).

Note This name-value argument is valid for expanding window and sliding window cross-validation
only.
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Example: TestSize=100
Data Types: single | double

Properties
Type — Validation partition type
'expanding-window' | 'holdout' | 'sliding-window'

This property is read-only.

Validation partition type, returned as 'expanding-window', 'holdout', or 'sliding-window'.
Data Types: char

NumObservations — Number of observations
positive integer scalar

This property is read-only.

Number of observations, returned as a positive integer scalar.
Data Types: single | double

NumTestSets — Number of test sets
positive integer scalar

This property is read-only.

Number of test sets, returned as a positive integer scalar. For holdout validation, the NumTestSets
value is 1. For expanding window and sliding window cross-validation, the NumTestSets value
indicates the number of windows used for cross-validation.
Data Types: single | double

TrainSize — Size of each training set
positive integer scalar | positive integer vector

This property is read-only.

Size of each training set, returned as a positive integer scalar for holdout validation or a positive
integer vector for expanding window and sliding window cross-validation.
Data Types: single | double

TestSize — Size of each test set
positive integer scalar | positive integer vector

This property is read-only.

Size of each test set, returned as a positive integer scalar for holdout validation or a positive integer
vector for expanding window and sliding window cross-validation.
Data Types: single | double

StepSize — Step length between consecutive windows
positive integer scalar | NaN
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This property is read-only.

Step length between consecutive windows, returned as a positive integer scalar when the
NumTestSets value is greater than 1, or NaN otherwise.
Data Types: single | double

Object Functions
test Test indices for time series cross-validation
training Training indices for time series cross-validation

Examples

Expanding Window Cross-Validation

Identify the observations in the training sets and test sets of a tspartition object for expanding
window cross-validation.

Use 20 time-dependent observations to create three training sets and three test sets. Specify a gap of
two observations between each training set and its corresponding test set.

c = tspartition(20,"ExpandingWindow",3, ...
    GapSize=2);

Find the training set indices for the three windows. A value of 1 (true) indicates that the
corresponding observation is in the training set for that window.

trainWindow1 = training(c,1);
trainWindow2 = training(c,2);
trainWindow3 = training(c,3);

Find the test set indices for the three windows. A value of 1 (true) indicates that the corresponding
observation is in the test set for that window.

testWindow1 = test(c,1);
testWindow2 = test(c,2);
testWindow3 = test(c,3);

Combine the training and test set indices into one matrix where a value of 1 indicates a training
observation and a value of 2 indicates a test observation.

data = [trainWindow1 + 2*testWindow1, ...
    trainWindow2 + 2*testWindow2, ...
    trainWindow3 + 2*testWindow3];

Visualize the different sets by using a heat map.

colormap = lines(3);
heatmap(double(data),ColorbarVisible="off", ...
    Colormap=colormap);
xlabel("Window")
ylabel("Observation")
title("Expanding Window Cross-Validation Scheme")
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For each window, the observations in red (with a value of 1) are in the training set, the observations
in yellow (with a value of 2) are in the test set, and the observations in blue (with a value of 0) are
ignored. For example, observation 11 is a test observation in window one, a gap observation in
window two, and a training observation in window three.

Sliding Window Cross-Validation

Identify the observations in the training sets and test sets of a tspartition object for sliding
window cross-validation.

Use 20 time-dependent observations to create five training sets and five test sets.

c = tspartition(20,"SlidingWindow",5);

Find the training set indices for the five windows. A value of 1 (true) indicates that the
corresponding observation is in the training set for that window.

trainWindows = zeros(c.NumObservations,c.NumTestSets);
for i = 1:c.NumTestSets
    trainWindows(:,i) = training(c,i);
end

Find the test set indices for the five windows. A value of 1 (true) indicates that the corresponding
observation is in the test set for that window.
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testWindows = zeros(c.NumObservations,c.NumTestSets);
for i = 1:c.NumTestSets
    testWindows(:,i) = test(c,i);
end

Combine the training and test set indices into one matrix where a value of 1 indicates a training
observation and a value of 2 indicates a test observation.

data = trainWindows + 2*testWindows;

Visualize the different sets by using a heat map.

colormap = lines(3);
heatmap(double(data),ColorbarVisible="off", ...
    Colormap=colormap);
xlabel("Window")
ylabel("Observation")
title("Sliding Window Cross-Validation Scheme")

For each window, the observations in red (with a value of 1) are in the training set, the observations
in yellow (with a value of 2) are in the test set, and the observations in blue (with a value of 0) are
ignored. For example, observations 9 through 11 are test observations in window two and training
observations in window three. Because of the default values for the training set size, test set size,
step size, and direction for creating sliding windows, tspartition does not use some of the oldest
observations (1 and 2) in any window.

Holdout Validation for Time Series Data

Identify the observations in the training set and test set of a tspartition object for holdout
validation.
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Use 25% of 20 time-dependent observations to create a test set. The corresponding training set
contains the remaining observations.

c = tspartition(20,"Holdout",0.25);

Find the test set indices.

testIndices = test(c);

Visualize the two sets of observations by using a heat map.

h = heatmap(double(testIndices),ColorbarVisible="off");
h.XDisplayLabels = "";
ylabel("Observation")
title("Holdout Validation Scheme")

The observations in light blue (with a value of 0) are in the training set, and the observations in dark
blue (with a value of 1) are in the test set. In a holdout validation scheme for time series data, the
latest observations (in this case, observations 16 through 20) are in the test set.

Version History
Introduced in R2022b
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See Also
test | training

Topics
“Time Series Forecasting Using Ensemble of Boosted Regression Trees” on page 14-2
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tstat
Student's t mean and variance

Syntax
[m,v] = tstat(nu)

Description
[m,v] = tstat(nu) returns the mean and variance of the Student's t distribution with nu degrees
of freedom.

Examples

Compute Mean and Variance of Student's t Distribution

Compute the mean and variance for Student's t distribution with degrees of freedom nu equal to 1 to
30.

nu = reshape(1:30,6,5);
[m,v] = tstat(nu)

m = 6×5

   NaN     0     0     0     0
     0     0     0     0     0
     0     0     0     0     0
     0     0     0     0     0
     0     0     0     0     0
     0     0     0     0     0

v = 6×5

       NaN    1.4000    1.1818    1.1176    1.0870
       NaN    1.3333    1.1667    1.1111    1.0833
    3.0000    1.2857    1.1538    1.1053    1.0800
    2.0000    1.2500    1.1429    1.1000    1.0769
    1.6667    1.2222    1.1333    1.0952    1.0741
    1.5000    1.2000    1.1250    1.0909    1.0714

Note that the mean is undefined for 1 degree of freedom, and variance is undefined for 1 and 2
degrees of freedom.

Input Arguments
nu — Degrees of freedom
positive scalar value | array of positive scalar values
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Degrees of freedom for the Student's t distribution, specified as a positive scalar value or an array of
positive scalar values.
Example: [9,19,49,99]
Data Types: single | double

Output Arguments
m — Mean
scalar value | array of scalar values

Mean of the Student's t distribution with the degrees of freedom specified in nu, returned as a scalar
value or an array of scalar values. m is the same size as nu.

v — Variance
scalar value | array of scalar values

Variance of the Student's t distribution with the degrees of freedom specified in nu, returned as a
scalar value or an array of scalar values. v is the same size as nu.

More About
Mean and Variance of Student’s t Distribution

The parameters of the Student's t distribution depend on the degrees of freedom.

The mean of the Student’s t distribution is μ = 0 for degrees of freedom ν greater than 1. If ν equals
1, then the mean is undefined.

The variance of the Student’s t distribution is ν
ν− 2  for degrees of freedom ν greater than 2. If ν is

less than or equal to 2, then the variance is undefined.

For more information, see “Student's t Distribution” on page B-156.

Version History
Introduced before R2006a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

This function fully supports GPU arrays. For more information, see “Run MATLAB Functions on a
GPU” (Parallel Computing Toolbox).

See Also
tpdf | tcdf | tinv | trnd
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Topics
“Student's t Distribution” on page B-156
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ttest
One-sample and paired-sample t-test

Syntax
h = ttest(x)

h = ttest(x,y)
h = ttest(x,y,Name,Value)

h = ttest(x,m)
h = ttest(x,m,Name,Value)

[h,p] = ttest( ___ )
[h,p,ci,stats] = ttest( ___ )

Description
h = ttest(x) returns a test decision for the null hypothesis that the data in x comes from a normal
distribution with mean equal to zero and unknown variance, using the one-sample t-test on page 35-
7455. The alternative hypothesis is that the population distribution does not have a mean equal to
zero. The result h is 1 if the test rejects the null hypothesis at the 5% significance level, and 0
otherwise.

h = ttest(x,y) returns a test decision for the null hypothesis that the data in x – y comes from a
normal distribution with mean equal to zero and unknown variance, using the paired-sample t-test.

h = ttest(x,y,Name,Value) returns a test decision for the paired-sample t-test with additional
options specified by one or more name-value pair arguments. For example, you can change the
significance level or conduct a one-sided test.

h = ttest(x,m) returns a test decision for the null hypothesis that the data in x comes from a
normal distribution with mean m and unknown variance. The alternative hypothesis is that the mean
is not m.

h = ttest(x,m,Name,Value) returns a test decision for the one-sample t-test with additional
options specified by one or more name-value pair arguments. For example, you can change the
significance level or conduct a one-sided test.

[h,p] = ttest( ___ ) also returns the p-value, p, of the test, using any of the input arguments
from the previous syntax groups.

[h,p,ci,stats] = ttest( ___ ) also returns the confidence interval ci for the mean of x, or of x
– y for the paired t-test, and the structure stats containing information about the test statistic.

Examples
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t-Test for Mean Equal to Zero

Load the sample data. Create a vector containing the third column of the stock returns data.

load stockreturns
x = stocks(:,3);

Test the null hypothesis that the sample data comes from a population with mean equal to zero.

[h,p,ci,stats] = ttest(x)

h = 1

p = 0.0106

ci = 2×1

   -0.7357
   -0.0997

stats = struct with fields:
    tstat: -2.6065
       df: 99
       sd: 1.6027

The returned value h = 1 indicates that ttest rejects the null hypothesis at the 5% significance
level.

t-Test at Different Significance Level

Load the sample data. Create a vector containing the third column of the stock returns data.

load stockreturns
x = stocks(:,3);

Test the null hypothesis that the sample data are from a population with mean equal to zero at the 1%
significance level.

h = ttest(x,0,'Alpha',0.01)

h = 0

The returned value h = 0 indicates that ttest does not reject the null hypothesis at the 1%
significance level.

Paired-Sample t-Test

Load the sample data. Create vectors containing the first and second columns of the data matrix to
represent students’ grades on two exams.
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load examgrades
x = grades(:,1);
y = grades(:,2);

Test the null hypothesis that the pairwise difference between data vectors x and y has a mean equal
to zero.

[h,p] = ttest(x,y)

h = 0

p = 0.9805

The returned value of h = 0 indicates that ttest does not reject the null hypothesis at the default
5% significance level.

Paired-Sample t-Test at Different Significance Level

Load the sample data. Create vectors containing the first and second columns of the data matrix to
represent students’ grades on two exams.

load examgrades
x = grades(:,1);
y = grades(:,2);

Test the null hypothesis that the pairwise difference between data vectors x and y has a mean equal
to zero at the 1% significance level.

[h,p] = ttest(x,y,'Alpha',0.01)

h = 0

p = 0.9805

The returned value of h = 0 indicates that ttest does not reject the null hypothesis at the 1%
significance level.

t-Test for a Hypothesized Mean

Load the sample data. Create a vector containing the first column of the students' exam grades data.

load examgrades
x = grades(:,1);

Test the null hypothesis that sample data comes from a distribution with mean m = 75.

h = ttest(x,75)

h = 0

The returned value of h = 0 indicates that ttest does not reject the null hypothesis at the 5%
significance level.
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One-Sided t-Test

Load the sample data. Create a vector containing the first column of the students’ exam grades data.

load examgrades
x = grades(:,1);

Plot a histogram of the exam grades data and fit a normal density function.

histfit(x)
xlabel("Grade")
ylabel("Frequency")

Use a right-tailed t-test to test the null hypothesis that the data comes from a population with mean
equal to 65, against the alternative that the mean is greater than 65.

[h,~,~,stats] = ttest(x,65,"Tail","right")

h = 1

stats = struct with fields:
    tstat: 12.5726
       df: 119
       sd: 8.7202
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The returned value of h = 1 indicates that ttest rejects the null hypothesis at the default
significance level of 5%, in favor of the alternative hypothesis that the data comes from a population
with a mean greater than 65.

Plot the corresponding Student's t-distribution, the returned t-statistic, and the critical t-value.
Calculate the critical t-value for the default confidence level of 95% by using tinv.

nu = stats.df;
k = linspace(-15,15,300);
tdistpdf = tpdf(k,nu);
tval = stats.tstat

tval = 12.5726

tvalpdf = tpdf(tval,nu);
tcrit = tinv(0.95,nu)

tcrit = 1.6578

plot(k,tdistpdf)
hold on
scatter(tval,tvalpdf,"filled")
xline(tcrit,"--")
legend(["Student's t pdf", "t-Statistic", ...
    "Critical Cutoff"])

The orange dot represents the t-statistic and is located to the right of the dashed black line that
represents the critical t-value.

35 Functions

35-7452



Input Arguments
x — Sample data
vector | matrix | multidimensional array

Sample data, specified as a vector, matrix, or multidimensional array on page 35-7455. ttest
performs a separate t-test along each column and returns a vector of results. If y sample data is
specified, x and y must be the same size.
Data Types: single | double

y — Sample data
vector | matrix | multidimensional array

Sample data, specified as a vector, matrix, or multidimensional array on page 35-7455. If y sample
data is specified, x and y must be the same size.
Data Types: single | double

m — Hypothesized population mean
0 (default) | scalar value

Hypothesized population mean, specified as a scalar value.
Data Types: single | double

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: 'Tail','right','Alpha',0.01 conducts a right-tailed hypothesis test at the 1%
significance level.

Alpha — Significance level
0.05 (default) | scalar value in the range (0,1)

Significance level of the hypothesis test, specified as the comma-separated pair consisting of
'Alpha' and a scalar value in the range (0,1).
Example: 'Alpha',0.01
Data Types: single | double

Dim — Dimension
first nonsingleton dimension (default) | positive integer value

Dimension of the input matrix along which to test the means, specified as the comma-separated pair
consisting of 'Dim' and a positive integer value. For example, specifying 'Dim',1 tests the column
means, while 'Dim',2 tests the row means.
Example: 'Dim',2
Data Types: single | double
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Tail — Type of alternative hypothesis
'both' (default) | 'right' | 'left'

Type of alternative hypothesis to evaluate, specified as the comma-separated pair consisting of
'Tail' and one of:

• 'both' — Test against the alternative hypothesis that the population mean is not m.
• 'right' — Test against the alternative hypothesis that the population mean is greater than m.
• 'left' — Test against the alternative hypothesis that the population mean is less than m.

ttest tests the null hypothesis that the population mean is m against the specified alternative
hypothesis.
Example: 'Tail','right'

Output Arguments
h — Hypothesis test result
1 | 0

Hypothesis test result, returned as 1 or 0.

• If h = 1, this indicates the rejection of the null hypothesis at the Alpha significance level.
• If h = 0, this indicates a failure to reject the null hypothesis at the Alpha significance level.

p — p-value
scalar value in the range [0,1]

p-value of the test, returned as a scalar value in the range [0,1]. p is the probability of observing a
test statistic as extreme as, or more extreme than, the observed value under the null hypothesis.
Small values of p cast doubt on the validity of the null hypothesis.

ci — Confidence interval
vector

Confidence interval for the true population mean, returned as a two-element vector containing the
lower and upper boundaries of the 100 × (1 – Alpha)% confidence interval.

stats — Test statistics
structure

Test statistics, returned as a structure containing the following:

• tstat — Value of the test statistic.
• df — Degrees of freedom of the test.
• sd — Estimated population standard deviation. For a paired t-test, sd is the standard deviation of

x – y.
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More About
One-Sample t-Test

The one-sample t-test is a parametric test of the location parameter when the population standard
deviation is unknown.

The test statistic is

t = x − μ
s/ n ,

where x is the sample mean, μ is the hypothesized population mean, s is the sample standard
deviation, and n is the sample size. Under the null hypothesis, the test statistic has Student’s t
distribution with n – 1 degrees of freedom.

Multidimensional Array

A multidimensional array has more than two dimensions. For example, if x is a 1-by-3-by-4 array, then
x is a three-dimensional array.

First Nonsingleton Dimension

The first nonsingleton dimension is the first dimension of an array whose size is not equal to 1. For
example, if x is a 1-by-2-by-3-by-4 array, then the second dimension is the first nonsingleton
dimension of x.

Tips
• Use sampsizepwr to calculate:

• The sample size that corresponds to specified power and parameter values;
• The power achieved for a particular sample size, given the true parameter value;
• The parameter value detectable with the specified sample size and power.

Version History
Introduced before R2006a

Extended Capabilities
GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

This function fully supports GPU arrays. For more information, see “Run MATLAB Functions on a
GPU” (Parallel Computing Toolbox).

See Also
ztest | ttest2 | sampsizepwr
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ttest2
Two-sample t-test

Syntax
h = ttest2(x,y)
h = ttest2(x,y,Name,Value)
[h,p] = ttest2( ___ )
[h,p,ci,stats] = ttest2( ___ )

Description
h = ttest2(x,y) returns a test decision for the null hypothesis that the data in vectors x and y
comes from independent random samples from normal distributions with equal means and equal but
unknown variances, using the two-sample t-test on page 35-7462. The alternative hypothesis is that
the data in x and y comes from populations with unequal means. The result h is 1 if the test rejects
the null hypothesis at the 5% significance level, and 0 otherwise.

h = ttest2(x,y,Name,Value) returns a test decision for the two-sample t-test with additional
options specified by one or more name-value pair arguments. For example, you can change the
significance level or conduct the test without assuming equal variances.

[h,p] = ttest2( ___ ) also returns the p-value, p, of the test, using any of the input arguments in
the previous syntaxes.

[h,p,ci,stats] = ttest2( ___ ) also returns the confidence interval on the difference of the
population means, ci, and the structure stats containing information about the test statistic.

Examples

Two-Sample t-Test for Equal Means

Load the data set. Create vectors containing the first and second columns of the data matrix to
represent students’ grades on two exams.

load examgrades
x = grades(:,1);
y = grades(:,2);

Test the null hypothesis that the two data samples are from populations with equal means.

[h,p,ci,stats] = ttest2(x,y)

h = 0

p = 0.9867

ci = 2×1

   -1.9438
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    1.9771

stats = struct with fields:
    tstat: 0.0167
       df: 238
       sd: 7.7084

The returned value of h = 0 indicates that ttest2 does not reject the null hypothesis at the default
5% significance level.

t-Test for Equal Means Without Assuming Equal Variances

Load the data set. Create vectors containing the first and second columns of the data matrix to
represent students’ grades on two exams.

load examgrades
x = grades(:,1);
y = grades(:,2);

Test the null hypothesis that the two data vectors are from populations with equal means, without
assuming that the populations also have equal variances.

[h,p] = ttest2(x,y,'Vartype','unequal')

h = 0

p = 0.9867

The returned value of h = 0 indicates that ttest2 does not reject the null hypothesis at the default
5% significance level even if equal variances are not assumed.

One-Sided, Two-Sample t-Test

Load the sample data. Create a categorical vector to label the vehicle mileage data according to the
vehicle year.

load carbig.mat;

decade = categorical(Model_Year < 80,[true,false],["70s","80s"]);

Plot boxcharts of the mileage data for each decade.

boxchart(decade,MPG)
xlabel("Decade")
ylabel("Mileage")
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Create vectors from the mileage data for each decade. Use a left-tailed, two-sample t-test to test the
null hypothesis that the data comes from populations with equal means. Use the alternative
hypothesis that the population mean for the mileage of cars made in the 1970s is less than the
population mean for the mileage of cars made in the 1980s.

MPG70s = MPG(decade == "70s");
MPG80s = MPG(decade == "80s");

[h,~,~,stats] = ttest2(MPG70s,MPG80s,"Tail","left")

h = 1

stats = struct with fields:
    tstat: -14.0630
       df: 396
       sd: 6.3910

The returned value of h = 1 indicates that ttest2 rejects the null hypothesis at the default
significance level of 5%, in favor of the alternative hypothesis that the population mean for the
mileage of cars made in the 1970s is less than the population mean for the mileage of cars made in
the 1980s.

Plot the corresponding Student's t-distribution, the returned t-statistic, and the critical t-value.
Calculate the critical t-value at the default confidence level of 95% by using tinv.

nu = stats.df;
k = linspace(-15,15,300);
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tdistpdf = tpdf(k,nu);
tval = stats.tstat

tval = -14.0630

tvalpdf = tpdf(tval,nu);
tcrit = -tinv(0.95,nu)

tcrit = -1.6487

plot(k,tdistpdf)
hold on
scatter(tval,tvalpdf,"filled")
xline(tcrit,"--")
legend(["Student's t pdf","t-statistic", ...
    "Critical Cutoff"])

The orange dot represents the t-statistic and is located to the left of the dashed black line that
represents the critical t-value.

Input Arguments
x — Sample data
vector | matrix | multidimensional array

Sample data, specified as a vector, matrix, or multidimensional array. ttest2 treats NaN values as
missing data and ignores them.
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• If x and y are specified as vectors, they do not need to be the same length.
• If x and y are specified as matrices, they must have the same number of columns. ttest2

performs a separate t-test along each column and returns a vector of results.
• If x and y are specified as multidimensional arrays on page 35-7462, they must have the same size

along all but the first nonsingleton dimension on page 35-7462.

Data Types: single | double

y — Sample data
vector | matrix | multidimensional array

Sample data, specified as a vector, matrix, or multidimensional array. ttest2 treats NaN values as
missing data and ignores them.

• If x and y are specified as vectors, they do not need to be the same length.
• If x and y are specified as matrices, they must have the same number of columns. ttest2

performs a separate t-test along each column and returns a vector of results.
• If x and y are specified as multidimensional arrays on page 35-7462, they must have the same size

along all but the first nonsingleton dimension on page 35-7462. ttest2 works along the first
nonsingleton dimension.

Data Types: single | double

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: 'Tail','right','Alpha',0.01,'Vartype','unequal' specifies a right-tailed test at
the 1% significance level, and does not assume that x and y have equal population variances.

Alpha — Significance level
0.05 (default) | scalar value in the range (0,1)

Significance level of the hypothesis test, specified as the comma-separated pair consisting of
'Alpha' and a scalar value in the range (0,1).
Example: 'Alpha',0.01
Data Types: single | double

Dim — Dimension
first nonsingleton dimension (default) | positive integer value

Dimension of the input matrix along which to test the means, specified as the comma-separated pair
consisting of 'Dim' and a positive integer value. For example, specifying 'Dim',1 tests the column
means, while 'Dim',2 tests the row means.
Example: 'Dim',2
Data Types: single | double
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Tail — Type of alternative hypothesis
'both' (default) | 'right' | 'left'

Type of alternative hypothesis to evaluate, specified as the comma-separated pair consisting of
'Tail' and one of:

• 'both' — Test against the alternative hypothesis that the population means are not equal.
• 'right' — Test against the alternative hypothesis that the population mean of x is greater than

the population mean of y.
• 'left' — Test against the alternative hypothesis that the population mean of x is less than the

population mean of y.

ttest2 tests the null hypothesis that the population means are equal against the specified
alternative hypothesis.
Example: 'Tail','right'

Vartype — Variance type
'equal' (default) | 'unequal'

Variance type, specified as the comma-separated pair consisting of 'Vartype' and one of the
following.

'equal' Conduct test using the assumption that x and y are from normal distributions
with unknown but equal variances.

'unequal' Conduct test using the assumption that x and y are from normal distributions
with unknown and unequal variances. This is called the Behrens-Fisher
problem. ttest2 uses Satterthwaite’s approximation for the effective degrees
of freedom.

Vartype must be a single variance type, even when x is a matrix or a multidimensional array.
Example: 'Vartype','unequal'

Output Arguments
h — Hypothesis test result
1 | 0

Hypothesis test result, returned as 1 or 0.

• If h = 1, this indicates the rejection of the null hypothesis at the Alpha significance level.
• If h = 0, this indicates a failure to reject the null hypothesis at the Alpha significance level.

p — p-value
scalar value in the range [0,1]

p-value of the test, returned as a scalar value in the range [0,1]. p is the probability of observing a
test statistic as extreme as, or more extreme than, the observed value under the null hypothesis.
Small values of p cast doubt on the validity of the null hypothesis.

ci — Confidence interval
vector
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Confidence interval for the difference in population means of x and y, returned as a two-element
vector containing the lower and upper boundaries of the 100 × (1 – Alpha)% confidence interval.

stats — Test statistics
structure

Test statistics for the two-sample t-test, returned as a structure containing the following:

• tstat — Value of the test statistic.
• df — Degrees of freedom of the test.
• sd — Pooled estimate of the population standard deviation (for the equal variance case) or a

vector containing the unpooled estimates of the population standard deviations (for the unequal
variance case).

More About
Two-Sample t-test

The two-sample t-test is a parametric test that compares the location parameter of two independent
data samples.

The test statistic is

t = x − y
sx2

n +
sy2

m

,

where x and y are the sample means, sx and sy are the sample standard deviations, and n and m are
the sample sizes.

In the case where it is assumed that the two data samples are from populations with equal variances,
the test statistic under the null hypothesis has Student's t distribution with n + m – 2 degrees of
freedom, and the sample standard deviations are replaced by the pooled standard deviation

s =
n− 1 sx

2 + m− 1 sy
2

n + m− 2 .

In the case where it is not assumed that the two data samples are from populations with equal
variances, the test statistic under the null hypothesis has an approximate Student's t distribution with
a number of degrees of freedom given by Satterthwaite's approximation. This test is sometimes called
Welch’s t-test.

Multidimensional Array

A multidimensional array has more than two dimensions. For example, if x is a 1-by-3-by-4 array, then
x is a three-dimensional array.

First Nonsingleton Dimension

The first nonsingleton dimension is the first dimension of an array whose size is not equal to 1. For
example, if x is a 1-by-2-by-3-by-4 array, then the second dimension is the first nonsingleton
dimension of x.
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Tips
• Use sampsizepwr to calculate:

• The sample size that corresponds to specified power and parameter values;
• The power achieved for a particular sample size, given the true parameter value;
• The parameter value detectable with the specified sample size and power.

Version History
Introduced before R2006a

Extended Capabilities
GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

This function fully supports GPU arrays. For more information, see “Run MATLAB Functions on a
GPU” (Parallel Computing Toolbox).

See Also
ttest | ztest | sampsizepwr
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BetaDistribution
Beta probability distribution object

Description
A BetaDistribution object consist of parameters, a model description, and sample data for a beta
probability distribution.

The beta distribution describes a family of curves that are unique in that they are nonzero only on the
interval (0,1). A more general version of the distribution assigns parameters to the endpoints of the
interval.

The beta distribution uses the following parameters.

Parameter Description Support
a First shape parameter a > 0
b Second shape parameter b > 0

Creation
There are several ways to create a BetaDistribution probability distribution object.

• Create a distribution with specified parameter values using makedist.
• Fit a distribution to data using fitdist.
• Interactively fit a distribution to data using the Distribution Fitter app.

Properties
Distribution Parameters

a — First shape parameter
positive scalar value

First shape parameter of the beta distribution, specified as a positive scalar value.
Data Types: single | double

b — Second shape parameter
positive scalar value

Second shape parameter of the beta distribution, specified as a positive scalar value.
Data Types: single | double

Distribution Characteristics

IsTruncated — Logical flag for truncated distribution
0 | 1
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This property is read-only.

Logical flag for truncated distribution, specified as a logical value. If IsTruncated equals 0, the
distribution is not truncated. If IsTruncated equals 1, the distribution is truncated.
Data Types: logical

NumParameters — Number of parameters
positive integer value

This property is read-only.

Number of parameters for the probability distribution, specified as a positive integer value.
Data Types: double

ParameterCovariance — Covariance matrix of the parameter estimates
matrix of scalar values

This property is read-only.

Covariance matrix of the parameter estimates, specified as a p-by-p matrix, where p is the number of
parameters in the distribution. The (i,j) element is the covariance between the estimates of the ith
parameter and the jth parameter. The (i,i) element is the estimated variance of the ith parameter. If
parameter i is fixed rather than estimated by fitting the distribution to data, then the (i,i) elements
of the covariance matrix are 0.
Data Types: double

ParameterIsFixed — Logical flag for fixed parameters
array of logical values

This property is read-only.

Logical flag for fixed parameters, specified as an array of logical values. If 0, the corresponding
parameter in the ParameterNames array is not fixed. If 1, the corresponding parameter in the
ParameterNames array is fixed.
Data Types: logical

ParameterValues — Distribution parameter values
vector of scalar values

This property is read-only.

Distribution parameter values, specified as a vector of scalar values.
Data Types: single | double

Truncation — Truncation interval
vector of scalar values

This property is read-only.

Truncation interval for the probability distribution, specified as a vector of scalar values containing
the lower and upper truncation boundaries.
Data Types: single | double
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Other Object Properties

DistributionName — Probability distribution name
character vector

This property is read-only.

Probability distribution name, specified as a character vector.
Data Types: char

InputData — Data used for distribution fitting
structure

This property is read-only.

Data used for distribution fitting, specified as a structure containing the following:

• data: Data vector used for distribution fitting.
• cens: Censoring vector, or empty if none.
• freq: Frequency vector, or empty if none.

Data Types: struct

ParameterDescription — Distribution parameter descriptions
cell array of character vectors

This property is read-only.

Distribution parameter descriptions, specified as a cell array of character vectors. Each cell contains
a short description of one distribution parameter.
Data Types: char

ParameterNames — Distribution parameter names
cell array of character vectors

This property is read-only.

Distribution parameter names, specified as a cell array of character vectors.
Data Types: char

Object Functions
cdf Cumulative distribution function
gather Gather properties of Statistics and Machine Learning Toolbox object from GPU
icdf Inverse cumulative distribution function
iqr Interquartile range of probability distribution
mean Mean of probability distribution
median Median of probability distribution
negloglik Negative loglikelihood of probability distribution
paramci Confidence intervals for probability distribution parameters
pdf Probability density function
plot Plot probability distribution object
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proflik Profile likelihood function for probability distribution
random Random numbers
std Standard deviation of probability distribution
truncate Truncate probability distribution object
var Variance of probability distribution

Examples
Create a Beta Distribution Object Using Default Parameters

Create a beta distribution object using the default parameter values.

pd = makedist('Beta')

pd = 
  BetaDistribution

  Beta distribution
    a = 1
    b = 1

Create a Beta Distribution Object Using Specified Parameters

Create a beta distribution object by specifying the parameter values.

pd = makedist('Beta','a',2,'b',4)

pd = 
  BetaDistribution

  Beta distribution
    a = 2
    b = 4

Compute the mean of the distribution.

m = mean(pd)

m = 0.3333

Version History
Introduced in R2013a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:
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• You must create a probability distribution object by fitting a probability distribution to sample data
from the fitdist function. For the usage notes and limitations of fitdist, see “Code
Generation” on page 35-2630 of fitdist.

• These object functions support code generation: cdf, icdf, iqr, mean, median, pdf, std,
truncate, and var.

For more information on code generation, see “Introduction to Code Generation” on page 34-2 and
“Code Generation for Probability Distribution Objects” on page 34-94.

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

Usage notes and limitations:

• BetaDistribution can be a probability distribution object fitted by using fitdist with GPU
array input arguments.

• The object functions of BetaDistribution fully support GPU arrays.

For more information, see “Run MATLAB Functions on a GPU” (Parallel Computing Toolbox).

See Also
makedist | fitdist | Distribution Fitter

Topics
“Beta Distribution” on page B-6
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BinomialDistribution
Binomial probability distribution object

Description
A BinomialDistribution object consists of parameters, a model description, and sample data for
a binomial probability distribution

The binomial distribution models the total number of successes in repeated trials from an infinite
population under the following conditions:

• Only two outcomes are possible for each of n trials.
• The probability of success for each trial is constant.
• All trials are independent of each other.

The binomial distribution uses the following parameters.

Parameter Description Support
N Number of trials positive integer
p Probability of success 0 ≤ p ≤ 1

Creation
There are several ways to create a BinomialDistribution probability distribution object.

• Create a distribution with specified parameter values using makedist.
• Fit a distribution to data using fitdist.
• Interactively fit a distribution to data using the Distribution Fitter app.

Properties
Distribution Parameters

N — Number of trials
positive integer value

Number of trials for the binomial distribution, specified as a positive integer value.
Data Types: single | double

p — Probability of success
scalar value in the range [0,1]

Probability of success of any individual trial for the binomial distribution, specified as a scalar value
in the range [0,1].
Data Types: single | double
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Distribution Characteristics

IsTruncated — Logical flag for truncated distribution
0 | 1

This property is read-only.

Logical flag for truncated distribution, specified as a logical value. If IsTruncated equals 0, the
distribution is not truncated. If IsTruncated equals 1, the distribution is truncated.
Data Types: logical

NumParameters — Number of parameters
positive integer value

This property is read-only.

Number of parameters for the probability distribution, specified as a positive integer value.
Data Types: double

ParameterCovariance — Covariance matrix of the parameter estimates
matrix of scalar values

This property is read-only.

Covariance matrix of the parameter estimates, specified as a p-by-p matrix, where p is the number of
parameters in the distribution. The (i,j) element is the covariance between the estimates of the ith
parameter and the jth parameter. The (i,i) element is the estimated variance of the ith parameter. If
parameter i is fixed rather than estimated by fitting the distribution to data, then the (i,i) elements
of the covariance matrix are 0.
Data Types: double

ParameterIsFixed — Logical flag for fixed parameters
array of logical values

This property is read-only.

Logical flag for fixed parameters, specified as an array of logical values. If 0, the corresponding
parameter in the ParameterNames array is not fixed. If 1, the corresponding parameter in the
ParameterNames array is fixed.
Data Types: logical

ParameterValues — Distribution parameter values
vector of scalar values

This property is read-only.

Distribution parameter values, specified as a vector of scalar values.
Data Types: single | double

Truncation — Truncation interval
vector of scalar values

This property is read-only.
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Truncation interval for the probability distribution, specified as a vector of scalar values containing
the lower and upper truncation boundaries.
Data Types: single | double

Other Object Properties

DistributionName — Probability distribution name
character vector

This property is read-only.

Probability distribution name, specified as a character vector.
Data Types: char

InputData — Data used for distribution fitting
structure

This property is read-only.

Data used for distribution fitting, specified as a structure containing the following:

• data: Data vector used for distribution fitting.
• cens: Censoring vector, or empty if none.
• freq: Frequency vector, or empty if none.

Data Types: struct

ParameterDescription — Distribution parameter descriptions
cell array of character vectors

This property is read-only.

Distribution parameter descriptions, specified as a cell array of character vectors. Each cell contains
a short description of one distribution parameter.
Data Types: char

ParameterNames — Distribution parameter names
cell array of character vectors

This property is read-only.

Distribution parameter names, specified as a cell array of character vectors.
Data Types: char

Object Functions
cdf Cumulative distribution function
gather Gather properties of Statistics and Machine Learning Toolbox object from GPU
icdf Inverse cumulative distribution function
iqr Interquartile range of probability distribution
mean Mean of probability distribution
median Median of probability distribution
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negloglik Negative loglikelihood of probability distribution
paramci Confidence intervals for probability distribution parameters
pdf Probability density function
plot Plot probability distribution object
proflik Profile likelihood function for probability distribution
random Random numbers
std Standard deviation of probability distribution
truncate Truncate probability distribution object
var Variance of probability distribution

Examples
Create a Binomial Distribution Object Using Default Parameters

Create a binomial distribution object using the default parameter values.

pd = makedist('Binomial')

pd = 
  BinomialDistribution

  Binomial distribution
    N =   1
    p = 0.5

Create a Binomial Distribution Object Using Specified Parameters

Create a binomial distribution object by specifying the parameter values.

pd = makedist('Binomial','N',30,'p',0.25)

pd = 
  BinomialDistribution

  Binomial distribution
    N =   30
    p = 0.25

Compute the mean of the distribution.

m = mean(pd)

m = 7.5000

Version History
Introduced in R2013a

Extended Capabilities
GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.
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Usage notes and limitations:

• BinomialDistribution can be a probability distribution object fitted by using fitdist with
GPU array input arguments.

• The object functions of BinomialDistribution fully support GPU arrays.

For more information, see “Run MATLAB Functions on a GPU” (Parallel Computing Toolbox).

See Also
makedist | fitdist | Distribution Fitter

Topics
“Binomial Distribution” on page B-10
“Bernoulli Distribution” on page B-2
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BirnbaumSaundersDistribution
Birnbaum-Saunders probability distribution object

Description
A BirnbaumSaundersDistribution object consists of parameters, a model description, and
sample data for a Birnbaum-Saunders probability distribution.

The Birnbaum-Saunders distribution was originally proposed as a lifetime model for materials subject
to cyclic patterns of stress and strain, where the ultimate failure of the material comes from the
growth of a prominent flaw. In materials science, Miner's Rule suggests that the damage occurring
after n cycles, at a stress level with an expected lifetime of N cycles, is proportional to n / N.
Whenever Miner's Rule applies, the Birnbaum-Saunders model is a reasonable choice for a lifetime
distribution model.

The Birnbaum-Saunders distribution uses the following parameters.

Parameter Description Support
beta scale parameter β > 0
gamma shape parameter γ > 0

Creation
There are several ways to create a BirnbaumSaundersDistribution probability distribution
object.

• Create a distribution with specified parameter values using makedist.
• Fit a distribution to data using fitdist.
• Interactively fit a distribution to data using the Distribution Fitter app.

Properties
Distribution Parameters

beta — Scale parameter
positive scalar value

Scale parameter of the Birnbaum-Saunders distribution, specified as a positive scalar value.
Data Types: single | double

gamma — Shape parameter
positive scalar value

Shape parameter of the Birnbaum-Saunders distribution, specified as a positive scalar value.
Data Types: single | double
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Distribution Characteristics

IsTruncated — Logical flag for truncated distribution
0 | 1

This property is read-only.

Logical flag for truncated distribution, specified as a logical value. If IsTruncated equals 0, the
distribution is not truncated. If IsTruncated equals 1, the distribution is truncated.
Data Types: logical

NumParameters — Number of parameters
positive integer value

This property is read-only.

Number of parameters for the probability distribution, specified as a positive integer value.
Data Types: double

ParameterCovariance — Covariance matrix of the parameter estimates
matrix of scalar values

This property is read-only.

Covariance matrix of the parameter estimates, specified as a p-by-p matrix, where p is the number of
parameters in the distribution. The (i,j) element is the covariance between the estimates of the ith
parameter and the jth parameter. The (i,i) element is the estimated variance of the ith parameter. If
parameter i is fixed rather than estimated by fitting the distribution to data, then the (i,i) elements
of the covariance matrix are 0.
Data Types: double

ParameterIsFixed — Logical flag for fixed parameters
array of logical values

This property is read-only.

Logical flag for fixed parameters, specified as an array of logical values. If 0, the corresponding
parameter in the ParameterNames array is not fixed. If 1, the corresponding parameter in the
ParameterNames array is fixed.
Data Types: logical

ParameterValues — Distribution parameter values
vector of scalar values

This property is read-only.

Distribution parameter values, specified as a vector of scalar values.
Data Types: single | double

Truncation — Truncation interval
vector of scalar values

This property is read-only.
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Truncation interval for the probability distribution, specified as a vector of scalar values containing
the lower and upper truncation boundaries.
Data Types: single | double

Other Object Properties

DistributionName — Probability distribution name
character vector

This property is read-only.

Probability distribution name, specified as a character vector.
Data Types: char

InputData — Data used for distribution fitting
structure

This property is read-only.

Data used for distribution fitting, specified as a structure containing the following:

• data: Data vector used for distribution fitting.
• cens: Censoring vector, or empty if none.
• freq: Frequency vector, or empty if none.

Data Types: struct

ParameterDescription — Distribution parameter descriptions
cell array of character vectors

This property is read-only.

Distribution parameter descriptions, specified as a cell array of character vectors. Each cell contains
a short description of one distribution parameter.
Data Types: char

ParameterNames — Distribution parameter names
cell array of character vectors

This property is read-only.

Distribution parameter names, specified as a cell array of character vectors.
Data Types: char

Object Functions
cdf Cumulative distribution function
gather Gather properties of Statistics and Machine Learning Toolbox object from GPU
icdf Inverse cumulative distribution function
iqr Interquartile range of probability distribution
mean Mean of probability distribution
median Median of probability distribution
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negloglik Negative loglikelihood of probability distribution
paramci Confidence intervals for probability distribution parameters
pdf Probability density function
plot Plot probability distribution object
proflik Profile likelihood function for probability distribution
random Random numbers
std Standard deviation of probability distribution
truncate Truncate probability distribution object
var Variance of probability distribution

Examples
Create a Birnbaum-Saunders Distribution Object Using Default Parameters

Create a Birnbaum-Saunders distribution object using the default parameter values.

pd = makedist('BirnbaumSaunders')

pd = 
  BirnbaumSaundersDistribution

  Birnbaum-Saunders distribution
     beta = 1
    gamma = 1

Create a Birnbaum-Saunders Distribution Object Using Specified Parameter Values

Create a Birnbaum-Saunders distribution object by specifying the parameter values.

pd = makedist('BirnbaumSaunders','beta',2,'gamma',5)

pd = 
  BirnbaumSaundersDistribution

  Birnbaum-Saunders distribution
     beta = 2
    gamma = 5

Compute the mean of the distribution.

m = mean(pd)

m = 27

Version History
Introduced in R2013a

Extended Capabilities
GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.
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Usage notes and limitations:

• BirnbaumSaundersDistribution can be a probability distribution object fitted by using
fitdist with GPU array input arguments.

• The object functions of BirnbaumSaundersDistribution fully support GPU arrays.

For more information, see “Run MATLAB Functions on a GPU” (Parallel Computing Toolbox).

See Also
makedist | fitdist | Distribution Fitter

Topics
“Birnbaum-Saunders Distribution” on page B-18
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BurrDistribution
Burr probability distribution object

Description
A BurrDistribution object consists of parameters, a model description, and sample data for a Burr
probability distribution.

The Burr distribution is a three-parameter family of distributions on the positive real line. It can fit a
wide range of empirical data, and is used in various fields such as finance, hydrology, and reliability
to model a variety of data types.

The Burr distribution uses the following parameters.

Parameter Description Support
alpha Scale parameter α > 0
c First shape parameter c > 0
k Second shape parameter k > 0

Creation
There are several ways to create a BurrDistribution probability distribution object.

• Create a distribution with specified parameter values using makedist.
• Fit a distribution to data using fitdist.
• Interactively fit a distribution to data using the Distribution Fitter app.

Properties
Distribution Parameters

alpha — Scale parameter
positive scalar value

Scale parameter of the Burr distribution, specified as a positive scalar value.
Data Types: single | double

c — First shape parameter
positive scalar value

First shape parameter of the Burr distribution, specified as a positive scalar value.
Data Types: single | double

k — Second shape parameter
positive scalar value
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Second shape parameter of the Burr distribution, specified as a positive scalar value.
Data Types: single | double

Distribution Characteristics

IsTruncated — Logical flag for truncated distribution
0 | 1

This property is read-only.

Logical flag for truncated distribution, specified as a logical value. If IsTruncated equals 0, the
distribution is not truncated. If IsTruncated equals 1, the distribution is truncated.
Data Types: logical

NumParameters — Number of parameters
positive integer value

This property is read-only.

Number of parameters for the probability distribution, specified as a positive integer value.
Data Types: double

ParameterCovariance — Covariance matrix of the parameter estimates
matrix of scalar values

This property is read-only.

Covariance matrix of the parameter estimates, specified as a p-by-p matrix, where p is the number of
parameters in the distribution. The (i,j) element is the covariance between the estimates of the ith
parameter and the jth parameter. The (i,i) element is the estimated variance of the ith parameter. If
parameter i is fixed rather than estimated by fitting the distribution to data, then the (i,i) elements
of the covariance matrix are 0.
Data Types: double

ParameterIsFixed — Logical flag for fixed parameters
array of logical values

This property is read-only.

Logical flag for fixed parameters, specified as an array of logical values. If 0, the corresponding
parameter in the ParameterNames array is not fixed. If 1, the corresponding parameter in the
ParameterNames array is fixed.
Data Types: logical

ParameterValues — Distribution parameter values
vector of scalar values

This property is read-only.

Distribution parameter values, specified as a vector of scalar values.
Data Types: single | double
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Truncation — Truncation interval
vector of scalar values

This property is read-only.

Truncation interval for the probability distribution, specified as a vector of scalar values containing
the lower and upper truncation boundaries.
Data Types: single | double

Other Object Properties

DistributionName — Probability distribution name
character vector

This property is read-only.

Probability distribution name, specified as a character vector.
Data Types: char

InputData — Data used for distribution fitting
structure

This property is read-only.

Data used for distribution fitting, specified as a structure containing the following:

• data: Data vector used for distribution fitting.
• cens: Censoring vector, or empty if none.
• freq: Frequency vector, or empty if none.

Data Types: struct

ParameterDescription — Distribution parameter descriptions
cell array of character vectors

This property is read-only.

Distribution parameter descriptions, specified as a cell array of character vectors. Each cell contains
a short description of one distribution parameter.
Data Types: char

ParameterNames — Distribution parameter names
cell array of character vectors

This property is read-only.

Distribution parameter names, specified as a cell array of character vectors.
Data Types: char

Object Functions
cdf Cumulative distribution function
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gather Gather properties of Statistics and Machine Learning Toolbox object from GPU
icdf Inverse cumulative distribution function
iqr Interquartile range of probability distribution
mean Mean of probability distribution
median Median of probability distribution
negloglik Negative loglikelihood of probability distribution
paramci Confidence intervals for probability distribution parameters
pdf Probability density function
plot Plot probability distribution object
proflik Profile likelihood function for probability distribution
random Random numbers
std Standard deviation of probability distribution
truncate Truncate probability distribution object
var Variance of probability distribution

Examples
Create a Burr Distribution Object Using Default Parameters

Create a Burr distribution object using the default parameter values.

pd = makedist('Burr')

pd = 
  BurrDistribution

  Burr distribution
    alpha = 1
        c = 1
        k = 1

Create a Burr Distribution Object Using Specified Parameters

Create a Burr distribution object by specifying parameter values.

pd = makedist('Burr','alpha',1,'c',2,'k',5)

pd = 
  BurrDistribution

  Burr distribution
    alpha = 1
        c = 2
        k = 5

Compute the mean of the distribution.

m = mean(pd)

m = 0.4295
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Version History
Introduced in R2013a

Extended Capabilities
GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

Usage notes and limitations:

• BurrDistribution can be a probability distribution object fitted by using fitdist with GPU
array input arguments.

• The object functions of BurrDistribution fully support GPU arrays.

For more information, see “Run MATLAB Functions on a GPU” (Parallel Computing Toolbox).

See Also
makedist | fitdist | Distribution Fitter

Topics
“Burr Type XII Distribution” on page B-19
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ExponentialDistribution
Exponential probability distribution object

Description
An ExponentialDistribution object consists of parameters, a model description, and sample data
for an exponential probability distribution.

The exponential distribution is used to model events that occur randomly over time, and its main
application area is studies of lifetimes. It is a special case of the gamma distribution with the shape
parameter a = 1.

The exponential distribution uses the following parameters.

Parameter Description Support
mu Mean μ > 0

Creation
There are several ways to create a ExponentialDistribution probability distribution object.

• Create a distribution with specified parameter values using makedist.
• Fit a distribution to data using fitdist.
• Interactively fit a distribution to data using the Distribution Fitter app.

Properties
Distribution Parameter

mu — Mean
positive scalar value

Mean of the exponential distribution, specified as a positive scalar value.
Data Types: single | double

Distribution Characteristics

IsTruncated — Logical flag for truncated distribution
0 | 1

This property is read-only.

Logical flag for truncated distribution, specified as a logical value. If IsTruncated equals 0, the
distribution is not truncated. If IsTruncated equals 1, the distribution is truncated.
Data Types: logical
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NumParameters — Number of parameters
positive integer value

This property is read-only.

Number of parameters for the probability distribution, specified as a positive integer value.
Data Types: double

ParameterCovariance — Covariance matrix of the parameter estimates
matrix of scalar values

This property is read-only.

Covariance matrix of the parameter estimates, specified as a p-by-p matrix, where p is the number of
parameters in the distribution. The (i,j) element is the covariance between the estimates of the ith
parameter and the jth parameter. The (i,i) element is the estimated variance of the ith parameter. If
parameter i is fixed rather than estimated by fitting the distribution to data, then the (i,i) elements
of the covariance matrix are 0.
Data Types: double

ParameterIsFixed — Logical flag for fixed parameters
array of logical values

This property is read-only.

Logical flag for fixed parameters, specified as an array of logical values. If 0, the corresponding
parameter in the ParameterNames array is not fixed. If 1, the corresponding parameter in the
ParameterNames array is fixed.
Data Types: logical

ParameterValues — Distribution parameter values
vector of scalar values

This property is read-only.

Distribution parameter values, specified as a vector of scalar values.
Data Types: single | double

Truncation — Truncation interval
vector of scalar values

This property is read-only.

Truncation interval for the probability distribution, specified as a vector of scalar values containing
the lower and upper truncation boundaries.
Data Types: single | double

Other Object Properties

DistributionName — Probability distribution name
character vector

This property is read-only.
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Probability distribution name, specified as a character vector.
Data Types: char

InputData — Data used for distribution fitting
structure

This property is read-only.

Data used for distribution fitting, specified as a structure containing the following:

• data: Data vector used for distribution fitting.
• cens: Censoring vector, or empty if none.
• freq: Frequency vector, or empty if none.

Data Types: struct

ParameterDescription — Distribution parameter descriptions
cell array of character vectors

This property is read-only.

Distribution parameter descriptions, specified as a cell array of character vectors. Each cell contains
a short description of one distribution parameter.
Data Types: char

ParameterNames — Distribution parameter names
cell array of character vectors

This property is read-only.

Distribution parameter names, specified as a cell array of character vectors.
Data Types: char

Object Functions
cdf Cumulative distribution function
gather Gather properties of Statistics and Machine Learning Toolbox object from GPU
icdf Inverse cumulative distribution function
iqr Interquartile range of probability distribution
mean Mean of probability distribution
median Median of probability distribution
negloglik Negative loglikelihood of probability distribution
paramci Confidence intervals for probability distribution parameters
pdf Probability density function
plot Plot probability distribution object
proflik Profile likelihood function for probability distribution
random Random numbers
std Standard deviation of probability distribution
truncate Truncate probability distribution object
var Variance of probability distribution
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Examples
Create an Exponential Distribution Object Using Default Parameters

Create an exponential distribution object using the default parameter values.

pd = makedist('Exponential')

pd = 
  ExponentialDistribution

  Exponential distribution
    mu = 1

Create an Exponential Distribution Object Using Specified Parameters

Create an exponential distribution object by specifying the parameter values.

pd = makedist('Exponential','mu',2)

pd = 
  ExponentialDistribution

  Exponential distribution
    mu = 2

Compute the variance of the distribution.

v = var(pd)

v = 4

Version History
Introduced in R2013a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• You must create a probability distribution object by fitting a probability distribution to sample data
from the fitdist function. For the usage notes and limitations of fitdist, see “Code
Generation” on page 35-2630 of fitdist.

• These object functions support code generation: cdf, icdf, iqr, mean, median, pdf, std,
truncate, and var.

For more information on code generation, see “Introduction to Code Generation” on page 34-2 and
“Code Generation for Probability Distribution Objects” on page 34-94.
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GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

Usage notes and limitations:

• ExponentialDistribution can be a probability distribution object fitted by using fitdist
with GPU array input arguments.

• The object functions of ExponentialDistribution fully support GPU arrays.

For more information, see “Run MATLAB Functions on a GPU” (Parallel Computing Toolbox).

See Also
makedist | fitdist | Distribution Fitter

Topics
“Exponential Distribution” on page B-34
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ExtremeValueDistribution
Extreme value probability distribution object

Description
An ExtremeValueDistribution object consists of parameters, a model description, and sample
data for an extreme value probability distribution.

The extreme value distribution is appropriate for modeling the smallest value from a distribution
whose tails decay exponentially fast, for example, the normal distribution. It can also model the
largest value from a distribution, such as the normal or exponential distributions, by using the
negative of the original values.

The extreme value distribution uses the following parameters.

Parameter Description Support
mu Location parameter −∞ < μ < ∞
sigma Scale parameter σ ≥ 0

Creation
There are several ways to create a ExtremeValueDistribution probability distribution object.

• Create a distribution with specified parameter values using makedist.
• Fit a distribution to data using fitdist.
• Interactively fit a distribution to data using the Distribution Fitter app.

Properties
Distribution Parameters

mu — Location parameter
scalar value

Location parameter of the extreme value distribution, specified as a scalar value.
Data Types: single | double

sigma — Scale parameter
nonnegative scalar value

Scale parameter of the extreme value distribution, specified as a nonnegative scalar value.
Data Types: single | double
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Distribution Characteristics

IsTruncated — Logical flag for truncated distribution
0 | 1

This property is read-only.

Logical flag for truncated distribution, specified as a logical value. If IsTruncated equals 0, the
distribution is not truncated. If IsTruncated equals 1, the distribution is truncated.
Data Types: logical

NumParameters — Number of parameters
positive integer value

This property is read-only.

Number of parameters for the probability distribution, specified as a positive integer value.
Data Types: double

ParameterCovariance — Covariance matrix of the parameter estimates
matrix of scalar values

This property is read-only.

Covariance matrix of the parameter estimates, specified as a p-by-p matrix, where p is the number of
parameters in the distribution. The (i,j) element is the covariance between the estimates of the ith
parameter and the jth parameter. The (i,i) element is the estimated variance of the ith parameter. If
parameter i is fixed rather than estimated by fitting the distribution to data, then the (i,i) elements
of the covariance matrix are 0.
Data Types: double

ParameterIsFixed — Logical flag for fixed parameters
array of logical values

This property is read-only.

Logical flag for fixed parameters, specified as an array of logical values. If 0, the corresponding
parameter in the ParameterNames array is not fixed. If 1, the corresponding parameter in the
ParameterNames array is fixed.
Data Types: logical

ParameterValues — Distribution parameter values
vector of scalar values

This property is read-only.

Distribution parameter values, specified as a vector of scalar values.
Data Types: single | double

Truncation — Truncation interval
vector of scalar values

This property is read-only.
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Truncation interval for the probability distribution, specified as a vector of scalar values containing
the lower and upper truncation boundaries.
Data Types: single | double

Other Object Properties

DistributionName — Probability distribution name
character vector

This property is read-only.

Probability distribution name, specified as a character vector.
Data Types: char

InputData — Data used for distribution fitting
structure

This property is read-only.

Data used for distribution fitting, specified as a structure containing the following:

• data: Data vector used for distribution fitting.
• cens: Censoring vector, or empty if none.
• freq: Frequency vector, or empty if none.

Data Types: struct

ParameterDescription — Distribution parameter descriptions
cell array of character vectors

This property is read-only.

Distribution parameter descriptions, specified as a cell array of character vectors. Each cell contains
a short description of one distribution parameter.
Data Types: char

ParameterNames — Distribution parameter names
cell array of character vectors

This property is read-only.

Distribution parameter names, specified as a cell array of character vectors.
Data Types: char

Object Functions
cdf Cumulative distribution function
gather Gather properties of Statistics and Machine Learning Toolbox object from GPU
icdf Inverse cumulative distribution function
iqr Interquartile range of probability distribution
mean Mean of probability distribution
median Median of probability distribution
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negloglik Negative loglikelihood of probability distribution
paramci Confidence intervals for probability distribution parameters
pdf Probability density function
plot Plot probability distribution object
proflik Profile likelihood function for probability distribution
random Random numbers
std Standard deviation of probability distribution
truncate Truncate probability distribution object
var Variance of probability distribution

Examples
Create an Extreme Value Distribution Object Using Default Parameters

Create an extreme value distribution object using the default parameter values.

pd = makedist('ExtremeValue')

pd = 
  ExtremeValueDistribution

  Extreme Value distribution
       mu = 0
    sigma = 1

Create an Extreme Value Distribution Object Using Specified Parameters

Create an extreme value distribution object by specifying the parameter values.

pd = makedist('ExtremeValue','mu',-1,'sigma',2)

pd = 
  ExtremeValueDistribution

  Extreme Value distribution
       mu = -1
    sigma =  2

Compute the standard deviation for the distribution.

s = std(pd)

s = 2.5651

Version History
Introduced in R2013a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.
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Usage notes and limitations:

• You must create a probability distribution object by fitting a probability distribution to sample data
from the fitdist function. For the usage notes and limitations of fitdist, see “Code
Generation” on page 35-2630 of fitdist.

• These object functions support code generation: cdf, icdf, iqr, mean, median, pdf, std,
truncate, and var.

For more information on code generation, see “Introduction to Code Generation” on page 34-2 and
“Code Generation for Probability Distribution Objects” on page 34-94.

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

Usage notes and limitations:

• ExtremeValueDistribution can be a probability distribution object fitted by using fitdist
with GPU array input arguments.

• The object functions of ExtremeValueDistribution fully support GPU arrays.

For more information, see “Run MATLAB Functions on a GPU” (Parallel Computing Toolbox).

See Also
makedist | fitdist | Distribution Fitter

Topics
“Extreme Value Distribution” on page B-41
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GammaDistribution
Gamma probability distribution object

Description
A GammaDistribution object consists of parameters, a model description, and sample data for a
gamma probability distribution.

The gamma distribution is a two-parameter family of distributions used to model sums of
exponentially distributed random variables. The chi-square and the exponential distributions, which
are special cases of the gamma distribution, are one-parameter distributions that fix one of the two
gamma parameters.

The gamma distribution uses the following parameters.

Parameter Description Support
a Shape parameter a > 0
b Scale parameter b > 0

Creation
There are several ways to create a GammaDistribution probability distribution object.

• Create a distribution with specified parameter values using makedist.
• Fit a distribution to data using fitdist.
• Interactively fit a distribution to data using the Distribution Fitter app.

Properties
Distribution Parameters

a — Shape parameter
positive scalar value

Shape parameter for the gamma distribution, specified as a positive scalar value.
Data Types: single | double

b — Scale parameter
nonnegative scalar value

Scale parameter for the gamma distribution, specified as a nonnegative scalar value.
Data Types: single | double
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Distribution Characteristics

IsTruncated — Logical flag for truncated distribution
0 | 1

This property is read-only.

Logical flag for truncated distribution, specified as a logical value. If IsTruncated equals 0, the
distribution is not truncated. If IsTruncated equals 1, the distribution is truncated.
Data Types: logical

NumParameters — Number of parameters
positive integer value

This property is read-only.

Number of parameters for the probability distribution, specified as a positive integer value.
Data Types: double

ParameterCovariance — Covariance matrix of the parameter estimates
matrix of scalar values

This property is read-only.

Covariance matrix of the parameter estimates, specified as a p-by-p matrix, where p is the number of
parameters in the distribution. The (i,j) element is the covariance between the estimates of the ith
parameter and the jth parameter. The (i,i) element is the estimated variance of the ith parameter. If
parameter i is fixed rather than estimated by fitting the distribution to data, then the (i,i) elements
of the covariance matrix are 0.
Data Types: double

ParameterIsFixed — Logical flag for fixed parameters
array of logical values

This property is read-only.

Logical flag for fixed parameters, specified as an array of logical values. If 0, the corresponding
parameter in the ParameterNames array is not fixed. If 1, the corresponding parameter in the
ParameterNames array is fixed.
Data Types: logical

ParameterValues — Distribution parameter values
vector of scalar values

This property is read-only.

Distribution parameter values, specified as a vector of scalar values.
Data Types: single | double

Truncation — Truncation interval
vector of scalar values

This property is read-only.
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Truncation interval for the probability distribution, specified as a vector of scalar values containing
the lower and upper truncation boundaries.
Data Types: single | double

Other Object Properties

DistributionName — Probability distribution name
character vector

This property is read-only.

Probability distribution name, specified as a character vector.
Data Types: char

InputData — Data used for distribution fitting
structure

This property is read-only.

Data used for distribution fitting, specified as a structure containing the following:

• data: Data vector used for distribution fitting.
• cens: Censoring vector, or empty if none.
• freq: Frequency vector, or empty if none.

Data Types: struct

ParameterDescription — Distribution parameter descriptions
cell array of character vectors

This property is read-only.

Distribution parameter descriptions, specified as a cell array of character vectors. Each cell contains
a short description of one distribution parameter.
Data Types: char

ParameterNames — Distribution parameter names
cell array of character vectors

This property is read-only.

Distribution parameter names, specified as a cell array of character vectors.
Data Types: char

Object Functions
cdf Cumulative distribution function
gather Gather properties of Statistics and Machine Learning Toolbox object from GPU
icdf Inverse cumulative distribution function
iqr Interquartile range of probability distribution
mean Mean of probability distribution
median Median of probability distribution
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negloglik Negative loglikelihood of probability distribution
paramci Confidence intervals for probability distribution parameters
pdf Probability density function
plot Plot probability distribution object
proflik Profile likelihood function for probability distribution
random Random numbers
std Standard deviation of probability distribution
truncate Truncate probability distribution object
var Variance of probability distribution

Examples

Create a Gamma Distribution Object Using Default Parameters

Create a gamma distribution object using the default parameter values.

pd = makedist('Gamma')

pd = 
  GammaDistribution

  Gamma distribution
    a = 1
    b = 1

Create a Gamma Distribution Object Using Specified Parameters

Create a gamma distribution object by specifying the parameter values.

pd = makedist('Gamma','a',2,'b',4)

pd = 
  GammaDistribution

  Gamma distribution
    a = 2
    b = 4

Compute the mean of the distribution.

m = mean(pd)

m = 8

Version History
Introduced in R2013a
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Extended Capabilities
GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

Usage notes and limitations:

• GammaDistribution can be a probability distribution object fitted by using fitdist with GPU
array input arguments.

• The object functions of GammaDistribution fully support GPU arrays.

For more information, see “Run MATLAB Functions on a GPU” (Parallel Computing Toolbox).

See Also
makedist | fitdist | Distribution Fitter

Topics
“Gamma Distribution” on page B-48
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GeneralizedExtremeValueDistribution
Generalized extreme value probability distribution object

Description
A GeneralizedExtremeValueDistribution object consists of parameters, a model description,
and sample data for a generalized extreme value probability distribution.

The generalized extreme value distribution is often used to model the smallest or largest value among
a large set of independent, identically distributed random values representing measurements or
observations. It combines three simpler distributions into a single form, allowing a continuous range
of possible shapes that include all three of the simpler distributions.

The three distribution types correspond to the limiting distribution of block maxima from different
classes of underlying distributions:

• Type 1 — Distributions whose tails decrease exponentially, such as the normal distribution
• Type 2 — Distributions whose tails decrease as a polynomial, such as Student’s t distribution
• Type 3 — Distributions whose tails are finite, such as the beta distribution

The generalized extreme value distribution uses the following parameters.

Parameter Description Support
k Shape parameter −∞ ≤ k ≤ ∞
sigma Scale parameter σ ≥ 0
mu Location parameter −∞ ≤ μ ≤ ∞

Creation
There are several ways to create a GeneralizedExtremeValueDistribution probability
distribution object.

• Create a distribution with specified parameter values using makedist.
• Fit a distribution to data using fitdist.
• Interactively fit a distribution to data using the Distribution Fitter app.

Properties
Distribution Parameters

k — Shape parameter
scalar value

Shape parameter of the generalized extreme value distribution, specified as a scalar value.
Data Types: single | double
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sigma — Scale parameter
nonnegative scalar value

Scale parameter of the generalized extreme value distribution, specified as a nonnegative scalar
value.
Data Types: single | double

mu — Location parameter
scalar value

Location parameter of the generalized extreme value distribution, specified as a scalar value.
Data Types: single | double

Distribution Characteristics

IsTruncated — Logical flag for truncated distribution
0 | 1

This property is read-only.

Logical flag for truncated distribution, specified as a logical value. If IsTruncated equals 0, the
distribution is not truncated. If IsTruncated equals 1, the distribution is truncated.
Data Types: logical

NumParameters — Number of parameters
positive integer value

This property is read-only.

Number of parameters for the probability distribution, specified as a positive integer value.
Data Types: double

ParameterCovariance — Covariance matrix of the parameter estimates
matrix of scalar values

This property is read-only.

Covariance matrix of the parameter estimates, specified as a p-by-p matrix, where p is the number of
parameters in the distribution. The (i,j) element is the covariance between the estimates of the ith
parameter and the jth parameter. The (i,i) element is the estimated variance of the ith parameter. If
parameter i is fixed rather than estimated by fitting the distribution to data, then the (i,i) elements
of the covariance matrix are 0.
Data Types: double

ParameterIsFixed — Logical flag for fixed parameters
array of logical values

This property is read-only.

Logical flag for fixed parameters, specified as an array of logical values. If 0, the corresponding
parameter in the ParameterNames array is not fixed. If 1, the corresponding parameter in the
ParameterNames array is fixed.
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Data Types: logical

ParameterValues — Distribution parameter values
vector of scalar values

This property is read-only.

Distribution parameter values, specified as a vector of scalar values.
Data Types: single | double

Truncation — Truncation interval
vector of scalar values

This property is read-only.

Truncation interval for the probability distribution, specified as a vector of scalar values containing
the lower and upper truncation boundaries.
Data Types: single | double

Other Object Properties

DistributionName — Probability distribution name
character vector

This property is read-only.

Probability distribution name, specified as a character vector.
Data Types: char

InputData — Data used for distribution fitting
structure

This property is read-only.

Data used for distribution fitting, specified as a structure containing the following:

• data: Data vector used for distribution fitting.
• cens: Censoring vector, or empty if none.
• freq: Frequency vector, or empty if none.

Data Types: struct

ParameterDescription — Distribution parameter descriptions
cell array of character vectors

This property is read-only.

Distribution parameter descriptions, specified as a cell array of character vectors. Each cell contains
a short description of one distribution parameter.
Data Types: char

ParameterNames — Distribution parameter names
cell array of character vectors
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This property is read-only.

Distribution parameter names, specified as a cell array of character vectors.
Data Types: char

Object Functions
cdf Cumulative distribution function
gather Gather properties of Statistics and Machine Learning Toolbox object from GPU
icdf Inverse cumulative distribution function
iqr Interquartile range of probability distribution
mean Mean of probability distribution
median Median of probability distribution
negloglik Negative loglikelihood of probability distribution
paramci Confidence intervals for probability distribution parameters
pdf Probability density function
plot Plot probability distribution object
proflik Profile likelihood function for probability distribution
random Random numbers
std Standard deviation of probability distribution
truncate Truncate probability distribution object
var Variance of probability distribution

Examples
Create a Generalized Extreme Value Distribution Object Using Default Parameters

Create a generalized extreme value distribution object using the default parameter values.

pd = makedist('GeneralizedExtremeValue')

pd = 
  GeneralizedExtremeValueDistribution

  Generalized Extreme Value distribution
        k = 0
    sigma = 1
       mu = 0

Create a Generalized Extreme Value Distribution Object Using Specified Parameters

Create a generalized extreme value distribution object by specifying values for the parameters.

pd = makedist('GeneralizedExtremeValue','k',0,'sigma',2,'mu',1)

pd = 
  GeneralizedExtremeValueDistribution

  Generalized Extreme Value distribution
        k = 0
    sigma = 2
       mu = 1
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Compute the mean of the distribution.

m = mean(pd)

m = 2.1544

Version History
Introduced in R2013a

Extended Capabilities
GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

Usage notes and limitations:

• GeneralizedExtremeValueDistribution can be a probability distribution object fitted by
using fitdist with GPU array input arguments.

• The object functions of GeneralizedExtremeValueDistribution fully support GPU arrays.

For more information, see “Run MATLAB Functions on a GPU” (Parallel Computing Toolbox).

See Also
makedist | fitdist | Distribution Fitter

Topics
“Generalized Extreme Value Distribution” on page B-56
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GeneralizedParetoDistribution
Generalized Pareto probability distribution object

Description
A GeneralizedParetoDistribution object consists of parameters, a model description, and
sample data for a generalized Pareto probability distribution.

The generalized Pareto distribution is used to model the tails of another distribution. It allows a
continuous range of possible shapes that include both the exponential and Pareto distributions as
special cases. It has three basic forms, each corresponding to a limiting distribution of exceedance
data from a different class of underlying distributions.

• Distributions whose tails decrease exponentially, such as the normal, lead to a generalized Pareto
shape parameter of zero.

• Distributions whose tails decrease polynomially, such as the Student’s t, lead to a positive shape
parameter.

• Distributions whose tails are finite, such as the beta, lead to a negative shape parameter.

The generalized Pareto distribution uses the following parameters.

Parameter Description Support
k Shape parameter −∞ < k < ∞
sigma Scale parameter σ ≥ 0
theta Location (threshold) parameter −∞ < θ < ∞

Creation
There are several ways to create a GeneralizedParetoDistribution probability distribution
object.

• Create a distribution with specified parameter values using makedist.
• Fit a distribution to data using fitdist.
• Interactively fit a distribution to data using the Distribution Fitter app.

Properties
Distribution Parameters

k — Shape parameter
scalar value

Shape parameter for the generalized Pareto distribution, specified as a scalar value.
Data Types: single | double
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sigma — Scale parameter
nonnegative scalar value

Scale parameter for the generalized Pareto distribution, specified as a nonnegative scalar value.
Data Types: single | double

theta — Location (threshold) parameter
scalar value

Location (threshold) parameter for the generalized Pareto distribution, specified as a scalar value.
Data Types: single | double

Distribution Characteristics

IsTruncated — Logical flag for truncated distribution
0 | 1

This property is read-only.

Logical flag for truncated distribution, specified as a logical value. If IsTruncated equals 0, the
distribution is not truncated. If IsTruncated equals 1, the distribution is truncated.
Data Types: logical

NumParameters — Number of parameters
positive integer value

This property is read-only.

Number of parameters for the probability distribution, specified as a positive integer value.
Data Types: double

ParameterCovariance — Covariance matrix of the parameter estimates
matrix of scalar values

This property is read-only.

Covariance matrix of the parameter estimates, specified as a p-by-p matrix, where p is the number of
parameters in the distribution. The (i,j) element is the covariance between the estimates of the ith
parameter and the jth parameter. The (i,i) element is the estimated variance of the ith parameter. If
parameter i is fixed rather than estimated by fitting the distribution to data, then the (i,i) elements
of the covariance matrix are 0.
Data Types: double

ParameterIsFixed — Logical flag for fixed parameters
array of logical values

This property is read-only.

Logical flag for fixed parameters, specified as an array of logical values. If 0, the corresponding
parameter in the ParameterNames array is not fixed. If 1, the corresponding parameter in the
ParameterNames array is fixed.
Data Types: logical
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ParameterValues — Distribution parameter values
vector of scalar values

This property is read-only.

Distribution parameter values, specified as a vector of scalar values.
Data Types: single | double

Truncation — Truncation interval
vector of scalar values

This property is read-only.

Truncation interval for the probability distribution, specified as a vector of scalar values containing
the lower and upper truncation boundaries.
Data Types: single | double

Other Object Properties

DistributionName — Probability distribution name
character vector

This property is read-only.

Probability distribution name, specified as a character vector.
Data Types: char

InputData — Data used for distribution fitting
structure

This property is read-only.

Data used for distribution fitting, specified as a structure containing the following:

• data: Data vector used for distribution fitting.
• cens: Censoring vector, or empty if none.
• freq: Frequency vector, or empty if none.

Data Types: struct

ParameterDescription — Distribution parameter descriptions
cell array of character vectors

This property is read-only.

Distribution parameter descriptions, specified as a cell array of character vectors. Each cell contains
a short description of one distribution parameter.
Data Types: char

ParameterNames — Distribution parameter names
cell array of character vectors

This property is read-only.
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Distribution parameter names, specified as a cell array of character vectors.
Data Types: char

Object Functions
cdf Cumulative distribution function
gather Gather properties of Statistics and Machine Learning Toolbox object from GPU
icdf Inverse cumulative distribution function
iqr Interquartile range of probability distribution
mean Mean of probability distribution
median Median of probability distribution
negloglik Negative loglikelihood of probability distribution
paramci Confidence intervals for probability distribution parameters
pdf Probability density function
plot Plot probability distribution object
proflik Profile likelihood function for probability distribution
random Random numbers
std Standard deviation of probability distribution
truncate Truncate probability distribution object
var Variance of probability distribution

Examples
Create a Generalized Pareto Distribution Object Using Default Parameters

Create a generalized Pareto distribution object using the default parameter values.

pd = makedist('GeneralizedPareto')

pd = 
  GeneralizedParetoDistribution

  Generalized Pareto distribution
        k = 1
    sigma = 1
    theta = 1

Create a Generalized Pareto Distribution Object Using Specified Parameters

Create a generalized Pareto distribution object by specifying parameter values.

pd = makedist('GeneralizedPareto','k',0,'sigma',2,'theta',1)

pd = 
  GeneralizedParetoDistribution

  Generalized Pareto distribution
        k = 0
    sigma = 2
    theta = 1

Compute the mean of the distribution.
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m = mean(pd)

m = 3

Version History
Introduced in R2013a

Extended Capabilities
GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

Usage notes and limitations:

• GeneralizedParetoDistribution can be a probability distribution object fitted by using
fitdist with GPU array input arguments.

• The object functions of GeneralizedParetoDistribution fully support GPU arrays.

For more information, see “Run MATLAB Functions on a GPU” (Parallel Computing Toolbox).

See Also
makedist | fitdist | Distribution Fitter

Topics
“Generalized Pareto Distribution” on page B-60
“Nonparametric and Empirical Probability Distributions” on page 5-31
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HalfNormalDistribution
Half-normal probability distribution object

Description
A HalfNormalDistribution object consists of parameters, a model description, and sample data
for a half-normal probability distribution.

The half-normal distribution is a special case of the folded normal and truncated normal distribution.
Applications of the half-normal distribution include modeling measurement data and lifetime data.

The half-normal distribution uses the following parameters:

Parameter Description Support
mu Location −∞ < μ < ∞
sigma Scale σ ≥ 0

For more information about the half-normal distribution, see “Half-Normal Distribution” on page B-
69.

Creation
There are several ways to create a HalfNormalDistribution probability distribution object.

• Create a distribution with specified parameter values using makedist.
• Fit a distribution to data using fitdist.
• Interactively fit a distribution to data using the Distribution Fitter app.

Properties
Distribution Parameters

mu — Location parameter
scalar value

Location parameter of the half-normal distribution, specified as a scalar value. The mu parameter is
also the lower limit of the half-normal distribution.

The Statistics and Machine Learning Toolbox implementation of the half-normal distribution assumes
a fixed value for the location parameter μ. You can specify a value for the μ parameter when creating
a HalfNormalDistribution object.
Data Types: single | double

sigma — Scale parameter
nonnegative scalar value

Scale parameter of the half-normal distribution, specified as a nonnegative scalar value.
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Data Types: single | double

Distribution Characteristics

IsTruncated — Logical flag for truncated distribution
0 | 1

This property is read-only.

Logical flag for truncated distribution, specified as a logical value. If IsTruncated equals 0, the
distribution is not truncated. If IsTruncated equals 1, the distribution is truncated.
Data Types: logical

NumParameters — Number of parameters
positive integer value

This property is read-only.

Number of parameters for the probability distribution, specified as a positive integer value.
Data Types: double

ParameterCovariance — Covariance matrix of the parameter estimates
matrix of scalar values

This property is read-only.

Covariance matrix of the parameter estimates, specified as a p-by-p matrix, where p is the number of
parameters in the distribution. The (i,j) element is the covariance between the estimates of the ith
parameter and the jth parameter. The (i,i) element is the estimated variance of the ith parameter. If
parameter i is fixed rather than estimated by fitting the distribution to data, then the (i,i) elements
of the covariance matrix are 0.
Data Types: double

ParameterIsFixed — Logical flag for fixed parameters
array of logical values

This property is read-only.

Logical flag for fixed parameters, specified as an array of logical values. If 0, the corresponding
parameter in the ParameterNames array is not fixed. If 1, the corresponding parameter in the
ParameterNames array is fixed.
Data Types: logical

ParameterValues — Distribution parameter values
vector of scalar values

This property is read-only.

Distribution parameter values, specified as a vector of scalar values.
Data Types: single | double

Truncation — Truncation interval
vector of scalar values
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This property is read-only.

Truncation interval for the probability distribution, specified as a vector of scalar values containing
the lower and upper truncation boundaries.
Data Types: single | double

Other Object Properties

DistributionName — Probability distribution name
character vector

This property is read-only.

Probability distribution name, specified as a character vector.
Data Types: char

InputData — Data used for distribution fitting
structure

This property is read-only.

Data used for distribution fitting, specified as a structure containing the following:

• data: Data vector used for distribution fitting.
• cens: Censoring vector, or empty if none.
• freq: Frequency vector, or empty if none.

Data Types: struct

ParameterDescription — Distribution parameter descriptions
cell array of character vectors

This property is read-only.

Distribution parameter descriptions, specified as a cell array of character vectors. Each cell contains
a short description of one distribution parameter.
Data Types: char

ParameterNames — Distribution parameter names
cell array of character vectors

This property is read-only.

Distribution parameter names, specified as a cell array of character vectors.
Data Types: char

Object Functions
cdf Cumulative distribution function
gather Gather properties of Statistics and Machine Learning Toolbox object from GPU
icdf Inverse cumulative distribution function
iqr Interquartile range of probability distribution
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mean Mean of probability distribution
median Median of probability distribution
negloglik Negative loglikelihood of probability distribution
paramci Confidence intervals for probability distribution parameters
pdf Probability density function
plot Plot probability distribution object
proflik Profile likelihood function for probability distribution
random Random numbers
std Standard deviation of probability distribution
truncate Truncate probability distribution object
var Variance of probability distribution

Examples

Create a Half-Normal Distribution Object Using Default Parameters

pd = makedist('HalfNormal')

pd = 
  HalfNormalDistribution

  Half Normal distribution
       mu = 0
    sigma = 1

Create a Half-Normal Distribution Object Using Specified Parameters

Create a half-normal distribution object. Specify mu equal to 0 and sigma equal to 1.5.

pd = makedist('HalfNormal','mu',0,'sigma',1.5)

pd = 
  HalfNormalDistribution

  Half Normal distribution
       mu =   0
    sigma = 1.5

Compute the mean and standard deviation of the distribution.

m = mean(pd)

m = 1.1968

s = std(pd)

s = 0.9042
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Fit a Half-Normal Distribution Object

Generate 100 random numbers from a standard normal distribution and compute their absolute
value.

rng default  % For reproducibility
x = abs(random(makedist('Normal'),100,1));

Fit a half-normal distribution object to the sample data.

pd = fitdist(x,'HalfNormal')

pd = 
  HalfNormalDistribution

  Half Normal distribution
       mu =      0
    sigma = 1.1631   [1.02184, 1.35006]

Calculate the mean of the fitted half-normal distribution using the probability distribution object.

m = mean(pd)

m = 0.9280

Calculate the mean of the half-normal distribution by substituting the fitted mu and sigma parameter
values into the formula

mean = μ + σ 2
π .

mcalc = pd.mu + pd.sigma*(sqrt(2/pi))

mcalc = 0.9280

Version History
Introduced in R2016a

References
[1] Cooray, K. and M.M.A. Ananda. “A Generalization of the Half-Normal Distribution with

Applications to Lifetime Data.” Communications in Statistics – Theory and Methods. Vol. 37,
Number 9, 2008, pp. 1323–1337.

[2] Pewsey, A. "Large-Sample Inference for the General Half-Normal Distribution." Communications in
Statistics – Theory and Methods. Vol. 31, Number 7, 2002, pp. 1045–1054.

Extended Capabilities
GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

Usage notes and limitations:
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• HalfNormalDistribution can be a probability distribution object fitted by using fitdist with
GPU array input arguments.

• The object functions of HalfNormalDistribution fully support GPU arrays.

For more information, see “Run MATLAB Functions on a GPU” (Parallel Computing Toolbox).

See Also
makedist | fitdist | Distribution Fitter

Topics
“Half-Normal Distribution” on page B-69
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InverseGaussianDistribution
Inverse Gaussian probability distribution object

Description
An InverseGaussianDistribution object consists of parameters, a model description, and
sample data for an inverse Gaussian probability distribution.

Also known as the Wald distribution, the inverse Gaussian is used to model nonnegative positively
skewed data. Inverse Gaussian distributions have many similarities to standard Gaussian (normal)
distributions, which lead to applications in inferential statistics.

The inverse Gaussian distribution uses the following parameters.

Parameter Description Support
mu Scale parameter μ > 0
lambda Shape parameter λ > 0

Creation
There are several ways to create a InverseGaussianDistribution probability distribution object.

• Create a distribution with specified parameter values using makedist.
• Fit a distribution to data using fitdist.
• Interactively fit a distribution to data using the Distribution Fitter app.

Properties
Distribution Parameters

mu — Scale parameter
positive scalar value

Scale parameter for the inverse Gaussian distribution, specified as a positive scalar value.
Data Types: single | double

lambda — Shape parameter
positive scalar value

Shape parameter for the inverse Gaussian distribution, specified as a positive scalar value.
Data Types: single | double

Distribution Characteristics

IsTruncated — Logical flag for truncated distribution
0 | 1
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This property is read-only.

Logical flag for truncated distribution, specified as a logical value. If IsTruncated equals 0, the
distribution is not truncated. If IsTruncated equals 1, the distribution is truncated.
Data Types: logical

NumParameters — Number of parameters
positive integer value

This property is read-only.

Number of parameters for the probability distribution, specified as a positive integer value.
Data Types: double

ParameterCovariance — Covariance matrix of the parameter estimates
matrix of scalar values

This property is read-only.

Covariance matrix of the parameter estimates, specified as a p-by-p matrix, where p is the number of
parameters in the distribution. The (i,j) element is the covariance between the estimates of the ith
parameter and the jth parameter. The (i,i) element is the estimated variance of the ith parameter. If
parameter i is fixed rather than estimated by fitting the distribution to data, then the (i,i) elements
of the covariance matrix are 0.
Data Types: double

ParameterIsFixed — Logical flag for fixed parameters
array of logical values

This property is read-only.

Logical flag for fixed parameters, specified as an array of logical values. If 0, the corresponding
parameter in the ParameterNames array is not fixed. If 1, the corresponding parameter in the
ParameterNames array is fixed.
Data Types: logical

ParameterValues — Distribution parameter values
vector of scalar values

This property is read-only.

Distribution parameter values, specified as a vector of scalar values.
Data Types: single | double

Truncation — Truncation interval
vector of scalar values

This property is read-only.

Truncation interval for the probability distribution, specified as a vector of scalar values containing
the lower and upper truncation boundaries.
Data Types: single | double
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Other Object Properties

DistributionName — Probability distribution name
character vector

This property is read-only.

Probability distribution name, specified as a character vector.
Data Types: char

InputData — Data used for distribution fitting
structure

This property is read-only.

Data used for distribution fitting, specified as a structure containing the following:

• data: Data vector used for distribution fitting.
• cens: Censoring vector, or empty if none.
• freq: Frequency vector, or empty if none.

Data Types: struct

ParameterDescription — Distribution parameter descriptions
cell array of character vectors

This property is read-only.

Distribution parameter descriptions, specified as a cell array of character vectors. Each cell contains
a short description of one distribution parameter.
Data Types: char

ParameterNames — Distribution parameter names
cell array of character vectors

This property is read-only.

Distribution parameter names, specified as a cell array of character vectors.
Data Types: char

Object Functions
cdf Cumulative distribution function
gather Gather properties of Statistics and Machine Learning Toolbox object from GPU
icdf Inverse cumulative distribution function
iqr Interquartile range of probability distribution
mean Mean of probability distribution
median Median of probability distribution
negloglik Negative loglikelihood of probability distribution
paramci Confidence intervals for probability distribution parameters
pdf Probability density function
plot Plot probability distribution object
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proflik Profile likelihood function for probability distribution
random Random numbers
std Standard deviation of probability distribution
truncate Truncate probability distribution object
var Variance of probability distribution

Examples
Create an Inverse Gaussian Distribution Object Using Default Parameters

Create an inverse Gaussian distribution object using the default parameter values.

pd = makedist('InverseGaussian')

pd = 
  InverseGaussianDistribution

  Inverse Gaussian distribution
        mu = 1
    lambda = 1

Create an Inverse Gaussian Distribution Object Using Specified Parameters

Create an inverse Gaussian distribution object by specifying parameter values.

pd = makedist('InverseGaussian','mu',2,'lambda',4)

pd = 
  InverseGaussianDistribution

  Inverse Gaussian distribution
        mu = 2
    lambda = 4

Compute the standard deviation of the distribution.

s = std(pd)

s = 1.4142

Version History
Introduced in R2013a

Extended Capabilities
GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

Usage notes and limitations:
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• InverseGaussianDistribution can be a probability distribution object fitted by using
fitdist with GPU array input arguments.

• The object functions of InverseGaussianDistribution fully support GPU arrays.

For more information, see “Run MATLAB Functions on a GPU” (Parallel Computing Toolbox).

See Also
makedist | fitdist | Distribution Fitter

Topics
“Inverse Gaussian Distribution” on page B-76
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KernelDistribution
Kernel probability distribution object

Description
A KernelDistribution object consists of parameters, a model description, and sample data for a
nonparametric kernel-smoothing distribution.

The kernel distribution is a nonparametric estimation of the probability density function (pdf) of a
random variable.

The kernel distribution uses the following options.

Option Description Possible Values
Kernel Kernel function type normal, box, triangle,

epanechnikov
Bandwidth Kernel smoothing parameter Bandwidth > 0

Creation
There are several ways to create a KernelDistribution probability distribution object.

• Fit a distribution to data using fitdist.
• Interactively fit a distribution to data using the Distribution Fitter app.

Properties
Distribution Parameters

Kernel — Kernel smoother type
'normal' | 'box' | 'triangle' | 'epanechnikov'

Kernel function type, specified as a valid kernel function type name.

Bandwidth — Bandwidth of kernel smoothing window
positive scalar value

Bandwidth of the kernel smoothing window, specified as a positive scalar value.
Data Types: single | double

Distribution Characteristics

IsTruncated — Logical flag for truncated distribution
0 | 1

This property is read-only.
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Logical flag for truncated distribution, specified as a logical value. If IsTruncated equals 0, the
distribution is not truncated. If IsTruncated equals 1, the distribution is truncated.
Data Types: logical

Truncation — Truncation interval
vector of scalar values

This property is read-only.

Truncation interval for the probability distribution, specified as a vector of scalar values containing
the lower and upper truncation boundaries.
Data Types: single | double

Other Object Properties

DistributionName — Probability distribution name
character vector

This property is read-only.

Probability distribution name, specified as a character vector.
Data Types: char

InputData — Data used for distribution fitting
structure

This property is read-only.

Data used for distribution fitting, specified as a structure containing the following:

• data: Data vector used for distribution fitting.
• cens: Censoring vector, or empty if none.
• freq: Frequency vector, or empty if none.

Data Types: struct

Object Functions
cdf Cumulative distribution function
gather Gather properties of Statistics and Machine Learning Toolbox object from GPU
icdf Inverse cumulative distribution function
iqr Interquartile range of probability distribution
mean Mean of probability distribution
median Median of probability distribution
negloglik Negative loglikelihood of probability distribution
pdf Probability density function
plot Plot probability distribution object
random Random numbers
std Standard deviation of probability distribution
truncate Truncate probability distribution object
var Variance of probability distribution
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Examples
Fit a Kernel Distribution Object to Data

Load the sample data. Visualize the patient weight data using a histogram.

load hospital
histogram(hospital.Weight)

The histogram shows that the data has two modes, one for female patients and one for male patients.

Create a probability distribution object by fitting a kernel distribution to the patient weight data.

pd_kernel = fitdist(hospital.Weight,'Kernel')

pd_kernel = 
  KernelDistribution

    Kernel = normal
    Bandwidth = 14.3792
    Support = unbounded

For comparison, create another probability distribution object by fitting a normal distribution to the
patient weight data.

pd_normal = fitdist(hospital.Weight,'Normal')
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pd_normal = 
  NormalDistribution

  Normal distribution
       mu =     154   [148.728, 159.272]
    sigma = 26.5714   [23.3299, 30.8674]

Define the x values and compute the pdf of each distribution.

x = 50:1:250;
pdf_kernel = pdf(pd_kernel,x);
pdf_normal = pdf(pd_normal,x);

Plot the pdf of each distribution.

plot(x,pdf_kernel,'Color','b','LineWidth',2);
hold on;
plot(x,pdf_normal,'Color','r','LineStyle',':','LineWidth',2);
legend('Kernel Distribution','Normal Distribution','Location','SouthEast');
hold off;

Fitting a kernel distribution instead of a unimodal distribution such as the normal reveals the
separate modes for the female and male patients.
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Version History
Introduced in R2013a

Extended Capabilities
GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

Usage notes and limitations:

• KernelDistribution can be a probability distribution object fitted by using fitdist with GPU
array input arguments.

• The object functions of KernelDistribution fully support GPU arrays.

For more information, see “Run MATLAB Functions on a GPU” (Parallel Computing Toolbox).

See Also
fitdist | Distribution Fitter

Topics
“Fit Kernel Distribution Object to Data” on page 5-37
“Fit Probability Distribution Objects to Grouped Data” on page 5-93
“Compare Multiple Distribution Fits” on page 5-88
“Kernel Distribution” on page B-79
“Nonparametric and Empirical Probability Distributions” on page 5-31
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LogisticDistribution
Logistic probability distribution object

Description
A LogisticDistribution object consists of parameters, a model description, and sample data for
a logistic probability distribution.

The logistic distribution is used for growth models and in logistic regression. It has longer tails and a
higher kurtosis than the normal distribution.

The logistic distribution uses the following parameters.

Parameter Description Support
mu Mean −∞ < μ < ∞
sigma Scale parameter σ ≥ 0

Creation
There are several ways to create a LogisticDistribution probability distribution object.

• Create a distribution with specified parameter values using makedist.
• Fit a distribution to data using fitdist.
• Interactively fit a distribution to data using the Distribution Fitter app.

Properties
Distribution Parameters

mu — Mean
scalar value

Mean of the logistic distribution, specified as a scalar value.
Data Types: single | double

sigma — Scale parameter
nonnegative scalar value

Scale parameter of the logistic distribution, specified as a nonnegative scalar value.
Data Types: single | double

Distribution Characteristics

IsTruncated — Logical flag for truncated distribution
0 | 1
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This property is read-only.

Logical flag for truncated distribution, specified as a logical value. If IsTruncated equals 0, the
distribution is not truncated. If IsTruncated equals 1, the distribution is truncated.
Data Types: logical

NumParameters — Number of parameters
positive integer value

This property is read-only.

Number of parameters for the probability distribution, specified as a positive integer value.
Data Types: double

ParameterCovariance — Covariance matrix of the parameter estimates
matrix of scalar values

This property is read-only.

Covariance matrix of the parameter estimates, specified as a p-by-p matrix, where p is the number of
parameters in the distribution. The (i,j) element is the covariance between the estimates of the ith
parameter and the jth parameter. The (i,i) element is the estimated variance of the ith parameter. If
parameter i is fixed rather than estimated by fitting the distribution to data, then the (i,i) elements
of the covariance matrix are 0.
Data Types: double

ParameterIsFixed — Logical flag for fixed parameters
array of logical values

This property is read-only.

Logical flag for fixed parameters, specified as an array of logical values. If 0, the corresponding
parameter in the ParameterNames array is not fixed. If 1, the corresponding parameter in the
ParameterNames array is fixed.
Data Types: logical

ParameterValues — Distribution parameter values
vector of scalar values

This property is read-only.

Distribution parameter values, specified as a vector of scalar values.
Data Types: single | double

Truncation — Truncation interval
vector of scalar values

This property is read-only.

Truncation interval for the probability distribution, specified as a vector of scalar values containing
the lower and upper truncation boundaries.
Data Types: single | double
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Other Object Properties

DistributionName — Probability distribution name
character vector

This property is read-only.

Probability distribution name, specified as a character vector.
Data Types: char

InputData — Data used for distribution fitting
structure

This property is read-only.

Data used for distribution fitting, specified as a structure containing the following:

• data: Data vector used for distribution fitting.
• cens: Censoring vector, or empty if none.
• freq: Frequency vector, or empty if none.

Data Types: struct

ParameterDescription — Distribution parameter descriptions
cell array of character vectors

This property is read-only.

Distribution parameter descriptions, specified as a cell array of character vectors. Each cell contains
a short description of one distribution parameter.
Data Types: char

ParameterNames — Distribution parameter names
cell array of character vectors

This property is read-only.

Distribution parameter names, specified as a cell array of character vectors.
Data Types: char

Object Functions
cdf Cumulative distribution function
gather Gather properties of Statistics and Machine Learning Toolbox object from GPU
icdf Inverse cumulative distribution function
iqr Interquartile range of probability distribution
mean Mean of probability distribution
median Median of probability distribution
negloglik Negative loglikelihood of probability distribution
paramci Confidence intervals for probability distribution parameters
pdf Probability density function
plot Plot probability distribution object
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proflik Profile likelihood function for probability distribution
random Random numbers
std Standard deviation of probability distribution
truncate Truncate probability distribution object
var Variance of probability distribution

Examples
Create a Logistic Distribution Object Using Default Parameters

Create a logistic distribution object using the default parameter values.

pd = makedist('Logistic')

pd = 
  LogisticDistribution

  Logistic distribution
       mu = 0
    sigma = 1

Create a Logistic Distribution Object Using Specified Parameters

Create a logistic distribution object by specifying parameter values.

pd = makedist('Logistic','mu',2,'sigma',4)

pd = 
  LogisticDistribution

  Logistic distribution
       mu = 2
    sigma = 4

Compute the standard deviation of the distribution.

s = std(pd)

s = 7.2552

Version History
Introduced in R2013a

Extended Capabilities
GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

Usage notes and limitations:
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• LogisticDistribution can be a probability distribution object fitted by using fitdist with
GPU array input arguments.

• The object functions of LogisticDistribution fully support GPU arrays.

For more information, see “Run MATLAB Functions on a GPU” (Parallel Computing Toolbox).

See Also
makedist | fitdist | Distribution Fitter

Topics
“Compare Multiple Distribution Fits” on page 5-88
“Logistic Distribution” on page B-86
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LoglogisticDistribution
Loglogistic probability distribution object

Description
A LoglogisticDistribution object consists of parameters, a model description, and sample data
for a loglogistic probability distribution.

The loglogistic distribution is closely related to the logistic distribution. If x is distributed
loglogistically with parameters μ and σ, then log(x) is distributed logistically with mean and standard
deviation. This distribution is often used in survival analysis to model events that experience an initial
rate increase, followed by a rate decrease.

The loglogistic distribution uses the following parameters.

Parameter Description Support
mu Mean of logarithmic values μ > 0
sigma Scale parameter of logarithmic

values
σ > 0

Creation
There are several ways to create a LoglogisticDistribution probability distribution object.

• Create a distribution with specified parameter values using makedist.
• Fit a distribution to data using fitdist.
• Interactively fit a distribution to data using the Distribution Fitter app.

Properties
Distribution Parameters

mu — Mean of logarithmic values
positive scalar value

Mean of logarithmic values for the loglogistic distribution, specified as a positive scalar value.
Data Types: single | double

sigma — Scale parameter of logarithmic values
positive scalar value

Scale parameter of logarithmic values for the loglogistic distribution, specified as a positive scalar
value.
Data Types: single | double
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Distribution Characteristics

IsTruncated — Logical flag for truncated distribution
0 | 1

This property is read-only.

Logical flag for truncated distribution, specified as a logical value. If IsTruncated equals 0, the
distribution is not truncated. If IsTruncated equals 1, the distribution is truncated.
Data Types: logical

NumParameters — Number of parameters
positive integer value

This property is read-only.

Number of parameters for the probability distribution, specified as a positive integer value.
Data Types: double

ParameterCovariance — Covariance matrix of the parameter estimates
matrix of scalar values

This property is read-only.

Covariance matrix of the parameter estimates, specified as a p-by-p matrix, where p is the number of
parameters in the distribution. The (i,j) element is the covariance between the estimates of the ith
parameter and the jth parameter. The (i,i) element is the estimated variance of the ith parameter. If
parameter i is fixed rather than estimated by fitting the distribution to data, then the (i,i) elements
of the covariance matrix are 0.
Data Types: double

ParameterIsFixed — Logical flag for fixed parameters
array of logical values

This property is read-only.

Logical flag for fixed parameters, specified as an array of logical values. If 0, the corresponding
parameter in the ParameterNames array is not fixed. If 1, the corresponding parameter in the
ParameterNames array is fixed.
Data Types: logical

ParameterValues — Distribution parameter values
vector of scalar values

This property is read-only.

Distribution parameter values, specified as a vector of scalar values.
Data Types: single | double

Truncation — Truncation interval
vector of scalar values

This property is read-only.
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Truncation interval for the probability distribution, specified as a vector of scalar values containing
the lower and upper truncation boundaries.
Data Types: single | double

Other Object Properties

DistributionName — Probability distribution name
character vector

This property is read-only.

Probability distribution name, specified as a character vector.
Data Types: char

InputData — Data used for distribution fitting
structure

This property is read-only.

Data used for distribution fitting, specified as a structure containing the following:

• data: Data vector used for distribution fitting.
• cens: Censoring vector, or empty if none.
• freq: Frequency vector, or empty if none.

Data Types: struct

ParameterDescription — Distribution parameter descriptions
cell array of character vectors

This property is read-only.

Distribution parameter descriptions, specified as a cell array of character vectors. Each cell contains
a short description of one distribution parameter.
Data Types: char

ParameterNames — Distribution parameter names
cell array of character vectors

This property is read-only.

Distribution parameter names, specified as a cell array of character vectors.
Data Types: char

Object Functions
cdf Cumulative distribution function
gather Gather properties of Statistics and Machine Learning Toolbox object from GPU
icdf Inverse cumulative distribution function
iqr Interquartile range of probability distribution
mean Mean of probability distribution
median Median of probability distribution
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negloglik Negative loglikelihood of probability distribution
paramci Confidence intervals for probability distribution parameters
pdf Probability density function
plot Plot probability distribution object
proflik Profile likelihood function for probability distribution
random Random numbers
std Standard deviation of probability distribution
truncate Truncate probability distribution object
var Variance of probability distribution

Examples
Create a Loglogistic Distribution Object Using Default Parameters

Create a loglogistic distribution object using the default parameter values.

pd = makedist('Loglogistic')

pd = 
  LoglogisticDistribution

  Log-Logistic distribution
       mu = 0
    sigma = 1

Create a Loglogistic Distribution Object Using Specified Parameters

Create a loglogistic distribution object by specifying the parameter values.

pd = makedist('Loglogistic','mu',5,'sigma',2)

pd = 
  LoglogisticDistribution

  Log-Logistic distribution
       mu = 5
    sigma = 2

Generate random numbers from the loglogistic distribution and compute their log values.

rng(19) % for reproducibility
x = random(pd,10000,1);
logx = log(x);

Compute the mean of the log values.

m = mean(logx)

m = 4.9828

The mean of the log of x is equal to the mu parameter of x, since x has a loglogistic distribution.

Plot logx.

histogram(logx,50)
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The plot shows that the log values of x have a logistic distribution.

Version History
Introduced in R2013a

Extended Capabilities
GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

Usage notes and limitations:

• LoglogisticDistribution can be a probability distribution object fitted by using fitdist
with GPU array input arguments.

• The object functions of LoglogisticDistribution fully support GPU arrays.

For more information, see “Run MATLAB Functions on a GPU” (Parallel Computing Toolbox).

See Also
makedist | fitdist | Distribution Fitter
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Topics
“Loglogistic Distribution” on page B-87

 LoglogisticDistribution

35-7535



LognormalDistribution
Lognormal probability distribution object

Description
A LognormalDistribution object consists of parameters, a model description, and sample data for
a lognormal probability distribution.

The lognormal distribution, sometimes called the Galton distribution, is a probability distribution
whose logarithm has a normal distribution. The lognormal distribution is applicable when the
quantity of interest must be positive, because log(x) exists only when x is positive.

The lognormal distribution uses the following parameters.

Parameter Description Support
mu (μ) Mean of logarithmic values −∞ < μ < ∞
sigma (σ) Standard deviation of logarithmic

values
σ ≥ 0

Creation
There are several ways to create a LognormalDistribution probability distribution object.

• Create a distribution with specified parameter values using makedist.
• Fit a distribution to data using fitdist.
• Interactively fit a distribution to data using the Distribution Fitter app.

Properties
Distribution Parameters

mu — Mean of logarithmic values
scalar value

Mean of logarithmic values for the lognormal distribution, specified as a scalar value.
Data Types: single | double

sigma — Standard deviation of logarithmic values
nonnegative scalar value

Standard deviation of logarithmic values for the lognormal distribution, specified as a nonnegative
scalar value.

You can specify sigma to be zero when you create an object by using makedist. Some object
functions support an object pd with zero standard deviation. For example, random(pd) always
returns exp(mu).
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Data Types: single | double

Distribution Characteristics

IsTruncated — Logical flag for truncated distribution
0 | 1

This property is read-only.

Logical flag for truncated distribution, specified as a logical value. If IsTruncated equals 0, the
distribution is not truncated. If IsTruncated equals 1, the distribution is truncated.
Data Types: logical

NumParameters — Number of parameters
positive integer value

This property is read-only.

Number of parameters for the probability distribution, specified as a positive integer value.
Data Types: double

ParameterCovariance — Covariance matrix of the parameter estimates
matrix of scalar values

This property is read-only.

Covariance matrix of the parameter estimates, specified as a p-by-p matrix, where p is the number of
parameters in the distribution. The (i,j) element is the covariance between the estimates of the ith
parameter and the jth parameter. The (i,i) element is the estimated variance of the ith parameter. If
parameter i is fixed rather than estimated by fitting the distribution to data, then the (i,i) elements
of the covariance matrix are 0.
Data Types: double

ParameterIsFixed — Logical flag for fixed parameters
array of logical values

This property is read-only.

Logical flag for fixed parameters, specified as an array of logical values. If 0, the corresponding
parameter in the ParameterNames array is not fixed. If 1, the corresponding parameter in the
ParameterNames array is fixed.
Data Types: logical

ParameterValues — Distribution parameter values
vector of scalar values

This property is read-only.

Distribution parameter values, specified as a vector of scalar values.
Data Types: single | double

Truncation — Truncation interval
vector of scalar values
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This property is read-only.

Truncation interval for the probability distribution, specified as a vector of scalar values containing
the lower and upper truncation boundaries.
Data Types: single | double

Other Object Properties

DistributionName — Probability distribution name
character vector

This property is read-only.

Probability distribution name, specified as a character vector.
Data Types: char

InputData — Data used for distribution fitting
structure

This property is read-only.

Data used for distribution fitting, specified as a structure containing the following:

• data: Data vector used for distribution fitting.
• cens: Censoring vector, or empty if none.
• freq: Frequency vector, or empty if none.

Data Types: struct

ParameterDescription — Distribution parameter descriptions
cell array of character vectors

This property is read-only.

Distribution parameter descriptions, specified as a cell array of character vectors. Each cell contains
a short description of one distribution parameter.
Data Types: char

ParameterNames — Distribution parameter names
cell array of character vectors

This property is read-only.

Distribution parameter names, specified as a cell array of character vectors.
Data Types: char

Object Functions
cdf Cumulative distribution function
gather Gather properties of Statistics and Machine Learning Toolbox object from GPU
icdf Inverse cumulative distribution function
iqr Interquartile range of probability distribution
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mean Mean of probability distribution
median Median of probability distribution
negloglik Negative loglikelihood of probability distribution
paramci Confidence intervals for probability distribution parameters
pdf Probability density function
plot Plot probability distribution object
proflik Profile likelihood function for probability distribution
random Random numbers
std Standard deviation of probability distribution
truncate Truncate probability distribution object
var Variance of probability distribution

Examples
Create a Lognormal Distribution Object Using Default Parameters

Create a lognormal distribution object using the default parameter values.

pd = makedist('Lognormal')

pd = 
  LognormalDistribution

  Lognormal distribution
       mu = 0
    sigma = 1

Create Lognormal Distribution Object Using Specified Parameters

Create a lognormal distribution object by specifying the parameter values.

pd = makedist('Lognormal','mu',5,'sigma',2)

pd = 
  LognormalDistribution

  Lognormal distribution
       mu = 5
    sigma = 2

Compute the mean of the lognormal distribution.

mean(pd)

ans = 1.0966e+03

Version History
Introduced in R2013a
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Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• You must create a probability distribution object by fitting a probability distribution to sample data
from the fitdist function. For the usage notes and limitations of fitdist, see “Code
Generation” on page 35-2630 of fitdist.

• These object functions support code generation: cdf, icdf, iqr, mean, median, pdf, std,
truncate, and var.

For more information on code generation, see “Introduction to Code Generation” on page 34-2 and
“Code Generation for Probability Distribution Objects” on page 34-94.

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

Usage notes and limitations:

• LognormalDistribution can be a probability distribution object fitted by using fitdist with
GPU array input arguments.

• The object functions of LognormalDistribution fully support GPU arrays.

For more information, see “Run MATLAB Functions on a GPU” (Parallel Computing Toolbox).

See Also
makedist | fitdist | Distribution Fitter

Topics
“Lognormal Distribution” on page B-89
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LoguniformDistribution
Loguniform probability distribution object

Description
A LoguniformDistribution object consists of parameters and a model description for a
loguniform probability distribution, also referred to as a reciprocal distribution.

The loguniform distribution is a continuous distribution. Its density function is proportional to the
reciprocal of the variable value within the support of the distribution (lower and upper limits).

The loguniform distribution uses the following parameters.

Parameter Description Support
Lower Lower parameter 0 < Lower < Upper
Upper Upper parameter Lower < Upper < ∞

Creation
Create a LogUniformDistribution probability distribution object with specified parameter values
by using makedist.

Properties
Distribution Parameters

Lower — Lower limit
scalar value

Lower limit of the support of the loguniform distribution, specified as a scalar value.
Data Types: single | double

Upper — Upper limit
scalar value

Upper limit of the support of the loguniform distribution, specified as a scalar value greater than
Lower.
Data Types: single | double

Distribution Characteristics

IsTruncated — Logical flag for truncated distribution
0 | 1

This property is read-only.
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Logical flag for truncated distribution, specified as a logical value. If IsTruncated equals 0, the
distribution is not truncated. If IsTruncated equals 1, the distribution is truncated.
Data Types: logical

NumParameters — Number of parameters
positive integer value

This property is read-only.

Number of parameters for the probability distribution, specified as a positive integer value.
Data Types: double

ParameterValues — Distribution parameter values
vector of scalar values

This property is read-only.

Distribution parameter values, specified as a vector of scalar values.
Data Types: single | double

Truncation — Truncation interval
vector of scalar values

This property is read-only.

Truncation interval for the probability distribution, specified as a vector of scalar values containing
the lower and upper truncation boundaries.
Data Types: single | double

Other Object Properties

DistributionName — Probability distribution name
character vector

This property is read-only.

Probability distribution name, specified as a character vector.
Data Types: char

ParameterDescription — Distribution parameter descriptions
cell array of character vectors

This property is read-only.

Distribution parameter descriptions, specified as a cell array of character vectors. Each cell contains
a short description of one distribution parameter.
Data Types: char

ParameterNames — Distribution parameter names
cell array of character vectors

This property is read-only.
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Distribution parameter names, specified as a cell array of character vectors.
Data Types: char

Object Functions
cdf Cumulative distribution function
icdf Inverse cumulative distribution function
iqr Interquartile range of probability distribution
mean Mean of probability distribution
median Median of probability distribution
pdf Probability density function
plot Plot probability distribution object
random Random numbers
std Standard deviation of probability distribution
truncate Truncate probability distribution object
var Variance of probability distribution

Examples

Create Loguniform Distribution Object Using Default Parameters

Create a loguniform distribution object using the default parameter values.

pd = makedist('Loguniform')

pd = 
  LoguniformDistribution

  Loguniform distribution
    Lower = 1
    Upper = 4

Create Loguniform Distribution Object Using Specified Parameters

Create uniform distribution object by specifying parameter values.

pd = makedist('Loguniform','Lower',2,'Upper',6)

pd = 
  LoguniformDistribution

  Loguniform distribution
    Lower = 2
    Upper = 6

Version History
Introduced in R2021b

 LoguniformDistribution

35-7543



See Also
makedist

Topics
“Loguniform Distribution” on page B-97
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MultinomialDistribution
Multinomial probability distribution object

Description
A MultinomialDistribution object consists of parameters and a model description for a
multinomial probability distribution.

The multinomial distribution is a generalization of the binomial distribution. While the binomial
distribution gives the probability of the number of “successes” in n independent trials of a two-
outcome process, the multinomial distribution gives the probability of each combination of outcomes
in n independent trials of a k-outcome process. The probability of each outcome in any one trial is
given by the fixed probabilities p1, ..., pk.

The multinomial distribution uses the following parameter.

Parameter Description Support
Probabilities Outcome probabilities 0 ≤ Probabilities i ≤ 1 ; ∑

all i
Probabilities i = 1

Creation
Create a MultinomialDistribution probability distribution with specified parameter values
object using makedist.

Properties
Distribution Parameter

Probabilities — Outcome probabilities
vector of scalar values in the range [0,1]

Outcome probabilities for the multinomial distribution, stored as a vector of scalar values in the
range [0,1]. The values in Probabilities must sum to 1.
Data Types: single | double

Distribution Characteristics

IsTruncated — Logical flag for truncated distribution
0 | 1

This property is read-only.

Logical flag for truncated distribution, specified as a logical value. If IsTruncated equals 0, the
distribution is not truncated. If IsTruncated equals 1, the distribution is truncated.
Data Types: logical
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NumParameters — Number of parameters
positive integer value

This property is read-only.

Number of parameters for the probability distribution, specified as a positive integer value.
Data Types: double

ParameterValues — Distribution parameter values
vector of scalar values

This property is read-only.

Distribution parameter values, specified as a vector of scalar values.
Data Types: single | double

Truncation — Truncation interval
vector of scalar values

This property is read-only.

Truncation interval for the probability distribution, specified as a vector of scalar values containing
the lower and upper truncation boundaries.
Data Types: single | double

Other Object Properties

DistributionName — Probability distribution name
character vector

This property is read-only.

Probability distribution name, specified as a character vector.
Data Types: char

ParameterDescription — Distribution parameter descriptions
cell array of character vectors

This property is read-only.

Distribution parameter descriptions, specified as a cell array of character vectors. Each cell contains
a short description of one distribution parameter.
Data Types: char

ParameterNames — Distribution parameter names
cell array of character vectors

This property is read-only.

Distribution parameter names, specified as a cell array of character vectors.
Data Types: char
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Object Functions
cdf Cumulative distribution function
icdf Inverse cumulative distribution function
iqr Interquartile range of probability distribution
mean Mean of probability distribution
median Median of probability distribution
pdf Probability density function
plot Plot probability distribution object
random Random numbers
std Standard deviation of probability distribution
truncate Truncate probability distribution object
var Variance of probability distribution

Examples
Create a Multinomial Distribution Object Using Default Parameters

Create a multinomial distribution object using the default parameter values.

pd = makedist('Multinomial')

pd = 
  MultinomialDistribution

  Probabilities:
    0.5000    0.5000

Create Multinomial Distribution Object Using Specified Parameters

Create a multinomial distribution object for a distribution with three possible outcomes. Outcome 1
has a probability of 1/2, outcome 2 has a probability of 1/3, and outcome 3 has a probability of 1/6.

pd = makedist('Multinomial','Probabilities',[1/2 1/3 1/6])

pd = 
  MultinomialDistribution

  Probabilities:
    0.5000    0.3333    0.1667

Generate a random outcome from the distribution.

rng('default');  % for reproducibility
r = random(pd)

r = 2

The result of this trial is outcome 2. By default, the number of trials in each experiment, n, equals 1.

Generate random outcomes from the distribution when the number of trials in each experiment, n,
equals 1, and the experiment is repeated ten times.
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rng('default');  % for reproducibility
r = random(pd,10,1)

r = 10×1

     2
     3
     1
     3
     2
     1
     1
     2
     3
     3

Each element in the array is the outcome of an individual experiment that contains one trial.

Generate random outcomes from the distribution when the number of trials in each experiment, n,
equals 5, and the experiment is repeated ten times.

rng('default');  % for reproducibility
r = random(pd,10,5)

r = 10×5

     2     1     2     2     1
     3     3     1     1     1
     1     3     3     1     2
     3     1     3     1     2
     2     2     2     1     1
     1     1     2     2     1
     1     1     2     2     1
     2     3     1     1     2
     3     2     2     3     2
     3     3     1     1     2

Each element in the resulting matrix is the outcome of one trial. The columns correspond to the five
trials in each experiment, and the rows correspond to the ten experiments. For example, in the first
experiment (corresponding to the first row), 2 of the 5 trials resulted in outcome 1, and 3 of the 5
trials resulted in outcome 2.

Version History
Introduced in R2013a

See Also
makedist

Topics
“Multinomial Probability Distribution Objects” on page 5-103
“Multinomial Probability Distribution Functions” on page 5-106

35 Functions

35-7548



“Multinomial Distribution” on page B-102
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NakagamiDistribution
Nakagami probability distribution object

Description
A NakagamiDistribution object consists of parameters, a model description, and sample data for
a Nakagami probability distribution.

The Nakagami distribution is commonly used in communication theory to model scattered signals
that reach a receiver using multiple paths.

The Nakagami distribution uses the following parameters.

Parameter Description Support
mu Shape parameter μ > 0
omega Scale parameter ω > 0

Creation
There are several ways to create a NakagamiDistribution probability distribution object.

• Create a distribution with specified parameter values using makedist.
• Fit a distribution to data using fitdist.
• Interactively fit a distribution to data using the Distribution Fitter app.

Properties
Distribution Parameters

mu — Shape parameter
positive scalar value

Shape parameter for the Nakagami distribution, specified as a positive scalar value.
Data Types: single | double

omega — Scale parameter
positive scalar value

Scale parameter for the Nakagami distribution, specified as a positive scalar value.
Data Types: single | double

Distribution Characteristics

IsTruncated — Logical flag for truncated distribution
0 | 1
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This property is read-only.

Logical flag for truncated distribution, specified as a logical value. If IsTruncated equals 0, the
distribution is not truncated. If IsTruncated equals 1, the distribution is truncated.
Data Types: logical

NumParameters — Number of parameters
positive integer value

This property is read-only.

Number of parameters for the probability distribution, specified as a positive integer value.
Data Types: double

ParameterCovariance — Covariance matrix of the parameter estimates
matrix of scalar values

This property is read-only.

Covariance matrix of the parameter estimates, specified as a p-by-p matrix, where p is the number of
parameters in the distribution. The (i,j) element is the covariance between the estimates of the ith
parameter and the jth parameter. The (i,i) element is the estimated variance of the ith parameter. If
parameter i is fixed rather than estimated by fitting the distribution to data, then the (i,i) elements
of the covariance matrix are 0.
Data Types: double

ParameterIsFixed — Logical flag for fixed parameters
array of logical values

This property is read-only.

Logical flag for fixed parameters, specified as an array of logical values. If 0, the corresponding
parameter in the ParameterNames array is not fixed. If 1, the corresponding parameter in the
ParameterNames array is fixed.
Data Types: logical

ParameterValues — Distribution parameter values
vector of scalar values

This property is read-only.

Distribution parameter values, specified as a vector of scalar values.
Data Types: single | double

Truncation — Truncation interval
vector of scalar values

This property is read-only.

Truncation interval for the probability distribution, specified as a vector of scalar values containing
the lower and upper truncation boundaries.
Data Types: single | double
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Other Object Properties

DistributionName — Probability distribution name
character vector

This property is read-only.

Probability distribution name, specified as a character vector.
Data Types: char

InputData — Data used for distribution fitting
structure

This property is read-only.

Data used for distribution fitting, specified as a structure containing the following:

• data: Data vector used for distribution fitting.
• cens: Censoring vector, or empty if none.
• freq: Frequency vector, or empty if none.

Data Types: struct

ParameterDescription — Distribution parameter descriptions
cell array of character vectors

This property is read-only.

Distribution parameter descriptions, specified as a cell array of character vectors. Each cell contains
a short description of one distribution parameter.
Data Types: char

ParameterNames — Distribution parameter names
cell array of character vectors

This property is read-only.

Distribution parameter names, specified as a cell array of character vectors.
Data Types: char

Object Functions
cdf Cumulative distribution function
gather Gather properties of Statistics and Machine Learning Toolbox object from GPU
icdf Inverse cumulative distribution function
iqr Interquartile range of probability distribution
mean Mean of probability distribution
median Median of probability distribution
negloglik Negative loglikelihood of probability distribution
paramci Confidence intervals for probability distribution parameters
pdf Probability density function
plot Plot probability distribution object
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proflik Profile likelihood function for probability distribution
random Random numbers
std Standard deviation of probability distribution
truncate Truncate probability distribution object
var Variance of probability distribution

Examples
Create a Nakagami Distribution Object Using Default Parameters

Create a Nakagami distribution object using the default parameter values.

pd = makedist('Nakagami')

pd = 
  NakagamiDistribution

  Nakagami distribution
       mu = 1
    omega = 1

Create a Nakagami Distribution Object Using Specified Parameters

Create a Nakagami distribution object by specifying parameter values.

pd = makedist('Nakagami','mu',5,'omega',2)

pd = 
  NakagamiDistribution

  Nakagami distribution
       mu = 5
    omega = 2

Compute the mean of the distribution.

m = mean(pd)

m = 1.3794

Version History
Introduced in R2013a

Extended Capabilities
GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

Usage notes and limitations:
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• NakagamiDistribution can be a probability distribution object fitted by using fitdist with
GPU array input arguments.

• The object functions of NakagamiDistribution fully support GPU arrays.

For more information, see “Run MATLAB Functions on a GPU” (Parallel Computing Toolbox).

See Also
makedist | fitdist | Distribution Fitter

Topics
“Nakagami Distribution” on page B-114
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NegativeBinomialDistribution
Negative binomial distribution object

Description
A NegativeBinomialDistribution object consists of parameters, a model description, and
sample data for a negative binomial probability distribution.

The negative binomial distribution models the number of failures x before a specified number of
successes, R, is reached in a series of independent, identical trials. This distribution can also model
count data, in which case R does not need to be an integer value.

The negative binomial distribution uses the following parameters.

Parameter Description Support
R Number of successes R > 0
P Probability of success 0 < P ≤ 1

Creation
There are several ways to create a NegativeBinomialDistribution probability distribution
object.

• Create a distribution with specified parameter values using makedist.
• Fit a distribution to data using fitdist.
• Interactively fit a distribution to data using the Distribution Fitter app.

Properties
Distribution Parameters

R — Number of successes
positive scalar value

Number of successes for the negative binomial distribution, specified as a positive scalar value.
Data Types: single | double

P — Probability of success
positive scalar value in the range (0,1]

Probability of success of any individual trial for the negative binomial distribution, specified as a
positive scalar value in the range (0,1].
Data Types: single | double
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Distribution Characteristics

IsTruncated — Logical flag for truncated distribution
0 | 1

This property is read-only.

Logical flag for truncated distribution, specified as a logical value. If IsTruncated equals 0, the
distribution is not truncated. If IsTruncated equals 1, the distribution is truncated.
Data Types: logical

NumParameters — Number of parameters
positive integer value

This property is read-only.

Number of parameters for the probability distribution, specified as a positive integer value.
Data Types: double

ParameterCovariance — Covariance matrix of the parameter estimates
matrix of scalar values

This property is read-only.

Covariance matrix of the parameter estimates, specified as a p-by-p matrix, where p is the number of
parameters in the distribution. The (i,j) element is the covariance between the estimates of the ith
parameter and the jth parameter. The (i,i) element is the estimated variance of the ith parameter. If
parameter i is fixed rather than estimated by fitting the distribution to data, then the (i,i) elements
of the covariance matrix are 0.
Data Types: double

ParameterIsFixed — Logical flag for fixed parameters
array of logical values

This property is read-only.

Logical flag for fixed parameters, specified as an array of logical values. If 0, the corresponding
parameter in the ParameterNames array is not fixed. If 1, the corresponding parameter in the
ParameterNames array is fixed.
Data Types: logical

ParameterValues — Distribution parameter values
vector of scalar values

This property is read-only.

Distribution parameter values, specified as a vector of scalar values.
Data Types: single | double

Truncation — Truncation interval
vector of scalar values

This property is read-only.
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Truncation interval for the probability distribution, specified as a vector of scalar values containing
the lower and upper truncation boundaries.
Data Types: single | double

Other Object Properties

DistributionName — Probability distribution name
character vector

This property is read-only.

Probability distribution name, specified as a character vector.
Data Types: char

InputData — Data used for distribution fitting
structure

This property is read-only.

Data used for distribution fitting, specified as a structure containing the following:

• data: Data vector used for distribution fitting.
• cens: Censoring vector, or empty if none.
• freq: Frequency vector, or empty if none.

Data Types: struct

ParameterDescription — Distribution parameter descriptions
cell array of character vectors

This property is read-only.

Distribution parameter descriptions, specified as a cell array of character vectors. Each cell contains
a short description of one distribution parameter.
Data Types: char

ParameterNames — Distribution parameter names
cell array of character vectors

This property is read-only.

Distribution parameter names, specified as a cell array of character vectors.
Data Types: char

Object Functions
cdf Cumulative distribution function
gather Gather properties of Statistics and Machine Learning Toolbox object from GPU
icdf Inverse cumulative distribution function
iqr Interquartile range of probability distribution
mean Mean of probability distribution
median Median of probability distribution
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negloglik Negative loglikelihood of probability distribution
paramci Confidence intervals for probability distribution parameters
pdf Probability density function
plot Plot probability distribution object
proflik Profile likelihood function for probability distribution
random Random numbers
std Standard deviation of probability distribution
truncate Truncate probability distribution object
var Variance of probability distribution

Examples
Create a Negative Binomial Distribution Object Using Default Parameters

Create a negative binomial distribution object using the default parameter values.

pd = makedist('NegativeBinomial')

pd = 
  NegativeBinomialDistribution

  Negative Binomial distribution
    R =   1
    P = 0.5

Create Negative Binomial Distribution Object Using Specified Parameters

Create a negative binomial distribution object by specifying the parameter values.

pd = makedist('NegativeBinomial','R',5,'P',.1)

pd = 
  NegativeBinomialDistribution

  Negative Binomial distribution
    R =   5
    P = 0.1

Compute the mean of the distribution.

m = mean(pd)

m = 45

Version History
Introduced in R2013a

Extended Capabilities
GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.
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Usage notes and limitations:

• NegativeBinomialDistribution can be a probability distribution object fitted by using
fitdist with GPU array input arguments.

• The object functions of NegativeBinomialDistribution fully support GPU arrays.

For more information, see “Run MATLAB Functions on a GPU” (Parallel Computing Toolbox).

See Also
makedist | fitdist | Distribution Fitter

Topics
“Negative Binomial Distribution” on page B-115

 NegativeBinomialDistribution

35-7559



NormalDistribution
Normal probability distribution object

Description
A NormalDistribution object consists of parameters, a model description, and sample data for a
normal probability distribution.

The normal distribution, sometimes called the Gaussian distribution, is a two-parameter family of
curves. The usual justification for using the normal distribution for modeling is the Central Limit
theorem, which states (roughly) that the sum of independent samples from any distribution with finite
mean and variance converges to the normal distribution as the sample size goes to infinity.

The normal distribution uses the following parameters.

Parameter Description Support
mu (μ) Mean −∞ < μ < ∞
sigma (σ) Standard deviation σ ≥ 0

Creation
There are several ways to create a NormalDistribution probability distribution object.

• Create a distribution with specified parameter values using makedist.
• Fit a distribution to data using fitdist.
• Interactively fit a distribution to data using the Distribution Fitter app.

Properties
Distribution Parameters

mu — Mean
scalar value

Mean of the normal distribution, specified as a scalar value.
Data Types: single | double

sigma — Standard deviation
nonnegative scalar value

Standard deviation of the normal distribution, specified as a nonnegative scalar value.

You can specify sigma to be zero when you create an object by using makedist. Some object
functions support an object pd with zero standard deviation. For example, random(pd) always
returns mu, and cdf(pd,x) returns either 0 or 1. The output is 0 if x is smaller than mu, and 1
otherwise. mean, std, and var return the mean, standard deviation, and variance of pd, respectively.
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Data Types: single | double

Distribution Characteristics

IsTruncated — Logical flag for truncated distribution
0 | 1

This property is read-only.

Logical flag for truncated distribution, specified as a logical value. If IsTruncated equals 0, the
distribution is not truncated. If IsTruncated equals 1, the distribution is truncated.
Data Types: logical

NumParameters — Number of parameters
positive integer value

This property is read-only.

Number of parameters for the probability distribution, specified as a positive integer value.
Data Types: double

ParameterCovariance — Covariance matrix of the parameter estimates
matrix of scalar values

This property is read-only.

Covariance matrix of the parameter estimates, specified as a p-by-p matrix, where p is the number of
parameters in the distribution. The (i,j) element is the covariance between the estimates of the ith
parameter and the jth parameter. The (i,i) element is the estimated variance of the ith parameter. If
parameter i is fixed rather than estimated by fitting the distribution to data, then the (i,i) elements
of the covariance matrix are 0.
Data Types: double

ParameterIsFixed — Logical flag for fixed parameters
array of logical values

This property is read-only.

Logical flag for fixed parameters, specified as an array of logical values. If 0, the corresponding
parameter in the ParameterNames array is not fixed. If 1, the corresponding parameter in the
ParameterNames array is fixed.
Data Types: logical

ParameterValues — Distribution parameter values
vector of scalar values

This property is read-only.

Distribution parameter values, specified as a vector of scalar values.
Data Types: single | double

Truncation — Truncation interval
vector of scalar values
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This property is read-only.

Truncation interval for the probability distribution, specified as a vector of scalar values containing
the lower and upper truncation boundaries.
Data Types: single | double

Other Object Properties

DistributionName — Probability distribution name
character vector

This property is read-only.

Probability distribution name, specified as a character vector.
Data Types: char

InputData — Data used for distribution fitting
structure

This property is read-only.

Data used for distribution fitting, specified as a structure containing the following:

• data: Data vector used for distribution fitting.
• cens: Censoring vector, or empty if none.
• freq: Frequency vector, or empty if none.

Data Types: struct

ParameterDescription — Distribution parameter descriptions
cell array of character vectors

This property is read-only.

Distribution parameter descriptions, specified as a cell array of character vectors. Each cell contains
a short description of one distribution parameter.
Data Types: char

ParameterNames — Distribution parameter names
cell array of character vectors

This property is read-only.

Distribution parameter names, specified as a cell array of character vectors.
Data Types: char

Object Functions
cdf Cumulative distribution function
gather Gather properties of Statistics and Machine Learning Toolbox object from GPU
icdf Inverse cumulative distribution function
iqr Interquartile range of probability distribution
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mean Mean of probability distribution
median Median of probability distribution
negloglik Negative loglikelihood of probability distribution
paramci Confidence intervals for probability distribution parameters
pdf Probability density function
plot Plot probability distribution object
proflik Profile likelihood function for probability distribution
random Random numbers
std Standard deviation of probability distribution
truncate Truncate probability distribution object
var Variance of probability distribution

Examples
Create a Normal Distribution Object Using Default Parameters

Create a normal distribution object using the default parameter values.

pd = makedist('Normal')

pd = 
  NormalDistribution

  Normal distribution
       mu = 0
    sigma = 1

Create a Normal Distribution Object Using Specified Parameters

Create a normal distribution object by specifying the parameter values.

pd = makedist('Normal','mu',75,'sigma',10)

pd = 
  NormalDistribution

  Normal distribution
       mu = 75
    sigma = 10

Compute the interquartile range of the distribution.

r = iqr(pd)

r = 13.4898

Fit Normal Distribution Object

Load the sample data and create a vector containing the first column of student exam grade data.

load examgrades
x = grades(:,1);

Create a normal distribution object by fitting it to the data.
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pd = fitdist(x,'Normal')

pd = 
  NormalDistribution

  Normal distribution
       mu = 75.0083   [73.4321, 76.5846]
    sigma =  8.7202   [7.7391, 9.98843]

The intervals next to the parameter estimates are the 95% confidence intervals for the distribution
parameters.

Version History
Introduced in R2013a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• You must create a probability distribution object by fitting a probability distribution to sample data
from the fitdist function. For the usage notes and limitations of fitdist, see “Code
Generation” on page 35-2630 of fitdist.

• These object functions support code generation: cdf, icdf, iqr, mean, median, pdf, std,
truncate, and var.

For more information on code generation, see “Introduction to Code Generation” on page 34-2 and
“Code Generation for Probability Distribution Objects” on page 34-94.

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

Usage notes and limitations:

• NormalDistribution can be a probability distribution object fitted by using fitdist with GPU
array input arguments.

• The object functions of NormalDistribution fully support GPU arrays.

For more information, see “Run MATLAB Functions on a GPU” (Parallel Computing Toolbox).

See Also
makedist | fitdist | Distribution Fitter

Topics
“Compare Multiple Distribution Fits” on page 5-88
“Normal Distribution” on page B-125
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PiecewiseLinearDistribution
Piecewise linear probability distribution object

Description
A PiecewiseLinearDistribution object consists of a model description for a piecewise linear
probability distribution.

The piecewise linear distribution is a nonparametric probability distribution created using a
piecewise linear representation of the cumulative distribution function (cdf). The options specified for
the piecewise linear distribution specify the form of the cdf. The probability density function (pdf) is a
step function.

The piecewise linear distribution uses the following parameters.

Parameter Description
x Vector of x values at which the cdf changes slope
Fx Vector of cdf values that correspond to each value

in x

Creation
Create a PiecewiseLinearDistribution probability distribution with specified parameter values
object using makedist.

Properties
Distribution Parameters

x — Data values
vector of scalar values

Data values at which the cumulative distribution function (cdf) changes slope, specified as a vector of
scalar values.
Data Types: single | double

Fx — cdf values
vector of scalar values

cdf value at each value in x, specified as a vector of scalar values.
Data Types: single | double

Distribution Characteristics

IsTruncated — Logical flag for truncated distribution
0 | 1
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This property is read-only.

Logical flag for truncated distribution, specified as a logical value. If IsTruncated equals 0, the
distribution is not truncated. If IsTruncated equals 1, the distribution is truncated.
Data Types: logical

NumParameters — Number of parameters
positive integer value

This property is read-only.

Number of parameters for the probability distribution, specified as a positive integer value.
Data Types: double

ParameterValues — Distribution parameter values
vector of scalar values

This property is read-only.

Distribution parameter values, specified as a vector of scalar values.
Data Types: single | double

Truncation — Truncation interval
vector of scalar values

This property is read-only.

Truncation interval for the probability distribution, specified as a vector of scalar values containing
the lower and upper truncation boundaries.
Data Types: single | double

Other Object Properties

DistributionName — Probability distribution name
character vector

This property is read-only.

Probability distribution name, specified as a character vector.
Data Types: char

ParameterDescription — Distribution parameter descriptions
cell array of character vectors

This property is read-only.

Distribution parameter descriptions, specified as a cell array of character vectors. Each cell contains
a short description of one distribution parameter.
Data Types: char

ParameterNames — Distribution parameter names
cell array of character vectors
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This property is read-only.

Distribution parameter names, specified as a cell array of character vectors.
Data Types: char

Object Functions
cdf Cumulative distribution function
icdf Inverse cumulative distribution function
iqr Interquartile range of probability distribution
mean Mean of probability distribution
median Median of probability distribution
pdf Probability density function
plot Plot probability distribution object
random Random numbers
std Standard deviation of probability distribution
truncate Truncate probability distribution object
var Variance of probability distribution

Examples
Create a Piecewise Linear Distribution Object Using Default Parameters

Create a piecewise linear distribution object using the default parameter values.

pd = makedist('PiecewiseLinear')

pd = 
  PiecewiseLinearDistribution

F(0) = 0
F(1) = 1

Create Piecewise Linear Distribution Object from Empirical cdf

Compute the empirical cumulative distribution function (cdf) for data, and create a piecewise linear
distribution object using an approximation to the empirical cdf.

Load the sample data. Visualize the patient weight data using a histogram.

load patients
histogram(Weight(strcmp(Gender,'Female')))
hold on
histogram(Weight(strcmp(Gender,'Male')))
legend('Female','Male')
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The histogram shows that the data has two modes, one for female patients and one for male patients.

Compute the empirical cdf for the data.

[f,x] = ecdf(Weight);

Construct a piecewise linear approximation to the empirical cdf by taking a value every five points.

f = f(1:5:end);
x = x(1:5:end);

Plot the empirical cdf and the approximation.

figure
ecdf(Weight)
hold on
plot(x,f,'ko-','MarkerFace','r') 
legend('Empirical cdf','Piecewise linear approximation', ...
    'Location','best')
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Create a piecewise linear probability distribution object using the piecewise approximation of the
empirical cdf.

pd = makedist('PiecewiseLinear','x',x,'Fx',f)

pd = 
  PiecewiseLinearDistribution

F(111) = 0
F(118) = 0.05
F(124) = 0.13
F(130) = 0.25
F(135) = 0.37
F(142) = 0.5
F(163) = 0.55
F(171) = 0.61
F(178) = 0.7
F(183) = 0.82
F(189) = 0.94
F(202) = 1

Generate 100 random numbers from the distribution.

rng('default') % For reproducibility
rw = random(pd,[100,1]);

Plot the random numbers to visually compare their distribution to the original data.
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figure
histogram(Weight)
hold on
histogram(rw)
legend('Original data','Generated data')

The random numbers generated from the piecewise linear distribution have the same bimodal
distribution as the original data.

Version History
Introduced in R2013a

See Also
makedist | ecdf

Topics
“Nonparametric and Empirical Probability Distributions” on page 5-31
“Piecewise Linear Distribution” on page B-136
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PoissonDistribution
Poisson probability distribution object

Description
A PoissonDistribution object consists of parameters, a model description, and sample data for a
Poisson probability distribution.

The Poisson distribution is appropriate for applications that involve counting the number of times a
random event occurs in a given amount of time, distance, area, etc. If the number of counts follows
the Poisson distribution, then the interval between individual counts follows the exponential
distribution.

The Poisson distribution uses the following parameters.

Parameter Description Support
lambda Mean λ ≥ 0

Creation
There are several ways to create a PoissonDistribution probability distribution object.

• Create a distribution with specified parameter values using makedist.
• Fit a distribution to data using fitdist.
• Interactively fit a distribution to data using the Distribution Fitter app.

Properties
Distribution Parameter

lambda — Mean
nonnegative scalar value

Mean of the Poisson distribution, stored as a nonnegative scalar value.
Data Types: single | double

Distribution Characteristics

IsTruncated — Logical flag for truncated distribution
0 | 1

This property is read-only.

Logical flag for truncated distribution, specified as a logical value. If IsTruncated equals 0, the
distribution is not truncated. If IsTruncated equals 1, the distribution is truncated.
Data Types: logical
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NumParameters — Number of parameters
positive integer value

This property is read-only.

Number of parameters for the probability distribution, specified as a positive integer value.
Data Types: double

ParameterCovariance — Covariance matrix of the parameter estimates
matrix of scalar values

This property is read-only.

Covariance matrix of the parameter estimates, specified as a p-by-p matrix, where p is the number of
parameters in the distribution. The (i,j) element is the covariance between the estimates of the ith
parameter and the jth parameter. The (i,i) element is the estimated variance of the ith parameter. If
parameter i is fixed rather than estimated by fitting the distribution to data, then the (i,i) elements
of the covariance matrix are 0.
Data Types: double

ParameterIsFixed — Logical flag for fixed parameters
array of logical values

This property is read-only.

Logical flag for fixed parameters, specified as an array of logical values. If 0, the corresponding
parameter in the ParameterNames array is not fixed. If 1, the corresponding parameter in the
ParameterNames array is fixed.
Data Types: logical

ParameterValues — Distribution parameter values
vector of scalar values

This property is read-only.

Distribution parameter values, specified as a vector of scalar values.
Data Types: single | double

Truncation — Truncation interval
vector of scalar values

This property is read-only.

Truncation interval for the probability distribution, specified as a vector of scalar values containing
the lower and upper truncation boundaries.
Data Types: single | double

Other Object Properties

DistributionName — Probability distribution name
character vector

This property is read-only.
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Probability distribution name, specified as a character vector.
Data Types: char

InputData — Data used for distribution fitting
structure

This property is read-only.

Data used for distribution fitting, specified as a structure containing the following:

• data: Data vector used for distribution fitting.
• cens: Censoring vector, or empty if none.
• freq: Frequency vector, or empty if none.

Data Types: struct

ParameterDescription — Distribution parameter descriptions
cell array of character vectors

This property is read-only.

Distribution parameter descriptions, specified as a cell array of character vectors. Each cell contains
a short description of one distribution parameter.
Data Types: char

ParameterNames — Distribution parameter names
cell array of character vectors

This property is read-only.

Distribution parameter names, specified as a cell array of character vectors.
Data Types: char

Object Functions
cdf Cumulative distribution function
gather Gather properties of Statistics and Machine Learning Toolbox object from GPU
icdf Inverse cumulative distribution function
iqr Interquartile range of probability distribution
mean Mean of probability distribution
median Median of probability distribution
negloglik Negative loglikelihood of probability distribution
paramci Confidence intervals for probability distribution parameters
pdf Probability density function
plot Plot probability distribution object
proflik Profile likelihood function for probability distribution
random Random numbers
std Standard deviation of probability distribution
truncate Truncate probability distribution object
var Variance of probability distribution
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Examples
Create a Poisson Distribution Object Using Default Parameters

Create a Poisson distribution object using the default parameter values.

pd = makedist('Poisson')

pd = 
  PoissonDistribution

  Poisson distribution
    lambda = 1

Create a Poisson Distribution Object Using Specified Parameters

Create a Poisson distribution object by specifying the parameter values.

pd = makedist('Poisson','lambda',5)

pd = 
  PoissonDistribution

  Poisson distribution
    lambda = 5

Compute the variance of the distribution.

v = var(pd)

v = 5

For the Poisson distribution, both the mean and variance are equal to the parameter lambda.

Version History
Introduced in R2013a

Extended Capabilities
GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

Usage notes and limitations:

• PoissonDistribution can be a probability distribution object fitted by using fitdist with
GPU array input arguments.

• The object functions of PoissonDistribution fully support GPU arrays.

For more information, see “Run MATLAB Functions on a GPU” (Parallel Computing Toolbox).
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See Also
makedist | fitdist | Distribution Fitter

Topics
“Poisson Distribution” on page B-137
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RayleighDistribution
Rayleigh probability distribution object

Description
A RayleighDistribution object consists of parameters, a model description, and sample data for
a normal probability distribution.

The Rayleigh distribution is a special case of the Weibull distribution. It is often used in
communication theory to model scattered signals that reach a receiver by multiple paths.

The Rayleigh distribution uses the following parameter.

Parameter Description Support
B Defining parameter B > 0

Creation
There are several ways to create a RayleighDistribution probability distribution object.

• Create a distribution with specified parameter values using makedist.
• Fit a distribution to data using fitdist.
• Interactively fit a distribution to data using the Distribution Fitter app.

Properties
Distribution Parameter

B — Defining parameter
positive scalar value

Defining parameter for the Rayleigh distribution, specified as a positive scalar value.
Data Types: single | double

Distribution Characteristics

IsTruncated — Logical flag for truncated distribution
0 | 1

This property is read-only.

Logical flag for truncated distribution, specified as a logical value. If IsTruncated equals 0, the
distribution is not truncated. If IsTruncated equals 1, the distribution is truncated.
Data Types: logical

NumParameters — Number of parameters
positive integer value
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This property is read-only.

Number of parameters for the probability distribution, specified as a positive integer value.
Data Types: double

ParameterCovariance — Covariance matrix of the parameter estimates
matrix of scalar values

This property is read-only.

Covariance matrix of the parameter estimates, specified as a p-by-p matrix, where p is the number of
parameters in the distribution. The (i,j) element is the covariance between the estimates of the ith
parameter and the jth parameter. The (i,i) element is the estimated variance of the ith parameter. If
parameter i is fixed rather than estimated by fitting the distribution to data, then the (i,i) elements
of the covariance matrix are 0.
Data Types: double

ParameterIsFixed — Logical flag for fixed parameters
array of logical values

This property is read-only.

Logical flag for fixed parameters, specified as an array of logical values. If 0, the corresponding
parameter in the ParameterNames array is not fixed. If 1, the corresponding parameter in the
ParameterNames array is fixed.
Data Types: logical

ParameterValues — Distribution parameter values
vector of scalar values

This property is read-only.

Distribution parameter values, specified as a vector of scalar values.
Data Types: single | double

Truncation — Truncation interval
vector of scalar values

This property is read-only.

Truncation interval for the probability distribution, specified as a vector of scalar values containing
the lower and upper truncation boundaries.
Data Types: single | double

Other Object Properties

DistributionName — Probability distribution name
character vector

This property is read-only.

Probability distribution name, specified as a character vector.
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Data Types: char

InputData — Data used for distribution fitting
structure

This property is read-only.

Data used for distribution fitting, specified as a structure containing the following:

• data: Data vector used for distribution fitting.
• cens: Censoring vector, or empty if none.
• freq: Frequency vector, or empty if none.

Data Types: struct

ParameterDescription — Distribution parameter descriptions
cell array of character vectors

This property is read-only.

Distribution parameter descriptions, specified as a cell array of character vectors. Each cell contains
a short description of one distribution parameter.
Data Types: char

ParameterNames — Distribution parameter names
cell array of character vectors

This property is read-only.

Distribution parameter names, specified as a cell array of character vectors.
Data Types: char

Object Functions
cdf Cumulative distribution function
gather Gather properties of Statistics and Machine Learning Toolbox object from GPU
icdf Inverse cumulative distribution function
iqr Interquartile range of probability distribution
mean Mean of probability distribution
median Median of probability distribution
negloglik Negative loglikelihood of probability distribution
paramci Confidence intervals for probability distribution parameters
pdf Probability density function
plot Plot probability distribution object
proflik Profile likelihood function for probability distribution
random Random numbers
std Standard deviation of probability distribution
truncate Truncate probability distribution object
var Variance of probability distribution
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Examples
Create a Rayleigh Distribution Object Using Default Parameters

Create a Rayleigh distribution object using the default parameter values.

pd = makedist('Rayleigh')

pd = 
  RayleighDistribution

  Rayleigh distribution
    B = 1

Create Rayleigh Distribution Object Using Specified Parameters

Create a Rayleigh distribution object by specifying the parameter values.

pd = makedist('Rayleigh','B',3)

pd = 
  RayleighDistribution

  Rayleigh distribution
    B = 3

Compute the mean of the distribution.

m = mean(pd)

m = 3.7599

Version History
Introduced in R2013a

Extended Capabilities
GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

Usage notes and limitations:

• RayleighDistribution can be a probability distribution object fitted by using fitdist with
GPU array input arguments.

• The object functions of RayleighDistribution fully support GPU arrays.

For more information, see “Run MATLAB Functions on a GPU” (Parallel Computing Toolbox).

See Also
makedist | fitdist | Distribution Fitter
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Topics
“Rayleigh Distribution” on page B-143
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RicianDistribution
Rician probability distribution object

Description
A RicianDistribution object consists of parameters, a model description, and sample data for a
Rician probability distribution.

The Rician distribution is used in communications theory to model scattered signals that reach a
receiver using multiple paths.

The Rician distribution uses the following parameters.

Name Description Support
s Noncentrality parameter s ≥ 0
sigma Scale parameter σ > 0

Creation
There are several ways to create a RicianDistribution probability distribution object.

• Create a distribution with specified parameter values using makedist.
• Fit a distribution to data using fitdist.
• Interactively fit a distribution to data using the Distribution Fitter app.

Properties
Distribution Parameters

s — Noncentrality parameter
nonnegative scalar value

Noncentrality parameter of the Rician distribution, specified as a nonnegative scalar value.
Data Types: single | double

sigma — scale parameter
positive scalar value

Scale parameter for the Rician distribution, specified as a positive scalar value.
Data Types: single | double

Distribution Characteristics

IsTruncated — Logical flag for truncated distribution
0 | 1
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This property is read-only.

Logical flag for truncated distribution, specified as a logical value. If IsTruncated equals 0, the
distribution is not truncated. If IsTruncated equals 1, the distribution is truncated.
Data Types: logical

NumParameters — Number of parameters
positive integer value

This property is read-only.

Number of parameters for the probability distribution, specified as a positive integer value.
Data Types: double

ParameterCovariance — Covariance matrix of the parameter estimates
matrix of scalar values

This property is read-only.

Covariance matrix of the parameter estimates, specified as a p-by-p matrix, where p is the number of
parameters in the distribution. The (i,j) element is the covariance between the estimates of the ith
parameter and the jth parameter. The (i,i) element is the estimated variance of the ith parameter. If
parameter i is fixed rather than estimated by fitting the distribution to data, then the (i,i) elements
of the covariance matrix are 0.
Data Types: double

ParameterIsFixed — Logical flag for fixed parameters
array of logical values

This property is read-only.

Logical flag for fixed parameters, specified as an array of logical values. If 0, the corresponding
parameter in the ParameterNames array is not fixed. If 1, the corresponding parameter in the
ParameterNames array is fixed.
Data Types: logical

ParameterValues — Distribution parameter values
vector of scalar values

This property is read-only.

Distribution parameter values, specified as a vector of scalar values.
Data Types: single | double

Truncation — Truncation interval
vector of scalar values

This property is read-only.

Truncation interval for the probability distribution, specified as a vector of scalar values containing
the lower and upper truncation boundaries.
Data Types: single | double
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Other Object Properties

DistributionName — Probability distribution name
character vector

This property is read-only.

Probability distribution name, specified as a character vector.
Data Types: char

InputData — Data used for distribution fitting
structure

This property is read-only.

Data used for distribution fitting, specified as a structure containing the following:

• data: Data vector used for distribution fitting.
• cens: Censoring vector, or empty if none.
• freq: Frequency vector, or empty if none.

Data Types: struct

ParameterDescription — Distribution parameter descriptions
cell array of character vectors

This property is read-only.

Distribution parameter descriptions, specified as a cell array of character vectors. Each cell contains
a short description of one distribution parameter.
Data Types: char

ParameterNames — Distribution parameter names
cell array of character vectors

This property is read-only.

Distribution parameter names, specified as a cell array of character vectors.
Data Types: char

Object Functions
cdf Cumulative distribution function
icdf Inverse cumulative distribution function
iqr Interquartile range of probability distribution
mean Mean of probability distribution
median Median of probability distribution
negloglik Negative loglikelihood of probability distribution
paramci Confidence intervals for probability distribution parameters
pdf Probability density function
plot Plot probability distribution object
proflik Profile likelihood function for probability distribution
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random Random numbers
std Standard deviation of probability distribution
truncate Truncate probability distribution object
var Variance of probability distribution

Examples
Create a Rician Distribution Object Using Default Parameters

Create a Rician distribution object using the default parameter values.

pd = makedist('Rician')

pd = 
  RicianDistribution

  Rician distribution
        s = 1
    sigma = 1

Create a Rician Distribution Object Using Specified Parameters

Create a Rician distribution object by specifying the parameter values.

pd = makedist('Rician','s',0,'sigma',2)

pd = 
  RicianDistribution

  Rician distribution
        s = 0
    sigma = 2

Compute the mean of the distribution.

m = mean(pd)

m = 2.5066

Version History
Introduced in R2013a

See Also
makedist | fitdist | Distribution Fitter

Topics
“Rician Distribution” on page B-145
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StableDistribution
Stable probability distribution object

Description
StableDistribution is an object consisting of parameters, a model description, and sample data
for a stable probability distribution.

The stable distribution uses the following parameters.

Parameter Description Support
alpha First shape parameter 0 < α ≤ 2
beta Second shape parameter -1 ≤ β ≤ 1
gam Scale parameter 0 < γ < ∞
delta Location parameter -∞ < δ < ∞

Creation
There are several ways to create a StableDistribution probability distribution object.

• Create a distribution with specified parameter values using makedist.
• Fit a distribution to data using fitdist.
• Interactively fit a distribution to data using the Distribution Fitter app.

Properties
Distribution Parameters

alpha — First shape parameter
scalar value in the range (0,2]

First shape parameter of the stable distribution, specified as a scalar value in the range (0,2].
Data Types: single | double

beta — Second shape parameter
scalar value in the range [-1,1]

Second shape parameter of the stable distribution, specified as a scalar value in the range [-1,1].
Data Types: single | double

gam — Scale parameter
scalar value in the range (0,∞)

Scale parameter of the stable distribution, specified as a scalar value in the range (0,∞).
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Data Types: single | double

delta — Location parameter
scalar value

Location parameter of the stable distribution, specified as a scalar value.
Data Types: single | double

Distribution Characteristics

IsTruncated — Logical flag for truncated distribution
0 | 1

This property is read-only.

Logical flag for truncated distribution, specified as a logical value. If IsTruncated equals 0, the
distribution is not truncated. If IsTruncated equals 1, the distribution is truncated.
Data Types: logical

NumParameters — Number of parameters
positive integer value

This property is read-only.

Number of parameters for the probability distribution, specified as a positive integer value.
Data Types: double

ParameterCovariance — Covariance matrix of the parameter estimates
matrix of scalar values

This property is read-only.

Covariance matrix of the parameter estimates, specified as a p-by-p matrix, where p is the number of
parameters in the distribution. The (i,j) element is the covariance between the estimates of the ith
parameter and the jth parameter. The (i,i) element is the estimated variance of the ith parameter. If
parameter i is fixed rather than estimated by fitting the distribution to data, then the (i,i) elements
of the covariance matrix are 0.
Data Types: double

ParameterIsFixed — Logical flag for fixed parameters
array of logical values

This property is read-only.

Logical flag for fixed parameters, specified as an array of logical values. If 0, the corresponding
parameter in the ParameterNames array is not fixed. If 1, the corresponding parameter in the
ParameterNames array is fixed.
Data Types: logical

ParameterValues — Distribution parameter values
vector of scalar values

This property is read-only.
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Distribution parameter values, specified as a vector of scalar values.
Data Types: single | double

Truncation — Truncation interval
vector of scalar values

This property is read-only.

Truncation interval for the probability distribution, specified as a vector of scalar values containing
the lower and upper truncation boundaries.
Data Types: single | double

Other Object Properties

DistributionName — Probability distribution name
character vector

This property is read-only.

Probability distribution name, specified as a character vector.
Data Types: char

InputData — Data used for distribution fitting
structure

This property is read-only.

Data used for distribution fitting, specified as a structure containing the following:

• data: Data vector used for distribution fitting.
• cens: Censoring vector, or empty if none.
• freq: Frequency vector, or empty if none.

Data Types: struct

ParameterDescription — Distribution parameter descriptions
cell array of character vectors

This property is read-only.

Distribution parameter descriptions, specified as a cell array of character vectors. Each cell contains
a short description of one distribution parameter.
Data Types: char

ParameterNames — Distribution parameter names
cell array of character vectors

This property is read-only.

Distribution parameter names, specified as a cell array of character vectors.
Data Types: char
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Object Functions
cdf Cumulative distribution function
icdf Inverse cumulative distribution function
iqr Interquartile range of probability distribution
mean Mean of probability distribution
median Median of probability distribution
negloglik Negative loglikelihood of probability distribution
paramci Confidence intervals for probability distribution parameters
pdf Probability density function
plot Plot probability distribution object
proflik Profile likelihood function for probability distribution
random Random numbers
std Standard deviation of probability distribution
truncate Truncate probability distribution object
var Variance of probability distribution

Examples

Create a Stable Distribution Object Using Default Parameters

Create a stable distribution object using the default parameter values.

pd = makedist('Stable')

pd = 
  StableDistribution

  Stable distribution
    alpha = 2
     beta = 0
      gam = 1
    delta = 0

Create a Stable Distribution Object Using Specified Parameters

Create a stable distribution object by specifying the parameter values alpha = 0.5, beta = 0, gam
= 1, and delta = 0.

pd = makedist('Stable','alpha',0.5,'beta',0,'gam',1,'delta',0);

Calculate the mean of the distribution.

m = mean(pd)

m = NaN

The mean of the stable distribution is undefined for values of alpha less than or equal to 1.
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Version History
Introduced in R2016a

See Also
makedist | fitdist | Distribution Fitter

Topics
“Stable Distribution” on page B-147
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stats
Analysis of variance (ANOVA) table

Syntax
s = stats(aov)
s = stats(aov,type)
s = stats(aov,Component=sstype)
[s,ems] = stats( ___ )

Description
s = stats(aov) returns a component ANOVA table for the anova object aov. The component
ANOVA table contains statistics for the model terms, error, and total. For more information, see s.

s = stats(aov,type) specifies whether to return a component or summary ANOVA table. The
summary ANOVA table includes summary statistics for the linear and nonlinear model terms,
regression, error, and total. For more information, see s.

s = stats(aov,Component=sstype) specifies the sum of squares type used to create the
component table.

[s,ems] = stats( ___ ) also returns a table of information about the expected mean squares ems
for each term and the error. If you specify the sstype in the call to stats, then the software creates
the ems table with the specified sum of squares type.

Examples

Display Summary Table for Two-Way ANOVA

Load popcorn yield data.

load popcorn.mat

The columns of the 6-by-3 matrix popcorn contain popcorn yield observations in cups for the brands
Gourmet, National, and Generic. The first three rows of popcorn correspond to popcorn that was
popped using an air popper and the last three rows correspond to popcorn popped in oil.

Create string arrays of factor values for the brand and type of popper using the repmat function.

brand = [repmat("Gourmet",6,1); repmat("National",6,1); repmat("Generic",6,1)];
popperType = repmat(["Air";"Air";"Air";"Oil";"Oil";"Oil"], [3, 1]);
factors = {brand,popperType};

Perform a two-way ANOVA to test the null hypothesis that the mean popcorn yield is not affected by
the brand of popcorn and popper type.

aov = anova(factors,popcorn(:),FactorNames=["Brand","PopperType"],ModelSpecification="interactions")

aov = 
2-way anova, constrained (Type III) sums of squares.
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Y ~ 1 + Brand*PopperType

                        SumOfSquares    DF    MeanSquares     F        pValue  
                        ____________    __    ___________    ____    __________

    Brand                    15.75       2        7.875      56.7     7.679e-07
    PopperType                 4.5       1          4.5      32.4    0.00010037
    Brand:PopperType      0.083333       2     0.041667       0.3       0.74622
    Error                   1.6667      12      0.13889                        
    Total                       22      17                                     

  Properties, Methods

By default, anova displays a component ANOVA table.

Generate a summary ANOVA table.

s = stats(aov,"summary")

s=5×5 table
                  SumOfSquares    DF    MeanSquares      F        pValue  
                  ____________    __    ___________    _____    __________

    Linear             20.25       3         6.75       48.6    5.4835e-07
    NonLinear       0.083333       2     0.041667        0.3       0.74622
    Regression        20.333       5       4.0667      29.28    2.5065e-06
    Error             1.6667      12      0.13889                         
    Total                 22      17       1.2941                         

The row Linear corresponds to the terms Brand and PopperType in the ANOVA model. The small
p-value in the Linear row indicates that Brand and PopperType have a statistically significant
combined effect on the popcorn yield. The row NonLinear corresponds to the term
Brand:PopperType. The large p-value in the NonLinear row indicates that the interaction term
does not have a statistically significant effect on the popcorn yield. The small p-value in the row
Regression indicates that the ANOVA model is a better predictor of the response data than the
mean of the data.

Display Expected Mean Squares Table for Two-Way ANOVA

Load the sample car data.

load carsmall

Data for the country of origin, model year, and mileage is stored in the variables Origin,
Model_Year, and MPG, respectively.

Perform a two-way ANOVA to test the null hypothesis that mean mileage is not affected by the
country of origin or model year.

aov = anova({Origin, Model_Year},MPG,RandomFactors=[1 2],FactorNames=["Origin" "Year"])
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aov = 
2-way anova, constrained (Type III) sums of squares.

Y ~ 1 + Origin + Year

              SumOfSquares    DF    MeanSquares      F         pValue  
              ____________    __    ___________    ______    __________

    Origin       1078.1        5      215.62       10.675    5.3303e-08
    Year         2638.4        2      1319.2       65.312    5.5975e-18
    Error          1737       86      20.198                           
    Total        6005.3       93                                       

  Properties, Methods

Display an expected mean squares table for the ANOVA.

[~,ems] = stats(aov)

ems=3×5 table
                Type         ExpectedMeanSquares        MeanSquaresDenominator    DFDenominator    FDenominator
              ________    __________________________    ______________________    _____________    ____________

    Origin    "random"    "9.159*V(Origin)+V(Error)"            20.198                  86          MS(Error)  
    Year      "random"    "29.5014*V(Year)+V(Error)"            20.198                  86          MS(Error)  
    Error     "random"    "V(Error)"                                                                           

The formulas for the expected mean squares of the random factors Origin and Year contain terms
for their respective variance components. You can use the expected mean squares formulas to
compare how much of the expected mean squares is due to the variance in the error and how much is
due to the variance components of the random terms.

Input Arguments
aov — Analysis of variance results
anova object

Analysis of variance results, specified as an anova object. The properties of aov contain the factors
and response data used by stats to compute the statistics in the ANOVA table.

type — Type of ANOVA table
"component" (default) | "summary"

Type of ANOVA table, specified as "component" or "summary".
Example: "summary"
Data Types: char | string

sstype — Type of sum of squares
"three" (default) | "two" | "one" | "hierarchical"
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Type of the sum of squares used to perform the ANOVA, specified as "three", "two", "one", or
"hierarchical". The stats function ignores sstype unless the ANOVA type is "component". For
a model containing main effects but no interactions, the value of sstype influences the computations
on the unbalanced data only.

The sum of squares of a term (SSTerm) is defined as the reduction in the sum of squares error (SSE)
obtained by adding the term to a model that excludes it. The formula for the sum of squares of a term
Term has the form

SSTerm = ∑
i = 1

n
(yi− fexcl(g1, ..., gN))2

⚬
SSEfexcl

− ∑
i = 1

n
(yi− f incl(g1, ..., gN))2

⚬
SSEfincl

where n is the number of observations, yi are the response data, g1, ..., gN are the factors used to
perform the ANOVA, fexcl is a model that excludes Term, and f incl is a model that includes Term. Both
fexcl and f incl are specified by SumOfSquaresType. The variables SSEfexcl and SSEf incl are the sum
of squares errors for fexcl and f incl, respectively. You can specify fexcl and f incl using one of the
options for SumOfSquaresType described in the following table.

Option Type of Sum of Squares
"three" (default) f incl is the full ANOVA model specified in the

property Formula. fexcl is a model composed of
all terms in f incl except Term. The model fexcl has
the same sigma-restricted coding as f incl. This
type of sum of squares is known as Type III.

"two" fexcl is a model composed of all terms in the
ANOVA model specified in the property Formula
that do not contain Term. If Term is a continuous
term, then powers of Term are treated as
separate terms that do not contain Term. f incl is a
model composed of Term and all the terms in
fexcl. This type of sum of squares is known as
Type II.

"one" fexcl is a model composed of all the terms that
precede Term in the ANOVA model specified in
the property Formula. f incl is a model composed
of Term and all the terms in fexcl. This type of
sum of squares is known as Type I.

"hierarchical" fexcl and f incl are defined as in Type II, except
powers of Term are treated as terms that contain
Term.

Example: Component="hierarchical"
Data Types: char | string
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Output Arguments
s — ANOVA statistics
table

ANOVA statistics, returned as a table.

The contents of s depend on the ANOVA type specified in type.

• If type is "component", then s contains ANOVA statistics for each variable in the model except
the constant (intercept) term. The table includes these columns for each variable:

Column Description
SumOfSquares Sum of squares explained by the term and calculated

depending on sstype.
DF Degrees of freedom

• DF of a numeric variable is 1.
• DF of a categorical variable is the number of dummy

variables created for the category (number of categories –
1).

• DF of an error term is the difference between the DF of the
total and the sum of the DF for the model terms.

• DF of the total is aov.NumObservations–1.
MeanSquares Mean squares, defined by MeanSquares =

SumOfSquares/DF.

MeanSquares for the error term is the mean squared error
(MSE).

F F-statistic value to test the null hypothesis that the
corresponding coefficient is zero; computed by F =
MeanSquares/MSE.

When the null hypothesis is true, the F-statistic follows the F-
distribution.

pValue p-value of the F-statistic value

• If type is "summary", then s contains summary statistics of grouped terms for each row. The
summary statistics are calculated using Type I sum of squares. The table includes the same
columns as "component" and these rows:

Row Description
Total Total statistics

• SumOfSquares — Total sum of squares, which is the sum
of the squared deviations of the response around its mean

• DF — Sum of degrees of freedom of Regression and
Error
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Row Description
Regression Statistics for the model as a whole

• SumOfSquares — Model sum of squares, which is the sum
of the squared deviations of the fitted value around the
response mean.

• F and pValue — These values provide a test of whether the
model as a whole fits significantly better than a degenerate
model consisting of only a constant term.

Linear Statistics for linear terms

• SumOfSquares — Sum of squares for linear terms, which
is the difference between the model sum of squares and the
sum of squares for nonlinear terms.

• F and pValue — These values provide a test of whether the
model with only linear terms fits better than a degenerate
model consisting of only a constant term. stats uses the
mean squared error that is based on the full model to
compute this F-value, so the F-value obtained by dropping
the nonlinear terms and repeating the test is not the same
as the value in this row.

NonLinear Statistics for nonlinear terms

• SumOfSquares — Sum of squares for nonlinear (higher-
order or interaction) terms, which is the increase in the
residual sum of squares obtained by keeping only the linear
terms and dropping all nonlinear terms.

• F and pValue — These values provide a test of whether the
full model fits significantly better than a smaller model
consisting of only the linear terms.

Error Statistics for error

• SumOfSquares — Residual sum of squares, which is the
sum of the squared residual values

• MeanSquares — Mean squared error, used to compute the
F-statistic values for Regression, Linear, and
NonLinear

If the data contains replications (multiple observations sharing
the same factor values), s also contains rows for LackOfFit
and PureError. LackOfFit and PureError break down
Error further.
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Row Description
LackOfFit Lack-of-fit statistics

• SumOfSquares — Sum of squares due to lack of fit, which
is the difference between the residual sum of squares and
the replication sum of squares.

• F and pValue — The F-statistic value is the ratio of lack-of-
fit MeanSquares to pure error MeanSquares. The ratio
provides a test of bias by measuring whether the variation
of the residuals is larger than the variation of the
replications. A low p-value implies that adding additional
terms to the model can improve the fit.

PureError Statistics for pure error

• SumOfSquares — Replication sum of squares, obtained by
finding the sets of points with identical predictor values,
computing the sum of squared deviations around the mean
within each set, and pooling the computed values

• MeanSquares — Model-free pure error variance estimate
of the response

ems — Estimated mean squares information
table

Estimated mean squares information, returned as a table. The argument ems contains a row for each
term, and a row for the error. The table returned by ems has the following variables.

• Type — An indicator of whether the term is fixed or random.
• ExpectedMeanSquares — A formula of the expected mean squares.
• MeanSquaresDenominator — The value of the denominator in the calculation of the F-statistic.
• DFDenominator — The value of the degrees of freedom in the calculation of the F-statistic

denominator.
• FDenominator — A formula for the denominator in the calculation of the F-statistic. The

denominator changes depending on whether aov.Formula has random interaction terms.

You can use the ems table to determine if the variance of a random term has a large effect on the
estimated mean squares.
Data Types: table

Version History
Introduced in R2022b

References
[1] Dunn, O. J., and V. A. Clark. Applied Statistics: Analysis of Variance and Regression. New York:

Wiley, 1974.

[2] Goodnight, J. H., and F. M. Speed. Computing Expected Mean Squares. Cary, NC: SAS Institute,
1978.
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[3] Seber, G. A. F., and A. J. Lee. Linear Regression Analysis. 2nd ed. Hoboken, NJ: Wiley-Interscience,
2003.

See Also
anova | varianceComponent | “N-Way ANOVA” on page 9-26 | “One-Way ANOVA” on page 9-2 |
“Two-Way ANOVA” on page 9-11
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tLocationScaleDistribution
t Location-Scale probability distribution object

Description
A tLocationScaleDistribution object consists of parameters, a model description, and sample
data for a t location-scale probability distribution.

The t location-scale distribution is useful for modeling data distributions with heavier tails (more
prone to outliers) than the normal distribution. It approaches the normal distribution as ν approaches
infinity, and smaller values of ν yield heavier tails.

The t location-scale distribution uses the following parameters.

Parameter Description Support
mu Location parameter −∞ < μ < ∞
sigma Scale parameter σ > 0
nu Shape parameter ν > 0

Creation
There are several ways to create a tLocationScaleDistribution probability distribution object.

• Create a distribution with specified parameter values using makedist.
• Fit a distribution to data using fitdist.
• Interactively fit a distribution to data using the Distribution Fitter app.

Properties
Distribution Parameters

mu — Location parameter
scalar value

Location parameter of the t location-scale distribution, specified as a scalar value.
Data Types: single | double

sigma — Scale parameter
positive scalar value

Scale parameter of the t location-scale distribution, specified as a positive scalar value.
Data Types: single | double

nu — Degrees of freedom
positive scalar value
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Degrees of freedom of the t location-scale distribution, specified as a positive scalar value.
Data Types: single | double

Distribution Characteristics

IsTruncated — Logical flag for truncated distribution
0 | 1

This property is read-only.

Logical flag for truncated distribution, specified as a logical value. If IsTruncated equals 0, the
distribution is not truncated. If IsTruncated equals 1, the distribution is truncated.
Data Types: logical

NumParameters — Number of parameters
positive integer value

This property is read-only.

Number of parameters for the probability distribution, specified as a positive integer value.
Data Types: double

ParameterCovariance — Covariance matrix of the parameter estimates
matrix of scalar values

This property is read-only.

Covariance matrix of the parameter estimates, specified as a p-by-p matrix, where p is the number of
parameters in the distribution. The (i,j) element is the covariance between the estimates of the ith
parameter and the jth parameter. The (i,i) element is the estimated variance of the ith parameter. If
parameter i is fixed rather than estimated by fitting the distribution to data, then the (i,i) elements
of the covariance matrix are 0.
Data Types: double

ParameterIsFixed — Logical flag for fixed parameters
array of logical values

This property is read-only.

Logical flag for fixed parameters, specified as an array of logical values. If 0, the corresponding
parameter in the ParameterNames array is not fixed. If 1, the corresponding parameter in the
ParameterNames array is fixed.
Data Types: logical

ParameterValues — Distribution parameter values
vector of scalar values

This property is read-only.

Distribution parameter values, specified as a vector of scalar values.
Data Types: single | double
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Truncation — Truncation interval
vector of scalar values

This property is read-only.

Truncation interval for the probability distribution, specified as a vector of scalar values containing
the lower and upper truncation boundaries.
Data Types: single | double

Other Object Properties

DistributionName — Probability distribution name
character vector

This property is read-only.

Probability distribution name, specified as a character vector.
Data Types: char

InputData — Data used for distribution fitting
structure

This property is read-only.

Data used for distribution fitting, specified as a structure containing the following:

• data: Data vector used for distribution fitting.
• cens: Censoring vector, or empty if none.
• freq: Frequency vector, or empty if none.

Data Types: struct

ParameterDescription — Distribution parameter descriptions
cell array of character vectors

This property is read-only.

Distribution parameter descriptions, specified as a cell array of character vectors. Each cell contains
a short description of one distribution parameter.
Data Types: char

ParameterNames — Distribution parameter names
cell array of character vectors

This property is read-only.

Distribution parameter names, specified as a cell array of character vectors.
Data Types: char

Object Functions
cdf Cumulative distribution function
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gather Gather properties of Statistics and Machine Learning Toolbox object from GPU
icdf Inverse cumulative distribution function
iqr Interquartile range of probability distribution
mean Mean of probability distribution
median Median of probability distribution
negloglik Negative loglikelihood of probability distribution
paramci Confidence intervals for probability distribution parameters
pdf Probability density function
plot Plot probability distribution object
proflik Profile likelihood function for probability distribution
random Random numbers
std Standard deviation of probability distribution
truncate Truncate probability distribution object
var Variance of probability distribution

Examples
Create a t Location-Scale Distribution Object Using Default Parameters

Create a t location scale distribution object using the default parameter values.

pd = makedist('tLocationScale')

pd = 
  tLocationScaleDistribution

  t Location-Scale distribution
       mu = 0
    sigma = 1
       nu = 5

Create a t Location-Scale Distribution Object Using Specified Parameters

Create a t location-scale distribution object by specifying the parameter values.

pd = makedist('tLocationScale','mu',-2,'sigma',1,'nu',20)

pd = 
  tLocationScaleDistribution

  t Location-Scale distribution
       mu = -2
    sigma =  1
       nu = 20

Compute the interquartile range of the distribution.

r = iqr(pd)

r = 1.3739
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Version History
Introduced in R2013a

Extended Capabilities
GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

Usage notes and limitations:

• tLocationScaleDistribution can be a probability distribution object fitted by using fitdist
with GPU array input arguments.

• The object functions of tLocationScaleDistribution fully support GPU arrays.

For more information, see “Run MATLAB Functions on a GPU” (Parallel Computing Toolbox).

See Also
makedist | fitdist | Distribution Fitter

Topics
“Represent Cauchy Distribution Using t Location-Scale” on page 5-112
“t Location-Scale Distribution” on page B-163
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TriangularDistribution
Triangular probability distribution object

Description
A TriangularDistribution object consists of parameters and a model description for a triangular
probability distribution.

The triangular distribution is frequently used in simulations when limited sample data is available.
The lower and upper limits represent the smallest and largest values, and the location of the peak
represents an estimate of the mode.

The triangular distribution uses the following parameters.

Parameter Description Support
A Lower limit A ≤ B
B Peak location A ≤ B ≤ C
C Upper limit C ≥ B

Creation
Create a TriangularDistribution probability distribution with specified parameter values object
using makedist.

Properties
Distribution Parameters

A — Lower limit
scalar value

Lower limit for the triangular distribution, specified as a scalar value.
Data Types: single | double

B — Peak location
scalar value

Peak location for the triangular distribution, specified as a scalar value greater than or equal to A.
Data Types: single | double

C — Upper limit
scalar value

Upper limit for the triangular distribution, specified as a scalar value greater than or equal to B.
Data Types: single | double
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Distribution Characteristics

IsTruncated — Logical flag for truncated distribution
0 | 1

This property is read-only.

Logical flag for truncated distribution, specified as a logical value. If IsTruncated equals 0, the
distribution is not truncated. If IsTruncated equals 1, the distribution is truncated.
Data Types: logical

NumParameters — Number of parameters
positive integer value

This property is read-only.

Number of parameters for the probability distribution, specified as a positive integer value.
Data Types: double

ParameterValues — Distribution parameter values
vector of scalar values

This property is read-only.

Distribution parameter values, specified as a vector of scalar values.
Data Types: single | double

Truncation — Truncation interval
vector of scalar values

This property is read-only.

Truncation interval for the probability distribution, specified as a vector of scalar values containing
the lower and upper truncation boundaries.
Data Types: single | double

Other Object Properties

DistributionName — Probability distribution name
character vector

This property is read-only.

Probability distribution name, specified as a character vector.
Data Types: char

ParameterDescription — Distribution parameter descriptions
cell array of character vectors

This property is read-only.

Distribution parameter descriptions, specified as a cell array of character vectors. Each cell contains
a short description of one distribution parameter.
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Data Types: char

ParameterNames — Distribution parameter names
cell array of character vectors

This property is read-only.

Distribution parameter names, specified as a cell array of character vectors.
Data Types: char

Object Functions
cdf Cumulative distribution function
icdf Inverse cumulative distribution function
iqr Interquartile range of probability distribution
mean Mean of probability distribution
median Median of probability distribution
plot Plot probability distribution object
pdf Probability density function
random Random numbers
std Standard deviation of probability distribution
truncate Truncate probability distribution object
var Variance of probability distribution

Examples
Create a Triangular Distribution Object Using Default Parameters

Create a triangular distribution object using the default parameter values.

pd = makedist('Triangular')

pd = 
  TriangularDistribution

A = 0, B = 0.5, C = 1

Create Triangular Distribution Object Using Specified Parameters

Create a triangular distribution object by specifying parameter values.

pd = makedist('Triangular','A',-2,'B',1,'C',5)

pd = 
  TriangularDistribution

A = -2, B = 1, C = 5

Compute the mean of the distribution.

m = mean(pd)

m = 1.3333
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Version History
Introduced in R2013a

See Also
makedist

Topics
“Generate Random Numbers Using the Triangular Distribution” on page 5-48
“Triangular Distribution” on page B-165
“Nonparametric and Empirical Probability Distributions” on page 5-31
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UniformDistribution
Uniform probability distribution object

Description
A UniformDistribution object consists of parameters and a model description for a uniform
probability distribution.

The uniform distribution has a constant probability density function between its two parameters,
Lower (the minimum) and Upper (the maximum). This distribution is appropriate for representing
round-off errors in values tabulated to a particular number of decimal places.

The uniform distribution uses the following parameters.

Parameter Description Support
Lower Lower limit −∞ < Lower < Upper
Upper Upper limit Lower < Upper < ∞

Creation
Create a UniformDistribution probability distribution with specified parameter values object
using makedist.

Properties
Distribution Parameters

Lower — Lower limit
scalar value

Lower limit for the uniform distribution, specified as a scalar value.
Data Types: single | double

Upper — Upper limit
scalar value

Upper limit for the uniform distribution, specified as a scalar value greater than Lower.
Data Types: single | double

Distribution Characteristics

IsTruncated — Logical flag for truncated distribution
0 | 1

This property is read-only.
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Logical flag for truncated distribution, specified as a logical value. If IsTruncated equals 0, the
distribution is not truncated. If IsTruncated equals 1, the distribution is truncated.
Data Types: logical

NumParameters — Number of parameters
positive integer value

This property is read-only.

Number of parameters for the probability distribution, specified as a positive integer value.
Data Types: double

ParameterValues — Distribution parameter values
vector of scalar values

This property is read-only.

Distribution parameter values, specified as a vector of scalar values.
Data Types: single | double

Truncation — Truncation interval
vector of scalar values

This property is read-only.

Truncation interval for the probability distribution, specified as a vector of scalar values containing
the lower and upper truncation boundaries.
Data Types: single | double

Other Object Properties

DistributionName — Probability distribution name
character vector

This property is read-only.

Probability distribution name, specified as a character vector.
Data Types: char

ParameterDescription — Distribution parameter descriptions
cell array of character vectors

This property is read-only.

Distribution parameter descriptions, specified as a cell array of character vectors. Each cell contains
a short description of one distribution parameter.
Data Types: char

ParameterNames — Distribution parameter names
cell array of character vectors

This property is read-only.
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Distribution parameter names, specified as a cell array of character vectors.
Data Types: char

Object Functions
cdf Cumulative distribution function
icdf Inverse cumulative distribution function
iqr Interquartile range of probability distribution
mean Mean of probability distribution
median Median of probability distribution
pdf Probability density function
plot Plot probability distribution object
random Random numbers
std Standard deviation of probability distribution
truncate Truncate probability distribution object
var Variance of probability distribution

Examples
Create a Uniform Distribution Object Using Default Parameters

Create a uniform distribution object using the default parameter values.

pd = makedist('Uniform')

pd = 
  UniformDistribution

  Uniform distribution
    Lower = 0
    Upper = 1

Create a Uniform Distribution Object Using Specified Parameters

Create a uniform distribution object by specifying parameter values.

pd = makedist('Uniform','Lower',-4,'Upper',2)

pd = 
  UniformDistribution

  Uniform distribution
    Lower = -4
    Upper =  2

Compute the interquartile range of the distribution

r = iqr(pd)

r = 3
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Version History
Introduced in R2013a

See Also
makedist

Topics
“Generate Random Numbers Using Uniform Distribution Inversion” on page 5-109
“Uniform Distribution (Continuous)” on page B-170
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WeibullDistribution
Weibull probability distribution object

Description
A WeibullDistribution object consists of parameters, a model description, and sample data for a
Weibull probability distribution.

The Weibull distribution is used in reliability and lifetime modeling, and to model the breaking
strength of materials.

The Weibull distribution uses the following parameters.

Parameter Description Support
A Scale parameter A > 0
B Shape parameter B > 0

Creation
There are several ways to create a WeibullDistribution probability distribution object.

• Create a distribution with specified parameter values using makedist.
• Fit a distribution to data using fitdist.
• Interactively fit a distribution to data using the Distribution Fitter app.

Properties
Distribution Parameters

A — Scale parameter
positive scalar value

Scale parameter of the Weibull distribution, specified as a positive scalar value.
Data Types: single | double

B — Shape parameter
positive scalar value

Shape parameter of the Weibull distribution, specified as a positive scalar value.
Data Types: single | double

Distribution Characteristics

IsTruncated — Logical flag for truncated distribution
0 | 1
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This property is read-only.

Logical flag for truncated distribution, specified as a logical value. If IsTruncated equals 0, the
distribution is not truncated. If IsTruncated equals 1, the distribution is truncated.
Data Types: logical

NumParameters — Number of parameters
positive integer value

This property is read-only.

Number of parameters for the probability distribution, specified as a positive integer value.
Data Types: double

ParameterCovariance — Covariance matrix of the parameter estimates
matrix of scalar values

This property is read-only.

Covariance matrix of the parameter estimates, specified as a p-by-p matrix, where p is the number of
parameters in the distribution. The (i,j) element is the covariance between the estimates of the ith
parameter and the jth parameter. The (i,i) element is the estimated variance of the ith parameter. If
parameter i is fixed rather than estimated by fitting the distribution to data, then the (i,i) elements
of the covariance matrix are 0.
Data Types: double

ParameterIsFixed — Logical flag for fixed parameters
array of logical values

This property is read-only.

Logical flag for fixed parameters, specified as an array of logical values. If 0, the corresponding
parameter in the ParameterNames array is not fixed. If 1, the corresponding parameter in the
ParameterNames array is fixed.
Data Types: logical

ParameterValues — Distribution parameter values
vector of scalar values

This property is read-only.

Distribution parameter values, specified as a vector of scalar values.
Data Types: single | double

Truncation — Truncation interval
vector of scalar values

This property is read-only.

Truncation interval for the probability distribution, specified as a vector of scalar values containing
the lower and upper truncation boundaries.
Data Types: single | double
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Other Object Properties

DistributionName — Probability distribution name
character vector

This property is read-only.

Probability distribution name, specified as a character vector.
Data Types: char

InputData — Data used for distribution fitting
structure

This property is read-only.

Data used for distribution fitting, specified as a structure containing the following:

• data: Data vector used for distribution fitting.
• cens: Censoring vector, or empty if none.
• freq: Frequency vector, or empty if none.

Data Types: struct

ParameterDescription — Distribution parameter descriptions
cell array of character vectors

This property is read-only.

Distribution parameter descriptions, specified as a cell array of character vectors. Each cell contains
a short description of one distribution parameter.
Data Types: char

ParameterNames — Distribution parameter names
cell array of character vectors

This property is read-only.

Distribution parameter names, specified as a cell array of character vectors.
Data Types: char

Object Functions
cdf Cumulative distribution function
gather Gather properties of Statistics and Machine Learning Toolbox object from GPU
icdf Inverse cumulative distribution function
iqr Interquartile range of probability distribution
mean Mean of probability distribution
median Median of probability distribution
negloglik Negative loglikelihood of probability distribution
paramci Confidence intervals for probability distribution parameters
pdf Probability density function
plot Plot probability distribution object
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proflik Profile likelihood function for probability distribution
random Random numbers
std Standard deviation of probability distribution
truncate Truncate probability distribution object
var Variance of probability distribution

Examples
Create a Weibull Distribution Object Using Default Parameters

Create a Weibull distribution object using the default parameter values.

pd = makedist('Weibull')

pd = 
  WeibullDistribution

  Weibull distribution
    A = 1
    B = 1

Create Weibull Distribution Object Using Specified Parameter Values

Create a Weibull distribution object by specifying the parameter values.

pd = makedist('Weibull','A',2,'B',5)

pd = 
  WeibullDistribution

  Weibull distribution
    A = 2
    B = 5

Compute the mean of the distribution.

m = mean(pd)

m = 1.8363

Version History
Introduced in R2013a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:
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• You must create a probability distribution object by fitting a probability distribution to sample data
from the fitdist function. For the usage notes and limitations of fitdist, see “Code
Generation” on page 35-2630 of fitdist.

• These object functions support code generation: cdf, icdf, iqr, mean, median, pdf, std,
truncate, and var.

For more information on code generation, see “Introduction to Code Generation” on page 34-2 and
“Code Generation for Probability Distribution Objects” on page 34-94.

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

Usage notes and limitations:

• WeibullDistribution can be a probability distribution object fitted by using fitdist with
GPU array input arguments.

• The object functions of WeibullDistribution fully support GPU arrays.

For more information, see “Run MATLAB Functions on a GPU” (Parallel Computing Toolbox).

See Also
makedist | fitdist | Distribution Fitter

Topics
“Fit Probability Distribution Objects to Grouped Data” on page 5-93
“Compare Multiple Distribution Fits” on page 5-88
“Three-Parameter Weibull Distribution” on page 5-96
“Weibull Distribution” on page B-177
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union
Class: dataset

(Not Recommended) Set union for dataset array observations

Note The dataset data type is not recommended. To work with heterogeneous data, use the
MATLAB® table data type instead. See MATLAB table documentation for more information.

Syntax
C = union(A,B)
C = union(A,B,vars)
C = union(A,B,vars,setOrder)
[C,iA,iB] = union( ___ )

Description
C = union(A,B) for dataset arrays A and B returns the combined set of observations from the two
arrays, with repetitions removed. The observations in the dataset array C are sorted.

C = union(A,B,vars) returns the combined set of observations from the two arrays, with
repetitions of unique combinations of the variables specified in vars removed. The observations in
the dataset array C are sorted by those variables.

The values for variables not specified in vars for each observation in C are taken from the
corresponding observation in A or B, or from A if there are common observations in both A and B. If
there are multiple observations in A or B that correspond to an observation in C, those values are
taken from the first occurrence.

C = union(A,B,vars,setOrder) returns the observations in C in the order specified by
setOrder.

[C,iA,iB] = union( ___ ) also returns index vectors iA and iB such that C is a sorted
combination of the values A(iA,:) and B(iB,:). If there are common observations in A and B, then
union returns only the index from A, in iA. If there are repeated observations in A or B, then the
index of the first occurrence is returned. You can use any of the previous input arguments.

Input Arguments
A,B

Input dataset arrays.

vars

String array or cell array of character vectors containing variable names, or a vector of integers
containing variable column numbers. vars indicates the variables for which union removes
repetitions of unique combinations of the variables.
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Specify vars as [] to use its default value of all variables.

setOrder

Flag indicating the sorting order for the observations in C. The possible values of setOrder are:

'sorted' Observations in C are in sorted order (default).
'stable' Observations in C are in the same order that they appear in A, then B.

Output Arguments
C

Dataset array with the combined observations of A and B, with repetitions removed. C is in sorted
order (by default), or the order specified by setOrder.

iA

Index vector, indicating the observations in A that contribute to the union. iA contains the index to
the first occurrence of any repeated observations in A.

iB

Index vector, indicating the observations in B that contribute to the union. If there are common
observations in A and B, then union returns only the index from A, in iA. iB contains the index to the
first occurrence of any repeated observations in B.

Examples

Union of Two Dataset Arrays

Load sample data.

A = dataset('XLSFile',fullfile(matlabroot,'help/toolbox/stats/examples','hospitalSmall.xlsx'));
B = dataset('XLSFile',fullfile(matlabroot,'help/toolbox/stats/examples','hospitalSmall.xlsx'),'Sheet',2);
[length(A) length(B)]

ans =

    14     8

The first dataset array, A, has 14 observations. The second dataset array, B, has 8 observations.

Return the union.

C = union(A,B);
length(C)

ans =

    21
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The union of the two dataset arrays has 21 observations, indicating that there was one observation
replicated in A and B.

See Also
dataset | intersect | ismember | setdiff | setxor | sortrows | unique

Topics
“Create a Dataset Array from a File” on page 2-63
“Merge Dataset Arrays” on page 2-86
“Dataset Arrays” on page 2-113
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unique
Class: dataset

(Not Recommended) Unique observations in dataset array

Note The dataset data type is not recommended. To work with heterogeneous data, use the
MATLAB® table data type instead. See MATLAB table documentation for more information.

Syntax
C = unique(A)
[C,ia,ic] = unique(A)
C = unique(A,vars)
[C,ia,ic] = unique(A,vars)
[...] = unique(A,vars,occurrence)
[...] = unique(...,'R2012a')
[...] = unique(...,'legacy')
[...] = unique(A,vars,setOrder)

Description

Note The behavior of dataset.unique is consistent with the MATLAB function unique. For a
demonstration of using the 'legacy' flag to preserve the behavior from R2012b and prior in your
existing code, see the documentation for unique.

C = unique(A) returns a copy of the dataset A that contains only the sorted unique observations. A
must contain only variables whose class has a unique method, including:

• numeric
• character
• logical
• categorical
• string
• cell arrays of character vectors

For a variable with multiple columns, its class's unique method must support the 'rows' flag.

[C,ia,ic] = unique(A) also returns index vectors ia and ic such that C = A(ia,:) and A =
C(ic,:).

C = unique(A,vars) returns a dataset that contains only one observation for each unique
combination of values for the variables in A specified in vars. vars is a positive integer, a vector of
positive integers, a character vector, a string array, a cell array of character vectors, or a logical
vector. C includes all variables from A. The values in C for the variables not specified in vars are
taken from the last occurrence among observations in A with each unique combination of values for
the variables specified in vars.
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[C,ia,ic] = unique(A,vars) also returns index vectors ia and ic such that C = A(ia,:) and
A(:,vars) = C(ic,vars).

[...] = unique(A,vars,occurrence) specifies which index is returned in ia in the case of
repeated observations in A. The default value is occurrence='first', which returns the index of
the first occurrence of each repeated observation in A. occurrence='last' returns the index of the
last occurrence of each repeated observation in A. The values in C for variables not specified in vars
are taken from the observations A(ia,:). Specify vars as [] to use the default value of all
variables.

[...] = unique(...,'R2012a') adopts the future behavior of unique. You can specify the flag
as the final argument with any previous syntax that accepts A, vars, or occurrence.

[...] = unique(...,'legacy') preserves the current behavior of unique. You can specify the
flag as the final argument with any previous syntax that accepts A, vars, or occurrence.

[...] = unique(A,vars,setOrder) returns the observations of C in a specific order.
setOrder='sorted' returns the values of C in sorted order. setOrder='stable' returns the
values of C in the same order as A. If there are repeated observations in A, then ia returns the index
of the first occurrence of each repeated observation. Specify vars as [] to use the default value of all
variables.

See Also
dataset | set | subsasgn

35 Functions

35-7620



unidcdf
Discrete uniform cumulative distribution function

Syntax
p = unidcdf(x,N)
p = unidcdf(x,N,'upper')

Description
p = unidcdf(x,N) returns the discrete uniform cdf at each value in x using the corresponding
maximum observable value in N. x and N can be vectors, matrices, or multidimensional arrays that
have the same size. A scalar input is expanded to a constant array with the same dimensions as the
other inputs. The maximum observable values in N must be positive integers.

p = unidcdf(x,N,'upper') returns the complement of the discrete uniform cdf at each value in
x, using an algorithm that more accurately computes the extreme upper tail probabilities.

The discrete uniform cdf is

p = F(x N) = f loor x
N I(1, ..., N)(x)

The result, p, is the probability that a single observation from the discrete uniform distribution with
maximum N will be a positive integer less than or equal to x. The values x do not need to be integers.

Examples

Compute Discrete Uniform Distribution cdf

What is the probability of drawing a number 20 or less from a hat with the numbers from 1 to 50
inside?

probability = unidcdf(20,50)

probability = 0.4000

Version History
Introduced before R2006a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.
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This function fully supports GPU arrays. For more information, see “Run MATLAB Functions on a
GPU” (Parallel Computing Toolbox).

See Also
cdf | unidpdf | unidinv | unidstat | unidrnd | mle

Topics
“Uniform Distribution (Discrete)” on page B-175
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unidinv
Discrete uniform inverse cumulative distribution function

Syntax
X = unidinv(P,N)

Description
X = unidinv(P,N) returns the smallest positive integer X such that the discrete uniform cdf
evaluated at X is equal to or exceeds P. You can think of P as the probability of drawing a number as
large as X out of a hat with the numbers 1 through N inside.

P and N can be vectors, matrices, or multidimensional arrays that have the same size, which is also
the size of X. A scalar input for N or P is expanded to a constant array with the same dimensions as
the other input. The values in P must lie on the interval [0 1] and the values in N must be positive
integers.

Examples
x = unidinv(0.7,20)
x =
    14

y = unidinv(0.7 + eps,20)
y =
    15

A small change in the first parameter produces a large jump in output. The cdf and its inverse are
both step functions. The example shows what happens at a step.

Version History
Introduced before R2006a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

This function fully supports GPU arrays. For more information, see “Run MATLAB Functions on a
GPU” (Parallel Computing Toolbox).

See Also
icdf | unidcdf | unidpdf | unidstat | unidrnd
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Topics
“Uniform Distribution (Discrete)” on page B-175
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unidpdf
Discrete uniform probability density function

Syntax
Y = unidpdf(X,N)

Description
Y = unidpdf(X,N) computes the discrete uniform pdf at each of the values in X using the
corresponding maximum observable value in N. X and N can be vectors, matrices, or multidimensional
arrays that have the same size. A scalar input is expanded to a constant array with the same
dimensions as the other inputs. The parameters in N must be positive integers.

The discrete uniform pdf is

y = f x N = 1
N I 1, ..., N x

You can think of y as the probability of observing any one number between 1 and n.

Examples
For fixed n, the uniform discrete pdf is a constant.

y = unidpdf(1:6,10)
y =
  0.1000  0.1000  0.1000  0.1000  0.1000  0.1000

Now fix x, and vary n.

likelihood = unidpdf(5,4:9)
likelihood =
  0  0.2000  0.1667  0.1429  0.1250  0.1111

Version History
Introduced before R2006a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

This function fully supports GPU arrays. For more information, see “Run MATLAB Functions on a
GPU” (Parallel Computing Toolbox).
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See Also
pdf | unidcdf | unidinv | unidstat | unidrnd

Topics
“Uniform Distribution (Discrete)” on page B-175
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unidrnd
Random numbers from discrete uniform distribution

Syntax
r = unidrnd(n)
r = unidrnd(n,sz1,...,szN)
r = unidrnd(n,sz)

Description
r = unidrnd(n) generates random numbers from the discrete uniform distribution specified by its
maximum value n.

n can be a scalar, vector, matrix, or multidimensional array.

r = unidrnd(n,sz1,...,szN) generates an array of random numbers from the discrete uniform
distribution with the scalar maximum value n, where sz1,...,szN indicates the size of each
dimension.

r = unidrnd(n,sz) generates an array of random numbers from the discrete uniform distribution
with the scalar maximum value n, where vector sz specifies size(r).

Examples

Array of Random Numbers from Several Discrete Uniform Distributions

Generate an array of random numbers from the discrete uniform distributions. For each distribution,
specify its maximum value.

Specify the maximum values of the distributions.

n = 1:10:100;

Generate random numbers from the discrete uniform distributions.

r = unidrnd(n)

r = 1×10

     1    10     3    29    26     5    17    39    78    88

Array of Random Numbers from One Discrete Uniform Distribution

Generate an array of random numbers from one discrete uniform distribution. Here, the maximum
value n is a scalar.
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Use the unidrnd function to generate random numbers from the discrete uniform distribution with
the maximum value 100. The function returns one number.

R_scalar = unidrnd(100)

R_scalar = 82

Generate a 2-by-3 array of random numbers from the same distribution by specifying the required
array dimensions.

R_array = unidrnd(100,2,3)

R_array = 2×3

    91    92    10
    13    64    28

Alternatively, specify the required array dimensions as a vector.

R_array = unidrnd(100,[2,3])

R_array = 2×3

    55    97    98
    96    16    96

Input Arguments
n — Maximum value
positive integer | array of positive integers

Maximum value, specified as a positive integer or array of positive integers.
Example: unidrnd(10)
Data Types: single | double

sz1,...,szN — Size of each dimension (as separate arguments)
integers

Size of each dimension, specified as separate arguments of integers. For example, specifying 5,3,2
generates a 5-by-3-by-2 array of random numbers from the discrete uniform distribution.

If n is an array, then the specified dimensions sz1,...,szN must match the dimensions of n.

• If you specify a single value sz1, then r is a square matrix of size sz1-by-sz1.
• If the size of any dimension is 0 or negative, then r is an empty array.
• Beyond the second dimension, unidrnd ignores trailing dimensions with a size of 1. For example,

unidrnd(n,3,1,1,1) produces a 3-by-1 vector of random numbers.

Example: 5,3,2
Data Types: single | double
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sz — Size of each dimension (as a row vector)
row vector of integers

Size of each dimension, specified as a row vector of integers. For example, specifying [5 3 2]
generates a 5-by-3-by-2 array of random numbers from the discrete uniform distribution.

If n is an array, then the specified dimensions sz must match the dimensions of n.

• If you specify a single value [sz1], then r is a square matrix of size sz1-by-sz1.
• If the size of any dimension is 0 or negative, then r is an empty array.
• Beyond the second dimension, unidrnd ignores trailing dimensions with a size of 1. For example,

unidrnd(n,[3 1 1 1]) produces a 3-by-1 vector of random numbers.

Example: [5 3 2]
Data Types: single | double

Output Arguments
r — Random numbers from discrete uniform distribution
scalar value | array of scalar values

Random numbers from the discrete uniform distribution, returned as a scalar value or an array of
scalar values.
Data Types: single | double

Alternative Functionality
• unidrnd is a function specific to discrete uniform distribution. Statistics and Machine Learning

Toolbox also offers the generic function random, which supports various probability distributions.
To use random, specify the probability distribution name and its parameters. Note that the
distribution-specific function unidrnd is faster than the generic function random.

• To generate random numbers interactively, use randtool, a user interface for random number
generation.

Version History
Introduced before R2006a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

The generated code can return a different sequence of numbers than MATLAB if either of the
following is true:

• The output is nonscalar.
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• An input parameter is invalid for the distribution.

For more information on code generation, see “Introduction to Code Generation” on page 34-2 and
“General Code Generation Workflow” on page 34-5.

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

This function fully supports GPU arrays. For more information, see “Run MATLAB Functions on a
GPU” (Parallel Computing Toolbox).

See Also
random | unidpdf | unidcdf | unidinv | unidstat

Topics
“Uniform Distribution (Discrete)” on page B-175

35 Functions

35-7630



unidstat
Discrete uniform mean and variance

Syntax
[M,V] = unidstat(N)

Description
[M,V] = unidstat(N) returns the mean and variance of the discrete uniform distribution with
minimum value 1 and maximum value N.

The mean of the discrete uniform distribution with parameter N is (N + 1)/2. The variance is (N2 –
 1)/12.

Examples
[m,v] = unidstat(1:6)
m =
  1.0000  1.5000  2.0000  2.5000  3.0000  3.5000
v =
  0  0.2500  0.6667  1.2500  2.0000  2.9167

Version History
Introduced before R2006a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

This function fully supports GPU arrays. For more information, see “Run MATLAB Functions on a
GPU” (Parallel Computing Toolbox).

See Also
unidpdf | unidcdf | unidinv | unidrnd

Topics
“Uniform Distribution (Discrete)” on page B-175
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unifcdf
Continuous uniform cumulative distribution function

Syntax
p = unifcdf(x,a,b)
p = unifcdf(x,a,b,'upper')

Description
p = unifcdf(x,a,b) returns the uniform cdf at each value in x using the corresponding lower
endpoint (minimum), a and upper endpoint (maximum), b. x, a, and b can be vectors, matrices, or
multidimensional arrays that all have the same size. A scalar input is expanded to a constant matrix
with the same dimensions as the other inputs.

p = unifcdf(x,a,b,'upper') returns the complement of the uniform cdf at each value in x,
using an algorithm that more accurately computes the extreme upper tail probabilities.

The uniform cdf is

p = F(x a, b) = x− a
b− aI a, b x

The standard uniform distribution has a = 0 and b = 1.

Examples

Compute Uniform Distribution cdf

What is the probability that an observation from a standard uniform distribution will be less than
0.75?

probability = unifcdf(0.75)

probability = 0.7500

What is the probability that an observation from a uniform distribution with a = -1 and b = 1 will be
less than 0.75?

probability = unifcdf(0.75,-1,1)

probability = 0.8750

Version History
Introduced before R2006a
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Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

This function fully supports GPU arrays. For more information, see “Run MATLAB Functions on a
GPU” (Parallel Computing Toolbox).

See Also
cdf | unifpdf | unifinv | unifstat | unifit | unifrnd

Topics
“Uniform Distribution (Continuous)” on page B-170
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unifinv
Continuous uniform inverse cumulative distribution function

Syntax
X = unifinv(P,A,B)

Description
X = unifinv(P,A,B) computes the inverse of the uniform cdf with parameters A and B (the
minimum and maximum values, respectively) at the corresponding probabilities in P. P, A, and B can
be vectors, matrices, or multidimensional arrays that all have the same size. A scalar input is
expanded to a constant array with the same dimensions as the other inputs.

The inverse of the uniform cdf is

x = F−1 p a, b = a + p a− b I 0, 1 p

The standard uniform distribution has A = 0 and B = 1.

Examples
What is the median of the standard uniform distribution?

median_value = unifinv(0.5)
median_value =
  0.5000

What is the 99th percentile of the uniform distribution between -1 and 1?

percentile = unifinv(0.99,-1,1)
percentile =
  0.9800

Version History
Introduced before R2006a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

This function fully supports GPU arrays. For more information, see “Run MATLAB Functions on a
GPU” (Parallel Computing Toolbox).
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See Also
icdf | unifcdf | unifpdf | unifstat | unifit | unifrnd

Topics
“Uniform Distribution (Continuous)” on page B-170
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unifit
Continuous uniform parameter estimates

Syntax
[ahat,bhat] = unifit(data)
[ahat,bhat,ACI,BCI] = unifit(data)
[ahat,bhat,ACI,BCI] = unifit(data,alpha)

Description
[ahat,bhat] = unifit(data) returns the maximum likelihood estimates (MLEs) of the
parameters of the uniform distribution given the data in data.

[ahat,bhat,ACI,BCI] = unifit(data) also returns 95% confidence intervals, ACI and BCI,
which are matrices with two rows. The first row contains the lower bound of the interval for each
column of the matrix data. The second row contains the upper bound of the interval.

[ahat,bhat,ACI,BCI] = unifit(data,alpha) controls the confidence level by using alpha.
For example, if alpha = 0.01, then ACI and BCI are 99% confidence intervals.

Examples
r = unifrnd(10,12,100,2);
[ahat,bhat,aci,bci] = unifit(r)
ahat =
  10.0154  10.0060
bhat =
  11.9989  11.9743
aci =
  9.9551  9.9461
  10.0154  10.0060
bci =
  11.9989  11.9743
  12.0592  12.0341

Version History
Introduced before R2006a

See Also
mle | unifpdf | unifcdf | unifinv | unifstat | unifrnd

Topics
“Uniform Distribution (Continuous)” on page B-170
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unifpdf
Continuous uniform probability density function

Syntax
y = unifpdf(x)
y = unifpdf(x,a,b)

Description
y = unifpdf(x) returns the probability density function (pdf) of the standard uniform distribution,
evaluated at the values in x.

y = unifpdf(x,a,b) returns the pdf of the continuous uniform distribution on the interval [a, b],
evaluated at the values in x.

Examples

Compute Standard and Continuous Uniform pdf

The pdf of the standard uniform distribution is constant on the interval [0,1].

Compute the pdf of 0.2, 0.4,...,1 in the standard uniform distribution.

x = 0.2:0.2:1;
y = unifpdf(x)

y = 1×5

     1     1     1     1     1

If x is not between a and b, unifpdf returns 0.

Compute the pdf of 1 through 5 in the continuous uniform distribution on the interval [2,4].

x2 = 1:5;
unifpdf(x2,2,4)

ans = 1×5

         0    0.5000    0.5000    0.5000         0

If the parameter a is larger than b, unifpdf returns NaN regardless of the x input.

unifpdf(5,10,1)

ans = NaN
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Input Arguments
x — Values at which to evaluate pdf
nonnegative scalar value | array of nonnegative scalar values

Values at which to evaluate the pdf, specified as a nonnegative scalar value or an array of
nonnegative scalar values.

• To evaluate the pdf at multiple values, specify x using an array.
• To evaluate the pdfs of multiple distributions, specify a and b using arrays.

If one or more of the input arguments x, a, and b are arrays, then the array sizes must be the same.
In this case, unifpdf expands each scalar input into a constant array of the same size as the array
inputs. Each element in y is the pdf value of the distribution specified by the corresponding elements
in a and b, evaluated at the corresponding element in x.
Example: [3 4 7 9]
Data Types: single | double

a — Lower endpoint
scalar value | array of scalar values

Lower endpoint of the uniform distribution, specified as a scalar value or an array of scalar values.

• To evaluate the pdf at multiple values, specify x using an array.
• To evaluate the pdfs of multiple distributions, specify a and b using arrays.

If one or more of the input arguments x, a, and b are arrays, then the array sizes must be the same.
In this case, unifpdf expands each scalar input into a constant array of the same size as the array
inputs. Each element in y is the pdf value of the distribution specified by the corresponding elements
in a and b, evaluated at the corresponding element in x.
Example: [0 -1 7 9]
Data Types: single | double

b — Upper endpoint
scalar value | array of scalar values

Upper endpoint of the uniform distribution, specified as a scalar value or an array of scalar values.

• To evaluate the pdf at multiple values, specify x using an array.
• To evaluate the pdfs of multiple distributions, specify a and b using arrays.

If one or more of the input arguments x, a, and b are arrays, then the array sizes must be the same.
In this case, unifpdf expands each scalar input into a constant array of the same size as the array
inputs. Each element in y is the pdf value of the distribution specified by the corresponding elements
in a and b, evaluated at the corresponding element in x.
Example: [1 1 10 10]
Data Types: single | double
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Output Arguments
y — pdf values
scalar value | array of scalar values

pdf values evaluated at the values in x, returned as a scalar value or an array of scalar values. y is the
same size as x, a, and b after any necessary scalar expansion. Each element in y is the pdf value of
the distribution specified by the corresponding elements in a and b, evaluated at the corresponding
element in x.

More About
Continuous Uniform pdf

The continuous uniform distribution is a two-parameter family of curves with a constant pdf on its
interval of support, [a, b]. The parameters a and b are the endpoints of the interval.

The continuous uniform pdf is

y = f x a, b = 1
b− aI a, b x .

The standard uniform distribution occurs when a = 0 and b = 1.

For more information, see “Uniform Distribution (Continuous)” on page B-170.

Alternative Functionality
• unifpdf is a function specific to the continuous uniform distribution. Statistics and Machine

Learning Toolbox also offers the generic function pdf, which supports various probability
distributions. To use pdf, create a UniformDistribution probability distribution object and
pass the object as an input argument or specify the probability distribution name and its
parameters. Note that the distribution-specific function unifpdf is faster than the generic
function pdf.

• Use the Probability Distribution Function app to create an interactive plot of the cumulative
distribution function (cdf) or probability density function (pdf) for a probability distribution.

Version History
Introduced before R2006a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

This function fully supports GPU arrays. For more information, see “Run MATLAB Functions on a
GPU” (Parallel Computing Toolbox).
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See Also
UniformDistribution | pdf | unifcdf | unifinv | unifstat | unifit | unifrnd

Topics
“Uniform Distribution (Continuous)” on page B-170
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unifrnd
Continuous uniform random numbers

Syntax
r = unifrnd(a,b)
r = unifrnd(a,b,sz1,...,szN)
r = unifrnd(a,b,sz)

Description
r = unifrnd(a,b) generates a random number from the continuous uniform distribution with the
lower endpoints a and upper endpoint b.

r = unifrnd(a,b,sz1,...,szN) generates an array of uniform random numbers, where
sz1,...,szN indicates the size of each dimension.

r = unifrnd(a,b,sz) generates an array of uniform random numbers, where the size vector sz
specifies size(r).

Examples

Generate Uniform Random Number

Generate a random number from the continuous uniform distribution with the lower parameter 0 and
upper parameter 1.

r = unifrnd(0,1)

r = 0.8147

Generate Uniform Random Numbers

Generate 5 random numbers from the continuous uniform distributions on the intervals (0,1), (0,2),...,
(0,5).

a1 = 0;
b1 = 1:5;
r1 = unifrnd(a1,b1)

r1 = 1×5

    0.8147    1.8116    0.3810    3.6535    3.1618

By default, unifrnd generates an array that is the same size as a and b after any necessary scalar
expansion so that all scalars are expanded to match the dimensions of the other inputs.
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If you specify array dimensions sz1,...,szN, they must match the dimensions of a and b after any
necessary scalar expansion.

Generate a 2-by-3 array of random numbers from the continuous uniform distribution with the lower
parameter 0 and upper parameter 1.

sz = [2 3];
r2 = unifrnd(0,1,sz)

r2 = 2×3

    0.0975    0.5469    0.9649
    0.2785    0.9575    0.1576

Generate 6 random numbers on the intervals (0,1), (1,2),..., (5,6).

a3 = 0:5;
b3 = 1:6;
r3 = unifrnd(a3,b3,1,6)

r3 = 1×6

    0.9706    1.9572    2.4854    3.8003    4.1419    5.4218

Input Arguments
a — Lower endpoint
scalar value | array of scalar values

Lower endpoint of the uniform distribution, specified as a scalar value or an array of scalar values.

To generate random numbers from multiple distributions, specify a and b using arrays. If both a and
b are arrays, then the array sizes must be the same. If either a or b is a scalar, then unifrnd
expands the scalar argument into a constant array of the same size as the other argument. Each
element in r is the random number generated from the distribution specified by the corresponding
elements in a and b.
Example: [0 -1 7 9]
Data Types: single | double

b — Upper endpoint
scalar value | array of scalar values

Upper endpoint of the uniform distribution, specified as a scalar value or an array of scalar values.

To generate random numbers from multiple distributions, specify a and b using arrays. If both a and
b are arrays, then the array sizes must be the same. If either a or b is a scalar, then unifrnd
expands the scalar argument into a constant array of the same size as the other argument. Each
element in r is the random number generated from the distribution specified by the corresponding
elements in a and b.
Example: [1 1 10 10]
Data Types: single | double
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sz1,...,szN — Size of each dimension (as separate arguments)
integers

Size of each dimension, specified as separate arguments of integers.

If either a or b is an array, then the specified dimensions sz1,...,szN must match the common
dimensions of a and b after any necessary scalar expansion. The default values of sz1,...,szN are
the common dimensions.

• If you specify a single value sz1, then r is a square matrix of size sz1-by-sz1.
• If the size of any dimension is 0 or negative, then r is an empty array.
• Beyond the second dimension, unifrnd ignores trailing dimensions with a size of 1. For example,

unifrnd(–3,5,3,1,1,1) produces a 3-by-1 vector of random numbers from the uniform
distribution with lower endpoint –3 and upper endpoint 5.

Example: 2,3
Data Types: single | double

sz — Size of each dimension (as a row vector)
row vector of integers

Size of each dimension, specified as a row vector of integers.

If either a or b is an array, then the specified dimensions sz must match the common dimensions of a
and b after any necessary scalar expansion. The default values of sz are the common dimensions.

• If you specify a single value [sz1], then r is a square matrix of size sz1-by-sz1.
• If the size of any dimension is 0 or negative, then r is an empty array.
• Beyond the second dimension, unifrnd ignores trailing dimensions with a size of 1. For example,

unifrnd(–3,5,[3 1 1 1]) produces a 3-by-1 vector of random numbers from the uniform
distribution with lower endpoint –3 and upper endpoint 5.

Example: [2 3]
Data Types: single | double

Output Arguments
r — Uniform random numbers
scalar value | array of scalar values

Uniform random numbers, returned as a scalar value or an array of scalar values with the dimensions
specified by sz1,...,szN or sz. Each element in r is the random number generated from the
distribution specified by the corresponding elements in a and b.

Alternative Functionality
• unifrnd is a function specific to the continuous uniform distribution. Statistics and Machine

Learning Toolbox also offers the generic function random, which supports various probability
distributions. To use random, create a UniformDistribution probability distribution object and
pass the object as an input argument or specify the probability distribution name and its
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parameters. Note that the distribution-specific function unifrnd is faster than the generic
function random.

• Use rand to generate numbers from the uniform distribution on the interval (0,1).
• To generate random numbers interactively, use randtool, a user interface for random number

generation.

Version History
Introduced before R2006a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

The generated code can return a different sequence of numbers from the sequence returned by
MATLAB if either of the following is true:

• The output is nonscalar.
• An input parameter is invalid for the distribution.

For more information on code generation, see “Introduction to Code Generation” on page 34-2 and
“General Code Generation Workflow” on page 34-5.

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

This function fully supports GPU arrays. For more information, see “Run MATLAB Functions on a
GPU” (Parallel Computing Toolbox).

See Also
UniformDistribution | rand | random | unifpdf | unifcdf | unifinv | unifstat | unifit

Topics
“Generate Random Numbers Using Uniform Distribution Inversion” on page 5-109
“Uniform Distribution (Continuous)” on page B-170
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unifstat
Continuous uniform mean and variance

Syntax
[M,V] = unifstat(A,B)

Description
[M,V] = unifstat(A,B) returns the mean of and variance for the continuous uniform distribution
using the corresponding lower endpoint (minimum), A and upper endpoint (maximum), B. Vector or
matrix inputs for A and B must have the same size, which is also the size of M and V. A scalar input for
A or B is expanded to a constant matrix with the same dimensions as the other input.

The mean of the continuous uniform distribution with parameters a and b is (a + b)/2, and the
variance is (a – b)2/12.

Examples
a = 1:6;
b = 2.*a;
[m,v] = unifstat(a,b)
m =
  1.5000  3.0000  4.5000  6.0000  7.5000  9.0000
v =
  0.0833  0.3333  0.7500  1.3333  2.0833  3.0000

Version History
Introduced before R2006a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

This function fully supports GPU arrays. For more information, see “Run MATLAB Functions on a
GPU” (Parallel Computing Toolbox).

See Also
unifpdf | unifcdf | unifinv | unifit | unifrnd

Topics
“Uniform Distribution (Continuous)” on page B-170
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unstack
Class: dataset

(Not Recommended) Unstack dataset array from single variable into multiple variables

Note The dataset data type is not recommended. To work with heterogeneous data, use the
MATLAB® table data type instead. See MATLAB table documentation for more information.

Syntax
A = unstack(B,datavar,indvar)
[A,iB] = unstack(B,datavar,indvar)
A = unstack(B,datavar,indvar,'Parameter',value)

Description
A = unstack(B,datavar,indvar) unstacks a single variable in dataset array B into multiple
variables in A. In general A contains more variables, but fewer observations, than B.

datavar specifies the data variable in B to unstack. indvar specifies an indicator variable in B that
determines which variable in A each value in datavar is unstacked into. unstack treats the
remaining variables in B as grouping variables. Each unique combination of their values defines a
group of observations in B that will be unstacked into a single observation in A.

unstack creates m data variables in A, where m is the number of group levels in indvar. The values
in indvar indicate which of those m variables receive which values from datavar. The j-th data
variable in A contains the values from datavar that correspond to observations whose indvar value
was the j-th of the m possible levels. Elements of those m variables for which no corresponding data
value in B exists contain a default value.

datavar is a positive integer, a character vector, a string scalar, or a logical vector containing a
single true value. indvar is a positive integer, a variable name, or a logical vector containing a single
true value.

[A,iB] = unstack(B,datavar,indvar) returns an index vector iB indicating the
correspondence between observations in A and those in B. For each observation in A, iB contains the
index of the first in the corresponding group of observations in B.

For more information on grouping variables, see “Grouping Variables” on page 2-46.

Input Arguments
A = unstack(B,datavar,indvar,'Parameter',value) uses the following parameter name/
value pairs to control how unstack converts variables in B to variables in A:
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'GroupVars' Grouping variables in B that define groups of observations.
groupvars is a positive integer, a vector of positive integers, a
character vector, a string array, a cell array of character vectors, or a
logical vector. The default is all variables in B not listed in datavar
or indvar.

'NewDataVarNames' A string array or cell array of character vectors containing names for
the data variables unstack should create in A. Default is the group
names of the grouping variable specified in indvar.

'AggregationFun' A function handle that accepts a subset of values from datavar and
returns a single value. stack applies this function to observations
from the same group that have the same value of indvar. The
function must aggregate the data values into a single value, and in
such cases it is not possible to recover B from A using stack. The
default is @sum for numeric data variables. For non-numeric
variables, there is no default, and you must specify
'AggregationFun' if multiple observations in the same group have
the same values of indvar.

'ConstVars' Variables in B to copy to A without unstacking. The values for these
variables in A are taken from the first observation in each group in B,
so these variables should typically be constant within each group.
ConstVars is a positive integer, a vector of positive integers, a
character vector, a string array, a cell array of character vectors, or a
logical vector. The default is no variables.

You can also specify more than one data variable in B, each of which becomes a set of m variables in
A. In this case, specify datavar as a vector of positive integers, a string array or cell array
containing variable names, or a logical vector. You may specify only one variable with indvar. The
names of each set of data variables in A are the name of the corresponding data variable in B
concatenated with the names specified in 'NewDataVarNames'. The function specified in
'AggregationFun' must return a value with a single row.

Examples
Combine several variables for estimated influenza rates into a single variable. Then unstack the
estimated influenza rates by date.

load flu
 
% FLU has a 'Date' variable, and 10 variables for estimated influenza rates
% (in 9 different regions, estimated from Google searches, plus a
% nationwide estimate from the CDC). Combine those 10 variables into an
% array that has a single data variable, 'FluRate', and an indicator
% variable, 'Region', that says which region each estimate is from.
[flu2,iflu] = stack(flu, 2:11, 'NewDataVarName','FluRate', ...
    'IndVarName','Region')
 
% The second observation in FLU is for 10/16/2005.  Find the observations
% in FLU2 that correspond to that date.
flu(2,:)
flu2(iflu==2,:)
 
% Use the 'Date' variable from that array to split 'FluRate' into 52
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% separate variables, each containing the estimated influenza rates for
% each unique date.  The new array has one observation for each region.  In
% effect, this is the original array FLU "on its side".
dateNames = cellstr(datestr(flu.Date,'mmm_DD_YYYY'));
[flu3,iflu2] = unstack(flu2, 'FluRate', 'Date', ...
    'NewDataVarNames',dateNames)
 
% Since observations in FLU3 represent regions, IFLU2 indicates the first
% occurrence in FLU2 of each region.
flu2(iflu2,:)

See Also
stack | join

Topics
“Grouping Variables” on page 2-46
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update
Package: classreg.learning.classif

Update model parameters for code generation

Syntax
updatedMdl = update(Mdl,params)

Description
Generate C/C++ code for the predict and update functions of a machine learning model by using a
coder configurer object. Create this object by using learnerCoderConfigurer and its object
function generateCode. Then you can use the update function to update model parameters in the
generated code without having to regenerate the code. This feature reduces the effort required to
regenerate, redeploy, and reverify C/C++ code when you retrain a model with new data or settings.

This flow chart shows the code generation workflow using a coder configurer. Use update for the
highlighted step.

If you do not generate code, then you do not need to use the update function. When you retrain a
model in MATLAB, the returned model already includes modified parameters.

updatedMdl = update(Mdl,params) returns an updated version of Mdl that contains new
parameters in params.

After retraining a model, use the validatedUpdateInputs function to detect modified parameters
in the retrained model and validate whether the modified parameter values satisfy the coder
attributes of the parameters. Use the output of validatedUpdateInputs, the validated parameters,
as the input params to update model parameters.

Examples

Update Parameters of SVM Classification Model in Generated Code

Train a SVM model using a partial data set and create a coder configurer for the model. Use the
properties of the coder configurer to specify coder attributes of the SVM model parameters. Use the
object function of the coder configurer to generate C code that predicts labels for new predictor data.

 update
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Then retrain the model using the whole data set and update parameters in the generated code
without regenerating the code.

Train Model

Load the ionosphere data set. This data set has 34 predictors and 351 binary responses for radar
returns, either bad ('b') or good ('g'). Train a binary SVM classification model using the first 50
observations.

load ionosphere
Mdl = fitcsvm(X(1:50,:),Y(1:50));

Mdl is a ClassificationSVM object.

Create Coder Configurer

Create a coder configurer for the ClassificationSVM model by using learnerCoderConfigurer.
Specify the predictor data X. The learnerCoderConfigurer function uses the input X to configure
the coder attributes of the predict function input. Also, set the number of outputs to 2 so that the
generated code returns predicted labels and scores.

configurer = learnerCoderConfigurer(Mdl,X(1:50,:),'NumOutputs',2);

configurer is a ClassificationSVMCoderConfigurer object, which is a coder configurer of a
ClassificationSVM object.

Specify Coder Attributes of Parameters

Specify the coder attributes of the SVM classification model parameters so that you can update the
parameters in the generated code after retraining the model. This example specifies the coder
attributes of predictor data that you want to pass to the generated code and the coder attributes of
the support vectors of the SVM model.

First, specify the coder attributes of X so that the generated code accepts any number of
observations. Modify the SizeVector and VariableDimensions attributes. The SizeVector
attribute specifies the upper bound of the predictor data size, and the VariableDimensions
attribute specifies whether each dimension of the predictor data has a variable size or fixed size.

configurer.X.SizeVector = [Inf 34];
configurer.X.VariableDimensions = [true false];

The size of the first dimension is the number of observations. In this case, the code specifies that the
upper bound of the size is Inf and the size is variable, meaning that X can have any number of
observations. This specification is convenient if you do not know the number of observations when
generating code.

The size of the second dimension is the number of predictor variables. This value must be fixed for a
machine learning model. X contains 34 predictors, so the value of the SizeVector attribute must be
34 and the value of the VariableDimensions attribute must be false.

If you retrain the SVM model using new data or different settings, the number of support vectors can
vary. Therefore, specify the coder attributes of SupportVectors so that you can update the support
vectors in the generated code.

configurer.SupportVectors.SizeVector = [250 34];
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SizeVector attribute for Alpha has been modified to satisfy configuration constraints.
SizeVector attribute for SupportVectorLabels has been modified to satisfy configuration constraints.

configurer.SupportVectors.VariableDimensions = [true false];

VariableDimensions attribute for Alpha has been modified to satisfy configuration constraints.
VariableDimensions attribute for SupportVectorLabels has been modified to satisfy configuration constraints.

If you modify the coder attributes of SupportVectors, then the software modifies the coder
attributes of Alpha and SupportVectorLabels to satisfy configuration constraints. If the
modification of the coder attributes of one parameter requires subsequent changes to other
dependent parameters to satisfy configuration constraints, then the software changes the coder
attributes of the dependent parameters.

Generate Code

To generate C/C++ code, you must have access to a C/C++ compiler that is configured properly.
MATLAB Coder locates and uses a supported, installed compiler. You can use mex -setup to view and
change the default compiler. For more details, see “Change Default Compiler”.

Use generateCode to generate code for the predict and update functions of the SVM
classification model (Mdl) with default settings.

generateCode(configurer)

generateCode creates these files in output folder:
'initialize.m', 'predict.m', 'update.m', 'ClassificationSVMModel.mat'
Code generation successful.

generateCode generates the MATLAB files required to generate code, including the two entry-point
functions predict.m and update.m for the predict and update functions of Mdl, respectively.
Then generateCode creates a MEX function named ClassificationSVMModel for the two entry-
point functions in the codegen\mex\ClassificationSVMModel folder and copies the MEX
function to the current folder.

Verify Generated Code

Pass some predictor data to verify whether the predict function of Mdl and the predict function in
the MEX function return the same labels. To call an entry-point function in a MEX function that has
more than one entry point, specify the function name as the first input argument.

[label,score] = predict(Mdl,X);
[label_mex,score_mex] = ClassificationSVMModel('predict',X);

Compare label and label_mex by using isequal.

isequal(label,label_mex)

ans = logical
   1

isequal returns logical 1 (true) if all the inputs are equal. The comparison confirms that the
predict function of Mdl and the predict function in the MEX function return the same labels.

score_mex might include round-off differences compared with score. In this case, compare
score_mex and score, allowing a small tolerance.
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find(abs(score-score_mex) > 1e-8)

ans =

  0x1 empty double column vector

The comparison confirms that score and score_mex are equal within the tolerance 1e–8.

Retrain Model and Update Parameters in Generated Code

Retrain the model using the entire data set.

retrainedMdl = fitcsvm(X,Y);

Extract parameters to update by using validatedUpdateInputs. This function detects the modified
model parameters in retrainedMdl and validates whether the modified parameter values satisfy the
coder attributes of the parameters.

params = validatedUpdateInputs(configurer,retrainedMdl);

Update parameters in the generated code.

ClassificationSVMModel('update',params)

Verify Generated Code

Compare the outputs from the predict function of retrainedMdl and the predict function in the
updated MEX function.

[label,score] = predict(retrainedMdl,X);
[label_mex,score_mex] = ClassificationSVMModel('predict',X);
isequal(label,label_mex)

ans = logical
   1

find(abs(score-score_mex) > 1e-8)

ans =

  0x1 empty double column vector

The comparison confirms that labels and labels_mex are equal, and the score values are equal
within the tolerance.

Update Parameters of ECOC Classification Model in Generated Code

Train an error-correcting output codes (ECOC) model using SVM binary learners and create a coder
configurer for the model. Use the properties of the coder configurer to specify coder attributes of the
ECOC model parameters. Use the object function of the coder configurer to generate C code that
predicts labels for new predictor data. Then retrain the model using different settings, and update
parameters in the generated code without regenerating the code.

Train Model

Load Fisher's iris data set.
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load fisheriris
X = meas;
Y = species;

Create an SVM binary learner template to use a Gaussian kernel function and to standardize
predictor data.

t = templateSVM('KernelFunction','gaussian','Standardize',true);

Train a multiclass ECOC model using the template t.

Mdl = fitcecoc(X,Y,'Learners',t);

Mdl is a ClassificationECOC object.

Create Coder Configurer

Create a coder configurer for the ClassificationECOC model by using
learnerCoderConfigurer. Specify the predictor data X. The learnerCoderConfigurer function
uses the input X to configure the coder attributes of the predict function input. Also, set the number
of outputs to 2 so that the generated code returns the first two outputs of the predict function,
which are the predicted labels and negated average binary losses.

configurer = learnerCoderConfigurer(Mdl,X,'NumOutputs',2)

configurer = 
  ClassificationECOCCoderConfigurer with properties:

   Update Inputs:
    BinaryLearners: [1x1 ClassificationSVMCoderConfigurer]
             Prior: [1x1 LearnerCoderInput]
              Cost: [1x1 LearnerCoderInput]

   Predict Inputs:
                 X: [1x1 LearnerCoderInput]

   Code Generation Parameters:
        NumOutputs: 2
    OutputFileName: 'ClassificationECOCModel'

  Properties, Methods

configurer is a ClassificationECOCCoderConfigurer object, which is a coder configurer of a
ClassificationECOC object. The display shows the tunable input arguments of predict and
update: X, BinaryLearners, Prior, and Cost.

Specify Coder Attributes of Parameters

Specify the coder attributes of predict arguments (predictor data and the name-value pair
arguments 'Decoding' and 'BinaryLoss') and update arguments (support vectors of the SVM
learners) so that you can use these arguments as the input arguments of predict and update in the
generated code.

First, specify the coder attributes of X so that the generated code accepts any number of
observations. Modify the SizeVector and VariableDimensions attributes. The SizeVector
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attribute specifies the upper bound of the predictor data size, and the VariableDimensions
attribute specifies whether each dimension of the predictor data has a variable size or fixed size.

configurer.X.SizeVector = [Inf 4];
configurer.X.VariableDimensions = [true false];

The size of the first dimension is the number of observations. In this case, the code specifies that the
upper bound of the size is Inf and the size is variable, meaning that X can have any number of
observations. This specification is convenient if you do not know the number of observations when
generating code.

The size of the second dimension is the number of predictor variables. This value must be fixed for a
machine learning model. X contains 4 predictors, so the second value of the SizeVector attribute
must be 4 and the second value of the VariableDimensions attribute must be false.

Next, modify the coder attributes of BinaryLoss and Decoding to use the 'BinaryLoss' and
'Decoding' name-value pair arguments in the generated code. Display the coder attributes of
BinaryLoss.

configurer.BinaryLoss

ans = 
  EnumeratedInput with properties:

             Value: 'hinge'
    SelectedOption: 'Built-in'
    BuiltInOptions: {1x7 cell}
        IsConstant: 1
        Tunability: 0

To use a nondefault value in the generated code, you must specify the value before generating the
code. Specify the Value attribute of BinaryLoss as 'exponential'.

configurer.BinaryLoss.Value = 'exponential';
configurer.BinaryLoss

ans = 
  EnumeratedInput with properties:

             Value: 'exponential'
    SelectedOption: 'Built-in'
    BuiltInOptions: {1x7 cell}
        IsConstant: 1
        Tunability: 1

If you modify attribute values when Tunability is false (logical 0), the software sets the
Tunability to true (logical 1).

Display the coder attributes of Decoding.

configurer.Decoding

ans = 
  EnumeratedInput with properties:

             Value: 'lossweighted'
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    SelectedOption: 'Built-in'
    BuiltInOptions: {'lossweighted'  'lossbased'}
        IsConstant: 1
        Tunability: 0

Specify the IsConstant attribute of Decoding as false so that you can use all available values in
BuiltInOptions in the generated code.

configurer.Decoding.IsConstant = false;
configurer.Decoding

ans = 
  EnumeratedInput with properties:

             Value: [1x1 LearnerCoderInput]
    SelectedOption: 'NonConstant'
    BuiltInOptions: {'lossweighted'  'lossbased'}
        IsConstant: 0
        Tunability: 1

The software changes the Value attribute of Decoding to a LearnerCoderInput object so that you
can use both 'lossweighted' and 'lossbased' as the value of 'Decoding'. Also, the software
sets the SelectedOption to 'NonConstant' and the Tunability to true.

Finally, modify the coder attributes of SupportVectors in BinaryLearners. Display the coder
attributes of SupportVectors.

configurer.BinaryLearners.SupportVectors

ans = 
  LearnerCoderInput with properties:

            SizeVector: [54 4]
    VariableDimensions: [1 0]
              DataType: 'double'
            Tunability: 1

The default value of VariableDimensions is [true false] because each learner has a different
number of support vectors. If you retrain the ECOC model using new data or different settings, the
number of support vectors in the SVM learners can vary. Therefore, increase the upper bound of the
number of support vectors.

configurer.BinaryLearners.SupportVectors.SizeVector = [150 4];

SizeVector attribute for Alpha has been modified to satisfy configuration constraints.
SizeVector attribute for SupportVectorLabels has been modified to satisfy configuration constraints.

If you modify the coder attributes of SupportVectors, then the software modifies the coder
attributes of Alpha and SupportVectorLabels to satisfy configuration constraints. If the
modification of the coder attributes of one parameter requires subsequent changes to other
dependent parameters to satisfy configuration constraints, then the software changes the coder
attributes of the dependent parameters.

Display the coder configurer.
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configurer

configurer = 
  ClassificationECOCCoderConfigurer with properties:

   Update Inputs:
    BinaryLearners: [1x1 ClassificationSVMCoderConfigurer]
             Prior: [1x1 LearnerCoderInput]
              Cost: [1x1 LearnerCoderInput]

   Predict Inputs:
                 X: [1x1 LearnerCoderInput]
        BinaryLoss: [1x1 EnumeratedInput]
          Decoding: [1x1 EnumeratedInput]

   Code Generation Parameters:
        NumOutputs: 2
    OutputFileName: 'ClassificationECOCModel'

  Properties, Methods

The display now includes BinaryLoss and Decoding as well.

Generate Code

To generate C/C++ code, you must have access to a C/C++ compiler that is configured properly.
MATLAB Coder locates and uses a supported, installed compiler. You can use mex -setup to view and
change the default compiler. For more details, see “Change Default Compiler”.

Generate code for the predict and update functions of the ECOC classification model (Mdl).

generateCode(configurer)

generateCode creates these files in output folder:
'initialize.m', 'predict.m', 'update.m', 'ClassificationECOCModel.mat'
Code generation successful.

The generateCode function completes these actions:

• Generate the MATLAB files required to generate code, including the two entry-point functions
predict.m and update.m for the predict and update functions of Mdl, respectively.

• Create a MEX function named ClassificationECOCModel for the two entry-point functions.
• Create the code for the MEX function in the codegen\mex\ClassificationECOCModel folder.
• Copy the MEX function to the current folder.

Verify Generated Code

Pass some predictor data to verify whether the predict function of Mdl and the predict function in
the MEX function return the same labels. To call an entry-point function in a MEX function that has
more than one entry point, specify the function name as the first input argument. Because you
specified 'Decoding' as a tunable input argument by changing the IsConstant attribute before
generating the code, you also need to specify it in the call to the MEX function, even though
'lossweighted' is the default value of 'Decoding'.
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[label,NegLoss] = predict(Mdl,X,'BinaryLoss','exponential');
[label_mex,NegLoss_mex] = ClassificationECOCModel('predict',X,'BinaryLoss','exponential','Decoding','lossweighted');

Compare label to label_mex by using isequal.

isequal(label,label_mex)

ans = logical
   1

isequal returns logical 1 (true) if all the inputs are equal. The comparison confirms that the
predict function of Mdl and the predict function in the MEX function return the same labels.

NegLoss_mex might include round-off differences compared to NegLoss. In this case, compare
NegLoss_mex to NegLoss, allowing a small tolerance.

find(abs(NegLoss-NegLoss_mex) > 1e-8)

ans =

  0x1 empty double column vector

The comparison confirms that NegLoss and NegLoss_mex are equal within the tolerance 1e–8.

Retrain Model and Update Parameters in Generated Code

Retrain the model using a different setting. Specify 'KernelScale' as 'auto' so that the software
selects an appropriate scale factor using a heuristic procedure.

t_new = templateSVM('KernelFunction','gaussian','Standardize',true,'KernelScale','auto');
retrainedMdl = fitcecoc(X,Y,'Learners',t_new);

Extract parameters to update by using validatedUpdateInputs. This function detects the modified
model parameters in retrainedMdl and validates whether the modified parameter values satisfy the
coder attributes of the parameters.

params = validatedUpdateInputs(configurer,retrainedMdl);

Update parameters in the generated code.

ClassificationECOCModel('update',params)

Verify Generated Code

Compare the outputs from the predict function of retrainedMdl to the outputs from the predict
function in the updated MEX function.

[label,NegLoss] = predict(retrainedMdl,X,'BinaryLoss','exponential','Decoding','lossbased');
[label_mex,NegLoss_mex] = ClassificationECOCModel('predict',X,'BinaryLoss','exponential','Decoding','lossbased');
isequal(label,label_mex)

ans = logical
   1

find(abs(NegLoss-NegLoss_mex) > 1e-8)
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ans =

  0x1 empty double column vector

The comparison confirms that label and label_mex are equal, and NegLoss and NegLoss_mex are
equal within the tolerance.

Update Parameters of SVM Regression Model in Generated Code

Train a support vector machine (SVM) model using a partial data set and create a coder configurer
for the model. Use the properties of the coder configurer to specify coder attributes of the SVM
model parameters. Use the object function of the coder configurer to generate C code that predicts
responses for new predictor data. Then retrain the model using the whole data set and update
parameters in the generated code without regenerating the code.

Train Model

Load the carsmall data set and train an SVM regression model using the first 50 observations.

load carsmall
X = [Horsepower,Weight];
Y = MPG;
Mdl = fitrsvm(X(1:50,:),Y(1:50));

Mdl is a RegressionSVM object.

Create Coder Configurer

Create a coder configurer for the RegressionSVM model by using learnerCoderConfigurer.
Specify the predictor data X. The learnerCoderConfigurer function uses the input X to configure
the coder attributes of the predict function input.

configurer = learnerCoderConfigurer(Mdl,X(1:50,:));

configurer is a RegressionSVMCoderConfigurer object, which is a coder configurer of a
RegressionSVM object.

Specify Coder Attributes of Parameters

Specify the coder attributes of the SVM regression model parameters so that you can update the
parameters in the generated code after retraining the model. This example specifies the coder
attributes of predictor data that you want to pass to the generated code and the coder attributes of
the support vectors of the SVM regression model.

First, specify the coder attributes of X so that the generated code accepts any number of
observations. Modify the SizeVector and VariableDimensions attributes. The SizeVector
attribute specifies the upper bound of the predictor data size, and the VariableDimensions
attribute specifies whether each dimension of the predictor data has a variable size or fixed size.

configurer.X.SizeVector = [Inf 2];
configurer.X.VariableDimensions = [true false];

The size of the first dimension is the number of observations. In this case, the code specifies that the
upper bound of the size is Inf and the size is variable, meaning that X can have any number of
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observations. This specification is convenient if you do not know the number of observations when
generating code.

The size of the second dimension is the number of predictor variables. This value must be fixed for a
machine learning model. X contains two predictors, so the value of the SizeVector attribute must
be two and the value of the VariableDimensions attribute must be false.

If you retrain the SVM model using new data or different settings, the number of support vectors can
vary. Therefore, specify the coder attributes of SupportVectors so that you can update the support
vectors in the generated code.

configurer.SupportVectors.SizeVector = [250 2];

SizeVector attribute for Alpha has been modified to satisfy configuration constraints.

configurer.SupportVectors.VariableDimensions = [true false];

VariableDimensions attribute for Alpha has been modified to satisfy configuration constraints.

If you modify the coder attributes of SupportVectors, then the software modifies the coder
attributes of Alpha to satisfy configuration constraints. If the modification of the coder attributes of
one parameter requires subsequent changes to other dependent parameters to satisfy configuration
constraints, then the software changes the coder attributes of the dependent parameters.

Generate Code

To generate C/C++ code, you must have access to a C/C++ compiler that is configured properly.
MATLAB Coder locates and uses a supported, installed compiler. You can use mex -setup to view and
change the default compiler. For more details, see “Change Default Compiler”.

Use generateCode to generate code for the predict and update functions of the SVM regression
model (Mdl) with default settings.

generateCode(configurer)

generateCode creates these files in output folder:
'initialize.m', 'predict.m', 'update.m', 'RegressionSVMModel.mat'
Code generation successful.

generateCode generates the MATLAB files required to generate code, including the two entry-point
functions predict.m and update.m for the predict and update functions of Mdl, respectively.
Then generateCode creates a MEX function named RegressionSVMModel for the two entry-point
functions in the codegen\mex\RegressionSVMModel folder and copies the MEX function to the
current folder.

Verify Generated Code

Pass some predictor data to verify whether the predict function of Mdl and the predict function in
the MEX function return the same predicted responses. To call an entry-point function in a MEX
function that has more than one entry point, specify the function name as the first input argument.

yfit = predict(Mdl,X);
yfit_mex = RegressionSVMModel('predict',X);

yfit_mex might include round-off differences compared with yfit. In this case, compare yfit and
yfit_mex, allowing a small tolerance.
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find(abs(yfit-yfit_mex) > 1e-6)

ans =

  0x1 empty double column vector

The comparison confirms that yfit and yfit_mex are equal within the tolerance 1e–6.

Retrain Model and Update Parameters in Generated Code

Retrain the model using the entire data set.

retrainedMdl = fitrsvm(X,Y);

Extract parameters to update by using validatedUpdateInputs. This function detects the modified
model parameters in retrainedMdl and validates whether the modified parameter values satisfy the
coder attributes of the parameters.

params = validatedUpdateInputs(configurer,retrainedMdl);

Update parameters in the generated code.

RegressionSVMModel('update',params)

Verify Generated Code

Compare the outputs from the predict function of retrainedMdl and the predict function in the
updated MEX function.

yfit = predict(retrainedMdl,X);
yfit_mex = RegressionSVMModel('predict',X);
find(abs(yfit-yfit_mex) > 1e-6)

ans =

  0x1 empty double column vector

The comparison confirms that yfit and yfit_mex are equal within the tolerance 1e-6.

Update Parameters of Regression Tree Model in Generated Code

Train a regression tree using a partial data set and create a coder configurer for the model. Use the
properties of the coder configurer to specify coder attributes of the model parameters. Use the object
function of the coder configurer to generate C code that predicts responses for new predictor data.
Then retrain the model using the entire data set, and update parameters in the generated code
without regenerating the code.

Train Model

Load the carbig data set, and train a regression tree model using half of the observations.

load carbig
X = [Displacement Horsepower Weight];
Y = MPG;

rng('default') % For reproducibility
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n = length(Y);
idxTrain = randsample(n,n/2);
XTrain = X(idxTrain,:);
YTrain = Y(idxTrain);

Mdl = fitrtree(XTrain,YTrain);

Mdl is a RegressionTree object.

Create Coder Configurer

Create a coder configurer for the RegressionTree model by using learnerCoderConfigurer.
Specify the predictor data XTrain. The learnerCoderConfigurer function uses the input XTrain
to configure the coder attributes of the predict function input. Also, set the number of outputs to 2
so that the generated code returns predicted responses and node numbers for the predictions.

configurer = learnerCoderConfigurer(Mdl,XTrain,'NumOutputs',2);

configurer is a RegressionTreeCoderConfigurer object, which is a coder configurer of a
RegressionTree object.

Specify Coder Attributes of Parameters

Specify the coder attributes of the regression tree model parameters so that you can update the
parameters in the generated code after retraining the model.

Specify the coder attributes of the X property of configurer so that the generated code accepts any
number of observations. Modify the SizeVector and VariableDimensions attributes. The
SizeVector attribute specifies the upper bound of the predictor data size, and the
VariableDimensions attribute specifies whether each dimension of the predictor data has a
variable size or fixed size.

configurer.X.SizeVector = [Inf 3];
configurer.X.VariableDimensions

ans = 1x2 logical array

   1   0

The size of the first dimension is the number of observations. Setting the value of the SizeVector
attribute to Inf causes the software to change the value of the VariableDimensions attribute to 1.
In other words, the upper bound of the size is Inf and the size is variable, meaning that the predictor
data can have any number of observations. This specification is convenient if you do not know the
number of observations when generating code.

The size of the second dimension is the number of predictor variables. This value must be fixed for a
machine learning model. Because the predictor data contains 3 predictors, the value of the
SizeVector attribute must be 3 and the value of the VariableDimensions attribute must be 0.

If you retrain the tree model using new data or different settings, the number of nodes in the tree can
vary. Therefore, specify the first dimension of the SizeVector attribute of one of these properties so
that you can update the number of nodes in the generated code: Children, CutPoint,
CutPredictorIndex, or NodeMean. The software then modifies the other properties automatically.

For example, set the first value of the SizeVector attribute of the NodeMean property to Inf. The
software modifies the SizeVector and VariableDimensions attributes of Children, CutPoint,
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and CutPredictorIndex to match the new upper bound on the number of nodes in the tree.
Additionally, the first value of the VariableDimensions attribute of NodeMean changes to 1.

configurer.NodeMean.SizeVector = [Inf 1];

SizeVector attribute for Children has been modified to satisfy configuration constraints.
SizeVector attribute for CutPoint has been modified to satisfy configuration constraints.
SizeVector attribute for CutPredictorIndex has been modified to satisfy configuration constraints.
VariableDimensions attribute for Children has been modified to satisfy configuration constraints.
VariableDimensions attribute for CutPoint has been modified to satisfy configuration constraints.
VariableDimensions attribute for CutPredictorIndex has been modified to satisfy configuration constraints.

configurer.NodeMean.VariableDimensions

ans = 1x2 logical array

   1   0

Generate Code

To generate C/C++ code, you must have access to a C/C++ compiler that is configured properly.
MATLAB Coder locates and uses a supported, installed compiler. You can use mex -setup to view and
change the default compiler. For more details, see “Change Default Compiler”.

Generate code for the predict and update functions of the regression tree model (Mdl).

generateCode(configurer)

generateCode creates these files in output folder:
'initialize.m', 'predict.m', 'update.m', 'RegressionTreeModel.mat'
Code generation successful.

The generateCode function completes these actions:

• Generate the MATLAB files required to generate code, including the two entry-point functions
predict.m and update.m for the predict and update functions of Mdl, respectively.

• Create a MEX function named RegressionTreeModel for the two entry-point functions.
• Create the code for the MEX function in the codegen\mex\RegressionTreeModel folder.
• Copy the MEX function to the current folder.

Verify Generated Code

Pass some predictor data to verify whether the predict function of Mdl and the predict function in
the MEX function return the same predicted responses. To call an entry-point function in a MEX
function that has more than one entry point, specify the function name as the first input argument.

[Yfit,node] = predict(Mdl,XTrain);
[Yfit_mex,node_mex] = RegressionTreeModel('predict',XTrain);

Compare Yfit to Yfit_mex and node to node_mex.

max(abs(Yfit-Yfit_mex),[],'all')

ans = 0

isequal(node,node_mex)
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ans = logical
   1

In general, Yfit_mex might include round-off differences compared to Yfit. In this case, the
comparison confirms that Yfit and Yfit_mex are equal.

isequal returns logical 1 (true) if all the input arguments are equal. The comparison confirms that
the predict function of Mdl and the predict function in the MEX function return the same node
numbers.

Retrain Model and Update Parameters in Generated Code

Retrain the model using the entire data set.

retrainedMdl = fitrtree(X,Y);

Extract parameters to update by using validatedUpdateInputs. This function detects the modified
model parameters in retrainedMdl and validates whether the modified parameter values satisfy the
coder attributes of the parameters.

params = validatedUpdateInputs(configurer,retrainedMdl);

Update parameters in the generated code.

RegressionTreeModel('update',params)

Verify Generated Code

Compare the output arguments from the predict function of retrainedMdl and the predict
function in the updated MEX function.

[Yfit,node] = predict(retrainedMdl,X);
[Yfit_mex,node_mex] = RegressionTreeModel('predict',X);

max(abs(Yfit-Yfit_mex),[],'all')

ans = 0

isequal(node,node_mex)

ans = logical
   1

The comparison confirms that the predicted responses and node numbers are equal.

Input Arguments
Mdl — Machine learning model
model object

Machine learning model, specified as a model object, as given in this table of supported models.

Model Model Object
Binary decision tree for multiclass classification CompactClassificationTree
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Model Model Object
SVM for one-class and binary classification CompactClassificationSVM
Linear model for binary classification ClassificationLinear
Multiclass model for SVMs and linear models CompactClassificationECOC
Binary decision tree for regression CompactRegressionTree
Support vector machine (SVM) regression CompactRegressionSVM
Linear regression RegressionLinear

For the code generation usage notes and limitations of a machine learning model, see the Code
Generation section of the model object page.

params — Parameters to update
structure

Parameters to update in the machine learning model, specified as a structure with a field for each
parameter to update.

Create params by using the validatedUpdateInputs function. This function detects modified
parameters in the retrained model, validates whether the modified parameter values satisfy the coder
attributes of the parameters, and returns the parameters to update as a structure.

The set of parameters that you can update varies depending on the machine learning model, as
described in this table.

Model Parameters to Update
Binary decision tree for
multiclass classification

Children, ClassProbability, Cost, CutPoint,
CutPredictorIndex, Prior

SVM for one-class and binary
classification

• If you train an SVM classification model (Mdl) with a linear
kernel function and discard support vectors by using
discardSupportVectors, then params can include Beta,
Bias, Cost, Mu, Prior, Scale (kernel scale parameter in
KernelParameters), and Sigma.

• Otherwise, params can include Alpha, Beta, Cost, Mu, Prior,
Scale (kernel scale parameter in KernelParameters),
Sigma, SupportVectorLabels, and SupportVectors.

• If Mdl is a one-class SVM classification model, then params
cannot include Cost or Prior.

Linear model for binary
classification

Beta, Bias, Cost, Prior

Multiclass model for SVMs and
linear models

BinaryLearners, Cost, Prior

Binary decision tree for
regression

Children, CutPoint, CutPredictorIndex, NodeMean
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Model Parameters to Update
SVM regression • If you train an SVM regression model (Mdl) with a linear kernel

function and discard support vectors by using
discardSupportVectors, then params can include Beta,
Bias, Mu, Scale (kernel scale parameter in
KernelParameters), and Sigma.

• Otherwise, params can include Alpha, Bias, Mu, Scale
(kernel scale parameter in KernelParameters), Sigma, and
SupportVectors.

Linear regression Beta, Bias

Output Arguments
updatedMdl — Updated machine learning model
model object

Updated machine learning model, returned as a model object that is the same type of object as Mdl.
The output updatedMdl is an updated version of the input Mdl that contains new parameters in
params.

Tips
• If you modify any of the name-value pair arguments listed in this table when you retrain a model,

you cannot use update to update the parameters. You must generate C/C++ code again.

Model Arguments Not Supported for Update
Binary decision tree for
multiclass classification

Arguments of fitctree — 'ClassNames',
'ScoreTransform'

SVM for one-class and binary
classification

Arguments of fitcsvm — 'ClassNames',
'KernelFunction', 'PolynomialOrder',
'ScoreTransform', 'Standardize'

Linear model for binary
classification

Arguments of fitclinear — 'ClassNames',
'ScoreTransform'

Multiclass model for SVMs
and linear models

Arguments of fitcecoc — 'ClassNames', 'Coding',
'ScoreTransform'

If you specify the binary learners in fitcecoc as template
objects (see 'Learners'), then for each binary learner, you
cannot modify the following:

• Arguments of templateSVM — 'KernelFunction',
'PolynomialOrder', 'Standardize'

• Arguments of templateLinear — 'Learner' (because
modifying the model type changes the score transform of
the binary learner)

Binary decision tree for
regression

Arguments of fitrtree — 'ResponseTransform'
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Model Arguments Not Supported for Update
SVM regression Arguments of fitrsvm — 'KernelFunction',

'PolynomialOrder', 'ResponseTransform',
'Standardize'

Linear regression Arguments of fitrlinear — 'ResponseTransform'

• In the coder configurer workflow, you use generateCode to create both the update.m entry-
point function and the MEX function for the entry-point function. Assuming the name of the MEX
function is myModel, you call update using this syntax.

myModel('update',params)

To see how the syntax described on this page is used in the entry-point function, display the
contents of the update.m and initialize.m files by using the type function.

type update.m
type initialize.m

For an example that shows the contents of the update.m and initialize.m files, see “Generate
Code Using Coder Configurer” on page 35-3020.

Algorithms
In the coder configurer workflow, the Mdl input argument of update is a model returned by
loadLearnerForCoder. This model and the updatedMdl object are reduced classification or
regression models that primarily contain properties required for prediction.

Version History
Introduced in R2018b

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• Create a coder configurer by using learnerCoderConfigurer and then generate code for
predict and update by using the object function generateCode.

• For the code generation usage notes and limitations of the machine learning model Mdl, see the
Code Generation section of the model object page.

Model Model Object
Binary decision tree for multiclass
classification

CompactClassificationTree

SVM for one-class and binary classification CompactClassificationSVM
Linear model for binary classification ClassificationLinear
Multiclass model for SVMs and linear models CompactClassificationECOC
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Model Model Object
Binary decision tree for regression CompactRegressionTree
Support vector machine (SVM) regression CompactRegressionSVM
Linear regression RegressionLinear

For more information, see “Introduction to Code Generation” on page 34-2.

See Also
validatedUpdateInputs | generateCode | learnerCoderConfigurer

Topics
“Introduction to Code Generation” on page 34-2
“Code Generation for Prediction and Update Using Coder Configurer” on page 34-92
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updateMetrics
Update performance metrics in incremental drift-aware learning model given new data

Syntax
Mdl = updateMetrics(Mdl,X,Y)
Mdl = updateMetrics(Mdl,X,Y,Name=Value)

Description
Mdl = updateMetrics(Mdl,X,Y) returns an incremental drift-aware learning model Mdl, which is
the input incremental drift-aware learning model Mdl modified to contain the model performance
metrics on the incoming predictor and response data, X and Y respectively.

When the input model is warm (Mdl.IsWarm is true), updateMetrics overwrites previously
computed metrics, stored in the Metrics property, with the new values. Otherwise, updateMetrics
stores NaN values in Metrics instead.

The input and output models have the same data type.

Mdl = updateMetrics(Mdl,X,Y,Name=Value) uses additional options specified by one or more
name-value arguments. For example, you can specify that the columns of the predictor data matrix
correspond to observations, and set observation weights.

Examples

Compute and Visualize Performance Metrics During Incremental Learning

Create the random concept data using the HelperSineGenerator and concept drift generator
HelperConceptDriftGenerator.

concept1 = HelperSineGenerator("ClassificationFunction",1,"IrrelevantFeatures",true,"TableOutput",false);
concept2 = HelperSineGenerator("ClassificationFunction",3,"IrrelevantFeatures",true,"TableOutput",false);
driftGenerator = HelperConceptDriftGenerator(concept1,concept2,15000,1000);

When ClassificationFunction is 1, HelperSineGenerator labels all points that satisfy x1 <
sin(x2) as 1, otherwise the function labels them as 0. When ClassificationFunction is 3, this is
reversed. That is, HelperSineGenerator labels all points that satisfy x1 >= sin(x2) as 1, otherwise
the function labels them as 0.

HelperConceptDriftGenerator establishes the concept drift. The object uses a sigmoid function
1./(1+exp(-4*(numobservations-position)./width)) to decide the probability of choosing
the first stream when generating data [1]. In this case, the position argument is 15000 and the width
argument is 1000. As the number of observations exceeds the position value minus half of the width,
the probability of sampling from the first stream when generating data decreases. The sigmoid
function allows a smooth transition from one stream to the other. Larger width values indicate a
larger transition period where both streams are approximately equally likely to be selected.

Initiate an incremental drift-aware model as follows:
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1 Create an incremental Naive Bayes classification model for binary classification.
2 Initiate an incremental concept drift detector that uses the Hoeffding's Bounds Drift Detection

Method with moving average (HDDMA).
3 Using the incremental linear model and the concept drift detector, instantiate an incremental

drift-aware model. Specify the training period as 5000 observations.

BaseLearner = incrementalClassificationLinear(Solver="sgd");
dd = incrementalConceptDriftDetector("hddma");
idaMdl = incrementalDriftAwareLearner(BaseLearner,DriftDetector=dd,TrainingPeriod=5000);

Preallocate the number of variables in each chunk and number of iterations for creating a stream of
data.

numObsPerChunk = 10;
numIterations = 4000;

Preallocate the variables for tracking the drift status and drift time, and storing the classification
error.

dstatus = zeros(numIterations,1);
statusname = strings(numIterations,1);
ce = array2table(zeros(numIterations,2),VariableNames=["Cumulative" "Window"]);
driftTimes = [];

Simulate a data stream with incoming chunks of 10 observations each and perform incremental drift-
aware learning. At each iteration:

1 Simulate predictor data and labels, and update the drift generator using the helper function
hgenerate.

2 Call updateMetrics to measure the cumulative performance and the performance within a
window of observations. Overwrite the previous incremental model with a new one to track
performance metrics.

3 Call fit to fit the model to the incoming chunk. Overwrite the previous incremental model with a
new one fitted to the incoming observations.

4 Track and record the drift status and the classification error for visualization purposes.

rng(12); % For reproducibility

for j = 1:numIterations
 
 % Generate data
 [driftGenerator,X,Y] = hgenerate(driftGenerator,numObsPerChunk); 

 % Update performance metrics and fit the model
 idaMdl = updateMetrics(idaMdl,X,Y); 
 idaMdl = fit(idaMdl,X,Y);

 % Record drift status and classification error
 statusname(j) = string(idaMdl.DriftStatus); 
 ce{j,:} = idaMdl.Metrics{"ClassificationError",:};
 if idaMdl.DriftDetected
       dstatus(j) = 2;  
       driftTimes(end+1) = j; 
    elseif idaMdl.WarningDetected
       dstatus(j) = 1;
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    else 
       dstatus(j) = 0;
    end   
  
end

Plot the cumulative and per window classification error. Mark the warmup and training periods, and
where the drift was introduced.

h = plot(ce.Variables);

xlim([0 numIterations])
ylim([0 0.08])
ylabel("Classification Error")
xlabel("Iteration")

xline((idaMdl.BaseLearner.EstimationPeriod+idaMdl.MetricsWarmupPeriod)/numObsPerChunk,"g-.","Estimation + Warmup Period",LineWidth=1.5)
xline((idaMdl.MetricsWarmupPeriod+idaMdl.BaseLearner.EstimationPeriod)/numObsPerChunk+driftTimes,"g-.","Estimation Period + Warmup Period",LineWidth=1.5)
xline(driftTimes,"m--","Drift",LabelVerticalAlignment="middle",LineWidth=1.5)

legend(h,ce.Properties.VariableNames)
legend(h,Location="best")

The plot suggests the following:

• updateMetrics computes the performance metrics after the estimation and metrics warm-up
period only.
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• updateMetrics computes the cumulative metrics during each iteration.
• updateMetrics computes the window metrics after processing the default metrics window size

(200) observations.
• After drift detection updateMetrics function waits for

idaMdl.BaseLearner.EstimationPeriod+idaMdl.MetricsWarmupPeriod observations to
start updating model performance metrics again.

Plot the drift status versus the iteration number.

gscatter(1:numIterations,dstatus,statusname,'gmr','o',4,'on',"Iteration","Drift Status","Filled")

Input Arguments
Mdl — Incremental drift-aware learning model
incrementalDriftAwareLearner model object

Incremental drift-aware learning model fit to streaming data, specified as an
incrementalDriftAwareLearner model object. You can create Mdl using the
incrementalDriftAwareLearner function. For more details, see the object reference page.

X — Chunk of predictor data
floating-point matrix

Chunk of predictor data to which the model is fit, specified as a floating-point matrix of n
observations and Mdl.BaseLearner.NumPredictors predictor variables.
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When Mdl.BaseLearner accepts the ObservationsIn name-value argument, the value of
ObservationsIn determines the orientation of the variables and observations. The default
ObservationsIn value is "rows", which indicates that observations in the predictor data are
oriented along the rows of X.

The length of the observation responses (or labels) Y and the number of observations in X must be
equal; Y(j) is the response (or label) of observation j (row or column) in X.

Note

• If Mdl.BaseLearner.NumPredictors = 0, updateMetrics infers the number of predictors
from X, and sets the corresponding property of the output model. Otherwise, if the number of
predictor variables in the streaming data changes from Mdl.BaseLearner.NumPredictors,
updateMetrics issues an error.

• updateMetrics supports only floating-point input predictor data. If your input data includes
categorical data, you must prepare an encoded version of the categorical data. Use dummyvar to
convert each categorical variable to a numeric matrix of dummy variables. Then, concatenate all
dummy variable matrices and any other numeric predictors. For more details, see “Dummy
Variables” on page 2-49.

Data Types: single | double

Y — Chunk of observed responses (or labels)
floating-point vector | categorical array | character array | string array | logical vector | cell array of
character vectors

Chunk of responses (or labels) to which the model is fit, specified as one of the following:

• Floating-point vector of n elements for regression models, where n is the number of rows in X.
• Categorical, character, or string array, logical vector, or cell array of character vectors for
classification models. If Y is a character array, it must have one class label per row. Otherwise, Y
must be a vector with n elements.

The length of Y and the number of observations in X must be equal; Y(j) is the response (or label) of
observation j (row or column) in X.

For classification problems:

• When Mdl.BaseLearner.ClassNames is nonempty, the following conditions apply:

• If Y contains a label that is not a member of Mdl.BaseLearner.ClassNames,
updateMetrics issues an error.

• The data type of Y and Mdl.BaseLearner.ClassNames must be the same.
• When Mdl.BaseLearner.ClassNames is empty, updateMetrics infers

Mdl.BaseLearner.ClassNames from data.

Data Types: single | double | categorical | char | string | logical | cell
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Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.
Example: ObservationsIn="columns",Weights=W specifies that the columns of the predictor
matrix correspond to observations, and the vector W contains observation weights to apply during
incremental learning.

ObservationsIn — Predictor data observation dimension
'rows' (default) | 'columns'

Predictor data observation dimension, specified as the comma-separated pair consisting of
'ObservationsIn' and 'columns' or 'rows'.

updateMetrics supports ObservationsIn only if Mdl.BaseLearner supports ObservationsIn
name-value argument.
Data Types: char | string

Weights — Chunk of observation weights
floating-point vector of positive values

Chunk of observation weights, specified as a floating-point vector of positive values. updateMetrics
weighs the observations in X with the corresponding values in Weights. The size of Weights must
equal n, which is the number of observations in X.

By default, Weights is ones(n,1).
Example: Weights=w
Data Types: double | single

Output Arguments
Mdl — Updated incremental drift-aware learning model
incrementalDriftAwareLearner model object

Updated incremental drift-aware learning model, returned as an incremental learning model object of
the same data type as the input model Mdl, incrementalDriftAwareLearner.

If the model is not warm, updateMetrics does not compute performance metrics. As a result, the
Metrics property of Mdl remains completely composed of NaN values. If the model is warm,
updateMetrics computes the cumulative and window performance metrics on the new data X and
Y, and overwrites the corresponding elements of Mdl.Metrics. All other properties of the input
model Mdl carry over to the output model Mdl. For more details, see “Performance Metrics” on page
35-7673.

Algorithms
Performance Metrics

• The updateMetrics and updateMetricsAndFit functions track model performance metrics
(Metrics) from new data when the incremental model is warm (Mdl.BaseLearner.IsWarm
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property). An incremental model becomes warm after fit or updateMetricsAndFit fits the
incremental model to MetricsWarmupPeriod observations, which is the metrics warm-up period.

If Mdl.BaseLearner.EstimationPeriod > 0, the functions estimate hyperparameters before
fitting the model to data. Therefore, the functions must process an additional EstimationPeriod
observations before the model starts the metrics warm-up period.

• The Metrics property of the incremental model stores two forms of each performance metric as
variables (columns) of a table, Cumulative and Window, with individual metrics in rows. When
the incremental model is warm, updateMetrics and updateMetricsAndFit update the metrics
at the following frequencies:

• Cumulative — The functions compute cumulative metrics since the start of model
performance tracking. The functions update metrics every time you call the functions, and base
the calculation on the entire supplied data set until a model reset.

• Window — The functions compute metrics based on all observations within a window
determined by the MetricsWindowSize name-value argument. MetricsWindowSize also
determines the frequency at which the software updates Window metrics. For example, if
MetricsWindowSize is 20, the functions compute metrics based on the last 20 observations
in the supplied data (X((end – 20 + 1):end,:) and Y((end – 20 + 1):end)).

Incremental functions that track performance metrics within a window use the following
process:

1 Store MetricsWindowSize amount of values for each specified metric, and store the
same amount of observation weights.

2 Populate elements of the metrics values with the model performance based on batches of
incoming observations, and store the corresponding observation weights.

3 When the window of observations is filled, overwrite Mdl.Metrics.Window with the
weighted average performance in the metrics window. If the window is overfilled when the
function processes a batch of observations, the latest incoming MetricsWindowSize
observations are stored, and the earliest observations are removed from the window. For
example, suppose MetricsWindowSize is 20, there are 10 stored values from a
previously processed batch, and 15 values are incoming. To compose the length 20
window, the functions use the measurements from the 15 incoming observations and the
latest 5 measurements from the previous batch.

• The software omits an observation with a NaN prediction (score for classification and response for
regression) when computing the Cumulative and Window performance metric values.

Observation Weights

For classification problems, if the prior class probability distribution is known (in other words, the
prior distribution is not empirical), updateMetrics normalizes observation weights to sum to the
prior class probabilities in the respective classes. This action implies that observation weights are the
respective prior class probabilities by default.

For regression problems or if the prior class probability distribution is empirical, the software
normalizes the specified observation weights to sum to 1 each time you call updateMetrics.

Version History
Introduced in R2022b
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See Also
predict | perObservationLoss | fit | incrementalDriftAwareLearner |
updateMetricsAndFit | loss
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updateMetrics
Update performance metrics in ECOC incremental learning classification model given new data

Syntax
Mdl = updateMetrics(Mdl,X,Y)
Mdl = updateMetrics(Mdl,X,Y,Name=Value)

Description
Given streaming data, updateMetrics measures the performance of a configured multiclass error-
correcting output codes (ECOC) classification model for incremental learning
(incrementalClassificationECOC object). updateMetrics stores the performance metrics in
the output model.

updateMetrics allows for flexible incremental learning. After you call the function to update model
performance metrics on an incoming chunk of data, you can perform other actions before you train
the model to the data. For example, you can decide whether you need to train the model based on its
performance on a chunk of data. Alternatively, you can both update model performance metrics and
train the model on the data as it arrives, in one call, by using the updateMetricsAndFit function.

To measure the model performance on a specified batch of data, call loss instead.

Mdl = updateMetrics(Mdl,X,Y) returns an incremental learning model Mdl, which is the input
incremental learning model Mdl modified to contain the model performance metrics on the incoming
predictor and response data, X and Y respectively.

When the input model is warm (Mdl.IsWarm is true), updateMetrics overwrites previously
computed metrics, stored in the Metrics property, with the new values. Otherwise, updateMetrics
stores NaN values in Metrics instead.

Mdl = updateMetrics(Mdl,X,Y,Name=Value) uses additional options specified by one or more
name-value arguments. For example, you can specify that the columns of the predictor data matrix
correspond to observations, and set observation weights.

Examples

Track Performance of Incremental Model

Train an ECOC classification model by using fitcecoc, convert it to an incremental learner, and
then track its performance to streaming data.

Load and Preprocess Data

Load the human activity data set. Randomly shuffle the data.

load humanactivity
rng(1) % For reproducibility
n = numel(actid);
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idx = randsample(n,n);
X = feat(idx,:);
Y = actid(idx);

For details on the data set, enter Description at the command line.

Train ECOC Classification Model

Fit an ECOC classification model to a random sample of half the data.

idxtt = randsample([true false],n,true);
TTMdl = fitcecoc(X(idxtt,:),Y(idxtt))

TTMdl = 
  ClassificationECOC
             ResponseName: 'Y'
    CategoricalPredictors: []
               ClassNames: [1 2 3 4 5]
           ScoreTransform: 'none'
           BinaryLearners: {10x1 cell}
               CodingName: 'onevsone'

  Properties, Methods

TTMdl is a ClassificationECOC model object representing a traditionally trained model.

Convert Trained Model

Convert the traditionally trained classification model to a model for incremental learning.

IncrementalMdl = incrementalLearner(TTMdl)

IncrementalMdl = 
  incrementalClassificationECOC

            IsWarm: 1
           Metrics: [1x2 table]
        ClassNames: [1 2 3 4 5]
    ScoreTransform: 'none'
    BinaryLearners: {10x1 cell}
        CodingName: 'onevsone'
          Decoding: 'lossweighted'

  Properties, Methods

IncrementalMdl is an incrementalClassificationECOC model. The model display shows that
the model is warm (IsWarm is 1). Therefore, updateMetrics can track model performance metrics
given data.

Track Performance Metrics

Track the model performance on the rest of the data by using the updateMetrics function. Simulate
a data stream by processing 50 observations at a time. At each iteration:
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1 Call updateMetrics to update the cumulative and window classification error of the model
given the incoming chunk of observations. Overwrite the previous incremental model to update
the Metrics property. Note that the function does not fit the model to the chunk of data—the
chunk is "new" data for the model.

2 Store the classification error and first model coefficient of the first binary learner β11.

% Preallocation
idxil = ~idxtt;
nil = sum(idxil);
numObsPerChunk = 50;
nchunk = floor(nil/numObsPerChunk);
mc = array2table(zeros(nchunk,2),VariableNames=["Cumulative","Window"]);
beta11 = [IncrementalMdl.BinaryLearners{1}.Beta(1); zeros(nchunk,1)];
Xil = X(idxil,:);
Yil = Y(idxil);

% Incremental fitting
for j = 1:nchunk
    ibegin = min(nil,numObsPerChunk*(j-1) + 1);
    iend   = min(nil,numObsPerChunk*j);
    idx = ibegin:iend;
    IncrementalMdl = updateMetrics(IncrementalMdl,Xil(idx,:),Yil(idx));
    mc{j,:} = IncrementalMdl.Metrics{"ClassificationError",:};
    beta11(j+1) = IncrementalMdl.BinaryLearners{1}.Beta(1);
end

IncrementalMdl is an incrementalClassificationECOC model object that has tracked the
model performance to observations in the data stream.

Plot a trace plot of the performance metrics and estimated coefficient β11 on separate tiles.

t = tiledlayout(2,1);
nexttile
plot(mc.Variables)
xlim([0 nchunk])
ylabel("Classification Error")
legend(mc.Properties.VariableNames)
nexttile
plot(beta11)
ylabel("\beta_{11}")
xlim([0 nchunk]);
xlabel(t,"Iteration")
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The cumulative loss is stable, whereas the window loss jumps throughout the training. β11 does not
change because updateMetrics does not fit the model to the data.

Specify Orientation of Observations and Observation Weights

Train an ECOC classification model by using fitcecoc, convert it to an incremental learner, track its
performance on streaming data, and then fit the model to the data. For incremental learning
functions, orient the observations in columns, and specify observation weights.

Load and Preprocess Data

Load the human activity data set. Randomly shuffle the data.

load humanactivity
rng(1); % For reproducibility
n = numel(actid);
idx = randsample(n,n);
X = feat(idx,:);
Y = actid(idx);

For details on the data set, enter Description at the command line.

Suppose that the data from a stationary subject (Y <= 2) has double the quality of the data from a
moving subject. Create a weight variable that assigns a weight of 2 to observations from a stationary
subject and 1 to a moving subject.
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W = ones(n,1) + (Y <=2);

Train ECOC Classification Model

Fit an ECOC classification model to a random sample of half the data. Specify observation weights.

idxtt = randsample([true false],n,true);
TTMdl = fitcecoc(X(idxtt,:),Y(idxtt),Weights=W(idxtt))

TTMdl = 
  ClassificationECOC
             ResponseName: 'Y'
    CategoricalPredictors: []
               ClassNames: [1 2 3 4 5]
           ScoreTransform: 'none'
           BinaryLearners: {10x1 cell}
               CodingName: 'onevsone'

  Properties, Methods

TTMdl is a ClassificationECOC model object representing a traditionally trained ECOC
classification model.

Convert Trained Model

Convert the traditionally trained model to a model for incremental learning.

IncrementalMdl = incrementalLearner(TTMdl)

IncrementalMdl = 
  incrementalClassificationECOC

            IsWarm: 1
           Metrics: [1x2 table]
        ClassNames: [1 2 3 4 5]
    ScoreTransform: 'none'
    BinaryLearners: {10x1 cell}
        CodingName: 'onevsone'
          Decoding: 'lossweighted'

  Properties, Methods

IncrementalMdl is an incrementalClassificationECOC model. Because class names are
specified in IncrementalMdl.ClassNames, labels encountered during incremental learning must
be in IncrementalMdl.ClassNames.

Separately Track Performance Metrics and Fit Model

Perform incremental learning on the rest of the data by using the updateMetrics and fit
functions. For incremental learning, orient the observations of the predictor data in columns. At each
iteration:

1 Simulate a data stream by processing 50 observations at a time.
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2 Call updateMetrics to update the cumulative and window classification error of the model
given the incoming chunk of observations. Overwrite the previous incremental model to update
the losses in the Metrics property. Note that the function does not fit the model to the chunk of
data—the chunk is "new" data for the model. Specify that the observations are oriented in
columns, and specify the observation weights.

3 Store the classification error.
4 Call fit to fit the model to the incoming chunk of observations. Overwrite the previous

incremental model to update the model parameters. Specify that the observations are oriented in
columns, and specify the observation weights.

% Preallocation
idxil = ~idxtt;
nil = sum(idxil);
numObsPerChunk = 50;
nchunk = floor(nil/numObsPerChunk);
mc = array2table(zeros(nchunk,2),VariableNames=["Cumulative","Window"]);
Xil = X(idxil,:)';
Yil = Y(idxil);
Wil = W(idxil);

% Incremental fitting
for j = 1:nchunk
    ibegin = min(nil,numObsPerChunk*(j-1) + 1);
    iend   = min(nil,numObsPerChunk*j);
    idx = ibegin:iend;
    IncrementalMdl = updateMetrics(IncrementalMdl,Xil(:,idx),Yil(idx), ...
        Weights=Wil(idx),ObservationsIn="columns");
    mc{j,:} = IncrementalMdl.Metrics{"ClassificationError",:};
    IncrementalMdl = fit(IncrementalMdl,Xil(:,idx),Yil(idx), ...
        Weights=Wil(idx),ObservationsIn="columns");
end

IncrementalMdl is an incrementalClassificationECOC model object trained on all the data in
the stream.

Alternatively, you can use updateMetricsAndFit to update performance metrics of the model given
a new chunk of data, and then fit the model to the data.

Plot a trace plot of the performance metrics.

plot(mc.Variables)
xlim([0 nchunk])
legend(mc.Properties.VariableNames)
ylabel("Classification Error")
xlabel("Iteration")
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The cumulative loss gradually stabilizes, whereas the window loss jumps throughout the training.

Perform Conditional Training

Incrementally train an ECOC classification model only when its performance degrades.

Load the human activity data set. Randomly shuffle the data.

load humanactivity
n = numel(actid);
rng(1) % For reproducibility
idx = randsample(n,n);
X = feat(idx,:);
Y = actid(idx);

For details on the data set, enter Description at the command line.

Configure an ECOC classification model for incremental learning so that the maximum number of
expected classes is 5, and the metrics window size is 1000. Prepare the model for updateMetrics
by fitting the model to the first 1000 observations.

Mdl = incrementalClassificationECOC(MaxNumClasses=5,MetricsWindowSize=1000);
initobs = 1000;
Mdl = fit(Mdl,X(1:initobs,:),Y(1:initobs));

Mdl is an incrementalClassificationECOC model object.
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Determine whether the model is warm by querying the model property.

isWarm = Mdl.IsWarm

isWarm = logical
   1

Mdl.IsWarm is 1; therefore, Mdl is warm.

Perform incremental learning, with conditional fitting, by following this procedure for each iteration:

• Simulate a data stream by processing a chunk of 100 observations at a time.
• Update the model performance on the incoming chunk of data.
• Fit the model to the chunk of data only when the misclassification error rate is greater than 0.05.
• When tracking performance and fitting, overwrite the previous incremental model.
• Store the misclassification error rate and the first model coefficient of the first binary learner β11

to see how they evolve during training.
• Track when fit trains the model.

% Preallocation
numObsPerChunk = 100;
nchunk = floor((n - initobs)/numObsPerChunk);
beta11 = zeros(nchunk,1);
ce = array2table(nan(nchunk,2),VariableNames=["Cumulative","Window"]);
trained = false(nchunk,1);

% Incremental fitting
for j = 1:nchunk
    ibegin = min(n,numObsPerChunk*(j-1) + 1 + initobs);
    iend = min(n,numObsPerChunk*j + initobs);
    idx = ibegin:iend;
    Mdl = updateMetrics(Mdl,X(idx,:),Y(idx));
    ce{j,:} = Mdl.Metrics{"ClassificationError",:};
    if ce{j,2} > 0.05
        Mdl = fit(Mdl,X(idx,:),Y(idx));
        trained(j) = true;
    end    
    beta11(j) = Mdl.BinaryLearners{1}.Beta(1);
end

Mdl is an incrementalClassificationECOC model object trained on all the data in the stream.

To see how the model performance and β11 evolve during training, plot them on separate tiles.

t = tiledlayout(2,1);
nexttile
plot(beta11)
hold on
plot(find(trained),beta11(trained),"r.")
xlim([0 nchunk])
ylabel("\beta_{11}")
legend("\beta_{11}","Training occurs",Location="best")
hold off
nexttile
plot(ce.Variables)
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yline(0.05,"--")
xlim([0 nchunk])
ylabel("Misclassification Error Rate")
legend(ce.Properties.VariableNames,Location="best")
xlabel(t,"Iteration")

The trace plot of β11 shows periods of constant values, during which the loss within the previous
observation window is at most 0.05.

Configure Incremental Model to Track Performance Metrics for Model and Binary Learners

Prepare an incremental ECOC learner by specifying the maximum number of classes. Configure the
model to track its performance and the performance of each binary learner in the model.

Create an ECOC model for incremental learning by calling incrementalClassificationECOC.
Specify a maximum of 5 expected classes in the data, and specify to update the performance metrics
of binary learners in the model.

Mdl = incrementalClassificationECOC(MaxNumClasses=5,UpdateBinaryLearnerMetrics=true);

Mdl is an incrementalClassificationECOC model. All its properties are read-only.

Display the coding design matrix.

Mdl.CodingMatrix
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ans = 5×10

     1     1     1     1     0     0     0     0     0     0
    -1     0     0     0     1     1     1     0     0     0
     0    -1     0     0    -1     0     0     1     1     0
     0     0    -1     0     0    -1     0    -1     0     1
     0     0     0    -1     0     0    -1     0    -1    -1

Each row corresponds to a class, and each column corresponds to a binary learner. For example, the
first binary learner is for classes 1 and 2, and the fourth binary learner is for classes 1 and 5, where
both learners assume class 1 as a positive class.

Determine whether the model is warm by querying the model property.

isWarm = Mdl.IsWarm

isWarm = logical
   0

Mdl.IsWarm is 0; therefore, Mdl is not warm.

Determine the number of observations that incremental fitting functions, such as fit, must process
before measuring the performance of the model by displaying the size of the metrics warm-up period.

numObsBeforeMetrics = Mdl.MetricsWarmupPeriod

numObsBeforeMetrics = 1000

Load the human activity data set. Randomly shuffle the data.

load humanactivity
n = numel(actid);
rng(1) % For reproducibility
idx = randsample(n,n);
X = feat(idx,:);
Y = actid(idx);

The response vector actid contains the activity IDs in integers: 1, 2, 3, 4, and 5 representing sitting,
standing, walking, running, and dancing, respectively. For details on the data set, enter
Description at the command line.

Implement incremental learning by performing the following actions at each iteration:

• Simulate a data stream by processing a chunk of 50 observations.
• Measure model performance metrics on the incoming chunk using updateMetrics, and

overwrite the input model.
• Fit the model to the incoming chunk, and overwrite the input model.
• Store the first model coefficient of the first binary learner β11.
• Store the misclassification error rates for the model and its binary learners.

% Preallocation
numObsPerChunk = 50;
nchunk = floor(n/numObsPerChunk);
ce = array2table(zeros(nchunk,2),VariableNames=["Cumulative","Window"]);
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beta11 = zeros(nchunk,1); 

numBinaryLearners = length(Mdl.BinaryLearners);
BinaryLearnerIsWarm = zeros(numBinaryLearners,1);
numtrainobs = zeros(nchunk,numBinaryLearners);
blMetrics = cell(numBinaryLearners,1);
for k = 1:numBinaryLearners
    blMetrics{k} = array2table(zeros(nchunk,2),VariableNames=["Cumulative","Window"]);
end

% Incremental learning
for j = 1:nchunk
    ibegin = min(n,numObsPerChunk*(j-1) + 1);
    iend   = min(n,numObsPerChunk*j);
    idx = ibegin:iend;
    Mdl = updateMetrics(Mdl,X(idx,:),Y(idx));
    ce{j,:} = Mdl.Metrics{"ClassificationError",:};
    for k = 1:numBinaryLearners
        blMetrics{k}{j,:} = Mdl.BinaryLearners{k}.Metrics{"ClassificationError",:};
    end

    Mdl = fit(Mdl,X(idx,:),Y(idx));
    beta11(j) = Mdl.BinaryLearners{1}.Beta(1);
    for k = 1:numBinaryLearners
        numtrainobs(j,k) = Mdl.BinaryLearners{k}.NumTrainingObservations;
        if Mdl.BinaryLearners{k}.IsWarm == false
            BinaryLearnerIsWarm(k) = j;
        end
    end 
end

Mdl is an incrementalClassificationECOC model object trained on all the data in the stream.

To see how the performance metrics and β11 evolve during incremental learning, plot them on
separate tiles.

figure
t = tiledlayout(2,1);
nexttile
plot(beta11)
ylabel("\beta_{11}")
xlim([0 nchunk])
nexttile
plot(ce.Variables)
ylabel("ClassificationError")
xline(numObsBeforeMetrics/numObsPerChunk,"--")
xlim([0 nchunk])
legend(ce.Properties.VariableNames)
xlabel(t,"Iteration")
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mdlIsWarm = numObsBeforeMetrics/numObsPerChunk

mdlIsWarm = 20

The plot suggests that fit always fits the model to the data, and updateMetrics does not track the
classification error until after the metrics warm-up period (20 chunks).

Plot the performance metrics of the binary learners for class 3.

bl = find(Mdl.CodingMatrix(3,:)); % Find binary learners for class 3

figure
t = tiledlayout(length(bl),1);
ax = zeros(length(bl),1);
for i = 1 : length(bl)
    ax(i) = nexttile;
    plot(blMetrics{bl(i)}.Variables)
    xline(numObsBeforeMetrics/numObsPerChunk,"--")
    xline(BinaryLearnerIsWarm(1),":")
    xlim([0 nchunk])
    positiveClass = find(Mdl.CodingMatrix(:,bl(i))==1);
    negativeClass = find(Mdl.CodingMatrix(:,bl(i))==-1);
    title(join(["Binary Learner for classes ",positiveClass," and ",negativeClass]))
end
legend(ax(1),blMetrics{bl(1)}.Properties.VariableNames,Location="best")
linkaxes(ax)
ylim([0,0.02])
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ylabel(t,"ClassificationError")
xlabel(t,"Iteration")

BinaryLearnerIsWarm(bl)

ans = 4×1

    42
    41
    51
    60

A binary learner becomes warm after the software fits the learner to 1000 observations. Because
each binary learner uses only the observations corresponding to its positive or negative classes,
binary learners become warm at different learning iterations. Also, updateMetrics updates the
Window metrics for the binary learners asynchronously.

The first plot shows that the classification error (or misclassification rate) is 0 for the binary learner
that determines an activity between sitting (class 1) and walking (class 3). The next three plots show
the misclassification rates for the three binary learners that distinguish walking (class 3) from
standing (class 2), running (class 4), and dancing (class 5), respectively. These three binary learners
have higher misclassification rates than the first binary learner.
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Input Arguments
Mdl — Incremental learning model
incrementalClassificationECOC model object

Incremental learning model whose performance is measured, specified as an
incrementalClassificationECOC model object. You can create Mdl by calling
incrementalClassificationECOC directly, or by converting a supported, traditionally trained
machine learning model using the incrementalLearner function.

If Mdl.IsWarm is false, updateMetrics does not track the performance of the model. Before
updateMetrics can track performance metrics, you must perform both of these actions:

• Fit the input model Mdl to all expected classes (see the MaxNumClasses and ClassNames
arguments of incrementalClassificationECOC).

• Fit the input model Mdl to Mdl.MetricsWarmupPeriod observations by passing Mdl and the
data to fit. For more details, see “Performance Metrics” on page 35-7691.

X — Chunk of predictor data
floating-point matrix

Chunk of predictor data, specified as a floating-point matrix of n observations and
Mdl.NumPredictors predictor variables. The value of the ObservationsIn name-value argument
determines the orientation of the variables and observations. The default ObservationsIn value is
"rows", which indicates that observations in the predictor data are oriented along the rows of X.

The length of the observation labels Y and the number of observations in X must be equal; Y(j) is the
label of observation j (row or column) in X.

Note

• If Mdl.NumPredictors = 0, updateMetrics infers the number of predictors from X, and sets
the corresponding property of the output model. Otherwise, if the number of predictor variables in
the streaming data changes from Mdl.NumPredictors, updateMetrics issues an error.

• updateMetrics supports only floating-point input predictor data. If your input data includes
categorical data, you must prepare an encoded version of the categorical data. Use dummyvar to
convert each categorical variable to a numeric matrix of dummy variables. Then, concatenate all
dummy variable matrices and any other numeric predictors. For more details, see “Dummy
Variables” on page 2-49.

Data Types: single | double

Y — Chunk of labels
categorical array | character array | string array | logical vector | floating-point vector | cell array of
character vectors

Chunk of labels, specified as a categorical, character, or string array, a logical or floating-point vector,
or a cell array of character vectors.

The length of the observation labels Y and the number of observations in X must be equal; Y(j) is the
label of observation j (row or column) in X.
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updateMetrics issues an error when one or both of these conditions are met:

• Y contains a new label and the maximum number of classes has already been reached (see the
MaxNumClasses and ClassNames arguments of incrementalClassificationECOC).

• The ClassNames property of the input model Mdl is nonempty, and the data types of Y and
Mdl.ClassNames are different.

Data Types: char | string | cell | categorical | logical | single | double

Note

If an observation (predictor or label) or weight contains at least one missing (NaN) value,
updateMetrics ignores the observation. Consequently, updateMetrics uses fewer than n
observations to compute the model performance, where n is the number of observations in X.

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.
Example: ObservationsIn="columns",Weights=W specifies that the columns of the predictor
matrix correspond to observations, and the vector W contains observation weights to apply during
incremental learning.

ObservationsIn — Predictor data observation dimension
"rows" (default) | "columns"

Predictor data observation dimension, specified as "rows" or "columns".
Example: ObservationsIn="columns"
Data Types: char | string

Weights — Chunk of observation weights
floating-point vector of positive values

Chunk of observation weights, specified as a floating-point vector of positive values. updateMetrics
weighs the observations in X with the corresponding values in Weights. The size of Weights must
equal n, which is the number of observations in X.

By default, Weights is ones(n,1).

For more details, including normalization schemes, see “Observation Weights” on page 35-7692.
Example: Weights=W specifies the observation weights as the vector W.
Data Types: double | single

Output Arguments
Mdl — Updated ECOC classification model for incremental learning
incrementalClassificationECOC model object
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Updated ECOC classification model for incremental learning, returned as an incremental learning
model object of the same data type as the input model Mdl, an incrementalClassificationECOC
object.

If the model is not warm, updateMetrics does not compute performance metrics. As a result, the
Metrics property of Mdl remains completely composed of NaN values. If the model is warm,
updateMetrics computes the cumulative and window performance metrics on the new data X and
Y, and overwrites the corresponding elements of Mdl.Metrics. All other properties of the input
model Mdl carry over to the output model Mdl. For more details, see “Performance Metrics” on page
35-7691.

Tips
• Unlike traditional training, incremental learning might not have a separate test (holdout) set.

Therefore, to treat each incoming chunk of data as a test set, pass the incremental model and
each incoming chunk to updateMetrics before training the model on the same data using fit.

Algorithms
Performance Metrics

• updateMetrics and updateMetricsAndFit track model performance metrics, specified by the
row labels of the table in Mdl.Metrics, from new data only when the incremental model is warm
(IsWarm property is true).

• If you create an incremental model by using incrementalLearner and
MetricsWarmupPeriod is 0 (default for incrementalLearner), the model is warm at
creation.

• Otherwise, an incremental model becomes warm after the fit or updateMetricsAndFit
function performs both of these actions:

• Fit the incremental model to Mdl.MetricsWarmupPeriod observations, which is the
metrics warm-up period.

• Fit the incremental model to all expected classes (see the MaxNumClasses and
ClassNames arguments of incrementalClassificationECOC).

• The Mdl.Metrics property stores two forms of each performance metric as variables (columns)
of a table, Cumulative and Window, with individual metrics in rows. When the incremental model
is warm, updateMetrics and updateMetricsAndFit update the metrics at the following
frequencies:

• Cumulative — The functions compute cumulative metrics since the start of model
performance tracking. The functions update metrics every time you call the functions and base
the calculation on the entire supplied data set.

• Window — The functions compute metrics based on all observations within a window
determined by the Mdl.MetricsWindowSize property. Mdl.MetricsWindowSize also
determines the frequency at which the software updates Window metrics. For example, if
Mdl.MetricsWindowSize is 20, the functions compute metrics based on the last 20
observations in the supplied data (X((end – 20 + 1):end,:) and Y((end – 20 +
1):end)).

Incremental functions that track performance metrics within a window use the following
process:
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1 Store a buffer of length Mdl.MetricsWindowSize for each specified metric, and store a
buffer of observation weights.

2 Populate elements of the metrics buffer with the model performance based on batches of
incoming observations, and store corresponding observation weights in the weights buffer.

3 When the buffer is filled, overwrite Mdl.Metrics.Window with the weighted average
performance in the metrics window. If the buffer is overfilled when the function processes
a batch of observations, the latest incoming Mdl.MetricsWindowSize observations enter
the buffer, and the earliest observations are removed from the buffer. For example,
suppose Mdl.MetricsWindowSize is 20, the metrics buffer has 10 values from a
previously processed batch, and 15 values are incoming. To compose the length 20
window, the function uses the measurements from the 15 incoming observations and the
latest 5 measurements from the previous batch.

• The software omits an observation with a NaN score when computing the Cumulative and
Window performance metric values.

Observation Weights

If the prior class probability distribution is known (in other words, the prior distribution is not
empirical), updateMetrics normalizes observation weights to sum to the prior class probabilities in
the respective classes. This action implies that the default observation weights are the respective
prior class probabilities.

If the prior class probability distribution is empirical, the software normalizes the specified
observation weights to sum to 1 each time you call updateMetrics.

Version History
Introduced in R2022a

See Also
Functions
fit | updateMetricsAndFit | predict | loss

Objects
incrementalClassificationECOC

Topics
“Incremental Learning Overview” on page 28-2
“Configure Incremental Learning Model” on page 28-9
“Implement Incremental Learning for Classification Using Flexible Workflow” on page 28-29

35 Functions

35-7692



updateMetrics
Update performance metrics in kernel incremental learning model given new data

Syntax
Mdl = updateMetrics(Mdl,X,Y)
Mdl = updateMetrics(Mdl,X,Y,Weights=weights)

Description
Given streaming data, updateMetrics measures the performance of a configured incremental
learning model for kernel regression (incrementalRegressionKernel object) or binary kernel
classification (incrementalClassificationKernel object). updateMetrics stores the
performance metrics in the output model.

updateMetrics allows for flexible incremental learning. After you call the function to update model
performance metrics on an incoming chunk of data, you can perform other actions before you train
the model to the data. For example, you can decide whether you need to train the model based on its
performance on a chunk of data. Alternatively, you can both update model performance metrics and
train the model on the data as it arrives, in one call, by using the updateMetricsAndFit function.

To measure the model performance on a specified batch of data, call loss instead.

Mdl = updateMetrics(Mdl,X,Y) returns an incremental learning model Mdl, which is the input
incremental learning model Mdl modified to contain the model performance metrics on the incoming
predictor and response data, X and Y respectively.

When the input model is warm (Mdl.IsWarm is true), updateMetrics overwrites previously
computed metrics, stored in the Metrics property, with the new values. Otherwise, updateMetrics
stores NaN values in Metrics instead.

The input and output models have the same data type.

Mdl = updateMetrics(Mdl,X,Y,Weights=weights) also sets observation weights.

Examples

Track Performance of Incremental Model

Train a kernel model for binary classification by using fitckernel, convert it to an incremental
learner, and then track its performance to streaming data.

Load and Preprocess Data

Load the human activity data set. Randomly shuffle the data.

load humanactivity
rng(1) % For reproducibility
n = numel(actid);
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idx = randsample(n,n);
X = feat(idx,:);
Y = actid(idx);

For details on the data set, enter Description at the command line.

Responses can be one of five classes: Sitting, Standing, Walking, Running, or Dancing. Dichotomize
the response by identifying whether the subject is moving (actid > 2).

Y = Y > 2;

Train Kernel Model for Binary Classification

Fit a kernel model for binary classification to a random sample of half the data.

idxtt = randsample([true false],n,true);
TTMdl = fitckernel(X(idxtt,:),Y(idxtt))

TTMdl = 
  ClassificationKernel
              ResponseName: 'Y'
                ClassNames: [0 1]
                   Learner: 'svm'
    NumExpansionDimensions: 2048
               KernelScale: 1
                    Lambda: 8.2967e-05
             BoxConstraint: 1

  Properties, Methods

TTMdl is a ClassificationKernel model object representing a traditionally trained kernel model
for binary classification.

Convert Trained Model

Convert the traditionally trained classification model to a model for incremental learning.

IncrementalMdl = incrementalLearner(TTMdl)

IncrementalMdl = 
  incrementalClassificationKernel

                    IsWarm: 1
                   Metrics: [1x2 table]
                ClassNames: [0 1]
            ScoreTransform: 'none'
    NumExpansionDimensions: 2048
               KernelScale: 1

  Properties, Methods

IncrementalMdl is an incrementalClassificationKernel model. The model display shows
that the model is warm (IsWarm is 1). Therefore, updateMetrics can track model performance
metrics given data.
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Track Performance Metrics

Track the model performance on the rest of the data by using the updateMetrics function. Simulate
a data stream by processing 50 observations at a time. At each iteration:

1 Call updateMetrics to update the cumulative and window classification error of the model
given the incoming chunk of observations. Overwrite the previous incremental model to update
the losses in the Metrics property. Note that the function does not fit the model to the chunk of
data—the chunk is "new" data for the model.

2 Store the classification error and number of training observations.

% Preallocation
idxil = ~idxtt;
nil = sum(idxil);
numObsPerChunk = 50;
nchunk = floor(nil/numObsPerChunk);
ce = array2table(zeros(nchunk,2),VariableNames=["Cumulative","Window"]);
numtrainobs = [zeros(nchunk,1)];
Xil = X(idxil,:);
Yil = Y(idxil);

% Incremental fitting
for j = 1:nchunk
    ibegin = min(nil,numObsPerChunk*(j-1) + 1);
    iend   = min(nil,numObsPerChunk*j);
    idx = ibegin:iend;
    IncrementalMdl = updateMetrics(IncrementalMdl,Xil(idx,:),Yil(idx));
    ce{j,:} = IncrementalMdl.Metrics{"ClassificationError",:};
    numtrainobs(j) = IncrementalMdl.NumTrainingObservations; 
end

IncrementalMdl is an incrementalClassificationKernel model object that has tracked the
model performance to observations in the data stream.

Plot a trace plot of the number of training observations and the performance metrics on separate
tiles.

t = tiledlayout(2,1);
nexttile
plot(numtrainobs)
ylabel("Number of Training Observations")
xlim([0 nchunk])
nexttile
plot(ce.Variables)
xlim([0 nchunk])
ylabel("Classification Error")
legend(ce.Properties.VariableNames,Location="best")
xlabel(t,"Iteration")
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The cumulative loss is stable, whereas the window loss jumps. The number of training observations
does not change because updateMetrics does not fit the model to the data.

Configure Incremental Model to Track Performance Metrics and Specify Weights

Configure incremental learning options for an incrementalClassificationKernel model object
when you call the incrementalClassificationKernel function. Track the model performance on
streaming data, and fit the model to the data. Specify observation weights when you call incremental
learning functions.

Create an incremental kernel model for binary classification. Specify an estimation period of 5000
observations and the stochastic gradient descent (SGD) solver.

Mdl = incrementalClassificationKernel(EstimationPeriod=5000,Solver="sgd")

Mdl = 
  incrementalClassificationKernel

                    IsWarm: 0
                   Metrics: [1x2 table]
                ClassNames: [1x0 double]
            ScoreTransform: 'none'
    NumExpansionDimensions: 0
               KernelScale: 1

  Properties, Methods

Mdl is an incrementalClassificationKernel model. All its properties are read-only.

The model display shows that the model is not warm (IsWarm is 0). Determine the size of the metrics
warm-up period by displaying model properties.
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mwp = Mdl.MetricsWarmupPeriod

mwp = 1000

Determine the number of observations that incremental fitting functions, such as fit, must process
before measuring the performance of the model.

numObsBeforeMetrics = Mdl.MetricsWarmupPeriod + Mdl.EstimationPeriod

numObsBeforeMetrics = 6000

Load the human activity data set. Randomly shuffle the data.

load humanactivity
n = numel(actid);
rng(1) % For reproducibility
idx = randsample(n,n);
X = feat(idx,:);
Y = actid(idx);

For details on the data set, enter Description at the command line.

Responses can be one of five classes: Sitting, Standing, Walking, Running, or Dancing. Dichotomize
the response by identifying whether the subject is moving (actid > 2).

Y = Y > 2;

Suppose that the data collected when the subject was not moving (Y = false) has double the quality
than when the subject was moving. Create a weight variable that attributes 2 to observations
collected from a still subject, and 1 to a moving subject.

W = ones(n,1) + ~Y;

Perform incremental learning. At each iteration:

• Simulate a data stream by processing a chunk of 50 observations.
• Measure model performance metrics on the incoming chunk using updateMetrics. Specify the

corresponding observation weights and overwrite the input model.
• Fit the model to the incoming chunk by using the fit function. Specify the corresponding

observation weights and overwrite the input model.
• Store the misclassification error rate and number of training observations to see how they evolve

during incremental learning.

% Preallocation
numObsPerChunk = 50;
nchunk = floor(n/numObsPerChunk);
ce = array2table(zeros(nchunk,2),VariableNames=["Cumulative","Window"]);
numtrainobs = [zeros(nchunk,1)];

% Incremental fitting
for j = 1:nchunk
    ibegin = min(n,numObsPerChunk*(j-1) + 1);
    iend   = min(n,numObsPerChunk*j);
    idx = ibegin:iend;
    Mdl = updateMetrics(Mdl,X(idx,:),Y(idx),Weights=W(idx));
    ce{j,:} = Mdl.Metrics{"ClassificationError",:};
    Mdl = fit(Mdl,X(idx,:),Y(idx),Weights=W(idx));
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    numtrainobs(j) = Mdl.NumTrainingObservations; 
end

Mdl is an incrementalClassificationKernel model object trained on all the data in the stream.

Plot a trace plot of the number of training observations and the performance metrics on separate
tiles.

t = tiledlayout(2,1);
nexttile
plot(numtrainobs)
ylabel("Number of Training Observations")
xline(Mdl.EstimationPeriod/numObsPerChunk,'-.')
xlim([0 nchunk])
nexttile
plot(ce.Variables)
ylabel('ClassificationError')
xline(Mdl.EstimationPeriod/numObsPerChunk,'-.')
xline(numObsBeforeMetrics/numObsPerChunk,'--')
xlim([0 nchunk]);
legend(ce.Properties.VariableNames,Location="best")
xlabel(t,'Iteration')

mdlIsWarm = numObsBeforeMetrics/numObsPerChunk

mdlIsWarm = 120

35 Functions

35-7698



The plot suggests that fit does not fit the model to the data or update the parameters until after the
estimation period. Also, updateMetrics does not track the classification error until after the
estimation and metrics warm-up periods (120 chunks).

Perform Conditional Training

Incrementally train a kernel regression model only when its performance degrades.

Load and shuffle the 2015 NYC housing data set. For more details on the data, see NYC Open Data.

load NYCHousing2015

rng(1) % For reproducibility
n = size(NYCHousing2015,1);
shuffidx = randsample(n,n);
NYCHousing2015 = NYCHousing2015(shuffidx,:);

Extract the response variable SALEPRICE from the table. For numerical stability, scale SALEPRICE by
1e6.

Y = NYCHousing2015.SALEPRICE/1e6;
NYCHousing2015.SALEPRICE = [];

To reduce computational cost for this example, remove the NEIGHBORHOOD column, which contains a
categorical variable with 254 categories.

NYCHousing2015.NEIGHBORHOOD = [];

Create dummy variable matrices from the other categorical predictors.

catvars = ["BOROUGH","BUILDINGCLASSCATEGORY"];
dumvarstbl = varfun(@(x)dummyvar(categorical(x)),NYCHousing2015, ...
    InputVariables=catvars);
dumvarmat = table2array(dumvarstbl);
NYCHousing2015(:,catvars) = [];

Treat all other numeric variables in the table as predictors of sales price. Concatenate the matrix of
dummy variables to the rest of the predictor data.

idxnum = varfun(@isnumeric,NYCHousing2015,OutputFormat="uniform");
X = [dumvarmat NYCHousing2015{:,idxnum}];

Configure a kernel regression model for incremental learning so that it does not have an estimation
or metrics warm-up period. Specify a metrics window size of 1000. Prepare the model for
updateMetrics by fitting it to the first 100 observations.

Mdl = incrementalRegressionKernel(EstimationPeriod=0, ...
    MetricsWarmupPeriod=0,MetricsWindowSize=1000);
initobs = 100;
Mdl = fit(Mdl,X(1:initobs,:),Y(1:initobs));

Mdl is an incrementalRegressionKernel model object.

Perform incremental learning, with conditional fitting, by following this procedure for each iteration:
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• Simulate a data stream by processing a chunk of 100 observations at a time.
• Update the model performance by computing the epsilon insensitive loss, within a 200 observation

window.
• Fit the model to the chunk of data only when the loss more than doubles from the minimum loss

experienced.
• When tracking performance and fitting, overwrite the previous incremental model.
• Store the epsilon insensitive loss and number of training observations to see how they evolve

during training.
• Track when fit trains the model.

% Preallocation
numObsPerChunk = 100;
nchunk = floor((n - initobs)/numObsPerChunk);
ei = array2table(nan(nchunk,2),VariableNames=["Cumulative","Window"]);
numtrainobs = zeros(nchunk,1);
trained = false(nchunk,1);

% Incremental fitting
for j = 1:nchunk
    ibegin = min(n,numObsPerChunk*(j-1) + 1 + initobs);
    iend   = min(n,numObsPerChunk*j + initobs);
    idx = ibegin:iend;
    Mdl = updateMetrics(Mdl,X(idx,:),Y(idx));
    ei{j,:} = Mdl.Metrics{"EpsilonInsensitiveLoss",:};
    minei = min(ei{:,2});
    pdiffloss = (ei{j,2} - minei)/minei*100;
    if pdiffloss > 100
        Mdl = fit(Mdl,X(idx,:),Y(idx));
        trained(j) = true;
    end    
    numtrainobs(j) = Mdl.NumTrainingObservations;
end

Mdl is an incrementalRegressionKernel model object trained on all the data in the stream.

To see how the number of training observations and model performance evolve during training, plot
them on separate tiles.

t = tiledlayout(2,1);
nexttile
plot(numtrainobs)
hold on
plot(find(trained),numtrainobs(trained),"r.")
xlim([0 nchunk])
ylabel("Number of Training Observations")
legend("Number of Training Observations","Training occurs",Location="best")
hold off
nexttile
plot(ei.Variables)
xlim([0 nchunk])
ylabel("Epsilon Insensitive Loss")
legend(ei.Properties.VariableNames)
xlabel(t,"Iteration")
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The trace plot of the number of training observations shows periods of constant values, during which
the loss does not double from the minimum experienced.

Input Arguments
Mdl — Incremental learning model
incrementalClassificationKernel model object | incrementalRegressionKernel model
object

Incremental learning model whose performance is measured, specified as an
incrementalClassificationKernel or incrementalRegressionKernel model object. You can
create Mdl directly or by converting a supported, traditionally trained machine learning model using
the incrementalLearner function. For more details, see the corresponding reference page.

If Mdl.IsWarm is false, updateMetrics does not track the performance of the model. You must fit
Mdl to Mdl.EstimationPeriod + Mdl.MetricsWarmupPeriod observations by passing Mdl and
the data to fit before updateMetrics can track performance metrics. For more details, see
“Performance Metrics” on page 35-7703.

X — Chunk of predictor data
floating-point matrix

Chunk of predictor data, specified as a floating-point matrix of n observations and
Mdl.NumPredictors predictor variables.
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The length of the observation labels Y and the number of observations in X must be equal; Y(j) is the
label of observation j (row) in X.

Note

• If Mdl.NumPredictors = 0, updateMetrics infers the number of predictors from X, and sets
the corresponding property of the output model. Otherwise, if the number of predictor variables in
the streaming data changes from Mdl.NumPredictors, updateMetrics issues an error.

• updateMetrics supports only floating-point input predictor data. If your input data includes
categorical data, you must prepare an encoded version of the categorical data. Use dummyvar to
convert each categorical variable to a numeric matrix of dummy variables. Then, concatenate all
dummy variable matrices and any other numeric predictors. For more details, see “Dummy
Variables” on page 2-49.

Data Types: single | double

Y — Chunk of responses (labels)
categorical array | character array | string array | logical vector | floating-point vector | cell array of
character vectors

Chunk of responses (labels), specified as a categorical, character, or string array, a logical or floating-
point vector, or a cell array of character vectors for classification problems; or a floating-point vector
for regression problems.

The length of the observation labels Y and the number of observations in X must be equal; Y(j) is the
label of observation j (row) in X.

For classification problems:

• updateMetrics supports binary classification only.
• When the ClassNames property of the input model Mdl is nonempty, the following conditions

apply:

• If Y contains a label that is not a member of Mdl.ClassNames, updateMetrics issues an
error.

• The data type of Y and Mdl.ClassNames must be the same.

Data Types: char | string | cell | categorical | logical | single | double

weights — Chunk of observation weights
floating-point vector of positive values

Chunk of observation weights, specified as a floating-point vector of positive values. updateMetrics
weighs the observations in X with the corresponding values in weights. The size of weights must
equal n, the number of observations in X.

By default, weights is ones(n,1).

For more details, including normalization schemes, see “Observation Weights” on page 35-7704.
Data Types: double | single
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Note

If an observation (predictor or label) or weight contains at least one missing (NaN) value,
updateMetrics ignores the observation. Consequently, updateMetrics uses fewer than n
observations to compute the model performance, where n is the number of observations in X.

Output Arguments
Mdl — Updated incremental learning model
incrementalClassificationKernel model object | incrementalRegressionKernel model
object

Updated incremental learning model, returned as an incremental learning model object of the same
data type as the input model Mdl, either incrementalClassificationKernel or
incrementalRegressionKernel.

If the model is not warm, updateMetrics does not compute performance metrics. As a result, the
Metrics property of Mdl remains completely composed of NaN values. If the model is warm,
updateMetrics computes the cumulative and window performance metrics on the new data X and
Y, and overwrites the corresponding elements of Mdl.Metrics. All other properties of the input
model Mdl carry over to the output model Mdl. For more details, see “Performance Metrics” on page
35-7703.

Tips
• Unlike traditional training, incremental learning might not have a separate test (holdout) set.

Therefore, to treat each incoming chunk of data as a test set, pass the incremental model and
each incoming chunk to updateMetrics before training the model on the same data using fit.

Algorithms
Performance Metrics

• updateMetrics and updateMetricsAndFit track model performance metrics, specified by the
row labels of the table in Mdl.Metrics, from new data only when the incremental model is warm
(IsWarm property is true). An incremental model is warm after fit or updateMetricsAndFit
fits the incremental model to Mdl.MetricsWarmupPeriod observations, which is the metrics
warm-up period.

If Mdl.EstimationPeriod > 0, the fit and updateMetricsAndFit functions estimate
hyperparameters before fitting the model to data. Therefore, the functions must process an
additional EstimationPeriod observations before the model starts the metrics warm-up period.

• The Mdl.Metrics property stores two forms of each performance metric as variables (columns)
of a table, Cumulative and Window, with individual metrics in rows. When the incremental model
is warm, updateMetrics and updateMetricsAndFit update the metrics at the following
frequencies:

• Cumulative — The functions compute cumulative metrics since the start of model
performance tracking. The functions update metrics every time you call the functions and base
the calculation on the entire supplied data set.

• Window — The functions compute metrics based on all observations within a window
determined by the Mdl.MetricsWindowSize property. Mdl.MetricsWindowSize also
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determines the frequency at which the software updates Window metrics. For example, if
Mdl.MetricsWindowSize is 20, the functions compute metrics based on the last 20
observations in the supplied data (X((end – 20 + 1):end,:) and Y((end – 20 +
1):end)).

Incremental functions that track performance metrics within a window use the following
process:

1 Store a buffer of length Mdl.MetricsWindowSize for each specified metric, and store a
buffer of observation weights.

2 Populate elements of the metrics buffer with the model performance based on batches of
incoming observations, and store corresponding observation weights in the weights buffer.

3 When the buffer is filled, overwrite Mdl.Metrics.Window with the weighted average
performance in the metrics window. If the buffer is overfilled when the function processes
a batch of observations, the latest incoming Mdl.MetricsWindowSize observations enter
the buffer, and the earliest observations are removed from the buffer. For example,
suppose Mdl.MetricsWindowSize is 20, the metrics buffer has 10 values from a
previously processed batch, and 15 values are incoming. To compose the length 20
window, the function uses the measurements from the 15 incoming observations and the
latest 5 measurements from the previous batch.

• The software omits an observation with a NaN prediction (score for classification and response for
regression) when computing the Cumulative and Window performance metric values.

Observation Weights

For classification problems, if the prior class probability distribution is known (in other words, the
prior distribution is not empirical), updateMetrics normalizes observation weights to sum to the
prior class probabilities in the respective classes. This action implies that observation weights are the
respective prior class probabilities by default.

For regression problems or if the prior class probability distribution is empirical, the software
normalizes the specified observation weights to sum to 1 each time you call updateMetrics.

Version History
Introduced in R2022a

See Also
Objects
incrementalClassificationKernel | incrementalRegressionKernel

Functions
fit | updateMetricsAndFit | predict | loss

Topics
“Incremental Learning Overview” on page 28-2
“Configure Incremental Learning Model” on page 28-9
“Implement Incremental Learning for Classification Using Flexible Workflow” on page 28-29
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updateMetrics
Update performance metrics in linear incremental learning model given new data

Syntax
Mdl = updateMetrics(Mdl,X,Y)
Mdl = updateMetrics(Mdl,X,Y,Name,Value)

Description
Given streaming data, updateMetrics measures the performance of a configured incremental
learning model for linear regression (incrementalRegressionLinear object) or linear binary
classification (incrementalClassificationLinear object). updateMetrics stores the
performance metrics in the output model.

updateMetrics allows for flexible incremental learning. After you call the function to update model
performance metrics on an incoming chunk of data, you can perform other actions before you train
the model to the data. For example, you can decide whether you need to train the model based on its
performance on a chunk of data. Alternatively, you can both update model performance metrics and
train the model on the data as it arrives, in one call, by using the updateMetricsAndFit function.

To measure the model performance on a specified batch of data, call loss instead.

Mdl = updateMetrics(Mdl,X,Y) returns an incremental learning model Mdl, which is the input
incremental learning model Mdl modified to contain the model performance metrics on the incoming
predictor and response data, X and Y respectively.

When the input model is warm (Mdl.IsWarm is true), updateMetrics overwrites previously
computed metrics, stored in the Metrics property, with the new values. Otherwise, updateMetrics
stores NaN values in Metrics instead.

The input and output models have the same data type.

Mdl = updateMetrics(Mdl,X,Y,Name,Value) uses additional options specified by one or more
name-value pair arguments. For example, you can specify that the columns of the predictor data
matrix correspond to observations, and set observation weights.

Examples

Track Performance of Incremental Model

Train a linear model for binary classification by using fitclinear, convert it to an incremental
learner, and then track its performance to streaming data.

Load and Preprocess Data

Load the human activity data set. Randomly shuffle the data.

load humanactivity
rng(1) % For reproducibility
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n = numel(actid);
idx = randsample(n,n);
X = feat(idx,:);
Y = actid(idx);

For details on the data set, enter Description at the command line.

Responses can be one of five classes: Sitting, Standing, Walking, Running, or Dancing. Dichotomize
the response by identifying whether the subject is moving (actid > 2).

Y = Y > 2;

Train Linear Model for Binary Classification

Fit a linear model for binary classification to a random sample of half the data.

idxtt = randsample([true false],n,true);
TTMdl = fitclinear(X(idxtt,:),Y(idxtt))

TTMdl = 
  ClassificationLinear
      ResponseName: 'Y'
        ClassNames: [0 1]
    ScoreTransform: 'none'
              Beta: [60x1 double]
              Bias: -0.3005
            Lambda: 8.2967e-05
           Learner: 'svm'

  Properties, Methods

TTMdl is a ClassificationLinear model object representing a traditionally trained linear model
for binary classification.

Convert Trained Model

Convert the traditionally trained classification model to a binary classification linear model for
incremental learning.

IncrementalMdl = incrementalLearner(TTMdl)

IncrementalMdl = 
  incrementalClassificationLinear

            IsWarm: 1
           Metrics: [1x2 table]
        ClassNames: [0 1]
    ScoreTransform: 'none'
              Beta: [60x1 double]
              Bias: -0.3005
           Learner: 'svm'

  Properties, Methods

IncrementalMdl.IsWarm
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ans = logical
   1

The incremental model is warm. Therefore, updateMetrics can track model performance metrics
given data.

Track Performance Metrics

Track the model performance on the rest of the data by using the updateMetrics function. Simulate
a data stream by processing 50 observations at a time. At each iteration:

1 Call updateMetrics to update the cumulative and window classification error of the model
given the incoming chunk of observations. Overwrite the previous incremental model to update
the losses in the Metrics property. Note that the function does not fit the model to the chunk of
data—the chunk is "new" data for the model.

2 Store the classification error and first coefficient β1.

% Preallocation
idxil = ~idxtt;
nil = sum(idxil);
numObsPerChunk = 50;
nchunk = floor(nil/numObsPerChunk);
ce = array2table(zeros(nchunk,2),'VariableNames',["Cumulative" "Window"]);
beta1 = [IncrementalMdl.Beta(1); zeros(nchunk,1)];
Xil = X(idxil,:);
Yil = Y(idxil);

% Incremental fitting
for j = 1:nchunk
    ibegin = min(nil,numObsPerChunk*(j-1) + 1);
    iend   = min(nil,numObsPerChunk*j);
    idx = ibegin:iend;
    IncrementalMdl = updateMetrics(IncrementalMdl,Xil(idx,:),Yil(idx));
    ce{j,:} = IncrementalMdl.Metrics{"ClassificationError",:};
    beta1(j + 1) = IncrementalMdl.Beta(1);
end

IncrementalMdl is an incrementalClassificationLinear model object that has tracked the
model performance to observations in the data stream.

Plot a trace plot of the performance metrics and estimated coefficient β1.

t = tiledlayout(2,1);
nexttile
h = plot(ce.Variables);
xlim([0 nchunk])
ylabel('Classification Error')
legend(h,ce.Properties.VariableNames)
nexttile
plot(beta1)
ylabel('\beta_1')
xlim([0 nchunk])
xlabel(t,'Iteration')
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The cumulative loss is stable, whereas the window loss jumps.

β1 does not change because updateMetrics does not fit the model to the data.

Configure Incremental Model to Track Performance Metrics

Create an incremental linear SVM model for binary classification. Specify an estimation period of
5,000 observations and the SGD solver.

Mdl = incrementalClassificationLinear('EstimationPeriod',5000,'Solver','sgd')

Mdl = 
  incrementalClassificationLinear

            IsWarm: 0
           Metrics: [1x2 table]
        ClassNames: [1x0 double]
    ScoreTransform: 'none'
              Beta: [0x1 double]
              Bias: 0
           Learner: 'svm'

  Properties, Methods
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Mdl is an incrementalClassificationLinear model. All its properties are read-only.

Determine whether the model is warm and the size of the metrics warm-up period by querying model
properties.

isWarm = Mdl.IsWarm

isWarm = logical
   0

mwp = Mdl.MetricsWarmupPeriod

mwp = 1000

Mdl.IsWarm is 0; therefore, Mdl is not warm.

Determine the number of observations incremental fitting functions, such as fit, must process
before measuring the performance of the model.

numObsBeforeMetrics = Mdl.MetricsWarmupPeriod + Mdl.EstimationPeriod

numObsBeforeMetrics = 6000

Load the human activity data set. Randomly shuffle the data.

load humanactivity
n = numel(actid);
rng(1) % For reproducibility
idx = randsample(n,n);
X = feat(idx,:);
Y = actid(idx);

For details on the data set, enter Description at the command line.

Responses can be one of five classes: Sitting, Standing, Walking, Running, or Dancing. Dichotomize
the response by identifying whether the subject is moving (actid > 2).

Y = Y > 2;

Perform incremental learning. At each iteration:

• Simulate a data stream by processing a chunk of 50 observations.
• Measure model performance metrics on the incoming chunk using updateMetrics. Overwrite

the input model.
• Fit the model to the incoming chunk by using the fit function. Overwrite the input model.
• Store β1 and the misclassification error rate to see how they evolve during incremental learning.

% Preallocation
numObsPerChunk = 50;
nchunk = floor(n/numObsPerChunk);
ce = array2table(zeros(nchunk,2),'VariableNames',["Cumulative" "Window"]);
beta1 = zeros(nchunk,1);    

% Incremental fitting
for j = 1:nchunk
    ibegin = min(n,numObsPerChunk*(j-1) + 1);
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    iend   = min(n,numObsPerChunk*j);
    idx = ibegin:iend;
    Mdl = updateMetrics(Mdl,X(idx,:),Y(idx));
    ce{j,:} = Mdl.Metrics{"ClassificationError",:};
    Mdl = fit(Mdl,X(idx,:),Y(idx));
    beta1(j) = Mdl.Beta(1);
end

Mdl is an incrementalClassificationLinear model object trained on all the data in the stream.

To see how the parameters evolve during incremental learning, plot them on separate tiles.

t = tiledlayout(2,1);
nexttile
plot(beta1)
ylabel('\beta_1')
xline(Mdl.EstimationPeriod/numObsPerChunk,'r-.')
xlabel('Iteration')
axis tight
nexttile
plot(ce.Variables)
ylabel('ClassificationError')
xline(Mdl.EstimationPeriod/numObsPerChunk,'r-.')
xline(numObsBeforeMetrics/numObsPerChunk,'g-.')
xlim([0 nchunk])
legend(ce.Properties.VariableNames)
xlabel(t,'Iteration')
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mdlIsWarm = numObsBeforeMetrics/numObsPerChunk

mdlIsWarm = 120

The plot suggests that fit does not fit the model to the data or update the parameters until after the
estimation period. Also, updateMetrics does not track the classification error until after the
estimation and metrics warm-up periods (120 chunks).

Perform Conditional Training

Incrementally train a linear regression model only when its performance degrades.

Load and shuffle the 2015 NYC housing data set. For more details on the data, see NYC Open Data.

load NYCHousing2015

rng(1) % For reproducibility
n = size(NYCHousing2015,1);
shuffidx = randsample(n,n);
NYCHousing2015 = NYCHousing2015(shuffidx,:);

Extract the response variable SALEPRICE from the table. For numerical stability, scale SALEPRICE by
1e6.

Y = NYCHousing2015.SALEPRICE/1e6;
NYCHousing2015.SALEPRICE = [];

Create dummy variable matrices from the categorical predictors.

catvars = ["BOROUGH" "BUILDINGCLASSCATEGORY" "NEIGHBORHOOD"];
dumvarstbl = varfun(@(x)dummyvar(categorical(x)),NYCHousing2015,...
    'InputVariables',catvars);
dumvarmat = table2array(dumvarstbl);
NYCHousing2015(:,catvars) = [];

Treat all other numeric variables in the table as linear predictors of sales price. Concatenate the
matrix of dummy variables to the rest of the predictor data, and transpose the data to speed up
computations.

idxnum = varfun(@isnumeric,NYCHousing2015,'OutputFormat','uniform');
X = [dumvarmat NYCHousing2015{:,idxnum}]';

Configure a linear regression model for incremental learning so that it does not have an estimation or
metrics warm-up period. Specify a metrics window size of 1000 observations. Fit the configured
model to the first 100 observations, and specify that the observations are oriented along the columns
of the data.

Mdl = incrementalRegressionLinear('EstimationPeriod',0,'MetricsWarmupPeriod',0,...
    'MetricsWindowSize',1000);
numObsPerChunk = 100;
Mdl = fit(Mdl,X(:,1:numObsPerChunk),Y(1:numObsPerChunk),'ObservationsIn','columns');

Mdl is an incrementalRegressionLinear model object.

Perform incremental learning, with conditional fitting, by following this procedure for each iteration:
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• Simulate a data stream by processing a chunk of 100 observations.
• Update the model performance by computing the epsilon insensitive loss, within a 200 observation

window. Specify that the observations are oriented along the columns of the data.
• Fit the model to the chunk of data only when the loss more than doubles from the minimum loss

experienced. Specify that the observations are oriented along the columns of the data.
• When tracking performance and fitting, overwrite the previous incremental model.
• Store the epsilon insensitive loss and β313 to see the how the loss and coefficient evolve during

training.
• Track when fit trains the model.

% Preallocation
n = numel(Y) - numObsPerChunk;
nchunk = floor(n/numObsPerChunk);
beta313 = zeros(nchunk,1);
ei = array2table(nan(nchunk,2),'VariableNames',["Cumulative" "Window"]);
trained = false(nchunk,1);

% Incremental fitting
for j = 2:nchunk
    ibegin = min(n,numObsPerChunk*(j-1) + 1);
    iend   = min(n,numObsPerChunk*j);
    idx = ibegin:iend;
    Mdl = updateMetrics(Mdl,X(:,idx),Y(idx),'ObservationsIn','columns');
    ei{j,:} = Mdl.Metrics{"EpsilonInsensitiveLoss",:};
    minei = min(ei{:,2});
    pdiffloss = (ei{j,2} - minei)/minei*100;
    if pdiffloss > 100
        Mdl = fit(Mdl,X(:,idx),Y(idx),'ObservationsIn','columns');
        trained(j) = true;
    end    
    beta313(j) = Mdl.Beta(end);
end

Mdl is an incrementalRegressionLinear model object trained on all the data in the stream.

To see how the model performance and β313 evolve during training, plot them on separate tiles.

t = tiledlayout(2,1);
nexttile
plot(beta313)
hold on
plot(find(trained),beta313(trained),'r.')
xlim([0 nchunk])
ylabel('\beta_{313}')
xline(Mdl.EstimationPeriod/numObsPerChunk,'r-.')
legend('\beta_{313}','Training occurs','Location','southeast')
hold off
nexttile
plot(ei.Variables)
xlim([0 nchunk])
ylabel('Epsilon Insensitive Loss')
xline(Mdl.EstimationPeriod/numObsPerChunk,'r-.')
legend(ei.Properties.VariableNames)
xlabel(t,'Iteration')
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The trace plot of β313 shows periods of constant values, during which the loss did not double from the
minimum experienced.

Input Arguments
Mdl — Incremental learning model
incrementalClassificationLinear model object | incrementalRegressionLinear model
object

Incremental learning model whose performance is measured, specified as an
incrementalClassificationLinear or incrementalRegressionLinear model object. You can
create Mdl directly or by converting a supported, traditionally trained machine learning model using
the incrementalLearner function. For more details, see the corresponding reference page.

If Mdl.IsWarm is false, updateMetrics does not track the performance of the model. You must fit
Mdl to Mdl.EstimationPeriod + Mdl.MetricsWarmupPeriod observations by passing Mdl and
the data to fit before updateMetrics can track performance metrics. For more details, see
“Performance Metrics” on page 35-7716.

X — Chunk of predictor data
floating-point matrix

Chunk of predictor data with which to measure the model performance, specified as a floating-point
matrix of n observations and Mdl.NumPredictors predictor variables. The value of the
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ObservationsIn name-value argument determines the orientation of the variables and
observations. The default ObservationsIn value is "rows", which indicates that observations in
the predictor data are oriented along the rows of X.

The length of the observation labels Y and the number of observations in X must be equal; Y(j) is the
label of observation j (row or column) in X.

Note

• If Mdl.NumPredictors = 0, updateMetrics infers the number of predictors from X, and sets
the corresponding property of the output model. Otherwise, if the number of predictor variables in
the streaming data changes from Mdl.NumPredictors, updateMetrics issues an error.

• updateMetrics supports only floating-point input predictor data. If your input data includes
categorical data, you must prepare an encoded version of the categorical data. Use dummyvar to
convert each categorical variable to a numeric matrix of dummy variables. Then, concatenate all
dummy variable matrices and any other numeric predictors. For more details, see “Dummy
Variables” on page 2-49.

Data Types: single | double

Y — Chunk of responses (labels)
categorical array | character array | string array | logical vector | floating-point vector | cell array of
character vectors

Chunk of responses (labels) with which to measure the model performance, specified as a categorical,
character, or string array, logical or floating-point vector, or cell array of character vectors for
classification problems; or a floating-point vector for regression problems.

The length of the observation labels Y and the number of observations in X must be equal; Y(j) is the
label of observation j (row or column) in X.

For classification problems:

• updateMetrics supports binary classification only.
• When the ClassNames property of the input model Mdl is nonempty, the following conditions

apply:

• If Y contains a label that is not a member of Mdl.ClassNames, updateMetrics issues an
error.

• The data type of Y and Mdl.ClassNames must be the same.

Data Types: char | string | cell | categorical | logical | single | double

Note

If an observation (predictor or label) or weight contains at least one missing (NaN) value,
updateMetrics ignores the observation. Consequently, updateMetrics uses fewer than n
observations to compute the model performance, where n is the number of observations in X.
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Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: 'ObservationsIn','columns','Weights',W specifies that the columns of the
predictor matrix correspond to observations, and the vector W contains observation weights to apply
during incremental learning.

ObservationsIn — Predictor data observation dimension
'rows' (default) | 'columns'

Predictor data observation dimension, specified as the comma-separated pair consisting of
'ObservationsIn' and 'columns' or 'rows'.
Data Types: char | string

Weights — Chunk of observation weights
floating-point vector of positive values

Chunk of observation weights, specified as the comma-separated pair consisting of 'Weights' and a
floating-point vector of positive values. updateMetrics weighs the observations in X with the
corresponding values in Weights. The size of Weights must equal n, which is the number of
observations in X.

By default, Weights is ones(n,1).

For more details, including normalization schemes, see “Observation Weights” on page 35-7717.
Data Types: double | single

Output Arguments
Mdl — Updated incremental learning model
incrementalClassificationLinear model object | incrementalRegressionLinear model
object

Updated incremental learning model, returned as an incremental learning model object of the same
data type as the input model Mdl, either incrementalClassificationLinear or
incrementalRegressionLinear.

If the model is not warm, updateMetrics does not compute performance metrics. As a result, the
Metrics property of Mdl remains completely composed of NaN values. If the model is warm,
updateMetrics computes the cumulative and window performance metrics on the new data X and
Y, and overwrites the corresponding elements of Mdl.Metrics. All other properties of the input
model Mdl carry over to the output model Mdl. For more details, see “Performance Metrics” on page
35-7716.
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Tips
• Unlike traditional training, incremental learning might not have a separate test (holdout) set.

Therefore, to treat each incoming chunk of data as a test set, pass the incremental model and
each incoming chunk to updateMetrics before training the model on the same data using fit.

Algorithms
Performance Metrics

• updateMetrics tracks only model performance metrics, specified by the row labels of the table
in Mdl.Metrics, from new data when the incremental model is warm (IsWarm property is true).
An incremental model is warm after the fit function fits the incremental model to
Mdl.MetricsWarmupPeriod observations, which is the metrics warm-up period.

If Mdl.EstimationPeriod > 0, the functions estimate hyperparameters before fitting the model
to data. Therefore, the functions must process an additional EstimationPeriod observations
before the model starts the metrics warm-up period.

• The Metrics property of the incremental model stores two forms of each performance metric as
variables (columns) of a table, Cumulative and Window, with individual metrics in rows. When
the incremental model is warm, updateMetrics updates the metrics at the following
frequencies:

• Cumulative — The function computes cumulative metrics since the start of model
performance tracking. The function updates metrics every time you call it and bases the
calculation on the entire supplied data set.

• Window — The function computes metrics based on all observations within a window
determined by the Mdl.MetricsWindowSize property. Mdl.MetricsWindowSize also
determines the frequency at which the software updates Window metrics. For example, if
Mdl.MetricsWindowSize is 20, the function computes metrics based on the last 20
observations in the supplied data (X((end – 20 + 1):end,:) and Y((end – 20 +
1):end)).

Incremental functions that track performance metrics within a window use the following
process:

1 Store a buffer of length Mdl.MetricsWindowSize for each specified metric, and store a
buffer of observation weights.

2 Populate elements of the metrics buffer with the model performance based on batches of
incoming observations, and store corresponding observation weights in the weights buffer.

3 When the buffer is filled, overwrite Mdl.Metrics.Window with the weighted average
performance in the metrics window. If the buffer is overfilled when the function processes
a batch of observations, the latest incoming Mdl.MetricsWindowSize observations enter
the buffer, and the earliest observations are removed from the buffer. For example,
suppose Mdl.MetricsWindowSize is 20, the metrics buffer has 10 values from a
previously processed batch, and 15 values are incoming. To compose the length 20
window, the function uses the measurements from the 15 incoming observations and the
latest 5 measurements from the previous batch.

• The software omits an observation with a NaN prediction (score for classification and response for
regression) when computing the Cumulative and Window performance metric values.
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Observation Weights

For classification problems, if the prior class probability distribution is known (in other words, the
prior distribution is not empirical), updateMetrics normalizes observation weights to sum to the
prior class probabilities in the respective classes. This action implies that observation weights are the
respective prior class probabilities by default.

For regression problems or if the prior class probability distribution is empirical, the software
normalizes the specified observation weights to sum to 1 each time you call updateMetrics.

Version History
Introduced in R2020b

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• Use saveLearnerForCoder, loadLearnerForCoder, and codegen to generate code for the
updateMetrics function. Save a trained model by using saveLearnerForCoder. Define an
entry-point function that loads the saved model by using loadLearnerForCoder and calls the
updateMetrics function. Then use codegen to generate code for the entry-point function.

• To generate single-precision C/C++ code for updateMetrics, specify the name-value argument
"DataType","single" when you call the loadLearnerForCoder function.

• This table contains notes about the arguments of updateMetrics. Arguments not included in this
table are fully supported.

Argument Notes and Limitations
Mdl For usage notes and limitations of the model

object, see
incrementalClassificationLinear or
incrementalRegressionLinear.

X • Batch-to-batch, the number of observations
can be a variable size, but must equal the
number of observations in Y.

• The number of predictor variables must
equal to Mdl.NumPredictors.

• X must be single or double.
Y • Batch-to-batch, the number of observations

can be a variable size, but must equal the
number of observations in X.

• For classification problems, all labels in Y
must be represented in Mdl.ClassNames.

• Y and Mdl.ClassNames must have the
same data type.
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• The following restrictions apply:

• If you configure Mdl to shuffle data (Mdl.Shuffle is true, or Mdl.Solver is 'sgd' or
'asgd'), the updateMetrics function randomly shuffles each incoming batch of observations
before it fits the model to the batch. The order of the shuffled observations might not match
the order generated by MATLAB. Therefore, if you fit Mdl before updating the performance
metrics, the metrics computed in MATLAB and those computed by the generated code might
not be equal.

• Use a homogeneous data type for all floating-point input arguments and object properties,
specifically, either single or double.

For more information, see “Introduction to Code Generation” on page 34-2.

See Also
Objects
incrementalClassificationLinear | incrementalRegressionLinear

Functions
updateMetricsAndFit | fit | loss

Topics
“Incremental Learning Overview” on page 28-2
“Configure Incremental Learning Model” on page 28-9
“Implement Incremental Learning for Classification Using Flexible Workflow” on page 28-29
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updateMetrics
Update performance metrics in naive Bayes incremental learning classification model given new data

Syntax
Mdl = updateMetrics(Mdl,X,Y)
Mdl = updateMetrics(Mdl,X,Y,'Weights',Weights)

Description
Given streaming data, updateMetrics measures the performance of a configured naive Bayes
classification model for incremental learning (incrementalClassificationNaiveBayes object).
updateMetrics stores the performance metrics in the output model.

updateMetrics allows for flexible incremental learning. After you call the function to update model
performance metrics on an incoming chunk of data, you can perform other actions before you train
the model to the data. For example, you can decide whether you need to train the model based on its
performance on a chunk of data. Alternatively, you can both update model performance metrics and
train the model on the data as it arrives, in one call, by using the updateMetricsAndFit function.

To measure the model performance on a specified batch of data, call loss instead.

Mdl = updateMetrics(Mdl,X,Y) returns a naive Bayes classification model for incremental
learning Mdl, which is the input naive Bayes classification model for incremental learning Mdl
modified to contain the model performance metrics on the incoming predictor and response data, X
and Y respectively.

When the input model is warm (Mdl.IsWarm is true), updateMetrics overwrites previously
computed metrics, stored in the Metrics property, with the new values. Otherwise, updateMetrics
stores NaN values in Metrics instead.

Mdl = updateMetrics(Mdl,X,Y,'Weights',Weights) also sets observation weights Weights.

Examples

Track Performance of Incremental Model

Train a naive Bayes classification model by using fitcnb, convert it to an incremental learner, and
then track its performance to streaming data.

Load and Preprocess Data

Load the human activity data set. Randomly shuffle the data.

load humanactivity
rng(1) % For reproducibility
n = numel(actid);
idx = randsample(n,n);
X = feat(idx,:);
Y = actid(idx);
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For details on the data set, enter Description at the command line.

Train Naive Bayes Classification Model

Fit a naive Bayes classification model to a random sample of half the data.

idxtt = randsample([true false],n,true);
TTMdl = fitcnb(X(idxtt,:),Y(idxtt))

TTMdl = 
  ClassificationNaiveBayes
              ResponseName: 'Y'
     CategoricalPredictors: []
                ClassNames: [1 2 3 4 5]
            ScoreTransform: 'none'
           NumObservations: 12053
         DistributionNames: {1x60 cell}
    DistributionParameters: {5x60 cell}

  Properties, Methods

TTMdl is a ClassificationNaiveBayes model object representing a traditionally trained model.

Convert Trained Model

Convert the traditionally trained classification model to a naive Bayes classification model for
incremental learning.

IncrementalMdl = incrementalLearner(TTMdl)

IncrementalMdl = 
  incrementalClassificationNaiveBayes

                    IsWarm: 1
                   Metrics: [1x2 table]
                ClassNames: [1 2 3 4 5]
            ScoreTransform: 'none'
         DistributionNames: {1x60 cell}
    DistributionParameters: {5x60 cell}

  Properties, Methods

The incremental model is warm. Therefore, updateMetrics can track model performance metrics
given data.

Track Performance Metrics

Track the model performance on the rest of the data by using the updateMetrics function. Simulate
a data stream by processing 50 observations at a time. At each iteration:

1 Call updateMetrics to update the cumulative and window minimal cost of the model given the
incoming chunk of observations. Overwrite the previous incremental model to update the losses
in the Metrics property. Note that the function does not fit the model to the chunk of data—the
chunk is "new" data for the model.
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2 Store the minimal cost and mean of the first predictor in the first class μ11.

% Preallocation
idxil = ~idxtt;
nil = sum(idxil);
numObsPerChunk = 50;
nchunk = floor(nil/numObsPerChunk);
mc = array2table(zeros(nchunk,2),'VariableNames',["Cumulative" "Window"]);
mu11 = [IncrementalMdl.DistributionParameters{1,1}(1); zeros(nchunk,1)];
Xil = X(idxil,:);
Yil = Y(idxil);

% Incremental fitting
for j = 1:nchunk
    ibegin = min(nil,numObsPerChunk*(j-1) + 1);
    iend   = min(nil,numObsPerChunk*j);
    idx = ibegin:iend;
    IncrementalMdl = updateMetrics(IncrementalMdl,Xil(idx,:),Yil(idx));
    mc{j,:} = IncrementalMdl.Metrics{"MinimalCost",:};
    mu11(j + 1) = IncrementalMdl.DistributionParameters{1,1}(1);
end

IncrementalMdl is an incrementalClassificationNaiveBayes model object that has tracked
the model performance to observations in the data stream.

Plot a trace plot of the performance metrics and μ11.

t = tiledlayout(2,1);
nexttile
h = plot(mc.Variables);
xlim([0 nchunk])
ylabel('Minimal Cost')
legend(h,mc.Properties.VariableNames)
nexttile
plot(mu11)
ylabel('\mu_{11}')
xlim([0 nchunk])
xlabel(t,'Iteration')
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The cumulative loss is stable, whereas the window loss jumps throughout the training.

μ11 does not change because updateMetrics does not fit the model to the data.

Configure Incremental Model to Track Performance Metrics and Specify Weights

Create a naive Bayes classification model for incremental learning by calling
incrementalClassificationNaiveBayes and specifying a maximum of 5 expected classes in the
data. Specify tracking misclassification error rate in addition to minimal cost.

Mdl = incrementalClassificationNaiveBayes('MaxNumClasses',5,'Metrics',"classiferror");

Mdl is an incrementalClassificationNaiveBayes model. All its properties are read-only.

Determine whether the model is warm by querying the model property.

isWarm = Mdl.IsWarm

isWarm = logical
   0

Mdl.IsWarm is 0; therefore, Mdl is not warm.

Determine the number of observations incremental fitting functions, such as fit, must process
before measuring the performance of the model by displaying the size of the metrics warm-up period.
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numObsBeforeMetrics = Mdl.MetricsWarmupPeriod

numObsBeforeMetrics = 1000

Load the human activity data set. Randomly shuffle the data.

load humanactivity
n = numel(actid);
rng(1) % For reproducibility
idx = randsample(n,n);
X = feat(idx,:);
Y = actid(idx);

For details on the data set, enter Description at the command line.

Suppose that the data from a stationary subject (Y <= 2) has double the quality of the data from a
moving subject. Create a weight variable that assigns a weight of 2 to observations from a stationary
subject and 1 to a moving subject.

W = ones(n,1) + (Y <= 2);

Implement incremental learning by performing the following actions at each iteration:

• Simulate a data stream by processing a chunk of 50 observations.
• Measure model performance metrics on the incoming chunk using updateMetrics. Specify the

corresponding observation weights and overwrite the input model.
• Fit the model to the incoming chunk. Specify the corresponding observation weights and

overwrite the input model.
• Store μ11 and the misclassification error rate to see how they evolve during incremental learning.

% Preallocation
numObsPerChunk = 50;
nchunk = floor(n/numObsPerChunk);
ce = array2table(zeros(nchunk,2),'VariableNames',["Cumulative" "Window"]);
mu11 = zeros(nchunk,1);    

% Incremental learning
for j = 1:nchunk
    ibegin = min(n,numObsPerChunk*(j-1) + 1);
    iend   = min(n,numObsPerChunk*j);
    idx = ibegin:iend;
    Mdl = updateMetrics(Mdl,X(idx,:),Y(idx),'Weights',W(idx));
    ce{j,:} = Mdl.Metrics{"ClassificationError",:};
    Mdl = fit(Mdl,X(idx,:),Y(idx),'Weights',W(idx));
    mu11(j) = Mdl.DistributionParameters{1,1}(1);
end

Now, Mdl is an incrementalClassificationNaiveBayes model object trained on all the data in
the stream.

To see how the parameters evolve during incremental learning, plot them on separate tiles.

t = tiledlayout(2,1);
nexttile
plot(mu11)
ylabel('\mu_{11}')
xlabel('Iteration')
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axis tight
nexttile
plot(ce.Variables)
ylabel('ClassificationError')
xline(numObsBeforeMetrics/numObsPerChunk,'r-.')
xlim([0 nchunk])
legend(ce.Properties.VariableNames)
xlabel(t,'Iteration')

mdlIsWarm = numObsBeforeMetrics/numObsPerChunk

mdlIsWarm = 20

The plot suggests that fit always fits the model to the data, and updateMetrics does not track the
classification error until after the metrics warm-up period (20 chunks).

Perform Conditional Training

Incrementally train a naive Bayes classification model only when its performance degrades.

Load the human activity data set. Randomly shuffle the data.

load humanactivity
n = numel(actid);
rng(1) % For reproducibility
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idx = randsample(n,n);
X = feat(idx,:);
Y = actid(idx);

For details on the data set, enter Description at the command line.

Configure a naive Bayes classification model for incremental learning so that the maximum number of
expected classes is 5, the tracked performance metric includes the misclassification error rate, and
the metrics window size is 1000. Fit the configured model to the first 1000 observations.

Mdl = incrementalClassificationNaiveBayes('MaxNumClasses',5,'MetricsWindowSize',1000, ...
    'Metrics','classiferror');
initobs = 1000;
Mdl = fit(Mdl,X(1:initobs,:),Y(1:initobs));

Mdl is an incrementalClassificationNaiveBayes model object.

Perform incremental learning, with conditional fitting, by following this procedure for each iteration:

• Simulate a data stream by processing a chunk of 100 observations at a time.
• Update the model performance on the incoming chunk of data.
• Fit the model to the chunk of data only when the misclassification error rate is greater than 0.05.
• When tracking performance and fitting, overwrite the previous incremental model.
• Store the misclassification error rate and the mean of the first predictor in the second class μ21 to

see how they evolve during training.
• Track when fit trains the model.

% Preallocation
numObsPerChunk = 100;
nchunk = floor((n - initobs)/numObsPerChunk);
mu21 = zeros(nchunk,1);
ce = array2table(nan(nchunk,2),'VariableNames',["Cumulative" "Window"]);
trained = false(nchunk,1);

% Incremental fitting
for j = 1:nchunk
    ibegin = min(n,numObsPerChunk*(j-1) + 1 + initobs);
    iend = min(n,numObsPerChunk*j + initobs);
    idx = ibegin:iend;
    Mdl = updateMetrics(Mdl,X(idx,:),Y(idx));
    ce{j,:} = Mdl.Metrics{"ClassificationError",:};
    if ce{j,2} > 0.05
        Mdl = fit(Mdl,X(idx,:),Y(idx));
        trained(j) = true;
    end    
    mu21(j) = Mdl.DistributionParameters{2,1}(1);
end

Mdl is an incrementalClassificationNaiveBayes model object trained on all the data in the
stream.

To see how the model performance and μ21 evolve during training, plot them on separate tiles.

t = tiledlayout(2,1);
nexttile
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plot(mu21)
hold on
plot(find(trained),mu21(trained),'r.')
xlim([0 nchunk])
ylabel('\mu_{21}')
legend('\mu_{21}','Training occurs','Location','best')
hold off
nexttile
plot(ce.Variables)
xlim([0 nchunk])
ylabel('Misclassification Error Rate')
legend(ce.Properties.VariableNames,'Location','best')
xlabel(t,'Iteration')

The trace plot of μ21 shows periods of constant values, during which the loss within the previous
observation window is at most 0.05.

Input Arguments
Mdl — Naive Bayes classification model for incremental learning
incrementalClassificationNaiveBayes model object

Naive Bayes classification model for incremental learning to measure the performance of, specified as
an incrementalClassificationNaiveBayes model object. You can create Mdl directly or by
converting a supported, traditionally trained machine learning model using the
incrementalLearner function. For more details, see the corresponding reference page.
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If Mdl.IsWarm is false, updateMetrics does not track the performance of the model. Before
updateMetrics can track performance metrics, you must perform all the following actions:

• Fit the input model Mdl to all expected classes (see the MaxNumClasses and ClassNames
arguments of incrementalClassificationNaiveBayes).

• Fit the input model Mdl to Mdl.MetricsWarmupPeriod observations by passing Mdl and the
data to fit. For more details, see “Performance Metrics” on page 35-7728.

X — Chunk of predictor data
floating-point matrix

Chunk of predictor data to measure the model performance, specified as an n-by-
Mdl.NumPredictors floating-point matrix.

The length of the observation labels Y and the number of observations in X must be equal; Y(j) is the
label of observation j (row) in X.

Note If Mdl.NumPredictors = 0, updateMetrics infers the number of predictors from X, and sets
the corresponding property of the output model. Otherwise, if the number of predictor variables in
the streaming data changes from Mdl.NumPredictors, updateMetrics issues an error.

Data Types: single | double

Y — Chunk of labels
categorical array | character array | string array | logical vector | floating-point vector | cell array of
character vectors

Chunk of labels with which to measure the model performance, specified as a categorical, character,
or string array; logical or floating-point vector; or cell array of character vectors.

The length of the observation labels Y and the number of observations in X must be equal; Y(j) is the
label of observation j (row) in X.

updateMetrics issues an error when one or both of these conditions are met:

• Y contains a new label and the maximum number of classes has already been reached (see the
MaxNumClasses and ClassNames arguments of incrementalClassificationNaiveBayes).

• The ClassNames property of the input model Mdl is nonempty, and the data types of Y and
Mdl.ClassNames are different.

Data Types: char | string | cell | categorical | logical | single | double

Weights — Chunk of observation weights
floating-point vector of positive values

Chunk of observation weights, specified as a floating-point vector of positive values. updateMetrics
weighs the observations in X with the corresponding values in Weights. The size of Weights must
equal n, the number of observations in X.

By default, Weights is ones(n,1).

For more details, including normalization schemes, see “Observation Weights” on page 35-7729.
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Data Types: double | single

Note

If an observation (predictor or label) or weight contains at least one missing (NaN) value,
updateMetrics ignores the observation. Consequently, updateMetrics uses fewer than n
observations to compute the model performance, where n is the number of observations in X.

Output Arguments
Mdl — Updated naive Bayes classification model for incremental learning
incrementalClassificationNaiveBayes model object

Updated naive Bayes classification model for incremental learning, returned as an incremental
learning model object of the same data type as the input model Mdl, an
incrementalClassificationNaiveBayes object.

If the model is not warm, updateMetrics does not compute performance metrics. As a result, the
Metrics property of Mdl remains completely composed of NaN values. If the model is warm,
updateMetrics computes the cumulative and window performance metrics on the new data X and
Y, and overwrites the corresponding elements of Mdl.Metrics. All other properties of the input
model Mdl carry over to the output model Mdl. For more details, see “Performance Metrics” on page
35-7728.

Tips
• Unlike traditional training, incremental learning might not have a separate test (holdout) set.

Therefore, to treat each incoming chunk of data as a test set, pass the incremental model and
each incoming chunk to updateMetrics before training the model on the same data using fit.

Algorithms
Performance Metrics

• updateMetrics tracks only model performance metrics, specified by the row labels of the table
in Mdl.Metrics, from new data only when the incremental model is warm (IsWarm property is
true).

• If you create an incremental model by using incrementalLearner and
MetricsWarmupPeriod is 0 (default for incrementalLearner), the model is warm at
creation.

• Otherwise, an incremental model becomes warm after the fit function performs both of these
actions:

• Fit the incremental model to Mdl.MetricsWarmupPeriod observations, which is the
metrics warm-up period.

• Fit the incremental model to all expected classes (see the MaxNumClasses and
ClassNames arguments of incrementalClassificationNaiveBayes).

• Mdl.Metrics stores two forms of each performance metric as variables (columns) of a table,
Cumulative and Window, with individual metrics in rows. When the incremental model is warm,
updateMetrics updates the metrics at the following frequencies:
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• Cumulative — The function computes cumulative metrics since the start of model
performance tracking. The function updates metrics every time you call it and bases the
calculation on the entire supplied data set.

• Window — The function computes metrics based on all observations within a window
determined by the Mdl.MetricsWindowSize property. Mdl.MetricsWindowSize also
determines the frequency at which the software updates Window metrics. For example, if
Mdl.MetricsWindowSize is 20, the function computes metrics based on the last 20
observations in the supplied data (X((end – 20 + 1):end,:) and Y((end – 20 +
1):end)).

Incremental functions that track performance metrics within a window use the following
process:

1 Store a buffer of length Mdl.MetricsWindowSize for each specified metric, and store a
buffer of observation weights.

2 Populate elements of the metrics buffer with the model performance based on batches of
incoming observations, and store corresponding observation weights in the weights buffer.

3 When the buffer is full, overwrite Mdl.Metrics.Window with the weighted average
performance in the metrics window. If the buffer is overfills when the function processes a
batch of observations, the latest incoming Mdl.MetricsWindowSize observations enter
the buffer, and the earliest observations are removed from the buffer. For example,
suppose Mdl.MetricsWindowSize is 20, the metrics buffer has 10 values from a
previously processed batch, and 15 values are incoming. To compose the length 20
window, the function uses the measurements from the 15 incoming observations and the
latest 5 measurements from the previous batch.

• The software omits an observation with a NaN score when computing the Cumulative and
Window performance metric values.

Observation Weights

For each conditional predictor distribution, updateMetrics computes the weighted average and
standard deviation.

If the prior class probability distribution is known (in other words, the prior distribution is not
empirical), updateMetrics normalizes observation weights to sum to the prior class probabilities in
the respective classes. This action implies that the default observation weights are the respective
prior class probabilities.

If the prior class probability distribution is empirical, the software normalizes the specified
observation weights to sum to 1 each time you call updateMetrics.

Version History
Introduced in R2021a

See Also
Objects
incrementalClassificationNaiveBayes

Functions
updateMetricsAndFit | fit | loss
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Topics
“Incremental Learning Overview” on page 28-2
“Configure Incremental Learning Model” on page 28-9
“Implement Incremental Learning for Classification Using Flexible Workflow” on page 28-29
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updateMetricsAndFit
Update performance metrics in incremental drift-aware learning model given new data and train
model

Syntax
Mdl = updateMetricsAndFit(Mdl,X,Y)
Mdl = updateMetricsAndFit(Mdl,X,Y,Name=Value)

Description
Mdl = updateMetricsAndFit(Mdl,X,Y) returns an incremental drift-aware learning model Mdl,
which is the input incremental drift-aware learning model Mdl with the following modifications:

1 updateMetricsAndFit measures the model performance on the incoming predictor and
response data, X and Y respectively. When the input model is warm (Mdl.IsWarm is true),
updateMetricsAndFit overwrites previously computed metrics, stored in the Metrics
property, with the new values. Otherwise, updateMetricsAndFit stores NaN values in Metrics
instead.

2 updateMetricsAndFit fits the modified model to the incoming data by performing incremental
drift-aware learning on page 35-7737.

The input and output models have the same data type.

Mdl = updateMetricsAndFit(Mdl,X,Y,Name=Value) uses additional options specified by one
or more name-value arguments. For example, you can specify that the columns of the predictor data
matrix correspond to observations, and set observation weights.

Examples

Compute Performance Metrics and Monitor Concept Drift

Create the random concept data and concept drift generator using the helper functions,
HelperSineGenerator and HelperConceptDriftGenerator, respectively.

concept1 = HelperSineGenerator(ClassificationFunction=1,IrrelevantFeatures=true,TableOutput=false);
concept2 = HelperSineGenerator(ClassificationFunction=3,IrrelevantFeatures=true,TableOutput=false);
driftGenerator = HelperConceptDriftGenerator(concept1,concept2,15000,1000);

When ClassificationFunction is 1, HelperSineGenerator labels all points that satisfy x1 <
sin(x2) as 1, otherwise the function labels them as 0. When ClassificationFunction is 3, this is
reversed. That is, HelperSineGenerator labels all points that satisfy x1 >= sin(x2) as 1, otherwise
the function labels them as 0 [2]. The software returns the data in matrices for using in incremental
learners.

HelperConceptDriftGenerator establishes the concept drift. The object uses a sigmoid function
1./(1+exp(-4*(numobservations-position)./width)) to decide the probability of choosing
the first stream when generating data [3]. In this case, the position argument is 15000 and the width
argument is 1000. As the number of observations exceeds the position value minus half of the width,
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the probability of sampling from the first stream when generating data decreases. The sigmoid
function allows a smooth transition from one stream to the other. Larger width values indicate a
larger transition period where both streams are approximately equally likely to be selected.

Initiate an incremental drift-aware model for classification as follows:

1 Create an incremental Naive Bayes classification model for binary classification.
2 Initiate an incremental concept drift detector that uses the Hoeffding's Bounds Drift Detection

Method with moving average (HDDMA).
3 Using the incremental linear model and the concept drift detector, initiate an incremental drift-

aware model. Specify the training period as 5000 observations.

BaseLearner = incrementalClassificationNaiveBayes(MaxNumClasses=2,Metrics="classiferror");
dd = incrementalConceptDriftDetector("hddma");
idal = incrementalDriftAwareLearner(BaseLearner,DriftDetector=dd,TrainingPeriod=5000);

Preallocate the number of variables in each chunk and number of iterations for creating a stream of
data.

numObsPerChunk = 10;
numIterations = 4000;

Preallocate the variables for tracking the drift status and drift time, and storing the classification
error.

dstatus = zeros(numIterations,1);
statusname = strings(numIterations,1);
driftTimes = [];
ce = array2table(zeros(numIterations,2),VariableNames=["Cumulative" "Window"]);

Simulate a data stream with incoming chunks of 10 observations each and perform incremental drift-
aware learning. At each iteration:

1 Simulate predictor data and labels, and update driftGenerator using the helper function
hgenerate.

2 Call updateMetricsAndFit to update the performance metrics and fit the incremental drift-
aware model to the incoming data.

3 Track and record the drift status and the classification error for visualization purposes.

rng(12); % For reproducibility

for j = 1:numIterations
 
 % Generate data
 [driftGenerator,X,Y] = hgenerate(driftGenerator,numObsPerChunk); 

 % Update performance metrics and fit
 idal = updateMetricsAndFit(idal,X,Y); 

 % Record drift status and classification error
 statusname(j) = string(idal.DriftStatus); 
 ce{j,:} = idal.Metrics{"ClassificationError",:};
 if idal.DriftDetected
       dstatus(j) = 2;  
    elseif idal.WarningDetected
       dstatus(j) = 1;
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    else 
       dstatus(j) = 0;
    end   
 if idal.DriftDetected
    driftTimes(end+1) = j; 
 end
 
end

Plot the cumulative and per window classification error. Mark the warmup and training periods, and
where the drift was introduced.

h = plot(ce.Variables);

xlim([0 numIterations])
ylim([0 0.22])
ylabel("Classification Error")
xlabel("Iteration")

xline(idal.MetricsWarmupPeriod/numObsPerChunk,"g-.","Warmup Period",LineWidth=1.5)
xline(idal.MetricsWarmupPeriod/numObsPerChunk+driftTimes,"g-.","Warmup Period",LineWidth=1.5)
xline(idal.TrainingPeriod/numObsPerChunk,"b-.","Training Period",LabelVerticalAlignment="middle",LineWidth=1.5)
xline(driftTimes,"m--","Drift",LabelVerticalAlignment="middle",LineWidth=1.5)

legend(h,ce.Properties.VariableNames)
legend(h,Location="best")
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The updateMetricsAndFit function first evaluates the performance of the model by calling
updateMetrics on incoming data, and then fits the model to data by calling fit:

The updateMetrics function evaluates the performance of the model as it processes incoming
observations. The function writes specified metrics, measured cumulatively and within a specified
window of processed observations, to the Metrics model property.

The fit function fits the model by updating the base learner and monitoring for drift given an
incoming batch of data. When you call fit, the software performs the following procedure:

• Trains the model up to NumTrainingObservations observations.
• After training, the software starts tracking the model loss to see if any concept drift has occurred

and updates drift status accordingly.
• When the drift status is Warning, the software trains a temporary model to replace

theBaseLearner in preparation for an imminent drift.
• When the drift status is Drift, temporary model replaces the BaseLearner.
• When the drift status is Stable, the software discards the temporary model.

For more information, see the Algorithms section.

Plot the drift status versus the iteration number.

gscatter(1:numIterations,dstatus,statusname,"gmr","o",5,"on","Iteration","Drift Status","filled")
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Input Arguments
Mdl — Incremental drift-aware learning model
incrementalDriftAwareLearner model object

Incremental drift-aware learning model fit to streaming data, specified as an
incrementalDriftAwareLearner model object. You can create Mdl using the
incrementalDriftAwareLearner function. For more details, see the object reference page.

X — Chunk of predictor data
floating-point matrix

Chunk of predictor data to which the model is fit, specified as a floating-point matrix of n
observations and Mdl.BaseLearner.NumPredictors predictor variables.

When Mdl.BaseLearner accepts the ObservationsIn name-value argument, the value of
ObservationsIn determines the orientation of the variables and observations. The default
ObservationsIn value is "rows", which indicates that observations in the predictor data are
oriented along the rows of X.

The length of the observation responses (or labels) Y and the number of observations in X must be
equal; Y(j) is the response (or label) of observation j (row or column) in X.

Note

• If Mdl.BaseLearner.NumPredictors = 0, updateMetricsAndFit infers the number of
predictors from X, and sets the corresponding property of the output model. Otherwise, if the
number of predictor variables in the streaming data changes from
Mdl.BaseLearner.NumPredictors, updateMetricsAndFit issues an error.

• updateMetricsAndFit supports only floating-point input predictor data. If your input data
includes categorical data, you must prepare an encoded version of the categorical data. Use
dummyvar to convert each categorical variable to a numeric matrix of dummy variables. Then,
concatenate all dummy variable matrices and any other numeric predictors. For more details, see
“Dummy Variables” on page 2-49.

Data Types: single | double

Y — Chunk of observed responses (or labels)
floating-point vector | categorical array | character array | string array | logical vector | cell array of
character vectors

Chunk of responses (or labels) to which the model is fit, specified as one of the following:

• Floating-point vector of n elements for regression models, where n is the number of rows in X.
• Categorical, character, or string array, logical vector, or cell array of character vectors for
classification models. If Y is a character array, it must have one class label per row. Otherwise, Y
must be a vector with n elements.

The length of Y and the number of observations in X must be equal; Y(j) is the response (or label) of
observation j (row or column) in X.

For classification problems:
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• When Mdl.BaseLearner.ClassNames is nonempty, the following conditions apply:

• If Y contains a label that is not a member of Mdl.BaseLearner.ClassNames,
updateMetricsAndFit issues an error.

• The data type of Y and Mdl.BaseLearner.ClassNames must be the same.
• When Mdl.BaseLearner.ClassNames is empty, updateMetricsAndFit infers

Mdl.BaseLearner.ClassNames from data.

Data Types: single | double | categorical | char | string | logical | cell

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.
Example: ObservationsIn="columns",Weights=W specifies that the columns of the predictor
matrix correspond to observations, and the vector W contains observation weights to apply during
incremental learning.

ObservationsIn — Orientation of data in X
"rows" (default) | "columns"

Predictor data observation dimension, specified as "columns" or "rows".

updateMetricsAndFit supports ObservationsIn only if Mdl.BaseLearner supports the
ObservationsIn name-value argument.
Example: ObservationsIn="columns"
Data Types: char | string

Weights — Chunk of observation weights
floating-point vector of positive values

Chunk of observation weights, specified as a floating-point vector of positive values.
updateMetricsAndFit weighs the observations in X with the corresponding values in Weights.
The size of Weights must equal n, which is the number of observations in X.

By default, Weights is ones(n,1).
Example: Weights=w
Data Types: double | single

Output Arguments
Mdl — Updated incremental drift-aware learning model
incrementalDriftAwareLearner model object

Updated incremental drift-aware learning model, returned as an incremental learning model object of
the same data type as the input model Mdl, incrementalDriftAwareLearner.
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Algorithms
Incremental Drift-Aware Learning

Incremental learning, or online learning, is a branch of machine learning concerned with processing
incoming data from a data stream, possibly given little to no knowledge of the distribution of the
predictor variables, aspects of the prediction or objective function (including tuning parameter
values), or whether the observations are labeled. Incremental learning differs from traditional
machine learning, where enough labeled data is available to fit to a model, perform cross-validation
to tune hyperparameters, and infer the predictor distribution. For more details, see “Incremental
Learning Overview” on page 28-2.

Unlike other incremental learning functionality offered by Statistics and Machine Learning Toolbox,
updateMetricsAndFit model object combines incremental learning and concept drift detection.

After creating an incrementalDriftAwareLearner object, use updateMetrics to update model
performance metrics and fit to fit the base model to incoming chunk of data, check for potential
drift in the model performance (concept drift), and update or reset the incremental drift-aware
learner, if necessary. You can also use updateMetricsAndFit. The fit function implements the
Reactive Drift Detection Method (RDDM) [1] as follows:

• After Mdl.BaseLearner.EstimationPeriod (if necessary) and MetricsWarmupPeriod, the
function trains the incremental drift-aware model up to NumTrainingObservations
observations until it reaches TrainingPeriod. (If the TrainingPeriod value is smaller than
the Mdl.BaseLearner.MetricsWarmupPeriod value, then
incrementalDriftAwareLearner sets the TrainingPeriod value as
Mdl.BaseLearner.MetricsWarmupPeriod.)

• When NumTrainingObservations > TrainingPeriod, the software starts tracking the model
loss. The software computes the per observation loss using the perObservationLoss function.
While computing the per observation loss, the software uses the "classiferror" loss metric for
classification models and "squarederror" for regression models. The function then appends the
loss values computed using the last chunk of data to the existing buffer loss values.

• Next, the software checks to see if any concept drift occurred by using the detectdrift function
and updates DriftStatus accordingly.

Based on the drift status, fit performs the following procedure:

• DriftStatus is 'Warning' – The software first increases the consecutive 'Warning' status
count by 1.

• If the consecutive 'Warning' status count is less than the WarningCountLimit value and
the PreviousDriftStatus value is Stable, then the software trains a temporary
incremental learner (if one does not exist) and sets it (or the existing one) to BaseLearner.

Then the software resets the temporary incremental learner using the learner's reset
function.

• If the consecutive 'Warning' status count is less than the WarningCountLimit value and
the PreviousDriftStatus value is 'Warning', then the software trains the existing
temporary incremental model using the latest chunk of data.

• If the consecutive 'Warning' status count is more than the WarningCountLimit value, then
the software sets the DriftStatus value to 'Drift'.
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• DriftStatus is 'Drift' – The software performs the following steps.

• Sets the consecutive 'Warning' status count to 0.
• Resets DriftDetector using the reset function.
• Empties the buffer loss values and appends the loss values for the latest chunk of data to buffer

loss values.
• If the temporary incremental model is not empty, then the software sets the current

BaseLearner value to the temporary incremental model and empties the temporary
incremental model.

• If the temporary incremental model is empty, then the software resets the BaseLearner value
by using the learner's reset function.

• DriftStatus is 'Stable' – The software first increases the consecutive 'Stable' status count
by 1.

• If the consecutive 'Stable' status count is less than the StableCountLimit and the
PreviousDriftStatus value is 'Warning', then the software sets the number of warnings
to zero and empties the temporary model.

• If the consecutive 'Stable' status count is more than the StableCountLimit value, then
the software resets the DriftDetector using the reset function. Then the software tests all
of the saved loss values in the buffer for concept drift by using the detectdrift function.

Once DriftStatus is set to 'Drift', and the BaseLearner and DriftDetector are reset, the
software waits until Mdl.BaseLearner.EstimationPeriod +
Mdl.BaseLearner.MetricsWarmupPeriod before it starts computing the performance metrics.

Performance Metrics

• The updateMetrics and updateMetricsAndFit functions track model performance metrics
(Metrics) from new data when the incremental model is warm (Mdl.BaseLearner.IsWarm
property). An incremental model becomes warm after fit or updateMetricsAndFit fits the
incremental model to MetricsWarmupPeriod observations, which is the metrics warm-up period.

If Mdl.BaseLearner.EstimationPeriod > 0, the functions estimate hyperparameters before
fitting the model to data. Therefore, the functions must process an additional EstimationPeriod
observations before the model starts the metrics warm-up period.

• The Metrics property of the incremental model stores two forms of each performance metric as
variables (columns) of a table, Cumulative and Window, with individual metrics in rows. When
the incremental model is warm, updateMetrics and updateMetricsAndFit update the metrics
at the following frequencies:

• Cumulative — The functions compute cumulative metrics since the start of model
performance tracking. The functions update metrics every time you call the functions, and base
the calculation on the entire supplied data set until a model reset.

• Window — The functions compute metrics based on all observations within a window
determined by the MetricsWindowSize name-value argument. MetricsWindowSize also
determines the frequency at which the software updates Window metrics. For example, if
MetricsWindowSize is 20, the functions compute metrics based on the last 20 observations
in the supplied data (X((end – 20 + 1):end,:) and Y((end – 20 + 1):end)).

Incremental functions that track performance metrics within a window use the following
process:
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1 Store MetricsWindowSize amount of values for each specified metric, and store the
same amount of observation weights.

2 Populate elements of the metrics values with the model performance based on batches of
incoming observations, and store the corresponding observation weights.

3 When the window of observations is filled, overwrite Mdl.Metrics.Window with the
weighted average performance in the metrics window. If the window is overfilled when the
function processes a batch of observations, the latest incoming MetricsWindowSize
observations are stored, and the earliest observations are removed from the window. For
example, suppose MetricsWindowSize is 20, there are 10 stored values from a
previously processed batch, and 15 values are incoming. To compose the length 20
window, the functions use the measurements from the 15 incoming observations and the
latest 5 measurements from the previous batch.

• The software omits an observation with a NaN score when computing the Cumulative and
Window performance metric values.

Version History
Introduced in R2022b
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updateMetricsAndFit
Update performance metrics in ECOC incremental learning classification model given new data and
train model

Syntax
Mdl = updateMetricsAndFit(Mdl,X,Y)
Mdl = updateMetricsAndFit(Mdl,X,Y,Name=Value)

Description
Given streaming data, updateMetricsAndFit first evaluates the performance of a configured
multiclass error-correcting output codes (ECOC) classification model for incremental learning
(incrementalClassificationECOC object) by calling updateMetrics on incoming data. Then
updateMetricsAndFit fits the model to that data by calling fit. In other words,
updateMetricsAndFit performs prequential evaluation because it treats each incoming chunk of
data as a test set, and tracks performance metrics measured cumulatively and over a specified
window [1].

updateMetricsAndFit provides a simple way to update model performance metrics and train the
model on each chunk of data. Alternatively, you can perform the operations separately by calling
updateMetrics and then fit, which allows for more flexibility (for example, you can decide
whether you need to train the model based on its performance on a chunk of data).

Mdl = updateMetricsAndFit(Mdl,X,Y) returns an incremental learning model Mdl, which is the
input incremental learning model Mdl with the following modifications:

1 updateMetricsAndFit measures the model performance on the incoming predictor and
response data, X and Y respectively. When the input model is warm (Mdl.IsWarm is true),
updateMetricsAndFit overwrites previously computed metrics, stored in the Metrics
property, with the new values. Otherwise, updateMetricsAndFit stores NaN values in Metrics
instead.

2 updateMetricsAndFit fits the modified model to the incoming data and stores the updated
binary learners and configurations in the output model Mdl.

Mdl = updateMetricsAndFit(Mdl,X,Y,Name=Value) uses additional options specified by one
or more name-value arguments. For example, you can specify that the columns of the predictor data
matrix correspond to observations, and set observation weights.

Examples

Update Performance Metrics and Train Model on Data Stream

Prepare an incremental ECOC learner by specifying the maximum number of classes. Track the
model performance on streaming data and fit the model to the data in one call by using the
updateMetricsAndFit function.

Create an ECOC classification model for incremental learning by calling
incrementalClassificationECOC and specifying a maximum of 5 expected classes in the data.
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Mdl = incrementalClassificationECOC(MaxNumClasses=5)

Mdl = 
  incrementalClassificationECOC

            IsWarm: 0
           Metrics: [1x2 table]
        ClassNames: [1x0 double]
    ScoreTransform: 'none'
    BinaryLearners: {10x1 cell}
        CodingName: 'onevsone'
          Decoding: 'lossweighted'

  Properties, Methods

Mdl is an incrementalClassificationECOC model object. All its properties are read-only.

Mdl must be fit to data before you can use it to perform any other operations.

Load the human activity data set. Randomly shuffle the data.

load humanactivity
n = numel(actid);
rng(1) % For reproducibility
idx = randsample(n,n);
X = feat(idx,:);
Y = actid(idx);

For details on the data set, enter Description at the command line.

Implement incremental learning by performing the following actions at each iteration:

• Simulate a data stream by processing a chunk of 50 observations.
• Overwrite the previous incremental model with a new one fitted to the incoming observations.
• Store the first model coefficient of the first binary learner β11, cumulative metrics, and window

metrics to see how they evolve during incremental learning.

% Preallocation
numObsPerChunk = 50;
nchunk = floor(n/numObsPerChunk);
mc = array2table(zeros(nchunk,2),VariableNames=["Cumulative","Window"]);
beta11 = zeros(nchunk,1);      

% Incremental fitting
for j = 1:nchunk
    ibegin = min(n,numObsPerChunk*(j-1) + 1);
    iend   = min(n,numObsPerChunk*j);
    idx = ibegin:iend;    
    Mdl = updateMetricsAndFit(Mdl,X(idx,:),Y(idx));
    mc{j,:} = Mdl.Metrics{"ClassificationError",:};
    beta11(j) = Mdl.BinaryLearners{1}.Beta(1);
end

Mdl is an incrementalClassificationECOC model object trained on all the data in the stream.
During incremental learning and after the model is warmed up, updateMetricsAndFit checks the
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performance of the model on the incoming observations, and then fits the model to those
observations.

To see how the performance metrics and β11 evolve during training, plot them on separate tiles.

t = tiledlayout(2,1);
nexttile
plot(beta11)
ylabel("\beta_{11}")
xlim([0 nchunk])
nexttile
plot(mc.Variables)
xlim([0 nchunk])
ylabel("Classification Error")
xline(Mdl.MetricsWarmupPeriod/numObsPerChunk,"--")
legend(mc.Properties.VariableNames)
xlabel(t,"Iteration")

The plot indicates that updateMetricsAndFit performs the following actions:

• Fit β11 during all incremental learning iterations.
• Compute the performance metrics after the metrics warm-up period only.
• Compute the cumulative metrics during each iteration.
• Compute the window metrics after processing 200 observations (4 iterations).
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Specify Orientation of Observations and Observation Weights

Train an ECOC classification model by using fitcecoc and convert it to an incremental learner by
using incrementalLearner. Track the model performance on streaming data and fit the model to
streaming data in one call by using updateMetricsAndFit. Specify the orientation of observations
and the observation weights when you call updateMetricsAndFit.

Load and Preprocess Data

Load the human activity data set. Randomly shuffle the data.

load humanactivity
rng(1) % For reproducibility
n = numel(actid);
idx = randsample(n,n);
X = feat(idx,:);
Y = actid(idx);

For details on the data set, enter Description at the command line.

Suppose that the data from a stationary subject (Y <= 2) has double the quality of data from a
moving subject. Create a weight variable that assigns a weight of 2 to observations from a stationary
subject and 1 to a moving subject.

W = ones(n,1) + (Y <= 2);

Train ECOC Classification Model

Fit an ECOC classification model to a random sample of half the data.

idxtt = randsample([true false],n,true);
TTMdl = fitcecoc(X(idxtt,:),Y(idxtt),Weights=W(idxtt))

TTMdl = 
  ClassificationECOC
             ResponseName: 'Y'
    CategoricalPredictors: []
               ClassNames: [1 2 3 4 5]
           ScoreTransform: 'none'
           BinaryLearners: {10x1 cell}
               CodingName: 'onevsone'

  Properties, Methods

TTMdl is a ClassificationECOC model object representing a traditionally trained ECOC
classification model.

Convert Trained Model

Convert the traditionally trained model to a model for incremental learning.

IncrementalMdl = incrementalLearner(TTMdl)

IncrementalMdl = 
  incrementalClassificationECOC
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            IsWarm: 1
           Metrics: [1x2 table]
        ClassNames: [1 2 3 4 5]
    ScoreTransform: 'none'
    BinaryLearners: {10x1 cell}
        CodingName: 'onevsone'
          Decoding: 'lossweighted'

  Properties, Methods

IncrementalMdl is an incrementalClassificationECOC model object. Because class names are
specified in IncrementalMdl.ClassNames, labels encountered during incremental learning must
be in IncrementalMdl.ClassNames.

Track Performance Metrics and Fit Model

Perform incremental learning on the rest of the data by using the updateMetricsAndFit function.
Transpose the predictor matrix, and specify the data orientation when you call
updateMetricsAndFit. At each iteration:

1 Simulate a data stream by processing 50 observations at a time.
2 Call updateMetricsAndFit to update the cumulative and window performance metrics of the

model given the incoming chunk of observations, and then fit the model to the data. Overwrite
the previous incremental model with a new one. Specify that the observations are oriented in
columns, and specify the observation weights.

3 Store the misclassification error rate.

% Preallocation
idxil = ~idxtt;
nil = sum(idxil);
numObsPerChunk = 50;
nchunk = floor(nil/numObsPerChunk);
mc = array2table(zeros(nchunk,2),VariableNames=["Cumulative","Window"]);
Xil = X(idxil,:)';
Yil = Y(idxil);
Wil = W(idxil);

% Incremental fitting
for j = 1:nchunk
    ibegin = min(nil,numObsPerChunk*(j-1) + 1);
    iend   = min(nil,numObsPerChunk*j);
    idx = ibegin:iend;
    IncrementalMdl = updateMetricsAndFit(IncrementalMdl,Xil(:,idx),Yil(idx), ...
        Weights=Wil(idx),ObservationsIn="columns");
    mc{j,:} = IncrementalMdl.Metrics{"ClassificationError",:};
end

IncrementalMdl is an incrementalClassificationECOC model object trained on all the data in
the stream.

Create a trace plot of the misclassification error rate.

plot(mc.Variables)
xlim([0 nchunk])
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ylabel("Classification Error")
legend(mc.Properties.VariableNames)
xlabel("Iteration")

The cumulative loss initially jumps, but stabilizes around 0.03, whereas the window loss jumps
throughout the training.

Input Arguments
Mdl — Incremental learning model
incrementalClassificationECOC model object

Incremental learning model whose performance is measured and then the model is fit to data,
specified as an incrementalClassificationECOC model object. You can create Mdl by calling
incrementalClassificationECOC directly, or by converting a supported, traditionally trained
machine learning model using the incrementalLearner function.

If Mdl.IsWarm is false, updateMetricsAndFit does not track the performance of the model. For
more details, see “Performance Metrics” on page 35-7748.

X — Chunk of predictor data
floating-point matrix

Chunk of predictor data, specified as a floating-point matrix of n observations and
Mdl.NumPredictors predictor variables. The value of the ObservationsIn name-value argument
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determines the orientation of the variables and observations. The default ObservationsIn value is
"rows", which indicates that observations in the predictor data are oriented along the rows of X.

The length of the observation labels Y and the number of observations in X must be equal; Y(j) is the
label of observation j (row or column) in X.

Note

• If Mdl.NumPredictors = 0, updateMetricsAndFit infers the number of predictors from X,
and sets the corresponding property of the output model. Otherwise, if the number of predictor
variables in the streaming data changes from Mdl.NumPredictors, updateMetricsAndFit
issues an error.

• updateMetricsAndFit supports only floating-point input predictor data. If your input data
includes categorical data, you must prepare an encoded version of the categorical data. Use
dummyvar to convert each categorical variable to a numeric matrix of dummy variables. Then,
concatenate all dummy variable matrices and any other numeric predictors. For more details, see
“Dummy Variables” on page 2-49.

Data Types: single | double

Y — Chunk of labels
categorical array | character array | string array | logical vector | floating-point vector | cell array of
character vectors

Chunk of labels, specified as a categorical, character, or string array, a logical or floating-point vector,
or a cell array of character vectors.

The length of the observation labels Y and the number of observations in X must be equal; Y(j) is the
label of observation j (row or column) in X.

updateMetricsAndFit issues an error when one or both of these conditions are met:

• Y contains a new label and the maximum number of classes has already been reached (see the
MaxNumClasses and ClassNames arguments of incrementalClassificationECOC).

• The ClassNames property of the input model Mdl is nonempty, and the data types of Y and
Mdl.ClassNames are different.

Data Types: char | string | cell | categorical | logical | single | double

Note

If an observation (predictor or label) or weight contains at least one missing (NaN) value,
updateMetricsAndFit ignores the observation. Consequently, updateMetricsAndFit uses fewer
than n observations to compute the model performance and create an updated model, where n is the
number of observations in X.
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Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.
Example: ObservationsIn="columns",Weights=W specifies that the columns of the predictor
matrix correspond to observations, and the vector W contains observation weights to apply during
incremental learning.

ObservationsIn — Predictor data observation dimension
"rows" (default) | "columns"

Predictor data observation dimension, specified as "rows" or "columns".
Example: ObservationsIn="columns"
Data Types: char | string

Weights — Chunk of observation weights
floating-point vector of positive values

Chunk of observation weights, specified as a floating-point vector of positive values.
updateMetricsAndFit weighs the observations in X with the corresponding values in Weights.
The size of Weights must equal n, which is the number of observations in X.

By default, Weights is ones(n,1).

For more details, including normalization schemes, see “Observation Weights” on page 35-7749.
Example: Weights=W specifies the observation weights as the vector W.
Data Types: double | single

Output Arguments
Mdl — Updated ECOC classification model for incremental learning
incrementalClassificationECOC model object

Updated ECOC classification model for incremental learning, returned as an incremental learning
model object of the same data type as the input model Mdl, incrementalClassificationECOC.

If the model is not warm, updateMetricsAndFit does not compute performance metrics. As a
result, the Metrics property of Mdl remains completely composed of NaN values. If the model is
warm, updateMetricsAndFit computes the cumulative and window performance metrics on the
new data X and Y, and overwrites the corresponding elements of Mdl.Metrics. For more details, see
“Performance Metrics” on page 35-7748.

If you do not specify all expected classes by using the ClassNames name-value argument when you
create the input model Mdl using incrementalClassificationECOC, and Y contains expected, but
unprocessed, classes, then updateMetricsAndFit performs the following actions:

1 Append any new labels in Y to the tail of Mdl.ClassNames.
2 Expand Mdl.Prior to a length c vector of an updated empirical class distribution, where c is the

number of classes in Mdl.ClassNames.
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Algorithms
Performance Metrics

• updateMetrics and updateMetricsAndFit track model performance metrics, specified by the
row labels of the table in Mdl.Metrics, from new data only when the incremental model is warm
(IsWarm property is true).

• If you create an incremental model by using incrementalLearner and
MetricsWarmupPeriod is 0 (default for incrementalLearner), the model is warm at
creation.

• Otherwise, an incremental model becomes warm after the fit or updateMetricsAndFit
function performs both of these actions:

• Fit the incremental model to Mdl.MetricsWarmupPeriod observations, which is the
metrics warm-up period.

• Fit the incremental model to all expected classes (see the MaxNumClasses and
ClassNames arguments of incrementalClassificationECOC).

• The Mdl.Metrics property stores two forms of each performance metric as variables (columns)
of a table, Cumulative and Window, with individual metrics in rows. When the incremental model
is warm, updateMetrics and updateMetricsAndFit update the metrics at the following
frequencies:

• Cumulative — The functions compute cumulative metrics since the start of model
performance tracking. The functions update metrics every time you call the functions and base
the calculation on the entire supplied data set.

• Window — The functions compute metrics based on all observations within a window
determined by the Mdl.MetricsWindowSize property. Mdl.MetricsWindowSize also
determines the frequency at which the software updates Window metrics. For example, if
Mdl.MetricsWindowSize is 20, the functions compute metrics based on the last 20
observations in the supplied data (X((end – 20 + 1):end,:) and Y((end – 20 +
1):end)).

Incremental functions that track performance metrics within a window use the following
process:

1 Store a buffer of length Mdl.MetricsWindowSize for each specified metric, and store a
buffer of observation weights.

2 Populate elements of the metrics buffer with the model performance based on batches of
incoming observations, and store corresponding observation weights in the weights buffer.

3 When the buffer is filled, overwrite Mdl.Metrics.Window with the weighted average
performance in the metrics window. If the buffer is overfilled when the function processes
a batch of observations, the latest incoming Mdl.MetricsWindowSize observations enter
the buffer, and the earliest observations are removed from the buffer. For example,
suppose Mdl.MetricsWindowSize is 20, the metrics buffer has 10 values from a
previously processed batch, and 15 values are incoming. To compose the length 20
window, the function uses the measurements from the 15 incoming observations and the
latest 5 measurements from the previous batch.

• The software omits an observation with a NaN score when computing the Cumulative and
Window performance metric values.
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Observation Weights

If the prior class probability distribution is known (in other words, the prior distribution is not
empirical), updateMetricsAndFit normalizes observation weights to sum to the prior class
probabilities in the respective classes. This action implies that the default observation weights are the
respective prior class probabilities.

If the prior class probability distribution is empirical, the software normalizes the specified
observation weights to sum to 1 each time you call updateMetricsAndFit.

Version History
Introduced in R2022a

References
[1] Bifet, Albert, Ricard Gavaldá, Geoffrey Holmes, and Bernhard Pfahringer. Machine Learning for

Data Streams with Practical Example in MOA. Cambridge, MA: The MIT Press, 2007.

See Also
Functions
fit | updateMetrics | predict | loss

Objects
incrementalClassificationECOC

Topics
“Incremental Learning Overview” on page 28-2
“Configure Incremental Learning Model” on page 28-9
“Implement Incremental Learning for Classification Using Succinct Workflow” on page 28-22
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updateMetricsAndFit
Update performance metrics in kernel incremental learning model given new data and train model

Syntax
Mdl = updateMetricsAndFit(Mdl,X,Y)
Mdl = updateMetricsAndFit(Mdl,X,Y,Weights=weights)

Description
Given streaming data, updateMetricsAndFit first evaluates the performance of a configured
incremental learning model for kernel regression (incrementalRegressionKernel object) or
binary kernel classification (incrementalClassificationKernel object) by calling
updateMetrics on incoming data. Then updateMetricsAndFit fits the model to that data by
calling fit. In other words, updateMetricsAndFit performs prequential evaluation because it
treats each incoming chunk of data as a test set, and tracks performance metrics measured
cumulatively and over a specified window [1].

updateMetricsAndFit provides a simple way to update model performance metrics and train the
model on each chunk of data. Alternatively, you can perform the operations separately by calling
updateMetrics and then fit, which allows for more flexibility (for example, you can decide
whether you need to train the model based on its performance on a chunk of data).

Mdl = updateMetricsAndFit(Mdl,X,Y) returns an incremental learning model Mdl, which is the
input incremental learning model Mdl with the following modifications:

1 updateMetricsAndFit measures the model performance on the incoming predictor and
response data, X and Y respectively. When the input model is warm (Mdl.IsWarm is true),
updateMetricsAndFit overwrites previously computed metrics, stored in the Metrics
property, with the new values. Otherwise, updateMetricsAndFit stores NaN values in Metrics
instead.

2 updateMetricsAndFit fits the modified model to the incoming data by following this
procedure:

a Initialize the solver with the configurations and model parameters of the input model Mdl.
b Fit the model to the data, and store the updated model parameters and configurations in the

output model Mdl.

The input and output models have the same data type.

Mdl = updateMetricsAndFit(Mdl,X,Y,Weights=weights) also sets observation weights.

Examples
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Update Performance Metrics and Train Model on Data Stream

Create an incremental kernel model for binary classification by calling
incrementalClassificationKernel directly. Track the model performance and fit the model to
streaming data in one call by using updateMetricsAndFit.

Create a default incremental kernel model for binary classification.

Mdl = incrementalClassificationKernel()

Mdl = 
  incrementalClassificationKernel

                    IsWarm: 0
                   Metrics: [1x2 table]
                ClassNames: [1x0 double]
            ScoreTransform: 'none'
    NumExpansionDimensions: 0
               KernelScale: 1

  Properties, Methods

Mdl is an incrementalClassificationKernel model object. All its properties are read-only.

Mdl must be fit to data before you can use it to perform any other operations.

Load the human activity data set. Randomly shuffle the data.

load humanactivity
n = numel(actid);
rng(1) % For reproducibility
idx = randsample(n,n);
X = feat(idx,:);
Y = actid(idx);

For details on the data set, enter Description at the command line.

Responses can be one of five classes: Sitting, Standing, Walking, Running, or Dancing. Dichotomize
the response by identifying whether the subject is moving (actid > 2).

Y = Y > 2;

Fit the incremental model to the training data by using the updateMetricsAndFit function. At each
iteration:

• Simulate a data stream by processing a chunk of 50 observations.
• Overwrite the previous incremental model with a new one fitted to the incoming observations.
• Store the cumulative metrics, window metrics, and number of training observations to see how

they evolve during incremental learning.

% Preallocation
numObsPerChunk = 50;
nchunk = floor(n/numObsPerChunk);
ce = array2table(zeros(nchunk,2),VariableNames=["Cumulative","Window"]);
numtrainobs = [zeros(nchunk,1)];  
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% Incremental fitting
for j = 1:nchunk
    ibegin = min(n,numObsPerChunk*(j-1) + 1);
    iend   = min(n,numObsPerChunk*j);
    idx = ibegin:iend;    
    Mdl = updateMetricsAndFit(Mdl,X(idx,:),Y(idx));
    ce{j,:} = Mdl.Metrics{"ClassificationError",:};
    numtrainobs(j) = Mdl.NumTrainingObservations; 
end

Mdl is an incrementalClassificationKernel model object trained on all the data in the stream.
During incremental learning and after the model is warmed up, updateMetricsAndFit checks the
performance of the model on the incoming observations, and then fits the model to those
observations.

To see how the number of observations and performance metrics evolve during training, plot them on
separate tiles.

t = tiledlayout(2,1);
nexttile
plot(numtrainobs)
ylabel("Number of Training Observations")
xlim([0 nchunk])
nexttile
plot(ce.Variables)
xlim([0 nchunk])
ylabel("Classification Error")
xline((Mdl.EstimationPeriod + Mdl.MetricsWarmupPeriod)/numObsPerChunk,"--");
legend(ce.Properties.VariableNames)
xlabel(t,"Iteration")
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The plot suggests that updateMetricsAndFit does the following:

• Fit the model during all incremental learning iterations.
• Compute the performance metrics after the metrics warm-up period only.
• Compute the cumulative metrics during each iteration.
• Compute the window metrics after processing 200 observations (4 iterations).

Specify Observation Weights

Train a kernel regression model by using fitrkernel, and convert it to an incremental learner by
using incrementalLearner. Track the model performance, and fit the model to streaming data in
one call by using updateMetricsAndFit. Specify the observation weights when you call
updateMetricsAndFit.

Load and Preprocess Data

Load the 2015 NYC housing data set, and shuffle the data. For more details on the data, see NYC
Open Data.

load NYCHousing2015
rng(1) % For reproducibility
n = size(NYCHousing2015,1);
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idxshuff = randsample(n,n);
NYCHousing2015 = NYCHousing2015(idxshuff,:);

Suppose that the data collected from Manhattan (BOROUGH = 1) was collected using a new method
that doubles its quality. Create a weight variable that attributes 2 to observations collected from
Manhattan, and 1 to all other observations.

n = size(NYCHousing2015,1);
NYCHousing2015.W = ones(n,1) + (NYCHousing2015.BOROUGH == 1);

Extract the response variable SALEPRICE from the table. For numerical stability, scale SALEPRICE by
1e6.

Y = NYCHousing2015.SALEPRICE/1e6;
NYCHousing2015.SALEPRICE = [];

To reduce computational cost for this example, remove the NEIGHBORHOOD column, which contains a
categorical variable with 254 categories.

NYCHousing2015.NEIGHBORHOOD = [];

Create dummy variable matrices from the other categorical predictors.

catvars = ["BOROUGH","BUILDINGCLASSCATEGORY"];
dumvarstbl = varfun(@(x)dummyvar(categorical(x)),NYCHousing2015, ...
    InputVariables=catvars);
dumvarmat = table2array(dumvarstbl);
NYCHousing2015(:,catvars) = [];

Treat all other numeric variables in the table as predictors of sales price. Concatenate the matrix of
dummy variables to the rest of the predictor data.

idxnum = varfun(@isnumeric,NYCHousing2015,OutputFormat="uniform");
X = [dumvarmat NYCHousing2015{:,idxnum}];

Train Kernel Regression Model

Fit a kernel regression model to a random sample of half the data.

idxtt = randsample([true false],n,true);
TTMdl = fitrkernel(X(idxtt,:),Y(idxtt),Weights=NYCHousing2015.W(idxtt))

TTMdl = 
  RegressionKernel
              ResponseName: 'Y'
                   Learner: 'svm'
    NumExpansionDimensions: 2048
               KernelScale: 1
                    Lambda: 2.1977e-05
             BoxConstraint: 1
                   Epsilon: 0.0547

  Properties, Methods

TTMdl is a RegressionKernel model object representing a traditionally trained kernel regression
model.
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Convert Trained Model

Convert the traditionally trained kernel regression model to a model for incremental learning.

IncrementalMdl = incrementalLearner(TTMdl)

IncrementalMdl = 
  incrementalRegressionKernel

                    IsWarm: 1
                   Metrics: [1x2 table]
         ResponseTransform: 'none'
    NumExpansionDimensions: 2048
               KernelScale: 1

  Properties, Methods

IncrementalMdl is an incrementalRegressionKernel model object. All its properties are read-
only.

Track Performance Metrics and Fit Model

Perform incremental learning on the rest of the data by using the updateMetricsAndFit function.
At each iteration:

1 Simulate a data stream by processing a chunk of 500 observations.
2 Call updateMetricsAndFit to update the cumulative and window epsilon insensitive loss of the

model given the incoming chunk of observations, and then fit the model to the data. Overwrite
the previous incremental model with a new one. Specify the observation weights.

3 Store the losses.

% Preallocation
idxil = ~idxtt;
nil = sum(idxil);
numObsPerChunk = 500;
nchunk = floor(nil/numObsPerChunk);
ei = array2table(zeros(nchunk,2),VariableNames=["Cumulative","Window"]);
Xil = X(idxil,:);
Yil = Y(idxil);
Wil = NYCHousing2015.W(idxil);

% Incremental fitting
for j = 1:nchunk
    ibegin = min(nil,numObsPerChunk*(j-1) + 1);
    iend   = min(nil,numObsPerChunk*j);
    idx = ibegin:iend;
    IncrementalMdl = updateMetricsAndFit(IncrementalMdl,Xil(idx,:),Yil(idx), ...
        Weights=Wil(idx));
    ei{j,:} = IncrementalMdl.Metrics{"EpsilonInsensitiveLoss",:};
end

IncrementalMdl is an incrementalRegressionKernel model object trained on all the data in
the stream.

Plot a trace plot of the performance metrics.
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plot(ei.Variables)
xlim([0 nchunk])
ylabel("Epsilon Insensitive Loss")
legend(ei.Properties.VariableNames)
xlabel("Iteration")

The cumulative loss gradually changes with each iteration (chunk of 500 observations), whereas the
window loss jumps. Because the metrics window is 200 by default, updateMetricsAndFit
measures the performance based on the latest 200 observations in each 500 observation chunk.

Input Arguments
Mdl — Incremental learning model
incrementalClassificationKernel model object | incrementalRegressionKernel model
object

Incremental learning model whose performance is measured and then the model is fit to data,
specified as an incrementalClassificationKernel or incrementalRegressionKernel model
object. You can create Mdl directly or by converting a supported, traditionally trained machine
learning model using the incrementalLearner function. For more details, see the corresponding
reference page.

If Mdl.IsWarm is false, updateMetricsAndFit does not track the performance of the model. For
more details, see “Performance Metrics” on page 35-7758.
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X — Chunk of predictor data
floating-point matrix

Chunk of predictor data, specified as a floating-point matrix of n observations and
Mdl.NumPredictors predictor variables.

The length of the observation labels Y and the number of observations in X must be equal; Y(j) is the
label of observation j (row) in X.

Note

• If Mdl.NumPredictors = 0, updateMetricsAndFit infers the number of predictors from X,
and sets the corresponding property of the output model. Otherwise, if the number of predictor
variables in the streaming data changes from Mdl.NumPredictors, updateMetricsAndFit
issues an error.

• updateMetricsAndFit supports only floating-point input predictor data. If your input data
includes categorical data, you must prepare an encoded version of the categorical data. Use
dummyvar to convert each categorical variable to a numeric matrix of dummy variables. Then,
concatenate all dummy variable matrices and any other numeric predictors. For more details, see
“Dummy Variables” on page 2-49.

Data Types: single | double

Y — Chunk of responses (labels)
categorical array | character array | string array | logical vector | floating-point vector | cell array of
character vectors

Chunk of responses (labels), specified as a categorical, character, or string array, a logical or floating-
point vector, or a cell array of character vectors for classification problems; or a floating-point vector
for regression problems.

The length of the observation labels Y and the number of observations in X must be equal; Y(j) is the
label of observation j (row) in X.

For classification problems:

• updateMetricsAndFit supports binary classification only.
• When the ClassNames property of the input model Mdl is nonempty, the following conditions

apply:

• If Y contains a label that is not a member of Mdl.ClassNames, updateMetricsAndFit
issues an error.

• The data type of Y and Mdl.ClassNames must be the same.

Data Types: char | string | cell | categorical | logical | single | double

weights — Chunk of observation weights
floating-point vector of positive values

Chunk of observation weights, specified as a floating-point vector of positive values.
updateMetricsAndFit weighs the observations in X with the corresponding values in weights.
The size of weights must equal n, the number of observations in X.
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By default, weights is ones(n,1).

For more details, including normalization schemes, see “Observation Weights” on page 35-7759.
Data Types: double | single

Note

• If an observation (predictor or label) or weight contains at least one missing (NaN) value,
updateMetricsAndFit ignores the observation. Consequently, updateMetricsAndFit uses
fewer than n observations to compute the model performance and create an updated model,
where n is the number of observations in X.

• The chunk size n and the stochastic gradient descent (SGD) hyperparameter mini-batch size
(Mdl.SolverOptions.BatchSize) can be different values, and n does not have to be an exact
multiple of the mini-batch size. updateMetricsAndFit uses the BatchSize observations when
it applies SGD for each learning cycle. The number of observations in the last mini-batch for the
last learning cycle can be less than or equal to Mdl.SolverOptions.BatchSize.

Output Arguments
Mdl — Updated incremental learning model
incrementalClassificationKernel model object | incrementalRegressionKernel model
object

Updated incremental learning model, returned as an incremental learning model object of the same
data type as the input model Mdl, either incrementalClassificationKernel or
incrementalRegressionKernel.

When you call updateMetricsAndFit, the following conditions apply:

• If the model is not warm, updateMetricsAndFit does not compute performance metrics. As a
result, the Metrics property of Mdl remains completely composed of NaN values. For more
details, see “Performance Metrics” on page 35-7758.

• If Mdl.EstimationPeriod > 0, updateMetricsAndFit estimates hyperparameters using the
first Mdl.EstimationPeriod observations passed to it; the function does not train the input
model using that data. However, if an incoming chunk of n observations is greater than or equal to
the number of observations remaining in the estimation period m, updateMetricsAndFit
estimates hyperparameters using the first n – m observations, and fits the input model to the
remaining m observations. Consequently, the software updates model parameters,
hyperparameter properties, and recordkeeping properties such as NumTrainingObservations.

For classification problems, if the ClassNames property of the input model Mdl is an empty array,
updateMetricsAndFit sets the ClassNames property of the output model Mdl to unique(Y).

Algorithms
Performance Metrics

• updateMetrics and updateMetricsAndFit track model performance metrics, specified by the
row labels of the table in Mdl.Metrics, from new data only when the incremental model is warm
(IsWarm property is true). An incremental model is warm after fit or updateMetricsAndFit

35 Functions

35-7758



fits the incremental model to Mdl.MetricsWarmupPeriod observations, which is the metrics
warm-up period.

If Mdl.EstimationPeriod > 0, the fit and updateMetricsAndFit functions estimate
hyperparameters before fitting the model to data. Therefore, the functions must process an
additional EstimationPeriod observations before the model starts the metrics warm-up period.

• The Mdl.Metrics property stores two forms of each performance metric as variables (columns)
of a table, Cumulative and Window, with individual metrics in rows. When the incremental model
is warm, updateMetrics and updateMetricsAndFit update the metrics at the following
frequencies:

• Cumulative — The functions compute cumulative metrics since the start of model
performance tracking. The functions update metrics every time you call the functions and base
the calculation on the entire supplied data set.

• Window — The functions compute metrics based on all observations within a window
determined by the Mdl.MetricsWindowSize property. Mdl.MetricsWindowSize also
determines the frequency at which the software updates Window metrics. For example, if
Mdl.MetricsWindowSize is 20, the functions compute metrics based on the last 20
observations in the supplied data (X((end – 20 + 1):end,:) and Y((end – 20 +
1):end)).

Incremental functions that track performance metrics within a window use the following
process:

1 Store a buffer of length Mdl.MetricsWindowSize for each specified metric, and store a
buffer of observation weights.

2 Populate elements of the metrics buffer with the model performance based on batches of
incoming observations, and store corresponding observation weights in the weights buffer.

3 When the buffer is filled, overwrite Mdl.Metrics.Window with the weighted average
performance in the metrics window. If the buffer is overfilled when the function processes
a batch of observations, the latest incoming Mdl.MetricsWindowSize observations enter
the buffer, and the earliest observations are removed from the buffer. For example,
suppose Mdl.MetricsWindowSize is 20, the metrics buffer has 10 values from a
previously processed batch, and 15 values are incoming. To compose the length 20
window, the function uses the measurements from the 15 incoming observations and the
latest 5 measurements from the previous batch.

• The software omits an observation with a NaN prediction (score for classification and response for
regression) when computing the Cumulative and Window performance metric values.

Observation Weights

For classification problems, if the prior class probability distribution is known (in other words, the
prior distribution is not empirical), updateMetricsAndFit normalizes observation weights to sum
to the prior class probabilities in the respective classes. This action implies that observation weights
are the respective prior class probabilities by default.

For regression problems or if the prior class probability distribution is empirical, the software
normalizes the specified observation weights to sum to 1 each time you call updateMetricsAndFit.

Version History
Introduced in R2022a
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[1] Bifet, Albert, Ricard Gavaldá, Geoffrey Holmes, and Bernhard Pfahringer. Machine Learning for

Data Streams with Practical Example in MOA. Cambridge, MA: The MIT Press, 2007.

See Also
Objects
incrementalClassificationKernel | incrementalRegressionKernel

Functions
updateMetrics | fit

Topics
“Incremental Learning Overview” on page 28-2
“Configure Incremental Learning Model” on page 28-9
“Implement Incremental Learning for Classification Using Succinct Workflow” on page 28-22
“Initialize Incremental Learning Model from Logistic Regression Model Trained in Classification
Learner” on page 28-40
“Initialize Incremental Learning Model from SVM Regression Model Trained in Regression Learner”
on page 28-33
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updateMetricsAndFit
Update performance metrics in linear incremental learning model given new data and train model

Syntax
Mdl = updateMetricsAndFit(Mdl,X,Y)
Mdl = updateMetricsAndFit(Mdl,X,Y,Name,Value)

Description
Given streaming data, updateMetricsAndFit first evaluates the performance of a configured
incremental learning model for linear regression (incrementalRegressionLinear object) or
linear binary classification (incrementalClassificationLinear object) by calling
updateMetrics on incoming data. Then updateMetricsAndFit fits the model to that data by
calling fit. In other words, updateMetricsAndFit performs prequential evaluation because it
treats each incoming chunk of data as a test set, and tracks performance metrics measured
cumulatively and over a specified window [1].

updateMetricsAndFit provides a simple way to update model performance metrics and train the
model on each chunk of data. Alternatively, you can perform the operations separately by calling
updateMetrics and then fit, which allows for more flexibility (for example, you can decide
whether you need to train the model based on its performance on a chunk of data).

Mdl = updateMetricsAndFit(Mdl,X,Y) returns an incremental learning model Mdl, which is the
input incremental learning model Mdl with the following modifications:

1 updateMetricsAndFit measures the model performance on the incoming predictor and
response data, X and Y respectively. When the input model is warm (Mdl.IsWarm is true),
updateMetricsAndFit overwrites previously computed metrics, stored in the Metrics
property, with the new values. Otherwise, updateMetricsAndFit stores NaN values in Metrics
instead.

2 updateMetricsAndFit fits the modified model to the incoming data by following this
procedure:

a Initialize the solver with the configurations and linear model coefficient and bias estimates of
the input model Mdl.

b Fit the model to the data, and store the updated coefficient estimates and configurations in
the output model Mdl.

The input and output models have the same data type.

Mdl = updateMetricsAndFit(Mdl,X,Y,Name,Value) uses additional options specified by one
or more name-value pair arguments. For example, you can specify that the columns of the predictor
data matrix correspond to observations, and set observation weights.

Examples
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Update Performance Metrics and Train Model on Data Stream

Create a default incremental linear SVM model for binary classification.

Mdl = incrementalClassificationLinear()

Mdl = 
  incrementalClassificationLinear

            IsWarm: 0
           Metrics: [1x2 table]
        ClassNames: [1x0 double]
    ScoreTransform: 'none'
              Beta: [0x1 double]
              Bias: 0
           Learner: 'svm'

  Properties, Methods

Mdl is an incrementalClassificationLinear model object. All its properties are read-only.

Mdl must be fit to data before you can use it to perform any other operations.

Load the human activity data set. Randomly shuffle the data.

load humanactivity
n = numel(actid);
rng(1) % For reproducibility
idx = randsample(n,n);
X = feat(idx,:);
Y = actid(idx);

For details on the data set, enter Description at the command line.

Responses can be one of five classes: Sitting, Standing, Walking, Running, or Dancing. Dichotomize
the response by identifying whether the subject is moving (actid > 2).

Y = Y > 2;

Fit the incremental model to the training data by using the updateMetricsAndFit function. At each
iteration:

• Simulate a data stream by processing a chunk of 50 observations.
• Overwrite the previous incremental model with a new one fitted to the incoming observations.
• Store β1, the cumulative metrics, and the window metrics to see how they evolve during

incremental learning.

% Preallocation
numObsPerChunk = 50;
nchunk = floor(n/numObsPerChunk);
ce = array2table(zeros(nchunk,2),'VariableNames',["Cumulative" "Window"]);
beta1 = zeros(nchunk,1);    

% Incremental fitting
for j = 1:nchunk
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    ibegin = min(n,numObsPerChunk*(j-1) + 1);
    iend   = min(n,numObsPerChunk*j);
    idx = ibegin:iend;    
    Mdl = updateMetricsAndFit(Mdl,X(idx,:),Y(idx));
    ce{j,:} = Mdl.Metrics{"ClassificationError",:};
    beta1(j + 1) = Mdl.Beta(1);
end

Mdl is an incrementalClassificationLinear model object trained on all the data in the stream.
During incremental learning and after the model is warmed up, updateMetricsAndFit checks the
performance of the model on the incoming observations, and then fits the model to those
observations.

To see how the performance metrics and β1 evolve during training, plot them on separate tiles.

t = tiledlayout(2,1);
nexttile
plot(beta1)
ylabel('\beta_1')
xlim([0 nchunk])
nexttile
h = plot(ce.Variables);
xlim([0 nchunk])
ylabel('Classification Error')
xline((Mdl.EstimationPeriod + Mdl.MetricsWarmupPeriod)/numObsPerChunk,'g-.')
legend(h,ce.Properties.VariableNames)
xlabel(t,'Iteration')
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The plot suggests that updateMetricsAndFit does the following:

• Fit β1 during all incremental learning iterations.
• Compute the performance metrics after the metrics warm-up period only.
• Compute the cumulative metrics during each iteration.
• Compute the window metrics after processing 200 observations (4 iterations).

Specify Orientation of Observations and Observation Weights

Train a linear regression model by using fitrlinear, convert it to an incremental learner, track its
performance, and fit it to streaming data. Carry over training options from traditional to incremental
learning.

Load and Preprocess Data

Load the 2015 NYC housing data set, and shuffle the data. For more details on the data, see NYC
Open Data.

load NYCHousing2015
rng(1) % For reproducibility
n = size(NYCHousing2015,1);
idxshuff = randsample(n,n);
NYCHousing2015 = NYCHousing2015(idxshuff,:);

Suppose that the data collected from Manhattan (BOROUGH = 1) was collected using a new method
that doubles its quality. Create a weight variable that attributes 2 to observations collected from
Manhattan, and 1 to all other observations.

n = size(NYCHousing2015,1);
NYCHousing2015.W = ones(n,1) + (NYCHousing2015.BOROUGH == 1);

Extract the response variable SALEPRICE from the table. For numerical stability, scale SALEPRICE by
1e6.

Y = NYCHousing2015.SALEPRICE/1e6;
NYCHousing2015.SALEPRICE = [];

Create dummy variable matrices from the categorical predictors.

catvars = ["BOROUGH" "BUILDINGCLASSCATEGORY" "NEIGHBORHOOD"];
dumvarstbl = varfun(@(x)dummyvar(categorical(x)),NYCHousing2015, ...
    'InputVariables',catvars);
dumvarmat = table2array(dumvarstbl);
NYCHousing2015(:,catvars) = [];

Treat all other numeric variables in the table as linear predictors of sales price. Concatenate the
matrix of dummy variables to the rest of the predictor data. Transpose the resulting predictor matrix.

idxnum = varfun(@isnumeric,NYCHousing2015,'OutputFormat','uniform');
X = [dumvarmat NYCHousing2015{:,idxnum}]';

Train Linear Regression Model

Fit a linear regression model to a random sample of half the data.
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idxtt = randsample([true false],n,true);
TTMdl = fitrlinear(X(:,idxtt),Y(idxtt),'ObservationsIn','columns', ...
    'Weights',NYCHousing2015.W(idxtt))

TTMdl = 
  RegressionLinear
         ResponseName: 'Y'
    ResponseTransform: 'none'
                 Beta: [313x1 double]
                 Bias: 0.1116
               Lambda: 2.1977e-05
              Learner: 'svm'

  Properties, Methods

TTMdl is a RegressionLinear model object representing a traditionally trained linear regression
model.

Convert Trained Model

Convert the traditionally trained linear regression model to a linear regression model for incremental
learning.

IncrementalMdl = incrementalLearner(TTMdl)

IncrementalMdl = 
  incrementalRegressionLinear

               IsWarm: 1
              Metrics: [1x2 table]
    ResponseTransform: 'none'
                 Beta: [313x1 double]
                 Bias: 0.1116
              Learner: 'svm'

  Properties, Methods

Track Performance Metrics and Fit Model

Perform incremental learning on the rest of the data by using the updateMetricsAndFit function.
At each iteration:

1 Simulate a data stream by processing a chunk of 500 observations.
2 Call updateMetricsAndFit to update the cumulative and window epsilon insensitive loss of the

model given the incoming chunk of observations, and then fit the model to the data. Overwrite
the previous incremental model with a new one. Specify that the observations are oriented in
columns, and specify the observation weights.

3 Store the losses and last estimated coefficient β313.

% Preallocation
idxil = ~idxtt;
nil = sum(idxil);
numObsPerChunk = 500;
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nchunk = floor(nil/numObsPerChunk);
ei = array2table(zeros(nchunk,2),'VariableNames',["Cumulative" "Window"]);
beta313 = [IncrementalMdl.Beta(end); zeros(nchunk,1)];
Xil = X(:,idxil);
Yil = Y(idxil);
Wil = NYCHousing2015.W(idxil);

% Incremental fitting
for j = 1:nchunk
    ibegin = min(nil,numObsPerChunk*(j-1) + 1);
    iend   = min(nil,numObsPerChunk*j);
    idx = ibegin:iend;
    IncrementalMdl = updateMetricsAndFit(IncrementalMdl,Xil(:,idx),Yil(idx), ...
        'ObservationsIn','columns','Weights',Wil(idx));
    ei{j,:} = IncrementalMdl.Metrics{"EpsilonInsensitiveLoss",:};
    beta313(j+1) = IncrementalMdl.Beta(end);
end

IncrementalMdl is an incrementalRegressionLinear model object trained on all the data in
the stream.

Plot a trace plot of the performance metrics and estimated coefficient β313.

t = tiledlayout(2,1);
nexttile
h = plot(ei.Variables);
xlim([0 nchunk])
ylabel('Epsilon Insensitive Loss')
legend(h,ei.Properties.VariableNames)
nexttile
plot(beta313)
ylabel('\beta_{313}')
xlim([0 nchunk])
xlabel(t,'Iteration')
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The cumulative loss gradually changes with each iteration (chunk of 500 observations), whereas the
window loss jumps. Because the metrics window is 200 by default, updateMetricsAndFit
measures the performance based on the latest 200 observations in each 500 observation chunk.

β313 changes, but levels off quickly, as fit processes chunks of observations.

Input Arguments
Mdl — Incremental learning model
incrementalClassificationLinear model object | incrementalRegressionLinear model
object

Incremental learning model whose performance is measured and then the model is fit to data,
specified as an incrementalClassificationLinear or incrementalRegressionLinear model
object. You can create Mdl directly or by converting a supported, traditionally trained machine
learning model using the incrementalLearner function. For more details, see the corresponding
reference page.

If Mdl.IsWarm is false, updateMetricsAndFit does not track the performance of the model. For
more details, see “Performance Metrics” on page 35-7770.

X — Chunk of predictor data
floating-point matrix

Chunk of predictor data with which to measure the model performance and then to fit the model to,
specified as a floating-point matrix of n observations and Mdl.NumPredictors predictor variables.
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The value of the ObservationsIn name-value argument determines the orientation of the variables
and observations. The default ObservationsIn value is "rows", which indicates that observations
in the predictor data are oriented along the rows of X.

The length of the observation labels Y and the number of observations in X must be equal; Y(j) is the
label of observation j (row or column) in X.

Note

• If Mdl.NumPredictors = 0, updateMetricsAndFit infers the number of predictors from X,
and sets the corresponding property of the output model. Otherwise, if the number of predictor
variables in the streaming data changes from Mdl.NumPredictors, updateMetricsAndFit
issues an error.

• updateMetricsAndFit supports only floating-point input predictor data. If your input data
includes categorical data, you must prepare an encoded version of the categorical data. Use
dummyvar to convert each categorical variable to a numeric matrix of dummy variables. Then,
concatenate all dummy variable matrices and any other numeric predictors. For more details, see
“Dummy Variables” on page 2-49.

Data Types: single | double

Y — Chunk of responses (or labels)
categorical array | character array | string array | logical vector | floating-point vector | cell array of
character vectors

Chunk of responses (or labels) with which to measure the model performance and then fit the model
to, specified as a categorical, character, or string array, logical or floating-point vector, or cell array of
character vectors for classification problems; or a floating-point vector for regression problems.

The length of the observation labels Y and the number of observations in X must be equal; Y(j) is the
label of observation j (row or column) in X.

For classification problems:

• updateMetricsAndFit supports binary classification only.
• When the ClassNames property of the input model Mdl is nonempty, the following conditions

apply:

• If Y contains a label that is not a member of Mdl.ClassNames, updateMetricsAndFit
issues an error.

• The data type of Y and Mdl.ClassNames must be the same.

Data Types: char | string | cell | categorical | logical | single | double

Note

• If an observation (predictor or label) or weight contains at least one missing (NaN) value,
updateMetricsAndFit ignores the observation. Consequently, updateMetricsAndFit uses
fewer than n observations to compute the model performance and create an updated model,
where n is the number of observations in X.
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• The chunk size n and the stochastic gradient descent (SGD) hyperparameter mini-batch size
(Mdl.BatchSize) can be different values, and n does not have to be an exact multiple of the mini-
batch size. If n < Mdl.BatchSize, updateMetricsAndFit uses the n available observations
when it applies SGD. If n > Mdl.BatchSize, the function updates the model with a mini-batch of
the specified size multiple times, and then uses the rest of the observations for the last mini-batch.
The number of observations for the last mini-batch can be smaller than Mdl.BatchSize.

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: 'ObservationsIn','columns','Weights',W specifies that the columns of the
predictor matrix correspond to observations, and the vector W contains observation weights to apply
during incremental learning.

ObservationsIn — Predictor data observation dimension
'rows' (default) | 'columns'

Predictor data observation dimension, specified as the comma-separated pair consisting of
'ObservationsIn' and 'columns' or 'rows'.
Data Types: char | string

Weights — Chunk of observation weights
floating-point vector of positive values

Chunk of observation weights, specified as the comma-separated pair consisting of 'Weights' and a
floating-point vector of positive values. updateMetricsAndFit weighs the observations in X with
the corresponding values in Weights. The size of Weights must equal n, which is the number of
observations in X.

By default, Weights is ones(n,1).

For more details, including normalization schemes, see “Observation Weights” on page 35-7771.
Data Types: double | single

Output Arguments
Mdl — Updated incremental learning model
incrementalClassificationLinear model object | incrementalRegressionLinear model
object

Updated incremental learning model, returned as an incremental learning model object of the same
data type as the input model Mdl, either incrementalClassificationLinear or
incrementalRegressionLinear.

When you call updateMetricsAndFit, the following conditions apply:
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• If the model is not warm, updateMetricsAndFit does not compute performance metrics. As a
result, the Metrics property of Mdl remains completely composed of NaN values. For more
details, see “Performance Metrics” on page 35-7770.

• If Mdl.EstimationPeriod > 0, updateMetricsAndFit estimates hyperparameters using the
first Mdl.EstimationPeriod observations passed to it; the function does not train the input
model using that data. However, if an incoming chunk of n observations is greater than or equal to
the number of observations remaining in the estimation period m, updateMetricsAndFit
estimates hyperparameters using the first n – m observations, and fits the input model to the
remaining m observations. Consequently, the software updates the Beta and Bias properties,
hyperparameter properties, and recordkeeping properties such as NumTrainingObservations.

For classification problems, if the ClassNames property of the input model Mdl is an empty array,
updateMetricsAndFit sets the ClassNames property of the output model Mdl to unique(Y).

Algorithms
Performance Metrics

• updateMetricsAndFit tracks model performance metrics, specified by the row labels of the
table in Mdl.Metrics, from new data when the incremental model is warm (IsWarm property is
true). An incremental model is warm after an incremental fitting, like updateMetricsAndFit,
fits the incremental model to Mdl.MetricsWarmupPeriod observations, which is the metrics
warm-up period.

If Mdl.EstimationPeriod > 0, updateMetricsAndFit estimates hyperparameters before
fitting the model to data. Therefore, the functions must process an additional EstimationPeriod
observations before the model starts the metrics warm-up period.

• The Metrics property of the incremental model stores two forms of each performance metric as
variables (columns) of a table, Cumulative and Window, with individual metrics in rows. When
the incremental model is warm, updateMetricsAndFit updates the metrics at the following
frequencies:

• Cumulative — The function computes cumulative metrics since the start of model
performance tracking. The function updates metrics every time you call the function and bases
the calculation on the entire supplied data set.

• Window — The function computes metrics based on all observations within a window
determined by the Mdl.MetricsWindowSize property. Mdl.MetricsWindowSize also
determines the frequency at which the software updates Window metrics. For example, if
Mdl.MetricsWindowSize is 20, the function computes metrics based on the last 20
observations in the supplied data (X((end – 20 + 1):end,:) and Y((end – 20 +
1):end)).

Incremental functions that track performance metrics within a window use the following
process:

1 Store a buffer of length Mdl.MetricsWindowSize for each specified metric, and store a
buffer of observation weights.

2 Populate elements of the metrics buffer with the model performance based on batches of
incoming observations, and store corresponding observation weights in the weights buffer.

3 When the buffer is filled, overwrite Mdl.Metrics.Window with the weighted average
performance in the metrics window. If the buffer is overfilled when the function processes
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a batch of observations, the latest incoming Mdl.MetricsWindowSize observations enter
the buffer, and the earliest observations are removed from the buffer. For example,
suppose Mdl.MetricsWindowSize is 20, the metrics buffer has 10 values from a
previously processed batch, and 15 values are incoming. To compose the length 20
window, the function uses the measurements from the 15 incoming observations and the
latest 5 measurements from the previous batch.

• The software omits an observation with a NaN prediction (score for classification and response for
regression) when computing the Cumulative and Window performance metric values.

Observation Weights

For classification problems, if the prior class probability distribution is known (in other words, the
prior distribution is not empirical), updateMetricsAndFit normalizes observation weights to sum
to the prior class probabilities in the respective classes. This action implies that observation weights
are the respective prior class probabilities by default.

For regression problems or if the prior class probability distribution is empirical, the software
normalizes the specified observation weights to sum to 1 each time you call updateMetricsAndFit.

Version History
Introduced in R2020b

References
[1] Bifet, Albert, Ricard Gavaldá, Geoffrey Holmes, and Bernhard Pfahringer. Machine Learning for

Data Streams with Practical Example in MOA. Cambridge, MA: The MIT Press, 2007.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• Use saveLearnerForCoder, loadLearnerForCoder, and codegen to generate code for the
updateMetricsAndFit function. Save a trained model by using saveLearnerForCoder. Define
an entry-point function that loads the saved model by using loadLearnerForCoder and calls the
updateMetricsAndFit function. Then use codegen to generate code for the entry-point
function.

• To generate single-precision C/C++ code for updateMetricsAndFit, specify the name-value
argument "DataType","single" when you call the loadLearnerForCoder function.

• This table contains notes about the arguments of updateMetricsAndFit. Arguments not
included in this table are fully supported.

Argument Notes and Limitations
Mdl For usage notes and limitations of the model

object, see
incrementalClassificationLinear or
incrementalRegressionLinear.
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Argument Notes and Limitations
X • Batch-to-batch, the number of observations

can be a variable size, but must equal the
number of observations in Y.

• The number of predictor variables must
equal to Mdl.NumPredictors.

• X must be single or double.
Y • Batch-to-batch, the number of observations

can be a variable size, but must equal the
number of observations in X.

• For classification problems, all labels in Y
must be represented in Mdl.ClassNames.

• Y and Mdl.ClassNames must have the
same data type.

• The following restrictions apply:

• If you configure Mdl to shuffle data (Mdl.Shuffle is true, or Mdl.Solver is 'sgd' or
'asgd'), the updateMetricsAndFit function randomly shuffles each incoming batch of
observations before it fits the model to the batch. The order of the shuffled observations might
not match the order generated by MATLAB. Therefore, the fitted coefficients computed in
MATLAB and by the generated code might not be equal.

• Use a homogeneous data type for all floating-point input arguments and object properties,
specifically, either single or double.

For more information, see “Introduction to Code Generation” on page 34-2.

See Also
Objects
incrementalClassificationLinear | incrementalRegressionLinear

Functions
updateMetrics | fit

Topics
“Incremental Learning Overview” on page 28-2
“Configure Incremental Learning Model” on page 28-9
“Implement Incremental Learning for Classification Using Succinct Workflow” on page 28-22
“Initialize Incremental Learning Model from Logistic Regression Model Trained in Classification
Learner” on page 28-40
“Initialize Incremental Learning Model from SVM Regression Model Trained in Regression Learner”
on page 28-33
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updateMetricsAndFit
Update performance metrics in naive Bayes incremental learning classification model given new data
and train model

Syntax
Mdl = updateMetricsAndFit(Mdl,X,Y)
Mdl = updateMetricsAndFit(Mdl,X,Y,'Weights',Weights)

Description
Given streaming data, updateMetricsAndFit first evaluates the performance of a configured naive
Bayes classification model for incremental learning (incrementalClassificationNaiveBayes
object) by calling updateMetrics on incoming data. Then updateMetricsAndFit fits the model to
that data by calling fit. In other words, updateMetricsAndFit performs prequential evaluation
because it treats each incoming chunk of data as a test set, and tracks performance metrics
measured cumulatively and over a specified window [1].

updateMetricsAndFit provides a simple way to update model performance metrics and train the
model on each chunk of data. Alternatively, you can perform the operations separately by calling
updateMetrics and then fit, which allows for more flexibility (for example, you can decide
whether you need to train the model based on its performance on a chunk of data).

Mdl = updateMetricsAndFit(Mdl,X,Y) returns a naive Bayes classification model for
incremental learning Mdl, which is the input naive Bayes classification model for incremental
learning Mdl with the following modifications:

1 updateMetricsAndFit measures the model performance on the incoming predictor and
response data, X and Y respectively. When the input model is warm (Mdl.IsWarm is true),
updateMetricsAndFit overwrites previously computed metrics, stored in the Metrics
property, with the new values. Otherwise, updateMetricsAndFit stores NaN values in Metrics
instead.

2 updateMetricsAndFit fits the modified model to the incoming data by updating the
conditional posterior mean and standard deviation of each predictor variable, given the class,
and stores the new estimates, among other configurations, in the output model Mdl.

Mdl = updateMetricsAndFit(Mdl,X,Y,'Weights',Weights) also sets observation weights
Weights.

Examples

Update Performance Metrics and Train Model on Data Stream

Create a naive Bayes classification model for incremental learning by calling
incrementalClassificationNaiveBayes and specifying a maximum of 5 expected classes in the
data.

Mdl = incrementalClassificationNaiveBayes('MaxNumClasses',5)
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Mdl = 
  incrementalClassificationNaiveBayes

                    IsWarm: 0
                   Metrics: [1x2 table]
                ClassNames: [1x0 double]
            ScoreTransform: 'none'
         DistributionNames: 'normal'
    DistributionParameters: {}

  Properties, Methods

Mdl is an incrementalClassificationNaiveBayes model object. All its properties are read-only.

Mdl must be fit to data before you can use it to perform any other operations.

Load the human activity data set. Randomly shuffle the data.

load humanactivity
n = numel(actid);
rng(1) % For reproducibility
idx = randsample(n,n);
X = feat(idx,:);
Y = actid(idx);

For details on the data set, enter Description at the command line.

Implement incremental learning by performing the following actions at each iteration:

• Simulate a data stream by processing a chunk of 50 observations.
• Overwrite the previous incremental model with a new one fitted to the incoming observations.
• Store the conditional mean of the first predictor in the first class μ11, the cumulative metrics, and

the window metrics to see how they evolve during incremental learning.

% Preallocation
numObsPerChunk = 50;
nchunk = floor(n/numObsPerChunk);
mc = array2table(zeros(nchunk,2),'VariableNames',["Cumulative" "Window"]);
mu11 = zeros(nchunk,1);    

% Incremental fitting
for j = 1:nchunk
    ibegin = min(n,numObsPerChunk*(j-1) + 1);
    iend   = min(n,numObsPerChunk*j);
    idx = ibegin:iend;    
    Mdl = updateMetricsAndFit(Mdl,X(idx,:),Y(idx));
    mc{j,:} = Mdl.Metrics{"MinimalCost",:};
    mu11(j + 1) = Mdl.DistributionParameters{1,1}(1);
end

Now, Mdl is an incrementalClassificationNaiveBayes model object trained on all the data in
the stream. During incremental learning and after the model is warmed up, updateMetricsAndFit
checks the performance of the model on the incoming observations, and then fits the model to those
observations.
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To see how the performance metrics and μ11 evolve during training, plot them on separate tiles.

t = tiledlayout(2,1);
nexttile
plot(mu11)
ylabel('\mu_{11}')
xlim([0 nchunk])
nexttile
h = plot(mc.Variables);
xlim([0 nchunk])
ylabel('Minimal Cost')
xline(Mdl.MetricsWarmupPeriod/numObsPerChunk,'r-.')
legend(h,mc.Properties.VariableNames)
xlabel(t,'Iteration')

The plot indicates that updateMetricsAndFit performs the following actions:

• Fit μ11 during all incremental learning iterations.
• Compute the performance metrics after the metrics warm-up period only.
• Compute the cumulative metrics during each iteration.
• Compute the window metrics after processing 200 observations (4 iterations).
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Specify Observation Weights

Train a naive Bayes classification model by using fitcnb, convert it to an incremental learner, track
its performance on streaming data and fit it to the data in one call. Specify observation weights.

Load and Preprocess Data

Load the human activity data set. Randomly shuffle the data.

load humanactivity
rng(1) % For reproducibility
n = numel(actid);
idx = randsample(n,n);
X = feat(idx,:);
Y = actid(idx);

For details on the data set, enter Description at the command line.

Suppose that the data from a stationary subject (Y <= 2) has double the quality of data from a
moving subject. Create a weight variable that assigns a weight of 2 to observations from a stationary
subject and 1 to a moving subject.

W = ones(n,1) + (Y <= 2);

Train Naive Bayes Classification Model

Fit a naive Bayes classification model to a random sample of half the data.

idxtt = randsample([true false],n,true);
TTMdl = fitcnb(X(idxtt,:),Y(idxtt),'Weights',W(idxtt))

TTMdl = 
  ClassificationNaiveBayes
              ResponseName: 'Y'
     CategoricalPredictors: []
                ClassNames: [1 2 3 4 5]
            ScoreTransform: 'none'
           NumObservations: 12053
         DistributionNames: {1x60 cell}
    DistributionParameters: {5x60 cell}

  Properties, Methods

TTMdl is a ClassificationNaiveBayes model object representing a traditionally trained naive
Bayes classification model.

Convert Trained Model

Convert the traditionally trained model to a naive Bayes classification model for incremental learning.
Specify tracking the misclassification error rate during incremental learning.

IncrementalMdl = incrementalLearner(TTMdl,'Metrics',"classiferror")

IncrementalMdl = 
  incrementalClassificationNaiveBayes
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                    IsWarm: 1
                   Metrics: [2x2 table]
                ClassNames: [1 2 3 4 5]
            ScoreTransform: 'none'
         DistributionNames: {1x60 cell}
    DistributionParameters: {5x60 cell}

  Properties, Methods

IncrementalMdl is an incrementalClassificationNaiveBayes model. Because class names
are specified in IncrementalMdl.ClassNames, labels encountered during incremental learning
must be in IncrementalMdl.ClassNames.

Track Performance Metrics and Fit Model

Perform incremental learning on the rest of the data by using the updateMetricsAndFit function.
At each iteration:

1 Simulate a data stream by processing 50 observations at a time.
2 Call updateMetricsAndFit to update the cumulative and window performance metrics of the

model given the incoming chunk of observations, and then fit the model to the data. Overwrite
the previous incremental model with a new one. Specify the observation weights.

3 Store the misclassification error rate.

% Preallocation
idxil = ~idxtt;
nil = sum(idxil);
numObsPerChunk = 50;
nchunk = floor(nil/numObsPerChunk);
mc = array2table(zeros(nchunk,2),'VariableNames',["Cumulative" "Window"]);
Xil = X(idxil,:);
Yil = Y(idxil);
Wil = W(idxil);

% Incremental fitting
for j = 1:nchunk
    ibegin = min(nil,numObsPerChunk*(j-1) + 1);
    iend   = min(nil,numObsPerChunk*j);
    idx = ibegin:iend;
    IncrementalMdl = updateMetricsAndFit(IncrementalMdl,Xil(idx,:),Yil(idx),...
        'Weights',Wil(idx));
    mc{j,:} = IncrementalMdl.Metrics{"ClassificationError",:};
end

Now, IncrementalMdl is an incrementalClassificationNaiveBayes model object trained on
all the data in the stream.

Create a trace plot of the misclassification error rate.

h = plot(mc.Variables);
xlim([0 nchunk])
ylabel('Classification Error')
legend(h,mc.Properties.VariableNames)
xlabel('Iteration')
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The cumulative loss initially jumps, but stabilizes around 0.05, whereas the window loss jumps
throughout the training.

Input Arguments
Mdl — Naive Bayes classification model for incremental learning
incrementalClassificationNaiveBayes model object

Naive Bayes classification model for incremental learning to measure the performance of and then to
fit to data, specified as an incrementalClassificationNaiveBayes model object. You can create
Mdl directly or by converting a supported, traditionally trained machine learning model using the
incrementalLearner function. For more details, see the corresponding reference page.

If Mdl.IsWarm is false, updateMetricsAndFit does not track the performance of the model. For
more details, see “Performance Metrics” on page 35-7782.

X — Chunk of predictor data
floating-point matrix

Chunk of predictor data to measure the model performance with and then fit the model to, specified
as an n-by-Mdl.NumPredictors floating-point matrix.

The length of the observation labels Y and the number of observations in X must be equal; Y(j) is the
label of observation j (row) in X.
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Note If Mdl.NumPredictors = 0, updateMetricsAndFit infers the number of predictors from X,
and sets the corresponding property of the output model. Otherwise, if the number of predictor
variables in the streaming data changes from Mdl.NumPredictors, updateMetricsAndFit issues
an error.

Data Types: single | double

Y — Chunk of labels
categorical array | character array | string array | logical vector | floating-point vector | cell array of
character vectors

Chunk of labels to measure the model performance with and then fit the model to, specified as a
categorical, character, or string array; logical or floating-point vector; or cell array of character
vectors.

The length of the observation labels Y and the number of observations in X must be equal; Y(j) is the
label of observation j (row) in X.

updateMetricsAndFit issues an error when one or both of these conditions are met:

• Y contains a new label and the maximum number of classes has already been reached (see the
MaxNumClasses and ClassNames arguments of incrementalClassificationNaiveBayes).

• The ClassNames property of the input model Mdl is nonempty, and the data types of Y and
Mdl.ClassNames are different.

Data Types: char | string | cell | categorical | logical | single | double

Weights — Chunk of observation weights
floating-point vector of positive values

Chunk of observation weights, specified as a floating-point vector of positive values.
updateMetricsAndFit weighs the observations in X with the corresponding values in Weights.
The size of Weights must equal n, the number of observations in X.

By default, Weights is ones(n,1).

For more details, including normalization schemes, see “Observation Weights” on page 35-7783.
Data Types: double | single

Note

If an observation (predictor or label) or weight contains at least one missing (NaN) value,
updateMetricsAndFit ignores the observation. Consequently, updateMetricsAndFit uses fewer
than n observations to compute the model performance and create an updated model, where n is the
number of observations in X.

Output Arguments
Mdl — Updated naive Bayes classification model for incremental learning
incrementalClassificationNaiveBayes model object
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Updated naive Bayes classification model for incremental learning, returned as an incremental
learning model object of the same data type as the input model Mdl,
incrementalClassificationNaiveBayes.

If the model is not warm, updateMetricsAndFit does not compute performance metrics. As a
result, the Metrics property of Mdl remains completely composed of NaN values. If the model is
warm, updateMetricsAndFit computes the cumulative and window performance metrics on the
new data X and Y, and overwrites the corresponding elements of Mdl.Metrics. For more details, see
“Performance Metrics” on page 35-7782.

In addition to updating distribution model parameters, updateMetricsAndFit performs the
following actions when Y contains expected, but unprocessed, classes:

• If you do not specify all expected classes by using the ClassNames name-value argument when
you create the input model Mdl using incrementalClassificationNaiveBayes,
updateMetricsAndFit:

1 Appends any new labels in Y to the tail of Mdl.ClassNames.
2 Expands Mdl.Cost to a c-by-c matrix, where c is the number of classes in Mdl.ClassNames.

The resulting misclassification cost matrix is balanced.
3 Expands Mdl.Prior to a length c vector of an updated empirical class distribution.

• If you specify all expected classes when you create the input model Mdl or convert a traditionally
trained naive Bayes model using incrementalLearner, but you do not specify a
misclassification cost matrix (Mdl.Cost), updateMetricsAndFit sets misclassification costs of
processed classes to 1 and unprocessed classes to NaN. For example, if updateMetricsAndFit
processes the first two classes of a possible three classes, Mdl.Cost is [0 1 NaN; 1 0 NaN; 1
1 0].

More About
Bag-of-Tokens Model

In the bag-of-tokens model, the value of predictor j is the nonnegative number of occurrences of
token j in the observation. The number of categories (bins) in the multinomial model is the number of
distinct tokens (number of predictors).

Algorithms
Normal Distribution Estimators

If predictor variable j has a conditional normal distribution (see the DistributionNames property),
the software fits the distribution to the data by computing the class-specific weighted mean and the
biased (maximum likelihood) estimate of the weighted standard deviation. For each class k:

• The weighted mean of predictor j is

x j k =
∑

i: yi = k
wixi j

∑
i: yi = k

wi
,

where wi is the weight for observation i. The software normalizes weights within a class such that
they sum to the prior probability for that class.
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• The unbiased estimator of the weighted standard deviation of predictor j is

s j k =
∑

i: yi = k
wi xi j− x j k

2

∑
i: yi = k

wi

1/2

.

Estimated Probability for Multinomial Distribution

If all predictor variables compose a conditional multinomial distribution (see the
DistributionNames property), the software fits the distribution using the “Bag-of-Tokens Model”
on page 35-7780. The software stores the probability that token j appears in class k in the property
DistributionParameters{k,j}. With additive smoothing [2], the estimated probability is

P(token  j class k) =
1 + c j k
P + ck

,

where:

•

c j k = nk

∑
i: yi = k

xi jwi

∑
i: yi = k

wi
, which is the weighted number of occurrences of token j in class k.

• nk is the number of observations in class k.
• wi is the weight for observation i. The software normalizes weights within a class so that they sum

to the prior probability for that class.
•

ck = ∑
j = 1

P
c j k, which is the total weighted number of occurrences of all tokens in class k.

Estimated Probability for Multivariate Multinomial Distribution

If predictor variable j has a conditional multivariate multinomial distribution (see the
DistributionNames property), the software follows this procedure:

1 The software collects a list of the unique levels, stores the sorted list in CategoricalLevels,
and considers each level a bin. Each combination of predictor and class is a separate,
independent multinomial random variable.

2 For each class k, the software counts instances of each categorical level using the list stored in
CategoricalLevels{j}.

3 The software stores the probability that predictor j in class k has level L in the property
DistributionParameters{k,j}, for all levels in CategoricalLevels{j}. With additive
smoothing [2], the estimated probability is

P predictor  j = L class k =
1 + m j k(L)

m j + mk
,

where:
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•

m j k(L) = nk

∑
i: yi = k

I xi j = L wi

∑
i: yi = k

wi
, which is the weighted number of observations for which

predictor j equals L in class k.
• nk is the number of observations in class k.
• I xi j = L = 1 if xij = L, and 0 otherwise.
• wi is the weight for observation i. The software normalizes weights within a class so that they

sum to the prior probability for that class.
• mj is the number of distinct levels in predictor j.
• mk is the weighted number of observations in class k.

Performance Metrics

• updateMetricsAndFit tracks model performance metrics, specified by the row labels of the
table in Mdl.Metrics, from new data only when the incremental model is warm (IsWarm
property is true).

• If you create an incremental model by using incrementalLearner and
MetricsWarmupPeriod is 0 (default for incrementalLearner), the model is warm at
creation.

• Otherwise, an incremental model becomes warm after an incremental fitting function, such as
updateMetricsAndFit, performs both of these actions:

• Fit the incremental model to Mdl.MetricsWarmupPeriod observations, which is the
metrics warm-up period.

• Fit the incremental model to all expected classes (see the MaxNumClasses and
ClassNames arguments of incrementalClassificationNaiveBayes).

• Mdl.Metrics stores two forms of each performance metric as variables (columns) of a table,
Cumulative and Window, with individual metrics in rows. When the incremental model is warm,
updateMetricsAndFit updates the metrics at the following frequencies:

• Cumulative — The function computes cumulative metrics since the start of model
performance tracking. The function updates metrics every time you call the function and bases
the calculation on the entire supplied data set.

• Window — The function computes metrics based on all observations within a window
determined by the Mdl.MetricsWindowSize property. Mdl.MetricsWindowSize also
determines the frequency at which the software updates Window metrics. For example, if
Mdl.MetricsWindowSize is 20, the function computes metrics based on the last 20
observations in the supplied data (X((end – 20 + 1):end,:) and Y((end – 20 +
1):end)).

Incremental functions that track performance metrics within a window use the following
process:

1 Store a buffer of length Mdl.MetricsWindowSize for each specified metric, and store a
buffer of observation weights.

2 Populate elements of the metrics buffer with the model performance based on batches of
incoming observations, and store corresponding observation weights in the weights buffer.
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3 When the buffer is full, overwrite Mdl.Metrics.Window with the weighted average
performance in the metrics window. If the buffer is overfills when the function processes a
batch of observations, the latest incoming Mdl.MetricsWindowSize observations enter
the buffer, and the earliest observations are removed from the buffer. For example,
suppose Mdl.MetricsWindowSize is 20, the metrics buffer has 10 values from a
previously processed batch, and 15 values are incoming. To compose the length 20
window, the function uses the measurements from the 15 incoming observations and the
latest 5 measurements from the previous batch.

• The software omits an observation with a NaN score when computing the Cumulative and
Window performance metric values.

Observation Weights

For each conditional predictor distribution, updateMetricsAndFit computes the weighted average
and standard deviation.

If the prior class probability distribution is known (in other words, the prior distribution is not
empirical), updateMetricsAndFit normalizes observation weights to sum to the prior class
probabilities in the respective classes. This action implies that the default observation weights are the
respective prior class probabilities.

If the prior class probability distribution is empirical, the software normalizes the specified
observation weights to sum to 1 each time you call updateMetricsAndFit.

Version History
Introduced in R2021a

Naive Bayes incremental fitting functions compute biased (maximum likelihood) standard
deviations for conditionally normal predictor variables
Behavior changed in R2021b

Starting in R2021b, naive Bayes incremental fitting functions fit and updateMetricsAndFit
compute biased (maximum likelihood) estimates of the weighted standard deviations for conditionally
normal predictor variables during training. In other words, for each class k, incremental fitting
functions normalize the sum of square weighted deviations of the conditionally normal predictor xj by
the sum of the weights in class k. Before R2021b, naive Bayes incremental fitting functions computed
the unbiased standard deviation, like fitcnb. The currently returned weighted standard deviation
estimates differ from those computed before R2021b by a factor of

1−
∑

i: yi = k
wi2

∑
i: yi = k

wi

2 .

The factor approaches 1 as the sample size increases.
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See Also
Objects
incrementalClassificationNaiveBayes

Functions
updateMetrics | fit

Topics
“Incremental Learning Overview” on page 28-2
“Configure Incremental Learning Model” on page 28-9
“Implement Incremental Learning for Classification Using Succinct Workflow” on page 28-22
“Perform Text Classification Incrementally” on page 28-49
“Incremental Learning with Naive Bayes and Heterogeneous Data” on page 28-52
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upperparams
Upper Pareto tail parameters

Syntax
params = upperparams(pd)

Description
params = upperparams(pd) returns the two-element vector params, which includes the shape
and scale parameters of the generalized Pareto distribution (GPD) in the upper tail of pd.

upperparams does not return the location parameter of the GPD. The location parameter is the
quantile value corresponding to the upper tail cumulative probability. Use the boundary function to
return the location parameter.

Examples

Parameters of Upper Pareto Tail

Generate a sample data set and fit a piecewise distribution with Pareto tails to the data by using
paretotails. Find the distribution parameters of the upper Pareto tail by using the object function
upperparams.

Generate a sample data set containing 20% outliers.

rng('default');  % For reproducibility
left_tail = -exprnd(1,100,1);
right_tail = exprnd(5,100,1);
center = randn(800,1);
x = [left_tail;center;right_tail];

Create a paretotails object by fitting a piecewise distribution to x. Specify the boundaries of the
tails using the lower and upper tail cumulative probabilities so that a fitted object consists of the
empirical distribution for the middle 80% of the data set and GPDs for the lower and upper 10% of
the data set.

pd = paretotails(x,0.1,0.9)

pd = 
Piecewise distribution with 3 segments
      -Inf < x < -1.33251    (0 < p < 0.1): lower tail, GPD(-0.0063504,0.567017)
   -1.33251 < x < 1.80149  (0.1 < p < 0.9): interpolated empirical cdf
        1.80149 < x < Inf    (0.9 < p < 1): upper tail, GPD(0.24874,3.00974)

Return the shape and scale parameters of the fitted GPD of the upper tail by using the upperparams
function.

params = upperparams(pd)
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params = 1×2

    0.2487    3.0097

You can also get the upper Pareto tail parameters by using the UpperParameters property. Access
the UpperParameters property by using dot notation.

pd.UpperParameters

ans = 1×2

    0.2487    3.0097

The location parameter of the GPD is equal to the quantile value of the upper tail cumulative
probability. Return the location parameter by using the boundary function.

[p,q] = boundary(pd)

p = 2×1

    0.1000
    0.9000

q = 2×1

   -1.3325
    1.8015

The values in p are the cumulative probabilities at the boundaries, and the values in q are the
corresponding quantiles. q(1) is the location parameter of the GPD of the upper tail.

Use the lowerparams function or the LowerParameters property to get the lower Pareto tail
parameters.

Input Arguments
pd — Piecewise distribution with Pareto tails
paretotails object

Piecewise distribution with Pareto tails, specified as a paretotails object.

Version History
Introduced in R2007a

See Also
paretotails | boundary | segment | lowerparams | nsegments | gpfit

Topics
“Fit a Nonparametric Distribution with Pareto Tails” on page 5-44
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“Nonparametric and Empirical Probability Distributions” on page 5-31
“Nonparametric Estimates of Cumulative Distribution Functions and Their Inverses” on page 5-192
“Generalized Pareto Distribution” on page B-60
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validatedUpdateInputs
Package: classreg.learning.coder.config.svm

Validate and extract machine learning model parameters to update

Syntax
params = validatedUpdateInputs(configurer,retrainedMdl)

Description
Generate C/C++ code for the predict and update functions of a machine learning model by using a
coder configurer object. Create this object by using learnerCoderConfigurer and its object
function generateCode. After retraining the model with new data or settings, you can update model
parameters in the generated code without having to regenerate the code. Use
validatedUpdateInputs to validate and extract the model parameters to update. This function
helps you identify potential problems before you update the model parameters in the generated code.
You can use the output of validatedUpdateInputs, the validated parameters, as an input
argument of the update function to update model parameters.

This flow chart shows the code generation workflow using a coder configurer. Use
validatedUpdateInputs for the highlighted step.

params = validatedUpdateInputs(configurer,retrainedMdl) returns the validated
machine learning model parameters to update. validatedUpdateInputs detects the modified
model parameters in retrainedMdl and validates whether they satisfy the coder attributes stored in
configurer.

Examples

Update Parameters of SVM Classification Model in Generated Code

Train a SVM model using a partial data set and create a coder configurer for the model. Use the
properties of the coder configurer to specify coder attributes of the SVM model parameters. Use the
object function of the coder configurer to generate C code that predicts labels for new predictor data.
Then retrain the model using the whole data set and update parameters in the generated code
without regenerating the code.
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Train Model

Load the ionosphere data set. This data set has 34 predictors and 351 binary responses for radar
returns, either bad ('b') or good ('g'). Train a binary SVM classification model using the first 50
observations.

load ionosphere
Mdl = fitcsvm(X(1:50,:),Y(1:50));

Mdl is a ClassificationSVM object.

Create Coder Configurer

Create a coder configurer for the ClassificationSVM model by using learnerCoderConfigurer.
Specify the predictor data X. The learnerCoderConfigurer function uses the input X to configure
the coder attributes of the predict function input. Also, set the number of outputs to 2 so that the
generated code returns predicted labels and scores.

configurer = learnerCoderConfigurer(Mdl,X(1:50,:),'NumOutputs',2);

configurer is a ClassificationSVMCoderConfigurer object, which is a coder configurer of a
ClassificationSVM object.

Specify Coder Attributes of Parameters

Specify the coder attributes of the SVM classification model parameters so that you can update the
parameters in the generated code after retraining the model. This example specifies the coder
attributes of predictor data that you want to pass to the generated code and the coder attributes of
the support vectors of the SVM model.

First, specify the coder attributes of X so that the generated code accepts any number of
observations. Modify the SizeVector and VariableDimensions attributes. The SizeVector
attribute specifies the upper bound of the predictor data size, and the VariableDimensions
attribute specifies whether each dimension of the predictor data has a variable size or fixed size.

configurer.X.SizeVector = [Inf 34];
configurer.X.VariableDimensions = [true false];

The size of the first dimension is the number of observations. In this case, the code specifies that the
upper bound of the size is Inf and the size is variable, meaning that X can have any number of
observations. This specification is convenient if you do not know the number of observations when
generating code.

The size of the second dimension is the number of predictor variables. This value must be fixed for a
machine learning model. X contains 34 predictors, so the value of the SizeVector attribute must be
34 and the value of the VariableDimensions attribute must be false.

If you retrain the SVM model using new data or different settings, the number of support vectors can
vary. Therefore, specify the coder attributes of SupportVectors so that you can update the support
vectors in the generated code.

configurer.SupportVectors.SizeVector = [250 34];

SizeVector attribute for Alpha has been modified to satisfy configuration constraints.
SizeVector attribute for SupportVectorLabels has been modified to satisfy configuration constraints.

configurer.SupportVectors.VariableDimensions = [true false];
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VariableDimensions attribute for Alpha has been modified to satisfy configuration constraints.
VariableDimensions attribute for SupportVectorLabels has been modified to satisfy configuration constraints.

If you modify the coder attributes of SupportVectors, then the software modifies the coder
attributes of Alpha and SupportVectorLabels to satisfy configuration constraints. If the
modification of the coder attributes of one parameter requires subsequent changes to other
dependent parameters to satisfy configuration constraints, then the software changes the coder
attributes of the dependent parameters.

Generate Code

To generate C/C++ code, you must have access to a C/C++ compiler that is configured properly.
MATLAB Coder locates and uses a supported, installed compiler. You can use mex -setup to view and
change the default compiler. For more details, see “Change Default Compiler”.

Use generateCode to generate code for the predict and update functions of the SVM
classification model (Mdl) with default settings.

generateCode(configurer)

generateCode creates these files in output folder:
'initialize.m', 'predict.m', 'update.m', 'ClassificationSVMModel.mat'
Code generation successful.

generateCode generates the MATLAB files required to generate code, including the two entry-point
functions predict.m and update.m for the predict and update functions of Mdl, respectively.
Then generateCode creates a MEX function named ClassificationSVMModel for the two entry-
point functions in the codegen\mex\ClassificationSVMModel folder and copies the MEX
function to the current folder.

Verify Generated Code

Pass some predictor data to verify whether the predict function of Mdl and the predict function in
the MEX function return the same labels. To call an entry-point function in a MEX function that has
more than one entry point, specify the function name as the first input argument.

[label,score] = predict(Mdl,X);
[label_mex,score_mex] = ClassificationSVMModel('predict',X);

Compare label and label_mex by using isequal.

isequal(label,label_mex)

ans = logical
   1

isequal returns logical 1 (true) if all the inputs are equal. The comparison confirms that the
predict function of Mdl and the predict function in the MEX function return the same labels.

score_mex might include round-off differences compared with score. In this case, compare
score_mex and score, allowing a small tolerance.

find(abs(score-score_mex) > 1e-8)

ans =

  0x1 empty double column vector
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The comparison confirms that score and score_mex are equal within the tolerance 1e–8.

Retrain Model and Update Parameters in Generated Code

Retrain the model using the entire data set.

retrainedMdl = fitcsvm(X,Y);

Extract parameters to update by using validatedUpdateInputs. This function detects the modified
model parameters in retrainedMdl and validates whether the modified parameter values satisfy the
coder attributes of the parameters.

params = validatedUpdateInputs(configurer,retrainedMdl);

Update parameters in the generated code.

ClassificationSVMModel('update',params)

Verify Generated Code

Compare the outputs from the predict function of retrainedMdl and the predict function in the
updated MEX function.

[label,score] = predict(retrainedMdl,X);
[label_mex,score_mex] = ClassificationSVMModel('predict',X);
isequal(label,label_mex)

ans = logical
   1

find(abs(score-score_mex) > 1e-8)

ans =

  0x1 empty double column vector

The comparison confirms that labels and labels_mex are equal, and the score values are equal
within the tolerance.

Update Parameters of ECOC Classification Model in Generated Code

Train an error-correcting output codes (ECOC) model using SVM binary learners and create a coder
configurer for the model. Use the properties of the coder configurer to specify coder attributes of the
ECOC model parameters. Use the object function of the coder configurer to generate C code that
predicts labels for new predictor data. Then retrain the model using different settings, and update
parameters in the generated code without regenerating the code.

Train Model

Load Fisher's iris data set.

load fisheriris
X = meas;
Y = species;
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Create an SVM binary learner template to use a Gaussian kernel function and to standardize
predictor data.

t = templateSVM('KernelFunction','gaussian','Standardize',true);

Train a multiclass ECOC model using the template t.

Mdl = fitcecoc(X,Y,'Learners',t);

Mdl is a ClassificationECOC object.

Create Coder Configurer

Create a coder configurer for the ClassificationECOC model by using
learnerCoderConfigurer. Specify the predictor data X. The learnerCoderConfigurer function
uses the input X to configure the coder attributes of the predict function input. Also, set the number
of outputs to 2 so that the generated code returns the first two outputs of the predict function,
which are the predicted labels and negated average binary losses.

configurer = learnerCoderConfigurer(Mdl,X,'NumOutputs',2)

configurer = 
  ClassificationECOCCoderConfigurer with properties:

   Update Inputs:
    BinaryLearners: [1x1 ClassificationSVMCoderConfigurer]
             Prior: [1x1 LearnerCoderInput]
              Cost: [1x1 LearnerCoderInput]

   Predict Inputs:
                 X: [1x1 LearnerCoderInput]

   Code Generation Parameters:
        NumOutputs: 2
    OutputFileName: 'ClassificationECOCModel'

  Properties, Methods

configurer is a ClassificationECOCCoderConfigurer object, which is a coder configurer of a
ClassificationECOC object. The display shows the tunable input arguments of predict and
update: X, BinaryLearners, Prior, and Cost.

Specify Coder Attributes of Parameters

Specify the coder attributes of predict arguments (predictor data and the name-value pair
arguments 'Decoding' and 'BinaryLoss') and update arguments (support vectors of the SVM
learners) so that you can use these arguments as the input arguments of predict and update in the
generated code.

First, specify the coder attributes of X so that the generated code accepts any number of
observations. Modify the SizeVector and VariableDimensions attributes. The SizeVector
attribute specifies the upper bound of the predictor data size, and the VariableDimensions
attribute specifies whether each dimension of the predictor data has a variable size or fixed size.

configurer.X.SizeVector = [Inf 4];
configurer.X.VariableDimensions = [true false];
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The size of the first dimension is the number of observations. In this case, the code specifies that the
upper bound of the size is Inf and the size is variable, meaning that X can have any number of
observations. This specification is convenient if you do not know the number of observations when
generating code.

The size of the second dimension is the number of predictor variables. This value must be fixed for a
machine learning model. X contains 4 predictors, so the second value of the SizeVector attribute
must be 4 and the second value of the VariableDimensions attribute must be false.

Next, modify the coder attributes of BinaryLoss and Decoding to use the 'BinaryLoss' and
'Decoding' name-value pair arguments in the generated code. Display the coder attributes of
BinaryLoss.

configurer.BinaryLoss

ans = 
  EnumeratedInput with properties:

             Value: 'hinge'
    SelectedOption: 'Built-in'
    BuiltInOptions: {1x7 cell}
        IsConstant: 1
        Tunability: 0

To use a nondefault value in the generated code, you must specify the value before generating the
code. Specify the Value attribute of BinaryLoss as 'exponential'.

configurer.BinaryLoss.Value = 'exponential';
configurer.BinaryLoss

ans = 
  EnumeratedInput with properties:

             Value: 'exponential'
    SelectedOption: 'Built-in'
    BuiltInOptions: {1x7 cell}
        IsConstant: 1
        Tunability: 1

If you modify attribute values when Tunability is false (logical 0), the software sets the
Tunability to true (logical 1).

Display the coder attributes of Decoding.

configurer.Decoding

ans = 
  EnumeratedInput with properties:

             Value: 'lossweighted'
    SelectedOption: 'Built-in'
    BuiltInOptions: {'lossweighted'  'lossbased'}
        IsConstant: 1
        Tunability: 0
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Specify the IsConstant attribute of Decoding as false so that you can use all available values in
BuiltInOptions in the generated code.

configurer.Decoding.IsConstant = false;
configurer.Decoding

ans = 
  EnumeratedInput with properties:

             Value: [1x1 LearnerCoderInput]
    SelectedOption: 'NonConstant'
    BuiltInOptions: {'lossweighted'  'lossbased'}
        IsConstant: 0
        Tunability: 1

The software changes the Value attribute of Decoding to a LearnerCoderInput object so that you
can use both 'lossweighted' and 'lossbased' as the value of 'Decoding'. Also, the software
sets the SelectedOption to 'NonConstant' and the Tunability to true.

Finally, modify the coder attributes of SupportVectors in BinaryLearners. Display the coder
attributes of SupportVectors.

configurer.BinaryLearners.SupportVectors

ans = 
  LearnerCoderInput with properties:

            SizeVector: [54 4]
    VariableDimensions: [1 0]
              DataType: 'double'
            Tunability: 1

The default value of VariableDimensions is [true false] because each learner has a different
number of support vectors. If you retrain the ECOC model using new data or different settings, the
number of support vectors in the SVM learners can vary. Therefore, increase the upper bound of the
number of support vectors.

configurer.BinaryLearners.SupportVectors.SizeVector = [150 4];

SizeVector attribute for Alpha has been modified to satisfy configuration constraints.
SizeVector attribute for SupportVectorLabels has been modified to satisfy configuration constraints.

If you modify the coder attributes of SupportVectors, then the software modifies the coder
attributes of Alpha and SupportVectorLabels to satisfy configuration constraints. If the
modification of the coder attributes of one parameter requires subsequent changes to other
dependent parameters to satisfy configuration constraints, then the software changes the coder
attributes of the dependent parameters.

Display the coder configurer.

configurer

configurer = 
  ClassificationECOCCoderConfigurer with properties:

   Update Inputs:
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    BinaryLearners: [1x1 ClassificationSVMCoderConfigurer]
             Prior: [1x1 LearnerCoderInput]
              Cost: [1x1 LearnerCoderInput]

   Predict Inputs:
                 X: [1x1 LearnerCoderInput]
        BinaryLoss: [1x1 EnumeratedInput]
          Decoding: [1x1 EnumeratedInput]

   Code Generation Parameters:
        NumOutputs: 2
    OutputFileName: 'ClassificationECOCModel'

  Properties, Methods

The display now includes BinaryLoss and Decoding as well.

Generate Code

To generate C/C++ code, you must have access to a C/C++ compiler that is configured properly.
MATLAB Coder locates and uses a supported, installed compiler. You can use mex -setup to view and
change the default compiler. For more details, see “Change Default Compiler”.

Generate code for the predict and update functions of the ECOC classification model (Mdl).

generateCode(configurer)

generateCode creates these files in output folder:
'initialize.m', 'predict.m', 'update.m', 'ClassificationECOCModel.mat'
Code generation successful.

The generateCode function completes these actions:

• Generate the MATLAB files required to generate code, including the two entry-point functions
predict.m and update.m for the predict and update functions of Mdl, respectively.

• Create a MEX function named ClassificationECOCModel for the two entry-point functions.
• Create the code for the MEX function in the codegen\mex\ClassificationECOCModel folder.
• Copy the MEX function to the current folder.

Verify Generated Code

Pass some predictor data to verify whether the predict function of Mdl and the predict function in
the MEX function return the same labels. To call an entry-point function in a MEX function that has
more than one entry point, specify the function name as the first input argument. Because you
specified 'Decoding' as a tunable input argument by changing the IsConstant attribute before
generating the code, you also need to specify it in the call to the MEX function, even though
'lossweighted' is the default value of 'Decoding'.

[label,NegLoss] = predict(Mdl,X,'BinaryLoss','exponential');
[label_mex,NegLoss_mex] = ClassificationECOCModel('predict',X,'BinaryLoss','exponential','Decoding','lossweighted');

Compare label to label_mex by using isequal.

isequal(label,label_mex)
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ans = logical
   1

isequal returns logical 1 (true) if all the inputs are equal. The comparison confirms that the
predict function of Mdl and the predict function in the MEX function return the same labels.

NegLoss_mex might include round-off differences compared to NegLoss. In this case, compare
NegLoss_mex to NegLoss, allowing a small tolerance.

find(abs(NegLoss-NegLoss_mex) > 1e-8)

ans =

  0x1 empty double column vector

The comparison confirms that NegLoss and NegLoss_mex are equal within the tolerance 1e–8.

Retrain Model and Update Parameters in Generated Code

Retrain the model using a different setting. Specify 'KernelScale' as 'auto' so that the software
selects an appropriate scale factor using a heuristic procedure.

t_new = templateSVM('KernelFunction','gaussian','Standardize',true,'KernelScale','auto');
retrainedMdl = fitcecoc(X,Y,'Learners',t_new);

Extract parameters to update by using validatedUpdateInputs. This function detects the modified
model parameters in retrainedMdl and validates whether the modified parameter values satisfy the
coder attributes of the parameters.

params = validatedUpdateInputs(configurer,retrainedMdl);

Update parameters in the generated code.

ClassificationECOCModel('update',params)

Verify Generated Code

Compare the outputs from the predict function of retrainedMdl to the outputs from the predict
function in the updated MEX function.

[label,NegLoss] = predict(retrainedMdl,X,'BinaryLoss','exponential','Decoding','lossbased');
[label_mex,NegLoss_mex] = ClassificationECOCModel('predict',X,'BinaryLoss','exponential','Decoding','lossbased');
isequal(label,label_mex)

ans = logical
   1

find(abs(NegLoss-NegLoss_mex) > 1e-8)

ans =

  0x1 empty double column vector

The comparison confirms that label and label_mex are equal, and NegLoss and NegLoss_mex are
equal within the tolerance.
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Update Parameters of SVM Regression Model in Generated Code

Train a support vector machine (SVM) model using a partial data set and create a coder configurer
for the model. Use the properties of the coder configurer to specify coder attributes of the SVM
model parameters. Use the object function of the coder configurer to generate C code that predicts
responses for new predictor data. Then retrain the model using the whole data set and update
parameters in the generated code without regenerating the code.

Train Model

Load the carsmall data set and train an SVM regression model using the first 50 observations.

load carsmall
X = [Horsepower,Weight];
Y = MPG;
Mdl = fitrsvm(X(1:50,:),Y(1:50));

Mdl is a RegressionSVM object.

Create Coder Configurer

Create a coder configurer for the RegressionSVM model by using learnerCoderConfigurer.
Specify the predictor data X. The learnerCoderConfigurer function uses the input X to configure
the coder attributes of the predict function input.

configurer = learnerCoderConfigurer(Mdl,X(1:50,:));

configurer is a RegressionSVMCoderConfigurer object, which is a coder configurer of a
RegressionSVM object.

Specify Coder Attributes of Parameters

Specify the coder attributes of the SVM regression model parameters so that you can update the
parameters in the generated code after retraining the model. This example specifies the coder
attributes of predictor data that you want to pass to the generated code and the coder attributes of
the support vectors of the SVM regression model.

First, specify the coder attributes of X so that the generated code accepts any number of
observations. Modify the SizeVector and VariableDimensions attributes. The SizeVector
attribute specifies the upper bound of the predictor data size, and the VariableDimensions
attribute specifies whether each dimension of the predictor data has a variable size or fixed size.

configurer.X.SizeVector = [Inf 2];
configurer.X.VariableDimensions = [true false];

The size of the first dimension is the number of observations. In this case, the code specifies that the
upper bound of the size is Inf and the size is variable, meaning that X can have any number of
observations. This specification is convenient if you do not know the number of observations when
generating code.

The size of the second dimension is the number of predictor variables. This value must be fixed for a
machine learning model. X contains two predictors, so the value of the SizeVector attribute must
be two and the value of the VariableDimensions attribute must be false.

If you retrain the SVM model using new data or different settings, the number of support vectors can
vary. Therefore, specify the coder attributes of SupportVectors so that you can update the support
vectors in the generated code.
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configurer.SupportVectors.SizeVector = [250 2];

SizeVector attribute for Alpha has been modified to satisfy configuration constraints.

configurer.SupportVectors.VariableDimensions = [true false];

VariableDimensions attribute for Alpha has been modified to satisfy configuration constraints.

If you modify the coder attributes of SupportVectors, then the software modifies the coder
attributes of Alpha to satisfy configuration constraints. If the modification of the coder attributes of
one parameter requires subsequent changes to other dependent parameters to satisfy configuration
constraints, then the software changes the coder attributes of the dependent parameters.

Generate Code

To generate C/C++ code, you must have access to a C/C++ compiler that is configured properly.
MATLAB Coder locates and uses a supported, installed compiler. You can use mex -setup to view and
change the default compiler. For more details, see “Change Default Compiler”.

Use generateCode to generate code for the predict and update functions of the SVM regression
model (Mdl) with default settings.

generateCode(configurer)

generateCode creates these files in output folder:
'initialize.m', 'predict.m', 'update.m', 'RegressionSVMModel.mat'
Code generation successful.

generateCode generates the MATLAB files required to generate code, including the two entry-point
functions predict.m and update.m for the predict and update functions of Mdl, respectively.
Then generateCode creates a MEX function named RegressionSVMModel for the two entry-point
functions in the codegen\mex\RegressionSVMModel folder and copies the MEX function to the
current folder.

Verify Generated Code

Pass some predictor data to verify whether the predict function of Mdl and the predict function in
the MEX function return the same predicted responses. To call an entry-point function in a MEX
function that has more than one entry point, specify the function name as the first input argument.

yfit = predict(Mdl,X);
yfit_mex = RegressionSVMModel('predict',X);

yfit_mex might include round-off differences compared with yfit. In this case, compare yfit and
yfit_mex, allowing a small tolerance.

find(abs(yfit-yfit_mex) > 1e-6)

ans =

  0x1 empty double column vector

The comparison confirms that yfit and yfit_mex are equal within the tolerance 1e–6.

Retrain Model and Update Parameters in Generated Code

Retrain the model using the entire data set.
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retrainedMdl = fitrsvm(X,Y);

Extract parameters to update by using validatedUpdateInputs. This function detects the modified
model parameters in retrainedMdl and validates whether the modified parameter values satisfy the
coder attributes of the parameters.

params = validatedUpdateInputs(configurer,retrainedMdl);

Update parameters in the generated code.

RegressionSVMModel('update',params)

Verify Generated Code

Compare the outputs from the predict function of retrainedMdl and the predict function in the
updated MEX function.

yfit = predict(retrainedMdl,X);
yfit_mex = RegressionSVMModel('predict',X);
find(abs(yfit-yfit_mex) > 1e-6)

ans =

  0x1 empty double column vector

The comparison confirms that yfit and yfit_mex are equal within the tolerance 1e-6.

Update Parameters of Regression Tree Model in Generated Code

Train a regression tree using a partial data set and create a coder configurer for the model. Use the
properties of the coder configurer to specify coder attributes of the model parameters. Use the object
function of the coder configurer to generate C code that predicts responses for new predictor data.
Then retrain the model using the entire data set, and update parameters in the generated code
without regenerating the code.

Train Model

Load the carbig data set, and train a regression tree model using half of the observations.

load carbig
X = [Displacement Horsepower Weight];
Y = MPG;

rng('default') % For reproducibility
n = length(Y);
idxTrain = randsample(n,n/2);
XTrain = X(idxTrain,:);
YTrain = Y(idxTrain);

Mdl = fitrtree(XTrain,YTrain);

Mdl is a RegressionTree object.

Create Coder Configurer

Create a coder configurer for the RegressionTree model by using learnerCoderConfigurer.
Specify the predictor data XTrain. The learnerCoderConfigurer function uses the input XTrain
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to configure the coder attributes of the predict function input. Also, set the number of outputs to 2
so that the generated code returns predicted responses and node numbers for the predictions.

configurer = learnerCoderConfigurer(Mdl,XTrain,'NumOutputs',2);

configurer is a RegressionTreeCoderConfigurer object, which is a coder configurer of a
RegressionTree object.

Specify Coder Attributes of Parameters

Specify the coder attributes of the regression tree model parameters so that you can update the
parameters in the generated code after retraining the model.

Specify the coder attributes of the X property of configurer so that the generated code accepts any
number of observations. Modify the SizeVector and VariableDimensions attributes. The
SizeVector attribute specifies the upper bound of the predictor data size, and the
VariableDimensions attribute specifies whether each dimension of the predictor data has a
variable size or fixed size.

configurer.X.SizeVector = [Inf 3];
configurer.X.VariableDimensions

ans = 1x2 logical array

   1   0

The size of the first dimension is the number of observations. Setting the value of the SizeVector
attribute to Inf causes the software to change the value of the VariableDimensions attribute to 1.
In other words, the upper bound of the size is Inf and the size is variable, meaning that the predictor
data can have any number of observations. This specification is convenient if you do not know the
number of observations when generating code.

The size of the second dimension is the number of predictor variables. This value must be fixed for a
machine learning model. Because the predictor data contains 3 predictors, the value of the
SizeVector attribute must be 3 and the value of the VariableDimensions attribute must be 0.

If you retrain the tree model using new data or different settings, the number of nodes in the tree can
vary. Therefore, specify the first dimension of the SizeVector attribute of one of these properties so
that you can update the number of nodes in the generated code: Children, CutPoint,
CutPredictorIndex, or NodeMean. The software then modifies the other properties automatically.

For example, set the first value of the SizeVector attribute of the NodeMean property to Inf. The
software modifies the SizeVector and VariableDimensions attributes of Children, CutPoint,
and CutPredictorIndex to match the new upper bound on the number of nodes in the tree.
Additionally, the first value of the VariableDimensions attribute of NodeMean changes to 1.

configurer.NodeMean.SizeVector = [Inf 1];

SizeVector attribute for Children has been modified to satisfy configuration constraints.
SizeVector attribute for CutPoint has been modified to satisfy configuration constraints.
SizeVector attribute for CutPredictorIndex has been modified to satisfy configuration constraints.
VariableDimensions attribute for Children has been modified to satisfy configuration constraints.
VariableDimensions attribute for CutPoint has been modified to satisfy configuration constraints.
VariableDimensions attribute for CutPredictorIndex has been modified to satisfy configuration constraints.

configurer.NodeMean.VariableDimensions
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ans = 1x2 logical array

   1   0

Generate Code

To generate C/C++ code, you must have access to a C/C++ compiler that is configured properly.
MATLAB Coder locates and uses a supported, installed compiler. You can use mex -setup to view and
change the default compiler. For more details, see “Change Default Compiler”.

Generate code for the predict and update functions of the regression tree model (Mdl).

generateCode(configurer)

generateCode creates these files in output folder:
'initialize.m', 'predict.m', 'update.m', 'RegressionTreeModel.mat'
Code generation successful.

The generateCode function completes these actions:

• Generate the MATLAB files required to generate code, including the two entry-point functions
predict.m and update.m for the predict and update functions of Mdl, respectively.

• Create a MEX function named RegressionTreeModel for the two entry-point functions.
• Create the code for the MEX function in the codegen\mex\RegressionTreeModel folder.
• Copy the MEX function to the current folder.

Verify Generated Code

Pass some predictor data to verify whether the predict function of Mdl and the predict function in
the MEX function return the same predicted responses. To call an entry-point function in a MEX
function that has more than one entry point, specify the function name as the first input argument.

[Yfit,node] = predict(Mdl,XTrain);
[Yfit_mex,node_mex] = RegressionTreeModel('predict',XTrain);

Compare Yfit to Yfit_mex and node to node_mex.

max(abs(Yfit-Yfit_mex),[],'all')

ans = 0

isequal(node,node_mex)

ans = logical
   1

In general, Yfit_mex might include round-off differences compared to Yfit. In this case, the
comparison confirms that Yfit and Yfit_mex are equal.

isequal returns logical 1 (true) if all the input arguments are equal. The comparison confirms that
the predict function of Mdl and the predict function in the MEX function return the same node
numbers.
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Retrain Model and Update Parameters in Generated Code

Retrain the model using the entire data set.

retrainedMdl = fitrtree(X,Y);

Extract parameters to update by using validatedUpdateInputs. This function detects the modified
model parameters in retrainedMdl and validates whether the modified parameter values satisfy the
coder attributes of the parameters.

params = validatedUpdateInputs(configurer,retrainedMdl);

Update parameters in the generated code.

RegressionTreeModel('update',params)

Verify Generated Code

Compare the output arguments from the predict function of retrainedMdl and the predict
function in the updated MEX function.

[Yfit,node] = predict(retrainedMdl,X);
[Yfit_mex,node_mex] = RegressionTreeModel('predict',X);

max(abs(Yfit-Yfit_mex),[],'all')

ans = 0

isequal(node,node_mex)

ans = logical
   1

The comparison confirms that the predicted responses and node numbers are equal.

Input Arguments
configurer — Coder configurer
coder configurer object

Coder configurer of a machine learning model, specified as a coder configurer object created by using
learnerCoderConfigurer.

Model Coder Configurer Object
Binary decision tree for multiclass classification ClassificationTreeCoderConfigurer
SVM for one-class and binary classification ClassificationSVMCoderConfigurer
Linear model for binary classification ClassificationLinearCoderConfigurer
Multiclass model for SVMs and linear models ClassificationECOCCoderConfigurer
Binary decision tree for regression RegressionTreeCoderConfigurer
Support vector machine (SVM) regression RegressionSVMCoderConfigurer
Linear regression RegressionLinearCoderConfigurer
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retrainedMdl — Retrained machine learning model
full model object | compact model object

Retrained machine learning model, specified as a full or compact model object, as given in this table
of supported models.

Model Full/Compact Model Object Training Function
Binary decision tree for
multiclass classification

ClassificationTree,
CompactClassificationTre
e

fitctree

SVM for one-class and binary
classification

ClassificationSVM,
CompactClassificationSVM

fitcsvm

Linear model for binary
classification

ClassificationLinear fitclinear

Multiclass model for SVMs and
linear models

ClassificationECOC,
CompactClassificationECO
C

fitcecoc

Binary decision tree for
regression

RegressionTree,
CompactRegressionTree

fitrtree

Support vector machine (SVM)
regression

RegressionSVM,
CompactRegressionSVM

fitrsvm

Linear regression RegressionLinear fitrlinear

Output Arguments
params — Validated parameters to update
structure

Validated parameters to update in the machine learning model, specified as a structure with a field
for each parameter extracted from retrainedMdl.

The model parameters in params include all parameters listed in the UpdateInputs property of
configurer, which is the list of tunable model parameters.

You can use params as an input argument of update to update model parameters.

Tips
• validatedUpdateInputs returns an error message if you modify any of the name-value pair

arguments listed in this table when you retrain the model retrainedMdl. In this case, you cannot
use update to update the parameters. You must generate C/C++ code again.

Model Arguments Not Supported for Update
Binary decision tree for
multiclass classification

Arguments of fitctree — 'ClassNames',
'ScoreTransform'

SVM for one-class and binary
classification

Arguments of fitcsvm — 'ClassNames',
'KernelFunction', 'PolynomialOrder',
'ScoreTransform', 'Standardize'
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Model Arguments Not Supported for Update
Linear model for binary
classification

Arguments of fitclinear — 'ClassNames',
'ScoreTransform'

Multiclass model for SVMs
and linear models

Arguments of fitcecoc — 'ClassNames', 'Coding',
'ScoreTransform'

If you specify the binary learners in fitcecoc as template
objects (see 'Learners'), then for each binary learner, you
cannot modify the following:

• Arguments of templateSVM — 'KernelFunction',
'PolynomialOrder', 'Standardize'

• Arguments of templateLinear — 'Learner' (because
modifying the model type changes the score transform of
the binary learner)

Binary decision tree for
regression

Arguments of fitrtree — 'ResponseTransform'

SVM regression Arguments of fitrsvm — 'KernelFunction',
'PolynomialOrder', 'ResponseTransform',
'Standardize'

Linear regression Arguments of fitrlinear — 'ResponseTransform'

• validatedUpdateInputs displays a warning message if the machine learning model parameters
in configurer and retrainedMdl are identical.

Version History
Introduced in R2018b

See Also
update | generateCode | learnerCoderConfigurer

Topics
“Introduction to Code Generation” on page 34-2
“Code Generation for Prediction and Update Using Coder Configurer” on page 34-92
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var
Package: prob

Variance of probability distribution

Syntax
v = var(pd)

Description
v = var(pd) returns the variance v of the probability distribution pd.

Examples

Variance of a Fitted Distribution

Load the sample data. Create a vector containing the first column of students' exam grade data.

load examgrades
x = grades(:,1);

Fit a normal distribution object to the data.

pd = fitdist(x,'Normal')

pd = 
  NormalDistribution

  Normal distribution
       mu = 75.0083   [73.4321, 76.5846]
    sigma =  8.7202   [7.7391, 9.98843]

Compute the variance of the fitted distribution.

v = var(pd)

v = 76.0419

For a normal distribution, the variance is equal to the square of the parameter sigma.

Variance of Skewed Distribution

Create a Weibull probability distribution object.

pd = makedist('Weibull','A',5,'B',2)

pd = 
  WeibullDistribution
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  Weibull distribution
    A = 5
    B = 2

Compute the variance of the distribution.

v = var(pd)

v = 5.3650

Variance of Triangular Distribution

Create a triangular distribution object.

pd = makedist('Triangular','A',-3,'B',1,'C',3)

pd = 
  TriangularDistribution

A = -3, B = 1, C = 3

Compute the variance of the distribution.

v = var(pd)

v = 1.5556

Variance of a Kernel Distribution

Load the sample data. Create a vector containing the first column of students’ exam grade data.

load examgrades;
x = grades(:,1);

Fit a kernel distribution object to the data.

pd = fitdist(x,'Kernel')

pd = 
  KernelDistribution

    Kernel = normal
    Bandwidth = 3.61677
    Support = unbounded

Compute the variance of the fitted distribution.

v = var(pd)

v = 88.4893
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Input Arguments
pd — Probability distribution
probability distribution object

Probability distribution, specified as one of the probability distribution objects in the following table.

Distribution Object Function or App Used to Create Probability
Distribution Object

BetaDistribution makedist, fitdist, Distribution Fitter
BinomialDistribution makedist, fitdist, Distribution Fitter
BirnbaumSaundersDistribution makedist, fitdist, Distribution Fitter
BurrDistribution makedist, fitdist, Distribution Fitter
ExponentialDistribution makedist, fitdist, Distribution Fitter
ExtremeValueDistribution makedist, fitdist, Distribution Fitter
GammaDistribution makedist, fitdist, Distribution Fitter
GeneralizedExtremeValueDistribution makedist, fitdist, Distribution Fitter
GeneralizedParetoDistribution makedist, fitdist, Distribution Fitter
HalfNormalDistribution makedist, fitdist, Distribution Fitter
InverseGaussianDistribution makedist, fitdist, Distribution Fitter
KernelDistribution fitdist, Distribution Fitter
LogisticDistribution makedist, fitdist, Distribution Fitter
LoglogisticDistribution makedist, fitdist, Distribution Fitter
LognormalDistribution makedist, fitdist, Distribution Fitter
LoguniformDistribution makedist
MultinomialDistribution makedist
NakagamiDistribution makedist, fitdist, Distribution Fitter
NegativeBinomialDistribution makedist, fitdist, Distribution Fitter
NormalDistribution makedist, fitdist, Distribution Fitter
PiecewiseLinearDistribution makedist
PoissonDistribution makedist, fitdist, Distribution Fitter
RayleighDistribution makedist, fitdist, Distribution Fitter
RicianDistribution makedist, fitdist, Distribution Fitter
StableDistribution makedist, fitdist, Distribution Fitter
tLocationScaleDistribution makedist, fitdist, Distribution Fitter
TriangularDistribution makedist
UniformDistribution makedist
WeibullDistribution makedist, fitdist, Distribution Fitter
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Output Arguments
v — Variance
nonnegative scalar value

Variance of the probability distribution, returned as a nonnegative scalar value.

Version History
Introduced in R2013a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• The input argument pd can be a fitted probability distribution object for beta, exponential,
extreme value, lognormal, normal, and Weibull distributions. Create pd by fitting a probability
distribution to sample data from the fitdist function. For an example, see “Code Generation for
Probability Distribution Objects” on page 34-94.

For more information on code generation, see “Introduction to Code Generation” on page 34-2 and
“General Code Generation Workflow” on page 34-5.

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

This function fully supports GPU arrays. For more information, see “Run MATLAB Functions on a
GPU” (Parallel Computing Toolbox).

See Also
std | mean | makedist | fitdist | Distribution Fitter

Topics
“Working with Probability Distributions” on page 5-3
“Supported Distributions” on page 5-16
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varianceComponent
Variance component estimates for analysis of variance (ANOVA)

Syntax
v = varianceComponent(aov)
v = varianceComponent(aov,Alpha=alpha)

Description
v = varianceComponent(aov) returns a table of variance component estimates of the random
factors and error for an anova object at the 95% confidence level.

v = varianceComponent(aov,Alpha=alpha) returns the variance component estimates with
100(1− α)% confidence intervals.

Examples

Variance Components for Two-Way ANOVA

Load the sample car data.

load carsmall

Data for the country of origin, model year, and mileage is stored in the variables Origin,
Model_Year, and MPG, respectively.

Perform a two-way ANOVA to test the null hypothesis that mean mileage is not affected by the
country of origin or model year. The factors Origin and Year are random because the data was
sampled from a larger population.

aov = anova({Origin, Model_Year},MPG,RandomFactors=[1 2],FactorNames=["Origin" "Year"])

aov = 
2-way anova, constrained (Type III) sums of squares.

Y ~ 1 + Origin + Year

              SumOfSquares    DF    MeanSquares      F         pValue  
              ____________    __    ___________    ______    __________

    Origin       1078.1        5      215.62       10.675    5.3303e-08
    Year         2638.4        2      1319.2       65.312    5.5975e-18
    Error          1737       86      20.198                           
    Total        6005.3       93                                       

  Properties, Methods
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The p-values for Origin and Year indicate that the country of origin and model year have
statistically significant effects on mileage.

Display the variance component estimates for the error and random factors with confidence intervals.
Use the default confidence level of 95%.

vtbl = varianceComponent(aov)

vtbl=3×3 table
              VarianceComponent    VarianceComponentLower    VarianceComponentUpper
              _________________    ______________________    ______________________

    Origin         21.337                  6.1257                    139.94        
    Year           44.031                  11.176                    1765.7        
    Error          20.198                  15.298                    27.909        

The variance components for Origin and Year are due to the random sampling of the data. The
variance of MPG is the sum of the variance components for Origin, Year, and Error. The table
output shows that the variance components for Origin and Year are responsible for the majority of
the variance in MPG.

Obtain 99% Confidence Interval of Variance Component

Load the sample car data.

load carsmall

Data for the model year and mileage is stored in the variables Model_Year and MPG, respectively.

Perform a two-way ANOVA to test the null hypothesis that mean mileage is not affected by the model
year. Year is a random factor because it contains a randomly selected subset of all possible model
years.

aov = anova(Model_Year, MPG, RandomFactors=[1],FactorNames=["Year"])

aov = 
1-way anova, constrained (Type III) sums of squares.

Y ~ 1 + Year

             SumOfSquares    DF    MeanSquares      F        pValue  
             ____________    __    ___________    _____    __________

    Year        3190.1        2      1595.1       51.56    1.0694e-15
    Error       2815.2       91      30.936                          
    Total       6005.3       93                                      

  Properties, Methods

Display the variance component estimates for Year and the error with confidence intervals. Specify a
confidence level of 99%.
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vtbl = varianceComponent(aov,Alpha=0.01)

vtbl=2×3 table
             VarianceComponent    VarianceComponentLower    VarianceComponentUpper
             _________________    ______________________    ______________________

    Year          50.026                  8.1282                     10177        
    Error         30.936                   21.74                    46.915        

The output shows that Year contributes more to the sample variance than Error.

Input Arguments
aov — ANOVA results
anova object

ANOVA results, specified as an anova object. The properties of aov contain the factors and response
data used by varianceComponent to compute the variance component estimates and their
confidence intervals.

alpha — Significance level
0.05 (default) | scalar value in the range (0,1)

Significance level for the estimates, specified as a scalar value in the range (0,1). The confidence level
of the confidence intervals is 100(1− α)%. The default value for alpha is 0.05, which returns 95%
confidence intervals for the estimates.
Example: Alpha=0.01
Data Types: single | double

Output Arguments
v — Variance component estimates
table

Variance component estimates and their confidence intervals, returned as a table. The
varianceComponent function assumes that coefficients for dummy variables corresponding to the
same random factor have equal variance. The table v has rows for the error term and for each of the
random terms in aov.Formula. The columns of v correspond to the following variables:

• VarianceComponent — The estimated variance component.
• VarianceComponentLower — A lower confidence bound of the variance component. You can

specify the confidence level using alpha.
• VarianceComponentUpper — An upper confidence bound of the variance component.

You can use the variance component estimates to determine if the random sampling has a significant
effect on the mean squares of a term.
Data Types: table
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Version History
Introduced in R2022b

References
[1] Dunn, O. J., and V. A. Clark. Applied Statistics: Analysis of Variance and Regression. New York:

Wiley, 1974.

[2] Goodnight, J. H., and F. M. Speed. Computing Expected Mean Squares. Cary, NC: SAS Institute,
1978.

[3] Seber, G. A. F., and A. J. Lee. Linear Regression Analysis. 2nd ed. Hoboken, NJ: Wiley-Interscience,
2003.

See Also
anova | “N-Way ANOVA” on page 9-26 | “One-Way ANOVA” on page 9-2 | “Two-Way ANOVA” on page
9-11
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vartest
Chi-square variance test

Syntax
h = vartest(x,v)
h = vartest(x,v,Name,Value)
[h,p] = vartest( ___ )
[h,p,ci,stats] = vartest( ___ )

Description
h = vartest(x,v) returns a test decision for the null hypothesis that the data in vector x comes
from a normal distribution with variance v, using the chi-square variance test on page 35-7816. The
alternative hypothesis is that x comes from a normal distribution with a different variance. The result
h is 1 if the test rejects the null hypothesis at the 5% significance level, and 0 otherwise.

h = vartest(x,v,Name,Value) performs the chi-square variance test with additional options
specified by one or more name-value pair arguments. For example, you can change the significance
level or conduct a one-sided test.

[h,p] = vartest( ___ ) also returns the p-value of the test, p, using any of the input arguments in
the previous syntaxes.

[h,p,ci,stats] = vartest( ___ ) also returns the confidence interval for the true variance, ci,
and the structure stats containing information about the test statistic.

Examples

Chi-Squared Test for Specified Variance

Load the sample data. Create a vector containing the first column of the students' exam grades
matrix.

load examgrades
x = grades(:,1);

Test the null hypothesis that the data comes from a distribution with a variance of 25.

[h,p,ci,stats] = vartest(x,25)

h = 1

p = 0

ci = 2×1

   59.8936
   99.7688
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stats = struct with fields:
    chisqstat: 361.9597
           df: 119

The returned value h = 1 indicates that vartest rejects the null hypothesis at the default 5%
significance level. ci shows the lower and upper boundaries of the 95% confidence interval for the
true variance, and suggests that the true variance is greater than 25.

Chi-Squared Test Using One-Sided Hypothesis

Load the sample data. Create a vector containing the first column of the students' exam grades
matrix.

load examgrades
x = grades(:,1);

Test the null hypothesis that the data comes from a distribution with a variance of 25, against the
alternative hypothesis that the variance is greater than 25.

[h,p] = vartest(x,25,'Tail','right')

h = 1

p = 2.4269e-26

The returned value of h = 1 indicates that vartest rejects the null hypothesis at the default 5%
significance level, in favor of the alternative hypothesis that the variance is greater than 25.

Input Arguments
x — Sample data
vector | matrix | multidimensional array

Sample data, specified as a vector, matrix, or multidimensional array. For matrices, vartest
performs separate tests along each column of x, and returns a row vector of results. For
multidimensional arrays on page 35-7816, vartest works along the first nonsingleton dimension on
page 35-7816 of x.
Data Types: single | double

v — Hypothesized variance
nonnegative scalar value

Hypothesized variance, specified as a nonnegative scalar value.
Data Types: single | double

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.
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Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: 'Tail','right','Alpha',0.01 specifies a right-tailed hypothesis test at the 1%
significance level.

Alpha — Significance level
0.05 (default) | scalar value in the range (0,1)

Significance level of the hypothesis test, specified as the comma-separated pair consisting of
'Alpha' and a scalar value in the range (0,1).
Example: 'Alpha',0.01
Data Types: single | double

Dim — Dimension
first nonsingleton dimension (default) | positive integer value

Dimension of the input matrix to test along, specified as the comma-separated pair consisting of
'Dim' and a positive integer value. For example, specifying 'Dim',1 tests the data in each column
for equality to the hypothesized variance, while 'Dim',2 tests the data in each row.
Example: 'Dim',2
Data Types: single | double

Tail — Type of alternative hypothesis
'both' (default) | 'right' | 'left'

Type of alternative hypothesis to evaluate, specified as the comma-separated pair consisting of
'Tail' and one of the following.

'both' Test the alternative hypothesis that the population variance is not v.
'right' Test the alternative hypothesis that the population variance is greater than v.
'left' Test the alternative hypothesis that the population variance is less than v.

Example: 'Tail','right'

Output Arguments
h — Hypothesis test result
1 | 0

Hypothesis test result, returned as 1 or 0.

• If h = 1, this indicates the rejection of the null hypothesis at the Alpha significance level.
• If h = 0, this indicates a failure to reject the null hypothesis at the Alpha significance level.

p — p-value
scalar value in the range [0,1]

p-value of the test, returned as a scalar value in the range [0,1]. p is the probability of observing a
test statistic as extreme as, or more extreme than, the observed value under the null hypothesis.
Small values of p cast doubt on the validity of the null hypothesis.
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ci — Confidence interval
vector

Confidence interval for the true variance, returned as a two-element vector containing the lower and
upper boundaries of the 100 × (1 – Alpha)% confidence interval.

stats — Test statistics
structure

Test statistics for the chi-square variance test, returned as a structure containing:

• chisqstat — Value of the test statistic.
• df — Degrees of freedom of the test.

More About
Chi-Square Variance Test

The chi-square variance test is used to test whether the variance of a population is equal to a
hypothesized value.

The test statistic is

T = n− 1 s
σ0

2
,

where n is the sample size, s is the sample standard deviation, and σ0 is the hypothesized standard
deviation. The denominator is the ratio of the sample standard deviation to the hypothesized standard
deviation. The further this ratio deviates from 1, the more likely you are to reject the null hypothesis.
The test statistic T has a chi-square distribution with n – 1 degrees of freedom under the null
hypothesis.

Multidimensional Array

A multidimensional array has more than two dimensions. For example, if x is a 1-by-3-by-4 array, then
x is a three-dimensional array.

First Nonsingleton Dimension

The first nonsingleton dimension is the first dimension of an array whose size is not equal to 1. For
example, if x is a 1-by-2-by-3-by-4 array, then the second dimension is the first nonsingleton
dimension of x.

Tips
• Use sampsizepwr to calculate:

• The sample size that corresponds to specified power and parameter values;
• The power achieved for a particular sample size, given the true parameter value;
• The parameter value detectable with the specified sample size and power.
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Version History
Introduced before R2006a

Extended Capabilities
GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

This function fully supports GPU arrays. For more information, see “Run MATLAB Functions on a
GPU” (Parallel Computing Toolbox).

See Also
vartest2 | vartestn | sampsizepwr
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vartest2
Two-sample F-test for equal variances

Syntax
h = vartest2(x,y)
h = vartest2(x,y,Name,Value)
[h,p] = vartest2( ___ )
[h,p,ci,stats] = vartest2( ___ )

Description
h = vartest2(x,y) returns a test decision for the null hypothesis that the data in vectors x and y
comes from normal distributions with the same variance, using the two-sample F-test on page 35-
7821. The alternative hypothesis is that they come from normal distributions with different variances.
The result h is 1 if the test rejects the null hypothesis at the 5% significance level, and 0 otherwise.

h = vartest2(x,y,Name,Value) returns a test decision for the two-sample F-test with additional
options specified by one or more name-value pair arguments. For example, you can change the
significance level or conduct a one-sided test.

[h,p] = vartest2( ___ ) also returns the p-value of the test, p, using any of the input arguments
in the previous syntaxes.

[h,p,ci,stats] = vartest2( ___ ) also returns the confidence interval for the true variance
ratio, ci, and the structure stats containing information about the test statistic.

Examples

Test for Equal Variances

Load the sample data. Create vectors containing the first and second columns of the data matrix to
represent students&' grades on two exams.

load examgrades;
x = grades(:,1);
y = grades(:,2);

Test the null hypothesis that the data in x and y comes from distributions with the same variance.

[h,p,ci,stats] = vartest2(x,y)

h = 1

p = 0.0019

ci = 2×1

    1.2383
    2.5494
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stats = struct with fields:
    fstat: 1.7768
      df1: 119
      df2: 119

The returned result h = 1 indicates that vartest2 rejects the null hypothesis at the default 5%
significance level. ci contains the lower and upper boundaries of the 95% confidence interval for the
true variance ratio. stats contains the value of the test statistic for the F-test and the numerator and
denominator degrees of freedom.

One-Sided Hypothesis Test

Load the sample data. Create vectors containing the first and second columns of the data matrix to
represent students' grades on two exams.

load examgrades;
x = grades(:,1);
y = grades(:,2);

Test the null hypothesis that the data in x and y comes from distributions with the same variance,
against the alternative that the population variance of x is greater than that of y.

vartest2(x,y,'Tail','right')

ans = 1

The returned result h = 1 indicates that vartest2 rejects the null hypothesis at the default 5%
significance level, in favor of the alternative hypothesis that the population variance of x is greater
than that of y.

Input Arguments
x — Sample data
vector | matrix | multidimensional array

Sample data, specified as a vector, matrix, or multidimensional array on page 35-7821.

• If x and y are vectors, they do not need to be the same length.
• If x and y are matrices, they must have the same number of columns, but do not need to have the

same number of rows. vartest2 performs separate tests along each column and returns a vector
of the results.

• If x and y are multidimensional arrays, they must have the same number of dimensions, and the
same size along all but the first nonsingleton dimension on page 35-7822.

Data Types: single | double

y — Sample data
vector | matrix | multidimensional array

Sample data, specified as a vector, matrix, or multidimensional array on page 35-7821.

 vartest2

35-7819



• If x and y are vectors, they do not need to be the same length.
• If x and y are matrices, they must have the same number of columns, but do not need to have the

same number of rows. vartest2 performs separate tests along each column and returns a vector
of the results.

• If x and y are multidimensional arrays, they must have the same number of dimensions, and the
same size along all but the first nonsingleton dimension on page 35-7822.

Data Types: single | double

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: 'Tail','right','Alpha',0.01 specifies a right-tailed hypothesis test at the 1%
significance level.

Alpha — Significance level
0.05 (default) | scalar value in the range (0,1)

Significance level of the hypothesis test, specified as the comma-separated pair consisting of
'Alpha' and a scalar value in the range (0,1).
Example: 'Alpha',0.01
Data Types: single | double

Dim — Dimension
first nonsingleton dimension (default) | positive integer value

Dimension of the input matrix to test along, specified as the comma-separated pair consisting of
'Dim' and a positive integer value. For example, specifying 'Dim',1 tests the data in each column
for variance equality, while 'Dim',2 tests the data in each row.
Example: 'Dim',2
Data Types: single | double

Tail — Type of alternative hypothesis
'both' (default) | 'right' | 'left'

Type of alternative hypothesis to evaluate using the F-test, specified as the comma-separated pair
consisting of 'Tail' and one of the following.

'both' Test the alternative hypothesis that the population variances are not equal.
'right' Test the alternative hypothesis that the population variance of x is greater

than that of y.
'left' Test the alternative hypothesis that the population variance of x is less than

that of y.

Example: 'Tail','right'

35 Functions

35-7820



Output Arguments
h — Hypothesis test result
1 | 0

Hypothesis test result, returned as 1 or 0.

• If h = 1, this indicates the rejection of the null hypothesis at the Alpha significance level.
• If h = 0, this indicates a failure to reject the null hypothesis at the Alpha significance level.

p — p-value
scalar value in the range [0,1]

p-value of the test, returned as a scalar value in the range [0,1]. p is the probability of observing a
test statistic as extreme as, or more extreme than, the observed value under the null hypothesis.
Small values of p cast doubt on the validity of the null hypothesis.

ci — Confidence interval
vector

Confidence interval for the true ratio of the population variances, returned as a two-element vector
containing the lower and upper boundaries of the 100 × (1 – Alpha)% confidence interval.

stats — Test statistics
structure

Test statistics for the hypothesis test, returned as a structure containing:

• fstat — Value of the test statistic.
• df1 — Numerator degrees of freedom of the test.
• df2 — Denominator degrees of freedom of the test.

More About
Two-Sample F-Test

The two-sample F-test is used to test if the variances of two populations are equal.

The test statistic is

F =
s12

s22 ,

where s1 and s2 are the sample standard deviations. The test statistic is a ratio of the two sample
variances. The further this ratio deviates from 1, the more likely you are to reject the null hypothesis.
Under the null hypothesis, the test statistic F has a F-distribution with numerator degrees of freedom
equal to N1 – 1 and denominator degrees of freedom equal to N2 – 1, where N1 and N2 are the sample
sizes of the two data sets.

Multidimensional Array

A multidimensional array has more than two dimensions. For example, if x is a 1-by-3-by-4 array, then
x is a three-dimensional array.
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First Nonsingleton Dimension

The first nonsingleton dimension is the first dimension of an array whose size is not equal to 1. For
example, if x is a 1-by-2-by-3-by-4 array, then the second dimension is the first nonsingleton
dimension of x.

Version History
Introduced before R2006a

Extended Capabilities
GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

This function fully supports GPU arrays. For more information, see “Run MATLAB Functions on a
GPU” (Parallel Computing Toolbox).

See Also
vartest | vartestn
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vartestn
Multiple-sample tests for equal variances

Syntax
vartestn(x)
vartestn(x,Name,Value)

vartestn(x,group)
vartestn(x,group,Name,Value)

p = vartestn( ___ )
[p,stats] = vartestn( ___ )

Description
vartestn(x) returns a summary table of statistics and a box plot for a Bartlett test of the null
hypothesis that the columns of data vector x come from normal distributions with the same variance.
The alternative hypothesis is that not all columns of data have the same variance.

vartestn(x,Name,Value) returns a summary table of statistics and a box plot for a test of unequal
variances with additional options specified by one or more name-value pair arguments. For example,
you can specify a different type of hypothesis test or change the display settings for the test results.

vartestn(x,group) returns a summary table of statistics and a box plot for a Bartlett test of the
null hypothesis that the data in each categorical group comes from normal distributions with the
same variance. The alternative hypothesis is that not all groups have the same variance.

vartestn(x,group,Name,Value) returns a summary table of statistics and a box plot for a test of
unequal variances with additional options specified by one or more name-value pair arguments. For
example, you can specify a different type of hypothesis test or change the display settings for the test
results.

p = vartestn( ___ ) also returns the p-value of the test, p, using any of the input arguments in the
previous syntaxes.

[p,stats] = vartestn( ___ ) also returns the structure stats containing information about the
test statistic.

Examples

Test Data for Equal Variances

Load the sample data.

load examgrades

Test the null hypothesis that the variances are equal across the five columns of data in the students’
exam grades matrix, grades.
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vartestn(grades)

ans = 7.9086e-08

The low p-value, p = 0, indicates that vartestn rejects the null hypothesis that the variances are
equal across all five columns, in favor of the alternative hypothesis that at least one column has a
different variance.

Test Grouped Data for Equal Variances

Load the sample data.

load carsmall

Test the null hypothesis that the variances in miles per gallon (MPG) are equal across different model
years.

vartestn(MPG,Model_Year)
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ans = 0.8327

The high p-value, p = 0.83269, indicates that vartestn does not reject the null hypothesis that the
variances in miles per gallon (MPG) are equal across different model years.

Test for Equal Variances Using Levene’s Test

Load the sample data.

load carsmall

Use Levene’s test to test the null hypothesis that the variances in miles per gallon (MPG) are equal
across different model years.

p = vartestn(MPG,Model_Year,'TestType','LeveneAbsolute')
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p = 0.6320

The high p-value, p = 0.63195, indicates that vartestn does not reject the null hypothesis that the
variances in miles per gallon (MPG) are equal across different model years.

Test for Equal Variances Using the Brown-Forsythe Test

Load the sample data.

load examgrades

Test the null hypothesis that the variances are equal across the five columns of data in the students’
exam grades matrix, grades, using the Brown-Forsythe test. Suppress the display of the summary
table of statistics and the box plot.

[p,stats] = vartestn(grades,'TestType','BrownForsythe','Display','off')

p = 1.3121e-06

stats = struct with fields:
    fstat: 8.4160
       df: [4 595]
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The small p-value, p = 1.3121e-06, indicates that vartestn rejects the null hypothesis that the
variances are equal across all five columns, in favor of the alternative hypothesis that at least one
column has a different variance.

Input Arguments
x — Sample data
matrix | column vector

Sample data, specified as a matrix or column vector. If a grouping variable group is specified, then x
must be a column vector. If a grouping variable is not specified, x must be a matrix. In either case,
vartestn treats NaN values as missing values and ignores them.
Data Types: single | double

group — Grouping variable
categorical array | logical or numeric vector | character array | string array | cell array of character
vectors

Grouping variable, specified as a categorical array, logical or numeric vector, character array, string
array, or cell array of character vectors with one row for each element of x. Each unique value in a
grouping variable defines a group. vartestn treats NaN values as missing values and ignores them.

For example, if Gender is a cell array of character vectors with values 'Male' and 'Female', you
can use Gender as a grouping variable to test your data by gender.
Example: Gender
Data Types: categorical | single | double | logical | string | cell | char

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: 'TestType','BrownForsythe','Display','off' specifies a Brown-Forsythe test and
omits the plot of the results.

Display — Display settings for test results
'on' (default) | 'off'

Display settings for test results, specified as the comma-separated pair consisting of 'Display' and
one of the following.

'on' Display a box plot and table of summary statistics.
'off' Do not display a box plot and table of summary statistics.

Example: 'display','off'

TestType — Type of hypothesis test
'Bartlett' (default) | 'LeveneQuadratic' | 'LeveneAbsolute' | 'BrownForsythe' |
'OBrien'
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Type of hypothesis test to perform, specified as the comma-separated pair consisting of 'TestType'
and one of the following.

'Bartlett' Bartlett’s test.
'LeveneQuadratic' Levene’s test computed by performing ANOVA on the squared

deviations of the data values from their group means.
'LeveneAbsolute' Levene’s test computed by performing ANOVA on the absolute

deviations of the data values from their group means.
'BrownForsythe' Brown-Forsythe test computed by performing ANOVA on the absolute

deviations of the data values from the group medians.
'OBrien' O’Brien’s modification of Levene’s test with W = 0.5.

Example: 'TestType','OBrien'

Output Arguments
p — p-value
scalar value in the range [0,1]

p-value of the test, returned as a scalar value in the range [0,1]. p is the probability of observing a
test statistic as extreme as, or more extreme than, the observed value under the null hypothesis.
Small values of p cast doubt on the validity of the null hypothesis.

stats — Test statistics
structure

Test statistics for the hypothesis test, returned as a structure containing:

• chistat: Value of the test statistic.
• df: Degrees of freedom of the test.

More About
Bartlett’s Test

Bartlett’s test is used to test whether multiple data samples have equal variances, against the
alternative that at least two of the data samples do not have equal variances.

The test statistic is

T =
N − k lnsp2− ∑

i = 1

k
Ni− 1 lnsi2

1 + 1/ 3 k− 1 ∑
i = 1

k
1/ Ni− 1 − 1/ N − k

,

where si2 is the variance of the ith group, N is the total sample size, Ni is the sample size of the ith
group, k is the number of groups, and sp2 is the pooled variance. The pooled variance is defined as

sp2 = ∑
i = 1

k
Ni− 1 si2/ N − k .
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The test statistic has a chi-square distribution with k – 1 degrees of freedom under the null
hypothesis.

Bartlett’s test is sensitive to departures from normality. If your data comes from a nonnormal
distribution, Levene’s test could provide a more accurate result.

Levene, Brown-Forsythe, and O’Brien Tests

The Levene, Brown-Forsythe, and O’Brien tests are used to test if multiple data samples have equal
variances, against the alternative that at least two of the data samples do not have equal variances.

The test statistic is

W =
N − k ∑

i = 1

k
Ni Zi . − Z..

2

k− 1 ∑
i = 1

k
∑

j = 1

Ni
Zi j− Zi .

2
,

where Ni is the sample size of the ith group, and k is the number of groups. Depending on the type of
test specified with the TestType name-value pair arguments, Zij can have one of four definitions:

• If you specify LeveneAbsolute, vartestn uses Zi j = Yi j− Y i . , where Y i .  is the mean of the ith
subgroup.

• If you specify LeveneQuadratic, vartestn uses Zi j2 = Yi j− Y i .
2, where Y i .  is the mean of the

ith subgroup.
• If you specify BrownForsythe, vartestn uses Zi j = Yi j− Y i . , where Y i .  is the median of the ith

subgroup.
• If you specify OBrien, vartestn uses

Zi j =
0.5 + ni− 2 ni yi j− yi

2− 0.5 ni− 1 σi2

ni− 1 ni− 2 ,

where ni is the size of the ith group, σi
2 is its sample variance.

In all cases, the test statistic has an F-distribution with k – 1 numerator degrees of freedom, and N – k
denominator degrees of freedom.

The Levene, Brown-Forsythe, and O’Brien tests are less sensitive to departures from normality than
Bartlett’s test, so they are useful alternatives if you suspect the samples come from nonnormal
distributions.

Version History
Introduced before R2006a

See Also
anova1 | vartest | vartest2
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vertcat
Class: dataset

(Not Recommended) Vertical concatenation for dataset arrays

Note The dataset data type is not recommended. To work with heterogeneous data, use the
MATLAB® table data type instead. See MATLAB table documentation for more information.

Syntax
ds = vertcat(ds1, ds2, ...)

Description
ds = vertcat(ds1, ds2, ...) vertically concatenates the dataset arrays ds1, ds2, ... .
Observation names, when present, must be unique across datasets. vertcat fills in default
observation names for the output when some of the inputs have names and some do not.

Variable names for all dataset arrays must be identical except for order. vertcat concatenates by
matching variable names. vertcat assigns values for the "per-variable" properties (e.g., Units and
VarDescription) in ds from the corresponding property values in ds1.

See Also
cat | horzcat
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compact
Package: clustering.evaluation

Compact clustering evaluation object

Syntax
compactEvaluation = compact(evaluation)

Description
compactEvaluation = compact(evaluation) returns a compact clustering evaluation object
compactEvaluation, which contains a subset of the information about the clustering solution in the
clustering evaluation object evaluation. Compacting a clustering evaluation object reduces the
memory requirements of the object, which is useful when clustering a large data set.

Examples

Create Compact Clustering Evaluation Object

Create a compact clustering evaluation object from a full clustering evaluation object.

Load the fisheriris data set. The data contains length and width measurements from the sepals
and petals of three species of iris flowers.

load fisheriris

Create a clustering evaluation object. Cluster the data using kmeans, and evaluate the optimal
number of clusters using the gap criterion.

rng("default") % For reproducibility
evaluation = evalclusters(meas,"kmeans","gap","KList",1:6)

evaluation = 
  GapEvaluation with properties:

    NumObservations: 150
         InspectedK: [1 2 3 4 5 6]
    CriterionValues: [0.0720 0.5928 0.8762 1.0114 1.0534 1.0720]
           OptimalK: 5

Create a compact clustering evaluation object from evaluation.

compactEvaluation = compact(evaluation)

compactEvaluation = 
  GapEvaluation with properties:

    NumObservations: 150
         InspectedK: [1 2 3 4 5 6]
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    CriterionValues: [0.0720 0.5928 0.8762 1.0114 1.0534 1.0720]
           OptimalK: 5

The displayed output of the compact object compactEvaluation is the same as the original object
evaluation, but some properties not shown in the display are different. For example, in the compact
object, the properties X, OptimalY, and Missing are empty.

Compare the optimal clustering solution property OptimalY of evaluation and
compactEvaluation.

evaluation.OptimalY

ans = 150×1

     4
     4
     4
     4
     4
     4
     4
     4
     4
     4
      ⋮

compactEvaluation.OptimalY

ans =

     []

Input Arguments
evaluation — Clustering evaluation data
CalinskiHarabaszEvaluation object | DaviesBouldinEvaluation object | GapEvaluation
object | SilhouetteEvaluation object

Clustering evaluation data, specified as a CalinskiHarabaszEvaluation,
DaviesBouldinEvaluation, GapEvaluation, or SilhouetteEvaluation clustering evaluation
object. Create a clustering evaluation object by using evalclusters.

Output Arguments
compactEvaluation — Compact clustering evaluation object
CalinskiHarabaszEvaluation object | DaviesBouldinEvaluation object | GapEvaluation
object | SilhouetteEvaluation object

Compact clustering evaluation object, returned as a CalinskiHarabaszEvaluation,
DaviesBouldinEvaluation, GapEvaluation, or SilhouetteEvaluation clustering evaluation
object. The compact object includes the clustering evaluation results. In the compact object, the
properties are empty for the sample data X, the optimal clustering solution OptimalY, and the list of
excluded observations Missing.
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Version History
Introduced in R2013b

See Also
evalclusters | CalinskiHarabaszEvaluation | DaviesBouldinEvaluation |
GapEvaluation | SilhouetteEvaluation
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view
View classification tree

Syntax
view(tree)
view(tree,Name,Value)

Description
view(tree) returns a text description of tree, a decision tree.

view(tree,Name,Value) describes tree with additional options specified by one or more
Name,Value pair arguments.

Input Arguments
tree

A classification tree or compact classification tree created by fitctree or compact.

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.

Mode

Value describing the display of tree, either 'graph' or 'text'. 'graph' opens a user interface
displaying tree, and containing controls for querying the tree. 'text' sends output to the
Command Window describing tree.

Default: 'text'

Examples

View Trained Classification Tree

View textual and graphical displays of a trained classification tree.

Load Fisher's iris data set.

load fisheriris

Train a classification tree using all measurements.

Mdl = fitctree(meas,species);
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View textual display of the trained classification tree.

view(Mdl)

Decision tree for classification
1  if x3<2.45 then node 2 elseif x3>=2.45 then node 3 else setosa
2  class = setosa
3  if x4<1.75 then node 4 elseif x4>=1.75 then node 5 else versicolor
4  if x3<4.95 then node 6 elseif x3>=4.95 then node 7 else versicolor
5  class = virginica
6  if x4<1.65 then node 8 elseif x4>=1.65 then node 9 else versicolor
7  class = virginica
8  class = versicolor
9  class = virginica

View graphical display of the trained classification tree.

view(Mdl,'Mode','graph');
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View Tree from Bag of Trees

Load Fisher's iris data set.

load fisheriris

Grow a bag of 100 classification trees using all measurements.

rng(1) % For reproducibility
Mdl = TreeBagger(100,meas,species);

Alternatively, you can use fitcensemble to grow a bag of classification trees.

Mdl is a TreeBagger model object. Mdl.Trees stores the bag of 100 trained classification trees in a
100-by-1 cell array. That is, each cell in Mdl.Trees contains a CompactClassificationTree
model object.

View a graph of the 10th classification tree in the bag.

Tree10 = Mdl.Trees{10};
view(Tree10,'Mode','graph');
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By default, the software grows deep trees for bags of trees.

View Tree from Boosted Ensemble

Load Fisher's iris data set.

load fisheriris

Boost an ensemble of 100 classification trees using all measurements. Specify tree stumps as the
weak learners.

t = templateTree('MaxNumSplits',1);
Mdl = fitcensemble(meas,species,'Method','AdaBoostM2','Learners',t);

Mdl is a ClassificationEnsemble model object. Mdl.Trained stores the ensemble of 100 trained
classification trees in a 100-by-1 cell array. That is, each cell in Mdl.Trained contains a
CompactClassificationTree model object.

View a graph of the 10th classification tree in the ensemble.

Tree10 = Mdl.Trained{10};
view(Tree10,'Mode','graph');
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The graph shows a tree stump because you specified stumps as the weak learners for the ensemble.
However, this behavior is not the default for fitcensemble. By default, fitcensemble grows
shallow trees for boosted ensembles of trees. That is, 'Learners' is
templateTree('MaxNumSplits',10).

Tip
To view tree t from an ensemble of trees, enter one of these lines of code

view(Ens.Trained{t})
view(Bag.Trees{t})

• Ens is a full ensemble returned by fitcensemble or a compact ensemble returned by compact.
• Bag is a full bag of trees returned by TreeBagger or a compact bag of trees returned by

compact.

To save tree in the Command Window, get a figure handle by using the findall and setdiff
functions, and then save tree using the function saveas.
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before = findall(groot,'Type','figure'); % Find all figures
view(Mdl,'Mode','graph')
after = findall(groot,'Type','figure');
h = setdiff(after,before); % Get the figure handle of the tree viewer
saveas(h,'a.png')

Extended Capabilities
GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

Usage notes and limitations:

• view does not execute on a GPU.
• The decision tree model can be fitted with GPU arrays.

For more information, see “Run MATLAB Functions on a GPU” (Parallel Computing Toolbox).

See Also
ClassificationTree | fitctree
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view
View regression tree

Syntax
view(tree)
view(tree,Name,Value)

Description
view(tree) returns a text description of tree, a decision tree.

view(tree,Name,Value) describes tree with additional options specified by one or more
Name,Value pair arguments.

Input Arguments
tree

A regression tree or compact regression tree created by fitrtree or compact.

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.

Mode

Display of tree, either 'graph' or 'text'. 'graph' opens a GUI displaying tree, and containing
controls for querying the tree. 'text' sends output to the Command Window describing tree.

Default: 'text'

Examples

View Trained Regression Tree

View textual and graphical displays of a trained regression tree.

Load the carsmall data set. Consider a model that explains a car's fuel economy (MPG) using its
weight (Weight) and number of cylinders (Cylinders).

load carsmall
X = [Weight Cylinders];
Y = MPG;

Train a regression tree using all measurements.
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Mdl = fitrtree(X,Y);

View textual display of the trained regression tree.

view(Mdl)

Decision tree for regression
 1  if x1<3085.5 then node 2 elseif x1>=3085.5 then node 3 else 23.7181
 2  if x1<2371 then node 4 elseif x1>=2371 then node 5 else 28.7931
 3  if x2<7 then node 6 elseif x2>=7 then node 7 else 15.5417
 4  if x1<2162 then node 8 elseif x1>=2162 then node 9 else 32.0741
 5  if x2<5 then node 10 elseif x2>=5 then node 11 else 25.9355
 6  fit = 19.2778
 7  if x1<4381 then node 12 elseif x1>=4381 then node 13 else 14.2963
 8  if x1<1951 then node 14 elseif x1>=1951 then node 15 else 33.3056
 9  fit = 29.6111
10  if x1<2827.5 then node 16 elseif x1>=2827.5 then node 17 else 27.2143
11  if x1<3013.5 then node 18 elseif x1>=3013.5 then node 19 else 23.25
12  if x1<3533.5 then node 20 elseif x1>=3533.5 then node 21 else 14.8696
13  fit = 11
14  fit = 29.375
15  if x1<2142.5 then node 22 elseif x1>=2142.5 then node 23 else 34.4286
16  if x1<2385 then node 24 elseif x1>=2385 then node 25 else 27.6389
17  fit = 24.6667
18  fit = 21.5
19  fit = 30.25
20  fit = 16.6
21  if x1<4378 then node 26 elseif x1>=4378 then node 27 else 14.3889
22  if x1<2080 then node 28 elseif x1>=2080 then node 29 else 34.8333
23  fit = 32
24  fit = 24.5
25  if x1<2412.5 then node 30 elseif x1>=2412.5 then node 31 else 28.0313
26  if x1<4365 then node 32 elseif x1>=4365 then node 33 else 14.2647
27  fit = 16.5
28  fit = 34.125
29  fit = 36.25
30  fit = 34
31  if x1<2447 then node 34 elseif x1>=2447 then node 35 else 27.6333
32  if x1<4122.5 then node 36 elseif x1>=4122.5 then node 37 else 14.5313
33  fit = 10
34  fit = 24
35  if x1<2573.5 then node 38 elseif x1>=2573.5 then node 39 else 27.8929
36  if x1<3860 then node 40 elseif x1>=3860 then node 41 else 14.15
37  fit = 15.1667
38  fit = 27.125
39  if x1<2580 then node 42 elseif x1>=2580 then node 43 else 28.2
40  fit = 14.5
41  fit = 13.625
42  fit = 31
43  fit = 27.8889

View graphical display of the trained regression tree.

view(Mdl,'Mode','graph');
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View Tree from Bag of Trees

Load the carsmall data set. Consider a model that explains a car's fuel economy (MPG) using its
weight (Weight) and number of cylinders (Cylinders).

load carsmall
X = [Weight Cylinders];
Y = MPG;

Grow a bag of 100 regression trees using all measurements.

rng(1) % For reproducibility
Mdl = TreeBagger(100,X,Y);

Alternatively, you can use fitrensemble to grow a bag of regression trees.

Mdl is a TreeBagger model object. Mdl.Trees stores the bag of 100 trained regression trees in a
100-by-1 cell array. That is, each cell in Mdl.Trees contains a CompactRegressionTree model
object.
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View a graph of the 10th regression tree in the bag.

Tree10 = Mdl.Trees{10};
view(Tree10,'Mode','graph');

By default, the software grows deep trees for bags of trees.

View Tree from Boosted Ensemble

Load the carsmall data set. Consider a model that explains a car's fuel economy (MPG) using its
weight (Weight) and number of cylinders (Cylinders).

load carsmall
X = [Weight Cylinders];
Y = MPG;

Boost an ensemble of 100 regression trees using all measurements.

Mdl = fitrensemble(X,Y,'Method','LSBoost');
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Mdl is a RegressionEnsemble model object. Mdl.Trained stores the ensemble of 100 trained
regression trees in a 100-by-1 cell array. That is, each cell in Mdl.Trained contains a
CompactRegressionTree model object.

View a graph of the 10th regression tree in the ensemble.

Tree10 = Mdl.Trained{10};
view(Tree10,'Mode','graph');

By default, fitrensemble grows shallow trees for boosted ensembles of trees. That is, 'Learners'
is templateTree('MaxNumSplits',10).

Tip
To view tree t from an ensemble of trees, enter one of these lines of code

view(Ens.Trained{t})
view(Bag.Trees{t})
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• Ens is a full ensemble returned by fitrensemble or a compact ensemble returned by compact.
• Bag is a full bag of trees returned by TreeBagger or a compact bag of trees returned by

compact.

To save tree in the Command Window, get a figure handle by using the findall and setdiff
functions, and then save tree using the function saveas.

before = findall(groot,'Type','figure'); % Find all figures
view(Mdl,'Mode','graph')
after = findall(groot,'Type','figure');
h = setdiff(after,before); % Get the figure handle of the tree viewer
saveas(h,'a.png')

Extended Capabilities
GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

Usage notes and limitations:

• view does not execute on a GPU.
• The decision tree model can be fitted with GPU arrays.

For more information, see “Run MATLAB Functions on a GPU” (Parallel Computing Toolbox).

See Also
RegressionTree | fitrtree
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wblcdf
Weibull cumulative distribution function

Syntax
p = wblcdf(x,a,b)
[p,plo,pup] = wblcdf(x,a,b,pcov,alpha)
[p,plo,pup] = wblcdf( ___ ,'upper')

Description
p = wblcdf(x,a,b) returns the cdf of the Weibull distribution with scale parameter a and shape
parameter b, at each value in x. x, a, and b can be vectors, matrices, or multidimensional arrays that
all have the same size. A scalar input is expanded to a constant array of the same size as the other
inputs. The default values for a and b are both 1. The parameters a and b must be positive.

[p,plo,pup] = wblcdf(x,a,b,pcov,alpha) returns confidence bounds for p when the input
parameters a and b are estimates. pcov is the 2-by-2 covariance matrix of the estimated parameters.
alpha has a default value of 0.05, and specifies 100(1 - alpha)% confidence bounds. plo and pup
are arrays of the same size as p containing the lower and upper confidence bounds.

[p,plo,pup] = wblcdf( ___ ,'upper') returns the complement of the Weibull cdf for each value
in x, using an algorithm that more accurately computes the extreme upper tail probabilities. You can
use 'upper' with any of the previous syntaxes.

The function wblcdf computes confidence bounds for p using a normal approximation to the
distribution of the estimate

b logx− loga

and then transforms those bounds to the scale of the output p. The computed bounds give
approximately the desired confidence level when you estimate mu, sigma, and pcov from large
samples, but in smaller samples other methods of computing the confidence bounds might be more
accurate.

The Weibull cdf is

p = F x a, b =∫0 x
ba−btb− 1e−

t
a

b
dt = 1− e−

x
a

b
.

Examples

Weibull Distribution cdf

What is the probability that a value from a Weibull distribution with parameters a = 0.15 and b =
0.8 is less than 0.5?

probability = wblcdf(0.5, 0.15, 0.8)
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probability = 0.9272

How sensitive is this result to small changes in the parameters?

[A, B] = meshgrid(0.1:0.05:0.2,0.2:0.05:0.3);
probability = wblcdf(0.5, A, B)

probability = 3×3

    0.7484    0.7198    0.6991
    0.7758    0.7411    0.7156
    0.8022    0.7619    0.7319

Version History
Introduced before R2006a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
cdf | wblpdf | wblinv | wblstat | wblfit | wbllike | wblrnd | wblplot

Topics
“Weibull Distribution” on page B-177
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wblfit
Weibull parameter estimates

Syntax
parmHat = wblfit(x)

[parmHat,parmCI] = wblfit(x)
[parmHat,parmCI] = wblfit(x,alpha)

[ ___ ] = wblfit(x,alpha,censoring)
[ ___ ] = wblfit(x,alpha,censoring,freq)
[ ___ ] = wblfit(x,alpha,censoring,freq,options)

Description
parmHat = wblfit(x) returns the estimates of Weibull distribution parameters (shape and scale),
given the sample data in x.

[parmHat,parmCI] = wblfit(x) also returns the 95% confidence intervals for the parameter
estimates.

[parmHat,parmCI] = wblfit(x,alpha) specifies the confidence level for the confidence
intervals to be 100(1—alpha)%.

[ ___ ] = wblfit(x,alpha,censoring) specifies whether each value in x is right-censored or
not. Use the logical vector censoring in which 1 indicates observations that are right-censored and
0 indicates observations that are fully observed.

[ ___ ] = wblfit(x,alpha,censoring,freq) specifies the frequency or weights of observations.

[ ___ ] = wblfit(x,alpha,censoring,freq,options) specifies optimization options for the
iterative algorithm wblfit to use to compute maximum likelihood estimates (MLEs) with censoring.
Create options by using the function statset.

You can pass in [] for alpha, censoring, and freq to use their default values.

Examples

Estimate Parameters of Weibull Distribution

Generate 100 random numbers from the Weibull distribution with scale 0.8 and shape 3.

x = wblrnd(0.8,3,100,1); 

Estimate the parameters of the Weibull distribution from the data.

parmHat = wblfit(x)

parmHat = 1×2
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    0.7751    2.9433

Estimate Parameters of Weibull Distribution with Confidence Intervals

Generate 100 random numbers from the Weibull distribution with scale 1 and shape 2.

x = wblrnd(1,2,100,1); 

Find the 95% confidence intervals estimating the parameters of the Weibull distribution from the
data.

[parmHat,parmCI] = wblfit(x)

parmHat = 1×2

    0.9536    1.9622

parmCI = 2×2

    0.8583    1.6821
    1.0596    2.2890

The top row of parmCI contains the lower bounds of the confidence intervals and the bottom row
contains the upper bounds of the confidence intervals.

Estimate Weibull Parameters with Algorithm Options

Generate 100 Weibull random variables from the distribution with scale 2 and shape 5.

x = wblrnd(2,5,100,1);

Display the algorithm parameters for wblfit.

statset('wblfit')

ans = struct with fields:
          Display: 'off'
      MaxFunEvals: []
          MaxIter: []
           TolBnd: []
           TolFun: []
       TolTypeFun: []
             TolX: 1.0000e-06
         TolTypeX: []
          GradObj: []
         Jacobian: []
        DerivStep: []
      FunValCheck: []
           Robust: []
     RobustWgtFun: []

 wblfit

35-7849



           WgtFun: []
             Tune: []
      UseParallel: []
    UseSubstreams: []
          Streams: {}
        OutputFcn: []

Specify algorithm parameters using name-value pair arguments of the function statset. Change
how results are displayed (Display), and set the termination tolerance for parameters (TolX).

options = statset('Display','iter','TolX',1e-4); % Optimization options

Find the MLEs using the new algorithm parameters.

parmhat = wblfit(x,[],[],[],options) 

 
 Func-count    x          f(x)             Procedure
    2        0.193283    -0.0172927        initial
    3        0.205467    0.00262429        interpolation
    4        0.203862   2.99018e-05        interpolation
    5        0.203862   2.99018e-05        interpolation
 
Zero found in the interval [0.193283, 0.386565]

parmhat = 1×2

    1.9624    4.9050

wblfit displays information about the iterations.

Input Arguments
x — Sample data
vector

Sample data, specified as a vector.
Data Types: single | double

alpha — Significance level
0.05 (default) | scalar in the range (0,1)

Significance level for the confidence intervals, specified as a scalar in the range (0,1). The confidence
level is 100(1—alpha)%, where alpha is the probability that the confidence intervals do not contain
the true value.
Example: 0.01
Data Types: single | double

censoring — Indicator for censoring
array of 0s (default) | logical vector
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Indicator for the censoring of each value in x, specified as a logical vector of the same size as x. Use
1 for observations that are right-censored and 0 for observations that are fully observed.

The default is an array of 0s, meaning that all observations are fully observed.
Data Types: logical

freq — Frequency or weights of observations
array of 1s (default) | nonnegative vector

Frequency or weights of observations, specified as a nonnegative vector that is the same size as x.
The freq input argument typically contains nonnegative integer counts for the corresponding
elements in x, but can contain any nonnegative values.

To obtain the weighted MLEs for a data set with censoring, specify weights of observations,
normalized to the number of observations in x.

The default is an array of 1s, meaning one observation per element of x.
Data Types: single | double

options — Optimization options
statset('wblfit') (default) | structure

Optimization options, specified as a structure. options determines the control parameters for the
iterative algorithm that wblfit uses to compute MLEs for censored data.

Create options by using the function statset or by creating a structure array containing the fields
and values described in this table.

Field Name Value Default Value
Display Amount of information displayed by the

algorithm.

• 'off' — Displays no information
• 'final' — Displays the final output
• 'iter' — Displays iterative output

'off'

TolX Termination tolerance for the parameters,
specified as a positive scalar

1e-8

You can also enter statset('wblfit') in the Command Window to see the names and default
values of the fields that wblfit includes in the options structure.
Example: statset('Display','iter') specifies to display the information from each step of the
iterative algorithm.
Data Types: struct

Output Arguments
parmHat — Estimate of parameters
1-by-2 row vector

Estimate of the parameters a (scale) and b (shape) of the Weibull distribution, returned as a row
vector.
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parmCI — Confidence intervals for parameters
2-by-2 matrix

Confidence intervals for the mean parameters of the Weibull distribution, returned as a 2-by-2 matrix
vector containing the lower and upper bounds of the 100(1—alpha)% confidence interval.

The first and second rows correspond to the lower and upper bounds of the confidence intervals,
respectively.

Alternative Functionality
wblfit is a function specific to Weibull distribution. Statistics and Machine Learning Toolbox also
offers the generic functions mle, fitdist, and paramci and the Distribution Fitter app, which
support various probability distributions.

• mle returns MLEs and the confidence intervals of MLEs for the parameters of various probability
distributions. You can specify the probability distribution name or a custom probability density
function.

• Create a WeibullDistribution probability distribution object by fitting the distribution to data
using the fitdist function or the Distribution Fitter app. The object properties a and b store
the parameter estimates. To obtain the confidence intervals for the parameter estimates, pass the
object to paramci.

Version History
Introduced before R2006a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

This function fully supports GPU arrays. For more information, see “Run MATLAB Functions on a
GPU” (Parallel Computing Toolbox).

See Also
mle | wbllike | wblpdf | wblcdf | wblinv | wblstat | wblrnd | wblplot

Topics
“Weibull Distribution” on page B-177
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wblinv
Weibull inverse cumulative distribution function

Syntax
X = wblinv(P,A,B)
[X,XLO,XUP] = wblinv(P,A,B,PCOV,alpha)

Description
X = wblinv(P,A,B) returns the inverse cumulative distribution function (cdf) for a Weibull
distribution with scale parameter A and shape parameter B, evaluated at the values in P. P, A, and B
can be vectors, matrices, or multidimensional arrays that all have the same size. A scalar input is
expanded to a constant array of the same size as the other inputs. The default values for A and B are
both 1.

[X,XLO,XUP] = wblinv(P,A,B,PCOV,alpha) returns confidence bounds for X when the input
parameters A and B are estimates. PCOV is a 2-by-2 matrix containing the covariance matrix of the
estimated parameters. alpha has a default value of 0.05, and specifies 100(1 -  alpha)% confidence
bounds. XLO and XUP are arrays of the same size as X containing the lower and upper confidence
bounds.

The function wblinv computes confidence bounds for X using a normal approximation to the
distribution of the estimate

loga + logq
b

where q is the Pth quantile from a Weibull distribution with scale and shape parameters both equal to
1. The computed bounds give approximately the desired confidence level when you estimate mu,
sigma, and PCOV from large samples, but in smaller samples other methods of computing the
confidence bounds might be more accurate.

The inverse of the Weibull cdf is

x = F−1(p a, b) = − a ln 1− p 1/b .

Examples
The lifetimes (in hours) of a batch of light bulbs has a Weibull distribution with parameters a = 200
and b = 6.

Find the median lifetime of the bulbs:

life = wblinv(0.5, 200, 6)
life =
 188.1486
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Generate 100 random values from this distribution, and estimate the 90th percentile (with confidence
bounds) from the random sample

x = wblrnd(200,6,100,1);
p = wblfit(x)
[nlogl,pcov] = wbllike(p,x)
[q90,q90lo,q90up] = wblinv(0.9,p(1),p(2),pcov)
p =

  204.8918    6.3920

nlogl =

  496.8915

pcov =

   11.3392    0.5233
    0.5233    0.2573

q90 =

  233.4489

q90lo =

  226.0092

q90up =

  241.1335

Version History
Introduced before R2006a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
icdf | wblcdf | wblpdf | wblstat | wblfit | wbllike | wblrnd | wblplot

Topics
“Weibull Distribution” on page B-177
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wbllike
Weibull negative log-likelihood

Syntax
nlogL = wbllike(params,data)
[logL,AVAR] = wbllike(params,data)
[...] = wbllike(params,data,censoring)
[...] = wbllike(params,data,censoring,freq)

Description
nlogL = wbllike(params,data) returns the Weibull log-likelihood. params(1) is the scale
parameter, A, and params(2) is the shape parameter, B.

[logL,AVAR] = wbllike(params,data) also returns AVAR, which is the asymptotic variance-
covariance matrix of the parameter estimates if the values in params are the maximum likelihood
estimates. AVAR is the inverse of Fisher's information matrix. The diagonal elements of AVAR are the
asymptotic variances of their respective parameters.

[...] = wbllike(params,data,censoring) accepts a Boolean vector, censoring, of the same
size as data, which is 1 for observations that are right-censored and 0 for observations that are
observed exactly.

[...] = wbllike(params,data,censoring,freq) accepts a frequency vector, freq, of the
same size as data. freq typically contains integer frequencies for the corresponding elements in
data, but can contain any nonnegative values. Pass in [] for censoring to use its default value.

The Weibull negative log-likelihood for uncensored data is

−logL = − log ∏
i = 1

f a, b xi = − ∑
i = 1

n
logf a, b xi

where f is the Weibull pdf.

wbllike is a utility function for maximum likelihood estimation.

Examples
This example continues the example from wblfit.

r = wblrnd(0.5,0.8,100,1);
[logL, AVAR] = wbllike(wblfit(r),r)
logL =
  47.3349
AVAR =
  0.0048  0.0014
  0.0014  0.0040
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Version History
Introduced before R2006a

References

[1] Patel, J. K., C. H. Kapadia, and D. B. Owen. Handbook of Statistical Distributions. New York:
Marcel Dekker, 1976.

See Also
wblfit | wblpdf | wblcdf | wblinv | wblstat | wblrnd | wblplot

Topics
“Weibull Distribution” on page B-177
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wblpdf
Weibull probability density function

Syntax
y = wblpdf(x)
y = wblpdf(x,a)
y = wblpdf(x,a,b)

Description
y = wblpdf(x) returns the probability density function (pdf) of the Weibull distribution with unit
parameters, evaluated at the values in x.

y = wblpdf(x,a) returns the pdf of the Weibull distribution with scale parameter a and unit shape,
evaluated at the values in x. This is equivalent to the pdf of the exponential distribution.

y = wblpdf(x,a,b) returns the pdf of the Weibull distribution with scale parameter a and shape
parameter b, evaluated at the values in x.

Examples

Compute Weibull pdf

Compute the density of the observed value 3 in the Weibull distribution unit scale and shape.

y1 = wblpdf(3)

y1 = 0.0498

Compute the density of the observed value 3 in the Weibull distributions with scale parameter 2 and
shape parameters 1 through 5.

y2 = wblpdf(3,2,1:5)

y2 = 1×5

    0.1116    0.1581    0.1155    0.0427    0.0064

Compare Weibull and Exponential pdfs

The exponential distribution with parameter mu is a special case of the Weibull distribution, where a
= mu and b = 1.

Compute the density of sample observations in the exponential distributions with means 1 through 5
using expcdf.
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x = 0.2:0.2:1;
mu = 1:5;
y1 = exppdf(x,mu)

y1 = 1×5

    0.8187    0.4094    0.2729    0.2047    0.1637

Compute the density of the same sample observations using wblpdf where the scale parameter is
equal to mu and the shape parameter is 1.

y2 = wblpdf(x,mu)

y2 = 1×5

    0.8187    0.4094    0.2729    0.2047    0.1637

The two functions return the same values.

Input Arguments
x — Values at which to evaluate pdf
nonnegative scalar value | array of nonnegative scalar values

Values at which to evaluate the pdf, specified as a nonnegative scalar value or an array of
nonnegative scalar values.

• To evaluate the pdf at multiple values, specify x using an array.
• To evaluate the pdfs of multiple distributions, specify a and b using arrays.

If one or more of the input arguments x, a, and b are arrays, then the array sizes must be the same.
In this case, wblpdf expands each scalar input into a constant array of the same size as the array
inputs. Each element in y is the pdf value of the distribution specified by the corresponding elements
in a and b, evaluated at the corresponding element in x.
Example: [3 4 7 9]
Data Types: single | double

a — Scale parameter
1 (default) | positive scalar value | array of positive scalar values

Scale parameter of the Weibull distribution, specified as a positive scalar value or an array of positive
scalar values.

• To evaluate the pdf at multiple values, specify x using an array.
• To evaluate the pdfs of multiple distributions, specify a and b using arrays.

If one or more of the input arguments x, a, and b are arrays, then the array sizes must be the same.
In this case, wblpdf expands each scalar input into a constant array of the same size as the array
inputs. Each element in y is the pdf value of the distribution specified by the corresponding elements
in a and b, evaluated at the corresponding element in x.
Example: [1 2 3 5]
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Data Types: single | double

b — Shape parameter
1 (default) | positive scalar value | array of positive scalar values

Shape parameter of the Weibull distribution, specified as a positive scalar value or an array of
positive scalar values.

• To evaluate the pdf at multiple values, specify x using an array.
• To evaluate the pdfs of multiple distributions, specify a and b using arrays.

If one or more of the input arguments x, a, and b are arrays, then the array sizes must be the same.
In this case, wblpdf expands each scalar input into a constant array of the same size as the array
inputs. Each element in y is the pdf value of the distribution specified by the corresponding elements
in a and b, evaluated at the corresponding element in x.
Example: [1 1 2 2]
Data Types: single | double

Output Arguments
y — pdf values
scalar value | array of scalar values

pdf values evaluated at the values in x, returned as a scalar value or an array of scalar values. y is the
same size as x, a, and b after any necessary scalar expansion. Each element in y is the pdf value of
the distribution specified by the corresponding elements in a and b, evaluated at the corresponding
element in x.

More About
Weibull pdf

The Weibull distribution is a two-parameter family of curves. The parameters a and b are scale and
shape, respectively.

The Weibull pdf is

f x a, b =
b
a

x
a

b− 1
e− x/a b

if x ≥ 0,

0 if x < 0.

Some instances refer to the Weibull distribution with a single parameter, which corresponds to
wblpdf with a = 1.

For more information, see “Weibull Distribution” on page B-177.

Alternative Functionality
• wblpdf is a function specific to the Weibull distribution. Statistics and Machine Learning Toolbox

also offers the generic function pdf, which supports various probability distributions. To use pdf,
create a WeibullDistribution probability distribution object and pass the object as an input
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argument or specify the probability distribution name and its parameters. Note that the
distribution-specific function wblpdf is faster than the generic function pdf.

• Use the Probability Distribution Function app to create an interactive plot of the cumulative
distribution function (cdf) or probability density function (pdf) for a probability distribution.

Version History
Introduced before R2006a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
WeibullDistribution | pdf | wblcdf | wblstat | wblfit | wbllike | wblrnd | wblinv |
wblplot

Topics
“Weibull Distribution” on page B-177
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wblplot
Weibull probability plot

Syntax
wblplot(x)
wblplot(ax,x)
h = wblplot( ___ )

Description
wblplot(x) creates a Weibull probability plot comparing the distribution of the data in x to the
Weibull distribution.

wblplot plots each data point in x using plus sign ('+') markers and draws two reference lines that
represent the theoretical distribution. A solid reference line connects the first and third quartiles of
the data, and a dashed reference line extends the solid line to the ends of the data. If the sample data
has a Weibull distribution, then the data points appear along the reference line. A distribution other
than Weibull introduces curvature in the data plot.

wblplot(ax,x) adds a Weibull probability plot into the axes specified by ax.

h = wblplot( ___ ) returns graphics handles corresponding to the plotted lines, using any of the
input arguments in the previous syntaxes.

Examples

Create Weibull Probability Plot

Generate a vector r containing 50 random numbers from the Weibull distribution with the scale
parameter 1.2 and the shape parameter 1.5.

rng('default')  % For reproducibility
r = wblrnd(1.2,1.5,50,1);

Create a Weibull probability plot to visually determine if the data comes from a Weibull distribution.

wblplot(r)
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The plot indicates that the data likely comes from a Weibull distribution.

Test for Weibull Distribution

Generate two sample data sets, one from a Weibull distribution and another from a lognormal
distribution. Perform the Lilliefors test to assess whether each data set is from a Weibull distribution.
Confirm the test decision by performing a visual comparison using a Weibull probability plot
(wblplot).

Generate samples from a Weibull distribution.

rng('default')
data1 = wblrnd(0.5,2,[500,1]);

Perform the Lilliefors test by using the lillietest. To test data for a Weibull distribution, test if the
logarithm of the data has an extreme value distribution.

h1 = lillietest(log(data1),'Distribution','extreme value')

h1 = 0

The returned value of h1 = 0 indicates that lillietest fails to reject the null hypothesis at the
default 5% significance level. Confirm the test decision using a Weibull probability plot.

wblplot(data1)
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The plot indicates that the data follows a Weibull distribution.

Generate samples from a lognormal distribution.

data2 =lognrnd(5,2,[500,1]);

Perform the Lilliefors test.

h2 = lillietest(log(data2),'Distribution','extreme value')

h2 = 1

The returned value of h2 = 1 indicates that lillietest rejects the null hypothesis at the default
5% significance level. Confirm the test decision using a Weibull probability plot.

wblplot(data2)
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The plot indicates that the data does not follow a Weibull distribution.

Input Arguments
x — Sample data
numeric vector | numeric matrix

Sample data, specified as a numeric vector or numeric matrix. wblplot displays each value in x
using the symbol '+'. If x is a matrix, then wblplot displays a separate line for each column of x.
Data Types: single | double

ax — Target axes
Axes object | UIAxes object

Target axes, specified as an Axes object or a UIAxes object. wblplot adds an additional plot into the
axes specified by ax. For details, see Axes Properties and UIAxes Properties.

Use gca to return the current axes for the current figure.

Output Arguments
h — Graphics handles for line objects
vector of Line graphics handles
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Graphics handles for line objects, returned as a vector of Line graphics handles. Graphics handles
are unique identifiers that you can use to query and modify the properties of a specific line on the
plot. For each column of x, wblplot returns three handles:

• The line representing the data points. wblplot represents each data point in x using plus sign
('+') markers.

• The line joining the first and third quartiles of each column of x, represented as a solid line.
• The extrapolation of the quartile line, extended to the minimum and maximum values of x,

represented as a dashed line.

To view and set properties of line objects, use dot notation. For information on using dot notation, see
“Access Property Values”. For information on the Line properties that you can set, see Primitive Line.

Algorithms
wblplot matches the quantiles of sample data to the quantiles of a Weibull distribution. The sample
data is sorted, scaled logarithmically, and plotted on the x-axis. The y-axis represents the quantiles of
the Weibull distribution, converted into probability values. Therefore, the y-axis scaling is not linear.

Where the x-axis value is the ith sorted value from a sample of size N, the y-axis value is the midpoint
between evaluation points of the empirical cumulative distribution function of the data. The midpoint
is equal to i− 0.5

N .

wblplot superimposes a reference line to assess the linearity of the plot. The line goes through the
first and third quartiles of the data.

Alternative Functionality
You can use the probplot function to create a probability plot. The probplot function enables you
to indicate censored data and specify the distribution for a probability plot.

Version History
Introduced before R2006a

See Also
probplot | normplot | wblcdf | wblfit | wblrnd | ecdf

Topics
“Distribution Plots” on page 4-7
“Hypothesis Testing” on page 8-5
“Weibull Distribution” on page B-177
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wblrnd
Weibull random numbers

Syntax
r = wblrnd(a,b)
r = wblrnd(a,b,sz1,...,szN)
r = wblrnd(a,b,sz)

Description
r = wblrnd(a,b) generates a random number from the Weibull distribution with scale a and shape
b.

r = wblrnd(a,b,sz1,...,szN) generates an array of random numbers from the Weibull
distribution, where sz1,...,szN indicates the size of each dimension.

r = wblrnd(a,b,sz) generates an array of random numbers from the Weibull distribution where
size vector sz specifies size(r).

Examples

Generate Weibull Random Number

Generate a single random number from the Weibull distribution with scale 4 and shape 3.

r = wblrnd(4,3)

r = 2.3582

Generate Weibull Random Numbers

Generate a 1-by-5 array of random numbers drawn from the Weibull distributions with scale 3 and
shape values 1 through 5.

a1 = 3;
b1 = 1:5;
r1 = wblrnd(a1,b1)

r1 = 1×5

    0.6147    0.9437    3.8195    1.6459    2.5666

If you specify array dimensions, they must match the dimensions of a and b after any scalar
expansion.
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Generate a 1-by-6 array of random numbers drawn from the Weibull distributions with scale values 1
through 6 and shape values 5 through 10, respectively.

a2 = 1:6;
b2 = 5:10;
sz1 = 1;
sz2 = 6;
r2 = wblrnd(a2,b2,sz1,sz2)

r2 = 1×6

    1.1841    2.0836    2.7912    2.7026    3.4531    6.3799

Generate a 2-by-3 array of random numbers from the Weibull distribution with scale 4 and shape 5.

sz = [2 3];
r3 = wblrnd(4,5,sz)

r3 = 2×3

    1.9817    3.7486    4.5729
    2.1395    2.9624    3.8841

Input Arguments
a — Scale parameter
positive scalar value | array of positive scalar values

Scale parameter of the Weibull distribution, specified as a positive scalar value or an array of positive
scalar values.

To generate random numbers from multiple distributions, specify a and b using arrays. If either or
both of the input arguments a and b are arrays, then the array sizes must be the same. In this case,
wblrnd expands each scalar input into a constant array of the same size as the array inputs. Each
element in r is the random number generated from the distribution specified by the corresponding
elements in a and b.
Example: [1 2 3 5]
Data Types: single | double

b — Shape parameter
positive scalar value | array of positive scalar values

Shape parameter of the Weibull distribution, specified as a positive scalar value or an array of
positive scalar values.

To generate random numbers from multiple distributions, specify a and b using arrays. If either or
both of the input arguments a and b are arrays, then the array sizes must be the same. In this case,
wblrnd expands each scalar input into a constant array of the same size as the array inputs. Each
element in r is the random number generated from the distribution specified by the corresponding
elements in a and b.
Example: [1 1 2 2]
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Data Types: single | double

sz1,...,szN — Size of each dimension (as separate arguments)
integers

Size of each dimension, specified as separate arguments of integers.

If a and b are arrays, then the specified dimensions sz1,...,szN must match the dimensions of a
and b. The default values of sz1,...,szN are the dimensions of a and b.

• If you specify a single value sz1, then r is a square matrix of size sz1-by-sz1.
• If the size of any dimension is 0 or negative, then r is an empty array.
• Beyond the second dimension, wblrnd ignores trailing dimensions with a size of 1. For example,

wblrnd(2,5,3,1,1,1) produces a 3-by-1 vector of random numbers from the distribution with
scale 2 and shape 5.

Example: 3,5
Data Types: single | double

sz — Size of each dimension (as a row vector)
row vector of integers

Size of each dimension, specified as a row vector of integers.

If a and b are arrays, then the specified dimensions sz must match the dimensions of a and b. The
default values of sz are the dimensions of a and b.

• If you specify a single value [sz1], then r is a square matrix of size sz1-by-sz1.
• If the size of any dimension is 0 or negative, then r is an empty array.
• Beyond the second dimension, wblrnd ignores trailing dimensions with a size of 1. For example,

wblrnd(2,5,[3 1 1 1]) produces a 3-by-1 vector of random numbers from the distribution
with scale 2 and shape 5.

Example: [3 5]
Data Types: single | double

Output Arguments
r — Weibull random numbers
scalar value | array of scalar values

Weibull random numbers, returned as a scalar value or an array of scalar values with the dimensions
specified by sz1,...,szN or sz. Each element in r is the random number generated from the
distribution specified by the corresponding elements in a and b.

Alternative Functionality
• wblrnd is a function specific to the Weibull distribution. Statistics and Machine Learning Toolbox

also offers the generic function random, which supports various probability distributions. To use
random, specify the probability distribution name and its parameters. Note that the distribution-
specific function wblrnd is faster than the generic function random.
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• To generate random numbers interactively, use randtool, a user interface for random number
generation.

Version History
Introduced before R2006a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

The generated code can return a different sequence of numbers from the sequence returned by
MATLAB if either of the following is true:

• The output is nonscalar.
• An input parameter is invalid for the distribution.

For more information on code generation, see “Introduction to Code Generation” on page 34-2 and
“General Code Generation Workflow” on page 34-5.

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

This function fully supports GPU arrays. For more information, see “Run MATLAB Functions on a
GPU” (Parallel Computing Toolbox).

See Also
WeibullDistribution | random | wblpdf | wblcdf | wblinv | wblstat | wblfit | wbllike |
wblplot

Topics
“Weibull Distribution” on page B-177
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wblstat
Weibull mean and variance

Syntax
[M,V] = wblstat(A,B)

Description
[M,V] = wblstat(A,B) returns the mean of and variance for the Weibull distribution with scale
parameter, A and shape parameter, B. Vector or matrix inputs for A and B must have the same size,
which is also the size of M and V. A scalar input for A or B is expanded to a constant matrix with the
same dimensions as the other input.

The mean of the Weibull distribution with parameters a and b is

a Γ 1 + b−1

and the variance is

a2 Γ 1 + 2b−1 − Γ 1 + b−1 2

Examples
[m,v] = wblstat(1:4,1:4)
m =
  1.0000  1.7725  2.6789  3.6256
v =
  1.0000  0.8584  0.9480  1.0346

wblstat(0.5,0.7)
ans =
  0.6329

Version History
Introduced before R2006a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
wblpdf | wblcdf | wblinv | wblfit | wbllike | wblrnd | wblplot
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Topics
“Weibull Distribution” on page B-177
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wishrnd
Wishart random numbers

Syntax
W = wishrnd(Sigma,df)
W = wishrnd(Sigma,df,D)
[W,D] = wishrnd(Sigma,df)

Description
W = wishrnd(Sigma,df) generates a random matrix W having the Wishart distribution with
covariance matrix Sigma and with df degrees of freedom. The inverse of W has the Inverse Wishart
distribution with parameters Tau = inv(Sigma) and df degrees of freedom.

W = wishrnd(Sigma,df,D) expects D to be the Cholesky factor of Sigma. If you call wishrnd
multiple times using the same value of Sigma, it's more efficient to supply D instead of computing it
each time.

[W,D] = wishrnd(Sigma,df) returns D so you can provide it as input in future calls to wishrnd.

This function defines the parameter Sigma so that the mean of the output matrix is Sigma*df

Version History
Introduced before R2006a

See Also
iwishrnd

Topics
“Wishart Distribution” on page B-184
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xptread
Create table from data stored in SAS XPORT format file

Syntax
data = xptread
data = xptread(filename)
[data,missing] = xptread(filename)
xptread(...,'ReadObsNames',true)

Description
data = xptread displays a dialog box for selecting a file, then reads data from the file into a table.
The file must be in the SAS XPORT format.

data = xptread(filename) retrieves data from a SAS XPORT format file filename. For example,
to open a SAS XPORT file named sample.xpt, type data = xptread('sample.xpt') at the
command prompt.

[data,missing] = xptread(filename) returns a nominal array, missing, that contains the
missing data type information from the XPORT format file.

The XPORT format allows for 28 missing data types, represented in the file by an upper case letter or
the characters '.' or '_'. If the XPORT file contains missing values, xptread converts them to NaN
values in the output table, data. However, if you need the specific missing types, you can recover this
information by specifying a second output, missing. The entries in missing are one of the 28
missing data type values from the XPORT format file ('.', '_', 'A',...,'Z'), or are undefined for
values that are not present at all in the XPORT format file. The outputs missing and data are the
same size.

xptread(...,'ReadObsNames',true) treats the first variable in the file as observation names.
The default value is false.

xptread only supports single data sets per file. xptread does not support compressed files.

Version History
Introduced in R2009b

See Also
table
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x2fx
Convert predictor matrix to design matrix

Syntax
D = x2fx(X,model)
D = x2fx(X,model,categ)
D = x2fx(X,model,categ,catlevels)

Description
D = x2fx(X,model) converts a matrix of predictors X to a design matrix D for regression analysis.
Distinct predictor variables should appear in different columns of X.

The optional input model controls the regression model. By default, x2fx returns the design matrix
for a linear additive model with a constant term. model is one of the following:

• 'linear' — Constant and linear terms. This is the default.
• 'interaction' — Constant, linear, and interaction terms
• 'quadratic' — Constant, linear, interaction, and squared terms
• 'purequadratic' — Constant, linear, and squared terms

If X has n columns, the order of the columns of D for a full quadratic model is:

1 The constant term
2 The linear terms (the columns of X, in order 1, 2, ..., n)
3 The interaction terms (pairwise products of the columns of X, in order (1, 2), (1, 3), ..., (1, n), (2,

3), ..., (n–1, n))
4 The squared terms (in order 1, 2, ..., n)

Other models use a subset of these terms, in the same order.

Alternatively, model can be a matrix specifying polynomial terms of arbitrary order. In this case,
model should have one column for each column in X and one row for each term in the model. The
entries in any row of model are powers for the corresponding columns of X. For example, if X has
columns X1, X2, and X3, then a row [0 1 2] in model specifies the term
(X1.^0).*(X2.^1).*(X3.^2). A row of all zeros in model specifies a constant term, which can be
omitted.

D = x2fx(X,model,categ) treats columns with numbers listed in the vector categ as categorical
variables. Terms involving categorical variables produce dummy variable columns in D. Dummy
variables are computed under the assumption that possible categorical levels are completely
enumerated by the unique values that appear in the corresponding column of X.

D = x2fx(X,model,categ,catlevels) accepts a vector catlevels the same length as categ,
specifying the number of levels in each categorical variable. In this case, values in the corresponding
column of X must be integers in the range from 1 to the specified number of levels. Not all of the
levels need to appear in X.
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Examples

Convert Predictor Matrix to Design Matrix

Convert two predictors X1 and X2 (the columns of X) into a design matrix for a full quadratic model
with terms constant, X1, X2, X1.*X2, X1.^2, and X2.^2.

X = [1 10
     2 20
     3 10
     4 20
     5 15
     6 15];
D = x2fx(X,'quadratic')

D = 6×6

     1     1    10    10     1   100
     1     2    20    40     4   400
     1     3    10    30     9   100
     1     4    20    80    16   400
     1     5    15    75    25   225
     1     6    15    90    36   225

Convert two predictors X1 and X2 (the columns of X) into a design matrix for a quadratic model with
terms constant, X1, X2, X1.*X2, and X1.^2.

X = [1 10
     2 20
     3 10
     4 20
     5 15
     6 15];
model = [0 0
         1 0
         0 1
         1 1
         2 0];
D = x2fx(X,model)

D = 6×5

     1     1    10    10     1
     1     2    20    40     4
     1     3    10    30     9
     1     4    20    80    16
     1     5    15    75    25
     1     6    15    90    36

Version History
Introduced before R2006a
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See Also
regstats | rstool | candexch | candgen | cordexch | rowexch
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zscore
Standardized z-scores

Syntax
Z = zscore(X)
Z = zscore(X,flag)
Z = zscore(X,flag,'all')
Z = zscore(X,flag,dim)
Z = zscore(X,flag,vecdim)
[Z,mu,sigma] = zscore( ___ )

Description
Z = zscore(X) returns the z-score on page 35-7885 for each element of X such that columns of X
are centered to have mean 0 and scaled to have standard deviation 1. Z is the same size as X.

• If X is a vector, then Z is a vector of z-scores.
• If X is a matrix, then Z is a matrix of the same size as X, and each column of Z has mean 0 and

standard deviation 1.
• For multidimensional arrays on page 35-7886, z-scores in Z are computed along the first

nonsingleton dimension on page 35-7886 of X.

Z = zscore(X,flag) scales X using the standard deviation indicated by flag.

• If flag is 0 (default), then zscore scales X using the sample standard deviation on page 35-7886,
with n - 1 in the denominator of the standard deviation formula. zscore(X,0) is the same as
zscore(X).

• If flag is 1, then zscore scales X using the population standard deviation on page 35-7886, with
n in the denominator of standard deviation formula.

Z = zscore(X,flag,'all') standardizes X by using the mean and standard deviation of all the
values in X.

Z = zscore(X,flag,dim) standardizes X along the operating dimension dim. For example, for a
matrix X, if dim = 1, then zscore uses the means and standard deviations along the columns of X, if
dim = 2, then zscore uses the means and standard deviations along the rows of X.

Z = zscore(X,flag,vecdim) standardizes X over the dimensions specified by the vector vecdim.
For example, if X is a matrix, then zscore(X,0,[1 2]) is equivalent to zscore(X,0,'all')
because every element of a matrix is contained in the array slice defined by dimensions 1 and 2.

[Z,mu,sigma] = zscore( ___ ) also returns the means and standard deviations used for
centering and scaling, mu and sigma, respectively. You can use any of the input arguments in the
previous syntaxes.

Examples
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Z-Scores of Two Data Vectors

Compute and plot the z-scores of two data vectors, and then compare the results.

Load the sample data.

load lawdata

Two variables load into the workspace: gpa and lsat.

Plot both variables on the same axes.

plot([gpa,lsat])
legend('gpa','lsat','Location','East')

It is difficult to compare these two measures because they are on a very different scale.

Plot the z-scores of gpa and lsat on the same axes.

Zgpa = zscore(gpa);
Zlsat = zscore(lsat);
plot([Zgpa, Zlsat])
legend('gpa z-scores','lsat z-scores','Location','Northeast')
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Now, you can see the relative performance of individuals with respect to both their gpa and lsat
results. For example, the third individual’s gpa and lsat results are both one standard deviation
below the sample mean. The eleventh individual’s gpa is around the sample mean but has an lsat
score almost 1.25 standard deviations above the sample average.

Check the mean and standard deviation of the z-scores you created.

 mean([Zgpa,Zlsat])

ans = 1×2
10-14 ×

   -0.1088    0.0357

 std([Zgpa,Zlsat])

ans = 1×2

     1     1

By definition, z-scores of gpa and lsat have mean 0 and standard deviation 1.
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Z-Scores for a Population vs. Sample

Load the sample data.

load lawdata

Two variables load into the workspace: gpa and lsat.

Compute the z-scores of gpa using the population formula for standard deviation.

Z1 = zscore(gpa,1); % population formula
Z0 = zscore(gpa,0); % sample formula
disp([Z1 Z0])

    1.2554    1.2128
    0.8728    0.8432
   -1.2100   -1.1690
   -0.2749   -0.2656
    1.4679    1.4181
   -0.1049   -0.1013
   -0.4024   -0.3888
    1.4254    1.3771
    1.1279    1.0896
    0.1502    0.1451
    0.1077    0.1040
   -1.5076   -1.4565
   -1.4226   -1.3743
   -0.9125   -0.8815
   -0.5724   -0.5530

For a sample from a population, the population standard deviation formula with n in the denominator
corresponds to the maximum likelihood estimate of the population standard deviation, and might be
biased. The sample standard deviation formula, on the other hand, is the unbiased estimator of the
population standard deviation for a sample.

Z-Scores of a Data Matrix

Compute z-scores using the mean and standard deviation computed along the columns or rows of a
data matrix.

Load the sample data.

load flu

The dataset array flu is loaded in the workplace. flu has 52 observations on 11 variables. The first
variable contains dates (in weeks). The other variables contain the flu estimates for different regions
in the U.S.

Convert the dataset array to a data matrix.

flu2 = double(flu(:,2:end));

The new data matrix, flu2, is a 52-by-10 double data matrix. The rows correspond to the weeks and
the columns correspond to the U.S. regions in the data set array flu.
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Standardize the flu estimate for each region (the columns of flu2).

Z1 = zscore(flu2,[ ],1);

You can see the z-scores in the variable editor by double-clicking on the matrix Z1 created in the
workspace.

Standardize the flu estimate for each week (the rows of flu2).

Z2 = zscore(flu2,[ ],2);

Z-Scores of Multidimensional Array

Find the z-scores of a multidimensional array by specifying to standardize the data along different
dimensions. Compare the results when using the 'all', dim, and vecdim input arguments.

Create a 3-by-4-by-2 array.

X = reshape(1:24,[3 4 2])

X = 
X(:,:,1) =

     1     4     7    10
     2     5     8    11
     3     6     9    12

X(:,:,2) =

    13    16    19    22
    14    17    20    23
    15    18    21    24

Standardize X by using the mean and standard deviation of all the values in X.

Zall = zscore(X,0,'all')

Zall = 
Zall(:,:,1) =

   -1.6263   -1.2021   -0.7778   -0.3536
   -1.4849   -1.0607   -0.6364   -0.2121
   -1.3435   -0.9192   -0.4950   -0.0707

Zall(:,:,2) =

    0.0707    0.4950    0.9192    1.3435
    0.2121    0.6364    1.0607    1.4849
    0.3536    0.7778    1.2021    1.6263

The resulting multidimensional array of z-scores has mean 0 and standard deviation 1. For example,
compute the mean and standard deviation of Zall.
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mZall = mean(Zall(:,:,:),'all')

mZall = -9.2519e-18

sZall = std(Zall(:,:,:),0,'all')

sZall = 1.0000

Now standardize X along the second dimension.

Zdim = zscore(X,0,2)

Zdim = 
Zdim(:,:,1) =

   -1.1619   -0.3873    0.3873    1.1619
   -1.1619   -0.3873    0.3873    1.1619
   -1.1619   -0.3873    0.3873    1.1619

Zdim(:,:,2) =

   -1.1619   -0.3873    0.3873    1.1619
   -1.1619   -0.3873    0.3873    1.1619
   -1.1619   -0.3873    0.3873    1.1619

The elements in each row of each page of Zdim have mean 0 and standard deviation 1. For example,
compute the mean and standard deviation of the first row of the second page of Zdim.

mZdim = mean(Zdim(1,:,2),'all')

mZdim = 0

sZdim = std(Zdim(1,:,2),0,'all')

sZdim = 1

Finally, standardize X based on the second and third dimensions.

Zvecdim = zscore(X,0,[2 3])

Zvecdim = 
Zvecdim(:,:,1) =

   -1.4289   -1.0206   -0.6124   -0.2041
   -1.4289   -1.0206   -0.6124   -0.2041
   -1.4289   -1.0206   -0.6124   -0.2041

Zvecdim(:,:,2) =

    0.2041    0.6124    1.0206    1.4289
    0.2041    0.6124    1.0206    1.4289
    0.2041    0.6124    1.0206    1.4289

The elements in each Zvecdim(i,:,:) slice have mean 0 and standard deviation 1. For example,
compute the mean and standard deviation of the elements in Zvecdim(1,:,:).
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mZvecdim = mean(Zvecdim(1,:,:),'all')

mZvecdim = 2.7756e-17

sZvecdim = std(Zvecdim(1,:,:),0,'all')

sZvecdim = 1

Z-Scores, Mean, and Standard Deviation

Return the mean and standard deviation used to compute the z-scores.

Load the sample data.

load lawdata

Two variables load into the workspace: gpa and lsat.

Return the z-scores, mean, and standard deviation of gpa.

[Z,gpamean,gpastdev] = zscore(gpa)

Z = 15×1

    1.2128
    0.8432
   -1.1690
   -0.2656
    1.4181
   -0.1013
   -0.3888
    1.3771
    1.0896
    0.1451
      ⋮

gpamean = 3.0947

gpastdev = 0.2435

Input Arguments
X — Input data
vector | matrix | multidimensional array

Input data, specified as a vector, matrix, or multidimensional array.
Data Types: double | single

flag — Indicator for the standard deviation
0 (default) | 1

Indicator for the standard deviation used to compute the z-scores, specified as 0 or 1.
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• If flag is 0 (default), then zscore scales X using the sample standard deviation on page 35-7886.
zscore(X,0) is the same as zscore(X).

• If flag is 1, then zscore scales X using the population standard deviation on page 35-7886.

dim — Dimension
positive integer scalar

Dimension along which to calculate the z-scores of X, specified as a positive integer scalar. If you do
not specify a value, then the default value is the first array dimension whose size does not equal 1.

For example, for a matrix X, if dim = 1, then zscore uses the means and standard deviations along
the columns of X, and if dim = 2, then zscore uses the means and standard deviations along the
rows of X.

vecdim — Vector of dimensions
positive integer vector

Vector of dimensions along which to calculate the z-scores of X, specified as a positive integer vector.
Each element of vecdim represents a dimension of the input array X. The output Z has the same
dimensions as X, but the mean mu and standard deviation sigma each have length 1 in the operating
dimensions. The other dimension lengths are the same for X, mu, and sigma.

For example, if X is a 2-by-3-by-3 array, then zscore(X,0,[1 2]) uses the means and standard
deviations along the pages of X to standardize the values of X.
Data Types: single | double

Output Arguments
Z — z-scores
vector | matrix | multidimensional array

z-scores, returned as a vector, matrix, or multidimensional array. Z has the same dimensions as X.

The values of Z depend on whether you specify 'all', dim, or vecdim. If you do not specify any of
these input arguments, then the following conditions apply:

• If X is a vector, then Z is a vector of z-scores with mean 0 and variance 1.
• If X is an array, then zscore standardizes along the first nonsingleton dimension of X.

For an example that demonstrates the differences in Z when you use 'all', dim, and vecdim, see
“Z-Scores of Multidimensional Array” on page 35-7881.

mu — Mean
scalar | vector | matrix | multidimensional array

Mean of X used to compute the z-scores, returned as a scalar, vector, matrix, or multidimensional
array. mu has length 1 in the specified operating dimensions. The other dimension lengths are the
same for X and mu.

For example, if X is a 2-by-3-by-3 array and vecdim is [1 2], then mu is a 1-by-1-by-3 array of means.
Each value in mu corresponds to the mean of a page in X.
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sigma — Standard deviation
scalar | vector | matrix | multidimensional array

Standard deviation of X used to compute the z-scores, returned as a scalar, vector, matrix, or
multidimensional array. sigma has length 1 in the specified operating dimensions. The other
dimension lengths are the same for X and sigma.

For example, if X is a 2-by-3-by-3 array and vecdim is [1 2], then sigma is a 1-by-1-by-3 array of
standard deviations. Each value in sigma corresponds to the standard deviation of a page in X.

More About
Z-Score

For a random variable X with mean μ and standard deviation σ, the z-score of a value x is

z = x− μ
σ .

For sample data with mean X and standard deviation S, the z-score of a data point x is

z =
x− X

S .

z-scores measure the distance of a data point from the mean in terms of the standard deviation. This
is also called standardization of data. The standardized data set has mean 0 and standard deviation 1,
and retains the shape properties of the original data set (same skewness and kurtosis).

You can use z-scores to put data on the same scale before further analysis. This lets you compare two
or more data sets with different units.
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Multidimensional Array

A multidimensional array is an array with more than two dimensions. For example, if X is a 1-by-3-
by-4 array, then X is a three-dimensional array.

First Nonsingleton Dimension

A first nonsingleton dimension is the first dimension of an array whose size is not equal to 1. For
example, if X is a 1-by-2-by-3-by-4 array, then the second dimension is the first nonsingleton
dimension of X.

Sample Standard Deviation

The sample standard deviation S is given by

S =
∑i = 1

n xi− X 2

n− 1 .

S is the square root of an unbiased estimator of the variance of the population from which X is drawn,
as long as X consists of independent, identically distributed samples. X is the sample mean.

Notice that the denominator in this variance formula is n – 1.

Population Standard Deviation

If the data is the entire population of values, then you can use the population standard deviation,

σ =
∑i = 1

n xi− μ 2

n .

If X is a random sample from a population, then the mean μ is estimated by the sample mean, and σ is
the biased maximum likelihood estimator of the population standard deviation.

Notice that the denominator in this variance formula is n.

Algorithms
zscore returns NaNs for any sample containing NaNs.

zscore returns 0s for any sample that is constant (all values are the same). For example, if X is a
vector of the same numeric value, then Z is a vector of 0s.

Version History
Introduced before R2006a

Extended Capabilities
Tall Arrays
Calculate with arrays that have more rows than fit in memory.

This function fully supports tall arrays. For more information, see “Tall Arrays”.
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C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• The 'all' and vecdim input arguments are not supported.
• The dim input argument must be a compile-time constant.
• If you do not specify the dim input argument, the working (or operating) dimension can be
different in the generated code. As a result, run-time errors can occur. For more details, see
“Automatic dimension restriction” (MATLAB Coder).

For more information on code generation, see “Introduction to Code Generation” on page 34-2 and
“General Code Generation Workflow” on page 34-5.

Thread-Based Environment
Run code in the background using MATLAB® backgroundPool or accelerate code with Parallel
Computing Toolbox™ ThreadPool.

This function fully supports thread-based environments. For more information, see “Run MATLAB
Functions in Thread-Based Environment”.

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

Usage notes and limitations:

• The 'all' and vecdim input arguments are not supported.

For more information, see “Run MATLAB Functions on a GPU” (Parallel Computing Toolbox).

See Also
mean | std | normalize | rescale
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ztest
z-test

Syntax
h = ztest(x,m,sigma)
h= ztest(x,m,sigma,Name,Value)
[h,p] = ztest( ___ )
[h,p,ci,zval] = ztest( ___ )

Description
h = ztest(x,m,sigma) returns a test decision for the null hypothesis that the data in the vector x
comes from a normal distribution with mean m and a standard deviation sigma, using the z-test on
page 35-7892. The alternative hypothesis is that the mean is not m. The result h is 1 if the test rejects
the null hypothesis at the 5% significance level, and 0 otherwise.

h= ztest(x,m,sigma,Name,Value) returns a test decision for the z-test with additional options
specified by one or more name-value pair arguments. For example, you can change the significance
level or conduct a one-sided test.

[h,p] = ztest( ___ ) also returns the p-value of the test, using any of the input arguments from
previous syntaxes.

[h,p,ci,zval] = ztest( ___ ) also returns the confidence interval of the population mean, ci,
and the value of the test statistic, zval.

Examples

z-Test for a Hypothesized Mean

Load the sample data. Create a vector containing the first column of the students' exam grades data.

load examgrades
x = grades(:,1);

Test the null hypothesis that the data comes from a normal distribution with mean m = 75 and
standard deviation sigma = 10.

[h,p,ci,zval] = ztest(x,75,10)

h = 0

p = 0.9927

ci = 2×1

   73.2191
   76.7975
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zval = 0.0091

The returned value of h = 0 indicates that ztest does not reject the null hypothesis at the default
5% significance level.

One-Sided z-Test

Load the sample data. Create a vector containing the first column of the students' exam grades data.

load examgrades
x = grades(:,1);

Plot a histogram of the exam grades data and fit a normal density function.

histfit(x)
xlabel("Grade")
ylabel("Frequency")

Test the null hypothesis that the data comes from a normal distribution with mean m = 65 and
standard deviation sigma = 10, against the alternative hypothesis that the mean is greater than 65.

[h,~,~,zval] = ztest(x,65,10,"Tail","right")

h = 1

zval = 10.9636
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The returned value of h = 1 indicates that ztest rejects the null hypothesis at the default 5%
significance level, in favor of the alternate hypothesis that the population mean is greater than 65.

Plot the standard normal distribution, the returned z-statistic, and the critical z-value. Calculate the
critical z-value for the default confidence level of 95% by using norminv.

k = linspace(-15,15,300);
y = normpdf(k);
zvalpdf = normpdf(zval);
zcrit = norminv(0.95);

plot(k,y);
hold on
scatter(zval,zvalpdf,"filled")
xline(zcrit,"--")
legend(["Standard Normal pdf","z-Statistic", ...
    "Critical Cutoff"])

The orange dot represents the z-statistic and is located to the right of the dashed black line that
represents the critical z-value.

Input Arguments
x — Sample data
vector | matrix | multidimensional array

35 Functions

35-7890



Sample data, specified as a vector, matrix, or multidimensional array.

• If x is specified as a vector, ztest returns a single value for each output argument.
• If x is specified as a matrix, ztest performs a separate z-test along each column of x and returns

a vector of results.
• If x is specified as a multidimensional array on page 35-7893, ztest works along the first

nonsingleton dimension on page 35-7893 of x.

In all cases, ztest treats NaN values as missing data and ignores them.
Data Types: single | double

m — Hypothesized mean
scalar value

Hypothesized mean, specified as a scalar value.
Data Types: single | double

sigma — Population standard deviation
scalar value

Population standard deviation, specified as a scalar value.
Data Types: single | double

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: 'Tail','right','Alpha',0.01 specifies a right-tailed hypothesis test at the 1%
significance level.

Alpha — Significance level
0.05 (default) | scalar value in the range (0,1)

Significance level of the hypothesis test, specified as the comma-separated pair consisting of
'Alpha' and a scalar value in the range (0,1).
Example: 'Alpha',0.01
Data Types: single | double

Dim — Dimension
first nonsingleton dimension (default) | positive integer value

Dimension of the input matrix along which to test the means, specified as the comma-separated pair
consisting of 'Dim' and a positive integer value. For example, specifying 'Dim',1 tests the column
means, while 'Dim',2 tests the row means.
Example: 'Dim',2
Data Types: single | double
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Tail — Type of alternative hypothesis
'both' (default) | 'right' | 'left'

Type of alternative hypothesis to evaluate, specified as the comma-separated pair consisting of
'Tail' and one of:

• 'both' — Test against the alternative hypothesis that the population mean is not m.
• 'right' — Test against the alternative hypothesis that the population mean is greater than m.
• 'left' — Test against the alternative hypothesis that the population mean is less than m.

ztest tests the null hypothesis that the population mean is m against the specified alternative
hypothesis.
Example: 'Tail','right'

Output Arguments
h — Hypothesis test result
1 | 0

Hypothesis test result, returned as 1 or 0.

• If h = 1, this indicates the rejection of the null hypothesis at the Alpha significance level.
• If h = 0, this indicates a failure to reject the null hypothesis at the Alpha significance level.

p — p-value
scalar value in the range [0,1]

p-value of the test, returned as a scalar value in the range [0,1]. p is the probability of observing a
test statistic as extreme as, or more extreme than, the observed value under the null hypothesis.
Small values of p cast doubt on the validity of the null hypothesis.

ci — Confidence interval
vector

Confidence interval for the true population mean, returned as a two-element vector containing the
lower and upper boundaries of the 100 × (1 – Alpha)% confidence interval.

zval — Test statistic
nonnegative scalar value

Test statistic, returned as a nonnegative scalar value.

More About
z-Test

The z-test is a parametric hypothesis test used to determine whether a sample data set comes from a
population with a particular mean. The test assumes that the sample data comes from a population
with a normal distribution and a known standard deviation.

The test statistic is
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z = x − μ
σ/ n ,

where x is the sample mean, μ is the population mean, σ is the population standard deviation, and n
is the sample size. Under the null hypothesis, the test statistic has a standard normal distribution.

Multidimensional Array

A multidimensional array has more than two dimensions. For example, if x is a 1-by-3-by-4 array, then
x is a three-dimensional array.

First Nonsingleton Dimension

The first nonsingleton dimension is the first dimension of an array whose size is not equal to 1. For
example, if x is a 1-by-2-by-3-by-4 array, then the second dimension is the first nonsingleton
dimension of x.

Tips
• Use sampsizepwr to calculate:

• The sample size that corresponds to specified power and parameter values;
• The power achieved for a particular sample size, given the true parameter value;
• The parameter value detectable with the specified sample size and power.

Version History
Introduced before R2006a

Extended Capabilities
GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

This function fully supports GPU arrays. For more information, see “Run MATLAB Functions on a
GPU” (Parallel Computing Toolbox).

See Also
ttest | ttest2 | sampsizepwr

 ztest

35-7893



hmcSampler
Hamiltonian Monte Carlo (HMC) sampler

Syntax
hmc = hmcSampler(logpdf,startpoint)
hmc = hmcSampler( ___ ,Name,Value)

Description
hmc = hmcSampler(logpdf,startpoint) creates a Hamiltonian Monte Carlo (HMC) sampler,
returned as a HamiltonianSampler object. logpdf is a function handle that evaluates the
logarithm of the probability density of the equilibrium distribution and its gradient. The column
vector startpoint is the initial point from which to start HMC sampling.

After you create the sampler, you can compute MAP (maximum-a-posteriori) point estimates, tune the
sampler, draw samples, and check convergence diagnostics using the methods of the
HamiltonianSampler class. For an example of this workflow, see Bayesian Linear Regression Using
Hamiltonian Monte Carlo on page 7-26.

hmc = hmcSampler( ___ ,Name,Value) specifies additional options using one or more name-value
pair arguments. Specify name-value pair arguments after all other input arguments.

Examples

Create Hamiltonian Monte Carlo Sampler

Create a Hamiltonian Monte Carlo (HMC) sampler to sample from a normal distribution.

First, save a function normalDistGrad on the MATLAB® path that returns the multivariate normal
log probability density and its gradient (normalDistGrad is defined at the end of this example).
Then, call the function with arguments to define the logpdf input argument to the hmcSampler
function.

means = [1;-3];
standevs = [1;2];
logpdf = @(theta)normalDistGrad(theta,means,standevs);

Choose a starting point for the HMC sampler.

startpoint = randn(2,1);

Create the HMC sampler and display its properties.

smp = hmcSampler(logpdf,startpoint);

smp

smp = 
  HamiltonianSampler with properties:
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                  StepSize: 0.1000
                  NumSteps: 50
                MassVector: [2x1 double]
              JitterMethod: 'jitter-both'
      StepSizeTuningMethod: 'dual-averaging'
    MassVectorTuningMethod: 'iterative-sampling'
                    LogPDF: @(theta)normalDistGrad(theta,means,standevs)
             VariableNames: {2x1 cell}
                StartPoint: [2x1 double]

The normalDistGrad function returns the logarithm of the multivariate normal probability density
with means in Mu and standard deviations in Sigma, specified as scalars or columns vectors the same
length as startpoint. The second output argument is the corresponding gradient.

function [lpdf,glpdf] = normalDistGrad(X,Mu,Sigma)
Z = (X - Mu)./Sigma;
lpdf = sum(-log(Sigma) - .5*log(2*pi) - .5*(Z.^2));
glpdf = -Z./Sigma;
end

Input Arguments
logpdf — Logarithm of target density and its gradient
function handle

Logarithm of target density and its gradient, specified as a function handle.

logpdf must return two output arguments: [lpdf,glpdf] = logpdf(X). Here, lpdf is the base-e
log probability density (up to an additive constant), glpdf is the gradient of the log density, and the
point X is a column vector with the same number of elements as startpoint.

The input argument X to logpdf must be unconstrained, meaning that every element of X can be any
real number. Transform any constrained sampling parameters into unconstrained variables before
using the HMC sampler.

If the 'UseNumericalGradient' value is set to true, then logpdf does not need to return the
gradient as the second output. Using a numerical gradient can be easier since logpdf does not need
to compute the gradient, but it can make sampling slower.
Data Types: function_handle

startpoint — Initial point to start sampling from
numeric column vector

Initial point to start sampling from, specified as a numeric column vector.
Data Types: single | double

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.
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Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: 'VariableNames',
{'Intercept','Beta'},'MassVectorTuningMethod','hessian' specifies sampling variable
names and the mass vector tuning method to be 'hessian'.

StepSize — Step size of Hamiltonian dynamics
0.1 (default) | positive scalar

Step size of Hamiltonian dynamics, specified as the comma-separated pair consisting of 'StepSize'
and a positive scalar.

To propose a new state for the Markov chain, the HMC sampler integrates the Hamiltonian dynamics
using leapfrog integration. This argument controls the step size of that leapfrog integration.

You can automatically tune the step size using tuneSampler.
Example: 'StepSize',0.2
Data Types: single | double

NumSteps — Number of steps of Hamiltonian dynamics
50 (default) | positive integer

Number of steps of Hamiltonian dynamics, specified as the comma-separated pair consisting of
'NumSteps' and a positive integer.

To propose a new state for the Markov chain, the HMC sampler integrates the Hamiltonian dynamics
using leapfrog integration. This argument controls the number of steps of that leapfrog integration.

You can automatically tune the number of steps using tuneSampler.
Example: 'NumSteps',20
Data Types: single | double

MassVector — Mass vector of momentum variables
ones(size(startpoint,1),1) (default) | numeric column vector

Mass vector of momentum variables, specified as the comma-separated pair consisting of
'MassVector' and a numeric column vector with positive values and the same length as
startpoint.

The “masses” of the momentum variables associated with the variables of interest control the
Hamiltonian dynamics in each Markov chain proposal.

You can automatically tune the mass vector using tuneSampler.
Example: 'MassVector',rand(3,1)
Data Types: single | double

JitterMethod — Method for jittering step size and number of steps
'jitter-both' (default) | 'jitter-numsteps' | 'none'

Method for jittering the step size and the number of steps, specified as the comma-separated pair
consisting of 'JitterMethod' and one of the following values.
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Value Description
'jitter-both' Randomly jitter the step size and number of steps

for each leapfrog trajectory.
'jitter-numsteps' Jitter only the number of steps of each leapfrog

trajectory.
'none' Perform no jittering.

With jittering, the sampler randomly selects the step size or the number of steps of each leapfrog
trajectory as values smaller than the 'StepSize' and 'NumSteps' values. Use jittering to improve
the stability of the leapfrog integration of the Hamiltonian dynamics.
Example: 'JitterMethod','jitter-both'

StepSizeTuningMethod — Method for tuning sampler step size
'dual-averaging' (default) | 'none'

Method for tuning the sampler step size, specified as the comma-separated pair consisting of
'StepSizeTuningMethod' and 'dual-averaging' or 'none'.

If the 'StepSizeTuningMethod' value is set to 'dual-averaging', then tuneSampler tunes the
leapfrog step size of the HMC sampler to achieve a certain acceptance ratio for a fixed value of the
simulation length. The simulation length equals the step size multiplied by the number of steps. To set
the target acceptance ratio, use the 'TargetAcceptanceRatio' name-value pair argument of the
tuneSampler method.
Example: 'StepSizeTuningMethod','none'

MassVectorTuningMethod — Method for tuning sampler mass vector
'iterative-sampling' (default) | 'hessian' | 'none'

Method for tuning the sampler mass vector, specified as the comma-separated pair consisting of
'MassVectorTuningMethod' and one of the following values.

Value Description
'iterative-sampling' Tune the MassVector via successive

approximations by drawing samples using a
sequence of mass vector estimates.

'hessian' Set the MassVector equal to the negative
diagonal Hessian of the logpdf at the
startpoint.

'none' Perform no tuning of the MassVector.

To perform the tuning, use the tuneSampler method.
Example: 'MassVectorTuningMethod','hessian'

CheckGradient — Flag for checking analytical gradient
true (or 1) (default) | false (or 0)

Flag for checking the analytical gradient, specified as the comma-separated pair consisting of
'CheckGradient' and either true (or 1) or false (or 0).
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If 'CheckGradient' is true, then the sampler calculates the numerical gradient at the
startpoint and compares it to the analytical gradient returned by logpdf.
Example: 'CheckGradient',true

VariableNames — Sampling variable names
{'x1','x2',...} (default) | string array | cell array of character vectors

Sampling variable names, specified as the comma-separated pair consisting of 'VariableNames'
and a string array or a cell array of character vectors. Elements of the array must be unique. The
length of the array must be the same as the length of startpoint.

Supply a 'VariableNames' value to label the components of the vector you want to sample using
the HMC sampler.
Example: 'VariableNames',{'Intercept','Beta'}
Data Types: string | cell

UseNumericalGradient — Flag for using numerical gradient
false (or 0) (default) | true (or 1)

Flag for using numerical gradient, specified as the comma-separated pair consisting of
'UseNumericalGradient' and either true (or 1) or false (or 0).

If you set the 'UseNumericalGradient' value to true, then the HMC sampler numerically
estimates the gradient from the log density returned by logpdf. In this case, the logpdf function
does not need to return the gradient of the log density as the second output. Using a numerical
gradient makes HMC sampling slower.
Example: 'UseNumericalGradient',true

Output Arguments
hmc — Hamiltonian Monte Carlo sampler
HamiltonianSampler object

Hamiltonian Monte Carlo sampler, returned as a HamiltonianSampler object.

Version History
Introduced in R2017a

See Also
Functions
mhsample | slicesample

Classes
HamiltonianSampler

Topics
“Bayesian Linear Regression Using Hamiltonian Monte Carlo” on page 7-26
“Representing Sampling Distributions Using Markov Chain Samplers” on page 7-9
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HamiltonianSampler class
Hamiltonian Monte Carlo (HMC) sampler

Description
A Hamiltonian Monte Carlo (HMC) sampler is a gradient-based Markov Chain Monte Carlo sampler
that you can use to generate samples from a probability density P(x). HMC sampling requires
specification of log P(x) and its gradient.

The parameter vector x must be unconstrained, meaning that every element of x can be any real
number. To sample constrained parameters, transform these parameters into unconstrained variables
before using the HMC sampler.

After creating a sampler, you can compute MAP (maximum-a-posteriori) point estimates, tune the
sampler, draw samples, and check convergence diagnostics using the methods of this class. For an
example of this workflow, see Bayesian Linear Regression Using Hamiltonian Monte Carlo on page 7-
26.

Construction
hmc = hmcSampler(logpdf,startpoint) creates a Hamiltonian Monte Carlo (HMC) sampler,
returned as a HamiltonianSampler object. logpdf is a function handle that evaluates the
logarithm of the probability density of the equilibrium distribution and its gradient. The column
vector startpoint is the initial point from which to start HMC sampling.

hmc = hmcSampler( ___ ,Name,Value) specifies additional options using one or more name-value
pair arguments. Specify name-value pair arguments after all other input arguments.

Input Arguments

logpdf — Logarithm of target density and its gradient
function handle

Logarithm of target density and its gradient, specified as a function handle.

logpdf must return two output arguments: [lpdf,glpdf] = logpdf(X). Here, lpdf is the base-e
log probability density (up to an additive constant), glpdf is the gradient of the log density, and the
point X is a column vector with the same number of elements as startpoint.

The input argument X to logpdf must be unconstrained, meaning that every element of X can be any
real number. Transform any constrained sampling parameters into unconstrained variables before
using the HMC sampler.

If the 'UseNumericalGradient' value is set to true, then logpdf does not need to return the
gradient as the second output. Using a numerical gradient can be easier since logpdf does not need
to compute the gradient, but it can make sampling slower.
Data Types: function_handle

startpoint — Initial point to start sampling from
numeric column vector
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Initial point to start sampling from, specified as a numeric column vector.
Data Types: single | double

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: 'VariableNames',
{'Intercept','Beta'},'MassVectorTuningMethod','hessian' specifies sampling variable
names and the mass vector tuning method to be 'hessian'.

StepSize — Step size of Hamiltonian dynamics
0.1 (default) | positive scalar

Step size of Hamiltonian dynamics, specified as the comma-separated pair consisting of 'StepSize'
and a positive scalar.

To propose a new state for the Markov chain, the HMC sampler integrates the Hamiltonian dynamics
using leapfrog integration. This argument controls the step size of that leapfrog integration.

You can automatically tune the step size using tuneSampler.
Example: 'StepSize',0.2

NumSteps — Number of steps of Hamiltonian dynamics
50 (default) | positive integer

Number of steps of Hamiltonian dynamics, specified as the comma-separated pair consisting of
'NumSteps' and a positive integer.

To propose a new state for the Markov chain, the HMC sampler integrates the Hamiltonian dynamics
using leapfrog integration. This argument controls the number of steps of that leapfrog integration.

You can automatically tune the number of steps using tuneSampler.
Example: 'NumSteps',20

MassVector — Mass vector of momentum variables
ones(size(startpoint,1),1) (default) | numeric column vector

Mass vector of momentum variables, specified as the comma-separated pair consisting of
'MassVector' and a numeric column vector with positive values and the same length as
startpoint.

The “masses” of the momentum variables associated with the variables of interest control the
Hamiltonian dynamics in each Markov chain proposal.

You can automatically tune the mass vector using tuneSampler.
Example: 'MassVector',rand(3,1)

JitterMethod — Method for jittering step size and number of steps
'jitter-both' (default) | 'jitter-numsteps' | 'none'
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Method for jittering the step size and number of steps, specified as the comma-separated pair
consisting of 'JitterMethod' and one of the following:

Value Description
'jitter-both' Randomly jitter the step size and number of steps

for each leapfrog trajectory.
'jitter-numsteps' Jitter only the number of steps of each leapfrog

trajectory.
'none' Perform no jittering.

With jittering, the sampler randomly selects the step size or the number of steps of each leapfrog
trajectory as values smaller than the 'StepSize' and 'NumSteps' values. Use jittering to improve
the stability of the leapfrog integration of the Hamiltonian dynamics.
Example: 'JitterMethod','jitter-both'

StepSizeTuningMethod — Method for tuning sampler step size
'dual-averaging' (default) | 'none'

Method for tuning the sampler step size, specified as the comma-separated pair consisting of
'StepSizeTuningMethod' and 'dual-averaging' or 'none'.

If the 'StepSizeTuningMethod' value is set to 'dual-averaging', then tuneSampler tunes the
leapfrog step size of the HMC sampler to achieve a certain acceptance ratio for a fixed value of the
simulation length. The simulation length equals the step size multiplied by the number of steps. To set
the target acceptance ratio, use the 'TargetAcceptanceRatio' name-value pair argument of the
tuneSampler method.
Example: 'StepSizeTuningMethod','none'

MassVectorTuningMethod — Method for tuning sampler mass vector
'iterative-sampling' (default) | 'hessian' | 'none'

Method for tuning the sampler mass vector, specified as the comma-separated pair consisting of
'MassVectorTuningMethod' and one of the following values

Value Description
'iterative-sampling' Tune the MassVector via successive

approximations by drawing samples using a
sequence of mass vector estimates.

'hessian' Set the MassVector equal to the negative
diagonal Hessian of the logpdf at the
startpoint.

'none' Perform no tuning of the MassVector.

To perform the tuning, use the tuneSampler method.
Example: 'MassVectorTuningMethod','hessian'

CheckGradient — Flag for checking analytical gradient
true (or 1) (default) | false (or 0)
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Flag for checking the analytical gradient, specified as the comma-separated pair consisting of
'CheckGradient' and either true (or 1) or false (or 0).

If 'CheckGradient' is true, then the sampler calculates the numerical gradient at the
startpoint and compares it to the analytical gradient returned by logpdf.
Example: 'CheckGradient',true

VariableNames — Sampling variable names
{'x1','x2',...} (default) | string array | cell array of character vectors

Sampling variable names, specified as the comma-separated pair consisting of 'VariableNames'
and a string array or cell array of character vectors. Elements of the array must be unique. The
length of the array must be the same as the length of startpoint.

Supply a 'VariableNames' value to label the components of the vector you want to sample using
the HMC sampler.
Example: 'VariableNames',{'Intercept','Beta'}

UseNumericalGradient — Flag for using numerical gradient
false (or 0) (default) | true (or 1)

Flag for using numerical gradient, specified as the comma-separated pair consisting of
'UseNumericalGradient' and either true (or 1) or false (or 0).

If you set the 'UseNumericalGradient' value to true, then the HMC sampler numerically
estimates the gradient from the log density returned by logpdf. In this case, the logpdf function
does not need to return the gradient of the log density as the second output. Using a numerical
gradient makes HMC sampling slower.
Example: 'UseNumericalGradient',true

Properties
StepSize — Step size of Hamiltonian dynamics
0.1 (default) | positive scalar

Step size of Hamiltonian dynamics, specified as a positive scalar.

To propose a new state for the Markov chain, the HMC sampler integrates the Hamiltonian dynamics
using leapfrog integration. The value of this property controls the step size of that leapfrog
integration.

NumSteps — Number of steps of Hamiltonian dynamics
50 (default) | positive integer

Number of steps of Hamiltonian dynamics, specified as a positive integer.

To propose a new state for the Markov chain, the HMC sampler integrates the Hamiltonian dynamics
using leapfrog integration. The value of this property controls the number of steps of that leapfrog
integration.

MassVector — Mass vector of momentum variables
ones(size(startpoint,1),1) (default) | numeric column vector
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Mass vector of momentum variables, specified as a numeric column vector with positive values and
the same length as startpoint.

The “masses” of the momentum variables associated with the variables of interest control the
Hamiltonian dynamics in each Markov chain proposal.

JitterMethod — Method for jittering step size and number of steps
'jitter-both' (default) | 'jitter-numsteps' | 'none'

Method for jittering the step size and the number of steps, specified as one of the following values.

Value Description
'jitter-both' Randomly jitter the step size and number of steps

of each leapfrog trajectory.
'jitter-numsteps' Jitter only the number of steps of each leapfrog

trajectory.
'none' Perform no jittering.

With jittering, the sampler randomly selects the step size or the number of steps of each leapfrog
trajectory as values smaller than the 'StepSize' and 'NumSteps' values. Use jittering to improve
the stability of the leapfrog integration of the Hamiltonian dynamics.

StepSizeTuningMethod — Method for tuning sampler step size
'dual-averaging' (default) | 'none'

Method for tuning the sampler step size, specified as 'dual-averaging' or 'none'.

If StepSizeTuningMethod equals 'dual-averaging', then tuneSampler tunes the leapfrog step
size of the HMC sampler to achieve a certain acceptance ratio for a fixed value of the simulation
length. The simulation length equals the step size multiplied by the number of steps. To set the target
acceptance ratio, use the 'TargetAcceptanceRatio' name-value pair argument of the
tuneSampler method.

MassVectorTuningMethod — Method for tuning sampler mass vector
'iterative-sampling' (default) | 'hessian' | 'none'

Method for tuning the sampler mass vector, specified as one of the following values.

Value Description
'iterative-sampling' Tune the MassVector via successive

approximations by drawing samples using a
sequence of mass vector estimates.

'hessian' Set the MassVector equal to the negative
diagonal Hessian of the logpdf at the
startpoint.

'none' Perform no tuning of the MassVector.

To perform the tuning, use the tuneSampler method.

LogPDF — Logarithm of target density and its gradient
function handle
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Logarithm of target density and its gradient, specified as a function handle.

LogPDF returns two output arguments: [lpdf,glpdf] = LogPDF(X). Here, lpdf is the base-e log
probability density (up to an additive constant) and glpdf is the gradient of the log density at the
point X. The input argument X must be a column vector with the same number of elements as the
StartPoint property.

If you set the 'UseNumericalGradient' value to true when creating the sampler, then LogPDF
returns the numerical gradient in glpdf.

StartPoint — Initial point to start sampling from
numeric column vector

Initial point to start sampling from, specified as a numeric column vector.

VariableNames — Sampling variable names
{'x1','x2',...} (default) | cell array of unique character vectors

Sampling variable names, specified as a cell array of unique character vectors.

Methods

estimateMAP Estimate maximum of log probability density
tuneSampler Tune Hamiltonian Monte Carlo (HMC) sampler
drawSamples Generate Markov chain using Hamiltonian Monte Carlo (HMC)
diagnostics Markov Chain Monte Carlo diagnostics

Examples

Create Hamiltonian Monte Carlo Sampler

Create a Hamiltonian Monte Carlo (HMC) sampler to sample from a normal distribution.

First, save a function normalDistGrad on the MATLAB® path that returns the multivariate normal
log probability density and its gradient (normalDistGrad is defined at the end of this example).
Then, call the function with arguments to define the logpdf input argument to the hmcSampler
function.

means = [1;-3];
standevs = [1;2];
logpdf = @(theta)normalDistGrad(theta,means,standevs);

Choose a starting point for the HMC sampler.

startpoint = randn(2,1);

Create the HMC sampler and display its properties.

smp = hmcSampler(logpdf,startpoint);

smp
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smp = 
  HamiltonianSampler with properties:

                  StepSize: 0.1000
                  NumSteps: 50
                MassVector: [2x1 double]
              JitterMethod: 'jitter-both'
      StepSizeTuningMethod: 'dual-averaging'
    MassVectorTuningMethod: 'iterative-sampling'
                    LogPDF: @(theta)normalDistGrad(theta,means,standevs)
             VariableNames: {2x1 cell}
                StartPoint: [2x1 double]

The normalDistGrad function returns the logarithm of the multivariate normal probability density
with means in Mu and standard deviations in Sigma, specified as scalars or columns vectors the same
length as startpoint. The second output argument is the corresponding gradient.

function [lpdf,glpdf] = normalDistGrad(X,Mu,Sigma)
Z = (X - Mu)./Sigma;
lpdf = sum(-log(Sigma) - .5*log(2*pi) - .5*(Z.^2));
glpdf = -Z./Sigma;
end

Version History
Introduced in R2017a

See Also
Functions
hmcSampler | mhsample | slicesample

Topics
“Bayesian Linear Regression Using Hamiltonian Monte Carlo” on page 7-26
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estimateMAP
Class: HamiltonianSampler

Estimate maximum of log probability density

Syntax
xhat = estimateMAP(smp)
[xhat,fitinfo] = estimateMAP(smp)
[xhat,fitinfo] = estimateMAP( ___ ,Name,Value)

Description
xhat = estimateMAP(smp) returns the maximum-a-posteriori (MAP) estimate of the log
probability density of the Monte Carlo sampler smp.

[xhat,fitinfo] = estimateMAP(smp) returns additional fitting information in fitinfo.

[xhat,fitinfo] = estimateMAP( ___ ,Name,Value) specifies additional options using one or
more name-value pair arguments. Specify name-value pair arguments after all other input arguments.

Input Arguments
smp — Hamiltonian Monte Carlo sampler
HamiltonianSampler object

Hamiltonian Monte Carlo sampler, specified as a HamiltonianSampler object.

estimateMAP estimates the maximum of the log probability density specified in smp.LogPDF.

Use the hmcSampler function to create a sampler.

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: 'IterationLimit',100,'StepTolerance',1e-5 estimates the MAP point using an
iteration limit of 100 and a step size convergence tolerance of 1e-5.

StartPoint — Initial point to start optimization from
smp.StartPoint (default) | numeric column vector

Initial point to start optimization from, specified as a numeric column vector with the same number of
elements as the StartPoint property of the sampler smp.
Example: 'StartPoint',randn(size(smp.StartPoint))
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IterationLimit — Maximum number of optimization iterations
1000 (default) | positive integer

Maximum number of optimization iterations, specified as a positive integer.
Example: 'IterationLimit',100

VerbosityLevel — Verbosity level of Command Window output
0 (default) | positive integer

Verbosity level of Command Window output during function maximization, specified as 0 or a positive
integer.

• With the value set to 0, estimateMAP displays no details on the optimization.
• With the value set to a positive integer, estimateMAP displays convergence information at each

iteration.

Convergence Information

Heading Meaning
FUN VALUE Objective function value.
NORM GRAD Norm of the gradient of the objective function.
NORM STEP Norm of the iterative step, meaning the distance between the

previous point and the current point.
CURV OK means the weak Wolfe condition is satisfied. This condition is a

combination of sufficient decrease of the objective function and a
curvature condition.

GAMMA Inner product of the step times the gradient difference, divided by
the inner product of the gradient difference with itself. The gradient
difference is the gradient at the current point minus the gradient at
the previous point. Gives diagnostic information on the objective
function curvature.

ALPHA Step direction multiplier, which differs from 1 when the algorithm
performed a line search.

ACCEPT YES means the algorithm found an acceptable step to take.

Example: 'VerbosityLevel',1

GradientTolerance — Relative gradient convergence tolerance
1e-6 (default) | positive scalar

Relative gradient convergence tolerance, specified as a positive scalar.

Let tau = max(1,min(abs(f),infnormg0)), where f is the current objective function value and
infnormg0 is the initial gradient norm. If the norm of the objective function gradient is smaller than
tau times the 'GradientTolerance' value, then the maximization is considered to have converged
to a local optimum.
Example: 'GradientTolerance',1e-4

StepTolerance — Step size convergence tolerance
1e-6 (default) | positive scalar
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Step size convergence tolerance, specified as a positive scalar.

If the proposed step size is smaller than the 'StepTolerance' value, then the maximization is
considered to have converged to a local optimum.
Example: 'StepTolerance',1e-5

Output Arguments
xhat — MAP point estimate
numeric vector

MAP point estimate, returned as a numeric vector of the same size as smp.StartPoint.

fitinfo — Fitting information
structure

Fitting information for the MAP computation, returned as a structure with these fields:

Field Description
Iteration Iteration indices from 0 through the final

iteration.
Objective Negative log probability density at each iteration.

The MAP point is computed by minimizing the
negative log probability density. You can check
that the final values are all similar, indicating that
the function optimization has converged to a local
optimum.

Gradient Gradient of the negative log probability density at
the final iteration.

Data Types: struct

Examples

Estimate MAP Point of HMC Sampler

Create a Hamiltonian Monte Carlo sampler for a normal distribution and estimate the maximum-a-
posteriori (MAP) point of the log probability density.

First, save a function normalDistGrad on the MATLAB® path that returns the multivariate normal
log probability density and its gradient (normalDistGrad is defined at the end of this example).
Then, call the function with arguments to define the logpdf input argument to the hmcSampler
function.

means = [1;-1];
standevs = [1;0.3];
logpdf = @(theta)normalDistGrad(theta,means,standevs);

Choose a starting point and create the HMC sampler.
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startpoint = zeros(2,1);
smp = hmcSampler(logpdf,startpoint);

Estimate the MAP point (the point where the probability density has its maximum). Show more
information during optimization by setting the 'VerbosityLevel' value to 1.

[xhat,fitinfo] = estimateMAP(smp,'VerbosityLevel',1);

 o Solver = LBFGS, HessianHistorySize = 15, LineSearchMethod = weakwolfe

|====================================================================================================|
|   ITER   |   FUN VALUE   |  NORM GRAD  |  NORM STEP  |  CURV  |    GAMMA    |    ALPHA    | ACCEPT |
|====================================================================================================|
|        0 |  6.689460e+00 |   1.111e+01 |   0.000e+00 |        |   9.000e-03 |   0.000e+00 |   YES  |
|        1 |  4.671622e+00 |   8.889e+00 |   2.008e-01 |    OK  |   9.006e-02 |   2.000e+00 |   YES  |
|        2 |  9.759850e-01 |   8.268e-01 |   8.215e-01 |    OK  |   9.027e-02 |   1.000e+00 |   YES  |
|        3 |  9.158025e-01 |   7.496e-01 |   7.748e-02 |    OK  |   5.910e-01 |   1.000e+00 |   YES  |
|        4 |  6.339508e-01 |   3.104e-02 |   7.472e-01 |    OK  |   9.796e-01 |   1.000e+00 |   YES  |
|        5 |  6.339043e-01 |   3.668e-05 |   3.762e-03 |    OK  |   9.599e-02 |   1.000e+00 |   YES  |
|        6 |  6.339043e-01 |   2.488e-08 |   3.333e-06 |    OK  |   9.015e-02 |   1.000e+00 |   YES  |

         Infinity norm of the final gradient = 2.488e-08
              Two norm of the final step     = 3.333e-06, TolX   = 1.000e-06
Relative infinity norm of the final gradient = 2.488e-08, TolFun = 1.000e-06
EXIT: Local minimum found.

To further check that the optimization has converged to a local minimum, plot the
fitinfo.Objective field. This field contains the values of the negative log density at each iteration
of the function optimization. The final values are all very similar, so the optimization has converged.

fitinfo

fitinfo = struct with fields:
    Iteration: [7x1 double]
    Objective: [7x1 double]
     Gradient: [2x1 double]

plot(fitinfo.Iteration,fitinfo.Objective,'ro-');
xlabel('Iteration');
ylabel('Negative log density');
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Display the MAP estimate. It is indeed equal to the means variable, which is the exact maximum.

xhat

xhat = 2×1

    1.0000
   -1.0000

means

means = 2×1

     1
    -1

The normalDistGrad function returns the logarithm of the multivariate normal probability density
with means in Mu and standard deviations in Sigma, specified as scalars or columns vectors the same
length as startpoint. The second output argument is the corresponding gradient.

function [lpdf,glpdf] = normalDistGrad(X,Mu,Sigma)
Z = (X - Mu)./Sigma;
lpdf = sum(-log(Sigma) - .5*log(2*pi) - .5*(Z.^2));
glpdf = -Z./Sigma;
end
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Tips
• First create a Hamiltonian Monte Carlo sampler using the hmcSampler function, and then use

estimateMAP to estimate the MAP point.
• After creating an HMC sampler, you can tune the sampler, draw samples, and check convergence

diagnostics using the other methods of the HamiltonianSampler class. Using the MAP estimate
as a starting point in the tuneSampler and drawSamles methods can lead to more efficient
tuning and sampling. For an example of this workflow, see Bayesian Linear Regression Using
Hamiltonian Monte Carlo on page 7-26.

Algorithms
• estimateMAP uses a limited memory Broyden-Fletcher-Goldfarb-Shanno (LBFGS) quasi-Newton

optimizer to search for the maximum of the log probability density. See Nocedal and Wright [1].

Version History
Introduced in R2017a

References
[1] Nocedal, J. and S. J. Wright. Numerical Optimization, Second Edition. Springer Series in

Operations Research, Springer Verlag, 2006.

See Also
Functions
hmcSampler

Classes
HamiltonianSampler

Topics
“Bayesian Linear Regression Using Hamiltonian Monte Carlo” on page 7-26
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tuneSampler
Class: HamiltonianSampler

Tune Hamiltonian Monte Carlo (HMC) sampler

Syntax
tunedSmp = tuneSampler(smp)
[tunedSmp,tuningInfo] = tuneSampler(smp)
[tunedSmp,tuningInfo] = tuneSampler( ___ ,Name,Value)

Description
tunedSmp = tuneSampler(smp) returns a tuned Hamiltonian Monte Carlo (HMC) sampler.

First, tuneSampler tunes the mass vector of the HMC sampler smp. Then, it tunes the step size and
number of steps of the leapfrog integrations to achieve a certain target acceptance ratio.

You can use the tuned sampler to create Markov chains using the drawSamples method.

[tunedSmp,tuningInfo] = tuneSampler(smp) returns additional tuning information in
tuningInfo.

[tunedSmp,tuningInfo] = tuneSampler( ___ ,Name,Value) specifies additional options using
one or more name-value pair arguments. Specify name-value pair arguments after all other input
arguments.

Input Arguments
smp — Hamiltonian Monte Carlo sampler
HamiltonianSampler object

Hamiltonian Monte Carlo sampler to tune, specified as a HamiltonianSampler object.

Use the hmcSampler function to create a sampler.

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: 'StepSizeTuningMethod','dual-
averaging','MassVectorTuningMethod','hessian' tunes an HMC sampler using the
specified methods for tuning the step size and mass vector of the sampler.

StartPoint — Initial point to start tuning from
smp.StartPoint (default) | numeric column vector

35 Functions

35-7912



Initial point to start tuning from, specified as a numeric column vector with the same number of
elements as the StartPoint property of the sampler smp.
Example: 'StartPoint',randn(size(smp.StartPoint))

StepSizeTuningMethod — Method for tuning sampler step size
smp.StepSizeTuningMethod (default) | 'dual-averaging' | 'none'

Method for tuning sampler step size, specified as the comma-separated pair consisting of
'StepSizeTuningMethod' and 'dual-averaging' or 'none'.

If 'StepSizeTuningMethod' is set to 'dual-averaging', then tuneSampler tunes the leapfrog
step size of the HMC sampler to achieve a target acceptance ratio for a fixed value of the simulation
length. The simulation length equals the step size multiplied by the number of steps. To specify the
target acceptance ratio, set the 'TargetAcceptanceRatio' value.

To change the simulation length, set smp.StepSize = a and smp.NumSteps = b, for some values
of a and b. This gives a simulation length of a*b.
Example: 'StepSizeTuningMethod','none'

MassVectorTuningMethod — Method for tuning sampler mass vector
smp.MassVectorTuningMethod (default) | 'iterative-sampling' | 'hessian' | 'none'

Method for tuning the sampler mass vector, specified as the comma-separated pair consisting of
'MassVectorTuningMethod' and one of the following values.

Value Description
'iterative-sampling' Tune the MassVector via successive

approximations by drawing samples using a
sequence of mass vector estimates.

'hessian' Set the MassVector equal to the negative
diagonal Hessian of the logpdf at the
startpoint.

'none' Perform no tuning of the MassVector.

Example: 'MassVectorTuningMethod','hessian'

NumStepSizeTuningIterations — Number of step size tuning iterations
100 (default) | positive integer

Number of step size tuning iterations, specified as a positive integer.

If the 'StepSizeTuningMethod' value is 'none', then tuneSampler does not tune the step size.
Example: 'NumStepSizeTuningIterations',50

TargetAcceptanceRatio — Target acceptance ratio
0.65 (default) | scalar from 0 through 1

Target acceptance ratio of the Markov chain, specified as a scalar from 0 through 1.

tuneSampler tunes the step size and number of steps of the leapfrog integration to achieve the
specified target acceptance ratio for a fixed value of the simulation length. The simulation length is
the leapfrog integration step size multiplied by the number of integration steps.
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If the 'StepSizeTuningMethod' value is 'none', then tuneSampler does not tune the step size.

To change the simulation length, set smp.StepSize = a and smp.NumSteps = b, for some values
of a and b. This gives a simulation length of a*b.
Example: 'TargetAcceptanceRatio',0.55

NumStepsLimit — Maximum number of leapfrog steps
2000 (default) | positive integer

Maximum number of leapfrog steps allowed during step size tuning, specified as a positive integer.

If the 'StepSizeTuningMethod' value is 'none', then tuneSampler does not tune the step size.
Example: 'NumStepsLimit',1000

VerbosityLevel — Verbosity level of Command Window output
0 (default) | nonnegative integer

Verbosity level of Command Window output during sampler tuning, specified as a nonnegative
integer.

• With the value set to 0, tuneSampler displays no details of the tuning.
• With the value set to 1, tuneSampler displays details of the step size tuning.
• With the value set to 2 or larger, tuneSampler displays details of the step size and mass vector

tuning.

Heading Description
ITER Iteration number.
LOG PDF Log probability density at the current iteration.
STEP SIZE Leapfrog integration step size at the current

iteration.
NUM STEPS Number of leapfrog integration steps at the

current iteration.
ACC RATIO Acceptance ratio, that is, the fraction of proposals

which are accepted.
DIVERGENT Number of times the sampler failed to generate a

valid proposal due to the leapfrog iterations
generating NaNs or Infs. tuneSampler searches
for a good value of the integration step size.
While doing so, the algorithm can encounter
regions of instability and report nonzero values in
the DIVERGENT column. This behavior is normal
and is not a problem in itself.

Example: 'VerbosityLevel',1

NumPrint — Verbose output frequency
100 (default) | positive integer

Verbose output frequency, specified as a positive integer.
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If the 'VerbosityLevel' value is a positive integer, tuneSampler outputs tuning details every
'NumPrint' iterations.
Example: 'NumPrint',50

Output Arguments
tunedSmp — Tuned Hamiltonian Monte Carlo sampler
HamiltonianSampler object

Tuned Hamiltonian Monte Carlo sampler, returned as a HamiltonianSampler object.

tuningInfo — Tuning information
structure

Tuning information, returned as a structure with these fields.

Field Description
MassVector Tuned mass vector
StepSize Tuned leapfrog step size
NumSteps Tuned value of the number of leapfrog

integration steps
MassVectorTuningInfo Structure with additional information on the mass

vector tuning
StepSizeTuningInfo Structure with additional information on the step

size tuning

If you tune the mass vector using the 'iterative-sampling' method, then
MassVectorTuningInfo has the following fields.

Field Description
MassVector Tuned mass vector
IterativeSamplingMassVectorProfile P-by-K matrix of mass vectors used during the K

iterations, where P is the number of sampling
variables

IterativeSamplingNumSamples K-by-1 vector of the number of samples drawn for
each of the K iterations

If you tune the mass vector using the 'hessian' method, then MassVectorTuningInfo has the
following fields.

Field Description
MassVector Tuned mass vector
NegativeDiagonalHessian Negative diagonal Hessian of logpdf at the

tuning start point. If some elements are negative,
this field can be different from the MassVector
field.

HessianPoint Point at which the Hessian is evaluated
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If the MassVectorTuningMethod value is 'none', then MassVectorTuningInfo is empty.

If you tune the step size using the 'dual-averaging' method, then StepSizeTuningInfo has the
following fields.

Field Description
StepSize Tuned step size
NumSteps Tuned value of the number of steps
StepSizeProfile Column vector containing the step sizes at each

tuning iteration
AcceptanceRatio Final acceptance ratio achieved during tuning

If the step size is not tuned, thenStepSizeTuningInfo is empty.
Data Types: struct

Examples

Tune Hamiltonian Monte Carlo Sampler

Tune the parameters of a Hamiltonian Monte Carlo (HMC) sampler.

Define the number of parameters to sample and their means.

NumParams = 9;
means = [1:NumParams]';
standevs = 1;

First, save a function normalDistGrad on the MATLAB® path that returns the multivariate normal
log probability density and its gradient (normalDistGrad is defined at the end of this example).
Then, call the function with arguments to define the logpdf input argument to the hmcSampler
function.

logpdf = @(theta)normalDistGrad(theta,means,standevs);

Choose a starting point and create the HMC sampler.

startpoint = randn(NumParams,1);
smp = hmcSampler(logpdf,startpoint);

It is important to select good values for the sampler parameters to get efficient sampling. The best
way to find good values is to automatically tune the MassVector, StepSize, and NumSteps
parameters using tuneSampler. The method:

1. Tunes the MassVector of the sampler.

2. Tunes StepSize and NumSteps for a fixed simulation length to achieve a certain acceptance ratio.
The default target acceptance ratio of 0.65 is good in most cases.

[smp,info] = tuneSampler(smp,'NumStepSizeTuningIterations',50,'VerbosityLevel',1,'NumPrint',10);

o Tuning mass vector using method: iterative-sampling 
Finished mass vector tuning iteration 1 of 5. 
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Finished mass vector tuning iteration 2 of 5. 
Finished mass vector tuning iteration 3 of 5. 
Finished mass vector tuning iteration 4 of 5. 
Finished mass vector tuning iteration 5 of 5. 

o Tuning step size using method: dual-averaging. Target acceptance ratio = 0.65

o Initial step size for dual-averaging = 2

|==================================================================================|
|   ITER   |    LOG PDF    |  STEP SIZE  |  NUM STEPS  |  ACC RATIO  |  DIVERGENT  |
|==================================================================================|
|       10 | -1.710457e+01 |   1.193e+00 |           4 |   5.000e-01 |           0 |
|       20 | -9.152514e+00 |   9.527e-01 |           5 |   5.500e-01 |           0 |
|       30 | -1.068923e+01 |   8.856e-01 |           6 |   5.333e-01 |           0 |
|       40 | -1.290816e+01 |   8.506e-01 |           6 |   5.750e-01 |           0 |
|       50 | -1.770386e+01 |   8.581e-01 |           6 |   6.000e-01 |           0 |

Plot the evolution of the step size during tuning to ensure that the step size tuning has converged.
Display the achieved acceptance ratio.

figure;
plot(info.StepSizeTuningInfo.StepSizeProfile);
xlabel('Iteration');
ylabel('Step Size');

accratio = info.StepSizeTuningInfo.AcceptanceRatio
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accratio = 0.6000

The normalDistGrad function returns the logarithm of the multivariate normal probability density
with means in Mu and standard deviations in Sigma, specified as scalars or columns vectors the same
length as startpoint. The second output argument is the corresponding gradient.

function [lpdf,glpdf] = normalDistGrad(X,Mu,Sigma)
Z = (X - Mu)./Sigma;
lpdf = sum(-log(Sigma) - .5*log(2*pi) - .5*(Z.^2));
glpdf = -Z./Sigma;
end

Tips
• After creating an HMC sampler using the hmcSampler function, you can compute MAP

(maximum-a-posteriori) point estimates, tune the sampler, draw samples, and check convergence
diagnostics using the methods of the HamiltonianSampler class. For an example of this
workflow, see Bayesian Linear Regression Using Hamiltonian Monte Carlo on page 7-26.

Version History
Introduced in R2017a

See Also
Functions
hmcSampler

Classes
HamiltonianSampler

Topics
“Bayesian Linear Regression Using Hamiltonian Monte Carlo” on page 7-26
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drawSamples
Class: HamiltonianSampler

Generate Markov chain using Hamiltonian Monte Carlo (HMC)

Syntax
chain = drawSamples(smp)
[chain,endpoint,accratio] = drawSamples(smp)
[chain,endpoint,accratio] = drawSamples( ___ ,Name,Value)

Description
chain = drawSamples(smp) generates a Markov chain by drawing samples using the Hamiltonian
Monte Carlo sampler smp.

[chain,endpoint,accratio] = drawSamples(smp) also returns the final state of the Markov
chain in endpoint and the fraction of accepted proposals in accratio.

[chain,endpoint,accratio] = drawSamples( ___ ,Name,Value) specifies additional options
using one or more name-value pair arguments. Specify name-value pair arguments after all other
input arguments.

Input Arguments
smp — Hamiltonian Monte Carlo sampler
HamiltonianSampler object

Hamiltonian Monte Carlo sampler, specified as a HamiltonianSampler object.

drawSamples draws samples from the target log probability density in smp.LogPDF. Use the
hmcSampler function to create a sampler.

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: 'Burnin',500,'NumSamples',2000 generates a Markov chain by discarding 500 burn-
in samples and then drawing 2000 samples.

Burnin — Number of burn-in samples to discard
1000 (default) | positive integer

Number of burn-in samples to discard from the beginning of the Markov chain, specified as a positive
integer.
Example: 'Burnin',500
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NumSamples — Number of samples to draw
1000 (default) | positive integer

Number of samples to draw from the Markov chain using the HMC sampler, specified as a positive
integer.

The drawSamples method generates this number of samples after the burn-in period.
Example: 'NumSamples',2000

ThinSize — Markov chain thinning size
1 (default) | positive integer

Markov chain thinning size, specified as a positive integer.

Only one out of the 'ThinSize' number of samples are kept. The rest of the samples are discarded.
Example: 'ThinSize',5

StartPoint — Initial point to start sampling from
smp.StartPoint (default) | numeric column vector

Initial point to start sampling from, specified as a numeric column vector with the same number of
elements as the StartPoint property of the sampler smp.
Example: 'StartPoint',randn(5,1)

VerbosityLevel — Verbosity level of Command Window output
0 (default) | positive integer

Verbosity level of Command Window output during sampling, specified as 0 or a positive integer.

With the value set to 0, drawSamples displays no details during sampling.

With the value set to a positive integer, drawSamples displays details of the sampling. To set the
output frequency, use the 'NumPrint' name-value pair argument.

drawSamples displays the output as a table with these columns.

Heading Description
ITER Iteration number
LOG PDF Log probability density at the current iteration
STEP SIZE Leapfrog integration step size at the current

iteration. If the step size is jittered, it can vary
between iterations.

NUM STEPS Number of leapfrog integration steps at the
current iteration. If the number of steps is
jittered, it can vary between iterations

ACC RATIO Acceptance ratio, that is, the fraction of proposals
that are accepted. The acceptance ratio is
calculated from the beginning of sampling,
including the burn-in period.
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Heading Description
DIVERGENT Number of times the sampler failed to generate a

valid proposal due to the leapfrog iterations
generating NaNs or Infs. When drawing samples,
a nonzero value in the DIVERGENT column
indicates that the chosen step size is above the
stability threshold for some region of state space.
To fix this issue, try to set the StepSize to a
smaller value, draw new samples, and check that
all values in the DIVERGENT column equal 0.

Example: 'VerbosityLevel',1

NumPrint — Verbose output frequency
100 (default) | positive integer

Verbose output frequency, specified as a positive integer.

If the 'VerbosityLevel' value is a positive integer, then drawSamples outputs sampling details
every 'NumPrint' iterations.
Example: 'NumPrint',200

Output Arguments
chain — Markov chain generated using Hamiltonian Monte Carlo
numeric matrix

Markov chain generated using Hamiltonian Monte Carlo, returned as a numeric matrix.

Each row of chain is a sample, and each column represents one sampling variable.

endpoint — Final state of Markov chain
numeric column vector

Final state of the Markov chain, returned as a numeric column vector of the same length as
smp.StartPoint.

accratio — Acceptance ratio
numeric scalar

Acceptance ratio of the Markov chain proposals, returned as a numeric scalar. The acceptance ratio is
calculated from the beginning of sampling, including the burn-in period.

Examples

Draw Samples Using HMC Sampler

Create MCMC chains for a multivariate normal distribution using a Hamiltonian Monte Carlo (HMC)
sampler.

Define the number of parameters to sample and their means.
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NumParams = 100;
means = randn(NumParams,1);
standevs = 0.1;

First, save a function normalDistGrad on the MATLAB® path that returns the multivariate normal
log probability density and its gradient (normalDistGrad is defined at the end of this example).
Then, call the function with arguments to define the logpdf input argument to the hmcSampler
function.

logpdf = @(theta)normalDistGrad(theta,means,standevs);

Choose a starting point of the sampler. Create the HMC sampler and tune its parameters.

startpoint = randn(NumParams,1);
smp = hmcSampler(logpdf,startpoint);
smp = tuneSampler(smp);

Draw samples from the posterior density, using a few independent chains. Choose different, randomly
distributed starting points for each chain. Specify the number of burn-in samples to discard from the
beginning of the Markov chain and the number of samples to generate after the burn-in. Set the
'VerbosityLevel' to print details during sampling for the first chain.

NumChains  = 4;
chains     = cell(NumChains,1);
Burnin     = 500;
NumSamples = 2000;
for c = 1:NumChains
    if c == 1
        showOutput = 1;
    else
        showOutput = 0;
    end
    chains{c} = drawSamples(smp,'Burnin',Burnin,'NumSamples',NumSamples,...
        'Start',randn(size(startpoint)),'VerbosityLevel',showOutput,'NumPrint',500);
end

|==================================================================================|
|   ITER   |    LOG PDF    |  STEP SIZE  |  NUM STEPS  |  ACC RATIO  |  DIVERGENT  |
|==================================================================================|
|      500 |  8.450463e+01 |   4.776e-01 |           5 |   9.060e-01 |           0 |
|     1000 |  8.034444e+01 |   4.776e-01 |           9 |   8.810e-01 |           0 |
|     1500 |  9.156276e+01 |   4.776e-01 |           2 |   8.867e-01 |           0 |
|     2000 |  8.027782e+01 |   2.817e-02 |           6 |   8.890e-01 |           0 |
|     2500 |  9.892440e+01 |   4.648e-01 |           2 |   8.904e-01 |           0 |

After obtaining a random sample, investigate issues such as convergence and mixing to determine
whether the samples represent a reasonable set of random realizations from the target distribution.
To examine the output, plot the trace plots of the samples for the first few variables using the first
chain.

A number of burn-in samples have been removed to reduce the effect of the sampling starting point.
Furthermore, the trace plots look like high-frequency noise, without any visible long-range
correlation between the samples. This indicates that the chain is well mixed.

for p = 1:3
    subplot(3,1,p);
    plot(chains{1}(:,p));
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    ylabel(smp.VariableNames(p))
    axis tight
end
xlabel('Iteration')

The normalDistGrad function returns the logarithm of the multivariate normal probability density
with means in Mu and standard deviations in Sigma, specified as scalars or columns vectors the same
length as the startpoint. The second output argument is the corresponding gradient.

function [lpdf,glpdf] = normalDistGrad(X,Mu,Sigma)
Z = (X - Mu)./Sigma;
lpdf = sum(-log(Sigma) - .5*log(2*pi) - .5*(Z.^2));
glpdf = -Z./Sigma;
end

Tips
• After creating an HMC sampler using the hmcSampler function, you can compute MAP

(maximum-a-posteriori) point estimates, tune the sampler, draw samples, and check convergence
diagnostics using the methods of the HamiltonianSampler class. For an example of this
workflow, see Bayesian Linear Regression Using Hamiltonian Monte Carlo on page 7-26.

Version History
Introduced in R2017a
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See Also
Functions
hmcSampler

Classes
HamiltonianSampler

Topics
Bayesian Linear Regression Using Hamiltonian Monte Carlo on page 7-26
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diagnostics
Class: HamiltonianSampler

Markov Chain Monte Carlo diagnostics

Syntax
tbl = diagnostics(smp,chains)
tbl = diagnostics(smp,chains,'MaxLag',maxlag)

Description
tbl = diagnostics(smp,chains) returns Markov Chain Monte Carlo diagnostics for the chains
in chains.

tbl = diagnostics(smp,chains,'MaxLag',maxlag) specifies the maximum number of
autocorrelation lags to use for computing effective sample sizes.

Input Arguments
smp — Hamiltonian Monte Carlo sampler
HamiltonianSampler object

Hamiltonian Monte Carlo sampler, specified as a HamiltonianSampler object.

Use the hmcSampler function to create a sampler.

chains — MCMC chains
matrix | cell array

MCMC chains, specified as one of the following:

• A matrix, where each row is a sample and each column a parameter.
• A cell array of matrices, where the chain chains{i} is a matrix where each row is a sample and

each column a parameter.

The number of parameters (that is, matrix columns) must equal the number of elements of the
StartPoint property of the smp sampler.

maxlag — Maximum number of autocorrelation lags
100 (default) | positive integer

Maximum number of autocorrelation lags for computing effective sample sizes, specified as a positive
integer.

The effective sample size calculation uses lags of 1,2,...,maxlag for each chain in chains that
has more than maxlag samples.

For chains with maxlag or fewer samples, the calculation uses Ni - 1 lags, where Ni is the number of
samples of chain i.
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Example: 'MaxLag',50

Output Arguments
tbl — MCMC diagnostics
table

MCMC diagnostics, computed using all the chains in chains and returned as a table with these
columns.

Column Description
Name Variable name
Mean Posterior mean estimate
MCSE Estimate of the Monte Carlo standard error (the

standard deviation of the posterior mean
estimate)

SD Estimate of the posterior standard deviation
Q5 Estimate of the 5th quantile of the marginal

posterior distribution
Q95 Estimate of the 95th quantile of the marginal

posterior distribution
ESS Effective sample size for the posterior mean

estimate. Larger effective sample sizes lead to
more accurate results. If the samples are
independent, then the effective sample size is
equal to the number of samples.

RHat Gelman-Rubin convergence statistic. As a rule of
thumb, values of RHat less than 1.1 are
interpreted as a sign that the chains have
converged to the target distribution. If RHat for
any variable is larger than 1.1, try drawing more
Monte Carlo samples.

Examples

Compute Markov Chain Monte Carlo Diagnostics

Create MCMC chains using a Hamiltonian Monte Carlo (HMC) sampler and compute MCMC
diagnostics.

First, save a function on the MATLAB® path that returns the multivariate normal log probability
density and its gradient. In this example, that function is called normalDistGrad and is defined at
the end of the example. Then, call this function with arguments to define the logpdf input argument
to the hmcSampler function.

means = [1;-2;2];
standevs = [1;2;0.5];
logpdf = @(theta)normalDistGrad(theta,means,standevs);
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Choose a starting point. Create the HMC sampler and tune its parameters.

startpoint = randn(3,1);
smp = hmcSampler(logpdf,startpoint);
smp = tuneSampler(smp);

Draw samples from the posterior density, using a few independent chains. Choose different, randomly
distributed starting points for each chain. Specify the number of burn-in samples to discard from the
beginning of the Markov chain and the number of samples to generate after the burn-in.

NumChains  = 4;
chains     = cell(NumChains,1);
Burnin     = 500;
NumSamples = 1000;
for c = 1:NumChains
    chains{c} = drawSamples(smp,'Burnin',Burnin,'NumSamples',NumSamples,...
        'Start',randn(size(startpoint)));
end

Compute MCMC diagnostics and display the results. Compare the true means in means with the
column titled Mean in the MCMCdiagnostics table. The true posterior means are within a few Monte
Carlo standard errors (MCSEs) of the estimated posterior means. The HMC sampler has accurately
recovered the true means. Similarly, the estimated standard deviations in the column SD are very
near the true standard deviations in standev.

MCMCdiagnostics = diagnostics(smp,chains)

MCMCdiagnostics=3×8 table
     Name      Mean        MCSE        SD          Q5        Q95       ESS      RHat
    ______    _______    ________    _______    ________    ______    ______    ____

    {'x1'}     1.0038    0.016474    0.96164    -0.58601     2.563    3407.4     1  
    {'x2'}    -2.0435    0.034933      1.999     -5.3476    1.1851    3274.5     1  
    {'x3'}     1.9957    0.008209    0.49693      1.2036    2.8249    3664.5     1  

means

means = 3×1

     1
    -2
     2

standevs

standevs = 3×1

    1.0000
    2.0000
    0.5000

The normalDistGrad function returns the logarithm of the multivariate normal probability density
with means in Mu and standard deviations in Sigma, specified as scalars or columns vectors the same
length as the startpoint. The second output argument is the corresponding gradient.
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function [lpdf,glpdf] = normalDistGrad(X,Mu,Sigma)
Z = (X - Mu)./Sigma;
lpdf = sum(-log(Sigma) - .5*log(2*pi) - .5*(Z.^2));
glpdf = -Z./Sigma;
end

Tips
• After creating an HMC sampler using the hmcSampler function, you can compute MAP

(maximum-a-posteriori) point estimates, tune the sampler, draw samples, and check convergence
diagnostics using the methods of the HamiltonianSampler class. For an example of this
workflow, see Bayesian Linear Regression Using Hamiltonian Monte Carlo on page 7-26.

Version History
Introduced in R2017a

See Also
Functions
hmcSampler

Classes
HamiltonianSampler

Topics
“Bayesian Linear Regression Using Hamiltonian Monte Carlo” on page 7-26
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Classification Learner
Train models to classify data using supervised machine learning

Description
The Classification Learner app trains models to classify data. Using this app, you can explore
supervised machine learning using various classifiers. You can explore your data, select features,
specify validation schemes, train models, and assess results. You can perform automated training to
search for the best classification model type, including decision trees, discriminant analysis, support
vector machines, logistic regression, nearest neighbors, naive Bayes, kernel approximation,
ensemble, and neural network classification.

You can perform supervised machine learning by supplying a known set of input data (observations or
examples) and known responses to the data (labels or classes). You use the data to train a model that
generates predictions for the response to new data. To use the model with new data, or to learn about
programmatic classification, you can export the model to the workspace or generate MATLAB code to
recreate the trained model.

Tip To get started, in the Classifier list, try All Quick-To-Train to train a selection of models. See
“Automated Classifier Training” on page 23-10.

Required Products

• MATLAB
• Statistics and Machine Learning Toolbox
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Open the Classification Learner App
• MATLAB Toolstrip: On the Apps tab, under Machine Learning, click the app icon.
• MATLAB command prompt: Enter classificationLearner.

Examples
• “Train Classification Models in Classification Learner App” on page 23-10
• “Select Data for Classification or Open Saved App Session” on page 23-18
• “Automated Classifier Training” on page 23-10
• “Feature Selection and Feature Transformation Using Classification Learner App” on page 23-42
• “Choose Classifier Options” on page 23-23
• “Visualize and Assess Classifier Performance in Classification Learner” on page 23-66
• “Export Classification Model to Predict New Data” on page 23-83
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Programmatic Use
classificationLearner opens the Classification Learner app or brings focus to the app if it is
already open.

classificationLearner(Tbl,ResponseVarName) opens the Classification Learner app and
populates the New Session from Arguments dialog box with the data contained in the table Tbl. The
ResponseVarName argument, specified as a character vector or string scalar, is the name of the
response variable in Tbl that contains the class labels. The response variable cannot contain more
than 500 unique class labels. The remaining variables in Tbl are the predictor variables.

classificationLearner(Tbl,Y) opens the Classification Learner app and populates the New
Session from Arguments dialog box with the predictor variables in the table Tbl and the class labels
in the vector Y. You can specify the response Y as a categorical array, character array, string array,
logical vector, numeric vector, or cell array of character vectors. Y cannot contain more than 500
unique class labels.

classificationLearner(X,Y) opens the Classification Learner app and populates the New
Session from Arguments dialog box with the n-by-p predictor matrix X and the n class labels in the
vector Y. Each row of X corresponds to one observation, and each column corresponds to one
variable. The length of Y and the number of rows of X must be equal. Y cannot contain more than 500
unique class labels.

classificationLearner( ___ ,Name,Value) specifies cross-validation options using one or more
of the following name-value arguments in addition to any of the input argument combinations in the
previous syntaxes. For example, you can specify "KFold",10 to use a 10-fold cross-validation
scheme.

• "CrossVal", specified as "on" (default) or "off", is the cross-validation flag. If you specify
"on", then the app uses 5-fold cross-validation. If you specify "off", then the app uses
resubstitution validation.

You can override the "CrossVal" cross-validation setting by using the "Holdout" or "KFold"
name-value argument. You can specify only one of these arguments at a time.

• "Holdout", specified as a numeric scalar in the range [0.05,0.5], is the fraction of the data used
for holdout validation. The app uses the remaining data for training (and testing, if specified).

• "KFold", specified as a positive integer in the range [2,50], is the number of folds to use for
cross-validation.

• "TestDataFraction", specified as a numeric scalar in the range [0,0.5], is the fraction of the
data reserved for testing.

classificationLearner(filename) opens the Classification Learner app with the previously
saved session in filename. The filename argument, specified as a character vector or string scalar,
must include the name of a Classification Learner session file and the path to the file, if it is not in the
current folder. The file must have the extension .mat.

Limitations
• Classification Learner does not support model deployment to MATLAB Production Server in

MATLAB Online.
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Version History
Introduced in R2015a

See Also
Apps
Regression Learner

Functions
fitctree | fitcdiscr | fitcsvm | fitcecoc | fitcknn | fitckernel | fitcensemble |
fitcnet | fitglm

Topics
“Train Classification Models in Classification Learner App” on page 23-10
“Select Data for Classification or Open Saved App Session” on page 23-18
“Automated Classifier Training” on page 23-10
“Feature Selection and Feature Transformation Using Classification Learner App” on page 23-42
“Choose Classifier Options” on page 23-23
“Visualize and Assess Classifier Performance in Classification Learner” on page 23-66
“Export Classification Model to Predict New Data” on page 23-83
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Regression Learner
Train regression models to predict data using supervised machine learning

Description
The Regression Learner app trains regression models to predict data. Using this app, you can
explore your data, select features, specify validation schemes, train models, and assess results. You
can perform automated training to search for the best regression model type, including linear
regression models, regression trees, Gaussian process regression models, support vector machines,
kernel approximation models, ensembles of regression trees, and neural network regression models.

Perform supervised machine learning by supplying a known set of observations of input data
(predictors) and known responses. Use the observations to train a model that generates predicted
responses for new input data. To use the model with new data, or to learn about programmatic
regression, you can export the model to the workspace or generate MATLAB code to recreate the
trained model.

Required Products

• MATLAB
• Statistics and Machine Learning Toolbox
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Open the Regression Learner App
• MATLAB Toolstrip: On the Apps tab, under Machine Learning, click the app icon.
• MATLAB command prompt: Enter regressionLearner.

Examples
• Train Regression Models in Regression Learner App on page 24-2
• Select Data and Validation for Regression Problem on page 24-9
• Automated Regression Model Training on page 24-2
• Choose Regression Model Options on page 24-14
• Feature Selection and Feature Transformation on page 24-30
• Assess Model Performance in Regression Learner on page 24-48
• Export Regression Model to Predict New Data on page 24-65
• Train Regression Trees Using Regression Learner App on page 24-71
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Programmatic Use
regressionLearner opens the Regression Learner app or brings focus to the app if it is already
open.

regressionLearner(Tbl,ResponseVarName) opens the Regression Learner app and populates
the New Session from Arguments dialog box with the data contained in the table Tbl. The
ResponseVarName argument, specified as a character vector or string scalar, is the name of the
variable in Tbl that contains the response values. The remaining variables in Tbl are the predictor
variables.

regressionLearner(Tbl,Y) opens the Regression Learner app and populates the New Session
from Arguments dialog box with the predictor variables in the table Tbl and the response values in
the numeric vector Y.

regressionLearner(X,Y) opens the Regression Learner app and populates the New Session from
Arguments dialog box with the n-by-p predictor matrix X and the n response values in the vector Y.
Each row of X corresponds to one observation, and each column corresponds to one variable. The
length of Y and the number of rows of X must be equal.

regressionLearner( ___ ,Name,Value) specifies cross-validation options using one or more of
the following name-value arguments in addition to any of the input argument combinations in the
previous syntaxes. For example, you can specify "KFold",10 to use a 10-fold cross-validation
scheme.

• "CrossVal", specified as "on" (default) or "off", is the cross-validation flag. If you specify
"on", then the app uses 5-fold cross-validation. If you specify "off", then the app uses
resubstitution validation.

You can override the "CrossVal" cross-validation setting by using the "Holdout" or "KFold"
name-value argument. You can specify only one of these arguments at a time.

• "Holdout", specified as a numeric scalar in the range [0.05,0.5], is the fraction of the data used
for holdout validation. The app uses the remaining data for training (and testing, if specified).

• "KFold", specified as a positive integer in the range [2,50], is the number of folds to use for
cross-validation.

• "TestDataFraction", specified as a numeric scalar in the range [0,0.5], is the fraction of the
data reserved for testing.

regressionLearner(filename) opens the Regression Learner app with the previously saved
session in filename. The filename argument, specified as a character vector or string scalar, must
include the name of a Regression Learner session file and the path to the file, if it is not in the current
folder. The file must have the extension .mat.

Limitations
• Regression Learner does not support model deployment to MATLAB Production Server in MATLAB

Online.

Version History
Introduced in R2017a
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See Also
Apps
Classification Learner

Functions
fitrtree | fitlm | stepwiselm | fitrsvm | fitrgp | fitrkernel | fitrensemble | fitrnet

Topics
Train Regression Models in Regression Learner App on page 24-2
Select Data and Validation for Regression Problem on page 24-9
Automated Regression Model Training on page 24-2
Choose Regression Model Options on page 24-14
Feature Selection and Feature Transformation on page 24-30
Assess Model Performance in Regression Learner on page 24-48
Export Regression Model to Predict New Data on page 24-65
Train Regression Trees Using Regression Learner App on page 24-71
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Distribution Fitter
Fit probability distributions to data

Description
The Distribution Fitter app interactively fits probability distributions to data imported from the
MATLAB workspace. You can choose from 22 built-in probability distributions or create your own
custom distribution. The app displays plots of the fitted distribution superimposed on a histogram of
the data. Available plots include probability density function (pdf), cumulative distribution function
(cdf), probability plots, and survivor functions. You can export the fitted parameter values to the
workspace as a probability distribution object, and use object functions to perform further analyses.
For more information on working with these objects, see “Working with Probability Distributions” on
page 5-3. For the programmatic work flow of the Distribution Fitter app, see distributionFitter.

Required Products

• MATLAB
• Statistics and Machine Learning Toolbox
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Open the Distribution Fitter App
• MATLAB Toolstrip: On the Apps tab, under Math, Statistics and Optimization, click the app

icon.
• MATLAB command prompt: Enter distributionFitter.

Examples
• “Fit a Distribution Using the Distribution Fitter App” on page 5-72
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Parameters
Data

Data — Data to import from the workspace
list of variables | valid MATLAB expression

Specify the data to import by selecting a variable from the drop-down list. If the variable is a matrix,
the app imports the first column of the matrix by default. To select a different column or row of the
matrix, click Select Column or Row. Alternatively, you can enter any valid MATLAB expression in
the field.

Censoring — Variable containing censoring data
list of variables

Specify the censoring data by selecting a variable from the drop-down list. If the variable is a matrix,
the app imports the first column of the matrix by default. To select a different column or row of the
matrix, click Select Column or Row. This parameter is optional.

Frequency — Variable containing frequency data
list of variables

Specify the frequency data by selecting a variable from the drop-down list. If the variable is a matrix,
the app imports the first column of the matrix by default. To select a different column or row of the
matrix, click Select Column or Row. This parameter is optional.

Data set name — Data set name
text

Enter a name for the data set or accept the default name.

Manage data sets — Manage previously imported data sets
list of data sets

Manage previously imported data sets. Click the data set of interest, then click the buttons below this
pane to view the data (View), set the bin rules (Set Bin Rules), rename the data set (Rename), or
delete the data set (Delete).

Data preview — Preview plot of data
histogram plot

Display a preview plot of the variable selected from the Data drop-down menu.

New fit

Fit name — Name of fit
text

Enter a name for the fit or accept the default name.

Data — Data set to fit
list of data sets

Specify the data to fit by selecting a data set from the drop-down list.
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Distribution — Distribution to fit
Normal (default) | Exponential | Weibull | Non-parametric | ...

Specify the distribution to fit by selecting a distribution name from the drop-down list.

Exclusion rule — Data exclusion rule
list of exclusion rules

Specify a rule to exclude some data values by selecting an exclusion rule from the drop-down list. To
populate this drop-down list, you must first define exclusion rules by clicking Exclude in the main
window of the app. This parameter is optional

Manage fits

Plot — Flag to plot fitted distribution
checked (default) | unchecked

Specify which fit or fits to plot in the main window by selecting the Plot check box next to each fit.
Clear the Plot check box to remove a fit from the plot.

Conf bounds — Flag to plot confidence bounds
unchecked (default) | checked

If you select Plot for a particular fit, you can select Conf bounds to display the confidence bounds
for that fit on the plot in the main window. Clearing the Conf bounds check box removes the
confidence intervals from the plot. The Distribution Fitter app displays confidence bounds only if the
Display Type in the main window is set to Cumulative probability (CDF), Quantile (inverse CDF),
Survivor function, or Cumulative hazard.

Evaluate

Fit — Fit to evaluate
list of fits

Select one or more fits from the list to evaluate.

Function — Available functions to fit
Density (PDF) (default) | Cumulative probability (CDF) | Quantile (inverse CDF) |
Survivor function | Cumulative hazard | Hazard rate

Specify the type of probability function to evaluate from the drop-down list. Available probability
functions include the probability density function (pdf), cumulative distribution function (cdf),
quantile (inverse cdf), survival function, cumulative hazard, and hazard rate.

At x = — Values at which to evaluate function
numeric vector

Specify a numeric vector of values at which to evaluate the function. If you specify Function as
Quantile (inverse CDF), this field name changes to At p = and you enter a vector of probability
values.

Compute confidence bounds — Flag to compute confidence bounds
unchecked (default) | checked
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Select Compute confidence bounds to compute the confidence bounds for the selected fit. This
check box is enabled only if you specify Function as Cumulative probability (CDF), Quantile
(inverse CDF), Survivor function, or Cumulative hazard. This parameter is optional.

Level — Level for confidence bounds
95% (default) | numeric value

Specify the level at which to compute the confidence bounds. This check box is enabled only if you
specify Function as Cumulative probability (CDF), Quantile (inverse CDF), Survivor function,
or Cumulative hazard.

Plot function — Flag to plot function
unchecked (default) | checked

Select Plot function to display a plot of the distribution function, evaluated at the points that you
enter in the At x = field, in a new window. This parameter is optional.

Exclude

Exclusion rule name — Name of exclusion rule
text

Enter a name for the exclusion rule.

Exclude sections — Define data exclusion rules numerically
numeric value

Specify lower and upper limits for the data numerically.

Exclude graphically — Define data exclusion rules graphically
list of variables

Specify lower and upper limits for the data by selecting a variable from the Select data drop-down
list and clicking Exclude Graphically. An interactive plot opens in a new window, where you can add
lower or upper limits by clicking and dragging a boundary on the plot.

Existing exclusion rules — List of existing exclusion rules
list of exclusion rules

Select an existing exclusion rule from the list. You can copy, view, rename, or delete exclusion rules
by clicking the appropriate button.

Programmatic Use
distributionFitter opens the Distribution Fitter app, or brings focus to the app if it is already
open.

distributionFitter(y) opens the Distribution Fitter app populated with the data specified by the
vector y.

distributionFitter(y,cens) uses the vector cens to specify whether the observation y(j) is
censored, (cens(j)==1), or observed exactly, (cens(j)==0). If cens is omitted or empty, then no
y values are censored.
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distributionFitter(y,cens,freq) uses the vector freq to specify the frequency of each
element contained in y. If freq is omitted or empty, then all values in y have a frequency of 1.

distributionFitter(y,cens,freq,dsname) creates a data set with the name dsname using the
data vector, y, censoring indicator, cens, and frequency vector, freq. Specify dsname as a character
vector or string scalar, for example, 'mydata'.

Version History
Introduced before R2006a

See Also
Functions
fitdist | makedist | distributionFitter

Topics
“Fit a Distribution Using the Distribution Fitter App” on page 5-72
“Model Data Using the Distribution Fitter App” on page 5-52
“Working with Probability Distributions” on page 5-3
“Supported Distributions” on page 5-16

35 Functions

35-7942



fitckernel
Fit binary Gaussian kernel classifier using random feature expansion

Syntax
Mdl = fitckernel(X,Y)

Mdl = fitckernel(Tbl,ResponseVarName)
Mdl = fitckernel(Tbl,formula)
Mdl = fitckernel(Tbl,Y)

Mdl = fitckernel( ___ ,Name,Value)
[Mdl,FitInfo] = fitckernel( ___ )
[Mdl,FitInfo,HyperparameterOptimizationResults] = fitckernel( ___ )

Description
fitckernel trains or cross-validates a binary Gaussian kernel classification model for nonlinear
classification. fitckernel is more practical for big data applications that have large training sets
but can also be applied to smaller data sets that fit in memory.

fitckernel maps data in a low-dimensional space into a high-dimensional space, then fits a linear
model in the high-dimensional space by minimizing the regularized objective function. Obtaining the
linear model in the high-dimensional space is equivalent to applying the Gaussian kernel to the model
in the low-dimensional space. Available linear classification models include regularized support
vector machine (SVM) and logistic regression models.

To train a nonlinear SVM model for binary classification of in-memory data, see fitcsvm.

Mdl = fitckernel(X,Y) returns a binary Gaussian kernel classification model trained using the
predictor data in X and the corresponding class labels in Y. The fitckernel function maps the
predictors in a low-dimensional space into a high-dimensional space, then fits a binary SVM model to
the transformed predictors and class labels. This linear model is equivalent to the Gaussian kernel
classification model in the low-dimensional space.

Mdl = fitckernel(Tbl,ResponseVarName) returns a kernel classification model Mdl trained
using the predictor variables contained in the table Tbl and the class labels in
Tbl.ResponseVarName.

Mdl = fitckernel(Tbl,formula) returns a kernel classification model trained using the sample
data in the table Tbl. The input argument formula is an explanatory model of the response and a
subset of predictor variables in Tbl used to fit Mdl.

Mdl = fitckernel(Tbl,Y) returns a kernel classification model using the predictor variables in
the table Tbl and the class labels in vector Y.

Mdl = fitckernel( ___ ,Name,Value) specifies options using one or more name-value pair
arguments in addition to any of the input argument combinations in previous syntaxes. For example,
you can implement logistic regression, specify the number of dimensions of the expanded space, or
specify to cross-validate.
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[Mdl,FitInfo] = fitckernel( ___ ) also returns the fit information in the structure array
FitInfo using any of the input arguments in the previous syntaxes. You cannot request FitInfo for
cross-validated models.

[Mdl,FitInfo,HyperparameterOptimizationResults] = fitckernel( ___ ) also returns
the hyperparameter optimization results HyperparameterOptimizationResults when you
optimize hyperparameters by using the 'OptimizeHyperparameters' name-value pair argument.

Examples

Train Kernel Classification Model

Train a binary kernel classification model using SVM.

Load the ionosphere data set. This data set has 34 predictors and 351 binary responses for radar
returns, either bad ('b') or good ('g').

load ionosphere
[n,p] = size(X)

n = 351

p = 34

resp = unique(Y)

resp = 2x1 cell
    {'b'}
    {'g'}

Train a binary kernel classification model that identifies whether the radar return is bad ('b') or
good ('g'). Extract a fit summary to determine how well the optimization algorithm fits the model to
the data.

rng('default') % For reproducibility
[Mdl,FitInfo] = fitckernel(X,Y)

Mdl = 
  ClassificationKernel
              ResponseName: 'Y'
                ClassNames: {'b'  'g'}
                   Learner: 'svm'
    NumExpansionDimensions: 2048
               KernelScale: 1
                    Lambda: 0.0028
             BoxConstraint: 1

  Properties, Methods

FitInfo = struct with fields:
                  Solver: 'LBFGS-fast'
            LossFunction: 'hinge'
                  Lambda: 0.0028
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           BetaTolerance: 1.0000e-04
       GradientTolerance: 1.0000e-06
          ObjectiveValue: 0.2604
       GradientMagnitude: 0.0028
    RelativeChangeInBeta: 8.2512e-05
                 FitTime: 1.8185
                 History: []

Mdl is a ClassificationKernel model. To inspect the in-sample classification error, you can pass
Mdl and the training data or new data to the loss function. Or, you can pass Mdl and new predictor
data to the predict function to predict class labels for new observations. You can also pass Mdl and
the training data to the resume function to continue training.

FitInfo is a structure array containing optimization information. Use FitInfo to determine
whether optimization termination measurements are satisfactory.

For better accuracy, you can increase the maximum number of optimization iterations
('IterationLimit') and decrease the tolerance values ('BetaTolerance' and
'GradientTolerance') by using the name-value pair arguments. Doing so can improve measures
like ObjectiveValue and RelativeChangeInBeta in FitInfo. You can also optimize model
parameters by using the 'OptimizeHyperparameters' name-value pair argument.

Cross-Validate Kernel Classification Model

Load the ionosphere data set. This data set has 34 predictors and 351 binary responses for radar
returns, either bad ('b') or good ('g').

load ionosphere
rng('default') % For reproducibility

Cross-validate a binary kernel classification model. By default, the software uses 10-fold cross-
validation.

CVMdl = fitckernel(X,Y,'CrossVal','on')

CVMdl = 
  ClassificationPartitionedKernel
    CrossValidatedModel: 'Kernel'
           ResponseName: 'Y'
        NumObservations: 351
                  KFold: 10
              Partition: [1x1 cvpartition]
             ClassNames: {'b'  'g'}
         ScoreTransform: 'none'

  Properties, Methods

numel(CVMdl.Trained)

ans = 10
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CVMdl is a ClassificationPartitionedKernel model. Because fitckernel implements 10-fold
cross-validation, CVMdl contains 10 ClassificationKernel models that the software trains on
training-fold (in-fold) observations.

Estimate the cross-validated classification error.

kfoldLoss(CVMdl)

ans = 0.0940

The classification error rate is approximately 9%.

Optimize Kernel Classifier

Optimize hyperparameters automatically using the 'OptimizeHyperparameters' name-value pair
argument.

Load the ionosphere data set. This data set has 34 predictors and 351 binary responses for radar
returns, either bad ('b') or good ('g').

load ionosphere

Find hyperparameters that minimize five-fold cross-validation loss by using automatic
hyperparameter optimization. Specify 'OptimizeHyperparameters' as 'auto' so that
fitckernel finds optimal values of the 'KernelScale' and 'Lambda' name-value pair arguments.
For reproducibility, set the random seed and use the 'expected-improvement-plus' acquisition
function.

rng('default')
[Mdl,FitInfo,HyperparameterOptimizationResults] = fitckernel(X,Y,'OptimizeHyperparameters','auto',...
    'HyperparameterOptimizationOptions',struct('AcquisitionFunctionName','expected-improvement-plus'))

|=====================================================================================================|
| Iter | Eval   | Objective   | Objective   | BestSoFar   | BestSoFar   |  KernelScale |       Lambda |
|      | result |             | runtime     | (observed)  | (estim.)    |              |              |
|=====================================================================================================|
|    1 | Best   |     0.35897 |      1.9195 |     0.35897 |     0.35897 |       64.836 |   4.4811e-06 |
|    2 | Accept |     0.35897 |      9.3579 |     0.35897 |     0.35897 |     0.036335 |     0.015885 |
|    3 | Accept |     0.39601 |      7.7345 |     0.35897 |     0.36053 |    0.0022147 |   6.8254e-06 |
|    4 | Accept |     0.35897 |      3.3361 |     0.35897 |     0.35898 |       5.1259 |      0.28097 |
|    5 | Accept |     0.35897 |      3.6322 |     0.35897 |     0.35897 |      0.24853 |      0.10828 |
|    6 | Accept |     0.35897 |      1.0031 |     0.35897 |     0.35897 |       885.09 |   0.00057316 |
|    7 | Best   |     0.10826 |      6.4189 |     0.10826 |     0.10833 |       8.0346 |    0.0048286 |
|    8 | Best   |    0.076923 |      8.9348 |    0.076923 |    0.076999 |       7.0902 |    0.0034068 |
|    9 | Accept |    0.091168 |      7.1255 |    0.076923 |    0.077059 |       9.1504 |    0.0020604 |
|   10 | Best   |    0.062678 |      7.6547 |    0.062678 |    0.062723 |       3.5487 |    0.0025912 |
|   11 | Accept |    0.062678 |       10.55 |    0.062678 |    0.062741 |       2.3869 |     0.003321 |
|   12 | Accept |     0.41026 |      11.558 |    0.062678 |    0.062536 |      0.14075 |    0.0022499 |
|   13 | Accept |    0.062678 |      12.535 |    0.062678 |    0.062532 |       3.4215 |    0.0036803 |
|   14 | Accept |    0.062678 |      7.9924 |    0.062678 |    0.061956 |       3.2928 |    0.0030533 |
|   15 | Best   |     0.05698 |       6.622 |     0.05698 |    0.057204 |       5.0598 |    0.0025499 |
|   16 | Accept |    0.062678 |      6.8472 |     0.05698 |    0.057186 |       5.3401 |    0.0015096 |
|   17 | Accept |     0.05698 |      5.1529 |     0.05698 |    0.057118 |        1.813 |    0.0069209 |
|   18 | Accept |    0.059829 |      5.9945 |     0.05698 |    0.057092 |       1.5122 |    0.0046637 |
|   19 | Accept |    0.059829 |      6.6027 |     0.05698 |     0.05718 |       1.9277 |    0.0056364 |
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|   20 | Accept |    0.065527 |       6.204 |     0.05698 |    0.057189 |       1.4064 |    0.0094306 |
|=====================================================================================================|
| Iter | Eval   | Objective   | Objective   | BestSoFar   | BestSoFar   |  KernelScale |       Lambda |
|      | result |             | runtime     | (observed)  | (estim.)    |              |              |
|=====================================================================================================|
|   21 | Accept |     0.05698 |      7.1156 |     0.05698 |    0.057033 |       5.1719 |    0.0023614 |
|   22 | Best   |    0.054131 |      25.537 |    0.054131 |    0.054176 |       1.9618 |   6.5704e-05 |
|   23 | Best   |    0.042735 |      14.616 |    0.042735 |    0.042763 |       1.9463 |   1.0169e-05 |
|   24 | Accept |    0.082621 |      19.001 |    0.042735 |    0.042775 |       1.0661 |   1.3245e-05 |
|   25 | Accept |    0.054131 |      23.591 |    0.042735 |    0.042789 |        3.288 |   2.0035e-05 |
|   26 | Accept |    0.062678 |      22.118 |    0.042735 |    0.042769 |        2.657 |   3.0334e-06 |
|   27 | Accept |    0.059829 |      20.001 |    0.042735 |    0.043054 |       2.0381 |   1.9791e-05 |
|   28 | Accept |    0.042735 |      25.906 |    0.042735 |    0.042764 |       3.5043 |    0.0001237 |
|   29 | Accept |    0.054131 |      10.788 |    0.042735 |    0.042764 |       1.3897 |   3.2288e-06 |
|   30 | Accept |    0.062678 |      15.399 |    0.042735 |    0.042792 |       2.2414 |    0.0002259 |
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__________________________________________________________
Optimization completed.
MaxObjectiveEvaluations of 30 reached.
Total function evaluations: 30
Total elapsed time: 361.9522 seconds
Total objective function evaluation time: 321.2491

Best observed feasible point:
    KernelScale      Lambda  
    ___________    __________

      1.9463       1.0169e-05

Observed objective function value = 0.042735
Estimated objective function value = 0.043106
Function evaluation time = 14.6158

Best estimated feasible point (according to models):
    KernelScale     Lambda  
    ___________    _________
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      3.5043       0.0001237

Estimated objective function value = 0.042792
Estimated function evaluation time = 19.1657

Mdl = 
  ClassificationKernel
              ResponseName: 'Y'
                ClassNames: {'b'  'g'}
                   Learner: 'svm'
    NumExpansionDimensions: 2048
               KernelScale: 3.5043
                    Lambda: 1.2370e-04
             BoxConstraint: 23.0320

  Properties, Methods

FitInfo = struct with fields:
                  Solver: 'LBFGS-fast'
            LossFunction: 'hinge'
                  Lambda: 1.2370e-04
           BetaTolerance: 1.0000e-04
       GradientTolerance: 1.0000e-06
          ObjectiveValue: 0.0426
       GradientMagnitude: 0.0028
    RelativeChangeInBeta: 8.9154e-05
                 FitTime: 4.0398
                 History: []

HyperparameterOptimizationResults = 
  BayesianOptimization with properties:

                      ObjectiveFcn: @createObjFcn/inMemoryObjFcn
              VariableDescriptions: [4x1 optimizableVariable]
                           Options: [1x1 struct]
                      MinObjective: 0.0427
                   XAtMinObjective: [1x2 table]
             MinEstimatedObjective: 0.0428
          XAtMinEstimatedObjective: [1x2 table]
           NumObjectiveEvaluations: 30
                  TotalElapsedTime: 361.9522
                         NextPoint: [1x2 table]
                            XTrace: [30x2 table]
                    ObjectiveTrace: [30x1 double]
                  ConstraintsTrace: []
                     UserDataTrace: {30x1 cell}
      ObjectiveEvaluationTimeTrace: [30x1 double]
                IterationTimeTrace: [30x1 double]
                        ErrorTrace: [30x1 double]
                  FeasibilityTrace: [30x1 logical]
       FeasibilityProbabilityTrace: [30x1 double]
               IndexOfMinimumTrace: [30x1 double]
             ObjectiveMinimumTrace: [30x1 double]
    EstimatedObjectiveMinimumTrace: [30x1 double]
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For big data, the optimization procedure can take a long time. If the data set is too large to run the
optimization procedure, you can try to optimize the parameters using only partial data. Use the
datasample function and specify 'Replace','false' to sample data without replacement.

Input Arguments
X — Predictor data
numeric matrix

Predictor data, specified as an n-by-p numeric matrix, where n is the number of observations and p is
the number of predictors.

The length of Y and the number of observations in X must be equal.
Data Types: single | double

Y — Class labels
categorical array | character array | string array | logical vector | numeric vector | cell array of
character vectors

Class labels, specified as a categorical, character, or string array, logical or numeric vector, or cell
array of character vectors.

• fitckernel supports only binary classification. Either Y must contain exactly two distinct
classes, or you must specify two classes for training by using the ClassNames name-value pair
argument. For multiclass learning, see fitcecoc.

• The length of Y must be equal to the number of observations in X or Tbl.
• If Y is a character array, then each label must correspond to one row of the array.
• A good practice is to specify the class order by using the ClassNames name-value pair argument.

Data Types: categorical | char | string | logical | single | double | cell

Tbl — Sample data
table

Sample data used to train the model, specified as a table. Each row of Tbl corresponds to one
observation, and each column corresponds to one predictor variable. Multicolumn variables and cell
arrays other than cell arrays of character vectors are not allowed.

Optionally, Tbl can contain a column for the response variable and a column for the observation
weights.

• The response variable must be a categorical, character, or string array, a logical or numeric vector,
or a cell array of character vectors.

• fitckernel supports only binary classification. Either the response variable must contain
exactly two distinct classes, or you must specify two classes for training by using the
ClassNames name-value argument. For multiclass learning, see fitcecoc.

• A good practice is to specify the order of the classes in the response variable by using the
ClassNames name-value argument.

• The column for the weights must be a numeric vector.
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• You must specify the response variable in Tbl by using ResponseVarName or formula and
specify the observation weights in Tbl by using Weights.

• Specify the response variable by using ResponseVarName — fitckernel uses the remaining
variables as predictors. To use a subset of the remaining variables in Tbl as predictors, specify
predictor variables by using PredictorNames.

• Define a model specification by using formula — fitckernel uses a subset of the variables
in Tbl as predictor variables and the response variable, as specified in formula.

If Tbl does not contain the response variable, then specify a response variable by using Y. The length
of the response variable Y and the number of rows in Tbl must be equal. To use a subset of the
variables in Tbl as predictors, specify predictor variables by using PredictorNames.
Data Types: table

ResponseVarName — Response variable name
name of variable in Tbl

Response variable name, specified as the name of a variable in Tbl.

You must specify ResponseVarName as a character vector or string scalar. For example, if the
response variable Y is stored as Tbl.Y, then specify it as "Y". Otherwise, the software treats all
columns of Tbl, including Y, as predictors when training the model.

The response variable must be a categorical, character, or string array; a logical or numeric vector;
or a cell array of character vectors. If Y is a character array, then each element of the response
variable must correspond to one row of the array.

A good practice is to specify the order of the classes by using the ClassNames name-value argument.
Data Types: char | string

formula — Explanatory model of response variable and subset of predictor variables
character vector | string scalar

Explanatory model of the response variable and a subset of the predictor variables, specified as a
character vector or string scalar in the form "Y~x1+x2+x3". In this form, Y represents the response
variable, and x1, x2, and x3 represent the predictor variables.

To specify a subset of variables in Tbl as predictors for training the model, use a formula. If you
specify a formula, then the software does not use any variables in Tbl that do not appear in
formula.

The variable names in the formula must be both variable names in Tbl
(Tbl.Properties.VariableNames) and valid MATLAB identifiers. You can verify the variable
names in Tbl by using the isvarname function. If the variable names are not valid, then you can
convert them by using the matlab.lang.makeValidName function.
Data Types: char | string

Note The software treats NaN, empty character vector (''), empty string (""), <missing>, and
<undefined> elements as missing values, and removes observations with any of these
characteristics:
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• Missing value in the response variable
• At least one missing value in a predictor observation (row in X or Tbl)
• NaN value or 0 weight ('Weights')

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.

Note You cannot use any cross-validation name-value argument together with the
'OptimizeHyperparameters' name-value argument. You can modify the cross-validation for
'OptimizeHyperparameters' only by using the 'HyperparameterOptimizationOptions'
name-value argument.

Example: Mdl =
fitckernel(X,Y,'Learner','logistic','NumExpansionDimensions',2^15,'KernelScal
e','auto') implements logistic regression after mapping the predictor data to the 2^15
dimensional space using feature expansion with a kernel scale parameter selected by a heuristic
procedure.

Kernel Classification Options

Learner — Linear classification model type
'svm' (default) | 'logistic'

Linear classification model type, specified as the comma-separated pair consisting of 'Learner' and
'svm' or 'logistic'.

In the following table, f x = T(x)β + b .

• x is an observation (row vector) from p predictor variables.
• T ·  is a transformation of an observation (row vector) for feature expansion. T(x) maps x in ℝp to

a high-dimensional space (ℝm).
• β is a vector of coefficients.
• b is the scalar bias.

Value Algorithm Response Range Loss Function
'svm' Support vector machine y ∊ {–1,1}; 1 for the

positive class and –1
otherwise

Hinge: ℓ y, f x = max
0, 1− yf x

'logistic' Logistic regression Same as 'svm' Deviance (logistic):
ℓ y, f x = log

1 + exp −yf x

Example: 'Learner','logistic'
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NumExpansionDimensions — Number of dimensions of expanded space
'auto' (default) | positive integer

Number of dimensions of the expanded space, specified as the comma-separated pair consisting of
'NumExpansionDimensions' and 'auto' or a positive integer. For 'auto', the fitckernel
function selects the number of dimensions using 2.^ceil(min(log2(p)+5,15)), where p is the
number of predictors.

For details, see “Random Feature Expansion” on page 35-7966.
Example: 'NumExpansionDimensions',2^15
Data Types: char | string | single | double

KernelScale — Kernel scale parameter
1 (default) | "auto" | positive scalar

Kernel scale parameter, specified as "auto" or a positive scalar. The software obtains a random basis
for random feature expansion by using the kernel scale parameter. For details, see “Random Feature
Expansion” on page 35-7966.

If you specify "auto", then the software selects an appropriate kernel scale parameter using a
heuristic procedure. This heuristic procedure uses subsampling, so estimates can vary from one call
to another. Therefore, to reproduce results, set a random number seed by using rng before training.
Example: KernelScale="auto"
Data Types: char | string | single | double

BoxConstraint — Box constraint
1 (default) | positive scalar

Box constraint, specified as the comma-separated pair consisting of 'BoxConstraint' and a
positive scalar.

This argument is valid only when 'Learner' is 'svm'(default) and you do not specify a value for the
regularization term strength 'Lambda'. You can specify either 'BoxConstraint' or 'Lambda'
because the box constraint (C) and the regularization term strength (λ) are related by C = 1/(λn),
where n is the number of observations.
Example: 'BoxConstraint',100
Data Types: single | double

Lambda — Regularization term strength
'auto' (default) | nonnegative scalar

Regularization term strength, specified as the comma-separated pair consisting of 'Lambda' and
'auto' or a nonnegative scalar.

For 'auto', the value of Lambda is 1/n, where n is the number of observations.

When Learner is 'svm', you can specify either BoxConstraint or Lambda because the box
constraint (C) and the regularization term strength (λ) are related by C = 1/(λn).
Example: 'Lambda',0.01
Data Types: char | string | single | double
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Cross-Validation Options

CrossVal — Flag to train cross-validated classifier
'off' (default) | 'on'

Flag to train a cross-validated classifier, specified as the comma-separated pair consisting of
'Crossval' and 'on' or 'off'.

If you specify 'on', then the software trains a cross-validated classifier with 10 folds.

You can override this cross-validation setting using the CVPartition, Holdout, KFold, or
Leaveout name-value pair argument. You can use only one cross-validation name-value pair
argument at a time to create a cross-validated model.
Example: 'Crossval','on'

CVPartition — Cross-validation partition
[] (default) | cvpartition partition object

Cross-validation partition, specified as a cvpartition partition object created by cvpartition.
The partition object specifies the type of cross-validation and the indexing for the training and
validation sets.

To create a cross-validated model, you can specify only one of these four name-value arguments:
CVPartition, Holdout, KFold, or Leaveout.
Example: Suppose you create a random partition for 5-fold cross-validation on 500 observations by
using cvp = cvpartition(500,'KFold',5). Then, you can specify the cross-validated model by
using 'CVPartition',cvp.

Holdout — Fraction of data for holdout validation
scalar value in the range (0,1)

Fraction of the data used for holdout validation, specified as a scalar value in the range (0,1). If you
specify 'Holdout',p, then the software completes these steps:

1 Randomly select and reserve p*100% of the data as validation data, and train the model using
the rest of the data.

2 Store the compact, trained model in the Trained property of the cross-validated model.

To create a cross-validated model, you can specify only one of these four name-value arguments:
CVPartition, Holdout, KFold, or Leaveout.
Example: 'Holdout',0.1
Data Types: double | single

KFold — Number of folds
10 (default) | positive integer value greater than 1

Number of folds to use in a cross-validated model, specified as a positive integer value greater than 1.
If you specify 'KFold',k, then the software completes these steps:

1 Randomly partition the data into k sets.
2 For each set, reserve the set as validation data, and train the model using the other k – 1 sets.
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3 Store the k compact, trained models in a k-by-1 cell vector in the Trained property of the cross-
validated model.

To create a cross-validated model, you can specify only one of these four name-value arguments:
CVPartition, Holdout, KFold, or Leaveout.
Example: 'KFold',5
Data Types: single | double

Leaveout — Leave-one-out cross-validation flag
'off' (default) | 'on'

Leave-one-out cross-validation flag, specified as the comma-separated pair consisting of 'Leaveout'
and 'on' or 'off'. If you specify 'Leaveout','on', then, for each of the n observations (where n
is the number of observations excluding missing observations), the software completes these steps:

1 Reserve the observation as validation data, and train the model using the other n – 1
observations.

2 Store the n compact, trained models in the cells of an n-by-1 cell vector in the Trained property
of the cross-validated model.

To create a cross-validated model, you can use one of these four name-value pair arguments only:
CVPartition, Holdout, KFold, or Leaveout.
Example: 'Leaveout','on'

Convergence Controls

BetaTolerance — Relative tolerance on linear coefficients and bias term
1e–4 (default) | nonnegative scalar

Relative tolerance on the linear coefficients and the bias term (intercept), specified as a nonnegative
scalar.

Let Bt = βt′ bt , that is, the vector of the coefficients and the bias term at optimization iteration t. If
Bt − Bt − 1

Bt 2
< BetaTolerance, then optimization terminates.

If you also specify GradientTolerance, then optimization terminates when the software satisfies
either stopping criterion.
Example: BetaTolerance=1e–6
Data Types: single | double

GradientTolerance — Absolute gradient tolerance
1e–6 (default) | nonnegative scalar

Absolute gradient tolerance, specified as a nonnegative scalar.

Let ∇ℒ t be the gradient vector of the objective function with respect to the coefficients and bias term
at optimization iteration t. If ∇ℒ t ∞ = max ∇ℒ t < GradientTolerance, then optimization terminates.

If you also specify BetaTolerance, then optimization terminates when the software satisfies either
stopping criterion.
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Example: GradientTolerance=1e–5
Data Types: single | double

IterationLimit — Maximum number of optimization iterations
positive integer

Maximum number of optimization iterations, specified as a positive integer.

The default value is 1000 if the transformed data fits in memory, as specified by the BlockSize
name-value argument. Otherwise, the default value is 100.
Example: IterationLimit=500
Data Types: single | double

Other Kernel Classification Options

BlockSize — Maximum amount of allocated memory
4e^3 (4GB) (default) | positive scalar

Maximum amount of allocated memory (in megabytes), specified as the comma-separated pair
consisting of 'BlockSize' and a positive scalar.

If fitckernel requires more memory than the value of 'BlockSize' to hold the transformed
predictor data, then the software uses a block-wise strategy. For details about the block-wise strategy,
see “Algorithms” on page 35-7967.
Example: 'BlockSize',1e4
Data Types: single | double

RandomStream — Random number stream
global stream (default) | random stream object

Random number stream for reproducibility of data transformation, specified as a random stream
object. For details, see “Random Feature Expansion” on page 35-7966.

Use RandomStream to reproduce the random basis functions used by fitckernel to transform the
predictor data to a high-dimensional space. For details, see “Managing the Global Stream Using
RandStream” and “Creating and Controlling a Random Number Stream”.
Example: RandomStream=RandStream("mlfg6331_64")

HessianHistorySize — Size of history buffer for Hessian approximation
15 (default) | positive integer

Size of the history buffer for Hessian approximation, specified as the comma-separated pair
consisting of 'HessianHistorySize' and a positive integer. At each iteration, fitckernel
composes the Hessian approximation by using statistics from the latest HessianHistorySize
iterations.
Example: 'HessianHistorySize',10
Data Types: single | double

Verbose — Verbosity level
0 (default) | 1
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Verbosity level, specified as the comma-separated pair consisting of 'Verbose' and either 0 or 1.
Verbose controls the display of diagnostic information at the command line.

Value Description
0 fitckernel does not display diagnostic information.
1 fitckernel displays and stores the value of the objective function, gradient

magnitude, and other diagnostic information. FitInfo.History contains the
diagnostic information.

Example: 'Verbose',1
Data Types: single | double

Other Classification Options

CategoricalPredictors — Categorical predictors list
vector of positive integers | logical vector | character matrix | string array | cell array of character
vectors | 'all'

Categorical predictors list, specified as one of the values in this table.

Value Description
Vector of positive
integers

Each entry in the vector is an index value indicating that the corresponding
predictor is categorical. The index values are between 1 and p, where p is
the number of predictors used to train the model.

If fitckernel uses a subset of input variables as predictors, then the
function indexes the predictors using only the subset. The
CategoricalPredictors values do not count the response variable,
observation weights variable, or any other variables that the function does
not use.

Logical vector A true entry means that the corresponding predictor is categorical. The
length of the vector is p.

Character matrix Each row of the matrix is the name of a predictor variable. The names must
match the entries in PredictorNames. Pad the names with extra blanks
so each row of the character matrix has the same length.

String array or cell
array of character
vectors

Each element in the array is the name of a predictor variable. The names
must match the entries in PredictorNames.

"all" All predictors are categorical.

By default, if the predictor data is in a table (Tbl), fitckernel assumes that a variable is
categorical if it is a logical vector, categorical vector, character array, string array, or cell array of
character vectors. If the predictor data is a matrix (X), fitckernel assumes that all predictors are
continuous. To identify any other predictors as categorical predictors, specify them by using the
CategoricalPredictors name-value argument.

For the identified categorical predictors, fitckernel creates dummy variables using two different
schemes, depending on whether a categorical variable is unordered or ordered. For an unordered
categorical variable, fitckernel creates one dummy variable for each level of the categorical
variable. For an ordered categorical variable, fitckernel creates one less dummy variable than the
number of categories. For details, see “Automatic Creation of Dummy Variables” on page 2-50.
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Example: 'CategoricalPredictors','all'
Data Types: single | double | logical | char | string | cell

ClassNames — Names of classes to use for training
categorical array | character array | string array | logical vector | numeric vector | cell array of
character vectors

Names of classes to use for training, specified as a categorical, character, or string array; a logical or
numeric vector; or a cell array of character vectors. ClassNames must have the same data type as
the response variable in Tbl or Y.

If ClassNames is a character array, then each element must correspond to one row of the array.

Use ClassNames to:

• Specify the order of the classes during training.
• Specify the order of any input or output argument dimension that corresponds to the class order.

For example, use ClassNames to specify the order of the dimensions of Cost or the column order
of classification scores returned by predict.

• Select a subset of classes for training. For example, suppose that the set of all distinct class names
in Y is ["a","b","c"]. To train the model using observations from classes "a" and "c" only,
specify "ClassNames",["a","c"].

The default value for ClassNames is the set of all distinct class names in the response variable in
Tbl or Y.
Example: "ClassNames",["b","g"]
Data Types: categorical | char | string | logical | single | double | cell

Cost — Misclassification cost
square matrix | structure array

Misclassification cost, specified as the comma-separated pair consisting of 'Cost' and a square
matrix or structure.

• If you specify the square matrix cost ('Cost',cost), then cost(i,j) is the cost of classifying a
point into class j if its true class is i. That is, the rows correspond to the true class, and the
columns correspond to the predicted class. To specify the class order for the corresponding rows
and columns of cost, use the ClassNames name-value pair argument.

• If you specify the structure S ('Cost',S), then it must have two fields:

• S.ClassNames, which contains the class names as a variable of the same data type as Y
• S.ClassificationCosts, which contains the cost matrix with rows and columns ordered as

in S.ClassNames

The default value for Cost is ones(K) – eye(K), where K is the number of distinct classes.

fitckernel uses Cost to adjust the prior class probabilities specified in Prior. Then, fitckernel
uses the adjusted prior probabilities for training.
Example: 'Cost',[0 2; 1 0]
Data Types: single | double | struct
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PredictorNames — Predictor variable names
string array of unique names | cell array of unique character vectors

Predictor variable names, specified as a string array of unique names or cell array of unique
character vectors. The functionality of PredictorNames depends on the way you supply the training
data.

• If you supply X and Y, then you can use PredictorNames to assign names to the predictor
variables in X.

• The order of the names in PredictorNames must correspond to the column order of X. That
is, PredictorNames{1} is the name of X(:,1), PredictorNames{2} is the name of
X(:,2), and so on. Also, size(X,2) and numel(PredictorNames) must be equal.

• By default, PredictorNames is {'x1','x2',...}.
• If you supply Tbl, then you can use PredictorNames to choose which predictor variables to use

in training. That is, fitckernel uses only the predictor variables in PredictorNames and the
response variable during training.

• PredictorNames must be a subset of Tbl.Properties.VariableNames and cannot include
the name of the response variable.

• By default, PredictorNames contains the names of all predictor variables.
• A good practice is to specify the predictors for training using either PredictorNames or

formula, but not both.

Example: "PredictorNames",
["SepalLength","SepalWidth","PetalLength","PetalWidth"]

Data Types: string | cell

Prior — Prior probabilities
'empirical' (default) | 'uniform' | numeric vector | structure array

Prior probabilities for each class, specified as the comma-separated pair consisting of 'Prior' and
'empirical', 'uniform', a numeric vector, or a structure array.

This table summarizes the available options for setting prior probabilities.

Value Description
'empirical' The class prior probabilities are the class relative

frequencies in Y.
'uniform' All class prior probabilities are equal to 1/K,

where K is the number of classes.
numeric vector Each element is a class prior probability. Order

the elements according to their order in Y. If you
specify the order using the 'ClassNames' name-
value pair argument, then order the elements
accordingly.
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Value Description
structure array A structure S with two fields:

• S.ClassNames contains the class names as a
variable of the same type as Y.

• S.ClassProbs contains a vector of
corresponding prior probabilities.

fitckernel normalizes the prior probabilities in Prior to sum to 1.
Example: 'Prior',struct('ClassNames',
{{'setosa','versicolor'}},'ClassProbs',1:2)

Data Types: char | string | double | single | struct

ResponseName — Response variable name
"Y" (default) | character vector | string scalar

Response variable name, specified as a character vector or string scalar.

• If you supply Y, then you can use ResponseName to specify a name for the response variable.
• If you supply ResponseVarName or formula, then you cannot use ResponseName.

Example: "ResponseName","response"
Data Types: char | string

ScoreTransform — Score transformation
"none" (default) | "doublelogit" | "invlogit" | "ismax" | "logit" | function handle | ...

Score transformation, specified as a character vector, string scalar, or function handle.

This table summarizes the available character vectors and string scalars.

Value Description
"doublelogit" 1/(1 + e–2x)
"invlogit" log(x / (1 – x))
"ismax" Sets the score for the class with the largest score to 1,

and sets the scores for all other classes to 0
"logit" 1/(1 + e–x)
"none" or "identity" x (no transformation)
"sign" –1 for x < 0

0 for x = 0
1 for x > 0

"symmetric" 2x – 1
"symmetricismax" Sets the score for the class with the largest score to 1,

and sets the scores for all other classes to –1
"symmetriclogit" 2/(1 + e–x) – 1
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For a MATLAB function or a function you define, use its function handle for the score transform. The
function handle must accept a matrix (the original scores) and return a matrix of the same size (the
transformed scores).
Example: "ScoreTransform","logit"
Data Types: char | string | function_handle

Weights — Observation weights
nonnegative numeric vector | name of variable in Tbl

Observation weights, specified as a nonnegative numeric vector or the name of a variable in Tbl. The
software weights each observation in X or Tbl with the corresponding value in Weights. The length
of Weights must equal the number of observations in X or Tbl.

If you specify the input data as a table Tbl, then Weights can be the name of a variable in Tbl that
contains a numeric vector. In this case, you must specify Weights as a character vector or string
scalar. For example, if the weights vector W is stored as Tbl.W, then specify it as 'W'. Otherwise, the
software treats all columns of Tbl, including W, as predictors or the response variable when training
the model.

By default, Weights is ones(n,1), where n is the number of observations in X or Tbl.

The software normalizes Weights to sum to the value of the prior probability in the respective class.
Data Types: single | double | char | string

Hyperparameter Optimization Options

OptimizeHyperparameters — Parameters to optimize
'none' (default) | 'auto' | 'all' | string array or cell array of eligible parameter names | vector of
optimizableVariable objects

Parameters to optimize, specified as the comma-separated pair consisting of
'OptimizeHyperparameters' and one of these values:

• 'none' — Do not optimize.
• 'auto' — Use {'KernelScale','Lambda'}.
• 'all' — Optimize all eligible parameters.
• Cell array of eligible parameter names.
• Vector of optimizableVariable objects, typically the output of hyperparameters.

The optimization attempts to minimize the cross-validation loss (error) for fitckernel by varying
the parameters. To control the cross-validation type and other aspects of the optimization, use the
HyperparameterOptimizationOptions name-value pair argument.

Note The values of 'OptimizeHyperparameters' override any values you specify using other
name-value arguments. For example, setting 'OptimizeHyperparameters' to 'auto' causes
fitckernel to optimize hyperparameters corresponding to the 'auto' option and to ignore any
specified values for the hyperparameters.

The eligible parameters for fitckernel are:
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• KernelScale — fitckernel searches among positive values, by default log-scaled in the range
[1e-3,1e3].

• Lambda — fitckernel searches among positive values, by default log-scaled in the range
[1e-3,1e3]/n, where n is the number of observations.

• Learner — fitckernel searches among 'svm' and 'logistic'.
• NumExpansionDimensions — fitckernel searches among positive integers, by default log-

scaled in the range [100,10000].

Set nondefault parameters by passing a vector of optimizableVariable objects that have
nondefault values. For example:

load fisheriris
params = hyperparameters('fitckernel',meas,species);
params(2).Range = [1e-4,1e6];

Pass params as the value of 'OptimizeHyperparameters'.

By default, the iterative display appears at the command line, and plots appear according to the
number of hyperparameters in the optimization. For the optimization and plots, the objective function
is the misclassification rate. To control the iterative display, set the Verbose field of the
'HyperparameterOptimizationOptions' name-value argument. To control the plots, set the
ShowPlots field of the 'HyperparameterOptimizationOptions' name-value argument.

For an example, see “Optimize Kernel Classifier” on page 35-7946.
Example: 'OptimizeHyperparameters','auto'

HyperparameterOptimizationOptions — Options for optimization
structure

Options for optimization, specified as a structure. This argument modifies the effect of the
OptimizeHyperparameters name-value argument. All fields in the structure are optional.

Field Name Values Default
Optimizer • 'bayesopt' — Use Bayesian optimization.

Internally, this setting calls bayesopt.
• 'gridsearch' — Use grid search with

NumGridDivisions values per dimension.
• 'randomsearch' — Search at random among

MaxObjectiveEvaluations points.

'gridsearch' searches in a random order, using
uniform sampling without replacement from the
grid. After optimization, you can get a table in grid
order by using the command
sortrows(Mdl.HyperparameterOptimizatio
nResults).

'bayesopt'
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Field Name Values Default
AcquisitionFunct
ionName

• 'expected-improvement-per-second-
plus'

• 'expected-improvement'
• 'expected-improvement-plus'
• 'expected-improvement-per-second'
• 'lower-confidence-bound'
• 'probability-of-improvement'

Acquisition functions whose names include per-
second do not yield reproducible results because
the optimization depends on the runtime of the
objective function. Acquisition functions whose
names include plus modify their behavior when
they are overexploiting an area. For more details,
see “Acquisition Function Types” on page 10-3.

'expected-
improvement-per-
second-plus'

MaxObjectiveEval
uations

Maximum number of objective function
evaluations.

30 for 'bayesopt' and
'randomsearch', and
the entire grid for
'gridsearch'

MaxTime Time limit, specified as a positive real scalar. The
time limit is in seconds, as measured by tic and
toc. The run time can exceed MaxTime because
MaxTime does not interrupt function evaluations.

Inf

NumGridDivisions For 'gridsearch', the number of values in each
dimension. The value can be a vector of positive
integers giving the number of values for each
dimension, or a scalar that applies to all
dimensions. This field is ignored for categorical
variables.

10

ShowPlots Logical value indicating whether to show plots. If
true, this field plots the best observed objective
function value against the iteration number. If you
use Bayesian optimization (Optimizer is
'bayesopt'), then this field also plots the best
estimated objective function value. The best
observed objective function values and best
estimated objective function values correspond to
the values in the BestSoFar (observed) and
BestSoFar (estim.) columns of the iterative
display, respectively. You can find these values in
the properties ObjectiveMinimumTrace and
EstimatedObjectiveMinimumTrace of
Mdl.HyperparameterOptimizationResults.
If the problem includes one or two optimization
parameters for Bayesian optimization, then
ShowPlots also plots a model of the objective
function against the parameters.

true
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Field Name Values Default
SaveIntermediate
Results

Logical value indicating whether to save results
when Optimizer is 'bayesopt'. If true, this
field overwrites a workspace variable named
'BayesoptResults' at each iteration. The
variable is a BayesianOptimization object.

false

Verbose Display at the command line:

• 0 — No iterative display
• 1 — Iterative display
• 2 — Iterative display with extra information

For details, see the bayesopt Verbose name-
value argument and the example “Optimize
Classifier Fit Using Bayesian Optimization” on
page 10-56.

1

UseParallel Logical value indicating whether to run Bayesian
optimization in parallel, which requires Parallel
Computing Toolbox. Due to the nonreproducibility
of parallel timing, parallel Bayesian optimization
does not necessarily yield reproducible results. For
details, see “Parallel Bayesian Optimization” on
page 10-7.

false

Repartition Logical value indicating whether to repartition the
cross-validation at every iteration. If this field is
false, the optimizer uses a single partition for
the optimization.

The setting true usually gives the most robust
results because it takes partitioning noise into
account. However, for good results, true requires
at least twice as many function evaluations.

false

Use no more than one of the following three options.
CVPartition A cvpartition object, as created by

cvpartition
'Kfold',5 if you do not
specify a cross-validation
fieldHoldout A scalar in the range (0,1) representing the

holdout fraction
Kfold An integer greater than 1

Example:
'HyperparameterOptimizationOptions',struct('MaxObjectiveEvaluations',60)

Data Types: struct

Output Arguments
Mdl — Trained kernel classification model
ClassificationKernel model object | ClassificationPartitionedKernel cross-validated
model object
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Trained kernel classification model, returned as a ClassificationKernel model object or
ClassificationPartitionedKernel cross-validated model object.

If you set any of the name-value pair arguments CrossVal, CVPartition, Holdout, KFold, or
Leaveout, then Mdl is a ClassificationPartitionedKernel cross-validated classifier.
Otherwise, Mdl is a ClassificationKernel classifier.

To reference properties of Mdl, use dot notation. For example, enter
Mdl.NumExpansionDimensions in the Command Window to display the number of dimensions of
the expanded space.

Note Unlike other classification models, and for economical memory usage, a
ClassificationKernel model object does not store the training data or training process details
(for example, convergence history).

FitInfo — Optimization details
structure array

Optimization details, returned as a structure array including fields described in this table. The fields
contain final values or name-value pair argument specifications.

Field Description
Solver Objective function minimization technique: 'LBFGS-fast', 'LBFGS-

blockwise', or 'LBFGS-tall'. For details, see “Algorithms” on page 35-
7967.

LossFunction Loss function. Either 'hinge' or 'logit' depending on the type of linear
classification model. See Learner.

Lambda Regularization term strength. See Lambda.
BetaTolerance Relative tolerance on the linear coefficients and the bias term. See

BetaTolerance.
GradientTolerance Absolute gradient tolerance. See GradientTolerance.
ObjectiveValue Value of the objective function when optimization terminates. The

classification loss plus the regularization term compose the objective
function.

GradientMagnitude Infinite norm of the gradient vector of the objective function when
optimization terminates. See GradientTolerance.

RelativeChangeInBe
ta

Relative changes in the linear coefficients and the bias term when
optimization terminates. See BetaTolerance.

FitTime Elapsed, wall-clock time (in seconds) required to fit the model to the data.
History History of optimization information. This field is empty ([]) if you specify

'Verbose',0. For details, see Verbose and “Algorithms” on page 35-
7967.

To access fields, use dot notation. For example, to access the vector of objective function values for
each iteration, enter FitInfo.ObjectiveValue in the Command Window.

A good practice is to examine FitInfo to assess whether convergence is satisfactory.
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HyperparameterOptimizationResults — Cross-validation optimization of hyperparameters
BayesianOptimization object | table of hyperparameters and associated values

Cross-validation optimization of hyperparameters, returned as a BayesianOptimization object or
a table of hyperparameters and associated values. The output is nonempty when the value of
'OptimizeHyperparameters' is not 'none'. The output value depends on the Optimizer field
value of the 'HyperparameterOptimizationOptions' name-value pair argument:

Value of Optimizer Field Value of
HyperparameterOptimizationResults

'bayesopt' (default) Object of class BayesianOptimization
'gridsearch' or 'randomsearch' Table of hyperparameters used, observed

objective function values (cross-validation loss),
and rank of observations from lowest (best) to
highest (worst)

More About
Random Feature Expansion

Random feature expansion, such as Random Kitchen Sinks[1] or Fastfood[2], is a scheme to
approximate Gaussian kernels of the kernel classification algorithm to use for big data in a
computationally efficient way. Random feature expansion is more practical for big data applications
that have large training sets, but can also be applied to smaller data sets that fit in memory.

The kernel classification algorithm searches for an optimal hyperplane that separates the data into
two classes after mapping features into a high-dimensional space. Nonlinear features that are not
linearly separable in a low-dimensional space can be separable in the expanded high-dimensional
space. All the calculations for hyperplane classification use only dot products. You can obtain a
nonlinear classification model by replacing the dot product x1x2' with the nonlinear kernel function
G(x1, x2) = φ(x1), φ(x2) , where xi is the ith observation (row vector) and φ(xi) is a transformation
that maps xi to a high-dimensional space (called the “kernel trick”). However, evaluating G(x1,x2)
(Gram matrix) for each pair of observations is computationally expensive for a large data set (large
n).

The random feature expansion scheme finds a random transformation so that its dot product
approximates the Gaussian kernel. That is,

G(x1, x2) = φ(x1), φ(x2) ≈ T(x1)T(x2)′,

where T(x) maps x in ℝp to a high-dimensional space (ℝm). The Random Kitchen Sinks scheme uses
the random transformation

T(x) = m−1/2exp iZx′ ′,

where Z ∈ ℝm × p is a sample drawn from N 0, σ−2  and σ is a kernel scale. This scheme requires
O(mp) computation and storage.

The Fastfood scheme introduces another random basis V instead of Z using Hadamard matrices
combined with Gaussian scaling matrices. This random basis reduces the computation cost to
O(mlogp) and reduces storage to O(m).
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You can specify values for m and σ using the NumExpansionDimensions and KernelScale name-
value arguments of fitckernel, respectively.

The fitckernel function uses the Fastfood scheme for random feature expansion and uses linear
classification to train a Gaussian kernel classification model. Unlike solvers in the fitcsvm function,
which require computation of the n-by-n Gram matrix, the solver in fitckernel only needs to form a
matrix of size n-by-m, with m typically much less than n for big data.

Box Constraint

A box constraint is a parameter that controls the maximum penalty imposed on margin-violating
observations, and aids in preventing overfitting (regularization). Increasing the box constraint can
lead to longer training times.

The box constraint (C) and the regularization term strength (λ) are related by C = 1/(λn), where n is
the number of observations.

Tips
• Standardizing predictors before training a model can be helpful. You can standardize training data

and scale test data to have the same scale as the training data by using the normalize function.

Algorithms
• fitckernel minimizes the regularized objective function using a Limited-memory Broyden-

Fletcher-Goldfarb-Shanno (LBFGS) solver with ridge (L2) regularization. To find the type of LBFGS
solver used for training, type FitInfo.Solver in the Command Window.

• 'LBFGS-fast' — LBFGS solver.
• 'LBFGS-blockwise' — LBFGS solver with a block-wise strategy. If fitckernel requires

more memory than the value of BlockSize to hold the transformed predictor data, then the
function uses a block-wise strategy.

• 'LBFGS-tall' — LBFGS solver with a block-wise strategy for tall arrays.

When fitckernel uses a block-wise strategy, it implements LBFGS by distributing the
calculation of the loss and gradient among different parts of the data at each iteration. Also,
fitckernel refines the initial estimates of the linear coefficients and the bias term by fitting the
model locally to parts of the data and combining the coefficients by averaging. If you specify
'Verbose',1, then fitckernel displays diagnostic information for each data pass and stores
the information in the History field of FitInfo.

When fitckernel does not use a block-wise strategy, the initial estimates are zeros. If you
specify 'Verbose',1, then fitckernel displays diagnostic information for each iteration and
stores the information in the History field of FitInfo.

• If you specify the Cost, Prior, and Weights name-value arguments, the output model object
stores the specified values in the Cost, Prior, and W properties, respectively. The Cost property
stores the user-specified cost matrix (C) without modification. The Prior and W properties store
the prior probabilities and observation weights, respectively, after normalization. For model
training, the software updates the prior probabilities and observation weights to incorporate the
penalties described in the cost matrix. For details, see “Misclassification Cost Matrix, Prior
Probabilities, and Observation Weights” on page 19-8.
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Version History
Introduced in R2017b
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Extended Capabilities
Tall Arrays
Calculate with arrays that have more rows than fit in memory.

Usage notes and limitations:

• fitckernel does not support tall table data.
• Some name-value pair arguments have different defaults compared to the default values for the in-

memory fitckernel function. Supported name-value pair arguments, and any differences, are:

• 'Learner'
• 'NumExpansionDimensions'
• 'KernelScale'
• 'BoxConstraint'
• 'Lambda'
• 'BetaTolerance' — Default value is relaxed to 1e–3.
• 'GradientTolerance' — Default value is relaxed to 1e–5.
• 'IterationLimit' — Default value is relaxed to 20.
• 'BlockSize'
• 'RandomStream'
• 'HessianHistorySize'
• 'Verbose' — Default value is 1.
• 'ClassNames'
• 'Cost'
• 'Prior'
• 'ScoreTransform'
• 'Weights' — Value must be a tall array.
• 'OptimizeHyperparameters'
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• 'HyperparameterOptimizationOptions' — For cross-validation, tall optimization
supports only 'Holdout' validation. By default, the software selects and reserves 20% of the
data as holdout validation data, and trains the model using the rest of the data. You can specify
a different value for the holdout fraction by using this argument. For example, specify
'HyperparameterOptimizationOptions',struct('Holdout',0.3) to reserve 30% of
the data as validation data.

• If 'KernelScale' is 'auto', then fitckernel uses the random stream controlled by tallrng
for subsampling. For reproducibility, you must set a random number seed for both the global
stream and the random stream controlled by tallrng.

• If 'Lambda' is 'auto', then fitckernel might take an extra pass through the data to calculate
the number of observations in X.

• fitckernel uses a block-wise strategy. For details, see “Algorithms” on page 35-7967.

For more information, see “Tall Arrays”.

Automatic Parallel Support
Accelerate code by automatically running computation in parallel using Parallel Computing Toolbox™.

To perform parallel hyperparameter optimization, use the
'HyperparameterOptimizationOptions', struct('UseParallel',true) name-value
argument in the call to the fitckernel function.

For more information on parallel hyperparameter optimization, see “Parallel Bayesian Optimization”
on page 10-7.

For general information about parallel computing, see “Run MATLAB Functions with Automatic
Parallel Support” (Parallel Computing Toolbox).

See Also
bayesopt | bestPoint | ClassificationKernel | ClassificationPartitionedKernel |
fitclinear | fitcsvm | predict | resume | templateKernel

Topics
“Train SVM Classifiers Using a Gaussian Kernel” on page 19-157
“Bayesian Optimization with Tall Arrays” on page 32-9
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ClassificationKernel
Gaussian kernel classification model using random feature expansion

Description
ClassificationKernel is a trained model object for a binary Gaussian kernel classification model
using random feature expansion. ClassificationKernel is more practical for big data applications
that have large training sets but can also be applied to smaller data sets that fit in memory.

Unlike other classification models, and for economical memory usage, ClassificationKernel
model objects do not store the training data. However, they do store information such as the number
of dimensions of the expanded space, the kernel scale parameter, prior-class probabilities, and the
regularization strength.

You can use trained ClassificationKernel models to continue training using the training data
and to predict labels or classification scores for new data. For details, see resume and predict.

Creation
Create a ClassificationKernel object using the fitckernel function. This function maps data
in a low-dimensional space into a high-dimensional space, then fits a linear model in the high-
dimensional space by minimizing the regularized objective function. The linear model in the high-
dimensional space is equivalent to the model with a Gaussian kernel in the low-dimensional space.
Available linear classification models include regularized support vector machine (SVM) and logistic
regression models.

Properties
Kernel Classification Properties

Learner — Linear classification model type
'logistic' | 'svm'

Linear classification model type, specified as 'logistic' or 'svm'.

In the following table, f x = T(x)β + b .

• x is an observation (row vector) from p predictor variables.
• T ·  is a transformation of an observation (row vector) for feature expansion. T(x) maps x in ℝp to

a high-dimensional space (ℝm).
• β is a vector of coefficients.
• b is the scalar bias.
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Value Algorithm Loss Function FittedLoss Value
'svm' Support vector machine Hinge: ℓ y, f x = max

0, 1− yf x
'hinge'

'logistic' Logistic regression Deviance (logistic):
ℓ y, f x = log

1 + exp −yf x

'logit'

NumExpansionDimensions — Number of dimensions of expanded space
positive integer

Number of dimensions of the expanded space, specified as a positive integer.
Data Types: single | double

KernelScale — Kernel scale parameter
positive scalar

Kernel scale parameter, specified as a positive scalar.
Data Types: char | single | double

BoxConstraint — Box constraint
positive scalar

Box constraint, specified as a positive scalar.
Data Types: double | single

Lambda — Regularization term strength
nonnegative scalar

Regularization term strength, specified as a nonnegative scalar.
Data Types: single | double

FittedLoss — Loss function used to fit linear model
'hinge' | 'logit'

This property is read-only.

Loss function used to fit the linear model, specified as 'hinge' or 'logit'.

Value Algorithm Loss Function Learner Value
'hinge' Support vector machine Hinge: ℓ y, f x = max

0, 1− yf x
'svm'

'logit' Logistic regression Deviance (logistic):
ℓ y, f x = log

1 + exp −yf x

'logistic'

Regularization — Complexity penalty type
'ridge (L2)'

Complexity penalty type, which is always 'ridge (L2)'.

The software composes the objective function for minimization from the sum of the average loss
function (see FittedLoss) and the regularization term, ridge (L2) penalty.
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The ridge (L2) penalty is

λ
2 ∑j = 1

p
β j

2

where λ specifies the regularization term strength (see Lambda). The software excludes the bias term
(β0) from the regularization penalty.

Other Classification Properties

CategoricalPredictors — Indices of categorical predictors
vector of positive integers | []

Categorical predictor indices, specified as a vector of positive integers. CategoricalPredictors
contains index values indicating that the corresponding predictors are categorical. The index values
are between 1 and p, where p is the number of predictors used to train the model. If none of the
predictors are categorical, then this property is empty ([]).
Data Types: single | double

ClassNames — Unique class labels
categorical array | character array | logical vector | numeric vector | cell array of character vectors

Unique class labels used in training, specified as a categorical or character array, logical or numeric
vector, or cell array of character vectors. ClassNames has the same data type as the class labels Y.
(The software treats string arrays as cell arrays of character vectors.) ClassNames also determines
the class order.
Data Types: categorical | char | logical | single | double | cell

Cost — Misclassification costs
square numeric matrix

This property is read-only.

Misclassification costs, specified as a square numeric matrix. Cost has K rows and columns, where K
is the number of classes.

Cost(i,j) is the cost of classifying a point into class j if its true class is i. The order of the rows
and columns of Cost corresponds to the order of the classes in ClassNames.
Data Types: double

ModelParameters — Parameters used for training model
structure

Parameters used for training the ClassificationKernel model, specified as a structure.

Access fields of ModelParameters using dot notation. For example, access the relative tolerance on
the linear coefficients and the bias term by using Mdl.ModelParameters.BetaTolerance.
Data Types: struct

PredictorNames — Predictor names
cell array of character vectors
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Predictor names in order of their appearance in the predictor data, specified as a cell array of
character vectors. The length of PredictorNames is equal to the number of columns used as
predictor variables in the training data X or Tbl.
Data Types: cell

ExpandedPredictorNames — Expanded predictor names
cell array of character vectors

Expanded predictor names, specified as a cell array of character vectors.

If the model uses encoding for categorical variables, then ExpandedPredictorNames includes the
names that describe the expanded variables. Otherwise, ExpandedPredictorNames is the same as
PredictorNames.
Data Types: cell

Prior — Prior class probabilities
numeric vector

This property is read-only.

Prior class probabilities, specified as a numeric vector. Prior has as many elements as classes in
ClassNames, and the order of the elements corresponds to the elements of ClassNames.
Data Types: double

ResponseName — Response variable name
character vector

Response variable name, specified as a character vector.
Data Types: char

ScoreTransform — Score transformation function to apply to predicted scores
'doublelogit' | 'invlogit' | 'ismax' | 'logit' | 'none' | function handle | ...

Score transformation function to apply to predicted scores, specified as a function name or function
handle.

For kernel classification models and before the score transformation, the predicted classification
score for the observation x (row vector) is f x = T(x)β + b .

• T ·  is a transformation of an observation for feature expansion.
• β is the estimated column vector of coefficients.
• b is the estimated scalar bias.

To change the score transformation function to function, for example, use dot notation.

• For a built-in function, enter this code and replace function with a value from the table.

Mdl.ScoreTransform = 'function';

Value Description
"doublelogit" 1/(1 + e–2x)

 ClassificationKernel

35-7973



Value Description
"invlogit" log(x / (1 – x))
"ismax" Sets the score for the class with the largest score to

1, and sets the scores for all other classes to 0
"logit" 1/(1 + e–x)
"none" or "identity" x (no transformation)
"sign" –1 for x < 0

0 for x = 0
1 for x > 0

"symmetric" 2x – 1
"symmetricismax" Sets the score for the class with the largest score to

1, and sets the scores for all other classes to –1
"symmetriclogit" 2/(1 + e–x) – 1

• For a MATLAB function, or a function that you define, enter its function handle.

Mdl.ScoreTransform = @function;

function must accept a matrix of the original scores for each class, and then return a matrix of
the same size representing the transformed scores for each class.

Data Types: char | function_handle

Object Functions
edge Classification edge for Gaussian kernel classification model
incrementalLearner Convert kernel model for binary classification to incremental learner
lime Local interpretable model-agnostic explanations (LIME)
loss Classification loss for Gaussian kernel classification model
margin Classification margins for Gaussian kernel classification model
partialDependence Compute partial dependence
plotPartialDependence Create partial dependence plot (PDP) and individual conditional expectation

(ICE) plots
predict Predict labels for Gaussian kernel classification model
resume Resume training of Gaussian kernel classification model
shapley Shapley values

Examples
Train Kernel Classification Model

Train a binary kernel classification model using SVM.

Load the ionosphere data set. This data set has 34 predictors and 351 binary responses for radar
returns, either bad ('b') or good ('g').

load ionosphere
[n,p] = size(X)

n = 351

p = 34
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resp = unique(Y)

resp = 2x1 cell
    {'b'}
    {'g'}

Train a binary kernel classification model that identifies whether the radar return is bad ('b') or
good ('g'). Extract a fit summary to determine how well the optimization algorithm fits the model to
the data.

rng('default') % For reproducibility
[Mdl,FitInfo] = fitckernel(X,Y)

Mdl = 
  ClassificationKernel
              ResponseName: 'Y'
                ClassNames: {'b'  'g'}
                   Learner: 'svm'
    NumExpansionDimensions: 2048
               KernelScale: 1
                    Lambda: 0.0028
             BoxConstraint: 1

  Properties, Methods

FitInfo = struct with fields:
                  Solver: 'LBFGS-fast'
            LossFunction: 'hinge'
                  Lambda: 0.0028
           BetaTolerance: 1.0000e-04
       GradientTolerance: 1.0000e-06
          ObjectiveValue: 0.2604
       GradientMagnitude: 0.0028
    RelativeChangeInBeta: 8.2512e-05
                 FitTime: 1.8185
                 History: []

Mdl is a ClassificationKernel model. To inspect the in-sample classification error, you can pass
Mdl and the training data or new data to the loss function. Or, you can pass Mdl and new predictor
data to the predict function to predict class labels for new observations. You can also pass Mdl and
the training data to the resume function to continue training.

FitInfo is a structure array containing optimization information. Use FitInfo to determine
whether optimization termination measurements are satisfactory.

For better accuracy, you can increase the maximum number of optimization iterations
('IterationLimit') and decrease the tolerance values ('BetaTolerance' and
'GradientTolerance') by using the name-value pair arguments. Doing so can improve measures
like ObjectiveValue and RelativeChangeInBeta in FitInfo. You can also optimize model
parameters by using the 'OptimizeHyperparameters' name-value pair argument.
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Predict Class Labels and Resume Training

Load the ionosphere data set. This data set has 34 predictors and 351 binary responses for radar
returns, either bad ('b') or good ('g').

load ionosphere

Partition the data set into training and test sets. Specify a 20% holdout sample for the test set.

rng('default') % For reproducibility
Partition = cvpartition(Y,'Holdout',0.20);
trainingInds = training(Partition); % Indices for the training set
XTrain = X(trainingInds,:);
YTrain = Y(trainingInds);
testInds = test(Partition); % Indices for the test set
XTest = X(testInds,:);
YTest = Y(testInds);

Train a binary kernel classification model that identifies whether the radar return is bad ('b') or
good ('g').

Mdl = fitckernel(XTrain,YTrain,'IterationLimit',5,'Verbose',1);

|=================================================================================================================|
| Solver |  Pass  |   Iteration  |   Objective   |     Step      |    Gradient   |    Relative    |  sum(beta~=0) |
|        |        |              |               |               |   magnitude   | change in Beta |               |
|=================================================================================================================|
|  LBFGS |      1 |            0 |  1.000000e+00 |  0.000000e+00 |  2.811388e-01 |                |             0 |
|  LBFGS |      1 |            1 |  7.585395e-01 |  4.000000e+00 |  3.594306e-01 |   1.000000e+00 |          2048 |
|  LBFGS |      1 |            2 |  7.160994e-01 |  1.000000e+00 |  2.028470e-01 |   6.923988e-01 |          2048 |
|  LBFGS |      1 |            3 |  6.825272e-01 |  1.000000e+00 |  2.846975e-02 |   2.388909e-01 |          2048 |
|  LBFGS |      1 |            4 |  6.699435e-01 |  1.000000e+00 |  1.779359e-02 |   1.325304e-01 |          2048 |
|  LBFGS |      1 |            5 |  6.535619e-01 |  1.000000e+00 |  2.669039e-01 |   4.112952e-01 |          2048 |
|=================================================================================================================|

Mdl is a ClassificationKernel model.

Predict the test-set labels, construct a confusion matrix for the test set, and estimate the
classification error for the test set.

label = predict(Mdl,XTest);
ConfusionTest = confusionchart(YTest,label);
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L = loss(Mdl,XTest,YTest)

L = 0.3594

Mdl misclassifies all bad radar returns as good returns.

Continue training by using resume. This function continues training with the same options used for
training Mdl.

UpdatedMdl = resume(Mdl,XTrain,YTrain);

|=================================================================================================================|
| Solver |  Pass  |   Iteration  |   Objective   |     Step      |    Gradient   |    Relative    |  sum(beta~=0) |
|        |        |              |               |               |   magnitude   | change in Beta |               |
|=================================================================================================================|
|  LBFGS |      1 |            0 |  6.535619e-01 |  0.000000e+00 |  2.669039e-01 |                |          2048 |
|  LBFGS |      1 |            1 |  6.132547e-01 |  1.000000e+00 |  6.355537e-03 |   1.522092e-01 |          2048 |
|  LBFGS |      1 |            2 |  5.938316e-01 |  4.000000e+00 |  3.202847e-02 |   1.498036e-01 |          2048 |
|  LBFGS |      1 |            3 |  4.169274e-01 |  1.000000e+00 |  1.530249e-01 |   7.234253e-01 |          2048 |
|  LBFGS |      1 |            4 |  3.679212e-01 |  5.000000e-01 |  2.740214e-01 |   2.495886e-01 |          2048 |
|  LBFGS |      1 |            5 |  3.332261e-01 |  1.000000e+00 |  1.423488e-02 |   9.558680e-02 |          2048 |
|  LBFGS |      1 |            6 |  3.235335e-01 |  1.000000e+00 |  7.117438e-03 |   7.137260e-02 |          2048 |
|  LBFGS |      1 |            7 |  3.112331e-01 |  1.000000e+00 |  6.049822e-02 |   1.252157e-01 |          2048 |
|  LBFGS |      1 |            8 |  2.972144e-01 |  1.000000e+00 |  7.117438e-03 |   5.796240e-02 |          2048 |
|  LBFGS |      1 |            9 |  2.837450e-01 |  1.000000e+00 |  8.185053e-02 |   1.484733e-01 |          2048 |
|  LBFGS |      1 |           10 |  2.797642e-01 |  1.000000e+00 |  3.558719e-02 |   5.856842e-02 |          2048 |
|  LBFGS |      1 |           11 |  2.771280e-01 |  1.000000e+00 |  2.846975e-02 |   2.349433e-02 |          2048 |
|  LBFGS |      1 |           12 |  2.741570e-01 |  1.000000e+00 |  3.914591e-02 |   3.113194e-02 |          2048 |
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|  LBFGS |      1 |           13 |  2.725701e-01 |  5.000000e-01 |  1.067616e-01 |   8.729821e-02 |          2048 |
|  LBFGS |      1 |           14 |  2.667147e-01 |  1.000000e+00 |  3.914591e-02 |   3.491723e-02 |          2048 |
|  LBFGS |      1 |           15 |  2.621152e-01 |  1.000000e+00 |  7.117438e-03 |   5.104726e-02 |          2048 |
|  LBFGS |      1 |           16 |  2.601652e-01 |  1.000000e+00 |  3.558719e-02 |   3.764904e-02 |          2048 |
|  LBFGS |      1 |           17 |  2.589052e-01 |  1.000000e+00 |  3.202847e-02 |   3.655744e-02 |          2048 |
|  LBFGS |      1 |           18 |  2.583185e-01 |  1.000000e+00 |  7.117438e-03 |   6.490571e-02 |          2048 |
|  LBFGS |      1 |           19 |  2.556482e-01 |  1.000000e+00 |  9.252669e-02 |   4.601390e-02 |          2048 |
|  LBFGS |      1 |           20 |  2.542643e-01 |  1.000000e+00 |  7.117438e-02 |   4.141838e-02 |          2048 |
|=================================================================================================================|
| Solver |  Pass  |   Iteration  |   Objective   |     Step      |    Gradient   |    Relative    |  sum(beta~=0) |
|        |        |              |               |               |   magnitude   | change in Beta |               |
|=================================================================================================================|
|  LBFGS |      1 |           21 |  2.532117e-01 |  1.000000e+00 |  1.067616e-02 |   1.661720e-02 |          2048 |
|  LBFGS |      1 |           22 |  2.529890e-01 |  1.000000e+00 |  2.135231e-02 |   1.231678e-02 |          2048 |
|  LBFGS |      1 |           23 |  2.523232e-01 |  1.000000e+00 |  3.202847e-02 |   1.958586e-02 |          2048 |
|  LBFGS |      1 |           24 |  2.506736e-01 |  1.000000e+00 |  1.779359e-02 |   2.474613e-02 |          2048 |
|  LBFGS |      1 |           25 |  2.501995e-01 |  1.000000e+00 |  1.779359e-02 |   2.514352e-02 |          2048 |
|  LBFGS |      1 |           26 |  2.488242e-01 |  1.000000e+00 |  3.558719e-03 |   1.531810e-02 |          2048 |
|  LBFGS |      1 |           27 |  2.485295e-01 |  5.000000e-01 |  3.202847e-02 |   1.229760e-02 |          2048 |
|  LBFGS |      1 |           28 |  2.482244e-01 |  1.000000e+00 |  4.270463e-02 |   8.970983e-03 |          2048 |
|  LBFGS |      1 |           29 |  2.479714e-01 |  1.000000e+00 |  3.558719e-03 |   7.393900e-03 |          2048 |
|  LBFGS |      1 |           30 |  2.477316e-01 |  1.000000e+00 |  3.202847e-02 |   3.268087e-03 |          2048 |
|  LBFGS |      1 |           31 |  2.476178e-01 |  2.500000e-01 |  3.202847e-02 |   5.445890e-03 |          2048 |
|  LBFGS |      1 |           32 |  2.474874e-01 |  1.000000e+00 |  1.779359e-02 |   3.535903e-03 |          2048 |
|  LBFGS |      1 |           33 |  2.473980e-01 |  1.000000e+00 |  7.117438e-03 |   2.821725e-03 |          2048 |
|  LBFGS |      1 |           34 |  2.472935e-01 |  1.000000e+00 |  3.558719e-03 |   2.699880e-03 |          2048 |
|  LBFGS |      1 |           35 |  2.471418e-01 |  1.000000e+00 |  3.558719e-03 |   1.242523e-02 |          2048 |
|  LBFGS |      1 |           36 |  2.469862e-01 |  1.000000e+00 |  2.846975e-02 |   7.895605e-03 |          2048 |
|  LBFGS |      1 |           37 |  2.469598e-01 |  1.000000e+00 |  2.135231e-02 |   6.657676e-03 |          2048 |
|  LBFGS |      1 |           38 |  2.466941e-01 |  1.000000e+00 |  3.558719e-02 |   4.654690e-03 |          2048 |
|  LBFGS |      1 |           39 |  2.466660e-01 |  5.000000e-01 |  1.423488e-02 |   2.885769e-03 |          2048 |
|  LBFGS |      1 |           40 |  2.465605e-01 |  1.000000e+00 |  3.558719e-03 |   4.562565e-03 |          2048 |
|=================================================================================================================|
| Solver |  Pass  |   Iteration  |   Objective   |     Step      |    Gradient   |    Relative    |  sum(beta~=0) |
|        |        |              |               |               |   magnitude   | change in Beta |               |
|=================================================================================================================|
|  LBFGS |      1 |           41 |  2.465362e-01 |  1.000000e+00 |  1.423488e-02 |   5.652180e-03 |          2048 |
|  LBFGS |      1 |           42 |  2.463528e-01 |  1.000000e+00 |  3.558719e-03 |   2.389759e-03 |          2048 |
|  LBFGS |      1 |           43 |  2.463207e-01 |  1.000000e+00 |  1.511170e-03 |   3.738286e-03 |          2048 |
|  LBFGS |      1 |           44 |  2.462585e-01 |  5.000000e-01 |  7.117438e-02 |   2.321693e-03 |          2048 |
|  LBFGS |      1 |           45 |  2.461742e-01 |  1.000000e+00 |  7.117438e-03 |   2.599725e-03 |          2048 |
|  LBFGS |      1 |           46 |  2.461434e-01 |  1.000000e+00 |  3.202847e-02 |   3.186923e-03 |          2048 |
|  LBFGS |      1 |           47 |  2.461115e-01 |  1.000000e+00 |  7.117438e-03 |   1.530711e-03 |          2048 |
|  LBFGS |      1 |           48 |  2.460814e-01 |  1.000000e+00 |  1.067616e-02 |   1.811714e-03 |          2048 |
|  LBFGS |      1 |           49 |  2.460533e-01 |  5.000000e-01 |  1.423488e-02 |   1.012252e-03 |          2048 |
|  LBFGS |      1 |           50 |  2.460111e-01 |  1.000000e+00 |  1.423488e-02 |   4.166762e-03 |          2048 |
|  LBFGS |      1 |           51 |  2.459414e-01 |  1.000000e+00 |  1.067616e-02 |   3.271946e-03 |          2048 |
|  LBFGS |      1 |           52 |  2.458809e-01 |  1.000000e+00 |  1.423488e-02 |   1.846440e-03 |          2048 |
|  LBFGS |      1 |           53 |  2.458479e-01 |  1.000000e+00 |  1.067616e-02 |   1.180871e-03 |          2048 |
|  LBFGS |      1 |           54 |  2.458146e-01 |  1.000000e+00 |  1.455008e-03 |   1.422954e-03 |          2048 |
|  LBFGS |      1 |           55 |  2.457878e-01 |  1.000000e+00 |  7.117438e-03 |   1.880892e-03 |          2048 |
|  LBFGS |      1 |           56 |  2.457519e-01 |  1.000000e+00 |  2.491103e-02 |   1.074764e-03 |          2048 |
|  LBFGS |      1 |           57 |  2.457420e-01 |  1.000000e+00 |  7.473310e-02 |   9.511878e-04 |          2048 |
|  LBFGS |      1 |           58 |  2.457212e-01 |  1.000000e+00 |  3.558719e-03 |   3.718564e-04 |          2048 |
|  LBFGS |      1 |           59 |  2.457089e-01 |  1.000000e+00 |  4.270463e-02 |   6.237270e-04 |          2048 |
|  LBFGS |      1 |           60 |  2.457047e-01 |  5.000000e-01 |  1.423488e-02 |   3.647573e-04 |          2048 |
|=================================================================================================================|
| Solver |  Pass  |   Iteration  |   Objective   |     Step      |    Gradient   |    Relative    |  sum(beta~=0) |
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|        |        |              |               |               |   magnitude   | change in Beta |               |
|=================================================================================================================|
|  LBFGS |      1 |           61 |  2.456991e-01 |  1.000000e+00 |  1.423488e-02 |   5.666884e-04 |          2048 |
|  LBFGS |      1 |           62 |  2.456898e-01 |  1.000000e+00 |  1.779359e-02 |   4.697056e-04 |          2048 |
|  LBFGS |      1 |           63 |  2.456792e-01 |  1.000000e+00 |  1.779359e-02 |   5.984927e-04 |          2048 |
|  LBFGS |      1 |           64 |  2.456603e-01 |  1.000000e+00 |  1.403782e-03 |   5.414985e-04 |          2048 |
|  LBFGS |      1 |           65 |  2.456482e-01 |  1.000000e+00 |  3.558719e-03 |   6.506293e-04 |          2048 |
|  LBFGS |      1 |           66 |  2.456358e-01 |  1.000000e+00 |  1.476262e-03 |   1.284139e-03 |          2048 |
|  LBFGS |      1 |           67 |  2.456124e-01 |  1.000000e+00 |  3.558719e-03 |   8.636596e-04 |          2048 |
|  LBFGS |      1 |           68 |  2.455980e-01 |  1.000000e+00 |  1.067616e-02 |   9.861527e-04 |          2048 |
|  LBFGS |      1 |           69 |  2.455780e-01 |  1.000000e+00 |  1.067616e-02 |   5.102487e-04 |          2048 |
|  LBFGS |      1 |           70 |  2.455633e-01 |  1.000000e+00 |  3.558719e-03 |   1.228077e-03 |          2048 |
|  LBFGS |      1 |           71 |  2.455449e-01 |  1.000000e+00 |  1.423488e-02 |   7.864590e-04 |          2048 |
|  LBFGS |      1 |           72 |  2.455261e-01 |  1.000000e+00 |  3.558719e-02 |   1.090815e-03 |          2048 |
|  LBFGS |      1 |           73 |  2.455142e-01 |  1.000000e+00 |  1.067616e-02 |   1.701506e-03 |          2048 |
|  LBFGS |      1 |           74 |  2.455075e-01 |  1.000000e+00 |  1.779359e-02 |   1.504577e-03 |          2048 |
|  LBFGS |      1 |           75 |  2.455008e-01 |  1.000000e+00 |  3.914591e-02 |   1.144021e-03 |          2048 |
|  LBFGS |      1 |           76 |  2.454943e-01 |  1.000000e+00 |  2.491103e-02 |   3.015254e-04 |          2048 |
|  LBFGS |      1 |           77 |  2.454918e-01 |  5.000000e-01 |  3.202847e-02 |   9.837523e-04 |          2048 |
|  LBFGS |      1 |           78 |  2.454870e-01 |  1.000000e+00 |  1.779359e-02 |   4.328953e-04 |          2048 |
|  LBFGS |      1 |           79 |  2.454865e-01 |  5.000000e-01 |  3.558719e-03 |   7.126815e-04 |          2048 |
|  LBFGS |      1 |           80 |  2.454775e-01 |  1.000000e+00 |  5.693950e-02 |   8.992562e-04 |          2048 |
|=================================================================================================================|
| Solver |  Pass  |   Iteration  |   Objective   |     Step      |    Gradient   |    Relative    |  sum(beta~=0) |
|        |        |              |               |               |   magnitude   | change in Beta |               |
|=================================================================================================================|
|  LBFGS |      1 |           81 |  2.454686e-01 |  1.000000e+00 |  1.183730e-03 |   1.590246e-04 |          2048 |
|  LBFGS |      1 |           82 |  2.454612e-01 |  1.000000e+00 |  2.135231e-02 |   1.389570e-04 |          2048 |
|  LBFGS |      1 |           83 |  2.454506e-01 |  1.000000e+00 |  3.558719e-03 |   6.162089e-04 |          2048 |
|  LBFGS |      1 |           84 |  2.454436e-01 |  1.000000e+00 |  1.423488e-02 |   1.877414e-03 |          2048 |
|  LBFGS |      1 |           85 |  2.454378e-01 |  1.000000e+00 |  1.423488e-02 |   3.370852e-04 |          2048 |
|  LBFGS |      1 |           86 |  2.454249e-01 |  1.000000e+00 |  1.423488e-02 |   8.133615e-04 |          2048 |
|  LBFGS |      1 |           87 |  2.454101e-01 |  1.000000e+00 |  1.067616e-02 |   3.872088e-04 |          2048 |
|  LBFGS |      1 |           88 |  2.453963e-01 |  1.000000e+00 |  1.779359e-02 |   5.670260e-04 |          2048 |
|  LBFGS |      1 |           89 |  2.453866e-01 |  1.000000e+00 |  1.067616e-02 |   1.444984e-03 |          2048 |
|  LBFGS |      1 |           90 |  2.453821e-01 |  1.000000e+00 |  7.117438e-03 |   2.457270e-03 |          2048 |
|  LBFGS |      1 |           91 |  2.453790e-01 |  5.000000e-01 |  6.761566e-02 |   8.228766e-04 |          2048 |
|  LBFGS |      1 |           92 |  2.453603e-01 |  1.000000e+00 |  2.135231e-02 |   1.084233e-03 |          2048 |
|  LBFGS |      1 |           93 |  2.453540e-01 |  1.000000e+00 |  2.135231e-02 |   2.060005e-04 |          2048 |
|  LBFGS |      1 |           94 |  2.453482e-01 |  1.000000e+00 |  1.779359e-02 |   1.560883e-04 |          2048 |
|  LBFGS |      1 |           95 |  2.453461e-01 |  1.000000e+00 |  1.779359e-02 |   1.614693e-03 |          2048 |
|  LBFGS |      1 |           96 |  2.453371e-01 |  1.000000e+00 |  3.558719e-02 |   2.145835e-04 |          2048 |
|  LBFGS |      1 |           97 |  2.453305e-01 |  1.000000e+00 |  4.270463e-02 |   7.602088e-04 |          2048 |
|  LBFGS |      1 |           98 |  2.453283e-01 |  2.500000e-01 |  2.135231e-02 |   3.422253e-04 |          2048 |
|  LBFGS |      1 |           99 |  2.453246e-01 |  1.000000e+00 |  3.558719e-03 |   3.872561e-04 |          2048 |
|  LBFGS |      1 |          100 |  2.453214e-01 |  1.000000e+00 |  3.202847e-02 |   1.732237e-04 |          2048 |
|=================================================================================================================|
| Solver |  Pass  |   Iteration  |   Objective   |     Step      |    Gradient   |    Relative    |  sum(beta~=0) |
|        |        |              |               |               |   magnitude   | change in Beta |               |
|=================================================================================================================|
|  LBFGS |      1 |          101 |  2.453168e-01 |  1.000000e+00 |  1.067616e-02 |   3.065286e-04 |          2048 |
|  LBFGS |      1 |          102 |  2.453155e-01 |  5.000000e-01 |  4.626335e-02 |   3.402368e-04 |          2048 |
|  LBFGS |      1 |          103 |  2.453136e-01 |  1.000000e+00 |  1.779359e-02 |   2.215029e-04 |          2048 |
|  LBFGS |      1 |          104 |  2.453119e-01 |  1.000000e+00 |  3.202847e-02 |   4.142355e-04 |          2048 |
|  LBFGS |      1 |          105 |  2.453093e-01 |  1.000000e+00 |  1.423488e-02 |   2.186007e-04 |          2048 |
|  LBFGS |      1 |          106 |  2.453090e-01 |  1.000000e+00 |  2.846975e-02 |   1.338602e-03 |          2048 |
|  LBFGS |      1 |          107 |  2.453048e-01 |  1.000000e+00 |  1.423488e-02 |   3.208296e-04 |          2048 |
|  LBFGS |      1 |          108 |  2.453040e-01 |  1.000000e+00 |  3.558719e-02 |   1.294488e-03 |          2048 |
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|  LBFGS |      1 |          109 |  2.452977e-01 |  1.000000e+00 |  1.423488e-02 |   8.328380e-04 |          2048 |
|  LBFGS |      1 |          110 |  2.452934e-01 |  1.000000e+00 |  2.135231e-02 |   5.149259e-04 |          2048 |
|  LBFGS |      1 |          111 |  2.452886e-01 |  1.000000e+00 |  1.779359e-02 |   3.650664e-04 |          2048 |
|  LBFGS |      1 |          112 |  2.452854e-01 |  1.000000e+00 |  1.067616e-02 |   2.633981e-04 |          2048 |
|  LBFGS |      1 |          113 |  2.452836e-01 |  1.000000e+00 |  1.067616e-02 |   1.804300e-04 |          2048 |
|  LBFGS |      1 |          114 |  2.452817e-01 |  1.000000e+00 |  7.117438e-03 |   4.251642e-04 |          2048 |
|  LBFGS |      1 |          115 |  2.452741e-01 |  1.000000e+00 |  1.779359e-02 |   9.018440e-04 |          2048 |
|  LBFGS |      1 |          116 |  2.452691e-01 |  1.000000e+00 |  2.135231e-02 |   9.941716e-05 |          2048 |
|=================================================================================================================|

Predict the test-set labels, construct a confusion matrix for the test set, and estimate the
classification error for the test set.

UpdatedLabel = predict(UpdatedMdl,XTest);
UpdatedConfusionTest = confusionchart(YTest,UpdatedLabel);

UpdatedL = loss(UpdatedMdl,XTest,YTest)

UpdatedL = 0.1284

The classification error decreases after resume updates the classification model with more iterations.

Version History
Introduced in R2017b
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Cost property stores the user-specified cost matrix
Behavior changed in R2022a

Starting in R2022a, the Cost property stores the user-specified cost matrix, so that you can compute
the observed misclassification cost using the specified cost value. The software stores normalized
prior probabilities (Prior) that do not reflect the penalties described in the cost matrix. To compute
the observed misclassification cost, specify the LossFun name-value argument as "classifcost"
when you call the loss function.

Note that model training has not changed and, therefore, the decision boundaries between classes
have not changed.

For training, the fitting function updates the specified prior probabilities by incorporating the
penalties described in the specified cost matrix, and then normalizes the prior probabilities and
observation weights. This behavior has not changed. In previous releases, the software stored the
default cost matrix in the Cost property and stored the prior probabilities used for training in the
Prior property. Starting in R2022a, the software stores the user-specified cost matrix without
modification, and stores normalized prior probabilities that do not reflect the cost penalties. For more
details, see “Misclassification Cost Matrix, Prior Probabilities, and Observation Weights” on page 19-
8.

Some object functions use the Cost and Prior properties:

• The loss function uses the cost matrix stored in the Cost property if you specify the LossFun
name-value argument as "classifcost" or "mincost".

• The loss and edge functions use the prior probabilities stored in the Prior property to
normalize the observation weights of the input data.

If you specify a nondefault cost matrix when you train a classification model, the object functions
return a different value compared to previous releases.

If you want the software to handle the cost matrix, prior probabilities, and observation weights as in
previous releases, adjust the prior probabilities and observation weights for the nondefault cost
matrix, as described in “Adjust Prior Probabilities and Observation Weights for Misclassification Cost
Matrix” on page 19-9. Then, when you train a classification model, specify the adjusted prior
probabilities and observation weights by using the Prior and Weights name-value arguments,
respectively, and use the default cost matrix.

See Also
ClassificationLinear | fitckernel | fitclinear
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edge
Classification edge for Gaussian kernel classification model

Syntax
e = edge(Mdl,X,Y)

e = edge(Mdl,Tbl,ResponseVarName)
e = edge(Mdl,Tbl,Y)

e = edge( ___ ,'Weights',weights)

Description
e = edge(Mdl,X,Y) returns the classification edge on page 35-7985 for the binary Gaussian kernel
classification model Mdl using the predictor data in X and the corresponding class labels in Y.

e = edge(Mdl,Tbl,ResponseVarName) returns the classification edge for the trained kernel
classifier Mdl using the predictor data in table Tbl and the class labels in Tbl.ResponseVarName.

e = edge(Mdl,Tbl,Y) returns the classification edge for the classifier Mdl using the predictor data
in table Tbl and the class labels in vector Y.

e = edge( ___ ,'Weights',weights) returns the weighted classification edge using the
observation weights supplied in weights. Specify the weights after any of the input argument
combinations in previous syntaxes.

Note If the predictor data X or the predictor variables in Tbl contain any missing values, the edge
function can return NaN. For more details, see “edge can return NaN for predictor data with missing
values” on page 35-7986.

Examples

Estimate Test-Set Edge

Load the ionosphere data set. This data set has 34 predictors and 351 binary responses for radar
returns, either bad ('b') or good ('g').

load ionosphere

Partition the data set into training and test sets. Specify a 15% holdout sample for the test set.

rng('default') % For reproducibility
Partition = cvpartition(Y,'Holdout',0.15);
trainingInds = training(Partition); % Indices for the training set
testInds = test(Partition); % Indices for the test set

Train a binary kernel classification model using the training set.
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Mdl = fitckernel(X(trainingInds,:),Y(trainingInds));

Estimate the training-set edge and the test-set edge.

eTrain = edge(Mdl,X(trainingInds,:),Y(trainingInds))

eTrain = 2.1703

eTest = edge(Mdl,X(testInds,:),Y(testInds))

eTest = 1.5643

Feature Selection Using Test-Set Edges

Perform feature selection by comparing test-set edges from multiple models. Based solely on this
criterion, the classifier with the highest edge is the best classifier.

Load the ionosphere data set. This data set has 34 predictors and 351 binary responses for radar
returns, either bad ('b') or good ('g').

load ionosphere

Partition the data set into training and test sets. Specify a 15% holdout sample for the test set.

rng('default') % For reproducibility
Partition = cvpartition(Y,'Holdout',0.15);
trainingInds = training(Partition); % Indices for the training set
XTrain = X(trainingInds,:);
YTrain = Y(trainingInds);
testInds = test(Partition); % Indices for the test set
XTest = X(testInds,:);
YTest = Y(testInds);

Randomly choose half of the predictor variables.

p = size(X,2); % Number of predictors
idxPart = randsample(p,ceil(0.5*p));

Train two binary kernel classification models: one that uses all of the predictors, and one that uses
half of the predictors.

Mdl = fitckernel(XTrain,YTrain);
PMdl = fitckernel(XTrain(:,idxPart),YTrain);

Mdl and PMdl are ClassificationKernel models.

Estimate the test-set edge for each classifier.

fullEdge = edge(Mdl,XTest,YTest)

fullEdge = 1.6335

partEdge = edge(PMdl,XTest(:,idxPart),YTest)

partEdge = 2.0205

Based on the test-set edges, the classifier that uses half of the predictors is the better model.
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Input Arguments
Mdl — Binary kernel classification model
ClassificationKernel model object

Binary kernel classification model, specified as a ClassificationKernel model object. You can
create a ClassificationKernel model object using fitckernel.

X — Predictor data
n-by-p numeric matrix

Predictor data, specified as an n-by-p numeric matrix, where n is the number of observations and p is
the number of predictors used to train Mdl.

The length of Y and the number of observations in X must be equal.
Data Types: single | double

Y — Class labels
categorical array | character array | string array | logical vector | numeric vector | cell array of
character vectors

Class labels, specified as a categorical, character, or string array; logical or numeric vector; or cell
array of character vectors.

• The data type of Y must be the same as the data type of Mdl.ClassNames. (The software treats
string arrays as cell arrays of character vectors.)

• The distinct classes in Y must be a subset of Mdl.ClassNames.
• If Y is a character array, then each element must correspond to one row of the array.
• The length of Y must be equal to the number of observations in X or Tbl.

Data Types: categorical | char | string | logical | single | double | cell

Tbl — Sample data
table

Sample data used to train the model, specified as a table. Each row of Tbl corresponds to one
observation, and each column corresponds to one predictor variable. Optionally, Tbl can contain
additional columns for the response variable and observation weights. Tbl must contain all the
predictors used to train Mdl. Multicolumn variables and cell arrays other than cell arrays of character
vectors are not allowed.

If Tbl contains the response variable used to train Mdl, then you do not need to specify
ResponseVarName or Y.

If you train Mdl using sample data contained in a table, then the input data for edge must also be in a
table.

ResponseVarName — Response variable name
name of variable in Tbl

Response variable name, specified as the name of a variable in Tbl. If Tbl contains the response
variable used to train Mdl, then you do not need to specify ResponseVarName.
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If you specify ResponseVarName, then you must specify it as a character vector or string scalar. For
example, if the response variable is stored as Tbl.Y, then specify ResponseVarName as 'Y'.
Otherwise, the software treats all columns of Tbl, including Tbl.Y, as predictors.

The response variable must be a categorical, character, or string array; a logical or numeric vector;
or a cell array of character vectors. If the response variable is a character array, then each element
must correspond to one row of the array.
Data Types: char | string

weights — Observation weights
ones(size(X,1),1) (default) | numeric vector | name of variable in Tbl

Observation weights, specified as a numeric vector or the name of a variable in Tbl.

• If weights is a numeric vector, then the size of weights must be equal to the number of rows in
X or Tbl.

• If weights is the name of a variable in Tbl, you must specify weights as a character vector or
string scalar. For example, if the weights are stored as Tbl.W, then specify weights as 'W'.
Otherwise, the software treats all columns of Tbl, including Tbl.W, as predictors.

If you supply weights, edge computes the weighted classification edge on page 35-7985. The
software weights the observations in each row of X or Tbl with the corresponding weights in
weights.

edge normalizes weights to sum up to the value of the prior probability in the respective class.
Data Types: single | double | char | string

Output Arguments
e — Classification edge
numeric scalar

Classification edge on page 35-7985, returned as a numeric scalar.

More About
Classification Edge

The classification edge is the weighted mean of the classification margins.

One way to choose among multiple classifiers, for example to perform feature selection, is to choose
the classifier that yields the greatest edge.

Classification Margin

The classification margin for binary classification is, for each observation, the difference between the
classification score for the true class and the classification score for the false class.

The software defines the classification margin for binary classification as

m = 2yf x .
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x is an observation. If the true label of x is the positive class, then y is 1, and –1 otherwise. f(x) is the
positive-class classification score for the observation x. The classification margin is commonly defined
as m = yf(x).

If the margins are on the same scale, then they serve as a classification confidence measure. Among
multiple classifiers, those that yield greater margins are better.

Classification Score

For kernel classification models, the raw classification score for classifying the observation x, a row
vector, into the positive class is defined by

f x = T(x)β + b .

• T ·  is a transformation of an observation for feature expansion.
• β is the estimated column vector of coefficients.
• b is the estimated scalar bias.

The raw classification score for classifying x into the negative class is −f(x). The software classifies
observations into the class that yields a positive score.

If the kernel classification model consists of logistic regression learners, then the software applies the
'logit' score transformation to the raw classification scores (see ScoreTransform).

Version History
Introduced in R2017b

edge returns a different value for a model with a nondefault cost matrix
Behavior changed in R2022a

If you specify a nondefault cost matrix when you train the input model object, the edge function
returns a different value compared to previous releases.

The edge function uses the prior probabilities stored in the Prior property to normalize the
observation weights of the input data. The way the function uses the Prior property value has not
changed. However, the property value stored in the input model object has changed for a model with
a nondefault cost matrix, so the function can return a different value.

For details about the property value change, see “Cost property stores the user-specified cost matrix”
on page 35-7981.

If you want the software to handle the cost matrix, prior probabilities, and observation weights as in
previous releases, adjust the prior probabilities and observation weights for the nondefault cost
matrix, as described in “Adjust Prior Probabilities and Observation Weights for Misclassification Cost
Matrix” on page 19-9. Then, when you train a classification model, specify the adjusted prior
probabilities and observation weights by using the Prior and Weights name-value arguments,
respectively, and use the default cost matrix.

edge can return NaN for predictor data with missing values
Behavior changed in R2022a

The edge function no longer omits an observation with a NaN score when computing the weighted
mean of the classification margins. Therefore, edge can now return NaN when the predictor data X
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or the predictor variables in Tbl contain any missing values. In most cases, if the test set
observations do not contain missing predictors, the edge function does not return NaN.

This change improves the automatic selection of a classification model when you use fitcauto.
Before this change, the software might select a model (expected to best classify new data) with few
non-NaN predictors.

If edge in your code returns NaN, you can update your code to avoid this result. Remove or replace
the missing values by using rmmissing or fillmissing, respectively.

The following table shows the classification models for which the edge object function might return
NaN. For more details, see the Compatibility Considerations for each edge function.

Model Type Full or Compact Model Object edge Object Function
Discriminant analysis
classification model

ClassificationDiscrimina
nt,
CompactClassificationDis
criminant

edge

Ensemble of learners for
classification

ClassificationEnsemble,
CompactClassificationEns
emble

edge

Gaussian kernel classification
model

ClassificationKernel edge

k-nearest neighbor classification
model

ClassificationKNN edge

Linear classification model ClassificationLinear edge
Neural network classification
model

ClassificationNeuralNetw
ork,
CompactClassificationNeu
ralNetwork

edge

Support vector machine (SVM)
classification model

ClassificationSVM,
CompactClassificationSVM

edge

Extended Capabilities
Tall Arrays
Calculate with arrays that have more rows than fit in memory.

Usage notes and limitations:

• edge does not support tall table data.

For more information, see “Tall Arrays”.

See Also
ClassificationKernel | fitckernel | margin | predict
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loss
Classification loss for Gaussian kernel classification model

Syntax
L = loss(Mdl,X,Y)

L = loss(Mdl,Tbl,ResponseVarName)
L = loss(Mdl,Tbl,Y)

L = loss( ___ ,Name,Value)

Description
L = loss(Mdl,X,Y) returns the classification loss on page 35-7992 for the binary Gaussian kernel
classification model Mdl using the predictor data in X and the corresponding class labels in Y.

L = loss(Mdl,Tbl,ResponseVarName) returns the classification loss for the model Mdl using the
predictor data in Tbl and the true class labels in Tbl.ResponseVarName.

L = loss(Mdl,Tbl,Y) returns the classification loss for the model Mdl using the predictor data in
table Tbl and the true class labels in Y.

L = loss( ___ ,Name,Value) specifies options using one or more name-value pair arguments in
addition to any of the input argument combinations in previous syntaxes. For example, you can
specify a classification loss function and observation weights. Then, loss returns the weighted
classification loss using the specified loss function.

Note If the predictor data in X or Tbl contains any missing values and LossFun is not set to
"classifcost", "classiferror", or "mincost", the loss function can return NaN. For more
details, see “loss can return NaN for predictor data with missing values” on page 35-7996.

Examples

Estimate Test-Set Classification Loss

Load the ionosphere data set. This data set has 34 predictors and 351 binary responses for radar
returns, either bad ('b') or good ('g').

load ionosphere

Partition the data set into training and test sets. Specify a 15% holdout sample for the test set.

rng('default') % For reproducibility
Partition = cvpartition(Y,'Holdout',0.15);
trainingInds = training(Partition); % Indices for the training set
testInds = test(Partition); % Indices for the test set

Train a binary kernel classification model using the training set.
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Mdl = fitckernel(X(trainingInds,:),Y(trainingInds));

Estimate the training-set classification error and the test-set classification error.

ceTrain = loss(Mdl,X(trainingInds,:),Y(trainingInds))

ceTrain = 0.0067

ceTest = loss(Mdl,X(testInds,:),Y(testInds))

ceTest = 0.1140

Specify Custom Classification Loss

Load the ionosphere data set. This data set has 34 predictors and 351 binary responses for radar
returns, either bad ('b') or good ('g').

load ionosphere

Partition the data set into training and test sets. Specify a 15% holdout sample for the test set.

rng('default') % For reproducibility
Partition = cvpartition(Y,'Holdout',0.15);
trainingInds = training(Partition); % Indices for the training set
testInds = test(Partition); % Indices for the test set

Train a binary kernel classification model using the training set.

Mdl = fitckernel(X(trainingInds,:),Y(trainingInds));

Create an anonymous function that measures linear loss, that is,

L =
∑ j −w jy jf j
∑ jw j

.

w j is the weight for observation j, y j is response j (-1 for the negative class, and 1 otherwise), and f j is
the raw classification score of observation j.

linearloss = @(C,S,W,Cost)sum(-W.*sum(S.*C,2))/sum(W);

Custom loss functions must be written in a particular form. For rules on writing a custom loss
function, see the 'LossFun' name-value pair argument.

Estimate the training-set classification loss and the test-set classification loss using the linear loss
function.

ceTrain = loss(Mdl,X(trainingInds,:),Y(trainingInds),'LossFun',linearloss)

ceTrain = -1.0851

ceTest = loss(Mdl,X(testInds,:),Y(testInds),'LossFun',linearloss)

ceTest = -0.7821
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Input Arguments
Mdl — Binary kernel classification model
ClassificationKernel model object

Binary kernel classification model, specified as a ClassificationKernel model object. You can
create a ClassificationKernel model object using fitckernel.

X — Predictor data
n-by-p numeric matrix

Predictor data, specified as an n-by-p numeric matrix, where n is the number of observations and p is
the number of predictors used to train Mdl.

The length of Y and the number of observations in X must be equal.
Data Types: single | double

Y — Class labels
categorical array | character array | string array | logical vector | numeric vector | cell array of
character vectors

Class labels, specified as a categorical, character, or string array; logical or numeric vector; or cell
array of character vectors.

• The data type of Y must be the same as the data type of Mdl.ClassNames. (The software treats
string arrays as cell arrays of character vectors.)

• The distinct classes in Y must be a subset of Mdl.ClassNames.
• If Y is a character array, then each element must correspond to one row of the array.
• The length of Y must be equal to the number of observations in X or Tbl.

Data Types: categorical | char | string | logical | single | double | cell

Tbl — Sample data
table

Sample data used to train the model, specified as a table. Each row of Tbl corresponds to one
observation, and each column corresponds to one predictor variable. Optionally, Tbl can contain
additional columns for the response variable and observation weights. Tbl must contain all the
predictors used to train Mdl. Multicolumn variables and cell arrays other than cell arrays of character
vectors are not allowed.

If Tbl contains the response variable used to train Mdl, then you do not need to specify
ResponseVarName or Y.

If you train Mdl using sample data contained in a table, then the input data for loss must also be in a
table.

ResponseVarName — Response variable name
name of variable in Tbl

Response variable name, specified as the name of a variable in Tbl. If Tbl contains the response
variable used to train Mdl, then you do not need to specify ResponseVarName.
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If you specify ResponseVarName, then you must specify it as a character vector or string scalar. For
example, if the response variable is stored as Tbl.Y, then specify ResponseVarName as 'Y'.
Otherwise, the software treats all columns of Tbl, including Tbl.Y, as predictors.

The response variable must be a categorical, character, or string array; a logical or numeric vector;
or a cell array of character vectors. If the response variable is a character array, then each element
must correspond to one row of the array.
Data Types: char | string

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: L = loss(Mdl,X,Y,'LossFun','quadratic','Weights',weights) returns the
weighted classification loss using the quadratic loss function.

LossFun — Loss function
'classiferror' (default) | 'binodeviance' | 'classifcost' | 'exponential' | 'hinge' |
'logit' | 'mincost' | 'quadratic' | function handle

Loss function, specified as the comma-separated pair consisting of 'LossFun' and a built-in loss
function name or a function handle.

• This table lists the available loss functions. Specify one using its corresponding value.

Value Description
'binodeviance' Binomial deviance
'classifcost' Observed misclassification cost
'classiferror' Misclassified rate in decimal
'exponential' Exponential loss
'hinge' Hinge loss
'logit' Logistic loss
'mincost' Minimal expected misclassification cost (for

classification scores that are posterior
probabilities)

'quadratic' Quadratic loss

'mincost' is appropriate for classification scores that are posterior probabilities. For kernel
classification models, logistic regression learners return posterior probabilities as classification
scores by default, but SVM learners do not (see predict).

• To specify a custom loss function, use function handle notation. The function must have this form:

lossvalue = lossfun(C,S,W,Cost)

• The output argument lossvalue is a scalar.
• You specify the function name (lossfun).
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• C is an n-by-K logical matrix with rows indicating the class to which the corresponding
observation belongs. n is the number of observations in Tbl or X, and K is the number of
distinct classes (numel(Mdl.ClassNames). The column order corresponds to the class order
in Mdl.ClassNames. Create C by setting C(p,q) = 1, if observation p is in class q, for each
row. Set all other elements of row p to 0.

• S is an n-by-K numeric matrix of classification scores. The column order corresponds to the
class order in Mdl.ClassNames. S is a matrix of classification scores, similar to the output of
predict.

• W is an n-by-1 numeric vector of observation weights.
• Cost is a K-by-K numeric matrix of misclassification costs. For example, Cost = ones(K) –

eye(K) specifies a cost of 0 for correct classification and 1 for misclassification.

Example: 'LossFun',@lossfun
Data Types: char | string | function_handle

Weights — Observation weights
ones(size(X,1),1) (default) | numeric vector | name of variable in Tbl

Observation weights, specified as the comma-separated pair consisting of 'Weights' and a numeric
vector or the name of a variable in Tbl.

• If Weights is a numeric vector, then the size of Weights must be equal to the number of rows in
X or Tbl.

• If Weights is the name of a variable in Tbl, you must specify Weights as a character vector or
string scalar. For example, if the weights are stored as Tbl.W, then specify Weights as 'W'.
Otherwise, the software treats all columns of Tbl, including Tbl.W, as predictors.

If you supply weights, loss computes the weighted classification loss on page 35-7992 and
normalizes the weights to sum up to the value of the prior probability in the respective class.
Data Types: double | single | char | string

Output Arguments
L — Classification loss
numeric scalar

Classification loss on page 35-7992, returned as a numeric scalar. The interpretation of L depends on
Weights and LossFun.

More About
Classification Loss

Classification loss functions measure the predictive inaccuracy of classification models. When you
compare the same type of loss among many models, a lower loss indicates a better predictive model.

Consider the following scenario.

• L is the weighted average classification loss.
• n is the sample size.
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• yj is the observed class label. The software codes it as –1 or 1, indicating the negative or positive
class (or the first or second class in the ClassNames property), respectively.

• f(Xj) is the positive-class classification score for observation (row) j of the predictor data X.
• mj = yjf(Xj) is the classification score for classifying observation j into the class corresponding to

yj. Positive values of mj indicate correct classification and do not contribute much to the average
loss. Negative values of mj indicate incorrect classification and contribute significantly to the
average loss.

• The weight for observation j is wj. The software normalizes the observation weights so that they
sum to the corresponding prior class probability stored in the Prior property. Therefore,

∑
j = 1

n
w j = 1.

Given this scenario, the following table describes the supported loss functions that you can specify by
using the LossFun name-value argument.

Loss Function Value of LossFun Equation
Binomial deviance 'binodeviance'

L = ∑
j = 1

n
w jlog 1 + exp −2m j .

Observed
misclassification cost

'classifcost'
L = ∑

j = 1

n
w jcy jy j,

where y j is the class label corresponding to the
class with the maximal score, and cy jy j is the
user-specified cost of classifying an observation
into class y j when its true class is yj.

Misclassified rate in
decimal

'classiferror'
L = ∑

j = 1

n
w jI y j ≠ y j ,

where I{·} is the indicator function.
Cross-entropy loss 'crossentropy' 'crossentropy' is appropriate only for neural

network models.

The weighted cross-entropy loss is

L = − ∑
j = 1

n w jlog(m j)
Kn ,

where the weights w j are normalized to sum to n
instead of 1.

Exponential loss 'exponential'
L = ∑

j = 1

n
w jexp −m j .
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Loss Function Value of LossFun Equation
Hinge loss 'hinge'

L =∑
j = 1

n

w jmax 0, 1−m j .

Logit loss 'logit'
L = ∑

j = 1

n
w jlog 1 + exp −m j .

Minimal expected
misclassification cost

'mincost' 'mincost' is appropriate only if classification
scores are posterior probabilities.

The software computes the weighted minimal
expected classification cost using this procedure
for observations j = 1,...,n.

1 Estimate the expected misclassification cost
of classifying the observation Xj into the class
k:

γ jk = f X j ′C k .

f(Xj) is the column vector of class posterior
probabilities for the observation Xj. C is the
cost matrix stored in the Cost property of
the model.

2 For observation j, predict the class label
corresponding to the minimal expected
misclassification cost:

y j = argmin
k = 1, ..., K

γ jk .

3 Using C, identify the cost incurred (cj) for
making the prediction.

The weighted average of the minimal expected
misclassification cost loss is

L = ∑
j = 1

n
w jc j .

Quadratic loss 'quadratic'
L = ∑

j = 1

n
w j 1−m j

2 .

If you use the default cost matrix (whose element value is 0 for correct classification and 1 for
incorrect classification), then the loss values for 'classifcost', 'classiferror', and
'mincost' are identical. For a model with a nondefault cost matrix, the 'classifcost' loss is
equivalent to the 'mincost' loss most of the time. These losses can be different if prediction into the
class with maximal posterior probability is different from prediction into the class with minimal
expected cost. Note that 'mincost' is appropriate only if classification scores are posterior
probabilities.
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This figure compares the loss functions (except 'classifcost', 'crossentropy', and
'mincost') over the score m for one observation. Some functions are normalized to pass through
the point (0,1).

Version History
Introduced in R2017b

loss returns a different value for a model with a nondefault cost matrix
Behavior changed in R2022a

If you specify a nondefault cost matrix when you train the input model object, the loss function
returns a different value compared to previous releases.

The loss function uses the prior probabilities stored in the Prior property to normalize the
observation weights of the input data. Also, the function uses the cost matrix stored in the Cost
property if you specify the LossFun name-value argument as "classifcost" or "mincost". The
way the function uses the Prior and Cost property values has not changed. However, the property
values stored in the input model object have changed for a model with a nondefault cost matrix, so
the function can return a different value.

For details about the property value change, see “Cost property stores the user-specified cost matrix”
on page 35-7981.

If you want the software to handle the cost matrix, prior probabilities, and observation weights as in
previous releases, adjust the prior probabilities and observation weights for the nondefault cost
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matrix, as described in “Adjust Prior Probabilities and Observation Weights for Misclassification Cost
Matrix” on page 19-9. Then, when you train a classification model, specify the adjusted prior
probabilities and observation weights by using the Prior and Weights name-value arguments,
respectively, and use the default cost matrix.

loss can return NaN for predictor data with missing values
Behavior changed in R2022a

The loss function no longer omits an observation with a NaN score when computing the weighted
average classification loss. Therefore, loss can now return NaN when the predictor data X or the
predictor variables in Tbl contain any missing values, and the name-value argument LossFun is not
specified as "classifcost", "classiferror", or "mincost". In most cases, if the test set
observations do not contain missing predictors, the loss function does not return NaN.

This change improves the automatic selection of a classification model when you use fitcauto.
Before this change, the software might select a model (expected to best classify new data) with few
non-NaN predictors.

If loss in your code returns NaN, you can update your code to avoid this result by doing one of the
following:

• Remove or replace the missing values by using rmmissing or fillmissing, respectively.
• Specify the name-value argument LossFun as "classifcost", "classiferror", or

"mincost".

The following table shows the classification models for which the loss object function might return
NaN. For more details, see the Compatibility Considerations for each loss function.

Model Type Full or Compact Model Object loss Object Function
Discriminant analysis
classification model

ClassificationDiscrimina
nt,
CompactClassificationDis
criminant

loss

Ensemble of learners for
classification

ClassificationEnsemble,
CompactClassificationEns
emble

loss

Gaussian kernel classification
model

ClassificationKernel loss

k-nearest neighbor classification
model

ClassificationKNN loss

Linear classification model ClassificationLinear loss
Neural network classification
model

ClassificationNeuralNetw
ork,
CompactClassificationNeu
ralNetwork

loss

Support vector machine (SVM)
classification model

ClassificationSVM,
CompactClassificationSVM

loss
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Extended Capabilities
Tall Arrays
Calculate with arrays that have more rows than fit in memory.

Usage notes and limitations:

• loss does not support tall table data.

For more information, see “Tall Arrays”.

See Also
fitckernel | ClassificationKernel | predict
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margin
Classification margins for Gaussian kernel classification model

Syntax
m = margin(Mdl,X,Y)

m = margin(Mdl,Tbl,ResponseVarName)
m = margin(Mdl,Tbl,Y)

Description
m = margin(Mdl,X,Y) returns the classification margins on page 35-8002 for the binary Gaussian
kernel classification model Mdl using the predictor data in X and the corresponding class labels in Y.

m = margin(Mdl,Tbl,ResponseVarName) returns the classification margins for the trained
kernel classifier Mdl using the predictor data in table Tbl and the class labels in
Tbl.ResponseVarName.

m = margin(Mdl,Tbl,Y) returns the classification margins for the classifier Mdl using the
predictor data in table Tbl and the class labels in vector Y.

Examples

Estimate Test-Set Margins

Load the ionosphere data set. This data set has 34 predictors and 351 binary responses for radar
returns, either bad ('b') or good ('g').

load ionosphere

Partition the data set into training and test sets. Specify a 30% holdout sample for the test set.

rng('default') % For reproducibility
Partition = cvpartition(Y,'Holdout',0.30);
trainingInds = training(Partition); % Indices for the training set
testInds = test(Partition); % Indices for the test set

Train a binary kernel classification model using the training set.

Mdl = fitckernel(X(trainingInds,:),Y(trainingInds));

Estimate the training-set margins and test-set margins.

mTrain = margin(Mdl,X(trainingInds,:),Y(trainingInds));
mTest = margin(Mdl,X(testInds,:),Y(testInds));

Plot both sets of margins using box plots.
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boxplot([mTrain; mTest],[zeros(size(mTrain,1),1); ones(size(mTest,1),1)], ...
    'Labels',{'Training set','Test set'});
title('Training-Set and Test-Set Margins')

The margin distribution of the training set is situated higher than the margin distribution of the test
set.

Feature Selection Using Test-Set Margins

Perform feature selection by comparing test-set margins from multiple models. Based solely on this
criterion, the classifier with the larger margins is the better classifier.

Load the ionosphere data set. This data set has 34 predictors and 351 binary responses for radar
returns, either bad ('b') or good ('g').

load ionosphere

Partition the data set into training and test sets. Specify a 15% holdout sample for the test set.

rng('default') % For reproducibility
Partition = cvpartition(Y,'Holdout',0.15);
trainingInds = training(Partition); % Indices for the training set
XTrain = X(trainingInds,:);
YTrain = Y(trainingInds);
testInds = test(Partition); % Indices for the test set
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XTest = X(testInds,:);
YTest = Y(testInds);

Randomly choose 10% of the predictor variables.

p = size(X,2); % Number of predictors
idxPart = randsample(p,ceil(0.1*p));

Train two binary kernel classification models: one that uses all of the predictors, and one that uses
the random 10%.

Mdl = fitckernel(XTrain,YTrain);
PMdl = fitckernel(XTrain(:,idxPart),YTrain);

Mdl and PMdl are ClassificationKernel models.

Estimate the test-set margins for each classifier.

fullMargins = margin(Mdl,XTest,YTest);
partMargins = margin(PMdl,XTest(:,idxPart),YTest);

Plot the distribution of the margin sets using box plots.

boxplot([fullMargins partMargins], ...
    'Labels',{'All Predictors','10% of the Predictors'});
title('Test-Set Margins')
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The margin distribution of PMdl is situated higher than the margin distribution of Mdl. Therefore, the
PMdl model is the better classifier.

Input Arguments
Mdl — Binary kernel classification model
ClassificationKernel model object

Binary kernel classification model, specified as a ClassificationKernel model object. You can
create a ClassificationKernel model object using fitckernel.

X — Predictor data
n-by-p numeric matrix

Predictor data, specified as an n-by-p numeric matrix, where n is the number of observations and p is
the number of predictors used to train Mdl.

The length of Y and the number of observations in X must be equal.
Data Types: single | double

Y — Class labels
categorical array | character array | string array | logical vector | numeric vector | cell array of
character vectors

Class labels, specified as a categorical, character, or string array; logical or numeric vector; or cell
array of character vectors.

• The data type of Y must be the same as the data type of Mdl.ClassNames. (The software treats
string arrays as cell arrays of character vectors.)

• The distinct classes in Y must be a subset of Mdl.ClassNames.
• If Y is a character array, then each element must correspond to one row of the array.
• The length of Y must be equal to the number of observations in X or Tbl.

Data Types: categorical | char | string | logical | single | double | cell

Tbl — Sample data
table

Sample data used to train the model, specified as a table. Each row of Tbl corresponds to one
observation, and each column corresponds to one predictor variable. Optionally, Tbl can contain
additional columns for the response variable and observation weights. Tbl must contain all the
predictors used to train Mdl. Multicolumn variables and cell arrays other than cell arrays of character
vectors are not allowed.

If Tbl contains the response variable used to train Mdl, then you do not need to specify
ResponseVarName or Y.

If you train Mdl using sample data contained in a table, then the input data for margin must also be
in a table.

ResponseVarName — Response variable name
name of variable in Tbl
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Response variable name, specified as the name of a variable in Tbl. If Tbl contains the response
variable used to train Mdl, then you do not need to specify ResponseVarName.

If you specify ResponseVarName, then you must specify it as a character vector or string scalar. For
example, if the response variable is stored as Tbl.Y, then specify ResponseVarName as 'Y'.
Otherwise, the software treats all columns of Tbl, including Tbl.Y, as predictors.

The response variable must be a categorical, character, or string array; a logical or numeric vector;
or a cell array of character vectors. If the response variable is a character array, then each element
must correspond to one row of the array.
Data Types: char | string

Output Arguments
m — Classification margins
numeric column vector

Classification margins on page 35-8002, returned as an n-by-1 numeric column vector, where n is the
number of observations in X.

More About
Classification Margin

The classification margin for binary classification is, for each observation, the difference between the
classification score for the true class and the classification score for the false class.

The software defines the classification margin for binary classification as

m = 2yf x .

x is an observation. If the true label of x is the positive class, then y is 1, and –1 otherwise. f(x) is the
positive-class classification score for the observation x. The classification margin is commonly defined
as m = yf(x).

If the margins are on the same scale, then they serve as a classification confidence measure. Among
multiple classifiers, those that yield greater margins are better.

Classification Score

For kernel classification models, the raw classification score for classifying the observation x, a row
vector, into the positive class is defined by

f x = T(x)β + b .

• T ·  is a transformation of an observation for feature expansion.
• β is the estimated column vector of coefficients.
• b is the estimated scalar bias.

The raw classification score for classifying x into the negative class is −f(x). The software classifies
observations into the class that yields a positive score.
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If the kernel classification model consists of logistic regression learners, then the software applies the
'logit' score transformation to the raw classification scores (see ScoreTransform).

Version History
Introduced in R2017b

Extended Capabilities
Tall Arrays
Calculate with arrays that have more rows than fit in memory.

Usage notes and limitations:

• margin does not support tall table data.

For more information, see “Tall Arrays”.

See Also
ClassificationKernel | edge | fitckernel | predict
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predict
Predict labels for Gaussian kernel classification model

Syntax
Label = predict(Mdl,X)
[Label,Score] = predict(Mdl,X)

Description
Label = predict(Mdl,X) returns a vector of predicted class labels for the predictor data in the
matrix or table X, based on the binary Gaussian kernel classification model Mdl.

[Label,Score] = predict(Mdl,X) also returns classification scores on page 35-8010 for both
classes.

Examples

Predict Training Set Labels

Predict the training set labels using a binary kernel classification model, and display the confusion
matrix for the resulting classification.

Load the ionosphere data set. This data set has 34 predictors and 351 binary responses for radar
returns, either bad ('b') or good ('g').

load ionosphere

Train a binary kernel classification model that identifies whether the radar return is bad ('b') or
good ('g').

rng('default') % For reproducibility
Mdl = fitckernel(X,Y);

Mdl is a ClassificationKernel model.

Predict the training set, or resubstitution, labels.

label = predict(Mdl,X); 

Construct a confusion matrix.

ConfusionTrain = confusionchart(Y,label);
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The model misclassifies one radar return for each class.

Predict Test Set Labels

Predict the test set labels using a binary kernel classification model, and display the confusion matrix
for the resulting classification.

Load the ionosphere data set. This data set has 34 predictors and 351 binary responses for radar
returns, either bad ('b') or good ('g').

load ionosphere

Partition the data set into training and test sets. Specify a 15% holdout sample for the test set.

rng('default') % For reproducibility
Partition = cvpartition(Y,'Holdout',0.15);
trainingInds = training(Partition); % Indices for the training set
testInds = test(Partition); % Indices for the test set

Train a binary kernel classification model using the training set. A good practice is to define the class
order.

Mdl = fitckernel(X(trainingInds,:),Y(trainingInds),'ClassNames',{'b','g'}); 

Predict the training-set labels and the test set labels.
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labelTrain = predict(Mdl,X(trainingInds,:));
labelTest = predict(Mdl,X(testInds,:));

Construct a confusion matrix for the training set.

ConfusionTrain = confusionchart(Y(trainingInds),labelTrain);

The model misclassifies only one radar return for each class.

Construct a confusion matrix for the test set.

ConfusionTest = confusionchart(Y(testInds),labelTest);
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The model misclassifies one bad radar return as being a good return, and five good radar returns as
being bad returns.

Estimate Posterior Class Probabilities

Estimate posterior class probabilities for a test set, and determine the quality of the model by plotting
a receiver operating characteristic (ROC) curve. Kernel classification models return posterior
probabilities for logistic regression learners only.

Load the ionosphere data set. This data set has 34 predictors and 351 binary responses for radar
returns, either bad ('b') or good ('g').

load ionosphere

Partition the data set into training and test sets. Specify a 30% holdout sample for the test set.

rng('default') % For reproducibility
Partition = cvpartition(Y,'Holdout',0.30);
trainingInds = training(Partition); % Indices for the training set
testInds = test(Partition); % Indices for the test set

Train a binary kernel classification model. Fit logistic regression learners.

Mdl = fitckernel(X(trainingInds,:),Y(trainingInds), ...
    'ClassNames',{'b','g'},'Learner','logistic');

 predict

35-8007



Predict the posterior class probabilities for the test set.

[~,posterior] = predict(Mdl,X(testInds,:));

Because Mdl has one regularization strength, the output posterior is a matrix with two columns
and rows equal to the number of test-set observations. Column i contains posterior probabilities of
Mdl.ClassNames(i) given a particular observation.

Compute the performance metrics (true positive rates and false positive rates) for a ROC curve and
find the area under the ROC curve (AUC) value by creating a rocmetrics object.

rocObj = rocmetrics(Y(testInds),posterior,Mdl.ClassNames);

Plot the ROC curve for the second class by using the plot function of rocmetrics.

plot(rocObj,ClassNames=Mdl.ClassNames(2))

The AUC is close to 1, which indicates that the model predicts labels well.

Input Arguments
Mdl — Binary kernel classification model
ClassificationKernel model object

Binary kernel classification model, specified as a ClassificationKernel model object. You can
create a ClassificationKernel model object using fitckernel.
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X — Predictor data to be classified
numeric matrix | table

Predictor data to be classified, specified as a numeric matrix or table.

Each row of X corresponds to one observation, and each column corresponds to one variable.

• For a numeric matrix:

• The variables in the columns of X must have the same order as the predictor variables that
trained Mdl.

• If you trained Mdl using a table (for example, Tbl) and Tbl contains all numeric predictor
variables, then X can be a numeric matrix. To treat numeric predictors in Tbl as categorical
during training, identify categorical predictors by using the CategoricalPredictors name-
value pair argument of fitckernel. If Tbl contains heterogeneous predictor variables (for
example, numeric and categorical data types) and X is a numeric matrix, then predict throws
an error.

• For a table:

• predict does not support multicolumn variables or cell arrays other than cell arrays of
character vectors.

• If you trained Mdl using a table (for example, Tbl), then all predictor variables in X must have
the same variable names and data types as those that trained Mdl (stored in
Mdl.PredictorNames). However, the column order of X does not need to correspond to the
column order of Tbl. Also, Tbl and X can contain additional variables (response variables,
observation weights, and so on), but predict ignores them.

• If you trained Mdl using a numeric matrix, then the predictor names in Mdl.PredictorNames
and corresponding predictor variable names in X must be the same. To specify predictor names
during training, see the PredictorNames name-value pair argument of fitckernel. All
predictor variables in X must be numeric vectors. X can contain additional variables (response
variables, observation weights, and so on), but predict ignores them.

Data Types: table | double | single

Output Arguments
Label — Predicted class labels
categorical array | character array | logical matrix | numeric matrix | cell array of character vectors

Predicted class labels, returned as a categorical or character array, logical or numeric matrix, or cell
array of character vectors.

Label has n rows, where n is the number of observations in X, and has the same data type as the
observed class labels (Y) used to train Mdl. (The software treats string arrays as cell arrays of
character vectors.)

The predict function classifies an observation into the class yielding the highest score. For an
observation with NaN scores, the function classifies the observation into the majority class, which
makes up the largest proportion of the training labels.

Score — Classification scores
numeric array
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Classification scores on page 35-8010, returned as an n-by-2 numeric array, where n is the number of
observations in X. Score(i,j) is the score for classifying observation i into class j.
Mdl.ClassNames stores the order of the classes.

If Mdl.Learner is 'logistic', then classification scores are posterior probabilities.

More About
Classification Score

For kernel classification models, the raw classification score for classifying the observation x, a row
vector, into the positive class is defined by

f x = T(x)β + b .

• T ·  is a transformation of an observation for feature expansion.
• β is the estimated column vector of coefficients.
• b is the estimated scalar bias.

The raw classification score for classifying x into the negative class is −f(x). The software classifies
observations into the class that yields a positive score.

If the kernel classification model consists of logistic regression learners, then the software applies the
'logit' score transformation to the raw classification scores (see ScoreTransform).

Version History
Introduced in R2017b

Extended Capabilities
Tall Arrays
Calculate with arrays that have more rows than fit in memory.

Usage notes and limitations:

• predict does not support tall table data.

For more information, see “Tall Arrays”.

See Also
ClassificationKernel | fitckernel | resume | rocmetrics | confusionchart
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resume
Resume training of Gaussian kernel classification model

Syntax
UpdatedMdl = resume(Mdl,X,Y)

UpdatedMdl = resume(Mdl,Tbl,ResponseVarName)
UpdatedMdl = resume(Mdl,Tbl,Y)

UpdatedMdl = resume( ___ ,Name,Value)
[UpdatedMdl,FitInfo] = resume( ___ )

Description
UpdatedMdl = resume(Mdl,X,Y) continues training with the same options used to train Mdl,
including the training data (predictor data in X and class labels in Y) and the feature expansion. The
training starts at the current estimated parameters in Mdl. The function returns a new binary
Gaussian kernel classification model UpdatedMdl.

UpdatedMdl = resume(Mdl,Tbl,ResponseVarName) continues training with the predictor data
in Tbl and the true class labels in Tbl.ResponseVarName.

UpdatedMdl = resume(Mdl,Tbl,Y) continues training with the predictor data in table Tbl and
the true class labels in Y.

UpdatedMdl = resume( ___ ,Name,Value) specifies options using one or more name-value pair
arguments in addition to any of the input argument combinations in previous syntaxes. For example,
you can modify convergence control options, such as convergence tolerances and the maximum
number of additional optimization iterations.

[UpdatedMdl,FitInfo] = resume( ___ ) also returns the fit information in the structure array
FitInfo.

Examples

Predict Class Labels and Resume Training

Load the ionosphere data set. This data set has 34 predictors and 351 binary responses for radar
returns, either bad ('b') or good ('g').

load ionosphere

Partition the data set into training and test sets. Specify a 20% holdout sample for the test set.

rng('default') % For reproducibility
Partition = cvpartition(Y,'Holdout',0.20);
trainingInds = training(Partition); % Indices for the training set
XTrain = X(trainingInds,:);
YTrain = Y(trainingInds);
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testInds = test(Partition); % Indices for the test set
XTest = X(testInds,:);
YTest = Y(testInds);

Train a binary kernel classification model that identifies whether the radar return is bad ('b') or
good ('g').

Mdl = fitckernel(XTrain,YTrain,'IterationLimit',5,'Verbose',1);

|=================================================================================================================|
| Solver |  Pass  |   Iteration  |   Objective   |     Step      |    Gradient   |    Relative    |  sum(beta~=0) |
|        |        |              |               |               |   magnitude   | change in Beta |               |
|=================================================================================================================|
|  LBFGS |      1 |            0 |  1.000000e+00 |  0.000000e+00 |  2.811388e-01 |                |             0 |
|  LBFGS |      1 |            1 |  7.585395e-01 |  4.000000e+00 |  3.594306e-01 |   1.000000e+00 |          2048 |
|  LBFGS |      1 |            2 |  7.160994e-01 |  1.000000e+00 |  2.028470e-01 |   6.923988e-01 |          2048 |
|  LBFGS |      1 |            3 |  6.825272e-01 |  1.000000e+00 |  2.846975e-02 |   2.388909e-01 |          2048 |
|  LBFGS |      1 |            4 |  6.699435e-01 |  1.000000e+00 |  1.779359e-02 |   1.325304e-01 |          2048 |
|  LBFGS |      1 |            5 |  6.535619e-01 |  1.000000e+00 |  2.669039e-01 |   4.112952e-01 |          2048 |
|=================================================================================================================|

Mdl is a ClassificationKernel model.

Predict the test-set labels, construct a confusion matrix for the test set, and estimate the
classification error for the test set.

label = predict(Mdl,XTest);
ConfusionTest = confusionchart(YTest,label);
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L = loss(Mdl,XTest,YTest)

L = 0.3594

Mdl misclassifies all bad radar returns as good returns.

Continue training by using resume. This function continues training with the same options used for
training Mdl.

UpdatedMdl = resume(Mdl,XTrain,YTrain);

|=================================================================================================================|
| Solver |  Pass  |   Iteration  |   Objective   |     Step      |    Gradient   |    Relative    |  sum(beta~=0) |
|        |        |              |               |               |   magnitude   | change in Beta |               |
|=================================================================================================================|
|  LBFGS |      1 |            0 |  6.535619e-01 |  0.000000e+00 |  2.669039e-01 |                |          2048 |
|  LBFGS |      1 |            1 |  6.132547e-01 |  1.000000e+00 |  6.355537e-03 |   1.522092e-01 |          2048 |
|  LBFGS |      1 |            2 |  5.938316e-01 |  4.000000e+00 |  3.202847e-02 |   1.498036e-01 |          2048 |
|  LBFGS |      1 |            3 |  4.169274e-01 |  1.000000e+00 |  1.530249e-01 |   7.234253e-01 |          2048 |
|  LBFGS |      1 |            4 |  3.679212e-01 |  5.000000e-01 |  2.740214e-01 |   2.495886e-01 |          2048 |
|  LBFGS |      1 |            5 |  3.332261e-01 |  1.000000e+00 |  1.423488e-02 |   9.558680e-02 |          2048 |
|  LBFGS |      1 |            6 |  3.235335e-01 |  1.000000e+00 |  7.117438e-03 |   7.137260e-02 |          2048 |
|  LBFGS |      1 |            7 |  3.112331e-01 |  1.000000e+00 |  6.049822e-02 |   1.252157e-01 |          2048 |
|  LBFGS |      1 |            8 |  2.972144e-01 |  1.000000e+00 |  7.117438e-03 |   5.796240e-02 |          2048 |
|  LBFGS |      1 |            9 |  2.837450e-01 |  1.000000e+00 |  8.185053e-02 |   1.484733e-01 |          2048 |
|  LBFGS |      1 |           10 |  2.797642e-01 |  1.000000e+00 |  3.558719e-02 |   5.856842e-02 |          2048 |
|  LBFGS |      1 |           11 |  2.771280e-01 |  1.000000e+00 |  2.846975e-02 |   2.349433e-02 |          2048 |
|  LBFGS |      1 |           12 |  2.741570e-01 |  1.000000e+00 |  3.914591e-02 |   3.113194e-02 |          2048 |
|  LBFGS |      1 |           13 |  2.725701e-01 |  5.000000e-01 |  1.067616e-01 |   8.729821e-02 |          2048 |
|  LBFGS |      1 |           14 |  2.667147e-01 |  1.000000e+00 |  3.914591e-02 |   3.491723e-02 |          2048 |
|  LBFGS |      1 |           15 |  2.621152e-01 |  1.000000e+00 |  7.117438e-03 |   5.104726e-02 |          2048 |
|  LBFGS |      1 |           16 |  2.601652e-01 |  1.000000e+00 |  3.558719e-02 |   3.764904e-02 |          2048 |
|  LBFGS |      1 |           17 |  2.589052e-01 |  1.000000e+00 |  3.202847e-02 |   3.655744e-02 |          2048 |
|  LBFGS |      1 |           18 |  2.583185e-01 |  1.000000e+00 |  7.117438e-03 |   6.490571e-02 |          2048 |
|  LBFGS |      1 |           19 |  2.556482e-01 |  1.000000e+00 |  9.252669e-02 |   4.601390e-02 |          2048 |
|  LBFGS |      1 |           20 |  2.542643e-01 |  1.000000e+00 |  7.117438e-02 |   4.141838e-02 |          2048 |
|=================================================================================================================|
| Solver |  Pass  |   Iteration  |   Objective   |     Step      |    Gradient   |    Relative    |  sum(beta~=0) |
|        |        |              |               |               |   magnitude   | change in Beta |               |
|=================================================================================================================|
|  LBFGS |      1 |           21 |  2.532117e-01 |  1.000000e+00 |  1.067616e-02 |   1.661720e-02 |          2048 |
|  LBFGS |      1 |           22 |  2.529890e-01 |  1.000000e+00 |  2.135231e-02 |   1.231678e-02 |          2048 |
|  LBFGS |      1 |           23 |  2.523232e-01 |  1.000000e+00 |  3.202847e-02 |   1.958586e-02 |          2048 |
|  LBFGS |      1 |           24 |  2.506736e-01 |  1.000000e+00 |  1.779359e-02 |   2.474613e-02 |          2048 |
|  LBFGS |      1 |           25 |  2.501995e-01 |  1.000000e+00 |  1.779359e-02 |   2.514352e-02 |          2048 |
|  LBFGS |      1 |           26 |  2.488242e-01 |  1.000000e+00 |  3.558719e-03 |   1.531810e-02 |          2048 |
|  LBFGS |      1 |           27 |  2.485295e-01 |  5.000000e-01 |  3.202847e-02 |   1.229760e-02 |          2048 |
|  LBFGS |      1 |           28 |  2.482244e-01 |  1.000000e+00 |  4.270463e-02 |   8.970983e-03 |          2048 |
|  LBFGS |      1 |           29 |  2.479714e-01 |  1.000000e+00 |  3.558719e-03 |   7.393900e-03 |          2048 |
|  LBFGS |      1 |           30 |  2.477316e-01 |  1.000000e+00 |  3.202847e-02 |   3.268087e-03 |          2048 |
|  LBFGS |      1 |           31 |  2.476178e-01 |  2.500000e-01 |  3.202847e-02 |   5.445890e-03 |          2048 |
|  LBFGS |      1 |           32 |  2.474874e-01 |  1.000000e+00 |  1.779359e-02 |   3.535903e-03 |          2048 |
|  LBFGS |      1 |           33 |  2.473980e-01 |  1.000000e+00 |  7.117438e-03 |   2.821725e-03 |          2048 |
|  LBFGS |      1 |           34 |  2.472935e-01 |  1.000000e+00 |  3.558719e-03 |   2.699880e-03 |          2048 |
|  LBFGS |      1 |           35 |  2.471418e-01 |  1.000000e+00 |  3.558719e-03 |   1.242523e-02 |          2048 |
|  LBFGS |      1 |           36 |  2.469862e-01 |  1.000000e+00 |  2.846975e-02 |   7.895605e-03 |          2048 |
|  LBFGS |      1 |           37 |  2.469598e-01 |  1.000000e+00 |  2.135231e-02 |   6.657676e-03 |          2048 |
|  LBFGS |      1 |           38 |  2.466941e-01 |  1.000000e+00 |  3.558719e-02 |   4.654690e-03 |          2048 |
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|  LBFGS |      1 |           39 |  2.466660e-01 |  5.000000e-01 |  1.423488e-02 |   2.885769e-03 |          2048 |
|  LBFGS |      1 |           40 |  2.465605e-01 |  1.000000e+00 |  3.558719e-03 |   4.562565e-03 |          2048 |
|=================================================================================================================|
| Solver |  Pass  |   Iteration  |   Objective   |     Step      |    Gradient   |    Relative    |  sum(beta~=0) |
|        |        |              |               |               |   magnitude   | change in Beta |               |
|=================================================================================================================|
|  LBFGS |      1 |           41 |  2.465362e-01 |  1.000000e+00 |  1.423488e-02 |   5.652180e-03 |          2048 |
|  LBFGS |      1 |           42 |  2.463528e-01 |  1.000000e+00 |  3.558719e-03 |   2.389759e-03 |          2048 |
|  LBFGS |      1 |           43 |  2.463207e-01 |  1.000000e+00 |  1.511170e-03 |   3.738286e-03 |          2048 |
|  LBFGS |      1 |           44 |  2.462585e-01 |  5.000000e-01 |  7.117438e-02 |   2.321693e-03 |          2048 |
|  LBFGS |      1 |           45 |  2.461742e-01 |  1.000000e+00 |  7.117438e-03 |   2.599725e-03 |          2048 |
|  LBFGS |      1 |           46 |  2.461434e-01 |  1.000000e+00 |  3.202847e-02 |   3.186923e-03 |          2048 |
|  LBFGS |      1 |           47 |  2.461115e-01 |  1.000000e+00 |  7.117438e-03 |   1.530711e-03 |          2048 |
|  LBFGS |      1 |           48 |  2.460814e-01 |  1.000000e+00 |  1.067616e-02 |   1.811714e-03 |          2048 |
|  LBFGS |      1 |           49 |  2.460533e-01 |  5.000000e-01 |  1.423488e-02 |   1.012252e-03 |          2048 |
|  LBFGS |      1 |           50 |  2.460111e-01 |  1.000000e+00 |  1.423488e-02 |   4.166762e-03 |          2048 |
|  LBFGS |      1 |           51 |  2.459414e-01 |  1.000000e+00 |  1.067616e-02 |   3.271946e-03 |          2048 |
|  LBFGS |      1 |           52 |  2.458809e-01 |  1.000000e+00 |  1.423488e-02 |   1.846440e-03 |          2048 |
|  LBFGS |      1 |           53 |  2.458479e-01 |  1.000000e+00 |  1.067616e-02 |   1.180871e-03 |          2048 |
|  LBFGS |      1 |           54 |  2.458146e-01 |  1.000000e+00 |  1.455008e-03 |   1.422954e-03 |          2048 |
|  LBFGS |      1 |           55 |  2.457878e-01 |  1.000000e+00 |  7.117438e-03 |   1.880892e-03 |          2048 |
|  LBFGS |      1 |           56 |  2.457519e-01 |  1.000000e+00 |  2.491103e-02 |   1.074764e-03 |          2048 |
|  LBFGS |      1 |           57 |  2.457420e-01 |  1.000000e+00 |  7.473310e-02 |   9.511878e-04 |          2048 |
|  LBFGS |      1 |           58 |  2.457212e-01 |  1.000000e+00 |  3.558719e-03 |   3.718564e-04 |          2048 |
|  LBFGS |      1 |           59 |  2.457089e-01 |  1.000000e+00 |  4.270463e-02 |   6.237270e-04 |          2048 |
|  LBFGS |      1 |           60 |  2.457047e-01 |  5.000000e-01 |  1.423488e-02 |   3.647573e-04 |          2048 |
|=================================================================================================================|
| Solver |  Pass  |   Iteration  |   Objective   |     Step      |    Gradient   |    Relative    |  sum(beta~=0) |
|        |        |              |               |               |   magnitude   | change in Beta |               |
|=================================================================================================================|
|  LBFGS |      1 |           61 |  2.456991e-01 |  1.000000e+00 |  1.423488e-02 |   5.666884e-04 |          2048 |
|  LBFGS |      1 |           62 |  2.456898e-01 |  1.000000e+00 |  1.779359e-02 |   4.697056e-04 |          2048 |
|  LBFGS |      1 |           63 |  2.456792e-01 |  1.000000e+00 |  1.779359e-02 |   5.984927e-04 |          2048 |
|  LBFGS |      1 |           64 |  2.456603e-01 |  1.000000e+00 |  1.403782e-03 |   5.414985e-04 |          2048 |
|  LBFGS |      1 |           65 |  2.456482e-01 |  1.000000e+00 |  3.558719e-03 |   6.506293e-04 |          2048 |
|  LBFGS |      1 |           66 |  2.456358e-01 |  1.000000e+00 |  1.476262e-03 |   1.284139e-03 |          2048 |
|  LBFGS |      1 |           67 |  2.456124e-01 |  1.000000e+00 |  3.558719e-03 |   8.636596e-04 |          2048 |
|  LBFGS |      1 |           68 |  2.455980e-01 |  1.000000e+00 |  1.067616e-02 |   9.861527e-04 |          2048 |
|  LBFGS |      1 |           69 |  2.455780e-01 |  1.000000e+00 |  1.067616e-02 |   5.102487e-04 |          2048 |
|  LBFGS |      1 |           70 |  2.455633e-01 |  1.000000e+00 |  3.558719e-03 |   1.228077e-03 |          2048 |
|  LBFGS |      1 |           71 |  2.455449e-01 |  1.000000e+00 |  1.423488e-02 |   7.864590e-04 |          2048 |
|  LBFGS |      1 |           72 |  2.455261e-01 |  1.000000e+00 |  3.558719e-02 |   1.090815e-03 |          2048 |
|  LBFGS |      1 |           73 |  2.455142e-01 |  1.000000e+00 |  1.067616e-02 |   1.701506e-03 |          2048 |
|  LBFGS |      1 |           74 |  2.455075e-01 |  1.000000e+00 |  1.779359e-02 |   1.504577e-03 |          2048 |
|  LBFGS |      1 |           75 |  2.455008e-01 |  1.000000e+00 |  3.914591e-02 |   1.144021e-03 |          2048 |
|  LBFGS |      1 |           76 |  2.454943e-01 |  1.000000e+00 |  2.491103e-02 |   3.015254e-04 |          2048 |
|  LBFGS |      1 |           77 |  2.454918e-01 |  5.000000e-01 |  3.202847e-02 |   9.837523e-04 |          2048 |
|  LBFGS |      1 |           78 |  2.454870e-01 |  1.000000e+00 |  1.779359e-02 |   4.328953e-04 |          2048 |
|  LBFGS |      1 |           79 |  2.454865e-01 |  5.000000e-01 |  3.558719e-03 |   7.126815e-04 |          2048 |
|  LBFGS |      1 |           80 |  2.454775e-01 |  1.000000e+00 |  5.693950e-02 |   8.992562e-04 |          2048 |
|=================================================================================================================|
| Solver |  Pass  |   Iteration  |   Objective   |     Step      |    Gradient   |    Relative    |  sum(beta~=0) |
|        |        |              |               |               |   magnitude   | change in Beta |               |
|=================================================================================================================|
|  LBFGS |      1 |           81 |  2.454686e-01 |  1.000000e+00 |  1.183730e-03 |   1.590246e-04 |          2048 |
|  LBFGS |      1 |           82 |  2.454612e-01 |  1.000000e+00 |  2.135231e-02 |   1.389570e-04 |          2048 |
|  LBFGS |      1 |           83 |  2.454506e-01 |  1.000000e+00 |  3.558719e-03 |   6.162089e-04 |          2048 |
|  LBFGS |      1 |           84 |  2.454436e-01 |  1.000000e+00 |  1.423488e-02 |   1.877414e-03 |          2048 |
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|  LBFGS |      1 |           85 |  2.454378e-01 |  1.000000e+00 |  1.423488e-02 |   3.370852e-04 |          2048 |
|  LBFGS |      1 |           86 |  2.454249e-01 |  1.000000e+00 |  1.423488e-02 |   8.133615e-04 |          2048 |
|  LBFGS |      1 |           87 |  2.454101e-01 |  1.000000e+00 |  1.067616e-02 |   3.872088e-04 |          2048 |
|  LBFGS |      1 |           88 |  2.453963e-01 |  1.000000e+00 |  1.779359e-02 |   5.670260e-04 |          2048 |
|  LBFGS |      1 |           89 |  2.453866e-01 |  1.000000e+00 |  1.067616e-02 |   1.444984e-03 |          2048 |
|  LBFGS |      1 |           90 |  2.453821e-01 |  1.000000e+00 |  7.117438e-03 |   2.457270e-03 |          2048 |
|  LBFGS |      1 |           91 |  2.453790e-01 |  5.000000e-01 |  6.761566e-02 |   8.228766e-04 |          2048 |
|  LBFGS |      1 |           92 |  2.453603e-01 |  1.000000e+00 |  2.135231e-02 |   1.084233e-03 |          2048 |
|  LBFGS |      1 |           93 |  2.453540e-01 |  1.000000e+00 |  2.135231e-02 |   2.060005e-04 |          2048 |
|  LBFGS |      1 |           94 |  2.453482e-01 |  1.000000e+00 |  1.779359e-02 |   1.560883e-04 |          2048 |
|  LBFGS |      1 |           95 |  2.453461e-01 |  1.000000e+00 |  1.779359e-02 |   1.614693e-03 |          2048 |
|  LBFGS |      1 |           96 |  2.453371e-01 |  1.000000e+00 |  3.558719e-02 |   2.145835e-04 |          2048 |
|  LBFGS |      1 |           97 |  2.453305e-01 |  1.000000e+00 |  4.270463e-02 |   7.602088e-04 |          2048 |
|  LBFGS |      1 |           98 |  2.453283e-01 |  2.500000e-01 |  2.135231e-02 |   3.422253e-04 |          2048 |
|  LBFGS |      1 |           99 |  2.453246e-01 |  1.000000e+00 |  3.558719e-03 |   3.872561e-04 |          2048 |
|  LBFGS |      1 |          100 |  2.453214e-01 |  1.000000e+00 |  3.202847e-02 |   1.732237e-04 |          2048 |
|=================================================================================================================|
| Solver |  Pass  |   Iteration  |   Objective   |     Step      |    Gradient   |    Relative    |  sum(beta~=0) |
|        |        |              |               |               |   magnitude   | change in Beta |               |
|=================================================================================================================|
|  LBFGS |      1 |          101 |  2.453168e-01 |  1.000000e+00 |  1.067616e-02 |   3.065286e-04 |          2048 |
|  LBFGS |      1 |          102 |  2.453155e-01 |  5.000000e-01 |  4.626335e-02 |   3.402368e-04 |          2048 |
|  LBFGS |      1 |          103 |  2.453136e-01 |  1.000000e+00 |  1.779359e-02 |   2.215029e-04 |          2048 |
|  LBFGS |      1 |          104 |  2.453119e-01 |  1.000000e+00 |  3.202847e-02 |   4.142355e-04 |          2048 |
|  LBFGS |      1 |          105 |  2.453093e-01 |  1.000000e+00 |  1.423488e-02 |   2.186007e-04 |          2048 |
|  LBFGS |      1 |          106 |  2.453090e-01 |  1.000000e+00 |  2.846975e-02 |   1.338602e-03 |          2048 |
|  LBFGS |      1 |          107 |  2.453048e-01 |  1.000000e+00 |  1.423488e-02 |   3.208296e-04 |          2048 |
|  LBFGS |      1 |          108 |  2.453040e-01 |  1.000000e+00 |  3.558719e-02 |   1.294488e-03 |          2048 |
|  LBFGS |      1 |          109 |  2.452977e-01 |  1.000000e+00 |  1.423488e-02 |   8.328380e-04 |          2048 |
|  LBFGS |      1 |          110 |  2.452934e-01 |  1.000000e+00 |  2.135231e-02 |   5.149259e-04 |          2048 |
|  LBFGS |      1 |          111 |  2.452886e-01 |  1.000000e+00 |  1.779359e-02 |   3.650664e-04 |          2048 |
|  LBFGS |      1 |          112 |  2.452854e-01 |  1.000000e+00 |  1.067616e-02 |   2.633981e-04 |          2048 |
|  LBFGS |      1 |          113 |  2.452836e-01 |  1.000000e+00 |  1.067616e-02 |   1.804300e-04 |          2048 |
|  LBFGS |      1 |          114 |  2.452817e-01 |  1.000000e+00 |  7.117438e-03 |   4.251642e-04 |          2048 |
|  LBFGS |      1 |          115 |  2.452741e-01 |  1.000000e+00 |  1.779359e-02 |   9.018440e-04 |          2048 |
|  LBFGS |      1 |          116 |  2.452691e-01 |  1.000000e+00 |  2.135231e-02 |   9.941716e-05 |          2048 |
|=================================================================================================================|

Predict the test-set labels, construct a confusion matrix for the test set, and estimate the
classification error for the test set.

UpdatedLabel = predict(UpdatedMdl,XTest);
UpdatedConfusionTest = confusionchart(YTest,UpdatedLabel);
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UpdatedL = loss(UpdatedMdl,XTest,YTest)

UpdatedL = 0.1284

The classification error decreases after resume updates the classification model with more iterations.

Resume Training with Modified Convergence Control Training Options

Load the ionosphere data set. This data set has 34 predictors and 351 binary responses for radar
returns, either bad ('b') or good ('g').

load ionosphere

Partition the data set into training and test sets. Specify a 20% holdout sample for the test set.

rng('default') % For reproducibility
Partition = cvpartition(Y,'Holdout',0.20);
trainingInds = training(Partition); % Indices for the training set
XTrain = X(trainingInds,:);
YTrain = Y(trainingInds);
testInds = test(Partition); % Indices for the test set
XTest = X(testInds,:);
YTest = Y(testInds);

Train a binary kernel classification model with relaxed convergence control training options by using
the name-value pair arguments 'BetaTolerance' and 'GradientTolerance'.
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[Mdl,FitInfo] = fitckernel(XTrain,YTrain,'Verbose',1, ...
    'BetaTolerance',1e-1,'GradientTolerance',1e-1);

|=================================================================================================================|
| Solver |  Pass  |   Iteration  |   Objective   |     Step      |    Gradient   |    Relative    |  sum(beta~=0) |
|        |        |              |               |               |   magnitude   | change in Beta |               |
|=================================================================================================================|
|  LBFGS |      1 |            0 |  1.000000e+00 |  0.000000e+00 |  2.811388e-01 |                |             0 |
|  LBFGS |      1 |            1 |  7.585395e-01 |  4.000000e+00 |  3.594306e-01 |   1.000000e+00 |          2048 |
|  LBFGS |      1 |            2 |  7.160994e-01 |  1.000000e+00 |  2.028470e-01 |   6.923988e-01 |          2048 |
|  LBFGS |      1 |            3 |  6.825272e-01 |  1.000000e+00 |  2.846975e-02 |   2.388909e-01 |          2048 |
|=================================================================================================================|

Mdl is a ClassificationKernel model.

Predict the test-set labels, construct a confusion matrix for the test set, and estimate the
classification error for the test set

label = predict(Mdl,XTest);
ConfusionTest = confusionchart(YTest,label);

L = loss(Mdl,XTest,YTest)

L = 0.3594

Mdl misclassifies all bad radar returns as good returns.

Continue training by using resume with modified convergence control training options.
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[UpdatedMdl,UpdatedFitInfo] = resume(Mdl,XTrain,YTrain, ...
    'BetaTolerance',1e-2,'GradientTolerance',1e-2);

|=================================================================================================================|
| Solver |  Pass  |   Iteration  |   Objective   |     Step      |    Gradient   |    Relative    |  sum(beta~=0) |
|        |        |              |               |               |   magnitude   | change in Beta |               |
|=================================================================================================================|
|  LBFGS |      1 |            0 |  6.825272e-01 |  0.000000e+00 |  2.846975e-02 |                |          2048 |
|  LBFGS |      1 |            1 |  6.692805e-01 |  2.000000e+00 |  2.846975e-02 |   1.389258e-01 |          2048 |
|  LBFGS |      1 |            2 |  6.466824e-01 |  1.000000e+00 |  2.348754e-01 |   4.149425e-01 |          2048 |
|  LBFGS |      1 |            3 |  5.441382e-01 |  2.000000e+00 |  1.743772e-01 |   5.344538e-01 |          2048 |
|  LBFGS |      1 |            4 |  5.222333e-01 |  1.000000e+00 |  3.309609e-01 |   7.530878e-01 |          2048 |
|  LBFGS |      1 |            5 |  3.776579e-01 |  1.000000e+00 |  1.103203e-01 |   6.532621e-01 |          2048 |
|  LBFGS |      1 |            6 |  3.523520e-01 |  1.000000e+00 |  5.338078e-02 |   1.384232e-01 |          2048 |
|  LBFGS |      1 |            7 |  3.422319e-01 |  5.000000e-01 |  3.202847e-02 |   9.703897e-02 |          2048 |
|  LBFGS |      1 |            8 |  3.341895e-01 |  1.000000e+00 |  3.202847e-02 |   5.009485e-02 |          2048 |
|  LBFGS |      1 |            9 |  3.199302e-01 |  1.000000e+00 |  4.982206e-02 |   8.038014e-02 |          2048 |
|  LBFGS |      1 |           10 |  3.017904e-01 |  1.000000e+00 |  1.423488e-02 |   2.845012e-01 |          2048 |
|  LBFGS |      1 |           11 |  2.853480e-01 |  1.000000e+00 |  3.558719e-02 |   9.799137e-02 |          2048 |
|  LBFGS |      1 |           12 |  2.753979e-01 |  1.000000e+00 |  3.914591e-02 |   9.975305e-02 |          2048 |
|  LBFGS |      1 |           13 |  2.647492e-01 |  1.000000e+00 |  3.914591e-02 |   9.713710e-02 |          2048 |
|  LBFGS |      1 |           14 |  2.639242e-01 |  1.000000e+00 |  1.423488e-02 |   6.721803e-02 |          2048 |
|  LBFGS |      1 |           15 |  2.617385e-01 |  1.000000e+00 |  1.779359e-02 |   2.625089e-02 |          2048 |
|  LBFGS |      1 |           16 |  2.598600e-01 |  1.000000e+00 |  7.117438e-02 |   3.338724e-02 |          2048 |
|  LBFGS |      1 |           17 |  2.594176e-01 |  1.000000e+00 |  1.067616e-02 |   2.441171e-02 |          2048 |
|  LBFGS |      1 |           18 |  2.579350e-01 |  1.000000e+00 |  3.202847e-02 |   2.979246e-02 |          2048 |
|  LBFGS |      1 |           19 |  2.570669e-01 |  1.000000e+00 |  1.779359e-02 |   4.432998e-02 |          2048 |
|  LBFGS |      1 |           20 |  2.552954e-01 |  1.000000e+00 |  1.769940e-03 |   1.899895e-02 |          2048 |
|=================================================================================================================|

Predict the test-set labels, construct a confusion matrix for the test set, and estimate the
classification error for the test set.

UpdatedLabel = predict(UpdatedMdl,XTest);
UpdatedConfusionTest = confusionchart(YTest,UpdatedLabel);
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UpdatedL = loss(UpdatedMdl,XTest,YTest)

UpdatedL = 0.1140

The classification error decreases after resume updates the classification model with smaller
convergence tolerances.

Display the outputs FitInfo and UpdatedFitInfo.

FitInfo

FitInfo = struct with fields:
                  Solver: 'LBFGS-fast'
            LossFunction: 'hinge'
                  Lambda: 0.0036
           BetaTolerance: 0.1000
       GradientTolerance: 0.1000
          ObjectiveValue: 0.6825
       GradientMagnitude: 0.0285
    RelativeChangeInBeta: 0.2389
                 FitTime: 0.0793
                 History: [1x1 struct]

UpdatedFitInfo

UpdatedFitInfo = struct with fields:
                  Solver: 'LBFGS-fast'
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            LossFunction: 'hinge'
                  Lambda: 0.0036
           BetaTolerance: 0.0100
       GradientTolerance: 0.0100
          ObjectiveValue: 0.2553
       GradientMagnitude: 0.0018
    RelativeChangeInBeta: 0.0190
                 FitTime: 0.4161
                 History: [1x1 struct]

Both trainings terminate because the software satisfies the absolute gradient tolerance.

Plot the gradient magnitude versus the number of iterations by using
UpdatedFitInfo.History.GradientMagnitude. Note that the History field of
UpdatedFitInfo includes the information in the History field of FitInfo.

semilogy(UpdatedFitInfo.History.GradientMagnitude,'o-')
ax = gca;
ax.XTick = 1:25;
ax.XTickLabel = UpdatedFitInfo.History.IterationNumber;
grid on
xlabel('Number of Iterations')
ylabel('Gradient Magnitude')

The first training terminates after three iterations because the gradient magnitude becomes less than
1e-1. The second training terminates after 20 iterations because the gradient magnitude becomes
less than 1e-2.
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Input Arguments
Mdl — Binary kernel classification model
ClassificationKernel model object

Binary kernel classification model, specified as a ClassificationKernel model object. You can
create a ClassificationKernel model object using fitckernel.

X — Predictor data used to train Mdl
n-by-p numeric matrix

Predictor data used to train Mdl, specified as an n-by-p numeric matrix, where n is the number of
observations and p is the number of predictors.
Data Types: single | double

Y — Class labels used to train Mdl
categorical array | character array | string array | logical vector | vector of numeric values | cell array
of character vectors

Class labels used to train Mdl, specified as a categorical, character, or string array, logical or numeric
vector, or cell array of character vectors.
Data Types: categorical | char | string | logical | single | double | cell

Tbl — Sample data used to train Mdl
table

Sample data used to train Mdl, specified as a table. Each row of Tbl corresponds to one observation,
and each column corresponds to one predictor variable. Optionally, Tbl can contain additional
columns for the response variable and observation weights. Tbl must contain all of the predictors
used to train Mdl. Multicolumn variables and cell arrays other than cell arrays of character vectors
are not allowed.

If you trained Mdl using sample data contained in a table, then the input data for resume must also
be in a table.

ResponseVarName — Name of response variable used to train Mdl
name of variable in Tbl

Name of the response variable used to train Mdl, specified as the name of a variable in Tbl. The
ResponseVarName value must match the name Mdl.ResponseName.
Data Types: char | string

Note resume should run only on the same training data and observation weights used to train Mdl.
The resume function uses the same training options used to train Mdl, including feature expansion.

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

 resume
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Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: UpdatedMdl = resume(Mdl,X,Y,'GradientTolerance',1e-5) resumes training with
the same options used to train Mdl, except the absolute gradient tolerance.

Weights — Observation weights used to train Mdl
numeric vector | name of variable in Tbl

Observation weights used to train Mdl, specified as the comma-separated pair consisting of
'Weights' and a numeric vector or the name of a variable in Tbl.

• If Weights is a numeric vector, then the size of Weights must be equal to the number of rows in
X or Tbl.

• If Weights is the name of a variable in Tbl, you must specify Weights as a character vector or
string scalar. For example, if the weights are stored as Tbl.W, then specify Weights as 'W'.
Otherwise, the software treats all columns of Tbl, including Tbl.W, as predictors.

If you supply weights, resume normalizes the weights to sum up to the value of the prior probability
in the respective class.
Data Types: double | single | char | string

BetaTolerance — Relative tolerance on linear coefficients and bias term
BetaTolerance value used to train Mdl (default) | nonnegative scalar

Relative tolerance on the linear coefficients and the bias term (intercept), specified as a nonnegative
scalar.

Let Bt = βt′ bt , that is, the vector of the coefficients and the bias term at optimization iteration t. If
Bt − Bt − 1

Bt 2
< BetaTolerance, then optimization terminates.

If you also specify GradientTolerance, then optimization terminates when the software satisfies
either stopping criterion.

By default, the value is the same BetaTolerance value used to train Mdl.
Example: 'BetaTolerance',1e-6
Data Types: single | double

GradientTolerance — Absolute gradient tolerance
GradientTolerance value used to train Mdl (default) | nonnegative scalar

Absolute gradient tolerance, specified as a nonnegative scalar.

Let ∇ℒ t be the gradient vector of the objective function with respect to the coefficients and bias term
at optimization iteration t. If ∇ℒ t ∞ = max ∇ℒ t < GradientTolerance, then optimization terminates.

If you also specify BetaTolerance, then optimization terminates when the software satisfies either
stopping criterion.

By default, the value is the same GradientTolerance value used to train Mdl.
Example: 'GradientTolerance',1e-5
Data Types: single | double
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IterationLimit — Maximum number of additional optimization iterations
positive integer

Maximum number of additional optimization iterations, specified as the comma-separated pair
consisting of 'IterationLimit' and a positive integer.

The default value is 1000 if the transformed data fits in memory
(Mdl.ModelParameters.BlockSize), which you specify by using the name-value pair argument
when training Mdl. Otherwise, the default value is 100.

Note that the default value is not the value used to train Mdl.
Example: 'IterationLimit',500
Data Types: single | double

Output Arguments
UpdatedMdl — Updated kernel classification model
ClassificationKernel model object

Updated kernel classification model, returned as a ClassificationKernel model object.

FitInfo — Optimization details
structure array

Optimization details, returned as a structure array including fields described in this table. The fields
contain final values or name-value pair argument specifications.

Field Description
Solver Objective function minimization technique: 'LBFGS-fast', 'LBFGS-

blockwise', or 'LBFGS-tall'. For details, see “Algorithms” on page 35-
7967 of fitckernel.

LossFunction Loss function. Either 'hinge' or 'logit' depending on the type of linear
classification model. See Learner of fitckernel.

Lambda Regularization term strength. See Lambda of fitckernel.
BetaTolerance Relative tolerance on the linear coefficients and the bias term. See

BetaTolerance.
GradientTolerance Absolute gradient tolerance. See GradientTolerance.
ObjectiveValue Value of the objective function when optimization terminates. The

classification loss plus the regularization term compose the objective
function.

GradientMagnitude Infinite norm of the gradient vector of the objective function when
optimization terminates. See GradientTolerance.

RelativeChangeInBe
ta

Relative changes in the linear coefficients and the bias term when
optimization terminates. See BetaTolerance.

FitTime Elapsed, wall-clock time (in seconds) required to fit the model to the data.
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Field Description
History History of optimization information. This field also includes the

optimization information from training Mdl. This field is empty ([]) if you
specify 'Verbose',0 when training Mdl. For details, see Verbose and
“Algorithms” on page 35-7967 of fitckernel.

To access fields, use dot notation. For example, to access the vector of objective function values for
each iteration, enter FitInfo.ObjectiveValue in the Command Window.

A good practice is to examine FitInfo to assess whether convergence is satisfactory.

More About
Random Feature Expansion

Random feature expansion, such as Random Kitchen Sinks[1] or Fastfood[2], is a scheme to
approximate Gaussian kernels of the kernel classification algorithm to use for big data in a
computationally efficient way. Random feature expansion is more practical for big data applications
that have large training sets, but can also be applied to smaller data sets that fit in memory.

The kernel classification algorithm searches for an optimal hyperplane that separates the data into
two classes after mapping features into a high-dimensional space. Nonlinear features that are not
linearly separable in a low-dimensional space can be separable in the expanded high-dimensional
space. All the calculations for hyperplane classification use only dot products. You can obtain a
nonlinear classification model by replacing the dot product x1x2' with the nonlinear kernel function
G(x1, x2) = φ(x1), φ(x2) , where xi is the ith observation (row vector) and φ(xi) is a transformation
that maps xi to a high-dimensional space (called the “kernel trick”). However, evaluating G(x1,x2)
(Gram matrix) for each pair of observations is computationally expensive for a large data set (large
n).

The random feature expansion scheme finds a random transformation so that its dot product
approximates the Gaussian kernel. That is,

G(x1, x2) = φ(x1), φ(x2) ≈ T(x1)T(x2)′,

where T(x) maps x in ℝp to a high-dimensional space (ℝm). The Random Kitchen Sinks scheme uses
the random transformation

T(x) = m−1/2exp iZx′ ′,

where Z ∈ ℝm × p is a sample drawn from N 0, σ−2  and σ is a kernel scale. This scheme requires
O(mp) computation and storage.

The Fastfood scheme introduces another random basis V instead of Z using Hadamard matrices
combined with Gaussian scaling matrices. This random basis reduces the computation cost to
O(mlogp) and reduces storage to O(m).

The fitckernel function uses the Fastfood scheme for random feature expansion and uses linear
classification to train a Gaussian kernel classification model. Unlike solvers in the fitcsvm function,
which require computation of the n-by-n Gram matrix, the solver in fitckernel only needs to form a
matrix of size n-by-m, with m typically much less than n for big data.
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Version History
Introduced in R2017b
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Extended Capabilities
Tall Arrays
Calculate with arrays that have more rows than fit in memory.

Usage notes and limitations:

• resume does not support tall table data.
• The default value for the 'IterationLimit' name-value pair argument is relaxed to 20 when

working with tall arrays.
• resume uses a block-wise strategy. For details, see “Algorithms” on page 35-7967 of fitckernel.

For more information, see “Tall Arrays”.

See Also
ClassificationKernel | fitckernel | predict
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fitrkernel
Fit Gaussian kernel regression model using random feature expansion

Syntax
Mdl = fitrkernel(X,Y)

Mdl = fitrkernel(Tbl,ResponseVarName)
Mdl = fitrkernel(Tbl,formula)
Mdl = fitrkernel(Tbl,Y)

Mdl = fitrkernel( ___ ,Name,Value)
[Mdl,FitInfo] = fitrkernel( ___ )
[Mdl,FitInfo,HyperparameterOptimizationResults] = fitrkernel( ___ )

Description
fitrkernel trains or cross-validates a Gaussian kernel regression model for nonlinear regression.
fitrkernel is more practical to use for big data applications that have large training sets, but can
also be applied to smaller data sets that fit in memory.

fitrkernel maps data in a low-dimensional space into a high-dimensional space, then fits a linear
model in the high-dimensional space by minimizing the regularized objective function. Obtaining the
linear model in the high-dimensional space is equivalent to applying the Gaussian kernel to the model
in the low-dimensional space. Available linear regression models include regularized support vector
machine (SVM) and least-squares regression models.

To train a nonlinear SVM regression model on in-memory data, see fitrsvm.

Mdl = fitrkernel(X,Y) returns a compact Gaussian kernel regression model trained using the
predictor data in X and the corresponding responses in Y.

Mdl = fitrkernel(Tbl,ResponseVarName) returns a kernel regression model Mdl trained using
the predictor variables contained in the table Tbl and the response values in
Tbl.ResponseVarName.

Mdl = fitrkernel(Tbl,formula) returns a kernel regression model trained using the sample
data in the table Tbl. The input argument formula is an explanatory model of the response and a
subset of predictor variables in Tbl used to fit Mdl.

Mdl = fitrkernel(Tbl,Y) returns a kernel regression model using the predictor variables in the
table Tbl and the response values in vector Y.

Mdl = fitrkernel( ___ ,Name,Value) specifies options using one or more name-value pair
arguments in addition to any of the input argument combinations in previous syntaxes. For example,
you can implement least-squares regression, specify the number of dimension of the expanded space,
or specify cross-validation options.

[Mdl,FitInfo] = fitrkernel( ___ ) also returns the fit information in the structure array
FitInfo using any of the input arguments in the previous syntaxes. You cannot request FitInfo for
cross-validated models.
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[Mdl,FitInfo,HyperparameterOptimizationResults] = fitrkernel( ___ ) also returns
the hyperparameter optimization results when you optimize hyperparameters by using the
'OptimizeHyperparameters' name-value pair argument.

Examples

Train Gaussian Kernel Regression Model

Train a kernel regression model for a tall array by using SVM.

When you perform calculations on tall arrays, MATLAB® uses either a parallel pool (default if you
have Parallel Computing Toolbox™) or the local MATLAB session. To run the example using the local
MATLAB session when you have Parallel Computing Toolbox, change the global execution
environment by using the mapreducer function.

mapreducer(0)

Create a datastore that references the folder location with the data. The data can be contained in a
single file, a collection of files, or an entire folder. Treat 'NA' values as missing data so that
datastore replaces them with NaN values. Select a subset of the variables to use. Create a tall table
on top of the datastore.

varnames = {'ArrTime','DepTime','ActualElapsedTime'};
ds = datastore('airlinesmall.csv','TreatAsMissing','NA',...
    'SelectedVariableNames',varnames);
t = tall(ds);

Specify DepTime and ArrTime as the predictor variables (X) and ActualElapsedTime as the
response variable (Y). Select the observations for which ArrTime is later than DepTime.

daytime = t.ArrTime>t.DepTime;
Y = t.ActualElapsedTime(daytime);     % Response data
X = t{daytime,{'DepTime' 'ArrTime'}}; % Predictor data

Standardize the predictor variables.

Z = zscore(X); % Standardize the data

Train a default Gaussian kernel regression model with the standardized predictors. Extract a fit
summary to determine how well the optimization algorithm fits the model to the data.

[Mdl,FitInfo] = fitrkernel(Z,Y)

Found 6 chunks.
|=========================================================================
| Solver | Iteration  /  |   Objective   |   Gradient    | Beta relative |
|        | Data Pass     |               |   magnitude   |    change     |
|=========================================================================
|   INIT |     0 /     1 |  4.313465e+01 |  6.296907e-02 |           NaN |
|  LBFGS |     0 /     2 |  3.704335e+01 |  1.789316e-02 |  9.985854e-01 |
|  LBFGS |     1 /     3 |  3.703211e+01 |  2.880402e-02 |  1.044172e-03 |
|  LBFGS |     2 /     4 |  3.701616e+01 |  2.297788e-02 |  5.115891e-04 |
|  LBFGS |     2 /     5 |  3.700183e+01 |  1.750937e-02 |  1.023672e-03 |
|  LBFGS |     3 /     6 |  3.679055e+01 |  4.815047e-02 |  1.113182e-02 |
|  LBFGS |     4 /     7 |  3.637852e+01 |  1.058657e-01 |  2.994089e-02 |
|  LBFGS |     5 /     8 |  3.565372e+01 |  1.406536e-01 |  7.033477e-02 |
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|  LBFGS |     6 /     9 |  3.478061e+01 |  1.479288e-01 |  1.185262e-01 |
|  LBFGS |     7 /    10 |  3.616955e+01 |  1.544917e-01 |  2.790848e-01 |
|  LBFGS |     7 /    11 |  3.459534e+01 |  1.212256e-01 |  1.229242e-01 |
|  LBFGS |     8 /    12 |  3.379859e+01 |  8.791025e-02 |  5.417481e-02 |
|  LBFGS |     9 /    13 |  3.339981e+01 |  3.077806e-02 |  4.638645e-02 |
|  LBFGS |    10 /    14 |  3.325224e+01 |  3.082755e-02 |  2.867793e-02 |
|  LBFGS |    11 /    15 |  3.320036e+01 |  4.168377e-02 |  9.376887e-03 |
|  LBFGS |    12 /    16 |  3.309321e+01 |  5.018195e-02 |  1.831484e-02 |
|  LBFGS |    13 /    17 |  3.288069e+01 |  4.506485e-02 |  3.732443e-02 |
|  LBFGS |    14 /    18 |  3.245691e+01 |  3.787163e-02 |  1.036929e-01 |
|  LBFGS |    15 /    19 |  3.210116e+01 |  2.418833e-02 |  1.190984e-01 |
|  LBFGS |    16 /    20 |  3.190585e+01 |  2.666398e-02 |  3.921991e-02 |
|=========================================================================
| Solver | Iteration  /  |   Objective   |   Gradient    | Beta relative |
|        | Data Pass     |               |   magnitude   |    change     |
|=========================================================================
|  LBFGS |    17 /    21 |  3.172622e+01 |  2.548259e-02 |  3.805655e-02 |
|  LBFGS |    18 /    22 |  3.154538e+01 |  1.280266e-02 |  4.363429e-02 |
|  LBFGS |    19 /    23 |  3.138533e+01 |  1.446779e-02 |  8.822868e-02 |
|  LBFGS |    20 /    24 |  3.283513e+01 |  2.218528e-01 |  1.318597e-01 |
|  LBFGS |    20 /    25 |  3.158782e+01 |  1.019184e-01 |  6.992082e-02 |
|  LBFGS |    20 /    26 |  3.136869e+01 |  4.678412e-02 |  3.603399e-02 |
|========================================================================|

Mdl = 
  RegressionKernel
            PredictorNames: {'x1'  'x2'}
              ResponseName: 'Y'
                   Learner: 'svm'
    NumExpansionDimensions: 64
               KernelScale: 1
                    Lambda: 8.5385e-06
             BoxConstraint: 1
                   Epsilon: 5.9303

  Properties, Methods

FitInfo = struct with fields:
                  Solver: 'LBFGS-tall'
            LossFunction: 'epsiloninsensitive'
                  Lambda: 8.5385e-06
           BetaTolerance: 1.0000e-03
       GradientTolerance: 1.0000e-05
          ObjectiveValue: 31.3687
       GradientMagnitude: 0.0468
    RelativeChangeInBeta: 0.0360
                 FitTime: 75.0570
                 History: [1x1 struct]

Mdl is a RegressionKernel model. To inspect the regression error, you can pass Mdl and the
training data or new data to the loss function. Or, you can pass Mdl and new predictor data to the
predict function to predict responses for new observations. You can also pass Mdl and the training
data to the resume function to continue training.
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FitInfo is a structure array containing optimization information. Use FitInfo to determine
whether optimization termination measurements are satisfactory.

For improved accuracy, you can increase the maximum number of optimization iterations
('IterationLimit') and decrease the tolerance values ('BetaTolerance' and
'GradientTolerance') by using the name-value pair arguments of fitrkernel. Doing so can
improve measures like ObjectiveValue and RelativeChangeInBeta in FitInfo. You can also
optimize model parameters by using the 'OptimizeHyperparameters' name-value pair argument.

Cross-Validate Kernel Regression Model

Load the carbig data set.

load carbig

Specify the predictor variables (X) and the response variable (Y).

X = [Acceleration,Cylinders,Displacement,Horsepower,Weight];
Y = MPG;

Delete rows of X and Y where either array has NaN values. Removing rows with NaN values before
passing data to fitrkernel can speed up training and reduce memory usage.

R = rmmissing([X Y]); % Data with missing entries removed
X = R(:,1:5); 
Y = R(:,end); 

Standardize the predictor variables.

Z = zscore(X);

Cross-validate a kernel regression model using 5-fold cross-validation.

Mdl = fitrkernel(Z,Y,'Kfold',5)

Mdl = 
  RegressionPartitionedKernel
    CrossValidatedModel: 'Kernel'
           ResponseName: 'Y'
        NumObservations: 392
                  KFold: 5
              Partition: [1x1 cvpartition]
      ResponseTransform: 'none'

  Properties, Methods

numel(Mdl.Trained)

ans = 5

Mdl is a RegressionPartitionedKernel model. Because fitrkernel implements five-fold cross-
validation, Mdl contains five RegressionKernel models that the software trains on training-fold (in-
fold) observations.
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Examine the cross-validation loss (mean squared error) for each fold.

kfoldLoss(Mdl,'mode','individual')

ans = 5×1

   13.0610
   14.0975
   24.0104
   21.1223
   24.3979

Optimize Kernel Regression

Optimize hyperparameters automatically using the 'OptimizeHyperparameters' name-value pair
argument.

Load the carbig data set.

load carbig

Specify the predictor variables (X) and the response variable (Y).

X = [Acceleration,Cylinders,Displacement,Horsepower,Weight];
Y = MPG;

Delete rows of X and Y where either array has NaN values. Removing rows with NaN values before
passing data to fitrkernel can speed up training and reduce memory usage.

R = rmmissing([X Y]); % Data with missing entries removed
X = R(:,1:5); 
Y = R(:,end); 

Standardize the predictor variables.

Z = zscore(X);

Find hyperparameters that minimize five-fold cross-validation loss by using automatic
hyperparameter optimization. Specify 'OptimizeHyperparameters' as 'auto' so that
fitrkernel finds the optimal values of the 'KernelScale', 'Lambda', and 'Epsilon' name-
value pair arguments. For reproducibility, set the random seed and use the 'expected-
improvement-plus' acquisition function.

rng('default')
[Mdl,FitInfo,HyperparameterOptimizationResults] = fitrkernel(Z,Y,'OptimizeHyperparameters','auto',...
    'HyperparameterOptimizationOptions',struct('AcquisitionFunctionName','expected-improvement-plus'))

|====================================================================================================================|
| Iter | Eval   | Objective:  | Objective   | BestSoFar   | BestSoFar   |  KernelScale |       Lambda |      Epsilon |
|      | result | log(1+loss) | runtime     | (observed)  | (estim.)    |              |              |              |
|====================================================================================================================|
|    1 | Best   |      4.8295 |      15.364 |      4.8295 |      4.8295 |     0.011518 |   6.8068e-05 |      0.95918 |
|    2 | Best   |      4.1488 |      1.3697 |      4.1488 |      4.1855 |       477.57 |     0.066115 |     0.091828 |
|    3 | Accept |      4.1521 |     0.44181 |      4.1488 |      4.1747 |    0.0080478 |    0.0052867 |       520.84 |
|    4 | Accept |      4.1506 |      1.0128 |      4.1488 |      4.1488 |      0.10935 |      0.35931 |     0.013372 |
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|    5 | Best   |      4.1446 |     0.96042 |      4.1446 |      4.1446 |       326.29 |       2.5457 |      0.22475 |
|    6 | Accept |      4.1521 |     0.39571 |      4.1446 |      4.1447 |       932.16 |      0.19667 |       873.68 |
|    7 | Accept |      4.1501 |      1.3092 |      4.1446 |      4.1461 |     0.052426 |       2.5402 |     0.051319 |
|    8 | Best   |      4.1408 |      1.5573 |      4.1408 |      4.1402 |       850.91 |      0.01462 |      0.37284 |
|    9 | Accept |      4.1521 |     0.60762 |      4.1408 |      4.1427 |     0.019352 |     0.012035 |       63.493 |
|   10 | Accept |      4.1521 |     0.44516 |      4.1408 |      4.1452 |       853.22 |       1.0698 |       55.679 |
|   11 | Accept |      4.1521 |     0.42851 |      4.1408 |      4.1416 |       1.4548 |     0.022234 |       26.275 |
|   12 | Accept |      4.1509 |      1.1297 |      4.1408 |      4.1469 |       877.82 |    0.0071133 |     0.012021 |
|   13 | Accept |      4.1422 |       2.434 |      4.1408 |      4.1455 |       944.08 |     0.011177 |      0.31055 |
|   14 | Accept |      4.2032 |      1.4481 |      4.1408 |      4.1405 |       979.21 |     0.010842 |       13.776 |
|   15 | Accept |      4.1438 |      1.6962 |      4.1408 |      4.1509 |     0.001234 |     0.018449 |     0.044225 |
|   16 | Best   |      4.1372 |      1.2506 |      4.1372 |      4.1511 |       1.7802 |       2.5477 |     0.014737 |
|   17 | Accept |      4.1521 |     0.39318 |      4.1372 |      4.1466 |    0.0015946 |       2.5474 |       590.35 |
|   18 | Accept |      4.1452 |      1.3236 |      4.1372 |      4.1464 |     0.058846 |       1.0766 |      0.20569 |
|   19 | Accept |      4.1521 |     0.42115 |      4.1372 |      4.1461 |        2.187 |   2.5531e-06 |       278.92 |
|   20 | Accept |      4.1451 |      1.4491 |      4.1372 |      4.1461 |    0.0050283 |     0.039894 |      0.14402 |
|====================================================================================================================|
| Iter | Eval   | Objective:  | Objective   | BestSoFar   | BestSoFar   |  KernelScale |       Lambda |      Epsilon |
|      | result | log(1+loss) | runtime     | (observed)  | (estim.)    |              |              |              |
|====================================================================================================================|
|   21 | Best   |      4.1362 |      1.6819 |      4.1362 |      4.1426 |    0.0029885 |     0.039099 |       6.3938 |
|   22 | Accept |      4.1521 |     0.38602 |      4.1362 |      4.1449 |     0.035949 |     0.038533 |       80.585 |
|   23 | Accept |      4.1399 |     0.90089 |      4.1362 |      4.1446 |       50.001 |     0.095432 |      0.19954 |
|   24 | Accept |      4.1487 |     0.98928 |      4.1362 |      4.1374 |     0.012199 |     0.089894 |     0.034773 |
|   25 | Accept |      4.1521 |     0.37564 |      4.1362 |      4.1447 |    0.0011871 |      0.30153 |       425.89 |
|   26 | Accept |      4.1466 |      1.2716 |      4.1362 |       4.145 |    0.0011773 |     0.052213 |     0.017592 |
|   27 | Accept |      4.1418 |      0.8234 |      4.1362 |       4.145 |        7.556 |        1.655 |     0.016225 |
|   28 | Accept |      4.1407 |      1.8329 |      4.1362 |       4.145 |      0.01201 |       1.6696 |      0.38806 |
|   29 | Accept |      5.4263 |      29.329 |      4.1362 |      4.1365 |    0.0010531 |   1.1032e-05 |     0.034083 |
|   30 | Accept |      4.1521 |     0.35946 |      4.1362 |      4.1365 |       7.2684 |   8.4842e-06 |       887.63 |
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__________________________________________________________
Optimization completed.
MaxObjectiveEvaluations of 30 reached.
Total function evaluations: 30
Total elapsed time: 97.2362 seconds
Total objective function evaluation time: 73.3877

Best observed feasible point:
    KernelScale     Lambda     Epsilon
    ___________    ________    _______

     0.0029885     0.039099    6.3938 

Observed objective function value = 4.1362
Estimated objective function value = 4.1365
Function evaluation time = 1.6819

Best estimated feasible point (according to models):
    KernelScale     Lambda     Epsilon
    ___________    ________    _______

     0.0029885     0.039099    6.3938 

Estimated objective function value = 4.1365
Estimated function evaluation time = 1.5815

Mdl = 
  RegressionKernel
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              ResponseName: 'Y'
                   Learner: 'svm'
    NumExpansionDimensions: 256
               KernelScale: 0.0030
                    Lambda: 0.0391
             BoxConstraint: 0.0652
                   Epsilon: 6.3938

  Properties, Methods

FitInfo = struct with fields:
                  Solver: 'LBFGS-fast'
            LossFunction: 'epsiloninsensitive'
                  Lambda: 0.0391
           BetaTolerance: 1.0000e-04
       GradientTolerance: 1.0000e-06
          ObjectiveValue: 1.7716
       GradientMagnitude: 0.0051
    RelativeChangeInBeta: 8.5572e-05
                 FitTime: 0.2350
                 History: []

HyperparameterOptimizationResults = 
  BayesianOptimization with properties:

                      ObjectiveFcn: @createObjFcn/inMemoryObjFcn
              VariableDescriptions: [5x1 optimizableVariable]
                           Options: [1x1 struct]
                      MinObjective: 4.1362
                   XAtMinObjective: [1x3 table]
             MinEstimatedObjective: 4.1365
          XAtMinEstimatedObjective: [1x3 table]
           NumObjectiveEvaluations: 30
                  TotalElapsedTime: 97.2362
                         NextPoint: [1x3 table]
                            XTrace: [30x3 table]
                    ObjectiveTrace: [30x1 double]
                  ConstraintsTrace: []
                     UserDataTrace: {30x1 cell}
      ObjectiveEvaluationTimeTrace: [30x1 double]
                IterationTimeTrace: [30x1 double]
                        ErrorTrace: [30x1 double]
                  FeasibilityTrace: [30x1 logical]
       FeasibilityProbabilityTrace: [30x1 double]
               IndexOfMinimumTrace: [30x1 double]
             ObjectiveMinimumTrace: [30x1 double]
    EstimatedObjectiveMinimumTrace: [30x1 double]

For big data, the optimization procedure can take a long time. If the data set is too large to run the
optimization procedure, you can try to optimize the parameters using only partial data. Use the
datasample function and specify 'Replace','false' to sample data without replacement.
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Input Arguments
X — Predictor data
numeric matrix

Predictor data to which the regression model is fit, specified as an n-by-p numeric matrix, where n is
the number of observations and p is the number of predictor variables.

The length of Y and the number of observations in X must be equal.
Data Types: single | double

Y — Response data
numeric vector

Response data, specified as an n-dimensional numeric vector. The length of Y must be equal to the
number of observations in X or Tbl.
Data Types: single | double

Tbl — Sample data
table

Sample data used to train the model, specified as a table. Each row of Tbl corresponds to one
observation, and each column corresponds to one predictor variable. Optionally, Tbl can contain one
additional column for the response variable. Multicolumn variables and cell arrays other than cell
arrays of character vectors are not allowed.

• If Tbl contains the response variable, and you want to use all remaining variables in Tbl as
predictors, then specify the response variable by using ResponseVarName.

• If Tbl contains the response variable, and you want to use only a subset of the remaining
variables in Tbl as predictors, then specify a formula by using formula.

• If Tbl does not contain the response variable, then specify a response variable by using Y. The
length of the response variable and the number of rows in Tbl must be equal.

ResponseVarName — Response variable name
name of variable in Tbl

Response variable name, specified as the name of a variable in Tbl. The response variable must be a
numeric vector.

You must specify ResponseVarName as a character vector or string scalar. For example, if Tbl stores
the response variable Y as Tbl.Y, then specify it as 'Y'. Otherwise, the software treats all columns
of Tbl, including Y, as predictors when training the model.
Data Types: char | string

formula — Explanatory model of response variable and subset of predictor variables
character vector | string scalar

Explanatory model of the response variable and a subset of the predictor variables, specified as a
character vector or string scalar in the form "Y~x1+x2+x3". In this form, Y represents the response
variable, and x1, x2, and x3 represent the predictor variables.
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To specify a subset of variables in Tbl as predictors for training the model, use a formula. If you
specify a formula, then the software does not use any variables in Tbl that do not appear in
formula.

The variable names in the formula must be both variable names in Tbl
(Tbl.Properties.VariableNames) and valid MATLAB identifiers. You can verify the variable
names in Tbl by using the isvarname function. If the variable names are not valid, then you can
convert them by using the matlab.lang.makeValidName function.
Data Types: char | string

Note The software treats NaN, empty character vector (''), empty string (""), <missing>, and
<undefined> elements as missing values, and removes observations with any of these
characteristics:

• Missing value in the response variable
• At least one missing value in a predictor observation (row in X or Tbl)
• NaN value or 0 weight ('Weights')

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.
Example: Mdl =
fitrkernel(X,Y,Learner="leastsquares",NumExpansionDimensions=2^15,KernelScale
="auto") implements least-squares regression after mapping the predictor data to the 2^15
dimensional space using feature expansion with a kernel scale parameter selected by a heuristic
procedure.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: Mdl =
fitrkernel(X,Y,'Learner','leastsquares','NumExpansionDimensions',2^15,'Kernel
Scale','auto')

Note You cannot use any cross-validation name-value argument together with the
'OptimizeHyperparameters' name-value argument. You can modify the cross-validation for
'OptimizeHyperparameters' only by using the 'HyperparameterOptimizationOptions'
name-value argument.

Kernel Regression Options

BoxConstraint — Box constraint
1 (default) | positive scalar

Box constraint on page 35-8048, specified as the comma-separated pair consisting of
'BoxConstraint' and a positive scalar.

This argument is valid only when 'Learner' is 'svm'(default) and you do not specify a value for the
regularization term strength 'Lambda'. You can specify either 'BoxConstraint' or 'Lambda'
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because the box constraint (C) and the regularization term strength (λ) are related by C = 1/(λn),
where n is the number of observations (rows in X).
Example: 'BoxConstraint',100
Data Types: single | double

Epsilon — Half width of epsilon-insensitive band
'auto' (default) | nonnegative scalar value

Half the width of the epsilon-insensitive band, specified as the comma-separated pair consisting of
'Epsilon' and 'auto' or a nonnegative scalar value.

For 'auto', the fitrkernel function determines the value of Epsilon as iqr(Y)/13.49, which is
an estimate of a tenth of the standard deviation using the interquartile range of the response variable
Y. If iqr(Y) is equal to zero, then fitrkernel sets the value of Epsilon to 0.1.

'Epsilon' is valid only when Learner is svm.
Example: 'Epsilon',0.3
Data Types: single | double

NumExpansionDimensions — Number of dimensions of expanded space
'auto' (default) | positive integer

Number of dimensions of the expanded space, specified as the comma-separated pair consisting of
'NumExpansionDimensions' and 'auto' or a positive integer. For 'auto', the fitrkernel
function selects the number of dimensions using 2.^ceil(min(log2(p)+5,15)), where p is the
number of predictors.
Example: 'NumExpansionDimensions',2^15
Data Types: char | string | single | double

KernelScale — Kernel scale parameter
1 (default) | 'auto' | positive scalar

Kernel scale parameter, specified as the comma-separated pair consisting of 'KernelScale' and
'auto' or a positive scalar. MATLAB obtains the random basis for random feature expansion by
using the kernel scale parameter. For details, see “Random Feature Expansion” on page 35-8048.

If you specify 'auto', then MATLAB selects an appropriate kernel scale parameter using a heuristic
procedure. This heuristic procedure uses subsampling, so estimates can vary from one call to another.
Therefore, to reproduce results, set a random number seed by using rng before training.
Example: 'KernelScale','auto'
Data Types: char | string | single | double

Lambda — Regularization term strength
'auto' (default) | nonnegative scalar

Regularization term strength, specified as the comma-separated pair consisting of 'Lambda' and
'auto' or a nonnegative scalar.

For 'auto', the value of Lambda is 1/n, where n is the number of observations.
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When Learner is 'svm', you can specify either BoxConstraint or Lambda because the box
constraint (C) and the regularization term strength (λ) are related by C = 1/(λn).
Example: 'Lambda',0.01
Data Types: char | string | single | double

Learner — Linear regression model type
'svm' (default) | 'leastsquares'

Linear regression model type, specified as the comma-separated pair consisting of 'Learner' and
'svm' or 'leastsquares'.

In the following table, f x = T(x)β + b .

• x is an observation (row vector) from p predictor variables.
• T ·  is a transformation of an observation (row vector) for feature expansion. T(x) maps x in ℝp to

a high-dimensional space (ℝm).
• β is a vector of coefficients.
• b is the scalar bias.

Value Algorithm Response range Loss function
'leastsquares' Linear regression via

ordinary least squares
y ∊ (-∞,∞) Mean squared error

(MSE):
ℓ y, f x = 1

2 y − f x 2

'svm' Support vector machine
regression

Same as
'leastsquares'

Epsilon-insensitive:
ℓ y, f x = max
0, y − f x − ε

Example: 'Learner','leastsquares'

Verbose — Verbosity level
0 (default) | 1

Verbosity level, specified as the comma-separated pair consisting of 'Verbose' and either 0 or 1.
Verbose controls the amount of diagnostic information fitrkernel displays at the command line.

Value Description
0 fitrkernel does not display diagnostic information.
1 fitrkernel displays and stores the value of the objective function, gradient

magnitude, and other diagnostic information. FitInfo.History contains the
diagnostic information.

Example: 'Verbose',1
Data Types: single | double

BlockSize — Maximum amount of allocated memory
4e^3 (4GB) (default) | positive scalar

Maximum amount of allocated memory (in megabytes), specified as the comma-separated pair
consisting of 'BlockSize' and a positive scalar.
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If fitrkernel requires more memory than the value of BlockSize to hold the transformed
predictor data, then MATLAB uses a block-wise strategy. For details about the block-wise strategy, see
“Algorithms” on page 35-8049.
Example: 'BlockSize',1e4
Data Types: single | double

RandomStream — Random number stream
global stream (default) | random stream object

Random number stream for reproducibility of data transformation, specified as the comma-separated
pair consisting of 'RandomStream' and a random stream object. For details, see “Random Feature
Expansion” on page 35-8048.

Use 'RandomStream' to reproduce the random basis functions that fitrkernel uses to transform
the data in X to a high-dimensional space. For details, see “Managing the Global Stream Using
RandStream” and “Creating and Controlling a Random Number Stream”.
Example: 'RandomStream',RandStream('mlfg6331_64')

Other Regression Options

CategoricalPredictors — Categorical predictors list
vector of positive integers | logical vector | character matrix | string array | cell array of character
vectors | 'all'

Categorical predictors list, specified as one of the values in this table.

Value Description
Vector of positive
integers

Each entry in the vector is an index value indicating that the corresponding
predictor is categorical. The index values are between 1 and p, where p is
the number of predictors used to train the model.

If fitrkernel uses a subset of input variables as predictors, then the
function indexes the predictors using only the subset. The
CategoricalPredictors values do not count the response variable,
observation weights variable, or any other variables that the function does
not use.

Logical vector A true entry means that the corresponding predictor is categorical. The
length of the vector is p.

Character matrix Each row of the matrix is the name of a predictor variable. The names must
match the entries in PredictorNames. Pad the names with extra blanks
so each row of the character matrix has the same length.

String array or cell
array of character
vectors

Each element in the array is the name of a predictor variable. The names
must match the entries in PredictorNames.

"all" All predictors are categorical.

By default, if the predictor data is in a table (Tbl), fitrkernel assumes that a variable is
categorical if it is a logical vector, categorical vector, character array, string array, or cell array of
character vectors. If the predictor data is a matrix (X), fitrkernel assumes that all predictors are
continuous. To identify any other predictors as categorical predictors, specify them by using the
CategoricalPredictors name-value argument.
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For the identified categorical predictors, fitrkernel creates dummy variables using two different
schemes, depending on whether a categorical variable is unordered or ordered. For an unordered
categorical variable, fitrkernel creates one dummy variable for each level of the categorical
variable. For an ordered categorical variable, fitrkernel creates one less dummy variable than the
number of categories. For details, see “Automatic Creation of Dummy Variables” on page 2-50.
Example: 'CategoricalPredictors','all'
Data Types: single | double | logical | char | string | cell

PredictorNames — Predictor variable names
string array of unique names | cell array of unique character vectors

Predictor variable names, specified as a string array of unique names or cell array of unique
character vectors. The functionality of PredictorNames depends on the way you supply the training
data.

• If you supply X and Y, then you can use PredictorNames to assign names to the predictor
variables in X.

• The order of the names in PredictorNames must correspond to the column order of X. That
is, PredictorNames{1} is the name of X(:,1), PredictorNames{2} is the name of
X(:,2), and so on. Also, size(X,2) and numel(PredictorNames) must be equal.

• By default, PredictorNames is {'x1','x2',...}.
• If you supply Tbl, then you can use PredictorNames to choose which predictor variables to use

in training. That is, fitrkernel uses only the predictor variables in PredictorNames and the
response variable during training.

• PredictorNames must be a subset of Tbl.Properties.VariableNames and cannot include
the name of the response variable.

• By default, PredictorNames contains the names of all predictor variables.
• A good practice is to specify the predictors for training using either PredictorNames or

formula, but not both.

Example: "PredictorNames",
["SepalLength","SepalWidth","PetalLength","PetalWidth"]

Data Types: string | cell

ResponseName — Response variable name
"Y" (default) | character vector | string scalar

Response variable name, specified as a character vector or string scalar.

• If you supply Y, then you can use ResponseName to specify a name for the response variable.
• If you supply ResponseVarName or formula, then you cannot use ResponseName.

Example: "ResponseName","response"
Data Types: char | string

ResponseTransform — Response transformation
'none' (default) | function handle

Response transformation, specified as either 'none' or a function handle. The default is 'none',
which means @(y)y, or no transformation. For a MATLAB function or a function you define, use its
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function handle for the response transformation. The function handle must accept a vector (the
original response values) and return a vector of the same size (the transformed response values).
Example: Suppose you create a function handle that applies an exponential transformation to an
input vector by using myfunction = @(y)exp(y). Then, you can specify the response
transformation as 'ResponseTransform',myfunction.
Data Types: char | string | function_handle

Weights — Observation weights
vector of scalar values | name of variable in Tbl

Observation weights, specified as the comma-separated pair consisting of 'Weights' and a vector of
scalar values or the name of a variable in Tbl. The software weights each observation (or row) in X or
Tbl with the corresponding value in Weights. The length of Weights must equal the number of
rows in X or Tbl.

If you specify the input data as a table Tbl, then Weights can be the name of a variable in Tbl that
contains a numeric vector. In this case, you must specify Weights as a character vector or string
scalar. For example, if weights vector W is stored as Tbl.W, then specify it as 'W'. Otherwise, the
software treats all columns of Tbl, including W, as predictors when training the model.

By default, Weights is ones(n,1), where n is the number of observations in X or Tbl.

fitrkernel normalizes the weights to sum to 1.
Data Types: single | double | char | string

Cross-Validation Options

CrossVal — Cross-validation flag
'off' (default) | 'on'

Cross-validation flag, specified as the comma-separated pair consisting of 'Crossval' and 'on' or
'off'.

If you specify 'on', then the software implements 10-fold cross-validation.

You can override this cross-validation setting using the CVPartition, Holdout, KFold, or
Leaveout name-value pair argument. You can use only one cross-validation name-value pair
argument at a time to create a cross-validated model.
Example: 'Crossval','on'

CVPartition — Cross-validation partition
[] (default) | cvpartition partition object

Cross-validation partition, specified as a cvpartition partition object created by cvpartition.
The partition object specifies the type of cross-validation and the indexing for the training and
validation sets.

To create a cross-validated model, you can specify only one of these four name-value arguments:
CVPartition, Holdout, KFold, or Leaveout.
Example: Suppose you create a random partition for 5-fold cross-validation on 500 observations by
using cvp = cvpartition(500,'KFold',5). Then, you can specify the cross-validated model by
using 'CVPartition',cvp.
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Holdout — Fraction of data for holdout validation
scalar value in the range (0,1)

Fraction of the data used for holdout validation, specified as a scalar value in the range (0,1). If you
specify 'Holdout',p, then the software completes these steps:

1 Randomly select and reserve p*100% of the data as validation data, and train the model using
the rest of the data.

2 Store the compact, trained model in the Trained property of the cross-validated model.

To create a cross-validated model, you can specify only one of these four name-value arguments:
CVPartition, Holdout, KFold, or Leaveout.
Example: 'Holdout',0.1
Data Types: double | single

KFold — Number of folds
10 (default) | positive integer value greater than 1

Number of folds to use in a cross-validated model, specified as a positive integer value greater than 1.
If you specify 'KFold',k, then the software completes these steps:

1 Randomly partition the data into k sets.
2 For each set, reserve the set as validation data, and train the model using the other k – 1 sets.
3 Store the k compact, trained models in a k-by-1 cell vector in the Trained property of the cross-

validated model.

To create a cross-validated model, you can specify only one of these four name-value arguments:
CVPartition, Holdout, KFold, or Leaveout.
Example: 'KFold',5
Data Types: single | double

Leaveout — Leave-one-out cross-validation flag
'off' (default) | 'on'

Leave-one-out cross-validation flag, specified as the comma-separated pair consisting of 'Leaveout'
and 'on' or 'off'. If you specify 'Leaveout','on', then, for each of the n observations (where n
is the number of observations excluding missing observations), the software completes these steps:

1 Reserve the observation as validation data, and train the model using the other n – 1
observations.

2 Store the n compact, trained models in the cells of an n-by-1 cell vector in the Trained property
of the cross-validated model.

To create a cross-validated model, you can use one of these four name-value pair arguments only:
CVPartition, Holdout, KFold, or Leaveout.
Example: 'Leaveout','on'

Convergence Controls

BetaTolerance — Relative tolerance on linear coefficients and bias term
1e-4 (default) | nonnegative scalar
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Relative tolerance on the linear coefficients and the bias term (intercept), specified as a nonnegative
scalar.

Let Bt = βt′ bt , that is, the vector of the coefficients and the bias term at optimization iteration t. If
Bt − Bt − 1

Bt 2
< BetaTolerance, then optimization terminates.

If you also specify GradientTolerance, then optimization terminates when the software satisfies
either stopping criterion.
Example: 'BetaTolerance',1e-6
Data Types: single | double

GradientTolerance — Absolute gradient tolerance
1e-6 (default) | nonnegative scalar

Absolute gradient tolerance, specified as a nonnegative scalar.

Let ∇ℒ t be the gradient vector of the objective function with respect to the coefficients and bias term
at optimization iteration t. If ∇ℒ t ∞ = max ∇ℒ t < GradientTolerance, then optimization terminates.

If you also specify BetaTolerance, then optimization terminates when the software satisfies either
stopping criterion.
Example: 'GradientTolerance',1e-5
Data Types: single | double

HessianHistorySize — Size of history buffer for Hessian approximation
15 (default) | positive integer

Size of the history buffer for Hessian approximation, specified as the comma-separated pair
consisting of 'HessianHistorySize' and a positive integer. At each iteration, fitrkernel
composes the Hessian by using statistics from the latest HessianHistorySize iterations.
Example: 'HessianHistorySize',10
Data Types: single | double

IterationLimit — Maximum number of optimization iterations
positive integer

Maximum number of optimization iterations, specified as the comma-separated pair consisting of
'IterationLimit' and a positive integer.

The default value is 1000 if the transformed data fits in memory, as specified by BlockSize.
Otherwise, the default value is 100.
Example: 'IterationLimit',500
Data Types: single | double
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Hyperparameter Optimization Options

OptimizeHyperparameters — Parameters to optimize
'none' (default) | 'auto' | 'all' | string array or cell array of eligible parameter names | vector of
optimizableVariable objects

Parameters to optimize, specified as the comma-separated pair consisting of
'OptimizeHyperparameters' and one of these values:

• 'none' — Do not optimize.
• 'auto' — Use {'KernelScale','Lambda','Epsilon'}.
• 'all' — Optimize all eligible parameters.
• Cell array of eligible parameter names.
• Vector of optimizableVariable objects, typically the output of hyperparameters.

The optimization attempts to minimize the cross-validation loss (error) for fitrkernel by varying
the parameters. To control the cross-validation type and other aspects of the optimization, use the
HyperparameterOptimizationOptions name-value pair argument.

Note The values of 'OptimizeHyperparameters' override any values you specify using other
name-value arguments. For example, setting 'OptimizeHyperparameters' to 'auto' causes
fitrkernel to optimize hyperparameters corresponding to the 'auto' option and to ignore any
specified values for the hyperparameters.

The eligible parameters for fitrkernel are:

• Epsilon — fitrkernel searches among positive values, by default log-scaled in the range
[1e-3,1e2]*iqr(Y)/1.349.

• KernelScale — fitrkernel searches among positive values, by default log-scaled in the range
[1e-3,1e3].

• Lambda — fitrkernel searches among positive values, by default log-scaled in the range
[1e-3,1e3]/n, where n is the number of observations.

• Learner — fitrkernel searches among 'svm' and 'leastsquares'.
• NumExpansionDimensions — fitrkernel searches among positive integers, by default log-

scaled in the range [100,10000].

Set nondefault parameters by passing a vector of optimizableVariable objects that have
nondefault values. For example:

load carsmall
params = hyperparameters('fitrkernel',[Horsepower,Weight],MPG);
params(2).Range = [1e-4,1e6];

Pass params as the value of 'OptimizeHyperparameters'.

By default, the iterative display appears at the command line, and plots appear according to the
number of hyperparameters in the optimization. For the optimization and plots, the objective function
is log(1 + cross-validation loss). To control the iterative display, set the Verbose field of the
'HyperparameterOptimizationOptions' name-value argument. To control the plots, set the
ShowPlots field of the 'HyperparameterOptimizationOptions' name-value argument.
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For an example, see “Optimize Kernel Regression” on page 35-8030.
Example: 'OptimizeHyperparameters','auto'

HyperparameterOptimizationOptions — Options for optimization
structure

Options for optimization, specified as a structure. This argument modifies the effect of the
OptimizeHyperparameters name-value argument. All fields in the structure are optional.

Field Name Values Default
Optimizer • 'bayesopt' — Use Bayesian optimization.

Internally, this setting calls bayesopt.
• 'gridsearch' — Use grid search with

NumGridDivisions values per dimension.
• 'randomsearch' — Search at random among

MaxObjectiveEvaluations points.

'gridsearch' searches in a random order, using
uniform sampling without replacement from the
grid. After optimization, you can get a table in grid
order by using the command
sortrows(Mdl.HyperparameterOptimizatio
nResults).

'bayesopt'

AcquisitionFunct
ionName

• 'expected-improvement-per-second-
plus'

• 'expected-improvement'
• 'expected-improvement-plus'
• 'expected-improvement-per-second'
• 'lower-confidence-bound'
• 'probability-of-improvement'

Acquisition functions whose names include per-
second do not yield reproducible results because
the optimization depends on the runtime of the
objective function. Acquisition functions whose
names include plus modify their behavior when
they are overexploiting an area. For more details,
see “Acquisition Function Types” on page 10-3.

'expected-
improvement-per-
second-plus'

MaxObjectiveEval
uations

Maximum number of objective function
evaluations.

30 for 'bayesopt' and
'randomsearch', and
the entire grid for
'gridsearch'

MaxTime Time limit, specified as a positive real scalar. The
time limit is in seconds, as measured by tic and
toc. The run time can exceed MaxTime because
MaxTime does not interrupt function evaluations.

Inf
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Field Name Values Default
NumGridDivisions For 'gridsearch', the number of values in each

dimension. The value can be a vector of positive
integers giving the number of values for each
dimension, or a scalar that applies to all
dimensions. This field is ignored for categorical
variables.

10

ShowPlots Logical value indicating whether to show plots. If
true, this field plots the best observed objective
function value against the iteration number. If you
use Bayesian optimization (Optimizer is
'bayesopt'), then this field also plots the best
estimated objective function value. The best
observed objective function values and best
estimated objective function values correspond to
the values in the BestSoFar (observed) and
BestSoFar (estim.) columns of the iterative
display, respectively. You can find these values in
the properties ObjectiveMinimumTrace and
EstimatedObjectiveMinimumTrace of
Mdl.HyperparameterOptimizationResults.
If the problem includes one or two optimization
parameters for Bayesian optimization, then
ShowPlots also plots a model of the objective
function against the parameters.

true

SaveIntermediate
Results

Logical value indicating whether to save results
when Optimizer is 'bayesopt'. If true, this
field overwrites a workspace variable named
'BayesoptResults' at each iteration. The
variable is a BayesianOptimization object.

false

Verbose Display at the command line:

• 0 — No iterative display
• 1 — Iterative display
• 2 — Iterative display with extra information

For details, see the bayesopt Verbose name-
value argument and the example “Optimize
Classifier Fit Using Bayesian Optimization” on
page 10-56.

1

UseParallel Logical value indicating whether to run Bayesian
optimization in parallel, which requires Parallel
Computing Toolbox. Due to the nonreproducibility
of parallel timing, parallel Bayesian optimization
does not necessarily yield reproducible results. For
details, see “Parallel Bayesian Optimization” on
page 10-7.

false
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Field Name Values Default
Repartition Logical value indicating whether to repartition the

cross-validation at every iteration. If this field is
false, the optimizer uses a single partition for
the optimization.

The setting true usually gives the most robust
results because it takes partitioning noise into
account. However, for good results, true requires
at least twice as many function evaluations.

false

Use no more than one of the following three options.
CVPartition A cvpartition object, as created by

cvpartition
'Kfold',5 if you do not
specify a cross-validation
fieldHoldout A scalar in the range (0,1) representing the

holdout fraction
Kfold An integer greater than 1

Example:
'HyperparameterOptimizationOptions',struct('MaxObjectiveEvaluations',60)

Data Types: struct

Output Arguments
Mdl — Trained kernel regression model
RegressionKernel model object | RegressionPartitionedKernel cross-validated model object

Trained kernel regression model, returned as a RegressionKernel model object or
RegressionPartitionedKernel cross-validated model object.

If you set any of the name-value pair arguments CrossVal, CVPartition, Holdout, KFold, or
Leaveout, then Mdl is a RegressionPartitionedKernel cross-validated model. Otherwise, Mdl
is a RegressionKernel model.

To reference properties of Mdl, use dot notation. For example, enter
Mdl.NumExpansionDimensions in the Command Window to display the number of dimensions of
the expanded space.

Note Unlike other regression models, and for economical memory usage, a RegressionKernel
model object does not store the training data or training process details (for example, convergence
history).

FitInfo — Optimization details
structure array

Optimization details, returned as a structure array including fields described in this table. The fields
contain final values or name-value pair argument specifications.
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Field Description
Solver Objective function minimization technique: 'LBFGS-fast', 'LBFGS-

blockwise', or 'LBFGS-tall'. For details, see “Algorithms” on page 35-
8049.

LossFunction Loss function. Either mean squared error (MSE) or epsilon-insensitive,
depending on the type of linear regression model. See Learner.

Lambda Regularization term strength. See Lambda.
BetaTolerance Relative tolerance on the linear coefficients and the bias term. See

BetaTolerance.
GradientTolerance Absolute gradient tolerance. See GradientTolerance.
ObjectiveValue Value of the objective function when optimization terminates. The

regression loss plus the regularization term compose the objective
function.

GradientMagnitude Infinite norm of the gradient vector of the objective function when
optimization terminates. See GradientTolerance.

RelativeChangeInBe
ta

Relative changes in the linear coefficients and the bias term when
optimization terminates. See BetaTolerance.

FitTime Elapsed, wall-clock time (in seconds) required to fit the model to the data.
History History of optimization information. This field also includes the

optimization information from training Mdl. This field is empty ([]) if you
specify 'Verbose',0. For details, see Verbose and “Algorithms” on page
35-8049.

To access fields, use dot notation. For example, to access the vector of objective function values for
each iteration, enter FitInfo.ObjectiveValue in the Command Window.

Examine the information provided by FitInfo to assess whether convergence is satisfactory.

HyperparameterOptimizationResults — Cross-validation optimization of hyperparameters
BayesianOptimization object | table of hyperparameters and associated values

Cross-validation optimization of hyperparameters, returned as a BayesianOptimization object or
a table of hyperparameters and associated values. The output is nonempty when the value of
'OptimizeHyperparameters' is not 'none'. The output value depends on the Optimizer field
value of the 'HyperparameterOptimizationOptions' name-value pair argument:

Value of Optimizer Field Value of
HyperparameterOptimizationResults

'bayesopt' (default) Object of class BayesianOptimization
'gridsearch' or 'randomsearch' Table of hyperparameters used, observed

objective function values (cross-validation loss),
and rank of observations from lowest (best) to
highest (worst)
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More About
Random Feature Expansion

Random feature expansion, such as Random Kitchen Sinks[1] or Fastfood[2], is a scheme to
approximate Gaussian kernels of the kernel regression algorithm for big data in a computationally
efficient way. Random feature expansion is more practical for big data applications that have large
training sets, but can also be applied to smaller data sets that fit in memory.

After mapping the predictor data into a high-dimensional space, the kernel regression algorithm
searches for an optimal function that deviates from each response data point (yi) by values no greater
than the epsilon margin (ε).

Some regression problems cannot be described adequately using a linear model. In such cases,
obtain a nonlinear regression model by replacing the dot product x1x2′ with a nonlinear kernel
function G(x1, x2) = φ(x1), φ(x2) , where xi is the ith observation (row vector) and φ(xi) is a
transformation that maps xi to a high-dimensional space (called the “kernel trick”). However,
evaluating G(x1,x2), the Gram matrix, for each pair of observations is computationally expensive for a
large data set (large n).

The random feature expansion scheme finds a random transformation so that its dot product
approximates the Gaussian kernel. That is,

G(x1, x2) = φ(x1), φ(x2) ≈ T(x1)T(x2)′,

where T(x) maps x in ℝp to a high-dimensional space (ℝm). The Random Kitchen Sinks[1] scheme
uses the random transformation

T(x) = m−1/2exp iZx′ ′,

where Z ∈ ℝm × p is a sample drawn from N 0, σ−2  and σ is a kernel scale. This scheme requires
O(mp) computation and storage. The Fastfood[2] scheme introduces another random basis V instead
of Z using Hadamard matrices combined with Gaussian scaling matrices. This random basis reduces
computation cost to O(mlogp) and reduces storage to O(m).

You can specify values for m and σ, using the NumExpansionDimensions and KernelScale name-
value pair arguments of fitrkernel, respectively.

The fitrkernel function uses the Fastfood scheme for random feature expansion and uses linear
regression to train a Gaussian kernel regression model. Unlike solvers in the fitrsvm function,
which require computation of the n-by-n Gram matrix, the solver in fitrkernel only needs to form a
matrix of size n-by-m, with m typically much less than n for big data.

Box Constraint

A box constraint is a parameter that controls the maximum penalty imposed on observations that lie
outside the epsilon margin (ε), and helps to prevent overfitting (regularization). Increasing the box
constraint can lead to longer training times.

The box constraint (C) and the regularization term strength (λ) are related by C = 1/(λn), where n is
the number of observations.
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Tips
• Standardizing predictors before training a model can be helpful. You can standardize training data

and scale test data to have the same scale as the training data by using the normalize function.

Algorithms
fitrkernel minimizes the regularized objective function using a Limited-memory Broyden-Fletcher-
Goldfarb-Shanno (LBFGS) solver with ridge (L2) regularization. To find the type of LBFGS solver used
for training, type FitInfo.Solver in the Command Window.

• 'LBFGS-fast' — LBFGS solver.
• 'LBFGS-blockwise' — LBFGS solver with a block-wise strategy. If fitrkernel requires more

memory than the value of BlockSize to hold the transformed predictor data, then the function
uses a block-wise strategy.

• 'LBFGS-tall' — LBFGS solver with a block-wise strategy for tall arrays.

When fitrkernel uses a block-wise strategy, it implements LBFGS by distributing the calculation of
the loss and gradient among different parts of the data at each iteration. Also, fitrkernel refines
the initial estimates of the linear coefficients and the bias term by fitting the model locally to parts of
the data and combining the coefficients by averaging. If you specify 'Verbose',1, then
fitrkernel displays diagnostic information for each data pass and stores the information in the
History field of FitInfo.

When fitrkernel does not use a block-wise strategy, the initial estimates are zeros. If you specify
'Verbose',1, then fitrkernel displays diagnostic information for each iteration and stores the
information in the History field of FitInfo.

Version History
Introduced in R2018a

References
[1] Rahimi, A., and B. Recht. “Random Features for Large-Scale Kernel Machines.” Advances in

Neural Information Processing Systems. Vol. 20, 2008, pp. 1177–1184.

[2] Le, Q., T. Sarlós, and A. Smola. “Fastfood — Approximating Kernel Expansions in Loglinear Time.”
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Extended Capabilities
Tall Arrays
Calculate with arrays that have more rows than fit in memory.

Usage notes and limitations:
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• fitrkernel does not support tall table data.
• Some name-value pair arguments have different defaults compared to the default values for the in-

memory fitrkernel function. Supported name-value pair arguments, and any differences, are:

• 'BoxConstraint'
• 'Epsilon'
• 'NumExpansionDimensions'
• 'KernelScale'
• 'Lambda'
• 'Learner'
• 'Verbose' — Default value is 1.
• 'BlockSize'
• 'RandomStream'
• 'ResponseTransform'
• 'Weights' — Value must be a tall array.
• 'BetaTolerance' — Default value is relaxed to 1e–3.
• 'GradientTolerance' — Default value is relaxed to 1e–5.
• 'HessianHistorySize'
• 'IterationLimit' — Default value is relaxed to 20.
• 'OptimizeHyperparameters'
• 'HyperparameterOptimizationOptions' — For cross-validation, tall optimization

supports only 'Holdout' validation. By default, the software selects and reserves 20% of the
data as holdout validation data, and trains the model using the rest of the data. You can specify
a different value for the holdout fraction by using this argument. For example, specify
'HyperparameterOptimizationOptions',struct('Holdout',0.3) to reserve 30% of
the data as validation data.

• If 'KernelScale' is 'auto', then fitrkernel uses the random stream controlled by tallrng
for subsampling. For reproducibility, you must set a random number seed for both the global
stream and the random stream controlled by tallrng.

• If 'Lambda' is 'auto', then fitrkernel might take an extra pass through the data to calculate
the number of observations in X.

• fitrkernel uses a block-wise strategy. For details, see “Algorithms” on page 35-8049.

For more information, see “Tall Arrays”.

Automatic Parallel Support
Accelerate code by automatically running computation in parallel using Parallel Computing Toolbox™.

To perform parallel hyperparameter optimization, use the
'HyperparameterOptimizationOptions', struct('UseParallel',true) name-value
argument in the call to the fitrkernel function.

For more information on parallel hyperparameter optimization, see “Parallel Bayesian Optimization”
on page 10-7.

For general information about parallel computing, see “Run MATLAB Functions with Automatic
Parallel Support” (Parallel Computing Toolbox).
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See Also
bayesopt | bestPoint | fitrlinear | fitrsvm | loss | predict | RegressionKernel | resume
| RegressionPartitionedKernel

Topics
“Train Kernel Approximation Model Using Regression Learner App” on page 24-89
“Understanding Support Vector Machine Regression” on page 25-2
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RegressionKernel
Gaussian kernel regression model using random feature expansion

Description
RegressionKernel is a trained model object for Gaussian kernel regression using random feature
expansion. RegressionKernel is more practical for big data applications that have large training
sets but can also be applied to smaller data sets that fit in memory.

Unlike other regression models, and for economical memory usage, RegressionKernel model
objects do not store the training data. However, they do store information such as the dimension of
the expanded space, the kernel scale parameter, and the regularization strength.

You can use trained RegressionKernel models to continue training using the training data, predict
responses for new data, and compute the mean squared error or epsilon-insensitive loss. For details,
see resume, predict, and loss.

Creation
Create a RegressionKernel object using the fitrkernel function. This function maps data in a
low-dimensional space into a high-dimensional space, then fits a linear model in the high-dimensional
space by minimizing the regularized objective function. Obtaining the linear model in the high-
dimensional space is equivalent to applying the Gaussian kernel to the model in the low-dimensional
space. Available linear regression models include regularized support vector machines (SVM) and
least-squares regression models.

Properties
Kernel Regression Properties

Epsilon — Half width of epsilon-insensitive band
nonnegative scalar

Half the width of the epsilon-insensitive band, specified as a nonnegative scalar.

If Learner is not 'svm', then Epsilon is an empty array ([]).
Data Types: single | double

Learner — Linear regression model type
'svm' (default) | 'leastsquares'

Linear regression model type, specified as 'leastsquares' or 'svm'.

In the following table, f x = T(x)β + b .

• x is an observation (row vector) from p predictor variables.

35 Functions

35-8052



• T ·  is a transformation of an observation (row vector) for feature expansion. T(x) maps x in ℝp to
a high-dimensional space (ℝm).

• β is a vector of coefficients.
• b is the scalar bias.

Value Algorithm Loss Function FittedLoss Value
'svm' Support vector machine

regression
Epsilon insensitive:
ℓ y, f x = max
0, y − f x − ε

'epsiloninsensitiv
e'

'leastsquares' Linear regression
through ordinary least
squares

Mean squared error
(MSE):
ℓ y, f x = 1

2 y − f x 2

'mse'

NumExpansionDimensions — Number of dimensions of expanded space
positive integer

Number of dimensions of the expanded space, specified as a positive integer.
Data Types: single | double

KernelScale — Kernel scale parameter
positive scalar

Kernel scale parameter, specified as a positive scalar.
Data Types: single | double

BoxConstraint — Box constraint
positive scalar

Box constraint, specified as a positive scalar.
Data Types: double | single

Lambda — Regularization term strength
nonnegative scalar

Regularization term strength, specified as a nonnegative scalar.
Data Types: single | double

FittedLoss — Loss function used to fit linear model
'epsiloninsensitive' | 'mse'

Loss function used to fit the linear model, specified as 'epsiloninsensitive' or 'mse'.

Value Algorithm Loss Function Learner Value
'epsiloninsensitiv
e'

Support vector machine
regression

Epsilon insensitive:
ℓ y, f x = max
0, y − f x − ε

'svm'
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Value Algorithm Loss Function Learner Value
'mse' Linear regression

through ordinary least
squares

Mean squared error
(MSE):
ℓ y, f x = 1

2 y − f x 2

'leastsquares'

Regularization — Complexity penalty type
'lasso (L1)' | 'ridge (L2)'

Complexity penalty type, specified as 'lasso (L1)' or 'ridge (L2)'.

The software composes the objective function for minimization from the sum of the average loss
function (see FittedLoss) and a regularization value from this table.

Value Description
'lasso (L1)'

Lasso (L1) penalty: λ ∑
j = 1

p
β j

'ridge (L2)'
Ridge (L2) penalty: λ2 ∑j = 1

p
β j

2

λ specifies the regularization term strength (see Lambda).

The software excludes the bias term (β0) from the regularization penalty.

Other Regression Properties

CategoricalPredictors — Indices of categorical predictors
vector of positive integers | []

Categorical predictor indices, specified as a vector of positive integers. CategoricalPredictors
contains index values indicating that the corresponding predictors are categorical. The index values
are between 1 and p, where p is the number of predictors used to train the model. If none of the
predictors are categorical, then this property is empty ([]).
Data Types: single | double

ModelParameters — Parameters used for training model
structure

Parameters used for training the RegressionKernel model, specified as a structure.

Access fields of ModelParameters using dot notation. For example, access the relative tolerance on
the linear coefficients and the bias term by using Mdl.ModelParameters.BetaTolerance.
Data Types: struct

PredictorNames — Predictor names
cell array of character vectors

Predictor names in order of their appearance in the predictor data, specified as a cell array of
character vectors. The length of PredictorNames is equal to the number of columns used as
predictor variables in the training data X or Tbl.
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Data Types: cell

ExpandedPredictorNames — Expanded predictor names
cell array of character vectors

Expanded predictor names, specified as a cell array of character vectors.

If the model uses encoding for categorical variables, then ExpandedPredictorNames includes the
names that describe the expanded variables. Otherwise, ExpandedPredictorNames is the same as
PredictorNames.
Data Types: cell

ResponseName — Response variable name
character vector

Response variable name, specified as a character vector.
Data Types: char

ResponseTransform — Response transformation function to apply to predicted responses
'none' | function handle

Response transformation function to apply to predicted responses, specified as 'none' or a function
handle.

For kernel regression models and before the response transformation, the predicted response for the
observation x (row vector) is f x = T(x)β + b .

• T ·  is a transformation of an observation for feature expansion.
• β corresponds to Mdl.Beta.
• b corresponds to Mdl.Bias.

For a MATLAB function or a function that you define, enter its function handle. For example, you can
enter Mdl.ResponseTransform = @function, where function accepts a numeric vector of the
original responses and returns a numeric vector of the same size containing the transformed
responses.
Data Types: char | function_handle

Object Functions
incrementalLearner Convert kernel regression model to incremental learner
lime Local interpretable model-agnostic explanations (LIME)
loss Regression loss for Gaussian kernel regression model
partialDependence Compute partial dependence
plotPartialDependence Create partial dependence plot (PDP) and individual conditional expectation

(ICE) plots
predict Predict responses for Gaussian kernel regression model
resume Resume training of Gaussian kernel regression model
shapley Shapley values

Examples
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Train Gaussian Kernel Regression Model

Train a kernel regression model for a tall array by using SVM.

When you perform calculations on tall arrays, MATLAB® uses either a parallel pool (default if you
have Parallel Computing Toolbox™) or the local MATLAB session. To run the example using the local
MATLAB session when you have Parallel Computing Toolbox, change the global execution
environment by using the mapreducer function.

mapreducer(0)

Create a datastore that references the folder location with the data. The data can be contained in a
single file, a collection of files, or an entire folder. Treat 'NA' values as missing data so that
datastore replaces them with NaN values. Select a subset of the variables to use. Create a tall table
on top of the datastore.

varnames = {'ArrTime','DepTime','ActualElapsedTime'};
ds = datastore('airlinesmall.csv','TreatAsMissing','NA',...
    'SelectedVariableNames',varnames);
t = tall(ds);

Specify DepTime and ArrTime as the predictor variables (X) and ActualElapsedTime as the
response variable (Y). Select the observations for which ArrTime is later than DepTime.

daytime = t.ArrTime>t.DepTime;
Y = t.ActualElapsedTime(daytime);     % Response data
X = t{daytime,{'DepTime' 'ArrTime'}}; % Predictor data

Standardize the predictor variables.

Z = zscore(X); % Standardize the data

Train a default Gaussian kernel regression model with the standardized predictors. Extract a fit
summary to determine how well the optimization algorithm fits the model to the data.

[Mdl,FitInfo] = fitrkernel(Z,Y)

Found 6 chunks.
|=========================================================================
| Solver | Iteration  /  |   Objective   |   Gradient    | Beta relative |
|        | Data Pass     |               |   magnitude   |    change     |
|=========================================================================
|   INIT |     0 /     1 |  4.313465e+01 |  6.296907e-02 |           NaN |
|  LBFGS |     0 /     2 |  3.704335e+01 |  1.789316e-02 |  9.985854e-01 |
|  LBFGS |     1 /     3 |  3.703211e+01 |  2.880402e-02 |  1.044172e-03 |
|  LBFGS |     2 /     4 |  3.701616e+01 |  2.297788e-02 |  5.115891e-04 |
|  LBFGS |     2 /     5 |  3.700183e+01 |  1.750937e-02 |  1.023672e-03 |
|  LBFGS |     3 /     6 |  3.679055e+01 |  4.815047e-02 |  1.113182e-02 |
|  LBFGS |     4 /     7 |  3.637852e+01 |  1.058657e-01 |  2.994089e-02 |
|  LBFGS |     5 /     8 |  3.565372e+01 |  1.406536e-01 |  7.033477e-02 |
|  LBFGS |     6 /     9 |  3.478061e+01 |  1.479288e-01 |  1.185262e-01 |
|  LBFGS |     7 /    10 |  3.616955e+01 |  1.544917e-01 |  2.790848e-01 |
|  LBFGS |     7 /    11 |  3.459534e+01 |  1.212256e-01 |  1.229242e-01 |
|  LBFGS |     8 /    12 |  3.379859e+01 |  8.791025e-02 |  5.417481e-02 |
|  LBFGS |     9 /    13 |  3.339981e+01 |  3.077806e-02 |  4.638645e-02 |
|  LBFGS |    10 /    14 |  3.325224e+01 |  3.082755e-02 |  2.867793e-02 |
|  LBFGS |    11 /    15 |  3.320036e+01 |  4.168377e-02 |  9.376887e-03 |
|  LBFGS |    12 /    16 |  3.309321e+01 |  5.018195e-02 |  1.831484e-02 |
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|  LBFGS |    13 /    17 |  3.288069e+01 |  4.506485e-02 |  3.732443e-02 |
|  LBFGS |    14 /    18 |  3.245691e+01 |  3.787163e-02 |  1.036929e-01 |
|  LBFGS |    15 /    19 |  3.210116e+01 |  2.418833e-02 |  1.190984e-01 |
|  LBFGS |    16 /    20 |  3.190585e+01 |  2.666398e-02 |  3.921991e-02 |
|=========================================================================
| Solver | Iteration  /  |   Objective   |   Gradient    | Beta relative |
|        | Data Pass     |               |   magnitude   |    change     |
|=========================================================================
|  LBFGS |    17 /    21 |  3.172622e+01 |  2.548259e-02 |  3.805655e-02 |
|  LBFGS |    18 /    22 |  3.154538e+01 |  1.280266e-02 |  4.363429e-02 |
|  LBFGS |    19 /    23 |  3.138533e+01 |  1.446779e-02 |  8.822868e-02 |
|  LBFGS |    20 /    24 |  3.283513e+01 |  2.218528e-01 |  1.318597e-01 |
|  LBFGS |    20 /    25 |  3.158782e+01 |  1.019184e-01 |  6.992082e-02 |
|  LBFGS |    20 /    26 |  3.136869e+01 |  4.678412e-02 |  3.603399e-02 |
|========================================================================|

Mdl = 
  RegressionKernel
            PredictorNames: {'x1'  'x2'}
              ResponseName: 'Y'
                   Learner: 'svm'
    NumExpansionDimensions: 64
               KernelScale: 1
                    Lambda: 8.5385e-06
             BoxConstraint: 1
                   Epsilon: 5.9303

  Properties, Methods

FitInfo = struct with fields:
                  Solver: 'LBFGS-tall'
            LossFunction: 'epsiloninsensitive'
                  Lambda: 8.5385e-06
           BetaTolerance: 1.0000e-03
       GradientTolerance: 1.0000e-05
          ObjectiveValue: 31.3687
       GradientMagnitude: 0.0468
    RelativeChangeInBeta: 0.0360
                 FitTime: 75.0570
                 History: [1x1 struct]

Mdl is a RegressionKernel model. To inspect the regression error, you can pass Mdl and the
training data or new data to the loss function. Or, you can pass Mdl and new predictor data to the
predict function to predict responses for new observations. You can also pass Mdl and the training
data to the resume function to continue training.

FitInfo is a structure array containing optimization information. Use FitInfo to determine
whether optimization termination measurements are satisfactory.

For improved accuracy, you can increase the maximum number of optimization iterations
('IterationLimit') and decrease the tolerance values ('BetaTolerance' and
'GradientTolerance') by using the name-value pair arguments of fitrkernel. Doing so can
improve measures like ObjectiveValue and RelativeChangeInBeta in FitInfo. You can also
optimize model parameters by using the 'OptimizeHyperparameters' name-value pair argument.
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Estimate Sample Loss and Resume Training

Resume training a Gaussian kernel regression model for more iterations to improve the regression
loss.

Load the carbig data set.

load carbig

Specify the predictor variables (X) and the response variable (Y).

X = [Acceleration,Cylinders,Displacement,Horsepower,Weight];
Y = MPG;

Delete rows of X and Y where either array has NaN values. Removing rows with NaN values before
passing data to fitrkernel can speed up training and reduce memory usage.

R = rmmissing([X Y]); % Data with missing entries removed
X = R(:,1:5); 
Y = R(:,end); 

Reserve 10% of the observations as a holdout sample. Extract the training and test indices from the
partition definition.

rng(10)  % For reproducibility
N = length(Y);
cvp = cvpartition(N,'Holdout',0.1);
idxTrn = training(cvp); % Training set indices
idxTest = test(cvp);    % Test set indices

Standardize the training data and train a kernel regression model. Set the iteration limit to 5 and
specify 'Verbose',1 to display diagnostic information.

Xtrain = X(idxTrn,:);
Ytrain = Y(idxTrn);
[Ztrain,tr_mu,tr_sigma] = zscore(Xtrain); % Standardize the training data
tr_sigma(tr_sigma==0) = 1;
Mdl = fitrkernel(Ztrain,Ytrain,'IterationLimit',5,'Verbose',1)

|=================================================================================================================|
| Solver |  Pass  |   Iteration  |   Objective   |     Step      |    Gradient   |    Relative    |  sum(beta~=0) |
|        |        |              |               |               |   magnitude   | change in Beta |               |
|=================================================================================================================|
|  LBFGS |      1 |            0 |  5.691016e+00 |  0.000000e+00 |  5.852758e-02 |                |             0 |
|  LBFGS |      1 |            1 |  5.086537e+00 |  8.000000e+00 |  5.220869e-02 |   9.846711e-02 |           256 |
|  LBFGS |      1 |            2 |  3.862301e+00 |  5.000000e-01 |  3.796034e-01 |   5.998808e-01 |           256 |
|  LBFGS |      1 |            3 |  3.460613e+00 |  1.000000e+00 |  3.257790e-01 |   1.615091e-01 |           256 |
|  LBFGS |      1 |            4 |  3.136228e+00 |  1.000000e+00 |  2.832861e-02 |   8.006254e-02 |           256 |
|  LBFGS |      1 |            5 |  3.063978e+00 |  1.000000e+00 |  1.475038e-02 |   3.314455e-02 |           256 |
|=================================================================================================================|

Mdl = 
  RegressionKernel
              ResponseName: 'Y'
                   Learner: 'svm'
    NumExpansionDimensions: 256
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               KernelScale: 1
                    Lambda: 0.0028
             BoxConstraint: 1
                   Epsilon: 0.8617

  Properties, Methods

Mdl is a RegressionKernel model.

Standardize the test data using the same mean and standard deviation of the training data columns.
Estimate the epsilon-insensitive error for the test set.

Xtest = X(idxTest,:);
Ztest = (Xtest-tr_mu)./tr_sigma; % Standardize the test data
Ytest = Y(idxTest);

L = loss(Mdl,Ztest,Ytest,'LossFun','epsiloninsensitive')

L = 2.0674

Continue training the model by using resume. This function continues training with the same options
used for training Mdl.

UpdatedMdl = resume(Mdl,Ztrain,Ytrain);

|=================================================================================================================|
| Solver |  Pass  |   Iteration  |   Objective   |     Step      |    Gradient   |    Relative    |  sum(beta~=0) |
|        |        |              |               |               |   magnitude   | change in Beta |               |
|=================================================================================================================|
|  LBFGS |      1 |            0 |  3.063978e+00 |  0.000000e+00 |  1.475038e-02 |                |           256 |
|  LBFGS |      1 |            1 |  3.007822e+00 |  8.000000e+00 |  1.391637e-02 |   2.603966e-02 |           256 |
|  LBFGS |      1 |            2 |  2.817171e+00 |  5.000000e-01 |  5.949008e-02 |   1.918084e-01 |           256 |
|  LBFGS |      1 |            3 |  2.807294e+00 |  2.500000e-01 |  6.798867e-02 |   2.973097e-02 |           256 |
|  LBFGS |      1 |            4 |  2.791060e+00 |  1.000000e+00 |  2.549575e-02 |   1.639328e-02 |           256 |
|  LBFGS |      1 |            5 |  2.767821e+00 |  1.000000e+00 |  6.154419e-03 |   2.468903e-02 |           256 |
|  LBFGS |      1 |            6 |  2.738163e+00 |  1.000000e+00 |  5.949008e-02 |   9.476263e-02 |           256 |
|  LBFGS |      1 |            7 |  2.719146e+00 |  1.000000e+00 |  1.699717e-02 |   1.849972e-02 |           256 |
|  LBFGS |      1 |            8 |  2.705941e+00 |  1.000000e+00 |  3.116147e-02 |   4.152590e-02 |           256 |
|  LBFGS |      1 |            9 |  2.701162e+00 |  1.000000e+00 |  5.665722e-03 |   9.401466e-03 |           256 |
|  LBFGS |      1 |           10 |  2.695341e+00 |  5.000000e-01 |  3.116147e-02 |   4.968046e-02 |           256 |
|  LBFGS |      1 |           11 |  2.691277e+00 |  1.000000e+00 |  8.498584e-03 |   1.017446e-02 |           256 |
|  LBFGS |      1 |           12 |  2.689972e+00 |  1.000000e+00 |  1.983003e-02 |   9.938921e-03 |           256 |
|  LBFGS |      1 |           13 |  2.688979e+00 |  1.000000e+00 |  1.416431e-02 |   6.606316e-03 |           256 |
|  LBFGS |      1 |           14 |  2.687787e+00 |  1.000000e+00 |  1.621956e-03 |   7.089542e-03 |           256 |
|  LBFGS |      1 |           15 |  2.686539e+00 |  1.000000e+00 |  1.699717e-02 |   1.169701e-02 |           256 |
|  LBFGS |      1 |           16 |  2.685356e+00 |  1.000000e+00 |  1.133144e-02 |   1.069310e-02 |           256 |
|  LBFGS |      1 |           17 |  2.685021e+00 |  5.000000e-01 |  1.133144e-02 |   2.104248e-02 |           256 |
|  LBFGS |      1 |           18 |  2.684002e+00 |  1.000000e+00 |  2.832861e-03 |   6.175231e-03 |           256 |
|  LBFGS |      1 |           19 |  2.683507e+00 |  1.000000e+00 |  5.665722e-03 |   3.724026e-03 |           256 |
|  LBFGS |      1 |           20 |  2.683343e+00 |  5.000000e-01 |  5.665722e-03 |   9.549119e-03 |           256 |
|=================================================================================================================|
| Solver |  Pass  |   Iteration  |   Objective   |     Step      |    Gradient   |    Relative    |  sum(beta~=0) |
|        |        |              |               |               |   magnitude   | change in Beta |               |
|=================================================================================================================|
|  LBFGS |      1 |           21 |  2.682897e+00 |  1.000000e+00 |  5.665722e-03 |   7.172867e-03 |           256 |
|  LBFGS |      1 |           22 |  2.682682e+00 |  1.000000e+00 |  2.832861e-03 |   2.587726e-03 |           256 |
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|  LBFGS |      1 |           23 |  2.682485e+00 |  1.000000e+00 |  2.832861e-03 |   2.953648e-03 |           256 |
|  LBFGS |      1 |           24 |  2.682326e+00 |  1.000000e+00 |  2.832861e-03 |   7.777294e-03 |           256 |
|  LBFGS |      1 |           25 |  2.681914e+00 |  1.000000e+00 |  2.832861e-03 |   2.778555e-03 |           256 |
|  LBFGS |      1 |           26 |  2.681867e+00 |  5.000000e-01 |  1.031085e-03 |   3.638352e-03 |           256 |
|  LBFGS |      1 |           27 |  2.681725e+00 |  1.000000e+00 |  5.665722e-03 |   1.515199e-03 |           256 |
|  LBFGS |      1 |           28 |  2.681692e+00 |  5.000000e-01 |  1.314940e-03 |   1.850055e-03 |           256 |
|  LBFGS |      1 |           29 |  2.681625e+00 |  1.000000e+00 |  2.832861e-03 |   1.456903e-03 |           256 |
|  LBFGS |      1 |           30 |  2.681594e+00 |  5.000000e-01 |  2.832861e-03 |   8.704875e-04 |           256 |
|  LBFGS |      1 |           31 |  2.681581e+00 |  5.000000e-01 |  8.498584e-03 |   3.934768e-04 |           256 |
|  LBFGS |      1 |           32 |  2.681579e+00 |  1.000000e+00 |  8.498584e-03 |   1.847866e-03 |           256 |
|  LBFGS |      1 |           33 |  2.681553e+00 |  1.000000e+00 |  9.857038e-04 |   6.509825e-04 |           256 |
|  LBFGS |      1 |           34 |  2.681541e+00 |  5.000000e-01 |  8.498584e-03 |   6.635528e-04 |           256 |
|  LBFGS |      1 |           35 |  2.681499e+00 |  1.000000e+00 |  5.665722e-03 |   6.194735e-04 |           256 |
|  LBFGS |      1 |           36 |  2.681493e+00 |  5.000000e-01 |  1.133144e-02 |   1.617763e-03 |           256 |
|  LBFGS |      1 |           37 |  2.681473e+00 |  1.000000e+00 |  9.869233e-04 |   8.418484e-04 |           256 |
|  LBFGS |      1 |           38 |  2.681469e+00 |  1.000000e+00 |  5.665722e-03 |   1.069722e-03 |           256 |
|  LBFGS |      1 |           39 |  2.681432e+00 |  1.000000e+00 |  2.832861e-03 |   8.501930e-04 |           256 |
|  LBFGS |      1 |           40 |  2.681423e+00 |  2.500000e-01 |  1.133144e-02 |   9.543716e-04 |           256 |
|=================================================================================================================|
| Solver |  Pass  |   Iteration  |   Objective   |     Step      |    Gradient   |    Relative    |  sum(beta~=0) |
|        |        |              |               |               |   magnitude   | change in Beta |               |
|=================================================================================================================|
|  LBFGS |      1 |           41 |  2.681416e+00 |  1.000000e+00 |  2.832861e-03 |   8.763251e-04 |           256 |
|  LBFGS |      1 |           42 |  2.681413e+00 |  5.000000e-01 |  2.832861e-03 |   4.101888e-04 |           256 |
|  LBFGS |      1 |           43 |  2.681403e+00 |  1.000000e+00 |  5.665722e-03 |   2.713209e-04 |           256 |
|  LBFGS |      1 |           44 |  2.681392e+00 |  1.000000e+00 |  2.832861e-03 |   2.115241e-04 |           256 |
|  LBFGS |      1 |           45 |  2.681383e+00 |  1.000000e+00 |  2.832861e-03 |   2.872858e-04 |           256 |
|  LBFGS |      1 |           46 |  2.681374e+00 |  1.000000e+00 |  8.498584e-03 |   5.771001e-04 |           256 |
|  LBFGS |      1 |           47 |  2.681353e+00 |  1.000000e+00 |  2.832861e-03 |   3.160871e-04 |           256 |
|  LBFGS |      1 |           48 |  2.681334e+00 |  5.000000e-01 |  8.498584e-03 |   1.045502e-03 |           256 |
|  LBFGS |      1 |           49 |  2.681314e+00 |  1.000000e+00 |  7.878714e-04 |   1.505118e-03 |           256 |
|  LBFGS |      1 |           50 |  2.681306e+00 |  1.000000e+00 |  2.832861e-03 |   4.756894e-04 |           256 |
|  LBFGS |      1 |           51 |  2.681301e+00 |  1.000000e+00 |  1.133144e-02 |   3.664873e-04 |           256 |
|  LBFGS |      1 |           52 |  2.681288e+00 |  1.000000e+00 |  2.832861e-03 |   1.449821e-04 |           256 |
|  LBFGS |      1 |           53 |  2.681287e+00 |  2.500000e-01 |  1.699717e-02 |   2.357176e-04 |           256 |
|  LBFGS |      1 |           54 |  2.681282e+00 |  1.000000e+00 |  5.665722e-03 |   2.046663e-04 |           256 |
|  LBFGS |      1 |           55 |  2.681278e+00 |  1.000000e+00 |  2.832861e-03 |   2.546349e-04 |           256 |
|  LBFGS |      1 |           56 |  2.681276e+00 |  2.500000e-01 |  1.307940e-03 |   1.966786e-04 |           256 |
|  LBFGS |      1 |           57 |  2.681274e+00 |  5.000000e-01 |  1.416431e-02 |   1.005310e-04 |           256 |
|  LBFGS |      1 |           58 |  2.681271e+00 |  5.000000e-01 |  1.118892e-03 |   1.147324e-04 |           256 |
|  LBFGS |      1 |           59 |  2.681269e+00 |  1.000000e+00 |  2.832861e-03 |   1.332914e-04 |           256 |
|  LBFGS |      1 |           60 |  2.681268e+00 |  2.500000e-01 |  1.132045e-03 |   5.441369e-05 |           256 |
|=================================================================================================================|

Estimate the epsilon-insensitive error for the test set using the updated model.

UpdatedL = loss(UpdatedMdl,Ztest,Ytest,'LossFun','epsiloninsensitive')

UpdatedL = 1.8933

The regression error decreases by a factor of about 0.08 after resume updates the regression model
with more iterations.

Version History
Introduced in R2018a
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See Also
fitrkernel | fitrlinear | RegressionLinear

Topics
“Train Kernel Approximation Model Using Regression Learner App” on page 24-89
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loss
Regression loss for Gaussian kernel regression model

Syntax
L = loss(Mdl,X,Y)

L = loss(Mdl,Tbl,ResponseVarName)
L = loss(Mdl,Tbl,Y)

L = loss( ___ ,Name,Value)

Description
L = loss(Mdl,X,Y) returns the mean squared error (MSE) for the Gaussian kernel regression
model Mdl using the predictor data in X and the corresponding responses in Y.

L = loss(Mdl,Tbl,ResponseVarName) returns the MSE for the model Mdl using the predictor
data in Tbl and the true responses in Tbl.ResponseVarName.

L = loss(Mdl,Tbl,Y) returns the MSE for the model Mdl using the predictor data in table Tbl
and the true responses in Y.

L = loss( ___ ,Name,Value) specifies options using one or more name-value pair arguments in
addition to any of the input argument combinations in previous syntaxes. For example, you can
specify a regression loss function and observation weights. Then, loss returns the weighted
regression loss using the specified loss function.

Note If the predictor data X or the predictor variables in Tbl contain any missing values, the loss
function can return NaN. For more details, see “loss can return NaN for predictor data with missing
values” on page 35-8069.

Examples

Calculate Sample Loss for Gaussian Kernel Regression Model

Train a Gaussian kernel regression model for a tall array, then calculate the resubstitution mean
squared error and epsilon-insensitive error.

When you perform calculations on tall arrays, MATLAB® uses either a parallel pool (default if you
have Parallel Computing Toolbox™) or the local MATLAB session. To run the example using the local
MATLAB session when you have Parallel Computing Toolbox, change the global execution
environment by using the mapreducer function.

mapreducer(0)

Create a datastore that references the folder location with the data. The data can be contained in a
single file, a collection of files, or an entire folder. Treat 'NA' values as missing data so that
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datastore replaces them with NaN values. Select a subset of the variables to use. Create a tall table
on top of the datastore.

varnames = {'ArrTime','DepTime','ActualElapsedTime'};
ds = datastore('airlinesmall.csv','TreatAsMissing','NA',...
    'SelectedVariableNames',varnames);
t = tall(ds);

Specify DepTime and ArrTime as the predictor variables (X) and ActualElapsedTime as the
response variable (Y). Select the observations for which ArrTime is later than DepTime.

daytime = t.ArrTime>t.DepTime;
Y = t.ActualElapsedTime(daytime);     % Response data
X = t{daytime,{'DepTime' 'ArrTime'}}; % Predictor data

Standardize the predictor variables.

Z = zscore(X); % Standardize the data

Train a default Gaussian kernel regression model with the standardized predictors. Set
'Verbose',0 to suppress diagnostic messages.

[Mdl,FitInfo] = fitrkernel(Z,Y,'Verbose',0)

Mdl = 
  RegressionKernel
            PredictorNames: {'x1'  'x2'}
              ResponseName: 'Y'
                   Learner: 'svm'
    NumExpansionDimensions: 64
               KernelScale: 1
                    Lambda: 8.5385e-06
             BoxConstraint: 1
                   Epsilon: 5.9303

  Properties, Methods

FitInfo = struct with fields:
                  Solver: 'LBFGS-tall'
            LossFunction: 'epsiloninsensitive'
                  Lambda: 8.5385e-06
           BetaTolerance: 1.0000e-03
       GradientTolerance: 1.0000e-05
          ObjectiveValue: 30.7814
       GradientMagnitude: 0.0191
    RelativeChangeInBeta: 0.0228
                 FitTime: 62.7100
                 History: []

Mdl is a trained RegressionKernel model, and the structure array FitInfo contains optimization
details.

Determine how well the trained model generalizes to new predictor values by estimating the
resubstitution mean squared error and epsilon-insensitive error.

lossMSE = loss(Mdl,Z,Y) % Resubstitution mean squared error
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lossMSE =

  MxNx... tall array

    ?    ?    ?    ...
    ?    ?    ?    ...
    ?    ?    ?    ...
    :    :    :
    :    :    :

lossEI = loss(Mdl,Z,Y,'LossFun','epsiloninsensitive') % Resubstitution epsilon-insensitive error

lossEI =

  MxNx... tall array

    ?    ?    ?    ...
    ?    ?    ?    ...
    ?    ?    ?    ...
    :    :    :
    :    :    :

Evaluate the tall arrays and bring the results into memory by using gather.

[lossMSE,lossEI] = gather(lossMSE,lossEI)

Evaluating tall expression using the Local MATLAB Session:
- Pass 1 of 1: Completed in 1.8 sec
Evaluation completed in 2.2 sec

lossMSE = 2.8851e+03

lossEI = 28.0050

Specify Custom Regression Loss

Specify a custom regression loss (Huber loss) for a Gaussian kernel regression model.

Load the carbig data set.

load carbig

Specify the predictor variables (X) and the response variable (Y).

X = [Weight,Cylinders,Horsepower,Model_Year];
Y = MPG;

Delete rows of X and Y where either array has NaN values. Removing rows with NaN values before
passing data to fitrkernel can speed up training and reduce memory usage.

R = rmmissing([X Y]); 
X = R(:,1:4); 
Y = R(:,end); 

Reserve 10% of the observations as a holdout sample. Extract the training and test indices from the
partition definition.
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rng(10)  % For reproducibility
N = length(Y);
cvp = cvpartition(N,'Holdout',0.1);
idxTrn = training(cvp); % Training set indices
idxTest = test(cvp);    % Test set indices

Standardize the training data and train the regression kernel model.

Xtrain = X(idxTrn,:);
Ytrain = Y(idxTrn);
[Ztrain,tr_mu,tr_sigma] = zscore(Xtrain); % Standardize the training data
tr_sigma(tr_sigma==0) = 1;
Mdl = fitrkernel(Ztrain,Ytrain)

Mdl = 
  RegressionKernel
              ResponseName: 'Y'
                   Learner: 'svm'
    NumExpansionDimensions: 128
               KernelScale: 1
                    Lambda: 0.0028
             BoxConstraint: 1
                   Epsilon: 0.8617

  Properties, Methods

Mdl is a RegressionKernel model.

Create an anonymous function that measures Huber loss (δ = 1), that is,

L = 1
∑w j

∑
j = 1

n
w j ℓ j ,

where

ℓ j =
0 . 5e j

2;

e j − 0 . 5;

e j ≤ 1

e j > 1
.

e j is the residual for observation j. Custom loss functions must be written in a particular form. For
rules on writing a custom loss function, see the 'LossFun' name-value pair argument.

huberloss = @(Y,Yhat,W)sum(W.*((0.5*(abs(Y-Yhat)<=1).*(Y-Yhat).^2) + ...
    ((abs(Y-Yhat)>1).*abs(Y-Yhat)-0.5)))/sum(W);

Estimate the training set regression loss using the Huber loss function.

eTrain = loss(Mdl,Ztrain,Ytrain,'LossFun',huberloss)

eTrain = 1.7210

Standardize the test data using the same mean and standard deviation of the training data columns.
Estimate the test set regression loss using the Huber loss function.

Xtest = X(idxTest,:);
Ztest = (Xtest-tr_mu)./tr_sigma; % Standardize the test data
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Ytest = Y(idxTest);

eTest = loss(Mdl,Ztest,Ytest,'LossFun',huberloss)

eTest = 1.3062

Input Arguments
Mdl — Kernel regression model
RegressionKernel model object

Kernel regression model, specified as a RegressionKernel model object. You can create a
RegressionKernel model object using fitrkernel.

X — Predictor data
n-by-p numeric matrix

Predictor data, specified as an n-by-p numeric matrix, where n is the number of observations and p is
the number of predictors. p must be equal to the number of predictors used to train Mdl.
Data Types: single | double

Y — Response data
numeric vector

Response data, specified as an n-dimensional numeric vector. The length of Y must be equal to the
number of observations in X or Tbl.
Data Types: single | double

Tbl — Sample data
table

Sample data used to train the model, specified as a table. Each row of Tbl corresponds to one
observation, and each column corresponds to one predictor variable. Optionally, Tbl can contain
additional columns for the response variable and observation weights. Tbl must contain all the
predictors used to train Mdl. Multicolumn variables and cell arrays other than cell arrays of character
vectors are not allowed.

If Tbl contains the response variable used to train Mdl, then you do not need to specify
ResponseVarName or Y.

If you train Mdl using sample data contained in a table, then the input data for loss must also be in a
table.

ResponseVarName — Response variable name
name of variable in Tbl

Response variable name, specified as the name of a variable in Tbl. The response variable must be a
numeric vector. If Tbl contains the response variable used to train Mdl, then you do not need to
specify ResponseVarName.

If you specify ResponseVarName, then you must specify it as a character vector or string scalar. For
example, if the response variable is stored as Tbl.Y, then specify ResponseVarName as 'Y'.
Otherwise, the software treats all columns of Tbl, including Tbl.Y, as predictors.
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Data Types: char | string

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: L = loss(Mdl,X,Y,'LossFun','epsiloninsensitive','Weights',weights)
returns the weighted regression loss using the epsilon-insensitive loss function.

LossFun — Loss function
'mse' (default) | 'epsiloninsensitive' | function handle

Loss function, specified as the comma-separated pair consisting of 'LossFun' and a built-in loss
function name or a function handle.

• The following table lists the available loss functions. Specify one using its corresponding character
vector or string scalar. Also, in the table, f x = T(x)β + b .

• x is an observation (row vector) from p predictor variables.
• T ·  is a transformation of an observation (row vector) for feature expansion. T(x) maps x in ℝp

to a high-dimensional space (ℝm).
• β is a vector of m coefficients.
• b is the scalar bias.

Value Description
'epsiloninsensitive' Epsilon-insensitive loss:

ℓ y, f x = max 0, y − f x − ε
'mse' MSE: ℓ y, f x = y − f x 2

'epsiloninsensitive' is appropriate for SVM learners only.
• Specify your own function by using function handle notation.

Let n be the number of observations in X. Your function must have this signature:

lossvalue = lossfun(Y,Yhat,W)

• The output argument lossvalue is a scalar.
• You choose the function name (lossfun).
• Y is an n-dimensional vector of observed responses. loss passes the input argument Y in for Y.
• Yhat is an n-dimensional vector of predicted responses, which is similar to the output of

predict.
• W is an n-by-1 numeric vector of observation weights.

Specify your function using 'LossFun',@lossfun.

Data Types: char | string | function_handle
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Weights — Observation weights
ones(size(X,1),1) (default) | numeric vector | name of variable in Tbl

Observation weights, specified as the comma-separated pair consisting of 'Weights' and a numeric
vector or the name of a variable in Tbl.

• If Weights is a numeric vector, then the size of Weights must be equal to the number of rows in
X or Tbl.

• If Weights is the name of a variable in Tbl, you must specify Weights as a character vector or
string scalar. For example, if the weights are stored as Tbl.W, then specify Weights as 'W'.
Otherwise, the software treats all columns of Tbl, including Tbl.W, as predictors.

If you supply the observation weights, loss computes the weighted regression loss, that is, the
“Weighted Mean Squared Error” on page 35-8068 or “Epsilon-Insensitive Loss Function” on page 35-
8069.

loss normalizes Weights to sum to 1.
Data Types: double | single | char | string

Output Arguments
L — Regression loss
numeric scalar

Regression loss, returned as a numeric scalar. The interpretation of L depends on Weights and
LossFun. For example, if you use the default observation weights and specify
'epsiloninsensitive' as the loss function, then L is the epsilon-insensitive loss.

More About
Weighted Mean Squared Error

The weighted mean squared error is calculated as follows:

mse =
∑

j = 1

n
w j f x j − y j

2

∑
j = 1

n
w j

,

where:

• n is the number of observations.
• xj is the jth observation (row of predictor data).
• yj is the observed response to xj.
• f(xj) is the response prediction of the Gaussian kernel regression model Mdl to xj.
• w is the vector of observation weights.

Each observation weight in w is equal to ones(n,1)/n by default. You can specify different values
for the observation weights by using the 'Weights' name-value pair argument. loss normalizes
Weights to sum to 1.
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Epsilon-Insensitive Loss Function

The epsilon-insensitive loss function ignores errors that are within the distance epsilon (ε) of the
function value. The function is formally described as:

Lossε =
0 , if y − f x ≤ ε

y − f x − ε , otherwise .

The mean epsilon-insensitive loss is calculated as follows:

Loss =
∑

j = 1

n
w jmax 0, y j− f x j − ε

∑
j = 1

n
w j

,

where:

• n is the number of observations.
• xj is the jth observation (row of predictor data).
• yj is the observed response to xj.
• f(xj) is the response prediction of the Gaussian kernel regression model Mdl to xj.
• w is the vector of observation weights.

Each observation weight in w is equal to ones(n,1)/n by default. You can specify different values
for the observation weights by using the 'Weights' name-value pair argument. loss normalizes
Weights to sum to 1.

Version History
Introduced in R2018a

loss can return NaN for predictor data with missing values
Behavior changed in R2022a

The loss function no longer omits an observation with a NaN prediction when computing the
weighted average regression loss. Therefore, loss can now return NaN when the predictor data X or
the predictor variables in Tbl contain any missing values. In most cases, if the test set observations
do not contain missing predictors, the loss function does not return NaN.

This change improves the automatic selection of a regression model when you use fitrauto. Before
this change, the software might select a model (expected to best predict the responses for new data)
with few non-NaN predictors.

If loss in your code returns NaN, you can update your code to avoid this result. Remove or replace
the missing values by using rmmissing or fillmissing, respectively.

The following table shows the regression models for which the loss object function might return
NaN. For more details, see the Compatibility Considerations for each loss function.
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Model Type Full or Compact Model Object loss Object Function
Gaussian process regression
(GPR) model

RegressionGP,
CompactRegressionGP

loss

Gaussian kernel regression
model

RegressionKernel loss

Linear regression model RegressionLinear loss
Neural network regression
model

RegressionNeuralNetwork,
CompactRegressionNeuralN
etwork

loss

Support vector machine (SVM)
regression model

RegressionSVM,
CompactRegressionSVM

loss

Extended Capabilities
Tall Arrays
Calculate with arrays that have more rows than fit in memory.

Usage notes and limitations:

• loss does not support tall table data.

For more information, see “Tall Arrays”.

See Also
fitrkernel | predict | RegressionKernel | resume
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predict
Predict responses for Gaussian kernel regression model

Syntax
YFit = predict(Mdl,X)

Description
YFit = predict(Mdl,X) returns a vector of predicted responses for the predictor data in the
matrix or table X, based on the binary Gaussian kernel regression model Mdl.

Examples

Predict Test Set Responses

Predict the test set responses using a Gaussian kernel regression model for the carbig data set.

Load the carbig data set.

load carbig

Specify the predictor variables (X) and the response variable (Y).

X = [Weight,Cylinders,Horsepower,Model_Year];
Y = MPG;

Delete rows of X and Y where either array has NaN values. Removing rows with NaN values before
passing data to fitrkernel can speed up training and reduce memory usage.

R = rmmissing([X Y]); 
X = R(:,1:4); 
Y = R(:,end); 

Reserve 10% of the observations as a holdout sample. Extract the training and test indices from the
partition definition.

rng(10)  % For reproducibility 
N = length(Y); 
cvp = cvpartition(N,'Holdout',0.1);
idxTrn = training(cvp); % Training set indices
idxTest = test(cvp);    % Test set indices

Standardize the training data and train the regression kernel model.

Xtrain = X(idxTrn,:);
Ytrain = Y(idxTrn);
[Ztrain,tr_mu,tr_sigma] = zscore(Xtrain); % Standardize the training data
tr_sigma(tr_sigma==0) = 1;
Mdl = fitrkernel(Ztrain,Ytrain)
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Mdl = 
  RegressionKernel
              ResponseName: 'Y'
                   Learner: 'svm'
    NumExpansionDimensions: 128
               KernelScale: 1
                    Lambda: 0.0028
             BoxConstraint: 1
                   Epsilon: 0.8617

  Properties, Methods

Mdl is a RegressionKernel model.

Standardize the test data using the same mean and standard deviation of the training data columns.
Predict responses for the test set.

Xtest = X(idxTest,:);
Ztest = (Xtest-tr_mu)./tr_sigma; % Standardize the test data
Ytest = Y(idxTest);

YFit = predict(Mdl,Ztest);

Create a table containing the first 10 observed response values and predicted response values.

table(Ytest(1:10),YFit(1:10),'VariableNames', ...
    {'ObservedValue','PredictedValue'})

ans=10×2 table
    ObservedValue    PredictedValue
    _____________    ______________

         18              17.616    
         14              25.799    
         24              24.141    
         25              25.018    
         14              13.637    
         14              14.557    
         18              18.584    
         27              26.096    
         21              25.031    
         13              13.324    

Estimate the test set regression loss using the mean squared error loss function.

L = loss(Mdl,Ztest,Ytest)

L = 9.2664

Input Arguments
Mdl — Kernel regression model
RegressionKernel model object
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Kernel regression model, specified as a RegressionKernel model object. You can create a
RegressionKernel model object using fitrkernel.

X — Predictor data used to generate responses
numeric matrix | table

Predictor data used to generate responses, specified as a numeric matrix or table.

Each row of X corresponds to one observation, and each column corresponds to one variable.

• For a numeric matrix:

• The variables in the columns of X must have the same order as the predictor variables that
trained Mdl.

• If you trained Mdl using a table (for example, Tbl) and Tbl contains all numeric predictor
variables, then X can be a numeric matrix. To treat numeric predictors in Tbl as categorical
during training, identify categorical predictors using the CategoricalPredictors name-
value pair argument of fitrkernel. If Tbl contains heterogeneous predictor variables (for
example, numeric and categorical data types) and X is a numeric matrix, then predict throws
an error.

• For a table:

• predict does not support multicolumn variables or cell arrays other than cell arrays of
character vectors.

• If you trained Mdl using a table (for example, Tbl), then all predictor variables in X must have
the same variable names and data types as those that trained Mdl (stored in
Mdl.PredictorNames). However, the column order of X does not need to correspond to the
column order of Tbl. Also, Tbl and X can contain additional variables (response variables,
observation weights, and so on), but predict ignores them.

• If you trained Mdl using a numeric matrix, then the predictor names in Mdl.PredictorNames
and corresponding predictor variable names in X must be the same. To specify predictor names
during training, see the PredictorNames name-value pair argument of fitrkernel. All
predictor variables in X must be numeric vectors. X can contain additional variables (response
variables, observation weights, and so on), but predict ignores them.

Data Types: double | single | table

Output Arguments
YFit — Predicted responses
numeric vector

Predicted responses, returned as a numeric vector.

YFit is an n-by-1 vector of the same data type as the response data (Y) used to train Mdl, where n is
the number of observations in X.

Version History
Introduced in R2018a
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Extended Capabilities
Tall Arrays
Calculate with arrays that have more rows than fit in memory.

Usage notes and limitations:

• predict does not support tall table data.

For more information, see “Tall Arrays”.

See Also
fitrkernel | loss | RegressionKernel | resume
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resume
Resume training of Gaussian kernel regression model

Syntax
UpdatedMdl = resume(Mdl,X,Y)

UpdatedMdl = resume(Mdl,Tbl,ResponseVarName)
UpdatedMdl = resume(Mdl,Tbl,Y)

UpdatedMdl = resume( ___ ,Name,Value)
[UpdatedMdl,FitInfo] = resume( ___ )

Description
UpdatedMdl = resume(Mdl,X,Y) continues training with the same options used to train Mdl,
including the training data (predictor data in X and response data in Y) and the feature expansion.
The training starts at the current estimated parameters in Mdl. The function returns a new Gaussian
kernel regression model UpdatedMdl.

UpdatedMdl = resume(Mdl,Tbl,ResponseVarName) continues training with the predictor data
in Tbl and the true responses in Tbl.ResponseVarName.

UpdatedMdl = resume(Mdl,Tbl,Y) continues training with the predictor data in table Tbl and
the true responses in Y.

UpdatedMdl = resume( ___ ,Name,Value) specifies options using one or more name-value pair
arguments in addition to any of the input argument combinations in previous syntaxes. For example,
you can modify convergence control options, such as convergence tolerances and the maximum
number of additional optimization iterations.

[UpdatedMdl,FitInfo] = resume( ___ ) also returns the fit information in the structure array
FitInfo.

Examples

Estimate Sample Loss and Resume Training

Resume training a Gaussian kernel regression model for more iterations to improve the regression
loss.

Load the carbig data set.

load carbig

Specify the predictor variables (X) and the response variable (Y).

X = [Acceleration,Cylinders,Displacement,Horsepower,Weight];
Y = MPG;

 resume
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Delete rows of X and Y where either array has NaN values. Removing rows with NaN values before
passing data to fitrkernel can speed up training and reduce memory usage.

R = rmmissing([X Y]); % Data with missing entries removed
X = R(:,1:5); 
Y = R(:,end); 

Reserve 10% of the observations as a holdout sample. Extract the training and test indices from the
partition definition.

rng(10)  % For reproducibility
N = length(Y);
cvp = cvpartition(N,'Holdout',0.1);
idxTrn = training(cvp); % Training set indices
idxTest = test(cvp);    % Test set indices

Standardize the training data and train a kernel regression model. Set the iteration limit to 5 and
specify 'Verbose',1 to display diagnostic information.

Xtrain = X(idxTrn,:);
Ytrain = Y(idxTrn);
[Ztrain,tr_mu,tr_sigma] = zscore(Xtrain); % Standardize the training data
tr_sigma(tr_sigma==0) = 1;
Mdl = fitrkernel(Ztrain,Ytrain,'IterationLimit',5,'Verbose',1)

|=================================================================================================================|
| Solver |  Pass  |   Iteration  |   Objective   |     Step      |    Gradient   |    Relative    |  sum(beta~=0) |
|        |        |              |               |               |   magnitude   | change in Beta |               |
|=================================================================================================================|
|  LBFGS |      1 |            0 |  5.691016e+00 |  0.000000e+00 |  5.852758e-02 |                |             0 |
|  LBFGS |      1 |            1 |  5.086537e+00 |  8.000000e+00 |  5.220869e-02 |   9.846711e-02 |           256 |
|  LBFGS |      1 |            2 |  3.862301e+00 |  5.000000e-01 |  3.796034e-01 |   5.998808e-01 |           256 |
|  LBFGS |      1 |            3 |  3.460613e+00 |  1.000000e+00 |  3.257790e-01 |   1.615091e-01 |           256 |
|  LBFGS |      1 |            4 |  3.136228e+00 |  1.000000e+00 |  2.832861e-02 |   8.006254e-02 |           256 |
|  LBFGS |      1 |            5 |  3.063978e+00 |  1.000000e+00 |  1.475038e-02 |   3.314455e-02 |           256 |
|=================================================================================================================|

Mdl = 
  RegressionKernel
              ResponseName: 'Y'
                   Learner: 'svm'
    NumExpansionDimensions: 256
               KernelScale: 1
                    Lambda: 0.0028
             BoxConstraint: 1
                   Epsilon: 0.8617

  Properties, Methods

Mdl is a RegressionKernel model.

Standardize the test data using the same mean and standard deviation of the training data columns.
Estimate the epsilon-insensitive error for the test set.

Xtest = X(idxTest,:);
Ztest = (Xtest-tr_mu)./tr_sigma; % Standardize the test data
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Ytest = Y(idxTest);

L = loss(Mdl,Ztest,Ytest,'LossFun','epsiloninsensitive')

L = 2.0674

Continue training the model by using resume. This function continues training with the same options
used for training Mdl.

UpdatedMdl = resume(Mdl,Ztrain,Ytrain);

|=================================================================================================================|
| Solver |  Pass  |   Iteration  |   Objective   |     Step      |    Gradient   |    Relative    |  sum(beta~=0) |
|        |        |              |               |               |   magnitude   | change in Beta |               |
|=================================================================================================================|
|  LBFGS |      1 |            0 |  3.063978e+00 |  0.000000e+00 |  1.475038e-02 |                |           256 |
|  LBFGS |      1 |            1 |  3.007822e+00 |  8.000000e+00 |  1.391637e-02 |   2.603966e-02 |           256 |
|  LBFGS |      1 |            2 |  2.817171e+00 |  5.000000e-01 |  5.949008e-02 |   1.918084e-01 |           256 |
|  LBFGS |      1 |            3 |  2.807294e+00 |  2.500000e-01 |  6.798867e-02 |   2.973097e-02 |           256 |
|  LBFGS |      1 |            4 |  2.791060e+00 |  1.000000e+00 |  2.549575e-02 |   1.639328e-02 |           256 |
|  LBFGS |      1 |            5 |  2.767821e+00 |  1.000000e+00 |  6.154419e-03 |   2.468903e-02 |           256 |
|  LBFGS |      1 |            6 |  2.738163e+00 |  1.000000e+00 |  5.949008e-02 |   9.476263e-02 |           256 |
|  LBFGS |      1 |            7 |  2.719146e+00 |  1.000000e+00 |  1.699717e-02 |   1.849972e-02 |           256 |
|  LBFGS |      1 |            8 |  2.705941e+00 |  1.000000e+00 |  3.116147e-02 |   4.152590e-02 |           256 |
|  LBFGS |      1 |            9 |  2.701162e+00 |  1.000000e+00 |  5.665722e-03 |   9.401466e-03 |           256 |
|  LBFGS |      1 |           10 |  2.695341e+00 |  5.000000e-01 |  3.116147e-02 |   4.968046e-02 |           256 |
|  LBFGS |      1 |           11 |  2.691277e+00 |  1.000000e+00 |  8.498584e-03 |   1.017446e-02 |           256 |
|  LBFGS |      1 |           12 |  2.689972e+00 |  1.000000e+00 |  1.983003e-02 |   9.938921e-03 |           256 |
|  LBFGS |      1 |           13 |  2.688979e+00 |  1.000000e+00 |  1.416431e-02 |   6.606316e-03 |           256 |
|  LBFGS |      1 |           14 |  2.687787e+00 |  1.000000e+00 |  1.621956e-03 |   7.089542e-03 |           256 |
|  LBFGS |      1 |           15 |  2.686539e+00 |  1.000000e+00 |  1.699717e-02 |   1.169701e-02 |           256 |
|  LBFGS |      1 |           16 |  2.685356e+00 |  1.000000e+00 |  1.133144e-02 |   1.069310e-02 |           256 |
|  LBFGS |      1 |           17 |  2.685021e+00 |  5.000000e-01 |  1.133144e-02 |   2.104248e-02 |           256 |
|  LBFGS |      1 |           18 |  2.684002e+00 |  1.000000e+00 |  2.832861e-03 |   6.175231e-03 |           256 |
|  LBFGS |      1 |           19 |  2.683507e+00 |  1.000000e+00 |  5.665722e-03 |   3.724026e-03 |           256 |
|  LBFGS |      1 |           20 |  2.683343e+00 |  5.000000e-01 |  5.665722e-03 |   9.549119e-03 |           256 |
|=================================================================================================================|
| Solver |  Pass  |   Iteration  |   Objective   |     Step      |    Gradient   |    Relative    |  sum(beta~=0) |
|        |        |              |               |               |   magnitude   | change in Beta |               |
|=================================================================================================================|
|  LBFGS |      1 |           21 |  2.682897e+00 |  1.000000e+00 |  5.665722e-03 |   7.172867e-03 |           256 |
|  LBFGS |      1 |           22 |  2.682682e+00 |  1.000000e+00 |  2.832861e-03 |   2.587726e-03 |           256 |
|  LBFGS |      1 |           23 |  2.682485e+00 |  1.000000e+00 |  2.832861e-03 |   2.953648e-03 |           256 |
|  LBFGS |      1 |           24 |  2.682326e+00 |  1.000000e+00 |  2.832861e-03 |   7.777294e-03 |           256 |
|  LBFGS |      1 |           25 |  2.681914e+00 |  1.000000e+00 |  2.832861e-03 |   2.778555e-03 |           256 |
|  LBFGS |      1 |           26 |  2.681867e+00 |  5.000000e-01 |  1.031085e-03 |   3.638352e-03 |           256 |
|  LBFGS |      1 |           27 |  2.681725e+00 |  1.000000e+00 |  5.665722e-03 |   1.515199e-03 |           256 |
|  LBFGS |      1 |           28 |  2.681692e+00 |  5.000000e-01 |  1.314940e-03 |   1.850055e-03 |           256 |
|  LBFGS |      1 |           29 |  2.681625e+00 |  1.000000e+00 |  2.832861e-03 |   1.456903e-03 |           256 |
|  LBFGS |      1 |           30 |  2.681594e+00 |  5.000000e-01 |  2.832861e-03 |   8.704875e-04 |           256 |
|  LBFGS |      1 |           31 |  2.681581e+00 |  5.000000e-01 |  8.498584e-03 |   3.934768e-04 |           256 |
|  LBFGS |      1 |           32 |  2.681579e+00 |  1.000000e+00 |  8.498584e-03 |   1.847866e-03 |           256 |
|  LBFGS |      1 |           33 |  2.681553e+00 |  1.000000e+00 |  9.857038e-04 |   6.509825e-04 |           256 |
|  LBFGS |      1 |           34 |  2.681541e+00 |  5.000000e-01 |  8.498584e-03 |   6.635528e-04 |           256 |
|  LBFGS |      1 |           35 |  2.681499e+00 |  1.000000e+00 |  5.665722e-03 |   6.194735e-04 |           256 |
|  LBFGS |      1 |           36 |  2.681493e+00 |  5.000000e-01 |  1.133144e-02 |   1.617763e-03 |           256 |
|  LBFGS |      1 |           37 |  2.681473e+00 |  1.000000e+00 |  9.869233e-04 |   8.418484e-04 |           256 |
|  LBFGS |      1 |           38 |  2.681469e+00 |  1.000000e+00 |  5.665722e-03 |   1.069722e-03 |           256 |
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|  LBFGS |      1 |           39 |  2.681432e+00 |  1.000000e+00 |  2.832861e-03 |   8.501930e-04 |           256 |
|  LBFGS |      1 |           40 |  2.681423e+00 |  2.500000e-01 |  1.133144e-02 |   9.543716e-04 |           256 |
|=================================================================================================================|
| Solver |  Pass  |   Iteration  |   Objective   |     Step      |    Gradient   |    Relative    |  sum(beta~=0) |
|        |        |              |               |               |   magnitude   | change in Beta |               |
|=================================================================================================================|
|  LBFGS |      1 |           41 |  2.681416e+00 |  1.000000e+00 |  2.832861e-03 |   8.763251e-04 |           256 |
|  LBFGS |      1 |           42 |  2.681413e+00 |  5.000000e-01 |  2.832861e-03 |   4.101888e-04 |           256 |
|  LBFGS |      1 |           43 |  2.681403e+00 |  1.000000e+00 |  5.665722e-03 |   2.713209e-04 |           256 |
|  LBFGS |      1 |           44 |  2.681392e+00 |  1.000000e+00 |  2.832861e-03 |   2.115241e-04 |           256 |
|  LBFGS |      1 |           45 |  2.681383e+00 |  1.000000e+00 |  2.832861e-03 |   2.872858e-04 |           256 |
|  LBFGS |      1 |           46 |  2.681374e+00 |  1.000000e+00 |  8.498584e-03 |   5.771001e-04 |           256 |
|  LBFGS |      1 |           47 |  2.681353e+00 |  1.000000e+00 |  2.832861e-03 |   3.160871e-04 |           256 |
|  LBFGS |      1 |           48 |  2.681334e+00 |  5.000000e-01 |  8.498584e-03 |   1.045502e-03 |           256 |
|  LBFGS |      1 |           49 |  2.681314e+00 |  1.000000e+00 |  7.878714e-04 |   1.505118e-03 |           256 |
|  LBFGS |      1 |           50 |  2.681306e+00 |  1.000000e+00 |  2.832861e-03 |   4.756894e-04 |           256 |
|  LBFGS |      1 |           51 |  2.681301e+00 |  1.000000e+00 |  1.133144e-02 |   3.664873e-04 |           256 |
|  LBFGS |      1 |           52 |  2.681288e+00 |  1.000000e+00 |  2.832861e-03 |   1.449821e-04 |           256 |
|  LBFGS |      1 |           53 |  2.681287e+00 |  2.500000e-01 |  1.699717e-02 |   2.357176e-04 |           256 |
|  LBFGS |      1 |           54 |  2.681282e+00 |  1.000000e+00 |  5.665722e-03 |   2.046663e-04 |           256 |
|  LBFGS |      1 |           55 |  2.681278e+00 |  1.000000e+00 |  2.832861e-03 |   2.546349e-04 |           256 |
|  LBFGS |      1 |           56 |  2.681276e+00 |  2.500000e-01 |  1.307940e-03 |   1.966786e-04 |           256 |
|  LBFGS |      1 |           57 |  2.681274e+00 |  5.000000e-01 |  1.416431e-02 |   1.005310e-04 |           256 |
|  LBFGS |      1 |           58 |  2.681271e+00 |  5.000000e-01 |  1.118892e-03 |   1.147324e-04 |           256 |
|  LBFGS |      1 |           59 |  2.681269e+00 |  1.000000e+00 |  2.832861e-03 |   1.332914e-04 |           256 |
|  LBFGS |      1 |           60 |  2.681268e+00 |  2.500000e-01 |  1.132045e-03 |   5.441369e-05 |           256 |
|=================================================================================================================|

Estimate the epsilon-insensitive error for the test set using the updated model.

UpdatedL = loss(UpdatedMdl,Ztest,Ytest,'LossFun','epsiloninsensitive')

UpdatedL = 1.8933

The regression error decreases by a factor of about 0.08 after resume updates the regression model
with more iterations.

Resume Training with Modified Convergence Control Training Options

Load the carbig data set.

load carbig

Specify the predictor variables (X) and the response variable (Y).

X = [Acceleration,Cylinders,Displacement,Horsepower,Weight];
Y = MPG;

Delete rows of X and Y where either array has NaN values. Removing rows with NaN values before
passing data to fitrkernel can speed up training and reduce memory usage.

R = rmmissing([X Y]); % Data with missing entries removed
X = R(:,1:5); 
Y = R(:,end); 
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Reserve 10% of the observations as a holdout sample. Extract the training and test indices from the
partition definition.

rng(10)  % For reproducibility
N = length(Y);
cvp = cvpartition(N,'Holdout',0.1);
idxTrn = training(cvp); % Training set indices
idxTest = test(cvp);    % Test set indices

Standardize the training data and train a kernel regression model with relaxed convergence control
training options by using the name-value pair arguments 'BetaTolerance' and
'GradientTolerance'. Specify 'Verbose',1 to display diagnostic information.

Xtrain = X(idxTrn,:);
Ytrain = Y(idxTrn);
[Ztrain,tr_mu,tr_sigma] = zscore(Xtrain); % Standardize the training data
tr_sigma(tr_sigma==0) = 1;
[Mdl,FitInfo] = fitrkernel(Ztrain,Ytrain,'Verbose',1, ...
    'BetaTolerance',2e-2,'GradientTolerance',2e-2);

|=================================================================================================================|
| Solver |  Pass  |   Iteration  |   Objective   |     Step      |    Gradient   |    Relative    |  sum(beta~=0) |
|        |        |              |               |               |   magnitude   | change in Beta |               |
|=================================================================================================================|
|  LBFGS |      1 |            0 |  5.691016e+00 |  0.000000e+00 |  5.852758e-02 |                |             0 |
|  LBFGS |      1 |            1 |  5.086537e+00 |  8.000000e+00 |  5.220869e-02 |   9.846711e-02 |           256 |
|  LBFGS |      1 |            2 |  3.862301e+00 |  5.000000e-01 |  3.796034e-01 |   5.998808e-01 |           256 |
|  LBFGS |      1 |            3 |  3.460613e+00 |  1.000000e+00 |  3.257790e-01 |   1.615091e-01 |           256 |
|  LBFGS |      1 |            4 |  3.136228e+00 |  1.000000e+00 |  2.832861e-02 |   8.006254e-02 |           256 |
|  LBFGS |      1 |            5 |  3.063978e+00 |  1.000000e+00 |  1.475038e-02 |   3.314455e-02 |           256 |
|=================================================================================================================|

Mdl is a RegressionKernel model.

Standardize the test data using the same mean and standard deviation of the training data columns.
Estimate the epsilon-insensitive error for the test set.

Xtest = X(idxTest,:);
Ztest = (Xtest-tr_mu)./tr_sigma; % Standardize the test data
Ytest = Y(idxTest);

L = loss(Mdl,Ztest,Ytest,'LossFun','epsiloninsensitive')

L = 2.0674

Continue training the model by using resume with modified convergence control options.

[UpdatedMdl,UpdatedFitInfo] = resume(Mdl,Ztrain,Ytrain, ...
    'BetaTolerance',2e-3,'GradientTolerance',2e-3);

|=================================================================================================================|
| Solver |  Pass  |   Iteration  |   Objective   |     Step      |    Gradient   |    Relative    |  sum(beta~=0) |
|        |        |              |               |               |   magnitude   | change in Beta |               |
|=================================================================================================================|
|  LBFGS |      1 |            0 |  3.063978e+00 |  0.000000e+00 |  1.475038e-02 |                |           256 |
|  LBFGS |      1 |            1 |  3.007822e+00 |  8.000000e+00 |  1.391637e-02 |   2.603966e-02 |           256 |
|  LBFGS |      1 |            2 |  2.817171e+00 |  5.000000e-01 |  5.949008e-02 |   1.918084e-01 |           256 |
|  LBFGS |      1 |            3 |  2.807294e+00 |  2.500000e-01 |  6.798867e-02 |   2.973097e-02 |           256 |
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|  LBFGS |      1 |            4 |  2.791060e+00 |  1.000000e+00 |  2.549575e-02 |   1.639328e-02 |           256 |
|  LBFGS |      1 |            5 |  2.767821e+00 |  1.000000e+00 |  6.154419e-03 |   2.468903e-02 |           256 |
|  LBFGS |      1 |            6 |  2.738163e+00 |  1.000000e+00 |  5.949008e-02 |   9.476263e-02 |           256 |
|  LBFGS |      1 |            7 |  2.719146e+00 |  1.000000e+00 |  1.699717e-02 |   1.849972e-02 |           256 |
|  LBFGS |      1 |            8 |  2.705941e+00 |  1.000000e+00 |  3.116147e-02 |   4.152590e-02 |           256 |
|  LBFGS |      1 |            9 |  2.701162e+00 |  1.000000e+00 |  5.665722e-03 |   9.401466e-03 |           256 |
|  LBFGS |      1 |           10 |  2.695341e+00 |  5.000000e-01 |  3.116147e-02 |   4.968046e-02 |           256 |
|  LBFGS |      1 |           11 |  2.691277e+00 |  1.000000e+00 |  8.498584e-03 |   1.017446e-02 |           256 |
|  LBFGS |      1 |           12 |  2.689972e+00 |  1.000000e+00 |  1.983003e-02 |   9.938921e-03 |           256 |
|  LBFGS |      1 |           13 |  2.688979e+00 |  1.000000e+00 |  1.416431e-02 |   6.606316e-03 |           256 |
|  LBFGS |      1 |           14 |  2.687787e+00 |  1.000000e+00 |  1.621956e-03 |   7.089542e-03 |           256 |
|=================================================================================================================|

Estimate the epsilon-insensitive error for the test set using the updated model.

UpdatedL = loss(UpdatedMdl,Ztest,Ytest,'LossFun','epsiloninsensitive')

UpdatedL = 1.8891

The regression error decreases after resume updates the regression model with smaller convergence
tolerances.

Display the outputs FitInfo and UpdatedFitInfo.

FitInfo

FitInfo = struct with fields:
                  Solver: 'LBFGS-fast'
            LossFunction: 'epsiloninsensitive'
                  Lambda: 0.0028
           BetaTolerance: 0.0200
       GradientTolerance: 0.0200
          ObjectiveValue: 3.0640
       GradientMagnitude: 0.0148
    RelativeChangeInBeta: 0.0331
                 FitTime: 0.2066
                 History: [1x1 struct]

UpdatedFitInfo

UpdatedFitInfo = struct with fields:
                  Solver: 'LBFGS-fast'
            LossFunction: 'epsiloninsensitive'
                  Lambda: 0.0028
           BetaTolerance: 0.0020
       GradientTolerance: 0.0020
          ObjectiveValue: 2.6878
       GradientMagnitude: 0.0016
    RelativeChangeInBeta: 0.0071
                 FitTime: 0.3303
                 History: [1x1 struct]

Both trainings terminate because the software satisfies the absolute gradient tolerance.

Plot the gradient magnitude versus the number of iterations by using
UpdatedFitInfo.History.GradientMagnitude. Note that the History field of
UpdatedFitInfo includes the information in the History field of FitInfo.
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semilogy(UpdatedFitInfo.History.GradientMagnitude,'o-')
ax = gca;
ax.XTick = 1:21;
ax.XTickLabel = UpdatedFitInfo.History.IterationNumber;
grid on
xlabel('Number of Iterations')
ylabel('Gradient Magnitude')

The first training terminates after five iterations because the gradient magnitude becomes less than
2e-2. The second training terminates after 14 iterations because the gradient magnitude becomes
less than 2e-3.

Input Arguments
Mdl — Kernel regression model
RegressionKernel model object

Kernel regression model, specified as a RegressionKernel model object. You can create a
RegressionKernel model object using fitrkernel.

X — Predictor data used to train Mdl
n-by-p numeric matrix

Predictor data used to train Mdl, specified as an n-by-p numeric matrix, where n is the number of
observations and p is the number of predictors.

 resume

35-8081



Data Types: single | double

Y — Response data used to train Mdl
numeric vector

Response data used to train Mdl, specified as a numeric vector.
Data Types: double | single

Tbl — Sample data used to train Mdl
table

Sample data used to train Mdl, specified as a table. Each row of Tbl corresponds to one observation,
and each column corresponds to one predictor variable. Optionally, Tbl can contain additional
columns for the response variable and observation weights. Tbl must contain all of the predictors
used to train Mdl. Multicolumn variables and cell arrays other than cell arrays of character vectors
are not allowed.

If you trained Mdl using sample data contained in a table, then the input data for resume must also
be in a table.

ResponseVarName — Name of response variable used to train Mdl
name of variable in Tbl

Name of the response variable used to train Mdl, specified as the name of a variable in Tbl. The
ResponseVarName value must match the name Mdl.ResponseName.
Data Types: char | string

Note resume should run only on the same training data and observation weights (Weights) used to
train Mdl. The resume function uses the same training options, such as feature expansion, used to
train Mdl.

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: UpdatedMdl = resume(Mdl,X,Y,'BetaTolerance',1e-3) resumes training with the
same options used to train Mdl, except the relative tolerance on the linear coefficients and the bias
term.

Weights — Observation weights used to train Mdl
numeric vector | name of variable in Tbl

Observation weights used to train Mdl, specified as the comma-separated pair consisting of
'Weights' and a numeric vector or the name of a variable in Tbl.

• If Weights is a numeric vector, then the size of Weights must be equal to the number of rows in
X or Tbl.
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• If Weights is the name of a variable in Tbl, you must specify Weights as a character vector or
string scalar. For example, if the weights are stored as Tbl.W, then specify Weights as 'W'.
Otherwise, the software treats all columns of Tbl, including Tbl.W, as predictors.

If you supply the observation weights, resume normalizes Weights to sum to 1.
Data Types: double | single | char | string

BetaTolerance — Relative tolerance on linear coefficients and bias term
BetaTolerance value used to train Mdl (default) | nonnegative scalar

Relative tolerance on the linear coefficients and the bias term (intercept), specified as a nonnegative
scalar.

Let Bt = βt′ bt , that is, the vector of the coefficients and the bias term at optimization iteration t. If
Bt − Bt − 1

Bt 2
< BetaTolerance, then optimization terminates.

If you also specify GradientTolerance, then optimization terminates when the software satisfies
either stopping criterion.

By default, the value is the same BetaTolerance value used to train Mdl.
Example: 'BetaTolerance',1e-6
Data Types: single | double

GradientTolerance — Absolute gradient tolerance
GradientTolerance value used to train Mdl (default) | nonnegative scalar

Absolute gradient tolerance, specified as a nonnegative scalar.

Let ∇ℒ t be the gradient vector of the objective function with respect to the coefficients and bias term
at optimization iteration t. If ∇ℒ t ∞ = max ∇ℒ t < GradientTolerance, then optimization terminates.

If you also specify BetaTolerance, then optimization terminates when the software satisfies either
stopping criterion.

By default, the value is the same GradientTolerance value used to train Mdl.
Example: 'GradientTolerance',1e-5
Data Types: single | double

IterationLimit — Maximum number of additional optimization iterations
positive integer

Maximum number of additional optimization iterations, specified as the comma-separated pair
consisting of 'IterationLimit' and a positive integer.

The default value is 1000 if the transformed data fits in memory
(Mdl.ModelParameters.BlockSize), which you specify by using the 'BlockSize' name-value
pair argument when training Mdl with fitrkernel. Otherwise, the default value is 100.

Note that the default value is not the value used to train Mdl.
Example: 'IterationLimit',500
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Data Types: single | double

Output Arguments
UpdatedMdl — Updated kernel regression model
RegressionKernel model object

Updated kernel regression model, returned as a RegressionKernel model object.

FitInfo — Optimization details
structure array

Optimization details, returned as a structure array including fields described in this table. The fields
contain final values or name-value pair argument specifications.

Field Description
Solver Objective function minimization technique: 'LBFGS-fast', 'LBFGS-

blockwise', or 'LBFGS-tall'. For details, see the “Algorithms” on page
35-8049 section of fitrkernel.

LossFunction Loss function. Either mean squared error (MSE) or epsilon-insensitive,
depending on the type of linear regression model. See Learner of
fitrkernel.

Lambda Regularization term strength. See Lambda of fitrkernel.
BetaTolerance Relative tolerance on the linear coefficients and the bias term. See

BetaTolerance.
GradientTolerance Absolute gradient tolerance. See GradientTolerance.
ObjectiveValue Value of the objective function when optimization terminates. The

regression loss plus the regularization term compose the objective
function.

GradientMagnitude Infinite norm of the gradient vector of the objective function when
optimization terminates. See GradientTolerance.

RelativeChangeInBe
ta

Relative changes in the linear coefficients and the bias term when
optimization terminates. See BetaTolerance.

FitTime Elapsed, wall-clock time (in seconds) required to fit the model to the data.
History History of optimization information. This field also includes the

optimization information from training Mdl. This field is empty ([]) if you
specify 'Verbose',0 when training Mdl. For details, see Verbose and the
“Algorithms” on page 35-8049 section of fitrkernel.

To access fields, use dot notation. For example, to access the vector of objective function values for
each iteration, enter FitInfo.ObjectiveValue in the Command Window.

Examine the information provided by FitInfo to assess whether convergence is satisfactory.

More About
Random Feature Expansion

Random feature expansion, such as Random Kitchen Sinks[1] or Fastfood[2], is a scheme to
approximate Gaussian kernels of the kernel regression algorithm for big data in a computationally
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efficient way. Random feature expansion is more practical for big data applications that have large
training sets, but can also be applied to smaller data sets that fit in memory.

After mapping the predictor data into a high-dimensional space, the kernel regression algorithm
searches for an optimal function that deviates from each response data point (yi) by values no greater
than the epsilon margin (ε).

Some regression problems cannot be described adequately using a linear model. In such cases,
obtain a nonlinear regression model by replacing the dot product x1x2′ with a nonlinear kernel
function G(x1, x2) = φ(x1), φ(x2) , where xi is the ith observation (row vector) and φ(xi) is a
transformation that maps xi to a high-dimensional space (called the “kernel trick”). However,
evaluating G(x1,x2), the Gram matrix, for each pair of observations is computationally expensive for a
large data set (large n).

The random feature expansion scheme finds a random transformation so that its dot product
approximates the Gaussian kernel. That is,

G(x1, x2) = φ(x1), φ(x2) ≈ T(x1)T(x2)′,

where T(x) maps x in ℝp to a high-dimensional space (ℝm). The Random Kitchen Sinks[1] scheme
uses the random transformation

T(x) = m−1/2exp iZx′ ′,

where Z ∈ ℝm × p is a sample drawn from N 0, σ−2  and σ is a kernel scale. This scheme requires
O(mp) computation and storage. The Fastfood[2] scheme introduces another random basis V instead
of Z using Hadamard matrices combined with Gaussian scaling matrices. This random basis reduces
computation cost to O(mlogp) and reduces storage to O(m).

You can specify values for m and σ, using the NumExpansionDimensions and KernelScale name-
value pair arguments of fitrkernel, respectively.

The fitrkernel function uses the Fastfood scheme for random feature expansion and uses linear
regression to train a Gaussian kernel regression model. Unlike solvers in the fitrsvm function,
which require computation of the n-by-n Gram matrix, the solver in fitrkernel only needs to form a
matrix of size n-by-m, with m typically much less than n for big data.

Version History
Introduced in R2018a

Extended Capabilities
Tall Arrays
Calculate with arrays that have more rows than fit in memory.

Usage notes and limitations:

• resume does not support tall table data.
• The default value for the 'IterationLimit' name-value pair argument is relaxed to 20 when

you work with tall arrays.
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• resume uses a block-wise strategy. For details, see the “Algorithms” on page 35-8049 section of
fitrkernel.

For more information, see “Tall Arrays”.

See Also
fitrkernel | loss | predict | RegressionKernel
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RegressionPartitionedKernel
Cross-validated kernel model for regression

Description
RegressionPartitionedKernel is a set of kernel regression models trained on cross-validated
folds. To obtain a cross-validated, kernel regression model, use fitrkernel and specify one of the
cross-validation options. You can estimate the predictive quality of the model, or how well the linear
regression model generalizes, using one or more of these “kfold” methods: kfoldPredict and
kfoldLoss.

Every “kfold” method uses models trained on training-fold observations to predict the response for
validation-fold observations. For example, suppose that you cross-validate using five folds. In this
case, the software randomly assigns each observation into five groups of equal size (roughly). The
training fold contains four of the groups (that is, roughly 4/5 of the data) and the validation fold
contains the other group (that is, roughly 1/5 of the data). In this case, cross-validation proceeds as
follows:

1 The software trains the first model (stored in CVMdl.Trained{1}) using the observations in the
last four groups and reserves the observations in the first group for validation.

2 The software trains the second model (stored in CVMdl.Trained{2}) using the observations in
the first group and the last three groups. The software reserves the observations in the second
group for validation.

3 The software proceeds in a similar fashion for the third through the fifth models.

If you validate by calling kfoldPredict, it computes predictions for the observations in group 1
using the first model, group 2 for the second model, and so on. In short, the software estimates a
response for every observation using the model trained without that observation.

Note RegressionPartitionedKernel model objects do not store the predictor data set.

Creation
Create a RegressionPartitionedKernel object using the fitrkernel function. Use one of the
'CrossVal', 'CVPartition', 'Holdout', 'KFold', or 'Leaveout' name-value pair arguments
in the call to fitrkernel. For details, see the fitrkernel function reference page.

Properties
Cross-Validation Properties

CrossValidatedModel — Cross-validated model name
character vector

This property is read-only.

Cross-validated model name, specified as a character vector.
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For example, 'Kernel' specifies a cross-validated kernel model.
Data Types: char

KFold — Number of cross-validated folds
positive integer scalar

This property is read-only.

Number of cross-validated folds, specified as a positive integer scalar.
Data Types: double

ModelParameters — Cross-validation parameter values
object

This property is read-only.

Cross-validation parameter values, specified as an object. The parameter values correspond to the
name-value pair argument values used to cross-validate the kernel regression model.
ModelParameters does not contain estimated parameters.

NumObservations — Number of observations
positive numeric scalar

This property is read-only.

Number of observations in the training data, specified as a positive numeric scalar.
Data Types: double

Partition — Data partition
cvpartition model

This property is read-only.

Data partition indicating how the software splits the data into cross-validation folds, specified as a
cvpartition model.

Trained — Kernel regression models trained on cross-validation folds
cell array of RegressionKernel models

This property is read-only.

Kernel regression models trained on cross-validation folds, specified as a cell array of
RegressionKernel models. Trained has k cells, where k is the number of folds.
Data Types: cell

W — Observation weights
numeric vector

This property is read-only.

Observation weights used to cross-validate the model, specified as a numeric vector. W has
NumObservations elements.

The software normalizes the weights used for training so that sum(W,'omitnan') is 1.

35 Functions

35-8088



Data Types: single | double

Y — Observed response values
numeric vector

This property is read-only.

Observed response values used to cross-validate the model, specified as a numeric vector. Y has
NumObservations elements.

Each row of Y represents the observed response of the corresponding observation in the predictor
data.
Data Types: single | double

Other Regression Properties

CategoricalPredictors — Categorical predictor indices
vector of positive integers | []

This property is read-only.

Categorical predictor indices, specified as a vector of positive integers. CategoricalPredictors
contains index values indicating that the corresponding predictors are categorical. The index values
are between 1 and p, where p is the number of predictors used to train the model. If none of the
predictors are categorical, then this property is empty ([]).
Data Types: single | double

PredictorNames — Predictor names
cell array of character vectors

This property is read-only.

Predictor names in order of their appearance in the predictor data, specified as a cell array of
character vectors. The length of PredictorNames is equal to the number of columns used as
predictor variables in the training data X or Tbl.
Data Types: cell

ResponseName — Response variable name
character vector

This property is read-only.

Response variable name, specified as a character vector.
Data Types: char

ResponseTransform — Response transformation function
'none' | function handle

Response transformation function, specified as 'none' or a function handle. ResponseTransform
describes how the software transforms raw response values predicted by the model.

For a MATLAB function, or a function that you define, enter its function handle. For example, you can
enter Mdl.ResponseTransform = @function, where function accepts a numeric vector of the
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original responses and returns a numeric vector of the same size containing the transformed
responses.
Data Types: char | string | function_handle

Object Functions
kfoldLoss Regression loss for cross-validated kernel regression model
kfoldPredict Predict responses for observations in cross-validated kernel regression model

Examples

Create Cross-Validated Kernel Regression Model

Simulate sample data.

rng(0,'twister'); % For reproducibility
n = 1000;
x = linspace(-10,10,n)';
y = 1 + x*2e-2 + sin(x)./x + 0.2*randn(n,1);

Cross-validate a kernel regression model.

CVMdl = fitrkernel(x,y,'Kfold',5);

CVMdl is a RegressionPartitionedKernel 5-fold cross-validated model. CVMdl.Trained
contains a cell vector of five RegressionKernel models. Display the trained property.

CVMdl.Trained

ans=5×1 cell array
    {1x1 RegressionKernel}
    {1x1 RegressionKernel}
    {1x1 RegressionKernel}
    {1x1 RegressionKernel}
    {1x1 RegressionKernel}

Each cell contains a kernel regression model trained on four folds, then tested on the remaining fold.

Predict responses for observations in the validation folds and estimate the generalization error by
passing CVMdl to kfoldPredict and kfoldLoss, respectively.

yHat = kfoldPredict(CVMdl);
L = kfoldLoss(CVMdl)

L = 0.1887

kfoldLoss computes the average mean squared error for all the folds by default. The estimated
mean squared error is 0.1887.

Version History
Introduced in R2018b
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See Also
fitrkernel | RegressionKernel
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kfoldLoss
Package: classreg.learning.partition

Regression loss for cross-validated kernel regression model

Syntax
L = kfoldLoss(CVMdl)
L = kfoldLoss(CVMdl,Name,Value)

Description
L = kfoldLoss(CVMdl) returns the regression loss obtained by the cross-validated kernel
regression model CVMdl. For every fold, kfoldLoss computes the regression loss for observations in
the validation fold, using a model trained on observations in the training fold.

L = kfoldLoss(CVMdl,Name,Value) returns the mean squared error (MSE) with additional
options specified by one or more name-value pair arguments. For example, you can specify the
regression-loss function or which folds to use for loss calculation.

Examples

Compute Loss for Cross-Validated Kernel Regression Models

Simulate sample data:

rng(0,'twister'); % For reproducibility
n = 1000;
x = linspace(-10,10,n)';
y = 1 + x*2e-2 + sin(x)./x + 0.2*randn(n,1);

Cross-validate a kernel regression model.

CVMdl = fitrkernel(x,y,'Kfold',5);

fitrkernel implements 5-fold cross-validation. CVMdl is a RegressionPartitionedKernel
model. It contains the property Trained, which is a 5-by-1 cell array holding 5 RegressionKernel
models that the software trained using the training set.

Compute the epsilon-insensitive loss for each fold for observations that fitrkernel did not use in
training the folds.

L = kfoldLoss(CVMdl,'LossFun','epsiloninsensitive','Mode','individual')

L = 5×1

    0.2812
    0.3223
    0.3073
    0.3117
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    0.2576

Input Arguments
CVMdl — Cross-validated kernel regression model
RegressionPartitionedKernel model object

Cross-validated kernel regression model, specified as a RegressionPartitionedKernel model
object. You can create a RegressionPartitionedKernel model using fitrkernel and specifying
any of the cross-validation name-value pair arguments, for example, CrossVal.

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: 'LossFun','epsiloninsensitive','Mode','individual' specifies kfoldLoss to
return the epsilon-insensitive loss for each fold.

Folds — Fold indices to use for response prediction
1:CVMdl.KFold (default) | numeric vector of positive integers

Fold indices to use for response prediction, specified as the comma-separated pair consisting of
'Folds' and a numeric vector of positive integers. The elements of Folds must range from 1
through CVMdl.KFold.
Example: 'Folds',[1 4 10]
Data Types: single | double

LossFun — Loss function
'mse' (default) | 'epsiloninsensitive' | function handle

Loss function, specified as the comma-separated pair consisting of 'LossFun' and a built-in loss
function name or function handle.

• The following table lists the available loss functions. Specify one using its corresponding character
vector or string scalar. Also, in the table, f x = xβ + b .

• β is a vector of p coefficients.
• x is an observation from p predictor variables.
• b is the scalar bias.

Value Description
'epsiloninsensitive' Epsilon-insensitive loss:

ℓ y, f x = max 0, y − f x − ε
'mse' MSE: ℓ y, f x = y − f x 2

'epsiloninsensitive' is appropriate for SVM learners only.
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• Specify your own function using function handle notation.

Assume that n is the number of observations in X. Your function must have this signature

lossvalue = lossfun(Y,Yhat,W)

where:

• The output argument lossvalue is a scalar.
• You specify the function name (lossfun).
• Y is an n-dimensional vector of observed responses. kfoldLoss passes the input argument Y

in for Y.
• Yhat is an n-dimensional vector of predicted responses, which is similar to the output of

predict.
• W is an n-by-1 numeric vector of observation weights.

Data Types: char | string | function_handle

Mode — Loss aggregation level
'average' (default) | 'individual'

Loss aggregation level, specified as the comma-separated pair consisting of 'Mode' and 'average'
or 'individual'.

Value Description
'average' Returns losses averaged over all folds
'individual' Returns losses for each fold

Example: 'Mode','individual'

Output Arguments
L — Cross-validated regression losses
numeric scalar | numeric vector

Cross-validated regression losses, returned as a numeric scalar or vector. The interpretation of L
depends on LossFun.

• If Mode is 'average', then L is a scalar.
• Otherwise, L is a k-by-1 vector, where k is the number of folds. L(j) is the average regression loss

over fold j.

To estimate L, kfoldLoss uses the data that created CVMdl.

Version History
Introduced in R2018b

See Also
fitrkernel | RegressionKernel | RegressionPartitionedKernel | kfoldPredict
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kfoldPredict
Package: classreg.learning.partition

Predict responses for observations in cross-validated kernel regression model

Syntax
YHat = kfoldPredict(CVMdl)

Description
YHat = kfoldPredict(CVMdl) returns cross-validated predicted responses by the cross-validated
kernel regression model CVMdl. That is, for every fold, kfoldPredict predicts the responses for
observations that it holds out in validation fold while it trains using all other observations in the
training fold.

Examples

Predict Responses from Cross-Validated Kernel Regression Models

Simulate sample data:

rng(0,'twister'); % For reproducibility
n = 1000;
x = linspace(-10,10,n)';
y = 1 + x*2e-2 + sin(x)./x + 0.2*randn(n,1);

Cross-validate a kernel regression model.

CVMdl = fitrkernel(x,y,'CrossVal','on');

By default, fitrkernel implements 10-fold cross-validation. CVMdl is a
RegressionPartitionedKernel model. It contains the property Trained, which is a 10-by-1 cell
array holding 10 RegressionKernel models that the software trained using the training set.

Predict responses for observations that fitrkernel did not use in training the folds.

yHat = kfoldPredict(CVMdl);

yHat is a numeric vector. Display the first five predicted responses.

yHat(1:5)

ans = 5×1

    1.0769
    1.0744
    1.0758
    1.0781
    1.0795
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Input Arguments
CVMdl — Cross-validated kernel regression model
RegressionPartitionedKernel model object

Cross-validated kernel regression model, specified as a RegressionPartitionedKernel model
object. You can create a RegressionPartitionedKernel model using fitrkernel and specifying
any of the one of the cross-validation name-value pair arguments, for example, CrossVal.

To obtain estimates, kfoldPredict applies the same data used to cross-validate the kernel
regression model (see X input argument on fitrkernel page).

Output Arguments
YHat — Cross-validated predicted responses
numeric vector

Cross-validated predicted responses, returned as an n-by-1 numeric array, where n is the number of
observations in the predictor data used to create CVMdl (see X input argument on fitrkernel
page).

Version History
Introduced in R2018b

See Also
fitrkernel | RegressionKernel | RegressionPartitionedKernel | kfoldLoss
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Sample Data Sets
Statistics and Machine Learning Toolbox software includes the sample data sets in the following
table.

To load a data set into the MATLAB workspace, type:

load filename

where filename is one of the files listed in the table.

Data sets contain individual data variables, description variables with references, and dataset arrays
encapsulating the data set and its description, as appropriate.

File Description of Data Set
acetylene.mat Chemical reaction data with correlated predictors
arrhythmia.mat Cardiac arrhythmia data from the UCI machine learning repository
batterysmall.mat Sensor data (voltage, current, and temperature) and state of charge

for a Li-ion battery; a subset of the data in [1]
carbig.mat Measurements of cars, 1970–1982
carsmall.mat Subset of carbig.mat. Measurements of cars, 1970, 1976, 1982
census1994.mat Adult data from the UCI machine learning repository
cereal.mat Breakfast cereal ingredients
cities.mat Quality of life ratings for U.S. metropolitan areas
discrim.mat A version of cities.mat used for discriminant analysis
examgrades.mat Exam grades on a scale of 0–100
fisheriris.mat Fisher's 1936 iris data
flu.mat Google Flu Trends estimated ILI (influenza-like illness) percentage for

various regions of the US, and CDC weighted ILI percentage based on
sentinel provider reports

gas.mat Gasoline prices around the state of Massachusetts in 1993
hald.mat Heat of cement vs. mix of ingredients
hogg.mat Bacteria counts in different shipments of milk
hospital.mat Simulated hospital data
humanactivity.mat Human activity recognition data of five activities: sitting, standing,

walking, running, and dancing
imports-85.mat 1985 Auto Imports Database from the UCI repository
ionosphere.mat Ionosphere dataset from the UCI machine learning repository
kmeansdata.mat Four-dimensional clustered data
lawdata.mat Grade point average and LSAT scores from 15 law schools
mileage.mat Mileage data for three car models from two factories
moore.mat Biochemical oxygen demand on five predictors
morse.mat Recognition of Morse code distinctions by non-coders
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File Description of Data Set
nlpdata.mat Natural language processing data extracted from the MathWorks®

documentation
ovariancancer.mat Grouped observations on 4000 predictors [2][3]
parts.mat Dimensional run-out on 36 circular parts
polydata.mat Sample data for polynomial fitting
popcorn.mat Popcorn yield by popper type and brand
reaction.mat Reaction kinetics for Hougen-Watson model
spectra.mat NIR spectra and octane numbers of 60 gasoline samples
stockreturns.mat Simulated stock returns

References
[1] Kollmeyer, Phillip, Carlos Vidal, Mina Naguib, and Michael Skells. "LG 18650HG2 Li-ion Battery

Data and Example Deep Neural Network xEV SOC Estimator Script." Mendeley 3 (March
2020). https://doi.org/10.17632/CP3473X7XV.3.

[2] Conrads, Thomas P., Vincent A. Fusaro, Sally Ross, Don Johann, Vinodh Rajapakse, Ben A. Hitt,
Seth M. Steinberg, et al. "High-Resolution Serum Proteomic Features for Ovarian Cancer
Detection." Endocrine-Related Cancer 11 (2004): 163–78.

[3] Petricoin, Emanuel F., Ali M. Ardekani, Ben A. Hitt, Peter J. Levine, Vincent A. Fusaro, Seth M.
Steinberg, Gordon B. Mills, et al. “Use of Proteomic Patterns in Serum to Identify Ovarian
Cancer.” The Lancet 359, no. 9306 (February 2002): 572–77.
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Bernoulli Distribution
In this section...
“Overview” on page B-2
“Parameters” on page B-2
“Probability Density Function” on page B-2
“Cumulative Distribution Function” on page B-2
“Descriptive Statistics” on page B-2
“Examples” on page B-3
“Related Distributions” on page B-4

Overview
The Bernoulli distribution is a discrete probability distribution with only two possible values for the
random variable. Each instance of an event with a Bernoulli distribution is called a Bernoulli trial.

Parameters
The Bernoulli distribution uses the following parameter.

Parameter Description Support
p Probability of success 0 ≤ p ≤ 1

Probability Density Function
The probability density function (pdf) of the Bernoulli distribution is

f (x p) =
1− p, x = 0

p, x = 1
.

For discrete distributions, the pdf is also known as the probability mass function (pmf).

For an example, see “Compute Bernoulli Distribution pdf” on page B-3.

Cumulative Distribution Function
The cumulative distribution function (cdf) of the Bernoulli distribution is

F(x p) =
1− p, x = 0

1, x = 1
.

For an example, see “Compute Bernoulli Distribution cdf” on page B-3.

Descriptive Statistics
The mean of the Bernoulli distribution is p.

B Bernoulli Distribution
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The variance of the Bernoulli distribution is p(1 – p).

Examples
Compute Bernoulli Distribution pdf

The Bernoulli distribution is a special case of the binomial distribution, where N = 1. Use binopdf
to compute the pdf of the Bernoulli distribution with the probability of success 0.75.

p = 0.75;
x = 0:1;
y = binopdf(0:1,1,p);

Plot the pdf with bars of width 1.

figure
bar(x,y,1)
xlabel('Observation')
ylabel('Probability')

Compute Bernoulli Distribution cdf

The Bernoulli distribution is a special case of the binomial distribution, where N = 1. Use binocdf
to compute the cdf of the Bernoulli distribution with the probability of success 0.75.

 Bernoulli Distribution
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p = 0.75;
y = binocdf(-1:2,1,p);

Plot the cdf.

figure
stairs(-1:2,y)
xlabel('Observation')
ylabel('Cumulative Probability')

Related Distributions
• Binomial Distribution on page B-10 — The binomial distribution is a two-parameter discrete

distribution that models the total number of successes in repeated Bernoulli trials. The Bernoulli
distribution occurs as a binomial distribution with N = 1.

• Geometric Distribution on page B-64 — The geometric distribution is a one-parameter discrete
distribution that models the total number of failures before the first success in repeated Bernoulli
trials.

References
[1] Abramowitz, Milton, and Irene A. Stegun, eds. Handbook of Mathematical Functions: With

Formulas, Graphs, and Mathematical Tables. 9. Dover print.; [Nachdr. der Ausg. von 1972].
Dover Books on Mathematics. New York, NY: Dover Publ, 2013.
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[2] Evans, Merran, Nicholas Hastings, and Brian Peacock. Statistical Distributions. 2nd ed. New York:
J. Wiley, 1993.

See Also
BinomialDistribution

More About
• “Binomial Distribution” on page B-10
• “Working with Probability Distributions” on page 5-3
• “Supported Distributions” on page 5-16
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Beta Distribution
In this section...
“Overview” on page B-6
“Parameters” on page B-6
“Probability Density Function” on page B-6
“Cumulative Distribution Function” on page B-7
“Examples” on page B-7
“Related Distributions” on page B-9

Overview
The beta distribution describes a family of curves that are nonzero only on the interval [0,1]. A more
general version of the function assigns parameters to the endpoints of the interval.

Statistics and Machine Learning Toolbox provides several ways to work with the beta distribution.
You can use the following approaches to estimate parameters from sample data, compute the pdf, cdf,
and icdf, generate random numbers, and more.

• Fit a probability distribution object to sample data, or create a probability distribution object with
specified parameter values. See Using BetaDistribution Objects for more information.

• Work with data input from matrices, tables, and dataset arrays using probability distribution
functions. See “Supported Distributions” on page 5-16 for a list of beta distribution functions.

• Interactively fit, explore, and generate random numbers from the distribution using an app or user
interface.

For more information on each of these options, see “Working with Probability Distributions” on page
5-3.

Parameters
The beta distribution uses the following parameters.

Parameter Description Support
a First shape parameter a > 0
b Second shape parameter b > 0

Probability Density Function
The probability density function (pdf) of the beta distribution is

y = f (x a, b) = 1
B(a, b)xa− 1(1− x)b− 1I 0, 1 (x)

where B( · ) is the Beta function. The indicator function I[0,1](x) ensures that only values of x in the
range [0,1] have nonzero probability.

For an example, see “Plot Beta Distribution pdfs” on page B-7.
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Cumulative Distribution Function
The beta cdf for a given value x and given pair of parameters a and b is

p = F x a, b = 1
B(a, b)∫

0

x
ta− 1(1− t)b− 1dt

where B( · ) is the Beta function. The beta cdf is the same as the incomplete beta function.

Examples
Plot Beta Distribution pdfs

Change the value of the beta distribution parameters to alter the shape of the probability distribution
function (pdf).

Compute the pdfs of three beta distributions: one with the shape parameters a and b equal to 0.75,
one with the parameters equal to 1, and one with the parameters equal to 4.

x = 0:0.01:1;
y1 = betapdf(x,0.75,0.75);
y2 = betapdf(x,1,1);
y3 = betapdf(x,4,4);

Plot the three pdfs.

plot(x,y1)
hold on
plot(x,y2)
plot(x,y3)
legend(["a = b = 0.75","a = b = 1","a = b = 4"]);
hold off
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The constant pdf (the flat line) shows that the standard uniform distribution is a special case of the
beta distribution, which occurs when the parameters a and b are equal to 1.

Estimate Beta Distribution Parameters

Compute maximum likelihood estimates (MLEs) of the parameters of a beta distribution.

Maximizing the likelihood function is a popular technique for estimating parameters. The likelihood
function has the same form as the beta probability distribution function (pdf). However, for the pdf,
the parameters are known constants and the variable is x. The likelihood function reverses the roles
of the variables. That is, the sample values (the x's) are already observed and are fixed constants, and
the variables are the unknown parameters. Maximum likelihood estimation involves calculating the
values of the parameters that produce the highest likelihood given the particular set of data.

Generate 100 random numbers from the beta distribution with a equal to 5 and b equal to 0.2. The
function betafit returns the MLEs and confidence intervals for the parameters of the beta
distribution.

rng("default") % For reproducibility
r = betarnd(5,0.2,100,1);
[phat, pci] = betafit(r)

phat = 1×2

B Beta Distribution
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    7.4911    0.2135

pci = 2×2

    5.0861    0.1744
   11.0334    0.2614

The MLE for parameter a is 7.4911. The 95% confidence interval for a ranges from 5.0861 to 11.0334
and does not include the true value of 5. Although this result is unlikely, it can occur when you
estimate distribution parameters.

The MLE for parameter b is 0.2135. The 95% confidence interval for b ranges from 0.1744 to 0.2614
and includes the true value 0.2.

Related Distributions
The beta distribution has a functional relationship with the t distribution. If Y is an observation from
Student's t distribution with ν degrees of freedom, then the following transformation generates X,
which is beta distributed.

X = 1
2 + 1

2
Y

ν + Y2

If Y~t(v), then X ∼ β ν
2, ν

2

This relationship is used to compute values of the t cdf and inverse function as well as generating t
distributed random numbers.

See Also
BetaDistribution

More About
• “Working with Probability Distributions” on page 5-3
• “Supported Distributions” on page 5-16
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Binomial Distribution
In this section...
“Overview” on page B-10
“Parameters” on page B-10
“Probability Density Function” on page B-10
“Cumulative Distribution Function” on page B-11
“Descriptive Statistics” on page B-11
“Example” on page B-11
“Related Distributions” on page B-16

Overview
The binomial distribution is a two-parameter family of curves. The binomial distribution is used to
model the total number of successes in a fixed number of independent trials that have the same
probability of success, such as modeling the probability of a given number of heads in ten flips of a
fair coin.

Statistics and Machine Learning Toolbox offers several ways to work with the binomial distribution.

• Create a probability distribution object BinomialDistribution by fitting a probability
distribution to sample data (fitdist) or by specifying parameter values (makedist). Then, use
object functions to evaluate the distribution, generate random numbers, and so on.

• Work with the binomial distribution interactively by using the Distribution Fitter app. You can
export an object from the app and use the object functions.

• Use distribution-specific functions (binocdf, binopdf, binoinv, binostat, binofit,
binornd) with specified distribution parameters. The distribution-specific functions can accept
parameters of multiple binomial distributions.

• Use generic distribution functions (cdf, icdf, pdf, random) with a specified distribution name
('Binomial') and parameters.

Parameters
The binomial distribution uses the following parameters.

Parameter Description Support
N Number of trials Positive integer
p Probability of success in a single

trial
0 ≤ p ≤ 1

The sum of two binomial random variables that both have the same parameter p is also a binomial
random variable with N equal to the sum of the number of trials.

Probability Density Function
The probability density function (pdf) of the binomial distribution is

B Binomial Distribution
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f x N, p =
N
x

px 1− p N − x ; x = 0, 1, 2, ..., N ,

where x is the number of successes in N trials of a Bernoulli process with the probability of success p.
The result is the probability of exactly x successes in N trials. For discrete distributions, the pdf is
also known as the probability mass function (pmf).

For an example, see “Compute Binomial Distribution pdf” on page B-12.

Cumulative Distribution Function
The cumulative distribution function (cdf) of the binomial distribution is

F x N, p = ∑
i = 0

x N
i

pi 1− p N − i ; x = 0, 1, 2, ..., N ,

where x is the number of successes in N trials of a Bernoulli process with the probability of success p.
The result is the probability of at most x successes in N trials.

For an example, see “Compute Binomial Distribution cdf” on page B-13.

Descriptive Statistics
The mean of the binomial distribution is Np.

The variance of the binomial distribution is Np(1 – p).

Example
Fit Binomial Distribution to Data

Generate a binomial random number that counts the number of successes in 100 trials with the
probability of success 0.9 in each trial.

x = binornd(100,0.9)

x = 85

Fit a binomial distribution to data using fitdist.

pd = fitdist(x,'Binomial','NTrials',100)

pd = 
  BinomialDistribution

  Binomial distribution
    N =  100
    p = 0.85   [0.764692, 0.913546]

fitdist returns a BinomialDistribution object. The interval next to p is the 95% confidence
interval estimating p.
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Estimate the parameter p using the distribution functions.

[phat,pci] = binofit(x,100) % Distribution-specific function

phat = 0.8500

pci = 1×2

    0.7647    0.9135

[phat2,pci2] = mle(x,'distribution','Binomial',"NTrials",100) % Generic distribution function

phat2 = 0.8500

pci2 = 2×1

    0.7647
    0.9135

Compute Binomial Distribution pdf

Compute the pdf of the binomial distribution with 10 trials and the probability of success 0.5.

x = 0:10;
y = binopdf(x,10,0.5);

Plot the pdf with bars of width 1.

figure
bar(x,y,1)
xlabel('Observation')
ylabel('Probability')
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Compute Binomial Distribution cdf

Compute the cdf of the binomial distribution with 10 trials and the probability of success 0.5.

x = 0:10;
y = binocdf(x,10,0.5);

Plot the cdf.

figure
stairs(x,y)
xlabel('Observation')
ylabel('Cumulative Probability')
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Compare Binomial and Normal Distribution pdfs

When N is large, the binomial distribution with parameters N and p can be approximated by the
normal distribution with mean N*p and variance N*p*(1–p) provided that p is not too large or too
small.

Compute the pdf of the binomial distribution counting the number of successes in 50 trials with the
probability 0.6 in a single trial .

N = 50;
p = 0.6;
x1 = 0:N;
y1 = binopdf(x1,N,p);

Compute the pdf of the corresponding normal distribution.

mu = N*p;
sigma = sqrt(N*p*(1-p));
x2 = 0:0.1:N;
y2 = normpdf(x2,mu,sigma);

Plot the pdfs on the same axis.

figure
bar(x1,y1,1)
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hold on
plot(x2,y2,'LineWidth',2)
xlabel('Observation')
ylabel('Probability')
title('Binomial and Normal pdfs')
legend('Binomial Distribution','Normal Distribution','location','northwest')
hold off

The pdf of the normal distribution closely approximates the pdf of the binomial distribution.

Compare Binomial and Poisson Distribution pdfs

When p is small, the binomial distribution with parameters N and p can be approximated by the
Poisson distribution with mean N*p, provided that N*p is also small.

Compute the pdf of the binomial distribution counting the number of successes in 20 trials with the
probability of success 0.05 in a single trial.

N = 20;
p = 0.05;
x = 0:N;
y1 = binopdf(x,N,p);

Compute the pdf of the corresponding Poisson distribution.
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mu = N*p;
y2 = poisspdf(x,mu);

Plot the pdfs on the same axis.

figure
bar(x,[y1; y2])
xlabel('Observation')
ylabel('Probability')
title('Binomial and Poisson pdfs')
legend('Binomial Distribution','Poisson Distribution','location','northeast')

The pdf of the Poisson distribution closely approximates the pdf of the binomial distribution.

Related Distributions
• Bernoulli Distribution on page B-2 — The Bernoulli distribution is a one-parameter discrete

distribution that models the success of a single trial, and occurs as a binomial distribution with N
= 1.

• Multinomial Distribution on page B-102 — The multinomial distribution is a discrete distribution
that generalizes the binomial distribution when each trial has more than two possible outcomes.

• “Normal Distribution” on page B-125 — The normal distribution is a two-parameter continuous
distribution that has parameters μ (mean) and σ (standard deviation). As N increases, the binomial
distribution can be approximated by a normal distribution with µ = Np and σ2 = Np(1 – p). See
“Compare Binomial and Normal Distribution pdfs” on page B-14.
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• “Poisson Distribution” on page B-137 — The Poisson distribution is a one-parameter discrete
distribution that takes nonnegative integer values. The parameter λ is both the mean and the
variance of the distribution. The Poisson distribution is the limiting case of a binomial distribution
where N approaches infinity and p goes to zero while Np = λ. See “Compare Binomial and Poisson
Distribution pdfs” on page B-15.

References
[1] Abramowitz, Milton, and Irene A. Stegun, eds. Handbook of Mathematical Functions: With

Formulas, Graphs, and Mathematical Tables. 9. Dover print.; [Nachdr. der Ausg. von 1972].
Dover Books on Mathematics. New York, NY: Dover Publ, 2013.

[2] Evans, Merran, Nicholas Hastings, and Brian Peacock. Statistical Distributions. 2nd ed. New York:
J. Wiley, 1993.

[3] Loader, Catherine. Fast and Accurate Computation of Binomial Probabilities. July 9, 2000.

See Also
BinomialDistribution | binocdf | binopdf | binoinv | binostat | binofit | binornd |
makedist | fitdist

More About
• “Bernoulli Distribution” on page B-2
• “Working with Probability Distributions” on page 5-3
• “Supported Distributions” on page 5-16
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Birnbaum-Saunders Distribution

In this section...
“Definition” on page B-18
“Background” on page B-18
“Parameters” on page B-18

Definition
The Birnbaum-Saunders distribution has the density function

1
2πexp −

x β− β x
2

2γ2
x β + β x

2γx

with scale parameter β > 0 and shape parameter γ > 0, for x > 0.

If x has a Birnbaum-Saunders distribution with parameters β and γ, then

x β− β x
γ

has a standard normal distribution.

Background
The Birnbaum-Saunders distribution was originally proposed as a lifetime model for materials subject
to cyclic patterns of stress and strain, where the ultimate failure of the material comes from the
growth of a prominent flaw. In materials science, Miner's Rule suggests that the damage occurring
after n cycles, at a stress level with an expected lifetime of N cycles, is proportional to n / N.
Whenever Miner's Rule applies, the Birnbaum-Saunders model is a reasonable choice for a lifetime
distribution model.

Parameters
To estimate distribution parameters, us mle or the Distribution Fitter app.

See Also
BirnbaumSaundersDistribution

More About
• “Working with Probability Distributions” on page 5-3
• “Supported Distributions” on page 5-16
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Burr Type XII Distribution
In this section...
“Definition” on page B-19
“Background” on page B-19
“Parameters” on page B-20
“Fit a Burr Distribution and Draw the cdf” on page B-21
“Compare Lognormal and Burr Distribution pdfs” on page B-23
“Burr pdf for Various Parameters” on page B-24
“Survival and Hazard Functions of Burr Distribution” on page B-26
“Divergence of Parameter Estimates” on page B-27

Definition
The Burr type XII distribution is a three-parameter family of distributions on the positive real line.
The cumulative distribution function (cdf) of the Burr distribution is

F(x α, c, k) = 1− 1

1 + x
α

c k , x > 0, α > 0, c > 0, k > 0,

where c and k are the shape parameters and α is the scale parameter. The probability density
function (pdf) is

f (x α, c, k) =
kc
α

x
α

c− 1

1 + x
α

c k + 1 , x > 0, α > 0, c > 0, k > 0 .

The density of the Burr type XII distribution is L-shaped if c ≤ 1 and unimodal, otherwise.

Background
Burr distribution was first discussed by Burr (1942) as a two-parameter family. An additional scale
parameter was introduced by Tadikamalla (1980). It is a flexible distribution family that can express a
wide range of distribution shapes. The Burr distribution includes, overlaps, or has as a limiting case,
many commonly used distributions such as gamma, lognormal, loglogistic, bell-shaped, and J-shaped
beta distributions (but not U-shaped). Some compound distributions also correspond to the Burr
distribution. For example, compounding a Weibull distribution with a gamma distribution for its scale
parameter results in a Burr distribution. Similarly, compounding an exponential distribution with a
gamma distribution for its rate parameter, 1/μ, also yields a Burr distribution. The Burr distribution
also has two asymptotic limiting cases: Weibull and Pareto Type I.

The Burr distribution can fit a wide range of empirical data. Different values of its parameters cover a
broad set of skewness and kurtosis. Hence, it is used in various fields such as finance, hydrology, and
reliability to model a variety of data types. Examples of data modeled by the Burr distribution are
household income, crop prices, insurance risk, travel time, flood levels, and failure data.

The survival and hazard functions of Burr type XII distribution are, respectively,
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S x α, c, k = 1

1 + x
α

c k

and

h x α, c, k =
kc
α

x
α

c− 1

1 + x
α

c .

If c > 1, the hazard function h(x) is non-monotonic with a mode at x = α(c – 1)1/c.

Parameters
The three-parameter Burr distribution is defined by its scale parameter α and shape parameters c
and k. You can estimate the parameters using mle or fitdist. Both functions support censored data
for Burr distribution.

Generate sample data from a Burr distribution with scale parameter 0.5 and shape parameters 2 and
5.

rng('default')
R = random('burr',0.5,2,5,1000,1);

Estimate the parameters and the confidence intervals.

[phat,pci] = mle(R,'distribution','burr')

phat =

    0.4154    2.1217    4.0550

pci =

    0.2985    1.9560    2.4079
    0.5782    2.3014    6.8288

The default 95% confidence intervals for the parameters include the true parameter values.

The three-parameter Burr distribution converges asymptotically to one of the two limiting forms as its
parameters diverge:

• If k→0, c→∞, ck = λ, then the Burr distribution reduces to a two-parameter Pareto distribution
with the cdf

FP = 1− x
α
−λ

, x ≥ α .

• If k→∞, α→∞, α/k1/c = θ, then the Burr distribution reduces to a two-parameter Weibull distribution
with the cdf

FW(x c, θ) = 1− exp − x
θ

c
.
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If mle or fitdist detects such divergence, it returns an error message, but informs you of the
limiting distribution and corresponding parameter estimates for that distribution.

Fit a Burr Distribution and Draw the cdf

This example shows how to fit a Burr distribution to data, draw the cdf, and construct a histogram
with a Burr distribution fit.

1. Load the sample data.

load arrhythmia

The fifth column in X contains a measurement obtained from electrocardiograms, called QRS
duration.

2. Fit a Burr distribution to the QRS duration data, and get the parameter estimates.

PD = fitdist(X(:,5),'burr');

PD has the maximum likelihood estimates of the Burr distribution parameters in the property Param.
The estimates are α = 80.4515, c = 18.9251, k = 0.4492.

3. Plot the cdf of the QRS duration data.

QRScdf=cdf('burr',sortrows(X(:,5)),80.4515,18.9251,0.4492);
plot(sortrows(X(:,5)),QRScdf) 
title('QRS duration data')
xlabel('QRS Duration')
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4. Draw the histogram of QRS duration data with 15 bins and the pdf of the Burr distribution fit.

histfit(X(:,5),15,'burr')
title('Histogram of QRS data with a Burr distribution fit')
xlabel('QRS Duration')
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Compare Lognormal and Burr Distribution pdfs

Compare the lognormal pdf to the Burr pdf using income data generated from a lognormal
distribution.

Generate the income data.

rng('default') % For reproducibility
y = random('Lognormal',log(25000),0.65,[500,1]);

Fit a Burr distribution.

pd = fitdist(y,'burr')

pd = 
  BurrDistribution

  Burr distribution
    alpha = 26007.2   [21165.5, 31956.4]
        c = 2.63743   [2.3053, 3.0174]
        k = 1.09658   [0.775479, 1.55064]

Plot both the Burr and lognormal pdfs of income data on the same figure.
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p_burr = pdf(pd,sortrows(y));
p_lognormal = pdf('Lognormal',sortrows(y),log(25000),0.65);
plot(sortrows(y),p_burr,'-',sortrows(y),p_lognormal,'-.')
title('Burr and Lognormal pdfs Fit to Income Data')
legend('Burr Distribution','Lognormal Distribution')

Burr pdf for Various Parameters

This example shows how to create a variety of shapes for probability density functions of the Burr
distribution.

X = 0:0.01:5;
c = [0.5 0.95 2 5];
k = [0.5 0.75 2 5];
alpha = [0.5 1 2 5];
colors = ['b';'g';'r';'k']';

figure
for i = 1:1:4
pdf1(i,:) = pdf('burr',X,1,c(i),0.5);
pdf2(i,:) = pdf('burr',X,1,2,k(i));
pdf3(i,:) = pdf('burr',X,alpha(i),2,0.5); 

axC = subplot(3,1,1);
pC(i) = plot(X,pdf1(i,:),colors(i),'LineWidth',2);
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title('Effect of c, \alpha = 1, k = 0.5'),xlabel('x') 
hold on
 
axK = subplot(3,1,2);
pK(i) = plot(X,pdf2(i,:),colors(i),'LineWidth',2);
title('Effect of k, \alpha = 1, c = 2'),xlabel('x') 
hold on 

axAlpha = subplot(3,1,3);
pAlpha(i) = plot(X,pdf3(i,:),colors(i),'LineWidth',2);
title('Effect of \alpha, c = 2, k = 0.5'),xlabel('x') 
hold on
end

set(axC,'XLim',[0 3],'YLim',[0 1.2]);
set(axK,'XLim',[0 3],'YLim',[0 2.1]);
set(axAlpha,'XLim',[0 5],'YLim',[0 1]);

legend(axC,'c=0.5','c=0.95','c=2','c=5');
legend(axK,'k=0.5','k=0.75','k=2','k=5');
legend(axAlpha,'\alpha=0.5','\alpha=1','\alpha=2','\alpha=5');

This figure illustrates how the shape and scale of the Burr distribution changes for different values of
its parameters.
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Survival and Hazard Functions of Burr Distribution

This example shows how to find and plot the survival and hazard functions for a sample coming from
a Burr distribution.

Generate the data.

 X = 0:0.015:2.5;

Evaluate the pdf and cdf of data in X.

Xpdf = pdf('burr',X,0.2,5,0.5);
Xcdf = cdf('burr',X,0.2,5,0.5);

Evaluate and plot the survival function of data in X.

S = 1.-Xcdf; % survival function
plot(X,S,'LineWidth',2)
title('Survival function')
xlabel('x')

Evaluate and plot the hazard function of data in X.

H = Xpdf./S; % hazard function
plot(X,H,'r','LineWidth',2)
title('Hazard function')
xlabel('x')
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Divergence of Parameter Estimates
This example shows how to interpret the display when the parameter estimates diverge when fitting a
Burr distribution to input data.

1. Generate sample data from the Weibull distribution with parameters 0.5 and 2.

rng('default') % for reproducibility
X = wblrnd(0.5,2,100,1);

2. Fit a Burr distribution.

PD = fitdist(X,'burr');

Error using addburr>burrfit (line 566)
The data are not fit by a Burr distribution with finite parameters. 
The maximum likelihood fit is provided by the k->Inf, alpha->Inf 
limiting form of the Burr distribution: a Weibull distribution 
with the parameters below.
    a (scale): 0.476817
    b (shape): 1.96219

Error in prob.BurrDistribution.fit (line 246)
            p = burrfit(x,0.05,cens,freq,opt);

Error in fitdist>localfit (line 238)
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pd = feval(fitter,x,'cens',c,'freq',f,varargin{:});

Error in fitdist (line 185)
    pd = localfit(dist,fitter,x,cens,freq,args{:});

The error message tells you that the Weibull family seems to fit the data better and gives you the
parameter estimates from a Weibull fit. You can use those estimates directly. If you need covariance
estimates for the parameters or other information about the fit, you can refit a Weibull distribution to
the data.

3. Fit a Weibull distribution to the data and find the confidence intervals for the parameter estimates.

PD = fitdist(X,'weibull');
paramci(PD)

ans =

    0.4291    1.6821
    0.5298    2.2890

These are the 95% confidence intervals of the parameter estimates for the Weibull distribution fit.
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Chi-Square Distribution
In this section...
“Overview” on page B-29
“Parameters” on page B-29
“Probability Density Function” on page B-29
“Cumulative Distribution Function” on page B-30
“Inverse Cumulative Distribution Function” on page B-30
“Descriptive Statistics” on page B-30
“Examples” on page B-30
“Related Distributions” on page B-32

Overview
The chi-square (χ2) distribution is a one-parameter family of curves. The chi-square distribution is
commonly used in hypothesis testing, particularly the chi-square test for goodness of fit.

Statistics and Machine Learning Toolbox offers multiple ways to work with the chi-square
distribution.

• Use distribution-specific functions (chi2cdf, chi2inv, chi2pdf, chi2rnd, chi2stat) with
specified distribution parameters. The distribution-specific functions can accept parameters of
multiple chi-square distributions.

• Use generic distribution functions (cdf, icdf, pdf, random) with a specified distribution name
('Chisquare') and parameters.

Parameters
The chi-square distribution uses the following parameter.

Parameter Description Support
nu (ν) Degrees of freedom ν = 1, 2, 3,...

The degrees of freedom parameter is typically an integer, but chi-square functions accept any positive
value.

The sum of two chi-square random variables with degrees of freedom ν1 and ν2 is a chi-square
random variable with degrees of freedom ν = ν1 + ν2.

Probability Density Function
The probability density function (pdf) of the chi-square distribution is

y = f x ν = x ν− 2 /2e−x/2

2
ν
2Γ ν/2

,

where ν is the degrees of freedom and Γ( · ) is the Gamma function.
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For an example, see “Compute Chi-Square Distribution pdf” on page B-30.

Cumulative Distribution Function
The cumulative distribution function (cdf) of the chi-square distribution is

p = F(x ν) =∫0 x t(ν− 2)/2e−t/2

2ν/2Γ(ν/2)
dt,

where ν is the degrees of freedom and Γ( · ) is the Gamma function. The result p is the probability
that a single observation from the chi-square distribution with ν degrees of freedom falls in the
interval [0, x].

For an example, see “Compute Chi-Square Distribution cdf” on page B-31.

Inverse Cumulative Distribution Function
The inverse cumulative distribution function (icdf) of the chi-square distribution is

x = F−1(p ν) = x:F(x ν) = p ,

where

p = F(x ν) =∫0 x t(ν− 2)/2e−t/2

2ν/2Γ(ν/2)
dt,

ν is the degrees of freedom, and Γ( · ) is the Gamma function. The result p is the probability that a
single observation from the chi-square distribution with ν degrees of freedom falls in the interval [0,
x].

Descriptive Statistics
The mean of the chi-square distribution is ν.

The variance of the chi-square distribution is 2ν.

Examples
Compute Chi-Square Distribution pdf

Compute the pdf of a chi-square distribution with 4 degrees of freedom.

x = 0:0.2:15;
y = chi2pdf(x,4);

Plot the pdf.

figure;
plot(x,y)
xlabel('Observation')
ylabel('Probability Density')
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The chi-square distribution is skewed to the right, especially for few degrees of freedom.

Compute Chi-Square Distribution cdf

Compute the cdf of a chi-square distribution with 4 degrees of freedom.

x = 0:0.2:15;
y = chi2cdf(x,4);

Plot the cdf.

figure;
plot(x,y)
xlabel('Observation')
ylabel('Cumulative Probability')
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Related Distributions
• “F Distribution” on page B-46 — The F distribution is a two-parameter distribution that has

parameters ν1 (numerator degrees of freedom) and ν2 (denominator degrees of freedom). The F

distribution can be defined as the ratio F =
χ1

2
ν1

χ2
2

ν2

, where χ2
1 and χ2

2 are both chi-square distributed

with ν1 and ν2 degrees of freedom, respectively.
• “Gamma Distribution” on page B-48 — The gamma distribution is a two-parameter continuous

distribution that has parameters a (shape) and b (scale). The chi-square distribution is equal to the
gamma distribution with 2a = ν and b = 2.

• “Noncentral Chi-Square Distribution” on page B-119 — The noncentral chi-square distribution is a
two-parameter continuous distribution that has parameters ν (degrees of freedom) and δ
(noncentrality). The noncentral chi-square distribution is equal to the chi-square distribution when
δ = 0.

• “Normal Distribution” on page B-125 — The normal distribution is a two-parameter continuous
distribution that has parameters μ (mean) and σ (standard deviation). The standard normal
distribution occurs when μ = 0 and σ = 1.
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If Z1, Z2, …, Zn are standard normal random variables, then ∑
i = 1

n
Zi2 has a chi-square distribution

with degrees of freedom ν = n – 1.

If a set of n observations is normally distributed with variance σ2 and sample variance s2, then
n− 1 s2

σ2  has a chi-square distribution with degrees of freedom ν = n – 1. This relationship is used

to calculate confidence intervals for the estimate of the normal parameter σ2 in the function
normfit.

• “Student's t Distribution” on page B-156 — The Student's t distribution is a one-parameter
continuous distribution that has parameter ν (degrees of freedom). If Z has a standard normal
distribution and χ2 has a chi-square distribution with degrees of freedom ν, then t =  Z

χ2/ν
 has a

Student's t distribution with degrees of freedom ν.
• “Wishart Distribution” on page B-184 — The Wishart distribution is a higher dimensional analog of

the chi-square distribution.
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Exponential Distribution
In this section...
“Overview” on page B-34
“Parameters” on page B-34
“Probability Density Function” on page B-35
“Cumulative Distribution Function” on page B-35
“Inverse Cumulative Distribution Function” on page B-35
“Hazard Function” on page B-35
“Examples” on page B-36
“Related Distributions” on page B-39

Overview
The exponential distribution is a one-parameter family of curves. The exponential distribution models
wait times when the probability of waiting an additional period of time is independent of how long
you have already waited. For example, the probability that a light bulb will burn out in its next minute
of use is relatively independent of how many minutes it has already burned.

Statistics and Machine Learning Toolbox offers several ways to work with the exponential
distribution.

• Create a probability distribution object ExponentialDistribution by fitting a probability
distribution to sample data (fitdist) or by specifying parameter values (makedist). Then, use
object functions to evaluate the distribution, generate random numbers, and so on.

• Work with the exponential distribution interactively by using the Distribution Fitter app. You can
export an object from the app and use the object functions.

• Use distribution-specific functions (expcdf, exppdf, expinv, explike, expstat, expfit,
exprnd) with specified distribution parameters. The distribution-specific functions can accept
parameters of multiple exponential distributions.

• Use generic distribution functions (cdf, icdf, pdf, random) with a specified distribution name
('Exponential') and parameters.

Parameters
The exponential distribution uses the following parameter.

Parameter Description Support
mu (μ) Mean μ > 0

The parameter μ is also equal to the standard deviation of the exponential distribution.

The standard exponential distribution has μ=1.

A common alternative parameterization of the exponential distribution is to use λ defined as the mean
number of events in an interval as opposed to μ, which is the mean wait time for an event to occur. λ
and μ are reciprocals.
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Parameter Estimation

The likelihood function is the probability density function (pdf) viewed as a function of the
parameters. The maximum likelihood estimates (MLEs) are the parameter estimates that maximize
the likelihood function for fixed values of x.

The maximum likelihood estimator of μ for the exponential distribution is x = ∑
i = 1

n xi
n , where x is the

sample mean for samples x1, x2, …, xn. The sample mean is an unbiased estimator of the parameter μ.

To fit the exponential distribution to data and find a parameter estimate, use expfit, fitdist, or
mle. Unlike expfit and mle, which return parameter estimates, fitdist returns the fitted
probability distribution object ExponentialDistribution. The object property mu stores the
parameter estimate.

For an example, see “Fit Exponential Distribution to Data” on page B-36.

Probability Density Function
The pdf of the exponential distribution is

y = f (x μ) = 1
μe

−x
μ .

For an example, see “Compute Exponential Distribution pdf” on page B-36.

Cumulative Distribution Function
The cumulative distribution function (cdf) of the exponential distribution is

p = F(x u) = ∫
0

x
1
μe

−t
μ dt = 1− e

−x
μ .

The result p is the probability that a single observation from the exponential distribution with mean μ
falls in the interval [0, x].

For an example, see “Compute Exponential Distribution cdf” on page B-37.

Inverse Cumulative Distribution Function
The inverse cumulative distribution function (icdf) of the exponential distribution is

x = F−1(p μ) = − μln(1− p) .

The result x is the value such that an observation from an exponential distribution with parameter μ
falls in the range [0 x] with probability p.

Hazard Function
The hazard function (instantaneous failure rate) is the ratio of the pdf and the complement of the cdf.
If f(t) and F(t) are the pdf and cdf of a distribution (respectively), then the hazard rate is
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h t = f t
1− F t . Substituting the pdf and cdf of the exponential distribution for f(t) and F(t) yields a

constant λ. The exponential distribution is the only continuous distribution with a constant hazard
function. λ is the reciprocal of μ and can be interpreted as the rate at which events occur in any given
interval. Consequently, when you model survival times, the probability that an item will survive an
extra unit of time is independent of the current age of the item.

For an example, see “Exponentially Distributed Lifetimes” on page B-38.

Examples
Fit Exponential Distribution to Data

Generate a sample of 100 of exponentially distributed random numbers with mean 700.

x = exprnd(700,100,1); % Generate sample

Fit an exponential distribution to data using fitdist.

pd = fitdist(x,'exponential')

pd = 
  ExponentialDistribution

  Exponential distribution
    mu = 641.934   [532.598, 788.966]

fitdist returns an ExponentialDistribution object. The interval next to the parameter
estimate is the 95% confidence interval for the distribution parameter.

Estimate the parameter using the distribution functions.

[muhat,muci] = expfit(x) % Distribution specific function

muhat = 641.9342

muci = 2×1

  532.5976
  788.9660

[muhat2,muci2] = mle(x,'distribution','exponential') % Generic distribution function

muhat2 = 641.9342

muci2 = 2×1

  532.5976
  788.9660

Compute Exponential Distribution pdf
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Compute the pdf of an exponential distribution with parameter mu = 2.

x = 0:0.1:10;
y = exppdf(x,2);

Plot the pdf.

figure;
plot(x,y)
xlabel('Observation')
ylabel('Probability Density')

Compute Exponential Distribution cdf

Compute the cdf of an exponential distribution with parameter mu = 2.

x = 0:0.1:10;
y = expcdf(x,2);

Plot the cdf.

figure;
plot(x,y)
xlabel('Observation')
ylabel('Cumulative Probability')
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Exponentially Distributed Lifetimes

Compute the hazard function of the exponential distribution with mean mu = 2 at the values one
through five.

x = 1:5;
lambda1 = exppdf(x,2)./(1-expcdf(x,2))

lambda1 = 1×5

    0.5000    0.5000    0.5000    0.5000    0.5000

The hazard function (instantaneous rate of failure to survival) of the exponential distribution is
constant and always equals 1/mu. This constant is often denoted by λ.

Evaluate the hazard functions of the exponential distributions with means one through five at x = 3.

mu = 1:5;
lambda2 = exppdf(3,mu)./(1-expcdf(3,mu))

lambda2 = 1×5

    1.0000    0.5000    0.3333    0.2500    0.2000
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The probability that an item with an exponentially distributed lifetime survive one more unit of time is
independent of how long it has survived.

Compute the probability of an item surviving one more year at various ages when the mean survival
time is 10 years.

x2 = 5:5:25;
x3 = x2 + 1;
deltap = (expcdf(x3,10)-expcdf(x2,10))./(1-expcdf(x2,10))

deltap = 1×5

    0.0952    0.0952    0.0952    0.0952    0.0952

The probability of surviving one more year is the same regardless of how long an item has already
survived.

Related Distributions
• “Burr Type XII Distribution” on page B-19 — The Burr distribution is a three-parameter

continuous distribution. An exponential distribution compounded with a gamma distribution on
the mean yields a Burr distribution.

• “Gamma Distribution” on page B-48 — The gamma distribution is a two-parameter continuous
distribution that has parameters a (shape) and b (scale). When a = 1, the gamma distribution is
equal to the exponential distribution with mean μ = b. The sum of k exponentially distributed
random variables with mean μ has a gamma distribution with parameters a = k and μ = b.

• “Geometric Distribution” on page B-64 — The geometric distribution is a one-parameter discrete
distribution that models the total number of failures before the first success in repeated Bernoulli
trials. The geometric distribution is a discrete analog of the exponential distribution and is the
only discrete distribution with a constant hazard function.

• “Generalized Pareto Distribution” on page B-60 — The generalized Pareto distribution is a three-
parameter continuous distribution that has parameters k (shape), σ (scale), and θ (threshold).
When both k = 0 and θ = 0, the generalized Pareto distribution is equal to the exponential
distribution with mean μ = σ.

• “Poisson Distribution” on page B-137 — The Poisson distribution is a one-parameter discrete
distribution that takes nonnegative integer values. The parameter λ is both the mean and the
variance of the distribution. The Poisson distribution models counts of the number of times a
random event occurs in a given amount of time. In such a model, the amount of time between
occurrences is modeled by the exponential distribution with mean 1λ .

• “Weibull Distribution” on page B-177 — The Weibull distribution is a two-parameter continuous
distribution that has parameters a (scale) and b (shape). The Weibull distribution is also used to
model lifetimes, but it does not have a constant hazard rate. When b = 1, the Weibull distribution
is equal to the exponential distribution with mean μ = a.

For an example, see “Compare Exponential and Weibull Distribution Hazard Functions” on page B-
181.
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Extreme Value Distribution

In this section...
“Definition” on page B-41
“Background” on page B-41
“Parameters” on page B-43
“Examples” on page B-44

Definition
The probability density function for the extreme value distribution with location parameter µ and
scale parameter σ is

y = f x μ, σ = σ−1exp x− μ
σ exp −exp x− μ

σ

This form of the probability density function is suitable for modeling the minimum value. To model the
maximum value, use the negative of the original values.

If T has a Weibull distribution on page B-177 with parameters a and b, then log T has an extreme
value distribution with parameters µ = log a and σ = 1/b.

Background
Fit Extreme Value Distributions

Extreme value distributions are often used to model the smallest or largest value among a large set of
independent, identically distributed random values representing measurements or observations. The
extreme value distribution is appropriate for modeling the smallest value from a distribution whose
tails decay exponentially fast, such as the normal distribution. It can also model the largest value
from a distribution, such as the normal or exponential distributions, by using the negative of the
original values.

Fit an extreme value distribution to minimum values taken over 1000 sets of 500 observations from a
normal distribution.

rng("default") % For reproducibility
xMinima = min(randn(1000,500),[],2);
paramEstsMinima = evfit(xMinima);
y = linspace(-5,-1.5,1001);
histogram(xMinima,-4.75:0.25:-1.75);
p = evpdf(y,paramEstsMinima(1),paramEstsMinima(2));
line(y,0.25*length(xMinima)*p,"Color","red")
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Fit an extreme value distribution to the maximum values in each set of observations.

rng("default") % For reproducibility
xMaxima = max(randn(1000,500),[],2);
paramEstsMaxima = evfit(-xMaxima);
y = linspace(1.5,5,1001);
histogram(xMaxima,1.75:0.25:4.75);
p = evpdf(-y,paramEstsMaxima(1),paramEstsMaxima(2));
line(y,0.25*length(xMaxima)*p,"Color","red")
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Although the extreme value distribution is most often used as a model for extreme values, you can
also use it as a model for other types of continuous data. For example, extreme value distributions are
closely related to the Weibull distribution. If T has a Weibull distribution, then log(T) has a type 1
extreme value distribution.

Parameters
The function evfit returns the maximum likelihood estimates (MLEs) and confidence intervals for
the parameters of the extreme value distribution. The following example shows how to fit some
sample data using evfit, including estimates of the mean and variance from the fitted distribution.

Suppose you want to model the size of the smallest washer in each batch of 1000 from a
manufacturing process. If you believe that the sizes are independent within and between each batch,
you can fit an extreme value distribution to measurements of the minimum diameter from a series of
eight experimental batches. The following code returns the MLEs of the distribution parameters as
parmhat and the confidence intervals as the columns of parmci.

x = [19.774 20.141 19.44 20.511 21.377 19.003 19.66 18.83]; 
[parmhat, parmci] = evfit(x)

parmhat =
   20.2506    0.8223

parmci = 
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   19.644 0.49861 
   20.857 1.3562 

You can find mean and variance of the extreme value distribution with these parameters using the
function evstat.

[meanfit, varfit] = evstat(parmhat(1),parmhat(2))

meanfit = 
   19.776 

varfit = 
   1.1123

Examples
Compute the Extreme Value Distribution pdf

Compute the pdf of an extreme value distribution.

t = [-5:.01:2];
y = evpdf(t);

Plot the pdf.

figure;
plot(t,y)
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The extreme value distribution is skewed to the left, and its general shape remains the same for all
parameter values. The location parameter, mu, shifts the distribution along the real line, and the scale
parameter, sigma, expands or contracts the distribution.

The following plots the probability function for different combinations of mu and sigma.

x = -15:.01:5;
plot(x,evpdf(x,2,1),'-', ...
     x,evpdf(x,0,2),':', ...
     x,evpdf(x,-2,4),'-.');
legend({'mu = 2, sigma = 1', ...
        'mu = 0, sigma = 2', ...
        'mu = -2, sigma = 4'}, ...
       'Location','NW')
xlabel('x')
ylabel('f(x|mu,sigma)')

See Also
ExtremeValueDistribution

More About
• “Working with Probability Distributions” on page 5-3
• “Supported Distributions” on page 5-16
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F Distribution

In this section...
“Definition” on page B-46
“Background” on page B-46
“Examples” on page B-46

Definition
The pdf for the F distribution is

y = f x ν1, ν2 =
Γ

ν1 + ν2
2

Γ
ν1
2 Γ

ν2
2

ν1
ν2

ν1
2 x

ν1− 2
2

1 +
ν1
ν2

x
ν1 + ν2

2

where Γ( · ) is the Gamma function.

Background
The F distribution has a natural relationship with the chi-square distribution. If χ1 and χ2 are both chi-
square with ν1 and ν2 degrees of freedom respectively, then the statistic F below is F-distributed.

F ν1, ν2 =
χ1 ν1
χ2 ν2

The two parameters, ν1 and ν2, are the numerator and denominator degrees of freedom. That is, ν1
and ν2 are the number of independent pieces of information used to calculate χ1 and χ2, respectively.

Examples
Compute the F Distribution pdf

Compute the pdf of an F distribution with 5 numerator degrees of freedom and 3 denominator
degrees of freedom.

x = 0:0.01:10;
y = fpdf(x,5,3);

Plot the pdf.

figure;
plot(x,y)
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The plot shows that the F distribution exists on positive real numbers and is skewed to the right.

See Also
fcdf | fpdf | finv | fstat | frnd | random

More About
• “Working with Probability Distributions” on page 5-3
• “Supported Distributions” on page 5-16
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Gamma Distribution

In this section...
“Overview” on page B-48
“Parameters” on page B-48
“Probability Density Function” on page B-49
“Cumulative Distribution Function” on page B-49
“Inverse Cumulative Distribution Function” on page B-50
“Descriptive Statistics” on page B-50
“Examples” on page B-50
“Related Distributions” on page B-54

Overview
The gamma distribution is a two-parameter family of curves. The gamma distribution models sums of
exponentially distributed random variables and generalizes both the chi-square and exponential
distributions.

Statistics and Machine Learning Toolbox offers several ways to work with the gamma distribution.

• Create a probability distribution object GammaDistribution by fitting a probability distribution
to sample data (fitdist) or by specifying parameter values (makedist). Then, use object
functions to evaluate the distribution, generate random numbers, and so on.

• Work with the gamma distribution interactively by using the Distribution Fitter app. You can
export an object from the app and use the object functions.

• Use distribution-specific functions (gamcdf, gampdf, gaminv, gamlike, gamstat, gamfit,
gamrnd, randg) with specified distribution parameters. The distribution-specific functions can
accept parameters of multiple gamma distributions.

• Use generic distribution functions (cdf, icdf, pdf, random) with a specified distribution name
('Gamma') and parameters.

Parameters
The gamma distribution uses the following parameters.

Parameter Description Support
a Shape a > 0
b Scale b > 0

The standard gamma distribution has unit scale.

The sum of two gamma random variables with shape parameters a1 and a2 both with scale parameter
b is a gamma random variable with shape parameter a = a1 + a2 and scale parameter b.
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Parameter Estimation

The likelihood function is the probability density function (pdf) viewed as a function of the
parameters. The maximum likelihood estimates (MLEs) are the parameter estimates that maximize
the likelihood function for fixed values of x.

The maximum likelihood estimators of a and b for the gamma distribution are the solutions to the
simultaneous equations

loga − ψ(a ) = log x / ∏
i = 1

n
xi

1/n

b = x
a

where x is the sample mean for the sample x1, x2, …, xn, and Ψ is the digamma function psi.

To fit the gamma distribution to data and find parameter estimates, use gamfit, fitdist, or mle.
Unlike gamfit and mle, which return parameter estimates, fitdist returns the fitted probability
distribution object GammaDistribution. The object properties a and b store the parameter
estimates.

For an example, see “Fit Gamma Distribution to Data” on page B-50.

Probability Density Function
The pdf of the gamma distribution is

y = f (x a, b) = 1
baΓ(a)

xa− 1e
−x
b ,

where Γ( · ) is the Gamma function.

For an example, see “Compute Gamma Distribution pdf” on page B-51.

Cumulative Distribution Function
The cumulative distribution function (cdf) of the gamma distribution is

p = F(x a, b) = 1
baΓ(a)∫0

x
ta− 1e

−t
b dt .

The result p is the probability that a single observation from the gamma distribution with parameters
a and b falls in the interval [0 x].

For an example, see “Compute Gamma Distribution cdf” on page B-52.

The gamma cdf is related to the incomplete gamma function gammainc by

f x a, b = gammainc x
b , a .
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Inverse Cumulative Distribution Function
The inverse cumulative distribution function (icdf) of the gamma distribution in terms of the gamma
cdf is

x = F−1(p a, b) = x:F(x a, b) = p ,

where

p = F(x a, b) = 1
baΓ(a)∫0

x
ta− 1e

−t
b dt .

The result x is the value such that an observation from the gamma distribution with parameters a and
b falls in the range [0 x] with probability p.

The preceding integral equation has no known analytical solution. gaminv uses an iterative approach
(Newton's method) to converge on the solution.

Descriptive Statistics
The mean of the gamma distribution is ab.

The variance of the gamma distribution is ab2.

Examples
Fit Gamma Distribution to Data

Generate a sample of 100 gamma random numbers with shape 3 and scale 5.

x = gamrnd(3,5,100,1);

Fit a gamma distribution to data using fitdist.

pd = fitdist(x,'gamma')

pd = 
  GammaDistribution

  Gamma distribution
    a =  2.7783   [2.1374, 3.61137]
    b = 5.73438   [4.30198, 7.64372]

fitdist returns a GammaDistribution object. The intervals next to the parameter estimates are
the 95% confidence intervals for the distribution parameters.

Estimate the parameters a and b using the distribution functions.

[muhat,muci] = gamfit(x) % Distribution specific function

muhat = 1×2
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    2.7783    5.7344

muci = 2×2

    2.1374    4.3020
    3.6114    7.6437

[muhat2,muci2] = mle(x,'distribution','gamma') % Generic function

muhat2 = 1×2

    2.7783    5.7344

muci2 = 2×2

    2.1374    4.3020
    3.6114    7.6437

Compute Gamma Distribution pdf

Compute the pdfs of the gamma distribution with several shape and scale parameters.

x = 0:0.1:50;
y1 = gampdf(x,1,10);
y2 = gampdf(x,3,5);
y3 = gampdf(x,6,4);

Plot the pdfs.

figure;
plot(x,y1)
hold on
plot(x,y2)
plot(x,y3)
hold off
xlabel('Observation')
ylabel('Probability Density')
legend('a = 1, b = 10','a = 3, b = 5','a = 6, b = 4')
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Compute Gamma Distribution cdf

Compute the cdfs of the gamma distribution with several shape and scale parameters.

x = 0:0.1:50;
y1 = gamcdf(x,1,10);
y2 = gamcdf(x,3,5);
y3 = gamcdf(x,6,4);

Plot the cdfs.

figure;
plot(x,y1)
hold on
plot(x,y2)
plot(x,y3)
hold off
xlabel('Observation')
ylabel('Cumulative Probability')
legend('a = 1, b = 10','a = 3, b = 5','a = 6, b = 4',"Location","northwest")
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Compare Gamma and Normal Distribution pdfs

The gamma distribution has the shape parameter a and the scale parameter b. For a large a, the
gamma distribution closely approximates the normal distribution with mean μ = ab and variance
σ2 = ab2.

Compute the pdf of a gamma distribution with parameters a = 100 and b = 5.

a = 100;
b = 5;
x = 250:750;
y_gam = gampdf(x,a,b);

For comparison, compute the mean, standard deviation, and pdf of the normal distribution that
gamma approximates.

mu = a*b

mu = 500

sigma = sqrt(a*b^2)

sigma = 50

y_norm = normpdf(x,mu,sigma);
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Plot the pdfs of the gamma distribution and the normal distribution on the same figure.

plot(x,y_gam,'-',x,y_norm,'-.')
title('Gamma and Normal pdfs')
xlabel('Observation')
ylabel('Probability Density')
legend('Gamma Distribution','Normal Distribution')

The pdf of the normal distribution approximates the pdf of the gamma distribution.

Related Distributions
• “Beta Distribution” on page B-6 — The beta distribution is a two-parameter continuous

distribution that has parameters a (first shape parameter) and b (second shape parameter). If X1
and X2 have standard gamma distributions with shape parameters a1 and a2 respectively, then

Y =
X1

X1 + X2
 has a beta distribution with shape parameters a1 and a2.

• “Chi-Square Distribution” on page B-29 — The chi-square distribution is a one-parameter
continuous distribution that has parameter ν (degrees of freedom). The chi-square distribution is
equal to the gamma distribution with 2a = ν and b = 2.

• “Exponential Distribution” on page B-34 — The exponential distribution is a one-parameter
continuous distribution that has parameter μ (mean). The exponential distribution is equal to the
gamma distribution with a = 1 and b = μ. The sum of k exponentially distributed random variables
with mean μ is the gamma distribution with parameters a = k and μ = b.
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• “Nakagami Distribution” on page B-114 — The Nakagami distribution is a two-parameter
continuous distribution with shape parameter µ and scale parameter ω. If x has a Nakagami
distribution, then x2 has a gamma distribution with a = μ and ab = ω.

• “Normal Distribution” on page B-125 — The normal distribution is a two-parameter continuous
distribution that has parameters μ (mean) and σ (standard deviation). When a is large, the gamma
distribution closely approximates a normal distribution with μ = ab and σ2 = ab2. For an example,
see “Compare Gamma and Normal Distribution pdfs” on page B-53.
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More About
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Generalized Extreme Value Distribution

In this section...
“Definition” on page B-56
“Background” on page B-56
“Parameters” on page B-57
“Examples” on page B-58

Definition
The probability density function for the generalized extreme value distribution with location
parameter µ, scale parameter σ, and shape parameter k ≠ 0 is

y = f x k, μ, σ = 1
σ exp − 1 + k(x− μ)

σ
−1

k 1 + k(x− μ)
σ

−1− 1
k

for

1 + k(x‐μ)
σ  > 0

k > 0 corresponds to the Type II case, while k < 0 corresponds to the Type III case. For k = 0,
corresponding to the Type I case, the density is

y = f x 0, μ, σ = 1
σ exp −exp − (x− μ)

σ − (x− μ)
σ

Background
Like the extreme value distribution, the generalized extreme value distribution is often used to model
the smallest or largest value among a large set of independent, identically distributed random values
representing measurements or observations. For example, you might have batches of 1000 washers
from a manufacturing process. If you record the size of the largest washer in each batch, the data are
known as block maxima (or minima if you record the smallest). You can use the generalized extreme
value distribution as a model for those block maxima.

The generalized extreme value combines three simpler distributions into a single form, allowing a
continuous range of possible shapes that includes all three of the simpler distributions. You can use
any one of those distributions to model a particular dataset of block maxima. The generalized
extreme value distribution allows you to “let the data decide” which distribution is appropriate.

The three cases covered by the generalized extreme value distribution are often referred to as the
Types I, II, and III. Each type corresponds to the limiting distribution of block maxima from a
different class of underlying distributions. Distributions whose tails decrease exponentially, such as
the normal, lead to the Type I. Distributions whose tails decrease as a polynomial, such as Student's t,
lead to the Type II. Distributions whose tails are finite, such as the beta, lead to the Type III.

Types I, II, and III are sometimes also referred to as the Gumbel, Frechet, and Weibull types, though
this terminology can be slightly confusing. The Type I (Gumbel) and Type III (Weibull) cases actually
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correspond to the mirror images of the usual Gumbel and Weibull distributions, for example, as
computed by the functions evcdf and evfit , or wblcdf and wblfit, respectively. Finally, the Type
II (Frechet) case is equivalent to taking the reciprocal of values from a standard Weibull distribution.

Parameters
Fit Generalized Extreme Value Distribution

Generate 250 blocks of 1000 random values drawn from a Student's t distribution with 5 degrees of
freedom, and take their maxima. Fit a generalized extreme value distribution to those maxima.

blocksize = 1000;
nblocks = 250;
rng("default") % For reproducibility
t = trnd(5,blocksize,nblocks);
x = max(t); % 250 column maxima
paramEsts = gevfit(x)

paramEsts = 1×3

    0.1185    1.4530    5.8929

Notice that the shape parameter estimate (the first element) is positive, which is what you would
expect based on block maxima from a Student's t distribution.

histogram(x,2:20,"FaceColor",[0.8 0.8 1]);
xgrid = linspace(2,20,1000);
line(xgrid,nblocks* ...
     gevpdf(xgrid,paramEsts(1),paramEsts(2),paramEsts(3)));
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Examples
Compute the Generalized Extreme Value Distribution pdf

Generate examples of probability density functions for the three basic forms of the generalized
extreme value distribution.

x = linspace(-3,6,1000);
y1 = gevpdf(x,-.5,1,0); 
y2 = gevpdf(x,0,1,0); 
y3 = gevpdf(x,.5,1,0);
plot(x,y1,'-', x,y2,'--', x,y3,':')
legend({'K < 0, Type III' 'K = 0, Type I' 'K > 0, Type II'})
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Notice that for k > 0, the distribution has zero probability density for x such that x < − σ/k + μ.

For k < 0, the distribution has zero probability density for x > − σ/k + μ.

For k = 0, there is no upper or lower bound.

See Also
GeneralizedExtremeValueDistribution

More About
• “Working with Probability Distributions” on page 5-3
• “Supported Distributions” on page 5-16
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Generalized Pareto Distribution

In this section...
“Definition” on page B-60
“Background” on page B-60
“Parameters” on page B-61
“Examples” on page B-62

Definition
The probability density function for the generalized Pareto distribution with shape parameter k ≠ 0,
scale parameter σ, and threshold parameter θ, is

y = f (x k, σ, θ) = 1
σ 1 + k (x− θ)

σ
−1− 1

k

for θ < x, when k > 0, or for θ < x < θ – σ/k when k < 0.

For k = 0, the density is

y = f (x 0, σ, θ) = 1
σ e−

(x− θ)
σ

for θ < x.

If k = 0 and θ = 0, the generalized Pareto distribution is equivalent to the exponential distribution. If
k > 0 and θ = σ/k, the generalized Pareto distribution is equivalent to the Pareto distribution with a
scale parameter equal to σ/k and a shape parameter equal to 1/k.

Background
Like the exponential distribution, the generalized Pareto distribution is often used to model the tails
of another distribution. For example, you might have washers from a manufacturing process. If
random influences in the process lead to differences in the sizes of the washers, a standard
probability distribution, such as the normal, could be used to model those sizes. However, while the
normal distribution might be a good model near its mode, it might not be a good fit to real data in the
tails and a more complex model might be needed to describe the full range of the data. On the other
hand, only recording the sizes of washers larger (or smaller) than a certain threshold means you can
fit a separate model to those tail data, which are known as exceedances. You can use the generalized
Pareto distribution in this way, to provide a good fit to extremes of complicated data.

The generalized Pareto distribution allows a continuous range of possible shapes that includes both
the exponential and Pareto distributions as special cases. You can use either of those distributions to
model a particular dataset of exceedances. The generalized Pareto distribution allows you to “let the
data decide” which distribution is appropriate.

The generalized Pareto distribution has three basic forms, each corresponding to a limiting
distribution of exceedance data from a different class of underlying distributions.
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• Distributions whose tails decrease exponentially, such as the normal, lead to a generalized Pareto
shape parameter of zero.

• Distributions whose tails decrease as a polynomial, such as Student's t, lead to a positive shape
parameter.

• Distributions whose tails are finite, such as the beta, lead to a negative shape parameter.

The generalized Pareto distribution is used in the tails of distribution fit objects of the paretotails
object.

Parameters
Fit Generalized Pareto Distribution

Generate a large number of random values from a Student's t distribution with 5 degrees of freedom,
and then discard everything less than 2. Fit a generalized Pareto distribution to those exceedances.

rng("default") % For reproducibility
t = trnd(5,5000,1);
y = t(t > 2) - 2;
paramEsts = gpfit(y)

paramEsts = 1×2

    0.1445    0.7225

Notice that the shape parameter estimate (the first element) is positive, which is what you would
expect based on exceedances from a Student's t distribution.

h = histogram(y+2,2:0.5:12);
h.FaceColor = [0.8 0.8 1];
xgrid = linspace(2,12,1000);
line(xgrid,0.5*length(y)* ...
     gppdf(xgrid,paramEsts(1),paramEsts(2),2));
xlim([2 12])
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Examples
Compute Generalized Pareto Distribution pdf

Compute the pdf of three generalized Pareto distributions. The first has shape parameter k =
-0.25, the second has k = 0, and the third has k = 1.

x = linspace(0,10,1000);
y1 = gppdf(x,-.25,1,0); 
y2 = gppdf(x,0,1,0); 
y3 = gppdf(x,1,1,0);

Plot the three pdfs on the same figure.

figure;
plot(x,y1,'-', x,y2,'--', x,y3,':')
legend({'K < 0' 'K = 0' 'K > 0'});
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More About
• “Fit a Nonparametric Distribution with Pareto Tails” on page 5-44
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Geometric Distribution
In this section...
“Overview” on page B-64
“Parameters” on page B-64
“Probability Density Function” on page B-64
“Cumulative Distribution Function” on page B-65
“Descriptive Statistics” on page B-65
“Hazard Function” on page B-65
“Examples” on page B-65
“Related Distributions” on page B-67

Overview
The geometric distribution is a one-parameter family of curves that models the number of failures
before one success in a series of independent trials, where each trial results in either success or
failure, and the probability of success in any individual trial is constant. For example, if you toss a
coin, the geometric distribution models the number of tails observed before the result is heads. The
geometric distribution is discrete, existing only on the nonnegative integers.

Statistics and Machine Learning Toolbox offers multiple ways to work with the geometric distribution.

• Use distribution-specific functions (geocdf, geopdf, geoinv, geostat, geornd) with specified
distribution parameters. The distribution-specific functions can accept parameters of multiple
geometric distributions.

• Use generic distribution functions (cdf, icdf, pdf, mle, random) with a specified distribution
name ('Geometric') and parameters.

Parameters
The geometric distribution uses the following parameter.

Parameter Description Support
p Probability of success 0 ≤ p ≤ 1

Probability Density Function
The probability density function (pdf) of the geometric distribution is

y = f (x p) = p(1− p)x ; x = 0, 1, 2, … ,

where p is the probability of success, and x is the number of failures before the first success. The
result y is the probability of observing exactly x trials before a success, when the probability of
success in any given trial is p. For discrete distributions, the pdf is also known as the probability mass
function (pmf).

For an example, see “Compute Geometric Distribution pdf” on page B-65.
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Cumulative Distribution Function
The cumulative distribution function (cdf) of the geometric distribution is

y = F(x p) = 1− 1− p x + 1 ; x = 0, 1, 2, ... ,

where p is the probability of success, and x is the number of failures before the first success. The
result y is the probability of observing up to x trials before a success, when the probability of success
in any given trial is p.

For an example, see “Compute Geometric Distribution cdf” on page B-66.

Descriptive Statistics

The mean of the geometric distribution is mean = 1− p
p , and the variance of the geometric

distribution is var = 1− p
p2 , where p is the probability of success.

Hazard Function
The hazard function (instantaneous failure rate) is the ratio of the pdf and the complement of the cdf.
If f(t) and F(t) are the pdf and cdf of a distribution (respectively), then the hazard rate is
h t = f t

1− F t . Substituting the pdf and cdf of the geometric distribution for f(t) and F(t) above yields
a constant equal to the reciprocal of the mean. The geometric distribution is the only discrete
distribution with constant hazard function. Consequently, the probability of observing a success is
independent of the number of failures already observed.

Examples
Compute Geometric Distribution pdf

Compute the pdf of the geometric distribution with the probability of success 0.25.

x = 0:20;
y = geopdf(x,0.25);

Plot the pdf with bars of width 1.

figure
bar(x,y,1)
xlabel('Observation')
ylabel('Probability')
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Compute Geometric Distribution cdf

Compute the cdf of the geometric distribution with the probability of success 0.25.

x = 0:20;
y = geocdf(x,0.25);

Plot the cdf.

figure
stairs(x,y)
xlabel('Observation')
ylabel('Cumulative Probability')
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Compute Geometric Distribution Probabilities

Assume that the probability of a five-year-old car battery not starting in cold weather is 0.03. The
driver attempts to start the car every morning during a span of cold weather lasting 25 days. Model
this scenario with a geometric distribution, where the event to observe is the car not starting.

Compute the cdf of 25 to find the probability of the car not starting during one of the 25 days.

x = 25;
p = 0.03;
notstart = geocdf(x,p)

notstart = 0.5470

Compute the complement to find the probability of the car starting every day for all 25 days.

start = 1 - notstart

start = 0.4530

Related Distributions
• “Exponential Distribution” on page B-34 — The exponential distribution is a one-parameter

continuous distribution that has parameter μ (mean). The exponential distribution is a continuous
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analog of the geometric and is the only distribution other than geometric with a constant hazard
function.

• Negative Binomial Distribution on page B-115 — The negative binomial distribution is a two-
parameter discrete distribution that has parameters r and p, and models the number of failures
observed before r successes with probability p of success in a single trial. The geometric
distribution occurs as the negative binomial distribution with r = 1.
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More About
• “Working with Probability Distributions” on page 5-3
• “Supported Distributions” on page 5-16
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Half-Normal Distribution
In this section...
“Overview” on page B-69
“Parameters” on page B-69
“Probability Density Function” on page B-69
“Cumulative Distribution Function” on page B-71
“Descriptive Statistics” on page B-73
“Relationship to Other Distributions” on page B-73

Overview
The half-normal distribution is a special case of the folded normal and truncated normal distributions.
Some applications of the half-normal distribution include modeling measurement data and lifetime
data.

Parameters
The half-normal distribution uses the following parameters:

Parameter Description
−∞ < μ < ∞ Location parameter
σ ≥ 0 Scale parameter

The support for the half-normal distribution is x ≥ μ.

Use makedist with specified parameter values to create a half-normal probability distribution object
HalfNormalDistribution. Use fitdist to fit a half-normal probability distribution object to
sample data. Use mle to estimate the half-normal distribution parameter values from sample data
without creating a probability distribution object. For more information about working with
probability distributions, see “Working with Probability Distributions” on page 5-3.

The Statistics and Machine Learning Toolbox implementation of the half-normal distribution assumes
a fixed value for the location parameter μ. Therefore, neither fitdist nor mle estimates the value of
the parameter μ when fitting a half-normal distribution to sample data. You can specify a value for the
μ parameter by using the name-value pair argument 'mu'. The default value for the 'mu' argument
is 0 in both fitdist and mle.

Probability Density Function
The probability density function (pdf) of the half-normal distribution is

y = f x μ, σ = 2
π

1
σe−

1
2

x− μ
σ

2
; x ≥ μ ,

where μ is the location parameter and σ is the scale parameter. If x ≤ μ, then the pdf is undefined.

To compute the pdf of the half-normal distribution, create a HalfNormalDistribution probability
distribution object using fitdist or makedist, then use the pdf method to work with the object.
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PDF of Half-Normal Probability Distribution

This example shows how changing the values of the mu and sigma parameters alters the shape of the
pdf.

Create four probability distribution objects with different parameters.

pd1 = makedist('HalfNormal');
pd2 = makedist('HalfNormal','mu',0,'sigma',2);
pd3 = makedist('HalfNormal','mu',0,'sigma',3);
pd4 = makedist('HalfNormal','mu',0,'sigma',5);

Compute the probability density functions (pdfs) of each distribution.

x = 0:0.1:10;
pdf1 = pdf(pd1,x);
pdf2 = pdf(pd2,x);
pdf3 = pdf(pd3,x);
pdf4 = pdf(pd4,x);

Plot the pdfs on the same figure.

figure;
plot(x,pdf1,'r','LineWidth',2)
hold on;
plot(x,pdf2,'k:','LineWidth',2);
plot(x,pdf3,'b-.','LineWidth',2);
plot(x,pdf4,'g--','LineWidth',2);
legend({'mu = 0, sigma = 1','mu = 0, sigma = 2',...
    'mu = 0, sigma = 3','mu = 0, sigma = 5'},'Location','NE');
hold off;
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As sigma increases, the curve flattens and the peak value becomes smaller.

Cumulative Distribution Function
The cumulative distribution function (cdf) of the half-normal distribution is

y = F x = erf x− μ
2σ = 2Φ x− μ

σ − 1 ; x ≥ μ ,

where μ is the location parameter, σ is the scale parameter, erf(•) is the error function, and Φ(•) is
the cdf of the standard normal distribution. If x ≤ μ, then the cdf is undefined.

To compute the cdf of the half-normal distribution, create a HalfNormalDistribution probability
distribution object using fitdist or makedist, then use the cdf method to work with the object.

CDF of Half-Normal Probability Distribution

This example shows how changing the values of the mu and sigma parameters alters the shape of the
cdf.

Create four probability distribution objects with different parameters.

pd1 = makedist('HalfNormal');
pd2 = makedist('HalfNormal','mu',0,'sigma',2);
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pd3 = makedist('HalfNormal','mu',0,'sigma',3);
pd4 = makedist('HalfNormal','mu',0,'sigma',5);

Compute the cumulative distribution functions (cdfs) for each probability distribution.

x = 0:0.1:10;
cdf1 = cdf(pd1,x);
cdf2 = cdf(pd2,x);
cdf3 = cdf(pd3,x);
cdf4 = cdf(pd4,x);

Plot all four cdfs on the same figure.

figure;
plot(x,cdf1,'r','LineWidth',2)
hold on;
plot(x,cdf2,'k:','LineWidth',2);
plot(x,cdf3,'b-.','LineWidth',2);
plot(x,cdf4,'g--','LineWidth',2);
legend({'mu = 0, sigma = 1','mu = 0, sigma = 2',...
    'mu = 0, sigma = 3','mu = 0, sigma = 5'},'Location','SE');
hold off;

As sigma increases, the curve of the cdf flattens.
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Descriptive Statistics
The mean of the half-normal distribution is

mean = μ + σ 2
π ,

where μ is the location parameter and σ is the scale parameter.

The variance of the half-normal distribution is

var = σ2 1− 2
π ,

where σ is the scale parameter.

Relationship to Other Distributions
If a random variable Z has a standard normal distribution with a mean μ equal to zero and standard
deviation σ equal to one, then X = μ + σ Z  has a half-normal distribution with parameters μ and σ.
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[1] Cooray, K. and M.M.A. Ananda. “A Generalization of the Half-Normal Distribution with

Applications to Lifetime Data.” Communications in Statistics – Theory and Methods. Vol. 37,
Number 9, 2008, pp. 1323–1337.

[2] Pewsey, A. “Large-Sample Inference for the General Half-Normal Distribution.” Communications
in Statistics – Theory and Methods. Vol. 31, Number 7, 2002, pp. 1045–1054.

See Also
HalfNormalDistribution

More About
• “Working with Probability Distributions” on page 5-3
• “Supported Distributions” on page 5-16
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Hypergeometric Distribution
In this section...
“Definition” on page B-74
“Background” on page B-74
“Examples” on page B-74

Definition
The hypergeometric pdf is

y = f (x M, K, n) =

K
x

M − K
n− x
M
n

Background
The hypergeometric distribution models the total number of successes in a fixed-size sample drawn
without replacement from a finite population.

The distribution is discrete, existing only for nonnegative integers less than the number of samples or
the number of possible successes, whichever is greater. The hypergeometric distribution differs from
the binomial only in that the population is finite and the sampling from the population is without
replacement.

The hypergeometric distribution has three parameters that have direct physical interpretations.

• M is the size of the population.
• K is the number of items with the desired characteristic in the population.
• n is the number of samples drawn.

Sampling “without replacement” means that once a particular sample is chosen, it is removed from
the relevant population for all subsequent selections.

Examples
Compute and Plot Hypergeometric Distribution CDF

This example shows how to compute and plot the cdf of a hypergeometric distribution.

Compute the cdf of a hypergeometric distribution that draws 20 samples from a group of 1000 items,
when the group contains 50 items of the desired type.

x = 0:10;
y = hygecdf(x,1000,50,20);

Plot the cdf.

stairs(x,y)
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The x-axis of the plot shows the number of items drawn that are of the desired type. The y-axis shows
the corresponding cdf values.

See Also
hygecdf | hygepdf | hygeinv | hygestat | hygernd | random

More About
• “Working with Probability Distributions” on page 5-3
• “Supported Distributions” on page 5-16
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Inverse Gaussian Distribution
In this section...
“Definition” on page B-76
“Background” on page B-76
“Parameters” on page B-76

Definition
The inverse Gaussian distribution has the density function

λ
2πx3exp − λ

2μ2x
x− μ 2

Background
Also known as the Wald distribution, the inverse Gaussian is used to model nonnegative positively
skewed data. The distribution originated in the theory of Brownian motion, but has been used to
model diverse phenomena. Inverse Gaussian distributions have many similarities to standard
Gaussian (normal) distributions, which lead to applications in inferential statistics.

Parameters
To estimate distribution parameters, use mle or the Distribution Fitter app.

See Also
InverseGaussianDistribution

More About
• “Working with Probability Distributions” on page 5-3
• “Supported Distributions” on page 5-16
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Inverse Wishart Distribution

Definition
The probability density function of the d-dimensional Inverse Wishart distribution is given by

y = f (Χ, Σ, ν) = T ν/2 e −
1
2trace TX−1

2(νd)/2π(d(d− 1))/4 X (ν + d + 1)/2Γ ν/2 ...Γ(ν− (d− 1))/2
,

where X and T are d-by-d symmetric positive definite matrices, and ν is a scalar greater than or equal
to d. While it is possible to define the Inverse Wishart for singular Τ, the density cannot be written as
above.

If a random matrix has a Wishart distribution with parameters T–1 and ν, then the inverse of that
random matrix has an inverse Wishart distribution with parameters Τ and ν. The mean of the
distribution is given by

1
ν− d− 1T

where d is the number of rows and columns in T.

Only random matrix generation is supported for the inverse Wishart, including both singular and
nonsingular T.

Background
The inverse Wishart distribution is based on the Wishart distribution on page B-184. In Bayesian
statistics it is used as the conjugate prior for the covariance matrix of a multivariate normal
distribution.

Example
Notice that the sampling variability is quite large when the degrees of freedom is small.

Tau = [1 .5; .5 2];
df = 10; S1 = iwishrnd(Tau,df)*(df-2-1)

S1 =
       1.7959      0.64107
      0.64107       1.5496

df = 1000; S2 = iwishrnd(Tau,df)*(df-2-1)

S2 =
       0.9842      0.50158
      0.50158       2.1682

See Also
iwishrnd
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More About
• “Wishart Distribution” on page B-184
• “Working with Probability Distributions” on page 5-3
• “Supported Distributions” on page 5-16
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Kernel Distribution
In this section...
“Overview” on page B-79
“Kernel Density Estimator” on page B-79
“Kernel Smoothing Function” on page B-79
“Bandwidth” on page B-83

Overview
A kernel distribution is a nonparametric representation of the probability density function (pdf) of a
random variable. You can use a kernel distribution when a parametric distribution cannot properly
describe the data, or when you want to avoid making assumptions about the distribution of the data.
A kernel distribution is defined by a smoothing function and a bandwidth value, which control the
smoothness of the resulting density curve.

Kernel Density Estimator
The kernel density estimator is the estimated pdf of a random variable. For any real values of x, the
kernel density estimator's formula is given by

f h x = 1
nh ∑i = 1

n
K

x− xi
h ,

where x1, x2, …, xn are random samples from an unknown distribution, n is the sample size, K ·  is
the kernel smoothing function, and h is the bandwidth.

Kernel Smoothing Function

The kernel smoothing function defines the shape of the curve used to generate the pdf. Similar to a
histogram, the kernel distribution builds a function to represent the probability distribution using the
sample data. But unlike a histogram, which places the values into discrete bins, a kernel distribution
sums the component smoothing functions for each data value to produce a smooth, continuous
probability curve. The following plots show a visual comparison of a histogram and a kernel
distribution generated from the same sample data.

A histogram represents the probability distribution by establishing bins and placing each data value
in the appropriate bin.

SixMPG = [13;15;23;29;32;34];
figure
histogram(SixMPG)
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Because of this bin count approach, the histogram produces a discrete probability density function.
This might be unsuitable for certain applications, such as generating random numbers from a fitted
distribution.

Alternatively, the kernel distribution builds the pdf by creating an individual probability density curve
for each data value, then summing the smooth curves. This approach creates one smooth, continuous
probability density function for the data set.

figure
pdSix = fitdist(SixMPG,'Kernel','Width',4);
x = 0:.1:45;
ySix = pdf(pdSix,x);
plot(x,ySix,'k-','LineWidth',2)

% Plot each individual pdf and scale its appearance on the plot
hold on
for i=1:6
    pd = makedist('Normal','mu',SixMPG(i),'sigma',4);
    y = pdf(pd,x);
    y = y/6;
    plot(x,y,'b:')
end
hold off
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The smaller dashed curves are the probability distributions for each value in the sample data, scaled
to fit the plot. The larger solid curve is the overall kernel distribution of the SixMPG data. The kernel
smoothing function refers to the shape of those smaller component curves, which have a normal
distribution in this example.

You can choose one of several options for the kernel smoothing function. This plot shows the shapes
of the available smoothing functions.

% Set plot specifications
hname = {'normal' 'epanechnikov' 'box' 'triangle'};
colors = {'r' 'b' 'g' 'm'};
lines = {'-','-.','--',':'};

% Generate a sample of each kernel smoothing function and plot
data = [0];
figure
for j=1:4
    pd = fitdist(data,'kernel','Kernel',hname{j});
    x = -3:.1:3;
    y = pdf(pd,x);
    plot(x,y,'Color',colors{j},'LineStyle',lines{j})
    hold on
end
legend(hname)
hold off
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To understand the effect of different kernel smoothing functions on the shape of the resulting pdf
estimate, compare plots of the mileage data (MPG) from carbig.mat using each available kernel
function.

load carbig
% Set plot specifications
hname = {'normal' 'epanechnikov' 'box' 'triangle'};
colors = {'r' 'b' 'g' 'm'};
lines = {'-','-.','--',':'};

% Generate kernel distribution objects and plot
figure
for j=1:4
    pd = fitdist(MPG,'kernel','Kernel',hname{j});
    x = -10:1:60;
    y = pdf(pd,x);
    plot(x,y,'Color',colors{j},'LineStyle',lines{j})
    hold on
end
legend(hname)
hold off
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Each density curve uses the same input data, but applies a different kernel smoothing function to
generate the pdf. The density estimates are roughly comparable, but the shape of each curve varies
slightly. For example, the box kernel produces a density curve that is less smooth than the others.

Bandwidth

The choice of bandwidth value controls the smoothness of the resulting probability density curve.
This plot shows the density estimate for the MPG data, using a normal kernel smoothing function with
three different bandwidths.

% Create kernel distribution objects
load carbig
pd1 = fitdist(MPG,'kernel');
pd2 = fitdist(MPG,'kernel','Width',1);
pd3 = fitdist(MPG,'kernel','Width',5);

% Compute each pdf
x = -10:1:60;
y1 = pdf(pd1,x);
y2 = pdf(pd2,x);
y3 = pdf(pd3,x);

% Plot each pdf
plot(x,y1,'Color','r','LineStyle','-')
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hold on
plot(x,y2,'Color','k','LineStyle',':')
plot(x,y3,'Color','b','LineStyle','--')
legend({'Bandwidth = Default','Bandwidth = 1','Bandwidth = 5'})
hold off

The default bandwidth, which is theoretically optimal for estimating densities for the normal
distribution [1], produces a reasonably smooth curve. Specifying a smaller bandwidth produces a very
rough curve, but reveals that there might be two major peaks in the data. Specifying a larger
bandwidth produces a curve nearly identical to the kernel function, and is so smooth that it obscures
potentially important features of the data.

References
[1] Bowman, A. W., and A. Azzalini. Applied Smoothing Techniques for Data Analysis. New York:

Oxford University Press Inc., 1997.

See Also
ksdensity | KernelDistribution

More About
• “Fit Kernel Distribution Object to Data” on page 5-37
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• “Fit Kernel Distribution Using ksdensity” on page 5-40
• “Fit Distributions to Grouped Data Using ksdensity” on page 5-42
• “Nonparametric and Empirical Probability Distributions” on page 5-31
• “Working with Probability Distributions” on page 5-3
• “Supported Distributions” on page 5-16
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Logistic Distribution

In this section...
“Overview” on page B-86
“Parameters” on page B-86
“Probability Density Function” on page B-86
“Relationship to Other Distributions” on page B-86

Overview
The logistic distribution is used for growth models and in logistic regression. It has longer tails and a
higher kurtosis than the normal distribution.

Parameters
The logistic distribution uses the following parameters.

Parameter Description Support
mu Mean −∞ < μ < ∞
sigma Scale parameter σ ≥ 0

Probability Density Function
The probability density function (pdf) is

f (x μ, σ) =
exp x− μ

σ

σ 1 + exp x− μ
σ

2 ; −∞ < x < ∞ .

Relationship to Other Distributions
The loglogistic distribution is closely related to the logistic distribution. If x is distributed
loglogistically with parameters μ and σ, then log(x) is distributed logistically with parameters μ and
σ.

See Also
LogisticDistribution

More About
• “Compare Multiple Distribution Fits” on page 5-88
• “Working with Probability Distributions” on page 5-3
• “Supported Distributions” on page 5-16
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Loglogistic Distribution

In this section...
“Overview” on page B-87
“Parameters” on page B-87
“Probability Density Function” on page B-87
“Relationship to Other Distributions” on page B-87

Overview
The loglogistic distribution is a probability distribution whose logarithm has a logistic distribution.
This distribution is often used in survival analysis to model events that experience an initial rate
increase, followed by a rate decrease. It is also known as the Fisk distribution in economics
applications.

Parameters
The loglogistic distribution uses the following parameters.

Parameter Description Support
mu Mean of logarithmic values μ > 0
sigma Scale parameter of logarithmic

values
σ > 0

Probability Density Function
The probability density function (pdf) is

f (x μ, σ) = 1
σ

1
x

ez

1 + ez 2 ; x ≥ 0 ,

where z = log x − μ
σ .

Relationship to Other Distributions
The loglogistic distribution is closely related to the logistic distribution. If x is distributed
loglogistically with parameters μ and σ, then log(x) is distributed logistically with parameters μ and
σ. The relationship is similar to that between the lognormal on page B-89 and normal on page B-125
distribution.

See Also
LoglogisticDistribution
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More About
• “Working with Probability Distributions” on page 5-3
• “Supported Distributions” on page 5-16
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Lognormal Distribution
In this section...
“Overview” on page B-89
“Parameters” on page B-89
“Probability Density Function” on page B-90
“Cumulative Distribution Function” on page B-90
“Examples” on page B-90
“Related Distributions” on page B-95

Overview
The lognormal distribution, sometimes called the Galton distribution, is a probability distribution
whose logarithm has a normal distribution. The lognormal distribution is applicable when the
quantity of interest must be positive, because log(x) exists only when x is positive.

Statistics and Machine Learning Toolbox offers several ways to work with the lognormal distribution.

• Create a probability distribution object LognormalDistribution by fitting a probability
distribution to sample data (fitdist) or by specifying parameter values (makedist). Then, use
object functions to evaluate the distribution, generate random numbers, and so on.

• Work with the lognormal distribution interactively by using the Distribution Fitter app. You can
export an object from the app and use the object functions.

• Use distribution-specific functions (logncdf, lognpdf, logninv, lognlike, lognstat,
lognfit, lognrnd) with specified distribution parameters. The distribution-specific functions can
accept parameters of multiple lognormal distributions.

• Use generic distribution functions (cdf, icdf, pdf, random) with a specified distribution name
('Lognormal') and parameters.

Parameters
The lognormal distribution uses these parameters.

Parameter Description Support
mu (μ) Mean of logarithmic values −∞ < μ < ∞
sigma (σ) Standard deviation of logarithmic

values
σ ≥ 0

If X follows the lognormal distribution with parameters µ and σ, then log(X) follows the normal
distribution with mean µ and standard deviation σ.

Parameter Estimation

To fit the lognormal distribution to data and find the parameter estimates, use lognfit, fitdist, or
mle.

• For uncensored data, lognfit and fitdist find the unbiased estimates of the distribution
parameters, and mle finds the maximum likelihood estimates.
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• For censored data, lognfit, fitdist, and mle find the maximum likelihood estimates.

Unlike lognfit and mle, which return parameter estimates, fitdist returns the fitted probability
distribution object LognormalDistribution. The object properties mu and sigma store the
parameter estimates.

Descriptive Statistics

The mean m and variance v of a lognormal random variable are functions of the lognormal
distribution parameters µ and σ:

m = exp μ + σ2/2

v = exp 2μ + σ2 exp σ2 − 1

Also, you can compute the lognormal distribution parameters µ and σ from the mean m and variance
v:

μ = log m2/ v + m2

σ = log v/m2 + 1

Probability Density Function
The probability density function (pdf) of the lognormal distribution is

y = f (x μ, σ) = 1
xσ 2πexp − logx− μ 2

2σ2 , for x > 0.

For an example, see “Compute Lognormal Distribution pdf” on page B-90.

Cumulative Distribution Function
The cumulative distribution function (cdf) of the lognormal distribution is

p = F(x μ, σ) = 1
σ 2π∫0

x 1
t exp −(logt − μ)2

2σ2 dt, for x > 0.

For an example, see “Compute Lognormal Distribution cdf” on page B-91.

Examples
Compute Lognormal Distribution pdf

Suppose the income of a family of four in the United States follows a lognormal distribution with mu
= log(20,000) and sigma = 1. Compute and plot the income density.

Create a lognormal distribution object by specifying the parameter values.

pd = makedist('Lognormal','mu',log(20000),'sigma',1)

pd = 
  LognormalDistribution
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  Lognormal distribution
       mu = 9.90349
    sigma =       1

Compute the pdf values.

x = (10:1000:125010)';
y = pdf(pd,x);

Plot the pdf.

plot(x,y)
h = gca;
h.XTick = [0 30000 60000 90000 120000];
h.XTickLabel = {'0','$30,000','$60,000',...
                    '$90,000','$120,000'};

Compute Lognormal Distribution cdf

Compute the cdf values evaluated at the values in x for the lognormal distribution with mean mu and
standard deviation sigma.

x = 0:0.2:10;
mu = 0;
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sigma = 1;
p = logncdf(x,mu,sigma);

Plot the cdf.

plot(x,p)
grid on
xlabel('x')
ylabel('p')

Relationship Between Normal and Lognormal Distributions

If X follows the lognormal distribution with parameters µ and σ, then log(X) follows the normal
distribution with mean µ and standard deviation σ. Use distribution objects to inspect the relationship
between normal and lognormal distributions.

Create a lognormal distribution object by specifying the parameter values.

pd = makedist('Lognormal','mu',5,'sigma',2)

pd = 
  LognormalDistribution

  Lognormal distribution
       mu = 5
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    sigma = 2

Compute the mean of the lognormal distribution.

mean(pd)

ans = 1.0966e+03

The mean of the lognormal distribution is not equal to the mu parameter. The mean of the logarithmic
values is equal to mu. Confirm this relationship by generating random numbers.

Generate random numbers from the lognormal distribution and compute their log values.

rng('default');  % For reproducibility
x = random(pd,10000,1);
logx = log(x);

Compute the mean of the logarithmic values.

m = mean(logx)

m = 5.0033

The mean of the log of x is close to the mu parameter of x, because x has a lognormal distribution.

Construct a histogram of logx with a normal distribution fit.

histfit(logx)
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The plot shows that the log values of x are normally distributed.

histfit uses fitdist to fit a distribution to data. Use fitdist to obtain parameters used in
fitting.

pd_normal = fitdist(logx,'Normal')

pd_normal = 
  NormalDistribution

  Normal distribution
       mu = 5.00332   [4.96445, 5.04219]
    sigma = 1.98296   [1.95585, 2.01083]

The estimated normal distribution parameters are close to the lognormal distribution parameters 5
and 2.

Compare Lognormal and Burr Distribution pdfs

Compare the lognormal pdf to the Burr pdf using income data generated from a lognormal
distribution.

Generate the income data.

rng('default') % For reproducibility
y = random('Lognormal',log(25000),0.65,[500,1]);

Fit a Burr distribution.

pd = fitdist(y,'burr')

pd = 
  BurrDistribution

  Burr distribution
    alpha = 26007.2   [21165.5, 31956.4]
        c = 2.63743   [2.3053, 3.0174]
        k = 1.09658   [0.775479, 1.55064]

Plot both the Burr and lognormal pdfs of income data on the same figure.

p_burr = pdf(pd,sortrows(y));
p_lognormal = pdf('Lognormal',sortrows(y),log(25000),0.65);
plot(sortrows(y),p_burr,'-',sortrows(y),p_lognormal,'-.')
title('Burr and Lognormal pdfs Fit to Income Data')
legend('Burr Distribution','Lognormal Distribution')
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Related Distributions
• “Normal Distribution” on page B-125 — The lognormal distribution is closely related to the normal

distribution. If X is distributed lognormally with parameters μ and σ, then log(x) is distributed
normally with mean μ and standard deviation σ. See “Relationship Between Normal and
Lognormal Distributions” on page B-92.

• “Burr Type XII Distribution” on page B-19 — The Burr distribution is a flexible distribution family
that can express a wide range of distribution shapes. It has as a limiting case many commonly
used distributions such as gamma, lognormal, loglogistic, bell-shaped, and J-shaped beta
distributions (but not U-shaped). See “Compare Lognormal and Burr Distribution pdfs” on page B-
94.

References
[1] Abramowitz, Milton, and Irene A. Stegun, eds. Handbook of Mathematical Functions: With

Formulas, Graphs, and Mathematical Tables. 9. Dover print.; [Nachdr. der Ausg. von 1972].
Dover Books on Mathematics. New York, NY: Dover Publ, 2013.

[2] Evans, M., N. Hastings, and B. Peacock. Statistical Distributions. 2nd ed., Hoboken, NJ: John Wiley
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See Also
LognormalDistribution | logncdf | lognpdf | logninv | lognlike | lognstat | lognfit |
lognrnd

More About
• “Working with Probability Distributions” on page 5-3
• “Supported Distributions” on page 5-16
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Loguniform Distribution
In this section...
“Overview” on page B-97
“Parameters” on page B-97
“Probability Density Function” on page B-97
“Cumulative Distribution Function” on page B-97
“Descriptive Statistics” on page B-98
“Examples” on page B-98
“Related Distributions” on page B-101

Overview
The loguniform distribution (also called the reciprocal distribution) is a two-parameter distribution.
This distribution has a probability density function that is proportional to the reciprocal of the
variable value within its two bounding parameters (lower and upper limits of its support).

Create a probability distribution object LoguniformDistribution by specifying parameter values
(makedist). Then, use object functions to evaluate the distribution, generate random numbers, and
so on.

Parameters
The loguniform distribution uses the following parameters.

Parameter Description Support
a Lower limit 0 < a < b
b Upper limit a < b < ∞

Probability Density Function
The probability density function (pdf) of the loguniform distribution is

f (x a, b) =
1

x * log b
a

; 0 < a ≤ x ≤ b

0 ; otherwise

.

For an example, see “Compute and Plot Loguniform Distribution pdf” on page B-98.

Cumulative Distribution Function
The cumulative distribution function (cdf) of the loguniform distribution is

F x a, b =

0 ; x < a
log x a
log b a

; a ≤ x < b

1 ; x ≥ b

.
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The result p is the probability that a single observation from a loguniform distribution with
parameters a and b falls in the interval [a x].

For an example, see “Compute Loguniform Distribution cdf” on page B-99.

Descriptive Statistics

The mean of the loguniform distribution is μ = b− a
log b

a
 .

The variance of the loguniform distribution is σ2 =
log b

a b2− a2 − 2 b− a 2

2 log b
a

2 .

Examples
Compute and Plot Loguniform Distribution pdf

Create three loguniform distribution objects with different parameters.

pd1 = makedist('Loguniform')   % Loguniform distribution with default parameters a = 1 and b = 4

pd1 = 
  LoguniformDistribution

  Loguniform distribution
    Lower = 1
    Upper = 4

pd2 = makedist('Loguniform','lower',1,'upper',5); % Loguniform distribution with a = 1 and b = 5
pd3 = makedist('Loguniform','lower',2,'upper',6); % Loguniform distribution with a = 2 and b = 6

Compute the pdfs for the three loguniform distributions.

x = 0:.01:6;
pdf1 = pdf(pd1,x);
pdf2 = pdf(pd2,x);
pdf3 = pdf(pd3,x);

Plot the pdfs on the same axis.

figure;
plot(x,pdf1,'r','LineWidth',2); 
hold on;
plot(x,pdf2,'k:','LineWidth',2);
plot(x,pdf3,'b-.','LineWidth',2);
legend({'a = 1, b = 4','a = 1, b = 5','a = 2, b = 6'},'Location','northwest');
xlabel('Observation')
ylabel('Probability Density')
hold off;
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The distribution density is proportional to the reciprocal of the variable value within a and b, hence,
the pdf value decreases as the value of the variable increases.

Compute Loguniform Distribution cdf

Create three loguniform distribution objects with different parameters.

pd1 = makedist('Loguniform');  % Loguniform distribution with default parameters a = 1 and b = 4
pd2 = makedist('Loguniform','lower',1,'upper',5); % Loguniform distribution with a = 1 and b = 5
pd3 = makedist('Loguniform','lower',2,'upper',6); % Loguniform distribution with a = 2 and b = 6

Compute the cdfs for the three loguniform distributions.

x = 1:.01:6;
cdf1 = cdf(pd1,x);
cdf2 = cdf(pd2,x);
cdf3 = cdf(pd3,x);

Plot the cdfs on the same axis.

figure;
plot(x,cdf1,'r','LineWidth',2); 
hold on;
plot(x,cdf2,'k:','LineWidth',2);
plot(x,cdf3,'b-.','LineWidth',2);
legend({'a = 1, b = 4','a = 1, b = 5','a = 2, b = 6'},'Location','NW');
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xlabel('Observation')
ylabel('Cumulative Probability')
hold off;

Transform Standard Uniform Sample to Loguniform Sample

Create a standard uniformly distributed sample of size 30.

 p = random('Uniform',0,1,30,1);

Compute the loguniform sample with support (2,7) corresponding to the standard uniform values in
p.

logunifval = icdf('Loguniform',p,2,7);

Alternatively, first create a loguniform distribution object with support (2,7) and then use it in the call
to icdf.

logunifpd = makedist('Loguniform', "Lower",2,"Upper",7)

logunifpd = 
  LoguniformDistribution

  Loguniform distribution
    Lower = 2
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    Upper = 7

logunifval2 = icdf(logunifpd,p);

Generate Random Numbers from Loguniform Distribution

To generate random numbers from a loguniform distribution, you must first create a loguniform
distribution object. Create a loguniform distribution object with support (3,10).

pd = makedist("Loguniform",3,10)

pd = 
  LoguniformDistribution

  Loguniform distribution
    Lower =  3
    Upper = 10

Generate a 3-by-4 matrix of random numbers from the loguniform distribution.

R = random(pd,3,4)

R = 3×4

    8.0006    9.0096    4.1951    9.5861
    8.9277    6.4235    5.7953    3.6269
    3.4956    3.3738    9.5013    9.6521

Related Distributions
• Uniform Distribution — The continuous uniform distribution is a two-parameter distribution that

has parameters a (lower limit) and b (upper limit). If X has a loguniform distribution within the
support a and b, then log(X) has a uniform distribution between log(a) and log(b).

See Also
LoguniformDistribution

More About
• “Working with Probability Distributions” on page 5-3
• “Supported Distributions” on page 5-16
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Multinomial Distribution
In this section...
“Overview” on page B-102
“Parameter” on page B-102
“Probability Density Function” on page B-102
“Descriptive Statistics” on page B-102
“Relationship to Other Distributions” on page B-103

Overview
Multinomial distribution models the probability of each combination of successes in a series of
independent trials. Use this distribution when there are more than two possible mutually exclusive
outcomes for each trial, and each outcome has a fixed probability of success.

Parameter
Multinomial distribution uses the following parameter.

Parameter Description Constraints
probabilities Outcome probabilities 0 ≤ Probabilities i ≤ 1 ; ∑

all i
Probabilities i = 1

Probability Density Function
The multinomial pdf is

f x n, p = n!
x1!⋯xk!p1

x1⋯pk
xk,

where k is the number of possible mutually exclusive outcomes for each trial, and n is the total
number of trials. The vector x = (x1...xk) is the number of observations of each k outcome, and
contains nonnegative integer components that sum to n. The vector p = (p1...pk) is the fixed
probability of each k outcome, and contains nonnegative scalar components that sum to 1.

Descriptive Statistics
The expected number of observations of outcome i in n trials is

E xi = npi ,

where pi is the fixed probability of outcome i.

The variance is of outcome i is

var xi = npi 1− pi .

The covariance of outcomes i and j is
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cov(xi, x j) = − npip j , i ≠ j .

Relationship to Other Distributions
The multinomial distribution is a generalization of the binomial distribution on page B-10. While the
binomial distribution gives the probability of the number of “successes” in n independent trials of a
two-outcome process, the multinomial distribution gives the probability of each combination of
outcomes in n independent trials of a k-outcome process. The probability of each outcome in any one
trial is given by the fixed probabilities p1,..., pk.

See Also
MultinomialDistribution

More About
• “Multinomial Probability Distribution Objects” on page 5-103
• “Multinomial Probability Distribution Functions” on page 5-106
• “Working with Probability Distributions” on page 5-3
• “Supported Distributions” on page 5-16
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Multivariate Normal Distribution
In this section...
“Overview” on page B-104
“Parameters” on page B-104
“Probability Density Function” on page B-104
“Cumulative Distribution Function” on page B-105
“Examples” on page B-105

Overview
The multivariate normal distribution is a generalization of the univariate normal distribution on page
B-125 to two or more variables. It is a distribution for random vectors of correlated variables, where
each vector element has a univariate normal distribution. In the simplest case, no correlation exists
among variables, and elements of the vectors are independent univariate normal random variables.

Because it is easy to work with, the multivariate normal distribution is often used as a model for
multivariate data.

Statistics and Machine Learning Toolbox provides several functionalities related to the multivariate
normal distribution.

• Generate random numbers from the distribution using mvnrnd.
• Evaluate the probability density function (pdf) at specific values using mvnpdf.
• Evaluate the cumulative distribution function (cdf) at specific values using mvncdf.

Parameters
The multivariate normal distribution uses the parameters in this table.

Parameter Description Univariate Normal Analogue
μ Mean vector Mean μ (scalar)
Σ Covariance matrix — Diagonal elements

contain the variances for each variable, and
off-diagonal elements contain the
covariances between variables

Variance σ2 (scalar)

Note that in the one-dimensional case, Σ is the variance, not the standard deviation. For more
information on the parameters of the univariate normal distribution, see “Parameters” on page B-125.

Probability Density Function
The probability density function (pdf) of the d-dimensional multivariate normal distribution is

y = f (x, μ, Σ) =  1
Σ (2π)d

exp −1
2(x‐μ) Σ‐1(x‐μ)'

where x and μ are 1-by-d vectors and Σ is a d-by-d symmetric, positive definite matrix.
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Note that Statistics and Machine Learning Toolbox:

• Supports singular Σ for random vector generation only. The pdf cannot be written in the same
form when Σ is singular.

• Uses x and μ oriented as row vectors rather than column vectors.

For an example, see “Bivariate Normal Distribution pdf” on page B-105.

Cumulative Distribution Function
The multivariate normal cumulative distribution function (cdf) evaluated at x is defined as the
probability that a random vector v, distributed as multivariate normal, lies within the semi-infinite
rectangle with upper limits defined by x,

Pr v(1) ≤ x(1), v(2) ≤ x(2), ..., v(d) ≤ x(d) .

Although the multivariate normal cdf has no closed form, mvncdf can compute cdf values
numerically.

For an example, see “Bivariate Normal Distribution cdf” on page B-106.

Examples
Bivariate Normal Distribution pdf

Compute and plot the pdf of a bivariate normal distribution with parameters mu = [0 0] and Sigma
= [0.25 0.3; 0.3 1].

Define the parameters mu and Sigma.

mu = [0 0];
Sigma = [0.25 0.3; 0.3 1];

Create a grid of evenly spaced points in two-dimensional space.

x1 = -3:0.2:3;
x2 = -3:0.2:3;
[X1,X2] = meshgrid(x1,x2);
X = [X1(:) X2(:)];

Evaluate the pdf of the normal distribution at the grid points.

y = mvnpdf(X,mu,Sigma);
y = reshape(y,length(x2),length(x1));

Plot the pdf values.

surf(x1,x2,y)
caxis([min(y(:))-0.5*range(y(:)),max(y(:))])
axis([-3 3 -3 3 0 0.4])
xlabel('x1')
ylabel('x2')
zlabel('Probability Density')
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Bivariate Normal Distribution cdf

Compute and plot the cdf of a bivariate normal distribution.

Define the mean vector mu and the covariance matrix Sigma.

mu = [1 -1];
Sigma = [.9 .4; .4 .3];

Create a grid of 625 evenly spaced points in two-dimensional space.

[X1,X2] = meshgrid(linspace(-1,3,25)',linspace(-3,1,25)');
X = [X1(:) X2(:)];

Evaluate the cdf of the normal distribution at the grid points.

p = mvncdf(X,mu,Sigma);

Plot the cdf values.

Z = reshape(p,25,25);
surf(X1,X2,Z)
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Probability over Rectangular Region

Compute the probability over the unit square of a bivariate normal distribution, and create a contour
plot of the results.

Define the bivariate normal distribution parameters mu and Sigma.

mu = [0 0];
Sigma = [0.25 0.3; 0.3 1];

Compute the probability over the unit square.

p = mvncdf([0 0],[1 1],mu,Sigma)

p = 0.2097

To visualize the result, first create a grid of evenly spaced points in two-dimensional space.

x1 = -3:.2:3;
x2 = -3:.2:3;
[X1,X2] = meshgrid(x1,x2);
X = [X1(:) X2(:)];

Then, evaluate the pdf of the normal distribution at the grid points.
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y = mvnpdf(X,mu,Sigma);
y = reshape(y,length(x2),length(x1));

Finally, create a contour plot of the multivariate normal distribution that includes the unit square.

contour(x1,x2,y,[0.0001 0.001 0.01 0.05 0.15 0.25 0.35])
xlabel('x')
ylabel('y')
line([0 0 1 1 0],[1 0 0 1 1],'Linestyle','--','Color','k')

Computing a multivariate cumulative probability requires significantly more work than computing a
univariate probability. By default, the mvncdf function computes values to less than full machine
precision, and returns an estimate of the error as an optional second output. View the error estimate
in this case.

[p,err] = mvncdf([0 0],[1 1],mu,Sigma)

p = 0.2097

err = 1.0000e-08

References
[1] Kotz, S., N. Balakrishnan, and N. L. Johnson. Continuous Multivariate Distributions: Volume 1:

Models and Applications. 2nd ed. New York: John Wiley & Sons, Inc., 2000.
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See Also
mvncdf | mvnpdf | mvnrnd | NormalDistribution

More About
• “Normal Distribution” on page B-125
• “Supported Distributions” on page 5-16
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Multivariate t Distribution
In this section...
“Definition” on page B-110
“Background” on page B-110
“Example” on page B-110

Definition
The probability density function of the d-dimensional multivariate Student's t distribution is given by

f (x, Σ, ν) = 1
Σ 1/2

1
(νπ)d

Γ((ν + d)/2)
Γ(ν/2) 1 + x′ Σ−1x

ν

−(ν + d)/2
.

where x is a 1-by-d vector, Σ is a d-by-d symmetric, positive definite matrix, and ν is a positive scalar.
While it is possible to define the multivariate Student's t for singular Σ, the density cannot be written
as above. For the singular case, only random number generation is supported. Note that while most
textbooks define the multivariate Student's t with x oriented as a column vector, for the purposes of
data analysis software, it is more convenient to orient x as a row vector, and Statistics and Machine
Learning Toolbox software uses that orientation.

Background
The multivariate Student's t distribution is a generalization of the univariate Student's t to two or
more variables. It is a distribution for random vectors of correlated variables, each element of which
has a univariate Student's t distribution. In the same way as the univariate Student's t distribution
can be constructed by dividing a standard univariate normal random variable by the square root of a
univariate chi-square random variable, the multivariate Student's t distribution can be constructed by
dividing a multivariate normal random vector having zero mean and unit variances by a univariate
chi-square random variable.

The multivariate Student's t distribution is parameterized with a correlation matrix, Σ, and a positive
scalar degrees of freedom parameter, ν. ν is analogous to the degrees of freedom parameter of a
univariate Student's t distribution. The off-diagonal elements of Σ contain the correlations between
variables. Note that when Σ is the identity matrix, variables are uncorrelated; however, they are not
independent.

The multivariate Student's t distribution is often used as a substitute for the multivariate normal
distribution in situations where it is known that the marginal distributions of the individual variables
have fatter tails than the normal.

Example
Plot PDF and CDF of Multivariate t-Distribution

Plot the pdf of a bivariate Student's t distribution. You can use this distribution for a higher number of
dimensions as well, although visualization is not easy.
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Rho = [1 .6; .6 1];
nu = 5;
x1 = -3:.2:3; x2 = -3:.2:3;
[X1,X2] = meshgrid(x1,x2);
F = mvtpdf([X1(:) X2(:)],Rho,nu);
F = reshape(F,length(x2),length(x1));
surf(x1,x2,F);
caxis([min(F(:))-.5*range(F(:)),max(F(:))]);
axis([-3 3 -3 3 0 .2])
xlabel('x1'); ylabel('x2'); zlabel('Probability Density');

Plot the cdf of a bivariate Student's t distribution.

F = mvtcdf([X1(:) X2(:)],Rho,nu);
F = reshape(F,length(x2),length(x1));
surf(x1,x2,F);
caxis([min(F(:))-.5*range(F(:)),max(F(:))]);
axis([-3 3 -3 3 0 1])
xlabel('x1'); ylabel('x2'); zlabel('Cumulative Probability');
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Since the bivariate Student's t distribution is defined on the plane, you can also compute cumulative
probabilities over rectangular regions. For example, this contour plot illustrates the computation that
follows, of the probability contained within the unit square shown in the figure.

contour(x1,x2,F,[.0001 .001 .01 .05:.1:.95 .99 .999 .9999]);
xlabel('x'); ylabel('y');
line([0 0 1 1 0],[1 0 0 1 1],'linestyle','--','color','k');
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Compute the value of the probability contained within the unit square.

F = mvtcdf([0 0],[1 1],Rho,nu)

F = 0.1401

Computing a multivariate cumulative probability requires significantly more work than computing a
univariate probability. By default, the mvtcdf function computes values to less than full machine
precision and returns an estimate of the error, as an optional second output.

[F,err] = mvtcdf([0 0],[1 1],Rho,nu)

F = 0.1401

err = 1.0000e-08

See Also
mvtcdf | mvtpdf | mvtrnd

More About
• “Working with Probability Distributions” on page 5-3
• “Supported Distributions” on page 5-16
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Nakagami Distribution
In this section...
“Definition” on page B-114
“Background” on page B-114
“Parameters” on page B-114

Definition
The Nakagami distribution has the density function

2 μ
ω

μ 1
Γ μ x 2μ− 1 e

−μ
ω x2

with shape parameter µ and scale parameter ω > 0, for x > 0. If x has a Nakagami distribution with
parameters µ and ω, then x2 has a gamma distribution with shape parameter µ and scale parameter
ω/µ.

Background
In communications theory, Nakagami distributions, Rician distributions on page B-145, and Rayleigh
distributions on page B-143 are used to model scattered signals that reach a receiver by multiple
paths. Depending on the density of the scatter, the signal will display different fading characteristics.
Rayleigh and Nakagami distributions are used to model dense scatters, while Rician distributions
model fading with a stronger line-of-sight. Nakagami distributions can be reduced to Rayleigh
distributions, but give more control over the extent of the fading.

Parameters
To estimate distribution parameters, use mle or the Distribution Fitter app.

See Also
NakagamiDistribution

More About
• “Working with Probability Distributions” on page 5-3
• “Supported Distributions” on page 5-16
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Negative Binomial Distribution
In this section...
“Definition” on page B-115
“Background” on page B-115
“Parameters” on page B-115
“Example” on page B-117

Definition
When the r parameter is an integer, the negative binomial pdf is

y = f (x r, p) =
r + x− 1

x
prqxI(0, 1, ...)(x)

where q = 1 – p. When r is not an integer, the binomial coefficient in the definition of the pdf is
replaced by the equivalent expression

Γ(r + x)
Γ(r)Γ(x + 1)

Background
In its simplest form (when r is an integer), the negative binomial distribution models the number of
failures x before a specified number of successes is reached in a series of independent, identical
trials. Its parameters are the probability of success in a single trial, p, and the number of successes,
r. A special case of the negative binomial distribution, when r = 1, is the geometric distribution on
page B-64, which models the number of failures before the first success.

More generally, r can take on non-integer values. This form of the negative binomial distribution has
no interpretation in terms of repeated trials, but, like the Poisson distribution on page B-137, it is
useful in modeling count data. The negative binomial distribution is more general than the Poisson
distribution because it has a variance that is greater than its mean, making it suitable for count data
that do not meet the assumptions of the Poisson distribution. In the limit, as r increases to infinity, the
negative binomial distribution approaches the Poisson distribution.

Parameters
Negative Binomial Distribution Parameters

Determine the parameters of a negative binomial distribution.

Suppose you are collecting data on the number of auto accidents on a busy highway, and would like to
be able to model the number of accidents per day. Because these are count data, and because there
are a very large number of cars and a small probability of an accident for any specific car, you might
think to use the Poisson distribution. However, the probability of having an accident is likely to vary
from day to day as the weather and amount of traffic change, and so the assumptions needed for the
Poisson distribution are not met. In particular, the variance of this type of count data sometimes
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exceeds the mean by a large amount. The data below exhibit this effect: most days have few or no
accidents, and a few days have a large number.

accident = [2  3  4  2  3  1  12  8  14  31  23  1  10  7  0];
m = mean(accident)

m = 8.0667

v = var(accident)

v = 79.3524

The negative binomial distribution is more general than the Poisson, and is often suitable for count
data when the Poisson is not. The function nbinfit returns the maximum likelihood estimates
(MLEs) and confidence intervals for the parameters of the negative binomial distribution. Observe the
results from fitting the accident data.

[phat,pci] = nbinfit(accident)

phat = 1×2

    1.0060    0.1109

pci = 2×2

    0.2152    0.0171
    1.7968    0.2046

It is difficult to give a physical interpretation in this case to the individual parameters. However, the
estimated parameters can be used in a model for the number of daily accidents. For example, a plot
of the estimated cumulative probability function shows that while there is an estimated 10% chance
of no accidents on a given day, there is also about a 10% chance that there will be 20 or more
accidents.

plot(0:50,nbincdf(0:50,phat(1),phat(2)),".-");
xlabel("Accidents per Day")
ylabel("Cumulative Probability")
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Example
Compute and Plot Negative Binomial Distribution PDF

Compute and plot the pdf using four different values for the parameter r, the desired number of
successes: .1, 1, 3, and 6. In each case, the probability of success p is .5.

x = 0:10;
plot(x,nbinpdf(x,.1,.5),'s-', ...
     x,nbinpdf(x,1,.5),'o-', ...
     x,nbinpdf(x,3,.5),'d-', ...
     x,nbinpdf(x,6,.5),'^-');
legend({'r = .1' 'r = 1' 'r = 3' 'r = 6'})
xlabel('x')
ylabel('f(x|r,p)')
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The plot shows that the negative binomial distribution can take on a variety of shapes, ranging from
very skewed to nearly symmetric, depending on the value of r.

See Also
NegativeBinomialDistribution

More About
• “Working with Probability Distributions” on page 5-3
• “Supported Distributions” on page 5-16
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Noncentral Chi-Square Distribution
In this section...
“Definition” on page B-119
“Background” on page B-119
“Examples” on page B-119

Definition
There are many equivalent formulas for the noncentral chi-square distribution function. One
formulation uses a modified Bessel function of the first kind. Another uses the generalized Laguerre
polynomials. The cumulative distribution function is computed using a weighted sum of χ2

probabilities with the weights equal to the probabilities of a Poisson distribution. The Poisson
parameter is one-half of the noncentrality parameter of the noncentral chi-square

F(x ν, δ) = ∑
j = 0

∞ 1
2δ j

j! e
−δ
2 Pr χν + 2 j

2 ≤ x

where δ is the noncentrality parameter.

Background
The χ2 distribution is actually a simple special case of the noncentral chi-square distribution. One way
to generate random numbers with a χ2 distribution (with ν degrees of freedom) is to sum the squares
of ν standard normal random numbers (mean equal to zero.)

What if the normally distributed quantities have a mean other than zero? The sum of squares of these
numbers yields the noncentral chi-square distribution. The noncentral chi-square distribution
requires two parameters: the degrees of freedom and the noncentrality parameter. The noncentrality
parameter is the sum of the squared means of the normally distributed quantities.

The noncentral chi-square has scientific application in thermodynamics and signal processing. The
literature in these areas may refer to it as the “Rician Distribution” on page B-145 or generalized
“Rayleigh Distribution” on page B-143.

Examples
Compute Noncentral Chi-Square Distribution pdf

Compute the pdf of a noncentral chi-square distribution with degrees of freedom V = 4 and
noncentrality parameter DELTA = 2. For comparison, also compute the pdf of a chi-square
distribution with the same degrees of freedom.

x = (0:0.1:10)';
ncx2 = ncx2pdf(x,4,2);
chi2 = chi2pdf(x,4);

Plot the pdf of the noncentral chi-square distribution on the same figure as the pdf of the chi-square
distribution.
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figure;
plot(x,ncx2,'b-','LineWidth',2)
hold on
plot(x,chi2,'g--','LineWidth',2)
legend('ncx2','chi2')

See Also
ncx2cdf | ncx2pdf | ncx2inv | ncx2stat | ncx2rnd | random

More About
• “Working with Probability Distributions” on page 5-3
• “Supported Distributions” on page 5-16

B Noncentral Chi-Square Distribution

B-120



Noncentral F Distribution
In this section...
“Definition” on page B-121
“Background” on page B-121
“Examples” on page B-121

Definition
Similar to the noncentral χ2 distribution, the toolbox calculates noncentral F distribution probabilities
as a weighted sum of incomplete beta functions using Poisson probabilities as the weights.

F(x ν1, ν2, δ) = ∑
j = 0

∞ 1
2δ j

j! e
−δ
2 I

ν1 ⋅ x
ν2 + ν1 ⋅ x

ν1
2 + j,

ν2
2

I(x|a,b) is the incomplete beta function with parameters a and b, and δ is the noncentrality parameter.

Background
As with the χ2 distribution, the F distribution is a special case of the noncentral F distribution. The F
distribution is the result of taking the ratio of χ2 random variables each divided by its degrees of
freedom.

If the numerator of the ratio is a noncentral chi-square random variable divided by its degrees of
freedom, the resulting distribution is the noncentral F distribution.

The main application of the noncentral F distribution is to calculate the power of a hypothesis test
relative to a particular alternative.

Examples
Compute Noncentral F Distribution pdf

Compute the pdf of a noncentral F distribution with degrees of freedom NU1 = 5 and NU2 = 20, and
noncentrality parameter DELTA = 10. For comparison, also compute the pdf of an F distribution with
the same degrees of freedom.

x = (0.01:0.1:10.01)';
p1 = ncfpdf(x,5,20,10);
p = fpdf(x,5,20);

Plot the pdf of the noncentral F distribution and the pdf of the F distribution on the same figure.

figure;
plot(x,p1,'b-','LineWidth',2)
hold on
plot(x,p,'g--','LineWidth',2)
legend('Noncentral F','F distribution')
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See Also
ncfcdf | ncfpdf | ncfinv | ncfstat | ncfrnd | random

More About
• “Working with Probability Distributions” on page 5-3
• “Supported Distributions” on page 5-16
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Noncentral t Distribution
In this section...
“Definition” on page B-123
“Background” on page B-123
“Examples” on page B-123

Definition
The most general representation of the noncentral t distribution is quite complicated. Johnson and
Kotz [67] give a formula for the probability that a noncentral t variate falls in the range [–u, u].

P −u < x < u ν, δ = ∑
j = 0

∞ 1
2δ2 j

j! e
−δ2

2 I u2

ν + u2
1
2 + j, ν

2

I(x|ν,δ) is the incomplete beta function with parameters ν and δ. δ is the noncentrality parameter, and
ν is the number of degrees of freedom.

Background
The noncentral t distribution is a generalization of Student's t distribution.

Student's t distribution with n – 1 degrees of freedom models the t-statistic

t = x − μ
s/ n

where x is the sample mean and s is the sample standard deviation of a random sample of size n from
a normal population with mean μ. If the population mean is actually μ0, then the t-statistic has a
noncentral t distribution with noncentrality parameter

δ =
μ0− μ
σ/ n

The noncentrality parameter is the normalized difference between μ0 and μ.

The noncentral t distribution gives the probability that a t test will correctly reject a false null
hypothesis of mean μ when the population mean is actually μ0; that is, it gives the power of the t test.
The power increases as the difference μ0 – μ increases, and also as the sample size n increases.

Examples
Compute Noncentral t Distribution pdf

Compute the pdf of a noncentral t distribution with degrees of freedom V = 10 and noncentrality
parameter DELTA = 1. For comparison, also compute the pdf of a t distribution with the same
degrees of freedom.
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x = (-5:0.1:5)';
nct = nctpdf(x,10,1);
t = tpdf(x,10);

Plot the pdf of the noncentral t distribution and the pdf of the t distribution on the same figure.

plot(x,nct,'b-','LineWidth',2)
hold on
plot(x,t,'g--','LineWidth',2)
legend('nct','t')

See Also
nctcdf | nctpdf | nctinv | nctstat | nctrnd | random

More About
• “Working with Probability Distributions” on page 5-3
• “Supported Distributions” on page 5-16
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Normal Distribution

In this section...
“Overview” on page B-125
“Parameters” on page B-125
“Probability Density Function” on page B-126
“Cumulative Distribution Function” on page B-126
“Examples” on page B-127
“Related Distributions” on page B-133

Overview
The normal distribution, sometimes called the Gaussian distribution, is a two-parameter family of
curves. The usual justification for using the normal distribution for modeling is the Central Limit
theorem, which states (roughly) that the sum of independent samples from any distribution with finite
mean and variance converges to the normal distribution as the sample size goes to infinity.

Statistics and Machine Learning Toolbox offers several ways to work with the normal distribution.

• Create a probability distribution object NormalDistribution by fitting a probability distribution
to sample data (fitdist) or by specifying parameter values (makedist). Then, use object
functions to evaluate the distribution, generate random numbers, and so on.

• Work with the normal distribution interactively by using the Distribution Fitter app. You can
export an object from the app and use the object functions.

• Use distribution-specific functions (normcdf, normpdf, norminv, normlike, normstat,
normfit, normrnd) with specified distribution parameters. The distribution-specific functions can
accept parameters of multiple normal distributions.

• Use generic distribution functions (cdf, icdf, pdf, random) with a specified distribution name
('Normal') and parameters.

Parameters
The normal distribution uses these parameters.

Parameter Description Support
mu (μ) Mean −∞ < μ < ∞
sigma (σ) Standard deviation σ ≥ 0

The standard normal distribution has zero mean and unit standard deviation. If z is standard normal,
then σz + µ is also normal with mean µ and standard deviation σ. Conversely, if x is normal with mean
µ and standard deviation σ, then z = (x – µ) / σ is standard normal.

Parameter Estimation

The maximum likelihood estimates (MLEs) are the parameter estimates that maximize the likelihood
function. The maximum likelihood estimators of μ and σ2 for the normal distribution, respectively, are
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x = ∑
i = 1

n xi
n

and

sMLE
2 = 1

n ∑i = 1

n
xi− x 2 .

x is the sample mean for samples x1, x2, …, xn. The sample mean is an unbiased estimator of the
parameter μ. However, s2

MLE is a biased estimator of the parameter σ2, meaning that its expected
value does not equal the parameter.

The minimum variance unbiased estimator (MVUE) is commonly used to estimate the parameters of
the normal distribution. The MVUE is the estimator that has the minimum variance of all unbiased
estimators of a parameter. The MVUEs of the parameters μ and σ2 for the normal distribution are the
sample mean x ̄and sample variance s2, respectively.

s2 = 1
n− 1 ∑i = 1

n
xi− x 2

To fit the normal distribution to data and find the parameter estimates, use normfit, fitdist, or
mle.

• For uncensored data, normfit and fitdist find the unbiased estimates, and mle finds the
maximum likelihood estimates.

• For censored data, normfit, fitdist, and mle find the maximum likelihood estimates.

Unlike normfit and mle, which return parameter estimates, fitdist returns the fitted probability
distribution object NormalDistribution. The object properties mu and sigma store the parameter
estimates.

For an example, see “Fit Normal Distribution Object” on page B-127.

Probability Density Function
The normal probability density function (pdf) is

y = f (x μ, σ) = 1
σ 2πe

−(x− μ)2

2σ2 , for x ∈ ℝ .

The likelihood function is the pdf viewed as a function of the parameters. The maximum likelihood
estimates (MLEs) are the parameter estimates that maximize the likelihood function for fixed values
of x.

For an example, see “Compute and Plot the Normal Distribution pdf” on page B-127.

Cumulative Distribution Function
The normal cumulative distribution function (cdf) is

p = F(x μ, σ) = 1
σ 2π∫−∞

x
e
−(t − μ)2

2σ2 dt, for x ∈ ℝ .
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p is the probability that a single observation from a normal distribution with parameters μ and σ falls
in the interval (-∞,x].

The standard normal cumulative distribution function Φ(x) is functionally related to the error function
erf.

Φ x = 1
2 1− erf − x

2

where

erf x = 2
π∫0

x
e d−t2 t = 2Φ 2x − 1.

For an example, see “Plot Standard Normal Distribution cdf” on page B-128

Examples
Fit Normal Distribution Object

Load the sample data and create a vector containing the first column of student exam grade data.

load examgrades
x = grades(:,1);

Create a normal distribution object by fitting it to the data.

pd = fitdist(x,'Normal')

pd = 
  NormalDistribution

  Normal distribution
       mu = 75.0083   [73.4321, 76.5846]
    sigma =  8.7202   [7.7391, 9.98843]

The intervals next to the parameter estimates are the 95% confidence intervals for the distribution
parameters.

Compute and Plot the Normal Distribution pdf

Compute the pdf of a standard normal distribution, with parameters μ equal to 0 and σ equal to 1.

x = [-3:.1:3];
y = normpdf(x,0,1);

Plot the pdf.

plot(x,y)
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Plot Standard Normal Distribution cdf

Create a standard normal distribution object.

pd = makedist('Normal')

pd = 
  NormalDistribution

  Normal distribution
       mu = 0
    sigma = 1

Specify the x values and compute the cdf.

x = -3:.1:3;
p = cdf(pd,x);

Plot the cdf of the standard normal distribution.

plot(x,p)
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Compare Gamma and Normal Distribution pdfs

The gamma distribution has the shape parameter a and the scale parameter b. For a large a, the
gamma distribution closely approximates the normal distribution with mean μ = ab and variance
σ2 = ab2.

Compute the pdf of a gamma distribution with parameters a = 100 and b = 5.

a = 100;
b = 5;
x = 250:750;
y_gam = gampdf(x,a,b);

For comparison, compute the mean, standard deviation, and pdf of the normal distribution that
gamma approximates.

mu = a*b

mu = 500

sigma = sqrt(a*b^2)

sigma = 50

y_norm = normpdf(x,mu,sigma);
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Plot the pdfs of the gamma distribution and the normal distribution on the same figure.

plot(x,y_gam,'-',x,y_norm,'-.')
title('Gamma and Normal pdfs')
xlabel('Observation')
ylabel('Probability Density')
legend('Gamma Distribution','Normal Distribution')

The pdf of the normal distribution approximates the pdf of the gamma distribution.

Relationship Between Normal and Lognormal Distributions

If X follows the lognormal distribution with parameters µ and σ, then log(X) follows the normal
distribution with mean µ and standard deviation σ. Use distribution objects to inspect the relationship
between normal and lognormal distributions.

Create a lognormal distribution object by specifying the parameter values.

pd = makedist('Lognormal','mu',5,'sigma',2)

pd = 
  LognormalDistribution

  Lognormal distribution
       mu = 5
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    sigma = 2

Compute the mean of the lognormal distribution.

mean(pd)

ans = 1.0966e+03

The mean of the lognormal distribution is not equal to the mu parameter. The mean of the logarithmic
values is equal to mu. Confirm this relationship by generating random numbers.

Generate random numbers from the lognormal distribution and compute their log values.

rng('default');  % For reproducibility
x = random(pd,10000,1);
logx = log(x);

Compute the mean of the logarithmic values.

m = mean(logx)

m = 5.0033

The mean of the log of x is close to the mu parameter of x, because x has a lognormal distribution.

Construct a histogram of logx with a normal distribution fit.

histfit(logx)
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The plot shows that the log values of x are normally distributed.

histfit uses fitdist to fit a distribution to data. Use fitdist to obtain parameters used in
fitting.

pd_normal = fitdist(logx,'Normal')

pd_normal = 
  NormalDistribution

  Normal distribution
       mu = 5.00332   [4.96445, 5.04219]
    sigma = 1.98296   [1.95585, 2.01083]

The estimated normal distribution parameters are close to the lognormal distribution parameters 5
and 2.

Compare Student's t and Normal Distribution pdfs

The Student’s t distribution is a family of curves depending on a single parameter ν (the degrees of
freedom). As the degrees of freedom ν approach infinity, the t distribution approaches the standard
normal distribution.

Compute the pdfs for the Student's t distribution with the parameter nu = 5 and the Student's t
distribution with the parameter nu = 15.

x = [-5:0.1:5];
y1 = tpdf(x,5);
y2 = tpdf(x,15);

Compute the pdf for a standard normal distribution.

z = normpdf(x,0,1);

Plot the Student's t pdfs and the standard normal pdf on the same figure.

plot(x,y1,'-.',x,y2,'--',x,z,'-')
legend('Student''s t Distribution with \nu=5', ...
    'Student''s t Distribution with \nu=15', ...
    'Standard Normal Distribution','Location','best')
xlabel('Observation')
ylabel('Probability Density')
title('Student''s t and Standard Normal pdfs')
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The standard normal pdf has shorter tails than the Student's t pdfs.

Related Distributions
• “Binomial Distribution” on page B-10 — The binomial distribution models the total number of

successes in n repeated trials with the probability of success p. As n increases, the binomial
distribution can be approximated by a normal distribution with µ = np and σ2 = np(1–p). See
“Compare Binomial and Normal Distribution pdfs” on page B-14.

• “Birnbaum-Saunders Distribution” on page B-18 — If x has a Birnbaum-Saunders distribution with
parameters β and γ, then

x β− β x
γ

has a standard normal distribution.
• “Chi-Square Distribution” on page B-29 — The chi-square distribution is the distribution of the

sum of squared, independent, standard normal random variables. If a set of n observations is
normally distributed with variance σ2, and s2 is the sample variance, then (n–1)s2/σ2 has a chi-
square distribution with n–1 degrees of freedom. The normfit function uses this relationship to
calculate confidence intervals for the estimate of the normal parameter σ2 .

• “Extreme Value Distribution” on page B-41 — The extreme value distribution is appropriate for
modeling the smallest or largest value from a distribution whose tails decay exponentially fast,
such as, the normal distribution.
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• “Gamma Distribution” on page B-48 — The gamma distribution has the shape parameter a and the
scale parameter b. For a large a, the gamma distribution closely approximates the normal
distribution with mean μ = ab and variance σ2 = ab2. The gamma distribution has density only for
positive real numbers. See “Compare Gamma and Normal Distribution pdfs” on page B-129.

• “Half-Normal Distribution” on page B-69 — The half-normal distribution is a special case of the
folded normal and truncated normal distributions. If a random variable Z has a standard normal
distribution, then X = μ + σ Z  has a half-normal distribution with parameters μ and σ.

• “Logistic Distribution” on page B-86 — The logistic distribution is used for growth models and in
logistic regression. It has longer tails and a higher kurtosis than the normal distribution.

• “Lognormal Distribution” on page B-89 — If X follows the lognormal distribution with parameters
µ and σ, then log(X) follows the normal distribution with mean µ and standard deviation σ. See
“Relationship Between Normal and Lognormal Distributions” on page B-130.

• “Multivariate Normal Distribution” on page B-104 — The multivariate normal distribution is a
generalization of the univariate normal to two or more variables. It is a distribution for random
vectors of correlated variables, in which each element has a univariate normal distribution. In the
simplest case, there is no correlation among variables, and elements of the vectors are
independent, univariate normal random variables.

• “Poisson Distribution” on page B-137 — The Poisson distribution is a one-parameter discrete
distribution that takes nonnegative integer values. The parameter, λ, is both the mean and the
variance of the distribution. As λ increase, the Poisson distribution can be approximated by a
normal distribution with µ = λ and σ2 = λ.

• “Rayleigh Distribution” on page B-143 — The Rayleigh distribution is a special case of the Weibull
distribution with applications in communications theory. If the component velocities of a particle
in the x and y directions are two independent normal random variables with zero means and equal
variances, then the distance the particle travels per unit time follows the Rayleigh distribution.

• “Stable Distribution” on page B-147 — The normal distribution is a special case of the stable
distribution. The stable distribution with the first shape parameter α = 2 corresponds to the
normal distribution.

N μ, σ2 = S 2, 0, σ
2, μ .

• “Student's t Distribution” on page B-156 — The Student’s t distribution is a family of curves
depending on a single parameter ν (the degrees of freedom). As the degrees of freedom ν goes to
infinity, the t distribution approaches the standard normal distribution. See “Compare Student's t
and Normal Distribution pdfs” on page B-132.

If x is a random sample of size n from a normal distribution with mean μ, then the statistic

t = x − μ
s/ n

where x is the sample mean and s is the sample standard deviation, has the Student's t
distribution with n–1 degrees of freedom.

• “t Location-Scale Distribution” on page B-163 — The t location-scale distribution is useful for
modeling data distributions with heavier tails (more prone to outliers) than the normal
distribution. It approaches the normal distribution as the shape parameter ν approaches infinity.
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See Also
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More About
• “Working with Probability Distributions” on page 5-3
• “Supported Distributions” on page 5-16
• “Compare Multiple Distribution Fits” on page 5-88
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Piecewise Linear Distribution

In this section...
“Overview” on page B-136
“Parameters” on page B-136
“Cumulative Distribution Function” on page B-136
“Relationship to Other Distributions” on page B-136

Overview
The piecewise linear distribution creates a nonparametric representation of the cumulative
distribution function (cdf) by linearly connecting the known cdf values from the sample data.

Parameters
The piecewise linear distribution uses the following parameters.

Parameter Description
x Vector of x values at which the cdf changes slope
Fx Vector of cdf values that correspond to each value

in x

Cumulative Distribution Function
The piecewise linear distribution constructs a continuous cumulative distribution function (cdf) by
connecting the empirical cdf values such that the cdf increases linearly between x(j) and x(j + 1).

Relationship to Other Distributions
The piecewise linear distribution is a continuous version of the discrete empirical cumulative
distribution function (ecdf).

See Also
PiecewiseLinearDistribution

More About
• “Nonparametric and Empirical Probability Distributions” on page 5-31
• “Working with Probability Distributions” on page 5-3
• “Supported Distributions” on page 5-16
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Poisson Distribution
In this section...
“Overview” on page B-137
“Parameters” on page B-137
“Probability Density Function” on page B-137
“Cumulative Distribution Function” on page B-138
“Examples” on page B-138
“Related Distributions” on page B-141

Overview
The Poisson distribution is a one-parameter family of curves that models the number of times a
random event occurs. This distribution is appropriate for applications that involve counting the
number of times a random event occurs in a given amount of time, distance, area, and so on. Sample
applications that involve Poisson distributions include the number of Geiger counter clicks per
second, the number of people walking into a store in an hour, and the number of packets lost over a
network per minute.

Statistics and Machine Learning Toolbox offers several ways to work with the Poisson distribution.

• Create a probability distribution object PoissonDistribution by fitting a probability
distribution to sample data or by specifying parameter values. Then, use object functions to
evaluate the distribution, generate random numbers, and so on.

• Work with the Poisson distribution interactively by using the Distribution Fitter app. You can
export an object from the app and use the object functions.

• Use distribution-specific functions (poisscdf, poisspdf, poissinv, poisstat, poissfit,
poissrnd) with specified distribution parameters. The distribution-specific functions can accept
parameters of multiple Poisson distributions.

• Use generic distribution functions (cdf, icdf, pdf, random) with a specified distribution name
('Poisson') and parameters.

Parameters
The Poisson distribution uses the following parameter.

Parameter Description Support
lambda (λ) Mean λ ≥ 0

The parameter λ is also equal to the variance of the Poisson distribution.

The sum of two Poisson random variables with parameters λ1 and λ2 is a Poisson random variable
with parameter λ = λ1 + λ2 .

Probability Density Function
The probability density function (pdf) of the Poisson distribution is
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f (x λ) = λx

x! e−λ ; x = 0, 1, 2, …,∞ .

The result is the probability of exactly x occurrences of the random event. For discrete distributions,
the pdf is also known as the probability mass function (pmf).

For an example, see “Compute Poisson Distribution pdf” on page B-138.

Cumulative Distribution Function
The cumulative distribution function (cdf) of the Poisson distribution is

p = F(x λ) = e−λ ∑
i = 0

f loor(x) λi

i! .

The result is the probability of at most x occurrences of the random event.

For an example, see “Compute Poisson Distribution cdf” on page B-139.

Examples
Compute Poisson Distribution pdf

Compute the pdf of the Poisson distribution with parameter lambda = 4.

x = 0:15;
y = poisspdf(x,4);

Plot the pdf with bars of width 1.

figure
bar(x,y,1)
xlabel('Observation')
ylabel('Probability')
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Compute Poisson Distribution cdf

Compute the cdf of the Poisson distribution with parameter lambda = 4.

x = 0:15;
y = poisscdf(x,4);

Plot the cdf.

figure
stairs(x,y)
xlabel('Observation')
ylabel('Cumulative Probability')

 Poisson Distribution

B-139



Compare Poisson and Normal Distribution pdfs

When lambda is large, the Poisson distribution can be approximated by the normal distribution with
mean lambda and variance lambda.

Compute the pdf of the Poisson distribution with parameter lambda = 50.

lambda = 50;
x1 = 0:100;
y1 = poisspdf(x1,lambda);

Compute the pdf of the corresponding normal distribution.

mu = lambda;
sigma = sqrt(lambda);
x2 = 0:0.1:100;
y2 = normpdf(x2,mu,sigma);

Plot the pdfs on the same axis.

figure
bar(x1,y1,1)
hold on
plot(x2,y2,'LineWidth',2)
xlabel('Observation')
ylabel('Probability')

B Poisson Distribution

B-140



title('Poisson and Normal pdfs')
legend('Poisson Distribution','Normal Distribution','location','northwest')
hold off

The pdf of the normal distribution closely approximates the pdf of the Poisson distribution.

Related Distributions
• “Binomial Distribution” on page B-10 — The binomial distribution is a two-parameter discrete

distribution that counts the number of successes in N independent trials with the probability of
success p. The Poisson distribution is the limiting case of a binomial distribution where N
approaches infinity and p goes to zero while Np = λ. See “Compare Binomial and Poisson
Distribution pdfs” on page B-15.

• “Exponential Distribution” on page B-34 — The exponential distribution is a one-parameter
continuous distribution that has parameter μ (mean). The Poisson distribution models counts of
the number of times a random event occurs in a given amount of time. In such a model, the
amount of time between occurrences is modeled by the exponential distribution with mean 1λ .

• “Normal Distribution” on page B-125 — The normal distribution is a two-parameter continuous
distribution that has parameters μ (mean) and σ (standard deviation). When λ is large, the Poisson
distribution can be approximated by the normal distribution with μ = λ and σ2 = λ. See “Compare
Poisson and Normal Distribution pdfs” on page B-140.
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Rayleigh Distribution
In this section...
“Definition” on page B-143
“Background” on page B-143
“Parameters” on page B-143
“Examples” on page B-143

Definition
The Rayleigh pdf is

y = f (x b) = x
b2e

−x2

2b2

Background
The Rayleigh distribution is a special case of the Weibull distribution on page B-177. If A and B are
the parameters of the Weibull distribution, then the Rayleigh distribution with parameter b is
equivalent to the Weibull distribution with parametersA = 2b and B = 2.

If the component velocities of a particle in the x and y directions are two independent normal random
variables with zero means and equal variances, then the distance the particle travels per unit time is
distributed Rayleigh.

In communications theory, Nakagami distributions on page B-114, Rician distributions on page B-145,
and Rayleigh distributions are used to model scattered signals that reach a receiver by multiple
paths. Depending on the density of the scatter, the signal will display different fading characteristics.
Rayleigh and Nakagami distributions are used to model dense scatters, while Rician distributions
model fading with a stronger line-of-sight. Nakagami distributions can be reduced to Rayleigh
distributions, but give more control over the extent of the fading.

Parameters
The raylfit function returns the MLE of the Rayleigh parameter. This estimate is

b = 1
2n ∑i = 1

n
xi

2

Examples
Compute and Plot Rayleigh Distribution pdf

Compute the pdf of a Rayleigh distribution with parameter B = 0.5.

x = [0:0.01:2];
p = raylpdf(x,0.5);

 Rayleigh Distribution

B-143



Plot the pdf.

figure;
plot(x,p)

See Also
RayleighDistribution

More About
• “Working with Probability Distributions” on page 5-3
• “Supported Distributions” on page 5-16
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Rician Distribution
In this section...
“Definition” on page B-145
“Background” on page B-145
“Parameters” on page B-145

Definition
The Rician distribution has the density function

I0
xs
σ2

x
σ2e−

x2 + s2

2σ2

with noncentrality parameter s ≥ 0 and scale parameter σ > 0, for x > 0. I0 is the zero-order modified
Bessel function of the first kind. If x has a Rician distribution with parameters s and σ, then (x/σ)2 has
a noncentral chi-square distribution with two degrees of freedom and noncentrality parameter (s/σ)2.

Background
In communications theory, Nakagami distributions on page B-114, Rician distributions, and Rayleigh
distributions on page B-143 are used to model scattered signals that reach a receiver by multiple
paths. Depending on the density of the scatter, the signal will display different fading characteristics.
Rayleigh and Nakagami distributions are used to model dense scatters, while Rician distributions
model fading with a stronger line-of-sight. Nakagami distributions can be reduced to Rayleigh
distributions, but give more control over the extent of the fading.

Parameters
To estimate distribution parameters, use mle or the Distribution Fitter app.

Fit Rician Distribution with Known Scale Parameter

Generate sample data of size 1000 from a Rician distribution with noncentrality parameter of 8 and
scale parameter of 5. First create the Rician distribution.

r = makedist('Rician','s',8,'sigma',5);

Now, generate sample data from the distribution you created above.

rng default % For reproducibility
x = random(r,1000,1);

Suppose the scale parameter is known, and estimate the noncentrality parameter from sample data.
To do this using mle, you must custom define the Rician probability density function.

[phat,pci] = mle(x,'pdf',@(x,s,sigma) pdf('rician',x,s,5),'start',10)

phat = 7.8953
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pci = 2×1

    7.5405
    8.2501

The estimate for the noncentrality parameter is 7.8953, with a 95% confidence interval of 7.5404 and
8.2501. The confidence interval includes the true parameter value of 8.

See Also
RicianDistribution

More About
• “Working with Probability Distributions” on page 5-3
• “Supported Distributions” on page 5-16
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Stable Distribution
In this section...
“Overview” on page B-147
“Parameters” on page B-147
“Probability Density Function” on page B-148
“Cumulative Distribution Function” on page B-150
“Descriptive Statistics” on page B-152
“Relationship to Other Distributions” on page B-153

Overview
Stable distributions are a class of probability distributions suitable for modeling heavy tails and
skewness. A linear combination of two independent, identically-distributed stable-distributed random
variables has the same distribution as the individual variables. In other words, if X1, X2, ..., Xn are
independent and identically distributed stable random variables, then for every n

X1 + X2 + … + Xn =d cnX + dn

where the constant cn > 0 and dn ∈ ℝ.

The stable distribution is an application of the Generalized Central Limit Theorem, which states that
the limit of normalized sums of independent identically distributed variables is stable.

Several different parameterizations exist for the stable distribution. The implementation in Statistics
and Machine Learning Toolbox uses the parameterization described in [2]. In this case, a random
variable X has the stable distribution S α, β, γ, δ; 0  if its characteristic function is given by:

E eitX =
exp −γα t α 1 + iβsign t tanπα

2 γ t 1− α− 1 + iδt for α ≠ 1,

exp −γ t 1 + iβsign t 2
π ln γ t + iδt for α = 1

Parameters
The stable distribution uses the following parameters.

Parameter Description Support
alpha First shape parameter 0 < α ≤ 2
beta Second shape parameter -1 ≤ β ≤ 1
gam Scale parameter 0 < γ < ∞
delta Location parameter -∞ < δ < ∞

The first shape parameter, α, describes the tails of the distribution. The software computes the
densities of the stable distribution using the direct integration method. As explained in [1], numerical
difficulties exist with accurately computing the pdf and cdf when the α parameter is close to 1 or 0. If
α is close to 1 (specifically, 0 < α− 1 < 0.02), then the software rounds α to 1. If α is close to 0, then
the densities may not be accurate.
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The second shape parameter, β, describes the skewness of the distribution. If β = 0, then the
distribution is symmetric. If β > 0, then the distribution is right-skewed. If β < 0, then the distribution
is left-skewed. When α is small, the skewness of β is significant. As α increases, the effect of β
decreases.

Probability Density Function
Definition

Most members of the stable distribution family do not have an explicit probability density function
(pdf). Instead, the pdf is described in terms of the characteristic function [2].

Some special cases of the stable distribution, such as the normal, Cauchy, and Lévy distributions,
have closed-form density functions. See Relationship to Other Distributions on page B-153 for more
information.

Use pdf to calculate the probability density function for the stable distribution. The software
computes the pdf using the direct integration method. As explained in [1], numerical difficulties exist
with accurately computing the pdf when the α parameter is close to 1 or 0. If α is close to 1
(specifically, 0 < α− 1 < 0.02), then the software rounds α to 1. If α is close to 0, then the densities
may not be accurate.

Compare PDFs of Stable Distributions

The following plot compares the probability density functions for stable distributions with different
alpha values. In each case, beta = 0, gam = 1, and delta = 0.

pd1 = makedist('Stable','alpha',2,'beta',0,'gam',1,'delta',0);
pd2 = makedist('Stable','alpha',1,'beta',0,'gam',1,'delta',0);
pd3 = makedist('Stable','alpha',0.5,'beta',0,'gam',1,'delta',0);

Calculate the pdf for each distribution.

x = -5:.1:5;
pdf1 = pdf(pd1,x);
pdf2 = pdf(pd2,x);
pdf3 = pdf(pd3,x);

Plot all three pdf functions on the same figure for visual comparison.

figure
plot(x,pdf1,'b-');
hold on
plot(x,pdf2,'r-.');
plot(x,pdf3,'k--');
title('Compare Alpha Parameters in Stable Distribution PDF Plots')
legend('\alpha = 2','\alpha = 1','\alpha = 0.5','Location','northwest')
hold off
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The plot illustrates the effect of the alpha parameter on the tails of the distribution.

The next plot compares the probability density functions for stable distributions with different beta
values. In each case, alpha = 0.5, gam = 1, and delta = 0.

pd1 = makedist('Stable','alpha',0.5,'beta',0,'gam',1,'delta',0);
pd2 = makedist('Stable','alpha',0.5,'beta',0.5,'gam',1,'delta',0);
pd3 = makedist('Stable','alpha',0.5,'beta',1,'gam',1,'delta',0);

Calculate the pdf for each distribution.

x = -5:.1:5;
pdf1 = pdf(pd1,x);
pdf2 = pdf(pd2,x);
pdf3 = pdf(pd3,x);

Plot all three pdf functions on the same figure for visual comparison.

figure
plot(x,pdf1,'b-');
hold on
plot(x,pdf2,'r-.');
plot(x,pdf3,'k--');
title('Compare Beta Parameters in Stable Distribution PDF Plots')
legend('\beta = 0','\beta = 0.5','\beta = 1','Location','northwest')
hold off
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Random Number Generation

Use random to generate random numbers from the stable distribution. The software generates
random numbers for the stable distribution using the method proposed in [3]

Cumulative Distribution Function
Definition

Most members of the stable distribution family do not have an explicit cumulative distribution
function (cdf). Instead, the cdf is described in terms of the characteristic function [2].

Use cdf to calculate the cumulative distribution function for the stable distribution. The software
computes the cdf using the direct integration method. As explained in [1], numerical difficulties exist
with accurately computing the cdf when the α parameter is close to 1 or 0. If α is close to 1
(specifically, 0 < α− 1 < 0.02), then the software rounds α to 1. If α is close to 0, then the densities
may not be accurate.

Compare CDFs of Stable Distributions

The following plot compares the cumulative distribution functions for stable distributions with
different alpha values. In each case, beta = 0, gam = 1, and delta = 0.
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pd1 = makedist('Stable','alpha',2,'beta',0,'gam',1,'delta',0);
pd2 = makedist('Stable','alpha',1,'beta',0,'gam',1,'delta',0);
pd3 = makedist('Stable','alpha',0.5,'beta',0,'gam',1,'delta',0);

Calculate the cdf for each distribution.

x = -5:.1:5;
cdf1 = cdf(pd1,x);
cdf2 = cdf(pd2,x);
cdf3 = cdf(pd3,x);

Plot all three cdf functions on the same figure for visual comparison.

figure
plot(x,cdf1,'b-');
hold on
plot(x,cdf2,'r-.');
plot(x,cdf3,'k--');
title('Compare Alpha Parameters in Stable Distribution CDF Plots')
legend('\alpha = 2','\alpha = 1','\alpha = 0.5','Location','northwest')
hold off

The plot illustrates the effect of the alpha parameter on the shape of the cdf.

The next plot compares the cumulative distribution functions for stable distributions with different
beta values. In all cases, alpha = 0.5, gam = 1, and delta = 0.
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pd1 = makedist('Stable','alpha',0.5,'beta',0,'gam',1,'delta',0);
pd2 = makedist('Stable','alpha',0.5,'beta',0.5,'gam',1,'delta',0);
pd3 = makedist('Stable','alpha',0.5,'beta',1,'gam',1,'delta',0);

Calculate the cdf for each distribution.

x = -5:.1:5;
cdf1 = cdf(pd1,x);
cdf2 = cdf(pd2,x);
cdf3 = cdf(pd3,x);

Plot all three pdf functions on the same figure for visual comparison.

figure
plot(x,cdf1,'b-');
hold on
plot(x,cdf2,'r-.');
plot(x,cdf3,'k--');
title('Compare Beta Parameters in Stable Distribution CDF Plots')
legend('\beta = 0','\beta = 0.5','\beta = 1','Location','northwest')
hold off

Descriptive Statistics
The mean of the stable distribution is undefined for values of α ≤ 1. For α > 1, the mean of the stable
distribution is
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mean = δ− βγtan πα
2 .

Use mean to calculate the mean of the stable distribution.

The variance of the stable distribution is undefined for values of α < 2. For α = 2, the variance of the
stable distribution is

var = 2γ2 .

Use var to calculate the variance of the stable distribution.

Relationship to Other Distributions
The stable distribution has three special cases: The normal distribution, the Cauchy distribution, and
the Lévy distribution. These distributions are notable because they have closed-form probability
density functions.

Normal Distribution

The normal, or Gaussian, distribution is a special case of the stable distribution. The stable
distribution with α = 2 corresponds to the normal distribution. In other words,

N μ, σ2 = S 2, 0, σ
2, μ .

μ is the mean and σ is the standard deviation of the normal distribution.

Although the value of β has no effect when α = 2, the normal distribution is usually associated with
β= 0.

The probability density function for the normal distribution is

f x = 1
2πσexp − x− μ 2

2σ2 , −∞ < x < ∞ .

A plot of the density for a normal distribution is symmetric and has a bell-shaped curve.

Cauchy Distribution

The Cauchy distribution is a special case of the stable distribution with α = 1 and β = 0. In other
words,

Cauchy δ, γ = S 1, 0, γ, δ ,

where γ is the scale parameter and δ is location parameter of the Cauchy distribution.

The probability density function for the Cauchy distribution is

f x = 1
π

γ
γ2 + x− δ 2 , −∞ < x < ∞ .

A plot of the density for a Cauchy distribution is symmetric and has a bell-shaped curve, but has
heavier tails than the density of a normal distribution.
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Lévy Distribution

The Lévy distribution is a special case of the stable distribution where α = 0.5 and β = 1. In other
words,

Lévy δ, γ = S 0.5, 1, γ, γ + δ .

where γ is the scale parameter and δ is location parameter of the Lévy distribution.

The probability density function for the Lévy distribution is

f x = γ
2π

1
x− δ 3/2exp − γ

2 x− δ , δ < x < ∞ .

A plot of the density for a Lévy distribution is highly skewed and has heavy tails.

Comparison Plot for Stable Distributions

The following plot compares the probability density functions for the standard normal, Cauchy, and
Lévy distributions.

Create a probability distribution object for the standard normal, Cauchy, and Lévy distributions.

pd_norm = makedist('Stable','alpha',2,'beta',0,'gam',1/sqrt(2),'delta',0);
pd_cauchy = makedist('Stable','alpha',1,'beta',0,'gam',1,'delta',0);
pd_levy = makedist('Stable','alpha',0.5,'beta',1,'gam',1,'delta',0);

Calculate the pdf for each distribution.

x = -5:.1:5;
pdf_norm = pdf(pd_norm,x);
pdf_cauchy = pdf(pd_cauchy,x);
pdf_levy = pdf(pd_levy,x);

Plot all three pdf functions on the same figure for visual comparison.

figure
plot(x,pdf_norm,'b-');
hold on
plot(x,pdf_cauchy,'r.');
plot(x,pdf_levy,'k--');
title('Compare Stable Distributions pdf Plots')
legend('Normal','Cauchy','Levy','Location','northwest')
hold off
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More About
• “Working with Probability Distributions” on page 5-3
• “Supported Distributions” on page 5-16
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Student's t Distribution
In this section...
“Overview” on page B-156
“Parameters” on page B-156
“Probability Density Function” on page B-156
“Cumulative Distribution Function” on page B-157
“Inverse Cumulative Distribution Function” on page B-157
“Descriptive Statistics” on page B-157
“Examples” on page B-157
“Related Distributions” on page B-161

Overview
The Student’s t distribution is a one-parameter family of curves. This distribution is typically used to
test a hypothesis regarding the population mean when the population standard deviation is unknown.

Statistics and Machine Learning Toolbox offers multiple ways to work with the Student’s t
distribution.

• Use distribution-specific functions (tcdf, tinv, tpdf, trnd, tstat) with specified distribution
parameters. The distribution-specific functions can accept parameters of multiple Student’s t
distributions.

• Use generic distribution functions (cdf, icdf, pdf, random) with a specified distribution name
('T') and parameters.

Parameters
The Student’s t distribution uses the following parameter.

Parameter Description Support
nu (ν) Degrees of freedom ν = 1, 2, 3,...

Probability Density Function
The pdf of the Student's t distribution is

y = f (x ν) =
Γ ν + 1

2

Γ ν
2

1
νπ

1

1 + x2
ν

ν + 1
2

,

where ν is the degrees of freedom and Γ( · ) is the Gamma function. The result y is the probability of
observing a particular value of x from the Student’s t distribution with ν degrees of freedom.

For an example, see “Compute and Plot Student's t Distribution pdf” on page B-157.
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Cumulative Distribution Function
The cdf of the Student’s t distribution is

p = F(x ν) =∫−∞
x Γ ν + 1

2

Γ ν
2

1
νπ

1

1 + t2
ν

ν + 1
2

dt,

where ν is the degrees of freedom and Γ( · ) is the Gamma function. The result p is the probability
that a single observation from the t distribution with ν degrees of freedom falls in the interval [–∞, x].

For an example, see “Compute and Plot Student's t Distribution cdf” on page B-158.

Inverse Cumulative Distribution Function
The t inverse function is defined in terms of the Student's t cdf as

x = F−1(p ν) = x:F(x ν) = p ,

where

p = F(x ν) =∫−∞
x Γ ν + 1

2

Γ ν
2

1
νπ

1

1 + t2
ν

ν + 1
2

dt,

ν is the degrees of freedom, and Γ( · ) is the Gamma function. The result x is the solution of the
integral equation where you supply the probability p.

For an example, see “Compute Student's t icdf” on page B-159.

Descriptive Statistics
The mean of the Student’s t distribution is μ = 0 for degrees of freedom ν greater than 1. If ν equals
1, then the mean is undefined.

The variance of the Student’s t distribution is ν
ν− 2  for degrees of freedom ν greater than 2. If ν is

less than or equal to 2, then the variance is undefined.

Examples
Compute and Plot Student's t Distribution pdf

Compute the pdf of a Student's t distribution with degrees of freedom equal to 5, 10, and 50.

x = [-5:.1:5];
y1 = tpdf(x,5);
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y2 = tpdf(x,10);
y3 = tpdf(x,50);

Plot the pdf for all three choices nu on the same axis.

figure;
plot(x,y1,'Color','black','LineStyle','-')
hold on
plot(x,y2,'Color','red','LineStyle','-.')
plot(x,y3,'Color','blue','LineStyle','--')
xlabel('Observation')
ylabel('Probability Density')
legend({'nu = 5','nu = 10','nu = 50'})
hold off

Compute and Plot Student's t Distribution cdf

Compute the cdf of a Student's t distribution with degrees of freedom equal to 5, 10, and 50.

x = [-5:.1:5];
y1 = tcdf(x,5);
y2 = tcdf(x,10);
y3 = tcdf(x,50);

Plot the cdf for all three choices of nu on the same axis.
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figure;
plot(x,y1,'Color','black','LineStyle','-')
hold on
plot(x,y2,'Color','red','LineStyle','-.')
plot(x,y3,'Color','blue','LineStyle','--')
xlabel('Observation')
ylabel('Cumulative Probability')
legend({'nu = 5','nu = 10','nu = 50'})
hold off

Compute Student's t icdf

Find the 95th percentile of the Student's t distribution with 50 degrees of freedom.

p = .95;   
nu = 50;   
x = tinv(p,nu)

x = 1.6759

Compare Student's t and Normal Distribution pdfs
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The Student’s t distribution is a family of curves depending on a single parameter ν (the degrees of
freedom). As the degrees of freedom ν approach infinity, the t distribution approaches the standard
normal distribution.

Compute the pdfs for the Student's t distribution with the parameter nu = 5 and the Student's t
distribution with the parameter nu = 15.

x = [-5:0.1:5];
y1 = tpdf(x,5);
y2 = tpdf(x,15);

Compute the pdf for a standard normal distribution.

z = normpdf(x,0,1);

Plot the Student's t pdfs and the standard normal pdf on the same figure.

plot(x,y1,'-.',x,y2,'--',x,z,'-')
legend('Student''s t Distribution with \nu=5', ...
    'Student''s t Distribution with \nu=15', ...
    'Standard Normal Distribution','Location','best')
xlabel('Observation')
ylabel('Probability Density')
title('Student''s t and Standard Normal pdfs')

The standard normal pdf has shorter tails than the Student's t pdfs.
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Related Distributions
• “Beta Distribution” on page B-6 — The beta distribution is a two-parameter continuous

distribution that has parameters a (first shape parameter) and b (second shape parameter). If Y
has a Student's t distribution with ν degrees of freedom, then X = 1

2 + 1
2

Y
ν + Y2  has beta

distribution with the shape parameters a = ν/2 and b = ν/2. This relationship is used to compute
values of the t cdf and inverse functions, and to generate t distributed random numbers.

• Cauchy Distribution — The Cauchy distribution is a two-parameter continuous distribution with
the parameters γ (scale) and δ (location). It is a special case of the “Stable Distribution” on page
B-147 with the shape parameters α = 1 and β = 0. The standard Cauchy distribution (unit scale
and location zero) is the Student’s t distribution with degrees of freedom ν equal to 1. The
standard Cauchy distribution has an undefined mean and variance.

For an example, see “Generate Cauchy Random Numbers Using Student's t” on page 5-115.
• “Chi-Square Distribution” on page B-29 — The chi-square distribution is a one-parameter

continuous distribution that has the parameter ν (degrees of freedom). If Z has a standard normal
distribution and χ2 has a chi-square distribution with degrees of freedom ν, then t =  Z

χ2/ν
 has a

Student's t distribution with degrees of freedom ν.
• “Noncentral t Distribution” on page B-123 — The noncentral t distribution is a two-parameter

continuous distribution that generalizes the Student's t distribution and has the parameters ν
(degrees of freedom) and δ (noncentrality). Setting δ = 0 yields the Student's t distribution.

• “Normal Distribution” on page B-125 — The normal distribution is a two-parameter continuous
distribution with the parameters μ (mean) and σ (standard deviation).

As the degrees of freedom ν approach infinity, the Student's t distribution approaches the
standard normal distribution (zero mean and unit standard deviation).

For an example, see “Compare Student's t and Normal Distribution pdfs” on page B-159

If x is a random sample of size n from a normal distribution with mean μ, then the statistic
t = x − μ

s/ n , where x is the sample mean and s is the sample standard deviation, has a Student's t

distribution with n —1 degrees of freedom.

For an example, see “Compute Student's t Distribution cdf” on page 35-7190.
• “t Location-Scale Distribution” on page B-163 — The t location-scale distribution is a three-

parameter continuous distribution with the parameters μ (mean), σ (scale), and ν (shape). If x has
a t location-scale distribution with the parameters µ, σ, and ν, then x− μ

σ  has a Student's t
distribution with ν degrees of freedom.
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See Also
tcdf | tpdf | tinv | tstat | trnd | ttest | ttest2

More About
• “Generate Cauchy Random Numbers Using Student's t” on page 5-115
• “Working with Probability Distributions” on page 5-3
• “Supported Distributions” on page 5-16
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t Location-Scale Distribution

In this section...
“Overview” on page B-163
“Parameters” on page B-163
“Probability Density Function” on page B-163
“Cumulative Distribution Function” on page B-164
“Descriptive Statistics” on page B-164
“Relationship to Other Distributions” on page B-164

Overview
The t location-scale distribution is useful for modeling data distributions with heavier tails (more
prone to outliers) than the normal distribution. It approaches the normal distribution as ν approaches
infinity, and smaller values of ν yield heavier tails.

Parameters
The t location-scale distribution uses the following parameters.

Parameter Description Support
μ Location parameter –∞ < μ < ∞
σ Scale parameter σ > 0
ν Shape parameter ν > 0

To estimate distribution parameters, use mle. Alternatively, fit a tLocationScaleDistribution
object to data using fitdist or the Distribution Fitter app.

Probability Density Function
The probability density function (pdf) of the t location-scale distribution is

Γ ν + 1
2

σ νπΓ ν
2

ν + x− μ
σ

2

ν

− ν + 1
2

where Γ( • ) is the gamma function, µ is the location parameter, σ is the scale parameter, and ν is the
shape parameter .

To compute the probability density function, use pdf and specify 'tLocationScale'. Alternatively,
you can create a tLocationScaleDistribution object using fitdist or makedist, then use the
pdf to work with the object.
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Cumulative Distribution Function
To compute the probability density function, use cdf and specify 'tLocationScale'. Alternatively,
you can create a tLocationScaleDistribution object using fitdist or makedist, then use the
cdf to work with the object.

Descriptive Statistics
The mean of the t location-scale distribution is

mean = μ ,

where μ is the location parameter. The mean is only defined for shape parameter values ν > 1. For
other values of ν, the mean is undefined.

The variance of the t location-scale distribution is

var = σ2 ν
ν− 2 ,

where μ is the location parameter and ν is the shape parameter. The variance is only defined for
values of ν > 2. For other values of ν, the variance is undefined.

To compute the mean and variance, create a tLocationScaleDistribution object using fitdist
or makedist. You can also use the Distribution Fitter app.

Relationship to Other Distributions
If x has a t location-scale distribution, with parameters µ, σ, and ν, then

x− μ
σ

has a Student's t distribution with ν degrees of freedom.

See Also
tLocationScaleDistribution

More About
• “Represent Cauchy Distribution Using t Location-Scale” on page 5-112
• “Working with Probability Distributions” on page 5-3
• “Supported Distributions” on page 5-16
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Triangular Distribution
In this section...
“Overview” on page B-165
“Parameters” on page B-165
“Probability Density Function” on page B-165
“Cumulative Distribution Function” on page B-166
“Examples” on page B-166

Overview
The triangular distribution provides a simplistic representation of the probability distribution when
limited sample data is available. Its parameters are the minimum, maximum, and peak of the data.
Common applications include business and economic simulations, project management planning,
natural phenomena modeling, and audio dithering.

Parameters
The triangular distribution uses the following parameters.

Parameter Description Constraints
a Lower limit A ≤ B
b Peak location A ≤ B ≤ C
c Upper limit C ≥ B

The mean and variance of the triangular distribution are related to the parameters a, b, and c.

The mean is

mean = a + b + c
3 .

The variance is

var = a2 + b2 + c2− ab− ac− bc
18 .

Parameter Estimation

Typically, you estimate triangular distribution parameters using subjectively reasonable values based
on the sample data. You can estimate the lower and upper limit parameters a and c using the
minimum and maximum values of the sample data, respectively. You can estimate the peak location
parameter b using the sample mean, median, mode, or any other subjectively reasonable estimate of
the population mode.

Probability Density Function
The probability density function (pdf) of the triangular distribution is
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f (x a, b, c) =

2 x− a
c− a b− a ; a ≤ x ≤ b

2 c− x
c− a c− b ; b < x ≤ c

0 ; x < a , x > c

.

For an example, see “Plot Triangular Distribution pdfs” on page B-166.

Cumulative Distribution Function
The cumulative distribution function (cdf) of the triangular distribution is

F(x a, b, c) =

0 , x < a

x− a 2

c− a b− a , a ≤ x ≤ b

1− c− x 2

c− a c− b , b < x ≤ c

1 , x > c

.

For an example, see “Plot Triangular Distribution cdfs” on page B-167.

Examples
Plot Triangular Distribution pdfs

Change the value of the triangular distribution parameters a, b, and c to alter the shape of the
probability distribution function (pdf).

Create four triangular distribution objects with different parameter values.

pd1 = makedist("Triangular");
pd2 = makedist("Triangular","a",-1,"b",0,"c",1);
pd3 = makedist("Triangular","a",-0.5,"b",0,"c",1);
pd4 = makedist("Triangular","a",0,"b",0,"c",1);

Compute the pdfs of the four distributions.

x = -2:0.01:2;
pdf1 = pdf(pd1,x);
pdf2 = pdf(pd2,x);
pdf3 = pdf(pd3,x);
pdf4 = pdf(pd4,x);

Plot the four pdfs.

plot(x,pdf1)
hold on
plot(x,pdf2,":")
plot(x,pdf3,"-.")
plot(x,pdf4,"--")
legend(["a = 0, b = 0.5, c = 1","a = -1, b = 0, c = 1", ...
    "a = -0.5, b = 0, c = 1","a = 0, b = 0, c = 1"], ...
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    "Location","northwest");
hold off

As the distance between a and c increases, the density at any particular value within the distribution
boundaries decreases. Because the density function integrates to 1, the height of the pdf plot
decreases as its width increases. The location of the peak parameter b determines whether the pdf
skews right or left, or if it is symmetrical.

Plot Triangular Distribution cdfs

Change the value of the triangular distribution parameters a, b, and c to alter the shape of the
cumulative distribution function (cdf).

Create four triangular distribution objects with different parameters.

pd1 = makedist("Triangular");
pd2 = makedist("Triangular","a",-1,"b",0,"c",1);
pd3 = makedist("Triangular","a",-0.5,"b",0,"c",1);
pd4 = makedist("Triangular","a",0,"b",0,"c",1);

Compute the cdfs of the four distributions.

x = -1.2:0.01:1.2;
cdf1 = cdf(pd1,x);
cdf2 = cdf(pd2,x);
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cdf3 = cdf(pd3,x);
cdf4 = cdf(pd4,x);

Plot the four cdfs.

plot(x,cdf1)
hold on
plot(x,cdf2,":")
plot(x,cdf3,"-.")
plot(x,cdf4,"--")
legend(["a = 0, b = 0.5, c = 1","a = -1, b = 0, c = 1", ...
    "a = -0.5, b = 0, c = 1","a = 0, b = 0, c = 1"], ...
    "Location","northwest");
xlim([-1.2 1.2]);
ylim([0 1.1])
hold off

See Also
TriangularDistribution

More About
• “Generate Random Numbers Using the Triangular Distribution” on page 5-48
• “Nonparametric and Empirical Probability Distributions” on page 5-31
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• “Working with Probability Distributions” on page 5-3
• “Supported Distributions” on page 5-16

 Triangular Distribution

B-169



Uniform Distribution (Continuous)
In this section...
“Overview” on page B-170
“Parameters” on page B-170
“Probability Density Function” on page B-171
“Cumulative Distribution Function” on page B-171
“Descriptive Statistics” on page B-171
“Random Number Generation” on page B-171
“Examples” on page B-171
“Related Distributions” on page B-174

Overview
The uniform distribution (also called the rectangular distribution) is a two-parameter family of curves
that is notable because it has a constant probability distribution function (pdf) between its two
bounding parameters. This distribution is appropriate for representing the distribution of round-off
errors in values tabulated to a particular number of decimal places. The uniform distribution is used
in random number generating techniques such as the inversion method.

Statistics and Machine Learning Toolbox offers several ways to work with the uniform distribution.

• Create a probability distribution object UniformDistribution by specifying parameter values
(makedist). Then, use object functions to evaluate the distribution, generate random numbers,
and so on.

• Use distribution-specific functions (unifcdf, unifpdf, unifinv, unifit, unifstat, unifrnd)
with specified distribution parameters. The distribution-specific functions can accept parameters
of multiple uniform distributions.

• Use generic distribution functions (cdf, icdf, pdf, random) with a specified distribution name
('Uniform') and parameters.

Parameters
The uniform distribution uses the following parameters.

Parameter Description Support
a Lower endpoint -∞ < a < b
b Upper endpoint a < b < ∞

The standard uniform distribution has a = 0 and b = 1.

Parameter Estimation

The maximum likelihood estimates (MLEs) are the parameter estimates that maximize the likelihood
function. The maximum likelihood estimators of a and b for the uniform distribution are the sample
minimum and maximum, respectively.

To fit the uniform distribution to data and find parameter estimates, use unifit or mle.
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Probability Density Function
The pdf of the uniform distribution is

f (x a, b) =
1

b− a ; a ≤ x ≤ b

0 ; otherwise
.

The pdf is constant between a and b.

For an example, see “Compute Continuous Uniform Distribution pdf” on page B-171.

Cumulative Distribution Function
The cumulative distribution function (cdf) of the uniform distribution is

F x a, b =

0 ; x < a
x− a
b− a ; a ≤ x < b

1 ; x ≥ b

.

The result p is the probability that a single observation from a uniform distribution with parameters a
and b falls in the interval [a x].

For an example, see “Compute Continuous Uniform Distribution cdf” on page B-172.

Descriptive Statistics

The mean of the uniform distribution is μ = 1
2 a + b .

The variance of the uniform distribution is σ2 = 1
12 b− a 2.

Random Number Generation
You can use the standard uniform distribution to generate random numbers for any other continuous
distribution by the inversion method. The inversion method relies on the principle that continuous
cumulative distribution functions (cdfs) range uniformly over the open interval (0, 1). If u is a uniform
random number on (0, 1), then x = F–1(u) generates a random number x from the continuous
distribution with the specified cdf F.

For an example, see “Generate Random Numbers Using Uniform Distribution Inversion” on page 5-
109.

Examples
Compute Continuous Uniform Distribution pdf

Create three uniform distribution objects with different parameters.
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pd1 = makedist('Uniform');                      % Standard uniform distribution
pd2 = makedist('Uniform','lower',-2,'upper',2); % Uniform distribution with a = -2 and b = 2
pd3 = makedist('Uniform','lower',-2,'upper',1); % Uniform distribution with a = -2 and b = 1

Compute the pdfs for the three uniform distributions.

x = -3:.01:3;
pdf1 = pdf(pd1,x);
pdf2 = pdf(pd2,x);
pdf3 = pdf(pd3,x);

Plot the pdfs on the same axis.

figure;
plot(x,pdf1,'r','LineWidth',2); 
hold on;
plot(x,pdf2,'k:','LineWidth',2);
plot(x,pdf3,'b-.','LineWidth',2);
legend({'a = 0, b = 1','a = -2, b = 2','a = -2, b = 1'},'Location','northwest');
xlabel('Observation')
ylabel('Probability Density')
hold off;

As the width of the interval (a,b) increases, the height of each pdf decreases.

Compute Continuous Uniform Distribution cdf
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Create three uniform distribution objects with different parameters.

pd1 = makedist('Uniform');                      % Standard uniform distribution
pd2 = makedist('Uniform','lower',-2,'upper',2); % Uniform distribution with a = -2 and b = 2
pd3 = makedist('Uniform','lower',-2,'upper',1); % Uniform distribution with a = -2 and b = 1

Compute the cdfs for the three uniform distributions.

x = -3:.01:3;
cdf1 = cdf(pd1,x);
cdf2 = cdf(pd2,x);
cdf3 = cdf(pd3,x);

Plot the cdfs on the same axis.

figure;
plot(x,cdf1,'r','LineWidth',2); 
hold on;
plot(x,cdf2,'k:','LineWidth',2);
plot(x,cdf3,'b-.','LineWidth',2);
legend({'a = 0, b = 1','a = -2, b = 2','a = -2, b = 1'},'Location','NW');
xlabel('Observation')
ylabel('Cumulative Probability')
hold off;

As the width of the interval (a,b) increases, the slope of each cdf decreases.

 Uniform Distribution (Continuous)

B-173



Related Distributions
• “Beta Distribution” on page B-6 — The beta distribution is a two-parameter continuous

distribution that has parameters a (first shape parameter) and b (second shape parameter). The
standard uniform distribution is equal to the beta distribution with unit parameters.

• “Triangular Distribution” on page B-165 — The triangular distribution is a three-parameter
continuous distribution that has parameters a (lower limit), b (peak), and c (upper limit). The sum
of two random variables with a standard uniform distribution has a triangular distribution with a
= 0, b = 1, and c = 0.
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See Also
UniformDistribution | unifcdf | unifpdf | unifinv | unifit | unifstat | unifrnd |
makedist | fitdist

More About
• “Generate Random Numbers Using Uniform Distribution Inversion” on page 5-109
• “Working with Probability Distributions” on page 5-3
• “Supported Distributions” on page 5-16
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Uniform Distribution (Discrete)
In this section...
“Definition” on page B-175
“Background” on page B-175
“Examples” on page B-175

Definition
The discrete uniform pdf is

y = f x N = 1
N I 1, ..., N x

Background
The discrete uniform distribution is a simple distribution that puts equal weight on the integers from
one to N.

Examples
Plot a Discrete Uniform Distribution cdf

As for all discrete distributions, the cdf is a step function. The plot shows the discrete uniform cdf for
N = 10.

x = 0:10;
y = unidcdf(x,10);
figure;
stairs(x,y)
h = gca;
h.XLim = [0 11];
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Generate Discrete Uniform Random Numbers

Pick a random sample of 10 from a list of 553 items.

rng default;  % for reproducibility
numbers = unidrnd(553,1,10)

numbers = 1×10

   451   501    71   506   350    54   155   303   530   534

See Also
unidcdf | unidpdf | unidinv | unidstat | unidrnd | random

More About
• “Working with Probability Distributions” on page 5-3
• “Supported Distributions” on page 5-16
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Weibull Distribution
In this section...
“Overview” on page B-177
“Parameters” on page B-177
“Probability Density Function” on page B-178
“Cumulative Distribution Function” on page B-178
“Inverse Cumulative Distribution Function” on page B-178
“Hazard Function” on page B-179
“Examples” on page B-179
“Related Distributions” on page B-182

Overview
The Weibull distribution is a two-parameter family of curves. This distribution is named for Waloddi
Weibull, who offered it as an appropriate analytical tool for modeling the breaking strength of
materials. Current usage also includes reliability and lifetime modeling. The Weibull distribution is
more flexible than the exponential distribution for these purposes, because the exponential
distribution has a constant hazard function.

Statistics and Machine Learning Toolbox offers several ways to work with the Weibull distribution.

• Create a probability distribution object WeibullDistribution by fitting a probability
distribution to sample data (fitdist) or by specifying parameter values (makedist). Then, use
object functions to evaluate the distribution, generate random numbers, and so on.

• Work with the Weibull distribution interactively by using the Distribution Fitter app. You can
export an object from the app and use the object functions.

• Use distribution-specific functions (wblcdf, wblpdf, wblinv, wbllike, wblstat, wblfit,
wblrnd, wblplot) with specified distribution parameters. The distribution-specific functions can
accept parameters of multiple Weibull distributions.

• Use generic distribution functions (cdf, icdf, pdf, random) with a specified distribution name
('Weibull') and parameters.

Parameters
Statistics and Machine Learning Toolbox functions use a two-parameter Weibull distribution with
these parameters.

Parameter Description Support
a Scale a > 0
b Shape b > 0

The standard Weibull distribution has unit scale.

The Weibull distribution can take a third parameter. The three-parameter Weibull distribution adds a
location parameter that is zero in the two-parameter case. If X has a two-parameter Weibull
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distribution, then Y = X + c has a three-parameter Weibull distribution with the added location
parameter c. For more details, see “Three-Parameter Weibull Distribution” on page 5-96.

Parameter Estimation

The likelihood function is the probability density function (pdf) viewed as a function of the
parameters. The maximum likelihood estimates (MLEs) are the parameter estimates that maximize
the likelihood function for fixed values of x. The maximum likelihood estimators of a and b for the
Weibull distribution are the solution of the simultaneous equations

a = 1
n ∑

i = 1

n
xi

b

1
b

b = n
1
a ∑

i = 1

n
xi

b logxi− ∑
i = 1

n
logxi

.

â and b  are unbiased estimators of the parameters a and b.

To fit the Weibull distribution to data and find parameter estimates, use wblfit, fitdist, or mle.
Unlike wblfit and mle, which return parameter estimates, fitdist returns the fitted probability
distribution object WeibullDistribution. The object properties a and b store the parameter
estimates.

For an example, see “Fit Weibull Distribution to Data and Estimate Parameters” on page B-179.

Probability Density Function
The pdf of the Weibull distribution is

f x a, b =
b
a

x
a

b− 1
e− x/a b

if x ≥ 0,

0 if x < 0.

For an example, see “Compute Weibull Distribution pdf” on page B-179.

Cumulative Distribution Function
The cumulative distribution function (cdf) of the Weibull distribution is

p = F x a, b =∫0 x
ba−btb− 1e−

t
a

b
dt = 1− e−

x
a

b
.

The result p is the probability that a single observation from a Weibull distribution with parameters a
and b falls in the interval [0 x].

For an example, see “Compute Weibull Distribution cdf” on page B-180.

Inverse Cumulative Distribution Function
The inverse cdf of the Weibull distribution is
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x = F−1(p a, b) = − a ln 1− p 1/b .

The result x is the value where an observation from a Weibull distribution with parameters a and b
falls in the range [0 x] with probability p.

Hazard Function
The hazard function (instantaneous failure rate) is the ratio of the pdf and the complement of the cdf.
If f(t) and F(t) are the pdf and cdf of a distribution, then the hazard rate is h t = f t

1− F t .
Substituting the pdf and cdf of the exponential distribution for f(t) and F(t) above yields the function
b
abxb− 1.

For an example, see “Compare Exponential and Weibull Distribution Hazard Functions” on page B-
181.

Examples
Fit Weibull Distribution to Data and Estimate Parameters

Simulate the tensile strength data of a thin filament using the Weibull distribution with the scale
parameter value 0.5 and the shape parameter value 2.

rng('default');                  % For reproducibility
strength = wblrnd(0.5,2,100,1);  % Simulated strengths

Compute the MLEs and confidence intervals for the Weibull distribution parameters.

[param,ci] = wblfit(strength)

param = 1×2

    0.4768    1.9622

ci = 2×2

    0.4291    1.6821
    0.5298    2.2890

The estimated scale parameter is 0.4768, with the 95% confidence interval (0.4291,0.5298).

The estimated shape parameter is 1.9622, with the 95% confidence interval (1.6821,2.2890).

The default confidence interval for each parameter contains the true value.

Compute Weibull Distribution pdf

Compute and plot the pdf of the Weibull distribution for various values of the scale (A) and shape (B)
parameters.
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x = linspace(0,30);
plot(x,wblpdf(x,10,1),'DisplayName','A=10, B=1')
hold on
plot(x,wblpdf(x,10,2),'DisplayName','A=10, B=2')
plot(x,wblpdf(x,10,4),'DisplayName','A=10, B=4')
plot(x,wblpdf(x,10,0.5),'DisplayName','A=10, B=0.5')
plot(x,wblpdf(x,10,0.25),'DisplayName','A=10, B=0.25')
plot(x,wblpdf(x,5,1),'DisplayName','A=5, B=1')
hold off
legend('show')
xlabel('x')
ylabel('pdf')

The value B=1 leads to the exponential distribution. Values of B<1 have a density that approaches
infinity as x approaches 0. Values of B>1 have a density that approaches 0 as x approaches 1.

Compute Weibull Distribution cdf

Compute and plot the cdf of the Weibull distribution for various values of the scale (A) and shape (B)
parameters.

x = linspace(0,30);
plot(x,wblcdf(x,10,1),'DisplayName','A=10, B=1')
hold on
plot(x,wblcdf(x,10,2),'DisplayName','A=10, B=2')
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plot(x,wblcdf(x,10,4),'DisplayName','A=10, B=4')
plot(x,wblcdf(x,10,0.5),'DisplayName','A=10, B=0.5')
plot(x,wblcdf(x,10,0.25),'DisplayName','A=10, B=0.25')
plot(x,wblcdf(x,5,1),'DisplayName','A=5, B=1')
hold off
legend('show','Location','southeast')
xlabel('x')
ylabel('cdf')

Compare Exponential and Weibull Distribution Hazard Functions

The exponential distribution has a constant hazard function, which is not generally the case for the
Weibull distribution. In this example, the Weibull hazard rate increases with age (a reasonable
assumption).

Compute the hazard function for the Weibull distribution with the scale parameter value 1 and the
shape parameter value 2.

t = 0:0.1:4.5;
h1 = wblpdf(t,1,2)./(1-wblcdf(t,1,2));

Compute the mean of the Weibull distribution with scale parameter value 1 and shape parameter
value 2.

mu = wblstat(1,2)
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mu = 0.8862

Compute the hazard function for the exponential distribution with mean mu.

h2 = exppdf(t,mu)./(1-expcdf(t,mu));

Plot both hazard functions on the same axis.

plot(t,h1,'-',t,h2,'--')
xlabel('Observation')
ylabel('Hazard Rate')
legend('Weibull','Exponential','location','northwest')

Related Distributions
• “Exponential Distribution” on page B-34 — The exponential distribution is a one-parameter

continuous distribution that has parameter μ (mean). This distribution is also used for lifetime
modeling. When b = 1, the Weibull distribution is equal to the exponential distribution with mean
μ = a.

• “Extreme Value Distribution” on page B-41 — The extreme value distribution is a two-parameter
continuous distribution with parameters µ (location) and σ (scale). If X has a Weibull distribution
with parameters a and b, then log X has an extreme value distribution with parameters µ = log a
and σ = 1/b. This relationship is used to fit data to a Weibull distribution.

• “Rayleigh Distribution” on page B-143 — The Rayleigh distribution is a one-parameter continuous
distribution that has parameter b (scale). If A and B are the parameters of the Weibull distribution,
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then the Rayleigh distribution with parameter b is equivalent to the Weibull distribution with
parametersA = 2b and B = 2.
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More About
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• “Fit Probability Distribution Objects to Grouped Data” on page 5-93
• “Compare Multiple Distribution Fits” on page 5-88
• “Working with Probability Distributions” on page 5-3
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Wishart Distribution
In this section...
“Overview” on page B-184
“Parameters” on page B-184
“Probability Density Function” on page B-184
“Example” on page B-184

Overview
The Wishart distribution is a generalization of the univariate chi-square distribution to two or more
variables. It is a distribution for symmetric positive semidefinite matrices, typically covariance
matrices, the diagonal elements of which are each chi-square random variables. In the same way as
the chi-square distribution can be constructed by summing the squares of independent, identically
distributed, zero-mean univariate normal random variables, the Wishart distribution can be
constructed by summing the inner products of independent, identically distributed, zero-mean
multivariate normal random vectors. The Wishart distribution is often used as a model for the
distribution of the sample covariance matrix for multivariate normal random data, after scaling by the
sample size.

Only random matrix generation is supported for the Wishart distribution, including both singular and
nonsingular Σ.

Parameters
The Wishart distribution is parameterized with a symmetric, positive semidefinite matrix, Σ, and a
positive scalar degrees of freedom parameter, ν. ν is analogous to the degrees of freedom parameter
of a univariate chi-square distribution, and Σν is the mean of the distribution.

Probability Density Function
The probability density function of the d-dimensional Wishart distribution is given by

y = f(Χ, Σ, ν) =  Χ (ν‐d‐1)/2 e ‐12trace Σ−1Χ

2(νd)/2π(d(d‐1))/4 ∑ ν/2Γ ν/2 ...Γ(ν‐(d‐1))/2

where X and Σ are d-by-d symmetric positive definite matrices, and v is a scalar greater than d – 1.
While it is possible to define the Wishart for singular Σ, the density cannot be written as above.

Example
If x is a bivariate normal random vector with mean zero and covariance matrix

Σ =
1 .5
.5 2

then you can use the Wishart distribution to generate a sample covariance matrix without explicitly
generating x itself. Notice how the sampling variability is quite large when the degrees of freedom is
small.
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Sigma = [1 .5; .5 2];
df = 10; S1 = wishrnd(Sigma,df)/df

S1 =
       1.7959      0.64107
      0.64107       1.5496

df = 1000; S2 = wishrnd(Sigma,df)/df

S2 =
       0.9842      0.50158
      0.50158       2.1682

See Also
wishrnd

More About
• “Inverse Wishart Distribution” on page B-77
• “Working with Probability Distributions” on page 5-3
• “Supported Distributions” on page 5-16
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